hash
stringlengths
64
64
content
stringlengths
0
1.51M
5bd040a6a612d608efa0e690f5b74d507b5de56913e11e3b5b68ccba8bf22e02
""" This is our testing framework. Goals: * it should be compatible with py.test and operate very similarly (or identically) * doesn't require any external dependencies * preferably all the functionality should be in this file only * no magic, just import the test file and execute the test functions, that's it * portable """ from __future__ import print_function, division import os import sys import platform import inspect import traceback import pdb import re import linecache import time from fnmatch import fnmatch from timeit import default_timer as clock import doctest as pdoctest # avoid clashing with our doctest() function from doctest import DocTestFinder, DocTestRunner import random import subprocess import signal import stat import tempfile from sympy.core.cache import clear_cache from sympy.core.compatibility import exec_, PY3, string_types, range, unwrap from sympy.utilities.misc import find_executable from sympy.external import import_module from sympy.utilities.exceptions import SymPyDeprecationWarning IS_WINDOWS = (os.name == 'nt') ON_TRAVIS = os.getenv('TRAVIS_BUILD_NUMBER', None) # emperically generated list of the proportion of time spent running # an even split of tests. This should periodically be regenerated. # A list of [.6, .1, .3] would mean that if the tests are evenly split # into '1/3', '2/3', '3/3', the first split would take 60% of the time, # the second 10% and the third 30%. These lists are normalized to sum # to 1, so [60, 10, 30] has the same behavior as [6, 1, 3] or [.6, .1, .3]. # # This list can be generated with the code: # from time import time # import sympy # # delays, num_splits = [], 30 # for i in range(1, num_splits + 1): # tic = time() # sympy.test(split='{}/{}'.format(i, num_splits), time_balance=False) # Add slow=True for slow tests # delays.append(time() - tic) # tot = sum(delays) # print([round(x / tot, 4) for x in delays]) SPLIT_DENSITY = [0.0801, 0.0099, 0.0429, 0.0103, 0.0122, 0.0055, 0.0533, 0.0191, 0.0977, 0.0878, 0.0026, 0.0028, 0.0147, 0.0118, 0.0358, 0.0063, 0.0026, 0.0351, 0.0084, 0.0027, 0.0158, 0.0156, 0.0024, 0.0416, 0.0566, 0.0425, 0.2123, 0.0042, 0.0099, 0.0576] SPLIT_DENSITY_SLOW = [0.1525, 0.0342, 0.0092, 0.0004, 0.0005, 0.0005, 0.0379, 0.0353, 0.0637, 0.0801, 0.0005, 0.0004, 0.0133, 0.0021, 0.0098, 0.0108, 0.0005, 0.0076, 0.0005, 0.0004, 0.0056, 0.0093, 0.0005, 0.0264, 0.0051, 0.0956, 0.2983, 0.0005, 0.0005, 0.0981] class Skipped(Exception): pass class TimeOutError(Exception): pass class DependencyError(Exception): pass # add more flags ?? future_flags = division.compiler_flag def _indent(s, indent=4): """ Add the given number of space characters to the beginning of every non-blank line in ``s``, and return the result. If the string ``s`` is Unicode, it is encoded using the stdout encoding and the ``backslashreplace`` error handler. """ # After a 2to3 run the below code is bogus, so wrap it with a version check if not PY3: if isinstance(s, unicode): s = s.encode(pdoctest._encoding, 'backslashreplace') # This regexp matches the start of non-blank lines: return re.sub('(?m)^(?!$)', indent*' ', s) pdoctest._indent = _indent # override reporter to maintain windows and python3 def _report_failure(self, out, test, example, got): """ Report that the given example failed. """ s = self._checker.output_difference(example, got, self.optionflags) s = s.encode('raw_unicode_escape').decode('utf8', 'ignore') out(self._failure_header(test, example) + s) if PY3 and IS_WINDOWS: DocTestRunner.report_failure = _report_failure def convert_to_native_paths(lst): """ Converts a list of '/' separated paths into a list of native (os.sep separated) paths and converts to lowercase if the system is case insensitive. """ newlst = [] for i, rv in enumerate(lst): rv = os.path.join(*rv.split("/")) # on windows the slash after the colon is dropped if sys.platform == "win32": pos = rv.find(':') if pos != -1: if rv[pos + 1] != '\\': rv = rv[:pos + 1] + '\\' + rv[pos + 1:] newlst.append(os.path.normcase(rv)) return newlst def get_sympy_dir(): """ Returns the root sympy directory and set the global value indicating whether the system is case sensitive or not. """ this_file = os.path.abspath(__file__) sympy_dir = os.path.join(os.path.dirname(this_file), "..", "..") sympy_dir = os.path.normpath(sympy_dir) return os.path.normcase(sympy_dir) def setup_pprint(): from sympy import pprint_use_unicode, init_printing import sympy.interactive.printing as interactive_printing # force pprint to be in ascii mode in doctests use_unicode_prev = pprint_use_unicode(False) # hook our nice, hash-stable strprinter init_printing(pretty_print=False) # Prevent init_printing() in doctests from affecting other doctests interactive_printing.NO_GLOBAL = True return use_unicode_prev def run_in_subprocess_with_hash_randomization( function, function_args=(), function_kwargs=None, command=sys.executable, module='sympy.utilities.runtests', force=False): """ Run a function in a Python subprocess with hash randomization enabled. If hash randomization is not supported by the version of Python given, it returns False. Otherwise, it returns the exit value of the command. The function is passed to sys.exit(), so the return value of the function will be the return value. The environment variable PYTHONHASHSEED is used to seed Python's hash randomization. If it is set, this function will return False, because starting a new subprocess is unnecessary in that case. If it is not set, one is set at random, and the tests are run. Note that if this environment variable is set when Python starts, hash randomization is automatically enabled. To force a subprocess to be created even if PYTHONHASHSEED is set, pass ``force=True``. This flag will not force a subprocess in Python versions that do not support hash randomization (see below), because those versions of Python do not support the ``-R`` flag. ``function`` should be a string name of a function that is importable from the module ``module``, like "_test". The default for ``module`` is "sympy.utilities.runtests". ``function_args`` and ``function_kwargs`` should be a repr-able tuple and dict, respectively. The default Python command is sys.executable, which is the currently running Python command. This function is necessary because the seed for hash randomization must be set by the environment variable before Python starts. Hence, in order to use a predetermined seed for tests, we must start Python in a separate subprocess. Hash randomization was added in the minor Python versions 2.6.8, 2.7.3, 3.1.5, and 3.2.3, and is enabled by default in all Python versions after and including 3.3.0. Examples ======== >>> from sympy.utilities.runtests import ( ... run_in_subprocess_with_hash_randomization) >>> # run the core tests in verbose mode >>> run_in_subprocess_with_hash_randomization("_test", ... function_args=("core",), ... function_kwargs={'verbose': True}) # doctest: +SKIP # Will return 0 if sys.executable supports hash randomization and tests # pass, 1 if they fail, and False if it does not support hash # randomization. """ # Note, we must return False everywhere, not None, as subprocess.call will # sometimes return None. # First check if the Python version supports hash randomization # If it doesn't have this support, it won't reconize the -R flag p = subprocess.Popen([command, "-RV"], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) p.communicate() if p.returncode != 0: return False hash_seed = os.getenv("PYTHONHASHSEED") if not hash_seed: os.environ["PYTHONHASHSEED"] = str(random.randrange(2**32)) else: if not force: return False function_kwargs = function_kwargs or {} # Now run the command commandstring = ("import sys; from %s import %s;sys.exit(%s(*%s, **%s))" % (module, function, function, repr(function_args), repr(function_kwargs))) try: p = subprocess.Popen([command, "-R", "-c", commandstring]) p.communicate() except KeyboardInterrupt: p.wait() finally: # Put the environment variable back, so that it reads correctly for # the current Python process. if hash_seed is None: del os.environ["PYTHONHASHSEED"] else: os.environ["PYTHONHASHSEED"] = hash_seed return p.returncode def run_all_tests(test_args=(), test_kwargs=None, doctest_args=(), doctest_kwargs=None, examples_args=(), examples_kwargs=None): """ Run all tests. Right now, this runs the regular tests (bin/test), the doctests (bin/doctest), the examples (examples/all.py), and the sage tests (see sympy/external/tests/test_sage.py). This is what ``setup.py test`` uses. You can pass arguments and keyword arguments to the test functions that support them (for now, test, doctest, and the examples). See the docstrings of those functions for a description of the available options. For example, to run the solvers tests with colors turned off: >>> from sympy.utilities.runtests import run_all_tests >>> run_all_tests(test_args=("solvers",), ... test_kwargs={"colors:False"}) # doctest: +SKIP """ tests_successful = True test_kwargs = test_kwargs or {} doctest_kwargs = doctest_kwargs or {} examples_kwargs = examples_kwargs or {'quiet': True} try: # Regular tests if not test(*test_args, **test_kwargs): # some regular test fails, so set the tests_successful # flag to false and continue running the doctests tests_successful = False # Doctests print() if not doctest(*doctest_args, **doctest_kwargs): tests_successful = False # Examples print() sys.path.append("examples") from all import run_examples # examples/all.py if not run_examples(*examples_args, **examples_kwargs): tests_successful = False # Sage tests if sys.platform != "win32" and not PY3 and os.path.exists("bin/test"): # run Sage tests; Sage currently doesn't support Windows or Python 3 # Only run Sage tests if 'bin/test' is present (it is missing from # our release because everything in the 'bin' directory gets # installed). dev_null = open(os.devnull, 'w') if subprocess.call("sage -v", shell=True, stdout=dev_null, stderr=dev_null) == 0: if subprocess.call("sage -python bin/test " "sympy/external/tests/test_sage.py", shell=True, cwd=os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) != 0: tests_successful = False if tests_successful: return else: # Return nonzero exit code sys.exit(1) except KeyboardInterrupt: print() print("DO *NOT* COMMIT!") sys.exit(1) def test(*paths, **kwargs): """ Run tests in the specified test_*.py files. Tests in a particular test_*.py file are run if any of the given strings in ``paths`` matches a part of the test file's path. If ``paths=[]``, tests in all test_*.py files are run. Notes: - If sort=False, tests are run in random order (not default). - Paths can be entered in native system format or in unix, forward-slash format. - Files that are on the blacklist can be tested by providing their path; they are only excluded if no paths are given. **Explanation of test results** ====== =============================================================== Output Meaning ====== =============================================================== . passed F failed X XPassed (expected to fail but passed) f XFAILed (expected to fail and indeed failed) s skipped w slow T timeout (e.g., when ``--timeout`` is used) K KeyboardInterrupt (when running the slow tests with ``--slow``, you can interrupt one of them without killing the test runner) ====== =============================================================== Colors have no additional meaning and are used just to facilitate interpreting the output. Examples ======== >>> import sympy Run all tests: >>> sympy.test() # doctest: +SKIP Run one file: >>> sympy.test("sympy/core/tests/test_basic.py") # doctest: +SKIP >>> sympy.test("_basic") # doctest: +SKIP Run all tests in sympy/functions/ and some particular file: >>> sympy.test("sympy/core/tests/test_basic.py", ... "sympy/functions") # doctest: +SKIP Run all tests in sympy/core and sympy/utilities: >>> sympy.test("/core", "/util") # doctest: +SKIP Run specific test from a file: >>> sympy.test("sympy/core/tests/test_basic.py", ... kw="test_equality") # doctest: +SKIP Run specific test from any file: >>> sympy.test(kw="subs") # doctest: +SKIP Run the tests with verbose mode on: >>> sympy.test(verbose=True) # doctest: +SKIP Don't sort the test output: >>> sympy.test(sort=False) # doctest: +SKIP Turn on post-mortem pdb: >>> sympy.test(pdb=True) # doctest: +SKIP Turn off colors: >>> sympy.test(colors=False) # doctest: +SKIP Force colors, even when the output is not to a terminal (this is useful, e.g., if you are piping to ``less -r`` and you still want colors) >>> sympy.test(force_colors=False) # doctest: +SKIP The traceback verboseness can be set to "short" or "no" (default is "short") >>> sympy.test(tb='no') # doctest: +SKIP The ``split`` option can be passed to split the test run into parts. The split currently only splits the test files, though this may change in the future. ``split`` should be a string of the form 'a/b', which will run part ``a`` of ``b``. For instance, to run the first half of the test suite: >>> sympy.test(split='1/2') # doctest: +SKIP The ``time_balance`` option can be passed in conjunction with ``split``. If ``time_balance=True`` (the default for ``sympy.test``), sympy will attempt to split the tests such that each split takes equal time. This heuristic for balancing is based on pre-recorded test data. >>> sympy.test(split='1/2', time_balance=True) # doctest: +SKIP You can disable running the tests in a separate subprocess using ``subprocess=False``. This is done to support seeding hash randomization, which is enabled by default in the Python versions where it is supported. If subprocess=False, hash randomization is enabled/disabled according to whether it has been enabled or not in the calling Python process. However, even if it is enabled, the seed cannot be printed unless it is called from a new Python process. Hash randomization was added in the minor Python versions 2.6.8, 2.7.3, 3.1.5, and 3.2.3, and is enabled by default in all Python versions after and including 3.3.0. If hash randomization is not supported ``subprocess=False`` is used automatically. >>> sympy.test(subprocess=False) # doctest: +SKIP To set the hash randomization seed, set the environment variable ``PYTHONHASHSEED`` before running the tests. This can be done from within Python using >>> import os >>> os.environ['PYTHONHASHSEED'] = '42' # doctest: +SKIP Or from the command line using $ PYTHONHASHSEED=42 ./bin/test If the seed is not set, a random seed will be chosen. Note that to reproduce the same hash values, you must use both the same seed as well as the same architecture (32-bit vs. 64-bit). """ subprocess = kwargs.pop("subprocess", True) rerun = kwargs.pop("rerun", 0) # count up from 0, do not print 0 print_counter = lambda i : (print("rerun %d" % (rerun-i)) if rerun-i else None) if subprocess: # loop backwards so last i is 0 for i in range(rerun, -1, -1): print_counter(i) ret = run_in_subprocess_with_hash_randomization("_test", function_args=paths, function_kwargs=kwargs) if ret is False: break val = not bool(ret) # exit on the first failure or if done if not val or i == 0: return val # rerun even if hash randomization is not supported for i in range(rerun, -1, -1): print_counter(i) val = not bool(_test(*paths, **kwargs)) if not val or i == 0: return val def _test(*paths, **kwargs): """ Internal function that actually runs the tests. All keyword arguments from ``test()`` are passed to this function except for ``subprocess``. Returns 0 if tests passed and 1 if they failed. See the docstring of ``test()`` for more information. """ verbose = kwargs.get("verbose", False) tb = kwargs.get("tb", "short") kw = kwargs.get("kw", None) or () # ensure that kw is a tuple if isinstance(kw, string_types): kw = (kw, ) post_mortem = kwargs.get("pdb", False) colors = kwargs.get("colors", True) force_colors = kwargs.get("force_colors", False) sort = kwargs.get("sort", True) seed = kwargs.get("seed", None) if seed is None: seed = random.randrange(100000000) timeout = kwargs.get("timeout", False) fail_on_timeout = kwargs.get("fail_on_timeout", False) if ON_TRAVIS and timeout is False: # Travis times out if no activity is seen for 10 minutes. timeout = 595 fail_on_timeout = True slow = kwargs.get("slow", False) enhance_asserts = kwargs.get("enhance_asserts", False) split = kwargs.get('split', None) time_balance = kwargs.get('time_balance', True) blacklist = kwargs.get('blacklist', ['sympy/integrals/rubi/rubi_tests/tests']) blacklist = convert_to_native_paths(blacklist) fast_threshold = kwargs.get('fast_threshold', None) slow_threshold = kwargs.get('slow_threshold', None) r = PyTestReporter(verbose=verbose, tb=tb, colors=colors, force_colors=force_colors, split=split) t = SymPyTests(r, kw, post_mortem, seed, fast_threshold=fast_threshold, slow_threshold=slow_threshold) # Show deprecation warnings import warnings warnings.simplefilter("error", SymPyDeprecationWarning) warnings.filterwarnings('error', '.*', DeprecationWarning, module='sympy.*') test_files = t.get_test_files('sympy') not_blacklisted = [f for f in test_files if not any(b in f for b in blacklist)] if len(paths) == 0: matched = not_blacklisted else: paths = convert_to_native_paths(paths) matched = [] for f in not_blacklisted: basename = os.path.basename(f) for p in paths: if p in f or fnmatch(basename, p): matched.append(f) break density = None if time_balance: if slow: density = SPLIT_DENSITY_SLOW else: density = SPLIT_DENSITY if split: matched = split_list(matched, split, density=density) t._testfiles.extend(matched) return int(not t.test(sort=sort, timeout=timeout, slow=slow, enhance_asserts=enhance_asserts, fail_on_timeout=fail_on_timeout)) def doctest(*paths, **kwargs): r""" Runs doctests in all \*.py files in the sympy directory which match any of the given strings in ``paths`` or all tests if paths=[]. Notes: - Paths can be entered in native system format or in unix, forward-slash format. - Files that are on the blacklist can be tested by providing their path; they are only excluded if no paths are given. Examples ======== >>> import sympy Run all tests: >>> sympy.doctest() # doctest: +SKIP Run one file: >>> sympy.doctest("sympy/core/basic.py") # doctest: +SKIP >>> sympy.doctest("polynomial.rst") # doctest: +SKIP Run all tests in sympy/functions/ and some particular file: >>> sympy.doctest("/functions", "basic.py") # doctest: +SKIP Run any file having polynomial in its name, doc/src/modules/polynomial.rst, sympy/functions/special/polynomials.py, and sympy/polys/polynomial.py: >>> sympy.doctest("polynomial") # doctest: +SKIP The ``split`` option can be passed to split the test run into parts. The split currently only splits the test files, though this may change in the future. ``split`` should be a string of the form 'a/b', which will run part ``a`` of ``b``. Note that the regular doctests and the Sphinx doctests are split independently. For instance, to run the first half of the test suite: >>> sympy.doctest(split='1/2') # doctest: +SKIP The ``subprocess`` and ``verbose`` options are the same as with the function ``test()``. See the docstring of that function for more information. """ subprocess = kwargs.pop("subprocess", True) rerun = kwargs.pop("rerun", 0) # count up from 0, do not print 0 print_counter = lambda i : (print("rerun %d" % (rerun-i)) if rerun-i else None) if subprocess: # loop backwards so last i is 0 for i in range(rerun, -1, -1): print_counter(i) ret = run_in_subprocess_with_hash_randomization("_doctest", function_args=paths, function_kwargs=kwargs) if ret is False: break val = not bool(ret) # exit on the first failure or if done if not val or i == 0: return val # rerun even if hash randomization is not supported for i in range(rerun, -1, -1): print_counter(i) val = not bool(_doctest(*paths, **kwargs)) if not val or i == 0: return val def _get_doctest_blacklist(): '''Get the default blacklist for the doctests''' blacklist = [] blacklist.extend([ "doc/src/modules/plotting.rst", # generates live plots "doc/src/modules/physics/mechanics/autolev_parser.rst", "sympy/physics/gaussopt.py", # raises deprecation warning "sympy/galgebra.py", # raises ImportError "sympy/this.py", # Prints text to the terminal "sympy/matrices/densearith.py", # raises deprecation warning "sympy/matrices/densesolve.py", # raises deprecation warning "sympy/matrices/densetools.py", # raises deprecation warning "sympy/physics/unitsystems.py", # raises deprecation warning "sympy/parsing/autolev/_antlr/autolevlexer.py", # generated code "sympy/parsing/autolev/_antlr/autolevparser.py", # generated code "sympy/parsing/autolev/_antlr/autolevlistener.py", # generated code "sympy/parsing/latex/_antlr/latexlexer.py", # generated code "sympy/parsing/latex/_antlr/latexparser.py", # generated code "sympy/integrals/rubi/rubi.py" ]) # autolev parser tests num = 12 for i in range (1, num+1): blacklist.append("sympy/parsing/autolev/test-examples/ruletest" + str(i) + ".py") blacklist.extend(["sympy/parsing/autolev/test-examples/pydy-example-repo/mass_spring_damper.py", "sympy/parsing/autolev/test-examples/pydy-example-repo/chaos_pendulum.py", "sympy/parsing/autolev/test-examples/pydy-example-repo/double_pendulum.py", "sympy/parsing/autolev/test-examples/pydy-example-repo/non_min_pendulum.py"]) if import_module('numpy') is None: blacklist.extend([ "sympy/plotting/experimental_lambdify.py", "sympy/plotting/plot_implicit.py", "examples/advanced/autowrap_integrators.py", "examples/advanced/autowrap_ufuncify.py", "examples/intermediate/sample.py", "examples/intermediate/mplot2d.py", "examples/intermediate/mplot3d.py", "doc/src/modules/numeric-computation.rst" ]) else: if import_module('matplotlib') is None: blacklist.extend([ "examples/intermediate/mplot2d.py", "examples/intermediate/mplot3d.py" ]) else: # Use a non-windowed backend, so that the tests work on Travis import matplotlib matplotlib.use('Agg') if import_module('pyglet') is None: blacklist.extend(["sympy/plotting/pygletplot"]) if import_module('theano') is None: blacklist.extend([ "sympy/printing/theanocode.py", "doc/src/modules/numeric-computation.rst", ]) if import_module('antlr4') is None: blacklist.extend([ "sympy/parsing/autolev/__init__.py", "sympy/parsing/latex/_parse_latex_antlr.py", ]) # disabled because of doctest failures in asmeurer's bot blacklist.extend([ "sympy/utilities/autowrap.py", "examples/advanced/autowrap_integrators.py", "examples/advanced/autowrap_ufuncify.py" ]) # blacklist these modules until issue 4840 is resolved blacklist.extend([ "sympy/conftest.py", "sympy/utilities/benchmarking.py" ]) blacklist = convert_to_native_paths(blacklist) return blacklist def _doctest(*paths, **kwargs): """ Internal function that actually runs the doctests. All keyword arguments from ``doctest()`` are passed to this function except for ``subprocess``. Returns 0 if tests passed and 1 if they failed. See the docstrings of ``doctest()`` and ``test()`` for more information. """ from sympy import pprint_use_unicode normal = kwargs.get("normal", False) verbose = kwargs.get("verbose", False) colors = kwargs.get("colors", True) force_colors = kwargs.get("force_colors", False) blacklist = kwargs.get("blacklist", []) split = kwargs.get('split', None) blacklist.extend(_get_doctest_blacklist()) # Use a non-windowed backend, so that the tests work on Travis if import_module('matplotlib') is not None: import matplotlib matplotlib.use('Agg') # Disable warnings for external modules import sympy.external sympy.external.importtools.WARN_OLD_VERSION = False sympy.external.importtools.WARN_NOT_INSTALLED = False # Disable showing up of plots from sympy.plotting.plot import unset_show unset_show() # Show deprecation warnings import warnings warnings.simplefilter("error", SymPyDeprecationWarning) warnings.filterwarnings('error', '.*', DeprecationWarning, module='sympy.*') r = PyTestReporter(verbose, split=split, colors=colors,\ force_colors=force_colors) t = SymPyDocTests(r, normal) test_files = t.get_test_files('sympy') test_files.extend(t.get_test_files('examples', init_only=False)) not_blacklisted = [f for f in test_files if not any(b in f for b in blacklist)] if len(paths) == 0: matched = not_blacklisted else: # take only what was requested...but not blacklisted items # and allow for partial match anywhere or fnmatch of name paths = convert_to_native_paths(paths) matched = [] for f in not_blacklisted: basename = os.path.basename(f) for p in paths: if p in f or fnmatch(basename, p): matched.append(f) break if split: matched = split_list(matched, split) t._testfiles.extend(matched) # run the tests and record the result for this *py portion of the tests if t._testfiles: failed = not t.test() else: failed = False # N.B. # -------------------------------------------------------------------- # Here we test *.rst files at or below doc/src. Code from these must # be self supporting in terms of imports since there is no importing # of necessary modules by doctest.testfile. If you try to pass *.py # files through this they might fail because they will lack the needed # imports and smarter parsing that can be done with source code. # test_files = t.get_test_files('doc/src', '*.rst', init_only=False) test_files.sort() not_blacklisted = [f for f in test_files if not any(b in f for b in blacklist)] if len(paths) == 0: matched = not_blacklisted else: # Take only what was requested as long as it's not on the blacklist. # Paths were already made native in *py tests so don't repeat here. # There's no chance of having a *py file slip through since we # only have *rst files in test_files. matched = [] for f in not_blacklisted: basename = os.path.basename(f) for p in paths: if p in f or fnmatch(basename, p): matched.append(f) break if split: matched = split_list(matched, split) first_report = True for rst_file in matched: if not os.path.isfile(rst_file): continue old_displayhook = sys.displayhook try: use_unicode_prev = setup_pprint() out = sympytestfile( rst_file, module_relative=False, encoding='utf-8', optionflags=pdoctest.ELLIPSIS | pdoctest.NORMALIZE_WHITESPACE | pdoctest.IGNORE_EXCEPTION_DETAIL) finally: # make sure we return to the original displayhook in case some # doctest has changed that sys.displayhook = old_displayhook # The NO_GLOBAL flag overrides the no_global flag to init_printing # if True import sympy.interactive.printing as interactive_printing interactive_printing.NO_GLOBAL = False pprint_use_unicode(use_unicode_prev) rstfailed, tested = out if tested: failed = rstfailed or failed if first_report: first_report = False msg = 'rst doctests start' if not t._testfiles: r.start(msg=msg) else: r.write_center(msg) print() # use as the id, everything past the first 'sympy' file_id = rst_file[rst_file.find('sympy') + len('sympy') + 1:] print(file_id, end=" ") # get at least the name out so it is know who is being tested wid = r.terminal_width - len(file_id) - 1 # update width test_file = '[%s]' % (tested) report = '[%s]' % (rstfailed or 'OK') print(''.join( [test_file, ' '*(wid - len(test_file) - len(report)), report]) ) # the doctests for *py will have printed this message already if there was # a failure, so now only print it if there was intervening reporting by # testing the *rst as evidenced by first_report no longer being True. if not first_report and failed: print() print("DO *NOT* COMMIT!") return int(failed) sp = re.compile(r'([0-9]+)/([1-9][0-9]*)') def split_list(l, split, density=None): """ Splits a list into part a of b split should be a string of the form 'a/b'. For instance, '1/3' would give the split one of three. If the length of the list is not divisible by the number of splits, the last split will have more items. `density` may be specified as a list. If specified, tests will be balanced so that each split has as equal-as-possible amount of mass according to `density`. >>> from sympy.utilities.runtests import split_list >>> a = list(range(10)) >>> split_list(a, '1/3') [0, 1, 2] >>> split_list(a, '2/3') [3, 4, 5] >>> split_list(a, '3/3') [6, 7, 8, 9] """ m = sp.match(split) if not m: raise ValueError("split must be a string of the form a/b where a and b are ints") i, t = map(int, m.groups()) if not density: return l[(i - 1)*len(l)//t : i*len(l)//t] # normalize density tot = sum(density) density = [x / tot for x in density] def density_inv(x): """Interpolate the inverse to the cumulative distribution function given by density""" if x <= 0: return 0 if x >= sum(density): return 1 # find the first time the cumulative sum surpasses x # and linearly interpolate cumm = 0 for i, d in enumerate(density): cumm += d if cumm >= x: break frac = (d - (cumm - x)) / d return (i + frac) / len(density) lower_frac = density_inv((i - 1) / t) higher_frac = density_inv(i / t) return l[int(lower_frac*len(l)) : int(higher_frac*len(l))] from collections import namedtuple SymPyTestResults = namedtuple('TestResults', 'failed attempted') def sympytestfile(filename, module_relative=True, name=None, package=None, globs=None, verbose=None, report=True, optionflags=0, extraglobs=None, raise_on_error=False, parser=pdoctest.DocTestParser(), encoding=None): """ Test examples in the given file. Return (#failures, #tests). Optional keyword arg ``module_relative`` specifies how filenames should be interpreted: - If ``module_relative`` is True (the default), then ``filename`` specifies a module-relative path. By default, this path is relative to the calling module's directory; but if the ``package`` argument is specified, then it is relative to that package. To ensure os-independence, ``filename`` should use "/" characters to separate path segments, and should not be an absolute path (i.e., it may not begin with "/"). - If ``module_relative`` is False, then ``filename`` specifies an os-specific path. The path may be absolute or relative (to the current working directory). Optional keyword arg ``name`` gives the name of the test; by default use the file's basename. Optional keyword argument ``package`` is a Python package or the name of a Python package whose directory should be used as the base directory for a module relative filename. If no package is specified, then the calling module's directory is used as the base directory for module relative filenames. It is an error to specify ``package`` if ``module_relative`` is False. Optional keyword arg ``globs`` gives a dict to be used as the globals when executing examples; by default, use {}. A copy of this dict is actually used for each docstring, so that each docstring's examples start with a clean slate. Optional keyword arg ``extraglobs`` gives a dictionary that should be merged into the globals that are used to execute examples. By default, no extra globals are used. Optional keyword arg ``verbose`` prints lots of stuff if true, prints only failures if false; by default, it's true iff "-v" is in sys.argv. Optional keyword arg ``report`` prints a summary at the end when true, else prints nothing at the end. In verbose mode, the summary is detailed, else very brief (in fact, empty if all tests passed). Optional keyword arg ``optionflags`` or's together module constants, and defaults to 0. Possible values (see the docs for details): - DONT_ACCEPT_TRUE_FOR_1 - DONT_ACCEPT_BLANKLINE - NORMALIZE_WHITESPACE - ELLIPSIS - SKIP - IGNORE_EXCEPTION_DETAIL - REPORT_UDIFF - REPORT_CDIFF - REPORT_NDIFF - REPORT_ONLY_FIRST_FAILURE Optional keyword arg ``raise_on_error`` raises an exception on the first unexpected exception or failure. This allows failures to be post-mortem debugged. Optional keyword arg ``parser`` specifies a DocTestParser (or subclass) that should be used to extract tests from the files. Optional keyword arg ``encoding`` specifies an encoding that should be used to convert the file to unicode. Advanced tomfoolery: testmod runs methods of a local instance of class doctest.Tester, then merges the results into (or creates) global Tester instance doctest.master. Methods of doctest.master can be called directly too, if you want to do something unusual. Passing report=0 to testmod is especially useful then, to delay displaying a summary. Invoke doctest.master.summarize(verbose) when you're done fiddling. """ if package and not module_relative: raise ValueError("Package may only be specified for module-" "relative paths.") # Relativize the path if not PY3: text, filename = pdoctest._load_testfile( filename, package, module_relative) if encoding is not None: text = text.decode(encoding) else: text, filename = pdoctest._load_testfile( filename, package, module_relative, encoding) # If no name was given, then use the file's name. if name is None: name = os.path.basename(filename) # Assemble the globals. if globs is None: globs = {} else: globs = globs.copy() if extraglobs is not None: globs.update(extraglobs) if '__name__' not in globs: globs['__name__'] = '__main__' if raise_on_error: runner = pdoctest.DebugRunner(verbose=verbose, optionflags=optionflags) else: runner = SymPyDocTestRunner(verbose=verbose, optionflags=optionflags) runner._checker = SymPyOutputChecker() # Read the file, convert it to a test, and run it. test = parser.get_doctest(text, globs, name, filename, 0) runner.run(test, compileflags=future_flags) if report: runner.summarize() if pdoctest.master is None: pdoctest.master = runner else: pdoctest.master.merge(runner) return SymPyTestResults(runner.failures, runner.tries) class SymPyTests(object): def __init__(self, reporter, kw="", post_mortem=False, seed=None, fast_threshold=None, slow_threshold=None): self._post_mortem = post_mortem self._kw = kw self._count = 0 self._root_dir = sympy_dir self._reporter = reporter self._reporter.root_dir(self._root_dir) self._testfiles = [] self._seed = seed if seed is not None else random.random() # Defaults in seconds, from human / UX design limits # http://www.nngroup.com/articles/response-times-3-important-limits/ # # These defaults are *NOT* set in stone as we are measuring different # things, so others feel free to come up with a better yardstick :) if fast_threshold: self._fast_threshold = float(fast_threshold) else: self._fast_threshold = 5 if slow_threshold: self._slow_threshold = float(slow_threshold) else: self._slow_threshold = 10 def test(self, sort=False, timeout=False, slow=False, enhance_asserts=False, fail_on_timeout=False): """ Runs the tests returning True if all tests pass, otherwise False. If sort=False run tests in random order. """ if sort: self._testfiles.sort() elif slow: pass else: random.seed(self._seed) random.shuffle(self._testfiles) self._reporter.start(self._seed) for f in self._testfiles: try: self.test_file(f, sort, timeout, slow, enhance_asserts, fail_on_timeout) except KeyboardInterrupt: print(" interrupted by user") self._reporter.finish() raise return self._reporter.finish() def _enhance_asserts(self, source): from ast import (NodeTransformer, Compare, Name, Store, Load, Tuple, Assign, BinOp, Str, Mod, Assert, parse, fix_missing_locations) ops = {"Eq": '==', "NotEq": '!=', "Lt": '<', "LtE": '<=', "Gt": '>', "GtE": '>=', "Is": 'is', "IsNot": 'is not', "In": 'in', "NotIn": 'not in'} class Transform(NodeTransformer): def visit_Assert(self, stmt): if isinstance(stmt.test, Compare): compare = stmt.test values = [compare.left] + compare.comparators names = [ "_%s" % i for i, _ in enumerate(values) ] names_store = [ Name(n, Store()) for n in names ] names_load = [ Name(n, Load()) for n in names ] target = Tuple(names_store, Store()) value = Tuple(values, Load()) assign = Assign([target], value) new_compare = Compare(names_load[0], compare.ops, names_load[1:]) msg_format = "\n%s " + "\n%s ".join([ ops[op.__class__.__name__] for op in compare.ops ]) + "\n%s" msg = BinOp(Str(msg_format), Mod(), Tuple(names_load, Load())) test = Assert(new_compare, msg, lineno=stmt.lineno, col_offset=stmt.col_offset) return [assign, test] else: return stmt tree = parse(source) new_tree = Transform().visit(tree) return fix_missing_locations(new_tree) def test_file(self, filename, sort=True, timeout=False, slow=False, enhance_asserts=False, fail_on_timeout=False): reporter = self._reporter funcs = [] try: gl = {'__file__': filename} try: if PY3: open_file = lambda: open(filename, encoding="utf8") else: open_file = lambda: open(filename) with open_file() as f: source = f.read() if self._kw: for l in source.splitlines(): if l.lstrip().startswith('def '): if any(l.find(k) != -1 for k in self._kw): break else: return if enhance_asserts: try: source = self._enhance_asserts(source) except ImportError: pass code = compile(source, filename, "exec", flags=0, dont_inherit=True) exec_(code, gl) except (SystemExit, KeyboardInterrupt): raise except ImportError: reporter.import_error(filename, sys.exc_info()) return except Exception: reporter.test_exception(sys.exc_info()) clear_cache() self._count += 1 random.seed(self._seed) disabled = gl.get("disabled", False) if not disabled: # we need to filter only those functions that begin with 'test_' # We have to be careful about decorated functions. As long as # the decorator uses functools.wraps, we can detect it. funcs = [] for f in gl: if (f.startswith("test_") and (inspect.isfunction(gl[f]) or inspect.ismethod(gl[f]))): func = gl[f] # Handle multiple decorators while hasattr(func, '__wrapped__'): func = func.__wrapped__ if inspect.getsourcefile(func) == filename: funcs.append(gl[f]) if slow: funcs = [f for f in funcs if getattr(f, '_slow', False)] # Sorting of XFAILed functions isn't fixed yet :-( funcs.sort(key=lambda x: inspect.getsourcelines(x)[1]) i = 0 while i < len(funcs): if inspect.isgeneratorfunction(funcs[i]): # some tests can be generators, that return the actual # test functions. We unpack it below: f = funcs.pop(i) for fg in f(): func = fg[0] args = fg[1:] fgw = lambda: func(*args) funcs.insert(i, fgw) i += 1 else: i += 1 # drop functions that are not selected with the keyword expression: funcs = [x for x in funcs if self.matches(x)] if not funcs: return except Exception: reporter.entering_filename(filename, len(funcs)) raise reporter.entering_filename(filename, len(funcs)) if not sort: random.shuffle(funcs) for f in funcs: start = time.time() reporter.entering_test(f) try: if getattr(f, '_slow', False) and not slow: raise Skipped("Slow") if timeout: self._timeout(f, timeout, fail_on_timeout) else: random.seed(self._seed) f() except KeyboardInterrupt: if getattr(f, '_slow', False): reporter.test_skip("KeyboardInterrupt") else: raise except Exception: if timeout: signal.alarm(0) # Disable the alarm. It could not be handled before. t, v, tr = sys.exc_info() if t is AssertionError: reporter.test_fail((t, v, tr)) if self._post_mortem: pdb.post_mortem(tr) elif t.__name__ == "Skipped": reporter.test_skip(v) elif t.__name__ == "XFail": reporter.test_xfail() elif t.__name__ == "XPass": reporter.test_xpass(v) else: reporter.test_exception((t, v, tr)) if self._post_mortem: pdb.post_mortem(tr) else: reporter.test_pass() taken = time.time() - start if taken > self._slow_threshold: reporter.slow_test_functions.append((f.__name__, taken)) if getattr(f, '_slow', False) and slow: if taken < self._fast_threshold: reporter.fast_test_functions.append((f.__name__, taken)) reporter.leaving_filename() def _timeout(self, function, timeout, fail_on_timeout): def callback(x, y): signal.alarm(0) if fail_on_timeout: raise TimeOutError("Timed out after %d seconds" % timeout) else: raise Skipped("Timeout") signal.signal(signal.SIGALRM, callback) signal.alarm(timeout) # Set an alarm with a given timeout function() signal.alarm(0) # Disable the alarm def matches(self, x): """ Does the keyword expression self._kw match "x"? Returns True/False. Always returns True if self._kw is "". """ if not self._kw: return True for kw in self._kw: if x.__name__.find(kw) != -1: return True return False def get_test_files(self, dir, pat='test_*.py'): """ Returns the list of test_*.py (default) files at or below directory ``dir`` relative to the sympy home directory. """ dir = os.path.join(self._root_dir, convert_to_native_paths([dir])[0]) g = [] for path, folders, files in os.walk(dir): g.extend([os.path.join(path, f) for f in files if fnmatch(f, pat)]) return sorted([os.path.normcase(gi) for gi in g]) class SymPyDocTests(object): def __init__(self, reporter, normal): self._count = 0 self._root_dir = sympy_dir self._reporter = reporter self._reporter.root_dir(self._root_dir) self._normal = normal self._testfiles = [] def test(self): """ Runs the tests and returns True if all tests pass, otherwise False. """ self._reporter.start() for f in self._testfiles: try: self.test_file(f) except KeyboardInterrupt: print(" interrupted by user") self._reporter.finish() raise return self._reporter.finish() def test_file(self, filename): clear_cache() from sympy.core.compatibility import StringIO import sympy.interactive.printing as interactive_printing from sympy import pprint_use_unicode rel_name = filename[len(self._root_dir) + 1:] dirname, file = os.path.split(filename) module = rel_name.replace(os.sep, '.')[:-3] if rel_name.startswith("examples"): # Examples files do not have __init__.py files, # So we have to temporarily extend sys.path to import them sys.path.insert(0, dirname) module = file[:-3] # remove ".py" try: module = pdoctest._normalize_module(module) tests = SymPyDocTestFinder().find(module) except (SystemExit, KeyboardInterrupt): raise except ImportError: self._reporter.import_error(filename, sys.exc_info()) return finally: if rel_name.startswith("examples"): del sys.path[0] tests = [test for test in tests if len(test.examples) > 0] # By default tests are sorted by alphabetical order by function name. # We sort by line number so one can edit the file sequentially from # bottom to top. However, if there are decorated functions, their line # numbers will be too large and for now one must just search for these # by text and function name. tests.sort(key=lambda x: -x.lineno) if not tests: return self._reporter.entering_filename(filename, len(tests)) for test in tests: assert len(test.examples) != 0 if self._reporter._verbose: self._reporter.write("\n{} ".format(test.name)) # check if there are external dependencies which need to be met if '_doctest_depends_on' in test.globs: try: self._check_dependencies(**test.globs['_doctest_depends_on']) except DependencyError as e: self._reporter.test_skip(v=str(e)) continue runner = SymPyDocTestRunner(optionflags=pdoctest.ELLIPSIS | pdoctest.NORMALIZE_WHITESPACE | pdoctest.IGNORE_EXCEPTION_DETAIL) runner._checker = SymPyOutputChecker() old = sys.stdout new = StringIO() sys.stdout = new # If the testing is normal, the doctests get importing magic to # provide the global namespace. If not normal (the default) then # then must run on their own; all imports must be explicit within # a function's docstring. Once imported that import will be # available to the rest of the tests in a given function's # docstring (unless clear_globs=True below). if not self._normal: test.globs = {} # if this is uncommented then all the test would get is what # comes by default with a "from sympy import *" #exec('from sympy import *') in test.globs test.globs['print_function'] = print_function old_displayhook = sys.displayhook use_unicode_prev = setup_pprint() try: f, t = runner.run(test, compileflags=future_flags, out=new.write, clear_globs=False) except KeyboardInterrupt: raise finally: sys.stdout = old if f > 0: self._reporter.doctest_fail(test.name, new.getvalue()) else: self._reporter.test_pass() sys.displayhook = old_displayhook interactive_printing.NO_GLOBAL = False pprint_use_unicode(use_unicode_prev) self._reporter.leaving_filename() def get_test_files(self, dir, pat='*.py', init_only=True): r""" Returns the list of \*.py files (default) from which docstrings will be tested which are at or below directory ``dir``. By default, only those that have an __init__.py in their parent directory and do not start with ``test_`` will be included. """ def importable(x): """ Checks if given pathname x is an importable module by checking for __init__.py file. Returns True/False. Currently we only test if the __init__.py file exists in the directory with the file "x" (in theory we should also test all the parent dirs). """ init_py = os.path.join(os.path.dirname(x), "__init__.py") return os.path.exists(init_py) dir = os.path.join(self._root_dir, convert_to_native_paths([dir])[0]) g = [] for path, folders, files in os.walk(dir): g.extend([os.path.join(path, f) for f in files if not f.startswith('test_') and fnmatch(f, pat)]) if init_only: # skip files that are not importable (i.e. missing __init__.py) g = [x for x in g if importable(x)] return [os.path.normcase(gi) for gi in g] def _check_dependencies(self, executables=(), modules=(), disable_viewers=(), python_version=(2,)): """ Checks if the dependencies for the test are installed. Raises ``DependencyError`` it at least one dependency is not installed. """ for executable in executables: if not find_executable(executable): raise DependencyError("Could not find %s" % executable) for module in modules: if module == 'matplotlib': matplotlib = import_module( 'matplotlib', __import__kwargs={'fromlist': ['pyplot', 'cm', 'collections']}, min_module_version='1.0.0', catch=(RuntimeError,)) if matplotlib is None: raise DependencyError("Could not import matplotlib") else: if not import_module(module): raise DependencyError("Could not import %s" % module) if disable_viewers: tempdir = tempfile.mkdtemp() os.environ['PATH'] = '%s:%s' % (tempdir, os.environ['PATH']) vw = ('#!/usr/bin/env {}\n' 'import sys\n' 'if len(sys.argv) <= 1:\n' ' exit("wrong number of args")\n').format( 'python3' if PY3 else 'python') for viewer in disable_viewers: with open(os.path.join(tempdir, viewer), 'w') as fh: fh.write(vw) # make the file executable os.chmod(os.path.join(tempdir, viewer), stat.S_IREAD | stat.S_IWRITE | stat.S_IXUSR) if python_version: if sys.version_info < python_version: raise DependencyError("Requires Python >= " + '.'.join(map(str, python_version))) if 'pyglet' in modules: # monkey-patch pyglet s.t. it does not open a window during # doctesting import pyglet class DummyWindow(object): def __init__(self, *args, **kwargs): self.has_exit = True self.width = 600 self.height = 400 def set_vsync(self, x): pass def switch_to(self): pass def push_handlers(self, x): pass def close(self): pass pyglet.window.Window = DummyWindow class SymPyDocTestFinder(DocTestFinder): """ A class used to extract the DocTests that are relevant to a given object, from its docstring and the docstrings of its contained objects. Doctests can currently be extracted from the following object types: modules, functions, classes, methods, staticmethods, classmethods, and properties. Modified from doctest's version to look harder for code that appears comes from a different module. For example, the @vectorize decorator makes it look like functions come from multidimensional.py even though their code exists elsewhere. """ def _find(self, tests, obj, name, module, source_lines, globs, seen): """ Find tests for the given object and any contained objects, and add them to ``tests``. """ if self._verbose: print('Finding tests in %s' % name) # If we've already processed this object, then ignore it. if id(obj) in seen: return seen[id(obj)] = 1 # Make sure we don't run doctests for classes outside of sympy, such # as in numpy or scipy. if inspect.isclass(obj): if obj.__module__.split('.')[0] != 'sympy': return # Find a test for this object, and add it to the list of tests. test = self._get_test(obj, name, module, globs, source_lines) if test is not None: tests.append(test) if not self._recurse: return # Look for tests in a module's contained objects. if inspect.ismodule(obj): for rawname, val in obj.__dict__.items(): # Recurse to functions & classes. if inspect.isfunction(val) or inspect.isclass(val): # Make sure we don't run doctests functions or classes # from different modules if val.__module__ != module.__name__: continue assert self._from_module(module, val), \ "%s is not in module %s (rawname %s)" % (val, module, rawname) try: valname = '%s.%s' % (name, rawname) self._find(tests, val, valname, module, source_lines, globs, seen) except KeyboardInterrupt: raise # Look for tests in a module's __test__ dictionary. for valname, val in getattr(obj, '__test__', {}).items(): if not isinstance(valname, string_types): raise ValueError("SymPyDocTestFinder.find: __test__ keys " "must be strings: %r" % (type(valname),)) if not (inspect.isfunction(val) or inspect.isclass(val) or inspect.ismethod(val) or inspect.ismodule(val) or isinstance(val, string_types)): raise ValueError("SymPyDocTestFinder.find: __test__ values " "must be strings, functions, methods, " "classes, or modules: %r" % (type(val),)) valname = '%s.__test__.%s' % (name, valname) self._find(tests, val, valname, module, source_lines, globs, seen) # Look for tests in a class's contained objects. if inspect.isclass(obj): for valname, val in obj.__dict__.items(): # Special handling for staticmethod/classmethod. if isinstance(val, staticmethod): val = getattr(obj, valname) if isinstance(val, classmethod): val = getattr(obj, valname).__func__ # Recurse to methods, properties, and nested classes. if ((inspect.isfunction(unwrap(val)) or inspect.isclass(val) or isinstance(val, property)) and self._from_module(module, val)): # Make sure we don't run doctests functions or classes # from different modules if isinstance(val, property): if hasattr(val.fget, '__module__'): if val.fget.__module__ != module.__name__: continue else: if val.__module__ != module.__name__: continue assert self._from_module(module, val), \ "%s is not in module %s (valname %s)" % ( val, module, valname) valname = '%s.%s' % (name, valname) self._find(tests, val, valname, module, source_lines, globs, seen) def _get_test(self, obj, name, module, globs, source_lines): """ Return a DocTest for the given object, if it defines a docstring; otherwise, return None. """ lineno = None # Extract the object's docstring. If it doesn't have one, # then return None (no test for this object). if isinstance(obj, string_types): # obj is a string in the case for objects in the polys package. # Note that source_lines is a binary string (compiled polys # modules), which can't be handled by _find_lineno so determine # the line number here. docstring = obj matches = re.findall(r"line \d+", name) assert len(matches) == 1, \ "string '%s' does not contain lineno " % name # NOTE: this is not the exact linenumber but its better than no # lineno ;) lineno = int(matches[0][5:]) else: try: if obj.__doc__ is None: docstring = '' else: docstring = obj.__doc__ if not isinstance(docstring, string_types): docstring = str(docstring) except (TypeError, AttributeError): docstring = '' # Don't bother if the docstring is empty. if self._exclude_empty and not docstring: return None # check that properties have a docstring because _find_lineno # assumes it if isinstance(obj, property): if obj.fget.__doc__ is None: return None # Find the docstring's location in the file. if lineno is None: obj = unwrap(obj) # handling of properties is not implemented in _find_lineno so do # it here if hasattr(obj, 'func_closure') and obj.func_closure is not None: tobj = obj.func_closure[0].cell_contents elif isinstance(obj, property): tobj = obj.fget else: tobj = obj lineno = self._find_lineno(tobj, source_lines) if lineno is None: return None # Return a DocTest for this object. if module is None: filename = None else: filename = getattr(module, '__file__', module.__name__) if filename[-4:] in (".pyc", ".pyo"): filename = filename[:-1] globs['_doctest_depends_on'] = getattr(obj, '_doctest_depends_on', {}) return self._parser.get_doctest(docstring, globs, name, filename, lineno) class SymPyDocTestRunner(DocTestRunner): """ A class used to run DocTest test cases, and accumulate statistics. The ``run`` method is used to process a single DocTest case. It returns a tuple ``(f, t)``, where ``t`` is the number of test cases tried, and ``f`` is the number of test cases that failed. Modified from the doctest version to not reset the sys.displayhook (see issue 5140). See the docstring of the original DocTestRunner for more information. """ def run(self, test, compileflags=None, out=None, clear_globs=True): """ Run the examples in ``test``, and display the results using the writer function ``out``. The examples are run in the namespace ``test.globs``. If ``clear_globs`` is true (the default), then this namespace will be cleared after the test runs, to help with garbage collection. If you would like to examine the namespace after the test completes, then use ``clear_globs=False``. ``compileflags`` gives the set of flags that should be used by the Python compiler when running the examples. If not specified, then it will default to the set of future-import flags that apply to ``globs``. The output of each example is checked using ``SymPyDocTestRunner.check_output``, and the results are formatted by the ``SymPyDocTestRunner.report_*`` methods. """ self.test = test if compileflags is None: compileflags = pdoctest._extract_future_flags(test.globs) save_stdout = sys.stdout if out is None: out = save_stdout.write sys.stdout = self._fakeout # Patch pdb.set_trace to restore sys.stdout during interactive # debugging (so it's not still redirected to self._fakeout). # Note that the interactive output will go to *our* # save_stdout, even if that's not the real sys.stdout; this # allows us to write test cases for the set_trace behavior. save_set_trace = pdb.set_trace self.debugger = pdoctest._OutputRedirectingPdb(save_stdout) self.debugger.reset() pdb.set_trace = self.debugger.set_trace # Patch linecache.getlines, so we can see the example's source # when we're inside the debugger. self.save_linecache_getlines = pdoctest.linecache.getlines linecache.getlines = self.__patched_linecache_getlines try: test.globs['print_function'] = print_function return self.__run(test, compileflags, out) finally: sys.stdout = save_stdout pdb.set_trace = save_set_trace linecache.getlines = self.save_linecache_getlines if clear_globs: test.globs.clear() # We have to override the name mangled methods. SymPyDocTestRunner._SymPyDocTestRunner__patched_linecache_getlines = \ DocTestRunner._DocTestRunner__patched_linecache_getlines SymPyDocTestRunner._SymPyDocTestRunner__run = DocTestRunner._DocTestRunner__run SymPyDocTestRunner._SymPyDocTestRunner__record_outcome = \ DocTestRunner._DocTestRunner__record_outcome class SymPyOutputChecker(pdoctest.OutputChecker): """ Compared to the OutputChecker from the stdlib our OutputChecker class supports numerical comparison of floats occurring in the output of the doctest examples """ def __init__(self): # NOTE OutputChecker is an old-style class with no __init__ method, # so we can't call the base class version of __init__ here got_floats = r'(\d+\.\d*|\.\d+)' # floats in the 'want' string may contain ellipses want_floats = got_floats + r'(\.{3})?' front_sep = r'\s|\+|\-|\*|,' back_sep = front_sep + r'|j|e' fbeg = r'^%s(?=%s|$)' % (got_floats, back_sep) fmidend = r'(?<=%s)%s(?=%s|$)' % (front_sep, got_floats, back_sep) self.num_got_rgx = re.compile(r'(%s|%s)' %(fbeg, fmidend)) fbeg = r'^%s(?=%s|$)' % (want_floats, back_sep) fmidend = r'(?<=%s)%s(?=%s|$)' % (front_sep, want_floats, back_sep) self.num_want_rgx = re.compile(r'(%s|%s)' %(fbeg, fmidend)) def check_output(self, want, got, optionflags): """ Return True iff the actual output from an example (`got`) matches the expected output (`want`). These strings are always considered to match if they are identical; but depending on what option flags the test runner is using, several non-exact match types are also possible. See the documentation for `TestRunner` for more information about option flags. """ # Handle the common case first, for efficiency: # if they're string-identical, always return true. if got == want: return True # TODO parse integers as well ? # Parse floats and compare them. If some of the parsed floats contain # ellipses, skip the comparison. matches = self.num_got_rgx.finditer(got) numbers_got = [match.group(1) for match in matches] # list of strs matches = self.num_want_rgx.finditer(want) numbers_want = [match.group(1) for match in matches] # list of strs if len(numbers_got) != len(numbers_want): return False if len(numbers_got) > 0: nw_ = [] for ng, nw in zip(numbers_got, numbers_want): if '...' in nw: nw_.append(ng) continue else: nw_.append(nw) if abs(float(ng)-float(nw)) > 1e-5: return False got = self.num_got_rgx.sub(r'%s', got) got = got % tuple(nw_) # <BLANKLINE> can be used as a special sequence to signify a # blank line, unless the DONT_ACCEPT_BLANKLINE flag is used. if not (optionflags & pdoctest.DONT_ACCEPT_BLANKLINE): # Replace <BLANKLINE> in want with a blank line. want = re.sub(r'(?m)^%s\s*?$' % re.escape(pdoctest.BLANKLINE_MARKER), '', want) # If a line in got contains only spaces, then remove the # spaces. got = re.sub(r'(?m)^\s*?$', '', got) if got == want: return True # This flag causes doctest to ignore any differences in the # contents of whitespace strings. Note that this can be used # in conjunction with the ELLIPSIS flag. if optionflags & pdoctest.NORMALIZE_WHITESPACE: got = ' '.join(got.split()) want = ' '.join(want.split()) if got == want: return True # The ELLIPSIS flag says to let the sequence "..." in `want` # match any substring in `got`. if optionflags & pdoctest.ELLIPSIS: if pdoctest._ellipsis_match(want, got): return True # We didn't find any match; return false. return False class Reporter(object): """ Parent class for all reporters. """ pass class PyTestReporter(Reporter): """ Py.test like reporter. Should produce output identical to py.test. """ def __init__(self, verbose=False, tb="short", colors=True, force_colors=False, split=None): self._verbose = verbose self._tb_style = tb self._colors = colors self._force_colors = force_colors self._xfailed = 0 self._xpassed = [] self._failed = [] self._failed_doctest = [] self._passed = 0 self._skipped = 0 self._exceptions = [] self._terminal_width = None self._default_width = 80 self._split = split self._active_file = '' self._active_f = None # TODO: Should these be protected? self.slow_test_functions = [] self.fast_test_functions = [] # this tracks the x-position of the cursor (useful for positioning # things on the screen), without the need for any readline library: self._write_pos = 0 self._line_wrap = False def root_dir(self, dir): self._root_dir = dir @property def terminal_width(self): if self._terminal_width is not None: return self._terminal_width def findout_terminal_width(): if sys.platform == "win32": # Windows support is based on: # # http://code.activestate.com/recipes/ # 440694-determine-size-of-console-window-on-windows/ from ctypes import windll, create_string_buffer h = windll.kernel32.GetStdHandle(-12) csbi = create_string_buffer(22) res = windll.kernel32.GetConsoleScreenBufferInfo(h, csbi) if res: import struct (_, _, _, _, _, left, _, right, _, _, _) = \ struct.unpack("hhhhHhhhhhh", csbi.raw) return right - left else: return self._default_width if hasattr(sys.stdout, 'isatty') and not sys.stdout.isatty(): return self._default_width # leave PIPEs alone try: process = subprocess.Popen(['stty', '-a'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout = process.stdout.read() if PY3: stdout = stdout.decode("utf-8") except (OSError, IOError): pass else: # We support the following output formats from stty: # # 1) Linux -> columns 80 # 2) OS X -> 80 columns # 3) Solaris -> columns = 80 re_linux = r"columns\s+(?P<columns>\d+);" re_osx = r"(?P<columns>\d+)\s*columns;" re_solaris = r"columns\s+=\s+(?P<columns>\d+);" for regex in (re_linux, re_osx, re_solaris): match = re.search(regex, stdout) if match is not None: columns = match.group('columns') try: width = int(columns) except ValueError: pass if width != 0: return width return self._default_width width = findout_terminal_width() self._terminal_width = width return width def write(self, text, color="", align="left", width=None, force_colors=False): """ Prints a text on the screen. It uses sys.stdout.write(), so no readline library is necessary. Parameters ========== color : choose from the colors below, "" means default color align : "left"/"right", "left" is a normal print, "right" is aligned on the right-hand side of the screen, filled with spaces if necessary width : the screen width """ color_templates = ( ("Black", "0;30"), ("Red", "0;31"), ("Green", "0;32"), ("Brown", "0;33"), ("Blue", "0;34"), ("Purple", "0;35"), ("Cyan", "0;36"), ("LightGray", "0;37"), ("DarkGray", "1;30"), ("LightRed", "1;31"), ("LightGreen", "1;32"), ("Yellow", "1;33"), ("LightBlue", "1;34"), ("LightPurple", "1;35"), ("LightCyan", "1;36"), ("White", "1;37"), ) colors = {} for name, value in color_templates: colors[name] = value c_normal = '\033[0m' c_color = '\033[%sm' if width is None: width = self.terminal_width if align == "right": if self._write_pos + len(text) > width: # we don't fit on the current line, create a new line self.write("\n") self.write(" "*(width - self._write_pos - len(text))) if not self._force_colors and hasattr(sys.stdout, 'isatty') and not \ sys.stdout.isatty(): # the stdout is not a terminal, this for example happens if the # output is piped to less, e.g. "bin/test | less". In this case, # the terminal control sequences would be printed verbatim, so # don't use any colors. color = "" elif sys.platform == "win32": # Windows consoles don't support ANSI escape sequences color = "" elif not self._colors: color = "" if self._line_wrap: if text[0] != "\n": sys.stdout.write("\n") # Avoid UnicodeEncodeError when printing out test failures if PY3 and IS_WINDOWS: text = text.encode('raw_unicode_escape').decode('utf8', 'ignore') elif PY3 and not sys.stdout.encoding.lower().startswith('utf'): text = text.encode(sys.stdout.encoding, 'backslashreplace' ).decode(sys.stdout.encoding) if color == "": sys.stdout.write(text) else: sys.stdout.write("%s%s%s" % (c_color % colors[color], text, c_normal)) sys.stdout.flush() l = text.rfind("\n") if l == -1: self._write_pos += len(text) else: self._write_pos = len(text) - l - 1 self._line_wrap = self._write_pos >= width self._write_pos %= width def write_center(self, text, delim="="): width = self.terminal_width if text != "": text = " %s " % text idx = (width - len(text)) // 2 t = delim*idx + text + delim*(width - idx - len(text)) self.write(t + "\n") def write_exception(self, e, val, tb): # remove the first item, as that is always runtests.py tb = tb.tb_next t = traceback.format_exception(e, val, tb) self.write("".join(t)) def start(self, seed=None, msg="test process starts"): self.write_center(msg) executable = sys.executable v = tuple(sys.version_info) python_version = "%s.%s.%s-%s-%s" % v implementation = platform.python_implementation() if implementation == 'PyPy': implementation += " %s.%s.%s-%s-%s" % sys.pypy_version_info self.write("executable: %s (%s) [%s]\n" % (executable, python_version, implementation)) from .misc import ARCH self.write("architecture: %s\n" % ARCH) from sympy.core.cache import USE_CACHE self.write("cache: %s\n" % USE_CACHE) from sympy.core.compatibility import GROUND_TYPES, HAS_GMPY version = '' if GROUND_TYPES =='gmpy': if HAS_GMPY == 1: import gmpy elif HAS_GMPY == 2: import gmpy2 as gmpy version = gmpy.version() self.write("ground types: %s %s\n" % (GROUND_TYPES, version)) numpy = import_module('numpy') self.write("numpy: %s\n" % (None if not numpy else numpy.__version__)) if seed is not None: self.write("random seed: %d\n" % seed) from .misc import HASH_RANDOMIZATION self.write("hash randomization: ") hash_seed = os.getenv("PYTHONHASHSEED") or '0' if HASH_RANDOMIZATION and (hash_seed == "random" or int(hash_seed)): self.write("on (PYTHONHASHSEED=%s)\n" % hash_seed) else: self.write("off\n") if self._split: self.write("split: %s\n" % self._split) self.write('\n') self._t_start = clock() def finish(self): self._t_end = clock() self.write("\n") global text, linelen text = "tests finished: %d passed, " % self._passed linelen = len(text) def add_text(mytext): global text, linelen """Break new text if too long.""" if linelen + len(mytext) > self.terminal_width: text += '\n' linelen = 0 text += mytext linelen += len(mytext) if len(self._failed) > 0: add_text("%d failed, " % len(self._failed)) if len(self._failed_doctest) > 0: add_text("%d failed, " % len(self._failed_doctest)) if self._skipped > 0: add_text("%d skipped, " % self._skipped) if self._xfailed > 0: add_text("%d expected to fail, " % self._xfailed) if len(self._xpassed) > 0: add_text("%d expected to fail but passed, " % len(self._xpassed)) if len(self._exceptions) > 0: add_text("%d exceptions, " % len(self._exceptions)) add_text("in %.2f seconds" % (self._t_end - self._t_start)) if self.slow_test_functions: self.write_center('slowest tests', '_') sorted_slow = sorted(self.slow_test_functions, key=lambda r: r[1]) for slow_func_name, taken in sorted_slow: print('%s - Took %.3f seconds' % (slow_func_name, taken)) if self.fast_test_functions: self.write_center('unexpectedly fast tests', '_') sorted_fast = sorted(self.fast_test_functions, key=lambda r: r[1]) for fast_func_name, taken in sorted_fast: print('%s - Took %.3f seconds' % (fast_func_name, taken)) if len(self._xpassed) > 0: self.write_center("xpassed tests", "_") for e in self._xpassed: self.write("%s: %s\n" % (e[0], e[1])) self.write("\n") if self._tb_style != "no" and len(self._exceptions) > 0: for e in self._exceptions: filename, f, (t, val, tb) = e self.write_center("", "_") if f is None: s = "%s" % filename else: s = "%s:%s" % (filename, f.__name__) self.write_center(s, "_") self.write_exception(t, val, tb) self.write("\n") if self._tb_style != "no" and len(self._failed) > 0: for e in self._failed: filename, f, (t, val, tb) = e self.write_center("", "_") self.write_center("%s:%s" % (filename, f.__name__), "_") self.write_exception(t, val, tb) self.write("\n") if self._tb_style != "no" and len(self._failed_doctest) > 0: for e in self._failed_doctest: filename, msg = e self.write_center("", "_") self.write_center("%s" % filename, "_") self.write(msg) self.write("\n") self.write_center(text) ok = len(self._failed) == 0 and len(self._exceptions) == 0 and \ len(self._failed_doctest) == 0 if not ok: self.write("DO *NOT* COMMIT!\n") return ok def entering_filename(self, filename, n): rel_name = filename[len(self._root_dir) + 1:] self._active_file = rel_name self._active_file_error = False self.write(rel_name) self.write("[%d] " % n) def leaving_filename(self): self.write(" ") if self._active_file_error: self.write("[FAIL]", "Red", align="right") else: self.write("[OK]", "Green", align="right") self.write("\n") if self._verbose: self.write("\n") def entering_test(self, f): self._active_f = f if self._verbose: self.write("\n" + f.__name__ + " ") def test_xfail(self): self._xfailed += 1 self.write("f", "Green") def test_xpass(self, v): message = str(v) self._xpassed.append((self._active_file, message)) self.write("X", "Green") def test_fail(self, exc_info): self._failed.append((self._active_file, self._active_f, exc_info)) self.write("F", "Red") self._active_file_error = True def doctest_fail(self, name, error_msg): # the first line contains "******", remove it: error_msg = "\n".join(error_msg.split("\n")[1:]) self._failed_doctest.append((name, error_msg)) self.write("F", "Red") self._active_file_error = True def test_pass(self, char="."): self._passed += 1 if self._verbose: self.write("ok", "Green") else: self.write(char, "Green") def test_skip(self, v=None): char = "s" self._skipped += 1 if v is not None: message = str(v) if message == "KeyboardInterrupt": char = "K" elif message == "Timeout": char = "T" elif message == "Slow": char = "w" if self._verbose: if v is not None: self.write(message + ' ', "Blue") else: self.write(" - ", "Blue") self.write(char, "Blue") def test_exception(self, exc_info): self._exceptions.append((self._active_file, self._active_f, exc_info)) if exc_info[0] is TimeOutError: self.write("T", "Red") else: self.write("E", "Red") self._active_file_error = True def import_error(self, filename, exc_info): self._exceptions.append((filename, None, exc_info)) rel_name = filename[len(self._root_dir) + 1:] self.write(rel_name) self.write("[?] Failed to import", "Red") self.write(" ") self.write("[FAIL]", "Red", align="right") self.write("\n") sympy_dir = get_sympy_dir()
d2206244db3d7da0235f316e245248a0bfc2958d22f7aabb8409360b08f48323
""" Helpers for randomized testing """ from __future__ import print_function, division from random import uniform, Random, randrange, randint from sympy.core.compatibility import is_sequence, as_int from sympy.core.containers import Tuple from sympy.core.numbers import comp, I from sympy.core.symbol import Symbol from sympy.simplify.simplify import nsimplify def random_complex_number(a=2, b=-1, c=3, d=1, rational=False, tolerance=None): """ Return a random complex number. To reduce chance of hitting branch cuts or anything, we guarantee b <= Im z <= d, a <= Re z <= c When rational is True, a rational approximation to a random number is obtained within specified tolerance, if any. """ A, B = uniform(a, c), uniform(b, d) if not rational: return A + I*B return (nsimplify(A, rational=True, tolerance=tolerance) + I*nsimplify(B, rational=True, tolerance=tolerance)) def verify_numerically(f, g, z=None, tol=1.0e-6, a=2, b=-1, c=3, d=1): """ Test numerically that f and g agree when evaluated in the argument z. If z is None, all symbols will be tested. This routine does not test whether there are Floats present with precision higher than 15 digits so if there are, your results may not be what you expect due to round- off errors. Examples ======== >>> from sympy import sin, cos >>> from sympy.abc import x >>> from sympy.utilities.randtest import verify_numerically as tn >>> tn(sin(x)**2 + cos(x)**2, 1, x) True """ f, g, z = Tuple(f, g, z) z = [z] if isinstance(z, Symbol) else (f.free_symbols | g.free_symbols) reps = list(zip(z, [random_complex_number(a, b, c, d) for _ in z])) z1 = f.subs(reps).n() z2 = g.subs(reps).n() return comp(z1, z2, tol) def test_derivative_numerically(f, z, tol=1.0e-6, a=2, b=-1, c=3, d=1): """ Test numerically that the symbolically computed derivative of f with respect to z is correct. This routine does not test whether there are Floats present with precision higher than 15 digits so if there are, your results may not be what you expect due to round-off errors. Examples ======== >>> from sympy import sin >>> from sympy.abc import x >>> from sympy.utilities.randtest import test_derivative_numerically as td >>> td(sin(x), x) True """ from sympy.core.function import Derivative z0 = random_complex_number(a, b, c, d) f1 = f.diff(z).subs(z, z0) f2 = Derivative(f, z).doit_numerically(z0) return comp(f1.n(), f2.n(), tol) def _randrange(seed=None): """Return a randrange generator. ``seed`` can be o None - return randomly seeded generator o int - return a generator seeded with the int o list - the values to be returned will be taken from the list in the order given; the provided list is not modified. Examples ======== >>> from sympy.utilities.randtest import _randrange >>> rr = _randrange() >>> rr(1000) # doctest: +SKIP 999 >>> rr = _randrange(3) >>> rr(1000) # doctest: +SKIP 238 >>> rr = _randrange([0, 5, 1, 3, 4]) >>> rr(3), rr(3) (0, 1) """ if seed is None: return randrange elif isinstance(seed, int): return Random(seed).randrange elif is_sequence(seed): seed = list(seed) # make a copy seed.reverse() def give(a, b=None, seq=seed): if b is None: a, b = 0, a a, b = as_int(a), as_int(b) w = b - a if w < 1: raise ValueError('_randrange got empty range') try: x = seq.pop() except IndexError as e: raise ValueError('_randrange sequence was too short') if a <= x < b: return x else: return give(a, b, seq) return give else: raise ValueError('_randrange got an unexpected seed') def _randint(seed=None): """Return a randint generator. ``seed`` can be o None - return randomly seeded generator o int - return a generator seeded with the int o list - the values to be returned will be taken from the list in the order given; the provided list is not modified. Examples ======== >>> from sympy.utilities.randtest import _randint >>> ri = _randint() >>> ri(1, 1000) # doctest: +SKIP 999 >>> ri = _randint(3) >>> ri(1, 1000) # doctest: +SKIP 238 >>> ri = _randint([0, 5, 1, 2, 4]) >>> ri(1, 3), ri(1, 3) (1, 2) """ if seed is None: return randint elif isinstance(seed, int): return Random(seed).randint elif is_sequence(seed): seed = list(seed) # make a copy seed.reverse() def give(a, b, seq=seed): a, b = as_int(a), as_int(b) w = b - a if w < 0: raise ValueError('_randint got empty range') try: x = seq.pop() except IndexError: raise ValueError('_randint sequence was too short') if a <= x <= b: return x else: return give(a, b, seq) return give else: raise ValueError('_randint got an unexpected seed')
d1c086fc9c84302be04f7b6db06be5fc08fc3640e48eab92deb84fa2b0d49055
"""Miscellaneous stuff that doesn't really fit anywhere else.""" from __future__ import print_function, division import sys import os import re as _re import struct from textwrap import fill, dedent from sympy.core.compatibility import (get_function_name, range, as_int, string_types) class Undecidable(ValueError): # an error to be raised when a decision cannot be made definitively # where a definitive answer is needed pass def filldedent(s, w=70): """ Strips leading and trailing empty lines from a copy of `s`, then dedents, fills and returns it. Empty line stripping serves to deal with docstrings like this one that start with a newline after the initial triple quote, inserting an empty line at the beginning of the string. See Also ======== strlines, rawlines """ return '\n' + fill(dedent(str(s)).strip('\n'), width=w) def strlines(s, c=64, short=False): """Return a cut-and-pastable string that, when printed, is equivalent to the input. The lines will be surrounded by parentheses and no line will be longer than c (default 64) characters. If the line contains newlines characters, the `rawlines` result will be returned. If ``short`` is True (default is False) then if there is one line it will be returned without bounding parentheses. Examples ======== >>> from sympy.utilities.misc import strlines >>> q = 'this is a long string that should be broken into shorter lines' >>> print(strlines(q, 40)) ( 'this is a long string that should be b' 'roken into shorter lines' ) >>> q == ( ... 'this is a long string that should be b' ... 'roken into shorter lines' ... ) True See Also ======== filldedent, rawlines """ if type(s) not in string_types: raise ValueError('expecting string input') if '\n' in s: return rawlines(s) q = '"' if repr(s).startswith('"') else "'" q = (q,)*2 if '\\' in s: # use r-string m = '(\nr%s%%s%s\n)' % q j = '%s\nr%s' % q c -= 3 else: m = '(\n%s%%s%s\n)' % q j = '%s\n%s' % q c -= 2 out = [] while s: out.append(s[:c]) s=s[c:] if short and len(out) == 1: return (m % out[0]).splitlines()[1] # strip bounding (\n...\n) return m % j.join(out) def rawlines(s): """Return a cut-and-pastable string that, when printed, is equivalent to the input. Use this when there is more than one line in the string. The string returned is formatted so it can be indented nicely within tests; in some cases it is wrapped in the dedent function which has to be imported from textwrap. Examples ======== Note: because there are characters in the examples below that need to be escaped because they are themselves within a triple quoted docstring, expressions below look more complicated than they would be if they were printed in an interpreter window. >>> from sympy.utilities.misc import rawlines >>> from sympy import TableForm >>> s = str(TableForm([[1, 10]], headings=(None, ['a', 'bee']))) >>> print(rawlines(s)) ( 'a bee\\n' '-----\\n' '1 10 ' ) >>> print(rawlines('''this ... that''')) dedent('''\\ this that''') >>> print(rawlines('''this ... that ... ''')) dedent('''\\ this that ''') >>> s = \"\"\"this ... is a triple ''' ... \"\"\" >>> print(rawlines(s)) dedent(\"\"\"\\ this is a triple ''' \"\"\") >>> print(rawlines('''this ... that ... ''')) ( 'this\\n' 'that\\n' ' ' ) See Also ======== filldedent, strlines """ lines = s.split('\n') if len(lines) == 1: return repr(lines[0]) triple = ["'''" in s, '"""' in s] if any(li.endswith(' ') for li in lines) or '\\' in s or all(triple): rv = [] # add on the newlines trailing = s.endswith('\n') last = len(lines) - 1 for i, li in enumerate(lines): if i != last or trailing: rv.append(repr(li + '\n')) else: rv.append(repr(li)) return '(\n %s\n)' % '\n '.join(rv) else: rv = '\n '.join(lines) if triple[0]: return 'dedent("""\\\n %s""")' % rv else: return "dedent('''\\\n %s''')" % rv ARCH = str(struct.calcsize('P') * 8) + "-bit" # XXX: PyPy doesn't support hash randomization HASH_RANDOMIZATION = getattr(sys.flags, 'hash_randomization', False) _debug_tmp = [] _debug_iter = 0 def debug_decorator(func): """If SYMPY_DEBUG is True, it will print a nice execution tree with arguments and results of all decorated functions, else do nothing. """ from sympy import SYMPY_DEBUG if not SYMPY_DEBUG: return func def maketree(f, *args, **kw): global _debug_tmp global _debug_iter oldtmp = _debug_tmp _debug_tmp = [] _debug_iter += 1 def tree(subtrees): def indent(s, type=1): x = s.split("\n") r = "+-%s\n" % x[0] for a in x[1:]: if a == "": continue if type == 1: r += "| %s\n" % a else: r += " %s\n" % a return r if len(subtrees) == 0: return "" f = [] for a in subtrees[:-1]: f.append(indent(a)) f.append(indent(subtrees[-1], 2)) return ''.join(f) # If there is a bug and the algorithm enters an infinite loop, enable the # following lines. It will print the names and parameters of all major functions # that are called, *before* they are called #from sympy.core.compatibility import reduce #print("%s%s %s%s" % (_debug_iter, reduce(lambda x, y: x + y, \ # map(lambda x: '-', range(1, 2 + _debug_iter))), get_function_name(f), args)) r = f(*args, **kw) _debug_iter -= 1 s = "%s%s = %s\n" % (get_function_name(f), args, r) if _debug_tmp != []: s += tree(_debug_tmp) _debug_tmp = oldtmp _debug_tmp.append(s) if _debug_iter == 0: print((_debug_tmp[0])) _debug_tmp = [] return r def decorated(*args, **kwargs): return maketree(func, *args, **kwargs) return decorated def debug(*args): """ Print ``*args`` if SYMPY_DEBUG is True, else do nothing. """ from sympy import SYMPY_DEBUG if SYMPY_DEBUG: print(*args, file=sys.stderr) def find_executable(executable, path=None): """Try to find 'executable' in the directories listed in 'path' (a string listing directories separated by 'os.pathsep'; defaults to os.environ['PATH']). Returns the complete filename or None if not found """ if path is None: path = os.environ['PATH'] paths = path.split(os.pathsep) extlist = [''] if os.name == 'os2': (base, ext) = os.path.splitext(executable) # executable files on OS/2 can have an arbitrary extension, but # .exe is automatically appended if no dot is present in the name if not ext: executable = executable + ".exe" elif sys.platform == 'win32': pathext = os.environ['PATHEXT'].lower().split(os.pathsep) (base, ext) = os.path.splitext(executable) if ext.lower() not in pathext: extlist = pathext for ext in extlist: execname = executable + ext if os.path.isfile(execname): return execname else: for p in paths: f = os.path.join(p, execname) if os.path.isfile(f): return f else: return None def func_name(x, short=False): """Return function name of `x` (if defined) else the `type(x)`. If short is True and there is a shorter alias for the result, return the alias. Examples ======== >>> from sympy.utilities.misc import func_name >>> from sympy import Matrix >>> from sympy.abc import x >>> func_name(Matrix.eye(3)) 'MutableDenseMatrix' >>> func_name(x < 1) 'StrictLessThan' >>> func_name(x < 1, short=True) 'Lt' See Also ======== sympy.core.compatibility get_function_name """ alias = { 'GreaterThan': 'Ge', 'StrictGreaterThan': 'Gt', 'LessThan': 'Le', 'StrictLessThan': 'Lt', 'Equality': 'Eq', 'Unequality': 'Ne', } typ = type(x) if str(typ).startswith("<type '"): typ = str(typ).split("'")[1].split("'")[0] elif str(typ).startswith("<class '"): typ = str(typ).split("'")[1].split("'")[0] rv = getattr(getattr(x, 'func', x), '__name__', typ) if '.' in rv: rv = rv.split('.')[-1] if short: rv = alias.get(rv, rv) return rv def _replace(reps): """Return a function that can make the replacements, given in ``reps``, on a string. The replacements should be given as mapping. Examples ======== >>> from sympy.utilities.misc import _replace >>> f = _replace(dict(foo='bar', d='t')) >>> f('food') 'bart' >>> f = _replace({}) >>> f('food') 'food' """ if not reps: return lambda x: x D = lambda match: reps[match.group(0)] pattern = _re.compile("|".join( [_re.escape(k) for k, v in reps.items()]), _re.M) return lambda string: pattern.sub(D, string) def replace(string, *reps): """Return ``string`` with all keys in ``reps`` replaced with their corresponding values, longer strings first, irrespective of the order they are given. ``reps`` may be passed as tuples or a single mapping. Examples ======== >>> from sympy.utilities.misc import replace >>> replace('foo', {'oo': 'ar', 'f': 'b'}) 'bar' >>> replace("spamham sha", ("spam", "eggs"), ("sha","md5")) 'eggsham md5' There is no guarantee that a unique answer will be obtained if keys in a mapping overlap (i.e. are the same length and have some identical sequence at the beginning/end): >>> reps = [ ... ('ab', 'x'), ... ('bc', 'y')] >>> replace('abc', *reps) in ('xc', 'ay') True References ========== .. [1] https://stackoverflow.com/questions/6116978/python-replace-multiple-strings """ if len(reps) == 1: kv = reps[0] if type(kv) is dict: reps = kv else: return string.replace(*kv) else: reps = dict(reps) return _replace(reps)(string) def translate(s, a, b=None, c=None): """Return ``s`` where characters have been replaced or deleted. SYNTAX ====== translate(s, None, deletechars): all characters in ``deletechars`` are deleted translate(s, map [,deletechars]): all characters in ``deletechars`` (if provided) are deleted then the replacements defined by map are made; if the keys of map are strings then the longer ones are handled first. Multicharacter deletions should have a value of ''. translate(s, oldchars, newchars, deletechars) all characters in ``deletechars`` are deleted then each character in ``oldchars`` is replaced with the corresponding character in ``newchars`` Examples ======== >>> from sympy.utilities.misc import translate >>> from sympy.core.compatibility import unichr >>> abc = 'abc' >>> translate(abc, None, 'a') 'bc' >>> translate(abc, {'a': 'x'}, 'c') 'xb' >>> translate(abc, {'abc': 'x', 'a': 'y'}) 'x' >>> translate('abcd', 'ac', 'AC', 'd') 'AbC' There is no guarantee that a unique answer will be obtained if keys in a mapping overlap are the same length and have some identical sequences at the beginning/end: >>> translate(abc, {'ab': 'x', 'bc': 'y'}) in ('xc', 'ay') True """ from sympy.core.compatibility import maketrans, PY3 mr = {} if a is None: assert c is None if not b: return s c = b a = b = '' else: if type(a) is dict: short = {} for k in list(a.keys()): if len(k) == 1 and len(a[k]) == 1: short[k] = a.pop(k) mr = a c = b if short: a, b = [''.join(i) for i in list(zip(*short.items()))] else: a = b = '' else: assert len(a) == len(b) if PY3: if c: s = s.translate(maketrans('', '', c)) s = replace(s, mr) return s.translate(maketrans(a, b)) else: # when support for Python 2 is dropped, this if-else-block # can be replaced with the if-clause if c: c = list(c) rem = {} for i in range(-1, -1 - len(c), -1): if ord(c[i]) > 255: rem[c[i]] = '' c.pop(i) s = s.translate(None, ''.join(c)) s = replace(s, rem) if a: a = list(a) b = list(b) for i in range(-1, -1 - len(a), -1): if ord(a[i]) > 255 or ord(b[i]) > 255: mr[a.pop(i)] = b.pop(i) a = ''.join(a) b = ''.join(b) s = replace(s, mr) table = maketrans(a, b) # s may have become unicode which uses the py3 syntax for translate if isinstance(table, str) and isinstance(s, str): s = s.translate(table) else: s = s.translate(dict( [(i, ord(c)) for i, c in enumerate(table)])) return s def ordinal(num): """Return ordinal number string of num, e.g. 1 becomes 1st. """ # modified from https://codereview.stackexchange.com/questions/41298/producing-ordinal-numbers n = as_int(num) k = abs(n) % 100 if 11 <= k <= 13: suffix = 'th' elif k % 10 == 1: suffix = 'st' elif k % 10 == 2: suffix = 'nd' elif k % 10 == 3: suffix = 'rd' else: suffix = 'th' return str(n) + suffix
4c3f2399eaf88bc001eedfb01d0ab62951aa04a0e61e774d6f998e5eac35fc72
"""A module providing information about the necessity of brackets""" from __future__ import print_function, division from sympy.core.function import _coeff_isneg # Default precedence values for some basic types PRECEDENCE = { "Lambda": 1, "Xor": 10, "Or": 20, "And": 30, "Relational": 35, "Add": 40, "Mul": 50, "Pow": 60, "Func": 70, "Not": 100, "Atom": 1000, "BitwiseOr": 36, "BitwiseAnd": 38 } # A dictionary assigning precedence values to certain classes. These values are # treated like they were inherited, so not every single class has to be named # here. PRECEDENCE_VALUES = { "Equivalent": PRECEDENCE["Xor"], "Xor": PRECEDENCE["Xor"], "Implies": PRECEDENCE["Xor"], "Or": PRECEDENCE["Or"], "And": PRECEDENCE["And"], "Add": PRECEDENCE["Add"], "Pow": PRECEDENCE["Pow"], "Relational": PRECEDENCE["Relational"], "Sub": PRECEDENCE["Add"], "Not": PRECEDENCE["Not"], "Function" : PRECEDENCE["Func"], "NegativeInfinity": PRECEDENCE["Add"], "MatAdd": PRECEDENCE["Add"], "MatPow": PRECEDENCE["Pow"], "TensAdd": PRECEDENCE["Add"], # As soon as `TensMul` is a subclass of `Mul`, remove this: "TensMul": PRECEDENCE["Mul"], "HadamardProduct": PRECEDENCE["Mul"], "KroneckerProduct": PRECEDENCE["Mul"], "Equality": PRECEDENCE["Mul"], "Unequality": PRECEDENCE["Mul"], } # Sometimes it's not enough to assign a fixed precedence value to a # class. Then a function can be inserted in this dictionary that takes # an instance of this class as argument and returns the appropriate # precedence value. # Precedence functions def precedence_Mul(item): if _coeff_isneg(item): return PRECEDENCE["Add"] return PRECEDENCE["Mul"] def precedence_Rational(item): if item.p < 0: return PRECEDENCE["Add"] return PRECEDENCE["Mul"] def precedence_Integer(item): if item.p < 0: return PRECEDENCE["Add"] return PRECEDENCE["Atom"] def precedence_Float(item): if item < 0: return PRECEDENCE["Add"] return PRECEDENCE["Atom"] def precedence_PolyElement(item): if item.is_generator: return PRECEDENCE["Atom"] elif item.is_ground: return precedence(item.coeff(1)) elif item.is_term: return PRECEDENCE["Mul"] else: return PRECEDENCE["Add"] def precedence_FracElement(item): if item.denom == 1: return precedence_PolyElement(item.numer) else: return PRECEDENCE["Mul"] def precedence_UnevaluatedExpr(item): return precedence(item.args[0]) PRECEDENCE_FUNCTIONS = { "Integer": precedence_Integer, "Mul": precedence_Mul, "Rational": precedence_Rational, "Float": precedence_Float, "PolyElement": precedence_PolyElement, "FracElement": precedence_FracElement, "UnevaluatedExpr": precedence_UnevaluatedExpr, } def precedence(item): """ Returns the precedence of a given object. """ if hasattr(item, "precedence"): return item.precedence try: mro = item.__class__.__mro__ except AttributeError: return PRECEDENCE["Atom"] for i in mro: n = i.__name__ if n in PRECEDENCE_FUNCTIONS: return PRECEDENCE_FUNCTIONS[n](item) elif n in PRECEDENCE_VALUES: return PRECEDENCE_VALUES[n] return PRECEDENCE["Atom"] def precedence_traditional(item): """ Returns the precedence of a given object according to the traditional rules of mathematics. This is the precedence for the LaTeX and pretty printer. """ # Integral, Sum, Product, Limit have the precedence of Mul in LaTeX, # the precedence of Atom for other printers: from sympy import Integral, Sum, Product, Limit, Derivative from sympy.core.expr import UnevaluatedExpr from sympy.tensor.functions import TensorProduct if isinstance(item, (Integral, Sum, Product, Limit, Derivative, TensorProduct)): return PRECEDENCE["Mul"] if (item.__class__.__name__ in ("Dot", "Cross", "Gradient", "Divergence", "Curl", "Laplacian")): return PRECEDENCE["Mul"]-1 elif isinstance(item, UnevaluatedExpr): return precedence_traditional(item.args[0]) else: return precedence(item)
6873b84b4b9504807961213872033086e6e992c504b4999d1bbd2473bc1e88cb
from __future__ import print_function, division from sympy.printing.mathml import mathml import tempfile import os def print_gtk(x, start_viewer=True): """Print to Gtkmathview, a gtk widget capable of rendering MathML. Needs libgtkmathview-bin """ from sympy.utilities.mathml import c2p tmp = tempfile.mkstemp() # create a temp file to store the result with open(tmp, 'wb') as file: file.write(c2p(mathml(x), simple=True)) if start_viewer: os.system("mathmlviewer " + tmp)
75f23c600e213b997a34c2ef6f520325c9586f339cfc61b5c04871804fe8a206
""" Python code printers This module contains python code printers for plain python as well as NumPy & SciPy enabled code. """ from collections import defaultdict from itertools import chain from sympy.core import S, Number, Symbol, Mul, Add from .precedence import precedence from .codeprinter import CodePrinter _kw_py2and3 = { 'and', 'as', 'assert', 'break', 'class', 'continue', 'def', 'del', 'elif', 'else', 'except', 'finally', 'for', 'from', 'global', 'if', 'import', 'in', 'is', 'lambda', 'not', 'or', 'pass', 'raise', 'return', 'try', 'while', 'with', 'yield', 'None' # 'None' is actually not in Python 2's keyword.kwlist } _kw_only_py2 = {'exec', 'print'} _kw_only_py3 = {'False', 'nonlocal', 'True'} _known_functions = { 'Abs': 'abs', } _known_functions_math = { 'acos': 'acos', 'acosh': 'acosh', 'asin': 'asin', 'asinh': 'asinh', 'atan': 'atan', 'atan2': 'atan2', 'atanh': 'atanh', 'ceiling': 'ceil', 'cos': 'cos', 'cosh': 'cosh', 'erf': 'erf', 'erfc': 'erfc', 'exp': 'exp', 'expm1': 'expm1', 'factorial': 'factorial', 'floor': 'floor', 'gamma': 'gamma', 'hypot': 'hypot', 'loggamma': 'lgamma', 'log': 'log', 'ln': 'log', 'log10': 'log10', 'log1p': 'log1p', 'log2': 'log2', 'sin': 'sin', 'sinh': 'sinh', 'Sqrt': 'sqrt', 'tan': 'tan', 'tanh': 'tanh' } # Not used from ``math``: [copysign isclose isfinite isinf isnan ldexp frexp pow modf # radians trunc fmod fsum gcd degrees fabs] _known_constants_math = { 'Exp1': 'e', 'Pi': 'pi', 'E': 'e' # Only in python >= 3.5: # 'Infinity': 'inf', # 'NaN': 'nan' } def _print_known_func(self, expr): known = self.known_functions[expr.__class__.__name__] return '{name}({args})'.format(name=self._module_format(known), args=', '.join(map(lambda arg: self._print(arg), expr.args))) def _print_known_const(self, expr): known = self.known_constants[expr.__class__.__name__] return self._module_format(known) class AbstractPythonCodePrinter(CodePrinter): printmethod = "_pythoncode" language = "Python" standard = "python3" reserved_words = _kw_py2and3.union(_kw_only_py3) modules = None # initialized to a set in __init__ tab = ' ' _kf = dict(chain( _known_functions.items(), [(k, 'math.' + v) for k, v in _known_functions_math.items()] )) _kc = {k: 'math.'+v for k, v in _known_constants_math.items()} _operators = {'and': 'and', 'or': 'or', 'not': 'not'} _default_settings = dict( CodePrinter._default_settings, user_functions={}, precision=17, inline=True, fully_qualified_modules=True, contract=False ) def __init__(self, settings=None): super(AbstractPythonCodePrinter, self).__init__(settings) self.module_imports = defaultdict(set) self.known_functions = dict(self._kf, **(settings or {}).get( 'user_functions', {})) self.known_constants = dict(self._kc, **(settings or {}).get( 'user_constants', {})) def _declare_number_const(self, name, value): return "%s = %s" % (name, value) def _module_format(self, fqn, register=True): parts = fqn.split('.') if register and len(parts) > 1: self.module_imports['.'.join(parts[:-1])].add(parts[-1]) if self._settings['fully_qualified_modules']: return fqn else: return fqn.split('(')[0].split('[')[0].split('.')[-1] def _format_code(self, lines): return lines def _get_statement(self, codestring): return "{}".format(codestring) def _get_comment(self, text): return " # {0}".format(text) def _expand_fold_binary_op(self, op, args): """ This method expands a fold on binary operations. ``functools.reduce`` is an example of a folded operation. For example, the expression `A + B + C + D` is folded into `((A + B) + C) + D` """ if len(args) == 1: return self._print(args[0]) else: return "%s(%s, %s)" % ( self._module_format(op), self._expand_fold_binary_op(op, args[:-1]), self._print(args[-1]), ) def _expand_reduce_binary_op(self, op, args): """ This method expands a reductin on binary operations. Notice: this is NOT the same as ``functools.reduce``. For example, the expression `A + B + C + D` is reduced into: `(A + B) + (C + D)` """ if len(args) == 1: return self._print(args[0]) else: N = len(args) Nhalf = N // 2 return "%s(%s, %s)" % ( self._module_format(op), self._expand_reduce_binary_op(args[:Nhalf]), self._expand_reduce_binary_op(args[Nhalf:]), ) def _get_einsum_string(self, subranks, contraction_indices): letters = self._get_letter_generator_for_einsum() contraction_string = "" counter = 0 d = {j: min(i) for i in contraction_indices for j in i} indices = [] for rank_arg in subranks: lindices = [] for i in range(rank_arg): if counter in d: lindices.append(d[counter]) else: lindices.append(counter) counter += 1 indices.append(lindices) mapping = {} letters_free = [] letters_dum = [] for i in indices: for j in i: if j not in mapping: l = next(letters) mapping[j] = l else: l = mapping[j] contraction_string += l if j in d: if l not in letters_dum: letters_dum.append(l) else: letters_free.append(l) contraction_string += "," contraction_string = contraction_string[:-1] return contraction_string, letters_free, letters_dum def _print_NaN(self, expr): return "float('nan')" def _print_Infinity(self, expr): return "float('inf')" def _print_NegativeInfinity(self, expr): return "float('-inf')" def _print_ComplexInfinity(self, expr): return self._print_NaN(expr) def _print_Mod(self, expr): PREC = precedence(expr) return ('{0} % {1}'.format(*map(lambda x: self.parenthesize(x, PREC), expr.args))) def _print_Piecewise(self, expr): result = [] i = 0 for arg in expr.args: e = arg.expr c = arg.cond if i == 0: result.append('(') result.append('(') result.append(self._print(e)) result.append(')') result.append(' if ') result.append(self._print(c)) result.append(' else ') i += 1 result = result[:-1] if result[-1] == 'True': result = result[:-2] result.append(')') else: result.append(' else None)') return ''.join(result) def _print_Relational(self, expr): "Relational printer for Equality and Unequality" op = { '==' :'equal', '!=' :'not_equal', '<' :'less', '<=' :'less_equal', '>' :'greater', '>=' :'greater_equal', } if expr.rel_op in op: lhs = self._print(expr.lhs) rhs = self._print(expr.rhs) return '({lhs} {op} {rhs})'.format(op=expr.rel_op, lhs=lhs, rhs=rhs) return super(AbstractPythonCodePrinter, self)._print_Relational(expr) def _print_ITE(self, expr): from sympy.functions.elementary.piecewise import Piecewise return self._print(expr.rewrite(Piecewise)) def _print_Sum(self, expr): loops = ( 'for {i} in range({a}, {b}+1)'.format( i=self._print(i), a=self._print(a), b=self._print(b)) for i, a, b in expr.limits) return '(builtins.sum({function} {loops}))'.format( function=self._print(expr.function), loops=' '.join(loops)) def _print_ImaginaryUnit(self, expr): return '1j' def _print_MatrixBase(self, expr): name = expr.__class__.__name__ func = self.known_functions.get(name, name) return "%s(%s)" % (func, self._print(expr.tolist())) _print_SparseMatrix = \ _print_MutableSparseMatrix = \ _print_ImmutableSparseMatrix = \ _print_Matrix = \ _print_DenseMatrix = \ _print_MutableDenseMatrix = \ _print_ImmutableMatrix = \ _print_ImmutableDenseMatrix = \ lambda self, expr: self._print_MatrixBase(expr) def _indent_codestring(self, codestring): return '\n'.join([self.tab + line for line in codestring.split('\n')]) def _print_FunctionDefinition(self, fd): body = '\n'.join(map(lambda arg: self._print(arg), fd.body)) return "def {name}({parameters}):\n{body}".format( name=self._print(fd.name), parameters=', '.join([self._print(var.symbol) for var in fd.parameters]), body=self._indent_codestring(body) ) def _print_While(self, whl): body = '\n'.join(map(lambda arg: self._print(arg), whl.body)) return "while {cond}:\n{body}".format( cond=self._print(whl.condition), body=self._indent_codestring(body) ) def _print_Declaration(self, decl): return '%s = %s' % ( self._print(decl.variable.symbol), self._print(decl.variable.value) ) def _print_Return(self, ret): arg, = ret.args return 'return %s' % self._print(arg) def _print_Print(self, prnt): print_args = ', '.join(map(lambda arg: self._print(arg), prnt.print_args)) if prnt.format_string != None: # Must be '!= None', cannot be 'is not None' print_args = '{0} % ({1})'.format( self._print(prnt.format_string), print_args) if prnt.file != None: # Must be '!= None', cannot be 'is not None' print_args += ', file=%s' % self._print(prnt.file) return 'print(%s)' % print_args def _print_Stream(self, strm): if str(strm.name) == 'stdout': return self._module_format('sys.stdout') elif str(strm.name) == 'stderr': return self._module_format('sys.stderr') else: return self._print(strm.name) def _print_NoneToken(self, arg): return 'None' class PythonCodePrinter(AbstractPythonCodePrinter): def _print_sign(self, e): return '(0.0 if {e} == 0 else {f}(1, {e}))'.format( f=self._module_format('math.copysign'), e=self._print(e.args[0])) def _print_Not(self, expr): PREC = precedence(expr) return self._operators['not'] + self.parenthesize(expr.args[0], PREC) for k in PythonCodePrinter._kf: setattr(PythonCodePrinter, '_print_%s' % k, _print_known_func) for k in _known_constants_math: setattr(PythonCodePrinter, '_print_%s' % k, _print_known_const) def pycode(expr, **settings): """ Converts an expr to a string of Python code Parameters ========== expr : Expr A SymPy expression. fully_qualified_modules : bool Whether or not to write out full module names of functions (``math.sin`` vs. ``sin``). default: ``True``. Examples ======== >>> from sympy import tan, Symbol >>> from sympy.printing.pycode import pycode >>> pycode(tan(Symbol('x')) + 1) 'math.tan(x) + 1' """ return PythonCodePrinter(settings).doprint(expr) _not_in_mpmath = 'log1p log2'.split() _in_mpmath = [(k, v) for k, v in _known_functions_math.items() if k not in _not_in_mpmath] _known_functions_mpmath = dict(_in_mpmath, **{ 'sign': 'sign', }) _known_constants_mpmath = { 'Pi': 'pi' } class MpmathPrinter(PythonCodePrinter): """ Lambda printer for mpmath which maintains precision for floats """ printmethod = "_mpmathcode" _kf = dict(chain( _known_functions.items(), [(k, 'mpmath.' + v) for k, v in _known_functions_mpmath.items()] )) def _print_Float(self, e): # XXX: This does not handle setting mpmath.mp.dps. It is assumed that # the caller of the lambdified function will have set it to sufficient # precision to match the Floats in the expression. # Remove 'mpz' if gmpy is installed. args = str(tuple(map(int, e._mpf_))) return '{func}({args})'.format(func=self._module_format('mpmath.mpf'), args=args) def _print_Rational(self, e): return '{0}({1})/{0}({2})'.format( self._module_format('mpmath.mpf'), e.p, e.q, ) def _print_uppergamma(self, e): return "{0}({1}, {2}, {3})".format( self._module_format('mpmath.gammainc'), self._print(e.args[0]), self._print(e.args[1]), self._module_format('mpmath.inf')) def _print_lowergamma(self, e): return "{0}({1}, 0, {2})".format( self._module_format('mpmath.gammainc'), self._print(e.args[0]), self._print(e.args[1])) def _print_log2(self, e): return '{0}({1})/{0}(2)'.format( self._module_format('mpmath.log'), self._print(e.args[0])) def _print_log1p(self, e): return '{0}({1}+1)'.format( self._module_format('mpmath.log'), self._print(e.args[0])) for k in MpmathPrinter._kf: setattr(MpmathPrinter, '_print_%s' % k, _print_known_func) for k in _known_constants_mpmath: setattr(MpmathPrinter, '_print_%s' % k, _print_known_const) _not_in_numpy = 'erf erfc factorial gamma loggamma'.split() _in_numpy = [(k, v) for k, v in _known_functions_math.items() if k not in _not_in_numpy] _known_functions_numpy = dict(_in_numpy, **{ 'acos': 'arccos', 'acosh': 'arccosh', 'asin': 'arcsin', 'asinh': 'arcsinh', 'atan': 'arctan', 'atan2': 'arctan2', 'atanh': 'arctanh', 'exp2': 'exp2', 'sign': 'sign', }) class NumPyPrinter(PythonCodePrinter): """ Numpy printer which handles vectorized piecewise functions, logical operators, etc. """ printmethod = "_numpycode" _kf = dict(chain( PythonCodePrinter._kf.items(), [(k, 'numpy.' + v) for k, v in _known_functions_numpy.items()] )) _kc = {k: 'numpy.'+v for k, v in _known_constants_math.items()} def _print_seq(self, seq): "General sequence printer: converts to tuple" # Print tuples here instead of lists because numba supports # tuples in nopython mode. delimiter=', ' return '({},)'.format(delimiter.join(self._print(item) for item in seq)) def _print_MatMul(self, expr): "Matrix multiplication printer" if expr.as_coeff_matrices()[0] is not S(1): expr_list = expr.as_coeff_matrices()[1]+[(expr.as_coeff_matrices()[0])] return '({0})'.format(').dot('.join(self._print(i) for i in expr_list)) return '({0})'.format(').dot('.join(self._print(i) for i in expr.args)) def _print_MatPow(self, expr): "Matrix power printer" return '{0}({1}, {2})'.format(self._module_format('numpy.linalg.matrix_power'), self._print(expr.args[0]), self._print(expr.args[1])) def _print_Inverse(self, expr): "Matrix inverse printer" return '{0}({1})'.format(self._module_format('numpy.linalg.inv'), self._print(expr.args[0])) def _print_DotProduct(self, expr): # DotProduct allows any shape order, but numpy.dot does matrix # multiplication, so we have to make sure it gets 1 x n by n x 1. arg1, arg2 = expr.args if arg1.shape[0] != 1: arg1 = arg1.T if arg2.shape[1] != 1: arg2 = arg2.T return "%s(%s, %s)" % (self._module_format('numpy.dot'), self._print(arg1), self._print(arg2)) def _print_Piecewise(self, expr): "Piecewise function printer" exprs = '[{0}]'.format(','.join(self._print(arg.expr) for arg in expr.args)) conds = '[{0}]'.format(','.join(self._print(arg.cond) for arg in expr.args)) # If [default_value, True] is a (expr, cond) sequence in a Piecewise object # it will behave the same as passing the 'default' kwarg to select() # *as long as* it is the last element in expr.args. # If this is not the case, it may be triggered prematurely. return '{0}({1}, {2}, default=numpy.nan)'.format(self._module_format('numpy.select'), conds, exprs) def _print_Relational(self, expr): "Relational printer for Equality and Unequality" op = { '==' :'equal', '!=' :'not_equal', '<' :'less', '<=' :'less_equal', '>' :'greater', '>=' :'greater_equal', } if expr.rel_op in op: lhs = self._print(expr.lhs) rhs = self._print(expr.rhs) return '{op}({lhs}, {rhs})'.format(op=self._module_format('numpy.'+op[expr.rel_op]), lhs=lhs, rhs=rhs) return super(NumPyPrinter, self)._print_Relational(expr) def _print_And(self, expr): "Logical And printer" # We have to override LambdaPrinter because it uses Python 'and' keyword. # If LambdaPrinter didn't define it, we could use StrPrinter's # version of the function and add 'logical_and' to NUMPY_TRANSLATIONS. return '{0}.reduce(({1}))'.format(self._module_format('numpy.logical_and'), ','.join(self._print(i) for i in expr.args)) def _print_Or(self, expr): "Logical Or printer" # We have to override LambdaPrinter because it uses Python 'or' keyword. # If LambdaPrinter didn't define it, we could use StrPrinter's # version of the function and add 'logical_or' to NUMPY_TRANSLATIONS. return '{0}.reduce(({1}))'.format(self._module_format('numpy.logical_or'), ','.join(self._print(i) for i in expr.args)) def _print_Not(self, expr): "Logical Not printer" # We have to override LambdaPrinter because it uses Python 'not' keyword. # If LambdaPrinter didn't define it, we would still have to define our # own because StrPrinter doesn't define it. return '{0}({1})'.format(self._module_format('numpy.logical_not'), ','.join(self._print(i) for i in expr.args)) def _print_Min(self, expr): return '{0}(({1}))'.format(self._module_format('numpy.amin'), ','.join(self._print(i) for i in expr.args)) def _print_Max(self, expr): return '{0}(({1}))'.format(self._module_format('numpy.amax'), ','.join(self._print(i) for i in expr.args)) def _print_Pow(self, expr): if expr.exp == 0.5: return '{0}({1})'.format(self._module_format('numpy.sqrt'), self._print(expr.base)) else: return super(NumPyPrinter, self)._print_Pow(expr) def _print_arg(self, expr): return "%s(%s)" % (self._module_format('numpy.angle'), self._print(expr.args[0])) def _print_im(self, expr): return "%s(%s)" % (self._module_format('numpy.imag'), self._print(expr.args[0])) def _print_Mod(self, expr): return "%s(%s)" % (self._module_format('numpy.mod'), ', '.join( map(lambda arg: self._print(arg), expr.args))) def _print_re(self, expr): return "%s(%s)" % (self._module_format('numpy.real'), self._print(expr.args[0])) def _print_sinc(self, expr): return "%s(%s)" % (self._module_format('numpy.sinc'), self._print(expr.args[0]/S.Pi)) def _print_MatrixBase(self, expr): func = self.known_functions.get(expr.__class__.__name__, None) if func is None: func = self._module_format('numpy.array') return "%s(%s)" % (func, self._print(expr.tolist())) def _print_CodegenArrayTensorProduct(self, expr): array_list = [j for i, arg in enumerate(expr.args) for j in (self._print(arg), "[%i, %i]" % (2*i, 2*i+1))] return "%s(%s)" % (self._module_format('numpy.einsum'), ", ".join(array_list)) def _print_CodegenArrayContraction(self, expr): from sympy.codegen.array_utils import CodegenArrayTensorProduct base = expr.expr contraction_indices = expr.contraction_indices if not contraction_indices: return self._print(base) if isinstance(base, CodegenArrayTensorProduct): counter = 0 d = {j: min(i) for i in contraction_indices for j in i} indices = [] for rank_arg in base.subranks: lindices = [] for i in range(rank_arg): if counter in d: lindices.append(d[counter]) else: lindices.append(counter) counter += 1 indices.append(lindices) elems = ["%s, %s" % (self._print(arg), ind) for arg, ind in zip(base.args, indices)] return "%s(%s)" % ( self._module_format('numpy.einsum'), ", ".join(elems) ) raise NotImplementedError() def _print_CodegenArrayDiagonal(self, expr): diagonal_indices = list(expr.diagonal_indices) if len(diagonal_indices) > 1: # TODO: this should be handled in sympy.codegen.array_utils, # possibly by creating the possibility of unfolding the # CodegenArrayDiagonal object into nested ones. Same reasoning for # the array contraction. raise NotImplementedError if len(diagonal_indices[0]) != 2: raise NotImplementedError return "%s(%s, 0, axis1=%s, axis2=%s)" % ( self._module_format("numpy.diagonal"), self._print(expr.expr), diagonal_indices[0][0], diagonal_indices[0][1], ) def _print_CodegenArrayPermuteDims(self, expr): return "%s(%s, %s)" % ( self._module_format("numpy.transpose"), self._print(expr.expr), self._print(expr.permutation.args[0]), ) def _print_CodegenArrayElementwiseAdd(self, expr): return self._expand_fold_binary_op('numpy.add', expr.args) for k in NumPyPrinter._kf: setattr(NumPyPrinter, '_print_%s' % k, _print_known_func) for k in NumPyPrinter._kc: setattr(NumPyPrinter, '_print_%s' % k, _print_known_const) _known_functions_scipy_special = { 'erf': 'erf', 'erfc': 'erfc', 'besselj': 'jv', 'bessely': 'yv', 'besseli': 'iv', 'besselk': 'kv', 'factorial': 'factorial', 'gamma': 'gamma', 'loggamma': 'gammaln', 'digamma': 'psi', 'RisingFactorial': 'poch', 'jacobi': 'eval_jacobi', 'gegenbauer': 'eval_gegenbauer', 'chebyshevt': 'eval_chebyt', 'chebyshevu': 'eval_chebyu', 'legendre': 'eval_legendre', 'hermite': 'eval_hermite', 'laguerre': 'eval_laguerre', 'assoc_laguerre': 'eval_genlaguerre', } _known_constants_scipy_constants = { 'GoldenRatio': 'golden_ratio', 'Pi': 'pi', 'E': 'e' } class SciPyPrinter(NumPyPrinter): _kf = dict(chain( NumPyPrinter._kf.items(), [(k, 'scipy.special.' + v) for k, v in _known_functions_scipy_special.items()] )) _kc = {k: 'scipy.constants.' + v for k, v in _known_constants_scipy_constants.items()} def _print_SparseMatrix(self, expr): i, j, data = [], [], [] for (r, c), v in expr._smat.items(): i.append(r) j.append(c) data.append(v) return "{name}({data}, ({i}, {j}), shape={shape})".format( name=self._module_format('scipy.sparse.coo_matrix'), data=data, i=i, j=j, shape=expr.shape ) _print_ImmutableSparseMatrix = _print_SparseMatrix # SciPy's lpmv has a different order of arguments from assoc_legendre def _print_assoc_legendre(self, expr): return "{0}({2}, {1}, {3})".format( self._module_format('scipy.special.lpmv'), self._print(expr.args[0]), self._print(expr.args[1]), self._print(expr.args[2])) for k in SciPyPrinter._kf: setattr(SciPyPrinter, '_print_%s' % k, _print_known_func) for k in SciPyPrinter._kc: setattr(SciPyPrinter, '_print_%s' % k, _print_known_const) class SymPyPrinter(PythonCodePrinter): _kf = {k: 'sympy.' + v for k, v in chain( _known_functions.items(), _known_functions_math.items() )} def _print_Function(self, expr): mod = expr.func.__module__ or '' return '%s(%s)' % (self._module_format(mod + ('.' if mod else '') + expr.func.__name__), ', '.join(map(lambda arg: self._print(arg), expr.args)))
b91af432d63e8cfabf51e10580698325adcdee71b4460b764f04d154608e31b4
""" A Printer for generating readable representation of most sympy classes. """ from __future__ import print_function, division from sympy.core import S, Rational, Pow, Basic, Mul from sympy.core.mul import _keep_coeff from sympy.core.compatibility import string_types from .printer import Printer from sympy.printing.precedence import precedence, PRECEDENCE from mpmath.libmp import prec_to_dps, to_str as mlib_to_str from sympy.utilities import default_sort_key class StrPrinter(Printer): printmethod = "_sympystr" _default_settings = { "order": None, "full_prec": "auto", "sympy_integers": False, "abbrev": False, } _relationals = dict() def parenthesize(self, item, level, strict=False): if (precedence(item) < level) or ((not strict) and precedence(item) <= level): return "(%s)" % self._print(item) else: return self._print(item) def stringify(self, args, sep, level=0): return sep.join([self.parenthesize(item, level) for item in args]) def emptyPrinter(self, expr): if isinstance(expr, string_types): return expr elif isinstance(expr, Basic): return repr(expr) else: return str(expr) def _print_Add(self, expr, order=None): if self.order == 'none': terms = list(expr.args) else: terms = self._as_ordered_terms(expr, order=order) PREC = precedence(expr) l = [] for term in terms: t = self._print(term) if t.startswith('-'): sign = "-" t = t[1:] else: sign = "+" if precedence(term) < PREC: l.extend([sign, "(%s)" % t]) else: l.extend([sign, t]) sign = l.pop(0) if sign == '+': sign = "" return sign + ' '.join(l) def _print_BooleanTrue(self, expr): return "True" def _print_BooleanFalse(self, expr): return "False" def _print_Not(self, expr): return '~%s' %(self.parenthesize(expr.args[0],PRECEDENCE["Not"])) def _print_And(self, expr): return self.stringify(expr.args, " & ", PRECEDENCE["BitwiseAnd"]) def _print_Or(self, expr): return self.stringify(expr.args, " | ", PRECEDENCE["BitwiseOr"]) def _print_AppliedPredicate(self, expr): return '%s(%s)' % (self._print(expr.func), self._print(expr.arg)) def _print_Basic(self, expr): l = [self._print(o) for o in expr.args] return expr.__class__.__name__ + "(%s)" % ", ".join(l) def _print_BlockMatrix(self, B): if B.blocks.shape == (1, 1): self._print(B.blocks[0, 0]) return self._print(B.blocks) def _print_Catalan(self, expr): return 'Catalan' def _print_ComplexInfinity(self, expr): return 'zoo' def _print_ConditionSet(self, s): args = tuple([self._print(i) for i in (s.sym, s.condition)]) if s.base_set is S.UniversalSet: return 'ConditionSet(%s, %s)' % args args += (self._print(s.base_set),) return 'ConditionSet(%s, %s, %s)' % args def _print_Derivative(self, expr): dexpr = expr.expr dvars = [i[0] if i[1] == 1 else i for i in expr.variable_count] return 'Derivative(%s)' % ", ".join(map(lambda arg: self._print(arg), [dexpr] + dvars)) def _print_dict(self, d): keys = sorted(d.keys(), key=default_sort_key) items = [] for key in keys: item = "%s: %s" % (self._print(key), self._print(d[key])) items.append(item) return "{%s}" % ", ".join(items) def _print_Dict(self, expr): return self._print_dict(expr) def _print_RandomDomain(self, d): if hasattr(d, 'as_boolean'): return 'Domain: ' + self._print(d.as_boolean()) elif hasattr(d, 'set'): return ('Domain: ' + self._print(d.symbols) + ' in ' + self._print(d.set)) else: return 'Domain on ' + self._print(d.symbols) def _print_Dummy(self, expr): return '_' + expr.name def _print_EulerGamma(self, expr): return 'EulerGamma' def _print_Exp1(self, expr): return 'E' def _print_ExprCondPair(self, expr): return '(%s, %s)' % (self._print(expr.expr), self._print(expr.cond)) def _print_FiniteSet(self, s): s = sorted(s, key=default_sort_key) if len(s) > 10: printset = s[:3] + ['...'] + s[-3:] else: printset = s return '{' + ', '.join(self._print(el) for el in printset) + '}' def _print_Function(self, expr): return expr.func.__name__ + "(%s)" % self.stringify(expr.args, ", ") def _print_GeometryEntity(self, expr): # GeometryEntity is special -- it's base is tuple return str(expr) def _print_GoldenRatio(self, expr): return 'GoldenRatio' def _print_TribonacciConstant(self, expr): return 'TribonacciConstant' def _print_ImaginaryUnit(self, expr): return 'I' def _print_Infinity(self, expr): return 'oo' def _print_Integral(self, expr): def _xab_tostr(xab): if len(xab) == 1: return self._print(xab[0]) else: return self._print((xab[0],) + tuple(xab[1:])) L = ', '.join([_xab_tostr(l) for l in expr.limits]) return 'Integral(%s, %s)' % (self._print(expr.function), L) def _print_Interval(self, i): fin = 'Interval{m}({a}, {b})' a, b, l, r = i.args if a.is_infinite and b.is_infinite: m = '' elif a.is_infinite and not r: m = '' elif b.is_infinite and not l: m = '' elif not l and not r: m = '' elif l and r: m = '.open' elif l: m = '.Lopen' else: m = '.Ropen' return fin.format(**{'a': a, 'b': b, 'm': m}) def _print_AccumulationBounds(self, i): return "AccumBounds(%s, %s)" % (self._print(i.min), self._print(i.max)) def _print_Inverse(self, I): return "%s**(-1)" % self.parenthesize(I.arg, PRECEDENCE["Pow"]) def _print_Lambda(self, obj): args, expr = obj.args if len(args) == 1: return "Lambda(%s, %s)" % (self._print(args.args[0]), self._print(expr)) else: arg_string = ", ".join(self._print(arg) for arg in args) return "Lambda((%s), %s)" % (arg_string, self._print(expr)) def _print_LatticeOp(self, expr): args = sorted(expr.args, key=default_sort_key) return expr.func.__name__ + "(%s)" % ", ".join(self._print(arg) for arg in args) def _print_Limit(self, expr): e, z, z0, dir = expr.args if str(dir) == "+": return "Limit(%s, %s, %s)" % tuple(map(self._print, (e, z, z0))) else: return "Limit(%s, %s, %s, dir='%s')" % tuple(map(self._print, (e, z, z0, dir))) def _print_list(self, expr): return "[%s]" % self.stringify(expr, ", ") def _print_MatrixBase(self, expr): return expr._format_str(self) _print_SparseMatrix = \ _print_MutableSparseMatrix = \ _print_ImmutableSparseMatrix = \ _print_Matrix = \ _print_DenseMatrix = \ _print_MutableDenseMatrix = \ _print_ImmutableMatrix = \ _print_ImmutableDenseMatrix = \ _print_MatrixBase def _print_MatrixElement(self, expr): return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) \ + '[%s, %s]' % (self._print(expr.i), self._print(expr.j)) def _print_MatrixSlice(self, expr): def strslice(x): x = list(x) if x[2] == 1: del x[2] if x[1] == x[0] + 1: del x[1] if x[0] == 0: x[0] = '' return ':'.join(map(lambda arg: self._print(arg), x)) return (self._print(expr.parent) + '[' + strslice(expr.rowslice) + ', ' + strslice(expr.colslice) + ']') def _print_DeferredVector(self, expr): return expr.name def _print_Mul(self, expr): prec = precedence(expr) c, e = expr.as_coeff_Mul() if c < 0: expr = _keep_coeff(-c, e) sign = "-" else: sign = "" a = [] # items in the numerator b = [] # items that are in the denominator (if any) pow_paren = [] # Will collect all pow with more than one base element and exp = -1 if self.order not in ('old', 'none'): args = expr.as_ordered_factors() else: # use make_args in case expr was something like -x -> x args = Mul.make_args(expr) # Gather args for numerator/denominator for item in args: if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative: if item.exp != -1: b.append(Pow(item.base, -item.exp, evaluate=False)) else: if len(item.args[0].args) != 1 and isinstance(item.base, Mul): # To avoid situations like #14160 pow_paren.append(item) b.append(Pow(item.base, -item.exp)) elif item.is_Rational and item is not S.Infinity: if item.p != 1: a.append(Rational(item.p)) if item.q != 1: b.append(Rational(item.q)) else: a.append(item) a = a or [S.One] a_str = [self.parenthesize(x, prec, strict=False) for x in a] b_str = [self.parenthesize(x, prec, strict=False) for x in b] # To parenthesize Pow with exp = -1 and having more than one Symbol for item in pow_paren: if item.base in b: b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)] if not b: return sign + '*'.join(a_str) elif len(b) == 1: return sign + '*'.join(a_str) + "/" + b_str[0] else: return sign + '*'.join(a_str) + "/(%s)" % '*'.join(b_str) def _print_MatMul(self, expr): c, m = expr.as_coeff_mmul() if c.is_number and c < 0: expr = _keep_coeff(-c, m) sign = "-" else: sign = "" return sign + '*'.join( [self.parenthesize(arg, precedence(expr)) for arg in expr.args] ) def _print_HadamardProduct(self, expr): return '.*'.join([self.parenthesize(arg, precedence(expr)) for arg in expr.args]) def _print_NaN(self, expr): return 'nan' def _print_NegativeInfinity(self, expr): return '-oo' def _print_Normal(self, expr): return "Normal(%s, %s)" % (self._print(expr.mu), self._print(expr.sigma)) def _print_Order(self, expr): if not expr.variables or all(p is S.Zero for p in expr.point): if len(expr.variables) <= 1: return 'O(%s)' % self._print(expr.expr) else: return 'O(%s)' % self.stringify((expr.expr,) + expr.variables, ', ', 0) else: return 'O(%s)' % self.stringify(expr.args, ', ', 0) def _print_Ordinal(self, expr): return expr.__str__() def _print_Cycle(self, expr): return expr.__str__() def _print_Permutation(self, expr): from sympy.combinatorics.permutations import Permutation, Cycle if Permutation.print_cyclic: if not expr.size: return '()' # before taking Cycle notation, see if the last element is # a singleton and move it to the head of the string s = Cycle(expr)(expr.size - 1).__repr__()[len('Cycle'):] last = s.rfind('(') if not last == 0 and ',' not in s[last:]: s = s[last:] + s[:last] s = s.replace(',', '') return s else: s = expr.support() if not s: if expr.size < 5: return 'Permutation(%s)' % self._print(expr.array_form) return 'Permutation([], size=%s)' % self._print(expr.size) trim = self._print(expr.array_form[:s[-1] + 1]) + ', size=%s' % self._print(expr.size) use = full = self._print(expr.array_form) if len(trim) < len(full): use = trim return 'Permutation(%s)' % use def _print_Subs(self, obj): expr, old, new = obj.args if len(obj.point) == 1: old = old[0] new = new[0] return "Subs(%s, %s, %s)" % ( self._print(expr), self._print(old), self._print(new)) def _print_TensorIndex(self, expr): return expr._print() def _print_TensorHead(self, expr): return expr._print() def _print_Tensor(self, expr): return expr._print() def _print_TensMul(self, expr): # prints expressions like "A(a)", "3*A(a)", "(1+x)*A(a)" sign, args = expr._get_args_for_traditional_printer() return sign + "*".join( [self.parenthesize(arg, precedence(expr)) for arg in args] ) def _print_TensAdd(self, expr): return expr._print() def _print_PermutationGroup(self, expr): p = [' %s' % self._print(a) for a in expr.args] return 'PermutationGroup([\n%s])' % ',\n'.join(p) def _print_PDF(self, expr): return 'PDF(%s, (%s, %s, %s))' % \ (self._print(expr.pdf.args[1]), self._print(expr.pdf.args[0]), self._print(expr.domain[0]), self._print(expr.domain[1])) def _print_Pi(self, expr): return 'pi' def _print_PolyRing(self, ring): return "Polynomial ring in %s over %s with %s order" % \ (", ".join(map(lambda rs: self._print(rs), ring.symbols)), self._print(ring.domain), self._print(ring.order)) def _print_FracField(self, field): return "Rational function field in %s over %s with %s order" % \ (", ".join(map(lambda fs: self._print(fs), field.symbols)), self._print(field.domain), self._print(field.order)) def _print_FreeGroupElement(self, elm): return elm.__str__() def _print_PolyElement(self, poly): return poly.str(self, PRECEDENCE, "%s**%s", "*") def _print_FracElement(self, frac): if frac.denom == 1: return self._print(frac.numer) else: numer = self.parenthesize(frac.numer, PRECEDENCE["Mul"], strict=True) denom = self.parenthesize(frac.denom, PRECEDENCE["Atom"], strict=True) return numer + "/" + denom def _print_Poly(self, expr): ATOM_PREC = PRECEDENCE["Atom"] - 1 terms, gens = [], [ self.parenthesize(s, ATOM_PREC) for s in expr.gens ] for monom, coeff in expr.terms(): s_monom = [] for i, exp in enumerate(monom): if exp > 0: if exp == 1: s_monom.append(gens[i]) else: s_monom.append(gens[i] + "**%d" % exp) s_monom = "*".join(s_monom) if coeff.is_Add: if s_monom: s_coeff = "(" + self._print(coeff) + ")" else: s_coeff = self._print(coeff) else: if s_monom: if coeff is S.One: terms.extend(['+', s_monom]) continue if coeff is S.NegativeOne: terms.extend(['-', s_monom]) continue s_coeff = self._print(coeff) if not s_monom: s_term = s_coeff else: s_term = s_coeff + "*" + s_monom if s_term.startswith('-'): terms.extend(['-', s_term[1:]]) else: terms.extend(['+', s_term]) if terms[0] in ['-', '+']: modifier = terms.pop(0) if modifier == '-': terms[0] = '-' + terms[0] format = expr.__class__.__name__ + "(%s, %s" from sympy.polys.polyerrors import PolynomialError try: format += ", modulus=%s" % expr.get_modulus() except PolynomialError: format += ", domain='%s'" % expr.get_domain() format += ")" for index, item in enumerate(gens): if len(item) > 2 and (item[:1] == "(" and item[len(item) - 1:] == ")"): gens[index] = item[1:len(item) - 1] return format % (' '.join(terms), ', '.join(gens)) def _print_ProductSet(self, p): return ' x '.join(self._print(set) for set in p.sets) def _print_AlgebraicNumber(self, expr): if expr.is_aliased: return self._print(expr.as_poly().as_expr()) else: return self._print(expr.as_expr()) def _print_Pow(self, expr, rational=False): PREC = precedence(expr) if expr.exp is S.Half and not rational: return "sqrt(%s)" % self._print(expr.base) if expr.is_commutative: if -expr.exp is S.Half and not rational: # Note: Don't test "expr.exp == -S.Half" here, because that will # match -0.5, which we don't want. return "%s/sqrt(%s)" % tuple(map(lambda arg: self._print(arg), (S.One, expr.base))) if expr.exp is -S.One: # Similarly to the S.Half case, don't test with "==" here. return '%s/%s' % (self._print(S.One), self.parenthesize(expr.base, PREC, strict=False)) e = self.parenthesize(expr.exp, PREC, strict=False) if self.printmethod == '_sympyrepr' and expr.exp.is_Rational and expr.exp.q != 1: # the parenthesized exp should be '(Rational(a, b))' so strip parens, # but just check to be sure. if e.startswith('(Rational'): return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), e[1:-1]) return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), e) def _print_UnevaluatedExpr(self, expr): return self._print(expr.args[0]) def _print_MatPow(self, expr): PREC = precedence(expr) return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), self.parenthesize(expr.exp, PREC, strict=False)) def _print_ImmutableDenseNDimArray(self, expr): return str(expr) def _print_ImmutableSparseNDimArray(self, expr): return str(expr) def _print_Integer(self, expr): if self._settings.get("sympy_integers", False): return "S(%s)" % (expr) return str(expr.p) def _print_Integers(self, expr): return 'Integers' def _print_Naturals(self, expr): return 'Naturals' def _print_Naturals0(self, expr): return 'Naturals0' def _print_Reals(self, expr): return 'Reals' def _print_int(self, expr): return str(expr) def _print_mpz(self, expr): return str(expr) def _print_Rational(self, expr): if expr.q == 1: return str(expr.p) else: if self._settings.get("sympy_integers", False): return "S(%s)/%s" % (expr.p, expr.q) return "%s/%s" % (expr.p, expr.q) def _print_PythonRational(self, expr): if expr.q == 1: return str(expr.p) else: return "%d/%d" % (expr.p, expr.q) def _print_Fraction(self, expr): if expr.denominator == 1: return str(expr.numerator) else: return "%s/%s" % (expr.numerator, expr.denominator) def _print_mpq(self, expr): if expr.denominator == 1: return str(expr.numerator) else: return "%s/%s" % (expr.numerator, expr.denominator) def _print_Float(self, expr): prec = expr._prec if prec < 5: dps = 0 else: dps = prec_to_dps(expr._prec) if self._settings["full_prec"] is True: strip = False elif self._settings["full_prec"] is False: strip = True elif self._settings["full_prec"] == "auto": strip = self._print_level > 1 rv = mlib_to_str(expr._mpf_, dps, strip_zeros=strip) if rv.startswith('-.0'): rv = '-0.' + rv[3:] elif rv.startswith('.0'): rv = '0.' + rv[2:] if rv.startswith('+'): # e.g., +inf -> inf rv = rv[1:] return rv def _print_Relational(self, expr): charmap = { "==": "Eq", "!=": "Ne", ":=": "Assignment", '+=': "AddAugmentedAssignment", "-=": "SubAugmentedAssignment", "*=": "MulAugmentedAssignment", "/=": "DivAugmentedAssignment", "%=": "ModAugmentedAssignment", } if expr.rel_op in charmap: return '%s(%s, %s)' % (charmap[expr.rel_op], self._print(expr.lhs), self._print(expr.rhs)) return '%s %s %s' % (self.parenthesize(expr.lhs, precedence(expr)), self._relationals.get(expr.rel_op) or expr.rel_op, self.parenthesize(expr.rhs, precedence(expr))) def _print_ComplexRootOf(self, expr): return "CRootOf(%s, %d)" % (self._print_Add(expr.expr, order='lex'), expr.index) def _print_RootSum(self, expr): args = [self._print_Add(expr.expr, order='lex')] if expr.fun is not S.IdentityFunction: args.append(self._print(expr.fun)) return "RootSum(%s)" % ", ".join(args) def _print_GroebnerBasis(self, basis): cls = basis.__class__.__name__ exprs = [self._print_Add(arg, order=basis.order) for arg in basis.exprs] exprs = "[%s]" % ", ".join(exprs) gens = [ self._print(gen) for gen in basis.gens ] domain = "domain='%s'" % self._print(basis.domain) order = "order='%s'" % self._print(basis.order) args = [exprs] + gens + [domain, order] return "%s(%s)" % (cls, ", ".join(args)) def _print_Sample(self, expr): return "Sample([%s])" % self.stringify(expr, ", ", 0) def _print_set(self, s): items = sorted(s, key=default_sort_key) args = ', '.join(self._print(item) for item in items) if not args: return "set()" return '{%s}' % args def _print_frozenset(self, s): if not s: return "frozenset()" return "frozenset(%s)" % self._print_set(s) def _print_SparseMatrix(self, expr): from sympy.matrices import Matrix return self._print(Matrix(expr)) def _print_Sum(self, expr): def _xab_tostr(xab): if len(xab) == 1: return self._print(xab[0]) else: return self._print((xab[0],) + tuple(xab[1:])) L = ', '.join([_xab_tostr(l) for l in expr.limits]) return 'Sum(%s, %s)' % (self._print(expr.function), L) def _print_Symbol(self, expr): return expr.name _print_MatrixSymbol = _print_Symbol _print_RandomSymbol = _print_Symbol def _print_Identity(self, expr): return "I" def _print_ZeroMatrix(self, expr): return "0" def _print_Predicate(self, expr): return "Q.%s" % expr.name def _print_str(self, expr): return str(expr) def _print_tuple(self, expr): if len(expr) == 1: return "(%s,)" % self._print(expr[0]) else: return "(%s)" % self.stringify(expr, ", ") def _print_Tuple(self, expr): return self._print_tuple(expr) def _print_Transpose(self, T): return "%s.T" % self.parenthesize(T.arg, PRECEDENCE["Pow"]) def _print_Uniform(self, expr): return "Uniform(%s, %s)" % (self._print(expr.a), self._print(expr.b)) def _print_Union(self, expr): return 'Union(%s)' %(', '.join([self._print(a) for a in expr.args])) def _print_Complement(self, expr): return r' \ '.join(self._print(set_) for set_ in expr.args) def _print_Quantity(self, expr): if self._settings.get("abbrev", False): return "%s" % expr.abbrev return "%s" % expr.name def _print_Quaternion(self, expr): s = [self.parenthesize(i, PRECEDENCE["Mul"], strict=True) for i in expr.args] a = [s[0]] + [i+"*"+j for i, j in zip(s[1:], "ijk")] return " + ".join(a) def _print_Dimension(self, expr): return str(expr) def _print_Wild(self, expr): return expr.name + '_' def _print_WildFunction(self, expr): return expr.name + '_' def _print_Zero(self, expr): if self._settings.get("sympy_integers", False): return "S(0)" return "0" def _print_DMP(self, p): from sympy.core.sympify import SympifyError try: if p.ring is not None: # TODO incorporate order return self._print(p.ring.to_sympy(p)) except SympifyError: pass cls = p.__class__.__name__ rep = self._print(p.rep) dom = self._print(p.dom) ring = self._print(p.ring) return "%s(%s, %s, %s)" % (cls, rep, dom, ring) def _print_DMF(self, expr): return self._print_DMP(expr) def _print_Object(self, obj): return 'Object("%s")' % obj.name def _print_IdentityMorphism(self, morphism): return 'IdentityMorphism(%s)' % morphism.domain def _print_NamedMorphism(self, morphism): return 'NamedMorphism(%s, %s, "%s")' % \ (morphism.domain, morphism.codomain, morphism.name) def _print_Category(self, category): return 'Category("%s")' % category.name def _print_BaseScalarField(self, field): return field._coord_sys._names[field._index] def _print_BaseVectorField(self, field): return 'e_%s' % field._coord_sys._names[field._index] def _print_Differential(self, diff): field = diff._form_field if hasattr(field, '_coord_sys'): return 'd%s' % field._coord_sys._names[field._index] else: return 'd(%s)' % self._print(field) def _print_Tr(self, expr): #TODO : Handle indices return "%s(%s)" % ("Tr", self._print(expr.args[0])) def sstr(expr, **settings): """Returns the expression as a string. For large expressions where speed is a concern, use the setting order='none'. If abbrev=True setting is used then units are printed in abbreviated form. Examples ======== >>> from sympy import symbols, Eq, sstr >>> a, b = symbols('a b') >>> sstr(Eq(a + b, 0)) 'Eq(a + b, 0)' """ p = StrPrinter(settings) s = p.doprint(expr) return s class StrReprPrinter(StrPrinter): """(internal) -- see sstrrepr""" def _print_str(self, s): return repr(s) def sstrrepr(expr, **settings): """return expr in mixed str/repr form i.e. strings are returned in repr form with quotes, and everything else is returned in str form. This function could be useful for hooking into sys.displayhook """ p = StrReprPrinter(settings) s = p.doprint(expr) return s
1ad13acb27ae10cbec056cb1caecd536fa246e058c82eb36e55bcab73ec97bba
from __future__ import print_function, division def pprint_nodes(subtrees): """ Prettyprints systems of nodes. Examples ======== >>> from sympy.printing.tree import pprint_nodes >>> print(pprint_nodes(["a", "b1\\nb2", "c"])) +-a +-b1 | b2 +-c """ def indent(s, type=1): x = s.split("\n") r = "+-%s\n" % x[0] for a in x[1:]: if a == "": continue if type == 1: r += "| %s\n" % a else: r += " %s\n" % a return r if not subtrees: return "" f = "" for a in subtrees[:-1]: f += indent(a) f += indent(subtrees[-1], 2) return f def print_node(node): """ Returns information about the "node". This includes class name, string representation and assumptions. """ s = "%s: %s\n" % (node.__class__.__name__, str(node)) d = node._assumptions if d: for a in sorted(d): v = d[a] if v is None: continue s += "%s: %s\n" % (a, v) return s def tree(node): """ Returns a tree representation of "node" as a string. It uses print_node() together with pprint_nodes() on node.args recursively. See Also ======== print_tree """ subtrees = [] for arg in node.args: subtrees.append(tree(arg)) s = print_node(node) + pprint_nodes(subtrees) return s def print_tree(node): """ Prints a tree representation of "node". Examples ======== >>> from sympy.printing import print_tree >>> from sympy import Symbol >>> x = Symbol('x', odd=True) >>> y = Symbol('y', even=True) >>> print_tree(y**x) Pow: y**x +-Symbol: y | algebraic: True | commutative: True | complex: True | even: True | hermitian: True | imaginary: False | integer: True | irrational: False | noninteger: False | odd: False | rational: True | real: True | transcendental: False +-Symbol: x algebraic: True commutative: True complex: True even: False hermitian: True imaginary: False integer: True irrational: False noninteger: False nonzero: True odd: True rational: True real: True transcendental: False zero: False See Also ======== tree """ print(tree(node))
85c147cf29f9e3d4126d65ac2b0c4237aa9fc988eb269dc7aa4922bf17baec79
""" Rust code printer The `RustCodePrinter` converts SymPy expressions into Rust expressions. A complete code generator, which uses `rust_code` extensively, can be found in `sympy.utilities.codegen`. The `codegen` module can be used to generate complete source code files. """ # Possible Improvement # # * make sure we follow Rust Style Guidelines_ # * make use of pattern matching # * better support for reference # * generate generic code and use trait to make sure they have specific methods # * use crates_ to get more math support # - num_ # + BigInt_, BigUint_ # + Complex_ # + Rational64_, Rational32_, BigRational_ # # .. _crates: https://crates.io/ # .. _Guidelines: https://github.com/rust-lang/rust/tree/master/src/doc/style # .. _num: http://rust-num.github.io/num/num/ # .. _BigInt: http://rust-num.github.io/num/num/bigint/struct.BigInt.html # .. _BigUint: http://rust-num.github.io/num/num/bigint/struct.BigUint.html # .. _Complex: http://rust-num.github.io/num/num/complex/struct.Complex.html # .. _Rational32: http://rust-num.github.io/num/num/rational/type.Rational32.html # .. _Rational64: http://rust-num.github.io/num/num/rational/type.Rational64.html # .. _BigRational: http://rust-num.github.io/num/num/rational/type.BigRational.html from __future__ import print_function, division from sympy.core import S, numbers, Rational, Float, Lambda from sympy.core.compatibility import string_types, range from sympy.printing.codeprinter import CodePrinter, Assignment from sympy.printing.precedence import precedence # Rust's methods for integer and float can be found at here : # # * `Rust - Primitive Type f64 <https://doc.rust-lang.org/std/primitive.f64.html>`_ # * `Rust - Primitive Type i64 <https://doc.rust-lang.org/std/primitive.i64.html>`_ # # Function Style : # # 1. args[0].func(args[1:]), method with arguments # 2. args[0].func(), method without arguments # 3. args[1].func(), method without arguments (e.g. (e, x) => x.exp()) # 4. func(args), function with arguments # dictionary mapping sympy function to (argument_conditions, Rust_function). # Used in RustCodePrinter._print_Function(self) # f64 method in Rust known_functions = { "": "is_nan", "": "is_infinite", "": "is_finite", "": "is_normal", "": "classify", "floor": "floor", "ceiling": "ceil", "": "round", "": "trunc", "": "fract", "Abs": "abs", "sign": "signum", "": "is_sign_positive", "": "is_sign_negative", "": "mul_add", "Pow": [(lambda base, exp: exp == -S.One, "recip", 2), # 1.0/x (lambda base, exp: exp == S.Half, "sqrt", 2), # x ** 0.5 (lambda base, exp: exp == -S.Half, "sqrt().recip", 2), # 1/(x ** 0.5) (lambda base, exp: exp == Rational(1, 3), "cbrt", 2), # x ** (1/3) (lambda base, exp: base == S.One*2, "exp2", 3), # 2 ** x (lambda base, exp: exp.is_integer, "powi", 1), # x ** y, for i32 (lambda base, exp: not exp.is_integer, "powf", 1)], # x ** y, for f64 "exp": [(lambda exp: True, "exp", 2)], # e ** x "log": "ln", "": "log", # number.log(base) "": "log2", "": "log10", "": "to_degrees", "": "to_radians", "Max": "max", "Min": "min", "": "hypot", # (x**2 + y**2) ** 0.5 "sin": "sin", "cos": "cos", "tan": "tan", "asin": "asin", "acos": "acos", "atan": "atan", "atan2": "atan2", "": "sin_cos", "": "exp_m1", # e ** x - 1 "": "ln_1p", # ln(1 + x) "sinh": "sinh", "cosh": "cosh", "tanh": "tanh", "asinh": "asinh", "acosh": "acosh", "atanh": "atanh", } # i64 method in Rust # known_functions_i64 = { # "": "min_value", # "": "max_value", # "": "from_str_radix", # "": "count_ones", # "": "count_zeros", # "": "leading_zeros", # "": "trainling_zeros", # "": "rotate_left", # "": "rotate_right", # "": "swap_bytes", # "": "from_be", # "": "from_le", # "": "to_be", # to big endian # "": "to_le", # to little endian # "": "checked_add", # "": "checked_sub", # "": "checked_mul", # "": "checked_div", # "": "checked_rem", # "": "checked_neg", # "": "checked_shl", # "": "checked_shr", # "": "checked_abs", # "": "saturating_add", # "": "saturating_sub", # "": "saturating_mul", # "": "wrapping_add", # "": "wrapping_sub", # "": "wrapping_mul", # "": "wrapping_div", # "": "wrapping_rem", # "": "wrapping_neg", # "": "wrapping_shl", # "": "wrapping_shr", # "": "wrapping_abs", # "": "overflowing_add", # "": "overflowing_sub", # "": "overflowing_mul", # "": "overflowing_div", # "": "overflowing_rem", # "": "overflowing_neg", # "": "overflowing_shl", # "": "overflowing_shr", # "": "overflowing_abs", # "Pow": "pow", # "Abs": "abs", # "sign": "signum", # "": "is_positive", # "": "is_negnative", # } # These are the core reserved words in the Rust language. Taken from: # http://doc.rust-lang.org/grammar.html#keywords reserved_words = ['abstract', 'alignof', 'as', 'become', 'box', 'break', 'const', 'continue', 'crate', 'do', 'else', 'enum', 'extern', 'false', 'final', 'fn', 'for', 'if', 'impl', 'in', 'let', 'loop', 'macro', 'match', 'mod', 'move', 'mut', 'offsetof', 'override', 'priv', 'proc', 'pub', 'pure', 'ref', 'return', 'Self', 'self', 'sizeof', 'static', 'struct', 'super', 'trait', 'true', 'type', 'typeof', 'unsafe', 'unsized', 'use', 'virtual', 'where', 'while', 'yield'] class RustCodePrinter(CodePrinter): """A printer to convert python expressions to strings of Rust code""" printmethod = "_rust_code" language = "Rust" _default_settings = { 'order': None, 'full_prec': 'auto', 'precision': 17, 'user_functions': {}, 'human': True, 'contract': True, 'dereference': set(), 'error_on_reserved': False, 'reserved_word_suffix': '_', 'inline': False, } def __init__(self, settings={}): CodePrinter.__init__(self, settings) self.known_functions = dict(known_functions) userfuncs = settings.get('user_functions', {}) self.known_functions.update(userfuncs) self._dereference = set(settings.get('dereference', [])) self.reserved_words = set(reserved_words) def _rate_index_position(self, p): return p*5 def _get_statement(self, codestring): return "%s;" % codestring def _get_comment(self, text): return "// %s" % text def _declare_number_const(self, name, value): return "const %s: f64 = %s;" % (name, value) def _format_code(self, lines): return self.indent_code(lines) def _traverse_matrix_indices(self, mat): rows, cols = mat.shape return ((i, j) for i in range(rows) for j in range(cols)) def _get_loop_opening_ending(self, indices): open_lines = [] close_lines = [] loopstart = "for %(var)s in %(start)s..%(end)s {" for i in indices: # Rust arrays start at 0 and end at dimension-1 open_lines.append(loopstart % { 'var': self._print(i), 'start': self._print(i.lower), 'end': self._print(i.upper + 1)}) close_lines.append("}") return open_lines, close_lines def _print_caller_var(self, expr): if len(expr.args) > 1: # for something like `sin(x + y + z)`, # make sure we can get '(x + y + z).sin()' # instead of 'x + y + z.sin()' return '(' + self._print(expr) + ')' elif expr.is_number: return self._print(expr, _type=True) else: return self._print(expr) def _print_Function(self, expr): """ basic function for printing `Function` Function Style : 1. args[0].func(args[1:]), method with arguments 2. args[0].func(), method without arguments 3. args[1].func(), method without arguments (e.g. (e, x) => x.exp()) 4. func(args), function with arguments """ if expr.func.__name__ in self.known_functions: cond_func = self.known_functions[expr.func.__name__] func = None style = 1 if isinstance(cond_func, string_types): func = cond_func else: for cond, func, style in cond_func: if cond(*expr.args): break if func is not None: if style == 1: ret = "%(var)s.%(method)s(%(args)s)" % { 'var': self._print_caller_var(expr.args[0]), 'method': func, 'args': self.stringify(expr.args[1:], ", ") if len(expr.args) > 1 else '' } elif style == 2: ret = "%(var)s.%(method)s()" % { 'var': self._print_caller_var(expr.args[0]), 'method': func, } elif style == 3: ret = "%(var)s.%(method)s()" % { 'var': self._print_caller_var(expr.args[1]), 'method': func, } else: ret = "%(func)s(%(args)s)" % { 'func': func, 'args': self.stringify(expr.args, ", "), } return ret elif hasattr(expr, '_imp_') and isinstance(expr._imp_, Lambda): # inlined function return self._print(expr._imp_(*expr.args)) else: return self._print_not_supported(expr) def _print_Pow(self, expr): if expr.base.is_integer and not expr.exp.is_integer: expr = type(expr)(Float(expr.base), expr.exp) return self._print(expr) return self._print_Function(expr) def _print_Float(self, expr, _type=False): ret = super(RustCodePrinter, self)._print_Float(expr) if _type: return ret + '_f64' else: return ret def _print_Integer(self, expr, _type=False): ret = super(RustCodePrinter, self)._print_Integer(expr) if _type: return ret + '_i32' else: return ret def _print_Rational(self, expr): p, q = int(expr.p), int(expr.q) return '%d_f64/%d.0' % (p, q) def _print_Indexed(self, expr): # calculate index for 1d array dims = expr.shape elem = S.Zero offset = S.One for i in reversed(range(expr.rank)): elem += expr.indices[i]*offset offset *= dims[i] return "%s[%s]" % (self._print(expr.base.label), self._print(elem)) def _print_Idx(self, expr): return expr.label.name def _print_Dummy(self, expr): return expr.name def _print_Exp1(self, expr, _type=False): return "E" def _print_Pi(self, expr, _type=False): return 'PI' def _print_Infinity(self, expr, _type=False): return 'INFINITY' def _print_NegativeInfinity(self, expr, _type=False): return 'NEG_INFINITY' def _print_BooleanTrue(self, expr, _type=False): return "true" def _print_BooleanFalse(self, expr, _type=False): return "false" def _print_bool(self, expr, _type=False): return str(expr).lower() def _print_NaN(self, expr, _type=False): return "NAN" def _print_Piecewise(self, expr): if expr.args[-1].cond != True: # We need the last conditional to be a True, otherwise the resulting # function may not return a result. raise ValueError("All Piecewise expressions must contain an " "(expr, True) statement to be used as a default " "condition. Without one, the generated " "expression may not evaluate to anything under " "some condition.") lines = [] for i, (e, c) in enumerate(expr.args): if i == 0: lines.append("if (%s) {" % self._print(c)) elif i == len(expr.args) - 1 and c == True: lines[-1] += " else {" else: lines[-1] += " else if (%s) {" % self._print(c) code0 = self._print(e) lines.append(code0) lines.append("}") if self._settings['inline']: return " ".join(lines) else: return "\n".join(lines) def _print_ITE(self, expr): from sympy.functions import Piecewise _piecewise = Piecewise((expr.args[1], expr.args[0]), (expr.args[2], True)) return self._print(_piecewise) def _print_Matrix(self, expr): return "%s[%s]" % (expr.parent, expr.j + expr.i*expr.parent.shape[1]) def _print_MatrixBase(self, A): if A.cols == 1: return "[%s]" % ", ".join(self._print(a) for a in A) else: raise ValueError("Full Matrix Support in Rust need Crates (https://crates.io/keywords/matrix).") def _print_MatrixElement(self, expr): return "%s[%s]" % (expr.parent, expr.j + expr.i*expr.parent.shape[1]) # FIXME: Str/CodePrinter could define each of these to call the _print # method from higher up the class hierarchy (see _print_NumberSymbol). # Then subclasses like us would not need to repeat all this. _print_Matrix = \ _print_MatrixElement = \ _print_DenseMatrix = \ _print_MutableDenseMatrix = \ _print_ImmutableMatrix = \ _print_ImmutableDenseMatrix = \ _print_MatrixBase def _print_Symbol(self, expr): name = super(RustCodePrinter, self)._print_Symbol(expr) if expr in self._dereference: return '(*%s)' % name else: return name def _print_Assignment(self, expr): from sympy.tensor.indexed import IndexedBase lhs = expr.lhs rhs = expr.rhs if self._settings["contract"] and (lhs.has(IndexedBase) or rhs.has(IndexedBase)): # Here we check if there is looping to be done, and if so # print the required loops. return self._doprint_loops(rhs, lhs) else: lhs_code = self._print(lhs) rhs_code = self._print(rhs) return self._get_statement("%s = %s" % (lhs_code, rhs_code)) def indent_code(self, code): """Accepts a string of code or a list of code lines""" if isinstance(code, string_types): code_lines = self.indent_code(code.splitlines(True)) return ''.join(code_lines) tab = " " inc_token = ('{', '(', '{\n', '(\n') dec_token = ('}', ')') code = [ line.lstrip(' \t') for line in code ] increase = [ int(any(map(line.endswith, inc_token))) for line in code ] decrease = [ int(any(map(line.startswith, dec_token))) for line in code ] pretty = [] level = 0 for n, line in enumerate(code): if line == '' or line == '\n': pretty.append(line) continue level -= decrease[n] pretty.append("%s%s" % (tab*level, line)) level += increase[n] return pretty def rust_code(expr, assign_to=None, **settings): """Converts an expr to a string of Rust code Parameters ========== expr : Expr A sympy expression to be converted. assign_to : optional When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string, ``Symbol``, ``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of line-wrapping, or for expressions that generate multi-line statements. precision : integer, optional The precision for numbers such as pi [default=15]. user_functions : dict, optional A dictionary where the keys are string representations of either ``FunctionClass`` or ``UndefinedFunction`` instances and the values are their desired C string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. See below for examples. dereference : iterable, optional An iterable of symbols that should be dereferenced in the printed code expression. These would be values passed by address to the function. For example, if ``dereference=[a]``, the resulting code would print ``(*a)`` instead of ``a``. human : bool, optional If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True]. contract: bool, optional If True, ``Indexed`` instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True]. Examples ======== >>> from sympy import rust_code, symbols, Rational, sin, ceiling, Abs, Function >>> x, tau = symbols("x, tau") >>> rust_code((2*tau)**Rational(7, 2)) '8*1.4142135623731*tau.powf(7_f64/2.0)' >>> rust_code(sin(x), assign_to="s") 's = x.sin();' Simple custom printing can be defined for certain types by passing a dictionary of {"type" : "function"} to the ``user_functions`` kwarg. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. >>> custom_functions = { ... "ceiling": "CEIL", ... "Abs": [(lambda x: not x.is_integer, "fabs", 4), ... (lambda x: x.is_integer, "ABS", 4)], ... "func": "f" ... } >>> func = Function('func') >>> rust_code(func(Abs(x) + ceiling(x)), user_functions=custom_functions) '(fabs(x) + x.CEIL()).f()' ``Piecewise`` expressions are converted into conditionals. If an ``assign_to`` variable is provided an if statement is created, otherwise the ternary operator is used. Note that if the ``Piecewise`` lacks a default term, represented by ``(expr, True)`` then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything. >>> from sympy import Piecewise >>> expr = Piecewise((x + 1, x > 0), (x, True)) >>> print(rust_code(expr, tau)) tau = if (x > 0) { x + 1 } else { x }; Support for loops is provided through ``Indexed`` types. With ``contract=True`` these expressions will be turned into loops, whereas ``contract=False`` will just print the assignment expression that should be looped over: >>> from sympy import Eq, IndexedBase, Idx >>> len_y = 5 >>> y = IndexedBase('y', shape=(len_y,)) >>> t = IndexedBase('t', shape=(len_y,)) >>> Dy = IndexedBase('Dy', shape=(len_y-1,)) >>> i = Idx('i', len_y-1) >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) >>> rust_code(e.rhs, assign_to=e.lhs, contract=False) 'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);' Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions must be provided to ``assign_to``. Note that any expression that can be generated normally can also exist inside a Matrix: >>> from sympy import Matrix, MatrixSymbol >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)]) >>> A = MatrixSymbol('A', 3, 1) >>> print(rust_code(mat, A)) A = [x.powi(2), if (x > 0) { x + 1 } else { x }, x.sin()]; """ return RustCodePrinter(settings).doprint(expr, assign_to) def print_rust_code(expr, **settings): """Prints Rust representation of the given expression.""" print(rust_code(expr, **settings))
14c67e512ab824d25d67dad4ba8e82148ab0ff4ca2e9baf24fc427f67c56bcd7
""" A few practical conventions common to all printers. """ from __future__ import print_function, division import re from sympy.core.compatibility import Iterable _name_with_digits_p = re.compile(r'^([a-zA-Z]+)([0-9]+)$') def split_super_sub(text): """Split a symbol name into a name, superscripts and subscripts The first part of the symbol name is considered to be its actual 'name', followed by super- and subscripts. Each superscript is preceded with a "^" character or by "__". Each subscript is preceded by a "_" character. The three return values are the actual name, a list with superscripts and a list with subscripts. Examples ======== >>> from sympy.printing.conventions import split_super_sub >>> split_super_sub('a_x^1') ('a', ['1'], ['x']) >>> split_super_sub('var_sub1__sup_sub2') ('var', ['sup'], ['sub1', 'sub2']) """ if not text: return text, [], [] pos = 0 name = None supers = [] subs = [] while pos < len(text): start = pos + 1 if text[pos:pos + 2] == "__": start += 1 pos_hat = text.find("^", start) if pos_hat < 0: pos_hat = len(text) pos_usc = text.find("_", start) if pos_usc < 0: pos_usc = len(text) pos_next = min(pos_hat, pos_usc) part = text[pos:pos_next] pos = pos_next if name is None: name = part elif part.startswith("^"): supers.append(part[1:]) elif part.startswith("__"): supers.append(part[2:]) elif part.startswith("_"): subs.append(part[1:]) else: raise RuntimeError("This should never happen.") # make a little exception when a name ends with digits, i.e. treat them # as a subscript too. m = _name_with_digits_p.match(name) if m: name, sub = m.groups() subs.insert(0, sub) return name, supers, subs def requires_partial(expr): """Return whether a partial derivative symbol is required for printing This requires checking how many free variables there are, filtering out the ones that are integers. Some expressions don't have free variables. In that case, check its variable list explicitly to get the context of the expression. """ if not isinstance(expr.free_symbols, Iterable): return len(set(expr.variables)) > 1 return sum(not s.is_integer for s in expr.free_symbols) > 1
69b6d769a66b3d8b83db23416f679874734efd5ce4468d965e9900d9951e5012
""" A Printer which converts an expression into its LaTeX equivalent. """ from __future__ import print_function, division import itertools from sympy.core import S, Add, Symbol, Mod from sympy.core.alphabets import greeks from sympy.core.containers import Tuple from sympy.core.function import _coeff_isneg, AppliedUndef, Derivative from sympy.core.operations import AssocOp from sympy.core.sympify import SympifyError from sympy.logic.boolalg import true # sympy.printing imports from sympy.printing.precedence import precedence_traditional from sympy.printing.printer import Printer from sympy.printing.conventions import split_super_sub, requires_partial from sympy.printing.precedence import precedence, PRECEDENCE import mpmath.libmp as mlib from mpmath.libmp import prec_to_dps from sympy.core.compatibility import default_sort_key, range from sympy.utilities.iterables import has_variety import re # Hand-picked functions which can be used directly in both LaTeX and MathJax # Complete list at # https://docs.mathjax.org/en/latest/tex.html#supported-latex-commands # This variable only contains those functions which sympy uses. accepted_latex_functions = ['arcsin', 'arccos', 'arctan', 'sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'sqrt', 'ln', 'log', 'sec', 'csc', 'cot', 'coth', 're', 'im', 'frac', 'root', 'arg', ] tex_greek_dictionary = { 'Alpha': 'A', 'Beta': 'B', 'Gamma': r'\Gamma', 'Delta': r'\Delta', 'Epsilon': 'E', 'Zeta': 'Z', 'Eta': 'H', 'Theta': r'\Theta', 'Iota': 'I', 'Kappa': 'K', 'Lambda': r'\Lambda', 'Mu': 'M', 'Nu': 'N', 'Xi': r'\Xi', 'omicron': 'o', 'Omicron': 'O', 'Pi': r'\Pi', 'Rho': 'P', 'Sigma': r'\Sigma', 'Tau': 'T', 'Upsilon': r'\Upsilon', 'Phi': r'\Phi', 'Chi': 'X', 'Psi': r'\Psi', 'Omega': r'\Omega', 'lamda': r'\lambda', 'Lamda': r'\Lambda', 'khi': r'\chi', 'Khi': r'X', 'varepsilon': r'\varepsilon', 'varkappa': r'\varkappa', 'varphi': r'\varphi', 'varpi': r'\varpi', 'varrho': r'\varrho', 'varsigma': r'\varsigma', 'vartheta': r'\vartheta', } other_symbols = set(['aleph', 'beth', 'daleth', 'gimel', 'ell', 'eth', 'hbar', 'hslash', 'mho', 'wp', ]) # Variable name modifiers modifier_dict = { # Accents 'mathring': lambda s: r'\mathring{'+s+r'}', 'ddddot': lambda s: r'\ddddot{'+s+r'}', 'dddot': lambda s: r'\dddot{'+s+r'}', 'ddot': lambda s: r'\ddot{'+s+r'}', 'dot': lambda s: r'\dot{'+s+r'}', 'check': lambda s: r'\check{'+s+r'}', 'breve': lambda s: r'\breve{'+s+r'}', 'acute': lambda s: r'\acute{'+s+r'}', 'grave': lambda s: r'\grave{'+s+r'}', 'tilde': lambda s: r'\tilde{'+s+r'}', 'hat': lambda s: r'\hat{'+s+r'}', 'bar': lambda s: r'\bar{'+s+r'}', 'vec': lambda s: r'\vec{'+s+r'}', 'prime': lambda s: "{"+s+"}'", 'prm': lambda s: "{"+s+"}'", # Faces 'bold': lambda s: r'\boldsymbol{'+s+r'}', 'bm': lambda s: r'\boldsymbol{'+s+r'}', 'cal': lambda s: r'\mathcal{'+s+r'}', 'scr': lambda s: r'\mathscr{'+s+r'}', 'frak': lambda s: r'\mathfrak{'+s+r'}', # Brackets 'norm': lambda s: r'\left\|{'+s+r'}\right\|', 'avg': lambda s: r'\left\langle{'+s+r'}\right\rangle', 'abs': lambda s: r'\left|{'+s+r'}\right|', 'mag': lambda s: r'\left|{'+s+r'}\right|', } greek_letters_set = frozenset(greeks) _between_two_numbers_p = ( re.compile(r'[0-9][} ]*$'), # search re.compile(r'[{ ]*[-+0-9]'), # match ) class LatexPrinter(Printer): printmethod = "_latex" _default_settings = { "fold_frac_powers": False, "fold_func_brackets": False, "fold_short_frac": None, "inv_trig_style": "abbreviated", "itex": False, "ln_notation": False, "long_frac_ratio": None, "mat_delim": "[", "mat_str": None, "mode": "plain", "mul_symbol": None, "order": None, "symbol_names": {}, "root_notation": True, "mat_symbol_style": "plain", "imaginary_unit": "i", "gothic_re_im": False, } def __init__(self, settings=None): Printer.__init__(self, settings) if 'mode' in self._settings: valid_modes = ['inline', 'plain', 'equation', 'equation*'] if self._settings['mode'] not in valid_modes: raise ValueError("'mode' must be one of 'inline', 'plain', " "'equation' or 'equation*'") if self._settings['fold_short_frac'] is None and \ self._settings['mode'] == 'inline': self._settings['fold_short_frac'] = True mul_symbol_table = { None: r" ", "ldot": r" \,.\, ", "dot": r" \cdot ", "times": r" \times " } try: self._settings['mul_symbol_latex'] = \ mul_symbol_table[self._settings['mul_symbol']] except KeyError: self._settings['mul_symbol_latex'] = \ self._settings['mul_symbol'] try: self._settings['mul_symbol_latex_numbers'] = \ mul_symbol_table[self._settings['mul_symbol'] or 'dot'] except KeyError: if (self._settings['mul_symbol'].strip() in ['', ' ', '\\', '\\,', '\\:', '\\;', '\\quad']): self._settings['mul_symbol_latex_numbers'] = \ mul_symbol_table['dot'] else: self._settings['mul_symbol_latex_numbers'] = \ self._settings['mul_symbol'] self._delim_dict = {'(': ')', '[': ']'} imaginary_unit_table = { None: r"i", "i": r"i", "ri": r"\mathrm{i}", "ti": r"\text{i}", "j": r"j", "rj": r"\mathrm{j}", "tj": r"\text{j}", } try: self._settings['imaginary_unit_latex'] = \ imaginary_unit_table[self._settings['imaginary_unit']] except KeyError: self._settings['imaginary_unit_latex'] = \ self._settings['imaginary_unit'] def parenthesize(self, item, level, strict=False): prec_val = precedence_traditional(item) if (prec_val < level) or ((not strict) and prec_val <= level): return r"\left({}\right)".format(self._print(item)) else: return self._print(item) def doprint(self, expr): tex = Printer.doprint(self, expr) if self._settings['mode'] == 'plain': return tex elif self._settings['mode'] == 'inline': return r"$%s$" % tex elif self._settings['itex']: return r"$$%s$$" % tex else: env_str = self._settings['mode'] return r"\begin{%s}%s\end{%s}" % (env_str, tex, env_str) def _needs_brackets(self, expr): """ Returns True if the expression needs to be wrapped in brackets when printed, False otherwise. For example: a + b => True; a => False; 10 => False; -10 => True. """ return not ((expr.is_Integer and expr.is_nonnegative) or (expr.is_Atom and (expr is not S.NegativeOne and expr.is_Rational is False))) def _needs_function_brackets(self, expr): """ Returns True if the expression needs to be wrapped in brackets when passed as an argument to a function, False otherwise. This is a more liberal version of _needs_brackets, in that many expressions which need to be wrapped in brackets when added/subtracted/raised to a power do not need them when passed to a function. Such an example is a*b. """ if not self._needs_brackets(expr): return False else: # Muls of the form a*b*c... can be folded if expr.is_Mul and not self._mul_is_clean(expr): return True # Pows which don't need brackets can be folded elif expr.is_Pow and not self._pow_is_clean(expr): return True # Add and Function always need brackets elif expr.is_Add or expr.is_Function: return True else: return False def _needs_mul_brackets(self, expr, first=False, last=False): """ Returns True if the expression needs to be wrapped in brackets when printed as part of a Mul, False otherwise. This is True for Add, but also for some container objects that would not need brackets when appearing last in a Mul, e.g. an Integral. ``last=True`` specifies that this expr is the last to appear in a Mul. ``first=True`` specifies that this expr is the first to appear in a Mul. """ from sympy import Integral, Product, Sum if expr.is_Mul: if not first and _coeff_isneg(expr): return True elif precedence_traditional(expr) < PRECEDENCE["Mul"]: return True elif expr.is_Relational: return True if expr.is_Piecewise: return True if any([expr.has(x) for x in (Mod,)]): return True if (not last and any([expr.has(x) for x in (Integral, Product, Sum)])): return True return False def _needs_add_brackets(self, expr): """ Returns True if the expression needs to be wrapped in brackets when printed as part of an Add, False otherwise. This is False for most things. """ if expr.is_Relational: return True if any([expr.has(x) for x in (Mod,)]): return True if expr.is_Add: return True return False def _mul_is_clean(self, expr): for arg in expr.args: if arg.is_Function: return False return True def _pow_is_clean(self, expr): return not self._needs_brackets(expr.base) def _do_exponent(self, expr, exp): if exp is not None: return r"\left(%s\right)^{%s}" % (expr, exp) else: return expr def _print_Basic(self, expr): ls = [self._print(o) for o in expr.args] return self._deal_with_super_sub(expr.__class__.__name__) + \ r"\left(%s\right)" % ", ".join(ls) def _print_bool(self, e): return r"\text{%s}" % e _print_BooleanTrue = _print_bool _print_BooleanFalse = _print_bool def _print_NoneType(self, e): return r"\text{%s}" % e def _print_Add(self, expr, order=None): if self.order == 'none': terms = list(expr.args) else: terms = self._as_ordered_terms(expr, order=order) tex = "" for i, term in enumerate(terms): if i == 0: pass elif _coeff_isneg(term): tex += " - " term = -term else: tex += " + " term_tex = self._print(term) if self._needs_add_brackets(term): term_tex = r"\left(%s\right)" % term_tex tex += term_tex return tex def _print_Cycle(self, expr): from sympy.combinatorics.permutations import Permutation if expr.size == 0: return r"\left( \right)" expr = Permutation(expr) expr_perm = expr.cyclic_form siz = expr.size if expr.array_form[-1] == siz - 1: expr_perm = expr_perm + [[siz - 1]] term_tex = '' for i in expr_perm: term_tex += str(i).replace(',', r"\;") term_tex = term_tex.replace('[', r"\left( ") term_tex = term_tex.replace(']', r"\right)") return term_tex _print_Permutation = _print_Cycle def _print_Float(self, expr): # Based off of that in StrPrinter dps = prec_to_dps(expr._prec) str_real = mlib.to_str(expr._mpf_, dps, strip_zeros=True) # Must always have a mul symbol (as 2.5 10^{20} just looks odd) # thus we use the number separator separator = self._settings['mul_symbol_latex_numbers'] if 'e' in str_real: (mant, exp) = str_real.split('e') if exp[0] == '+': exp = exp[1:] return r"%s%s10^{%s}" % (mant, separator, exp) elif str_real == "+inf": return r"\infty" elif str_real == "-inf": return r"- \infty" else: return str_real def _print_Cross(self, expr): vec1 = expr._expr1 vec2 = expr._expr2 return r"%s \times %s" % (self.parenthesize(vec1, PRECEDENCE['Mul']), self.parenthesize(vec2, PRECEDENCE['Mul'])) def _print_Curl(self, expr): vec = expr._expr return r"\nabla\times %s" % self.parenthesize(vec, PRECEDENCE['Mul']) def _print_Divergence(self, expr): vec = expr._expr return r"\nabla\cdot %s" % self.parenthesize(vec, PRECEDENCE['Mul']) def _print_Dot(self, expr): vec1 = expr._expr1 vec2 = expr._expr2 return r"%s \cdot %s" % (self.parenthesize(vec1, PRECEDENCE['Mul']), self.parenthesize(vec2, PRECEDENCE['Mul'])) def _print_Gradient(self, expr): func = expr._expr return r"\nabla %s" % self.parenthesize(func, PRECEDENCE['Mul']) def _print_Laplacian(self, expr): func = expr._expr return r"\triangle %s" % self.parenthesize(func, PRECEDENCE['Mul']) def _print_Mul(self, expr): from sympy.core.power import Pow from sympy.physics.units import Quantity include_parens = False if _coeff_isneg(expr): expr = -expr tex = "- " if expr.is_Add: tex += "(" include_parens = True else: tex = "" from sympy.simplify import fraction numer, denom = fraction(expr, exact=True) separator = self._settings['mul_symbol_latex'] numbersep = self._settings['mul_symbol_latex_numbers'] def convert(expr): if not expr.is_Mul: return str(self._print(expr)) else: _tex = last_term_tex = "" if self.order not in ('old', 'none'): args = expr.as_ordered_factors() else: args = list(expr.args) # If quantities are present append them at the back args = sorted(args, key=lambda x: isinstance(x, Quantity) or (isinstance(x, Pow) and isinstance(x.base, Quantity))) for i, term in enumerate(args): term_tex = self._print(term) if self._needs_mul_brackets(term, first=(i == 0), last=(i == len(args) - 1)): term_tex = r"\left(%s\right)" % term_tex if _between_two_numbers_p[0].search(last_term_tex) and \ _between_two_numbers_p[1].match(term_tex): # between two numbers _tex += numbersep elif _tex: _tex += separator _tex += term_tex last_term_tex = term_tex return _tex if denom is S.One and Pow(1, -1, evaluate=False) not in expr.args: # use the original expression here, since fraction() may have # altered it when producing numer and denom tex += convert(expr) else: snumer = convert(numer) sdenom = convert(denom) ldenom = len(sdenom.split()) ratio = self._settings['long_frac_ratio'] if self._settings['fold_short_frac'] and ldenom <= 2 and \ "^" not in sdenom: # handle short fractions if self._needs_mul_brackets(numer, last=False): tex += r"\left(%s\right) / %s" % (snumer, sdenom) else: tex += r"%s / %s" % (snumer, sdenom) elif ratio is not None and \ len(snumer.split()) > ratio*ldenom: # handle long fractions if self._needs_mul_brackets(numer, last=True): tex += r"\frac{1}{%s}%s\left(%s\right)" \ % (sdenom, separator, snumer) elif numer.is_Mul: # split a long numerator a = S.One b = S.One for x in numer.args: if self._needs_mul_brackets(x, last=False) or \ len(convert(a*x).split()) > ratio*ldenom or \ (b.is_commutative is x.is_commutative is False): b *= x else: a *= x if self._needs_mul_brackets(b, last=True): tex += r"\frac{%s}{%s}%s\left(%s\right)" \ % (convert(a), sdenom, separator, convert(b)) else: tex += r"\frac{%s}{%s}%s%s" \ % (convert(a), sdenom, separator, convert(b)) else: tex += r"\frac{1}{%s}%s%s" % (sdenom, separator, snumer) else: tex += r"\frac{%s}{%s}" % (snumer, sdenom) if include_parens: tex += ")" return tex def _print_Pow(self, expr): # Treat x**Rational(1,n) as special case if expr.exp.is_Rational and abs(expr.exp.p) == 1 and expr.exp.q != 1 \ and self._settings['root_notation']: base = self._print(expr.base) expq = expr.exp.q if expq == 2: tex = r"\sqrt{%s}" % base elif self._settings['itex']: tex = r"\root{%d}{%s}" % (expq, base) else: tex = r"\sqrt[%d]{%s}" % (expq, base) if expr.exp.is_negative: return r"\frac{1}{%s}" % tex else: return tex elif self._settings['fold_frac_powers'] \ and expr.exp.is_Rational \ and expr.exp.q != 1: base = self.parenthesize(expr.base, PRECEDENCE['Pow']) p, q = expr.exp.p, expr.exp.q # issue #12886: add parentheses for superscripts raised to powers if '^' in base and expr.base.is_Symbol: base = r"\left(%s\right)" % base if expr.base.is_Function: return self._print(expr.base, exp="%s/%s" % (p, q)) return r"%s^{%s/%s}" % (base, p, q) elif expr.exp.is_Rational and expr.exp.is_negative and \ expr.base.is_commutative: # special case for 1^(-x), issue 9216 if expr.base == 1: return r"%s^{%s}" % (expr.base, expr.exp) # things like 1/x return self._print_Mul(expr) else: if expr.base.is_Function: return self._print(expr.base, exp=self._print(expr.exp)) else: tex = r"%s^{%s}" exp = self._print(expr.exp) # issue #12886: add parentheses around superscripts raised # to powers base = self.parenthesize(expr.base, PRECEDENCE['Pow']) if '^' in base and expr.base.is_Symbol: base = r"\left(%s\right)" % base elif (isinstance(expr.base, Derivative) and base.startswith(r'\left(') and re.match(r'\\left\(\\d?d?dot', base) and base.endswith(r'\right)')): # don't use parentheses around dotted derivative base = base[6: -7] # remove outermost added parens return tex % (base, exp) def _print_UnevaluatedExpr(self, expr): return self._print(expr.args[0]) def _print_Sum(self, expr): if len(expr.limits) == 1: tex = r"\sum_{%s=%s}^{%s} " % \ tuple([self._print(i) for i in expr.limits[0]]) else: def _format_ineq(l): return r"%s \leq %s \leq %s" % \ tuple([self._print(s) for s in (l[1], l[0], l[2])]) tex = r"\sum_{\substack{%s}} " % \ str.join('\\\\', [_format_ineq(l) for l in expr.limits]) if isinstance(expr.function, Add): tex += r"\left(%s\right)" % self._print(expr.function) else: tex += self._print(expr.function) return tex def _print_Product(self, expr): if len(expr.limits) == 1: tex = r"\prod_{%s=%s}^{%s} " % \ tuple([self._print(i) for i in expr.limits[0]]) else: def _format_ineq(l): return r"%s \leq %s \leq %s" % \ tuple([self._print(s) for s in (l[1], l[0], l[2])]) tex = r"\prod_{\substack{%s}} " % \ str.join('\\\\', [_format_ineq(l) for l in expr.limits]) if isinstance(expr.function, Add): tex += r"\left(%s\right)" % self._print(expr.function) else: tex += self._print(expr.function) return tex def _print_BasisDependent(self, expr): from sympy.vector import Vector o1 = [] if expr == expr.zero: return expr.zero._latex_form if isinstance(expr, Vector): items = expr.separate().items() else: items = [(0, expr)] for system, vect in items: inneritems = list(vect.components.items()) inneritems.sort(key=lambda x: x[0].__str__()) for k, v in inneritems: if v == 1: o1.append(' + ' + k._latex_form) elif v == -1: o1.append(' - ' + k._latex_form) else: arg_str = '(' + LatexPrinter().doprint(v) + ')' o1.append(' + ' + arg_str + k._latex_form) outstr = (''.join(o1)) if outstr[1] != '-': outstr = outstr[3:] else: outstr = outstr[1:] return outstr def _print_Indexed(self, expr): tex_base = self._print(expr.base) tex = '{'+tex_base+'}'+'_{%s}' % ','.join( map(self._print, expr.indices)) return tex def _print_IndexedBase(self, expr): return self._print(expr.label) def _print_Derivative(self, expr): if requires_partial(expr): diff_symbol = r'\partial' else: diff_symbol = r'd' tex = "" dim = 0 for x, num in reversed(expr.variable_count): dim += num if num == 1: tex += r"%s %s" % (diff_symbol, self._print(x)) else: tex += r"%s %s^{%s}" % (diff_symbol, self._print(x), num) if dim == 1: tex = r"\frac{%s}{%s}" % (diff_symbol, tex) else: tex = r"\frac{%s^{%s}}{%s}" % (diff_symbol, dim, tex) return r"%s %s" % (tex, self.parenthesize(expr.expr, PRECEDENCE["Mul"], strict=True)) def _print_Subs(self, subs): expr, old, new = subs.args latex_expr = self._print(expr) latex_old = (self._print(e) for e in old) latex_new = (self._print(e) for e in new) latex_subs = r'\\ '.join( e[0] + '=' + e[1] for e in zip(latex_old, latex_new)) return r'\left. %s \right|_{\substack{ %s }}' % (latex_expr, latex_subs) def _print_Integral(self, expr): tex, symbols = "", [] # Only up to \iiiint exists if len(expr.limits) <= 4 and all(len(lim) == 1 for lim in expr.limits): # Use len(expr.limits)-1 so that syntax highlighters don't think # \" is an escaped quote tex = r"\i" + "i"*(len(expr.limits) - 1) + "nt" symbols = [r"\, d%s" % self._print(symbol[0]) for symbol in expr.limits] else: for lim in reversed(expr.limits): symbol = lim[0] tex += r"\int" if len(lim) > 1: if self._settings['mode'] != 'inline' \ and not self._settings['itex']: tex += r"\limits" if len(lim) == 3: tex += "_{%s}^{%s}" % (self._print(lim[1]), self._print(lim[2])) if len(lim) == 2: tex += "^{%s}" % (self._print(lim[1])) symbols.insert(0, r"\, d%s" % self._print(symbol)) return r"%s %s%s" % (tex, self.parenthesize(expr.function, PRECEDENCE["Mul"], strict=True), "".join(symbols)) def _print_Limit(self, expr): e, z, z0, dir = expr.args tex = r"\lim_{%s \to " % self._print(z) if str(dir) == '+-' or z0 in (S.Infinity, S.NegativeInfinity): tex += r"%s}" % self._print(z0) else: tex += r"%s^%s}" % (self._print(z0), self._print(dir)) if isinstance(e, AssocOp): return r"%s\left(%s\right)" % (tex, self._print(e)) else: return r"%s %s" % (tex, self._print(e)) def _hprint_Function(self, func): r''' Logic to decide how to render a function to latex - if it is a recognized latex name, use the appropriate latex command - if it is a single letter, just use that letter - if it is a longer name, then put \operatorname{} around it and be mindful of undercores in the name ''' func = self._deal_with_super_sub(func) if func in accepted_latex_functions: name = r"\%s" % func elif len(func) == 1 or func.startswith('\\'): name = func else: name = r"\operatorname{%s}" % func return name def _print_Function(self, expr, exp=None): r''' Render functions to LaTeX, handling functions that LaTeX knows about e.g., sin, cos, ... by using the proper LaTeX command (\sin, \cos, ...). For single-letter function names, render them as regular LaTeX math symbols. For multi-letter function names that LaTeX does not know about, (e.g., Li, sech) use \operatorname{} so that the function name is rendered in Roman font and LaTeX handles spacing properly. expr is the expression involving the function exp is an exponent ''' func = expr.func.__name__ if hasattr(self, '_print_' + func) and \ not isinstance(expr, AppliedUndef): return getattr(self, '_print_' + func)(expr, exp) else: args = [str(self._print(arg)) for arg in expr.args] # How inverse trig functions should be displayed, formats are: # abbreviated: asin, full: arcsin, power: sin^-1 inv_trig_style = self._settings['inv_trig_style'] # If we are dealing with a power-style inverse trig function inv_trig_power_case = False # If it is applicable to fold the argument brackets can_fold_brackets = self._settings['fold_func_brackets'] and \ len(args) == 1 and \ not self._needs_function_brackets(expr.args[0]) inv_trig_table = ["asin", "acos", "atan", "acsc", "asec", "acot"] # If the function is an inverse trig function, handle the style if func in inv_trig_table: if inv_trig_style == "abbreviated": pass elif inv_trig_style == "full": func = "arc" + func[1:] elif inv_trig_style == "power": func = func[1:] inv_trig_power_case = True # Can never fold brackets if we're raised to a power if exp is not None: can_fold_brackets = False if inv_trig_power_case: if func in accepted_latex_functions: name = r"\%s^{-1}" % func else: name = r"\operatorname{%s}^{-1}" % func elif exp is not None: name = r'%s^{%s}' % (self._hprint_Function(func), exp) else: name = self._hprint_Function(func) if can_fold_brackets: if func in accepted_latex_functions: # Wrap argument safely to avoid parse-time conflicts # with the function name itself name += r" {%s}" else: name += r"%s" else: name += r"{\left(%s \right)}" if inv_trig_power_case and exp is not None: name += r"^{%s}" % exp return name % ",".join(args) def _print_UndefinedFunction(self, expr): return self._hprint_Function(str(expr)) @property def _special_function_classes(self): from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.functions.special.gamma_functions import gamma, lowergamma from sympy.functions.special.beta_functions import beta from sympy.functions.special.delta_functions import DiracDelta from sympy.functions.special.error_functions import Chi return {KroneckerDelta: r'\delta', gamma: r'\Gamma', lowergamma: r'\gamma', beta: r'\operatorname{B}', DiracDelta: r'\delta', Chi: r'\operatorname{Chi}'} def _print_FunctionClass(self, expr): for cls in self._special_function_classes: if issubclass(expr, cls) and expr.__name__ == cls.__name__: return self._special_function_classes[cls] return self._hprint_Function(str(expr)) def _print_Lambda(self, expr): symbols, expr = expr.args if len(symbols) == 1: symbols = self._print(symbols[0]) else: symbols = self._print(tuple(symbols)) tex = r"\left( %s \mapsto %s \right)" % (symbols, self._print(expr)) return tex def _hprint_variadic_function(self, expr, exp=None): args = sorted(expr.args, key=default_sort_key) texargs = [r"%s" % self._print(symbol) for symbol in args] tex = r"\%s\left(%s\right)" % (self._print((str(expr.func)).lower()), ", ".join(texargs)) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex _print_Min = _print_Max = _hprint_variadic_function def _print_floor(self, expr, exp=None): tex = r"\left\lfloor{%s}\right\rfloor" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_ceiling(self, expr, exp=None): tex = r"\left\lceil{%s}\right\rceil" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_log(self, expr, exp=None): if not self._settings["ln_notation"]: tex = r"\log{\left(%s \right)}" % self._print(expr.args[0]) else: tex = r"\ln{\left(%s \right)}" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_Abs(self, expr, exp=None): tex = r"\left|{%s}\right|" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex _print_Determinant = _print_Abs def _print_re(self, expr, exp=None): if self._settings['gothic_re_im']: tex = r"\Re{%s}" % self.parenthesize(expr.args[0], PRECEDENCE['Atom']) else: tex = r"\operatorname{{re}}{{{}}}".format(self.parenthesize(expr.args[0], PRECEDENCE['Atom'])) return self._do_exponent(tex, exp) def _print_im(self, expr, exp=None): if self._settings['gothic_re_im']: tex = r"\Im{%s}" % self.parenthesize(expr.args[0], PRECEDENCE['Atom']) else: tex = r"\operatorname{{im}}{{{}}}".format(self.parenthesize(expr.args[0], PRECEDENCE['Atom'])) return self._do_exponent(tex, exp) def _print_Not(self, e): from sympy import Equivalent, Implies if isinstance(e.args[0], Equivalent): return self._print_Equivalent(e.args[0], r"\not\Leftrightarrow") if isinstance(e.args[0], Implies): return self._print_Implies(e.args[0], r"\not\Rightarrow") if (e.args[0].is_Boolean): return r"\neg (%s)" % self._print(e.args[0]) else: return r"\neg %s" % self._print(e.args[0]) def _print_LogOp(self, args, char): arg = args[0] if arg.is_Boolean and not arg.is_Not: tex = r"\left(%s\right)" % self._print(arg) else: tex = r"%s" % self._print(arg) for arg in args[1:]: if arg.is_Boolean and not arg.is_Not: tex += r" %s \left(%s\right)" % (char, self._print(arg)) else: tex += r" %s %s" % (char, self._print(arg)) return tex def _print_And(self, e): args = sorted(e.args, key=default_sort_key) return self._print_LogOp(args, r"\wedge") def _print_Or(self, e): args = sorted(e.args, key=default_sort_key) return self._print_LogOp(args, r"\vee") def _print_Xor(self, e): args = sorted(e.args, key=default_sort_key) return self._print_LogOp(args, r"\veebar") def _print_Implies(self, e, altchar=None): return self._print_LogOp(e.args, altchar or r"\Rightarrow") def _print_Equivalent(self, e, altchar=None): args = sorted(e.args, key=default_sort_key) return self._print_LogOp(args, altchar or r"\Leftrightarrow") def _print_conjugate(self, expr, exp=None): tex = r"\overline{%s}" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_polar_lift(self, expr, exp=None): func = r"\operatorname{polar\_lift}" arg = r"{\left(%s \right)}" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}%s" % (func, exp, arg) else: return r"%s%s" % (func, arg) def _print_ExpBase(self, expr, exp=None): # TODO should exp_polar be printed differently? # what about exp_polar(0), exp_polar(1)? tex = r"e^{%s}" % self._print(expr.args[0]) return self._do_exponent(tex, exp) def _print_elliptic_k(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"K^{%s}%s" % (exp, tex) else: return r"K%s" % tex def _print_elliptic_f(self, expr, exp=None): tex = r"\left(%s\middle| %s\right)" % \ (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"F^{%s}%s" % (exp, tex) else: return r"F%s" % tex def _print_elliptic_e(self, expr, exp=None): if len(expr.args) == 2: tex = r"\left(%s\middle| %s\right)" % \ (self._print(expr.args[0]), self._print(expr.args[1])) else: tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"E^{%s}%s" % (exp, tex) else: return r"E%s" % tex def _print_elliptic_pi(self, expr, exp=None): if len(expr.args) == 3: tex = r"\left(%s; %s\middle| %s\right)" % \ (self._print(expr.args[0]), self._print(expr.args[1]), self._print(expr.args[2])) else: tex = r"\left(%s\middle| %s\right)" % \ (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"\Pi^{%s}%s" % (exp, tex) else: return r"\Pi%s" % tex def _print_beta(self, expr, exp=None): tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"\operatorname{B}^{%s}%s" % (exp, tex) else: return r"\operatorname{B}%s" % tex def _print_uppergamma(self, expr, exp=None): tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"\Gamma^{%s}%s" % (exp, tex) else: return r"\Gamma%s" % tex def _print_lowergamma(self, expr, exp=None): tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"\gamma^{%s}%s" % (exp, tex) else: return r"\gamma%s" % tex def _hprint_one_arg_func(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}%s" % (self._print(expr.func), exp, tex) else: return r"%s%s" % (self._print(expr.func), tex) _print_gamma = _hprint_one_arg_func def _print_Chi(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"\operatorname{Chi}^{%s}%s" % (exp, tex) else: return r"\operatorname{Chi}%s" % tex def _print_expint(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[1]) nu = self._print(expr.args[0]) if exp is not None: return r"\operatorname{E}_{%s}^{%s}%s" % (nu, exp, tex) else: return r"\operatorname{E}_{%s}%s" % (nu, tex) def _print_fresnels(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"S^{%s}%s" % (exp, tex) else: return r"S%s" % tex def _print_fresnelc(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"C^{%s}%s" % (exp, tex) else: return r"C%s" % tex def _print_subfactorial(self, expr, exp=None): tex = r"!%s" % self.parenthesize(expr.args[0], PRECEDENCE["Func"]) if exp is not None: return r"\left(%s\right)^{%s}" % (tex, exp) else: return tex def _print_factorial(self, expr, exp=None): tex = r"%s!" % self.parenthesize(expr.args[0], PRECEDENCE["Func"]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_factorial2(self, expr, exp=None): tex = r"%s!!" % self.parenthesize(expr.args[0], PRECEDENCE["Func"]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_binomial(self, expr, exp=None): tex = r"{\binom{%s}{%s}}" % (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_RisingFactorial(self, expr, exp=None): n, k = expr.args base = r"%s" % self.parenthesize(n, PRECEDENCE['Func']) tex = r"{%s}^{\left(%s\right)}" % (base, self._print(k)) return self._do_exponent(tex, exp) def _print_FallingFactorial(self, expr, exp=None): n, k = expr.args sub = r"%s" % self.parenthesize(k, PRECEDENCE['Func']) tex = r"{\left(%s\right)}_{%s}" % (self._print(n), sub) return self._do_exponent(tex, exp) def _hprint_BesselBase(self, expr, exp, sym): tex = r"%s" % (sym) need_exp = False if exp is not None: if tex.find('^') == -1: tex = r"%s^{%s}" % (tex, self._print(exp)) else: need_exp = True tex = r"%s_{%s}\left(%s\right)" % (tex, self._print(expr.order), self._print(expr.argument)) if need_exp: tex = self._do_exponent(tex, exp) return tex def _hprint_vec(self, vec): if not vec: return "" s = "" for i in vec[:-1]: s += "%s, " % self._print(i) s += self._print(vec[-1]) return s def _print_besselj(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'J') def _print_besseli(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'I') def _print_besselk(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'K') def _print_bessely(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'Y') def _print_yn(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'y') def _print_jn(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'j') def _print_hankel1(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'H^{(1)}') def _print_hankel2(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'H^{(2)}') def _print_hn1(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'h^{(1)}') def _print_hn2(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'h^{(2)}') def _hprint_airy(self, expr, exp=None, notation=""): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}%s" % (notation, exp, tex) else: return r"%s%s" % (notation, tex) def _hprint_airy_prime(self, expr, exp=None, notation=""): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"{%s^\prime}^{%s}%s" % (notation, exp, tex) else: return r"%s^\prime%s" % (notation, tex) def _print_airyai(self, expr, exp=None): return self._hprint_airy(expr, exp, 'Ai') def _print_airybi(self, expr, exp=None): return self._hprint_airy(expr, exp, 'Bi') def _print_airyaiprime(self, expr, exp=None): return self._hprint_airy_prime(expr, exp, 'Ai') def _print_airybiprime(self, expr, exp=None): return self._hprint_airy_prime(expr, exp, 'Bi') def _print_hyper(self, expr, exp=None): tex = r"{{}_{%s}F_{%s}\left(\begin{matrix} %s \\ %s \end{matrix}" \ r"\middle| {%s} \right)}" % \ (self._print(len(expr.ap)), self._print(len(expr.bq)), self._hprint_vec(expr.ap), self._hprint_vec(expr.bq), self._print(expr.argument)) if exp is not None: tex = r"{%s}^{%s}" % (tex, self._print(exp)) return tex def _print_meijerg(self, expr, exp=None): tex = r"{G_{%s, %s}^{%s, %s}\left(\begin{matrix} %s & %s \\" \ r"%s & %s \end{matrix} \middle| {%s} \right)}" % \ (self._print(len(expr.ap)), self._print(len(expr.bq)), self._print(len(expr.bm)), self._print(len(expr.an)), self._hprint_vec(expr.an), self._hprint_vec(expr.aother), self._hprint_vec(expr.bm), self._hprint_vec(expr.bother), self._print(expr.argument)) if exp is not None: tex = r"{%s}^{%s}" % (tex, self._print(exp)) return tex def _print_dirichlet_eta(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"\eta^{%s}%s" % (self._print(exp), tex) return r"\eta%s" % tex def _print_zeta(self, expr, exp=None): if len(expr.args) == 2: tex = r"\left(%s, %s\right)" % tuple(map(self._print, expr.args)) else: tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"\zeta^{%s}%s" % (self._print(exp), tex) return r"\zeta%s" % tex def _print_lerchphi(self, expr, exp=None): tex = r"\left(%s, %s, %s\right)" % tuple(map(self._print, expr.args)) if exp is None: return r"\Phi%s" % tex return r"\Phi^{%s}%s" % (self._print(exp), tex) def _print_polylog(self, expr, exp=None): s, z = map(self._print, expr.args) tex = r"\left(%s\right)" % z if exp is None: return r"\operatorname{Li}_{%s}%s" % (s, tex) return r"\operatorname{Li}_{%s}^{%s}%s" % (s, self._print(exp), tex) def _print_jacobi(self, expr, exp=None): n, a, b, x = map(self._print, expr.args) tex = r"P_{%s}^{\left(%s,%s\right)}\left(%s\right)" % (n, a, b, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_gegenbauer(self, expr, exp=None): n, a, x = map(self._print, expr.args) tex = r"C_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_chebyshevt(self, expr, exp=None): n, x = map(self._print, expr.args) tex = r"T_{%s}\left(%s\right)" % (n, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_chebyshevu(self, expr, exp=None): n, x = map(self._print, expr.args) tex = r"U_{%s}\left(%s\right)" % (n, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_legendre(self, expr, exp=None): n, x = map(self._print, expr.args) tex = r"P_{%s}\left(%s\right)" % (n, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_assoc_legendre(self, expr, exp=None): n, a, x = map(self._print, expr.args) tex = r"P_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_hermite(self, expr, exp=None): n, x = map(self._print, expr.args) tex = r"H_{%s}\left(%s\right)" % (n, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_laguerre(self, expr, exp=None): n, x = map(self._print, expr.args) tex = r"L_{%s}\left(%s\right)" % (n, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_assoc_laguerre(self, expr, exp=None): n, a, x = map(self._print, expr.args) tex = r"L_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_Ynm(self, expr, exp=None): n, m, theta, phi = map(self._print, expr.args) tex = r"Y_{%s}^{%s}\left(%s,%s\right)" % (n, m, theta, phi) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_Znm(self, expr, exp=None): n, m, theta, phi = map(self._print, expr.args) tex = r"Z_{%s}^{%s}\left(%s,%s\right)" % (n, m, theta, phi) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_Rational(self, expr): if expr.q != 1: sign = "" p = expr.p if expr.p < 0: sign = "- " p = -p if self._settings['fold_short_frac']: return r"%s%d / %d" % (sign, p, expr.q) return r"%s\frac{%d}{%d}" % (sign, p, expr.q) else: return self._print(expr.p) def _print_Order(self, expr): s = self._print(expr.expr) if expr.point and any(p != S.Zero for p in expr.point) or \ len(expr.variables) > 1: s += '; ' if len(expr.variables) > 1: s += self._print(expr.variables) elif expr.variables: s += self._print(expr.variables[0]) s += r'\rightarrow ' if len(expr.point) > 1: s += self._print(expr.point) else: s += self._print(expr.point[0]) return r"O\left(%s\right)" % s def _print_Symbol(self, expr, style='plain'): if expr in self._settings['symbol_names']: return self._settings['symbol_names'][expr] result = self._deal_with_super_sub(expr.name) if \ '\\' not in expr.name else expr.name if style == 'bold': result = r"\mathbf{{{}}}".format(result) return result _print_RandomSymbol = _print_Symbol def _print_MatrixSymbol(self, expr): return self._print_Symbol(expr, style=self._settings['mat_symbol_style']) def _deal_with_super_sub(self, string): if '{' in string: return string name, supers, subs = split_super_sub(string) name = translate(name) supers = [translate(sup) for sup in supers] subs = [translate(sub) for sub in subs] # glue all items together: if supers: name += "^{%s}" % " ".join(supers) if subs: name += "_{%s}" % " ".join(subs) return name def _print_Relational(self, expr): if self._settings['itex']: gt = r"\gt" lt = r"\lt" else: gt = ">" lt = "<" charmap = { "==": "=", ">": gt, "<": lt, ">=": r"\geq", "<=": r"\leq", "!=": r"\neq", } return "%s %s %s" % (self._print(expr.lhs), charmap[expr.rel_op], self._print(expr.rhs)) def _print_Piecewise(self, expr): ecpairs = [r"%s & \text{for}\: %s" % (self._print(e), self._print(c)) for e, c in expr.args[:-1]] if expr.args[-1].cond == true: ecpairs.append(r"%s & \text{otherwise}" % self._print(expr.args[-1].expr)) else: ecpairs.append(r"%s & \text{for}\: %s" % (self._print(expr.args[-1].expr), self._print(expr.args[-1].cond))) tex = r"\begin{cases} %s \end{cases}" return tex % r" \\".join(ecpairs) def _print_MatrixBase(self, expr): lines = [] for line in range(expr.rows): # horrible, should be 'rows' lines.append(" & ".join([self._print(i) for i in expr[line, :]])) mat_str = self._settings['mat_str'] if mat_str is None: if self._settings['mode'] == 'inline': mat_str = 'smallmatrix' else: if (expr.cols <= 10) is True: mat_str = 'matrix' else: mat_str = 'array' out_str = r'\begin{%MATSTR%}%s\end{%MATSTR%}' out_str = out_str.replace('%MATSTR%', mat_str) if mat_str == 'array': out_str = out_str.replace('%s', '{' + 'c'*expr.cols + '}%s') if self._settings['mat_delim']: left_delim = self._settings['mat_delim'] right_delim = self._delim_dict[left_delim] out_str = r'\left' + left_delim + out_str + \ r'\right' + right_delim return out_str % r"\\".join(lines) _print_ImmutableMatrix = _print_ImmutableDenseMatrix \ = _print_Matrix \ = _print_MatrixBase def _print_MatrixElement(self, expr): return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True)\ + '_{%s, %s}' % (self._print(expr.i), self._print(expr.j)) def _print_MatrixSlice(self, expr): def latexslice(x): x = list(x) if x[2] == 1: del x[2] if x[1] == x[0] + 1: del x[1] if x[0] == 0: x[0] = '' return ':'.join(map(self._print, x)) return (self._print(expr.parent) + r'\left[' + latexslice(expr.rowslice) + ', ' + latexslice(expr.colslice) + r'\right]') def _print_BlockMatrix(self, expr): return self._print(expr.blocks) def _print_Transpose(self, expr): mat = expr.arg from sympy.matrices import MatrixSymbol if not isinstance(mat, MatrixSymbol): return r"\left(%s\right)^{T}" % self._print(mat) else: return "%s^{T}" % self._print(mat) def _print_Trace(self, expr): mat = expr.arg return r"\operatorname{tr}\left(%s \right)" % self._print(mat) def _print_Adjoint(self, expr): mat = expr.arg from sympy.matrices import MatrixSymbol if not isinstance(mat, MatrixSymbol): return r"\left(%s\right)^{\dagger}" % self._print(mat) else: return r"%s^{\dagger}" % self._print(mat) def _print_MatMul(self, expr): from sympy import MatMul, Mul parens = lambda x: self.parenthesize(x, precedence_traditional(expr), False) args = expr.args if isinstance(args[0], Mul): args = args[0].as_ordered_factors() + list(args[1:]) else: args = list(args) if isinstance(expr, MatMul) and _coeff_isneg(expr): if args[0] == -1: args = args[1:] else: args[0] = -args[0] return '- ' + ' '.join(map(parens, args)) else: return ' '.join(map(parens, args)) def _print_Mod(self, expr, exp=None): if exp is not None: return r'\left(%s\bmod{%s}\right)^{%s}' % \ (self.parenthesize(expr.args[0], PRECEDENCE['Mul'], strict=True), self._print(expr.args[1]), self._print(exp)) return r'%s\bmod{%s}' % (self.parenthesize(expr.args[0], PRECEDENCE['Mul'], strict=True), self._print(expr.args[1])) def _print_HadamardProduct(self, expr): from sympy import Add, MatAdd, MatMul def parens(x): if isinstance(x, (Add, MatAdd, MatMul)): return r"\left(%s\right)" % self._print(x) return self._print(x) return r' \circ '.join(map(parens, expr.args)) def _print_KroneckerProduct(self, expr): from sympy import Add, MatAdd, MatMul def parens(x): if isinstance(x, (Add, MatAdd, MatMul)): return r"\left(%s\right)" % self._print(x) return self._print(x) return r' \otimes '.join(map(parens, expr.args)) def _print_MatPow(self, expr): base, exp = expr.base, expr.exp from sympy.matrices import MatrixSymbol if not isinstance(base, MatrixSymbol): return r"\left(%s\right)^{%s}" % (self._print(base), self._print(exp)) else: return "%s^{%s}" % (self._print(base), self._print(exp)) def _print_ZeroMatrix(self, Z): return r"\mathbb{0}" def _print_Identity(self, I): return r"\mathbb{I}" def _print_NDimArray(self, expr): if expr.rank() == 0: return self._print(expr[()]) mat_str = self._settings['mat_str'] if mat_str is None: if self._settings['mode'] == 'inline': mat_str = 'smallmatrix' else: if (expr.rank() == 0) or (expr.shape[-1] <= 10): mat_str = 'matrix' else: mat_str = 'array' block_str = r'\begin{%MATSTR%}%s\end{%MATSTR%}' block_str = block_str.replace('%MATSTR%', mat_str) if self._settings['mat_delim']: left_delim = self._settings['mat_delim'] right_delim = self._delim_dict[left_delim] block_str = r'\left' + left_delim + block_str + \ r'\right' + right_delim if expr.rank() == 0: return block_str % "" level_str = [[]] + [[] for i in range(expr.rank())] shape_ranges = [list(range(i)) for i in expr.shape] for outer_i in itertools.product(*shape_ranges): level_str[-1].append(self._print(expr[outer_i])) even = True for back_outer_i in range(expr.rank()-1, -1, -1): if len(level_str[back_outer_i+1]) < expr.shape[back_outer_i]: break if even: level_str[back_outer_i].append( r" & ".join(level_str[back_outer_i+1])) else: level_str[back_outer_i].append( block_str % (r"\\".join(level_str[back_outer_i+1]))) if len(level_str[back_outer_i+1]) == 1: level_str[back_outer_i][-1] = r"\left[" + \ level_str[back_outer_i][-1] + r"\right]" even = not even level_str[back_outer_i+1] = [] out_str = level_str[0][0] if expr.rank() % 2 == 1: out_str = block_str % out_str return out_str _print_ImmutableDenseNDimArray = _print_NDimArray _print_ImmutableSparseNDimArray = _print_NDimArray _print_MutableDenseNDimArray = _print_NDimArray _print_MutableSparseNDimArray = _print_NDimArray def _printer_tensor_indices(self, name, indices, index_map={}): out_str = self._print(name) last_valence = None prev_map = None for index in indices: new_valence = index.is_up if ((index in index_map) or prev_map) and \ last_valence == new_valence: out_str += "," if last_valence != new_valence: if last_valence is not None: out_str += "}" if index.is_up: out_str += "{}^{" else: out_str += "{}_{" out_str += self._print(index.args[0]) if index in index_map: out_str += "=" out_str += self._print(index_map[index]) prev_map = True else: prev_map = False last_valence = new_valence if last_valence is not None: out_str += "}" return out_str def _print_Tensor(self, expr): name = expr.args[0].args[0] indices = expr.get_indices() return self._printer_tensor_indices(name, indices) def _print_TensorElement(self, expr): name = expr.expr.args[0].args[0] indices = expr.expr.get_indices() index_map = expr.index_map return self._printer_tensor_indices(name, indices, index_map) def _print_TensMul(self, expr): # prints expressions like "A(a)", "3*A(a)", "(1+x)*A(a)" sign, args = expr._get_args_for_traditional_printer() return sign + "".join( [self.parenthesize(arg, precedence(expr)) for arg in args] ) def _print_TensAdd(self, expr): a = [] args = expr.args for x in args: a.append(self.parenthesize(x, precedence(expr))) a.sort() s = ' + '.join(a) s = s.replace('+ -', '- ') return s def _print_TensorIndex(self, expr): return "{}%s{%s}" % ( "^" if expr.is_up else "_", self._print(expr.args[0]) ) def _print_tuple(self, expr): return r"\left( %s\right)" % \ r", \ ".join([self._print(i) for i in expr]) def _print_TensorProduct(self, expr): elements = [self._print(a) for a in expr.args] return r' \otimes '.join(elements) def _print_WedgeProduct(self, expr): elements = [self._print(a) for a in expr.args] return r' \wedge '.join(elements) def _print_Tuple(self, expr): return self._print_tuple(expr) def _print_list(self, expr): return r"\left[ %s\right]" % \ r", \ ".join([self._print(i) for i in expr]) def _print_dict(self, d): keys = sorted(d.keys(), key=default_sort_key) items = [] for key in keys: val = d[key] items.append("%s : %s" % (self._print(key), self._print(val))) return r"\left\{ %s\right\}" % r", \ ".join(items) def _print_Dict(self, expr): return self._print_dict(expr) def _print_DiracDelta(self, expr, exp=None): if len(expr.args) == 1 or expr.args[1] == 0: tex = r"\delta\left(%s\right)" % self._print(expr.args[0]) else: tex = r"\delta^{\left( %s \right)}\left( %s \right)" % ( self._print(expr.args[1]), self._print(expr.args[0])) if exp: tex = r"\left(%s\right)^{%s}" % (tex, exp) return tex def _print_SingularityFunction(self, expr): shift = self._print(expr.args[0] - expr.args[1]) power = self._print(expr.args[2]) tex = r"{\left\langle %s \right\rangle}^{%s}" % (shift, power) return tex def _print_Heaviside(self, expr, exp=None): tex = r"\theta\left(%s\right)" % self._print(expr.args[0]) if exp: tex = r"\left(%s\right)^{%s}" % (tex, exp) return tex def _print_KroneckerDelta(self, expr, exp=None): i = self._print(expr.args[0]) j = self._print(expr.args[1]) if expr.args[0].is_Atom and expr.args[1].is_Atom: tex = r'\delta_{%s %s}' % (i, j) else: tex = r'\delta_{%s, %s}' % (i, j) if exp is not None: tex = r'\left(%s\right)^{%s}' % (tex, exp) return tex def _print_LeviCivita(self, expr, exp=None): indices = map(self._print, expr.args) if all(x.is_Atom for x in expr.args): tex = r'\varepsilon_{%s}' % " ".join(indices) else: tex = r'\varepsilon_{%s}' % ", ".join(indices) if exp: tex = r'\left(%s\right)^{%s}' % (tex, exp) return tex def _print_ProductSet(self, p): if len(p.sets) > 1 and not has_variety(p.sets): return self._print(p.sets[0]) + "^{%d}" % len(p.sets) else: return r" \times ".join(self._print(set) for set in p.sets) def _print_RandomDomain(self, d): if hasattr(d, 'as_boolean'): return '\\text{Domain: }' + self._print(d.as_boolean()) elif hasattr(d, 'set'): return ('\\text{Domain: }' + self._print(d.symbols) + '\\text{ in }' + self._print(d.set)) elif hasattr(d, 'symbols'): return '\\text{Domain on }' + self._print(d.symbols) else: return self._print(None) def _print_FiniteSet(self, s): items = sorted(s.args, key=default_sort_key) return self._print_set(items) def _print_set(self, s): items = sorted(s, key=default_sort_key) items = ", ".join(map(self._print, items)) return r"\left\{%s\right\}" % items _print_frozenset = _print_set def _print_Range(self, s): dots = r'\ldots' if s.start.is_infinite: printset = dots, s[-1] - s.step, s[-1] elif s.stop.is_infinite: it = iter(s) printset = next(it), next(it), dots elif len(s) > 4: it = iter(s) printset = next(it), next(it), dots, s[-1] else: printset = tuple(s) return (r"\left\{" + r", ".join(self._print(el) for el in printset) + r"\right\}") def _print_bernoulli(self, expr, exp=None): tex = r"B_{%s}" % self._print(expr.args[0]) if exp is not None: tex = r"%s^{%s}" % (tex, self._print(exp)) return tex _print_bell = _print_bernoulli def _print_fibonacci(self, expr, exp=None): tex = r"F_{%s}" % self._print(expr.args[0]) if exp is not None: tex = r"%s^{%s}" % (tex, self._print(exp)) return tex def _print_lucas(self, expr, exp=None): tex = r"L_{%s}" % self._print(expr.args[0]) if exp is not None: tex = r"%s^{%s}" % (tex, self._print(exp)) return tex def _print_tribonacci(self, expr, exp=None): tex = r"T_{%s}" % self._print(expr.args[0]) if exp is not None: tex = r"%s^{%s}" % (tex, self._print(exp)) return tex def _print_SeqFormula(self, s): if len(s.start.free_symbols) > 0 or len(s.stop.free_symbols) > 0: return r"\left\{%s\right\}_{%s=%s}^{%s}" % ( self._print(s.formula), self._print(s.variables[0]), self._print(s.start), self._print(s.stop) ) if s.start is S.NegativeInfinity: stop = s.stop printset = (r'\ldots', s.coeff(stop - 3), s.coeff(stop - 2), s.coeff(stop - 1), s.coeff(stop)) elif s.stop is S.Infinity or s.length > 4: printset = s[:4] printset.append(r'\ldots') else: printset = tuple(s) return (r"\left[" + r", ".join(self._print(el) for el in printset) + r"\right]") _print_SeqPer = _print_SeqFormula _print_SeqAdd = _print_SeqFormula _print_SeqMul = _print_SeqFormula def _print_Interval(self, i): if i.start == i.end: return r"\left\{%s\right\}" % self._print(i.start) else: if i.left_open: left = '(' else: left = '[' if i.right_open: right = ')' else: right = ']' return r"\left%s%s, %s\right%s" % \ (left, self._print(i.start), self._print(i.end), right) def _print_AccumulationBounds(self, i): return r"\left\langle %s, %s\right\rangle" % \ (self._print(i.min), self._print(i.max)) def _print_Union(self, u): return r" \cup ".join([self._print(i) for i in u.args]) def _print_Complement(self, u): return r" \setminus ".join([self._print(i) for i in u.args]) def _print_Intersection(self, u): return r" \cap ".join([self._print(i) for i in u.args]) def _print_SymmetricDifference(self, u): return r" \triangle ".join([self._print(i) for i in u.args]) def _print_EmptySet(self, e): return r"\emptyset" def _print_Naturals(self, n): return r"\mathbb{N}" def _print_Naturals0(self, n): return r"\mathbb{N}_0" def _print_Integers(self, i): return r"\mathbb{Z}" def _print_Reals(self, i): return r"\mathbb{R}" def _print_Complexes(self, i): return r"\mathbb{C}" def _print_ImageSet(self, s): sets = s.args[1:] varsets = [r"%s \in %s" % (self._print(var), self._print(setv)) for var, setv in zip(s.lamda.variables, sets)] return r"\left\{%s\; |\; %s\right\}" % ( self._print(s.lamda.expr), ', '.join(varsets)) def _print_ConditionSet(self, s): vars_print = ', '.join([self._print(var) for var in Tuple(s.sym)]) if s.base_set is S.UniversalSet: return r"\left\{%s \mid %s \right\}" % \ (vars_print, self._print(s.condition.as_expr())) return r"\left\{%s \mid %s \in %s \wedge %s \right\}" % ( vars_print, vars_print, self._print(s.base_set), self._print(s.condition)) def _print_ComplexRegion(self, s): vars_print = ', '.join([self._print(var) for var in s.variables]) return r"\left\{%s\; |\; %s \in %s \right\}" % ( self._print(s.expr), vars_print, self._print(s.sets)) def _print_Contains(self, e): return r"%s \in %s" % tuple(self._print(a) for a in e.args) def _print_FourierSeries(self, s): return self._print_Add(s.truncate()) + self._print(r' + \ldots') def _print_FormalPowerSeries(self, s): return self._print_Add(s.infinite) def _print_FiniteField(self, expr): return r"\mathbb{F}_{%s}" % expr.mod def _print_IntegerRing(self, expr): return r"\mathbb{Z}" def _print_RationalField(self, expr): return r"\mathbb{Q}" def _print_RealField(self, expr): return r"\mathbb{R}" def _print_ComplexField(self, expr): return r"\mathbb{C}" def _print_PolynomialRing(self, expr): domain = self._print(expr.domain) symbols = ", ".join(map(self._print, expr.symbols)) return r"%s\left[%s\right]" % (domain, symbols) def _print_FractionField(self, expr): domain = self._print(expr.domain) symbols = ", ".join(map(self._print, expr.symbols)) return r"%s\left(%s\right)" % (domain, symbols) def _print_PolynomialRingBase(self, expr): domain = self._print(expr.domain) symbols = ", ".join(map(self._print, expr.symbols)) inv = "" if not expr.is_Poly: inv = r"S_<^{-1}" return r"%s%s\left[%s\right]" % (inv, domain, symbols) def _print_Poly(self, poly): cls = poly.__class__.__name__ terms = [] for monom, coeff in poly.terms(): s_monom = '' for i, exp in enumerate(monom): if exp > 0: if exp == 1: s_monom += self._print(poly.gens[i]) else: s_monom += self._print(pow(poly.gens[i], exp)) if coeff.is_Add: if s_monom: s_coeff = r"\left(%s\right)" % self._print(coeff) else: s_coeff = self._print(coeff) else: if s_monom: if coeff is S.One: terms.extend(['+', s_monom]) continue if coeff is S.NegativeOne: terms.extend(['-', s_monom]) continue s_coeff = self._print(coeff) if not s_monom: s_term = s_coeff else: s_term = s_coeff + " " + s_monom if s_term.startswith('-'): terms.extend(['-', s_term[1:]]) else: terms.extend(['+', s_term]) if terms[0] in ['-', '+']: modifier = terms.pop(0) if modifier == '-': terms[0] = '-' + terms[0] expr = ' '.join(terms) gens = list(map(self._print, poly.gens)) domain = "domain=%s" % self._print(poly.get_domain()) args = ", ".join([expr] + gens + [domain]) if cls in accepted_latex_functions: tex = r"\%s {\left(%s \right)}" % (cls, args) else: tex = r"\operatorname{%s}{\left( %s \right)}" % (cls, args) return tex def _print_ComplexRootOf(self, root): cls = root.__class__.__name__ if cls == "ComplexRootOf": cls = "CRootOf" expr = self._print(root.expr) index = root.index if cls in accepted_latex_functions: return r"\%s {\left(%s, %d\right)}" % (cls, expr, index) else: return r"\operatorname{%s} {\left(%s, %d\right)}" % (cls, expr, index) def _print_RootSum(self, expr): cls = expr.__class__.__name__ args = [self._print(expr.expr)] if expr.fun is not S.IdentityFunction: args.append(self._print(expr.fun)) if cls in accepted_latex_functions: return r"\%s {\left(%s\right)}" % (cls, ", ".join(args)) else: return r"\operatorname{%s} {\left(%s\right)}" % (cls, ", ".join(args)) def _print_PolyElement(self, poly): mul_symbol = self._settings['mul_symbol_latex'] return poly.str(self, PRECEDENCE, "{%s}^{%d}", mul_symbol) def _print_FracElement(self, frac): if frac.denom == 1: return self._print(frac.numer) else: numer = self._print(frac.numer) denom = self._print(frac.denom) return r"\frac{%s}{%s}" % (numer, denom) def _print_euler(self, expr, exp=None): m, x = (expr.args[0], None) if len(expr.args) == 1 else expr.args tex = r"E_{%s}" % self._print(m) if exp is not None: tex = r"%s^{%s}" % (tex, self._print(exp)) if x is not None: tex = r"%s\left(%s\right)" % (tex, self._print(x)) return tex def _print_catalan(self, expr, exp=None): tex = r"C_{%s}" % self._print(expr.args[0]) if exp is not None: tex = r"%s^{%s}" % (tex, self._print(exp)) return tex def _print_UnifiedTransform(self, expr, s, inverse=False): return r"\mathcal{{{}}}{}_{{{}}}\left[{}\right]\left({}\right)".format(s, '^{-1}' if inverse else '', self._print(expr.args[1]), self._print(expr.args[0]), self._print(expr.args[2])) def _print_MellinTransform(self, expr): return self._print_UnifiedTransform(expr, 'M') def _print_InverseMellinTransform(self, expr): return self._print_UnifiedTransform(expr, 'M', True) def _print_LaplaceTransform(self, expr): return self._print_UnifiedTransform(expr, 'L') def _print_InverseLaplaceTransform(self, expr): return self._print_UnifiedTransform(expr, 'L', True) def _print_FourierTransform(self, expr): return self._print_UnifiedTransform(expr, 'F') def _print_InverseFourierTransform(self, expr): return self._print_UnifiedTransform(expr, 'F', True) def _print_SineTransform(self, expr): return self._print_UnifiedTransform(expr, 'SIN') def _print_InverseSineTransform(self, expr): return self._print_UnifiedTransform(expr, 'SIN', True) def _print_CosineTransform(self, expr): return self._print_UnifiedTransform(expr, 'COS') def _print_InverseCosineTransform(self, expr): return self._print_UnifiedTransform(expr, 'COS', True) def _print_DMP(self, p): try: if p.ring is not None: # TODO incorporate order return self._print(p.ring.to_sympy(p)) except SympifyError: pass return self._print(repr(p)) def _print_DMF(self, p): return self._print_DMP(p) def _print_Object(self, object): return self._print(Symbol(object.name)) def _print_Morphism(self, morphism): domain = self._print(morphism.domain) codomain = self._print(morphism.codomain) return "%s\\rightarrow %s" % (domain, codomain) def _print_NamedMorphism(self, morphism): pretty_name = self._print(Symbol(morphism.name)) pretty_morphism = self._print_Morphism(morphism) return "%s:%s" % (pretty_name, pretty_morphism) def _print_IdentityMorphism(self, morphism): from sympy.categories import NamedMorphism return self._print_NamedMorphism(NamedMorphism( morphism.domain, morphism.codomain, "id")) def _print_CompositeMorphism(self, morphism): # All components of the morphism have names and it is thus # possible to build the name of the composite. component_names_list = [self._print(Symbol(component.name)) for component in morphism.components] component_names_list.reverse() component_names = "\\circ ".join(component_names_list) + ":" pretty_morphism = self._print_Morphism(morphism) return component_names + pretty_morphism def _print_Category(self, morphism): return r"\mathbf{{{}}}".format(self._print(Symbol(morphism.name))) def _print_Diagram(self, diagram): if not diagram.premises: # This is an empty diagram. return self._print(S.EmptySet) latex_result = self._print(diagram.premises) if diagram.conclusions: latex_result += "\\Longrightarrow %s" % \ self._print(diagram.conclusions) return latex_result def _print_DiagramGrid(self, grid): latex_result = "\\begin{array}{%s}\n" % ("c" * grid.width) for i in range(grid.height): for j in range(grid.width): if grid[i, j]: latex_result += latex(grid[i, j]) latex_result += " " if j != grid.width - 1: latex_result += "& " if i != grid.height - 1: latex_result += "\\\\" latex_result += "\n" latex_result += "\\end{array}\n" return latex_result def _print_FreeModule(self, M): return '{{{}}}^{{{}}}'.format(self._print(M.ring), self._print(M.rank)) def _print_FreeModuleElement(self, m): # Print as row vector for convenience, for now. return r"\left[ {} \right]".format(",".join( '{' + self._print(x) + '}' for x in m)) def _print_SubModule(self, m): return r"\left\langle {} \right\rangle".format(",".join( '{' + self._print(x) + '}' for x in m.gens)) def _print_ModuleImplementedIdeal(self, m): return r"\left\langle {} \right\rangle".format(",".join( '{' + self._print(x) + '}' for [x] in m._module.gens)) def _print_Quaternion(self, expr): # TODO: This expression is potentially confusing, # shall we print it as `Quaternion( ... )`? s = [self.parenthesize(i, PRECEDENCE["Mul"], strict=True) for i in expr.args] a = [s[0]] + [i+" "+j for i, j in zip(s[1:], "ijk")] return " + ".join(a) def _print_QuotientRing(self, R): # TODO nicer fractions for few generators... return r"\frac{{{}}}{{{}}}".format(self._print(R.ring), self._print(R.base_ideal)) def _print_QuotientRingElement(self, x): return r"{{{}}} + {{{}}}".format(self._print(x.data), self._print(x.ring.base_ideal)) def _print_QuotientModuleElement(self, m): return r"{{{}}} + {{{}}}".format(self._print(m.data), self._print(m.module.killed_module)) def _print_QuotientModule(self, M): # TODO nicer fractions for few generators... return r"\frac{{{}}}{{{}}}".format(self._print(M.base), self._print(M.killed_module)) def _print_MatrixHomomorphism(self, h): return r"{{{}}} : {{{}}} \to {{{}}}".format(self._print(h._sympy_matrix()), self._print(h.domain), self._print(h.codomain)) def _print_BaseScalarField(self, field): string = field._coord_sys._names[field._index] return r'\mathbf{{{}}}'.format(self._print(Symbol(string))) def _print_BaseVectorField(self, field): string = field._coord_sys._names[field._index] return r'\partial_{{{}}}'.format(self._print(Symbol(string))) def _print_Differential(self, diff): field = diff._form_field if hasattr(field, '_coord_sys'): string = field._coord_sys._names[field._index] return r'\operatorname{{d}}{}'.format(self._print(Symbol(string))) else: string = self._print(field) return r'\operatorname{{d}}\left({}\right)'.format(string) def _print_Tr(self, p): # TODO: Handle indices contents = self._print(p.args[0]) return r'\operatorname{{tr}}\left({}\right)'.format(contents) def _print_totient(self, expr, exp=None): if exp is not None: return r'\left(\phi\left(%s\right)\right)^{%s}' % \ (self._print(expr.args[0]), self._print(exp)) return r'\phi\left(%s\right)' % self._print(expr.args[0]) def _print_reduced_totient(self, expr, exp=None): if exp is not None: return r'\left(\lambda\left(%s\right)\right)^{%s}' % \ (self._print(expr.args[0]), self._print(exp)) return r'\lambda\left(%s\right)' % self._print(expr.args[0]) def _print_divisor_sigma(self, expr, exp=None): if len(expr.args) == 2: tex = r"_%s\left(%s\right)" % tuple(map(self._print, (expr.args[1], expr.args[0]))) else: tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"\sigma^{%s}%s" % (self._print(exp), tex) return r"\sigma%s" % tex def _print_udivisor_sigma(self, expr, exp=None): if len(expr.args) == 2: tex = r"_%s\left(%s\right)" % tuple(map(self._print, (expr.args[1], expr.args[0]))) else: tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"\sigma^*^{%s}%s" % (self._print(exp), tex) return r"\sigma^*%s" % tex def _print_primenu(self, expr, exp=None): if exp is not None: return r'\left(\nu\left(%s\right)\right)^{%s}' % \ (self._print(expr.args[0]), self._print(exp)) return r'\nu\left(%s\right)' % self._print(expr.args[0]) def _print_primeomega(self, expr, exp=None): if exp is not None: return r'\left(\Omega\left(%s\right)\right)^{%s}' % \ (self._print(expr.args[0]), self._print(exp)) return r'\Omega\left(%s\right)' % self._print(expr.args[0]) def translate(s): r''' Check for a modifier ending the string. If present, convert the modifier to latex and translate the rest recursively. Given a description of a Greek letter or other special character, return the appropriate latex. Let everything else pass as given. >>> from sympy.printing.latex import translate >>> translate('alphahatdotprime') "{\\dot{\\hat{\\alpha}}}'" ''' # Process the rest tex = tex_greek_dictionary.get(s) if tex: return tex elif s.lower() in greek_letters_set: return "\\" + s.lower() elif s in other_symbols: return "\\" + s else: # Process modifiers, if any, and recurse for key in sorted(modifier_dict.keys(), key=lambda k:len(k), reverse=True): if s.lower().endswith(key) and len(s) > len(key): return modifier_dict[key](translate(s[:-len(key)])) return s def latex(expr, fold_frac_powers=False, fold_func_brackets=False, fold_short_frac=None, inv_trig_style="abbreviated", itex=False, ln_notation=False, long_frac_ratio=None, mat_delim="[", mat_str=None, mode="plain", mul_symbol=None, order=None, symbol_names=None, root_notation=True, mat_symbol_style="plain", imaginary_unit="i", gothic_re_im=False): r"""Convert the given expression to LaTeX string representation. Parameters ========== fold_frac_powers : boolean, optional Emit ``^{p/q}`` instead of ``^{\frac{p}{q}}`` for fractional powers. fold_func_brackets : boolean, optional Fold function brackets where applicable. fold_short_frac : boolean, optional Emit ``p / q`` instead of ``\frac{p}{q}`` when the denominator is simple enough (at most two terms and no powers). The default value is ``True`` for inline mode, ``False`` otherwise. inv_trig_style : string, optional How inverse trig functions should be displayed. Can be one of ``abbreviated``, ``full``, or ``power``. Defaults to ``abbreviated``. itex : boolean, optional Specifies if itex-specific syntax is used, including emitting ``$$...$$``. ln_notation : boolean, optional If set to ``True``, ``\ln`` is used instead of default ``\log``. long_frac_ratio : float or None, optional The allowed ratio of the width of the numerator to the width of the denominator before the printer breaks off long fractions. If ``None`` (the default value), long fractions are not broken up. mat_delim : string, optional The delimiter to wrap around matrices. Can be one of ``[``, ``(``, or the empty string. Defaults to ``[``. mat_str : string, optional Which matrix environment string to emit. ``smallmatrix``, ``matrix``, ``array``, etc. Defaults to ``smallmatrix`` for inline mode, ``matrix`` for matrices of no more than 10 columns, and ``array`` otherwise. mode: string, optional Specifies how the generated code will be delimited. ``mode`` can be one of ``plain``, ``inline``, ``equation`` or ``equation*``. If ``mode`` is set to ``plain``, then the resulting code will not be delimited at all (this is the default). If ``mode`` is set to ``inline`` then inline LaTeX ``$...$`` will be used. If ``mode`` is set to ``equation`` or ``equation*``, the resulting code will be enclosed in the ``equation`` or ``equation*`` environment (remember to import ``amsmath`` for ``equation*``), unless the ``itex`` option is set. In the latter case, the ``$$...$$`` syntax is used. mul_symbol : string or None, optional The symbol to use for multiplication. Can be one of ``None``, ``ldot``, ``dot``, or ``times``. order: string, optional Any of the supported monomial orderings (currently ``lex``, ``grlex``, or ``grevlex``), ``old``, and ``none``. This parameter does nothing for Mul objects. Setting order to ``old`` uses the compatibility ordering for Add defined in Printer. For very large expressions, set the ``order`` keyword to ``none`` if speed is a concern. symbol_names : dictionary of strings mapped to symbols, optional Dictionary of symbols and the custom strings they should be emitted as. root_notation : boolean, optional If set to ``False``, exponents of the form 1/n are printed in fractonal form. Default is ``True``, to print exponent in root form. mat_symbol_style : string, optional Can be either ``plain`` (default) or ``bold``. If set to ``bold``, a MatrixSymbol A will be printed as ``\mathbf{A}``, otherwise as ``A``. imaginary_unit : string, optional String to use for the imaginary unit. Defined options are "i" (default) and "j". Adding "r" or "t" in front gives ``\mathrm`` or ``\text``, so "ri" leads to ``\mathrm{i}`` which gives `\mathrm{i}`. gothic_re_im : boolean, optional If set to ``True``, `\Re` and `\Im` is used for ``re`` and ``im``, respectively. The default is ``False`` leading to `\operatorname{re}` and `\operatorname{im}`. Notes ===== Not using a print statement for printing, results in double backslashes for latex commands since that's the way Python escapes backslashes in strings. >>> from sympy import latex, Rational >>> from sympy.abc import tau >>> latex((2*tau)**Rational(7,2)) '8 \\sqrt{2} \\tau^{\\frac{7}{2}}' >>> print(latex((2*tau)**Rational(7,2))) 8 \sqrt{2} \tau^{\frac{7}{2}} Examples ======== >>> from sympy import latex, pi, sin, asin, Integral, Matrix, Rational, log >>> from sympy.abc import x, y, mu, r, tau Basic usage: >>> print(latex((2*tau)**Rational(7,2))) 8 \sqrt{2} \tau^{\frac{7}{2}} ``mode`` and ``itex`` options: >>> print(latex((2*mu)**Rational(7,2), mode='plain')) 8 \sqrt{2} \mu^{\frac{7}{2}} >>> print(latex((2*tau)**Rational(7,2), mode='inline')) $8 \sqrt{2} \tau^{7 / 2}$ >>> print(latex((2*mu)**Rational(7,2), mode='equation*')) \begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*} >>> print(latex((2*mu)**Rational(7,2), mode='equation')) \begin{equation}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation} >>> print(latex((2*mu)**Rational(7,2), mode='equation', itex=True)) $$8 \sqrt{2} \mu^{\frac{7}{2}}$$ >>> print(latex((2*mu)**Rational(7,2), mode='plain')) 8 \sqrt{2} \mu^{\frac{7}{2}} >>> print(latex((2*tau)**Rational(7,2), mode='inline')) $8 \sqrt{2} \tau^{7 / 2}$ >>> print(latex((2*mu)**Rational(7,2), mode='equation*')) \begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*} >>> print(latex((2*mu)**Rational(7,2), mode='equation')) \begin{equation}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation} >>> print(latex((2*mu)**Rational(7,2), mode='equation', itex=True)) $$8 \sqrt{2} \mu^{\frac{7}{2}}$$ Fraction options: >>> print(latex((2*tau)**Rational(7,2), fold_frac_powers=True)) 8 \sqrt{2} \tau^{7/2} >>> print(latex((2*tau)**sin(Rational(7,2)))) \left(2 \tau\right)^{\sin{\left(\frac{7}{2} \right)}} >>> print(latex((2*tau)**sin(Rational(7,2)), fold_func_brackets=True)) \left(2 \tau\right)^{\sin {\frac{7}{2}}} >>> print(latex(3*x**2/y)) \frac{3 x^{2}}{y} >>> print(latex(3*x**2/y, fold_short_frac=True)) 3 x^{2} / y >>> print(latex(Integral(r, r)/2/pi, long_frac_ratio=2)) \frac{\int r\, dr}{2 \pi} >>> print(latex(Integral(r, r)/2/pi, long_frac_ratio=0)) \frac{1}{2 \pi} \int r\, dr Multiplication options: >>> print(latex((2*tau)**sin(Rational(7,2)), mul_symbol="times")) \left(2 \times \tau\right)^{\sin{\left(\frac{7}{2} \right)}} Trig options: >>> print(latex(asin(Rational(7,2)))) \operatorname{asin}{\left(\frac{7}{2} \right)} >>> print(latex(asin(Rational(7,2)), inv_trig_style="full")) \arcsin{\left(\frac{7}{2} \right)} >>> print(latex(asin(Rational(7,2)), inv_trig_style="power")) \sin^{-1}{\left(\frac{7}{2} \right)} Matrix options: >>> print(latex(Matrix(2, 1, [x, y]))) \left[\begin{matrix}x\\y\end{matrix}\right] >>> print(latex(Matrix(2, 1, [x, y]), mat_str = "array")) \left[\begin{array}{c}x\\y\end{array}\right] >>> print(latex(Matrix(2, 1, [x, y]), mat_delim="(")) \left(\begin{matrix}x\\y\end{matrix}\right) Custom printing of symbols: >>> print(latex(x**2, symbol_names={x: 'x_i'})) x_i^{2} Logarithms: >>> print(latex(log(10))) \log{\left(10 \right)} >>> print(latex(log(10), ln_notation=True)) \ln{\left(10 \right)} ``latex()`` also supports the builtin container types list, tuple, and dictionary. >>> print(latex([2/x, y], mode='inline')) $\left[ 2 / x, \ y\right]$ """ if symbol_names is None: symbol_names = {} settings = { 'fold_frac_powers': fold_frac_powers, 'fold_func_brackets': fold_func_brackets, 'fold_short_frac': fold_short_frac, 'inv_trig_style': inv_trig_style, 'itex': itex, 'ln_notation': ln_notation, 'long_frac_ratio': long_frac_ratio, 'mat_delim': mat_delim, 'mat_str': mat_str, 'mode': mode, 'mul_symbol': mul_symbol, 'order': order, 'symbol_names': symbol_names, 'root_notation': root_notation, 'mat_symbol_style': mat_symbol_style, 'imaginary_unit': imaginary_unit, 'gothic_re_im': gothic_re_im, } return LatexPrinter(settings).doprint(expr) def print_latex(expr, **settings): """Prints LaTeX representation of the given expression. Takes the same settings as ``latex()``.""" print(latex(expr, **settings))
fc775f36f225904514e0b0b803c985f8b5d85524fe0d26d05e3020cb0be36849
from __future__ import print_function, division from sympy.core.compatibility import range from sympy.core.containers import Tuple from types import FunctionType class TableForm(object): r""" Create a nice table representation of data. Examples ======== >>> from sympy import TableForm >>> t = TableForm([[5, 7], [4, 2], [10, 3]]) >>> print(t) 5 7 4 2 10 3 You can use the SymPy's printing system to produce tables in any format (ascii, latex, html, ...). >>> print(t.as_latex()) \begin{tabular}{l l} $5$ & $7$ \\ $4$ & $2$ \\ $10$ & $3$ \\ \end{tabular} """ def __init__(self, data, **kwarg): """ Creates a TableForm. Parameters: data ... 2D data to be put into the table; data can be given as a Matrix headings ... gives the labels for rows and columns: Can be a single argument that applies to both dimensions: - None ... no labels - "automatic" ... labels are 1, 2, 3, ... Can be a list of labels for rows and columns: The labels for each dimension can be given as None, "automatic", or [l1, l2, ...] e.g. ["automatic", None] will number the rows [default: None] alignments ... alignment of the columns with: - "left" or "<" - "center" or "^" - "right" or ">" When given as a single value, the value is used for all columns. The row headings (if given) will be right justified unless an explicit alignment is given for it and all other columns. [default: "left"] formats ... a list of format strings or functions that accept 3 arguments (entry, row number, col number) and return a string for the table entry. (If a function returns None then the _print method will be used.) wipe_zeros ... Don't show zeros in the table. [default: True] pad ... the string to use to indicate a missing value (e.g. elements that are None or those that are missing from the end of a row (i.e. any row that is shorter than the rest is assumed to have missing values). When None, nothing will be shown for values that are missing from the end of a row; values that are None, however, will be shown. [default: None] Examples ======== >>> from sympy import TableForm, Matrix >>> TableForm([[5, 7], [4, 2], [10, 3]]) 5 7 4 2 10 3 >>> TableForm([list('.'*i) for i in range(1, 4)], headings='automatic') | 1 2 3 --------- 1 | . 2 | . . 3 | . . . >>> TableForm([['.'*(j if not i%2 else 1) for i in range(3)] ... for j in range(4)], alignments='rcl') . . . . .. . .. ... . ... """ from sympy import Symbol, S, Matrix from sympy.core.sympify import SympifyError # We only support 2D data. Check the consistency: if isinstance(data, Matrix): data = data.tolist() _h = len(data) # fill out any short lines pad = kwarg.get('pad', None) ok_None = False if pad is None: pad = " " ok_None = True pad = Symbol(pad) _w = max(len(line) for line in data) for i, line in enumerate(data): if len(line) != _w: line.extend([pad]*(_w - len(line))) for j, lj in enumerate(line): if lj is None: if not ok_None: lj = pad else: try: lj = S(lj) except SympifyError: lj = Symbol(str(lj)) line[j] = lj data[i] = line _lines = Tuple(*data) headings = kwarg.get("headings", [None, None]) if headings == "automatic": _headings = [range(1, _h + 1), range(1, _w + 1)] else: h1, h2 = headings if h1 == "automatic": h1 = range(1, _h + 1) if h2 == "automatic": h2 = range(1, _w + 1) _headings = [h1, h2] allow = ('l', 'r', 'c') alignments = kwarg.get("alignments", "l") def _std_align(a): a = a.strip().lower() if len(a) > 1: return {'left': 'l', 'right': 'r', 'center': 'c'}.get(a, a) else: return {'<': 'l', '>': 'r', '^': 'c'}.get(a, a) std_align = _std_align(alignments) if std_align in allow: _alignments = [std_align]*_w else: _alignments = [] for a in alignments: std_align = _std_align(a) _alignments.append(std_align) if std_align not in ('l', 'r', 'c'): raise ValueError('alignment "%s" unrecognized' % alignments) if _headings[0] and len(_alignments) == _w + 1: _head_align = _alignments[0] _alignments = _alignments[1:] else: _head_align = 'r' if len(_alignments) != _w: raise ValueError( 'wrong number of alignments: expected %s but got %s' % (_w, len(_alignments))) _column_formats = kwarg.get("formats", [None]*_w) _wipe_zeros = kwarg.get("wipe_zeros", True) self._w = _w self._h = _h self._lines = _lines self._headings = _headings self._head_align = _head_align self._alignments = _alignments self._column_formats = _column_formats self._wipe_zeros = _wipe_zeros def __repr__(self): from .str import sstr return sstr(self, order=None) def __str__(self): from .str import sstr return sstr(self, order=None) def as_matrix(self): """Returns the data of the table in Matrix form. Examples ======== >>> from sympy import TableForm >>> t = TableForm([[5, 7], [4, 2], [10, 3]], headings='automatic') >>> t | 1 2 -------- 1 | 5 7 2 | 4 2 3 | 10 3 >>> t.as_matrix() Matrix([ [ 5, 7], [ 4, 2], [10, 3]]) """ from sympy import Matrix return Matrix(self._lines) def as_str(self): # XXX obsolete ? return str(self) def as_latex(self): from .latex import latex return latex(self) def _sympystr(self, p): """ Returns the string representation of 'self'. Examples ======== >>> from sympy import TableForm >>> t = TableForm([[5, 7], [4, 2], [10, 3]]) >>> s = t.as_str() """ column_widths = [0] * self._w lines = [] for line in self._lines: new_line = [] for i in range(self._w): # Format the item somehow if needed: s = str(line[i]) if self._wipe_zeros and (s == "0"): s = " " w = len(s) if w > column_widths[i]: column_widths[i] = w new_line.append(s) lines.append(new_line) # Check heading: if self._headings[0]: self._headings[0] = [str(x) for x in self._headings[0]] _head_width = max([len(x) for x in self._headings[0]]) if self._headings[1]: new_line = [] for i in range(self._w): # Format the item somehow if needed: s = str(self._headings[1][i]) w = len(s) if w > column_widths[i]: column_widths[i] = w new_line.append(s) self._headings[1] = new_line format_str = [] def _align(align, w): return '%%%s%ss' % ( ("-" if align == "l" else ""), str(w)) format_str = [_align(align, w) for align, w in zip(self._alignments, column_widths)] if self._headings[0]: format_str.insert(0, _align(self._head_align, _head_width)) format_str.insert(1, '|') format_str = ' '.join(format_str) + '\n' s = [] if self._headings[1]: d = self._headings[1] if self._headings[0]: d = [""] + d first_line = format_str % tuple(d) s.append(first_line) s.append("-" * (len(first_line) - 1) + "\n") for i, line in enumerate(lines): d = [l if self._alignments[j] != 'c' else l.center(column_widths[j]) for j, l in enumerate(line)] if self._headings[0]: l = self._headings[0][i] l = (l if self._head_align != 'c' else l.center(_head_width)) d = [l] + d s.append(format_str % tuple(d)) return ''.join(s)[:-1] # don't include trailing newline def _latex(self, printer): """ Returns the string representation of 'self'. """ # Check heading: if self._headings[1]: new_line = [] for i in range(self._w): # Format the item somehow if needed: new_line.append(str(self._headings[1][i])) self._headings[1] = new_line alignments = [] if self._headings[0]: self._headings[0] = [str(x) for x in self._headings[0]] alignments = [self._head_align] alignments.extend(self._alignments) s = r"\begin{tabular}{" + " ".join(alignments) + "}\n" if self._headings[1]: d = self._headings[1] if self._headings[0]: d = [""] + d first_line = " & ".join(d) + r" \\" + "\n" s += first_line s += r"\hline" + "\n" for i, line in enumerate(self._lines): d = [] for j, x in enumerate(line): if self._wipe_zeros and (x in (0, "0")): d.append(" ") continue f = self._column_formats[j] if f: if isinstance(f, FunctionType): v = f(x, i, j) if v is None: v = printer._print(x) else: v = f % x d.append(v) else: v = printer._print(x) d.append("$%s$" % v) if self._headings[0]: d = [self._headings[0][i]] + d s += " & ".join(d) + r" \\" + "\n" s += r"\end{tabular}" return s
e17d3f2611f1da2af7d3332634199324589371694b48d894cdc2dc6429508515
""" Mathematica code printer """ from __future__ import print_function, division from sympy.printing.codeprinter import CodePrinter from sympy.printing.precedence import precedence from sympy.printing.str import StrPrinter # Used in MCodePrinter._print_Function(self) known_functions = { "exp": [(lambda x: True, "Exp")], "log": [(lambda x: True, "Log")], "sin": [(lambda x: True, "Sin")], "cos": [(lambda x: True, "Cos")], "tan": [(lambda x: True, "Tan")], "cot": [(lambda x: True, "Cot")], "asin": [(lambda x: True, "ArcSin")], "acos": [(lambda x: True, "ArcCos")], "atan": [(lambda x: True, "ArcTan")], "sinh": [(lambda x: True, "Sinh")], "cosh": [(lambda x: True, "Cosh")], "tanh": [(lambda x: True, "Tanh")], "coth": [(lambda x: True, "Coth")], "sech": [(lambda x: True, "Sech")], "csch": [(lambda x: True, "Csch")], "asinh": [(lambda x: True, "ArcSinh")], "acosh": [(lambda x: True, "ArcCosh")], "atanh": [(lambda x: True, "ArcTanh")], "acoth": [(lambda x: True, "ArcCoth")], "asech": [(lambda x: True, "ArcSech")], "acsch": [(lambda x: True, "ArcCsch")], "conjugate": [(lambda x: True, "Conjugate")], "Max": [(lambda *x: True, "Max")], "Min": [(lambda *x: True, "Min")], } class MCodePrinter(CodePrinter): """A printer to convert python expressions to strings of the Wolfram's Mathematica code """ printmethod = "_mcode" language = "Wolfram Language" _default_settings = { 'order': None, 'full_prec': 'auto', 'precision': 15, 'user_functions': {}, 'human': True, 'allow_unknown_functions': False, } _number_symbols = set() _not_supported = set() def __init__(self, settings={}): """Register function mappings supplied by user""" CodePrinter.__init__(self, settings) self.known_functions = dict(known_functions) userfuncs = settings.get('user_functions', {}).copy() for k, v in userfuncs.items(): if not isinstance(v, list): userfuncs[k] = [(lambda *x: True, v)] self.known_functions.update(userfuncs) def _format_code(self, lines): return lines def _print_Pow(self, expr): PREC = precedence(expr) return '%s^%s' % (self.parenthesize(expr.base, PREC), self.parenthesize(expr.exp, PREC)) def _print_Mul(self, expr): PREC = precedence(expr) c, nc = expr.args_cnc() res = super(MCodePrinter, self)._print_Mul(expr.func(*c)) if nc: res += '*' res += '**'.join(self.parenthesize(a, PREC) for a in nc) return res # Primitive numbers def _print_Zero(self, expr): return '0' def _print_One(self, expr): return '1' def _print_NegativeOne(self, expr): return '-1' def _print_half(self, expr): return '1/2' def _print_ImaginaryUnit(self, expr): return 'I' # Infinity and invalid numbers def _print_Infinity(self, expr): return 'Infinity' def _print_NegativeInfinity(self, expr): return '-Infinity' def _print_ComplexInfinity(self, expr): return 'ComplexInfinity' def _print_NaN(self, expr): return 'Indeterminate' # Mathematical constants def _print_Exp1(self, expr): return 'E' def _print_Pi(self, expr): return 'Pi' def _print_GoldenRatio(self, expr): return 'GoldenRatio' def _print_TribonacciConstant(self, expr): return self.doprint(expr._eval_expand_func()) def _print_EulerGamma(self, expr): return 'EulerGamma' def _print_Catalan(self, expr): return 'Catalan' def _print_list(self, expr): return '{' + ', '.join(self.doprint(a) for a in expr) + '}' _print_tuple = _print_list _print_Tuple = _print_list def _print_ImmutableDenseMatrix(self, expr): return self.doprint(expr.tolist()) def _print_ImmutableSparseMatrix(self, expr): from sympy.core.compatibility import default_sort_key def print_rule(pos, val): return '{} -> {}'.format( self.doprint((pos[0]+1, pos[1]+1)), self.doprint(val)) def print_data(): items = sorted(expr._smat.items(), key=default_sort_key) return '{' + \ ', '.join(print_rule(k, v) for k, v in items) + \ '}' def print_dims(): return self.doprint(expr.shape) return 'SparseArray[{}, {}]'.format(print_data(), print_dims()) def _print_ImmutableDenseNDimArray(self, expr): return self.doprint(expr.tolist()) def _print_ImmutableSparseNDimArray(self, expr): def print_string_list(string_list): return '{' + ', '.join(a for a in string_list) + '}' def to_mathematica_index(*args): """Helper function to change Python style indexing to Pathematica indexing. Python indexing (0, 1 ... n-1) -> Mathematica indexing (1, 2 ... n) """ return tuple(i + 1 for i in args) def print_rule(pos, val): """Helper function to print a rule of Mathematica""" return '{} -> {}'.format(self.doprint(pos), self.doprint(val)) def print_data(): """Helper function to print data part of Mathematica sparse array. It uses the fourth notation ``SparseArray[data,{d1,d2,...}]`` from https://reference.wolfram.com/language/ref/SparseArray.html ``data`` must be formatted with rule. """ return print_string_list( [print_rule( to_mathematica_index(*(expr._get_tuple_index(key))), value) for key, value in sorted(expr._sparse_array.items())] ) def print_dims(): """Helper function to print dimensions part of Mathematica sparse array. It uses the fourth notation ``SparseArray[data,{d1,d2,...}]`` from https://reference.wolfram.com/language/ref/SparseArray.html """ return self.doprint(expr.shape) return 'SparseArray[{}, {}]'.format(print_data(), print_dims()) def _print_Function(self, expr): if expr.func.__name__ in self.known_functions: cond_mfunc = self.known_functions[expr.func.__name__] for cond, mfunc in cond_mfunc: if cond(*expr.args): return "%s[%s]" % (mfunc, self.stringify(expr.args, ", ")) return expr.func.__name__ + "[%s]" % self.stringify(expr.args, ", ") _print_MinMaxBase = _print_Function def _print_Integral(self, expr): if len(expr.variables) == 1 and not expr.limits[0][1:]: args = [expr.args[0], expr.variables[0]] else: args = expr.args return "Hold[Integrate[" + ', '.join(self.doprint(a) for a in args) + "]]" def _print_Sum(self, expr): return "Hold[Sum[" + ', '.join(self.doprint(a) for a in expr.args) + "]]" def _print_Derivative(self, expr): dexpr = expr.expr dvars = [i[0] if i[1] == 1 else i for i in expr.variable_count] return "Hold[D[" + ', '.join(self.doprint(a) for a in [dexpr] + dvars) + "]]" def _get_comment(self, text): return "(* {} *)".format(text) def mathematica_code(expr, **settings): r"""Converts an expr to a string of the Wolfram Mathematica code Examples ======== >>> from sympy import mathematica_code as mcode, symbols, sin >>> x = symbols('x') >>> mcode(sin(x).series(x).removeO()) '(1/120)*x^5 - 1/6*x^3 + x' """ return MCodePrinter(settings).doprint(expr)
9d1134048c95cfff13341a8695beb47f14ff5a26594d124052769bb1a12bdecf
""" C code printer The C89CodePrinter & C99CodePrinter converts single sympy expressions into single C expressions, using the functions defined in math.h where possible. A complete code generator, which uses ccode extensively, can be found in sympy.utilities.codegen. The codegen module can be used to generate complete source code files that are compilable without further modifications. """ from __future__ import print_function, division from functools import wraps from itertools import chain from sympy.core import S from sympy.core.compatibility import string_types, range from sympy.core.decorators import deprecated from sympy.codegen.ast import ( Assignment, Pointer, Variable, Declaration, real, complex_, integer, bool_, float32, float64, float80, complex64, complex128, intc, value_const, pointer_const, int8, int16, int32, int64, uint8, uint16, uint32, uint64, untyped ) from sympy.printing.codeprinter import CodePrinter, requires from sympy.printing.precedence import precedence, PRECEDENCE from sympy.sets.fancysets import Range # dictionary mapping sympy function to (argument_conditions, C_function). # Used in C89CodePrinter._print_Function(self) known_functions_C89 = { "Abs": [(lambda x: not x.is_integer, "fabs"), (lambda x: x.is_integer, "abs")], "sin": "sin", "cos": "cos", "tan": "tan", "asin": "asin", "acos": "acos", "atan": "atan", "atan2": "atan2", "exp": "exp", "log": "log", "sinh": "sinh", "cosh": "cosh", "tanh": "tanh", "floor": "floor", "ceiling": "ceil", } # move to C99 once CCodePrinter is removed: _known_functions_C9X = dict(known_functions_C89, **{ "asinh": "asinh", "acosh": "acosh", "atanh": "atanh", "erf": "erf", "gamma": "tgamma", }) known_functions = _known_functions_C9X known_functions_C99 = dict(_known_functions_C9X, **{ 'exp2': 'exp2', 'expm1': 'expm1', 'expm1': 'expm1', 'log10': 'log10', 'log2': 'log2', 'log1p': 'log1p', 'Cbrt': 'cbrt', 'hypot': 'hypot', 'fma': 'fma', 'loggamma': 'lgamma', 'erfc': 'erfc', 'Max': 'fmax', 'Min': 'fmin' }) # These are the core reserved words in the C language. Taken from: # http://en.cppreference.com/w/c/keyword reserved_words = [ 'auto', 'break', 'case', 'char', 'const', 'continue', 'default', 'do', 'double', 'else', 'enum', 'extern', 'float', 'for', 'goto', 'if', 'int', 'long', 'register', 'return', 'short', 'signed', 'sizeof', 'static', 'struct', 'entry', # never standardized, we'll leave it here anyway 'switch', 'typedef', 'union', 'unsigned', 'void', 'volatile', 'while' ] reserved_words_c99 = ['inline', 'restrict'] def get_math_macros(): """ Returns a dictionary with math-related macros from math.h/cmath Note that these macros are not strictly required by the C/C++-standard. For MSVC they are enabled by defining "_USE_MATH_DEFINES" (preferably via a compilation flag). Returns ======= Dictionary mapping sympy expressions to strings (macro names) """ from sympy.codegen.cfunctions import log2, Sqrt from sympy.functions.elementary.exponential import log from sympy.functions.elementary.miscellaneous import sqrt return { S.Exp1: 'M_E', log2(S.Exp1): 'M_LOG2E', 1/log(2): 'M_LOG2E', log(2): 'M_LN2', log(10): 'M_LN10', S.Pi: 'M_PI', S.Pi/2: 'M_PI_2', S.Pi/4: 'M_PI_4', 1/S.Pi: 'M_1_PI', 2/S.Pi: 'M_2_PI', 2/sqrt(S.Pi): 'M_2_SQRTPI', 2/Sqrt(S.Pi): 'M_2_SQRTPI', sqrt(2): 'M_SQRT2', Sqrt(2): 'M_SQRT2', 1/sqrt(2): 'M_SQRT1_2', 1/Sqrt(2): 'M_SQRT1_2' } def _as_macro_if_defined(meth): """ Decorator for printer methods When a Printer's method is decorated using this decorator the expressions printed will first be looked for in the attribute ``math_macros``, and if present it will print the macro name in ``math_macros`` followed by a type suffix for the type ``real``. e.g. printing ``sympy.pi`` would print ``M_PIl`` if real is mapped to float80. """ @wraps(meth) def _meth_wrapper(self, expr, **kwargs): if expr in self.math_macros: return '%s%s' % (self.math_macros[expr], self._get_math_macro_suffix(real)) else: return meth(self, expr, **kwargs) return _meth_wrapper class C89CodePrinter(CodePrinter): """A printer to convert python expressions to strings of c code""" printmethod = "_ccode" language = "C" standard = "C89" reserved_words = set(reserved_words) _default_settings = { 'order': None, 'full_prec': 'auto', 'precision': 17, 'user_functions': {}, 'human': True, 'allow_unknown_functions': False, 'contract': True, 'dereference': set(), 'error_on_reserved': False, 'reserved_word_suffix': '_', } type_aliases = { real: float64, complex_: complex128, integer: intc } type_mappings = { real: 'double', intc: 'int', float32: 'float', float64: 'double', integer: 'int', bool_: 'bool', int8: 'int8_t', int16: 'int16_t', int32: 'int32_t', int64: 'int64_t', uint8: 'int8_t', uint16: 'int16_t', uint32: 'int32_t', uint64: 'int64_t', } type_headers = { bool_: {'stdbool.h'}, int8: {'stdint.h'}, int16: {'stdint.h'}, int32: {'stdint.h'}, int64: {'stdint.h'}, uint8: {'stdint.h'}, uint16: {'stdint.h'}, uint32: {'stdint.h'}, uint64: {'stdint.h'}, } type_macros = {} # Macros needed to be defined when using a Type type_func_suffixes = { float32: 'f', float64: '', float80: 'l' } type_literal_suffixes = { float32: 'F', float64: '', float80: 'L' } type_math_macro_suffixes = { float80: 'l' } math_macros = None _ns = '' # namespace, C++ uses 'std::' _kf = known_functions_C89 # known_functions-dict to copy def __init__(self, settings={}): if self.math_macros is None: self.math_macros = settings.pop('math_macros', get_math_macros()) self.type_aliases = dict(chain(self.type_aliases.items(), settings.pop('type_aliases', {}).items())) self.type_mappings = dict(chain(self.type_mappings.items(), settings.pop('type_mappings', {}).items())) self.type_headers = dict(chain(self.type_headers.items(), settings.pop('type_headers', {}).items())) self.type_macros = dict(chain(self.type_macros.items(), settings.pop('type_macros', {}).items())) self.type_func_suffixes = dict(chain(self.type_func_suffixes.items(), settings.pop('type_func_suffixes', {}).items())) self.type_literal_suffixes = dict(chain(self.type_literal_suffixes.items(), settings.pop('type_literal_suffixes', {}).items())) self.type_math_macro_suffixes = dict(chain(self.type_math_macro_suffixes.items(), settings.pop('type_math_macro_suffixes', {}).items())) super(C89CodePrinter, self).__init__(settings) self.known_functions = dict(self._kf, **settings.get('user_functions', {})) self._dereference = set(settings.get('dereference', [])) self.headers = set() self.libraries = set() self.macros = set() def _rate_index_position(self, p): return p*5 def _get_statement(self, codestring): """ Get code string as a statement - i.e. ending with a semicolon. """ return codestring if codestring.endswith(';') else codestring + ';' def _get_comment(self, text): return "// {0}".format(text) def _declare_number_const(self, name, value): type_ = self.type_aliases[real] var = Variable(name, type=type_, value=value.evalf(type_.decimal_dig), attrs={value_const}) decl = Declaration(var) return self._get_statement(self._print(decl)) def _format_code(self, lines): return self.indent_code(lines) def _traverse_matrix_indices(self, mat): rows, cols = mat.shape return ((i, j) for i in range(rows) for j in range(cols)) @_as_macro_if_defined def _print_Mul(self, expr, **kwargs): return super(C89CodePrinter, self)._print_Mul(expr, **kwargs) @_as_macro_if_defined def _print_Pow(self, expr): if "Pow" in self.known_functions: return self._print_Function(expr) PREC = precedence(expr) suffix = self._get_func_suffix(real) if expr.exp == -1: return '1.0%s/%s' % (suffix.upper(), self.parenthesize(expr.base, PREC)) elif expr.exp == 0.5: return '%ssqrt%s(%s)' % (self._ns, suffix, self._print(expr.base)) elif expr.exp == S.One/3 and self.standard != 'C89': return '%scbrt%s(%s)' % (self._ns, suffix, self._print(expr.base)) else: return '%spow%s(%s, %s)' % (self._ns, suffix, self._print(expr.base), self._print(expr.exp)) def _print_Mod(self, expr): num, den = expr.args if num.is_integer and den.is_integer: return "(({}) % ({}))".format(self._print(num), self._print(den)) else: return self._print_math_func(expr, known='fmod') def _print_Rational(self, expr): p, q = int(expr.p), int(expr.q) suffix = self._get_literal_suffix(real) return '%d.0%s/%d.0%s' % (p, suffix, q, suffix) def _print_Indexed(self, expr): # calculate index for 1d array offset = getattr(expr.base, 'offset', S.Zero) strides = getattr(expr.base, 'strides', None) indices = expr.indices if strides is None or isinstance(strides, string_types): dims = expr.shape shift = S.One temp = tuple() if strides == 'C' or strides is None: traversal = reversed(range(expr.rank)) indices = indices[::-1] elif strides == 'F': traversal = range(expr.rank) for i in traversal: temp += (shift,) shift *= dims[i] strides = temp flat_index = sum([x[0]*x[1] for x in zip(indices, strides)]) + offset return "%s[%s]" % (self._print(expr.base.label), self._print(flat_index)) def _print_Idx(self, expr): return self._print(expr.label) @_as_macro_if_defined def _print_NumberSymbol(self, expr): return super(C89CodePrinter, self)._print_NumberSymbol(expr) def _print_Infinity(self, expr): return 'HUGE_VAL' def _print_NegativeInfinity(self, expr): return '-HUGE_VAL' def _print_Piecewise(self, expr): if expr.args[-1].cond != True: # We need the last conditional to be a True, otherwise the resulting # function may not return a result. raise ValueError("All Piecewise expressions must contain an " "(expr, True) statement to be used as a default " "condition. Without one, the generated " "expression may not evaluate to anything under " "some condition.") lines = [] if expr.has(Assignment): for i, (e, c) in enumerate(expr.args): if i == 0: lines.append("if (%s) {" % self._print(c)) elif i == len(expr.args) - 1 and c == True: lines.append("else {") else: lines.append("else if (%s) {" % self._print(c)) code0 = self._print(e) lines.append(code0) lines.append("}") return "\n".join(lines) else: # The piecewise was used in an expression, need to do inline # operators. This has the downside that inline operators will # not work for statements that span multiple lines (Matrix or # Indexed expressions). ecpairs = ["((%s) ? (\n%s\n)\n" % (self._print(c), self._print(e)) for e, c in expr.args[:-1]] last_line = ": (\n%s\n)" % self._print(expr.args[-1].expr) return ": ".join(ecpairs) + last_line + " ".join([")"*len(ecpairs)]) def _print_ITE(self, expr): from sympy.functions import Piecewise _piecewise = Piecewise((expr.args[1], expr.args[0]), (expr.args[2], True)) return self._print(_piecewise) def _print_MatrixElement(self, expr): return "{0}[{1}]".format(self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True), expr.j + expr.i*expr.parent.shape[1]) def _print_Symbol(self, expr): name = super(C89CodePrinter, self)._print_Symbol(expr) if expr in self._settings['dereference']: return '(*{0})'.format(name) else: return name def _print_Relational(self, expr): lhs_code = self._print(expr.lhs) rhs_code = self._print(expr.rhs) op = expr.rel_op return ("{0} {1} {2}").format(lhs_code, op, rhs_code) def _print_sinc(self, expr): from sympy.functions.elementary.trigonometric import sin from sympy.core.relational import Ne from sympy.functions import Piecewise _piecewise = Piecewise( (sin(expr.args[0]) / expr.args[0], Ne(expr.args[0], 0)), (1, True)) return self._print(_piecewise) def _print_For(self, expr): target = self._print(expr.target) if isinstance(expr.iterable, Range): start, stop, step = expr.iterable.args else: raise NotImplementedError("Only iterable currently supported is Range") body = self._print(expr.body) return ('for ({target} = {start}; {target} < {stop}; {target} += ' '{step}) {{\n{body}\n}}').format(target=target, start=start, stop=stop, step=step, body=body) def _print_sign(self, func): return '((({0}) > 0) - (({0}) < 0))'.format(self._print(func.args[0])) def _print_Max(self, expr): if "Max" in self.known_functions: return self._print_Function(expr) def inner_print_max(args): # The more natural abstraction of creating if len(args) == 1: # and printing smaller Max objects is slow return self._print(args[0]) # when there are many arguments. half = len(args) // 2 return "((%(a)s > %(b)s) ? %(a)s : %(b)s)" % { 'a': inner_print_max(args[:half]), 'b': inner_print_max(args[half:]) } return inner_print_max(expr.args) def _print_Min(self, expr): if "Min" in self.known_functions: return self._print_Function(expr) def inner_print_min(args): # The more natural abstraction of creating if len(args) == 1: # and printing smaller Min objects is slow return self._print(args[0]) # when there are many arguments. half = len(args) // 2 return "((%(a)s < %(b)s) ? %(a)s : %(b)s)" % { 'a': inner_print_min(args[:half]), 'b': inner_print_min(args[half:]) } return inner_print_min(expr.args) def indent_code(self, code): """Accepts a string of code or a list of code lines""" if isinstance(code, string_types): code_lines = self.indent_code(code.splitlines(True)) return ''.join(code_lines) tab = " " inc_token = ('{', '(', '{\n', '(\n') dec_token = ('}', ')') code = [line.lstrip(' \t') for line in code] increase = [int(any(map(line.endswith, inc_token))) for line in code] decrease = [int(any(map(line.startswith, dec_token))) for line in code] pretty = [] level = 0 for n, line in enumerate(code): if line == '' or line == '\n': pretty.append(line) continue level -= decrease[n] pretty.append("%s%s" % (tab*level, line)) level += increase[n] return pretty def _get_func_suffix(self, type_): return self.type_func_suffixes[self.type_aliases.get(type_, type_)] def _get_literal_suffix(self, type_): return self.type_literal_suffixes[self.type_aliases.get(type_, type_)] def _get_math_macro_suffix(self, type_): alias = self.type_aliases.get(type_, type_) dflt = self.type_math_macro_suffixes.get(alias, '') return self.type_math_macro_suffixes.get(type_, dflt) def _print_Type(self, type_): self.headers.update(self.type_headers.get(type_, set())) self.macros.update(self.type_macros.get(type_, set())) return self._print(self.type_mappings.get(type_, type_.name)) def _print_Declaration(self, decl): from sympy.codegen.cnodes import restrict var = decl.variable val = var.value if var.type == untyped: raise ValueError("C does not support untyped variables") if isinstance(var, Pointer): result = '{vc}{t} *{pc} {r}{s}'.format( vc='const ' if value_const in var.attrs else '', t=self._print(var.type), pc=' const' if pointer_const in var.attrs else '', r='restrict ' if restrict in var.attrs else '', s=self._print(var.symbol) ) elif isinstance(var, Variable): result = '{vc}{t} {s}'.format( vc='const ' if value_const in var.attrs else '', t=self._print(var.type), s=self._print(var.symbol) ) else: raise NotImplementedError("Unknown type of var: %s" % type(var)) if val != None: # Must be "!= None", cannot be "is not None" result += ' = %s' % self._print(val) return result def _print_Float(self, flt): type_ = self.type_aliases.get(real, real) self.macros.update(self.type_macros.get(type_, set())) suffix = self._get_literal_suffix(type_) num = str(flt.evalf(type_.decimal_dig)) if 'e' not in num and '.' not in num: num += '.0' num_parts = num.split('e') num_parts[0] = num_parts[0].rstrip('0') if num_parts[0].endswith('.'): num_parts[0] += '0' return 'e'.join(num_parts) + suffix @requires(headers={'stdbool.h'}) def _print_BooleanTrue(self, expr): return 'true' @requires(headers={'stdbool.h'}) def _print_BooleanFalse(self, expr): return 'false' def _print_Element(self, elem): if elem.strides == None: # Must be "== None", cannot be "is None" if elem.offset != None: # Must be "!= None", cannot be "is not None" raise ValueError("Expected strides when offset is given") idxs = ']['.join(map(lambda arg: self._print(arg), elem.indices)) else: global_idx = sum([i*s for i, s in zip(elem.indices, elem.strides)]) if elem.offset != None: # Must be "!= None", cannot be "is not None" global_idx += elem.offset idxs = self._print(global_idx) return "{symb}[{idxs}]".format( symb=self._print(elem.symbol), idxs=idxs ) def _print_CodeBlock(self, expr): """ Elements of code blocks printed as statements. """ return '\n'.join([self._get_statement(self._print(i)) for i in expr.args]) def _print_While(self, expr): return 'while ({condition}) {{\n{body}\n}}'.format(**expr.kwargs( apply=lambda arg: self._print(arg))) def _print_Scope(self, expr): return '{\n%s\n}' % self._print_CodeBlock(expr.body) @requires(headers={'stdio.h'}) def _print_Print(self, expr): return 'printf({fmt}, {pargs})'.format( fmt=self._print(expr.format_string), pargs=', '.join(map(lambda arg: self._print(arg), expr.print_args)) ) def _print_FunctionPrototype(self, expr): pars = ', '.join(map(lambda arg: self._print(Declaration(arg)), expr.parameters)) return "%s %s(%s)" % ( tuple(map(lambda arg: self._print(arg), (expr.return_type, expr.name))) + (pars,) ) def _print_FunctionDefinition(self, expr): return "%s%s" % (self._print_FunctionPrototype(expr), self._print_Scope(expr)) def _print_Return(self, expr): arg, = expr.args return 'return %s' % self._print(arg) def _print_CommaOperator(self, expr): return '(%s)' % ', '.join(map(lambda arg: self._print(arg), expr.args)) def _print_Label(self, expr): return '%s:' % str(expr) def _print_goto(self, expr): return 'goto %s' % expr.label def _print_PreIncrement(self, expr): arg, = expr.args return '++(%s)' % self._print(arg) def _print_PostIncrement(self, expr): arg, = expr.args return '(%s)++' % self._print(arg) def _print_PreDecrement(self, expr): arg, = expr.args return '--(%s)' % self._print(arg) def _print_PostDecrement(self, expr): arg, = expr.args return '(%s)--' % self._print(arg) def _print_struct(self, expr): return "%(keyword)s %(name)s {\n%(lines)s}" % dict( keyword=expr.__class__.__name__, name=expr.name, lines=';\n'.join( [self._print(decl) for decl in expr.declarations] + ['']) ) def _print_BreakToken(self, _): return 'break' def _print_ContinueToken(self, _): return 'continue' _print_union = _print_struct class _C9XCodePrinter(object): # Move these methods to C99CodePrinter when removing CCodePrinter def _get_loop_opening_ending(self, indices): open_lines = [] close_lines = [] loopstart = "for (int %(var)s=%(start)s; %(var)s<%(end)s; %(var)s++){" # C99 for i in indices: # C arrays start at 0 and end at dimension-1 open_lines.append(loopstart % { 'var': self._print(i.label), 'start': self._print(i.lower), 'end': self._print(i.upper + 1)}) close_lines.append("}") return open_lines, close_lines @deprecated( last_supported_version='1.0', useinstead="C89CodePrinter or C99CodePrinter, e.g. ccode(..., standard='C99')", issue=12220, deprecated_since_version='1.1') class CCodePrinter(_C9XCodePrinter, C89CodePrinter): """ Deprecated. Alias for C89CodePrinter, for backwards compatibility. """ _kf = _known_functions_C9X # known_functions-dict to copy class C99CodePrinter(_C9XCodePrinter, C89CodePrinter): standard = 'C99' reserved_words = set(reserved_words + reserved_words_c99) type_mappings=dict(chain(C89CodePrinter.type_mappings.items(), { complex64: 'float complex', complex128: 'double complex', }.items())) type_headers = dict(chain(C89CodePrinter.type_headers.items(), { complex64: {'complex.h'}, complex128: {'complex.h'} }.items())) _kf = known_functions_C99 # known_functions-dict to copy # functions with versions with 'f' and 'l' suffixes: _prec_funcs = ('fabs fmod remainder remquo fma fmax fmin fdim nan exp exp2' ' expm1 log log10 log2 log1p pow sqrt cbrt hypot sin cos tan' ' asin acos atan atan2 sinh cosh tanh asinh acosh atanh erf' ' erfc tgamma lgamma ceil floor trunc round nearbyint rint' ' frexp ldexp modf scalbn ilogb logb nextafter copysign').split() def _print_Infinity(self, expr): return 'INFINITY' def _print_NegativeInfinity(self, expr): return '-INFINITY' def _print_NaN(self, expr): return 'NAN' # tgamma was already covered by 'known_functions' dict @requires(headers={'math.h'}, libraries={'m'}) @_as_macro_if_defined def _print_math_func(self, expr, nest=False, known=None): if known is None: known = self.known_functions[expr.__class__.__name__] if not isinstance(known, string_types): for cb, name in known: if cb(*expr.args): known = name break else: raise ValueError("No matching printer") try: return known(self, *expr.args) except TypeError: suffix = self._get_func_suffix(real) if self._ns + known in self._prec_funcs else '' if nest: args = self._print(expr.args[0]) if len(expr.args) > 1: paren_pile = '' for curr_arg in expr.args[1:-1]: paren_pile += ')' args += ', {ns}{name}{suffix}({next}'.format( ns=self._ns, name=known, suffix=suffix, next = self._print(curr_arg) ) args += ', %s%s' % ( self._print(expr.func(expr.args[-1])), paren_pile ) else: args = ', '.join(map(lambda arg: self._print(arg), expr.args)) return '{ns}{name}{suffix}({args})'.format( ns=self._ns, name=known, suffix=suffix, args=args ) def _print_Max(self, expr): return self._print_math_func(expr, nest=True) def _print_Min(self, expr): return self._print_math_func(expr, nest=True) for k in ('Abs Sqrt exp exp2 expm1 log log10 log2 log1p Cbrt hypot fma' ' loggamma sin cos tan asin acos atan atan2 sinh cosh tanh asinh acosh ' 'atanh erf erfc loggamma gamma ceiling floor').split(): setattr(C99CodePrinter, '_print_%s' % k, C99CodePrinter._print_math_func) class C11CodePrinter(C99CodePrinter): @requires(headers={'stdalign.h'}) def _print_alignof(self, expr): arg, = expr.args return 'alignof(%s)' % self._print(arg) c_code_printers = { 'c89': C89CodePrinter, 'c99': C99CodePrinter, 'c11': C11CodePrinter } def ccode(expr, assign_to=None, standard='c99', **settings): """Converts an expr to a string of c code Parameters ========== expr : Expr A sympy expression to be converted. assign_to : optional When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string, ``Symbol``, ``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of line-wrapping, or for expressions that generate multi-line statements. standard : str, optional String specifying the standard. If your compiler supports a more modern standard you may set this to 'c99' to allow the printer to use more math functions. [default='c89']. precision : integer, optional The precision for numbers such as pi [default=17]. user_functions : dict, optional A dictionary where the keys are string representations of either ``FunctionClass`` or ``UndefinedFunction`` instances and the values are their desired C string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)] or [(argument_test, cfunction_formater)]. See below for examples. dereference : iterable, optional An iterable of symbols that should be dereferenced in the printed code expression. These would be values passed by address to the function. For example, if ``dereference=[a]``, the resulting code would print ``(*a)`` instead of ``a``. human : bool, optional If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True]. contract: bool, optional If True, ``Indexed`` instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True]. Examples ======== >>> from sympy import ccode, symbols, Rational, sin, ceiling, Abs, Function >>> x, tau = symbols("x, tau") >>> expr = (2*tau)**Rational(7, 2) >>> ccode(expr) '8*M_SQRT2*pow(tau, 7.0/2.0)' >>> ccode(expr, math_macros={}) '8*sqrt(2)*pow(tau, 7.0/2.0)' >>> ccode(sin(x), assign_to="s") 's = sin(x);' >>> from sympy.codegen.ast import real, float80 >>> ccode(expr, type_aliases={real: float80}) '8*M_SQRT2l*powl(tau, 7.0L/2.0L)' Simple custom printing can be defined for certain types by passing a dictionary of {"type" : "function"} to the ``user_functions`` kwarg. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. >>> custom_functions = { ... "ceiling": "CEIL", ... "Abs": [(lambda x: not x.is_integer, "fabs"), ... (lambda x: x.is_integer, "ABS")], ... "func": "f" ... } >>> func = Function('func') >>> ccode(func(Abs(x) + ceiling(x)), standard='C89', user_functions=custom_functions) 'f(fabs(x) + CEIL(x))' or if the C-function takes a subset of the original arguments: >>> ccode(2**x + 3**x, standard='C99', user_functions={'Pow': [ ... (lambda b, e: b == 2, lambda b, e: 'exp2(%s)' % e), ... (lambda b, e: b != 2, 'pow')]}) 'exp2(x) + pow(3, x)' ``Piecewise`` expressions are converted into conditionals. If an ``assign_to`` variable is provided an if statement is created, otherwise the ternary operator is used. Note that if the ``Piecewise`` lacks a default term, represented by ``(expr, True)`` then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything. >>> from sympy import Piecewise >>> expr = Piecewise((x + 1, x > 0), (x, True)) >>> print(ccode(expr, tau, standard='C89')) if (x > 0) { tau = x + 1; } else { tau = x; } Support for loops is provided through ``Indexed`` types. With ``contract=True`` these expressions will be turned into loops, whereas ``contract=False`` will just print the assignment expression that should be looped over: >>> from sympy import Eq, IndexedBase, Idx >>> len_y = 5 >>> y = IndexedBase('y', shape=(len_y,)) >>> t = IndexedBase('t', shape=(len_y,)) >>> Dy = IndexedBase('Dy', shape=(len_y-1,)) >>> i = Idx('i', len_y-1) >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) >>> ccode(e.rhs, assign_to=e.lhs, contract=False, standard='C89') 'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);' Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions must be provided to ``assign_to``. Note that any expression that can be generated normally can also exist inside a Matrix: >>> from sympy import Matrix, MatrixSymbol >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)]) >>> A = MatrixSymbol('A', 3, 1) >>> print(ccode(mat, A, standard='C89')) A[0] = pow(x, 2); if (x > 0) { A[1] = x + 1; } else { A[1] = x; } A[2] = sin(x); """ return c_code_printers[standard.lower()](settings).doprint(expr, assign_to) def print_ccode(expr, **settings): """Prints C representation of the given expression.""" print(ccode(expr, **settings))
f2f807a6b8248b42907619def12b7b9b58364ad1f0eec48f679364d268bca3a4
""" A MathML printer. """ from __future__ import print_function, division from sympy import sympify, S, Mul from sympy.core.compatibility import range, string_types, default_sort_key from sympy.core.function import _coeff_isneg from sympy.printing.conventions import split_super_sub, requires_partial from sympy.printing.precedence import precedence_traditional, PRECEDENCE from sympy.printing.pretty.pretty_symbology import greek_unicode from sympy.printing.printer import Printer import mpmath.libmp as mlib from mpmath.libmp import prec_to_dps class MathMLPrinterBase(Printer): """Contains common code required for MathMLContentPrinter and MathMLPresentationPrinter. """ _default_settings = { "order": None, "encoding": "utf-8", "fold_frac_powers": False, "fold_func_brackets": False, "fold_short_frac": None, "inv_trig_style": "abbreviated", "ln_notation": False, "long_frac_ratio": None, "mat_delim": "[", "mat_symbol_style": "plain", "mul_symbol": None, "root_notation": True, "symbol_names": {}, "mul_symbol_mathml_numbers": '&#xB7;', } def __init__(self, settings=None): Printer.__init__(self, settings) from xml.dom.minidom import Document, Text self.dom = Document() # Workaround to allow strings to remain unescaped # Based on # https://stackoverflow.com/questions/38015864/python-xml-dom-minidom-\ # please-dont-escape-my-strings/38041194 class RawText(Text): def writexml(self, writer, indent='', addindent='', newl=''): if self.data: writer.write(u'{}{}{}'.format(indent, self.data, newl)) def createRawTextNode(data): r = RawText() r.data = data r.ownerDocument = self.dom return r self.dom.createTextNode = createRawTextNode def doprint(self, expr): """ Prints the expression as MathML. """ mathML = Printer._print(self, expr) unistr = mathML.toxml() xmlbstr = unistr.encode('ascii', 'xmlcharrefreplace') res = xmlbstr.decode() return res def apply_patch(self): # Applying the patch of xml.dom.minidom bug # Date: 2011-11-18 # Description: http://ronrothman.com/public/leftbraned/xml-dom-minidom\ # -toprettyxml-and-silly-whitespace/#best-solution # Issue: http://bugs.python.org/issue4147 # Patch: http://hg.python.org/cpython/rev/7262f8f276ff/ from xml.dom.minidom import Element, Text, Node, _write_data def writexml(self, writer, indent="", addindent="", newl=""): # indent = current indentation # addindent = indentation to add to higher levels # newl = newline string writer.write(indent + "<" + self.tagName) attrs = self._get_attributes() a_names = list(attrs.keys()) a_names.sort() for a_name in a_names: writer.write(" %s=\"" % a_name) _write_data(writer, attrs[a_name].value) writer.write("\"") if self.childNodes: writer.write(">") if (len(self.childNodes) == 1 and self.childNodes[0].nodeType == Node.TEXT_NODE): self.childNodes[0].writexml(writer, '', '', '') else: writer.write(newl) for node in self.childNodes: node.writexml( writer, indent + addindent, addindent, newl) writer.write(indent) writer.write("</%s>%s" % (self.tagName, newl)) else: writer.write("/>%s" % (newl)) self._Element_writexml_old = Element.writexml Element.writexml = writexml def writexml(self, writer, indent="", addindent="", newl=""): _write_data(writer, "%s%s%s" % (indent, self.data, newl)) self._Text_writexml_old = Text.writexml Text.writexml = writexml def restore_patch(self): from xml.dom.minidom import Element, Text Element.writexml = self._Element_writexml_old Text.writexml = self._Text_writexml_old class MathMLContentPrinter(MathMLPrinterBase): """Prints an expression to the Content MathML markup language. References: https://www.w3.org/TR/MathML2/chapter4.html """ printmethod = "_mathml_content" def mathml_tag(self, e): """Returns the MathML tag for an expression.""" translate = { 'Add': 'plus', 'Mul': 'times', 'Derivative': 'diff', 'Number': 'cn', 'int': 'cn', 'Pow': 'power', 'Symbol': 'ci', 'MatrixSymbol': 'ci', 'RandomSymbol': 'ci', 'Integral': 'int', 'Sum': 'sum', 'sin': 'sin', 'cos': 'cos', 'tan': 'tan', 'cot': 'cot', 'asin': 'arcsin', 'asinh': 'arcsinh', 'acos': 'arccos', 'acosh': 'arccosh', 'atan': 'arctan', 'atanh': 'arctanh', 'acot': 'arccot', 'atan2': 'arctan', 'log': 'ln', 'Equality': 'eq', 'Unequality': 'neq', 'GreaterThan': 'geq', 'LessThan': 'leq', 'StrictGreaterThan': 'gt', 'StrictLessThan': 'lt', } for cls in e.__class__.__mro__: n = cls.__name__ if n in translate: return translate[n] # Not found in the MRO set n = e.__class__.__name__ return n.lower() def _print_Mul(self, expr): if _coeff_isneg(expr): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('minus')) x.appendChild(self._print_Mul(-expr)) return x from sympy.simplify import fraction numer, denom = fraction(expr) if denom is not S.One: x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('divide')) x.appendChild(self._print(numer)) x.appendChild(self._print(denom)) return x coeff, terms = expr.as_coeff_mul() if coeff is S.One and len(terms) == 1: # XXX since the negative coefficient has been handled, I don't # think a coeff of 1 can remain return self._print(terms[0]) if self.order != 'old': terms = Mul._from_args(terms).as_ordered_factors() x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('times')) if coeff != 1: x.appendChild(self._print(coeff)) for term in terms: x.appendChild(self._print(term)) return x def _print_Add(self, expr, order=None): args = self._as_ordered_terms(expr, order=order) lastProcessed = self._print(args[0]) plusNodes = [] for arg in args[1:]: if _coeff_isneg(arg): # use minus x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('minus')) x.appendChild(lastProcessed) x.appendChild(self._print(-arg)) # invert expression since this is now minused lastProcessed = x if arg == args[-1]: plusNodes.append(lastProcessed) else: plusNodes.append(lastProcessed) lastProcessed = self._print(arg) if arg == args[-1]: plusNodes.append(self._print(arg)) if len(plusNodes) == 1: return lastProcessed x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('plus')) while plusNodes: x.appendChild(plusNodes.pop(0)) return x def _print_MatrixBase(self, m): x = self.dom.createElement('matrix') for i in range(m.rows): x_r = self.dom.createElement('matrixrow') for j in range(m.cols): x_r.appendChild(self._print(m[i, j])) x.appendChild(x_r) return x def _print_Rational(self, e): if e.q == 1: # don't divide x = self.dom.createElement('cn') x.appendChild(self.dom.createTextNode(str(e.p))) return x x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('divide')) # numerator xnum = self.dom.createElement('cn') xnum.appendChild(self.dom.createTextNode(str(e.p))) # denominator xdenom = self.dom.createElement('cn') xdenom.appendChild(self.dom.createTextNode(str(e.q))) x.appendChild(xnum) x.appendChild(xdenom) return x def _print_Limit(self, e): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement(self.mathml_tag(e))) x_1 = self.dom.createElement('bvar') x_2 = self.dom.createElement('lowlimit') x_1.appendChild(self._print(e.args[1])) x_2.appendChild(self._print(e.args[2])) x.appendChild(x_1) x.appendChild(x_2) x.appendChild(self._print(e.args[0])) return x def _print_ImaginaryUnit(self, e): return self.dom.createElement('imaginaryi') def _print_EulerGamma(self, e): return self.dom.createElement('eulergamma') def _print_GoldenRatio(self, e): """We use unicode #x3c6 for Greek letter phi as defined here http://www.w3.org/2003/entities/2007doc/isogrk1.html""" x = self.dom.createElement('cn') x.appendChild(self.dom.createTextNode(u"\N{GREEK SMALL LETTER PHI}")) return x def _print_Exp1(self, e): return self.dom.createElement('exponentiale') def _print_Pi(self, e): return self.dom.createElement('pi') def _print_Infinity(self, e): return self.dom.createElement('infinity') def _print_NegativeInfinity(self, e): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('minus')) x.appendChild(self.dom.createElement('infinity')) return x def _print_Integral(self, e): def lime_recur(limits): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement(self.mathml_tag(e))) bvar_elem = self.dom.createElement('bvar') bvar_elem.appendChild(self._print(limits[0][0])) x.appendChild(bvar_elem) if len(limits[0]) == 3: low_elem = self.dom.createElement('lowlimit') low_elem.appendChild(self._print(limits[0][1])) x.appendChild(low_elem) up_elem = self.dom.createElement('uplimit') up_elem.appendChild(self._print(limits[0][2])) x.appendChild(up_elem) if len(limits[0]) == 2: up_elem = self.dom.createElement('uplimit') up_elem.appendChild(self._print(limits[0][1])) x.appendChild(up_elem) if len(limits) == 1: x.appendChild(self._print(e.function)) else: x.appendChild(lime_recur(limits[1:])) return x limits = list(e.limits) limits.reverse() return lime_recur(limits) def _print_Sum(self, e): # Printer can be shared because Sum and Integral have the # same internal representation. return self._print_Integral(e) def _print_Symbol(self, sym): ci = self.dom.createElement(self.mathml_tag(sym)) def join(items): if len(items) > 1: mrow = self.dom.createElement('mml:mrow') for i, item in enumerate(items): if i > 0: mo = self.dom.createElement('mml:mo') mo.appendChild(self.dom.createTextNode(" ")) mrow.appendChild(mo) mi = self.dom.createElement('mml:mi') mi.appendChild(self.dom.createTextNode(item)) mrow.appendChild(mi) return mrow else: mi = self.dom.createElement('mml:mi') mi.appendChild(self.dom.createTextNode(items[0])) return mi # translate name, supers and subs to unicode characters def translate(s): if s in greek_unicode: return greek_unicode.get(s) else: return s name, supers, subs = split_super_sub(sym.name) name = translate(name) supers = [translate(sup) for sup in supers] subs = [translate(sub) for sub in subs] mname = self.dom.createElement('mml:mi') mname.appendChild(self.dom.createTextNode(name)) if not supers: if not subs: ci.appendChild(self.dom.createTextNode(name)) else: msub = self.dom.createElement('mml:msub') msub.appendChild(mname) msub.appendChild(join(subs)) ci.appendChild(msub) else: if not subs: msup = self.dom.createElement('mml:msup') msup.appendChild(mname) msup.appendChild(join(supers)) ci.appendChild(msup) else: msubsup = self.dom.createElement('mml:msubsup') msubsup.appendChild(mname) msubsup.appendChild(join(subs)) msubsup.appendChild(join(supers)) ci.appendChild(msubsup) return ci _print_MatrixSymbol = _print_Symbol _print_RandomSymbol = _print_Symbol def _print_Pow(self, e): # Here we use root instead of power if the exponent is the reciprocal # of an integer if (self._settings['root_notation'] and e.exp.is_Rational and e.exp.p == 1): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('root')) if e.exp.q != 2: xmldeg = self.dom.createElement('degree') xmlci = self.dom.createElement('ci') xmlci.appendChild(self.dom.createTextNode(str(e.exp.q))) xmldeg.appendChild(xmlci) x.appendChild(xmldeg) x.appendChild(self._print(e.base)) return x x = self.dom.createElement('apply') x_1 = self.dom.createElement(self.mathml_tag(e)) x.appendChild(x_1) x.appendChild(self._print(e.base)) x.appendChild(self._print(e.exp)) return x def _print_Number(self, e): x = self.dom.createElement(self.mathml_tag(e)) x.appendChild(self.dom.createTextNode(str(e))) return x def _print_Derivative(self, e): x = self.dom.createElement('apply') diff_symbol = self.mathml_tag(e) if requires_partial(e): diff_symbol = 'partialdiff' x.appendChild(self.dom.createElement(diff_symbol)) x_1 = self.dom.createElement('bvar') for sym, times in reversed(e.variable_count): x_1.appendChild(self._print(sym)) if times > 1: degree = self.dom.createElement('degree') degree.appendChild(self._print(sympify(times))) x_1.appendChild(degree) x.appendChild(x_1) x.appendChild(self._print(e.expr)) return x def _print_Function(self, e): x = self.dom.createElement("apply") x.appendChild(self.dom.createElement(self.mathml_tag(e))) for arg in e.args: x.appendChild(self._print(arg)) return x def _print_Basic(self, e): x = self.dom.createElement(self.mathml_tag(e)) for arg in e.args: x.appendChild(self._print(arg)) return x def _print_AssocOp(self, e): x = self.dom.createElement('apply') x_1 = self.dom.createElement(self.mathml_tag(e)) x.appendChild(x_1) for arg in e.args: x.appendChild(self._print(arg)) return x def _print_Relational(self, e): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement(self.mathml_tag(e))) x.appendChild(self._print(e.lhs)) x.appendChild(self._print(e.rhs)) return x def _print_list(self, seq): """MathML reference for the <list> element: http://www.w3.org/TR/MathML2/chapter4.html#contm.list""" dom_element = self.dom.createElement('list') for item in seq: dom_element.appendChild(self._print(item)) return dom_element def _print_int(self, p): dom_element = self.dom.createElement(self.mathml_tag(p)) dom_element.appendChild(self.dom.createTextNode(str(p))) return dom_element class MathMLPresentationPrinter(MathMLPrinterBase): """Prints an expression to the Presentation MathML markup language. References: https://www.w3.org/TR/MathML2/chapter3.html """ printmethod = "_mathml_presentation" def mathml_tag(self, e): """Returns the MathML tag for an expression.""" translate = { 'Number': 'mn', 'Limit': '&#x2192;', 'Derivative': '&dd;', 'int': 'mn', 'Symbol': 'mi', 'Integral': '&int;', 'Sum': '&#x2211;', 'sin': 'sin', 'cos': 'cos', 'tan': 'tan', 'cot': 'cot', 'asin': 'arcsin', 'asinh': 'arcsinh', 'acos': 'arccos', 'acosh': 'arccosh', 'atan': 'arctan', 'atanh': 'arctanh', 'acot': 'arccot', 'atan2': 'arctan', 'Equality': '=', 'Unequality': '&#x2260;', 'GreaterThan': '&#x2265;', 'LessThan': '&#x2264;', 'StrictGreaterThan': '>', 'StrictLessThan': '<', 'lerchphi': '&#x3A6;', 'zeta': '&#x3B6;', 'dirichlet_eta': '&#x3B7;', 'elliptic_k': '&#x39A;', 'lowergamma': '&#x3B3;', 'uppergamma': '&#x393;', 'gamma': '&#x393;', 'totient': '&#x3D5;', 'reduced_totient': '&#x3BB;', 'primenu': '&#x3BD;', 'primeomega': '&#x3A9;', 'fresnels': 'S', 'fresnelc': 'C', 'Heaviside': '&#x398;', 'BooleanTrue': 'True', 'BooleanFalse': 'False', 'NoneType': 'None', } def mul_symbol_selection(): if (self._settings["mul_symbol"] is None or self._settings["mul_symbol"] == 'None'): return '&InvisibleTimes;' elif self._settings["mul_symbol"] == 'times': return '&#xD7;' elif self._settings["mul_symbol"] == 'dot': return '&#xB7;' elif self._settings["mul_symbol"] == 'ldot': return '&#x2024;' elif not isinstance(self._settings["mul_symbol"], string_types): raise TypeError else: return self._settings["mul_symbol"] for cls in e.__class__.__mro__: n = cls.__name__ if n in translate: return translate[n] # Not found in the MRO set if e.__class__.__name__ == "Mul": return mul_symbol_selection() n = e.__class__.__name__ return n.lower() def parenthesize(self, item, level, strict=False): prec_val = precedence_traditional(item) if (prec_val < level) or ((not strict) and prec_val <= level): brac = self.dom.createElement('mfenced') brac.appendChild(self._print(item)) return brac else: return self._print(item) def _print_Mul(self, expr): def multiply(expr, mrow): from sympy.simplify import fraction numer, denom = fraction(expr) if denom is not S.One: frac = self.dom.createElement('mfrac') if self._settings["fold_short_frac"] and len(str(expr)) < 7: frac.setAttribute('bevelled', 'true') xnum = self._print(numer) xden = self._print(denom) frac.appendChild(xnum) frac.appendChild(xden) mrow.appendChild(frac) return mrow coeff, terms = expr.as_coeff_mul() if coeff is S.One and len(terms) == 1: mrow.appendChild(self._print(terms[0])) return mrow if self.order != 'old': terms = Mul._from_args(terms).as_ordered_factors() if coeff != 1: x = self._print(coeff) y = self.dom.createElement('mo') y.appendChild(self.dom.createTextNode(self.mathml_tag(expr))) mrow.appendChild(x) mrow.appendChild(y) for term in terms: x = self._print(term) mrow.appendChild(x) if not term == terms[-1]: y = self.dom.createElement('mo') y.appendChild(self.dom.createTextNode(self.mathml_tag(expr))) mrow.appendChild(y) return mrow mrow = self.dom.createElement('mrow') if _coeff_isneg(expr): x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode('-')) mrow.appendChild(x) mrow = multiply(-expr, mrow) else: mrow = multiply(expr, mrow) return mrow def _print_Add(self, expr, order=None): mrow = self.dom.createElement('mrow') args = self._as_ordered_terms(expr, order=order) mrow.appendChild(self._print(args[0])) for arg in args[1:]: if _coeff_isneg(arg): # use minus x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode('-')) y = self._print(-arg) # invert expression since this is now minused else: x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode('+')) y = self._print(arg) mrow.appendChild(x) mrow.appendChild(y) return mrow def _print_MatrixBase(self, m): table = self.dom.createElement('mtable') for i in range(m.rows): x = self.dom.createElement('mtr') for j in range(m.cols): y = self.dom.createElement('mtd') y.appendChild(self._print(m[i, j])) x.appendChild(y) table.appendChild(x) if self._settings["mat_delim"] == '': return table brac = self.dom.createElement('mfenced') if self._settings["mat_delim"] == "[": brac.setAttribute('open', '[') brac.setAttribute('close', ']') brac.appendChild(table) return brac def _get_printed_Rational(self, e, folded=None): if e.p < 0: p = -e.p else: p = e.p x = self.dom.createElement('mfrac') if folded or self._settings["fold_short_frac"]: x.setAttribute('bevelled', 'true') x.appendChild(self._print(p)) x.appendChild(self._print(e.q)) if e.p < 0: mrow = self.dom.createElement('mrow') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('-')) mrow.appendChild(mo) mrow.appendChild(x) return mrow else: return x def _print_Rational(self, e): if e.q == 1: # don't divide return self._print(e.p) return self._get_printed_Rational(e, self._settings["fold_short_frac"]) def _print_Limit(self, e): mrow = self.dom.createElement('mrow') munder = self.dom.createElement('munder') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode('lim')) x = self.dom.createElement('mrow') x_1 = self._print(e.args[1]) arrow = self.dom.createElement('mo') arrow.appendChild(self.dom.createTextNode(self.mathml_tag(e))) x_2 = self._print(e.args[2]) x.appendChild(x_1) x.appendChild(arrow) x.appendChild(x_2) munder.appendChild(mi) munder.appendChild(x) mrow.appendChild(munder) mrow.appendChild(self._print(e.args[0])) return mrow def _print_ImaginaryUnit(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&ImaginaryI;')) return x def _print_GoldenRatio(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&#x3A6;')) return x def _print_Exp1(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&ExponentialE;')) return x def _print_Pi(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&pi;')) return x def _print_Infinity(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&#x221E;')) return x def _print_NegativeInfinity(self, e): mrow = self.dom.createElement('mrow') y = self.dom.createElement('mo') y.appendChild(self.dom.createTextNode('-')) x = self._print_Infinity(e) mrow.appendChild(y) mrow.appendChild(x) return mrow def _print_Integral(self, expr): intsymbols = {1: "&#x222B;", 2: "&#x222C;", 3: "&#x222D;"} mrow = self.dom.createElement('mrow') if len(expr.limits) <= 3 and all(len(lim) == 1 for lim in expr.limits): # Only up to three-integral signs exists mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode(intsymbols[len(expr.limits)])) mrow.appendChild(mo) else: # Either more than three or limits provided for lim in reversed(expr.limits): mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode(intsymbols[1])) if len(lim) == 1: mrow.appendChild(mo) if len(lim) == 2: msup = self.dom.createElement('msup') msup.appendChild(mo) msup.appendChild(self._print(lim[1])) mrow.appendChild(msup) if len(lim) == 3: msubsup = self.dom.createElement('msubsup') msubsup.appendChild(mo) msubsup.appendChild(self._print(lim[1])) msubsup.appendChild(self._print(lim[2])) mrow.appendChild(msubsup) # print function mrow.appendChild(self.parenthesize(expr.function, PRECEDENCE["Mul"], strict=True)) # print integration variables for lim in reversed(expr.limits): d = self.dom.createElement('mo') d.appendChild(self.dom.createTextNode('&dd;')) mrow.appendChild(d) mrow.appendChild(self._print(lim[0])) return mrow def _print_Sum(self, e): limits = list(e.limits) subsup = self.dom.createElement('munderover') low_elem = self._print(limits[0][1]) up_elem = self._print(limits[0][2]) summand = self.dom.createElement('mo') summand.appendChild(self.dom.createTextNode(self.mathml_tag(e))) low = self.dom.createElement('mrow') var = self._print(limits[0][0]) equal = self.dom.createElement('mo') equal.appendChild(self.dom.createTextNode('=')) low.appendChild(var) low.appendChild(equal) low.appendChild(low_elem) subsup.appendChild(summand) subsup.appendChild(low) subsup.appendChild(up_elem) mrow = self.dom.createElement('mrow') mrow.appendChild(subsup) if len(str(e.function)) == 1: mrow.appendChild(self._print(e.function)) else: fence = self.dom.createElement('mfenced') fence.appendChild(self._print(e.function)) mrow.appendChild(fence) return mrow def _print_Symbol(self, sym, style='plain'): def join(items): if len(items) > 1: mrow = self.dom.createElement('mrow') for i, item in enumerate(items): if i > 0: mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode(" ")) mrow.appendChild(mo) mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode(item)) mrow.appendChild(mi) return mrow else: mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode(items[0])) return mi # translate name, supers and subs to unicode characters def translate(s): if s in greek_unicode: return greek_unicode.get(s) else: return s name, supers, subs = split_super_sub(sym.name) name = translate(name) supers = [translate(sup) for sup in supers] subs = [translate(sub) for sub in subs] mname = self.dom.createElement('mi') mname.appendChild(self.dom.createTextNode(name)) if len(supers) == 0: if len(subs) == 0: x = mname else: x = self.dom.createElement('msub') x.appendChild(mname) x.appendChild(join(subs)) else: if len(subs) == 0: x = self.dom.createElement('msup') x.appendChild(mname) x.appendChild(join(supers)) else: x = self.dom.createElement('msubsup') x.appendChild(mname) x.appendChild(join(subs)) x.appendChild(join(supers)) # Set bold font? if style == 'bold': x.setAttribute('mathvariant', 'bold') return x def _print_MatrixSymbol(self, sym): return self._print_Symbol(sym, style=self._settings['mat_symbol_style']) _print_RandomSymbol = _print_Symbol def _print_conjugate(self, expr): enc = self.dom.createElement('menclose') enc.setAttribute('notation', 'top') enc.appendChild(self._print(expr.args[0])) return enc def _print_operator_after(self, op, expr): row = self.dom.createElement('mrow') row.appendChild(self.parenthesize(expr, PRECEDENCE["Func"])) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode(op)) row.appendChild(mo) return row def _print_factorial(self, expr): return self._print_operator_after('!', expr.args[0]) def _print_factorial2(self, expr): return self._print_operator_after('!!', expr.args[0]) def _print_binomial(self, expr): brac = self.dom.createElement('mfenced') frac = self.dom.createElement('mfrac') frac.setAttribute('linethickness', '0') frac.appendChild(self._print(expr.args[0])) frac.appendChild(self._print(expr.args[1])) brac.appendChild(frac) return brac def _print_Pow(self, e): # Here we use root instead of power if the exponent is the # reciprocal of an integer if (e.exp.is_Rational and abs(e.exp.p) == 1 and e.exp.q != 1 and self._settings['root_notation']): if e.exp.q == 2: x = self.dom.createElement('msqrt') x.appendChild(self._print(e.base)) if e.exp.q != 2: x = self.dom.createElement('mroot') x.appendChild(self._print(e.base)) x.appendChild(self._print(e.exp.q)) if e.exp.p == -1: frac = self.dom.createElement('mfrac') frac.appendChild(self._print(1)) frac.appendChild(x) return frac else: return x if e.exp.is_Rational and e.exp.q != 1: if e.exp.is_negative: top = self.dom.createElement('mfrac') top.appendChild(self._print(1)) x = self.dom.createElement('msup') x.appendChild(self.parenthesize(e.base, PRECEDENCE['Pow'])) x.appendChild(self._get_printed_Rational(-e.exp, self._settings['fold_frac_powers'])) top.appendChild(x) return top else: x = self.dom.createElement('msup') x.appendChild(self.parenthesize(e.base, PRECEDENCE['Pow'])) x.appendChild(self._get_printed_Rational(e.exp, self._settings['fold_frac_powers'])) return x if e.exp.is_negative: top = self.dom.createElement('mfrac') top.appendChild(self._print(1)) if e.exp == -1: top.appendChild(self._print(e.base)) else: x = self.dom.createElement('msup') x.appendChild(self.parenthesize(e.base, PRECEDENCE['Pow'])) x.appendChild(self._print(-e.exp)) top.appendChild(x) return top x = self.dom.createElement('msup') x.appendChild(self.parenthesize(e.base, PRECEDENCE['Pow'])) x.appendChild(self._print(e.exp)) return x def _print_Number(self, e): x = self.dom.createElement(self.mathml_tag(e)) x.appendChild(self.dom.createTextNode(str(e))) return x def _print_AccumulationBounds(self, i): brac = self.dom.createElement('mfenced') brac.setAttribute('open', u'\u27e8') brac.setAttribute('close', u'\u27e9') brac.appendChild(self._print(i.min)) brac.appendChild(self._print(i.max)) return brac def _print_Derivative(self, e): if requires_partial(e): d = '&#x2202;' else: d = self.mathml_tag(e) # Determine denominator m = self.dom.createElement('mrow') dim = 0 # Total diff dimension, for numerator for sym, num in reversed(e.variable_count): dim += num if num >= 2: x = self.dom.createElement('msup') xx = self.dom.createElement('mo') xx.appendChild(self.dom.createTextNode(d)) x.appendChild(xx) x.appendChild(self._print(num)) else: x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode(d)) m.appendChild(x) y = self._print(sym) m.appendChild(y) mnum = self.dom.createElement('mrow') if dim >= 2: x = self.dom.createElement('msup') xx = self.dom.createElement('mo') xx.appendChild(self.dom.createTextNode(d)) x.appendChild(xx) x.appendChild(self._print(dim)) else: x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode(d)) mnum.appendChild(x) mrow = self.dom.createElement('mrow') frac = self.dom.createElement('mfrac') frac.appendChild(mnum) frac.appendChild(m) mrow.appendChild(frac) # Print function mrow.appendChild(self._print(e.expr)) return mrow def _print_Function(self, e): mrow = self.dom.createElement('mrow') x = self.dom.createElement('mi') if self.mathml_tag(e) == 'log' and self._settings["ln_notation"]: x.appendChild(self.dom.createTextNode('ln')) else: x.appendChild(self.dom.createTextNode(self.mathml_tag(e))) y = self.dom.createElement('mfenced') for arg in e.args: y.appendChild(self._print(arg)) mrow.appendChild(x) mrow.appendChild(y) return mrow def _print_Float(self, expr): # Based off of that in StrPrinter dps = prec_to_dps(expr._prec) str_real = mlib.to_str(expr._mpf_, dps, strip_zeros=True) # Must always have a mul symbol (as 2.5 10^{20} just looks odd) # thus we use the number separator separator = self._settings['mul_symbol_mathml_numbers'] mrow = self.dom.createElement('mrow') if 'e' in str_real: (mant, exp) = str_real.split('e') if exp[0] == '+': exp = exp[1:] mn = self.dom.createElement('mn') mn.appendChild(self.dom.createTextNode(mant)) mrow.appendChild(mn) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode(separator)) mrow.appendChild(mo) msup = self.dom.createElement('msup') mn = self.dom.createElement('mn') mn.appendChild(self.dom.createTextNode("10")) msup.appendChild(mn) mn = self.dom.createElement('mn') mn.appendChild(self.dom.createTextNode(exp)) msup.appendChild(mn) mrow.appendChild(msup) return mrow elif str_real == "+inf": return self._print_Infinity(None) elif str_real == "-inf": return self._print_NegativeInfinity(None) else: mn = self.dom.createElement('mn') mn.appendChild(self.dom.createTextNode(str_real)) return mn def _print_polylog(self, expr): mrow = self.dom.createElement('mrow') m = self.dom.createElement('msub') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode('Li')) m.appendChild(mi) m.appendChild(self._print(expr.args[0])) mrow.appendChild(m) brac = self.dom.createElement('mfenced') brac.appendChild(self._print(expr.args[1])) mrow.appendChild(brac) return mrow def _print_Basic(self, e): mrow = self.dom.createElement('mrow') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode(self.mathml_tag(e))) mrow.appendChild(mi) brac = self.dom.createElement('mfenced') for arg in e.args: brac.appendChild(self._print(arg)) mrow.appendChild(brac) return mrow def _print_Tuple(self, e): mrow = self.dom.createElement('mrow') x = self.dom.createElement('mfenced') for arg in e.args: x.appendChild(self._print(arg)) mrow.appendChild(x) return mrow def _print_Interval(self, i): mrow = self.dom.createElement('mrow') brac = self.dom.createElement('mfenced') if i.start == i.end: # Most often, this type of Interval is converted to a FiniteSet brac.setAttribute('open', '{') brac.setAttribute('close', '}') brac.appendChild(self._print(i.start)) else: if i.left_open: brac.setAttribute('open', '(') else: brac.setAttribute('open', '[') if i.right_open: brac.setAttribute('close', ')') else: brac.setAttribute('close', ']') brac.appendChild(self._print(i.start)) brac.appendChild(self._print(i.end)) mrow.appendChild(brac) return mrow def _print_Abs(self, expr, exp=None): mrow = self.dom.createElement('mrow') x = self.dom.createElement('mfenced') x.setAttribute('open', '|') x.setAttribute('close', '|') x.appendChild(self._print(expr.args[0])) mrow.appendChild(x) return mrow _print_Determinant = _print_Abs def _print_re_im(self, c, expr): mrow = self.dom.createElement('mrow') mi = self.dom.createElement('mi') mi.setAttribute('mathvariant', 'fraktur') mi.appendChild(self.dom.createTextNode(c)) mrow.appendChild(mi) brac = self.dom.createElement('mfenced') brac.appendChild(self._print(expr)) mrow.appendChild(brac) return mrow def _print_re(self, expr, exp=None): return self._print_re_im('R', expr.args[0]) def _print_im(self, expr, exp=None): return self._print_re_im('I', expr.args[0]) def _print_AssocOp(self, e): mrow = self.dom.createElement('mrow') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode(self.mathml_tag(e))) mrow.appendChild(mi) for arg in e.args: mrow.appendChild(self._print(arg)) return mrow def _print_SetOp(self, expr, symbol): mrow = self.dom.createElement('mrow') mrow.appendChild(self._print(expr.args[0])) for arg in expr.args[1:]: x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode(symbol)) y = self._print(arg) mrow.appendChild(x) mrow.appendChild(y) return mrow def _print_Union(self, expr): return self._print_SetOp(expr, '&#x222A;') def _print_Intersection(self, expr): return self._print_SetOp(expr, '&#x2229;') def _print_Complement(self, expr): return self._print_SetOp(expr, '&#x2216;') def _print_SymmetricDifference(self, expr): return self._print_SetOp(expr, '&#x2206;') def _print_FiniteSet(self, s): return self._print_set(s.args) def _print_set(self, s): items = sorted(s, key=default_sort_key) brac = self.dom.createElement('mfenced') brac.setAttribute('open', '{') brac.setAttribute('close', '}') for item in items: brac.appendChild(self._print(item)) return brac _print_frozenset = _print_set def _print_LogOp(self, args, symbol): mrow = self.dom.createElement('mrow') if args[0].is_Boolean and not args[0].is_Not: brac = self.dom.createElement('mfenced') brac.appendChild(self._print(args[0])) mrow.appendChild(brac) else: mrow.appendChild(self._print(args[0])) for arg in args[1:]: x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode(symbol)) if arg.is_Boolean and not arg.is_Not: y = self.dom.createElement('mfenced') y.appendChild(self._print(arg)) else: y = self._print(arg) mrow.appendChild(x) mrow.appendChild(y) return mrow def _print_BasisDependent(self, expr): from sympy.vector import Vector if expr == expr.zero: # Not clear if this is ever called return self._print(expr.zero) if isinstance(expr, Vector): items = expr.separate().items() else: items = [(0, expr)] mrow = self.dom.createElement('mrow') for system, vect in items: inneritems = list(vect.components.items()) inneritems.sort(key = lambda x:x[0].__str__()) for i, (k, v) in enumerate(inneritems): if v == 1: if i: # No + for first item mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('+')) mrow.appendChild(mo) mrow.appendChild(self._print(k)) elif v == -1: mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('-')) mrow.appendChild(mo) mrow.appendChild(self._print(k)) else: if i: # No + for first item mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('+')) mrow.appendChild(mo) mbrac = self.dom.createElement('mfenced') mbrac.appendChild(self._print(v)) mrow.appendChild(mbrac) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&InvisibleTimes;')) mrow.appendChild(mo) mrow.appendChild(self._print(k)) return mrow def _print_And(self, expr): args = sorted(expr.args, key=default_sort_key) return self._print_LogOp(args, '&#x2227;') def _print_Or(self, expr): args = sorted(expr.args, key=default_sort_key) return self._print_LogOp(args, '&#x2228;') def _print_Xor(self, expr): args = sorted(expr.args, key=default_sort_key) return self._print_LogOp(args, '&#x22BB;') def _print_Implies(self, expr): return self._print_LogOp(expr.args, '&#x21D2;') def _print_Equivalent(self, expr): args = sorted(expr.args, key=default_sort_key) return self._print_LogOp(args, '&#x21D4;') def _print_Not(self, e): mrow = self.dom.createElement('mrow') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#xAC;')) mrow.appendChild(mo) if (e.args[0].is_Boolean): x = self.dom.createElement('mfenced') x.appendChild(self._print(e.args[0])) else: x = self._print(e.args[0]) mrow.appendChild(x) return mrow def _print_bool(self, e): mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode(self.mathml_tag(e))) return mi _print_BooleanTrue = _print_bool _print_BooleanFalse = _print_bool def _print_NoneType(self, e): mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode(self.mathml_tag(e))) return mi def _print_Range(self, s): dots = u"\u2026" brac = self.dom.createElement('mfenced') brac.setAttribute('open', '{') brac.setAttribute('close', '}') if s.start.is_infinite: printset = dots, s[-1] - s.step, s[-1] elif s.stop.is_infinite: it = iter(s) printset = next(it), next(it), dots elif len(s) > 4: it = iter(s) printset = next(it), next(it), dots, s[-1] else: printset = tuple(s) for el in printset: if el == dots: mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode(dots)) brac.appendChild(mi) else: brac.appendChild(self._print(el)) return brac def _hprint_variadic_function(self, expr): args = sorted(expr.args, key=default_sort_key) mrow = self.dom.createElement('mrow') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode((str(expr.func)).lower())) mrow.appendChild(mo) brac = self.dom.createElement('mfenced') for symbol in args: brac.appendChild(self._print(symbol)) mrow.appendChild(brac) return mrow _print_Min = _print_Max = _hprint_variadic_function def _print_exp(self, expr): msup = self.dom.createElement('msup') msup.appendChild(self._print_Exp1(None)) msup.appendChild(self._print(expr.args[0])) return msup def _print_Relational(self, e): mrow = self.dom.createElement('mrow') mrow.appendChild(self._print(e.lhs)) x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode(self.mathml_tag(e))) mrow.appendChild(x) mrow.appendChild(self._print(e.rhs)) return mrow def _print_int(self, p): dom_element = self.dom.createElement(self.mathml_tag(p)) dom_element.appendChild(self.dom.createTextNode(str(p))) return dom_element def _print_BaseScalar(self, e): msub = self.dom.createElement('msub') index, system = e._id mi = self.dom.createElement('mi') mi.setAttribute('mathvariant', 'bold') mi.appendChild(self.dom.createTextNode(system._variable_names[index])) msub.appendChild(mi) mi = self.dom.createElement('mi') mi.setAttribute('mathvariant', 'bold') mi.appendChild(self.dom.createTextNode(system._name)) msub.appendChild(mi) return msub def _print_BaseVector(self, e): msub = self.dom.createElement('msub') index, system = e._id mover = self.dom.createElement('mover') mi = self.dom.createElement('mi') mi.setAttribute('mathvariant', 'bold') mi.appendChild(self.dom.createTextNode(system._vector_names[index])) mover.appendChild(mi) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('^')) mover.appendChild(mo) msub.appendChild(mover) mi = self.dom.createElement('mi') mi.setAttribute('mathvariant', 'bold') mi.appendChild(self.dom.createTextNode(system._name)) msub.appendChild(mi) return msub def _print_VectorZero(self, e): mover = self.dom.createElement('mover') mi = self.dom.createElement('mi') mi.setAttribute('mathvariant', 'bold') mi.appendChild(self.dom.createTextNode("0")) mover.appendChild(mi) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('^')) mover.appendChild(mo) return mover def _print_Cross(self, expr): mrow = self.dom.createElement('mrow') vec1 = expr._expr1 vec2 = expr._expr2 mrow.appendChild(self.parenthesize(vec1, PRECEDENCE['Mul'])) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#xD7;')) mrow.appendChild(mo) mrow.appendChild(self.parenthesize(vec2, PRECEDENCE['Mul'])) return mrow def _print_Curl(self, expr): mrow = self.dom.createElement('mrow') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#x2207;')) mrow.appendChild(mo) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#xD7;')) mrow.appendChild(mo) mrow.appendChild(self.parenthesize(expr._expr, PRECEDENCE['Mul'])) return mrow def _print_Divergence(self, expr): mrow = self.dom.createElement('mrow') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#x2207;')) mrow.appendChild(mo) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#xB7;')) mrow.appendChild(mo) mrow.appendChild(self.parenthesize(expr._expr, PRECEDENCE['Mul'])) return mrow def _print_Dot(self, expr): mrow = self.dom.createElement('mrow') vec1 = expr._expr1 vec2 = expr._expr2 mrow.appendChild(self.parenthesize(vec1, PRECEDENCE['Mul'])) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#xB7;')) mrow.appendChild(mo) mrow.appendChild(self.parenthesize(vec2, PRECEDENCE['Mul'])) return mrow def _print_Gradient(self, expr): mrow = self.dom.createElement('mrow') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#x2207;')) mrow.appendChild(mo) mrow.appendChild(self.parenthesize(expr._expr, PRECEDENCE['Mul'])) return mrow def _print_Laplacian(self, expr): mrow = self.dom.createElement('mrow') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#x2206;')) mrow.appendChild(mo) mrow.appendChild(self.parenthesize(expr._expr, PRECEDENCE['Mul'])) return mrow def _print_Integers(self, e): x = self.dom.createElement('mi') x.setAttribute('mathvariant', 'normal') x.appendChild(self.dom.createTextNode('&#x2124;')) return x def _print_Complexes(self, e): x = self.dom.createElement('mi') x.setAttribute('mathvariant', 'normal') x.appendChild(self.dom.createTextNode('&#x2102;')) return x def _print_Reals(self, e): x = self.dom.createElement('mi') x.setAttribute('mathvariant', 'normal') x.appendChild(self.dom.createTextNode('&#x211D;')) return x def _print_Naturals(self, e): x = self.dom.createElement('mi') x.setAttribute('mathvariant', 'normal') x.appendChild(self.dom.createTextNode('&#x2115;')) return x def _print_Naturals0(self, e): sub = self.dom.createElement('msub') x = self.dom.createElement('mi') x.setAttribute('mathvariant', 'normal') x.appendChild(self.dom.createTextNode('&#x2115;')) sub.appendChild(x) sub.appendChild(self._print(S.Zero)) return sub def _print_SingularityFunction(self, expr): shift = expr.args[0] - expr.args[1] power = expr.args[2] sup = self.dom.createElement('msup') brac = self.dom.createElement('mfenced') brac.setAttribute('open', u'\u27e8') brac.setAttribute('close', u'\u27e9') brac.appendChild(self._print(shift)) sup.appendChild(brac) sup.appendChild(self._print(power)) return sup def _print_NaN(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('NaN')) return x def _print_bernoulli(self, e): sub = self.dom.createElement('msub') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode('B')) sub.appendChild(mi) sub.appendChild(self._print(e.args[0])) return sub _print_bell = _print_bernoulli def _print_catalan(self, e): sub = self.dom.createElement('msub') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode('C')) sub.appendChild(mi) sub.appendChild(self._print(e.args[0])) return sub def _print_fibonacci(self, e): sub = self.dom.createElement('msub') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode('F')) sub.appendChild(mi) sub.appendChild(self._print(e.args[0])) return sub def _print_lucas(self, e): sub = self.dom.createElement('msub') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode('L')) sub.appendChild(mi) sub.appendChild(self._print(e.args[0])) return sub def _print_tribonacci(self, e): sub = self.dom.createElement('msub') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode('T')) sub.appendChild(mi) sub.appendChild(self._print(e.args[0])) return sub def _print_ComplexInfinity(self, e): x = self.dom.createElement('mover') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#x221E;')) x.appendChild(mo) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('~')) x.appendChild(mo) return x def _print_EmptySet(self, e): x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode('&#x2205;')) return x def _print_Adjoint(self, expr): from sympy.matrices import MatrixSymbol mat = expr.arg sup = self.dom.createElement('msup') if not isinstance(mat, MatrixSymbol): brac = self.dom.createElement('mfenced') brac.appendChild(self._print(mat)) sup.appendChild(brac) else: sup.appendChild(self._print(mat)) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#x2020;')) sup.appendChild(mo) return sup def _print_Transpose(self, expr): from sympy.matrices import MatrixSymbol mat = expr.arg sup = self.dom.createElement('msup') if not isinstance(mat, MatrixSymbol): brac = self.dom.createElement('mfenced') brac.appendChild(self._print(mat)) sup.appendChild(brac) else: sup.appendChild(self._print(mat)) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('T')) sup.appendChild(mo) return sup def _print_Inverse(self, expr): from sympy.matrices import MatrixSymbol mat = expr.arg sup = self.dom.createElement('msup') if not isinstance(mat, MatrixSymbol): brac = self.dom.createElement('mfenced') brac.appendChild(self._print(mat)) sup.appendChild(brac) else: sup.appendChild(self._print(mat)) sup.appendChild(self._print(-1)) return sup def _print_MatMul(self, expr): from sympy import MatMul x = self.dom.createElement('mrow') args = expr.args if isinstance(args[0], Mul): args = args[0].as_ordered_factors() + list(args[1:]) else: args = list(args) if isinstance(expr, MatMul) and _coeff_isneg(expr): if args[0] == -1: args = args[1:] else: args[0] = -args[0] mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('-')) x.appendChild(mo) for arg in args[:-1]: x.appendChild(self.parenthesize(arg, precedence_traditional(expr), False)) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&InvisibleTimes;')) x.appendChild(mo) x.appendChild(self.parenthesize(args[-1], precedence_traditional(expr), False)) return x def _print_MatPow(self, expr): from sympy.matrices import MatrixSymbol base, exp = expr.base, expr.exp sup = self.dom.createElement('msup') if not isinstance(base, MatrixSymbol): brac = self.dom.createElement('mfenced') brac.appendChild(self._print(base)) sup.appendChild(brac) else: sup.appendChild(self._print(base)) sup.appendChild(self._print(exp)) return sup def _print_ZeroMatrix(self, Z): x = self.dom.createElement('mn') x.appendChild(self.dom.createTextNode('&#x1D7D8')) return x def _print_Identity(self, I): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&#x1D540;')) return x def _print_floor(self, e): mrow = self.dom.createElement('mrow') x = self.dom.createElement('mfenced') x.setAttribute('open', u'\u230A') x.setAttribute('close', u'\u230B') x.appendChild(self._print(e.args[0])) mrow.appendChild(x) return mrow def _print_ceiling(self, e): mrow = self.dom.createElement('mrow') x = self.dom.createElement('mfenced') x.setAttribute('open', u'\u2308') x.setAttribute('close', u'\u2309') x.appendChild(self._print(e.args[0])) mrow.appendChild(x) return mrow def _print_Lambda(self, e): x = self.dom.createElement('mfenced') mrow = self.dom.createElement('mrow') symbols = e.args[0] if len(symbols) == 1: symbols = self._print(symbols[0]) else: symbols = self._print(symbols) mrow.appendChild(symbols) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#x21A6;')) mrow.appendChild(mo) mrow.appendChild(self._print(e.args[1])) x.appendChild(mrow) return x def _print_tuple(self, e): x = self.dom.createElement('mfenced') for i in e: x.appendChild(self._print(i)) return x def _print_IndexedBase(self, e): return self._print(e.label) def _print_Indexed(self, e): x = self.dom.createElement('msub') x.appendChild(self._print(e.base)) if len(e.indices) == 1: x.appendChild(self._print(e.indices[0])) return x x.appendChild(self._print(e.indices)) return x def _print_MatrixElement(self, e): x = self.dom.createElement('msub') x.appendChild(self.parenthesize(e.parent, PRECEDENCE["Atom"], strict = True)) brac = self.dom.createElement('mfenced') brac.setAttribute("open", "") brac.setAttribute("close", "") for i in e.indices: brac.appendChild(self._print(i)) x.appendChild(brac) return x def _print_elliptic_f(self, e): x = self.dom.createElement('mrow') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode('&#x1d5a5;')) x.appendChild(mi) y = self.dom.createElement('mfenced') y.setAttribute("separators", "|") for i in e.args: y.appendChild(self._print(i)) x.appendChild(y) return x def _print_elliptic_e(self, e): x = self.dom.createElement('mrow') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode('&#x1d5a4;')) x.appendChild(mi) y = self.dom.createElement('mfenced') y.setAttribute("separators", "|") for i in e.args: y.appendChild(self._print(i)) x.appendChild(y) return x def _print_elliptic_pi(self, e): x = self.dom.createElement('mrow') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode('&#x1d6f1;')) x.appendChild(mi) y = self.dom.createElement('mfenced') if len(e.args) == 2: y.setAttribute("separators", "|") else: y.setAttribute("separators", ";|") for i in e.args: y.appendChild(self._print(i)) x.appendChild(y) return x def _print_Ei(self, e): x = self.dom.createElement('mrow') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode('Ei')) x.appendChild(mi) x.appendChild(self._print(e.args)) return x def _print_expint(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msub') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('E')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) x.appendChild(y) x.appendChild(self._print(e.args[1:])) return x def _print_jacobi(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msubsup') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('P')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) y.appendChild(self._print(e.args[1:3])) x.appendChild(y) x.appendChild(self._print(e.args[3:])) return x def _print_gegenbauer(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msubsup') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('C')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) y.appendChild(self._print(e.args[1:2])) x.appendChild(y) x.appendChild(self._print(e.args[2:])) return x def _print_chebyshevt(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msub') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('T')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) x.appendChild(y) x.appendChild(self._print(e.args[1:])) return x def _print_chebyshevu(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msub') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('U')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) x.appendChild(y) x.appendChild(self._print(e.args[1:])) return x def _print_legendre(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msub') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('P')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) x.appendChild(y) x.appendChild(self._print(e.args[1:])) return x def _print_assoc_legendre(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msubsup') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('P')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) y.appendChild(self._print(e.args[1:2])) x.appendChild(y) x.appendChild(self._print(e.args[2:])) return x def _print_laguerre(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msub') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('L')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) x.appendChild(y) x.appendChild(self._print(e.args[1:])) return x def _print_assoc_laguerre(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msubsup') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('L')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) y.appendChild(self._print(e.args[1:2])) x.appendChild(y) x.appendChild(self._print(e.args[2:])) return x def _print_hermite(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msub') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('H')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) x.appendChild(y) x.appendChild(self._print(e.args[1:])) return x def mathml(expr, printer='content', **settings): """Returns the MathML representation of expr. If printer is presentation then prints Presentation MathML else prints content MathML. """ if printer == 'presentation': return MathMLPresentationPrinter(settings).doprint(expr) else: return MathMLContentPrinter(settings).doprint(expr) def print_mathml(expr, printer='content', **settings): """ Prints a pretty representation of the MathML code for expr. If printer is presentation then prints Presentation MathML else prints content MathML. Examples ======== >>> ## >>> from sympy.printing.mathml import print_mathml >>> from sympy.abc import x >>> print_mathml(x+1) #doctest: +NORMALIZE_WHITESPACE <apply> <plus/> <ci>x</ci> <cn>1</cn> </apply> >>> print_mathml(x+1, printer='presentation') <mrow> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> """ if printer == 'presentation': s = MathMLPresentationPrinter(settings) else: s = MathMLContentPrinter(settings) xml = s._print(sympify(expr)) s.apply_patch() pretty_xml = xml.toprettyxml() s.restore_patch() print(pretty_xml) # For backward compatibility MathMLPrinter = MathMLContentPrinter
1664e71494a313e21b591c38cd1698d76bf9a86c0d2ab6b9a383507125d3442f
""" Octave (and Matlab) code printer The `OctaveCodePrinter` converts SymPy expressions into Octave expressions. It uses a subset of the Octave language for Matlab compatibility. A complete code generator, which uses `octave_code` extensively, can be found in `sympy.utilities.codegen`. The `codegen` module can be used to generate complete source code files. """ from __future__ import print_function, division from sympy.codegen.ast import Assignment from sympy.core import Mul, Pow, S, Rational from sympy.core.compatibility import string_types, range from sympy.core.mul import _keep_coeff from sympy.printing.codeprinter import CodePrinter from sympy.printing.precedence import precedence, PRECEDENCE from re import search # List of known functions. First, those that have the same name in # SymPy and Octave. This is almost certainly incomplete! known_fcns_src1 = ["sin", "cos", "tan", "cot", "sec", "csc", "asin", "acos", "acot", "atan", "atan2", "asec", "acsc", "sinh", "cosh", "tanh", "coth", "csch", "sech", "asinh", "acosh", "atanh", "acoth", "asech", "acsch", "erfc", "erfi", "erf", "erfinv", "erfcinv", "besseli", "besselj", "besselk", "bessely", "bernoulli", "beta", "euler", "exp", "factorial", "floor", "fresnelc", "fresnels", "gamma", "harmonic", "log", "polylog", "sign", "zeta"] # These functions have different names ("Sympy": "Octave"), more # generally a mapping to (argument_conditions, octave_function). known_fcns_src2 = { "Abs": "abs", "arg": "angle", # arg/angle ok in Octave but only angle in Matlab "ceiling": "ceil", "chebyshevu": "chebyshevU", "chebyshevt": "chebyshevT", "Chi": "coshint", "Ci": "cosint", "conjugate": "conj", "DiracDelta": "dirac", "Heaviside": "heaviside", "im": "imag", "laguerre": "laguerreL", "LambertW": "lambertw", "li": "logint", "loggamma": "gammaln", "Max": "max", "Min": "min", "polygamma": "psi", "re": "real", "RisingFactorial": "pochhammer", "Shi": "sinhint", "Si": "sinint", } class OctaveCodePrinter(CodePrinter): """ A printer to convert expressions to strings of Octave/Matlab code. """ printmethod = "_octave" language = "Octave" _operators = { 'and': '&', 'or': '|', 'not': '~', } _default_settings = { 'order': None, 'full_prec': 'auto', 'precision': 17, 'user_functions': {}, 'human': True, 'allow_unknown_functions': False, 'contract': True, 'inline': True, } # Note: contract is for expressing tensors as loops (if True), or just # assignment (if False). FIXME: this should be looked a more carefully # for Octave. def __init__(self, settings={}): super(OctaveCodePrinter, self).__init__(settings) self.known_functions = dict(zip(known_fcns_src1, known_fcns_src1)) self.known_functions.update(dict(known_fcns_src2)) userfuncs = settings.get('user_functions', {}) self.known_functions.update(userfuncs) def _rate_index_position(self, p): return p*5 def _get_statement(self, codestring): return "%s;" % codestring def _get_comment(self, text): return "% {0}".format(text) def _declare_number_const(self, name, value): return "{0} = {1};".format(name, value) def _format_code(self, lines): return self.indent_code(lines) def _traverse_matrix_indices(self, mat): # Octave uses Fortran order (column-major) rows, cols = mat.shape return ((i, j) for j in range(cols) for i in range(rows)) def _get_loop_opening_ending(self, indices): open_lines = [] close_lines = [] for i in indices: # Octave arrays start at 1 and end at dimension var, start, stop = map(self._print, [i.label, i.lower + 1, i.upper + 1]) open_lines.append("for %s = %s:%s" % (var, start, stop)) close_lines.append("end") return open_lines, close_lines def _print_Mul(self, expr): # print complex numbers nicely in Octave if (expr.is_number and expr.is_imaginary and (S.ImaginaryUnit*expr).is_Integer): return "%si" % self._print(-S.ImaginaryUnit*expr) # cribbed from str.py prec = precedence(expr) c, e = expr.as_coeff_Mul() if c < 0: expr = _keep_coeff(-c, e) sign = "-" else: sign = "" a = [] # items in the numerator b = [] # items that are in the denominator (if any) pow_paren = [] # Will collect all pow with more than one base element and exp = -1 if self.order not in ('old', 'none'): args = expr.as_ordered_factors() else: # use make_args in case expr was something like -x -> x args = Mul.make_args(expr) # Gather args for numerator/denominator for item in args: if (item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative): if item.exp != -1: b.append(Pow(item.base, -item.exp, evaluate=False)) else: if len(item.args[0].args) != 1 and isinstance(item.base, Mul): # To avoid situations like #14160 pow_paren.append(item) b.append(Pow(item.base, -item.exp)) elif item.is_Rational and item is not S.Infinity: if item.p != 1: a.append(Rational(item.p)) if item.q != 1: b.append(Rational(item.q)) else: a.append(item) a = a or [S.One] a_str = [self.parenthesize(x, prec) for x in a] b_str = [self.parenthesize(x, prec) for x in b] # To parenthesize Pow with exp = -1 and having more than one Symbol for item in pow_paren: if item.base in b: b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)] # from here it differs from str.py to deal with "*" and ".*" def multjoin(a, a_str): # here we probably are assuming the constants will come first r = a_str[0] for i in range(1, len(a)): mulsym = '*' if a[i-1].is_number else '.*' r = r + mulsym + a_str[i] return r if not b: return sign + multjoin(a, a_str) elif len(b) == 1: divsym = '/' if b[0].is_number else './' return sign + multjoin(a, a_str) + divsym + b_str[0] else: divsym = '/' if all([bi.is_number for bi in b]) else './' return (sign + multjoin(a, a_str) + divsym + "(%s)" % multjoin(b, b_str)) def _print_Pow(self, expr): powsymbol = '^' if all([x.is_number for x in expr.args]) else '.^' PREC = precedence(expr) if expr.exp == S.Half: return "sqrt(%s)" % self._print(expr.base) if expr.is_commutative: if expr.exp == -S.Half: sym = '/' if expr.base.is_number else './' return "1" + sym + "sqrt(%s)" % self._print(expr.base) if expr.exp == -S.One: sym = '/' if expr.base.is_number else './' return "1" + sym + "%s" % self.parenthesize(expr.base, PREC) return '%s%s%s' % (self.parenthesize(expr.base, PREC), powsymbol, self.parenthesize(expr.exp, PREC)) def _print_MatPow(self, expr): PREC = precedence(expr) return '%s^%s' % (self.parenthesize(expr.base, PREC), self.parenthesize(expr.exp, PREC)) def _print_Pi(self, expr): return 'pi' def _print_ImaginaryUnit(self, expr): return "1i" def _print_Exp1(self, expr): return "exp(1)" def _print_GoldenRatio(self, expr): # FIXME: how to do better, e.g., for octave_code(2*GoldenRatio)? #return self._print((1+sqrt(S(5)))/2) return "(1+sqrt(5))/2" def _print_Assignment(self, expr): from sympy.functions.elementary.piecewise import Piecewise from sympy.tensor.indexed import IndexedBase # Copied from codeprinter, but remove special MatrixSymbol treatment lhs = expr.lhs rhs = expr.rhs # We special case assignments that take multiple lines if not self._settings["inline"] and isinstance(expr.rhs, Piecewise): # Here we modify Piecewise so each expression is now # an Assignment, and then continue on the print. expressions = [] conditions = [] for (e, c) in rhs.args: expressions.append(Assignment(lhs, e)) conditions.append(c) temp = Piecewise(*zip(expressions, conditions)) return self._print(temp) if self._settings["contract"] and (lhs.has(IndexedBase) or rhs.has(IndexedBase)): # Here we check if there is looping to be done, and if so # print the required loops. return self._doprint_loops(rhs, lhs) else: lhs_code = self._print(lhs) rhs_code = self._print(rhs) return self._get_statement("%s = %s" % (lhs_code, rhs_code)) def _print_Infinity(self, expr): return 'inf' def _print_NegativeInfinity(self, expr): return '-inf' def _print_NaN(self, expr): return 'NaN' def _print_list(self, expr): return '{' + ', '.join(self._print(a) for a in expr) + '}' _print_tuple = _print_list _print_Tuple = _print_list def _print_BooleanTrue(self, expr): return "true" def _print_BooleanFalse(self, expr): return "false" def _print_bool(self, expr): return str(expr).lower() # Could generate quadrature code for definite Integrals? #_print_Integral = _print_not_supported def _print_MatrixBase(self, A): # Handle zero dimensions: if (A.rows, A.cols) == (0, 0): return '[]' elif A.rows == 0 or A.cols == 0: return 'zeros(%s, %s)' % (A.rows, A.cols) elif (A.rows, A.cols) == (1, 1): # Octave does not distinguish between scalars and 1x1 matrices return self._print(A[0, 0]) return "[%s]" % "; ".join(" ".join([self._print(a) for a in A[r, :]]) for r in range(A.rows)) def _print_SparseMatrix(self, A): from sympy.matrices import Matrix L = A.col_list(); # make row vectors of the indices and entries I = Matrix([[k[0] + 1 for k in L]]) J = Matrix([[k[1] + 1 for k in L]]) AIJ = Matrix([[k[2] for k in L]]) return "sparse(%s, %s, %s, %s, %s)" % (self._print(I), self._print(J), self._print(AIJ), A.rows, A.cols) # FIXME: Str/CodePrinter could define each of these to call the _print # method from higher up the class hierarchy (see _print_NumberSymbol). # Then subclasses like us would not need to repeat all this. _print_Matrix = \ _print_DenseMatrix = \ _print_MutableDenseMatrix = \ _print_ImmutableMatrix = \ _print_ImmutableDenseMatrix = \ _print_MatrixBase _print_MutableSparseMatrix = \ _print_ImmutableSparseMatrix = \ _print_SparseMatrix def _print_MatrixElement(self, expr): return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) \ + '(%s, %s)' % (expr.i + 1, expr.j + 1) def _print_MatrixSlice(self, expr): def strslice(x, lim): l = x[0] + 1 h = x[1] step = x[2] lstr = self._print(l) hstr = 'end' if h == lim else self._print(h) if step == 1: if l == 1 and h == lim: return ':' if l == h: return lstr else: return lstr + ':' + hstr else: return ':'.join((lstr, self._print(step), hstr)) return (self._print(expr.parent) + '(' + strslice(expr.rowslice, expr.parent.shape[0]) + ', ' + strslice(expr.colslice, expr.parent.shape[1]) + ')') def _print_Indexed(self, expr): inds = [ self._print(i) for i in expr.indices ] return "%s(%s)" % (self._print(expr.base.label), ", ".join(inds)) def _print_Idx(self, expr): return self._print(expr.label) def _print_KroneckerDelta(self, expr): prec = PRECEDENCE["Pow"] return "double(%s == %s)" % tuple(self.parenthesize(x, prec) for x in expr.args) def _print_Identity(self, expr): shape = expr.shape if len(shape) == 2 and shape[0] == shape[1]: shape = [shape[0]] s = ", ".join(self._print(n) for n in shape) return "eye(" + s + ")" def _print_uppergamma(self, expr): return "gammainc(%s, %s, 'upper')" % (self._print(expr.args[1]), self._print(expr.args[0])) def _print_lowergamma(self, expr): return "gammainc(%s, %s, 'lower')" % (self._print(expr.args[1]), self._print(expr.args[0])) def _print_sinc(self, expr): #Note: Divide by pi because Octave implements normalized sinc function. return "sinc(%s)" % self._print(expr.args[0]/S.Pi) def _print_hankel1(self, expr): return "besselh(%s, 1, %s)" % (self._print(expr.order), self._print(expr.argument)) def _print_hankel2(self, expr): return "besselh(%s, 2, %s)" % (self._print(expr.order), self._print(expr.argument)) # Note: as of 2015, Octave doesn't have spherical Bessel functions def _print_jn(self, expr): from sympy.functions import sqrt, besselj x = expr.argument expr2 = sqrt(S.Pi/(2*x))*besselj(expr.order + S.Half, x) return self._print(expr2) def _print_yn(self, expr): from sympy.functions import sqrt, bessely x = expr.argument expr2 = sqrt(S.Pi/(2*x))*bessely(expr.order + S.Half, x) return self._print(expr2) def _print_airyai(self, expr): return "airy(0, %s)" % self._print(expr.args[0]) def _print_airyaiprime(self, expr): return "airy(1, %s)" % self._print(expr.args[0]) def _print_airybi(self, expr): return "airy(2, %s)" % self._print(expr.args[0]) def _print_airybiprime(self, expr): return "airy(3, %s)" % self._print(expr.args[0]) def _print_expint(self, expr): mu, x = expr.args if mu != 1: return self._print_not_supported(expr) return "expint(%s)" % self._print(x) def _one_or_two_reversed_args(self, expr): assert len(expr.args) <= 2 return '{name}({args})'.format( name=self.known_functions[expr.__class__.__name__], args=", ".join([self._print(x) for x in reversed(expr.args)]) ) _print_DiracDelta = _print_LambertW = _one_or_two_reversed_args def _nested_binary_math_func(self, expr): return '{name}({arg1}, {arg2})'.format( name=self.known_functions[expr.__class__.__name__], arg1=self._print(expr.args[0]), arg2=self._print(expr.func(*expr.args[1:])) ) _print_Max = _print_Min = _nested_binary_math_func def _print_Piecewise(self, expr): if expr.args[-1].cond != True: # We need the last conditional to be a True, otherwise the resulting # function may not return a result. raise ValueError("All Piecewise expressions must contain an " "(expr, True) statement to be used as a default " "condition. Without one, the generated " "expression may not evaluate to anything under " "some condition.") lines = [] if self._settings["inline"]: # Express each (cond, expr) pair in a nested Horner form: # (condition) .* (expr) + (not cond) .* (<others>) # Expressions that result in multiple statements won't work here. ecpairs = ["({0}).*({1}) + (~({0})).*(".format (self._print(c), self._print(e)) for e, c in expr.args[:-1]] elast = "%s" % self._print(expr.args[-1].expr) pw = " ...\n".join(ecpairs) + elast + ")"*len(ecpairs) # Note: current need these outer brackets for 2*pw. Would be # nicer to teach parenthesize() to do this for us when needed! return "(" + pw + ")" else: for i, (e, c) in enumerate(expr.args): if i == 0: lines.append("if (%s)" % self._print(c)) elif i == len(expr.args) - 1 and c == True: lines.append("else") else: lines.append("elseif (%s)" % self._print(c)) code0 = self._print(e) lines.append(code0) if i == len(expr.args) - 1: lines.append("end") return "\n".join(lines) def _print_zeta(self, expr): if len(expr.args) == 1: return "zeta(%s)" % self._print(expr.args[0]) else: # Matlab two argument zeta is not equivalent to SymPy's return self._print_not_supported(expr) def indent_code(self, code): """Accepts a string of code or a list of code lines""" # code mostly copied from ccode if isinstance(code, string_types): code_lines = self.indent_code(code.splitlines(True)) return ''.join(code_lines) tab = " " inc_regex = ('^function ', '^if ', '^elseif ', '^else$', '^for ') dec_regex = ('^end$', '^elseif ', '^else$') # pre-strip left-space from the code code = [ line.lstrip(' \t') for line in code ] increase = [ int(any([search(re, line) for re in inc_regex])) for line in code ] decrease = [ int(any([search(re, line) for re in dec_regex])) for line in code ] pretty = [] level = 0 for n, line in enumerate(code): if line == '' or line == '\n': pretty.append(line) continue level -= decrease[n] pretty.append("%s%s" % (tab*level, line)) level += increase[n] return pretty def octave_code(expr, assign_to=None, **settings): r"""Converts `expr` to a string of Octave (or Matlab) code. The string uses a subset of the Octave language for Matlab compatibility. Parameters ========== expr : Expr A sympy expression to be converted. assign_to : optional When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string, ``Symbol``, ``MatrixSymbol``, or ``Indexed`` type. This can be helpful for expressions that generate multi-line statements. precision : integer, optional The precision for numbers such as pi [default=16]. user_functions : dict, optional A dictionary where keys are ``FunctionClass`` instances and values are their string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. See below for examples. human : bool, optional If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True]. contract: bool, optional If True, ``Indexed`` instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True]. inline: bool, optional If True, we try to create single-statement code instead of multiple statements. [default=True]. Examples ======== >>> from sympy import octave_code, symbols, sin, pi >>> x = symbols('x') >>> octave_code(sin(x).series(x).removeO()) 'x.^5/120 - x.^3/6 + x' >>> from sympy import Rational, ceiling, Abs >>> x, y, tau = symbols("x, y, tau") >>> octave_code((2*tau)**Rational(7, 2)) '8*sqrt(2)*tau.^(7/2)' Note that element-wise (Hadamard) operations are used by default between symbols. This is because its very common in Octave to write "vectorized" code. It is harmless if the values are scalars. >>> octave_code(sin(pi*x*y), assign_to="s") 's = sin(pi*x.*y);' If you need a matrix product "*" or matrix power "^", you can specify the symbol as a ``MatrixSymbol``. >>> from sympy import Symbol, MatrixSymbol >>> n = Symbol('n', integer=True, positive=True) >>> A = MatrixSymbol('A', n, n) >>> octave_code(3*pi*A**3) '(3*pi)*A^3' This class uses several rules to decide which symbol to use a product. Pure numbers use "*", Symbols use ".*" and MatrixSymbols use "*". A HadamardProduct can be used to specify componentwise multiplication ".*" of two MatrixSymbols. There is currently there is no easy way to specify scalar symbols, so sometimes the code might have some minor cosmetic issues. For example, suppose x and y are scalars and A is a Matrix, then while a human programmer might write "(x^2*y)*A^3", we generate: >>> octave_code(x**2*y*A**3) '(x.^2.*y)*A^3' Matrices are supported using Octave inline notation. When using ``assign_to`` with matrices, the name can be specified either as a string or as a ``MatrixSymbol``. The dimensions must align in the latter case. >>> from sympy import Matrix, MatrixSymbol >>> mat = Matrix([[x**2, sin(x), ceiling(x)]]) >>> octave_code(mat, assign_to='A') 'A = [x.^2 sin(x) ceil(x)];' ``Piecewise`` expressions are implemented with logical masking by default. Alternatively, you can pass "inline=False" to use if-else conditionals. Note that if the ``Piecewise`` lacks a default term, represented by ``(expr, True)`` then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything. >>> from sympy import Piecewise >>> pw = Piecewise((x + 1, x > 0), (x, True)) >>> octave_code(pw, assign_to=tau) 'tau = ((x > 0).*(x + 1) + (~(x > 0)).*(x));' Note that any expression that can be generated normally can also exist inside a Matrix: >>> mat = Matrix([[x**2, pw, sin(x)]]) >>> octave_code(mat, assign_to='A') 'A = [x.^2 ((x > 0).*(x + 1) + (~(x > 0)).*(x)) sin(x)];' Custom printing can be defined for certain types by passing a dictionary of "type" : "function" to the ``user_functions`` kwarg. Alternatively, the dictionary value can be a list of tuples i.e., [(argument_test, cfunction_string)]. This can be used to call a custom Octave function. >>> from sympy import Function >>> f = Function('f') >>> g = Function('g') >>> custom_functions = { ... "f": "existing_octave_fcn", ... "g": [(lambda x: x.is_Matrix, "my_mat_fcn"), ... (lambda x: not x.is_Matrix, "my_fcn")] ... } >>> mat = Matrix([[1, x]]) >>> octave_code(f(x) + g(x) + g(mat), user_functions=custom_functions) 'existing_octave_fcn(x) + my_fcn(x) + my_mat_fcn([1 x])' Support for loops is provided through ``Indexed`` types. With ``contract=True`` these expressions will be turned into loops, whereas ``contract=False`` will just print the assignment expression that should be looped over: >>> from sympy import Eq, IndexedBase, Idx, ccode >>> len_y = 5 >>> y = IndexedBase('y', shape=(len_y,)) >>> t = IndexedBase('t', shape=(len_y,)) >>> Dy = IndexedBase('Dy', shape=(len_y-1,)) >>> i = Idx('i', len_y-1) >>> e = Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) >>> octave_code(e.rhs, assign_to=e.lhs, contract=False) 'Dy(i) = (y(i + 1) - y(i))./(t(i + 1) - t(i));' """ return OctaveCodePrinter(settings).doprint(expr, assign_to) def print_octave_code(expr, **settings): """Prints the Octave (or Matlab) representation of the given expression. See `octave_code` for the meaning of the optional arguments. """ print(octave_code(expr, **settings))
9f6711089d93408f20c972a613bc9a3c24677f6e7e8b9b6b606ab6a210f85436
""" Fortran code printer The FCodePrinter converts single sympy expressions into single Fortran expressions, using the functions defined in the Fortran 77 standard where possible. Some useful pointers to Fortran can be found on wikipedia: https://en.wikipedia.org/wiki/Fortran Most of the code below is based on the "Professional Programmer\'s Guide to Fortran77" by Clive G. Page: http://www.star.le.ac.uk/~cgp/prof77.html Fortran is a case-insensitive language. This might cause trouble because SymPy is case sensitive. So, fcode adds underscores to variable names when it is necessary to make them different for Fortran. """ from __future__ import print_function, division from collections import defaultdict from itertools import chain import string from sympy.codegen.ast import ( Assignment, Declaration, Pointer, value_const, float32, float64, float80, complex64, complex128, int8, int16, int32, int64, intc, real, integer, bool_, complex_ ) from sympy.codegen.fnodes import ( allocatable, isign, dsign, cmplx, merge, literal_dp, elemental, pure, intent_in, intent_out, intent_inout ) from sympy.core import S, Add, N, Float, Symbol from sympy.core.compatibility import string_types, range from sympy.core.function import Function from sympy.core.relational import Eq from sympy.sets import Range from sympy.printing.codeprinter import CodePrinter from sympy.printing.precedence import precedence, PRECEDENCE from sympy.printing.printer import printer_context known_functions = { "sin": "sin", "cos": "cos", "tan": "tan", "asin": "asin", "acos": "acos", "atan": "atan", "atan2": "atan2", "sinh": "sinh", "cosh": "cosh", "tanh": "tanh", "log": "log", "exp": "exp", "erf": "erf", "Abs": "abs", "conjugate": "conjg", "Max": "max", "Min": "min", } class FCodePrinter(CodePrinter): """A printer to convert sympy expressions to strings of Fortran code""" printmethod = "_fcode" language = "Fortran" type_aliases = { integer: int32, real: float64, complex_: complex128, } type_mappings = { intc: 'integer(c_int)', float32: 'real*4', # real(kind(0.e0)) float64: 'real*8', # real(kind(0.d0)) float80: 'real*10', # real(kind(????)) complex64: 'complex*8', complex128: 'complex*16', int8: 'integer*1', int16: 'integer*2', int32: 'integer*4', int64: 'integer*8', bool_: 'logical' } type_modules = { intc: {'iso_c_binding': 'c_int'} } _default_settings = { 'order': None, 'full_prec': 'auto', 'precision': 17, 'user_functions': {}, 'human': True, 'allow_unknown_functions': False, 'source_format': 'fixed', 'contract': True, 'standard': 77, 'name_mangling' : True, } _operators = { 'and': '.and.', 'or': '.or.', 'xor': '.neqv.', 'equivalent': '.eqv.', 'not': '.not. ', } _relationals = { '!=': '/=', } def __init__(self, settings={}): self.mangled_symbols = {} ## Dict showing mapping of all words self.used_name= [] self.type_aliases = dict(chain(self.type_aliases.items(), settings.pop('type_aliases', {}).items())) self.type_mappings = dict(chain(self.type_mappings.items(), settings.pop('type_mappings', {}).items())) super(FCodePrinter, self).__init__(settings) self.known_functions = dict(known_functions) userfuncs = settings.get('user_functions', {}) self.known_functions.update(userfuncs) # leading columns depend on fixed or free format standards = {66, 77, 90, 95, 2003, 2008} if self._settings['standard'] not in standards: raise ValueError("Unknown Fortran standard: %s" % self._settings[ 'standard']) self.module_uses = defaultdict(set) # e.g.: use iso_c_binding, only: c_int @property def _lead(self): if self._settings['source_format'] == 'fixed': return {'code': " ", 'cont': " @ ", 'comment': "C "} elif self._settings['source_format'] == 'free': return {'code': "", 'cont': " ", 'comment': "! "} else: raise ValueError("Unknown source format: %s" % self._settings['source_format']) def _print_Symbol(self, expr): if self._settings['name_mangling'] == True: if expr not in self.mangled_symbols: name = expr.name while name.lower() in self.used_name: name += '_' self.used_name.append(name.lower()) if name == expr.name: self.mangled_symbols[expr] = expr else: self.mangled_symbols[expr] = Symbol(name) expr = expr.xreplace(self.mangled_symbols) name = super(FCodePrinter, self)._print_Symbol(expr) return name def _rate_index_position(self, p): return -p*5 def _get_statement(self, codestring): return codestring def _get_comment(self, text): return "! {0}".format(text) def _declare_number_const(self, name, value): return "parameter ({0} = {1})".format(name, self._print(value)) def _print_NumberSymbol(self, expr): # A Number symbol that is not implemented here or with _printmethod # is registered and evaluated self._number_symbols.add((expr, Float(expr.evalf(self._settings['precision'])))) return str(expr) def _format_code(self, lines): return self._wrap_fortran(self.indent_code(lines)) def _traverse_matrix_indices(self, mat): rows, cols = mat.shape return ((i, j) for j in range(cols) for i in range(rows)) def _get_loop_opening_ending(self, indices): open_lines = [] close_lines = [] for i in indices: # fortran arrays start at 1 and end at dimension var, start, stop = map(self._print, [i.label, i.lower + 1, i.upper + 1]) open_lines.append("do %s = %s, %s" % (var, start, stop)) close_lines.append("end do") return open_lines, close_lines def _print_sign(self, expr): from sympy import Abs arg, = expr.args if arg.is_integer: new_expr = merge(0, isign(1, arg), Eq(arg, 0)) elif arg.is_complex: new_expr = merge(cmplx(literal_dp(0), literal_dp(0)), arg/Abs(arg), Eq(Abs(arg), literal_dp(0))) else: new_expr = merge(literal_dp(0), dsign(literal_dp(1), arg), Eq(arg, literal_dp(0))) return self._print(new_expr) def _print_Piecewise(self, expr): if expr.args[-1].cond != True: # We need the last conditional to be a True, otherwise the resulting # function may not return a result. raise ValueError("All Piecewise expressions must contain an " "(expr, True) statement to be used as a default " "condition. Without one, the generated " "expression may not evaluate to anything under " "some condition.") lines = [] if expr.has(Assignment): for i, (e, c) in enumerate(expr.args): if i == 0: lines.append("if (%s) then" % self._print(c)) elif i == len(expr.args) - 1 and c == True: lines.append("else") else: lines.append("else if (%s) then" % self._print(c)) lines.append(self._print(e)) lines.append("end if") return "\n".join(lines) elif self._settings["standard"] >= 95: # Only supported in F95 and newer: # The piecewise was used in an expression, need to do inline # operators. This has the downside that inline operators will # not work for statements that span multiple lines (Matrix or # Indexed expressions). pattern = "merge({T}, {F}, {COND})" code = self._print(expr.args[-1].expr) terms = list(expr.args[:-1]) while terms: e, c = terms.pop() expr = self._print(e) cond = self._print(c) code = pattern.format(T=expr, F=code, COND=cond) return code else: # `merge` is not supported prior to F95 raise NotImplementedError("Using Piecewise as an expression using " "inline operators is not supported in " "standards earlier than Fortran95.") def _print_MatrixElement(self, expr): return "{0}({1}, {2})".format(self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True), expr.i + 1, expr.j + 1) def _print_Add(self, expr): # purpose: print complex numbers nicely in Fortran. # collect the purely real and purely imaginary parts: pure_real = [] pure_imaginary = [] mixed = [] for arg in expr.args: if arg.is_number and arg.is_real: pure_real.append(arg) elif arg.is_number and arg.is_imaginary: pure_imaginary.append(arg) else: mixed.append(arg) if pure_imaginary: if mixed: PREC = precedence(expr) term = Add(*mixed) t = self._print(term) if t.startswith('-'): sign = "-" t = t[1:] else: sign = "+" if precedence(term) < PREC: t = "(%s)" % t return "cmplx(%s,%s) %s %s" % ( self._print(Add(*pure_real)), self._print(-S.ImaginaryUnit*Add(*pure_imaginary)), sign, t, ) else: return "cmplx(%s,%s)" % ( self._print(Add(*pure_real)), self._print(-S.ImaginaryUnit*Add(*pure_imaginary)), ) else: return CodePrinter._print_Add(self, expr) def _print_Function(self, expr): # All constant function args are evaluated as floats prec = self._settings['precision'] args = [N(a, prec) for a in expr.args] eval_expr = expr.func(*args) if not isinstance(eval_expr, Function): return self._print(eval_expr) else: return CodePrinter._print_Function(self, expr.func(*args)) def _print_Mod(self, expr): # NOTE : Fortran has the functions mod() and modulo(). modulo() behaves # the same wrt to the sign of the arguments as Python and SymPy's # modulus computations (% and Mod()) but is not available in Fortran 66 # or Fortran 77, thus we raise an error. if self._settings['standard'] in [66, 77]: msg = ("Python % operator and SymPy's Mod() function are not " "supported by Fortran 66 or 77 standards.") raise NotImplementedError(msg) else: x, y = expr.args return " modulo({}, {})".format(self._print(x), self._print(y)) def _print_ImaginaryUnit(self, expr): # purpose: print complex numbers nicely in Fortran. return "cmplx(0,1)" def _print_int(self, expr): return str(expr) def _print_Mul(self, expr): # purpose: print complex numbers nicely in Fortran. if expr.is_number and expr.is_imaginary: return "cmplx(0,%s)" % ( self._print(-S.ImaginaryUnit*expr) ) else: return CodePrinter._print_Mul(self, expr) def _print_Pow(self, expr): PREC = precedence(expr) if expr.exp == -1: return '%s/%s' % ( self._print(literal_dp(1)), self.parenthesize(expr.base, PREC) ) elif expr.exp == 0.5: if expr.base.is_integer: # Fortran intrinsic sqrt() does not accept integer argument if expr.base.is_Number: return 'sqrt(%s.0d0)' % self._print(expr.base) else: return 'sqrt(dble(%s))' % self._print(expr.base) else: return 'sqrt(%s)' % self._print(expr.base) else: return CodePrinter._print_Pow(self, expr) def _print_Rational(self, expr): p, q = int(expr.p), int(expr.q) return "%d.0d0/%d.0d0" % (p, q) def _print_Float(self, expr): printed = CodePrinter._print_Float(self, expr) e = printed.find('e') if e > -1: return "%sd%s" % (printed[:e], printed[e + 1:]) return "%sd0" % printed def _print_Indexed(self, expr): inds = [ self._print(i) for i in expr.indices ] return "%s(%s)" % (self._print(expr.base.label), ", ".join(inds)) def _print_Idx(self, expr): return self._print(expr.label) def _print_AugmentedAssignment(self, expr): lhs_code = self._print(expr.lhs) rhs_code = self._print(expr.rhs) return self._get_statement("{0} = {0} {1} {2}".format( *map(lambda arg: self._print(arg), [lhs_code, expr.binop, rhs_code]))) def _print_sum_(self, sm): params = self._print(sm.array) if sm.dim != None: # Must use '!= None', cannot use 'is not None' params += ', ' + self._print(sm.dim) if sm.mask != None: # Must use '!= None', cannot use 'is not None' params += ', mask=' + self._print(sm.mask) return '%s(%s)' % (sm.__class__.__name__.rstrip('_'), params) def _print_product_(self, prod): return self._print_sum_(prod) def _print_Do(self, do): excl = ['concurrent'] if do.step == 1: excl.append('step') step = '' else: step = ', {step}' return ( 'do {concurrent}{counter} = {first}, {last}'+step+'\n' '{body}\n' 'end do\n' ).format( concurrent='concurrent ' if do.concurrent else '', **do.kwargs(apply=lambda arg: self._print(arg), exclude=excl) ) def _print_ImpliedDoLoop(self, idl): step = '' if idl.step == 1 else ', {step}' return ('({expr}, {counter} = {first}, {last}'+step+')').format( **idl.kwargs(apply=lambda arg: self._print(arg)) ) def _print_For(self, expr): target = self._print(expr.target) if isinstance(expr.iterable, Range): start, stop, step = expr.iterable.args else: raise NotImplementedError("Only iterable currently supported is Range") body = self._print(expr.body) return ('do {target} = {start}, {stop}, {step}\n' '{body}\n' 'end do').format(target=target, start=start, stop=stop, step=step, body=body) def _print_Equality(self, expr): lhs, rhs = expr.args return ' == '.join(map(lambda arg: self._print(arg), (lhs, rhs))) def _print_Unequality(self, expr): lhs, rhs = expr.args return ' /= '.join(map(lambda arg: self._print(arg), (lhs, rhs))) def _print_Type(self, type_): type_ = self.type_aliases.get(type_, type_) type_str = self.type_mappings.get(type_, type_.name) module_uses = self.type_modules.get(type_) if module_uses: for k, v in module_uses: self.module_uses[k].add(v) return type_str def _print_Element(self, elem): return '{symbol}({idxs})'.format( symbol=self._print(elem.symbol), idxs=', '.join(map(lambda arg: self._print(arg), elem.indices)) ) def _print_Extent(self, ext): return str(ext) def _print_Declaration(self, expr): var = expr.variable val = var.value dim = var.attr_params('dimension') intents = [intent in var.attrs for intent in (intent_in, intent_out, intent_inout)] if intents.count(True) == 0: intent = '' elif intents.count(True) == 1: intent = ', intent(%s)' % ['in', 'out', 'inout'][intents.index(True)] else: raise ValueError("Multiple intents specified for %s" % self) if isinstance(var, Pointer): raise NotImplementedError("Pointers are not available by default in Fortran.") if self._settings["standard"] >= 90: result = '{t}{vc}{dim}{intent}{alloc} :: {s}'.format( t=self._print(var.type), vc=', parameter' if value_const in var.attrs else '', dim=', dimension(%s)' % ', '.join(map(lambda arg: self._print(arg), dim)) if dim else '', intent=intent, alloc=', allocatable' if allocatable in var.attrs else '', s=self._print(var.symbol) ) if val != None: # Must be "!= None", cannot be "is not None" result += ' = %s' % self._print(val) else: if value_const in var.attrs or val: raise NotImplementedError("F77 init./parameter statem. req. multiple lines.") result = ' '.join(map(lambda arg: self._print(arg), [var.type, var.symbol])) return result def _print_Infinity(self, expr): return '(huge(%s) + 1)' % self._print(literal_dp(0)) def _print_While(self, expr): return 'do while ({condition})\n{body}\nend do'.format(**expr.kwargs( apply=lambda arg: self._print(arg))) def _print_BooleanTrue(self, expr): return '.true.' def _print_BooleanFalse(self, expr): return '.false.' def _pad_leading_columns(self, lines): result = [] for line in lines: if line.startswith('!'): result.append(self._lead['comment'] + line[1:].lstrip()) else: result.append(self._lead['code'] + line) return result def _wrap_fortran(self, lines): """Wrap long Fortran lines Argument: lines -- a list of lines (without \\n character) A comment line is split at white space. Code lines are split with a more complex rule to give nice results. """ # routine to find split point in a code line my_alnum = set("_+-." + string.digits + string.ascii_letters) my_white = set(" \t()") def split_pos_code(line, endpos): if len(line) <= endpos: return len(line) pos = endpos split = lambda pos: \ (line[pos] in my_alnum and line[pos - 1] not in my_alnum) or \ (line[pos] not in my_alnum and line[pos - 1] in my_alnum) or \ (line[pos] in my_white and line[pos - 1] not in my_white) or \ (line[pos] not in my_white and line[pos - 1] in my_white) while not split(pos): pos -= 1 if pos == 0: return endpos return pos # split line by line and add the split lines to result result = [] if self._settings['source_format'] == 'free': trailing = ' &' else: trailing = '' for line in lines: if line.startswith(self._lead['comment']): # comment line if len(line) > 72: pos = line.rfind(" ", 6, 72) if pos == -1: pos = 72 hunk = line[:pos] line = line[pos:].lstrip() result.append(hunk) while line: pos = line.rfind(" ", 0, 66) if pos == -1 or len(line) < 66: pos = 66 hunk = line[:pos] line = line[pos:].lstrip() result.append("%s%s" % (self._lead['comment'], hunk)) else: result.append(line) elif line.startswith(self._lead['code']): # code line pos = split_pos_code(line, 72) hunk = line[:pos].rstrip() line = line[pos:].lstrip() if line: hunk += trailing result.append(hunk) while line: pos = split_pos_code(line, 65) hunk = line[:pos].rstrip() line = line[pos:].lstrip() if line: hunk += trailing result.append("%s%s" % (self._lead['cont'], hunk)) else: result.append(line) return result def indent_code(self, code): """Accepts a string of code or a list of code lines""" if isinstance(code, string_types): code_lines = self.indent_code(code.splitlines(True)) return ''.join(code_lines) free = self._settings['source_format'] == 'free' code = [ line.lstrip(' \t') for line in code ] inc_keyword = ('do ', 'if(', 'if ', 'do\n', 'else', 'program', 'interface') dec_keyword = ('end do', 'enddo', 'end if', 'endif', 'else', 'end program', 'end interface') increase = [ int(any(map(line.startswith, inc_keyword))) for line in code ] decrease = [ int(any(map(line.startswith, dec_keyword))) for line in code ] continuation = [ int(any(map(line.endswith, ['&', '&\n']))) for line in code ] level = 0 cont_padding = 0 tabwidth = 3 new_code = [] for i, line in enumerate(code): if line == '' or line == '\n': new_code.append(line) continue level -= decrease[i] if free: padding = " "*(level*tabwidth + cont_padding) else: padding = " "*level*tabwidth line = "%s%s" % (padding, line) if not free: line = self._pad_leading_columns([line])[0] new_code.append(line) if continuation[i]: cont_padding = 2*tabwidth else: cont_padding = 0 level += increase[i] if not free: return self._wrap_fortran(new_code) return new_code def _print_GoTo(self, goto): if goto.expr: # computed goto return "go to ({labels}), {expr}".format( labels=', '.join(map(lambda arg: self._print(arg), goto.labels)), expr=self._print(goto.expr) ) else: lbl, = goto.labels return "go to %s" % self._print(lbl) def _print_Program(self, prog): return ( "program {name}\n" "{body}\n" "end program\n" ).format(**prog.kwargs(apply=lambda arg: self._print(arg))) def _print_Module(self, mod): return ( "module {name}\n" "{declarations}\n" "\ncontains\n\n" "{definitions}\n" "end module\n" ).format(**mod.kwargs(apply=lambda arg: self._print(arg))) def _print_Stream(self, strm): if strm.name == 'stdout' and self._settings["standard"] >= 2003: self.module_uses['iso_c_binding'].add('stdint=>input_unit') return 'input_unit' elif strm.name == 'stderr' and self._settings["standard"] >= 2003: self.module_uses['iso_c_binding'].add('stdint=>error_unit') return 'error_unit' else: if strm.name == 'stdout': return '*' else: return strm.name def _print_Print(self, ps): if ps.format_string != None: # Must be '!= None', cannot be 'is not None' fmt = self._print(ps.format_string) else: fmt = "*" return "print {fmt}, {iolist}".format(fmt=fmt, iolist=', '.join( map(lambda arg: self._print(arg), ps.print_args))) def _print_Return(self, rs): arg, = rs.args return "{result_name} = {arg}".format( result_name=self._context.get('result_name', 'sympy_result'), arg=self._print(arg) ) def _print_FortranReturn(self, frs): arg, = frs.args if arg: return 'return %s' % self._print(arg) else: return 'return' def _head(self, entity, fp, **kwargs): bind_C_params = fp.attr_params('bind_C') if bind_C_params is None: bind = '' else: bind = ' bind(C, name="%s")' % bind_C_params[0] if bind_C_params else ' bind(C)' result_name = self._settings.get('result_name', None) return ( "{entity}{name}({arg_names}){result}{bind}\n" "{arg_declarations}" ).format( entity=entity, name=self._print(fp.name), arg_names=', '.join([self._print(arg.symbol) for arg in fp.parameters]), result=(' result(%s)' % result_name) if result_name else '', bind=bind, arg_declarations='\n'.join(map(lambda arg: self._print(Declaration(arg)), fp.parameters)) ) def _print_FunctionPrototype(self, fp): entity = "{0} function ".format(self._print(fp.return_type)) return ( "interface\n" "{function_head}\n" "end function\n" "end interface" ).format(function_head=self._head(entity, fp)) def _print_FunctionDefinition(self, fd): if elemental in fd.attrs: prefix = 'elemental ' elif pure in fd.attrs: prefix = 'pure ' else: prefix = '' entity = "{0} function ".format(self._print(fd.return_type)) with printer_context(self, result_name=fd.name): return ( "{prefix}{function_head}\n" "{body}\n" "end function\n" ).format( prefix=prefix, function_head=self._head(entity, fd), body=self._print(fd.body) ) def _print_Subroutine(self, sub): return ( '{subroutine_head}\n' '{body}\n' 'end subroutine\n' ).format( subroutine_head=self._head('subroutine ', sub), body=self._print(sub.body) ) def _print_SubroutineCall(self, scall): return 'call {name}({args})'.format( name=self._print(scall.name), args=', '.join(map(lambda arg: self._print(arg), scall.subroutine_args)) ) def _print_use_rename(self, rnm): return "%s => %s" % tuple(map(lambda arg: self._print(arg), rnm.args)) def _print_use(self, use): result = 'use %s' % self._print(use.namespace) if use.rename != None: # Must be '!= None', cannot be 'is not None' result += ', ' + ', '.join([self._print(rnm) for rnm in use.rename]) if use.only != None: # Must be '!= None', cannot be 'is not None' result += ', only: ' + ', '.join([self._print(nly) for nly in use.only]) return result def _print_BreakToken(self, _): return 'exit' def _print_ContinueToken(self, _): return 'cycle' def _print_ArrayConstructor(self, ac): fmtstr = "[%s]" if self._settings["standard"] >= 2003 else '(/%s/)' return fmtstr % ', '.join(map(lambda arg: self._print(arg), ac.elements)) def fcode(expr, assign_to=None, **settings): """Converts an expr to a string of fortran code Parameters ========== expr : Expr A sympy expression to be converted. assign_to : optional When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string, ``Symbol``, ``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of line-wrapping, or for expressions that generate multi-line statements. precision : integer, optional DEPRECATED. Use type_mappings instead. The precision for numbers such as pi [default=17]. user_functions : dict, optional A dictionary where keys are ``FunctionClass`` instances and values are their string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. See below for examples. human : bool, optional If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True]. contract: bool, optional If True, ``Indexed`` instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True]. source_format : optional The source format can be either 'fixed' or 'free'. [default='fixed'] standard : integer, optional The Fortran standard to be followed. This is specified as an integer. Acceptable standards are 66, 77, 90, 95, 2003, and 2008. Default is 77. Note that currently the only distinction internally is between standards before 95, and those 95 and after. This may change later as more features are added. name_mangling : bool, optional If True, then the variables that would become identical in case-insensitive Fortran are mangled by appending different number of ``_`` at the end. If False, SymPy won't interfere with naming of variables. [default=True] Examples ======== >>> from sympy import fcode, symbols, Rational, sin, ceiling, floor >>> x, tau = symbols("x, tau") >>> fcode((2*tau)**Rational(7, 2)) ' 8*sqrt(2.0d0)*tau**(7.0d0/2.0d0)' >>> fcode(sin(x), assign_to="s") ' s = sin(x)' Custom printing can be defined for certain types by passing a dictionary of "type" : "function" to the ``user_functions`` kwarg. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. >>> custom_functions = { ... "ceiling": "CEIL", ... "floor": [(lambda x: not x.is_integer, "FLOOR1"), ... (lambda x: x.is_integer, "FLOOR2")] ... } >>> fcode(floor(x) + ceiling(x), user_functions=custom_functions) ' CEIL(x) + FLOOR1(x)' ``Piecewise`` expressions are converted into conditionals. If an ``assign_to`` variable is provided an if statement is created, otherwise the ternary operator is used. Note that if the ``Piecewise`` lacks a default term, represented by ``(expr, True)`` then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything. >>> from sympy import Piecewise >>> expr = Piecewise((x + 1, x > 0), (x, True)) >>> print(fcode(expr, tau)) if (x > 0) then tau = x + 1 else tau = x end if Support for loops is provided through ``Indexed`` types. With ``contract=True`` these expressions will be turned into loops, whereas ``contract=False`` will just print the assignment expression that should be looped over: >>> from sympy import Eq, IndexedBase, Idx >>> len_y = 5 >>> y = IndexedBase('y', shape=(len_y,)) >>> t = IndexedBase('t', shape=(len_y,)) >>> Dy = IndexedBase('Dy', shape=(len_y-1,)) >>> i = Idx('i', len_y-1) >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) >>> fcode(e.rhs, assign_to=e.lhs, contract=False) ' Dy(i) = (y(i + 1) - y(i))/(t(i + 1) - t(i))' Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions must be provided to ``assign_to``. Note that any expression that can be generated normally can also exist inside a Matrix: >>> from sympy import Matrix, MatrixSymbol >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)]) >>> A = MatrixSymbol('A', 3, 1) >>> print(fcode(mat, A)) A(1, 1) = x**2 if (x > 0) then A(2, 1) = x + 1 else A(2, 1) = x end if A(3, 1) = sin(x) """ return FCodePrinter(settings).doprint(expr, assign_to) def print_fcode(expr, **settings): """Prints the Fortran representation of the given expression. See fcode for the meaning of the optional arguments. """ print(fcode(expr, **settings))
56b03e25aa20c36bc399478abd0f7403a40a01e2d673daeb1bc664089a63f0e7
from __future__ import print_function, division from functools import wraps from sympy.core import Add, Mul, Pow, S, sympify, Float from sympy.core.basic import Basic from sympy.core.compatibility import default_sort_key, string_types from sympy.core.function import Lambda from sympy.core.mul import _keep_coeff from sympy.core.symbol import Symbol from sympy.printing.str import StrPrinter from sympy.printing.precedence import precedence # Backwards compatibility from sympy.codegen.ast import Assignment class requires(object): """ Decorator for registering requirements on print methods. """ def __init__(self, **kwargs): self._req = kwargs def __call__(self, method): def _method_wrapper(self_, *args, **kwargs): for k, v in self._req.items(): getattr(self_, k).update(v) return method(self_, *args, **kwargs) return wraps(method)(_method_wrapper) class AssignmentError(Exception): """ Raised if an assignment variable for a loop is missing. """ pass class CodePrinter(StrPrinter): """ The base class for code-printing subclasses. """ _operators = { 'and': '&&', 'or': '||', 'not': '!', } _default_settings = { 'order': None, 'full_prec': 'auto', 'error_on_reserved': False, 'reserved_word_suffix': '_', 'human': True, 'inline': False, 'allow_unknown_functions': False, } def __init__(self, settings=None): super(CodePrinter, self).__init__(settings=settings) if not hasattr(self, 'reserved_words'): self.reserved_words = set() def doprint(self, expr, assign_to=None): """ Print the expression as code. Parameters ---------- expr : Expression The expression to be printed. assign_to : Symbol, MatrixSymbol, or string (optional) If provided, the printed code will set the expression to a variable with name ``assign_to``. """ from sympy.matrices.expressions.matexpr import MatrixSymbol if isinstance(assign_to, string_types): if expr.is_Matrix: assign_to = MatrixSymbol(assign_to, *expr.shape) else: assign_to = Symbol(assign_to) elif not isinstance(assign_to, (Basic, type(None))): raise TypeError("{0} cannot assign to object of type {1}".format( type(self).__name__, type(assign_to))) if assign_to: expr = Assignment(assign_to, expr) else: # _sympify is not enough b/c it errors on iterables expr = sympify(expr) # keep a set of expressions that are not strictly translatable to Code # and number constants that must be declared and initialized self._not_supported = set() self._number_symbols = set() lines = self._print(expr).splitlines() # format the output if self._settings["human"]: frontlines = [] if self._not_supported: frontlines.append(self._get_comment( "Not supported in {0}:".format(self.language))) for expr in sorted(self._not_supported, key=str): frontlines.append(self._get_comment(type(expr).__name__)) for name, value in sorted(self._number_symbols, key=str): frontlines.append(self._declare_number_const(name, value)) lines = frontlines + lines lines = self._format_code(lines) result = "\n".join(lines) else: lines = self._format_code(lines) num_syms = set([(k, self._print(v)) for k, v in self._number_symbols]) result = (num_syms, self._not_supported, "\n".join(lines)) self._not_supported = set() self._number_symbols = set() return result def _doprint_loops(self, expr, assign_to=None): # Here we print an expression that contains Indexed objects, they # correspond to arrays in the generated code. The low-level implementation # involves looping over array elements and possibly storing results in temporary # variables or accumulate it in the assign_to object. if self._settings.get('contract', True): from sympy.tensor import get_contraction_structure # Setup loops over non-dummy indices -- all terms need these indices = self._get_expression_indices(expr, assign_to) # Setup loops over dummy indices -- each term needs separate treatment dummies = get_contraction_structure(expr) else: indices = [] dummies = {None: (expr,)} openloop, closeloop = self._get_loop_opening_ending(indices) # terms with no summations first if None in dummies: text = StrPrinter.doprint(self, Add(*dummies[None])) else: # If all terms have summations we must initialize array to Zero text = StrPrinter.doprint(self, 0) # skip redundant assignments (where lhs == rhs) lhs_printed = self._print(assign_to) lines = [] if text != lhs_printed: lines.extend(openloop) if assign_to is not None: text = self._get_statement("%s = %s" % (lhs_printed, text)) lines.append(text) lines.extend(closeloop) # then terms with summations for d in dummies: if isinstance(d, tuple): indices = self._sort_optimized(d, expr) openloop_d, closeloop_d = self._get_loop_opening_ending( indices) for term in dummies[d]: if term in dummies and not ([list(f.keys()) for f in dummies[term]] == [[None] for f in dummies[term]]): # If one factor in the term has it's own internal # contractions, those must be computed first. # (temporary variables?) raise NotImplementedError( "FIXME: no support for contractions in factor yet") else: # We need the lhs expression as an accumulator for # the loops, i.e # # for (int d=0; d < dim; d++){ # lhs[] = lhs[] + term[][d] # } ^.................. the accumulator # # We check if the expression already contains the # lhs, and raise an exception if it does, as that # syntax is currently undefined. FIXME: What would be # a good interpretation? if assign_to is None: raise AssignmentError( "need assignment variable for loops") if term.has(assign_to): raise ValueError("FIXME: lhs present in rhs,\ this is undefined in CodePrinter") lines.extend(openloop) lines.extend(openloop_d) text = "%s = %s" % (lhs_printed, StrPrinter.doprint( self, assign_to + term)) lines.append(self._get_statement(text)) lines.extend(closeloop_d) lines.extend(closeloop) return "\n".join(lines) def _get_expression_indices(self, expr, assign_to): from sympy.tensor import get_indices rinds, junk = get_indices(expr) linds, junk = get_indices(assign_to) # support broadcast of scalar if linds and not rinds: rinds = linds if rinds != linds: raise ValueError("lhs indices must match non-dummy" " rhs indices in %s" % expr) return self._sort_optimized(rinds, assign_to) def _sort_optimized(self, indices, expr): from sympy.tensor.indexed import Indexed if not indices: return [] # determine optimized loop order by giving a score to each index # the index with the highest score are put in the innermost loop. score_table = {} for i in indices: score_table[i] = 0 arrays = expr.atoms(Indexed) for arr in arrays: for p, ind in enumerate(arr.indices): try: score_table[ind] += self._rate_index_position(p) except KeyError: pass return sorted(indices, key=lambda x: score_table[x]) def _rate_index_position(self, p): """function to calculate score based on position among indices This method is used to sort loops in an optimized order, see CodePrinter._sort_optimized() """ raise NotImplementedError("This function must be implemented by " "subclass of CodePrinter.") def _get_statement(self, codestring): """Formats a codestring with the proper line ending.""" raise NotImplementedError("This function must be implemented by " "subclass of CodePrinter.") def _get_comment(self, text): """Formats a text string as a comment.""" raise NotImplementedError("This function must be implemented by " "subclass of CodePrinter.") def _declare_number_const(self, name, value): """Declare a numeric constant at the top of a function""" raise NotImplementedError("This function must be implemented by " "subclass of CodePrinter.") def _format_code(self, lines): """Take in a list of lines of code, and format them accordingly. This may include indenting, wrapping long lines, etc...""" raise NotImplementedError("This function must be implemented by " "subclass of CodePrinter.") def _get_loop_opening_ending(self, indices): """Returns a tuple (open_lines, close_lines) containing lists of codelines""" raise NotImplementedError("This function must be implemented by " "subclass of CodePrinter.") def _print_Dummy(self, expr): if expr.name.startswith('Dummy_'): return '_' + expr.name else: return '%s_%d' % (expr.name, expr.dummy_index) def _print_CodeBlock(self, expr): return '\n'.join([self._print(i) for i in expr.args]) def _print_String(self, string): return str(string) def _print_QuotedString(self, arg): return '"%s"' % arg.text def _print_Comment(self, string): return self._get_comment(str(string)) def _print_Assignment(self, expr): from sympy.functions.elementary.piecewise import Piecewise from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.tensor.indexed import IndexedBase lhs = expr.lhs rhs = expr.rhs # We special case assignments that take multiple lines if isinstance(expr.rhs, Piecewise): # Here we modify Piecewise so each expression is now # an Assignment, and then continue on the print. expressions = [] conditions = [] for (e, c) in rhs.args: expressions.append(Assignment(lhs, e)) conditions.append(c) temp = Piecewise(*zip(expressions, conditions)) return self._print(temp) elif isinstance(lhs, MatrixSymbol): # Here we form an Assignment for each element in the array, # printing each one. lines = [] for (i, j) in self._traverse_matrix_indices(lhs): temp = Assignment(lhs[i, j], rhs[i, j]) code0 = self._print(temp) lines.append(code0) return "\n".join(lines) elif self._settings.get("contract", False) and (lhs.has(IndexedBase) or rhs.has(IndexedBase)): # Here we check if there is looping to be done, and if so # print the required loops. return self._doprint_loops(rhs, lhs) else: lhs_code = self._print(lhs) rhs_code = self._print(rhs) return self._get_statement("%s = %s" % (lhs_code, rhs_code)) def _print_AugmentedAssignment(self, expr): lhs_code = self._print(expr.lhs) rhs_code = self._print(expr.rhs) return self._get_statement("{0} {1} {2}".format( *map(lambda arg: self._print(arg), [lhs_code, expr.op, rhs_code]))) def _print_FunctionCall(self, expr): return '%s(%s)' % ( expr.name, ', '.join(map(lambda arg: self._print(arg), expr.function_args))) def _print_Variable(self, expr): return self._print(expr.symbol) def _print_Statement(self, expr): arg, = expr.args return self._get_statement(self._print(arg)) def _print_Symbol(self, expr): name = super(CodePrinter, self)._print_Symbol(expr) if name in self.reserved_words: if self._settings['error_on_reserved']: msg = ('This expression includes the symbol "{}" which is a ' 'reserved keyword in this language.') raise ValueError(msg.format(name)) return name + self._settings['reserved_word_suffix'] else: return name def _print_Function(self, expr): if expr.func.__name__ in self.known_functions: cond_func = self.known_functions[expr.func.__name__] func = None if isinstance(cond_func, string_types): func = cond_func else: for cond, func in cond_func: if cond(*expr.args): break if func is not None: try: return func(*[self.parenthesize(item, 0) for item in expr.args]) except TypeError: return "%s(%s)" % (func, self.stringify(expr.args, ", ")) elif hasattr(expr, '_imp_') and isinstance(expr._imp_, Lambda): # inlined function return self._print(expr._imp_(*expr.args)) elif expr.is_Function and self._settings.get('allow_unknown_functions', False): return '%s(%s)' % (self._print(expr.func), ', '.join(map(self._print, expr.args))) else: return self._print_not_supported(expr) _print_Expr = _print_Function def _print_NumberSymbol(self, expr): if self._settings.get("inline", False): return self._print(Float(expr.evalf(self._settings["precision"]))) else: # A Number symbol that is not implemented here or with _printmethod # is registered and evaluated self._number_symbols.add((expr, Float(expr.evalf(self._settings["precision"])))) return str(expr) def _print_Catalan(self, expr): return self._print_NumberSymbol(expr) def _print_EulerGamma(self, expr): return self._print_NumberSymbol(expr) def _print_GoldenRatio(self, expr): return self._print_NumberSymbol(expr) def _print_TribonacciConstant(self, expr): return self._print_NumberSymbol(expr) def _print_Exp1(self, expr): return self._print_NumberSymbol(expr) def _print_Pi(self, expr): return self._print_NumberSymbol(expr) def _print_And(self, expr): PREC = precedence(expr) return (" %s " % self._operators['and']).join(self.parenthesize(a, PREC) for a in sorted(expr.args, key=default_sort_key)) def _print_Or(self, expr): PREC = precedence(expr) return (" %s " % self._operators['or']).join(self.parenthesize(a, PREC) for a in sorted(expr.args, key=default_sort_key)) def _print_Xor(self, expr): if self._operators.get('xor') is None: return self._print_not_supported(expr) PREC = precedence(expr) return (" %s " % self._operators['xor']).join(self.parenthesize(a, PREC) for a in expr.args) def _print_Equivalent(self, expr): if self._operators.get('equivalent') is None: return self._print_not_supported(expr) PREC = precedence(expr) return (" %s " % self._operators['equivalent']).join(self.parenthesize(a, PREC) for a in expr.args) def _print_Not(self, expr): PREC = precedence(expr) return self._operators['not'] + self.parenthesize(expr.args[0], PREC) def _print_Mul(self, expr): prec = precedence(expr) c, e = expr.as_coeff_Mul() if c < 0: expr = _keep_coeff(-c, e) sign = "-" else: sign = "" a = [] # items in the numerator b = [] # items that are in the denominator (if any) pow_paren = [] # Will collect all pow with more than one base element and exp = -1 if self.order not in ('old', 'none'): args = expr.as_ordered_factors() else: # use make_args in case expr was something like -x -> x args = Mul.make_args(expr) # Gather args for numerator/denominator for item in args: if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative: if item.exp != -1: b.append(Pow(item.base, -item.exp, evaluate=False)) else: if len(item.args[0].args) != 1 and isinstance(item.base, Mul): # To avoid situations like #14160 pow_paren.append(item) b.append(Pow(item.base, -item.exp)) else: a.append(item) a = a or [S.One] a_str = [self.parenthesize(x, prec) for x in a] b_str = [self.parenthesize(x, prec) for x in b] # To parenthesize Pow with exp = -1 and having more than one Symbol for item in pow_paren: if item.base in b: b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)] if not b: return sign + '*'.join(a_str) elif len(b) == 1: return sign + '*'.join(a_str) + "/" + b_str[0] else: return sign + '*'.join(a_str) + "/(%s)" % '*'.join(b_str) def _print_not_supported(self, expr): self._not_supported.add(expr) return self.emptyPrinter(expr) # The following can not be simply translated into C or Fortran _print_Basic = _print_not_supported _print_ComplexInfinity = _print_not_supported _print_Derivative = _print_not_supported _print_ExprCondPair = _print_not_supported _print_GeometryEntity = _print_not_supported _print_Infinity = _print_not_supported _print_Integral = _print_not_supported _print_Interval = _print_not_supported _print_AccumulationBounds = _print_not_supported _print_Limit = _print_not_supported _print_Matrix = _print_not_supported _print_ImmutableMatrix = _print_not_supported _print_ImmutableDenseMatrix = _print_not_supported _print_MutableDenseMatrix = _print_not_supported _print_MatrixBase = _print_not_supported _print_DeferredVector = _print_not_supported _print_NaN = _print_not_supported _print_NegativeInfinity = _print_not_supported _print_Normal = _print_not_supported _print_Order = _print_not_supported _print_PDF = _print_not_supported _print_RootOf = _print_not_supported _print_RootsOf = _print_not_supported _print_RootSum = _print_not_supported _print_Sample = _print_not_supported _print_SparseMatrix = _print_not_supported _print_MutableSparseMatrix = _print_not_supported _print_ImmutableSparseMatrix = _print_not_supported _print_Uniform = _print_not_supported _print_Unit = _print_not_supported _print_Wild = _print_not_supported _print_WildFunction = _print_not_supported
bef061cf203f7b111439c38a8e9e6db247a5918dd06180c3081fec1af3e59772
# -*- coding: utf-8 -*- from __future__ import print_function, division import keyword as kw import sympy from .repr import ReprPrinter from .str import StrPrinter # A list of classes that should be printed using StrPrinter STRPRINT = ("Add", "Infinity", "Integer", "Mul", "NegativeInfinity", "Pow", "Zero") class PythonPrinter(ReprPrinter, StrPrinter): """A printer which converts an expression into its Python interpretation.""" def __init__(self, settings=None): ReprPrinter.__init__(self) StrPrinter.__init__(self, settings) self.symbols = [] self.functions = [] # Create print methods for classes that should use StrPrinter instead # of ReprPrinter. for name in STRPRINT: f_name = "_print_%s" % name f = getattr(StrPrinter, f_name) setattr(PythonPrinter, f_name, f) def _print_Function(self, expr): func = expr.func.__name__ if not hasattr(sympy, func) and not func in self.functions: self.functions.append(func) return StrPrinter._print_Function(self, expr) # procedure (!) for defining symbols which have be defined in print_python() def _print_Symbol(self, expr): symbol = self._str(expr) if symbol not in self.symbols: self.symbols.append(symbol) return StrPrinter._print_Symbol(self, expr) def _print_module(self, expr): raise ValueError('Modules in the expression are unacceptable') def python(expr, **settings): """Return Python interpretation of passed expression (can be passed to the exec() function without any modifications)""" printer = PythonPrinter(settings) exprp = printer.doprint(expr) result = '' # Returning found symbols and functions renamings = {} for symbolname in printer.symbols: newsymbolname = symbolname # Escape symbol names that are reserved python keywords if kw.iskeyword(newsymbolname): while True: newsymbolname += "_" if (newsymbolname not in printer.symbols and newsymbolname not in printer.functions): renamings[sympy.Symbol( symbolname)] = sympy.Symbol(newsymbolname) break result += newsymbolname + ' = Symbol(\'' + symbolname + '\')\n' for functionname in printer.functions: newfunctionname = functionname # Escape function names that are reserved python keywords if kw.iskeyword(newfunctionname): while True: newfunctionname += "_" if (newfunctionname not in printer.symbols and newfunctionname not in printer.functions): renamings[sympy.Function( functionname)] = sympy.Function(newfunctionname) break result += newfunctionname + ' = Function(\'' + functionname + '\')\n' if renamings: exprp = expr.subs(renamings) result += 'e = ' + printer._str(exprp) return result def print_python(expr, **settings): """Print output of python() function""" print(python(expr, **settings))
267a42d7da6e262b802365124e9bba39ca0b3a4917dbb958c4407c9276ab63b2
from distutils.version import LooseVersion as V from sympy import Mul from sympy.core.compatibility import Iterable from sympy.external import import_module from sympy.printing.precedence import PRECEDENCE from sympy.printing.pycode import AbstractPythonCodePrinter import sympy class TensorflowPrinter(AbstractPythonCodePrinter): """ Tensorflow printer which handles vectorized piecewise functions, logical operators, max/min, and relational operators. """ printmethod = "_tensorflowcode" mapping = { sympy.Abs: "tensorflow.abs", sympy.sign: "tensorflow.sign", sympy.ceiling: "tensorflow.ceil", sympy.floor: "tensorflow.floor", sympy.log: "tensorflow.log", sympy.exp: "tensorflow.exp", sympy.sqrt: "tensorflow.sqrt", sympy.cos: "tensorflow.cos", sympy.acos: "tensorflow.acos", sympy.sin: "tensorflow.sin", sympy.asin: "tensorflow.asin", sympy.tan: "tensorflow.tan", sympy.atan: "tensorflow.atan", sympy.atan2: "tensorflow.atan2", sympy.cosh: "tensorflow.cosh", sympy.acosh: "tensorflow.acosh", sympy.sinh: "tensorflow.sinh", sympy.asinh: "tensorflow.asinh", sympy.tanh: "tensorflow.tanh", sympy.atanh: "tensorflow.atanh", sympy.re: "tensorflow.real", sympy.im: "tensorflow.imag", sympy.arg: "tensorflow.angle", sympy.erf: "tensorflow.erf", sympy.loggamma: "tensorflow.gammaln", sympy.Pow: "tensorflow.pow", sympy.Eq: "tensorflow.equal", sympy.Ne: "tensorflow.not_equal", sympy.StrictGreaterThan: "tensorflow.greater", sympy.StrictLessThan: "tensorflow.less", sympy.LessThan: "tensorflow.less_equal", sympy.GreaterThan: "tensorflow.greater_equal", sympy.And: "tensorflow.logical_and", sympy.Or: "tensorflow.logical_or", sympy.Not: "tensorflow.logical_not", sympy.Max: "tensorflow.maximum", sympy.Min: "tensorflow.minimum", # Matrices sympy.MatAdd: "tensorflow.add", sympy.HadamardProduct: "tensorflow.multiply", sympy.Trace: "tensorflow.trace", sympy.Determinant : "tensorflow.matrix_determinant", sympy.Inverse: "tensorflow.matrix_inverse", sympy.Transpose: "tensorflow.matrix_transpose", } def _print_Function(self, expr): op = self.mapping.get(type(expr), None) if op is None: return super(TensorflowPrinter, self)._print_Basic(expr) children = [self._print(arg) for arg in expr.args] if len(children) == 1: return "%s(%s)" % ( self._module_format(op), children[0] ) else: return self._expand_fold_binary_op(op, children) _print_Expr = _print_Function _print_Application = _print_Function _print_MatrixExpr = _print_Function # TODO: a better class structure would avoid this mess: _print_Not = _print_Function _print_And = _print_Function _print_Or = _print_Function _print_Transpose = _print_Function _print_Trace = _print_Function def _print_Derivative(self, expr): variables = expr.variables if any(isinstance(i, Iterable) for i in variables): raise NotImplementedError("derivation by multiple variables is not supported") def unfold(expr, args): if not args: return self._print(expr) return "%s(%s, %s)[0]" % ( self._module_format("tensorflow.gradients"), unfold(expr, args[:-1]), self._print(args[-1]), ) return unfold(expr.expr, variables) def _print_Piecewise(self, expr): tensorflow = import_module('tensorflow') if tensorflow and V(tensorflow.__version__) < '1.0': tensorflow_piecewise = "select" else: tensorflow_piecewise = "where" from sympy import Piecewise e, cond = expr.args[0].args if len(expr.args) == 1: return '{0}({1}, {2}, {3})'.format( tensorflow_piecewise, self._print(cond), self._print(e), 0) return '{0}({1}, {2}, {3})'.format( tensorflow_piecewise, self._print(cond), self._print(e), self._print(Piecewise(*expr.args[1:]))) def _print_MatrixBase(self, expr): tensorflow_f = "tensorflow.Variable" if expr.free_symbols else "tensorflow.constant" data = "["+", ".join(["["+", ".join([self._print(j) for j in i])+"]" for i in expr.tolist()])+"]" return "%s(%s)" % ( self._module_format(tensorflow_f), data, ) def _print_MatMul(self, expr): from sympy.matrices.expressions import MatrixExpr mat_args = [arg for arg in expr.args if isinstance(arg, MatrixExpr)] args = [arg for arg in expr.args if arg not in mat_args] if args: return "%s*%s" % ( self.parenthesize(Mul.fromiter(args), PRECEDENCE["Mul"]), self._expand_fold_binary_op("tensorflow.matmul", mat_args) ) else: return self._expand_fold_binary_op("tensorflow.matmul", mat_args) def _print_MatPow(self, expr): return self._expand_fold_binary_op("tensorflow.matmul", [expr.base]*expr.exp) def _print_Assignment(self, expr): # TODO: is this necessary? return "%s = %s" % ( self._print(expr.lhs), self._print(expr.rhs), ) def _print_CodeBlock(self, expr): # TODO: is this necessary? ret = [] for subexpr in expr.args: ret.append(self._print(subexpr)) return "\n".join(ret) def _get_letter_generator_for_einsum(self): for i in range(97, 123): yield chr(i) for i in range(65, 91): yield chr(i) raise ValueError("out of letters") def _print_CodegenArrayTensorProduct(self, expr): array_list = [j for i, arg in enumerate(expr.args) for j in (self._print(arg), "[%i, %i]" % (2*i, 2*i+1))] letters = self._get_letter_generator_for_einsum() contraction_string = ",".join(["".join([next(letters) for j in range(i)]) for i in expr.subranks]) return '%s("%s", %s)' % ( self._module_format('tensorflow.einsum'), contraction_string, ", ".join([self._print(arg) for arg in expr.args]) ) def _print_CodegenArrayContraction(self, expr): from sympy.codegen.array_utils import CodegenArrayTensorProduct base = expr.expr contraction_indices = expr.contraction_indices contraction_string, letters_free, letters_dum = self._get_einsum_string(base.subranks, contraction_indices) if not contraction_indices: return self._print(base) if isinstance(base, CodegenArrayTensorProduct): elems = ["%s" % (self._print(arg)) for arg in base.args] return "%s(\"%s\", %s)" % ( self._module_format("tensorflow.einsum"), contraction_string, ", ".join(elems) ) raise NotImplementedError() def _print_CodegenArrayDiagonal(self, expr): from sympy.codegen.array_utils import CodegenArrayTensorProduct diagonal_indices = list(expr.diagonal_indices) if len(diagonal_indices) > 1: # TODO: this should be handled in sympy.codegen.array_utils, # possibly by creating the possibility of unfolding the # CodegenArrayDiagonal object into nested ones. Same reasoning for # the array contraction. raise NotImplementedError if len(diagonal_indices[0]) != 2: raise NotImplementedError if isinstance(expr.expr, CodegenArrayTensorProduct): subranks = expr.expr.subranks elems = expr.expr.args else: subranks = expr.subranks elems = [expr.expr] diagonal_string, letters_free, letters_dum = self._get_einsum_string(subranks, diagonal_indices) elems = [self._print(i) for i in elems] return '%s("%s", %s)' % ( self._module_format("tensorflow.einsum"), "{0}->{1}{2}".format(diagonal_string, "".join(letters_free), "".join(letters_dum)), ", ".join(elems) ) def _print_CodegenArrayPermuteDims(self, expr): return "%s(%s, %s)" % ( self._module_format("tensorflow.transpose"), self._print(expr.expr), self._print(expr.permutation.args[0]), ) def _print_CodegenArrayElementwiseAdd(self, expr): return self._expand_fold_binary_op('tensorflow.add', expr.args) def tensorflow_code(expr): printer = TensorflowPrinter() return printer.doprint(expr)
aaa16d1a5c9fe0e3894bcf726b5b888ada860386e6d51216cedcb51f2df1ef29
from __future__ import print_function, division import io from io import BytesIO import os from os.path import join import shutil import tempfile try: from subprocess import STDOUT, CalledProcessError, check_output except ImportError: pass from sympy.core.compatibility import unicode, u_decode, string_types from sympy.utilities.decorator import doctest_depends_on from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.utilities.misc import find_executable from .latex import latex __doctest_requires__ = {('preview',): ['pyglet']} @doctest_depends_on(exe=('latex', 'dvipng'), modules=('pyglet',), disable_viewers=('evince', 'gimp', 'superior-dvi-viewer')) def preview(expr, output='png', viewer=None, euler=True, packages=(), filename=None, outputbuffer=None, preamble=None, dvioptions=None, outputTexFile=None, **latex_settings): r""" View expression or LaTeX markup in PNG, DVI, PostScript or PDF form. If the expr argument is an expression, it will be exported to LaTeX and then compiled using the available TeX distribution. The first argument, 'expr', may also be a LaTeX string. The function will then run the appropriate viewer for the given output format or use the user defined one. By default png output is generated. By default pretty Euler fonts are used for typesetting (they were used to typeset the well known "Concrete Mathematics" book). For that to work, you need the 'eulervm.sty' LaTeX style (in Debian/Ubuntu, install the texlive-fonts-extra package). If you prefer default AMS fonts or your system lacks 'eulervm' LaTeX package then unset the 'euler' keyword argument. To use viewer auto-detection, lets say for 'png' output, issue >>> from sympy import symbols, preview, Symbol >>> x, y = symbols("x,y") >>> preview(x + y, output='png') This will choose 'pyglet' by default. To select a different one, do >>> preview(x + y, output='png', viewer='gimp') The 'png' format is considered special. For all other formats the rules are slightly different. As an example we will take 'dvi' output format. If you would run >>> preview(x + y, output='dvi') then 'view' will look for available 'dvi' viewers on your system (predefined in the function, so it will try evince, first, then kdvi and xdvi). If nothing is found you will need to set the viewer explicitly. >>> preview(x + y, output='dvi', viewer='superior-dvi-viewer') This will skip auto-detection and will run user specified 'superior-dvi-viewer'. If 'view' fails to find it on your system it will gracefully raise an exception. You may also enter 'file' for the viewer argument. Doing so will cause this function to return a file object in read-only mode, if 'filename' is unset. However, if it was set, then 'preview' writes the genereted file to this filename instead. There is also support for writing to a BytesIO like object, which needs to be passed to the 'outputbuffer' argument. >>> from io import BytesIO >>> obj = BytesIO() >>> preview(x + y, output='png', viewer='BytesIO', ... outputbuffer=obj) The LaTeX preamble can be customized by setting the 'preamble' keyword argument. This can be used, e.g., to set a different font size, use a custom documentclass or import certain set of LaTeX packages. >>> preamble = "\\documentclass[10pt]{article}\n" \ ... "\\usepackage{amsmath,amsfonts}\\begin{document}" >>> preview(x + y, output='png', preamble=preamble) If the value of 'output' is different from 'dvi' then command line options can be set ('dvioptions' argument) for the execution of the 'dvi'+output conversion tool. These options have to be in the form of a list of strings (see subprocess.Popen). Additional keyword args will be passed to the latex call, e.g., the symbol_names flag. >>> phidd = Symbol('phidd') >>> preview(phidd, symbol_names={phidd:r'\ddot{\varphi}'}) For post-processing the generated TeX File can be written to a file by passing the desired filename to the 'outputTexFile' keyword argument. To write the TeX code to a file named "sample.tex" and run the default png viewer to display the resulting bitmap, do >>> preview(x + y, outputTexFile="sample.tex") """ special = [ 'pyglet' ] if viewer is None: if output == "png": viewer = "pyglet" else: # sorted in order from most pretty to most ugly # very discussable, but indeed 'gv' looks awful :) # TODO add candidates for windows to list candidates = { "dvi": [ "evince", "okular", "kdvi", "xdvi" ], "ps": [ "evince", "okular", "gsview", "gv" ], "pdf": [ "evince", "okular", "kpdf", "acroread", "xpdf", "gv" ], } try: for candidate in candidates[output]: path = find_executable(candidate) if path is not None: viewer = path break else: raise SystemError( "No viewers found for '%s' output format." % output) except KeyError: raise SystemError("Invalid output format: %s" % output) else: if viewer == "file": if filename is None: SymPyDeprecationWarning(feature="Using viewer=\"file\" without a " "specified filename", deprecated_since_version="0.7.3", useinstead="viewer=\"file\" and filename=\"desiredname\"", issue=7018).warn() elif viewer == "StringIO": SymPyDeprecationWarning(feature="The preview() viewer StringIO", useinstead="BytesIO", deprecated_since_version="0.7.4", issue=7083).warn() viewer = "BytesIO" if outputbuffer is None: raise ValueError("outputbuffer has to be a BytesIO " "compatible object if viewer=\"StringIO\"") elif viewer == "BytesIO": if outputbuffer is None: raise ValueError("outputbuffer has to be a BytesIO " "compatible object if viewer=\"BytesIO\"") elif viewer not in special and not find_executable(viewer): raise SystemError("Unrecognized viewer: %s" % viewer) if preamble is None: actual_packages = packages + ("amsmath", "amsfonts") if euler: actual_packages += ("euler",) package_includes = "\n" + "\n".join(["\\usepackage{%s}" % p for p in actual_packages]) preamble = r"""\documentclass[varwidth,12pt]{standalone} %s \begin{document} """ % (package_includes) else: if packages: raise ValueError("The \"packages\" keyword must not be set if a " "custom LaTeX preamble was specified") latex_main = preamble + '\n%s\n\n' + r"\end{document}" if isinstance(expr, string_types): latex_string = expr else: latex_string = ('$\\displaystyle ' + latex(expr, mode='plain', **latex_settings) + '$') try: workdir = tempfile.mkdtemp() with io.open(join(workdir, 'texput.tex'), 'w', encoding='utf-8') as fh: fh.write(unicode(latex_main) % u_decode(latex_string)) if outputTexFile is not None: shutil.copyfile(join(workdir, 'texput.tex'), outputTexFile) if not find_executable('latex'): raise RuntimeError("latex program is not installed") try: # Avoid showing a cmd.exe window when running this # on Windows if os.name == 'nt': creation_flag = 0x08000000 # CREATE_NO_WINDOW else: creation_flag = 0 # Default value check_output(['latex', '-halt-on-error', '-interaction=nonstopmode', 'texput.tex'], cwd=workdir, stderr=STDOUT, creationflags=creation_flag) except CalledProcessError as e: raise RuntimeError( "'latex' exited abnormally with the following output:\n%s" % e.output) if output != "dvi": defaultoptions = { "ps": [], "pdf": [], "png": ["-T", "tight", "-z", "9", "--truecolor"], "svg": ["--no-fonts"], } commandend = { "ps": ["-o", "texput.ps", "texput.dvi"], "pdf": ["texput.dvi", "texput.pdf"], "png": ["-o", "texput.png", "texput.dvi"], "svg": ["-o", "texput.svg", "texput.dvi"], } if output == "svg": cmd = ["dvisvgm"] else: cmd = ["dvi" + output] if not find_executable(cmd[0]): raise RuntimeError("%s is not installed" % cmd[0]) try: if dvioptions is not None: cmd.extend(dvioptions) else: cmd.extend(defaultoptions[output]) cmd.extend(commandend[output]) except KeyError: raise SystemError("Invalid output format: %s" % output) try: # Avoid showing a cmd.exe window when running this # on Windows if os.name == 'nt': creation_flag = 0x08000000 # CREATE_NO_WINDOW else: creation_flag = 0 # Default value check_output(cmd, cwd=workdir, stderr=STDOUT, creationflags=creation_flag) except CalledProcessError as e: raise RuntimeError( "'%s' exited abnormally with the following output:\n%s" % (' '.join(cmd), e.output)) src = "texput.%s" % (output) if viewer == "file": if filename is None: buffer = BytesIO() with open(join(workdir, src), 'rb') as fh: buffer.write(fh.read()) return buffer else: shutil.move(join(workdir,src), filename) elif viewer == "BytesIO": with open(join(workdir, src), 'rb') as fh: outputbuffer.write(fh.read()) elif viewer == "pyglet": try: from pyglet import window, image, gl from pyglet.window import key except ImportError: raise ImportError("pyglet is required for preview.\n visit http://www.pyglet.org/") if output == "png": from pyglet.image.codecs.png import PNGImageDecoder img = image.load(join(workdir, src), decoder=PNGImageDecoder()) else: raise SystemError("pyglet preview works only for 'png' files.") offset = 25 config = gl.Config(double_buffer=False) win = window.Window( width=img.width + 2*offset, height=img.height + 2*offset, caption="sympy", resizable=False, config=config ) win.set_vsync(False) try: def on_close(): win.has_exit = True win.on_close = on_close def on_key_press(symbol, modifiers): if symbol in [key.Q, key.ESCAPE]: on_close() win.on_key_press = on_key_press def on_expose(): gl.glClearColor(1.0, 1.0, 1.0, 1.0) gl.glClear(gl.GL_COLOR_BUFFER_BIT) img.blit( (win.width - img.width) / 2, (win.height - img.height) / 2 ) win.on_expose = on_expose while not win.has_exit: win.dispatch_events() win.flip() except KeyboardInterrupt: pass win.close() else: try: # Avoid showing a cmd.exe window when running this # on Windows if os.name == 'nt': creation_flag = 0x08000000 # CREATE_NO_WINDOW else: creation_flag = 0 # Default value check_output([viewer, src], cwd=workdir, stderr=STDOUT, creationflags=creation_flag) except CalledProcessError as e: raise RuntimeError( "'%s %s' exited abnormally with the following output:\n%s" % (viewer, src, e.output)) finally: try: shutil.rmtree(workdir) # delete directory except OSError as e: if e.errno != 2: # code 2 - no such file or directory raise
e6079ee4ebeec37c6c584cb222d2f1312bcf472cc51fd3c5a981ab6c7d0bd28f
""" A Printer for generating executable code. The most important function here is srepr that returns a string so that the relation eval(srepr(expr))=expr holds in an appropriate environment. """ from __future__ import print_function, division from sympy.core.function import AppliedUndef from .printer import Printer from mpmath.libmp import repr_dps, to_str as mlib_to_str from sympy.core.compatibility import range, string_types class ReprPrinter(Printer): printmethod = "_sympyrepr" _default_settings = { "order": None } def reprify(self, args, sep): """ Prints each item in `args` and joins them with `sep`. """ return sep.join([self.doprint(item) for item in args]) def emptyPrinter(self, expr): """ The fallback printer. """ if isinstance(expr, string_types): return expr elif hasattr(expr, "__srepr__"): return expr.__srepr__() elif hasattr(expr, "args") and hasattr(expr.args, "__iter__"): l = [] for o in expr.args: l.append(self._print(o)) return expr.__class__.__name__ + '(%s)' % ', '.join(l) elif hasattr(expr, "__module__") and hasattr(expr, "__name__"): return "<'%s.%s'>" % (expr.__module__, expr.__name__) else: return str(expr) def _print_Add(self, expr, order=None): args = self._as_ordered_terms(expr, order=order) nargs = len(args) args = map(self._print, args) if nargs > 255: # Issue #10259, Python < 3.7 return "Add(*[%s])" % ", ".join(args) return "Add(%s)" % ", ".join(args) def _print_Cycle(self, expr): return expr.__repr__() def _print_Function(self, expr): r = self._print(expr.func) r += '(%s)' % ', '.join([self._print(a) for a in expr.args]) return r def _print_FunctionClass(self, expr): if issubclass(expr, AppliedUndef): return 'Function(%r)' % (expr.__name__) else: return expr.__name__ def _print_Half(self, expr): return 'Rational(1, 2)' def _print_RationalConstant(self, expr): return str(expr) def _print_AtomicExpr(self, expr): return str(expr) def _print_NumberSymbol(self, expr): return str(expr) def _print_Integer(self, expr): return 'Integer(%i)' % expr.p def _print_Integers(self, expr): return 'Integers' def _print_Naturals(self, expr): return 'Naturals' def _print_Naturals0(self, expr): return 'Naturals0' def _print_Reals(self, expr): return 'Reals' def _print_list(self, expr): return "[%s]" % self.reprify(expr, ", ") def _print_MatrixBase(self, expr): # special case for some empty matrices if (expr.rows == 0) ^ (expr.cols == 0): return '%s(%s, %s, %s)' % (expr.__class__.__name__, self._print(expr.rows), self._print(expr.cols), self._print([])) l = [] for i in range(expr.rows): l.append([]) for j in range(expr.cols): l[-1].append(expr[i, j]) return '%s(%s)' % (expr.__class__.__name__, self._print(l)) _print_SparseMatrix = \ _print_MutableSparseMatrix = \ _print_ImmutableSparseMatrix = \ _print_Matrix = \ _print_DenseMatrix = \ _print_MutableDenseMatrix = \ _print_ImmutableMatrix = \ _print_ImmutableDenseMatrix = \ _print_MatrixBase def _print_BooleanTrue(self, expr): return "true" def _print_BooleanFalse(self, expr): return "false" def _print_NaN(self, expr): return "nan" def _print_Mul(self, expr, order=None): terms = expr.args if self.order != 'old': args = expr._new_rawargs(*terms).as_ordered_factors() else: args = terms nargs = len(args) args = map(self._print, args) if nargs > 255: # Issue #10259, Python < 3.7 return "Mul(*[%s])" % ", ".join(args) return "Mul(%s)" % ", ".join(args) def _print_Rational(self, expr): return 'Rational(%s, %s)' % (self._print(expr.p), self._print(expr.q)) def _print_PythonRational(self, expr): return "%s(%d, %d)" % (expr.__class__.__name__, expr.p, expr.q) def _print_Fraction(self, expr): return 'Fraction(%s, %s)' % (self._print(expr.numerator), self._print(expr.denominator)) def _print_Float(self, expr): r = mlib_to_str(expr._mpf_, repr_dps(expr._prec)) return "%s('%s', precision=%i)" % (expr.__class__.__name__, r, expr._prec) def _print_Sum2(self, expr): return "Sum2(%s, (%s, %s, %s))" % (self._print(expr.f), self._print(expr.i), self._print(expr.a), self._print(expr.b)) def _print_Symbol(self, expr): d = expr._assumptions.generator # print the dummy_index like it was an assumption if expr.is_Dummy: d['dummy_index'] = expr.dummy_index if d == {}: return "%s(%s)" % (expr.__class__.__name__, self._print(expr.name)) else: attr = ['%s=%s' % (k, v) for k, v in d.items()] return "%s(%s, %s)" % (expr.__class__.__name__, self._print(expr.name), ', '.join(attr)) def _print_Predicate(self, expr): return "%s(%s)" % (expr.__class__.__name__, self._print(expr.name)) def _print_AppliedPredicate(self, expr): return "%s(%s, %s)" % (expr.__class__.__name__, expr.func, expr.arg) def _print_str(self, expr): return repr(expr) def _print_tuple(self, expr): if len(expr) == 1: return "(%s,)" % self._print(expr[0]) else: return "(%s)" % self.reprify(expr, ", ") def _print_WildFunction(self, expr): return "%s('%s')" % (expr.__class__.__name__, expr.name) def _print_AlgebraicNumber(self, expr): return "%s(%s, %s)" % (expr.__class__.__name__, self._print(expr.root), self._print(expr.coeffs())) def _print_PolyRing(self, ring): return "%s(%s, %s, %s)" % (ring.__class__.__name__, self._print(ring.symbols), self._print(ring.domain), self._print(ring.order)) def _print_FracField(self, field): return "%s(%s, %s, %s)" % (field.__class__.__name__, self._print(field.symbols), self._print(field.domain), self._print(field.order)) def _print_PolyElement(self, poly): terms = list(poly.terms()) terms.sort(key=poly.ring.order, reverse=True) return "%s(%s, %s)" % (poly.__class__.__name__, self._print(poly.ring), self._print(terms)) def _print_FracElement(self, frac): numer_terms = list(frac.numer.terms()) numer_terms.sort(key=frac.field.order, reverse=True) denom_terms = list(frac.denom.terms()) denom_terms.sort(key=frac.field.order, reverse=True) numer = self._print(numer_terms) denom = self._print(denom_terms) return "%s(%s, %s, %s)" % (frac.__class__.__name__, self._print(frac.field), numer, denom) def _print_FractionField(self, domain): cls = domain.__class__.__name__ field = self._print(domain.field) return "%s(%s)" % (cls, field) def _print_PolynomialRingBase(self, ring): cls = ring.__class__.__name__ dom = self._print(ring.domain) gens = ', '.join(map(self._print, ring.gens)) order = str(ring.order) if order != ring.default_order: orderstr = ", order=" + order else: orderstr = "" return "%s(%s, %s%s)" % (cls, dom, gens, orderstr) def _print_DMP(self, p): cls = p.__class__.__name__ rep = self._print(p.rep) dom = self._print(p.dom) if p.ring is not None: ringstr = ", ring=" + self._print(p.ring) else: ringstr = "" return "%s(%s, %s%s)" % (cls, rep, dom, ringstr) def _print_MonogenicFiniteExtension(self, ext): # The expanded tree shown by srepr(ext.modulus) # is not practical. return "FiniteExtension(%s)" % str(ext.modulus) def _print_ExtensionElement(self, f): rep = self._print(f.rep) ext = self._print(f.ext) return "ExtElem(%s, %s)" % (rep, ext) def srepr(expr, **settings): """return expr in repr form""" return ReprPrinter(settings).doprint(expr)
4094e809d6e2b7a32a3952b8e5b4293675ec4c51afbb0f415e4e7489a81e38fa
""" Julia code printer The `JuliaCodePrinter` converts SymPy expressions into Julia expressions. A complete code generator, which uses `julia_code` extensively, can be found in `sympy.utilities.codegen`. The `codegen` module can be used to generate complete source code files. """ from __future__ import print_function, division from sympy.core import Mul, Pow, S, Rational from sympy.core.compatibility import string_types, range from sympy.core.mul import _keep_coeff from sympy.printing.codeprinter import CodePrinter, Assignment from sympy.printing.precedence import precedence, PRECEDENCE from re import search # List of known functions. First, those that have the same name in # SymPy and Julia. This is almost certainly incomplete! known_fcns_src1 = ["sin", "cos", "tan", "cot", "sec", "csc", "asin", "acos", "atan", "acot", "asec", "acsc", "sinh", "cosh", "tanh", "coth", "sech", "csch", "asinh", "acosh", "atanh", "acoth", "asech", "acsch" "sinc", "atan2", "sign", "floor", "log", "exp", "cbrt", "sqrt", "erf", "erfc", "erfi", "factorial", "gamma", "digamma", "trigamma", "polygamma", "beta", "airyai", "airyaiprime", "airybi", "airybiprime", "besselj", "bessely", "besseli", "besselk", "erfinv", "erfcinv"] # These functions have different names ("Sympy": "Julia"), more # generally a mapping to (argument_conditions, julia_function). known_fcns_src2 = { "Abs": "abs", "ceiling": "ceil", "conjugate": "conj", "hankel1": "hankelh1", "hankel2": "hankelh2", "im": "imag", "re": "real" } class JuliaCodePrinter(CodePrinter): """ A printer to convert expressions to strings of Julia code. """ printmethod = "_julia" language = "Julia" _operators = { 'and': '&&', 'or': '||', 'not': '!', } _default_settings = { 'order': None, 'full_prec': 'auto', 'precision': 17, 'user_functions': {}, 'human': True, 'allow_unknown_functions': False, 'contract': True, 'inline': True, } # Note: contract is for expressing tensors as loops (if True), or just # assignment (if False). FIXME: this should be looked a more carefully # for Julia. def __init__(self, settings={}): super(JuliaCodePrinter, self).__init__(settings) self.known_functions = dict(zip(known_fcns_src1, known_fcns_src1)) self.known_functions.update(dict(known_fcns_src2)) userfuncs = settings.get('user_functions', {}) self.known_functions.update(userfuncs) def _rate_index_position(self, p): return p*5 def _get_statement(self, codestring): return "%s" % codestring def _get_comment(self, text): return "# {0}".format(text) def _declare_number_const(self, name, value): return "const {0} = {1}".format(name, value) def _format_code(self, lines): return self.indent_code(lines) def _traverse_matrix_indices(self, mat): # Julia uses Fortran order (column-major) rows, cols = mat.shape return ((i, j) for j in range(cols) for i in range(rows)) def _get_loop_opening_ending(self, indices): open_lines = [] close_lines = [] for i in indices: # Julia arrays start at 1 and end at dimension var, start, stop = map(self._print, [i.label, i.lower + 1, i.upper + 1]) open_lines.append("for %s = %s:%s" % (var, start, stop)) close_lines.append("end") return open_lines, close_lines def _print_Mul(self, expr): # print complex numbers nicely in Julia if (expr.is_number and expr.is_imaginary and expr.as_coeff_Mul()[0].is_integer): return "%sim" % self._print(-S.ImaginaryUnit*expr) # cribbed from str.py prec = precedence(expr) c, e = expr.as_coeff_Mul() if c < 0: expr = _keep_coeff(-c, e) sign = "-" else: sign = "" a = [] # items in the numerator b = [] # items that are in the denominator (if any) pow_paren = [] # Will collect all pow with more than one base element and exp = -1 if self.order not in ('old', 'none'): args = expr.as_ordered_factors() else: # use make_args in case expr was something like -x -> x args = Mul.make_args(expr) # Gather args for numerator/denominator for item in args: if (item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative): if item.exp != -1: b.append(Pow(item.base, -item.exp, evaluate=False)) else: if len(item.args[0].args) != 1 and isinstance(item.base, Mul): # To avoid situations like #14160 pow_paren.append(item) b.append(Pow(item.base, -item.exp)) elif item.is_Rational and item is not S.Infinity: if item.p != 1: a.append(Rational(item.p)) if item.q != 1: b.append(Rational(item.q)) else: a.append(item) a = a or [S.One] a_str = [self.parenthesize(x, prec) for x in a] b_str = [self.parenthesize(x, prec) for x in b] # To parenthesize Pow with exp = -1 and having more than one Symbol for item in pow_paren: if item.base in b: b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)] # from here it differs from str.py to deal with "*" and ".*" def multjoin(a, a_str): # here we probably are assuming the constants will come first r = a_str[0] for i in range(1, len(a)): mulsym = '*' if a[i-1].is_number else '.*' r = r + mulsym + a_str[i] return r if not b: return sign + multjoin(a, a_str) elif len(b) == 1: divsym = '/' if b[0].is_number else './' return sign + multjoin(a, a_str) + divsym + b_str[0] else: divsym = '/' if all([bi.is_number for bi in b]) else './' return (sign + multjoin(a, a_str) + divsym + "(%s)" % multjoin(b, b_str)) def _print_Pow(self, expr): powsymbol = '^' if all([x.is_number for x in expr.args]) else '.^' PREC = precedence(expr) if expr.exp == S.Half: return "sqrt(%s)" % self._print(expr.base) if expr.is_commutative: if expr.exp == -S.Half: sym = '/' if expr.base.is_number else './' return "1" + sym + "sqrt(%s)" % self._print(expr.base) if expr.exp == -S.One: sym = '/' if expr.base.is_number else './' return "1" + sym + "%s" % self.parenthesize(expr.base, PREC) return '%s%s%s' % (self.parenthesize(expr.base, PREC), powsymbol, self.parenthesize(expr.exp, PREC)) def _print_MatPow(self, expr): PREC = precedence(expr) return '%s^%s' % (self.parenthesize(expr.base, PREC), self.parenthesize(expr.exp, PREC)) def _print_Pi(self, expr): if self._settings["inline"]: return "pi" else: return super(JuliaCodePrinter, self)._print_NumberSymbol(expr) def _print_ImaginaryUnit(self, expr): return "im" def _print_Exp1(self, expr): if self._settings["inline"]: return "e" else: return super(JuliaCodePrinter, self)._print_NumberSymbol(expr) def _print_EulerGamma(self, expr): if self._settings["inline"]: return "eulergamma" else: return super(JuliaCodePrinter, self)._print_NumberSymbol(expr) def _print_Catalan(self, expr): if self._settings["inline"]: return "catalan" else: return super(JuliaCodePrinter, self)._print_NumberSymbol(expr) def _print_GoldenRatio(self, expr): if self._settings["inline"]: return "golden" else: return super(JuliaCodePrinter, self)._print_NumberSymbol(expr) def _print_Assignment(self, expr): from sympy.functions.elementary.piecewise import Piecewise from sympy.tensor.indexed import IndexedBase # Copied from codeprinter, but remove special MatrixSymbol treatment lhs = expr.lhs rhs = expr.rhs # We special case assignments that take multiple lines if not self._settings["inline"] and isinstance(expr.rhs, Piecewise): # Here we modify Piecewise so each expression is now # an Assignment, and then continue on the print. expressions = [] conditions = [] for (e, c) in rhs.args: expressions.append(Assignment(lhs, e)) conditions.append(c) temp = Piecewise(*zip(expressions, conditions)) return self._print(temp) if self._settings["contract"] and (lhs.has(IndexedBase) or rhs.has(IndexedBase)): # Here we check if there is looping to be done, and if so # print the required loops. return self._doprint_loops(rhs, lhs) else: lhs_code = self._print(lhs) rhs_code = self._print(rhs) return self._get_statement("%s = %s" % (lhs_code, rhs_code)) def _print_Infinity(self, expr): return 'Inf' def _print_NegativeInfinity(self, expr): return '-Inf' def _print_NaN(self, expr): return 'NaN' def _print_list(self, expr): return 'Any[' + ', '.join(self._print(a) for a in expr) + ']' def _print_tuple(self, expr): if len(expr) == 1: return "(%s,)" % self._print(expr[0]) else: return "(%s)" % self.stringify(expr, ", ") _print_Tuple = _print_tuple def _print_BooleanTrue(self, expr): return "true" def _print_BooleanFalse(self, expr): return "false" def _print_bool(self, expr): return str(expr).lower() # Could generate quadrature code for definite Integrals? #_print_Integral = _print_not_supported def _print_MatrixBase(self, A): # Handle zero dimensions: if A.rows == 0 or A.cols == 0: return 'zeros(%s, %s)' % (A.rows, A.cols) elif (A.rows, A.cols) == (1, 1): return "[%s]" % A[0, 0] elif A.rows == 1: return "[%s]" % A.table(self, rowstart='', rowend='', colsep=' ') elif A.cols == 1: # note .table would unnecessarily equispace the rows return "[%s]" % ", ".join([self._print(a) for a in A]) return "[%s]" % A.table(self, rowstart='', rowend='', rowsep=';\n', colsep=' ') def _print_SparseMatrix(self, A): from sympy.matrices import Matrix L = A.col_list(); # make row vectors of the indices and entries I = Matrix([k[0] + 1 for k in L]) J = Matrix([k[1] + 1 for k in L]) AIJ = Matrix([k[2] for k in L]) return "sparse(%s, %s, %s, %s, %s)" % (self._print(I), self._print(J), self._print(AIJ), A.rows, A.cols) # FIXME: Str/CodePrinter could define each of these to call the _print # method from higher up the class hierarchy (see _print_NumberSymbol). # Then subclasses like us would not need to repeat all this. _print_Matrix = \ _print_DenseMatrix = \ _print_MutableDenseMatrix = \ _print_ImmutableMatrix = \ _print_ImmutableDenseMatrix = \ _print_MatrixBase _print_MutableSparseMatrix = \ _print_ImmutableSparseMatrix = \ _print_SparseMatrix def _print_MatrixElement(self, expr): return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) \ + '[%s,%s]' % (expr.i + 1, expr.j + 1) def _print_MatrixSlice(self, expr): def strslice(x, lim): l = x[0] + 1 h = x[1] step = x[2] lstr = self._print(l) hstr = 'end' if h == lim else self._print(h) if step == 1: if l == 1 and h == lim: return ':' if l == h: return lstr else: return lstr + ':' + hstr else: return ':'.join((lstr, self._print(step), hstr)) return (self._print(expr.parent) + '[' + strslice(expr.rowslice, expr.parent.shape[0]) + ',' + strslice(expr.colslice, expr.parent.shape[1]) + ']') def _print_Indexed(self, expr): inds = [ self._print(i) for i in expr.indices ] return "%s[%s]" % (self._print(expr.base.label), ",".join(inds)) def _print_Idx(self, expr): return self._print(expr.label) def _print_Identity(self, expr): return "eye(%s)" % self._print(expr.shape[0]) # Note: as of 2015, Julia doesn't have spherical Bessel functions def _print_jn(self, expr): from sympy.functions import sqrt, besselj x = expr.argument expr2 = sqrt(S.Pi/(2*x))*besselj(expr.order + S.Half, x) return self._print(expr2) def _print_yn(self, expr): from sympy.functions import sqrt, bessely x = expr.argument expr2 = sqrt(S.Pi/(2*x))*bessely(expr.order + S.Half, x) return self._print(expr2) def _print_Piecewise(self, expr): if expr.args[-1].cond != True: # We need the last conditional to be a True, otherwise the resulting # function may not return a result. raise ValueError("All Piecewise expressions must contain an " "(expr, True) statement to be used as a default " "condition. Without one, the generated " "expression may not evaluate to anything under " "some condition.") lines = [] if self._settings["inline"]: # Express each (cond, expr) pair in a nested Horner form: # (condition) .* (expr) + (not cond) .* (<others>) # Expressions that result in multiple statements won't work here. ecpairs = ["({0}) ? ({1}) :".format (self._print(c), self._print(e)) for e, c in expr.args[:-1]] elast = " (%s)" % self._print(expr.args[-1].expr) pw = "\n".join(ecpairs) + elast # Note: current need these outer brackets for 2*pw. Would be # nicer to teach parenthesize() to do this for us when needed! return "(" + pw + ")" else: for i, (e, c) in enumerate(expr.args): if i == 0: lines.append("if (%s)" % self._print(c)) elif i == len(expr.args) - 1 and c == True: lines.append("else") else: lines.append("elseif (%s)" % self._print(c)) code0 = self._print(e) lines.append(code0) if i == len(expr.args) - 1: lines.append("end") return "\n".join(lines) def indent_code(self, code): """Accepts a string of code or a list of code lines""" # code mostly copied from ccode if isinstance(code, string_types): code_lines = self.indent_code(code.splitlines(True)) return ''.join(code_lines) tab = " " inc_regex = ('^function ', '^if ', '^elseif ', '^else$', '^for ') dec_regex = ('^end$', '^elseif ', '^else$') # pre-strip left-space from the code code = [ line.lstrip(' \t') for line in code ] increase = [ int(any([search(re, line) for re in inc_regex])) for line in code ] decrease = [ int(any([search(re, line) for re in dec_regex])) for line in code ] pretty = [] level = 0 for n, line in enumerate(code): if line == '' or line == '\n': pretty.append(line) continue level -= decrease[n] pretty.append("%s%s" % (tab*level, line)) level += increase[n] return pretty def julia_code(expr, assign_to=None, **settings): r"""Converts `expr` to a string of Julia code. Parameters ========== expr : Expr A sympy expression to be converted. assign_to : optional When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string, ``Symbol``, ``MatrixSymbol``, or ``Indexed`` type. This can be helpful for expressions that generate multi-line statements. precision : integer, optional The precision for numbers such as pi [default=16]. user_functions : dict, optional A dictionary where keys are ``FunctionClass`` instances and values are their string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. See below for examples. human : bool, optional If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True]. contract: bool, optional If True, ``Indexed`` instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True]. inline: bool, optional If True, we try to create single-statement code instead of multiple statements. [default=True]. Examples ======== >>> from sympy import julia_code, symbols, sin, pi >>> x = symbols('x') >>> julia_code(sin(x).series(x).removeO()) 'x.^5/120 - x.^3/6 + x' >>> from sympy import Rational, ceiling, Abs >>> x, y, tau = symbols("x, y, tau") >>> julia_code((2*tau)**Rational(7, 2)) '8*sqrt(2)*tau.^(7/2)' Note that element-wise (Hadamard) operations are used by default between symbols. This is because its possible in Julia to write "vectorized" code. It is harmless if the values are scalars. >>> julia_code(sin(pi*x*y), assign_to="s") 's = sin(pi*x.*y)' If you need a matrix product "*" or matrix power "^", you can specify the symbol as a ``MatrixSymbol``. >>> from sympy import Symbol, MatrixSymbol >>> n = Symbol('n', integer=True, positive=True) >>> A = MatrixSymbol('A', n, n) >>> julia_code(3*pi*A**3) '(3*pi)*A^3' This class uses several rules to decide which symbol to use a product. Pure numbers use "*", Symbols use ".*" and MatrixSymbols use "*". A HadamardProduct can be used to specify componentwise multiplication ".*" of two MatrixSymbols. There is currently there is no easy way to specify scalar symbols, so sometimes the code might have some minor cosmetic issues. For example, suppose x and y are scalars and A is a Matrix, then while a human programmer might write "(x^2*y)*A^3", we generate: >>> julia_code(x**2*y*A**3) '(x.^2.*y)*A^3' Matrices are supported using Julia inline notation. When using ``assign_to`` with matrices, the name can be specified either as a string or as a ``MatrixSymbol``. The dimensions must align in the latter case. >>> from sympy import Matrix, MatrixSymbol >>> mat = Matrix([[x**2, sin(x), ceiling(x)]]) >>> julia_code(mat, assign_to='A') 'A = [x.^2 sin(x) ceil(x)]' ``Piecewise`` expressions are implemented with logical masking by default. Alternatively, you can pass "inline=False" to use if-else conditionals. Note that if the ``Piecewise`` lacks a default term, represented by ``(expr, True)`` then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything. >>> from sympy import Piecewise >>> pw = Piecewise((x + 1, x > 0), (x, True)) >>> julia_code(pw, assign_to=tau) 'tau = ((x > 0) ? (x + 1) : (x))' Note that any expression that can be generated normally can also exist inside a Matrix: >>> mat = Matrix([[x**2, pw, sin(x)]]) >>> julia_code(mat, assign_to='A') 'A = [x.^2 ((x > 0) ? (x + 1) : (x)) sin(x)]' Custom printing can be defined for certain types by passing a dictionary of "type" : "function" to the ``user_functions`` kwarg. Alternatively, the dictionary value can be a list of tuples i.e., [(argument_test, cfunction_string)]. This can be used to call a custom Julia function. >>> from sympy import Function >>> f = Function('f') >>> g = Function('g') >>> custom_functions = { ... "f": "existing_julia_fcn", ... "g": [(lambda x: x.is_Matrix, "my_mat_fcn"), ... (lambda x: not x.is_Matrix, "my_fcn")] ... } >>> mat = Matrix([[1, x]]) >>> julia_code(f(x) + g(x) + g(mat), user_functions=custom_functions) 'existing_julia_fcn(x) + my_fcn(x) + my_mat_fcn([1 x])' Support for loops is provided through ``Indexed`` types. With ``contract=True`` these expressions will be turned into loops, whereas ``contract=False`` will just print the assignment expression that should be looped over: >>> from sympy import Eq, IndexedBase, Idx, ccode >>> len_y = 5 >>> y = IndexedBase('y', shape=(len_y,)) >>> t = IndexedBase('t', shape=(len_y,)) >>> Dy = IndexedBase('Dy', shape=(len_y-1,)) >>> i = Idx('i', len_y-1) >>> e = Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) >>> julia_code(e.rhs, assign_to=e.lhs, contract=False) 'Dy[i] = (y[i + 1] - y[i])./(t[i + 1] - t[i])' """ return JuliaCodePrinter(settings).doprint(expr, assign_to) def print_julia_code(expr, **settings): """Prints the Julia representation of the given expression. See `julia_code` for the meaning of the optional arguments. """ print(julia_code(expr, **settings))
9d56a42a6705c68a622b6f3bb4bbde5ab668075f9aa34e07e9ed83e441de018e
from sympy.codegen.ast import Assignment from sympy.core import S from sympy.core.compatibility import string_types, range from sympy.core.function import _coeff_isneg, Lambda from sympy.printing.codeprinter import CodePrinter from sympy.printing.precedence import precedence from functools import reduce known_functions = { 'Abs': 'abs', 'sin': 'sin', 'cos': 'cos', 'tan': 'tan', 'acos': 'acos', 'asin': 'asin', 'atan': 'atan', 'atan2': 'atan', 'ceiling': 'ceil', 'floor': 'floor', 'sign': 'sign', 'exp': 'exp', 'log': 'log', 'add': 'add', 'sub': 'sub', 'mul': 'mul', 'pow': 'pow' } class GLSLPrinter(CodePrinter): """ Rudimentary, generic GLSL printing tools. Additional settings: 'use_operators': Boolean (should the printer use operators for +,-,*, or functions?) """ _not_supported = set() printmethod = "_glsl" language = "GLSL" _default_settings = { 'use_operators': True, 'mat_nested': False, 'mat_separator': ',\n', 'mat_transpose': False, 'glsl_types': True, 'order': None, 'full_prec': 'auto', 'precision': 9, 'user_functions': {}, 'human': True, 'allow_unknown_functions': False, 'contract': True, 'error_on_reserved': False, 'reserved_word_suffix': '_' } def __init__(self, settings={}): CodePrinter.__init__(self, settings) self.known_functions = dict(known_functions) userfuncs = settings.get('user_functions', {}) self.known_functions.update(userfuncs) def _rate_index_position(self, p): return p*5 def _get_statement(self, codestring): return "%s;" % codestring def _get_comment(self, text): return "// {0}".format(text) def _declare_number_const(self, name, value): return "float {0} = {1};".format(name, value) def _format_code(self, lines): return self.indent_code(lines) def indent_code(self, code): """Accepts a string of code or a list of code lines""" if isinstance(code, string_types): code_lines = self.indent_code(code.splitlines(True)) return ''.join(code_lines) tab = " " inc_token = ('{', '(', '{\n', '(\n') dec_token = ('}', ')') code = [line.lstrip(' \t') for line in code] increase = [int(any(map(line.endswith, inc_token))) for line in code] decrease = [int(any(map(line.startswith, dec_token))) for line in code] pretty = [] level = 0 for n, line in enumerate(code): if line == '' or line == '\n': pretty.append(line) continue level -= decrease[n] pretty.append("%s%s" % (tab*level, line)) level += increase[n] return pretty def _print_MatrixBase(self, mat): mat_separator = self._settings['mat_separator'] mat_transpose = self._settings['mat_transpose'] glsl_types = self._settings['glsl_types'] column_vector = (mat.rows == 1) if mat_transpose else (mat.cols == 1) A = mat.transpose() if mat_transpose != column_vector else mat if A.cols == 1: return self._print(A[0]); if A.rows <= 4 and A.cols <= 4 and glsl_types: if A.rows == 1: return 'vec%s%s' % (A.cols, A.table(self,rowstart='(',rowend=')')) elif A.rows == A.cols: return 'mat%s(%s)' % (A.rows, A.table(self,rowsep=', ', rowstart='',rowend='')) else: return 'mat%sx%s(%s)' % (A.cols, A.rows, A.table(self,rowsep=', ', rowstart='',rowend='')) elif A.cols == 1 or A.rows == 1: return 'float[%s](%s)' % (A.cols*A.rows, A.table(self,rowsep=mat_separator,rowstart='',rowend='')) elif not self._settings['mat_nested']: return 'float[%s](\n%s\n) /* a %sx%s matrix */' % (A.cols*A.rows, A.table(self,rowsep=mat_separator,rowstart='',rowend=''), A.rows,A.cols) elif self._settings['mat_nested']: return 'float[%s][%s](\n%s\n)' % (A.rows,A.cols,A.table(self,rowsep=mat_separator,rowstart='float[](',rowend=')')) _print_Matrix = \ _print_MatrixElement = \ _print_DenseMatrix = \ _print_MutableDenseMatrix = \ _print_ImmutableMatrix = \ _print_ImmutableDenseMatrix = \ _print_MatrixBase def _traverse_matrix_indices(self, mat): mat_transpose = self._settings['mat_transpose'] if mat_transpose: rows,cols = mat.shape else: cols,rows = mat.shape return ((i, j) for i in range(cols) for j in range(rows)) def _print_MatrixElement(self, expr): # print('begin _print_MatrixElement') nest = self._settings['mat_nested']; glsl_types = self._settings['glsl_types']; mat_transpose = self._settings['mat_transpose']; if mat_transpose: cols,rows = expr.parent.shape i,j = expr.j,expr.i else: rows,cols = expr.parent.shape i,j = expr.i,expr.j pnt = self._print(expr.parent) if glsl_types and ((rows <= 4 and cols <=4) or nest): # print('end _print_MatrixElement case A',nest,glsl_types) return "%s[%s][%s]" % (pnt, i, j) else: # print('end _print_MatrixElement case B',nest,glsl_types) return "{0}[{1}]".format(pnt, i + j*rows) def _print_list(self, expr): l = ', '.join(self._print(item) for item in expr) glsl_types = self._settings['glsl_types'] if len(expr) <= 4 and glsl_types: return 'vec%s(%s)' % (len(expr),l) else: return 'float[%s](%s)' % (len(expr),l) _print_tuple = _print_list _print_Tuple = _print_list def _get_loop_opening_ending(self, indices): open_lines = [] close_lines = [] loopstart = "for (int %(varble)s=%(start)s; %(varble)s<%(end)s; %(varble)s++){" for i in indices: # GLSL arrays start at 0 and end at dimension-1 open_lines.append(loopstart % { 'varble': self._print(i.label), 'start': self._print(i.lower), 'end': self._print(i.upper + 1)}) close_lines.append("}") return open_lines, close_lines def _print_Function_with_args(self, func, func_args): if func in self.known_functions: cond_func = self.known_functions[func] func = None if isinstance(cond_func, string_types): func = cond_func else: for cond, func in cond_func: if cond(func_args): break if func is not None: try: return func(*[self.parenthesize(item, 0) for item in func_args]) except TypeError: return "%s(%s)" % (func, self.stringify(func_args, ", ")) elif isinstance(func, Lambda): # inlined function return self._print(func(*func_args)) else: return self._print_not_supported(func) def _print_Piecewise(self, expr): if expr.args[-1].cond != True: # We need the last conditional to be a True, otherwise the resulting # function may not return a result. raise ValueError("All Piecewise expressions must contain an " "(expr, True) statement to be used as a default " "condition. Without one, the generated " "expression may not evaluate to anything under " "some condition.") lines = [] if expr.has(Assignment): for i, (e, c) in enumerate(expr.args): if i == 0: lines.append("if (%s) {" % self._print(c)) elif i == len(expr.args) - 1 and c == True: lines.append("else {") else: lines.append("else if (%s) {" % self._print(c)) code0 = self._print(e) lines.append(code0) lines.append("}") return "\n".join(lines) else: # The piecewise was used in an expression, need to do inline # operators. This has the downside that inline operators will # not work for statements that span multiple lines (Matrix or # Indexed expressions). ecpairs = ["((%s) ? (\n%s\n)\n" % (self._print(c), self._print(e)) for e, c in expr.args[:-1]] last_line = ": (\n%s\n)" % self._print(expr.args[-1].expr) return ": ".join(ecpairs) + last_line + " ".join([")"*len(ecpairs)]) def _print_Idx(self, expr): return self._print(expr.label) def _print_Indexed(self, expr): # calculate index for 1d array dims = expr.shape elem = S.Zero offset = S.One for i in reversed(range(expr.rank)): elem += expr.indices[i]*offset offset *= dims[i] return "%s[%s]" % (self._print(expr.base.label), self._print(elem)) def _print_Pow(self, expr): PREC = precedence(expr) if expr.exp == -1: return '1.0/%s' % (self.parenthesize(expr.base, PREC)) elif expr.exp == 0.5: return 'sqrt(%s)' % self._print(expr.base) else: try: e = self._print(float(expr.exp)) except TypeError: e = self._print(expr.exp) # return self.known_functions['pow']+'(%s, %s)' % (self._print(expr.base),e) return self._print_Function_with_args('pow', ( self._print(expr.base), e )) def _print_int(self, expr): return str(float(expr)) def _print_Rational(self, expr): return "%s.0/%s.0" % (expr.p, expr.q) def _print_Add(self, expr, order=None): if self._settings['use_operators']: return CodePrinter._print_Add(self, expr, order=order) terms = expr.as_ordered_terms() def partition(p,l): return reduce(lambda x, y: (x[0]+[y], x[1]) if p(y) else (x[0], x[1]+[y]), l, ([], [])) def add(a,b): return self._print_Function_with_args('add', (a, b)) # return self.known_functions['add']+'(%s, %s)' % (a,b) neg, pos = partition(lambda arg: _coeff_isneg(arg), terms) s = pos = reduce(lambda a,b: add(a,b), map(lambda t: self._print(t),pos)) if neg: # sum the absolute values of the negative terms neg = reduce(lambda a,b: add(a,b), map(lambda n: self._print(-n),neg)) # then subtract them from the positive terms s = self._print_Function_with_args('sub', (pos,neg)) # s = self.known_functions['sub']+'(%s, %s)' % (pos,neg) return s def _print_Mul(self, expr, **kwargs): if self._settings['use_operators']: return CodePrinter._print_Mul(self, expr, **kwargs) terms = expr.as_ordered_factors() def mul(a,b): # return self.known_functions['mul']+'(%s, %s)' % (a,b) return self._print_Function_with_args('mul', (a,b)) s = reduce(lambda a,b: mul(a,b), map(lambda t: self._print(t), terms)) return s def glsl_code(expr,assign_to=None,**settings): """Converts an expr to a string of GLSL code Parameters ========== expr : Expr A sympy expression to be converted. assign_to : optional When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string, ``Symbol``, ``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of line-wrapping, or for expressions that generate multi-line statements. use_operators: bool, optional If set to False, then *,/,+,- operators will be replaced with functions mul, add, and sub, which must be implemented by the user, e.g. for implementing non-standard rings or emulated quad/octal precision. [default=True] glsl_types: bool, optional Set this argument to ``False`` in order to avoid using the ``vec`` and ``mat`` types. The printer will instead use arrays (or nested arrays). [default=True] mat_nested: bool, optional GLSL version 4.3 and above support nested arrays (arrays of arrays). Set this to ``True`` to render matrices as nested arrays. [default=False] mat_separator: str, optional By default, matrices are rendered with newlines using this separator, making them easier to read, but less compact. By removing the newline this option can be used to make them more vertically compact. [default=',\n'] mat_transpose: bool, optional GLSL's matrix multiplication implementation assumes column-major indexing. By default, this printer ignores that convention. Setting this option to ``True`` transposes all matrix output. [default=False] precision : integer, optional The precision for numbers such as pi [default=15]. user_functions : dict, optional A dictionary where keys are ``FunctionClass`` instances and values are their string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, js_function_string)]. See below for examples. human : bool, optional If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True]. contract: bool, optional If True, ``Indexed`` instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True]. Examples ======== >>> from sympy import glsl_code, symbols, Rational, sin, ceiling, Abs >>> x, tau = symbols("x, tau") >>> glsl_code((2*tau)**Rational(7, 2)) '8*sqrt(2)*pow(tau, 3.5)' >>> glsl_code(sin(x), assign_to="float y") 'float y = sin(x);' Various GLSL types are supported: >>> from sympy import Matrix, glsl_code >>> glsl_code(Matrix([1,2,3])) 'vec3(1, 2, 3)' >>> glsl_code(Matrix([[1, 2],[3, 4]])) 'mat2(1, 2, 3, 4)' Pass ``mat_transpose = True`` to switch to column-major indexing: >>> glsl_code(Matrix([[1, 2],[3, 4]]), mat_transpose = True) 'mat2(1, 3, 2, 4)' By default, larger matrices get collapsed into float arrays: >>> print(glsl_code( Matrix([[1,2,3,4,5],[6,7,8,9,10]]) )) float[10]( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ) /* a 2x5 matrix */ Passing ``mat_nested = True`` instead prints out nested float arrays, which are supported in GLSL 4.3 and above. >>> mat = Matrix([ ... [ 0, 1, 2], ... [ 3, 4, 5], ... [ 6, 7, 8], ... [ 9, 10, 11], ... [12, 13, 14]]) >>> print(glsl_code( mat, mat_nested = True )) float[5][3]( float[]( 0, 1, 2), float[]( 3, 4, 5), float[]( 6, 7, 8), float[]( 9, 10, 11), float[](12, 13, 14) ) Custom printing can be defined for certain types by passing a dictionary of "type" : "function" to the ``user_functions`` kwarg. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, js_function_string)]. >>> custom_functions = { ... "ceiling": "CEIL", ... "Abs": [(lambda x: not x.is_integer, "fabs"), ... (lambda x: x.is_integer, "ABS")] ... } >>> glsl_code(Abs(x) + ceiling(x), user_functions=custom_functions) 'fabs(x) + CEIL(x)' If further control is needed, addition, subtraction, multiplication and division operators can be replaced with ``add``, ``sub``, and ``mul`` functions. This is done by passing ``use_operators = False``: >>> x,y,z = symbols('x,y,z') >>> glsl_code(x*(y+z), use_operators = False) 'mul(x, add(y, z))' >>> glsl_code(x*(y+z*(x-y)**z), use_operators = False) 'mul(x, add(y, mul(z, pow(sub(x, y), z))))' ``Piecewise`` expressions are converted into conditionals. If an ``assign_to`` variable is provided an if statement is created, otherwise the ternary operator is used. Note that if the ``Piecewise`` lacks a default term, represented by ``(expr, True)`` then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything. >>> from sympy import Piecewise >>> expr = Piecewise((x + 1, x > 0), (x, True)) >>> print(glsl_code(expr, tau)) if (x > 0) { tau = x + 1; } else { tau = x; } Support for loops is provided through ``Indexed`` types. With ``contract=True`` these expressions will be turned into loops, whereas ``contract=False`` will just print the assignment expression that should be looped over: >>> from sympy import Eq, IndexedBase, Idx >>> len_y = 5 >>> y = IndexedBase('y', shape=(len_y,)) >>> t = IndexedBase('t', shape=(len_y,)) >>> Dy = IndexedBase('Dy', shape=(len_y-1,)) >>> i = Idx('i', len_y-1) >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) >>> glsl_code(e.rhs, assign_to=e.lhs, contract=False) 'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);' >>> from sympy import Matrix, MatrixSymbol >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)]) >>> A = MatrixSymbol('A', 3, 1) >>> print(glsl_code(mat, A)) A[0][0] = pow(x, 2.0); if (x > 0) { A[1][0] = x + 1; } else { A[1][0] = x; } A[2][0] = sin(x); """ return GLSLPrinter(settings).doprint(expr,assign_to) def print_glsl(expr, **settings): """Prints the GLSL representation of the given expression. See GLSLPrinter init function for settings. """ print(glsl_code(expr, **settings))
568f790bfbb825fa16e57046b81f62042879c0a17737c22e8391a46bcbfe9405
from __future__ import print_function, division from sympy.core.compatibility import range, is_sequence from sympy.external import import_module from sympy.printing.printer import Printer import sympy from functools import partial theano = import_module('theano') if theano: ts = theano.scalar tt = theano.tensor from theano.sandbox import linalg as tlinalg mapping = { sympy.Add: tt.add, sympy.Mul: tt.mul, sympy.Abs: tt.abs_, sympy.sign: tt.sgn, sympy.ceiling: tt.ceil, sympy.floor: tt.floor, sympy.log: tt.log, sympy.exp: tt.exp, sympy.sqrt: tt.sqrt, sympy.cos: tt.cos, sympy.acos: tt.arccos, sympy.sin: tt.sin, sympy.asin: tt.arcsin, sympy.tan: tt.tan, sympy.atan: tt.arctan, sympy.atan2: tt.arctan2, sympy.cosh: tt.cosh, sympy.acosh: tt.arccosh, sympy.sinh: tt.sinh, sympy.asinh: tt.arcsinh, sympy.tanh: tt.tanh, sympy.atanh: tt.arctanh, sympy.re: tt.real, sympy.im: tt.imag, sympy.arg: tt.angle, sympy.erf: tt.erf, sympy.gamma: tt.gamma, sympy.loggamma: tt.gammaln, sympy.Pow: tt.pow, sympy.Eq: tt.eq, sympy.StrictGreaterThan: tt.gt, sympy.StrictLessThan: tt.lt, sympy.LessThan: tt.le, sympy.GreaterThan: tt.ge, sympy.And: tt.and_, sympy.Or: tt.or_, sympy.Max: tt.maximum, # Sympy accept >2 inputs, Theano only 2 sympy.Min: tt.minimum, # Sympy accept >2 inputs, Theano only 2 # Matrices sympy.MatAdd: tt.Elemwise(ts.add), sympy.HadamardProduct: tt.Elemwise(ts.mul), sympy.Trace: tlinalg.trace, sympy.Determinant : tlinalg.det, sympy.Inverse: tlinalg.matrix_inverse, sympy.Transpose: tt.DimShuffle((False, False), [1, 0]), } class TheanoPrinter(Printer): """ Code printer which creates Theano symbolic expression graphs. Parameters ========== cache : dict Cache dictionary to use (see :attr:`cache`). If None (default) will use the global cache. To create a printer which does not depend on or alter global state pass an empty dictionary. Note: the dictionary is not copied on initialization of the printer and will be updated in-place, so using the same dict object when creating multiple printers or making multiple calls to :func:`.theano_code` or :func:`.theano_function` means the cache is shared between all these applications. Attributes ========== cache : dict A cache of Theano variables which have been created for Sympy symbol-like objects (e.g. :class:`sympy.core.symbol.Symbol` or :class:`sympy.matrices.expressions.MatrixSymbol`). This is used to ensure that all references to a given symbol in an expression (or multiple expressions) are printed as the same Theano variable, which is created only once. Symbols are differentiated only by name and type. The format of the cache's contents should be considered opaque to the user. """ printmethod = "_theano" def __init__(self, *args, **kwargs): self.cache = kwargs.pop('cache', dict()) super(TheanoPrinter, self).__init__(*args, **kwargs) def _get_key(self, s, name=None, dtype=None, broadcastable=None): """ Get the cache key for a Sympy object. Parameters ========== s : sympy.core.basic.Basic Sympy object to get key for. name : str Name of object, if it does not have a ``name`` attribute. """ if name is None: name = s.name return (name, type(s), s.args, dtype, broadcastable) def _get_or_create(self, s, name=None, dtype=None, broadcastable=None): """ Get the Theano variable for a Sympy symbol from the cache, or create it if it does not exist. """ # Defaults if name is None: name = s.name if dtype is None: dtype = 'floatX' if broadcastable is None: broadcastable = () key = self._get_key(s, name, dtype=dtype, broadcastable=broadcastable) if key in self.cache: return self.cache[key] value = tt.tensor(name=name, dtype=dtype, broadcastable=broadcastable) self.cache[key] = value return value def _print_Symbol(self, s, **kwargs): dtype = kwargs.get('dtypes', {}).get(s) bc = kwargs.get('broadcastables', {}).get(s) return self._get_or_create(s, dtype=dtype, broadcastable=bc) def _print_AppliedUndef(self, s, **kwargs): name = str(type(s)) + '_' + str(s.args[0]) dtype = kwargs.get('dtypes', {}).get(s) bc = kwargs.get('broadcastables', {}).get(s) return self._get_or_create(s, name=name, dtype=dtype, broadcastable=bc) def _print_Basic(self, expr, **kwargs): op = mapping[type(expr)] children = [self._print(arg, **kwargs) for arg in expr.args] return op(*children) def _print_Number(self, n, **kwargs): # Integers already taken care of below, interpret as float return float(n.evalf()) def _print_MatrixSymbol(self, X, **kwargs): dtype = kwargs.get('dtypes', {}).get(X) return self._get_or_create(X, dtype=dtype, broadcastable=(None, None)) def _print_DenseMatrix(self, X, **kwargs): if not hasattr(tt, 'stacklists'): raise NotImplementedError( "Matrix translation not yet supported in this version of Theano") return tt.stacklists([ [self._print(arg, **kwargs) for arg in L] for L in X.tolist() ]) _print_ImmutableMatrix = _print_ImmutableDenseMatrix = _print_DenseMatrix def _print_MatMul(self, expr, **kwargs): children = [self._print(arg, **kwargs) for arg in expr.args] result = children[0] for child in children[1:]: result = tt.dot(result, child) return result def _print_MatPow(self, expr, **kwargs): children = [self._print(arg, **kwargs) for arg in expr.args] result = 1 if isinstance(children[1], int) and children[1] > 0: for i in range(children[1]): result = tt.dot(result, children[0]) else: raise NotImplementedError('''Only non-negative integer powers of matrices can be handled by Theano at the moment''') return result def _print_MatrixSlice(self, expr, **kwargs): parent = self._print(expr.parent, **kwargs) rowslice = self._print(slice(*expr.rowslice), **kwargs) colslice = self._print(slice(*expr.colslice), **kwargs) return parent[rowslice, colslice] def _print_BlockMatrix(self, expr, **kwargs): nrows, ncols = expr.blocks.shape blocks = [[self._print(expr.blocks[r, c], **kwargs) for c in range(ncols)] for r in range(nrows)] return tt.join(0, *[tt.join(1, *row) for row in blocks]) def _print_slice(self, expr, **kwargs): return slice(*[self._print(i, **kwargs) if isinstance(i, sympy.Basic) else i for i in (expr.start, expr.stop, expr.step)]) def _print_Pi(self, expr, **kwargs): return 3.141592653589793 def _print_Piecewise(self, expr, **kwargs): import numpy as np e, cond = expr.args[0].args # First condition and corresponding value # Print conditional expression and value for first condition p_cond = self._print(cond, **kwargs) p_e = self._print(e, **kwargs) # One condition only if len(expr.args) == 1: # Return value if condition else NaN return tt.switch(p_cond, p_e, np.nan) # Return value_1 if condition_1 else evaluate remaining conditions p_remaining = self._print(sympy.Piecewise(*expr.args[1:]), **kwargs) return tt.switch(p_cond, p_e, p_remaining) def _print_Rational(self, expr, **kwargs): return tt.true_div(self._print(expr.p, **kwargs), self._print(expr.q, **kwargs)) def _print_Integer(self, expr, **kwargs): return expr.p def _print_factorial(self, expr, **kwargs): return self._print(sympy.gamma(expr.args[0] + 1), **kwargs) def _print_Derivative(self, deriv, **kwargs): rv = self._print(deriv.expr, **kwargs) for var in deriv.variables: var = self._print(var, **kwargs) rv = tt.Rop(rv, var, tt.ones_like(var)) return rv def emptyPrinter(self, expr): return expr def doprint(self, expr, dtypes=None, broadcastables=None): """ Convert a Sympy expression to a Theano graph variable. The ``dtypes`` and ``broadcastables`` arguments are used to specify the data type, dimension, and broadcasting behavior of the Theano variables corresponding to the free symbols in ``expr``. Each is a mapping from Sympy symbols to the value of the corresponding argument to :func:`theano.tensor.Tensor`. See the corresponding `documentation page`__ for more information on broadcasting in Theano. .. __: http://deeplearning.net/software/theano/tutorial/broadcasting.html Parameters ========== expr : sympy.core.expr.Expr Sympy expression to print. dtypes : dict Mapping from Sympy symbols to Theano datatypes to use when creating new Theano variables for those symbols. Corresponds to the ``dtype`` argument to :func:`theano.tensor.Tensor`. Defaults to ``'floatX'`` for symbols not included in the mapping. broadcastables : dict Mapping from Sympy symbols to the value of the ``broadcastable`` argument to :func:`theano.tensor.Tensor` to use when creating Theano variables for those symbols. Defaults to the empty tuple for symbols not included in the mapping (resulting in a scalar). Returns ======= theano.gof.graph.Variable A variable corresponding to the expression's value in a Theano symbolic expression graph. See Also ======== theano.tensor.Tensor """ if dtypes is None: dtypes = {} if broadcastables is None: broadcastables = {} return self._print(expr, dtypes=dtypes, broadcastables=broadcastables) global_cache = {} def theano_code(expr, cache=None, **kwargs): """ Convert a Sympy expression into a Theano graph variable. Parameters ========== expr : sympy.core.expr.Expr Sympy expression object to convert. cache : dict Cached Theano variables (see :attr:`.TheanoPrinter.cache`). Defaults to the module-level global cache. dtypes : dict Passed to :meth:`.TheanoPrinter.doprint`. broadcastables : dict Passed to :meth:`.TheanoPrinter.doprint`. Returns ======= theano.gof.graph.Variable A variable corresponding to the expression's value in a Theano symbolic expression graph. """ if not theano: raise ImportError("theano is required for theano_code") if cache is None: cache = global_cache return TheanoPrinter(cache=cache, settings={}).doprint(expr, **kwargs) def dim_handling(inputs, dim=None, dims=None, broadcastables=None): """ Get value of ``broadcastables`` argument to :func:`.theano_code` from keyword arguments to :func:`.theano_function`. Included for backwards compatibility. Parameters ========== inputs Sequence of input symbols. dim : int Common number of dimensions for all inputs. Overrides other arguments if given. dims : dict Mapping from input symbols to number of dimensions. Overrides ``broadcastables`` argument if given. broadcastables : dict Explicit value of ``broadcastables`` argument to :meth:`.TheanoPrinter.doprint`. If not None function will return this value unchanged. Returns ======= dict Dictionary mapping elements of ``inputs`` to their "broadcastable" values (tuple of ``bool``s). """ if dim is not None: return {s: (False,) * dim for s in inputs} if dims is not None: maxdim = max(dims.values()) return { s: (False,) * d + (True,) * (maxdim - d) for s, d in dims.items() } if broadcastables is not None: return broadcastables return {} def theano_function(inputs, outputs, scalar=False, **kwargs): """ Create a Theano function from SymPy expressions. The inputs and outputs are converted to Theano variables using :func:`.theano_code` and then passed to :func:`theano.function`. Parameters ========== inputs Sequence of symbols which constitute the inputs of the function. outputs Sequence of expressions which constitute the outputs(s) of the function. The free symbols of each expression must be a subset of ``inputs``. scalar : bool Convert 0-dimensional arrays in output to scalars. This will return a Python wrapper function around the Theano function object. cache : dict Cached Theano variables (see :attr:`.TheanoPrinter.cache`). Defaults to the module-level global cache. dtypes : dict Passed to :meth:`.TheanoPrinter.doprint`. broadcastables : dict Passed to :meth:`.TheanoPrinter.doprint`. dims : dict Alternative to ``broadcastables`` argument. Mapping from elements of ``inputs`` to integers indicating the dimension of their associated arrays/tensors. Overrides ``broadcastables`` argument if given. dim : int Another alternative to the ``broadcastables`` argument. Common number of dimensions to use for all arrays/tensors. ``theano_function([x, y], [...], dim=2)`` is equivalent to using ``broadcastables={x: (False, False), y: (False, False)}``. Returns ======= callable A callable object which takes values of ``inputs`` as positional arguments and returns an output array for each of the expressions in ``outputs``. If ``outputs`` is a single expression the function will return a Numpy array, if it is a list of multiple expressions the function will return a list of arrays. See description of the ``squeeze`` argument above for the behavior when a single output is passed in a list. The returned object will either be an instance of :class:`theano.compile.function_module.Function` or a Python wrapper function around one. In both cases, the returned value will have a ``theano_function`` attribute which points to the return value of :func:`theano.function`. Examples ======== >>> from sympy.abc import x, y, z >>> from sympy.printing.theanocode import theano_function A simple function with one input and one output: >>> f1 = theano_function([x], [x**2 - 1], scalar=True) >>> f1(3) 8.0 A function with multiple inputs and one output: >>> f2 = theano_function([x, y, z], [(x**z + y**z)**(1/z)], scalar=True) >>> f2(3, 4, 2) 5.0 A function with multiple inputs and multiple outputs: >>> f3 = theano_function([x, y], [x**2 + y**2, x**2 - y**2], scalar=True) >>> f3(2, 3) [13.0, -5.0] See also ======== theano.function dim_handling """ if not theano: raise ImportError("theano is required for theano_function") # Pop off non-theano keyword args cache = kwargs.pop('cache', {}) dtypes = kwargs.pop('dtypes', {}) broadcastables = dim_handling( inputs, dim=kwargs.pop('dim', None), dims=kwargs.pop('dims', None), broadcastables=kwargs.pop('broadcastables', None), ) # Print inputs/outputs code = partial(theano_code, cache=cache, dtypes=dtypes, broadcastables=broadcastables) tinputs = list(map(code, inputs)) toutputs = list(map(code, outputs)) if len(toutputs) == 1: toutputs = toutputs[0] # Compile theano func func = theano.function(tinputs, toutputs, **kwargs) is_0d = [len(o.variable.broadcastable) == 0 for o in func.outputs] # No wrapper required if not scalar or not any(is_0d): func.theano_function = func return func # Create wrapper to convert 0-dimensional outputs to scalars def wrapper(*args): out = func(*args) # out can be array(1.0) or [array(1.0), array(2.0)] if is_sequence(out): return [o[()] if is_0d[i] else o for i, o in enumerate(out)] else: return out[()] wrapper.__wrapped__ = func wrapper.__doc__ = func.__doc__ wrapper.theano_function = func return wrapper
5461f77ff71cfd2a98504cb40c3e3a403d620a376ef6f35ef7c52e61516bfc1a
""" Integral Transforms """ from __future__ import print_function, division from sympy.core import S from sympy.core.compatibility import reduce, range, iterable from sympy.core.function import Function from sympy.core.relational import _canonical, Ge, Gt from sympy.core.numbers import oo from sympy.core.symbol import Dummy from sympy.integrals import integrate, Integral from sympy.integrals.meijerint import _dummy from sympy.logic.boolalg import to_cnf, conjuncts, disjuncts, Or, And from sympy.simplify import simplify from sympy.utilities import default_sort_key from sympy.matrices.matrices import MatrixBase ########################################################################## # Helpers / Utilities ########################################################################## class IntegralTransformError(NotImplementedError): """ Exception raised in relation to problems computing transforms. This class is mostly used internally; if integrals cannot be computed objects representing unevaluated transforms are usually returned. The hint ``needeval=True`` can be used to disable returning transform objects, and instead raise this exception if an integral cannot be computed. """ def __init__(self, transform, function, msg): super(IntegralTransformError, self).__init__( "%s Transform could not be computed: %s." % (transform, msg)) self.function = function class IntegralTransform(Function): """ Base class for integral transforms. This class represents unevaluated transforms. To implement a concrete transform, derive from this class and implement the _compute_transform(f, x, s, **hints) and _as_integral(f, x, s) functions. If the transform cannot be computed, raise IntegralTransformError. Also set cls._name. Implement self._collapse_extra if your function returns more than just a number and possibly a convergence condition. """ @property def function(self): """ The function to be transformed. """ return self.args[0] @property def function_variable(self): """ The dependent variable of the function to be transformed. """ return self.args[1] @property def transform_variable(self): """ The independent transform variable. """ return self.args[2] @property def free_symbols(self): """ This method returns the symbols that will exist when the transform is evaluated. """ return self.function.free_symbols.union({self.transform_variable}) \ - {self.function_variable} def _compute_transform(self, f, x, s, **hints): raise NotImplementedError def _as_integral(self, f, x, s): raise NotImplementedError def _collapse_extra(self, extra): cond = And(*extra) if cond == False: raise IntegralTransformError(self.__class__.name, None, '') return cond def doit(self, **hints): """ Try to evaluate the transform in closed form. This general function handles linearity, but apart from that leaves pretty much everything to _compute_transform. Standard hints are the following: - ``simplify``: whether or not to simplify the result - ``noconds``: if True, don't return convergence conditions - ``needeval``: if True, raise IntegralTransformError instead of returning IntegralTransform objects The default values of these hints depend on the concrete transform, usually the default is ``(simplify, noconds, needeval) = (True, False, False)``. """ from sympy import Add, expand_mul, Mul from sympy.core.function import AppliedUndef needeval = hints.pop('needeval', False) try_directly = not any(func.has(self.function_variable) for func in self.function.atoms(AppliedUndef)) if try_directly: try: return self._compute_transform(self.function, self.function_variable, self.transform_variable, **hints) except IntegralTransformError: pass fn = self.function if not fn.is_Add: fn = expand_mul(fn) if fn.is_Add: hints['needeval'] = needeval res = [self.__class__(*([x] + list(self.args[1:]))).doit(**hints) for x in fn.args] extra = [] ress = [] for x in res: if not isinstance(x, tuple): x = [x] ress.append(x[0]) if len(x) == 2: # only a condition extra.append(x[1]) elif len(x) > 2: # some region parameters and a condition (Mellin, Laplace) extra += [x[1:]] res = Add(*ress) if not extra: return res try: extra = self._collapse_extra(extra) if iterable(extra): return tuple([res]) + tuple(extra) else: return (res, extra) except IntegralTransformError: pass if needeval: raise IntegralTransformError( self.__class__._name, self.function, 'needeval') # TODO handle derivatives etc # pull out constant coefficients coeff, rest = fn.as_coeff_mul(self.function_variable) return coeff*self.__class__(*([Mul(*rest)] + list(self.args[1:]))) @property def as_integral(self): return self._as_integral(self.function, self.function_variable, self.transform_variable) def _eval_rewrite_as_Integral(self, *args, **kwargs): return self.as_integral from sympy.solvers.inequalities import _solve_inequality def _simplify(expr, doit): from sympy import powdenest, piecewise_fold if doit: return simplify(powdenest(piecewise_fold(expr), polar=True)) return expr def _noconds_(default): """ This is a decorator generator for dropping convergence conditions. Suppose you define a function ``transform(*args)`` which returns a tuple of the form ``(result, cond1, cond2, ...)``. Decorating it ``@_noconds_(default)`` will add a new keyword argument ``noconds`` to it. If ``noconds=True``, the return value will be altered to be only ``result``, whereas if ``noconds=False`` the return value will not be altered. The default value of the ``noconds`` keyword will be ``default`` (i.e. the argument of this function). """ def make_wrapper(func): from sympy.core.decorators import wraps @wraps(func) def wrapper(*args, **kwargs): noconds = kwargs.pop('noconds', default) res = func(*args, **kwargs) if noconds: return res[0] return res return wrapper return make_wrapper _noconds = _noconds_(False) ########################################################################## # Mellin Transform ########################################################################## def _default_integrator(f, x): return integrate(f, (x, 0, oo)) @_noconds def _mellin_transform(f, x, s_, integrator=_default_integrator, simplify=True): """ Backend function to compute Mellin transforms. """ from sympy import re, Max, Min, count_ops # We use a fresh dummy, because assumptions on s might drop conditions on # convergence of the integral. s = _dummy('s', 'mellin-transform', f) F = integrator(x**(s - 1) * f, x) if not F.has(Integral): return _simplify(F.subs(s, s_), simplify), (-oo, oo), S.true if not F.is_Piecewise: # XXX can this work if integration gives continuous result now? raise IntegralTransformError('Mellin', f, 'could not compute integral') F, cond = F.args[0] if F.has(Integral): raise IntegralTransformError( 'Mellin', f, 'integral in unexpected form') def process_conds(cond): """ Turn ``cond`` into a strip (a, b), and auxiliary conditions. """ a = -oo b = oo aux = S.true conds = conjuncts(to_cnf(cond)) t = Dummy('t', real=True) for c in conds: a_ = oo b_ = -oo aux_ = [] for d in disjuncts(c): d_ = d.replace( re, lambda x: x.as_real_imag()[0]).subs(re(s), t) if not d.is_Relational or \ d.rel_op in ('==', '!=') \ or d_.has(s) or not d_.has(t): aux_ += [d] continue soln = _solve_inequality(d_, t) if not soln.is_Relational or \ soln.rel_op in ('==', '!='): aux_ += [d] continue if soln.lts == t: b_ = Max(soln.gts, b_) else: a_ = Min(soln.lts, a_) if a_ != oo and a_ != b: a = Max(a_, a) elif b_ != -oo and b_ != a: b = Min(b_, b) else: aux = And(aux, Or(*aux_)) return a, b, aux conds = [process_conds(c) for c in disjuncts(cond)] conds = [x for x in conds if x[2] != False] conds.sort(key=lambda x: (x[0] - x[1], count_ops(x[2]))) if not conds: raise IntegralTransformError('Mellin', f, 'no convergence found') a, b, aux = conds[0] return _simplify(F.subs(s, s_), simplify), (a, b), aux class MellinTransform(IntegralTransform): """ Class representing unevaluated Mellin transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute Mellin transforms, see the :func:`mellin_transform` docstring. """ _name = 'Mellin' def _compute_transform(self, f, x, s, **hints): return _mellin_transform(f, x, s, **hints) def _as_integral(self, f, x, s): return Integral(f*x**(s - 1), (x, 0, oo)) def _collapse_extra(self, extra): from sympy import Max, Min a = [] b = [] cond = [] for (sa, sb), c in extra: a += [sa] b += [sb] cond += [c] res = (Max(*a), Min(*b)), And(*cond) if (res[0][0] >= res[0][1]) == True or res[1] == False: raise IntegralTransformError( 'Mellin', None, 'no combined convergence.') return res def mellin_transform(f, x, s, **hints): r""" Compute the Mellin transform `F(s)` of `f(x)`, .. math :: F(s) = \int_0^\infty x^{s-1} f(x) \mathrm{d}x. For all "sensible" functions, this converges absolutely in a strip `a < \operatorname{Re}(s) < b`. The Mellin transform is related via change of variables to the Fourier transform, and also to the (bilateral) Laplace transform. This function returns ``(F, (a, b), cond)`` where ``F`` is the Mellin transform of ``f``, ``(a, b)`` is the fundamental strip (as above), and ``cond`` are auxiliary convergence conditions. If the integral cannot be computed in closed form, this function returns an unevaluated :class:`MellinTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. If ``noconds=False``, then only `F` will be returned (i.e. not ``cond``, and also not the strip ``(a, b)``). >>> from sympy.integrals.transforms import mellin_transform >>> from sympy import exp >>> from sympy.abc import x, s >>> mellin_transform(exp(-x), x, s) (gamma(s), (0, oo), True) See Also ======== inverse_mellin_transform, laplace_transform, fourier_transform hankel_transform, inverse_hankel_transform """ return MellinTransform(f, x, s).doit(**hints) def _rewrite_sin(m_n, s, a, b): """ Re-write the sine function ``sin(m*s + n)`` as gamma functions, compatible with the strip (a, b). Return ``(gamma1, gamma2, fac)`` so that ``f == fac/(gamma1 * gamma2)``. >>> from sympy.integrals.transforms import _rewrite_sin >>> from sympy import pi, S >>> from sympy.abc import s >>> _rewrite_sin((pi, 0), s, 0, 1) (gamma(s), gamma(1 - s), pi) >>> _rewrite_sin((pi, 0), s, 1, 0) (gamma(s - 1), gamma(2 - s), -pi) >>> _rewrite_sin((pi, 0), s, -1, 0) (gamma(s + 1), gamma(-s), -pi) >>> _rewrite_sin((pi, pi/2), s, S(1)/2, S(3)/2) (gamma(s - 1/2), gamma(3/2 - s), -pi) >>> _rewrite_sin((pi, pi), s, 0, 1) (gamma(s), gamma(1 - s), -pi) >>> _rewrite_sin((2*pi, 0), s, 0, S(1)/2) (gamma(2*s), gamma(1 - 2*s), pi) >>> _rewrite_sin((2*pi, 0), s, S(1)/2, 1) (gamma(2*s - 1), gamma(2 - 2*s), -pi) """ # (This is a separate function because it is moderately complicated, # and I want to doctest it.) # We want to use pi/sin(pi*x) = gamma(x)*gamma(1-x). # But there is one comlication: the gamma functions determine the # inegration contour in the definition of the G-function. Usually # it would not matter if this is slightly shifted, unless this way # we create an undefined function! # So we try to write this in such a way that the gammas are # eminently on the right side of the strip. from sympy import expand_mul, pi, ceiling, gamma m, n = m_n m = expand_mul(m/pi) n = expand_mul(n/pi) r = ceiling(-m*a - n.as_real_imag()[0]) # Don't use re(n), does not expand return gamma(m*s + n + r), gamma(1 - n - r - m*s), (-1)**r*pi class MellinTransformStripError(ValueError): """ Exception raised by _rewrite_gamma. Mainly for internal use. """ pass def _rewrite_gamma(f, s, a, b): """ Try to rewrite the product f(s) as a product of gamma functions, so that the inverse Mellin transform of f can be expressed as a meijer G function. Return (an, ap), (bm, bq), arg, exp, fac such that G((an, ap), (bm, bq), arg/z**exp)*fac is the inverse Mellin transform of f(s). Raises IntegralTransformError or MellinTransformStripError on failure. It is asserted that f has no poles in the fundamental strip designated by (a, b). One of a and b is allowed to be None. The fundamental strip is important, because it determines the inversion contour. This function can handle exponentials, linear factors, trigonometric functions. This is a helper function for inverse_mellin_transform that will not attempt any transformations on f. >>> from sympy.integrals.transforms import _rewrite_gamma >>> from sympy.abc import s >>> from sympy import oo >>> _rewrite_gamma(s*(s+3)*(s-1), s, -oo, oo) (([], [-3, 0, 1]), ([-2, 1, 2], []), 1, 1, -1) >>> _rewrite_gamma((s-1)**2, s, -oo, oo) (([], [1, 1]), ([2, 2], []), 1, 1, 1) Importance of the fundamental strip: >>> _rewrite_gamma(1/s, s, 0, oo) (([1], []), ([], [0]), 1, 1, 1) >>> _rewrite_gamma(1/s, s, None, oo) (([1], []), ([], [0]), 1, 1, 1) >>> _rewrite_gamma(1/s, s, 0, None) (([1], []), ([], [0]), 1, 1, 1) >>> _rewrite_gamma(1/s, s, -oo, 0) (([], [1]), ([0], []), 1, 1, -1) >>> _rewrite_gamma(1/s, s, None, 0) (([], [1]), ([0], []), 1, 1, -1) >>> _rewrite_gamma(1/s, s, -oo, None) (([], [1]), ([0], []), 1, 1, -1) >>> _rewrite_gamma(2**(-s+3), s, -oo, oo) (([], []), ([], []), 1/2, 1, 8) """ from itertools import repeat from sympy import (Poly, gamma, Mul, re, CRootOf, exp as exp_, expand, roots, ilcm, pi, sin, cos, tan, cot, igcd, exp_polar) # Our strategy will be as follows: # 1) Guess a constant c such that the inversion integral should be # performed wrt s'=c*s (instead of plain s). Write s for s'. # 2) Process all factors, rewrite them independently as gamma functions in # argument s, or exponentials of s. # 3) Try to transform all gamma functions s.t. they have argument # a+s or a-s. # 4) Check that the resulting G function parameters are valid. # 5) Combine all the exponentials. a_, b_ = S([a, b]) def left(c, is_numer): """ Decide whether pole at c lies to the left of the fundamental strip. """ # heuristically, this is the best chance for us to solve the inequalities c = expand(re(c)) if a_ is None and b_ is oo: return True if a_ is None: return c < b_ if b_ is None: return c <= a_ if (c >= b_) == True: return False if (c <= a_) == True: return True if is_numer: return None if a_.free_symbols or b_.free_symbols or c.free_symbols: return None # XXX #raise IntegralTransformError('Inverse Mellin', f, # 'Could not determine position of singularity %s' # ' relative to fundamental strip' % c) raise MellinTransformStripError('Pole inside critical strip?') # 1) s_multipliers = [] for g in f.atoms(gamma): if not g.has(s): continue arg = g.args[0] if arg.is_Add: arg = arg.as_independent(s)[1] coeff, _ = arg.as_coeff_mul(s) s_multipliers += [coeff] for g in f.atoms(sin, cos, tan, cot): if not g.has(s): continue arg = g.args[0] if arg.is_Add: arg = arg.as_independent(s)[1] coeff, _ = arg.as_coeff_mul(s) s_multipliers += [coeff/pi] s_multipliers = [abs(x) if x.is_real else x for x in s_multipliers] common_coefficient = S(1) for x in s_multipliers: if not x.is_Rational: common_coefficient = x break s_multipliers = [x/common_coefficient for x in s_multipliers] if (any(not x.is_Rational for x in s_multipliers) or not common_coefficient.is_real): raise IntegralTransformError("Gamma", None, "Nonrational multiplier") s_multiplier = common_coefficient/reduce(ilcm, [S(x.q) for x in s_multipliers], S(1)) if s_multiplier == common_coefficient: if len(s_multipliers) == 0: s_multiplier = common_coefficient else: s_multiplier = common_coefficient \ *reduce(igcd, [S(x.p) for x in s_multipliers]) f = f.subs(s, s/s_multiplier) fac = S(1)/s_multiplier exponent = S(1)/s_multiplier if a_ is not None: a_ *= s_multiplier if b_ is not None: b_ *= s_multiplier # 2) numer, denom = f.as_numer_denom() numer = Mul.make_args(numer) denom = Mul.make_args(denom) args = list(zip(numer, repeat(True))) + list(zip(denom, repeat(False))) facs = [] dfacs = [] # *_gammas will contain pairs (a, c) representing Gamma(a*s + c) numer_gammas = [] denom_gammas = [] # exponentials will contain bases for exponentials of s exponentials = [] def exception(fact): return IntegralTransformError("Inverse Mellin", f, "Unrecognised form '%s'." % fact) while args: fact, is_numer = args.pop() if is_numer: ugammas, lgammas = numer_gammas, denom_gammas ufacs, lfacs = facs, dfacs else: ugammas, lgammas = denom_gammas, numer_gammas ufacs, lfacs = dfacs, facs def linear_arg(arg): """ Test if arg is of form a*s+b, raise exception if not. """ if not arg.is_polynomial(s): raise exception(fact) p = Poly(arg, s) if p.degree() != 1: raise exception(fact) return p.all_coeffs() # constants if not fact.has(s): ufacs += [fact] # exponentials elif fact.is_Pow or isinstance(fact, exp_): if fact.is_Pow: base = fact.base exp = fact.exp else: base = exp_polar(1) exp = fact.args[0] if exp.is_Integer: cond = is_numer if exp < 0: cond = not cond args += [(base, cond)]*abs(exp) continue elif not base.has(s): a, b = linear_arg(exp) if not is_numer: base = 1/base exponentials += [base**a] facs += [base**b] else: raise exception(fact) # linear factors elif fact.is_polynomial(s): p = Poly(fact, s) if p.degree() != 1: # We completely factor the poly. For this we need the roots. # Now roots() only works in some cases (low degree), and CRootOf # only works without parameters. So try both... coeff = p.LT()[1] rs = roots(p, s) if len(rs) != p.degree(): rs = CRootOf.all_roots(p) ufacs += [coeff] args += [(s - c, is_numer) for c in rs] continue a, c = p.all_coeffs() ufacs += [a] c /= -a # Now need to convert s - c if left(c, is_numer): ugammas += [(S(1), -c + 1)] lgammas += [(S(1), -c)] else: ufacs += [-1] ugammas += [(S(-1), c + 1)] lgammas += [(S(-1), c)] elif isinstance(fact, gamma): a, b = linear_arg(fact.args[0]) if is_numer: if (a > 0 and (left(-b/a, is_numer) == False)) or \ (a < 0 and (left(-b/a, is_numer) == True)): raise NotImplementedError( 'Gammas partially over the strip.') ugammas += [(a, b)] elif isinstance(fact, sin): # We try to re-write all trigs as gammas. This is not in # general the best strategy, since sometimes this is impossible, # but rewriting as exponentials would work. However trig functions # in inverse mellin transforms usually all come from simplifying # gamma terms, so this should work. a = fact.args[0] if is_numer: # No problem with the poles. gamma1, gamma2, fac_ = gamma(a/pi), gamma(1 - a/pi), pi else: gamma1, gamma2, fac_ = _rewrite_sin(linear_arg(a), s, a_, b_) args += [(gamma1, not is_numer), (gamma2, not is_numer)] ufacs += [fac_] elif isinstance(fact, tan): a = fact.args[0] args += [(sin(a, evaluate=False), is_numer), (sin(pi/2 - a, evaluate=False), not is_numer)] elif isinstance(fact, cos): a = fact.args[0] args += [(sin(pi/2 - a, evaluate=False), is_numer)] elif isinstance(fact, cot): a = fact.args[0] args += [(sin(pi/2 - a, evaluate=False), is_numer), (sin(a, evaluate=False), not is_numer)] else: raise exception(fact) fac *= Mul(*facs)/Mul(*dfacs) # 3) an, ap, bm, bq = [], [], [], [] for gammas, plus, minus, is_numer in [(numer_gammas, an, bm, True), (denom_gammas, bq, ap, False)]: while gammas: a, c = gammas.pop() if a != -1 and a != +1: # We use the gamma function multiplication theorem. p = abs(S(a)) newa = a/p newc = c/p if not a.is_Integer: raise TypeError("a is not an integer") for k in range(p): gammas += [(newa, newc + k/p)] if is_numer: fac *= (2*pi)**((1 - p)/2) * p**(c - S(1)/2) exponentials += [p**a] else: fac /= (2*pi)**((1 - p)/2) * p**(c - S(1)/2) exponentials += [p**(-a)] continue if a == +1: plus.append(1 - c) else: minus.append(c) # 4) # TODO # 5) arg = Mul(*exponentials) # for testability, sort the arguments an.sort(key=default_sort_key) ap.sort(key=default_sort_key) bm.sort(key=default_sort_key) bq.sort(key=default_sort_key) return (an, ap), (bm, bq), arg, exponent, fac @_noconds_(True) def _inverse_mellin_transform(F, s, x_, strip, as_meijerg=False): """ A helper for the real inverse_mellin_transform function, this one here assumes x to be real and positive. """ from sympy import (expand, expand_mul, hyperexpand, meijerg, arg, pi, re, factor, Heaviside, gamma, Add) x = _dummy('t', 'inverse-mellin-transform', F, positive=True) # Actually, we won't try integration at all. Instead we use the definition # of the Meijer G function as a fairly general inverse mellin transform. F = F.rewrite(gamma) for g in [factor(F), expand_mul(F), expand(F)]: if g.is_Add: # do all terms separately ress = [_inverse_mellin_transform(G, s, x, strip, as_meijerg, noconds=False) for G in g.args] conds = [p[1] for p in ress] ress = [p[0] for p in ress] res = Add(*ress) if not as_meijerg: res = factor(res, gens=res.atoms(Heaviside)) return res.subs(x, x_), And(*conds) try: a, b, C, e, fac = _rewrite_gamma(g, s, strip[0], strip[1]) except IntegralTransformError: continue G = meijerg(a, b, C/x**e) if as_meijerg: h = G else: try: h = hyperexpand(G) except NotImplementedError as detail: raise IntegralTransformError( 'Inverse Mellin', F, 'Could not calculate integral') if h.is_Piecewise and len(h.args) == 3: # XXX we break modularity here! h = Heaviside(x - abs(C))*h.args[0].args[0] \ + Heaviside(abs(C) - x)*h.args[1].args[0] # We must ensure that the integral along the line we want converges, # and return that value. # See [L], 5.2 cond = [abs(arg(G.argument)) < G.delta*pi] # Note: we allow ">=" here, this corresponds to convergence if we let # limits go to oo symmetrically. ">" corresponds to absolute convergence. cond += [And(Or(len(G.ap) != len(G.bq), 0 >= re(G.nu) + 1), abs(arg(G.argument)) == G.delta*pi)] cond = Or(*cond) if cond == False: raise IntegralTransformError( 'Inverse Mellin', F, 'does not converge') return (h*fac).subs(x, x_), cond raise IntegralTransformError('Inverse Mellin', F, '') _allowed = None class InverseMellinTransform(IntegralTransform): """ Class representing unevaluated inverse Mellin transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse Mellin transforms, see the :func:`inverse_mellin_transform` docstring. """ _name = 'Inverse Mellin' _none_sentinel = Dummy('None') _c = Dummy('c') def __new__(cls, F, s, x, a, b, **opts): if a is None: a = InverseMellinTransform._none_sentinel if b is None: b = InverseMellinTransform._none_sentinel return IntegralTransform.__new__(cls, F, s, x, a, b, **opts) @property def fundamental_strip(self): a, b = self.args[3], self.args[4] if a is InverseMellinTransform._none_sentinel: a = None if b is InverseMellinTransform._none_sentinel: b = None return a, b def _compute_transform(self, F, s, x, **hints): from sympy import postorder_traversal global _allowed if _allowed is None: from sympy import ( exp, gamma, sin, cos, tan, cot, cosh, sinh, tanh, coth, factorial, rf) _allowed = set( [exp, gamma, sin, cos, tan, cot, cosh, sinh, tanh, coth, factorial, rf]) for f in postorder_traversal(F): if f.is_Function and f.has(s) and f.func not in _allowed: raise IntegralTransformError('Inverse Mellin', F, 'Component %s not recognised.' % f) strip = self.fundamental_strip return _inverse_mellin_transform(F, s, x, strip, **hints) def _as_integral(self, F, s, x): from sympy import I c = self.__class__._c return Integral(F*x**(-s), (s, c - I*oo, c + I*oo))/(2*S.Pi*S.ImaginaryUnit) def inverse_mellin_transform(F, s, x, strip, **hints): r""" Compute the inverse Mellin transform of `F(s)` over the fundamental strip given by ``strip=(a, b)``. This can be defined as .. math:: f(x) = \frac{1}{2\pi i} \int_{c - i\infty}^{c + i\infty} x^{-s} F(s) \mathrm{d}s, for any `c` in the fundamental strip. Under certain regularity conditions on `F` and/or `f`, this recovers `f` from its Mellin transform `F` (and vice versa), for positive real `x`. One of `a` or `b` may be passed as ``None``; a suitable `c` will be inferred. If the integral cannot be computed in closed form, this function returns an unevaluated :class:`InverseMellinTransform` object. Note that this function will assume x to be positive and real, regardless of the sympy assumptions! For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. >>> from sympy.integrals.transforms import inverse_mellin_transform >>> from sympy import oo, gamma >>> from sympy.abc import x, s >>> inverse_mellin_transform(gamma(s), s, x, (0, oo)) exp(-x) The fundamental strip matters: >>> f = 1/(s**2 - 1) >>> inverse_mellin_transform(f, s, x, (-oo, -1)) (x/2 - 1/(2*x))*Heaviside(x - 1) >>> inverse_mellin_transform(f, s, x, (-1, 1)) -x*Heaviside(1 - x)/2 - Heaviside(x - 1)/(2*x) >>> inverse_mellin_transform(f, s, x, (1, oo)) (-x/2 + 1/(2*x))*Heaviside(1 - x) See Also ======== mellin_transform hankel_transform, inverse_hankel_transform """ return InverseMellinTransform(F, s, x, strip[0], strip[1]).doit(**hints) ########################################################################## # Laplace Transform ########################################################################## def _simplifyconds(expr, s, a): r""" Naively simplify some conditions occurring in ``expr``, given that `\operatorname{Re}(s) > a`. >>> from sympy.integrals.transforms import _simplifyconds as simp >>> from sympy.abc import x >>> from sympy import sympify as S >>> simp(abs(x**2) < 1, x, 1) False >>> simp(abs(x**2) < 1, x, 2) False >>> simp(abs(x**2) < 1, x, 0) Abs(x**2) < 1 >>> simp(abs(1/x**2) < 1, x, 1) True >>> simp(S(1) < abs(x), x, 1) True >>> simp(S(1) < abs(1/x), x, 1) False >>> from sympy import Ne >>> simp(Ne(1, x**3), x, 1) True >>> simp(Ne(1, x**3), x, 2) True >>> simp(Ne(1, x**3), x, 0) Ne(1, x**3) """ from sympy.core.relational import ( StrictGreaterThan, StrictLessThan, Unequality ) from sympy import Abs def power(ex): if ex == s: return 1 if ex.is_Pow and ex.base == s: return ex.exp return None def bigger(ex1, ex2): """ Return True only if |ex1| > |ex2|, False only if |ex1| < |ex2|. Else return None. """ if ex1.has(s) and ex2.has(s): return None if isinstance(ex1, Abs): ex1 = ex1.args[0] if isinstance(ex2, Abs): ex2 = ex2.args[0] if ex1.has(s): return bigger(1/ex2, 1/ex1) n = power(ex2) if n is None: return None try: if n > 0 and (abs(ex1) <= abs(a)**n) == True: return False if n < 0 and (abs(ex1) >= abs(a)**n) == True: return True except TypeError: pass def replie(x, y): """ simplify x < y """ if not (x.is_positive or isinstance(x, Abs)) \ or not (y.is_positive or isinstance(y, Abs)): return (x < y) r = bigger(x, y) if r is not None: return not r return (x < y) def replue(x, y): b = bigger(x, y) if b == True or b == False: return True return Unequality(x, y) def repl(ex, *args): if ex == True or ex == False: return bool(ex) return ex.replace(*args) expr = repl(expr, StrictLessThan, replie) expr = repl(expr, StrictGreaterThan, lambda x, y: replie(y, x)) expr = repl(expr, Unequality, replue) return S(expr) @_noconds def _laplace_transform(f, t, s_, simplify=True): """ The backend function for Laplace transforms. """ from sympy import (re, Max, exp, pi, Min, periodic_argument as arg_, arg, cos, Wild, symbols, polar_lift) s = Dummy('s') F = integrate(exp(-s*t) * f, (t, 0, oo)) if not F.has(Integral): return _simplify(F.subs(s, s_), simplify), -oo, S.true if not F.is_Piecewise: raise IntegralTransformError( 'Laplace', f, 'could not compute integral') F, cond = F.args[0] if F.has(Integral): raise IntegralTransformError( 'Laplace', f, 'integral in unexpected form') def process_conds(conds): """ Turn ``conds`` into a strip and auxiliary conditions. """ a = -oo aux = S.true conds = conjuncts(to_cnf(conds)) p, q, w1, w2, w3, w4, w5 = symbols( 'p q w1 w2 w3 w4 w5', cls=Wild, exclude=[s]) patterns = ( p*abs(arg((s + w3)*q)) < w2, p*abs(arg((s + w3)*q)) <= w2, abs(arg_((s + w3)**p*q, w1)) < w2, abs(arg_((s + w3)**p*q, w1)) <= w2, abs(arg_((polar_lift(s + w3))**p*q, w1)) < w2, abs(arg_((polar_lift(s + w3))**p*q, w1)) <= w2) for c in conds: a_ = oo aux_ = [] for d in disjuncts(c): if d.is_Relational and s in d.rhs.free_symbols: d = d.reversed if d.is_Relational and isinstance(d, (Ge, Gt)): d = d.reversedsign for pat in patterns: m = d.match(pat) if m: break if m: if m[q].is_positive and m[w2]/m[p] == pi/2: d = -re(s + m[w3]) < 0 m = d.match(p - cos(w1*abs(arg(s*w5))*w2)*abs(s**w3)**w4 < 0) if not m: m = d.match( cos(p - abs(arg_(s**w1*w5, q))*w2)*abs(s**w3)**w4 < 0) if not m: m = d.match( p - cos(abs(arg_(polar_lift(s)**w1*w5, q))*w2 )*abs(s**w3)**w4 < 0) if m and all(m[wild].is_positive for wild in [w1, w2, w3, w4, w5]): d = re(s) > m[p] d_ = d.replace( re, lambda x: x.expand().as_real_imag()[0]).subs(re(s), t) if not d.is_Relational or \ d.rel_op in ('==', '!=') \ or d_.has(s) or not d_.has(t): aux_ += [d] continue soln = _solve_inequality(d_, t) if not soln.is_Relational or \ soln.rel_op in ('==', '!='): aux_ += [d] continue if soln.lts == t: raise IntegralTransformError('Laplace', f, 'convergence not in half-plane?') else: a_ = Min(soln.lts, a_) if a_ != oo: a = Max(a_, a) else: aux = And(aux, Or(*aux_)) return a, aux conds = [process_conds(c) for c in disjuncts(cond)] conds2 = [x for x in conds if x[1] != False and x[0] != -oo] if not conds2: conds2 = [x for x in conds if x[1] != False] conds = conds2 def cnt(expr): if expr == True or expr == False: return 0 return expr.count_ops() conds.sort(key=lambda x: (-x[0], cnt(x[1]))) if not conds: raise IntegralTransformError('Laplace', f, 'no convergence found') a, aux = conds[0] def sbs(expr): return expr.subs(s, s_) if simplify: F = _simplifyconds(F, s, a) aux = _simplifyconds(aux, s, a) return _simplify(F.subs(s, s_), simplify), sbs(a), _canonical(sbs(aux)) class LaplaceTransform(IntegralTransform): """ Class representing unevaluated Laplace transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute Laplace transforms, see the :func:`laplace_transform` docstring. """ _name = 'Laplace' def _compute_transform(self, f, t, s, **hints): return _laplace_transform(f, t, s, **hints) def _as_integral(self, f, t, s): from sympy import exp return Integral(f*exp(-s*t), (t, 0, oo)) def _collapse_extra(self, extra): from sympy import Max conds = [] planes = [] for plane, cond in extra: conds.append(cond) planes.append(plane) cond = And(*conds) plane = Max(*planes) if cond == False: raise IntegralTransformError( 'Laplace', None, 'No combined convergence.') return plane, cond def laplace_transform(f, t, s, **hints): r""" Compute the Laplace Transform `F(s)` of `f(t)`, .. math :: F(s) = \int_0^\infty e^{-st} f(t) \mathrm{d}t. For all "sensible" functions, this converges absolutely in a half plane `a < \operatorname{Re}(s)`. This function returns ``(F, a, cond)`` where ``F`` is the Laplace transform of ``f``, `\operatorname{Re}(s) > a` is the half-plane of convergence, and ``cond`` are auxiliary convergence conditions. If the integral cannot be computed in closed form, this function returns an unevaluated :class:`LaplaceTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. If ``noconds=True``, only `F` will be returned (i.e. not ``cond``, and also not the plane ``a``). >>> from sympy.integrals import laplace_transform >>> from sympy.abc import t, s, a >>> laplace_transform(t**a, t, s) (s**(-a)*gamma(a + 1)/s, 0, re(a) > -1) See Also ======== inverse_laplace_transform, mellin_transform, fourier_transform hankel_transform, inverse_hankel_transform """ if isinstance(f, MatrixBase) and hasattr(f, 'applyfunc'): return f.applyfunc(lambda fij: laplace_transform(fij, t, s, **hints)) return LaplaceTransform(f, t, s).doit(**hints) @_noconds_(True) def _inverse_laplace_transform(F, s, t_, plane, simplify=True): """ The backend function for inverse Laplace transforms. """ from sympy import exp, Heaviside, log, expand_complex, Integral, Piecewise from sympy.integrals.meijerint import meijerint_inversion, _get_coeff_exp # There are two strategies we can try: # 1) Use inverse mellin transforms - related by a simple change of variables. # 2) Use the inversion integral. t = Dummy('t', real=True) def pw_simp(*args): """ Simplify a piecewise expression from hyperexpand. """ # XXX we break modularity here! if len(args) != 3: return Piecewise(*args) arg = args[2].args[0].argument coeff, exponent = _get_coeff_exp(arg, t) e1 = args[0].args[0] e2 = args[1].args[0] return Heaviside(1/abs(coeff) - t**exponent)*e1 \ + Heaviside(t**exponent - 1/abs(coeff))*e2 try: f, cond = inverse_mellin_transform(F, s, exp(-t), (None, oo), needeval=True, noconds=False) except IntegralTransformError: f = None if f is None: f = meijerint_inversion(F, s, t) if f is None: raise IntegralTransformError('Inverse Laplace', f, '') if f.is_Piecewise: f, cond = f.args[0] if f.has(Integral): raise IntegralTransformError('Inverse Laplace', f, 'inversion integral of unrecognised form.') else: cond = S.true f = f.replace(Piecewise, pw_simp) if f.is_Piecewise: # many of the functions called below can't work with piecewise # (b/c it has a bool in args) return f.subs(t, t_), cond u = Dummy('u') def simp_heaviside(arg): a = arg.subs(exp(-t), u) if a.has(t): return Heaviside(arg) rel = _solve_inequality(a > 0, u) if rel.lts == u: k = log(rel.gts) return Heaviside(t + k) else: k = log(rel.lts) return Heaviside(-(t + k)) f = f.replace(Heaviside, simp_heaviside) def simp_exp(arg): return expand_complex(exp(arg)) f = f.replace(exp, simp_exp) # TODO it would be nice to fix cosh and sinh ... simplify messes these # exponentials up return _simplify(f.subs(t, t_), simplify), cond class InverseLaplaceTransform(IntegralTransform): """ Class representing unevaluated inverse Laplace transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse Laplace transforms, see the :func:`inverse_laplace_transform` docstring. """ _name = 'Inverse Laplace' _none_sentinel = Dummy('None') _c = Dummy('c') def __new__(cls, F, s, x, plane, **opts): if plane is None: plane = InverseLaplaceTransform._none_sentinel return IntegralTransform.__new__(cls, F, s, x, plane, **opts) @property def fundamental_plane(self): plane = self.args[3] if plane is InverseLaplaceTransform._none_sentinel: plane = None return plane def _compute_transform(self, F, s, t, **hints): return _inverse_laplace_transform(F, s, t, self.fundamental_plane, **hints) def _as_integral(self, F, s, t): from sympy import I, exp c = self.__class__._c return Integral(exp(s*t)*F, (s, c - I*oo, c + I*oo))/(2*S.Pi*S.ImaginaryUnit) def inverse_laplace_transform(F, s, t, plane=None, **hints): r""" Compute the inverse Laplace transform of `F(s)`, defined as .. math :: f(t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{st} F(s) \mathrm{d}s, for `c` so large that `F(s)` has no singularites in the half-plane `\operatorname{Re}(s) > c-\epsilon`. The plane can be specified by argument ``plane``, but will be inferred if passed as None. Under certain regularity conditions, this recovers `f(t)` from its Laplace Transform `F(s)`, for non-negative `t`, and vice versa. If the integral cannot be computed in closed form, this function returns an unevaluated :class:`InverseLaplaceTransform` object. Note that this function will always assume `t` to be real, regardless of the sympy assumption on `t`. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. >>> from sympy.integrals.transforms import inverse_laplace_transform >>> from sympy import exp, Symbol >>> from sympy.abc import s, t >>> a = Symbol('a', positive=True) >>> inverse_laplace_transform(exp(-a*s)/s, s, t) Heaviside(-a + t) See Also ======== laplace_transform hankel_transform, inverse_hankel_transform """ if isinstance(F, MatrixBase) and hasattr(F, 'applyfunc'): return F.applyfunc(lambda Fij: inverse_laplace_transform(Fij, s, t, plane, **hints)) return InverseLaplaceTransform(F, s, t, plane).doit(**hints) ########################################################################## # Fourier Transform ########################################################################## @_noconds_(True) def _fourier_transform(f, x, k, a, b, name, simplify=True): """ Compute a general Fourier-type transform F(k) = a int_-oo^oo exp(b*I*x*k) f(x) dx. For suitable choice of a and b, this reduces to the standard Fourier and inverse Fourier transforms. """ from sympy import exp, I F = integrate(a*f*exp(b*I*x*k), (x, -oo, oo)) if not F.has(Integral): return _simplify(F, simplify), S.true integral_f = integrate(f, (x, -oo, oo)) if integral_f in (-oo, oo, S.NaN) or integral_f.has(Integral): raise IntegralTransformError(name, f, 'function not integrable on real axis') if not F.is_Piecewise: raise IntegralTransformError(name, f, 'could not compute integral') F, cond = F.args[0] if F.has(Integral): raise IntegralTransformError(name, f, 'integral in unexpected form') return _simplify(F, simplify), cond class FourierTypeTransform(IntegralTransform): """ Base class for Fourier transforms.""" def a(self): raise NotImplementedError( "Class %s must implement a(self) but does not" % self.__class__) def b(self): raise NotImplementedError( "Class %s must implement b(self) but does not" % self.__class__) def _compute_transform(self, f, x, k, **hints): return _fourier_transform(f, x, k, self.a(), self.b(), self.__class__._name, **hints) def _as_integral(self, f, x, k): from sympy import exp, I a = self.a() b = self.b() return Integral(a*f*exp(b*I*x*k), (x, -oo, oo)) class FourierTransform(FourierTypeTransform): """ Class representing unevaluated Fourier transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute Fourier transforms, see the :func:`fourier_transform` docstring. """ _name = 'Fourier' def a(self): return 1 def b(self): return -2*S.Pi def fourier_transform(f, x, k, **hints): r""" Compute the unitary, ordinary-frequency Fourier transform of `f`, defined as .. math:: F(k) = \int_{-\infty}^\infty f(x) e^{-2\pi i x k} \mathrm{d} x. If the transform cannot be computed in closed form, this function returns an unevaluated :class:`FourierTransform` object. For other Fourier transform conventions, see the function :func:`sympy.integrals.transforms._fourier_transform`. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. >>> from sympy import fourier_transform, exp >>> from sympy.abc import x, k >>> fourier_transform(exp(-x**2), x, k) sqrt(pi)*exp(-pi**2*k**2) >>> fourier_transform(exp(-x**2), x, k, noconds=False) (sqrt(pi)*exp(-pi**2*k**2), True) See Also ======== inverse_fourier_transform sine_transform, inverse_sine_transform cosine_transform, inverse_cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return FourierTransform(f, x, k).doit(**hints) class InverseFourierTransform(FourierTypeTransform): """ Class representing unevaluated inverse Fourier transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse Fourier transforms, see the :func:`inverse_fourier_transform` docstring. """ _name = 'Inverse Fourier' def a(self): return 1 def b(self): return 2*S.Pi def inverse_fourier_transform(F, k, x, **hints): r""" Compute the unitary, ordinary-frequency inverse Fourier transform of `F`, defined as .. math:: f(x) = \int_{-\infty}^\infty F(k) e^{2\pi i x k} \mathrm{d} k. If the transform cannot be computed in closed form, this function returns an unevaluated :class:`InverseFourierTransform` object. For other Fourier transform conventions, see the function :func:`sympy.integrals.transforms._fourier_transform`. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. >>> from sympy import inverse_fourier_transform, exp, sqrt, pi >>> from sympy.abc import x, k >>> inverse_fourier_transform(sqrt(pi)*exp(-(pi*k)**2), k, x) exp(-x**2) >>> inverse_fourier_transform(sqrt(pi)*exp(-(pi*k)**2), k, x, noconds=False) (exp(-x**2), True) See Also ======== fourier_transform sine_transform, inverse_sine_transform cosine_transform, inverse_cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return InverseFourierTransform(F, k, x).doit(**hints) ########################################################################## # Fourier Sine and Cosine Transform ########################################################################## from sympy import sin, cos, sqrt, pi @_noconds_(True) def _sine_cosine_transform(f, x, k, a, b, K, name, simplify=True): """ Compute a general sine or cosine-type transform F(k) = a int_0^oo b*sin(x*k) f(x) dx. F(k) = a int_0^oo b*cos(x*k) f(x) dx. For suitable choice of a and b, this reduces to the standard sine/cosine and inverse sine/cosine transforms. """ F = integrate(a*f*K(b*x*k), (x, 0, oo)) if not F.has(Integral): return _simplify(F, simplify), S.true if not F.is_Piecewise: raise IntegralTransformError(name, f, 'could not compute integral') F, cond = F.args[0] if F.has(Integral): raise IntegralTransformError(name, f, 'integral in unexpected form') return _simplify(F, simplify), cond class SineCosineTypeTransform(IntegralTransform): """ Base class for sine and cosine transforms. Specify cls._kern. """ def a(self): raise NotImplementedError( "Class %s must implement a(self) but does not" % self.__class__) def b(self): raise NotImplementedError( "Class %s must implement b(self) but does not" % self.__class__) def _compute_transform(self, f, x, k, **hints): return _sine_cosine_transform(f, x, k, self.a(), self.b(), self.__class__._kern, self.__class__._name, **hints) def _as_integral(self, f, x, k): a = self.a() b = self.b() K = self.__class__._kern return Integral(a*f*K(b*x*k), (x, 0, oo)) class SineTransform(SineCosineTypeTransform): """ Class representing unevaluated sine transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute sine transforms, see the :func:`sine_transform` docstring. """ _name = 'Sine' _kern = sin def a(self): return sqrt(2)/sqrt(pi) def b(self): return 1 def sine_transform(f, x, k, **hints): r""" Compute the unitary, ordinary-frequency sine transform of `f`, defined as .. math:: F(k) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty f(x) \sin(2\pi x k) \mathrm{d} x. If the transform cannot be computed in closed form, this function returns an unevaluated :class:`SineTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. >>> from sympy import sine_transform, exp >>> from sympy.abc import x, k, a >>> sine_transform(x*exp(-a*x**2), x, k) sqrt(2)*k*exp(-k**2/(4*a))/(4*a**(3/2)) >>> sine_transform(x**(-a), x, k) 2**(1/2 - a)*k**(a - 1)*gamma(1 - a/2)/gamma(a/2 + 1/2) See Also ======== fourier_transform, inverse_fourier_transform inverse_sine_transform cosine_transform, inverse_cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return SineTransform(f, x, k).doit(**hints) class InverseSineTransform(SineCosineTypeTransform): """ Class representing unevaluated inverse sine transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse sine transforms, see the :func:`inverse_sine_transform` docstring. """ _name = 'Inverse Sine' _kern = sin def a(self): return sqrt(2)/sqrt(pi) def b(self): return 1 def inverse_sine_transform(F, k, x, **hints): r""" Compute the unitary, ordinary-frequency inverse sine transform of `F`, defined as .. math:: f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty F(k) \sin(2\pi x k) \mathrm{d} k. If the transform cannot be computed in closed form, this function returns an unevaluated :class:`InverseSineTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. >>> from sympy import inverse_sine_transform, exp, sqrt, gamma, pi >>> from sympy.abc import x, k, a >>> inverse_sine_transform(2**((1-2*a)/2)*k**(a - 1)* ... gamma(-a/2 + 1)/gamma((a+1)/2), k, x) x**(-a) >>> inverse_sine_transform(sqrt(2)*k*exp(-k**2/(4*a))/(4*sqrt(a)**3), k, x) x*exp(-a*x**2) See Also ======== fourier_transform, inverse_fourier_transform sine_transform cosine_transform, inverse_cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return InverseSineTransform(F, k, x).doit(**hints) class CosineTransform(SineCosineTypeTransform): """ Class representing unevaluated cosine transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute cosine transforms, see the :func:`cosine_transform` docstring. """ _name = 'Cosine' _kern = cos def a(self): return sqrt(2)/sqrt(pi) def b(self): return 1 def cosine_transform(f, x, k, **hints): r""" Compute the unitary, ordinary-frequency cosine transform of `f`, defined as .. math:: F(k) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty f(x) \cos(2\pi x k) \mathrm{d} x. If the transform cannot be computed in closed form, this function returns an unevaluated :class:`CosineTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. >>> from sympy import cosine_transform, exp, sqrt, cos >>> from sympy.abc import x, k, a >>> cosine_transform(exp(-a*x), x, k) sqrt(2)*a/(sqrt(pi)*(a**2 + k**2)) >>> cosine_transform(exp(-a*sqrt(x))*cos(a*sqrt(x)), x, k) a*exp(-a**2/(2*k))/(2*k**(3/2)) See Also ======== fourier_transform, inverse_fourier_transform, sine_transform, inverse_sine_transform inverse_cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return CosineTransform(f, x, k).doit(**hints) class InverseCosineTransform(SineCosineTypeTransform): """ Class representing unevaluated inverse cosine transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse cosine transforms, see the :func:`inverse_cosine_transform` docstring. """ _name = 'Inverse Cosine' _kern = cos def a(self): return sqrt(2)/sqrt(pi) def b(self): return 1 def inverse_cosine_transform(F, k, x, **hints): r""" Compute the unitary, ordinary-frequency inverse cosine transform of `F`, defined as .. math:: f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty F(k) \cos(2\pi x k) \mathrm{d} k. If the transform cannot be computed in closed form, this function returns an unevaluated :class:`InverseCosineTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. >>> from sympy import inverse_cosine_transform, exp, sqrt, pi >>> from sympy.abc import x, k, a >>> inverse_cosine_transform(sqrt(2)*a/(sqrt(pi)*(a**2 + k**2)), k, x) exp(-a*x) >>> inverse_cosine_transform(1/sqrt(k), k, x) 1/sqrt(x) See Also ======== fourier_transform, inverse_fourier_transform, sine_transform, inverse_sine_transform cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return InverseCosineTransform(F, k, x).doit(**hints) ########################################################################## # Hankel Transform ########################################################################## @_noconds_(True) def _hankel_transform(f, r, k, nu, name, simplify=True): r""" Compute a general Hankel transform .. math:: F_\nu(k) = \int_{0}^\infty f(r) J_\nu(k r) r \mathrm{d} r. """ from sympy import besselj F = integrate(f*besselj(nu, k*r)*r, (r, 0, oo)) if not F.has(Integral): return _simplify(F, simplify), S.true if not F.is_Piecewise: raise IntegralTransformError(name, f, 'could not compute integral') F, cond = F.args[0] if F.has(Integral): raise IntegralTransformError(name, f, 'integral in unexpected form') return _simplify(F, simplify), cond class HankelTypeTransform(IntegralTransform): """ Base class for Hankel transforms. """ def doit(self, **hints): return self._compute_transform(self.function, self.function_variable, self.transform_variable, self.args[3], **hints) def _compute_transform(self, f, r, k, nu, **hints): return _hankel_transform(f, r, k, nu, self._name, **hints) def _as_integral(self, f, r, k, nu): from sympy import besselj return Integral(f*besselj(nu, k*r)*r, (r, 0, oo)) @property def as_integral(self): return self._as_integral(self.function, self.function_variable, self.transform_variable, self.args[3]) class HankelTransform(HankelTypeTransform): """ Class representing unevaluated Hankel transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute Hankel transforms, see the :func:`hankel_transform` docstring. """ _name = 'Hankel' def hankel_transform(f, r, k, nu, **hints): r""" Compute the Hankel transform of `f`, defined as .. math:: F_\nu(k) = \int_{0}^\infty f(r) J_\nu(k r) r \mathrm{d} r. If the transform cannot be computed in closed form, this function returns an unevaluated :class:`HankelTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. >>> from sympy import hankel_transform, inverse_hankel_transform >>> from sympy import gamma, exp, sinh, cosh >>> from sympy.abc import r, k, m, nu, a >>> ht = hankel_transform(1/r**m, r, k, nu) >>> ht 2*2**(-m)*k**(m - 2)*gamma(-m/2 + nu/2 + 1)/gamma(m/2 + nu/2) >>> inverse_hankel_transform(ht, k, r, nu) r**(-m) >>> ht = hankel_transform(exp(-a*r), r, k, 0) >>> ht a/(k**3*(a**2/k**2 + 1)**(3/2)) >>> inverse_hankel_transform(ht, k, r, 0) exp(-a*r) See Also ======== fourier_transform, inverse_fourier_transform sine_transform, inverse_sine_transform cosine_transform, inverse_cosine_transform inverse_hankel_transform mellin_transform, laplace_transform """ return HankelTransform(f, r, k, nu).doit(**hints) class InverseHankelTransform(HankelTypeTransform): """ Class representing unevaluated inverse Hankel transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse Hankel transforms, see the :func:`inverse_hankel_transform` docstring. """ _name = 'Inverse Hankel' def inverse_hankel_transform(F, k, r, nu, **hints): r""" Compute the inverse Hankel transform of `F` defined as .. math:: f(r) = \int_{0}^\infty F_\nu(k) J_\nu(k r) k \mathrm{d} k. If the transform cannot be computed in closed form, this function returns an unevaluated :class:`InverseHankelTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. >>> from sympy import hankel_transform, inverse_hankel_transform, gamma >>> from sympy import gamma, exp, sinh, cosh >>> from sympy.abc import r, k, m, nu, a >>> ht = hankel_transform(1/r**m, r, k, nu) >>> ht 2*2**(-m)*k**(m - 2)*gamma(-m/2 + nu/2 + 1)/gamma(m/2 + nu/2) >>> inverse_hankel_transform(ht, k, r, nu) r**(-m) >>> ht = hankel_transform(exp(-a*r), r, k, 0) >>> ht a/(k**3*(a**2/k**2 + 1)**(3/2)) >>> inverse_hankel_transform(ht, k, r, 0) exp(-a*r) See Also ======== fourier_transform, inverse_fourier_transform sine_transform, inverse_sine_transform cosine_transform, inverse_cosine_transform hankel_transform mellin_transform, laplace_transform """ return InverseHankelTransform(F, k, r, nu).doit(**hints)
22f47e913cbcdf119f4c0838b75c442a657e29f19d3a005be1eeb7252f9fb03d
""" Module to implement integration of uni/bivariate polynomials over 2D Polytopes and uni/bi/trivariate polynomials over 3D Polytopes. Uses evaluation techniques as described in Chin et al. (2015) [1]. References =========== [1] : Chin, Eric B., Jean B. Lasserre, and N. Sukumar. "Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra." Computational Mechanics 56.6 (2015): 967-981 PDF link : http://dilbert.engr.ucdavis.edu/~suku/quadrature/cls-integration.pdf """ from __future__ import print_function, division from functools import cmp_to_key from sympy.core import S, diff, Expr, Symbol from sympy.simplify.simplify import nsimplify from sympy.geometry import Segment2D, Polygon, Point, Point2D from sympy.abc import x, y, z from sympy.polys.polytools import LC, gcd_list, degree_list def polytope_integrate(poly, expr=None, **kwargs): """Integrates polynomials over 2/3-Polytopes. This function accepts the polytope in `poly` and the function in `expr` (uni/bi/trivariate polynomials are implemented) and returns the exact integral of `expr` over `poly`. Parameters ========== poly : The input Polygon. expr : The input polynomial. clockwise : Binary value to sort input points of 2-Polytope clockwise.(Optional) max_degree : The maximum degree of any monomial of the input polynomial.(Optional) Examples ======== >>> from sympy.abc import x, y >>> from sympy.geometry.polygon import Polygon >>> from sympy.geometry.point import Point >>> from sympy.integrals.intpoly import polytope_integrate >>> polygon = Polygon(Point(0, 0), Point(0, 1), Point(1, 1), Point(1, 0)) >>> polys = [1, x, y, x*y, x**2*y, x*y**2] >>> expr = x*y >>> polytope_integrate(polygon, expr) 1/4 >>> polytope_integrate(polygon, polys, max_degree=3) {1: 1, x: 1/2, y: 1/2, x*y: 1/4, x*y**2: 1/6, x**2*y: 1/6} """ clockwise = kwargs.get('clockwise', False) max_degree = kwargs.get('max_degree', None) if clockwise: if isinstance(poly, Polygon): poly = Polygon(*point_sort(poly.vertices), evaluate=False) else: raise TypeError("clockwise=True works for only 2-Polytope" "V-representation input") if isinstance(poly, Polygon): # For Vertex Representation(2D case) hp_params = hyperplane_parameters(poly) facets = poly.sides elif len(poly[0]) == 2: # For Hyperplane Representation(2D case) plen = len(poly) if len(poly[0][0]) == 2: intersections = [intersection(poly[(i - 1) % plen], poly[i], "plane2D") for i in range(0, plen)] hp_params = poly lints = len(intersections) facets = [Segment2D(intersections[i], intersections[(i + 1) % lints]) for i in range(0, lints)] else: raise NotImplementedError("Integration for H-representation 3D" "case not implemented yet.") else: # For Vertex Representation(3D case) vertices = poly[0] facets = poly[1:] hp_params = hyperplane_parameters(facets, vertices) if max_degree is None: if expr is None: raise TypeError('Input expression be must' 'be a valid SymPy expression') return main_integrate3d(expr, facets, vertices, hp_params) if max_degree is not None: result = {} if not isinstance(expr, list) and expr is not None: raise TypeError('Input polynomials must be list of expressions') if len(hp_params[0][0]) == 3: result_dict = main_integrate3d(0, facets, vertices, hp_params, max_degree) else: result_dict = main_integrate(0, facets, hp_params, max_degree) if expr is None: return result_dict for poly in expr: if poly not in result: if poly is S.Zero: result[S.Zero] = S.Zero continue integral_value = S.Zero monoms = decompose(poly, separate=True) for monom in monoms: monom = nsimplify(monom) coeff, m = strip(monom) integral_value += result_dict[m] * coeff result[poly] = integral_value return result if expr is None: raise TypeError('Input expression be must' 'be a valid SymPy expression') return main_integrate(expr, facets, hp_params) def strip(monom): if monom == S.Zero: return 0, 0 elif monom.is_number: return monom, 1 else: coeff = LC(monom) return coeff, S(monom) / coeff def main_integrate3d(expr, facets, vertices, hp_params, max_degree=None): """Function to translate the problem of integrating uni/bi/tri-variate polynomials over a 3-Polytope to integrating over its faces. This is done using Generalized Stokes' Theorem and Euler's Theorem. Parameters =========== expr : The input polynomial facets : Faces of the 3-Polytope(expressed as indices of `vertices`) vertices : Vertices that constitute the Polytope hp_params : Hyperplane Parameters of the facets Optional Parameters ------------------- max_degree : Max degree of constituent monomial in given list of polynomial Examples ======== >>> from sympy.abc import x, y >>> from sympy.integrals.intpoly import main_integrate3d, \ hyperplane_parameters >>> cube = [[(0, 0, 0), (0, 0, 5), (0, 5, 0), (0, 5, 5), (5, 0, 0),\ (5, 0, 5), (5, 5, 0), (5, 5, 5)],\ [2, 6, 7, 3], [3, 7, 5, 1], [7, 6, 4, 5], [1, 5, 4, 0],\ [3, 1, 0, 2], [0, 4, 6, 2]] >>> vertices = cube[0] >>> faces = cube[1:] >>> hp_params = hyperplane_parameters(faces, vertices) >>> main_integrate3d(1, faces, vertices, hp_params) -125 """ result = {} dims = (x, y, z) dim_length = len(dims) if max_degree: grad_terms = gradient_terms(max_degree, 3) flat_list = [term for z_terms in grad_terms for x_term in z_terms for term in x_term] for term in flat_list: result[term[0]] = 0 for facet_count, hp in enumerate(hp_params): a, b = hp[0], hp[1] x0 = vertices[facets[facet_count][0]] for i, monom in enumerate(flat_list): # Every monomial is a tuple : # (term, x_degree, y_degree, z_degree, value over boundary) expr, x_d, y_d, z_d, z_index, y_index, x_index, _ = monom degree = x_d + y_d + z_d if b is S.Zero: value_over_face = S.Zero else: value_over_face = \ integration_reduction_dynamic(facets, facet_count, a, b, expr, degree, dims, x_index, y_index, z_index, x0, grad_terms, i, vertices, hp) monom[7] = value_over_face result[expr] += value_over_face * \ (b / norm(a)) / (dim_length + x_d + y_d + z_d) return result else: integral_value = S.Zero polynomials = decompose(expr) for deg in polynomials: poly_contribute = S.Zero facet_count = 0 for i, facet in enumerate(facets): hp = hp_params[i] if hp[1] == S.Zero: continue pi = polygon_integrate(facet, hp, i, facets, vertices, expr, deg) poly_contribute += pi *\ (hp[1] / norm(tuple(hp[0]))) facet_count += 1 poly_contribute /= (dim_length + deg) integral_value += poly_contribute return integral_value def main_integrate(expr, facets, hp_params, max_degree=None): """Function to translate the problem of integrating univariate/bivariate polynomials over a 2-Polytope to integrating over its boundary facets. This is done using Generalized Stokes's Theorem and Euler's Theorem. Parameters =========== expr : The input polynomial facets : Facets(Line Segments) of the 2-Polytope hp_params : Hyperplane Parameters of the facets Optional Parameters: -------------------- max_degree : The maximum degree of any monomial of the input polynomial. >>> from sympy.abc import x, y >>> from sympy.integrals.intpoly import main_integrate,\ hyperplane_parameters >>> from sympy.geometry.polygon import Polygon >>> from sympy.geometry.point import Point >>> triangle = Polygon(Point(0, 3), Point(5, 3), Point(1, 1)) >>> facets = triangle.sides >>> hp_params = hyperplane_parameters(triangle) >>> main_integrate(x**2 + y**2, facets, hp_params) 325/6 """ dims = (x, y) dim_length = len(dims) result = {} integral_value = S.Zero if max_degree: grad_terms = [[0, 0, 0, 0]] + gradient_terms(max_degree) for facet_count, hp in enumerate(hp_params): a, b = hp[0], hp[1] x0 = facets[facet_count].points[0] for i, monom in enumerate(grad_terms): # Every monomial is a tuple : # (term, x_degree, y_degree, value over boundary) m, x_d, y_d, _ = monom value = result.get(m, None) degree = S.Zero if b is S.Zero: value_over_boundary = S.Zero else: degree = x_d + y_d value_over_boundary = \ integration_reduction_dynamic(facets, facet_count, a, b, m, degree, dims, x_d, y_d, max_degree, x0, grad_terms, i) monom[3] = value_over_boundary if value is not None: result[m] += value_over_boundary * \ (b / norm(a)) / (dim_length + degree) else: result[m] = value_over_boundary * \ (b / norm(a)) / (dim_length + degree) return result else: polynomials = decompose(expr) for deg in polynomials: poly_contribute = S.Zero facet_count = 0 for hp in hp_params: value_over_boundary = integration_reduction(facets, facet_count, hp[0], hp[1], polynomials[deg], dims, deg) poly_contribute += value_over_boundary * (hp[1] / norm(hp[0])) facet_count += 1 poly_contribute /= (dim_length + deg) integral_value += poly_contribute return integral_value def polygon_integrate(facet, hp_param, index, facets, vertices, expr, degree): """Helper function to integrate the input uni/bi/trivariate polynomial over a certain face of the 3-Polytope. Parameters =========== facet : Particular face of the 3-Polytope over which `expr` is integrated index : The index of `facet` in `facets` facets : Faces of the 3-Polytope(expressed as indices of `vertices`) vertices : Vertices that constitute the facet expr : The input polynomial degree : Degree of `expr` Examples ======== >>> from sympy.abc import x, y >>> from sympy.integrals.intpoly import polygon_integrate >>> cube = [[(0, 0, 0), (0, 0, 5), (0, 5, 0), (0, 5, 5), (5, 0, 0),\ (5, 0, 5), (5, 5, 0), (5, 5, 5)],\ [2, 6, 7, 3], [3, 7, 5, 1], [7, 6, 4, 5], [1, 5, 4, 0],\ [3, 1, 0, 2], [0, 4, 6, 2]] >>> facet = cube[1] >>> facets = cube[1:] >>> vertices = cube[0] >>> polygon_integrate(facet, [(0, 1, 0), 5], 0, facets, vertices, 1, 0) -25 """ expr = S(expr) if expr == S.Zero: return S.Zero result = S.Zero x0 = vertices[facet[0]] for i in range(len(facet)): side = (vertices[facet[i]], vertices[facet[(i + 1) % len(facet)]]) result += distance_to_side(x0, side, hp_param[0]) *\ lineseg_integrate(facet, i, side, expr, degree) if not expr.is_number: expr = diff(expr, x) * x0[0] + diff(expr, y) * x0[1] +\ diff(expr, z) * x0[2] result += polygon_integrate(facet, hp_param, index, facets, vertices, expr, degree - 1) result /= (degree + 2) return result def distance_to_side(point, line_seg, A): """Helper function to compute the signed distance between given 3D point and a line segment. Parameters =========== point : 3D Point line_seg : Line Segment Examples ======== >>> from sympy.integrals.intpoly import distance_to_side >>> point = (0, 0, 0) >>> distance_to_side(point, [(0, 0, 1), (0, 1, 0)], (1, 0, 0)) -sqrt(2)/2 """ x1, x2 = line_seg rev_normal = [-1 * S(i)/norm(A) for i in A] vector = [x2[i] - x1[i] for i in range(0, 3)] vector = [vector[i]/norm(vector) for i in range(0, 3)] n_side = cross_product((0, 0, 0), rev_normal, vector) vectorx0 = [line_seg[0][i] - point[i] for i in range(0, 3)] dot_product = sum([vectorx0[i] * n_side[i] for i in range(0, 3)]) return dot_product def lineseg_integrate(polygon, index, line_seg, expr, degree): """Helper function to compute the line integral of `expr` over `line_seg` Parameters =========== polygon : Face of a 3-Polytope index : index of line_seg in polygon line_seg : Line Segment Examples ======== >>> from sympy.integrals.intpoly import lineseg_integrate >>> polygon = [(0, 5, 0), (5, 5, 0), (5, 5, 5), (0, 5, 5)] >>> line_seg = [(0, 5, 0), (5, 5, 0)] >>> lineseg_integrate(polygon, 0, line_seg, 1, 0) 5 """ if expr == S.Zero: return S.Zero result = S.Zero x0 = line_seg[0] distance = norm(tuple([line_seg[1][i] - line_seg[0][i] for i in range(3)])) if isinstance(expr, Expr): expr_dict = {x: line_seg[1][0], y: line_seg[1][1], z: line_seg[1][2]} result += distance * expr.subs(expr_dict) else: result += distance * expr expr = diff(expr, x) * x0[0] + diff(expr, y) * x0[1] +\ diff(expr, z) * x0[2] result += lineseg_integrate(polygon, index, line_seg, expr, degree - 1) result /= (degree + 1) return result def integration_reduction(facets, index, a, b, expr, dims, degree): """Helper method for main_integrate. Returns the value of the input expression evaluated over the polytope facet referenced by a given index. Parameters =========== facets : List of facets of the polytope. index : Index referencing the facet to integrate the expression over. a : Hyperplane parameter denoting direction. b : Hyperplane parameter denoting distance. expr : The expression to integrate over the facet. dims : List of symbols denoting axes. degree : Degree of the homogeneous polynomial. Examples ======== >>> from sympy.abc import x, y >>> from sympy.integrals.intpoly import integration_reduction,\ hyperplane_parameters >>> from sympy.geometry.point import Point >>> from sympy.geometry.polygon import Polygon >>> triangle = Polygon(Point(0, 3), Point(5, 3), Point(1, 1)) >>> facets = triangle.sides >>> a, b = hyperplane_parameters(triangle)[0] >>> integration_reduction(facets, 0, a, b, 1, (x, y), 0) 5 """ if expr == S.Zero: return expr value = S.Zero x0 = facets[index].points[0] m = len(facets) gens = (x, y) inner_product = diff(expr, gens[0]) * x0[0] + diff(expr, gens[1]) * x0[1] if inner_product != 0: value += integration_reduction(facets, index, a, b, inner_product, dims, degree - 1) value += left_integral2D(m, index, facets, x0, expr, gens) return value/(len(dims) + degree - 1) def left_integral2D(m, index, facets, x0, expr, gens): """Computes the left integral of Eq 10 in Chin et al. For the 2D case, the integral is just an evaluation of the polynomial at the intersection of two facets which is multiplied by the distance between the first point of facet and that intersection. Parameters =========== m : No. of hyperplanes. index : Index of facet to find intersections with. facets : List of facets(Line Segments in 2D case). x0 : First point on facet referenced by index. expr : Input polynomial gens : Generators which generate the polynomial Examples ======== >>> from sympy.abc import x, y >>> from sympy.integrals.intpoly import left_integral2D >>> from sympy.geometry.point import Point >>> from sympy.geometry.polygon import Polygon >>> triangle = Polygon(Point(0, 3), Point(5, 3), Point(1, 1)) >>> facets = triangle.sides >>> left_integral2D(3, 0, facets, facets[0].points[0], 1, (x, y)) 5 """ value = S.Zero for j in range(0, m): intersect = () if j == (index - 1) % m or j == (index + 1) % m: intersect = intersection(facets[index], facets[j], "segment2D") if intersect: distance_origin = norm(tuple(map(lambda x, y: x - y, intersect, x0))) if is_vertex(intersect): if isinstance(expr, Expr): if len(gens) == 3: expr_dict = {gens[0]: intersect[0], gens[1]: intersect[1], gens[2]: intersect[2]} else: expr_dict = {gens[0]: intersect[0], gens[1]: intersect[1]} value += distance_origin * expr.subs(expr_dict) else: value += distance_origin * expr return value def integration_reduction_dynamic(facets, index, a, b, expr, degree, dims, x_index, y_index, max_index, x0, monomial_values, monom_index, vertices=None, hp_param=None): """The same integration_reduction function which uses a dynamic programming approach to compute terms by using the values of the integral of previously computed terms. Parameters =========== facets : Facets of the Polytope index : Index of facet to find intersections with.(Used in left_integral()) a, b : Hyperplane parameters expr : Input monomial degree : Total degree of `expr` dims : Tuple denoting axes variables x_index : Exponent of 'x' in expr y_index : Exponent of 'y' in expr max_index : Maximum exponent of any monomial in monomial_values x0 : First point on facets[index] monomial_values : List of monomial values constituting the polynomial monom_index : Index of monomial whose integration is being found. Optional Parameters ------------------- vertices : Coordinates of vertices constituting the 3-Polytope hp_param : Hyperplane Parameter of the face of the facets[index] Examples ======== >>> from sympy.abc import x, y >>> from sympy.integrals.intpoly import integration_reduction_dynamic,\ hyperplane_parameters, gradient_terms >>> from sympy.geometry.point import Point >>> from sympy.geometry.polygon import Polygon >>> triangle = Polygon(Point(0, 3), Point(5, 3), Point(1, 1)) >>> facets = triangle.sides >>> a, b = hyperplane_parameters(triangle)[0] >>> x0 = facets[0].points[0] >>> monomial_values = [[0, 0, 0, 0], [1, 0, 0, 5],\ [y, 0, 1, 15], [x, 1, 0, None]] >>> integration_reduction_dynamic(facets, 0, a, b, x, 1, (x, y), 1, 0, 1,\ x0, monomial_values, 3) 25/2 """ value = S.Zero m = len(facets) if expr == S.Zero: return expr if len(dims) == 2: if not expr.is_number: _, x_degree, y_degree, _ = monomial_values[monom_index] x_index = monom_index - max_index + \ x_index - 2 if x_degree > 0 else 0 y_index = monom_index - 1 if y_degree > 0 else 0 x_value, y_value =\ monomial_values[x_index][3], monomial_values[y_index][3] value += x_degree * x_value * x0[0] + y_degree * y_value * x0[1] value += left_integral2D(m, index, facets, x0, expr, dims) else: # For 3D use case the max_index contains the z_degree of the term z_index = max_index if not expr.is_number: x_degree, y_degree, z_degree = y_index,\ z_index - x_index - y_index, x_index x_value = monomial_values[z_index - 1][y_index - 1][x_index][7]\ if x_degree > 0 else 0 y_value = monomial_values[z_index - 1][y_index][x_index][7]\ if y_degree > 0 else 0 z_value = monomial_values[z_index - 1][y_index][x_index - 1][7]\ if z_degree > 0 else 0 value += x_degree * x_value * x0[0] + y_degree * y_value * x0[1] \ + z_degree * z_value * x0[2] value += left_integral3D(facets, index, expr, vertices, hp_param, degree) return value / (len(dims) + degree - 1) def left_integral3D(facets, index, expr, vertices, hp_param, degree): """Computes the left integral of Eq 10 in Chin et al. For the 3D case, this is the sum of the integral values over constituting line segments of the face (which is accessed by facets[index]) multiplied by the distance between the first point of facet and that line segment. Parameters =========== facets : List of faces of the 3-Polytope. index : Index of face over which integral is to be calculated. expr : Input polynomial vertices : List of vertices that constitute the 3-Polytope hp_param : The hyperplane parameters of the face degree : Degree of the expr >>> from sympy.abc import x, y >>> from sympy.integrals.intpoly import left_integral3D >>> cube = [[(0, 0, 0), (0, 0, 5), (0, 5, 0), (0, 5, 5), (5, 0, 0),\ (5, 0, 5), (5, 5, 0), (5, 5, 5)],\ [2, 6, 7, 3], [3, 7, 5, 1], [7, 6, 4, 5], [1, 5, 4, 0],\ [3, 1, 0, 2], [0, 4, 6, 2]] >>> facets = cube[1:] >>> vertices = cube[0] >>> left_integral3D(facets, 3, 1, vertices, ([0, -1, 0], -5), 0) -50 """ value = S.Zero facet = facets[index] x0 = vertices[facet[0]] for i in range(len(facet)): side = (vertices[facet[i]], vertices[facet[(i + 1) % len(facet)]]) value += distance_to_side(x0, side, hp_param[0]) * \ lineseg_integrate(facet, i, side, expr, degree) return value def gradient_terms(binomial_power=0, no_of_gens=2): """Returns a list of all the possible monomials between 0 and y**binomial_power for 2D case and z**binomial_power for 3D case. Parameters =========== binomial_power : Power upto which terms are generated. no_of_gens : Denotes whether terms are being generated for 2D or 3D case. Examples ======== >>> from sympy.abc import x, y >>> from sympy.integrals.intpoly import gradient_terms >>> gradient_terms(2) [[1, 0, 0, 0], [y, 0, 1, 0], [y**2, 0, 2, 0], [x, 1, 0, 0], [x*y, 1, 1, 0], [x**2, 2, 0, 0]] >>> gradient_terms(2, 3) [[[[1, 0, 0, 0, 0, 0, 0, 0]]], [[[y, 0, 1, 0, 1, 0, 0, 0], [z, 0, 0, 1, 1, 0, 1, 0]], [[x, 1, 0, 0, 1, 1, 0, 0]]], [[[y**2, 0, 2, 0, 2, 0, 0, 0], [y*z, 0, 1, 1, 2, 0, 1, 0], [z**2, 0, 0, 2, 2, 0, 2, 0]], [[x*y, 1, 1, 0, 2, 1, 0, 0], [x*z, 1, 0, 1, 2, 1, 1, 0]], [[x**2, 2, 0, 0, 2, 2, 0, 0]]]] """ if no_of_gens == 2: count = 0 terms = [None] * int((binomial_power ** 2 + 3 * binomial_power + 2) / 2) for x_count in range(0, binomial_power + 1): for y_count in range(0, binomial_power - x_count + 1): terms[count] = [x**x_count*y**y_count, x_count, y_count, 0] count += 1 else: terms = [[[[x ** x_count * y ** y_count * z ** (z_count - y_count - x_count), x_count, y_count, z_count - y_count - x_count, z_count, x_count, z_count - y_count - x_count, 0] for y_count in range(z_count - x_count, -1, -1)] for x_count in range(0, z_count + 1)] for z_count in range(0, binomial_power + 1)] return terms def hyperplane_parameters(poly, vertices=None): """A helper function to return the hyperplane parameters of which the facets of the polytope are a part of. Parameters ========== poly : The input 2/3-Polytope vertices : Vertex indices of 3-Polytope Examples ======== >>> from sympy.geometry.point import Point >>> from sympy.geometry.polygon import Polygon >>> from sympy.integrals.intpoly import hyperplane_parameters >>> hyperplane_parameters(Polygon(Point(0, 3), Point(5, 3), Point(1, 1))) [((0, 1), 3), ((1, -2), -1), ((-2, -1), -3)] >>> cube = [[(0, 0, 0), (0, 0, 5), (0, 5, 0), (0, 5, 5), (5, 0, 0),\ (5, 0, 5), (5, 5, 0), (5, 5, 5)],\ [2, 6, 7, 3], [3, 7, 5, 1], [7, 6, 4, 5], [1, 5, 4, 0],\ [3, 1, 0, 2], [0, 4, 6, 2]] >>> hyperplane_parameters(cube[1:], cube[0]) [([0, -1, 0], -5), ([0, 0, -1], -5), ([-1, 0, 0], -5), ([0, 1, 0], 0), ([1, 0, 0], 0), ([0, 0, 1], 0)] """ if isinstance(poly, Polygon): vertices = list(poly.vertices) + [poly.vertices[0]] # Close the polygon params = [None] * (len(vertices) - 1) for i in range(len(vertices) - 1): v1 = vertices[i] v2 = vertices[i + 1] a1 = v1[1] - v2[1] a2 = v2[0] - v1[0] b = v2[0] * v1[1] - v2[1] * v1[0] factor = gcd_list([a1, a2, b]) b = S(b) / factor a = (S(a1) / factor, S(a2) / factor) params[i] = (a, b) else: params = [None] * len(poly) for i, polygon in enumerate(poly): v1, v2, v3 = [vertices[vertex] for vertex in polygon[:3]] normal = cross_product(v1, v2, v3) b = sum([normal[j] * v1[j] for j in range(0, 3)]) fac = gcd_list(normal) if fac is S.Zero: fac = 1 normal = [j / fac for j in normal] b = b / fac params[i] = (normal, b) return params def cross_product(v1, v2, v3): """Returns the cross-product of vectors (v2 - v1) and (v3 - v1) That is : (v2 - v1) X (v3 - v1) """ v2 = [v2[j] - v1[j] for j in range(0, 3)] v3 = [v3[j] - v1[j] for j in range(0, 3)] return [v3[2] * v2[1] - v3[1] * v2[2], v3[0] * v2[2] - v3[2] * v2[0], v3[1] * v2[0] - v3[0] * v2[1]] def best_origin(a, b, lineseg, expr): """Helper method for polytope_integrate. Currently not used in the main algorithm. Returns a point on the lineseg whose vector inner product with the divergence of `expr` yields an expression with the least maximum total power. Parameters ========== a : Hyperplane parameter denoting direction. b : Hyperplane parameter denoting distance. lineseg : Line segment on which to find the origin. expr : The expression which determines the best point. Algorithm(currently works only for 2D use case) =============================================== 1 > Firstly, check for edge cases. Here that would refer to vertical or horizontal lines. 2 > If input expression is a polynomial containing more than one generator then find out the total power of each of the generators. x**2 + 3 + x*y + x**4*y**5 ---> {x: 7, y: 6} If expression is a constant value then pick the first boundary point of the line segment. 3 > First check if a point exists on the line segment where the value of the highest power generator becomes 0. If not check if the value of the next highest becomes 0. If none becomes 0 within line segment constraints then pick the first boundary point of the line segment. Actually, any point lying on the segment can be picked as best origin in the last case. Examples ======== >>> from sympy.integrals.intpoly import best_origin >>> from sympy.abc import x, y >>> from sympy.geometry.line import Segment2D >>> from sympy.geometry.point import Point >>> l = Segment2D(Point(0, 3), Point(1, 1)) >>> expr = x**3*y**7 >>> best_origin((2, 1), 3, l, expr) (0, 3.0) """ a1, b1 = lineseg.points[0] def x_axis_cut(ls): """Returns the point where the input line segment intersects the x-axis. Parameters ========== ls : Line segment """ p, q = ls.points if p.y == S.Zero: return tuple(p) elif q.y == S.Zero: return tuple(q) elif p.y/q.y < S.Zero: return p.y * (p.x - q.x)/(q.y - p.y) + p.x, S.Zero else: return () def y_axis_cut(ls): """Returns the point where the input line segment intersects the y-axis. Parameters ========== ls : Line segment """ p, q = ls.points if p.x == S.Zero: return tuple(p) elif q.x == S.Zero: return tuple(q) elif p.x/q.x < S.Zero: return S.Zero, p.x * (p.y - q.y)/(q.x - p.x) + p.y else: return () gens = (x, y) power_gens = {} for i in gens: power_gens[i] = S.Zero if len(gens) > 1: # Special case for vertical and horizontal lines if len(gens) == 2: if a[0] == S.Zero: if y_axis_cut(lineseg): return S.Zero, b/a[1] else: return a1, b1 elif a[1] == S.Zero: if x_axis_cut(lineseg): return b/a[0], S.Zero else: return a1, b1 if isinstance(expr, Expr): # Find the sum total of power of each if expr.is_Add: # generator and store in a dictionary. for monomial in expr.args: if monomial.is_Pow: if monomial.args[0] in gens: power_gens[monomial.args[0]] += monomial.args[1] else: for univariate in monomial.args: term_type = len(univariate.args) if term_type == 0 and univariate in gens: power_gens[univariate] += 1 elif term_type == 2 and univariate.args[0] in gens: power_gens[univariate.args[0]] +=\ univariate.args[1] elif expr.is_Mul: for term in expr.args: term_type = len(term.args) if term_type == 0 and term in gens: power_gens[term] += 1 elif term_type == 2 and term.args[0] in gens: power_gens[term.args[0]] += term.args[1] elif expr.is_Pow: power_gens[expr.args[0]] = expr.args[1] elif expr.is_Symbol: power_gens[expr] += 1 else: # If `expr` is a constant take first vertex of the line segment. return a1, b1 # TODO : This part is quite hacky. Should be made more robust with # TODO : respect to symbol names and scalable w.r.t higher dimensions. power_gens = sorted(power_gens.items(), key=lambda k: str(k[0])) if power_gens[0][1] >= power_gens[1][1]: if y_axis_cut(lineseg): x0 = (S.Zero, b / a[1]) elif x_axis_cut(lineseg): x0 = (b / a[0], S.Zero) else: x0 = (a1, b1) else: if x_axis_cut(lineseg): x0 = (b/a[0], S.Zero) elif y_axis_cut(lineseg): x0 = (S.Zero, b/a[1]) else: x0 = (a1, b1) else: x0 = (b/a[0]) return x0 def decompose(expr, separate=False): """Decomposes an input polynomial into homogeneous ones of smaller or equal degree. Returns a dictionary with keys as the degree of the smaller constituting polynomials. Values are the constituting polynomials. Parameters ========== expr : Polynomial(SymPy expression) Optional Parameters: -------------------- separate : If True then simply return a list of the constituent monomials If not then break up the polynomial into constituent homogeneous polynomials. Examples ======== >>> from sympy.abc import x, y >>> from sympy.integrals.intpoly import decompose >>> decompose(x**2 + x*y + x + y + x**3*y**2 + y**5) {1: x + y, 2: x**2 + x*y, 5: x**3*y**2 + y**5} >>> decompose(x**2 + x*y + x + y + x**3*y**2 + y**5, True) {x, x**2, y, y**5, x*y, x**3*y**2} """ poly_dict = {} if isinstance(expr, Expr) and not expr.is_number: if expr.is_Symbol: poly_dict[1] = expr elif expr.is_Add: symbols = expr.atoms(Symbol) degrees = [(sum(degree_list(monom, *symbols)), monom) for monom in expr.args] if separate: return {monom[1] for monom in degrees} else: for monom in degrees: degree, term = monom if poly_dict.get(degree): poly_dict[degree] += term else: poly_dict[degree] = term elif expr.is_Pow: _, degree = expr.args poly_dict[degree] = expr else: # Now expr can only be of `Mul` type degree = 0 for term in expr.args: term_type = len(term.args) if term_type == 0 and term.is_Symbol: degree += 1 elif term_type == 2: degree += term.args[1] poly_dict[degree] = expr else: poly_dict[0] = expr if separate: return set(poly_dict.values()) return poly_dict def point_sort(poly, normal=None, clockwise=True): """Returns the same polygon with points sorted in clockwise or anti-clockwise order. Note that it's necessary for input points to be sorted in some order (clockwise or anti-clockwise) for the integration algorithm to work. As a convention algorithm has been implemented keeping clockwise orientation in mind. Parameters ========== poly: 2D or 3D Polygon Optional Parameters: --------------------- normal : The normal of the plane which the 3-Polytope is a part of. clockwise : Returns points sorted in clockwise order if True and anti-clockwise if False. Examples ======== >>> from sympy.integrals.intpoly import point_sort >>> from sympy.geometry.point import Point >>> point_sort([Point(0, 0), Point(1, 0), Point(1, 1)]) [Point2D(1, 1), Point2D(1, 0), Point2D(0, 0)] """ pts = poly.vertices if isinstance(poly, Polygon) else poly n = len(pts) if n < 2: return list(pts) order = S(1) if clockwise else S(-1) dim = len(pts[0]) if dim == 2: center = Point(sum(map(lambda vertex: vertex.x, pts)) / n, sum(map(lambda vertex: vertex.y, pts)) / n) else: center = Point(sum(map(lambda vertex: vertex.x, pts)) / n, sum(map(lambda vertex: vertex.y, pts)) / n, sum(map(lambda vertex: vertex.z, pts)) / n) def compare(a, b): if a.x - center.x >= S.Zero and b.x - center.x < S.Zero: return -order elif a.x - center.x < S.Zero and b.x - center.x >= S.Zero: return order elif a.x - center.x == S.Zero and b.x - center.x == S.Zero: if a.y - center.y >= S.Zero or b.y - center.y >= S.Zero: return -order if a.y > b.y else order return -order if b.y > a.y else order det = (a.x - center.x) * (b.y - center.y) -\ (b.x - center.x) * (a.y - center.y) if det < S.Zero: return -order elif det > S.Zero: return order first = (a.x - center.x) * (a.x - center.x) +\ (a.y - center.y) * (a.y - center.y) second = (b.x - center.x) * (b.x - center.x) +\ (b.y - center.y) * (b.y - center.y) return -order if first > second else order def compare3d(a, b): det = cross_product(center, a, b) dot_product = sum([det[i] * normal[i] for i in range(0, 3)]) if dot_product < S.Zero: return -order elif dot_product > S.Zero: return order return sorted(pts, key=cmp_to_key(compare if dim==2 else compare3d)) def norm(point): """Returns the Euclidean norm of a point from origin. Parameters ========== point: This denotes a point in the dimension_al spac_e. Examples ======== >>> from sympy.integrals.intpoly import norm >>> from sympy.geometry.point import Point >>> norm(Point(2, 7)) sqrt(53) """ half = S(1)/2 if isinstance(point, (list, tuple)): return sum([coord ** 2 for coord in point]) ** half elif isinstance(point, Point): if isinstance(point, Point2D): return (point.x ** 2 + point.y ** 2) ** half else: return (point.x ** 2 + point.y ** 2 + point.z) ** half elif isinstance(point, dict): return sum(i**2 for i in point.values()) ** half def intersection(geom_1, geom_2, intersection_type): """Returns intersection between geometric objects. Note that this function is meant for use in integration_reduction and at that point in the calling function the lines denoted by the segments surely intersect within segment boundaries. Coincident lines are taken to be non-intersecting. Also, the hyperplane intersection for 2D case is also implemented. Parameters ========== geom_1, geom_2: The input line segments Examples ======== >>> from sympy.integrals.intpoly import intersection >>> from sympy.geometry.point import Point >>> from sympy.geometry.line import Segment2D >>> l1 = Segment2D(Point(1, 1), Point(3, 5)) >>> l2 = Segment2D(Point(2, 0), Point(2, 5)) >>> intersection(l1, l2, "segment2D") (2, 3) >>> p1 = ((-1, 0), 0) >>> p2 = ((0, 1), 1) >>> intersection(p1, p2, "plane2D") (0, 1) """ if intersection_type[:-2] == "segment": if intersection_type == "segment2D": x1, y1 = geom_1.points[0] x2, y2 = geom_1.points[1] x3, y3 = geom_2.points[0] x4, y4 = geom_2.points[1] elif intersection_type == "segment3D": x1, y1, z1 = geom_1.points[0] x2, y2, z2 = geom_1.points[1] x3, y3, z3 = geom_2.points[0] x4, y4, z4 = geom_2.points[1] denom = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4) if denom: t1 = x1 * y2 - y1 * x2 t2 = x3 * y4 - x4 * y3 return (S(t1 * (x3 - x4) - t2 * (x1 - x2)) / denom, S(t1 * (y3 - y4) - t2 * (y1 - y2)) / denom) if intersection_type[:-2] == "plane": if intersection_type == "plane2D": # Intersection of hyperplanes a1x, a1y = geom_1[0] a2x, a2y = geom_2[0] b1, b2 = geom_1[1], geom_2[1] denom = a1x * a2y - a2x * a1y if denom: return (S(b1 * a2y - b2 * a1y) / denom, S(b2 * a1x - b1 * a2x) / denom) def is_vertex(ent): """If the input entity is a vertex return True Parameter ========= ent : Denotes a geometric entity representing a point Examples ======== >>> from sympy.geometry.point import Point >>> from sympy.integrals.intpoly import is_vertex >>> is_vertex((2, 3)) True >>> is_vertex((2, 3, 6)) True >>> is_vertex(Point(2, 3)) True """ if isinstance(ent, tuple): if len(ent) in [2, 3]: return True elif isinstance(ent, Point): return True return False def plot_polytope(poly): """Plots the 2D polytope using the functions written in plotting module which in turn uses matplotlib backend. Parameter ========= poly: Denotes a 2-Polytope """ from sympy.plotting.plot import Plot, List2DSeries xl = list(map(lambda vertex: vertex.x, poly.vertices)) yl = list(map(lambda vertex: vertex.y, poly.vertices)) xl.append(poly.vertices[0].x) # Closing the polygon yl.append(poly.vertices[0].y) l2ds = List2DSeries(xl, yl) p = Plot(l2ds, axes='label_axes=True') p.show() def plot_polynomial(expr): """Plots the polynomial using the functions written in plotting module which in turn uses matplotlib backend. Parameter ========= expr: Denotes a polynomial(SymPy expression) """ from sympy.plotting.plot import plot3d, plot gens = expr.free_symbols if len(gens) == 2: plot3d(expr) else: plot(expr)
f1d50761051acaec0590693e5ea24abae61db183a747eb48e9c89b0beba95638
from __future__ import print_function, division from sympy.concrete.expr_with_limits import AddWithLimits from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.compatibility import is_sequence, range from sympy.core.containers import Tuple from sympy.core.expr import Expr from sympy.core.function import diff from sympy.core.mul import Mul from sympy.core.numbers import oo, pi from sympy.core.relational import Eq, Ne from sympy.core.singleton import S from sympy.core.symbol import (Dummy, Symbol, Wild) from sympy.core.sympify import sympify from sympy.integrals.manualintegrate import manualintegrate from sympy.integrals.trigonometry import trigintegrate from sympy.integrals.meijerint import meijerint_definite, meijerint_indefinite from sympy.matrices import MatrixBase from sympy.utilities.misc import filldedent from sympy.polys import Poly, PolynomialError from sympy.functions import Piecewise, sqrt, sign, piecewise_fold, tan, cot, atan from sympy.functions.elementary.exponential import log from sympy.functions.elementary.integers import floor from sympy.functions.elementary.complexes import Abs, sign from sympy.functions.elementary.miscellaneous import Min, Max from sympy.series import limit from sympy.series.order import Order from sympy.series.formal import FormalPowerSeries from sympy.simplify.fu import sincos_to_sum class Integral(AddWithLimits): """Represents unevaluated integral.""" __slots__ = ['is_commutative'] def __new__(cls, function, *symbols, **assumptions): """Create an unevaluated integral. Arguments are an integrand followed by one or more limits. If no limits are given and there is only one free symbol in the expression, that symbol will be used, otherwise an error will be raised. >>> from sympy import Integral >>> from sympy.abc import x, y >>> Integral(x) Integral(x, x) >>> Integral(y) Integral(y, y) When limits are provided, they are interpreted as follows (using ``x`` as though it were the variable of integration): (x,) or x - indefinite integral (x, a) - "evaluate at" integral is an abstract antiderivative (x, a, b) - definite integral The ``as_dummy`` method can be used to see which symbols cannot be targeted by subs: those with a preppended underscore cannot be changed with ``subs``. (Also, the integration variables themselves -- the first element of a limit -- can never be changed by subs.) >>> i = Integral(x, x) >>> at = Integral(x, (x, x)) >>> i.as_dummy() Integral(x, x) >>> at.as_dummy() Integral(_0, (_0, x)) """ #This will help other classes define their own definitions #of behaviour with Integral. if hasattr(function, '_eval_Integral'): return function._eval_Integral(*symbols, **assumptions) obj = AddWithLimits.__new__(cls, function, *symbols, **assumptions) return obj def __getnewargs__(self): return (self.function,) + tuple([tuple(xab) for xab in self.limits]) @property def free_symbols(self): """ This method returns the symbols that will exist when the integral is evaluated. This is useful if one is trying to determine whether an integral depends on a certain symbol or not. Examples ======== >>> from sympy import Integral >>> from sympy.abc import x, y >>> Integral(x, (x, y, 1)).free_symbols {y} See Also ======== function, limits, variables """ return AddWithLimits.free_symbols.fget(self) def _eval_is_zero(self): # This is a very naive and quick test, not intended to do the integral to # answer whether it is zero or not, e.g. Integral(sin(x), (x, 0, 2*pi)) # is zero but this routine should return None for that case. But, like # Mul, there are trivial situations for which the integral will be # zero so we check for those. if self.function.is_zero: return True got_none = False for l in self.limits: if len(l) == 3: z = (l[1] == l[2]) or (l[1] - l[2]).is_zero if z: return True elif z is None: got_none = True free = self.function.free_symbols for xab in self.limits: if len(xab) == 1: free.add(xab[0]) continue if len(xab) == 2 and xab[0] not in free: if xab[1].is_zero: return True elif xab[1].is_zero is None: got_none = True # take integration symbol out of free since it will be replaced # with the free symbols in the limits free.discard(xab[0]) # add in the new symbols for i in xab[1:]: free.update(i.free_symbols) if self.function.is_zero is False and got_none is False: return False def transform(self, x, u): r""" Performs a change of variables from `x` to `u` using the relationship given by `x` and `u` which will define the transformations `f` and `F` (which are inverses of each other) as follows: 1) If `x` is a Symbol (which is a variable of integration) then `u` will be interpreted as some function, f(u), with inverse F(u). This, in effect, just makes the substitution of x with f(x). 2) If `u` is a Symbol then `x` will be interpreted as some function, F(x), with inverse f(u). This is commonly referred to as u-substitution. Once f and F have been identified, the transformation is made as follows: .. math:: \int_a^b x \mathrm{d}x \rightarrow \int_{F(a)}^{F(b)} f(x) \frac{\mathrm{d}}{\mathrm{d}x} where `F(x)` is the inverse of `f(x)` and the limits and integrand have been corrected so as to retain the same value after integration. Notes ===== The mappings, F(x) or f(u), must lead to a unique integral. Linear or rational linear expression, `2*x`, `1/x` and `sqrt(x)`, will always work; quadratic expressions like `x**2 - 1` are acceptable as long as the resulting integrand does not depend on the sign of the solutions (see examples). The integral will be returned unchanged if `x` is not a variable of integration. `x` must be (or contain) only one of of the integration variables. If `u` has more than one free symbol then it should be sent as a tuple (`u`, `uvar`) where `uvar` identifies which variable is replacing the integration variable. XXX can it contain another integration variable? Examples ======== >>> from sympy.abc import a, b, c, d, x, u, y >>> from sympy import Integral, S, cos, sqrt >>> i = Integral(x*cos(x**2 - 1), (x, 0, 1)) transform can change the variable of integration >>> i.transform(x, u) Integral(u*cos(u**2 - 1), (u, 0, 1)) transform can perform u-substitution as long as a unique integrand is obtained: >>> i.transform(x**2 - 1, u) Integral(cos(u)/2, (u, -1, 0)) This attempt fails because x = +/-sqrt(u + 1) and the sign does not cancel out of the integrand: >>> Integral(cos(x**2 - 1), (x, 0, 1)).transform(x**2 - 1, u) Traceback (most recent call last): ... ValueError: The mapping between F(x) and f(u) did not give a unique integrand. transform can do a substitution. Here, the previous result is transformed back into the original expression using "u-substitution": >>> ui = _ >>> _.transform(sqrt(u + 1), x) == i True We can accomplish the same with a regular substitution: >>> ui.transform(u, x**2 - 1) == i True If the `x` does not contain a symbol of integration then the integral will be returned unchanged. Integral `i` does not have an integration variable `a` so no change is made: >>> i.transform(a, x) == i True When `u` has more than one free symbol the symbol that is replacing `x` must be identified by passing `u` as a tuple: >>> Integral(x, (x, 0, 1)).transform(x, (u + a, u)) Integral(a + u, (u, -a, 1 - a)) >>> Integral(x, (x, 0, 1)).transform(x, (u + a, a)) Integral(a + u, (a, -u, 1 - u)) See Also ======== variables : Lists the integration variables as_dummy : Replace integration variables with dummy ones """ from sympy.solvers.solvers import solve, posify d = Dummy('d') xfree = x.free_symbols.intersection(self.variables) if len(xfree) > 1: raise ValueError( 'F(x) can only contain one of: %s' % self.variables) xvar = xfree.pop() if xfree else d if xvar not in self.variables: return self u = sympify(u) if isinstance(u, Expr): ufree = u.free_symbols if len(ufree) != 1: raise ValueError(filldedent(''' When f(u) has more than one free symbol, the one replacing x must be identified: pass f(u) as (f(u), u)''')) uvar = ufree.pop() else: u, uvar = u if uvar not in u.free_symbols: raise ValueError(filldedent(''' Expecting a tuple (expr, symbol) where symbol identified a free symbol in expr, but symbol is not in expr's free symbols.''')) if not isinstance(uvar, Symbol): raise ValueError(filldedent(''' Expecting a tuple (expr, symbol) but didn't get a symbol; got %s''' % uvar)) if x.is_Symbol and u.is_Symbol: return self.xreplace({x: u}) if not x.is_Symbol and not u.is_Symbol: raise ValueError('either x or u must be a symbol') if uvar == xvar: return self.transform(x, (u.subs(uvar, d), d)).xreplace({d: uvar}) if uvar in self.limits: raise ValueError(filldedent(''' u must contain the same variable as in x or a variable that is not already an integration variable''')) if not x.is_Symbol: F = [x.subs(xvar, d)] soln = solve(u - x, xvar, check=False) if not soln: raise ValueError('no solution for solve(F(x) - f(u), x)') f = [fi.subs(uvar, d) for fi in soln] else: f = [u.subs(uvar, d)] pdiff, reps = posify(u - x) puvar = uvar.subs([(v, k) for k, v in reps.items()]) soln = [s.subs(reps) for s in solve(pdiff, puvar)] if not soln: raise ValueError('no solution for solve(F(x) - f(u), u)') F = [fi.subs(xvar, d) for fi in soln] newfuncs = set([(self.function.subs(xvar, fi)*fi.diff(d) ).subs(d, uvar) for fi in f]) if len(newfuncs) > 1: raise ValueError(filldedent(''' The mapping between F(x) and f(u) did not give a unique integrand.''')) newfunc = newfuncs.pop() def _calc_limit_1(F, a, b): """ replace d with a, using subs if possible, otherwise limit where sign of b is considered """ wok = F.subs(d, a) if wok is S.NaN or wok.is_finite is False and a.is_finite: return limit(sign(b)*F, d, a) return wok def _calc_limit(a, b): """ replace d with a, using subs if possible, otherwise limit where sign of b is considered """ avals = list({_calc_limit_1(Fi, a, b) for Fi in F}) if len(avals) > 1: raise ValueError(filldedent(''' The mapping between F(x) and f(u) did not give a unique limit.''')) return avals[0] newlimits = [] for xab in self.limits: sym = xab[0] if sym == xvar: if len(xab) == 3: a, b = xab[1:] a, b = _calc_limit(a, b), _calc_limit(b, a) if a - b > 0: a, b = b, a newfunc = -newfunc newlimits.append((uvar, a, b)) elif len(xab) == 2: a = _calc_limit(xab[1], 1) newlimits.append((uvar, a)) else: newlimits.append(uvar) else: newlimits.append(xab) return self.func(newfunc, *newlimits) def doit(self, **hints): """ Perform the integration using any hints given. Examples ======== >>> from sympy import Integral >>> from sympy.abc import x, i >>> Integral(x**i, (i, 1, 3)).doit() Piecewise((x**3/log(x) - x/log(x), (x > 1) | ((x >= 0) & (x < 1))), (2, True)) See Also ======== sympy.integrals.trigonometry.trigintegrate sympy.integrals.risch.heurisch sympy.integrals.rationaltools.ratint as_sum : Approximate the integral using a sum """ if not hints.get('integrals', True): return self deep = hints.get('deep', True) meijerg = hints.get('meijerg', None) conds = hints.get('conds', 'piecewise') risch = hints.get('risch', None) heurisch = hints.get('heurisch', None) manual = hints.get('manual', None) if len(list(filter(None, (manual, meijerg, risch, heurisch)))) > 1: raise ValueError("At most one of manual, meijerg, risch, heurisch can be True") elif manual: meijerg = risch = heurisch = False elif meijerg: manual = risch = heurisch = False elif risch: manual = meijerg = heurisch = False elif heurisch: manual = meijerg = risch = False eval_kwargs = dict(meijerg=meijerg, risch=risch, manual=manual, heurisch=heurisch, conds=conds) if conds not in ['separate', 'piecewise', 'none']: raise ValueError('conds must be one of "separate", "piecewise", ' '"none", got: %s' % conds) if risch and any(len(xab) > 1 for xab in self.limits): raise ValueError('risch=True is only allowed for indefinite integrals.') # check for the trivial zero if self.is_zero: return S.Zero # now compute and check the function function = self.function if deep: function = function.doit(**hints) if function.is_zero: return S.Zero # hacks to handle special cases if isinstance(function, MatrixBase): return function.applyfunc( lambda f: self.func(f, self.limits).doit(**hints)) if isinstance(function, FormalPowerSeries): if len(self.limits) > 1: raise NotImplementedError xab = self.limits[0] if len(xab) > 1: return function.integrate(xab, **eval_kwargs) else: return function.integrate(xab[0], **eval_kwargs) # There is no trivial answer and special handling # is done so continue undone_limits = [] # ulj = free symbols of any undone limits' upper and lower limits ulj = set() for xab in self.limits: # compute uli, the free symbols in the # Upper and Lower limits of limit I if len(xab) == 1: uli = set(xab[:1]) elif len(xab) == 2: uli = xab[1].free_symbols elif len(xab) == 3: uli = xab[1].free_symbols.union(xab[2].free_symbols) # this integral can be done as long as there is no blocking # limit that has been undone. An undone limit is blocking if # it contains an integration variable that is in this limit's # upper or lower free symbols or vice versa if xab[0] in ulj or any(v[0] in uli for v in undone_limits): undone_limits.append(xab) ulj.update(uli) function = self.func(*([function] + [xab])) factored_function = function.factor() if not isinstance(factored_function, Integral): function = factored_function continue if function.has(Abs, sign) and ( (len(xab) < 3 and all(x.is_real for x in xab)) or (len(xab) == 3 and all(x.is_real and not x.is_infinite for x in xab[1:]))): # some improper integrals are better off with Abs xr = Dummy("xr", real=True) function = (function.xreplace({xab[0]: xr}) .rewrite(Piecewise).xreplace({xr: xab[0]})) elif function.has(Min, Max): function = function.rewrite(Piecewise) if (function.has(Piecewise) and not isinstance(function, Piecewise)): function = piecewise_fold(function) if isinstance(function, Piecewise): if len(xab) == 1: antideriv = function._eval_integral(xab[0], **eval_kwargs) else: antideriv = self._eval_integral( function, xab[0], **eval_kwargs) else: # There are a number of tradeoffs in using the # Meijer G method. It can sometimes be a lot faster # than other methods, and sometimes slower. And # there are certain types of integrals for which it # is more likely to work than others. These # heuristics are incorporated in deciding what # integration methods to try, in what order. See the # integrate() docstring for details. def try_meijerg(function, xab): ret = None if len(xab) == 3 and meijerg is not False: x, a, b = xab try: res = meijerint_definite(function, x, a, b) except NotImplementedError: from sympy.integrals.meijerint import _debug _debug('NotImplementedError ' 'from meijerint_definite') res = None if res is not None: f, cond = res if conds == 'piecewise': ret = Piecewise( (f, cond), (self.func( function, (x, a, b)), True)) elif conds == 'separate': if len(self.limits) != 1: raise ValueError(filldedent(''' conds=separate not supported in multiple integrals''')) ret = f, cond else: ret = f return ret meijerg1 = meijerg if (meijerg is not False and len(xab) == 3 and xab[1].is_real and xab[2].is_real and not function.is_Poly and (xab[1].has(oo, -oo) or xab[2].has(oo, -oo))): ret = try_meijerg(function, xab) if ret is not None: function = ret continue meijerg1 = False # If the special meijerg code did not succeed in # finding a definite integral, then the code using # meijerint_indefinite will not either (it might # find an antiderivative, but the answer is likely # to be nonsensical). Thus if we are requested to # only use Meijer G-function methods, we give up at # this stage. Otherwise we just disable G-function # methods. if meijerg1 is False and meijerg is True: antideriv = None else: antideriv = self._eval_integral( function, xab[0], **eval_kwargs) if antideriv is None and meijerg is True: ret = try_meijerg(function, xab) if ret is not None: function = ret continue if not isinstance(antideriv, Integral) and antideriv is not None: sym = xab[0] for atan_term in antideriv.atoms(atan): atan_arg = atan_term.args[0] # Checking `atan_arg` to be linear combination of `tan` or `cot` for tan_part in atan_arg.atoms(tan): x1 = Dummy('x1') tan_exp1 = atan_arg.subs(tan_part, x1) # The coefficient of `tan` should be constant coeff = tan_exp1.diff(x1) if x1 not in coeff.free_symbols: a = tan_part.args[0] antideriv = antideriv.subs(atan_term, Add(atan_term, sign(coeff)*pi*floor((a-pi/2)/pi))) for cot_part in atan_arg.atoms(cot): x1 = Dummy('x1') cot_exp1 = atan_arg.subs(cot_part, x1) # The coefficient of `cot` should be constant coeff = cot_exp1.diff(x1) if x1 not in coeff.free_symbols: a = cot_part.args[0] antideriv = antideriv.subs(atan_term, Add(atan_term, sign(coeff)*pi*floor((a)/pi))) if antideriv is None: undone_limits.append(xab) function = self.func(*([function] + [xab])).factor() factored_function = function.factor() if not isinstance(factored_function, Integral): function = factored_function continue else: if len(xab) == 1: function = antideriv else: if len(xab) == 3: x, a, b = xab elif len(xab) == 2: x, b = xab a = None else: raise NotImplementedError if deep: if isinstance(a, Basic): a = a.doit(**hints) if isinstance(b, Basic): b = b.doit(**hints) if antideriv.is_Poly: gens = list(antideriv.gens) gens.remove(x) antideriv = antideriv.as_expr() function = antideriv._eval_interval(x, a, b) function = Poly(function, *gens) else: def is_indef_int(g, x): return (isinstance(g, Integral) and any(i == (x,) for i in g.limits)) def eval_factored(f, x, a, b): # _eval_interval for integrals with # (constant) factors # a single indefinite integral is assumed args = [] for g in Mul.make_args(f): if is_indef_int(g, x): args.append(g._eval_interval(x, a, b)) else: args.append(g) return Mul(*args) integrals, others, piecewises = [], [], [] for f in Add.make_args(antideriv): if any(is_indef_int(g, x) for g in Mul.make_args(f)): integrals.append(f) elif any(isinstance(g, Piecewise) for g in Mul.make_args(f)): piecewises.append(piecewise_fold(f)) else: others.append(f) uneval = Add(*[eval_factored(f, x, a, b) for f in integrals]) try: evalued = Add(*others)._eval_interval(x, a, b) evalued_pw = piecewise_fold(Add(*piecewises))._eval_interval(x, a, b) function = uneval + evalued + evalued_pw except NotImplementedError: # This can happen if _eval_interval depends in a # complicated way on limits that cannot be computed undone_limits.append(xab) function = self.func(*([function] + [xab])) factored_function = function.factor() if not isinstance(factored_function, Integral): function = factored_function return function def _eval_derivative(self, sym): """Evaluate the derivative of the current Integral object by differentiating under the integral sign [1], using the Fundamental Theorem of Calculus [2] when possible. Whenever an Integral is encountered that is equivalent to zero or has an integrand that is independent of the variable of integration those integrals are performed. All others are returned as Integral instances which can be resolved with doit() (provided they are integrable). References: [1] https://en.wikipedia.org/wiki/Differentiation_under_the_integral_sign [2] https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus Examples ======== >>> from sympy import Integral >>> from sympy.abc import x, y >>> i = Integral(x + y, y, (y, 1, x)) >>> i.diff(x) Integral(x + y, (y, x)) + Integral(1, y, (y, 1, x)) >>> i.doit().diff(x) == i.diff(x).doit() True >>> i.diff(y) 0 The previous must be true since there is no y in the evaluated integral: >>> i.free_symbols {x} >>> i.doit() 2*x**3/3 - x/2 - 1/6 """ # differentiate under the integral sign; we do not # check for regularity conditions (TODO), see issue 4215 # get limits and the function f, limits = self.function, list(self.limits) # the order matters if variables of integration appear in the limits # so work our way in from the outside to the inside. limit = limits.pop(-1) if len(limit) == 3: x, a, b = limit elif len(limit) == 2: x, b = limit a = None else: a = b = None x = limit[0] if limits: # f is the argument to an integral f = self.func(f, *tuple(limits)) # assemble the pieces def _do(f, ab): dab_dsym = diff(ab, sym) if not dab_dsym: return S.Zero if isinstance(f, Integral): limits = [(x, x) if (len(l) == 1 and l[0] == x) else l for l in f.limits] f = self.func(f.function, *limits) return f.subs(x, ab)*dab_dsym rv = S.Zero if b is not None: rv += _do(f, b) if a is not None: rv -= _do(f, a) if len(limit) == 1 and sym == x: # the dummy variable *is* also the real-world variable arg = f rv += arg else: # the dummy variable might match sym but it's # only a dummy and the actual variable is determined # by the limits, so mask off the variable of integration # while differentiating u = Dummy('u') arg = f.subs(x, u).diff(sym).subs(u, x) if arg: rv += self.func(arg, Tuple(x, a, b)) return rv def _eval_integral(self, f, x, meijerg=None, risch=None, manual=None, heurisch=None, conds='piecewise'): """ Calculate the anti-derivative to the function f(x). The following algorithms are applied (roughly in this order): 1. Simple heuristics (based on pattern matching and integral table): - most frequently used functions (e.g. polynomials, products of trig functions) 2. Integration of rational functions: - A complete algorithm for integrating rational functions is implemented (the Lazard-Rioboo-Trager algorithm). The algorithm also uses the partial fraction decomposition algorithm implemented in apart() as a preprocessor to make this process faster. Note that the integral of a rational function is always elementary, but in general, it may include a RootSum. 3. Full Risch algorithm: - The Risch algorithm is a complete decision procedure for integrating elementary functions, which means that given any elementary function, it will either compute an elementary antiderivative, or else prove that none exists. Currently, part of transcendental case is implemented, meaning elementary integrals containing exponentials, logarithms, and (soon!) trigonometric functions can be computed. The algebraic case, e.g., functions containing roots, is much more difficult and is not implemented yet. - If the routine fails (because the integrand is not elementary, or because a case is not implemented yet), it continues on to the next algorithms below. If the routine proves that the integrals is nonelementary, it still moves on to the algorithms below, because we might be able to find a closed-form solution in terms of special functions. If risch=True, however, it will stop here. 4. The Meijer G-Function algorithm: - This algorithm works by first rewriting the integrand in terms of very general Meijer G-Function (meijerg in SymPy), integrating it, and then rewriting the result back, if possible. This algorithm is particularly powerful for definite integrals (which is actually part of a different method of Integral), since it can compute closed-form solutions of definite integrals even when no closed-form indefinite integral exists. But it also is capable of computing many indefinite integrals as well. - Another advantage of this method is that it can use some results about the Meijer G-Function to give a result in terms of a Piecewise expression, which allows to express conditionally convergent integrals. - Setting meijerg=True will cause integrate() to use only this method. 5. The "manual integration" algorithm: - This algorithm tries to mimic how a person would find an antiderivative by hand, for example by looking for a substitution or applying integration by parts. This algorithm does not handle as many integrands but can return results in a more familiar form. - Sometimes this algorithm can evaluate parts of an integral; in this case integrate() will try to evaluate the rest of the integrand using the other methods here. - Setting manual=True will cause integrate() to use only this method. 6. The Heuristic Risch algorithm: - This is a heuristic version of the Risch algorithm, meaning that it is not deterministic. This is tried as a last resort because it can be very slow. It is still used because not enough of the full Risch algorithm is implemented, so that there are still some integrals that can only be computed using this method. The goal is to implement enough of the Risch and Meijer G-function methods so that this can be deleted. Setting heurisch=True will cause integrate() to use only this method. Set heurisch=False to not use it. """ from sympy.integrals.deltafunctions import deltaintegrate from sympy.integrals.singularityfunctions import singularityintegrate from sympy.integrals.heurisch import heurisch as heurisch_, heurisch_wrapper from sympy.integrals.rationaltools import ratint from sympy.integrals.risch import risch_integrate if risch: try: return risch_integrate(f, x, conds=conds) except NotImplementedError: return None if manual: try: result = manualintegrate(f, x) if result is not None and result.func != Integral: return result except (ValueError, PolynomialError): pass eval_kwargs = dict(meijerg=meijerg, risch=risch, manual=manual, heurisch=heurisch, conds=conds) # if it is a poly(x) then let the polynomial integrate itself (fast) # # It is important to make this check first, otherwise the other code # will return a sympy expression instead of a Polynomial. # # see Polynomial for details. if isinstance(f, Poly) and not (manual or meijerg or risch): return f.integrate(x) # Piecewise antiderivatives need to call special integrate. if isinstance(f, Piecewise): return f.piecewise_integrate(x, **eval_kwargs) # let's cut it short if `f` does not depend on `x`; if # x is only a dummy, that will be handled below if not f.has(x): return f*x # try to convert to poly(x) and then integrate if successful (fast) poly = f.as_poly(x) if poly is not None and not (manual or meijerg or risch): return poly.integrate().as_expr() if risch is not False: try: result, i = risch_integrate(f, x, separate_integral=True, conds=conds) except NotImplementedError: pass else: if i: # There was a nonelementary integral. Try integrating it. # if no part of the NonElementaryIntegral is integrated by # the Risch algorithm, then use the original function to # integrate, instead of re-written one if result == 0: from sympy.integrals.risch import NonElementaryIntegral return NonElementaryIntegral(f, x).doit(risch=False) else: return result + i.doit(risch=False) else: return result # since Integral(f=g1+g2+...) == Integral(g1) + Integral(g2) + ... # we are going to handle Add terms separately, # if `f` is not Add -- we only have one term # Note that in general, this is a bad idea, because Integral(g1) + # Integral(g2) might not be computable, even if Integral(g1 + g2) is. # For example, Integral(x**x + x**x*log(x)). But many heuristics only # work term-wise. So we compute this step last, after trying # risch_integrate. We also try risch_integrate again in this loop, # because maybe the integral is a sum of an elementary part and a # nonelementary part (like erf(x) + exp(x)). risch_integrate() is # quite fast, so this is acceptable. parts = [] args = Add.make_args(f) for g in args: coeff, g = g.as_independent(x) # g(x) = const if g is S.One and not meijerg: parts.append(coeff*x) continue # g(x) = expr + O(x**n) order_term = g.getO() if order_term is not None: h = self._eval_integral(g.removeO(), x, **eval_kwargs) if h is not None: h_order_expr = self._eval_integral(order_term.expr, x, **eval_kwargs) if h_order_expr is not None: h_order_term = order_term.func( h_order_expr, *order_term.variables) parts.append(coeff*(h + h_order_term)) continue # NOTE: if there is O(x**n) and we fail to integrate then # there is no point in trying other methods because they # will fail, too. return None # c # g(x) = (a*x+b) if g.is_Pow and not g.exp.has(x) and not meijerg: a = Wild('a', exclude=[x]) b = Wild('b', exclude=[x]) M = g.base.match(a*x + b) if M is not None: if g.exp == -1: h = log(g.base) elif conds != 'piecewise': h = g.base**(g.exp + 1) / (g.exp + 1) else: h1 = log(g.base) h2 = g.base**(g.exp + 1) / (g.exp + 1) h = Piecewise((h2, Ne(g.exp, -1)), (h1, True)) parts.append(coeff * h / M[a]) continue # poly(x) # g(x) = ------- # poly(x) if g.is_rational_function(x) and not (manual or meijerg or risch): parts.append(coeff * ratint(g, x)) continue if not (manual or meijerg or risch): # g(x) = Mul(trig) h = trigintegrate(g, x, conds=conds) if h is not None: parts.append(coeff * h) continue # g(x) has at least a DiracDelta term h = deltaintegrate(g, x) if h is not None: parts.append(coeff * h) continue # g(x) has at least a Singularity Function term h = singularityintegrate(g, x) if h is not None: parts.append(coeff * h) continue # Try risch again. if risch is not False: try: h, i = risch_integrate(g, x, separate_integral=True, conds=conds) except NotImplementedError: h = None else: if i: h = h + i.doit(risch=False) parts.append(coeff*h) continue # fall back to heurisch if heurisch is not False: try: if conds == 'piecewise': h = heurisch_wrapper(g, x, hints=[]) else: h = heurisch_(g, x, hints=[]) except PolynomialError: # XXX: this exception means there is a bug in the # implementation of heuristic Risch integration # algorithm. h = None else: h = None if meijerg is not False and h is None: # rewrite using G functions try: h = meijerint_indefinite(g, x) except NotImplementedError: from sympy.integrals.meijerint import _debug _debug('NotImplementedError from meijerint_definite') res = None if h is not None: parts.append(coeff * h) continue if h is None and manual is not False: try: result = manualintegrate(g, x) if result is not None and not isinstance(result, Integral): if result.has(Integral) and not manual: # Try to have other algorithms do the integrals # manualintegrate can't handle, # unless we were asked to use manual only. # Keep the rest of eval_kwargs in case another # method was set to False already new_eval_kwargs = eval_kwargs new_eval_kwargs["manual"] = False result = result.func(*[ arg.doit(**new_eval_kwargs) if arg.has(Integral) else arg for arg in result.args ]).expand(multinomial=False, log=False, power_exp=False, power_base=False) if not result.has(Integral): parts.append(coeff * result) continue except (ValueError, PolynomialError): # can't handle some SymPy expressions pass # if we failed maybe it was because we had # a product that could have been expanded, # so let's try an expansion of the whole # thing before giving up; we don't try this # at the outset because there are things # that cannot be solved unless they are # NOT expanded e.g., x**x*(1+log(x)). There # should probably be a checker somewhere in this # routine to look for such cases and try to do # collection on the expressions if they are already # in an expanded form if not h and len(args) == 1: f = sincos_to_sum(f).expand(mul=True, deep=False) if f.is_Add: # Note: risch will be identical on the expanded # expression, but maybe it will be able to pick out parts, # like x*(exp(x) + erf(x)). return self._eval_integral(f, x, **eval_kwargs) if h is not None: parts.append(coeff * h) else: return None return Add(*parts) def _eval_lseries(self, x, logx): expr = self.as_dummy() symb = x for l in expr.limits: if x in l[1:]: symb = l[0] break for term in expr.function.lseries(symb, logx): yield integrate(term, *expr.limits) def _eval_nseries(self, x, n, logx): expr = self.as_dummy() symb = x for l in expr.limits: if x in l[1:]: symb = l[0] break terms, order = expr.function.nseries( x=symb, n=n, logx=logx).as_coeff_add(Order) order = [o.subs(symb, x) for o in order] return integrate(terms, *expr.limits) + Add(*order)*x def _eval_as_leading_term(self, x): series_gen = self.args[0].lseries(x) for leading_term in series_gen: if leading_term != 0: break return integrate(leading_term, *self.args[1:]) def as_sum(self, n=None, method="midpoint", evaluate=True): """ Approximates a definite integral by a sum. Arguments --------- n The number of subintervals to use, optional. method One of: 'left', 'right', 'midpoint', 'trapezoid'. evaluate If False, returns an unevaluated Sum expression. The default is True, evaluate the sum. These methods of approximate integration are described in [1]. [1] https://en.wikipedia.org/wiki/Riemann_sum#Methods Examples ======== >>> from sympy import sin, sqrt >>> from sympy.abc import x, n >>> from sympy.integrals import Integral >>> e = Integral(sin(x), (x, 3, 7)) >>> e Integral(sin(x), (x, 3, 7)) For demonstration purposes, this interval will only be split into 2 regions, bounded by [3, 5] and [5, 7]. The left-hand rule uses function evaluations at the left of each interval: >>> e.as_sum(2, 'left') 2*sin(5) + 2*sin(3) The midpoint rule uses evaluations at the center of each interval: >>> e.as_sum(2, 'midpoint') 2*sin(4) + 2*sin(6) The right-hand rule uses function evaluations at the right of each interval: >>> e.as_sum(2, 'right') 2*sin(5) + 2*sin(7) The trapezoid rule uses function evaluations on both sides of the intervals. This is equivalent to taking the average of the left and right hand rule results: >>> e.as_sum(2, 'trapezoid') 2*sin(5) + sin(3) + sin(7) >>> (e.as_sum(2, 'left') + e.as_sum(2, 'right'))/2 == _ True Here, the discontinuity at x = 0 can be avoided by using the midpoint or right-hand method: >>> e = Integral(1/sqrt(x), (x, 0, 1)) >>> e.as_sum(5).n(4) 1.730 >>> e.as_sum(10).n(4) 1.809 >>> e.doit().n(4) # the actual value is 2 2.000 The left- or trapezoid method will encounter the discontinuity and return infinity: >>> e.as_sum(5, 'left') zoo The number of intervals can be symbolic. If omitted, a dummy symbol will be used for it. >>> e = Integral(x**2, (x, 0, 2)) >>> e.as_sum(n, 'right').expand() 8/3 + 4/n + 4/(3*n**2) This shows that the midpoint rule is more accurate, as its error term decays as the square of n: >>> e.as_sum(method='midpoint').expand() 8/3 - 2/(3*_n**2) A symbolic sum is returned with evaluate=False: >>> e.as_sum(n, 'midpoint', evaluate=False) 2*Sum((2*_k/n - 1/n)**2, (_k, 1, n))/n See Also ======== Integral.doit : Perform the integration using any hints """ from sympy.concrete.summations import Sum limits = self.limits if len(limits) > 1: raise NotImplementedError( "Multidimensional midpoint rule not implemented yet") else: limit = limits[0] if (len(limit) != 3 or limit[1].is_finite is False or limit[2].is_finite is False): raise ValueError("Expecting a definite integral over " "a finite interval.") if n is None: n = Dummy('n', integer=True, positive=True) else: n = sympify(n) if (n.is_positive is False or n.is_integer is False or n.is_finite is False): raise ValueError("n must be a positive integer, got %s" % n) x, a, b = limit dx = (b - a)/n k = Dummy('k', integer=True, positive=True) f = self.function if method == "left": result = dx*Sum(f.subs(x, a + (k-1)*dx), (k, 1, n)) elif method == "right": result = dx*Sum(f.subs(x, a + k*dx), (k, 1, n)) elif method == "midpoint": result = dx*Sum(f.subs(x, a + k*dx - dx/2), (k, 1, n)) elif method == "trapezoid": result = dx*((f.subs(x, a) + f.subs(x, b))/2 + Sum(f.subs(x, a + k*dx), (k, 1, n - 1))) else: raise ValueError("Unknown method %s" % method) return result.doit() if evaluate else result def _sage_(self): import sage.all as sage f, limits = self.function._sage_(), list(self.limits) for limit in limits: if len(limit) == 1: x = limit[0] f = sage.integral(f, x._sage_(), hold=True) elif len(limit) == 2: x, b = limit f = sage.integral(f, x._sage_(), b._sage_(), hold=True) else: x, a, b = limit f = sage.integral(f, (x._sage_(), a._sage_(), b._sage_()), hold=True) return f def principal_value(self, **kwargs): """ Compute the Cauchy Principal Value of the definite integral of a real function in the given interval on the real axis. In mathematics, the Cauchy principal value, is a method for assigning values to certain improper integrals which would otherwise be undefined. Examples ======== >>> from sympy import Dummy, symbols, integrate, limit, oo >>> from sympy.integrals.integrals import Integral >>> from sympy.calculus.singularities import singularities >>> x = symbols('x') >>> Integral(x+1, (x, -oo, oo)).principal_value() oo >>> f = 1 / (x**3) >>> Integral(f, (x, -oo, oo)).principal_value() 0 >>> Integral(f, (x, -10, 10)).principal_value() 0 >>> Integral(f, (x, -10, oo)).principal_value() + Integral(f, (x, -oo, 10)).principal_value() 0 References ========== .. [1] https://en.wikipedia.org/wiki/Cauchy_principal_value .. [2] http://mathworld.wolfram.com/CauchyPrincipalValue.html """ from sympy.calculus import singularities if len(self.limits) != 1 or len(list(self.limits[0])) != 3: raise ValueError("You need to insert a variable, lower_limit, and upper_limit correctly to calculate " "cauchy's principal value") x, a, b = self.limits[0] if not (a.is_comparable and b.is_comparable and a <= b): raise ValueError("The lower_limit must be smaller than or equal to the upper_limit to calculate " "cauchy's principal value. Also, a and b need to be comparable.") if a == b: return 0 r = Dummy('r') f = self.function singularities_list = [s for s in singularities(f, x) if s.is_comparable and a <= s <= b] for i in singularities_list: if (i == b) or (i == a): raise ValueError( 'The principal value is not defined in the given interval due to singularity at %d.' % (i)) F = integrate(f, x, **kwargs) if F.has(Integral): return self if a is -oo and b is oo: I = limit(F - F.subs(x, -x), x, oo) else: I = limit(F, x, b, '-') - limit(F, x, a, '+') for s in singularities_list: I += limit(((F.subs(x, s - r)) - F.subs(x, s + r)), r, 0, '+') return I def integrate(*args, **kwargs): """integrate(f, var, ...) Compute definite or indefinite integral of one or more variables using Risch-Norman algorithm and table lookup. This procedure is able to handle elementary algebraic and transcendental functions and also a huge class of special functions, including Airy, Bessel, Whittaker and Lambert. var can be: - a symbol -- indefinite integration - a tuple (symbol, a) -- indefinite integration with result given with `a` replacing `symbol` - a tuple (symbol, a, b) -- definite integration Several variables can be specified, in which case the result is multiple integration. (If var is omitted and the integrand is univariate, the indefinite integral in that variable will be performed.) Indefinite integrals are returned without terms that are independent of the integration variables. (see examples) Definite improper integrals often entail delicate convergence conditions. Pass conds='piecewise', 'separate' or 'none' to have these returned, respectively, as a Piecewise function, as a separate result (i.e. result will be a tuple), or not at all (default is 'piecewise'). **Strategy** SymPy uses various approaches to definite integration. One method is to find an antiderivative for the integrand, and then use the fundamental theorem of calculus. Various functions are implemented to integrate polynomial, rational and trigonometric functions, and integrands containing DiracDelta terms. SymPy also implements the part of the Risch algorithm, which is a decision procedure for integrating elementary functions, i.e., the algorithm can either find an elementary antiderivative, or prove that one does not exist. There is also a (very successful, albeit somewhat slow) general implementation of the heuristic Risch algorithm. This algorithm will eventually be phased out as more of the full Risch algorithm is implemented. See the docstring of Integral._eval_integral() for more details on computing the antiderivative using algebraic methods. The option risch=True can be used to use only the (full) Risch algorithm. This is useful if you want to know if an elementary function has an elementary antiderivative. If the indefinite Integral returned by this function is an instance of NonElementaryIntegral, that means that the Risch algorithm has proven that integral to be non-elementary. Note that by default, additional methods (such as the Meijer G method outlined below) are tried on these integrals, as they may be expressible in terms of special functions, so if you only care about elementary answers, use risch=True. Also note that an unevaluated Integral returned by this function is not necessarily a NonElementaryIntegral, even with risch=True, as it may just be an indication that the particular part of the Risch algorithm needed to integrate that function is not yet implemented. Another family of strategies comes from re-writing the integrand in terms of so-called Meijer G-functions. Indefinite integrals of a single G-function can always be computed, and the definite integral of a product of two G-functions can be computed from zero to infinity. Various strategies are implemented to rewrite integrands as G-functions, and use this information to compute integrals (see the ``meijerint`` module). The option manual=True can be used to use only an algorithm that tries to mimic integration by hand. This algorithm does not handle as many integrands as the other algorithms implemented but may return results in a more familiar form. The ``manualintegrate`` module has functions that return the steps used (see the module docstring for more information). In general, the algebraic methods work best for computing antiderivatives of (possibly complicated) combinations of elementary functions. The G-function methods work best for computing definite integrals from zero to infinity of moderately complicated combinations of special functions, or indefinite integrals of very simple combinations of special functions. The strategy employed by the integration code is as follows: - If computing a definite integral, and both limits are real, and at least one limit is +- oo, try the G-function method of definite integration first. - Try to find an antiderivative, using all available methods, ordered by performance (that is try fastest method first, slowest last; in particular polynomial integration is tried first, Meijer G-functions second to last, and heuristic Risch last). - If still not successful, try G-functions irrespective of the limits. The option meijerg=True, False, None can be used to, respectively: always use G-function methods and no others, never use G-function methods, or use all available methods (in order as described above). It defaults to None. Examples ======== >>> from sympy import integrate, log, exp, oo >>> from sympy.abc import a, x, y >>> integrate(x*y, x) x**2*y/2 >>> integrate(log(x), x) x*log(x) - x >>> integrate(log(x), (x, 1, a)) a*log(a) - a + 1 >>> integrate(x) x**2/2 Terms that are independent of x are dropped by indefinite integration: >>> from sympy import sqrt >>> integrate(sqrt(1 + x), (x, 0, x)) 2*(x + 1)**(3/2)/3 - 2/3 >>> integrate(sqrt(1 + x), x) 2*(x + 1)**(3/2)/3 >>> integrate(x*y) Traceback (most recent call last): ... ValueError: specify integration variables to integrate x*y Note that ``integrate(x)`` syntax is meant only for convenience in interactive sessions and should be avoided in library code. >>> integrate(x**a*exp(-x), (x, 0, oo)) # same as conds='piecewise' Piecewise((gamma(a + 1), re(a) > -1), (Integral(x**a*exp(-x), (x, 0, oo)), True)) >>> integrate(x**a*exp(-x), (x, 0, oo), conds='none') gamma(a + 1) >>> integrate(x**a*exp(-x), (x, 0, oo), conds='separate') (gamma(a + 1), -re(a) < 1) See Also ======== Integral, Integral.doit """ doit_flags = { 'deep': False, 'meijerg': kwargs.pop('meijerg', None), 'conds': kwargs.pop('conds', 'piecewise'), 'risch': kwargs.pop('risch', None), 'heurisch': kwargs.pop('heurisch', None), 'manual': kwargs.pop('manual', None) } integral = Integral(*args, **kwargs) if isinstance(integral, Integral): return integral.doit(**doit_flags) else: new_args = [a.doit(**doit_flags) if isinstance(a, Integral) else a for a in integral.args] return integral.func(*new_args) def line_integrate(field, curve, vars): """line_integrate(field, Curve, variables) Compute the line integral. Examples ======== >>> from sympy import Curve, line_integrate, E, ln >>> from sympy.abc import x, y, t >>> C = Curve([E**t + 1, E**t - 1], (t, 0, ln(2))) >>> line_integrate(x + y, C, [x, y]) 3*sqrt(2) See Also ======== integrate, Integral """ from sympy.geometry import Curve F = sympify(field) if not F: raise ValueError( "Expecting function specifying field as first argument.") if not isinstance(curve, Curve): raise ValueError("Expecting Curve entity as second argument.") if not is_sequence(vars): raise ValueError("Expecting ordered iterable for variables.") if len(curve.functions) != len(vars): raise ValueError("Field variable size does not match curve dimension.") if curve.parameter in vars: raise ValueError("Curve parameter clashes with field parameters.") # Calculate derivatives for line parameter functions # F(r) -> F(r(t)) and finally F(r(t)*r'(t)) Ft = F dldt = 0 for i, var in enumerate(vars): _f = curve.functions[i] _dn = diff(_f, curve.parameter) # ...arc length dldt = dldt + (_dn * _dn) Ft = Ft.subs(var, _f) Ft = Ft * sqrt(dldt) integral = Integral(Ft, curve.limits).doit(deep=False) return integral
08d5328b61ea749ed5539f1d9f3a2493fd233b0f1c6982a2609871a7fa722f6f
from __future__ import print_function, division from itertools import permutations from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.mul import Mul from sympy.core.symbol import Wild, Dummy, symbols from sympy.core.basic import sympify from sympy.core.numbers import Rational, pi, I from sympy.core.relational import Eq, Ne from sympy.core.singleton import S from sympy.functions import exp, sin, cos, tan, cot, asin, atan from sympy.functions import log, sinh, cosh, tanh, coth, asinh, acosh from sympy.functions import sqrt, erf, erfi, li, Ei from sympy.functions import besselj, bessely, besseli, besselk from sympy.functions import hankel1, hankel2, jn, yn from sympy.functions.elementary.exponential import LambertW from sympy.functions.elementary.piecewise import Piecewise from sympy.simplify.radsimp import collect from sympy.logic.boolalg import And, Or from sympy.utilities.iterables import uniq from sympy.polys import quo, gcd, lcm, factor, cancel, PolynomialError from sympy.polys.monomials import itermonomials from sympy.polys.polyroots import root_factors from sympy.polys.rings import PolyRing from sympy.polys.solvers import solve_lin_sys from sympy.polys.constructor import construct_domain from sympy.core.compatibility import reduce, ordered def components(f, x): """ Returns a set of all functional components of the given expression which includes symbols, function applications and compositions and non-integer powers. Fractional powers are collected with minimal, positive exponents. >>> from sympy import cos, sin >>> from sympy.abc import x, y >>> from sympy.integrals.heurisch import components >>> components(sin(x)*cos(x)**2, x) {x, sin(x), cos(x)} See Also ======== heurisch """ result = set() if x in f.free_symbols: if f.is_symbol and f.is_commutative: result.add(f) elif f.is_Function or f.is_Derivative: for g in f.args: result |= components(g, x) result.add(f) elif f.is_Pow: result |= components(f.base, x) if not f.exp.is_Integer: if f.exp.is_Rational: result.add(f.base**Rational(1, f.exp.q)) else: result |= components(f.exp, x) | {f} else: for g in f.args: result |= components(g, x) return result # name -> [] of symbols _symbols_cache = {} # NB @cacheit is not convenient here def _symbols(name, n): """get vector of symbols local to this module""" try: lsyms = _symbols_cache[name] except KeyError: lsyms = [] _symbols_cache[name] = lsyms while len(lsyms) < n: lsyms.append( Dummy('%s%i' % (name, len(lsyms))) ) return lsyms[:n] def heurisch_wrapper(f, x, rewrite=False, hints=None, mappings=None, retries=3, degree_offset=0, unnecessary_permutations=None): """ A wrapper around the heurisch integration algorithm. This method takes the result from heurisch and checks for poles in the denominator. For each of these poles, the integral is reevaluated, and the final integration result is given in terms of a Piecewise. Examples ======== >>> from sympy.core import symbols >>> from sympy.functions import cos >>> from sympy.integrals.heurisch import heurisch, heurisch_wrapper >>> n, x = symbols('n x') >>> heurisch(cos(n*x), x) sin(n*x)/n >>> heurisch_wrapper(cos(n*x), x) Piecewise((sin(n*x)/n, Ne(n, 0)), (x, True)) See Also ======== heurisch """ from sympy.solvers.solvers import solve, denoms f = sympify(f) if x not in f.free_symbols: return f*x res = heurisch(f, x, rewrite, hints, mappings, retries, degree_offset, unnecessary_permutations) if not isinstance(res, Basic): return res # We consider each denominator in the expression, and try to find # cases where one or more symbolic denominator might be zero. The # conditions for these cases are stored in the list slns. slns = [] for d in denoms(res): try: slns += solve(d, dict=True, exclude=(x,)) except NotImplementedError: pass if not slns: return res slns = list(uniq(slns)) # Remove the solutions corresponding to poles in the original expression. slns0 = [] for d in denoms(f): try: slns0 += solve(d, dict=True, exclude=(x,)) except NotImplementedError: pass slns = [s for s in slns if s not in slns0] if not slns: return res if len(slns) > 1: eqs = [] for sub_dict in slns: eqs.extend([Eq(key, value) for key, value in sub_dict.items()]) slns = solve(eqs, dict=True, exclude=(x,)) + slns # For each case listed in the list slns, we reevaluate the integral. pairs = [] for sub_dict in slns: expr = heurisch(f.subs(sub_dict), x, rewrite, hints, mappings, retries, degree_offset, unnecessary_permutations) cond = And(*[Eq(key, value) for key, value in sub_dict.items()]) generic = Or(*[Ne(key, value) for key, value in sub_dict.items()]) pairs.append((expr, cond)) # If there is one condition, put the generic case first. Otherwise, # doing so may lead to longer Piecewise formulas if len(pairs) == 1: pairs = [(heurisch(f, x, rewrite, hints, mappings, retries, degree_offset, unnecessary_permutations), generic), (pairs[0][0], True)] else: pairs.append((heurisch(f, x, rewrite, hints, mappings, retries, degree_offset, unnecessary_permutations), True)) return Piecewise(*pairs) class BesselTable(object): """ Derivatives of Bessel functions of orders n and n-1 in terms of each other. See the docstring of DiffCache. """ def __init__(self): self.table = {} self.n = Dummy('n') self.z = Dummy('z') self._create_table() def _create_table(t): table, n, z = t.table, t.n, t.z for f in (besselj, bessely, hankel1, hankel2): table[f] = (f(n-1, z) - n*f(n, z)/z, (n-1)*f(n-1, z)/z - f(n, z)) f = besseli table[f] = (f(n-1, z) - n*f(n, z)/z, (n-1)*f(n-1, z)/z + f(n, z)) f = besselk table[f] = (-f(n-1, z) - n*f(n, z)/z, (n-1)*f(n-1, z)/z - f(n, z)) for f in (jn, yn): table[f] = (f(n-1, z) - (n+1)*f(n, z)/z, (n-1)*f(n-1, z)/z - f(n, z)) def diffs(t, f, n, z): if f in t.table: diff0, diff1 = t.table[f] repl = [(t.n, n), (t.z, z)] return (diff0.subs(repl), diff1.subs(repl)) def has(t, f): return f in t.table _bessel_table = None class DiffCache(object): """ Store for derivatives of expressions. The standard form of the derivative of a Bessel function of order n contains two Bessel functions of orders n-1 and n+1, respectively. Such forms cannot be used in parallel Risch algorithm, because there is a linear recurrence relation between the three functions while the algorithm expects that functions and derivatives are represented in terms of algebraically independent transcendentals. The solution is to take two of the functions, e.g., those of orders n and n-1, and to express the derivatives in terms of the pair. To guarantee that the proper form is used the two derivatives are cached as soon as one is encountered. Derivatives of other functions are also cached at no extra cost. All derivatives are with respect to the same variable `x`. """ def __init__(self, x): self.cache = {} self.x = x global _bessel_table if not _bessel_table: _bessel_table = BesselTable() def get_diff(self, f): cache = self.cache if f in cache: pass elif (not hasattr(f, 'func') or not _bessel_table.has(f.func)): cache[f] = cancel(f.diff(self.x)) else: n, z = f.args d0, d1 = _bessel_table.diffs(f.func, n, z) dz = self.get_diff(z) cache[f] = d0*dz cache[f.func(n-1, z)] = d1*dz return cache[f] def heurisch(f, x, rewrite=False, hints=None, mappings=None, retries=3, degree_offset=0, unnecessary_permutations=None): """ Compute indefinite integral using heuristic Risch algorithm. This is a heuristic approach to indefinite integration in finite terms using the extended heuristic (parallel) Risch algorithm, based on Manuel Bronstein's "Poor Man's Integrator". The algorithm supports various classes of functions including transcendental elementary or special functions like Airy, Bessel, Whittaker and Lambert. Note that this algorithm is not a decision procedure. If it isn't able to compute the antiderivative for a given function, then this is not a proof that such a functions does not exist. One should use recursive Risch algorithm in such case. It's an open question if this algorithm can be made a full decision procedure. This is an internal integrator procedure. You should use toplevel 'integrate' function in most cases, as this procedure needs some preprocessing steps and otherwise may fail. Specification ============= heurisch(f, x, rewrite=False, hints=None) where f : expression x : symbol rewrite -> force rewrite 'f' in terms of 'tan' and 'tanh' hints -> a list of functions that may appear in anti-derivate - hints = None --> no suggestions at all - hints = [ ] --> try to figure out - hints = [f1, ..., fn] --> we know better Examples ======== >>> from sympy import tan >>> from sympy.integrals.heurisch import heurisch >>> from sympy.abc import x, y >>> heurisch(y*tan(x), x) y*log(tan(x)**2 + 1)/2 See Manuel Bronstein's "Poor Man's Integrator": [1] http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/index.html For more information on the implemented algorithm refer to: [2] K. Geddes, L. Stefanus, On the Risch-Norman Integration Method and its Implementation in Maple, Proceedings of ISSAC'89, ACM Press, 212-217. [3] J. H. Davenport, On the Parallel Risch Algorithm (I), Proceedings of EUROCAM'82, LNCS 144, Springer, 144-157. [4] J. H. Davenport, On the Parallel Risch Algorithm (III): Use of Tangents, SIGSAM Bulletin 16 (1982), 3-6. [5] J. H. Davenport, B. M. Trager, On the Parallel Risch Algorithm (II), ACM Transactions on Mathematical Software 11 (1985), 356-362. See Also ======== sympy.integrals.integrals.Integral.doit sympy.integrals.integrals.Integral components """ f = sympify(f) if x not in f.free_symbols: return f*x if not f.is_Add: indep, f = f.as_independent(x) else: indep = S.One rewritables = { (sin, cos, cot): tan, (sinh, cosh, coth): tanh, } if rewrite: for candidates, rule in rewritables.items(): f = f.rewrite(candidates, rule) else: for candidates in rewritables.keys(): if f.has(*candidates): break else: rewrite = True terms = components(f, x) if hints is not None: if not hints: a = Wild('a', exclude=[x]) b = Wild('b', exclude=[x]) c = Wild('c', exclude=[x]) for g in set(terms): # using copy of terms if g.is_Function: if isinstance(g, li): M = g.args[0].match(a*x**b) if M is not None: terms.add( x*(li(M[a]*x**M[b]) - (M[a]*x**M[b])**(-1/M[b])*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) ) #terms.add( x*(li(M[a]*x**M[b]) - (x**M[b])**(-1/M[b])*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) ) #terms.add( x*(li(M[a]*x**M[b]) - x*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) ) #terms.add( li(M[a]*x**M[b]) - Ei((M[b]+1)*log(M[a]*x**M[b])/M[b]) ) elif isinstance(g, exp): M = g.args[0].match(a*x**2) if M is not None: if M[a].is_positive: terms.add(erfi(sqrt(M[a])*x)) else: # M[a].is_negative or unknown terms.add(erf(sqrt(-M[a])*x)) M = g.args[0].match(a*x**2 + b*x + c) if M is not None: if M[a].is_positive: terms.add(sqrt(pi/4*(-M[a]))*exp(M[c] - M[b]**2/(4*M[a]))* erfi(sqrt(M[a])*x + M[b]/(2*sqrt(M[a])))) elif M[a].is_negative: terms.add(sqrt(pi/4*(-M[a]))*exp(M[c] - M[b]**2/(4*M[a]))* erf(sqrt(-M[a])*x - M[b]/(2*sqrt(-M[a])))) M = g.args[0].match(a*log(x)**2) if M is not None: if M[a].is_positive: terms.add(erfi(sqrt(M[a])*log(x) + 1/(2*sqrt(M[a])))) if M[a].is_negative: terms.add(erf(sqrt(-M[a])*log(x) - 1/(2*sqrt(-M[a])))) elif g.is_Pow: if g.exp.is_Rational and g.exp.q == 2: M = g.base.match(a*x**2 + b) if M is not None and M[b].is_positive: if M[a].is_positive: terms.add(asinh(sqrt(M[a]/M[b])*x)) elif M[a].is_negative: terms.add(asin(sqrt(-M[a]/M[b])*x)) M = g.base.match(a*x**2 - b) if M is not None and M[b].is_positive: if M[a].is_positive: terms.add(acosh(sqrt(M[a]/M[b])*x)) elif M[a].is_negative: terms.add((-M[b]/2*sqrt(-M[a])* atan(sqrt(-M[a])*x/sqrt(M[a]*x**2 - M[b])))) else: terms |= set(hints) dcache = DiffCache(x) for g in set(terms): # using copy of terms terms |= components(dcache.get_diff(g), x) # TODO: caching is significant factor for why permutations work at all. Change this. V = _symbols('x', len(terms)) # sort mapping expressions from largest to smallest (last is always x). mapping = list(reversed(list(zip(*ordered( # [(a[0].as_independent(x)[1], a) for a in zip(terms, V)])))[1])) # rev_mapping = {v: k for k, v in mapping} # if mappings is None: # # optimizing the number of permutations of mapping # assert mapping[-1][0] == x # if not, find it and correct this comment unnecessary_permutations = [mapping.pop(-1)] mappings = permutations(mapping) else: unnecessary_permutations = unnecessary_permutations or [] def _substitute(expr): return expr.subs(mapping) for mapping in mappings: mapping = list(mapping) mapping = mapping + unnecessary_permutations diffs = [ _substitute(dcache.get_diff(g)) for g in terms ] denoms = [ g.as_numer_denom()[1] for g in diffs ] if all(h.is_polynomial(*V) for h in denoms) and _substitute(f).is_rational_function(*V): denom = reduce(lambda p, q: lcm(p, q, *V), denoms) break else: if not rewrite: result = heurisch(f, x, rewrite=True, hints=hints, unnecessary_permutations=unnecessary_permutations) if result is not None: return indep*result return None numers = [ cancel(denom*g) for g in diffs ] def _derivation(h): return Add(*[ d * h.diff(v) for d, v in zip(numers, V) ]) def _deflation(p): for y in V: if not p.has(y): continue if _derivation(p) is not S.Zero: c, q = p.as_poly(y).primitive() return _deflation(c)*gcd(q, q.diff(y)).as_expr() else: return p def _splitter(p): for y in V: if not p.has(y): continue if _derivation(y) is not S.Zero: c, q = p.as_poly(y).primitive() q = q.as_expr() h = gcd(q, _derivation(q), y) s = quo(h, gcd(q, q.diff(y), y), y) c_split = _splitter(c) if s.as_poly(y).degree() == 0: return (c_split[0], q * c_split[1]) q_split = _splitter(cancel(q / s)) return (c_split[0]*q_split[0]*s, c_split[1]*q_split[1]) else: return (S.One, p) special = {} for term in terms: if term.is_Function: if isinstance(term, tan): special[1 + _substitute(term)**2] = False elif isinstance(term, tanh): special[1 + _substitute(term)] = False special[1 - _substitute(term)] = False elif isinstance(term, LambertW): special[_substitute(term)] = True F = _substitute(f) P, Q = F.as_numer_denom() u_split = _splitter(denom) v_split = _splitter(Q) polys = set(list(v_split) + [ u_split[0] ] + list(special.keys())) s = u_split[0] * Mul(*[ k for k, v in special.items() if v ]) polified = [ p.as_poly(*V) for p in [s, P, Q] ] if None in polified: return None #--- definitions for _integrate a, b, c = [ p.total_degree() for p in polified ] poly_denom = (s * v_split[0] * _deflation(v_split[1])).as_expr() def _exponent(g): if g.is_Pow: if g.exp.is_Rational and g.exp.q != 1: if g.exp.p > 0: return g.exp.p + g.exp.q - 1 else: return abs(g.exp.p + g.exp.q) else: return 1 elif not g.is_Atom and g.args: return max([ _exponent(h) for h in g.args ]) else: return 1 A, B = _exponent(f), a + max(b, c) if A > 1 and B > 1: monoms = itermonomials(V, A + B - 1 + degree_offset) else: monoms = itermonomials(V, A + B + degree_offset) poly_coeffs = _symbols('A', len(monoms)) poly_part = Add(*[ poly_coeffs[i]*monomial for i, monomial in enumerate(monoms) ]) reducibles = set() for poly in polys: if poly.has(*V): try: factorization = factor(poly, greedy=True) except PolynomialError: factorization = poly if factorization.is_Mul: factors = factorization.args else: factors = (factorization, ) for fact in factors: if fact.is_Pow: reducibles.add(fact.base) else: reducibles.add(fact) def _integrate(field=None): irreducibles = set() atans = set() pairs = set() for poly in reducibles: for z in poly.free_symbols: if z in V: break # should this be: `irreducibles |= \ else: # set(root_factors(poly, z, filter=field))` continue # and the line below deleted? # | # V irreducibles |= set(root_factors(poly, z, filter=field)) log_part, atan_part = [], [] for poly in list(irreducibles): m = collect(poly, I, evaluate=False) y = m.get(I, S.Zero) if y: x = m.get(S.One, S.Zero) if x.has(I) or y.has(I): continue # nontrivial x + I*y pairs.add((x, y)) irreducibles.remove(poly) while pairs: x, y = pairs.pop() if (x, -y) in pairs: pairs.remove((x, -y)) # Choosing b with no minus sign if y.could_extract_minus_sign(): y = -y irreducibles.add(x*x + y*y) atans.add(atan(x/y)) else: irreducibles.add(x + I*y) B = _symbols('B', len(irreducibles)) C = _symbols('C', len(atans)) # Note: the ordering matters here for poly, b in reversed(list(ordered(zip(irreducibles, B)))): if poly.has(*V): poly_coeffs.append(b) log_part.append(b * log(poly)) for poly, c in reversed(list(ordered(zip(atans, C)))): if poly.has(*V): poly_coeffs.append(c) atan_part.append(c * poly) # TODO: Currently it's better to use symbolic expressions here instead # of rational functions, because it's simpler and FracElement doesn't # give big speed improvement yet. This is because cancellation is slow # due to slow polynomial GCD algorithms. If this gets improved then # revise this code. candidate = poly_part/poly_denom + Add(*log_part) + Add(*atan_part) h = F - _derivation(candidate) / denom raw_numer = h.as_numer_denom()[0] # Rewrite raw_numer as a polynomial in K[coeffs][V] where K is a field # that we have to determine. We can't use simply atoms() because log(3), # sqrt(y) and similar expressions can appear, leading to non-trivial # domains. syms = set(poly_coeffs) | set(V) non_syms = set([]) def find_non_syms(expr): if expr.is_Integer or expr.is_Rational: pass # ignore trivial numbers elif expr in syms: pass # ignore variables elif not expr.has(*syms): non_syms.add(expr) elif expr.is_Add or expr.is_Mul or expr.is_Pow: list(map(find_non_syms, expr.args)) else: # TODO: Non-polynomial expression. This should have been # filtered out at an earlier stage. raise PolynomialError try: find_non_syms(raw_numer) except PolynomialError: return None else: ground, _ = construct_domain(non_syms, field=True) coeff_ring = PolyRing(poly_coeffs, ground) ring = PolyRing(V, coeff_ring) try: numer = ring.from_expr(raw_numer) except ValueError: raise PolynomialError solution = solve_lin_sys(numer.coeffs(), coeff_ring, _raw=False) if solution is None: return None else: return candidate.subs(solution).subs( list(zip(poly_coeffs, [S.Zero]*len(poly_coeffs)))) if not (F.free_symbols - set(V)): solution = _integrate('Q') if solution is None: solution = _integrate() else: solution = _integrate() if solution is not None: antideriv = solution.subs(rev_mapping) antideriv = cancel(antideriv).expand(force=True) if antideriv.is_Add: antideriv = antideriv.as_independent(x)[1] return indep*antideriv else: if retries >= 0: result = heurisch(f, x, mappings=mappings, rewrite=rewrite, hints=hints, retries=retries - 1, unnecessary_permutations=unnecessary_permutations) if result is not None: return indep*result return None
7b13634438a489dfd21e3f4c3f0c43fcf3abf92f75eb3f27a460aa3d21ae35cd
""" The Risch Algorithm for transcendental function integration. The core algorithms for the Risch algorithm are here. The subproblem algorithms are in the rde.py and prde.py files for the Risch Differential Equation solver and the parametric problems solvers, respectively. All important information concerning the differential extension for an integrand is stored in a DifferentialExtension object, which in the code is usually called DE. Throughout the code and Inside the DifferentialExtension object, the conventions/attribute names are that the base domain is QQ and each differential extension is x, t0, t1, ..., tn-1 = DE.t. DE.x is the variable of integration (Dx == 1), DE.D is a list of the derivatives of x, t1, t2, ..., tn-1 = t, DE.T is the list [x, t1, t2, ..., tn-1], DE.t is the outer-most variable of the differential extension at the given level (the level can be adjusted using DE.increment_level() and DE.decrement_level()), k is the field C(x, t0, ..., tn-2), where C is the constant field. The numerator of a fraction is denoted by a and the denominator by d. If the fraction is named f, fa == numer(f) and fd == denom(f). Fractions are returned as tuples (fa, fd). DE.d and DE.t are used to represent the topmost derivation and extension variable, respectively. The docstring of a function signifies whether an argument is in k[t], in which case it will just return a Poly in t, or in k(t), in which case it will return the fraction (fa, fd). Other variable names probably come from the names used in Bronstein's book. """ from __future__ import print_function, division from sympy import real_roots, default_sort_key from sympy.abc import z from sympy.core.function import Lambda from sympy.core.numbers import ilcm, oo, I from sympy.core.mul import Mul from sympy.core.power import Pow from sympy.core.relational import Ne from sympy.core.singleton import S from sympy.core.symbol import Symbol, Dummy from sympy.core.compatibility import reduce, ordered, range from sympy.integrals.heurisch import _symbols from sympy.functions import (acos, acot, asin, atan, cos, cot, exp, log, Piecewise, sin, tan) from sympy.functions import sinh, cosh, tanh, coth from sympy.integrals import Integral, integrate from sympy.polys import gcd, cancel, PolynomialError, Poly, reduced, RootSum, DomainError from sympy.utilities.iterables import numbered_symbols from types import GeneratorType def integer_powers(exprs): """ Rewrites a list of expressions as integer multiples of each other. For example, if you have [x, x/2, x**2 + 1, 2*x/3], then you can rewrite this as [(x/6) * 6, (x/6) * 3, (x**2 + 1) * 1, (x/6) * 4]. This is useful in the Risch integration algorithm, where we must write exp(x) + exp(x/2) as (exp(x/2))**2 + exp(x/2), but not as exp(x) + sqrt(exp(x)) (this is because only the transcendental case is implemented and we therefore cannot integrate algebraic extensions). The integer multiples returned by this function for each term are the smallest possible (their content equals 1). Returns a list of tuples where the first element is the base term and the second element is a list of `(item, factor)` terms, where `factor` is the integer multiplicative factor that must multiply the base term to obtain the original item. The easiest way to understand this is to look at an example: >>> from sympy.abc import x >>> from sympy.integrals.risch import integer_powers >>> integer_powers([x, x/2, x**2 + 1, 2*x/3]) [(x/6, [(x, 6), (x/2, 3), (2*x/3, 4)]), (x**2 + 1, [(x**2 + 1, 1)])] We can see how this relates to the example at the beginning of the docstring. It chose x/6 as the first base term. Then, x can be written as (x/2) * 2, so we get (0, 2), and so on. Now only element (x**2 + 1) remains, and there are no other terms that can be written as a rational multiple of that, so we get that it can be written as (x**2 + 1) * 1. """ # Here is the strategy: # First, go through each term and determine if it can be rewritten as a # rational multiple of any of the terms gathered so far. # cancel(a/b).is_Rational is sufficient for this. If it is a multiple, we # add its multiple to the dictionary. terms = {} for term in exprs: for j in terms: a = cancel(term/j) if a.is_Rational: terms[j].append((term, a)) break else: terms[term] = [(term, S(1))] # After we have done this, we have all the like terms together, so we just # need to find a common denominator so that we can get the base term and # integer multiples such that each term can be written as an integer # multiple of the base term, and the content of the integers is 1. newterms = {} for term in terms: common_denom = reduce(ilcm, [i.as_numer_denom()[1] for _, i in terms[term]]) newterm = term/common_denom newmults = [(i, j*common_denom) for i, j in terms[term]] newterms[newterm] = newmults return sorted(iter(newterms.items()), key=lambda item: item[0].sort_key()) class DifferentialExtension(object): """ A container for all the information relating to a differential extension. The attributes of this object are (see also the docstring of __init__): - f: The original (Expr) integrand. - x: The variable of integration. - T: List of variables in the extension. - D: List of derivations in the extension; corresponds to the elements of T. - fa: Poly of the numerator of the integrand. - fd: Poly of the denominator of the integrand. - Tfuncs: Lambda() representations of each element of T (except for x). For back-substitution after integration. - backsubs: A (possibly empty) list of further substitutions to be made on the final integral to make it look more like the integrand. - exts: - extargs: - cases: List of string representations of the cases of T. - t: The top level extension variable, as defined by the current level (see level below). - d: The top level extension derivation, as defined by the current derivation (see level below). - case: The string representation of the case of self.d. (Note that self.T and self.D will always contain the complete extension, regardless of the level. Therefore, you should ALWAYS use DE.t and DE.d instead of DE.T[-1] and DE.D[-1]. If you want to have a list of the derivations or variables only up to the current level, use DE.D[:len(DE.D) + DE.level + 1] and DE.T[:len(DE.T) + DE.level + 1]. Note that, in particular, the derivation() function does this.) The following are also attributes, but will probably not be useful other than in internal use: - newf: Expr form of fa/fd. - level: The number (between -1 and -len(self.T)) such that self.T[self.level] == self.t and self.D[self.level] == self.d. Use the methods self.increment_level() and self.decrement_level() to change the current level. """ # __slots__ is defined mainly so we can iterate over all the attributes # of the class easily (the memory use doesn't matter too much, since we # only create one DifferentialExtension per integration). Also, it's nice # to have a safeguard when debugging. __slots__ = ('f', 'x', 'T', 'D', 'fa', 'fd', 'Tfuncs', 'backsubs', 'exts', 'extargs', 'cases', 'case', 't', 'd', 'newf', 'level', 'ts', 'dummy') def __init__(self, f=None, x=None, handle_first='log', dummy=False, extension=None, rewrite_complex=None): """ Tries to build a transcendental extension tower from f with respect to x. If it is successful, creates a DifferentialExtension object with, among others, the attributes fa, fd, D, T, Tfuncs, and backsubs such that fa and fd are Polys in T[-1] with rational coefficients in T[:-1], fa/fd == f, and D[i] is a Poly in T[i] with rational coefficients in T[:i] representing the derivative of T[i] for each i from 1 to len(T). Tfuncs is a list of Lambda objects for back replacing the functions after integrating. Lambda() is only used (instead of lambda) to make them easier to test and debug. Note that Tfuncs corresponds to the elements of T, except for T[0] == x, but they should be back-substituted in reverse order. backsubs is a (possibly empty) back-substitution list that should be applied on the completed integral to make it look more like the original integrand. If it is unsuccessful, it raises NotImplementedError. You can also create an object by manually setting the attributes as a dictionary to the extension keyword argument. You must include at least D. Warning, any attribute that is not given will be set to None. The attributes T, t, d, cases, case, x, and level are set automatically and do not need to be given. The functions in the Risch Algorithm will NOT check to see if an attribute is None before using it. This also does not check to see if the extension is valid (non-algebraic) or even if it is self-consistent. Therefore, this should only be used for testing/debugging purposes. """ # XXX: If you need to debug this function, set the break point here if extension: if 'D' not in extension: raise ValueError("At least the key D must be included with " "the extension flag to DifferentialExtension.") for attr in extension: setattr(self, attr, extension[attr]) self._auto_attrs() return elif f is None or x is None: raise ValueError("Either both f and x or a manual extension must " "be given.") if handle_first not in ['log', 'exp']: raise ValueError("handle_first must be 'log' or 'exp', not %s." % str(handle_first)) # f will be the original function, self.f might change if we reset # (e.g., we pull out a constant from an exponential) self.f = f self.x = x # setting the default value 'dummy' self.dummy = dummy self.reset() exp_new_extension, log_new_extension = True, True # case of 'automatic' choosing if rewrite_complex is None: rewrite_complex = I in self.f.atoms() if rewrite_complex: rewritables = { (sin, cos, cot, tan, sinh, cosh, coth, tanh): exp, (asin, acos, acot, atan): log, } # rewrite the trigonometric components for candidates, rule in rewritables.items(): self.newf = self.newf.rewrite(candidates, rule) self.newf = cancel(self.newf) else: if any(i.has(x) for i in self.f.atoms(sin, cos, tan, atan, asin, acos)): raise NotImplementedError("Trigonometric extensions are not " "supported (yet!)") exps = set() pows = set() numpows = set() sympows = set() logs = set() symlogs = set() while True: if self.newf.is_rational_function(*self.T): break if not exp_new_extension and not log_new_extension: # We couldn't find a new extension on the last pass, so I guess # we can't do it. raise NotImplementedError("Couldn't find an elementary " "transcendental extension for %s. Try using a " % str(f) + "manual extension with the extension flag.") exps, pows, numpows, sympows, log_new_extension = \ self._rewrite_exps_pows(exps, pows, numpows, sympows, log_new_extension) logs, symlogs = self._rewrite_logs(logs, symlogs) if handle_first == 'exp' or not log_new_extension: exp_new_extension = self._exp_part(exps) if exp_new_extension is None: # reset and restart self.f = self.newf self.reset() exp_new_extension = True continue if handle_first == 'log' or not exp_new_extension: log_new_extension = self._log_part(logs) self.fa, self.fd = frac_in(self.newf, self.t) self._auto_attrs() return def __getattr__(self, attr): # Avoid AttributeErrors when debugging if attr not in self.__slots__: raise AttributeError("%s has no attribute %s" % (repr(self), repr(attr))) return None def _rewrite_exps_pows(self, exps, pows, numpows, sympows, log_new_extension): """ Rewrite exps/pows for better processing. """ # Pre-preparsing. ################# # Get all exp arguments, so we can avoid ahead of time doing # something like t1 = exp(x), t2 = exp(x/2) == sqrt(t1). # Things like sqrt(exp(x)) do not automatically simplify to # exp(x/2), so they will be viewed as algebraic. The easiest way # to handle this is to convert all instances of (a**b)**Rational # to a**(Rational*b) before doing anything else. Note that the # _exp_part code can generate terms of this form, so we do need to # do this at each pass (or else modify it to not do that). from sympy.integrals.prde import is_deriv_k ratpows = [i for i in self.newf.atoms(Pow).union(self.newf.atoms(exp)) if (i.base.is_Pow or isinstance(i.base, exp) and i.exp.is_Rational)] ratpows_repl = [ (i, i.base.base**(i.exp*i.base.exp)) for i in ratpows] self.backsubs += [(j, i) for i, j in ratpows_repl] self.newf = self.newf.xreplace(dict(ratpows_repl)) # To make the process deterministic, the args are sorted # so that functions with smaller op-counts are processed first. # Ties are broken with the default_sort_key. # XXX Although the method is deterministic no additional work # has been done to guarantee that the simplest solution is # returned and that it would be affected be using different # variables. Though it is possible that this is the case # one should know that it has not been done intentionally, so # further improvements may be possible. # TODO: This probably doesn't need to be completely recomputed at # each pass. exps = update_sets(exps, self.newf.atoms(exp), lambda i: i.exp.is_rational_function(*self.T) and i.exp.has(*self.T)) pows = update_sets(pows, self.newf.atoms(Pow), lambda i: i.exp.is_rational_function(*self.T) and i.exp.has(*self.T)) numpows = update_sets(numpows, set(pows), lambda i: not i.base.has(*self.T)) sympows = update_sets(sympows, set(pows) - set(numpows), lambda i: i.base.is_rational_function(*self.T) and not i.exp.is_Integer) # The easiest way to deal with non-base E powers is to convert them # into base E, integrate, and then convert back. for i in ordered(pows): old = i new = exp(i.exp*log(i.base)) # If exp is ever changed to automatically reduce exp(x*log(2)) # to 2**x, then this will break. The solution is to not change # exp to do that :) if i in sympows: if i.exp.is_Rational: raise NotImplementedError("Algebraic extensions are " "not supported (%s)." % str(i)) # We can add a**b only if log(a) in the extension, because # a**b == exp(b*log(a)). basea, based = frac_in(i.base, self.t) A = is_deriv_k(basea, based, self) if A is None: # Nonelementary monomial (so far) # TODO: Would there ever be any benefit from just # adding log(base) as a new monomial? # ANSWER: Yes, otherwise we can't integrate x**x (or # rather prove that it has no elementary integral) # without first manually rewriting it as exp(x*log(x)) self.newf = self.newf.xreplace({old: new}) self.backsubs += [(new, old)] log_new_extension = self._log_part([log(i.base)]) exps = update_sets(exps, self.newf.atoms(exp), lambda i: i.exp.is_rational_function(*self.T) and i.exp.has(*self.T)) continue ans, u, const = A newterm = exp(i.exp*(log(const) + u)) # Under the current implementation, exp kills terms # only if they are of the form a*log(x), where a is a # Number. This case should have already been killed by the # above tests. Again, if this changes to kill more than # that, this will break, which maybe is a sign that you # shouldn't be changing that. Actually, if anything, this # auto-simplification should be removed. See # http://groups.google.com/group/sympy/browse_thread/thread/a61d48235f16867f self.newf = self.newf.xreplace({i: newterm}) elif i not in numpows: continue else: # i in numpows newterm = new # TODO: Just put it in self.Tfuncs self.backsubs.append((new, old)) self.newf = self.newf.xreplace({old: newterm}) exps.append(newterm) return exps, pows, numpows, sympows, log_new_extension def _rewrite_logs(self, logs, symlogs): """ Rewrite logs for better processing. """ atoms = self.newf.atoms(log) logs = update_sets(logs, atoms, lambda i: i.args[0].is_rational_function(*self.T) and i.args[0].has(*self.T)) symlogs = update_sets(symlogs, atoms, lambda i: i.has(*self.T) and i.args[0].is_Pow and i.args[0].base.is_rational_function(*self.T) and not i.args[0].exp.is_Integer) # We can handle things like log(x**y) by converting it to y*log(x) # This will fix not only symbolic exponents of the argument, but any # non-Integer exponent, like log(sqrt(x)). The exponent can also # depend on x, like log(x**x). for i in ordered(symlogs): # Unlike in the exponential case above, we do not ever # potentially add new monomials (above we had to add log(a)). # Therefore, there is no need to run any is_deriv functions # here. Just convert log(a**b) to b*log(a) and let # log_new_extension() handle it from there. lbase = log(i.args[0].base) logs.append(lbase) new = i.args[0].exp*lbase self.newf = self.newf.xreplace({i: new}) self.backsubs.append((new, i)) # remove any duplicates logs = sorted(set(logs), key=default_sort_key) return logs, symlogs def _auto_attrs(self): """ Set attributes that are generated automatically. """ if not self.T: # i.e., when using the extension flag and T isn't given self.T = [i.gen for i in self.D] if not self.x: self.x = self.T[0] self.cases = [get_case(d, t) for d, t in zip(self.D, self.T)] self.level = -1 self.t = self.T[self.level] self.d = self.D[self.level] self.case = self.cases[self.level] def _exp_part(self, exps): """ Try to build an exponential extension. Returns True if there was a new extension, False if there was no new extension but it was able to rewrite the given exponentials in terms of the existing extension, and None if the entire extension building process should be restarted. If the process fails because there is no way around an algebraic extension (e.g., exp(log(x)/2)), it will raise NotImplementedError. """ from sympy.integrals.prde import is_log_deriv_k_t_radical new_extension = False restart = False expargs = [i.exp for i in exps] ip = integer_powers(expargs) for arg, others in ip: # Minimize potential problems with algebraic substitution others.sort(key=lambda i: i[1]) arga, argd = frac_in(arg, self.t) A = is_log_deriv_k_t_radical(arga, argd, self) if A is not None: ans, u, n, const = A # if n is 1 or -1, it's algebraic, but we can handle it if n == -1: # This probably will never happen, because # Rational.as_numer_denom() returns the negative term in # the numerator. But in case that changes, reduce it to # n == 1. n = 1 u **= -1 const *= -1 ans = [(i, -j) for i, j in ans] if n == 1: # Example: exp(x + x**2) over QQ(x, exp(x), exp(x**2)) self.newf = self.newf.xreplace({exp(arg): exp(const)*Mul(*[ u**power for u, power in ans])}) self.newf = self.newf.xreplace({exp(p*exparg): exp(const*p) * Mul(*[u**power for u, power in ans]) for exparg, p in others}) # TODO: Add something to backsubs to put exp(const*p) # back together. continue else: # Bad news: we have an algebraic radical. But maybe we # could still avoid it by choosing a different extension. # For example, integer_powers() won't handle exp(x/2 + 1) # over QQ(x, exp(x)), but if we pull out the exp(1), it # will. Or maybe we have exp(x + x**2/2), over # QQ(x, exp(x), exp(x**2)), which is exp(x)*sqrt(exp(x**2)), # but if we use QQ(x, exp(x), exp(x**2/2)), then they will # all work. # # So here is what we do: If there is a non-zero const, pull # it out and retry. Also, if len(ans) > 1, then rewrite # exp(arg) as the product of exponentials from ans, and # retry that. If const == 0 and len(ans) == 1, then we # assume that it would have been handled by either # integer_powers() or n == 1 above if it could be handled, # so we give up at that point. For example, you can never # handle exp(log(x)/2) because it equals sqrt(x). if const or len(ans) > 1: rad = Mul(*[term**(power/n) for term, power in ans]) self.newf = self.newf.xreplace(dict((exp(p*exparg), exp(const*p)*rad) for exparg, p in others)) self.newf = self.newf.xreplace(dict(list(zip(reversed(self.T), reversed([f(self.x) for f in self.Tfuncs]))))) restart = True break else: # TODO: give algebraic dependence in error string raise NotImplementedError("Cannot integrate over " "algebraic extensions.") else: arga, argd = frac_in(arg, self.t) darga = (argd*derivation(Poly(arga, self.t), self) - arga*derivation(Poly(argd, self.t), self)) dargd = argd**2 darga, dargd = darga.cancel(dargd, include=True) darg = darga.as_expr()/dargd.as_expr() self.t = next(self.ts) self.T.append(self.t) self.extargs.append(arg) self.exts.append('exp') self.D.append(darg.as_poly(self.t, expand=False)*Poly(self.t, self.t, expand=False)) if self.dummy: i = Dummy("i") else: i = Symbol('i') self.Tfuncs += [Lambda(i, exp(arg.subs(self.x, i)))] self.newf = self.newf.xreplace( dict((exp(exparg), self.t**p) for exparg, p in others)) new_extension = True if restart: return None return new_extension def _log_part(self, logs): """ Try to build a logarithmic extension. Returns True if there was a new extension and False if there was no new extension but it was able to rewrite the given logarithms in terms of the existing extension. Unlike with exponential extensions, there is no way that a logarithm is not transcendental over and cannot be rewritten in terms of an already existing extension in a non-algebraic way, so this function does not ever return None or raise NotImplementedError. """ from sympy.integrals.prde import is_deriv_k new_extension = False logargs = [i.args[0] for i in logs] for arg in ordered(logargs): # The log case is easier, because whenever a logarithm is algebraic # over the base field, it is of the form a1*t1 + ... an*tn + c, # which is a polynomial, so we can just replace it with that. # In other words, we don't have to worry about radicals. arga, argd = frac_in(arg, self.t) A = is_deriv_k(arga, argd, self) if A is not None: ans, u, const = A newterm = log(const) + u self.newf = self.newf.xreplace({log(arg): newterm}) continue else: arga, argd = frac_in(arg, self.t) darga = (argd*derivation(Poly(arga, self.t), self) - arga*derivation(Poly(argd, self.t), self)) dargd = argd**2 darg = darga.as_expr()/dargd.as_expr() self.t = next(self.ts) self.T.append(self.t) self.extargs.append(arg) self.exts.append('log') self.D.append(cancel(darg.as_expr()/arg).as_poly(self.t, expand=False)) if self.dummy: i = Dummy("i") else: i = Symbol('i') self.Tfuncs += [Lambda(i, log(arg.subs(self.x, i)))] self.newf = self.newf.xreplace({log(arg): self.t}) new_extension = True return new_extension @property def _important_attrs(self): """ Returns some of the more important attributes of self. Used for testing and debugging purposes. The attributes are (fa, fd, D, T, Tfuncs, backsubs, exts, extargs). """ return (self.fa, self.fd, self.D, self.T, self.Tfuncs, self.backsubs, self.exts, self.extargs) # NOTE: this printing doesn't follow the Python's standard # eval(repr(DE)) == DE, where DE is the DifferentialExtension object # , also this printing is supposed to contain all the important # attributes of a DifferentialExtension object def __repr__(self): # no need to have GeneratorType object printed in it r = [(attr, getattr(self, attr)) for attr in self.__slots__ if not isinstance(getattr(self, attr), GeneratorType)] return self.__class__.__name__ + '(dict(%r))' % (r) # fancy printing of DifferentialExtension object def __str__(self): return (self.__class__.__name__ + '({fa=%s, fd=%s, D=%s})' % (self.fa, self.fd, self.D)) # should only be used for debugging purposes, internally # f1 = f2 = log(x) at different places in code execution # may return D1 != D2 as True, since 'level' or other attribute # may differ def __eq__(self, other): for attr in self.__class__.__slots__: d1, d2 = getattr(self, attr), getattr(other, attr) if not (isinstance(d1, GeneratorType) or d1 == d2): return False return True def reset(self): """ Reset self to an initial state. Used by __init__. """ self.t = self.x self.T = [self.x] self.D = [Poly(1, self.x)] self.level = -1 self.exts = [None] self.extargs = [None] if self.dummy: self.ts = numbered_symbols('t', cls=Dummy) else: # For testing self.ts = numbered_symbols('t') # For various things that we change to make things work that we need to # change back when we are done. self.backsubs = [] self.Tfuncs = [] self.newf = self.f def indices(self, extension): """ Args: extension (str): represents a valid extension type. Returns: list: A list of indices of 'exts' where extension of type 'extension' is present. Examples ======== >>> from sympy.integrals.risch import DifferentialExtension >>> from sympy import log, exp >>> from sympy.abc import x >>> DE = DifferentialExtension(log(x) + exp(x), x, handle_first='exp') >>> DE.indices('log') [2] >>> DE.indices('exp') [1] """ return [i for i, ext in enumerate(self.exts) if ext == extension] def increment_level(self): """ Increment the level of self. This makes the working differential extension larger. self.level is given relative to the end of the list (-1, -2, etc.), so we don't need do worry about it when building the extension. """ if self.level >= -1: raise ValueError("The level of the differential extension cannot " "be incremented any further.") self.level += 1 self.t = self.T[self.level] self.d = self.D[self.level] self.case = self.cases[self.level] return None def decrement_level(self): """ Decrease the level of self. This makes the working differential extension smaller. self.level is given relative to the end of the list (-1, -2, etc.), so we don't need do worry about it when building the extension. """ if self.level <= -len(self.T): raise ValueError("The level of the differential extension cannot " "be decremented any further.") self.level -= 1 self.t = self.T[self.level] self.d = self.D[self.level] self.case = self.cases[self.level] return None def update_sets(seq, atoms, func): s = set(seq) s = atoms.intersection(s) new = atoms - s s.update(list(filter(func, new))) return list(s) class DecrementLevel(object): """ A context manager for decrementing the level of a DifferentialExtension. """ __slots__ = ('DE',) def __init__(self, DE): self.DE = DE return def __enter__(self): self.DE.decrement_level() def __exit__(self, exc_type, exc_value, traceback): self.DE.increment_level() class NonElementaryIntegralException(Exception): """ Exception used by subroutines within the Risch algorithm to indicate to one another that the function being integrated does not have an elementary integral in the given differential field. """ # TODO: Rewrite algorithms below to use this (?) # TODO: Pass through information about why the integral was nonelementary, # and store that in the resulting NonElementaryIntegral somehow. pass def gcdex_diophantine(a, b, c): """ Extended Euclidean Algorithm, Diophantine version. Given a, b in K[x] and c in (a, b), the ideal generated by a and b, return (s, t) such that s*a + t*b == c and either s == 0 or s.degree() < b.degree(). """ # Extended Euclidean Algorithm (Diophantine Version) pg. 13 # TODO: This should go in densetools.py. # XXX: Bettter name? s, g = a.half_gcdex(b) q = c.exquo(g) # Inexact division means c is not in (a, b) s = q*s if not s.is_zero and b.degree() >= b.degree(): q, s = s.div(b) t = (c - s*a).exquo(b) return (s, t) def frac_in(f, t, **kwargs): """ Returns the tuple (fa, fd), where fa and fd are Polys in t. This is a common idiom in the Risch Algorithm functions, so we abstract it out here. f should be a basic expression, a Poly, or a tuple (fa, fd), where fa and fd are either basic expressions or Polys, and f == fa/fd. **kwargs are applied to Poly. """ cancel = kwargs.pop('cancel', False) if type(f) is tuple: fa, fd = f f = fa.as_expr()/fd.as_expr() fa, fd = f.as_expr().as_numer_denom() fa, fd = fa.as_poly(t, **kwargs), fd.as_poly(t, **kwargs) if cancel: fa, fd = fa.cancel(fd, include=True) if fa is None or fd is None: raise ValueError("Could not turn %s into a fraction in %s." % (f, t)) return (fa, fd) def as_poly_1t(p, t, z): """ (Hackish) way to convert an element p of K[t, 1/t] to K[t, z]. In other words, z == 1/t will be a dummy variable that Poly can handle better. See issue 5131. Examples ======== >>> from sympy import random_poly >>> from sympy.integrals.risch import as_poly_1t >>> from sympy.abc import x, z >>> p1 = random_poly(x, 10, -10, 10) >>> p2 = random_poly(x, 10, -10, 10) >>> p = p1 + p2.subs(x, 1/x) >>> as_poly_1t(p, x, z).as_expr().subs(z, 1/x) == p True """ # TODO: Use this on the final result. That way, we can avoid answers like # (...)*exp(-x). pa, pd = frac_in(p, t, cancel=True) if not pd.is_monomial: # XXX: Is there a better Poly exception that we could raise here? # Either way, if you see this (from the Risch Algorithm) it indicates # a bug. raise PolynomialError("%s is not an element of K[%s, 1/%s]." % (p, t, t)) d = pd.degree(t) one_t_part = pa.slice(0, d + 1) r = pd.degree() - pa.degree() t_part = pa - one_t_part try: t_part = t_part.to_field().exquo(pd) except DomainError as e: # issue 4950 raise NotImplementedError(e) # Compute the negative degree parts. one_t_part = Poly.from_list(reversed(one_t_part.rep.rep), *one_t_part.gens, domain=one_t_part.domain) if 0 < r < oo: one_t_part *= Poly(t**r, t) one_t_part = one_t_part.replace(t, z) # z will be 1/t if pd.nth(d): one_t_part *= Poly(1/pd.nth(d), z, expand=False) ans = t_part.as_poly(t, z, expand=False) + one_t_part.as_poly(t, z, expand=False) return ans def derivation(p, DE, coefficientD=False, basic=False): """ Computes Dp. Given the derivation D with D = d/dx and p is a polynomial in t over K(x), return Dp. If coefficientD is True, it computes the derivation kD (kappaD), which is defined as kD(sum(ai*Xi**i, (i, 0, n))) == sum(Dai*Xi**i, (i, 1, n)) (Definition 3.2.2, page 80). X in this case is T[-1], so coefficientD computes the derivative just with respect to T[:-1], with T[-1] treated as a constant. If basic=True, the returns a Basic expression. Elements of D can still be instances of Poly. """ if basic: r = 0 else: r = Poly(0, DE.t) t = DE.t if coefficientD: if DE.level <= -len(DE.T): # 'base' case, the answer is 0. return r DE.decrement_level() D = DE.D[:len(DE.D) + DE.level + 1] T = DE.T[:len(DE.T) + DE.level + 1] for d, v in zip(D, T): pv = p.as_poly(v) if pv is None or basic: pv = p.as_expr() if basic: r += d.as_expr()*pv.diff(v) else: r += (d*pv.diff(v)).as_poly(t) if basic: r = cancel(r) if coefficientD: DE.increment_level() return r def get_case(d, t): """ Returns the type of the derivation d. Returns one of {'exp', 'tan', 'base', 'primitive', 'other_linear', 'other_nonlinear'}. """ if not d.has(t): if d.is_one: return 'base' return 'primitive' if d.rem(Poly(t, t)).is_zero: return 'exp' if d.rem(Poly(1 + t**2, t)).is_zero: return 'tan' if d.degree(t) > 1: return 'other_nonlinear' return 'other_linear' def splitfactor(p, DE, coefficientD=False, z=None): """ Splitting factorization. Given a derivation D on k[t] and p in k[t], return (p_n, p_s) in k[t] x k[t] such that p = p_n*p_s, p_s is special, and each square factor of p_n is normal. Page. 100 """ kinv = [1/x for x in DE.T[:DE.level]] if z: kinv.append(z) One = Poly(1, DE.t, domain=p.get_domain()) Dp = derivation(p, DE, coefficientD=coefficientD) # XXX: Is this right? if p.is_zero: return (p, One) if not p.has(DE.t): s = p.as_poly(*kinv).gcd(Dp.as_poly(*kinv)).as_poly(DE.t) n = p.exquo(s) return (n, s) if not Dp.is_zero: h = p.gcd(Dp).to_field() g = p.gcd(p.diff(DE.t)).to_field() s = h.exquo(g) if s.degree(DE.t) == 0: return (p, One) q_split = splitfactor(p.exquo(s), DE, coefficientD=coefficientD) return (q_split[0], q_split[1]*s) else: return (p, One) def splitfactor_sqf(p, DE, coefficientD=False, z=None, basic=False): """ Splitting Square-free Factorization Given a derivation D on k[t] and p in k[t], returns (N1, ..., Nm) and (S1, ..., Sm) in k[t]^m such that p = (N1*N2**2*...*Nm**m)*(S1*S2**2*...*Sm**m) is a splitting factorization of p and the Ni and Si are square-free and coprime. """ # TODO: This algorithm appears to be faster in every case # TODO: Verify this and splitfactor() for multiple extensions kkinv = [1/x for x in DE.T[:DE.level]] + DE.T[:DE.level] if z: kkinv = [z] S = [] N = [] p_sqf = p.sqf_list_include() if p.is_zero: return (((p, 1),), ()) for pi, i in p_sqf: Si = pi.as_poly(*kkinv).gcd(derivation(pi, DE, coefficientD=coefficientD,basic=basic).as_poly(*kkinv)).as_poly(DE.t) pi = Poly(pi, DE.t) Si = Poly(Si, DE.t) Ni = pi.exquo(Si) if not Si.is_one: S.append((Si, i)) if not Ni.is_one: N.append((Ni, i)) return (tuple(N), tuple(S)) def canonical_representation(a, d, DE): """ Canonical Representation. Given a derivation D on k[t] and f = a/d in k(t), return (f_p, f_s, f_n) in k[t] x k(t) x k(t) such that f = f_p + f_s + f_n is the canonical representation of f (f_p is a polynomial, f_s is reduced (has a special denominator), and f_n is simple (has a normal denominator). """ # Make d monic l = Poly(1/d.LC(), DE.t) a, d = a.mul(l), d.mul(l) q, r = a.div(d) dn, ds = splitfactor(d, DE) b, c = gcdex_diophantine(dn.as_poly(DE.t), ds.as_poly(DE.t), r.as_poly(DE.t)) b, c = b.as_poly(DE.t), c.as_poly(DE.t) return (q, (b, ds), (c, dn)) def hermite_reduce(a, d, DE): """ Hermite Reduction - Mack's Linear Version. Given a derivation D on k(t) and f = a/d in k(t), returns g, h, r in k(t) such that f = Dg + h + r, h is simple, and r is reduced. """ # Make d monic l = Poly(1/d.LC(), DE.t) a, d = a.mul(l), d.mul(l) fp, fs, fn = canonical_representation(a, d, DE) a, d = fn l = Poly(1/d.LC(), DE.t) a, d = a.mul(l), d.mul(l) ga = Poly(0, DE.t) gd = Poly(1, DE.t) dd = derivation(d, DE) dm = gcd(d, dd).as_poly(DE.t) ds, r = d.div(dm) while dm.degree(DE.t)>0: ddm = derivation(dm, DE) dm2 = gcd(dm, ddm) dms, r = dm.div(dm2) ds_ddm = ds.mul(ddm) ds_ddm_dm, r = ds_ddm.div(dm) b, c = gcdex_diophantine(-ds_ddm_dm.as_poly(DE.t), dms.as_poly(DE.t), a.as_poly(DE.t)) b, c = b.as_poly(DE.t), c.as_poly(DE.t) db = derivation(b, DE).as_poly(DE.t) ds_dms, r = ds.div(dms) a = c.as_poly(DE.t) - db.mul(ds_dms).as_poly(DE.t) ga = ga*dm + b*gd gd = gd*dm ga, gd = ga.cancel(gd, include=True) dm = dm2 d = ds q, r = a.div(d) ga, gd = ga.cancel(gd, include=True) r, d = r.cancel(d, include=True) rra = q*fs[1] + fp*fs[1] + fs[0] rrd = fs[1] rra, rrd = rra.cancel(rrd, include=True) return ((ga, gd), (r, d), (rra, rrd)) def polynomial_reduce(p, DE): """ Polynomial Reduction. Given a derivation D on k(t) and p in k[t] where t is a nonlinear monomial over k, return q, r in k[t] such that p = Dq + r, and deg(r) < deg_t(Dt). """ q = Poly(0, DE.t) while p.degree(DE.t) >= DE.d.degree(DE.t): m = p.degree(DE.t) - DE.d.degree(DE.t) + 1 q0 = Poly(DE.t**m, DE.t).mul(Poly(p.as_poly(DE.t).LC()/ (m*DE.d.LC()), DE.t)) q += q0 p = p - derivation(q0, DE) return (q, p) def laurent_series(a, d, F, n, DE): """ Contribution of F to the full partial fraction decomposition of A/D Given a field K of characteristic 0 and A,D,F in K[x] with D monic, nonzero, coprime with A, and F the factor of multiplicity n in the square- free factorization of D, return the principal parts of the Laurent series of A/D at all the zeros of F. """ if F.degree()==0: return 0 Z = _symbols('z', n) Z.insert(0, z) delta_a = Poly(0, DE.t) delta_d = Poly(1, DE.t) E = d.quo(F**n) ha, hd = (a, E*Poly(z**n, DE.t)) dF = derivation(F,DE) B, G = gcdex_diophantine(E, F, Poly(1,DE.t)) C, G = gcdex_diophantine(dF, F, Poly(1,DE.t)) # initialization F_store = F V, DE_D_list, H_list= [], [], [] for j in range(0, n): # jth derivative of z would be substituted with dfnth/(j+1) where dfnth =(d^n)f/(dx)^n F_store = derivation(F_store, DE) v = (F_store.as_expr())/(j + 1) V.append(v) DE_D_list.append(Poly(Z[j + 1],Z[j])) DE_new = DifferentialExtension(extension = {'D': DE_D_list}) #a differential indeterminate for j in range(0, n): zEha = Poly(z**(n + j), DE.t)*E**(j + 1)*ha zEhd = hd Pa, Pd = cancel((zEha, zEhd))[1], cancel((zEha, zEhd))[2] Q = Pa.quo(Pd) for i in range(0, j + 1): Q = Q.subs(Z[i], V[i]) Dha = hd*derivation(ha, DE, basic=True) + ha*derivation(hd, DE, basic=True) Dha += hd*derivation(ha, DE_new, basic=True) + ha*derivation(hd, DE_new, basic=True) Dhd = Poly(j + 1, DE.t)*hd**2 ha, hd = Dha, Dhd Ff, Fr = F.div(gcd(F, Q)) F_stara, F_stard = frac_in(Ff, DE.t) if F_stara.degree(DE.t) - F_stard.degree(DE.t) > 0: QBC = Poly(Q, DE.t)*B**(1 + j)*C**(n + j) H = QBC H_list.append(H) H = (QBC*F_stard).rem(F_stara) alphas = real_roots(F_stara) for alpha in list(alphas): delta_a = delta_a*Poly((DE.t - alpha)**(n - j), DE.t) + Poly(H.eval(alpha), DE.t) delta_d = delta_d*Poly((DE.t - alpha)**(n - j), DE.t) return (delta_a, delta_d, H_list) def recognize_derivative(a, d, DE, z=None): """ Compute the squarefree factorization of the denominator of f and for each Di the polynomial H in K[x] (see Theorem 2.7.1), using the LaurentSeries algorithm. Write Di = GiEi where Gj = gcd(Hn, Di) and gcd(Ei,Hn) = 1. Since the residues of f at the roots of Gj are all 0, and the residue of f at a root alpha of Ei is Hi(a) != 0, f is the derivative of a rational function if and only if Ei = 1 for each i, which is equivalent to Di | H[-1] for each i. """ flag =True a, d = a.cancel(d, include=True) q, r = a.div(d) Np, Sp = splitfactor_sqf(d, DE, coefficientD=True, z=z) j = 1 for (s, i) in Sp: delta_a, delta_d, H = laurent_series(r, d, s, j, DE) g = gcd(d, H[-1]).as_poly() if g is not d: flag = False break j = j + 1 return flag def recognize_log_derivative(a, d, DE, z=None): """ There exists a v in K(x)* such that f = dv/v where f a rational function if and only if f can be written as f = A/D where D is squarefree,deg(A) < deg(D), gcd(A, D) = 1, and all the roots of the Rothstein-Trager resultant are integers. In that case, any of the Rothstein-Trager, Lazard-Rioboo-Trager or Czichowski algorithm produces u in K(x) such that du/dx = uf. """ z = z or Dummy('z') a, d = a.cancel(d, include=True) p, a = a.div(d) pz = Poly(z, DE.t) Dd = derivation(d, DE) q = a - pz*Dd r, R = d.resultant(q, includePRS=True) r = Poly(r, z) Np, Sp = splitfactor_sqf(r, DE, coefficientD=True, z=z) for s, i in Sp: # TODO also consider the complex roots # incase we have complex roots it should turn the flag false a = real_roots(s.as_poly(z)) if any(not j.is_Integer for j in a): return False return True def residue_reduce(a, d, DE, z=None, invert=True): """ Lazard-Rioboo-Rothstein-Trager resultant reduction. Given a derivation D on k(t) and f in k(t) simple, return g elementary over k(t) and a Boolean b in {True, False} such that f - Dg in k[t] if b == True or f + h and f + h - Dg do not have an elementary integral over k(t) for any h in k<t> (reduced) if b == False. Returns (G, b), where G is a tuple of tuples of the form (s_i, S_i), such that g = Add(*[RootSum(s_i, lambda z: z*log(S_i(z, t))) for S_i, s_i in G]). f - Dg is the remaining integral, which is elementary only if b == True, and hence the integral of f is elementary only if b == True. f - Dg is not calculated in this function because that would require explicitly calculating the RootSum. Use residue_reduce_derivation(). """ # TODO: Use log_to_atan() from rationaltools.py # If r = residue_reduce(...), then the logarithmic part is given by: # sum([RootSum(a[0].as_poly(z), lambda i: i*log(a[1].as_expr()).subs(z, # i)).subs(t, log(x)) for a in r[0]]) z = z or Dummy('z') a, d = a.cancel(d, include=True) a, d = a.to_field().mul_ground(1/d.LC()), d.to_field().mul_ground(1/d.LC()) kkinv = [1/x for x in DE.T[:DE.level]] + DE.T[:DE.level] if a.is_zero: return ([], True) p, a = a.div(d) pz = Poly(z, DE.t) Dd = derivation(d, DE) q = a - pz*Dd if Dd.degree(DE.t) <= d.degree(DE.t): r, R = d.resultant(q, includePRS=True) else: r, R = q.resultant(d, includePRS=True) R_map, H = {}, [] for i in R: R_map[i.degree()] = i r = Poly(r, z) Np, Sp = splitfactor_sqf(r, DE, coefficientD=True, z=z) for s, i in Sp: if i == d.degree(DE.t): s = Poly(s, z).monic() H.append((s, d)) else: h = R_map.get(i) if h is None: continue h_lc = Poly(h.as_poly(DE.t).LC(), DE.t, field=True) h_lc_sqf = h_lc.sqf_list_include(all=True) for a, j in h_lc_sqf: h = Poly(h, DE.t, field=True).exquo(Poly(gcd(a, s**j, *kkinv), DE.t)) s = Poly(s, z).monic() if invert: h_lc = Poly(h.as_poly(DE.t).LC(), DE.t, field=True, expand=False) inv, coeffs = h_lc.as_poly(z, field=True).invert(s), [S(1)] for coeff in h.coeffs()[1:]: L = reduced(inv*coeff, [s])[1] coeffs.append(L.as_expr()) h = Poly(dict(list(zip(h.monoms(), coeffs))), DE.t) H.append((s, h)) b = all([not cancel(i.as_expr()).has(DE.t, z) for i, _ in Np]) return (H, b) def residue_reduce_to_basic(H, DE, z): """ Converts the tuple returned by residue_reduce() into a Basic expression. """ # TODO: check what Lambda does with RootOf i = Dummy('i') s = list(zip(reversed(DE.T), reversed([f(DE.x) for f in DE.Tfuncs]))) return sum((RootSum(a[0].as_poly(z), Lambda(i, i*log(a[1].as_expr()).subs( {z: i}).subs(s))) for a in H)) def residue_reduce_derivation(H, DE, z): """ Computes the derivation of an expression returned by residue_reduce(). In general, this is a rational function in t, so this returns an as_expr() result. """ # TODO: verify that this is correct for multiple extensions i = Dummy('i') return S(sum((RootSum(a[0].as_poly(z), Lambda(i, i*derivation(a[1], DE).as_expr().subs(z, i)/a[1].as_expr().subs(z, i))) for a in H))) def integrate_primitive_polynomial(p, DE): """ Integration of primitive polynomials. Given a primitive monomial t over k, and p in k[t], return q in k[t], r in k, and a bool b in {True, False} such that r = p - Dq is in k if b is True, or r = p - Dq does not have an elementary integral over k(t) if b is False. """ from sympy.integrals.prde import limited_integrate Zero = Poly(0, DE.t) q = Poly(0, DE.t) if not p.has(DE.t): return (Zero, p, True) while True: if not p.has(DE.t): return (q, p, True) Dta, Dtb = frac_in(DE.d, DE.T[DE.level - 1]) with DecrementLevel(DE): # We had better be integrating the lowest extension (x) # with ratint(). a = p.LC() aa, ad = frac_in(a, DE.t) try: rv = limited_integrate(aa, ad, [(Dta, Dtb)], DE) if rv is None: raise NonElementaryIntegralException (ba, bd), c = rv except NonElementaryIntegralException: return (q, p, False) m = p.degree(DE.t) q0 = c[0].as_poly(DE.t)*Poly(DE.t**(m + 1)/(m + 1), DE.t) + \ (ba.as_expr()/bd.as_expr()).as_poly(DE.t)*Poly(DE.t**m, DE.t) p = p - derivation(q0, DE) q = q + q0 def integrate_primitive(a, d, DE, z=None): """ Integration of primitive functions. Given a primitive monomial t over k and f in k(t), return g elementary over k(t), i in k(t), and b in {True, False} such that i = f - Dg is in k if b is True or i = f - Dg does not have an elementary integral over k(t) if b is False. This function returns a Basic expression for the first argument. If b is True, the second argument is Basic expression in k to recursively integrate. If b is False, the second argument is an unevaluated Integral, which has been proven to be nonelementary. """ # XXX: a and d must be canceled, or this might return incorrect results z = z or Dummy("z") s = list(zip(reversed(DE.T), reversed([f(DE.x) for f in DE.Tfuncs]))) g1, h, r = hermite_reduce(a, d, DE) g2, b = residue_reduce(h[0], h[1], DE, z=z) if not b: i = cancel(a.as_expr()/d.as_expr() - (g1[1]*derivation(g1[0], DE) - g1[0]*derivation(g1[1], DE)).as_expr()/(g1[1]**2).as_expr() - residue_reduce_derivation(g2, DE, z)) i = NonElementaryIntegral(cancel(i).subs(s), DE.x) return ((g1[0].as_expr()/g1[1].as_expr()).subs(s) + residue_reduce_to_basic(g2, DE, z), i, b) # h - Dg2 + r p = cancel(h[0].as_expr()/h[1].as_expr() - residue_reduce_derivation(g2, DE, z) + r[0].as_expr()/r[1].as_expr()) p = p.as_poly(DE.t) q, i, b = integrate_primitive_polynomial(p, DE) ret = ((g1[0].as_expr()/g1[1].as_expr() + q.as_expr()).subs(s) + residue_reduce_to_basic(g2, DE, z)) if not b: # TODO: This does not do the right thing when b is False i = NonElementaryIntegral(cancel(i.as_expr()).subs(s), DE.x) else: i = cancel(i.as_expr()) return (ret, i, b) def integrate_hyperexponential_polynomial(p, DE, z): """ Integration of hyperexponential polynomials. Given a hyperexponential monomial t over k and p in k[t, 1/t], return q in k[t, 1/t] and a bool b in {True, False} such that p - Dq in k if b is True, or p - Dq does not have an elementary integral over k(t) if b is False. """ from sympy.integrals.rde import rischDE t1 = DE.t dtt = DE.d.exquo(Poly(DE.t, DE.t)) qa = Poly(0, DE.t) qd = Poly(1, DE.t) b = True if p.is_zero: return(qa, qd, b) with DecrementLevel(DE): for i in range(-p.degree(z), p.degree(t1) + 1): if not i: continue elif i < 0: # If you get AttributeError: 'NoneType' object has no attribute 'nth' # then this should really not have expand=False # But it shouldn't happen because p is already a Poly in t and z a = p.as_poly(z, expand=False).nth(-i) else: # If you get AttributeError: 'NoneType' object has no attribute 'nth' # then this should really not have expand=False a = p.as_poly(t1, expand=False).nth(i) aa, ad = frac_in(a, DE.t, field=True) aa, ad = aa.cancel(ad, include=True) iDt = Poly(i, t1)*dtt iDta, iDtd = frac_in(iDt, DE.t, field=True) try: va, vd = rischDE(iDta, iDtd, Poly(aa, DE.t), Poly(ad, DE.t), DE) va, vd = frac_in((va, vd), t1, cancel=True) except NonElementaryIntegralException: b = False else: qa = qa*vd + va*Poly(t1**i)*qd qd *= vd return (qa, qd, b) def integrate_hyperexponential(a, d, DE, z=None, conds='piecewise'): """ Integration of hyperexponential functions. Given a hyperexponential monomial t over k and f in k(t), return g elementary over k(t), i in k(t), and a bool b in {True, False} such that i = f - Dg is in k if b is True or i = f - Dg does not have an elementary integral over k(t) if b is False. This function returns a Basic expression for the first argument. If b is True, the second argument is Basic expression in k to recursively integrate. If b is False, the second argument is an unevaluated Integral, which has been proven to be nonelementary. """ # XXX: a and d must be canceled, or this might return incorrect results z = z or Dummy("z") s = list(zip(reversed(DE.T), reversed([f(DE.x) for f in DE.Tfuncs]))) g1, h, r = hermite_reduce(a, d, DE) g2, b = residue_reduce(h[0], h[1], DE, z=z) if not b: i = cancel(a.as_expr()/d.as_expr() - (g1[1]*derivation(g1[0], DE) - g1[0]*derivation(g1[1], DE)).as_expr()/(g1[1]**2).as_expr() - residue_reduce_derivation(g2, DE, z)) i = NonElementaryIntegral(cancel(i.subs(s)), DE.x) return ((g1[0].as_expr()/g1[1].as_expr()).subs(s) + residue_reduce_to_basic(g2, DE, z), i, b) # p should be a polynomial in t and 1/t, because Sirr == k[t, 1/t] # h - Dg2 + r p = cancel(h[0].as_expr()/h[1].as_expr() - residue_reduce_derivation(g2, DE, z) + r[0].as_expr()/r[1].as_expr()) pp = as_poly_1t(p, DE.t, z) qa, qd, b = integrate_hyperexponential_polynomial(pp, DE, z) i = pp.nth(0, 0) ret = ((g1[0].as_expr()/g1[1].as_expr()).subs(s) \ + residue_reduce_to_basic(g2, DE, z)) qas = qa.as_expr().subs(s) qds = qd.as_expr().subs(s) if conds == 'piecewise' and DE.x not in qds.free_symbols: # We have to be careful if the exponent is S.Zero! # XXX: Does qd = 0 always necessarily correspond to the exponential # equaling 1? ret += Piecewise( (qas/qds, Ne(qds, 0)), (integrate((p - i).subs(DE.t, 1).subs(s), DE.x), True) ) else: ret += qas/qds if not b: i = p - (qd*derivation(qa, DE) - qa*derivation(qd, DE)).as_expr()/\ (qd**2).as_expr() i = NonElementaryIntegral(cancel(i).subs(s), DE.x) return (ret, i, b) def integrate_hypertangent_polynomial(p, DE): """ Integration of hypertangent polynomials. Given a differential field k such that sqrt(-1) is not in k, a hypertangent monomial t over k, and p in k[t], return q in k[t] and c in k such that p - Dq - c*D(t**2 + 1)/(t**1 + 1) is in k and p - Dq does not have an elementary integral over k(t) if Dc != 0. """ # XXX: Make sure that sqrt(-1) is not in k. q, r = polynomial_reduce(p, DE) a = DE.d.exquo(Poly(DE.t**2 + 1, DE.t)) c = Poly(r.nth(1)/(2*a.as_expr()), DE.t) return (q, c) def integrate_nonlinear_no_specials(a, d, DE, z=None): """ Integration of nonlinear monomials with no specials. Given a nonlinear monomial t over k such that Sirr ({p in k[t] | p is special, monic, and irreducible}) is empty, and f in k(t), returns g elementary over k(t) and a Boolean b in {True, False} such that f - Dg is in k if b == True, or f - Dg does not have an elementary integral over k(t) if b == False. This function is applicable to all nonlinear extensions, but in the case where it returns b == False, it will only have proven that the integral of f - Dg is nonelementary if Sirr is empty. This function returns a Basic expression. """ # TODO: Integral from k? # TODO: split out nonelementary integral # XXX: a and d must be canceled, or this might not return correct results z = z or Dummy("z") s = list(zip(reversed(DE.T), reversed([f(DE.x) for f in DE.Tfuncs]))) g1, h, r = hermite_reduce(a, d, DE) g2, b = residue_reduce(h[0], h[1], DE, z=z) if not b: return ((g1[0].as_expr()/g1[1].as_expr()).subs(s) + residue_reduce_to_basic(g2, DE, z), b) # Because f has no specials, this should be a polynomial in t, or else # there is a bug. p = cancel(h[0].as_expr()/h[1].as_expr() - residue_reduce_derivation(g2, DE, z).as_expr() + r[0].as_expr()/r[1].as_expr()).as_poly(DE.t) q1, q2 = polynomial_reduce(p, DE) if q2.has(DE.t): b = False else: b = True ret = (cancel(g1[0].as_expr()/g1[1].as_expr() + q1.as_expr()).subs(s) + residue_reduce_to_basic(g2, DE, z)) return (ret, b) class NonElementaryIntegral(Integral): """ Represents a nonelementary Integral. If the result of integrate() is an instance of this class, it is guaranteed to be nonelementary. Note that integrate() by default will try to find any closed-form solution, even in terms of special functions which may themselves not be elementary. To make integrate() only give elementary solutions, or, in the cases where it can prove the integral to be nonelementary, instances of this class, use integrate(risch=True). In this case, integrate() may raise NotImplementedError if it cannot make such a determination. integrate() uses the deterministic Risch algorithm to integrate elementary functions or prove that they have no elementary integral. In some cases, this algorithm can split an integral into an elementary and nonelementary part, so that the result of integrate will be the sum of an elementary expression and a NonElementaryIntegral. Examples ======== >>> from sympy import integrate, exp, log, Integral >>> from sympy.abc import x >>> a = integrate(exp(-x**2), x, risch=True) >>> print(a) Integral(exp(-x**2), x) >>> type(a) <class 'sympy.integrals.risch.NonElementaryIntegral'> >>> expr = (2*log(x)**2 - log(x) - x**2)/(log(x)**3 - x**2*log(x)) >>> b = integrate(expr, x, risch=True) >>> print(b) -log(-x + log(x))/2 + log(x + log(x))/2 + Integral(1/log(x), x) >>> type(b.atoms(Integral).pop()) <class 'sympy.integrals.risch.NonElementaryIntegral'> """ # TODO: This is useful in and of itself, because isinstance(result, # NonElementaryIntegral) will tell if the integral has been proven to be # elementary. But should we do more? Perhaps a no-op .doit() if # elementary=True? Or maybe some information on why the integral is # nonelementary. pass def risch_integrate(f, x, extension=None, handle_first='log', separate_integral=False, rewrite_complex=None, conds='piecewise'): r""" The Risch Integration Algorithm. Only transcendental functions are supported. Currently, only exponentials and logarithms are supported, but support for trigonometric functions is forthcoming. If this function returns an unevaluated Integral in the result, it means that it has proven that integral to be nonelementary. Any errors will result in raising NotImplementedError. The unevaluated Integral will be an instance of NonElementaryIntegral, a subclass of Integral. handle_first may be either 'exp' or 'log'. This changes the order in which the extension is built, and may result in a different (but equivalent) solution (for an example of this, see issue 5109). It is also possible that the integral may be computed with one but not the other, because not all cases have been implemented yet. It defaults to 'log' so that the outer extension is exponential when possible, because more of the exponential case has been implemented. If separate_integral is True, the result is returned as a tuple (ans, i), where the integral is ans + i, ans is elementary, and i is either a NonElementaryIntegral or 0. This useful if you want to try further integrating the NonElementaryIntegral part using other algorithms to possibly get a solution in terms of special functions. It is False by default. Examples ======== >>> from sympy.integrals.risch import risch_integrate >>> from sympy import exp, log, pprint >>> from sympy.abc import x First, we try integrating exp(-x**2). Except for a constant factor of 2/sqrt(pi), this is the famous error function. >>> pprint(risch_integrate(exp(-x**2), x)) / | | 2 | -x | e dx | / The unevaluated Integral in the result means that risch_integrate() has proven that exp(-x**2) does not have an elementary anti-derivative. In many cases, risch_integrate() can split out the elementary anti-derivative part from the nonelementary anti-derivative part. For example, >>> pprint(risch_integrate((2*log(x)**2 - log(x) - x**2)/(log(x)**3 - ... x**2*log(x)), x)) / | log(-x + log(x)) log(x + log(x)) | 1 - ---------------- + --------------- + | ------ dx 2 2 | log(x) | / This means that it has proven that the integral of 1/log(x) is nonelementary. This function is also known as the logarithmic integral, and is often denoted as Li(x). risch_integrate() currently only accepts purely transcendental functions with exponentials and logarithms, though note that this can include nested exponentials and logarithms, as well as exponentials with bases other than E. >>> pprint(risch_integrate(exp(x)*exp(exp(x)), x)) / x\ \e / e >>> pprint(risch_integrate(exp(exp(x)), x)) / | | / x\ | \e / | e dx | / >>> pprint(risch_integrate(x*x**x*log(x) + x**x + x*x**x, x)) x x*x >>> pprint(risch_integrate(x**x, x)) / | | x | x dx | / >>> pprint(risch_integrate(-1/(x*log(x)*log(log(x))**2), x)) 1 ----------- log(log(x)) """ f = S(f) DE = extension or DifferentialExtension(f, x, handle_first=handle_first, dummy=True, rewrite_complex=rewrite_complex) fa, fd = DE.fa, DE.fd result = S(0) for case in reversed(DE.cases): if not fa.has(DE.t) and not fd.has(DE.t) and not case == 'base': DE.decrement_level() fa, fd = frac_in((fa, fd), DE.t) continue fa, fd = fa.cancel(fd, include=True) if case == 'exp': ans, i, b = integrate_hyperexponential(fa, fd, DE, conds=conds) elif case == 'primitive': ans, i, b = integrate_primitive(fa, fd, DE) elif case == 'base': # XXX: We can't call ratint() directly here because it doesn't # handle polynomials correctly. ans = integrate(fa.as_expr()/fd.as_expr(), DE.x, risch=False) b = False i = S(0) else: raise NotImplementedError("Only exponential and logarithmic " "extensions are currently supported.") result += ans if b: DE.decrement_level() fa, fd = frac_in(i, DE.t) else: result = result.subs(DE.backsubs) if not i.is_zero: i = NonElementaryIntegral(i.function.subs(DE.backsubs),i.limits) if not separate_integral: result += i return result else: if isinstance(i, NonElementaryIntegral): return (result, i) else: return (result, 0)
14abcea340ccaf74dfa28f9dc373b422c089c4a54a04032d77e91dbd9516c95d
""" Algorithms for solving Parametric Risch Differential Equations. The methods used for solving Parametric Risch Differential Equations parallel those for solving Risch Differential Equations. See the outline in the docstring of rde.py for more information. The Parametric Risch Differential Equation problem is, given f, g1, ..., gm in K(t), to determine if there exist y in K(t) and c1, ..., cm in Const(K) such that Dy + f*y == Sum(ci*gi, (i, 1, m)), and to find such y and ci if they exist. For the algorithms here G is a list of tuples of factions of the terms on the right hand side of the equation (i.e., gi in k(t)), and Q is a list of terms on the right hand side of the equation (i.e., qi in k[t]). See the docstring of each function for more information. """ from __future__ import print_function, division from sympy.core import Dummy, ilcm, Add, Mul, Pow, S, oo from sympy.matrices import zeros, eye from sympy.polys.polymatrix import PolyMatrix as Matrix from sympy.solvers import solve from sympy.polys import Poly, lcm, cancel, sqf_list from sympy.integrals.risch import (gcdex_diophantine, frac_in, derivation, NonElementaryIntegralException, residue_reduce, splitfactor, residue_reduce_derivation, DecrementLevel, recognize_log_derivative) from sympy.integrals.rde import (order_at, order_at_oo, weak_normalizer, bound_degree, spde, solve_poly_rde) from sympy.core.compatibility import reduce, range from sympy.utilities.misc import debug def prde_normal_denom(fa, fd, G, DE): """ Parametric Risch Differential Equation - Normal part of the denominator. Given a derivation D on k[t] and f, g1, ..., gm in k(t) with f weakly normalized with respect to t, return the tuple (a, b, G, h) such that a, h in k[t], b in k<t>, G = [g1, ..., gm] in k(t)^m, and for any solution c1, ..., cm in Const(k) and y in k(t) of Dy + f*y == Sum(ci*gi, (i, 1, m)), q == y*h in k<t> satisfies a*Dq + b*q == Sum(ci*Gi, (i, 1, m)). """ dn, ds = splitfactor(fd, DE) Gas, Gds = list(zip(*G)) gd = reduce(lambda i, j: i.lcm(j), Gds, Poly(1, DE.t)) en, es = splitfactor(gd, DE) p = dn.gcd(en) h = en.gcd(en.diff(DE.t)).quo(p.gcd(p.diff(DE.t))) a = dn*h c = a*h ba = a*fa - dn*derivation(h, DE)*fd ba, bd = ba.cancel(fd, include=True) G = [(c*A).cancel(D, include=True) for A, D in G] return (a, (ba, bd), G, h) def real_imag(ba, bd, gen): """ Helper function, to get the real and imaginary part of a rational function evaluated at sqrt(-1) without actually evaluating it at sqrt(-1) Separates the even and odd power terms by checking the degree of terms wrt mod 4. Returns a tuple (ba[0], ba[1], bd) where ba[0] is real part of the numerator ba[1] is the imaginary part and bd is the denominator of the rational function. """ bd = bd.as_poly(gen).as_dict() ba = ba.as_poly(gen).as_dict() denom_real = [value if key[0] % 4 == 0 else -value if key[0] % 4 == 2 else 0 for key, value in bd.items()] denom_imag = [value if key[0] % 4 == 1 else -value if key[0] % 4 == 3 else 0 for key, value in bd.items()] bd_real = sum(r for r in denom_real) bd_imag = sum(r for r in denom_imag) num_real = [value if key[0] % 4 == 0 else -value if key[0] % 4 == 2 else 0 for key, value in ba.items()] num_imag = [value if key[0] % 4 == 1 else -value if key[0] % 4 == 3 else 0 for key, value in ba.items()] ba_real = sum(r for r in num_real) ba_imag = sum(r for r in num_imag) ba = ((ba_real*bd_real + ba_imag*bd_imag).as_poly(gen), (ba_imag*bd_real - ba_real*bd_imag).as_poly(gen)) bd = (bd_real*bd_real + bd_imag*bd_imag).as_poly(gen) return (ba[0], ba[1], bd) def prde_special_denom(a, ba, bd, G, DE, case='auto'): """ Parametric Risch Differential Equation - Special part of the denominator. case is one of {'exp', 'tan', 'primitive'} for the hyperexponential, hypertangent, and primitive cases, respectively. For the hyperexponential (resp. hypertangent) case, given a derivation D on k[t] and a in k[t], b in k<t>, and g1, ..., gm in k(t) with Dt/t in k (resp. Dt/(t**2 + 1) in k, sqrt(-1) not in k), a != 0, and gcd(a, t) == 1 (resp. gcd(a, t**2 + 1) == 1), return the tuple (A, B, GG, h) such that A, B, h in k[t], GG = [gg1, ..., ggm] in k(t)^m, and for any solution c1, ..., cm in Const(k) and q in k<t> of a*Dq + b*q == Sum(ci*gi, (i, 1, m)), r == q*h in k[t] satisfies A*Dr + B*r == Sum(ci*ggi, (i, 1, m)). For case == 'primitive', k<t> == k[t], so it returns (a, b, G, 1) in this case. """ # TODO: Merge this with the very similar special_denom() in rde.py if case == 'auto': case = DE.case if case == 'exp': p = Poly(DE.t, DE.t) elif case == 'tan': p = Poly(DE.t**2 + 1, DE.t) elif case in ['primitive', 'base']: B = ba.quo(bd) return (a, B, G, Poly(1, DE.t)) else: raise ValueError("case must be one of {'exp', 'tan', 'primitive', " "'base'}, not %s." % case) nb = order_at(ba, p, DE.t) - order_at(bd, p, DE.t) nc = min([order_at(Ga, p, DE.t) - order_at(Gd, p, DE.t) for Ga, Gd in G]) n = min(0, nc - min(0, nb)) if not nb: # Possible cancellation. if case == 'exp': dcoeff = DE.d.quo(Poly(DE.t, DE.t)) with DecrementLevel(DE): # We are guaranteed to not have problems, # because case != 'base'. alphaa, alphad = frac_in(-ba.eval(0)/bd.eval(0)/a.eval(0), DE.t) etaa, etad = frac_in(dcoeff, DE.t) A = parametric_log_deriv(alphaa, alphad, etaa, etad, DE) if A is not None: Q, m, z = A if Q == 1: n = min(n, m) elif case == 'tan': dcoeff = DE.d.quo(Poly(DE.t**2 + 1, DE.t)) with DecrementLevel(DE): # We are guaranteed to not have problems, # because case != 'base'. betaa, alphaa, alphad = real_imag(ba, bd*a, DE.t) betad = alphad etaa, etad = frac_in(dcoeff, DE.t) if recognize_log_derivative(2*betaa, betad, DE): A = parametric_log_deriv(alphaa, alphad, etaa, etad, DE) B = parametric_log_deriv(betaa, betad, etaa, etad, DE) if A is not None and B is not None: Q, s, z = A # TODO: Add test if Q == 1: n = min(n, s/2) N = max(0, -nb) pN = p**N pn = p**-n # This is 1/h A = a*pN B = ba*pN.quo(bd) + Poly(n, DE.t)*a*derivation(p, DE).quo(p)*pN G = [(Ga*pN*pn).cancel(Gd, include=True) for Ga, Gd in G] h = pn # (a*p**N, (b + n*a*Dp/p)*p**N, g1*p**(N - n), ..., gm*p**(N - n), p**-n) return (A, B, G, h) def prde_linear_constraints(a, b, G, DE): """ Parametric Risch Differential Equation - Generate linear constraints on the constants. Given a derivation D on k[t], a, b, in k[t] with gcd(a, b) == 1, and G = [g1, ..., gm] in k(t)^m, return Q = [q1, ..., qm] in k[t]^m and a matrix M with entries in k(t) such that for any solution c1, ..., cm in Const(k) and p in k[t] of a*Dp + b*p == Sum(ci*gi, (i, 1, m)), (c1, ..., cm) is a solution of Mx == 0, and p and the ci satisfy a*Dp + b*p == Sum(ci*qi, (i, 1, m)). Because M has entries in k(t), and because Matrix doesn't play well with Poly, M will be a Matrix of Basic expressions. """ m = len(G) Gns, Gds = list(zip(*G)) d = reduce(lambda i, j: i.lcm(j), Gds) d = Poly(d, field=True) Q = [(ga*(d).quo(gd)).div(d) for ga, gd in G] if not all([ri.is_zero for _, ri in Q]): N = max([ri.degree(DE.t) for _, ri in Q]) M = Matrix(N + 1, m, lambda i, j: Q[j][1].nth(i)) else: M = Matrix(0, m, []) # No constraints, return the empty matrix. qs, _ = list(zip(*Q)) return (qs, M) def poly_linear_constraints(p, d): """ Given p = [p1, ..., pm] in k[t]^m and d in k[t], return q = [q1, ..., qm] in k[t]^m and a matrix M with entries in k such that Sum(ci*pi, (i, 1, m)), for c1, ..., cm in k, is divisible by d if and only if (c1, ..., cm) is a solution of Mx = 0, in which case the quotient is Sum(ci*qi, (i, 1, m)). """ m = len(p) q, r = zip(*[pi.div(d) for pi in p]) if not all([ri.is_zero for ri in r]): n = max([ri.degree() for ri in r]) M = Matrix(n + 1, m, lambda i, j: r[j].nth(i)) else: M = Matrix(0, m, []) # No constraints. return q, M def constant_system(A, u, DE): """ Generate a system for the constant solutions. Given a differential field (K, D) with constant field C = Const(K), a Matrix A, and a vector (Matrix) u with coefficients in K, returns the tuple (B, v, s), where B is a Matrix with coefficients in C and v is a vector (Matrix) such that either v has coefficients in C, in which case s is True and the solutions in C of Ax == u are exactly all the solutions of Bx == v, or v has a non-constant coefficient, in which case s is False Ax == u has no constant solution. This algorithm is used both in solving parametric problems and in determining if an element a of K is a derivative of an element of K or the logarithmic derivative of a K-radical using the structure theorem approach. Because Poly does not play well with Matrix yet, this algorithm assumes that all matrix entries are Basic expressions. """ if not A: return A, u Au = A.row_join(u) Au = Au.rref(simplify=cancel, normalize_last=False)[0] # Warning: This will NOT return correct results if cancel() cannot reduce # an identically zero expression to 0. The danger is that we might # incorrectly prove that an integral is nonelementary (such as # risch_integrate(exp((sin(x)**2 + cos(x)**2 - 1)*x**2), x). # But this is a limitation in computer algebra in general, and implicit # in the correctness of the Risch Algorithm is the computability of the # constant field (actually, this same correctness problem exists in any # algorithm that uses rref()). # # We therefore limit ourselves to constant fields that are computable # via the cancel() function, in order to prevent a speed bottleneck from # calling some more complex simplification function (rational function # coefficients will fall into this class). Furthermore, (I believe) this # problem will only crop up if the integral explicitly contains an # expression in the constant field that is identically zero, but cannot # be reduced to such by cancel(). Therefore, a careful user can avoid this # problem entirely by being careful with the sorts of expressions that # appear in his integrand in the variables other than the integration # variable (the structure theorems should be able to completely decide these # problems in the integration variable). Au = Au.applyfunc(cancel) A, u = Au[:, :-1], Au[:, -1] for j in range(A.cols): for i in range(A.rows): if A[i, j].has(*DE.T): # This assumes that const(F(t0, ..., tn) == const(K) == F Ri = A[i, :] # Rm+1; m = A.rows Rm1 = Ri.applyfunc(lambda x: derivation(x, DE, basic=True)/ derivation(A[i, j], DE, basic=True)) Rm1 = Rm1.applyfunc(cancel) um1 = cancel(derivation(u[i], DE, basic=True)/ derivation(A[i, j], DE, basic=True)) for s in range(A.rows): # A[s, :] = A[s, :] - A[s, i]*A[:, m+1] Asj = A[s, j] A.row_op(s, lambda r, jj: cancel(r - Asj*Rm1[jj])) # u[s] = u[s] - A[s, j]*u[m+1 u.row_op(s, lambda r, jj: cancel(r - Asj*um1)) A = A.col_join(Rm1) u = u.col_join(Matrix([um1])) return (A, u) def prde_spde(a, b, Q, n, DE): """ Special Polynomial Differential Equation algorithm: Parametric Version. Given a derivation D on k[t], an integer n, and a, b, q1, ..., qm in k[t] with deg(a) > 0 and gcd(a, b) == 1, return (A, B, Q, R, n1), with Qq = [q1, ..., qm] and R = [r1, ..., rm], such that for any solution c1, ..., cm in Const(k) and q in k[t] of degree at most n of a*Dq + b*q == Sum(ci*gi, (i, 1, m)), p = (q - Sum(ci*ri, (i, 1, m)))/a has degree at most n1 and satisfies A*Dp + B*p == Sum(ci*qi, (i, 1, m)) """ R, Z = list(zip(*[gcdex_diophantine(b, a, qi) for qi in Q])) A = a B = b + derivation(a, DE) Qq = [zi - derivation(ri, DE) for ri, zi in zip(R, Z)] R = list(R) n1 = n - a.degree(DE.t) return (A, B, Qq, R, n1) def prde_no_cancel_b_large(b, Q, n, DE): """ Parametric Poly Risch Differential Equation - No cancellation: deg(b) large enough. Given a derivation D on k[t], n in ZZ, and b, q1, ..., qm in k[t] with b != 0 and either D == d/dt or deg(b) > max(0, deg(D) - 1), returns h1, ..., hr in k[t] and a matrix A with coefficients in Const(k) such that if c1, ..., cm in Const(k) and q in k[t] satisfy deg(q) <= n and Dq + b*q == Sum(ci*qi, (i, 1, m)), then q = Sum(dj*hj, (j, 1, r)), where d1, ..., dr in Const(k) and A*Matrix([[c1, ..., cm, d1, ..., dr]]).T == 0. """ db = b.degree(DE.t) m = len(Q) H = [Poly(0, DE.t)]*m for N in range(n, -1, -1): # [n, ..., 0] for i in range(m): si = Q[i].nth(N + db)/b.LC() sitn = Poly(si*DE.t**N, DE.t) H[i] = H[i] + sitn Q[i] = Q[i] - derivation(sitn, DE) - b*sitn if all(qi.is_zero for qi in Q): dc = -1 M = zeros(0, 2) else: dc = max([qi.degree(DE.t) for qi in Q]) M = Matrix(dc + 1, m, lambda i, j: Q[j].nth(i)) A, u = constant_system(M, zeros(dc + 1, 1), DE) c = eye(m) A = A.row_join(zeros(A.rows, m)).col_join(c.row_join(-c)) return (H, A) def prde_no_cancel_b_small(b, Q, n, DE): """ Parametric Poly Risch Differential Equation - No cancellation: deg(b) small enough. Given a derivation D on k[t], n in ZZ, and b, q1, ..., qm in k[t] with deg(b) < deg(D) - 1 and either D == d/dt or deg(D) >= 2, returns h1, ..., hr in k[t] and a matrix A with coefficients in Const(k) such that if c1, ..., cm in Const(k) and q in k[t] satisfy deg(q) <= n and Dq + b*q == Sum(ci*qi, (i, 1, m)) then q = Sum(dj*hj, (j, 1, r)) where d1, ..., dr in Const(k) and A*Matrix([[c1, ..., cm, d1, ..., dr]]).T == 0. """ m = len(Q) H = [Poly(0, DE.t)]*m for N in range(n, 0, -1): # [n, ..., 1] for i in range(m): si = Q[i].nth(N + DE.d.degree(DE.t) - 1)/(N*DE.d.LC()) sitn = Poly(si*DE.t**N, DE.t) H[i] = H[i] + sitn Q[i] = Q[i] - derivation(sitn, DE) - b*sitn if b.degree(DE.t) > 0: for i in range(m): si = Poly(Q[i].nth(b.degree(DE.t))/b.LC(), DE.t) H[i] = H[i] + si Q[i] = Q[i] - derivation(si, DE) - b*si if all(qi.is_zero for qi in Q): dc = -1 M = Matrix() else: dc = max([qi.degree(DE.t) for qi in Q]) M = Matrix(dc + 1, m, lambda i, j: Q[j].nth(i)) A, u = constant_system(M, zeros(dc + 1, 1), DE) c = eye(m) A = A.row_join(zeros(A.rows, m)).col_join(c.row_join(-c)) return (H, A) # else: b is in k, deg(qi) < deg(Dt) t = DE.t if DE.case != 'base': with DecrementLevel(DE): t0 = DE.t # k = k0(t0) ba, bd = frac_in(b, t0, field=True) Q0 = [frac_in(qi.TC(), t0, field=True) for qi in Q] f, B = param_rischDE(ba, bd, Q0, DE) # f = [f1, ..., fr] in k^r and B is a matrix with # m + r columns and entries in Const(k) = Const(k0) # such that Dy0 + b*y0 = Sum(ci*qi, (i, 1, m)) has # a solution y0 in k with c1, ..., cm in Const(k) # if and only y0 = Sum(dj*fj, (j, 1, r)) where # d1, ..., dr ar in Const(k) and # B*Matrix([c1, ..., cm, d1, ..., dr]) == 0. # Transform fractions (fa, fd) in f into constant # polynomials fa/fd in k[t]. # (Is there a better way?) f = [Poly(fa.as_expr()/fd.as_expr(), t, field=True) for fa, fd in f] else: # Base case. Dy == 0 for all y in k and b == 0. # Dy + b*y = Sum(ci*qi) is solvable if and only if # Sum(ci*qi) == 0 in which case the solutions are # y = d1*f1 for f1 = 1 and any d1 in Const(k) = k. f = [Poly(1, t, field=True)] # r = 1 B = Matrix([[qi.TC() for qi in Q] + [S(0)]]) # The condition for solvability is # B*Matrix([c1, ..., cm, d1]) == 0 # There are no constraints on d1. # Coefficients of t^j (j > 0) in Sum(ci*qi) must be zero. d = max([qi.degree(DE.t) for qi in Q]) if d > 0: M = Matrix(d, m, lambda i, j: Q[j].nth(i + 1)) A, _ = constant_system(M, zeros(d, 1), DE) else: # No constraints on the hj. A = Matrix(0, m, []) # Solutions of the original equation are # y = Sum(dj*fj, (j, 1, r) + Sum(ei*hi, (i, 1, m)), # where ei == ci (i = 1, ..., m), when # A*Matrix([c1, ..., cm]) == 0 and # B*Matrix([c1, ..., cm, d1, ..., dr]) == 0 # Build combined constraint matrix with m + r + m columns. r = len(f) I = eye(m) A = A.row_join(zeros(A.rows, r + m)) B = B.row_join(zeros(B.rows, m)) C = I.row_join(zeros(m, r)).row_join(-I) return f + H, A.col_join(B).col_join(C) def prde_cancel_liouvillian(b, Q, n, DE): """ Pg, 237. """ H = [] # Why use DecrementLevel? Below line answers that: # Assuming that we can solve such problems over 'k' (not k[t]) if DE.case == 'primitive': with DecrementLevel(DE): ba, bd = frac_in(b, DE.t, field=True) for i in range(n, -1, -1): if DE.case == 'exp': # this re-checking can be avoided with DecrementLevel(DE): ba, bd = frac_in(b + i*derivation(DE.t, DE)/DE.t, DE.t, field=True) with DecrementLevel(DE): Qy = [frac_in(q.nth(i), DE.t, field=True) for q in Q] fi, Ai = param_rischDE(ba, bd, Qy, DE) fi = [Poly(fa.as_expr()/fd.as_expr(), DE.t, field=True) for fa, fd in fi] ri = len(fi) if i == n: M = Ai else: M = Ai.col_join(M.row_join(zeros(M.rows, ri))) Fi, hi = [None]*ri, [None]*ri # from eq. on top of p.238 (unnumbered) for j in range(ri): hji = fi[j]*DE.t**i hi[j] = hji # building up Sum(djn*(D(fjn*t^n) - b*fjnt^n)) Fi[j] = -(derivation(hji, DE) - b*hji) H += hi # in the next loop instead of Q it has # to be Q + Fi taking its place Q = Q + Fi return (H, M) def param_poly_rischDE(a, b, q, n, DE): """Polynomial solutions of a parametric Risch differential equation. Given a derivation D in k[t], a, b in k[t] relatively prime, and q = [q1, ..., qm] in k[t]^m, return h = [h1, ..., hr] in k[t]^r and a matrix A with m + r columns and entries in Const(k) such that a*Dp + b*p = Sum(ci*qi, (i, 1, m)) has a solution p of degree <= n in k[t] with c1, ..., cm in Const(k) if and only if p = Sum(dj*hj, (j, 1, r)) where d1, ..., dr are in Const(k) and (c1, ..., cm, d1, ..., dr) is a solution of Ax == 0. """ m = len(q) if n < 0: # Only the trivial zero solution is possible. # Find relations between the qi. if all([qi.is_zero for qi in q]): return [], zeros(1, m) # No constraints. N = max([qi.degree(DE.t) for qi in q]) M = Matrix(N + 1, m, lambda i, j: q[j].nth(i)) A, _ = constant_system(M, zeros(M.rows, 1), DE) return [], A if a.is_ground: # Normalization: a = 1. a = a.LC() b, q = b.quo_ground(a), [qi.quo_ground(a) for qi in q] if not b.is_zero and (DE.case == 'base' or b.degree() > max(0, DE.d.degree() - 1)): return prde_no_cancel_b_large(b, q, n, DE) elif ((b.is_zero or b.degree() < DE.d.degree() - 1) and (DE.case == 'base' or DE.d.degree() >= 2)): return prde_no_cancel_b_small(b, q, n, DE) elif (DE.d.degree() >= 2 and b.degree() == DE.d.degree() - 1 and n > -b.as_poly().LC()/DE.d.as_poly().LC()): raise NotImplementedError("prde_no_cancel_b_equal() is " "not yet implemented.") else: # Liouvillian cases if DE.case == 'primitive' or DE.case == 'exp': return prde_cancel_liouvillian(b, q, n, DE) else: raise NotImplementedError("non-linear and hypertangent " "cases have not yet been implemented") # else: deg(a) > 0 # Iterate SPDE as long as possible cumulating coefficient # and terms for the recovery of original solutions. alpha, beta = 1, [0]*m while n >= 0: # and a, b relatively prime a, b, q, r, n = prde_spde(a, b, q, n, DE) beta = [betai + alpha*ri for betai, ri in zip(beta, r)] alpha *= a # Solutions p of a*Dp + b*p = Sum(ci*qi) correspond to # solutions alpha*p + Sum(ci*betai) of the initial equation. d = a.gcd(b) if not d.is_ground: break # a*Dp + b*p = Sum(ci*qi) may have a polynomial solution # only if the sum is divisible by d. qq, M = poly_linear_constraints(q, d) # qq = [qq1, ..., qqm] where qqi = qi.quo(d). # M is a matrix with m columns an entries in k. # Sum(fi*qi, (i, 1, m)), where f1, ..., fm are elements of k, is # divisible by d if and only if M*Matrix([f1, ..., fm]) == 0, # in which case the quotient is Sum(fi*qqi). A, _ = constant_system(M, zeros(M.rows, 1), DE) # A is a matrix with m columns and entries in Const(k). # Sum(ci*qqi) is Sum(ci*qi).quo(d), and the remainder is zero # for c1, ..., cm in Const(k) if and only if # A*Matrix([c1, ...,cm]) == 0. V = A.nullspace() # V = [v1, ..., vu] where each vj is a column matrix with # entries aj1, ..., ajm in Const(k). # Sum(aji*qi) is divisible by d with exact quotient Sum(aji*qqi). # Sum(ci*qi) is divisible by d if and only if ci = Sum(dj*aji) # (i = 1, ..., m) for some d1, ..., du in Const(k). # In that case, solutions of # a*Dp + b*p = Sum(ci*qi) = Sum(dj*Sum(aji*qi)) # are the same as those of # (a/d)*Dp + (b/d)*p = Sum(dj*rj) # where rj = Sum(aji*qqi). if not V: # No non-trivial solution. return [], eye(m) # Could return A, but this has # the minimum number of rows. Mqq = Matrix([qq]) # A single row. r = [(Mqq*vj)[0] for vj in V] # [r1, ..., ru] # Solutions of (a/d)*Dp + (b/d)*p = Sum(dj*rj) correspond to # solutions alpha*p + Sum(Sum(dj*aji)*betai) of the initial # equation. These are equal to alpha*p + Sum(dj*fj) where # fj = Sum(aji*betai). Mbeta = Matrix([beta]) f = [(Mbeta*vj)[0] for vj in V] # [f1, ..., fu] # # Solve the reduced equation recursively. # g, B = param_poly_rischDE(a.quo(d), b.quo(d), r, n, DE) # g = [g1, ..., gv] in k[t]^v and and B is a matrix with u + v # columns and entries in Const(k) such that # (a/d)*Dp + (b/d)*p = Sum(dj*rj) has a solution p of degree <= n # in k[t] if and only if p = Sum(ek*gk) where e1, ..., ev are in # Const(k) and B*Matrix([d1, ..., du, e1, ..., ev]) == 0. # The solutions of the original equation are then # Sum(dj*fj, (j, 1, u)) + alpha*Sum(ek*gk, (k, 1, v)). # Collect solution components. h = f + [alpha*gk for gk in g] # Build combined relation matrix. A = -eye(m) for vj in V: A = A.row_join(vj) A = A.row_join(zeros(m, len(g))) A = A.col_join(zeros(B.rows, m).row_join(B)) return h, A def param_rischDE(fa, fd, G, DE): """ Solve a Parametric Risch Differential Equation: Dy + f*y == Sum(ci*Gi, (i, 1, m)). Given a derivation D in k(t), f in k(t), and G = [G1, ..., Gm] in k(t)^m, return h = [h1, ..., hr] in k(t)^r and a matrix A with m + r columns and entries in Const(k) such that Dy + f*y = Sum(ci*Gi, (i, 1, m)) has a solution y in k(t) with c1, ..., cm in Const(k) if and only if y = Sum(dj*hj, (j, 1, r)) where d1, ..., dr are in Const(k) and (c1, ..., cm, d1, ..., dr) is a solution of Ax == 0. Elements of k(t) are tuples (a, d) with a and d in k[t]. """ m = len(G) q, (fa, fd) = weak_normalizer(fa, fd, DE) # Solutions of the weakly normalized equation Dz + f*z = q*Sum(ci*Gi) # correspond to solutions y = z/q of the original equation. gamma = q G = [(q*ga).cancel(gd, include=True) for ga, gd in G] a, (ba, bd), G, hn = prde_normal_denom(fa, fd, G, DE) # Solutions q in k<t> of a*Dq + b*q = Sum(ci*Gi) correspond # to solutions z = q/hn of the weakly normalized equation. gamma *= hn A, B, G, hs = prde_special_denom(a, ba, bd, G, DE) # Solutions p in k[t] of A*Dp + B*p = Sum(ci*Gi) correspond # to solutions q = p/hs of the previous equation. gamma *= hs g = A.gcd(B) a, b, g = A.quo(g), B.quo(g), [gia.cancel(gid*g, include=True) for gia, gid in G] # a*Dp + b*p = Sum(ci*gi) may have a polynomial solution # only if the sum is in k[t]. q, M = prde_linear_constraints(a, b, g, DE) # q = [q1, ..., qm] where qi in k[t] is the polynomial component # of the partial fraction expansion of gi. # M is a matrix with m columns and entries in k. # Sum(fi*gi, (i, 1, m)), where f1, ..., fm are elements of k, # is a polynomial if and only if M*Matrix([f1, ..., fm]) == 0, # in which case the sum is equal to Sum(fi*qi). M, _ = constant_system(M, zeros(M.rows, 1), DE) # M is a matrix with m columns and entries in Const(k). # Sum(ci*gi) is in k[t] for c1, ..., cm in Const(k) # if and only if M*Matrix([c1, ..., cm]) == 0, # in which case the sum is Sum(ci*qi). ## Reduce number of constants at this point V = M.nullspace() # V = [v1, ..., vu] where each vj is a column matrix with # entries aj1, ..., ajm in Const(k). # Sum(aji*gi) is in k[t] and equal to Sum(aji*qi) (j = 1, ..., u). # Sum(ci*gi) is in k[t] if and only is ci = Sum(dj*aji) # (i = 1, ..., m) for some d1, ..., du in Const(k). # In that case, # Sum(ci*gi) = Sum(ci*qi) = Sum(dj*Sum(aji*qi)) = Sum(dj*rj) # where rj = Sum(aji*qi) (j = 1, ..., u) in k[t]. if not V: # No non-trivial solution return [], eye(m) Mq = Matrix([q]) # A single row. r = [(Mq*vj)[0] for vj in V] # [r1, ..., ru] # Solutions of a*Dp + b*p = Sum(dj*rj) correspond to solutions # y = p/gamma of the initial equation with ci = Sum(dj*aji). try: # We try n=5. At least for prde_spde, it will always # terminate no matter what n is. n = bound_degree(a, b, r, DE, parametric=True) except NotImplementedError: # A temporary bound is set. Eventually, it will be removed. # the currently added test case takes large time # even with n=5, and much longer with large n's. n = 5 h, B = param_poly_rischDE(a, b, r, n, DE) # h = [h1, ..., hv] in k[t]^v and and B is a matrix with u + v # columns and entries in Const(k) such that # a*Dp + b*p = Sum(dj*rj) has a solution p of degree <= n # in k[t] if and only if p = Sum(ek*hk) where e1, ..., ev are in # Const(k) and B*Matrix([d1, ..., du, e1, ..., ev]) == 0. # The solutions of the original equation for ci = Sum(dj*aji) # (i = 1, ..., m) are then y = Sum(ek*hk, (k, 1, v))/gamma. ## Build combined relation matrix with m + u + v columns. A = -eye(m) for vj in V: A = A.row_join(vj) A = A.row_join(zeros(m, len(h))) A = A.col_join(zeros(B.rows, m).row_join(B)) ## Eliminate d1, ..., du. W = A.nullspace() # W = [w1, ..., wt] where each wl is a column matrix with # entries blk (k = 1, ..., m + u + v) in Const(k). # The vectors (bl1, ..., blm) generate the space of those # constant families (c1, ..., cm) for which a solution of # the equation Dy + f*y == Sum(ci*Gi) exists. They generate # the space and form a basis except possibly when Dy + f*y == 0 # is solvable in k(t}. The corresponding solutions are # y = Sum(blk'*hk, (k, 1, v))/gamma, where k' = k + m + u. v = len(h) M = Matrix([wl[:m] + wl[-v:] for wl in W]) # excise dj's. N = M.nullspace() # N = [n1, ..., ns] where the ni in Const(k)^(m + v) are column # vectors generating the space of linear relations between # c1, ..., cm, e1, ..., ev. C = Matrix([ni[:] for ni in N]) # rows n1, ..., ns. return [hk.cancel(gamma, include=True) for hk in h], C def limited_integrate_reduce(fa, fd, G, DE): """ Simpler version of step 1 & 2 for the limited integration problem. Given a derivation D on k(t) and f, g1, ..., gn in k(t), return (a, b, h, N, g, V) such that a, b, h in k[t], N is a non-negative integer, g in k(t), V == [v1, ..., vm] in k(t)^m, and for any solution v in k(t), c1, ..., cm in C of f == Dv + Sum(ci*wi, (i, 1, m)), p = v*h is in k<t>, and p and the ci satisfy a*Dp + b*p == g + Sum(ci*vi, (i, 1, m)). Furthermore, if S1irr == Sirr, then p is in k[t], and if t is nonlinear or Liouvillian over k, then deg(p) <= N. So that the special part is always computed, this function calls the more general prde_special_denom() automatically if it cannot determine that S1irr == Sirr. Furthermore, it will automatically call bound_degree() when t is linear and non-Liouvillian, which for the transcendental case, implies that Dt == a*t + b with for some a, b in k*. """ dn, ds = splitfactor(fd, DE) E = [splitfactor(gd, DE) for _, gd in G] En, Es = list(zip(*E)) c = reduce(lambda i, j: i.lcm(j), (dn,) + En) # lcm(dn, en1, ..., enm) hn = c.gcd(c.diff(DE.t)) a = hn b = -derivation(hn, DE) N = 0 # These are the cases where we know that S1irr = Sirr, but there could be # others, and this algorithm will need to be extended to handle them. if DE.case in ['base', 'primitive', 'exp', 'tan']: hs = reduce(lambda i, j: i.lcm(j), (ds,) + Es) # lcm(ds, es1, ..., esm) a = hn*hs b -= (hn*derivation(hs, DE)).quo(hs) mu = min(order_at_oo(fa, fd, DE.t), min([order_at_oo(ga, gd, DE.t) for ga, gd in G])) # So far, all the above are also nonlinear or Liouvillian, but if this # changes, then this will need to be updated to call bound_degree() # as per the docstring of this function (DE.case == 'other_linear'). N = hn.degree(DE.t) + hs.degree(DE.t) + max(0, 1 - DE.d.degree(DE.t) - mu) else: # TODO: implement this raise NotImplementedError V = [(-a*hn*ga).cancel(gd, include=True) for ga, gd in G] return (a, b, a, N, (a*hn*fa).cancel(fd, include=True), V) def limited_integrate(fa, fd, G, DE): """ Solves the limited integration problem: f = Dv + Sum(ci*wi, (i, 1, n)) """ fa, fd = fa*Poly(1/fd.LC(), DE.t), fd.monic() # interpretting limited integration problem as a # parametric Risch DE problem Fa = Poly(0, DE.t) Fd = Poly(1, DE.t) G = [(fa, fd)] + G h, A = param_rischDE(Fa, Fd, G, DE) V = A.nullspace() V = [v for v in V if v[0] != 0] if not V: return None else: # we can take any vector from V, we take V[0] c0 = V[0][0] # v = [-1, c1, ..., cm, d1, ..., dr] v = V[0]/(-c0) r = len(h) m = len(v) - r - 1 C = list(v[1: m + 1]) y = -sum([v[m + 1 + i]*h[i][0].as_expr()/h[i][1].as_expr() \ for i in range(r)]) y_num, y_den = y.as_numer_denom() Ya, Yd = Poly(y_num, DE.t), Poly(y_den, DE.t) Y = Ya*Poly(1/Yd.LC(), DE.t), Yd.monic() return Y, C def parametric_log_deriv_heu(fa, fd, wa, wd, DE, c1=None): """ Parametric logarithmic derivative heuristic. Given a derivation D on k[t], f in k(t), and a hyperexponential monomial theta over k(t), raises either NotImplementedError, in which case the heuristic failed, or returns None, in which case it has proven that no solution exists, or returns a solution (n, m, v) of the equation n*f == Dv/v + m*Dtheta/theta, with v in k(t)* and n, m in ZZ with n != 0. If this heuristic fails, the structure theorem approach will need to be used. The argument w == Dtheta/theta """ # TODO: finish writing this and write tests c1 = c1 or Dummy('c1') p, a = fa.div(fd) q, b = wa.div(wd) B = max(0, derivation(DE.t, DE).degree(DE.t) - 1) C = max(p.degree(DE.t), q.degree(DE.t)) if q.degree(DE.t) > B: eqs = [p.nth(i) - c1*q.nth(i) for i in range(B + 1, C + 1)] s = solve(eqs, c1) if not s or not s[c1].is_Rational: # deg(q) > B, no solution for c. return None M, N = s[c1].as_numer_denom() nfmwa = N*fa*wd - M*wa*fd nfmwd = fd*wd Qv = is_log_deriv_k_t_radical_in_field(N*fa*wd - M*wa*fd, fd*wd, DE, 'auto') if Qv is None: # (N*f - M*w) is not the logarithmic derivative of a k(t)-radical. return None Q, v = Qv if Q.is_zero or v.is_zero: return None return (Q*N, Q*M, v) if p.degree(DE.t) > B: return None c = lcm(fd.as_poly(DE.t).LC(), wd.as_poly(DE.t).LC()) l = fd.monic().lcm(wd.monic())*Poly(c, DE.t) ln, ls = splitfactor(l, DE) z = ls*ln.gcd(ln.diff(DE.t)) if not z.has(DE.t): # TODO: We treat this as 'no solution', until the structure # theorem version of parametric_log_deriv is implemented. return None u1, r1 = (fa*l.quo(fd)).div(z) # (l*f).div(z) u2, r2 = (wa*l.quo(wd)).div(z) # (l*w).div(z) eqs = [r1.nth(i) - c1*r2.nth(i) for i in range(z.degree(DE.t))] s = solve(eqs, c1) if not s or not s[c1].is_Rational: # deg(q) <= B, no solution for c. return None M, N = s[c1].as_numer_denom() nfmwa = N.as_poly(DE.t)*fa*wd - M.as_poly(DE.t)*wa*fd nfmwd = fd*wd Qv = is_log_deriv_k_t_radical_in_field(nfmwa, nfmwd, DE) if Qv is None: # (N*f - M*w) is not the logarithmic derivative of a k(t)-radical. return None Q, v = Qv if Q.is_zero or v.is_zero: return None return (Q*N, Q*M, v) def parametric_log_deriv(fa, fd, wa, wd, DE): # TODO: Write the full algorithm using the structure theorems. # try: A = parametric_log_deriv_heu(fa, fd, wa, wd, DE) # except NotImplementedError: # Heuristic failed, we have to use the full method. # TODO: This could be implemented more efficiently. # It isn't too worrisome, because the heuristic handles most difficult # cases. return A def is_deriv_k(fa, fd, DE): r""" Checks if Df/f is the derivative of an element of k(t). a in k(t) is the derivative of an element of k(t) if there exists b in k(t) such that a = Db. Either returns (ans, u), such that Df/f == Du, or None, which means that Df/f is not the derivative of an element of k(t). ans is a list of tuples such that Add(*[i*j for i, j in ans]) == u. This is useful for seeing exactly which elements of k(t) produce u. This function uses the structure theorem approach, which says that for any f in K, Df/f is the derivative of a element of K if and only if there are ri in QQ such that:: --- --- Dt \ r * Dt + \ r * i Df / i i / i --- = --. --- --- t f i in L i in E i K/C(x) K/C(x) Where C = Const(K), L_K/C(x) = { i in {1, ..., n} such that t_i is transcendental over C(x)(t_1, ..., t_i-1) and Dt_i = Da_i/a_i, for some a_i in C(x)(t_1, ..., t_i-1)* } (i.e., the set of all indices of logarithmic monomials of K over C(x)), and E_K/C(x) = { i in {1, ..., n} such that t_i is transcendental over C(x)(t_1, ..., t_i-1) and Dt_i/t_i = Da_i, for some a_i in C(x)(t_1, ..., t_i-1) } (i.e., the set of all indices of hyperexponential monomials of K over C(x)). If K is an elementary extension over C(x), then the cardinality of L_K/C(x) U E_K/C(x) is exactly the transcendence degree of K over C(x). Furthermore, because Const_D(K) == Const_D(C(x)) == C, deg(Dt_i) == 1 when t_i is in E_K/C(x) and deg(Dt_i) == 0 when t_i is in L_K/C(x), implying in particular that E_K/C(x) and L_K/C(x) are disjoint. The sets L_K/C(x) and E_K/C(x) must, by their nature, be computed recursively using this same function. Therefore, it is required to pass them as indices to D (or T). E_args are the arguments of the hyperexponentials indexed by E_K (i.e., if i is in E_K, then T[i] == exp(E_args[i])). This is needed to compute the final answer u such that Df/f == Du. log(f) will be the same as u up to a additive constant. This is because they will both behave the same as monomials. For example, both log(x) and log(2*x) == log(x) + log(2) satisfy Dt == 1/x, because log(2) is constant. Therefore, the term const is returned. const is such that log(const) + f == u. This is calculated by dividing the arguments of one logarithm from the other. Therefore, it is necessary to pass the arguments of the logarithmic terms in L_args. To handle the case where we are given Df/f, not f, use is_deriv_k_in_field(). See also ======== is_log_deriv_k_t_radical_in_field, is_log_deriv_k_t_radical """ # Compute Df/f dfa, dfd = (fd*derivation(fa, DE) - fa*derivation(fd, DE)), fd*fa dfa, dfd = dfa.cancel(dfd, include=True) # Our assumption here is that each monomial is recursively transcendental if len(DE.exts) != len(DE.D): if [i for i in DE.cases if i == 'tan'] or \ (set([i for i in DE.cases if i == 'primitive']) - set(DE.indices('log'))): raise NotImplementedError("Real version of the structure " "theorems with hypertangent support is not yet implemented.") # TODO: What should really be done in this case? raise NotImplementedError("Nonelementary extensions not supported " "in the structure theorems.") E_part = [DE.D[i].quo(Poly(DE.T[i], DE.T[i])).as_expr() for i in DE.indices('exp')] L_part = [DE.D[i].as_expr() for i in DE.indices('log')] lhs = Matrix([E_part + L_part]) rhs = Matrix([dfa.as_expr()/dfd.as_expr()]) A, u = constant_system(lhs, rhs, DE) if not all(derivation(i, DE, basic=True).is_zero for i in u) or not A: # If the elements of u are not all constant # Note: See comment in constant_system # Also note: derivation(basic=True) calls cancel() return None else: if not all(i.is_Rational for i in u): raise NotImplementedError("Cannot work with non-rational " "coefficients in this case.") else: terms = ([DE.extargs[i] for i in DE.indices('exp')] + [DE.T[i] for i in DE.indices('log')]) ans = list(zip(terms, u)) result = Add(*[Mul(i, j) for i, j in ans]) argterms = ([DE.T[i] for i in DE.indices('exp')] + [DE.extargs[i] for i in DE.indices('log')]) l = [] ld = [] for i, j in zip(argterms, u): # We need to get around things like sqrt(x**2) != x # and also sqrt(x**2 + 2*x + 1) != x + 1 # Issue 10798: i need not be a polynomial i, d = i.as_numer_denom() icoeff, iterms = sqf_list(i) l.append(Mul(*([Pow(icoeff, j)] + [Pow(b, e*j) for b, e in iterms]))) dcoeff, dterms = sqf_list(d) ld.append(Mul(*([Pow(dcoeff, j)] + [Pow(b, e*j) for b, e in dterms]))) const = cancel(fa.as_expr()/fd.as_expr()/Mul(*l)*Mul(*ld)) return (ans, result, const) def is_log_deriv_k_t_radical(fa, fd, DE, Df=True): r""" Checks if Df is the logarithmic derivative of a k(t)-radical. b in k(t) can be written as the logarithmic derivative of a k(t) radical if there exist n in ZZ and u in k(t) with n, u != 0 such that n*b == Du/u. Either returns (ans, u, n, const) or None, which means that Df cannot be written as the logarithmic derivative of a k(t)-radical. ans is a list of tuples such that Mul(*[i**j for i, j in ans]) == u. This is useful for seeing exactly what elements of k(t) produce u. This function uses the structure theorem approach, which says that for any f in K, Df is the logarithmic derivative of a K-radical if and only if there are ri in QQ such that:: --- --- Dt \ r * Dt + \ r * i / i i / i --- = Df. --- --- t i in L i in E i K/C(x) K/C(x) Where C = Const(K), L_K/C(x) = { i in {1, ..., n} such that t_i is transcendental over C(x)(t_1, ..., t_i-1) and Dt_i = Da_i/a_i, for some a_i in C(x)(t_1, ..., t_i-1)* } (i.e., the set of all indices of logarithmic monomials of K over C(x)), and E_K/C(x) = { i in {1, ..., n} such that t_i is transcendental over C(x)(t_1, ..., t_i-1) and Dt_i/t_i = Da_i, for some a_i in C(x)(t_1, ..., t_i-1) } (i.e., the set of all indices of hyperexponential monomials of K over C(x)). If K is an elementary extension over C(x), then the cardinality of L_K/C(x) U E_K/C(x) is exactly the transcendence degree of K over C(x). Furthermore, because Const_D(K) == Const_D(C(x)) == C, deg(Dt_i) == 1 when t_i is in E_K/C(x) and deg(Dt_i) == 0 when t_i is in L_K/C(x), implying in particular that E_K/C(x) and L_K/C(x) are disjoint. The sets L_K/C(x) and E_K/C(x) must, by their nature, be computed recursively using this same function. Therefore, it is required to pass them as indices to D (or T). L_args are the arguments of the logarithms indexed by L_K (i.e., if i is in L_K, then T[i] == log(L_args[i])). This is needed to compute the final answer u such that n*f == Du/u. exp(f) will be the same as u up to a multiplicative constant. This is because they will both behave the same as monomials. For example, both exp(x) and exp(x + 1) == E*exp(x) satisfy Dt == t. Therefore, the term const is returned. const is such that exp(const)*f == u. This is calculated by subtracting the arguments of one exponential from the other. Therefore, it is necessary to pass the arguments of the exponential terms in E_args. To handle the case where we are given Df, not f, use is_log_deriv_k_t_radical_in_field(). See also ======== is_log_deriv_k_t_radical_in_field, is_deriv_k """ H = [] if Df: dfa, dfd = (fd*derivation(fa, DE) - fa*derivation(fd, DE)).cancel(fd**2, include=True) else: dfa, dfd = fa, fd # Our assumption here is that each monomial is recursively transcendental if len(DE.exts) != len(DE.D): if [i for i in DE.cases if i == 'tan'] or \ (set([i for i in DE.cases if i == 'primitive']) - set(DE.indices('log'))): raise NotImplementedError("Real version of the structure " "theorems with hypertangent support is not yet implemented.") # TODO: What should really be done in this case? raise NotImplementedError("Nonelementary extensions not supported " "in the structure theorems.") E_part = [DE.D[i].quo(Poly(DE.T[i], DE.T[i])).as_expr() for i in DE.indices('exp')] L_part = [DE.D[i].as_expr() for i in DE.indices('log')] lhs = Matrix([E_part + L_part]) rhs = Matrix([dfa.as_expr()/dfd.as_expr()]) A, u = constant_system(lhs, rhs, DE) if not all(derivation(i, DE, basic=True).is_zero for i in u) or not A: # If the elements of u are not all constant # Note: See comment in constant_system # Also note: derivation(basic=True) calls cancel() return None else: if not all(i.is_Rational for i in u): # TODO: But maybe we can tell if they're not rational, like # log(2)/log(3). Also, there should be an option to continue # anyway, even if the result might potentially be wrong. raise NotImplementedError("Cannot work with non-rational " "coefficients in this case.") else: n = reduce(ilcm, [i.as_numer_denom()[1] for i in u]) u *= n terms = ([DE.T[i] for i in DE.indices('exp')] + [DE.extargs[i] for i in DE.indices('log')]) ans = list(zip(terms, u)) result = Mul(*[Pow(i, j) for i, j in ans]) # exp(f) will be the same as result up to a multiplicative # constant. We now find the log of that constant. argterms = ([DE.extargs[i] for i in DE.indices('exp')] + [DE.T[i] for i in DE.indices('log')]) const = cancel(fa.as_expr()/fd.as_expr() - Add(*[Mul(i, j/n) for i, j in zip(argterms, u)])) return (ans, result, n, const) def is_log_deriv_k_t_radical_in_field(fa, fd, DE, case='auto', z=None): """ Checks if f can be written as the logarithmic derivative of a k(t)-radical. It differs from is_log_deriv_k_t_radical(fa, fd, DE, Df=False) for any given fa, fd, DE in that it finds the solution in the given field not in some (possibly unspecified extension) and "in_field" with the function name is used to indicate that. f in k(t) can be written as the logarithmic derivative of a k(t) radical if there exist n in ZZ and u in k(t) with n, u != 0 such that n*f == Du/u. Either returns (n, u) or None, which means that f cannot be written as the logarithmic derivative of a k(t)-radical. case is one of {'primitive', 'exp', 'tan', 'auto'} for the primitive, hyperexponential, and hypertangent cases, respectively. If case is 'auto', it will attempt to determine the type of the derivation automatically. See also ======== is_log_deriv_k_t_radical, is_deriv_k """ fa, fd = fa.cancel(fd, include=True) # f must be simple n, s = splitfactor(fd, DE) if not s.is_one: pass z = z or Dummy('z') H, b = residue_reduce(fa, fd, DE, z=z) if not b: # I will have to verify, but I believe that the answer should be # None in this case. This should never happen for the # functions given when solving the parametric logarithmic # derivative problem when integration elementary functions (see # Bronstein's book, page 255), so most likely this indicates a bug. return None roots = [(i, i.real_roots()) for i, _ in H] if not all(len(j) == i.degree() and all(k.is_Rational for k in j) for i, j in roots): # If f is the logarithmic derivative of a k(t)-radical, then all the # roots of the resultant must be rational numbers. return None # [(a, i), ...], where i*log(a) is a term in the log-part of the integral # of f respolys, residues = list(zip(*roots)) or [[], []] # Note: this might be empty, but everything below should work find in that # case (it should be the same as if it were [[1, 1]]) residueterms = [(H[j][1].subs(z, i), i) for j in range(len(H)) for i in residues[j]] # TODO: finish writing this and write tests p = cancel(fa.as_expr()/fd.as_expr() - residue_reduce_derivation(H, DE, z)) p = p.as_poly(DE.t) if p is None: # f - Dg will be in k[t] if f is the logarithmic derivative of a k(t)-radical return None if p.degree(DE.t) >= max(1, DE.d.degree(DE.t)): return None if case == 'auto': case = DE.case if case == 'exp': wa, wd = derivation(DE.t, DE).cancel(Poly(DE.t, DE.t), include=True) with DecrementLevel(DE): pa, pd = frac_in(p, DE.t, cancel=True) wa, wd = frac_in((wa, wd), DE.t) A = parametric_log_deriv(pa, pd, wa, wd, DE) if A is None: return None n, e, u = A u *= DE.t**e elif case == 'primitive': with DecrementLevel(DE): pa, pd = frac_in(p, DE.t) A = is_log_deriv_k_t_radical_in_field(pa, pd, DE, case='auto') if A is None: return None n, u = A elif case == 'base': # TODO: we can use more efficient residue reduction from ratint() if not fd.is_sqf or fa.degree() >= fd.degree(): # f is the logarithmic derivative in the base case if and only if # f = fa/fd, fd is square-free, deg(fa) < deg(fd), and # gcd(fa, fd) == 1. The last condition is handled by cancel() above. return None # Note: if residueterms = [], returns (1, 1) # f had better be 0 in that case. n = reduce(ilcm, [i.as_numer_denom()[1] for _, i in residueterms], S(1)) u = Mul(*[Pow(i, j*n) for i, j in residueterms]) return (n, u) elif case == 'tan': raise NotImplementedError("The hypertangent case is " "not yet implemented for is_log_deriv_k_t_radical_in_field()") elif case in ['other_linear', 'other_nonlinear']: # XXX: If these are supported by the structure theorems, change to NotImplementedError. raise ValueError("The %s case is not supported in this function." % case) else: raise ValueError("case must be one of {'primitive', 'exp', 'tan', " "'base', 'auto'}, not %s" % case) common_denom = reduce(ilcm, [i.as_numer_denom()[1] for i in [j for _, j in residueterms]] + [n], S(1)) residueterms = [(i, j*common_denom) for i, j in residueterms] m = common_denom//n if common_denom != n*m: # Verify exact division raise ValueError("Inexact division") u = cancel(u**m*Mul(*[Pow(i, j) for i, j in residueterms])) return (common_denom, u)
63f1d4215bbb176a0be85d1d7db5265868624e0157270307dcfff4279439c872
from __future__ import print_function, division from sympy.core.compatibility import range from sympy.core import cacheit, Dummy, Ne, Integer, Rational, S, Wild from sympy.functions import binomial, sin, cos, Piecewise # TODO sin(a*x)*cos(b*x) -> sin((a+b)x) + sin((a-b)x) ? # creating, each time, Wild's and sin/cos/Mul is expensive. Also, our match & # subs are very slow when not cached, and if we create Wild each time, we # effectively block caching. # # so we cache the pattern # need to use a function instead of lamda since hash of lambda changes on # each call to _pat_sincos def _integer_instance(n): return isinstance(n , Integer) @cacheit def _pat_sincos(x): a = Wild('a', exclude=[x]) n, m = [Wild(s, exclude=[x], properties=[_integer_instance]) for s in 'nm'] pat = sin(a*x)**n * cos(a*x)**m return pat, a, n, m _u = Dummy('u') def trigintegrate(f, x, conds='piecewise'): """Integrate f = Mul(trig) over x >>> from sympy import Symbol, sin, cos, tan, sec, csc, cot >>> from sympy.integrals.trigonometry import trigintegrate >>> from sympy.abc import x >>> trigintegrate(sin(x)*cos(x), x) sin(x)**2/2 >>> trigintegrate(sin(x)**2, x) x/2 - sin(x)*cos(x)/2 >>> trigintegrate(tan(x)*sec(x), x) 1/cos(x) >>> trigintegrate(sin(x)*tan(x), x) -log(sin(x) - 1)/2 + log(sin(x) + 1)/2 - sin(x) http://en.wikibooks.org/wiki/Calculus/Integration_techniques See Also ======== sympy.integrals.integrals.Integral.doit sympy.integrals.integrals.Integral """ from sympy.integrals.integrals import integrate pat, a, n, m = _pat_sincos(x) f = f.rewrite('sincos') M = f.match(pat) if M is None: return n, m = M[n], M[m] if n is S.Zero and m is S.Zero: return x zz = x if n is S.Zero else S.Zero a = M[a] if n.is_odd or m.is_odd: u = _u n_, m_ = n.is_odd, m.is_odd # take smallest n or m -- to choose simplest substitution if n_ and m_: # Make sure to choose the positive one # otherwise an incorrect integral can occur. if n < 0 and m > 0: m_ = True n_ = False elif m < 0 and n > 0: n_ = True m_ = False # Both are negative so choose the smallest n or m # in absolute value for simplest substitution. elif (n < 0 and m < 0): n_ = n > m m_ = not (n > m) # Both n and m are odd and positive else: n_ = (n < m) # NB: careful here, one of the m_ = not (n < m) # conditions *must* be true # n m u=C (n-1)/2 m # S(x) * C(x) dx --> -(1-u^2) * u du if n_: ff = -(1 - u**2)**((n - 1)/2) * u**m uu = cos(a*x) # n m u=S n (m-1)/2 # S(x) * C(x) dx --> u * (1-u^2) du elif m_: ff = u**n * (1 - u**2)**((m - 1)/2) uu = sin(a*x) fi = integrate(ff, u) # XXX cyclic deps fx = fi.subs(u, uu) if conds == 'piecewise': return Piecewise((fx / a, Ne(a, 0)), (zz, True)) return fx / a # n & m are both even # # 2k 2m 2l 2l # we transform S (x) * C (x) into terms with only S (x) or C (x) # # example: # 100 4 100 2 2 100 4 2 # S (x) * C (x) = S (x) * (1-S (x)) = S (x) * (1 + S (x) - 2*S (x)) # # 104 102 100 # = S (x) - 2*S (x) + S (x) # 2k # then S is integrated with recursive formula # take largest n or m -- to choose simplest substitution n_ = (abs(n) > abs(m)) m_ = (abs(m) > abs(n)) res = S.Zero if n_: # 2k 2 k i 2i # C = (1 - S ) = sum(i, (-) * B(k, i) * S ) if m > 0: for i in range(0, m//2 + 1): res += ((-1)**i * binomial(m//2, i) * _sin_pow_integrate(n + 2*i, x)) elif m == 0: res = _sin_pow_integrate(n, x) else: # m < 0 , |n| > |m| # / # | # | m n # | cos (x) sin (x) dx = # | # | #/ # / # | # -1 m+1 n-1 n - 1 | m+2 n-2 # ________ cos (x) sin (x) + _______ | cos (x) sin (x) dx # | # m + 1 m + 1 | # / res = (Rational(-1, m + 1) * cos(x)**(m + 1) * sin(x)**(n - 1) + Rational(n - 1, m + 1) * trigintegrate(cos(x)**(m + 2)*sin(x)**(n - 2), x)) elif m_: # 2k 2 k i 2i # S = (1 - C ) = sum(i, (-) * B(k, i) * C ) if n > 0: # / / # | | # | m n | -m n # | cos (x)*sin (x) dx or | cos (x) * sin (x) dx # | | # / / # # |m| > |n| ; m, n >0 ; m, n belong to Z - {0} # n 2 # sin (x) term is expanded here in terms of cos (x), # and then integrated. # for i in range(0, n//2 + 1): res += ((-1)**i * binomial(n//2, i) * _cos_pow_integrate(m + 2*i, x)) elif n == 0: # / # | # | 1 # | _ _ _ # | m # | cos (x) # / # res = _cos_pow_integrate(m, x) else: # n < 0 , |m| > |n| # / # | # | m n # | cos (x) sin (x) dx = # | # | #/ # / # | # 1 m-1 n+1 m - 1 | m-2 n+2 # _______ cos (x) sin (x) + _______ | cos (x) sin (x) dx # | # n + 1 n + 1 | # / res = (Rational(1, n + 1) * cos(x)**(m - 1)*sin(x)**(n + 1) + Rational(m - 1, n + 1) * trigintegrate(cos(x)**(m - 2)*sin(x)**(n + 2), x)) else: if m == n: ##Substitute sin(2x)/2 for sin(x)cos(x) and then Integrate. res = integrate((Rational(1, 2)*sin(2*x))**m, x) elif (m == -n): if n < 0: # Same as the scheme described above. # the function argument to integrate in the end will # be 1 , this cannot be integrated by trigintegrate. # Hence use sympy.integrals.integrate. res = (Rational(1, n + 1) * cos(x)**(m - 1) * sin(x)**(n + 1) + Rational(m - 1, n + 1) * integrate(cos(x)**(m - 2) * sin(x)**(n + 2), x)) else: res = (Rational(-1, m + 1) * cos(x)**(m + 1) * sin(x)**(n - 1) + Rational(n - 1, m + 1) * integrate(cos(x)**(m + 2)*sin(x)**(n - 2), x)) if conds == 'piecewise': return Piecewise((res.subs(x, a*x) / a, Ne(a, 0)), (zz, True)) return res.subs(x, a*x) / a def _sin_pow_integrate(n, x): if n > 0: if n == 1: #Recursion break return -cos(x) # n > 0 # / / # | | # | n -1 n-1 n - 1 | n-2 # | sin (x) dx = ______ cos (x) sin (x) + _______ | sin (x) dx # | | # | n n | #/ / # # return (Rational(-1, n) * cos(x) * sin(x)**(n - 1) + Rational(n - 1, n) * _sin_pow_integrate(n - 2, x)) if n < 0: if n == -1: ##Make sure this does not come back here again. ##Recursion breaks here or at n==0. return trigintegrate(1/sin(x), x) # n < 0 # / / # | | # | n 1 n+1 n + 2 | n+2 # | sin (x) dx = _______ cos (x) sin (x) + _______ | sin (x) dx # | | # | n + 1 n + 1 | #/ / # return (Rational(1, n + 1) * cos(x) * sin(x)**(n + 1) + Rational(n + 2, n + 1) * _sin_pow_integrate(n + 2, x)) else: #n == 0 #Recursion break. return x def _cos_pow_integrate(n, x): if n > 0: if n == 1: #Recursion break. return sin(x) # n > 0 # / / # | | # | n 1 n-1 n - 1 | n-2 # | sin (x) dx = ______ sin (x) cos (x) + _______ | cos (x) dx # | | # | n n | #/ / # return (Rational(1, n) * sin(x) * cos(x)**(n - 1) + Rational(n - 1, n) * _cos_pow_integrate(n - 2, x)) if n < 0: if n == -1: ##Recursion break return trigintegrate(1/cos(x), x) # n < 0 # / / # | | # | n -1 n+1 n + 2 | n+2 # | cos (x) dx = _______ sin (x) cos (x) + _______ | cos (x) dx # | | # | n + 1 n + 1 | #/ / # return (Rational(-1, n + 1) * sin(x) * cos(x)**(n + 1) + Rational(n + 2, n + 1) * _cos_pow_integrate(n + 2, x)) else: # n == 0 #Recursion Break. return x
e255fd13d7713dfd610f3d71935f30ae1fb67fb1fab284f1c9c110cea32d051e
""" SymPy core decorators. The purpose of this module is to expose decorators without any other dependencies, so that they can be easily imported anywhere in sympy/core. """ from __future__ import print_function, division from functools import wraps from .sympify import SympifyError, sympify from sympy.core.compatibility import get_function_code def deprecated(**decorator_kwargs): """This is a decorator which can be used to mark functions as deprecated. It will result in a warning being emitted when the function is used.""" from sympy.utilities.exceptions import SymPyDeprecationWarning def _warn_deprecation(wrapped, stacklevel): decorator_kwargs.setdefault('feature', wrapped.__name__) SymPyDeprecationWarning(**decorator_kwargs).warn(stacklevel=stacklevel) def deprecated_decorator(wrapped): if hasattr(wrapped, '__mro__'): # wrapped is actually a class class wrapper(wrapped): __doc__ = wrapped.__doc__ __name__ = wrapped.__name__ __module__ = wrapped.__module__ _sympy_deprecated_func = wrapped def __init__(self, *args, **kwargs): _warn_deprecation(wrapped, 4) super(wrapper, self).__init__(*args, **kwargs) else: @wraps(wrapped) def wrapper(*args, **kwargs): _warn_deprecation(wrapped, 3) return wrapped(*args, **kwargs) wrapper._sympy_deprecated_func = wrapped return wrapper return deprecated_decorator def _sympifyit(arg, retval=None): """decorator to smartly _sympify function arguments @_sympifyit('other', NotImplemented) def add(self, other): ... In add, other can be thought of as already being a SymPy object. If it is not, the code is likely to catch an exception, then other will be explicitly _sympified, and the whole code restarted. if _sympify(arg) fails, NotImplemented will be returned see: __sympifyit """ def deco(func): return __sympifyit(func, arg, retval) return deco def __sympifyit(func, arg, retval=None): """decorator to _sympify `arg` argument for function `func` don't use directly -- use _sympifyit instead """ # we support f(a,b) only if not get_function_code(func).co_argcount: raise LookupError("func not found") # only b is _sympified assert get_function_code(func).co_varnames[1] == arg if retval is None: @wraps(func) def __sympifyit_wrapper(a, b): return func(a, sympify(b, strict=True)) else: @wraps(func) def __sympifyit_wrapper(a, b): try: # If an external class has _op_priority, it knows how to deal # with sympy objects. Otherwise, it must be converted. if not hasattr(b, '_op_priority'): b = sympify(b, strict=True) return func(a, b) except SympifyError: return retval return __sympifyit_wrapper def call_highest_priority(method_name): """A decorator for binary special methods to handle _op_priority. Binary special methods in Expr and its subclasses use a special attribute '_op_priority' to determine whose special method will be called to handle the operation. In general, the object having the highest value of '_op_priority' will handle the operation. Expr and subclasses that define custom binary special methods (__mul__, etc.) should decorate those methods with this decorator to add the priority logic. The ``method_name`` argument is the name of the method of the other class that will be called. Use this decorator in the following manner:: # Call other.__rmul__ if other._op_priority > self._op_priority @call_highest_priority('__rmul__') def __mul__(self, other): ... # Call other.__mul__ if other._op_priority > self._op_priority @call_highest_priority('__mul__') def __rmul__(self, other): ... """ def priority_decorator(func): @wraps(func) def binary_op_wrapper(self, other): if hasattr(other, '_op_priority'): if other._op_priority > self._op_priority: f = getattr(other, method_name, None) if f is not None: return f(self) return func(self, other) return binary_op_wrapper return priority_decorator
1cb01a15b432d101d285dc3b95c2201f2561feb4671a46a9cdfb6284cc99d862
"""Base class for all the objects in SymPy""" from __future__ import print_function, division from collections import defaultdict from itertools import chain from .assumptions import BasicMeta, ManagedProperties from .cache import cacheit from .sympify import _sympify, sympify, SympifyError from .compatibility import (iterable, Iterator, ordered, string_types, with_metaclass, zip_longest, range, PY3, Mapping) from .singleton import S from inspect import getmro def as_Basic(expr): """Return expr as a Basic instance using strict sympify or raise a TypeError; this is just a wrapper to _sympify, raising a TypeError instead of a SympifyError.""" from sympy.utilities.misc import func_name try: return _sympify(expr) except SympifyError: raise TypeError( 'Argument must be a Basic object, not `%s`' % func_name( expr)) class Basic(with_metaclass(ManagedProperties)): """ Base class for all objects in SymPy. Conventions: 1) Always use ``.args``, when accessing parameters of some instance: >>> from sympy import cot >>> from sympy.abc import x, y >>> cot(x).args (x,) >>> cot(x).args[0] x >>> (x*y).args (x, y) >>> (x*y).args[1] y 2) Never use internal methods or variables (the ones prefixed with ``_``): >>> cot(x)._args # do not use this, use cot(x).args instead (x,) """ __slots__ = ['_mhash', # hash value '_args', # arguments '_assumptions' ] # To be overridden with True in the appropriate subclasses is_number = False is_Atom = False is_Symbol = False is_symbol = False is_Indexed = False is_Dummy = False is_Wild = False is_Function = False is_Add = False is_Mul = False is_Pow = False is_Number = False is_Float = False is_Rational = False is_Integer = False is_NumberSymbol = False is_Order = False is_Derivative = False is_Piecewise = False is_Poly = False is_AlgebraicNumber = False is_Relational = False is_Equality = False is_Boolean = False is_Not = False is_Matrix = False is_Vector = False is_Point = False is_MatAdd = False is_MatMul = False def __new__(cls, *args): obj = object.__new__(cls) obj._assumptions = cls.default_assumptions obj._mhash = None # will be set by __hash__ method. obj._args = args # all items in args must be Basic objects return obj def copy(self): return self.func(*self.args) def __reduce_ex__(self, proto): """ Pickling support.""" return type(self), self.__getnewargs__(), self.__getstate__() def __getnewargs__(self): return self.args def __getstate__(self): return {} def __setstate__(self, state): for k, v in state.items(): setattr(self, k, v) def __hash__(self): # hash cannot be cached using cache_it because infinite recurrence # occurs as hash is needed for setting cache dictionary keys h = self._mhash if h is None: h = hash((type(self).__name__,) + self._hashable_content()) self._mhash = h return h def _hashable_content(self): """Return a tuple of information about self that can be used to compute the hash. If a class defines additional attributes, like ``name`` in Symbol, then this method should be updated accordingly to return such relevant attributes. Defining more than _hashable_content is necessary if __eq__ has been defined by a class. See note about this in Basic.__eq__.""" return self._args @property def assumptions0(self): """ Return object `type` assumptions. For example: Symbol('x', real=True) Symbol('x', integer=True) are different objects. In other words, besides Python type (Symbol in this case), the initial assumptions are also forming their typeinfo. Examples ======== >>> from sympy import Symbol >>> from sympy.abc import x >>> x.assumptions0 {'commutative': True} >>> x = Symbol("x", positive=True) >>> x.assumptions0 {'commutative': True, 'complex': True, 'hermitian': True, 'imaginary': False, 'negative': False, 'nonnegative': True, 'nonpositive': False, 'nonzero': True, 'positive': True, 'real': True, 'zero': False} """ return {} def compare(self, other): """ Return -1, 0, 1 if the object is smaller, equal, or greater than other. Not in the mathematical sense. If the object is of a different type from the "other" then their classes are ordered according to the sorted_classes list. Examples ======== >>> from sympy.abc import x, y >>> x.compare(y) -1 >>> x.compare(x) 0 >>> y.compare(x) 1 """ # all redefinitions of __cmp__ method should start with the # following lines: if self is other: return 0 n1 = self.__class__ n2 = other.__class__ c = (n1 > n2) - (n1 < n2) if c: return c # st = self._hashable_content() ot = other._hashable_content() c = (len(st) > len(ot)) - (len(st) < len(ot)) if c: return c for l, r in zip(st, ot): l = Basic(*l) if isinstance(l, frozenset) else l r = Basic(*r) if isinstance(r, frozenset) else r if isinstance(l, Basic): c = l.compare(r) else: c = (l > r) - (l < r) if c: return c return 0 @staticmethod def _compare_pretty(a, b): from sympy.series.order import Order if isinstance(a, Order) and not isinstance(b, Order): return 1 if not isinstance(a, Order) and isinstance(b, Order): return -1 if a.is_Rational and b.is_Rational: l = a.p * b.q r = b.p * a.q return (l > r) - (l < r) else: from sympy.core.symbol import Wild p1, p2, p3 = Wild("p1"), Wild("p2"), Wild("p3") r_a = a.match(p1 * p2**p3) if r_a and p3 in r_a: a3 = r_a[p3] r_b = b.match(p1 * p2**p3) if r_b and p3 in r_b: b3 = r_b[p3] c = Basic.compare(a3, b3) if c != 0: return c return Basic.compare(a, b) @classmethod def fromiter(cls, args, **assumptions): """ Create a new object from an iterable. This is a convenience function that allows one to create objects from any iterable, without having to convert to a list or tuple first. Examples ======== >>> from sympy import Tuple >>> Tuple.fromiter(i for i in range(5)) (0, 1, 2, 3, 4) """ return cls(*tuple(args), **assumptions) @classmethod def class_key(cls): """Nice order of classes. """ return 5, 0, cls.__name__ @cacheit def sort_key(self, order=None): """ Return a sort key. Examples ======== >>> from sympy.core import S, I >>> sorted([S(1)/2, I, -I], key=lambda x: x.sort_key()) [1/2, -I, I] >>> S("[x, 1/x, 1/x**2, x**2, x**(1/2), x**(1/4), x**(3/2)]") [x, 1/x, x**(-2), x**2, sqrt(x), x**(1/4), x**(3/2)] >>> sorted(_, key=lambda x: x.sort_key()) [x**(-2), 1/x, x**(1/4), sqrt(x), x, x**(3/2), x**2] """ # XXX: remove this when issue 5169 is fixed def inner_key(arg): if isinstance(arg, Basic): return arg.sort_key(order) else: return arg args = self._sorted_args args = len(args), tuple([inner_key(arg) for arg in args]) return self.class_key(), args, S.One.sort_key(), S.One def __eq__(self, other): """Return a boolean indicating whether a == b on the basis of their symbolic trees. This is the same as a.compare(b) == 0 but faster. Notes ===== If a class that overrides __eq__() needs to retain the implementation of __hash__() from a parent class, the interpreter must be told this explicitly by setting __hash__ = <ParentClass>.__hash__. Otherwise the inheritance of __hash__() will be blocked, just as if __hash__ had been explicitly set to None. References ========== from http://docs.python.org/dev/reference/datamodel.html#object.__hash__ """ if self is other: return True tself = type(self) tother = type(other) if tself is not tother: try: other = _sympify(other) tother = type(other) except SympifyError: return NotImplemented # As long as we have the ordering of classes (sympy.core), # comparing types will be slow in Python 2, because it uses # __cmp__. Until we can remove it # (https://github.com/sympy/sympy/issues/4269), we only compare # types in Python 2 directly if they actually have __ne__. if PY3 or type(tself).__ne__ is not type.__ne__: if tself != tother: return False elif tself is not tother: return False return self._hashable_content() == other._hashable_content() def __ne__(self, other): """a != b -> Compare two symbolic trees and see whether they are different this is the same as: a.compare(b) != 0 but faster """ return not self == other def dummy_eq(self, other, symbol=None): """ Compare two expressions and handle dummy symbols. Examples ======== >>> from sympy import Dummy >>> from sympy.abc import x, y >>> u = Dummy('u') >>> (u**2 + 1).dummy_eq(x**2 + 1) True >>> (u**2 + 1) == (x**2 + 1) False >>> (u**2 + y).dummy_eq(x**2 + y, x) True >>> (u**2 + y).dummy_eq(x**2 + y, y) False """ s = self.as_dummy() o = _sympify(other) o = o.as_dummy() dummy_symbols = [i for i in s.free_symbols if i.is_Dummy] if len(dummy_symbols) == 1: dummy = dummy_symbols.pop() else: return s == o if symbol is None: symbols = o.free_symbols if len(symbols) == 1: symbol = symbols.pop() else: return s == o tmp = dummy.__class__() return s.subs(dummy, tmp) == o.subs(symbol, tmp) # Note, we always use the default ordering (lex) in __str__ and __repr__, # regardless of the global setting. See issue 5487. def __repr__(self): """Method to return the string representation. Return the expression as a string. """ from sympy.printing import sstr return sstr(self, order=None) def __str__(self): from sympy.printing import sstr return sstr(self, order=None) # We don't define _repr_png_ here because it would add a large amount of # data to any notebook containing SymPy expressions, without adding # anything useful to the notebook. It can still enabled manually, e.g., # for the qtconsole, with init_printing(). def _repr_latex_(self): """ IPython/Jupyter LaTeX printing To change the behavior of this (e.g., pass in some settings to LaTeX), use init_printing(). init_printing() will also enable LaTeX printing for built in numeric types like ints and container types that contain SymPy objects, like lists and dictionaries of expressions. """ from sympy.printing.latex import latex s = latex(self, mode='plain') return "$\\displaystyle %s$" % s _repr_latex_orig = _repr_latex_ def atoms(self, *types): """Returns the atoms that form the current object. By default, only objects that are truly atomic and can't be divided into smaller pieces are returned: symbols, numbers, and number symbols like I and pi. It is possible to request atoms of any type, however, as demonstrated below. Examples ======== >>> from sympy import I, pi, sin >>> from sympy.abc import x, y >>> (1 + x + 2*sin(y + I*pi)).atoms() {1, 2, I, pi, x, y} If one or more types are given, the results will contain only those types of atoms. >>> from sympy import Number, NumberSymbol, Symbol >>> (1 + x + 2*sin(y + I*pi)).atoms(Symbol) {x, y} >>> (1 + x + 2*sin(y + I*pi)).atoms(Number) {1, 2} >>> (1 + x + 2*sin(y + I*pi)).atoms(Number, NumberSymbol) {1, 2, pi} >>> (1 + x + 2*sin(y + I*pi)).atoms(Number, NumberSymbol, I) {1, 2, I, pi} Note that I (imaginary unit) and zoo (complex infinity) are special types of number symbols and are not part of the NumberSymbol class. The type can be given implicitly, too: >>> (1 + x + 2*sin(y + I*pi)).atoms(x) # x is a Symbol {x, y} Be careful to check your assumptions when using the implicit option since ``S(1).is_Integer = True`` but ``type(S(1))`` is ``One``, a special type of sympy atom, while ``type(S(2))`` is type ``Integer`` and will find all integers in an expression: >>> from sympy import S >>> (1 + x + 2*sin(y + I*pi)).atoms(S(1)) {1} >>> (1 + x + 2*sin(y + I*pi)).atoms(S(2)) {1, 2} Finally, arguments to atoms() can select more than atomic atoms: any sympy type (loaded in core/__init__.py) can be listed as an argument and those types of "atoms" as found in scanning the arguments of the expression recursively: >>> from sympy import Function, Mul >>> from sympy.core.function import AppliedUndef >>> f = Function('f') >>> (1 + f(x) + 2*sin(y + I*pi)).atoms(Function) {f(x), sin(y + I*pi)} >>> (1 + f(x) + 2*sin(y + I*pi)).atoms(AppliedUndef) {f(x)} >>> (1 + x + 2*sin(y + I*pi)).atoms(Mul) {I*pi, 2*sin(y + I*pi)} """ if types: types = tuple( [t if isinstance(t, type) else type(t) for t in types]) else: types = (Atom,) result = set() for expr in preorder_traversal(self): if isinstance(expr, types): result.add(expr) return result @property def free_symbols(self): """Return from the atoms of self those which are free symbols. For most expressions, all symbols are free symbols. For some classes this is not true. e.g. Integrals use Symbols for the dummy variables which are bound variables, so Integral has a method to return all symbols except those. Derivative keeps track of symbols with respect to which it will perform a derivative; those are bound variables, too, so it has its own free_symbols method. Any other method that uses bound variables should implement a free_symbols method.""" return set().union(*[a.free_symbols for a in self.args]) @property def expr_free_symbols(self): return set([]) def as_dummy(self): """Return the expression with any objects having structurally bound symbols replaced with unique, canonical symbols within the object in which they appear and having only the default assumption for commutativity being True. Examples ======== >>> from sympy import Integral, Symbol >>> from sympy.abc import x, y >>> r = Symbol('r', real=True) >>> Integral(r, (r, x)).as_dummy() Integral(_0, (_0, x)) >>> _.variables[0].is_real is None True Notes ===== Any object that has structural dummy variables should have a property, `bound_symbols` that returns a list of structural dummy symbols of the object itself. Lambda and Subs have bound symbols, but because of how they are cached, they already compare the same regardless of their bound symbols: >>> from sympy import Lambda >>> Lambda(x, x + 1) == Lambda(y, y + 1) True """ def can(x): d = {i: i.as_dummy() for i in x.bound_symbols} # mask free that shadow bound x = x.subs(d) c = x.canonical_variables # replace bound x = x.xreplace(c) # undo masking x = x.xreplace(dict((v, k) for k, v in d.items())) return x return self.replace( lambda x: hasattr(x, 'bound_symbols'), lambda x: can(x)) @property def canonical_variables(self): """Return a dictionary mapping any variable defined in ``self.bound_symbols`` to Symbols that do not clash with any existing symbol in the expression. Examples ======== >>> from sympy import Lambda >>> from sympy.abc import x >>> Lambda(x, 2*x).canonical_variables {x: _0} """ from sympy.core.symbol import Symbol from sympy.utilities.iterables import numbered_symbols if not hasattr(self, 'bound_symbols'): return {} dums = numbered_symbols('_') reps = {} v = self.bound_symbols # this free will include bound symbols that are not part of # self's bound symbols free = set([i.name for i in self.atoms(Symbol) - set(v)]) for v in v: d = next(dums) if v.is_Symbol: while v.name == d.name or d.name in free: d = next(dums) reps[v] = d return reps def rcall(self, *args): """Apply on the argument recursively through the expression tree. This method is used to simulate a common abuse of notation for operators. For instance in SymPy the the following will not work: ``(x+Lambda(y, 2*y))(z) == x+2*z``, however you can use >>> from sympy import Lambda >>> from sympy.abc import x, y, z >>> (x + Lambda(y, 2*y)).rcall(z) x + 2*z """ return Basic._recursive_call(self, args) @staticmethod def _recursive_call(expr_to_call, on_args): """Helper for rcall method. """ from sympy import Symbol def the_call_method_is_overridden(expr): for cls in getmro(type(expr)): if '__call__' in cls.__dict__: return cls != Basic if callable(expr_to_call) and the_call_method_is_overridden(expr_to_call): if isinstance(expr_to_call, Symbol): # XXX When you call a Symbol it is return expr_to_call # transformed into an UndefFunction else: return expr_to_call(*on_args) elif expr_to_call.args: args = [Basic._recursive_call( sub, on_args) for sub in expr_to_call.args] return type(expr_to_call)(*args) else: return expr_to_call def is_hypergeometric(self, k): from sympy.simplify import hypersimp return hypersimp(self, k) is not None @property def is_comparable(self): """Return True if self can be computed to a real number (or already is a real number) with precision, else False. Examples ======== >>> from sympy import exp_polar, pi, I >>> (I*exp_polar(I*pi/2)).is_comparable True >>> (I*exp_polar(I*pi*2)).is_comparable False A False result does not mean that `self` cannot be rewritten into a form that would be comparable. For example, the difference computed below is zero but without simplification it does not evaluate to a zero with precision: >>> e = 2**pi*(1 + 2**pi) >>> dif = e - e.expand() >>> dif.is_comparable False >>> dif.n(2)._prec 1 """ is_real = self.is_real if is_real is False: return False if not self.is_number: return False # don't re-eval numbers that are already evaluated since # this will create spurious precision n, i = [p.evalf(2) if not p.is_Number else p for p in self.as_real_imag()] if not (i.is_Number and n.is_Number): return False if i: # if _prec = 1 we can't decide and if not, # the answer is False because numbers with # imaginary parts can't be compared # so return False return False else: return n._prec != 1 @property def func(self): """ The top-level function in an expression. The following should hold for all objects:: >> x == x.func(*x.args) Examples ======== >>> from sympy.abc import x >>> a = 2*x >>> a.func <class 'sympy.core.mul.Mul'> >>> a.args (2, x) >>> a.func(*a.args) 2*x >>> a == a.func(*a.args) True """ return self.__class__ @property def args(self): """Returns a tuple of arguments of 'self'. Examples ======== >>> from sympy import cot >>> from sympy.abc import x, y >>> cot(x).args (x,) >>> cot(x).args[0] x >>> (x*y).args (x, y) >>> (x*y).args[1] y Notes ===== Never use self._args, always use self.args. Only use _args in __new__ when creating a new function. Don't override .args() from Basic (so that it's easy to change the interface in the future if needed). """ return self._args @property def _sorted_args(self): """ The same as ``args``. Derived classes which don't fix an order on their arguments should override this method to produce the sorted representation. """ return self.args def as_poly(self, *gens, **args): """Converts ``self`` to a polynomial or returns ``None``. >>> from sympy import sin >>> from sympy.abc import x, y >>> print((x**2 + x*y).as_poly()) Poly(x**2 + x*y, x, y, domain='ZZ') >>> print((x**2 + x*y).as_poly(x, y)) Poly(x**2 + x*y, x, y, domain='ZZ') >>> print((x**2 + sin(y)).as_poly(x, y)) None """ from sympy.polys import Poly, PolynomialError try: poly = Poly(self, *gens, **args) if not poly.is_Poly: return None else: return poly except PolynomialError: return None def as_content_primitive(self, radical=False, clear=True): """A stub to allow Basic args (like Tuple) to be skipped when computing the content and primitive components of an expression. See Also ======== sympy.core.expr.Expr.as_content_primitive """ return S.One, self def subs(self, *args, **kwargs): """ Substitutes old for new in an expression after sympifying args. `args` is either: - two arguments, e.g. foo.subs(old, new) - one iterable argument, e.g. foo.subs(iterable). The iterable may be o an iterable container with (old, new) pairs. In this case the replacements are processed in the order given with successive patterns possibly affecting replacements already made. o a dict or set whose key/value items correspond to old/new pairs. In this case the old/new pairs will be sorted by op count and in case of a tie, by number of args and the default_sort_key. The resulting sorted list is then processed as an iterable container (see previous). If the keyword ``simultaneous`` is True, the subexpressions will not be evaluated until all the substitutions have been made. Examples ======== >>> from sympy import pi, exp, limit, oo >>> from sympy.abc import x, y >>> (1 + x*y).subs(x, pi) pi*y + 1 >>> (1 + x*y).subs({x:pi, y:2}) 1 + 2*pi >>> (1 + x*y).subs([(x, pi), (y, 2)]) 1 + 2*pi >>> reps = [(y, x**2), (x, 2)] >>> (x + y).subs(reps) 6 >>> (x + y).subs(reversed(reps)) x**2 + 2 >>> (x**2 + x**4).subs(x**2, y) y**2 + y To replace only the x**2 but not the x**4, use xreplace: >>> (x**2 + x**4).xreplace({x**2: y}) x**4 + y To delay evaluation until all substitutions have been made, set the keyword ``simultaneous`` to True: >>> (x/y).subs([(x, 0), (y, 0)]) 0 >>> (x/y).subs([(x, 0), (y, 0)], simultaneous=True) nan This has the added feature of not allowing subsequent substitutions to affect those already made: >>> ((x + y)/y).subs({x + y: y, y: x + y}) 1 >>> ((x + y)/y).subs({x + y: y, y: x + y}, simultaneous=True) y/(x + y) In order to obtain a canonical result, unordered iterables are sorted by count_op length, number of arguments and by the default_sort_key to break any ties. All other iterables are left unsorted. >>> from sympy import sqrt, sin, cos >>> from sympy.abc import a, b, c, d, e >>> A = (sqrt(sin(2*x)), a) >>> B = (sin(2*x), b) >>> C = (cos(2*x), c) >>> D = (x, d) >>> E = (exp(x), e) >>> expr = sqrt(sin(2*x))*sin(exp(x)*x)*cos(2*x) + sin(2*x) >>> expr.subs(dict([A, B, C, D, E])) a*c*sin(d*e) + b The resulting expression represents a literal replacement of the old arguments with the new arguments. This may not reflect the limiting behavior of the expression: >>> (x**3 - 3*x).subs({x: oo}) nan >>> limit(x**3 - 3*x, x, oo) oo If the substitution will be followed by numerical evaluation, it is better to pass the substitution to evalf as >>> (1/x).evalf(subs={x: 3.0}, n=21) 0.333333333333333333333 rather than >>> (1/x).subs({x: 3.0}).evalf(21) 0.333333333333333314830 as the former will ensure that the desired level of precision is obtained. See Also ======== replace: replacement capable of doing wildcard-like matching, parsing of match, and conditional replacements xreplace: exact node replacement in expr tree; also capable of using matching rules evalf: calculates the given formula to a desired level of precision """ from sympy.core.containers import Dict from sympy.utilities import default_sort_key from sympy import Dummy, Symbol unordered = False if len(args) == 1: sequence = args[0] if isinstance(sequence, set): unordered = True elif isinstance(sequence, (Dict, Mapping)): unordered = True sequence = sequence.items() elif not iterable(sequence): from sympy.utilities.misc import filldedent raise ValueError(filldedent(""" When a single argument is passed to subs it should be a dictionary of old: new pairs or an iterable of (old, new) tuples.""")) elif len(args) == 2: sequence = [args] else: raise ValueError("subs accepts either 1 or 2 arguments") sequence = list(sequence) for i, s in enumerate(sequence): if isinstance(s[0], string_types): # when old is a string we prefer Symbol s = Symbol(s[0]), s[1] try: s = [sympify(_, strict=not isinstance(_, string_types)) for _ in s] except SympifyError: # if it can't be sympified, skip it sequence[i] = None continue # skip if there is no change sequence[i] = None if _aresame(*s) else tuple(s) sequence = list(filter(None, sequence)) if unordered: sequence = dict(sequence) if not all(k.is_Atom for k in sequence): d = {} for o, n in sequence.items(): try: ops = o.count_ops(), len(o.args) except TypeError: ops = (0, 0) d.setdefault(ops, []).append((o, n)) newseq = [] for k in sorted(d.keys(), reverse=True): newseq.extend( sorted([v[0] for v in d[k]], key=default_sort_key)) sequence = [(k, sequence[k]) for k in newseq] del newseq, d else: sequence = sorted([(k, v) for (k, v) in sequence.items()], key=default_sort_key) if kwargs.pop('simultaneous', False): # XXX should this be the default for dict subs? reps = {} rv = self kwargs['hack2'] = True m = Dummy() for old, new in sequence: d = Dummy(commutative=new.is_commutative) # using d*m so Subs will be used on dummy variables # in things like Derivative(f(x, y), x) in which x # is both free and bound rv = rv._subs(old, d*m, **kwargs) if not isinstance(rv, Basic): break reps[d] = new reps[m] = S.One # get rid of m return rv.xreplace(reps) else: rv = self for old, new in sequence: rv = rv._subs(old, new, **kwargs) if not isinstance(rv, Basic): break return rv @cacheit def _subs(self, old, new, **hints): """Substitutes an expression old -> new. If self is not equal to old then _eval_subs is called. If _eval_subs doesn't want to make any special replacement then a None is received which indicates that the fallback should be applied wherein a search for replacements is made amongst the arguments of self. >>> from sympy import Add >>> from sympy.abc import x, y, z Examples ======== Add's _eval_subs knows how to target x + y in the following so it makes the change: >>> (x + y + z).subs(x + y, 1) z + 1 Add's _eval_subs doesn't need to know how to find x + y in the following: >>> Add._eval_subs(z*(x + y) + 3, x + y, 1) is None True The returned None will cause the fallback routine to traverse the args and pass the z*(x + y) arg to Mul where the change will take place and the substitution will succeed: >>> (z*(x + y) + 3).subs(x + y, 1) z + 3 ** Developers Notes ** An _eval_subs routine for a class should be written if: 1) any arguments are not instances of Basic (e.g. bool, tuple); 2) some arguments should not be targeted (as in integration variables); 3) if there is something other than a literal replacement that should be attempted (as in Piecewise where the condition may be updated without doing a replacement). If it is overridden, here are some special cases that might arise: 1) If it turns out that no special change was made and all the original sub-arguments should be checked for replacements then None should be returned. 2) If it is necessary to do substitutions on a portion of the expression then _subs should be called. _subs will handle the case of any sub-expression being equal to old (which usually would not be the case) while its fallback will handle the recursion into the sub-arguments. For example, after Add's _eval_subs removes some matching terms it must process the remaining terms so it calls _subs on each of the un-matched terms and then adds them onto the terms previously obtained. 3) If the initial expression should remain unchanged then the original expression should be returned. (Whenever an expression is returned, modified or not, no further substitution of old -> new is attempted.) Sum's _eval_subs routine uses this strategy when a substitution is attempted on any of its summation variables. """ def fallback(self, old, new): """ Try to replace old with new in any of self's arguments. """ hit = False args = list(self.args) for i, arg in enumerate(args): if not hasattr(arg, '_eval_subs'): continue arg = arg._subs(old, new, **hints) if not _aresame(arg, args[i]): hit = True args[i] = arg if hit: rv = self.func(*args) hack2 = hints.get('hack2', False) if hack2 and self.is_Mul and not rv.is_Mul: # 2-arg hack coeff = S.One nonnumber = [] for i in args: if i.is_Number: coeff *= i else: nonnumber.append(i) nonnumber = self.func(*nonnumber) if coeff is S.One: return nonnumber else: return self.func(coeff, nonnumber, evaluate=False) return rv return self if _aresame(self, old): return new rv = self._eval_subs(old, new) if rv is None: rv = fallback(self, old, new) return rv def _eval_subs(self, old, new): """Override this stub if you want to do anything more than attempt a replacement of old with new in the arguments of self. See also: _subs """ return None def xreplace(self, rule): """ Replace occurrences of objects within the expression. Parameters ========== rule : dict-like Expresses a replacement rule Returns ======= xreplace : the result of the replacement Examples ======== >>> from sympy import symbols, pi, exp >>> x, y, z = symbols('x y z') >>> (1 + x*y).xreplace({x: pi}) pi*y + 1 >>> (1 + x*y).xreplace({x: pi, y: 2}) 1 + 2*pi Replacements occur only if an entire node in the expression tree is matched: >>> (x*y + z).xreplace({x*y: pi}) z + pi >>> (x*y*z).xreplace({x*y: pi}) x*y*z >>> (2*x).xreplace({2*x: y, x: z}) y >>> (2*2*x).xreplace({2*x: y, x: z}) 4*z >>> (x + y + 2).xreplace({x + y: 2}) x + y + 2 >>> (x + 2 + exp(x + 2)).xreplace({x + 2: y}) x + exp(y) + 2 xreplace doesn't differentiate between free and bound symbols. In the following, subs(x, y) would not change x since it is a bound symbol, but xreplace does: >>> from sympy import Integral >>> Integral(x, (x, 1, 2*x)).xreplace({x: y}) Integral(y, (y, 1, 2*y)) Trying to replace x with an expression raises an error: >>> Integral(x, (x, 1, 2*x)).xreplace({x: 2*y}) # doctest: +SKIP ValueError: Invalid limits given: ((2*y, 1, 4*y),) See Also ======== replace: replacement capable of doing wildcard-like matching, parsing of match, and conditional replacements subs: substitution of subexpressions as defined by the objects themselves. """ value, _ = self._xreplace(rule) return value def _xreplace(self, rule): """ Helper for xreplace. Tracks whether a replacement actually occurred. """ if self in rule: return rule[self], True elif rule: args = [] changed = False for a in self.args: _xreplace = getattr(a, '_xreplace', None) if _xreplace is not None: a_xr = _xreplace(rule) args.append(a_xr[0]) changed |= a_xr[1] else: args.append(a) args = tuple(args) if changed: return self.func(*args), True return self, False @cacheit def has(self, *patterns): """ Test whether any subexpression matches any of the patterns. Examples ======== >>> from sympy import sin >>> from sympy.abc import x, y, z >>> (x**2 + sin(x*y)).has(z) False >>> (x**2 + sin(x*y)).has(x, y, z) True >>> x.has(x) True Note ``has`` is a structural algorithm with no knowledge of mathematics. Consider the following half-open interval: >>> from sympy.sets import Interval >>> i = Interval.Lopen(0, 5); i Interval.Lopen(0, 5) >>> i.args (0, 5, True, False) >>> i.has(4) # there is no "4" in the arguments False >>> i.has(0) # there *is* a "0" in the arguments True Instead, use ``contains`` to determine whether a number is in the interval or not: >>> i.contains(4) True >>> i.contains(0) False Note that ``expr.has(*patterns)`` is exactly equivalent to ``any(expr.has(p) for p in patterns)``. In particular, ``False`` is returned when the list of patterns is empty. >>> x.has() False """ return any(self._has(pattern) for pattern in patterns) def _has(self, pattern): """Helper for .has()""" from sympy.core.function import UndefinedFunction, Function if isinstance(pattern, UndefinedFunction): return any(f.func == pattern or f == pattern for f in self.atoms(Function, UndefinedFunction)) pattern = sympify(pattern) if isinstance(pattern, BasicMeta): return any(isinstance(arg, pattern) for arg in preorder_traversal(self)) _has_matcher = getattr(pattern, '_has_matcher', None) if _has_matcher is not None: match = _has_matcher() return any(match(arg) for arg in preorder_traversal(self)) else: return any(arg == pattern for arg in preorder_traversal(self)) def _has_matcher(self): """Helper for .has()""" return lambda other: self == other def replace(self, query, value, map=False, simultaneous=True, exact=None): """ Replace matching subexpressions of ``self`` with ``value``. If ``map = True`` then also return the mapping {old: new} where ``old`` was a sub-expression found with query and ``new`` is the replacement value for it. If the expression itself doesn't match the query, then the returned value will be ``self.xreplace(map)`` otherwise it should be ``self.subs(ordered(map.items()))``. Traverses an expression tree and performs replacement of matching subexpressions from the bottom to the top of the tree. The default approach is to do the replacement in a simultaneous fashion so changes made are targeted only once. If this is not desired or causes problems, ``simultaneous`` can be set to False. In addition, if an expression containing more than one Wild symbol is being used to match subexpressions and the ``exact`` flag is True, then the match will only succeed if non-zero values are received for each Wild that appears in the match pattern. The list of possible combinations of queries and replacement values is listed below: Examples ======== Initial setup >>> from sympy import log, sin, cos, tan, Wild, Mul, Add >>> from sympy.abc import x, y >>> f = log(sin(x)) + tan(sin(x**2)) 1.1. type -> type obj.replace(type, newtype) When object of type ``type`` is found, replace it with the result of passing its argument(s) to ``newtype``. >>> f.replace(sin, cos) log(cos(x)) + tan(cos(x**2)) >>> sin(x).replace(sin, cos, map=True) (cos(x), {sin(x): cos(x)}) >>> (x*y).replace(Mul, Add) x + y 1.2. type -> func obj.replace(type, func) When object of type ``type`` is found, apply ``func`` to its argument(s). ``func`` must be written to handle the number of arguments of ``type``. >>> f.replace(sin, lambda arg: sin(2*arg)) log(sin(2*x)) + tan(sin(2*x**2)) >>> (x*y).replace(Mul, lambda *args: sin(2*Mul(*args))) sin(2*x*y) 2.1. pattern -> expr obj.replace(pattern(wild), expr(wild)) Replace subexpressions matching ``pattern`` with the expression written in terms of the Wild symbols in ``pattern``. >>> a, b = map(Wild, 'ab') >>> f.replace(sin(a), tan(a)) log(tan(x)) + tan(tan(x**2)) >>> f.replace(sin(a), tan(a/2)) log(tan(x/2)) + tan(tan(x**2/2)) >>> f.replace(sin(a), a) log(x) + tan(x**2) >>> (x*y).replace(a*x, a) y Matching is exact by default when more than one Wild symbol is used: matching fails unless the match gives non-zero values for all Wild symbols: >>> (2*x + y).replace(a*x + b, b - a) y - 2 >>> (2*x).replace(a*x + b, b - a) 2*x When set to False, the results may be non-intuitive: >>> (2*x).replace(a*x + b, b - a, exact=False) 2/x 2.2. pattern -> func obj.replace(pattern(wild), lambda wild: expr(wild)) All behavior is the same as in 2.1 but now a function in terms of pattern variables is used rather than an expression: >>> f.replace(sin(a), lambda a: sin(2*a)) log(sin(2*x)) + tan(sin(2*x**2)) 3.1. func -> func obj.replace(filter, func) Replace subexpression ``e`` with ``func(e)`` if ``filter(e)`` is True. >>> g = 2*sin(x**3) >>> g.replace(lambda expr: expr.is_Number, lambda expr: expr**2) 4*sin(x**9) The expression itself is also targeted by the query but is done in such a fashion that changes are not made twice. >>> e = x*(x*y + 1) >>> e.replace(lambda x: x.is_Mul, lambda x: 2*x) 2*x*(2*x*y + 1) See Also ======== subs: substitution of subexpressions as defined by the objects themselves. xreplace: exact node replacement in expr tree; also capable of using matching rules """ from sympy.core.symbol import Dummy, Wild from sympy.simplify.simplify import bottom_up try: query = _sympify(query) except SympifyError: pass try: value = _sympify(value) except SympifyError: pass if isinstance(query, type): _query = lambda expr: isinstance(expr, query) if isinstance(value, type): _value = lambda expr, result: value(*expr.args) elif callable(value): _value = lambda expr, result: value(*expr.args) else: raise TypeError( "given a type, replace() expects another " "type or a callable") elif isinstance(query, Basic): _query = lambda expr: expr.match(query) exact = len(query.atoms(Wild)) > 1 if exact is None else exact if isinstance(value, Basic): if exact: _value = lambda expr, result: (value.subs(result) if all(result.values()) else expr) else: _value = lambda expr, result: value.subs(result) elif callable(value): # match dictionary keys get the trailing underscore stripped # from them and are then passed as keywords to the callable; # if ``exact`` is True, only accept match if there are no null # values amongst those matched. if exact: _value = lambda expr, result: (value(** {str(k)[:-1]: v for k, v in result.items()}) if all(val for val in result.values()) else expr) else: _value = lambda expr, result: value(** {str(k)[:-1]: v for k, v in result.items()}) else: raise TypeError( "given an expression, replace() expects " "another expression or a callable") elif callable(query): _query = query if callable(value): _value = lambda expr, result: value(expr) else: raise TypeError( "given a callable, replace() expects " "another callable") else: raise TypeError( "first argument to replace() must be a " "type, an expression or a callable") mapping = {} # changes that took place mask = [] # the dummies that were used as change placeholders def rec_replace(expr): result = _query(expr) if result or result == {}: new = _value(expr, result) if new is not None and new != expr: mapping[expr] = new if simultaneous: # don't let this expression be changed during rebuilding com = getattr(new, 'is_commutative', True) if com is None: com = True d = Dummy(commutative=com) mask.append((d, new)) expr = d else: expr = new return expr rv = bottom_up(self, rec_replace, atoms=True) # restore original expressions for Dummy symbols if simultaneous: mask = list(reversed(mask)) for o, n in mask: r = {o: n} rv = rv.xreplace(r) if not map: return rv else: if simultaneous: # restore subexpressions in mapping for o, n in mask: r = {o: n} mapping = {k.xreplace(r): v.xreplace(r) for k, v in mapping.items()} return rv, mapping def find(self, query, group=False): """Find all subexpressions matching a query. """ query = _make_find_query(query) results = list(filter(query, preorder_traversal(self))) if not group: return set(results) else: groups = {} for result in results: if result in groups: groups[result] += 1 else: groups[result] = 1 return groups def count(self, query): """Count the number of matching subexpressions. """ query = _make_find_query(query) return sum(bool(query(sub)) for sub in preorder_traversal(self)) def matches(self, expr, repl_dict={}, old=False): """ Helper method for match() that looks for a match between Wild symbols in self and expressions in expr. Examples ======== >>> from sympy import symbols, Wild, Basic >>> a, b, c = symbols('a b c') >>> x = Wild('x') >>> Basic(a + x, x).matches(Basic(a + b, c)) is None True >>> Basic(a + x, x).matches(Basic(a + b + c, b + c)) {x_: b + c} """ expr = sympify(expr) if not isinstance(expr, self.__class__): return None if self == expr: return repl_dict if len(self.args) != len(expr.args): return None d = repl_dict.copy() for arg, other_arg in zip(self.args, expr.args): if arg == other_arg: continue d = arg.xreplace(d).matches(other_arg, d, old=old) if d is None: return None return d def match(self, pattern, old=False): """ Pattern matching. Wild symbols match all. Return ``None`` when expression (self) does not match with pattern. Otherwise return a dictionary such that:: pattern.xreplace(self.match(pattern)) == self Examples ======== >>> from sympy import Wild >>> from sympy.abc import x, y >>> p = Wild("p") >>> q = Wild("q") >>> r = Wild("r") >>> e = (x+y)**(x+y) >>> e.match(p**p) {p_: x + y} >>> e.match(p**q) {p_: x + y, q_: x + y} >>> e = (2*x)**2 >>> e.match(p*q**r) {p_: 4, q_: x, r_: 2} >>> (p*q**r).xreplace(e.match(p*q**r)) 4*x**2 The ``old`` flag will give the old-style pattern matching where expressions and patterns are essentially solved to give the match. Both of the following give None unless ``old=True``: >>> (x - 2).match(p - x, old=True) {p_: 2*x - 2} >>> (2/x).match(p*x, old=True) {p_: 2/x**2} """ pattern = sympify(pattern) return pattern.matches(self, old=old) def count_ops(self, visual=None): """wrapper for count_ops that returns the operation count.""" from sympy import count_ops return count_ops(self, visual) def doit(self, **hints): """Evaluate objects that are not evaluated by default like limits, integrals, sums and products. All objects of this kind will be evaluated recursively, unless some species were excluded via 'hints' or unless the 'deep' hint was set to 'False'. >>> from sympy import Integral >>> from sympy.abc import x >>> 2*Integral(x, x) 2*Integral(x, x) >>> (2*Integral(x, x)).doit() x**2 >>> (2*Integral(x, x)).doit(deep=False) 2*Integral(x, x) """ if hints.get('deep', True): terms = [term.doit(**hints) if isinstance(term, Basic) else term for term in self.args] return self.func(*terms) else: return self def _eval_rewrite(self, pattern, rule, **hints): if self.is_Atom: if hasattr(self, rule): return getattr(self, rule)() return self if hints.get('deep', True): args = [a._eval_rewrite(pattern, rule, **hints) if isinstance(a, Basic) else a for a in self.args] else: args = self.args if pattern is None or isinstance(self, pattern): if hasattr(self, rule): rewritten = getattr(self, rule)(*args, **hints) if rewritten is not None: return rewritten return self.func(*args) if hints.get('evaluate', True) else self def _accept_eval_derivative(self, s): # This method needs to be overridden by array-like objects return s._visit_eval_derivative_scalar(self) def _visit_eval_derivative_scalar(self, base): # Base is a scalar # Types are (base: scalar, self: scalar) return base._eval_derivative(self) def _visit_eval_derivative_array(self, base): # Types are (base: array/matrix, self: scalar) # Base is some kind of array/matrix, # it should have `.applyfunc(lambda x: x.diff(self)` implemented: return base._eval_derivative(self) def _eval_derivative_n_times(self, s, n): # This is the default evaluator for derivatives (as called by `diff` # and `Derivative`), it will attempt a loop to derive the expression # `n` times by calling the corresponding `_eval_derivative` method, # while leaving the derivative unevaluated if `n` is symbolic. This # method should be overridden if the object has a closed form for its # symbolic n-th derivative. from sympy import Integer if isinstance(n, (int, Integer)): obj = self for i in range(n): obj2 = obj._accept_eval_derivative(s) if obj == obj2 or obj2 is None: break obj = obj2 return obj2 else: return None def rewrite(self, *args, **hints): """ Rewrite functions in terms of other functions. Rewrites expression containing applications of functions of one kind in terms of functions of different kind. For example you can rewrite trigonometric functions as complex exponentials or combinatorial functions as gamma function. As a pattern this function accepts a list of functions to to rewrite (instances of DefinedFunction class). As rule you can use string or a destination function instance (in this case rewrite() will use the str() function). There is also the possibility to pass hints on how to rewrite the given expressions. For now there is only one such hint defined called 'deep'. When 'deep' is set to False it will forbid functions to rewrite their contents. Examples ======== >>> from sympy import sin, exp >>> from sympy.abc import x Unspecified pattern: >>> sin(x).rewrite(exp) -I*(exp(I*x) - exp(-I*x))/2 Pattern as a single function: >>> sin(x).rewrite(sin, exp) -I*(exp(I*x) - exp(-I*x))/2 Pattern as a list of functions: >>> sin(x).rewrite([sin, ], exp) -I*(exp(I*x) - exp(-I*x))/2 """ if not args: return self else: pattern = args[:-1] if isinstance(args[-1], string_types): rule = '_eval_rewrite_as_' + args[-1] else: try: rule = '_eval_rewrite_as_' + args[-1].__name__ except: rule = '_eval_rewrite_as_' + args[-1].__class__.__name__ if not pattern: return self._eval_rewrite(None, rule, **hints) else: if iterable(pattern[0]): pattern = pattern[0] pattern = [p for p in pattern if self.has(p)] if pattern: return self._eval_rewrite(tuple(pattern), rule, **hints) else: return self _constructor_postprocessor_mapping = {} @classmethod def _exec_constructor_postprocessors(cls, obj): # WARNING: This API is experimental. # This is an experimental API that introduces constructor # postprosessors for SymPy Core elements. If an argument of a SymPy # expression has a `_constructor_postprocessor_mapping` attribute, it will # be interpreted as a dictionary containing lists of postprocessing # functions for matching expression node names. clsname = obj.__class__.__name__ postprocessors = defaultdict(list) for i in obj.args: try: postprocessor_mappings = ( Basic._constructor_postprocessor_mapping[cls].items() for cls in type(i).mro() if cls in Basic._constructor_postprocessor_mapping ) for k, v in chain.from_iterable(postprocessor_mappings): postprocessors[k].extend([j for j in v if j not in postprocessors[k]]) except TypeError: pass for f in postprocessors.get(clsname, []): obj = f(obj) return obj class Atom(Basic): """ A parent class for atomic things. An atom is an expression with no subexpressions. Examples ======== Symbol, Number, Rational, Integer, ... But not: Add, Mul, Pow, ... """ is_Atom = True __slots__ = [] def matches(self, expr, repl_dict={}, old=False): if self == expr: return repl_dict def xreplace(self, rule, hack2=False): return rule.get(self, self) def doit(self, **hints): return self @classmethod def class_key(cls): return 2, 0, cls.__name__ @cacheit def sort_key(self, order=None): return self.class_key(), (1, (str(self),)), S.One.sort_key(), S.One def _eval_simplify(self, ratio, measure, rational, inverse): return self @property def _sorted_args(self): # this is here as a safeguard against accidentally using _sorted_args # on Atoms -- they cannot be rebuilt as atom.func(*atom._sorted_args) # since there are no args. So the calling routine should be checking # to see that this property is not called for Atoms. raise AttributeError('Atoms have no args. It might be necessary' ' to make a check for Atoms in the calling code.') def _aresame(a, b): """Return True if a and b are structurally the same, else False. Examples ======== To SymPy, 2.0 == 2: >>> from sympy import S >>> 2.0 == S(2) True Since a simple 'same or not' result is sometimes useful, this routine was written to provide that query: >>> from sympy.core.basic import _aresame >>> _aresame(S(2.0), S(2)) False """ from .function import AppliedUndef, UndefinedFunction as UndefFunc for i, j in zip_longest(preorder_traversal(a), preorder_traversal(b)): if i != j or type(i) != type(j): if ((isinstance(i, UndefFunc) and isinstance(j, UndefFunc)) or (isinstance(i, AppliedUndef) and isinstance(j, AppliedUndef))): if i.class_key() != j.class_key(): return False else: return False return True def _atomic(e, recursive=False): """Return atom-like quantities as far as substitution is concerned: Derivatives, Functions and Symbols. Don't return any 'atoms' that are inside such quantities unless they also appear outside, too, unless `recursive` is True. Examples ======== >>> from sympy import Derivative, Function, cos >>> from sympy.abc import x, y >>> from sympy.core.basic import _atomic >>> f = Function('f') >>> _atomic(x + y) {x, y} >>> _atomic(x + f(y)) {x, f(y)} >>> _atomic(Derivative(f(x), x) + cos(x) + y) {y, cos(x), Derivative(f(x), x)} """ from sympy import Derivative, Function, Symbol pot = preorder_traversal(e) seen = set() if isinstance(e, Basic): free = getattr(e, "free_symbols", None) if free is None: return {e} else: return set() atoms = set() for p in pot: if p in seen: pot.skip() continue seen.add(p) if isinstance(p, Symbol) and p in free: atoms.add(p) elif isinstance(p, (Derivative, Function)): if not recursive: pot.skip() atoms.add(p) return atoms class preorder_traversal(Iterator): """ Do a pre-order traversal of a tree. This iterator recursively yields nodes that it has visited in a pre-order fashion. That is, it yields the current node then descends through the tree breadth-first to yield all of a node's children's pre-order traversal. For an expression, the order of the traversal depends on the order of .args, which in many cases can be arbitrary. Parameters ========== node : sympy expression The expression to traverse. keys : (default None) sort key(s) The key(s) used to sort args of Basic objects. When None, args of Basic objects are processed in arbitrary order. If key is defined, it will be passed along to ordered() as the only key(s) to use to sort the arguments; if ``key`` is simply True then the default keys of ordered will be used. Yields ====== subtree : sympy expression All of the subtrees in the tree. Examples ======== >>> from sympy import symbols >>> from sympy.core.basic import preorder_traversal >>> x, y, z = symbols('x y z') The nodes are returned in the order that they are encountered unless key is given; simply passing key=True will guarantee that the traversal is unique. >>> list(preorder_traversal((x + y)*z, keys=None)) # doctest: +SKIP [z*(x + y), z, x + y, y, x] >>> list(preorder_traversal((x + y)*z, keys=True)) [z*(x + y), z, x + y, x, y] """ def __init__(self, node, keys=None): self._skip_flag = False self._pt = self._preorder_traversal(node, keys) def _preorder_traversal(self, node, keys): yield node if self._skip_flag: self._skip_flag = False return if isinstance(node, Basic): if not keys and hasattr(node, '_argset'): # LatticeOp keeps args as a set. We should use this if we # don't care about the order, to prevent unnecessary sorting. args = node._argset else: args = node.args if keys: if keys != True: args = ordered(args, keys, default=False) else: args = ordered(args) for arg in args: for subtree in self._preorder_traversal(arg, keys): yield subtree elif iterable(node): for item in node: for subtree in self._preorder_traversal(item, keys): yield subtree def skip(self): """ Skip yielding current node's (last yielded node's) subtrees. Examples ======== >>> from sympy.core import symbols >>> from sympy.core.basic import preorder_traversal >>> x, y, z = symbols('x y z') >>> pt = preorder_traversal((x+y*z)*z) >>> for i in pt: ... print(i) ... if i == x+y*z: ... pt.skip() z*(x + y*z) z x + y*z """ self._skip_flag = True def __next__(self): return next(self._pt) def __iter__(self): return self def _make_find_query(query): """Convert the argument of Basic.find() into a callable""" try: query = sympify(query) except SympifyError: pass if isinstance(query, type): return lambda expr: isinstance(expr, query) elif isinstance(query, Basic): return lambda expr: expr.match(query) is not None return query
a9a8986f22dc86f71c48cbed71c3bceb47a11c9bdb4e5bbd8f8daaea4c6a9063
from __future__ import print_function, division from math import log as _log from .sympify import _sympify from .cache import cacheit from .singleton import S from .expr import Expr from .evalf import PrecisionExhausted from .function import (_coeff_isneg, expand_complex, expand_multinomial, expand_mul) from .logic import fuzzy_bool, fuzzy_not from .compatibility import as_int, range from .evaluate import global_evaluate from sympy.utilities.iterables import sift from mpmath.libmp import sqrtrem as mpmath_sqrtrem from math import sqrt as _sqrt def isqrt(n): """Return the largest integer less than or equal to sqrt(n).""" if n < 17984395633462800708566937239552: return int(_sqrt(n)) return integer_nthroot(int(n), 2)[0] def integer_nthroot(y, n): """ Return a tuple containing x = floor(y**(1/n)) and a boolean indicating whether the result is exact (that is, whether x**n == y). Examples ======== >>> from sympy import integer_nthroot >>> integer_nthroot(16, 2) (4, True) >>> integer_nthroot(26, 2) (5, False) To simply determine if a number is a perfect square, the is_square function should be used: >>> from sympy.ntheory.primetest import is_square >>> is_square(26) False See Also ======== sympy.ntheory.primetest.is_square integer_log """ y, n = as_int(y), as_int(n) if y < 0: raise ValueError("y must be nonnegative") if n < 1: raise ValueError("n must be positive") if y in (0, 1): return y, True if n == 1: return y, True if n == 2: x, rem = mpmath_sqrtrem(y) return int(x), not rem if n > y: return 1, False # Get initial estimate for Newton's method. Care must be taken to # avoid overflow try: guess = int(y**(1./n) + 0.5) except OverflowError: exp = _log(y, 2)/n if exp > 53: shift = int(exp - 53) guess = int(2.0**(exp - shift) + 1) << shift else: guess = int(2.0**exp) if guess > 2**50: # Newton iteration xprev, x = -1, guess while 1: t = x**(n - 1) xprev, x = x, ((n - 1)*x + y//t)//n if abs(x - xprev) < 2: break else: x = guess # Compensate t = x**n while t < y: x += 1 t = x**n while t > y: x -= 1 t = x**n return int(x), t == y # int converts long to int if possible def integer_log(y, x): """Returns (e, bool) where e is the largest nonnegative integer such that |y| >= |x**e| and bool is True if y == x**e Examples ======== >>> from sympy import integer_log >>> integer_log(125, 5) (3, True) >>> integer_log(17, 9) (1, False) >>> integer_log(4, -2) (2, True) >>> integer_log(-125,-5) (3, True) See Also ======== integer_nthroot sympy.ntheory.primetest.is_square sympy.ntheory.factor_.multiplicity sympy.ntheory.factor_.perfect_power """ if x == 1: raise ValueError('x cannot take value as 1') if y == 0: raise ValueError('y cannot take value as 0') if x in (-2, 2): x = int(x) y = as_int(y) e = y.bit_length() - 1 return e, x**e == y if x < 0: n, b = integer_log(y if y > 0 else -y, -x) return n, b and bool(n % 2 if y < 0 else not n % 2) x = as_int(x) y = as_int(y) r = e = 0 while y >= x: d = x m = 1 while y >= d: y, rem = divmod(y, d) r = r or rem e += m if y > d: d *= d m *= 2 return e, r == 0 and y == 1 class Pow(Expr): """ Defines the expression x**y as "x raised to a power y" Singleton definitions involving (0, 1, -1, oo, -oo, I, -I): +--------------+---------+-----------------------------------------------+ | expr | value | reason | +==============+=========+===============================================+ | z**0 | 1 | Although arguments over 0**0 exist, see [2]. | +--------------+---------+-----------------------------------------------+ | z**1 | z | | +--------------+---------+-----------------------------------------------+ | (-oo)**(-1) | 0 | | +--------------+---------+-----------------------------------------------+ | (-1)**-1 | -1 | | +--------------+---------+-----------------------------------------------+ | S.Zero**-1 | zoo | This is not strictly true, as 0**-1 may be | | | | undefined, but is convenient in some contexts | | | | where the base is assumed to be positive. | +--------------+---------+-----------------------------------------------+ | 1**-1 | 1 | | +--------------+---------+-----------------------------------------------+ | oo**-1 | 0 | | +--------------+---------+-----------------------------------------------+ | 0**oo | 0 | Because for all complex numbers z near | | | | 0, z**oo -> 0. | +--------------+---------+-----------------------------------------------+ | 0**-oo | zoo | This is not strictly true, as 0**oo may be | | | | oscillating between positive and negative | | | | values or rotating in the complex plane. | | | | It is convenient, however, when the base | | | | is positive. | +--------------+---------+-----------------------------------------------+ | 1**oo | nan | Because there are various cases where | | 1**-oo | | lim(x(t),t)=1, lim(y(t),t)=oo (or -oo), | | | | but lim( x(t)**y(t), t) != 1. See [3]. | +--------------+---------+-----------------------------------------------+ | b**zoo | nan | Because b**z has no limit as z -> zoo | +--------------+---------+-----------------------------------------------+ | (-1)**oo | nan | Because of oscillations in the limit. | | (-1)**(-oo) | | | +--------------+---------+-----------------------------------------------+ | oo**oo | oo | | +--------------+---------+-----------------------------------------------+ | oo**-oo | 0 | | +--------------+---------+-----------------------------------------------+ | (-oo)**oo | nan | | | (-oo)**-oo | | | +--------------+---------+-----------------------------------------------+ | oo**I | nan | oo**e could probably be best thought of as | | (-oo)**I | | the limit of x**e for real x as x tends to | | | | oo. If e is I, then the limit does not exist | | | | and nan is used to indicate that. | +--------------+---------+-----------------------------------------------+ | oo**(1+I) | zoo | If the real part of e is positive, then the | | (-oo)**(1+I) | | limit of abs(x**e) is oo. So the limit value | | | | is zoo. | +--------------+---------+-----------------------------------------------+ | oo**(-1+I) | 0 | If the real part of e is negative, then the | | -oo**(-1+I) | | limit is 0. | +--------------+---------+-----------------------------------------------+ Because symbolic computations are more flexible that floating point calculations and we prefer to never return an incorrect answer, we choose not to conform to all IEEE 754 conventions. This helps us avoid extra test-case code in the calculation of limits. See Also ======== sympy.core.numbers.Infinity sympy.core.numbers.NegativeInfinity sympy.core.numbers.NaN References ========== .. [1] https://en.wikipedia.org/wiki/Exponentiation .. [2] https://en.wikipedia.org/wiki/Exponentiation#Zero_to_the_power_of_zero .. [3] https://en.wikipedia.org/wiki/Indeterminate_forms """ is_Pow = True __slots__ = ['is_commutative'] @cacheit def __new__(cls, b, e, evaluate=None): if evaluate is None: evaluate = global_evaluate[0] from sympy.functions.elementary.exponential import exp_polar b = _sympify(b) e = _sympify(e) if evaluate: if e is S.ComplexInfinity: return S.NaN if e is S.Zero: return S.One elif e is S.One: return b # Only perform autosimplification if exponent or base is a Symbol or number elif (b.is_Symbol or b.is_number) and (e.is_Symbol or e.is_number) and\ e.is_integer and _coeff_isneg(b): if e.is_even: b = -b elif e.is_odd: return -Pow(-b, e) if S.NaN in (b, e): # XXX S.NaN**x -> S.NaN under assumption that x != 0 return S.NaN elif b is S.One: if abs(e).is_infinite: return S.NaN return S.One else: # recognize base as E if not e.is_Atom and b is not S.Exp1 and not isinstance(b, exp_polar): from sympy import numer, denom, log, sign, im, factor_terms c, ex = factor_terms(e, sign=False).as_coeff_Mul() den = denom(ex) if isinstance(den, log) and den.args[0] == b: return S.Exp1**(c*numer(ex)) elif den.is_Add: s = sign(im(b)) if s.is_Number and s and den == \ log(-factor_terms(b, sign=False)) + s*S.ImaginaryUnit*S.Pi: return S.Exp1**(c*numer(ex)) obj = b._eval_power(e) if obj is not None: return obj obj = Expr.__new__(cls, b, e) obj = cls._exec_constructor_postprocessors(obj) if not isinstance(obj, Pow): return obj obj.is_commutative = (b.is_commutative and e.is_commutative) return obj @property def base(self): return self._args[0] @property def exp(self): return self._args[1] @classmethod def class_key(cls): return 3, 2, cls.__name__ def _eval_refine(self, assumptions): from sympy.assumptions.ask import ask, Q b, e = self.as_base_exp() if ask(Q.integer(e), assumptions) and _coeff_isneg(b): if ask(Q.even(e), assumptions): return Pow(-b, e) elif ask(Q.odd(e), assumptions): return -Pow(-b, e) def _eval_power(self, other): from sympy import Abs, arg, exp, floor, im, log, re, sign b, e = self.as_base_exp() if b is S.NaN: return (b**e)**other # let __new__ handle it s = None if other.is_integer: s = 1 elif b.is_polar: # e.g. exp_polar, besselj, var('p', polar=True)... s = 1 elif e.is_real is not None: # helper functions =========================== def _half(e): """Return True if the exponent has a literal 2 as the denominator, else None.""" if getattr(e, 'q', None) == 2: return True n, d = e.as_numer_denom() if n.is_integer and d == 2: return True def _n2(e): """Return ``e`` evaluated to a Number with 2 significant digits, else None.""" try: rv = e.evalf(2, strict=True) if rv.is_Number: return rv except PrecisionExhausted: pass # =================================================== if e.is_real: # we need _half(other) with constant floor or # floor(S.Half - e*arg(b)/2/pi) == 0 # handle -1 as special case if e == -1: # floor arg. is 1/2 + arg(b)/2/pi if _half(other): if b.is_negative is True: return S.NegativeOne**other*Pow(-b, e*other) if b.is_real is False: return Pow(b.conjugate()/Abs(b)**2, other) elif e.is_even: if b.is_real: b = abs(b) if b.is_imaginary: b = abs(im(b))*S.ImaginaryUnit if (abs(e) < 1) == True or e == 1: s = 1 # floor = 0 elif b.is_nonnegative: s = 1 # floor = 0 elif re(b).is_nonnegative and (abs(e) < 2) == True: s = 1 # floor = 0 elif fuzzy_not(im(b).is_zero) and abs(e) == 2: s = 1 # floor = 0 elif _half(other): s = exp(2*S.Pi*S.ImaginaryUnit*other*floor( S.Half - e*arg(b)/(2*S.Pi))) if s.is_real and _n2(sign(s) - s) == 0: s = sign(s) else: s = None else: # e.is_real is False requires: # _half(other) with constant floor or # floor(S.Half - im(e*log(b))/2/pi) == 0 try: s = exp(2*S.ImaginaryUnit*S.Pi*other* floor(S.Half - im(e*log(b))/2/S.Pi)) # be careful to test that s is -1 or 1 b/c sign(I) == I: # so check that s is real if s.is_real and _n2(sign(s) - s) == 0: s = sign(s) else: s = None except PrecisionExhausted: s = None if s is not None: return s*Pow(b, e*other) def _eval_Mod(self, q): if self.exp.is_integer and self.exp.is_positive: if q.is_integer and self.base % q == 0: return S.Zero ''' For unevaluated Integer power, use built-in pow modular exponentiation, if powers are not too large wrt base. ''' if self.base.is_Integer and self.exp.is_Integer and q.is_Integer: b, e, m = int(self.base), int(self.exp), int(q) # For very large powers, use totient reduction if e >= lg(m). # Bound on m, is for safe factorization memory wise ie m^(1/4). # For pollard-rho to be faster than built-in pow lg(e) > m^(1/4) # check is added. mb = m.bit_length() if mb <= 80 and e >= mb and e.bit_length()**4 >= m: from sympy.ntheory import totient phi = totient(m) return pow(b, phi + e%phi, m) else: return pow(b, e, m) def _eval_is_even(self): if self.exp.is_integer and self.exp.is_positive: return self.base.is_even def _eval_is_positive(self): from sympy import log if self.base == self.exp: if self.base.is_nonnegative: return True elif self.base.is_positive: if self.exp.is_real: return True elif self.base.is_negative: if self.exp.is_even: return True if self.exp.is_odd: return False elif self.base.is_zero: if self.exp.is_real: return self.exp.is_zero elif self.base.is_nonpositive: if self.exp.is_odd: return False elif self.base.is_imaginary: if self.exp.is_integer: m = self.exp % 4 if m.is_zero: return True if m.is_integer and m.is_zero is False: return False if self.exp.is_imaginary: return log(self.base).is_imaginary def _eval_is_negative(self): if self.base.is_negative: if self.exp.is_odd: return True if self.exp.is_even: return False elif self.base.is_positive: if self.exp.is_real: return False elif self.base.is_zero: if self.exp.is_real: return False elif self.base.is_nonnegative: if self.exp.is_nonnegative: return False elif self.base.is_nonpositive: if self.exp.is_even: return False elif self.base.is_real: if self.exp.is_even: return False def _eval_is_zero(self): if self.base.is_zero: if self.exp.is_positive: return True elif self.exp.is_nonpositive: return False elif self.base.is_zero is False: if self.exp.is_finite: return False elif self.exp.is_infinite: if (1 - abs(self.base)).is_positive: return self.exp.is_positive elif (1 - abs(self.base)).is_negative: return self.exp.is_negative else: # when self.base.is_zero is None return None def _eval_is_integer(self): b, e = self.args if b.is_rational: if b.is_integer is False and e.is_positive: return False # rat**nonneg if b.is_integer and e.is_integer: if b is S.NegativeOne: return True if e.is_nonnegative or e.is_positive: return True if b.is_integer and e.is_negative and (e.is_finite or e.is_integer): if fuzzy_not((b - 1).is_zero) and fuzzy_not((b + 1).is_zero): return False if b.is_Number and e.is_Number: check = self.func(*self.args) return check.is_Integer def _eval_is_real(self): from sympy import arg, exp, log, Mul real_b = self.base.is_real if real_b is None: if self.base.func == exp and self.base.args[0].is_imaginary: return self.exp.is_imaginary return real_e = self.exp.is_real if real_e is None: return if real_b and real_e: if self.base.is_positive: return True elif self.base.is_nonnegative: if self.exp.is_nonnegative: return True else: if self.exp.is_integer: return True elif self.base.is_negative: if self.exp.is_Rational: return False if real_e and self.exp.is_negative: return Pow(self.base, -self.exp).is_real im_b = self.base.is_imaginary im_e = self.exp.is_imaginary if im_b: if self.exp.is_integer: if self.exp.is_even: return True elif self.exp.is_odd: return False elif im_e and log(self.base).is_imaginary: return True elif self.exp.is_Add: c, a = self.exp.as_coeff_Add() if c and c.is_Integer: return Mul( self.base**c, self.base**a, evaluate=False).is_real elif self.base in (-S.ImaginaryUnit, S.ImaginaryUnit): if (self.exp/2).is_integer is False: return False if real_b and im_e: if self.base is S.NegativeOne: return True c = self.exp.coeff(S.ImaginaryUnit) if c: ok = (c*log(self.base)/S.Pi).is_Integer if ok is not None: return ok if real_b is False: # we already know it's not imag i = arg(self.base)*self.exp/S.Pi return i.is_integer def _eval_is_complex(self): if all(a.is_complex for a in self.args): return True def _eval_is_imaginary(self): from sympy import arg, log if self.base.is_imaginary: if self.exp.is_integer: odd = self.exp.is_odd if odd is not None: return odd return if self.exp.is_imaginary: imlog = log(self.base).is_imaginary if imlog is not None: return False # I**i -> real; (2*I)**i -> complex ==> not imaginary if self.base.is_real and self.exp.is_real: if self.base.is_positive: return False else: rat = self.exp.is_rational if not rat: return rat if self.exp.is_integer: return False else: half = (2*self.exp).is_integer if half: return self.base.is_negative return half if self.base.is_real is False: # we already know it's not imag i = arg(self.base)*self.exp/S.Pi isodd = (2*i).is_odd if isodd is not None: return isodd if self.exp.is_negative: return (1/self).is_imaginary def _eval_is_odd(self): if self.exp.is_integer: if self.exp.is_positive: return self.base.is_odd elif self.exp.is_nonnegative and self.base.is_odd: return True elif self.base is S.NegativeOne: return True def _eval_is_finite(self): if self.exp.is_negative: if self.base.is_zero: return False if self.base.is_infinite: return True c1 = self.base.is_finite if c1 is None: return c2 = self.exp.is_finite if c2 is None: return if c1 and c2: if self.exp.is_nonnegative or fuzzy_not(self.base.is_zero): return True def _eval_is_prime(self): ''' An integer raised to the n(>=2)-th power cannot be a prime. ''' if self.base.is_integer and self.exp.is_integer and (self.exp - 1).is_positive: return False def _eval_is_composite(self): """ A power is composite if both base and exponent are greater than 1 """ if (self.base.is_integer and self.exp.is_integer and ((self.base - 1).is_positive and (self.exp - 1).is_positive or (self.base + 1).is_negative and self.exp.is_positive and self.exp.is_even)): return True def _eval_is_polar(self): return self.base.is_polar def _eval_subs(self, old, new): from sympy import exp, log, Symbol def _check(ct1, ct2, old): """Return (bool, pow, remainder_pow) where, if bool is True, then the exponent of Pow `old` will combine with `pow` so the substitution is valid, otherwise bool will be False. For noncommutative objects, `pow` will be an integer, and a factor `Pow(old.base, remainder_pow)` needs to be included. If there is no such factor, None is returned. For commutative objects, remainder_pow is always None. cti are the coefficient and terms of an exponent of self or old In this _eval_subs routine a change like (b**(2*x)).subs(b**x, y) will give y**2 since (b**x)**2 == b**(2*x); if that equality does not hold then the substitution should not occur so `bool` will be False. """ coeff1, terms1 = ct1 coeff2, terms2 = ct2 if terms1 == terms2: if old.is_commutative: # Allow fractional powers for commutative objects pow = coeff1/coeff2 try: pow = as_int(pow, strict=False) combines = True except ValueError: combines = isinstance(Pow._eval_power( Pow(*old.as_base_exp(), evaluate=False), pow), (Pow, exp, Symbol)) return combines, pow, None else: # With noncommutative symbols, substitute only integer powers if not isinstance(terms1, tuple): terms1 = (terms1,) if not all(term.is_integer for term in terms1): return False, None, None try: # Round pow toward zero pow, remainder = divmod(as_int(coeff1), as_int(coeff2)) if pow < 0 and remainder != 0: pow += 1 remainder -= as_int(coeff2) if remainder == 0: remainder_pow = None else: remainder_pow = Mul(remainder, *terms1) return True, pow, remainder_pow except ValueError: # Can't substitute pass return False, None, None if old == self.base: return new**self.exp._subs(old, new) # issue 10829: (4**x - 3*y + 2).subs(2**x, y) -> y**2 - 3*y + 2 if isinstance(old, self.func) and self.exp == old.exp: l = log(self.base, old.base) if l.is_Number: return Pow(new, l) if isinstance(old, self.func) and self.base == old.base: if self.exp.is_Add is False: ct1 = self.exp.as_independent(Symbol, as_Add=False) ct2 = old.exp.as_independent(Symbol, as_Add=False) ok, pow, remainder_pow = _check(ct1, ct2, old) if ok: # issue 5180: (x**(6*y)).subs(x**(3*y),z)->z**2 result = self.func(new, pow) if remainder_pow is not None: result = Mul(result, Pow(old.base, remainder_pow)) return result else: # b**(6*x + a).subs(b**(3*x), y) -> y**2 * b**a # exp(exp(x) + exp(x**2)).subs(exp(exp(x)), w) -> w * exp(exp(x**2)) oarg = old.exp new_l = [] o_al = [] ct2 = oarg.as_coeff_mul() for a in self.exp.args: newa = a._subs(old, new) ct1 = newa.as_coeff_mul() ok, pow, remainder_pow = _check(ct1, ct2, old) if ok: new_l.append(new**pow) if remainder_pow is not None: o_al.append(remainder_pow) continue elif not old.is_commutative and not newa.is_integer: # If any term in the exponent is non-integer, # we do not do any substitutions in the noncommutative case return o_al.append(newa) if new_l: expo = Add(*o_al) new_l.append(Pow(self.base, expo, evaluate=False) if expo != 1 else self.base) return Mul(*new_l) if isinstance(old, exp) and self.exp.is_real and self.base.is_positive: ct1 = old.args[0].as_independent(Symbol, as_Add=False) ct2 = (self.exp*log(self.base)).as_independent( Symbol, as_Add=False) ok, pow, remainder_pow = _check(ct1, ct2, old) if ok: result = self.func(new, pow) # (2**x).subs(exp(x*log(2)), z) -> z if remainder_pow is not None: result = Mul(result, Pow(old.base, remainder_pow)) return result def as_base_exp(self): """Return base and exp of self. If base is 1/Integer, then return Integer, -exp. If this extra processing is not needed, the base and exp properties will give the raw arguments Examples ======== >>> from sympy import Pow, S >>> p = Pow(S.Half, 2, evaluate=False) >>> p.as_base_exp() (2, -2) >>> p.args (1/2, 2) """ b, e = self.args if b.is_Rational and b.p == 1 and b.q != 1: return Integer(b.q), -e return b, e def _eval_adjoint(self): from sympy.functions.elementary.complexes import adjoint i, p = self.exp.is_integer, self.base.is_positive if i: return adjoint(self.base)**self.exp if p: return self.base**adjoint(self.exp) if i is False and p is False: expanded = expand_complex(self) if expanded != self: return adjoint(expanded) def _eval_conjugate(self): from sympy.functions.elementary.complexes import conjugate as c i, p = self.exp.is_integer, self.base.is_positive if i: return c(self.base)**self.exp if p: return self.base**c(self.exp) if i is False and p is False: expanded = expand_complex(self) if expanded != self: return c(expanded) if self.is_real: return self def _eval_transpose(self): from sympy.functions.elementary.complexes import transpose i, p = self.exp.is_integer, self.base.is_complex if p: return self.base**self.exp if i: return transpose(self.base)**self.exp if i is False and p is False: expanded = expand_complex(self) if expanded != self: return transpose(expanded) def _eval_expand_power_exp(self, **hints): """a**(n + m) -> a**n*a**m""" b = self.base e = self.exp if e.is_Add and e.is_commutative: expr = [] for x in e.args: expr.append(self.func(self.base, x)) return Mul(*expr) return self.func(b, e) def _eval_expand_power_base(self, **hints): """(a*b)**n -> a**n * b**n""" force = hints.get('force', False) b = self.base e = self.exp if not b.is_Mul: return self cargs, nc = b.args_cnc(split_1=False) # expand each term - this is top-level-only # expansion but we have to watch out for things # that don't have an _eval_expand method if nc: nc = [i._eval_expand_power_base(**hints) if hasattr(i, '_eval_expand_power_base') else i for i in nc] if e.is_Integer: if e.is_positive: rv = Mul(*nc*e) else: rv = Mul(*[i**-1 for i in nc[::-1]]*-e) if cargs: rv *= Mul(*cargs)**e return rv if not cargs: return self.func(Mul(*nc), e, evaluate=False) nc = [Mul(*nc)] # sift the commutative bases other, maybe_real = sift(cargs, lambda x: x.is_real is False, binary=True) def pred(x): if x is S.ImaginaryUnit: return S.ImaginaryUnit polar = x.is_polar if polar: return True if polar is None: return fuzzy_bool(x.is_nonnegative) sifted = sift(maybe_real, pred) nonneg = sifted[True] other += sifted[None] neg = sifted[False] imag = sifted[S.ImaginaryUnit] if imag: I = S.ImaginaryUnit i = len(imag) % 4 if i == 0: pass elif i == 1: other.append(I) elif i == 2: if neg: nonn = -neg.pop() if nonn is not S.One: nonneg.append(nonn) else: neg.append(S.NegativeOne) else: if neg: nonn = -neg.pop() if nonn is not S.One: nonneg.append(nonn) else: neg.append(S.NegativeOne) other.append(I) del imag # bring out the bases that can be separated from the base if force or e.is_integer: # treat all commutatives the same and put nc in other cargs = nonneg + neg + other other = nc else: # this is just like what is happening automatically, except # that now we are doing it for an arbitrary exponent for which # no automatic expansion is done assert not e.is_Integer # handle negatives by making them all positive and putting # the residual -1 in other if len(neg) > 1: o = S.One if not other and neg[0].is_Number: o *= neg.pop(0) if len(neg) % 2: o = -o for n in neg: nonneg.append(-n) if o is not S.One: other.append(o) elif neg and other: if neg[0].is_Number and neg[0] is not S.NegativeOne: other.append(S.NegativeOne) nonneg.append(-neg[0]) else: other.extend(neg) else: other.extend(neg) del neg cargs = nonneg other += nc rv = S.One if cargs: rv *= Mul(*[self.func(b, e, evaluate=False) for b in cargs]) if other: rv *= self.func(Mul(*other), e, evaluate=False) return rv def _eval_expand_multinomial(self, **hints): """(a + b + ..)**n -> a**n + n*a**(n-1)*b + .., n is nonzero integer""" base, exp = self.args result = self if exp.is_Rational and exp.p > 0 and base.is_Add: if not exp.is_Integer: n = Integer(exp.p // exp.q) if not n: return result else: radical, result = self.func(base, exp - n), [] expanded_base_n = self.func(base, n) if expanded_base_n.is_Pow: expanded_base_n = \ expanded_base_n._eval_expand_multinomial() for term in Add.make_args(expanded_base_n): result.append(term*radical) return Add(*result) n = int(exp) if base.is_commutative: order_terms, other_terms = [], [] for b in base.args: if b.is_Order: order_terms.append(b) else: other_terms.append(b) if order_terms: # (f(x) + O(x^n))^m -> f(x)^m + m*f(x)^{m-1} *O(x^n) f = Add(*other_terms) o = Add(*order_terms) if n == 2: return expand_multinomial(f**n, deep=False) + n*f*o else: g = expand_multinomial(f**(n - 1), deep=False) return expand_mul(f*g, deep=False) + n*g*o if base.is_number: # Efficiently expand expressions of the form (a + b*I)**n # where 'a' and 'b' are real numbers and 'n' is integer. a, b = base.as_real_imag() if a.is_Rational and b.is_Rational: if not a.is_Integer: if not b.is_Integer: k = self.func(a.q * b.q, n) a, b = a.p*b.q, a.q*b.p else: k = self.func(a.q, n) a, b = a.p, a.q*b elif not b.is_Integer: k = self.func(b.q, n) a, b = a*b.q, b.p else: k = 1 a, b, c, d = int(a), int(b), 1, 0 while n: if n & 1: c, d = a*c - b*d, b*c + a*d n -= 1 a, b = a*a - b*b, 2*a*b n //= 2 I = S.ImaginaryUnit if k == 1: return c + I*d else: return Integer(c)/k + I*d/k p = other_terms # (x + y)**3 -> x**3 + 3*x**2*y + 3*x*y**2 + y**3 # in this particular example: # p = [x,y]; n = 3 # so now it's easy to get the correct result -- we get the # coefficients first: from sympy import multinomial_coefficients from sympy.polys.polyutils import basic_from_dict expansion_dict = multinomial_coefficients(len(p), n) # in our example: {(3, 0): 1, (1, 2): 3, (0, 3): 1, (2, 1): 3} # and now construct the expression. return basic_from_dict(expansion_dict, *p) else: if n == 2: return Add(*[f*g for f in base.args for g in base.args]) else: multi = (base**(n - 1))._eval_expand_multinomial() if multi.is_Add: return Add(*[f*g for f in base.args for g in multi.args]) else: # XXX can this ever happen if base was an Add? return Add(*[f*multi for f in base.args]) elif (exp.is_Rational and exp.p < 0 and base.is_Add and abs(exp.p) > exp.q): return 1 / self.func(base, -exp)._eval_expand_multinomial() elif exp.is_Add and base.is_Number: # a + b a b # n --> n n , where n, a, b are Numbers coeff, tail = S.One, S.Zero for term in exp.args: if term.is_Number: coeff *= self.func(base, term) else: tail += term return coeff * self.func(base, tail) else: return result def as_real_imag(self, deep=True, **hints): from sympy import atan2, cos, im, re, sin from sympy.polys.polytools import poly if self.exp.is_Integer: exp = self.exp re, im = self.base.as_real_imag(deep=deep) if not im: return self, S.Zero a, b = symbols('a b', cls=Dummy) if exp >= 0: if re.is_Number and im.is_Number: # We can be more efficient in this case expr = expand_multinomial(self.base**exp) if expr != self: return expr.as_real_imag() expr = poly( (a + b)**exp) # a = re, b = im; expr = (a + b*I)**exp else: mag = re**2 + im**2 re, im = re/mag, -im/mag if re.is_Number and im.is_Number: # We can be more efficient in this case expr = expand_multinomial((re + im*S.ImaginaryUnit)**-exp) if expr != self: return expr.as_real_imag() expr = poly((a + b)**-exp) # Terms with even b powers will be real r = [i for i in expr.terms() if not i[0][1] % 2] re_part = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r]) # Terms with odd b powers will be imaginary r = [i for i in expr.terms() if i[0][1] % 4 == 1] im_part1 = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r]) r = [i for i in expr.terms() if i[0][1] % 4 == 3] im_part3 = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r]) return (re_part.subs({a: re, b: S.ImaginaryUnit*im}), im_part1.subs({a: re, b: im}) + im_part3.subs({a: re, b: -im})) elif self.exp.is_Rational: re, im = self.base.as_real_imag(deep=deep) if im.is_zero and self.exp is S.Half: if re.is_nonnegative: return self, S.Zero if re.is_nonpositive: return S.Zero, (-self.base)**self.exp # XXX: This is not totally correct since for x**(p/q) with # x being imaginary there are actually q roots, but # only a single one is returned from here. r = self.func(self.func(re, 2) + self.func(im, 2), S.Half) t = atan2(im, re) rp, tp = self.func(r, self.exp), t*self.exp return (rp*cos(tp), rp*sin(tp)) else: if deep: hints['complex'] = False expanded = self.expand(deep, **hints) if hints.get('ignore') == expanded: return None else: return (re(expanded), im(expanded)) else: return (re(self), im(self)) def _eval_derivative(self, s): from sympy import log dbase = self.base.diff(s) dexp = self.exp.diff(s) return self * (dexp * log(self.base) + dbase * self.exp/self.base) def _eval_evalf(self, prec): base, exp = self.as_base_exp() base = base._evalf(prec) if not exp.is_Integer: exp = exp._evalf(prec) if exp.is_negative and base.is_number and base.is_real is False: base = base.conjugate() / (base * base.conjugate())._evalf(prec) exp = -exp return self.func(base, exp).expand() return self.func(base, exp) def _eval_is_polynomial(self, syms): if self.exp.has(*syms): return False if self.base.has(*syms): return bool(self.base._eval_is_polynomial(syms) and self.exp.is_Integer and (self.exp >= 0)) else: return True def _eval_is_rational(self): p = self.func(*self.as_base_exp()) # in case it's unevaluated if not p.is_Pow: return p.is_rational b, e = p.as_base_exp() if e.is_Rational and b.is_Rational: # we didn't check that e is not an Integer # because Rational**Integer autosimplifies return False if e.is_integer: if b.is_rational: if fuzzy_not(b.is_zero) or e.is_nonnegative: return True if b == e: # always rational, even for 0**0 return True elif b.is_irrational: return e.is_zero def _eval_is_algebraic(self): def _is_one(expr): try: return (expr - 1).is_zero except ValueError: # when the operation is not allowed return False if self.base.is_zero or _is_one(self.base): return True elif self.exp.is_rational: if self.base.is_algebraic is False: return self.exp.is_zero return self.base.is_algebraic elif self.base.is_algebraic and self.exp.is_algebraic: if ((fuzzy_not(self.base.is_zero) and fuzzy_not(_is_one(self.base))) or self.base.is_integer is False or self.base.is_irrational): return self.exp.is_rational def _eval_is_rational_function(self, syms): if self.exp.has(*syms): return False if self.base.has(*syms): return self.base._eval_is_rational_function(syms) and \ self.exp.is_Integer else: return True def _eval_is_algebraic_expr(self, syms): if self.exp.has(*syms): return False if self.base.has(*syms): return self.base._eval_is_algebraic_expr(syms) and \ self.exp.is_Rational else: return True def _eval_rewrite_as_exp(self, base, expo, **kwargs): from sympy import exp, log, I, arg if base.is_zero or base.has(exp) or expo.has(exp): return base**expo if base.has(Symbol): # delay evaluation if expo is non symbolic # (as exp(x*log(5)) automatically reduces to x**5) return exp(log(base)*expo, evaluate=expo.has(Symbol)) else: return exp((log(abs(base)) + I*arg(base))*expo) def as_numer_denom(self): if not self.is_commutative: return self, S.One base, exp = self.as_base_exp() n, d = base.as_numer_denom() # this should be the same as ExpBase.as_numer_denom wrt # exponent handling neg_exp = exp.is_negative if not neg_exp and not (-exp).is_negative: neg_exp = _coeff_isneg(exp) int_exp = exp.is_integer # the denominator cannot be separated from the numerator if # its sign is unknown unless the exponent is an integer, e.g. # sqrt(a/b) != sqrt(a)/sqrt(b) when a=1 and b=-1. But if the # denominator is negative the numerator and denominator can # be negated and the denominator (now positive) separated. if not (d.is_real or int_exp): n = base d = S.One dnonpos = d.is_nonpositive if dnonpos: n, d = -n, -d elif dnonpos is None and not int_exp: n = base d = S.One if neg_exp: n, d = d, n exp = -exp if exp.is_infinite: if n is S.One and d is not S.One: return n, self.func(d, exp) if n is not S.One and d is S.One: return self.func(n, exp), d return self.func(n, exp), self.func(d, exp) def matches(self, expr, repl_dict={}, old=False): expr = _sympify(expr) # special case, pattern = 1 and expr.exp can match to 0 if expr is S.One: d = repl_dict.copy() d = self.exp.matches(S.Zero, d) if d is not None: return d # make sure the expression to be matched is an Expr if not isinstance(expr, Expr): return None b, e = expr.as_base_exp() # special case number sb, se = self.as_base_exp() if sb.is_Symbol and se.is_Integer and expr: if e.is_rational: return sb.matches(b**(e/se), repl_dict) return sb.matches(expr**(1/se), repl_dict) d = repl_dict.copy() d = self.base.matches(b, d) if d is None: return None d = self.exp.xreplace(d).matches(e, d) if d is None: return Expr.matches(self, expr, repl_dict) return d def _eval_nseries(self, x, n, logx): # NOTE! This function is an important part of the gruntz algorithm # for computing limits. It has to return a generalized power # series with coefficients in C(log, log(x)). In more detail: # It has to return an expression # c_0*x**e_0 + c_1*x**e_1 + ... (finitely many terms) # where e_i are numbers (not necessarily integers) and c_i are # expressions involving only numbers, the log function, and log(x). from sympy import ceiling, collect, exp, log, O, Order, powsimp b, e = self.args if e.is_Integer: if e > 0: # positive integer powers are easy to expand, e.g.: # sin(x)**4 = (x - x**3/3 + ...)**4 = ... return expand_multinomial(self.func(b._eval_nseries(x, n=n, logx=logx), e), deep=False) elif e is S.NegativeOne: # this is also easy to expand using the formula: # 1/(1 + x) = 1 - x + x**2 - x**3 ... # so we need to rewrite base to the form "1 + x" nuse = n cf = 1 try: ord = b.as_leading_term(x) cf = Order(ord, x).getn() if cf and cf.is_Number: nuse = n + 2*ceiling(cf) else: cf = 1 except NotImplementedError: pass b_orig, prefactor = b, O(1, x) while prefactor.is_Order: nuse += 1 b = b_orig._eval_nseries(x, n=nuse, logx=logx) prefactor = b.as_leading_term(x) # express "rest" as: rest = 1 + k*x**l + ... + O(x**n) rest = expand_mul((b - prefactor)/prefactor) if rest.is_Order: return 1/prefactor + rest/prefactor + O(x**n, x) k, l = rest.leadterm(x) if l.is_Rational and l > 0: pass elif l.is_number and l > 0: l = l.evalf() elif l == 0: k = k.simplify() if k == 0: # if prefactor == w**4 + x**2*w**4 + 2*x*w**4, we need to # factor the w**4 out using collect: return 1/collect(prefactor, x) else: raise NotImplementedError() else: raise NotImplementedError() if cf < 0: cf = S.One/abs(cf) try: dn = Order(1/prefactor, x).getn() if dn and dn < 0: pass else: dn = 0 except NotImplementedError: dn = 0 terms = [1/prefactor] for m in range(1, ceiling((n - dn + 1)/l*cf)): new_term = terms[-1]*(-rest) if new_term.is_Pow: new_term = new_term._eval_expand_multinomial( deep=False) else: new_term = expand_mul(new_term, deep=False) terms.append(new_term) terms.append(O(x**n, x)) return powsimp(Add(*terms), deep=True, combine='exp') else: # negative powers are rewritten to the cases above, for # example: # sin(x)**(-4) = 1/(sin(x)**4) = ... # and expand the denominator: nuse, denominator = n, O(1, x) while denominator.is_Order: denominator = (b**(-e))._eval_nseries(x, n=nuse, logx=logx) nuse += 1 if 1/denominator == self: return self # now we have a type 1/f(x), that we know how to expand return (1/denominator)._eval_nseries(x, n=n, logx=logx) if e.has(Symbol): return exp(e*log(b))._eval_nseries(x, n=n, logx=logx) # see if the base is as simple as possible bx = b while bx.is_Pow and bx.exp.is_Rational: bx = bx.base if bx == x: return self # work for b(x)**e where e is not an Integer and does not contain x # and hopefully has no other symbols def e2int(e): """return the integer value (if possible) of e and a flag indicating whether it is bounded or not.""" n = e.limit(x, 0) infinite = n.is_infinite if not infinite: # XXX was int or floor intended? int used to behave like floor # so int(-Rational(1, 2)) returned -1 rather than int's 0 try: n = int(n) except TypeError: # well, the n is something more complicated (like 1 + log(2)) try: n = int(n.evalf()) + 1 # XXX why is 1 being added? except TypeError: pass # hope that base allows this to be resolved n = _sympify(n) return n, infinite order = O(x**n, x) ei, infinite = e2int(e) b0 = b.limit(x, 0) if infinite and (b0 is S.One or b0.has(Symbol)): # XXX what order if b0 is S.One: resid = (b - 1) if resid.is_positive: return S.Infinity elif resid.is_negative: return S.Zero raise ValueError('cannot determine sign of %s' % resid) return b0**ei if (b0 is S.Zero or b0.is_infinite): if infinite is not False: return b0**e # XXX what order if not ei.is_number: # if not, how will we proceed? raise ValueError( 'expecting numerical exponent but got %s' % ei) nuse = n - ei if e.is_real and e.is_positive: lt = b.as_leading_term(x) # Try to correct nuse (= m) guess from: # (lt + rest + O(x**m))**e = # lt**e*(1 + rest/lt + O(x**m)/lt)**e = # lt**e + ... + O(x**m)*lt**(e - 1) = ... + O(x**n) try: cf = Order(lt, x).getn() nuse = ceiling(n - cf*(e - 1)) except NotImplementedError: pass bs = b._eval_nseries(x, n=nuse, logx=logx) terms = bs.removeO() if terms.is_Add: bs = terms lt = terms.as_leading_term(x) # bs -> lt + rest -> lt*(1 + (bs/lt - 1)) return ((self.func(lt, e) * self.func((bs/lt).expand(), e).nseries( x, n=nuse, logx=logx)).expand() + order) if bs.is_Add: from sympy import O # So, bs + O() == terms c = Dummy('c') res = [] for arg in bs.args: if arg.is_Order: arg = c*arg.expr res.append(arg) bs = Add(*res) rv = (bs**e).series(x).subs(c, O(1, x)) rv += order return rv rv = bs**e if terms != bs: rv += order return rv # either b0 is bounded but neither 1 nor 0 or e is infinite # b -> b0 + (b - b0) -> b0 * (1 + (b/b0 - 1)) o2 = order*(b0**-e) z = (b/b0 - 1) o = O(z, x) if o is S.Zero or o2 is S.Zero: infinite = True else: if o.expr.is_number: e2 = log(o2.expr*x)/log(x) else: e2 = log(o2.expr)/log(o.expr) n, infinite = e2int(e2) if infinite: # requested accuracy gives infinite series, # order is probably non-polynomial e.g. O(exp(-1/x), x). r = 1 + z else: l = [] g = None for i in range(n + 2): g = self._taylor_term(i, z, g) g = g.nseries(x, n=n, logx=logx) l.append(g) r = Add(*l) return expand_mul(r*b0**e) + order def _eval_as_leading_term(self, x): from sympy import exp, log if not self.exp.has(x): return self.func(self.base.as_leading_term(x), self.exp) return exp(self.exp * log(self.base)).as_leading_term(x) @cacheit def _taylor_term(self, n, x, *previous_terms): # of (1 + x)**e from sympy import binomial return binomial(self.exp, n) * self.func(x, n) def _sage_(self): return self.args[0]._sage_()**self.args[1]._sage_() def as_content_primitive(self, radical=False, clear=True): """Return the tuple (R, self/R) where R is the positive Rational extracted from self. Examples ======== >>> from sympy import sqrt >>> sqrt(4 + 4*sqrt(2)).as_content_primitive() (2, sqrt(1 + sqrt(2))) >>> sqrt(3 + 3*sqrt(2)).as_content_primitive() (1, sqrt(3)*sqrt(1 + sqrt(2))) >>> from sympy import expand_power_base, powsimp, Mul >>> from sympy.abc import x, y >>> ((2*x + 2)**2).as_content_primitive() (4, (x + 1)**2) >>> (4**((1 + y)/2)).as_content_primitive() (2, 4**(y/2)) >>> (3**((1 + y)/2)).as_content_primitive() (1, 3**((y + 1)/2)) >>> (3**((5 + y)/2)).as_content_primitive() (9, 3**((y + 1)/2)) >>> eq = 3**(2 + 2*x) >>> powsimp(eq) == eq True >>> eq.as_content_primitive() (9, 3**(2*x)) >>> powsimp(Mul(*_)) 3**(2*x + 2) >>> eq = (2 + 2*x)**y >>> s = expand_power_base(eq); s.is_Mul, s (False, (2*x + 2)**y) >>> eq.as_content_primitive() (1, (2*(x + 1))**y) >>> s = expand_power_base(_[1]); s.is_Mul, s (True, 2**y*(x + 1)**y) See docstring of Expr.as_content_primitive for more examples. """ b, e = self.as_base_exp() b = _keep_coeff(*b.as_content_primitive(radical=radical, clear=clear)) ce, pe = e.as_content_primitive(radical=radical, clear=clear) if b.is_Rational: #e #= ce*pe #= ce*(h + t) #= ce*h + ce*t #=> self #= b**(ce*h)*b**(ce*t) #= b**(cehp/cehq)*b**(ce*t) #= b**(iceh + r/cehq)*b**(ce*t) #= b**(iceh)*b**(r/cehq)*b**(ce*t) #= b**(iceh)*b**(ce*t + r/cehq) h, t = pe.as_coeff_Add() if h.is_Rational: ceh = ce*h c = self.func(b, ceh) r = S.Zero if not c.is_Rational: iceh, r = divmod(ceh.p, ceh.q) c = self.func(b, iceh) return c, self.func(b, _keep_coeff(ce, t + r/ce/ceh.q)) e = _keep_coeff(ce, pe) # b**e = (h*t)**e = h**e*t**e = c*m*t**e if e.is_Rational and b.is_Mul: h, t = b.as_content_primitive(radical=radical, clear=clear) # h is positive c, m = self.func(h, e).as_coeff_Mul() # so c is positive m, me = m.as_base_exp() if m is S.One or me == e: # probably always true # return the following, not return c, m*Pow(t, e) # which would change Pow into Mul; we let sympy # decide what to do by using the unevaluated Mul, e.g # should it stay as sqrt(2 + 2*sqrt(5)) or become # sqrt(2)*sqrt(1 + sqrt(5)) return c, self.func(_keep_coeff(m, t), e) return S.One, self.func(b, e) def is_constant(self, *wrt, **flags): expr = self if flags.get('simplify', True): expr = expr.simplify() b, e = expr.as_base_exp() bz = b.equals(0) if bz: # recalculate with assumptions in case it's unevaluated new = b**e if new != expr: return new.is_constant() econ = e.is_constant(*wrt) bcon = b.is_constant(*wrt) if bcon: if econ: return True bz = b.equals(0) if bz is False: return False elif bcon is None: return None return e.equals(0) def _eval_difference_delta(self, n, step): b, e = self.args if e.has(n) and not b.has(n): new_e = e.subs(n, n + step) return (b**(new_e - e) - 1) * self from .add import Add from .numbers import Integer from .mul import Mul, _keep_coeff from .symbol import Symbol, Dummy, symbols
225c84cc35a3f412d1c6c0da69ff0d44924eb1289c2b0861455d16a3fd477f23
"""Tools for manipulating of large commutative expressions. """ from __future__ import print_function, division from sympy.core.add import Add from sympy.core.compatibility import iterable, is_sequence, SYMPY_INTS, range from sympy.core.mul import Mul, _keep_coeff from sympy.core.power import Pow from sympy.core.basic import Basic, preorder_traversal from sympy.core.expr import Expr from sympy.core.sympify import sympify from sympy.core.numbers import Rational, Integer, Number, I from sympy.core.singleton import S from sympy.core.symbol import Dummy from sympy.core.coreerrors import NonCommutativeExpression from sympy.core.containers import Tuple, Dict from sympy.utilities import default_sort_key from sympy.utilities.iterables import (common_prefix, common_suffix, variations, ordered) from collections import defaultdict _eps = Dummy(positive=True) def _isnumber(i): return isinstance(i, (SYMPY_INTS, float)) or i.is_Number def _monotonic_sign(self): """Return the value closest to 0 that ``self`` may have if all symbols are signed and the result is uniformly the same sign for all values of symbols. If a symbol is only signed but not known to be an integer or the result is 0 then a symbol representative of the sign of self will be returned. Otherwise, None is returned if a) the sign could be positive or negative or b) self is not in one of the following forms: - L(x, y, ...) + A: a function linear in all symbols x, y, ... with an additive constant; if A is zero then the function can be a monomial whose sign is monotonic over the range of the variables, e.g. (x + 1)**3 if x is nonnegative. - A/L(x, y, ...) + B: the inverse of a function linear in all symbols x, y, ... that does not have a sign change from positive to negative for any set of values for the variables. - M(x, y, ...) + A: a monomial M whose factors are all signed and a constant, A. - A/M(x, y, ...) + B: the inverse of a monomial and constants A and B. - P(x): a univariate polynomial Examples ======== >>> from sympy.core.exprtools import _monotonic_sign as F >>> from sympy import Dummy, S >>> nn = Dummy(integer=True, nonnegative=True) >>> p = Dummy(integer=True, positive=True) >>> p2 = Dummy(integer=True, positive=True) >>> F(nn + 1) 1 >>> F(p - 1) _nneg >>> F(nn*p + 1) 1 >>> F(p2*p + 1) 2 >>> F(nn - 1) # could be negative, zero or positive """ if not self.is_real: return if (-self).is_Symbol: rv = _monotonic_sign(-self) return rv if rv is None else -rv if not self.is_Add and self.as_numer_denom()[1].is_number: s = self if s.is_prime: if s.is_odd: return S(3) else: return S(2) elif s.is_composite: if s.is_odd: return S(9) else: return S(4) elif s.is_positive: if s.is_even: if s.is_prime is False: return S(4) else: return S(2) elif s.is_integer: return S.One else: return _eps elif s.is_negative: if s.is_even: return S(-2) elif s.is_integer: return S.NegativeOne else: return -_eps if s.is_zero or s.is_nonpositive or s.is_nonnegative: return S.Zero return None # univariate polynomial free = self.free_symbols if len(free) == 1: if self.is_polynomial(): from sympy.polys.polytools import real_roots from sympy.polys.polyroots import roots from sympy.polys.polyerrors import PolynomialError x = free.pop() x0 = _monotonic_sign(x) if x0 == _eps or x0 == -_eps: x0 = S.Zero if x0 is not None: d = self.diff(x) if d.is_number: currentroots = [] else: try: currentroots = real_roots(d) except (PolynomialError, NotImplementedError): currentroots = [r for r in roots(d, x) if r.is_real] y = self.subs(x, x0) if x.is_nonnegative and all(r <= x0 for r in currentroots): if y.is_nonnegative and d.is_positive: if y: return y if y.is_positive else Dummy('pos', positive=True) else: return Dummy('nneg', nonnegative=True) if y.is_nonpositive and d.is_negative: if y: return y if y.is_negative else Dummy('neg', negative=True) else: return Dummy('npos', nonpositive=True) elif x.is_nonpositive and all(r >= x0 for r in currentroots): if y.is_nonnegative and d.is_negative: if y: return Dummy('pos', positive=True) else: return Dummy('nneg', nonnegative=True) if y.is_nonpositive and d.is_positive: if y: return Dummy('neg', negative=True) else: return Dummy('npos', nonpositive=True) else: n, d = self.as_numer_denom() den = None if n.is_number: den = _monotonic_sign(d) elif not d.is_number: if _monotonic_sign(n) is not None: den = _monotonic_sign(d) if den is not None and (den.is_positive or den.is_negative): v = n*den if v.is_positive: return Dummy('pos', positive=True) elif v.is_nonnegative: return Dummy('nneg', nonnegative=True) elif v.is_negative: return Dummy('neg', negative=True) elif v.is_nonpositive: return Dummy('npos', nonpositive=True) return None # multivariate c, a = self.as_coeff_Add() v = None if not a.is_polynomial(): # F/A or A/F where A is a number and F is a signed, rational monomial n, d = a.as_numer_denom() if not (n.is_number or d.is_number): return if ( a.is_Mul or a.is_Pow) and \ a.is_rational and \ all(p.exp.is_Integer for p in a.atoms(Pow) if p.is_Pow) and \ (a.is_positive or a.is_negative): v = S(1) for ai in Mul.make_args(a): if ai.is_number: v *= ai continue reps = {} for x in ai.free_symbols: reps[x] = _monotonic_sign(x) if reps[x] is None: return v *= ai.subs(reps) elif c: # signed linear expression if not any(p for p in a.atoms(Pow) if not p.is_number) and (a.is_nonpositive or a.is_nonnegative): free = list(a.free_symbols) p = {} for i in free: v = _monotonic_sign(i) if v is None: return p[i] = v or (_eps if i.is_nonnegative else -_eps) v = a.xreplace(p) if v is not None: rv = v + c if v.is_nonnegative and rv.is_positive: return rv.subs(_eps, 0) if v.is_nonpositive and rv.is_negative: return rv.subs(_eps, 0) def decompose_power(expr): """ Decompose power into symbolic base and integer exponent. This is strictly only valid if the exponent from which the integer is extracted is itself an integer or the base is positive. These conditions are assumed and not checked here. Examples ======== >>> from sympy.core.exprtools import decompose_power >>> from sympy.abc import x, y >>> decompose_power(x) (x, 1) >>> decompose_power(x**2) (x, 2) >>> decompose_power(x**(2*y)) (x**y, 2) >>> decompose_power(x**(2*y/3)) (x**(y/3), 2) """ base, exp = expr.as_base_exp() if exp.is_Number: if exp.is_Rational: if not exp.is_Integer: base = Pow(base, Rational(1, exp.q)) exp = exp.p else: base, exp = expr, 1 else: exp, tail = exp.as_coeff_Mul(rational=True) if exp is S.NegativeOne: base, exp = Pow(base, tail), -1 elif exp is not S.One: tail = _keep_coeff(Rational(1, exp.q), tail) base, exp = Pow(base, tail), exp.p else: base, exp = expr, 1 return base, exp def decompose_power_rat(expr): """ Decompose power into symbolic base and rational exponent. """ base, exp = expr.as_base_exp() if exp.is_Number: if not exp.is_Rational: base, exp = expr, 1 else: exp, tail = exp.as_coeff_Mul(rational=True) if exp is S.NegativeOne: base, exp = Pow(base, tail), -1 elif exp is not S.One: tail = _keep_coeff(Rational(1, exp.q), tail) base, exp = Pow(base, tail), exp.p else: base, exp = expr, 1 return base, exp class Factors(object): """Efficient representation of ``f_1*f_2*...*f_n``.""" __slots__ = ['factors', 'gens'] def __init__(self, factors=None): # Factors """Initialize Factors from dict or expr. Examples ======== >>> from sympy.core.exprtools import Factors >>> from sympy.abc import x >>> from sympy import I >>> e = 2*x**3 >>> Factors(e) Factors({2: 1, x: 3}) >>> Factors(e.as_powers_dict()) Factors({2: 1, x: 3}) >>> f = _ >>> f.factors # underlying dictionary {2: 1, x: 3} >>> f.gens # base of each factor frozenset({2, x}) >>> Factors(0) Factors({0: 1}) >>> Factors(I) Factors({I: 1}) Notes ===== Although a dictionary can be passed, only minimal checking is performed: powers of -1 and I are made canonical. """ if isinstance(factors, (SYMPY_INTS, float)): factors = S(factors) if isinstance(factors, Factors): factors = factors.factors.copy() elif factors is None or factors is S.One: factors = {} elif factors is S.Zero or factors == 0: factors = {S.Zero: S.One} elif isinstance(factors, Number): n = factors factors = {} if n < 0: factors[S.NegativeOne] = S.One n = -n if n is not S.One: if n.is_Float or n.is_Integer or n is S.Infinity: factors[n] = S.One elif n.is_Rational: # since we're processing Numbers, the denominator is # stored with a negative exponent; all other factors # are left . if n.p != 1: factors[Integer(n.p)] = S.One factors[Integer(n.q)] = S.NegativeOne else: raise ValueError('Expected Float|Rational|Integer, not %s' % n) elif isinstance(factors, Basic) and not factors.args: factors = {factors: S.One} elif isinstance(factors, Expr): c, nc = factors.args_cnc() i = c.count(I) for _ in range(i): c.remove(I) factors = dict(Mul._from_args(c).as_powers_dict()) if i: factors[I] = S.One*i if nc: factors[Mul(*nc, evaluate=False)] = S.One else: factors = factors.copy() # /!\ should be dict-like # tidy up -/+1 and I exponents if Rational handle = [] for k in factors: if k is I or k in (-1, 1): handle.append(k) if handle: i1 = S.One for k in handle: if not _isnumber(factors[k]): continue i1 *= k**factors.pop(k) if i1 is not S.One: for a in i1.args if i1.is_Mul else [i1]: # at worst, -1.0*I*(-1)**e if a is S.NegativeOne: factors[a] = S.One elif a is I: factors[I] = S.One elif a.is_Pow: if S.NegativeOne not in factors: factors[S.NegativeOne] = S.Zero factors[S.NegativeOne] += a.exp elif a == 1: factors[a] = S.One elif a == -1: factors[-a] = S.One factors[S.NegativeOne] = S.One else: raise ValueError('unexpected factor in i1: %s' % a) self.factors = factors keys = getattr(factors, 'keys', None) if keys is None: raise TypeError('expecting Expr or dictionary') self.gens = frozenset(keys()) def __hash__(self): # Factors keys = tuple(ordered(self.factors.keys())) values = [self.factors[k] for k in keys] return hash((keys, values)) def __repr__(self): # Factors return "Factors({%s})" % ', '.join( ['%s: %s' % (k, v) for k, v in ordered(self.factors.items())]) @property def is_zero(self): # Factors """ >>> from sympy.core.exprtools import Factors >>> Factors(0).is_zero True """ f = self.factors return len(f) == 1 and S.Zero in f @property def is_one(self): # Factors """ >>> from sympy.core.exprtools import Factors >>> Factors(1).is_one True """ return not self.factors def as_expr(self): # Factors """Return the underlying expression. Examples ======== >>> from sympy.core.exprtools import Factors >>> from sympy.abc import x, y >>> Factors((x*y**2).as_powers_dict()).as_expr() x*y**2 """ args = [] for factor, exp in self.factors.items(): if exp != 1: b, e = factor.as_base_exp() if isinstance(exp, int): e = _keep_coeff(Integer(exp), e) elif isinstance(exp, Rational): e = _keep_coeff(exp, e) else: e *= exp args.append(b**e) else: args.append(factor) return Mul(*args) def mul(self, other): # Factors """Return Factors of ``self * other``. Examples ======== >>> from sympy.core.exprtools import Factors >>> from sympy.abc import x, y, z >>> a = Factors((x*y**2).as_powers_dict()) >>> b = Factors((x*y/z).as_powers_dict()) >>> a.mul(b) Factors({x: 2, y: 3, z: -1}) >>> a*b Factors({x: 2, y: 3, z: -1}) """ if not isinstance(other, Factors): other = Factors(other) if any(f.is_zero for f in (self, other)): return Factors(S.Zero) factors = dict(self.factors) for factor, exp in other.factors.items(): if factor in factors: exp = factors[factor] + exp if not exp: del factors[factor] continue factors[factor] = exp return Factors(factors) def normal(self, other): """Return ``self`` and ``other`` with ``gcd`` removed from each. The only differences between this and method ``div`` is that this is 1) optimized for the case when there are few factors in common and 2) this does not raise an error if ``other`` is zero. See Also ======== div """ if not isinstance(other, Factors): other = Factors(other) if other.is_zero: return (Factors(), Factors(S.Zero)) if self.is_zero: return (Factors(S.Zero), Factors()) self_factors = dict(self.factors) other_factors = dict(other.factors) for factor, self_exp in self.factors.items(): try: other_exp = other.factors[factor] except KeyError: continue exp = self_exp - other_exp if not exp: del self_factors[factor] del other_factors[factor] elif _isnumber(exp): if exp > 0: self_factors[factor] = exp del other_factors[factor] else: del self_factors[factor] other_factors[factor] = -exp else: r = self_exp.extract_additively(other_exp) if r is not None: if r: self_factors[factor] = r del other_factors[factor] else: # should be handled already del self_factors[factor] del other_factors[factor] else: sc, sa = self_exp.as_coeff_Add() if sc: oc, oa = other_exp.as_coeff_Add() diff = sc - oc if diff > 0: self_factors[factor] -= oc other_exp = oa elif diff < 0: self_factors[factor] -= sc other_factors[factor] -= sc other_exp = oa - diff else: self_factors[factor] = sa other_exp = oa if other_exp: other_factors[factor] = other_exp else: del other_factors[factor] return Factors(self_factors), Factors(other_factors) def div(self, other): # Factors """Return ``self`` and ``other`` with ``gcd`` removed from each. This is optimized for the case when there are many factors in common. Examples ======== >>> from sympy.core.exprtools import Factors >>> from sympy.abc import x, y, z >>> from sympy import S >>> a = Factors((x*y**2).as_powers_dict()) >>> a.div(a) (Factors({}), Factors({})) >>> a.div(x*z) (Factors({y: 2}), Factors({z: 1})) The ``/`` operator only gives ``quo``: >>> a/x Factors({y: 2}) Factors treats its factors as though they are all in the numerator, so if you violate this assumption the results will be correct but will not strictly correspond to the numerator and denominator of the ratio: >>> a.div(x/z) (Factors({y: 2}), Factors({z: -1})) Factors is also naive about bases: it does not attempt any denesting of Rational-base terms, for example the following does not become 2**(2*x)/2. >>> Factors(2**(2*x + 2)).div(S(8)) (Factors({2: 2*x + 2}), Factors({8: 1})) factor_terms can clean up such Rational-bases powers: >>> from sympy.core.exprtools import factor_terms >>> n, d = Factors(2**(2*x + 2)).div(S(8)) >>> n.as_expr()/d.as_expr() 2**(2*x + 2)/8 >>> factor_terms(_) 2**(2*x)/2 """ quo, rem = dict(self.factors), {} if not isinstance(other, Factors): other = Factors(other) if other.is_zero: raise ZeroDivisionError if self.is_zero: return (Factors(S.Zero), Factors()) for factor, exp in other.factors.items(): if factor in quo: d = quo[factor] - exp if _isnumber(d): if d <= 0: del quo[factor] if d >= 0: if d: quo[factor] = d continue exp = -d else: r = quo[factor].extract_additively(exp) if r is not None: if r: quo[factor] = r else: # should be handled already del quo[factor] else: other_exp = exp sc, sa = quo[factor].as_coeff_Add() if sc: oc, oa = other_exp.as_coeff_Add() diff = sc - oc if diff > 0: quo[factor] -= oc other_exp = oa elif diff < 0: quo[factor] -= sc other_exp = oa - diff else: quo[factor] = sa other_exp = oa if other_exp: rem[factor] = other_exp else: assert factor not in rem continue rem[factor] = exp return Factors(quo), Factors(rem) def quo(self, other): # Factors """Return numerator Factor of ``self / other``. Examples ======== >>> from sympy.core.exprtools import Factors >>> from sympy.abc import x, y, z >>> a = Factors((x*y**2).as_powers_dict()) >>> b = Factors((x*y/z).as_powers_dict()) >>> a.quo(b) # same as a/b Factors({y: 1}) """ return self.div(other)[0] def rem(self, other): # Factors """Return denominator Factors of ``self / other``. Examples ======== >>> from sympy.core.exprtools import Factors >>> from sympy.abc import x, y, z >>> a = Factors((x*y**2).as_powers_dict()) >>> b = Factors((x*y/z).as_powers_dict()) >>> a.rem(b) Factors({z: -1}) >>> a.rem(a) Factors({}) """ return self.div(other)[1] def pow(self, other): # Factors """Return self raised to a non-negative integer power. Examples ======== >>> from sympy.core.exprtools import Factors >>> from sympy.abc import x, y >>> a = Factors((x*y**2).as_powers_dict()) >>> a**2 Factors({x: 2, y: 4}) """ if isinstance(other, Factors): other = other.as_expr() if other.is_Integer: other = int(other) if isinstance(other, SYMPY_INTS) and other >= 0: factors = {} if other: for factor, exp in self.factors.items(): factors[factor] = exp*other return Factors(factors) else: raise ValueError("expected non-negative integer, got %s" % other) def gcd(self, other): # Factors """Return Factors of ``gcd(self, other)``. The keys are the intersection of factors with the minimum exponent for each factor. Examples ======== >>> from sympy.core.exprtools import Factors >>> from sympy.abc import x, y, z >>> a = Factors((x*y**2).as_powers_dict()) >>> b = Factors((x*y/z).as_powers_dict()) >>> a.gcd(b) Factors({x: 1, y: 1}) """ if not isinstance(other, Factors): other = Factors(other) if other.is_zero: return Factors(self.factors) factors = {} for factor, exp in self.factors.items(): factor, exp = sympify(factor), sympify(exp) if factor in other.factors: lt = (exp - other.factors[factor]).is_negative if lt == True: factors[factor] = exp elif lt == False: factors[factor] = other.factors[factor] return Factors(factors) def lcm(self, other): # Factors """Return Factors of ``lcm(self, other)`` which are the union of factors with the maximum exponent for each factor. Examples ======== >>> from sympy.core.exprtools import Factors >>> from sympy.abc import x, y, z >>> a = Factors((x*y**2).as_powers_dict()) >>> b = Factors((x*y/z).as_powers_dict()) >>> a.lcm(b) Factors({x: 1, y: 2, z: -1}) """ if not isinstance(other, Factors): other = Factors(other) if any(f.is_zero for f in (self, other)): return Factors(S.Zero) factors = dict(self.factors) for factor, exp in other.factors.items(): if factor in factors: exp = max(exp, factors[factor]) factors[factor] = exp return Factors(factors) def __mul__(self, other): # Factors return self.mul(other) def __divmod__(self, other): # Factors return self.div(other) def __div__(self, other): # Factors return self.quo(other) __truediv__ = __div__ def __mod__(self, other): # Factors return self.rem(other) def __pow__(self, other): # Factors return self.pow(other) def __eq__(self, other): # Factors if not isinstance(other, Factors): other = Factors(other) return self.factors == other.factors def __ne__(self, other): # Factors return not self == other class Term(object): """Efficient representation of ``coeff*(numer/denom)``. """ __slots__ = ['coeff', 'numer', 'denom'] def __init__(self, term, numer=None, denom=None): # Term if numer is None and denom is None: if not term.is_commutative: raise NonCommutativeExpression( 'commutative expression expected') coeff, factors = term.as_coeff_mul() numer, denom = defaultdict(int), defaultdict(int) for factor in factors: base, exp = decompose_power(factor) if base.is_Add: cont, base = base.primitive() coeff *= cont**exp if exp > 0: numer[base] += exp else: denom[base] += -exp numer = Factors(numer) denom = Factors(denom) else: coeff = term if numer is None: numer = Factors() if denom is None: denom = Factors() self.coeff = coeff self.numer = numer self.denom = denom def __hash__(self): # Term return hash((self.coeff, self.numer, self.denom)) def __repr__(self): # Term return "Term(%s, %s, %s)" % (self.coeff, self.numer, self.denom) def as_expr(self): # Term return self.coeff*(self.numer.as_expr()/self.denom.as_expr()) def mul(self, other): # Term coeff = self.coeff*other.coeff numer = self.numer.mul(other.numer) denom = self.denom.mul(other.denom) numer, denom = numer.normal(denom) return Term(coeff, numer, denom) def inv(self): # Term return Term(1/self.coeff, self.denom, self.numer) def quo(self, other): # Term return self.mul(other.inv()) def pow(self, other): # Term if other < 0: return self.inv().pow(-other) else: return Term(self.coeff ** other, self.numer.pow(other), self.denom.pow(other)) def gcd(self, other): # Term return Term(self.coeff.gcd(other.coeff), self.numer.gcd(other.numer), self.denom.gcd(other.denom)) def lcm(self, other): # Term return Term(self.coeff.lcm(other.coeff), self.numer.lcm(other.numer), self.denom.lcm(other.denom)) def __mul__(self, other): # Term if isinstance(other, Term): return self.mul(other) else: return NotImplemented def __div__(self, other): # Term if isinstance(other, Term): return self.quo(other) else: return NotImplemented __truediv__ = __div__ def __pow__(self, other): # Term if isinstance(other, SYMPY_INTS): return self.pow(other) else: return NotImplemented def __eq__(self, other): # Term return (self.coeff == other.coeff and self.numer == other.numer and self.denom == other.denom) def __ne__(self, other): # Term return not self == other def _gcd_terms(terms, isprimitive=False, fraction=True): """Helper function for :func:`gcd_terms`. If ``isprimitive`` is True then the call to primitive for an Add will be skipped. This is useful when the content has already been extrated. If ``fraction`` is True then the expression will appear over a common denominator, the lcm of all term denominators. """ if isinstance(terms, Basic) and not isinstance(terms, Tuple): terms = Add.make_args(terms) terms = list(map(Term, [t for t in terms if t])) # there is some simplification that may happen if we leave this # here rather than duplicate it before the mapping of Term onto # the terms if len(terms) == 0: return S.Zero, S.Zero, S.One if len(terms) == 1: cont = terms[0].coeff numer = terms[0].numer.as_expr() denom = terms[0].denom.as_expr() else: cont = terms[0] for term in terms[1:]: cont = cont.gcd(term) for i, term in enumerate(terms): terms[i] = term.quo(cont) if fraction: denom = terms[0].denom for term in terms[1:]: denom = denom.lcm(term.denom) numers = [] for term in terms: numer = term.numer.mul(denom.quo(term.denom)) numers.append(term.coeff*numer.as_expr()) else: numers = [t.as_expr() for t in terms] denom = Term(S(1)).numer cont = cont.as_expr() numer = Add(*numers) denom = denom.as_expr() if not isprimitive and numer.is_Add: _cont, numer = numer.primitive() cont *= _cont return cont, numer, denom def gcd_terms(terms, isprimitive=False, clear=True, fraction=True): """Compute the GCD of ``terms`` and put them together. ``terms`` can be an expression or a non-Basic sequence of expressions which will be handled as though they are terms from a sum. If ``isprimitive`` is True the _gcd_terms will not run the primitive method on the terms. ``clear`` controls the removal of integers from the denominator of an Add expression. When True (default), all numerical denominator will be cleared; when False the denominators will be cleared only if all terms had numerical denominators other than 1. ``fraction``, when True (default), will put the expression over a common denominator. Examples ======== >>> from sympy.core import gcd_terms >>> from sympy.abc import x, y >>> gcd_terms((x + 1)**2*y + (x + 1)*y**2) y*(x + 1)*(x + y + 1) >>> gcd_terms(x/2 + 1) (x + 2)/2 >>> gcd_terms(x/2 + 1, clear=False) x/2 + 1 >>> gcd_terms(x/2 + y/2, clear=False) (x + y)/2 >>> gcd_terms(x/2 + 1/x) (x**2 + 2)/(2*x) >>> gcd_terms(x/2 + 1/x, fraction=False) (x + 2/x)/2 >>> gcd_terms(x/2 + 1/x, fraction=False, clear=False) x/2 + 1/x >>> gcd_terms(x/2/y + 1/x/y) (x**2 + 2)/(2*x*y) >>> gcd_terms(x/2/y + 1/x/y, clear=False) (x**2/2 + 1)/(x*y) >>> gcd_terms(x/2/y + 1/x/y, clear=False, fraction=False) (x/2 + 1/x)/y The ``clear`` flag was ignored in this case because the returned expression was a rational expression, not a simple sum. See Also ======== factor_terms, sympy.polys.polytools.terms_gcd """ def mask(terms): """replace nc portions of each term with a unique Dummy symbols and return the replacements to restore them""" args = [(a, []) if a.is_commutative else a.args_cnc() for a in terms] reps = [] for i, (c, nc) in enumerate(args): if nc: nc = Mul(*nc) d = Dummy() reps.append((d, nc)) c.append(d) args[i] = Mul(*c) else: args[i] = c return args, dict(reps) isadd = isinstance(terms, Add) addlike = isadd or not isinstance(terms, Basic) and \ is_sequence(terms, include=set) and \ not isinstance(terms, Dict) if addlike: if isadd: # i.e. an Add terms = list(terms.args) else: terms = sympify(terms) terms, reps = mask(terms) cont, numer, denom = _gcd_terms(terms, isprimitive, fraction) numer = numer.xreplace(reps) coeff, factors = cont.as_coeff_Mul() if not clear: c, _coeff = coeff.as_coeff_Mul() if not c.is_Integer and not clear and numer.is_Add: n, d = c.as_numer_denom() _numer = numer/d if any(a.as_coeff_Mul()[0].is_Integer for a in _numer.args): numer = _numer coeff = n*_coeff return _keep_coeff(coeff, factors*numer/denom, clear=clear) if not isinstance(terms, Basic): return terms if terms.is_Atom: return terms if terms.is_Mul: c, args = terms.as_coeff_mul() return _keep_coeff(c, Mul(*[gcd_terms(i, isprimitive, clear, fraction) for i in args]), clear=clear) def handle(a): # don't treat internal args like terms of an Add if not isinstance(a, Expr): if isinstance(a, Basic): return a.func(*[handle(i) for i in a.args]) return type(a)([handle(i) for i in a]) return gcd_terms(a, isprimitive, clear, fraction) if isinstance(terms, Dict): return Dict(*[(k, handle(v)) for k, v in terms.args]) return terms.func(*[handle(i) for i in terms.args]) def factor_terms(expr, radical=False, clear=False, fraction=False, sign=True): """Remove common factors from terms in all arguments without changing the underlying structure of the expr. No expansion or simplification (and no processing of non-commutatives) is performed. If radical=True then a radical common to all terms will be factored out of any Add sub-expressions of the expr. If clear=False (default) then coefficients will not be separated from a single Add if they can be distributed to leave one or more terms with integer coefficients. If fraction=True (default is False) then a common denominator will be constructed for the expression. If sign=True (default) then even if the only factor in common is a -1, it will be factored out of the expression. Examples ======== >>> from sympy import factor_terms, Symbol >>> from sympy.abc import x, y >>> factor_terms(x + x*(2 + 4*y)**3) x*(8*(2*y + 1)**3 + 1) >>> A = Symbol('A', commutative=False) >>> factor_terms(x*A + x*A + x*y*A) x*(y*A + 2*A) When ``clear`` is False, a rational will only be factored out of an Add expression if all terms of the Add have coefficients that are fractions: >>> factor_terms(x/2 + 1, clear=False) x/2 + 1 >>> factor_terms(x/2 + 1, clear=True) (x + 2)/2 If a -1 is all that can be factored out, to *not* factor it out, the flag ``sign`` must be False: >>> factor_terms(-x - y) -(x + y) >>> factor_terms(-x - y, sign=False) -x - y >>> factor_terms(-2*x - 2*y, sign=False) -2*(x + y) See Also ======== gcd_terms, sympy.polys.polytools.terms_gcd """ def do(expr): from sympy.concrete.summations import Sum from sympy.simplify.simplify import factor_sum is_iterable = iterable(expr) if not isinstance(expr, Basic) or expr.is_Atom: if is_iterable: return type(expr)([do(i) for i in expr]) return expr if expr.is_Pow or expr.is_Function or \ is_iterable or not hasattr(expr, 'args_cnc'): args = expr.args newargs = tuple([do(i) for i in args]) if newargs == args: return expr return expr.func(*newargs) if isinstance(expr, Sum): return factor_sum(expr, radical=radical, clear=clear, fraction=fraction, sign=sign) cont, p = expr.as_content_primitive(radical=radical, clear=clear) if p.is_Add: list_args = [do(a) for a in Add.make_args(p)] # get a common negative (if there) which gcd_terms does not remove if all(a.as_coeff_Mul()[0].extract_multiplicatively(-1) is not None for a in list_args): cont = -cont list_args = [-a for a in list_args] # watch out for exp(-(x+2)) which gcd_terms will change to exp(-x-2) special = {} for i, a in enumerate(list_args): b, e = a.as_base_exp() if e.is_Mul and e != Mul(*e.args): list_args[i] = Dummy() special[list_args[i]] = a # rebuild p not worrying about the order which gcd_terms will fix p = Add._from_args(list_args) p = gcd_terms(p, isprimitive=True, clear=clear, fraction=fraction).xreplace(special) elif p.args: p = p.func( *[do(a) for a in p.args]) rv = _keep_coeff(cont, p, clear=clear, sign=sign) return rv expr = sympify(expr) return do(expr) def _mask_nc(eq, name=None): """ Return ``eq`` with non-commutative objects replaced with Dummy symbols. A dictionary that can be used to restore the original values is returned: if it is None, the expression is noncommutative and cannot be made commutative. The third value returned is a list of any non-commutative symbols that appear in the returned equation. ``name``, if given, is the name that will be used with numbered Dummy variables that will replace the non-commutative objects and is mainly used for doctesting purposes. Notes ===== All non-commutative objects other than Symbols are replaced with a non-commutative Symbol. Identical objects will be identified by identical symbols. If there is only 1 non-commutative object in an expression it will be replaced with a commutative symbol. Otherwise, the non-commutative entities are retained and the calling routine should handle replacements in this case since some care must be taken to keep track of the ordering of symbols when they occur within Muls. Examples ======== >>> from sympy.physics.secondquant import Commutator, NO, F, Fd >>> from sympy import symbols, Mul >>> from sympy.core.exprtools import _mask_nc >>> from sympy.abc import x, y >>> A, B, C = symbols('A,B,C', commutative=False) One nc-symbol: >>> _mask_nc(A**2 - x**2, 'd') (_d0**2 - x**2, {_d0: A}, []) Multiple nc-symbols: >>> _mask_nc(A**2 - B**2, 'd') (A**2 - B**2, {}, [A, B]) An nc-object with nc-symbols but no others outside of it: >>> _mask_nc(1 + x*Commutator(A, B), 'd') (_d0*x + 1, {_d0: Commutator(A, B)}, []) >>> _mask_nc(NO(Fd(x)*F(y)), 'd') (_d0, {_d0: NO(CreateFermion(x)*AnnihilateFermion(y))}, []) Multiple nc-objects: >>> eq = x*Commutator(A, B) + x*Commutator(A, C)*Commutator(A, B) >>> _mask_nc(eq, 'd') (x*_d0 + x*_d1*_d0, {_d0: Commutator(A, B), _d1: Commutator(A, C)}, [_d0, _d1]) Multiple nc-objects and nc-symbols: >>> eq = A*Commutator(A, B) + B*Commutator(A, C) >>> _mask_nc(eq, 'd') (A*_d0 + B*_d1, {_d0: Commutator(A, B), _d1: Commutator(A, C)}, [_d0, _d1, A, B]) If there is an object that: - doesn't contain nc-symbols - but has arguments which derive from Basic, not Expr - and doesn't define an _eval_is_commutative routine then it will give False (or None?) for the is_commutative test. Such objects are also removed by this routine: >>> from sympy import Basic >>> eq = (1 + Mul(Basic(), Basic(), evaluate=False)) >>> eq.is_commutative False >>> _mask_nc(eq, 'd') (_d0**2 + 1, {_d0: Basic()}, []) """ name = name or 'mask' # Make Dummy() append sequential numbers to the name def numbered_names(): i = 0 while True: yield name + str(i) i += 1 names = numbered_names() def Dummy(*args, **kwargs): from sympy import Dummy return Dummy(next(names), *args, **kwargs) expr = eq if expr.is_commutative: return eq, {}, [] # identify nc-objects; symbols and other rep = [] nc_obj = set() nc_syms = set() pot = preorder_traversal(expr, keys=default_sort_key) for i, a in enumerate(pot): if any(a == r[0] for r in rep): pot.skip() elif not a.is_commutative: if a.is_symbol: nc_syms.add(a) pot.skip() elif not (a.is_Add or a.is_Mul or a.is_Pow): nc_obj.add(a) pot.skip() # If there is only one nc symbol or object, it can be factored regularly # but polys is going to complain, so replace it with a Dummy. if len(nc_obj) == 1 and not nc_syms: rep.append((nc_obj.pop(), Dummy())) elif len(nc_syms) == 1 and not nc_obj: rep.append((nc_syms.pop(), Dummy())) # Any remaining nc-objects will be replaced with an nc-Dummy and # identified as an nc-Symbol to watch out for nc_obj = sorted(nc_obj, key=default_sort_key) for n in nc_obj: nc = Dummy(commutative=False) rep.append((n, nc)) nc_syms.add(nc) expr = expr.subs(rep) nc_syms = list(nc_syms) nc_syms.sort(key=default_sort_key) return expr, {v: k for k, v in rep}, nc_syms def factor_nc(expr): """Return the factored form of ``expr`` while handling non-commutative expressions. Examples ======== >>> from sympy.core.exprtools import factor_nc >>> from sympy import Symbol >>> from sympy.abc import x >>> A = Symbol('A', commutative=False) >>> B = Symbol('B', commutative=False) >>> factor_nc((x**2 + 2*A*x + A**2).expand()) (x + A)**2 >>> factor_nc(((x + A)*(x + B)).expand()) (x + A)*(x + B) """ from sympy.simplify.simplify import powsimp from sympy.polys import gcd, factor def _pemexpand(expr): "Expand with the minimal set of hints necessary to check the result." return expr.expand(deep=True, mul=True, power_exp=True, power_base=False, basic=False, multinomial=True, log=False) expr = sympify(expr) if not isinstance(expr, Expr) or not expr.args: return expr if not expr.is_Add: return expr.func(*[factor_nc(a) for a in expr.args]) expr, rep, nc_symbols = _mask_nc(expr) if rep: return factor(expr).subs(rep) else: args = [a.args_cnc() for a in Add.make_args(expr)] c = g = l = r = S.One hit = False # find any commutative gcd term for i, a in enumerate(args): if i == 0: c = Mul._from_args(a[0]) elif a[0]: c = gcd(c, Mul._from_args(a[0])) else: c = S.One if c is not S.One: hit = True c, g = c.as_coeff_Mul() if g is not S.One: for i, (cc, _) in enumerate(args): cc = list(Mul.make_args(Mul._from_args(list(cc))/g)) args[i][0] = cc for i, (cc, _) in enumerate(args): cc[0] = cc[0]/c args[i][0] = cc # find any noncommutative common prefix for i, a in enumerate(args): if i == 0: n = a[1][:] else: n = common_prefix(n, a[1]) if not n: # is there a power that can be extracted? if not args[0][1]: break b, e = args[0][1][0].as_base_exp() ok = False if e.is_Integer: for t in args: if not t[1]: break bt, et = t[1][0].as_base_exp() if et.is_Integer and bt == b: e = min(e, et) else: break else: ok = hit = True l = b**e il = b**-e for i, a in enumerate(args): args[i][1][0] = il*args[i][1][0] break if not ok: break else: hit = True lenn = len(n) l = Mul(*n) for i, a in enumerate(args): args[i][1] = args[i][1][lenn:] # find any noncommutative common suffix for i, a in enumerate(args): if i == 0: n = a[1][:] else: n = common_suffix(n, a[1]) if not n: # is there a power that can be extracted? if not args[0][1]: break b, e = args[0][1][-1].as_base_exp() ok = False if e.is_Integer: for t in args: if not t[1]: break bt, et = t[1][-1].as_base_exp() if et.is_Integer and bt == b: e = min(e, et) else: break else: ok = hit = True r = b**e il = b**-e for i, a in enumerate(args): args[i][1][-1] = args[i][1][-1]*il break if not ok: break else: hit = True lenn = len(n) r = Mul(*n) for i, a in enumerate(args): args[i][1] = a[1][:len(a[1]) - lenn] if hit: mid = Add(*[Mul(*cc)*Mul(*nc) for cc, nc in args]) else: mid = expr # sort the symbols so the Dummys would appear in the same # order as the original symbols, otherwise you may introduce # a factor of -1, e.g. A**2 - B**2) -- {A:y, B:x} --> y**2 - x**2 # and the former factors into two terms, (A - B)*(A + B) while the # latter factors into 3 terms, (-1)*(x - y)*(x + y) rep1 = [(n, Dummy()) for n in sorted(nc_symbols, key=default_sort_key)] unrep1 = [(v, k) for k, v in rep1] unrep1.reverse() new_mid, r2, _ = _mask_nc(mid.subs(rep1)) new_mid = powsimp(factor(new_mid)) new_mid = new_mid.subs(r2).subs(unrep1) if new_mid.is_Pow: return _keep_coeff(c, g*l*new_mid*r) if new_mid.is_Mul: # XXX TODO there should be a way to inspect what order the terms # must be in and just select the plausible ordering without # checking permutations cfac = [] ncfac = [] for f in new_mid.args: if f.is_commutative: cfac.append(f) else: b, e = f.as_base_exp() if e.is_Integer: ncfac.extend([b]*e) else: ncfac.append(f) pre_mid = g*Mul(*cfac)*l target = _pemexpand(expr/c) for s in variations(ncfac, len(ncfac)): ok = pre_mid*Mul(*s)*r if _pemexpand(ok) == target: return _keep_coeff(c, ok) # mid was an Add that didn't factor successfully return _keep_coeff(c, g*l*mid*r)
cdab57388bab3e069796e4069b24be7a4180e1c19af5f6523e308211223c9542
"""Singleton mechanism""" from __future__ import print_function, division from .core import Registry from .assumptions import ManagedProperties from .sympify import sympify class SingletonRegistry(Registry): """ The registry for the singleton classes (accessible as ``S``). This class serves as two separate things. The first thing it is is the ``SingletonRegistry``. Several classes in SymPy appear so often that they are singletonized, that is, using some metaprogramming they are made so that they can only be instantiated once (see the :class:`sympy.core.singleton.Singleton` class for details). For instance, every time you create ``Integer(0)``, this will return the same instance, :class:`sympy.core.numbers.Zero`. All singleton instances are attributes of the ``S`` object, so ``Integer(0)`` can also be accessed as ``S.Zero``. Singletonization offers two advantages: it saves memory, and it allows fast comparison. It saves memory because no matter how many times the singletonized objects appear in expressions in memory, they all point to the same single instance in memory. The fast comparison comes from the fact that you can use ``is`` to compare exact instances in Python (usually, you need to use ``==`` to compare things). ``is`` compares objects by memory address, and is very fast. For instance >>> from sympy import S, Integer >>> a = Integer(0) >>> a is S.Zero True For the most part, the fact that certain objects are singletonized is an implementation detail that users shouldn't need to worry about. In SymPy library code, ``is`` comparison is often used for performance purposes The primary advantage of ``S`` for end users is the convenient access to certain instances that are otherwise difficult to type, like ``S.Half`` (instead of ``Rational(1, 2)``). When using ``is`` comparison, make sure the argument is sympified. For instance, >>> 0 is S.Zero False This problem is not an issue when using ``==``, which is recommended for most use-cases: >>> 0 == S.Zero True The second thing ``S`` is is a shortcut for :func:`sympy.core.sympify.sympify`. :func:`sympy.core.sympify.sympify` is the function that converts Python objects such as ``int(1)`` into SymPy objects such as ``Integer(1)``. It also converts the string form of an expression into a SymPy expression, like ``sympify("x**2")`` -> ``Symbol("x")**2``. ``S(1)`` is the same thing as ``sympify(1)`` (basically, ``S.__call__`` has been defined to call ``sympify``). This is for convenience, since ``S`` is a single letter. It's mostly useful for defining rational numbers. Consider an expression like ``x + 1/2``. If you enter this directly in Python, it will evaluate the ``1/2`` and give ``0.5`` (or just ``0`` in Python 2, because of integer division), because both arguments are ints (see also :ref:`tutorial-gotchas-final-notes`). However, in SymPy, you usually want the quotient of two integers to give an exact rational number. The way Python's evaluation works, at least one side of an operator needs to be a SymPy object for the SymPy evaluation to take over. You could write this as ``x + Rational(1, 2)``, but this is a lot more typing. A shorter version is ``x + S(1)/2``. Since ``S(1)`` returns ``Integer(1)``, the division will return a ``Rational`` type, since it will call ``Integer.__div__``, which knows how to return a ``Rational``. """ __slots__ = [] # Also allow things like S(5) __call__ = staticmethod(sympify) def __init__(self): self._classes_to_install = {} # Dict of classes that have been registered, but that have not have been # installed as an attribute of this SingletonRegistry. # Installation automatically happens at the first attempt to access the # attribute. # The purpose of this is to allow registration during class # initialization during import, but not trigger object creation until # actual use (which should not happen until after all imports are # finished). def register(self, cls): # Make sure a duplicate class overwrites the old one if hasattr(self, cls.__name__): delattr(self, cls.__name__) self._classes_to_install[cls.__name__] = cls def __getattr__(self, name): """Python calls __getattr__ if no attribute of that name was installed yet. This __getattr__ checks whether a class with the requested name was already registered but not installed; if no, raises an AttributeError. Otherwise, retrieves the class, calculates its singleton value, installs it as an attribute of the given name, and unregisters the class.""" if name not in self._classes_to_install: raise AttributeError( "Attribute '%s' was not installed on SymPy registry %s" % ( name, self)) class_to_install = self._classes_to_install[name] value_to_install = class_to_install() self.__setattr__(name, value_to_install) del self._classes_to_install[name] return value_to_install def __repr__(self): return "S" S = SingletonRegistry() class Singleton(ManagedProperties): """ Metaclass for singleton classes. A singleton class has only one instance which is returned every time the class is instantiated. Additionally, this instance can be accessed through the global registry object S as S.<class_name>. Examples ======== >>> from sympy import S, Basic >>> from sympy.core.singleton import Singleton >>> from sympy.core.compatibility import with_metaclass >>> class MySingleton(with_metaclass(Singleton, Basic)): ... pass >>> Basic() is Basic() False >>> MySingleton() is MySingleton() True >>> S.MySingleton is MySingleton() True Notes ===== Instance creation is delayed until the first time the value is accessed. (SymPy versions before 1.0 would create the instance during class creation time, which would be prone to import cycles.) This metaclass is a subclass of ManagedProperties because that is the metaclass of many classes that need to be Singletons (Python does not allow subclasses to have a different metaclass than the superclass, except the subclass may use a subclassed metaclass). """ _instances = {} "Maps singleton classes to their instances." def __new__(cls, *args, **kwargs): result = super(Singleton, cls).__new__(cls, *args, **kwargs) S.register(result) return result def __call__(self, *args, **kwargs): # Called when application code says SomeClass(), where SomeClass is a # class of which Singleton is the metaclas. # __call__ is invoked first, before __new__() and __init__(). if self not in Singleton._instances: Singleton._instances[self] = \ super(Singleton, self).__call__(*args, **kwargs) # Invokes the standard constructor of SomeClass. return Singleton._instances[self] # Inject pickling support. def __getnewargs__(self): return () self.__getnewargs__ = __getnewargs__
3ad7dc0869304ab13ba01864afbdafd83edf34a48e1d1f36850ce7967daaeb12
""" This module contains the machinery handling assumptions. All symbolic objects have assumption attributes that can be accessed via .is_<assumption name> attribute. Assumptions determine certain properties of symbolic objects and can have 3 possible values: True, False, None. True is returned if the object has the property and False is returned if it doesn't or can't (i.e. doesn't make sense): >>> from sympy import I >>> I.is_algebraic True >>> I.is_real False >>> I.is_prime False When the property cannot be determined (or when a method is not implemented) None will be returned, e.g. a generic symbol, x, may or may not be positive so a value of None is returned for x.is_positive. By default, all symbolic values are in the largest set in the given context without specifying the property. For example, a symbol that has a property being integer, is also real, complex, etc. Here follows a list of possible assumption names: .. glossary:: commutative object commutes with any other object with respect to multiplication operation. complex object can have only values from the set of complex numbers. imaginary object value is a number that can be written as a real number multiplied by the imaginary unit ``I``. See [3]_. Please note, that ``0`` is not considered to be an imaginary number, see `issue #7649 <https://github.com/sympy/sympy/issues/7649>`_. real object can have only values from the set of real numbers. integer object can have only values from the set of integers. odd even object can have only values from the set of odd (even) integers [2]_. prime object is a natural number greater than ``1`` that has no positive divisors other than ``1`` and itself. See [6]_. composite object is a positive integer that has at least one positive divisor other than ``1`` or the number itself. See [4]_. zero object has the value of ``0``. nonzero object is a real number that is not zero. rational object can have only values from the set of rationals. algebraic object can have only values from the set of algebraic numbers [11]_. transcendental object can have only values from the set of transcendental numbers [10]_. irrational object value cannot be represented exactly by Rational, see [5]_. finite infinite object absolute value is bounded (arbitrarily large). See [7]_, [8]_, [9]_. negative nonnegative object can have only negative (nonnegative) values [1]_. positive nonpositive object can have only positive (only nonpositive) values. hermitian antihermitian object belongs to the field of hermitian (antihermitian) operators. Examples ======== >>> from sympy import Symbol >>> x = Symbol('x', real=True); x x >>> x.is_real True >>> x.is_complex True See Also ======== .. seealso:: :py:class:`sympy.core.numbers.ImaginaryUnit` :py:class:`sympy.core.numbers.Zero` :py:class:`sympy.core.numbers.One` Notes ===== Assumption values are stored in obj._assumptions dictionary or are returned by getter methods (with property decorators) or are attributes of objects/classes. References ========== .. [1] https://en.wikipedia.org/wiki/Negative_number .. [2] https://en.wikipedia.org/wiki/Parity_%28mathematics%29 .. [3] https://en.wikipedia.org/wiki/Imaginary_number .. [4] https://en.wikipedia.org/wiki/Composite_number .. [5] https://en.wikipedia.org/wiki/Irrational_number .. [6] https://en.wikipedia.org/wiki/Prime_number .. [7] https://en.wikipedia.org/wiki/Finite .. [8] https://docs.python.org/3/library/math.html#math.isfinite .. [9] http://docs.scipy.org/doc/numpy/reference/generated/numpy.isfinite.html .. [10] https://en.wikipedia.org/wiki/Transcendental_number .. [11] https://en.wikipedia.org/wiki/Algebraic_number """ from __future__ import print_function, division from sympy.core.facts import FactRules, FactKB from sympy.core.core import BasicMeta from sympy.core.compatibility import integer_types from random import shuffle _assume_rules = FactRules([ 'integer -> rational', 'rational -> real', 'rational -> algebraic', 'algebraic -> complex', 'real -> complex', 'real -> hermitian', 'imaginary -> complex', 'imaginary -> antihermitian', 'complex -> commutative', 'odd == integer & !even', 'even == integer & !odd', 'real == negative | zero | positive', 'transcendental == complex & !algebraic', 'negative == nonpositive & nonzero', 'positive == nonnegative & nonzero', 'zero == nonnegative & nonpositive', 'nonpositive == real & !positive', 'nonnegative == real & !negative', 'zero -> even & finite', 'prime -> integer & positive', 'composite -> integer & positive & !prime', '!composite -> !positive | !even | prime', 'irrational == real & !rational', 'imaginary -> !real', 'infinite -> !finite', 'noninteger == real & !integer', 'nonzero == real & !zero', ]) _assume_defined = _assume_rules.defined_facts.copy() _assume_defined.add('polar') _assume_defined = frozenset(_assume_defined) class StdFactKB(FactKB): """A FactKB specialised for the built-in rules This is the only kind of FactKB that Basic objects should use. """ rules = _assume_rules def __init__(self, facts=None): # save a copy of the facts dict if not facts: self._generator = {} elif not isinstance(facts, FactKB): self._generator = facts.copy() else: self._generator = facts.generator if facts: self.deduce_all_facts(facts) def copy(self): return self.__class__(self) @property def generator(self): return self._generator.copy() def as_property(fact): """Convert a fact name to the name of the corresponding property""" return 'is_%s' % fact def make_property(fact): """Create the automagic property corresponding to a fact.""" def getit(self): try: return self._assumptions[fact] except KeyError: if self._assumptions is self.default_assumptions: self._assumptions = self.default_assumptions.copy() return _ask(fact, self) getit.func_name = as_property(fact) return property(getit) def _ask(fact, obj): """ Find the truth value for a property of an object. This function is called when a request is made to see what a fact value is. For this we use several techniques: First, the fact-evaluation function is tried, if it exists (for example _eval_is_integer). Then we try related facts. For example rational --> integer another example is joined rule: integer & !odd --> even so in the latter case if we are looking at what 'even' value is, 'integer' and 'odd' facts will be asked. In all cases, when we settle on some fact value, its implications are deduced, and the result is cached in ._assumptions. """ assumptions = obj._assumptions handler_map = obj._prop_handler # Store None into the assumptions so that recursive attempts at # evaluating the same fact don't trigger infinite recursion. assumptions._tell(fact, None) # First try the assumption evaluation function if it exists try: evaluate = handler_map[fact] except KeyError: pass else: a = evaluate(obj) if a is not None: assumptions.deduce_all_facts(((fact, a),)) return a # Try assumption's prerequisites prereq = list(_assume_rules.prereq[fact]) shuffle(prereq) for pk in prereq: if pk in assumptions: continue if pk in handler_map: _ask(pk, obj) # we might have found the value of fact ret_val = assumptions.get(fact) if ret_val is not None: return ret_val # Note: the result has already been cached return None class ManagedProperties(BasicMeta): """Metaclass for classes with old-style assumptions""" def __init__(cls, *args, **kws): BasicMeta.__init__(cls, *args, **kws) local_defs = {} for k in _assume_defined: attrname = as_property(k) v = cls.__dict__.get(attrname, '') if isinstance(v, (bool, integer_types, type(None))): if v is not None: v = bool(v) local_defs[k] = v defs = {} for base in reversed(cls.__bases__): assumptions = getattr(base, '_explicit_class_assumptions', None) if assumptions is not None: defs.update(assumptions) defs.update(local_defs) cls._explicit_class_assumptions = defs cls.default_assumptions = StdFactKB(defs) cls._prop_handler = {} for k in _assume_defined: eval_is_meth = getattr(cls, '_eval_is_%s' % k, None) if eval_is_meth is not None: cls._prop_handler[k] = eval_is_meth # Put definite results directly into the class dict, for speed for k, v in cls.default_assumptions.items(): setattr(cls, as_property(k), v) # protection e.g. for Integer.is_even=F <- (Rational.is_integer=F) derived_from_bases = set() for base in cls.__bases__: default_assumptions = getattr(base, 'default_assumptions', None) # is an assumption-aware class if default_assumptions is not None: derived_from_bases.update(default_assumptions) for fact in derived_from_bases - set(cls.default_assumptions): pname = as_property(fact) if pname not in cls.__dict__: setattr(cls, pname, make_property(fact)) # Finally, add any missing automagic property (e.g. for Basic) for fact in _assume_defined: pname = as_property(fact) if not hasattr(cls, pname): setattr(cls, pname, make_property(fact))
0f28872af1bceaec794a0097db54248ddeb9ac4c62164ca065ce484c56e1193e
""" There are three types of functions implemented in SymPy: 1) defined functions (in the sense that they can be evaluated) like exp or sin; they have a name and a body: f = exp 2) undefined function which have a name but no body. Undefined functions can be defined using a Function class as follows: f = Function('f') (the result will be a Function instance) 3) anonymous function (or lambda function) which have a body (defined with dummy variables) but have no name: f = Lambda(x, exp(x)*x) f = Lambda((x, y), exp(x)*y) The fourth type of functions are composites, like (sin + cos)(x); these work in SymPy core, but are not yet part of SymPy. Examples ======== >>> import sympy >>> f = sympy.Function("f") >>> from sympy.abc import x >>> f(x) f(x) >>> print(sympy.srepr(f(x).func)) Function('f') >>> f(x).args (x,) """ from __future__ import print_function, division from .add import Add from .assumptions import ManagedProperties, _assume_defined from .basic import Basic, _atomic from .cache import cacheit from .compatibility import iterable, is_sequence, as_int, ordered, Iterable from .decorators import _sympifyit from .expr import Expr, AtomicExpr from .numbers import Rational, Float from .operations import LatticeOp from .rules import Transform from .singleton import S from .sympify import sympify from sympy.core.containers import Tuple, Dict from sympy.core.logic import fuzzy_and from sympy.core.compatibility import string_types, with_metaclass, PY3, range from sympy.utilities import default_sort_key from sympy.utilities.misc import filldedent from sympy.utilities.iterables import has_dups, sift from sympy.core.evaluate import global_evaluate import mpmath import mpmath.libmp as mlib import inspect from collections import Counter def _coeff_isneg(a): """Return True if the leading Number is negative. Examples ======== >>> from sympy.core.function import _coeff_isneg >>> from sympy import S, Symbol, oo, pi >>> _coeff_isneg(-3*pi) True >>> _coeff_isneg(S(3)) False >>> _coeff_isneg(-oo) True >>> _coeff_isneg(Symbol('n', negative=True)) # coeff is 1 False For matrix expressions: >>> from sympy import MatrixSymbol, sqrt >>> A = MatrixSymbol("A", 3, 3) >>> _coeff_isneg(-sqrt(2)*A) True >>> _coeff_isneg(sqrt(2)*A) False """ if a.is_MatMul: a = a.args[0] if a.is_Mul: a = a.args[0] return a.is_Number and a.is_negative class PoleError(Exception): pass class ArgumentIndexError(ValueError): def __str__(self): return ("Invalid operation with argument number %s for Function %s" % (self.args[1], self.args[0])) # Python 2/3 version that does not raise a Deprecation warning def arity(cls): """Return the arity of the function if it is known, else None. When default values are specified for some arguments, they are optional and the arity is reported as a tuple of possible values. Examples ======== >>> from sympy.core.function import arity >>> from sympy import log >>> arity(lambda x: x) 1 >>> arity(log) (1, 2) >>> arity(lambda *x: sum(x)) is None True """ eval_ = getattr(cls, 'eval', cls) if PY3: parameters = inspect.signature(eval_).parameters.items() if [p for _, p in parameters if p.kind == p.VAR_POSITIONAL]: return p_or_k = [p for _, p in parameters if p.kind == p.POSITIONAL_OR_KEYWORD] # how many have no default and how many have a default value no, yes = map(len, sift(p_or_k, lambda p:p.default == p.empty, binary=True)) return no if not yes else tuple(range(no, no + yes + 1)) else: cls_ = int(hasattr(cls, 'eval')) # correction for cls arguments evalargspec = inspect.getargspec(eval_) if evalargspec.varargs: return else: evalargs = len(evalargspec.args) - cls_ if evalargspec.defaults: # if there are default args then they are optional; the # fewest args will occur when all defaults are used and # the most when none are used (i.e. all args are given) fewest = evalargs - len(evalargspec.defaults) return tuple(range(fewest, evalargs + 1)) return evalargs class FunctionClass(ManagedProperties): """ Base class for function classes. FunctionClass is a subclass of type. Use Function('<function name>' [ , signature ]) to create undefined function classes. """ _new = type.__new__ def __init__(cls, *args, **kwargs): # honor kwarg value or class-defined value before using # the number of arguments in the eval function (if present) nargs = kwargs.pop('nargs', cls.__dict__.get('nargs', arity(cls))) # Canonicalize nargs here; change to set in nargs. if is_sequence(nargs): if not nargs: raise ValueError(filldedent(''' Incorrectly specified nargs as %s: if there are no arguments, it should be `nargs = 0`; if there are any number of arguments, it should be `nargs = None`''' % str(nargs))) nargs = tuple(ordered(set(nargs))) elif nargs is not None: nargs = (as_int(nargs),) cls._nargs = nargs super(FunctionClass, cls).__init__(*args, **kwargs) @property def __signature__(self): """ Allow Python 3's inspect.signature to give a useful signature for Function subclasses. """ # Python 3 only, but backports (like the one in IPython) still might # call this. try: from inspect import signature except ImportError: return None # TODO: Look at nargs return signature(self.eval) @property def free_symbols(self): return set() @property def xreplace(self): # Function needs args so we define a property that returns # a function that takes args...and then use that function # to return the right value return lambda rule, **_: rule.get(self, self) @property def nargs(self): """Return a set of the allowed number of arguments for the function. Examples ======== >>> from sympy.core.function import Function >>> from sympy.abc import x, y >>> f = Function('f') If the function can take any number of arguments, the set of whole numbers is returned: >>> Function('f').nargs Naturals0 If the function was initialized to accept one or more arguments, a corresponding set will be returned: >>> Function('f', nargs=1).nargs {1} >>> Function('f', nargs=(2, 1)).nargs {1, 2} The undefined function, after application, also has the nargs attribute; the actual number of arguments is always available by checking the ``args`` attribute: >>> f = Function('f') >>> f(1).nargs Naturals0 >>> len(f(1).args) 1 """ from sympy.sets.sets import FiniteSet # XXX it would be nice to handle this in __init__ but there are import # problems with trying to import FiniteSet there return FiniteSet(*self._nargs) if self._nargs else S.Naturals0 def __repr__(cls): return cls.__name__ class Application(with_metaclass(FunctionClass, Basic)): """ Base class for applied functions. Instances of Application represent the result of applying an application of any type to any object. """ is_Function = True @cacheit def __new__(cls, *args, **options): from sympy.sets.fancysets import Naturals0 from sympy.sets.sets import FiniteSet args = list(map(sympify, args)) evaluate = options.pop('evaluate', global_evaluate[0]) # WildFunction (and anything else like it) may have nargs defined # and we throw that value away here options.pop('nargs', None) if options: raise ValueError("Unknown options: %s" % options) if evaluate: evaluated = cls.eval(*args) if evaluated is not None: return evaluated obj = super(Application, cls).__new__(cls, *args, **options) # make nargs uniform here sentinel = object() objnargs = getattr(obj, "nargs", sentinel) if objnargs is not sentinel: # things passing through here: # - functions subclassed from Function (e.g. myfunc(1).nargs) # - functions like cos(1).nargs # - AppliedUndef with given nargs like Function('f', nargs=1)(1).nargs # Canonicalize nargs here if is_sequence(objnargs): nargs = tuple(ordered(set(objnargs))) elif objnargs is not None: nargs = (as_int(objnargs),) else: nargs = None else: # things passing through here: # - WildFunction('f').nargs # - AppliedUndef with no nargs like Function('f')(1).nargs nargs = obj._nargs # note the underscore here # convert to FiniteSet obj.nargs = FiniteSet(*nargs) if nargs else Naturals0() return obj @classmethod def eval(cls, *args): """ Returns a canonical form of cls applied to arguments args. The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None. Examples of eval() for the function "sign" --------------------------------------------- .. code-block:: python @classmethod def eval(cls, arg): if arg is S.NaN: return S.NaN if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul): coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One: return cls(coeff) * cls(terms) """ return @property def func(self): return self.__class__ def _eval_subs(self, old, new): if (old.is_Function and new.is_Function and callable(old) and callable(new) and old == self.func and len(self.args) in new.nargs): return new(*[i._subs(old, new) for i in self.args]) class Function(Application, Expr): """ Base class for applied mathematical functions. It also serves as a constructor for undefined function classes. Examples ======== First example shows how to use Function as a constructor for undefined function classes: >>> from sympy import Function, Symbol >>> x = Symbol('x') >>> f = Function('f') >>> g = Function('g')(x) >>> f f >>> f(x) f(x) >>> g g(x) >>> f(x).diff(x) Derivative(f(x), x) >>> g.diff(x) Derivative(g(x), x) Assumptions can be passed to Function. >>> f_real = Function('f', real=True) >>> f_real(x).is_real True Note that assumptions on a function are unrelated to the assumptions on the variable it is called on. If you want to add a relationship, subclass Function and define the appropriate ``_eval_is_assumption`` methods. In the following example Function is used as a base class for ``my_func`` that represents a mathematical function *my_func*. Suppose that it is well known, that *my_func(0)* is *1* and *my_func* at infinity goes to *0*, so we want those two simplifications to occur automatically. Suppose also that *my_func(x)* is real exactly when *x* is real. Here is an implementation that honours those requirements: >>> from sympy import Function, S, oo, I, sin >>> class my_func(Function): ... ... @classmethod ... def eval(cls, x): ... if x.is_Number: ... if x is S.Zero: ... return S.One ... elif x is S.Infinity: ... return S.Zero ... ... def _eval_is_real(self): ... return self.args[0].is_real ... >>> x = S('x') >>> my_func(0) + sin(0) 1 >>> my_func(oo) 0 >>> my_func(3.54).n() # Not yet implemented for my_func. my_func(3.54) >>> my_func(I).is_real False In order for ``my_func`` to become useful, several other methods would need to be implemented. See source code of some of the already implemented functions for more complete examples. Also, if the function can take more than one argument, then ``nargs`` must be defined, e.g. if ``my_func`` can take one or two arguments then, >>> class my_func(Function): ... nargs = (1, 2) ... >>> """ @property def _diff_wrt(self): return False @cacheit def __new__(cls, *args, **options): # Handle calls like Function('f') if cls is Function: return UndefinedFunction(*args, **options) n = len(args) if n not in cls.nargs: # XXX: exception message must be in exactly this format to # make it work with NumPy's functions like vectorize(). See, # for example, https://github.com/numpy/numpy/issues/1697. # The ideal solution would be just to attach metadata to # the exception and change NumPy to take advantage of this. temp = ('%(name)s takes %(qual)s %(args)s ' 'argument%(plural)s (%(given)s given)') raise TypeError(temp % { 'name': cls, 'qual': 'exactly' if len(cls.nargs) == 1 else 'at least', 'args': min(cls.nargs), 'plural': 's'*(min(cls.nargs) != 1), 'given': n}) evaluate = options.get('evaluate', global_evaluate[0]) result = super(Function, cls).__new__(cls, *args, **options) if evaluate and isinstance(result, cls) and result.args: pr2 = min(cls._should_evalf(a) for a in result.args) if pr2 > 0: pr = max(cls._should_evalf(a) for a in result.args) result = result.evalf(mlib.libmpf.prec_to_dps(pr)) return result @classmethod def _should_evalf(cls, arg): """ Decide if the function should automatically evalf(). By default (in this implementation), this happens if (and only if) the ARG is a floating point number. This function is used by __new__. Returns the precision to evalf to, or -1 if it shouldn't evalf. """ from sympy.core.evalf import pure_complex if arg.is_Float: return arg._prec if not arg.is_Add: return -1 m = pure_complex(arg) if m is None or not (m[0].is_Float or m[1].is_Float): return -1 l = [i._prec for i in m if i.is_Float] l.append(-1) return max(l) @classmethod def class_key(cls): from sympy.sets.fancysets import Naturals0 funcs = { 'exp': 10, 'log': 11, 'sin': 20, 'cos': 21, 'tan': 22, 'cot': 23, 'sinh': 30, 'cosh': 31, 'tanh': 32, 'coth': 33, 'conjugate': 40, 're': 41, 'im': 42, 'arg': 43, } name = cls.__name__ try: i = funcs[name] except KeyError: i = 0 if isinstance(cls.nargs, Naturals0) else 10000 return 4, i, name @property def is_commutative(self): """ Returns whether the function is commutative. """ if all(getattr(t, 'is_commutative') for t in self.args): return True else: return False def _eval_evalf(self, prec): def _get_mpmath_func(fname): """Lookup mpmath function based on name""" if isinstance(self, AppliedUndef): # Shouldn't lookup in mpmath but might have ._imp_ return None if not hasattr(mpmath, fname): from sympy.utilities.lambdify import MPMATH_TRANSLATIONS fname = MPMATH_TRANSLATIONS.get(fname, None) if fname is None: return None return getattr(mpmath, fname) func = _get_mpmath_func(self.func.__name__) # Fall-back evaluation if func is None: imp = getattr(self, '_imp_', None) if imp is None: return None try: return Float(imp(*[i.evalf(prec) for i in self.args]), prec) except (TypeError, ValueError) as e: return None # Convert all args to mpf or mpc # Convert the arguments to *higher* precision than requested for the # final result. # XXX + 5 is a guess, it is similar to what is used in evalf.py. Should # we be more intelligent about it? try: args = [arg._to_mpmath(prec + 5) for arg in self.args] def bad(m): from mpmath import mpf, mpc # the precision of an mpf value is the last element # if that is 1 (and m[1] is not 1 which would indicate a # power of 2), then the eval failed; so check that none of # the arguments failed to compute to a finite precision. # Note: An mpc value has two parts, the re and imag tuple; # check each of those parts, too. Anything else is allowed to # pass if isinstance(m, mpf): m = m._mpf_ return m[1] !=1 and m[-1] == 1 elif isinstance(m, mpc): m, n = m._mpc_ return m[1] !=1 and m[-1] == 1 and \ n[1] !=1 and n[-1] == 1 else: return False if any(bad(a) for a in args): raise ValueError # one or more args failed to compute with significance except ValueError: return with mpmath.workprec(prec): v = func(*args) return Expr._from_mpmath(v, prec) def _eval_derivative(self, s): # f(x).diff(s) -> x.diff(s) * f.fdiff(1)(s) i = 0 l = [] for a in self.args: i += 1 da = a.diff(s) if da is S.Zero: continue try: df = self.fdiff(i) except ArgumentIndexError: df = Function.fdiff(self, i) l.append(df * da) return Add(*l) def _eval_is_commutative(self): return fuzzy_and(a.is_commutative for a in self.args) def _eval_is_complex(self): return fuzzy_and(a.is_complex for a in self.args) def as_base_exp(self): """ Returns the method as the 2-tuple (base, exponent). """ return self, S.One def _eval_aseries(self, n, args0, x, logx): """ Compute an asymptotic expansion around args0, in terms of self.args. This function is only used internally by _eval_nseries and should not be called directly; derived classes can overwrite this to implement asymptotic expansions. """ from sympy.utilities.misc import filldedent raise PoleError(filldedent(''' Asymptotic expansion of %s around %s is not implemented.''' % (type(self), args0))) def _eval_nseries(self, x, n, logx): """ This function does compute series for multivariate functions, but the expansion is always in terms of *one* variable. Examples ======== >>> from sympy import atan2 >>> from sympy.abc import x, y >>> atan2(x, y).series(x, n=2) atan2(0, y) + x/y + O(x**2) >>> atan2(x, y).series(y, n=2) -y/x + atan2(x, 0) + O(y**2) This function also computes asymptotic expansions, if necessary and possible: >>> from sympy import loggamma >>> loggamma(1/x)._eval_nseries(x,0,None) -1/x - log(x)/x + log(x)/2 + O(1) """ from sympy import Order from sympy.sets.sets import FiniteSet args = self.args args0 = [t.limit(x, 0) for t in args] if any(t.is_finite is False for t in args0): from sympy import oo, zoo, nan # XXX could use t.as_leading_term(x) here but it's a little # slower a = [t.compute_leading_term(x, logx=logx) for t in args] a0 = [t.limit(x, 0) for t in a] if any([t.has(oo, -oo, zoo, nan) for t in a0]): return self._eval_aseries(n, args0, x, logx) # Careful: the argument goes to oo, but only logarithmically so. We # are supposed to do a power series expansion "around the # logarithmic term". e.g. # f(1+x+log(x)) # -> f(1+logx) + x*f'(1+logx) + O(x**2) # where 'logx' is given in the argument a = [t._eval_nseries(x, n, logx) for t in args] z = [r - r0 for (r, r0) in zip(a, a0)] p = [Dummy() for _ in z] q = [] v = None for ai, zi, pi in zip(a0, z, p): if zi.has(x): if v is not None: raise NotImplementedError q.append(ai + pi) v = pi else: q.append(ai) e1 = self.func(*q) if v is None: return e1 s = e1._eval_nseries(v, n, logx) o = s.getO() s = s.removeO() s = s.subs(v, zi).expand() + Order(o.expr.subs(v, zi), x) return s if (self.func.nargs is S.Naturals0 or (self.func.nargs == FiniteSet(1) and args0[0]) or any(c > 1 for c in self.func.nargs)): e = self e1 = e.expand() if e == e1: #for example when e = sin(x+1) or e = sin(cos(x)) #let's try the general algorithm term = e.subs(x, S.Zero) if term.is_finite is False or term is S.NaN: raise PoleError("Cannot expand %s around 0" % (self)) series = term fact = S.One _x = Dummy('x') e = e.subs(x, _x) for i in range(n - 1): i += 1 fact *= Rational(i) e = e.diff(_x) subs = e.subs(_x, S.Zero) if subs is S.NaN: # try to evaluate a limit if we have to subs = e.limit(_x, S.Zero) if subs.is_finite is False: raise PoleError("Cannot expand %s around 0" % (self)) term = subs*(x**i)/fact term = term.expand() series += term return series + Order(x**n, x) return e1.nseries(x, n=n, logx=logx) arg = self.args[0] l = [] g = None # try to predict a number of terms needed nterms = n + 2 cf = Order(arg.as_leading_term(x), x).getn() if cf != 0: nterms = int(nterms / cf) for i in range(nterms): g = self.taylor_term(i, arg, g) g = g.nseries(x, n=n, logx=logx) l.append(g) return Add(*l) + Order(x**n, x) def fdiff(self, argindex=1): """ Returns the first derivative of the function. """ if not (1 <= argindex <= len(self.args)): raise ArgumentIndexError(self, argindex) ix = argindex - 1 A = self.args[ix] if A._diff_wrt: if len(self.args) == 1: return Derivative(self, A) if A.is_Symbol: for i, v in enumerate(self.args): if i != ix and A in v.free_symbols: # it can't be in any other argument's free symbols # issue 8510 break else: return Derivative(self, A) else: free = A.free_symbols for i, a in enumerate(self.args): if ix != i and a.free_symbols & free: break else: # there is no possible interaction bewtween args return Derivative(self, A) # See issue 4624 and issue 4719, 5600 and 8510 D = Dummy('xi_%i' % argindex, dummy_index=hash(A)) args = self.args[:ix] + (D,) + self.args[ix + 1:] return Subs(Derivative(self.func(*args), D), D, A) def _eval_as_leading_term(self, x): """Stub that should be overridden by new Functions to return the first non-zero term in a series if ever an x-dependent argument whose leading term vanishes as x -> 0 might be encountered. See, for example, cos._eval_as_leading_term. """ from sympy import Order args = [a.as_leading_term(x) for a in self.args] o = Order(1, x) if any(x in a.free_symbols and o.contains(a) for a in args): # Whereas x and any finite number are contained in O(1, x), # expressions like 1/x are not. If any arg simplified to a # vanishing expression as x -> 0 (like x or x**2, but not # 3, 1/x, etc...) then the _eval_as_leading_term is needed # to supply the first non-zero term of the series, # # e.g. expression leading term # ---------- ------------ # cos(1/x) cos(1/x) # cos(cos(x)) cos(1) # cos(x) 1 <- _eval_as_leading_term needed # sin(x) x <- _eval_as_leading_term needed # raise NotImplementedError( '%s has no _eval_as_leading_term routine' % self.func) else: return self.func(*args) def _sage_(self): import sage.all as sage fname = self.func.__name__ func = getattr(sage, fname, None) args = [arg._sage_() for arg in self.args] # In the case the function is not known in sage: if func is None: import sympy if getattr(sympy, fname, None) is None: # abstract function return sage.function(fname)(*args) else: # the function defined in sympy is not known in sage # this exception is caught in sage raise AttributeError return func(*args) class AppliedUndef(Function): """ Base class for expressions resulting from the application of an undefined function. """ is_number = False def __new__(cls, *args, **options): args = list(map(sympify, args)) obj = super(AppliedUndef, cls).__new__(cls, *args, **options) return obj def _eval_as_leading_term(self, x): return self def _sage_(self): import sage.all as sage fname = str(self.func) args = [arg._sage_() for arg in self.args] func = sage.function(fname)(*args) return func @property def _diff_wrt(self): """ Allow derivatives wrt to undefined functions. Examples ======== >>> from sympy import Function, Symbol >>> f = Function('f') >>> x = Symbol('x') >>> f(x)._diff_wrt True >>> f(x).diff(x) Derivative(f(x), x) """ return True class UndefinedFunction(FunctionClass): """ The (meta)class of undefined functions. """ def __new__(mcl, name, bases=(AppliedUndef,), __dict__=None, **kwargs): __dict__ = __dict__ or {} # Allow Function('f', real=True) __dict__.update({'is_' + arg: val for arg, val in kwargs.items() if arg in _assume_defined}) # You can add other attributes, although they do have to be hashable # (but seriously, if you want to add anything other than assumptions, # just subclass Function) __dict__.update(kwargs) # Save these for __eq__ __dict__.update({'_extra_kwargs': kwargs}) __dict__['__module__'] = None # For pickling ret = super(UndefinedFunction, mcl).__new__(mcl, name, bases, __dict__) ret.name = name return ret def __instancecheck__(cls, instance): return cls in type(instance).__mro__ _extra_kwargs = {} def __hash__(self): return hash((self.class_key(), frozenset(self._extra_kwargs.items()))) def __eq__(self, other): return (isinstance(other, self.__class__) and self.class_key() == other.class_key() and self._extra_kwargs == other._extra_kwargs) def __ne__(self, other): return not self == other class WildFunction(Function, AtomicExpr): """ A WildFunction function matches any function (with its arguments). Examples ======== >>> from sympy import WildFunction, Function, cos >>> from sympy.abc import x, y >>> F = WildFunction('F') >>> f = Function('f') >>> F.nargs Naturals0 >>> x.match(F) >>> F.match(F) {F_: F_} >>> f(x).match(F) {F_: f(x)} >>> cos(x).match(F) {F_: cos(x)} >>> f(x, y).match(F) {F_: f(x, y)} To match functions with a given number of arguments, set ``nargs`` to the desired value at instantiation: >>> F = WildFunction('F', nargs=2) >>> F.nargs {2} >>> f(x).match(F) >>> f(x, y).match(F) {F_: f(x, y)} To match functions with a range of arguments, set ``nargs`` to a tuple containing the desired number of arguments, e.g. if ``nargs = (1, 2)`` then functions with 1 or 2 arguments will be matched. >>> F = WildFunction('F', nargs=(1, 2)) >>> F.nargs {1, 2} >>> f(x).match(F) {F_: f(x)} >>> f(x, y).match(F) {F_: f(x, y)} >>> f(x, y, 1).match(F) """ include = set() def __init__(cls, name, **assumptions): from sympy.sets.sets import Set, FiniteSet cls.name = name nargs = assumptions.pop('nargs', S.Naturals0) if not isinstance(nargs, Set): # Canonicalize nargs here. See also FunctionClass. if is_sequence(nargs): nargs = tuple(ordered(set(nargs))) elif nargs is not None: nargs = (as_int(nargs),) nargs = FiniteSet(*nargs) cls.nargs = nargs def matches(self, expr, repl_dict={}, old=False): if not isinstance(expr, (AppliedUndef, Function)): return None if len(expr.args) not in self.nargs: return None repl_dict = repl_dict.copy() repl_dict[self] = expr return repl_dict class Derivative(Expr): """ Carries out differentiation of the given expression with respect to symbols. Examples ======== >>> from sympy import Derivative, Function, symbols, Subs >>> from sympy.abc import x, y >>> f, g = symbols('f g', cls=Function) >>> Derivative(x**2, x, evaluate=True) 2*x Denesting of derivatives retains the ordering of variables: >>> Derivative(Derivative(f(x, y), y), x) Derivative(f(x, y), y, x) Contiguously identical symbols are merged into a tuple giving the symbol and the count: >>> Derivative(f(x), x, x, y, x) Derivative(f(x), (x, 2), y, x) If the derivative cannot be performed, and evaluate is True, the order of the variables of differentiation will be made canonical: >>> Derivative(f(x, y), y, x, evaluate=True) Derivative(f(x, y), x, y) Derivatives with respect to undefined functions can be calculated: >>> Derivative(f(x)**2, f(x), evaluate=True) 2*f(x) Such derivatives will show up when the chain rule is used to evalulate a derivative: >>> f(g(x)).diff(x) Derivative(f(g(x)), g(x))*Derivative(g(x), x) Substitution is used to represent derivatives of functions with arguments that are not symbols or functions: >>> f(2*x + 3).diff(x) == 2*Subs(f(y).diff(y), y, 2*x + 3) True Notes ===== Simplification of high-order derivatives: Because there can be a significant amount of simplification that can be done when multiple differentiations are performed, results will be automatically simplified in a fairly conservative fashion unless the keyword ``simplify`` is set to False. >>> from sympy import cos, sin, sqrt, diff, Function, symbols >>> from sympy.abc import x, y, z >>> f, g = symbols('f,g', cls=Function) >>> e = sqrt((x + 1)**2 + x) >>> diff(e, (x, 5), simplify=False).count_ops() 136 >>> diff(e, (x, 5)).count_ops() 30 Ordering of variables: If evaluate is set to True and the expression cannot be evaluated, the list of differentiation symbols will be sorted, that is, the expression is assumed to have continuous derivatives up to the order asked. Derivative wrt non-Symbols: For the most part, one may not differentiate wrt non-symbols. For example, we do not allow differentiation wrt `x*y` because there are multiple ways of structurally defining where x*y appears in an expression: a very strict definition would make (x*y*z).diff(x*y) == 0. Derivatives wrt defined functions (like cos(x)) are not allowed, either: >>> (x*y*z).diff(x*y) Traceback (most recent call last): ... ValueError: Can't calculate derivative wrt x*y. To make it easier to work with variational calculus, however, derivatives wrt AppliedUndef and Derivatives are allowed. For example, in the Euler-Lagrange method one may write F(t, u, v) where u = f(t) and v = f'(t). These variables can be written explicity as functions of time:: >>> from sympy.abc import t >>> F = Function('F') >>> U = f(t) >>> V = U.diff(t) The derivative wrt f(t) can be obtained directly: >>> direct = F(t, U, V).diff(U) When differentiation wrt a non-Symbol is attempted, the non-Symbol is temporarily converted to a Symbol while the differentiation is performed and the same answer is obtained: >>> indirect = F(t, U, V).subs(U, x).diff(x).subs(x, U) >>> assert direct == indirect The implication of this non-symbol replacement is that all functions are treated as independent of other functions and the symbols are independent of the functions that contain them:: >>> x.diff(f(x)) 0 >>> g(x).diff(f(x)) 0 It also means that derivatives are assumed to depend only on the variables of differentiation, not on anything contained within the expression being differentiated:: >>> F = f(x) >>> Fx = F.diff(x) >>> Fx.diff(F) # derivative depends on x, not F 0 >>> Fxx = Fx.diff(x) >>> Fxx.diff(Fx) # derivative depends on x, not Fx 0 The last example can be made explicit by showing the replacement of Fx in Fxx with y: >>> Fxx.subs(Fx, y) Derivative(y, x) Since that in itself will evaluate to zero, differentiating wrt Fx will also be zero: >>> _.doit() 0 Replacing undefined functions with concrete expressions One must be careful to replace undefined functions with expressions that contain variables consistent with the function definition and the variables of differentiation or else insconsistent result will be obtained. Consider the following example: >>> eq = f(x)*g(y) >>> eq.subs(f(x), x*y).diff(x, y).doit() y*Derivative(g(y), y) + g(y) >>> eq.diff(x, y).subs(f(x), x*y).doit() y*Derivative(g(y), y) The results differ because `f(x)` was replaced with an expression that involved both variables of differentiation. In the abstract case, differentiation of `f(x)` by `y` is 0; in the concrete case, the presence of `y` made that derivative nonvanishing and produced the extra `g(y)` term. Defining differentiation for an object An object must define ._eval_derivative(symbol) method that returns the differentiation result. This function only needs to consider the non-trivial case where expr contains symbol and it should call the diff() method internally (not _eval_derivative); Derivative should be the only one to call _eval_derivative. Any class can allow derivatives to be taken with respect to itself (while indicating its scalar nature). See the docstring of Expr._diff_wrt. See Also ======== _sort_variable_count """ is_Derivative = True @property def _diff_wrt(self): """An expression may be differentiated wrt a Derivative if it is in elementary form. Examples ======== >>> from sympy import Function, Derivative, cos >>> from sympy.abc import x >>> f = Function('f') >>> Derivative(f(x), x)._diff_wrt True >>> Derivative(cos(x), x)._diff_wrt False >>> Derivative(x + 1, x)._diff_wrt False A Derivative might be an unevaluated form of what will not be a valid variable of differentiation if evaluated. For example, >>> Derivative(f(f(x)), x).doit() Derivative(f(x), x)*Derivative(f(f(x)), f(x)) Such an expression will present the same ambiguities as arise when dealing with any other product, like `2*x`, so `_diff_wrt` is False: >>> Derivative(f(f(x)), x)._diff_wrt False """ return self.expr._diff_wrt and isinstance(self.doit(), Derivative) def __new__(cls, expr, *variables, **kwargs): from sympy.matrices.common import MatrixCommon from sympy import Integer, MatrixExpr from sympy.tensor.array import Array, NDimArray, derive_by_array from sympy.utilities.misc import filldedent expr = sympify(expr) symbols_or_none = getattr(expr, "free_symbols", None) has_symbol_set = isinstance(symbols_or_none, set) if not has_symbol_set: raise ValueError(filldedent(''' Since there are no variables in the expression %s, it cannot be differentiated.''' % expr)) # determine value for variables if it wasn't given if not variables: variables = expr.free_symbols if len(variables) != 1: if expr.is_number: return S.Zero if len(variables) == 0: raise ValueError(filldedent(''' Since there are no variables in the expression, the variable(s) of differentiation must be supplied to differentiate %s''' % expr)) else: raise ValueError(filldedent(''' Since there is more than one variable in the expression, the variable(s) of differentiation must be supplied to differentiate %s''' % expr)) # Standardize the variables by sympifying them: variables = list(sympify(variables)) # Split the list of variables into a list of the variables we are diff # wrt, where each element of the list has the form (s, count) where # s is the entity to diff wrt and count is the order of the # derivative. variable_count = [] array_likes = (tuple, list, Tuple) for i, v in enumerate(variables): if isinstance(v, Integer): if i == 0: raise ValueError("First variable cannot be a number: %i" % v) count = v prev, prevcount = variable_count[-1] if prevcount != 1: raise TypeError("tuple {0} followed by number {1}".format((prev, prevcount), v)) if count == 0: variable_count.pop() else: variable_count[-1] = Tuple(prev, count) else: if isinstance(v, array_likes): if len(v) == 0: # Ignore empty tuples: Derivative(expr, ... , (), ... ) continue if isinstance(v[0], array_likes): # Derive by array: Derivative(expr, ... , [[x, y, z]], ... ) if len(v) == 1: v = Array(v[0]) count = 1 else: v, count = v v = Array(v) else: v, count = v if count == 0: continue else: count = 1 variable_count.append(Tuple(v, count)) # light evaluation of contiguous, identical # items: (x, 1), (x, 1) -> (x, 2) merged = [] for t in variable_count: v, c = t if c.is_negative: raise ValueError( 'order of differentiation must be nonnegative') if merged and merged[-1][0] == v: c += merged[-1][1] if not c: merged.pop() else: merged[-1] = Tuple(v, c) else: merged.append(t) variable_count = merged # sanity check of variables of differentation; we waited # until the counts were computed since some variables may # have been removed because the count was 0 for v, c in variable_count: # v must have _diff_wrt True if not v._diff_wrt: __ = '' # filler to make error message neater raise ValueError(filldedent(''' Can't calculate derivative wrt %s.%s''' % (v, __))) # We make a special case for 0th derivative, because there is no # good way to unambiguously print this. if len(variable_count) == 0: return expr evaluate = kwargs.get('evaluate', False) if evaluate: if isinstance(expr, Derivative): expr = expr.canonical variable_count = [ (v.canonical if isinstance(v, Derivative) else v, c) for v, c in variable_count] # Look for a quick exit if there are symbols that don't appear in # expression at all. Note, this cannot check non-symbols like # Derivatives as those can be created by intermediate # derivatives. zero = False free = expr.free_symbols for v, c in variable_count: vfree = v.free_symbols if c.is_positive and vfree: if isinstance(v, AppliedUndef): # these match exactly since # x.diff(f(x)) == g(x).diff(f(x)) == 0 # and are not created by differentiation D = Dummy() if not expr.xreplace({v: D}).has(D): zero = True break elif isinstance(v, MatrixExpr): zero = False break elif isinstance(v, Symbol) and v not in free: zero = True break else: if not free & vfree: # e.g. v is IndexedBase or Matrix zero = True break if zero: if isinstance(expr, (MatrixCommon, NDimArray)): return expr.zeros(*expr.shape) else: return S.Zero # make the order of symbols canonical #TODO: check if assumption of discontinuous derivatives exist variable_count = cls._sort_variable_count(variable_count) # denest if isinstance(expr, Derivative): variable_count = list(expr.variable_count) + variable_count expr = expr.expr return Derivative(expr, *variable_count, **kwargs) # we return here if evaluate is False or if there is no # _eval_derivative method if not evaluate or not hasattr(expr, '_eval_derivative'): # return an unevaluated Derivative if evaluate and variable_count == [(expr, 1)] and expr.is_scalar: # special hack providing evaluation for classes # that have defined is_scalar=True but have no # _eval_derivative defined return S.One return Expr.__new__(cls, expr, *variable_count) # evaluate the derivative by calling _eval_derivative method # of expr for each variable # ------------------------------------------------------------- nderivs = 0 # how many derivatives were performed unhandled = [] for i, (v, count) in enumerate(variable_count): old_expr = expr old_v = None is_symbol = v.is_symbol or isinstance(v, (Iterable, Tuple, MatrixCommon, NDimArray)) if not is_symbol: old_v = v v = Dummy('xi') expr = expr.xreplace({old_v: v}) # Derivatives and UndefinedFunctions are independent # of all others clashing = not (isinstance(old_v, Derivative) or \ isinstance(old_v, AppliedUndef)) if not v in expr.free_symbols and not clashing: return expr.diff(v) # expr's version of 0 if not old_v.is_scalar and not hasattr( old_v, '_eval_derivative'): # special hack providing evaluation for classes # that have defined is_scalar=True but have no # _eval_derivative defined expr *= old_v.diff(old_v) # Evaluate the derivative `n` times. If # `_eval_derivative_n_times` is not overridden by the current # object, the default in `Basic` will call a loop over # `_eval_derivative`: obj = expr._eval_derivative_n_times(v, count) if obj is not None and obj.is_zero: return obj nderivs += count if old_v is not None: if obj is not None: # remove the dummy that was used obj = obj.subs(v, old_v) # restore expr expr = old_expr if obj is None: # we've already checked for quick-exit conditions # that give 0 so the remaining variables # are contained in the expression but the expression # did not compute a derivative so we stop taking # derivatives unhandled = variable_count[i:] break expr = obj # what we have so far can be made canonical expr = expr.replace( lambda x: isinstance(x, Derivative), lambda x: x.canonical) if unhandled: if isinstance(expr, Derivative): unhandled = list(expr.variable_count) + unhandled expr = expr.expr expr = Expr.__new__(cls, expr, *unhandled) if (nderivs > 1) == True and kwargs.get('simplify', True): from sympy.core.exprtools import factor_terms from sympy.simplify.simplify import signsimp expr = factor_terms(signsimp(expr)) return expr @property def canonical(cls): return cls.func(cls.expr, *Derivative._sort_variable_count(cls.variable_count)) @classmethod def _sort_variable_count(cls, vc): """ Sort (variable, count) pairs into canonical order while retaining order of variables that do not commute during differentiation: * symbols and functions commute with each other * derivatives commute with each other * a derivative doesn't commute with anything it contains * any other object is not allowed to commute if it has free symbols in common with another object Examples ======== >>> from sympy import Derivative, Function, symbols, cos >>> vsort = Derivative._sort_variable_count >>> x, y, z = symbols('x y z') >>> f, g, h = symbols('f g h', cls=Function) Contiguous items are collapsed into one pair: >>> vsort([(x, 1), (x, 1)]) [(x, 2)] >>> vsort([(y, 1), (f(x), 1), (y, 1), (f(x), 1)]) [(y, 2), (f(x), 2)] Ordering is canonical. >>> def vsort0(*v): ... # docstring helper to ... # change vi -> (vi, 0), sort, and return vi vals ... return [i[0] for i in vsort([(i, 0) for i in v])] >>> vsort0(y, x) [x, y] >>> vsort0(g(y), g(x), f(y)) [f(y), g(x), g(y)] Symbols are sorted as far to the left as possible but never move to the left of a derivative having the same symbol in its variables; the same applies to AppliedUndef which are always sorted after Symbols: >>> dfx = f(x).diff(x) >>> assert vsort0(dfx, y) == [y, dfx] >>> assert vsort0(dfx, x) == [dfx, x] """ from sympy.utilities.iterables import uniq, topological_sort if not vc: return [] vc = list(vc) if len(vc) == 1: return [Tuple(*vc[0])] V = list(range(len(vc))) E = [] v = lambda i: vc[i][0] D = Dummy() def _block(d, v, wrt=False): # return True if v should not come before d else False if d == v: return wrt if d.is_Symbol: return False if isinstance(d, Derivative): # a derivative blocks if any of it's variables contain # v; the wrt flag will return True for an exact match # and will cause an AppliedUndef to block if v is in # the arguments if any(_block(k, v, wrt=True) for k in d._wrt_variables): return True return False if not wrt and isinstance(d, AppliedUndef): return False if v.is_Symbol: return v in d.free_symbols if isinstance(v, AppliedUndef): return _block(d.xreplace({v: D}), D) return d.free_symbols & v.free_symbols for i in range(len(vc)): for j in range(i): if _block(v(j), v(i)): E.append((j,i)) # this is the default ordering to use in case of ties O = dict(zip(ordered(uniq([i for i, c in vc])), range(len(vc)))) ix = topological_sort((V, E), key=lambda i: O[v(i)]) # merge counts of contiguously identical items merged = [] for v, c in [vc[i] for i in ix]: if merged and merged[-1][0] == v: merged[-1][1] += c else: merged.append([v, c]) return [Tuple(*i) for i in merged] def _eval_is_commutative(self): return self.expr.is_commutative def _eval_derivative(self, v): # If v (the variable of differentiation) is not in # self.variables, we might be able to take the derivative. if v not in self._wrt_variables: dedv = self.expr.diff(v) if isinstance(dedv, Derivative): return dedv.func(dedv.expr, *(self.variable_count + dedv.variable_count)) # dedv (d(self.expr)/dv) could have simplified things such that the # derivative wrt things in self.variables can now be done. Thus, # we set evaluate=True to see if there are any other derivatives # that can be done. The most common case is when dedv is a simple # number so that the derivative wrt anything else will vanish. return self.func(dedv, *self.variables, evaluate=True) # In this case v was in self.variables so the derivative wrt v has # already been attempted and was not computed, either because it # couldn't be or evaluate=False originally. variable_count = list(self.variable_count) variable_count.append((v, 1)) return self.func(self.expr, *variable_count, evaluate=False) def doit(self, **hints): expr = self.expr if hints.get('deep', True): expr = expr.doit(**hints) hints['evaluate'] = True rv = self.func(expr, *self.variable_count, **hints) if rv!= self and rv.has(Derivative): rv = rv.doit(**hints) return rv @_sympifyit('z0', NotImplementedError) def doit_numerically(self, z0): """ Evaluate the derivative at z numerically. When we can represent derivatives at a point, this should be folded into the normal evalf. For now, we need a special method. """ if len(self.free_symbols) != 1 or len(self.variables) != 1: raise NotImplementedError('partials and higher order derivatives') z = list(self.free_symbols)[0] def eval(x): f0 = self.expr.subs(z, Expr._from_mpmath(x, prec=mpmath.mp.prec)) f0 = f0.evalf(mlib.libmpf.prec_to_dps(mpmath.mp.prec)) return f0._to_mpmath(mpmath.mp.prec) return Expr._from_mpmath(mpmath.diff(eval, z0._to_mpmath(mpmath.mp.prec)), mpmath.mp.prec) @property def expr(self): return self._args[0] @property def _wrt_variables(self): # return the variables of differentiation without # respect to the type of count (int or symbolic) return [i[0] for i in self.variable_count] @property def variables(self): # TODO: deprecate? YES, make this 'enumerated_variables' and # name _wrt_variables as variables # TODO: support for `d^n`? rv = [] for v, count in self.variable_count: if not count.is_Integer: raise TypeError(filldedent(''' Cannot give expansion for symbolic count. If you just want a list of all variables of differentiation, use _wrt_variables.''')) rv.extend([v]*count) return tuple(rv) @property def variable_count(self): return self._args[1:] @property def derivative_count(self): return sum([count for var, count in self.variable_count], 0) @property def free_symbols(self): return self.expr.free_symbols def _eval_subs(self, old, new): # The substitution (old, new) cannot be done inside # Derivative(expr, vars) for a variety of reasons # as handled below. if old in self._wrt_variables: # first handle the counts expr = self.func(self.expr, *[(v, c.subs(old, new)) for v, c in self.variable_count]) if expr != self: return expr._eval_subs(old, new) # quick exit case if not getattr(new, '_diff_wrt', False): # case (0): new is not a valid variable of # differentiation if isinstance(old, Symbol): # don't introduce a new symbol if the old will do return Subs(self, old, new) else: xi = Dummy('xi') return Subs(self.xreplace({old: xi}), xi, new) # If both are Derivatives with the same expr, check if old is # equivalent to self or if old is a subderivative of self. if old.is_Derivative and old.expr == self.expr: if self.canonical == old.canonical: return new # collections.Counter doesn't have __le__ def _subset(a, b): return all((a[i] <= b[i]) == True for i in a) old_vars = Counter(dict(reversed(old.variable_count))) self_vars = Counter(dict(reversed(self.variable_count))) if _subset(old_vars, self_vars): return Derivative(new, *(self_vars - old_vars).items()).canonical args = list(self.args) newargs = list(x._subs(old, new) for x in args) if args[0] == old: # complete replacement of self.expr # we already checked that the new is valid so we know # it won't be a problem should it appear in variables return Derivative(*newargs) if newargs[0] != args[0]: # case (1) can't change expr by introducing something that is in # the _wrt_variables if it was already in the expr # e.g. # for Derivative(f(x, g(y)), y), x cannot be replaced with # anything that has y in it; for f(g(x), g(y)).diff(g(y)) # g(x) cannot be replaced with anything that has g(y) syms = {vi: Dummy() for vi in self._wrt_variables if not vi.is_Symbol} wrt = set(syms.get(vi, vi) for vi in self._wrt_variables) forbidden = args[0].xreplace(syms).free_symbols & wrt nfree = new.xreplace(syms).free_symbols ofree = old.xreplace(syms).free_symbols if (nfree - ofree) & forbidden: return Subs(self, old, new) viter = ((i, j) for ((i, _), (j, _)) in zip(newargs[1:], args[1:])) if any(i != j for i, j in viter): # a wrt-variable change # case (2) can't change vars by introducing a variable # that is contained in expr, e.g. # for Derivative(f(z, g(h(x), y)), y), y cannot be changed to # x, h(x), or g(h(x), y) for a in _atomic(self.expr, recursive=True): for i in range(1, len(newargs)): vi, _ = newargs[i] if a == vi and vi != args[i][0]: return Subs(self, old, new) # more arg-wise checks vc = newargs[1:] oldv = self._wrt_variables newe = self.expr subs = [] for i, (vi, ci) in enumerate(vc): if not vi._diff_wrt: # case (3) invalid differentiation expression so # create a replacement dummy xi = Dummy('xi_%i' % i) # replace the old valid variable with the dummy # in the expression newe = newe.xreplace({oldv[i]: xi}) # and replace the bad variable with the dummy vc[i] = (xi, ci) # and record the dummy with the new (invalid) # differentiation expression subs.append((xi, vi)) if subs: # handle any residual substitution in the expression newe = newe._subs(old, new) # return the Subs-wrapped derivative return Subs(Derivative(newe, *vc), *zip(*subs)) # everything was ok return Derivative(*newargs) def _eval_lseries(self, x, logx): dx = self.variables for term in self.expr.lseries(x, logx=logx): yield self.func(term, *dx) def _eval_nseries(self, x, n, logx): arg = self.expr.nseries(x, n=n, logx=logx) o = arg.getO() dx = self.variables rv = [self.func(a, *dx) for a in Add.make_args(arg.removeO())] if o: rv.append(o/x) return Add(*rv) def _eval_as_leading_term(self, x): series_gen = self.expr.lseries(x) d = S.Zero for leading_term in series_gen: d = diff(leading_term, *self.variables) if d != 0: break return d def _sage_(self): import sage.all as sage args = [arg._sage_() for arg in self.args] return sage.derivative(*args) def as_finite_difference(self, points=1, x0=None, wrt=None): """ Expresses a Derivative instance as a finite difference. Parameters ========== points : sequence or coefficient, optional If sequence: discrete values (length >= order+1) of the independent variable used for generating the finite difference weights. If it is a coefficient, it will be used as the step-size for generating an equidistant sequence of length order+1 centered around ``x0``. Default: 1 (step-size 1) x0 : number or Symbol, optional the value of the independent variable (``wrt``) at which the derivative is to be approximated. Default: same as ``wrt``. wrt : Symbol, optional "with respect to" the variable for which the (partial) derivative is to be approximated for. If not provided it is required that the derivative is ordinary. Default: ``None``. Examples ======== >>> from sympy import symbols, Function, exp, sqrt, Symbol >>> x, h = symbols('x h') >>> f = Function('f') >>> f(x).diff(x).as_finite_difference() -f(x - 1/2) + f(x + 1/2) The default step size and number of points are 1 and ``order + 1`` respectively. We can change the step size by passing a symbol as a parameter: >>> f(x).diff(x).as_finite_difference(h) -f(-h/2 + x)/h + f(h/2 + x)/h We can also specify the discretized values to be used in a sequence: >>> f(x).diff(x).as_finite_difference([x, x+h, x+2*h]) -3*f(x)/(2*h) + 2*f(h + x)/h - f(2*h + x)/(2*h) The algorithm is not restricted to use equidistant spacing, nor do we need to make the approximation around ``x0``, but we can get an expression estimating the derivative at an offset: >>> e, sq2 = exp(1), sqrt(2) >>> xl = [x-h, x+h, x+e*h] >>> f(x).diff(x, 1).as_finite_difference(xl, x+h*sq2) # doctest: +ELLIPSIS 2*h*((h + sqrt(2)*h)/(2*h) - (-sqrt(2)*h + h)/(2*h))*f(E*h + x)/... Partial derivatives are also supported: >>> y = Symbol('y') >>> d2fdxdy=f(x,y).diff(x,y) >>> d2fdxdy.as_finite_difference(wrt=x) -Derivative(f(x - 1/2, y), y) + Derivative(f(x + 1/2, y), y) We can apply ``as_finite_difference`` to ``Derivative`` instances in compound expressions using ``replace``: >>> (1 + 42**f(x).diff(x)).replace(lambda arg: arg.is_Derivative, ... lambda arg: arg.as_finite_difference()) 42**(-f(x - 1/2) + f(x + 1/2)) + 1 See also ======== sympy.calculus.finite_diff.apply_finite_diff sympy.calculus.finite_diff.differentiate_finite sympy.calculus.finite_diff.finite_diff_weights """ from ..calculus.finite_diff import _as_finite_diff return _as_finite_diff(self, points, x0, wrt) class Lambda(Expr): """ Lambda(x, expr) represents a lambda function similar to Python's 'lambda x: expr'. A function of several variables is written as Lambda((x, y, ...), expr). A simple example: >>> from sympy import Lambda >>> from sympy.abc import x >>> f = Lambda(x, x**2) >>> f(4) 16 For multivariate functions, use: >>> from sympy.abc import y, z, t >>> f2 = Lambda((x, y, z, t), x + y**z + t**z) >>> f2(1, 2, 3, 4) 73 A handy shortcut for lots of arguments: >>> p = x, y, z >>> f = Lambda(p, x + y*z) >>> f(*p) x + y*z """ is_Function = True def __new__(cls, variables, expr): from sympy.sets.sets import FiniteSet v = list(variables) if iterable(variables) else [variables] for i in v: if not getattr(i, 'is_symbol', False): raise TypeError('variable is not a symbol: %s' % i) if len(v) == 1 and v[0] == expr: return S.IdentityFunction obj = Expr.__new__(cls, Tuple(*v), sympify(expr)) obj.nargs = FiniteSet(len(v)) return obj @property def variables(self): """The variables used in the internal representation of the function""" return self._args[0] bound_symbols = variables @property def expr(self): """The return value of the function""" return self._args[1] @property def free_symbols(self): return self.expr.free_symbols - set(self.variables) def __call__(self, *args): n = len(args) if n not in self.nargs: # Lambda only ever has 1 value in nargs # XXX: exception message must be in exactly this format to # make it work with NumPy's functions like vectorize(). See, # for example, https://github.com/numpy/numpy/issues/1697. # The ideal solution would be just to attach metadata to # the exception and change NumPy to take advantage of this. ## XXX does this apply to Lambda? If not, remove this comment. temp = ('%(name)s takes exactly %(args)s ' 'argument%(plural)s (%(given)s given)') raise TypeError(temp % { 'name': self, 'args': list(self.nargs)[0], 'plural': 's'*(list(self.nargs)[0] != 1), 'given': n}) return self.expr.xreplace(dict(list(zip(self.variables, args)))) def __eq__(self, other): if not isinstance(other, Lambda): return False if self.nargs != other.nargs: return False selfexpr = self.args[1] otherexpr = other.args[1] otherexpr = otherexpr.xreplace(dict(list(zip(other.args[0], self.args[0])))) return selfexpr == otherexpr def __ne__(self, other): return not(self == other) def __hash__(self): return super(Lambda, self).__hash__() def _hashable_content(self): return (self.expr.xreplace(self.canonical_variables),) @property def is_identity(self): """Return ``True`` if this ``Lambda`` is an identity function. """ if len(self.args) == 2: return self.args[0] == self.args[1] else: return None class Subs(Expr): """ Represents unevaluated substitutions of an expression. ``Subs(expr, x, x0)`` receives 3 arguments: an expression, a variable or list of distinct variables and a point or list of evaluation points corresponding to those variables. ``Subs`` objects are generally useful to represent unevaluated derivatives calculated at a point. The variables may be expressions, but they are subjected to the limitations of subs(), so it is usually a good practice to use only symbols for variables, since in that case there can be no ambiguity. There's no automatic expansion - use the method .doit() to effect all possible substitutions of the object and also of objects inside the expression. When evaluating derivatives at a point that is not a symbol, a Subs object is returned. One is also able to calculate derivatives of Subs objects - in this case the expression is always expanded (for the unevaluated form, use Derivative()). Examples ======== >>> from sympy import Subs, Function, sin, cos >>> from sympy.abc import x, y, z >>> f = Function('f') Subs are created when a particular substitution cannot be made. The x in the derivative cannot be replaced with 0 because 0 is not a valid variables of differentiation: >>> f(x).diff(x).subs(x, 0) Subs(Derivative(f(x), x), x, 0) Once f is known, the derivative and evaluation at 0 can be done: >>> _.subs(f, sin).doit() == sin(x).diff(x).subs(x, 0) == cos(0) True Subs can also be created directly with one or more variables: >>> Subs(f(x)*sin(y) + z, (x, y), (0, 1)) Subs(z + f(x)*sin(y), (x, y), (0, 1)) >>> _.doit() z + f(0)*sin(1) Notes ===== In order to allow expressions to combine before doit is done, a representation of the Subs expression is used internally to make expressions that are superficially different compare the same: >>> a, b = Subs(x, x, 0), Subs(y, y, 0) >>> a + b 2*Subs(x, x, 0) This can lead to unexpected consequences when using methods like `has` that are cached: >>> s = Subs(x, x, 0) >>> s.has(x), s.has(y) (True, False) >>> ss = s.subs(x, y) >>> ss.has(x), ss.has(y) (True, False) >>> s, ss (Subs(x, x, 0), Subs(y, y, 0)) """ def __new__(cls, expr, variables, point, **assumptions): from sympy import Symbol if not is_sequence(variables, Tuple): variables = [variables] variables = Tuple(*variables) if has_dups(variables): repeated = [str(v) for v, i in Counter(variables).items() if i > 1] __ = ', '.join(repeated) raise ValueError(filldedent(''' The following expressions appear more than once: %s ''' % __)) point = Tuple(*(point if is_sequence(point, Tuple) else [point])) if len(point) != len(variables): raise ValueError('Number of point values must be the same as ' 'the number of variables.') if not point: return sympify(expr) # denest if isinstance(expr, Subs): variables = expr.variables + variables point = expr.point + point expr = expr.expr else: expr = sympify(expr) # use symbols with names equal to the point value (with preppended _) # to give a variable-independent expression pre = "_" pts = sorted(set(point), key=default_sort_key) from sympy.printing import StrPrinter class CustomStrPrinter(StrPrinter): def _print_Dummy(self, expr): return str(expr) + str(expr.dummy_index) def mystr(expr, **settings): p = CustomStrPrinter(settings) return p.doprint(expr) while 1: s_pts = {p: Symbol(pre + mystr(p)) for p in pts} reps = [(v, s_pts[p]) for v, p in zip(variables, point)] # if any underscore-preppended symbol is already a free symbol # and is a variable with a different point value, then there # is a clash, e.g. _0 clashes in Subs(_0 + _1, (_0, _1), (1, 0)) # because the new symbol that would be created is _1 but _1 # is already mapped to 0 so __0 and __1 are used for the new # symbols if any(r in expr.free_symbols and r in variables and Symbol(pre + mystr(point[variables.index(r)])) != r for _, r in reps): pre += "_" continue break obj = Expr.__new__(cls, expr, Tuple(*variables), point) obj._expr = expr.xreplace(dict(reps)) return obj def _eval_is_commutative(self): return self.expr.is_commutative def doit(self, **hints): e, v, p = self.args # remove self mappings for i, (vi, pi) in enumerate(zip(v, p)): if vi == pi: v = v[:i] + v[i + 1:] p = p[:i] + p[i + 1:] if not v: return self.expr if isinstance(e, Derivative): # apply functions first, e.g. f -> cos undone = [] for i, vi in enumerate(v): if isinstance(vi, FunctionClass): e = e.subs(vi, p[i]) else: undone.append((vi, p[i])) if not isinstance(e, Derivative): e = e.doit() if isinstance(e, Derivative): # do Subs that aren't related to differentiation undone2 = [] D = Dummy() for vi, pi in undone: if D not in e.xreplace({vi: D}).free_symbols: e = e.subs(vi, pi) else: undone2.append((vi, pi)) undone = undone2 # differentiate wrt variables that are present wrt = [] D = Dummy() expr = e.expr free = expr.free_symbols for vi, ci in e.variable_count: if isinstance(vi, Symbol) and vi in free: expr = expr.diff((vi, ci)) elif D in expr.subs(vi, D).free_symbols: expr = expr.diff((vi, ci)) else: wrt.append((vi, ci)) # inject remaining subs rv = expr.subs(undone) # do remaining differentiation *in order given* for vc in wrt: rv = rv.diff(vc) else: # inject remaining subs rv = e.subs(undone) else: rv = e.doit(**hints).subs(list(zip(v, p))) if hints.get('deep', True) and rv != self: rv = rv.doit(**hints) return rv def evalf(self, prec=None, **options): return self.doit().evalf(prec, **options) n = evalf @property def variables(self): """The variables to be evaluated""" return self._args[1] bound_symbols = variables @property def expr(self): """The expression on which the substitution operates""" return self._args[0] @property def point(self): """The values for which the variables are to be substituted""" return self._args[2] @property def free_symbols(self): return (self.expr.free_symbols - set(self.variables) | set(self.point.free_symbols)) @property def expr_free_symbols(self): return (self.expr.expr_free_symbols - set(self.variables) | set(self.point.expr_free_symbols)) def __eq__(self, other): if not isinstance(other, Subs): return False return self._hashable_content() == other._hashable_content() def __ne__(self, other): return not(self == other) def __hash__(self): return super(Subs, self).__hash__() def _hashable_content(self): return (self._expr.xreplace(self.canonical_variables), ) + tuple(ordered([(v, p) for v, p in zip(self.variables, self.point) if not self.expr.has(v)])) def _eval_subs(self, old, new): # Subs doit will do the variables in order; the semantics # of subs for Subs is have the following invariant for # Subs object foo: # foo.doit().subs(reps) == foo.subs(reps).doit() pt = list(self.point) if old in self.variables: if _atomic(new) == set([new]) and not any( i.has(new) for i in self.args): # the substitution is neutral return self.xreplace({old: new}) # any occurance of old before this point will get # handled by replacements from here on i = self.variables.index(old) for j in range(i, len(self.variables)): pt[j] = pt[j]._subs(old, new) return self.func(self.expr, self.variables, pt) v = [i._subs(old, new) for i in self.variables] if v != list(self.variables): return self.func(self.expr, self.variables + (old,), pt + [new]) expr = self.expr._subs(old, new) pt = [i._subs(old, new) for i in self.point] return self.func(expr, v, pt) def _eval_derivative(self, s): # Apply the chain rule of the derivative on the substitution variables: val = Add.fromiter(p.diff(s) * Subs(self.expr.diff(v), self.variables, self.point).doit() for v, p in zip(self.variables, self.point)) # Check if there are free symbols in `self.expr`: # First get the `expr_free_symbols`, which returns the free symbols # that are directly contained in an expression node (i.e. stop # searching if the node isn't an expression). At this point turn the # expressions into `free_symbols` and check if there are common free # symbols in `self.expr` and the deriving factor. fs1 = {j for i in self.expr_free_symbols for j in i.free_symbols} if len(fs1 & s.free_symbols) > 0: val += Subs(self.expr.diff(s), self.variables, self.point).doit() return val def _eval_nseries(self, x, n, logx): if x in self.point: # x is the variable being substituted into apos = self.point.index(x) other = self.variables[apos] else: other = x arg = self.expr.nseries(other, n=n, logx=logx) o = arg.getO() terms = Add.make_args(arg.removeO()) rv = Add(*[self.func(a, *self.args[1:]) for a in terms]) if o: rv += o.subs(other, x) return rv def _eval_as_leading_term(self, x): if x in self.point: ipos = self.point.index(x) xvar = self.variables[ipos] return self.expr.as_leading_term(xvar) if x in self.variables: # if `x` is a dummy variable, it means it won't exist after the # substitution has been performed: return self # The variable is independent of the substitution: return self.expr.as_leading_term(x) def diff(f, *symbols, **kwargs): """ Differentiate f with respect to symbols. This is just a wrapper to unify .diff() and the Derivative class; its interface is similar to that of integrate(). You can use the same shortcuts for multiple variables as with Derivative. For example, diff(f(x), x, x, x) and diff(f(x), x, 3) both return the third derivative of f(x). You can pass evaluate=False to get an unevaluated Derivative class. Note that if there are 0 symbols (such as diff(f(x), x, 0), then the result will be the function (the zeroth derivative), even if evaluate=False. Examples ======== >>> from sympy import sin, cos, Function, diff >>> from sympy.abc import x, y >>> f = Function('f') >>> diff(sin(x), x) cos(x) >>> diff(f(x), x, x, x) Derivative(f(x), (x, 3)) >>> diff(f(x), x, 3) Derivative(f(x), (x, 3)) >>> diff(sin(x)*cos(y), x, 2, y, 2) sin(x)*cos(y) >>> type(diff(sin(x), x)) cos >>> type(diff(sin(x), x, evaluate=False)) <class 'sympy.core.function.Derivative'> >>> type(diff(sin(x), x, 0)) sin >>> type(diff(sin(x), x, 0, evaluate=False)) sin >>> diff(sin(x)) cos(x) >>> diff(sin(x*y)) Traceback (most recent call last): ... ValueError: specify differentiation variables to differentiate sin(x*y) Note that ``diff(sin(x))`` syntax is meant only for convenience in interactive sessions and should be avoided in library code. References ========== http://reference.wolfram.com/legacy/v5_2/Built-inFunctions/AlgebraicComputation/Calculus/D.html See Also ======== Derivative sympy.geometry.util.idiff: computes the derivative implicitly """ if hasattr(f, 'diff'): return f.diff(*symbols, **kwargs) kwargs.setdefault('evaluate', True) return Derivative(f, *symbols, **kwargs) def expand(e, deep=True, modulus=None, power_base=True, power_exp=True, mul=True, log=True, multinomial=True, basic=True, **hints): r""" Expand an expression using methods given as hints. Hints evaluated unless explicitly set to False are: ``basic``, ``log``, ``multinomial``, ``mul``, ``power_base``, and ``power_exp`` The following hints are supported but not applied unless set to True: ``complex``, ``func``, and ``trig``. In addition, the following meta-hints are supported by some or all of the other hints: ``frac``, ``numer``, ``denom``, ``modulus``, and ``force``. ``deep`` is supported by all hints. Additionally, subclasses of Expr may define their own hints or meta-hints. The ``basic`` hint is used for any special rewriting of an object that should be done automatically (along with the other hints like ``mul``) when expand is called. This is a catch-all hint to handle any sort of expansion that may not be described by the existing hint names. To use this hint an object should override the ``_eval_expand_basic`` method. Objects may also define their own expand methods, which are not run by default. See the API section below. If ``deep`` is set to ``True`` (the default), things like arguments of functions are recursively expanded. Use ``deep=False`` to only expand on the top level. If the ``force`` hint is used, assumptions about variables will be ignored in making the expansion. Hints ===== These hints are run by default mul --- Distributes multiplication over addition: >>> from sympy import cos, exp, sin >>> from sympy.abc import x, y, z >>> (y*(x + z)).expand(mul=True) x*y + y*z multinomial ----------- Expand (x + y + ...)**n where n is a positive integer. >>> ((x + y + z)**2).expand(multinomial=True) x**2 + 2*x*y + 2*x*z + y**2 + 2*y*z + z**2 power_exp --------- Expand addition in exponents into multiplied bases. >>> exp(x + y).expand(power_exp=True) exp(x)*exp(y) >>> (2**(x + y)).expand(power_exp=True) 2**x*2**y power_base ---------- Split powers of multiplied bases. This only happens by default if assumptions allow, or if the ``force`` meta-hint is used: >>> ((x*y)**z).expand(power_base=True) (x*y)**z >>> ((x*y)**z).expand(power_base=True, force=True) x**z*y**z >>> ((2*y)**z).expand(power_base=True) 2**z*y**z Note that in some cases where this expansion always holds, SymPy performs it automatically: >>> (x*y)**2 x**2*y**2 log --- Pull out power of an argument as a coefficient and split logs products into sums of logs. Note that these only work if the arguments of the log function have the proper assumptions--the arguments must be positive and the exponents must be real--or else the ``force`` hint must be True: >>> from sympy import log, symbols >>> log(x**2*y).expand(log=True) log(x**2*y) >>> log(x**2*y).expand(log=True, force=True) 2*log(x) + log(y) >>> x, y = symbols('x,y', positive=True) >>> log(x**2*y).expand(log=True) 2*log(x) + log(y) basic ----- This hint is intended primarily as a way for custom subclasses to enable expansion by default. These hints are not run by default: complex ------- Split an expression into real and imaginary parts. >>> x, y = symbols('x,y') >>> (x + y).expand(complex=True) re(x) + re(y) + I*im(x) + I*im(y) >>> cos(x).expand(complex=True) -I*sin(re(x))*sinh(im(x)) + cos(re(x))*cosh(im(x)) Note that this is just a wrapper around ``as_real_imag()``. Most objects that wish to redefine ``_eval_expand_complex()`` should consider redefining ``as_real_imag()`` instead. func ---- Expand other functions. >>> from sympy import gamma >>> gamma(x + 1).expand(func=True) x*gamma(x) trig ---- Do trigonometric expansions. >>> cos(x + y).expand(trig=True) -sin(x)*sin(y) + cos(x)*cos(y) >>> sin(2*x).expand(trig=True) 2*sin(x)*cos(x) Note that the forms of ``sin(n*x)`` and ``cos(n*x)`` in terms of ``sin(x)`` and ``cos(x)`` are not unique, due to the identity `\sin^2(x) + \cos^2(x) = 1`. The current implementation uses the form obtained from Chebyshev polynomials, but this may change. See `this MathWorld article <http://mathworld.wolfram.com/Multiple-AngleFormulas.html>`_ for more information. Notes ===== - You can shut off unwanted methods:: >>> (exp(x + y)*(x + y)).expand() x*exp(x)*exp(y) + y*exp(x)*exp(y) >>> (exp(x + y)*(x + y)).expand(power_exp=False) x*exp(x + y) + y*exp(x + y) >>> (exp(x + y)*(x + y)).expand(mul=False) (x + y)*exp(x)*exp(y) - Use deep=False to only expand on the top level:: >>> exp(x + exp(x + y)).expand() exp(x)*exp(exp(x)*exp(y)) >>> exp(x + exp(x + y)).expand(deep=False) exp(x)*exp(exp(x + y)) - Hints are applied in an arbitrary, but consistent order (in the current implementation, they are applied in alphabetical order, except multinomial comes before mul, but this may change). Because of this, some hints may prevent expansion by other hints if they are applied first. For example, ``mul`` may distribute multiplications and prevent ``log`` and ``power_base`` from expanding them. Also, if ``mul`` is applied before ``multinomial`, the expression might not be fully distributed. The solution is to use the various ``expand_hint`` helper functions or to use ``hint=False`` to this function to finely control which hints are applied. Here are some examples:: >>> from sympy import expand, expand_mul, expand_power_base >>> x, y, z = symbols('x,y,z', positive=True) >>> expand(log(x*(y + z))) log(x) + log(y + z) Here, we see that ``log`` was applied before ``mul``. To get the mul expanded form, either of the following will work:: >>> expand_mul(log(x*(y + z))) log(x*y + x*z) >>> expand(log(x*(y + z)), log=False) log(x*y + x*z) A similar thing can happen with the ``power_base`` hint:: >>> expand((x*(y + z))**x) (x*y + x*z)**x To get the ``power_base`` expanded form, either of the following will work:: >>> expand((x*(y + z))**x, mul=False) x**x*(y + z)**x >>> expand_power_base((x*(y + z))**x) x**x*(y + z)**x >>> expand((x + y)*y/x) y + y**2/x The parts of a rational expression can be targeted:: >>> expand((x + y)*y/x/(x + 1), frac=True) (x*y + y**2)/(x**2 + x) >>> expand((x + y)*y/x/(x + 1), numer=True) (x*y + y**2)/(x*(x + 1)) >>> expand((x + y)*y/x/(x + 1), denom=True) y*(x + y)/(x**2 + x) - The ``modulus`` meta-hint can be used to reduce the coefficients of an expression post-expansion:: >>> expand((3*x + 1)**2) 9*x**2 + 6*x + 1 >>> expand((3*x + 1)**2, modulus=5) 4*x**2 + x + 1 - Either ``expand()`` the function or ``.expand()`` the method can be used. Both are equivalent:: >>> expand((x + 1)**2) x**2 + 2*x + 1 >>> ((x + 1)**2).expand() x**2 + 2*x + 1 API === Objects can define their own expand hints by defining ``_eval_expand_hint()``. The function should take the form:: def _eval_expand_hint(self, **hints): # Only apply the method to the top-level expression ... See also the example below. Objects should define ``_eval_expand_hint()`` methods only if ``hint`` applies to that specific object. The generic ``_eval_expand_hint()`` method defined in Expr will handle the no-op case. Each hint should be responsible for expanding that hint only. Furthermore, the expansion should be applied to the top-level expression only. ``expand()`` takes care of the recursion that happens when ``deep=True``. You should only call ``_eval_expand_hint()`` methods directly if you are 100% sure that the object has the method, as otherwise you are liable to get unexpected ``AttributeError``s. Note, again, that you do not need to recursively apply the hint to args of your object: this is handled automatically by ``expand()``. ``_eval_expand_hint()`` should generally not be used at all outside of an ``_eval_expand_hint()`` method. If you want to apply a specific expansion from within another method, use the public ``expand()`` function, method, or ``expand_hint()`` functions. In order for expand to work, objects must be rebuildable by their args, i.e., ``obj.func(*obj.args) == obj`` must hold. Expand methods are passed ``**hints`` so that expand hints may use 'metahints'--hints that control how different expand methods are applied. For example, the ``force=True`` hint described above that causes ``expand(log=True)`` to ignore assumptions is such a metahint. The ``deep`` meta-hint is handled exclusively by ``expand()`` and is not passed to ``_eval_expand_hint()`` methods. Note that expansion hints should generally be methods that perform some kind of 'expansion'. For hints that simply rewrite an expression, use the .rewrite() API. Examples ======== >>> from sympy import Expr, sympify >>> class MyClass(Expr): ... def __new__(cls, *args): ... args = sympify(args) ... return Expr.__new__(cls, *args) ... ... def _eval_expand_double(self, **hints): ... ''' ... Doubles the args of MyClass. ... ... If there more than four args, doubling is not performed, ... unless force=True is also used (False by default). ... ''' ... force = hints.pop('force', False) ... if not force and len(self.args) > 4: ... return self ... return self.func(*(self.args + self.args)) ... >>> a = MyClass(1, 2, MyClass(3, 4)) >>> a MyClass(1, 2, MyClass(3, 4)) >>> a.expand(double=True) MyClass(1, 2, MyClass(3, 4, 3, 4), 1, 2, MyClass(3, 4, 3, 4)) >>> a.expand(double=True, deep=False) MyClass(1, 2, MyClass(3, 4), 1, 2, MyClass(3, 4)) >>> b = MyClass(1, 2, 3, 4, 5) >>> b.expand(double=True) MyClass(1, 2, 3, 4, 5) >>> b.expand(double=True, force=True) MyClass(1, 2, 3, 4, 5, 1, 2, 3, 4, 5) See Also ======== expand_log, expand_mul, expand_multinomial, expand_complex, expand_trig, expand_power_base, expand_power_exp, expand_func, hyperexpand """ # don't modify this; modify the Expr.expand method hints['power_base'] = power_base hints['power_exp'] = power_exp hints['mul'] = mul hints['log'] = log hints['multinomial'] = multinomial hints['basic'] = basic return sympify(e).expand(deep=deep, modulus=modulus, **hints) # This is a special application of two hints def _mexpand(expr, recursive=False): # expand multinomials and then expand products; this may not always # be sufficient to give a fully expanded expression (see # test_issue_8247_8354 in test_arit) if expr is None: return was = None while was != expr: was, expr = expr, expand_mul(expand_multinomial(expr)) if not recursive: break return expr # These are simple wrappers around single hints. def expand_mul(expr, deep=True): """ Wrapper around expand that only uses the mul hint. See the expand docstring for more information. Examples ======== >>> from sympy import symbols, expand_mul, exp, log >>> x, y = symbols('x,y', positive=True) >>> expand_mul(exp(x+y)*(x+y)*log(x*y**2)) x*exp(x + y)*log(x*y**2) + y*exp(x + y)*log(x*y**2) """ return sympify(expr).expand(deep=deep, mul=True, power_exp=False, power_base=False, basic=False, multinomial=False, log=False) def expand_multinomial(expr, deep=True): """ Wrapper around expand that only uses the multinomial hint. See the expand docstring for more information. Examples ======== >>> from sympy import symbols, expand_multinomial, exp >>> x, y = symbols('x y', positive=True) >>> expand_multinomial((x + exp(x + 1))**2) x**2 + 2*x*exp(x + 1) + exp(2*x + 2) """ return sympify(expr).expand(deep=deep, mul=False, power_exp=False, power_base=False, basic=False, multinomial=True, log=False) def expand_log(expr, deep=True, force=False): """ Wrapper around expand that only uses the log hint. See the expand docstring for more information. Examples ======== >>> from sympy import symbols, expand_log, exp, log >>> x, y = symbols('x,y', positive=True) >>> expand_log(exp(x+y)*(x+y)*log(x*y**2)) (x + y)*(log(x) + 2*log(y))*exp(x + y) """ return sympify(expr).expand(deep=deep, log=True, mul=False, power_exp=False, power_base=False, multinomial=False, basic=False, force=force) def expand_func(expr, deep=True): """ Wrapper around expand that only uses the func hint. See the expand docstring for more information. Examples ======== >>> from sympy import expand_func, gamma >>> from sympy.abc import x >>> expand_func(gamma(x + 2)) x*(x + 1)*gamma(x) """ return sympify(expr).expand(deep=deep, func=True, basic=False, log=False, mul=False, power_exp=False, power_base=False, multinomial=False) def expand_trig(expr, deep=True): """ Wrapper around expand that only uses the trig hint. See the expand docstring for more information. Examples ======== >>> from sympy import expand_trig, sin >>> from sympy.abc import x, y >>> expand_trig(sin(x+y)*(x+y)) (x + y)*(sin(x)*cos(y) + sin(y)*cos(x)) """ return sympify(expr).expand(deep=deep, trig=True, basic=False, log=False, mul=False, power_exp=False, power_base=False, multinomial=False) def expand_complex(expr, deep=True): """ Wrapper around expand that only uses the complex hint. See the expand docstring for more information. Examples ======== >>> from sympy import expand_complex, exp, sqrt, I >>> from sympy.abc import z >>> expand_complex(exp(z)) I*exp(re(z))*sin(im(z)) + exp(re(z))*cos(im(z)) >>> expand_complex(sqrt(I)) sqrt(2)/2 + sqrt(2)*I/2 See Also ======== Expr.as_real_imag """ return sympify(expr).expand(deep=deep, complex=True, basic=False, log=False, mul=False, power_exp=False, power_base=False, multinomial=False) def expand_power_base(expr, deep=True, force=False): """ Wrapper around expand that only uses the power_base hint. See the expand docstring for more information. A wrapper to expand(power_base=True) which separates a power with a base that is a Mul into a product of powers, without performing any other expansions, provided that assumptions about the power's base and exponent allow. deep=False (default is True) will only apply to the top-level expression. force=True (default is False) will cause the expansion to ignore assumptions about the base and exponent. When False, the expansion will only happen if the base is non-negative or the exponent is an integer. >>> from sympy.abc import x, y, z >>> from sympy import expand_power_base, sin, cos, exp >>> (x*y)**2 x**2*y**2 >>> (2*x)**y (2*x)**y >>> expand_power_base(_) 2**y*x**y >>> expand_power_base((x*y)**z) (x*y)**z >>> expand_power_base((x*y)**z, force=True) x**z*y**z >>> expand_power_base(sin((x*y)**z), deep=False) sin((x*y)**z) >>> expand_power_base(sin((x*y)**z), force=True) sin(x**z*y**z) >>> expand_power_base((2*sin(x))**y + (2*cos(x))**y) 2**y*sin(x)**y + 2**y*cos(x)**y >>> expand_power_base((2*exp(y))**x) 2**x*exp(y)**x >>> expand_power_base((2*cos(x))**y) 2**y*cos(x)**y Notice that sums are left untouched. If this is not the desired behavior, apply full ``expand()`` to the expression: >>> expand_power_base(((x+y)*z)**2) z**2*(x + y)**2 >>> (((x+y)*z)**2).expand() x**2*z**2 + 2*x*y*z**2 + y**2*z**2 >>> expand_power_base((2*y)**(1+z)) 2**(z + 1)*y**(z + 1) >>> ((2*y)**(1+z)).expand() 2*2**z*y*y**z """ return sympify(expr).expand(deep=deep, log=False, mul=False, power_exp=False, power_base=True, multinomial=False, basic=False, force=force) def expand_power_exp(expr, deep=True): """ Wrapper around expand that only uses the power_exp hint. See the expand docstring for more information. Examples ======== >>> from sympy import expand_power_exp >>> from sympy.abc import x, y >>> expand_power_exp(x**(y + 2)) x**2*x**y """ return sympify(expr).expand(deep=deep, complex=False, basic=False, log=False, mul=False, power_exp=True, power_base=False, multinomial=False) def count_ops(expr, visual=False): """ Return a representation (integer or expression) of the operations in expr. If ``visual`` is ``False`` (default) then the sum of the coefficients of the visual expression will be returned. If ``visual`` is ``True`` then the number of each type of operation is shown with the core class types (or their virtual equivalent) multiplied by the number of times they occur. If expr is an iterable, the sum of the op counts of the items will be returned. Examples ======== >>> from sympy.abc import a, b, x, y >>> from sympy import sin, count_ops Although there isn't a SUB object, minus signs are interpreted as either negations or subtractions: >>> (x - y).count_ops(visual=True) SUB >>> (-x).count_ops(visual=True) NEG Here, there are two Adds and a Pow: >>> (1 + a + b**2).count_ops(visual=True) 2*ADD + POW In the following, an Add, Mul, Pow and two functions: >>> (sin(x)*x + sin(x)**2).count_ops(visual=True) ADD + MUL + POW + 2*SIN for a total of 5: >>> (sin(x)*x + sin(x)**2).count_ops(visual=False) 5 Note that "what you type" is not always what you get. The expression 1/x/y is translated by sympy into 1/(x*y) so it gives a DIV and MUL rather than two DIVs: >>> (1/x/y).count_ops(visual=True) DIV + MUL The visual option can be used to demonstrate the difference in operations for expressions in different forms. Here, the Horner representation is compared with the expanded form of a polynomial: >>> eq=x*(1 + x*(2 + x*(3 + x))) >>> count_ops(eq.expand(), visual=True) - count_ops(eq, visual=True) -MUL + 3*POW The count_ops function also handles iterables: >>> count_ops([x, sin(x), None, True, x + 2], visual=False) 2 >>> count_ops([x, sin(x), None, True, x + 2], visual=True) ADD + SIN >>> count_ops({x: sin(x), x + 2: y + 1}, visual=True) 2*ADD + SIN """ from sympy import Integral, Symbol from sympy.core.relational import Relational from sympy.simplify.radsimp import fraction from sympy.logic.boolalg import BooleanFunction from sympy.utilities.misc import func_name expr = sympify(expr) if isinstance(expr, Expr) and not expr.is_Relational: ops = [] args = [expr] NEG = Symbol('NEG') DIV = Symbol('DIV') SUB = Symbol('SUB') ADD = Symbol('ADD') while args: a = args.pop() # XXX: This is a hack to support non-Basic args if isinstance(a, string_types): continue if a.is_Rational: #-1/3 = NEG + DIV if a is not S.One: if a.p < 0: ops.append(NEG) if a.q != 1: ops.append(DIV) continue elif a.is_Mul or a.is_MatMul: if _coeff_isneg(a): ops.append(NEG) if a.args[0] is S.NegativeOne: a = a.as_two_terms()[1] else: a = -a n, d = fraction(a) if n.is_Integer: ops.append(DIV) if n < 0: ops.append(NEG) args.append(d) continue # won't be -Mul but could be Add elif d is not S.One: if not d.is_Integer: args.append(d) ops.append(DIV) args.append(n) continue # could be -Mul elif a.is_Add or a.is_MatAdd: aargs = list(a.args) negs = 0 for i, ai in enumerate(aargs): if _coeff_isneg(ai): negs += 1 args.append(-ai) if i > 0: ops.append(SUB) else: args.append(ai) if i > 0: ops.append(ADD) if negs == len(aargs): # -x - y = NEG + SUB ops.append(NEG) elif _coeff_isneg(aargs[0]): # -x + y = SUB, but already recorded ADD ops.append(SUB - ADD) continue if a.is_Pow and a.exp is S.NegativeOne: ops.append(DIV) args.append(a.base) # won't be -Mul but could be Add continue if (a.is_Mul or a.is_Pow or a.is_Function or isinstance(a, Derivative) or isinstance(a, Integral)): o = Symbol(a.func.__name__.upper()) # count the args if (a.is_Mul or isinstance(a, LatticeOp)): ops.append(o*(len(a.args) - 1)) else: ops.append(o) if not a.is_Symbol: args.extend(a.args) elif type(expr) is dict: ops = [count_ops(k, visual=visual) + count_ops(v, visual=visual) for k, v in expr.items()] elif iterable(expr): ops = [count_ops(i, visual=visual) for i in expr] elif isinstance(expr, (Relational, BooleanFunction)): ops = [] for arg in expr.args: ops.append(count_ops(arg, visual=True)) o = Symbol(func_name(expr, short=True).upper()) ops.append(o) elif not isinstance(expr, Basic): ops = [] else: # it's Basic not isinstance(expr, Expr): if not isinstance(expr, Basic): raise TypeError("Invalid type of expr") else: ops = [] args = [expr] while args: a = args.pop() # XXX: This is a hack to support non-Basic args if isinstance(a, string_types): continue if a.args: o = Symbol(a.func.__name__.upper()) if a.is_Boolean: ops.append(o*(len(a.args)-1)) else: ops.append(o) args.extend(a.args) if not ops: if visual: return S.Zero return 0 ops = Add(*ops) if visual: return ops if ops.is_Number: return int(ops) return sum(int((a.args or [1])[0]) for a in Add.make_args(ops)) def nfloat(expr, n=15, exponent=False): """Make all Rationals in expr Floats except those in exponents (unless the exponents flag is set to True). Examples ======== >>> from sympy.core.function import nfloat >>> from sympy.abc import x, y >>> from sympy import cos, pi, sqrt >>> nfloat(x**4 + x/2 + cos(pi/3) + 1 + sqrt(y)) x**4 + 0.5*x + sqrt(y) + 1.5 >>> nfloat(x**4 + sqrt(y), exponent=True) x**4.0 + y**0.5 """ from sympy.core.power import Pow from sympy.polys.rootoftools import RootOf if iterable(expr, exclude=string_types): if isinstance(expr, (dict, Dict)): return type(expr)([(k, nfloat(v, n, exponent)) for k, v in list(expr.items())]) return type(expr)([nfloat(a, n, exponent) for a in expr]) rv = sympify(expr) if rv.is_Number: return Float(rv, n) elif rv.is_number: # evalf doesn't always set the precision rv = rv.n(n) if rv.is_Number: rv = Float(rv.n(n), n) else: pass # pure_complex(rv) is likely True return rv # watch out for RootOf instances that don't like to have # their exponents replaced with Dummies and also sometimes have # problems with evaluating at low precision (issue 6393) rv = rv.xreplace({ro: ro.n(n) for ro in rv.atoms(RootOf)}) if not exponent: reps = [(p, Pow(p.base, Dummy())) for p in rv.atoms(Pow)] rv = rv.xreplace(dict(reps)) rv = rv.n(n) if not exponent: rv = rv.xreplace({d.exp: p.exp for p, d in reps}) else: # Pow._eval_evalf special cases Integer exponents so if # exponent is suppose to be handled we have to do so here rv = rv.xreplace(Transform( lambda x: Pow(x.base, Float(x.exp, n)), lambda x: x.is_Pow and x.exp.is_Integer)) return rv.xreplace(Transform( lambda x: x.func(*nfloat(x.args, n, exponent)), lambda x: isinstance(x, Function))) from sympy.core.symbol import Dummy, Symbol
c10d9b590af557571ed9097eb23b643604a84c558b11f589035e1573f6e748a7
"""Core module. Provides the basic operations needed in sympy. """ from .sympify import sympify, SympifyError from .cache import cacheit from .basic import Basic, Atom, preorder_traversal from .singleton import S from .expr import Expr, AtomicExpr, UnevaluatedExpr from .symbol import Symbol, Wild, Dummy, symbols, var from .numbers import Number, Float, Rational, Integer, NumberSymbol, \ RealNumber, igcd, ilcm, seterr, E, I, nan, oo, pi, zoo, \ AlgebraicNumber, comp, mod_inverse from .power import Pow, integer_nthroot, integer_log from .mul import Mul, prod from .add import Add from .mod import Mod from .relational import ( Rel, Eq, Ne, Lt, Le, Gt, Ge, Equality, GreaterThan, LessThan, Unequality, StrictGreaterThan, StrictLessThan ) from .multidimensional import vectorize from .function import Lambda, WildFunction, Derivative, diff, FunctionClass, \ Function, Subs, expand, PoleError, count_ops, \ expand_mul, expand_log, expand_func, \ expand_trig, expand_complex, expand_multinomial, nfloat, \ expand_power_base, expand_power_exp, arity from .evalf import PrecisionExhausted, N from .containers import Tuple, Dict from .exprtools import gcd_terms, factor_terms, factor_nc from .evaluate import evaluate # expose singletons Catalan = S.Catalan EulerGamma = S.EulerGamma GoldenRatio = S.GoldenRatio TribonacciConstant = S.TribonacciConstant
d108f16d924c3945a3cb2eae44a93b71ab634ef2e818aa17da18cdf0220445c0
from __future__ import print_function, division from collections import defaultdict from functools import cmp_to_key from .basic import Basic from .compatibility import reduce, is_sequence, range from .logic import _fuzzy_group, fuzzy_or, fuzzy_not from .singleton import S from .operations import AssocOp from .cache import cacheit from .numbers import ilcm, igcd from .expr import Expr # Key for sorting commutative args in canonical order _args_sortkey = cmp_to_key(Basic.compare) def _addsort(args): # in-place sorting of args args.sort(key=_args_sortkey) def _unevaluated_Add(*args): """Return a well-formed unevaluated Add: Numbers are collected and put in slot 0 and args are sorted. Use this when args have changed but you still want to return an unevaluated Add. Examples ======== >>> from sympy.core.add import _unevaluated_Add as uAdd >>> from sympy import S, Add >>> from sympy.abc import x, y >>> a = uAdd(*[S(1.0), x, S(2)]) >>> a.args[0] 3.00000000000000 >>> a.args[1] x Beyond the Number being in slot 0, there is no other assurance of order for the arguments since they are hash sorted. So, for testing purposes, output produced by this in some other function can only be tested against the output of this function or as one of several options: >>> opts = (Add(x, y, evaluated=False), Add(y, x, evaluated=False)) >>> a = uAdd(x, y) >>> assert a in opts and a == uAdd(x, y) >>> uAdd(x + 1, x + 2) x + x + 3 """ args = list(args) newargs = [] co = S.Zero while args: a = args.pop() if a.is_Add: # this will keep nesting from building up # so that x + (x + 1) -> x + x + 1 (3 args) args.extend(a.args) elif a.is_Number: co += a else: newargs.append(a) _addsort(newargs) if co: newargs.insert(0, co) return Add._from_args(newargs) class Add(Expr, AssocOp): __slots__ = [] is_Add = True @classmethod def flatten(cls, seq): """ Takes the sequence "seq" of nested Adds and returns a flatten list. Returns: (commutative_part, noncommutative_part, order_symbols) Applies associativity, all terms are commutable with respect to addition. NB: the removal of 0 is already handled by AssocOp.__new__ See also ======== sympy.core.mul.Mul.flatten """ from sympy.calculus.util import AccumBounds from sympy.matrices.expressions import MatrixExpr from sympy.tensor.tensor import TensExpr rv = None if len(seq) == 2: a, b = seq if b.is_Rational: a, b = b, a if a.is_Rational: if b.is_Mul: rv = [a, b], [], None if rv: if all(s.is_commutative for s in rv[0]): return rv return [], rv[0], None terms = {} # term -> coeff # e.g. x**2 -> 5 for ... + 5*x**2 + ... coeff = S.Zero # coefficient (Number or zoo) to always be in slot 0 # e.g. 3 + ... order_factors = [] extra = [] for o in seq: # O(x) if o.is_Order: for o1 in order_factors: if o1.contains(o): o = None break if o is None: continue order_factors = [o] + [ o1 for o1 in order_factors if not o.contains(o1)] continue # 3 or NaN elif o.is_Number: if (o is S.NaN or coeff is S.ComplexInfinity and o.is_finite is False) and not extra: # we know for sure the result will be nan return [S.NaN], [], None if coeff.is_Number: coeff += o if coeff is S.NaN and not extra: # we know for sure the result will be nan return [S.NaN], [], None continue elif isinstance(o, AccumBounds): coeff = o.__add__(coeff) continue elif isinstance(o, MatrixExpr): # can't add 0 to Matrix so make sure coeff is not 0 extra.append(o) continue elif isinstance(o, TensExpr): coeff = o.__add__(coeff) if coeff else o continue elif o is S.ComplexInfinity: if coeff.is_finite is False and not extra: # we know for sure the result will be nan return [S.NaN], [], None coeff = S.ComplexInfinity continue # Add([...]) elif o.is_Add: # NB: here we assume Add is always commutative seq.extend(o.args) # TODO zerocopy? continue # Mul([...]) elif o.is_Mul: c, s = o.as_coeff_Mul() # check for unevaluated Pow, e.g. 2**3 or 2**(-1/2) elif o.is_Pow: b, e = o.as_base_exp() if b.is_Number and (e.is_Integer or (e.is_Rational and e.is_negative)): seq.append(b**e) continue c, s = S.One, o else: # everything else c = S.One s = o # now we have: # o = c*s, where # # c is a Number # s is an expression with number factor extracted # let's collect terms with the same s, so e.g. # 2*x**2 + 3*x**2 -> 5*x**2 if s in terms: terms[s] += c if terms[s] is S.NaN and not extra: # we know for sure the result will be nan return [S.NaN], [], None else: terms[s] = c # now let's construct new args: # [2*x**2, x**3, 7*x**4, pi, ...] newseq = [] noncommutative = False for s, c in terms.items(): # 0*s if c is S.Zero: continue # 1*s elif c is S.One: newseq.append(s) # c*s else: if s.is_Mul: # Mul, already keeps its arguments in perfect order. # so we can simply put c in slot0 and go the fast way. cs = s._new_rawargs(*((c,) + s.args)) newseq.append(cs) elif s.is_Add: # we just re-create the unevaluated Mul newseq.append(Mul(c, s, evaluate=False)) else: # alternatively we have to call all Mul's machinery (slow) newseq.append(Mul(c, s)) noncommutative = noncommutative or not s.is_commutative # oo, -oo if coeff is S.Infinity: newseq = [f for f in newseq if not (f.is_nonnegative or f.is_real and f.is_finite)] elif coeff is S.NegativeInfinity: newseq = [f for f in newseq if not (f.is_nonpositive or f.is_real and f.is_finite)] if coeff is S.ComplexInfinity: # zoo might be # infinite_real + finite_im # finite_real + infinite_im # infinite_real + infinite_im # addition of a finite real or imaginary number won't be able to # change the zoo nature; adding an infinite qualtity would result # in a NaN condition if it had sign opposite of the infinite # portion of zoo, e.g., infinite_real - infinite_real. newseq = [c for c in newseq if not (c.is_finite and c.is_real is not None)] # process O(x) if order_factors: newseq2 = [] for t in newseq: for o in order_factors: # x + O(x) -> O(x) if o.contains(t): t = None break # x + O(x**2) -> x + O(x**2) if t is not None: newseq2.append(t) newseq = newseq2 + order_factors # 1 + O(1) -> O(1) for o in order_factors: if o.contains(coeff): coeff = S.Zero break # order args canonically _addsort(newseq) # current code expects coeff to be first if coeff is not S.Zero: newseq.insert(0, coeff) if extra: newseq += extra noncommutative = True # we are done if noncommutative: return [], newseq, None else: return newseq, [], None @classmethod def class_key(cls): """Nice order of classes""" return 3, 1, cls.__name__ def as_coefficients_dict(a): """Return a dictionary mapping terms to their Rational coefficient. Since the dictionary is a defaultdict, inquiries about terms which were not present will return a coefficient of 0. If an expression is not an Add it is considered to have a single term. Examples ======== >>> from sympy.abc import a, x >>> (3*x + a*x + 4).as_coefficients_dict() {1: 4, x: 3, a*x: 1} >>> _[a] 0 >>> (3*a*x).as_coefficients_dict() {a*x: 3} """ d = defaultdict(list) for ai in a.args: c, m = ai.as_coeff_Mul() d[m].append(c) for k, v in d.items(): if len(v) == 1: d[k] = v[0] else: d[k] = Add(*v) di = defaultdict(int) di.update(d) return di @cacheit def as_coeff_add(self, *deps): """ Returns a tuple (coeff, args) where self is treated as an Add and coeff is the Number term and args is a tuple of all other terms. Examples ======== >>> from sympy.abc import x >>> (7 + 3*x).as_coeff_add() (7, (3*x,)) >>> (7*x).as_coeff_add() (0, (7*x,)) """ if deps: l1 = [] l2 = [] for f in self.args: if f.has(*deps): l2.append(f) else: l1.append(f) return self._new_rawargs(*l1), tuple(l2) coeff, notrat = self.args[0].as_coeff_add() if coeff is not S.Zero: return coeff, notrat + self.args[1:] return S.Zero, self.args def as_coeff_Add(self, rational=False): """Efficiently extract the coefficient of a summation. """ coeff, args = self.args[0], self.args[1:] if coeff.is_Number and not rational or coeff.is_Rational: return coeff, self._new_rawargs(*args) return S.Zero, self # Note, we intentionally do not implement Add.as_coeff_mul(). Rather, we # let Expr.as_coeff_mul() just always return (S.One, self) for an Add. See # issue 5524. def _eval_power(self, e): if e.is_Rational and self.is_number: from sympy.core.evalf import pure_complex from sympy.core.mul import _unevaluated_Mul from sympy.core.exprtools import factor_terms from sympy.core.function import expand_multinomial from sympy.functions.elementary.complexes import sign from sympy.functions.elementary.miscellaneous import sqrt ri = pure_complex(self) if ri: r, i = ri if e.q == 2: D = sqrt(r**2 + i**2) if D.is_Rational: # (r, i, D) is a Pythagorean triple root = sqrt(factor_terms((D - r)/2))**e.p return root*expand_multinomial(( # principle value (D + r)/abs(i) + sign(i)*S.ImaginaryUnit)**e.p) elif e == -1: return _unevaluated_Mul( r - i*S.ImaginaryUnit, 1/(r**2 + i**2)) @cacheit def _eval_derivative(self, s): return self.func(*[a.diff(s) for a in self.args]) def _eval_nseries(self, x, n, logx): terms = [t.nseries(x, n=n, logx=logx) for t in self.args] return self.func(*terms) def _matches_simple(self, expr, repl_dict): # handle (w+3).matches('x+5') -> {w: x+2} coeff, terms = self.as_coeff_add() if len(terms) == 1: return terms[0].matches(expr - coeff, repl_dict) return def matches(self, expr, repl_dict={}, old=False): return AssocOp._matches_commutative(self, expr, repl_dict, old) @staticmethod def _combine_inverse(lhs, rhs): """ Returns lhs - rhs, but treats oo like a symbol so oo - oo returns 0, instead of a nan. """ from sympy.core.function import expand_mul from sympy.core.symbol import Dummy inf = (S.Infinity, S.NegativeInfinity) if lhs.has(*inf) or rhs.has(*inf): oo = Dummy('oo') reps = { S.Infinity: oo, S.NegativeInfinity: -oo} ireps = {v: k for k, v in reps.items()} eq = expand_mul(lhs.xreplace(reps) - rhs.xreplace(reps)) if eq.has(oo): eq = eq.replace( lambda x: x.is_Pow and x.base == oo, lambda x: x.base) return eq.xreplace(ireps) else: return expand_mul(lhs - rhs) @cacheit def as_two_terms(self): """Return head and tail of self. This is the most efficient way to get the head and tail of an expression. - if you want only the head, use self.args[0]; - if you want to process the arguments of the tail then use self.as_coef_add() which gives the head and a tuple containing the arguments of the tail when treated as an Add. - if you want the coefficient when self is treated as a Mul then use self.as_coeff_mul()[0] >>> from sympy.abc import x, y >>> (3*x - 2*y + 5).as_two_terms() (5, 3*x - 2*y) """ return self.args[0], self._new_rawargs(*self.args[1:]) def as_numer_denom(self): # clear rational denominator content, expr = self.primitive() ncon, dcon = content.as_numer_denom() # collect numerators and denominators of the terms nd = defaultdict(list) for f in expr.args: ni, di = f.as_numer_denom() nd[di].append(ni) # check for quick exit if len(nd) == 1: d, n = nd.popitem() return self.func( *[_keep_coeff(ncon, ni) for ni in n]), _keep_coeff(dcon, d) # sum up the terms having a common denominator for d, n in nd.items(): if len(n) == 1: nd[d] = n[0] else: nd[d] = self.func(*n) # assemble single numerator and denominator denoms, numers = [list(i) for i in zip(*iter(nd.items()))] n, d = self.func(*[Mul(*(denoms[:i] + [numers[i]] + denoms[i + 1:])) for i in range(len(numers))]), Mul(*denoms) return _keep_coeff(ncon, n), _keep_coeff(dcon, d) def _eval_is_polynomial(self, syms): return all(term._eval_is_polynomial(syms) for term in self.args) def _eval_is_rational_function(self, syms): return all(term._eval_is_rational_function(syms) for term in self.args) def _eval_is_algebraic_expr(self, syms): return all(term._eval_is_algebraic_expr(syms) for term in self.args) # assumption methods _eval_is_real = lambda self: _fuzzy_group( (a.is_real for a in self.args), quick_exit=True) _eval_is_complex = lambda self: _fuzzy_group( (a.is_complex for a in self.args), quick_exit=True) _eval_is_antihermitian = lambda self: _fuzzy_group( (a.is_antihermitian for a in self.args), quick_exit=True) _eval_is_finite = lambda self: _fuzzy_group( (a.is_finite for a in self.args), quick_exit=True) _eval_is_hermitian = lambda self: _fuzzy_group( (a.is_hermitian for a in self.args), quick_exit=True) _eval_is_integer = lambda self: _fuzzy_group( (a.is_integer for a in self.args), quick_exit=True) _eval_is_rational = lambda self: _fuzzy_group( (a.is_rational for a in self.args), quick_exit=True) _eval_is_algebraic = lambda self: _fuzzy_group( (a.is_algebraic for a in self.args), quick_exit=True) _eval_is_commutative = lambda self: _fuzzy_group( a.is_commutative for a in self.args) def _eval_is_imaginary(self): nz = [] im_I = [] for a in self.args: if a.is_real: if a.is_zero: pass elif a.is_zero is False: nz.append(a) else: return elif a.is_imaginary: im_I.append(a*S.ImaginaryUnit) elif (S.ImaginaryUnit*a).is_real: im_I.append(a*S.ImaginaryUnit) else: return b = self.func(*nz) if b.is_zero: return fuzzy_not(self.func(*im_I).is_zero) elif b.is_zero is False: return False def _eval_is_zero(self): if self.is_commutative is False: # issue 10528: there is no way to know if a nc symbol # is zero or not return nz = [] z = 0 im_or_z = False im = False for a in self.args: if a.is_real: if a.is_zero: z += 1 elif a.is_zero is False: nz.append(a) else: return elif a.is_imaginary: im = True elif (S.ImaginaryUnit*a).is_real: im_or_z = True else: return if z == len(self.args): return True if len(nz) == 0 or len(nz) == len(self.args): return None b = self.func(*nz) if b.is_zero: if not im_or_z and not im: return True if im and not im_or_z: return False if b.is_zero is False: return False def _eval_is_odd(self): l = [f for f in self.args if not (f.is_even is True)] if not l: return False if l[0].is_odd: return self._new_rawargs(*l[1:]).is_even def _eval_is_irrational(self): for t in self.args: a = t.is_irrational if a: others = list(self.args) others.remove(t) if all(x.is_rational is True for x in others): return True return None if a is None: return return False def _eval_is_positive(self): from sympy.core.exprtools import _monotonic_sign if self.is_number: return super(Add, self)._eval_is_positive() c, a = self.as_coeff_Add() if not c.is_zero: v = _monotonic_sign(a) if v is not None: s = v + c if s != self and s.is_positive and a.is_nonnegative: return True if len(self.free_symbols) == 1: v = _monotonic_sign(self) if v is not None and v != self and v.is_positive: return True pos = nonneg = nonpos = unknown_sign = False saw_INF = set() args = [a for a in self.args if not a.is_zero] if not args: return False for a in args: ispos = a.is_positive infinite = a.is_infinite if infinite: saw_INF.add(fuzzy_or((ispos, a.is_nonnegative))) if True in saw_INF and False in saw_INF: return if ispos: pos = True continue elif a.is_nonnegative: nonneg = True continue elif a.is_nonpositive: nonpos = True continue if infinite is None: return unknown_sign = True if saw_INF: if len(saw_INF) > 1: return return saw_INF.pop() elif unknown_sign: return elif not nonpos and not nonneg and pos: return True elif not nonpos and pos: return True elif not pos and not nonneg: return False def _eval_is_nonnegative(self): from sympy.core.exprtools import _monotonic_sign if not self.is_number: c, a = self.as_coeff_Add() if not c.is_zero and a.is_nonnegative: v = _monotonic_sign(a) if v is not None: s = v + c if s != self and s.is_nonnegative: return True if len(self.free_symbols) == 1: v = _monotonic_sign(self) if v is not None and v != self and v.is_nonnegative: return True def _eval_is_nonpositive(self): from sympy.core.exprtools import _monotonic_sign if not self.is_number: c, a = self.as_coeff_Add() if not c.is_zero and a.is_nonpositive: v = _monotonic_sign(a) if v is not None: s = v + c if s != self and s.is_nonpositive: return True if len(self.free_symbols) == 1: v = _monotonic_sign(self) if v is not None and v != self and v.is_nonpositive: return True def _eval_is_negative(self): from sympy.core.exprtools import _monotonic_sign if self.is_number: return super(Add, self)._eval_is_negative() c, a = self.as_coeff_Add() if not c.is_zero: v = _monotonic_sign(a) if v is not None: s = v + c if s != self and s.is_negative and a.is_nonpositive: return True if len(self.free_symbols) == 1: v = _monotonic_sign(self) if v is not None and v != self and v.is_negative: return True neg = nonpos = nonneg = unknown_sign = False saw_INF = set() args = [a for a in self.args if not a.is_zero] if not args: return False for a in args: isneg = a.is_negative infinite = a.is_infinite if infinite: saw_INF.add(fuzzy_or((isneg, a.is_nonpositive))) if True in saw_INF and False in saw_INF: return if isneg: neg = True continue elif a.is_nonpositive: nonpos = True continue elif a.is_nonnegative: nonneg = True continue if infinite is None: return unknown_sign = True if saw_INF: if len(saw_INF) > 1: return return saw_INF.pop() elif unknown_sign: return elif not nonneg and not nonpos and neg: return True elif not nonneg and neg: return True elif not neg and not nonpos: return False def _eval_subs(self, old, new): if not old.is_Add: if old is S.Infinity and -old in self.args: # foo - oo is foo + (-oo) internally return self.xreplace({-old: -new}) return None coeff_self, terms_self = self.as_coeff_Add() coeff_old, terms_old = old.as_coeff_Add() if coeff_self.is_Rational and coeff_old.is_Rational: if terms_self == terms_old: # (2 + a).subs( 3 + a, y) -> -1 + y return self.func(new, coeff_self, -coeff_old) if terms_self == -terms_old: # (2 + a).subs(-3 - a, y) -> -1 - y return self.func(-new, coeff_self, coeff_old) if coeff_self.is_Rational and coeff_old.is_Rational \ or coeff_self == coeff_old: args_old, args_self = self.func.make_args( terms_old), self.func.make_args(terms_self) if len(args_old) < len(args_self): # (a+b+c).subs(b+c,x) -> a+x self_set = set(args_self) old_set = set(args_old) if old_set < self_set: ret_set = self_set - old_set return self.func(new, coeff_self, -coeff_old, *[s._subs(old, new) for s in ret_set]) args_old = self.func.make_args( -terms_old) # (a+b+c+d).subs(-b-c,x) -> a-x+d old_set = set(args_old) if old_set < self_set: ret_set = self_set - old_set return self.func(-new, coeff_self, coeff_old, *[s._subs(old, new) for s in ret_set]) def removeO(self): args = [a for a in self.args if not a.is_Order] return self._new_rawargs(*args) def getO(self): args = [a for a in self.args if a.is_Order] if args: return self._new_rawargs(*args) @cacheit def extract_leading_order(self, symbols, point=None): """ Returns the leading term and its order. Examples ======== >>> from sympy.abc import x >>> (x + 1 + 1/x**5).extract_leading_order(x) ((x**(-5), O(x**(-5))),) >>> (1 + x).extract_leading_order(x) ((1, O(1)),) >>> (x + x**2).extract_leading_order(x) ((x, O(x)),) """ from sympy import Order lst = [] symbols = list(symbols if is_sequence(symbols) else [symbols]) if not point: point = [0]*len(symbols) seq = [(f, Order(f, *zip(symbols, point))) for f in self.args] for ef, of in seq: for e, o in lst: if o.contains(of) and o != of: of = None break if of is None: continue new_lst = [(ef, of)] for e, o in lst: if of.contains(o) and o != of: continue new_lst.append((e, o)) lst = new_lst return tuple(lst) def as_real_imag(self, deep=True, **hints): """ returns a tuple representing a complex number Examples ======== >>> from sympy import I >>> (7 + 9*I).as_real_imag() (7, 9) >>> ((1 + I)/(1 - I)).as_real_imag() (0, 1) >>> ((1 + 2*I)*(1 + 3*I)).as_real_imag() (-5, 5) """ sargs = self.args re_part, im_part = [], [] for term in sargs: re, im = term.as_real_imag(deep=deep) re_part.append(re) im_part.append(im) return (self.func(*re_part), self.func(*im_part)) def _eval_as_leading_term(self, x): from sympy import expand_mul, factor_terms old = self expr = expand_mul(self) if not expr.is_Add: return expr.as_leading_term(x) infinite = [t for t in expr.args if t.is_infinite] expr = expr.func(*[t.as_leading_term(x) for t in expr.args]).removeO() if not expr: # simple leading term analysis gave us 0 but we have to send # back a term, so compute the leading term (via series) return old.compute_leading_term(x) elif expr is S.NaN: return old.func._from_args(infinite) elif not expr.is_Add: return expr else: plain = expr.func(*[s for s, _ in expr.extract_leading_order(x)]) rv = factor_terms(plain, fraction=False) rv_simplify = rv.simplify() # if it simplifies to an x-free expression, return that; # tests don't fail if we don't but it seems nicer to do this if x not in rv_simplify.free_symbols: if rv_simplify.is_zero and plain.is_zero is not True: return (expr - plain)._eval_as_leading_term(x) return rv_simplify return rv def _eval_adjoint(self): return self.func(*[t.adjoint() for t in self.args]) def _eval_conjugate(self): return self.func(*[t.conjugate() for t in self.args]) def _eval_transpose(self): return self.func(*[t.transpose() for t in self.args]) def __neg__(self): return self*(-1) def _sage_(self): s = 0 for x in self.args: s += x._sage_() return s def primitive(self): """ Return ``(R, self/R)`` where ``R``` is the Rational GCD of ``self```. ``R`` is collected only from the leading coefficient of each term. Examples ======== >>> from sympy.abc import x, y >>> (2*x + 4*y).primitive() (2, x + 2*y) >>> (2*x/3 + 4*y/9).primitive() (2/9, 3*x + 2*y) >>> (2*x/3 + 4.2*y).primitive() (1/3, 2*x + 12.6*y) No subprocessing of term factors is performed: >>> ((2 + 2*x)*x + 2).primitive() (1, x*(2*x + 2) + 2) Recursive processing can be done with the ``as_content_primitive()`` method: >>> ((2 + 2*x)*x + 2).as_content_primitive() (2, x*(x + 1) + 1) See also: primitive() function in polytools.py """ terms = [] inf = False for a in self.args: c, m = a.as_coeff_Mul() if not c.is_Rational: c = S.One m = a inf = inf or m is S.ComplexInfinity terms.append((c.p, c.q, m)) if not inf: ngcd = reduce(igcd, [t[0] for t in terms], 0) dlcm = reduce(ilcm, [t[1] for t in terms], 1) else: ngcd = reduce(igcd, [t[0] for t in terms if t[1]], 0) dlcm = reduce(ilcm, [t[1] for t in terms if t[1]], 1) if ngcd == dlcm == 1: return S.One, self if not inf: for i, (p, q, term) in enumerate(terms): terms[i] = _keep_coeff(Rational((p//ngcd)*(dlcm//q)), term) else: for i, (p, q, term) in enumerate(terms): if q: terms[i] = _keep_coeff(Rational((p//ngcd)*(dlcm//q)), term) else: terms[i] = _keep_coeff(Rational(p, q), term) # we don't need a complete re-flattening since no new terms will join # so we just use the same sort as is used in Add.flatten. When the # coefficient changes, the ordering of terms may change, e.g. # (3*x, 6*y) -> (2*y, x) # # We do need to make sure that term[0] stays in position 0, however. # if terms[0].is_Number or terms[0] is S.ComplexInfinity: c = terms.pop(0) else: c = None _addsort(terms) if c: terms.insert(0, c) return Rational(ngcd, dlcm), self._new_rawargs(*terms) def as_content_primitive(self, radical=False, clear=True): """Return the tuple (R, self/R) where R is the positive Rational extracted from self. If radical is True (default is False) then common radicals will be removed and included as a factor of the primitive expression. Examples ======== >>> from sympy import sqrt >>> (3 + 3*sqrt(2)).as_content_primitive() (3, 1 + sqrt(2)) Radical content can also be factored out of the primitive: >>> (2*sqrt(2) + 4*sqrt(10)).as_content_primitive(radical=True) (2, sqrt(2)*(1 + 2*sqrt(5))) See docstring of Expr.as_content_primitive for more examples. """ con, prim = self.func(*[_keep_coeff(*a.as_content_primitive( radical=radical, clear=clear)) for a in self.args]).primitive() if not clear and not con.is_Integer and prim.is_Add: con, d = con.as_numer_denom() _p = prim/d if any(a.as_coeff_Mul()[0].is_Integer for a in _p.args): prim = _p else: con /= d if radical and prim.is_Add: # look for common radicals that can be removed args = prim.args rads = [] common_q = None for m in args: term_rads = defaultdict(list) for ai in Mul.make_args(m): if ai.is_Pow: b, e = ai.as_base_exp() if e.is_Rational and b.is_Integer: term_rads[e.q].append(abs(int(b))**e.p) if not term_rads: break if common_q is None: common_q = set(term_rads.keys()) else: common_q = common_q & set(term_rads.keys()) if not common_q: break rads.append(term_rads) else: # process rads # keep only those in common_q for r in rads: for q in list(r.keys()): if q not in common_q: r.pop(q) for q in r: r[q] = prod(r[q]) # find the gcd of bases for each q G = [] for q in common_q: g = reduce(igcd, [r[q] for r in rads], 0) if g != 1: G.append(g**Rational(1, q)) if G: G = Mul(*G) args = [ai/G for ai in args] prim = G*prim.func(*args) return con, prim @property def _sorted_args(self): from sympy.core.compatibility import default_sort_key return tuple(sorted(self.args, key=default_sort_key)) def _eval_difference_delta(self, n, step): from sympy.series.limitseq import difference_delta as dd return self.func(*[dd(a, n, step) for a in self.args]) @property def _mpc_(self): """ Convert self to an mpmath mpc if possible """ from sympy.core.numbers import I, Float re_part, rest = self.as_coeff_Add() im_part, imag_unit = rest.as_coeff_Mul() if not imag_unit == I: # ValueError may seem more reasonable but since it's a @property, # we need to use AttributeError to keep from confusing things like # hasattr. raise AttributeError("Cannot convert Add to mpc. Must be of the form Number + Number*I") return (Float(re_part)._mpf_, Float(im_part)._mpf_) from .mul import Mul, _keep_coeff, prod from sympy.core.numbers import Rational
e8797dc73655b3d1d61017b3f79834b588bf5c40ab5ac1541178f8477236c496
""" Provides functionality for multidimensional usage of scalar-functions. Read the vectorize docstring for more details. """ from __future__ import print_function, division from sympy.core.decorators import wraps from sympy.core.compatibility import range, string_types def apply_on_element(f, args, kwargs, n): """ Returns a structure with the same dimension as the specified argument, where each basic element is replaced by the function f applied on it. All other arguments stay the same. """ # Get the specified argument. if isinstance(n, int): structure = args[n] is_arg = True elif isinstance(n, string_types): structure = kwargs[n] is_arg = False # Define reduced function that is only dependent on the specified argument. def f_reduced(x): if hasattr(x, "__iter__"): return list(map(f_reduced, x)) else: if is_arg: args[n] = x else: kwargs[n] = x return f(*args, **kwargs) # f_reduced will call itself recursively so that in the end f is applied to # all basic elements. return list(map(f_reduced, structure)) def iter_copy(structure): """ Returns a copy of an iterable object (also copying all embedded iterables). """ l = [] for i in structure: if hasattr(i, "__iter__"): l.append(iter_copy(i)) else: l.append(i) return l def structure_copy(structure): """ Returns a copy of the given structure (numpy-array, list, iterable, ..). """ if hasattr(structure, "copy"): return structure.copy() return iter_copy(structure) class vectorize: """ Generalizes a function taking scalars to accept multidimensional arguments. For example >>> from sympy import diff, sin, symbols, Function >>> from sympy.core.multidimensional import vectorize >>> x, y, z = symbols('x y z') >>> f, g, h = list(map(Function, 'fgh')) >>> @vectorize(0) ... def vsin(x): ... return sin(x) >>> vsin([1, x, y]) [sin(1), sin(x), sin(y)] >>> @vectorize(0, 1) ... def vdiff(f, y): ... return diff(f, y) >>> vdiff([f(x, y, z), g(x, y, z), h(x, y, z)], [x, y, z]) [[Derivative(f(x, y, z), x), Derivative(f(x, y, z), y), Derivative(f(x, y, z), z)], [Derivative(g(x, y, z), x), Derivative(g(x, y, z), y), Derivative(g(x, y, z), z)], [Derivative(h(x, y, z), x), Derivative(h(x, y, z), y), Derivative(h(x, y, z), z)]] """ def __init__(self, *mdargs): """ The given numbers and strings characterize the arguments that will be treated as data structures, where the decorated function will be applied to every single element. If no argument is given, everything is treated multidimensional. """ for a in mdargs: if not isinstance(a, (int, string_types)): raise TypeError("a is of invalid type") self.mdargs = mdargs def __call__(self, f): """ Returns a wrapper for the one-dimensional function that can handle multidimensional arguments. """ @wraps(f) def wrapper(*args, **kwargs): # Get arguments that should be treated multidimensional if self.mdargs: mdargs = self.mdargs else: mdargs = range(len(args)) + kwargs.keys() arglength = len(args) for n in mdargs: if isinstance(n, int): if n >= arglength: continue entry = args[n] is_arg = True elif isinstance(n, string_types): try: entry = kwargs[n] except KeyError: continue is_arg = False if hasattr(entry, "__iter__"): # Create now a copy of the given array and manipulate then # the entries directly. if is_arg: args = list(args) args[n] = structure_copy(entry) else: kwargs[n] = structure_copy(entry) result = apply_on_element(wrapper, args, kwargs, n) return result return f(*args, **kwargs) return wrapper
4bafd60dee73f546422a4ea810d6b606e1e09fca383b433b390f236765d3d98e
from __future__ import print_function, division from .sympify import sympify, _sympify, SympifyError from .basic import Basic, Atom from .singleton import S from .evalf import EvalfMixin, pure_complex from .decorators import _sympifyit, call_highest_priority from .cache import cacheit from .compatibility import reduce, as_int, default_sort_key, range, Iterable from mpmath.libmp import mpf_log, prec_to_dps from collections import defaultdict class Expr(Basic, EvalfMixin): """ Base class for algebraic expressions. Everything that requires arithmetic operations to be defined should subclass this class, instead of Basic (which should be used only for argument storage and expression manipulation, i.e. pattern matching, substitutions, etc). See Also ======== sympy.core.basic.Basic """ __slots__ = [] is_scalar = True # self derivative is 1 @property def _diff_wrt(self): """Return True if one can differentiate with respect to this object, else False. Subclasses such as Symbol, Function and Derivative return True to enable derivatives wrt them. The implementation in Derivative separates the Symbol and non-Symbol (_diff_wrt=True) variables and temporarily converts the non-Symbols into Symbols when performing the differentiation. By default, any object deriving from Expr will behave like a scalar with self.diff(self) == 1. If this is not desired then the object must also set `is_scalar = False` or else define an _eval_derivative routine. Note, see the docstring of Derivative for how this should work mathematically. In particular, note that expr.subs(yourclass, Symbol) should be well-defined on a structural level, or this will lead to inconsistent results. Examples ======== >>> from sympy import Expr >>> e = Expr() >>> e._diff_wrt False >>> class MyScalar(Expr): ... _diff_wrt = True ... >>> MyScalar().diff(MyScalar()) 1 >>> class MySymbol(Expr): ... _diff_wrt = True ... is_scalar = False ... >>> MySymbol().diff(MySymbol()) Derivative(MySymbol(), MySymbol()) """ return False @cacheit def sort_key(self, order=None): coeff, expr = self.as_coeff_Mul() if expr.is_Pow: expr, exp = expr.args else: expr, exp = expr, S.One if expr.is_Dummy: args = (expr.sort_key(),) elif expr.is_Atom: args = (str(expr),) else: if expr.is_Add: args = expr.as_ordered_terms(order=order) elif expr.is_Mul: args = expr.as_ordered_factors(order=order) else: args = expr.args args = tuple( [ default_sort_key(arg, order=order) for arg in args ]) args = (len(args), tuple(args)) exp = exp.sort_key(order=order) return expr.class_key(), args, exp, coeff # *************** # * Arithmetics * # *************** # Expr and its sublcasses use _op_priority to determine which object # passed to a binary special method (__mul__, etc.) will handle the # operation. In general, the 'call_highest_priority' decorator will choose # the object with the highest _op_priority to handle the call. # Custom subclasses that want to define their own binary special methods # should set an _op_priority value that is higher than the default. # # **NOTE**: # This is a temporary fix, and will eventually be replaced with # something better and more powerful. See issue 5510. _op_priority = 10.0 def __pos__(self): return self def __neg__(self): return Mul(S.NegativeOne, self) def __abs__(self): from sympy import Abs return Abs(self) @_sympifyit('other', NotImplemented) @call_highest_priority('__radd__') def __add__(self, other): return Add(self, other) @_sympifyit('other', NotImplemented) @call_highest_priority('__add__') def __radd__(self, other): return Add(other, self) @_sympifyit('other', NotImplemented) @call_highest_priority('__rsub__') def __sub__(self, other): return Add(self, -other) @_sympifyit('other', NotImplemented) @call_highest_priority('__sub__') def __rsub__(self, other): return Add(other, -self) @_sympifyit('other', NotImplemented) @call_highest_priority('__rmul__') def __mul__(self, other): return Mul(self, other) @_sympifyit('other', NotImplemented) @call_highest_priority('__mul__') def __rmul__(self, other): return Mul(other, self) @_sympifyit('other', NotImplemented) @call_highest_priority('__rpow__') def _pow(self, other): return Pow(self, other) def __pow__(self, other, mod=None): if mod is None: return self._pow(other) try: _self, other, mod = as_int(self), as_int(other), as_int(mod) if other >= 0: return pow(_self, other, mod) else: from sympy.core.numbers import mod_inverse return mod_inverse(pow(_self, -other, mod), mod) except ValueError: power = self._pow(other) try: return power%mod except TypeError: return NotImplemented @_sympifyit('other', NotImplemented) @call_highest_priority('__pow__') def __rpow__(self, other): return Pow(other, self) @_sympifyit('other', NotImplemented) @call_highest_priority('__rdiv__') def __div__(self, other): return Mul(self, Pow(other, S.NegativeOne)) @_sympifyit('other', NotImplemented) @call_highest_priority('__div__') def __rdiv__(self, other): return Mul(other, Pow(self, S.NegativeOne)) __truediv__ = __div__ __rtruediv__ = __rdiv__ @_sympifyit('other', NotImplemented) @call_highest_priority('__rmod__') def __mod__(self, other): return Mod(self, other) @_sympifyit('other', NotImplemented) @call_highest_priority('__mod__') def __rmod__(self, other): return Mod(other, self) @_sympifyit('other', NotImplemented) @call_highest_priority('__rfloordiv__') def __floordiv__(self, other): from sympy.functions.elementary.integers import floor return floor(self / other) @_sympifyit('other', NotImplemented) @call_highest_priority('__floordiv__') def __rfloordiv__(self, other): from sympy.functions.elementary.integers import floor return floor(other / self) @_sympifyit('other', NotImplemented) @call_highest_priority('__rdivmod__') def __divmod__(self, other): from sympy.functions.elementary.integers import floor return floor(self / other), Mod(self, other) @_sympifyit('other', NotImplemented) @call_highest_priority('__divmod__') def __rdivmod__(self, other): from sympy.functions.elementary.integers import floor return floor(other / self), Mod(other, self) def __int__(self): # Although we only need to round to the units position, we'll # get one more digit so the extra testing below can be avoided # unless the rounded value rounded to an integer, e.g. if an # expression were equal to 1.9 and we rounded to the unit position # we would get a 2 and would not know if this rounded up or not # without doing a test (as done below). But if we keep an extra # digit we know that 1.9 is not the same as 1 and there is no # need for further testing: our int value is correct. If the value # were 1.99, however, this would round to 2.0 and our int value is # off by one. So...if our round value is the same as the int value # (regardless of how much extra work we do to calculate extra decimal # places) we need to test whether we are off by one. from sympy import Dummy if not self.is_number: raise TypeError("can't convert symbols to int") r = self.round(2) if not r.is_Number: raise TypeError("can't convert complex to int") if r in (S.NaN, S.Infinity, S.NegativeInfinity): raise TypeError("can't convert %s to int" % r) i = int(r) if not i: return 0 # off-by-one check if i == r and not (self - i).equals(0): isign = 1 if i > 0 else -1 x = Dummy() # in the following (self - i).evalf(2) will not always work while # (self - r).evalf(2) and the use of subs does; if the test that # was added when this comment was added passes, it might be safe # to simply use sign to compute this rather than doing this by hand: diff_sign = 1 if (self - x).evalf(2, subs={x: i}) > 0 else -1 if diff_sign != isign: i -= isign return i __long__ = __int__ def __float__(self): # Don't bother testing if it's a number; if it's not this is going # to fail, and if it is we still need to check that it evalf'ed to # a number. result = self.evalf() if result.is_Number: return float(result) if result.is_number and result.as_real_imag()[1]: raise TypeError("can't convert complex to float") raise TypeError("can't convert expression to float") def __complex__(self): result = self.evalf() re, im = result.as_real_imag() return complex(float(re), float(im)) def __ge__(self, other): from sympy import GreaterThan try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s >= %s" % (self, other)) for me in (self, other): if me.is_complex and me.is_real is False: raise TypeError("Invalid comparison of complex %s" % me) if me is S.NaN: raise TypeError("Invalid NaN comparison") n2 = _n2(self, other) if n2 is not None: return _sympify(n2 >= 0) if self.is_real or other.is_real: dif = self - other if dif.is_nonnegative is not None and \ dif.is_nonnegative is not dif.is_negative: return sympify(dif.is_nonnegative) return GreaterThan(self, other, evaluate=False) def __le__(self, other): from sympy import LessThan try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s <= %s" % (self, other)) for me in (self, other): if me.is_complex and me.is_real is False: raise TypeError("Invalid comparison of complex %s" % me) if me is S.NaN: raise TypeError("Invalid NaN comparison") n2 = _n2(self, other) if n2 is not None: return _sympify(n2 <= 0) if self.is_real or other.is_real: dif = self - other if dif.is_nonpositive is not None and \ dif.is_nonpositive is not dif.is_positive: return sympify(dif.is_nonpositive) return LessThan(self, other, evaluate=False) def __gt__(self, other): from sympy import StrictGreaterThan try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s > %s" % (self, other)) for me in (self, other): if me.is_complex and me.is_real is False: raise TypeError("Invalid comparison of complex %s" % me) if me is S.NaN: raise TypeError("Invalid NaN comparison") n2 = _n2(self, other) if n2 is not None: return _sympify(n2 > 0) if self.is_real or other.is_real: dif = self - other if dif.is_positive is not None and \ dif.is_positive is not dif.is_nonpositive: return sympify(dif.is_positive) return StrictGreaterThan(self, other, evaluate=False) def __lt__(self, other): from sympy import StrictLessThan try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s < %s" % (self, other)) for me in (self, other): if me.is_complex and me.is_real is False: raise TypeError("Invalid comparison of complex %s" % me) if me is S.NaN: raise TypeError("Invalid NaN comparison") n2 = _n2(self, other) if n2 is not None: return _sympify(n2 < 0) if self.is_real or other.is_real: dif = self - other if dif.is_negative is not None and \ dif.is_negative is not dif.is_nonnegative: return sympify(dif.is_negative) return StrictLessThan(self, other, evaluate=False) def __trunc__(self): if not self.is_number: raise TypeError("can't truncate symbols and expressions") else: return Integer(self) @staticmethod def _from_mpmath(x, prec): from sympy import Float if hasattr(x, "_mpf_"): return Float._new(x._mpf_, prec) elif hasattr(x, "_mpc_"): re, im = x._mpc_ re = Float._new(re, prec) im = Float._new(im, prec)*S.ImaginaryUnit return re + im else: raise TypeError("expected mpmath number (mpf or mpc)") @property def is_number(self): """Returns True if ``self`` has no free symbols and no undefined functions (AppliedUndef, to be precise). It will be faster than ``if not self.free_symbols``, however, since ``is_number`` will fail as soon as it hits a free symbol or undefined function. Examples ======== >>> from sympy import log, Integral, cos, sin, pi >>> from sympy.core.function import Function >>> from sympy.abc import x >>> f = Function('f') >>> x.is_number False >>> f(1).is_number False >>> (2*x).is_number False >>> (2 + Integral(2, x)).is_number False >>> (2 + Integral(2, (x, 1, 2))).is_number True Not all numbers are Numbers in the SymPy sense: >>> pi.is_number, pi.is_Number (True, False) If something is a number it should evaluate to a number with real and imaginary parts that are Numbers; the result may not be comparable, however, since the real and/or imaginary part of the result may not have precision. >>> cos(1).is_number and cos(1).is_comparable True >>> z = cos(1)**2 + sin(1)**2 - 1 >>> z.is_number True >>> z.is_comparable False See Also ======== sympy.core.basic.is_comparable """ return all(obj.is_number for obj in self.args) def _random(self, n=None, re_min=-1, im_min=-1, re_max=1, im_max=1): """Return self evaluated, if possible, replacing free symbols with random complex values, if necessary. The random complex value for each free symbol is generated by the random_complex_number routine giving real and imaginary parts in the range given by the re_min, re_max, im_min, and im_max values. The returned value is evaluated to a precision of n (if given) else the maximum of 15 and the precision needed to get more than 1 digit of precision. If the expression could not be evaluated to a number, or could not be evaluated to more than 1 digit of precision, then None is returned. Examples ======== >>> from sympy import sqrt >>> from sympy.abc import x, y >>> x._random() # doctest: +SKIP 0.0392918155679172 + 0.916050214307199*I >>> x._random(2) # doctest: +SKIP -0.77 - 0.87*I >>> (x + y/2)._random(2) # doctest: +SKIP -0.57 + 0.16*I >>> sqrt(2)._random(2) 1.4 See Also ======== sympy.utilities.randtest.random_complex_number """ free = self.free_symbols prec = 1 if free: from sympy.utilities.randtest import random_complex_number a, c, b, d = re_min, re_max, im_min, im_max reps = dict(list(zip(free, [random_complex_number(a, b, c, d, rational=True) for zi in free]))) try: nmag = abs(self.evalf(2, subs=reps)) except (ValueError, TypeError): # if an out of range value resulted in evalf problems # then return None -- XXX is there a way to know how to # select a good random number for a given expression? # e.g. when calculating n! negative values for n should not # be used return None else: reps = {} nmag = abs(self.evalf(2)) if not hasattr(nmag, '_prec'): # e.g. exp_polar(2*I*pi) doesn't evaluate but is_number is True return None if nmag._prec == 1: # increase the precision up to the default maximum # precision to see if we can get any significance from mpmath.libmp.libintmath import giant_steps from sympy.core.evalf import DEFAULT_MAXPREC as target # evaluate for prec in giant_steps(2, target): nmag = abs(self.evalf(prec, subs=reps)) if nmag._prec != 1: break if nmag._prec != 1: if n is None: n = max(prec, 15) return self.evalf(n, subs=reps) # never got any significance return None def is_constant(self, *wrt, **flags): """Return True if self is constant, False if not, or None if the constancy could not be determined conclusively. If an expression has no free symbols then it is a constant. If there are free symbols it is possible that the expression is a constant, perhaps (but not necessarily) zero. To test such expressions, two strategies are tried: 1) numerical evaluation at two random points. If two such evaluations give two different values and the values have a precision greater than 1 then self is not constant. If the evaluations agree or could not be obtained with any precision, no decision is made. The numerical testing is done only if ``wrt`` is different than the free symbols. 2) differentiation with respect to variables in 'wrt' (or all free symbols if omitted) to see if the expression is constant or not. This will not always lead to an expression that is zero even though an expression is constant (see added test in test_expr.py). If all derivatives are zero then self is constant with respect to the given symbols. If neither evaluation nor differentiation can prove the expression is constant, None is returned unless two numerical values happened to be the same and the flag ``failing_number`` is True -- in that case the numerical value will be returned. If flag simplify=False is passed, self will not be simplified; the default is True since self should be simplified before testing. Examples ======== >>> from sympy import cos, sin, Sum, S, pi >>> from sympy.abc import a, n, x, y >>> x.is_constant() False >>> S(2).is_constant() True >>> Sum(x, (x, 1, 10)).is_constant() True >>> Sum(x, (x, 1, n)).is_constant() False >>> Sum(x, (x, 1, n)).is_constant(y) True >>> Sum(x, (x, 1, n)).is_constant(n) False >>> Sum(x, (x, 1, n)).is_constant(x) True >>> eq = a*cos(x)**2 + a*sin(x)**2 - a >>> eq.is_constant() True >>> eq.subs({x: pi, a: 2}) == eq.subs({x: pi, a: 3}) == 0 True >>> (0**x).is_constant() False >>> x.is_constant() False >>> (x**x).is_constant() False >>> one = cos(x)**2 + sin(x)**2 >>> one.is_constant() True >>> ((one - 1)**(x + 1)).is_constant() in (True, False) # could be 0 or 1 True """ simplify = flags.get('simplify', True) if self.is_number: return True free = self.free_symbols if not free: return True # assume f(1) is some constant # if we are only interested in some symbols and they are not in the # free symbols then this expression is constant wrt those symbols wrt = set(wrt) if wrt and not wrt & free: return True wrt = wrt or free # simplify unless this has already been done expr = self if simplify: expr = expr.simplify() # is_zero should be a quick assumptions check; it can be wrong for # numbers (see test_is_not_constant test), giving False when it # shouldn't, but hopefully it will never give True unless it is sure. if expr.is_zero: return True # try numerical evaluation to see if we get two different values failing_number = None if wrt == free: # try 0 (for a) and 1 (for b) try: a = expr.subs(list(zip(free, [0]*len(free))), simultaneous=True) if a is S.NaN: # evaluation may succeed when substitution fails a = expr._random(None, 0, 0, 0, 0) except ZeroDivisionError: a = None if a is not None and a is not S.NaN: try: b = expr.subs(list(zip(free, [1]*len(free))), simultaneous=True) if b is S.NaN: # evaluation may succeed when substitution fails b = expr._random(None, 1, 0, 1, 0) except ZeroDivisionError: b = None if b is not None and b is not S.NaN and b.equals(a) is False: return False # try random real b = expr._random(None, -1, 0, 1, 0) if b is not None and b is not S.NaN and b.equals(a) is False: return False # try random complex b = expr._random() if b is not None and b is not S.NaN: if b.equals(a) is False: return False failing_number = a if a.is_number else b # now we will test each wrt symbol (or all free symbols) to see if the # expression depends on them or not using differentiation. This is # not sufficient for all expressions, however, so we don't return # False if we get a derivative other than 0 with free symbols. for w in wrt: deriv = expr.diff(w) if simplify: deriv = deriv.simplify() if deriv != 0: if not (pure_complex(deriv, or_real=True)): if flags.get('failing_number', False): return failing_number elif deriv.free_symbols: # dead line provided _random returns None in such cases return None return False return True def equals(self, other, failing_expression=False): """Return True if self == other, False if it doesn't, or None. If failing_expression is True then the expression which did not simplify to a 0 will be returned instead of None. If ``self`` is a Number (or complex number) that is not zero, then the result is False. If ``self`` is a number and has not evaluated to zero, evalf will be used to test whether the expression evaluates to zero. If it does so and the result has significance (i.e. the precision is either -1, for a Rational result, or is greater than 1) then the evalf value will be used to return True or False. """ from sympy.simplify.simplify import nsimplify, simplify from sympy.solvers.solveset import solveset from sympy.polys.polyerrors import NotAlgebraic from sympy.polys.numberfields import minimal_polynomial other = sympify(other) if self == other: return True # they aren't the same so see if we can make the difference 0; # don't worry about doing simplification steps one at a time # because if the expression ever goes to 0 then the subsequent # simplification steps that are done will be very fast. diff = factor_terms(simplify(self - other), radical=True) if not diff: return True if not diff.has(Add, Mod): # if there is no expanding to be done after simplifying # then this can't be a zero return False constant = diff.is_constant(simplify=False, failing_number=True) if constant is False: return False if constant is None and not diff.is_number: # e.g. unless the right simplification is done, a symbolic # zero is possible (see expression of issue 6829: without # simplification constant will be None). return if constant is True: ndiff = diff._random() if ndiff: return False # sometimes we can use a simplified result to give a clue as to # what the expression should be; if the expression is *not* zero # then we should have been able to compute that and so now # we can just consider the cases where the approximation appears # to be zero -- we try to prove it via minimal_polynomial. if diff.is_number: approx = diff.nsimplify() if not approx: # try to prove via self-consistency surds = [s for s in diff.atoms(Pow) if s.args[0].is_Integer] # it seems to work better to try big ones first surds.sort(key=lambda x: -x.args[0]) for s in surds: try: # simplify is False here -- this expression has already # been identified as being hard to identify as zero; # we will handle the checking ourselves using nsimplify # to see if we are in the right ballpark or not and if so # *then* the simplification will be attempted. if s.is_Symbol: sol = list(solveset(diff, s)) else: sol = [s] if sol: if s in sol: return True if s.is_real: if any(nsimplify(si, [s]) == s and simplify(si) == s for si in sol): return True except NotImplementedError: pass # try to prove with minimal_polynomial but know when # *not* to use this or else it can take a long time. e.g. issue 8354 if True: # change True to condition that assures non-hang try: mp = minimal_polynomial(diff) if mp.is_Symbol: return True return False except (NotAlgebraic, NotImplementedError): pass # diff has not simplified to zero; constant is either None, True # or the number with significance (prec != 1) that was randomly # calculated twice as the same value. if constant not in (True, None) and constant != 0: return False if failing_expression: return diff return None def _eval_is_positive(self): from sympy.polys.numberfields import minimal_polynomial from sympy.polys.polyerrors import NotAlgebraic if self.is_number: if self.is_real is False: return False # check to see that we can get a value try: n2 = self._eval_evalf(2) # XXX: This shouldn't be caught here # Catches ValueError: hypsum() failed to converge to the requested # 34 bits of accuracy except ValueError: return None if n2 is None: return None if getattr(n2, '_prec', 1) == 1: # no significance return None if n2 == S.NaN: return None n, i = self.evalf(2).as_real_imag() if not i.is_Number or not n.is_Number: return False if n._prec != 1 and i._prec != 1: return bool(not i and n > 0) elif n._prec == 1 and (not i or i._prec == 1) and \ self.is_algebraic and not self.has(Function): try: if minimal_polynomial(self).is_Symbol: return False except (NotAlgebraic, NotImplementedError): pass def _eval_is_negative(self): from sympy.polys.numberfields import minimal_polynomial from sympy.polys.polyerrors import NotAlgebraic if self.is_number: if self.is_real is False: return False # check to see that we can get a value try: n2 = self._eval_evalf(2) # XXX: This shouldn't be caught here # Catches ValueError: hypsum() failed to converge to the requested # 34 bits of accuracy except ValueError: return None if n2 is None: return None if getattr(n2, '_prec', 1) == 1: # no significance return None if n2 == S.NaN: return None n, i = self.evalf(2).as_real_imag() if not i.is_Number or not n.is_Number: return False if n._prec != 1 and i._prec != 1: return bool(not i and n < 0) elif n._prec == 1 and (not i or i._prec == 1) and \ self.is_algebraic and not self.has(Function): try: if minimal_polynomial(self).is_Symbol: return False except (NotAlgebraic, NotImplementedError): pass def _eval_interval(self, x, a, b): """ Returns evaluation over an interval. For most functions this is: self.subs(x, b) - self.subs(x, a), possibly using limit() if NaN is returned from subs, or if singularities are found between a and b. If b or a is None, it only evaluates -self.subs(x, a) or self.subs(b, x), respectively. """ from sympy.series import limit, Limit from sympy.solvers.solveset import solveset from sympy.sets.sets import Interval from sympy.functions.elementary.exponential import log from sympy.calculus.util import AccumBounds if (a is None and b is None): raise ValueError('Both interval ends cannot be None.') if a == b: return 0 if a is None: A = 0 else: A = self.subs(x, a) if A.has(S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity, AccumBounds): if (a < b) != False: A = limit(self, x, a,"+") else: A = limit(self, x, a,"-") if A is S.NaN: return A if isinstance(A, Limit): raise NotImplementedError("Could not compute limit") if b is None: B = 0 else: B = self.subs(x, b) if B.has(S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity, AccumBounds): if (a < b) != False: B = limit(self, x, b,"-") else: B = limit(self, x, b,"+") if isinstance(B, Limit): raise NotImplementedError("Could not compute limit") if (a and b) is None: return B - A value = B - A if a.is_comparable and b.is_comparable: if a < b: domain = Interval(a, b) else: domain = Interval(b, a) # check the singularities of self within the interval # if singularities is a ConditionSet (not iterable), catch the exception and pass singularities = solveset(self.cancel().as_numer_denom()[1], x, domain=domain) for logterm in self.atoms(log): singularities = singularities | solveset(logterm.args[0], x, domain=domain) try: for s in singularities: if value is S.NaN: # no need to keep adding, it will stay NaN break if not s.is_comparable: continue if (a < s) == (s < b) == True: value += -limit(self, x, s, "+") + limit(self, x, s, "-") elif (b < s) == (s < a) == True: value += limit(self, x, s, "+") - limit(self, x, s, "-") except TypeError: pass return value def _eval_power(self, other): # subclass to compute self**other for cases when # other is not NaN, 0, or 1 return None def _eval_conjugate(self): if self.is_real: return self elif self.is_imaginary: return -self def conjugate(self): from sympy.functions.elementary.complexes import conjugate as c return c(self) def _eval_transpose(self): from sympy.functions.elementary.complexes import conjugate if self.is_complex: return self elif self.is_hermitian: return conjugate(self) elif self.is_antihermitian: return -conjugate(self) def transpose(self): from sympy.functions.elementary.complexes import transpose return transpose(self) def _eval_adjoint(self): from sympy.functions.elementary.complexes import conjugate, transpose if self.is_hermitian: return self elif self.is_antihermitian: return -self obj = self._eval_conjugate() if obj is not None: return transpose(obj) obj = self._eval_transpose() if obj is not None: return conjugate(obj) def adjoint(self): from sympy.functions.elementary.complexes import adjoint return adjoint(self) @classmethod def _parse_order(cls, order): """Parse and configure the ordering of terms. """ from sympy.polys.orderings import monomial_key startswith = getattr(order, "startswith", None) if startswith is None: reverse = False else: reverse = startswith('rev-') if reverse: order = order[4:] monom_key = monomial_key(order) def neg(monom): result = [] for m in monom: if isinstance(m, tuple): result.append(neg(m)) else: result.append(-m) return tuple(result) def key(term): _, ((re, im), monom, ncpart) = term monom = neg(monom_key(monom)) ncpart = tuple([e.sort_key(order=order) for e in ncpart]) coeff = ((bool(im), im), (re, im)) return monom, ncpart, coeff return key, reverse def as_ordered_factors(self, order=None): """Return list of ordered factors (if Mul) else [self].""" return [self] def as_ordered_terms(self, order=None, data=False): """ Transform an expression to an ordered list of terms. Examples ======== >>> from sympy import sin, cos >>> from sympy.abc import x >>> (sin(x)**2*cos(x) + sin(x)**2 + 1).as_ordered_terms() [sin(x)**2*cos(x), sin(x)**2, 1] """ from .numbers import Number, NumberSymbol if order is None and self.is_Add: # Spot the special case of Add(Number, Mul(Number, expr)) with the # first number positive and thhe second number nagative key = lambda x:not isinstance(x, (Number, NumberSymbol)) add_args = sorted(Add.make_args(self), key=key) if (len(add_args) == 2 and isinstance(add_args[0], (Number, NumberSymbol)) and isinstance(add_args[1], Mul)): mul_args = sorted(Mul.make_args(add_args[1]), key=key) if (len(mul_args) == 2 and isinstance(mul_args[0], Number) and add_args[0].is_positive and mul_args[0].is_negative): return add_args key, reverse = self._parse_order(order) terms, gens = self.as_terms() if not any(term.is_Order for term, _ in terms): ordered = sorted(terms, key=key, reverse=reverse) else: _terms, _order = [], [] for term, repr in terms: if not term.is_Order: _terms.append((term, repr)) else: _order.append((term, repr)) ordered = sorted(_terms, key=key, reverse=True) \ + sorted(_order, key=key, reverse=True) if data: return ordered, gens else: return [term for term, _ in ordered] def as_terms(self): """Transform an expression to a list of terms. """ from .add import Add from .mul import Mul from .exprtools import decompose_power gens, terms = set([]), [] for term in Add.make_args(self): coeff, _term = term.as_coeff_Mul() coeff = complex(coeff) cpart, ncpart = {}, [] if _term is not S.One: for factor in Mul.make_args(_term): if factor.is_number: try: coeff *= complex(factor) except (TypeError, ValueError): pass else: continue if factor.is_commutative: base, exp = decompose_power(factor) cpart[base] = exp gens.add(base) else: ncpart.append(factor) coeff = coeff.real, coeff.imag ncpart = tuple(ncpart) terms.append((term, (coeff, cpart, ncpart))) gens = sorted(gens, key=default_sort_key) k, indices = len(gens), {} for i, g in enumerate(gens): indices[g] = i result = [] for term, (coeff, cpart, ncpart) in terms: monom = [0]*k for base, exp in cpart.items(): monom[indices[base]] = exp result.append((term, (coeff, tuple(monom), ncpart))) return result, gens def removeO(self): """Removes the additive O(..) symbol if there is one""" return self def getO(self): """Returns the additive O(..) symbol if there is one, else None.""" return None def getn(self): """ Returns the order of the expression. The order is determined either from the O(...) term. If there is no O(...) term, it returns None. Examples ======== >>> from sympy import O >>> from sympy.abc import x >>> (1 + x + O(x**2)).getn() 2 >>> (1 + x).getn() """ from sympy import Dummy, Symbol o = self.getO() if o is None: return None elif o.is_Order: o = o.expr if o is S.One: return S.Zero if o.is_Symbol: return S.One if o.is_Pow: return o.args[1] if o.is_Mul: # x**n*log(x)**n or x**n/log(x)**n for oi in o.args: if oi.is_Symbol: return S.One if oi.is_Pow: syms = oi.atoms(Symbol) if len(syms) == 1: x = syms.pop() oi = oi.subs(x, Dummy('x', positive=True)) if oi.base.is_Symbol and oi.exp.is_Rational: return abs(oi.exp) raise NotImplementedError('not sure of order of %s' % o) def count_ops(self, visual=None): """wrapper for count_ops that returns the operation count.""" from .function import count_ops return count_ops(self, visual) def args_cnc(self, cset=False, warn=True, split_1=True): """Return [commutative factors, non-commutative factors] of self. self is treated as a Mul and the ordering of the factors is maintained. If ``cset`` is True the commutative factors will be returned in a set. If there were repeated factors (as may happen with an unevaluated Mul) then an error will be raised unless it is explicitly suppressed by setting ``warn`` to False. Note: -1 is always separated from a Number unless split_1 is False. >>> from sympy import symbols, oo >>> A, B = symbols('A B', commutative=0) >>> x, y = symbols('x y') >>> (-2*x*y).args_cnc() [[-1, 2, x, y], []] >>> (-2.5*x).args_cnc() [[-1, 2.5, x], []] >>> (-2*x*A*B*y).args_cnc() [[-1, 2, x, y], [A, B]] >>> (-2*x*A*B*y).args_cnc(split_1=False) [[-2, x, y], [A, B]] >>> (-2*x*y).args_cnc(cset=True) [{-1, 2, x, y}, []] The arg is always treated as a Mul: >>> (-2 + x + A).args_cnc() [[], [x - 2 + A]] >>> (-oo).args_cnc() # -oo is a singleton [[-1, oo], []] """ if self.is_Mul: args = list(self.args) else: args = [self] for i, mi in enumerate(args): if not mi.is_commutative: c = args[:i] nc = args[i:] break else: c = args nc = [] if c and split_1 and ( c[0].is_Number and c[0].is_negative and c[0] is not S.NegativeOne): c[:1] = [S.NegativeOne, -c[0]] if cset: clen = len(c) c = set(c) if clen and warn and len(c) != clen: raise ValueError('repeated commutative arguments: %s' % [ci for ci in c if list(self.args).count(ci) > 1]) return [c, nc] def coeff(self, x, n=1, right=False): """ Returns the coefficient from the term(s) containing ``x**n``. If ``n`` is zero then all terms independent of ``x`` will be returned. When ``x`` is noncommutative, the coefficient to the left (default) or right of ``x`` can be returned. The keyword 'right' is ignored when ``x`` is commutative. See Also ======== as_coefficient: separate the expression into a coefficient and factor as_coeff_Add: separate the additive constant from an expression as_coeff_Mul: separate the multiplicative constant from an expression as_independent: separate x-dependent terms/factors from others sympy.polys.polytools.coeff_monomial: efficiently find the single coefficient of a monomial in Poly sympy.polys.polytools.nth: like coeff_monomial but powers of monomial terms are used Examples ======== >>> from sympy import symbols >>> from sympy.abc import x, y, z You can select terms that have an explicit negative in front of them: >>> (-x + 2*y).coeff(-1) x >>> (x - 2*y).coeff(-1) 2*y You can select terms with no Rational coefficient: >>> (x + 2*y).coeff(1) x >>> (3 + 2*x + 4*x**2).coeff(1) 0 You can select terms independent of x by making n=0; in this case expr.as_independent(x)[0] is returned (and 0 will be returned instead of None): >>> (3 + 2*x + 4*x**2).coeff(x, 0) 3 >>> eq = ((x + 1)**3).expand() + 1 >>> eq x**3 + 3*x**2 + 3*x + 2 >>> [eq.coeff(x, i) for i in reversed(range(4))] [1, 3, 3, 2] >>> eq -= 2 >>> [eq.coeff(x, i) for i in reversed(range(4))] [1, 3, 3, 0] You can select terms that have a numerical term in front of them: >>> (-x - 2*y).coeff(2) -y >>> from sympy import sqrt >>> (x + sqrt(2)*x).coeff(sqrt(2)) x The matching is exact: >>> (3 + 2*x + 4*x**2).coeff(x) 2 >>> (3 + 2*x + 4*x**2).coeff(x**2) 4 >>> (3 + 2*x + 4*x**2).coeff(x**3) 0 >>> (z*(x + y)**2).coeff((x + y)**2) z >>> (z*(x + y)**2).coeff(x + y) 0 In addition, no factoring is done, so 1 + z*(1 + y) is not obtained from the following: >>> (x + z*(x + x*y)).coeff(x) 1 If such factoring is desired, factor_terms can be used first: >>> from sympy import factor_terms >>> factor_terms(x + z*(x + x*y)).coeff(x) z*(y + 1) + 1 >>> n, m, o = symbols('n m o', commutative=False) >>> n.coeff(n) 1 >>> (3*n).coeff(n) 3 >>> (n*m + m*n*m).coeff(n) # = (1 + m)*n*m 1 + m >>> (n*m + m*n*m).coeff(n, right=True) # = (1 + m)*n*m m If there is more than one possible coefficient 0 is returned: >>> (n*m + m*n).coeff(n) 0 If there is only one possible coefficient, it is returned: >>> (n*m + x*m*n).coeff(m*n) x >>> (n*m + x*m*n).coeff(m*n, right=1) 1 """ x = sympify(x) if not isinstance(x, Basic): return S.Zero n = as_int(n) if not x: return S.Zero if x == self: if n == 1: return S.One return S.Zero if x is S.One: co = [a for a in Add.make_args(self) if a.as_coeff_Mul()[0] is S.One] if not co: return S.Zero return Add(*co) if n == 0: if x.is_Add and self.is_Add: c = self.coeff(x, right=right) if not c: return S.Zero if not right: return self - Add(*[a*x for a in Add.make_args(c)]) return self - Add(*[x*a for a in Add.make_args(c)]) return self.as_independent(x, as_Add=True)[0] # continue with the full method, looking for this power of x: x = x**n def incommon(l1, l2): if not l1 or not l2: return [] n = min(len(l1), len(l2)) for i in range(n): if l1[i] != l2[i]: return l1[:i] return l1[:] def find(l, sub, first=True): """ Find where list sub appears in list l. When ``first`` is True the first occurrence from the left is returned, else the last occurrence is returned. Return None if sub is not in l. >> l = range(5)*2 >> find(l, [2, 3]) 2 >> find(l, [2, 3], first=0) 7 >> find(l, [2, 4]) None """ if not sub or not l or len(sub) > len(l): return None n = len(sub) if not first: l.reverse() sub.reverse() for i in range(0, len(l) - n + 1): if all(l[i + j] == sub[j] for j in range(n)): break else: i = None if not first: l.reverse() sub.reverse() if i is not None and not first: i = len(l) - (i + n) return i co = [] args = Add.make_args(self) self_c = self.is_commutative x_c = x.is_commutative if self_c and not x_c: return S.Zero if self_c: xargs = x.args_cnc(cset=True, warn=False)[0] for a in args: margs = a.args_cnc(cset=True, warn=False)[0] if len(xargs) > len(margs): continue resid = margs.difference(xargs) if len(resid) + len(xargs) == len(margs): co.append(Mul(*resid)) if co == []: return S.Zero elif co: return Add(*co) elif x_c: xargs = x.args_cnc(cset=True, warn=False)[0] for a in args: margs, nc = a.args_cnc(cset=True) if len(xargs) > len(margs): continue resid = margs.difference(xargs) if len(resid) + len(xargs) == len(margs): co.append(Mul(*(list(resid) + nc))) if co == []: return S.Zero elif co: return Add(*co) else: # both nc xargs, nx = x.args_cnc(cset=True) # find the parts that pass the commutative terms for a in args: margs, nc = a.args_cnc(cset=True) if len(xargs) > len(margs): continue resid = margs.difference(xargs) if len(resid) + len(xargs) == len(margs): co.append((resid, nc)) # now check the non-comm parts if not co: return S.Zero if all(n == co[0][1] for r, n in co): ii = find(co[0][1], nx, right) if ii is not None: if not right: return Mul(Add(*[Mul(*r) for r, c in co]), Mul(*co[0][1][:ii])) else: return Mul(*co[0][1][ii + len(nx):]) beg = reduce(incommon, (n[1] for n in co)) if beg: ii = find(beg, nx, right) if ii is not None: if not right: gcdc = co[0][0] for i in range(1, len(co)): gcdc = gcdc.intersection(co[i][0]) if not gcdc: break return Mul(*(list(gcdc) + beg[:ii])) else: m = ii + len(nx) return Add(*[Mul(*(list(r) + n[m:])) for r, n in co]) end = list(reversed( reduce(incommon, (list(reversed(n[1])) for n in co)))) if end: ii = find(end, nx, right) if ii is not None: if not right: return Add(*[Mul(*(list(r) + n[:-len(end) + ii])) for r, n in co]) else: return Mul(*end[ii + len(nx):]) # look for single match hit = None for i, (r, n) in enumerate(co): ii = find(n, nx, right) if ii is not None: if not hit: hit = ii, r, n else: break else: if hit: ii, r, n = hit if not right: return Mul(*(list(r) + n[:ii])) else: return Mul(*n[ii + len(nx):]) return S.Zero def as_expr(self, *gens): """ Convert a polynomial to a SymPy expression. Examples ======== >>> from sympy import sin >>> from sympy.abc import x, y >>> f = (x**2 + x*y).as_poly(x, y) >>> f.as_expr() x**2 + x*y >>> sin(x).as_expr() sin(x) """ return self def as_coefficient(self, expr): """ Extracts symbolic coefficient at the given expression. In other words, this functions separates 'self' into the product of 'expr' and 'expr'-free coefficient. If such separation is not possible it will return None. Examples ======== >>> from sympy import E, pi, sin, I, Poly >>> from sympy.abc import x >>> E.as_coefficient(E) 1 >>> (2*E).as_coefficient(E) 2 >>> (2*sin(E)*E).as_coefficient(E) Two terms have E in them so a sum is returned. (If one were desiring the coefficient of the term exactly matching E then the constant from the returned expression could be selected. Or, for greater precision, a method of Poly can be used to indicate the desired term from which the coefficient is desired.) >>> (2*E + x*E).as_coefficient(E) x + 2 >>> _.args[0] # just want the exact match 2 >>> p = Poly(2*E + x*E); p Poly(x*E + 2*E, x, E, domain='ZZ') >>> p.coeff_monomial(E) 2 >>> p.nth(0, 1) 2 Since the following cannot be written as a product containing E as a factor, None is returned. (If the coefficient ``2*x`` is desired then the ``coeff`` method should be used.) >>> (2*E*x + x).as_coefficient(E) >>> (2*E*x + x).coeff(E) 2*x >>> (E*(x + 1) + x).as_coefficient(E) >>> (2*pi*I).as_coefficient(pi*I) 2 >>> (2*I).as_coefficient(pi*I) See Also ======== coeff: return sum of terms have a given factor as_coeff_Add: separate the additive constant from an expression as_coeff_Mul: separate the multiplicative constant from an expression as_independent: separate x-dependent terms/factors from others sympy.polys.polytools.coeff_monomial: efficiently find the single coefficient of a monomial in Poly sympy.polys.polytools.nth: like coeff_monomial but powers of monomial terms are used """ r = self.extract_multiplicatively(expr) if r and not r.has(expr): return r def as_independent(self, *deps, **hint): """ A mostly naive separation of a Mul or Add into arguments that are not are dependent on deps. To obtain as complete a separation of variables as possible, use a separation method first, e.g.: * separatevars() to change Mul, Add and Pow (including exp) into Mul * .expand(mul=True) to change Add or Mul into Add * .expand(log=True) to change log expr into an Add The only non-naive thing that is done here is to respect noncommutative ordering of variables and to always return (0, 0) for `self` of zero regardless of hints. For nonzero `self`, the returned tuple (i, d) has the following interpretation: * i will has no variable that appears in deps * d will either have terms that contain variables that are in deps, or be equal to 0 (when self is an Add) or 1 (when self is a Mul) * if self is an Add then self = i + d * if self is a Mul then self = i*d * otherwise (self, S.One) or (S.One, self) is returned. To force the expression to be treated as an Add, use the hint as_Add=True Examples ======== -- self is an Add >>> from sympy import sin, cos, exp >>> from sympy.abc import x, y, z >>> (x + x*y).as_independent(x) (0, x*y + x) >>> (x + x*y).as_independent(y) (x, x*y) >>> (2*x*sin(x) + y + x + z).as_independent(x) (y + z, 2*x*sin(x) + x) >>> (2*x*sin(x) + y + x + z).as_independent(x, y) (z, 2*x*sin(x) + x + y) -- self is a Mul >>> (x*sin(x)*cos(y)).as_independent(x) (cos(y), x*sin(x)) non-commutative terms cannot always be separated out when self is a Mul >>> from sympy import symbols >>> n1, n2, n3 = symbols('n1 n2 n3', commutative=False) >>> (n1 + n1*n2).as_independent(n2) (n1, n1*n2) >>> (n2*n1 + n1*n2).as_independent(n2) (0, n1*n2 + n2*n1) >>> (n1*n2*n3).as_independent(n1) (1, n1*n2*n3) >>> (n1*n2*n3).as_independent(n2) (n1, n2*n3) >>> ((x-n1)*(x-y)).as_independent(x) (1, (x - y)*(x - n1)) -- self is anything else: >>> (sin(x)).as_independent(x) (1, sin(x)) >>> (sin(x)).as_independent(y) (sin(x), 1) >>> exp(x+y).as_independent(x) (1, exp(x + y)) -- force self to be treated as an Add: >>> (3*x).as_independent(x, as_Add=True) (0, 3*x) -- force self to be treated as a Mul: >>> (3+x).as_independent(x, as_Add=False) (1, x + 3) >>> (-3+x).as_independent(x, as_Add=False) (1, x - 3) Note how the below differs from the above in making the constant on the dep term positive. >>> (y*(-3+x)).as_independent(x) (y, x - 3) -- use .as_independent() for true independence testing instead of .has(). The former considers only symbols in the free symbols while the latter considers all symbols >>> from sympy import Integral >>> I = Integral(x, (x, 1, 2)) >>> I.has(x) True >>> x in I.free_symbols False >>> I.as_independent(x) == (I, 1) True >>> (I + x).as_independent(x) == (I, x) True Note: when trying to get independent terms, a separation method might need to be used first. In this case, it is important to keep track of what you send to this routine so you know how to interpret the returned values >>> from sympy import separatevars, log >>> separatevars(exp(x+y)).as_independent(x) (exp(y), exp(x)) >>> (x + x*y).as_independent(y) (x, x*y) >>> separatevars(x + x*y).as_independent(y) (x, y + 1) >>> (x*(1 + y)).as_independent(y) (x, y + 1) >>> (x*(1 + y)).expand(mul=True).as_independent(y) (x, x*y) >>> a, b=symbols('a b', positive=True) >>> (log(a*b).expand(log=True)).as_independent(b) (log(a), log(b)) See Also ======== .separatevars(), .expand(log=True), Add.as_two_terms(), Mul.as_two_terms(), .as_coeff_add(), .as_coeff_mul() """ from .symbol import Symbol from .add import _unevaluated_Add from .mul import _unevaluated_Mul from sympy.utilities.iterables import sift if self.is_zero: return S.Zero, S.Zero func = self.func if hint.get('as_Add', isinstance(self, Add) ): want = Add else: want = Mul # sift out deps into symbolic and other and ignore # all symbols but those that are in the free symbols sym = set() other = [] for d in deps: if isinstance(d, Symbol): # Symbol.is_Symbol is True sym.add(d) else: other.append(d) def has(e): """return the standard has() if there are no literal symbols, else check to see that symbol-deps are in the free symbols.""" has_other = e.has(*other) if not sym: return has_other return has_other or e.has(*(e.free_symbols & sym)) if (want is not func or func is not Add and func is not Mul): if has(self): return (want.identity, self) else: return (self, want.identity) else: if func is Add: args = list(self.args) else: args, nc = self.args_cnc() d = sift(args, lambda x: has(x)) depend = d[True] indep = d[False] if func is Add: # all terms were treated as commutative return (Add(*indep), _unevaluated_Add(*depend)) else: # handle noncommutative by stopping at first dependent term for i, n in enumerate(nc): if has(n): depend.extend(nc[i:]) break indep.append(n) return Mul(*indep), ( Mul(*depend, evaluate=False) if nc else _unevaluated_Mul(*depend)) def as_real_imag(self, deep=True, **hints): """Performs complex expansion on 'self' and returns a tuple containing collected both real and imaginary parts. This method can't be confused with re() and im() functions, which does not perform complex expansion at evaluation. However it is possible to expand both re() and im() functions and get exactly the same results as with a single call to this function. >>> from sympy import symbols, I >>> x, y = symbols('x,y', real=True) >>> (x + y*I).as_real_imag() (x, y) >>> from sympy.abc import z, w >>> (z + w*I).as_real_imag() (re(z) - im(w), re(w) + im(z)) """ from sympy import im, re if hints.get('ignore') == self: return None else: return (re(self), im(self)) def as_powers_dict(self): """Return self as a dictionary of factors with each factor being treated as a power. The keys are the bases of the factors and the values, the corresponding exponents. The resulting dictionary should be used with caution if the expression is a Mul and contains non- commutative factors since the order that they appeared will be lost in the dictionary. See Also ======== as_ordered_factors: An alternative for noncommutative applications, returning an ordered list of factors. args_cnc: Similar to as_ordered_factors, but guarantees separation of commutative and noncommutative factors. """ d = defaultdict(int) d.update(dict([self.as_base_exp()])) return d def as_coefficients_dict(self): """Return a dictionary mapping terms to their Rational coefficient. Since the dictionary is a defaultdict, inquiries about terms which were not present will return a coefficient of 0. If an expression is not an Add it is considered to have a single term. Examples ======== >>> from sympy.abc import a, x >>> (3*x + a*x + 4).as_coefficients_dict() {1: 4, x: 3, a*x: 1} >>> _[a] 0 >>> (3*a*x).as_coefficients_dict() {a*x: 3} """ c, m = self.as_coeff_Mul() if not c.is_Rational: c = S.One m = self d = defaultdict(int) d.update({m: c}) return d def as_base_exp(self): # a -> b ** e return self, S.One def as_coeff_mul(self, *deps, **kwargs): """Return the tuple (c, args) where self is written as a Mul, ``m``. c should be a Rational multiplied by any factors of the Mul that are independent of deps. args should be a tuple of all other factors of m; args is empty if self is a Number or if self is independent of deps (when given). This should be used when you don't know if self is a Mul or not but you want to treat self as a Mul or if you want to process the individual arguments of the tail of self as a Mul. - if you know self is a Mul and want only the head, use self.args[0]; - if you don't want to process the arguments of the tail but need the tail then use self.as_two_terms() which gives the head and tail; - if you want to split self into an independent and dependent parts use ``self.as_independent(*deps)`` >>> from sympy import S >>> from sympy.abc import x, y >>> (S(3)).as_coeff_mul() (3, ()) >>> (3*x*y).as_coeff_mul() (3, (x, y)) >>> (3*x*y).as_coeff_mul(x) (3*y, (x,)) >>> (3*y).as_coeff_mul(x) (3*y, ()) """ if deps: if not self.has(*deps): return self, tuple() return S.One, (self,) def as_coeff_add(self, *deps): """Return the tuple (c, args) where self is written as an Add, ``a``. c should be a Rational added to any terms of the Add that are independent of deps. args should be a tuple of all other terms of ``a``; args is empty if self is a Number or if self is independent of deps (when given). This should be used when you don't know if self is an Add or not but you want to treat self as an Add or if you want to process the individual arguments of the tail of self as an Add. - if you know self is an Add and want only the head, use self.args[0]; - if you don't want to process the arguments of the tail but need the tail then use self.as_two_terms() which gives the head and tail. - if you want to split self into an independent and dependent parts use ``self.as_independent(*deps)`` >>> from sympy import S >>> from sympy.abc import x, y >>> (S(3)).as_coeff_add() (3, ()) >>> (3 + x).as_coeff_add() (3, (x,)) >>> (3 + x + y).as_coeff_add(x) (y + 3, (x,)) >>> (3 + y).as_coeff_add(x) (y + 3, ()) """ if deps: if not self.has(*deps): return self, tuple() return S.Zero, (self,) def primitive(self): """Return the positive Rational that can be extracted non-recursively from every term of self (i.e., self is treated like an Add). This is like the as_coeff_Mul() method but primitive always extracts a positive Rational (never a negative or a Float). Examples ======== >>> from sympy.abc import x >>> (3*(x + 1)**2).primitive() (3, (x + 1)**2) >>> a = (6*x + 2); a.primitive() (2, 3*x + 1) >>> b = (x/2 + 3); b.primitive() (1/2, x + 6) >>> (a*b).primitive() == (1, a*b) True """ if not self: return S.One, S.Zero c, r = self.as_coeff_Mul(rational=True) if c.is_negative: c, r = -c, -r return c, r def as_content_primitive(self, radical=False, clear=True): """This method should recursively remove a Rational from all arguments and return that (content) and the new self (primitive). The content should always be positive and ``Mul(*foo.as_content_primitive()) == foo``. The primitive need not be in canonical form and should try to preserve the underlying structure if possible (i.e. expand_mul should not be applied to self). Examples ======== >>> from sympy import sqrt >>> from sympy.abc import x, y, z >>> eq = 2 + 2*x + 2*y*(3 + 3*y) The as_content_primitive function is recursive and retains structure: >>> eq.as_content_primitive() (2, x + 3*y*(y + 1) + 1) Integer powers will have Rationals extracted from the base: >>> ((2 + 6*x)**2).as_content_primitive() (4, (3*x + 1)**2) >>> ((2 + 6*x)**(2*y)).as_content_primitive() (1, (2*(3*x + 1))**(2*y)) Terms may end up joining once their as_content_primitives are added: >>> ((5*(x*(1 + y)) + 2*x*(3 + 3*y))).as_content_primitive() (11, x*(y + 1)) >>> ((3*(x*(1 + y)) + 2*x*(3 + 3*y))).as_content_primitive() (9, x*(y + 1)) >>> ((3*(z*(1 + y)) + 2.0*x*(3 + 3*y))).as_content_primitive() (1, 6.0*x*(y + 1) + 3*z*(y + 1)) >>> ((5*(x*(1 + y)) + 2*x*(3 + 3*y))**2).as_content_primitive() (121, x**2*(y + 1)**2) >>> ((5*(x*(1 + y)) + 2.0*x*(3 + 3*y))**2).as_content_primitive() (1, 121.0*x**2*(y + 1)**2) Radical content can also be factored out of the primitive: >>> (2*sqrt(2) + 4*sqrt(10)).as_content_primitive(radical=True) (2, sqrt(2)*(1 + 2*sqrt(5))) If clear=False (default is True) then content will not be removed from an Add if it can be distributed to leave one or more terms with integer coefficients. >>> (x/2 + y).as_content_primitive() (1/2, x + 2*y) >>> (x/2 + y).as_content_primitive(clear=False) (1, x/2 + y) """ return S.One, self def as_numer_denom(self): """ expression -> a/b -> a, b This is just a stub that should be defined by an object's class methods to get anything else. See Also ======== normal: return a/b instead of a, b """ return self, S.One def normal(self): from .mul import _unevaluated_Mul n, d = self.as_numer_denom() if d is S.One: return n if d.is_Number: return _unevaluated_Mul(n, 1/d) else: return n/d def extract_multiplicatively(self, c): """Return None if it's not possible to make self in the form c * something in a nice way, i.e. preserving the properties of arguments of self. Examples ======== >>> from sympy import symbols, Rational >>> x, y = symbols('x,y', real=True) >>> ((x*y)**3).extract_multiplicatively(x**2 * y) x*y**2 >>> ((x*y)**3).extract_multiplicatively(x**4 * y) >>> (2*x).extract_multiplicatively(2) x >>> (2*x).extract_multiplicatively(3) >>> (Rational(1, 2)*x).extract_multiplicatively(3) x/6 """ c = sympify(c) if self is S.NaN: return None if c is S.One: return self elif c == self: return S.One if c.is_Add: cc, pc = c.primitive() if cc is not S.One: c = Mul(cc, pc, evaluate=False) if c.is_Mul: a, b = c.as_two_terms() x = self.extract_multiplicatively(a) if x is not None: return x.extract_multiplicatively(b) quotient = self / c if self.is_Number: if self is S.Infinity: if c.is_positive: return S.Infinity elif self is S.NegativeInfinity: if c.is_negative: return S.Infinity elif c.is_positive: return S.NegativeInfinity elif self is S.ComplexInfinity: if not c.is_zero: return S.ComplexInfinity elif self.is_Integer: if not quotient.is_Integer: return None elif self.is_positive and quotient.is_negative: return None else: return quotient elif self.is_Rational: if not quotient.is_Rational: return None elif self.is_positive and quotient.is_negative: return None else: return quotient elif self.is_Float: if not quotient.is_Float: return None elif self.is_positive and quotient.is_negative: return None else: return quotient elif self.is_NumberSymbol or self.is_Symbol or self is S.ImaginaryUnit: if quotient.is_Mul and len(quotient.args) == 2: if quotient.args[0].is_Integer and quotient.args[0].is_positive and quotient.args[1] == self: return quotient elif quotient.is_Integer and c.is_Number: return quotient elif self.is_Add: cs, ps = self.primitive() # assert cs >= 1 if c.is_Number and c is not S.NegativeOne: # assert c != 1 (handled at top) if cs is not S.One: if c.is_negative: xc = -(cs.extract_multiplicatively(-c)) else: xc = cs.extract_multiplicatively(c) if xc is not None: return xc*ps # rely on 2-arg Mul to restore Add return # |c| != 1 can only be extracted from cs if c == ps: return cs # check args of ps newargs = [] for arg in ps.args: newarg = arg.extract_multiplicatively(c) if newarg is None: return # all or nothing newargs.append(newarg) # args should be in same order so use unevaluated return if cs is not S.One: return Add._from_args([cs*t for t in newargs]) else: return Add._from_args(newargs) elif self.is_Mul: args = list(self.args) for i, arg in enumerate(args): newarg = arg.extract_multiplicatively(c) if newarg is not None: args[i] = newarg return Mul(*args) elif self.is_Pow: if c.is_Pow and c.base == self.base: new_exp = self.exp.extract_additively(c.exp) if new_exp is not None: return self.base ** (new_exp) elif c == self.base: new_exp = self.exp.extract_additively(1) if new_exp is not None: return self.base ** (new_exp) def extract_additively(self, c): """Return self - c if it's possible to subtract c from self and make all matching coefficients move towards zero, else return None. Examples ======== >>> from sympy.abc import x, y >>> e = 2*x + 3 >>> e.extract_additively(x + 1) x + 2 >>> e.extract_additively(3*x) >>> e.extract_additively(4) >>> (y*(x + 1)).extract_additively(x + 1) >>> ((x + 1)*(x + 2*y + 1) + 3).extract_additively(x + 1) (x + 1)*(x + 2*y) + 3 Sometimes auto-expansion will return a less simplified result than desired; gcd_terms might be used in such cases: >>> from sympy import gcd_terms >>> (4*x*(y + 1) + y).extract_additively(x) 4*x*(y + 1) + x*(4*y + 3) - x*(4*y + 4) + y >>> gcd_terms(_) x*(4*y + 3) + y See Also ======== extract_multiplicatively coeff as_coefficient """ c = sympify(c) if self is S.NaN: return None if c is S.Zero: return self elif c == self: return S.Zero elif self is S.Zero: return None if self.is_Number: if not c.is_Number: return None co = self diff = co - c # XXX should we match types? i.e should 3 - .1 succeed? if (co > 0 and diff > 0 and diff < co or co < 0 and diff < 0 and diff > co): return diff return None if c.is_Number: co, t = self.as_coeff_Add() xa = co.extract_additively(c) if xa is None: return None return xa + t # handle the args[0].is_Number case separately # since we will have trouble looking for the coeff of # a number. if c.is_Add and c.args[0].is_Number: # whole term as a term factor co = self.coeff(c) xa0 = (co.extract_additively(1) or 0)*c if xa0: diff = self - co*c return (xa0 + (diff.extract_additively(c) or diff)) or None # term-wise h, t = c.as_coeff_Add() sh, st = self.as_coeff_Add() xa = sh.extract_additively(h) if xa is None: return None xa2 = st.extract_additively(t) if xa2 is None: return None return xa + xa2 # whole term as a term factor co = self.coeff(c) xa0 = (co.extract_additively(1) or 0)*c if xa0: diff = self - co*c return (xa0 + (diff.extract_additively(c) or diff)) or None # term-wise coeffs = [] for a in Add.make_args(c): ac, at = a.as_coeff_Mul() co = self.coeff(at) if not co: return None coc, cot = co.as_coeff_Add() xa = coc.extract_additively(ac) if xa is None: return None self -= co*at coeffs.append((cot + xa)*at) coeffs.append(self) return Add(*coeffs) @property def expr_free_symbols(self): """ Like ``free_symbols``, but returns the free symbols only if they are contained in an expression node. Examples ======== >>> from sympy.abc import x, y >>> (x + y).expr_free_symbols {x, y} If the expression is contained in a non-expression object, don't return the free symbols. Compare: >>> from sympy import Tuple >>> t = Tuple(x + y) >>> t.expr_free_symbols set() >>> t.free_symbols {x, y} """ return {j for i in self.args for j in i.expr_free_symbols} def could_extract_minus_sign(self): """Return True if self is not in a canonical form with respect to its sign. For most expressions, e, there will be a difference in e and -e. When there is, True will be returned for one and False for the other; False will be returned if there is no difference. Examples ======== >>> from sympy.abc import x, y >>> e = x - y >>> {i.could_extract_minus_sign() for i in (e, -e)} {False, True} """ negative_self = -self if self == negative_self: return False # e.g. zoo*x == -zoo*x self_has_minus = (self.extract_multiplicatively(-1) is not None) negative_self_has_minus = ( (negative_self).extract_multiplicatively(-1) is not None) if self_has_minus != negative_self_has_minus: return self_has_minus else: if self.is_Add: # We choose the one with less arguments with minus signs all_args = len(self.args) negative_args = len([False for arg in self.args if arg.could_extract_minus_sign()]) positive_args = all_args - negative_args if positive_args > negative_args: return False elif positive_args < negative_args: return True elif self.is_Mul: # We choose the one with an odd number of minus signs num, den = self.as_numer_denom() args = Mul.make_args(num) + Mul.make_args(den) arg_signs = [arg.could_extract_minus_sign() for arg in args] negative_args = list(filter(None, arg_signs)) return len(negative_args) % 2 == 1 # As a last resort, we choose the one with greater value of .sort_key() return bool(self.sort_key() < negative_self.sort_key()) def extract_branch_factor(self, allow_half=False): """ Try to write self as ``exp_polar(2*pi*I*n)*z`` in a nice way. Return (z, n). >>> from sympy import exp_polar, I, pi >>> from sympy.abc import x, y >>> exp_polar(I*pi).extract_branch_factor() (exp_polar(I*pi), 0) >>> exp_polar(2*I*pi).extract_branch_factor() (1, 1) >>> exp_polar(-pi*I).extract_branch_factor() (exp_polar(I*pi), -1) >>> exp_polar(3*pi*I + x).extract_branch_factor() (exp_polar(x + I*pi), 1) >>> (y*exp_polar(-5*pi*I)*exp_polar(3*pi*I + 2*pi*x)).extract_branch_factor() (y*exp_polar(2*pi*x), -1) >>> exp_polar(-I*pi/2).extract_branch_factor() (exp_polar(-I*pi/2), 0) If allow_half is True, also extract exp_polar(I*pi): >>> exp_polar(I*pi).extract_branch_factor(allow_half=True) (1, 1/2) >>> exp_polar(2*I*pi).extract_branch_factor(allow_half=True) (1, 1) >>> exp_polar(3*I*pi).extract_branch_factor(allow_half=True) (1, 3/2) >>> exp_polar(-I*pi).extract_branch_factor(allow_half=True) (1, -1/2) """ from sympy import exp_polar, pi, I, ceiling, Add n = S(0) res = S(1) args = Mul.make_args(self) exps = [] for arg in args: if isinstance(arg, exp_polar): exps += [arg.exp] else: res *= arg piimult = S(0) extras = [] while exps: exp = exps.pop() if exp.is_Add: exps += exp.args continue if exp.is_Mul: coeff = exp.as_coefficient(pi*I) if coeff is not None: piimult += coeff continue extras += [exp] if piimult.is_number: coeff = piimult tail = () else: coeff, tail = piimult.as_coeff_add(*piimult.free_symbols) # round down to nearest multiple of 2 branchfact = ceiling(coeff/2 - S(1)/2)*2 n += branchfact/2 c = coeff - branchfact if allow_half: nc = c.extract_additively(1) if nc is not None: n += S(1)/2 c = nc newexp = pi*I*Add(*((c, ) + tail)) + Add(*extras) if newexp != 0: res *= exp_polar(newexp) return res, n def _eval_is_polynomial(self, syms): if self.free_symbols.intersection(syms) == set([]): return True return False def is_polynomial(self, *syms): r""" Return True if self is a polynomial in syms and False otherwise. This checks if self is an exact polynomial in syms. This function returns False for expressions that are "polynomials" with symbolic exponents. Thus, you should be able to apply polynomial algorithms to expressions for which this returns True, and Poly(expr, \*syms) should work if and only if expr.is_polynomial(\*syms) returns True. The polynomial does not have to be in expanded form. If no symbols are given, all free symbols in the expression will be used. This is not part of the assumptions system. You cannot do Symbol('z', polynomial=True). Examples ======== >>> from sympy import Symbol >>> x = Symbol('x') >>> ((x**2 + 1)**4).is_polynomial(x) True >>> ((x**2 + 1)**4).is_polynomial() True >>> (2**x + 1).is_polynomial(x) False >>> n = Symbol('n', nonnegative=True, integer=True) >>> (x**n + 1).is_polynomial(x) False This function does not attempt any nontrivial simplifications that may result in an expression that does not appear to be a polynomial to become one. >>> from sympy import sqrt, factor, cancel >>> y = Symbol('y', positive=True) >>> a = sqrt(y**2 + 2*y + 1) >>> a.is_polynomial(y) False >>> factor(a) y + 1 >>> factor(a).is_polynomial(y) True >>> b = (y**2 + 2*y + 1)/(y + 1) >>> b.is_polynomial(y) False >>> cancel(b) y + 1 >>> cancel(b).is_polynomial(y) True See also .is_rational_function() """ if syms: syms = set(map(sympify, syms)) else: syms = self.free_symbols if syms.intersection(self.free_symbols) == set([]): # constant polynomial return True else: return self._eval_is_polynomial(syms) def _eval_is_rational_function(self, syms): if self.free_symbols.intersection(syms) == set([]): return True return False def is_rational_function(self, *syms): """ Test whether function is a ratio of two polynomials in the given symbols, syms. When syms is not given, all free symbols will be used. The rational function does not have to be in expanded or in any kind of canonical form. This function returns False for expressions that are "rational functions" with symbolic exponents. Thus, you should be able to call .as_numer_denom() and apply polynomial algorithms to the result for expressions for which this returns True. This is not part of the assumptions system. You cannot do Symbol('z', rational_function=True). Examples ======== >>> from sympy import Symbol, sin >>> from sympy.abc import x, y >>> (x/y).is_rational_function() True >>> (x**2).is_rational_function() True >>> (x/sin(y)).is_rational_function(y) False >>> n = Symbol('n', integer=True) >>> (x**n + 1).is_rational_function(x) False This function does not attempt any nontrivial simplifications that may result in an expression that does not appear to be a rational function to become one. >>> from sympy import sqrt, factor >>> y = Symbol('y', positive=True) >>> a = sqrt(y**2 + 2*y + 1)/y >>> a.is_rational_function(y) False >>> factor(a) (y + 1)/y >>> factor(a).is_rational_function(y) True See also is_algebraic_expr(). """ if self in [S.NaN, S.Infinity, -S.Infinity, S.ComplexInfinity]: return False if syms: syms = set(map(sympify, syms)) else: syms = self.free_symbols if syms.intersection(self.free_symbols) == set([]): # constant rational function return True else: return self._eval_is_rational_function(syms) def _eval_is_algebraic_expr(self, syms): if self.free_symbols.intersection(syms) == set([]): return True return False def is_algebraic_expr(self, *syms): """ This tests whether a given expression is algebraic or not, in the given symbols, syms. When syms is not given, all free symbols will be used. The rational function does not have to be in expanded or in any kind of canonical form. This function returns False for expressions that are "algebraic expressions" with symbolic exponents. This is a simple extension to the is_rational_function, including rational exponentiation. Examples ======== >>> from sympy import Symbol, sqrt >>> x = Symbol('x', real=True) >>> sqrt(1 + x).is_rational_function() False >>> sqrt(1 + x).is_algebraic_expr() True This function does not attempt any nontrivial simplifications that may result in an expression that does not appear to be an algebraic expression to become one. >>> from sympy import exp, factor >>> a = sqrt(exp(x)**2 + 2*exp(x) + 1)/(exp(x) + 1) >>> a.is_algebraic_expr(x) False >>> factor(a).is_algebraic_expr() True See Also ======== is_rational_function() References ========== - https://en.wikipedia.org/wiki/Algebraic_expression """ if syms: syms = set(map(sympify, syms)) else: syms = self.free_symbols if syms.intersection(self.free_symbols) == set([]): # constant algebraic expression return True else: return self._eval_is_algebraic_expr(syms) ################################################################################### ##################### SERIES, LEADING TERM, LIMIT, ORDER METHODS ################## ################################################################################### def series(self, x=None, x0=0, n=6, dir="+", logx=None): """ Series expansion of "self" around ``x = x0`` yielding either terms of the series one by one (the lazy series given when n=None), else all the terms at once when n != None. Returns the series expansion of "self" around the point ``x = x0`` with respect to ``x`` up to ``O((x - x0)**n, x, x0)`` (default n is 6). If ``x=None`` and ``self`` is univariate, the univariate symbol will be supplied, otherwise an error will be raised. >>> from sympy import cos, exp >>> from sympy.abc import x, y >>> cos(x).series() 1 - x**2/2 + x**4/24 + O(x**6) >>> cos(x).series(n=4) 1 - x**2/2 + O(x**4) >>> cos(x).series(x, x0=1, n=2) cos(1) - (x - 1)*sin(1) + O((x - 1)**2, (x, 1)) >>> e = cos(x + exp(y)) >>> e.series(y, n=2) cos(x + 1) - y*sin(x + 1) + O(y**2) >>> e.series(x, n=2) cos(exp(y)) - x*sin(exp(y)) + O(x**2) If ``n=None`` then a generator of the series terms will be returned. >>> term=cos(x).series(n=None) >>> [next(term) for i in range(2)] [1, -x**2/2] For ``dir=+`` (default) the series is calculated from the right and for ``dir=-`` the series from the left. For smooth functions this flag will not alter the results. >>> abs(x).series(dir="+") x >>> abs(x).series(dir="-") -x """ from sympy import collect, Dummy, Order, Rational, Symbol, ceiling if x is None: syms = self.free_symbols if not syms: return self elif len(syms) > 1: raise ValueError('x must be given for multivariate functions.') x = syms.pop() if isinstance(x, Symbol): dep = x in self.free_symbols else: d = Dummy() dep = d in self.xreplace({x: d}).free_symbols if not dep: if n is None: return (s for s in [self]) else: return self if len(dir) != 1 or dir not in '+-': raise ValueError("Dir must be '+' or '-'") if x0 in [S.Infinity, S.NegativeInfinity]: sgn = 1 if x0 is S.Infinity else -1 s = self.subs(x, sgn/x).series(x, n=n, dir='+') if n is None: return (si.subs(x, sgn/x) for si in s) return s.subs(x, sgn/x) # use rep to shift origin to x0 and change sign (if dir is negative) # and undo the process with rep2 if x0 or dir == '-': if dir == '-': rep = -x + x0 rep2 = -x rep2b = x0 else: rep = x + x0 rep2 = x rep2b = -x0 s = self.subs(x, rep).series(x, x0=0, n=n, dir='+', logx=logx) if n is None: # lseries... return (si.subs(x, rep2 + rep2b) for si in s) return s.subs(x, rep2 + rep2b) # from here on it's x0=0 and dir='+' handling if x.is_positive is x.is_negative is None or x.is_Symbol is not True: # replace x with an x that has a positive assumption xpos = Dummy('x', positive=True, finite=True) rv = self.subs(x, xpos).series(xpos, x0, n, dir, logx=logx) if n is None: return (s.subs(xpos, x) for s in rv) else: return rv.subs(xpos, x) if n is not None: # nseries handling s1 = self._eval_nseries(x, n=n, logx=logx) o = s1.getO() or S.Zero if o: # make sure the requested order is returned ngot = o.getn() if ngot > n: # leave o in its current form (e.g. with x*log(x)) so # it eats terms properly, then replace it below if n != 0: s1 += o.subs(x, x**Rational(n, ngot)) else: s1 += Order(1, x) elif ngot < n: # increase the requested number of terms to get the desired # number keep increasing (up to 9) until the received order # is different than the original order and then predict how # many additional terms are needed for more in range(1, 9): s1 = self._eval_nseries(x, n=n + more, logx=logx) newn = s1.getn() if newn != ngot: ndo = n + ceiling((n - ngot)*more/(newn - ngot)) s1 = self._eval_nseries(x, n=ndo, logx=logx) while s1.getn() < n: s1 = self._eval_nseries(x, n=ndo, logx=logx) ndo += 1 break else: raise ValueError('Could not calculate %s terms for %s' % (str(n), self)) s1 += Order(x**n, x) o = s1.getO() s1 = s1.removeO() else: o = Order(x**n, x) s1done = s1.doit() if (s1done + o).removeO() == s1done: o = S.Zero try: return collect(s1, x) + o except NotImplementedError: return s1 + o else: # lseries handling def yield_lseries(s): """Return terms of lseries one at a time.""" for si in s: if not si.is_Add: yield si continue # yield terms 1 at a time if possible # by increasing order until all the # terms have been returned yielded = 0 o = Order(si, x)*x ndid = 0 ndo = len(si.args) while 1: do = (si - yielded + o).removeO() o *= x if not do or do.is_Order: continue if do.is_Add: ndid += len(do.args) else: ndid += 1 yield do if ndid == ndo: break yielded += do return yield_lseries(self.removeO()._eval_lseries(x, logx=logx)) def taylor_term(self, n, x, *previous_terms): """General method for the taylor term. This method is slow, because it differentiates n-times. Subclasses can redefine it to make it faster by using the "previous_terms". """ from sympy import Dummy, factorial x = sympify(x) _x = Dummy('x') return self.subs(x, _x).diff(_x, n).subs(_x, x).subs(x, 0) * x**n / factorial(n) def lseries(self, x=None, x0=0, dir='+', logx=None): """ Wrapper for series yielding an iterator of the terms of the series. Note: an infinite series will yield an infinite iterator. The following, for exaxmple, will never terminate. It will just keep printing terms of the sin(x) series:: for term in sin(x).lseries(x): print term The advantage of lseries() over nseries() is that many times you are just interested in the next term in the series (i.e. the first term for example), but you don't know how many you should ask for in nseries() using the "n" parameter. See also nseries(). """ return self.series(x, x0, n=None, dir=dir, logx=logx) def _eval_lseries(self, x, logx=None): # default implementation of lseries is using nseries(), and adaptively # increasing the "n". As you can see, it is not very efficient, because # we are calculating the series over and over again. Subclasses should # override this method and implement much more efficient yielding of # terms. n = 0 series = self._eval_nseries(x, n=n, logx=logx) if not series.is_Order: if series.is_Add: yield series.removeO() else: yield series return while series.is_Order: n += 1 series = self._eval_nseries(x, n=n, logx=logx) e = series.removeO() yield e while 1: while 1: n += 1 series = self._eval_nseries(x, n=n, logx=logx).removeO() if e != series: break yield series - e e = series def nseries(self, x=None, x0=0, n=6, dir='+', logx=None): """ Wrapper to _eval_nseries if assumptions allow, else to series. If x is given, x0 is 0, dir='+', and self has x, then _eval_nseries is called. This calculates "n" terms in the innermost expressions and then builds up the final series just by "cross-multiplying" everything out. The optional ``logx`` parameter can be used to replace any log(x) in the returned series with a symbolic value to avoid evaluating log(x) at 0. A symbol to use in place of log(x) should be provided. Advantage -- it's fast, because we don't have to determine how many terms we need to calculate in advance. Disadvantage -- you may end up with less terms than you may have expected, but the O(x**n) term appended will always be correct and so the result, though perhaps shorter, will also be correct. If any of those assumptions is not met, this is treated like a wrapper to series which will try harder to return the correct number of terms. See also lseries(). Examples ======== >>> from sympy import sin, log, Symbol >>> from sympy.abc import x, y >>> sin(x).nseries(x, 0, 6) x - x**3/6 + x**5/120 + O(x**6) >>> log(x+1).nseries(x, 0, 5) x - x**2/2 + x**3/3 - x**4/4 + O(x**5) Handling of the ``logx`` parameter --- in the following example the expansion fails since ``sin`` does not have an asymptotic expansion at -oo (the limit of log(x) as x approaches 0): >>> e = sin(log(x)) >>> e.nseries(x, 0, 6) Traceback (most recent call last): ... PoleError: ... ... >>> logx = Symbol('logx') >>> e.nseries(x, 0, 6, logx=logx) sin(logx) In the following example, the expansion works but gives only an Order term unless the ``logx`` parameter is used: >>> e = x**y >>> e.nseries(x, 0, 2) O(log(x)**2) >>> e.nseries(x, 0, 2, logx=logx) exp(logx*y) """ if x and not x in self.free_symbols: return self if x is None or x0 or dir != '+': # {see XPOS above} or (x.is_positive == x.is_negative == None): return self.series(x, x0, n, dir) else: return self._eval_nseries(x, n=n, logx=logx) def _eval_nseries(self, x, n, logx): """ Return terms of series for self up to O(x**n) at x=0 from the positive direction. This is a method that should be overridden in subclasses. Users should never call this method directly (use .nseries() instead), so you don't have to write docstrings for _eval_nseries(). """ from sympy.utilities.misc import filldedent raise NotImplementedError(filldedent(""" The _eval_nseries method should be added to %s to give terms up to O(x**n) at x=0 from the positive direction so it is available when nseries calls it.""" % self.func) ) def limit(self, x, xlim, dir='+'): """ Compute limit x->xlim. """ from sympy.series.limits import limit return limit(self, x, xlim, dir) def compute_leading_term(self, x, logx=None): """ as_leading_term is only allowed for results of .series() This is a wrapper to compute a series first. """ from sympy import Dummy, log from sympy.series.gruntz import calculate_series if self.removeO() == 0: return self if logx is None: d = Dummy('logx') s = calculate_series(self, x, d).subs(d, log(x)) else: s = calculate_series(self, x, logx) return s.as_leading_term(x) @cacheit def as_leading_term(self, *symbols): """ Returns the leading (nonzero) term of the series expansion of self. The _eval_as_leading_term routines are used to do this, and they must always return a non-zero value. Examples ======== >>> from sympy.abc import x >>> (1 + x + x**2).as_leading_term(x) 1 >>> (1/x**2 + x + x**2).as_leading_term(x) x**(-2) """ from sympy import powsimp if len(symbols) > 1: c = self for x in symbols: c = c.as_leading_term(x) return c elif not symbols: return self x = sympify(symbols[0]) if not x.is_symbol: raise ValueError('expecting a Symbol but got %s' % x) if x not in self.free_symbols: return self obj = self._eval_as_leading_term(x) if obj is not None: return powsimp(obj, deep=True, combine='exp') raise NotImplementedError('as_leading_term(%s, %s)' % (self, x)) def _eval_as_leading_term(self, x): return self def as_coeff_exponent(self, x): """ ``c*x**e -> c,e`` where x can be any symbolic expression. """ from sympy import collect s = collect(self, x) c, p = s.as_coeff_mul(x) if len(p) == 1: b, e = p[0].as_base_exp() if b == x: return c, e return s, S.Zero def leadterm(self, x): """ Returns the leading term a*x**b as a tuple (a, b). Examples ======== >>> from sympy.abc import x >>> (1+x+x**2).leadterm(x) (1, 0) >>> (1/x**2+x+x**2).leadterm(x) (1, -2) """ from sympy import Dummy, log l = self.as_leading_term(x) d = Dummy('logx') if l.has(log(x)): l = l.subs(log(x), d) c, e = l.as_coeff_exponent(x) if x in c.free_symbols: from sympy.utilities.misc import filldedent raise ValueError(filldedent(""" cannot compute leadterm(%s, %s). The coefficient should have been free of x but got %s""" % (self, x, c))) c = c.subs(d, log(x)) return c, e def as_coeff_Mul(self, rational=False): """Efficiently extract the coefficient of a product. """ return S.One, self def as_coeff_Add(self, rational=False): """Efficiently extract the coefficient of a summation. """ return S.Zero, self def fps(self, x=None, x0=0, dir=1, hyper=True, order=4, rational=True, full=False): """ Compute formal power power series of self. See the docstring of the :func:`fps` function in sympy.series.formal for more information. """ from sympy.series.formal import fps return fps(self, x, x0, dir, hyper, order, rational, full) def fourier_series(self, limits=None): """Compute fourier sine/cosine series of self. See the docstring of the :func:`fourier_series` in sympy.series.fourier for more information. """ from sympy.series.fourier import fourier_series return fourier_series(self, limits) ################################################################################### ##################### DERIVATIVE, INTEGRAL, FUNCTIONAL METHODS #################### ################################################################################### def diff(self, *symbols, **assumptions): assumptions.setdefault("evaluate", True) return Derivative(self, *symbols, **assumptions) ########################################################################### ###################### EXPRESSION EXPANSION METHODS ####################### ########################################################################### # Relevant subclasses should override _eval_expand_hint() methods. See # the docstring of expand() for more info. def _eval_expand_complex(self, **hints): real, imag = self.as_real_imag(**hints) return real + S.ImaginaryUnit*imag @staticmethod def _expand_hint(expr, hint, deep=True, **hints): """ Helper for ``expand()``. Recursively calls ``expr._eval_expand_hint()``. Returns ``(expr, hit)``, where expr is the (possibly) expanded ``expr`` and ``hit`` is ``True`` if ``expr`` was truly expanded and ``False`` otherwise. """ hit = False # XXX: Hack to support non-Basic args # | # V if deep and getattr(expr, 'args', ()) and not expr.is_Atom: sargs = [] for arg in expr.args: arg, arghit = Expr._expand_hint(arg, hint, **hints) hit |= arghit sargs.append(arg) if hit: expr = expr.func(*sargs) if hasattr(expr, hint): newexpr = getattr(expr, hint)(**hints) if newexpr != expr: return (newexpr, True) return (expr, hit) @cacheit def expand(self, deep=True, modulus=None, power_base=True, power_exp=True, mul=True, log=True, multinomial=True, basic=True, **hints): """ Expand an expression using hints. See the docstring of the expand() function in sympy.core.function for more information. """ from sympy.simplify.radsimp import fraction hints.update(power_base=power_base, power_exp=power_exp, mul=mul, log=log, multinomial=multinomial, basic=basic) expr = self if hints.pop('frac', False): n, d = [a.expand(deep=deep, modulus=modulus, **hints) for a in fraction(self)] return n/d elif hints.pop('denom', False): n, d = fraction(self) return n/d.expand(deep=deep, modulus=modulus, **hints) elif hints.pop('numer', False): n, d = fraction(self) return n.expand(deep=deep, modulus=modulus, **hints)/d # Although the hints are sorted here, an earlier hint may get applied # at a given node in the expression tree before another because of how # the hints are applied. e.g. expand(log(x*(y + z))) -> log(x*y + # x*z) because while applying log at the top level, log and mul are # applied at the deeper level in the tree so that when the log at the # upper level gets applied, the mul has already been applied at the # lower level. # Additionally, because hints are only applied once, the expression # may not be expanded all the way. For example, if mul is applied # before multinomial, x*(x + 1)**2 won't be expanded all the way. For # now, we just use a special case to make multinomial run before mul, # so that at least polynomials will be expanded all the way. In the # future, smarter heuristics should be applied. # TODO: Smarter heuristics def _expand_hint_key(hint): """Make multinomial come before mul""" if hint == 'mul': return 'mulz' return hint for hint in sorted(hints.keys(), key=_expand_hint_key): use_hint = hints[hint] if use_hint: hint = '_eval_expand_' + hint expr, hit = Expr._expand_hint(expr, hint, deep=deep, **hints) while True: was = expr if hints.get('multinomial', False): expr, _ = Expr._expand_hint( expr, '_eval_expand_multinomial', deep=deep, **hints) if hints.get('mul', False): expr, _ = Expr._expand_hint( expr, '_eval_expand_mul', deep=deep, **hints) if hints.get('log', False): expr, _ = Expr._expand_hint( expr, '_eval_expand_log', deep=deep, **hints) if expr == was: break if modulus is not None: modulus = sympify(modulus) if not modulus.is_Integer or modulus <= 0: raise ValueError( "modulus must be a positive integer, got %s" % modulus) terms = [] for term in Add.make_args(expr): coeff, tail = term.as_coeff_Mul(rational=True) coeff %= modulus if coeff: terms.append(coeff*tail) expr = Add(*terms) return expr ########################################################################### ################### GLOBAL ACTION VERB WRAPPER METHODS #################### ########################################################################### def integrate(self, *args, **kwargs): """See the integrate function in sympy.integrals""" from sympy.integrals import integrate return integrate(self, *args, **kwargs) def simplify(self, ratio=1.7, measure=None, rational=False, inverse=False): """See the simplify function in sympy.simplify""" from sympy.simplify import simplify from sympy.core.function import count_ops measure = measure or count_ops return simplify(self, ratio, measure) def nsimplify(self, constants=[], tolerance=None, full=False): """See the nsimplify function in sympy.simplify""" from sympy.simplify import nsimplify return nsimplify(self, constants, tolerance, full) def separate(self, deep=False, force=False): """See the separate function in sympy.simplify""" from sympy.core.function import expand_power_base return expand_power_base(self, deep=deep, force=force) def collect(self, syms, func=None, evaluate=True, exact=False, distribute_order_term=True): """See the collect function in sympy.simplify""" from sympy.simplify import collect return collect(self, syms, func, evaluate, exact, distribute_order_term) def together(self, *args, **kwargs): """See the together function in sympy.polys""" from sympy.polys import together return together(self, *args, **kwargs) def apart(self, x=None, **args): """See the apart function in sympy.polys""" from sympy.polys import apart return apart(self, x, **args) def ratsimp(self): """See the ratsimp function in sympy.simplify""" from sympy.simplify import ratsimp return ratsimp(self) def trigsimp(self, **args): """See the trigsimp function in sympy.simplify""" from sympy.simplify import trigsimp return trigsimp(self, **args) def radsimp(self, **kwargs): """See the radsimp function in sympy.simplify""" from sympy.simplify import radsimp return radsimp(self, **kwargs) def powsimp(self, *args, **kwargs): """See the powsimp function in sympy.simplify""" from sympy.simplify import powsimp return powsimp(self, *args, **kwargs) def combsimp(self): """See the combsimp function in sympy.simplify""" from sympy.simplify import combsimp return combsimp(self) def gammasimp(self): """See the gammasimp function in sympy.simplify""" from sympy.simplify import gammasimp return gammasimp(self) def factor(self, *gens, **args): """See the factor() function in sympy.polys.polytools""" from sympy.polys import factor return factor(self, *gens, **args) def refine(self, assumption=True): """See the refine function in sympy.assumptions""" from sympy.assumptions import refine return refine(self, assumption) def cancel(self, *gens, **args): """See the cancel function in sympy.polys""" from sympy.polys import cancel return cancel(self, *gens, **args) def invert(self, g, *gens, **args): """Return the multiplicative inverse of ``self`` mod ``g`` where ``self`` (and ``g``) may be symbolic expressions). See Also ======== sympy.core.numbers.mod_inverse, sympy.polys.polytools.invert """ from sympy.polys.polytools import invert from sympy.core.numbers import mod_inverse if self.is_number and getattr(g, 'is_number', True): return mod_inverse(self, g) return invert(self, g, *gens, **args) def round(self, p=0): """Return x rounded to the given decimal place. If a complex number would results, apply round to the real and imaginary components of the number. Examples ======== >>> from sympy import pi, E, I, S, Add, Mul, Number >>> S(10.5).round() 11. >>> pi.round() 3. >>> pi.round(2) 3.14 >>> (2*pi + E*I).round() 6. + 3.*I The round method has a chopping effect: >>> (2*pi + I/10).round() 6. >>> (pi/10 + 2*I).round() 2.*I >>> (pi/10 + E*I).round(2) 0.31 + 2.72*I Notes ===== Do not confuse the Python builtin function, round, with the SymPy method of the same name. The former always returns a float (or raises an error if applied to a complex value) while the latter returns either a Number or a complex number: >>> isinstance(round(S(123), -2), Number) False >>> isinstance(S(123).round(-2), Number) True >>> isinstance((3*I).round(), Mul) True >>> isinstance((1 + 3*I).round(), Add) True """ from sympy import Float x = self if not x.is_number: raise TypeError("can't round symbolic expression") if not x.is_Atom: xn = x.n(2) if not pure_complex(xn, or_real=True): raise TypeError('Expected a number but got %s:' % getattr(getattr(x,'func', x), '__name__', type(x))) elif x in (S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity): return x if not x.is_real: i, r = x.as_real_imag() return i.round(p) + S.ImaginaryUnit*r.round(p) if not x: return x p = int(p) precs = [f._prec for f in x.atoms(Float)] dps = prec_to_dps(max(precs)) if precs else None mag_first_dig = _mag(x) allow = digits_needed = mag_first_dig + p if dps is not None and allow > dps: allow = dps mag = Pow(10, p) # magnitude needed to bring digit p to units place xwas = x x += 1/(2*mag) # add the half for rounding i10 = 10*mag*x.n((dps if dps is not None else digits_needed) + 1) if i10.is_negative: x = xwas - 1/(2*mag) # should have gone the other way i10 = 10*mag*x.n((dps if dps is not None else digits_needed) + 1) rv = -(Integer(-i10)//10) else: rv = Integer(i10)//10 q = 1 if p > 0: q = mag elif p < 0: rv /= mag rv = Rational(rv, q) if rv.is_Integer: # use str or else it won't be a float return Float(str(rv), digits_needed) else: if not allow and rv > self: allow += 1 return Float(rv, allow) def _eval_derivative_matrix_lines(self, x): from sympy.matrices.expressions.matexpr import _LeftRightArgs return [_LeftRightArgs(S.One, S.One, higher=self._eval_derivative(x))] class AtomicExpr(Atom, Expr): """ A parent class for object which are both atoms and Exprs. For example: Symbol, Number, Rational, Integer, ... But not: Add, Mul, Pow, ... """ is_number = False is_Atom = True __slots__ = [] def _eval_derivative(self, s): if self == s: return S.One return S.Zero def _eval_derivative_n_times(self, s, n): from sympy import Piecewise, Eq from sympy import Tuple, MatrixExpr from sympy.matrices.common import MatrixCommon if isinstance(s, (MatrixCommon, Tuple, Iterable, MatrixExpr)): return super(AtomicExpr, self)._eval_derivative_n_times(s, n) if self == s: return Piecewise((self, Eq(n, 0)), (1, Eq(n, 1)), (0, True)) else: return Piecewise((self, Eq(n, 0)), (0, True)) def _eval_is_polynomial(self, syms): return True def _eval_is_rational_function(self, syms): return True def _eval_is_algebraic_expr(self, syms): return True def _eval_nseries(self, x, n, logx): return self @property def expr_free_symbols(self): return {self} def _mag(x): """Return integer ``i`` such that .1 <= x/10**i < 1 Examples ======== >>> from sympy.core.expr import _mag >>> from sympy import Float >>> _mag(Float(.1)) 0 >>> _mag(Float(.01)) -1 >>> _mag(Float(1234)) 4 """ from math import log10, ceil, log from sympy import Float xpos = abs(x.n()) if not xpos: return S.Zero try: mag_first_dig = int(ceil(log10(xpos))) except (ValueError, OverflowError): mag_first_dig = int(ceil(Float(mpf_log(xpos._mpf_, 53))/log(10))) # check that we aren't off by 1 if (xpos/10**mag_first_dig) >= 1: assert 1 <= (xpos/10**mag_first_dig) < 10 mag_first_dig += 1 return mag_first_dig class UnevaluatedExpr(Expr): """ Expression that is not evaluated unless released. Examples ======== >>> from sympy import UnevaluatedExpr >>> from sympy.abc import a, b, x, y >>> x*(1/x) 1 >>> x*UnevaluatedExpr(1/x) x*1/x """ def __new__(cls, arg, **kwargs): arg = _sympify(arg) obj = Expr.__new__(cls, arg, **kwargs) return obj def doit(self, **kwargs): if kwargs.get("deep", True): return self.args[0].doit(**kwargs) else: return self.args[0] def _n2(a, b): """Return (a - b).evalf(2) if a and b are comparable, else None. This should only be used when a and b are already sympified. """ # /!\ it is very important (see issue 8245) not to # use a re-evaluated number in the calculation of dif if a.is_comparable and b.is_comparable: dif = (a - b).evalf(2) if dif.is_comparable: return dif def unchanged(func, *args): """Return True if `func` applied to the `args` is unchanged. Can be used instead of `assert foo == foo`. Examples ======== >>> from sympy.core.expr import unchanged >>> from sympy.functions.elementary.trigonometric import cos >>> from sympy.core.numbers import pi >>> unchanged(cos, 1) # instead of assert cos(1) == cos(1) True >>> unchanged(cos, pi) False """ f = func(*args) return f.func == func and f.args == tuple([sympify(a) for a in args]) from .mul import Mul from .add import Add from .power import Pow from .function import Derivative, Function from .mod import Mod from .exprtools import factor_terms from .numbers import Integer, Rational
db175fbed614a7756ab193f62764428ec8ecbedf4c25b8337192759a96a4002c
from __future__ import print_function, division from .add import _unevaluated_Add, Add from .basic import S from .compatibility import ordered from .expr import Expr from .evalf import EvalfMixin from .sympify import _sympify from .evaluate import global_evaluate from sympy.logic.boolalg import Boolean, BooleanAtom __all__ = ( 'Rel', 'Eq', 'Ne', 'Lt', 'Le', 'Gt', 'Ge', 'Relational', 'Equality', 'Unequality', 'StrictLessThan', 'LessThan', 'StrictGreaterThan', 'GreaterThan', ) # Note, see issue 4986. Ideally, we wouldn't want to subclass both Boolean # and Expr. def _canonical(cond): # return a condition in which all relationals are canonical reps = {r: r.canonical for r in cond.atoms(Relational)} return cond.xreplace(reps) # XXX: AttributeError was being caught here but it wasn't triggered by any of # the tests so I've removed it... class Relational(Boolean, Expr, EvalfMixin): """Base class for all relation types. Subclasses of Relational should generally be instantiated directly, but Relational can be instantiated with a valid `rop` value to dispatch to the appropriate subclass. Parameters ========== rop : str or None Indicates what subclass to instantiate. Valid values can be found in the keys of Relational.ValidRelationalOperator. Examples ======== >>> from sympy import Rel >>> from sympy.abc import x, y >>> Rel(y, x + x**2, '==') Eq(y, x**2 + x) """ __slots__ = [] is_Relational = True # ValidRelationOperator - Defined below, because the necessary classes # have not yet been defined def __new__(cls, lhs, rhs, rop=None, **assumptions): # If called by a subclass, do nothing special and pass on to Expr. if cls is not Relational: return Expr.__new__(cls, lhs, rhs, **assumptions) # If called directly with an operator, look up the subclass # corresponding to that operator and delegate to it try: cls = cls.ValidRelationOperator[rop] rv = cls(lhs, rhs, **assumptions) # /// drop when Py2 is no longer supported # validate that Booleans are not being used in a relational # other than Eq/Ne; if isinstance(rv, (Eq, Ne)): pass elif isinstance(rv, Relational): # could it be otherwise? from sympy.core.symbol import Symbol from sympy.logic.boolalg import Boolean for a in rv.args: if isinstance(a, Symbol): continue if isinstance(a, Boolean): from sympy.utilities.misc import filldedent raise TypeError(filldedent(''' A Boolean argument can only be used in Eq and Ne; all other relationals expect real expressions. ''')) # \\\ return rv except KeyError: raise ValueError( "Invalid relational operator symbol: %r" % rop) @property def lhs(self): """The left-hand side of the relation.""" return self._args[0] @property def rhs(self): """The right-hand side of the relation.""" return self._args[1] @property def reversed(self): """Return the relationship with sides reversed. Examples ======== >>> from sympy import Eq >>> from sympy.abc import x >>> Eq(x, 1) Eq(x, 1) >>> _.reversed Eq(1, x) >>> x < 1 x < 1 >>> _.reversed 1 > x """ ops = {Eq: Eq, Gt: Lt, Ge: Le, Lt: Gt, Le: Ge, Ne: Ne} a, b = self.args return Relational.__new__(ops.get(self.func, self.func), b, a) @property def reversedsign(self): """Return the relationship with signs reversed. Examples ======== >>> from sympy import Eq >>> from sympy.abc import x >>> Eq(x, 1) Eq(x, 1) >>> _.reversedsign Eq(-x, -1) >>> x < 1 x < 1 >>> _.reversedsign -x > -1 """ a, b = self.args if not (isinstance(a, BooleanAtom) or isinstance(b, BooleanAtom)): ops = {Eq: Eq, Gt: Lt, Ge: Le, Lt: Gt, Le: Ge, Ne: Ne} return Relational.__new__(ops.get(self.func, self.func), -a, -b) else: return self @property def negated(self): """Return the negated relationship. Examples ======== >>> from sympy import Eq >>> from sympy.abc import x >>> Eq(x, 1) Eq(x, 1) >>> _.negated Ne(x, 1) >>> x < 1 x < 1 >>> _.negated x >= 1 Notes ===== This works more or less identical to ``~``/``Not``. The difference is that ``negated`` returns the relationship even if `evaluate=False`. Hence, this is useful in code when checking for e.g. negated relations to exisiting ones as it will not be affected by the `evaluate` flag. """ ops = {Eq: Ne, Ge: Lt, Gt: Le, Le: Gt, Lt: Ge, Ne: Eq} # If there ever will be new Relational subclasses, the following line # will work until it is properly sorted out # return ops.get(self.func, lambda a, b, evaluate=False: ~(self.func(a, # b, evaluate=evaluate)))(*self.args, evaluate=False) return Relational.__new__(ops.get(self.func), *self.args) def _eval_evalf(self, prec): return self.func(*[s._evalf(prec) for s in self.args]) @property def canonical(self): """Return a canonical form of the relational by putting a Number on the rhs else ordering the args. The relation is also changed so that the left-hand side expression does not start with a `-`. No other simplification is attempted. Examples ======== >>> from sympy.abc import x, y >>> x < 2 x < 2 >>> _.reversed.canonical x < 2 >>> (-y < x).canonical x > -y >>> (-y > x).canonical x < -y """ args = self.args r = self if r.rhs.is_number: if r.rhs.is_Number and r.lhs.is_Number and r.lhs > r.rhs: r = r.reversed elif r.lhs.is_number: r = r.reversed elif tuple(ordered(args)) != args: r = r.reversed # Check if first value has negative sign if not isinstance(r.lhs, BooleanAtom) and \ r.lhs.could_extract_minus_sign(): r = r.reversedsign elif not isinstance(r.rhs, BooleanAtom) and not r.rhs.is_number and \ r.rhs.could_extract_minus_sign(): # Right hand side has a minus, but not lhs. # How does the expression with reversed signs behave? # This is so that expressions of the type Eq(x, -y) and Eq(-x, y) # have the same canonical representation expr1, _ = ordered([r.lhs, -r.rhs]) if expr1 != r.lhs: r = r.reversed.reversedsign return r def equals(self, other, failing_expression=False): """Return True if the sides of the relationship are mathematically identical and the type of relationship is the same. If failing_expression is True, return the expression whose truth value was unknown.""" if isinstance(other, Relational): if self == other or self.reversed == other: return True a, b = self, other if a.func in (Eq, Ne) or b.func in (Eq, Ne): if a.func != b.func: return False left, right = [i.equals(j, failing_expression=failing_expression) for i, j in zip(a.args, b.args)] if left is True: return right if right is True: return left lr, rl = [i.equals(j, failing_expression=failing_expression) for i, j in zip(a.args, b.reversed.args)] if lr is True: return rl if rl is True: return lr e = (left, right, lr, rl) if all(i is False for i in e): return False for i in e: if i not in (True, False): return i else: if b.func != a.func: b = b.reversed if a.func != b.func: return False left = a.lhs.equals(b.lhs, failing_expression=failing_expression) if left is False: return False right = a.rhs.equals(b.rhs, failing_expression=failing_expression) if right is False: return False if left is True: return right return left def _eval_simplify(self, ratio, measure, rational, inverse): r = self r = r.func(*[i.simplify(ratio=ratio, measure=measure, rational=rational, inverse=inverse) for i in r.args]) if r.is_Relational: dif = r.lhs - r.rhs # replace dif with a valid Number that will # allow a definitive comparison with 0 v = None if dif.is_comparable: v = dif.n(2) elif dif.equals(0): # XXX this is expensive v = S.Zero if v is not None: r = r.func._eval_relation(v, S.Zero) r = r.canonical if measure(r) < ratio*measure(self): return r else: return self def __nonzero__(self): raise TypeError("cannot determine truth value of Relational") __bool__ = __nonzero__ def _eval_as_set(self): # self is univariate and periodicity(self, x) in (0, None) from sympy.solvers.inequalities import solve_univariate_inequality syms = self.free_symbols assert len(syms) == 1 x = syms.pop() return solve_univariate_inequality(self, x, relational=False) @property def binary_symbols(self): # override where necessary return set() Rel = Relational class Equality(Relational): """An equal relation between two objects. Represents that two objects are equal. If they can be easily shown to be definitively equal (or unequal), this will reduce to True (or False). Otherwise, the relation is maintained as an unevaluated Equality object. Use the ``simplify`` function on this object for more nontrivial evaluation of the equality relation. As usual, the keyword argument ``evaluate=False`` can be used to prevent any evaluation. Examples ======== >>> from sympy import Eq, simplify, exp, cos >>> from sympy.abc import x, y >>> Eq(y, x + x**2) Eq(y, x**2 + x) >>> Eq(2, 5) False >>> Eq(2, 5, evaluate=False) Eq(2, 5) >>> _.doit() False >>> Eq(exp(x), exp(x).rewrite(cos)) Eq(exp(x), sinh(x) + cosh(x)) >>> simplify(_) True See Also ======== sympy.logic.boolalg.Equivalent : for representing equality between two boolean expressions Notes ===== This class is not the same as the == operator. The == operator tests for exact structural equality between two expressions; this class compares expressions mathematically. If either object defines an `_eval_Eq` method, it can be used in place of the default algorithm. If `lhs._eval_Eq(rhs)` or `rhs._eval_Eq(lhs)` returns anything other than None, that return value will be substituted for the Equality. If None is returned by `_eval_Eq`, an Equality object will be created as usual. Since this object is already an expression, it does not respond to the method `as_expr` if one tries to create `x - y` from Eq(x, y). This can be done with the `rewrite(Add)` method. """ rel_op = '==' __slots__ = [] is_Equality = True def __new__(cls, lhs, rhs=0, **options): from sympy.core.add import Add from sympy.core.logic import fuzzy_bool from sympy.core.expr import _n2 from sympy.simplify.simplify import clear_coefficients lhs = _sympify(lhs) rhs = _sympify(rhs) evaluate = options.pop('evaluate', global_evaluate[0]) if evaluate: # If one expression has an _eval_Eq, return its results. if hasattr(lhs, '_eval_Eq'): r = lhs._eval_Eq(rhs) if r is not None: return r if hasattr(rhs, '_eval_Eq'): r = rhs._eval_Eq(lhs) if r is not None: return r # If expressions have the same structure, they must be equal. if lhs == rhs: return S.true # e.g. True == True elif all(isinstance(i, BooleanAtom) for i in (rhs, lhs)): return S.false # True != False elif not (lhs.is_Symbol or rhs.is_Symbol) and ( isinstance(lhs, Boolean) != isinstance(rhs, Boolean)): return S.false # only Booleans can equal Booleans # check finiteness fin = L, R = [i.is_finite for i in (lhs, rhs)] if None not in fin: if L != R: return S.false if L is False: if lhs == -rhs: # Eq(oo, -oo) return S.false return S.true elif None in fin and False in fin: return Relational.__new__(cls, lhs, rhs, **options) if all(isinstance(i, Expr) for i in (lhs, rhs)): # see if the difference evaluates dif = lhs - rhs z = dif.is_zero if z is not None: if z is False and dif.is_commutative: # issue 10728 return S.false if z: return S.true # evaluate numerically if possible n2 = _n2(lhs, rhs) if n2 is not None: return _sympify(n2 == 0) # see if the ratio evaluates n, d = dif.as_numer_denom() rv = None if n.is_zero: rv = d.is_nonzero elif n.is_finite: if d.is_infinite: rv = S.true elif n.is_zero is False: rv = d.is_infinite if rv is None: # if the condition that makes the denominator # infinite does not make the original expression # True then False can be returned l, r = clear_coefficients(d, S.Infinity) args = [_.subs(l, r) for _ in (lhs, rhs)] if args != [lhs, rhs]: rv = fuzzy_bool(Eq(*args)) if rv is True: rv = None elif any(a.is_infinite for a in Add.make_args(n)): # (inf or nan)/x != 0 rv = S.false if rv is not None: return _sympify(rv) return Relational.__new__(cls, lhs, rhs, **options) @classmethod def _eval_relation(cls, lhs, rhs): return _sympify(lhs == rhs) def _eval_rewrite_as_Add(self, *args, **kwargs): """return Eq(L, R) as L - R. To control the evaluation of the result set pass `evaluate=True` to give L - R; if `evaluate=None` then terms in L and R will not cancel but they will be listed in canonical order; otherwise non-canonical args will be returned. Examples ======== >>> from sympy import Eq, Add >>> from sympy.abc import b, x >>> eq = Eq(x + b, x - b) >>> eq.rewrite(Add) 2*b >>> eq.rewrite(Add, evaluate=None).args (b, b, x, -x) >>> eq.rewrite(Add, evaluate=False).args (b, x, b, -x) """ L, R = args evaluate = kwargs.get('evaluate', True) if evaluate: # allow cancellation of args return L - R args = Add.make_args(L) + Add.make_args(-R) if evaluate is None: # no cancellation, but canonical return _unevaluated_Add(*args) # no cancellation, not canonical return Add._from_args(args) @property def binary_symbols(self): if S.true in self.args or S.false in self.args: if self.lhs.is_Symbol: return set([self.lhs]) elif self.rhs.is_Symbol: return set([self.rhs]) return set() def _eval_simplify(self, ratio, measure, rational, inverse): from sympy.solvers.solveset import linear_coeffs # standard simplify e = super(Equality, self)._eval_simplify( ratio, measure, rational, inverse) if not isinstance(e, Equality): return e free = self.free_symbols if len(free) == 1: try: x = free.pop() m, b = linear_coeffs( e.rewrite(Add, evaluate=False), x) if m.is_zero is False: enew = e.func(x, -b/m) else: enew = e.func(m*x, -b) if measure(enew) <= ratio*measure(e): e = enew except ValueError: pass return e.canonical Eq = Equality class Unequality(Relational): """An unequal relation between two objects. Represents that two objects are not equal. If they can be shown to be definitively equal, this will reduce to False; if definitively unequal, this will reduce to True. Otherwise, the relation is maintained as an Unequality object. Examples ======== >>> from sympy import Ne >>> from sympy.abc import x, y >>> Ne(y, x+x**2) Ne(y, x**2 + x) See Also ======== Equality Notes ===== This class is not the same as the != operator. The != operator tests for exact structural equality between two expressions; this class compares expressions mathematically. This class is effectively the inverse of Equality. As such, it uses the same algorithms, including any available `_eval_Eq` methods. """ rel_op = '!=' __slots__ = [] def __new__(cls, lhs, rhs, **options): lhs = _sympify(lhs) rhs = _sympify(rhs) evaluate = options.pop('evaluate', global_evaluate[0]) if evaluate: is_equal = Equality(lhs, rhs) if isinstance(is_equal, BooleanAtom): return is_equal.negated return Relational.__new__(cls, lhs, rhs, **options) @classmethod def _eval_relation(cls, lhs, rhs): return _sympify(lhs != rhs) @property def binary_symbols(self): if S.true in self.args or S.false in self.args: if self.lhs.is_Symbol: return set([self.lhs]) elif self.rhs.is_Symbol: return set([self.rhs]) return set() def _eval_simplify(self, ratio, measure, rational, inverse): # simplify as an equality eq = Equality(*self.args)._eval_simplify( ratio, measure, rational, inverse) if isinstance(eq, Equality): # send back Ne with the new args return self.func(*eq.args) return eq.negated # result of Ne is the negated Eq Ne = Unequality class _Inequality(Relational): """Internal base class for all *Than types. Each subclass must implement _eval_relation to provide the method for comparing two real numbers. """ __slots__ = [] def __new__(cls, lhs, rhs, **options): lhs = _sympify(lhs) rhs = _sympify(rhs) evaluate = options.pop('evaluate', global_evaluate[0]) if evaluate: # First we invoke the appropriate inequality method of `lhs` # (e.g., `lhs.__lt__`). That method will try to reduce to # boolean or raise an exception. It may keep calling # superclasses until it reaches `Expr` (e.g., `Expr.__lt__`). # In some cases, `Expr` will just invoke us again (if neither it # nor a subclass was able to reduce to boolean or raise an # exception). In that case, it must call us with # `evaluate=False` to prevent infinite recursion. r = cls._eval_relation(lhs, rhs) if r is not None: return r # Note: not sure r could be None, perhaps we never take this # path? In principle, could use this to shortcut out if a # class realizes the inequality cannot be evaluated further. # make a "non-evaluated" Expr for the inequality return Relational.__new__(cls, lhs, rhs, **options) class _Greater(_Inequality): """Not intended for general use _Greater is only used so that GreaterThan and StrictGreaterThan may subclass it for the .gts and .lts properties. """ __slots__ = () @property def gts(self): return self._args[0] @property def lts(self): return self._args[1] class _Less(_Inequality): """Not intended for general use. _Less is only used so that LessThan and StrictLessThan may subclass it for the .gts and .lts properties. """ __slots__ = () @property def gts(self): return self._args[1] @property def lts(self): return self._args[0] class GreaterThan(_Greater): """Class representations of inequalities. Extended Summary ================ The ``*Than`` classes represent inequal relationships, where the left-hand side is generally bigger or smaller than the right-hand side. For example, the GreaterThan class represents an inequal relationship where the left-hand side is at least as big as the right side, if not bigger. In mathematical notation: lhs >= rhs In total, there are four ``*Than`` classes, to represent the four inequalities: +-----------------+--------+ |Class Name | Symbol | +=================+========+ |GreaterThan | (>=) | +-----------------+--------+ |LessThan | (<=) | +-----------------+--------+ |StrictGreaterThan| (>) | +-----------------+--------+ |StrictLessThan | (<) | +-----------------+--------+ All classes take two arguments, lhs and rhs. +----------------------------+-----------------+ |Signature Example | Math equivalent | +============================+=================+ |GreaterThan(lhs, rhs) | lhs >= rhs | +----------------------------+-----------------+ |LessThan(lhs, rhs) | lhs <= rhs | +----------------------------+-----------------+ |StrictGreaterThan(lhs, rhs) | lhs > rhs | +----------------------------+-----------------+ |StrictLessThan(lhs, rhs) | lhs < rhs | +----------------------------+-----------------+ In addition to the normal .lhs and .rhs of Relations, ``*Than`` inequality objects also have the .lts and .gts properties, which represent the "less than side" and "greater than side" of the operator. Use of .lts and .gts in an algorithm rather than .lhs and .rhs as an assumption of inequality direction will make more explicit the intent of a certain section of code, and will make it similarly more robust to client code changes: >>> from sympy import GreaterThan, StrictGreaterThan >>> from sympy import LessThan, StrictLessThan >>> from sympy import And, Ge, Gt, Le, Lt, Rel, S >>> from sympy.abc import x, y, z >>> from sympy.core.relational import Relational >>> e = GreaterThan(x, 1) >>> e x >= 1 >>> '%s >= %s is the same as %s <= %s' % (e.gts, e.lts, e.lts, e.gts) 'x >= 1 is the same as 1 <= x' Examples ======== One generally does not instantiate these classes directly, but uses various convenience methods: >>> for f in [Ge, Gt, Le, Lt]: # convenience wrappers ... print(f(x, 2)) x >= 2 x > 2 x <= 2 x < 2 Another option is to use the Python inequality operators (>=, >, <=, <) directly. Their main advantage over the Ge, Gt, Le, and Lt counterparts, is that one can write a more "mathematical looking" statement rather than littering the math with oddball function calls. However there are certain (minor) caveats of which to be aware (search for 'gotcha', below). >>> x >= 2 x >= 2 >>> _ == Ge(x, 2) True However, it is also perfectly valid to instantiate a ``*Than`` class less succinctly and less conveniently: >>> Rel(x, 1, ">") x > 1 >>> Relational(x, 1, ">") x > 1 >>> StrictGreaterThan(x, 1) x > 1 >>> GreaterThan(x, 1) x >= 1 >>> LessThan(x, 1) x <= 1 >>> StrictLessThan(x, 1) x < 1 Notes ===== There are a couple of "gotchas" to be aware of when using Python's operators. The first is that what your write is not always what you get: >>> 1 < x x > 1 Due to the order that Python parses a statement, it may not immediately find two objects comparable. When "1 < x" is evaluated, Python recognizes that the number 1 is a native number and that x is *not*. Because a native Python number does not know how to compare itself with a SymPy object Python will try the reflective operation, "x > 1" and that is the form that gets evaluated, hence returned. If the order of the statement is important (for visual output to the console, perhaps), one can work around this annoyance in a couple ways: (1) "sympify" the literal before comparison >>> S(1) < x 1 < x (2) use one of the wrappers or less succinct methods described above >>> Lt(1, x) 1 < x >>> Relational(1, x, "<") 1 < x The second gotcha involves writing equality tests between relationals when one or both sides of the test involve a literal relational: >>> e = x < 1; e x < 1 >>> e == e # neither side is a literal True >>> e == x < 1 # expecting True, too False >>> e != x < 1 # expecting False x < 1 >>> x < 1 != x < 1 # expecting False or the same thing as before Traceback (most recent call last): ... TypeError: cannot determine truth value of Relational The solution for this case is to wrap literal relationals in parentheses: >>> e == (x < 1) True >>> e != (x < 1) False >>> (x < 1) != (x < 1) False The third gotcha involves chained inequalities not involving '==' or '!='. Occasionally, one may be tempted to write: >>> e = x < y < z Traceback (most recent call last): ... TypeError: symbolic boolean expression has no truth value. Due to an implementation detail or decision of Python [1]_, there is no way for SymPy to create a chained inequality with that syntax so one must use And: >>> e = And(x < y, y < z) >>> type( e ) And >>> e (x < y) & (y < z) Although this can also be done with the '&' operator, it cannot be done with the 'and' operarator: >>> (x < y) & (y < z) (x < y) & (y < z) >>> (x < y) and (y < z) Traceback (most recent call last): ... TypeError: cannot determine truth value of Relational .. [1] This implementation detail is that Python provides no reliable method to determine that a chained inequality is being built. Chained comparison operators are evaluated pairwise, using "and" logic (see http://docs.python.org/2/reference/expressions.html#notin). This is done in an efficient way, so that each object being compared is only evaluated once and the comparison can short-circuit. For example, ``1 > 2 > 3`` is evaluated by Python as ``(1 > 2) and (2 > 3)``. The ``and`` operator coerces each side into a bool, returning the object itself when it short-circuits. The bool of the --Than operators will raise TypeError on purpose, because SymPy cannot determine the mathematical ordering of symbolic expressions. Thus, if we were to compute ``x > y > z``, with ``x``, ``y``, and ``z`` being Symbols, Python converts the statement (roughly) into these steps: (1) x > y > z (2) (x > y) and (y > z) (3) (GreaterThanObject) and (y > z) (4) (GreaterThanObject.__nonzero__()) and (y > z) (5) TypeError Because of the "and" added at step 2, the statement gets turned into a weak ternary statement, and the first object's __nonzero__ method will raise TypeError. Thus, creating a chained inequality is not possible. In Python, there is no way to override the ``and`` operator, or to control how it short circuits, so it is impossible to make something like ``x > y > z`` work. There was a PEP to change this, :pep:`335`, but it was officially closed in March, 2012. """ __slots__ = () rel_op = '>=' @classmethod def _eval_relation(cls, lhs, rhs): # We don't use the op symbol here: workaround issue #7951 return _sympify(lhs.__ge__(rhs)) Ge = GreaterThan class LessThan(_Less): __doc__ = GreaterThan.__doc__ __slots__ = () rel_op = '<=' @classmethod def _eval_relation(cls, lhs, rhs): # We don't use the op symbol here: workaround issue #7951 return _sympify(lhs.__le__(rhs)) Le = LessThan class StrictGreaterThan(_Greater): __doc__ = GreaterThan.__doc__ __slots__ = () rel_op = '>' @classmethod def _eval_relation(cls, lhs, rhs): # We don't use the op symbol here: workaround issue #7951 return _sympify(lhs.__gt__(rhs)) Gt = StrictGreaterThan class StrictLessThan(_Less): __doc__ = GreaterThan.__doc__ __slots__ = () rel_op = '<' @classmethod def _eval_relation(cls, lhs, rhs): # We don't use the op symbol here: workaround issue #7951 return _sympify(lhs.__lt__(rhs)) Lt = StrictLessThan # A class-specific (not object-specific) data item used for a minor speedup. # It is defined here, rather than directly in the class, because the classes # that it references have not been defined until now (e.g. StrictLessThan). Relational.ValidRelationOperator = { None: Equality, '==': Equality, 'eq': Equality, '!=': Unequality, '<>': Unequality, 'ne': Unequality, '>=': GreaterThan, 'ge': GreaterThan, '<=': LessThan, 'le': LessThan, '>': StrictGreaterThan, 'gt': StrictGreaterThan, '<': StrictLessThan, 'lt': StrictLessThan, }
792b28dc77276701fc6fb61e8ba30008f0c2237639fb784be976bf96bd180711
from __future__ import print_function, division import decimal import fractions import math import re as regex from .containers import Tuple from .sympify import converter, sympify, _sympify, SympifyError, _convert_numpy_types from .singleton import S, Singleton from .expr import Expr, AtomicExpr from .decorators import _sympifyit from .cache import cacheit, clear_cache from .logic import fuzzy_not from sympy.core.compatibility import ( as_int, integer_types, long, string_types, with_metaclass, HAS_GMPY, SYMPY_INTS, int_info) from sympy.core.cache import lru_cache import mpmath import mpmath.libmp as mlib from mpmath.libmp.backend import MPZ from mpmath.libmp import mpf_pow, mpf_pi, mpf_e, phi_fixed from mpmath.ctx_mp import mpnumeric from mpmath.libmp.libmpf import ( finf as _mpf_inf, fninf as _mpf_ninf, fnan as _mpf_nan, fzero as _mpf_zero, _normalize as mpf_normalize, prec_to_dps) from sympy.utilities.misc import debug, filldedent from .evaluate import global_evaluate from sympy.utilities.exceptions import SymPyDeprecationWarning rnd = mlib.round_nearest _LOG2 = math.log(2) def comp(z1, z2, tol=None): """Return a bool indicating whether the error between z1 and z2 is <= tol. If ``tol`` is None then True will be returned if there is a significant difference between the numbers: ``abs(z1 - z2)*10**p <= 1/2`` where ``p`` is the lower of the precisions of the values. A comparison of strings will be made if ``z1`` is a Number and a) ``z2`` is a string or b) ``tol`` is '' and ``z2`` is a Number. When ``tol`` is a nonzero value, if z2 is non-zero and ``|z1| > 1`` the error is normalized by ``|z1|``, so if you want to see if the absolute error between ``z1`` and ``z2`` is <= ``tol`` then call this as ``comp(z1 - z2, 0, tol)``. """ if type(z2) is str: if not isinstance(z1, Number): raise ValueError('when z2 is a str z1 must be a Number') return str(z1) == z2 if not z1: z1, z2 = z2, z1 if not z1: return True if not tol: if tol is None: if type(z2) is str and getattr(z1, 'is_Number', False): return str(z1) == z2 a, b = Float(z1), Float(z2) return int(abs(a - b)*10**prec_to_dps( min(a._prec, b._prec)))*2 <= 1 elif all(getattr(i, 'is_Number', False) for i in (z1, z2)): return z1._prec == z2._prec and str(z1) == str(z2) raise ValueError('exact comparison requires two Numbers') diff = abs(z1 - z2) az1 = abs(z1) if z2 and az1 > 1: return diff/az1 <= tol else: return diff <= tol def mpf_norm(mpf, prec): """Return the mpf tuple normalized appropriately for the indicated precision after doing a check to see if zero should be returned or not when the mantissa is 0. ``mpf_normlize`` always assumes that this is zero, but it may not be since the mantissa for mpf's values "+inf", "-inf" and "nan" have a mantissa of zero, too. Note: this is not intended to validate a given mpf tuple, so sending mpf tuples that were not created by mpmath may produce bad results. This is only a wrapper to ``mpf_normalize`` which provides the check for non- zero mpfs that have a 0 for the mantissa. """ sign, man, expt, bc = mpf if not man: # hack for mpf_normalize which does not do this; # it assumes that if man is zero the result is 0 # (see issue 6639) if not bc: return _mpf_zero else: # don't change anything; this should already # be a well formed mpf tuple return mpf # Necessary if mpmath is using the gmpy backend from mpmath.libmp.backend import MPZ rv = mpf_normalize(sign, MPZ(man), expt, bc, prec, rnd) return rv # TODO: we should use the warnings module _errdict = {"divide": False} def seterr(divide=False): """ Should sympy raise an exception on 0/0 or return a nan? divide == True .... raise an exception divide == False ... return nan """ if _errdict["divide"] != divide: clear_cache() _errdict["divide"] = divide def _as_integer_ratio(p): neg_pow, man, expt, bc = getattr(p, '_mpf_', mpmath.mpf(p)._mpf_) p = [1, -1][neg_pow % 2]*man if expt < 0: q = 2**-expt else: q = 1 p *= 2**expt return int(p), int(q) def _decimal_to_Rational_prec(dec): """Convert an ordinary decimal instance to a Rational.""" if not dec.is_finite(): raise TypeError("dec must be finite, got %s." % dec) s, d, e = dec.as_tuple() prec = len(d) if e >= 0: # it's an integer rv = Integer(int(dec)) else: s = (-1)**s d = sum([di*10**i for i, di in enumerate(reversed(d))]) rv = Rational(s*d, 10**-e) return rv, prec _floatpat = regex.compile(r"[-+]?((\d*\.\d+)|(\d+\.?))") def _literal_float(f): """Return True if n starts like a floating point number.""" return bool(_floatpat.match(f)) # (a,b) -> gcd(a,b) # TODO caching with decorator, but not to degrade performance @lru_cache(1024) def igcd(*args): """Computes nonnegative integer greatest common divisor. The algorithm is based on the well known Euclid's algorithm. To improve speed, igcd() has its own caching mechanism implemented. Examples ======== >>> from sympy.core.numbers import igcd >>> igcd(2, 4) 2 >>> igcd(5, 10, 15) 5 """ if len(args) < 2: raise TypeError( 'igcd() takes at least 2 arguments (%s given)' % len(args)) args_temp = [abs(as_int(i)) for i in args] if 1 in args_temp: return 1 a = args_temp.pop() for b in args_temp: a = igcd2(a, b) if b else a return a try: from math import gcd as igcd2 except ImportError: def igcd2(a, b): """Compute gcd of two Python integers a and b.""" if (a.bit_length() > BIGBITS and b.bit_length() > BIGBITS): return igcd_lehmer(a, b) a, b = abs(a), abs(b) while b: a, b = b, a % b return a # Use Lehmer's algorithm only for very large numbers. # The limit could be different on Python 2.7 and 3.x. # If so, then this could be defined in compatibility.py. BIGBITS = 5000 def igcd_lehmer(a, b): """Computes greatest common divisor of two integers. Euclid's algorithm for the computation of the greatest common divisor gcd(a, b) of two (positive) integers a and b is based on the division identity a = q*b + r, where the quotient q and the remainder r are integers and 0 <= r < b. Then each common divisor of a and b divides r, and it follows that gcd(a, b) == gcd(b, r). The algorithm works by constructing the sequence r0, r1, r2, ..., where r0 = a, r1 = b, and each rn is the remainder from the division of the two preceding elements. In Python, q = a // b and r = a % b are obtained by the floor division and the remainder operations, respectively. These are the most expensive arithmetic operations, especially for large a and b. Lehmer's algorithm is based on the observation that the quotients qn = r(n-1) // rn are in general small integers even when a and b are very large. Hence the quotients can be usually determined from a relatively small number of most significant bits. The efficiency of the algorithm is further enhanced by not computing each long remainder in Euclid's sequence. The remainders are linear combinations of a and b with integer coefficients derived from the quotients. The coefficients can be computed as far as the quotients can be determined from the chosen most significant parts of a and b. Only then a new pair of consecutive remainders is computed and the algorithm starts anew with this pair. References ========== .. [1] https://en.wikipedia.org/wiki/Lehmer%27s_GCD_algorithm """ a, b = abs(as_int(a)), abs(as_int(b)) if a < b: a, b = b, a # The algorithm works by using one or two digit division # whenever possible. The outer loop will replace the # pair (a, b) with a pair of shorter consecutive elements # of the Euclidean gcd sequence until a and b # fit into two Python (long) int digits. nbits = 2*int_info.bits_per_digit while a.bit_length() > nbits and b != 0: # Quotients are mostly small integers that can # be determined from most significant bits. n = a.bit_length() - nbits x, y = int(a >> n), int(b >> n) # most significant bits # Elements of the Euclidean gcd sequence are linear # combinations of a and b with integer coefficients. # Compute the coefficients of consecutive pairs # a' = A*a + B*b, b' = C*a + D*b # using small integer arithmetic as far as possible. A, B, C, D = 1, 0, 0, 1 # initial values while True: # The coefficients alternate in sign while looping. # The inner loop combines two steps to keep track # of the signs. # At this point we have # A > 0, B <= 0, C <= 0, D > 0, # x' = x + B <= x < x" = x + A, # y' = y + C <= y < y" = y + D, # and # x'*N <= a' < x"*N, y'*N <= b' < y"*N, # where N = 2**n. # Now, if y' > 0, and x"//y' and x'//y" agree, # then their common value is equal to q = a'//b'. # In addition, # x'%y" = x' - q*y" < x" - q*y' = x"%y', # and # (x'%y")*N < a'%b' < (x"%y')*N. # On the other hand, we also have x//y == q, # and therefore # x'%y" = x + B - q*(y + D) = x%y + B', # x"%y' = x + A - q*(y + C) = x%y + A', # where # B' = B - q*D < 0, A' = A - q*C > 0. if y + C <= 0: break q = (x + A) // (y + C) # Now x'//y" <= q, and equality holds if # x' - q*y" = (x - q*y) + (B - q*D) >= 0. # This is a minor optimization to avoid division. x_qy, B_qD = x - q*y, B - q*D if x_qy + B_qD < 0: break # Next step in the Euclidean sequence. x, y = y, x_qy A, B, C, D = C, D, A - q*C, B_qD # At this point the signs of the coefficients # change and their roles are interchanged. # A <= 0, B > 0, C > 0, D < 0, # x' = x + A <= x < x" = x + B, # y' = y + D < y < y" = y + C. if y + D <= 0: break q = (x + B) // (y + D) x_qy, A_qC = x - q*y, A - q*C if x_qy + A_qC < 0: break x, y = y, x_qy A, B, C, D = C, D, A_qC, B - q*D # Now the conditions on top of the loop # are again satisfied. # A > 0, B < 0, C < 0, D > 0. if B == 0: # This can only happen when y == 0 in the beginning # and the inner loop does nothing. # Long division is forced. a, b = b, a % b continue # Compute new long arguments using the coefficients. a, b = A*a + B*b, C*a + D*b # Small divisors. Finish with the standard algorithm. while b: a, b = b, a % b return a def ilcm(*args): """Computes integer least common multiple. Examples ======== >>> from sympy.core.numbers import ilcm >>> ilcm(5, 10) 10 >>> ilcm(7, 3) 21 >>> ilcm(5, 10, 15) 30 """ if len(args) < 2: raise TypeError( 'ilcm() takes at least 2 arguments (%s given)' % len(args)) if 0 in args: return 0 a = args[0] for b in args[1:]: a = a // igcd(a, b) * b # since gcd(a,b) | a return a def igcdex(a, b): """Returns x, y, g such that g = x*a + y*b = gcd(a, b). >>> from sympy.core.numbers import igcdex >>> igcdex(2, 3) (-1, 1, 1) >>> igcdex(10, 12) (-1, 1, 2) >>> x, y, g = igcdex(100, 2004) >>> x, y, g (-20, 1, 4) >>> x*100 + y*2004 4 """ if (not a) and (not b): return (0, 1, 0) if not a: return (0, b//abs(b), abs(b)) if not b: return (a//abs(a), 0, abs(a)) if a < 0: a, x_sign = -a, -1 else: x_sign = 1 if b < 0: b, y_sign = -b, -1 else: y_sign = 1 x, y, r, s = 1, 0, 0, 1 while b: (c, q) = (a % b, a // b) (a, b, r, s, x, y) = (b, c, x - q*r, y - q*s, r, s) return (x*x_sign, y*y_sign, a) def mod_inverse(a, m): """ Return the number c such that, (a * c) = 1 (mod m) where c has the same sign as m. If no such value exists, a ValueError is raised. Examples ======== >>> from sympy import S >>> from sympy.core.numbers import mod_inverse Suppose we wish to find multiplicative inverse x of 3 modulo 11. This is the same as finding x such that 3 * x = 1 (mod 11). One value of x that satisfies this congruence is 4. Because 3 * 4 = 12 and 12 = 1 (mod 11). This is the value return by mod_inverse: >>> mod_inverse(3, 11) 4 >>> mod_inverse(-3, 11) 7 When there is a common factor between the numerators of ``a`` and ``m`` the inverse does not exist: >>> mod_inverse(2, 4) Traceback (most recent call last): ... ValueError: inverse of 2 mod 4 does not exist >>> mod_inverse(S(2)/7, S(5)/2) 7/2 References ========== - https://en.wikipedia.org/wiki/Modular_multiplicative_inverse - https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm """ c = None try: a, m = as_int(a), as_int(m) if m != 1 and m != -1: x, y, g = igcdex(a, m) if g == 1: c = x % m except ValueError: a, m = sympify(a), sympify(m) if not (a.is_number and m.is_number): raise TypeError(filldedent(''' Expected numbers for arguments; symbolic `mod_inverse` is not implemented but symbolic expressions can be handled with the similar function, sympy.polys.polytools.invert''')) big = (m > 1) if not (big is S.true or big is S.false): raise ValueError('m > 1 did not evaluate; try to simplify %s' % m) elif big: c = 1/a if c is None: raise ValueError('inverse of %s (mod %s) does not exist' % (a, m)) return c class Number(AtomicExpr): """Represents atomic numbers in SymPy. Floating point numbers are represented by the Float class. Rational numbers (of any size) are represented by the Rational class. Integer numbers (of any size) are represented by the Integer class. Float and Rational are subclasses of Number; Integer is a subclass of Rational. For example, ``2/3`` is represented as ``Rational(2, 3)`` which is a different object from the floating point number obtained with Python division ``2/3``. Even for numbers that are exactly represented in binary, there is a difference between how two forms, such as ``Rational(1, 2)`` and ``Float(0.5)``, are used in SymPy. The rational form is to be preferred in symbolic computations. Other kinds of numbers, such as algebraic numbers ``sqrt(2)`` or complex numbers ``3 + 4*I``, are not instances of Number class as they are not atomic. See Also ======== Float, Integer, Rational """ is_commutative = True is_number = True is_Number = True __slots__ = [] # Used to make max(x._prec, y._prec) return x._prec when only x is a float _prec = -1 def __new__(cls, *obj): if len(obj) == 1: obj = obj[0] if isinstance(obj, Number): return obj if isinstance(obj, SYMPY_INTS): return Integer(obj) if isinstance(obj, tuple) and len(obj) == 2: return Rational(*obj) if isinstance(obj, (float, mpmath.mpf, decimal.Decimal)): return Float(obj) if isinstance(obj, string_types): val = sympify(obj) if isinstance(val, Number): return val else: raise ValueError('String "%s" does not denote a Number' % obj) msg = "expected str|int|long|float|Decimal|Number object but got %r" raise TypeError(msg % type(obj).__name__) def invert(self, other, *gens, **args): from sympy.polys.polytools import invert if getattr(other, 'is_number', True): return mod_inverse(self, other) return invert(self, other, *gens, **args) def __divmod__(self, other): from .containers import Tuple try: other = Number(other) except TypeError: msg = "unsupported operand type(s) for divmod(): '%s' and '%s'" raise TypeError(msg % (type(self).__name__, type(other).__name__)) if not other: raise ZeroDivisionError('modulo by zero') if self.is_Integer and other.is_Integer: return Tuple(*divmod(self.p, other.p)) else: rat = self/other w = int(rat) if rat > 0 else int(rat) - 1 r = self - other*w return Tuple(w, r) def __rdivmod__(self, other): try: other = Number(other) except TypeError: msg = "unsupported operand type(s) for divmod(): '%s' and '%s'" raise TypeError(msg % (type(other).__name__, type(self).__name__)) return divmod(other, self) def __round__(self, *args): return round(float(self), *args) def _as_mpf_val(self, prec): """Evaluation of mpf tuple accurate to at least prec bits.""" raise NotImplementedError('%s needs ._as_mpf_val() method' % (self.__class__.__name__)) def _eval_evalf(self, prec): return Float._new(self._as_mpf_val(prec), prec) def _as_mpf_op(self, prec): prec = max(prec, self._prec) return self._as_mpf_val(prec), prec def __float__(self): return mlib.to_float(self._as_mpf_val(53)) def floor(self): raise NotImplementedError('%s needs .floor() method' % (self.__class__.__name__)) def ceiling(self): raise NotImplementedError('%s needs .ceiling() method' % (self.__class__.__name__)) def _eval_conjugate(self): return self def _eval_order(self, *symbols): from sympy import Order # Order(5, x, y) -> Order(1,x,y) return Order(S.One, *symbols) def _eval_subs(self, old, new): if old == -self: return -new return self # there is no other possibility def _eval_is_finite(self): return True @classmethod def class_key(cls): return 1, 0, 'Number' @cacheit def sort_key(self, order=None): return self.class_key(), (0, ()), (), self @_sympifyit('other', NotImplemented) def __add__(self, other): if isinstance(other, Number) and global_evaluate[0]: if other is S.NaN: return S.NaN elif other is S.Infinity: return S.Infinity elif other is S.NegativeInfinity: return S.NegativeInfinity return AtomicExpr.__add__(self, other) @_sympifyit('other', NotImplemented) def __sub__(self, other): if isinstance(other, Number) and global_evaluate[0]: if other is S.NaN: return S.NaN elif other is S.Infinity: return S.NegativeInfinity elif other is S.NegativeInfinity: return S.Infinity return AtomicExpr.__sub__(self, other) @_sympifyit('other', NotImplemented) def __mul__(self, other): if isinstance(other, Number) and global_evaluate[0]: if other is S.NaN: return S.NaN elif other is S.Infinity: if self.is_zero: return S.NaN elif self.is_positive: return S.Infinity else: return S.NegativeInfinity elif other is S.NegativeInfinity: if self.is_zero: return S.NaN elif self.is_positive: return S.NegativeInfinity else: return S.Infinity elif isinstance(other, Tuple): return NotImplemented return AtomicExpr.__mul__(self, other) @_sympifyit('other', NotImplemented) def __div__(self, other): if isinstance(other, Number) and global_evaluate[0]: if other is S.NaN: return S.NaN elif other is S.Infinity or other is S.NegativeInfinity: return S.Zero return AtomicExpr.__div__(self, other) __truediv__ = __div__ def __eq__(self, other): raise NotImplementedError('%s needs .__eq__() method' % (self.__class__.__name__)) def __ne__(self, other): raise NotImplementedError('%s needs .__ne__() method' % (self.__class__.__name__)) def __lt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s < %s" % (self, other)) raise NotImplementedError('%s needs .__lt__() method' % (self.__class__.__name__)) def __le__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s <= %s" % (self, other)) raise NotImplementedError('%s needs .__le__() method' % (self.__class__.__name__)) def __gt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s > %s" % (self, other)) return _sympify(other).__lt__(self) def __ge__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s >= %s" % (self, other)) return _sympify(other).__le__(self) def __hash__(self): return super(Number, self).__hash__() def is_constant(self, *wrt, **flags): return True def as_coeff_mul(self, *deps, **kwargs): # a -> c*t if self.is_Rational or not kwargs.pop('rational', True): return self, tuple() elif self.is_negative: return S.NegativeOne, (-self,) return S.One, (self,) def as_coeff_add(self, *deps): # a -> c + t if self.is_Rational: return self, tuple() return S.Zero, (self,) def as_coeff_Mul(self, rational=False): """Efficiently extract the coefficient of a product. """ if rational and not self.is_Rational: return S.One, self return (self, S.One) if self else (S.One, self) def as_coeff_Add(self, rational=False): """Efficiently extract the coefficient of a summation. """ if not rational: return self, S.Zero return S.Zero, self def gcd(self, other): """Compute GCD of `self` and `other`. """ from sympy.polys import gcd return gcd(self, other) def lcm(self, other): """Compute LCM of `self` and `other`. """ from sympy.polys import lcm return lcm(self, other) def cofactors(self, other): """Compute GCD and cofactors of `self` and `other`. """ from sympy.polys import cofactors return cofactors(self, other) class Float(Number): """Represent a floating-point number of arbitrary precision. Examples ======== >>> from sympy import Float >>> Float(3.5) 3.50000000000000 >>> Float(3) 3.00000000000000 Creating Floats from strings (and Python ``int`` and ``long`` types) will give a minimum precision of 15 digits, but the precision will automatically increase to capture all digits entered. >>> Float(1) 1.00000000000000 >>> Float(10**20) 100000000000000000000. >>> Float('1e20') 100000000000000000000. However, *floating-point* numbers (Python ``float`` types) retain only 15 digits of precision: >>> Float(1e20) 1.00000000000000e+20 >>> Float(1.23456789123456789) 1.23456789123457 It may be preferable to enter high-precision decimal numbers as strings: Float('1.23456789123456789') 1.23456789123456789 The desired number of digits can also be specified: >>> Float('1e-3', 3) 0.00100 >>> Float(100, 4) 100.0 Float can automatically count significant figures if a null string is sent for the precision; space are also allowed in the string. (Auto- counting is only allowed for strings, ints and longs). >>> Float('123 456 789 . 123 456', '') 123456789.123456 >>> Float('12e-3', '') 0.012 >>> Float(3, '') 3. If a number is written in scientific notation, only the digits before the exponent are considered significant if a decimal appears, otherwise the "e" signifies only how to move the decimal: >>> Float('60.e2', '') # 2 digits significant 6.0e+3 >>> Float('60e2', '') # 4 digits significant 6000. >>> Float('600e-2', '') # 3 digits significant 6.00 Notes ===== Floats are inexact by their nature unless their value is a binary-exact value. >>> approx, exact = Float(.1, 1), Float(.125, 1) For calculation purposes, evalf needs to be able to change the precision but this will not increase the accuracy of the inexact value. The following is the most accurate 5-digit approximation of a value of 0.1 that had only 1 digit of precision: >>> approx.evalf(5) 0.099609 By contrast, 0.125 is exact in binary (as it is in base 10) and so it can be passed to Float or evalf to obtain an arbitrary precision with matching accuracy: >>> Float(exact, 5) 0.12500 >>> exact.evalf(20) 0.12500000000000000000 Trying to make a high-precision Float from a float is not disallowed, but one must keep in mind that the *underlying float* (not the apparent decimal value) is being obtained with high precision. For example, 0.3 does not have a finite binary representation. The closest rational is the fraction 5404319552844595/2**54. So if you try to obtain a Float of 0.3 to 20 digits of precision you will not see the same thing as 0.3 followed by 19 zeros: >>> Float(0.3, 20) 0.29999999999999998890 If you want a 20-digit value of the decimal 0.3 (not the floating point approximation of 0.3) you should send the 0.3 as a string. The underlying representation is still binary but a higher precision than Python's float is used: >>> Float('0.3', 20) 0.30000000000000000000 Although you can increase the precision of an existing Float using Float it will not increase the accuracy -- the underlying value is not changed: >>> def show(f): # binary rep of Float ... from sympy import Mul, Pow ... s, m, e, b = f._mpf_ ... v = Mul(int(m), Pow(2, int(e), evaluate=False), evaluate=False) ... print('%s at prec=%s' % (v, f._prec)) ... >>> t = Float('0.3', 3) >>> show(t) 4915/2**14 at prec=13 >>> show(Float(t, 20)) # higher prec, not higher accuracy 4915/2**14 at prec=70 >>> show(Float(t, 2)) # lower prec 307/2**10 at prec=10 The same thing happens when evalf is used on a Float: >>> show(t.evalf(20)) 4915/2**14 at prec=70 >>> show(t.evalf(2)) 307/2**10 at prec=10 Finally, Floats can be instantiated with an mpf tuple (n, c, p) to produce the number (-1)**n*c*2**p: >>> n, c, p = 1, 5, 0 >>> (-1)**n*c*2**p -5 >>> Float((1, 5, 0)) -5.00000000000000 An actual mpf tuple also contains the number of bits in c as the last element of the tuple: >>> _._mpf_ (1, 5, 0, 3) This is not needed for instantiation and is not the same thing as the precision. The mpf tuple and the precision are two separate quantities that Float tracks. """ __slots__ = ['_mpf_', '_prec'] # A Float represents many real numbers, # both rational and irrational. is_rational = None is_irrational = None is_number = True is_real = True is_Float = True def __new__(cls, num, dps=None, prec=None, precision=None): if prec is not None: SymPyDeprecationWarning( feature="Using 'prec=XX' to denote decimal precision", useinstead="'dps=XX' for decimal precision and 'precision=XX' "\ "for binary precision", issue=12820, deprecated_since_version="1.1").warn() dps = prec del prec # avoid using this deprecated kwarg if dps is not None and precision is not None: raise ValueError('Both decimal and binary precision supplied. ' 'Supply only one. ') if isinstance(num, string_types): num = num.replace(' ', '') if num.startswith('.') and len(num) > 1: num = '0' + num elif num.startswith('-.') and len(num) > 2: num = '-0.' + num[2:] elif isinstance(num, float) and num == 0: num = '0' elif isinstance(num, (SYMPY_INTS, Integer)): num = str(num) # faster than mlib.from_int elif num is S.Infinity: num = '+inf' elif num is S.NegativeInfinity: num = '-inf' elif type(num).__module__ == 'numpy': # support for numpy datatypes num = _convert_numpy_types(num) elif isinstance(num, mpmath.mpf): if precision is None: if dps is None: precision = num.context.prec num = num._mpf_ if dps is None and precision is None: dps = 15 if isinstance(num, Float): return num if isinstance(num, string_types) and _literal_float(num): try: Num = decimal.Decimal(num) except decimal.InvalidOperation: pass else: isint = '.' not in num num, dps = _decimal_to_Rational_prec(Num) if num.is_Integer and isint: dps = max(dps, len(str(num).lstrip('-'))) dps = max(15, dps) precision = mlib.libmpf.dps_to_prec(dps) elif precision == '' and dps is None or precision is None and dps == '': if not isinstance(num, string_types): raise ValueError('The null string can only be used when ' 'the number to Float is passed as a string or an integer.') ok = None if _literal_float(num): try: Num = decimal.Decimal(num) except decimal.InvalidOperation: pass else: isint = '.' not in num num, dps = _decimal_to_Rational_prec(Num) if num.is_Integer and isint: dps = max(dps, len(str(num).lstrip('-'))) precision = mlib.libmpf.dps_to_prec(dps) ok = True if ok is None: raise ValueError('string-float not recognized: %s' % num) # decimal precision(dps) is set and maybe binary precision(precision) # as well.From here on binary precision is used to compute the Float. # Hence, if supplied use binary precision else translate from decimal # precision. if precision is None or precision == '': precision = mlib.libmpf.dps_to_prec(dps) precision = int(precision) if isinstance(num, float): _mpf_ = mlib.from_float(num, precision, rnd) elif isinstance(num, string_types): _mpf_ = mlib.from_str(num, precision, rnd) elif isinstance(num, decimal.Decimal): if num.is_finite(): _mpf_ = mlib.from_str(str(num), precision, rnd) elif num.is_nan(): _mpf_ = _mpf_nan elif num.is_infinite(): if num > 0: _mpf_ = _mpf_inf else: _mpf_ = _mpf_ninf else: raise ValueError("unexpected decimal value %s" % str(num)) elif isinstance(num, tuple) and len(num) in (3, 4): if type(num[1]) is str: # it's a hexadecimal (coming from a pickled object) # assume that it is in standard form num = list(num) # If we're loading an object pickled in Python 2 into # Python 3, we may need to strip a tailing 'L' because # of a shim for int on Python 3, see issue #13470. if num[1].endswith('L'): num[1] = num[1][:-1] num[1] = MPZ(num[1], 16) _mpf_ = tuple(num) else: if len(num) == 4: # handle normalization hack return Float._new(num, precision) else: return (S.NegativeOne**num[0]*num[1]*S(2)**num[2]).evalf(precision) else: try: _mpf_ = num._as_mpf_val(precision) except (NotImplementedError, AttributeError): _mpf_ = mpmath.mpf(num, prec=precision)._mpf_ # special cases if _mpf_ == _mpf_zero: pass # we want a Float elif _mpf_ == _mpf_nan: return S.NaN obj = Expr.__new__(cls) obj._mpf_ = _mpf_ obj._prec = precision return obj @classmethod def _new(cls, _mpf_, _prec): # special cases if _mpf_ == _mpf_zero: return S.Zero # XXX this is different from Float which gives 0.0 elif _mpf_ == _mpf_nan: return S.NaN obj = Expr.__new__(cls) obj._mpf_ = mpf_norm(_mpf_, _prec) # XXX: Should this be obj._prec = obj._mpf_[3]? obj._prec = _prec return obj # mpz can't be pickled def __getnewargs__(self): return (mlib.to_pickable(self._mpf_),) def __getstate__(self): return {'_prec': self._prec} def _hashable_content(self): return (self._mpf_, self._prec) def floor(self): return Integer(int(mlib.to_int( mlib.mpf_floor(self._mpf_, self._prec)))) def ceiling(self): return Integer(int(mlib.to_int( mlib.mpf_ceil(self._mpf_, self._prec)))) @property def num(self): return mpmath.mpf(self._mpf_) def _as_mpf_val(self, prec): rv = mpf_norm(self._mpf_, prec) if rv != self._mpf_ and self._prec == prec: debug(self._mpf_, rv) return rv def _as_mpf_op(self, prec): return self._mpf_, max(prec, self._prec) def _eval_is_finite(self): if self._mpf_ in (_mpf_inf, _mpf_ninf): return False return True def _eval_is_infinite(self): if self._mpf_ in (_mpf_inf, _mpf_ninf): return True return False def _eval_is_integer(self): return self._mpf_ == _mpf_zero def _eval_is_negative(self): if self._mpf_ == _mpf_ninf: return True if self._mpf_ == _mpf_inf: return False return self.num < 0 def _eval_is_positive(self): if self._mpf_ == _mpf_inf: return True if self._mpf_ == _mpf_ninf: return False return self.num > 0 def _eval_is_zero(self): return self._mpf_ == _mpf_zero def __nonzero__(self): return self._mpf_ != _mpf_zero __bool__ = __nonzero__ def __neg__(self): return Float._new(mlib.mpf_neg(self._mpf_), self._prec) @_sympifyit('other', NotImplemented) def __add__(self, other): if isinstance(other, Number) and global_evaluate[0]: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_add(self._mpf_, rhs, prec, rnd), prec) return Number.__add__(self, other) @_sympifyit('other', NotImplemented) def __sub__(self, other): if isinstance(other, Number) and global_evaluate[0]: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_sub(self._mpf_, rhs, prec, rnd), prec) return Number.__sub__(self, other) @_sympifyit('other', NotImplemented) def __mul__(self, other): if isinstance(other, Number) and global_evaluate[0]: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_mul(self._mpf_, rhs, prec, rnd), prec) return Number.__mul__(self, other) @_sympifyit('other', NotImplemented) def __div__(self, other): if isinstance(other, Number) and other != 0 and global_evaluate[0]: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_div(self._mpf_, rhs, prec, rnd), prec) return Number.__div__(self, other) __truediv__ = __div__ @_sympifyit('other', NotImplemented) def __mod__(self, other): if isinstance(other, Rational) and other.q != 1 and global_evaluate[0]: # calculate mod with Rationals, *then* round the result return Float(Rational.__mod__(Rational(self), other), precision=self._prec) if isinstance(other, Float) and global_evaluate[0]: r = self/other if r == int(r): return Float(0, precision=max(self._prec, other._prec)) if isinstance(other, Number) and global_evaluate[0]: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_mod(self._mpf_, rhs, prec, rnd), prec) return Number.__mod__(self, other) @_sympifyit('other', NotImplemented) def __rmod__(self, other): if isinstance(other, Float) and global_evaluate[0]: return other.__mod__(self) if isinstance(other, Number) and global_evaluate[0]: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_mod(rhs, self._mpf_, prec, rnd), prec) return Number.__rmod__(self, other) def _eval_power(self, expt): """ expt is symbolic object but not equal to 0, 1 (-p)**r -> exp(r*log(-p)) -> exp(r*(log(p) + I*Pi)) -> -> p**r*(sin(Pi*r) + cos(Pi*r)*I) """ if self == 0: if expt.is_positive: return S.Zero if expt.is_negative: return Float('inf') if isinstance(expt, Number): if isinstance(expt, Integer): prec = self._prec return Float._new( mlib.mpf_pow_int(self._mpf_, expt.p, prec, rnd), prec) elif isinstance(expt, Rational) and \ expt.p == 1 and expt.q % 2 and self.is_negative: return Pow(S.NegativeOne, expt, evaluate=False)*( -self)._eval_power(expt) expt, prec = expt._as_mpf_op(self._prec) mpfself = self._mpf_ try: y = mpf_pow(mpfself, expt, prec, rnd) return Float._new(y, prec) except mlib.ComplexResult: re, im = mlib.mpc_pow( (mpfself, _mpf_zero), (expt, _mpf_zero), prec, rnd) return Float._new(re, prec) + \ Float._new(im, prec)*S.ImaginaryUnit def __abs__(self): return Float._new(mlib.mpf_abs(self._mpf_), self._prec) def __int__(self): if self._mpf_ == _mpf_zero: return 0 return int(mlib.to_int(self._mpf_)) # uses round_fast = round_down __long__ = __int__ def __eq__(self, other): if isinstance(other, float): # coerce to Float at same precision o = Float(other) try: ompf = o._as_mpf_val(self._prec) except ValueError: return False return bool(mlib.mpf_eq(self._mpf_, ompf)) try: other = _sympify(other) except SympifyError: return NotImplemented if other.is_NumberSymbol: if other.is_irrational: return False return other.__eq__(self) if other.is_Float: return bool(mlib.mpf_eq(self._mpf_, other._mpf_)) if other.is_Number: # numbers should compare at the same precision; # all _as_mpf_val routines should be sure to abide # by the request to change the prec if necessary; if # they don't, the equality test will fail since it compares # the mpf tuples ompf = other._as_mpf_val(self._prec) return bool(mlib.mpf_eq(self._mpf_, ompf)) return False # Float != non-Number def __ne__(self, other): return not self == other def __gt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s > %s" % (self, other)) if other.is_NumberSymbol: return other.__lt__(self) if other.is_Rational and not other.is_Integer: self *= other.q other = _sympify(other.p) elif other.is_comparable: other = other.evalf() if other.is_Number and other is not S.NaN: return _sympify(bool( mlib.mpf_gt(self._mpf_, other._as_mpf_val(self._prec)))) return Expr.__gt__(self, other) def __ge__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s >= %s" % (self, other)) if other.is_NumberSymbol: return other.__le__(self) if other.is_Rational and not other.is_Integer: self *= other.q other = _sympify(other.p) elif other.is_comparable: other = other.evalf() if other.is_Number and other is not S.NaN: return _sympify(bool( mlib.mpf_ge(self._mpf_, other._as_mpf_val(self._prec)))) return Expr.__ge__(self, other) def __lt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s < %s" % (self, other)) if other.is_NumberSymbol: return other.__gt__(self) if other.is_Rational and not other.is_Integer: self *= other.q other = _sympify(other.p) elif other.is_comparable: other = other.evalf() if other.is_Number and other is not S.NaN: return _sympify(bool( mlib.mpf_lt(self._mpf_, other._as_mpf_val(self._prec)))) return Expr.__lt__(self, other) def __le__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s <= %s" % (self, other)) if other.is_NumberSymbol: return other.__ge__(self) if other.is_Rational and not other.is_Integer: self *= other.q other = _sympify(other.p) elif other.is_comparable: other = other.evalf() if other.is_Number and other is not S.NaN: return _sympify(bool( mlib.mpf_le(self._mpf_, other._as_mpf_val(self._prec)))) return Expr.__le__(self, other) def __hash__(self): return super(Float, self).__hash__() def epsilon_eq(self, other, epsilon="1e-15"): return abs(self - other) < Float(epsilon) def _sage_(self): import sage.all as sage return sage.RealNumber(str(self)) def __format__(self, format_spec): return format(decimal.Decimal(str(self)), format_spec) # Add sympify converters converter[float] = converter[decimal.Decimal] = Float # this is here to work nicely in Sage RealNumber = Float class Rational(Number): """Represents rational numbers (p/q) of any size. Examples ======== >>> from sympy import Rational, nsimplify, S, pi >>> Rational(1, 2) 1/2 Rational is unprejudiced in accepting input. If a float is passed, the underlying value of the binary representation will be returned: >>> Rational(.5) 1/2 >>> Rational(.2) 3602879701896397/18014398509481984 If the simpler representation of the float is desired then consider limiting the denominator to the desired value or convert the float to a string (which is roughly equivalent to limiting the denominator to 10**12): >>> Rational(str(.2)) 1/5 >>> Rational(.2).limit_denominator(10**12) 1/5 An arbitrarily precise Rational is obtained when a string literal is passed: >>> Rational("1.23") 123/100 >>> Rational('1e-2') 1/100 >>> Rational(".1") 1/10 >>> Rational('1e-2/3.2') 1/320 The conversion of other types of strings can be handled by the sympify() function, and conversion of floats to expressions or simple fractions can be handled with nsimplify: >>> S('.[3]') # repeating digits in brackets 1/3 >>> S('3**2/10') # general expressions 9/10 >>> nsimplify(.3) # numbers that have a simple form 3/10 But if the input does not reduce to a literal Rational, an error will be raised: >>> Rational(pi) Traceback (most recent call last): ... TypeError: invalid input: pi Low-level --------- Access numerator and denominator as .p and .q: >>> r = Rational(3, 4) >>> r 3/4 >>> r.p 3 >>> r.q 4 Note that p and q return integers (not SymPy Integers) so some care is needed when using them in expressions: >>> r.p/r.q 0.75 See Also ======== sympify, sympy.simplify.simplify.nsimplify """ is_real = True is_integer = False is_rational = True is_number = True __slots__ = ['p', 'q'] is_Rational = True @cacheit def __new__(cls, p, q=None, gcd=None): if q is None: if isinstance(p, Rational): return p if isinstance(p, SYMPY_INTS): pass else: if isinstance(p, (float, Float)): return Rational(*_as_integer_ratio(p)) if not isinstance(p, string_types): try: p = sympify(p) except (SympifyError, SyntaxError): pass # error will raise below else: if p.count('/') > 1: raise TypeError('invalid input: %s' % p) p = p.replace(' ', '') pq = p.rsplit('/', 1) if len(pq) == 2: p, q = pq fp = fractions.Fraction(p) fq = fractions.Fraction(q) p = fp/fq try: p = fractions.Fraction(p) except ValueError: pass # error will raise below else: return Rational(p.numerator, p.denominator, 1) if not isinstance(p, Rational): raise TypeError('invalid input: %s' % p) q = 1 gcd = 1 else: p = Rational(p) q = Rational(q) if isinstance(q, Rational): p *= q.q q = q.p if isinstance(p, Rational): q *= p.q p = p.p # p and q are now integers if q == 0: if p == 0: if _errdict["divide"]: raise ValueError("Indeterminate 0/0") else: return S.NaN return S.ComplexInfinity if q < 0: q = -q p = -p if not gcd: gcd = igcd(abs(p), q) if gcd > 1: p //= gcd q //= gcd if q == 1: return Integer(p) if p == 1 and q == 2: return S.Half obj = Expr.__new__(cls) obj.p = p obj.q = q return obj def limit_denominator(self, max_denominator=1000000): """Closest Rational to self with denominator at most max_denominator. >>> from sympy import Rational >>> Rational('3.141592653589793').limit_denominator(10) 22/7 >>> Rational('3.141592653589793').limit_denominator(100) 311/99 """ f = fractions.Fraction(self.p, self.q) return Rational(f.limit_denominator(fractions.Fraction(int(max_denominator)))) def __getnewargs__(self): return (self.p, self.q) def _hashable_content(self): return (self.p, self.q) def _eval_is_positive(self): return self.p > 0 def _eval_is_zero(self): return self.p == 0 def __neg__(self): return Rational(-self.p, self.q) @_sympifyit('other', NotImplemented) def __add__(self, other): if global_evaluate[0]: if isinstance(other, Integer): return Rational(self.p + self.q*other.p, self.q, 1) elif isinstance(other, Rational): #TODO: this can probably be optimized more return Rational(self.p*other.q + self.q*other.p, self.q*other.q) elif isinstance(other, Float): return other + self else: return Number.__add__(self, other) return Number.__add__(self, other) __radd__ = __add__ @_sympifyit('other', NotImplemented) def __sub__(self, other): if global_evaluate[0]: if isinstance(other, Integer): return Rational(self.p - self.q*other.p, self.q, 1) elif isinstance(other, Rational): return Rational(self.p*other.q - self.q*other.p, self.q*other.q) elif isinstance(other, Float): return -other + self else: return Number.__sub__(self, other) return Number.__sub__(self, other) @_sympifyit('other', NotImplemented) def __rsub__(self, other): if global_evaluate[0]: if isinstance(other, Integer): return Rational(self.q*other.p - self.p, self.q, 1) elif isinstance(other, Rational): return Rational(self.q*other.p - self.p*other.q, self.q*other.q) elif isinstance(other, Float): return -self + other else: return Number.__rsub__(self, other) return Number.__rsub__(self, other) @_sympifyit('other', NotImplemented) def __mul__(self, other): if global_evaluate[0]: if isinstance(other, Integer): return Rational(self.p*other.p, self.q, igcd(other.p, self.q)) elif isinstance(other, Rational): return Rational(self.p*other.p, self.q*other.q, igcd(self.p, other.q)*igcd(self.q, other.p)) elif isinstance(other, Float): return other*self else: return Number.__mul__(self, other) return Number.__mul__(self, other) __rmul__ = __mul__ @_sympifyit('other', NotImplemented) def __div__(self, other): if global_evaluate[0]: if isinstance(other, Integer): if self.p and other.p == S.Zero: return S.ComplexInfinity else: return Rational(self.p, self.q*other.p, igcd(self.p, other.p)) elif isinstance(other, Rational): return Rational(self.p*other.q, self.q*other.p, igcd(self.p, other.p)*igcd(self.q, other.q)) elif isinstance(other, Float): return self*(1/other) else: return Number.__div__(self, other) return Number.__div__(self, other) @_sympifyit('other', NotImplemented) def __rdiv__(self, other): if global_evaluate[0]: if isinstance(other, Integer): return Rational(other.p*self.q, self.p, igcd(self.p, other.p)) elif isinstance(other, Rational): return Rational(other.p*self.q, other.q*self.p, igcd(self.p, other.p)*igcd(self.q, other.q)) elif isinstance(other, Float): return other*(1/self) else: return Number.__rdiv__(self, other) return Number.__rdiv__(self, other) __truediv__ = __div__ @_sympifyit('other', NotImplemented) def __mod__(self, other): if global_evaluate[0]: if isinstance(other, Rational): n = (self.p*other.q) // (other.p*self.q) return Rational(self.p*other.q - n*other.p*self.q, self.q*other.q) if isinstance(other, Float): # calculate mod with Rationals, *then* round the answer return Float(self.__mod__(Rational(other)), precision=other._prec) return Number.__mod__(self, other) return Number.__mod__(self, other) @_sympifyit('other', NotImplemented) def __rmod__(self, other): if isinstance(other, Rational): return Rational.__mod__(other, self) return Number.__rmod__(self, other) def _eval_power(self, expt): if isinstance(expt, Number): if isinstance(expt, Float): return self._eval_evalf(expt._prec)**expt if expt.is_negative: # (3/4)**-2 -> (4/3)**2 ne = -expt if (ne is S.One): return Rational(self.q, self.p) if self.is_negative: return S.NegativeOne**expt*Rational(self.q, -self.p)**ne else: return Rational(self.q, self.p)**ne if expt is S.Infinity: # -oo already caught by test for negative if self.p > self.q: # (3/2)**oo -> oo return S.Infinity if self.p < -self.q: # (-3/2)**oo -> oo + I*oo return S.Infinity + S.Infinity*S.ImaginaryUnit return S.Zero if isinstance(expt, Integer): # (4/3)**2 -> 4**2 / 3**2 return Rational(self.p**expt.p, self.q**expt.p, 1) if isinstance(expt, Rational): if self.p != 1: # (4/3)**(5/6) -> 4**(5/6)*3**(-5/6) return Integer(self.p)**expt*Integer(self.q)**(-expt) # as the above caught negative self.p, now self is positive return Integer(self.q)**Rational( expt.p*(expt.q - 1), expt.q) / \ Integer(self.q)**Integer(expt.p) if self.is_negative and expt.is_even: return (-self)**expt return def _as_mpf_val(self, prec): return mlib.from_rational(self.p, self.q, prec, rnd) def _mpmath_(self, prec, rnd): return mpmath.make_mpf(mlib.from_rational(self.p, self.q, prec, rnd)) def __abs__(self): return Rational(abs(self.p), self.q) def __int__(self): p, q = self.p, self.q if p < 0: return -int(-p//q) return int(p//q) __long__ = __int__ def floor(self): return Integer(self.p // self.q) def ceiling(self): return -Integer(-self.p // self.q) def __eq__(self, other): try: other = _sympify(other) except SympifyError: return NotImplemented if other.is_NumberSymbol: if other.is_irrational: return False return other.__eq__(self) if other.is_Number: if other.is_Rational: # a Rational is always in reduced form so will never be 2/4 # so we can just check equivalence of args return self.p == other.p and self.q == other.q if other.is_Float: return mlib.mpf_eq(self._as_mpf_val(other._prec), other._mpf_) return False def __ne__(self, other): return not self == other def __gt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s > %s" % (self, other)) if other.is_NumberSymbol: return other.__lt__(self) expr = self if other.is_Number: if other.is_Rational: return _sympify(bool(self.p*other.q > self.q*other.p)) if other.is_Float: return _sympify(bool(mlib.mpf_gt( self._as_mpf_val(other._prec), other._mpf_))) elif other.is_number and other.is_real: expr, other = Integer(self.p), self.q*other return Expr.__gt__(expr, other) def __ge__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s >= %s" % (self, other)) if other.is_NumberSymbol: return other.__le__(self) expr = self if other.is_Number: if other.is_Rational: return _sympify(bool(self.p*other.q >= self.q*other.p)) if other.is_Float: return _sympify(bool(mlib.mpf_ge( self._as_mpf_val(other._prec), other._mpf_))) elif other.is_number and other.is_real: expr, other = Integer(self.p), self.q*other return Expr.__ge__(expr, other) def __lt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s < %s" % (self, other)) if other.is_NumberSymbol: return other.__gt__(self) expr = self if other.is_Number: if other.is_Rational: return _sympify(bool(self.p*other.q < self.q*other.p)) if other.is_Float: return _sympify(bool(mlib.mpf_lt( self._as_mpf_val(other._prec), other._mpf_))) elif other.is_number and other.is_real: expr, other = Integer(self.p), self.q*other return Expr.__lt__(expr, other) def __le__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s <= %s" % (self, other)) expr = self if other.is_NumberSymbol: return other.__ge__(self) elif other.is_Number: if other.is_Rational: return _sympify(bool(self.p*other.q <= self.q*other.p)) if other.is_Float: return _sympify(bool(mlib.mpf_le( self._as_mpf_val(other._prec), other._mpf_))) elif other.is_number and other.is_real: expr, other = Integer(self.p), self.q*other return Expr.__le__(expr, other) def __hash__(self): return super(Rational, self).__hash__() def factors(self, limit=None, use_trial=True, use_rho=False, use_pm1=False, verbose=False, visual=False): """A wrapper to factorint which return factors of self that are smaller than limit (or cheap to compute). Special methods of factoring are disabled by default so that only trial division is used. """ from sympy.ntheory import factorrat return factorrat(self, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose).copy() @_sympifyit('other', NotImplemented) def gcd(self, other): if isinstance(other, Rational): if other is S.Zero: return other return Rational( Integer(igcd(self.p, other.p)), Integer(ilcm(self.q, other.q))) return Number.gcd(self, other) @_sympifyit('other', NotImplemented) def lcm(self, other): if isinstance(other, Rational): return Rational( self.p // igcd(self.p, other.p) * other.p, igcd(self.q, other.q)) return Number.lcm(self, other) def as_numer_denom(self): return Integer(self.p), Integer(self.q) def _sage_(self): import sage.all as sage return sage.Integer(self.p)/sage.Integer(self.q) def as_content_primitive(self, radical=False, clear=True): """Return the tuple (R, self/R) where R is the positive Rational extracted from self. Examples ======== >>> from sympy import S >>> (S(-3)/2).as_content_primitive() (3/2, -1) See docstring of Expr.as_content_primitive for more examples. """ if self: if self.is_positive: return self, S.One return -self, S.NegativeOne return S.One, self def as_coeff_Mul(self, rational=False): """Efficiently extract the coefficient of a product. """ return self, S.One def as_coeff_Add(self, rational=False): """Efficiently extract the coefficient of a summation. """ return self, S.Zero class Integer(Rational): """Represents integer numbers of any size. Examples ======== >>> from sympy import Integer >>> Integer(3) 3 If a float or a rational is passed to Integer, the fractional part will be discarded; the effect is of rounding toward zero. >>> Integer(3.8) 3 >>> Integer(-3.8) -3 A string is acceptable input if it can be parsed as an integer: >>> Integer("9" * 20) 99999999999999999999 It is rarely needed to explicitly instantiate an Integer, because Python integers are automatically converted to Integer when they are used in SymPy expressions. """ q = 1 is_integer = True is_number = True is_Integer = True __slots__ = ['p'] def _as_mpf_val(self, prec): return mlib.from_int(self.p, prec, rnd) def _mpmath_(self, prec, rnd): return mpmath.make_mpf(self._as_mpf_val(prec)) @cacheit def __new__(cls, i): if isinstance(i, string_types): i = i.replace(' ', '') # whereas we cannot, in general, make a Rational from an # arbitrary expression, we can make an Integer unambiguously # (except when a non-integer expression happens to round to # an integer). So we proceed by taking int() of the input and # let the int routines determine whether the expression can # be made into an int or whether an error should be raised. try: ival = int(i) except TypeError: raise TypeError( "Argument of Integer should be of numeric type, got %s." % i) # We only work with well-behaved integer types. This converts, for # example, numpy.int32 instances. if ival == 1: return S.One if ival == -1: return S.NegativeOne if ival == 0: return S.Zero obj = Expr.__new__(cls) obj.p = ival return obj def __getnewargs__(self): return (self.p,) # Arithmetic operations are here for efficiency def __int__(self): return self.p __long__ = __int__ def floor(self): return Integer(self.p) def ceiling(self): return Integer(self.p) def __neg__(self): return Integer(-self.p) def __abs__(self): if self.p >= 0: return self else: return Integer(-self.p) def __divmod__(self, other): from .containers import Tuple if isinstance(other, Integer) and global_evaluate[0]: return Tuple(*(divmod(self.p, other.p))) else: return Number.__divmod__(self, other) def __rdivmod__(self, other): from .containers import Tuple if isinstance(other, integer_types) and global_evaluate[0]: return Tuple(*(divmod(other, self.p))) else: try: other = Number(other) except TypeError: msg = "unsupported operand type(s) for divmod(): '%s' and '%s'" oname = type(other).__name__ sname = type(self).__name__ raise TypeError(msg % (oname, sname)) return Number.__divmod__(other, self) # TODO make it decorator + bytecodehacks? def __add__(self, other): if global_evaluate[0]: if isinstance(other, integer_types): return Integer(self.p + other) elif isinstance(other, Integer): return Integer(self.p + other.p) elif isinstance(other, Rational): return Rational(self.p*other.q + other.p, other.q, 1) return Rational.__add__(self, other) else: return Add(self, other) def __radd__(self, other): if global_evaluate[0]: if isinstance(other, integer_types): return Integer(other + self.p) elif isinstance(other, Rational): return Rational(other.p + self.p*other.q, other.q, 1) return Rational.__radd__(self, other) return Rational.__radd__(self, other) def __sub__(self, other): if global_evaluate[0]: if isinstance(other, integer_types): return Integer(self.p - other) elif isinstance(other, Integer): return Integer(self.p - other.p) elif isinstance(other, Rational): return Rational(self.p*other.q - other.p, other.q, 1) return Rational.__sub__(self, other) return Rational.__sub__(self, other) def __rsub__(self, other): if global_evaluate[0]: if isinstance(other, integer_types): return Integer(other - self.p) elif isinstance(other, Rational): return Rational(other.p - self.p*other.q, other.q, 1) return Rational.__rsub__(self, other) return Rational.__rsub__(self, other) def __mul__(self, other): if global_evaluate[0]: if isinstance(other, integer_types): return Integer(self.p*other) elif isinstance(other, Integer): return Integer(self.p*other.p) elif isinstance(other, Rational): return Rational(self.p*other.p, other.q, igcd(self.p, other.q)) return Rational.__mul__(self, other) return Rational.__mul__(self, other) def __rmul__(self, other): if global_evaluate[0]: if isinstance(other, integer_types): return Integer(other*self.p) elif isinstance(other, Rational): return Rational(other.p*self.p, other.q, igcd(self.p, other.q)) return Rational.__rmul__(self, other) return Rational.__rmul__(self, other) def __mod__(self, other): if global_evaluate[0]: if isinstance(other, integer_types): return Integer(self.p % other) elif isinstance(other, Integer): return Integer(self.p % other.p) return Rational.__mod__(self, other) return Rational.__mod__(self, other) def __rmod__(self, other): if global_evaluate[0]: if isinstance(other, integer_types): return Integer(other % self.p) elif isinstance(other, Integer): return Integer(other.p % self.p) return Rational.__rmod__(self, other) return Rational.__rmod__(self, other) def __eq__(self, other): if isinstance(other, integer_types): return (self.p == other) elif isinstance(other, Integer): return (self.p == other.p) return Rational.__eq__(self, other) def __ne__(self, other): return not self == other def __gt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s > %s" % (self, other)) if other.is_Integer: return _sympify(self.p > other.p) return Rational.__gt__(self, other) def __lt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s < %s" % (self, other)) if other.is_Integer: return _sympify(self.p < other.p) return Rational.__lt__(self, other) def __ge__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s >= %s" % (self, other)) if other.is_Integer: return _sympify(self.p >= other.p) return Rational.__ge__(self, other) def __le__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s <= %s" % (self, other)) if other.is_Integer: return _sympify(self.p <= other.p) return Rational.__le__(self, other) def __hash__(self): return hash(self.p) def __index__(self): return self.p ######################################## def _eval_is_odd(self): return bool(self.p % 2) def _eval_power(self, expt): """ Tries to do some simplifications on self**expt Returns None if no further simplifications can be done When exponent is a fraction (so we have for example a square root), we try to find a simpler representation by factoring the argument up to factors of 2**15, e.g. - sqrt(4) becomes 2 - sqrt(-4) becomes 2*I - (2**(3+7)*3**(6+7))**Rational(1,7) becomes 6*18**(3/7) Further simplification would require a special call to factorint on the argument which is not done here for sake of speed. """ from sympy import perfect_power if expt is S.Infinity: if self.p > S.One: return S.Infinity # cases -1, 0, 1 are done in their respective classes return S.Infinity + S.ImaginaryUnit*S.Infinity if expt is S.NegativeInfinity: return Rational(1, self)**S.Infinity if not isinstance(expt, Number): # simplify when expt is even # (-2)**k --> 2**k if self.is_negative and expt.is_even: return (-self)**expt if isinstance(expt, Float): # Rational knows how to exponentiate by a Float return super(Integer, self)._eval_power(expt) if not isinstance(expt, Rational): return if expt is S.Half and self.is_negative: # we extract I for this special case since everyone is doing so return S.ImaginaryUnit*Pow(-self, expt) if expt.is_negative: # invert base and change sign on exponent ne = -expt if self.is_negative: return S.NegativeOne**expt*Rational(1, -self)**ne else: return Rational(1, self.p)**ne # see if base is a perfect root, sqrt(4) --> 2 x, xexact = integer_nthroot(abs(self.p), expt.q) if xexact: # if it's a perfect root we've finished result = Integer(x**abs(expt.p)) if self.is_negative: result *= S.NegativeOne**expt return result # The following is an algorithm where we collect perfect roots # from the factors of base. # if it's not an nth root, it still might be a perfect power b_pos = int(abs(self.p)) p = perfect_power(b_pos) if p is not False: dict = {p[0]: p[1]} else: dict = Integer(b_pos).factors(limit=2**15) # now process the dict of factors out_int = 1 # integer part out_rad = 1 # extracted radicals sqr_int = 1 sqr_gcd = 0 sqr_dict = {} for prime, exponent in dict.items(): exponent *= expt.p # remove multiples of expt.q: (2**12)**(1/10) -> 2*(2**2)**(1/10) div_e, div_m = divmod(exponent, expt.q) if div_e > 0: out_int *= prime**div_e if div_m > 0: # see if the reduced exponent shares a gcd with e.q # (2**2)**(1/10) -> 2**(1/5) g = igcd(div_m, expt.q) if g != 1: out_rad *= Pow(prime, Rational(div_m//g, expt.q//g)) else: sqr_dict[prime] = div_m # identify gcd of remaining powers for p, ex in sqr_dict.items(): if sqr_gcd == 0: sqr_gcd = ex else: sqr_gcd = igcd(sqr_gcd, ex) if sqr_gcd == 1: break for k, v in sqr_dict.items(): sqr_int *= k**(v//sqr_gcd) if sqr_int == b_pos and out_int == 1 and out_rad == 1: result = None else: result = out_int*out_rad*Pow(sqr_int, Rational(sqr_gcd, expt.q)) if self.is_negative: result *= Pow(S.NegativeOne, expt) return result def _eval_is_prime(self): from sympy.ntheory import isprime return isprime(self) def _eval_is_composite(self): if self > 1: return fuzzy_not(self.is_prime) else: return False def as_numer_denom(self): return self, S.One def __floordiv__(self, other): return Integer(self.p // Integer(other).p) def __rfloordiv__(self, other): return Integer(Integer(other).p // self.p) # Add sympify converters for i_type in integer_types: converter[i_type] = Integer class AlgebraicNumber(Expr): """Class for representing algebraic numbers in SymPy. """ __slots__ = ['rep', 'root', 'alias', 'minpoly'] is_AlgebraicNumber = True is_algebraic = True is_number = True def __new__(cls, expr, coeffs=None, alias=None, **args): """Construct a new algebraic number. """ from sympy import Poly from sympy.polys.polyclasses import ANP, DMP from sympy.polys.numberfields import minimal_polynomial from sympy.core.symbol import Symbol expr = sympify(expr) if isinstance(expr, (tuple, Tuple)): minpoly, root = expr if not minpoly.is_Poly: minpoly = Poly(minpoly) elif expr.is_AlgebraicNumber: minpoly, root = expr.minpoly, expr.root else: minpoly, root = minimal_polynomial( expr, args.get('gen'), polys=True), expr dom = minpoly.get_domain() if coeffs is not None: if not isinstance(coeffs, ANP): rep = DMP.from_sympy_list(sympify(coeffs), 0, dom) scoeffs = Tuple(*coeffs) else: rep = DMP.from_list(coeffs.to_list(), 0, dom) scoeffs = Tuple(*coeffs.to_list()) if rep.degree() >= minpoly.degree(): rep = rep.rem(minpoly.rep) else: rep = DMP.from_list([1, 0], 0, dom) scoeffs = Tuple(1, 0) sargs = (root, scoeffs) if alias is not None: if not isinstance(alias, Symbol): alias = Symbol(alias) sargs = sargs + (alias,) obj = Expr.__new__(cls, *sargs) obj.rep = rep obj.root = root obj.alias = alias obj.minpoly = minpoly return obj def __hash__(self): return super(AlgebraicNumber, self).__hash__() def _eval_evalf(self, prec): return self.as_expr()._evalf(prec) @property def is_aliased(self): """Returns ``True`` if ``alias`` was set. """ return self.alias is not None def as_poly(self, x=None): """Create a Poly instance from ``self``. """ from sympy import Dummy, Poly, PurePoly if x is not None: return Poly.new(self.rep, x) else: if self.alias is not None: return Poly.new(self.rep, self.alias) else: return PurePoly.new(self.rep, Dummy('x')) def as_expr(self, x=None): """Create a Basic expression from ``self``. """ return self.as_poly(x or self.root).as_expr().expand() def coeffs(self): """Returns all SymPy coefficients of an algebraic number. """ return [ self.rep.dom.to_sympy(c) for c in self.rep.all_coeffs() ] def native_coeffs(self): """Returns all native coefficients of an algebraic number. """ return self.rep.all_coeffs() def to_algebraic_integer(self): """Convert ``self`` to an algebraic integer. """ from sympy import Poly f = self.minpoly if f.LC() == 1: return self coeff = f.LC()**(f.degree() - 1) poly = f.compose(Poly(f.gen/f.LC())) minpoly = poly*coeff root = f.LC()*self.root return AlgebraicNumber((minpoly, root), self.coeffs()) def _eval_simplify(self, ratio, measure, rational, inverse): from sympy.polys import CRootOf, minpoly for r in [r for r in self.minpoly.all_roots() if r.func != CRootOf]: if minpoly(self.root - r).is_Symbol: # use the matching root if it's simpler if measure(r) < ratio*measure(self.root): return AlgebraicNumber(r) return self class RationalConstant(Rational): """ Abstract base class for rationals with specific behaviors Derived classes must define class attributes p and q and should probably all be singletons. """ __slots__ = [] def __new__(cls): return AtomicExpr.__new__(cls) class IntegerConstant(Integer): __slots__ = [] def __new__(cls): return AtomicExpr.__new__(cls) class Zero(with_metaclass(Singleton, IntegerConstant)): """The number zero. Zero is a singleton, and can be accessed by ``S.Zero`` Examples ======== >>> from sympy import S, Integer, zoo >>> Integer(0) is S.Zero True >>> 1/S.Zero zoo References ========== .. [1] https://en.wikipedia.org/wiki/Zero """ p = 0 q = 1 is_positive = False is_negative = False is_zero = True is_number = True __slots__ = [] @staticmethod def __abs__(): return S.Zero @staticmethod def __neg__(): return S.Zero def _eval_power(self, expt): if expt.is_positive: return self if expt.is_negative: return S.ComplexInfinity if expt.is_real is False: return S.NaN # infinities are already handled with pos and neg # tests above; now throw away leading numbers on Mul # exponent coeff, terms = expt.as_coeff_Mul() if coeff.is_negative: return S.ComplexInfinity**terms if coeff is not S.One: # there is a Number to discard return self**terms def _eval_order(self, *symbols): # Order(0,x) -> 0 return self def __nonzero__(self): return False __bool__ = __nonzero__ def as_coeff_Mul(self, rational=False): # XXX this routine should be deleted """Efficiently extract the coefficient of a summation. """ return S.One, self class One(with_metaclass(Singleton, IntegerConstant)): """The number one. One is a singleton, and can be accessed by ``S.One``. Examples ======== >>> from sympy import S, Integer >>> Integer(1) is S.One True References ========== .. [1] https://en.wikipedia.org/wiki/1_%28number%29 """ is_number = True p = 1 q = 1 __slots__ = [] @staticmethod def __abs__(): return S.One @staticmethod def __neg__(): return S.NegativeOne def _eval_power(self, expt): return self def _eval_order(self, *symbols): return @staticmethod def factors(limit=None, use_trial=True, use_rho=False, use_pm1=False, verbose=False, visual=False): if visual: return S.One else: return {} class NegativeOne(with_metaclass(Singleton, IntegerConstant)): """The number negative one. NegativeOne is a singleton, and can be accessed by ``S.NegativeOne``. Examples ======== >>> from sympy import S, Integer >>> Integer(-1) is S.NegativeOne True See Also ======== One References ========== .. [1] https://en.wikipedia.org/wiki/%E2%88%921_%28number%29 """ is_number = True p = -1 q = 1 __slots__ = [] @staticmethod def __abs__(): return S.One @staticmethod def __neg__(): return S.One def _eval_power(self, expt): if expt.is_odd: return S.NegativeOne if expt.is_even: return S.One if isinstance(expt, Number): if isinstance(expt, Float): return Float(-1.0)**expt if expt is S.NaN: return S.NaN if expt is S.Infinity or expt is S.NegativeInfinity: return S.NaN if expt is S.Half: return S.ImaginaryUnit if isinstance(expt, Rational): if expt.q == 2: return S.ImaginaryUnit**Integer(expt.p) i, r = divmod(expt.p, expt.q) if i: return self**i*self**Rational(r, expt.q) return class Half(with_metaclass(Singleton, RationalConstant)): """The rational number 1/2. Half is a singleton, and can be accessed by ``S.Half``. Examples ======== >>> from sympy import S, Rational >>> Rational(1, 2) is S.Half True References ========== .. [1] https://en.wikipedia.org/wiki/One_half """ is_number = True p = 1 q = 2 __slots__ = [] @staticmethod def __abs__(): return S.Half class Infinity(with_metaclass(Singleton, Number)): r"""Positive infinite quantity. In real analysis the symbol `\infty` denotes an unbounded limit: `x\to\infty` means that `x` grows without bound. Infinity is often used not only to define a limit but as a value in the affinely extended real number system. Points labeled `+\infty` and `-\infty` can be added to the topological space of the real numbers, producing the two-point compactification of the real numbers. Adding algebraic properties to this gives us the extended real numbers. Infinity is a singleton, and can be accessed by ``S.Infinity``, or can be imported as ``oo``. Examples ======== >>> from sympy import oo, exp, limit, Symbol >>> 1 + oo oo >>> 42/oo 0 >>> x = Symbol('x') >>> limit(exp(x), x, oo) oo See Also ======== NegativeInfinity, NaN References ========== .. [1] https://en.wikipedia.org/wiki/Infinity """ is_commutative = True is_positive = True is_infinite = True is_number = True is_prime = False __slots__ = [] def __new__(cls): return AtomicExpr.__new__(cls) def _latex(self, printer): return r"\infty" def _eval_subs(self, old, new): if self == old: return new @_sympifyit('other', NotImplemented) def __add__(self, other): if isinstance(other, Number): if other is S.NegativeInfinity or other is S.NaN: return S.NaN elif other.is_Float: if other == Float('-inf'): return S.NaN else: return Float('inf') else: return S.Infinity return NotImplemented __radd__ = __add__ @_sympifyit('other', NotImplemented) def __sub__(self, other): if isinstance(other, Number): if other is S.Infinity or other is S.NaN: return S.NaN elif other.is_Float: if other == Float('inf'): return S.NaN else: return Float('inf') else: return S.Infinity return NotImplemented @_sympifyit('other', NotImplemented) def __mul__(self, other): if isinstance(other, Number): if other is S.Zero or other is S.NaN: return S.NaN elif other.is_Float: if other == 0: return S.NaN if other > 0: return Float('inf') else: return Float('-inf') else: if other > 0: return S.Infinity else: return S.NegativeInfinity return NotImplemented __rmul__ = __mul__ @_sympifyit('other', NotImplemented) def __div__(self, other): if isinstance(other, Number): if other is S.Infinity or \ other is S.NegativeInfinity or \ other is S.NaN: return S.NaN elif other.is_Float: if other == Float('-inf') or \ other == Float('inf'): return S.NaN elif other.is_nonnegative: return Float('inf') else: return Float('-inf') else: if other >= 0: return S.Infinity else: return S.NegativeInfinity return NotImplemented __truediv__ = __div__ def __abs__(self): return S.Infinity def __neg__(self): return S.NegativeInfinity def _eval_power(self, expt): """ ``expt`` is symbolic object but not equal to 0 or 1. ================ ======= ============================== Expression Result Notes ================ ======= ============================== ``oo ** nan`` ``nan`` ``oo ** -p`` ``0`` ``p`` is number, ``oo`` ================ ======= ============================== See Also ======== Pow NaN NegativeInfinity """ from sympy.functions import re if expt.is_positive: return S.Infinity if expt.is_negative: return S.Zero if expt is S.NaN: return S.NaN if expt is S.ComplexInfinity: return S.NaN if expt.is_real is False and expt.is_number: expt_real = re(expt) if expt_real.is_positive: return S.ComplexInfinity if expt_real.is_negative: return S.Zero if expt_real.is_zero: return S.NaN return self**expt.evalf() def _as_mpf_val(self, prec): return mlib.finf def _sage_(self): import sage.all as sage return sage.oo def __hash__(self): return super(Infinity, self).__hash__() def __eq__(self, other): return other is S.Infinity def __ne__(self, other): return other is not S.Infinity def __lt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s < %s" % (self, other)) if other.is_real: return S.false return Expr.__lt__(self, other) def __le__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s <= %s" % (self, other)) if other.is_real: if other.is_finite or other is S.NegativeInfinity: return S.false elif other.is_nonpositive: return S.false elif other.is_infinite and other.is_positive: return S.true return Expr.__le__(self, other) def __gt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s > %s" % (self, other)) if other.is_real: if other.is_finite or other is S.NegativeInfinity: return S.true elif other.is_nonpositive: return S.true elif other.is_infinite and other.is_positive: return S.false return Expr.__gt__(self, other) def __ge__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s >= %s" % (self, other)) if other.is_real: return S.true return Expr.__ge__(self, other) def __mod__(self, other): return S.NaN __rmod__ = __mod__ def floor(self): return self def ceiling(self): return self oo = S.Infinity class NegativeInfinity(with_metaclass(Singleton, Number)): """Negative infinite quantity. NegativeInfinity is a singleton, and can be accessed by ``S.NegativeInfinity``. See Also ======== Infinity """ is_commutative = True is_negative = True is_infinite = True is_number = True __slots__ = [] def __new__(cls): return AtomicExpr.__new__(cls) def _latex(self, printer): return r"-\infty" def _eval_subs(self, old, new): if self == old: return new @_sympifyit('other', NotImplemented) def __add__(self, other): if isinstance(other, Number): if other is S.Infinity or other is S.NaN: return S.NaN elif other.is_Float: if other == Float('inf'): return Float('nan') else: return Float('-inf') else: return S.NegativeInfinity return NotImplemented __radd__ = __add__ @_sympifyit('other', NotImplemented) def __sub__(self, other): if isinstance(other, Number): if other is S.NegativeInfinity or other is S.NaN: return S.NaN elif other.is_Float: if other == Float('-inf'): return Float('nan') else: return Float('-inf') else: return S.NegativeInfinity return NotImplemented @_sympifyit('other', NotImplemented) def __mul__(self, other): if isinstance(other, Number): if other is S.Zero or other is S.NaN: return S.NaN elif other.is_Float: if other is S.NaN or other.is_zero: return S.NaN elif other.is_positive: return Float('-inf') else: return Float('inf') else: if other.is_positive: return S.NegativeInfinity else: return S.Infinity return NotImplemented __rmul__ = __mul__ @_sympifyit('other', NotImplemented) def __div__(self, other): if isinstance(other, Number): if other is S.Infinity or \ other is S.NegativeInfinity or \ other is S.NaN: return S.NaN elif other.is_Float: if other == Float('-inf') or \ other == Float('inf') or \ other is S.NaN: return S.NaN elif other.is_nonnegative: return Float('-inf') else: return Float('inf') else: if other >= 0: return S.NegativeInfinity else: return S.Infinity return NotImplemented __truediv__ = __div__ def __abs__(self): return S.Infinity def __neg__(self): return S.Infinity def _eval_power(self, expt): """ ``expt`` is symbolic object but not equal to 0 or 1. ================ ======= ============================== Expression Result Notes ================ ======= ============================== ``(-oo) ** nan`` ``nan`` ``(-oo) ** oo`` ``nan`` ``(-oo) ** -oo`` ``nan`` ``(-oo) ** e`` ``oo`` ``e`` is positive even integer ``(-oo) ** o`` ``-oo`` ``o`` is positive odd integer ================ ======= ============================== See Also ======== Infinity Pow NaN """ if expt.is_number: if expt is S.NaN or \ expt is S.Infinity or \ expt is S.NegativeInfinity: return S.NaN if isinstance(expt, Integer) and expt.is_positive: if expt.is_odd: return S.NegativeInfinity else: return S.Infinity return S.NegativeOne**expt*S.Infinity**expt def _as_mpf_val(self, prec): return mlib.fninf def _sage_(self): import sage.all as sage return -(sage.oo) def __hash__(self): return super(NegativeInfinity, self).__hash__() def __eq__(self, other): return other is S.NegativeInfinity def __ne__(self, other): return other is not S.NegativeInfinity def __lt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s < %s" % (self, other)) if other.is_real: if other.is_finite or other is S.Infinity: return S.true elif other.is_nonnegative: return S.true elif other.is_infinite and other.is_negative: return S.false return Expr.__lt__(self, other) def __le__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s <= %s" % (self, other)) if other.is_real: return S.true return Expr.__le__(self, other) def __gt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s > %s" % (self, other)) if other.is_real: return S.false return Expr.__gt__(self, other) def __ge__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s >= %s" % (self, other)) if other.is_real: if other.is_finite or other is S.Infinity: return S.false elif other.is_nonnegative: return S.false elif other.is_infinite and other.is_negative: return S.true return Expr.__ge__(self, other) def __mod__(self, other): return S.NaN __rmod__ = __mod__ def floor(self): return self def ceiling(self): return self class NaN(with_metaclass(Singleton, Number)): """ Not a Number. This serves as a place holder for numeric values that are indeterminate. Most operations on NaN, produce another NaN. Most indeterminate forms, such as ``0/0`` or ``oo - oo` produce NaN. Two exceptions are ``0**0`` and ``oo**0``, which all produce ``1`` (this is consistent with Python's float). NaN is loosely related to floating point nan, which is defined in the IEEE 754 floating point standard, and corresponds to the Python ``float('nan')``. Differences are noted below. NaN is mathematically not equal to anything else, even NaN itself. This explains the initially counter-intuitive results with ``Eq`` and ``==`` in the examples below. NaN is not comparable so inequalities raise a TypeError. This is in constrast with floating point nan where all inequalities are false. NaN is a singleton, and can be accessed by ``S.NaN``, or can be imported as ``nan``. Examples ======== >>> from sympy import nan, S, oo, Eq >>> nan is S.NaN True >>> oo - oo nan >>> nan + 1 nan >>> Eq(nan, nan) # mathematical equality False >>> nan == nan # structural equality True References ========== .. [1] https://en.wikipedia.org/wiki/NaN """ is_commutative = True is_real = None is_rational = None is_algebraic = None is_transcendental = None is_integer = None is_comparable = False is_finite = None is_zero = None is_prime = None is_positive = None is_negative = None is_number = True __slots__ = [] def __new__(cls): return AtomicExpr.__new__(cls) def _latex(self, printer): return r"\text{NaN}" @_sympifyit('other', NotImplemented) def __add__(self, other): return self @_sympifyit('other', NotImplemented) def __sub__(self, other): return self @_sympifyit('other', NotImplemented) def __mul__(self, other): return self @_sympifyit('other', NotImplemented) def __div__(self, other): return self __truediv__ = __div__ def floor(self): return self def ceiling(self): return self def _as_mpf_val(self, prec): return _mpf_nan def _sage_(self): import sage.all as sage return sage.NaN def __hash__(self): return super(NaN, self).__hash__() def __eq__(self, other): # NaN is structurally equal to another NaN return other is S.NaN def __ne__(self, other): return other is not S.NaN def _eval_Eq(self, other): # NaN is not mathematically equal to anything, even NaN return S.false # Expr will _sympify and raise TypeError __gt__ = Expr.__gt__ __ge__ = Expr.__ge__ __lt__ = Expr.__lt__ __le__ = Expr.__le__ nan = S.NaN class ComplexInfinity(with_metaclass(Singleton, AtomicExpr)): r"""Complex infinity. In complex analysis the symbol `\tilde\infty`, called "complex infinity", represents a quantity with infinite magnitude, but undetermined complex phase. ComplexInfinity is a singleton, and can be accessed by ``S.ComplexInfinity``, or can be imported as ``zoo``. Examples ======== >>> from sympy import zoo, oo >>> zoo + 42 zoo >>> 42/zoo 0 >>> zoo + zoo nan >>> zoo*zoo zoo See Also ======== Infinity """ is_commutative = True is_infinite = True is_number = True is_prime = False is_complex = True is_real = False __slots__ = [] def __new__(cls): return AtomicExpr.__new__(cls) def _latex(self, printer): return r"\tilde{\infty}" @staticmethod def __abs__(): return S.Infinity def floor(self): return self def ceiling(self): return self @staticmethod def __neg__(): return S.ComplexInfinity def _eval_power(self, expt): if expt is S.ComplexInfinity: return S.NaN if isinstance(expt, Number): if expt is S.Zero: return S.NaN else: if expt.is_positive: return S.ComplexInfinity else: return S.Zero def _sage_(self): import sage.all as sage return sage.UnsignedInfinityRing.gen() zoo = S.ComplexInfinity class NumberSymbol(AtomicExpr): is_commutative = True is_finite = True is_number = True __slots__ = [] is_NumberSymbol = True def __new__(cls): return AtomicExpr.__new__(cls) def approximation(self, number_cls): """ Return an interval with number_cls endpoints that contains the value of NumberSymbol. If not implemented, then return None. """ def _eval_evalf(self, prec): return Float._new(self._as_mpf_val(prec), prec) def __eq__(self, other): try: other = _sympify(other) except SympifyError: return NotImplemented if self is other: return True if other.is_Number and self.is_irrational: return False return False # NumberSymbol != non-(Number|self) def __ne__(self, other): return not self == other def __le__(self, other): if self is other: return S.true return Expr.__le__(self, other) def __ge__(self, other): if self is other: return S.true return Expr.__ge__(self, other) def __int__(self): # subclass with appropriate return value raise NotImplementedError def __long__(self): return self.__int__() def __hash__(self): return super(NumberSymbol, self).__hash__() class Exp1(with_metaclass(Singleton, NumberSymbol)): r"""The `e` constant. The transcendental number `e = 2.718281828\ldots` is the base of the natural logarithm and of the exponential function, `e = \exp(1)`. Sometimes called Euler's number or Napier's constant. Exp1 is a singleton, and can be accessed by ``S.Exp1``, or can be imported as ``E``. Examples ======== >>> from sympy import exp, log, E >>> E is exp(1) True >>> log(E) 1 References ========== .. [1] https://en.wikipedia.org/wiki/E_%28mathematical_constant%29 """ is_real = True is_positive = True is_negative = False # XXX Forces is_negative/is_nonnegative is_irrational = True is_number = True is_algebraic = False is_transcendental = True __slots__ = [] def _latex(self, printer): return r"e" @staticmethod def __abs__(): return S.Exp1 def __int__(self): return 2 def _as_mpf_val(self, prec): return mpf_e(prec) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (Integer(2), Integer(3)) elif issubclass(number_cls, Rational): pass def _eval_power(self, expt): from sympy import exp return exp(expt) def _eval_rewrite_as_sin(self, **kwargs): from sympy import sin I = S.ImaginaryUnit return sin(I + S.Pi/2) - I*sin(I) def _eval_rewrite_as_cos(self, **kwargs): from sympy import cos I = S.ImaginaryUnit return cos(I) + I*cos(I + S.Pi/2) def _sage_(self): import sage.all as sage return sage.e E = S.Exp1 class Pi(with_metaclass(Singleton, NumberSymbol)): r"""The `\pi` constant. The transcendental number `\pi = 3.141592654\ldots` represents the ratio of a circle's circumference to its diameter, the area of the unit circle, the half-period of trigonometric functions, and many other things in mathematics. Pi is a singleton, and can be accessed by ``S.Pi``, or can be imported as ``pi``. Examples ======== >>> from sympy import S, pi, oo, sin, exp, integrate, Symbol >>> S.Pi pi >>> pi > 3 True >>> pi.is_irrational True >>> x = Symbol('x') >>> sin(x + 2*pi) sin(x) >>> integrate(exp(-x**2), (x, -oo, oo)) sqrt(pi) References ========== .. [1] https://en.wikipedia.org/wiki/Pi """ is_real = True is_positive = True is_negative = False is_irrational = True is_number = True is_algebraic = False is_transcendental = True __slots__ = [] def _latex(self, printer): return r"\pi" @staticmethod def __abs__(): return S.Pi def __int__(self): return 3 def _as_mpf_val(self, prec): return mpf_pi(prec) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (Integer(3), Integer(4)) elif issubclass(number_cls, Rational): return (Rational(223, 71), Rational(22, 7)) def _sage_(self): import sage.all as sage return sage.pi pi = S.Pi class GoldenRatio(with_metaclass(Singleton, NumberSymbol)): r"""The golden ratio, `\phi`. `\phi = \frac{1 + \sqrt{5}}{2}` is algebraic number. Two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities, i.e. their maximum. GoldenRatio is a singleton, and can be accessed by ``S.GoldenRatio``. Examples ======== >>> from sympy import S >>> S.GoldenRatio > 1 True >>> S.GoldenRatio.expand(func=True) 1/2 + sqrt(5)/2 >>> S.GoldenRatio.is_irrational True References ========== .. [1] https://en.wikipedia.org/wiki/Golden_ratio """ is_real = True is_positive = True is_negative = False is_irrational = True is_number = True is_algebraic = True is_transcendental = False __slots__ = [] def _latex(self, printer): return r"\phi" def __int__(self): return 1 def _as_mpf_val(self, prec): # XXX track down why this has to be increased rv = mlib.from_man_exp(phi_fixed(prec + 10), -prec - 10) return mpf_norm(rv, prec) def _eval_expand_func(self, **hints): from sympy import sqrt return S.Half + S.Half*sqrt(5) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (S.One, Rational(2)) elif issubclass(number_cls, Rational): pass def _sage_(self): import sage.all as sage return sage.golden_ratio _eval_rewrite_as_sqrt = _eval_expand_func class TribonacciConstant(with_metaclass(Singleton, NumberSymbol)): r"""The tribonacci constant. The tribonacci numbers are like the Fibonacci numbers, but instead of starting with two predetermined terms, the sequence starts with three predetermined terms and each term afterwards is the sum of the preceding three terms. The tribonacci constant is the ratio toward which adjacent tribonacci numbers tend. It is a root of the polynomial `x^3 - x^2 - x - 1 = 0`, and also satisfies the equation `x + x^{-3} = 2`. TribonacciConstant is a singleton, and can be accessed by ``S.TribonacciConstant``. Examples ======== >>> from sympy import S >>> S.TribonacciConstant > 1 True >>> S.TribonacciConstant.expand(func=True) 1/3 + (19 - 3*sqrt(33))**(1/3)/3 + (3*sqrt(33) + 19)**(1/3)/3 >>> S.TribonacciConstant.is_irrational True >>> S.TribonacciConstant.n(20) 1.8392867552141611326 References ========== .. [1] https://en.wikipedia.org/wiki/Generalizations_of_Fibonacci_numbers#Tribonacci_numbers """ is_real = True is_positive = True is_negative = False is_irrational = True is_number = True is_algebraic = True is_transcendental = False __slots__ = [] def _latex(self, printer): return r"\text{TribonacciConstant}" def __int__(self): return 2 def _eval_evalf(self, prec): rv = self._eval_expand_func(function=True)._eval_evalf(prec + 4) return Float(rv, precision=prec) def _eval_expand_func(self, **hints): from sympy import sqrt, cbrt return (1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3 def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (S.One, Rational(2)) elif issubclass(number_cls, Rational): pass _eval_rewrite_as_sqrt = _eval_expand_func class EulerGamma(with_metaclass(Singleton, NumberSymbol)): r"""The Euler-Mascheroni constant. `\gamma = 0.5772157\ldots` (also called Euler's constant) is a mathematical constant recurring in analysis and number theory. It is defined as the limiting difference between the harmonic series and the natural logarithm: .. math:: \gamma = \lim\limits_{n\to\infty} \left(\sum\limits_{k=1}^n\frac{1}{k} - \ln n\right) EulerGamma is a singleton, and can be accessed by ``S.EulerGamma``. Examples ======== >>> from sympy import S >>> S.EulerGamma.is_irrational >>> S.EulerGamma > 0 True >>> S.EulerGamma > 1 False References ========== .. [1] https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant """ is_real = True is_positive = True is_negative = False is_irrational = None is_number = True __slots__ = [] def _latex(self, printer): return r"\gamma" def __int__(self): return 0 def _as_mpf_val(self, prec): # XXX track down why this has to be increased v = mlib.libhyper.euler_fixed(prec + 10) rv = mlib.from_man_exp(v, -prec - 10) return mpf_norm(rv, prec) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (S.Zero, S.One) elif issubclass(number_cls, Rational): return (S.Half, Rational(3, 5)) def _sage_(self): import sage.all as sage return sage.euler_gamma class Catalan(with_metaclass(Singleton, NumberSymbol)): r"""Catalan's constant. `K = 0.91596559\ldots` is given by the infinite series .. math:: K = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^2} Catalan is a singleton, and can be accessed by ``S.Catalan``. Examples ======== >>> from sympy import S >>> S.Catalan.is_irrational >>> S.Catalan > 0 True >>> S.Catalan > 1 False References ========== .. [1] https://en.wikipedia.org/wiki/Catalan%27s_constant """ is_real = True is_positive = True is_negative = False is_irrational = None is_number = True __slots__ = [] def __int__(self): return 0 def _as_mpf_val(self, prec): # XXX track down why this has to be increased v = mlib.catalan_fixed(prec + 10) rv = mlib.from_man_exp(v, -prec - 10) return mpf_norm(rv, prec) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (S.Zero, S.One) elif issubclass(number_cls, Rational): return (Rational(9, 10), S.One) def _sage_(self): import sage.all as sage return sage.catalan class ImaginaryUnit(with_metaclass(Singleton, AtomicExpr)): r"""The imaginary unit, `i = \sqrt{-1}`. I is a singleton, and can be accessed by ``S.I``, or can be imported as ``I``. Examples ======== >>> from sympy import I, sqrt >>> sqrt(-1) I >>> I*I -1 >>> 1/I -I References ========== .. [1] https://en.wikipedia.org/wiki/Imaginary_unit """ is_commutative = True is_imaginary = True is_finite = True is_number = True is_algebraic = True is_transcendental = False __slots__ = [] def _latex(self, printer): return printer._settings['imaginary_unit_latex'] @staticmethod def __abs__(): return S.One def _eval_evalf(self, prec): return self def _eval_conjugate(self): return -S.ImaginaryUnit def _eval_power(self, expt): """ b is I = sqrt(-1) e is symbolic object but not equal to 0, 1 I**r -> (-1)**(r/2) -> exp(r/2*Pi*I) -> sin(Pi*r/2) + cos(Pi*r/2)*I, r is decimal I**0 mod 4 -> 1 I**1 mod 4 -> I I**2 mod 4 -> -1 I**3 mod 4 -> -I """ if isinstance(expt, Number): if isinstance(expt, Integer): expt = expt.p % 4 if expt == 0: return S.One if expt == 1: return S.ImaginaryUnit if expt == 2: return -S.One return -S.ImaginaryUnit return def as_base_exp(self): return S.NegativeOne, S.Half def _sage_(self): import sage.all as sage return sage.I @property def _mpc_(self): return (Float(0)._mpf_, Float(1)._mpf_) I = S.ImaginaryUnit def sympify_fractions(f): return Rational(f.numerator, f.denominator, 1) converter[fractions.Fraction] = sympify_fractions try: if HAS_GMPY == 2: import gmpy2 as gmpy elif HAS_GMPY == 1: import gmpy else: raise ImportError def sympify_mpz(x): return Integer(long(x)) def sympify_mpq(x): return Rational(long(x.numerator), long(x.denominator)) converter[type(gmpy.mpz(1))] = sympify_mpz converter[type(gmpy.mpq(1, 2))] = sympify_mpq except ImportError: pass def sympify_mpmath(x): return Expr._from_mpmath(x, x.context.prec) converter[mpnumeric] = sympify_mpmath def sympify_mpq(x): p, q = x._mpq_ return Rational(p, q, 1) converter[type(mpmath.rational.mpq(1, 2))] = sympify_mpq def sympify_complex(a): real, imag = list(map(sympify, (a.real, a.imag))) return real + S.ImaginaryUnit*imag converter[complex] = sympify_complex from .power import Pow, integer_nthroot from .mul import Mul Mul.identity = One() from .add import Add Add.identity = Zero()
02edebd02dc59b74c4233213144007dd28c5120baf3fdad7cda98eee032058c8
from __future__ import print_function, division from sympy.core.sympify import _sympify, sympify from sympy.core.basic import Basic from sympy.core.cache import cacheit from sympy.core.compatibility import ordered, range from sympy.core.logic import fuzzy_and from sympy.core.evaluate import global_evaluate from sympy.utilities.iterables import sift class AssocOp(Basic): """ Associative operations, can separate noncommutative and commutative parts. (a op b) op c == a op (b op c) == a op b op c. Base class for Add and Mul. This is an abstract base class, concrete derived classes must define the attribute `identity`. """ # for performance reason, we don't let is_commutative go to assumptions, # and keep it right here __slots__ = ['is_commutative'] @cacheit def __new__(cls, *args, **options): from sympy import Order args = list(map(_sympify, args)) args = [a for a in args if a is not cls.identity] evaluate = options.get('evaluate') if evaluate is None: evaluate = global_evaluate[0] if not evaluate: obj = cls._from_args(args) obj = cls._exec_constructor_postprocessors(obj) return obj if len(args) == 0: return cls.identity if len(args) == 1: return args[0] c_part, nc_part, order_symbols = cls.flatten(args) is_commutative = not nc_part obj = cls._from_args(c_part + nc_part, is_commutative) obj = cls._exec_constructor_postprocessors(obj) if order_symbols is not None: return Order(obj, *order_symbols) return obj @classmethod def _from_args(cls, args, is_commutative=None): """Create new instance with already-processed args""" if len(args) == 0: return cls.identity elif len(args) == 1: return args[0] obj = super(AssocOp, cls).__new__(cls, *args) if is_commutative is None: is_commutative = fuzzy_and(a.is_commutative for a in args) obj.is_commutative = is_commutative return obj def _new_rawargs(self, *args, **kwargs): """Create new instance of own class with args exactly as provided by caller but returning the self class identity if args is empty. This is handy when we want to optimize things, e.g. >>> from sympy import Mul, S >>> from sympy.abc import x, y >>> e = Mul(3, x, y) >>> e.args (3, x, y) >>> Mul(*e.args[1:]) x*y >>> e._new_rawargs(*e.args[1:]) # the same as above, but faster x*y Note: use this with caution. There is no checking of arguments at all. This is best used when you are rebuilding an Add or Mul after simply removing one or more args. If, for example, modifications, result in extra 1s being inserted (as when collecting an expression's numerators and denominators) they will not show up in the result but a Mul will be returned nonetheless: >>> m = (x*y)._new_rawargs(S.One, x); m x >>> m == x False >>> m.is_Mul True Another issue to be aware of is that the commutativity of the result is based on the commutativity of self. If you are rebuilding the terms that came from a commutative object then there will be no problem, but if self was non-commutative then what you are rebuilding may now be commutative. Although this routine tries to do as little as possible with the input, getting the commutativity right is important, so this level of safety is enforced: commutativity will always be recomputed if self is non-commutative and kwarg `reeval=False` has not been passed. """ if kwargs.pop('reeval', True) and self.is_commutative is False: is_commutative = None else: is_commutative = self.is_commutative return self._from_args(args, is_commutative) @classmethod def flatten(cls, seq): """Return seq so that none of the elements are of type `cls`. This is the vanilla routine that will be used if a class derived from AssocOp does not define its own flatten routine.""" # apply associativity, no commutativity property is used new_seq = [] while seq: o = seq.pop() if o.__class__ is cls: # classes must match exactly seq.extend(o.args) else: new_seq.append(o) # c_part, nc_part, order_symbols return [], new_seq, None def _matches_commutative(self, expr, repl_dict={}, old=False): """ Matches Add/Mul "pattern" to an expression "expr". repl_dict ... a dictionary of (wild: expression) pairs, that get returned with the results This function is the main workhorse for Add/Mul. For instance: >>> from sympy import symbols, Wild, sin >>> a = Wild("a") >>> b = Wild("b") >>> c = Wild("c") >>> x, y, z = symbols("x y z") >>> (a+sin(b)*c)._matches_commutative(x+sin(y)*z) {a_: x, b_: y, c_: z} In the example above, "a+sin(b)*c" is the pattern, and "x+sin(y)*z" is the expression. The repl_dict contains parts that were already matched. For example here: >>> (x+sin(b)*c)._matches_commutative(x+sin(y)*z, repl_dict={a: x}) {a_: x, b_: y, c_: z} the only function of the repl_dict is to return it in the result, e.g. if you omit it: >>> (x+sin(b)*c)._matches_commutative(x+sin(y)*z) {b_: y, c_: z} the "a: x" is not returned in the result, but otherwise it is equivalent. """ # make sure expr is Expr if pattern is Expr from .expr import Add, Expr from sympy import Mul if isinstance(self, Expr) and not isinstance(expr, Expr): return None # handle simple patterns if self == expr: return repl_dict d = self._matches_simple(expr, repl_dict) if d is not None: return d # eliminate exact part from pattern: (2+a+w1+w2).matches(expr) -> (w1+w2).matches(expr-a-2) from .function import WildFunction from .symbol import Wild wild_part, exact_part = sift(self.args, lambda p: p.has(Wild, WildFunction) and not expr.has(p), binary=True) if not exact_part: wild_part = list(ordered(wild_part)) else: exact = self._new_rawargs(*exact_part) free = expr.free_symbols if free and (exact.free_symbols - free): # there are symbols in the exact part that are not # in the expr; but if there are no free symbols, let # the matching continue return None newexpr = self._combine_inverse(expr, exact) if not old and (expr.is_Add or expr.is_Mul): if newexpr.count_ops() > expr.count_ops(): return None newpattern = self._new_rawargs(*wild_part) return newpattern.matches(newexpr, repl_dict) # now to real work ;) i = 0 saw = set() while expr not in saw: saw.add(expr) expr_list = (self.identity,) + tuple(ordered(self.make_args(expr))) for last_op in reversed(expr_list): for w in reversed(wild_part): d1 = w.matches(last_op, repl_dict) if d1 is not None: d2 = self.xreplace(d1).matches(expr, d1) if d2 is not None: return d2 if i == 0: if self.is_Mul: # make e**i look like Mul if expr.is_Pow and expr.exp.is_Integer: if expr.exp > 0: expr = Mul(*[expr.base, expr.base**(expr.exp - 1)], evaluate=False) else: expr = Mul(*[1/expr.base, expr.base**(expr.exp + 1)], evaluate=False) i += 1 continue elif self.is_Add: # make i*e look like Add c, e = expr.as_coeff_Mul() if abs(c) > 1: if c > 0: expr = Add(*[e, (c - 1)*e], evaluate=False) else: expr = Add(*[-e, (c + 1)*e], evaluate=False) i += 1 continue # try collection on non-Wild symbols from sympy.simplify.radsimp import collect was = expr did = set() for w in reversed(wild_part): c, w = w.as_coeff_mul(Wild) free = c.free_symbols - did if free: did.update(free) expr = collect(expr, free) if expr != was: i += 0 continue break # if we didn't continue, there is nothing more to do return def _has_matcher(self): """Helper for .has()""" def _ncsplit(expr): # this is not the same as args_cnc because here # we don't assume expr is a Mul -- hence deal with args -- # and always return a set. cpart, ncpart = sift(expr.args, lambda arg: arg.is_commutative is True, binary=True) return set(cpart), ncpart c, nc = _ncsplit(self) cls = self.__class__ def is_in(expr): if expr == self: return True elif not isinstance(expr, Basic): return False elif isinstance(expr, cls): _c, _nc = _ncsplit(expr) if (c & _c) == c: if not nc: return True elif len(nc) <= len(_nc): for i in range(len(_nc) - len(nc) + 1): if _nc[i:i + len(nc)] == nc: return True return False return is_in def _eval_evalf(self, prec): """ Evaluate the parts of self that are numbers; if the whole thing was a number with no functions it would have been evaluated, but it wasn't so we must judiciously extract the numbers and reconstruct the object. This is *not* simply replacing numbers with evaluated numbers. Nunmbers should be handled in the largest pure-number expression as possible. So the code below separates ``self`` into number and non-number parts and evaluates the number parts and walks the args of the non-number part recursively (doing the same thing). """ from .add import Add from .mul import Mul from .symbol import Symbol from .function import AppliedUndef if isinstance(self, (Mul, Add)): x, tail = self.as_independent(Symbol, AppliedUndef) # if x is an AssocOp Function then the _evalf below will # call _eval_evalf (here) so we must break the recursion if not (tail is self.identity or isinstance(x, AssocOp) and x.is_Function or x is self.identity and isinstance(tail, AssocOp)): # here, we have a number so we just call to _evalf with prec; # prec is not the same as n, it is the binary precision so # that's why we don't call to evalf. x = x._evalf(prec) if x is not self.identity else self.identity args = [] tail_args = tuple(self.func.make_args(tail)) for a in tail_args: # here we call to _eval_evalf since we don't know what we # are dealing with and all other _eval_evalf routines should # be doing the same thing (i.e. taking binary prec and # finding the evalf-able args) newa = a._eval_evalf(prec) if newa is None: args.append(a) else: args.append(newa) return self.func(x, *args) # this is the same as above, but there were no pure-number args to # deal with args = [] for a in self.args: newa = a._eval_evalf(prec) if newa is None: args.append(a) else: args.append(newa) return self.func(*args) @classmethod def make_args(cls, expr): """ Return a sequence of elements `args` such that cls(*args) == expr >>> from sympy import Symbol, Mul, Add >>> x, y = map(Symbol, 'xy') >>> Mul.make_args(x*y) (x, y) >>> Add.make_args(x*y) (x*y,) >>> set(Add.make_args(x*y + y)) == set([y, x*y]) True """ if isinstance(expr, cls): return expr.args else: return (sympify(expr),) class ShortCircuit(Exception): pass class LatticeOp(AssocOp): """ Join/meet operations of an algebraic lattice[1]. These binary operations are associative (op(op(a, b), c) = op(a, op(b, c))), commutative (op(a, b) = op(b, a)) and idempotent (op(a, a) = op(a) = a). Common examples are AND, OR, Union, Intersection, max or min. They have an identity element (op(identity, a) = a) and an absorbing element conventionally called zero (op(zero, a) = zero). This is an abstract base class, concrete derived classes must declare attributes zero and identity. All defining properties are then respected. >>> from sympy import Integer >>> from sympy.core.operations import LatticeOp >>> class my_join(LatticeOp): ... zero = Integer(0) ... identity = Integer(1) >>> my_join(2, 3) == my_join(3, 2) True >>> my_join(2, my_join(3, 4)) == my_join(2, 3, 4) True >>> my_join(0, 1, 4, 2, 3, 4) 0 >>> my_join(1, 2) 2 References: [1] - https://en.wikipedia.org/wiki/Lattice_%28order%29 """ is_commutative = True def __new__(cls, *args, **options): args = (_sympify(arg) for arg in args) try: # /!\ args is a generator and _new_args_filter # must be careful to handle as such; this # is done so short-circuiting can be done # without having to sympify all values _args = frozenset(cls._new_args_filter(args)) except ShortCircuit: return sympify(cls.zero) if not _args: return sympify(cls.identity) elif len(_args) == 1: return set(_args).pop() else: # XXX in almost every other case for __new__, *_args is # passed along, but the expectation here is for _args obj = super(AssocOp, cls).__new__(cls, _args) obj._argset = _args return obj @classmethod def _new_args_filter(cls, arg_sequence, call_cls=None): """Generator filtering args""" ncls = call_cls or cls for arg in arg_sequence: if arg == ncls.zero: raise ShortCircuit(arg) elif arg == ncls.identity: continue elif arg.func == ncls: for x in arg.args: yield x else: yield arg @classmethod def make_args(cls, expr): """ Return a set of args such that cls(*arg_set) == expr. """ if isinstance(expr, cls): return expr._argset else: return frozenset([sympify(expr)]) @property @cacheit def args(self): return tuple(ordered(self._argset)) @staticmethod def _compare_pretty(a, b): return (str(a) > str(b)) - (str(a) < str(b))
910a41b0a1318252a3c5d0efc52e52dae57f48848e1ce7944237101b454a0c0c
""" Reimplementations of constructs introduced in later versions of Python than we support. Also some functions that are needed SymPy-wide and are located here for easy import. """ from __future__ import print_function, division import operator from collections import defaultdict from sympy.external import import_module """ Python 2 and Python 3 compatible imports String and Unicode compatible changes: * `unicode()` removed in Python 3, import `unicode` for Python 2/3 compatible function * `unichr()` removed in Python 3, import `unichr` for Python 2/3 compatible function * Use `u()` for escaped unicode sequences (e.g. u'\u2020' -> u('\u2020')) * Use `u_decode()` to decode utf-8 formatted unicode strings * `string_types` gives str in Python 3, unicode and str in Python 2, equivalent to basestring Integer related changes: * `long()` removed in Python 3, import `long` for Python 2/3 compatible function * `integer_types` gives int in Python 3, int and long in Python 2 Types related changes: * `class_types` gives type in Python 3, type and ClassType in Python 2 Renamed function attributes: * Python 2 `.func_code`, Python 3 `.__func__`, access with `get_function_code()` * Python 2 `.func_globals`, Python 3 `.__globals__`, access with `get_function_globals()` * Python 2 `.func_name`, Python 3 `.__name__`, access with `get_function_name()` Moved modules: * `reduce()` * `StringIO()` * `cStringIO()` (same as `StingIO()` in Python 3) * Python 2 `__builtins__`, access with Python 3 name, `builtins` Iterator/list changes: * `xrange` renamed as `range` in Python 3, import `range` for Python 2/3 compatible iterator version of range. exec: * Use `exec_()`, with parameters `exec_(code, globs=None, locs=None)` Metaclasses: * Use `with_metaclass()`, examples below * Define class `Foo` with metaclass `Meta`, and no parent: class Foo(with_metaclass(Meta)): pass * Define class `Foo` with metaclass `Meta` and parent class `Bar`: class Foo(with_metaclass(Meta, Bar)): pass """ import sys PY3 = sys.version_info[0] > 2 if PY3: class_types = type, integer_types = (int,) string_types = (str,) long = int int_info = sys.int_info # String / unicode compatibility unicode = str unichr = chr def u_decode(x): return x Iterator = object # Moved definitions get_function_code = operator.attrgetter("__code__") get_function_globals = operator.attrgetter("__globals__") get_function_name = operator.attrgetter("__name__") import builtins from functools import reduce from io import StringIO cStringIO = StringIO exec_=getattr(builtins, "exec") range=range from collections.abc import (Mapping, Callable, MutableMapping, MutableSet, Iterable, Hashable) from inspect import unwrap from itertools import accumulate else: import codecs import types class_types = (type, types.ClassType) integer_types = (int, long) string_types = (str, unicode) long = long int_info = sys.long_info # String / unicode compatibility unicode = unicode unichr = unichr def u_decode(x): return x.decode('utf-8') class Iterator(object): def next(self): return type(self).__next__(self) # Moved definitions get_function_code = operator.attrgetter("func_code") get_function_globals = operator.attrgetter("func_globals") get_function_name = operator.attrgetter("func_name") import __builtin__ as builtins reduce = reduce from StringIO import StringIO from cStringIO import StringIO as cStringIO def exec_(_code_, _globs_=None, _locs_=None): """Execute code in a namespace.""" if _globs_ is None: frame = sys._getframe(1) _globs_ = frame.f_globals if _locs_ is None: _locs_ = frame.f_locals del frame elif _locs_ is None: _locs_ = _globs_ exec("exec _code_ in _globs_, _locs_") range=xrange from collections import (Mapping, Callable, MutableMapping, MutableSet, Iterable, Hashable) def unwrap(func, stop=None): """Get the object wrapped by *func*. Follows the chain of :attr:`__wrapped__` attributes returning the last object in the chain. *stop* is an optional callback accepting an object in the wrapper chain as its sole argument that allows the unwrapping to be terminated early if the callback returns a true value. If the callback never returns a true value, the last object in the chain is returned as usual. For example, :func:`signature` uses this to stop unwrapping if any object in the chain has a ``__signature__`` attribute defined. :exc:`ValueError` is raised if a cycle is encountered. """ if stop is None: def _is_wrapper(f): return hasattr(f, '__wrapped__') else: def _is_wrapper(f): return hasattr(f, '__wrapped__') and not stop(f) f = func # remember the original func for error reporting memo = {id(f)} # Memoise by id to tolerate non-hashable objects while _is_wrapper(func): func = func.__wrapped__ id_func = id(func) if id_func in memo: raise ValueError('wrapper loop when unwrapping {!r}'.format(f)) memo.add(id_func) return func def accumulate(iterable, func=operator.add): state = iterable[0] yield state for i in iterable[1:]: state = func(state, i) yield state def with_metaclass(meta, *bases): """ Create a base class with a metaclass. For example, if you have the metaclass >>> class Meta(type): ... pass Use this as the metaclass by doing >>> from sympy.core.compatibility import with_metaclass >>> class MyClass(with_metaclass(Meta, object)): ... pass This is equivalent to the Python 2:: class MyClass(object): __metaclass__ = Meta or Python 3:: class MyClass(object, metaclass=Meta): pass That is, the first argument is the metaclass, and the remaining arguments are the base classes. Note that if the base class is just ``object``, you may omit it. >>> MyClass.__mro__ (<class '...MyClass'>, <... 'object'>) >>> type(MyClass) <class '...Meta'> """ # This requires a bit of explanation: the basic idea is to make a dummy # metaclass for one level of class instantiation that replaces itself with # the actual metaclass. # Code copied from the 'six' library. class metaclass(meta): def __new__(cls, name, this_bases, d): return meta(name, bases, d) return type.__new__(metaclass, "NewBase", (), {}) # These are in here because telling if something is an iterable just by calling # hasattr(obj, "__iter__") behaves differently in Python 2 and Python 3. In # particular, hasattr(str, "__iter__") is False in Python 2 and True in Python 3. # I think putting them here also makes it easier to use them in the core. class NotIterable: """ Use this as mixin when creating a class which is not supposed to return true when iterable() is called on its instances. I.e. avoid infinite loop when calling e.g. list() on the instance """ pass def iterable(i, exclude=(string_types, dict, NotIterable)): """ Return a boolean indicating whether ``i`` is SymPy iterable. True also indicates that the iterator is finite, i.e. you e.g. call list(...) on the instance. When SymPy is working with iterables, it is almost always assuming that the iterable is not a string or a mapping, so those are excluded by default. If you want a pure Python definition, make exclude=None. To exclude multiple items, pass them as a tuple. You can also set the _iterable attribute to True or False on your class, which will override the checks here, including the exclude test. As a rule of thumb, some SymPy functions use this to check if they should recursively map over an object. If an object is technically iterable in the Python sense but does not desire this behavior (e.g., because its iteration is not finite, or because iteration might induce an unwanted computation), it should disable it by setting the _iterable attribute to False. See also: is_sequence Examples ======== >>> from sympy.utilities.iterables import iterable >>> from sympy import Tuple >>> things = [[1], (1,), set([1]), Tuple(1), (j for j in [1, 2]), {1:2}, '1', 1] >>> for i in things: ... print('%s %s' % (iterable(i), type(i))) True <... 'list'> True <... 'tuple'> True <... 'set'> True <class 'sympy.core.containers.Tuple'> True <... 'generator'> False <... 'dict'> False <... 'str'> False <... 'int'> >>> iterable({}, exclude=None) True >>> iterable({}, exclude=str) True >>> iterable("no", exclude=str) False """ if hasattr(i, '_iterable'): return i._iterable try: iter(i) except TypeError: return False if exclude: return not isinstance(i, exclude) return True def is_sequence(i, include=None): """ Return a boolean indicating whether ``i`` is a sequence in the SymPy sense. If anything that fails the test below should be included as being a sequence for your application, set 'include' to that object's type; multiple types should be passed as a tuple of types. Note: although generators can generate a sequence, they often need special handling to make sure their elements are captured before the generator is exhausted, so these are not included by default in the definition of a sequence. See also: iterable Examples ======== >>> from sympy.utilities.iterables import is_sequence >>> from types import GeneratorType >>> is_sequence([]) True >>> is_sequence(set()) False >>> is_sequence('abc') False >>> is_sequence('abc', include=str) True >>> generator = (c for c in 'abc') >>> is_sequence(generator) False >>> is_sequence(generator, include=(str, GeneratorType)) True """ return (hasattr(i, '__getitem__') and iterable(i) or bool(include) and isinstance(i, include)) try: from itertools import zip_longest except ImportError: # Python 2.7 from itertools import izip_longest as zip_longest try: # Python 2.7 from string import maketrans except ImportError: maketrans = str.maketrans def as_int(n, strict=True): """ Convert the argument to a builtin integer. The return value is guaranteed to be equal to the input. ValueError is raised if the input has a non-integral value. When ``strict`` is False, non-integer input that compares equal to the integer value will not raise an error. Examples ======== >>> from sympy.core.compatibility import as_int >>> from sympy import sqrt, S The function is primarily concerned with sanitizing input for functions that need to work with builtin integers, so anything that is unambiguously an integer should be returned as an int: >>> as_int(S(3)) 3 Floats, being of limited precision, are not assumed to be exact and will raise an error unless the ``strict`` flag is False. This precision issue becomes apparent for large floating point numbers: >>> big = 1e23 >>> type(big) is float True >>> big == int(big) True >>> as_int(big) Traceback (most recent call last): ... ValueError: ... is not an integer >>> as_int(big, strict=False) 99999999999999991611392 Input that might be a complex representation of an integer value is also rejected by default: >>> one = sqrt(3 + 2*sqrt(2)) - sqrt(2) >>> int(one) == 1 True >>> as_int(one) Traceback (most recent call last): ... ValueError: ... is not an integer """ from sympy.core.numbers import Integer try: if strict and not isinstance(n, SYMPY_INTS + (Integer,)): raise TypeError result = int(n) if result != n: raise TypeError return result except TypeError: raise ValueError('%s is not an integer' % (n,)) def default_sort_key(item, order=None): """Return a key that can be used for sorting. The key has the structure: (class_key, (len(args), args), exponent.sort_key(), coefficient) This key is supplied by the sort_key routine of Basic objects when ``item`` is a Basic object or an object (other than a string) that sympifies to a Basic object. Otherwise, this function produces the key. The ``order`` argument is passed along to the sort_key routine and is used to determine how the terms *within* an expression are ordered. (See examples below) ``order`` options are: 'lex', 'grlex', 'grevlex', and reversed values of the same (e.g. 'rev-lex'). The default order value is None (which translates to 'lex'). Examples ======== >>> from sympy import S, I, default_sort_key, sin, cos, sqrt >>> from sympy.core.function import UndefinedFunction >>> from sympy.abc import x The following are equivalent ways of getting the key for an object: >>> x.sort_key() == default_sort_key(x) True Here are some examples of the key that is produced: >>> default_sort_key(UndefinedFunction('f')) ((0, 0, 'UndefinedFunction'), (1, ('f',)), ((1, 0, 'Number'), (0, ()), (), 1), 1) >>> default_sort_key('1') ((0, 0, 'str'), (1, ('1',)), ((1, 0, 'Number'), (0, ()), (), 1), 1) >>> default_sort_key(S.One) ((1, 0, 'Number'), (0, ()), (), 1) >>> default_sort_key(2) ((1, 0, 'Number'), (0, ()), (), 2) While sort_key is a method only defined for SymPy objects, default_sort_key will accept anything as an argument so it is more robust as a sorting key. For the following, using key= lambda i: i.sort_key() would fail because 2 doesn't have a sort_key method; that's why default_sort_key is used. Note, that it also handles sympification of non-string items likes ints: >>> a = [2, I, -I] >>> sorted(a, key=default_sort_key) [2, -I, I] The returned key can be used anywhere that a key can be specified for a function, e.g. sort, min, max, etc...: >>> a.sort(key=default_sort_key); a[0] 2 >>> min(a, key=default_sort_key) 2 Note ---- The key returned is useful for getting items into a canonical order that will be the same across platforms. It is not directly useful for sorting lists of expressions: >>> a, b = x, 1/x Since ``a`` has only 1 term, its value of sort_key is unaffected by ``order``: >>> a.sort_key() == a.sort_key('rev-lex') True If ``a`` and ``b`` are combined then the key will differ because there are terms that can be ordered: >>> eq = a + b >>> eq.sort_key() == eq.sort_key('rev-lex') False >>> eq.as_ordered_terms() [x, 1/x] >>> eq.as_ordered_terms('rev-lex') [1/x, x] But since the keys for each of these terms are independent of ``order``'s value, they don't sort differently when they appear separately in a list: >>> sorted(eq.args, key=default_sort_key) [1/x, x] >>> sorted(eq.args, key=lambda i: default_sort_key(i, order='rev-lex')) [1/x, x] The order of terms obtained when using these keys is the order that would be obtained if those terms were *factors* in a product. Although it is useful for quickly putting expressions in canonical order, it does not sort expressions based on their complexity defined by the number of operations, power of variables and others: >>> sorted([sin(x)*cos(x), sin(x)], key=default_sort_key) [sin(x)*cos(x), sin(x)] >>> sorted([x, x**2, sqrt(x), x**3], key=default_sort_key) [sqrt(x), x, x**2, x**3] See Also ======== ordered, sympy.core.expr.as_ordered_factors, sympy.core.expr.as_ordered_terms """ from .singleton import S from .basic import Basic from .sympify import sympify, SympifyError from .compatibility import iterable if isinstance(item, Basic): return item.sort_key(order=order) if iterable(item, exclude=string_types): if isinstance(item, dict): args = item.items() unordered = True elif isinstance(item, set): args = item unordered = True else: # e.g. tuple, list args = list(item) unordered = False args = [default_sort_key(arg, order=order) for arg in args] if unordered: # e.g. dict, set args = sorted(args) cls_index, args = 10, (len(args), tuple(args)) else: if not isinstance(item, string_types): try: item = sympify(item) except SympifyError: # e.g. lambda x: x pass else: if isinstance(item, Basic): # e.g int -> Integer return default_sort_key(item) # e.g. UndefinedFunction # e.g. str cls_index, args = 0, (1, (str(item),)) return (cls_index, 0, item.__class__.__name__ ), args, S.One.sort_key(), S.One def _nodes(e): """ A helper for ordered() which returns the node count of ``e`` which for Basic objects is the number of Basic nodes in the expression tree but for other objects is 1 (unless the object is an iterable or dict for which the sum of nodes is returned). """ from .basic import Basic if isinstance(e, Basic): return e.count(Basic) elif iterable(e): return 1 + sum(_nodes(ei) for ei in e) elif isinstance(e, dict): return 1 + sum(_nodes(k) + _nodes(v) for k, v in e.items()) else: return 1 def ordered(seq, keys=None, default=True, warn=False): """Return an iterator of the seq where keys are used to break ties in a conservative fashion: if, after applying a key, there are no ties then no other keys will be computed. Two default keys will be applied if 1) keys are not provided or 2) the given keys don't resolve all ties (but only if `default` is True). The two keys are `_nodes` (which places smaller expressions before large) and `default_sort_key` which (if the `sort_key` for an object is defined properly) should resolve any ties. If ``warn`` is True then an error will be raised if there were no keys remaining to break ties. This can be used if it was expected that there should be no ties between items that are not identical. Examples ======== >>> from sympy.utilities.iterables import ordered >>> from sympy import count_ops >>> from sympy.abc import x, y The count_ops is not sufficient to break ties in this list and the first two items appear in their original order (i.e. the sorting is stable): >>> list(ordered([y + 2, x + 2, x**2 + y + 3], ... count_ops, default=False, warn=False)) ... [y + 2, x + 2, x**2 + y + 3] The default_sort_key allows the tie to be broken: >>> list(ordered([y + 2, x + 2, x**2 + y + 3])) ... [x + 2, y + 2, x**2 + y + 3] Here, sequences are sorted by length, then sum: >>> seq, keys = [[[1, 2, 1], [0, 3, 1], [1, 1, 3], [2], [1]], [ ... lambda x: len(x), ... lambda x: sum(x)]] ... >>> list(ordered(seq, keys, default=False, warn=False)) [[1], [2], [1, 2, 1], [0, 3, 1], [1, 1, 3]] If ``warn`` is True, an error will be raised if there were not enough keys to break ties: >>> list(ordered(seq, keys, default=False, warn=True)) Traceback (most recent call last): ... ValueError: not enough keys to break ties Notes ===== The decorated sort is one of the fastest ways to sort a sequence for which special item comparison is desired: the sequence is decorated, sorted on the basis of the decoration (e.g. making all letters lower case) and then undecorated. If one wants to break ties for items that have the same decorated value, a second key can be used. But if the second key is expensive to compute then it is inefficient to decorate all items with both keys: only those items having identical first key values need to be decorated. This function applies keys successively only when needed to break ties. By yielding an iterator, use of the tie-breaker is delayed as long as possible. This function is best used in cases when use of the first key is expected to be a good hashing function; if there are no unique hashes from application of a key then that key should not have been used. The exception, however, is that even if there are many collisions, if the first group is small and one does not need to process all items in the list then time will not be wasted sorting what one was not interested in. For example, if one were looking for the minimum in a list and there were several criteria used to define the sort order, then this function would be good at returning that quickly if the first group of candidates is small relative to the number of items being processed. """ d = defaultdict(list) if keys: if not isinstance(keys, (list, tuple)): keys = [keys] keys = list(keys) f = keys.pop(0) for a in seq: d[f(a)].append(a) else: if not default: raise ValueError('if default=False then keys must be provided') d[None].extend(seq) for k in sorted(d.keys()): if len(d[k]) > 1: if keys: d[k] = ordered(d[k], keys, default, warn) elif default: d[k] = ordered(d[k], (_nodes, default_sort_key,), default=False, warn=warn) elif warn: from sympy.utilities.iterables import uniq u = list(uniq(d[k])) if len(u) > 1: raise ValueError( 'not enough keys to break ties: %s' % u) for v in d[k]: yield v d.pop(k) # If HAS_GMPY is 0, no supported version of gmpy is available. Otherwise, # HAS_GMPY contains the major version number of gmpy; i.e. 1 for gmpy, and # 2 for gmpy2. # Versions of gmpy prior to 1.03 do not work correctly with int(largempz) # For example, int(gmpy.mpz(2**256)) would raise OverflowError. # See issue 4980. # Minimum version of gmpy changed to 1.13 to allow a single code base to also # work with gmpy2. def _getenv(key, default=None): from os import getenv return getenv(key, default) GROUND_TYPES = _getenv('SYMPY_GROUND_TYPES', 'auto').lower() HAS_GMPY = 0 if GROUND_TYPES != 'python': # Don't try to import gmpy2 if ground types is set to gmpy1. This is # primarily intended for testing. if GROUND_TYPES != 'gmpy1': gmpy = import_module('gmpy2', min_module_version='2.0.0', module_version_attr='version', module_version_attr_call_args=()) if gmpy: HAS_GMPY = 2 else: GROUND_TYPES = 'gmpy' if not HAS_GMPY: gmpy = import_module('gmpy', min_module_version='1.13', module_version_attr='version', module_version_attr_call_args=()) if gmpy: HAS_GMPY = 1 if GROUND_TYPES == 'auto': if HAS_GMPY: GROUND_TYPES = 'gmpy' else: GROUND_TYPES = 'python' if GROUND_TYPES == 'gmpy' and not HAS_GMPY: from warnings import warn warn("gmpy library is not installed, switching to 'python' ground types") GROUND_TYPES = 'python' # SYMPY_INTS is a tuple containing the base types for valid integer types. SYMPY_INTS = integer_types if GROUND_TYPES == 'gmpy': SYMPY_INTS += (type(gmpy.mpz(0)),) # lru_cache compatible with py2.7 copied directly from # https://code.activestate.com/ # recipes/578078-py26-and-py30-backport-of-python-33s-lru-cache/ from collections import namedtuple from functools import update_wrapper from threading import RLock _CacheInfo = namedtuple("CacheInfo", ["hits", "misses", "maxsize", "currsize"]) class _HashedSeq(list): __slots__ = 'hashvalue' def __init__(self, tup, hash=hash): self[:] = tup self.hashvalue = hash(tup) def __hash__(self): return self.hashvalue def _make_key(args, kwds, typed, kwd_mark = (object(),), fasttypes = set((int, str, frozenset, type(None))), sorted=sorted, tuple=tuple, type=type, len=len): 'Make a cache key from optionally typed positional and keyword arguments' key = args if kwds: sorted_items = sorted(kwds.items()) key += kwd_mark for item in sorted_items: key += item if typed: key += tuple(type(v) for v in args) if kwds: key += tuple(type(v) for k, v in sorted_items) elif len(key) == 1 and type(key[0]) in fasttypes: return key[0] return _HashedSeq(key) def lru_cache(maxsize=100, typed=False): """Least-recently-used cache decorator. If *maxsize* is set to None, the LRU features are disabled and the cache can grow without bound. If *typed* is True, arguments of different types will be cached separately. For example, f(3.0) and f(3) will be treated as distinct calls with distinct results. Arguments to the cached function must be hashable. View the cache statistics named tuple (hits, misses, maxsize, currsize) with f.cache_info(). Clear the cache and statistics with f.cache_clear(). Access the underlying function with f.__wrapped__. See: https://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used """ # Users should only access the lru_cache through its public API: # cache_info, cache_clear, and f.__wrapped__ # The internals of the lru_cache are encapsulated for thread safety and # to allow the implementation to change (including a possible C version). def decorating_function(user_function): cache = dict() stats = [0, 0] # make statistics updateable non-locally HITS, MISSES = 0, 1 # names for the stats fields make_key = _make_key cache_get = cache.get # bound method to lookup key or return None _len = len # localize the global len() function lock = RLock() # because linkedlist updates aren't threadsafe root = [] # root of the circular doubly linked list root[:] = [root, root, None, None] # initialize by pointing to self nonlocal_root = [root] # make updateable non-locally PREV, NEXT, KEY, RESULT = 0, 1, 2, 3 # names for the link fields if maxsize == 0: def wrapper(*args, **kwds): # no caching, just do a statistics update after a successful call result = user_function(*args, **kwds) stats[MISSES] += 1 return result elif maxsize is None: def wrapper(*args, **kwds): # simple caching without ordering or size limit key = make_key(args, kwds, typed) result = cache_get(key, root) # root used here as a unique not-found sentinel if result is not root: stats[HITS] += 1 return result result = user_function(*args, **kwds) cache[key] = result stats[MISSES] += 1 return result else: def wrapper(*args, **kwds): # size limited caching that tracks accesses by recency try: key = make_key(args, kwds, typed) if kwds or typed else args except TypeError: stats[MISSES] += 1 return user_function(*args, **kwds) with lock: link = cache_get(key) if link is not None: # record recent use of the key by moving it to the front of the list root, = nonlocal_root link_prev, link_next, key, result = link link_prev[NEXT] = link_next link_next[PREV] = link_prev last = root[PREV] last[NEXT] = root[PREV] = link link[PREV] = last link[NEXT] = root stats[HITS] += 1 return result result = user_function(*args, **kwds) with lock: root, = nonlocal_root if key in cache: # getting here means that this same key was added to the # cache while the lock was released. since the link # update is already done, we need only return the # computed result and update the count of misses. pass elif _len(cache) >= maxsize: # use the old root to store the new key and result oldroot = root oldroot[KEY] = key oldroot[RESULT] = result # empty the oldest link and make it the new root root = nonlocal_root[0] = oldroot[NEXT] oldkey = root[KEY] oldvalue = root[RESULT] root[KEY] = root[RESULT] = None # now update the cache dictionary for the new links del cache[oldkey] cache[key] = oldroot else: # put result in a new link at the front of the list last = root[PREV] link = [last, root, key, result] last[NEXT] = root[PREV] = cache[key] = link stats[MISSES] += 1 return result def cache_info(): """Report cache statistics""" with lock: return _CacheInfo(stats[HITS], stats[MISSES], maxsize, len(cache)) def cache_clear(): """Clear the cache and cache statistics""" with lock: cache.clear() root = nonlocal_root[0] root[:] = [root, root, None, None] stats[:] = [0, 0] wrapper.__wrapped__ = user_function wrapper.cache_info = cache_info wrapper.cache_clear = cache_clear return update_wrapper(wrapper, user_function) return decorating_function ### End of backported lru_cache if sys.version_info[:2] >= (3, 3): # 3.2 has an lru_cache with an incompatible API from functools import lru_cache try: from itertools import filterfalse except ImportError: # Python 2.7 def filterfalse(pred, itr): return filter(lambda x: not pred(x), itr)
a164f7c9ea6ec34b76f6b3d9977e731a90fed71344cd91a636b13b89d2113714
"""sympify -- convert objects SymPy internal format""" from __future__ import print_function, division from inspect import getmro from .core import all_classes as sympy_classes from .compatibility import iterable, string_types, range from .evaluate import global_evaluate class SympifyError(ValueError): def __init__(self, expr, base_exc=None): self.expr = expr self.base_exc = base_exc def __str__(self): if self.base_exc is None: return "SympifyError: %r" % (self.expr,) return ("Sympify of expression '%s' failed, because of exception being " "raised:\n%s: %s" % (self.expr, self.base_exc.__class__.__name__, str(self.base_exc))) converter = {} # See sympify docstring. class CantSympify(object): """ Mix in this trait to a class to disallow sympification of its instances. Examples ======== >>> from sympy.core.sympify import sympify, CantSympify >>> class Something(dict): ... pass ... >>> sympify(Something()) {} >>> class Something(dict, CantSympify): ... pass ... >>> sympify(Something()) Traceback (most recent call last): ... SympifyError: SympifyError: {} """ pass def _convert_numpy_types(a, **sympify_args): """ Converts a numpy datatype input to an appropriate sympy type. """ import numpy as np if not isinstance(a, np.floating): if np.iscomplex(a): return converter[complex](a.item()) else: return sympify(a.item(), **sympify_args) else: try: from sympy.core.numbers import Float prec = np.finfo(a).nmant + 1 # E.g. double precision means prec=53 but nmant=52 # Leading bit of mantissa is always 1, so is not stored a = str(list(np.reshape(np.asarray(a), (1, np.size(a)))[0]))[1:-1] return Float(a, precision=prec) except NotImplementedError: raise SympifyError('Translation for numpy float : %s ' 'is not implemented' % a) def sympify(a, locals=None, convert_xor=True, strict=False, rational=False, evaluate=None): """Converts an arbitrary expression to a type that can be used inside SymPy. For example, it will convert Python ints into instances of sympy.Integer, floats into instances of sympy.Float, etc. It is also able to coerce symbolic expressions which inherit from Basic. This can be useful in cooperation with SAGE. It currently accepts as arguments: - any object defined in sympy - standard numeric python types: int, long, float, Decimal - strings (like "0.09" or "2e-19") - booleans, including ``None`` (will leave ``None`` unchanged) - lists, sets or tuples containing any of the above .. warning:: Note that this function uses ``eval``, and thus shouldn't be used on unsanitized input. If the argument is already a type that SymPy understands, it will do nothing but return that value. This can be used at the beginning of a function to ensure you are working with the correct type. >>> from sympy import sympify >>> sympify(2).is_integer True >>> sympify(2).is_real True >>> sympify(2.0).is_real True >>> sympify("2.0").is_real True >>> sympify("2e-45").is_real True If the expression could not be converted, a SympifyError is raised. >>> sympify("x***2") Traceback (most recent call last): ... SympifyError: SympifyError: "could not parse u'x***2'" Locals ------ The sympification happens with access to everything that is loaded by ``from sympy import *``; anything used in a string that is not defined by that import will be converted to a symbol. In the following, the ``bitcount`` function is treated as a symbol and the ``O`` is interpreted as the Order object (used with series) and it raises an error when used improperly: >>> s = 'bitcount(42)' >>> sympify(s) bitcount(42) >>> sympify("O(x)") O(x) >>> sympify("O + 1") Traceback (most recent call last): ... TypeError: unbound method... In order to have ``bitcount`` be recognized it can be imported into a namespace dictionary and passed as locals: >>> from sympy.core.compatibility import exec_ >>> ns = {} >>> exec_('from sympy.core.evalf import bitcount', ns) >>> sympify(s, locals=ns) 6 In order to have the ``O`` interpreted as a Symbol, identify it as such in the namespace dictionary. This can be done in a variety of ways; all three of the following are possibilities: >>> from sympy import Symbol >>> ns["O"] = Symbol("O") # method 1 >>> exec_('from sympy.abc import O', ns) # method 2 >>> ns.update(dict(O=Symbol("O"))) # method 3 >>> sympify("O + 1", locals=ns) O + 1 If you want *all* single-letter and Greek-letter variables to be symbols then you can use the clashing-symbols dictionaries that have been defined there as private variables: _clash1 (single-letter variables), _clash2 (the multi-letter Greek names) or _clash (both single and multi-letter names that are defined in abc). >>> from sympy.abc import _clash1 >>> _clash1 {'C': C, 'E': E, 'I': I, 'N': N, 'O': O, 'Q': Q, 'S': S} >>> sympify('I & Q', _clash1) I & Q Strict ------ If the option ``strict`` is set to ``True``, only the types for which an explicit conversion has been defined are converted. In the other cases, a SympifyError is raised. >>> print(sympify(None)) None >>> sympify(None, strict=True) Traceback (most recent call last): ... SympifyError: SympifyError: None Evaluation ---------- If the option ``evaluate`` is set to ``False``, then arithmetic and operators will be converted into their SymPy equivalents and the ``evaluate=False`` option will be added. Nested ``Add`` or ``Mul`` will be denested first. This is done via an AST transformation that replaces operators with their SymPy equivalents, so if an operand redefines any of those operations, the redefined operators will not be used. >>> sympify('2**2 / 3 + 5') 19/3 >>> sympify('2**2 / 3 + 5', evaluate=False) 2**2/3 + 5 Extending --------- To extend ``sympify`` to convert custom objects (not derived from ``Basic``), just define a ``_sympy_`` method to your class. You can do that even to classes that you do not own by subclassing or adding the method at runtime. >>> from sympy import Matrix >>> class MyList1(object): ... def __iter__(self): ... yield 1 ... yield 2 ... return ... def __getitem__(self, i): return list(self)[i] ... def _sympy_(self): return Matrix(self) >>> sympify(MyList1()) Matrix([ [1], [2]]) If you do not have control over the class definition you could also use the ``converter`` global dictionary. The key is the class and the value is a function that takes a single argument and returns the desired SymPy object, e.g. ``converter[MyList] = lambda x: Matrix(x)``. >>> class MyList2(object): # XXX Do not do this if you control the class! ... def __iter__(self): # Use _sympy_! ... yield 1 ... yield 2 ... return ... def __getitem__(self, i): return list(self)[i] >>> from sympy.core.sympify import converter >>> converter[MyList2] = lambda x: Matrix(x) >>> sympify(MyList2()) Matrix([ [1], [2]]) Notes ===== Sometimes autosimplification during sympification results in expressions that are very different in structure than what was entered. Until such autosimplification is no longer done, the ``kernS`` function might be of some use. In the example below you can see how an expression reduces to -1 by autosimplification, but does not do so when ``kernS`` is used. >>> from sympy.core.sympify import kernS >>> from sympy.abc import x >>> -2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1 -1 >>> s = '-2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1' >>> sympify(s) -1 >>> kernS(s) -2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1 """ if evaluate is None: if global_evaluate[0] is False: evaluate = global_evaluate[0] else: evaluate = True try: if a in sympy_classes: return a except TypeError: # Type of a is unhashable pass cls = getattr(a, "__class__", None) if cls is None: cls = type(a) # Probably an old-style class if cls in sympy_classes: return a if cls is type(None): if strict: raise SympifyError(a) else: return a # Support for basic numpy datatypes # Note that this check exists to avoid importing NumPy when not necessary if type(a).__module__ == 'numpy': import numpy as np if np.isscalar(a): return _convert_numpy_types(a, locals=locals, convert_xor=convert_xor, strict=strict, rational=rational, evaluate=evaluate) try: return converter[cls](a) except KeyError: for superclass in getmro(cls): try: return converter[superclass](a) except KeyError: continue if isinstance(a, CantSympify): raise SympifyError(a) _sympy_ = getattr(a, "_sympy_", None) if _sympy_ is not None: try: return a._sympy_() # XXX: Catches AttributeError: 'SympyConverter' object has no # attribute 'tuple' # This is probably a bug somewhere but for now we catch it here. except AttributeError: pass if not strict: # Put numpy array conversion _before_ float/int, see # <https://github.com/sympy/sympy/issues/13924>. flat = getattr(a, "flat", None) if flat is not None: shape = getattr(a, "shape", None) if shape is not None: from ..tensor.array import Array return Array(a.flat, a.shape) # works with e.g. NumPy arrays if not isinstance(a, string_types): for coerce in (float, int): try: coerced = coerce(a) except (TypeError, ValueError): continue # XXX: AttributeError only needed here for Py2 except AttributeError: continue try: return sympify(coerced) except SympifyError: continue if strict: raise SympifyError(a) if iterable(a): try: return type(a)([sympify(x, locals=locals, convert_xor=convert_xor, rational=rational) for x in a]) except TypeError: # Not all iterables are rebuildable with their type. pass if isinstance(a, dict): try: return type(a)([sympify(x, locals=locals, convert_xor=convert_xor, rational=rational) for x in a.items()]) except TypeError: # Not all iterables are rebuildable with their type. pass # At this point we were given an arbitrary expression # which does not inherit from Basic and doesn't implement # _sympy_ (which is a canonical and robust way to convert # anything to SymPy expression). # # As a last chance, we try to take "a"'s normal form via unicode() # and try to parse it. If it fails, then we have no luck and # return an exception try: from .compatibility import unicode a = unicode(a) except Exception as exc: raise SympifyError(a, exc) from sympy.parsing.sympy_parser import (parse_expr, TokenError, standard_transformations) from sympy.parsing.sympy_parser import convert_xor as t_convert_xor from sympy.parsing.sympy_parser import rationalize as t_rationalize transformations = standard_transformations if rational: transformations += (t_rationalize,) if convert_xor: transformations += (t_convert_xor,) try: a = a.replace('\n', '') expr = parse_expr(a, local_dict=locals, transformations=transformations, evaluate=evaluate) except (TokenError, SyntaxError) as exc: raise SympifyError('could not parse %r' % a, exc) return expr def _sympify(a): """ Short version of sympify for internal usage for __add__ and __eq__ methods where it is ok to allow some things (like Python integers and floats) in the expression. This excludes things (like strings) that are unwise to allow into such an expression. >>> from sympy import Integer >>> Integer(1) == 1 True >>> Integer(1) == '1' False >>> from sympy.abc import x >>> x + 1 x + 1 >>> x + '1' Traceback (most recent call last): ... TypeError: unsupported operand type(s) for +: 'Symbol' and 'str' see: sympify """ return sympify(a, strict=True) def kernS(s): """Use a hack to try keep autosimplification from distributing a a number into an Add; this modification doesn't prevent the 2-arg Mul from becoming an Add, however. Examples ======== >>> from sympy.core.sympify import kernS >>> from sympy.abc import x, y, z The 2-arg Mul distributes a number (or minus sign) across the terms of an expression, but kernS will prevent that: >>> 2*(x + y), -(x + 1) (2*x + 2*y, -x - 1) >>> kernS('2*(x + y)') 2*(x + y) >>> kernS('-(x + 1)') -(x + 1) If use of the hack fails, the un-hacked string will be passed to sympify... and you get what you get. XXX This hack should not be necessary once issue 4596 has been resolved. """ import string from random import choice from sympy.core.symbol import Symbol hit = False quoted = '"' in s or "'" in s if '(' in s and not quoted: if s.count('(') != s.count(")"): raise SympifyError('unmatched left parenthesis') # strip all space from s s = ''.join(s.split()) olds = s # now use space to represent a symbol that # will # step 1. turn potential 2-arg Muls into 3-arg versions # 1a. *( -> * *( s = s.replace('*(', '* *(') # 1b. close up exponentials s = s.replace('** *', '**') # 2. handle the implied multiplication of a negated # parenthesized expression in two steps # 2a: -(...) --> -( *(...) target = '-( *(' s = s.replace('-(', target) # 2b: double the matching closing parenthesis # -( *(...) --> -( *(...)) i = nest = 0 assert target.endswith('(') # assumption below while True: j = s.find(target, i) if j == -1: break j += len(target) - 1 for j in range(j, len(s)): if s[j] == "(": nest += 1 elif s[j] == ")": nest -= 1 if nest == 0: break s = s[:j] + ")" + s[j:] i = j + 2 # the first char after 2nd ) if ' ' in s: # get a unique kern kern = '_' while kern in s: kern += choice(string.ascii_letters + string.digits) s = s.replace(' ', kern) hit = kern in s for i in range(2): try: expr = sympify(s) break except: # the kern might cause unknown errors, so use bare except if hit: s = olds # maybe it didn't like the kern; use un-kerned s hit = False continue expr = sympify(s) # let original error raise if not hit: return expr rep = {Symbol(kern): 1} def _clear(expr): if isinstance(expr, (list, tuple, set)): return type(expr)([_clear(e) for e in expr]) if hasattr(expr, 'subs'): return expr.subs(rep, hack2=True) return expr expr = _clear(expr) # hope that kern is not there anymore return expr
4f801ab5ff7f9ad0a2065d145cbcb7d31874b16f99230dd5c8036d36c1d4df14
""" Adaptive numerical evaluation of SymPy expressions, using mpmath for mathematical functions. """ from __future__ import print_function, division import math import mpmath.libmp as libmp from mpmath import ( make_mpc, make_mpf, mp, mpc, mpf, nsum, quadts, quadosc, workprec) from mpmath import inf as mpmath_inf from mpmath.libmp import (from_int, from_man_exp, from_rational, fhalf, fnan, fnone, fone, fzero, mpf_abs, mpf_add, mpf_atan, mpf_atan2, mpf_cmp, mpf_cos, mpf_e, mpf_exp, mpf_log, mpf_lt, mpf_mul, mpf_neg, mpf_pi, mpf_pow, mpf_pow_int, mpf_shift, mpf_sin, mpf_sqrt, normalize, round_nearest, to_int, to_str) from mpmath.libmp import bitcount as mpmath_bitcount from mpmath.libmp.backend import MPZ from mpmath.libmp.libmpc import _infs_nan from mpmath.libmp.libmpf import dps_to_prec, prec_to_dps from mpmath.libmp.gammazeta import mpf_bernoulli from .compatibility import SYMPY_INTS, range from .sympify import sympify from .singleton import S from sympy.utilities.iterables import is_sequence LG10 = math.log(10, 2) rnd = round_nearest def bitcount(n): """Return smallest integer, b, such that |n|/2**b < 1. """ return mpmath_bitcount(abs(int(n))) # Used in a few places as placeholder values to denote exponents and # precision levels, e.g. of exact numbers. Must be careful to avoid # passing these to mpmath functions or returning them in final results. INF = float(mpmath_inf) MINUS_INF = float(-mpmath_inf) # ~= 100 digits. Real men set this to INF. DEFAULT_MAXPREC = 333 class PrecisionExhausted(ArithmeticError): pass #----------------------------------------------------------------------------# # # # Helper functions for arithmetic and complex parts # # # #----------------------------------------------------------------------------# """ An mpf value tuple is a tuple of integers (sign, man, exp, bc) representing a floating-point number: [1, -1][sign]*man*2**exp where sign is 0 or 1 and bc should correspond to the number of bits used to represent the mantissa (man) in binary notation, e.g. >>> from sympy.core.evalf import bitcount >>> sign, man, exp, bc = 0, 5, 1, 3 >>> n = [1, -1][sign]*man*2**exp >>> n, bitcount(man) (10, 3) A temporary result is a tuple (re, im, re_acc, im_acc) where re and im are nonzero mpf value tuples representing approximate numbers, or None to denote exact zeros. re_acc, im_acc are integers denoting log2(e) where e is the estimated relative accuracy of the respective complex part, but may be anything if the corresponding complex part is None. """ def fastlog(x): """Fast approximation of log2(x) for an mpf value tuple x. Notes: Calculated as exponent + width of mantissa. This is an approximation for two reasons: 1) it gives the ceil(log2(abs(x))) value and 2) it is too high by 1 in the case that x is an exact power of 2. Although this is easy to remedy by testing to see if the odd mpf mantissa is 1 (indicating that one was dealing with an exact power of 2) that would decrease the speed and is not necessary as this is only being used as an approximation for the number of bits in x. The correct return value could be written as "x[2] + (x[3] if x[1] != 1 else 0)". Since mpf tuples always have an odd mantissa, no check is done to see if the mantissa is a multiple of 2 (in which case the result would be too large by 1). Examples ======== >>> from sympy import log >>> from sympy.core.evalf import fastlog, bitcount >>> s, m, e = 0, 5, 1 >>> bc = bitcount(m) >>> n = [1, -1][s]*m*2**e >>> n, (log(n)/log(2)).evalf(2), fastlog((s, m, e, bc)) (10, 3.3, 4) """ if not x or x == fzero: return MINUS_INF return x[2] + x[3] def pure_complex(v, or_real=False): """Return a and b if v matches a + I*b where b is not zero and a and b are Numbers, else None. If `or_real` is True then 0 will be returned for `b` if `v` is a real number. >>> from sympy.core.evalf import pure_complex >>> from sympy import sqrt, I, S >>> a, b, surd = S(2), S(3), sqrt(2) >>> pure_complex(a) >>> pure_complex(a, or_real=True) (2, 0) >>> pure_complex(surd) >>> pure_complex(a + b*I) (2, 3) >>> pure_complex(I) (0, 1) """ h, t = v.as_coeff_Add() if not t: if or_real: return h, t return c, i = t.as_coeff_Mul() if i is S.ImaginaryUnit: return h, c def scaled_zero(mag, sign=1): """Return an mpf representing a power of two with magnitude ``mag`` and -1 for precision. Or, if ``mag`` is a scaled_zero tuple, then just remove the sign from within the list that it was initially wrapped in. Examples ======== >>> from sympy.core.evalf import scaled_zero >>> from sympy import Float >>> z, p = scaled_zero(100) >>> z, p (([0], 1, 100, 1), -1) >>> ok = scaled_zero(z) >>> ok (0, 1, 100, 1) >>> Float(ok) 1.26765060022823e+30 >>> Float(ok, p) 0.e+30 >>> ok, p = scaled_zero(100, -1) >>> Float(scaled_zero(ok), p) -0.e+30 """ if type(mag) is tuple and len(mag) == 4 and iszero(mag, scaled=True): return (mag[0][0],) + mag[1:] elif isinstance(mag, SYMPY_INTS): if sign not in [-1, 1]: raise ValueError('sign must be +/-1') rv, p = mpf_shift(fone, mag), -1 s = 0 if sign == 1 else 1 rv = ([s],) + rv[1:] return rv, p else: raise ValueError('scaled zero expects int or scaled_zero tuple.') def iszero(mpf, scaled=False): if not scaled: return not mpf or not mpf[1] and not mpf[-1] return mpf and type(mpf[0]) is list and mpf[1] == mpf[-1] == 1 def complex_accuracy(result): """ Returns relative accuracy of a complex number with given accuracies for the real and imaginary parts. The relative accuracy is defined in the complex norm sense as ||z|+|error|| / |z| where error is equal to (real absolute error) + (imag absolute error)*i. The full expression for the (logarithmic) error can be approximated easily by using the max norm to approximate the complex norm. In the worst case (re and im equal), this is wrong by a factor sqrt(2), or by log2(sqrt(2)) = 0.5 bit. """ re, im, re_acc, im_acc = result if not im: if not re: return INF return re_acc if not re: return im_acc re_size = fastlog(re) im_size = fastlog(im) absolute_error = max(re_size - re_acc, im_size - im_acc) relative_error = absolute_error - max(re_size, im_size) return -relative_error def get_abs(expr, prec, options): re, im, re_acc, im_acc = evalf(expr, prec + 2, options) if not re: re, re_acc, im, im_acc = im, im_acc, re, re_acc if im: if expr.is_number: abs_expr, _, acc, _ = evalf(abs(N(expr, prec + 2)), prec + 2, options) return abs_expr, None, acc, None else: if 'subs' in options: return libmp.mpc_abs((re, im), prec), None, re_acc, None return abs(expr), None, prec, None elif re: return mpf_abs(re), None, re_acc, None else: return None, None, None, None def get_complex_part(expr, no, prec, options): """no = 0 for real part, no = 1 for imaginary part""" workprec = prec i = 0 while 1: res = evalf(expr, workprec, options) value, accuracy = res[no::2] # XXX is the last one correct? Consider re((1+I)**2).n() if (not value) or accuracy >= prec or -value[2] > prec: return value, None, accuracy, None workprec += max(30, 2**i) i += 1 def evalf_abs(expr, prec, options): return get_abs(expr.args[0], prec, options) def evalf_re(expr, prec, options): return get_complex_part(expr.args[0], 0, prec, options) def evalf_im(expr, prec, options): return get_complex_part(expr.args[0], 1, prec, options) def finalize_complex(re, im, prec): if re == fzero and im == fzero: raise ValueError("got complex zero with unknown accuracy") elif re == fzero: return None, im, None, prec elif im == fzero: return re, None, prec, None size_re = fastlog(re) size_im = fastlog(im) if size_re > size_im: re_acc = prec im_acc = prec + min(-(size_re - size_im), 0) else: im_acc = prec re_acc = prec + min(-(size_im - size_re), 0) return re, im, re_acc, im_acc def chop_parts(value, prec): """ Chop off tiny real or complex parts. """ re, im, re_acc, im_acc = value # Method 1: chop based on absolute value if re and re not in _infs_nan and (fastlog(re) < -prec + 4): re, re_acc = None, None if im and im not in _infs_nan and (fastlog(im) < -prec + 4): im, im_acc = None, None # Method 2: chop if inaccurate and relatively small if re and im: delta = fastlog(re) - fastlog(im) if re_acc < 2 and (delta - re_acc <= -prec + 4): re, re_acc = None, None if im_acc < 2 and (delta - im_acc >= prec - 4): im, im_acc = None, None return re, im, re_acc, im_acc def check_target(expr, result, prec): a = complex_accuracy(result) if a < prec: raise PrecisionExhausted("Failed to distinguish the expression: \n\n%s\n\n" "from zero. Try simplifying the input, using chop=True, or providing " "a higher maxn for evalf" % (expr)) def get_integer_part(expr, no, options, return_ints=False): """ With no = 1, computes ceiling(expr) With no = -1, computes floor(expr) Note: this function either gives the exact result or signals failure. """ from sympy.functions.elementary.complexes import re, im # The expression is likely less than 2^30 or so assumed_size = 30 ire, iim, ire_acc, iim_acc = evalf(expr, assumed_size, options) # We now know the size, so we can calculate how much extra precision # (if any) is needed to get within the nearest integer if ire and iim: gap = max(fastlog(ire) - ire_acc, fastlog(iim) - iim_acc) elif ire: gap = fastlog(ire) - ire_acc elif iim: gap = fastlog(iim) - iim_acc else: # ... or maybe the expression was exactly zero return None, None, None, None margin = 10 if gap >= -margin: prec = margin + assumed_size + gap ire, iim, ire_acc, iim_acc = evalf( expr, prec, options) else: prec = assumed_size # We can now easily find the nearest integer, but to find floor/ceil, we # must also calculate whether the difference to the nearest integer is # positive or negative (which may fail if very close). def calc_part(re_im, nexpr): from sympy.core.add import Add n, c, p, b = nexpr is_int = (p == 0) nint = int(to_int(nexpr, rnd)) if is_int: # make sure that we had enough precision to distinguish # between nint and the re or im part (re_im) of expr that # was passed to calc_part ire, iim, ire_acc, iim_acc = evalf( re_im - nint, 10, options) # don't need much precision assert not iim size = -fastlog(ire) + 2 # -ve b/c ire is less than 1 if size > prec: ire, iim, ire_acc, iim_acc = evalf( re_im, size, options) assert not iim nexpr = ire n, c, p, b = nexpr is_int = (p == 0) nint = int(to_int(nexpr, rnd)) if not is_int: # if there are subs and they all contain integer re/im parts # then we can (hopefully) safely substitute them into the # expression s = options.get('subs', False) if s: doit = True from sympy.core.compatibility import as_int # use strict=False with as_int because we take # 2.0 == 2 for v in s.values(): try: as_int(v, strict=False) except ValueError: try: [as_int(i, strict=False) for i in v.as_real_imag()] continue except (ValueError, AttributeError): doit = False break if doit: re_im = re_im.subs(s) re_im = Add(re_im, -nint, evaluate=False) x, _, x_acc, _ = evalf(re_im, 10, options) try: check_target(re_im, (x, None, x_acc, None), 3) except PrecisionExhausted: if not re_im.equals(0): raise PrecisionExhausted x = fzero nint += int(no*(mpf_cmp(x or fzero, fzero) == no)) nint = from_int(nint) return nint, INF re_, im_, re_acc, im_acc = None, None, None, None if ire: re_, re_acc = calc_part(re(expr, evaluate=False), ire) if iim: im_, im_acc = calc_part(im(expr, evaluate=False), iim) if return_ints: return int(to_int(re_ or fzero)), int(to_int(im_ or fzero)) return re_, im_, re_acc, im_acc def evalf_ceiling(expr, prec, options): return get_integer_part(expr.args[0], 1, options) def evalf_floor(expr, prec, options): return get_integer_part(expr.args[0], -1, options) #----------------------------------------------------------------------------# # # # Arithmetic operations # # # #----------------------------------------------------------------------------# def add_terms(terms, prec, target_prec): """ Helper for evalf_add. Adds a list of (mpfval, accuracy) terms. Returns ------- - None, None if there are no non-zero terms; - terms[0] if there is only 1 term; - scaled_zero if the sum of the terms produces a zero by cancellation e.g. mpfs representing 1 and -1 would produce a scaled zero which need special handling since they are not actually zero and they are purposely malformed to ensure that they can't be used in anything but accuracy calculations; - a tuple that is scaled to target_prec that corresponds to the sum of the terms. The returned mpf tuple will be normalized to target_prec; the input prec is used to define the working precision. XXX explain why this is needed and why one can't just loop using mpf_add """ terms = [t for t in terms if not iszero(t[0])] if not terms: return None, None elif len(terms) == 1: return terms[0] # see if any argument is NaN or oo and thus warrants a special return special = [] from sympy.core.numbers import Float for t in terms: arg = Float._new(t[0], 1) if arg is S.NaN or arg.is_infinite: special.append(arg) if special: from sympy.core.add import Add rv = evalf(Add(*special), prec + 4, {}) return rv[0], rv[2] working_prec = 2*prec sum_man, sum_exp, absolute_error = 0, 0, MINUS_INF for x, accuracy in terms: sign, man, exp, bc = x if sign: man = -man absolute_error = max(absolute_error, bc + exp - accuracy) delta = exp - sum_exp if exp >= sum_exp: # x much larger than existing sum? # first: quick test if ((delta > working_prec) and ((not sum_man) or delta - bitcount(abs(sum_man)) > working_prec)): sum_man = man sum_exp = exp else: sum_man += (man << delta) else: delta = -delta # x much smaller than existing sum? if delta - bc > working_prec: if not sum_man: sum_man, sum_exp = man, exp else: sum_man = (sum_man << delta) + man sum_exp = exp if not sum_man: return scaled_zero(absolute_error) if sum_man < 0: sum_sign = 1 sum_man = -sum_man else: sum_sign = 0 sum_bc = bitcount(sum_man) sum_accuracy = sum_exp + sum_bc - absolute_error r = normalize(sum_sign, sum_man, sum_exp, sum_bc, target_prec, rnd), sum_accuracy return r def evalf_add(v, prec, options): res = pure_complex(v) if res: h, c = res re, _, re_acc, _ = evalf(h, prec, options) im, _, im_acc, _ = evalf(c, prec, options) return re, im, re_acc, im_acc oldmaxprec = options.get('maxprec', DEFAULT_MAXPREC) i = 0 target_prec = prec while 1: options['maxprec'] = min(oldmaxprec, 2*prec) terms = [evalf(arg, prec + 10, options) for arg in v.args] re, re_acc = add_terms( [a[0::2] for a in terms if a[0]], prec, target_prec) im, im_acc = add_terms( [a[1::2] for a in terms if a[1]], prec, target_prec) acc = complex_accuracy((re, im, re_acc, im_acc)) if acc >= target_prec: if options.get('verbose'): print("ADD: wanted", target_prec, "accurate bits, got", re_acc, im_acc) break else: if (prec - target_prec) > options['maxprec']: break prec = prec + max(10 + 2**i, target_prec - acc) i += 1 if options.get('verbose'): print("ADD: restarting with prec", prec) options['maxprec'] = oldmaxprec if iszero(re, scaled=True): re = scaled_zero(re) if iszero(im, scaled=True): im = scaled_zero(im) return re, im, re_acc, im_acc def evalf_mul(v, prec, options): res = pure_complex(v) if res: # the only pure complex that is a mul is h*I _, h = res im, _, im_acc, _ = evalf(h, prec, options) return None, im, None, im_acc args = list(v.args) # see if any argument is NaN or oo and thus warrants a special return special = [] from sympy.core.numbers import Float for arg in args: arg = evalf(arg, prec, options) if arg[0] is None: continue arg = Float._new(arg[0], 1) if arg is S.NaN or arg.is_infinite: special.append(arg) if special: from sympy.core.mul import Mul special = Mul(*special) return evalf(special, prec + 4, {}) # With guard digits, multiplication in the real case does not destroy # accuracy. This is also true in the complex case when considering the # total accuracy; however accuracy for the real or imaginary parts # separately may be lower. acc = prec # XXX: big overestimate working_prec = prec + len(args) + 5 # Empty product is 1 start = man, exp, bc = MPZ(1), 0, 1 # First, we multiply all pure real or pure imaginary numbers. # direction tells us that the result should be multiplied by # I**direction; all other numbers get put into complex_factors # to be multiplied out after the first phase. last = len(args) direction = 0 args.append(S.One) complex_factors = [] for i, arg in enumerate(args): if i != last and pure_complex(arg): args[-1] = (args[-1]*arg).expand() continue elif i == last and arg is S.One: continue re, im, re_acc, im_acc = evalf(arg, working_prec, options) if re and im: complex_factors.append((re, im, re_acc, im_acc)) continue elif re: (s, m, e, b), w_acc = re, re_acc elif im: (s, m, e, b), w_acc = im, im_acc direction += 1 else: return None, None, None, None direction += 2*s man *= m exp += e bc += b if bc > 3*working_prec: man >>= working_prec exp += working_prec acc = min(acc, w_acc) sign = (direction & 2) >> 1 if not complex_factors: v = normalize(sign, man, exp, bitcount(man), prec, rnd) # multiply by i if direction & 1: return None, v, None, acc else: return v, None, acc, None else: # initialize with the first term if (man, exp, bc) != start: # there was a real part; give it an imaginary part re, im = (sign, man, exp, bitcount(man)), (0, MPZ(0), 0, 0) i0 = 0 else: # there is no real part to start (other than the starting 1) wre, wim, wre_acc, wim_acc = complex_factors[0] acc = min(acc, complex_accuracy((wre, wim, wre_acc, wim_acc))) re = wre im = wim i0 = 1 for wre, wim, wre_acc, wim_acc in complex_factors[i0:]: # acc is the overall accuracy of the product; we aren't # computing exact accuracies of the product. acc = min(acc, complex_accuracy((wre, wim, wre_acc, wim_acc))) use_prec = working_prec A = mpf_mul(re, wre, use_prec) B = mpf_mul(mpf_neg(im), wim, use_prec) C = mpf_mul(re, wim, use_prec) D = mpf_mul(im, wre, use_prec) re = mpf_add(A, B, use_prec) im = mpf_add(C, D, use_prec) if options.get('verbose'): print("MUL: wanted", prec, "accurate bits, got", acc) # multiply by I if direction & 1: re, im = mpf_neg(im), re return re, im, acc, acc def evalf_pow(v, prec, options): target_prec = prec base, exp = v.args # We handle x**n separately. This has two purposes: 1) it is much # faster, because we avoid calling evalf on the exponent, and 2) it # allows better handling of real/imaginary parts that are exactly zero if exp.is_Integer: p = exp.p # Exact if not p: return fone, None, prec, None # Exponentiation by p magnifies relative error by |p|, so the # base must be evaluated with increased precision if p is large prec += int(math.log(abs(p), 2)) re, im, re_acc, im_acc = evalf(base, prec + 5, options) # Real to integer power if re and not im: return mpf_pow_int(re, p, target_prec), None, target_prec, None # (x*I)**n = I**n * x**n if im and not re: z = mpf_pow_int(im, p, target_prec) case = p % 4 if case == 0: return z, None, target_prec, None if case == 1: return None, z, None, target_prec if case == 2: return mpf_neg(z), None, target_prec, None if case == 3: return None, mpf_neg(z), None, target_prec # Zero raised to an integer power if not re: return None, None, None, None # General complex number to arbitrary integer power re, im = libmp.mpc_pow_int((re, im), p, prec) # Assumes full accuracy in input return finalize_complex(re, im, target_prec) # Pure square root if exp is S.Half: xre, xim, _, _ = evalf(base, prec + 5, options) # General complex square root if xim: re, im = libmp.mpc_sqrt((xre or fzero, xim), prec) return finalize_complex(re, im, prec) if not xre: return None, None, None, None # Square root of a negative real number if mpf_lt(xre, fzero): return None, mpf_sqrt(mpf_neg(xre), prec), None, prec # Positive square root return mpf_sqrt(xre, prec), None, prec, None # We first evaluate the exponent to find its magnitude # This determines the working precision that must be used prec += 10 yre, yim, _, _ = evalf(exp, prec, options) # Special cases: x**0 if not (yre or yim): return fone, None, prec, None ysize = fastlog(yre) # Restart if too big # XXX: prec + ysize might exceed maxprec if ysize > 5: prec += ysize yre, yim, _, _ = evalf(exp, prec, options) # Pure exponential function; no need to evalf the base if base is S.Exp1: if yim: re, im = libmp.mpc_exp((yre or fzero, yim), prec) return finalize_complex(re, im, target_prec) return mpf_exp(yre, target_prec), None, target_prec, None xre, xim, _, _ = evalf(base, prec + 5, options) # 0**y if not (xre or xim): return None, None, None, None # (real ** complex) or (complex ** complex) if yim: re, im = libmp.mpc_pow( (xre or fzero, xim or fzero), (yre or fzero, yim), target_prec) return finalize_complex(re, im, target_prec) # complex ** real if xim: re, im = libmp.mpc_pow_mpf((xre or fzero, xim), yre, target_prec) return finalize_complex(re, im, target_prec) # negative ** real elif mpf_lt(xre, fzero): re, im = libmp.mpc_pow_mpf((xre, fzero), yre, target_prec) return finalize_complex(re, im, target_prec) # positive ** real else: return mpf_pow(xre, yre, target_prec), None, target_prec, None #----------------------------------------------------------------------------# # # # Special functions # # # #----------------------------------------------------------------------------# def evalf_trig(v, prec, options): """ This function handles sin and cos of complex arguments. TODO: should also handle tan of complex arguments. """ from sympy import cos, sin if isinstance(v, cos): func = mpf_cos elif isinstance(v, sin): func = mpf_sin else: raise NotImplementedError arg = v.args[0] # 20 extra bits is possibly overkill. It does make the need # to restart very unlikely xprec = prec + 20 re, im, re_acc, im_acc = evalf(arg, xprec, options) if im: if 'subs' in options: v = v.subs(options['subs']) return evalf(v._eval_evalf(prec), prec, options) if not re: if isinstance(v, cos): return fone, None, prec, None elif isinstance(v, sin): return None, None, None, None else: raise NotImplementedError # For trigonometric functions, we are interested in the # fixed-point (absolute) accuracy of the argument. xsize = fastlog(re) # Magnitude <= 1.0. OK to compute directly, because there is no # danger of hitting the first root of cos (with sin, magnitude # <= 2.0 would actually be ok) if xsize < 1: return func(re, prec, rnd), None, prec, None # Very large if xsize >= 10: xprec = prec + xsize re, im, re_acc, im_acc = evalf(arg, xprec, options) # Need to repeat in case the argument is very close to a # multiple of pi (or pi/2), hitting close to a root while 1: y = func(re, prec, rnd) ysize = fastlog(y) gap = -ysize accuracy = (xprec - xsize) - gap if accuracy < prec: if options.get('verbose'): print("SIN/COS", accuracy, "wanted", prec, "gap", gap) print(to_str(y, 10)) if xprec > options.get('maxprec', DEFAULT_MAXPREC): return y, None, accuracy, None xprec += gap re, im, re_acc, im_acc = evalf(arg, xprec, options) continue else: return y, None, prec, None def evalf_log(expr, prec, options): from sympy import Abs, Add, log if len(expr.args)>1: expr = expr.doit() return evalf(expr, prec, options) arg = expr.args[0] workprec = prec + 10 xre, xim, xacc, _ = evalf(arg, workprec, options) if xim: # XXX: use get_abs etc instead re = evalf_log( log(Abs(arg, evaluate=False), evaluate=False), prec, options) im = mpf_atan2(xim, xre or fzero, prec) return re[0], im, re[2], prec imaginary_term = (mpf_cmp(xre, fzero) < 0) re = mpf_log(mpf_abs(xre), prec, rnd) size = fastlog(re) if prec - size > workprec and re != fzero: # We actually need to compute 1+x accurately, not x arg = Add(S.NegativeOne, arg, evaluate=False) xre, xim, _, _ = evalf_add(arg, prec, options) prec2 = workprec - fastlog(xre) # xre is now x - 1 so we add 1 back here to calculate x re = mpf_log(mpf_abs(mpf_add(xre, fone, prec2)), prec, rnd) re_acc = prec if imaginary_term: return re, mpf_pi(prec), re_acc, prec else: return re, None, re_acc, None def evalf_atan(v, prec, options): arg = v.args[0] xre, xim, reacc, imacc = evalf(arg, prec + 5, options) if xre is xim is None: return (None,)*4 if xim: raise NotImplementedError return mpf_atan(xre, prec, rnd), None, prec, None def evalf_subs(prec, subs): """ Change all Float entries in `subs` to have precision prec. """ newsubs = {} for a, b in subs.items(): b = S(b) if b.is_Float: b = b._eval_evalf(prec) newsubs[a] = b return newsubs def evalf_piecewise(expr, prec, options): from sympy import Float, Integer if 'subs' in options: expr = expr.subs(evalf_subs(prec, options['subs'])) newopts = options.copy() del newopts['subs'] if hasattr(expr, 'func'): return evalf(expr, prec, newopts) if type(expr) == float: return evalf(Float(expr), prec, newopts) if type(expr) == int: return evalf(Integer(expr), prec, newopts) # We still have undefined symbols raise NotImplementedError def evalf_bernoulli(expr, prec, options): arg = expr.args[0] if not arg.is_Integer: raise ValueError("Bernoulli number index must be an integer") n = int(arg) b = mpf_bernoulli(n, prec, rnd) if b == fzero: return None, None, None, None return b, None, prec, None #----------------------------------------------------------------------------# # # # High-level operations # # # #----------------------------------------------------------------------------# def as_mpmath(x, prec, options): from sympy.core.numbers import Infinity, NegativeInfinity, Zero x = sympify(x) if isinstance(x, Zero) or x == 0: return mpf(0) if isinstance(x, Infinity): return mpf('inf') if isinstance(x, NegativeInfinity): return mpf('-inf') # XXX re, im, _, _ = evalf(x, prec, options) if im: return mpc(re or fzero, im) return mpf(re) def do_integral(expr, prec, options): func = expr.args[0] x, xlow, xhigh = expr.args[1] if xlow == xhigh: xlow = xhigh = 0 elif x not in func.free_symbols: # only the difference in limits matters in this case # so if there is a symbol in common that will cancel # out when taking the difference, then use that # difference if xhigh.free_symbols & xlow.free_symbols: diff = xhigh - xlow if diff.is_number: xlow, xhigh = 0, diff oldmaxprec = options.get('maxprec', DEFAULT_MAXPREC) options['maxprec'] = min(oldmaxprec, 2*prec) with workprec(prec + 5): xlow = as_mpmath(xlow, prec + 15, options) xhigh = as_mpmath(xhigh, prec + 15, options) # Integration is like summation, and we can phone home from # the integrand function to update accuracy summation style # Note that this accuracy is inaccurate, since it fails # to account for the variable quadrature weights, # but it is better than nothing from sympy import cos, sin, Wild have_part = [False, False] max_real_term = [MINUS_INF] max_imag_term = [MINUS_INF] def f(t): re, im, re_acc, im_acc = evalf(func, mp.prec, {'subs': {x: t}}) have_part[0] = re or have_part[0] have_part[1] = im or have_part[1] max_real_term[0] = max(max_real_term[0], fastlog(re)) max_imag_term[0] = max(max_imag_term[0], fastlog(im)) if im: return mpc(re or fzero, im) return mpf(re or fzero) if options.get('quad') == 'osc': A = Wild('A', exclude=[x]) B = Wild('B', exclude=[x]) D = Wild('D') m = func.match(cos(A*x + B)*D) if not m: m = func.match(sin(A*x + B)*D) if not m: raise ValueError("An integrand of the form sin(A*x+B)*f(x) " "or cos(A*x+B)*f(x) is required for oscillatory quadrature") period = as_mpmath(2*S.Pi/m[A], prec + 15, options) result = quadosc(f, [xlow, xhigh], period=period) # XXX: quadosc does not do error detection yet quadrature_error = MINUS_INF else: result, quadrature_error = quadts(f, [xlow, xhigh], error=1) quadrature_error = fastlog(quadrature_error._mpf_) options['maxprec'] = oldmaxprec if have_part[0]: re = result.real._mpf_ if re == fzero: re, re_acc = scaled_zero( min(-prec, -max_real_term[0], -quadrature_error)) re = scaled_zero(re) # handled ok in evalf_integral else: re_acc = -max(max_real_term[0] - fastlog(re) - prec, quadrature_error) else: re, re_acc = None, None if have_part[1]: im = result.imag._mpf_ if im == fzero: im, im_acc = scaled_zero( min(-prec, -max_imag_term[0], -quadrature_error)) im = scaled_zero(im) # handled ok in evalf_integral else: im_acc = -max(max_imag_term[0] - fastlog(im) - prec, quadrature_error) else: im, im_acc = None, None result = re, im, re_acc, im_acc return result def evalf_integral(expr, prec, options): limits = expr.limits if len(limits) != 1 or len(limits[0]) != 3: raise NotImplementedError workprec = prec i = 0 maxprec = options.get('maxprec', INF) while 1: result = do_integral(expr, workprec, options) accuracy = complex_accuracy(result) if accuracy >= prec: # achieved desired precision break if workprec >= maxprec: # can't increase accuracy any more break if accuracy == -1: # maybe the answer really is zero and maybe we just haven't increased # the precision enough. So increase by doubling to not take too long # to get to maxprec. workprec *= 2 else: workprec += max(prec, 2**i) workprec = min(workprec, maxprec) i += 1 return result def check_convergence(numer, denom, n): """ Returns (h, g, p) where -- h is: > 0 for convergence of rate 1/factorial(n)**h < 0 for divergence of rate factorial(n)**(-h) = 0 for geometric or polynomial convergence or divergence -- abs(g) is: > 1 for geometric convergence of rate 1/h**n < 1 for geometric divergence of rate h**n = 1 for polynomial convergence or divergence (g < 0 indicates an alternating series) -- p is: > 1 for polynomial convergence of rate 1/n**h <= 1 for polynomial divergence of rate n**(-h) """ from sympy import Poly npol = Poly(numer, n) dpol = Poly(denom, n) p = npol.degree() q = dpol.degree() rate = q - p if rate: return rate, None, None constant = dpol.LC() / npol.LC() if abs(constant) != 1: return rate, constant, None if npol.degree() == dpol.degree() == 0: return rate, constant, 0 pc = npol.all_coeffs()[1] qc = dpol.all_coeffs()[1] return rate, constant, (qc - pc)/dpol.LC() def hypsum(expr, n, start, prec): """ Sum a rapidly convergent infinite hypergeometric series with given general term, e.g. e = hypsum(1/factorial(n), n). The quotient between successive terms must be a quotient of integer polynomials. """ from sympy import Float, hypersimp, lambdify if prec == float('inf'): raise NotImplementedError('does not support inf prec') if start: expr = expr.subs(n, n + start) hs = hypersimp(expr, n) if hs is None: raise NotImplementedError("a hypergeometric series is required") num, den = hs.as_numer_denom() func1 = lambdify(n, num) func2 = lambdify(n, den) h, g, p = check_convergence(num, den, n) if h < 0: raise ValueError("Sum diverges like (n!)^%i" % (-h)) term = expr.subs(n, 0) if not term.is_Rational: raise NotImplementedError("Non rational term functionality is not implemented.") # Direct summation if geometric or faster if h > 0 or (h == 0 and abs(g) > 1): term = (MPZ(term.p) << prec) // term.q s = term k = 1 while abs(term) > 5: term *= MPZ(func1(k - 1)) term //= MPZ(func2(k - 1)) s += term k += 1 return from_man_exp(s, -prec) else: alt = g < 0 if abs(g) < 1: raise ValueError("Sum diverges like (%i)^n" % abs(1/g)) if p < 1 or (p == 1 and not alt): raise ValueError("Sum diverges like n^%i" % (-p)) # We have polynomial convergence: use Richardson extrapolation vold = None ndig = prec_to_dps(prec) while True: # Need to use at least quad precision because a lot of cancellation # might occur in the extrapolation process; we check the answer to # make sure that the desired precision has been reached, too. prec2 = 4*prec term0 = (MPZ(term.p) << prec2) // term.q def summand(k, _term=[term0]): if k: k = int(k) _term[0] *= MPZ(func1(k - 1)) _term[0] //= MPZ(func2(k - 1)) return make_mpf(from_man_exp(_term[0], -prec2)) with workprec(prec): v = nsum(summand, [0, mpmath_inf], method='richardson') vf = Float(v, ndig) if vold is not None and vold == vf: break prec += prec # double precision each time vold = vf return v._mpf_ def evalf_prod(expr, prec, options): from sympy import Sum if all((l[1] - l[2]).is_Integer for l in expr.limits): re, im, re_acc, im_acc = evalf(expr.doit(), prec=prec, options=options) else: re, im, re_acc, im_acc = evalf(expr.rewrite(Sum), prec=prec, options=options) return re, im, re_acc, im_acc def evalf_sum(expr, prec, options): from sympy import Float if 'subs' in options: expr = expr.subs(options['subs']) func = expr.function limits = expr.limits if len(limits) != 1 or len(limits[0]) != 3: raise NotImplementedError if func is S.Zero: return None, None, prec, None prec2 = prec + 10 try: n, a, b = limits[0] if b != S.Infinity or a != int(a): raise NotImplementedError # Use fast hypergeometric summation if possible v = hypsum(func, n, int(a), prec2) delta = prec - fastlog(v) if fastlog(v) < -10: v = hypsum(func, n, int(a), delta) return v, None, min(prec, delta), None except NotImplementedError: # Euler-Maclaurin summation for general series eps = Float(2.0)**(-prec) for i in range(1, 5): m = n = 2**i * prec s, err = expr.euler_maclaurin(m=m, n=n, eps=eps, eval_integral=False) err = err.evalf() if err <= eps: break err = fastlog(evalf(abs(err), 20, options)[0]) re, im, re_acc, im_acc = evalf(s, prec2, options) if re_acc is None: re_acc = -err if im_acc is None: im_acc = -err return re, im, re_acc, im_acc #----------------------------------------------------------------------------# # # # Symbolic interface # # # #----------------------------------------------------------------------------# def evalf_symbol(x, prec, options): val = options['subs'][x] if isinstance(val, mpf): if not val: return None, None, None, None return val._mpf_, None, prec, None else: if not '_cache' in options: options['_cache'] = {} cache = options['_cache'] cached, cached_prec = cache.get(x, (None, MINUS_INF)) if cached_prec >= prec: return cached v = evalf(sympify(val), prec, options) cache[x] = (v, prec) return v evalf_table = None def _create_evalf_table(): global evalf_table from sympy.functions.combinatorial.numbers import bernoulli from sympy.concrete.products import Product from sympy.concrete.summations import Sum from sympy.core.add import Add from sympy.core.mul import Mul from sympy.core.numbers import Exp1, Float, Half, ImaginaryUnit, Integer, NaN, NegativeOne, One, Pi, Rational, Zero from sympy.core.power import Pow from sympy.core.symbol import Dummy, Symbol from sympy.functions.elementary.complexes import Abs, im, re from sympy.functions.elementary.exponential import exp, log from sympy.functions.elementary.integers import ceiling, floor from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import atan, cos, sin from sympy.integrals.integrals import Integral evalf_table = { Symbol: evalf_symbol, Dummy: evalf_symbol, Float: lambda x, prec, options: (x._mpf_, None, prec, None), Rational: lambda x, prec, options: (from_rational(x.p, x.q, prec), None, prec, None), Integer: lambda x, prec, options: (from_int(x.p, prec), None, prec, None), Zero: lambda x, prec, options: (None, None, prec, None), One: lambda x, prec, options: (fone, None, prec, None), Half: lambda x, prec, options: (fhalf, None, prec, None), Pi: lambda x, prec, options: (mpf_pi(prec), None, prec, None), Exp1: lambda x, prec, options: (mpf_e(prec), None, prec, None), ImaginaryUnit: lambda x, prec, options: (None, fone, None, prec), NegativeOne: lambda x, prec, options: (fnone, None, prec, None), NaN: lambda x, prec, options: (fnan, None, prec, None), exp: lambda x, prec, options: evalf_pow( Pow(S.Exp1, x.args[0], evaluate=False), prec, options), cos: evalf_trig, sin: evalf_trig, Add: evalf_add, Mul: evalf_mul, Pow: evalf_pow, log: evalf_log, atan: evalf_atan, Abs: evalf_abs, re: evalf_re, im: evalf_im, floor: evalf_floor, ceiling: evalf_ceiling, Integral: evalf_integral, Sum: evalf_sum, Product: evalf_prod, Piecewise: evalf_piecewise, bernoulli: evalf_bernoulli, } def evalf(x, prec, options): from sympy import re as re_, im as im_ try: rf = evalf_table[x.func] r = rf(x, prec, options) except KeyError: # Fall back to ordinary evalf if possible if 'subs' in options: x = x.subs(evalf_subs(prec, options['subs'])) xe = x._eval_evalf(prec) if xe is None: raise NotImplementedError as_real_imag = getattr(xe, "as_real_imag", None) if as_real_imag is None: raise NotImplementedError # e.g. FiniteSet(-1.0, 1.0).evalf() re, im = as_real_imag() if re.has(re_) or im.has(im_): raise NotImplementedError if re == 0: re = None reprec = None elif re.is_number: re = re._to_mpmath(prec, allow_ints=False)._mpf_ reprec = prec else: raise NotImplementedError if im == 0: im = None imprec = None elif im.is_number: im = im._to_mpmath(prec, allow_ints=False)._mpf_ imprec = prec else: raise NotImplementedError r = re, im, reprec, imprec if options.get("verbose"): print("### input", x) print("### output", to_str(r[0] or fzero, 50)) print("### raw", r) # r[0], r[2] print() chop = options.get('chop', False) if chop: if chop is True: chop_prec = prec else: # convert (approximately) from given tolerance; # the formula here will will make 1e-i rounds to 0 for # i in the range +/-27 while 2e-i will not be chopped chop_prec = int(round(-3.321*math.log10(chop) + 2.5)) if chop_prec == 3: chop_prec -= 1 r = chop_parts(r, chop_prec) if options.get("strict"): check_target(x, r, prec) return r class EvalfMixin(object): """Mixin class adding evalf capabililty.""" __slots__ = [] def evalf(self, n=15, subs=None, maxn=100, chop=False, strict=False, quad=None, verbose=False): """ Evaluate the given formula to an accuracy of n digits. Optional keyword arguments: subs=<dict> Substitute numerical values for symbols, e.g. subs={x:3, y:1+pi}. The substitutions must be given as a dictionary. maxn=<integer> Allow a maximum temporary working precision of maxn digits (default=100) chop=<bool> Replace tiny real or imaginary parts in subresults by exact zeros (default=False) strict=<bool> Raise PrecisionExhausted if any subresult fails to evaluate to full accuracy, given the available maxprec (default=False) quad=<str> Choose algorithm for numerical quadrature. By default, tanh-sinh quadrature is used. For oscillatory integrals on an infinite interval, try quad='osc'. verbose=<bool> Print debug information (default=False) Notes ===== When Floats are naively substituted into an expression, precision errors may adversely affect the result. For example, adding 1e16 (a Float) to 1 will truncate to 1e16; if 1e16 is then subtracted, the result will be 0. That is exactly what happens in the following: >>> from sympy.abc import x, y, z >>> values = {x: 1e16, y: 1, z: 1e16} >>> (x + y - z).subs(values) 0 Using the subs argument for evalf is the accurate way to evaluate such an expression: >>> (x + y - z).evalf(subs=values) 1.00000000000000 """ from sympy import Float, Number n = n if n is not None else 15 if subs and is_sequence(subs): raise TypeError('subs must be given as a dictionary') # for sake of sage that doesn't like evalf(1) if n == 1 and isinstance(self, Number): from sympy.core.expr import _mag rv = self.evalf(2, subs, maxn, chop, strict, quad, verbose) m = _mag(rv) rv = rv.round(1 - m) return rv if not evalf_table: _create_evalf_table() prec = dps_to_prec(n) options = {'maxprec': max(prec, int(maxn*LG10)), 'chop': chop, 'strict': strict, 'verbose': verbose} if subs is not None: options['subs'] = subs if quad is not None: options['quad'] = quad try: result = evalf(self, prec + 4, options) except NotImplementedError: # Fall back to the ordinary evalf v = self._eval_evalf(prec) if v is None: return self try: # If the result is numerical, normalize it result = evalf(v, prec, options) except NotImplementedError: # Probably contains symbols or unknown functions return v re, im, re_acc, im_acc = result if re: p = max(min(prec, re_acc), 1) re = Float._new(re, p) else: re = S.Zero if im: p = max(min(prec, im_acc), 1) im = Float._new(im, p) return re + im*S.ImaginaryUnit else: return re n = evalf def _evalf(self, prec): """Helper for evalf. Does the same thing but takes binary precision""" r = self._eval_evalf(prec) if r is None: r = self return r def _eval_evalf(self, prec): return def _to_mpmath(self, prec, allow_ints=True): # mpmath functions accept ints as input errmsg = "cannot convert to mpmath number" if allow_ints and self.is_Integer: return self.p if hasattr(self, '_as_mpf_val'): return make_mpf(self._as_mpf_val(prec)) try: re, im, _, _ = evalf(self, prec, {}) if im: if not re: re = fzero return make_mpc((re, im)) elif re: return make_mpf(re) else: return make_mpf(fzero) except NotImplementedError: v = self._eval_evalf(prec) if v is None: raise ValueError(errmsg) if v.is_Float: return make_mpf(v._mpf_) # Number + Number*I is also fine re, im = v.as_real_imag() if allow_ints and re.is_Integer: re = from_int(re.p) elif re.is_Float: re = re._mpf_ else: raise ValueError(errmsg) if allow_ints and im.is_Integer: im = from_int(im.p) elif im.is_Float: im = im._mpf_ else: raise ValueError(errmsg) return make_mpc((re, im)) def N(x, n=15, **options): r""" Calls x.evalf(n, \*\*options). Both .n() and N() are equivalent to .evalf(); use the one that you like better. See also the docstring of .evalf() for information on the options. Examples ======== >>> from sympy import Sum, oo, N >>> from sympy.abc import k >>> Sum(1/k**k, (k, 1, oo)) Sum(k**(-k), (k, 1, oo)) >>> N(_, 4) 1.291 """ return sympify(x).evalf(n, **options)
5c7c5ea989a6654126634cd217fdff8356f8e4077d8582309cc0d8fe0d004e21
r"""This is rule-based deduction system for SymPy The whole thing is split into two parts - rules compilation and preparation of tables - runtime inference For rule-based inference engines, the classical work is RETE algorithm [1], [2] Although we are not implementing it in full (or even significantly) it's still still worth a read to understand the underlying ideas. In short, every rule in a system of rules is one of two forms: - atom -> ... (alpha rule) - And(atom1, atom2, ...) -> ... (beta rule) The major complexity is in efficient beta-rules processing and usually for an expert system a lot of effort goes into code that operates on beta-rules. Here we take minimalistic approach to get something usable first. - (preparation) of alpha- and beta- networks, everything except - (runtime) FactRules.deduce_all_facts _____________________________________ ( Kirr: I've never thought that doing ) ( logic stuff is that difficult... ) ------------------------------------- o ^__^ o (oo)\_______ (__)\ )\/\ ||----w | || || Some references on the topic ---------------------------- [1] https://en.wikipedia.org/wiki/Rete_algorithm [2] http://reports-archive.adm.cs.cmu.edu/anon/1995/CMU-CS-95-113.pdf https://en.wikipedia.org/wiki/Propositional_formula https://en.wikipedia.org/wiki/Inference_rule https://en.wikipedia.org/wiki/List_of_rules_of_inference """ from __future__ import print_function, division from collections import defaultdict from .logic import Logic, And, Or, Not from sympy.core.compatibility import string_types, range def _base_fact(atom): """Return the literal fact of an atom. Effectively, this merely strips the Not around a fact. """ if isinstance(atom, Not): return atom.arg else: return atom def _as_pair(atom): if isinstance(atom, Not): return (atom.arg, False) else: return (atom, True) # XXX this prepares forward-chaining rules for alpha-network def transitive_closure(implications): """ Computes the transitive closure of a list of implications Uses Warshall's algorithm, as described at http://www.cs.hope.edu/~cusack/Notes/Notes/DiscreteMath/Warshall.pdf. """ full_implications = set(implications) literals = set().union(*map(set, full_implications)) for k in literals: for i in literals: if (i, k) in full_implications: for j in literals: if (k, j) in full_implications: full_implications.add((i, j)) return full_implications def deduce_alpha_implications(implications): """deduce all implications Description by example ---------------------- given set of logic rules: a -> b b -> c we deduce all possible rules: a -> b, c b -> c implications: [] of (a,b) return: {} of a -> set([b, c, ...]) """ implications = implications + [(Not(j), Not(i)) for (i, j) in implications] res = defaultdict(set) full_implications = transitive_closure(implications) for a, b in full_implications: if a == b: continue # skip a->a cyclic input res[a].add(b) # Clean up tautologies and check consistency for a, impl in res.items(): impl.discard(a) na = Not(a) if na in impl: raise ValueError( 'implications are inconsistent: %s -> %s %s' % (a, na, impl)) return res def apply_beta_to_alpha_route(alpha_implications, beta_rules): """apply additional beta-rules (And conditions) to already-built alpha implication tables TODO: write about - static extension of alpha-chains - attaching refs to beta-nodes to alpha chains e.g. alpha_implications: a -> [b, !c, d] b -> [d] ... beta_rules: &(b,d) -> e then we'll extend a's rule to the following a -> [b, !c, d, e] """ x_impl = {} for x in alpha_implications.keys(): x_impl[x] = (set(alpha_implications[x]), []) for bcond, bimpl in beta_rules: for bk in bcond.args: if bk in x_impl: continue x_impl[bk] = (set(), []) # static extensions to alpha rules: # A: x -> a,b B: &(a,b) -> c ==> A: x -> a,b,c seen_static_extension = True while seen_static_extension: seen_static_extension = False for bcond, bimpl in beta_rules: if not isinstance(bcond, And): raise TypeError("Cond is not And") bargs = set(bcond.args) for x, (ximpls, bb) in x_impl.items(): x_all = ximpls | {x} # A: ... -> a B: &(...) -> a is non-informative if bimpl not in x_all and bargs.issubset(x_all): ximpls.add(bimpl) # we introduced new implication - now we have to restore # completeness of the whole set. bimpl_impl = x_impl.get(bimpl) if bimpl_impl is not None: ximpls |= bimpl_impl[0] seen_static_extension = True # attach beta-nodes which can be possibly triggered by an alpha-chain for bidx, (bcond, bimpl) in enumerate(beta_rules): bargs = set(bcond.args) for x, (ximpls, bb) in x_impl.items(): x_all = ximpls | {x} # A: ... -> a B: &(...) -> a (non-informative) if bimpl in x_all: continue # A: x -> a... B: &(!a,...) -> ... (will never trigger) # A: x -> a... B: &(...) -> !a (will never trigger) if any(Not(xi) in bargs or Not(xi) == bimpl for xi in x_all): continue if bargs & x_all: bb.append(bidx) return x_impl def rules_2prereq(rules): """build prerequisites table from rules Description by example ---------------------- given set of logic rules: a -> b, c b -> c we build prerequisites (from what points something can be deduced): b <- a c <- a, b rules: {} of a -> [b, c, ...] return: {} of c <- [a, b, ...] Note however, that this prerequisites may be *not* enough to prove a fact. An example is 'a -> b' rule, where prereq(a) is b, and prereq(b) is a. That's because a=T -> b=T, and b=F -> a=F, but a=F -> b=? """ prereq = defaultdict(set) for (a, _), impl in rules.items(): if isinstance(a, Not): a = a.args[0] for (i, _) in impl: if isinstance(i, Not): i = i.args[0] prereq[i].add(a) return prereq ################ # RULES PROVER # ################ class TautologyDetected(Exception): """(internal) Prover uses it for reporting detected tautology""" pass class Prover(object): """ai - prover of logic rules given a set of initial rules, Prover tries to prove all possible rules which follow from given premises. As a result proved_rules are always either in one of two forms: alpha or beta: Alpha rules ----------- This are rules of the form:: a -> b & c & d & ... Beta rules ---------- This are rules of the form:: &(a,b,...) -> c & d & ... i.e. beta rules are join conditions that say that something follows when *several* facts are true at the same time. """ def __init__(self): self.proved_rules = [] self._rules_seen = set() def split_alpha_beta(self): """split proved rules into alpha and beta chains""" rules_alpha = [] # a -> b rules_beta = [] # &(...) -> b for a, b in self.proved_rules: if isinstance(a, And): rules_beta.append((a, b)) else: rules_alpha.append((a, b)) return rules_alpha, rules_beta @property def rules_alpha(self): return self.split_alpha_beta()[0] @property def rules_beta(self): return self.split_alpha_beta()[1] def process_rule(self, a, b): """process a -> b rule""" # TODO write more? if (not a) or isinstance(b, bool): return if isinstance(a, bool): return if (a, b) in self._rules_seen: return else: self._rules_seen.add((a, b)) # this is the core of processing try: self._process_rule(a, b) except TautologyDetected: pass def _process_rule(self, a, b): # right part first # a -> b & c --> a -> b ; a -> c # (?) FIXME this is only correct when b & c != null ! if isinstance(b, And): for barg in b.args: self.process_rule(a, barg) # a -> b | c --> !b & !c -> !a # --> a & !b -> c # --> a & !c -> b elif isinstance(b, Or): # detect tautology first if not isinstance(a, Logic): # Atom # tautology: a -> a|c|... if a in b.args: raise TautologyDetected(a, b, 'a -> a|c|...') self.process_rule(And(*[Not(barg) for barg in b.args]), Not(a)) for bidx in range(len(b.args)): barg = b.args[bidx] brest = b.args[:bidx] + b.args[bidx + 1:] self.process_rule(And(a, Not(barg)), Or(*brest)) # left part # a & b -> c --> IRREDUCIBLE CASE -- WE STORE IT AS IS # (this will be the basis of beta-network) elif isinstance(a, And): if b in a.args: raise TautologyDetected(a, b, 'a & b -> a') self.proved_rules.append((a, b)) # XXX NOTE at present we ignore !c -> !a | !b elif isinstance(a, Or): if b in a.args: raise TautologyDetected(a, b, 'a | b -> a') for aarg in a.args: self.process_rule(aarg, b) else: # both `a` and `b` are atoms self.proved_rules.append((a, b)) # a -> b self.proved_rules.append((Not(b), Not(a))) # !b -> !a ######################################## class FactRules(object): """Rules that describe how to deduce facts in logic space When defined, these rules allow implications to quickly be determined for a set of facts. For this precomputed deduction tables are used. see `deduce_all_facts` (forward-chaining) Also it is possible to gather prerequisites for a fact, which is tried to be proven. (backward-chaining) Definition Syntax ----------------- a -> b -- a=T -> b=T (and automatically b=F -> a=F) a -> !b -- a=T -> b=F a == b -- a -> b & b -> a a -> b & c -- a=T -> b=T & c=T # TODO b | c Internals --------- .full_implications[k, v]: all the implications of fact k=v .beta_triggers[k, v]: beta rules that might be triggered when k=v .prereq -- {} k <- [] of k's prerequisites .defined_facts -- set of defined fact names """ def __init__(self, rules): """Compile rules into internal lookup tables""" if isinstance(rules, string_types): rules = rules.splitlines() # --- parse and process rules --- P = Prover() for rule in rules: # XXX `a` is hardcoded to be always atom a, op, b = rule.split(None, 2) a = Logic.fromstring(a) b = Logic.fromstring(b) if op == '->': P.process_rule(a, b) elif op == '==': P.process_rule(a, b) P.process_rule(b, a) else: raise ValueError('unknown op %r' % op) # --- build deduction networks --- self.beta_rules = [] for bcond, bimpl in P.rules_beta: self.beta_rules.append( (set(_as_pair(a) for a in bcond.args), _as_pair(bimpl))) # deduce alpha implications impl_a = deduce_alpha_implications(P.rules_alpha) # now: # - apply beta rules to alpha chains (static extension), and # - further associate beta rules to alpha chain (for inference # at runtime) impl_ab = apply_beta_to_alpha_route(impl_a, P.rules_beta) # extract defined fact names self.defined_facts = set(_base_fact(k) for k in impl_ab.keys()) # build rels (forward chains) full_implications = defaultdict(set) beta_triggers = defaultdict(set) for k, (impl, betaidxs) in impl_ab.items(): full_implications[_as_pair(k)] = set(_as_pair(i) for i in impl) beta_triggers[_as_pair(k)] = betaidxs self.full_implications = full_implications self.beta_triggers = beta_triggers # build prereq (backward chains) prereq = defaultdict(set) rel_prereq = rules_2prereq(full_implications) for k, pitems in rel_prereq.items(): prereq[k] |= pitems self.prereq = prereq class InconsistentAssumptions(ValueError): def __str__(self): kb, fact, value = self.args return "%s, %s=%s" % (kb, fact, value) class FactKB(dict): """ A simple propositional knowledge base relying on compiled inference rules. """ def __str__(self): return '{\n%s}' % ',\n'.join( ["\t%s: %s" % i for i in sorted(self.items())]) def __init__(self, rules): self.rules = rules def _tell(self, k, v): """Add fact k=v to the knowledge base. Returns True if the KB has actually been updated, False otherwise. """ if k in self and self[k] is not None: if self[k] == v: return False else: raise InconsistentAssumptions(self, k, v) else: self[k] = v return True # ********************************************* # * This is the workhorse, so keep it *fast*. * # ********************************************* def deduce_all_facts(self, facts): """ Update the KB with all the implications of a list of facts. Facts can be specified as a dictionary or as a list of (key, value) pairs. """ # keep frequently used attributes locally, so we'll avoid extra # attribute access overhead full_implications = self.rules.full_implications beta_triggers = self.rules.beta_triggers beta_rules = self.rules.beta_rules if isinstance(facts, dict): facts = facts.items() while facts: beta_maytrigger = set() # --- alpha chains --- for k, v in facts: if not self._tell(k, v) or v is None: continue # lookup routing tables for key, value in full_implications[k, v]: self._tell(key, value) beta_maytrigger.update(beta_triggers[k, v]) # --- beta chains --- facts = [] for bidx in beta_maytrigger: bcond, bimpl = beta_rules[bidx] if all(self.get(k) is v for k, v in bcond): facts.append(bimpl)
3bc293b06a8d809c1d27b31f88744f634f361704400442186d40d697351c06a2
"""Logic expressions handling NOTE ---- at present this is mainly needed for facts.py , feel free however to improve this stuff for general purpose. """ from __future__ import print_function, division from sympy.core.compatibility import range, string_types def _torf(args): """Return True if all args are True, False if they are all False, else None. >>> from sympy.core.logic import _torf >>> _torf((True, True)) True >>> _torf((False, False)) False >>> _torf((True, False)) """ sawT = sawF = False for a in args: if a is True: if sawF: return sawT = True elif a is False: if sawT: return sawF = True else: return return sawT def _fuzzy_group(args, quick_exit=False): """Return True if all args are True, None if there is any None else False unless ``quick_exit`` is True (then return None as soon as a second False is seen. ``_fuzzy_group`` is like ``fuzzy_and`` except that it is more conservative in returning a False, waiting to make sure that all arguments are True or False and returning None if any arguments are None. It also has the capability of permiting only a single False and returning None if more than one is seen. For example, the presence of a single transcendental amongst rationals would indicate that the group is no longer rational; but a second transcendental in the group would make the determination impossible. Examples ======== >>> from sympy.core.logic import _fuzzy_group By default, multiple Falses mean the group is broken: >>> _fuzzy_group([False, False, True]) False If multiple Falses mean the group status is unknown then set `quick_exit` to True so None can be returned when the 2nd False is seen: >>> _fuzzy_group([False, False, True], quick_exit=True) But if only a single False is seen then the group is known to be broken: >>> _fuzzy_group([False, True, True], quick_exit=True) False """ saw_other = False for a in args: if a is True: continue if a is None: return if quick_exit and saw_other: return saw_other = True return not saw_other def fuzzy_bool(x): """Return True, False or None according to x. Whereas bool(x) returns True or False, fuzzy_bool allows for the None value and non-false values (which become None), too. Examples ======== >>> from sympy.core.logic import fuzzy_bool >>> from sympy.abc import x >>> fuzzy_bool(x), fuzzy_bool(None) (None, None) >>> bool(x), bool(None) (True, False) """ if x is None: return None if x in (True, False): return bool(x) def fuzzy_and(args): """Return True (all True), False (any False) or None. Examples ======== >>> from sympy.core.logic import fuzzy_and >>> from sympy import Dummy If you had a list of objects to test the commutivity of and you want the fuzzy_and logic applied, passing an iterator will allow the commutativity to only be computed as many times as necessary. With this list, False can be returned after analyzing the first symbol: >>> syms = [Dummy(commutative=False), Dummy()] >>> fuzzy_and(s.is_commutative for s in syms) False That False would require less work than if a list of pre-computed items was sent: >>> fuzzy_and([s.is_commutative for s in syms]) False """ rv = True for ai in args: ai = fuzzy_bool(ai) if ai is False: return False if rv: # this will stop updating if a None is ever trapped rv = ai return rv def fuzzy_not(v): """ Not in fuzzy logic Return None if `v` is None else `not v`. Examples ======== >>> from sympy.core.logic import fuzzy_not >>> fuzzy_not(True) False >>> fuzzy_not(None) >>> fuzzy_not(False) True """ if v is None: return v else: return not v def fuzzy_or(args): """ Or in fuzzy logic. Returns True (any True), False (all False), or None See the docstrings of fuzzy_and and fuzzy_not for more info. fuzzy_or is related to the two by the standard De Morgan's law. >>> from sympy.core.logic import fuzzy_or >>> fuzzy_or([True, False]) True >>> fuzzy_or([True, None]) True >>> fuzzy_or([False, False]) False >>> print(fuzzy_or([False, None])) None """ return fuzzy_not(fuzzy_and(fuzzy_not(i) for i in args)) class Logic(object): """Logical expression""" # {} 'op' -> LogicClass op_2class = {} def __new__(cls, *args): obj = object.__new__(cls) obj.args = args return obj def __getnewargs__(self): return self.args def __hash__(self): return hash((type(self).__name__,) + tuple(self.args)) def __eq__(a, b): if not isinstance(b, type(a)): return False else: return a.args == b.args def __ne__(a, b): if not isinstance(b, type(a)): return True else: return a.args != b.args def __lt__(self, other): if self.__cmp__(other) == -1: return True return False def __cmp__(self, other): if type(self) is not type(other): a = str(type(self)) b = str(type(other)) else: a = self.args b = other.args return (a > b) - (a < b) def __str__(self): return '%s(%s)' % (self.__class__.__name__, ', '.join(str(a) for a in self.args)) __repr__ = __str__ @staticmethod def fromstring(text): """Logic from string with space around & and | but none after !. e.g. !a & b | c """ lexpr = None # current logical expression schedop = None # scheduled operation for term in text.split(): # operation symbol if term in '&|': if schedop is not None: raise ValueError( 'double op forbidden: "%s %s"' % (term, schedop)) if lexpr is None: raise ValueError( '%s cannot be in the beginning of expression' % term) schedop = term continue if '&' in term or '|' in term: raise ValueError('& and | must have space around them') if term[0] == '!': if len(term) == 1: raise ValueError('do not include space after "!"') term = Not(term[1:]) # already scheduled operation, e.g. '&' if schedop: lexpr = Logic.op_2class[schedop](lexpr, term) schedop = None continue # this should be atom if lexpr is not None: raise ValueError( 'missing op between "%s" and "%s"' % (lexpr, term)) lexpr = term # let's check that we ended up in correct state if schedop is not None: raise ValueError('premature end-of-expression in "%s"' % text) if lexpr is None: raise ValueError('"%s" is empty' % text) # everything looks good now return lexpr class AndOr_Base(Logic): def __new__(cls, *args): bargs = [] for a in args: if a == cls.op_x_notx: return a elif a == (not cls.op_x_notx): continue # skip this argument bargs.append(a) args = sorted(set(cls.flatten(bargs)), key=hash) for a in args: if Not(a) in args: return cls.op_x_notx if len(args) == 1: return args.pop() elif len(args) == 0: return not cls.op_x_notx return Logic.__new__(cls, *args) @classmethod def flatten(cls, args): # quick-n-dirty flattening for And and Or args_queue = list(args) res = [] while True: try: arg = args_queue.pop(0) except IndexError: break if isinstance(arg, Logic): if isinstance(arg, cls): args_queue.extend(arg.args) continue res.append(arg) args = tuple(res) return args class And(AndOr_Base): op_x_notx = False def _eval_propagate_not(self): # !(a&b&c ...) == !a | !b | !c ... return Or(*[Not(a) for a in self.args]) # (a|b|...) & c == (a&c) | (b&c) | ... def expand(self): # first locate Or for i in range(len(self.args)): arg = self.args[i] if isinstance(arg, Or): arest = self.args[:i] + self.args[i + 1:] orterms = [And(*(arest + (a,))) for a in arg.args] for j in range(len(orterms)): if isinstance(orterms[j], Logic): orterms[j] = orterms[j].expand() res = Or(*orterms) return res else: return self class Or(AndOr_Base): op_x_notx = True def _eval_propagate_not(self): # !(a|b|c ...) == !a & !b & !c ... return And(*[Not(a) for a in self.args]) class Not(Logic): def __new__(cls, arg): if isinstance(arg, string_types): return Logic.__new__(cls, arg) elif isinstance(arg, bool): return not arg elif isinstance(arg, Not): return arg.args[0] elif isinstance(arg, Logic): # XXX this is a hack to expand right from the beginning arg = arg._eval_propagate_not() return arg else: raise ValueError('Not: unknown argument %r' % (arg,)) @property def arg(self): return self.args[0] Logic.op_2class['&'] = And Logic.op_2class['|'] = Or Logic.op_2class['!'] = Not
e078a65551aa38168bf6b8428a82834e51b21b02edad94e4d9140d3aca56df12
from __future__ import print_function, division from collections import defaultdict from functools import cmp_to_key import operator from .sympify import sympify from .basic import Basic from .singleton import S from .operations import AssocOp from .cache import cacheit from .logic import fuzzy_not, _fuzzy_group from .compatibility import reduce, range from .expr import Expr from .evaluate import global_distribute # internal marker to indicate: # "there are still non-commutative objects -- don't forget to process them" class NC_Marker: is_Order = False is_Mul = False is_Number = False is_Poly = False is_commutative = False # Key for sorting commutative args in canonical order _args_sortkey = cmp_to_key(Basic.compare) def _mulsort(args): # in-place sorting of args args.sort(key=_args_sortkey) def _unevaluated_Mul(*args): """Return a well-formed unevaluated Mul: Numbers are collected and put in slot 0, any arguments that are Muls will be flattened, and args are sorted. Use this when args have changed but you still want to return an unevaluated Mul. Examples ======== >>> from sympy.core.mul import _unevaluated_Mul as uMul >>> from sympy import S, sqrt, Mul >>> from sympy.abc import x >>> a = uMul(*[S(3.0), x, S(2)]) >>> a.args[0] 6.00000000000000 >>> a.args[1] x Two unevaluated Muls with the same arguments will always compare as equal during testing: >>> m = uMul(sqrt(2), sqrt(3)) >>> m == uMul(sqrt(3), sqrt(2)) True >>> u = Mul(sqrt(3), sqrt(2), evaluate=False) >>> m == uMul(u) True >>> m == Mul(*m.args) False """ args = list(args) newargs = [] ncargs = [] co = S.One while args: a = args.pop() if a.is_Mul: c, nc = a.args_cnc() args.extend(c) if nc: ncargs.append(Mul._from_args(nc)) elif a.is_Number: co *= a else: newargs.append(a) _mulsort(newargs) if co is not S.One: newargs.insert(0, co) if ncargs: newargs.append(Mul._from_args(ncargs)) return Mul._from_args(newargs) class Mul(Expr, AssocOp): __slots__ = [] is_Mul = True @classmethod def flatten(cls, seq): """Return commutative, noncommutative and order arguments by combining related terms. Notes ===== * In an expression like ``a*b*c``, python process this through sympy as ``Mul(Mul(a, b), c)``. This can have undesirable consequences. - Sometimes terms are not combined as one would like: {c.f. https://github.com/sympy/sympy/issues/4596} >>> from sympy import Mul, sqrt >>> from sympy.abc import x, y, z >>> 2*(x + 1) # this is the 2-arg Mul behavior 2*x + 2 >>> y*(x + 1)*2 2*y*(x + 1) >>> 2*(x + 1)*y # 2-arg result will be obtained first y*(2*x + 2) >>> Mul(2, x + 1, y) # all 3 args simultaneously processed 2*y*(x + 1) >>> 2*((x + 1)*y) # parentheses can control this behavior 2*y*(x + 1) Powers with compound bases may not find a single base to combine with unless all arguments are processed at once. Post-processing may be necessary in such cases. {c.f. https://github.com/sympy/sympy/issues/5728} >>> a = sqrt(x*sqrt(y)) >>> a**3 (x*sqrt(y))**(3/2) >>> Mul(a,a,a) (x*sqrt(y))**(3/2) >>> a*a*a x*sqrt(y)*sqrt(x*sqrt(y)) >>> _.subs(a.base, z).subs(z, a.base) (x*sqrt(y))**(3/2) - If more than two terms are being multiplied then all the previous terms will be re-processed for each new argument. So if each of ``a``, ``b`` and ``c`` were :class:`Mul` expression, then ``a*b*c`` (or building up the product with ``*=``) will process all the arguments of ``a`` and ``b`` twice: once when ``a*b`` is computed and again when ``c`` is multiplied. Using ``Mul(a, b, c)`` will process all arguments once. * The results of Mul are cached according to arguments, so flatten will only be called once for ``Mul(a, b, c)``. If you can structure a calculation so the arguments are most likely to be repeats then this can save time in computing the answer. For example, say you had a Mul, M, that you wished to divide by ``d[i]`` and multiply by ``n[i]`` and you suspect there are many repeats in ``n``. It would be better to compute ``M*n[i]/d[i]`` rather than ``M/d[i]*n[i]`` since every time n[i] is a repeat, the product, ``M*n[i]`` will be returned without flattening -- the cached value will be returned. If you divide by the ``d[i]`` first (and those are more unique than the ``n[i]``) then that will create a new Mul, ``M/d[i]`` the args of which will be traversed again when it is multiplied by ``n[i]``. {c.f. https://github.com/sympy/sympy/issues/5706} This consideration is moot if the cache is turned off. NB -- The validity of the above notes depends on the implementation details of Mul and flatten which may change at any time. Therefore, you should only consider them when your code is highly performance sensitive. Removal of 1 from the sequence is already handled by AssocOp.__new__. """ from sympy.calculus.util import AccumBounds from sympy.matrices.expressions import MatrixExpr rv = None if len(seq) == 2: a, b = seq if b.is_Rational: a, b = b, a seq = [a, b] assert not a is S.One if not a.is_zero and a.is_Rational: r, b = b.as_coeff_Mul() if b.is_Add: if r is not S.One: # 2-arg hack # leave the Mul as a Mul rv = [cls(a*r, b, evaluate=False)], [], None elif global_distribute[0] and b.is_commutative: r, b = b.as_coeff_Add() bargs = [_keep_coeff(a, bi) for bi in Add.make_args(b)] _addsort(bargs) ar = a*r if ar: bargs.insert(0, ar) bargs = [Add._from_args(bargs)] rv = bargs, [], None if rv: return rv # apply associativity, separate commutative part of seq c_part = [] # out: commutative factors nc_part = [] # out: non-commutative factors nc_seq = [] coeff = S.One # standalone term # e.g. 3 * ... c_powers = [] # (base,exp) n # e.g. (x,n) for x num_exp = [] # (num-base, exp) y # e.g. (3, y) for ... * 3 * ... neg1e = S.Zero # exponent on -1 extracted from Number-based Pow and I pnum_rat = {} # (num-base, Rat-exp) 1/2 # e.g. (3, 1/2) for ... * 3 * ... order_symbols = None # --- PART 1 --- # # "collect powers and coeff": # # o coeff # o c_powers # o num_exp # o neg1e # o pnum_rat # # NOTE: this is optimized for all-objects-are-commutative case for o in seq: # O(x) if o.is_Order: o, order_symbols = o.as_expr_variables(order_symbols) # Mul([...]) if o.is_Mul: if o.is_commutative: seq.extend(o.args) # XXX zerocopy? else: # NCMul can have commutative parts as well for q in o.args: if q.is_commutative: seq.append(q) else: nc_seq.append(q) # append non-commutative marker, so we don't forget to # process scheduled non-commutative objects seq.append(NC_Marker) continue # 3 elif o.is_Number: if o is S.NaN or coeff is S.ComplexInfinity and o is S.Zero: # we know for sure the result will be nan return [S.NaN], [], None elif coeff.is_Number or isinstance(coeff, AccumBounds): # it could be zoo coeff *= o if coeff is S.NaN: # we know for sure the result will be nan return [S.NaN], [], None continue elif isinstance(o, AccumBounds): coeff = o.__mul__(coeff) continue elif o is S.ComplexInfinity: if not coeff: # 0 * zoo = NaN return [S.NaN], [], None if coeff is S.ComplexInfinity: # zoo * zoo = zoo return [S.ComplexInfinity], [], None coeff = S.ComplexInfinity continue elif o is S.ImaginaryUnit: neg1e += S.Half continue elif o.is_commutative: # e # o = b b, e = o.as_base_exp() # y # 3 if o.is_Pow: if b.is_Number: # get all the factors with numeric base so they can be # combined below, but don't combine negatives unless # the exponent is an integer if e.is_Rational: if e.is_Integer: coeff *= Pow(b, e) # it is an unevaluated power continue elif e.is_negative: # also a sign of an unevaluated power seq.append(Pow(b, e)) continue elif b.is_negative: neg1e += e b = -b if b is not S.One: pnum_rat.setdefault(b, []).append(e) continue elif b.is_positive or e.is_integer: num_exp.append((b, e)) continue c_powers.append((b, e)) # NON-COMMUTATIVE # TODO: Make non-commutative exponents not combine automatically else: if o is not NC_Marker: nc_seq.append(o) # process nc_seq (if any) while nc_seq: o = nc_seq.pop(0) if not nc_part: nc_part.append(o) continue # b c b+c # try to combine last terms: a * a -> a o1 = nc_part.pop() b1, e1 = o1.as_base_exp() b2, e2 = o.as_base_exp() new_exp = e1 + e2 # Only allow powers to combine if the new exponent is # not an Add. This allow things like a**2*b**3 == a**5 # if a.is_commutative == False, but prohibits # a**x*a**y and x**a*x**b from combining (x,y commute). if b1 == b2 and (not new_exp.is_Add): o12 = b1 ** new_exp # now o12 could be a commutative object if o12.is_commutative: seq.append(o12) continue else: nc_seq.insert(0, o12) else: nc_part.append(o1) nc_part.append(o) # We do want a combined exponent if it would not be an Add, such as # y 2y 3y # x * x -> x # We determine if two exponents have the same term by using # as_coeff_Mul. # # Unfortunately, this isn't smart enough to consider combining into # exponents that might already be adds, so things like: # z - y y # x * x will be left alone. This is because checking every possible # combination can slow things down. # gather exponents of common bases... def _gather(c_powers): common_b = {} # b:e for b, e in c_powers: co = e.as_coeff_Mul() common_b.setdefault(b, {}).setdefault( co[1], []).append(co[0]) for b, d in common_b.items(): for di, li in d.items(): d[di] = Add(*li) new_c_powers = [] for b, e in common_b.items(): new_c_powers.extend([(b, c*t) for t, c in e.items()]) return new_c_powers # in c_powers c_powers = _gather(c_powers) # and in num_exp num_exp = _gather(num_exp) # --- PART 2 --- # # o process collected powers (x**0 -> 1; x**1 -> x; otherwise Pow) # o combine collected powers (2**x * 3**x -> 6**x) # with numeric base # ................................ # now we have: # - coeff: # - c_powers: (b, e) # - num_exp: (2, e) # - pnum_rat: {(1/3, [1/3, 2/3, 1/4])} # 0 1 # x -> 1 x -> x # this should only need to run twice; if it fails because # it needs to be run more times, perhaps this should be # changed to a "while True" loop -- the only reason it # isn't such now is to allow a less-than-perfect result to # be obtained rather than raising an error or entering an # infinite loop for i in range(2): new_c_powers = [] changed = False for b, e in c_powers: if e.is_zero: # canceling out infinities yields NaN if (b.is_Add or b.is_Mul) and any(infty in b.args for infty in (S.ComplexInfinity, S.Infinity, S.NegativeInfinity)): return [S.NaN], [], None continue if e is S.One: if b.is_Number: coeff *= b continue p = b if e is not S.One: p = Pow(b, e) # check to make sure that the base doesn't change # after exponentiation; to allow for unevaluated # Pow, we only do so if b is not already a Pow if p.is_Pow and not b.is_Pow: bi = b b, e = p.as_base_exp() if b != bi: changed = True c_part.append(p) new_c_powers.append((b, e)) # there might have been a change, but unless the base # matches some other base, there is nothing to do if changed and len(set( b for b, e in new_c_powers)) != len(new_c_powers): # start over again c_part = [] c_powers = _gather(new_c_powers) else: break # x x x # 2 * 3 -> 6 inv_exp_dict = {} # exp:Mul(num-bases) x x # e.g. x:6 for ... * 2 * 3 * ... for b, e in num_exp: inv_exp_dict.setdefault(e, []).append(b) for e, b in inv_exp_dict.items(): inv_exp_dict[e] = cls(*b) c_part.extend([Pow(b, e) for e, b in inv_exp_dict.items() if e]) # b, e -> e' = sum(e), b # {(1/5, [1/3]), (1/2, [1/12, 1/4]} -> {(1/3, [1/5, 1/2])} comb_e = {} for b, e in pnum_rat.items(): comb_e.setdefault(Add(*e), []).append(b) del pnum_rat # process them, reducing exponents to values less than 1 # and updating coeff if necessary else adding them to # num_rat for further processing num_rat = [] for e, b in comb_e.items(): b = cls(*b) if e.q == 1: coeff *= Pow(b, e) continue if e.p > e.q: e_i, ep = divmod(e.p, e.q) coeff *= Pow(b, e_i) e = Rational(ep, e.q) num_rat.append((b, e)) del comb_e # extract gcd of bases in num_rat # 2**(1/3)*6**(1/4) -> 2**(1/3+1/4)*3**(1/4) pnew = defaultdict(list) i = 0 # steps through num_rat which may grow while i < len(num_rat): bi, ei = num_rat[i] grow = [] for j in range(i + 1, len(num_rat)): bj, ej = num_rat[j] g = bi.gcd(bj) if g is not S.One: # 4**r1*6**r2 -> 2**(r1+r2) * 2**r1 * 3**r2 # this might have a gcd with something else e = ei + ej if e.q == 1: coeff *= Pow(g, e) else: if e.p > e.q: e_i, ep = divmod(e.p, e.q) # change e in place coeff *= Pow(g, e_i) e = Rational(ep, e.q) grow.append((g, e)) # update the jth item num_rat[j] = (bj/g, ej) # update bi that we are checking with bi = bi/g if bi is S.One: break if bi is not S.One: obj = Pow(bi, ei) if obj.is_Number: coeff *= obj else: # changes like sqrt(12) -> 2*sqrt(3) for obj in Mul.make_args(obj): if obj.is_Number: coeff *= obj else: assert obj.is_Pow bi, ei = obj.args pnew[ei].append(bi) num_rat.extend(grow) i += 1 # combine bases of the new powers for e, b in pnew.items(): pnew[e] = cls(*b) # handle -1 and I if neg1e: # treat I as (-1)**(1/2) and compute -1's total exponent p, q = neg1e.as_numer_denom() # if the integer part is odd, extract -1 n, p = divmod(p, q) if n % 2: coeff = -coeff # if it's a multiple of 1/2 extract I if q == 2: c_part.append(S.ImaginaryUnit) elif p: # see if there is any positive base this power of # -1 can join neg1e = Rational(p, q) for e, b in pnew.items(): if e == neg1e and b.is_positive: pnew[e] = -b break else: # keep it separate; we've already evaluated it as # much as possible so evaluate=False c_part.append(Pow(S.NegativeOne, neg1e, evaluate=False)) # add all the pnew powers c_part.extend([Pow(b, e) for e, b in pnew.items()]) # oo, -oo if (coeff is S.Infinity) or (coeff is S.NegativeInfinity): def _handle_for_oo(c_part, coeff_sign): new_c_part = [] for t in c_part: if t.is_positive: continue if t.is_negative: coeff_sign *= -1 continue new_c_part.append(t) return new_c_part, coeff_sign c_part, coeff_sign = _handle_for_oo(c_part, 1) nc_part, coeff_sign = _handle_for_oo(nc_part, coeff_sign) coeff *= coeff_sign # zoo if coeff is S.ComplexInfinity: # zoo might be # infinite_real + bounded_im # bounded_real + infinite_im # infinite_real + infinite_im # and non-zero real or imaginary will not change that status. c_part = [c for c in c_part if not (fuzzy_not(c.is_zero) and c.is_real is not None)] nc_part = [c for c in nc_part if not (fuzzy_not(c.is_zero) and c.is_real is not None)] # 0 elif coeff is S.Zero: # we know for sure the result will be 0 except the multiplicand # is infinity or a matrix if any(isinstance(c, MatrixExpr) for c in nc_part): return [coeff], nc_part, order_symbols if any(c.is_finite == False for c in c_part): return [S.NaN], [], order_symbols return [coeff], [], order_symbols # check for straggling Numbers that were produced _new = [] for i in c_part: if i.is_Number: coeff *= i else: _new.append(i) c_part = _new # order commutative part canonically _mulsort(c_part) # current code expects coeff to be always in slot-0 if coeff is not S.One: c_part.insert(0, coeff) # we are done if (global_distribute[0] and not nc_part and len(c_part) == 2 and c_part[0].is_Number and c_part[0].is_finite and c_part[1].is_Add): # 2*(1+a) -> 2 + 2 * a coeff = c_part[0] c_part = [Add(*[coeff*f for f in c_part[1].args])] return c_part, nc_part, order_symbols def _eval_power(b, e): # don't break up NC terms: (A*B)**3 != A**3*B**3, it is A*B*A*B*A*B cargs, nc = b.args_cnc(split_1=False) if e.is_Integer: return Mul(*[Pow(b, e, evaluate=False) for b in cargs]) * \ Pow(Mul._from_args(nc), e, evaluate=False) if e.is_Rational and e.q == 2: from sympy.core.power import integer_nthroot from sympy.functions.elementary.complexes import sign if b.is_imaginary: a = b.as_real_imag()[1] if a.is_Rational: n, d = abs(a/2).as_numer_denom() n, t = integer_nthroot(n, 2) if t: d, t = integer_nthroot(d, 2) if t: r = sympify(n)/d return _unevaluated_Mul(r**e.p, (1 + sign(a)*S.ImaginaryUnit)**e.p) p = Pow(b, e, evaluate=False) if e.is_Rational or e.is_Float: return p._eval_expand_power_base() return p @classmethod def class_key(cls): return 3, 0, cls.__name__ def _eval_evalf(self, prec): c, m = self.as_coeff_Mul() if c is S.NegativeOne: if m.is_Mul: rv = -AssocOp._eval_evalf(m, prec) else: mnew = m._eval_evalf(prec) if mnew is not None: m = mnew rv = -m else: rv = AssocOp._eval_evalf(self, prec) if rv.is_number: return rv.expand() return rv @property def _mpc_(self): """ Convert self to an mpmath mpc if possible """ from sympy.core.numbers import I, Float im_part, imag_unit = self.as_coeff_Mul() if not imag_unit == I: # ValueError may seem more reasonable but since it's a @property, # we need to use AttributeError to keep from confusing things like # hasattr. raise AttributeError("Cannot convert Mul to mpc. Must be of the form Number*I") return (Float(0)._mpf_, Float(im_part)._mpf_) @cacheit def as_two_terms(self): """Return head and tail of self. This is the most efficient way to get the head and tail of an expression. - if you want only the head, use self.args[0]; - if you want to process the arguments of the tail then use self.as_coef_mul() which gives the head and a tuple containing the arguments of the tail when treated as a Mul. - if you want the coefficient when self is treated as an Add then use self.as_coeff_add()[0] >>> from sympy.abc import x, y >>> (3*x*y).as_two_terms() (3, x*y) """ args = self.args if len(args) == 1: return S.One, self elif len(args) == 2: return args else: return args[0], self._new_rawargs(*args[1:]) @cacheit def as_coefficients_dict(self): """Return a dictionary mapping terms to their coefficient. Since the dictionary is a defaultdict, inquiries about terms which were not present will return a coefficient of 0. The dictionary is considered to have a single term. Examples ======== >>> from sympy.abc import a, x >>> (3*a*x).as_coefficients_dict() {a*x: 3} >>> _[a] 0 """ d = defaultdict(int) args = self.args if len(args) == 1 or not args[0].is_Number: d[self] = S.One else: d[self._new_rawargs(*args[1:])] = args[0] return d @cacheit def as_coeff_mul(self, *deps, **kwargs): rational = kwargs.pop('rational', True) if deps: l1 = [] l2 = [] for f in self.args: if f.has(*deps): l2.append(f) else: l1.append(f) return self._new_rawargs(*l1), tuple(l2) args = self.args if args[0].is_Number: if not rational or args[0].is_Rational: return args[0], args[1:] elif args[0].is_negative: return S.NegativeOne, (-args[0],) + args[1:] return S.One, args def as_coeff_Mul(self, rational=False): """Efficiently extract the coefficient of a product. """ coeff, args = self.args[0], self.args[1:] if coeff.is_Number: if not rational or coeff.is_Rational: if len(args) == 1: return coeff, args[0] else: return coeff, self._new_rawargs(*args) elif coeff.is_negative: return S.NegativeOne, self._new_rawargs(*((-coeff,) + args)) return S.One, self def as_real_imag(self, deep=True, **hints): from sympy import Abs, expand_mul, im, re other = [] coeffr = [] coeffi = [] addterms = S.One for a in self.args: r, i = a.as_real_imag() if i.is_zero: coeffr.append(r) elif r.is_zero: coeffi.append(i*S.ImaginaryUnit) elif a.is_commutative: # search for complex conjugate pairs: for i, x in enumerate(other): if x == a.conjugate(): coeffr.append(Abs(x)**2) del other[i] break else: if a.is_Add: addterms *= a else: other.append(a) else: other.append(a) m = self.func(*other) if hints.get('ignore') == m: return if len(coeffi) % 2: imco = im(coeffi.pop(0)) # all other pairs make a real factor; they will be # put into reco below else: imco = S.Zero reco = self.func(*(coeffr + coeffi)) r, i = (reco*re(m), reco*im(m)) if addterms == 1: if m == 1: if imco is S.Zero: return (reco, S.Zero) else: return (S.Zero, reco*imco) if imco is S.Zero: return (r, i) return (-imco*i, imco*r) addre, addim = expand_mul(addterms, deep=False).as_real_imag() if imco is S.Zero: return (r*addre - i*addim, i*addre + r*addim) else: r, i = -imco*i, imco*r return (r*addre - i*addim, r*addim + i*addre) @staticmethod def _expandsums(sums): """ Helper function for _eval_expand_mul. sums must be a list of instances of Basic. """ L = len(sums) if L == 1: return sums[0].args terms = [] left = Mul._expandsums(sums[:L//2]) right = Mul._expandsums(sums[L//2:]) terms = [Mul(a, b) for a in left for b in right] added = Add(*terms) return Add.make_args(added) # it may have collapsed down to one term def _eval_expand_mul(self, **hints): from sympy import fraction # Handle things like 1/(x*(x + 1)), which are automatically converted # to 1/x*1/(x + 1) expr = self n, d = fraction(expr) if d.is_Mul: n, d = [i._eval_expand_mul(**hints) if i.is_Mul else i for i in (n, d)] expr = n/d if not expr.is_Mul: return expr plain, sums, rewrite = [], [], False for factor in expr.args: if factor.is_Add: sums.append(factor) rewrite = True else: if factor.is_commutative: plain.append(factor) else: sums.append(Basic(factor)) # Wrapper if not rewrite: return expr else: plain = self.func(*plain) if sums: deep = hints.get("deep", False) terms = self.func._expandsums(sums) args = [] for term in terms: t = self.func(plain, term) if t.is_Mul and any(a.is_Add for a in t.args) and deep: t = t._eval_expand_mul() args.append(t) return Add(*args) else: return plain @cacheit def _eval_derivative(self, s): args = list(self.args) terms = [] for i in range(len(args)): d = args[i].diff(s) if d: # Note: reduce is used in step of Mul as Mul is unable to # handle subtypes and operation priority: terms.append(reduce(lambda x, y: x*y, (args[:i] + [d] + args[i + 1:]), S.One)) return Add.fromiter(terms) @cacheit def _eval_derivative_n_times(self, s, n): from sympy import Integer, factorial, prod, Sum, Max from sympy.ntheory.multinomial import multinomial_coefficients_iterator from .function import AppliedUndef from .symbol import Symbol, symbols, Dummy if not isinstance(s, AppliedUndef) and not isinstance(s, Symbol): # other types of s may not be well behaved, e.g. # (cos(x)*sin(y)).diff([[x, y, z]]) return super(Mul, self)._eval_derivative_n_times(s, n) args = self.args m = len(args) if isinstance(n, (int, Integer)): # https://en.wikipedia.org/wiki/General_Leibniz_rule#More_than_two_factors terms = [] for kvals, c in multinomial_coefficients_iterator(m, n): p = prod([arg.diff((s, k)) for k, arg in zip(kvals, args)]) terms.append(c * p) return Add(*terms) kvals = symbols("k1:%i" % m, cls=Dummy) klast = n - sum(kvals) nfact = factorial(n) e, l = (# better to use the multinomial? nfact/prod(map(factorial, kvals))/factorial(klast)*\ prod([args[t].diff((s, kvals[t])) for t in range(m-1)])*\ args[-1].diff((s, Max(0, klast))), [(k, 0, n) for k in kvals]) return Sum(e, *l) def _eval_difference_delta(self, n, step): from sympy.series.limitseq import difference_delta as dd arg0 = self.args[0] rest = Mul(*self.args[1:]) return (arg0.subs(n, n + step) * dd(rest, n, step) + dd(arg0, n, step) * rest) def _matches_simple(self, expr, repl_dict): # handle (w*3).matches('x*5') -> {w: x*5/3} coeff, terms = self.as_coeff_Mul() terms = Mul.make_args(terms) if len(terms) == 1: newexpr = self.__class__._combine_inverse(expr, coeff) return terms[0].matches(newexpr, repl_dict) return def matches(self, expr, repl_dict={}, old=False): expr = sympify(expr) if self.is_commutative and expr.is_commutative: return AssocOp._matches_commutative(self, expr, repl_dict, old) elif self.is_commutative is not expr.is_commutative: return None c1, nc1 = self.args_cnc() c2, nc2 = expr.args_cnc() repl_dict = repl_dict.copy() if c1: if not c2: c2 = [1] a = self.func(*c1) if isinstance(a, AssocOp): repl_dict = a._matches_commutative(self.func(*c2), repl_dict, old) else: repl_dict = a.matches(self.func(*c2), repl_dict) if repl_dict: a = self.func(*nc1) if isinstance(a, self.func): repl_dict = a._matches(self.func(*nc2), repl_dict) else: repl_dict = a.matches(self.func(*nc2), repl_dict) return repl_dict or None def _matches(self, expr, repl_dict={}): # weed out negative one prefixes# from sympy import Wild sign = 1 a, b = self.as_two_terms() if a is S.NegativeOne: if b.is_Mul: sign = -sign else: # the remainder, b, is not a Mul anymore return b.matches(-expr, repl_dict) expr = sympify(expr) if expr.is_Mul and expr.args[0] is S.NegativeOne: expr = -expr sign = -sign if not expr.is_Mul: # expr can only match if it matches b and a matches +/- 1 if len(self.args) == 2: # quickly test for equality if b == expr: return a.matches(Rational(sign), repl_dict) # do more expensive match dd = b.matches(expr, repl_dict) if dd is None: return None dd = a.matches(Rational(sign), dd) return dd return None d = repl_dict.copy() # weed out identical terms pp = list(self.args) ee = list(expr.args) for p in self.args: if p in expr.args: ee.remove(p) pp.remove(p) # only one symbol left in pattern -> match the remaining expression if len(pp) == 1 and isinstance(pp[0], Wild): if len(ee) == 1: d[pp[0]] = sign * ee[0] else: d[pp[0]] = sign * expr.func(*ee) return d if len(ee) != len(pp): return None for p, e in zip(pp, ee): d = p.xreplace(d).matches(e, d) if d is None: return None return d @staticmethod def _combine_inverse(lhs, rhs): """ Returns lhs/rhs, but treats arguments like symbols, so things like oo/oo return 1, instead of a nan. """ if lhs == rhs: return S.One def check(l, r): if l.is_Float and r.is_comparable: # if both objects are added to 0 they will share the same "normalization" # and are more likely to compare the same. Since Add(foo, 0) will not allow # the 0 to pass, we use __add__ directly. return l.__add__(0) == r.evalf().__add__(0) return False if check(lhs, rhs) or check(rhs, lhs): return S.One if lhs.is_Mul and rhs.is_Mul: a = list(lhs.args) b = [1] for x in rhs.args: if x in a: a.remove(x) elif -x in a: a.remove(-x) b.append(-1) else: b.append(x) return lhs.func(*a)/rhs.func(*b) return lhs/rhs def as_powers_dict(self): d = defaultdict(int) for term in self.args: b, e = term.as_base_exp() d[b] += e return d def as_numer_denom(self): # don't use _from_args to rebuild the numerators and denominators # as the order is not guaranteed to be the same once they have # been separated from each other numers, denoms = list(zip(*[f.as_numer_denom() for f in self.args])) return self.func(*numers), self.func(*denoms) def as_base_exp(self): e1 = None bases = [] nc = 0 for m in self.args: b, e = m.as_base_exp() if not b.is_commutative: nc += 1 if e1 is None: e1 = e elif e != e1 or nc > 1: return self, S.One bases.append(b) return self.func(*bases), e1 def _eval_is_polynomial(self, syms): return all(term._eval_is_polynomial(syms) for term in self.args) def _eval_is_rational_function(self, syms): return all(term._eval_is_rational_function(syms) for term in self.args) def _eval_is_algebraic_expr(self, syms): return all(term._eval_is_algebraic_expr(syms) for term in self.args) _eval_is_finite = lambda self: _fuzzy_group( a.is_finite for a in self.args) _eval_is_commutative = lambda self: _fuzzy_group( a.is_commutative for a in self.args) _eval_is_complex = lambda self: _fuzzy_group( (a.is_complex for a in self.args), quick_exit=True) def _eval_is_infinite(self): if any(a.is_infinite for a in self.args): if any(a.is_zero for a in self.args): return S.NaN.is_infinite if any(a.is_zero is None for a in self.args): return None return True def _eval_is_rational(self): r = _fuzzy_group((a.is_rational for a in self.args), quick_exit=True) if r: return r elif r is False: return self.is_zero def _eval_is_algebraic(self): r = _fuzzy_group((a.is_algebraic for a in self.args), quick_exit=True) if r: return r elif r is False: return self.is_zero def _eval_is_zero(self): zero = infinite = False for a in self.args: z = a.is_zero if z: if infinite: return # 0*oo is nan and nan.is_zero is None zero = True else: if not a.is_finite: if zero: return # 0*oo is nan and nan.is_zero is None infinite = True if zero is False and z is None: # trap None zero = None return zero def _eval_is_integer(self): is_rational = self.is_rational if is_rational: n, d = self.as_numer_denom() if d is S.One: return True elif d is S(2): return n.is_even elif is_rational is False: return False def _eval_is_polar(self): has_polar = any(arg.is_polar for arg in self.args) return has_polar and \ all(arg.is_polar or arg.is_positive for arg in self.args) def _eval_is_real(self): return self._eval_real_imag(True) def _eval_real_imag(self, real): zero = False t_not_re_im = None for t in self.args: if t.is_complex is False: return False elif t.is_imaginary: # I real = not real elif t.is_real: # 2 if not zero: z = t.is_zero if not z and zero is False: zero = z elif z: if all(a.is_finite for a in self.args): return True return elif t.is_real is False: # symbolic or literal like `2 + I` or symbolic imaginary if t_not_re_im: return # complex terms might cancel t_not_re_im = t elif t.is_imaginary is False: # symbolic like `2` or `2 + I` if t_not_re_im: return # complex terms might cancel t_not_re_im = t else: return if t_not_re_im: if t_not_re_im.is_real is False: if real: # like 3 return zero # 3*(smthng like 2 + I or i) is not real if t_not_re_im.is_imaginary is False: # symbolic 2 or 2 + I if not real: # like I return zero # I*(smthng like 2 or 2 + I) is not real elif zero is False: return real # can't be trumped by 0 elif real: return real # doesn't matter what zero is def _eval_is_imaginary(self): z = self.is_zero if z: return False elif z is False: return self._eval_real_imag(False) def _eval_is_hermitian(self): return self._eval_herm_antiherm(True) def _eval_herm_antiherm(self, real): one_nc = zero = one_neither = False for t in self.args: if not t.is_commutative: if one_nc: return one_nc = True if t.is_antihermitian: real = not real elif t.is_hermitian: if not zero: z = t.is_zero if not z and zero is False: zero = z elif z: if all(a.is_finite for a in self.args): return True return elif t.is_hermitian is False: if one_neither: return one_neither = True else: return if one_neither: if real: return zero elif zero is False or real: return real def _eval_is_antihermitian(self): z = self.is_zero if z: return False elif z is False: return self._eval_herm_antiherm(False) def _eval_is_irrational(self): for t in self.args: a = t.is_irrational if a: others = list(self.args) others.remove(t) if all((x.is_rational and fuzzy_not(x.is_zero)) is True for x in others): return True return if a is None: return return False def _eval_is_positive(self): """Return True if self is positive, False if not, and None if it cannot be determined. This algorithm is non-recursive and works by keeping track of the sign which changes when a negative or nonpositive is encountered. Whether a nonpositive or nonnegative is seen is also tracked since the presence of these makes it impossible to return True, but possible to return False if the end result is nonpositive. e.g. pos * neg * nonpositive -> pos or zero -> None is returned pos * neg * nonnegative -> neg or zero -> False is returned """ return self._eval_pos_neg(1) def _eval_pos_neg(self, sign): saw_NON = saw_NOT = False for t in self.args: if t.is_positive: continue elif t.is_negative: sign = -sign elif t.is_zero: if all(a.is_finite for a in self.args): return False return elif t.is_nonpositive: sign = -sign saw_NON = True elif t.is_nonnegative: saw_NON = True elif t.is_positive is False: sign = -sign if saw_NOT: return saw_NOT = True elif t.is_negative is False: if saw_NOT: return saw_NOT = True else: return if sign == 1 and saw_NON is False and saw_NOT is False: return True if sign < 0: return False def _eval_is_negative(self): if self.args[0] == -1: return (-self).is_positive # remove -1 return self._eval_pos_neg(-1) def _eval_is_odd(self): is_integer = self.is_integer if is_integer: r, acc = True, 1 for t in self.args: if not t.is_integer: return None elif t.is_even: r = False elif t.is_integer: if r is False: pass elif acc != 1 and (acc + t).is_odd: r = False elif t.is_odd is None: r = None acc = t return r # !integer -> !odd elif is_integer is False: return False def _eval_is_even(self): is_integer = self.is_integer if is_integer: return fuzzy_not(self.is_odd) elif is_integer is False: return False def _eval_is_composite(self): if self.is_integer and self.is_positive: """ Here we count the number of arguments that have a minimum value greater than two. If there are more than one of such a symbol then the result is composite. Else, the result cannot be determined. """ number_of_args = 0 # count of symbols with minimum value greater than one for arg in self.args: if (arg-1).is_positive: number_of_args += 1 if number_of_args > 1: return True def _eval_subs(self, old, new): from sympy.functions.elementary.complexes import sign from sympy.ntheory.factor_ import multiplicity from sympy.simplify.powsimp import powdenest from sympy.simplify.radsimp import fraction if not old.is_Mul: return None # try keep replacement literal so -2*x doesn't replace 4*x if old.args[0].is_Number and old.args[0] < 0: if self.args[0].is_Number: if self.args[0] < 0: return self._subs(-old, -new) return None def base_exp(a): # if I and -1 are in a Mul, they get both end up with # a -1 base (see issue 6421); all we want here are the # true Pow or exp separated into base and exponent from sympy import exp if a.is_Pow or isinstance(a, exp): return a.as_base_exp() return a, S.One def breakup(eq): """break up powers of eq when treated as a Mul: b**(Rational*e) -> b**e, Rational commutatives come back as a dictionary {b**e: Rational} noncommutatives come back as a list [(b**e, Rational)] """ (c, nc) = (defaultdict(int), list()) for a in Mul.make_args(eq): a = powdenest(a) (b, e) = base_exp(a) if e is not S.One: (co, _) = e.as_coeff_mul() b = Pow(b, e/co) e = co if a.is_commutative: c[b] += e else: nc.append([b, e]) return (c, nc) def rejoin(b, co): """ Put rational back with exponent; in general this is not ok, but since we took it from the exponent for analysis, it's ok to put it back. """ (b, e) = base_exp(b) return Pow(b, e*co) def ndiv(a, b): """if b divides a in an extractive way (like 1/4 divides 1/2 but not vice versa, and 2/5 does not divide 1/3) then return the integer number of times it divides, else return 0. """ if not b.q % a.q or not a.q % b.q: return int(a/b) return 0 # give Muls in the denominator a chance to be changed (see issue 5651) # rv will be the default return value rv = None n, d = fraction(self) self2 = self if d is not S.One: self2 = n._subs(old, new)/d._subs(old, new) if not self2.is_Mul: return self2._subs(old, new) if self2 != self: rv = self2 # Now continue with regular substitution. # handle the leading coefficient and use it to decide if anything # should even be started; we always know where to find the Rational # so it's a quick test co_self = self2.args[0] co_old = old.args[0] co_xmul = None if co_old.is_Rational and co_self.is_Rational: # if coeffs are the same there will be no updating to do # below after breakup() step; so skip (and keep co_xmul=None) if co_old != co_self: co_xmul = co_self.extract_multiplicatively(co_old) elif co_old.is_Rational: return rv # break self and old into factors (c, nc) = breakup(self2) (old_c, old_nc) = breakup(old) # update the coefficients if we had an extraction # e.g. if co_self were 2*(3/35*x)**2 and co_old = 3/5 # then co_self in c is replaced by (3/5)**2 and co_residual # is 2*(1/7)**2 if co_xmul and co_xmul.is_Rational and abs(co_old) != 1: mult = S(multiplicity(abs(co_old), co_self)) c.pop(co_self) if co_old in c: c[co_old] += mult else: c[co_old] = mult co_residual = co_self/co_old**mult else: co_residual = 1 # do quick tests to see if we can't succeed ok = True if len(old_nc) > len(nc): # more non-commutative terms ok = False elif len(old_c) > len(c): # more commutative terms ok = False elif set(i[0] for i in old_nc).difference(set(i[0] for i in nc)): # unmatched non-commutative bases ok = False elif set(old_c).difference(set(c)): # unmatched commutative terms ok = False elif any(sign(c[b]) != sign(old_c[b]) for b in old_c): # differences in sign ok = False if not ok: return rv if not old_c: cdid = None else: rat = [] for (b, old_e) in old_c.items(): c_e = c[b] rat.append(ndiv(c_e, old_e)) if not rat[-1]: return rv cdid = min(rat) if not old_nc: ncdid = None for i in range(len(nc)): nc[i] = rejoin(*nc[i]) else: ncdid = 0 # number of nc replacements we did take = len(old_nc) # how much to look at each time limit = cdid or S.Infinity # max number that we can take failed = [] # failed terms will need subs if other terms pass i = 0 while limit and i + take <= len(nc): hit = False # the bases must be equivalent in succession, and # the powers must be extractively compatible on the # first and last factor but equal in between. rat = [] for j in range(take): if nc[i + j][0] != old_nc[j][0]: break elif j == 0: rat.append(ndiv(nc[i + j][1], old_nc[j][1])) elif j == take - 1: rat.append(ndiv(nc[i + j][1], old_nc[j][1])) elif nc[i + j][1] != old_nc[j][1]: break else: rat.append(1) j += 1 else: ndo = min(rat) if ndo: if take == 1: if cdid: ndo = min(cdid, ndo) nc[i] = Pow(new, ndo)*rejoin(nc[i][0], nc[i][1] - ndo*old_nc[0][1]) else: ndo = 1 # the left residual l = rejoin(nc[i][0], nc[i][1] - ndo* old_nc[0][1]) # eliminate all middle terms mid = new # the right residual (which may be the same as the middle if take == 2) ir = i + take - 1 r = (nc[ir][0], nc[ir][1] - ndo* old_nc[-1][1]) if r[1]: if i + take < len(nc): nc[i:i + take] = [l*mid, r] else: r = rejoin(*r) nc[i:i + take] = [l*mid*r] else: # there was nothing left on the right nc[i:i + take] = [l*mid] limit -= ndo ncdid += ndo hit = True if not hit: # do the subs on this failing factor failed.append(i) i += 1 else: if not ncdid: return rv # although we didn't fail, certain nc terms may have # failed so we rebuild them after attempting a partial # subs on them failed.extend(range(i, len(nc))) for i in failed: nc[i] = rejoin(*nc[i]).subs(old, new) # rebuild the expression if cdid is None: do = ncdid elif ncdid is None: do = cdid else: do = min(ncdid, cdid) margs = [] for b in c: if b in old_c: # calculate the new exponent e = c[b] - old_c[b]*do margs.append(rejoin(b, e)) else: margs.append(rejoin(b.subs(old, new), c[b])) if cdid and not ncdid: # in case we are replacing commutative with non-commutative, # we want the new term to come at the front just like the # rest of this routine margs = [Pow(new, cdid)] + margs return co_residual*self2.func(*margs)*self2.func(*nc) def _eval_nseries(self, x, n, logx): from sympy import Order, powsimp terms = [t.nseries(x, n=n, logx=logx) for t in self.args] res = powsimp(self.func(*terms).expand(), combine='exp', deep=True) if res.has(Order): res += Order(x**n, x) return res def _eval_as_leading_term(self, x): return self.func(*[t.as_leading_term(x) for t in self.args]) def _eval_conjugate(self): return self.func(*[t.conjugate() for t in self.args]) def _eval_transpose(self): return self.func(*[t.transpose() for t in self.args[::-1]]) def _eval_adjoint(self): return self.func(*[t.adjoint() for t in self.args[::-1]]) def _sage_(self): s = 1 for x in self.args: s *= x._sage_() return s def as_content_primitive(self, radical=False, clear=True): """Return the tuple (R, self/R) where R is the positive Rational extracted from self. Examples ======== >>> from sympy import sqrt >>> (-3*sqrt(2)*(2 - 2*sqrt(2))).as_content_primitive() (6, -sqrt(2)*(1 - sqrt(2))) See docstring of Expr.as_content_primitive for more examples. """ coef = S.One args = [] for i, a in enumerate(self.args): c, p = a.as_content_primitive(radical=radical, clear=clear) coef *= c if p is not S.One: args.append(p) # don't use self._from_args here to reconstruct args # since there may be identical args now that should be combined # e.g. (2+2*x)*(3+3*x) should be (6, (1 + x)**2) not (6, (1+x)*(1+x)) return coef, self.func(*args) def as_ordered_factors(self, order=None): """Transform an expression into an ordered list of factors. Examples ======== >>> from sympy import sin, cos >>> from sympy.abc import x, y >>> (2*x*y*sin(x)*cos(x)).as_ordered_factors() [2, x, y, sin(x), cos(x)] """ cpart, ncpart = self.args_cnc() cpart.sort(key=lambda expr: expr.sort_key(order=order)) return cpart + ncpart @property def _sorted_args(self): return tuple(self.as_ordered_factors()) def prod(a, start=1): """Return product of elements of a. Start with int 1 so if only ints are included then an int result is returned. Examples ======== >>> from sympy import prod, S >>> prod(range(3)) 0 >>> type(_) is int True >>> prod([S(2), 3]) 6 >>> _.is_Integer True You can start the product at something other than 1: >>> prod([1, 2], 3) 6 """ return reduce(operator.mul, a, start) def _keep_coeff(coeff, factors, clear=True, sign=False): """Return ``coeff*factors`` unevaluated if necessary. If ``clear`` is False, do not keep the coefficient as a factor if it can be distributed on a single factor such that one or more terms will still have integer coefficients. If ``sign`` is True, allow a coefficient of -1 to remain factored out. Examples ======== >>> from sympy.core.mul import _keep_coeff >>> from sympy.abc import x, y >>> from sympy import S >>> _keep_coeff(S.Half, x + 2) (x + 2)/2 >>> _keep_coeff(S.Half, x + 2, clear=False) x/2 + 1 >>> _keep_coeff(S.Half, (x + 2)*y, clear=False) y*(x + 2)/2 >>> _keep_coeff(S(-1), x + y) -x - y >>> _keep_coeff(S(-1), x + y, sign=True) -(x + y) """ if not coeff.is_Number: if factors.is_Number: factors, coeff = coeff, factors else: return coeff*factors if coeff is S.One: return factors elif coeff is S.NegativeOne and not sign: return -factors elif factors.is_Add: if not clear and coeff.is_Rational and coeff.q != 1: q = S(coeff.q) for i in factors.args: c, t = i.as_coeff_Mul() r = c/q if r == int(r): return coeff*factors return Mul(coeff, factors, evaluate=False) elif factors.is_Mul: margs = list(factors.args) if margs[0].is_Number: margs[0] *= coeff if margs[0] == 1: margs.pop(0) else: margs.insert(0, coeff) return Mul._from_args(margs) else: return coeff*factors def expand_2arg(e): from sympy.simplify.simplify import bottom_up def do(e): if e.is_Mul: c, r = e.as_coeff_Mul() if c.is_Number and r.is_Add: return _unevaluated_Add(*[c*ri for ri in r.args]) return e return bottom_up(e, do) from .numbers import Rational from .power import Pow from .add import Add, _addsort, _unevaluated_Add
805f00cb6498cff88f0b64f89715f3f9b98ed675563edf65b1cb841ece105680
"""Power series evaluation and manipulation using sparse Polynomials Implementing a new function --------------------------- There are a few things to be kept in mind when adding a new function here:: - The implementation should work on all possible input domains/rings. Special cases include the ``EX`` ring and a constant term in the series to be expanded. There can be two types of constant terms in the series: + A constant value or symbol. + A term of a multivariate series not involving the generator, with respect to which the series is to expanded. Strictly speaking, a generator of a ring should not be considered a constant. However, for series expansion both the cases need similar treatment (as the user doesn't care about inner details), i.e, use an addition formula to separate the constant part and the variable part (see rs_sin for reference). - All the algorithms used here are primarily designed to work for Taylor series (number of iterations in the algo equals the required order). Hence, it becomes tricky to get the series of the right order if a Puiseux series is input. Use rs_puiseux? in your function if your algorithm is not designed to handle fractional powers. Extending rs_series ------------------- To make a function work with rs_series you need to do two things:: - Many sure it works with a constant term (as explained above). - If the series contains constant terms, you might need to extend its ring. You do so by adding the new terms to the rings as generators. ``PolyRing.compose`` and ``PolyRing.add_gens`` are two functions that do so and need to be called every time you expand a series containing a constant term. Look at rs_sin and rs_series for further reference. """ from sympy.polys.domains import QQ, EX from sympy.polys.rings import PolyElement, ring, sring from sympy.polys.polyerrors import DomainError from sympy.polys.monomials import (monomial_min, monomial_mul, monomial_div, monomial_ldiv) from mpmath.libmp.libintmath import ifac from sympy.core import PoleError, Function, Expr from sympy.core.numbers import Rational, igcd from sympy.core.compatibility import as_int, range, string_types from sympy.functions import sin, cos, tan, atan, exp, atanh, tanh, log, ceiling from mpmath.libmp.libintmath import giant_steps import math def _invert_monoms(p1): """ Compute ``x**n * p1(1/x)`` for a univariate polynomial ``p1`` in ``x``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import _invert_monoms >>> R, x = ring('x', ZZ) >>> p = x**2 + 2*x + 3 >>> _invert_monoms(p) 3*x**2 + 2*x + 1 See Also ======== sympy.polys.densebasic.dup_reverse """ terms = list(p1.items()) terms.sort() deg = p1.degree() R = p1.ring p = R.zero cv = p1.listcoeffs() mv = p1.listmonoms() for i in range(len(mv)): p[(deg - mv[i][0],)] = cv[i] return p def _giant_steps(target): """Return a list of precision steps for the Newton's method""" res = giant_steps(2, target) if res[0] != 2: res = [2] + res return res def rs_trunc(p1, x, prec): """ Truncate the series in the ``x`` variable with precision ``prec``, that is, modulo ``O(x**prec)`` Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import rs_trunc >>> R, x = ring('x', QQ) >>> p = x**10 + x**5 + x + 1 >>> rs_trunc(p, x, 12) x**10 + x**5 + x + 1 >>> rs_trunc(p, x, 10) x**5 + x + 1 """ R = p1.ring p = R.zero i = R.gens.index(x) for exp1 in p1: if exp1[i] >= prec: continue p[exp1] = p1[exp1] return p def rs_is_puiseux(p, x): """ Test if ``p`` is Puiseux series in ``x``. Raise an exception if it has a negative power in ``x``. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import rs_is_puiseux >>> R, x = ring('x', QQ) >>> p = x**QQ(2,5) + x**QQ(2,3) + x >>> rs_is_puiseux(p, x) True """ index = p.ring.gens.index(x) for k in p: if k[index] != int(k[index]): return True if k[index] < 0: raise ValueError('The series is not regular in %s' % x) return False def rs_puiseux(f, p, x, prec): """ Return the puiseux series for `f(p, x, prec)`. To be used when function ``f`` is implemented only for regular series. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import rs_puiseux, rs_exp >>> R, x = ring('x', QQ) >>> p = x**QQ(2,5) + x**QQ(2,3) + x >>> rs_puiseux(rs_exp,p, x, 1) 1/2*x**(4/5) + x**(2/3) + x**(2/5) + 1 """ index = p.ring.gens.index(x) n = 1 for k in p: power = k[index] if isinstance(power, Rational): num, den = power.as_numer_denom() n = int(n*den // igcd(n, den)) elif power != int(power): den = power.denominator n = int(n*den // igcd(n, den)) if n != 1: p1 = pow_xin(p, index, n) r = f(p1, x, prec*n) n1 = QQ(1, n) if isinstance(r, tuple): r = tuple([pow_xin(rx, index, n1) for rx in r]) else: r = pow_xin(r, index, n1) else: r = f(p, x, prec) return r def rs_puiseux2(f, p, q, x, prec): """ Return the puiseux series for `f(p, q, x, prec)`. To be used when function ``f`` is implemented only for regular series. """ index = p.ring.gens.index(x) n = 1 for k in p: power = k[index] if isinstance(power, Rational): num, den = power.as_numer_denom() n = n*den // igcd(n, den) elif power != int(power): den = power.denominator n = n*den // igcd(n, den) if n != 1: p1 = pow_xin(p, index, n) r = f(p1, q, x, prec*n) n1 = QQ(1, n) r = pow_xin(r, index, n1) else: r = f(p, q, x, prec) return r def rs_mul(p1, p2, x, prec): """ Return the product of the given two series, modulo ``O(x**prec)``. ``x`` is the series variable or its position in the generators. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import rs_mul >>> R, x = ring('x', QQ) >>> p1 = x**2 + 2*x + 1 >>> p2 = x + 1 >>> rs_mul(p1, p2, x, 3) 3*x**2 + 3*x + 1 """ R = p1.ring p = R.zero if R.__class__ != p2.ring.__class__ or R != p2.ring: raise ValueError('p1 and p2 must have the same ring') iv = R.gens.index(x) if not isinstance(p2, PolyElement): raise ValueError('p1 and p2 must have the same ring') if R == p2.ring: get = p.get items2 = list(p2.items()) items2.sort(key=lambda e: e[0][iv]) if R.ngens == 1: for exp1, v1 in p1.items(): for exp2, v2 in items2: exp = exp1[0] + exp2[0] if exp < prec: exp = (exp, ) p[exp] = get(exp, 0) + v1*v2 else: break else: monomial_mul = R.monomial_mul for exp1, v1 in p1.items(): for exp2, v2 in items2: if exp1[iv] + exp2[iv] < prec: exp = monomial_mul(exp1, exp2) p[exp] = get(exp, 0) + v1*v2 else: break p.strip_zero() return p def rs_square(p1, x, prec): """ Square the series modulo ``O(x**prec)`` Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import rs_square >>> R, x = ring('x', QQ) >>> p = x**2 + 2*x + 1 >>> rs_square(p, x, 3) 6*x**2 + 4*x + 1 """ R = p1.ring p = R.zero iv = R.gens.index(x) get = p.get items = list(p1.items()) items.sort(key=lambda e: e[0][iv]) monomial_mul = R.monomial_mul for i in range(len(items)): exp1, v1 = items[i] for j in range(i): exp2, v2 = items[j] if exp1[iv] + exp2[iv] < prec: exp = monomial_mul(exp1, exp2) p[exp] = get(exp, 0) + v1*v2 else: break p = p.imul_num(2) get = p.get for expv, v in p1.items(): if 2*expv[iv] < prec: e2 = monomial_mul(expv, expv) p[e2] = get(e2, 0) + v**2 p.strip_zero() return p def rs_pow(p1, n, x, prec): """ Return ``p1**n`` modulo ``O(x**prec)`` Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import rs_pow >>> R, x = ring('x', QQ) >>> p = x + 1 >>> rs_pow(p, 4, x, 3) 6*x**2 + 4*x + 1 """ R = p1.ring if isinstance(n, Rational): np = int(n.p) nq = int(n.q) if nq != 1: res = rs_nth_root(p1, nq, x, prec) if np != 1: res = rs_pow(res, np, x, prec) else: res = rs_pow(p1, np, x, prec) return res n = as_int(n) if n == 0: if p1: return R(1) else: raise ValueError('0**0 is undefined') if n < 0: p1 = rs_pow(p1, -n, x, prec) return rs_series_inversion(p1, x, prec) if n == 1: return rs_trunc(p1, x, prec) if n == 2: return rs_square(p1, x, prec) if n == 3: p2 = rs_square(p1, x, prec) return rs_mul(p1, p2, x, prec) p = R(1) while 1: if n & 1: p = rs_mul(p1, p, x, prec) n -= 1 if not n: break p1 = rs_square(p1, x, prec) n = n // 2 return p def rs_subs(p, rules, x, prec): """ Substitution with truncation according to the mapping in ``rules``. Return a series with precision ``prec`` in the generator ``x`` Note that substitutions are not done one after the other >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import rs_subs >>> R, x, y = ring('x, y', QQ) >>> p = x**2 + y**2 >>> rs_subs(p, {x: x+ y, y: x+ 2*y}, x, 3) 2*x**2 + 6*x*y + 5*y**2 >>> (x + y)**2 + (x + 2*y)**2 2*x**2 + 6*x*y + 5*y**2 which differs from >>> rs_subs(rs_subs(p, {x: x+ y}, x, 3), {y: x+ 2*y}, x, 3) 5*x**2 + 12*x*y + 8*y**2 Parameters ---------- p : :class:`PolyElement` Input series. rules : :class:`dict` with substitution mappings. x : :class:`PolyElement` in which the series truncation is to be done. prec : :class:`Integer` order of the series after truncation. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import rs_subs >>> R, x, y = ring('x, y', QQ) >>> rs_subs(x**2+y**2, {y: (x+y)**2}, x, 3) 6*x**2*y**2 + x**2 + 4*x*y**3 + y**4 """ R = p.ring ngens = R.ngens d = R(0) for i in range(ngens): d[(i, 1)] = R.gens[i] for var in rules: d[(R.index(var), 1)] = rules[var] p1 = R(0) p_keys = sorted(p.keys()) for expv in p_keys: p2 = R(1) for i in range(ngens): power = expv[i] if power == 0: continue if (i, power) not in d: q, r = divmod(power, 2) if r == 0 and (i, q) in d: d[(i, power)] = rs_square(d[(i, q)], x, prec) elif (i, power - 1) in d: d[(i, power)] = rs_mul(d[(i, power - 1)], d[(i, 1)], x, prec) else: d[(i, power)] = rs_pow(d[(i, 1)], power, x, prec) p2 = rs_mul(p2, d[(i, power)], x, prec) p1 += p2*p[expv] return p1 def _has_constant_term(p, x): """ Check if ``p`` has a constant term in ``x`` Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import _has_constant_term >>> R, x = ring('x', QQ) >>> p = x**2 + x + 1 >>> _has_constant_term(p, x) True """ R = p.ring iv = R.gens.index(x) zm = R.zero_monom a = [0]*R.ngens a[iv] = 1 miv = tuple(a) for expv in p: if monomial_min(expv, miv) == zm: return True return False def _get_constant_term(p, x): """Return constant term in p with respect to x Note that it is not simply `p[R.zero_monom]` as there might be multiple generators in the ring R. We want the `x`-free term which can contain other generators. """ R = p.ring zm = R.zero_monom i = R.gens.index(x) zm = R.zero_monom a = [0]*R.ngens a[i] = 1 miv = tuple(a) c = 0 for expv in p: if monomial_min(expv, miv) == zm: c += R({expv: p[expv]}) return c def _check_series_var(p, x, name): index = p.ring.gens.index(x) m = min(p, key=lambda k: k[index])[index] if m < 0: raise PoleError("Asymptotic expansion of %s around [oo] not " "implemented." % name) return index, m def _series_inversion1(p, x, prec): """ Univariate series inversion ``1/p`` modulo ``O(x**prec)``. The Newton method is used. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import _series_inversion1 >>> R, x = ring('x', QQ) >>> p = x + 1 >>> _series_inversion1(p, x, 4) -x**3 + x**2 - x + 1 """ if rs_is_puiseux(p, x): return rs_puiseux(_series_inversion1, p, x, prec) R = p.ring zm = R.zero_monom c = p[zm] # giant_steps does not seem to work with PythonRational numbers with 1 as # denominator. This makes sure such a number is converted to integer. if prec == int(prec): prec = int(prec) if zm not in p: raise ValueError("No constant term in series") if _has_constant_term(p - c, x): raise ValueError("p cannot contain a constant term depending on " "parameters") one = R(1) if R.domain is EX: one = 1 if c != one: # TODO add check that it is a unit p1 = R(1)/c else: p1 = R(1) for precx in _giant_steps(prec): t = 1 - rs_mul(p1, p, x, precx) p1 = p1 + rs_mul(p1, t, x, precx) return p1 def rs_series_inversion(p, x, prec): """ Multivariate series inversion ``1/p`` modulo ``O(x**prec)``. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import rs_series_inversion >>> R, x, y = ring('x, y', QQ) >>> rs_series_inversion(1 + x*y**2, x, 4) -x**3*y**6 + x**2*y**4 - x*y**2 + 1 >>> rs_series_inversion(1 + x*y**2, y, 4) -x*y**2 + 1 >>> rs_series_inversion(x + x**2, x, 4) x**3 - x**2 + x - 1 + x**(-1) """ R = p.ring if p == R.zero: raise ZeroDivisionError zm = R.zero_monom index = R.gens.index(x) m = min(p, key=lambda k: k[index])[index] if m: p = mul_xin(p, index, -m) prec = prec + m if zm not in p: raise NotImplementedError("No constant term in series") if _has_constant_term(p - p[zm], x): raise NotImplementedError("p - p[0] must not have a constant term in " "the series variables") r = _series_inversion1(p, x, prec) if m != 0: r = mul_xin(r, index, -m) return r def _coefficient_t(p, t): r"""Coefficient of `x\_i**j` in p, where ``t`` = (i, j)""" i, j = t R = p.ring expv1 = [0]*R.ngens expv1[i] = j expv1 = tuple(expv1) p1 = R(0) for expv in p: if expv[i] == j: p1[monomial_div(expv, expv1)] = p[expv] return p1 def rs_series_reversion(p, x, n, y): r""" Reversion of a series. ``p`` is a series with ``O(x**n)`` of the form `p = a*x + f(x)` where `a` is a number different from 0. `f(x) = sum( a\_k*x\_k, k in range(2, n))` a_k : Can depend polynomially on other variables, not indicated. x : Variable with name x. y : Variable with name y. Solve `p = y`, that is, given `a*x + f(x) - y = 0`, find the solution x = r(y) up to O(y**n) Algorithm: If `r\_i` is the solution at order i, then: `a*r\_i + f(r\_i) - y = O(y**(i + 1))` and if r_(i + 1) is the solution at order i + 1, then: `a*r\_(i + 1) + f(r\_(i + 1)) - y = O(y**(i + 2))` We have, r_(i + 1) = r_i + e, such that, `a*e + f(r\_i) = O(y**(i + 2))` or `e = -f(r\_i)/a` So we use the recursion relation: `r\_(i + 1) = r\_i - f(r\_i)/a` with the boundary condition: `r\_1 = y` Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import rs_series_reversion, rs_trunc >>> R, x, y, a, b = ring('x, y, a, b', QQ) >>> p = x - x**2 - 2*b*x**2 + 2*a*b*x**2 >>> p1 = rs_series_reversion(p, x, 3, y); p1 -2*y**2*a*b + 2*y**2*b + y**2 + y >>> rs_trunc(p.compose(x, p1), y, 3) y """ if rs_is_puiseux(p, x): raise NotImplementedError R = p.ring nx = R.gens.index(x) y = R(y) ny = R.gens.index(y) if _has_constant_term(p, x): raise ValueError("p must not contain a constant term in the series " "variable") a = _coefficient_t(p, (nx, 1)) zm = R.zero_monom assert zm in a and len(a) == 1 a = a[zm] r = y/a for i in range(2, n): sp = rs_subs(p, {x: r}, y, i + 1) sp = _coefficient_t(sp, (ny, i))*y**i r -= sp/a return r def rs_series_from_list(p, c, x, prec, concur=1): """ Return a series `sum c[n]*p**n` modulo `O(x**prec)`. It reduces the number of multiplications by summing concurrently. `ax = [1, p, p**2, .., p**(J - 1)]` `s = sum(c[i]*ax[i]` for i in `range(r, (r + 1)*J))*p**((K - 1)*J)` with `K >= (n + 1)/J` Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import rs_series_from_list, rs_trunc >>> R, x = ring('x', QQ) >>> p = x**2 + x + 1 >>> c = [1, 2, 3] >>> rs_series_from_list(p, c, x, 4) 6*x**3 + 11*x**2 + 8*x + 6 >>> rs_trunc(1 + 2*p + 3*p**2, x, 4) 6*x**3 + 11*x**2 + 8*x + 6 >>> pc = R.from_list(list(reversed(c))) >>> rs_trunc(pc.compose(x, p), x, 4) 6*x**3 + 11*x**2 + 8*x + 6 See Also ======== sympy.polys.ring.compose """ R = p.ring n = len(c) if not concur: q = R(1) s = c[0]*q for i in range(1, n): q = rs_mul(q, p, x, prec) s += c[i]*q return s J = int(math.sqrt(n) + 1) K, r = divmod(n, J) if r: K += 1 ax = [R(1)] q = R(1) if len(p) < 20: for i in range(1, J): q = rs_mul(q, p, x, prec) ax.append(q) else: for i in range(1, J): if i % 2 == 0: q = rs_square(ax[i//2], x, prec) else: q = rs_mul(q, p, x, prec) ax.append(q) # optimize using rs_square pj = rs_mul(ax[-1], p, x, prec) b = R(1) s = R(0) for k in range(K - 1): r = J*k s1 = c[r] for j in range(1, J): s1 += c[r + j]*ax[j] s1 = rs_mul(s1, b, x, prec) s += s1 b = rs_mul(b, pj, x, prec) if not b: break k = K - 1 r = J*k if r < n: s1 = c[r]*R(1) for j in range(1, J): if r + j >= n: break s1 += c[r + j]*ax[j] s1 = rs_mul(s1, b, x, prec) s += s1 return s def rs_diff(p, x): """ Return partial derivative of ``p`` with respect to ``x``. Parameters ========== x : :class:`PolyElement` with respect to which ``p`` is differentiated. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import rs_diff >>> R, x, y = ring('x, y', QQ) >>> p = x + x**2*y**3 >>> rs_diff(p, x) 2*x*y**3 + 1 """ R = p.ring n = R.gens.index(x) p1 = R.zero mn = [0]*R.ngens mn[n] = 1 mn = tuple(mn) for expv in p: if expv[n]: e = monomial_ldiv(expv, mn) p1[e] = R.domain_new(p[expv]*expv[n]) return p1 def rs_integrate(p, x): """ Integrate ``p`` with respect to ``x``. Parameters ========== x : :class:`PolyElement` with respect to which ``p`` is integrated. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import rs_integrate >>> R, x, y = ring('x, y', QQ) >>> p = x + x**2*y**3 >>> rs_integrate(p, x) 1/3*x**3*y**3 + 1/2*x**2 """ R = p.ring p1 = R.zero n = R.gens.index(x) mn = [0]*R.ngens mn[n] = 1 mn = tuple(mn) for expv in p: e = monomial_mul(expv, mn) p1[e] = R.domain_new(p[expv]/(expv[n] + 1)) return p1 def rs_fun(p, f, *args): r""" Function of a multivariate series computed by substitution. The case with f method name is used to compute `rs\_tan` and `rs\_nth\_root` of a multivariate series: `rs\_fun(p, tan, iv, prec)` tan series is first computed for a dummy variable _x, i.e, `rs\_tan(\_x, iv, prec)`. Then we substitute _x with p to get the desired series Parameters ========== p : :class:`PolyElement` The multivariate series to be expanded. f : `ring\_series` function to be applied on `p`. args[-2] : :class:`PolyElement` with respect to which, the series is to be expanded. args[-1] : Required order of the expanded series. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import rs_fun, _tan1 >>> R, x, y = ring('x, y', QQ) >>> p = x + x*y + x**2*y + x**3*y**2 >>> rs_fun(p, _tan1, x, 4) 1/3*x**3*y**3 + 2*x**3*y**2 + x**3*y + 1/3*x**3 + x**2*y + x*y + x """ _R = p.ring R1, _x = ring('_x', _R.domain) h = int(args[-1]) args1 = args[:-2] + (_x, h) zm = _R.zero_monom # separate the constant term of the series # compute the univariate series f(_x, .., 'x', sum(nv)) if zm in p: x1 = _x + p[zm] p1 = p - p[zm] else: x1 = _x p1 = p if isinstance(f, string_types): q = getattr(x1, f)(*args1) else: q = f(x1, *args1) a = sorted(q.items()) c = [0]*h for x in a: c[x[0][0]] = x[1] p1 = rs_series_from_list(p1, c, args[-2], args[-1]) return p1 def mul_xin(p, i, n): r""" Return `p*x_i**n`. `x\_i` is the ith variable in ``p``. """ R = p.ring q = R(0) for k, v in p.items(): k1 = list(k) k1[i] += n q[tuple(k1)] = v return q def pow_xin(p, i, n): """ >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import pow_xin >>> R, x, y = ring('x, y', QQ) >>> p = x**QQ(2,5) + x + x**QQ(2,3) >>> index = p.ring.gens.index(x) >>> pow_xin(p, index, 15) x**15 + x**10 + x**6 """ R = p.ring q = R(0) for k, v in p.items(): k1 = list(k) k1[i] *= n q[tuple(k1)] = v return q def _nth_root1(p, n, x, prec): """ Univariate series expansion of the nth root of ``p``. The Newton method is used. """ if rs_is_puiseux(p, x): return rs_puiseux2(_nth_root1, p, n, x, prec) R = p.ring zm = R.zero_monom if zm not in p: raise NotImplementedError('No constant term in series') n = as_int(n) assert p[zm] == 1 p1 = R(1) if p == 1: return p if n == 0: return R(1) if n == 1: return p if n < 0: n = -n sign = 1 else: sign = 0 for precx in _giant_steps(prec): tmp = rs_pow(p1, n + 1, x, precx) tmp = rs_mul(tmp, p, x, precx) p1 += p1/n - tmp/n if sign: return p1 else: return _series_inversion1(p1, x, prec) def rs_nth_root(p, n, x, prec): """ Multivariate series expansion of the nth root of ``p``. Parameters ========== p : Expr The polynomial to computer the root of. n : integer The order of the root to be computed. x : :class:`PolyElement` prec : integer Order of the expanded series. Notes ===== The result of this function is dependent on the ring over which the polynomial has been defined. If the answer involves a root of a constant, make sure that the polynomial is over a real field. It can not yet handle roots of symbols. Examples ======== >>> from sympy.polys.domains import QQ, RR >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import rs_nth_root >>> R, x, y = ring('x, y', QQ) >>> rs_nth_root(1 + x + x*y, -3, x, 3) 2/9*x**2*y**2 + 4/9*x**2*y + 2/9*x**2 - 1/3*x*y - 1/3*x + 1 >>> R, x, y = ring('x, y', RR) >>> rs_nth_root(3 + x + x*y, 3, x, 2) 0.160249952256379*x*y + 0.160249952256379*x + 1.44224957030741 """ p0 = p n0 = n if n == 0: if p == 0: raise ValueError('0**0 expression') else: return p.ring(1) if n == 1: return rs_trunc(p, x, prec) R = p.ring zm = R.zero_monom index = R.gens.index(x) m = min(p, key=lambda k: k[index])[index] p = mul_xin(p, index, -m) prec -= m if _has_constant_term(p - 1, x): zm = R.zero_monom c = p[zm] if R.domain is EX: c_expr = c.as_expr() const = c_expr**QQ(1, n) elif isinstance(c, PolyElement): try: c_expr = c.as_expr() const = R(c_expr**(QQ(1, n))) except ValueError: raise DomainError("The given series can't be expanded in " "this domain.") else: try: # RealElement doesn't support const = R(c**Rational(1, n)) # exponentiation with mpq object except ValueError: # as exponent raise DomainError("The given series can't be expanded in " "this domain.") res = rs_nth_root(p/c, n, x, prec)*const else: res = _nth_root1(p, n, x, prec) if m: m = QQ(m, n) res = mul_xin(res, index, m) return res def rs_log(p, x, prec): """ The Logarithm of ``p`` modulo ``O(x**prec)``. Notes ===== Truncation of ``integral dx p**-1*d p/dx`` is used. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import rs_log >>> R, x = ring('x', QQ) >>> rs_log(1 + x, x, 8) 1/7*x**7 - 1/6*x**6 + 1/5*x**5 - 1/4*x**4 + 1/3*x**3 - 1/2*x**2 + x >>> rs_log(x**QQ(3, 2) + 1, x, 5) 1/3*x**(9/2) - 1/2*x**3 + x**(3/2) """ if rs_is_puiseux(p, x): return rs_puiseux(rs_log, p, x, prec) R = p.ring if p == 1: return R.zero c = _get_constant_term(p, x) if c: const = 0 if c == 1: pass else: c_expr = c.as_expr() if R.domain is EX: const = log(c_expr) elif isinstance(c, PolyElement): try: const = R(log(c_expr)) except ValueError: R = R.add_gens([log(c_expr)]) p = p.set_ring(R) x = x.set_ring(R) c = c.set_ring(R) const = R(log(c_expr)) else: try: const = R(log(c)) except ValueError: raise DomainError("The given series can't be expanded in " "this domain.") dlog = p.diff(x) dlog = rs_mul(dlog, _series_inversion1(p, x, prec), x, prec - 1) return rs_integrate(dlog, x) + const else: raise NotImplementedError def rs_LambertW(p, x, prec): """ Calculate the series expansion of the principal branch of the Lambert W function. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import rs_LambertW >>> R, x, y = ring('x, y', QQ) >>> rs_LambertW(x + x*y, x, 3) -x**2*y**2 - 2*x**2*y - x**2 + x*y + x See Also ======== LambertW """ if rs_is_puiseux(p, x): return rs_puiseux(rs_LambertW, p, x, prec) R = p.ring p1 = R(0) if _has_constant_term(p, x): raise NotImplementedError("Polynomial must not have constant term in " "the series variables") if x in R.gens: for precx in _giant_steps(prec): e = rs_exp(p1, x, precx) p2 = rs_mul(e, p1, x, precx) - p p3 = rs_mul(e, p1 + 1, x, precx) p3 = rs_series_inversion(p3, x, precx) tmp = rs_mul(p2, p3, x, precx) p1 -= tmp return p1 else: raise NotImplementedError def _exp1(p, x, prec): r"""Helper function for `rs\_exp`. """ R = p.ring p1 = R(1) for precx in _giant_steps(prec): pt = p - rs_log(p1, x, precx) tmp = rs_mul(pt, p1, x, precx) p1 += tmp return p1 def rs_exp(p, x, prec): """ Exponentiation of a series modulo ``O(x**prec)`` Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import rs_exp >>> R, x = ring('x', QQ) >>> rs_exp(x**2, x, 7) 1/6*x**6 + 1/2*x**4 + x**2 + 1 """ if rs_is_puiseux(p, x): return rs_puiseux(rs_exp, p, x, prec) R = p.ring c = _get_constant_term(p, x) if c: if R.domain is EX: c_expr = c.as_expr() const = exp(c_expr) elif isinstance(c, PolyElement): try: c_expr = c.as_expr() const = R(exp(c_expr)) except ValueError: R = R.add_gens([exp(c_expr)]) p = p.set_ring(R) x = x.set_ring(R) c = c.set_ring(R) const = R(exp(c_expr)) else: try: const = R(exp(c)) except ValueError: raise DomainError("The given series can't be expanded in " "this domain.") p1 = p - c # Makes use of sympy functions to evaluate the values of the cos/sin # of the constant term. return const*rs_exp(p1, x, prec) if len(p) > 20: return _exp1(p, x, prec) one = R(1) n = 1 c = [] for k in range(prec): c.append(one/n) k += 1 n *= k r = rs_series_from_list(p, c, x, prec) return r def _atan(p, iv, prec): """ Expansion using formula. Faster on very small and univariate series. """ R = p.ring mo = R(-1) c = [-mo] p2 = rs_square(p, iv, prec) for k in range(1, prec): c.append(mo**k/(2*k + 1)) s = rs_series_from_list(p2, c, iv, prec) s = rs_mul(s, p, iv, prec) return s def rs_atan(p, x, prec): """ The arctangent of a series Return the series expansion of the atan of ``p``, about 0. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import rs_atan >>> R, x, y = ring('x, y', QQ) >>> rs_atan(x + x*y, x, 4) -1/3*x**3*y**3 - x**3*y**2 - x**3*y - 1/3*x**3 + x*y + x See Also ======== atan """ if rs_is_puiseux(p, x): return rs_puiseux(rs_atan, p, x, prec) R = p.ring const = 0 if _has_constant_term(p, x): zm = R.zero_monom c = p[zm] if R.domain is EX: c_expr = c.as_expr() const = atan(c_expr) elif isinstance(c, PolyElement): try: c_expr = c.as_expr() const = R(atan(c_expr)) except ValueError: raise DomainError("The given series can't be expanded in " "this domain.") else: try: const = R(atan(c)) except ValueError: raise DomainError("The given series can't be expanded in " "this domain.") # Instead of using a closed form formula, we differentiate atan(p) to get # `1/(1+p**2) * dp`, whose series expansion is much easier to calculate. # Finally we integrate to get back atan dp = p.diff(x) p1 = rs_square(p, x, prec) + R(1) p1 = rs_series_inversion(p1, x, prec - 1) p1 = rs_mul(dp, p1, x, prec - 1) return rs_integrate(p1, x) + const def rs_asin(p, x, prec): """ Arcsine of a series Return the series expansion of the asin of ``p``, about 0. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import rs_asin >>> R, x, y = ring('x, y', QQ) >>> rs_asin(x, x, 8) 5/112*x**7 + 3/40*x**5 + 1/6*x**3 + x See Also ======== asin """ if rs_is_puiseux(p, x): return rs_puiseux(rs_asin, p, x, prec) if _has_constant_term(p, x): raise NotImplementedError("Polynomial must not have constant term in " "series variables") R = p.ring if x in R.gens: # get a good value if len(p) > 20: dp = rs_diff(p, x) p1 = 1 - rs_square(p, x, prec - 1) p1 = rs_nth_root(p1, -2, x, prec - 1) p1 = rs_mul(dp, p1, x, prec - 1) return rs_integrate(p1, x) one = R(1) c = [0, one, 0] for k in range(3, prec, 2): c.append((k - 2)**2*c[-2]/(k*(k - 1))) c.append(0) return rs_series_from_list(p, c, x, prec) else: raise NotImplementedError def _tan1(p, x, prec): r""" Helper function of `rs\_tan`. Return the series expansion of tan of a univariate series using Newton's method. It takes advantage of the fact that series expansion of atan is easier than that of tan. Consider `f(x) = y - atan(x)` Let r be a root of f(x) found using Newton's method. Then `f(r) = 0` Or `y = atan(x)` where `x = tan(y)` as required. """ R = p.ring p1 = R(0) for precx in _giant_steps(prec): tmp = p - rs_atan(p1, x, precx) tmp = rs_mul(tmp, 1 + rs_square(p1, x, precx), x, precx) p1 += tmp return p1 def rs_tan(p, x, prec): """ Tangent of a series. Return the series expansion of the tan of ``p``, about 0. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import rs_tan >>> R, x, y = ring('x, y', QQ) >>> rs_tan(x + x*y, x, 4) 1/3*x**3*y**3 + x**3*y**2 + x**3*y + 1/3*x**3 + x*y + x See Also ======== _tan1, tan """ if rs_is_puiseux(p, x): r = rs_puiseux(rs_tan, p, x, prec) return r R = p.ring const = 0 c = _get_constant_term(p, x) if c: if R.domain is EX: c_expr = c.as_expr() const = tan(c_expr) elif isinstance(c, PolyElement): try: c_expr = c.as_expr() const = R(tan(c_expr)) except ValueError: R = R.add_gens([tan(c_expr, )]) p = p.set_ring(R) x = x.set_ring(R) c = c.set_ring(R) const = R(tan(c_expr)) else: try: const = R(tan(c)) except ValueError: raise DomainError("The given series can't be expanded in " "this domain.") p1 = p - c # Makes use of sympy functions to evaluate the values of the cos/sin # of the constant term. t2 = rs_tan(p1, x, prec) t = rs_series_inversion(1 - const*t2, x, prec) return rs_mul(const + t2, t, x, prec) if R.ngens == 1: return _tan1(p, x, prec) else: return rs_fun(p, rs_tan, x, prec) def rs_cot(p, x, prec): """ Cotangent of a series Return the series expansion of the cot of ``p``, about 0. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import rs_cot >>> R, x, y = ring('x, y', QQ) >>> rs_cot(x, x, 6) -2/945*x**5 - 1/45*x**3 - 1/3*x + x**(-1) See Also ======== cot """ # It can not handle series like `p = x + x*y` where the coefficient of the # linear term in the series variable is symbolic. if rs_is_puiseux(p, x): r = rs_puiseux(rs_cot, p, x, prec) return r i, m = _check_series_var(p, x, 'cot') prec1 = prec + 2*m c, s = rs_cos_sin(p, x, prec1) s = mul_xin(s, i, -m) s = rs_series_inversion(s, x, prec1) res = rs_mul(c, s, x, prec1) res = mul_xin(res, i, -m) res = rs_trunc(res, x, prec) return res def rs_sin(p, x, prec): """ Sine of a series Return the series expansion of the sin of ``p``, about 0. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import rs_sin >>> R, x, y = ring('x, y', QQ) >>> rs_sin(x + x*y, x, 4) -1/6*x**3*y**3 - 1/2*x**3*y**2 - 1/2*x**3*y - 1/6*x**3 + x*y + x >>> rs_sin(x**QQ(3, 2) + x*y**QQ(7, 5), x, 4) -1/2*x**(7/2)*y**(14/5) - 1/6*x**3*y**(21/5) + x**(3/2) + x*y**(7/5) See Also ======== sin """ if rs_is_puiseux(p, x): return rs_puiseux(rs_sin, p, x, prec) R = x.ring if not p: return R(0) c = _get_constant_term(p, x) if c: if R.domain is EX: c_expr = c.as_expr() t1, t2 = sin(c_expr), cos(c_expr) elif isinstance(c, PolyElement): try: c_expr = c.as_expr() t1, t2 = R(sin(c_expr)), R(cos(c_expr)) except ValueError: R = R.add_gens([sin(c_expr), cos(c_expr)]) p = p.set_ring(R) x = x.set_ring(R) c = c.set_ring(R) t1, t2 = R(sin(c_expr)), R(cos(c_expr)) else: try: t1, t2 = R(sin(c)), R(cos(c)) except ValueError: raise DomainError("The given series can't be expanded in " "this domain.") p1 = p - c # Makes use of sympy cos, sin functions to evaluate the values of the # cos/sin of the constant term. return rs_sin(p1, x, prec)*t2 + rs_cos(p1, x, prec)*t1 # Series is calculated in terms of tan as its evaluation is fast. if len(p) > 20 and R.ngens == 1: t = rs_tan(p/2, x, prec) t2 = rs_square(t, x, prec) p1 = rs_series_inversion(1 + t2, x, prec) return rs_mul(p1, 2*t, x, prec) one = R(1) n = 1 c = [0] for k in range(2, prec + 2, 2): c.append(one/n) c.append(0) n *= -k*(k + 1) return rs_series_from_list(p, c, x, prec) def rs_cos(p, x, prec): """ Cosine of a series Return the series expansion of the cos of ``p``, about 0. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import rs_cos >>> R, x, y = ring('x, y', QQ) >>> rs_cos(x + x*y, x, 4) -1/2*x**2*y**2 - x**2*y - 1/2*x**2 + 1 >>> rs_cos(x + x*y, x, 4)/x**QQ(7, 5) -1/2*x**(3/5)*y**2 - x**(3/5)*y - 1/2*x**(3/5) + x**(-7/5) See Also ======== cos """ if rs_is_puiseux(p, x): return rs_puiseux(rs_cos, p, x, prec) R = p.ring c = _get_constant_term(p, x) if c: if R.domain is EX: c_expr = c.as_expr() t1, t2 = sin(c_expr), cos(c_expr) elif isinstance(c, PolyElement): try: c_expr = c.as_expr() t1, t2 = R(sin(c_expr)), R(cos(c_expr)) except ValueError: R = R.add_gens([sin(c_expr), cos(c_expr)]) p = p.set_ring(R) x = x.set_ring(R) c = c.set_ring(R) else: try: t1, t2 = R(sin(c)), R(cos(c)) except ValueError: raise DomainError("The given series can't be expanded in " "this domain.") p1 = p - c # Makes use of sympy cos, sin functions to evaluate the values of the # cos/sin of the constant term. p_cos = rs_cos(p1, x, prec) p_sin = rs_sin(p1, x, prec) R = R.compose(p_cos.ring).compose(p_sin.ring) p_cos.set_ring(R) p_sin.set_ring(R) t1, t2 = R(sin(c_expr)), R(cos(c_expr)) return p_cos*t2 - p_sin*t1 # Series is calculated in terms of tan as its evaluation is fast. if len(p) > 20 and R.ngens == 1: t = rs_tan(p/2, x, prec) t2 = rs_square(t, x, prec) p1 = rs_series_inversion(1+t2, x, prec) return rs_mul(p1, 1 - t2, x, prec) one = R(1) n = 1 c = [] for k in range(2, prec + 2, 2): c.append(one/n) c.append(0) n *= -k*(k - 1) return rs_series_from_list(p, c, x, prec) def rs_cos_sin(p, x, prec): r""" Return the tuple `(rs\_cos(p, x, prec)`, `rs\_sin(p, x, prec))`. Is faster than calling rs_cos and rs_sin separately """ if rs_is_puiseux(p, x): return rs_puiseux(rs_cos_sin, p, x, prec) t = rs_tan(p/2, x, prec) t2 = rs_square(t, x, prec) p1 = rs_series_inversion(1 + t2, x, prec) return (rs_mul(p1, 1 - t2, x, prec), rs_mul(p1, 2*t, x, prec)) def _atanh(p, x, prec): """ Expansion using formula Faster for very small and univariate series """ R = p.ring one = R(1) c = [one] p2 = rs_square(p, x, prec) for k in range(1, prec): c.append(one/(2*k + 1)) s = rs_series_from_list(p2, c, x, prec) s = rs_mul(s, p, x, prec) return s def rs_atanh(p, x, prec): """ Hyperbolic arctangent of a series Return the series expansion of the atanh of ``p``, about 0. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import rs_atanh >>> R, x, y = ring('x, y', QQ) >>> rs_atanh(x + x*y, x, 4) 1/3*x**3*y**3 + x**3*y**2 + x**3*y + 1/3*x**3 + x*y + x See Also ======== atanh """ if rs_is_puiseux(p, x): return rs_puiseux(rs_atanh, p, x, prec) R = p.ring const = 0 if _has_constant_term(p, x): zm = R.zero_monom c = p[zm] if R.domain is EX: c_expr = c.as_expr() const = atanh(c_expr) elif isinstance(c, PolyElement): try: c_expr = c.as_expr() const = R(atanh(c_expr)) except ValueError: raise DomainError("The given series can't be expanded in " "this domain.") else: try: const = R(atanh(c)) except ValueError: raise DomainError("The given series can't be expanded in " "this domain.") # Instead of using a closed form formula, we differentiate atanh(p) to get # `1/(1-p**2) * dp`, whose series expansion is much easier to calculate. # Finally we integrate to get back atanh dp = rs_diff(p, x) p1 = - rs_square(p, x, prec) + 1 p1 = rs_series_inversion(p1, x, prec - 1) p1 = rs_mul(dp, p1, x, prec - 1) return rs_integrate(p1, x) + const def rs_sinh(p, x, prec): """ Hyperbolic sine of a series Return the series expansion of the sinh of ``p``, about 0. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import rs_sinh >>> R, x, y = ring('x, y', QQ) >>> rs_sinh(x + x*y, x, 4) 1/6*x**3*y**3 + 1/2*x**3*y**2 + 1/2*x**3*y + 1/6*x**3 + x*y + x See Also ======== sinh """ if rs_is_puiseux(p, x): return rs_puiseux(rs_sinh, p, x, prec) t = rs_exp(p, x, prec) t1 = rs_series_inversion(t, x, prec) return (t - t1)/2 def rs_cosh(p, x, prec): """ Hyperbolic cosine of a series Return the series expansion of the cosh of ``p``, about 0. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import rs_cosh >>> R, x, y = ring('x, y', QQ) >>> rs_cosh(x + x*y, x, 4) 1/2*x**2*y**2 + x**2*y + 1/2*x**2 + 1 See Also ======== cosh """ if rs_is_puiseux(p, x): return rs_puiseux(rs_cosh, p, x, prec) t = rs_exp(p, x, prec) t1 = rs_series_inversion(t, x, prec) return (t + t1)/2 def _tanh(p, x, prec): r""" Helper function of `rs\_tanh` Return the series expansion of tanh of a univariate series using Newton's method. It takes advantage of the fact that series expansion of atanh is easier than that of tanh. See Also ======== _tanh """ R = p.ring p1 = R(0) for precx in _giant_steps(prec): tmp = p - rs_atanh(p1, x, precx) tmp = rs_mul(tmp, 1 - rs_square(p1, x, prec), x, precx) p1 += tmp return p1 def rs_tanh(p, x, prec): """ Hyperbolic tangent of a series Return the series expansion of the tanh of ``p``, about 0. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import rs_tanh >>> R, x, y = ring('x, y', QQ) >>> rs_tanh(x + x*y, x, 4) -1/3*x**3*y**3 - x**3*y**2 - x**3*y - 1/3*x**3 + x*y + x See Also ======== tanh """ if rs_is_puiseux(p, x): return rs_puiseux(rs_tanh, p, x, prec) R = p.ring const = 0 if _has_constant_term(p, x): zm = R.zero_monom c = p[zm] if R.domain is EX: c_expr = c.as_expr() const = tanh(c_expr) elif isinstance(c, PolyElement): try: c_expr = c.as_expr() const = R(tanh(c_expr)) except ValueError: raise DomainError("The given series can't be expanded in " "this domain.") else: try: const = R(tanh(c)) except ValueError: raise DomainError("The given series can't be expanded in " "this domain.") p1 = p - c t1 = rs_tanh(p1, x, prec) t = rs_series_inversion(1 + const*t1, x, prec) return rs_mul(const + t1, t, x, prec) if R.ngens == 1: return _tanh(p, x, prec) else: return rs_fun(p, _tanh, x, prec) def rs_newton(p, x, prec): """ Compute the truncated Newton sum of the polynomial ``p`` Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import rs_newton >>> R, x = ring('x', QQ) >>> p = x**2 - 2 >>> rs_newton(p, x, 5) 8*x**4 + 4*x**2 + 2 """ deg = p.degree() p1 = _invert_monoms(p) p2 = rs_series_inversion(p1, x, prec) p3 = rs_mul(p1.diff(x), p2, x, prec) res = deg - p3*x return res def rs_hadamard_exp(p1, inverse=False): """ Return ``sum f_i/i!*x**i`` from ``sum f_i*x**i``, where ``x`` is the first variable. If ``invers=True`` return ``sum f_i*i!*x**i`` Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import rs_hadamard_exp >>> R, x = ring('x', QQ) >>> p = 1 + x + x**2 + x**3 >>> rs_hadamard_exp(p) 1/6*x**3 + 1/2*x**2 + x + 1 """ R = p1.ring if R.domain != QQ: raise NotImplementedError p = R.zero if not inverse: for exp1, v1 in p1.items(): p[exp1] = v1/int(ifac(exp1[0])) else: for exp1, v1 in p1.items(): p[exp1] = v1*int(ifac(exp1[0])) return p def rs_compose_add(p1, p2): """ compute the composed sum ``prod(p2(x - beta) for beta root of p1)`` Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import rs_compose_add >>> R, x = ring('x', QQ) >>> f = x**2 - 2 >>> g = x**2 - 3 >>> rs_compose_add(f, g) x**4 - 10*x**2 + 1 References ========== .. [1] A. Bostan, P. Flajolet, B. Salvy and E. Schost "Fast Computation with Two Algebraic Numbers", (2002) Research Report 4579, Institut National de Recherche en Informatique et en Automatique """ R = p1.ring x = R.gens[0] prec = p1.degree() * p2.degree() + 1 np1 = rs_newton(p1, x, prec) np1e = rs_hadamard_exp(np1) np2 = rs_newton(p2, x, prec) np2e = rs_hadamard_exp(np2) np3e = rs_mul(np1e, np2e, x, prec) np3 = rs_hadamard_exp(np3e, True) np3a = (np3[(0,)] - np3)/x q = rs_integrate(np3a, x) q = rs_exp(q, x, prec) q = _invert_monoms(q) q = q.primitive()[1] dp = p1.degree() * p2.degree() - q.degree() # `dp` is the multiplicity of the zeroes of the resultant; # these zeroes are missed in this computation so they are put here. # if p1 and p2 are monic irreducible polynomials, # there are zeroes in the resultant # if and only if p1 = p2 ; in fact in that case p1 and p2 have a # root in common, so gcd(p1, p2) != 1; being p1 and p2 irreducible # this means p1 = p2 if dp: q = q*x**dp return q _convert_func = { 'sin': 'rs_sin', 'cos': 'rs_cos', 'exp': 'rs_exp', 'tan': 'rs_tan', 'log': 'rs_log' } def rs_min_pow(expr, series_rs, a): """Find the minimum power of `a` in the series expansion of expr""" series = 0 n = 2 while series == 0: series = _rs_series(expr, series_rs, a, n) n *= 2 R = series.ring a = R(a) i = R.gens.index(a) return min(series, key=lambda t: t[i])[i] def _rs_series(expr, series_rs, a, prec): # TODO Use _parallel_dict_from_expr instead of sring as sring is # inefficient. For details, read the todo in sring. args = expr.args R = series_rs.ring # expr does not contain any function to be expanded if not any(arg.has(Function) for arg in args) and not expr.is_Function: return series_rs if not expr.has(a): return series_rs elif expr.is_Function: arg = args[0] if len(args) > 1: raise NotImplementedError R1, series = sring(arg, domain=QQ, expand=False, series=True) series_inner = _rs_series(arg, series, a, prec) # Why do we need to compose these three rings? # # We want to use a simple domain (like ``QQ`` or ``RR``) but they don't # support symbolic coefficients. We need a ring that for example lets # us have `sin(1)` and `cos(1)` as coefficients if we are expanding # `sin(x + 1)`. The ``EX`` domain allows all symbolic coefficients, but # that makes it very complex and hence slow. # # To solve this problem, we add only those symbolic elements as # generators to our ring, that we need. Here, series_inner might # involve terms like `sin(4)`, `exp(a)`, etc, which are not there in # R1 or R. Hence, we compose these three rings to create one that has # the generators of all three. R = R.compose(R1).compose(series_inner.ring) series_inner = series_inner.set_ring(R) series = eval(_convert_func[str(expr.func)])(series_inner, R(a), prec) return series elif expr.is_Mul: n = len(args) for arg in args: # XXX Looks redundant if not arg.is_Number: R1, _ = sring(arg, expand=False, series=True) R = R.compose(R1) min_pows = list(map(rs_min_pow, args, [R(arg) for arg in args], [a]*len(args))) sum_pows = sum(min_pows) series = R(1) for i in range(n): _series = _rs_series(args[i], R(args[i]), a, prec - sum_pows + min_pows[i]) R = R.compose(_series.ring) _series = _series.set_ring(R) series = series.set_ring(R) series *= _series series = rs_trunc(series, R(a), prec) return series elif expr.is_Add: n = len(args) series = R(0) for i in range(n): _series = _rs_series(args[i], R(args[i]), a, prec) R = R.compose(_series.ring) _series = _series.set_ring(R) series = series.set_ring(R) series += _series return series elif expr.is_Pow: R1, _ = sring(expr.base, domain=QQ, expand=False, series=True) R = R.compose(R1) series_inner = _rs_series(expr.base, R(expr.base), a, prec) return rs_pow(series_inner, expr.exp, series_inner.ring(a), prec) # The `is_constant` method is buggy hence we check it at the end. # See issue #9786 for details. elif isinstance(expr, Expr) and expr.is_constant(): return sring(expr, domain=QQ, expand=False, series=True)[1] else: raise NotImplementedError def rs_series(expr, a, prec): """Return the series expansion of an expression about 0. Parameters ========== expr : :class:`Expr` a : :class:`Symbol` with respect to which expr is to be expanded prec : order of the series expansion Currently supports multivariate Taylor series expansion. This is much faster that Sympy's series method as it uses sparse polynomial operations. It automatically creates the simplest ring required to represent the series expansion through repeated calls to sring. Examples ======== >>> from sympy.polys.ring_series import rs_series >>> from sympy.functions import sin, cos, exp, tan >>> from sympy.core import symbols >>> from sympy.polys.domains import QQ >>> a, b, c = symbols('a, b, c') >>> rs_series(sin(a) + exp(a), a, 5) 1/24*a**4 + 1/2*a**2 + 2*a + 1 >>> series = rs_series(tan(a + b)*cos(a + c), a, 2) >>> series.as_expr() -a*sin(c)*tan(b) + a*cos(c)*tan(b)**2 + a*cos(c) + cos(c)*tan(b) >>> series = rs_series(exp(a**QQ(1,3) + a**QQ(2, 5)), a, 1) >>> series.as_expr() a**(11/15) + a**(4/5)/2 + a**(2/5) + a**(2/3)/2 + a**(1/3) + 1 """ R, series = sring(expr, domain=QQ, expand=False, series=True) if a not in R.symbols: R = R.add_gens([a, ]) series = series.set_ring(R) series = _rs_series(expr, series, a, prec) R = series.ring gen = R(a) prec_got = series.degree(gen) + 1 if prec_got >= prec: return rs_trunc(series, gen, prec) else: # increase the requested number of terms to get the desired # number keep increasing (up to 9) until the received order # is different than the original order and then predict how # many additional terms are needed for more in range(1, 9): p1 = _rs_series(expr, series, a, prec=prec + more) gen = gen.set_ring(p1.ring) new_prec = p1.degree(gen) + 1 if new_prec != prec_got: prec_do = ceiling(prec + (prec - prec_got)*more/(new_prec - prec_got)) p1 = _rs_series(expr, series, a, prec=prec_do) while p1.degree(gen) + 1 < prec: p1 = _rs_series(expr, series, a, prec=prec_do) gen = gen.set_ring(p1.ring) prec_do *= 2 break else: break else: raise ValueError('Could not calculate %s terms for %s' % (str(prec), expr)) return rs_trunc(p1, gen, prec)
aa7eb0fba0ad6a455fdb18165f4d336d6742cc96b1c2d301ca1ad6c5a7bb07e7
"""Implementation of RootOf class and related tools. """ from __future__ import print_function, division from sympy.core import (S, Expr, Integer, Float, I, oo, Add, Lambda, symbols, sympify, Rational, Dummy) from sympy.core.cache import cacheit from sympy.core.compatibility import range, ordered from sympy.core.function import AppliedUndef from sympy.polys.domains import QQ from sympy.polys.polyerrors import ( MultivariatePolynomialError, GeneratorsNeeded, PolynomialError, DomainError) from sympy.polys.polyfuncs import symmetrize, viete from sympy.polys.polyroots import ( roots_linear, roots_quadratic, roots_binomial, preprocess_roots, roots) from sympy.polys.polytools import Poly, PurePoly, factor from sympy.polys.rationaltools import together from sympy.polys.rootisolation import ( dup_isolate_complex_roots_sqf, dup_isolate_real_roots_sqf) from sympy.utilities import lambdify, public, sift from mpmath import mpf, mpc, findroot, workprec from mpmath.libmp.libmpf import dps_to_prec, prec_to_dps __all__ = ['CRootOf'] class _pure_key_dict(object): """A minimal dictionary that makes sure that the key is a univariate PurePoly instance. Examples ======== Only the following actions are guaranteed: >>> from sympy.polys.rootoftools import _pure_key_dict >>> from sympy import S, PurePoly >>> from sympy.abc import x, y 1) creation >>> P = _pure_key_dict() 2) assignment for a PurePoly or univariate polynomial >>> P[x] = 1 >>> P[PurePoly(x - y, x)] = 2 3) retrieval based on PurePoly key comparison (use this instead of the get method) >>> P[y] 1 4) KeyError when trying to retrieve a nonexisting key >>> P[y + 1] Traceback (most recent call last): ... KeyError: PurePoly(y + 1, y, domain='ZZ') 5) ability to query with ``in`` >>> x + 1 in P False NOTE: this is a *not* a dictionary. It is a very basic object for internal use that makes sure to always address its cache via PurePoly instances. It does not, for example, implement ``get`` or ``setdefault``. """ def __init__(self): self._dict = {} def __getitem__(self, k): if not isinstance(k, PurePoly): if not (isinstance(k, Expr) and len(k.free_symbols) == 1): raise KeyError k = PurePoly(k, expand=False) return self._dict[k] def __setitem__(self, k, v): if not isinstance(k, PurePoly): if not (isinstance(k, Expr) and len(k.free_symbols) == 1): raise ValueError('expecting univariate expression') k = PurePoly(k, expand=False) self._dict[k] = v def __contains__(self, k): try: self[k] return True except KeyError: return False _reals_cache = _pure_key_dict() _complexes_cache = _pure_key_dict() def _pure_factors(poly): _, factors = poly.factor_list() return [(PurePoly(f, expand=False), m) for f, m in factors] def _imag_count_of_factor(f): """Return the number of imaginary roots for irreducible univariate polynomial ``f``. """ terms = [(i, j) for (i,), j in f.terms()] if any(i % 2 for i, j in terms): return 0 # update signs even = [(i, I**i*j) for i, j in terms] even = Poly.from_dict(dict(even), Dummy('x')) return int(even.count_roots(-oo, oo)) @public def rootof(f, x, index=None, radicals=True, expand=True): """An indexed root of a univariate polynomial. Returns either a ``ComplexRootOf`` object or an explicit expression involving radicals. Parameters ========== f : Expr Univariate polynomial. x : Symbol, optional Generator for ``f``. index : int or Integer radicals : bool Return a radical expression if possible. expand : bool Expand ``f``. """ return CRootOf(f, x, index=index, radicals=radicals, expand=expand) @public class RootOf(Expr): """Represents a root of a univariate polynomial. Base class for roots of different kinds of polynomials. Only complex roots are currently supported. """ __slots__ = ['poly'] def __new__(cls, f, x, index=None, radicals=True, expand=True): """Construct a new ``CRootOf`` object for ``k``-th root of ``f``.""" return rootof(f, x, index=index, radicals=radicals, expand=expand) @public class ComplexRootOf(RootOf): """Represents an indexed complex root of a polynomial. Roots of a univariate polynomial separated into disjoint real or complex intervals and indexed in a fixed order. Currently only rational coefficients are allowed. Can be imported as ``CRootOf``. To avoid confusion, the generator must be a Symbol. Examples ======== >>> from sympy import CRootOf, rootof >>> from sympy.abc import x CRootOf is a way to reference a particular root of a polynomial. If there is a rational root, it will be returned: >>> CRootOf.clear_cache() # for doctest reproducibility >>> CRootOf(x**2 - 4, 0) -2 Whether roots involving radicals are returned or not depends on whether the ``radicals`` flag is true (which is set to True with rootof): >>> CRootOf(x**2 - 3, 0) CRootOf(x**2 - 3, 0) >>> CRootOf(x**2 - 3, 0, radicals=True) -sqrt(3) >>> rootof(x**2 - 3, 0) -sqrt(3) The following cannot be expressed in terms of radicals: >>> r = rootof(4*x**5 + 16*x**3 + 12*x**2 + 7, 0); r CRootOf(4*x**5 + 16*x**3 + 12*x**2 + 7, 0) The root bounds can be seen, however, and they are used by the evaluation methods to get numerical approximations for the root. >>> interval = r._get_interval(); interval (-1, 0) >>> r.evalf(2) -0.98 The evalf method refines the width of the root bounds until it guarantees that any decimal approximation within those bounds will satisfy the desired precision. It then stores the refined interval so subsequent requests at or below the requested precision will not have to recompute the root bounds and will return very quickly. Before evaluation above, the interval was >>> interval (-1, 0) After evaluation it is now >>. r._get_interval() (-165/169, -206/211) To reset all intervals for a given polynomial, the `_reset` method can be called from any CRootOf instance of the polynomial: >>> r._reset() >>> r._get_interval() (-1, 0) The `eval_approx` method will also find the root to a given precision but the interval is not modified unless the search for the root fails to converge within the root bounds. And the secant method is used to find the root. (The ``evalf`` method uses bisection and will always update the interval.) >>> r.eval_approx(2) -0.98 The interval needed to be slightly updated to find that root: >>> r._get_interval() (-1, -1/2) The ``evalf_rational`` will compute a rational approximation of the root to the desired accuracy or precision. >>> r.eval_rational(n=2) -69629/71318 >>> t = CRootOf(x**3 + 10*x + 1, 1) >>> t.eval_rational(1e-1) 15/256 - 805*I/256 >>> t.eval_rational(1e-1, 1e-4) 3275/65536 - 414645*I/131072 >>> t.eval_rational(1e-4, 1e-4) 6545/131072 - 414645*I/131072 >>> t.eval_rational(n=2) 104755/2097152 - 6634255*I/2097152 Notes ===== Although a PurePoly can be constructed from a non-symbol generator RootOf instances of non-symbols are disallowed to avoid confusion over what root is being represented. >>> from sympy import exp, PurePoly >>> PurePoly(x) == PurePoly(exp(x)) True >>> CRootOf(x - 1, 0) 1 >>> CRootOf(exp(x) - 1, 0) # would correspond to x == 0 Traceback (most recent call last): ... sympy.polys.polyerrors.PolynomialError: generator must be a Symbol See Also ======== eval_approx eval_rational _eval_evalf """ __slots__ = ['index'] is_complex = True is_number = True def __new__(cls, f, x, index=None, radicals=False, expand=True): """ Construct an indexed complex root of a polynomial. See ``rootof`` for the parameters. The default value of ``radicals`` is ``False`` to satisfy ``eval(srepr(expr) == expr``. """ x = sympify(x) if index is None and x.is_Integer: x, index = None, x else: index = sympify(index) if index is not None and index.is_Integer: index = int(index) else: raise ValueError("expected an integer root index, got %s" % index) poly = PurePoly(f, x, greedy=False, expand=expand) if not poly.is_univariate: raise PolynomialError("only univariate polynomials are allowed") if not poly.gen.is_Symbol: # PurePoly(sin(x) + 1) == PurePoly(x + 1) but the roots of # x for each are not the same: issue 8617 raise PolynomialError("generator must be a Symbol") degree = poly.degree() if degree <= 0: raise PolynomialError("can't construct CRootOf object for %s" % f) if index < -degree or index >= degree: raise IndexError("root index out of [%d, %d] range, got %d" % (-degree, degree - 1, index)) elif index < 0: index += degree dom = poly.get_domain() if not dom.is_Exact: poly = poly.to_exact() roots = cls._roots_trivial(poly, radicals) if roots is not None: return roots[index] coeff, poly = preprocess_roots(poly) dom = poly.get_domain() if not dom.is_ZZ: raise NotImplementedError("CRootOf is not supported over %s" % dom) root = cls._indexed_root(poly, index) return coeff * cls._postprocess_root(root, radicals) @classmethod def _new(cls, poly, index): """Construct new ``CRootOf`` object from raw data. """ obj = Expr.__new__(cls) obj.poly = PurePoly(poly) obj.index = index try: _reals_cache[obj.poly] = _reals_cache[poly] _complexes_cache[obj.poly] = _complexes_cache[poly] except KeyError: pass return obj def _hashable_content(self): return (self.poly, self.index) @property def expr(self): return self.poly.as_expr() @property def args(self): return (self.expr, Integer(self.index)) @property def free_symbols(self): # CRootOf currently only works with univariate expressions # whose poly attribute should be a PurePoly with no free # symbols return set() def _eval_is_real(self): """Return ``True`` if the root is real. """ return self.index < len(_reals_cache[self.poly]) def _eval_is_imaginary(self): """Return ``True`` if the root is imaginary. """ if self.index >= len(_reals_cache[self.poly]): ivl = self._get_interval() return ivl.ax*ivl.bx <= 0 # all others are on one side or the other return False # XXX is this necessary? @classmethod def real_roots(cls, poly, radicals=True): """Get real roots of a polynomial. """ return cls._get_roots("_real_roots", poly, radicals) @classmethod def all_roots(cls, poly, radicals=True): """Get real and complex roots of a polynomial. """ return cls._get_roots("_all_roots", poly, radicals) @classmethod def _get_reals_sqf(cls, currentfactor, use_cache=True): """Get real root isolating intervals for a square-free factor.""" if use_cache and currentfactor in _reals_cache: real_part = _reals_cache[currentfactor] else: _reals_cache[currentfactor] = real_part = \ dup_isolate_real_roots_sqf( currentfactor.rep.rep, currentfactor.rep.dom, blackbox=True) return real_part @classmethod def _get_complexes_sqf(cls, currentfactor, use_cache=True): """Get complex root isolating intervals for a square-free factor.""" if use_cache and currentfactor in _complexes_cache: complex_part = _complexes_cache[currentfactor] else: _complexes_cache[currentfactor] = complex_part = \ dup_isolate_complex_roots_sqf( currentfactor.rep.rep, currentfactor.rep.dom, blackbox=True) return complex_part @classmethod def _get_reals(cls, factors, use_cache=True): """Compute real root isolating intervals for a list of factors. """ reals = [] for currentfactor, k in factors: try: if not use_cache: raise KeyError r = _reals_cache[currentfactor] reals.extend([(i, currentfactor, k) for i in r]) except KeyError: real_part = cls._get_reals_sqf(currentfactor, use_cache) new = [(root, currentfactor, k) for root in real_part] reals.extend(new) reals = cls._reals_sorted(reals) return reals @classmethod def _get_complexes(cls, factors, use_cache=True): """Compute complex root isolating intervals for a list of factors. """ complexes = [] for currentfactor, k in ordered(factors): try: if not use_cache: raise KeyError c = _complexes_cache[currentfactor] complexes.extend([(i, currentfactor, k) for i in c]) except KeyError: complex_part = cls._get_complexes_sqf(currentfactor, use_cache) new = [(root, currentfactor, k) for root in complex_part] complexes.extend(new) complexes = cls._complexes_sorted(complexes) return complexes @classmethod def _reals_sorted(cls, reals): """Make real isolating intervals disjoint and sort roots. """ cache = {} for i, (u, f, k) in enumerate(reals): for j, (v, g, m) in enumerate(reals[i + 1:]): u, v = u.refine_disjoint(v) reals[i + j + 1] = (v, g, m) reals[i] = (u, f, k) reals = sorted(reals, key=lambda r: r[0].a) for root, currentfactor, _ in reals: if currentfactor in cache: cache[currentfactor].append(root) else: cache[currentfactor] = [root] for currentfactor, root in cache.items(): _reals_cache[currentfactor] = root return reals @classmethod def _refine_imaginary(cls, complexes): sifted = sift(complexes, lambda c: c[1]) complexes = [] for f in ordered(sifted): nimag = _imag_count_of_factor(f) if nimag == 0: # refine until xbounds are neg or pos for u, f, k in sifted[f]: while u.ax*u.bx <= 0: u = u._inner_refine() complexes.append((u, f, k)) else: # refine until all but nimag xbounds are neg or pos potential_imag = list(range(len(sifted[f]))) while True: assert len(potential_imag) > 1 for i in list(potential_imag): u, f, k = sifted[f][i] if u.ax*u.bx > 0: potential_imag.remove(i) elif u.ax != u.bx: u = u._inner_refine() sifted[f][i] = u, f, k if len(potential_imag) == nimag: break complexes.extend(sifted[f]) return complexes @classmethod def _refine_complexes(cls, complexes): """return complexes such that no bounding rectangles of non-conjugate roots would intersect. In addition, assure that neither ay nor by is 0 to guarantee that non-real roots are distinct from real roots in terms of the y-bounds. """ # get the intervals pairwise-disjoint. # If rectangles were drawn around the coordinates of the bounding # rectangles, no rectangles would intersect after this procedure. for i, (u, f, k) in enumerate(complexes): for j, (v, g, m) in enumerate(complexes[i + 1:]): u, v = u.refine_disjoint(v) complexes[i + j + 1] = (v, g, m) complexes[i] = (u, f, k) # refine until the x-bounds are unambiguously positive or negative # for non-imaginary roots complexes = cls._refine_imaginary(complexes) # make sure that all y bounds are off the real axis # and on the same side of the axis for i, (u, f, k) in enumerate(complexes): while u.ay*u.by <= 0: u = u.refine() complexes[i] = u, f, k return complexes @classmethod def _complexes_sorted(cls, complexes): """Make complex isolating intervals disjoint and sort roots. """ complexes = cls._refine_complexes(complexes) # XXX don't sort until you are sure that it is compatible # with the indexing method but assert that the desired state # is not broken C, F = 0, 1 # location of ComplexInterval and factor fs = set([i[F] for i in complexes]) for i in range(1, len(complexes)): if complexes[i][F] != complexes[i - 1][F]: # if this fails the factors of a root were not # contiguous because a discontinuity should only # happen once fs.remove(complexes[i - 1][F]) for i in range(len(complexes)): # negative im part (conj=True) comes before # positive im part (conj=False) assert complexes[i][C].conj is (i % 2 == 0) # update cache cache = {} # -- collate for root, currentfactor, _ in complexes: cache.setdefault(currentfactor, []).append(root) # -- store for currentfactor, root in cache.items(): _complexes_cache[currentfactor] = root return complexes @classmethod def _reals_index(cls, reals, index): """ Map initial real root index to an index in a factor where the root belongs. """ i = 0 for j, (_, currentfactor, k) in enumerate(reals): if index < i + k: poly, index = currentfactor, 0 for _, currentfactor, _ in reals[:j]: if currentfactor == poly: index += 1 return poly, index else: i += k @classmethod def _complexes_index(cls, complexes, index): """ Map initial complex root index to an index in a factor where the root belongs. """ i = 0 for j, (_, currentfactor, k) in enumerate(complexes): if index < i + k: poly, index = currentfactor, 0 for _, currentfactor, _ in complexes[:j]: if currentfactor == poly: index += 1 index += len(_reals_cache[poly]) return poly, index else: i += k @classmethod def _count_roots(cls, roots): """Count the number of real or complex roots with multiplicities.""" return sum([k for _, _, k in roots]) @classmethod def _indexed_root(cls, poly, index): """Get a root of a composite polynomial by index. """ factors = _pure_factors(poly) reals = cls._get_reals(factors) reals_count = cls._count_roots(reals) if index < reals_count: return cls._reals_index(reals, index) else: complexes = cls._get_complexes(factors) return cls._complexes_index(complexes, index - reals_count) @classmethod def _real_roots(cls, poly): """Get real roots of a composite polynomial. """ factors = _pure_factors(poly) reals = cls._get_reals(factors) reals_count = cls._count_roots(reals) roots = [] for index in range(0, reals_count): roots.append(cls._reals_index(reals, index)) return roots def _reset(self): self._all_roots(self.poly, use_cache=False) @classmethod def _all_roots(cls, poly, use_cache=True): """Get real and complex roots of a composite polynomial. """ factors = _pure_factors(poly) reals = cls._get_reals(factors, use_cache=use_cache) reals_count = cls._count_roots(reals) roots = [] for index in range(0, reals_count): roots.append(cls._reals_index(reals, index)) complexes = cls._get_complexes(factors, use_cache=use_cache) complexes_count = cls._count_roots(complexes) for index in range(0, complexes_count): roots.append(cls._complexes_index(complexes, index)) return roots @classmethod @cacheit def _roots_trivial(cls, poly, radicals): """Compute roots in linear, quadratic and binomial cases. """ if poly.degree() == 1: return roots_linear(poly) if not radicals: return None if poly.degree() == 2: return roots_quadratic(poly) elif poly.length() == 2 and poly.TC(): return roots_binomial(poly) else: return None @classmethod def _preprocess_roots(cls, poly): """Take heroic measures to make ``poly`` compatible with ``CRootOf``.""" dom = poly.get_domain() if not dom.is_Exact: poly = poly.to_exact() coeff, poly = preprocess_roots(poly) dom = poly.get_domain() if not dom.is_ZZ: raise NotImplementedError( "sorted roots not supported over %s" % dom) return coeff, poly @classmethod def _postprocess_root(cls, root, radicals): """Return the root if it is trivial or a ``CRootOf`` object. """ poly, index = root roots = cls._roots_trivial(poly, radicals) if roots is not None: return roots[index] else: return cls._new(poly, index) @classmethod def _get_roots(cls, method, poly, radicals): """Return postprocessed roots of specified kind. """ if not poly.is_univariate: raise PolynomialError("only univariate polynomials are allowed") coeff, poly = cls._preprocess_roots(poly) roots = [] for root in getattr(cls, method)(poly): roots.append(coeff*cls._postprocess_root(root, radicals)) return roots @classmethod def clear_cache(cls): """Reset cache for reals and complexes. The intervals used to approximate a root instance are updated as needed. When a request is made to see the intervals, the most current values are shown. `clear_cache` will reset all CRootOf instances back to their original state. See Also ======== _reset """ global _reals_cache, _complexes_cache _reals_cache = _pure_key_dict() _complexes_cache = _pure_key_dict() def _get_interval(self): """Internal function for retrieving isolation interval from cache. """ if self.is_real: return _reals_cache[self.poly][self.index] else: reals_count = len(_reals_cache[self.poly]) return _complexes_cache[self.poly][self.index - reals_count] def _set_interval(self, interval): """Internal function for updating isolation interval in cache. """ if self.is_real: _reals_cache[self.poly][self.index] = interval else: reals_count = len(_reals_cache[self.poly]) _complexes_cache[self.poly][self.index - reals_count] = interval def _eval_subs(self, old, new): # don't allow subs to change anything return self def _eval_conjugate(self): if self.is_real: return self expr, i = self.args return self.func(expr, i + (1 if self._get_interval().conj else -1)) def eval_approx(self, n): """Evaluate this complex root to the given precision. This uses secant method and root bounds are used to both generate an initial guess and to check that the root returned is valid. If ever the method converges outside the root bounds, the bounds will be made smaller and updated. """ prec = dps_to_prec(n) with workprec(prec): g = self.poly.gen if not g.is_Symbol: d = Dummy('x') if self.is_imaginary: d *= I func = lambdify(d, self.expr.subs(g, d)) else: expr = self.expr if self.is_imaginary: expr = self.expr.subs(g, I*g) func = lambdify(g, expr) interval = self._get_interval() while True: if self.is_real: a = mpf(str(interval.a)) b = mpf(str(interval.b)) if a == b: root = a break x0 = mpf(str(interval.center)) x1 = x0 + mpf(str(interval.dx))/4 elif self.is_imaginary: a = mpf(str(interval.ay)) b = mpf(str(interval.by)) if a == b: root = mpc(mpf('0'), a) break x0 = mpf(str(interval.center[1])) x1 = x0 + mpf(str(interval.dy))/4 else: ax = mpf(str(interval.ax)) bx = mpf(str(interval.bx)) ay = mpf(str(interval.ay)) by = mpf(str(interval.by)) if ax == bx and ay == by: root = mpc(ax, ay) break x0 = mpc(*map(str, interval.center)) x1 = x0 + mpc(*map(str, (interval.dx, interval.dy)))/4 try: # without a tolerance, this will return when (to within # the given precision) x_i == x_{i-1} root = findroot(func, (x0, x1)) # If the (real or complex) root is not in the 'interval', # then keep refining the interval. This happens if findroot # accidentally finds a different root outside of this # interval because our initial estimate 'x0' was not close # enough. It is also possible that the secant method will # get trapped by a max/min in the interval; the root # verification by findroot will raise a ValueError in this # case and the interval will then be tightened -- and # eventually the root will be found. # # It is also possible that findroot will not have any # successful iterations to process (in which case it # will fail to initialize a variable that is tested # after the iterations and raise an UnboundLocalError). if self.is_real or self.is_imaginary: if not bool(root.imag) == self.is_real and ( a <= root <= b): if self.is_imaginary: root = mpc(mpf('0'), root.real) break elif (ax <= root.real <= bx and ay <= root.imag <= by): break except (UnboundLocalError, ValueError): pass interval = interval.refine() # update the interval so we at least (for this precision or # less) don't have much work to do to recompute the root self._set_interval(interval) return (Float._new(root.real._mpf_, prec) + I*Float._new(root.imag._mpf_, prec)) def _eval_evalf(self, prec, **kwargs): """Evaluate this complex root to the given precision.""" # all kwargs are ignored return self.eval_rational(n=prec_to_dps(prec))._evalf(prec) def eval_rational(self, dx=None, dy=None, n=15): """ Return a Rational approximation of ``self`` that has real and imaginary component approximations that are within ``dx`` and ``dy`` of the true values, respectively. Alternatively, ``n`` digits of precision can be specified. The interval is refined with bisection and is sure to converge. The root bounds are updated when the refinement is complete so recalculation at the same or lesser precision will not have to repeat the refinement and should be much faster. The following example first obtains Rational approximation to 1e-8 accuracy for all roots of the 4-th order Legendre polynomial. Since the roots are all less than 1, this will ensure the decimal representation of the approximation will be correct (including rounding) to 6 digits: >>> from sympy import S, legendre_poly, Symbol >>> x = Symbol("x") >>> p = legendre_poly(4, x, polys=True) >>> r = p.real_roots()[-1] >>> r.eval_rational(10**-8).n(6) 0.861136 It is not necessary to a two-step calculation, however: the decimal representation can be computed directly: >>> r.evalf(17) 0.86113631159405258 """ dy = dy or dx if dx: rtol = None dx = dx if isinstance(dx, Rational) else Rational(str(dx)) dy = dy if isinstance(dy, Rational) else Rational(str(dy)) else: # 5 binary (or 2 decimal) digits are needed to ensure that # a given digit is correctly rounded # prec_to_dps(dps_to_prec(n) + 5) - n <= 2 (tested for # n in range(1000000) rtol = S(10)**-(n + 2) # +2 for guard digits interval = self._get_interval() while True: if self.is_real: if rtol: dx = abs(interval.center*rtol) interval = interval.refine_size(dx=dx) c = interval.center real = Rational(c) imag = S.Zero if not rtol or interval.dx < abs(c*rtol): break elif self.is_imaginary: if rtol: dy = abs(interval.center[1]*rtol) dx = 1 interval = interval.refine_size(dx=dx, dy=dy) c = interval.center[1] imag = Rational(c) real = S.Zero if not rtol or interval.dy < abs(c*rtol): break else: if rtol: dx = abs(interval.center[0]*rtol) dy = abs(interval.center[1]*rtol) interval = interval.refine_size(dx, dy) c = interval.center real, imag = map(Rational, c) if not rtol or ( interval.dx < abs(c[0]*rtol) and interval.dy < abs(c[1]*rtol)): break # update the interval so we at least (for this precision or # less) don't have much work to do to recompute the root self._set_interval(interval) return real + I*imag def _eval_Eq(self, other): # CRootOf represents a Root, so if other is that root, it should set # the expression to zero *and* it should be in the interval of the # CRootOf instance. It must also be a number that agrees with the # is_real value of the CRootOf instance. if type(self) == type(other): return sympify(self == other) if not other.is_number: return None if not other.is_finite: return S.false z = self.expr.subs(self.expr.free_symbols.pop(), other).is_zero if z is False: # all roots will make z True but we don't know # whether this is the right root if z is True return S.false o = other.is_real, other.is_imaginary s = self.is_real, self.is_imaginary assert None not in s # this is part of initial refinement if o != s and None not in o: return S.false re, im = other.as_real_imag() if self.is_real: if im: return S.false i = self._get_interval() a, b = [Rational(str(_)) for _ in (i.a, i.b)] return sympify(a <= other and other <= b) i = self._get_interval() r1, r2, i1, i2 = [Rational(str(j)) for j in ( i.ax, i.bx, i.ay, i.by)] return sympify(( r1 <= re and re <= r2) and ( i1 <= im and im <= i2)) CRootOf = ComplexRootOf @public class RootSum(Expr): """Represents a sum of all roots of a univariate polynomial. """ __slots__ = ['poly', 'fun', 'auto'] def __new__(cls, expr, func=None, x=None, auto=True, quadratic=False): """Construct a new ``RootSum`` instance of roots of a polynomial.""" coeff, poly = cls._transform(expr, x) if not poly.is_univariate: raise MultivariatePolynomialError( "only univariate polynomials are allowed") if func is None: func = Lambda(poly.gen, poly.gen) else: is_func = getattr(func, 'is_Function', False) if is_func and 1 in func.nargs: if not isinstance(func, Lambda): func = Lambda(poly.gen, func(poly.gen)) else: raise ValueError( "expected a univariate function, got %s" % func) var, expr = func.variables[0], func.expr if coeff is not S.One: expr = expr.subs(var, coeff*var) deg = poly.degree() if not expr.has(var): return deg*expr if expr.is_Add: add_const, expr = expr.as_independent(var) else: add_const = S.Zero if expr.is_Mul: mul_const, expr = expr.as_independent(var) else: mul_const = S.One func = Lambda(var, expr) rational = cls._is_func_rational(poly, func) factors, terms = _pure_factors(poly), [] for poly, k in factors: if poly.is_linear: term = func(roots_linear(poly)[0]) elif quadratic and poly.is_quadratic: term = sum(map(func, roots_quadratic(poly))) else: if not rational or not auto: term = cls._new(poly, func, auto) else: term = cls._rational_case(poly, func) terms.append(k*term) return mul_const*Add(*terms) + deg*add_const @classmethod def _new(cls, poly, func, auto=True): """Construct new raw ``RootSum`` instance. """ obj = Expr.__new__(cls) obj.poly = poly obj.fun = func obj.auto = auto return obj @classmethod def new(cls, poly, func, auto=True): """Construct new ``RootSum`` instance. """ if not func.expr.has(*func.variables): return func.expr rational = cls._is_func_rational(poly, func) if not rational or not auto: return cls._new(poly, func, auto) else: return cls._rational_case(poly, func) @classmethod def _transform(cls, expr, x): """Transform an expression to a polynomial. """ poly = PurePoly(expr, x, greedy=False) return preprocess_roots(poly) @classmethod def _is_func_rational(cls, poly, func): """Check if a lambda is a rational function. """ var, expr = func.variables[0], func.expr return expr.is_rational_function(var) @classmethod def _rational_case(cls, poly, func): """Handle the rational function case. """ roots = symbols('r:%d' % poly.degree()) var, expr = func.variables[0], func.expr f = sum(expr.subs(var, r) for r in roots) p, q = together(f).as_numer_denom() domain = QQ[roots] p = p.expand() q = q.expand() try: p = Poly(p, domain=domain, expand=False) except GeneratorsNeeded: p, p_coeff = None, (p,) else: p_monom, p_coeff = zip(*p.terms()) try: q = Poly(q, domain=domain, expand=False) except GeneratorsNeeded: q, q_coeff = None, (q,) else: q_monom, q_coeff = zip(*q.terms()) coeffs, mapping = symmetrize(p_coeff + q_coeff, formal=True) formulas, values = viete(poly, roots), [] for (sym, _), (_, val) in zip(mapping, formulas): values.append((sym, val)) for i, (coeff, _) in enumerate(coeffs): coeffs[i] = coeff.subs(values) n = len(p_coeff) p_coeff = coeffs[:n] q_coeff = coeffs[n:] if p is not None: p = Poly(dict(zip(p_monom, p_coeff)), *p.gens).as_expr() else: (p,) = p_coeff if q is not None: q = Poly(dict(zip(q_monom, q_coeff)), *q.gens).as_expr() else: (q,) = q_coeff return factor(p/q) def _hashable_content(self): return (self.poly, self.fun) @property def expr(self): return self.poly.as_expr() @property def args(self): return (self.expr, self.fun, self.poly.gen) @property def free_symbols(self): return self.poly.free_symbols | self.fun.free_symbols @property def is_commutative(self): return True def doit(self, **hints): if not hints.get('roots', True): return self _roots = roots(self.poly, multiple=True) if len(_roots) < self.poly.degree(): return self else: return Add(*[self.fun(r) for r in _roots]) def _eval_evalf(self, prec): try: _roots = self.poly.nroots(n=prec_to_dps(prec)) except (DomainError, PolynomialError): return self else: return Add(*[self.fun(r) for r in _roots]) def _eval_derivative(self, x): var, expr = self.fun.args func = Lambda(var, expr.diff(x)) return self.new(self.poly, func, self.auto)
2f2768ac04d1017f76093520f71447202ed1df9278851887a3f441e23877d6a5
"""Square-free decomposition algorithms and related tools. """ from __future__ import print_function, division from sympy.polys.densearith import ( dup_neg, dmp_neg, dup_sub, dmp_sub, dup_mul, dup_quo, dmp_quo, dup_mul_ground, dmp_mul_ground) from sympy.polys.densebasic import ( dup_strip, dup_LC, dmp_ground_LC, dmp_zero_p, dmp_ground, dup_degree, dmp_degree, dmp_raise, dmp_inject, dup_convert) from sympy.polys.densetools import ( dup_diff, dmp_diff, dup_shift, dmp_compose, dup_monic, dmp_ground_monic, dup_primitive, dmp_ground_primitive) from sympy.polys.euclidtools import ( dup_inner_gcd, dmp_inner_gcd, dup_gcd, dmp_gcd, dmp_resultant) from sympy.polys.galoistools import ( gf_sqf_list, gf_sqf_part) from sympy.polys.polyerrors import ( MultivariatePolynomialError, DomainError) def dup_sqf_p(f, K): """ Return ``True`` if ``f`` is a square-free polynomial in ``K[x]``. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x = ring("x", ZZ) >>> R.dup_sqf_p(x**2 - 2*x + 1) False >>> R.dup_sqf_p(x**2 - 1) True """ if not f: return True else: return not dup_degree(dup_gcd(f, dup_diff(f, 1, K), K)) def dmp_sqf_p(f, u, K): """ Return ``True`` if ``f`` is a square-free polynomial in ``K[X]``. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x,y = ring("x,y", ZZ) >>> R.dmp_sqf_p(x**2 + 2*x*y + y**2) False >>> R.dmp_sqf_p(x**2 + y**2) True """ if dmp_zero_p(f, u): return True else: return not dmp_degree(dmp_gcd(f, dmp_diff(f, 1, u, K), u, K), u) def dup_sqf_norm(f, K): """ Square-free norm of ``f`` in ``K[x]``, useful over algebraic domains. Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and ``r(x) = Norm(g(x))`` is a square-free polynomial over K, where ``a`` is the algebraic extension of ``K``. Examples ======== >>> from sympy.polys import ring, QQ >>> from sympy import sqrt >>> K = QQ.algebraic_field(sqrt(3)) >>> R, x = ring("x", K) >>> _, X = ring("x", QQ) >>> s, f, r = R.dup_sqf_norm(x**2 - 2) >>> s == 1 True >>> f == x**2 + K([QQ(-2), QQ(0)])*x + 1 True >>> r == X**4 - 10*X**2 + 1 True """ if not K.is_Algebraic: raise DomainError("ground domain must be algebraic") s, g = 0, dmp_raise(K.mod.rep, 1, 0, K.dom) while True: h, _ = dmp_inject(f, 0, K, front=True) r = dmp_resultant(g, h, 1, K.dom) if dup_sqf_p(r, K.dom): break else: f, s = dup_shift(f, -K.unit, K), s + 1 return s, f, r def dmp_sqf_norm(f, u, K): """ Square-free norm of ``f`` in ``K[X]``, useful over algebraic domains. Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and ``r(x) = Norm(g(x))`` is a square-free polynomial over K, where ``a`` is the algebraic extension of ``K``. Examples ======== >>> from sympy.polys import ring, QQ >>> from sympy import I >>> K = QQ.algebraic_field(I) >>> R, x, y = ring("x,y", K) >>> _, X, Y = ring("x,y", QQ) >>> s, f, r = R.dmp_sqf_norm(x*y + y**2) >>> s == 1 True >>> f == x*y + y**2 + K([QQ(-1), QQ(0)])*y True >>> r == X**2*Y**2 + 2*X*Y**3 + Y**4 + Y**2 True """ if not u: return dup_sqf_norm(f, K) if not K.is_Algebraic: raise DomainError("ground domain must be algebraic") g = dmp_raise(K.mod.rep, u + 1, 0, K.dom) F = dmp_raise([K.one, -K.unit], u, 0, K) s = 0 while True: h, _ = dmp_inject(f, u, K, front=True) r = dmp_resultant(g, h, u + 1, K.dom) if dmp_sqf_p(r, u, K.dom): break else: f, s = dmp_compose(f, F, u, K), s + 1 return s, f, r def dmp_norm(f, u, K): """ Norm of ``f`` in ``K[X1, ..., Xn]``, often not square-free. """ if not K.is_Algebraic: raise DomainError("ground domain must be algebraic") g = dmp_raise(K.mod.rep, u + 1, 0, K.dom) h, _ = dmp_inject(f, u, K, front=True) return dmp_resultant(g, h, u + 1, K.dom) def dup_gf_sqf_part(f, K): """Compute square-free part of ``f`` in ``GF(p)[x]``. """ f = dup_convert(f, K, K.dom) g = gf_sqf_part(f, K.mod, K.dom) return dup_convert(g, K.dom, K) def dmp_gf_sqf_part(f, u, K): """Compute square-free part of ``f`` in ``GF(p)[X]``. """ raise NotImplementedError('multivariate polynomials over finite fields') def dup_sqf_part(f, K): """ Returns square-free part of a polynomial in ``K[x]``. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x = ring("x", ZZ) >>> R.dup_sqf_part(x**3 - 3*x - 2) x**2 - x - 2 """ if K.is_FiniteField: return dup_gf_sqf_part(f, K) if not f: return f if K.is_negative(dup_LC(f, K)): f = dup_neg(f, K) gcd = dup_gcd(f, dup_diff(f, 1, K), K) sqf = dup_quo(f, gcd, K) if K.is_Field: return dup_monic(sqf, K) else: return dup_primitive(sqf, K)[1] def dmp_sqf_part(f, u, K): """ Returns square-free part of a polynomial in ``K[X]``. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x,y = ring("x,y", ZZ) >>> R.dmp_sqf_part(x**3 + 2*x**2*y + x*y**2) x**2 + x*y """ if not u: return dup_sqf_part(f, K) if K.is_FiniteField: return dmp_gf_sqf_part(f, u, K) if dmp_zero_p(f, u): return f if K.is_negative(dmp_ground_LC(f, u, K)): f = dmp_neg(f, u, K) gcd = dmp_gcd(f, dmp_diff(f, 1, u, K), u, K) sqf = dmp_quo(f, gcd, u, K) if K.is_Field: return dmp_ground_monic(sqf, u, K) else: return dmp_ground_primitive(sqf, u, K)[1] def dup_gf_sqf_list(f, K, all=False): """Compute square-free decomposition of ``f`` in ``GF(p)[x]``. """ f = dup_convert(f, K, K.dom) coeff, factors = gf_sqf_list(f, K.mod, K.dom, all=all) for i, (f, k) in enumerate(factors): factors[i] = (dup_convert(f, K.dom, K), k) return K.convert(coeff, K.dom), factors def dmp_gf_sqf_list(f, u, K, all=False): """Compute square-free decomposition of ``f`` in ``GF(p)[X]``. """ raise NotImplementedError('multivariate polynomials over finite fields') def dup_sqf_list(f, K, all=False): """ Return square-free decomposition of a polynomial in ``K[x]``. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x = ring("x", ZZ) >>> f = 2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16 >>> R.dup_sqf_list(f) (2, [(x + 1, 2), (x + 2, 3)]) >>> R.dup_sqf_list(f, all=True) (2, [(1, 1), (x + 1, 2), (x + 2, 3)]) """ if K.is_FiniteField: return dup_gf_sqf_list(f, K, all=all) if K.is_Field: coeff = dup_LC(f, K) f = dup_monic(f, K) else: coeff, f = dup_primitive(f, K) if K.is_negative(dup_LC(f, K)): f = dup_neg(f, K) coeff = -coeff if dup_degree(f) <= 0: return coeff, [] result, i = [], 1 h = dup_diff(f, 1, K) g, p, q = dup_inner_gcd(f, h, K) while True: d = dup_diff(p, 1, K) h = dup_sub(q, d, K) if not h: result.append((p, i)) break g, p, q = dup_inner_gcd(p, h, K) if all or dup_degree(g) > 0: result.append((g, i)) i += 1 return coeff, result def dup_sqf_list_include(f, K, all=False): """ Return square-free decomposition of a polynomial in ``K[x]``. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x = ring("x", ZZ) >>> f = 2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16 >>> R.dup_sqf_list_include(f) [(2, 1), (x + 1, 2), (x + 2, 3)] >>> R.dup_sqf_list_include(f, all=True) [(2, 1), (x + 1, 2), (x + 2, 3)] """ coeff, factors = dup_sqf_list(f, K, all=all) if factors and factors[0][1] == 1: g = dup_mul_ground(factors[0][0], coeff, K) return [(g, 1)] + factors[1:] else: g = dup_strip([coeff]) return [(g, 1)] + factors def dmp_sqf_list(f, u, K, all=False): """ Return square-free decomposition of a polynomial in ``K[X]``. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x,y = ring("x,y", ZZ) >>> f = x**5 + 2*x**4*y + x**3*y**2 >>> R.dmp_sqf_list(f) (1, [(x + y, 2), (x, 3)]) >>> R.dmp_sqf_list(f, all=True) (1, [(1, 1), (x + y, 2), (x, 3)]) """ if not u: return dup_sqf_list(f, K, all=all) if K.is_FiniteField: return dmp_gf_sqf_list(f, u, K, all=all) if K.is_Field: coeff = dmp_ground_LC(f, u, K) f = dmp_ground_monic(f, u, K) else: coeff, f = dmp_ground_primitive(f, u, K) if K.is_negative(dmp_ground_LC(f, u, K)): f = dmp_neg(f, u, K) coeff = -coeff if dmp_degree(f, u) <= 0: return coeff, [] result, i = [], 1 h = dmp_diff(f, 1, u, K) g, p, q = dmp_inner_gcd(f, h, u, K) while True: d = dmp_diff(p, 1, u, K) h = dmp_sub(q, d, u, K) if dmp_zero_p(h, u): result.append((p, i)) break g, p, q = dmp_inner_gcd(p, h, u, K) if all or dmp_degree(g, u) > 0: result.append((g, i)) i += 1 return coeff, result def dmp_sqf_list_include(f, u, K, all=False): """ Return square-free decomposition of a polynomial in ``K[x]``. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x,y = ring("x,y", ZZ) >>> f = x**5 + 2*x**4*y + x**3*y**2 >>> R.dmp_sqf_list_include(f) [(1, 1), (x + y, 2), (x, 3)] >>> R.dmp_sqf_list_include(f, all=True) [(1, 1), (x + y, 2), (x, 3)] """ if not u: return dup_sqf_list_include(f, K, all=all) coeff, factors = dmp_sqf_list(f, u, K, all=all) if factors and factors[0][1] == 1: g = dmp_mul_ground(factors[0][0], coeff, u, K) return [(g, 1)] + factors[1:] else: g = dmp_ground(coeff, u) return [(g, 1)] + factors def dup_gff_list(f, K): """ Compute greatest factorial factorization of ``f`` in ``K[x]``. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x = ring("x", ZZ) >>> R.dup_gff_list(x**5 + 2*x**4 - x**3 - 2*x**2) [(x, 1), (x + 2, 4)] """ if not f: raise ValueError("greatest factorial factorization doesn't exist for a zero polynomial") f = dup_monic(f, K) if not dup_degree(f): return [] else: g = dup_gcd(f, dup_shift(f, K.one, K), K) H = dup_gff_list(g, K) for i, (h, k) in enumerate(H): g = dup_mul(g, dup_shift(h, -K(k), K), K) H[i] = (h, k + 1) f = dup_quo(f, g, K) if not dup_degree(f): return H else: return [(f, 1)] + H def dmp_gff_list(f, u, K): """ Compute greatest factorial factorization of ``f`` in ``K[X]``. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x,y = ring("x,y", ZZ) """ if not u: return dup_gff_list(f, K) else: raise MultivariatePolynomialError(f)
e14bb713668df23138a0dd195303d5073b15177671278d55667947e8d1c467b0
"""User-friendly public interface to polynomial functions. """ from __future__ import print_function, division from sympy.core import ( S, Basic, Expr, I, Integer, Add, Mul, Dummy, Tuple ) from sympy.core.basic import preorder_traversal from sympy.core.compatibility import iterable, range, ordered from sympy.core.decorators import _sympifyit from sympy.core.function import Derivative from sympy.core.mul import _keep_coeff from sympy.core.relational import Relational from sympy.core.symbol import Symbol from sympy.core.sympify import sympify from sympy.logic.boolalg import BooleanAtom from sympy.polys import polyoptions as options from sympy.polys.constructor import construct_domain from sympy.polys.domains import FF, QQ, ZZ from sympy.polys.fglmtools import matrix_fglm from sympy.polys.groebnertools import groebner as _groebner from sympy.polys.monomials import Monomial from sympy.polys.orderings import monomial_key from sympy.polys.polyclasses import DMP from sympy.polys.polyerrors import ( OperationNotSupported, DomainError, CoercionFailed, UnificationFailed, GeneratorsNeeded, PolynomialError, MultivariatePolynomialError, ExactQuotientFailed, PolificationFailed, ComputationFailed, GeneratorsError, ) from sympy.polys.polyutils import ( basic_from_dict, _sort_gens, _unify_gens, _dict_reorder, _dict_from_expr, _parallel_dict_from_expr, ) from sympy.polys.rationaltools import together from sympy.polys.rootisolation import dup_isolate_real_roots_list from sympy.utilities import group, sift, public, filldedent # Required to avoid errors import sympy.polys import mpmath from mpmath.libmp.libhyper import NoConvergence @public class Poly(Expr): """ Generic class for representing and operating on polynomial expressions. Subclasses Expr class. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y Create a univariate polynomial: >>> Poly(x*(x**2 + x - 1)**2) Poly(x**5 + 2*x**4 - x**3 - 2*x**2 + x, x, domain='ZZ') Create a univariate polynomial with specific domain: >>> from sympy import sqrt >>> Poly(x**2 + 2*x + sqrt(3), domain='R') Poly(1.0*x**2 + 2.0*x + 1.73205080756888, x, domain='RR') Create a multivariate polynomial: >>> Poly(y*x**2 + x*y + 1) Poly(x**2*y + x*y + 1, x, y, domain='ZZ') Create a univariate polynomial, where y is a constant: >>> Poly(y*x**2 + x*y + 1,x) Poly(y*x**2 + y*x + 1, x, domain='ZZ[y]') You can evaluate the above polynomial as a function of y: >>> Poly(y*x**2 + x*y + 1,x).eval(2) 6*y + 1 See Also ======== sympy.core.expr.Expr """ __slots__ = ['rep', 'gens'] is_commutative = True is_Poly = True _op_priority = 10.001 def __new__(cls, rep, *gens, **args): """Create a new polynomial instance out of something useful. """ opt = options.build_options(gens, args) if 'order' in opt: raise NotImplementedError("'order' keyword is not implemented yet") if iterable(rep, exclude=str): if isinstance(rep, dict): return cls._from_dict(rep, opt) else: return cls._from_list(list(rep), opt) else: rep = sympify(rep) if rep.is_Poly: return cls._from_poly(rep, opt) else: return cls._from_expr(rep, opt) @classmethod def new(cls, rep, *gens): """Construct :class:`Poly` instance from raw representation. """ if not isinstance(rep, DMP): raise PolynomialError( "invalid polynomial representation: %s" % rep) elif rep.lev != len(gens) - 1: raise PolynomialError("invalid arguments: %s, %s" % (rep, gens)) obj = Basic.__new__(cls) obj.rep = rep obj.gens = gens return obj @classmethod def from_dict(cls, rep, *gens, **args): """Construct a polynomial from a ``dict``. """ opt = options.build_options(gens, args) return cls._from_dict(rep, opt) @classmethod def from_list(cls, rep, *gens, **args): """Construct a polynomial from a ``list``. """ opt = options.build_options(gens, args) return cls._from_list(rep, opt) @classmethod def from_poly(cls, rep, *gens, **args): """Construct a polynomial from a polynomial. """ opt = options.build_options(gens, args) return cls._from_poly(rep, opt) @classmethod def from_expr(cls, rep, *gens, **args): """Construct a polynomial from an expression. """ opt = options.build_options(gens, args) return cls._from_expr(rep, opt) @classmethod def _from_dict(cls, rep, opt): """Construct a polynomial from a ``dict``. """ gens = opt.gens if not gens: raise GeneratorsNeeded( "can't initialize from 'dict' without generators") level = len(gens) - 1 domain = opt.domain if domain is None: domain, rep = construct_domain(rep, opt=opt) else: for monom, coeff in rep.items(): rep[monom] = domain.convert(coeff) return cls.new(DMP.from_dict(rep, level, domain), *gens) @classmethod def _from_list(cls, rep, opt): """Construct a polynomial from a ``list``. """ gens = opt.gens if not gens: raise GeneratorsNeeded( "can't initialize from 'list' without generators") elif len(gens) != 1: raise MultivariatePolynomialError( "'list' representation not supported") level = len(gens) - 1 domain = opt.domain if domain is None: domain, rep = construct_domain(rep, opt=opt) else: rep = list(map(domain.convert, rep)) return cls.new(DMP.from_list(rep, level, domain), *gens) @classmethod def _from_poly(cls, rep, opt): """Construct a polynomial from a polynomial. """ if cls != rep.__class__: rep = cls.new(rep.rep, *rep.gens) gens = opt.gens field = opt.field domain = opt.domain if gens and rep.gens != gens: if set(rep.gens) != set(gens): return cls._from_expr(rep.as_expr(), opt) else: rep = rep.reorder(*gens) if 'domain' in opt and domain: rep = rep.set_domain(domain) elif field is True: rep = rep.to_field() return rep @classmethod def _from_expr(cls, rep, opt): """Construct a polynomial from an expression. """ rep, opt = _dict_from_expr(rep, opt) return cls._from_dict(rep, opt) def _hashable_content(self): """Allow SymPy to hash Poly instances. """ return (self.rep, self.gens) def __hash__(self): return super(Poly, self).__hash__() @property def free_symbols(self): """ Free symbols of a polynomial expression. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y, z >>> Poly(x**2 + 1).free_symbols {x} >>> Poly(x**2 + y).free_symbols {x, y} >>> Poly(x**2 + y, x).free_symbols {x, y} >>> Poly(x**2 + y, x, z).free_symbols {x, y} """ symbols = set() gens = self.gens for i in range(len(gens)): for monom in self.monoms(): if monom[i]: symbols |= gens[i].free_symbols break return symbols | self.free_symbols_in_domain @property def free_symbols_in_domain(self): """ Free symbols of the domain of ``self``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + 1).free_symbols_in_domain set() >>> Poly(x**2 + y).free_symbols_in_domain set() >>> Poly(x**2 + y, x).free_symbols_in_domain {y} """ domain, symbols = self.rep.dom, set() if domain.is_Composite: for gen in domain.symbols: symbols |= gen.free_symbols elif domain.is_EX: for coeff in self.coeffs(): symbols |= coeff.free_symbols return symbols @property def args(self): """ Don't mess up with the core. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).args (x**2 + 1,) """ return (self.as_expr(),) @property def gen(self): """ Return the principal generator. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).gen x """ return self.gens[0] @property def domain(self): """Get the ground domain of ``self``. """ return self.get_domain() @property def zero(self): """Return zero polynomial with ``self``'s properties. """ return self.new(self.rep.zero(self.rep.lev, self.rep.dom), *self.gens) @property def one(self): """Return one polynomial with ``self``'s properties. """ return self.new(self.rep.one(self.rep.lev, self.rep.dom), *self.gens) @property def unit(self): """Return unit polynomial with ``self``'s properties. """ return self.new(self.rep.unit(self.rep.lev, self.rep.dom), *self.gens) def unify(f, g): """ Make ``f`` and ``g`` belong to the same domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f, g = Poly(x/2 + 1), Poly(2*x + 1) >>> f Poly(1/2*x + 1, x, domain='QQ') >>> g Poly(2*x + 1, x, domain='ZZ') >>> F, G = f.unify(g) >>> F Poly(1/2*x + 1, x, domain='QQ') >>> G Poly(2*x + 1, x, domain='QQ') """ _, per, F, G = f._unify(g) return per(F), per(G) def _unify(f, g): g = sympify(g) if not g.is_Poly: try: return f.rep.dom, f.per, f.rep, f.rep.per(f.rep.dom.from_sympy(g)) except CoercionFailed: raise UnificationFailed("can't unify %s with %s" % (f, g)) if isinstance(f.rep, DMP) and isinstance(g.rep, DMP): gens = _unify_gens(f.gens, g.gens) dom, lev = f.rep.dom.unify(g.rep.dom, gens), len(gens) - 1 if f.gens != gens: f_monoms, f_coeffs = _dict_reorder( f.rep.to_dict(), f.gens, gens) if f.rep.dom != dom: f_coeffs = [dom.convert(c, f.rep.dom) for c in f_coeffs] F = DMP(dict(list(zip(f_monoms, f_coeffs))), dom, lev) else: F = f.rep.convert(dom) if g.gens != gens: g_monoms, g_coeffs = _dict_reorder( g.rep.to_dict(), g.gens, gens) if g.rep.dom != dom: g_coeffs = [dom.convert(c, g.rep.dom) for c in g_coeffs] G = DMP(dict(list(zip(g_monoms, g_coeffs))), dom, lev) else: G = g.rep.convert(dom) else: raise UnificationFailed("can't unify %s with %s" % (f, g)) cls = f.__class__ def per(rep, dom=dom, gens=gens, remove=None): if remove is not None: gens = gens[:remove] + gens[remove + 1:] if not gens: return dom.to_sympy(rep) return cls.new(rep, *gens) return dom, per, F, G def per(f, rep, gens=None, remove=None): """ Create a Poly out of the given representation. Examples ======== >>> from sympy import Poly, ZZ >>> from sympy.abc import x, y >>> from sympy.polys.polyclasses import DMP >>> a = Poly(x**2 + 1) >>> a.per(DMP([ZZ(1), ZZ(1)], ZZ), gens=[y]) Poly(y + 1, y, domain='ZZ') """ if gens is None: gens = f.gens if remove is not None: gens = gens[:remove] + gens[remove + 1:] if not gens: return f.rep.dom.to_sympy(rep) return f.__class__.new(rep, *gens) def set_domain(f, domain): """Set the ground domain of ``f``. """ opt = options.build_options(f.gens, {'domain': domain}) return f.per(f.rep.convert(opt.domain)) def get_domain(f): """Get the ground domain of ``f``. """ return f.rep.dom def set_modulus(f, modulus): """ Set the modulus of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(5*x**2 + 2*x - 1, x).set_modulus(2) Poly(x**2 + 1, x, modulus=2) """ modulus = options.Modulus.preprocess(modulus) return f.set_domain(FF(modulus)) def get_modulus(f): """ Get the modulus of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, modulus=2).get_modulus() 2 """ domain = f.get_domain() if domain.is_FiniteField: return Integer(domain.characteristic()) else: raise PolynomialError("not a polynomial over a Galois field") def _eval_subs(f, old, new): """Internal implementation of :func:`subs`. """ if old in f.gens: if new.is_number: return f.eval(old, new) else: try: return f.replace(old, new) except PolynomialError: pass return f.as_expr().subs(old, new) def exclude(f): """ Remove unnecessary generators from ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import a, b, c, d, x >>> Poly(a + x, a, b, c, d, x).exclude() Poly(a + x, a, x, domain='ZZ') """ J, new = f.rep.exclude() gens = [] for j in range(len(f.gens)): if j not in J: gens.append(f.gens[j]) return f.per(new, gens=gens) def replace(f, x, y=None, *_ignore): # XXX this does not match Basic's signature """ Replace ``x`` with ``y`` in generators list. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + 1, x).replace(x, y) Poly(y**2 + 1, y, domain='ZZ') """ if y is None: if f.is_univariate: x, y = f.gen, x else: raise PolynomialError( "syntax supported only in univariate case") if x == y or x not in f.gens: return f if x in f.gens and y not in f.gens: dom = f.get_domain() if not dom.is_Composite or y not in dom.symbols: gens = list(f.gens) gens[gens.index(x)] = y return f.per(f.rep, gens=gens) raise PolynomialError("can't replace %s with %s in %s" % (x, y, f)) def reorder(f, *gens, **args): """ Efficiently apply new order of generators. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + x*y**2, x, y).reorder(y, x) Poly(y**2*x + x**2, y, x, domain='ZZ') """ opt = options.Options((), args) if not gens: gens = _sort_gens(f.gens, opt=opt) elif set(f.gens) != set(gens): raise PolynomialError( "generators list can differ only up to order of elements") rep = dict(list(zip(*_dict_reorder(f.rep.to_dict(), f.gens, gens)))) return f.per(DMP(rep, f.rep.dom, len(gens) - 1), gens=gens) def ltrim(f, gen): """ Remove dummy generators from ``f`` that are to the left of specified ``gen`` in the generators as ordered. When ``gen`` is an integer, it refers to the generator located at that position within the tuple of generators of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y, z >>> Poly(y**2 + y*z**2, x, y, z).ltrim(y) Poly(y**2 + y*z**2, y, z, domain='ZZ') >>> Poly(z, x, y, z).ltrim(-1) Poly(z, z, domain='ZZ') """ rep = f.as_dict(native=True) j = f._gen_to_level(gen) terms = {} for monom, coeff in rep.items(): if any(i for i in monom[:j]): # some generator is used in the portion to be trimmed raise PolynomialError("can't left trim %s" % f) terms[monom[j:]] = coeff gens = f.gens[j:] return f.new(DMP.from_dict(terms, len(gens) - 1, f.rep.dom), *gens) def has_only_gens(f, *gens): """ Return ``True`` if ``Poly(f, *gens)`` retains ground domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y, z >>> Poly(x*y + 1, x, y, z).has_only_gens(x, y) True >>> Poly(x*y + z, x, y, z).has_only_gens(x, y) False """ indices = set() for gen in gens: try: index = f.gens.index(gen) except ValueError: raise GeneratorsError( "%s doesn't have %s as generator" % (f, gen)) else: indices.add(index) for monom in f.monoms(): for i, elt in enumerate(monom): if i not in indices and elt: return False return True def to_ring(f): """ Make the ground domain a ring. Examples ======== >>> from sympy import Poly, QQ >>> from sympy.abc import x >>> Poly(x**2 + 1, domain=QQ).to_ring() Poly(x**2 + 1, x, domain='ZZ') """ if hasattr(f.rep, 'to_ring'): result = f.rep.to_ring() else: # pragma: no cover raise OperationNotSupported(f, 'to_ring') return f.per(result) def to_field(f): """ Make the ground domain a field. Examples ======== >>> from sympy import Poly, ZZ >>> from sympy.abc import x >>> Poly(x**2 + 1, x, domain=ZZ).to_field() Poly(x**2 + 1, x, domain='QQ') """ if hasattr(f.rep, 'to_field'): result = f.rep.to_field() else: # pragma: no cover raise OperationNotSupported(f, 'to_field') return f.per(result) def to_exact(f): """ Make the ground domain exact. Examples ======== >>> from sympy import Poly, RR >>> from sympy.abc import x >>> Poly(x**2 + 1.0, x, domain=RR).to_exact() Poly(x**2 + 1, x, domain='QQ') """ if hasattr(f.rep, 'to_exact'): result = f.rep.to_exact() else: # pragma: no cover raise OperationNotSupported(f, 'to_exact') return f.per(result) def retract(f, field=None): """ Recalculate the ground domain of a polynomial. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = Poly(x**2 + 1, x, domain='QQ[y]') >>> f Poly(x**2 + 1, x, domain='QQ[y]') >>> f.retract() Poly(x**2 + 1, x, domain='ZZ') >>> f.retract(field=True) Poly(x**2 + 1, x, domain='QQ') """ dom, rep = construct_domain(f.as_dict(zero=True), field=field, composite=f.domain.is_Composite or None) return f.from_dict(rep, f.gens, domain=dom) def slice(f, x, m, n=None): """Take a continuous subsequence of terms of ``f``. """ if n is None: j, m, n = 0, x, m else: j = f._gen_to_level(x) m, n = int(m), int(n) if hasattr(f.rep, 'slice'): result = f.rep.slice(m, n, j) else: # pragma: no cover raise OperationNotSupported(f, 'slice') return f.per(result) def coeffs(f, order=None): """ Returns all non-zero coefficients from ``f`` in lex order. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**3 + 2*x + 3, x).coeffs() [1, 2, 3] See Also ======== all_coeffs coeff_monomial nth """ return [f.rep.dom.to_sympy(c) for c in f.rep.coeffs(order=order)] def monoms(f, order=None): """ Returns all non-zero monomials from ``f`` in lex order. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + 2*x*y**2 + x*y + 3*y, x, y).monoms() [(2, 0), (1, 2), (1, 1), (0, 1)] See Also ======== all_monoms """ return f.rep.monoms(order=order) def terms(f, order=None): """ Returns all non-zero terms from ``f`` in lex order. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + 2*x*y**2 + x*y + 3*y, x, y).terms() [((2, 0), 1), ((1, 2), 2), ((1, 1), 1), ((0, 1), 3)] See Also ======== all_terms """ return [(m, f.rep.dom.to_sympy(c)) for m, c in f.rep.terms(order=order)] def all_coeffs(f): """ Returns all coefficients from a univariate polynomial ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**3 + 2*x - 1, x).all_coeffs() [1, 0, 2, -1] """ return [f.rep.dom.to_sympy(c) for c in f.rep.all_coeffs()] def all_monoms(f): """ Returns all monomials from a univariate polynomial ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**3 + 2*x - 1, x).all_monoms() [(3,), (2,), (1,), (0,)] See Also ======== all_terms """ return f.rep.all_monoms() def all_terms(f): """ Returns all terms from a univariate polynomial ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**3 + 2*x - 1, x).all_terms() [((3,), 1), ((2,), 0), ((1,), 2), ((0,), -1)] """ return [(m, f.rep.dom.to_sympy(c)) for m, c in f.rep.all_terms()] def termwise(f, func, *gens, **args): """ Apply a function to all terms of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> def func(k, coeff): ... k = k[0] ... return coeff//10**(2-k) >>> Poly(x**2 + 20*x + 400).termwise(func) Poly(x**2 + 2*x + 4, x, domain='ZZ') """ terms = {} for monom, coeff in f.terms(): result = func(monom, coeff) if isinstance(result, tuple): monom, coeff = result else: coeff = result if coeff: if monom not in terms: terms[monom] = coeff else: raise PolynomialError( "%s monomial was generated twice" % monom) return f.from_dict(terms, *(gens or f.gens), **args) def length(f): """ Returns the number of non-zero terms in ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 2*x - 1).length() 3 """ return len(f.as_dict()) def as_dict(f, native=False, zero=False): """ Switch to a ``dict`` representation. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + 2*x*y**2 - y, x, y).as_dict() {(0, 1): -1, (1, 2): 2, (2, 0): 1} """ if native: return f.rep.to_dict(zero=zero) else: return f.rep.to_sympy_dict(zero=zero) def as_list(f, native=False): """Switch to a ``list`` representation. """ if native: return f.rep.to_list() else: return f.rep.to_sympy_list() def as_expr(f, *gens): """ Convert a Poly instance to an Expr instance. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> f = Poly(x**2 + 2*x*y**2 - y, x, y) >>> f.as_expr() x**2 + 2*x*y**2 - y >>> f.as_expr({x: 5}) 10*y**2 - y + 25 >>> f.as_expr(5, 6) 379 """ if not gens: gens = f.gens elif len(gens) == 1 and isinstance(gens[0], dict): mapping = gens[0] gens = list(f.gens) for gen, value in mapping.items(): try: index = gens.index(gen) except ValueError: raise GeneratorsError( "%s doesn't have %s as generator" % (f, gen)) else: gens[index] = value return basic_from_dict(f.rep.to_sympy_dict(), *gens) def lift(f): """ Convert algebraic coefficients to rationals. Examples ======== >>> from sympy import Poly, I >>> from sympy.abc import x >>> Poly(x**2 + I*x + 1, x, extension=I).lift() Poly(x**4 + 3*x**2 + 1, x, domain='QQ') """ if hasattr(f.rep, 'lift'): result = f.rep.lift() else: # pragma: no cover raise OperationNotSupported(f, 'lift') return f.per(result) def deflate(f): """ Reduce degree of ``f`` by mapping ``x_i**m`` to ``y_i``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**6*y**2 + x**3 + 1, x, y).deflate() ((3, 2), Poly(x**2*y + x + 1, x, y, domain='ZZ')) """ if hasattr(f.rep, 'deflate'): J, result = f.rep.deflate() else: # pragma: no cover raise OperationNotSupported(f, 'deflate') return J, f.per(result) def inject(f, front=False): """ Inject ground domain generators into ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> f = Poly(x**2*y + x*y**3 + x*y + 1, x) >>> f.inject() Poly(x**2*y + x*y**3 + x*y + 1, x, y, domain='ZZ') >>> f.inject(front=True) Poly(y**3*x + y*x**2 + y*x + 1, y, x, domain='ZZ') """ dom = f.rep.dom if dom.is_Numerical: return f elif not dom.is_Poly: raise DomainError("can't inject generators over %s" % dom) if hasattr(f.rep, 'inject'): result = f.rep.inject(front=front) else: # pragma: no cover raise OperationNotSupported(f, 'inject') if front: gens = dom.symbols + f.gens else: gens = f.gens + dom.symbols return f.new(result, *gens) def eject(f, *gens): """ Eject selected generators into the ground domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> f = Poly(x**2*y + x*y**3 + x*y + 1, x, y) >>> f.eject(x) Poly(x*y**3 + (x**2 + x)*y + 1, y, domain='ZZ[x]') >>> f.eject(y) Poly(y*x**2 + (y**3 + y)*x + 1, x, domain='ZZ[y]') """ dom = f.rep.dom if not dom.is_Numerical: raise DomainError("can't eject generators over %s" % dom) k = len(gens) if f.gens[:k] == gens: _gens, front = f.gens[k:], True elif f.gens[-k:] == gens: _gens, front = f.gens[:-k], False else: raise NotImplementedError( "can only eject front or back generators") dom = dom.inject(*gens) if hasattr(f.rep, 'eject'): result = f.rep.eject(dom, front=front) else: # pragma: no cover raise OperationNotSupported(f, 'eject') return f.new(result, *_gens) def terms_gcd(f): """ Remove GCD of terms from the polynomial ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**6*y**2 + x**3*y, x, y).terms_gcd() ((3, 1), Poly(x**3*y + 1, x, y, domain='ZZ')) """ if hasattr(f.rep, 'terms_gcd'): J, result = f.rep.terms_gcd() else: # pragma: no cover raise OperationNotSupported(f, 'terms_gcd') return J, f.per(result) def add_ground(f, coeff): """ Add an element of the ground domain to ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x + 1).add_ground(2) Poly(x + 3, x, domain='ZZ') """ if hasattr(f.rep, 'add_ground'): result = f.rep.add_ground(coeff) else: # pragma: no cover raise OperationNotSupported(f, 'add_ground') return f.per(result) def sub_ground(f, coeff): """ Subtract an element of the ground domain from ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x + 1).sub_ground(2) Poly(x - 1, x, domain='ZZ') """ if hasattr(f.rep, 'sub_ground'): result = f.rep.sub_ground(coeff) else: # pragma: no cover raise OperationNotSupported(f, 'sub_ground') return f.per(result) def mul_ground(f, coeff): """ Multiply ``f`` by a an element of the ground domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x + 1).mul_ground(2) Poly(2*x + 2, x, domain='ZZ') """ if hasattr(f.rep, 'mul_ground'): result = f.rep.mul_ground(coeff) else: # pragma: no cover raise OperationNotSupported(f, 'mul_ground') return f.per(result) def quo_ground(f, coeff): """ Quotient of ``f`` by a an element of the ground domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(2*x + 4).quo_ground(2) Poly(x + 2, x, domain='ZZ') >>> Poly(2*x + 3).quo_ground(2) Poly(x + 1, x, domain='ZZ') """ if hasattr(f.rep, 'quo_ground'): result = f.rep.quo_ground(coeff) else: # pragma: no cover raise OperationNotSupported(f, 'quo_ground') return f.per(result) def exquo_ground(f, coeff): """ Exact quotient of ``f`` by a an element of the ground domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(2*x + 4).exquo_ground(2) Poly(x + 2, x, domain='ZZ') >>> Poly(2*x + 3).exquo_ground(2) Traceback (most recent call last): ... ExactQuotientFailed: 2 does not divide 3 in ZZ """ if hasattr(f.rep, 'exquo_ground'): result = f.rep.exquo_ground(coeff) else: # pragma: no cover raise OperationNotSupported(f, 'exquo_ground') return f.per(result) def abs(f): """ Make all coefficients in ``f`` positive. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 1, x).abs() Poly(x**2 + 1, x, domain='ZZ') """ if hasattr(f.rep, 'abs'): result = f.rep.abs() else: # pragma: no cover raise OperationNotSupported(f, 'abs') return f.per(result) def neg(f): """ Negate all coefficients in ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 1, x).neg() Poly(-x**2 + 1, x, domain='ZZ') >>> -Poly(x**2 - 1, x) Poly(-x**2 + 1, x, domain='ZZ') """ if hasattr(f.rep, 'neg'): result = f.rep.neg() else: # pragma: no cover raise OperationNotSupported(f, 'neg') return f.per(result) def add(f, g): """ Add two polynomials ``f`` and ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).add(Poly(x - 2, x)) Poly(x**2 + x - 1, x, domain='ZZ') >>> Poly(x**2 + 1, x) + Poly(x - 2, x) Poly(x**2 + x - 1, x, domain='ZZ') """ g = sympify(g) if not g.is_Poly: return f.add_ground(g) _, per, F, G = f._unify(g) if hasattr(f.rep, 'add'): result = F.add(G) else: # pragma: no cover raise OperationNotSupported(f, 'add') return per(result) def sub(f, g): """ Subtract two polynomials ``f`` and ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).sub(Poly(x - 2, x)) Poly(x**2 - x + 3, x, domain='ZZ') >>> Poly(x**2 + 1, x) - Poly(x - 2, x) Poly(x**2 - x + 3, x, domain='ZZ') """ g = sympify(g) if not g.is_Poly: return f.sub_ground(g) _, per, F, G = f._unify(g) if hasattr(f.rep, 'sub'): result = F.sub(G) else: # pragma: no cover raise OperationNotSupported(f, 'sub') return per(result) def mul(f, g): """ Multiply two polynomials ``f`` and ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).mul(Poly(x - 2, x)) Poly(x**3 - 2*x**2 + x - 2, x, domain='ZZ') >>> Poly(x**2 + 1, x)*Poly(x - 2, x) Poly(x**3 - 2*x**2 + x - 2, x, domain='ZZ') """ g = sympify(g) if not g.is_Poly: return f.mul_ground(g) _, per, F, G = f._unify(g) if hasattr(f.rep, 'mul'): result = F.mul(G) else: # pragma: no cover raise OperationNotSupported(f, 'mul') return per(result) def sqr(f): """ Square a polynomial ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x - 2, x).sqr() Poly(x**2 - 4*x + 4, x, domain='ZZ') >>> Poly(x - 2, x)**2 Poly(x**2 - 4*x + 4, x, domain='ZZ') """ if hasattr(f.rep, 'sqr'): result = f.rep.sqr() else: # pragma: no cover raise OperationNotSupported(f, 'sqr') return f.per(result) def pow(f, n): """ Raise ``f`` to a non-negative power ``n``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x - 2, x).pow(3) Poly(x**3 - 6*x**2 + 12*x - 8, x, domain='ZZ') >>> Poly(x - 2, x)**3 Poly(x**3 - 6*x**2 + 12*x - 8, x, domain='ZZ') """ n = int(n) if hasattr(f.rep, 'pow'): result = f.rep.pow(n) else: # pragma: no cover raise OperationNotSupported(f, 'pow') return f.per(result) def pdiv(f, g): """ Polynomial pseudo-division of ``f`` by ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).pdiv(Poly(2*x - 4, x)) (Poly(2*x + 4, x, domain='ZZ'), Poly(20, x, domain='ZZ')) """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'pdiv'): q, r = F.pdiv(G) else: # pragma: no cover raise OperationNotSupported(f, 'pdiv') return per(q), per(r) def prem(f, g): """ Polynomial pseudo-remainder of ``f`` by ``g``. Caveat: The function prem(f, g, x) can be safely used to compute in Z[x] _only_ subresultant polynomial remainder sequences (prs's). To safely compute Euclidean and Sturmian prs's in Z[x] employ anyone of the corresponding functions found in the module sympy.polys.subresultants_qq_zz. The functions in the module with suffix _pg compute prs's in Z[x] employing rem(f, g, x), whereas the functions with suffix _amv compute prs's in Z[x] employing rem_z(f, g, x). The function rem_z(f, g, x) differs from prem(f, g, x) in that to compute the remainder polynomials in Z[x] it premultiplies the divident times the absolute value of the leading coefficient of the divisor raised to the power degree(f, x) - degree(g, x) + 1. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).prem(Poly(2*x - 4, x)) Poly(20, x, domain='ZZ') """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'prem'): result = F.prem(G) else: # pragma: no cover raise OperationNotSupported(f, 'prem') return per(result) def pquo(f, g): """ Polynomial pseudo-quotient of ``f`` by ``g``. See the Caveat note in the function prem(f, g). Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).pquo(Poly(2*x - 4, x)) Poly(2*x + 4, x, domain='ZZ') >>> Poly(x**2 - 1, x).pquo(Poly(2*x - 2, x)) Poly(2*x + 2, x, domain='ZZ') """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'pquo'): result = F.pquo(G) else: # pragma: no cover raise OperationNotSupported(f, 'pquo') return per(result) def pexquo(f, g): """ Polynomial exact pseudo-quotient of ``f`` by ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 1, x).pexquo(Poly(2*x - 2, x)) Poly(2*x + 2, x, domain='ZZ') >>> Poly(x**2 + 1, x).pexquo(Poly(2*x - 4, x)) Traceback (most recent call last): ... ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1 """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'pexquo'): try: result = F.pexquo(G) except ExactQuotientFailed as exc: raise exc.new(f.as_expr(), g.as_expr()) else: # pragma: no cover raise OperationNotSupported(f, 'pexquo') return per(result) def div(f, g, auto=True): """ Polynomial division with remainder of ``f`` by ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).div(Poly(2*x - 4, x)) (Poly(1/2*x + 1, x, domain='QQ'), Poly(5, x, domain='QQ')) >>> Poly(x**2 + 1, x).div(Poly(2*x - 4, x), auto=False) (Poly(0, x, domain='ZZ'), Poly(x**2 + 1, x, domain='ZZ')) """ dom, per, F, G = f._unify(g) retract = False if auto and dom.is_Ring and not dom.is_Field: F, G = F.to_field(), G.to_field() retract = True if hasattr(f.rep, 'div'): q, r = F.div(G) else: # pragma: no cover raise OperationNotSupported(f, 'div') if retract: try: Q, R = q.to_ring(), r.to_ring() except CoercionFailed: pass else: q, r = Q, R return per(q), per(r) def rem(f, g, auto=True): """ Computes the polynomial remainder of ``f`` by ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).rem(Poly(2*x - 4, x)) Poly(5, x, domain='ZZ') >>> Poly(x**2 + 1, x).rem(Poly(2*x - 4, x), auto=False) Poly(x**2 + 1, x, domain='ZZ') """ dom, per, F, G = f._unify(g) retract = False if auto and dom.is_Ring and not dom.is_Field: F, G = F.to_field(), G.to_field() retract = True if hasattr(f.rep, 'rem'): r = F.rem(G) else: # pragma: no cover raise OperationNotSupported(f, 'rem') if retract: try: r = r.to_ring() except CoercionFailed: pass return per(r) def quo(f, g, auto=True): """ Computes polynomial quotient of ``f`` by ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).quo(Poly(2*x - 4, x)) Poly(1/2*x + 1, x, domain='QQ') >>> Poly(x**2 - 1, x).quo(Poly(x - 1, x)) Poly(x + 1, x, domain='ZZ') """ dom, per, F, G = f._unify(g) retract = False if auto and dom.is_Ring and not dom.is_Field: F, G = F.to_field(), G.to_field() retract = True if hasattr(f.rep, 'quo'): q = F.quo(G) else: # pragma: no cover raise OperationNotSupported(f, 'quo') if retract: try: q = q.to_ring() except CoercionFailed: pass return per(q) def exquo(f, g, auto=True): """ Computes polynomial exact quotient of ``f`` by ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 1, x).exquo(Poly(x - 1, x)) Poly(x + 1, x, domain='ZZ') >>> Poly(x**2 + 1, x).exquo(Poly(2*x - 4, x)) Traceback (most recent call last): ... ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1 """ dom, per, F, G = f._unify(g) retract = False if auto and dom.is_Ring and not dom.is_Field: F, G = F.to_field(), G.to_field() retract = True if hasattr(f.rep, 'exquo'): try: q = F.exquo(G) except ExactQuotientFailed as exc: raise exc.new(f.as_expr(), g.as_expr()) else: # pragma: no cover raise OperationNotSupported(f, 'exquo') if retract: try: q = q.to_ring() except CoercionFailed: pass return per(q) def _gen_to_level(f, gen): """Returns level associated with the given generator. """ if isinstance(gen, int): length = len(f.gens) if -length <= gen < length: if gen < 0: return length + gen else: return gen else: raise PolynomialError("-%s <= gen < %s expected, got %s" % (length, length, gen)) else: try: return f.gens.index(sympify(gen)) except ValueError: raise PolynomialError( "a valid generator expected, got %s" % gen) def degree(f, gen=0): """ Returns degree of ``f`` in ``x_j``. The degree of 0 is negative infinity. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + y*x + 1, x, y).degree() 2 >>> Poly(x**2 + y*x + y, x, y).degree(y) 1 >>> Poly(0, x).degree() -oo """ j = f._gen_to_level(gen) if hasattr(f.rep, 'degree'): return f.rep.degree(j) else: # pragma: no cover raise OperationNotSupported(f, 'degree') def degree_list(f): """ Returns a list of degrees of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + y*x + 1, x, y).degree_list() (2, 1) """ if hasattr(f.rep, 'degree_list'): return f.rep.degree_list() else: # pragma: no cover raise OperationNotSupported(f, 'degree_list') def total_degree(f): """ Returns the total degree of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + y*x + 1, x, y).total_degree() 2 >>> Poly(x + y**5, x, y).total_degree() 5 """ if hasattr(f.rep, 'total_degree'): return f.rep.total_degree() else: # pragma: no cover raise OperationNotSupported(f, 'total_degree') def homogenize(f, s): """ Returns the homogeneous polynomial of ``f``. A homogeneous polynomial is a polynomial whose all monomials with non-zero coefficients have the same total degree. If you only want to check if a polynomial is homogeneous, then use :func:`Poly.is_homogeneous`. If you want not only to check if a polynomial is homogeneous but also compute its homogeneous order, then use :func:`Poly.homogeneous_order`. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y, z >>> f = Poly(x**5 + 2*x**2*y**2 + 9*x*y**3) >>> f.homogenize(z) Poly(x**5 + 2*x**2*y**2*z + 9*x*y**3*z, x, y, z, domain='ZZ') """ if not isinstance(s, Symbol): raise TypeError("``Symbol`` expected, got %s" % type(s)) if s in f.gens: i = f.gens.index(s) gens = f.gens else: i = len(f.gens) gens = f.gens + (s,) if hasattr(f.rep, 'homogenize'): return f.per(f.rep.homogenize(i), gens=gens) raise OperationNotSupported(f, 'homogeneous_order') def homogeneous_order(f): """ Returns the homogeneous order of ``f``. A homogeneous polynomial is a polynomial whose all monomials with non-zero coefficients have the same total degree. This degree is the homogeneous order of ``f``. If you only want to check if a polynomial is homogeneous, then use :func:`Poly.is_homogeneous`. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> f = Poly(x**5 + 2*x**3*y**2 + 9*x*y**4) >>> f.homogeneous_order() 5 """ if hasattr(f.rep, 'homogeneous_order'): return f.rep.homogeneous_order() else: # pragma: no cover raise OperationNotSupported(f, 'homogeneous_order') def LC(f, order=None): """ Returns the leading coefficient of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(4*x**3 + 2*x**2 + 3*x, x).LC() 4 """ if order is not None: return f.coeffs(order)[0] if hasattr(f.rep, 'LC'): result = f.rep.LC() else: # pragma: no cover raise OperationNotSupported(f, 'LC') return f.rep.dom.to_sympy(result) def TC(f): """ Returns the trailing coefficient of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**3 + 2*x**2 + 3*x, x).TC() 0 """ if hasattr(f.rep, 'TC'): result = f.rep.TC() else: # pragma: no cover raise OperationNotSupported(f, 'TC') return f.rep.dom.to_sympy(result) def EC(f, order=None): """ Returns the last non-zero coefficient of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**3 + 2*x**2 + 3*x, x).EC() 3 """ if hasattr(f.rep, 'coeffs'): return f.coeffs(order)[-1] else: # pragma: no cover raise OperationNotSupported(f, 'EC') def coeff_monomial(f, monom): """ Returns the coefficient of ``monom`` in ``f`` if there, else None. Examples ======== >>> from sympy import Poly, exp >>> from sympy.abc import x, y >>> p = Poly(24*x*y*exp(8) + 23*x, x, y) >>> p.coeff_monomial(x) 23 >>> p.coeff_monomial(y) 0 >>> p.coeff_monomial(x*y) 24*exp(8) Note that ``Expr.coeff()`` behaves differently, collecting terms if possible; the Poly must be converted to an Expr to use that method, however: >>> p.as_expr().coeff(x) 24*y*exp(8) + 23 >>> p.as_expr().coeff(y) 24*x*exp(8) >>> p.as_expr().coeff(x*y) 24*exp(8) See Also ======== nth: more efficient query using exponents of the monomial's generators """ return f.nth(*Monomial(monom, f.gens).exponents) def nth(f, *N): """ Returns the ``n``-th coefficient of ``f`` where ``N`` are the exponents of the generators in the term of interest. Examples ======== >>> from sympy import Poly, sqrt >>> from sympy.abc import x, y >>> Poly(x**3 + 2*x**2 + 3*x, x).nth(2) 2 >>> Poly(x**3 + 2*x*y**2 + y**2, x, y).nth(1, 2) 2 >>> Poly(4*sqrt(x)*y) Poly(4*y*(sqrt(x)), y, sqrt(x), domain='ZZ') >>> _.nth(1, 1) 4 See Also ======== coeff_monomial """ if hasattr(f.rep, 'nth'): if len(N) != len(f.gens): raise ValueError('exponent of each generator must be specified') result = f.rep.nth(*list(map(int, N))) else: # pragma: no cover raise OperationNotSupported(f, 'nth') return f.rep.dom.to_sympy(result) def coeff(f, x, n=1, right=False): # the semantics of coeff_monomial and Expr.coeff are different; # if someone is working with a Poly, they should be aware of the # differences and chose the method best suited for the query. # Alternatively, a pure-polys method could be written here but # at this time the ``right`` keyword would be ignored because Poly # doesn't work with non-commutatives. raise NotImplementedError( 'Either convert to Expr with `as_expr` method ' 'to use Expr\'s coeff method or else use the ' '`coeff_monomial` method of Polys.') def LM(f, order=None): """ Returns the leading monomial of ``f``. The Leading monomial signifies the monomial having the highest power of the principal generator in the expression f. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).LM() x**2*y**0 """ return Monomial(f.monoms(order)[0], f.gens) def EM(f, order=None): """ Returns the last non-zero monomial of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).EM() x**0*y**1 """ return Monomial(f.monoms(order)[-1], f.gens) def LT(f, order=None): """ Returns the leading term of ``f``. The Leading term signifies the term having the highest power of the principal generator in the expression f along with its coefficient. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).LT() (x**2*y**0, 4) """ monom, coeff = f.terms(order)[0] return Monomial(monom, f.gens), coeff def ET(f, order=None): """ Returns the last non-zero term of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).ET() (x**0*y**1, 3) """ monom, coeff = f.terms(order)[-1] return Monomial(monom, f.gens), coeff def max_norm(f): """ Returns maximum norm of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(-x**2 + 2*x - 3, x).max_norm() 3 """ if hasattr(f.rep, 'max_norm'): result = f.rep.max_norm() else: # pragma: no cover raise OperationNotSupported(f, 'max_norm') return f.rep.dom.to_sympy(result) def l1_norm(f): """ Returns l1 norm of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(-x**2 + 2*x - 3, x).l1_norm() 6 """ if hasattr(f.rep, 'l1_norm'): result = f.rep.l1_norm() else: # pragma: no cover raise OperationNotSupported(f, 'l1_norm') return f.rep.dom.to_sympy(result) def clear_denoms(self, convert=False): """ Clear denominators, but keep the ground domain. Examples ======== >>> from sympy import Poly, S, QQ >>> from sympy.abc import x >>> f = Poly(x/2 + S(1)/3, x, domain=QQ) >>> f.clear_denoms() (6, Poly(3*x + 2, x, domain='QQ')) >>> f.clear_denoms(convert=True) (6, Poly(3*x + 2, x, domain='ZZ')) """ f = self if not f.rep.dom.is_Field: return S.One, f dom = f.get_domain() if dom.has_assoc_Ring: dom = f.rep.dom.get_ring() if hasattr(f.rep, 'clear_denoms'): coeff, result = f.rep.clear_denoms() else: # pragma: no cover raise OperationNotSupported(f, 'clear_denoms') coeff, f = dom.to_sympy(coeff), f.per(result) if not convert or not dom.has_assoc_Ring: return coeff, f else: return coeff, f.to_ring() def rat_clear_denoms(self, g): """ Clear denominators in a rational function ``f/g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> f = Poly(x**2/y + 1, x) >>> g = Poly(x**3 + y, x) >>> p, q = f.rat_clear_denoms(g) >>> p Poly(x**2 + y, x, domain='ZZ[y]') >>> q Poly(y*x**3 + y**2, x, domain='ZZ[y]') """ f = self dom, per, f, g = f._unify(g) f = per(f) g = per(g) if not (dom.is_Field and dom.has_assoc_Ring): return f, g a, f = f.clear_denoms(convert=True) b, g = g.clear_denoms(convert=True) f = f.mul_ground(b) g = g.mul_ground(a) return f, g def integrate(self, *specs, **args): """ Computes indefinite integral of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + 2*x + 1, x).integrate() Poly(1/3*x**3 + x**2 + x, x, domain='QQ') >>> Poly(x*y**2 + x, x, y).integrate((0, 1), (1, 0)) Poly(1/2*x**2*y**2 + 1/2*x**2, x, y, domain='QQ') """ f = self if args.get('auto', True) and f.rep.dom.is_Ring: f = f.to_field() if hasattr(f.rep, 'integrate'): if not specs: return f.per(f.rep.integrate(m=1)) rep = f.rep for spec in specs: if type(spec) is tuple: gen, m = spec else: gen, m = spec, 1 rep = rep.integrate(int(m), f._gen_to_level(gen)) return f.per(rep) else: # pragma: no cover raise OperationNotSupported(f, 'integrate') def diff(f, *specs, **kwargs): """ Computes partial derivative of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + 2*x + 1, x).diff() Poly(2*x + 2, x, domain='ZZ') >>> Poly(x*y**2 + x, x, y).diff((0, 0), (1, 1)) Poly(2*x*y, x, y, domain='ZZ') """ if not kwargs.get('evaluate', True): return Derivative(f, *specs, **kwargs) if hasattr(f.rep, 'diff'): if not specs: return f.per(f.rep.diff(m=1)) rep = f.rep for spec in specs: if type(spec) is tuple: gen, m = spec else: gen, m = spec, 1 rep = rep.diff(int(m), f._gen_to_level(gen)) return f.per(rep) else: # pragma: no cover raise OperationNotSupported(f, 'diff') _eval_derivative = diff def eval(self, x, a=None, auto=True): """ Evaluate ``f`` at ``a`` in the given variable. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y, z >>> Poly(x**2 + 2*x + 3, x).eval(2) 11 >>> Poly(2*x*y + 3*x + y + 2, x, y).eval(x, 2) Poly(5*y + 8, y, domain='ZZ') >>> f = Poly(2*x*y + 3*x + y + 2*z, x, y, z) >>> f.eval({x: 2}) Poly(5*y + 2*z + 6, y, z, domain='ZZ') >>> f.eval({x: 2, y: 5}) Poly(2*z + 31, z, domain='ZZ') >>> f.eval({x: 2, y: 5, z: 7}) 45 >>> f.eval((2, 5)) Poly(2*z + 31, z, domain='ZZ') >>> f(2, 5) Poly(2*z + 31, z, domain='ZZ') """ f = self if a is None: if isinstance(x, dict): mapping = x for gen, value in mapping.items(): f = f.eval(gen, value) return f elif isinstance(x, (tuple, list)): values = x if len(values) > len(f.gens): raise ValueError("too many values provided") for gen, value in zip(f.gens, values): f = f.eval(gen, value) return f else: j, a = 0, x else: j = f._gen_to_level(x) if not hasattr(f.rep, 'eval'): # pragma: no cover raise OperationNotSupported(f, 'eval') try: result = f.rep.eval(a, j) except CoercionFailed: if not auto: raise DomainError("can't evaluate at %s in %s" % (a, f.rep.dom)) else: a_domain, [a] = construct_domain([a]) new_domain = f.get_domain().unify_with_symbols(a_domain, f.gens) f = f.set_domain(new_domain) a = new_domain.convert(a, a_domain) result = f.rep.eval(a, j) return f.per(result, remove=j) def __call__(f, *values): """ Evaluate ``f`` at the give values. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y, z >>> f = Poly(2*x*y + 3*x + y + 2*z, x, y, z) >>> f(2) Poly(5*y + 2*z + 6, y, z, domain='ZZ') >>> f(2, 5) Poly(2*z + 31, z, domain='ZZ') >>> f(2, 5, 7) 45 """ return f.eval(values) def half_gcdex(f, g, auto=True): """ Half extended Euclidean algorithm of ``f`` and ``g``. Returns ``(s, h)`` such that ``h = gcd(f, g)`` and ``s*f = h (mod g)``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15 >>> g = x**3 + x**2 - 4*x - 4 >>> Poly(f).half_gcdex(Poly(g)) (Poly(-1/5*x + 3/5, x, domain='QQ'), Poly(x + 1, x, domain='QQ')) """ dom, per, F, G = f._unify(g) if auto and dom.is_Ring: F, G = F.to_field(), G.to_field() if hasattr(f.rep, 'half_gcdex'): s, h = F.half_gcdex(G) else: # pragma: no cover raise OperationNotSupported(f, 'half_gcdex') return per(s), per(h) def gcdex(f, g, auto=True): """ Extended Euclidean algorithm of ``f`` and ``g``. Returns ``(s, t, h)`` such that ``h = gcd(f, g)`` and ``s*f + t*g = h``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15 >>> g = x**3 + x**2 - 4*x - 4 >>> Poly(f).gcdex(Poly(g)) (Poly(-1/5*x + 3/5, x, domain='QQ'), Poly(1/5*x**2 - 6/5*x + 2, x, domain='QQ'), Poly(x + 1, x, domain='QQ')) """ dom, per, F, G = f._unify(g) if auto and dom.is_Ring: F, G = F.to_field(), G.to_field() if hasattr(f.rep, 'gcdex'): s, t, h = F.gcdex(G) else: # pragma: no cover raise OperationNotSupported(f, 'gcdex') return per(s), per(t), per(h) def invert(f, g, auto=True): """ Invert ``f`` modulo ``g`` when possible. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 1, x).invert(Poly(2*x - 1, x)) Poly(-4/3, x, domain='QQ') >>> Poly(x**2 - 1, x).invert(Poly(x - 1, x)) Traceback (most recent call last): ... NotInvertible: zero divisor """ dom, per, F, G = f._unify(g) if auto and dom.is_Ring: F, G = F.to_field(), G.to_field() if hasattr(f.rep, 'invert'): result = F.invert(G) else: # pragma: no cover raise OperationNotSupported(f, 'invert') return per(result) def revert(f, n): """ Compute ``f**(-1)`` mod ``x**n``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(1, x).revert(2) Poly(1, x, domain='ZZ') >>> Poly(1 + x, x).revert(1) Poly(1, x, domain='ZZ') >>> Poly(x**2 - 1, x).revert(1) Traceback (most recent call last): ... NotReversible: only unity is reversible in a ring >>> Poly(1/x, x).revert(1) Traceback (most recent call last): ... PolynomialError: 1/x contains an element of the generators set """ if hasattr(f.rep, 'revert'): result = f.rep.revert(int(n)) else: # pragma: no cover raise OperationNotSupported(f, 'revert') return f.per(result) def subresultants(f, g): """ Computes the subresultant PRS of ``f`` and ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).subresultants(Poly(x**2 - 1, x)) [Poly(x**2 + 1, x, domain='ZZ'), Poly(x**2 - 1, x, domain='ZZ'), Poly(-2, x, domain='ZZ')] """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'subresultants'): result = F.subresultants(G) else: # pragma: no cover raise OperationNotSupported(f, 'subresultants') return list(map(per, result)) def resultant(f, g, includePRS=False): """ Computes the resultant of ``f`` and ``g`` via PRS. If includePRS=True, it includes the subresultant PRS in the result. Because the PRS is used to calculate the resultant, this is more efficient than calling :func:`subresultants` separately. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = Poly(x**2 + 1, x) >>> f.resultant(Poly(x**2 - 1, x)) 4 >>> f.resultant(Poly(x**2 - 1, x), includePRS=True) (4, [Poly(x**2 + 1, x, domain='ZZ'), Poly(x**2 - 1, x, domain='ZZ'), Poly(-2, x, domain='ZZ')]) """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'resultant'): if includePRS: result, R = F.resultant(G, includePRS=includePRS) else: result = F.resultant(G) else: # pragma: no cover raise OperationNotSupported(f, 'resultant') if includePRS: return (per(result, remove=0), list(map(per, R))) return per(result, remove=0) def discriminant(f): """ Computes the discriminant of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 2*x + 3, x).discriminant() -8 """ if hasattr(f.rep, 'discriminant'): result = f.rep.discriminant() else: # pragma: no cover raise OperationNotSupported(f, 'discriminant') return f.per(result, remove=0) def dispersionset(f, g=None): r"""Compute the *dispersion set* of two polynomials. For two polynomials `f(x)` and `g(x)` with `\deg f > 0` and `\deg g > 0` the dispersion set `\operatorname{J}(f, g)` is defined as: .. math:: \operatorname{J}(f, g) & := \{a \in \mathbb{N}_0 | \gcd(f(x), g(x+a)) \neq 1\} \\ & = \{a \in \mathbb{N}_0 | \deg \gcd(f(x), g(x+a)) \geq 1\} For a single polynomial one defines `\operatorname{J}(f) := \operatorname{J}(f, f)`. Examples ======== >>> from sympy import poly >>> from sympy.polys.dispersion import dispersion, dispersionset >>> from sympy.abc import x Dispersion set and dispersion of a simple polynomial: >>> fp = poly((x - 3)*(x + 3), x) >>> sorted(dispersionset(fp)) [0, 6] >>> dispersion(fp) 6 Note that the definition of the dispersion is not symmetric: >>> fp = poly(x**4 - 3*x**2 + 1, x) >>> gp = fp.shift(-3) >>> sorted(dispersionset(fp, gp)) [2, 3, 4] >>> dispersion(fp, gp) 4 >>> sorted(dispersionset(gp, fp)) [] >>> dispersion(gp, fp) -oo Computing the dispersion also works over field extensions: >>> from sympy import sqrt >>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>') >>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>') >>> sorted(dispersionset(fp, gp)) [2] >>> sorted(dispersionset(gp, fp)) [1, 4] We can even perform the computations for polynomials having symbolic coefficients: >>> from sympy.abc import a >>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x) >>> sorted(dispersionset(fp)) [0, 1] See Also ======== dispersion References ========== 1. [ManWright94]_ 2. [Koepf98]_ 3. [Abramov71]_ 4. [Man93]_ """ from sympy.polys.dispersion import dispersionset return dispersionset(f, g) def dispersion(f, g=None): r"""Compute the *dispersion* of polynomials. For two polynomials `f(x)` and `g(x)` with `\deg f > 0` and `\deg g > 0` the dispersion `\operatorname{dis}(f, g)` is defined as: .. math:: \operatorname{dis}(f, g) & := \max\{ J(f,g) \cup \{0\} \} \\ & = \max\{ \{a \in \mathbb{N} | \gcd(f(x), g(x+a)) \neq 1\} \cup \{0\} \} and for a single polynomial `\operatorname{dis}(f) := \operatorname{dis}(f, f)`. Examples ======== >>> from sympy import poly >>> from sympy.polys.dispersion import dispersion, dispersionset >>> from sympy.abc import x Dispersion set and dispersion of a simple polynomial: >>> fp = poly((x - 3)*(x + 3), x) >>> sorted(dispersionset(fp)) [0, 6] >>> dispersion(fp) 6 Note that the definition of the dispersion is not symmetric: >>> fp = poly(x**4 - 3*x**2 + 1, x) >>> gp = fp.shift(-3) >>> sorted(dispersionset(fp, gp)) [2, 3, 4] >>> dispersion(fp, gp) 4 >>> sorted(dispersionset(gp, fp)) [] >>> dispersion(gp, fp) -oo Computing the dispersion also works over field extensions: >>> from sympy import sqrt >>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>') >>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>') >>> sorted(dispersionset(fp, gp)) [2] >>> sorted(dispersionset(gp, fp)) [1, 4] We can even perform the computations for polynomials having symbolic coefficients: >>> from sympy.abc import a >>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x) >>> sorted(dispersionset(fp)) [0, 1] See Also ======== dispersionset References ========== 1. [ManWright94]_ 2. [Koepf98]_ 3. [Abramov71]_ 4. [Man93]_ """ from sympy.polys.dispersion import dispersion return dispersion(f, g) def cofactors(f, g): """ Returns the GCD of ``f`` and ``g`` and their cofactors. Returns polynomials ``(h, cff, cfg)`` such that ``h = gcd(f, g)``, and ``cff = quo(f, h)`` and ``cfg = quo(g, h)`` are, so called, cofactors of ``f`` and ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 1, x).cofactors(Poly(x**2 - 3*x + 2, x)) (Poly(x - 1, x, domain='ZZ'), Poly(x + 1, x, domain='ZZ'), Poly(x - 2, x, domain='ZZ')) """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'cofactors'): h, cff, cfg = F.cofactors(G) else: # pragma: no cover raise OperationNotSupported(f, 'cofactors') return per(h), per(cff), per(cfg) def gcd(f, g): """ Returns the polynomial GCD of ``f`` and ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 1, x).gcd(Poly(x**2 - 3*x + 2, x)) Poly(x - 1, x, domain='ZZ') """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'gcd'): result = F.gcd(G) else: # pragma: no cover raise OperationNotSupported(f, 'gcd') return per(result) def lcm(f, g): """ Returns polynomial LCM of ``f`` and ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 1, x).lcm(Poly(x**2 - 3*x + 2, x)) Poly(x**3 - 2*x**2 - x + 2, x, domain='ZZ') """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'lcm'): result = F.lcm(G) else: # pragma: no cover raise OperationNotSupported(f, 'lcm') return per(result) def trunc(f, p): """ Reduce ``f`` modulo a constant ``p``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(2*x**3 + 3*x**2 + 5*x + 7, x).trunc(3) Poly(-x**3 - x + 1, x, domain='ZZ') """ p = f.rep.dom.convert(p) if hasattr(f.rep, 'trunc'): result = f.rep.trunc(p) else: # pragma: no cover raise OperationNotSupported(f, 'trunc') return f.per(result) def monic(self, auto=True): """ Divides all coefficients by ``LC(f)``. Examples ======== >>> from sympy import Poly, ZZ >>> from sympy.abc import x >>> Poly(3*x**2 + 6*x + 9, x, domain=ZZ).monic() Poly(x**2 + 2*x + 3, x, domain='QQ') >>> Poly(3*x**2 + 4*x + 2, x, domain=ZZ).monic() Poly(x**2 + 4/3*x + 2/3, x, domain='QQ') """ f = self if auto and f.rep.dom.is_Ring: f = f.to_field() if hasattr(f.rep, 'monic'): result = f.rep.monic() else: # pragma: no cover raise OperationNotSupported(f, 'monic') return f.per(result) def content(f): """ Returns the GCD of polynomial coefficients. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(6*x**2 + 8*x + 12, x).content() 2 """ if hasattr(f.rep, 'content'): result = f.rep.content() else: # pragma: no cover raise OperationNotSupported(f, 'content') return f.rep.dom.to_sympy(result) def primitive(f): """ Returns the content and a primitive form of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(2*x**2 + 8*x + 12, x).primitive() (2, Poly(x**2 + 4*x + 6, x, domain='ZZ')) """ if hasattr(f.rep, 'primitive'): cont, result = f.rep.primitive() else: # pragma: no cover raise OperationNotSupported(f, 'primitive') return f.rep.dom.to_sympy(cont), f.per(result) def compose(f, g): """ Computes the functional composition of ``f`` and ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + x, x).compose(Poly(x - 1, x)) Poly(x**2 - x, x, domain='ZZ') """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'compose'): result = F.compose(G) else: # pragma: no cover raise OperationNotSupported(f, 'compose') return per(result) def decompose(f): """ Computes a functional decomposition of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**4 + 2*x**3 - x - 1, x, domain='ZZ').decompose() [Poly(x**2 - x - 1, x, domain='ZZ'), Poly(x**2 + x, x, domain='ZZ')] """ if hasattr(f.rep, 'decompose'): result = f.rep.decompose() else: # pragma: no cover raise OperationNotSupported(f, 'decompose') return list(map(f.per, result)) def shift(f, a): """ Efficiently compute Taylor shift ``f(x + a)``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 2*x + 1, x).shift(2) Poly(x**2 + 2*x + 1, x, domain='ZZ') """ if hasattr(f.rep, 'shift'): result = f.rep.shift(a) else: # pragma: no cover raise OperationNotSupported(f, 'shift') return f.per(result) def transform(f, p, q): """ Efficiently evaluate the functional transformation ``q**n * f(p/q)``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1, x), Poly(x - 1, x)) Poly(4, x, domain='ZZ') """ P, Q = p.unify(q) F, P = f.unify(P) F, Q = F.unify(Q) if hasattr(F.rep, 'transform'): result = F.rep.transform(P.rep, Q.rep) else: # pragma: no cover raise OperationNotSupported(F, 'transform') return F.per(result) def sturm(self, auto=True): """ Computes the Sturm sequence of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**3 - 2*x**2 + x - 3, x).sturm() [Poly(x**3 - 2*x**2 + x - 3, x, domain='QQ'), Poly(3*x**2 - 4*x + 1, x, domain='QQ'), Poly(2/9*x + 25/9, x, domain='QQ'), Poly(-2079/4, x, domain='QQ')] """ f = self if auto and f.rep.dom.is_Ring: f = f.to_field() if hasattr(f.rep, 'sturm'): result = f.rep.sturm() else: # pragma: no cover raise OperationNotSupported(f, 'sturm') return list(map(f.per, result)) def gff_list(f): """ Computes greatest factorial factorization of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = x**5 + 2*x**4 - x**3 - 2*x**2 >>> Poly(f).gff_list() [(Poly(x, x, domain='ZZ'), 1), (Poly(x + 2, x, domain='ZZ'), 4)] """ if hasattr(f.rep, 'gff_list'): result = f.rep.gff_list() else: # pragma: no cover raise OperationNotSupported(f, 'gff_list') return [(f.per(g), k) for g, k in result] def norm(f): """ Computes the product, ``Norm(f)``, of the conjugates of a polynomial ``f`` defined over a number field ``K``. Examples ======== >>> from sympy import Poly, sqrt >>> from sympy.abc import x >>> a, b = sqrt(2), sqrt(3) A polynomial over a quadratic extension. Two conjugates x - a and x + a. >>> f = Poly(x - a, x, extension=a) >>> f.norm() Poly(x**2 - 2, x, domain='QQ') A polynomial over a quartic extension. Four conjugates x - a, x - a, x + a and x + a. >>> f = Poly(x - a, x, extension=(a, b)) >>> f.norm() Poly(x**4 - 4*x**2 + 4, x, domain='QQ') """ if hasattr(f.rep, 'norm'): r = f.rep.norm() else: # pragma: no cover raise OperationNotSupported(f, 'norm') return f.per(r) def sqf_norm(f): """ Computes square-free norm of ``f``. Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and ``r(x) = Norm(g(x))`` is a square-free polynomial over ``K``, where ``a`` is the algebraic extension of the ground domain. Examples ======== >>> from sympy import Poly, sqrt >>> from sympy.abc import x >>> s, f, r = Poly(x**2 + 1, x, extension=[sqrt(3)]).sqf_norm() >>> s 1 >>> f Poly(x**2 - 2*sqrt(3)*x + 4, x, domain='QQ<sqrt(3)>') >>> r Poly(x**4 - 4*x**2 + 16, x, domain='QQ') """ if hasattr(f.rep, 'sqf_norm'): s, g, r = f.rep.sqf_norm() else: # pragma: no cover raise OperationNotSupported(f, 'sqf_norm') return s, f.per(g), f.per(r) def sqf_part(f): """ Computes square-free part of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**3 - 3*x - 2, x).sqf_part() Poly(x**2 - x - 2, x, domain='ZZ') """ if hasattr(f.rep, 'sqf_part'): result = f.rep.sqf_part() else: # pragma: no cover raise OperationNotSupported(f, 'sqf_part') return f.per(result) def sqf_list(f, all=False): """ Returns a list of square-free factors of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = 2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16 >>> Poly(f).sqf_list() (2, [(Poly(x + 1, x, domain='ZZ'), 2), (Poly(x + 2, x, domain='ZZ'), 3)]) >>> Poly(f).sqf_list(all=True) (2, [(Poly(1, x, domain='ZZ'), 1), (Poly(x + 1, x, domain='ZZ'), 2), (Poly(x + 2, x, domain='ZZ'), 3)]) """ if hasattr(f.rep, 'sqf_list'): coeff, factors = f.rep.sqf_list(all) else: # pragma: no cover raise OperationNotSupported(f, 'sqf_list') return f.rep.dom.to_sympy(coeff), [(f.per(g), k) for g, k in factors] def sqf_list_include(f, all=False): """ Returns a list of square-free factors of ``f``. Examples ======== >>> from sympy import Poly, expand >>> from sympy.abc import x >>> f = expand(2*(x + 1)**3*x**4) >>> f 2*x**7 + 6*x**6 + 6*x**5 + 2*x**4 >>> Poly(f).sqf_list_include() [(Poly(2, x, domain='ZZ'), 1), (Poly(x + 1, x, domain='ZZ'), 3), (Poly(x, x, domain='ZZ'), 4)] >>> Poly(f).sqf_list_include(all=True) [(Poly(2, x, domain='ZZ'), 1), (Poly(1, x, domain='ZZ'), 2), (Poly(x + 1, x, domain='ZZ'), 3), (Poly(x, x, domain='ZZ'), 4)] """ if hasattr(f.rep, 'sqf_list_include'): factors = f.rep.sqf_list_include(all) else: # pragma: no cover raise OperationNotSupported(f, 'sqf_list_include') return [(f.per(g), k) for g, k in factors] def factor_list(f): """ Returns a list of irreducible factors of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> f = 2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y >>> Poly(f).factor_list() (2, [(Poly(x + y, x, y, domain='ZZ'), 1), (Poly(x**2 + 1, x, y, domain='ZZ'), 2)]) """ if hasattr(f.rep, 'factor_list'): try: coeff, factors = f.rep.factor_list() except DomainError: return S.One, [(f, 1)] else: # pragma: no cover raise OperationNotSupported(f, 'factor_list') return f.rep.dom.to_sympy(coeff), [(f.per(g), k) for g, k in factors] def factor_list_include(f): """ Returns a list of irreducible factors of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> f = 2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y >>> Poly(f).factor_list_include() [(Poly(2*x + 2*y, x, y, domain='ZZ'), 1), (Poly(x**2 + 1, x, y, domain='ZZ'), 2)] """ if hasattr(f.rep, 'factor_list_include'): try: factors = f.rep.factor_list_include() except DomainError: return [(f, 1)] else: # pragma: no cover raise OperationNotSupported(f, 'factor_list_include') return [(f.per(g), k) for g, k in factors] def intervals(f, all=False, eps=None, inf=None, sup=None, fast=False, sqf=False): """ Compute isolating intervals for roots of ``f``. For real roots the Vincent-Akritas-Strzebonski (VAS) continued fractions method is used. References ========== .. [#] Alkiviadis G. Akritas and Adam W. Strzebonski: A Comparative Study of Two Real Root Isolation Methods . Nonlinear Analysis: Modelling and Control, Vol. 10, No. 4, 297-304, 2005. .. [#] Alkiviadis G. Akritas, Adam W. Strzebonski and Panagiotis S. Vigklas: Improving the Performance of the Continued Fractions Method Using new Bounds of Positive Roots. Nonlinear Analysis: Modelling and Control, Vol. 13, No. 3, 265-279, 2008. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 3, x).intervals() [((-2, -1), 1), ((1, 2), 1)] >>> Poly(x**2 - 3, x).intervals(eps=1e-2) [((-26/15, -19/11), 1), ((19/11, 26/15), 1)] """ if eps is not None: eps = QQ.convert(eps) if eps <= 0: raise ValueError("'eps' must be a positive rational") if inf is not None: inf = QQ.convert(inf) if sup is not None: sup = QQ.convert(sup) if hasattr(f.rep, 'intervals'): result = f.rep.intervals( all=all, eps=eps, inf=inf, sup=sup, fast=fast, sqf=sqf) else: # pragma: no cover raise OperationNotSupported(f, 'intervals') if sqf: def _real(interval): s, t = interval return (QQ.to_sympy(s), QQ.to_sympy(t)) if not all: return list(map(_real, result)) def _complex(rectangle): (u, v), (s, t) = rectangle return (QQ.to_sympy(u) + I*QQ.to_sympy(v), QQ.to_sympy(s) + I*QQ.to_sympy(t)) real_part, complex_part = result return list(map(_real, real_part)), list(map(_complex, complex_part)) else: def _real(interval): (s, t), k = interval return ((QQ.to_sympy(s), QQ.to_sympy(t)), k) if not all: return list(map(_real, result)) def _complex(rectangle): ((u, v), (s, t)), k = rectangle return ((QQ.to_sympy(u) + I*QQ.to_sympy(v), QQ.to_sympy(s) + I*QQ.to_sympy(t)), k) real_part, complex_part = result return list(map(_real, real_part)), list(map(_complex, complex_part)) def refine_root(f, s, t, eps=None, steps=None, fast=False, check_sqf=False): """ Refine an isolating interval of a root to the given precision. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 3, x).refine_root(1, 2, eps=1e-2) (19/11, 26/15) """ if check_sqf and not f.is_sqf: raise PolynomialError("only square-free polynomials supported") s, t = QQ.convert(s), QQ.convert(t) if eps is not None: eps = QQ.convert(eps) if eps <= 0: raise ValueError("'eps' must be a positive rational") if steps is not None: steps = int(steps) elif eps is None: steps = 1 if hasattr(f.rep, 'refine_root'): S, T = f.rep.refine_root(s, t, eps=eps, steps=steps, fast=fast) else: # pragma: no cover raise OperationNotSupported(f, 'refine_root') return QQ.to_sympy(S), QQ.to_sympy(T) def count_roots(f, inf=None, sup=None): """ Return the number of roots of ``f`` in ``[inf, sup]`` interval. Examples ======== >>> from sympy import Poly, I >>> from sympy.abc import x >>> Poly(x**4 - 4, x).count_roots(-3, 3) 2 >>> Poly(x**4 - 4, x).count_roots(0, 1 + 3*I) 1 """ inf_real, sup_real = True, True if inf is not None: inf = sympify(inf) if inf is S.NegativeInfinity: inf = None else: re, im = inf.as_real_imag() if not im: inf = QQ.convert(inf) else: inf, inf_real = list(map(QQ.convert, (re, im))), False if sup is not None: sup = sympify(sup) if sup is S.Infinity: sup = None else: re, im = sup.as_real_imag() if not im: sup = QQ.convert(sup) else: sup, sup_real = list(map(QQ.convert, (re, im))), False if inf_real and sup_real: if hasattr(f.rep, 'count_real_roots'): count = f.rep.count_real_roots(inf=inf, sup=sup) else: # pragma: no cover raise OperationNotSupported(f, 'count_real_roots') else: if inf_real and inf is not None: inf = (inf, QQ.zero) if sup_real and sup is not None: sup = (sup, QQ.zero) if hasattr(f.rep, 'count_complex_roots'): count = f.rep.count_complex_roots(inf=inf, sup=sup) else: # pragma: no cover raise OperationNotSupported(f, 'count_complex_roots') return Integer(count) def root(f, index, radicals=True): """ Get an indexed root of a polynomial. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = Poly(2*x**3 - 7*x**2 + 4*x + 4) >>> f.root(0) -1/2 >>> f.root(1) 2 >>> f.root(2) 2 >>> f.root(3) Traceback (most recent call last): ... IndexError: root index out of [-3, 2] range, got 3 >>> Poly(x**5 + x + 1).root(0) CRootOf(x**3 - x**2 + 1, 0) """ return sympy.polys.rootoftools.rootof(f, index, radicals=radicals) def real_roots(f, multiple=True, radicals=True): """ Return a list of real roots with multiplicities. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(2*x**3 - 7*x**2 + 4*x + 4).real_roots() [-1/2, 2, 2] >>> Poly(x**3 + x + 1).real_roots() [CRootOf(x**3 + x + 1, 0)] """ reals = sympy.polys.rootoftools.CRootOf.real_roots(f, radicals=radicals) if multiple: return reals else: return group(reals, multiple=False) def all_roots(f, multiple=True, radicals=True): """ Return a list of real and complex roots with multiplicities. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(2*x**3 - 7*x**2 + 4*x + 4).all_roots() [-1/2, 2, 2] >>> Poly(x**3 + x + 1).all_roots() [CRootOf(x**3 + x + 1, 0), CRootOf(x**3 + x + 1, 1), CRootOf(x**3 + x + 1, 2)] """ roots = sympy.polys.rootoftools.CRootOf.all_roots(f, radicals=radicals) if multiple: return roots else: return group(roots, multiple=False) def nroots(f, n=15, maxsteps=50, cleanup=True): """ Compute numerical approximations of roots of ``f``. Parameters ========== n ... the number of digits to calculate maxsteps ... the maximum number of iterations to do If the accuracy `n` cannot be reached in `maxsteps`, it will raise an exception. You need to rerun with higher maxsteps. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 3).nroots(n=15) [-1.73205080756888, 1.73205080756888] >>> Poly(x**2 - 3).nroots(n=30) [-1.73205080756887729352744634151, 1.73205080756887729352744634151] """ from sympy.functions.elementary.complexes import sign if f.is_multivariate: raise MultivariatePolynomialError( "can't compute numerical roots of %s" % f) if f.degree() <= 0: return [] # For integer and rational coefficients, convert them to integers only # (for accuracy). Otherwise just try to convert the coefficients to # mpmath.mpc and raise an exception if the conversion fails. if f.rep.dom is ZZ: coeffs = [int(coeff) for coeff in f.all_coeffs()] elif f.rep.dom is QQ: denoms = [coeff.q for coeff in f.all_coeffs()] from sympy.core.numbers import ilcm fac = ilcm(*denoms) coeffs = [int(coeff*fac) for coeff in f.all_coeffs()] else: coeffs = [coeff.evalf(n=n).as_real_imag() for coeff in f.all_coeffs()] try: coeffs = [mpmath.mpc(*coeff) for coeff in coeffs] except TypeError: raise DomainError("Numerical domain expected, got %s" % \ f.rep.dom) dps = mpmath.mp.dps mpmath.mp.dps = n try: # We need to add extra precision to guard against losing accuracy. # 10 times the degree of the polynomial seems to work well. roots = mpmath.polyroots(coeffs, maxsteps=maxsteps, cleanup=cleanup, error=False, extraprec=f.degree()*10) # Mpmath puts real roots first, then complex ones (as does all_roots) # so we make sure this convention holds here, too. roots = list(map(sympify, sorted(roots, key=lambda r: (1 if r.imag else 0, r.real, abs(r.imag), sign(r.imag))))) except NoConvergence: raise NoConvergence( 'convergence to root failed; try n < %s or maxsteps > %s' % ( n, maxsteps)) finally: mpmath.mp.dps = dps return roots def ground_roots(f): """ Compute roots of ``f`` by factorization in the ground domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**6 - 4*x**4 + 4*x**3 - x**2).ground_roots() {0: 2, 1: 2} """ if f.is_multivariate: raise MultivariatePolynomialError( "can't compute ground roots of %s" % f) roots = {} for factor, k in f.factor_list()[1]: if factor.is_linear: a, b = factor.all_coeffs() roots[-b/a] = k return roots def nth_power_roots_poly(f, n): """ Construct a polynomial with n-th powers of roots of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = Poly(x**4 - x**2 + 1) >>> f.nth_power_roots_poly(2) Poly(x**4 - 2*x**3 + 3*x**2 - 2*x + 1, x, domain='ZZ') >>> f.nth_power_roots_poly(3) Poly(x**4 + 2*x**2 + 1, x, domain='ZZ') >>> f.nth_power_roots_poly(4) Poly(x**4 + 2*x**3 + 3*x**2 + 2*x + 1, x, domain='ZZ') >>> f.nth_power_roots_poly(12) Poly(x**4 - 4*x**3 + 6*x**2 - 4*x + 1, x, domain='ZZ') """ if f.is_multivariate: raise MultivariatePolynomialError( "must be a univariate polynomial") N = sympify(n) if N.is_Integer and N >= 1: n = int(N) else: raise ValueError("'n' must an integer and n >= 1, got %s" % n) x = f.gen t = Dummy('t') r = f.resultant(f.__class__.from_expr(x**n - t, x, t)) return r.replace(t, x) def cancel(f, g, include=False): """ Cancel common factors in a rational function ``f/g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(2*x**2 - 2, x).cancel(Poly(x**2 - 2*x + 1, x)) (1, Poly(2*x + 2, x, domain='ZZ'), Poly(x - 1, x, domain='ZZ')) >>> Poly(2*x**2 - 2, x).cancel(Poly(x**2 - 2*x + 1, x), include=True) (Poly(2*x + 2, x, domain='ZZ'), Poly(x - 1, x, domain='ZZ')) """ dom, per, F, G = f._unify(g) if hasattr(F, 'cancel'): result = F.cancel(G, include=include) else: # pragma: no cover raise OperationNotSupported(f, 'cancel') if not include: if dom.has_assoc_Ring: dom = dom.get_ring() cp, cq, p, q = result cp = dom.to_sympy(cp) cq = dom.to_sympy(cq) return cp/cq, per(p), per(q) else: return tuple(map(per, result)) @property def is_zero(f): """ Returns ``True`` if ``f`` is a zero polynomial. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(0, x).is_zero True >>> Poly(1, x).is_zero False """ return f.rep.is_zero @property def is_one(f): """ Returns ``True`` if ``f`` is a unit polynomial. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(0, x).is_one False >>> Poly(1, x).is_one True """ return f.rep.is_one @property def is_sqf(f): """ Returns ``True`` if ``f`` is a square-free polynomial. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 2*x + 1, x).is_sqf False >>> Poly(x**2 - 1, x).is_sqf True """ return f.rep.is_sqf @property def is_monic(f): """ Returns ``True`` if the leading coefficient of ``f`` is one. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x + 2, x).is_monic True >>> Poly(2*x + 2, x).is_monic False """ return f.rep.is_monic @property def is_primitive(f): """ Returns ``True`` if GCD of the coefficients of ``f`` is one. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(2*x**2 + 6*x + 12, x).is_primitive False >>> Poly(x**2 + 3*x + 6, x).is_primitive True """ return f.rep.is_primitive @property def is_ground(f): """ Returns ``True`` if ``f`` is an element of the ground domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x, x).is_ground False >>> Poly(2, x).is_ground True >>> Poly(y, x).is_ground True """ return f.rep.is_ground @property def is_linear(f): """ Returns ``True`` if ``f`` is linear in all its variables. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x + y + 2, x, y).is_linear True >>> Poly(x*y + 2, x, y).is_linear False """ return f.rep.is_linear @property def is_quadratic(f): """ Returns ``True`` if ``f`` is quadratic in all its variables. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x*y + 2, x, y).is_quadratic True >>> Poly(x*y**2 + 2, x, y).is_quadratic False """ return f.rep.is_quadratic @property def is_monomial(f): """ Returns ``True`` if ``f`` is zero or has only one term. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(3*x**2, x).is_monomial True >>> Poly(3*x**2 + 1, x).is_monomial False """ return f.rep.is_monomial @property def is_homogeneous(f): """ Returns ``True`` if ``f`` is a homogeneous polynomial. A homogeneous polynomial is a polynomial whose all monomials with non-zero coefficients have the same total degree. If you want not only to check if a polynomial is homogeneous but also compute its homogeneous order, then use :func:`Poly.homogeneous_order`. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + x*y, x, y).is_homogeneous True >>> Poly(x**3 + x*y, x, y).is_homogeneous False """ return f.rep.is_homogeneous @property def is_irreducible(f): """ Returns ``True`` if ``f`` has no factors over its domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + x + 1, x, modulus=2).is_irreducible True >>> Poly(x**2 + 1, x, modulus=2).is_irreducible False """ return f.rep.is_irreducible @property def is_univariate(f): """ Returns ``True`` if ``f`` is a univariate polynomial. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + x + 1, x).is_univariate True >>> Poly(x*y**2 + x*y + 1, x, y).is_univariate False >>> Poly(x*y**2 + x*y + 1, x).is_univariate True >>> Poly(x**2 + x + 1, x, y).is_univariate False """ return len(f.gens) == 1 @property def is_multivariate(f): """ Returns ``True`` if ``f`` is a multivariate polynomial. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + x + 1, x).is_multivariate False >>> Poly(x*y**2 + x*y + 1, x, y).is_multivariate True >>> Poly(x*y**2 + x*y + 1, x).is_multivariate False >>> Poly(x**2 + x + 1, x, y).is_multivariate True """ return len(f.gens) != 1 @property def is_cyclotomic(f): """ Returns ``True`` if ``f`` is a cyclotomic polnomial. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = x**16 + x**14 - x**10 + x**8 - x**6 + x**2 + 1 >>> Poly(f).is_cyclotomic False >>> g = x**16 + x**14 - x**10 - x**8 - x**6 + x**2 + 1 >>> Poly(g).is_cyclotomic True """ return f.rep.is_cyclotomic def __abs__(f): return f.abs() def __neg__(f): return f.neg() @_sympifyit('g', NotImplemented) def __add__(f, g): if not g.is_Poly: try: g = f.__class__(g, *f.gens) except PolynomialError: return f.as_expr() + g return f.add(g) @_sympifyit('g', NotImplemented) def __radd__(f, g): if not g.is_Poly: try: g = f.__class__(g, *f.gens) except PolynomialError: return g + f.as_expr() return g.add(f) @_sympifyit('g', NotImplemented) def __sub__(f, g): if not g.is_Poly: try: g = f.__class__(g, *f.gens) except PolynomialError: return f.as_expr() - g return f.sub(g) @_sympifyit('g', NotImplemented) def __rsub__(f, g): if not g.is_Poly: try: g = f.__class__(g, *f.gens) except PolynomialError: return g - f.as_expr() return g.sub(f) @_sympifyit('g', NotImplemented) def __mul__(f, g): if not g.is_Poly: try: g = f.__class__(g, *f.gens) except PolynomialError: return f.as_expr()*g return f.mul(g) @_sympifyit('g', NotImplemented) def __rmul__(f, g): if not g.is_Poly: try: g = f.__class__(g, *f.gens) except PolynomialError: return g*f.as_expr() return g.mul(f) @_sympifyit('n', NotImplemented) def __pow__(f, n): if n.is_Integer and n >= 0: return f.pow(n) else: return f.as_expr()**n @_sympifyit('g', NotImplemented) def __divmod__(f, g): if not g.is_Poly: g = f.__class__(g, *f.gens) return f.div(g) @_sympifyit('g', NotImplemented) def __rdivmod__(f, g): if not g.is_Poly: g = f.__class__(g, *f.gens) return g.div(f) @_sympifyit('g', NotImplemented) def __mod__(f, g): if not g.is_Poly: g = f.__class__(g, *f.gens) return f.rem(g) @_sympifyit('g', NotImplemented) def __rmod__(f, g): if not g.is_Poly: g = f.__class__(g, *f.gens) return g.rem(f) @_sympifyit('g', NotImplemented) def __floordiv__(f, g): if not g.is_Poly: g = f.__class__(g, *f.gens) return f.quo(g) @_sympifyit('g', NotImplemented) def __rfloordiv__(f, g): if not g.is_Poly: g = f.__class__(g, *f.gens) return g.quo(f) @_sympifyit('g', NotImplemented) def __div__(f, g): return f.as_expr()/g.as_expr() @_sympifyit('g', NotImplemented) def __rdiv__(f, g): return g.as_expr()/f.as_expr() __truediv__ = __div__ __rtruediv__ = __rdiv__ @_sympifyit('other', NotImplemented) def __eq__(self, other): f, g = self, other if not g.is_Poly: try: g = f.__class__(g, f.gens, domain=f.get_domain()) except (PolynomialError, DomainError, CoercionFailed): return False if f.gens != g.gens: return False if f.rep.dom != g.rep.dom: try: dom = f.rep.dom.unify(g.rep.dom, f.gens) except UnificationFailed: return False f = f.set_domain(dom) g = g.set_domain(dom) return f.rep == g.rep @_sympifyit('g', NotImplemented) def __ne__(f, g): return not f == g def __nonzero__(f): return not f.is_zero __bool__ = __nonzero__ def eq(f, g, strict=False): if not strict: return f == g else: return f._strict_eq(sympify(g)) def ne(f, g, strict=False): return not f.eq(g, strict=strict) def _strict_eq(f, g): return isinstance(g, f.__class__) and f.gens == g.gens and f.rep.eq(g.rep, strict=True) @public class PurePoly(Poly): """Class for representing pure polynomials. """ def _hashable_content(self): """Allow SymPy to hash Poly instances. """ return (self.rep,) def __hash__(self): return super(PurePoly, self).__hash__() @property def free_symbols(self): """ Free symbols of a polynomial. Examples ======== >>> from sympy import PurePoly >>> from sympy.abc import x, y >>> PurePoly(x**2 + 1).free_symbols set() >>> PurePoly(x**2 + y).free_symbols set() >>> PurePoly(x**2 + y, x).free_symbols {y} """ return self.free_symbols_in_domain @_sympifyit('other', NotImplemented) def __eq__(self, other): f, g = self, other if not g.is_Poly: try: g = f.__class__(g, f.gens, domain=f.get_domain()) except (PolynomialError, DomainError, CoercionFailed): return False if len(f.gens) != len(g.gens): return False if f.rep.dom != g.rep.dom: try: dom = f.rep.dom.unify(g.rep.dom, f.gens) except UnificationFailed: return False f = f.set_domain(dom) g = g.set_domain(dom) return f.rep == g.rep def _strict_eq(f, g): return isinstance(g, f.__class__) and f.rep.eq(g.rep, strict=True) def _unify(f, g): g = sympify(g) if not g.is_Poly: try: return f.rep.dom, f.per, f.rep, f.rep.per(f.rep.dom.from_sympy(g)) except CoercionFailed: raise UnificationFailed("can't unify %s with %s" % (f, g)) if len(f.gens) != len(g.gens): raise UnificationFailed("can't unify %s with %s" % (f, g)) if not (isinstance(f.rep, DMP) and isinstance(g.rep, DMP)): raise UnificationFailed("can't unify %s with %s" % (f, g)) cls = f.__class__ gens = f.gens dom = f.rep.dom.unify(g.rep.dom, gens) F = f.rep.convert(dom) G = g.rep.convert(dom) def per(rep, dom=dom, gens=gens, remove=None): if remove is not None: gens = gens[:remove] + gens[remove + 1:] if not gens: return dom.to_sympy(rep) return cls.new(rep, *gens) return dom, per, F, G @public def poly_from_expr(expr, *gens, **args): """Construct a polynomial from an expression. """ opt = options.build_options(gens, args) return _poly_from_expr(expr, opt) def _poly_from_expr(expr, opt): """Construct a polynomial from an expression. """ orig, expr = expr, sympify(expr) if not isinstance(expr, Basic): raise PolificationFailed(opt, orig, expr) elif expr.is_Poly: poly = expr.__class__._from_poly(expr, opt) opt.gens = poly.gens opt.domain = poly.domain if opt.polys is None: opt.polys = True return poly, opt elif opt.expand: expr = expr.expand() rep, opt = _dict_from_expr(expr, opt) if not opt.gens: raise PolificationFailed(opt, orig, expr) monoms, coeffs = list(zip(*list(rep.items()))) domain = opt.domain if domain is None: opt.domain, coeffs = construct_domain(coeffs, opt=opt) else: coeffs = list(map(domain.from_sympy, coeffs)) rep = dict(list(zip(monoms, coeffs))) poly = Poly._from_dict(rep, opt) if opt.polys is None: opt.polys = False return poly, opt @public def parallel_poly_from_expr(exprs, *gens, **args): """Construct polynomials from expressions. """ opt = options.build_options(gens, args) return _parallel_poly_from_expr(exprs, opt) def _parallel_poly_from_expr(exprs, opt): """Construct polynomials from expressions. """ from sympy.functions.elementary.piecewise import Piecewise if len(exprs) == 2: f, g = exprs if isinstance(f, Poly) and isinstance(g, Poly): f = f.__class__._from_poly(f, opt) g = g.__class__._from_poly(g, opt) f, g = f.unify(g) opt.gens = f.gens opt.domain = f.domain if opt.polys is None: opt.polys = True return [f, g], opt origs, exprs = list(exprs), [] _exprs, _polys = [], [] failed = False for i, expr in enumerate(origs): expr = sympify(expr) if isinstance(expr, Basic): if expr.is_Poly: _polys.append(i) else: _exprs.append(i) if opt.expand: expr = expr.expand() else: failed = True exprs.append(expr) if failed: raise PolificationFailed(opt, origs, exprs, True) if _polys: # XXX: this is a temporary solution for i in _polys: exprs[i] = exprs[i].as_expr() reps, opt = _parallel_dict_from_expr(exprs, opt) if not opt.gens: raise PolificationFailed(opt, origs, exprs, True) for k in opt.gens: if isinstance(k, Piecewise): raise PolynomialError("Piecewise generators do not make sense") coeffs_list, lengths = [], [] all_monoms = [] all_coeffs = [] for rep in reps: monoms, coeffs = list(zip(*list(rep.items()))) coeffs_list.extend(coeffs) all_monoms.append(monoms) lengths.append(len(coeffs)) domain = opt.domain if domain is None: opt.domain, coeffs_list = construct_domain(coeffs_list, opt=opt) else: coeffs_list = list(map(domain.from_sympy, coeffs_list)) for k in lengths: all_coeffs.append(coeffs_list[:k]) coeffs_list = coeffs_list[k:] polys = [] for monoms, coeffs in zip(all_monoms, all_coeffs): rep = dict(list(zip(monoms, coeffs))) poly = Poly._from_dict(rep, opt) polys.append(poly) if opt.polys is None: opt.polys = bool(_polys) return polys, opt def _update_args(args, key, value): """Add a new ``(key, value)`` pair to arguments ``dict``. """ args = dict(args) if key not in args: args[key] = value return args @public def degree(f, gen=0): """ Return the degree of ``f`` in the given variable. The degree of 0 is negative infinity. Examples ======== >>> from sympy import degree >>> from sympy.abc import x, y >>> degree(x**2 + y*x + 1, gen=x) 2 >>> degree(x**2 + y*x + 1, gen=y) 1 >>> degree(0, x) -oo See also ======== total_degree degree_list """ f = sympify(f, strict=True) gen_is_Num = sympify(gen, strict=True).is_Number if f.is_Poly: p = f isNum = p.as_expr().is_Number else: isNum = f.is_Number if not isNum: if gen_is_Num: p, _ = poly_from_expr(f) else: p, _ = poly_from_expr(f, gen) if isNum: return S.Zero if f else S.NegativeInfinity if not gen_is_Num: if f.is_Poly and gen not in p.gens: # try recast without explicit gens p, _ = poly_from_expr(f.as_expr()) if gen not in p.gens: return S.Zero elif not f.is_Poly and len(f.free_symbols) > 1: raise TypeError(filldedent(''' A symbolic generator of interest is required for a multivariate expression like func = %s, e.g. degree(func, gen = %s) instead of degree(func, gen = %s). ''' % (f, next(ordered(f.free_symbols)), gen))) return Integer(p.degree(gen)) @public def total_degree(f, *gens): """ Return the total_degree of ``f`` in the given variables. Examples ======== >>> from sympy import total_degree, Poly >>> from sympy.abc import x, y, z >>> total_degree(1) 0 >>> total_degree(x + x*y) 2 >>> total_degree(x + x*y, x) 1 If the expression is a Poly and no variables are given then the generators of the Poly will be used: >>> p = Poly(x + x*y, y) >>> total_degree(p) 1 To deal with the underlying expression of the Poly, convert it to an Expr: >>> total_degree(p.as_expr()) 2 This is done automatically if any variables are given: >>> total_degree(p, x) 1 See also ======== degree """ p = sympify(f) if p.is_Poly: p = p.as_expr() if p.is_Number: rv = 0 else: if f.is_Poly: gens = gens or f.gens rv = Poly(p, gens).total_degree() return Integer(rv) @public def degree_list(f, *gens, **args): """ Return a list of degrees of ``f`` in all variables. Examples ======== >>> from sympy import degree_list >>> from sympy.abc import x, y >>> degree_list(x**2 + y*x + 1) (2, 1) """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('degree_list', 1, exc) degrees = F.degree_list() return tuple(map(Integer, degrees)) @public def LC(f, *gens, **args): """ Return the leading coefficient of ``f``. Examples ======== >>> from sympy import LC >>> from sympy.abc import x, y >>> LC(4*x**2 + 2*x*y**2 + x*y + 3*y) 4 """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('LC', 1, exc) return F.LC(order=opt.order) @public def LM(f, *gens, **args): """ Return the leading monomial of ``f``. Examples ======== >>> from sympy import LM >>> from sympy.abc import x, y >>> LM(4*x**2 + 2*x*y**2 + x*y + 3*y) x**2 """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('LM', 1, exc) monom = F.LM(order=opt.order) return monom.as_expr() @public def LT(f, *gens, **args): """ Return the leading term of ``f``. Examples ======== >>> from sympy import LT >>> from sympy.abc import x, y >>> LT(4*x**2 + 2*x*y**2 + x*y + 3*y) 4*x**2 """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('LT', 1, exc) monom, coeff = F.LT(order=opt.order) return coeff*monom.as_expr() @public def pdiv(f, g, *gens, **args): """ Compute polynomial pseudo-division of ``f`` and ``g``. Examples ======== >>> from sympy import pdiv >>> from sympy.abc import x >>> pdiv(x**2 + 1, 2*x - 4) (2*x + 4, 20) """ options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('pdiv', 2, exc) q, r = F.pdiv(G) if not opt.polys: return q.as_expr(), r.as_expr() else: return q, r @public def prem(f, g, *gens, **args): """ Compute polynomial pseudo-remainder of ``f`` and ``g``. Examples ======== >>> from sympy import prem >>> from sympy.abc import x >>> prem(x**2 + 1, 2*x - 4) 20 """ options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('prem', 2, exc) r = F.prem(G) if not opt.polys: return r.as_expr() else: return r @public def pquo(f, g, *gens, **args): """ Compute polynomial pseudo-quotient of ``f`` and ``g``. Examples ======== >>> from sympy import pquo >>> from sympy.abc import x >>> pquo(x**2 + 1, 2*x - 4) 2*x + 4 >>> pquo(x**2 - 1, 2*x - 1) 2*x + 1 """ options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('pquo', 2, exc) try: q = F.pquo(G) except ExactQuotientFailed: raise ExactQuotientFailed(f, g) if not opt.polys: return q.as_expr() else: return q @public def pexquo(f, g, *gens, **args): """ Compute polynomial exact pseudo-quotient of ``f`` and ``g``. Examples ======== >>> from sympy import pexquo >>> from sympy.abc import x >>> pexquo(x**2 - 1, 2*x - 2) 2*x + 2 >>> pexquo(x**2 + 1, 2*x - 4) Traceback (most recent call last): ... ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1 """ options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('pexquo', 2, exc) q = F.pexquo(G) if not opt.polys: return q.as_expr() else: return q @public def div(f, g, *gens, **args): """ Compute polynomial division of ``f`` and ``g``. Examples ======== >>> from sympy import div, ZZ, QQ >>> from sympy.abc import x >>> div(x**2 + 1, 2*x - 4, domain=ZZ) (0, x**2 + 1) >>> div(x**2 + 1, 2*x - 4, domain=QQ) (x/2 + 1, 5) """ options.allowed_flags(args, ['auto', 'polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('div', 2, exc) q, r = F.div(G, auto=opt.auto) if not opt.polys: return q.as_expr(), r.as_expr() else: return q, r @public def rem(f, g, *gens, **args): """ Compute polynomial remainder of ``f`` and ``g``. Examples ======== >>> from sympy import rem, ZZ, QQ >>> from sympy.abc import x >>> rem(x**2 + 1, 2*x - 4, domain=ZZ) x**2 + 1 >>> rem(x**2 + 1, 2*x - 4, domain=QQ) 5 """ options.allowed_flags(args, ['auto', 'polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('rem', 2, exc) r = F.rem(G, auto=opt.auto) if not opt.polys: return r.as_expr() else: return r @public def quo(f, g, *gens, **args): """ Compute polynomial quotient of ``f`` and ``g``. Examples ======== >>> from sympy import quo >>> from sympy.abc import x >>> quo(x**2 + 1, 2*x - 4) x/2 + 1 >>> quo(x**2 - 1, x - 1) x + 1 """ options.allowed_flags(args, ['auto', 'polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('quo', 2, exc) q = F.quo(G, auto=opt.auto) if not opt.polys: return q.as_expr() else: return q @public def exquo(f, g, *gens, **args): """ Compute polynomial exact quotient of ``f`` and ``g``. Examples ======== >>> from sympy import exquo >>> from sympy.abc import x >>> exquo(x**2 - 1, x - 1) x + 1 >>> exquo(x**2 + 1, 2*x - 4) Traceback (most recent call last): ... ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1 """ options.allowed_flags(args, ['auto', 'polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('exquo', 2, exc) q = F.exquo(G, auto=opt.auto) if not opt.polys: return q.as_expr() else: return q @public def half_gcdex(f, g, *gens, **args): """ Half extended Euclidean algorithm of ``f`` and ``g``. Returns ``(s, h)`` such that ``h = gcd(f, g)`` and ``s*f = h (mod g)``. Examples ======== >>> from sympy import half_gcdex >>> from sympy.abc import x >>> half_gcdex(x**4 - 2*x**3 - 6*x**2 + 12*x + 15, x**3 + x**2 - 4*x - 4) (3/5 - x/5, x + 1) """ options.allowed_flags(args, ['auto', 'polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: domain, (a, b) = construct_domain(exc.exprs) try: s, h = domain.half_gcdex(a, b) except NotImplementedError: raise ComputationFailed('half_gcdex', 2, exc) else: return domain.to_sympy(s), domain.to_sympy(h) s, h = F.half_gcdex(G, auto=opt.auto) if not opt.polys: return s.as_expr(), h.as_expr() else: return s, h @public def gcdex(f, g, *gens, **args): """ Extended Euclidean algorithm of ``f`` and ``g``. Returns ``(s, t, h)`` such that ``h = gcd(f, g)`` and ``s*f + t*g = h``. Examples ======== >>> from sympy import gcdex >>> from sympy.abc import x >>> gcdex(x**4 - 2*x**3 - 6*x**2 + 12*x + 15, x**3 + x**2 - 4*x - 4) (3/5 - x/5, x**2/5 - 6*x/5 + 2, x + 1) """ options.allowed_flags(args, ['auto', 'polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: domain, (a, b) = construct_domain(exc.exprs) try: s, t, h = domain.gcdex(a, b) except NotImplementedError: raise ComputationFailed('gcdex', 2, exc) else: return domain.to_sympy(s), domain.to_sympy(t), domain.to_sympy(h) s, t, h = F.gcdex(G, auto=opt.auto) if not opt.polys: return s.as_expr(), t.as_expr(), h.as_expr() else: return s, t, h @public def invert(f, g, *gens, **args): """ Invert ``f`` modulo ``g`` when possible. Examples ======== >>> from sympy import invert, S >>> from sympy.core.numbers import mod_inverse >>> from sympy.abc import x >>> invert(x**2 - 1, 2*x - 1) -4/3 >>> invert(x**2 - 1, x - 1) Traceback (most recent call last): ... NotInvertible: zero divisor For more efficient inversion of Rationals, use the ``mod_inverse`` function: >>> mod_inverse(3, 5) 2 >>> (S(2)/5).invert(S(7)/3) 5/2 See Also ======== sympy.core.numbers.mod_inverse """ options.allowed_flags(args, ['auto', 'polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: domain, (a, b) = construct_domain(exc.exprs) try: return domain.to_sympy(domain.invert(a, b)) except NotImplementedError: raise ComputationFailed('invert', 2, exc) h = F.invert(G, auto=opt.auto) if not opt.polys: return h.as_expr() else: return h @public def subresultants(f, g, *gens, **args): """ Compute subresultant PRS of ``f`` and ``g``. Examples ======== >>> from sympy import subresultants >>> from sympy.abc import x >>> subresultants(x**2 + 1, x**2 - 1) [x**2 + 1, x**2 - 1, -2] """ options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('subresultants', 2, exc) result = F.subresultants(G) if not opt.polys: return [r.as_expr() for r in result] else: return result @public def resultant(f, g, *gens, **args): """ Compute resultant of ``f`` and ``g``. Examples ======== >>> from sympy import resultant >>> from sympy.abc import x >>> resultant(x**2 + 1, x**2 - 1) 4 """ includePRS = args.pop('includePRS', False) options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('resultant', 2, exc) if includePRS: result, R = F.resultant(G, includePRS=includePRS) else: result = F.resultant(G) if not opt.polys: if includePRS: return result.as_expr(), [r.as_expr() for r in R] return result.as_expr() else: if includePRS: return result, R return result @public def discriminant(f, *gens, **args): """ Compute discriminant of ``f``. Examples ======== >>> from sympy import discriminant >>> from sympy.abc import x >>> discriminant(x**2 + 2*x + 3) -8 """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('discriminant', 1, exc) result = F.discriminant() if not opt.polys: return result.as_expr() else: return result @public def cofactors(f, g, *gens, **args): """ Compute GCD and cofactors of ``f`` and ``g``. Returns polynomials ``(h, cff, cfg)`` such that ``h = gcd(f, g)``, and ``cff = quo(f, h)`` and ``cfg = quo(g, h)`` are, so called, cofactors of ``f`` and ``g``. Examples ======== >>> from sympy import cofactors >>> from sympy.abc import x >>> cofactors(x**2 - 1, x**2 - 3*x + 2) (x - 1, x + 1, x - 2) """ options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: domain, (a, b) = construct_domain(exc.exprs) try: h, cff, cfg = domain.cofactors(a, b) except NotImplementedError: raise ComputationFailed('cofactors', 2, exc) else: return domain.to_sympy(h), domain.to_sympy(cff), domain.to_sympy(cfg) h, cff, cfg = F.cofactors(G) if not opt.polys: return h.as_expr(), cff.as_expr(), cfg.as_expr() else: return h, cff, cfg @public def gcd_list(seq, *gens, **args): """ Compute GCD of a list of polynomials. Examples ======== >>> from sympy import gcd_list >>> from sympy.abc import x >>> gcd_list([x**3 - 1, x**2 - 1, x**2 - 3*x + 2]) x - 1 """ seq = sympify(seq) def try_non_polynomial_gcd(seq): if not gens and not args: domain, numbers = construct_domain(seq) if not numbers: return domain.zero elif domain.is_Numerical: result, numbers = numbers[0], numbers[1:] for number in numbers: result = domain.gcd(result, number) if domain.is_one(result): break return domain.to_sympy(result) return None result = try_non_polynomial_gcd(seq) if result is not None: return result options.allowed_flags(args, ['polys']) try: polys, opt = parallel_poly_from_expr(seq, *gens, **args) # gcd for domain Q[irrational] (purely algebraic irrational) if len(seq) > 1 and all(elt.is_algebraic and elt.is_irrational for elt in seq): a = seq[-1] lst = [ (a/elt).ratsimp() for elt in seq[:-1] ] if all(frc.is_rational for frc in lst): lc = 1 for frc in lst: lc = lcm(lc, frc.as_numer_denom()[0]) return a/lc except PolificationFailed as exc: result = try_non_polynomial_gcd(exc.exprs) if result is not None: return result else: raise ComputationFailed('gcd_list', len(seq), exc) if not polys: if not opt.polys: return S.Zero else: return Poly(0, opt=opt) result, polys = polys[0], polys[1:] for poly in polys: result = result.gcd(poly) if result.is_one: break if not opt.polys: return result.as_expr() else: return result @public def gcd(f, g=None, *gens, **args): """ Compute GCD of ``f`` and ``g``. Examples ======== >>> from sympy import gcd >>> from sympy.abc import x >>> gcd(x**2 - 1, x**2 - 3*x + 2) x - 1 """ if hasattr(f, '__iter__'): if g is not None: gens = (g,) + gens return gcd_list(f, *gens, **args) elif g is None: raise TypeError("gcd() takes 2 arguments or a sequence of arguments") options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) # gcd for domain Q[irrational] (purely algebraic irrational) a, b = map(sympify, (f, g)) if a.is_algebraic and a.is_irrational and b.is_algebraic and b.is_irrational: frc = (a/b).ratsimp() if frc.is_rational: return a/frc.as_numer_denom()[0] except PolificationFailed as exc: domain, (a, b) = construct_domain(exc.exprs) try: return domain.to_sympy(domain.gcd(a, b)) except NotImplementedError: raise ComputationFailed('gcd', 2, exc) result = F.gcd(G) if not opt.polys: return result.as_expr() else: return result @public def lcm_list(seq, *gens, **args): """ Compute LCM of a list of polynomials. Examples ======== >>> from sympy import lcm_list >>> from sympy.abc import x >>> lcm_list([x**3 - 1, x**2 - 1, x**2 - 3*x + 2]) x**5 - x**4 - 2*x**3 - x**2 + x + 2 """ seq = sympify(seq) def try_non_polynomial_lcm(seq): if not gens and not args: domain, numbers = construct_domain(seq) if not numbers: return domain.one elif domain.is_Numerical: result, numbers = numbers[0], numbers[1:] for number in numbers: result = domain.lcm(result, number) return domain.to_sympy(result) return None result = try_non_polynomial_lcm(seq) if result is not None: return result options.allowed_flags(args, ['polys']) try: polys, opt = parallel_poly_from_expr(seq, *gens, **args) # lcm for domain Q[irrational] (purely algebraic irrational) if len(seq) > 1 and all(elt.is_algebraic and elt.is_irrational for elt in seq): a = seq[-1] lst = [ (a/elt).ratsimp() for elt in seq[:-1] ] if all(frc.is_rational for frc in lst): lc = 1 for frc in lst: lc = lcm(lc, frc.as_numer_denom()[1]) return a*lc except PolificationFailed as exc: result = try_non_polynomial_lcm(exc.exprs) if result is not None: return result else: raise ComputationFailed('lcm_list', len(seq), exc) if not polys: if not opt.polys: return S.One else: return Poly(1, opt=opt) result, polys = polys[0], polys[1:] for poly in polys: result = result.lcm(poly) if not opt.polys: return result.as_expr() else: return result @public def lcm(f, g=None, *gens, **args): """ Compute LCM of ``f`` and ``g``. Examples ======== >>> from sympy import lcm >>> from sympy.abc import x >>> lcm(x**2 - 1, x**2 - 3*x + 2) x**3 - 2*x**2 - x + 2 """ if hasattr(f, '__iter__'): if g is not None: gens = (g,) + gens return lcm_list(f, *gens, **args) elif g is None: raise TypeError("lcm() takes 2 arguments or a sequence of arguments") options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) # lcm for domain Q[irrational] (purely algebraic irrational) a, b = map(sympify, (f, g)) if a.is_algebraic and a.is_irrational and b.is_algebraic and b.is_irrational: frc = (a/b).ratsimp() if frc.is_rational: return a*frc.as_numer_denom()[1] except PolificationFailed as exc: domain, (a, b) = construct_domain(exc.exprs) try: return domain.to_sympy(domain.lcm(a, b)) except NotImplementedError: raise ComputationFailed('lcm', 2, exc) result = F.lcm(G) if not opt.polys: return result.as_expr() else: return result @public def terms_gcd(f, *gens, **args): """ Remove GCD of terms from ``f``. If the ``deep`` flag is True, then the arguments of ``f`` will have terms_gcd applied to them. If a fraction is factored out of ``f`` and ``f`` is an Add, then an unevaluated Mul will be returned so that automatic simplification does not redistribute it. The hint ``clear``, when set to False, can be used to prevent such factoring when all coefficients are not fractions. Examples ======== >>> from sympy import terms_gcd, cos >>> from sympy.abc import x, y >>> terms_gcd(x**6*y**2 + x**3*y, x, y) x**3*y*(x**3*y + 1) The default action of polys routines is to expand the expression given to them. terms_gcd follows this behavior: >>> terms_gcd((3+3*x)*(x+x*y)) 3*x*(x*y + x + y + 1) If this is not desired then the hint ``expand`` can be set to False. In this case the expression will be treated as though it were comprised of one or more terms: >>> terms_gcd((3+3*x)*(x+x*y), expand=False) (3*x + 3)*(x*y + x) In order to traverse factors of a Mul or the arguments of other functions, the ``deep`` hint can be used: >>> terms_gcd((3 + 3*x)*(x + x*y), expand=False, deep=True) 3*x*(x + 1)*(y + 1) >>> terms_gcd(cos(x + x*y), deep=True) cos(x*(y + 1)) Rationals are factored out by default: >>> terms_gcd(x + y/2) (2*x + y)/2 Only the y-term had a coefficient that was a fraction; if one does not want to factor out the 1/2 in cases like this, the flag ``clear`` can be set to False: >>> terms_gcd(x + y/2, clear=False) x + y/2 >>> terms_gcd(x*y/2 + y**2, clear=False) y*(x/2 + y) The ``clear`` flag is ignored if all coefficients are fractions: >>> terms_gcd(x/3 + y/2, clear=False) (2*x + 3*y)/6 See Also ======== sympy.core.exprtools.gcd_terms, sympy.core.exprtools.factor_terms """ from sympy.core.relational import Equality orig = sympify(f) if not isinstance(f, Expr) or f.is_Atom: return orig if args.get('deep', False): new = f.func(*[terms_gcd(a, *gens, **args) for a in f.args]) args.pop('deep') args['expand'] = False return terms_gcd(new, *gens, **args) if isinstance(f, Equality): return f clear = args.pop('clear', True) options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: return exc.expr J, f = F.terms_gcd() if opt.domain.is_Ring: if opt.domain.is_Field: denom, f = f.clear_denoms(convert=True) coeff, f = f.primitive() if opt.domain.is_Field: coeff /= denom else: coeff = S.One term = Mul(*[x**j for x, j in zip(f.gens, J)]) if coeff == 1: coeff = S.One if term == 1: return orig if clear: return _keep_coeff(coeff, term*f.as_expr()) # base the clearing on the form of the original expression, not # the (perhaps) Mul that we have now coeff, f = _keep_coeff(coeff, f.as_expr(), clear=False).as_coeff_Mul() return _keep_coeff(coeff, term*f, clear=False) @public def trunc(f, p, *gens, **args): """ Reduce ``f`` modulo a constant ``p``. Examples ======== >>> from sympy import trunc >>> from sympy.abc import x >>> trunc(2*x**3 + 3*x**2 + 5*x + 7, 3) -x**3 - x + 1 """ options.allowed_flags(args, ['auto', 'polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('trunc', 1, exc) result = F.trunc(sympify(p)) if not opt.polys: return result.as_expr() else: return result @public def monic(f, *gens, **args): """ Divide all coefficients of ``f`` by ``LC(f)``. Examples ======== >>> from sympy import monic >>> from sympy.abc import x >>> monic(3*x**2 + 4*x + 2) x**2 + 4*x/3 + 2/3 """ options.allowed_flags(args, ['auto', 'polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('monic', 1, exc) result = F.monic(auto=opt.auto) if not opt.polys: return result.as_expr() else: return result @public def content(f, *gens, **args): """ Compute GCD of coefficients of ``f``. Examples ======== >>> from sympy import content >>> from sympy.abc import x >>> content(6*x**2 + 8*x + 12) 2 """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('content', 1, exc) return F.content() @public def primitive(f, *gens, **args): """ Compute content and the primitive form of ``f``. Examples ======== >>> from sympy.polys.polytools import primitive >>> from sympy.abc import x >>> primitive(6*x**2 + 8*x + 12) (2, 3*x**2 + 4*x + 6) >>> eq = (2 + 2*x)*x + 2 Expansion is performed by default: >>> primitive(eq) (2, x**2 + x + 1) Set ``expand`` to False to shut this off. Note that the extraction will not be recursive; use the as_content_primitive method for recursive, non-destructive Rational extraction. >>> primitive(eq, expand=False) (1, x*(2*x + 2) + 2) >>> eq.as_content_primitive() (2, x*(x + 1) + 1) """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('primitive', 1, exc) cont, result = F.primitive() if not opt.polys: return cont, result.as_expr() else: return cont, result @public def compose(f, g, *gens, **args): """ Compute functional composition ``f(g)``. Examples ======== >>> from sympy import compose >>> from sympy.abc import x >>> compose(x**2 + x, x - 1) x**2 - x """ options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('compose', 2, exc) result = F.compose(G) if not opt.polys: return result.as_expr() else: return result @public def decompose(f, *gens, **args): """ Compute functional decomposition of ``f``. Examples ======== >>> from sympy import decompose >>> from sympy.abc import x >>> decompose(x**4 + 2*x**3 - x - 1) [x**2 - x - 1, x**2 + x] """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('decompose', 1, exc) result = F.decompose() if not opt.polys: return [r.as_expr() for r in result] else: return result @public def sturm(f, *gens, **args): """ Compute Sturm sequence of ``f``. Examples ======== >>> from sympy import sturm >>> from sympy.abc import x >>> sturm(x**3 - 2*x**2 + x - 3) [x**3 - 2*x**2 + x - 3, 3*x**2 - 4*x + 1, 2*x/9 + 25/9, -2079/4] """ options.allowed_flags(args, ['auto', 'polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('sturm', 1, exc) result = F.sturm(auto=opt.auto) if not opt.polys: return [r.as_expr() for r in result] else: return result @public def gff_list(f, *gens, **args): """ Compute a list of greatest factorial factors of ``f``. Note that the input to ff() and rf() should be Poly instances to use the definitions here. Examples ======== >>> from sympy import gff_list, ff, Poly >>> from sympy.abc import x >>> f = Poly(x**5 + 2*x**4 - x**3 - 2*x**2, x) >>> gff_list(f) [(Poly(x, x, domain='ZZ'), 1), (Poly(x + 2, x, domain='ZZ'), 4)] >>> (ff(Poly(x), 1)*ff(Poly(x + 2), 4)).expand() == f True >>> f = Poly(x**12 + 6*x**11 - 11*x**10 - 56*x**9 + 220*x**8 + 208*x**7 - \ 1401*x**6 + 1090*x**5 + 2715*x**4 - 6720*x**3 - 1092*x**2 + 5040*x, x) >>> gff_list(f) [(Poly(x**3 + 7, x, domain='ZZ'), 2), (Poly(x**2 + 5*x, x, domain='ZZ'), 3)] >>> ff(Poly(x**3 + 7, x), 2)*ff(Poly(x**2 + 5*x, x), 3) == f True """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('gff_list', 1, exc) factors = F.gff_list() if not opt.polys: return [(g.as_expr(), k) for g, k in factors] else: return factors @public def gff(f, *gens, **args): """Compute greatest factorial factorization of ``f``. """ raise NotImplementedError('symbolic falling factorial') @public def sqf_norm(f, *gens, **args): """ Compute square-free norm of ``f``. Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and ``r(x) = Norm(g(x))`` is a square-free polynomial over ``K``, where ``a`` is the algebraic extension of the ground domain. Examples ======== >>> from sympy import sqf_norm, sqrt >>> from sympy.abc import x >>> sqf_norm(x**2 + 1, extension=[sqrt(3)]) (1, x**2 - 2*sqrt(3)*x + 4, x**4 - 4*x**2 + 16) """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('sqf_norm', 1, exc) s, g, r = F.sqf_norm() if not opt.polys: return Integer(s), g.as_expr(), r.as_expr() else: return Integer(s), g, r @public def sqf_part(f, *gens, **args): """ Compute square-free part of ``f``. Examples ======== >>> from sympy import sqf_part >>> from sympy.abc import x >>> sqf_part(x**3 - 3*x - 2) x**2 - x - 2 """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('sqf_part', 1, exc) result = F.sqf_part() if not opt.polys: return result.as_expr() else: return result def _sorted_factors(factors, method): """Sort a list of ``(expr, exp)`` pairs. """ if method == 'sqf': def key(obj): poly, exp = obj rep = poly.rep.rep return (exp, len(rep), len(poly.gens), rep) else: def key(obj): poly, exp = obj rep = poly.rep.rep return (len(rep), len(poly.gens), exp, rep) return sorted(factors, key=key) def _factors_product(factors): """Multiply a list of ``(expr, exp)`` pairs. """ return Mul(*[f.as_expr()**k for f, k in factors]) def _symbolic_factor_list(expr, opt, method): """Helper function for :func:`_symbolic_factor`. """ coeff, factors = S.One, [] args = [i._eval_factor() if hasattr(i, '_eval_factor') else i for i in Mul.make_args(expr)] for arg in args: if arg.is_Number: coeff *= arg continue if arg.is_Mul: args.extend(arg.args) continue if arg.is_Pow: base, exp = arg.args if base.is_Number and exp.is_Number: coeff *= arg continue if base.is_Number: factors.append((base, exp)) continue else: base, exp = arg, S.One try: poly, _ = _poly_from_expr(base, opt) except PolificationFailed as exc: factors.append((exc.expr, exp)) else: func = getattr(poly, method + '_list') _coeff, _factors = func() if _coeff is not S.One: if exp.is_Integer: coeff *= _coeff**exp elif _coeff.is_positive: factors.append((_coeff, exp)) else: _factors.append((_coeff, S.One)) if exp is S.One: factors.extend(_factors) elif exp.is_integer: factors.extend([(f, k*exp) for f, k in _factors]) else: other = [] for f, k in _factors: if f.as_expr().is_positive: factors.append((f, k*exp)) else: other.append((f, k)) factors.append((_factors_product(other), exp)) return coeff, factors def _symbolic_factor(expr, opt, method): """Helper function for :func:`_factor`. """ if isinstance(expr, Expr) and not expr.is_Relational: if hasattr(expr,'_eval_factor'): return expr._eval_factor() coeff, factors = _symbolic_factor_list(together(expr, fraction=opt['fraction']), opt, method) return _keep_coeff(coeff, _factors_product(factors)) elif hasattr(expr, 'args'): return expr.func(*[_symbolic_factor(arg, opt, method) for arg in expr.args]) elif hasattr(expr, '__iter__'): return expr.__class__([_symbolic_factor(arg, opt, method) for arg in expr]) else: return expr def _generic_factor_list(expr, gens, args, method): """Helper function for :func:`sqf_list` and :func:`factor_list`. """ options.allowed_flags(args, ['frac', 'polys']) opt = options.build_options(gens, args) expr = sympify(expr) if isinstance(expr, Expr) and not expr.is_Relational: numer, denom = together(expr).as_numer_denom() cp, fp = _symbolic_factor_list(numer, opt, method) cq, fq = _symbolic_factor_list(denom, opt, method) if fq and not opt.frac: raise PolynomialError("a polynomial expected, got %s" % expr) _opt = opt.clone(dict(expand=True)) for factors in (fp, fq): for i, (f, k) in enumerate(factors): if not f.is_Poly: f, _ = _poly_from_expr(f, _opt) factors[i] = (f, k) fp = _sorted_factors(fp, method) fq = _sorted_factors(fq, method) if not opt.polys: fp = [(f.as_expr(), k) for f, k in fp] fq = [(f.as_expr(), k) for f, k in fq] coeff = cp/cq if not opt.frac: return coeff, fp else: return coeff, fp, fq else: raise PolynomialError("a polynomial expected, got %s" % expr) def _generic_factor(expr, gens, args, method): """Helper function for :func:`sqf` and :func:`factor`. """ fraction = args.pop('fraction', True) options.allowed_flags(args, []) opt = options.build_options(gens, args) opt['fraction'] = fraction return _symbolic_factor(sympify(expr), opt, method) def to_rational_coeffs(f): """ try to transform a polynomial to have rational coefficients try to find a transformation ``x = alpha*y`` ``f(x) = lc*alpha**n * g(y)`` where ``g`` is a polynomial with rational coefficients, ``lc`` the leading coefficient. If this fails, try ``x = y + beta`` ``f(x) = g(y)`` Returns ``None`` if ``g`` not found; ``(lc, alpha, None, g)`` in case of rescaling ``(None, None, beta, g)`` in case of translation Notes ===== Currently it transforms only polynomials without roots larger than 2. Examples ======== >>> from sympy import sqrt, Poly, simplify >>> from sympy.polys.polytools import to_rational_coeffs >>> from sympy.abc import x >>> p = Poly(((x**2-1)*(x-2)).subs({x:x*(1 + sqrt(2))}), x, domain='EX') >>> lc, r, _, g = to_rational_coeffs(p) >>> lc, r (7 + 5*sqrt(2), 2 - 2*sqrt(2)) >>> g Poly(x**3 + x**2 - 1/4*x - 1/4, x, domain='QQ') >>> r1 = simplify(1/r) >>> Poly(lc*r**3*(g.as_expr()).subs({x:x*r1}), x, domain='EX') == p True """ from sympy.simplify.simplify import simplify def _try_rescale(f, f1=None): """ try rescaling ``x -> alpha*x`` to convert f to a polynomial with rational coefficients. Returns ``alpha, f``; if the rescaling is successful, ``alpha`` is the rescaling factor, and ``f`` is the rescaled polynomial; else ``alpha`` is ``None``. """ from sympy.core.add import Add if not len(f.gens) == 1 or not (f.gens[0]).is_Atom: return None, f n = f.degree() lc = f.LC() f1 = f1 or f1.monic() coeffs = f1.all_coeffs()[1:] coeffs = [simplify(coeffx) for coeffx in coeffs] if coeffs[-2]: rescale1_x = simplify(coeffs[-2]/coeffs[-1]) coeffs1 = [] for i in range(len(coeffs)): coeffx = simplify(coeffs[i]*rescale1_x**(i + 1)) if not coeffx.is_rational: break coeffs1.append(coeffx) else: rescale_x = simplify(1/rescale1_x) x = f.gens[0] v = [x**n] for i in range(1, n + 1): v.append(coeffs1[i - 1]*x**(n - i)) f = Add(*v) f = Poly(f) return lc, rescale_x, f return None def _try_translate(f, f1=None): """ try translating ``x -> x + alpha`` to convert f to a polynomial with rational coefficients. Returns ``alpha, f``; if the translating is successful, ``alpha`` is the translating factor, and ``f`` is the shifted polynomial; else ``alpha`` is ``None``. """ from sympy.core.add import Add if not len(f.gens) == 1 or not (f.gens[0]).is_Atom: return None, f n = f.degree() f1 = f1 or f1.monic() coeffs = f1.all_coeffs()[1:] c = simplify(coeffs[0]) if c and not c.is_rational: func = Add if c.is_Add: args = c.args func = c.func else: args = [c] c1, c2 = sift(args, lambda z: z.is_rational, binary=True) alpha = -func(*c2)/n f2 = f1.shift(alpha) return alpha, f2 return None def _has_square_roots(p): """ Return True if ``f`` is a sum with square roots but no other root """ from sympy.core.exprtools import Factors coeffs = p.coeffs() has_sq = False for y in coeffs: for x in Add.make_args(y): f = Factors(x).factors r = [wx.q for b, wx in f.items() if b.is_number and wx.is_Rational and wx.q >= 2] if not r: continue if min(r) == 2: has_sq = True if max(r) > 2: return False return has_sq if f.get_domain().is_EX and _has_square_roots(f): f1 = f.monic() r = _try_rescale(f, f1) if r: return r[0], r[1], None, r[2] else: r = _try_translate(f, f1) if r: return None, None, r[0], r[1] return None def _torational_factor_list(p, x): """ helper function to factor polynomial using to_rational_coeffs Examples ======== >>> from sympy.polys.polytools import _torational_factor_list >>> from sympy.abc import x >>> from sympy import sqrt, expand, Mul >>> p = expand(((x**2-1)*(x-2)).subs({x:x*(1 + sqrt(2))})) >>> factors = _torational_factor_list(p, x); factors (-2, [(-x*(1 + sqrt(2))/2 + 1, 1), (-x*(1 + sqrt(2)) - 1, 1), (-x*(1 + sqrt(2)) + 1, 1)]) >>> expand(factors[0]*Mul(*[z[0] for z in factors[1]])) == p True >>> p = expand(((x**2-1)*(x-2)).subs({x:x + sqrt(2)})) >>> factors = _torational_factor_list(p, x); factors (1, [(x - 2 + sqrt(2), 1), (x - 1 + sqrt(2), 1), (x + 1 + sqrt(2), 1)]) >>> expand(factors[0]*Mul(*[z[0] for z in factors[1]])) == p True """ from sympy.simplify.simplify import simplify p1 = Poly(p, x, domain='EX') n = p1.degree() res = to_rational_coeffs(p1) if not res: return None lc, r, t, g = res factors = factor_list(g.as_expr()) if lc: c = simplify(factors[0]*lc*r**n) r1 = simplify(1/r) a = [] for z in factors[1:][0]: a.append((simplify(z[0].subs({x: x*r1})), z[1])) else: c = factors[0] a = [] for z in factors[1:][0]: a.append((z[0].subs({x: x - t}), z[1])) return (c, a) @public def sqf_list(f, *gens, **args): """ Compute a list of square-free factors of ``f``. Examples ======== >>> from sympy import sqf_list >>> from sympy.abc import x >>> sqf_list(2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16) (2, [(x + 1, 2), (x + 2, 3)]) """ return _generic_factor_list(f, gens, args, method='sqf') @public def sqf(f, *gens, **args): """ Compute square-free factorization of ``f``. Examples ======== >>> from sympy import sqf >>> from sympy.abc import x >>> sqf(2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16) 2*(x + 1)**2*(x + 2)**3 """ return _generic_factor(f, gens, args, method='sqf') @public def factor_list(f, *gens, **args): """ Compute a list of irreducible factors of ``f``. Examples ======== >>> from sympy import factor_list >>> from sympy.abc import x, y >>> factor_list(2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y) (2, [(x + y, 1), (x**2 + 1, 2)]) """ return _generic_factor_list(f, gens, args, method='factor') @public def factor(f, *gens, **args): """ Compute the factorization of expression, ``f``, into irreducibles. (To factor an integer into primes, use ``factorint``.) There two modes implemented: symbolic and formal. If ``f`` is not an instance of :class:`Poly` and generators are not specified, then the former mode is used. Otherwise, the formal mode is used. In symbolic mode, :func:`factor` will traverse the expression tree and factor its components without any prior expansion, unless an instance of :class:`Add` is encountered (in this case formal factorization is used). This way :func:`factor` can handle large or symbolic exponents. By default, the factorization is computed over the rationals. To factor over other domain, e.g. an algebraic or finite field, use appropriate options: ``extension``, ``modulus`` or ``domain``. Examples ======== >>> from sympy import factor, sqrt, exp >>> from sympy.abc import x, y >>> factor(2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y) 2*(x + y)*(x**2 + 1)**2 >>> factor(x**2 + 1) x**2 + 1 >>> factor(x**2 + 1, modulus=2) (x + 1)**2 >>> factor(x**2 + 1, gaussian=True) (x - I)*(x + I) >>> factor(x**2 - 2, extension=sqrt(2)) (x - sqrt(2))*(x + sqrt(2)) >>> factor((x**2 - 1)/(x**2 + 4*x + 4)) (x - 1)*(x + 1)/(x + 2)**2 >>> factor((x**2 + 4*x + 4)**10000000*(x**2 + 1)) (x + 2)**20000000*(x**2 + 1) By default, factor deals with an expression as a whole: >>> eq = 2**(x**2 + 2*x + 1) >>> factor(eq) 2**(x**2 + 2*x + 1) If the ``deep`` flag is True then subexpressions will be factored: >>> factor(eq, deep=True) 2**((x + 1)**2) If the ``fraction`` flag is False then rational expressions won't be combined. By default it is True. >>> factor(5*x + 3*exp(2 - 7*x), deep=True) (5*x*exp(7*x) + 3*exp(2))*exp(-7*x) >>> factor(5*x + 3*exp(2 - 7*x), deep=True, fraction=False) 5*x + 3*exp(2)*exp(-7*x) See Also ======== sympy.ntheory.factor_.factorint """ f = sympify(f) if args.pop('deep', False): from sympy.simplify.simplify import bottom_up def _try_factor(expr): """ Factor, but avoid changing the expression when unable to. """ fac = factor(expr, *gens, **args) if fac.is_Mul or fac.is_Pow: return fac return expr f = bottom_up(f, _try_factor) # clean up any subexpressions that may have been expanded # while factoring out a larger expression partials = {} muladd = f.atoms(Mul, Add) for p in muladd: fac = factor(p, *gens, **args) if (fac.is_Mul or fac.is_Pow) and fac != p: partials[p] = fac return f.xreplace(partials) try: return _generic_factor(f, gens, args, method='factor') except PolynomialError as msg: if not f.is_commutative: from sympy.core.exprtools import factor_nc return factor_nc(f) else: raise PolynomialError(msg) @public def intervals(F, all=False, eps=None, inf=None, sup=None, strict=False, fast=False, sqf=False): """ Compute isolating intervals for roots of ``f``. Examples ======== >>> from sympy import intervals >>> from sympy.abc import x >>> intervals(x**2 - 3) [((-2, -1), 1), ((1, 2), 1)] >>> intervals(x**2 - 3, eps=1e-2) [((-26/15, -19/11), 1), ((19/11, 26/15), 1)] """ if not hasattr(F, '__iter__'): try: F = Poly(F) except GeneratorsNeeded: return [] return F.intervals(all=all, eps=eps, inf=inf, sup=sup, fast=fast, sqf=sqf) else: polys, opt = parallel_poly_from_expr(F, domain='QQ') if len(opt.gens) > 1: raise MultivariatePolynomialError for i, poly in enumerate(polys): polys[i] = poly.rep.rep if eps is not None: eps = opt.domain.convert(eps) if eps <= 0: raise ValueError("'eps' must be a positive rational") if inf is not None: inf = opt.domain.convert(inf) if sup is not None: sup = opt.domain.convert(sup) intervals = dup_isolate_real_roots_list(polys, opt.domain, eps=eps, inf=inf, sup=sup, strict=strict, fast=fast) result = [] for (s, t), indices in intervals: s, t = opt.domain.to_sympy(s), opt.domain.to_sympy(t) result.append(((s, t), indices)) return result @public def refine_root(f, s, t, eps=None, steps=None, fast=False, check_sqf=False): """ Refine an isolating interval of a root to the given precision. Examples ======== >>> from sympy import refine_root >>> from sympy.abc import x >>> refine_root(x**2 - 3, 1, 2, eps=1e-2) (19/11, 26/15) """ try: F = Poly(f) except GeneratorsNeeded: raise PolynomialError( "can't refine a root of %s, not a polynomial" % f) return F.refine_root(s, t, eps=eps, steps=steps, fast=fast, check_sqf=check_sqf) @public def count_roots(f, inf=None, sup=None): """ Return the number of roots of ``f`` in ``[inf, sup]`` interval. If one of ``inf`` or ``sup`` is complex, it will return the number of roots in the complex rectangle with corners at ``inf`` and ``sup``. Examples ======== >>> from sympy import count_roots, I >>> from sympy.abc import x >>> count_roots(x**4 - 4, -3, 3) 2 >>> count_roots(x**4 - 4, 0, 1 + 3*I) 1 """ try: F = Poly(f, greedy=False) except GeneratorsNeeded: raise PolynomialError("can't count roots of %s, not a polynomial" % f) return F.count_roots(inf=inf, sup=sup) @public def real_roots(f, multiple=True): """ Return a list of real roots with multiplicities of ``f``. Examples ======== >>> from sympy import real_roots >>> from sympy.abc import x >>> real_roots(2*x**3 - 7*x**2 + 4*x + 4) [-1/2, 2, 2] """ try: F = Poly(f, greedy=False) except GeneratorsNeeded: raise PolynomialError( "can't compute real roots of %s, not a polynomial" % f) return F.real_roots(multiple=multiple) @public def nroots(f, n=15, maxsteps=50, cleanup=True): """ Compute numerical approximations of roots of ``f``. Examples ======== >>> from sympy import nroots >>> from sympy.abc import x >>> nroots(x**2 - 3, n=15) [-1.73205080756888, 1.73205080756888] >>> nroots(x**2 - 3, n=30) [-1.73205080756887729352744634151, 1.73205080756887729352744634151] """ try: F = Poly(f, greedy=False) except GeneratorsNeeded: raise PolynomialError( "can't compute numerical roots of %s, not a polynomial" % f) return F.nroots(n=n, maxsteps=maxsteps, cleanup=cleanup) @public def ground_roots(f, *gens, **args): """ Compute roots of ``f`` by factorization in the ground domain. Examples ======== >>> from sympy import ground_roots >>> from sympy.abc import x >>> ground_roots(x**6 - 4*x**4 + 4*x**3 - x**2) {0: 2, 1: 2} """ options.allowed_flags(args, []) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('ground_roots', 1, exc) return F.ground_roots() @public def nth_power_roots_poly(f, n, *gens, **args): """ Construct a polynomial with n-th powers of roots of ``f``. Examples ======== >>> from sympy import nth_power_roots_poly, factor, roots >>> from sympy.abc import x >>> f = x**4 - x**2 + 1 >>> g = factor(nth_power_roots_poly(f, 2)) >>> g (x**2 - x + 1)**2 >>> R_f = [ (r**2).expand() for r in roots(f) ] >>> R_g = roots(g).keys() >>> set(R_f) == set(R_g) True """ options.allowed_flags(args, []) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('nth_power_roots_poly', 1, exc) result = F.nth_power_roots_poly(n) if not opt.polys: return result.as_expr() else: return result @public def cancel(f, *gens, **args): """ Cancel common factors in a rational function ``f``. Examples ======== >>> from sympy import cancel, sqrt, Symbol >>> from sympy.abc import x >>> A = Symbol('A', commutative=False) >>> cancel((2*x**2 - 2)/(x**2 - 2*x + 1)) (2*x + 2)/(x - 1) >>> cancel((sqrt(3) + sqrt(15)*A)/(sqrt(2) + sqrt(10)*A)) sqrt(6)/2 """ from sympy.core.exprtools import factor_terms from sympy.functions.elementary.piecewise import Piecewise options.allowed_flags(args, ['polys']) f = sympify(f) if not isinstance(f, (tuple, Tuple)): if f.is_Number or isinstance(f, Relational) or not isinstance(f, Expr): return f f = factor_terms(f, radical=True) p, q = f.as_numer_denom() elif len(f) == 2: p, q = f elif isinstance(f, Tuple): return factor_terms(f) else: raise ValueError('unexpected argument: %s' % f) try: (F, G), opt = parallel_poly_from_expr((p, q), *gens, **args) except PolificationFailed: if not isinstance(f, (tuple, Tuple)): return f else: return S.One, p, q except PolynomialError as msg: if f.is_commutative and not f.has(Piecewise): raise PolynomialError(msg) # Handling of noncommutative and/or piecewise expressions if f.is_Add or f.is_Mul: c, nc = sift(f.args, lambda x: x.is_commutative is True and not x.has(Piecewise), binary=True) nc = [cancel(i) for i in nc] return f.func(cancel(f.func._from_args(c)), *nc) else: reps = [] pot = preorder_traversal(f) next(pot) for e in pot: # XXX: This should really skip anything that's not Expr. if isinstance(e, (tuple, Tuple, BooleanAtom)): continue try: reps.append((e, cancel(e))) pot.skip() # this was handled successfully except NotImplementedError: pass return f.xreplace(dict(reps)) c, P, Q = F.cancel(G) if not isinstance(f, (tuple, Tuple)): return c*(P.as_expr()/Q.as_expr()) else: if not opt.polys: return c, P.as_expr(), Q.as_expr() else: return c, P, Q @public def reduced(f, G, *gens, **args): """ Reduces a polynomial ``f`` modulo a set of polynomials ``G``. Given a polynomial ``f`` and a set of polynomials ``G = (g_1, ..., g_n)``, computes a set of quotients ``q = (q_1, ..., q_n)`` and the remainder ``r`` such that ``f = q_1*g_1 + ... + q_n*g_n + r``, where ``r`` vanishes or ``r`` is a completely reduced polynomial with respect to ``G``. Examples ======== >>> from sympy import reduced >>> from sympy.abc import x, y >>> reduced(2*x**4 + y**2 - x**2 + y**3, [x**3 - x, y**3 - y]) ([2*x, 1], x**2 + y**2 + y) """ options.allowed_flags(args, ['polys', 'auto']) try: polys, opt = parallel_poly_from_expr([f] + list(G), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('reduced', 0, exc) domain = opt.domain retract = False if opt.auto and domain.is_Ring and not domain.is_Field: opt = opt.clone(dict(domain=domain.get_field())) retract = True from sympy.polys.rings import xring _ring, _ = xring(opt.gens, opt.domain, opt.order) for i, poly in enumerate(polys): poly = poly.set_domain(opt.domain).rep.to_dict() polys[i] = _ring.from_dict(poly) Q, r = polys[0].div(polys[1:]) Q = [Poly._from_dict(dict(q), opt) for q in Q] r = Poly._from_dict(dict(r), opt) if retract: try: _Q, _r = [q.to_ring() for q in Q], r.to_ring() except CoercionFailed: pass else: Q, r = _Q, _r if not opt.polys: return [q.as_expr() for q in Q], r.as_expr() else: return Q, r @public def groebner(F, *gens, **args): """ Computes the reduced Groebner basis for a set of polynomials. Use the ``order`` argument to set the monomial ordering that will be used to compute the basis. Allowed orders are ``lex``, ``grlex`` and ``grevlex``. If no order is specified, it defaults to ``lex``. For more information on Groebner bases, see the references and the docstring of `solve_poly_system()`. Examples ======== Example taken from [1]. >>> from sympy import groebner >>> from sympy.abc import x, y >>> F = [x*y - 2*y, 2*y**2 - x**2] >>> groebner(F, x, y, order='lex') GroebnerBasis([x**2 - 2*y**2, x*y - 2*y, y**3 - 2*y], x, y, domain='ZZ', order='lex') >>> groebner(F, x, y, order='grlex') GroebnerBasis([y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y], x, y, domain='ZZ', order='grlex') >>> groebner(F, x, y, order='grevlex') GroebnerBasis([y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y], x, y, domain='ZZ', order='grevlex') By default, an improved implementation of the Buchberger algorithm is used. Optionally, an implementation of the F5B algorithm can be used. The algorithm can be set using ``method`` flag or with the :func:`setup` function from :mod:`sympy.polys.polyconfig`: >>> F = [x**2 - x - 1, (2*x - 1) * y - (x**10 - (1 - x)**10)] >>> groebner(F, x, y, method='buchberger') GroebnerBasis([x**2 - x - 1, y - 55], x, y, domain='ZZ', order='lex') >>> groebner(F, x, y, method='f5b') GroebnerBasis([x**2 - x - 1, y - 55], x, y, domain='ZZ', order='lex') References ========== 1. [Buchberger01]_ 2. [Cox97]_ """ return GroebnerBasis(F, *gens, **args) @public def is_zero_dimensional(F, *gens, **args): """ Checks if the ideal generated by a Groebner basis is zero-dimensional. The algorithm checks if the set of monomials not divisible by the leading monomial of any element of ``F`` is bounded. References ========== David A. Cox, John B. Little, Donal O'Shea. Ideals, Varieties and Algorithms, 3rd edition, p. 230 """ return GroebnerBasis(F, *gens, **args).is_zero_dimensional @public class GroebnerBasis(Basic): """Represents a reduced Groebner basis. """ def __new__(cls, F, *gens, **args): """Compute a reduced Groebner basis for a system of polynomials. """ options.allowed_flags(args, ['polys', 'method']) try: polys, opt = parallel_poly_from_expr(F, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('groebner', len(F), exc) from sympy.polys.rings import PolyRing ring = PolyRing(opt.gens, opt.domain, opt.order) polys = [ring.from_dict(poly.rep.to_dict()) for poly in polys if poly] G = _groebner(polys, ring, method=opt.method) G = [Poly._from_dict(g, opt) for g in G] return cls._new(G, opt) @classmethod def _new(cls, basis, options): obj = Basic.__new__(cls) obj._basis = tuple(basis) obj._options = options return obj @property def args(self): return (Tuple(*self._basis), Tuple(*self._options.gens)) @property def exprs(self): return [poly.as_expr() for poly in self._basis] @property def polys(self): return list(self._basis) @property def gens(self): return self._options.gens @property def domain(self): return self._options.domain @property def order(self): return self._options.order def __len__(self): return len(self._basis) def __iter__(self): if self._options.polys: return iter(self.polys) else: return iter(self.exprs) def __getitem__(self, item): if self._options.polys: basis = self.polys else: basis = self.exprs return basis[item] def __hash__(self): return hash((self._basis, tuple(self._options.items()))) def __eq__(self, other): if isinstance(other, self.__class__): return self._basis == other._basis and self._options == other._options elif iterable(other): return self.polys == list(other) or self.exprs == list(other) else: return False def __ne__(self, other): return not self == other @property def is_zero_dimensional(self): """ Checks if the ideal generated by a Groebner basis is zero-dimensional. The algorithm checks if the set of monomials not divisible by the leading monomial of any element of ``F`` is bounded. References ========== David A. Cox, John B. Little, Donal O'Shea. Ideals, Varieties and Algorithms, 3rd edition, p. 230 """ def single_var(monomial): return sum(map(bool, monomial)) == 1 exponents = Monomial([0]*len(self.gens)) order = self._options.order for poly in self.polys: monomial = poly.LM(order=order) if single_var(monomial): exponents *= monomial # If any element of the exponents vector is zero, then there's # a variable for which there's no degree bound and the ideal # generated by this Groebner basis isn't zero-dimensional. return all(exponents) def fglm(self, order): """ Convert a Groebner basis from one ordering to another. The FGLM algorithm converts reduced Groebner bases of zero-dimensional ideals from one ordering to another. This method is often used when it is infeasible to compute a Groebner basis with respect to a particular ordering directly. Examples ======== >>> from sympy.abc import x, y >>> from sympy import groebner >>> F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1] >>> G = groebner(F, x, y, order='grlex') >>> list(G.fglm('lex')) [2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7] >>> list(groebner(F, x, y, order='lex')) [2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7] References ========== .. [1] J.C. Faugere, P. Gianni, D. Lazard, T. Mora (1994). Efficient Computation of Zero-dimensional Groebner Bases by Change of Ordering """ opt = self._options src_order = opt.order dst_order = monomial_key(order) if src_order == dst_order: return self if not self.is_zero_dimensional: raise NotImplementedError("can't convert Groebner bases of ideals with positive dimension") polys = list(self._basis) domain = opt.domain opt = opt.clone(dict( domain=domain.get_field(), order=dst_order, )) from sympy.polys.rings import xring _ring, _ = xring(opt.gens, opt.domain, src_order) for i, poly in enumerate(polys): poly = poly.set_domain(opt.domain).rep.to_dict() polys[i] = _ring.from_dict(poly) G = matrix_fglm(polys, _ring, dst_order) G = [Poly._from_dict(dict(g), opt) for g in G] if not domain.is_Field: G = [g.clear_denoms(convert=True)[1] for g in G] opt.domain = domain return self._new(G, opt) def reduce(self, expr, auto=True): """ Reduces a polynomial modulo a Groebner basis. Given a polynomial ``f`` and a set of polynomials ``G = (g_1, ..., g_n)``, computes a set of quotients ``q = (q_1, ..., q_n)`` and the remainder ``r`` such that ``f = q_1*f_1 + ... + q_n*f_n + r``, where ``r`` vanishes or ``r`` is a completely reduced polynomial with respect to ``G``. Examples ======== >>> from sympy import groebner, expand >>> from sympy.abc import x, y >>> f = 2*x**4 - x**2 + y**3 + y**2 >>> G = groebner([x**3 - x, y**3 - y]) >>> G.reduce(f) ([2*x, 1], x**2 + y**2 + y) >>> Q, r = _ >>> expand(sum(q*g for q, g in zip(Q, G)) + r) 2*x**4 - x**2 + y**3 + y**2 >>> _ == f True """ poly = Poly._from_expr(expr, self._options) polys = [poly] + list(self._basis) opt = self._options domain = opt.domain retract = False if auto and domain.is_Ring and not domain.is_Field: opt = opt.clone(dict(domain=domain.get_field())) retract = True from sympy.polys.rings import xring _ring, _ = xring(opt.gens, opt.domain, opt.order) for i, poly in enumerate(polys): poly = poly.set_domain(opt.domain).rep.to_dict() polys[i] = _ring.from_dict(poly) Q, r = polys[0].div(polys[1:]) Q = [Poly._from_dict(dict(q), opt) for q in Q] r = Poly._from_dict(dict(r), opt) if retract: try: _Q, _r = [q.to_ring() for q in Q], r.to_ring() except CoercionFailed: pass else: Q, r = _Q, _r if not opt.polys: return [q.as_expr() for q in Q], r.as_expr() else: return Q, r def contains(self, poly): """ Check if ``poly`` belongs the ideal generated by ``self``. Examples ======== >>> from sympy import groebner >>> from sympy.abc import x, y >>> f = 2*x**3 + y**3 + 3*y >>> G = groebner([x**2 + y**2 - 1, x*y - 2]) >>> G.contains(f) True >>> G.contains(f + 1) False """ return self.reduce(poly)[1] == 0 @public def poly(expr, *gens, **args): """ Efficiently transform an expression into a polynomial. Examples ======== >>> from sympy import poly >>> from sympy.abc import x >>> poly(x*(x**2 + x - 1)**2) Poly(x**5 + 2*x**4 - x**3 - 2*x**2 + x, x, domain='ZZ') """ options.allowed_flags(args, []) def _poly(expr, opt): terms, poly_terms = [], [] for term in Add.make_args(expr): factors, poly_factors = [], [] for factor in Mul.make_args(term): if factor.is_Add: poly_factors.append(_poly(factor, opt)) elif factor.is_Pow and factor.base.is_Add and \ factor.exp.is_Integer and factor.exp >= 0: poly_factors.append( _poly(factor.base, opt).pow(factor.exp)) else: factors.append(factor) if not poly_factors: terms.append(term) else: product = poly_factors[0] for factor in poly_factors[1:]: product = product.mul(factor) if factors: factor = Mul(*factors) if factor.is_Number: product = product.mul(factor) else: product = product.mul(Poly._from_expr(factor, opt)) poly_terms.append(product) if not poly_terms: result = Poly._from_expr(expr, opt) else: result = poly_terms[0] for term in poly_terms[1:]: result = result.add(term) if terms: term = Add(*terms) if term.is_Number: result = result.add(term) else: result = result.add(Poly._from_expr(term, opt)) return result.reorder(*opt.get('gens', ()), **args) expr = sympify(expr) if expr.is_Poly: return Poly(expr, *gens, **args) if 'expand' not in args: args['expand'] = False opt = options.build_options(gens, args) return _poly(expr, opt)
ec476415e4beb2cc79a305a803745dfbd460b326c0b4c35abff7ab194f72091a
"""Functions for generating interesting polynomials, e.g. for benchmarking. """ from __future__ import print_function, division from sympy.core import Add, Mul, Symbol, sympify, Dummy, symbols from sympy.core.compatibility import range, string_types from sympy.core.singleton import S from sympy.functions.elementary.miscellaneous import sqrt from sympy.ntheory import nextprime from sympy.polys.densearith import ( dmp_add_term, dmp_neg, dmp_mul, dmp_sqr ) from sympy.polys.densebasic import ( dmp_zero, dmp_one, dmp_ground, dup_from_raw_dict, dmp_raise, dup_random ) from sympy.polys.domains import ZZ from sympy.polys.factortools import dup_zz_cyclotomic_poly from sympy.polys.polyclasses import DMP from sympy.polys.polytools import Poly, PurePoly from sympy.polys.polyutils import _analyze_gens from sympy.utilities import subsets, public @public def swinnerton_dyer_poly(n, x=None, polys=False): """Generates n-th Swinnerton-Dyer polynomial in `x`. Parameters ---------- n : int `n` decides the order of polynomial x : optional polys : bool, optional ``polys=True`` returns an expression, otherwise (default) returns an expression. """ from .numberfields import minimal_polynomial if n <= 0: raise ValueError( "can't generate Swinnerton-Dyer polynomial of order %s" % n) if x is not None: sympify(x) else: x = Dummy('x') if n > 3: p = 2 a = [sqrt(2)] for i in range(2, n + 1): p = nextprime(p) a.append(sqrt(p)) return minimal_polynomial(Add(*a), x, polys=polys) if n == 1: ex = x**2 - 2 elif n == 2: ex = x**4 - 10*x**2 + 1 elif n == 3: ex = x**8 - 40*x**6 + 352*x**4 - 960*x**2 + 576 return PurePoly(ex, x) if polys else ex @public def cyclotomic_poly(n, x=None, polys=False): """Generates cyclotomic polynomial of order `n` in `x`. Parameters ---------- n : int `n` decides the order of polynomial x : optional polys : bool, optional ``polys=True`` returns an expression, otherwise (default) returns an expression. """ if n <= 0: raise ValueError( "can't generate cyclotomic polynomial of order %s" % n) poly = DMP(dup_zz_cyclotomic_poly(int(n), ZZ), ZZ) if x is not None: poly = Poly.new(poly, x) else: poly = PurePoly.new(poly, Dummy('x')) return poly if polys else poly.as_expr() @public def symmetric_poly(n, *gens, **args): """Generates symmetric polynomial of order `n`. Returns a Poly object when ``polys=True``, otherwise (default) returns an expression. """ # TODO: use an explicit keyword argument when Python 2 support is dropped gens = _analyze_gens(gens) if n < 0 or n > len(gens) or not gens: raise ValueError("can't generate symmetric polynomial of order %s for %s" % (n, gens)) elif not n: poly = S.One else: poly = Add(*[Mul(*s) for s in subsets(gens, int(n))]) if not args.get('polys', False): return poly else: return Poly(poly, *gens) @public def random_poly(x, n, inf, sup, domain=ZZ, polys=False): """Generates a polynomial of degree ``n`` with coefficients in ``[inf, sup]``. Parameters ---------- x `x` is the independent term of polynomial n : int `n` decides the order of polynomial inf Lower limit of range in which coefficients lie sup Upper limit of range in which coefficients lie domain : optional Decides what ring the coefficients are supposed to belong. Default is set to Integers. polys : bool, optional ``polys=True`` returns an expression, otherwise (default) returns an expression. """ poly = Poly(dup_random(n, inf, sup, domain), x, domain=domain) return poly if polys else poly.as_expr() @public def interpolating_poly(n, x, X='x', Y='y'): """Construct Lagrange interpolating polynomial for ``n`` data points. """ if isinstance(X, string_types): X = symbols("%s:%s" % (X, n)) if isinstance(Y, string_types): Y = symbols("%s:%s" % (Y, n)) coeffs = [] numert = Mul(*[(x - u) for u in X]) for i in range(n): numer = numert/(x - X[i]) denom = Mul(*[(X[i] - X[j]) for j in range(n) if i != j]) coeffs.append(numer/denom) return Add(*[coeff*y for coeff, y in zip(coeffs, Y)]) def fateman_poly_F_1(n): """Fateman's GCD benchmark: trivial GCD """ Y = [Symbol('y_' + str(i)) for i in range(n + 1)] y_0, y_1 = Y[0], Y[1] u = y_0 + Add(*[y for y in Y[1:]]) v = y_0**2 + Add(*[y**2 for y in Y[1:]]) F = ((u + 1)*(u + 2)).as_poly(*Y) G = ((v + 1)*(-3*y_1*y_0**2 + y_1**2 - 1)).as_poly(*Y) H = Poly(1, *Y) return F, G, H def dmp_fateman_poly_F_1(n, K): """Fateman's GCD benchmark: trivial GCD """ u = [K(1), K(0)] for i in range(n): u = [dmp_one(i, K), u] v = [K(1), K(0), K(0)] for i in range(0, n): v = [dmp_one(i, K), dmp_zero(i), v] m = n - 1 U = dmp_add_term(u, dmp_ground(K(1), m), 0, n, K) V = dmp_add_term(u, dmp_ground(K(2), m), 0, n, K) f = [[-K(3), K(0)], [], [K(1), K(0), -K(1)]] W = dmp_add_term(v, dmp_ground(K(1), m), 0, n, K) Y = dmp_raise(f, m, 1, K) F = dmp_mul(U, V, n, K) G = dmp_mul(W, Y, n, K) H = dmp_one(n, K) return F, G, H def fateman_poly_F_2(n): """Fateman's GCD benchmark: linearly dense quartic inputs """ Y = [Symbol('y_' + str(i)) for i in range(n + 1)] y_0 = Y[0] u = Add(*[y for y in Y[1:]]) H = Poly((y_0 + u + 1)**2, *Y) F = Poly((y_0 - u - 2)**2, *Y) G = Poly((y_0 + u + 2)**2, *Y) return H*F, H*G, H def dmp_fateman_poly_F_2(n, K): """Fateman's GCD benchmark: linearly dense quartic inputs """ u = [K(1), K(0)] for i in range(n - 1): u = [dmp_one(i, K), u] m = n - 1 v = dmp_add_term(u, dmp_ground(K(2), m - 1), 0, n, K) f = dmp_sqr([dmp_one(m, K), dmp_neg(v, m, K)], n, K) g = dmp_sqr([dmp_one(m, K), v], n, K) v = dmp_add_term(u, dmp_one(m - 1, K), 0, n, K) h = dmp_sqr([dmp_one(m, K), v], n, K) return dmp_mul(f, h, n, K), dmp_mul(g, h, n, K), h def fateman_poly_F_3(n): """Fateman's GCD benchmark: sparse inputs (deg f ~ vars f) """ Y = [Symbol('y_' + str(i)) for i in range(n + 1)] y_0 = Y[0] u = Add(*[y**(n + 1) for y in Y[1:]]) H = Poly((y_0**(n + 1) + u + 1)**2, *Y) F = Poly((y_0**(n + 1) - u - 2)**2, *Y) G = Poly((y_0**(n + 1) + u + 2)**2, *Y) return H*F, H*G, H def dmp_fateman_poly_F_3(n, K): """Fateman's GCD benchmark: sparse inputs (deg f ~ vars f) """ u = dup_from_raw_dict({n + 1: K.one}, K) for i in range(0, n - 1): u = dmp_add_term([u], dmp_one(i, K), n + 1, i + 1, K) v = dmp_add_term(u, dmp_ground(K(2), n - 2), 0, n, K) f = dmp_sqr( dmp_add_term([dmp_neg(v, n - 1, K)], dmp_one(n - 1, K), n + 1, n, K), n, K) g = dmp_sqr(dmp_add_term([v], dmp_one(n - 1, K), n + 1, n, K), n, K) v = dmp_add_term(u, dmp_one(n - 2, K), 0, n - 1, K) h = dmp_sqr(dmp_add_term([v], dmp_one(n - 1, K), n + 1, n, K), n, K) return dmp_mul(f, h, n, K), dmp_mul(g, h, n, K), h # A few useful polynomials from Wang's paper ('78). from sympy.polys.rings import ring def _f_0(): R, x, y, z = ring("x,y,z", ZZ) return x**2*y*z**2 + 2*x**2*y*z + 3*x**2*y + 2*x**2 + 3*x + 4*y**2*z**2 + 5*y**2*z + 6*y**2 + y*z**2 + 2*y*z + y + 1 def _f_1(): R, x, y, z = ring("x,y,z", ZZ) return x**3*y*z + x**2*y**2*z**2 + x**2*y**2 + 20*x**2*y*z + 30*x**2*y + x**2*z**2 + 10*x**2*z + x*y**3*z + 30*x*y**2*z + 20*x*y**2 + x*y*z**3 + 10*x*y*z**2 + x*y*z + 610*x*y + 20*x*z**2 + 230*x*z + 300*x + y**2*z**2 + 10*y**2*z + 30*y*z**2 + 320*y*z + 200*y + 600*z + 6000 def _f_2(): R, x, y, z = ring("x,y,z", ZZ) return x**5*y**3 + x**5*y**2*z + x**5*y*z**2 + x**5*z**3 + x**3*y**2 + x**3*y*z + 90*x**3*y + 90*x**3*z + x**2*y**2*z - 11*x**2*y**2 + x**2*z**3 - 11*x**2*z**2 + y*z - 11*y + 90*z - 990 def _f_3(): R, x, y, z = ring("x,y,z", ZZ) return x**5*y**2 + x**4*z**4 + x**4 + x**3*y**3*z + x**3*z + x**2*y**4 + x**2*y**3*z**3 + x**2*y*z**5 + x**2*y*z + x*y**2*z**4 + x*y**2 + x*y*z**7 + x*y*z**3 + x*y*z**2 + y**2*z + y*z**4 def _f_4(): R, x, y, z = ring("x,y,z", ZZ) return -x**9*y**8*z - x**8*y**5*z**3 - x**7*y**12*z**2 - 5*x**7*y**8 - x**6*y**9*z**4 + x**6*y**7*z**3 + 3*x**6*y**7*z - 5*x**6*y**5*z**2 - x**6*y**4*z**3 + x**5*y**4*z**5 + 3*x**5*y**4*z**3 - x**5*y*z**5 + x**4*y**11*z**4 + 3*x**4*y**11*z**2 - x**4*y**8*z**4 + 5*x**4*y**7*z**2 + 15*x**4*y**7 - 5*x**4*y**4*z**2 + x**3*y**8*z**6 + 3*x**3*y**8*z**4 - x**3*y**5*z**6 + 5*x**3*y**4*z**4 + 15*x**3*y**4*z**2 + x**3*y**3*z**5 + 3*x**3*y**3*z**3 - 5*x**3*y*z**4 + x**2*z**7 + 3*x**2*z**5 + x*y**7*z**6 + 3*x*y**7*z**4 + 5*x*y**3*z**4 + 15*x*y**3*z**2 + y**4*z**8 + 3*y**4*z**6 + 5*z**6 + 15*z**4 def _f_5(): R, x, y, z = ring("x,y,z", ZZ) return -x**3 - 3*x**2*y + 3*x**2*z - 3*x*y**2 + 6*x*y*z - 3*x*z**2 - y**3 + 3*y**2*z - 3*y*z**2 + z**3 def _f_6(): R, x, y, z, t = ring("x,y,z,t", ZZ) return 2115*x**4*y + 45*x**3*z**3*t**2 - 45*x**3*t**2 - 423*x*y**4 - 47*x*y**3 + 141*x*y*z**3 + 94*x*y*z*t - 9*y**3*z**3*t**2 + 9*y**3*t**2 - y**2*z**3*t**2 + y**2*t**2 + 3*z**6*t**2 + 2*z**4*t**3 - 3*z**3*t**2 - 2*z*t**3 def _w_1(): R, x, y, z = ring("x,y,z", ZZ) return 4*x**6*y**4*z**2 + 4*x**6*y**3*z**3 - 4*x**6*y**2*z**4 - 4*x**6*y*z**5 + x**5*y**4*z**3 + 12*x**5*y**3*z - x**5*y**2*z**5 + 12*x**5*y**2*z**2 - 12*x**5*y*z**3 - 12*x**5*z**4 + 8*x**4*y**4 + 6*x**4*y**3*z**2 + 8*x**4*y**3*z - 4*x**4*y**2*z**4 + 4*x**4*y**2*z**3 - 8*x**4*y**2*z**2 - 4*x**4*y*z**5 - 2*x**4*y*z**4 - 8*x**4*y*z**3 + 2*x**3*y**4*z + x**3*y**3*z**3 - x**3*y**2*z**5 - 2*x**3*y**2*z**3 + 9*x**3*y**2*z - 12*x**3*y*z**3 + 12*x**3*y*z**2 - 12*x**3*z**4 + 3*x**3*z**3 + 6*x**2*y**3 - 6*x**2*y**2*z**2 + 8*x**2*y**2*z - 2*x**2*y*z**4 - 8*x**2*y*z**3 + 2*x**2*y*z**2 + 2*x*y**3*z - 2*x*y**2*z**3 - 3*x*y*z + 3*x*z**3 - 2*y**2 + 2*y*z**2 def _w_2(): R, x, y = ring("x,y", ZZ) return 24*x**8*y**3 + 48*x**8*y**2 + 24*x**7*y**5 - 72*x**7*y**2 + 25*x**6*y**4 + 2*x**6*y**3 + 4*x**6*y + 8*x**6 + x**5*y**6 + x**5*y**3 - 12*x**5 + x**4*y**5 - x**4*y**4 - 2*x**4*y**3 + 292*x**4*y**2 - x**3*y**6 + 3*x**3*y**3 - x**2*y**5 + 12*x**2*y**3 + 48*x**2 - 12*y**3 def f_polys(): return _f_0(), _f_1(), _f_2(), _f_3(), _f_4(), _f_5(), _f_6() def w_polys(): return _w_1(), _w_2()
3a5f4f7b884e4f02b5a3ae94d1c99ffa5d7d181e71ef1170c63c371cdc82cc2f
"""Algorithms for computing symbolic roots of polynomials. """ from __future__ import print_function, division import math from sympy.core import S, I, pi from sympy.core.compatibility import ordered, range, reduce from sympy.core.exprtools import factor_terms from sympy.core.function import _mexpand from sympy.core.logic import fuzzy_not from sympy.core.mul import expand_2arg, Mul from sympy.core.numbers import Rational, igcd, comp from sympy.core.power import Pow from sympy.core.relational import Eq from sympy.core.symbol import Dummy, Symbol, symbols from sympy.core.sympify import sympify from sympy.functions import exp, sqrt, im, cos, acos, Piecewise from sympy.functions.elementary.miscellaneous import root from sympy.ntheory import divisors, isprime, nextprime from sympy.polys.polyerrors import (PolynomialError, GeneratorsNeeded, DomainError) from sympy.polys.polyquinticconst import PolyQuintic from sympy.polys.polytools import Poly, cancel, factor, gcd_list, discriminant from sympy.polys.rationaltools import together from sympy.polys.specialpolys import cyclotomic_poly from sympy.simplify import simplify, powsimp from sympy.utilities import public def roots_linear(f): """Returns a list of roots of a linear polynomial.""" r = -f.nth(0)/f.nth(1) dom = f.get_domain() if not dom.is_Numerical: if dom.is_Composite: r = factor(r) else: r = simplify(r) return [r] def roots_quadratic(f): """Returns a list of roots of a quadratic polynomial. If the domain is ZZ then the roots will be sorted with negatives coming before positives. The ordering will be the same for any numerical coefficients as long as the assumptions tested are correct, otherwise the ordering will not be sorted (but will be canonical). """ a, b, c = f.all_coeffs() dom = f.get_domain() def _sqrt(d): # remove squares from square root since both will be represented # in the results; a similar thing is happening in roots() but # must be duplicated here because not all quadratics are binomials co = [] other = [] for di in Mul.make_args(d): if di.is_Pow and di.exp.is_Integer and di.exp % 2 == 0: co.append(Pow(di.base, di.exp//2)) else: other.append(di) if co: d = Mul(*other) co = Mul(*co) return co*sqrt(d) return sqrt(d) def _simplify(expr): if dom.is_Composite: return factor(expr) else: return simplify(expr) if c is S.Zero: r0, r1 = S.Zero, -b/a if not dom.is_Numerical: r1 = _simplify(r1) elif r1.is_negative: r0, r1 = r1, r0 elif b is S.Zero: r = -c/a if not dom.is_Numerical: r = _simplify(r) R = _sqrt(r) r0 = -R r1 = R else: d = b**2 - 4*a*c A = 2*a B = -b/A if not dom.is_Numerical: d = _simplify(d) B = _simplify(B) D = factor_terms(_sqrt(d)/A) r0 = B - D r1 = B + D if a.is_negative: r0, r1 = r1, r0 elif not dom.is_Numerical: r0, r1 = [expand_2arg(i) for i in (r0, r1)] return [r0, r1] def roots_cubic(f, trig=False): """Returns a list of roots of a cubic polynomial. References ========== [1] https://en.wikipedia.org/wiki/Cubic_function, General formula for roots, (accessed November 17, 2014). """ if trig: a, b, c, d = f.all_coeffs() p = (3*a*c - b**2)/3/a**2 q = (2*b**3 - 9*a*b*c + 27*a**2*d)/(27*a**3) D = 18*a*b*c*d - 4*b**3*d + b**2*c**2 - 4*a*c**3 - 27*a**2*d**2 if (D > 0) == True: rv = [] for k in range(3): rv.append(2*sqrt(-p/3)*cos(acos(3*q/2/p*sqrt(-3/p))/3 - k*2*pi/3)) return [i - b/3/a for i in rv] _, a, b, c = f.monic().all_coeffs() if c is S.Zero: x1, x2 = roots([1, a, b], multiple=True) return [x1, S.Zero, x2] p = b - a**2/3 q = c - a*b/3 + 2*a**3/27 pon3 = p/3 aon3 = a/3 u1 = None if p is S.Zero: if q is S.Zero: return [-aon3]*3 if q.is_real: if q.is_positive: u1 = -root(q, 3) elif q.is_negative: u1 = root(-q, 3) elif q is S.Zero: y1, y2 = roots([1, 0, p], multiple=True) return [tmp - aon3 for tmp in [y1, S.Zero, y2]] elif q.is_real and q.is_negative: u1 = -root(-q/2 + sqrt(q**2/4 + pon3**3), 3) coeff = I*sqrt(3)/2 if u1 is None: u1 = S(1) u2 = -S.Half + coeff u3 = -S.Half - coeff a, b, c, d = S(1), a, b, c D0 = b**2 - 3*a*c D1 = 2*b**3 - 9*a*b*c + 27*a**2*d C = root((D1 + sqrt(D1**2 - 4*D0**3))/2, 3) return [-(b + uk*C + D0/C/uk)/3/a for uk in [u1, u2, u3]] u2 = u1*(-S.Half + coeff) u3 = u1*(-S.Half - coeff) if p is S.Zero: return [u1 - aon3, u2 - aon3, u3 - aon3] soln = [ -u1 + pon3/u1 - aon3, -u2 + pon3/u2 - aon3, -u3 + pon3/u3 - aon3 ] return soln def _roots_quartic_euler(p, q, r, a): """ Descartes-Euler solution of the quartic equation Parameters ========== p, q, r: coefficients of ``x**4 + p*x**2 + q*x + r`` a: shift of the roots Notes ===== This is a helper function for ``roots_quartic``. Look for solutions of the form :: ``x1 = sqrt(R) - sqrt(A + B*sqrt(R))`` ``x2 = -sqrt(R) - sqrt(A - B*sqrt(R))`` ``x3 = -sqrt(R) + sqrt(A - B*sqrt(R))`` ``x4 = sqrt(R) + sqrt(A + B*sqrt(R))`` To satisfy the quartic equation one must have ``p = -2*(R + A); q = -4*B*R; r = (R - A)**2 - B**2*R`` so that ``R`` must satisfy the Descartes-Euler resolvent equation ``64*R**3 + 32*p*R**2 + (4*p**2 - 16*r)*R - q**2 = 0`` If the resolvent does not have a rational solution, return None; in that case it is likely that the Ferrari method gives a simpler solution. Examples ======== >>> from sympy import S >>> from sympy.polys.polyroots import _roots_quartic_euler >>> p, q, r = -S(64)/5, -S(512)/125, -S(1024)/3125 >>> _roots_quartic_euler(p, q, r, S(0))[0] -sqrt(32*sqrt(5)/125 + 16/5) + 4*sqrt(5)/5 """ # solve the resolvent equation x = Dummy('x') eq = 64*x**3 + 32*p*x**2 + (4*p**2 - 16*r)*x - q**2 xsols = list(roots(Poly(eq, x), cubics=False).keys()) xsols = [sol for sol in xsols if sol.is_rational and sol.is_nonzero] if not xsols: return None R = max(xsols) c1 = sqrt(R) B = -q*c1/(4*R) A = -R - p/2 c2 = sqrt(A + B) c3 = sqrt(A - B) return [c1 - c2 - a, -c1 - c3 - a, -c1 + c3 - a, c1 + c2 - a] def roots_quartic(f): r""" Returns a list of roots of a quartic polynomial. There are many references for solving quartic expressions available [1-5]. This reviewer has found that many of them require one to select from among 2 or more possible sets of solutions and that some solutions work when one is searching for real roots but don't work when searching for complex roots (though this is not always stated clearly). The following routine has been tested and found to be correct for 0, 2 or 4 complex roots. The quasisymmetric case solution [6] looks for quartics that have the form `x**4 + A*x**3 + B*x**2 + C*x + D = 0` where `(C/A)**2 = D`. Although no general solution that is always applicable for all coefficients is known to this reviewer, certain conditions are tested to determine the simplest 4 expressions that can be returned: 1) `f = c + a*(a**2/8 - b/2) == 0` 2) `g = d - a*(a*(3*a**2/256 - b/16) + c/4) = 0` 3) if `f != 0` and `g != 0` and `p = -d + a*c/4 - b**2/12` then a) `p == 0` b) `p != 0` Examples ======== >>> from sympy import Poly, symbols, I >>> from sympy.polys.polyroots import roots_quartic >>> r = roots_quartic(Poly('x**4-6*x**3+17*x**2-26*x+20')) >>> # 4 complex roots: 1+-I*sqrt(3), 2+-I >>> sorted(str(tmp.evalf(n=2)) for tmp in r) ['1.0 + 1.7*I', '1.0 - 1.7*I', '2.0 + 1.0*I', '2.0 - 1.0*I'] References ========== 1. http://mathforum.org/dr.math/faq/faq.cubic.equations.html 2. https://en.wikipedia.org/wiki/Quartic_function#Summary_of_Ferrari.27s_method 3. http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html 4. http://staff.bath.ac.uk/masjhd/JHD-CA.pdf 5. http://www.albmath.org/files/Math_5713.pdf 6. http://www.statemaster.com/encyclopedia/Quartic-equation 7. eqworld.ipmnet.ru/en/solutions/ae/ae0108.pdf """ _, a, b, c, d = f.monic().all_coeffs() if not d: return [S.Zero] + roots([1, a, b, c], multiple=True) elif (c/a)**2 == d: x, m = f.gen, c/a g = Poly(x**2 + a*x + b - 2*m, x) z1, z2 = roots_quadratic(g) h1 = Poly(x**2 - z1*x + m, x) h2 = Poly(x**2 - z2*x + m, x) r1 = roots_quadratic(h1) r2 = roots_quadratic(h2) return r1 + r2 else: a2 = a**2 e = b - 3*a2/8 f = _mexpand(c + a*(a2/8 - b/2)) g = _mexpand(d - a*(a*(3*a2/256 - b/16) + c/4)) aon4 = a/4 if f is S.Zero: y1, y2 = [sqrt(tmp) for tmp in roots([1, e, g], multiple=True)] return [tmp - aon4 for tmp in [-y1, -y2, y1, y2]] if g is S.Zero: y = [S.Zero] + roots([1, 0, e, f], multiple=True) return [tmp - aon4 for tmp in y] else: # Descartes-Euler method, see [7] sols = _roots_quartic_euler(e, f, g, aon4) if sols: return sols # Ferrari method, see [1, 2] a2 = a**2 e = b - 3*a2/8 f = c + a*(a2/8 - b/2) g = d - a*(a*(3*a2/256 - b/16) + c/4) p = -e**2/12 - g q = -e**3/108 + e*g/3 - f**2/8 TH = Rational(1, 3) def _ans(y): w = sqrt(e + 2*y) arg1 = 3*e + 2*y arg2 = 2*f/w ans = [] for s in [-1, 1]: root = sqrt(-(arg1 + s*arg2)) for t in [-1, 1]: ans.append((s*w - t*root)/2 - aon4) return ans # p == 0 case y1 = -5*e/6 - q**TH if p.is_zero: return _ans(y1) # if p != 0 then u below is not 0 root = sqrt(q**2/4 + p**3/27) r = -q/2 + root # or -q/2 - root u = r**TH # primary root of solve(x**3 - r, x) y2 = -5*e/6 + u - p/u/3 if fuzzy_not(p.is_zero): return _ans(y2) # sort it out once they know the values of the coefficients return [Piecewise((a1, Eq(p, 0)), (a2, True)) for a1, a2 in zip(_ans(y1), _ans(y2))] def roots_binomial(f): """Returns a list of roots of a binomial polynomial. If the domain is ZZ then the roots will be sorted with negatives coming before positives. The ordering will be the same for any numerical coefficients as long as the assumptions tested are correct, otherwise the ordering will not be sorted (but will be canonical). """ n = f.degree() a, b = f.nth(n), f.nth(0) base = -cancel(b/a) alpha = root(base, n) if alpha.is_number: alpha = alpha.expand(complex=True) # define some parameters that will allow us to order the roots. # If the domain is ZZ this is guaranteed to return roots sorted # with reals before non-real roots and non-real sorted according # to real part and imaginary part, e.g. -1, 1, -1 + I, 2 - I neg = base.is_negative even = n % 2 == 0 if neg: if even == True and (base + 1).is_positive: big = True else: big = False # get the indices in the right order so the computed # roots will be sorted when the domain is ZZ ks = [] imax = n//2 if even: ks.append(imax) imax -= 1 if not neg: ks.append(0) for i in range(imax, 0, -1): if neg: ks.extend([i, -i]) else: ks.extend([-i, i]) if neg: ks.append(0) if big: for i in range(0, len(ks), 2): pair = ks[i: i + 2] pair = list(reversed(pair)) # compute the roots roots, d = [], 2*I*pi/n for k in ks: zeta = exp(k*d).expand(complex=True) roots.append((alpha*zeta).expand(power_base=False)) return roots def _inv_totient_estimate(m): """ Find ``(L, U)`` such that ``L <= phi^-1(m) <= U``. Examples ======== >>> from sympy.polys.polyroots import _inv_totient_estimate >>> _inv_totient_estimate(192) (192, 840) >>> _inv_totient_estimate(400) (400, 1750) """ primes = [ d + 1 for d in divisors(m) if isprime(d + 1) ] a, b = 1, 1 for p in primes: a *= p b *= p - 1 L = m U = int(math.ceil(m*(float(a)/b))) P = p = 2 primes = [] while P <= U: p = nextprime(p) primes.append(p) P *= p P //= p b = 1 for p in primes[:-1]: b *= p - 1 U = int(math.ceil(m*(float(P)/b))) return L, U def roots_cyclotomic(f, factor=False): """Compute roots of cyclotomic polynomials. """ L, U = _inv_totient_estimate(f.degree()) for n in range(L, U + 1): g = cyclotomic_poly(n, f.gen, polys=True) if f == g: break else: # pragma: no cover raise RuntimeError("failed to find index of a cyclotomic polynomial") roots = [] if not factor: # get the indices in the right order so the computed # roots will be sorted h = n//2 ks = [i for i in range(1, n + 1) if igcd(i, n) == 1] ks.sort(key=lambda x: (x, -1) if x <= h else (abs(x - n), 1)) d = 2*I*pi/n for k in reversed(ks): roots.append(exp(k*d).expand(complex=True)) else: g = Poly(f, extension=root(-1, n)) for h, _ in ordered(g.factor_list()[1]): roots.append(-h.TC()) return roots def roots_quintic(f): """ Calculate exact roots of a solvable quintic """ result = [] coeff_5, coeff_4, p, q, r, s = f.all_coeffs() # Eqn must be of the form x^5 + px^3 + qx^2 + rx + s if coeff_4: return result if coeff_5 != 1: l = [p/coeff_5, q/coeff_5, r/coeff_5, s/coeff_5] if not all(coeff.is_Rational for coeff in l): return result f = Poly(f/coeff_5) quintic = PolyQuintic(f) # Eqn standardized. Algo for solving starts here if not f.is_irreducible: return result f20 = quintic.f20 # Check if f20 has linear factors over domain Z if f20.is_irreducible: return result # Now, we know that f is solvable for _factor in f20.factor_list()[1]: if _factor[0].is_linear: theta = _factor[0].root(0) break d = discriminant(f) delta = sqrt(d) # zeta = a fifth root of unity zeta1, zeta2, zeta3, zeta4 = quintic.zeta T = quintic.T(theta, d) tol = S(1e-10) alpha = T[1] + T[2]*delta alpha_bar = T[1] - T[2]*delta beta = T[3] + T[4]*delta beta_bar = T[3] - T[4]*delta disc = alpha**2 - 4*beta disc_bar = alpha_bar**2 - 4*beta_bar l0 = quintic.l0(theta) l1 = _quintic_simplify((-alpha + sqrt(disc)) / S(2)) l4 = _quintic_simplify((-alpha - sqrt(disc)) / S(2)) l2 = _quintic_simplify((-alpha_bar + sqrt(disc_bar)) / S(2)) l3 = _quintic_simplify((-alpha_bar - sqrt(disc_bar)) / S(2)) order = quintic.order(theta, d) test = (order*delta.n()) - ( (l1.n() - l4.n())*(l2.n() - l3.n()) ) # Comparing floats if not comp(test, 0, tol): l2, l3 = l3, l2 # Now we have correct order of l's R1 = l0 + l1*zeta1 + l2*zeta2 + l3*zeta3 + l4*zeta4 R2 = l0 + l3*zeta1 + l1*zeta2 + l4*zeta3 + l2*zeta4 R3 = l0 + l2*zeta1 + l4*zeta2 + l1*zeta3 + l3*zeta4 R4 = l0 + l4*zeta1 + l3*zeta2 + l2*zeta3 + l1*zeta4 Res = [None, [None]*5, [None]*5, [None]*5, [None]*5] Res_n = [None, [None]*5, [None]*5, [None]*5, [None]*5] sol = Symbol('sol') # Simplifying improves performance a lot for exact expressions R1 = _quintic_simplify(R1) R2 = _quintic_simplify(R2) R3 = _quintic_simplify(R3) R4 = _quintic_simplify(R4) # Solve imported here. Causing problems if imported as 'solve' # and hence the changed name from sympy.solvers.solvers import solve as _solve a, b = symbols('a b', cls=Dummy) _sol = _solve( sol**5 - a - I*b, sol) for i in range(5): _sol[i] = factor(_sol[i]) R1 = R1.as_real_imag() R2 = R2.as_real_imag() R3 = R3.as_real_imag() R4 = R4.as_real_imag() for i, currentroot in enumerate(_sol): Res[1][i] = _quintic_simplify(currentroot.subs({ a: R1[0], b: R1[1] })) Res[2][i] = _quintic_simplify(currentroot.subs({ a: R2[0], b: R2[1] })) Res[3][i] = _quintic_simplify(currentroot.subs({ a: R3[0], b: R3[1] })) Res[4][i] = _quintic_simplify(currentroot.subs({ a: R4[0], b: R4[1] })) for i in range(1, 5): for j in range(5): Res_n[i][j] = Res[i][j].n() Res[i][j] = _quintic_simplify(Res[i][j]) r1 = Res[1][0] r1_n = Res_n[1][0] for i in range(5): if comp(im(r1_n*Res_n[4][i]), 0, tol): r4 = Res[4][i] break # Now we have various Res values. Each will be a list of five # values. We have to pick one r value from those five for each Res u, v = quintic.uv(theta, d) testplus = (u + v*delta*sqrt(5)).n() testminus = (u - v*delta*sqrt(5)).n() # Evaluated numbers suffixed with _n # We will use evaluated numbers for calculation. Much faster. r4_n = r4.n() r2 = r3 = None for i in range(5): r2temp_n = Res_n[2][i] for j in range(5): # Again storing away the exact number and using # evaluated numbers in computations r3temp_n = Res_n[3][j] if (comp((r1_n*r2temp_n**2 + r4_n*r3temp_n**2 - testplus).n(), 0, tol) and comp((r3temp_n*r1_n**2 + r2temp_n*r4_n**2 - testminus).n(), 0, tol)): r2 = Res[2][i] r3 = Res[3][j] break if r2: break # Now, we have r's so we can get roots x1 = (r1 + r2 + r3 + r4)/5 x2 = (r1*zeta4 + r2*zeta3 + r3*zeta2 + r4*zeta1)/5 x3 = (r1*zeta3 + r2*zeta1 + r3*zeta4 + r4*zeta2)/5 x4 = (r1*zeta2 + r2*zeta4 + r3*zeta1 + r4*zeta3)/5 x5 = (r1*zeta1 + r2*zeta2 + r3*zeta3 + r4*zeta4)/5 result = [x1, x2, x3, x4, x5] # Now check if solutions are distinct saw = set() for r in result: r = r.n(2) if r in saw: # Roots were identical. Abort, return [] # and fall back to usual solve return [] saw.add(r) return result def _quintic_simplify(expr): expr = powsimp(expr) expr = cancel(expr) return together(expr) def _integer_basis(poly): """Compute coefficient basis for a polynomial over integers. Returns the integer ``div`` such that substituting ``x = div*y`` ``p(x) = m*q(y)`` where the coefficients of ``q`` are smaller than those of ``p``. For example ``x**5 + 512*x + 1024 = 0`` with ``div = 4`` becomes ``y**5 + 2*y + 1 = 0`` Returns the integer ``div`` or ``None`` if there is no possible scaling. Examples ======== >>> from sympy.polys import Poly >>> from sympy.abc import x >>> from sympy.polys.polyroots import _integer_basis >>> p = Poly(x**5 + 512*x + 1024, x, domain='ZZ') >>> _integer_basis(p) 4 """ monoms, coeffs = list(zip(*poly.terms())) monoms, = list(zip(*monoms)) coeffs = list(map(abs, coeffs)) if coeffs[0] < coeffs[-1]: coeffs = list(reversed(coeffs)) n = monoms[0] monoms = [n - i for i in reversed(monoms)] else: return None monoms = monoms[:-1] coeffs = coeffs[:-1] divs = reversed(divisors(gcd_list(coeffs))[1:]) try: div = next(divs) except StopIteration: return None while True: for monom, coeff in zip(monoms, coeffs): if coeff % div**monom != 0: try: div = next(divs) except StopIteration: return None else: break else: return div def preprocess_roots(poly): """Try to get rid of symbolic coefficients from ``poly``. """ coeff = S.One poly_func = poly.func try: _, poly = poly.clear_denoms(convert=True) except DomainError: return coeff, poly poly = poly.primitive()[1] poly = poly.retract() # TODO: This is fragile. Figure out how to make this independent of construct_domain(). if poly.get_domain().is_Poly and all(c.is_term for c in poly.rep.coeffs()): poly = poly.inject() strips = list(zip(*poly.monoms())) gens = list(poly.gens[1:]) base, strips = strips[0], strips[1:] for gen, strip in zip(list(gens), strips): reverse = False if strip[0] < strip[-1]: strip = reversed(strip) reverse = True ratio = None for a, b in zip(base, strip): if not a and not b: continue elif not a or not b: break elif b % a != 0: break else: _ratio = b // a if ratio is None: ratio = _ratio elif ratio != _ratio: break else: if reverse: ratio = -ratio poly = poly.eval(gen, 1) coeff *= gen**(-ratio) gens.remove(gen) if gens: poly = poly.eject(*gens) if poly.is_univariate and poly.get_domain().is_ZZ: basis = _integer_basis(poly) if basis is not None: n = poly.degree() def func(k, coeff): return coeff//basis**(n - k[0]) poly = poly.termwise(func) coeff *= basis if not isinstance(poly, poly_func): poly = poly_func(poly) return coeff, poly @public def roots(f, *gens, **flags): """ Computes symbolic roots of a univariate polynomial. Given a univariate polynomial f with symbolic coefficients (or a list of the polynomial's coefficients), returns a dictionary with its roots and their multiplicities. Only roots expressible via radicals will be returned. To get a complete set of roots use RootOf class or numerical methods instead. By default cubic and quartic formulas are used in the algorithm. To disable them because of unreadable output set ``cubics=False`` or ``quartics=False`` respectively. If cubic roots are real but are expressed in terms of complex numbers (casus irreducibilis [1]) the ``trig`` flag can be set to True to have the solutions returned in terms of cosine and inverse cosine functions. To get roots from a specific domain set the ``filter`` flag with one of the following specifiers: Z, Q, R, I, C. By default all roots are returned (this is equivalent to setting ``filter='C'``). By default a dictionary is returned giving a compact result in case of multiple roots. However to get a list containing all those roots set the ``multiple`` flag to True; the list will have identical roots appearing next to each other in the result. (For a given Poly, the all_roots method will give the roots in sorted numerical order.) Examples ======== >>> from sympy import Poly, roots >>> from sympy.abc import x, y >>> roots(x**2 - 1, x) {-1: 1, 1: 1} >>> p = Poly(x**2-1, x) >>> roots(p) {-1: 1, 1: 1} >>> p = Poly(x**2-y, x, y) >>> roots(Poly(p, x)) {-sqrt(y): 1, sqrt(y): 1} >>> roots(x**2 - y, x) {-sqrt(y): 1, sqrt(y): 1} >>> roots([1, 0, -1]) {-1: 1, 1: 1} References ========== .. [1] https://en.wikipedia.org/wiki/Cubic_function#Trigonometric_.28and_hyperbolic.29_method """ from sympy.polys.polytools import to_rational_coeffs flags = dict(flags) auto = flags.pop('auto', True) cubics = flags.pop('cubics', True) trig = flags.pop('trig', False) quartics = flags.pop('quartics', True) quintics = flags.pop('quintics', False) multiple = flags.pop('multiple', False) filter = flags.pop('filter', None) predicate = flags.pop('predicate', None) if isinstance(f, list): if gens: raise ValueError('redundant generators given') x = Dummy('x') poly, i = {}, len(f) - 1 for coeff in f: poly[i], i = sympify(coeff), i - 1 f = Poly(poly, x, field=True) else: try: f = Poly(f, *gens, **flags) if f.length == 2 and f.degree() != 1: # check for foo**n factors in the constant n = f.degree() npow_bases = [] others = [] expr = f.as_expr() con = expr.as_independent(*gens)[0] for p in Mul.make_args(con): if p.is_Pow and not p.exp % n: npow_bases.append(p.base**(p.exp/n)) else: others.append(p) if npow_bases: b = Mul(*npow_bases) B = Dummy() d = roots(Poly(expr - con + B**n*Mul(*others), *gens, **flags), *gens, **flags) rv = {} for k, v in d.items(): rv[k.subs(B, b)] = v return rv except GeneratorsNeeded: if multiple: return [] else: return {} if f.is_multivariate: raise PolynomialError('multivariate polynomials are not supported') def _update_dict(result, currentroot, k): if currentroot in result: result[currentroot] += k else: result[currentroot] = k def _try_decompose(f): """Find roots using functional decomposition. """ factors, roots = f.decompose(), [] for currentroot in _try_heuristics(factors[0]): roots.append(currentroot) for currentfactor in factors[1:]: previous, roots = list(roots), [] for currentroot in previous: g = currentfactor - Poly(currentroot, f.gen) for currentroot in _try_heuristics(g): roots.append(currentroot) return roots def _try_heuristics(f): """Find roots using formulas and some tricks. """ if f.is_ground: return [] if f.is_monomial: return [S(0)]*f.degree() if f.length() == 2: if f.degree() == 1: return list(map(cancel, roots_linear(f))) else: return roots_binomial(f) result = [] for i in [-1, 1]: if not f.eval(i): f = f.quo(Poly(f.gen - i, f.gen)) result.append(i) break n = f.degree() if n == 1: result += list(map(cancel, roots_linear(f))) elif n == 2: result += list(map(cancel, roots_quadratic(f))) elif f.is_cyclotomic: result += roots_cyclotomic(f) elif n == 3 and cubics: result += roots_cubic(f, trig=trig) elif n == 4 and quartics: result += roots_quartic(f) elif n == 5 and quintics: result += roots_quintic(f) return result (k,), f = f.terms_gcd() if not k: zeros = {} else: zeros = {S(0): k} coeff, f = preprocess_roots(f) if auto and f.get_domain().is_Ring: f = f.to_field() rescale_x = None translate_x = None result = {} if not f.is_ground: if not f.get_domain().is_Exact: for r in f.nroots(): _update_dict(result, r, 1) elif f.degree() == 1: result[roots_linear(f)[0]] = 1 elif f.length() == 2: roots_fun = roots_quadratic if f.degree() == 2 else roots_binomial for r in roots_fun(f): _update_dict(result, r, 1) else: _, factors = Poly(f.as_expr()).factor_list() if len(factors) == 1 and f.degree() == 2: for r in roots_quadratic(f): _update_dict(result, r, 1) else: if len(factors) == 1 and factors[0][1] == 1: if f.get_domain().is_EX: res = to_rational_coeffs(f) if res: if res[0] is None: translate_x, f = res[2:] else: rescale_x, f = res[1], res[-1] result = roots(f) if not result: for currentroot in _try_decompose(f): _update_dict(result, currentroot, 1) else: for r in _try_heuristics(f): _update_dict(result, r, 1) else: for currentroot in _try_decompose(f): _update_dict(result, currentroot, 1) else: for currentfactor, k in factors: for r in _try_heuristics(Poly(currentfactor, f.gen, field=True)): _update_dict(result, r, k) if coeff is not S.One: _result, result, = result, {} for currentroot, k in _result.items(): result[coeff*currentroot] = k result.update(zeros) if filter not in [None, 'C']: handlers = { 'Z': lambda r: r.is_Integer, 'Q': lambda r: r.is_Rational, 'R': lambda r: r.is_real, 'I': lambda r: r.is_imaginary, } try: query = handlers[filter] except KeyError: raise ValueError("Invalid filter: %s" % filter) for zero in dict(result).keys(): if not query(zero): del result[zero] if predicate is not None: for zero in dict(result).keys(): if not predicate(zero): del result[zero] if rescale_x: result1 = {} for k, v in result.items(): result1[k*rescale_x] = v result = result1 if translate_x: result1 = {} for k, v in result.items(): result1[k + translate_x] = v result = result1 if not multiple: return result else: zeros = [] for zero in ordered(result): zeros.extend([zero]*result[zero]) return zeros def root_factors(f, *gens, **args): """ Returns all factors of a univariate polynomial. Examples ======== >>> from sympy.abc import x, y >>> from sympy.polys.polyroots import root_factors >>> root_factors(x**2 - y, x) [x - sqrt(y), x + sqrt(y)] """ args = dict(args) filter = args.pop('filter', None) F = Poly(f, *gens, **args) if not F.is_Poly: return [f] if F.is_multivariate: raise ValueError('multivariate polynomials are not supported') x = F.gens[0] zeros = roots(F, filter=filter) if not zeros: factors = [F] else: factors, N = [], 0 for r, n in ordered(zeros.items()): factors, N = factors + [Poly(x - r, x)]*n, N + n if N < F.degree(): G = reduce(lambda p, q: p*q, factors) factors.append(F.quo(G)) if not isinstance(f, Poly): factors = [ f.as_expr() for f in factors ] return factors
6e55705b47cfd009168a8e6fb26ef0a8c412cab4b493303b5b4b6a09a596a051
# -*- coding: utf-8 -*- """ This module contains functions for the computation of Euclidean, (generalized) Sturmian, (modified) subresultant polynomial remainder sequences (prs's) of two polynomials; included are also three functions for the computation of the resultant of two polynomials. Except for the function res_z(), which computes the resultant of two polynomials, the pseudo-remainder function prem() of sympy is _not_ used by any of the functions in the module. Instead of prem() we use the function rem_z(). Included is also the function quo_z(). An explanation of why we avoid prem() can be found in the references stated in the docstring of rem_z(). 1. Theoretical background: ========================== Consider the polynomials f, g ∈ Z[x] of degrees deg(f) = n and deg(g) = m with n ≥ m. Definition 1: ============= The sign sequence of a polynomial remainder sequence (prs) is the sequence of signs of the leading coefficients of its polynomials. Sign sequences can be computed with the function: sign_seq(poly_seq, x) Definition 2: ============= A polynomial remainder sequence (prs) is called complete if the degree difference between any two consecutive polynomials is 1; otherwise, it called incomplete. It is understood that f, g belong to the sequences mentioned in the two definitions above. 1A. Euclidean and subresultant prs's: ===================================== The subresultant prs of f, g is a sequence of polynomials in Z[x] analogous to the Euclidean prs, the sequence obtained by applying on f, g Euclid’s algorithm for polynomial greatest common divisors (gcd) in Q[x]. The subresultant prs differs from the Euclidean prs in that the coefficients of each polynomial in the former sequence are determinants --- also referred to as subresultants --- of appropriately selected sub-matrices of sylvester1(f, g, x), Sylvester’s matrix of 1840 of dimensions (n + m) × (n + m). Recall that the determinant of sylvester1(f, g, x) itself is called the resultant of f, g and serves as a criterion of whether the two polynomials have common roots or not. In sympy the resultant is computed with the function resultant(f, g, x). This function does _not_ evaluate the determinant of sylvester(f, g, x, 1); instead, it returns the last member of the subresultant prs of f, g, multiplied (if needed) by an appropriate power of -1; see the caveat below. In this module we use three functions to compute the resultant of f, g: a) res(f, g, x) computes the resultant by evaluating the determinant of sylvester(f, g, x, 1); b) res_q(f, g, x) computes the resultant recursively, by performing polynomial divisions in Q[x] with the function rem(); c) res_z(f, g, x) computes the resultant recursively, by performing polynomial divisions in Z[x] with the function prem(). Caveat: If Df = degree(f, x) and Dg = degree(g, x), then: resultant(f, g, x) = (-1)**(Df*Dg) * resultant(g, f, x). For complete prs’s the sign sequence of the Euclidean prs of f, g is identical to the sign sequence of the subresultant prs of f, g and the coefficients of one sequence are easily computed from the coefficients of the other. For incomplete prs’s the polynomials in the subresultant prs, generally differ in sign from those of the Euclidean prs, and --- unlike the case of complete prs’s --- it is not at all obvious how to compute the coefficients of one sequence from the coefficients of the other. 1B. Sturmian and modified subresultant prs's: ============================================= For the same polynomials f, g ∈ Z[x] mentioned above, their ``modified'' subresultant prs is a sequence of polynomials similar to the Sturmian prs, the sequence obtained by applying in Q[x] Sturm’s algorithm on f, g. The two sequences differ in that the coefficients of each polynomial in the modified subresultant prs are the determinants --- also referred to as modified subresultants --- of appropriately selected sub-matrices of sylvester2(f, g, x), Sylvester’s matrix of 1853 of dimensions 2n × 2n. The determinant of sylvester2 itself is called the modified resultant of f, g and it also can serve as a criterion of whether the two polynomials have common roots or not. For complete prs’s the sign sequence of the Sturmian prs of f, g is identical to the sign sequence of the modified subresultant prs of f, g and the coefficients of one sequence are easily computed from the coefficients of the other. For incomplete prs’s the polynomials in the modified subresultant prs, generally differ in sign from those of the Sturmian prs, and --- unlike the case of complete prs’s --- it is not at all obvious how to compute the coefficients of one sequence from the coefficients of the other. As Sylvester pointed out, the coefficients of the polynomial remainders obtained as (modified) subresultants are the smallest possible without introducing rationals and without computing (integer) greatest common divisors. 1C. On terminology: =================== Whence the terminology? Well generalized Sturmian prs's are ``modifications'' of Euclidean prs's; the hint came from the title of the Pell-Gordon paper of 1917. In the literature one also encounters the name ``non signed'' and ``signed'' prs for Euclidean and Sturmian prs respectively. Likewise ``non signed'' and ``signed'' subresultant prs for subresultant and modified subresultant prs respectively. 2. Functions in the module: =========================== No function utilizes sympy's function prem(). 2A. Matrices: ============= The functions sylvester(f, g, x, method=1) and sylvester(f, g, x, method=2) compute either Sylvester matrix. They can be used to compute (modified) subresultant prs's by direct determinant evaluation. The function bezout(f, g, x, method='prs') provides a matrix of smaller dimensions than either Sylvester matrix. It is the function of choice for computing (modified) subresultant prs's by direct determinant evaluation. sylvester(f, g, x, method=1) sylvester(f, g, x, method=2) bezout(f, g, x, method='prs') The following identity holds: bezout(f, g, x, method='prs') = backward_eye(deg(f))*bezout(f, g, x, method='bz')*backward_eye(deg(f)) 2B. Subresultant and modified subresultant prs's by =================================================== determinant evaluations: ======================= We use the Sylvester matrices of 1840 and 1853 to compute, respectively, subresultant and modified subresultant polynomial remainder sequences. However, for large matrices this approach takes a lot of time. Instead of utilizing the Sylvester matrices, we can employ the Bezout matrix which is of smaller dimensions. subresultants_sylv(f, g, x) modified_subresultants_sylv(f, g, x) subresultants_bezout(f, g, x) modified_subresultants_bezout(f, g, x) 2C. Subresultant prs's by ONE determinant evaluation: ===================================================== All three functions in this section evaluate one determinant per remainder polynomial; this is the determinant of an appropriately selected sub-matrix of sylvester1(f, g, x), Sylvester’s matrix of 1840. To compute the remainder polynomials the function subresultants_rem(f, g, x) employs rem(f, g, x). By contrast, the other two functions implement Van Vleck’s ideas of 1900 and compute the remainder polynomials by trinagularizing sylvester2(f, g, x), Sylvester’s matrix of 1853. subresultants_rem(f, g, x) subresultants_vv(f, g, x) subresultants_vv_2(f, g, x). 2E. Euclidean, Sturmian prs's in Q[x]: ====================================== euclid_q(f, g, x) sturm_q(f, g, x) 2F. Euclidean, Sturmian and (modified) subresultant prs's P-G: ============================================================== All functions in this section are based on the Pell-Gordon (P-G) theorem of 1917. Computations are done in Q[x], employing the function rem(f, g, x) for the computation of the remainder polynomials. euclid_pg(f, g, x) sturm pg(f, g, x) subresultants_pg(f, g, x) modified_subresultants_pg(f, g, x) 2G. Euclidean, Sturmian and (modified) subresultant prs's A-M-V: ================================================================ All functions in this section are based on the Akritas-Malaschonok- Vigklas (A-M-V) theorem of 2015. Computations are done in Z[x], employing the function rem_z(f, g, x) for the computation of the remainder polynomials. euclid_amv(f, g, x) sturm_amv(f, g, x) subresultants_amv(f, g, x) modified_subresultants_amv(f, g, x) 2Ga. Exception: =============== subresultants_amv_q(f, g, x) This function employs rem(f, g, x) for the computation of the remainder polynomials, despite the fact that it implements the A-M-V Theorem. It is included in our module in order to show that theorems P-G and A-M-V can be implemented utilizing either the function rem(f, g, x) or the function rem_z(f, g, x). For clearly historical reasons --- since the Collins-Brown-Traub coefficients-reduction factor β_i was not available in 1917 --- we have implemented the Pell-Gordon theorem with the function rem(f, g, x) and the A-M-V Theorem with the function rem_z(f, g, x). 2H. Resultants: =============== res(f, g, x) res_q(f, g, x) res_z(f, g, x) """ from __future__ import print_function, division from sympy import (Abs, degree, expand, eye, floor, LC, Matrix, nan, Poly, pprint) from sympy import (QQ, pquo, quo, prem, rem, S, sign, simplify, summation, var, zeros) from sympy.polys.polyerrors import PolynomialError def sylvester(f, g, x, method = 1): ''' The input polynomials f, g are in Z[x] or in Q[x]. Let m = degree(f, x), n = degree(g, x) and mx = max( m , n ). a. If method = 1 (default), computes sylvester1, Sylvester's matrix of 1840 of dimension (m + n) x (m + n). The determinants of properly chosen submatrices of this matrix (a.k.a. subresultants) can be used to compute the coefficients of the Euclidean PRS of f, g. b. If method = 2, computes sylvester2, Sylvester's matrix of 1853 of dimension (2*mx) x (2*mx). The determinants of properly chosen submatrices of this matrix (a.k.a. ``modified'' subresultants) can be used to compute the coefficients of the Sturmian PRS of f, g. Applications of these Matrices can be found in the references below. Especially, for applications of sylvester2, see the first reference!! References ========== 1. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``On a Theorem by Van Vleck Regarding Sturm Sequences. Serdica Journal of Computing, Vol. 7, No 4, 101–134, 2013. 2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Sturm Sequences and Modified Subresultant Polynomial Remainder Sequences.'' Serdica Journal of Computing, Vol. 8, No 1, 29–46, 2014. ''' # obtain degrees of polys m, n = degree( Poly(f, x), x), degree( Poly(g, x), x) # Special cases: # A:: case m = n < 0 (i.e. both polys are 0) if m == n and n < 0: return Matrix([]) # B:: case m = n = 0 (i.e. both polys are constants) if m == n and n == 0: return Matrix([]) # C:: m == 0 and n < 0 or m < 0 and n == 0 # (i.e. one poly is constant and the other is 0) if m == 0 and n < 0: return Matrix([]) elif m < 0 and n == 0: return Matrix([]) # D:: m >= 1 and n < 0 or m < 0 and n >=1 # (i.e. one poly is of degree >=1 and the other is 0) if m >= 1 and n < 0: return Matrix([0]) elif m < 0 and n >= 1: return Matrix([0]) fp = Poly(f, x).all_coeffs() gp = Poly(g, x).all_coeffs() # Sylvester's matrix of 1840 (default; a.k.a. sylvester1) if method <= 1: M = zeros(m + n) k = 0 for i in range(n): j = k for coeff in fp: M[i, j] = coeff j = j + 1 k = k + 1 k = 0 for i in range(n, m + n): j = k for coeff in gp: M[i, j] = coeff j = j + 1 k = k + 1 return M # Sylvester's matrix of 1853 (a.k.a sylvester2) if method >= 2: if len(fp) < len(gp): h = [] for i in range(len(gp) - len(fp)): h.append(0) fp[ : 0] = h else: h = [] for i in range(len(fp) - len(gp)): h.append(0) gp[ : 0] = h mx = max(m, n) dim = 2*mx M = zeros( dim ) k = 0 for i in range( mx ): j = k for coeff in fp: M[2*i, j] = coeff j = j + 1 j = k for coeff in gp: M[2*i + 1, j] = coeff j = j + 1 k = k + 1 return M def process_matrix_output(poly_seq, x): """ poly_seq is a polynomial remainder sequence computed either by (modified_)subresultants_bezout or by (modified_)subresultants_sylv. This function removes from poly_seq all zero polynomials as well as all those whose degree is equal to the degree of a preceding polynomial in poly_seq, as we scan it from left to right. """ L = poly_seq[:] # get a copy of the input sequence d = degree(L[1], x) i = 2 while i < len(L): d_i = degree(L[i], x) if d_i < 0: # zero poly L.remove(L[i]) i = i - 1 if d == d_i: # poly degree equals degree of previous poly L.remove(L[i]) i = i - 1 if d_i >= 0: d = d_i i = i + 1 return L def subresultants_sylv(f, g, x): """ The input polynomials f, g are in Z[x] or in Q[x]. It is assumed that deg(f) >= deg(g). Computes the subresultant polynomial remainder sequence (prs) of f, g by evaluating determinants of appropriately selected submatrices of sylvester(f, g, x, 1). The dimensions of the latter are (deg(f) + deg(g)) x (deg(f) + deg(g)). Each coefficient is computed by evaluating the determinant of the corresponding submatrix of sylvester(f, g, x, 1). If the subresultant prs is complete, then the output coincides with the Euclidean sequence of the polynomials f, g. References: =========== 1. G.M.Diaz-Toca,L.Gonzalez-Vega: Various New Expressions for Subresultants and Their Applications. Appl. Algebra in Engin., Communic. and Comp., Vol. 15, 233–266, 2004. """ # make sure neither f nor g is 0 if f == 0 or g == 0: return [f, g] n = degF = degree(f, x) m = degG = degree(g, x) # make sure proper degrees if n == 0 and m == 0: return [f, g] if n < m: n, m, degF, degG, f, g = m, n, degG, degF, g, f if n > 0 and m == 0: return [f, g] SR_L = [f, g] # subresultant list # form matrix sylvester(f, g, x, 1) S = sylvester(f, g, x, 1) # pick appropriate submatrices of S # and form subresultant polys j = m - 1 while j > 0: Sp = S[:, :] # copy of S # delete last j rows of coeffs of g for ind in range(m + n - j, m + n): Sp.row_del(m + n - j) # delete last j rows of coeffs of f for ind in range(m - j, m): Sp.row_del(m - j) # evaluate determinants and form coefficients list coeff_L, k, l = [], Sp.rows, 0 while l <= j: coeff_L.append(Sp[ : , 0 : k].det()) Sp.col_swap(k - 1, k + l) l += 1 # form poly and append to SP_L SR_L.append(Poly(coeff_L, x).as_expr()) j -= 1 # j = 0 SR_L.append(S.det()) return process_matrix_output(SR_L, x) def modified_subresultants_sylv(f, g, x): """ The input polynomials f, g are in Z[x] or in Q[x]. It is assumed that deg(f) >= deg(g). Computes the modified subresultant polynomial remainder sequence (prs) of f, g by evaluating determinants of appropriately selected submatrices of sylvester(f, g, x, 2). The dimensions of the latter are (2*deg(f)) x (2*deg(f)). Each coefficient is computed by evaluating the determinant of the corresponding submatrix of sylvester(f, g, x, 2). If the modified subresultant prs is complete, then the output coincides with the Sturmian sequence of the polynomials f, g. References: =========== 1. A. G. Akritas,G.I. Malaschonok and P.S. Vigklas: Sturm Sequences and Modified Subresultant Polynomial Remainder Sequences. Serdica Journal of Computing, Vol. 8, No 1, 29--46, 2014. """ # make sure neither f nor g is 0 if f == 0 or g == 0: return [f, g] n = degF = degree(f, x) m = degG = degree(g, x) # make sure proper degrees if n == 0 and m == 0: return [f, g] if n < m: n, m, degF, degG, f, g = m, n, degG, degF, g, f if n > 0 and m == 0: return [f, g] SR_L = [f, g] # modified subresultant list # form matrix sylvester(f, g, x, 2) S = sylvester(f, g, x, 2) # pick appropriate submatrices of S # and form modified subresultant polys j = m - 1 while j > 0: # delete last 2*j rows of pairs of coeffs of f, g Sp = S[0:2*n - 2*j, :] # copy of first 2*n - 2*j rows of S # evaluate determinants and form coefficients list coeff_L, k, l = [], Sp.rows, 0 while l <= j: coeff_L.append(Sp[ : , 0 : k].det()) Sp.col_swap(k - 1, k + l) l += 1 # form poly and append to SP_L SR_L.append(Poly(coeff_L, x).as_expr()) j -= 1 # j = 0 SR_L.append(S.det()) return process_matrix_output(SR_L, x) def res(f, g, x): """ The input polynomials f, g are in Z[x] or in Q[x]. The output is the resultant of f, g computed by evaluating the determinant of the matrix sylvester(f, g, x, 1). References: =========== 1. J. S. Cohen: Computer Algebra and Symbolic Computation - Mathematical Methods. A. K. Peters, 2003. """ if f == 0 or g == 0: raise PolynomialError("The resultant of %s and %s is not defined" % (f, g)) else: return sylvester(f, g, x, 1).det() def res_q(f, g, x): """ The input polynomials f, g are in Z[x] or in Q[x]. The output is the resultant of f, g computed recursively by polynomial divisions in Q[x], using the function rem. See Cohen's book p. 281. References: =========== 1. J. S. Cohen: Computer Algebra and Symbolic Computation - Mathematical Methods. A. K. Peters, 2003. """ m = degree(f, x) n = degree(g, x) if m < n: return (-1)**(m*n) * res_q(g, f, x) elif n == 0: # g is a constant return g**m else: r = rem(f, g, x) if r == 0: return 0 else: s = degree(r, x) l = LC(g, x) return (-1)**(m*n) * l**(m-s)*res_q(g, r, x) def res_z(f, g, x): """ The input polynomials f, g are in Z[x] or in Q[x]. The output is the resultant of f, g computed recursively by polynomial divisions in Z[x], using the function prem(). See Cohen's book p. 283. References: =========== 1. J. S. Cohen: Computer Algebra and Symbolic Computation - Mathematical Methods. A. K. Peters, 2003. """ m = degree(f, x) n = degree(g, x) if m < n: return (-1)**(m*n) * res_z(g, f, x) elif n == 0: # g is a constant return g**m else: r = prem(f, g, x) if r == 0: return 0 else: delta = m - n + 1 w = (-1)**(m*n) * res_z(g, r, x) s = degree(r, x) l = LC(g, x) k = delta * n - m + s return quo(w, l**k, x) def sign_seq(poly_seq, x): """ Given a sequence of polynomials poly_seq, it returns the sequence of signs of the leading coefficients of the polynomials in poly_seq. """ return [sign(LC(poly_seq[i], x)) for i in range(len(poly_seq))] def bezout(p, q, x, method='bz'): """ The input polynomials p, q are in Z[x] or in Q[x]. Let mx = max( degree(p, x) , degree(q, x) ). The default option bezout(p, q, x, method='bz') returns Bezout's symmetric matrix of p and q, of dimensions (mx) x (mx). The determinant of this matrix is equal to the determinant of sylvester2, Sylvester's matrix of 1853, whose dimensions are (2*mx) x (2*mx); however the subresultants of these two matrices may differ. The other option, bezout(p, q, x, 'prs'), is of interest to us in this module because it returns a matrix equivalent to sylvester2. In this case all subresultants of the two matrices are identical. Both the subresultant polynomial remainder sequence (prs) and the modified subresultant prs of p and q can be computed by evaluating determinants of appropriately selected submatrices of bezout(p, q, x, 'prs') --- one determinant per coefficient of the remainder polynomials. The matrices bezout(p, q, x, 'bz') and bezout(p, q, x, 'prs') are related by the formula bezout(p, q, x, 'prs') = backward_eye(deg(p)) * bezout(p, q, x, 'bz') * backward_eye(deg(p)), where backward_eye() is the backward identity function. References ========== 1. G.M.Diaz-Toca,L.Gonzalez-Vega: Various New Expressions for Subresultants and Their Applications. Appl. Algebra in Engin., Communic. and Comp., Vol. 15, 233–266, 2004. """ # obtain degrees of polys m, n = degree( Poly(p, x), x), degree( Poly(q, x), x) # Special cases: # A:: case m = n < 0 (i.e. both polys are 0) if m == n and n < 0: return Matrix([]) # B:: case m = n = 0 (i.e. both polys are constants) if m == n and n == 0: return Matrix([]) # C:: m == 0 and n < 0 or m < 0 and n == 0 # (i.e. one poly is constant and the other is 0) if m == 0 and n < 0: return Matrix([]) elif m < 0 and n == 0: return Matrix([]) # D:: m >= 1 and n < 0 or m < 0 and n >=1 # (i.e. one poly is of degree >=1 and the other is 0) if m >= 1 and n < 0: return Matrix([0]) elif m < 0 and n >= 1: return Matrix([0]) y = var('y') # expr is 0 when x = y expr = p * q.subs({x:y}) - p.subs({x:y}) * q # hence expr is exactly divisible by x - y poly = Poly( quo(expr, x-y), x, y) # form Bezout matrix and store them in B as indicated to get # the LC coefficient of each poly either in the first position # of each row (method='prs') or in the last (method='bz'). mx = max(m, n) B = zeros(mx) for i in range(mx): for j in range(mx): if method == 'prs': B[mx - 1 - i, mx - 1 - j] = poly.nth(i, j) else: B[i, j] = poly.nth(i, j) return B def backward_eye(n): ''' Returns the backward identity matrix of dimensions n x n. Needed to "turn" the Bezout matrices so that the leading coefficients are first. See docstring of the function bezout(p, q, x, method='bz'). ''' M = eye(n) # identity matrix of order n for i in range(int(M.rows / 2)): M.row_swap(0 + i, M.rows - 1 - i) return M def subresultants_bezout(p, q, x): """ The input polynomials p, q are in Z[x] or in Q[x]. It is assumed that degree(p, x) >= degree(q, x). Computes the subresultant polynomial remainder sequence of p, q by evaluating determinants of appropriately selected submatrices of bezout(p, q, x, 'prs'). The dimensions of the latter are deg(p) x deg(p). Each coefficient is computed by evaluating the determinant of the corresponding submatrix of bezout(p, q, x, 'prs'). bezout(p, q, x, 'prs) is used instead of sylvester(p, q, x, 1), Sylvester's matrix of 1840, because the dimensions of the latter are (deg(p) + deg(q)) x (deg(p) + deg(q)). If the subresultant prs is complete, then the output coincides with the Euclidean sequence of the polynomials p, q. References ========== 1. G.M.Diaz-Toca,L.Gonzalez-Vega: Various New Expressions for Subresultants and Their Applications. Appl. Algebra in Engin., Communic. and Comp., Vol. 15, 233–266, 2004. """ # make sure neither p nor q is 0 if p == 0 or q == 0: return [p, q] f, g = p, q n = degF = degree(f, x) m = degG = degree(g, x) # make sure proper degrees if n == 0 and m == 0: return [f, g] if n < m: n, m, degF, degG, f, g = m, n, degG, degF, g, f if n > 0 and m == 0: return [f, g] SR_L = [f, g] # subresultant list F = LC(f, x)**(degF - degG) # form the bezout matrix B = bezout(f, g, x, 'prs') # pick appropriate submatrices of B # and form subresultant polys if degF > degG: j = 2 if degF == degG: j = 1 while j <= degF: M = B[0:j, :] k, coeff_L = j - 1, [] while k <= degF - 1: coeff_L.append(M[: ,0 : j].det()) if k < degF - 1: M.col_swap(j - 1, k + 1) k = k + 1 # apply Theorem 2.1 in the paper by Toca & Vega 2004 # to get correct signs SR_L.append((int((-1)**(j*(j-1)/2)) * Poly(coeff_L, x) / F).as_expr()) j = j + 1 return process_matrix_output(SR_L, x) def modified_subresultants_bezout(p, q, x): """ The input polynomials p, q are in Z[x] or in Q[x]. It is assumed that degree(p, x) >= degree(q, x). Computes the modified subresultant polynomial remainder sequence of p, q by evaluating determinants of appropriately selected submatrices of bezout(p, q, x, 'prs'). The dimensions of the latter are deg(p) x deg(p). Each coefficient is computed by evaluating the determinant of the corresponding submatrix of bezout(p, q, x, 'prs'). bezout(p, q, x, 'prs') is used instead of sylvester(p, q, x, 2), Sylvester's matrix of 1853, because the dimensions of the latter are 2*deg(p) x 2*deg(p). If the modified subresultant prs is complete, and LC( p ) > 0, the output coincides with the (generalized) Sturm's sequence of the polynomials p, q. References ========== 1. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Sturm Sequences and Modified Subresultant Polynomial Remainder Sequences.'' Serdica Journal of Computing, Vol. 8, No 1, 29–46, 2014. 2. G.M.Diaz-Toca,L.Gonzalez-Vega: Various New Expressions for Subresultants and Their Applications. Appl. Algebra in Engin., Communic. and Comp., Vol. 15, 233–266, 2004. """ # make sure neither p nor q is 0 if p == 0 or q == 0: return [p, q] f, g = p, q n = degF = degree(f, x) m = degG = degree(g, x) # make sure proper degrees if n == 0 and m == 0: return [f, g] if n < m: n, m, degF, degG, f, g = m, n, degG, degF, g, f if n > 0 and m == 0: return [f, g] SR_L = [f, g] # subresultant list # form the bezout matrix B = bezout(f, g, x, 'prs') # pick appropriate submatrices of B # and form subresultant polys if degF > degG: j = 2 if degF == degG: j = 1 while j <= degF: M = B[0:j, :] k, coeff_L = j - 1, [] while k <= degF - 1: coeff_L.append(M[: ,0 : j].det()) if k < degF - 1: M.col_swap(j - 1, k + 1) k = k + 1 ## Theorem 2.1 in the paper by Toca & Vega 2004 is _not needed_ ## in this case since ## the bezout matrix is equivalent to sylvester2 SR_L.append(( Poly(coeff_L, x)).as_expr()) j = j + 1 return process_matrix_output(SR_L, x) def sturm_pg(p, q, x, method=0): """ p, q are polynomials in Z[x] or Q[x]. It is assumed that degree(p, x) >= degree(q, x). Computes the (generalized) Sturm sequence of p and q in Z[x] or Q[x]. If q = diff(p, x, 1) it is the usual Sturm sequence. A. If method == 0, default, the remainder coefficients of the sequence are (in absolute value) ``modified'' subresultants, which for non-monic polynomials are greater than the coefficients of the corresponding subresultants by the factor Abs(LC(p)**( deg(p)- deg(q))). B. If method == 1, the remainder coefficients of the sequence are (in absolute value) subresultants, which for non-monic polynomials are smaller than the coefficients of the corresponding ``modified'' subresultants by the factor Abs(LC(p)**( deg(p)- deg(q))). If the Sturm sequence is complete, method=0 and LC( p ) > 0, the coefficients of the polynomials in the sequence are ``modified'' subresultants. That is, they are determinants of appropriately selected submatrices of sylvester2, Sylvester's matrix of 1853. In this case the Sturm sequence coincides with the ``modified'' subresultant prs, of the polynomials p, q. If the Sturm sequence is incomplete and method=0 then the signs of the coefficients of the polynomials in the sequence may differ from the signs of the coefficients of the corresponding polynomials in the ``modified'' subresultant prs; however, the absolute values are the same. To compute the coefficients, no determinant evaluation takes place. Instead, polynomial divisions in Q[x] are performed, using the function rem(p, q, x); the coefficients of the remainders computed this way become (``modified'') subresultants with the help of the Pell-Gordon Theorem of 1917. See also the function euclid_pg(p, q, x). References ========== 1. Pell A. J., R. L. Gordon. The Modified Remainders Obtained in Finding the Highest Common Factor of Two Polynomials. Annals of MatheMatics, Second Series, 18 (1917), No. 4, 188–193. 2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Sturm Sequences and Modified Subresultant Polynomial Remainder Sequences.'' Serdica Journal of Computing, Vol. 8, No 1, 29–46, 2014. """ # make sure neither p nor q is 0 if p == 0 or q == 0: return [p, q] # make sure proper degrees d0 = degree(p, x) d1 = degree(q, x) if d0 == 0 and d1 == 0: return [p, q] if d1 > d0: d0, d1 = d1, d0 p, q = q, p if d0 > 0 and d1 == 0: return [p,q] # make sure LC(p) > 0 flag = 0 if LC(p,x) < 0: flag = 1 p = -p q = -q # initialize lcf = LC(p, x)**(d0 - d1) # lcf * subr = modified subr a0, a1 = p, q # the input polys sturm_seq = [a0, a1] # the output list del0 = d0 - d1 # degree difference rho1 = LC(a1, x) # leading coeff of a1 exp_deg = d1 - 1 # expected degree of a2 a2 = - rem(a0, a1, domain=QQ) # first remainder rho2 = LC(a2,x) # leading coeff of a2 d2 = degree(a2, x) # actual degree of a2 deg_diff_new = exp_deg - d2 # expected - actual degree del1 = d1 - d2 # degree difference # mul_fac is the factor by which a2 is multiplied to # get integer coefficients mul_fac_old = rho1**(del0 + del1 - deg_diff_new) # append accordingly if method == 0: sturm_seq.append( simplify(lcf * a2 * Abs(mul_fac_old))) else: sturm_seq.append( simplify( a2 * Abs(mul_fac_old))) # main loop deg_diff_old = deg_diff_new while d2 > 0: a0, a1, d0, d1 = a1, a2, d1, d2 # update polys and degrees del0 = del1 # update degree difference exp_deg = d1 - 1 # new expected degree a2 = - rem(a0, a1, domain=QQ) # new remainder rho3 = LC(a2, x) # leading coeff of a2 d2 = degree(a2, x) # actual degree of a2 deg_diff_new = exp_deg - d2 # expected - actual degree del1 = d1 - d2 # degree difference # take into consideration the power # rho1**deg_diff_old that was "left out" expo_old = deg_diff_old # rho1 raised to this power expo_new = del0 + del1 - deg_diff_new # rho2 raised to this power # update variables and append mul_fac_new = rho2**(expo_new) * rho1**(expo_old) * mul_fac_old deg_diff_old, mul_fac_old = deg_diff_new, mul_fac_new rho1, rho2 = rho2, rho3 if method == 0: sturm_seq.append( simplify(lcf * a2 * Abs(mul_fac_old))) else: sturm_seq.append( simplify( a2 * Abs(mul_fac_old))) if flag: # change the sign of the sequence sturm_seq = [-i for i in sturm_seq] # gcd is of degree > 0 ? m = len(sturm_seq) if sturm_seq[m - 1] == nan or sturm_seq[m - 1] == 0: sturm_seq.pop(m - 1) return sturm_seq def sturm_q(p, q, x): """ p, q are polynomials in Z[x] or Q[x]. It is assumed that degree(p, x) >= degree(q, x). Computes the (generalized) Sturm sequence of p and q in Q[x]. Polynomial divisions in Q[x] are performed, using the function rem(p, q, x). The coefficients of the polynomials in the Sturm sequence can be uniquely determined from the corresponding coefficients of the polynomials found either in: (a) the ``modified'' subresultant prs, (references 1, 2) or in (b) the subresultant prs (reference 3). References ========== 1. Pell A. J., R. L. Gordon. The Modified Remainders Obtained in Finding the Highest Common Factor of Two Polynomials. Annals of MatheMatics, Second Series, 18 (1917), No. 4, 188–193. 2 Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Sturm Sequences and Modified Subresultant Polynomial Remainder Sequences.'' Serdica Journal of Computing, Vol. 8, No 1, 29–46, 2014. 3. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``A Basic Result on the Theory of Subresultants.'' Serdica Journal of Computing 10 (2016), Νο.1, 31-48. """ # make sure neither p nor q is 0 if p == 0 or q == 0: return [p, q] # make sure proper degrees d0 = degree(p, x) d1 = degree(q, x) if d0 == 0 and d1 == 0: return [p, q] if d1 > d0: d0, d1 = d1, d0 p, q = q, p if d0 > 0 and d1 == 0: return [p,q] # make sure LC(p) > 0 flag = 0 if LC(p,x) < 0: flag = 1 p = -p q = -q # initialize a0, a1 = p, q # the input polys sturm_seq = [a0, a1] # the output list a2 = -rem(a0, a1, domain=QQ) # first remainder d2 = degree(a2, x) # degree of a2 sturm_seq.append( a2 ) # main loop while d2 > 0: a0, a1, d0, d1 = a1, a2, d1, d2 # update polys and degrees a2 = -rem(a0, a1, domain=QQ) # new remainder d2 = degree(a2, x) # actual degree of a2 sturm_seq.append( a2 ) if flag: # change the sign of the sequence sturm_seq = [-i for i in sturm_seq] # gcd is of degree > 0 ? m = len(sturm_seq) if sturm_seq[m - 1] == nan or sturm_seq[m - 1] == 0: sturm_seq.pop(m - 1) return sturm_seq def sturm_amv(p, q, x, method=0): """ p, q are polynomials in Z[x] or Q[x]. It is assumed that degree(p, x) >= degree(q, x). Computes the (generalized) Sturm sequence of p and q in Z[x] or Q[x]. If q = diff(p, x, 1) it is the usual Sturm sequence. A. If method == 0, default, the remainder coefficients of the sequence are (in absolute value) ``modified'' subresultants, which for non-monic polynomials are greater than the coefficients of the corresponding subresultants by the factor Abs(LC(p)**( deg(p)- deg(q))). B. If method == 1, the remainder coefficients of the sequence are (in absolute value) subresultants, which for non-monic polynomials are smaller than the coefficients of the corresponding ``modified'' subresultants by the factor Abs( LC(p)**( deg(p)- deg(q)) ). If the Sturm sequence is complete, method=0 and LC( p ) > 0, then the coefficients of the polynomials in the sequence are ``modified'' subresultants. That is, they are determinants of appropriately selected submatrices of sylvester2, Sylvester's matrix of 1853. In this case the Sturm sequence coincides with the ``modified'' subresultant prs, of the polynomials p, q. If the Sturm sequence is incomplete and method=0 then the signs of the coefficients of the polynomials in the sequence may differ from the signs of the coefficients of the corresponding polynomials in the ``modified'' subresultant prs; however, the absolute values are the same. To compute the coefficients, no determinant evaluation takes place. Instead, we first compute the euclidean sequence of p and q using euclid_amv(p, q, x) and then: (a) change the signs of the remainders in the Euclidean sequence according to the pattern "-, -, +, +, -, -, +, +,..." (see Lemma 1 in the 1st reference or Theorem 3 in the 2nd reference) and (b) if method=0, assuming deg(p) > deg(q), we multiply the remainder coefficients of the Euclidean sequence times the factor Abs( LC(p)**( deg(p)- deg(q)) ) to make them modified subresultants. See also the function sturm_pg(p, q, x). References ========== 1. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``A Basic Result on the Theory of Subresultants.'' Serdica Journal of Computing 10 (2016), Νο.1, 31-48. 2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``On the Remainders Obtained in Finding the Greatest Common Divisor of Two Polynomials.'' Serdica Journal of Computing 9(2) (2015), 123-138. 3. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Subresultant Polynomial Remainder Sequences Obtained by Polynomial Divisions in Q[x] or in Z[x].'' Serdica Journal of Computing 10 (2016), Νο.3-4, 197-217. """ # compute the euclidean sequence prs = euclid_amv(p, q, x) # defensive if prs == [] or len(prs) == 2: return prs # the coefficients in prs are subresultants and hence are smaller # than the corresponding subresultants by the factor # Abs( LC(prs[0])**( deg(prs[0]) - deg(prs[1])) ); Theorem 2, 2nd reference. lcf = Abs( LC(prs[0])**( degree(prs[0], x) - degree(prs[1], x) ) ) # the signs of the first two polys in the sequence stay the same sturm_seq = [prs[0], prs[1]] # change the signs according to "-, -, +, +, -, -, +, +,..." # and multiply times lcf if needed flag = 0 m = len(prs) i = 2 while i <= m-1: if flag == 0: sturm_seq.append( - prs[i] ) i = i + 1 if i == m: break sturm_seq.append( - prs[i] ) i = i + 1 flag = 1 elif flag == 1: sturm_seq.append( prs[i] ) i = i + 1 if i == m: break sturm_seq.append( prs[i] ) i = i + 1 flag = 0 # subresultants or modified subresultants? if method == 0 and lcf > 1: aux_seq = [sturm_seq[0], sturm_seq[1]] for i in range(2, m): aux_seq.append(simplify(sturm_seq[i] * lcf )) sturm_seq = aux_seq return sturm_seq def euclid_pg(p, q, x): """ p, q are polynomials in Z[x] or Q[x]. It is assumed that degree(p, x) >= degree(q, x). Computes the Euclidean sequence of p and q in Z[x] or Q[x]. If the Euclidean sequence is complete the coefficients of the polynomials in the sequence are subresultants. That is, they are determinants of appropriately selected submatrices of sylvester1, Sylvester's matrix of 1840. In this case the Euclidean sequence coincides with the subresultant prs of the polynomials p, q. If the Euclidean sequence is incomplete the signs of the coefficients of the polynomials in the sequence may differ from the signs of the coefficients of the corresponding polynomials in the subresultant prs; however, the absolute values are the same. To compute the Euclidean sequence, no determinant evaluation takes place. We first compute the (generalized) Sturm sequence of p and q using sturm_pg(p, q, x, 1), in which case the coefficients are (in absolute value) equal to subresultants. Then we change the signs of the remainders in the Sturm sequence according to the pattern "-, -, +, +, -, -, +, +,..." ; see Lemma 1 in the 1st reference or Theorem 3 in the 2nd reference as well as the function sturm_pg(p, q, x). References ========== 1. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``A Basic Result on the Theory of Subresultants.'' Serdica Journal of Computing 10 (2016), Νο.1, 31-48. 2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``On the Remainders Obtained in Finding the Greatest Common Divisor of Two Polynomials.'' Serdica Journal of Computing 9(2) (2015), 123-138. 3. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Subresultant Polynomial Remainder Sequences Obtained by Polynomial Divisions in Q[x] or in Z[x].'' Serdica Journal of Computing 10 (2016), Νο.3-4, 197-217. """ # compute the sturmian sequence using the Pell-Gordon (or AMV) theorem # with the coefficients in the prs being (in absolute value) subresultants prs = sturm_pg(p, q, x, 1) ## any other method would do # defensive if prs == [] or len(prs) == 2: return prs # the signs of the first two polys in the sequence stay the same euclid_seq = [prs[0], prs[1]] # change the signs according to "-, -, +, +, -, -, +, +,..." flag = 0 m = len(prs) i = 2 while i <= m-1: if flag == 0: euclid_seq.append(- prs[i] ) i = i + 1 if i == m: break euclid_seq.append(- prs[i] ) i = i + 1 flag = 1 elif flag == 1: euclid_seq.append(prs[i] ) i = i + 1 if i == m: break euclid_seq.append(prs[i] ) i = i + 1 flag = 0 return euclid_seq def euclid_q(p, q, x): """ p, q are polynomials in Z[x] or Q[x]. It is assumed that degree(p, x) >= degree(q, x). Computes the Euclidean sequence of p and q in Q[x]. Polynomial divisions in Q[x] are performed, using the function rem(p, q, x). The coefficients of the polynomials in the Euclidean sequence can be uniquely determined from the corresponding coefficients of the polynomials found either in: (a) the ``modified'' subresultant polynomial remainder sequence, (references 1, 2) or in (b) the subresultant polynomial remainder sequence (references 3). References ========== 1. Pell A. J., R. L. Gordon. The Modified Remainders Obtained in Finding the Highest Common Factor of Two Polynomials. Annals of MatheMatics, Second Series, 18 (1917), No. 4, 188–193. 2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Sturm Sequences and Modified Subresultant Polynomial Remainder Sequences.'' Serdica Journal of Computing, Vol. 8, No 1, 29–46, 2014. 3. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``A Basic Result on the Theory of Subresultants.'' Serdica Journal of Computing 10 (2016), Νο.1, 31-48. """ # make sure neither p nor q is 0 if p == 0 or q == 0: return [p, q] # make sure proper degrees d0 = degree(p, x) d1 = degree(q, x) if d0 == 0 and d1 == 0: return [p, q] if d1 > d0: d0, d1 = d1, d0 p, q = q, p if d0 > 0 and d1 == 0: return [p,q] # make sure LC(p) > 0 flag = 0 if LC(p,x) < 0: flag = 1 p = -p q = -q # initialize a0, a1 = p, q # the input polys euclid_seq = [a0, a1] # the output list a2 = rem(a0, a1, domain=QQ) # first remainder d2 = degree(a2, x) # degree of a2 euclid_seq.append( a2 ) # main loop while d2 > 0: a0, a1, d0, d1 = a1, a2, d1, d2 # update polys and degrees a2 = rem(a0, a1, domain=QQ) # new remainder d2 = degree(a2, x) # actual degree of a2 euclid_seq.append( a2 ) if flag: # change the sign of the sequence euclid_seq = [-i for i in euclid_seq] # gcd is of degree > 0 ? m = len(euclid_seq) if euclid_seq[m - 1] == nan or euclid_seq[m - 1] == 0: euclid_seq.pop(m - 1) return euclid_seq def euclid_amv(f, g, x): """ f, g are polynomials in Z[x] or Q[x]. It is assumed that degree(f, x) >= degree(g, x). Computes the Euclidean sequence of p and q in Z[x] or Q[x]. If the Euclidean sequence is complete the coefficients of the polynomials in the sequence are subresultants. That is, they are determinants of appropriately selected submatrices of sylvester1, Sylvester's matrix of 1840. In this case the Euclidean sequence coincides with the subresultant prs, of the polynomials p, q. If the Euclidean sequence is incomplete the signs of the coefficients of the polynomials in the sequence may differ from the signs of the coefficients of the corresponding polynomials in the subresultant prs; however, the absolute values are the same. To compute the coefficients, no determinant evaluation takes place. Instead, polynomial divisions in Z[x] or Q[x] are performed, using the function rem_z(f, g, x); the coefficients of the remainders computed this way become subresultants with the help of the Collins-Brown-Traub formula for coefficient reduction. References ========== 1. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``A Basic Result on the Theory of Subresultants.'' Serdica Journal of Computing 10 (2016), Νο.1, 31-48. 2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Subresultant Polynomial remainder Sequences Obtained by Polynomial Divisions in Q[x] or in Z[x].'' Serdica Journal of Computing 10 (2016), Νο.3-4, 197-217. """ # make sure neither f nor g is 0 if f == 0 or g == 0: return [f, g] # make sure proper degrees d0 = degree(f, x) d1 = degree(g, x) if d0 == 0 and d1 == 0: return [f, g] if d1 > d0: d0, d1 = d1, d0 f, g = g, f if d0 > 0 and d1 == 0: return [f, g] # initialize a0 = f a1 = g euclid_seq = [a0, a1] deg_dif_p1, c = degree(a0, x) - degree(a1, x) + 1, -1 # compute the first polynomial of the prs i = 1 a2 = rem_z(a0, a1, x) / Abs( (-1)**deg_dif_p1 ) # first remainder euclid_seq.append( a2 ) d2 = degree(a2, x) # actual degree of a2 # main loop while d2 >= 1: a0, a1, d0, d1 = a1, a2, d1, d2 # update polys and degrees i += 1 sigma0 = -LC(a0) c = (sigma0**(deg_dif_p1 - 1)) / (c**(deg_dif_p1 - 2)) deg_dif_p1 = degree(a0, x) - d2 + 1 a2 = rem_z(a0, a1, x) / Abs( ((c**(deg_dif_p1 - 1)) * sigma0) ) euclid_seq.append( a2 ) d2 = degree(a2, x) # actual degree of a2 # gcd is of degree > 0 ? m = len(euclid_seq) if euclid_seq[m - 1] == nan or euclid_seq[m - 1] == 0: euclid_seq.pop(m - 1) return euclid_seq def modified_subresultants_pg(p, q, x): """ p, q are polynomials in Z[x] or Q[x]. It is assumed that degree(p, x) >= degree(q, x). Computes the ``modified'' subresultant prs of p and q in Z[x] or Q[x]; the coefficients of the polynomials in the sequence are ``modified'' subresultants. That is, they are determinants of appropriately selected submatrices of sylvester2, Sylvester's matrix of 1853. To compute the coefficients, no determinant evaluation takes place. Instead, polynomial divisions in Q[x] are performed, using the function rem(p, q, x); the coefficients of the remainders computed this way become ``modified'' subresultants with the help of the Pell-Gordon Theorem of 1917. If the ``modified'' subresultant prs is complete, and LC( p ) > 0, it coincides with the (generalized) Sturm sequence of the polynomials p, q. References ========== 1. Pell A. J., R. L. Gordon. The Modified Remainders Obtained in Finding the Highest Common Factor of Two Polynomials. Annals of MatheMatics, Second Series, 18 (1917), No. 4, 188–193. 2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Sturm Sequences and Modified Subresultant Polynomial Remainder Sequences.'' Serdica Journal of Computing, Vol. 8, No 1, 29–46, 2014. """ # make sure neither p nor q is 0 if p == 0 or q == 0: return [p, q] # make sure proper degrees d0 = degree(p,x) d1 = degree(q,x) if d0 == 0 and d1 == 0: return [p, q] if d1 > d0: d0, d1 = d1, d0 p, q = q, p if d0 > 0 and d1 == 0: return [p,q] # initialize k = var('k') # index in summation formula u_list = [] # of elements (-1)**u_i subres_l = [p, q] # mod. subr. prs output list a0, a1 = p, q # the input polys del0 = d0 - d1 # degree difference degdif = del0 # save it rho_1 = LC(a0) # lead. coeff (a0) # Initialize Pell-Gordon variables rho_list_minus_1 = sign( LC(a0, x)) # sign of LC(a0) rho1 = LC(a1, x) # leading coeff of a1 rho_list = [ sign(rho1)] # of signs p_list = [del0] # of degree differences u = summation(k, (k, 1, p_list[0])) # value of u u_list.append(u) # of u values v = sum(p_list) # v value # first remainder exp_deg = d1 - 1 # expected degree of a2 a2 = - rem(a0, a1, domain=QQ) # first remainder rho2 = LC(a2, x) # leading coeff of a2 d2 = degree(a2, x) # actual degree of a2 deg_diff_new = exp_deg - d2 # expected - actual degree del1 = d1 - d2 # degree difference # mul_fac is the factor by which a2 is multiplied to # get integer coefficients mul_fac_old = rho1**(del0 + del1 - deg_diff_new) # update Pell-Gordon variables p_list.append(1 + deg_diff_new) # deg_diff_new is 0 for complete seq # apply Pell-Gordon formula (7) in second reference num = 1 # numerator of fraction for k in range(len(u_list)): num *= (-1)**u_list[k] num = num * (-1)**v # denominator depends on complete / incomplete seq if deg_diff_new == 0: # complete seq den = 1 for k in range(len(rho_list)): den *= rho_list[k]**(p_list[k] + p_list[k + 1]) den = den * rho_list_minus_1 else: # incomplete seq den = 1 for k in range(len(rho_list)-1): den *= rho_list[k]**(p_list[k] + p_list[k + 1]) den = den * rho_list_minus_1 expo = (p_list[len(rho_list) - 1] + p_list[len(rho_list)] - deg_diff_new) den = den * rho_list[len(rho_list) - 1]**expo # the sign of the determinant depends on sg(num / den) if sign(num / den) > 0: subres_l.append( simplify(rho_1**degdif*a2* Abs(mul_fac_old) ) ) else: subres_l.append(- simplify(rho_1**degdif*a2* Abs(mul_fac_old) ) ) # update Pell-Gordon variables k = var('k') rho_list.append( sign(rho2)) u = summation(k, (k, 1, p_list[len(p_list) - 1])) u_list.append(u) v = sum(p_list) deg_diff_old=deg_diff_new # main loop while d2 > 0: a0, a1, d0, d1 = a1, a2, d1, d2 # update polys and degrees del0 = del1 # update degree difference exp_deg = d1 - 1 # new expected degree a2 = - rem(a0, a1, domain=QQ) # new remainder rho3 = LC(a2, x) # leading coeff of a2 d2 = degree(a2, x) # actual degree of a2 deg_diff_new = exp_deg - d2 # expected - actual degree del1 = d1 - d2 # degree difference # take into consideration the power # rho1**deg_diff_old that was "left out" expo_old = deg_diff_old # rho1 raised to this power expo_new = del0 + del1 - deg_diff_new # rho2 raised to this power mul_fac_new = rho2**(expo_new) * rho1**(expo_old) * mul_fac_old # update variables deg_diff_old, mul_fac_old = deg_diff_new, mul_fac_new rho1, rho2 = rho2, rho3 # update Pell-Gordon variables p_list.append(1 + deg_diff_new) # deg_diff_new is 0 for complete seq # apply Pell-Gordon formula (7) in second reference num = 1 # numerator for k in range(len(u_list)): num *= (-1)**u_list[k] num = num * (-1)**v # denominator depends on complete / incomplete seq if deg_diff_new == 0: # complete seq den = 1 for k in range(len(rho_list)): den *= rho_list[k]**(p_list[k] + p_list[k + 1]) den = den * rho_list_minus_1 else: # incomplete seq den = 1 for k in range(len(rho_list)-1): den *= rho_list[k]**(p_list[k] + p_list[k + 1]) den = den * rho_list_minus_1 expo = (p_list[len(rho_list) - 1] + p_list[len(rho_list)] - deg_diff_new) den = den * rho_list[len(rho_list) - 1]**expo # the sign of the determinant depends on sg(num / den) if sign(num / den) > 0: subres_l.append( simplify(rho_1**degdif*a2* Abs(mul_fac_old) ) ) else: subres_l.append(- simplify(rho_1**degdif*a2* Abs(mul_fac_old) ) ) # update Pell-Gordon variables k = var('k') rho_list.append( sign(rho2)) u = summation(k, (k, 1, p_list[len(p_list) - 1])) u_list.append(u) v = sum(p_list) # gcd is of degree > 0 ? m = len(subres_l) if subres_l[m - 1] == nan or subres_l[m - 1] == 0: subres_l.pop(m - 1) # LC( p ) < 0 m = len(subres_l) # list may be shorter now due to deg(gcd ) > 0 if LC( p ) < 0: aux_seq = [subres_l[0], subres_l[1]] for i in range(2, m): aux_seq.append(simplify(subres_l[i] * (-1) )) subres_l = aux_seq return subres_l def subresultants_pg(p, q, x): """ p, q are polynomials in Z[x] or Q[x]. It is assumed that degree(p, x) >= degree(q, x). Computes the subresultant prs of p and q in Z[x] or Q[x], from the modified subresultant prs of p and q. The coefficients of the polynomials in these two sequences differ only in sign and the factor LC(p)**( deg(p)- deg(q)) as stated in Theorem 2 of the reference. The coefficients of the polynomials in the output sequence are subresultants. That is, they are determinants of appropriately selected submatrices of sylvester1, Sylvester's matrix of 1840. If the subresultant prs is complete, then it coincides with the Euclidean sequence of the polynomials p, q. References ========== 1. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ‘‘On the Remainders Obtained in Finding the Greatest Common Divisor of Two Polynomials.'' Serdica Journal of Computing 9(2) (2015), 123-138. """ # compute the modified subresultant prs lst = modified_subresultants_pg(p,q,x) ## any other method would do # defensive if lst == [] or len(lst) == 2: return lst # the coefficients in lst are modified subresultants and, hence, are # greater than those of the corresponding subresultants by the factor # LC(lst[0])**( deg(lst[0]) - deg(lst[1])); see Theorem 2 in reference. lcf = LC(lst[0])**( degree(lst[0], x) - degree(lst[1], x) ) # Initialize the subresultant prs list subr_seq = [lst[0], lst[1]] # compute the degree sequences m_i and j_i of Theorem 2 in reference. deg_seq = [degree(Poly(poly, x), x) for poly in lst] deg = deg_seq[0] deg_seq_s = deg_seq[1:-1] m_seq = [m-1 for m in deg_seq_s] j_seq = [deg - m for m in m_seq] # compute the AMV factors of Theorem 2 in reference. fact = [(-1)**( j*(j-1)/S(2) ) for j in j_seq] # shortened list without the first two polys lst_s = lst[2:] # poly lst_s[k] is multiplied times fact[k], divided by lcf # and appended to the subresultant prs list m = len(fact) for k in range(m): if sign(fact[k]) == -1: subr_seq.append(-lst_s[k] / lcf) else: subr_seq.append(lst_s[k] / lcf) return subr_seq def subresultants_amv_q(p, q, x): """ p, q are polynomials in Z[x] or Q[x]. It is assumed that degree(p, x) >= degree(q, x). Computes the subresultant prs of p and q in Q[x]; the coefficients of the polynomials in the sequence are subresultants. That is, they are determinants of appropriately selected submatrices of sylvester1, Sylvester's matrix of 1840. To compute the coefficients, no determinant evaluation takes place. Instead, polynomial divisions in Q[x] are performed, using the function rem(p, q, x); the coefficients of the remainders computed this way become subresultants with the help of the Akritas-Malaschonok-Vigklas Theorem of 2015. If the subresultant prs is complete, then it coincides with the Euclidean sequence of the polynomials p, q. References ========== 1. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``A Basic Result on the Theory of Subresultants.'' Serdica Journal of Computing 10 (2016), Νο.1, 31-48. 2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Subresultant Polynomial remainder Sequences Obtained by Polynomial Divisions in Q[x] or in Z[x].'' Serdica Journal of Computing 10 (2016), Νο.3-4, 197-217. """ # make sure neither p nor q is 0 if p == 0 or q == 0: return [p, q] # make sure proper degrees d0 = degree(p, x) d1 = degree(q, x) if d0 == 0 and d1 == 0: return [p, q] if d1 > d0: d0, d1 = d1, d0 p, q = q, p if d0 > 0 and d1 == 0: return [p, q] # initialize i, s = 0, 0 # counters for remainders & odd elements p_odd_index_sum = 0 # contains the sum of p_1, p_3, etc subres_l = [p, q] # subresultant prs output list a0, a1 = p, q # the input polys sigma1 = LC(a1, x) # leading coeff of a1 p0 = d0 - d1 # degree difference if p0 % 2 == 1: s += 1 phi = floor( (s + 1) / 2 ) mul_fac = 1 d2 = d1 # main loop while d2 > 0: i += 1 a2 = rem(a0, a1, domain= QQ) # new remainder if i == 1: sigma2 = LC(a2, x) else: sigma3 = LC(a2, x) sigma1, sigma2 = sigma2, sigma3 d2 = degree(a2, x) p1 = d1 - d2 psi = i + phi + p_odd_index_sum # new mul_fac mul_fac = sigma1**(p0 + 1) * mul_fac ## compute the sign of the first fraction in formula (9) of the paper # numerator num = (-1)**psi # denominator den = sign(mul_fac) # the sign of the determinant depends on sign( num / den ) != 0 if sign(num / den) > 0: subres_l.append( simplify(expand(a2* Abs(mul_fac)))) else: subres_l.append(- simplify(expand(a2* Abs(mul_fac)))) ## bring into mul_fac the missing power of sigma if there was a degree gap if p1 - 1 > 0: mul_fac = mul_fac * sigma1**(p1 - 1) # update AMV variables a0, a1, d0, d1 = a1, a2, d1, d2 p0 = p1 if p0 % 2 ==1: s += 1 phi = floor( (s + 1) / 2 ) if i%2 == 1: p_odd_index_sum += p0 # p_i has odd index # gcd is of degree > 0 ? m = len(subres_l) if subres_l[m - 1] == nan or subres_l[m - 1] == 0: subres_l.pop(m - 1) return subres_l def compute_sign(base, expo): ''' base != 0 and expo >= 0 are integers; returns the sign of base**expo without evaluating the power itself! ''' sb = sign(base) if sb == 1: return 1 pe = expo % 2 if pe == 0: return -sb else: return sb def rem_z(p, q, x): ''' Intended mainly for p, q polynomials in Z[x] so that, on dividing p by q, the remainder will also be in Z[x]. (However, it also works fine for polynomials in Q[x].) It is assumed that degree(p, x) >= degree(q, x). It premultiplies p by the _absolute_ value of the leading coefficient of q, raised to the power deg(p) - deg(q) + 1 and then performs polynomial division in Q[x], using the function rem(p, q, x). By contrast the function prem(p, q, x) does _not_ use the absolute value of the leading coefficient of q. This results not only in ``messing up the signs'' of the Euclidean and Sturmian prs's as mentioned in the second reference, but also in violation of the main results of the first and third references --- Theorem 4 and Theorem 1 respectively. Theorems 4 and 1 establish a one-to-one correspondence between the Euclidean and the Sturmian prs of p, q, on one hand, and the subresultant prs of p, q, on the other. References ========== 1. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``On the Remainders Obtained in Finding the Greatest Common Divisor of Two Polynomials.'' Serdica Journal of Computing, 9(2) (2015), 123-138. 2. http://planetMath.org/sturmstheorem 3. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``A Basic Result on the Theory of Subresultants.'' Serdica Journal of Computing 10 (2016), Νο.1, 31-48. ''' if (p.as_poly().is_univariate and q.as_poly().is_univariate and p.as_poly().gens == q.as_poly().gens): delta = (degree(p, x) - degree(q, x) + 1) return rem(Abs(LC(q, x))**delta * p, q, x) else: return prem(p, q, x) def quo_z(p, q, x): """ Intended mainly for p, q polynomials in Z[x] so that, on dividing p by q, the quotient will also be in Z[x]. (However, it also works fine for polynomials in Q[x].) It is assumed that degree(p, x) >= degree(q, x). It premultiplies p by the _absolute_ value of the leading coefficient of q, raised to the power deg(p) - deg(q) + 1 and then performs polynomial division in Q[x], using the function quo(p, q, x). By contrast the function pquo(p, q, x) does _not_ use the absolute value of the leading coefficient of q. See also function rem_z(p, q, x) for additional comments and references. """ if (p.as_poly().is_univariate and q.as_poly().is_univariate and p.as_poly().gens == q.as_poly().gens): delta = (degree(p, x) - degree(q, x) + 1) return quo(Abs(LC(q, x))**delta * p, q, x) else: return pquo(p, q, x) def subresultants_amv(f, g, x): """ p, q are polynomials in Z[x] or Q[x]. It is assumed that degree(f, x) >= degree(g, x). Computes the subresultant prs of p and q in Z[x] or Q[x]; the coefficients of the polynomials in the sequence are subresultants. That is, they are determinants of appropriately selected submatrices of sylvester1, Sylvester's matrix of 1840. To compute the coefficients, no determinant evaluation takes place. Instead, polynomial divisions in Z[x] or Q[x] are performed, using the function rem_z(p, q, x); the coefficients of the remainders computed this way become subresultants with the help of the Akritas-Malaschonok-Vigklas Theorem of 2015 and the Collins-Brown- Traub formula for coefficient reduction. If the subresultant prs is complete, then it coincides with the Euclidean sequence of the polynomials p, q. References ========== 1. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``A Basic Result on the Theory of Subresultants.'' Serdica Journal of Computing 10 (2016), Νο.1, 31-48. 2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Subresultant Polynomial remainder Sequences Obtained by Polynomial Divisions in Q[x] or in Z[x].'' Serdica Journal of Computing 10 (2016), Νο.3-4, 197-217. """ # make sure neither f nor g is 0 if f == 0 or g == 0: return [f, g] # make sure proper degrees d0 = degree(f, x) d1 = degree(g, x) if d0 == 0 and d1 == 0: return [f, g] if d1 > d0: d0, d1 = d1, d0 f, g = g, f if d0 > 0 and d1 == 0: return [f, g] # initialize a0 = f a1 = g subres_l = [a0, a1] deg_dif_p1, c = degree(a0, x) - degree(a1, x) + 1, -1 # initialize AMV variables sigma1 = LC(a1, x) # leading coeff of a1 i, s = 0, 0 # counters for remainders & odd elements p_odd_index_sum = 0 # contains the sum of p_1, p_3, etc p0 = deg_dif_p1 - 1 if p0 % 2 == 1: s += 1 phi = floor( (s + 1) / 2 ) # compute the first polynomial of the prs i += 1 a2 = rem_z(a0, a1, x) / Abs( (-1)**deg_dif_p1 ) # first remainder sigma2 = LC(a2, x) # leading coeff of a2 d2 = degree(a2, x) # actual degree of a2 p1 = d1 - d2 # degree difference # sgn_den is the factor, the denominator 1st fraction of (9), # by which a2 is multiplied to get integer coefficients sgn_den = compute_sign( sigma1, p0 + 1 ) ## compute sign of the 1st fraction in formula (9) of the paper # numerator psi = i + phi + p_odd_index_sum num = (-1)**psi # denominator den = sgn_den # the sign of the determinant depends on sign(num / den) != 0 if sign(num / den) > 0: subres_l.append( a2 ) else: subres_l.append( -a2 ) # update AMV variable if p1 % 2 == 1: s += 1 # bring in the missing power of sigma if there was gap if p1 - 1 > 0: sgn_den = sgn_den * compute_sign( sigma1, p1 - 1 ) # main loop while d2 >= 1: phi = floor( (s + 1) / 2 ) if i%2 == 1: p_odd_index_sum += p1 # p_i has odd index a0, a1, d0, d1 = a1, a2, d1, d2 # update polys and degrees p0 = p1 # update degree difference i += 1 sigma0 = -LC(a0) c = (sigma0**(deg_dif_p1 - 1)) / (c**(deg_dif_p1 - 2)) deg_dif_p1 = degree(a0, x) - d2 + 1 a2 = rem_z(a0, a1, x) / Abs( ((c**(deg_dif_p1 - 1)) * sigma0) ) sigma3 = LC(a2, x) # leading coeff of a2 d2 = degree(a2, x) # actual degree of a2 p1 = d1 - d2 # degree difference psi = i + phi + p_odd_index_sum # update variables sigma1, sigma2 = sigma2, sigma3 # new sgn_den sgn_den = compute_sign( sigma1, p0 + 1 ) * sgn_den # compute the sign of the first fraction in formula (9) of the paper # numerator num = (-1)**psi # denominator den = sgn_den # the sign of the determinant depends on sign( num / den ) != 0 if sign(num / den) > 0: subres_l.append( a2 ) else: subres_l.append( -a2 ) # update AMV variable if p1 % 2 ==1: s += 1 # bring in the missing power of sigma if there was gap if p1 - 1 > 0: sgn_den = sgn_den * compute_sign( sigma1, p1 - 1 ) # gcd is of degree > 0 ? m = len(subres_l) if subres_l[m - 1] == nan or subres_l[m - 1] == 0: subres_l.pop(m - 1) return subres_l def modified_subresultants_amv(p, q, x): """ p, q are polynomials in Z[x] or Q[x]. It is assumed that degree(p, x) >= degree(q, x). Computes the modified subresultant prs of p and q in Z[x] or Q[x], from the subresultant prs of p and q. The coefficients of the polynomials in the two sequences differ only in sign and the factor LC(p)**( deg(p)- deg(q)) as stated in Theorem 2 of the reference. The coefficients of the polynomials in the output sequence are modified subresultants. That is, they are determinants of appropriately selected submatrices of sylvester2, Sylvester's matrix of 1853. If the modified subresultant prs is complete, and LC( p ) > 0, it coincides with the (generalized) Sturm's sequence of the polynomials p, q. References ========== 1. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ‘‘On the Remainders Obtained in Finding the Greatest Common Divisor of Two Polynomials.'' Serdica Journal of Computing, Serdica Journal of Computing, 9(2) (2015), 123-138. """ # compute the subresultant prs lst = subresultants_amv(p,q,x) ## any other method would do # defensive if lst == [] or len(lst) == 2: return lst # the coefficients in lst are subresultants and, hence, smaller than those # of the corresponding modified subresultants by the factor # LC(lst[0])**( deg(lst[0]) - deg(lst[1])); see Theorem 2. lcf = LC(lst[0])**( degree(lst[0], x) - degree(lst[1], x) ) # Initialize the modified subresultant prs list subr_seq = [lst[0], lst[1]] # compute the degree sequences m_i and j_i of Theorem 2 deg_seq = [degree(Poly(poly, x), x) for poly in lst] deg = deg_seq[0] deg_seq_s = deg_seq[1:-1] m_seq = [m-1 for m in deg_seq_s] j_seq = [deg - m for m in m_seq] # compute the AMV factors of Theorem 2 fact = [(-1)**( j*(j-1)/S(2) ) for j in j_seq] # shortened list without the first two polys lst_s = lst[2:] # poly lst_s[k] is multiplied times fact[k] and times lcf # and appended to the subresultant prs list m = len(fact) for k in range(m): if sign(fact[k]) == -1: subr_seq.append( simplify(-lst_s[k] * lcf) ) else: subr_seq.append( simplify(lst_s[k] * lcf) ) return subr_seq def correct_sign(deg_f, deg_g, s1, rdel, cdel): """ Used in various subresultant prs algorithms. Evaluates the determinant, (a.k.a. subresultant) of a properly selected submatrix of s1, Sylvester's matrix of 1840, to get the correct sign and value of the leading coefficient of a given polynomial remainder. deg_f, deg_g are the degrees of the original polynomials p, q for which the matrix s1 = sylvester(p, q, x, 1) was constructed. rdel denotes the expected degree of the remainder; it is the number of rows to be deleted from each group of rows in s1 as described in the reference below. cdel denotes the expected degree minus the actual degree of the remainder; it is the number of columns to be deleted --- starting with the last column forming the square matrix --- from the matrix resulting after the row deletions. References ========== Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Sturm Sequences and Modified Subresultant Polynomial Remainder Sequences.'' Serdica Journal of Computing, Vol. 8, No 1, 29–46, 2014. """ M = s1[:, :] # copy of matrix s1 # eliminate rdel rows from the first deg_g rows for i in range(M.rows - deg_f - 1, M.rows - deg_f - rdel - 1, -1): M.row_del(i) # eliminate rdel rows from the last deg_f rows for i in range(M.rows - 1, M.rows - rdel - 1, -1): M.row_del(i) # eliminate cdel columns for i in range(cdel): M.col_del(M.rows - 1) # define submatrix Md = M[:, 0: M.rows] return Md.det() def subresultants_rem(p, q, x): """ p, q are polynomials in Z[x] or Q[x]. It is assumed that degree(p, x) >= degree(q, x). Computes the subresultant prs of p and q in Z[x] or Q[x]; the coefficients of the polynomials in the sequence are subresultants. That is, they are determinants of appropriately selected submatrices of sylvester1, Sylvester's matrix of 1840. To compute the coefficients polynomial divisions in Q[x] are performed, using the function rem(p, q, x). The coefficients of the remainders computed this way become subresultants by evaluating one subresultant per remainder --- that of the leading coefficient. This way we obtain the correct sign and value of the leading coefficient of the remainder and we easily ``force'' the rest of the coefficients to become subresultants. If the subresultant prs is complete, then it coincides with the Euclidean sequence of the polynomials p, q. References ========== 1. Akritas, A. G.:``Three New Methods for Computing Subresultant Polynomial Remainder Sequences (PRS’s).'' Serdica Journal of Computing 9(1) (2015), 1-26. """ # make sure neither p nor q is 0 if p == 0 or q == 0: return [p, q] # make sure proper degrees f, g = p, q n = deg_f = degree(f, x) m = deg_g = degree(g, x) if n == 0 and m == 0: return [f, g] if n < m: n, m, deg_f, deg_g, f, g = m, n, deg_g, deg_f, g, f if n > 0 and m == 0: return [f, g] # initialize s1 = sylvester(f, g, x, 1) sr_list = [f, g] # subresultant list # main loop while deg_g > 0: r = rem(p, q, x) d = degree(r, x) if d < 0: return sr_list # make coefficients subresultants evaluating ONE determinant exp_deg = deg_g - 1 # expected degree sign_value = correct_sign(n, m, s1, exp_deg, exp_deg - d) r = simplify((r / LC(r, x)) * sign_value) # append poly with subresultant coeffs sr_list.append(r) # update degrees and polys deg_f, deg_g = deg_g, d p, q = q, r # gcd is of degree > 0 ? m = len(sr_list) if sr_list[m - 1] == nan or sr_list[m - 1] == 0: sr_list.pop(m - 1) return sr_list def pivot(M, i, j): ''' M is a matrix, and M[i, j] specifies the pivot element. All elements below M[i, j], in the j-th column, will be zeroed, if they are not already 0, according to Dodgson-Bareiss' integer preserving transformations. References ========== 1. Akritas, A. G.: ``A new method for computing polynomial greatest common divisors and polynomial remainder sequences.'' Numerische MatheMatik 52, 119-127, 1988. 2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``On a Theorem by Van Vleck Regarding Sturm Sequences.'' Serdica Journal of Computing, 7, No 4, 101–134, 2013. ''' ma = M[:, :] # copy of matrix M rs = ma.rows # No. of rows cs = ma.cols # No. of cols for r in range(i+1, rs): if ma[r, j] != 0: for c in range(j + 1, cs): ma[r, c] = ma[i, j] * ma[r, c] - ma[i, c] * ma[r, j] ma[r, j] = 0 return ma def rotate_r(L, k): ''' Rotates right by k. L is a row of a matrix or a list. ''' ll = list(L) if ll == []: return [] for i in range(k): el = ll.pop(len(ll) - 1) ll.insert(0, el) return ll if type(L) is list else Matrix([ll]) def rotate_l(L, k): ''' Rotates left by k. L is a row of a matrix or a list. ''' ll = list(L) if ll == []: return [] for i in range(k): el = ll.pop(0) ll.insert(len(ll) - 1, el) return ll if type(L) is list else Matrix([ll]) def row2poly(row, deg, x): ''' Converts the row of a matrix to a poly of degree deg and variable x. Some entries at the beginning and/or at the end of the row may be zero. ''' k = 0 poly = [] leng = len(row) # find the beginning of the poly ; i.e. the first # non-zero element of the row while row[k] == 0: k = k + 1 # append the next deg + 1 elements to poly for j in range( deg + 1): if k + j <= leng: poly.append(row[k + j]) return Poly(poly, x) def create_ma(deg_f, deg_g, row1, row2, col_num): ''' Creates a ``small'' matrix M to be triangularized. deg_f, deg_g are the degrees of the divident and of the divisor polynomials respectively, deg_g > deg_f. The coefficients of the divident poly are the elements in row2 and those of the divisor poly are the elements in row1. col_num defines the number of columns of the matrix M. ''' if deg_g - deg_f >= 1: print('Reverse degrees') return m = zeros(deg_f - deg_g + 2, col_num) for i in range(deg_f - deg_g + 1): m[i, :] = rotate_r(row1, i) m[deg_f - deg_g + 1, :] = row2 return m def find_degree(M, deg_f): ''' Finds the degree of the poly corresponding (after triangularization) to the _last_ row of the ``small'' matrix M, created by create_ma(). deg_f is the degree of the divident poly. If _last_ row is all 0's returns None. ''' j = deg_f for i in range(0, M.cols): if M[M.rows - 1, i] == 0: j = j - 1 else: return j if j >= 0 else 0 def final_touches(s2, r, deg_g): """ s2 is sylvester2, r is the row pointer in s2, deg_g is the degree of the poly last inserted in s2. After a gcd of degree > 0 has been found with Van Vleck's method, and was inserted into s2, if its last term is not in the last column of s2, then it is inserted as many times as needed, rotated right by one each time, until the condition is met. """ R = s2.row(r-1) # find the first non zero term for i in range(s2.cols): if R[0,i] == 0: continue else: break # missing rows until last term is in last column mr = s2.cols - (i + deg_g + 1) # insert them by replacing the existing entries in the row i = 0 while mr != 0 and r + i < s2.rows : s2[r + i, : ] = rotate_r(R, i + 1) i += 1 mr -= 1 return s2 def subresultants_vv(p, q, x, method = 0): """ p, q are polynomials in Z[x] (intended) or Q[x]. It is assumed that degree(p, x) >= degree(q, x). Computes the subresultant prs of p, q by triangularizing, in Z[x] or in Q[x], all the smaller matrices encountered in the process of triangularizing sylvester2, Sylvester's matrix of 1853; see references 1 and 2 for Van Vleck's method. With each remainder, sylvester2 gets updated and is prepared to be printed if requested. If sylvester2 has small dimensions and you want to see the final, triangularized matrix use this version with method=1; otherwise, use either this version with method=0 (default) or the faster version, subresultants_vv_2(p, q, x), where sylvester2 is used implicitly. Sylvester's matrix sylvester1 is also used to compute one subresultant per remainder; namely, that of the leading coefficient, in order to obtain the correct sign and to force the remainder coefficients to become subresultants. If the subresultant prs is complete, then it coincides with the Euclidean sequence of the polynomials p, q. If the final, triangularized matrix s2 is printed, then: (a) if deg(p) - deg(q) > 1 or deg( gcd(p, q) ) > 0, several of the last rows in s2 will remain unprocessed; (b) if deg(p) - deg(q) == 0, p will not appear in the final matrix. References ========== 1. Akritas, A. G.: ``A new method for computing polynomial greatest common divisors and polynomial remainder sequences.'' Numerische MatheMatik 52, 119-127, 1988. 2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``On a Theorem by Van Vleck Regarding Sturm Sequences.'' Serdica Journal of Computing, 7, No 4, 101–134, 2013. 3. Akritas, A. G.:``Three New Methods for Computing Subresultant Polynomial Remainder Sequences (PRS’s).'' Serdica Journal of Computing 9(1) (2015), 1-26. """ # make sure neither p nor q is 0 if p == 0 or q == 0: return [p, q] # make sure proper degrees f, g = p, q n = deg_f = degree(f, x) m = deg_g = degree(g, x) if n == 0 and m == 0: return [f, g] if n < m: n, m, deg_f, deg_g, f, g = m, n, deg_g, deg_f, g, f if n > 0 and m == 0: return [f, g] # initialize s1 = sylvester(f, g, x, 1) s2 = sylvester(f, g, x, 2) sr_list = [f, g] col_num = 2 * n # columns in s2 # make two rows (row0, row1) of poly coefficients row0 = Poly(f, x, domain = QQ).all_coeffs() leng0 = len(row0) for i in range(col_num - leng0): row0.append(0) row0 = Matrix([row0]) row1 = Poly(g,x, domain = QQ).all_coeffs() leng1 = len(row1) for i in range(col_num - leng1): row1.append(0) row1 = Matrix([row1]) # row pointer for deg_f - deg_g == 1; may be reset below r = 2 # modify first rows of s2 matrix depending on poly degrees if deg_f - deg_g > 1: r = 1 # replacing the existing entries in the rows of s2, # insert row0 (deg_f - deg_g - 1) times, rotated each time for i in range(deg_f - deg_g - 1): s2[r + i, : ] = rotate_r(row0, i + 1) r = r + deg_f - deg_g - 1 # insert row1 (deg_f - deg_g) times, rotated each time for i in range(deg_f - deg_g): s2[r + i, : ] = rotate_r(row1, r + i) r = r + deg_f - deg_g if deg_f - deg_g == 0: r = 0 # main loop while deg_g > 0: # create a small matrix M, and triangularize it; M = create_ma(deg_f, deg_g, row1, row0, col_num) # will need only the first and last rows of M for i in range(deg_f - deg_g + 1): M1 = pivot(M, i, i) M = M1[:, :] # treat last row of M as poly; find its degree d = find_degree(M, deg_f) if d is None: break exp_deg = deg_g - 1 # evaluate one determinant & make coefficients subresultants sign_value = correct_sign(n, m, s1, exp_deg, exp_deg - d) poly = row2poly(M[M.rows - 1, :], d, x) temp2 = LC(poly, x) poly = simplify((poly / temp2) * sign_value) # update s2 by inserting first row of M as needed row0 = M[0, :] for i in range(deg_g - d): s2[r + i, :] = rotate_r(row0, r + i) r = r + deg_g - d # update s2 by inserting last row of M as needed row1 = rotate_l(M[M.rows - 1, :], deg_f - d) row1 = (row1 / temp2) * sign_value for i in range(deg_g - d): s2[r + i, :] = rotate_r(row1, r + i) r = r + deg_g - d # update degrees deg_f, deg_g = deg_g, d # append poly with subresultant coeffs sr_list.append(poly) # final touches to print the s2 matrix if method != 0 and s2.rows > 2: s2 = final_touches(s2, r, deg_g) pprint(s2) elif method != 0 and s2.rows == 2: s2[1, :] = rotate_r(s2.row(1), 1) pprint(s2) return sr_list def subresultants_vv_2(p, q, x): """ p, q are polynomials in Z[x] (intended) or Q[x]. It is assumed that degree(p, x) >= degree(q, x). Computes the subresultant prs of p, q by triangularizing, in Z[x] or in Q[x], all the smaller matrices encountered in the process of triangularizing sylvester2, Sylvester's matrix of 1853; see references 1 and 2 for Van Vleck's method. If the sylvester2 matrix has big dimensions use this version, where sylvester2 is used implicitly. If you want to see the final, triangularized matrix sylvester2, then use the first version, subresultants_vv(p, q, x, 1). sylvester1, Sylvester's matrix of 1840, is also used to compute one subresultant per remainder; namely, that of the leading coefficient, in order to obtain the correct sign and to ``force'' the remainder coefficients to become subresultants. If the subresultant prs is complete, then it coincides with the Euclidean sequence of the polynomials p, q. References ========== 1. Akritas, A. G.: ``A new method for computing polynomial greatest common divisors and polynomial remainder sequences.'' Numerische MatheMatik 52, 119-127, 1988. 2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``On a Theorem by Van Vleck Regarding Sturm Sequences.'' Serdica Journal of Computing, 7, No 4, 101–134, 2013. 3. Akritas, A. G.:``Three New Methods for Computing Subresultant Polynomial Remainder Sequences (PRS’s).'' Serdica Journal of Computing 9(1) (2015), 1-26. """ # make sure neither p nor q is 0 if p == 0 or q == 0: return [p, q] # make sure proper degrees f, g = p, q n = deg_f = degree(f, x) m = deg_g = degree(g, x) if n == 0 and m == 0: return [f, g] if n < m: n, m, deg_f, deg_g, f, g = m, n, deg_g, deg_f, g, f if n > 0 and m == 0: return [f, g] # initialize s1 = sylvester(f, g, x, 1) sr_list = [f, g] # subresultant list col_num = 2 * n # columns in sylvester2 # make two rows (row0, row1) of poly coefficients row0 = Poly(f, x, domain = QQ).all_coeffs() leng0 = len(row0) for i in range(col_num - leng0): row0.append(0) row0 = Matrix([row0]) row1 = Poly(g,x, domain = QQ).all_coeffs() leng1 = len(row1) for i in range(col_num - leng1): row1.append(0) row1 = Matrix([row1]) # main loop while deg_g > 0: # create a small matrix M, and triangularize it M = create_ma(deg_f, deg_g, row1, row0, col_num) for i in range(deg_f - deg_g + 1): M1 = pivot(M, i, i) M = M1[:, :] # treat last row of M as poly; find its degree d = find_degree(M, deg_f) if d is None: return sr_list exp_deg = deg_g - 1 # evaluate one determinant & make coefficients subresultants sign_value = correct_sign(n, m, s1, exp_deg, exp_deg - d) poly = row2poly(M[M.rows - 1, :], d, x) poly = simplify((poly / LC(poly, x)) * sign_value) # append poly with subresultant coeffs sr_list.append(poly) # update degrees and rows deg_f, deg_g = deg_g, d row0 = row1 row1 = Poly(poly, x, domain = QQ).all_coeffs() leng1 = len(row1) for i in range(col_num - leng1): row1.append(0) row1 = Matrix([row1]) return sr_list
49827bca8c3fb249054d8b211eca48b018f3896b073204a7fa38a2a1f06057ec
""" This module contains functions for two multivariate resultants. These are: - Dixon's resultant. - Macaulay's resultant. Multivariate resultants are used to identify whether a multivariate system has common roots. That is when the resultant is equal to zero. """ from sympy import IndexedBase, Matrix, Mul, Poly from sympy import rem, prod, degree_list, diag from sympy.core.compatibility import range from sympy.polys.monomials import monomial_deg, itermonomials from sympy.polys.orderings import monomial_key from sympy.polys.polytools import poly_from_expr, total_degree from sympy.functions.combinatorial.factorials import binomial from itertools import combinations_with_replacement class DixonResultant(): """ A class for retrieving the Dixon's resultant of a multivariate system. Examples ======== >>> from sympy.core import symbols >>> from sympy.polys.multivariate_resultants import DixonResultant >>> x, y = symbols('x, y') >>> p = x + y >>> q = x ** 2 + y ** 3 >>> h = x ** 2 + y >>> dixon = DixonResultant(variables=[x, y], polynomials=[p, q, h]) >>> poly = dixon.get_dixon_polynomial() >>> matrix = dixon.get_dixon_matrix(polynomial=poly) >>> matrix Matrix([ [ 0, 0, -1, 0, -1], [ 0, -1, 0, -1, 0], [-1, 0, 1, 0, 0], [ 0, -1, 0, 0, 1], [-1, 0, 0, 1, 0]]) >>> matrix.det() 0 See Also ======== Notebook in examples: sympy/example/notebooks. References ========== .. [1] [Kapur1994]_ .. [2] [Palancz08]_ """ def __init__(self, polynomials, variables): """ A class that takes two lists, a list of polynomials and list of variables. Returns the Dixon matrix of the multivariate system. Parameters ---------- polynomials : list of polynomials A list of m n-degree polynomials variables: list A list of all n variables """ self.polynomials = polynomials self.variables = variables self.n = len(self.variables) self.m = len(self.polynomials) a = IndexedBase("alpha") # A list of n alpha variables (the replacing variables) self.dummy_variables = [a[i] for i in range(self.n)] # A list of the d_max of each variable. self.max_degrees = [ max(degree_list(poly)[i] for poly in self.polynomials) for i in range(self.n)] def get_dixon_polynomial(self): r""" Returns ======= dixon_polynomial: polynomial Dixon's polynomial is calculated as: delta = Delta(A) / ((x_1 - a_1) ... (x_n - a_n)) where, A = |p_1(x_1,... x_n), ..., p_n(x_1,... x_n)| |p_1(a_1,... x_n), ..., p_n(a_1,... x_n)| |... , ..., ...| |p_1(a_1,... a_n), ..., p_n(a_1,... a_n)| """ if self.m != (self.n + 1): raise ValueError('Method invalid for given combination.') # First row rows = [self.polynomials] temp = list(self.variables) for idx in range(self.n): temp[idx] = self.dummy_variables[idx] substitution = {var: t for var, t in zip(self.variables, temp)} rows.append([f.subs(substitution) for f in self.polynomials]) A = Matrix(rows) terms = zip(self.variables, self.dummy_variables) product_of_differences = Mul(*[a - b for a, b in terms]) dixon_polynomial = (A.det() / product_of_differences).factor() return poly_from_expr(dixon_polynomial, self.dummy_variables)[0] def get_upper_degree(self): list_of_products = [self.variables[i] ** self.max_degrees[i] for i in range(self.n)] product = prod(list_of_products) product = Poly(product).monoms() return monomial_deg(*product) def get_dixon_matrix(self, polynomial): r""" Construct the Dixon matrix from the coefficients of polynomial \alpha. Each coefficient is viewed as a polynomial of x_1, ..., x_n. """ # A list of coefficients (in x_i, ..., x_n terms) of the power # products a_1, ..., a_n in Dixon's polynomial. coefficients = polynomial.coeffs() monomials = list(itermonomials(self.variables, self.get_upper_degree())) monomials = sorted(monomials, reverse=True, key=monomial_key('lex', self.variables)) dixon_matrix = Matrix([[Poly(c, *self.variables).coeff_monomial(m) for m in monomials] for c in coefficients]) keep = [column for column in range(dixon_matrix.shape[-1]) if any([element != 0 for element in dixon_matrix[:, column]])] return dixon_matrix[:, keep] class MacaulayResultant(): """ A class for calculating the Macaulay resultant. Note that the polynomials must be homogenized and their coefficients must be given as symbols. Examples ======== >>> from sympy.core import symbols >>> from sympy.polys.multivariate_resultants import MacaulayResultant >>> x, y, z = symbols('x, y, z') >>> a_0, a_1, a_2 = symbols('a_0, a_1, a_2') >>> b_0, b_1, b_2 = symbols('b_0, b_1, b_2') >>> c_0, c_1, c_2,c_3, c_4 = symbols('c_0, c_1, c_2, c_3, c_4') >>> f = a_0 * y - a_1 * x + a_2 * z >>> g = b_1 * x ** 2 + b_0 * y ** 2 - b_2 * z ** 2 >>> h = c_0 * y * z ** 2 - c_1 * x ** 3 + c_2 * x ** 2 * z - c_3 * x * z ** 2 + c_4 * z ** 3 >>> mac = MacaulayResultant(polynomials=[f, g, h], variables=[x, y, z]) >>> mac.monomial_set [x**4, x**3*y, x**3*z, x**2*y**2, x**2*y*z, x**2*z**2, x*y**3, x*y**2*z, x*y*z**2, x*z**3, y**4, y**3*z, y**2*z**2, y*z**3, z**4] >>> matrix = mac.get_matrix() >>> submatrix = mac.get_submatrix(matrix) >>> submatrix Matrix([ [-a_1, a_0, a_2, 0], [ 0, -a_1, 0, 0], [ 0, 0, -a_1, 0], [ 0, 0, 0, -a_1]]) See Also ======== Notebook in examples: sympy/example/notebooks. References ========== .. [1] [Bruce97]_ .. [2] [Stiller96]_ """ def __init__(self, polynomials, variables): """ Parameters ========== variables: list A list of all n variables polynomials : list of sympy polynomials A list of m n-degree polynomials """ self.polynomials = polynomials self.variables = variables self.n = len(variables) # A list of the d_max of each polynomial. self.degrees = [total_degree(poly, *self.variables) for poly in self.polynomials] self.degree_m = self._get_degree_m() self.monomials_size = self.get_size() # The set T of all possible monomials of degree degree_m self.monomial_set = self.get_monomials_of_certain_degree(self.degree_m) def _get_degree_m(self): r""" Returns ======= degree_m: int The degree_m is calculated as 1 + \sum_1 ^ n (d_i - 1), where d_i is the degree of the i polynomial """ return 1 + sum(d - 1 for d in self.degrees) def get_size(self): r""" Returns ======= size: int The size of set T. Set T is the set of all possible monomials of the n variables for degree equal to the degree_m """ return binomial(self.degree_m + self.n - 1, self.n - 1) def get_monomials_of_certain_degree(self, degree): """ Returns ======= monomials: list A list of monomials of a certain degree. """ monomials = [Mul(*monomial) for monomial in combinations_with_replacement(self.variables, degree)] return sorted(monomials, reverse=True, key=monomial_key('lex', self.variables)) def get_row_coefficients(self): """ Returns ======= row_coefficients: list The row coefficients of Macaulay's matrix """ row_coefficients = [] divisible = [] for i in range(self.n): if i == 0: degree = self.degree_m - self.degrees[i] monomial = self.get_monomials_of_certain_degree(degree) row_coefficients.append(monomial) else: divisible.append(self.variables[i - 1] ** self.degrees[i - 1]) degree = self.degree_m - self.degrees[i] poss_rows = self.get_monomials_of_certain_degree(degree) for div in divisible: for p in poss_rows: if rem(p, div) == 0: poss_rows = [item for item in poss_rows if item != p] row_coefficients.append(poss_rows) return row_coefficients def get_matrix(self): """ Returns ======= macaulay_matrix: Matrix The Macaulay numerator matrix """ rows = [] row_coefficients = self.get_row_coefficients() for i in range(self.n): for multiplier in row_coefficients[i]: coefficients = [] poly = Poly(self.polynomials[i] * multiplier, *self.variables) for mono in self.monomial_set: coefficients.append(poly.coeff_monomial(mono)) rows.append(coefficients) macaulay_matrix = Matrix(rows) return macaulay_matrix def get_reduced_nonreduced(self): r""" Returns ======= reduced: list A list of the reduced monomials non_reduced: list A list of the monomials that are not reduced Definition ========== A polynomial is said to be reduced in x_i, if its degree (the maximum degree of its monomials) in x_i is less than d_i. A polynomial that is reduced in all variables but one is said simply to be reduced. """ divisible = [] for m in self.monomial_set: temp = [] for i, v in enumerate(self.variables): temp.append(bool(total_degree(m, v) >= self.degrees[i])) divisible.append(temp) reduced = [i for i, r in enumerate(divisible) if sum(r) < self.n - 1] non_reduced = [i for i, r in enumerate(divisible) if sum(r) >= self.n -1] return reduced, non_reduced def get_submatrix(self, matrix): r""" Returns ======= macaulay_submatrix: Matrix The Macaulay denominator matrix. Columns that are non reduced are kept. The row which contains one of the a_{i}s is dropped. a_{i}s are the coefficients of x_i ^ {d_i}. """ reduced, non_reduced = self.get_reduced_nonreduced() # if reduced == [], then det(matrix) should be 1 if reduced == []: return diag([1]) # reduced != [] reduction_set = [v ** self.degrees[i] for i, v in enumerate(self.variables)] ais = list([self.polynomials[i].coeff(reduction_set[i]) for i in range(self.n)]) reduced_matrix = matrix[:, reduced] keep = [] for row in range(reduced_matrix.rows): check = [ai in reduced_matrix[row, :] for ai in ais] if True not in check: keep.append(row) return matrix[keep, non_reduced]
8938404068dc73eafd49930242ce4187a5f822ede21afdc520a640bdea760932
"""Tools for manipulation of rational expressions. """ from __future__ import print_function, division from sympy.core import Basic, Add, sympify from sympy.core.compatibility import iterable from sympy.core.exprtools import gcd_terms from sympy.utilities import public @public def together(expr, deep=False, fraction=True): """ Denest and combine rational expressions using symbolic methods. This function takes an expression or a container of expressions and puts it (them) together by denesting and combining rational subexpressions. No heroic measures are taken to minimize degree of the resulting numerator and denominator. To obtain completely reduced expression use :func:`cancel`. However, :func:`together` can preserve as much as possible of the structure of the input expression in the output (no expansion is performed). A wide variety of objects can be put together including lists, tuples, sets, relational objects, integrals and others. It is also possible to transform interior of function applications, by setting ``deep`` flag to ``True``. By definition, :func:`together` is a complement to :func:`apart`, so ``apart(together(expr))`` should return expr unchanged. Note however, that :func:`together` uses only symbolic methods, so it might be necessary to use :func:`cancel` to perform algebraic simplification and minimize degree of the numerator and denominator. Examples ======== >>> from sympy import together, exp >>> from sympy.abc import x, y, z >>> together(1/x + 1/y) (x + y)/(x*y) >>> together(1/x + 1/y + 1/z) (x*y + x*z + y*z)/(x*y*z) >>> together(1/(x*y) + 1/y**2) (x + y)/(x*y**2) >>> together(1/(1 + 1/x) + 1/(1 + 1/y)) (x*(y + 1) + y*(x + 1))/((x + 1)*(y + 1)) >>> together(exp(1/x + 1/y)) exp(1/y + 1/x) >>> together(exp(1/x + 1/y), deep=True) exp((x + y)/(x*y)) >>> together(1/exp(x) + 1/(x*exp(x))) (x + 1)*exp(-x)/x >>> together(1/exp(2*x) + 1/(x*exp(3*x))) (x*exp(x) + 1)*exp(-3*x)/x """ def _together(expr): if isinstance(expr, Basic): if expr.is_Atom or (expr.is_Function and not deep): return expr elif expr.is_Add: return gcd_terms(list(map(_together, Add.make_args(expr))), fraction=fraction) elif expr.is_Pow: base = _together(expr.base) if deep: exp = _together(expr.exp) else: exp = expr.exp return expr.__class__(base, exp) else: return expr.__class__(*[ _together(arg) for arg in expr.args ]) elif iterable(expr): return expr.__class__([ _together(ex) for ex in expr ]) return expr return _together(sympify(expr))
440a2371980b2d4895f08929255887378db80c99065dd629738a4737f1ffb598
from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.core.basic import Basic from sympy.core.compatibility import string_types, range, Callable from sympy.core.cache import cacheit from sympy.core import S, Dummy, Lambda from sympy import symbols, MatrixBase, ImmutableDenseMatrix from sympy.solvers import solve from sympy.vector.scalar import BaseScalar from sympy import eye, trigsimp, ImmutableMatrix as Matrix, Symbol, sin, cos,\ sqrt, diff, Tuple, acos, atan2, simplify import sympy.vector from sympy.vector.orienters import (Orienter, AxisOrienter, BodyOrienter, SpaceOrienter, QuaternionOrienter) def CoordSysCartesian(*args, **kwargs): SymPyDeprecationWarning( feature="CoordSysCartesian", useinstead="CoordSys3D", issue=12865, deprecated_since_version="1.1" ).warn() return CoordSys3D(*args, **kwargs) class CoordSys3D(Basic): """ Represents a coordinate system in 3-D space. """ def __new__(cls, name, transformation=None, parent=None, location=None, rotation_matrix=None, vector_names=None, variable_names=None): """ The orientation/location parameters are necessary if this system is being defined at a certain orientation or location wrt another. Parameters ========== name : str The name of the new CoordSys3D instance. transformation : Lambda, Tuple, str Transformation defined by transformation equations or chosen from predefined ones. location : Vector The position vector of the new system's origin wrt the parent instance. rotation_matrix : SymPy ImmutableMatrix The rotation matrix of the new coordinate system with respect to the parent. In other words, the output of new_system.rotation_matrix(parent). parent : CoordSys3D The coordinate system wrt which the orientation/location (or both) is being defined. vector_names, variable_names : iterable(optional) Iterables of 3 strings each, with custom names for base vectors and base scalars of the new system respectively. Used for simple str printing. """ name = str(name) Vector = sympy.vector.Vector BaseVector = sympy.vector.BaseVector Point = sympy.vector.Point if not isinstance(name, string_types): raise TypeError("name should be a string") if transformation is not None: if (location is not None) or (rotation_matrix is not None): raise ValueError("specify either `transformation` or " "`location`/`rotation_matrix`") if isinstance(transformation, (Tuple, tuple, list)): if isinstance(transformation[0], MatrixBase): rotation_matrix = transformation[0] location = transformation[1] else: transformation = Lambda(transformation[0], transformation[1]) elif isinstance(transformation, Callable): x1, x2, x3 = symbols('x1 x2 x3', cls=Dummy) transformation = Lambda((x1, x2, x3), transformation(x1, x2, x3)) elif isinstance(transformation, string_types): transformation = Symbol(transformation) elif isinstance(transformation, (Symbol, Lambda)): pass else: raise TypeError("transformation: " "wrong type {0}".format(type(transformation))) # If orientation information has been provided, store # the rotation matrix accordingly if rotation_matrix is None: rotation_matrix = ImmutableDenseMatrix(eye(3)) else: if not isinstance(rotation_matrix, MatrixBase): raise TypeError("rotation_matrix should be an Immutable" + "Matrix instance") rotation_matrix = rotation_matrix.as_immutable() # If location information is not given, adjust the default # location as Vector.zero if parent is not None: if not isinstance(parent, CoordSys3D): raise TypeError("parent should be a " + "CoordSys3D/None") if location is None: location = Vector.zero else: if not isinstance(location, Vector): raise TypeError("location should be a Vector") # Check that location does not contain base # scalars for x in location.free_symbols: if isinstance(x, BaseScalar): raise ValueError("location should not contain" + " BaseScalars") origin = parent.origin.locate_new(name + '.origin', location) else: location = Vector.zero origin = Point(name + '.origin') if transformation is None: transformation = Tuple(rotation_matrix, location) if isinstance(transformation, Tuple): lambda_transformation = CoordSys3D._compose_rotation_and_translation( transformation[0], transformation[1], parent ) r, l = transformation l = l._projections lambda_lame = CoordSys3D._get_lame_coeff('cartesian') lambda_inverse = lambda x, y, z: r.inv()*Matrix( [x-l[0], y-l[1], z-l[2]]) elif isinstance(transformation, Symbol): trname = transformation.name lambda_transformation = CoordSys3D._get_transformation_lambdas(trname) if parent is not None: if parent.lame_coefficients() != (S(1), S(1), S(1)): raise ValueError('Parent for pre-defined coordinate ' 'system should be Cartesian.') lambda_lame = CoordSys3D._get_lame_coeff(trname) lambda_inverse = CoordSys3D._set_inv_trans_equations(trname) elif isinstance(transformation, Lambda): if not CoordSys3D._check_orthogonality(transformation): raise ValueError("The transformation equation does not " "create orthogonal coordinate system") lambda_transformation = transformation lambda_lame = CoordSys3D._calculate_lame_coeff(lambda_transformation) lambda_inverse = None else: lambda_transformation = lambda x, y, z: transformation(x, y, z) lambda_lame = CoordSys3D._get_lame_coeff(transformation) lambda_inverse = None if variable_names is None: if isinstance(transformation, Lambda): variable_names = ["x1", "x2", "x3"] elif isinstance(transformation, Symbol): if transformation.name is 'spherical': variable_names = ["r", "theta", "phi"] elif transformation.name is 'cylindrical': variable_names = ["r", "theta", "z"] else: variable_names = ["x", "y", "z"] else: variable_names = ["x", "y", "z"] if vector_names is None: vector_names = ["i", "j", "k"] # All systems that are defined as 'roots' are unequal, unless # they have the same name. # Systems defined at same orientation/position wrt the same # 'parent' are equal, irrespective of the name. # This is true even if the same orientation is provided via # different methods like Axis/Body/Space/Quaternion. # However, coincident systems may be seen as unequal if # positioned/oriented wrt different parents, even though # they may actually be 'coincident' wrt the root system. if parent is not None: obj = super(CoordSys3D, cls).__new__( cls, Symbol(name), transformation, parent) else: obj = super(CoordSys3D, cls).__new__( cls, Symbol(name), transformation) obj._name = name # Initialize the base vectors _check_strings('vector_names', vector_names) vector_names = list(vector_names) latex_vects = [(r'\mathbf{\hat{%s}_{%s}}' % (x, name)) for x in vector_names] pretty_vects = ['%s_%s' % (x, name) for x in vector_names] obj._vector_names = vector_names v1 = BaseVector(0, obj, pretty_vects[0], latex_vects[0]) v2 = BaseVector(1, obj, pretty_vects[1], latex_vects[1]) v3 = BaseVector(2, obj, pretty_vects[2], latex_vects[2]) obj._base_vectors = (v1, v2, v3) # Initialize the base scalars _check_strings('variable_names', vector_names) variable_names = list(variable_names) latex_scalars = [(r"\mathbf{{%s}_{%s}}" % (x, name)) for x in variable_names] pretty_scalars = ['%s_%s' % (x, name) for x in variable_names] obj._variable_names = variable_names obj._vector_names = vector_names x1 = BaseScalar(0, obj, pretty_scalars[0], latex_scalars[0]) x2 = BaseScalar(1, obj, pretty_scalars[1], latex_scalars[1]) x3 = BaseScalar(2, obj, pretty_scalars[2], latex_scalars[2]) obj._base_scalars = (x1, x2, x3) obj._transformation = transformation obj._transformation_lambda = lambda_transformation obj._lame_coefficients = lambda_lame(x1, x2, x3) obj._transformation_from_parent_lambda = lambda_inverse setattr(obj, variable_names[0], x1) setattr(obj, variable_names[1], x2) setattr(obj, variable_names[2], x3) setattr(obj, vector_names[0], v1) setattr(obj, vector_names[1], v2) setattr(obj, vector_names[2], v3) # Assign params obj._parent = parent if obj._parent is not None: obj._root = obj._parent._root else: obj._root = obj obj._parent_rotation_matrix = rotation_matrix obj._origin = origin # Return the instance return obj def __str__(self, printer=None): return self._name __repr__ = __str__ _sympystr = __str__ def __iter__(self): return iter(self.base_vectors()) @staticmethod def _check_orthogonality(equations): """ Helper method for _connect_to_cartesian. It checks if set of transformation equations create orthogonal curvilinear coordinate system Parameters ========== equations : Lambda Lambda of transformation equations """ x1, x2, x3 = symbols("x1, x2, x3", cls=Dummy) equations = equations(x1, x2, x3) v1 = Matrix([diff(equations[0], x1), diff(equations[1], x1), diff(equations[2], x1)]) v2 = Matrix([diff(equations[0], x2), diff(equations[1], x2), diff(equations[2], x2)]) v3 = Matrix([diff(equations[0], x3), diff(equations[1], x3), diff(equations[2], x3)]) if any(simplify(i[0] + i[1] + i[2]) == 0 for i in (v1, v2, v3)): return False else: if simplify(v1.dot(v2)) == 0 and simplify(v2.dot(v3)) == 0 \ and simplify(v3.dot(v1)) == 0: return True else: return False @staticmethod def _set_inv_trans_equations(curv_coord_name): """ Store information about inverse transformation equations for pre-defined coordinate systems. Parameters ========== curv_coord_name : str Name of coordinate system """ if curv_coord_name == 'cartesian': return lambda x, y, z: (x, y, z) if curv_coord_name == 'spherical': return lambda x, y, z: ( sqrt(x**2 + y**2 + z**2), acos(z/sqrt(x**2 + y**2 + z**2)), atan2(y, x) ) if curv_coord_name == 'cylindrical': return lambda x, y, z: ( sqrt(x**2 + y**2), atan2(y, x), z ) raise ValueError('Wrong set of parameters.' 'Type of coordinate system is defined') def _calculate_inv_trans_equations(self): """ Helper method for set_coordinate_type. It calculates inverse transformation equations for given transformations equations. """ x1, x2, x3 = symbols("x1, x2, x3", cls=Dummy, reals=True) x, y, z = symbols("x, y, z", cls=Dummy) equations = self._transformation(x1, x2, x3) try: solved = solve([equations[0] - x, equations[1] - y, equations[2] - z], (x1, x2, x3), dict=True)[0] solved = solved[x1], solved[x2], solved[x3] self._transformation_from_parent_lambda = \ lambda x1, x2, x3: tuple(i.subs(list(zip((x, y, z), (x1, x2, x3)))) for i in solved) except: raise ValueError('Wrong set of parameters.') @staticmethod def _get_lame_coeff(curv_coord_name): """ Store information about Lame coefficients for pre-defined coordinate systems. Parameters ========== curv_coord_name : str Name of coordinate system """ if isinstance(curv_coord_name, string_types): if curv_coord_name == 'cartesian': return lambda x, y, z: (S.One, S.One, S.One) if curv_coord_name == 'spherical': return lambda r, theta, phi: (S.One, r, r*sin(theta)) if curv_coord_name == 'cylindrical': return lambda r, theta, h: (S.One, r, S.One) raise ValueError('Wrong set of parameters.' ' Type of coordinate system is not defined') return CoordSys3D._calculate_lame_coefficients(curv_coord_name) @staticmethod def _calculate_lame_coeff(equations): """ It calculates Lame coefficients for given transformations equations. Parameters ========== equations : Lambda Lambda of transformation equations. """ return lambda x1, x2, x3: ( sqrt(diff(equations(x1, x2, x3)[0], x1)**2 + diff(equations(x1, x2, x3)[1], x1)**2 + diff(equations(x1, x2, x3)[2], x1)**2), sqrt(diff(equations(x1, x2, x3)[0], x2)**2 + diff(equations(x1, x2, x3)[1], x2)**2 + diff(equations(x1, x2, x3)[2], x2)**2), sqrt(diff(equations(x1, x2, x3)[0], x3)**2 + diff(equations(x1, x2, x3)[1], x3)**2 + diff(equations(x1, x2, x3)[2], x3)**2) ) def _inverse_rotation_matrix(self): """ Returns inverse rotation matrix. """ return simplify(self._parent_rotation_matrix**-1) @staticmethod def _get_transformation_lambdas(curv_coord_name): """ Store information about transformation equations for pre-defined coordinate systems. Parameters ========== curv_coord_name : str Name of coordinate system """ if isinstance(curv_coord_name, string_types): if curv_coord_name == 'cartesian': return lambda x, y, z: (x, y, z) if curv_coord_name == 'spherical': return lambda r, theta, phi: ( r*sin(theta)*cos(phi), r*sin(theta)*sin(phi), r*cos(theta) ) if curv_coord_name == 'cylindrical': return lambda r, theta, h: ( r*cos(theta), r*sin(theta), h ) raise ValueError('Wrong set of parameters.' 'Type of coordinate system is defined') @classmethod def _rotation_trans_equations(cls, matrix, equations): """ Returns the transformation equations obtained from rotation matrix. Parameters ========== matrix : Matrix Rotation matrix equations : tuple Transformation equations """ return tuple(matrix * Matrix(equations)) @property def origin(self): return self._origin @property def delop(self): SymPyDeprecationWarning( feature="coord_system.delop has been replaced.", useinstead="Use the Del() class", deprecated_since_version="1.1", issue=12866, ).warn() from sympy.vector.deloperator import Del return Del() def base_vectors(self): return self._base_vectors def base_scalars(self): return self._base_scalars def lame_coefficients(self): return self._lame_coefficients def transformation_to_parent(self): return self._transformation_lambda(*self.base_scalars()) def transformation_from_parent(self): if self._parent is None: raise ValueError("no parent coordinate system, use " "`transformation_from_parent_function()`") return self._transformation_from_parent_lambda( *self._parent.base_scalars()) def transformation_from_parent_function(self): return self._transformation_from_parent_lambda def rotation_matrix(self, other): """ Returns the direction cosine matrix(DCM), also known as the 'rotation matrix' of this coordinate system with respect to another system. If v_a is a vector defined in system 'A' (in matrix format) and v_b is the same vector defined in system 'B', then v_a = A.rotation_matrix(B) * v_b. A SymPy Matrix is returned. Parameters ========== other : CoordSys3D The system which the DCM is generated to. Examples ======== >>> from sympy.vector import CoordSys3D >>> from sympy import symbols >>> q1 = symbols('q1') >>> N = CoordSys3D('N') >>> A = N.orient_new_axis('A', q1, N.i) >>> N.rotation_matrix(A) Matrix([ [1, 0, 0], [0, cos(q1), -sin(q1)], [0, sin(q1), cos(q1)]]) """ from sympy.vector.functions import _path if not isinstance(other, CoordSys3D): raise TypeError(str(other) + " is not a CoordSys3D") # Handle special cases if other == self: return eye(3) elif other == self._parent: return self._parent_rotation_matrix elif other._parent == self: return other._parent_rotation_matrix.T # Else, use tree to calculate position rootindex, path = _path(self, other) result = eye(3) i = -1 for i in range(rootindex): result *= path[i]._parent_rotation_matrix i += 2 while i < len(path): result *= path[i]._parent_rotation_matrix.T i += 1 return result @cacheit def position_wrt(self, other): """ Returns the position vector of the origin of this coordinate system with respect to another Point/CoordSys3D. Parameters ========== other : Point/CoordSys3D If other is a Point, the position of this system's origin wrt it is returned. If its an instance of CoordSyRect, the position wrt its origin is returned. Examples ======== >>> from sympy.vector import CoordSys3D >>> N = CoordSys3D('N') >>> N1 = N.locate_new('N1', 10 * N.i) >>> N.position_wrt(N1) (-10)*N.i """ return self.origin.position_wrt(other) def scalar_map(self, other): """ Returns a dictionary which expresses the coordinate variables (base scalars) of this frame in terms of the variables of otherframe. Parameters ========== otherframe : CoordSys3D The other system to map the variables to. Examples ======== >>> from sympy.vector import CoordSys3D >>> from sympy import Symbol >>> A = CoordSys3D('A') >>> q = Symbol('q') >>> B = A.orient_new_axis('B', q, A.k) >>> A.scalar_map(B) {A.x: B.x*cos(q) - B.y*sin(q), A.y: B.x*sin(q) + B.y*cos(q), A.z: B.z} """ relocated_scalars = [] origin_coords = tuple(self.position_wrt(other).to_matrix(other)) for i, x in enumerate(other.base_scalars()): relocated_scalars.append(x - origin_coords[i]) vars_matrix = (self.rotation_matrix(other) * Matrix(relocated_scalars)) mapping = {} for i, x in enumerate(self.base_scalars()): mapping[x] = trigsimp(vars_matrix[i]) return mapping def locate_new(self, name, position, vector_names=None, variable_names=None): """ Returns a CoordSys3D with its origin located at the given position wrt this coordinate system's origin. Parameters ========== name : str The name of the new CoordSys3D instance. position : Vector The position vector of the new system's origin wrt this one. vector_names, variable_names : iterable(optional) Iterables of 3 strings each, with custom names for base vectors and base scalars of the new system respectively. Used for simple str printing. Examples ======== >>> from sympy.vector import CoordSys3D >>> A = CoordSys3D('A') >>> B = A.locate_new('B', 10 * A.i) >>> B.origin.position_wrt(A.origin) 10*A.i """ if variable_names is None: variable_names = self._variable_names if vector_names is None: vector_names = self._vector_names return CoordSys3D(name, location=position, vector_names=vector_names, variable_names=variable_names, parent=self) def orient_new(self, name, orienters, location=None, vector_names=None, variable_names=None): """ Creates a new CoordSys3D oriented in the user-specified way with respect to this system. Please refer to the documentation of the orienter classes for more information about the orientation procedure. Parameters ========== name : str The name of the new CoordSys3D instance. orienters : iterable/Orienter An Orienter or an iterable of Orienters for orienting the new coordinate system. If an Orienter is provided, it is applied to get the new system. If an iterable is provided, the orienters will be applied in the order in which they appear in the iterable. location : Vector(optional) The location of the new coordinate system's origin wrt this system's origin. If not specified, the origins are taken to be coincident. vector_names, variable_names : iterable(optional) Iterables of 3 strings each, with custom names for base vectors and base scalars of the new system respectively. Used for simple str printing. Examples ======== >>> from sympy.vector import CoordSys3D >>> from sympy import symbols >>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3') >>> N = CoordSys3D('N') Using an AxisOrienter >>> from sympy.vector import AxisOrienter >>> axis_orienter = AxisOrienter(q1, N.i + 2 * N.j) >>> A = N.orient_new('A', (axis_orienter, )) Using a BodyOrienter >>> from sympy.vector import BodyOrienter >>> body_orienter = BodyOrienter(q1, q2, q3, '123') >>> B = N.orient_new('B', (body_orienter, )) Using a SpaceOrienter >>> from sympy.vector import SpaceOrienter >>> space_orienter = SpaceOrienter(q1, q2, q3, '312') >>> C = N.orient_new('C', (space_orienter, )) Using a QuaternionOrienter >>> from sympy.vector import QuaternionOrienter >>> q_orienter = QuaternionOrienter(q0, q1, q2, q3) >>> D = N.orient_new('D', (q_orienter, )) """ if variable_names is None: variable_names = self._variable_names if vector_names is None: vector_names = self._vector_names if isinstance(orienters, Orienter): if isinstance(orienters, AxisOrienter): final_matrix = orienters.rotation_matrix(self) else: final_matrix = orienters.rotation_matrix() # TODO: trigsimp is needed here so that the matrix becomes # canonical (scalar_map also calls trigsimp; without this, you can # end up with the same CoordinateSystem that compares differently # due to a differently formatted matrix). However, this is # probably not so good for performance. final_matrix = trigsimp(final_matrix) else: final_matrix = Matrix(eye(3)) for orienter in orienters: if isinstance(orienter, AxisOrienter): final_matrix *= orienter.rotation_matrix(self) else: final_matrix *= orienter.rotation_matrix() return CoordSys3D(name, rotation_matrix=final_matrix, vector_names=vector_names, variable_names=variable_names, location=location, parent=self) def orient_new_axis(self, name, angle, axis, location=None, vector_names=None, variable_names=None): """ Axis rotation is a rotation about an arbitrary axis by some angle. The angle is supplied as a SymPy expr scalar, and the axis is supplied as a Vector. Parameters ========== name : string The name of the new coordinate system angle : Expr The angle by which the new system is to be rotated axis : Vector The axis around which the rotation has to be performed location : Vector(optional) The location of the new coordinate system's origin wrt this system's origin. If not specified, the origins are taken to be coincident. vector_names, variable_names : iterable(optional) Iterables of 3 strings each, with custom names for base vectors and base scalars of the new system respectively. Used for simple str printing. Examples ======== >>> from sympy.vector import CoordSys3D >>> from sympy import symbols >>> q1 = symbols('q1') >>> N = CoordSys3D('N') >>> B = N.orient_new_axis('B', q1, N.i + 2 * N.j) """ if variable_names is None: variable_names = self._variable_names if vector_names is None: vector_names = self._vector_names orienter = AxisOrienter(angle, axis) return self.orient_new(name, orienter, location=location, vector_names=vector_names, variable_names=variable_names) def orient_new_body(self, name, angle1, angle2, angle3, rotation_order, location=None, vector_names=None, variable_names=None): """ Body orientation takes this coordinate system through three successive simple rotations. Body fixed rotations include both Euler Angles and Tait-Bryan Angles, see https://en.wikipedia.org/wiki/Euler_angles. Parameters ========== name : string The name of the new coordinate system angle1, angle2, angle3 : Expr Three successive angles to rotate the coordinate system by rotation_order : string String defining the order of axes for rotation location : Vector(optional) The location of the new coordinate system's origin wrt this system's origin. If not specified, the origins are taken to be coincident. vector_names, variable_names : iterable(optional) Iterables of 3 strings each, with custom names for base vectors and base scalars of the new system respectively. Used for simple str printing. Examples ======== >>> from sympy.vector import CoordSys3D >>> from sympy import symbols >>> q1, q2, q3 = symbols('q1 q2 q3') >>> N = CoordSys3D('N') A 'Body' fixed rotation is described by three angles and three body-fixed rotation axes. To orient a coordinate system D with respect to N, each sequential rotation is always about the orthogonal unit vectors fixed to D. For example, a '123' rotation will specify rotations about N.i, then D.j, then D.k. (Initially, D.i is same as N.i) Therefore, >>> D = N.orient_new_body('D', q1, q2, q3, '123') is same as >>> D = N.orient_new_axis('D', q1, N.i) >>> D = D.orient_new_axis('D', q2, D.j) >>> D = D.orient_new_axis('D', q3, D.k) Acceptable rotation orders are of length 3, expressed in XYZ or 123, and cannot have a rotation about about an axis twice in a row. >>> B = N.orient_new_body('B', q1, q2, q3, '123') >>> B = N.orient_new_body('B', q1, q2, 0, 'ZXZ') >>> B = N.orient_new_body('B', 0, 0, 0, 'XYX') """ orienter = BodyOrienter(angle1, angle2, angle3, rotation_order) return self.orient_new(name, orienter, location=location, vector_names=vector_names, variable_names=variable_names) def orient_new_space(self, name, angle1, angle2, angle3, rotation_order, location=None, vector_names=None, variable_names=None): """ Space rotation is similar to Body rotation, but the rotations are applied in the opposite order. Parameters ========== name : string The name of the new coordinate system angle1, angle2, angle3 : Expr Three successive angles to rotate the coordinate system by rotation_order : string String defining the order of axes for rotation location : Vector(optional) The location of the new coordinate system's origin wrt this system's origin. If not specified, the origins are taken to be coincident. vector_names, variable_names : iterable(optional) Iterables of 3 strings each, with custom names for base vectors and base scalars of the new system respectively. Used for simple str printing. See Also ======== CoordSys3D.orient_new_body : method to orient via Euler angles Examples ======== >>> from sympy.vector import CoordSys3D >>> from sympy import symbols >>> q1, q2, q3 = symbols('q1 q2 q3') >>> N = CoordSys3D('N') To orient a coordinate system D with respect to N, each sequential rotation is always about N's orthogonal unit vectors. For example, a '123' rotation will specify rotations about N.i, then N.j, then N.k. Therefore, >>> D = N.orient_new_space('D', q1, q2, q3, '312') is same as >>> B = N.orient_new_axis('B', q1, N.i) >>> C = B.orient_new_axis('C', q2, N.j) >>> D = C.orient_new_axis('D', q3, N.k) """ orienter = SpaceOrienter(angle1, angle2, angle3, rotation_order) return self.orient_new(name, orienter, location=location, vector_names=vector_names, variable_names=variable_names) def orient_new_quaternion(self, name, q0, q1, q2, q3, location=None, vector_names=None, variable_names=None): """ Quaternion orientation orients the new CoordSys3D with Quaternions, defined as a finite rotation about lambda, a unit vector, by some amount theta. This orientation is described by four parameters: q0 = cos(theta/2) q1 = lambda_x sin(theta/2) q2 = lambda_y sin(theta/2) q3 = lambda_z sin(theta/2) Quaternion does not take in a rotation order. Parameters ========== name : string The name of the new coordinate system q0, q1, q2, q3 : Expr The quaternions to rotate the coordinate system by location : Vector(optional) The location of the new coordinate system's origin wrt this system's origin. If not specified, the origins are taken to be coincident. vector_names, variable_names : iterable(optional) Iterables of 3 strings each, with custom names for base vectors and base scalars of the new system respectively. Used for simple str printing. Examples ======== >>> from sympy.vector import CoordSys3D >>> from sympy import symbols >>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3') >>> N = CoordSys3D('N') >>> B = N.orient_new_quaternion('B', q0, q1, q2, q3) """ orienter = QuaternionOrienter(q0, q1, q2, q3) return self.orient_new(name, orienter, location=location, vector_names=vector_names, variable_names=variable_names) def create_new(self, name, transformation, variable_names=None, vector_names=None): """ Returns a CoordSys3D which is connected to self by transformation. Parameters ========== name : str The name of the new CoordSys3D instance. transformation : Lambda, Tuple, str Transformation defined by transformation equations or chosen from predefined ones. vector_names, variable_names : iterable(optional) Iterables of 3 strings each, with custom names for base vectors and base scalars of the new system respectively. Used for simple str printing. Examples ======== >>> from sympy.vector import CoordSys3D >>> a = CoordSys3D('a') >>> b = a.create_new('b', transformation='spherical') >>> b.transformation_to_parent() (b.r*sin(b.theta)*cos(b.phi), b.r*sin(b.phi)*sin(b.theta), b.r*cos(b.theta)) >>> b.transformation_from_parent() (sqrt(a.x**2 + a.y**2 + a.z**2), acos(a.z/sqrt(a.x**2 + a.y**2 + a.z**2)), atan2(a.y, a.x)) """ return CoordSys3D(name, parent=self, transformation=transformation, variable_names=variable_names, vector_names=vector_names) def __init__(self, name, location=None, rotation_matrix=None, parent=None, vector_names=None, variable_names=None, latex_vects=None, pretty_vects=None, latex_scalars=None, pretty_scalars=None, transformation=None): # Dummy initializer for setting docstring pass __init__.__doc__ = __new__.__doc__ @staticmethod def _compose_rotation_and_translation(rot, translation, parent): r = lambda x, y, z: CoordSys3D._rotation_trans_equations(rot, (x, y, z)) if parent is None: return r dx, dy, dz = [translation.dot(i) for i in parent.base_vectors()] t = lambda x, y, z: ( x + dx, y + dy, z + dz, ) return lambda x, y, z: t(*r(x, y, z)) def _check_strings(arg_name, arg): errorstr = arg_name + " must be an iterable of 3 string-types" if len(arg) != 3: raise ValueError(errorstr) for s in arg: if not isinstance(s, string_types): raise TypeError(errorstr)
6457fc2b7e941914a897ab196ff95e609b2c6ae15575a982701b729313f98558
from sympy.vector.vector import (Vector, VectorAdd, VectorMul, BaseVector, VectorZero, Cross, Dot, cross, dot) from sympy.vector.dyadic import (Dyadic, DyadicAdd, DyadicMul, BaseDyadic, DyadicZero) from sympy.vector.scalar import BaseScalar from sympy.vector.deloperator import Del from sympy.vector.coordsysrect import CoordSys3D, CoordSysCartesian from sympy.vector.functions import (express, matrix_to_vector, laplacian, is_conservative, is_solenoidal, scalar_potential, directional_derivative, scalar_potential_difference) from sympy.vector.point import Point from sympy.vector.orienters import (AxisOrienter, BodyOrienter, SpaceOrienter, QuaternionOrienter) from sympy.vector.operators import Gradient, Divergence, Curl, Laplacian, gradient, curl, divergence
10109552db863420622a250a4ab1551aada15ff01d321bc3f863e7880303edd9
from sympy.simplify import simplify as simp, trigsimp as tsimp from sympy.core.decorators import call_highest_priority, _sympifyit from sympy.core.assumptions import StdFactKB from sympy import factor as fctr, diff as df, Integral from sympy.core import S, Add, Mul, count_ops from sympy.core.expr import Expr class BasisDependent(Expr): """ Super class containing functionality common to vectors and dyadics. Named so because the representation of these quantities in sympy.vector is dependent on the basis they are expressed in. """ @call_highest_priority('__radd__') def __add__(self, other): return self._add_func(self, other) @call_highest_priority('__add__') def __radd__(self, other): return self._add_func(other, self) @call_highest_priority('__rsub__') def __sub__(self, other): return self._add_func(self, -other) @call_highest_priority('__sub__') def __rsub__(self, other): return self._add_func(other, -self) @_sympifyit('other', NotImplemented) @call_highest_priority('__rmul__') def __mul__(self, other): return self._mul_func(self, other) @_sympifyit('other', NotImplemented) @call_highest_priority('__mul__') def __rmul__(self, other): return self._mul_func(other, self) def __neg__(self): return self._mul_func(S(-1), self) @_sympifyit('other', NotImplemented) @call_highest_priority('__rdiv__') def __div__(self, other): return self._div_helper(other) @call_highest_priority('__div__') def __rdiv__(self, other): return TypeError("Invalid divisor for division") __truediv__ = __div__ __rtruediv__ = __rdiv__ def evalf(self, prec=None, **options): """ Implements the SymPy evalf routine for this quantity. evalf's documentation ===================== """ vec = self.zero for k, v in self.components.items(): vec += v.evalf(prec, **options) * k return vec evalf.__doc__ += Expr.evalf.__doc__ n = evalf def simplify(self, ratio=1.7, measure=count_ops, rational=False, inverse=False): """ Implements the SymPy simplify routine for this quantity. simplify's documentation ======================== """ simp_components = [simp(v, ratio=ratio, measure=measure, rational=rational, inverse=inverse) * k for k, v in self.components.items()] return self._add_func(*simp_components) simplify.__doc__ += simp.__doc__ def trigsimp(self, **opts): """ Implements the SymPy trigsimp routine, for this quantity. trigsimp's documentation ======================== """ trig_components = [tsimp(v, **opts) * k for k, v in self.components.items()] return self._add_func(*trig_components) trigsimp.__doc__ += tsimp.__doc__ def _eval_simplify(self, ratio, measure, rational, inverse): return self.simplify(ratio=ratio, measure=measure, rational=rational, inverse=inverse) def _eval_trigsimp(self, **opts): return self.trigsimp(**opts) def _eval_derivative(self, wrt): return self.diff(wrt) def _eval_Integral(self, *symbols, **assumptions): integral_components = [Integral(v, *symbols, **assumptions) * k for k, v in self.components.items()] return self._add_func(*integral_components) def as_numer_denom(self): """ Returns the expression as a tuple wrt the following transformation - expression -> a/b -> a, b """ return self, S.One def factor(self, *args, **kwargs): """ Implements the SymPy factor routine, on the scalar parts of a basis-dependent expression. factor's documentation ======================== """ fctr_components = [fctr(v, *args, **kwargs) * k for k, v in self.components.items()] return self._add_func(*fctr_components) factor.__doc__ += fctr.__doc__ def as_coeff_Mul(self, rational=False): """Efficiently extract the coefficient of a product. """ return (S(1), self) def as_coeff_add(self, *deps): """Efficiently extract the coefficient of a summation. """ l = [x * self.components[x] for x in self.components] return 0, tuple(l) def diff(self, *args, **kwargs): """ Implements the SymPy diff routine, for vectors. diff's documentation ======================== """ for x in args: if isinstance(x, BasisDependent): raise TypeError("Invalid arg for differentiation") diff_components = [df(v, *args, **kwargs) * k for k, v in self.components.items()] return self._add_func(*diff_components) diff.__doc__ += df.__doc__ def doit(self, **hints): """Calls .doit() on each term in the Dyadic""" doit_components = [self.components[x].doit(**hints) * x for x in self.components] return self._add_func(*doit_components) class BasisDependentAdd(BasisDependent, Add): """ Denotes sum of basis dependent quantities such that they cannot be expressed as base or Mul instances. """ def __new__(cls, *args, **options): components = {} # Check each arg and simultaneously learn the components for i, arg in enumerate(args): if not isinstance(arg, cls._expr_type): if isinstance(arg, Mul): arg = cls._mul_func(*(arg.args)) elif isinstance(arg, Add): arg = cls._add_func(*(arg.args)) else: raise TypeError(str(arg) + " cannot be interpreted correctly") # If argument is zero, ignore if arg == cls.zero: continue # Else, update components accordingly if hasattr(arg, "components"): for x in arg.components: components[x] = components.get(x, 0) + arg.components[x] temp = list(components.keys()) for x in temp: if components[x] == 0: del components[x] # Handle case of zero vector if len(components) == 0: return cls.zero # Build object newargs = [x * components[x] for x in components] obj = super(BasisDependentAdd, cls).__new__(cls, *newargs, **options) if isinstance(obj, Mul): return cls._mul_func(*obj.args) assumptions = {'commutative': True} obj._assumptions = StdFactKB(assumptions) obj._components = components obj._sys = (list(components.keys()))[0]._sys return obj __init__ = Add.__init__ class BasisDependentMul(BasisDependent, Mul): """ Denotes product of base- basis dependent quantity with a scalar. """ def __new__(cls, *args, **options): from sympy.vector import Cross, Dot, Curl, Gradient count = 0 measure_number = S(1) zeroflag = False extra_args = [] # Determine the component and check arguments # Also keep a count to ensure two vectors aren't # being multiplied for arg in args: if isinstance(arg, cls._zero_func): count += 1 zeroflag = True elif arg == S(0): zeroflag = True elif isinstance(arg, (cls._base_func, cls._mul_func)): count += 1 expr = arg._base_instance measure_number *= arg._measure_number elif isinstance(arg, cls._add_func): count += 1 expr = arg elif isinstance(arg, (Cross, Dot, Curl, Gradient)): extra_args.append(arg) else: measure_number *= arg # Make sure incompatible types weren't multiplied if count > 1: raise ValueError("Invalid multiplication") elif count == 0: return Mul(*args, **options) # Handle zero vector case if zeroflag: return cls.zero # If one of the args was a VectorAdd, return an # appropriate VectorAdd instance if isinstance(expr, cls._add_func): newargs = [cls._mul_func(measure_number, x) for x in expr.args] return cls._add_func(*newargs) obj = super(BasisDependentMul, cls).__new__(cls, measure_number, expr._base_instance, *extra_args, **options) if isinstance(obj, Add): return cls._add_func(*obj.args) obj._base_instance = expr._base_instance obj._measure_number = measure_number assumptions = {'commutative': True} obj._assumptions = StdFactKB(assumptions) obj._components = {expr._base_instance: measure_number} obj._sys = expr._base_instance._sys return obj __init__ = Mul.__init__ def __str__(self, printer=None): measure_str = self._measure_number.__str__() if ('(' in measure_str or '-' in measure_str or '+' in measure_str): measure_str = '(' + measure_str + ')' return measure_str + '*' + self._base_instance.__str__(printer) __repr__ = __str__ _sympystr = __str__ class BasisDependentZero(BasisDependent): """ Class to denote a zero basis dependent instance. """ components = {} def __new__(cls): obj = super(BasisDependentZero, cls).__new__(cls) # Pre-compute a specific hash value for the zero vector # Use the same one always obj._hash = tuple([S(0), cls]).__hash__() return obj def __hash__(self): return self._hash @call_highest_priority('__req__') def __eq__(self, other): return isinstance(other, self._zero_func) __req__ = __eq__ @call_highest_priority('__radd__') def __add__(self, other): if isinstance(other, self._expr_type): return other else: raise TypeError("Invalid argument types for addition") @call_highest_priority('__add__') def __radd__(self, other): if isinstance(other, self._expr_type): return other else: raise TypeError("Invalid argument types for addition") @call_highest_priority('__rsub__') def __sub__(self, other): if isinstance(other, self._expr_type): return -other else: raise TypeError("Invalid argument types for subtraction") @call_highest_priority('__sub__') def __rsub__(self, other): if isinstance(other, self._expr_type): return other else: raise TypeError("Invalid argument types for subtraction") def __neg__(self): return self def normalize(self): """ Returns the normalized version of this vector. """ return self def __str__(self, printer=None): return '0' __repr__ = __str__ _sympystr = __str__
330b4937d23ec17e4125f379c9f35c394b29bd6d8bd0e805cf66b665c8184222
from sympy.core.assumptions import StdFactKB from sympy.core import S, Pow, sympify from sympy.core.expr import AtomicExpr, Expr from sympy.core.compatibility import range, default_sort_key from sympy import sqrt, ImmutableMatrix as Matrix, Add from sympy.vector.coordsysrect import CoordSys3D from sympy.vector.basisdependent import (BasisDependent, BasisDependentAdd, BasisDependentMul, BasisDependentZero) from sympy.vector.dyadic import BaseDyadic, Dyadic, DyadicAdd class Vector(BasisDependent): """ Super class for all Vector classes. Ideally, neither this class nor any of its subclasses should be instantiated by the user. """ is_Vector = True _op_priority = 12.0 @property def components(self): """ Returns the components of this vector in the form of a Python dictionary mapping BaseVector instances to the corresponding measure numbers. Examples ======== >>> from sympy.vector import CoordSys3D >>> C = CoordSys3D('C') >>> v = 3*C.i + 4*C.j + 5*C.k >>> v.components {C.i: 3, C.j: 4, C.k: 5} """ # The '_components' attribute is defined according to the # subclass of Vector the instance belongs to. return self._components def magnitude(self): """ Returns the magnitude of this vector. """ return sqrt(self & self) def normalize(self): """ Returns the normalized version of this vector. """ return self / self.magnitude() def dot(self, other): """ Returns the dot product of this Vector, either with another Vector, or a Dyadic, or a Del operator. If 'other' is a Vector, returns the dot product scalar (Sympy expression). If 'other' is a Dyadic, the dot product is returned as a Vector. If 'other' is an instance of Del, returns the directional derivative operator as a Python function. If this function is applied to a scalar expression, it returns the directional derivative of the scalar field wrt this Vector. Parameters ========== other: Vector/Dyadic/Del The Vector or Dyadic we are dotting with, or a Del operator . Examples ======== >>> from sympy.vector import CoordSys3D, Del >>> C = CoordSys3D('C') >>> delop = Del() >>> C.i.dot(C.j) 0 >>> C.i & C.i 1 >>> v = 3*C.i + 4*C.j + 5*C.k >>> v.dot(C.k) 5 >>> (C.i & delop)(C.x*C.y*C.z) C.y*C.z >>> d = C.i.outer(C.i) >>> C.i.dot(d) C.i """ # Check special cases if isinstance(other, Dyadic): if isinstance(self, VectorZero): return Vector.zero outvec = Vector.zero for k, v in other.components.items(): vect_dot = k.args[0].dot(self) outvec += vect_dot * v * k.args[1] return outvec from sympy.vector.deloperator import Del if not isinstance(other, Vector) and not isinstance(other, Del): raise TypeError(str(other) + " is not a vector, dyadic or " + "del operator") # Check if the other is a del operator if isinstance(other, Del): def directional_derivative(field): from sympy.vector.functions import directional_derivative return directional_derivative(field, self) return directional_derivative return dot(self, other) def __and__(self, other): return self.dot(other) __and__.__doc__ = dot.__doc__ def cross(self, other): """ Returns the cross product of this Vector with another Vector or Dyadic instance. The cross product is a Vector, if 'other' is a Vector. If 'other' is a Dyadic, this returns a Dyadic instance. Parameters ========== other: Vector/Dyadic The Vector or Dyadic we are crossing with. Examples ======== >>> from sympy.vector import CoordSys3D >>> C = CoordSys3D('C') >>> C.i.cross(C.j) C.k >>> C.i ^ C.i 0 >>> v = 3*C.i + 4*C.j + 5*C.k >>> v ^ C.i 5*C.j + (-4)*C.k >>> d = C.i.outer(C.i) >>> C.j.cross(d) (-1)*(C.k|C.i) """ # Check special cases if isinstance(other, Dyadic): if isinstance(self, VectorZero): return Dyadic.zero outdyad = Dyadic.zero for k, v in other.components.items(): cross_product = self.cross(k.args[0]) outer = cross_product.outer(k.args[1]) outdyad += v * outer return outdyad return cross(self, other) def __xor__(self, other): return self.cross(other) __xor__.__doc__ = cross.__doc__ def outer(self, other): """ Returns the outer product of this vector with another, in the form of a Dyadic instance. Parameters ========== other : Vector The Vector with respect to which the outer product is to be computed. Examples ======== >>> from sympy.vector import CoordSys3D >>> N = CoordSys3D('N') >>> N.i.outer(N.j) (N.i|N.j) """ # Handle the special cases if not isinstance(other, Vector): raise TypeError("Invalid operand for outer product") elif (isinstance(self, VectorZero) or isinstance(other, VectorZero)): return Dyadic.zero # Iterate over components of both the vectors to generate # the required Dyadic instance args = [] for k1, v1 in self.components.items(): for k2, v2 in other.components.items(): args.append((v1 * v2) * BaseDyadic(k1, k2)) return DyadicAdd(*args) def projection(self, other, scalar=False): """ Returns the vector or scalar projection of the 'other' on 'self'. Examples ======== >>> from sympy.vector.coordsysrect import CoordSys3D >>> from sympy.vector.vector import Vector, BaseVector >>> C = CoordSys3D('C') >>> i, j, k = C.base_vectors() >>> v1 = i + j + k >>> v2 = 3*i + 4*j >>> v1.projection(v2) 7/3*C.i + 7/3*C.j + 7/3*C.k >>> v1.projection(v2, scalar=True) 7/3 """ if self.equals(Vector.zero): return S.zero if scalar else Vector.zero if scalar: return self.dot(other) / self.dot(self) else: return self.dot(other) / self.dot(self) * self @property def _projections(self): """ Returns the components of this vector but the output includes also zero values components. Examples ======== >>> from sympy.vector import CoordSys3D, Vector >>> C = CoordSys3D('C') >>> v1 = 3*C.i + 4*C.j + 5*C.k >>> v1._projections (3, 4, 5) >>> v2 = C.x*C.y*C.z*C.i >>> v2._projections (C.x*C.y*C.z, 0, 0) >>> v3 = Vector.zero >>> v3._projections (0, 0, 0) """ from sympy.vector.operators import _get_coord_sys_from_expr if isinstance(self, VectorZero): return (S(0), S(0), S(0)) base_vec = next(iter(_get_coord_sys_from_expr(self))).base_vectors() return tuple([self.dot(i) for i in base_vec]) def __or__(self, other): return self.outer(other) __or__.__doc__ = outer.__doc__ def to_matrix(self, system): """ Returns the matrix form of this vector with respect to the specified coordinate system. Parameters ========== system : CoordSys3D The system wrt which the matrix form is to be computed Examples ======== >>> from sympy.vector import CoordSys3D >>> C = CoordSys3D('C') >>> from sympy.abc import a, b, c >>> v = a*C.i + b*C.j + c*C.k >>> v.to_matrix(C) Matrix([ [a], [b], [c]]) """ return Matrix([self.dot(unit_vec) for unit_vec in system.base_vectors()]) def separate(self): """ The constituents of this vector in different coordinate systems, as per its definition. Returns a dict mapping each CoordSys3D to the corresponding constituent Vector. Examples ======== >>> from sympy.vector import CoordSys3D >>> R1 = CoordSys3D('R1') >>> R2 = CoordSys3D('R2') >>> v = R1.i + R2.i >>> v.separate() == {R1: R1.i, R2: R2.i} True """ parts = {} for vect, measure in self.components.items(): parts[vect.system] = (parts.get(vect.system, Vector.zero) + vect * measure) return parts class BaseVector(Vector, AtomicExpr): """ Class to denote a base vector. Unicode pretty forms in Python 2 should use the prefix ``u``. """ def __new__(cls, index, system, pretty_str=None, latex_str=None): if pretty_str is None: pretty_str = "x{0}".format(index) if latex_str is None: latex_str = "x_{0}".format(index) pretty_str = str(pretty_str) latex_str = str(latex_str) # Verify arguments if index not in range(0, 3): raise ValueError("index must be 0, 1 or 2") if not isinstance(system, CoordSys3D): raise TypeError("system should be a CoordSys3D") name = system._vector_names[index] # Initialize an object obj = super(BaseVector, cls).__new__(cls, S(index), system) # Assign important attributes obj._base_instance = obj obj._components = {obj: S(1)} obj._measure_number = S(1) obj._name = system._name + '.' + name obj._pretty_form = u'' + pretty_str obj._latex_form = latex_str obj._system = system # The _id is used for printing purposes obj._id = (index, system) assumptions = {'commutative': True} obj._assumptions = StdFactKB(assumptions) # This attr is used for re-expression to one of the systems # involved in the definition of the Vector. Applies to # VectorMul and VectorAdd too. obj._sys = system return obj @property def system(self): return self._system def __str__(self, printer=None): return self._name @property def free_symbols(self): return {self} __repr__ = __str__ _sympystr = __str__ class VectorAdd(BasisDependentAdd, Vector): """ Class to denote sum of Vector instances. """ def __new__(cls, *args, **options): obj = BasisDependentAdd.__new__(cls, *args, **options) return obj def __str__(self, printer=None): ret_str = '' items = list(self.separate().items()) items.sort(key=lambda x: x[0].__str__()) for system, vect in items: base_vects = system.base_vectors() for x in base_vects: if x in vect.components: temp_vect = self.components[x] * x ret_str += temp_vect.__str__(printer) + " + " return ret_str[:-3] __repr__ = __str__ _sympystr = __str__ class VectorMul(BasisDependentMul, Vector): """ Class to denote products of scalars and BaseVectors. """ def __new__(cls, *args, **options): obj = BasisDependentMul.__new__(cls, *args, **options) return obj @property def base_vector(self): """ The BaseVector involved in the product. """ return self._base_instance @property def measure_number(self): """ The scalar expression involved in the definition of this VectorMul. """ return self._measure_number class VectorZero(BasisDependentZero, Vector): """ Class to denote a zero vector """ _op_priority = 12.1 _pretty_form = u'0' _latex_form = r'\mathbf{\hat{0}}' def __new__(cls): obj = BasisDependentZero.__new__(cls) return obj class Cross(Vector): """ Represents unevaluated Cross product. Examples ======== >>> from sympy.vector import CoordSys3D, Cross >>> R = CoordSys3D('R') >>> v1 = R.i + R.j + R.k >>> v2 = R.x * R.i + R.y * R.j + R.z * R.k >>> Cross(v1, v2) Cross(R.i + R.j + R.k, R.x*R.i + R.y*R.j + R.z*R.k) >>> Cross(v1, v2).doit() (-R.y + R.z)*R.i + (R.x - R.z)*R.j + (-R.x + R.y)*R.k """ def __new__(cls, expr1, expr2): expr1 = sympify(expr1) expr2 = sympify(expr2) if default_sort_key(expr1) > default_sort_key(expr2): return -Cross(expr2, expr1) obj = Expr.__new__(cls, expr1, expr2) obj._expr1 = expr1 obj._expr2 = expr2 return obj def doit(self, **kwargs): return cross(self._expr1, self._expr2) class Dot(Expr): """ Represents unevaluated Dot product. Examples ======== >>> from sympy.vector import CoordSys3D, Dot >>> from sympy import symbols >>> R = CoordSys3D('R') >>> a, b, c = symbols('a b c') >>> v1 = R.i + R.j + R.k >>> v2 = a * R.i + b * R.j + c * R.k >>> Dot(v1, v2) Dot(R.i + R.j + R.k, a*R.i + b*R.j + c*R.k) >>> Dot(v1, v2).doit() a + b + c """ def __new__(cls, expr1, expr2): expr1 = sympify(expr1) expr2 = sympify(expr2) expr1, expr2 = sorted([expr1, expr2], key=default_sort_key) obj = Expr.__new__(cls, expr1, expr2) obj._expr1 = expr1 obj._expr2 = expr2 return obj def doit(self, **kwargs): return dot(self._expr1, self._expr2) def cross(vect1, vect2): """ Returns cross product of two vectors. Examples ======== >>> from sympy.vector import CoordSys3D >>> from sympy.vector.vector import cross >>> R = CoordSys3D('R') >>> v1 = R.i + R.j + R.k >>> v2 = R.x * R.i + R.y * R.j + R.z * R.k >>> cross(v1, v2) (-R.y + R.z)*R.i + (R.x - R.z)*R.j + (-R.x + R.y)*R.k """ if isinstance(vect1, Add): return VectorAdd.fromiter(cross(i, vect2) for i in vect1.args) if isinstance(vect2, Add): return VectorAdd.fromiter(cross(vect1, i) for i in vect2.args) if isinstance(vect1, BaseVector) and isinstance(vect2, BaseVector): if vect1._sys == vect2._sys: n1 = vect1.args[0] n2 = vect2.args[0] if n1 == n2: return Vector.zero n3 = ({0,1,2}.difference({n1, n2})).pop() sign = 1 if ((n1 + 1) % 3 == n2) else -1 return sign*vect1._sys.base_vectors()[n3] try: from .functions import express return cross(express(vect1, vect2._sys), vect2) except: return Cross(vect1, vect2) if isinstance(vect1, VectorZero) or isinstance(vect2, VectorZero): return Vector.zero if isinstance(vect1, VectorMul): v1, m1 = next(iter(vect1.components.items())) return m1*cross(v1, vect2) if isinstance(vect2, VectorMul): v2, m2 = next(iter(vect2.components.items())) return m2*cross(vect1, v2) return Cross(vect1, vect2) def dot(vect1, vect2): """ Returns dot product of two vectors. Examples ======== >>> from sympy.vector import CoordSys3D >>> from sympy.vector.vector import dot >>> R = CoordSys3D('R') >>> v1 = R.i + R.j + R.k >>> v2 = R.x * R.i + R.y * R.j + R.z * R.k >>> dot(v1, v2) R.x + R.y + R.z """ if isinstance(vect1, Add): return Add.fromiter(dot(i, vect2) for i in vect1.args) if isinstance(vect2, Add): return Add.fromiter(dot(vect1, i) for i in vect2.args) if isinstance(vect1, BaseVector) and isinstance(vect2, BaseVector): if vect1._sys == vect2._sys: return S.One if vect1 == vect2 else S.Zero try: from .functions import express return dot(vect1, express(vect2, vect1._sys)) except: return Dot(vect1, vect2) if isinstance(vect1, VectorZero) or isinstance(vect2, VectorZero): return S.Zero if isinstance(vect1, VectorMul): v1, m1 = next(iter(vect1.components.items())) return m1*dot(v1, vect2) if isinstance(vect2, VectorMul): v2, m2 = next(iter(vect2.components.items())) return m2*dot(vect1, v2) return Dot(vect1, vect2) def _vect_div(one, other): """ Helper for division involving vectors. """ if isinstance(one, Vector) and isinstance(other, Vector): raise TypeError("Cannot divide two vectors") elif isinstance(one, Vector): if other == S.Zero: raise ValueError("Cannot divide a vector by zero") return VectorMul(one, Pow(other, S.NegativeOne)) else: raise TypeError("Invalid division involving a vector") Vector._expr_type = Vector Vector._mul_func = VectorMul Vector._add_func = VectorAdd Vector._zero_func = VectorZero Vector._base_func = BaseVector Vector._div_helper = _vect_div Vector.zero = VectorZero()
9eafc8a4c98a2978e539a545ea9ac25b08e6828159e32821874fc69a3c465349
import collections from sympy.core.expr import Expr from sympy.core import sympify, S, preorder_traversal from sympy.vector.coordsysrect import CoordSys3D from sympy.vector.vector import Vector, VectorMul, VectorAdd, Cross, Dot, dot from sympy.vector.scalar import BaseScalar from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.core.function import Derivative from sympy import Add, Mul def _get_coord_systems(expr): g = preorder_traversal(expr) ret = set([]) for i in g: if isinstance(i, CoordSys3D): ret.add(i) g.skip() return frozenset(ret) def _get_coord_sys_from_expr(expr, coord_sys=None): """ expr : expression The coordinate system is extracted from this parameter. """ # TODO: Remove this line when warning from issue #12884 will be removed if coord_sys is not None: SymPyDeprecationWarning( feature="coord_sys parameter", useinstead="do not use it", deprecated_since_version="1.1", issue=12884, ).warn() return _get_coord_systems(expr) def _split_mul_args_wrt_coordsys(expr): d = collections.defaultdict(lambda: S.One) for i in expr.args: d[_get_coord_systems(i)] *= i return list(d.values()) class Gradient(Expr): """ Represents unevaluated Gradient. Examples ======== >>> from sympy.vector import CoordSys3D, Gradient >>> R = CoordSys3D('R') >>> s = R.x*R.y*R.z >>> Gradient(s) Gradient(R.x*R.y*R.z) """ def __new__(cls, expr): expr = sympify(expr) obj = Expr.__new__(cls, expr) obj._expr = expr return obj def doit(self, **kwargs): return gradient(self._expr, doit=True) class Divergence(Expr): """ Represents unevaluated Divergence. Examples ======== >>> from sympy.vector import CoordSys3D, Divergence >>> R = CoordSys3D('R') >>> v = R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k >>> Divergence(v) Divergence(R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k) """ def __new__(cls, expr): expr = sympify(expr) obj = Expr.__new__(cls, expr) obj._expr = expr return obj def doit(self, **kwargs): return divergence(self._expr, doit=True) class Curl(Expr): """ Represents unevaluated Curl. Examples ======== >>> from sympy.vector import CoordSys3D, Curl >>> R = CoordSys3D('R') >>> v = R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k >>> Curl(v) Curl(R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k) """ def __new__(cls, expr): expr = sympify(expr) obj = Expr.__new__(cls, expr) obj._expr = expr return obj def doit(self, **kwargs): return curl(self._expr, doit=True) def curl(vect, coord_sys=None, doit=True): """ Returns the curl of a vector field computed wrt the base scalars of the given coordinate system. Parameters ========== vect : Vector The vector operand coord_sys : CoordSys3D The coordinate system to calculate the gradient in. Deprecated since version 1.1 doit : bool If True, the result is returned after calling .doit() on each component. Else, the returned expression contains Derivative instances Examples ======== >>> from sympy.vector import CoordSys3D, curl >>> R = CoordSys3D('R') >>> v1 = R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k >>> curl(v1) 0 >>> v2 = R.x*R.y*R.z*R.i >>> curl(v2) R.x*R.y*R.j + (-R.x*R.z)*R.k """ coord_sys = _get_coord_sys_from_expr(vect, coord_sys) if len(coord_sys) == 0: return Vector.zero elif len(coord_sys) == 1: coord_sys = next(iter(coord_sys)) i, j, k = coord_sys.base_vectors() x, y, z = coord_sys.base_scalars() h1, h2, h3 = coord_sys.lame_coefficients() vectx = vect.dot(i) vecty = vect.dot(j) vectz = vect.dot(k) outvec = Vector.zero outvec += (Derivative(vectz * h3, y) - Derivative(vecty * h2, z)) * i / (h2 * h3) outvec += (Derivative(vectx * h1, z) - Derivative(vectz * h3, x)) * j / (h1 * h3) outvec += (Derivative(vecty * h2, x) - Derivative(vectx * h1, y)) * k / (h2 * h1) if doit: return outvec.doit() return outvec else: if isinstance(vect, (Add, VectorAdd)): from sympy.vector import express try: cs = next(iter(coord_sys)) args = [express(i, cs, variables=True) for i in vect.args] except ValueError: args = vect.args return VectorAdd.fromiter(curl(i, doit=doit) for i in args) elif isinstance(vect, (Mul, VectorMul)): vector = [i for i in vect.args if isinstance(i, (Vector, Cross, Gradient))][0] scalar = Mul.fromiter(i for i in vect.args if not isinstance(i, (Vector, Cross, Gradient))) res = Cross(gradient(scalar), vector).doit() + scalar*curl(vector, doit=doit) if doit: return res.doit() return res elif isinstance(vect, (Cross, Curl, Gradient)): return Curl(vect) else: raise Curl(vect) def divergence(vect, coord_sys=None, doit=True): """ Returns the divergence of a vector field computed wrt the base scalars of the given coordinate system. Parameters ========== vector : Vector The vector operand coord_sys : CoordSys3D The coordinate system to calculate the gradient in Deprecated since version 1.1 doit : bool If True, the result is returned after calling .doit() on each component. Else, the returned expression contains Derivative instances Examples ======== >>> from sympy.vector import CoordSys3D, divergence >>> R = CoordSys3D('R') >>> v1 = R.x*R.y*R.z * (R.i+R.j+R.k) >>> divergence(v1) R.x*R.y + R.x*R.z + R.y*R.z >>> v2 = 2*R.y*R.z*R.j >>> divergence(v2) 2*R.z """ coord_sys = _get_coord_sys_from_expr(vect, coord_sys) if len(coord_sys) == 0: return S.Zero elif len(coord_sys) == 1: if isinstance(vect, (Cross, Curl, Gradient)): return Divergence(vect) # TODO: is case of many coord systems, this gets a random one: coord_sys = next(iter(coord_sys)) i, j, k = coord_sys.base_vectors() x, y, z = coord_sys.base_scalars() h1, h2, h3 = coord_sys.lame_coefficients() vx = _diff_conditional(vect.dot(i), x, h2, h3) \ / (h1 * h2 * h3) vy = _diff_conditional(vect.dot(j), y, h3, h1) \ / (h1 * h2 * h3) vz = _diff_conditional(vect.dot(k), z, h1, h2) \ / (h1 * h2 * h3) res = vx + vy + vz if doit: return res.doit() return res else: if isinstance(vect, (Add, VectorAdd)): return Add.fromiter(divergence(i, doit=doit) for i in vect.args) elif isinstance(vect, (Mul, VectorMul)): vector = [i for i in vect.args if isinstance(i, (Vector, Cross, Gradient))][0] scalar = Mul.fromiter(i for i in vect.args if not isinstance(i, (Vector, Cross, Gradient))) res = Dot(vector, gradient(scalar)) + scalar*divergence(vector, doit=doit) if doit: return res.doit() return res elif isinstance(vect, (Cross, Curl, Gradient)): return Divergence(vect) else: raise Divergence(vect) def gradient(scalar_field, coord_sys=None, doit=True): """ Returns the vector gradient of a scalar field computed wrt the base scalars of the given coordinate system. Parameters ========== scalar_field : SymPy Expr The scalar field to compute the gradient of coord_sys : CoordSys3D The coordinate system to calculate the gradient in Deprecated since version 1.1 doit : bool If True, the result is returned after calling .doit() on each component. Else, the returned expression contains Derivative instances Examples ======== >>> from sympy.vector import CoordSys3D, gradient >>> R = CoordSys3D('R') >>> s1 = R.x*R.y*R.z >>> gradient(s1) R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k >>> s2 = 5*R.x**2*R.z >>> gradient(s2) 10*R.x*R.z*R.i + 5*R.x**2*R.k """ coord_sys = _get_coord_sys_from_expr(scalar_field, coord_sys) if len(coord_sys) == 0: return Vector.zero elif len(coord_sys) == 1: coord_sys = next(iter(coord_sys)) h1, h2, h3 = coord_sys.lame_coefficients() i, j, k = coord_sys.base_vectors() x, y, z = coord_sys.base_scalars() vx = Derivative(scalar_field, x) / h1 vy = Derivative(scalar_field, y) / h2 vz = Derivative(scalar_field, z) / h3 if doit: return (vx * i + vy * j + vz * k).doit() return vx * i + vy * j + vz * k else: if isinstance(scalar_field, (Add, VectorAdd)): return VectorAdd.fromiter(gradient(i) for i in scalar_field.args) if isinstance(scalar_field, (Mul, VectorMul)): s = _split_mul_args_wrt_coordsys(scalar_field) return VectorAdd.fromiter(scalar_field / i * gradient(i) for i in s) return Gradient(scalar_field) class Laplacian(Expr): """ Represents unevaluated Laplacian. Examples ======== >>> from sympy.vector import CoordSys3D, Laplacian >>> R = CoordSys3D('R') >>> v = 3*R.x**3*R.y**2*R.z**3 >>> Laplacian(v) Laplacian(3*R.x**3*R.y**2*R.z**3) """ def __new__(cls, expr): expr = sympify(expr) obj = Expr.__new__(cls, expr) obj._expr = expr return obj def doit(self, **kwargs): from sympy.vector.functions import laplacian return laplacian(self._expr) def _diff_conditional(expr, base_scalar, coeff_1, coeff_2): """ First re-expresses expr in the system that base_scalar belongs to. If base_scalar appears in the re-expressed form, differentiates it wrt base_scalar. Else, returns S(0) """ from sympy.vector.functions import express new_expr = express(expr, base_scalar.system, variables=True) if base_scalar in new_expr.atoms(BaseScalar): return Derivative(coeff_1 * coeff_2 * new_expr, base_scalar) return S(0)
c45a6bacd2f33dc5ffeda47a6f0a7f4893c891bc8fe4d6c431a972a18e88109d
from sympy.core import AtomicExpr, Symbol, S from sympy.core.sympify import _sympify from sympy.core.compatibility import range from sympy.printing.pretty.stringpict import prettyForm from sympy.printing.precedence import PRECEDENCE class BaseScalar(AtomicExpr): """ A coordinate symbol/base scalar. Ideally, users should not instantiate this class. Unicode pretty forms in Python 2 should use the `u` prefix. """ def __new__(cls, index, system, pretty_str=None, latex_str=None): from sympy.vector.coordsysrect import CoordSys3D if pretty_str is None: pretty_str = "x{0}".format(index) elif isinstance(pretty_str, Symbol): pretty_str = pretty_str.name if latex_str is None: latex_str = "x_{0}".format(index) elif isinstance(latex_str, Symbol): latex_str = latex_str.name index = _sympify(index) system = _sympify(system) obj = super(BaseScalar, cls).__new__(cls, index, system) if not isinstance(system, CoordSys3D): raise TypeError("system should be a CoordSys3D") if index not in range(0, 3): raise ValueError("Invalid index specified.") # The _id is used for equating purposes, and for hashing obj._id = (index, system) obj._name = obj.name = system._name + '.' + system._variable_names[index] obj._pretty_form = u'' + pretty_str obj._latex_form = latex_str obj._system = system return obj is_commutative = True is_symbol = True @property def free_symbols(self): return {self} _diff_wrt = True def _eval_derivative(self, s): if self == s: return S.One return S.Zero def _latex(self, printer=None): return self._latex_form def _pretty(self, printer=None): return prettyForm(self._pretty_form) precedence = PRECEDENCE['Atom'] @property def system(self): return self._system def __str__(self, printer=None): return self._name __repr__ = __str__ _sympystr = __str__
00eb02354ec67440e6c9503e7087b1c2acbde7cd5958595f74d4f1f0764f1559
from sympy.vector.coordsysrect import CoordSys3D from sympy.vector.deloperator import Del from sympy.vector.scalar import BaseScalar from sympy.vector.vector import Vector, BaseVector from sympy.vector.operators import gradient, curl, divergence from sympy import diff, integrate, S, simplify from sympy.core import sympify from sympy.vector.dyadic import Dyadic def express(expr, system, system2=None, variables=False): """ Global function for 'express' functionality. Re-expresses a Vector, Dyadic or scalar(sympyfiable) in the given coordinate system. If 'variables' is True, then the coordinate variables (base scalars) of other coordinate systems present in the vector/scalar field or dyadic are also substituted in terms of the base scalars of the given system. Parameters ========== expr : Vector/Dyadic/scalar(sympyfiable) The expression to re-express in CoordSys3D 'system' system: CoordSys3D The coordinate system the expr is to be expressed in system2: CoordSys3D The other coordinate system required for re-expression (only for a Dyadic Expr) variables : boolean Specifies whether to substitute the coordinate variables present in expr, in terms of those of parameter system Examples ======== >>> from sympy.vector import CoordSys3D >>> from sympy import Symbol, cos, sin >>> N = CoordSys3D('N') >>> q = Symbol('q') >>> B = N.orient_new_axis('B', q, N.k) >>> from sympy.vector import express >>> express(B.i, N) (cos(q))*N.i + (sin(q))*N.j >>> express(N.x, B, variables=True) B.x*cos(q) - B.y*sin(q) >>> d = N.i.outer(N.i) >>> express(d, B, N) == (cos(q))*(B.i|N.i) + (-sin(q))*(B.j|N.i) True """ if expr == 0 or expr == Vector.zero: return expr if not isinstance(system, CoordSys3D): raise TypeError("system should be a CoordSys3D \ instance") if isinstance(expr, Vector): if system2 is not None: raise ValueError("system2 should not be provided for \ Vectors") # Given expr is a Vector if variables: # If variables attribute is True, substitute # the coordinate variables in the Vector system_list = [] for x in expr.atoms(BaseScalar, BaseVector): if x.system != system: system_list.append(x.system) system_list = set(system_list) subs_dict = {} for f in system_list: subs_dict.update(f.scalar_map(system)) expr = expr.subs(subs_dict) # Re-express in this coordinate system outvec = Vector.zero parts = expr.separate() for x in parts: if x != system: temp = system.rotation_matrix(x) * parts[x].to_matrix(x) outvec += matrix_to_vector(temp, system) else: outvec += parts[x] return outvec elif isinstance(expr, Dyadic): if system2 is None: system2 = system if not isinstance(system2, CoordSys3D): raise TypeError("system2 should be a CoordSys3D \ instance") outdyad = Dyadic.zero var = variables for k, v in expr.components.items(): outdyad += (express(v, system, variables=var) * (express(k.args[0], system, variables=var) | express(k.args[1], system2, variables=var))) return outdyad else: if system2 is not None: raise ValueError("system2 should not be provided for \ Vectors") if variables: # Given expr is a scalar field system_set = set([]) expr = sympify(expr) # Subsitute all the coordinate variables for x in expr.atoms(BaseScalar): if x.system != system: system_set.add(x.system) subs_dict = {} for f in system_set: subs_dict.update(f.scalar_map(system)) return expr.subs(subs_dict) return expr def directional_derivative(field, direction_vector): """ Returns the directional derivative of a scalar or vector field computed along a given vector in coordinate system which parameters are expressed. Parameters ========== field : Vector or Scalar The scalar or vector field to compute the directional derivative of direction_vector : Vector The vector to calculated directional derivative along them. Examples ======== >>> from sympy.vector import CoordSys3D, directional_derivative >>> R = CoordSys3D('R') >>> f1 = R.x*R.y*R.z >>> v1 = 3*R.i + 4*R.j + R.k >>> directional_derivative(f1, v1) R.x*R.y + 4*R.x*R.z + 3*R.y*R.z >>> f2 = 5*R.x**2*R.z >>> directional_derivative(f2, v1) 5*R.x**2 + 30*R.x*R.z """ from sympy.vector.operators import _get_coord_sys_from_expr coord_sys = _get_coord_sys_from_expr(field) if len(coord_sys) > 0: # TODO: This gets a random coordinate system in case of multiple ones: coord_sys = next(iter(coord_sys)) field = express(field, coord_sys, variables=True) i, j, k = coord_sys.base_vectors() x, y, z = coord_sys.base_scalars() out = Vector.dot(direction_vector, i) * diff(field, x) out += Vector.dot(direction_vector, j) * diff(field, y) out += Vector.dot(direction_vector, k) * diff(field, z) if out == 0 and isinstance(field, Vector): out = Vector.zero return out elif isinstance(field, Vector): return Vector.zero else: return S(0) def laplacian(expr): """ Return the laplacian of the given field computed in terms of the base scalars of the given coordinate system. Parameters ========== expr : SymPy Expr or Vector expr denotes a scalar or vector field. Examples ======== >>> from sympy.vector import CoordSys3D, laplacian >>> R = CoordSys3D('R') >>> f = R.x**2*R.y**5*R.z >>> laplacian(f) 20*R.x**2*R.y**3*R.z + 2*R.y**5*R.z >>> f = R.x**2*R.i + R.y**3*R.j + R.z**4*R.k >>> laplacian(f) 2*R.i + 6*R.y*R.j + 12*R.z**2*R.k """ delop = Del() if expr.is_Vector: return (gradient(divergence(expr)) - curl(curl(expr))).doit() return delop.dot(delop(expr)).doit() def is_conservative(field): """ Checks if a field is conservative. Parameters ========== field : Vector The field to check for conservative property Examples ======== >>> from sympy.vector import CoordSys3D >>> from sympy.vector import is_conservative >>> R = CoordSys3D('R') >>> is_conservative(R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k) True >>> is_conservative(R.z*R.j) False """ # Field is conservative irrespective of system # Take the first coordinate system in the result of the # separate method of Vector if not isinstance(field, Vector): raise TypeError("field should be a Vector") if field == Vector.zero: return True return curl(field).simplify() == Vector.zero def is_solenoidal(field): """ Checks if a field is solenoidal. Parameters ========== field : Vector The field to check for solenoidal property Examples ======== >>> from sympy.vector import CoordSys3D >>> from sympy.vector import is_solenoidal >>> R = CoordSys3D('R') >>> is_solenoidal(R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k) True >>> is_solenoidal(R.y * R.j) False """ # Field is solenoidal irrespective of system # Take the first coordinate system in the result of the # separate method in Vector if not isinstance(field, Vector): raise TypeError("field should be a Vector") if field == Vector.zero: return True return divergence(field).simplify() == S(0) def scalar_potential(field, coord_sys): """ Returns the scalar potential function of a field in a given coordinate system (without the added integration constant). Parameters ========== field : Vector The vector field whose scalar potential function is to be calculated coord_sys : CoordSys3D The coordinate system to do the calculation in Examples ======== >>> from sympy.vector import CoordSys3D >>> from sympy.vector import scalar_potential, gradient >>> R = CoordSys3D('R') >>> scalar_potential(R.k, R) == R.z True >>> scalar_field = 2*R.x**2*R.y*R.z >>> grad_field = gradient(scalar_field) >>> scalar_potential(grad_field, R) 2*R.x**2*R.y*R.z """ # Check whether field is conservative if not is_conservative(field): raise ValueError("Field is not conservative") if field == Vector.zero: return S(0) # Express the field exntirely in coord_sys # Subsitute coordinate variables also if not isinstance(coord_sys, CoordSys3D): raise TypeError("coord_sys must be a CoordSys3D") field = express(field, coord_sys, variables=True) dimensions = coord_sys.base_vectors() scalars = coord_sys.base_scalars() # Calculate scalar potential function temp_function = integrate(field.dot(dimensions[0]), scalars[0]) for i, dim in enumerate(dimensions[1:]): partial_diff = diff(temp_function, scalars[i + 1]) partial_diff = field.dot(dim) - partial_diff temp_function += integrate(partial_diff, scalars[i + 1]) return temp_function def scalar_potential_difference(field, coord_sys, point1, point2): """ Returns the scalar potential difference between two points in a certain coordinate system, wrt a given field. If a scalar field is provided, its values at the two points are considered. If a conservative vector field is provided, the values of its scalar potential function at the two points are used. Returns (potential at point2) - (potential at point1) The position vectors of the two Points are calculated wrt the origin of the coordinate system provided. Parameters ========== field : Vector/Expr The field to calculate wrt coord_sys : CoordSys3D The coordinate system to do the calculations in point1 : Point The initial Point in given coordinate system position2 : Point The second Point in the given coordinate system Examples ======== >>> from sympy.vector import CoordSys3D, Point >>> from sympy.vector import scalar_potential_difference >>> R = CoordSys3D('R') >>> P = R.origin.locate_new('P', R.x*R.i + R.y*R.j + R.z*R.k) >>> vectfield = 4*R.x*R.y*R.i + 2*R.x**2*R.j >>> scalar_potential_difference(vectfield, R, R.origin, P) 2*R.x**2*R.y >>> Q = R.origin.locate_new('O', 3*R.i + R.j + 2*R.k) >>> scalar_potential_difference(vectfield, R, P, Q) -2*R.x**2*R.y + 18 """ if not isinstance(coord_sys, CoordSys3D): raise TypeError("coord_sys must be a CoordSys3D") if isinstance(field, Vector): # Get the scalar potential function scalar_fn = scalar_potential(field, coord_sys) else: # Field is a scalar scalar_fn = field # Express positions in required coordinate system origin = coord_sys.origin position1 = express(point1.position_wrt(origin), coord_sys, variables=True) position2 = express(point2.position_wrt(origin), coord_sys, variables=True) # Get the two positions as substitution dicts for coordinate variables subs_dict1 = {} subs_dict2 = {} scalars = coord_sys.base_scalars() for i, x in enumerate(coord_sys.base_vectors()): subs_dict1[scalars[i]] = x.dot(position1) subs_dict2[scalars[i]] = x.dot(position2) return scalar_fn.subs(subs_dict2) - scalar_fn.subs(subs_dict1) def matrix_to_vector(matrix, system): """ Converts a vector in matrix form to a Vector instance. It is assumed that the elements of the Matrix represent the measure numbers of the components of the vector along basis vectors of 'system'. Parameters ========== matrix : SymPy Matrix, Dimensions: (3, 1) The matrix to be converted to a vector system : CoordSys3D The coordinate system the vector is to be defined in Examples ======== >>> from sympy import ImmutableMatrix as Matrix >>> m = Matrix([1, 2, 3]) >>> from sympy.vector import CoordSys3D, matrix_to_vector >>> C = CoordSys3D('C') >>> v = matrix_to_vector(m, C) >>> v C.i + 2*C.j + 3*C.k >>> v.to_matrix(C) == m True """ outvec = Vector.zero vects = system.base_vectors() for i, x in enumerate(matrix): outvec += x * vects[i] return outvec def _path(from_object, to_object): """ Calculates the 'path' of objects starting from 'from_object' to 'to_object', along with the index of the first common ancestor in the tree. Returns (index, list) tuple. """ if from_object._root != to_object._root: raise ValueError("No connecting path found between " + str(from_object) + " and " + str(to_object)) other_path = [] obj = to_object while obj._parent is not None: other_path.append(obj) obj = obj._parent other_path.append(obj) object_set = set(other_path) from_path = [] obj = from_object while obj not in object_set: from_path.append(obj) obj = obj._parent index = len(from_path) i = other_path.index(obj) while i >= 0: from_path.append(other_path[i]) i -= 1 return index, from_path def orthogonalize(*vlist, **kwargs): """ Takes a sequence of independent vectors and orthogonalizes them using the Gram - Schmidt process. Returns a list of orthogonal or orthonormal vectors. Parameters ========== vlist : sequence of independent vectors to be made orthogonal. orthonormal : Optional parameter Set to True if the vectors returned should be orthonormal. Default: False Examples ======== >>> from sympy.vector.coordsysrect import CoordSys3D >>> from sympy.vector.vector import Vector, BaseVector >>> from sympy.vector.functions import orthogonalize >>> C = CoordSys3D('C') >>> i, j, k = C.base_vectors() >>> v1 = i + 2*j >>> v2 = 2*i + 3*j >>> orthogonalize(v1, v2) [C.i + 2*C.j, 2/5*C.i + (-1/5)*C.j] References ========== .. [1] https://en.wikipedia.org/wiki/Gram-Schmidt_process """ orthonormal = kwargs.get('orthonormal', False) if not all(isinstance(vec, Vector) for vec in vlist): raise TypeError('Each element must be of Type Vector') ortho_vlist = [] for i, term in enumerate(vlist): for j in range(i): term -= ortho_vlist[j].projection(vlist[i]) # TODO : The following line introduces a performance issue # and needs to be changed once a good solution for issue #10279 is # found. if simplify(term).equals(Vector.zero): raise ValueError("Vector set not linearly independent") ortho_vlist.append(term) if orthonormal: ortho_vlist = [vec.normalize() for vec in ortho_vlist] return ortho_vlist
400472bbeba4ba5d11ef3c24cf6625abd9c9fe5bc7bca09aaeee53ce6b19173f
"""Geometrical Points. Contains ======== Point Point2D Point3D When methods of Point require 1 or more points as arguments, they can be passed as a sequence of coordinates or Points: >>> from sympy.geometry.point import Point >>> Point(1, 1).is_collinear((2, 2), (3, 4)) False >>> Point(1, 1).is_collinear(Point(2, 2), Point(3, 4)) False """ from __future__ import division, print_function import warnings from sympy.core import S, sympify, Expr from sympy.core.numbers import Number from sympy.core.compatibility import iterable, is_sequence, as_int from sympy.core.containers import Tuple from sympy.simplify import nsimplify, simplify from sympy.geometry.exceptions import GeometryError from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.complexes import im from sympy.matrices import Matrix from sympy.core.relational import Eq from sympy.core.numbers import Float from sympy.core.evaluate import global_evaluate from sympy.core.add import Add from sympy.sets import FiniteSet from sympy.utilities.iterables import uniq from sympy.utilities.misc import filldedent, func_name, Undecidable from .entity import GeometryEntity class Point(GeometryEntity): """A point in a n-dimensional Euclidean space. Parameters ========== coords : sequence of n-coordinate values. In the special case where n=2 or 3, a Point2D or Point3D will be created as appropriate. evaluate : if `True` (default), all floats are turn into exact types. dim : number of coordinates the point should have. If coordinates are unspecified, they are padded with zeros. on_morph : indicates what should happen when the number of coordinates of a point need to be changed by adding or removing zeros. Possible values are `'warn'`, `'error'`, or `ignore` (default). No warning or error is given when `*args` is empty and `dim` is given. An error is always raised when trying to remove nonzero coordinates. Attributes ========== length origin: A `Point` representing the origin of the appropriately-dimensioned space. Raises ====== TypeError : When instantiating with anything but a Point or sequence ValueError : when instantiating with a sequence with length < 2 or when trying to reduce dimensions if keyword `on_morph='error'` is set. See Also ======== sympy.geometry.line.Segment : Connects two Points Examples ======== >>> from sympy.geometry import Point >>> from sympy.abc import x >>> Point(1, 2, 3) Point3D(1, 2, 3) >>> Point([1, 2]) Point2D(1, 2) >>> Point(0, x) Point2D(0, x) >>> Point(dim=4) Point(0, 0, 0, 0) Floats are automatically converted to Rational unless the evaluate flag is False: >>> Point(0.5, 0.25) Point2D(1/2, 1/4) >>> Point(0.5, 0.25, evaluate=False) Point2D(0.5, 0.25) """ is_Point = True def __new__(cls, *args, **kwargs): evaluate = kwargs.get('evaluate', global_evaluate[0]) on_morph = kwargs.get('on_morph', 'ignore') # unpack into coords coords = args[0] if len(args) == 1 else args # check args and handle quickly handle Point instances if isinstance(coords, Point): # even if we're mutating the dimension of a point, we # don't reevaluate its coordinates evaluate = False if len(coords) == kwargs.get('dim', len(coords)): return coords if not is_sequence(coords): raise TypeError(filldedent(''' Expecting sequence of coordinates, not `{}`''' .format(func_name(coords)))) # A point where only `dim` is specified is initialized # to zeros. if len(coords) == 0 and kwargs.get('dim', None): coords = (S.Zero,)*kwargs.get('dim') coords = Tuple(*coords) dim = kwargs.get('dim', len(coords)) if len(coords) < 2: raise ValueError(filldedent(''' Point requires 2 or more coordinates or keyword `dim` > 1.''')) if len(coords) != dim: message = ("Dimension of {} needs to be changed" "from {} to {}.").format(coords, len(coords), dim) if on_morph == 'ignore': pass elif on_morph == "error": raise ValueError(message) elif on_morph == 'warn': warnings.warn(message) else: raise ValueError(filldedent(''' on_morph value should be 'error', 'warn' or 'ignore'.''')) if any(i for i in coords[dim:]): raise ValueError('Nonzero coordinates cannot be removed.') if any(a.is_number and im(a) for a in coords): raise ValueError('Imaginary coordinates are not permitted.') if not all(isinstance(a, Expr) for a in coords): raise TypeError('Coordinates must be valid SymPy expressions.') # pad with zeros appropriately coords = coords[:dim] + (S.Zero,)*(dim - len(coords)) # Turn any Floats into rationals and simplify # any expressions before we instantiate if evaluate: coords = coords.xreplace(dict( [(f, simplify(nsimplify(f, rational=True))) for f in coords.atoms(Float)])) # return 2D or 3D instances if len(coords) == 2: kwargs['_nocheck'] = True return Point2D(*coords, **kwargs) elif len(coords) == 3: kwargs['_nocheck'] = True return Point3D(*coords, **kwargs) # the general Point return GeometryEntity.__new__(cls, *coords) def __abs__(self): """Returns the distance between this point and the origin.""" origin = Point([0]*len(self)) return Point.distance(origin, self) def __add__(self, other): """Add other to self by incrementing self's coordinates by those of other. Notes ===== >>> from sympy.geometry.point import Point When sequences of coordinates are passed to Point methods, they are converted to a Point internally. This __add__ method does not do that so if floating point values are used, a floating point result (in terms of SymPy Floats) will be returned. >>> Point(1, 2) + (.1, .2) Point2D(1.1, 2.2) If this is not desired, the `translate` method can be used or another Point can be added: >>> Point(1, 2).translate(.1, .2) Point2D(11/10, 11/5) >>> Point(1, 2) + Point(.1, .2) Point2D(11/10, 11/5) See Also ======== sympy.geometry.point.Point.translate """ try: s, o = Point._normalize_dimension(self, Point(other, evaluate=False)) except TypeError: raise GeometryError("Don't know how to add {} and a Point object".format(other)) coords = [simplify(a + b) for a, b in zip(s, o)] return Point(coords, evaluate=False) def __contains__(self, item): return item in self.args def __div__(self, divisor): """Divide point's coordinates by a factor.""" divisor = sympify(divisor) coords = [simplify(x/divisor) for x in self.args] return Point(coords, evaluate=False) def __eq__(self, other): if not isinstance(other, Point) or len(self.args) != len(other.args): return False return self.args == other.args def __getitem__(self, key): return self.args[key] def __hash__(self): return hash(self.args) def __iter__(self): return self.args.__iter__() def __len__(self): return len(self.args) def __mul__(self, factor): """Multiply point's coordinates by a factor. Notes ===== >>> from sympy.geometry.point import Point When multiplying a Point by a floating point number, the coordinates of the Point will be changed to Floats: >>> Point(1, 2)*0.1 Point2D(0.1, 0.2) If this is not desired, the `scale` method can be used or else only multiply or divide by integers: >>> Point(1, 2).scale(1.1, 1.1) Point2D(11/10, 11/5) >>> Point(1, 2)*11/10 Point2D(11/10, 11/5) See Also ======== sympy.geometry.point.Point.scale """ factor = sympify(factor) coords = [simplify(x*factor) for x in self.args] return Point(coords, evaluate=False) def __neg__(self): """Negate the point.""" coords = [-x for x in self.args] return Point(coords, evaluate=False) def __sub__(self, other): """Subtract two points, or subtract a factor from this point's coordinates.""" return self + [-x for x in other] @classmethod def _normalize_dimension(cls, *points, **kwargs): """Ensure that points have the same dimension. By default `on_morph='warn'` is passed to the `Point` constructor.""" # if we have a built-in ambient dimension, use it dim = getattr(cls, '_ambient_dimension', None) # override if we specified it dim = kwargs.get('dim', dim) # if no dim was given, use the highest dimensional point if dim is None: dim = max(i.ambient_dimension for i in points) if all(i.ambient_dimension == dim for i in points): return list(points) kwargs['dim'] = dim kwargs['on_morph'] = kwargs.get('on_morph', 'warn') return [Point(i, **kwargs) for i in points] @staticmethod def affine_rank(*args): """The affine rank of a set of points is the dimension of the smallest affine space containing all the points. For example, if the points lie on a line (and are not all the same) their affine rank is 1. If the points lie on a plane but not a line, their affine rank is 2. By convention, the empty set has affine rank -1.""" if len(args) == 0: return -1 # make sure we're genuinely points # and translate every point to the origin points = Point._normalize_dimension(*[Point(i) for i in args]) origin = points[0] points = [i - origin for i in points[1:]] m = Matrix([i.args for i in points]) return m.rank() @property def ambient_dimension(self): """Number of components this point has.""" return getattr(self, '_ambient_dimension', len(self)) @classmethod def are_coplanar(cls, *points): """Return True if there exists a plane in which all the points lie. A trivial True value is returned if `len(points) < 3` or all Points are 2-dimensional. Parameters ========== A set of points Raises ====== ValueError : if less than 3 unique points are given Returns ======= boolean Examples ======== >>> from sympy import Point3D >>> p1 = Point3D(1, 2, 2) >>> p2 = Point3D(2, 7, 2) >>> p3 = Point3D(0, 0, 2) >>> p4 = Point3D(1, 1, 2) >>> Point3D.are_coplanar(p1, p2, p3, p4) True >>> p5 = Point3D(0, 1, 3) >>> Point3D.are_coplanar(p1, p2, p3, p5) False """ if len(points) <= 1: return True points = cls._normalize_dimension(*[Point(i) for i in points]) # quick exit if we are in 2D if points[0].ambient_dimension == 2: return True points = list(uniq(points)) return Point.affine_rank(*points) <= 2 def distance(self, other): """The Euclidean distance between self and another GeometricEntity. Returns ======= distance : number or symbolic expression. Raises ====== TypeError : if other is not recognized as a GeometricEntity or is a GeometricEntity for which distance is not defined. See Also ======== sympy.geometry.line.Segment.length sympy.geometry.point.Point.taxicab_distance Examples ======== >>> from sympy.geometry import Point, Line >>> p1, p2 = Point(1, 1), Point(4, 5) >>> l = Line((3, 1), (2, 2)) >>> p1.distance(p2) 5 >>> p1.distance(l) sqrt(2) The computed distance may be symbolic, too: >>> from sympy.abc import x, y >>> p3 = Point(x, y) >>> p3.distance((0, 0)) sqrt(x**2 + y**2) """ if not isinstance(other , GeometryEntity) : try : other = Point(other, dim=self.ambient_dimension) except TypeError : raise TypeError("not recognized as a GeometricEntity: %s" % type(other)) if isinstance(other , Point) : s, p = Point._normalize_dimension(self, Point(other)) return sqrt(Add(*((a - b)**2 for a, b in zip(s, p)))) distance = getattr(other, 'distance', None) if distance is None: raise TypeError("distance between Point and %s is not defined" % type(other)) return distance(self) def dot(self, p): """Return dot product of self with another Point.""" if not is_sequence(p): p = Point(p) # raise the error via Point return Add(*(a*b for a, b in zip(self, p))) def equals(self, other): """Returns whether the coordinates of self and other agree.""" # a point is equal to another point if all its components are equal if not isinstance(other, Point) or len(self) != len(other): return False return all(a.equals(b) for a,b in zip(self, other)) def evalf(self, prec=None, **options): """Evaluate the coordinates of the point. This method will, where possible, create and return a new Point where the coordinates are evaluated as floating point numbers to the precision indicated (default=15). Parameters ========== prec : int Returns ======= point : Point Examples ======== >>> from sympy import Point, Rational >>> p1 = Point(Rational(1, 2), Rational(3, 2)) >>> p1 Point2D(1/2, 3/2) >>> p1.evalf() Point2D(0.5, 1.5) """ coords = [x.evalf(prec, **options) for x in self.args] return Point(*coords, evaluate=False) def intersection(self, other): """The intersection between this point and another GeometryEntity. Parameters ========== other : Point Returns ======= intersection : list of Points Notes ===== The return value will either be an empty list if there is no intersection, otherwise it will contain this point. Examples ======== >>> from sympy import Point >>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, 0) >>> p1.intersection(p2) [] >>> p1.intersection(p3) [Point2D(0, 0)] """ if not isinstance(other, GeometryEntity): other = Point(other) if isinstance(other, Point): if self == other: return [self] p1, p2 = Point._normalize_dimension(self, other) if p1 == self and p1 == p2: return [self] return [] return other.intersection(self) def is_collinear(self, *args): """Returns `True` if there exists a line that contains `self` and `points`. Returns `False` otherwise. A trivially True value is returned if no points are given. Parameters ========== args : sequence of Points Returns ======= is_collinear : boolean See Also ======== sympy.geometry.line.Line Examples ======== >>> from sympy import Point >>> from sympy.abc import x >>> p1, p2 = Point(0, 0), Point(1, 1) >>> p3, p4, p5 = Point(2, 2), Point(x, x), Point(1, 2) >>> Point.is_collinear(p1, p2, p3, p4) True >>> Point.is_collinear(p1, p2, p3, p5) False """ points = (self,) + args points = Point._normalize_dimension(*[Point(i) for i in points]) points = list(uniq(points)) return Point.affine_rank(*points) <= 1 def is_concyclic(self, *args): """Do `self` and the given sequence of points lie in a circle? Returns True if the set of points are concyclic and False otherwise. A trivial value of True is returned if there are fewer than 2 other points. Parameters ========== args : sequence of Points Returns ======= is_concyclic : boolean Examples ======== >>> from sympy import Point Define 4 points that are on the unit circle: >>> p1, p2, p3, p4 = Point(1, 0), (0, 1), (-1, 0), (0, -1) >>> p1.is_concyclic() == p1.is_concyclic(p2, p3, p4) == True True Define a point not on that circle: >>> p = Point(1, 1) >>> p.is_concyclic(p1, p2, p3) False """ points = (self,) + args points = Point._normalize_dimension(*[Point(i) for i in points]) points = list(uniq(points)) if not Point.affine_rank(*points) <= 2: return False origin = points[0] points = [p - origin for p in points] # points are concyclic if they are coplanar and # there is a point c so that ||p_i-c|| == ||p_j-c|| for all # i and j. Rearranging this equation gives us the following # condition: the matrix `mat` must not a pivot in the last # column. mat = Matrix([list(i) + [i.dot(i)] for i in points]) rref, pivots = mat.rref() if len(origin) not in pivots: return True return False @property def is_nonzero(self): """True if any coordinate is nonzero, False if every coordinate is zero, and None if it cannot be determined.""" is_zero = self.is_zero if is_zero is None: return None return not is_zero def is_scalar_multiple(self, p): """Returns whether each coordinate of `self` is a scalar multiple of the corresponding coordinate in point p. """ s, o = Point._normalize_dimension(self, Point(p)) # 2d points happen a lot, so optimize this function call if s.ambient_dimension == 2: (x1, y1), (x2, y2) = s.args, o.args rv = (x1*y2 - x2*y1).equals(0) if rv is None: raise Undecidable(filldedent( '''can't determine if %s is a scalar multiple of %s''' % (s, o))) # if the vectors p1 and p2 are linearly dependent, then they must # be scalar multiples of each other m = Matrix([s.args, o.args]) return m.rank() < 2 @property def is_zero(self): """True if every coordinate is zero, False if any coordinate is not zero, and None if it cannot be determined.""" nonzero = [x.is_nonzero for x in self.args] if any(nonzero): return False if any(x is None for x in nonzero): return None return True @property def length(self): """ Treating a Point as a Line, this returns 0 for the length of a Point. Examples ======== >>> from sympy import Point >>> p = Point(0, 1) >>> p.length 0 """ return S.Zero def midpoint(self, p): """The midpoint between self and point p. Parameters ========== p : Point Returns ======= midpoint : Point See Also ======== sympy.geometry.line.Segment.midpoint Examples ======== >>> from sympy.geometry import Point >>> p1, p2 = Point(1, 1), Point(13, 5) >>> p1.midpoint(p2) Point2D(7, 3) """ s, p = Point._normalize_dimension(self, Point(p)) return Point([simplify((a + b)*S.Half) for a, b in zip(s, p)]) @property def origin(self): """A point of all zeros of the same ambient dimension as the current point""" return Point([0]*len(self), evaluate=False) @property def orthogonal_direction(self): """Returns a non-zero point that is orthogonal to the line containing `self` and the origin. Examples ======== >>> from sympy.geometry import Line, Point >>> a = Point(1, 2, 3) >>> a.orthogonal_direction Point3D(-2, 1, 0) >>> b = _ >>> Line(b, b.origin).is_perpendicular(Line(a, a.origin)) True """ dim = self.ambient_dimension # if a coordinate is zero, we can put a 1 there and zeros elsewhere if self[0] == S.Zero: return Point([1] + (dim - 1)*[0]) if self[1] == S.Zero: return Point([0,1] + (dim - 2)*[0]) # if the first two coordinates aren't zero, we can create a non-zero # orthogonal vector by swapping them, negating one, and padding with zeros return Point([-self[1], self[0]] + (dim - 2)*[0]) @staticmethod def project(a, b): """Project the point `a` onto the line between the origin and point `b` along the normal direction. Parameters ========== a : Point b : Point Returns ======= p : Point See Also ======== sympy.geometry.line.LinearEntity.projection Examples ======== >>> from sympy.geometry import Line, Point >>> a = Point(1, 2) >>> b = Point(2, 5) >>> z = a.origin >>> p = Point.project(a, b) >>> Line(p, a).is_perpendicular(Line(p, b)) True >>> Point.is_collinear(z, p, b) True """ a, b = Point._normalize_dimension(Point(a), Point(b)) if b.is_zero: raise ValueError("Cannot project to the zero vector.") return b*(a.dot(b) / b.dot(b)) def taxicab_distance(self, p): """The Taxicab Distance from self to point p. Returns the sum of the horizontal and vertical distances to point p. Parameters ========== p : Point Returns ======= taxicab_distance : The sum of the horizontal and vertical distances to point p. See Also ======== sympy.geometry.point.Point.distance Examples ======== >>> from sympy.geometry import Point >>> p1, p2 = Point(1, 1), Point(4, 5) >>> p1.taxicab_distance(p2) 7 """ s, p = Point._normalize_dimension(self, Point(p)) return Add(*(abs(a - b) for a, b in zip(s, p))) def canberra_distance(self, p): """The Canberra Distance from self to point p. Returns the weighted sum of horizontal and vertical distances to point p. Parameters ========== p : Point Returns ======= canberra_distance : The weighted sum of horizontal and vertical distances to point p. The weight used is the sum of absolute values of the coordinates. See Also ======== sympy.geometry.point.Point.distance Examples ======== >>> from sympy.geometry import Point >>> p1, p2 = Point(1, 1), Point(3, 3) >>> p1.canberra_distance(p2) 1 >>> p1, p2 = Point(0, 0), Point(3, 3) >>> p1.canberra_distance(p2) 2 Raises ====== ValueError when both vectors are zero. See Also ======== sympy.geometry.point.Point.distance """ s, p = Point._normalize_dimension(self, Point(p)) if self.is_zero and p.is_zero: raise ValueError("Cannot project to the zero vector.") return Add(*((abs(a - b)/(abs(a) + abs(b))) for a, b in zip(s, p))) @property def unit(self): """Return the Point that is in the same direction as `self` and a distance of 1 from the origin""" return self / abs(self) n = evalf __truediv__ = __div__ class Point2D(Point): """A point in a 2-dimensional Euclidean space. Parameters ========== coords : sequence of 2 coordinate values. Attributes ========== x y length Raises ====== TypeError When trying to add or subtract points with different dimensions. When trying to create a point with more than two dimensions. When `intersection` is called with object other than a Point. See Also ======== sympy.geometry.line.Segment : Connects two Points Examples ======== >>> from sympy.geometry import Point2D >>> from sympy.abc import x >>> Point2D(1, 2) Point2D(1, 2) >>> Point2D([1, 2]) Point2D(1, 2) >>> Point2D(0, x) Point2D(0, x) Floats are automatically converted to Rational unless the evaluate flag is False: >>> Point2D(0.5, 0.25) Point2D(1/2, 1/4) >>> Point2D(0.5, 0.25, evaluate=False) Point2D(0.5, 0.25) """ _ambient_dimension = 2 def __new__(cls, *args, **kwargs): if not kwargs.pop('_nocheck', False): kwargs['dim'] = 2 args = Point(*args, **kwargs) return GeometryEntity.__new__(cls, *args) def __contains__(self, item): return item == self @property def bounds(self): """Return a tuple (xmin, ymin, xmax, ymax) representing the bounding rectangle for the geometric figure. """ return (self.x, self.y, self.x, self.y) def rotate(self, angle, pt=None): """Rotate ``angle`` radians counterclockwise about Point ``pt``. See Also ======== rotate, scale Examples ======== >>> from sympy import Point2D, pi >>> t = Point2D(1, 0) >>> t.rotate(pi/2) Point2D(0, 1) >>> t.rotate(pi/2, (2, 0)) Point2D(2, -1) """ from sympy import cos, sin, Point c = cos(angle) s = sin(angle) rv = self if pt is not None: pt = Point(pt, dim=2) rv -= pt x, y = rv.args rv = Point(c*x - s*y, s*x + c*y) if pt is not None: rv += pt return rv def scale(self, x=1, y=1, pt=None): """Scale the coordinates of the Point by multiplying by ``x`` and ``y`` after subtracting ``pt`` -- default is (0, 0) -- and then adding ``pt`` back again (i.e. ``pt`` is the point of reference for the scaling). See Also ======== rotate, translate Examples ======== >>> from sympy import Point2D >>> t = Point2D(1, 1) >>> t.scale(2) Point2D(2, 1) >>> t.scale(2, 2) Point2D(2, 2) """ if pt: pt = Point(pt, dim=2) return self.translate(*(-pt).args).scale(x, y).translate(*pt.args) return Point(self.x*x, self.y*y) def transform(self, matrix): """Return the point after applying the transformation described by the 3x3 Matrix, ``matrix``. See Also ======== geometry.entity.rotate geometry.entity.scale geometry.entity.translate """ if not (matrix.is_Matrix and matrix.shape == (3, 3)): raise ValueError("matrix must be a 3x3 matrix") col, row = matrix.shape valid_matrix = matrix.is_square and col == 3 x, y = self.args return Point(*(Matrix(1, 3, [x, y, 1])*matrix).tolist()[0][:2]) def translate(self, x=0, y=0): """Shift the Point by adding x and y to the coordinates of the Point. See Also ======== rotate, scale Examples ======== >>> from sympy import Point2D >>> t = Point2D(0, 1) >>> t.translate(2) Point2D(2, 1) >>> t.translate(2, 2) Point2D(2, 3) >>> t + Point2D(2, 2) Point2D(2, 3) """ return Point(self.x + x, self.y + y) @property def x(self): """ Returns the X coordinate of the Point. Examples ======== >>> from sympy import Point2D >>> p = Point2D(0, 1) >>> p.x 0 """ return self.args[0] @property def y(self): """ Returns the Y coordinate of the Point. Examples ======== >>> from sympy import Point2D >>> p = Point2D(0, 1) >>> p.y 1 """ return self.args[1] class Point3D(Point): """A point in a 3-dimensional Euclidean space. Parameters ========== coords : sequence of 3 coordinate values. Attributes ========== x y z length Raises ====== TypeError When trying to add or subtract points with different dimensions. When `intersection` is called with object other than a Point. Examples ======== >>> from sympy import Point3D >>> from sympy.abc import x >>> Point3D(1, 2, 3) Point3D(1, 2, 3) >>> Point3D([1, 2, 3]) Point3D(1, 2, 3) >>> Point3D(0, x, 3) Point3D(0, x, 3) Floats are automatically converted to Rational unless the evaluate flag is False: >>> Point3D(0.5, 0.25, 2) Point3D(1/2, 1/4, 2) >>> Point3D(0.5, 0.25, 3, evaluate=False) Point3D(0.5, 0.25, 3) """ _ambient_dimension = 3 def __new__(cls, *args, **kwargs): if not kwargs.pop('_nocheck', False): kwargs['dim'] = 3 args = Point(*args, **kwargs) return GeometryEntity.__new__(cls, *args) def __contains__(self, item): return item == self @staticmethod def are_collinear(*points): """Is a sequence of points collinear? Test whether or not a set of points are collinear. Returns True if the set of points are collinear, or False otherwise. Parameters ========== points : sequence of Point Returns ======= are_collinear : boolean See Also ======== sympy.geometry.line.Line3D Examples ======== >>> from sympy import Point3D, Matrix >>> from sympy.abc import x >>> p1, p2 = Point3D(0, 0, 0), Point3D(1, 1, 1) >>> p3, p4, p5 = Point3D(2, 2, 2), Point3D(x, x, x), Point3D(1, 2, 6) >>> Point3D.are_collinear(p1, p2, p3, p4) True >>> Point3D.are_collinear(p1, p2, p3, p5) False """ return Point.is_collinear(*points) def direction_cosine(self, point): """ Gives the direction cosine between 2 points Parameters ========== p : Point3D Returns ======= list Examples ======== >>> from sympy import Point3D >>> p1 = Point3D(1, 2, 3) >>> p1.direction_cosine(Point3D(2, 3, 5)) [sqrt(6)/6, sqrt(6)/6, sqrt(6)/3] """ a = self.direction_ratio(point) b = sqrt(Add(*(i**2 for i in a))) return [(point.x - self.x) / b,(point.y - self.y) / b, (point.z - self.z) / b] def direction_ratio(self, point): """ Gives the direction ratio between 2 points Parameters ========== p : Point3D Returns ======= list Examples ======== >>> from sympy import Point3D >>> p1 = Point3D(1, 2, 3) >>> p1.direction_ratio(Point3D(2, 3, 5)) [1, 1, 2] """ return [(point.x - self.x),(point.y - self.y),(point.z - self.z)] def intersection(self, other): """The intersection between this point and another point. Parameters ========== other : Point Returns ======= intersection : list of Points Notes ===== The return value will either be an empty list if there is no intersection, otherwise it will contain this point. Examples ======== >>> from sympy import Point3D >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, 0, 0) >>> p1.intersection(p2) [] >>> p1.intersection(p3) [Point3D(0, 0, 0)] """ if not isinstance(other, GeometryEntity): other = Point(other, dim=3) if isinstance(other, Point3D): if self == other: return [self] return [] return other.intersection(self) def scale(self, x=1, y=1, z=1, pt=None): """Scale the coordinates of the Point by multiplying by ``x`` and ``y`` after subtracting ``pt`` -- default is (0, 0) -- and then adding ``pt`` back again (i.e. ``pt`` is the point of reference for the scaling). See Also ======== translate Examples ======== >>> from sympy import Point3D >>> t = Point3D(1, 1, 1) >>> t.scale(2) Point3D(2, 1, 1) >>> t.scale(2, 2) Point3D(2, 2, 1) """ if pt: pt = Point3D(pt) return self.translate(*(-pt).args).scale(x, y, z).translate(*pt.args) return Point3D(self.x*x, self.y*y, self.z*z) def transform(self, matrix): """Return the point after applying the transformation described by the 4x4 Matrix, ``matrix``. See Also ======== geometry.entity.rotate geometry.entity.scale geometry.entity.translate """ if not (matrix.is_Matrix and matrix.shape == (4, 4)): raise ValueError("matrix must be a 4x4 matrix") col, row = matrix.shape valid_matrix = matrix.is_square and col == 4 from sympy.matrices.expressions import Transpose x, y, z = self.args m = Transpose(matrix) return Point3D(*(Matrix(1, 4, [x, y, z, 1])*m).tolist()[0][:3]) def translate(self, x=0, y=0, z=0): """Shift the Point by adding x and y to the coordinates of the Point. See Also ======== rotate, scale Examples ======== >>> from sympy import Point3D >>> t = Point3D(0, 1, 1) >>> t.translate(2) Point3D(2, 1, 1) >>> t.translate(2, 2) Point3D(2, 3, 1) >>> t + Point3D(2, 2, 2) Point3D(2, 3, 3) """ return Point3D(self.x + x, self.y + y, self.z + z) @property def x(self): """ Returns the X coordinate of the Point. Examples ======== >>> from sympy import Point3D >>> p = Point3D(0, 1, 3) >>> p.x 0 """ return self.args[0] @property def y(self): """ Returns the Y coordinate of the Point. Examples ======== >>> from sympy import Point3D >>> p = Point3D(0, 1, 2) >>> p.y 1 """ return self.args[1] @property def z(self): """ Returns the Z coordinate of the Point. Examples ======== >>> from sympy import Point3D >>> p = Point3D(0, 1, 1) >>> p.z 1 """ return self.args[2]
d5dfe406deb36d7f223dde96c04aaeb13f42761e8b86a9f42c0cb5e9397fd54e
"""Geometrical Planes. Contains ======== Plane """ from __future__ import division, print_function from sympy import simplify from sympy.core import Dummy, Rational, S, Symbol from sympy.core.symbol import _symbol from sympy.core.compatibility import is_sequence from sympy.functions.elementary.trigonometric import cos, sin, acos, asin, sqrt from sympy.matrices import Matrix from sympy.polys.polytools import cancel from sympy.solvers import solve, linsolve from sympy.utilities.iterables import uniq from sympy.utilities.misc import filldedent, func_name from .entity import GeometryEntity from .point import Point, Point3D from .line import Line, Ray, Segment, Line3D, LinearEntity3D, Ray3D, Segment3D class Plane(GeometryEntity): """ A plane is a flat, two-dimensional surface. A plane is the two-dimensional analogue of a point (zero-dimensions), a line (one-dimension) and a solid (three-dimensions). A plane can generally be constructed by two types of inputs. They are three non-collinear points and a point and the plane's normal vector. Attributes ========== p1 normal_vector Examples ======== >>> from sympy import Plane, Point3D >>> from sympy.abc import x >>> Plane(Point3D(1, 1, 1), Point3D(2, 3, 4), Point3D(2, 2, 2)) Plane(Point3D(1, 1, 1), (-1, 2, -1)) >>> Plane((1, 1, 1), (2, 3, 4), (2, 2, 2)) Plane(Point3D(1, 1, 1), (-1, 2, -1)) >>> Plane(Point3D(1, 1, 1), normal_vector=(1,4,7)) Plane(Point3D(1, 1, 1), (1, 4, 7)) """ def __new__(cls, p1, a=None, b=None, **kwargs): p1 = Point3D(p1, dim=3) if a and b: p2 = Point(a, dim=3) p3 = Point(b, dim=3) if Point3D.are_collinear(p1, p2, p3): raise ValueError('Enter three non-collinear points') a = p1.direction_ratio(p2) b = p1.direction_ratio(p3) normal_vector = tuple(Matrix(a).cross(Matrix(b))) else: a = kwargs.pop('normal_vector', a) if is_sequence(a) and len(a) == 3: normal_vector = Point3D(a).args else: raise ValueError(filldedent(''' Either provide 3 3D points or a point with a normal vector expressed as a sequence of length 3''')) if all(coord.is_zero for coord in normal_vector): raise ValueError('Normal vector cannot be zero vector') return GeometryEntity.__new__(cls, p1, normal_vector, **kwargs) def __contains__(self, o): from sympy.geometry.line import LinearEntity, LinearEntity3D x, y, z = map(Dummy, 'xyz') k = self.equation(x, y, z) if isinstance(o, (LinearEntity, LinearEntity3D)): t = Dummy() d = Point3D(o.arbitrary_point(t)) e = k.subs([(x, d.x), (y, d.y), (z, d.z)]) return e.equals(0) try: o = Point(o, dim=3, strict=True) d = k.xreplace(dict(zip((x, y, z), o.args))) return d.equals(0) except TypeError: return False def angle_between(self, o): """Angle between the plane and other geometric entity. Parameters ========== LinearEntity3D, Plane. Returns ======= angle : angle in radians Notes ===== This method accepts only 3D entities as it's parameter, but if you want to calculate the angle between a 2D entity and a plane you should first convert to a 3D entity by projecting onto a desired plane and then proceed to calculate the angle. Examples ======== >>> from sympy import Point3D, Line3D, Plane >>> a = Plane(Point3D(1, 2, 2), normal_vector=(1, 2, 3)) >>> b = Line3D(Point3D(1, 3, 4), Point3D(2, 2, 2)) >>> a.angle_between(b) -asin(sqrt(21)/6) """ from sympy.geometry.line import LinearEntity3D if isinstance(o, LinearEntity3D): a = Matrix(self.normal_vector) b = Matrix(o.direction_ratio) c = a.dot(b) d = sqrt(sum([i**2 for i in self.normal_vector])) e = sqrt(sum([i**2 for i in o.direction_ratio])) return asin(c/(d*e)) if isinstance(o, Plane): a = Matrix(self.normal_vector) b = Matrix(o.normal_vector) c = a.dot(b) d = sqrt(sum([i**2 for i in self.normal_vector])) e = sqrt(sum([i**2 for i in o.normal_vector])) return acos(c/(d*e)) def arbitrary_point(self, u=None, v=None): """ Returns an arbitrary point on the Plane. If given two parameters, the point ranges over the entire plane. If given 1 or no parameters, returns a point with one parameter which, when varying from 0 to 2*pi, moves the point in a circle of radius 1 about p1 of the Plane. Examples ======== >>> from sympy.geometry import Plane, Ray >>> from sympy.abc import u, v, t, r >>> p = Plane((1, 1, 1), normal_vector=(1, 0, 0)) >>> p.arbitrary_point(u, v) Point3D(1, u + 1, v + 1) >>> p.arbitrary_point(t) Point3D(1, cos(t) + 1, sin(t) + 1) While arbitrary values of u and v can move the point anywhere in the plane, the single-parameter point can be used to construct a ray whose arbitrary point can be located at angle t and radius r from p.p1: >>> Ray(p.p1, _).arbitrary_point(r) Point3D(1, r*cos(t) + 1, r*sin(t) + 1) Returns ======= Point3D """ circle = v is None if circle: u = _symbol(u or 't', real=True) else: u = _symbol(u or 'u', real=True) v = _symbol(v or 'v', real=True) x, y, z = self.normal_vector a, b, c = self.p1.args # x1, y1, z1 is a nonzero vector parallel to the plane if x.is_zero and y.is_zero: x1, y1, z1 = S.One, S.Zero, S.Zero else: x1, y1, z1 = -y, x, S.Zero # x2, y2, z2 is also parallel to the plane, and orthogonal to x1, y1, z1 x2, y2, z2 = tuple(Matrix((x, y, z)).cross(Matrix((x1, y1, z1)))) if circle: x1, y1, z1 = (w/sqrt(x1**2 + y1**2 + z1**2) for w in (x1, y1, z1)) x2, y2, z2 = (w/sqrt(x2**2 + y2**2 + z2**2) for w in (x2, y2, z2)) p = Point3D(a + x1*cos(u) + x2*sin(u), \ b + y1*cos(u) + y2*sin(u), \ c + z1*cos(u) + z2*sin(u)) else: p = Point3D(a + x1*u + x2*v, b + y1*u + y2*v, c + z1*u + z2*v) return p @staticmethod def are_concurrent(*planes): """Is a sequence of Planes concurrent? Two or more Planes are concurrent if their intersections are a common line. Parameters ========== planes: list Returns ======= Boolean Examples ======== >>> from sympy import Plane, Point3D >>> a = Plane(Point3D(5, 0, 0), normal_vector=(1, -1, 1)) >>> b = Plane(Point3D(0, -2, 0), normal_vector=(3, 1, 1)) >>> c = Plane(Point3D(0, -1, 0), normal_vector=(5, -1, 9)) >>> Plane.are_concurrent(a, b) True >>> Plane.are_concurrent(a, b, c) False """ planes = list(uniq(planes)) for i in planes: if not isinstance(i, Plane): raise ValueError('All objects should be Planes but got %s' % i.func) if len(planes) < 2: return False planes = list(planes) first = planes.pop(0) sol = first.intersection(planes[0]) if sol == []: return False else: line = sol[0] for i in planes[1:]: l = first.intersection(i) if not l or not l[0] in line: return False return True def distance(self, o): """Distance between the plane and another geometric entity. Parameters ========== Point3D, LinearEntity3D, Plane. Returns ======= distance Notes ===== This method accepts only 3D entities as it's parameter, but if you want to calculate the distance between a 2D entity and a plane you should first convert to a 3D entity by projecting onto a desired plane and then proceed to calculate the distance. Examples ======== >>> from sympy import Point, Point3D, Line, Line3D, Plane >>> a = Plane(Point3D(1, 1, 1), normal_vector=(1, 1, 1)) >>> b = Point3D(1, 2, 3) >>> a.distance(b) sqrt(3) >>> c = Line3D(Point3D(2, 3, 1), Point3D(1, 2, 2)) >>> a.distance(c) 0 """ from sympy.geometry.line import LinearEntity3D if self.intersection(o) != []: return S.Zero if isinstance(o, Point3D): x, y, z = map(Dummy, 'xyz') k = self.equation(x, y, z) a, b, c = [k.coeff(i) for i in (x, y, z)] d = k.xreplace({x: o.args[0], y: o.args[1], z: o.args[2]}) t = abs(d/sqrt(a**2 + b**2 + c**2)) return t if isinstance(o, LinearEntity3D): a, b = o.p1, self.p1 c = Matrix(a.direction_ratio(b)) d = Matrix(self.normal_vector) e = c.dot(d) f = sqrt(sum([i**2 for i in self.normal_vector])) return abs(e / f) if isinstance(o, Plane): a, b = o.p1, self.p1 c = Matrix(a.direction_ratio(b)) d = Matrix(self.normal_vector) e = c.dot(d) f = sqrt(sum([i**2 for i in self.normal_vector])) return abs(e / f) def equals(self, o): """ Returns True if self and o are the same mathematical entities. Examples ======== >>> from sympy import Plane, Point3D >>> a = Plane(Point3D(1, 2, 3), normal_vector=(1, 1, 1)) >>> b = Plane(Point3D(1, 2, 3), normal_vector=(2, 2, 2)) >>> c = Plane(Point3D(1, 2, 3), normal_vector=(-1, 4, 6)) >>> a.equals(a) True >>> a.equals(b) True >>> a.equals(c) False """ if isinstance(o, Plane): a = self.equation() b = o.equation() return simplify(a / b).is_constant() else: return False def equation(self, x=None, y=None, z=None): """The equation of the Plane. Examples ======== >>> from sympy import Point3D, Plane >>> a = Plane(Point3D(1, 1, 2), Point3D(2, 4, 7), Point3D(3, 5, 1)) >>> a.equation() -23*x + 11*y - 2*z + 16 >>> a = Plane(Point3D(1, 4, 2), normal_vector=(6, 6, 6)) >>> a.equation() 6*x + 6*y + 6*z - 42 """ x, y, z = [i if i else Symbol(j, real=True) for i, j in zip((x, y, z), 'xyz')] a = Point3D(x, y, z) b = self.p1.direction_ratio(a) c = self.normal_vector return (sum(i*j for i, j in zip(b, c))) def intersection(self, o): """ The intersection with other geometrical entity. Parameters ========== Point, Point3D, LinearEntity, LinearEntity3D, Plane Returns ======= List Examples ======== >>> from sympy import Point, Point3D, Line, Line3D, Plane >>> a = Plane(Point3D(1, 2, 3), normal_vector=(1, 1, 1)) >>> b = Point3D(1, 2, 3) >>> a.intersection(b) [Point3D(1, 2, 3)] >>> c = Line3D(Point3D(1, 4, 7), Point3D(2, 2, 2)) >>> a.intersection(c) [Point3D(2, 2, 2)] >>> d = Plane(Point3D(6, 0, 0), normal_vector=(2, -5, 3)) >>> e = Plane(Point3D(2, 0, 0), normal_vector=(3, 4, -3)) >>> d.intersection(e) [Line3D(Point3D(78/23, -24/23, 0), Point3D(147/23, 321/23, 23))] """ from sympy.geometry.line import LinearEntity, LinearEntity3D if not isinstance(o, GeometryEntity): o = Point(o, dim=3) if isinstance(o, Point): if o in self: return [o] else: return [] if isinstance(o, (LinearEntity, LinearEntity3D)): if o in self: p1, p2 = o.p1, o.p2 if isinstance(o, Segment): o = Segment3D(p1, p2) elif isinstance(o, Ray): o = Ray3D(p1, p2) elif isinstance(o, Line): o = Line3D(p1, p2) else: raise ValueError('unhandled linear entity: %s' % o.func) return [o] else: x, y, z = map(Dummy, 'xyz') t = Dummy() # unnamed else it may clash with a symbol in o a = Point3D(o.arbitrary_point(t)) b = self.equation(x, y, z) # TODO: Replace solve with solveset, when this line is tested c = solve(b.subs(list(zip((x, y, z), a.args))), t) if not c: return [] else: p = a.subs(t, c[0]) if p not in self: return [] # e.g. a segment might not intersect a plane return [p] if isinstance(o, Plane): if self.equals(o): return [self] if self.is_parallel(o): return [] else: x, y, z = map(Dummy, 'xyz') a, b = Matrix([self.normal_vector]), Matrix([o.normal_vector]) c = list(a.cross(b)) d = self.equation(x, y, z) e = o.equation(x, y, z) result = list(linsolve([d, e], x, y, z))[0] for i in (x, y, z): result = result.subs(i, 0) return [Line3D(Point3D(result), direction_ratio=c)] def is_coplanar(self, o): """ Returns True if `o` is coplanar with self, else False. Examples ======== >>> from sympy import Plane, Point3D >>> o = (0, 0, 0) >>> p = Plane(o, (1, 1, 1)) >>> p2 = Plane(o, (2, 2, 2)) >>> p == p2 False >>> p.is_coplanar(p2) True """ if isinstance(o, Plane): x, y, z = map(Dummy, 'xyz') return not cancel(self.equation(x, y, z)/o.equation(x, y, z)).has(x, y, z) if isinstance(o, Point3D): return o in self elif isinstance(o, LinearEntity3D): return all(i in self for i in self) elif isinstance(o, GeometryEntity): # XXX should only be handling 2D objects now return all(i == 0 for i in self.normal_vector[:2]) def is_parallel(self, l): """Is the given geometric entity parallel to the plane? Parameters ========== LinearEntity3D or Plane Returns ======= Boolean Examples ======== >>> from sympy import Plane, Point3D >>> a = Plane(Point3D(1,4,6), normal_vector=(2, 4, 6)) >>> b = Plane(Point3D(3,1,3), normal_vector=(4, 8, 12)) >>> a.is_parallel(b) True """ from sympy.geometry.line import LinearEntity3D if isinstance(l, LinearEntity3D): a = l.direction_ratio b = self.normal_vector c = sum([i*j for i, j in zip(a, b)]) if c == 0: return True else: return False elif isinstance(l, Plane): a = Matrix(l.normal_vector) b = Matrix(self.normal_vector) if a.cross(b).is_zero: return True else: return False def is_perpendicular(self, l): """is the given geometric entity perpendicualar to the given plane? Parameters ========== LinearEntity3D or Plane Returns ======= Boolean Examples ======== >>> from sympy import Plane, Point3D >>> a = Plane(Point3D(1,4,6), normal_vector=(2, 4, 6)) >>> b = Plane(Point3D(2, 2, 2), normal_vector=(-1, 2, -1)) >>> a.is_perpendicular(b) True """ from sympy.geometry.line import LinearEntity3D if isinstance(l, LinearEntity3D): a = Matrix(l.direction_ratio) b = Matrix(self.normal_vector) if a.cross(b).is_zero: return True else: return False elif isinstance(l, Plane): a = Matrix(l.normal_vector) b = Matrix(self.normal_vector) if a.dot(b) == 0: return True else: return False else: return False @property def normal_vector(self): """Normal vector of the given plane. Examples ======== >>> from sympy import Point3D, Plane >>> a = Plane(Point3D(1, 1, 1), Point3D(2, 3, 4), Point3D(2, 2, 2)) >>> a.normal_vector (-1, 2, -1) >>> a = Plane(Point3D(1, 1, 1), normal_vector=(1, 4, 7)) >>> a.normal_vector (1, 4, 7) """ return self.args[1] @property def p1(self): """The only defining point of the plane. Others can be obtained from the arbitrary_point method. See Also ======== sympy.geometry.point.Point3D Examples ======== >>> from sympy import Point3D, Plane >>> a = Plane(Point3D(1, 1, 1), Point3D(2, 3, 4), Point3D(2, 2, 2)) >>> a.p1 Point3D(1, 1, 1) """ return self.args[0] def parallel_plane(self, pt): """ Plane parallel to the given plane and passing through the point pt. Parameters ========== pt: Point3D Returns ======= Plane Examples ======== >>> from sympy import Plane, Point3D >>> a = Plane(Point3D(1, 4, 6), normal_vector=(2, 4, 6)) >>> a.parallel_plane(Point3D(2, 3, 5)) Plane(Point3D(2, 3, 5), (2, 4, 6)) """ a = self.normal_vector return Plane(pt, normal_vector=a) def perpendicular_line(self, pt): """A line perpendicular to the given plane. Parameters ========== pt: Point3D Returns ======= Line3D Examples ======== >>> from sympy import Plane, Point3D, Line3D >>> a = Plane(Point3D(1,4,6), normal_vector=(2, 4, 6)) >>> a.perpendicular_line(Point3D(9, 8, 7)) Line3D(Point3D(9, 8, 7), Point3D(11, 12, 13)) """ a = self.normal_vector return Line3D(pt, direction_ratio=a) def perpendicular_plane(self, *pts): """ Return a perpendicular passing through the given points. If the direction ratio between the points is the same as the Plane's normal vector then, to select from the infinite number of possible planes, a third point will be chosen on the z-axis (or the y-axis if the normal vector is already parallel to the z-axis). If less than two points are given they will be supplied as follows: if no point is given then pt1 will be self.p1; if a second point is not given it will be a point through pt1 on a line parallel to the z-axis (if the normal is not already the z-axis, otherwise on the line parallel to the y-axis). Parameters ========== pts: 0, 1 or 2 Point3D Returns ======= Plane Examples ======== >>> from sympy import Plane, Point3D, Line3D >>> a, b = Point3D(0, 0, 0), Point3D(0, 1, 0) >>> Z = (0, 0, 1) >>> p = Plane(a, normal_vector=Z) >>> p.perpendicular_plane(a, b) Plane(Point3D(0, 0, 0), (1, 0, 0)) """ if len(pts) > 2: raise ValueError('No more than 2 pts should be provided.') pts = list(pts) if len(pts) == 0: pts.append(self.p1) if len(pts) == 1: x, y, z = self.normal_vector if x == y == 0: dir = (0, 1, 0) else: dir = (0, 0, 1) pts.append(pts[0] + Point3D(*dir)) p1, p2 = [Point(i, dim=3) for i in pts] l = Line3D(p1, p2) n = Line3D(p1, direction_ratio=self.normal_vector) if l in n: # XXX should an error be raised instead? # there are infinitely many perpendicular planes; x, y, z = self.normal_vector if x == y == 0: # the z axis is the normal so pick a pt on the y-axis p3 = Point3D(0, 1, 0) # case 1 else: # else pick a pt on the z axis p3 = Point3D(0, 0, 1) # case 2 # in case that point is already given, move it a bit if p3 in l: p3 *= 2 # case 3 else: p3 = p1 + Point3D(*self.normal_vector) # case 4 return Plane(p1, p2, p3) def projection_line(self, line): """Project the given line onto the plane through the normal plane containing the line. Parameters ========== LinearEntity or LinearEntity3D Returns ======= Point3D, Line3D, Ray3D or Segment3D Notes ===== For the interaction between 2D and 3D lines(segments, rays), you should convert the line to 3D by using this method. For example for finding the intersection between a 2D and a 3D line, convert the 2D line to a 3D line by projecting it on a required plane and then proceed to find the intersection between those lines. Examples ======== >>> from sympy import Plane, Line, Line3D, Point, Point3D >>> a = Plane(Point3D(1, 1, 1), normal_vector=(1, 1, 1)) >>> b = Line(Point3D(1, 1), Point3D(2, 2)) >>> a.projection_line(b) Line3D(Point3D(4/3, 4/3, 1/3), Point3D(5/3, 5/3, -1/3)) >>> c = Line3D(Point3D(1, 1, 1), Point3D(2, 2, 2)) >>> a.projection_line(c) Point3D(1, 1, 1) """ from sympy.geometry.line import LinearEntity, LinearEntity3D if not isinstance(line, (LinearEntity, LinearEntity3D)): raise NotImplementedError('Enter a linear entity only') a, b = self.projection(line.p1), self.projection(line.p2) if a == b: # projection does not imply intersection so for # this case (line parallel to plane's normal) we # return the projection point return a if isinstance(line, (Line, Line3D)): return Line3D(a, b) if isinstance(line, (Ray, Ray3D)): return Ray3D(a, b) if isinstance(line, (Segment, Segment3D)): return Segment3D(a, b) def projection(self, pt): """Project the given point onto the plane along the plane normal. Parameters ========== Point or Point3D Returns ======= Point3D Examples ======== >>> from sympy import Plane, Point, Point3D >>> A = Plane(Point3D(1, 1, 2), normal_vector=(1, 1, 1)) The projection is along the normal vector direction, not the z axis, so (1, 1) does not project to (1, 1, 2) on the plane A: >>> b = Point3D(1, 1) >>> A.projection(b) Point3D(5/3, 5/3, 2/3) >>> _ in A True But the point (1, 1, 2) projects to (1, 1) on the XY-plane: >>> XY = Plane((0, 0, 0), (0, 0, 1)) >>> XY.projection((1, 1, 2)) Point3D(1, 1, 0) """ rv = Point(pt, dim=3) if rv in self: return rv return self.intersection(Line3D(rv, rv + Point3D(self.normal_vector)))[0] def random_point(self, seed=None): """ Returns a random point on the Plane. Returns ======= Point3D Examples ======== >>> from sympy import Plane >>> p = Plane((1, 0, 0), normal_vector=(0, 1, 0)) >>> r = p.random_point(seed=42) # seed value is optional >>> r.n(3) Point3D(2.29, 0, -1.35) The random point can be moved to lie on the circle of radius 1 centered on p1: >>> c = p.p1 + (r - p.p1).unit >>> c.distance(p.p1).equals(1) True """ import random if seed is not None: rng = random.Random(seed) else: rng = random u, v = Dummy('u'), Dummy('v') params = { u: 2*Rational(rng.gauss(0, 1)) - 1, v: 2*Rational(rng.gauss(0, 1)) - 1} return self.arbitrary_point(u, v).subs(params) def parameter_value(self, other, u, v=None): """Return the parameter(s) corresponding to the given point. Examples ======== >>> from sympy import Plane, Point, pi >>> from sympy.abc import t, u, v >>> p = Plane((2, 0, 0), (0, 0, 1), (0, 1, 0)) By default, the parameter value returned defines a point that is a distance of 1 from the Plane's p1 value and in line with the given point: >>> on_circle = p.arbitrary_point(t).subs(t, pi/4) >>> on_circle.distance(p.p1) 1 >>> p.parameter_value(on_circle, t) {t: pi/4} Moving the point twice as far from p1 does not change the parameter value: >>> off_circle = p.p1 + (on_circle - p.p1)*2 >>> off_circle.distance(p.p1) 2 >>> p.parameter_value(off_circle, t) {t: pi/4} If the 2-value parameter is desired, supply the two parameter symbols and a replacement dictionary will be returned: >>> p.parameter_value(on_circle, u, v) {u: sqrt(10)/10, v: sqrt(10)/30} >>> p.parameter_value(off_circle, u, v) {u: sqrt(10)/5, v: sqrt(10)/15} """ from sympy.geometry.point import Point from sympy.core.symbol import Dummy from sympy.solvers.solvers import solve if not isinstance(other, GeometryEntity): other = Point(other, dim=self.ambient_dimension) if not isinstance(other, Point): raise ValueError("other must be a point") if other == self.p1: return other if isinstance(u, Symbol) and v is None: delta = self.arbitrary_point(u) - self.p1 eq = delta - (other - self.p1).unit sol = solve(eq, u, dict=True) elif isinstance(u, Symbol) and isinstance(v, Symbol): pt = self.arbitrary_point(u, v) sol = solve(pt - other, (u, v), dict=True) else: raise ValueError('expecting 1 or 2 symbols') if not sol: raise ValueError("Given point is not on %s" % func_name(self)) return sol[0] # {t: tval} or {u: uval, v: vval} @property def ambient_dimension(self): return self.p1.ambient_dimension
6ca2ea1feec9d95f24390cdbde40f9585d637f8a852be3ee285f94330f811430
"""Elliptical geometrical entities. Contains * Ellipse * Circle """ from __future__ import division, print_function from sympy import Expr, Eq from sympy.core import S, pi, sympify from sympy.core.evaluate import global_evaluate from sympy.core.logic import fuzzy_bool from sympy.core.numbers import Rational, oo from sympy.core.compatibility import ordered from sympy.core.symbol import Dummy, _uniquely_named_symbol, _symbol from sympy.simplify import simplify, trigsimp, nsimplify from sympy.functions.elementary.miscellaneous import sqrt, Max from sympy.functions.elementary.trigonometric import cos, sin from sympy.functions.special.elliptic_integrals import elliptic_e from sympy.geometry.exceptions import GeometryError from sympy.geometry.line import Ray2D, Segment2D, Line2D, LinearEntity3D from sympy.polys import DomainError, Poly, PolynomialError from sympy.polys.polyutils import _not_a_coeff, _nsort from sympy.solvers import solve from sympy.solvers.solveset import linear_coeffs from sympy.utilities.misc import filldedent, func_name from .entity import GeometryEntity, GeometrySet from .point import Point, Point2D, Point3D from .line import Line, LinearEntity, Segment from .util import idiff import random class Ellipse(GeometrySet): """An elliptical GeometryEntity. Parameters ========== center : Point, optional Default value is Point(0, 0) hradius : number or SymPy expression, optional vradius : number or SymPy expression, optional eccentricity : number or SymPy expression, optional Two of `hradius`, `vradius` and `eccentricity` must be supplied to create an Ellipse. The third is derived from the two supplied. Attributes ========== center hradius vradius area circumference eccentricity periapsis apoapsis focus_distance foci Raises ====== GeometryError When `hradius`, `vradius` and `eccentricity` are incorrectly supplied as parameters. TypeError When `center` is not a Point. See Also ======== Circle Notes ----- Constructed from a center and two radii, the first being the horizontal radius (along the x-axis) and the second being the vertical radius (along the y-axis). When symbolic value for hradius and vradius are used, any calculation that refers to the foci or the major or minor axis will assume that the ellipse has its major radius on the x-axis. If this is not true then a manual rotation is necessary. Examples ======== >>> from sympy import Ellipse, Point, Rational >>> e1 = Ellipse(Point(0, 0), 5, 1) >>> e1.hradius, e1.vradius (5, 1) >>> e2 = Ellipse(Point(3, 1), hradius=3, eccentricity=Rational(4, 5)) >>> e2 Ellipse(Point2D(3, 1), 3, 9/5) """ def __contains__(self, o): if isinstance(o, Point): x = Dummy('x', real=True) y = Dummy('y', real=True) res = self.equation(x, y).subs({x: o.x, y: o.y}) return trigsimp(simplify(res)) is S.Zero elif isinstance(o, Ellipse): return self == o return False def __eq__(self, o): """Is the other GeometryEntity the same as this ellipse?""" return isinstance(o, Ellipse) and (self.center == o.center and self.hradius == o.hradius and self.vradius == o.vradius) def __hash__(self): return super(Ellipse, self).__hash__() def __new__( cls, center=None, hradius=None, vradius=None, eccentricity=None, **kwargs): hradius = sympify(hradius) vradius = sympify(vradius) eccentricity = sympify(eccentricity) if center is None: center = Point(0, 0) else: center = Point(center, dim=2) if len(center) != 2: raise ValueError('The center of "{0}" must be a two dimensional point'.format(cls)) if len(list(filter(lambda x: x is not None, (hradius, vradius, eccentricity)))) != 2: raise ValueError(filldedent(''' Exactly two arguments of "hradius", "vradius", and "eccentricity" must not be None.''')) if eccentricity is not None: if hradius is None: hradius = vradius / sqrt(1 - eccentricity**2) elif vradius is None: vradius = hradius * sqrt(1 - eccentricity**2) if hradius == vradius: return Circle(center, hradius, **kwargs) if hradius == 0 or vradius == 0: return Segment(Point(center[0] - hradius, center[1] - vradius), Point(center[0] + hradius, center[1] + vradius)) return GeometryEntity.__new__(cls, center, hradius, vradius, **kwargs) def _svg(self, scale_factor=1., fill_color="#66cc99"): """Returns SVG ellipse element for the Ellipse. Parameters ========== scale_factor : float Multiplication factor for the SVG stroke-width. Default is 1. fill_color : str, optional Hex string for fill color. Default is "#66cc99". """ from sympy.core.evalf import N c = N(self.center) h, v = N(self.hradius), N(self.vradius) return ( '<ellipse fill="{1}" stroke="#555555" ' 'stroke-width="{0}" opacity="0.6" cx="{2}" cy="{3}" rx="{4}" ry="{5}"/>' ).format(2. * scale_factor, fill_color, c.x, c.y, h, v) @property def ambient_dimension(self): return 2 @property def apoapsis(self): """The apoapsis of the ellipse. The greatest distance between the focus and the contour. Returns ======= apoapsis : number See Also ======== periapsis : Returns shortest distance between foci and contour Examples ======== >>> from sympy import Point, Ellipse >>> p1 = Point(0, 0) >>> e1 = Ellipse(p1, 3, 1) >>> e1.apoapsis 2*sqrt(2) + 3 """ return self.major * (1 + self.eccentricity) def arbitrary_point(self, parameter='t'): """A parameterized point on the ellipse. Parameters ========== parameter : str, optional Default value is 't'. Returns ======= arbitrary_point : Point Raises ====== ValueError When `parameter` already appears in the functions. See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy import Point, Ellipse >>> e1 = Ellipse(Point(0, 0), 3, 2) >>> e1.arbitrary_point() Point2D(3*cos(t), 2*sin(t)) """ t = _symbol(parameter, real=True) if t.name in (f.name for f in self.free_symbols): raise ValueError(filldedent('Symbol %s already appears in object ' 'and cannot be used as a parameter.' % t.name)) return Point(self.center.x + self.hradius*cos(t), self.center.y + self.vradius*sin(t)) @property def area(self): """The area of the ellipse. Returns ======= area : number Examples ======== >>> from sympy import Point, Ellipse >>> p1 = Point(0, 0) >>> e1 = Ellipse(p1, 3, 1) >>> e1.area 3*pi """ return simplify(S.Pi * self.hradius * self.vradius) @property def bounds(self): """Return a tuple (xmin, ymin, xmax, ymax) representing the bounding rectangle for the geometric figure. """ h, v = self.hradius, self.vradius return (self.center.x - h, self.center.y - v, self.center.x + h, self.center.y + v) @property def center(self): """The center of the ellipse. Returns ======= center : number See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy import Point, Ellipse >>> p1 = Point(0, 0) >>> e1 = Ellipse(p1, 3, 1) >>> e1.center Point2D(0, 0) """ return self.args[0] @property def circumference(self): """The circumference of the ellipse. Examples ======== >>> from sympy import Point, Ellipse >>> p1 = Point(0, 0) >>> e1 = Ellipse(p1, 3, 1) >>> e1.circumference 12*elliptic_e(8/9) """ if self.eccentricity == 1: # degenerate return 4*self.major elif self.eccentricity == 0: # circle return 2*pi*self.hradius else: return 4*self.major*elliptic_e(self.eccentricity**2) @property def eccentricity(self): """The eccentricity of the ellipse. Returns ======= eccentricity : number Examples ======== >>> from sympy import Point, Ellipse, sqrt >>> p1 = Point(0, 0) >>> e1 = Ellipse(p1, 3, sqrt(2)) >>> e1.eccentricity sqrt(7)/3 """ return self.focus_distance / self.major def encloses_point(self, p): """ Return True if p is enclosed by (is inside of) self. Notes ----- Being on the border of self is considered False. Parameters ========== p : Point Returns ======= encloses_point : True, False or None See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy import Ellipse, S >>> from sympy.abc import t >>> e = Ellipse((0, 0), 3, 2) >>> e.encloses_point((0, 0)) True >>> e.encloses_point(e.arbitrary_point(t).subs(t, S.Half)) False >>> e.encloses_point((4, 0)) False """ p = Point(p, dim=2) if p in self: return False if len(self.foci) == 2: # if the combined distance from the foci to p (h1 + h2) is less # than the combined distance from the foci to the minor axis # (which is the same as the major axis length) then p is inside # the ellipse h1, h2 = [f.distance(p) for f in self.foci] test = 2*self.major - (h1 + h2) else: test = self.radius - self.center.distance(p) return fuzzy_bool(test.is_positive) def equation(self, x='x', y='y', _slope=None): """ Returns the equation of an ellipse aligned with the x and y axes; when slope is given, the equation returned corresponds to an ellipse with a major axis having that slope. Parameters ========== x : str, optional Label for the x-axis. Default value is 'x'. y : str, optional Label for the y-axis. Default value is 'y'. _slope : Expr, optional The slope of the major axis. Ignored when 'None'. Returns ======= equation : sympy expression See Also ======== arbitrary_point : Returns parameterized point on ellipse Examples ======== >>> from sympy import Point, Ellipse, pi >>> from sympy.abc import x, y >>> e1 = Ellipse(Point(1, 0), 3, 2) >>> eq1 = e1.equation(x, y); eq1 y**2/4 + (x/3 - 1/3)**2 - 1 >>> eq2 = e1.equation(x, y, _slope=1); eq2 (-x + y + 1)**2/8 + (x + y - 1)**2/18 - 1 A point on e1 satisfies eq1. Let's use one on the x-axis: >>> p1 = e1.center + Point(e1.major, 0) >>> assert eq1.subs(x, p1.x).subs(y, p1.y) == 0 When rotated the same as the rotated ellipse, about the center point of the ellipse, it will satisfy the rotated ellipse's equation, too: >>> r1 = p1.rotate(pi/4, e1.center) >>> assert eq2.subs(x, r1.x).subs(y, r1.y) == 0 References ========== .. [1] https://math.stackexchange.com/questions/108270/what-is-the-equation-of-an-ellipse-that-is-not-aligned-with-the-axis .. [2] https://en.wikipedia.org/wiki/Ellipse#Equation_of_a_shifted_ellipse """ x = _symbol(x, real=True) y = _symbol(y, real=True) dx = x - self.center.x dy = y - self.center.y if _slope is not None: L = (dy - _slope*dx)**2 l = (_slope*dy + dx)**2 h = 1 + _slope**2 b = h*self.major**2 a = h*self.minor**2 return l/b + L/a - 1 else: t1 = (dx/self.hradius)**2 t2 = (dy/self.vradius)**2 return t1 + t2 - 1 def evolute(self, x='x', y='y'): """The equation of evolute of the ellipse. Parameters ========== x : str, optional Label for the x-axis. Default value is 'x'. y : str, optional Label for the y-axis. Default value is 'y'. Returns ======= equation : sympy expression Examples ======== >>> from sympy import Point, Ellipse >>> e1 = Ellipse(Point(1, 0), 3, 2) >>> e1.evolute() 2**(2/3)*y**(2/3) + (3*x - 3)**(2/3) - 5**(2/3) """ if len(self.args) != 3: raise NotImplementedError('Evolute of arbitrary Ellipse is not supported.') x = _symbol(x, real=True) y = _symbol(y, real=True) t1 = (self.hradius*(x - self.center.x))**Rational(2, 3) t2 = (self.vradius*(y - self.center.y))**Rational(2, 3) return t1 + t2 - (self.hradius**2 - self.vradius**2)**Rational(2, 3) @property def foci(self): """The foci of the ellipse. Notes ----- The foci can only be calculated if the major/minor axes are known. Raises ====== ValueError When the major and minor axis cannot be determined. See Also ======== sympy.geometry.point.Point focus_distance : Returns the distance between focus and center Examples ======== >>> from sympy import Point, Ellipse >>> p1 = Point(0, 0) >>> e1 = Ellipse(p1, 3, 1) >>> e1.foci (Point2D(-2*sqrt(2), 0), Point2D(2*sqrt(2), 0)) """ c = self.center hr, vr = self.hradius, self.vradius if hr == vr: return (c, c) # calculate focus distance manually, since focus_distance calls this # routine fd = sqrt(self.major**2 - self.minor**2) if hr == self.minor: # foci on the y-axis return (c + Point(0, -fd), c + Point(0, fd)) elif hr == self.major: # foci on the x-axis return (c + Point(-fd, 0), c + Point(fd, 0)) @property def focus_distance(self): """The focal distance of the ellipse. The distance between the center and one focus. Returns ======= focus_distance : number See Also ======== foci Examples ======== >>> from sympy import Point, Ellipse >>> p1 = Point(0, 0) >>> e1 = Ellipse(p1, 3, 1) >>> e1.focus_distance 2*sqrt(2) """ return Point.distance(self.center, self.foci[0]) @property def hradius(self): """The horizontal radius of the ellipse. Returns ======= hradius : number See Also ======== vradius, major, minor Examples ======== >>> from sympy import Point, Ellipse >>> p1 = Point(0, 0) >>> e1 = Ellipse(p1, 3, 1) >>> e1.hradius 3 """ return self.args[1] def intersection(self, o): """The intersection of this ellipse and another geometrical entity `o`. Parameters ========== o : GeometryEntity Returns ======= intersection : list of GeometryEntity objects Notes ----- Currently supports intersections with Point, Line, Segment, Ray, Circle and Ellipse types. See Also ======== sympy.geometry.entity.GeometryEntity Examples ======== >>> from sympy import Ellipse, Point, Line, sqrt >>> e = Ellipse(Point(0, 0), 5, 7) >>> e.intersection(Point(0, 0)) [] >>> e.intersection(Point(5, 0)) [Point2D(5, 0)] >>> e.intersection(Line(Point(0,0), Point(0, 1))) [Point2D(0, -7), Point2D(0, 7)] >>> e.intersection(Line(Point(5,0), Point(5, 1))) [Point2D(5, 0)] >>> e.intersection(Line(Point(6,0), Point(6, 1))) [] >>> e = Ellipse(Point(-1, 0), 4, 3) >>> e.intersection(Ellipse(Point(1, 0), 4, 3)) [Point2D(0, -3*sqrt(15)/4), Point2D(0, 3*sqrt(15)/4)] >>> e.intersection(Ellipse(Point(5, 0), 4, 3)) [Point2D(2, -3*sqrt(7)/4), Point2D(2, 3*sqrt(7)/4)] >>> e.intersection(Ellipse(Point(100500, 0), 4, 3)) [] >>> e.intersection(Ellipse(Point(0, 0), 3, 4)) [Point2D(3, 0), Point2D(-363/175, -48*sqrt(111)/175), Point2D(-363/175, 48*sqrt(111)/175)] >>> e.intersection(Ellipse(Point(-1, 0), 3, 4)) [Point2D(-17/5, -12/5), Point2D(-17/5, 12/5), Point2D(7/5, -12/5), Point2D(7/5, 12/5)] """ # TODO: Replace solve with nonlinsolve, when nonlinsolve will be able to solve in real domain x = Dummy('x', real=True) y = Dummy('y', real=True) if isinstance(o, Point): if o in self: return [o] else: return [] elif isinstance(o, (Segment2D, Ray2D)): ellipse_equation = self.equation(x, y) result = solve([ellipse_equation, Line(o.points[0], o.points[1]).equation(x, y)], [x, y]) return list(ordered([Point(i) for i in result if i in o])) elif isinstance(o, Polygon): return o.intersection(self) elif isinstance(o, (Ellipse, Line2D)): if o == self: return self else: ellipse_equation = self.equation(x, y) return list(ordered([Point(i) for i in solve([ellipse_equation, o.equation(x, y)], [x, y])])) elif isinstance(o, LinearEntity3D): raise TypeError('Entity must be two dimensional, not three dimensional') else: raise TypeError('Intersection not handled for %s' % func_name(o)) def is_tangent(self, o): """Is `o` tangent to the ellipse? Parameters ========== o : GeometryEntity An Ellipse, LinearEntity or Polygon Raises ====== NotImplementedError When the wrong type of argument is supplied. Returns ======= is_tangent: boolean True if o is tangent to the ellipse, False otherwise. See Also ======== tangent_lines Examples ======== >>> from sympy import Point, Ellipse, Line >>> p0, p1, p2 = Point(0, 0), Point(3, 0), Point(3, 3) >>> e1 = Ellipse(p0, 3, 2) >>> l1 = Line(p1, p2) >>> e1.is_tangent(l1) True """ if isinstance(o, Point2D): return False elif isinstance(o, Ellipse): intersect = self.intersection(o) if isinstance(intersect, Ellipse): return True elif intersect: return all((self.tangent_lines(i)[0]).equals((o.tangent_lines(i)[0])) for i in intersect) else: return False elif isinstance(o, Line2D): return len(self.intersection(o)) == 1 elif isinstance(o, Ray2D): intersect = self.intersection(o) if len(intersect) == 1: return intersect[0] != o.source and not self.encloses_point(o.source) else: return False elif isinstance(o, (Segment2D, Polygon)): all_tangents = False segments = o.sides if isinstance(o, Polygon) else [o] for segment in segments: intersect = self.intersection(segment) if len(intersect) == 1: if not any(intersect[0] in i for i in segment.points) \ and all(not self.encloses_point(i) for i in segment.points): all_tangents = True continue else: return False else: return all_tangents return all_tangents elif isinstance(o, (LinearEntity3D, Point3D)): raise TypeError('Entity must be two dimensional, not three dimensional') else: raise TypeError('Is_tangent not handled for %s' % func_name(o)) @property def major(self): """Longer axis of the ellipse (if it can be determined) else hradius. Returns ======= major : number or expression See Also ======== hradius, vradius, minor Examples ======== >>> from sympy import Point, Ellipse, Symbol >>> p1 = Point(0, 0) >>> e1 = Ellipse(p1, 3, 1) >>> e1.major 3 >>> a = Symbol('a') >>> b = Symbol('b') >>> Ellipse(p1, a, b).major a >>> Ellipse(p1, b, a).major b >>> m = Symbol('m') >>> M = m + 1 >>> Ellipse(p1, m, M).major m + 1 """ ab = self.args[1:3] if len(ab) == 1: return ab[0] a, b = ab o = b - a < 0 if o == True: return a elif o == False: return b return self.hradius @property def minor(self): """Shorter axis of the ellipse (if it can be determined) else vradius. Returns ======= minor : number or expression See Also ======== hradius, vradius, major Examples ======== >>> from sympy import Point, Ellipse, Symbol >>> p1 = Point(0, 0) >>> e1 = Ellipse(p1, 3, 1) >>> e1.minor 1 >>> a = Symbol('a') >>> b = Symbol('b') >>> Ellipse(p1, a, b).minor b >>> Ellipse(p1, b, a).minor a >>> m = Symbol('m') >>> M = m + 1 >>> Ellipse(p1, m, M).minor m """ ab = self.args[1:3] if len(ab) == 1: return ab[0] a, b = ab o = a - b < 0 if o == True: return a elif o == False: return b return self.vradius def normal_lines(self, p, prec=None): """Normal lines between `p` and the ellipse. Parameters ========== p : Point Returns ======= normal_lines : list with 1, 2 or 4 Lines Examples ======== >>> from sympy import Line, Point, Ellipse >>> e = Ellipse((0, 0), 2, 3) >>> c = e.center >>> e.normal_lines(c + Point(1, 0)) [Line2D(Point2D(0, 0), Point2D(1, 0))] >>> e.normal_lines(c) [Line2D(Point2D(0, 0), Point2D(0, 1)), Line2D(Point2D(0, 0), Point2D(1, 0))] Off-axis points require the solution of a quartic equation. This often leads to very large expressions that may be of little practical use. An approximate solution of `prec` digits can be obtained by passing in the desired value: >>> e.normal_lines((3, 3), prec=2) [Line2D(Point2D(-0.81, -2.7), Point2D(0.19, -1.2)), Line2D(Point2D(1.5, -2.0), Point2D(2.5, -2.7))] Whereas the above solution has an operation count of 12, the exact solution has an operation count of 2020. """ p = Point(p, dim=2) # XXX change True to something like self.angle == 0 if the arbitrarily # rotated ellipse is introduced. # https://github.com/sympy/sympy/issues/2815) if True: rv = [] if p.x == self.center.x: rv.append(Line(self.center, slope=oo)) if p.y == self.center.y: rv.append(Line(self.center, slope=0)) if rv: # at these special orientations of p either 1 or 2 normals # exist and we are done return rv # find the 4 normal points and construct lines through them with # the corresponding slope x, y = Dummy('x', real=True), Dummy('y', real=True) eq = self.equation(x, y) dydx = idiff(eq, y, x) norm = -1/dydx slope = Line(p, (x, y)).slope seq = slope - norm # TODO: Replace solve with solveset, when this line is tested yis = solve(seq, y)[0] xeq = eq.subs(y, yis).as_numer_denom()[0].expand() if len(xeq.free_symbols) == 1: try: # this is so much faster, it's worth a try xsol = Poly(xeq, x).real_roots() except (DomainError, PolynomialError, NotImplementedError): # TODO: Replace solve with solveset, when these lines are tested xsol = _nsort(solve(xeq, x), separated=True)[0] points = [Point(i, solve(eq.subs(x, i), y)[0]) for i in xsol] else: raise NotImplementedError( 'intersections for the general ellipse are not supported') slopes = [norm.subs(zip((x, y), pt.args)) for pt in points] if prec is not None: points = [pt.n(prec) for pt in points] slopes = [i if _not_a_coeff(i) else i.n(prec) for i in slopes] return [Line(pt, slope=s) for pt, s in zip(points, slopes)] @property def periapsis(self): """The periapsis of the ellipse. The shortest distance between the focus and the contour. Returns ======= periapsis : number See Also ======== apoapsis : Returns greatest distance between focus and contour Examples ======== >>> from sympy import Point, Ellipse >>> p1 = Point(0, 0) >>> e1 = Ellipse(p1, 3, 1) >>> e1.periapsis 3 - 2*sqrt(2) """ return self.major * (1 - self.eccentricity) @property def semilatus_rectum(self): """ Calculates the semi-latus rectum of the Ellipse. Semi-latus rectum is defined as one half of the the chord through a focus parallel to the conic section directrix of a conic section. Returns ======= semilatus_rectum : number See Also ======== apoapsis : Returns greatest distance between focus and contour periapsis : The shortest distance between the focus and the contour Examples ======== >>> from sympy import Point, Ellipse >>> p1 = Point(0, 0) >>> e1 = Ellipse(p1, 3, 1) >>> e1.semilatus_rectum 1/3 References ========== [1] http://mathworld.wolfram.com/SemilatusRectum.html [2] https://en.wikipedia.org/wiki/Ellipse#Semi-latus_rectum """ return self.major * (1 - self.eccentricity ** 2) def auxiliary_circle(self): """Returns a Circle whose diameter is the major axis of the ellipse. Examples ======== >>> from sympy import Circle, Ellipse, Point, symbols >>> c = Point(1, 2) >>> Ellipse(c, 8, 7).auxiliary_circle() Circle(Point2D(1, 2), 8) >>> a, b = symbols('a b') >>> Ellipse(c, a, b).auxiliary_circle() Circle(Point2D(1, 2), Max(a, b)) """ return Circle(self.center, Max(self.hradius, self.vradius)) def plot_interval(self, parameter='t'): """The plot interval for the default geometric plot of the Ellipse. Parameters ========== parameter : str, optional Default value is 't'. Returns ======= plot_interval : list [parameter, lower_bound, upper_bound] Examples ======== >>> from sympy import Point, Ellipse >>> e1 = Ellipse(Point(0, 0), 3, 2) >>> e1.plot_interval() [t, -pi, pi] """ t = _symbol(parameter, real=True) return [t, -S.Pi, S.Pi] def random_point(self, seed=None): """A random point on the ellipse. Returns ======= point : Point Examples ======== >>> from sympy import Point, Ellipse, Segment >>> e1 = Ellipse(Point(0, 0), 3, 2) >>> e1.random_point() # gives some random point Point2D(...) >>> p1 = e1.random_point(seed=0); p1.n(2) Point2D(2.1, 1.4) Notes ===== When creating a random point, one may simply replace the parameter with a random number. When doing so, however, the random number should be made a Rational or else the point may not test as being in the ellipse: >>> from sympy.abc import t >>> from sympy import Rational >>> arb = e1.arbitrary_point(t); arb Point2D(3*cos(t), 2*sin(t)) >>> arb.subs(t, .1) in e1 False >>> arb.subs(t, Rational(.1)) in e1 True >>> arb.subs(t, Rational('.1')) in e1 True See Also ======== sympy.geometry.point.Point arbitrary_point : Returns parameterized point on ellipse """ from sympy import sin, cos, Rational t = _symbol('t', real=True) x, y = self.arbitrary_point(t).args # get a random value in [-1, 1) corresponding to cos(t) # and confirm that it will test as being in the ellipse if seed is not None: rng = random.Random(seed) else: rng = random # simplify this now or else the Float will turn s into a Float r = Rational(rng.random()) c = 2*r - 1 s = sqrt(1 - c**2) return Point(x.subs(cos(t), c), y.subs(sin(t), s)) def reflect(self, line): """Override GeometryEntity.reflect since the radius is not a GeometryEntity. Examples ======== >>> from sympy import Circle, Line >>> Circle((0, 1), 1).reflect(Line((0, 0), (1, 1))) Circle(Point2D(1, 0), -1) >>> from sympy import Ellipse, Line, Point >>> Ellipse(Point(3, 4), 1, 3).reflect(Line(Point(0, -4), Point(5, 0))) Traceback (most recent call last): ... NotImplementedError: General Ellipse is not supported but the equation of the reflected Ellipse is given by the zeros of: f(x, y) = (9*x/41 + 40*y/41 + 37/41)**2 + (40*x/123 - 3*y/41 - 364/123)**2 - 1 Notes ===== Until the general ellipse (with no axis parallel to the x-axis) is supported a NotImplemented error is raised and the equation whose zeros define the rotated ellipse is given. """ if line.slope in (0, oo): c = self.center c = c.reflect(line) return self.func(c, -self.hradius, self.vradius) else: x, y = [_uniquely_named_symbol( name, (self, line), real=True) for name in 'xy'] expr = self.equation(x, y) p = Point(x, y).reflect(line) result = expr.subs(zip((x, y), p.args ), simultaneous=True) raise NotImplementedError(filldedent( 'General Ellipse is not supported but the equation ' 'of the reflected Ellipse is given by the zeros of: ' + "f(%s, %s) = %s" % (str(x), str(y), str(result)))) def rotate(self, angle=0, pt=None): """Rotate ``angle`` radians counterclockwise about Point ``pt``. Note: since the general ellipse is not supported, only rotations that are integer multiples of pi/2 are allowed. Examples ======== >>> from sympy import Ellipse, pi >>> Ellipse((1, 0), 2, 1).rotate(pi/2) Ellipse(Point2D(0, 1), 1, 2) >>> Ellipse((1, 0), 2, 1).rotate(pi) Ellipse(Point2D(-1, 0), 2, 1) """ if self.hradius == self.vradius: return self.func(self.center.rotate(angle, pt), self.hradius) if (angle/S.Pi).is_integer: return super(Ellipse, self).rotate(angle, pt) if (2*angle/S.Pi).is_integer: return self.func(self.center.rotate(angle, pt), self.vradius, self.hradius) # XXX see https://github.com/sympy/sympy/issues/2815 for general ellipes raise NotImplementedError('Only rotations of pi/2 are currently supported for Ellipse.') def scale(self, x=1, y=1, pt=None): """Override GeometryEntity.scale since it is the major and minor axes which must be scaled and they are not GeometryEntities. Examples ======== >>> from sympy import Ellipse >>> Ellipse((0, 0), 2, 1).scale(2, 4) Circle(Point2D(0, 0), 4) >>> Ellipse((0, 0), 2, 1).scale(2) Ellipse(Point2D(0, 0), 4, 1) """ c = self.center if pt: pt = Point(pt, dim=2) return self.translate(*(-pt).args).scale(x, y).translate(*pt.args) h = self.hradius v = self.vradius return self.func(c.scale(x, y), hradius=h*x, vradius=v*y) def tangent_lines(self, p): """Tangent lines between `p` and the ellipse. If `p` is on the ellipse, returns the tangent line through point `p`. Otherwise, returns the tangent line(s) from `p` to the ellipse, or None if no tangent line is possible (e.g., `p` inside ellipse). Parameters ========== p : Point Returns ======= tangent_lines : list with 1 or 2 Lines Raises ====== NotImplementedError Can only find tangent lines for a point, `p`, on the ellipse. See Also ======== sympy.geometry.point.Point, sympy.geometry.line.Line Examples ======== >>> from sympy import Point, Ellipse >>> e1 = Ellipse(Point(0, 0), 3, 2) >>> e1.tangent_lines(Point(3, 0)) [Line2D(Point2D(3, 0), Point2D(3, -12))] """ p = Point(p, dim=2) if self.encloses_point(p): return [] if p in self: delta = self.center - p rise = (self.vradius**2)*delta.x run = -(self.hradius**2)*delta.y p2 = Point(simplify(p.x + run), simplify(p.y + rise)) return [Line(p, p2)] else: if len(self.foci) == 2: f1, f2 = self.foci maj = self.hradius test = (2*maj - Point.distance(f1, p) - Point.distance(f2, p)) else: test = self.radius - Point.distance(self.center, p) if test.is_number and test.is_positive: return [] # else p is outside the ellipse or we can't tell. In case of the # latter, the solutions returned will only be valid if # the point is not inside the ellipse; if it is, nan will result. x, y = Dummy('x'), Dummy('y') eq = self.equation(x, y) dydx = idiff(eq, y, x) slope = Line(p, Point(x, y)).slope # TODO: Replace solve with solveset, when this line is tested tangent_points = solve([slope - dydx, eq], [x, y]) # handle horizontal and vertical tangent lines if len(tangent_points) == 1: assert tangent_points[0][ 0] == p.x or tangent_points[0][1] == p.y return [Line(p, p + Point(1, 0)), Line(p, p + Point(0, 1))] # others return [Line(p, tangent_points[0]), Line(p, tangent_points[1])] @property def vradius(self): """The vertical radius of the ellipse. Returns ======= vradius : number See Also ======== hradius, major, minor Examples ======== >>> from sympy import Point, Ellipse >>> p1 = Point(0, 0) >>> e1 = Ellipse(p1, 3, 1) >>> e1.vradius 1 """ return self.args[2] def second_moment_of_area(self, point=None): """Returns the second moment and product moment area of an ellipse. Parameters ========== point : Point, two-tuple of sympifiable objects, or None(default=None) point is the point about which second moment of area is to be found. If "point=None" it will be calculated about the axis passing through the centroid of the ellipse. Returns ======= I_xx, I_yy, I_xy : number or sympy expression I_xx, I_yy are second moment of area of an ellise. I_xy is product moment of area of an ellipse. Examples ======== >>> from sympy import Point, Ellipse >>> p1 = Point(0, 0) >>> e1 = Ellipse(p1, 3, 1) >>> e1.second_moment_of_area() (3*pi/4, 27*pi/4, 0) References ========== https://en.wikipedia.org/wiki/List_of_second_moments_of_area """ I_xx = (S.Pi*(self.hradius)*(self.vradius**3))/4 I_yy = (S.Pi*(self.hradius**3)*(self.vradius))/4 I_xy = 0 if point is None: return I_xx, I_yy, I_xy # parallel axis theorem I_xx = I_xx + self.area*((point[1] - self.center.y)**2) I_yy = I_yy + self.area*((point[0] - self.center.x)**2) I_xy = I_xy + self.area*(point[0] - self.center.x)*(point[1] - self.center.y) return I_xx, I_yy, I_xy class Circle(Ellipse): """A circle in space. Constructed simply from a center and a radius, from three non-collinear points, or the equation of a circle. Parameters ========== center : Point radius : number or sympy expression points : sequence of three Points equation : equation of a circle Attributes ========== radius (synonymous with hradius, vradius, major and minor) circumference equation Raises ====== GeometryError When the given equation is not that of a circle. When trying to construct circle from incorrect parameters. See Also ======== Ellipse, sympy.geometry.point.Point Examples ======== >>> from sympy import Eq >>> from sympy.geometry import Point, Circle >>> from sympy.abc import x, y, a, b A circle constructed from a center and radius: >>> c1 = Circle(Point(0, 0), 5) >>> c1.hradius, c1.vradius, c1.radius (5, 5, 5) A circle constructed from three points: >>> c2 = Circle(Point(0, 0), Point(1, 1), Point(1, 0)) >>> c2.hradius, c2.vradius, c2.radius, c2.center (sqrt(2)/2, sqrt(2)/2, sqrt(2)/2, Point2D(1/2, 1/2)) A circle can be constructed from an equation in the form `a*x**2 + by**2 + gx + hy + c = 0`, too: >>> Circle(x**2 + y**2 - 25) Circle(Point2D(0, 0), 5) If the variables corresponding to x and y are named something else, their name or symbol can be supplied: >>> Circle(Eq(a**2 + b**2, 25), x='a', y=b) Circle(Point2D(0, 0), 5) """ def __new__(cls, *args, **kwargs): from sympy.geometry.util import find from .polygon import Triangle evaluate = kwargs.get('evaluate', global_evaluate[0]) if len(args) == 1 and isinstance(args[0], Expr): x = kwargs.get('x', 'x') y = kwargs.get('y', 'y') equation = args[0] if isinstance(equation, Eq): equation = equation.lhs - equation.rhs x = find(x, equation) y = find(y, equation) try: a, b, c, d, e = linear_coeffs(equation, x**2, y**2, x, y) except ValueError: raise GeometryError("The given equation is not that of a circle.") if a == 0 or b == 0 or a != b: raise GeometryError("The given equation is not that of a circle.") center_x = -c/a/2 center_y = -d/b/2 r2 = (center_x**2) + (center_y**2) - e return Circle((center_x, center_y), sqrt(r2), evaluate=evaluate) else: c, r = None, None if len(args) == 3: args = [Point(a, dim=2, evaluate=evaluate) for a in args] t = Triangle(*args) if not isinstance(t, Triangle): return t c = t.circumcenter r = t.circumradius elif len(args) == 2: # Assume (center, radius) pair c = Point(args[0], dim=2, evaluate=evaluate) r = args[1] # this will prohibit imaginary radius try: r = Point(r, 0, evaluate=evaluate).x except: raise GeometryError("Circle with imaginary radius is not permitted") if not (c is None or r is None): if r == 0: return c return GeometryEntity.__new__(cls, c, r, **kwargs) raise GeometryError("Circle.__new__ received unknown arguments") @property def circumference(self): """The circumference of the circle. Returns ======= circumference : number or SymPy expression Examples ======== >>> from sympy import Point, Circle >>> c1 = Circle(Point(3, 4), 6) >>> c1.circumference 12*pi """ return 2 * S.Pi * self.radius def equation(self, x='x', y='y'): """The equation of the circle. Parameters ========== x : str or Symbol, optional Default value is 'x'. y : str or Symbol, optional Default value is 'y'. Returns ======= equation : SymPy expression Examples ======== >>> from sympy import Point, Circle >>> c1 = Circle(Point(0, 0), 5) >>> c1.equation() x**2 + y**2 - 25 """ x = _symbol(x, real=True) y = _symbol(y, real=True) t1 = (x - self.center.x)**2 t2 = (y - self.center.y)**2 return t1 + t2 - self.major**2 def intersection(self, o): """The intersection of this circle with another geometrical entity. Parameters ========== o : GeometryEntity Returns ======= intersection : list of GeometryEntities Examples ======== >>> from sympy import Point, Circle, Line, Ray >>> p1, p2, p3 = Point(0, 0), Point(5, 5), Point(6, 0) >>> p4 = Point(5, 0) >>> c1 = Circle(p1, 5) >>> c1.intersection(p2) [] >>> c1.intersection(p4) [Point2D(5, 0)] >>> c1.intersection(Ray(p1, p2)) [Point2D(5*sqrt(2)/2, 5*sqrt(2)/2)] >>> c1.intersection(Line(p2, p3)) [] """ return Ellipse.intersection(self, o) @property def radius(self): """The radius of the circle. Returns ======= radius : number or sympy expression See Also ======== Ellipse.major, Ellipse.minor, Ellipse.hradius, Ellipse.vradius Examples ======== >>> from sympy import Point, Circle >>> c1 = Circle(Point(3, 4), 6) >>> c1.radius 6 """ return self.args[1] def reflect(self, line): """Override GeometryEntity.reflect since the radius is not a GeometryEntity. Examples ======== >>> from sympy import Circle, Line >>> Circle((0, 1), 1).reflect(Line((0, 0), (1, 1))) Circle(Point2D(1, 0), -1) """ c = self.center c = c.reflect(line) return self.func(c, -self.radius) def scale(self, x=1, y=1, pt=None): """Override GeometryEntity.scale since the radius is not a GeometryEntity. Examples ======== >>> from sympy import Circle >>> Circle((0, 0), 1).scale(2, 2) Circle(Point2D(0, 0), 2) >>> Circle((0, 0), 1).scale(2, 4) Ellipse(Point2D(0, 0), 2, 4) """ c = self.center if pt: pt = Point(pt, dim=2) return self.translate(*(-pt).args).scale(x, y).translate(*pt.args) c = c.scale(x, y) x, y = [abs(i) for i in (x, y)] if x == y: return self.func(c, x*self.radius) h = v = self.radius return Ellipse(c, hradius=h*x, vradius=v*y) @property def vradius(self): """ This Ellipse property is an alias for the Circle's radius. Whereas hradius, major and minor can use Ellipse's conventions, the vradius does not exist for a circle. It is always a positive value in order that the Circle, like Polygons, will have an area that can be positive or negative as determined by the sign of the hradius. Examples ======== >>> from sympy import Point, Circle >>> c1 = Circle(Point(3, 4), 6) >>> c1.vradius 6 """ return abs(self.radius) from .polygon import Polygon
25d458ebd3563e2c47703d8d222e112d7b687bc0ee4de61028980684e9e0ddc5
"""The definition of the base geometrical entity with attributes common to all derived geometrical entities. Contains ======== GeometryEntity GeometricSet Notes ===== A GeometryEntity is any object that has special geometric properties. A GeometrySet is a superclass of any GeometryEntity that can also be viewed as a sympy.sets.Set. In particular, points are the only GeometryEntity not considered a Set. Rn is a GeometrySet representing n-dimensional Euclidean space. R2 and R3 are currently the only ambient spaces implemented. """ from __future__ import division, print_function from sympy.core.compatibility import is_sequence from sympy.core.containers import Tuple from sympy.core.basic import Basic from sympy.core.symbol import _symbol from sympy.core.sympify import sympify from sympy.functions import cos, sin from sympy.matrices import eye from sympy.sets import Set from sympy.utilities.misc import func_name from sympy.multipledispatch import dispatch from sympy.sets.handlers.union import union_sets from sympy.sets.handlers.intersection import intersection_sets # How entities are ordered; used by __cmp__ in GeometryEntity ordering_of_classes = [ "Point2D", "Point3D", "Point", "Segment2D", "Ray2D", "Line2D", "Segment3D", "Line3D", "Ray3D", "Segment", "Ray", "Line", "Plane", "Triangle", "RegularPolygon", "Polygon", "Circle", "Ellipse", "Curve", "Parabola" ] class GeometryEntity(Basic): """The base class for all geometrical entities. This class doesn't represent any particular geometric entity, it only provides the implementation of some methods common to all subclasses. """ def __cmp__(self, other): """Comparison of two GeometryEntities.""" n1 = self.__class__.__name__ n2 = other.__class__.__name__ c = (n1 > n2) - (n1 < n2) if not c: return 0 i1 = -1 for cls in self.__class__.__mro__: try: i1 = ordering_of_classes.index(cls.__name__) break except ValueError: i1 = -1 if i1 == -1: return c i2 = -1 for cls in other.__class__.__mro__: try: i2 = ordering_of_classes.index(cls.__name__) break except ValueError: i2 = -1 if i2 == -1: return c return (i1 > i2) - (i1 < i2) def __contains__(self, other): """Subclasses should implement this method for anything more complex than equality.""" if type(self) == type(other): return self == other raise NotImplementedError() def __getnewargs__(self): """Returns a tuple that will be passed to __new__ on unpickling.""" return tuple(self.args) def __ne__(self, o): """Test inequality of two geometrical entities.""" return not self == o def __new__(cls, *args, **kwargs): # Points are sequences, but they should not # be converted to Tuples, so use this detection function instead. def is_seq_and_not_point(a): # we cannot use isinstance(a, Point) since we cannot import Point if hasattr(a, 'is_Point') and a.is_Point: return False return is_sequence(a) args = [Tuple(*a) if is_seq_and_not_point(a) else sympify(a) for a in args] return Basic.__new__(cls, *args) def __radd__(self, a): """Implementation of reverse add method.""" return a.__add__(self) def __rdiv__(self, a): """Implementation of reverse division method.""" return a.__div__(self) def __repr__(self): """String representation of a GeometryEntity that can be evaluated by sympy.""" return type(self).__name__ + repr(self.args) def __rmul__(self, a): """Implementation of reverse multiplication method.""" return a.__mul__(self) def __rsub__(self, a): """Implementation of reverse substraction method.""" return a.__sub__(self) def __str__(self): """String representation of a GeometryEntity.""" from sympy.printing import sstr return type(self).__name__ + sstr(self.args) def _eval_subs(self, old, new): from sympy.geometry.point import Point, Point3D if is_sequence(old) or is_sequence(new): if isinstance(self, Point3D): old = Point3D(old) new = Point3D(new) else: old = Point(old) new = Point(new) return self._subs(old, new) def _repr_svg_(self): """SVG representation of a GeometryEntity suitable for IPython""" from sympy.core.evalf import N try: bounds = self.bounds except (NotImplementedError, TypeError): # if we have no SVG representation, return None so IPython # will fall back to the next representation return None svg_top = '''<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="{1}" height="{2}" viewBox="{0}" preserveAspectRatio="xMinYMin meet"> <defs> <marker id="markerCircle" markerWidth="8" markerHeight="8" refx="5" refy="5" markerUnits="strokeWidth"> <circle cx="5" cy="5" r="1.5" style="stroke: none; fill:#000000;"/> </marker> <marker id="markerArrow" markerWidth="13" markerHeight="13" refx="2" refy="4" orient="auto" markerUnits="strokeWidth"> <path d="M2,2 L2,6 L6,4" style="fill: #000000;" /> </marker> <marker id="markerReverseArrow" markerWidth="13" markerHeight="13" refx="6" refy="4" orient="auto" markerUnits="strokeWidth"> <path d="M6,2 L6,6 L2,4" style="fill: #000000;" /> </marker> </defs>''' # Establish SVG canvas that will fit all the data + small space xmin, ymin, xmax, ymax = map(N, bounds) if xmin == xmax and ymin == ymax: # This is a point; buffer using an arbitrary size xmin, ymin, xmax, ymax = xmin - .5, ymin -.5, xmax + .5, ymax + .5 else: # Expand bounds by a fraction of the data ranges expand = 0.1 # or 10%; this keeps arrowheads in view (R plots use 4%) widest_part = max([xmax - xmin, ymax - ymin]) expand_amount = widest_part * expand xmin -= expand_amount ymin -= expand_amount xmax += expand_amount ymax += expand_amount dx = xmax - xmin dy = ymax - ymin width = min([max([100., dx]), 300]) height = min([max([100., dy]), 300]) scale_factor = 1. if max(width, height) == 0 else max(dx, dy) / max(width, height) try: svg = self._svg(scale_factor) except (NotImplementedError, TypeError): # if we have no SVG representation, return None so IPython # will fall back to the next representation return None view_box = "{0} {1} {2} {3}".format(xmin, ymin, dx, dy) transform = "matrix(1,0,0,-1,0,{0})".format(ymax + ymin) svg_top = svg_top.format(view_box, width, height) return svg_top + ( '<g transform="{0}">{1}</g></svg>' ).format(transform, svg) def _svg(self, scale_factor=1., fill_color="#66cc99"): """Returns SVG path element for the GeometryEntity. Parameters ========== scale_factor : float Multiplication factor for the SVG stroke-width. Default is 1. fill_color : str, optional Hex string for fill color. Default is "#66cc99". """ raise NotImplementedError() def _sympy_(self): return self @property def ambient_dimension(self): """What is the dimension of the space that the object is contained in?""" raise NotImplementedError() @property def bounds(self): """Return a tuple (xmin, ymin, xmax, ymax) representing the bounding rectangle for the geometric figure. """ raise NotImplementedError() def encloses(self, o): """ Return True if o is inside (not on or outside) the boundaries of self. The object will be decomposed into Points and individual Entities need only define an encloses_point method for their class. See Also ======== sympy.geometry.ellipse.Ellipse.encloses_point sympy.geometry.polygon.Polygon.encloses_point Examples ======== >>> from sympy import RegularPolygon, Point, Polygon >>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices) >>> t2 = Polygon(*RegularPolygon(Point(0, 0), 2, 3).vertices) >>> t2.encloses(t) True >>> t.encloses(t2) False """ from sympy.geometry.point import Point from sympy.geometry.line import Segment, Ray, Line from sympy.geometry.ellipse import Ellipse from sympy.geometry.polygon import Polygon, RegularPolygon if isinstance(o, Point): return self.encloses_point(o) elif isinstance(o, Segment): return all(self.encloses_point(x) for x in o.points) elif isinstance(o, Ray) or isinstance(o, Line): return False elif isinstance(o, Ellipse): return self.encloses_point(o.center) and \ self.encloses_point( Point(o.center.x + o.hradius, o.center.y)) and \ not self.intersection(o) elif isinstance(o, Polygon): if isinstance(o, RegularPolygon): if not self.encloses_point(o.center): return False return all(self.encloses_point(v) for v in o.vertices) raise NotImplementedError() def equals(self, o): return self == o def intersection(self, o): """ Returns a list of all of the intersections of self with o. Notes ===== An entity is not required to implement this method. If two different types of entities can intersect, the item with higher index in ordering_of_classes should implement intersections with anything having a lower index. See Also ======== sympy.geometry.util.intersection """ raise NotImplementedError() def is_similar(self, other): """Is this geometrical entity similar to another geometrical entity? Two entities are similar if a uniform scaling (enlarging or shrinking) of one of the entities will allow one to obtain the other. Notes ===== This method is not intended to be used directly but rather through the `are_similar` function found in util.py. An entity is not required to implement this method. If two different types of entities can be similar, it is only required that one of them be able to determine this. See Also ======== scale """ raise NotImplementedError() def reflect(self, line): """ Reflects an object across a line. Parameters ========== line: Line Examples ======== >>> from sympy import pi, sqrt, Line, RegularPolygon >>> l = Line((0, pi), slope=sqrt(2)) >>> pent = RegularPolygon((1, 2), 1, 5) >>> rpent = pent.reflect(l) >>> rpent RegularPolygon(Point2D(-2*sqrt(2)*pi/3 - 1/3 + 4*sqrt(2)/3, 2/3 + 2*sqrt(2)/3 + 2*pi/3), -1, 5, -atan(2*sqrt(2)) + 3*pi/5) >>> from sympy import pi, Line, Circle, Point >>> l = Line((0, pi), slope=1) >>> circ = Circle(Point(0, 0), 5) >>> rcirc = circ.reflect(l) >>> rcirc Circle(Point2D(-pi, pi), -5) """ from sympy import atan, Point, Dummy, oo g = self l = line o = Point(0, 0) if l.slope == 0: y = l.args[0].y if not y: # x-axis return g.scale(y=-1) reps = [(p, p.translate(y=2*(y - p.y))) for p in g.atoms(Point)] elif l.slope == oo: x = l.args[0].x if not x: # y-axis return g.scale(x=-1) reps = [(p, p.translate(x=2*(x - p.x))) for p in g.atoms(Point)] else: if not hasattr(g, 'reflect') and not all( isinstance(arg, Point) for arg in g.args): raise NotImplementedError( 'reflect undefined or non-Point args in %s' % g) a = atan(l.slope) c = l.coefficients d = -c[-1]/c[1] # y-intercept # apply the transform to a single point x, y = Dummy(), Dummy() xf = Point(x, y) xf = xf.translate(y=-d).rotate(-a, o).scale(y=-1 ).rotate(a, o).translate(y=d) # replace every point using that transform reps = [(p, xf.xreplace({x: p.x, y: p.y})) for p in g.atoms(Point)] return g.xreplace(dict(reps)) def rotate(self, angle, pt=None): """Rotate ``angle`` radians counterclockwise about Point ``pt``. The default pt is the origin, Point(0, 0) See Also ======== scale, translate Examples ======== >>> from sympy import Point, RegularPolygon, Polygon, pi >>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices) >>> t # vertex on x axis Triangle(Point2D(1, 0), Point2D(-1/2, sqrt(3)/2), Point2D(-1/2, -sqrt(3)/2)) >>> t.rotate(pi/2) # vertex on y axis now Triangle(Point2D(0, 1), Point2D(-sqrt(3)/2, -1/2), Point2D(sqrt(3)/2, -1/2)) """ newargs = [] for a in self.args: if isinstance(a, GeometryEntity): newargs.append(a.rotate(angle, pt)) else: newargs.append(a) return type(self)(*newargs) def scale(self, x=1, y=1, pt=None): """Scale the object by multiplying the x,y-coordinates by x and y. If pt is given, the scaling is done relative to that point; the object is shifted by -pt, scaled, and shifted by pt. See Also ======== rotate, translate Examples ======== >>> from sympy import RegularPolygon, Point, Polygon >>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices) >>> t Triangle(Point2D(1, 0), Point2D(-1/2, sqrt(3)/2), Point2D(-1/2, -sqrt(3)/2)) >>> t.scale(2) Triangle(Point2D(2, 0), Point2D(-1, sqrt(3)/2), Point2D(-1, -sqrt(3)/2)) >>> t.scale(2, 2) Triangle(Point2D(2, 0), Point2D(-1, sqrt(3)), Point2D(-1, -sqrt(3))) """ from sympy.geometry.point import Point if pt: pt = Point(pt, dim=2) return self.translate(*(-pt).args).scale(x, y).translate(*pt.args) return type(self)(*[a.scale(x, y) for a in self.args]) # if this fails, override this class def translate(self, x=0, y=0): """Shift the object by adding to the x,y-coordinates the values x and y. See Also ======== rotate, scale Examples ======== >>> from sympy import RegularPolygon, Point, Polygon >>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices) >>> t Triangle(Point2D(1, 0), Point2D(-1/2, sqrt(3)/2), Point2D(-1/2, -sqrt(3)/2)) >>> t.translate(2) Triangle(Point2D(3, 0), Point2D(3/2, sqrt(3)/2), Point2D(3/2, -sqrt(3)/2)) >>> t.translate(2, 2) Triangle(Point2D(3, 2), Point2D(3/2, sqrt(3)/2 + 2), Point2D(3/2, 2 - sqrt(3)/2)) """ newargs = [] for a in self.args: if isinstance(a, GeometryEntity): newargs.append(a.translate(x, y)) else: newargs.append(a) return self.func(*newargs) def parameter_value(self, other, t): """Return the parameter corresponding to the given point. Evaluating an arbitrary point of the entity at this parameter value will return the given point. Examples ======== >>> from sympy import Line, Point >>> from sympy.abc import t >>> a = Point(0, 0) >>> b = Point(2, 2) >>> Line(a, b).parameter_value((1, 1), t) {t: 1/2} >>> Line(a, b).arbitrary_point(t).subs(_) Point2D(1, 1) """ from sympy.geometry.point import Point from sympy.core.symbol import Dummy from sympy.solvers.solvers import solve if not isinstance(other, GeometryEntity): other = Point(other, dim=self.ambient_dimension) if not isinstance(other, Point): raise ValueError("other must be a point") T = Dummy('t', real=True) sol = solve(self.arbitrary_point(T) - other, T, dict=True) if not sol: raise ValueError("Given point is not on %s" % func_name(self)) return {t: sol[0][T]} class GeometrySet(GeometryEntity, Set): """Parent class of all GeometryEntity that are also Sets (compatible with sympy.sets) """ def _contains(self, other): """sympy.sets uses the _contains method, so include it for compatibility.""" if isinstance(other, Set) and other.is_FiniteSet: return all(self.__contains__(i) for i in other) return self.__contains__(other) @dispatch(GeometrySet, Set) def union_sets(self, o): """ Returns the union of self and o for use with sympy.sets.Set, if possible. """ from sympy.sets import Union, FiniteSet # if its a FiniteSet, merge any points # we contain and return a union with the rest if o.is_FiniteSet: other_points = [p for p in o if not self._contains(p)] if len(other_points) == len(o): return None return Union(self, FiniteSet(*other_points)) if self._contains(o): return self return None @dispatch(GeometrySet, Set) def intersection_sets(self, o): """ Returns a sympy.sets.Set of intersection objects, if possible. """ from sympy.sets import Set, FiniteSet, Union from sympy.geometry import Point try: # if o is a FiniteSet, find the intersection directly # to avoid infinite recursion if o.is_FiniteSet: inter = FiniteSet(*(p for p in o if self.contains(p))) else: inter = self.intersection(o) except NotImplementedError: # sympy.sets.Set.reduce expects None if an object # doesn't know how to simplify return None # put the points in a FiniteSet points = FiniteSet(*[p for p in inter if isinstance(p, Point)]) non_points = [p for p in inter if not isinstance(p, Point)] return Union(*(non_points + [points])) def translate(x, y): """Return the matrix to translate a 2-D point by x and y.""" rv = eye(3) rv[2, 0] = x rv[2, 1] = y return rv def scale(x, y, pt=None): """Return the matrix to multiply a 2-D point's coordinates by x and y. If pt is given, the scaling is done relative to that point.""" rv = eye(3) rv[0, 0] = x rv[1, 1] = y if pt: from sympy.geometry.point import Point pt = Point(pt, dim=2) tr1 = translate(*(-pt).args) tr2 = translate(*pt.args) return tr1*rv*tr2 return rv def rotate(th): """Return the matrix to rotate a 2-D point about the origin by ``angle``. The angle is measured in radians. To Point a point about a point other then the origin, translate the Point, do the rotation, and translate it back: >>> from sympy.geometry.entity import rotate, translate >>> from sympy import Point, pi >>> rot_about_11 = translate(-1, -1)*rotate(pi/2)*translate(1, 1) >>> Point(1, 1).transform(rot_about_11) Point2D(1, 1) >>> Point(0, 0).transform(rot_about_11) Point2D(2, 0) """ s = sin(th) rv = eye(3)*cos(th) rv[0, 1] = s rv[1, 0] = -s rv[2, 2] = 1 return rv
f23df30f7d223d98d81311d9951ad9f17251fb577aef5fcca6ecb5d86cc51b6a
"""Utility functions for geometrical entities. Contains ======== intersection convex_hull closest_points farthest_points are_coplanar are_similar """ from __future__ import division, print_function from sympy import Function, Symbol, solve from sympy.core.compatibility import ( is_sequence, range, string_types, ordered) from sympy.core.containers import OrderedSet from .point import Point, Point2D def find(x, equation): """ Checks whether the parameter 'x' is present in 'equation' or not. If it is present then it returns the passed parameter 'x' as a free symbol, else, it returns a ValueError. """ free = equation.free_symbols xs = [i for i in free if (i.name if isinstance(x, string_types) else i) == x] if not xs: raise ValueError('could not find %s' % x) if len(xs) != 1: raise ValueError('ambiguous %s' % x) return xs[0] def _ordered_points(p): """Return the tuple of points sorted numerically according to args""" return tuple(sorted(p, key=lambda x: x.args)) def are_coplanar(*e): """ Returns True if the given entities are coplanar otherwise False Parameters ========== e: entities to be checked for being coplanar Returns ======= Boolean Examples ======== >>> from sympy import Point3D, Line3D >>> from sympy.geometry.util import are_coplanar >>> a = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1)) >>> b = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1)) >>> c = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9)) >>> are_coplanar(a, b, c) False """ from sympy.geometry.line import LinearEntity3D from sympy.geometry.point import Point3D from sympy.geometry.plane import Plane # XXX update tests for coverage e = set(e) # first work with a Plane if present for i in list(e): if isinstance(i, Plane): e.remove(i) return all(p.is_coplanar(i) for p in e) if all(isinstance(i, Point3D) for i in e): if len(e) < 3: return False # remove pts that are collinear with 2 pts a, b = e.pop(), e.pop() for i in list(e): if Point3D.are_collinear(a, b, i): e.remove(i) if not e: return False else: # define a plane p = Plane(a, b, e.pop()) for i in e: if i not in p: return False return True else: pt3d = [] for i in e: if isinstance(i, Point3D): pt3d.append(i) elif isinstance(i, LinearEntity3D): pt3d.extend(i.args) elif isinstance(i, GeometryEntity): # XXX we should have a GeometryEntity3D class so we can tell the difference between 2D and 3D -- here we just want to deal with 2D objects; if new 3D objects are encountered that we didn't hanlde above, an error should be raised # all 2D objects have some Point that defines them; so convert those points to 3D pts by making z=0 for p in i.args: if isinstance(p, Point): pt3d.append(Point3D(*(p.args + (0,)))) return are_coplanar(*pt3d) def are_similar(e1, e2): """Are two geometrical entities similar. Can one geometrical entity be uniformly scaled to the other? Parameters ========== e1 : GeometryEntity e2 : GeometryEntity Returns ======= are_similar : boolean Raises ====== GeometryError When `e1` and `e2` cannot be compared. Notes ===== If the two objects are equal then they are similar. See Also ======== sympy.geometry.entity.GeometryEntity.is_similar Examples ======== >>> from sympy import Point, Circle, Triangle, are_similar >>> c1, c2 = Circle(Point(0, 0), 4), Circle(Point(1, 4), 3) >>> t1 = Triangle(Point(0, 0), Point(1, 0), Point(0, 1)) >>> t2 = Triangle(Point(0, 0), Point(2, 0), Point(0, 2)) >>> t3 = Triangle(Point(0, 0), Point(3, 0), Point(0, 1)) >>> are_similar(t1, t2) True >>> are_similar(t1, t3) False """ from .exceptions import GeometryError if e1 == e2: return True is_similar1 = getattr(e1, 'is_similar', None) if is_similar1: return is_similar1(e2) is_similar2 = getattr(e2, 'is_similar', None) if is_similar2: return is_similar2(e1) n1 = e1.__class__.__name__ n2 = e2.__class__.__name__ raise GeometryError( "Cannot test similarity between %s and %s" % (n1, n2)) def centroid(*args): """Find the centroid (center of mass) of the collection containing only Points, Segments or Polygons. The centroid is the weighted average of the individual centroid where the weights are the lengths (of segments) or areas (of polygons). Overlapping regions will add to the weight of that region. If there are no objects (or a mixture of objects) then None is returned. See Also ======== sympy.geometry.point.Point, sympy.geometry.line.Segment, sympy.geometry.polygon.Polygon Examples ======== >>> from sympy import Point, Segment, Polygon >>> from sympy.geometry.util import centroid >>> p = Polygon((0, 0), (10, 0), (10, 10)) >>> q = p.translate(0, 20) >>> p.centroid, q.centroid (Point2D(20/3, 10/3), Point2D(20/3, 70/3)) >>> centroid(p, q) Point2D(20/3, 40/3) >>> p, q = Segment((0, 0), (2, 0)), Segment((0, 0), (2, 2)) >>> centroid(p, q) Point2D(1, 2 - sqrt(2)) >>> centroid(Point(0, 0), Point(2, 0)) Point2D(1, 0) Stacking 3 polygons on top of each other effectively triples the weight of that polygon: >>> p = Polygon((0, 0), (1, 0), (1, 1), (0, 1)) >>> q = Polygon((1, 0), (3, 0), (3, 1), (1, 1)) >>> centroid(p, q) Point2D(3/2, 1/2) >>> centroid(p, p, p, q) # centroid x-coord shifts left Point2D(11/10, 1/2) Stacking the squares vertically above and below p has the same effect: >>> centroid(p, p.translate(0, 1), p.translate(0, -1), q) Point2D(11/10, 1/2) """ from sympy.geometry import Polygon, Segment, Point if args: if all(isinstance(g, Point) for g in args): c = Point(0, 0) for g in args: c += g den = len(args) elif all(isinstance(g, Segment) for g in args): c = Point(0, 0) L = 0 for g in args: l = g.length c += g.midpoint*l L += l den = L elif all(isinstance(g, Polygon) for g in args): c = Point(0, 0) A = 0 for g in args: a = g.area c += g.centroid*a A += a den = A c /= den return c.func(*[i.simplify() for i in c.args]) def closest_points(*args): """Return the subset of points from a set of points that were the closest to each other in the 2D plane. Parameters ========== args : a collection of Points on 2D plane. Notes ===== This can only be performed on a set of points whose coordinates can be ordered on the number line. If there are no ties then a single pair of Points will be in the set. References ========== [1] http://www.cs.mcgill.ca/~cs251/ClosestPair/ClosestPairPS.html [2] Sweep line algorithm https://en.wikipedia.org/wiki/Sweep_line_algorithm Examples ======== >>> from sympy.geometry import closest_points, Point2D, Triangle >>> Triangle(sss=(3, 4, 5)).args (Point2D(0, 0), Point2D(3, 0), Point2D(3, 4)) >>> closest_points(*_) {(Point2D(0, 0), Point2D(3, 0))} """ from collections import deque from math import hypot, sqrt as _sqrt from sympy.functions.elementary.miscellaneous import sqrt p = [Point2D(i) for i in set(args)] if len(p) < 2: raise ValueError('At least 2 distinct points must be given.') try: p.sort(key=lambda x: x.args) except TypeError: raise ValueError("The points could not be sorted.") if any(not i.is_Rational for j in p for i in j.args): def hypot(x, y): arg = x*x + y*y if arg.is_Rational: return _sqrt(arg) return sqrt(arg) rv = [(0, 1)] best_dist = hypot(p[1].x - p[0].x, p[1].y - p[0].y) i = 2 left = 0 box = deque([0, 1]) while i < len(p): while left < i and p[i][0] - p[left][0] > best_dist: box.popleft() left += 1 for j in box: d = hypot(p[i].x - p[j].x, p[i].y - p[j].y) if d < best_dist: rv = [(j, i)] elif d == best_dist: rv.append((j, i)) else: continue best_dist = d box.append(i) i += 1 return {tuple([p[i] for i in pair]) for pair in rv} def convex_hull(*args, **kwargs): """The convex hull surrounding the Points contained in the list of entities. Parameters ========== args : a collection of Points, Segments and/or Polygons Returns ======= convex_hull : Polygon if ``polygon`` is True else as a tuple `(U, L)` where ``L`` and ``U`` are the lower and upper hulls, respectively. Notes ===== This can only be performed on a set of points whose coordinates can be ordered on the number line. References ========== [1] https://en.wikipedia.org/wiki/Graham_scan [2] Andrew's Monotone Chain Algorithm (A.M. Andrew, "Another Efficient Algorithm for Convex Hulls in Two Dimensions", 1979) http://geomalgorithms.com/a10-_hull-1.html See Also ======== sympy.geometry.point.Point, sympy.geometry.polygon.Polygon Examples ======== >>> from sympy.geometry import Point, convex_hull >>> points = [(1, 1), (1, 2), (3, 1), (-5, 2), (15, 4)] >>> convex_hull(*points) Polygon(Point2D(-5, 2), Point2D(1, 1), Point2D(3, 1), Point2D(15, 4)) >>> convex_hull(*points, **dict(polygon=False)) ([Point2D(-5, 2), Point2D(15, 4)], [Point2D(-5, 2), Point2D(1, 1), Point2D(3, 1), Point2D(15, 4)]) """ from .entity import GeometryEntity from .point import Point from .line import Segment from .polygon import Polygon polygon = kwargs.get('polygon', True) p = OrderedSet() for e in args: if not isinstance(e, GeometryEntity): try: e = Point(e) except NotImplementedError: raise ValueError('%s is not a GeometryEntity and cannot be made into Point' % str(e)) if isinstance(e, Point): p.add(e) elif isinstance(e, Segment): p.update(e.points) elif isinstance(e, Polygon): p.update(e.vertices) else: raise NotImplementedError( 'Convex hull for %s not implemented.' % type(e)) # make sure all our points are of the same dimension if any(len(x) != 2 for x in p): raise ValueError('Can only compute the convex hull in two dimensions') p = list(p) if len(p) == 1: return p[0] if polygon else (p[0], None) elif len(p) == 2: s = Segment(p[0], p[1]) return s if polygon else (s, None) def _orientation(p, q, r): '''Return positive if p-q-r are clockwise, neg if ccw, zero if collinear.''' return (q.y - p.y)*(r.x - p.x) - (q.x - p.x)*(r.y - p.y) # scan to find upper and lower convex hulls of a set of 2d points. U = [] L = [] try: p.sort(key=lambda x: x.args) except TypeError: raise ValueError("The points could not be sorted.") for p_i in p: while len(U) > 1 and _orientation(U[-2], U[-1], p_i) <= 0: U.pop() while len(L) > 1 and _orientation(L[-2], L[-1], p_i) >= 0: L.pop() U.append(p_i) L.append(p_i) U.reverse() convexHull = tuple(L + U[1:-1]) if len(convexHull) == 2: s = Segment(convexHull[0], convexHull[1]) return s if polygon else (s, None) if polygon: return Polygon(*convexHull) else: U.reverse() return (U, L) def farthest_points(*args): """Return the subset of points from a set of points that were the furthest apart from each other in the 2D plane. Parameters ========== args : a collection of Points on 2D plane. Notes ===== This can only be performed on a set of points whose coordinates can be ordered on the number line. If there are no ties then a single pair of Points will be in the set. References ========== [1] http://code.activestate.com/recipes/117225-convex-hull-and-diameter-of-2d-point-sets/ [2] Rotating Callipers Technique https://en.wikipedia.org/wiki/Rotating_calipers Examples ======== >>> from sympy.geometry import farthest_points, Point2D, Triangle >>> Triangle(sss=(3, 4, 5)).args (Point2D(0, 0), Point2D(3, 0), Point2D(3, 4)) >>> farthest_points(*_) {(Point2D(0, 0), Point2D(3, 4))} """ from math import hypot, sqrt as _sqrt def rotatingCalipers(Points): U, L = convex_hull(*Points, **dict(polygon=False)) if L is None: if isinstance(U, Point): raise ValueError('At least two distinct points must be given.') yield U.args else: i = 0 j = len(L) - 1 while i < len(U) - 1 or j > 0: yield U[i], L[j] # if all the way through one side of hull, advance the other side if i == len(U) - 1: j -= 1 elif j == 0: i += 1 # still points left on both lists, compare slopes of next hull edges # being careful to avoid divide-by-zero in slope calculation elif (U[i+1].y - U[i].y) * (L[j].x - L[j-1].x) > \ (L[j].y - L[j-1].y) * (U[i+1].x - U[i].x): i += 1 else: j -= 1 p = [Point2D(i) for i in set(args)] if any(not i.is_Rational for j in p for i in j.args): def hypot(x, y): arg = x*x + y*y if arg.is_Rational: return _sqrt(arg) return sqrt(arg) rv = [] diam = 0 for pair in rotatingCalipers(args): h, q = _ordered_points(pair) d = hypot(h.x - q.x, h.y - q.y) if d > diam: rv = [(h, q)] elif d == diam: rv.append((h, q)) else: continue diam = d return set(rv) def idiff(eq, y, x, n=1): """Return ``dy/dx`` assuming that ``eq == 0``. Parameters ========== y : the dependent variable or a list of dependent variables (with y first) x : the variable that the derivative is being taken with respect to n : the order of the derivative (default is 1) Examples ======== >>> from sympy.abc import x, y, a >>> from sympy.geometry.util import idiff >>> circ = x**2 + y**2 - 4 >>> idiff(circ, y, x) -x/y >>> idiff(circ, y, x, 2).simplify() -(x**2 + y**2)/y**3 Here, ``a`` is assumed to be independent of ``x``: >>> idiff(x + a + y, y, x) -1 Now the x-dependence of ``a`` is made explicit by listing ``a`` after ``y`` in a list. >>> idiff(x + a + y, [y, a], x) -Derivative(a, x) - 1 See Also ======== sympy.core.function.Derivative: represents unevaluated derivatives sympy.core.function.diff: explicitly differentiates wrt symbols """ if is_sequence(y): dep = set(y) y = y[0] elif isinstance(y, Symbol): dep = {y} elif isinstance(y, Function): pass else: raise ValueError("expecting x-dependent symbol(s) or function(s) but got: %s" % y) f = {s: Function(s.name)(x) for s in eq.free_symbols if s != x and s in dep} if isinstance(y, Symbol): dydx = Function(y.name)(x).diff(x) else: dydx = y.diff(x) eq = eq.subs(f) derivs = {} for i in range(n): yp = solve(eq.diff(x), dydx)[0].subs(derivs) if i == n - 1: return yp.subs([(v, k) for k, v in f.items()]) derivs[dydx] = yp eq = dydx - yp dydx = dydx.diff(x) def intersection(*entities, **kwargs): """The intersection of a collection of GeometryEntity instances. Parameters ========== entities : sequence of GeometryEntity pairwise (keyword argument) : Can be either True or False Returns ======= intersection : list of GeometryEntity Raises ====== NotImplementedError When unable to calculate intersection. Notes ===== The intersection of any geometrical entity with itself should return a list with one item: the entity in question. An intersection requires two or more entities. If only a single entity is given then the function will return an empty list. It is possible for `intersection` to miss intersections that one knows exists because the required quantities were not fully simplified internally. Reals should be converted to Rationals, e.g. Rational(str(real_num)) or else failures due to floating point issues may result. Case 1: When the keyword argument 'pairwise' is False (default value): In this case, the function returns a list of intersections common to all entities. Case 2: When the keyword argument 'pairwise' is True: In this case, the functions returns a list intersections that occur between any pair of entities. See Also ======== sympy.geometry.entity.GeometryEntity.intersection Examples ======== >>> from sympy.geometry import Ray, Circle, intersection >>> c = Circle((0, 1), 1) >>> intersection(c, c.center) [] >>> right = Ray((0, 0), (1, 0)) >>> up = Ray((0, 0), (0, 1)) >>> intersection(c, right, up) [Point2D(0, 0)] >>> intersection(c, right, up, pairwise=True) [Point2D(0, 0), Point2D(0, 2)] >>> left = Ray((1, 0), (0, 0)) >>> intersection(right, left) [Segment2D(Point2D(0, 0), Point2D(1, 0))] """ from .entity import GeometryEntity from .point import Point pairwise = kwargs.pop('pairwise', False) if len(entities) <= 1: return [] # entities may be an immutable tuple entities = list(entities) for i, e in enumerate(entities): if not isinstance(e, GeometryEntity): entities[i] = Point(e) if not pairwise: # find the intersection common to all objects res = entities[0].intersection(entities[1]) for entity in entities[2:]: newres = [] for x in res: newres.extend(x.intersection(entity)) res = newres return res # find all pairwise intersections ans = [] for j in range(0, len(entities)): for k in range(j + 1, len(entities)): ans.extend(intersection(entities[j], entities[k])) return list(ordered(set(ans)))
441abb4367863d2198ec47c52faef1a192199b9fdf7056bffc7e0e40fde20936
from __future__ import division, print_function from sympy.core import Expr, S, Symbol, oo, pi, sympify from sympy.core.compatibility import as_int, range, ordered from sympy.core.symbol import _symbol, Dummy from sympy.functions.elementary.complexes import sign from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import cos, sin, tan from sympy.geometry.exceptions import GeometryError from sympy.logic import And from sympy.matrices import Matrix from sympy.simplify import simplify from sympy.utilities import default_sort_key from sympy.utilities.iterables import has_dups, has_variety, uniq, rotate_left, least_rotation from sympy.utilities.misc import func_name from .entity import GeometryEntity, GeometrySet from .point import Point from .ellipse import Circle from .line import Line, Segment, Ray from sympy import sqrt import warnings class Polygon(GeometrySet): """A two-dimensional polygon. A simple polygon in space. Can be constructed from a sequence of points or from a center, radius, number of sides and rotation angle. Parameters ========== vertices : sequence of Points Attributes ========== area angles perimeter vertices centroid sides Raises ====== GeometryError If all parameters are not Points. See Also ======== sympy.geometry.point.Point, sympy.geometry.line.Segment, Triangle Notes ===== Polygons are treated as closed paths rather than 2D areas so some calculations can be be negative or positive (e.g., area) based on the orientation of the points. Any consecutive identical points are reduced to a single point and any points collinear and between two points will be removed unless they are needed to define an explicit intersection (see examples). A Triangle, Segment or Point will be returned when there are 3 or fewer points provided. Examples ======== >>> from sympy import Point, Polygon, pi >>> p1, p2, p3, p4, p5 = [(0, 0), (1, 0), (5, 1), (0, 1), (3, 0)] >>> Polygon(p1, p2, p3, p4) Polygon(Point2D(0, 0), Point2D(1, 0), Point2D(5, 1), Point2D(0, 1)) >>> Polygon(p1, p2) Segment2D(Point2D(0, 0), Point2D(1, 0)) >>> Polygon(p1, p2, p5) Segment2D(Point2D(0, 0), Point2D(3, 0)) The area of a polygon is calculated as positive when vertices are traversed in a ccw direction. When the sides of a polygon cross the area will have positive and negative contributions. The following defines a Z shape where the bottom right connects back to the top left. >>> Polygon((0, 2), (2, 2), (0, 0), (2, 0)).area 0 When the the keyword `n` is used to define the number of sides of the Polygon then a RegularPolygon is created and the other arguments are interpreted as center, radius and rotation. The unrotated RegularPolygon will always have a vertex at Point(r, 0) where `r` is the radius of the circle that circumscribes the RegularPolygon. Its method `spin` can be used to increment that angle. >>> p = Polygon((0,0), 1, n=3) >>> p RegularPolygon(Point2D(0, 0), 1, 3, 0) >>> p.vertices[0] Point2D(1, 0) >>> p.args[0] Point2D(0, 0) >>> p.spin(pi/2) >>> p.vertices[0] Point2D(0, 1) """ def __new__(cls, *args, **kwargs): if kwargs.get('n', 0): n = kwargs.pop('n') args = list(args) # return a virtual polygon with n sides if len(args) == 2: # center, radius args.append(n) elif len(args) == 3: # center, radius, rotation args.insert(2, n) return RegularPolygon(*args, **kwargs) vertices = [Point(a, dim=2, **kwargs) for a in args] # remove consecutive duplicates nodup = [] for p in vertices: if nodup and p == nodup[-1]: continue nodup.append(p) if len(nodup) > 1 and nodup[-1] == nodup[0]: nodup.pop() # last point was same as first # remove collinear points i = -3 while i < len(nodup) - 3 and len(nodup) > 2: a, b, c = nodup[i], nodup[i + 1], nodup[i + 2] if Point.is_collinear(a, b, c): nodup.pop(i + 1) if a == c: nodup.pop(i) else: i += 1 vertices = list(nodup) if len(vertices) > 3: return GeometryEntity.__new__(cls, *vertices, **kwargs) elif len(vertices) == 3: return Triangle(*vertices, **kwargs) elif len(vertices) == 2: return Segment(*vertices, **kwargs) else: return Point(*vertices, **kwargs) @property def area(self): """ The area of the polygon. Notes ===== The area calculation can be positive or negative based on the orientation of the points. If any side of the polygon crosses any other side, there will be areas having opposite signs. See Also ======== sympy.geometry.ellipse.Ellipse.area Examples ======== >>> from sympy import Point, Polygon >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)]) >>> poly = Polygon(p1, p2, p3, p4) >>> poly.area 3 In the Z shaped polygon (with the lower right connecting back to the upper left) the areas cancel out: >>> Z = Polygon((0, 1), (1, 1), (0, 0), (1, 0)) >>> Z.area 0 In the M shaped polygon, areas do not cancel because no side crosses any other (though there is a point of contact). >>> M = Polygon((0, 0), (0, 1), (2, 0), (3, 1), (3, 0)) >>> M.area -3/2 """ area = 0 args = self.args for i in range(len(args)): x1, y1 = args[i - 1].args x2, y2 = args[i].args area += x1*y2 - x2*y1 return simplify(area) / 2 @staticmethod def _isright(a, b, c): """Return True/False for cw/ccw orientation. Examples ======== >>> from sympy import Point, Polygon >>> a, b, c = [Point(i) for i in [(0, 0), (1, 1), (1, 0)]] >>> Polygon._isright(a, b, c) True >>> Polygon._isright(a, c, b) False """ ba = b - a ca = c - a t_area = simplify(ba.x*ca.y - ca.x*ba.y) res = t_area.is_nonpositive if res is None: raise ValueError("Can't determine orientation") return res @property def angles(self): """The internal angle at each vertex. Returns ======= angles : dict A dictionary where each key is a vertex and each value is the internal angle at that vertex. The vertices are represented as Points. See Also ======== sympy.geometry.point.Point, sympy.geometry.line.LinearEntity.angle_between Examples ======== >>> from sympy import Point, Polygon >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)]) >>> poly = Polygon(p1, p2, p3, p4) >>> poly.angles[p1] pi/2 >>> poly.angles[p2] acos(-4*sqrt(17)/17) """ # Determine orientation of points args = self.vertices cw = self._isright(args[-1], args[0], args[1]) ret = {} for i in range(len(args)): a, b, c = args[i - 2], args[i - 1], args[i] ang = Ray(b, a).angle_between(Ray(b, c)) if cw ^ self._isright(a, b, c): ret[b] = 2*S.Pi - ang else: ret[b] = ang return ret @property def ambient_dimension(self): return self.vertices[0].ambient_dimension @property def perimeter(self): """The perimeter of the polygon. Returns ======= perimeter : number or Basic instance See Also ======== sympy.geometry.line.Segment.length Examples ======== >>> from sympy import Point, Polygon >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)]) >>> poly = Polygon(p1, p2, p3, p4) >>> poly.perimeter sqrt(17) + 7 """ p = 0 args = self.vertices for i in range(len(args)): p += args[i - 1].distance(args[i]) return simplify(p) @property def vertices(self): """The vertices of the polygon. Returns ======= vertices : list of Points Notes ===== When iterating over the vertices, it is more efficient to index self rather than to request the vertices and index them. Only use the vertices when you want to process all of them at once. This is even more important with RegularPolygons that calculate each vertex. See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy import Point, Polygon >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)]) >>> poly = Polygon(p1, p2, p3, p4) >>> poly.vertices [Point2D(0, 0), Point2D(1, 0), Point2D(5, 1), Point2D(0, 1)] >>> poly.vertices[0] Point2D(0, 0) """ return list(self.args) @property def centroid(self): """The centroid of the polygon. Returns ======= centroid : Point See Also ======== sympy.geometry.point.Point, sympy.geometry.util.centroid Examples ======== >>> from sympy import Point, Polygon >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)]) >>> poly = Polygon(p1, p2, p3, p4) >>> poly.centroid Point2D(31/18, 11/18) """ A = 1/(6*self.area) cx, cy = 0, 0 args = self.args for i in range(len(args)): x1, y1 = args[i - 1].args x2, y2 = args[i].args v = x1*y2 - x2*y1 cx += v*(x1 + x2) cy += v*(y1 + y2) return Point(simplify(A*cx), simplify(A*cy)) def second_moment_of_area(self, point=None): """Returns the second moment and product moment of area of a two dimensional polygon. Parameters ========== point : Point, two-tuple of sympifiable objects, or None(default=None) point is the point about which second moment of area is to be found. If "point=None" it will be calculated about the axis passing through the centroid of the polygon. Returns ======= I_xx, I_yy, I_xy : number or sympy expression I_xx, I_yy are second moment of area of a two dimensional polygon. I_xy is product moment of area of a two dimensional polygon. Examples ======== >>> from sympy import Point, Polygon, symbols >>> a, b = symbols('a, b') >>> p1, p2, p3, p4, p5 = [(0, 0), (a, 0), (a, b), (0, b), (a/3, b/3)] >>> rectangle = Polygon(p1, p2, p3, p4) >>> rectangle.second_moment_of_area() (a*b**3/12, a**3*b/12, 0) >>> rectangle.second_moment_of_area(p5) (a*b**3/9, a**3*b/9, a**2*b**2/36) References ========== https://en.wikipedia.org/wiki/Second_moment_of_area """ I_xx, I_yy, I_xy = 0, 0, 0 args = self.args for i in range(len(args)): x1, y1 = args[i-1].args x2, y2 = args[i].args v = x1*y2 - x2*y1 I_xx += (y1**2 + y1*y2 + y2**2)*v I_yy += (x1**2 + x1*x2 + x2**2)*v I_xy += (x1*y2 + 2*x1*y1 + 2*x2*y2 + x2*y1)*v A = self.area c_x = self.centroid[0] c_y = self.centroid[1] # parallel axis theorem I_xx_c = (I_xx/12) - (A*(c_y**2)) I_yy_c = (I_yy/12) - (A*(c_x**2)) I_xy_c = (I_xy/24) - (A*(c_x*c_y)) if point is None: return I_xx_c, I_yy_c, I_xy_c I_xx = (I_xx_c + A*((point[1]-c_y)**2)) I_yy = (I_yy_c + A*((point[0]-c_x)**2)) I_xy = (I_xy_c + A*((point[0]-c_x)*(point[1]-c_y))) return I_xx, I_yy, I_xy @property def sides(self): """The directed line segments that form the sides of the polygon. Returns ======= sides : list of sides Each side is a directed Segment. See Also ======== sympy.geometry.point.Point, sympy.geometry.line.Segment Examples ======== >>> from sympy import Point, Polygon >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)]) >>> poly = Polygon(p1, p2, p3, p4) >>> poly.sides [Segment2D(Point2D(0, 0), Point2D(1, 0)), Segment2D(Point2D(1, 0), Point2D(5, 1)), Segment2D(Point2D(5, 1), Point2D(0, 1)), Segment2D(Point2D(0, 1), Point2D(0, 0))] """ res = [] args = self.vertices for i in range(-len(args), 0): res.append(Segment(args[i], args[i + 1])) return res @property def bounds(self): """Return a tuple (xmin, ymin, xmax, ymax) representing the bounding rectangle for the geometric figure. """ verts = self.vertices xs = [p.x for p in verts] ys = [p.y for p in verts] return (min(xs), min(ys), max(xs), max(ys)) def is_convex(self): """Is the polygon convex? A polygon is convex if all its interior angles are less than 180 degrees and there are no intersections between sides. Returns ======= is_convex : boolean True if this polygon is convex, False otherwise. See Also ======== sympy.geometry.util.convex_hull Examples ======== >>> from sympy import Point, Polygon >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)]) >>> poly = Polygon(p1, p2, p3, p4) >>> poly.is_convex() True """ # Determine orientation of points args = self.vertices cw = self._isright(args[-2], args[-1], args[0]) for i in range(1, len(args)): if cw ^ self._isright(args[i - 2], args[i - 1], args[i]): return False # check for intersecting sides sides = self.sides for i, si in enumerate(sides): pts = si.args # exclude the sides connected to si for j in range(1 if i == len(sides) - 1 else 0, i - 1): sj = sides[j] if sj.p1 not in pts and sj.p2 not in pts: hit = si.intersection(sj) if hit: return False return True def encloses_point(self, p): """ Return True if p is enclosed by (is inside of) self. Notes ===== Being on the border of self is considered False. Parameters ========== p : Point Returns ======= encloses_point : True, False or None See Also ======== sympy.geometry.point.Point, sympy.geometry.ellipse.Ellipse.encloses_point Examples ======== >>> from sympy import Polygon, Point >>> from sympy.abc import t >>> p = Polygon((0, 0), (4, 0), (4, 4)) >>> p.encloses_point(Point(2, 1)) True >>> p.encloses_point(Point(2, 2)) False >>> p.encloses_point(Point(5, 5)) False References ========== [1] http://paulbourke.net/geometry/polygonmesh/#insidepoly """ p = Point(p, dim=2) if p in self.vertices or any(p in s for s in self.sides): return False # move to p, checking that the result is numeric lit = [] for v in self.vertices: lit.append(v - p) # the difference is simplified if lit[-1].free_symbols: return None poly = Polygon(*lit) # polygon closure is assumed in the following test but Polygon removes duplicate pts so # the last point has to be added so all sides are computed. Using Polygon.sides is # not good since Segments are unordered. args = poly.args indices = list(range(-len(args), 1)) if poly.is_convex(): orientation = None for i in indices: a = args[i] b = args[i + 1] test = ((-a.y)*(b.x - a.x) - (-a.x)*(b.y - a.y)).is_negative if orientation is None: orientation = test elif test is not orientation: return False return True hit_odd = False p1x, p1y = args[0].args for i in indices[1:]: p2x, p2y = args[i].args if 0 > min(p1y, p2y): if 0 <= max(p1y, p2y): if 0 <= max(p1x, p2x): if p1y != p2y: xinters = (-p1y)*(p2x - p1x)/(p2y - p1y) + p1x if p1x == p2x or 0 <= xinters: hit_odd = not hit_odd p1x, p1y = p2x, p2y return hit_odd def arbitrary_point(self, parameter='t'): """A parameterized point on the polygon. The parameter, varying from 0 to 1, assigns points to the position on the perimeter that is that fraction of the total perimeter. So the point evaluated at t=1/2 would return the point from the first vertex that is 1/2 way around the polygon. Parameters ========== parameter : str, optional Default value is 't'. Returns ======= arbitrary_point : Point Raises ====== ValueError When `parameter` already appears in the Polygon's definition. See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy import Polygon, S, Symbol >>> t = Symbol('t', real=True) >>> tri = Polygon((0, 0), (1, 0), (1, 1)) >>> p = tri.arbitrary_point('t') >>> perimeter = tri.perimeter >>> s1, s2 = [s.length for s in tri.sides[:2]] >>> p.subs(t, (s1 + s2/2)/perimeter) Point2D(1, 1/2) """ t = _symbol(parameter, real=True) if t.name in (f.name for f in self.free_symbols): raise ValueError('Symbol %s already appears in object and cannot be used as a parameter.' % t.name) sides = [] perimeter = self.perimeter perim_fraction_start = 0 for s in self.sides: side_perim_fraction = s.length/perimeter perim_fraction_end = perim_fraction_start + side_perim_fraction pt = s.arbitrary_point(parameter).subs( t, (t - perim_fraction_start)/side_perim_fraction) sides.append( (pt, (And(perim_fraction_start <= t, t < perim_fraction_end)))) perim_fraction_start = perim_fraction_end return Piecewise(*sides) def parameter_value(self, other, t): from sympy.solvers.solvers import solve if not isinstance(other,GeometryEntity): other = Point(other, dim=self.ambient_dimension) if not isinstance(other,Point): raise ValueError("other must be a point") if other.free_symbols: raise NotImplementedError('non-numeric coordinates') unknown = False T = Dummy('t', real=True) p = self.arbitrary_point(T) for pt, cond in p.args: sol = solve(pt - other, T, dict=True) if not sol: continue value = sol[0][T] if simplify(cond.subs(T, value)) == True: return {t: value} unknown = True if unknown: raise ValueError("Given point may not be on %s" % func_name(self)) raise ValueError("Given point is not on %s" % func_name(self)) def plot_interval(self, parameter='t'): """The plot interval for the default geometric plot of the polygon. Parameters ========== parameter : str, optional Default value is 't'. Returns ======= plot_interval : list (plot interval) [parameter, lower_bound, upper_bound] Examples ======== >>> from sympy import Polygon >>> p = Polygon((0, 0), (1, 0), (1, 1)) >>> p.plot_interval() [t, 0, 1] """ t = Symbol(parameter, real=True) return [t, 0, 1] def intersection(self, o): """The intersection of polygon and geometry entity. The intersection may be empty and can contain individual Points and complete Line Segments. Parameters ========== other: GeometryEntity Returns ======= intersection : list The list of Segments and Points See Also ======== sympy.geometry.point.Point, sympy.geometry.line.Segment Examples ======== >>> from sympy import Point, Polygon, Line >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)]) >>> poly1 = Polygon(p1, p2, p3, p4) >>> p5, p6, p7 = map(Point, [(3, 2), (1, -1), (0, 2)]) >>> poly2 = Polygon(p5, p6, p7) >>> poly1.intersection(poly2) [Point2D(1/3, 1), Point2D(2/3, 0), Point2D(9/5, 1/5), Point2D(7/3, 1)] >>> poly1.intersection(Line(p1, p2)) [Segment2D(Point2D(0, 0), Point2D(1, 0))] >>> poly1.intersection(p1) [Point2D(0, 0)] """ intersection_result = [] k = o.sides if isinstance(o, Polygon) else [o] for side in self.sides: for side1 in k: intersection_result.extend(side.intersection(side1)) intersection_result = list(uniq(intersection_result)) points = [entity for entity in intersection_result if isinstance(entity, Point)] segments = [entity for entity in intersection_result if isinstance(entity, Segment)] if points and segments: points_in_segments = list(uniq([point for point in points for segment in segments if point in segment])) if points_in_segments: for i in points_in_segments: points.remove(i) return list(ordered(segments + points)) else: return list(ordered(intersection_result)) def distance(self, o): """ Returns the shortest distance between self and o. If o is a point, then self does not need to be convex. If o is another polygon self and o must be convex. Examples ======== >>> from sympy import Point, Polygon, RegularPolygon >>> p1, p2 = map(Point, [(0, 0), (7, 5)]) >>> poly = Polygon(*RegularPolygon(p1, 1, 3).vertices) >>> poly.distance(p2) sqrt(61) """ if isinstance(o, Point): dist = oo for side in self.sides: current = side.distance(o) if current == 0: return S.Zero elif current < dist: dist = current return dist elif isinstance(o, Polygon) and self.is_convex() and o.is_convex(): return self._do_poly_distance(o) raise NotImplementedError() def _do_poly_distance(self, e2): """ Calculates the least distance between the exteriors of two convex polygons e1 and e2. Does not check for the convexity of the polygons as this is checked by Polygon.distance. Notes ===== - Prints a warning if the two polygons possibly intersect as the return value will not be valid in such a case. For a more through test of intersection use intersection(). See Also ======== sympy.geometry.point.Point.distance Examples ======== >>> from sympy.geometry import Point, Polygon >>> square = Polygon(Point(0, 0), Point(0, 1), Point(1, 1), Point(1, 0)) >>> triangle = Polygon(Point(1, 2), Point(2, 2), Point(2, 1)) >>> square._do_poly_distance(triangle) sqrt(2)/2 Description of method used ========================== Method: [1] http://cgm.cs.mcgill.ca/~orm/mind2p.html Uses rotating calipers: [2] https://en.wikipedia.org/wiki/Rotating_calipers and antipodal points: [3] https://en.wikipedia.org/wiki/Antipodal_point """ e1 = self '''Tests for a possible intersection between the polygons and outputs a warning''' e1_center = e1.centroid e2_center = e2.centroid e1_max_radius = S.Zero e2_max_radius = S.Zero for vertex in e1.vertices: r = Point.distance(e1_center, vertex) if e1_max_radius < r: e1_max_radius = r for vertex in e2.vertices: r = Point.distance(e2_center, vertex) if e2_max_radius < r: e2_max_radius = r center_dist = Point.distance(e1_center, e2_center) if center_dist <= e1_max_radius + e2_max_radius: warnings.warn("Polygons may intersect producing erroneous output") ''' Find the upper rightmost vertex of e1 and the lowest leftmost vertex of e2 ''' e1_ymax = Point(0, -oo) e2_ymin = Point(0, oo) for vertex in e1.vertices: if vertex.y > e1_ymax.y or (vertex.y == e1_ymax.y and vertex.x > e1_ymax.x): e1_ymax = vertex for vertex in e2.vertices: if vertex.y < e2_ymin.y or (vertex.y == e2_ymin.y and vertex.x < e2_ymin.x): e2_ymin = vertex min_dist = Point.distance(e1_ymax, e2_ymin) ''' Produce a dictionary with vertices of e1 as the keys and, for each vertex, the points to which the vertex is connected as its value. The same is then done for e2. ''' e1_connections = {} e2_connections = {} for side in e1.sides: if side.p1 in e1_connections: e1_connections[side.p1].append(side.p2) else: e1_connections[side.p1] = [side.p2] if side.p2 in e1_connections: e1_connections[side.p2].append(side.p1) else: e1_connections[side.p2] = [side.p1] for side in e2.sides: if side.p1 in e2_connections: e2_connections[side.p1].append(side.p2) else: e2_connections[side.p1] = [side.p2] if side.p2 in e2_connections: e2_connections[side.p2].append(side.p1) else: e2_connections[side.p2] = [side.p1] e1_current = e1_ymax e2_current = e2_ymin support_line = Line(Point(S.Zero, S.Zero), Point(S.One, S.Zero)) ''' Determine which point in e1 and e2 will be selected after e2_ymin and e1_ymax, this information combined with the above produced dictionaries determines the path that will be taken around the polygons ''' point1 = e1_connections[e1_ymax][0] point2 = e1_connections[e1_ymax][1] angle1 = support_line.angle_between(Line(e1_ymax, point1)) angle2 = support_line.angle_between(Line(e1_ymax, point2)) if angle1 < angle2: e1_next = point1 elif angle2 < angle1: e1_next = point2 elif Point.distance(e1_ymax, point1) > Point.distance(e1_ymax, point2): e1_next = point2 else: e1_next = point1 point1 = e2_connections[e2_ymin][0] point2 = e2_connections[e2_ymin][1] angle1 = support_line.angle_between(Line(e2_ymin, point1)) angle2 = support_line.angle_between(Line(e2_ymin, point2)) if angle1 > angle2: e2_next = point1 elif angle2 > angle1: e2_next = point2 elif Point.distance(e2_ymin, point1) > Point.distance(e2_ymin, point2): e2_next = point2 else: e2_next = point1 ''' Loop which determines the distance between anti-podal pairs and updates the minimum distance accordingly. It repeats until it reaches the starting position. ''' while True: e1_angle = support_line.angle_between(Line(e1_current, e1_next)) e2_angle = pi - support_line.angle_between(Line( e2_current, e2_next)) if (e1_angle < e2_angle) is True: support_line = Line(e1_current, e1_next) e1_segment = Segment(e1_current, e1_next) min_dist_current = e1_segment.distance(e2_current) if min_dist_current.evalf() < min_dist.evalf(): min_dist = min_dist_current if e1_connections[e1_next][0] != e1_current: e1_current = e1_next e1_next = e1_connections[e1_next][0] else: e1_current = e1_next e1_next = e1_connections[e1_next][1] elif (e1_angle > e2_angle) is True: support_line = Line(e2_next, e2_current) e2_segment = Segment(e2_current, e2_next) min_dist_current = e2_segment.distance(e1_current) if min_dist_current.evalf() < min_dist.evalf(): min_dist = min_dist_current if e2_connections[e2_next][0] != e2_current: e2_current = e2_next e2_next = e2_connections[e2_next][0] else: e2_current = e2_next e2_next = e2_connections[e2_next][1] else: support_line = Line(e1_current, e1_next) e1_segment = Segment(e1_current, e1_next) e2_segment = Segment(e2_current, e2_next) min1 = e1_segment.distance(e2_next) min2 = e2_segment.distance(e1_next) min_dist_current = min(min1, min2) if min_dist_current.evalf() < min_dist.evalf(): min_dist = min_dist_current if e1_connections[e1_next][0] != e1_current: e1_current = e1_next e1_next = e1_connections[e1_next][0] else: e1_current = e1_next e1_next = e1_connections[e1_next][1] if e2_connections[e2_next][0] != e2_current: e2_current = e2_next e2_next = e2_connections[e2_next][0] else: e2_current = e2_next e2_next = e2_connections[e2_next][1] if e1_current == e1_ymax and e2_current == e2_ymin: break return min_dist def _svg(self, scale_factor=1., fill_color="#66cc99"): """Returns SVG path element for the Polygon. Parameters ========== scale_factor : float Multiplication factor for the SVG stroke-width. Default is 1. fill_color : str, optional Hex string for fill color. Default is "#66cc99". """ from sympy.core.evalf import N verts = map(N, self.vertices) coords = ["{0},{1}".format(p.x, p.y) for p in verts] path = "M {0} L {1} z".format(coords[0], " L ".join(coords[1:])) return ( '<path fill-rule="evenodd" fill="{2}" stroke="#555555" ' 'stroke-width="{0}" opacity="0.6" d="{1}" />' ).format(2. * scale_factor, path, fill_color) def _hashable_content(self): D = {} def ref_list(point_list): kee = {} for i, p in enumerate(ordered(set(point_list))): kee[p] = i D[i] = p return [kee[p] for p in point_list] S1 = ref_list(self.args) r_nor = rotate_left(S1, least_rotation(S1)) S2 = ref_list(list(reversed(self.args))) r_rev = rotate_left(S2, least_rotation(S2)) if r_nor < r_rev: r = r_nor else: r = r_rev canonical_args = [ D[order] for order in r ] return tuple(canonical_args) def __contains__(self, o): """ Return True if o is contained within the boundary lines of self.altitudes Parameters ========== other : GeometryEntity Returns ======= contained in : bool The points (and sides, if applicable) are contained in self. See Also ======== sympy.geometry.entity.GeometryEntity.encloses Examples ======== >>> from sympy import Line, Segment, Point >>> p = Point(0, 0) >>> q = Point(1, 1) >>> s = Segment(p, q*2) >>> l = Line(p, q) >>> p in q False >>> p in s True >>> q*3 in s False >>> s in l True """ if isinstance(o, Polygon): return self == o elif isinstance(o, Segment): return any(o in s for s in self.sides) elif isinstance(o, Point): if o in self.vertices: return True for side in self.sides: if o in side: return True return False class RegularPolygon(Polygon): """ A regular polygon. Such a polygon has all internal angles equal and all sides the same length. Parameters ========== center : Point radius : number or Basic instance The distance from the center to a vertex n : int The number of sides Attributes ========== vertices center radius rotation apothem interior_angle exterior_angle circumcircle incircle angles Raises ====== GeometryError If the `center` is not a Point, or the `radius` is not a number or Basic instance, or the number of sides, `n`, is less than three. Notes ===== A RegularPolygon can be instantiated with Polygon with the kwarg n. Regular polygons are instantiated with a center, radius, number of sides and a rotation angle. Whereas the arguments of a Polygon are vertices, the vertices of the RegularPolygon must be obtained with the vertices method. See Also ======== sympy.geometry.point.Point, Polygon Examples ======== >>> from sympy.geometry import RegularPolygon, Point >>> r = RegularPolygon(Point(0, 0), 5, 3) >>> r RegularPolygon(Point2D(0, 0), 5, 3, 0) >>> r.vertices[0] Point2D(5, 0) """ __slots__ = ['_n', '_center', '_radius', '_rot'] def __new__(self, c, r, n, rot=0, **kwargs): r, n, rot = map(sympify, (r, n, rot)) c = Point(c, dim=2, **kwargs) if not isinstance(r, Expr): raise GeometryError("r must be an Expr object, not %s" % r) if n.is_Number: as_int(n) # let an error raise if necessary if n < 3: raise GeometryError("n must be a >= 3, not %s" % n) obj = GeometryEntity.__new__(self, c, r, n, **kwargs) obj._n = n obj._center = c obj._radius = r obj._rot = rot % (2*S.Pi/n) if rot.is_number else rot return obj @property def args(self): """ Returns the center point, the radius, the number of sides, and the orientation angle. Examples ======== >>> from sympy import RegularPolygon, Point >>> r = RegularPolygon(Point(0, 0), 5, 3) >>> r.args (Point2D(0, 0), 5, 3, 0) """ return self._center, self._radius, self._n, self._rot def __str__(self): return 'RegularPolygon(%s, %s, %s, %s)' % tuple(self.args) def __repr__(self): return 'RegularPolygon(%s, %s, %s, %s)' % tuple(self.args) @property def area(self): """Returns the area. Examples ======== >>> from sympy.geometry import RegularPolygon >>> square = RegularPolygon((0, 0), 1, 4) >>> square.area 2 >>> _ == square.length**2 True """ c, r, n, rot = self.args return sign(r)*n*self.length**2/(4*tan(pi/n)) @property def length(self): """Returns the length of the sides. The half-length of the side and the apothem form two legs of a right triangle whose hypotenuse is the radius of the regular polygon. Examples ======== >>> from sympy.geometry import RegularPolygon >>> from sympy import sqrt >>> s = square_in_unit_circle = RegularPolygon((0, 0), 1, 4) >>> s.length sqrt(2) >>> sqrt((_/2)**2 + s.apothem**2) == s.radius True """ return self.radius*2*sin(pi/self._n) @property def center(self): """The center of the RegularPolygon This is also the center of the circumscribing circle. Returns ======= center : Point See Also ======== sympy.geometry.point.Point, sympy.geometry.ellipse.Ellipse.center Examples ======== >>> from sympy.geometry import RegularPolygon, Point >>> rp = RegularPolygon(Point(0, 0), 5, 4) >>> rp.center Point2D(0, 0) """ return self._center centroid = center @property def circumcenter(self): """ Alias for center. Examples ======== >>> from sympy.geometry import RegularPolygon, Point >>> rp = RegularPolygon(Point(0, 0), 5, 4) >>> rp.circumcenter Point2D(0, 0) """ return self.center @property def radius(self): """Radius of the RegularPolygon This is also the radius of the circumscribing circle. Returns ======= radius : number or instance of Basic See Also ======== sympy.geometry.line.Segment.length, sympy.geometry.ellipse.Circle.radius Examples ======== >>> from sympy import Symbol >>> from sympy.geometry import RegularPolygon, Point >>> radius = Symbol('r') >>> rp = RegularPolygon(Point(0, 0), radius, 4) >>> rp.radius r """ return self._radius @property def circumradius(self): """ Alias for radius. Examples ======== >>> from sympy import Symbol >>> from sympy.geometry import RegularPolygon, Point >>> radius = Symbol('r') >>> rp = RegularPolygon(Point(0, 0), radius, 4) >>> rp.circumradius r """ return self.radius @property def rotation(self): """CCW angle by which the RegularPolygon is rotated Returns ======= rotation : number or instance of Basic Examples ======== >>> from sympy import pi >>> from sympy.abc import a >>> from sympy.geometry import RegularPolygon, Point >>> RegularPolygon(Point(0, 0), 3, 4, pi/4).rotation pi/4 Numerical rotation angles are made canonical: >>> RegularPolygon(Point(0, 0), 3, 4, a).rotation a >>> RegularPolygon(Point(0, 0), 3, 4, pi).rotation 0 """ return self._rot @property def apothem(self): """The inradius of the RegularPolygon. The apothem/inradius is the radius of the inscribed circle. Returns ======= apothem : number or instance of Basic See Also ======== sympy.geometry.line.Segment.length, sympy.geometry.ellipse.Circle.radius Examples ======== >>> from sympy import Symbol >>> from sympy.geometry import RegularPolygon, Point >>> radius = Symbol('r') >>> rp = RegularPolygon(Point(0, 0), radius, 4) >>> rp.apothem sqrt(2)*r/2 """ return self.radius * cos(S.Pi/self._n) @property def inradius(self): """ Alias for apothem. Examples ======== >>> from sympy import Symbol >>> from sympy.geometry import RegularPolygon, Point >>> radius = Symbol('r') >>> rp = RegularPolygon(Point(0, 0), radius, 4) >>> rp.inradius sqrt(2)*r/2 """ return self.apothem @property def interior_angle(self): """Measure of the interior angles. Returns ======= interior_angle : number See Also ======== sympy.geometry.line.LinearEntity.angle_between Examples ======== >>> from sympy.geometry import RegularPolygon, Point >>> rp = RegularPolygon(Point(0, 0), 4, 8) >>> rp.interior_angle 3*pi/4 """ return (self._n - 2)*S.Pi/self._n @property def exterior_angle(self): """Measure of the exterior angles. Returns ======= exterior_angle : number See Also ======== sympy.geometry.line.LinearEntity.angle_between Examples ======== >>> from sympy.geometry import RegularPolygon, Point >>> rp = RegularPolygon(Point(0, 0), 4, 8) >>> rp.exterior_angle pi/4 """ return 2*S.Pi/self._n @property def circumcircle(self): """The circumcircle of the RegularPolygon. Returns ======= circumcircle : Circle See Also ======== circumcenter, sympy.geometry.ellipse.Circle Examples ======== >>> from sympy.geometry import RegularPolygon, Point >>> rp = RegularPolygon(Point(0, 0), 4, 8) >>> rp.circumcircle Circle(Point2D(0, 0), 4) """ return Circle(self.center, self.radius) @property def incircle(self): """The incircle of the RegularPolygon. Returns ======= incircle : Circle See Also ======== inradius, sympy.geometry.ellipse.Circle Examples ======== >>> from sympy.geometry import RegularPolygon, Point >>> rp = RegularPolygon(Point(0, 0), 4, 7) >>> rp.incircle Circle(Point2D(0, 0), 4*cos(pi/7)) """ return Circle(self.center, self.apothem) @property def angles(self): """ Returns a dictionary with keys, the vertices of the Polygon, and values, the interior angle at each vertex. Examples ======== >>> from sympy import RegularPolygon, Point >>> r = RegularPolygon(Point(0, 0), 5, 3) >>> r.angles {Point2D(-5/2, -5*sqrt(3)/2): pi/3, Point2D(-5/2, 5*sqrt(3)/2): pi/3, Point2D(5, 0): pi/3} """ ret = {} ang = self.interior_angle for v in self.vertices: ret[v] = ang return ret def encloses_point(self, p): """ Return True if p is enclosed by (is inside of) self. Notes ===== Being on the border of self is considered False. The general Polygon.encloses_point method is called only if a point is not within or beyond the incircle or circumcircle, respectively. Parameters ========== p : Point Returns ======= encloses_point : True, False or None See Also ======== sympy.geometry.ellipse.Ellipse.encloses_point Examples ======== >>> from sympy import RegularPolygon, S, Point, Symbol >>> p = RegularPolygon((0, 0), 3, 4) >>> p.encloses_point(Point(0, 0)) True >>> r, R = p.inradius, p.circumradius >>> p.encloses_point(Point((r + R)/2, 0)) True >>> p.encloses_point(Point(R/2, R/2 + (R - r)/10)) False >>> t = Symbol('t', real=True) >>> p.encloses_point(p.arbitrary_point().subs(t, S.Half)) False >>> p.encloses_point(Point(5, 5)) False """ c = self.center d = Segment(c, p).length if d >= self.radius: return False elif d < self.inradius: return True else: # now enumerate the RegularPolygon like a general polygon. return Polygon.encloses_point(self, p) def spin(self, angle): """Increment *in place* the virtual Polygon's rotation by ccw angle. See also: rotate method which moves the center. >>> from sympy import Polygon, Point, pi >>> r = Polygon(Point(0,0), 1, n=3) >>> r.vertices[0] Point2D(1, 0) >>> r.spin(pi/6) >>> r.vertices[0] Point2D(sqrt(3)/2, 1/2) See Also ======== rotation rotate : Creates a copy of the RegularPolygon rotated about a Point """ self._rot += angle def rotate(self, angle, pt=None): """Override GeometryEntity.rotate to first rotate the RegularPolygon about its center. >>> from sympy import Point, RegularPolygon, Polygon, pi >>> t = RegularPolygon(Point(1, 0), 1, 3) >>> t.vertices[0] # vertex on x-axis Point2D(2, 0) >>> t.rotate(pi/2).vertices[0] # vertex on y axis now Point2D(0, 2) See Also ======== rotation spin : Rotates a RegularPolygon in place """ r = type(self)(*self.args) # need a copy or else changes are in-place r._rot += angle return GeometryEntity.rotate(r, angle, pt) def scale(self, x=1, y=1, pt=None): """Override GeometryEntity.scale since it is the radius that must be scaled (if x == y) or else a new Polygon must be returned. >>> from sympy import RegularPolygon Symmetric scaling returns a RegularPolygon: >>> RegularPolygon((0, 0), 1, 4).scale(2, 2) RegularPolygon(Point2D(0, 0), 2, 4, 0) Asymmetric scaling returns a kite as a Polygon: >>> RegularPolygon((0, 0), 1, 4).scale(2, 1) Polygon(Point2D(2, 0), Point2D(0, 1), Point2D(-2, 0), Point2D(0, -1)) """ if pt: pt = Point(pt, dim=2) return self.translate(*(-pt).args).scale(x, y).translate(*pt.args) if x != y: return Polygon(*self.vertices).scale(x, y) c, r, n, rot = self.args r *= x return self.func(c, r, n, rot) def reflect(self, line): """Override GeometryEntity.reflect since this is not made of only points. Examples ======== >>> from sympy import RegularPolygon, Line >>> RegularPolygon((0, 0), 1, 4).reflect(Line((0, 1), slope=-2)) RegularPolygon(Point2D(4/5, 2/5), -1, 4, atan(4/3)) """ c, r, n, rot = self.args v = self.vertices[0] d = v - c cc = c.reflect(line) vv = v.reflect(line) dd = vv - cc # calculate rotation about the new center # which will align the vertices l1 = Ray((0, 0), dd) l2 = Ray((0, 0), d) ang = l1.closing_angle(l2) rot += ang # change sign of radius as point traversal is reversed return self.func(cc, -r, n, rot) @property def vertices(self): """The vertices of the RegularPolygon. Returns ======= vertices : list Each vertex is a Point. See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy.geometry import RegularPolygon, Point >>> rp = RegularPolygon(Point(0, 0), 5, 4) >>> rp.vertices [Point2D(5, 0), Point2D(0, 5), Point2D(-5, 0), Point2D(0, -5)] """ c = self._center r = abs(self._radius) rot = self._rot v = 2*S.Pi/self._n return [Point(c.x + r*cos(k*v + rot), c.y + r*sin(k*v + rot)) for k in range(self._n)] def __eq__(self, o): if not isinstance(o, Polygon): return False elif not isinstance(o, RegularPolygon): return Polygon.__eq__(o, self) return self.args == o.args def __hash__(self): return super(RegularPolygon, self).__hash__() class Triangle(Polygon): """ A polygon with three vertices and three sides. Parameters ========== points : sequence of Points keyword: asa, sas, or sss to specify sides/angles of the triangle Attributes ========== vertices altitudes orthocenter circumcenter circumradius circumcircle inradius incircle exradii medians medial nine_point_circle Raises ====== GeometryError If the number of vertices is not equal to three, or one of the vertices is not a Point, or a valid keyword is not given. See Also ======== sympy.geometry.point.Point, Polygon Examples ======== >>> from sympy.geometry import Triangle, Point >>> Triangle(Point(0, 0), Point(4, 0), Point(4, 3)) Triangle(Point2D(0, 0), Point2D(4, 0), Point2D(4, 3)) Keywords sss, sas, or asa can be used to give the desired side lengths (in order) and interior angles (in degrees) that define the triangle: >>> Triangle(sss=(3, 4, 5)) Triangle(Point2D(0, 0), Point2D(3, 0), Point2D(3, 4)) >>> Triangle(asa=(30, 1, 30)) Triangle(Point2D(0, 0), Point2D(1, 0), Point2D(1/2, sqrt(3)/6)) >>> Triangle(sas=(1, 45, 2)) Triangle(Point2D(0, 0), Point2D(2, 0), Point2D(sqrt(2)/2, sqrt(2)/2)) """ def __new__(cls, *args, **kwargs): if len(args) != 3: if 'sss' in kwargs: return _sss(*[simplify(a) for a in kwargs['sss']]) if 'asa' in kwargs: return _asa(*[simplify(a) for a in kwargs['asa']]) if 'sas' in kwargs: return _sas(*[simplify(a) for a in kwargs['sas']]) msg = "Triangle instantiates with three points or a valid keyword." raise GeometryError(msg) vertices = [Point(a, dim=2, **kwargs) for a in args] # remove consecutive duplicates nodup = [] for p in vertices: if nodup and p == nodup[-1]: continue nodup.append(p) if len(nodup) > 1 and nodup[-1] == nodup[0]: nodup.pop() # last point was same as first # remove collinear points i = -3 while i < len(nodup) - 3 and len(nodup) > 2: a, b, c = sorted( [nodup[i], nodup[i + 1], nodup[i + 2]], key=default_sort_key) if Point.is_collinear(a, b, c): nodup[i] = a nodup[i + 1] = None nodup.pop(i + 1) i += 1 vertices = list(filter(lambda x: x is not None, nodup)) if len(vertices) == 3: return GeometryEntity.__new__(cls, *vertices, **kwargs) elif len(vertices) == 2: return Segment(*vertices, **kwargs) else: return Point(*vertices, **kwargs) @property def vertices(self): """The triangle's vertices Returns ======= vertices : tuple Each element in the tuple is a Point See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy.geometry import Triangle, Point >>> t = Triangle(Point(0, 0), Point(4, 0), Point(4, 3)) >>> t.vertices (Point2D(0, 0), Point2D(4, 0), Point2D(4, 3)) """ return self.args def is_similar(t1, t2): """Is another triangle similar to this one. Two triangles are similar if one can be uniformly scaled to the other. Parameters ========== other: Triangle Returns ======= is_similar : boolean See Also ======== sympy.geometry.entity.GeometryEntity.is_similar Examples ======== >>> from sympy.geometry import Triangle, Point >>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3)) >>> t2 = Triangle(Point(0, 0), Point(-4, 0), Point(-4, -3)) >>> t1.is_similar(t2) True >>> t2 = Triangle(Point(0, 0), Point(-4, 0), Point(-4, -4)) >>> t1.is_similar(t2) False """ if not isinstance(t2, Polygon): return False s1_1, s1_2, s1_3 = [side.length for side in t1.sides] s2 = [side.length for side in t2.sides] def _are_similar(u1, u2, u3, v1, v2, v3): e1 = simplify(u1/v1) e2 = simplify(u2/v2) e3 = simplify(u3/v3) return bool(e1 == e2) and bool(e2 == e3) # There's only 6 permutations, so write them out return _are_similar(s1_1, s1_2, s1_3, *s2) or \ _are_similar(s1_1, s1_3, s1_2, *s2) or \ _are_similar(s1_2, s1_1, s1_3, *s2) or \ _are_similar(s1_2, s1_3, s1_1, *s2) or \ _are_similar(s1_3, s1_1, s1_2, *s2) or \ _are_similar(s1_3, s1_2, s1_1, *s2) def is_equilateral(self): """Are all the sides the same length? Returns ======= is_equilateral : boolean See Also ======== sympy.geometry.entity.GeometryEntity.is_similar, RegularPolygon is_isosceles, is_right, is_scalene Examples ======== >>> from sympy.geometry import Triangle, Point >>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3)) >>> t1.is_equilateral() False >>> from sympy import sqrt >>> t2 = Triangle(Point(0, 0), Point(10, 0), Point(5, 5*sqrt(3))) >>> t2.is_equilateral() True """ return not has_variety(s.length for s in self.sides) def is_isosceles(self): """Are two or more of the sides the same length? Returns ======= is_isosceles : boolean See Also ======== is_equilateral, is_right, is_scalene Examples ======== >>> from sympy.geometry import Triangle, Point >>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(2, 4)) >>> t1.is_isosceles() True """ return has_dups(s.length for s in self.sides) def is_scalene(self): """Are all the sides of the triangle of different lengths? Returns ======= is_scalene : boolean See Also ======== is_equilateral, is_isosceles, is_right Examples ======== >>> from sympy.geometry import Triangle, Point >>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(1, 4)) >>> t1.is_scalene() True """ return not has_dups(s.length for s in self.sides) def is_right(self): """Is the triangle right-angled. Returns ======= is_right : boolean See Also ======== sympy.geometry.line.LinearEntity.is_perpendicular is_equilateral, is_isosceles, is_scalene Examples ======== >>> from sympy.geometry import Triangle, Point >>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3)) >>> t1.is_right() True """ s = self.sides return Segment.is_perpendicular(s[0], s[1]) or \ Segment.is_perpendicular(s[1], s[2]) or \ Segment.is_perpendicular(s[0], s[2]) @property def altitudes(self): """The altitudes of the triangle. An altitude of a triangle is a segment through a vertex, perpendicular to the opposite side, with length being the height of the vertex measured from the line containing the side. Returns ======= altitudes : dict The dictionary consists of keys which are vertices and values which are Segments. See Also ======== sympy.geometry.point.Point, sympy.geometry.line.Segment.length Examples ======== >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1) >>> t = Triangle(p1, p2, p3) >>> t.altitudes[p1] Segment2D(Point2D(0, 0), Point2D(1/2, 1/2)) """ s = self.sides v = self.vertices return {v[0]: s[1].perpendicular_segment(v[0]), v[1]: s[2].perpendicular_segment(v[1]), v[2]: s[0].perpendicular_segment(v[2])} @property def orthocenter(self): """The orthocenter of the triangle. The orthocenter is the intersection of the altitudes of a triangle. It may lie inside, outside or on the triangle. Returns ======= orthocenter : Point See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1) >>> t = Triangle(p1, p2, p3) >>> t.orthocenter Point2D(0, 0) """ a = self.altitudes v = self.vertices return Line(a[v[0]]).intersection(Line(a[v[1]]))[0] @property def circumcenter(self): """The circumcenter of the triangle The circumcenter is the center of the circumcircle. Returns ======= circumcenter : Point See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1) >>> t = Triangle(p1, p2, p3) >>> t.circumcenter Point2D(1/2, 1/2) """ a, b, c = [x.perpendicular_bisector() for x in self.sides] if not a.intersection(b): print(a,b,a.intersection(b)) return a.intersection(b)[0] @property def circumradius(self): """The radius of the circumcircle of the triangle. Returns ======= circumradius : number of Basic instance See Also ======== sympy.geometry.ellipse.Circle.radius Examples ======== >>> from sympy import Symbol >>> from sympy.geometry import Point, Triangle >>> a = Symbol('a') >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, a) >>> t = Triangle(p1, p2, p3) >>> t.circumradius sqrt(a**2/4 + 1/4) """ return Point.distance(self.circumcenter, self.vertices[0]) @property def circumcircle(self): """The circle which passes through the three vertices of the triangle. Returns ======= circumcircle : Circle See Also ======== sympy.geometry.ellipse.Circle Examples ======== >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1) >>> t = Triangle(p1, p2, p3) >>> t.circumcircle Circle(Point2D(1/2, 1/2), sqrt(2)/2) """ return Circle(self.circumcenter, self.circumradius) def bisectors(self): """The angle bisectors of the triangle. An angle bisector of a triangle is a straight line through a vertex which cuts the corresponding angle in half. Returns ======= bisectors : dict Each key is a vertex (Point) and each value is the corresponding bisector (Segment). See Also ======== sympy.geometry.point.Point, sympy.geometry.line.Segment Examples ======== >>> from sympy.geometry import Point, Triangle, Segment >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1) >>> t = Triangle(p1, p2, p3) >>> from sympy import sqrt >>> t.bisectors()[p2] == Segment(Point(1, 0), Point(0, sqrt(2) - 1)) True """ s = self.sides v = self.vertices c = self.incenter l1 = Segment(v[0], Line(v[0], c).intersection(s[1])[0]) l2 = Segment(v[1], Line(v[1], c).intersection(s[2])[0]) l3 = Segment(v[2], Line(v[2], c).intersection(s[0])[0]) return {v[0]: l1, v[1]: l2, v[2]: l3} @property def incenter(self): """The center of the incircle. The incircle is the circle which lies inside the triangle and touches all three sides. Returns ======= incenter : Point See Also ======== incircle, sympy.geometry.point.Point Examples ======== >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1) >>> t = Triangle(p1, p2, p3) >>> t.incenter Point2D(1 - sqrt(2)/2, 1 - sqrt(2)/2) """ s = self.sides l = Matrix([s[i].length for i in [1, 2, 0]]) p = sum(l) v = self.vertices x = simplify(l.dot(Matrix([vi.x for vi in v]))/p) y = simplify(l.dot(Matrix([vi.y for vi in v]))/p) return Point(x, y) @property def inradius(self): """The radius of the incircle. Returns ======= inradius : number of Basic instance See Also ======== incircle, sympy.geometry.ellipse.Circle.radius Examples ======== >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(4, 0), Point(0, 3) >>> t = Triangle(p1, p2, p3) >>> t.inradius 1 """ return simplify(2 * self.area / self.perimeter) @property def incircle(self): """The incircle of the triangle. The incircle is the circle which lies inside the triangle and touches all three sides. Returns ======= incircle : Circle See Also ======== sympy.geometry.ellipse.Circle Examples ======== >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(2, 0), Point(0, 2) >>> t = Triangle(p1, p2, p3) >>> t.incircle Circle(Point2D(2 - sqrt(2), 2 - sqrt(2)), 2 - sqrt(2)) """ return Circle(self.incenter, self.inradius) @property def exradii(self): """The radius of excircles of a triangle. An excircle of the triangle is a circle lying outside the triangle, tangent to one of its sides and tangent to the extensions of the other two. Returns ======= exradii : dict See Also ======== sympy.geometry.polygon.Triangle.inradius Examples ======== The exradius touches the side of the triangle to which it is keyed, e.g. the exradius touching side 2 is: >>> from sympy.geometry import Point, Triangle, Segment2D, Point2D >>> p1, p2, p3 = Point(0, 0), Point(6, 0), Point(0, 2) >>> t = Triangle(p1, p2, p3) >>> t.exradii[t.sides[2]] -2 + sqrt(10) References ========== [1] http://mathworld.wolfram.com/Exradius.html [2] http://mathworld.wolfram.com/Excircles.html """ side = self.sides a = side[0].length b = side[1].length c = side[2].length s = (a+b+c)/2 area = self.area exradii = {self.sides[0]: simplify(area/(s-a)), self.sides[1]: simplify(area/(s-b)), self.sides[2]: simplify(area/(s-c))} return exradii @property def medians(self): """The medians of the triangle. A median of a triangle is a straight line through a vertex and the midpoint of the opposite side, and divides the triangle into two equal areas. Returns ======= medians : dict Each key is a vertex (Point) and each value is the median (Segment) at that point. See Also ======== sympy.geometry.point.Point.midpoint, sympy.geometry.line.Segment.midpoint Examples ======== >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1) >>> t = Triangle(p1, p2, p3) >>> t.medians[p1] Segment2D(Point2D(0, 0), Point2D(1/2, 1/2)) """ s = self.sides v = self.vertices return {v[0]: Segment(v[0], s[1].midpoint), v[1]: Segment(v[1], s[2].midpoint), v[2]: Segment(v[2], s[0].midpoint)} @property def medial(self): """The medial triangle of the triangle. The triangle which is formed from the midpoints of the three sides. Returns ======= medial : Triangle See Also ======== sympy.geometry.line.Segment.midpoint Examples ======== >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1) >>> t = Triangle(p1, p2, p3) >>> t.medial Triangle(Point2D(1/2, 0), Point2D(1/2, 1/2), Point2D(0, 1/2)) """ s = self.sides return Triangle(s[0].midpoint, s[1].midpoint, s[2].midpoint) @property def nine_point_circle(self): """The nine-point circle of the triangle. Nine-point circle is the circumcircle of the medial triangle, which passes through the feet of altitudes and the middle points of segments connecting the vertices and the orthocenter. Returns ======= nine_point_circle : Circle See also ======== sympy.geometry.line.Segment.midpoint sympy.geometry.polygon.Triangle.medial sympy.geometry.polygon.Triangle.orthocenter Examples ======== >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1) >>> t = Triangle(p1, p2, p3) >>> t.nine_point_circle Circle(Point2D(1/4, 1/4), sqrt(2)/4) """ return Circle(*self.medial.vertices) @property def eulerline(self): """The Euler line of the triangle. The line which passes through circumcenter, centroid and orthocenter. Returns ======= eulerline : Line (or Point for equilateral triangles in which case all centers coincide) Examples ======== >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1) >>> t = Triangle(p1, p2, p3) >>> t.eulerline Line2D(Point2D(0, 0), Point2D(1/2, 1/2)) """ if self.is_equilateral(): return self.orthocenter return Line(self.orthocenter, self.circumcenter) def rad(d): """Return the radian value for the given degrees (pi = 180 degrees).""" return d*pi/180 def deg(r): """Return the degree value for the given radians (pi = 180 degrees).""" return r/pi*180 def _slope(d): rv = tan(rad(d)) return rv def _asa(d1, l, d2): """Return triangle having side with length l on the x-axis.""" xy = Line((0, 0), slope=_slope(d1)).intersection( Line((l, 0), slope=_slope(180 - d2)))[0] return Triangle((0, 0), (l, 0), xy) def _sss(l1, l2, l3): """Return triangle having side of length l1 on the x-axis.""" c1 = Circle((0, 0), l3) c2 = Circle((l1, 0), l2) inter = [a for a in c1.intersection(c2) if a.y.is_nonnegative] if not inter: return None pt = inter[0] return Triangle((0, 0), (l1, 0), pt) def _sas(l1, d, l2): """Return triangle having side with length l2 on the x-axis.""" p1 = Point(0, 0) p2 = Point(l2, 0) p3 = Point(cos(rad(d))*l1, sin(rad(d))*l1) return Triangle(p1, p2, p3)
5ada109d0f9c37c0d59e45dcd8de4e7bff4cb6a2ffd14717f919ad5207a382a9
"""Recurrence Operators""" from __future__ import print_function, division from sympy import symbols, Symbol, S from sympy.printing import sstr from sympy.core.compatibility import range, string_types from sympy.core.sympify import sympify def RecurrenceOperators(base, generator): """ Returns an Algebra of Recurrence Operators and the operator for shifting i.e. the `Sn` operator. The first argument needs to be the base polynomial ring for the algebra and the second argument must be a generator which can be either a noncommutative Symbol or a string. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy import symbols >>> from sympy.holonomic.recurrence import RecurrenceOperators >>> n = symbols('n', integer=True) >>> R, Sn = RecurrenceOperators(ZZ.old_poly_ring(n), 'Sn') """ ring = RecurrenceOperatorAlgebra(base, generator) return (ring, ring.shift_operator) class RecurrenceOperatorAlgebra(object): """ A Recurrence Operator Algebra is a set of noncommutative polynomials in intermediate `Sn` and coefficients in a base ring A. It follows the commutation rule: Sn * a(n) = a(n + 1) * Sn This class represents a Recurrence Operator Algebra and serves as the parent ring for Recurrence Operators. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy import symbols >>> from sympy.holonomic.recurrence import RecurrenceOperators >>> n = symbols('n', integer=True) >>> R, Sn = RecurrenceOperators(ZZ.old_poly_ring(n), 'Sn') >>> R Univariate Recurrence Operator Algebra in intermediate Sn over the base ring ZZ[n] See Also ======== RecurrenceOperator """ def __init__(self, base, generator): # the base ring for the algebra self.base = base # the operator representing shift i.e. `Sn` self.shift_operator = RecurrenceOperator( [base.zero, base.one], self) if generator is None: self.gen_symbol = symbols('Sn', commutative=False) else: if isinstance(generator, string_types): self.gen_symbol = symbols(generator, commutative=False) elif isinstance(generator, Symbol): self.gen_symbol = generator def __str__(self): string = 'Univariate Recurrence Operator Algebra in intermediate '\ + sstr(self.gen_symbol) + ' over the base ring ' + \ (self.base).__str__() return string __repr__ = __str__ def __eq__(self, other): if self.base == other.base and self.gen_symbol == other.gen_symbol: return True else: return False def _add_lists(list1, list2): if len(list1) <= len(list2): sol = [a + b for a, b in zip(list1, list2)] + list2[len(list1):] else: sol = [a + b for a, b in zip(list1, list2)] + list1[len(list2):] return sol class RecurrenceOperator(object): """ The Recurrence Operators are defined by a list of polynomials in the base ring and the parent ring of the Operator. Takes a list of polynomials for each power of Sn and the parent ring which must be an instance of RecurrenceOperatorAlgebra. A Recurrence Operator can be created easily using the operator `Sn`. See examples below. Examples ======== >>> from sympy.holonomic.recurrence import RecurrenceOperator, RecurrenceOperators >>> from sympy.polys.domains import ZZ, QQ >>> from sympy import symbols >>> n = symbols('n', integer=True) >>> R, Sn = RecurrenceOperators(ZZ.old_poly_ring(n),'Sn') >>> RecurrenceOperator([0, 1, n**2], R) (1)Sn + (n**2)Sn**2 >>> Sn*n (n + 1)Sn >>> n*Sn*n + 1 - Sn**2*n (1) + (n**2 + n)Sn + (-n - 2)Sn**2 See Also ======== DifferentialOperatorAlgebra """ _op_priority = 20 def __init__(self, list_of_poly, parent): # the parent ring for this operator # must be an RecurrenceOperatorAlgebra object self.parent = parent # sequence of polynomials in n for each power of Sn # represents the operator # convert the expressions into ring elements using from_sympy if isinstance(list_of_poly, list): for i, j in enumerate(list_of_poly): if isinstance(j, int): list_of_poly[i] = self.parent.base.from_sympy(S(j)) elif not isinstance(j, self.parent.base.dtype): list_of_poly[i] = self.parent.base.from_sympy(j) self.listofpoly = list_of_poly self.order = len(self.listofpoly) - 1 def __mul__(self, other): """ Multiplies two Operators and returns another RecurrenceOperator instance using the commutation rule Sn * a(n) = a(n + 1) * Sn """ listofself = self.listofpoly base = self.parent.base if not isinstance(other, RecurrenceOperator): if not isinstance(other, self.parent.base.dtype): listofother = [self.parent.base.from_sympy(sympify(other))] else: listofother = [other] else: listofother = other.listofpoly # multiply a polynomial `b` with a list of polynomials def _mul_dmp_diffop(b, listofother): if isinstance(listofother, list): sol = [] for i in listofother: sol.append(i * b) return sol else: return [b * listofother] sol = _mul_dmp_diffop(listofself[0], listofother) # compute Sn^i * b def _mul_Sni_b(b): sol = [base.zero] if isinstance(b, list): for i in b: j = base.to_sympy(i).subs(base.gens[0], base.gens[0] + S(1)) sol.append(base.from_sympy(j)) else: j = b.subs(base.gens[0], base.gens[0] + S(1)) sol.append(base.from_sympy(j)) return sol for i in range(1, len(listofself)): # find Sn^i * b in ith iteration listofother = _mul_Sni_b(listofother) # solution = solution + listofself[i] * (Sn^i * b) sol = _add_lists(sol, _mul_dmp_diffop(listofself[i], listofother)) return RecurrenceOperator(sol, self.parent) def __rmul__(self, other): if not isinstance(other, RecurrenceOperator): if isinstance(other, int): other = S(other) if not isinstance(other, self.parent.base.dtype): other = (self.parent.base).from_sympy(other) sol = [] for j in self.listofpoly: sol.append(other * j) return RecurrenceOperator(sol, self.parent) def __add__(self, other): if isinstance(other, RecurrenceOperator): sol = _add_lists(self.listofpoly, other.listofpoly) return RecurrenceOperator(sol, self.parent) else: if isinstance(other, int): other = S(other) list_self = self.listofpoly if not isinstance(other, self.parent.base.dtype): list_other = [((self.parent).base).from_sympy(other)] else: list_other = [other] sol = [] sol.append(list_self[0] + list_other[0]) sol += list_self[1:] return RecurrenceOperator(sol, self.parent) __radd__ = __add__ def __sub__(self, other): return self + (-1) * other def __rsub__(self, other): return (-1) * self + other def __pow__(self, n): if n == 1: return self if n == 0: return RecurrenceOperator([self.parent.base.one], self.parent) # if self is `Sn` if self.listofpoly == self.parent.shift_operator.listofpoly: sol = [] for i in range(0, n): sol.append(self.parent.base.zero) sol.append(self.parent.base.one) return RecurrenceOperator(sol, self.parent) else: if n % 2 == 1: powreduce = self**(n - 1) return powreduce * self elif n % 2 == 0: powreduce = self**(n / 2) return powreduce * powreduce def __str__(self): listofpoly = self.listofpoly print_str = '' for i, j in enumerate(listofpoly): if j == self.parent.base.zero: continue if i == 0: print_str += '(' + sstr(j) + ')' continue if print_str: print_str += ' + ' if i == 1: print_str += '(' + sstr(j) + ')Sn' continue print_str += '(' + sstr(j) + ')' + 'Sn**' + sstr(i) return print_str __repr__ = __str__ def __eq__(self, other): if isinstance(other, RecurrenceOperator): if self.listofpoly == other.listofpoly and self.parent == other.parent: return True else: return False else: if self.listofpoly[0] == other: for i in self.listofpoly[1:]: if i is not self.parent.base.zero: return False return True else: return False class HolonomicSequence(object): """ A Holonomic Sequence is a type of sequence satisfying a linear homogeneous recurrence relation with Polynomial coefficients. Alternatively, A sequence is Holonomic if and only if its generating function is a Holonomic Function. """ def __init__(self, recurrence, u0=[]): self.recurrence = recurrence if not isinstance(u0, list): self.u0 = [u0] else: self.u0 = u0 if len(self.u0) == 0: self._have_init_cond = False else: self._have_init_cond = True self.n = recurrence.parent.base.gens[0] def __repr__(self): str_sol = 'HolonomicSequence(%s, %s)' % ((self.recurrence).__repr__(), sstr(self.n)) if not self._have_init_cond: return str_sol else: cond_str = '' seq_str = 0 for i in self.u0: cond_str += ', u(%s) = %s' % (sstr(seq_str), sstr(i)) seq_str += 1 sol = str_sol + cond_str return sol __str__ = __repr__ def __eq__(self, other): if self.recurrence == other.recurrence: if self.n == other.n: if self._have_init_cond and other._have_init_cond: if self.u0 == other.u0: return True else: return False else: return True else: return False else: return False
2d7b6bcd85e772f7d6cdfe618f266a157a316ce45147f96a7067496e469bfe8a
""" This module implements Holonomic Functions and various operations on them. """ from __future__ import print_function, division from sympy import (Symbol, S, Dummy, Order, rf, meijerint, I, solve, limit, Float, nsimplify, gamma) from sympy.core.compatibility import range, ordered, string_types from sympy.core.numbers import NaN, Infinity, NegativeInfinity from sympy.core.sympify import sympify from sympy.functions.combinatorial.factorials import binomial, factorial from sympy.functions.elementary.exponential import exp_polar, exp from sympy.functions.special.hyper import hyper, meijerg from sympy.matrices import Matrix from sympy.polys.rings import PolyElement from sympy.polys.fields import FracElement from sympy.polys.domains import QQ, RR from sympy.polys.polyclasses import DMF from sympy.polys.polyroots import roots from sympy.polys.polytools import Poly from sympy.printing import sstr from sympy.simplify.hyperexpand import hyperexpand from .linearsolver import NewMatrix from .recurrence import HolonomicSequence, RecurrenceOperator, RecurrenceOperators from .holonomicerrors import (NotPowerSeriesError, NotHyperSeriesError, SingularityError, NotHolonomicError) def DifferentialOperators(base, generator): r""" This function is used to create annihilators using ``Dx``. Returns an Algebra of Differential Operators also called Weyl Algebra and the operator for differentiation i.e. the ``Dx`` operator. Parameters ========== base: Base polynomial ring for the algebra. The base polynomial ring is the ring of polynomials in :math:`x` that will appear as coefficients in the operators. generator: Generator of the algebra which can be either a noncommutative ``Symbol`` or a string. e.g. "Dx" or "D". Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.abc import x >>> from sympy.holonomic.holonomic import DifferentialOperators >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') >>> R Univariate Differential Operator Algebra in intermediate Dx over the base ring ZZ[x] >>> Dx*x (1) + (x)*Dx """ ring = DifferentialOperatorAlgebra(base, generator) return (ring, ring.derivative_operator) class DifferentialOperatorAlgebra(object): r""" An Ore Algebra is a set of noncommutative polynomials in the intermediate ``Dx`` and coefficients in a base polynomial ring :math:`A`. It follows the commutation rule: .. math :: Dxa = \sigma(a)Dx + \delta(a) for :math:`a \subset A`. Where :math:`\sigma: A --> A` is an endomorphism and :math:`\delta: A --> A` is a skew-derivation i.e. :math:`\delta(ab) = \delta(a) * b + \sigma(a) * \delta(b)`. If one takes the sigma as identity map and delta as the standard derivation then it becomes the algebra of Differential Operators also called a Weyl Algebra i.e. an algebra whose elements are Differential Operators. This class represents a Weyl Algebra and serves as the parent ring for Differential Operators. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy import symbols >>> from sympy.holonomic.holonomic import DifferentialOperators >>> x = symbols('x') >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') >>> R Univariate Differential Operator Algebra in intermediate Dx over the base ring ZZ[x] See Also ======== DifferentialOperator """ def __init__(self, base, generator): # the base polynomial ring for the algebra self.base = base # the operator representing differentiation i.e. `Dx` self.derivative_operator = DifferentialOperator( [base.zero, base.one], self) if generator is None: self.gen_symbol = Symbol('Dx', commutative=False) else: if isinstance(generator, string_types): self.gen_symbol = Symbol(generator, commutative=False) elif isinstance(generator, Symbol): self.gen_symbol = generator def __str__(self): string = 'Univariate Differential Operator Algebra in intermediate '\ + sstr(self.gen_symbol) + ' over the base ring ' + \ (self.base).__str__() return string __repr__ = __str__ def __eq__(self, other): if self.base == other.base and self.gen_symbol == other.gen_symbol: return True else: return False class DifferentialOperator(object): """ Differential Operators are elements of Weyl Algebra. The Operators are defined by a list of polynomials in the base ring and the parent ring of the Operator i.e. the algebra it belongs to. Takes a list of polynomials for each power of ``Dx`` and the parent ring which must be an instance of DifferentialOperatorAlgebra. A Differential Operator can be created easily using the operator ``Dx``. See examples below. Examples ======== >>> from sympy.holonomic.holonomic import DifferentialOperator, DifferentialOperators >>> from sympy.polys.domains import ZZ, QQ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx') >>> DifferentialOperator([0, 1, x**2], R) (1)*Dx + (x**2)*Dx**2 >>> (x*Dx*x + 1 - Dx**2)**2 (2*x**2 + 2*x + 1) + (4*x**3 + 2*x**2 - 4)*Dx + (x**4 - 6*x - 2)*Dx**2 + (-2*x**2)*Dx**3 + (1)*Dx**4 See Also ======== DifferentialOperatorAlgebra """ _op_priority = 20 def __init__(self, list_of_poly, parent): """ Parameters ========== list_of_poly: List of polynomials belonging to the base ring of the algebra. parent: Parent algebra of the operator. """ # the parent ring for this operator # must be an DifferentialOperatorAlgebra object self.parent = parent base = self.parent.base self.x = base.gens[0] if isinstance(base.gens[0], Symbol) else base.gens[0][0] # sequence of polynomials in x for each power of Dx # the list should not have trailing zeroes # represents the operator # convert the expressions into ring elements using from_sympy for i, j in enumerate(list_of_poly): if not isinstance(j, base.dtype): list_of_poly[i] = base.from_sympy(sympify(j)) else: list_of_poly[i] = base.from_sympy(base.to_sympy(j)) self.listofpoly = list_of_poly # highest power of `Dx` self.order = len(self.listofpoly) - 1 def __mul__(self, other): """ Multiplies two DifferentialOperator and returns another DifferentialOperator instance using the commutation rule Dx*a = a*Dx + a' """ listofself = self.listofpoly if not isinstance(other, DifferentialOperator): if not isinstance(other, self.parent.base.dtype): listofother = [self.parent.base.from_sympy(sympify(other))] else: listofother = [other] else: listofother = other.listofpoly # multiplies a polynomial `b` with a list of polynomials def _mul_dmp_diffop(b, listofother): if isinstance(listofother, list): sol = [] for i in listofother: sol.append(i * b) return sol else: return [b * listofother] sol = _mul_dmp_diffop(listofself[0], listofother) # compute Dx^i * b def _mul_Dxi_b(b): sol1 = [self.parent.base.zero] sol2 = [] if isinstance(b, list): for i in b: sol1.append(i) sol2.append(i.diff()) else: sol1.append(self.parent.base.from_sympy(b)) sol2.append(self.parent.base.from_sympy(b).diff()) return _add_lists(sol1, sol2) for i in range(1, len(listofself)): # find Dx^i * b in ith iteration listofother = _mul_Dxi_b(listofother) # solution = solution + listofself[i] * (Dx^i * b) sol = _add_lists(sol, _mul_dmp_diffop(listofself[i], listofother)) return DifferentialOperator(sol, self.parent) def __rmul__(self, other): if not isinstance(other, DifferentialOperator): if not isinstance(other, self.parent.base.dtype): other = (self.parent.base).from_sympy(sympify(other)) sol = [] for j in self.listofpoly: sol.append(other * j) return DifferentialOperator(sol, self.parent) def __add__(self, other): if isinstance(other, DifferentialOperator): sol = _add_lists(self.listofpoly, other.listofpoly) return DifferentialOperator(sol, self.parent) else: list_self = self.listofpoly if not isinstance(other, self.parent.base.dtype): list_other = [((self.parent).base).from_sympy(sympify(other))] else: list_other = [other] sol = [] sol.append(list_self[0] + list_other[0]) sol += list_self[1:] return DifferentialOperator(sol, self.parent) __radd__ = __add__ def __sub__(self, other): return self + (-1) * other def __rsub__(self, other): return (-1) * self + other def __neg__(self): return -1 * self def __div__(self, other): return self * (S.One / other) def __truediv__(self, other): return self.__div__(other) def __pow__(self, n): if n == 1: return self if n == 0: return DifferentialOperator([self.parent.base.one], self.parent) # if self is `Dx` if self.listofpoly == self.parent.derivative_operator.listofpoly: sol = [] for i in range(0, n): sol.append(self.parent.base.zero) sol.append(self.parent.base.one) return DifferentialOperator(sol, self.parent) # the general case else: if n % 2 == 1: powreduce = self**(n - 1) return powreduce * self elif n % 2 == 0: powreduce = self**(n / 2) return powreduce * powreduce def __str__(self): listofpoly = self.listofpoly print_str = '' for i, j in enumerate(listofpoly): if j == self.parent.base.zero: continue if i == 0: print_str += '(' + sstr(j) + ')' continue if print_str: print_str += ' + ' if i == 1: print_str += '(' + sstr(j) + ')*%s' %(self.parent.gen_symbol) continue print_str += '(' + sstr(j) + ')' + '*%s**' %(self.parent.gen_symbol) + sstr(i) return print_str __repr__ = __str__ def __eq__(self, other): if isinstance(other, DifferentialOperator): if self.listofpoly == other.listofpoly and self.parent == other.parent: return True else: return False else: if self.listofpoly[0] == other: for i in self.listofpoly[1:]: if i is not self.parent.base.zero: return False return True else: return False def is_singular(self, x0): """ Checks if the differential equation is singular at x0. """ base = self.parent.base return x0 in roots(base.to_sympy(self.listofpoly[-1]), self.x) class HolonomicFunction(object): r""" A Holonomic Function is a solution to a linear homogeneous ordinary differential equation with polynomial coefficients. This differential equation can also be represented by an annihilator i.e. a Differential Operator ``L`` such that :math:`L.f = 0`. For uniqueness of these functions, initial conditions can also be provided along with the annihilator. Holonomic functions have closure properties and thus forms a ring. Given two Holonomic Functions f and g, their sum, product, integral and derivative is also a Holonomic Function. For ordinary points initial condition should be a vector of values of the derivatives i.e. :math:`[y(x_0), y'(x_0), y''(x_0) ... ]`. For regular singular points initial conditions can also be provided in this format: :math:`{s0: [C_0, C_1, ...], s1: [C^1_0, C^1_1, ...], ...}` where s0, s1, ... are the roots of indicial equation and vectors :math:`[C_0, C_1, ...], [C^0_0, C^0_1, ...], ...` are the corresponding initial terms of the associated power series. See Examples below. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import ZZ, QQ >>> from sympy import symbols, S >>> x = symbols('x') >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') >>> p = HolonomicFunction(Dx - 1, x, 0, [1]) # e^x >>> q = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]) # sin(x) >>> p + q # annihilator of e^x + sin(x) HolonomicFunction((-1) + (1)*Dx + (-1)*Dx**2 + (1)*Dx**3, x, 0, [1, 2, 1]) >>> p * q # annihilator of e^x * sin(x) HolonomicFunction((2) + (-2)*Dx + (1)*Dx**2, x, 0, [0, 1]) An example of initial conditions for regular singular points, the indicial equation has only one root `1/2`. >>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}) HolonomicFunction((-1/2) + (x)*Dx, x, 0, {1/2: [1]}) >>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}).to_expr() sqrt(x) To plot a Holonomic Function, one can use `.evalf()` for numerical computation. Here's an example on `sin(x)**2/x` using numpy and matplotlib. >>> import sympy.holonomic # doctest: +SKIP >>> from sympy import var, sin # doctest: +SKIP >>> import matplotlib.pyplot as plt # doctest: +SKIP >>> import numpy as np # doctest: +SKIP >>> var("x") # doctest: +SKIP >>> r = np.linspace(1, 5, 100) # doctest: +SKIP >>> y = sympy.holonomic.expr_to_holonomic(sin(x)**2/x, x0=1).evalf(r) # doctest: +SKIP >>> plt.plot(r, y, label="holonomic function") # doctest: +SKIP >>> plt.show() # doctest: +SKIP """ _op_priority = 20 def __init__(self, annihilator, x, x0=0, y0=None): """ Parameters ========== annihilator: Annihilator of the Holonomic Function, represented by a `DifferentialOperator` object. x: Variable of the function. x0: The point at which initial conditions are stored. Generally an integer. y0: The initial condition. The proper format for the initial condition is described in class docstring. To make the function unique, length of the vector `y0` should be equal to or greater than the order of differential equation. """ # initial condition self.y0 = y0 # the point for initial conditions, default is zero. self.x0 = x0 # differential operator L such that L.f = 0 self.annihilator = annihilator self.x = x def __str__(self): if self._have_init_cond(): str_sol = 'HolonomicFunction(%s, %s, %s, %s)' % (str(self.annihilator),\ sstr(self.x), sstr(self.x0), sstr(self.y0)) else: str_sol = 'HolonomicFunction(%s, %s)' % (str(self.annihilator),\ sstr(self.x)) return str_sol __repr__ = __str__ def unify(self, other): """ Unifies the base polynomial ring of a given two Holonomic Functions. """ R1 = self.annihilator.parent.base R2 = other.annihilator.parent.base dom1 = R1.dom dom2 = R2.dom if R1 == R2: return (self, other) R = (dom1.unify(dom2)).old_poly_ring(self.x) newparent, _ = DifferentialOperators(R, str(self.annihilator.parent.gen_symbol)) sol1 = [R1.to_sympy(i) for i in self.annihilator.listofpoly] sol2 = [R2.to_sympy(i) for i in other.annihilator.listofpoly] sol1 = DifferentialOperator(sol1, newparent) sol2 = DifferentialOperator(sol2, newparent) sol1 = HolonomicFunction(sol1, self.x, self.x0, self.y0) sol2 = HolonomicFunction(sol2, other.x, other.x0, other.y0) return (sol1, sol2) def is_singularics(self): """ Returns True if the function have singular initial condition in the dictionary format. Returns False if the function have ordinary initial condition in the list format. Returns None for all other cases. """ if isinstance(self.y0, dict): return True elif isinstance(self.y0, list): return False def _have_init_cond(self): """ Checks if the function have initial condition. """ return bool(self.y0) def _singularics_to_ord(self): """ Converts a singular initial condition to ordinary if possible. """ a = list(self.y0)[0] b = self.y0[a] if len(self.y0) == 1 and a == int(a) and a > 0: y0 = [] a = int(a) for i in range(a): y0.append(S(0)) y0 += [j * factorial(a + i) for i, j in enumerate(b)] return HolonomicFunction(self.annihilator, self.x, self.x0, y0) def __add__(self, other): # if the ground domains are different if self.annihilator.parent.base != other.annihilator.parent.base: a, b = self.unify(other) return a + b deg1 = self.annihilator.order deg2 = other.annihilator.order dim = max(deg1, deg2) R = self.annihilator.parent.base K = R.get_field() rowsself = [self.annihilator] rowsother = [other.annihilator] gen = self.annihilator.parent.derivative_operator # constructing annihilators up to order dim for i in range(dim - deg1): diff1 = (gen * rowsself[-1]) rowsself.append(diff1) for i in range(dim - deg2): diff2 = (gen * rowsother[-1]) rowsother.append(diff2) row = rowsself + rowsother # constructing the matrix of the ansatz r = [] for expr in row: p = [] for i in range(dim + 1): if i >= len(expr.listofpoly): p.append(0) else: p.append(K.new(expr.listofpoly[i].rep)) r.append(p) r = NewMatrix(r).transpose() homosys = [[S(0) for q in range(dim + 1)]] homosys = NewMatrix(homosys).transpose() # solving the linear system using gauss jordan solver solcomp = r.gauss_jordan_solve(homosys) sol = solcomp[0] # if a solution is not obtained then increasing the order by 1 in each # iteration while sol.is_zero: dim += 1 diff1 = (gen * rowsself[-1]) rowsself.append(diff1) diff2 = (gen * rowsother[-1]) rowsother.append(diff2) row = rowsself + rowsother r = [] for expr in row: p = [] for i in range(dim + 1): if i >= len(expr.listofpoly): p.append(S(0)) else: p.append(K.new(expr.listofpoly[i].rep)) r.append(p) r = NewMatrix(r).transpose() homosys = [[S(0) for q in range(dim + 1)]] homosys = NewMatrix(homosys).transpose() solcomp = r.gauss_jordan_solve(homosys) sol = solcomp[0] # taking only the coefficients needed to multiply with `self` # can be also be done the other way by taking R.H.S and multiplying with # `other` sol = sol[:dim + 1 - deg1] sol1 = _normalize(sol, self.annihilator.parent) # annihilator of the solution sol = sol1 * (self.annihilator) sol = _normalize(sol.listofpoly, self.annihilator.parent, negative=False) if not (self._have_init_cond() and other._have_init_cond()): return HolonomicFunction(sol, self.x) # both the functions have ordinary initial conditions if self.is_singularics() == False and other.is_singularics() == False: # directly add the corresponding value if self.x0 == other.x0: # try to extended the initial conditions # using the annihilator y1 = _extend_y0(self, sol.order) y2 = _extend_y0(other, sol.order) y0 = [a + b for a, b in zip(y1, y2)] return HolonomicFunction(sol, self.x, self.x0, y0) else: # change the intiial conditions to a same point selfat0 = self.annihilator.is_singular(0) otherat0 = other.annihilator.is_singular(0) if self.x0 == 0 and not selfat0 and not otherat0: return self + other.change_ics(0) elif other.x0 == 0 and not selfat0 and not otherat0: return self.change_ics(0) + other else: selfatx0 = self.annihilator.is_singular(self.x0) otheratx0 = other.annihilator.is_singular(self.x0) if not selfatx0 and not otheratx0: return self + other.change_ics(self.x0) else: return self.change_ics(other.x0) + other if self.x0 != other.x0: return HolonomicFunction(sol, self.x) # if the functions have singular_ics y1 = None y2 = None if self.is_singularics() == False and other.is_singularics() == True: # convert the ordinary initial condition to singular. _y0 = [j / factorial(i) for i, j in enumerate(self.y0)] y1 = {S(0): _y0} y2 = other.y0 elif self.is_singularics() == True and other.is_singularics() == False: _y0 = [j / factorial(i) for i, j in enumerate(other.y0)] y1 = self.y0 y2 = {S(0): _y0} elif self.is_singularics() == True and other.is_singularics() == True: y1 = self.y0 y2 = other.y0 # computing singular initial condition for the result # taking union of the series terms of both functions y0 = {} for i in y1: # add corresponding initial terms if the power # on `x` is same if i in y2: y0[i] = [a + b for a, b in zip(y1[i], y2[i])] else: y0[i] = y1[i] for i in y2: if not i in y1: y0[i] = y2[i] return HolonomicFunction(sol, self.x, self.x0, y0) def integrate(self, limits, initcond=False): """ Integrates the given holonomic function. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import ZZ, QQ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') >>> HolonomicFunction(Dx - 1, x, 0, [1]).integrate((x, 0, x)) # e^x - 1 HolonomicFunction((-1)*Dx + (1)*Dx**2, x, 0, [0, 1]) >>> HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]).integrate((x, 0, x)) HolonomicFunction((1)*Dx + (1)*Dx**3, x, 0, [0, 1, 0]) """ # to get the annihilator, just multiply by Dx from right D = self.annihilator.parent.derivative_operator # if the function have initial conditions of the series format if self.is_singularics() == True: r = self._singularics_to_ord() if r: return r.integrate(limits, initcond=initcond) # computing singular initial condition for the function # produced after integration. y0 = {} for i in self.y0: c = self.y0[i] c2 = [] for j in range(len(c)): if c[j] == 0: c2.append(S(0)) # if power on `x` is -1, the integration becomes log(x) # TODO: Implement this case elif i + j + 1 == 0: raise NotImplementedError("logarithmic terms in the series are not supported") else: c2.append(c[j] / S(i + j + 1)) y0[i + 1] = c2 if hasattr(limits, "__iter__"): raise NotImplementedError("Definite integration for singular initial conditions") return HolonomicFunction(self.annihilator * D, self.x, self.x0, y0) # if no initial conditions are available for the function if not self._have_init_cond(): if initcond: return HolonomicFunction(self.annihilator * D, self.x, self.x0, [S(0)]) return HolonomicFunction(self.annihilator * D, self.x) # definite integral # initial conditions for the answer will be stored at point `a`, # where `a` is the lower limit of the integrand if hasattr(limits, "__iter__"): if len(limits) == 3 and limits[0] == self.x: x0 = self.x0 a = limits[1] b = limits[2] definite = True else: definite = False y0 = [S(0)] y0 += self.y0 indefinite_integral = HolonomicFunction(self.annihilator * D, self.x, self.x0, y0) if not definite: return indefinite_integral # use evalf to get the values at `a` if x0 != a: try: indefinite_expr = indefinite_integral.to_expr() except (NotHyperSeriesError, NotPowerSeriesError): indefinite_expr = None if indefinite_expr: lower = indefinite_expr.subs(self.x, a) if isinstance(lower, NaN): lower = indefinite_expr.limit(self.x, a) else: lower = indefinite_integral.evalf(a) if b == self.x: y0[0] = y0[0] - lower return HolonomicFunction(self.annihilator * D, self.x, x0, y0) elif S(b).is_Number: if indefinite_expr: upper = indefinite_expr.subs(self.x, b) if isinstance(upper, NaN): upper = indefinite_expr.limit(self.x, b) else: upper = indefinite_integral.evalf(b) return upper - lower # if the upper limit is `x`, the answer will be a function if b == self.x: return HolonomicFunction(self.annihilator * D, self.x, a, y0) # if the upper limits is a Number, a numerical value will be returned elif S(b).is_Number: try: s = HolonomicFunction(self.annihilator * D, self.x, a,\ y0).to_expr() indefinite = s.subs(self.x, b) if not isinstance(indefinite, NaN): return indefinite else: return s.limit(self.x, b) except (NotHyperSeriesError, NotPowerSeriesError): return HolonomicFunction(self.annihilator * D, self.x, a, y0).evalf(b) return HolonomicFunction(self.annihilator * D, self.x) def diff(self, *args, **kwargs): r""" Differentiation of the given Holonomic function. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import ZZ, QQ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx') >>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).diff().to_expr() cos(x) >>> HolonomicFunction(Dx - 2, x, 0, [1]).diff().to_expr() 2*exp(2*x) See Also ======== .integrate() """ kwargs.setdefault('evaluate', True) if args: if args[0] != self.x: return S(0) elif len(args) == 2: sol = self for i in range(args[1]): sol = sol.diff(args[0]) return sol ann = self.annihilator # if the function is constant. if ann.listofpoly[0] == ann.parent.base.zero and ann.order == 1: return S(0) # if the coefficient of y in the differential equation is zero. # a shifting is done to compute the answer in this case. elif ann.listofpoly[0] == ann.parent.base.zero: sol = DifferentialOperator(ann.listofpoly[1:], ann.parent) if self._have_init_cond(): # if ordinary initial condition if self.is_singularics() == False: return HolonomicFunction(sol, self.x, self.x0, self.y0[1:]) # TODO: support for singular initial condition return HolonomicFunction(sol, self.x) else: return HolonomicFunction(sol, self.x) # the general algorithm R = ann.parent.base K = R.get_field() seq_dmf = [K.new(i.rep) for i in ann.listofpoly] # -y = a1*y'/a0 + a2*y''/a0 ... + an*y^n/a0 rhs = [i / seq_dmf[0] for i in seq_dmf[1:]] rhs.insert(0, K.zero) # differentiate both lhs and rhs sol = _derivate_diff_eq(rhs) # add the term y' in lhs to rhs sol = _add_lists(sol, [K.zero, K.one]) sol = _normalize(sol[1:], self.annihilator.parent, negative=False) if not self._have_init_cond() or self.is_singularics() == True: return HolonomicFunction(sol, self.x) y0 = _extend_y0(self, sol.order + 1)[1:] return HolonomicFunction(sol, self.x, self.x0, y0) def __eq__(self, other): if self.annihilator == other.annihilator: if self.x == other.x: if self._have_init_cond() and other._have_init_cond(): if self.x0 == other.x0 and self.y0 == other.y0: return True else: return False else: return True else: return False else: return False def __mul__(self, other): ann_self = self.annihilator if not isinstance(other, HolonomicFunction): other = sympify(other) if other.has(self.x): raise NotImplementedError(" Can't multiply a HolonomicFunction and expressions/functions.") if not self._have_init_cond(): return self else: y0 = _extend_y0(self, ann_self.order) y1 = [] for j in y0: y1.append((Poly.new(j, self.x) * other).rep) return HolonomicFunction(ann_self, self.x, self.x0, y1) if self.annihilator.parent.base != other.annihilator.parent.base: a, b = self.unify(other) return a * b ann_other = other.annihilator list_self = [] list_other = [] a = ann_self.order b = ann_other.order R = ann_self.parent.base K = R.get_field() for j in ann_self.listofpoly: list_self.append(K.new(j.rep)) for j in ann_other.listofpoly: list_other.append(K.new(j.rep)) # will be used to reduce the degree self_red = [-list_self[i] / list_self[a] for i in range(a)] other_red = [-list_other[i] / list_other[b] for i in range(b)] # coeff_mull[i][j] is the coefficient of Dx^i(f).Dx^j(g) coeff_mul = [[S(0) for i in range(b + 1)] for j in range(a + 1)] coeff_mul[0][0] = S(1) # making the ansatz lin_sys = [[coeff_mul[i][j] for i in range(a) for j in range(b)]] homo_sys = [[S(0) for q in range(a * b)]] homo_sys = NewMatrix(homo_sys).transpose() sol = (NewMatrix(lin_sys).transpose()).gauss_jordan_solve(homo_sys) # until a non trivial solution is found while sol[0].is_zero: # updating the coefficients Dx^i(f).Dx^j(g) for next degree for i in range(a - 1, -1, -1): for j in range(b - 1, -1, -1): coeff_mul[i][j + 1] += coeff_mul[i][j] coeff_mul[i + 1][j] += coeff_mul[i][j] if isinstance(coeff_mul[i][j], K.dtype): coeff_mul[i][j] = DMFdiff(coeff_mul[i][j]) else: coeff_mul[i][j] = coeff_mul[i][j].diff(self.x) # reduce the terms to lower power using annihilators of f, g for i in range(a + 1): if not coeff_mul[i][b] == S(0): for j in range(b): coeff_mul[i][j] += other_red[j] * \ coeff_mul[i][b] coeff_mul[i][b] = S(0) # not d2 + 1, as that is already covered in previous loop for j in range(b): if not coeff_mul[a][j] == 0: for i in range(a): coeff_mul[i][j] += self_red[i] * \ coeff_mul[a][j] coeff_mul[a][j] = S(0) lin_sys.append([coeff_mul[i][j] for i in range(a) for j in range(b)]) sol = (NewMatrix(lin_sys).transpose()).gauss_jordan_solve(homo_sys) sol_ann = _normalize(sol[0][0:], self.annihilator.parent, negative=False) if not (self._have_init_cond() and other._have_init_cond()): return HolonomicFunction(sol_ann, self.x) if self.is_singularics() == False and other.is_singularics() == False: # if both the conditions are at same point if self.x0 == other.x0: # try to find more initial conditions y0_self = _extend_y0(self, sol_ann.order) y0_other = _extend_y0(other, sol_ann.order) # h(x0) = f(x0) * g(x0) y0 = [y0_self[0] * y0_other[0]] # coefficient of Dx^j(f)*Dx^i(g) in Dx^i(fg) for i in range(1, min(len(y0_self), len(y0_other))): coeff = [[0 for i in range(i + 1)] for j in range(i + 1)] for j in range(i + 1): for k in range(i + 1): if j + k == i: coeff[j][k] = binomial(i, j) sol = 0 for j in range(i + 1): for k in range(i + 1): sol += coeff[j][k]* y0_self[j] * y0_other[k] y0.append(sol) return HolonomicFunction(sol_ann, self.x, self.x0, y0) # if the points are different, consider one else: selfat0 = self.annihilator.is_singular(0) otherat0 = other.annihilator.is_singular(0) if self.x0 == 0 and not selfat0 and not otherat0: return self * other.change_ics(0) elif other.x0 == 0 and not selfat0 and not otherat0: return self.change_ics(0) * other else: selfatx0 = self.annihilator.is_singular(self.x0) otheratx0 = other.annihilator.is_singular(self.x0) if not selfatx0 and not otheratx0: return self * other.change_ics(self.x0) else: return self.change_ics(other.x0) * other if self.x0 != other.x0: return HolonomicFunction(sol_ann, self.x) # if the functions have singular_ics y1 = None y2 = None if self.is_singularics() == False and other.is_singularics() == True: _y0 = [j / factorial(i) for i, j in enumerate(self.y0)] y1 = {S(0): _y0} y2 = other.y0 elif self.is_singularics() == True and other.is_singularics() == False: _y0 = [j / factorial(i) for i, j in enumerate(other.y0)] y1 = self.y0 y2 = {S(0): _y0} elif self.is_singularics() == True and other.is_singularics() == True: y1 = self.y0 y2 = other.y0 y0 = {} # multiply every possible pair of the series terms for i in y1: for j in y2: k = min(len(y1[i]), len(y2[j])) c = [] for a in range(k): s = S(0) for b in range(a + 1): s += y1[i][b] * y2[j][a - b] c.append(s) if not i + j in y0: y0[i + j] = c else: y0[i + j] = [a + b for a, b in zip(c, y0[i + j])] return HolonomicFunction(sol_ann, self.x, self.x0, y0) __rmul__ = __mul__ def __sub__(self, other): return self + other * -1 def __rsub__(self, other): return self * -1 + other def __neg__(self): return -1 * self def __div__(self, other): return self * (S.One / other) def __truediv__(self, other): return self.__div__(other) def __pow__(self, n): if self.annihilator.order <= 1: ann = self.annihilator parent = ann.parent if self.y0 is None: y0 = None else: y0 = [list(self.y0)[0] ** n] p0 = ann.listofpoly[0] p1 = ann.listofpoly[1] p0 = (Poly.new(p0, self.x) * n).rep sol = [parent.base.to_sympy(i) for i in [p0, p1]] dd = DifferentialOperator(sol, parent) return HolonomicFunction(dd, self.x, self.x0, y0) if n < 0: raise NotHolonomicError("Negative Power on a Holonomic Function") if n == 0: Dx = self.annihilator.parent.derivative_operator return HolonomicFunction(Dx, self.x, S(0), [S(1)]) if n == 1: return self else: if n % 2 == 1: powreduce = self**(n - 1) return powreduce * self elif n % 2 == 0: powreduce = self**(n / 2) return powreduce * powreduce def degree(self): """ Returns the highest power of `x` in the annihilator. """ sol = [i.degree() for i in self.annihilator.listofpoly] return max(sol) def composition(self, expr, *args, **kwargs): """ Returns function after composition of a holonomic function with an algebraic function. The method can't compute initial conditions for the result by itself, so they can be also be provided. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import ZZ, QQ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') >>> HolonomicFunction(Dx - 1, x).composition(x**2, 0, [1]) # e^(x**2) HolonomicFunction((-2*x) + (1)*Dx, x, 0, [1]) >>> HolonomicFunction(Dx**2 + 1, x).composition(x**2 - 1, 1, [1, 0]) HolonomicFunction((4*x**3) + (-1)*Dx + (x)*Dx**2, x, 1, [1, 0]) See Also ======== from_hyper() """ R = self.annihilator.parent a = self.annihilator.order diff = expr.diff(self.x) listofpoly = self.annihilator.listofpoly for i, j in enumerate(listofpoly): if isinstance(j, self.annihilator.parent.base.dtype): listofpoly[i] = self.annihilator.parent.base.to_sympy(j) r = listofpoly[a].subs({self.x:expr}) subs = [-listofpoly[i].subs({self.x:expr}) / r for i in range (a)] coeffs = [S(0) for i in range(a)] # coeffs[i] == coeff of (D^i f)(a) in D^k (f(a)) coeffs[0] = S(1) system = [coeffs] homogeneous = Matrix([[S(0) for i in range(a)]]).transpose() sol = S(0) while sol.is_zero: coeffs_next = [p.diff(self.x) for p in coeffs] for i in range(a - 1): coeffs_next[i + 1] += (coeffs[i] * diff) for i in range(a): coeffs_next[i] += (coeffs[-1] * subs[i] * diff) coeffs = coeffs_next # check for linear relations system.append(coeffs) sol, taus = (Matrix(system).transpose() ).gauss_jordan_solve(homogeneous) tau = list(taus)[0] sol = sol.subs(tau, 1) sol = _normalize(sol[0:], R, negative=False) # if initial conditions are given for the resulting function if args: return HolonomicFunction(sol, self.x, args[0], args[1]) return HolonomicFunction(sol, self.x) def to_sequence(self, lb=True): r""" Finds recurrence relation for the coefficients in the series expansion of the function about :math:`x_0`, where :math:`x_0` is the point at which the initial condition is stored. If the point :math:`x_0` is ordinary, solution of the form :math:`[(R, n_0)]` is returned. Where :math:`R` is the recurrence relation and :math:`n_0` is the smallest ``n`` for which the recurrence holds true. If the point :math:`x_0` is regular singular, a list of solutions in the format :math:`(R, p, n_0)` is returned, i.e. `[(R, p, n_0), ... ]`. Each tuple in this vector represents a recurrence relation :math:`R` associated with a root of the indicial equation ``p``. Conditions of a different format can also be provided in this case, see the docstring of HolonomicFunction class. If it's not possible to numerically compute a initial condition, it is returned as a symbol :math:`C_j`, denoting the coefficient of :math:`(x - x_0)^j` in the power series about :math:`x_0`. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import ZZ, QQ >>> from sympy import symbols, S >>> x = symbols('x') >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') >>> HolonomicFunction(Dx - 1, x, 0, [1]).to_sequence() [(HolonomicSequence((-1) + (n + 1)Sn, n), u(0) = 1, 0)] >>> HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1]).to_sequence() [(HolonomicSequence((n**2) + (n**2 + n)Sn, n), u(0) = 0, u(1) = 1, u(2) = -1/2, 2)] >>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}).to_sequence() [(HolonomicSequence((n), n), u(0) = 1, 1/2, 1)] See Also ======== HolonomicFunction.series() References ========== .. [1] https://hal.inria.fr/inria-00070025/document .. [2] http://www.risc.jku.at/publications/download/risc_2244/DIPLFORM.pdf """ if self.x0 != 0: return self.shift_x(self.x0).to_sequence() # check whether a power series exists if the point is singular if self.annihilator.is_singular(self.x0): return self._frobenius(lb=lb) dict1 = {} n = Symbol('n', integer=True) dom = self.annihilator.parent.base.dom R, _ = RecurrenceOperators(dom.old_poly_ring(n), 'Sn') # substituting each term of the form `x^k Dx^j` in the # annihilator, according to the formula below: # x^k Dx^j = Sum(rf(n + 1 - k, j) * a(n + j - k) * x^n, (n, k, oo)) # for explanation see [2]. for i, j in enumerate(self.annihilator.listofpoly): listofdmp = j.all_coeffs() degree = len(listofdmp) - 1 for k in range(degree + 1): coeff = listofdmp[degree - k] if coeff == 0: continue if (i - k, k) in dict1: dict1[(i - k, k)] += (dom.to_sympy(coeff) * rf(n - k + 1, i)) else: dict1[(i - k, k)] = (dom.to_sympy(coeff) * rf(n - k + 1, i)) sol = [] keylist = [i[0] for i in dict1] lower = min(keylist) upper = max(keylist) degree = self.degree() # the recurrence relation holds for all values of # n greater than smallest_n, i.e. n >= smallest_n smallest_n = lower + degree dummys = {} eqs = [] unknowns = [] # an appropriate shift of the recurrence for j in range(lower, upper + 1): if j in keylist: temp = S(0) for k in dict1.keys(): if k[0] == j: temp += dict1[k].subs(n, n - lower) sol.append(temp) else: sol.append(S(0)) # the recurrence relation sol = RecurrenceOperator(sol, R) # computing the initial conditions for recurrence order = sol.order all_roots = roots(R.base.to_sympy(sol.listofpoly[-1]), n, filter='Z') all_roots = all_roots.keys() if all_roots: max_root = max(all_roots) + 1 smallest_n = max(max_root, smallest_n) order += smallest_n y0 = _extend_y0(self, order) u0 = [] # u(n) = y^n(0)/factorial(n) for i, j in enumerate(y0): u0.append(j / factorial(i)) # if sufficient conditions can't be computed then # try to use the series method i.e. # equate the coefficients of x^k in the equation formed by # substituting the series in differential equation, to zero. if len(u0) < order: for i in range(degree): eq = S(0) for j in dict1: if i + j[0] < 0: dummys[i + j[0]] = S(0) elif i + j[0] < len(u0): dummys[i + j[0]] = u0[i + j[0]] elif not i + j[0] in dummys: dummys[i + j[0]] = Symbol('C_%s' %(i + j[0])) unknowns.append(dummys[i + j[0]]) if j[1] <= i: eq += dict1[j].subs(n, i) * dummys[i + j[0]] eqs.append(eq) # solve the system of equations formed soleqs = solve(eqs, *unknowns) if isinstance(soleqs, dict): for i in range(len(u0), order): if i not in dummys: dummys[i] = Symbol('C_%s' %i) if dummys[i] in soleqs: u0.append(soleqs[dummys[i]]) else: u0.append(dummys[i]) if lb: return [(HolonomicSequence(sol, u0), smallest_n)] return [HolonomicSequence(sol, u0)] for i in range(len(u0), order): if i not in dummys: dummys[i] = Symbol('C_%s' %i) s = False for j in soleqs: if dummys[i] in j: u0.append(j[dummys[i]]) s = True if not s: u0.append(dummys[i]) if lb: return [(HolonomicSequence(sol, u0), smallest_n)] return [HolonomicSequence(sol, u0)] def _frobenius(self, lb=True): # compute the roots of indicial equation indicialroots = self._indicial() reals = [] compl = [] for i in ordered(indicialroots.keys()): if i.is_real: reals.extend([i] * indicialroots[i]) else: a, b = i.as_real_imag() compl.extend([(i, a, b)] * indicialroots[i]) # sort the roots for a fixed ordering of solution compl.sort(key=lambda x : x[1]) compl.sort(key=lambda x : x[2]) reals.sort() # grouping the roots, roots differ by an integer are put in the same group. grp = [] for i in reals: intdiff = False if len(grp) == 0: grp.append([i]) continue for j in grp: if int(j[0] - i) == j[0] - i: j.append(i) intdiff = True break if not intdiff: grp.append([i]) # True if none of the roots differ by an integer i.e. # each element in group have only one member independent = True if all(len(i) == 1 for i in grp) else False allpos = all(i >= 0 for i in reals) allint = all(int(i) == i for i in reals) # if initial conditions are provided # then use them. if self.is_singularics() == True: rootstoconsider = [] for i in ordered(self.y0.keys()): for j in ordered(indicialroots.keys()): if j == i: rootstoconsider.append(i) elif allpos and allint: rootstoconsider = [min(reals)] elif independent: rootstoconsider = [i[0] for i in grp] + [j[0] for j in compl] elif not allint: rootstoconsider = [] for i in reals: if not int(i) == i: rootstoconsider.append(i) elif not allpos: if not self._have_init_cond() or S(self.y0[0]).is_finite == False: rootstoconsider = [min(reals)] else: posroots = [] for i in reals: if i >= 0: posroots.append(i) rootstoconsider = [min(posroots)] n = Symbol('n', integer=True) dom = self.annihilator.parent.base.dom R, _ = RecurrenceOperators(dom.old_poly_ring(n), 'Sn') finalsol = [] char = ord('C') for p in rootstoconsider: dict1 = {} for i, j in enumerate(self.annihilator.listofpoly): listofdmp = j.all_coeffs() degree = len(listofdmp) - 1 for k in range(degree + 1): coeff = listofdmp[degree - k] if coeff == 0: continue if (i - k, k - i) in dict1: dict1[(i - k, k - i)] += (dom.to_sympy(coeff) * rf(n - k + 1 + p, i)) else: dict1[(i - k, k - i)] = (dom.to_sympy(coeff) * rf(n - k + 1 + p, i)) sol = [] keylist = [i[0] for i in dict1] lower = min(keylist) upper = max(keylist) degree = max([i[1] for i in dict1]) degree2 = min([i[1] for i in dict1]) smallest_n = lower + degree dummys = {} eqs = [] unknowns = [] for j in range(lower, upper + 1): if j in keylist: temp = S(0) for k in dict1.keys(): if k[0] == j: temp += dict1[k].subs(n, n - lower) sol.append(temp) else: sol.append(S(0)) # the recurrence relation sol = RecurrenceOperator(sol, R) # computing the initial conditions for recurrence order = sol.order all_roots = roots(R.base.to_sympy(sol.listofpoly[-1]), n, filter='Z') all_roots = all_roots.keys() if all_roots: max_root = max(all_roots) + 1 smallest_n = max(max_root, smallest_n) order += smallest_n u0 = [] if self.is_singularics() == True: u0 = self.y0[p] elif self.is_singularics() == False and p >= 0 and int(p) == p and len(rootstoconsider) == 1: y0 = _extend_y0(self, order + int(p)) # u(n) = y^n(0)/factorial(n) if len(y0) > int(p): for i in range(int(p), len(y0)): u0.append(y0[i] / factorial(i)) if len(u0) < order: for i in range(degree2, degree): eq = S(0) for j in dict1: if i + j[0] < 0: dummys[i + j[0]] = S(0) elif i + j[0] < len(u0): dummys[i + j[0]] = u0[i + j[0]] elif not i + j[0] in dummys: letter = chr(char) + '_%s' %(i + j[0]) dummys[i + j[0]] = Symbol(letter) unknowns.append(dummys[i + j[0]]) if j[1] <= i: eq += dict1[j].subs(n, i) * dummys[i + j[0]] eqs.append(eq) # solve the system of equations formed soleqs = solve(eqs, *unknowns) if isinstance(soleqs, dict): for i in range(len(u0), order): if i not in dummys: letter = chr(char) + '_%s' %i dummys[i] = Symbol(letter) if dummys[i] in soleqs: u0.append(soleqs[dummys[i]]) else: u0.append(dummys[i]) if lb: finalsol.append((HolonomicSequence(sol, u0), p, smallest_n)) continue else: finalsol.append((HolonomicSequence(sol, u0), p)) continue for i in range(len(u0), order): if i not in dummys: letter = chr(char) + '_%s' %i dummys[i] = Symbol(letter) s = False for j in soleqs: if dummys[i] in j: u0.append(j[dummys[i]]) s = True if not s: u0.append(dummys[i]) if lb: finalsol.append((HolonomicSequence(sol, u0), p, smallest_n)) else: finalsol.append((HolonomicSequence(sol, u0), p)) char += 1 return finalsol def series(self, n=6, coefficient=False, order=True, _recur=None): r""" Finds the power series expansion of given holonomic function about :math:`x_0`. A list of series might be returned if :math:`x_0` is a regular point with multiple roots of the indicial equation. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import ZZ, QQ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') >>> HolonomicFunction(Dx - 1, x, 0, [1]).series() # e^x 1 + x + x**2/2 + x**3/6 + x**4/24 + x**5/120 + O(x**6) >>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).series(n=8) # sin(x) x - x**3/6 + x**5/120 - x**7/5040 + O(x**8) See Also ======== HolonomicFunction.to_sequence() """ if _recur is None: recurrence = self.to_sequence() else: recurrence = _recur if isinstance(recurrence, tuple) and len(recurrence) == 2: recurrence = recurrence[0] constantpower = 0 elif isinstance(recurrence, tuple) and len(recurrence) == 3: constantpower = recurrence[1] recurrence = recurrence[0] elif len(recurrence) == 1 and len(recurrence[0]) == 2: recurrence = recurrence[0][0] constantpower = 0 elif len(recurrence) == 1 and len(recurrence[0]) == 3: constantpower = recurrence[0][1] recurrence = recurrence[0][0] else: sol = [] for i in recurrence: sol.append(self.series(_recur=i)) return sol n = n - int(constantpower) l = len(recurrence.u0) - 1 k = recurrence.recurrence.order x = self.x x0 = self.x0 seq_dmp = recurrence.recurrence.listofpoly R = recurrence.recurrence.parent.base K = R.get_field() seq = [] for i, j in enumerate(seq_dmp): seq.append(K.new(j.rep)) sub = [-seq[i] / seq[k] for i in range(k)] sol = [i for i in recurrence.u0] if l + 1 >= n: pass else: # use the initial conditions to find the next term for i in range(l + 1 - k, n - k): coeff = S(0) for j in range(k): if i + j >= 0: coeff += DMFsubs(sub[j], i) * sol[i + j] sol.append(coeff) if coefficient: return sol ser = S(0) for i, j in enumerate(sol): ser += x**(i + constantpower) * j if order: ser += Order(x**(n + int(constantpower)), x) if x0 != 0: return ser.subs(x, x - x0) return ser def _indicial(self): """ Computes roots of the Indicial equation. """ if self.x0 != 0: return self.shift_x(self.x0)._indicial() list_coeff = self.annihilator.listofpoly R = self.annihilator.parent.base x = self.x s = R.zero y = R.one def _pole_degree(poly): root_all = roots(R.to_sympy(poly), x, filter='Z') if 0 in root_all.keys(): return root_all[0] else: return 0 degree = [j.degree() for j in list_coeff] degree = max(degree) inf = 10 * (max(1, degree) + max(1, self.annihilator.order)) deg = lambda q: inf if q.is_zero else _pole_degree(q) b = deg(list_coeff[0]) for j in range(1, len(list_coeff)): b = min(b, deg(list_coeff[j]) - j) for i, j in enumerate(list_coeff): listofdmp = j.all_coeffs() degree = len(listofdmp) - 1 if - i - b <= 0 and degree - i - b >= 0: s = s + listofdmp[degree - i - b] * y y *= x - i return roots(R.to_sympy(s), x) def evalf(self, points, method='RK4', h=0.05, derivatives=False): r""" Finds numerical value of a holonomic function using numerical methods. (RK4 by default). A set of points (real or complex) must be provided which will be the path for the numerical integration. The path should be given as a list :math:`[x_1, x_2, ... x_n]`. The numerical values will be computed at each point in this order :math:`x_1 --> x_2 --> x_3 ... --> x_n`. Returns values of the function at :math:`x_1, x_2, ... x_n` in a list. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import ZZ, QQ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') A straight line on the real axis from (0 to 1) >>> r = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] Runge-Kutta 4th order on e^x from 0.1 to 1. Exact solution at 1 is 2.71828182845905 >>> HolonomicFunction(Dx - 1, x, 0, [1]).evalf(r) [1.10517083333333, 1.22140257085069, 1.34985849706254, 1.49182424008069, 1.64872063859684, 1.82211796209193, 2.01375162659678, 2.22553956329232, 2.45960141378007, 2.71827974413517] Euler's method for the same >>> HolonomicFunction(Dx - 1, x, 0, [1]).evalf(r, method='Euler') [1.1, 1.21, 1.331, 1.4641, 1.61051, 1.771561, 1.9487171, 2.14358881, 2.357947691, 2.5937424601] One can also observe that the value obtained using Runge-Kutta 4th order is much more accurate than Euler's method. """ from sympy.holonomic.numerical import _evalf lp = False # if a point `b` is given instead of a mesh if not hasattr(points, "__iter__"): lp = True b = S(points) if self.x0 == b: return _evalf(self, [b], method=method, derivatives=derivatives)[-1] if not b.is_Number: raise NotImplementedError a = self.x0 if a > b: h = -h n = int((b - a) / h) points = [a + h] for i in range(n - 1): points.append(points[-1] + h) for i in roots(self.annihilator.parent.base.to_sympy(self.annihilator.listofpoly[-1]), self.x): if i == self.x0 or i in points: raise SingularityError(self, i) if lp: return _evalf(self, points, method=method, derivatives=derivatives)[-1] return _evalf(self, points, method=method, derivatives=derivatives) def change_x(self, z): """ Changes only the variable of Holonomic Function, for internal purposes. For composition use HolonomicFunction.composition() """ dom = self.annihilator.parent.base.dom R = dom.old_poly_ring(z) parent, _ = DifferentialOperators(R, 'Dx') sol = [] for j in self.annihilator.listofpoly: sol.append(R(j.rep)) sol = DifferentialOperator(sol, parent) return HolonomicFunction(sol, z, self.x0, self.y0) def shift_x(self, a): """ Substitute `x + a` for `x`. """ x = self.x listaftershift = self.annihilator.listofpoly base = self.annihilator.parent.base sol = [base.from_sympy(base.to_sympy(i).subs(x, x + a)) for i in listaftershift] sol = DifferentialOperator(sol, self.annihilator.parent) x0 = self.x0 - a if not self._have_init_cond(): return HolonomicFunction(sol, x) return HolonomicFunction(sol, x, x0, self.y0) def to_hyper(self, as_list=False, _recur=None): r""" Returns a hypergeometric function (or linear combination of them) representing the given holonomic function. Returns an answer of the form: `a_1 \cdot x^{b_1} \cdot{hyper()} + a_2 \cdot x^{b_2} \cdot{hyper()} ...` This is very useful as one can now use ``hyperexpand`` to find the symbolic expressions/functions. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import ZZ, QQ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx') >>> # sin(x) >>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).to_hyper() x*hyper((), (3/2,), -x**2/4) >>> # exp(x) >>> HolonomicFunction(Dx - 1, x, 0, [1]).to_hyper() hyper((), (), x) See Also ======== from_hyper, from_meijerg """ if _recur is None: recurrence = self.to_sequence() else: recurrence = _recur if isinstance(recurrence, tuple) and len(recurrence) == 2: smallest_n = recurrence[1] recurrence = recurrence[0] constantpower = 0 elif isinstance(recurrence, tuple) and len(recurrence) == 3: smallest_n = recurrence[2] constantpower = recurrence[1] recurrence = recurrence[0] elif len(recurrence) == 1 and len(recurrence[0]) == 2: smallest_n = recurrence[0][1] recurrence = recurrence[0][0] constantpower = 0 elif len(recurrence) == 1 and len(recurrence[0]) == 3: smallest_n = recurrence[0][2] constantpower = recurrence[0][1] recurrence = recurrence[0][0] else: sol = self.to_hyper(as_list=as_list, _recur=recurrence[0]) for i in recurrence[1:]: sol += self.to_hyper(as_list=as_list, _recur=i) return sol u0 = recurrence.u0 r = recurrence.recurrence x = self.x x0 = self.x0 # order of the recurrence relation m = r.order # when no recurrence exists, and the power series have finite terms if m == 0: nonzeroterms = roots(r.parent.base.to_sympy(r.listofpoly[0]), recurrence.n, filter='R') sol = S(0) for j, i in enumerate(nonzeroterms): if i < 0 or int(i) != i: continue i = int(i) if i < len(u0): if isinstance(u0[i], (PolyElement, FracElement)): u0[i] = u0[i].as_expr() sol += u0[i] * x**i else: sol += Symbol('C_%s' %j) * x**i if isinstance(sol, (PolyElement, FracElement)): sol = sol.as_expr() * x**constantpower else: sol = sol * x**constantpower if as_list: if x0 != 0: return [(sol.subs(x, x - x0), )] return [(sol, )] if x0 != 0: return sol.subs(x, x - x0) return sol if smallest_n + m > len(u0): raise NotImplementedError("Can't compute sufficient Initial Conditions") # check if the recurrence represents a hypergeometric series is_hyper = True for i in range(1, len(r.listofpoly)-1): if r.listofpoly[i] != r.parent.base.zero: is_hyper = False break if not is_hyper: raise NotHyperSeriesError(self, self.x0) a = r.listofpoly[0] b = r.listofpoly[-1] # the constant multiple of argument of hypergeometric function if isinstance(a.rep[0], (PolyElement, FracElement)): c = - (S(a.rep[0].as_expr()) * m**(a.degree())) / (S(b.rep[0].as_expr()) * m**(b.degree())) else: c = - (S(a.rep[0]) * m**(a.degree())) / (S(b.rep[0]) * m**(b.degree())) sol = 0 arg1 = roots(r.parent.base.to_sympy(a), recurrence.n) arg2 = roots(r.parent.base.to_sympy(b), recurrence.n) # iterate thorugh the initial conditions to find # the hypergeometric representation of the given # function. # The answer will be a linear combination # of different hypergeometric series which satisfies # the recurrence. if as_list: listofsol = [] for i in range(smallest_n + m): # if the recurrence relation doesn't hold for `n = i`, # then a Hypergeometric representation doesn't exist. # add the algebraic term a * x**i to the solution, # where a is u0[i] if i < smallest_n: if as_list: listofsol.append(((S(u0[i]) * x**(i+constantpower)).subs(x, x-x0), )) else: sol += S(u0[i]) * x**i continue # if the coefficient u0[i] is zero, then the # independent hypergeomtric series starting with # x**i is not a part of the answer. if S(u0[i]) == 0: continue ap = [] bq = [] # substitute m * n + i for n for k in ordered(arg1.keys()): ap.extend([nsimplify((i - k) / m)] * arg1[k]) for k in ordered(arg2.keys()): bq.extend([nsimplify((i - k) / m)] * arg2[k]) # convention of (k + 1) in the denominator if 1 in bq: bq.remove(1) else: ap.append(1) if as_list: listofsol.append(((S(u0[i])*x**(i+constantpower)).subs(x, x-x0), (hyper(ap, bq, c*x**m)).subs(x, x-x0))) else: sol += S(u0[i]) * hyper(ap, bq, c * x**m) * x**i if as_list: return listofsol sol = sol * x**constantpower if x0 != 0: return sol.subs(x, x - x0) return sol def to_expr(self): """ Converts a Holonomic Function back to elementary functions. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import ZZ, QQ >>> from sympy import symbols, S >>> x = symbols('x') >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx') >>> HolonomicFunction(x**2*Dx**2 + x*Dx + (x**2 - 1), x, 0, [0, S(1)/2]).to_expr() besselj(1, x) >>> HolonomicFunction((1 + x)*Dx**3 + Dx**2, x, 0, [1, 1, 1]).to_expr() x*log(x + 1) + log(x + 1) + 1 """ return hyperexpand(self.to_hyper()).simplify() def change_ics(self, b, lenics=None): """ Changes the point `x0` to `b` for initial conditions. Examples ======== >>> from sympy.holonomic import expr_to_holonomic >>> from sympy import symbols, sin, cos, exp >>> x = symbols('x') >>> expr_to_holonomic(sin(x)).change_ics(1) HolonomicFunction((1) + (1)*Dx**2, x, 1, [sin(1), cos(1)]) >>> expr_to_holonomic(exp(x)).change_ics(2) HolonomicFunction((-1) + (1)*Dx, x, 2, [exp(2)]) """ symbolic = True if lenics is None and len(self.y0) > self.annihilator.order: lenics = len(self.y0) dom = self.annihilator.parent.base.domain try: sol = expr_to_holonomic(self.to_expr(), x=self.x, x0=b, lenics=lenics, domain=dom) except (NotPowerSeriesError, NotHyperSeriesError): symbolic = False if symbolic and sol.x0 == b: return sol y0 = self.evalf(b, derivatives=True) return HolonomicFunction(self.annihilator, self.x, b, y0) def to_meijerg(self): """ Returns a linear combination of Meijer G-functions. Examples ======== >>> from sympy.holonomic import expr_to_holonomic >>> from sympy import sin, cos, hyperexpand, log, symbols >>> x = symbols('x') >>> hyperexpand(expr_to_holonomic(cos(x) + sin(x)).to_meijerg()) sin(x) + cos(x) >>> hyperexpand(expr_to_holonomic(log(x)).to_meijerg()).simplify() log(x) See Also ======== to_hyper() """ # convert to hypergeometric first rep = self.to_hyper(as_list=True) sol = S(0) for i in rep: if len(i) == 1: sol += i[0] elif len(i) == 2: sol += i[0] * _hyper_to_meijerg(i[1]) return sol def from_hyper(func, x0=0, evalf=False): r""" Converts a hypergeometric function to holonomic. ``func`` is the Hypergeometric Function and ``x0`` is the point at which initial conditions are required. Examples ======== >>> from sympy.holonomic.holonomic import from_hyper, DifferentialOperators >>> from sympy import symbols, hyper, S >>> x = symbols('x') >>> from_hyper(hyper([], [S(3)/2], x**2/4)) HolonomicFunction((-x) + (2)*Dx + (x)*Dx**2, x, 1, [sinh(1), -sinh(1) + cosh(1)]) """ a = func.ap b = func.bq z = func.args[2] x = z.atoms(Symbol).pop() R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx') # generalized hypergeometric differential equation r1 = 1 for i in range(len(a)): r1 = r1 * (x * Dx + a[i]) r2 = Dx for i in range(len(b)): r2 = r2 * (x * Dx + b[i] - 1) sol = r1 - r2 simp = hyperexpand(func) if isinstance(simp, Infinity) or isinstance(simp, NegativeInfinity): return HolonomicFunction(sol, x).composition(z) def _find_conditions(simp, x, x0, order, evalf=False): y0 = [] for i in range(order): if evalf: val = simp.subs(x, x0).evalf() else: val = simp.subs(x, x0) # return None if it is Infinite or NaN if val.is_finite is False or isinstance(val, NaN): return None y0.append(val) simp = simp.diff(x) return y0 # if the function is known symbolically if not isinstance(simp, hyper): y0 = _find_conditions(simp, x, x0, sol.order) while not y0: # if values don't exist at 0, then try to find initial # conditions at 1. If it doesn't exist at 1 too then # try 2 and so on. x0 += 1 y0 = _find_conditions(simp, x, x0, sol.order) return HolonomicFunction(sol, x).composition(z, x0, y0) if isinstance(simp, hyper): x0 = 1 # use evalf if the function can't be simpified y0 = _find_conditions(simp, x, x0, sol.order, evalf) while not y0: x0 += 1 y0 = _find_conditions(simp, x, x0, sol.order, evalf) return HolonomicFunction(sol, x).composition(z, x0, y0) return HolonomicFunction(sol, x).composition(z) def from_meijerg(func, x0=0, evalf=False, initcond=True, domain=QQ): """ Converts a Meijer G-function to Holonomic. ``func`` is the G-Function and ``x0`` is the point at which initial conditions are required. Examples ======== >>> from sympy.holonomic.holonomic import from_meijerg, DifferentialOperators >>> from sympy import symbols, meijerg, S >>> x = symbols('x') >>> from_meijerg(meijerg(([], []), ([S(1)/2], [0]), x**2/4)) HolonomicFunction((1) + (1)*Dx**2, x, 0, [0, 1/sqrt(pi)]) """ a = func.ap b = func.bq n = len(func.an) m = len(func.bm) p = len(a) z = func.args[2] x = z.atoms(Symbol).pop() R, Dx = DifferentialOperators(domain.old_poly_ring(x), 'Dx') # compute the differential equation satisfied by the # Meijer G-function. mnp = (-1)**(m + n - p) r1 = x * mnp for i in range(len(a)): r1 *= x * Dx + 1 - a[i] r2 = 1 for i in range(len(b)): r2 *= x * Dx - b[i] sol = r1 - r2 if not initcond: return HolonomicFunction(sol, x).composition(z) simp = hyperexpand(func) if isinstance(simp, Infinity) or isinstance(simp, NegativeInfinity): return HolonomicFunction(sol, x).composition(z) def _find_conditions(simp, x, x0, order, evalf=False): y0 = [] for i in range(order): if evalf: val = simp.subs(x, x0).evalf() else: val = simp.subs(x, x0) if val.is_finite is False or isinstance(val, NaN): return None y0.append(val) simp = simp.diff(x) return y0 # computing initial conditions if not isinstance(simp, meijerg): y0 = _find_conditions(simp, x, x0, sol.order) while not y0: x0 += 1 y0 = _find_conditions(simp, x, x0, sol.order) return HolonomicFunction(sol, x).composition(z, x0, y0) if isinstance(simp, meijerg): x0 = 1 y0 = _find_conditions(simp, x, x0, sol.order, evalf) while not y0: x0 += 1 y0 = _find_conditions(simp, x, x0, sol.order, evalf) return HolonomicFunction(sol, x).composition(z, x0, y0) return HolonomicFunction(sol, x).composition(z) x_1 = Dummy('x_1') _lookup_table = None domain_for_table = None from sympy.integrals.meijerint import _mytype def expr_to_holonomic(func, x=None, x0=0, y0=None, lenics=None, domain=None, initcond=True): """ Converts a function or an expression to a holonomic function. Parameters ========== func: The expression to be converted. x: variable for the function. x0: point at which initial condition must be computed. y0: One can optionally provide initial condition if the method isn't able to do it automatically. lenics: Number of terms in the initial condition. By default it is equal to the order of the annihilator. domain: Ground domain for the polynomials in `x` appearing as coefficients in the annihilator. initcond: Set it false if you don't want the initial conditions to be computed. Examples ======== >>> from sympy.holonomic.holonomic import expr_to_holonomic >>> from sympy import sin, exp, symbols >>> x = symbols('x') >>> expr_to_holonomic(sin(x)) HolonomicFunction((1) + (1)*Dx**2, x, 0, [0, 1]) >>> expr_to_holonomic(exp(x)) HolonomicFunction((-1) + (1)*Dx, x, 0, [1]) See Also ======== meijerint._rewrite1, _convert_poly_rat_alg, _create_table """ func = sympify(func) syms = func.free_symbols if not x: if len(syms) == 1: x= syms.pop() else: raise ValueError("Specify the variable for the function") elif x in syms: syms.remove(x) extra_syms = list(syms) if domain is None: if func.has(Float): domain = RR else: domain = QQ if len(extra_syms) != 0: domain = domain[extra_syms].get_field() # try to convert if the function is polynomial or rational solpoly = _convert_poly_rat_alg(func, x, x0=x0, y0=y0, lenics=lenics, domain=domain, initcond=initcond) if solpoly: return solpoly # create the lookup table global _lookup_table, domain_for_table if not _lookup_table: domain_for_table = domain _lookup_table = {} _create_table(_lookup_table, domain=domain) elif domain != domain_for_table: domain_for_table = domain _lookup_table = {} _create_table(_lookup_table, domain=domain) # use the table directly to convert to Holonomic if func.is_Function: f = func.subs(x, x_1) t = _mytype(f, x_1) if t in _lookup_table: l = _lookup_table[t] sol = l[0][1].change_x(x) else: sol = _convert_meijerint(func, x, initcond=False, domain=domain) if not sol: raise NotImplementedError if y0: sol.y0 = y0 if y0 or not initcond: sol.x0 = x0 return sol if not lenics: lenics = sol.annihilator.order _y0 = _find_conditions(func, x, x0, lenics) while not _y0: x0 += 1 _y0 = _find_conditions(func, x, x0, lenics) return HolonomicFunction(sol.annihilator, x, x0, _y0) if y0 or not initcond: sol = sol.composition(func.args[0]) if y0: sol.y0 = y0 sol.x0 = x0 return sol if not lenics: lenics = sol.annihilator.order _y0 = _find_conditions(func, x, x0, lenics) while not _y0: x0 += 1 _y0 = _find_conditions(func, x, x0, lenics) return sol.composition(func.args[0], x0, _y0) # iterate through the expression recursively args = func.args f = func.func from sympy.core import Add, Mul, Pow sol = expr_to_holonomic(args[0], x=x, initcond=False, domain=domain) if f is Add: for i in range(1, len(args)): sol += expr_to_holonomic(args[i], x=x, initcond=False, domain=domain) elif f is Mul: for i in range(1, len(args)): sol *= expr_to_holonomic(args[i], x=x, initcond=False, domain=domain) elif f is Pow: sol = sol**args[1] sol.x0 = x0 if not sol: raise NotImplementedError if y0: sol.y0 = y0 if y0 or not initcond: return sol if sol.y0: return sol if not lenics: lenics = sol.annihilator.order if sol.annihilator.is_singular(x0): r = sol._indicial() l = list(r) if len(r) == 1 and r[l[0]] == S(1): r = l[0] g = func / (x - x0)**r singular_ics = _find_conditions(g, x, x0, lenics) singular_ics = [j / factorial(i) for i, j in enumerate(singular_ics)] y0 = {r:singular_ics} return HolonomicFunction(sol.annihilator, x, x0, y0) _y0 = _find_conditions(func, x, x0, lenics) while not _y0: x0 += 1 _y0 = _find_conditions(func, x, x0, lenics) return HolonomicFunction(sol.annihilator, x, x0, _y0) ## Some helper functions ## def _normalize(list_of, parent, negative=True): """ Normalize a given annihilator """ num = [] denom = [] base = parent.base K = base.get_field() lcm_denom = base.from_sympy(S(1)) list_of_coeff = [] # convert polynomials to the elements of associated # fraction field for i, j in enumerate(list_of): if isinstance(j, base.dtype): list_of_coeff.append(K.new(j.rep)) elif not isinstance(j, K.dtype): list_of_coeff.append(K.from_sympy(sympify(j))) else: list_of_coeff.append(j) # corresponding numerators of the sequence of polynomials num.append(list_of_coeff[i].numer()) # corresponding denominators denom.append(list_of_coeff[i].denom()) # lcm of denominators in the coefficients for i in denom: lcm_denom = i.lcm(lcm_denom) if negative: lcm_denom = -lcm_denom lcm_denom = K.new(lcm_denom.rep) # multiply the coefficients with lcm for i, j in enumerate(list_of_coeff): list_of_coeff[i] = j * lcm_denom gcd_numer = base((list_of_coeff[-1].numer() / list_of_coeff[-1].denom()).rep) # gcd of numerators in the coefficients for i in num: gcd_numer = i.gcd(gcd_numer) gcd_numer = K.new(gcd_numer.rep) # divide all the coefficients by the gcd for i, j in enumerate(list_of_coeff): frac_ans = j / gcd_numer list_of_coeff[i] = base((frac_ans.numer() / frac_ans.denom()).rep) return DifferentialOperator(list_of_coeff, parent) def _derivate_diff_eq(listofpoly): """ Let a differential equation a0(x)y(x) + a1(x)y'(x) + ... = 0 where a0, a1,... are polynomials or rational functions. The function returns b0, b1, b2... such that the differential equation b0(x)y(x) + b1(x)y'(x) +... = 0 is formed after differentiating the former equation. """ sol = [] a = len(listofpoly) - 1 sol.append(DMFdiff(listofpoly[0])) for i, j in enumerate(listofpoly[1:]): sol.append(DMFdiff(j) + listofpoly[i]) sol.append(listofpoly[a]) return sol def _hyper_to_meijerg(func): """ Converts a `hyper` to meijerg. """ ap = func.ap bq = func.bq ispoly = any(i <= 0 and int(i) == i for i in ap) if ispoly: return hyperexpand(func) z = func.args[2] # parameters of the `meijerg` function. an = (1 - i for i in ap) anp = () bm = (S(0), ) bmq = (1 - i for i in bq) k = S(1) for i in bq: k = k * gamma(i) for i in ap: k = k / gamma(i) return k * meijerg(an, anp, bm, bmq, -z) def _add_lists(list1, list2): """Takes polynomial sequences of two annihilators a and b and returns the list of polynomials of sum of a and b. """ if len(list1) <= len(list2): sol = [a + b for a, b in zip(list1, list2)] + list2[len(list1):] else: sol = [a + b for a, b in zip(list1, list2)] + list1[len(list2):] return sol def _extend_y0(Holonomic, n): """ Tries to find more initial conditions by substituting the initial value point in the differential equation. """ if Holonomic.annihilator.is_singular(Holonomic.x0) or Holonomic.is_singularics() == True: return Holonomic.y0 annihilator = Holonomic.annihilator a = annihilator.order listofpoly = [] y0 = Holonomic.y0 R = annihilator.parent.base K = R.get_field() for i, j in enumerate(annihilator.listofpoly): if isinstance(j, annihilator.parent.base.dtype): listofpoly.append(K.new(j.rep)) if len(y0) < a or n <= len(y0): return y0 else: list_red = [-listofpoly[i] / listofpoly[a] for i in range(a)] if len(y0) > a: y1 = [y0[i] for i in range(a)] else: y1 = [i for i in y0] for i in range(n - a): sol = 0 for a, b in zip(y1, list_red): r = DMFsubs(b, Holonomic.x0) if not getattr(r, 'is_finite', True): return y0 if isinstance(r, (PolyElement, FracElement)): r = r.as_expr() sol += a * r y1.append(sol) list_red = _derivate_diff_eq(list_red) return y0 + y1[len(y0):] def DMFdiff(frac): # differentiate a DMF object represented as p/q if not isinstance(frac, DMF): return frac.diff() K = frac.ring p = K.numer(frac) q = K.denom(frac) sol_num = - p * q.diff() + q * p.diff() sol_denom = q**2 return K((sol_num.rep, sol_denom.rep)) def DMFsubs(frac, x0, mpm=False): # substitute the point x0 in DMF object of the form p/q if not isinstance(frac, DMF): return frac p = frac.num q = frac.den sol_p = S(0) sol_q = S(0) if mpm: from mpmath import mp for i, j in enumerate(reversed(p)): if mpm: j = sympify(j)._to_mpmath(mp.prec) sol_p += j * x0**i for i, j in enumerate(reversed(q)): if mpm: j = sympify(j)._to_mpmath(mp.prec) sol_q += j * x0**i if isinstance(sol_p, (PolyElement, FracElement)): sol_p = sol_p.as_expr() if isinstance(sol_q, (PolyElement, FracElement)): sol_q = sol_q.as_expr() return sol_p / sol_q def _convert_poly_rat_alg(func, x, x0=0, y0=None, lenics=None, domain=QQ, initcond=True): """ Converts polynomials, rationals and algebraic functions to holonomic. """ ispoly = func.is_polynomial() if not ispoly: israt = func.is_rational_function() else: israt = True if not (ispoly or israt): basepoly, ratexp = func.as_base_exp() if basepoly.is_polynomial() and ratexp.is_Number: if isinstance(ratexp, Float): ratexp = nsimplify(ratexp) m, n = ratexp.p, ratexp.q is_alg = True else: is_alg = False else: is_alg = True if not (ispoly or israt or is_alg): return None R = domain.old_poly_ring(x) _, Dx = DifferentialOperators(R, 'Dx') # if the function is constant if not func.has(x): return HolonomicFunction(Dx, x, 0, [func]) if ispoly: # differential equation satisfied by polynomial sol = func * Dx - func.diff(x) sol = _normalize(sol.listofpoly, sol.parent, negative=False) is_singular = sol.is_singular(x0) # try to compute the conditions for singular points if y0 is None and x0 == 0 and is_singular: rep = R.from_sympy(func).rep for i, j in enumerate(reversed(rep)): if j == 0: continue else: coeff = list(reversed(rep))[i:] indicial = i break for i, j in enumerate(coeff): if isinstance(j, (PolyElement, FracElement)): coeff[i] = j.as_expr() y0 = {indicial: S(coeff)} elif israt: p, q = func.as_numer_denom() # differential equation satisfied by rational sol = p * q * Dx + p * q.diff(x) - q * p.diff(x) sol = _normalize(sol.listofpoly, sol.parent, negative=False) elif is_alg: sol = n * (x / m) * Dx - 1 sol = HolonomicFunction(sol, x).composition(basepoly).annihilator is_singular = sol.is_singular(x0) # try to compute the conditions for singular points if y0 is None and x0 == 0 and is_singular and \ (lenics is None or lenics <= 1): rep = R.from_sympy(basepoly).rep for i, j in enumerate(reversed(rep)): if j == 0: continue if isinstance(j, (PolyElement, FracElement)): j = j.as_expr() coeff = S(j)**ratexp indicial = S(i) * ratexp break if isinstance(coeff, (PolyElement, FracElement)): coeff = coeff.as_expr() y0 = {indicial: S([coeff])} if y0 or not initcond: return HolonomicFunction(sol, x, x0, y0) if not lenics: lenics = sol.order if sol.is_singular(x0): r = HolonomicFunction(sol, x, x0)._indicial() l = list(r) if len(r) == 1 and r[l[0]] == S(1): r = l[0] g = func / (x - x0)**r singular_ics = _find_conditions(g, x, x0, lenics) singular_ics = [j / factorial(i) for i, j in enumerate(singular_ics)] y0 = {r:singular_ics} return HolonomicFunction(sol, x, x0, y0) y0 = _find_conditions(func, x, x0, lenics) while not y0: x0 += 1 y0 = _find_conditions(func, x, x0, lenics) return HolonomicFunction(sol, x, x0, y0) def _convert_meijerint(func, x, initcond=True, domain=QQ): args = meijerint._rewrite1(func, x) if args: fac, po, g, _ = args else: return None # lists for sum of meijerg functions fac_list = [fac * i[0] for i in g] t = po.as_base_exp() s = t[1] if t[0] is x else S(0) po_list = [s + i[1] for i in g] G_list = [i[2] for i in g] # finds meijerg representation of x**s * meijerg(a1 ... ap, b1 ... bq, z) def _shift(func, s): z = func.args[-1] if z.has(I): z = z.subs(exp_polar, exp) d = z.collect(x, evaluate=False) b = list(d)[0] a = d[b] t = b.as_base_exp() b = t[1] if t[0] is x else S(0) r = s / b an = (i + r for i in func.args[0][0]) ap = (i + r for i in func.args[0][1]) bm = (i + r for i in func.args[1][0]) bq = (i + r for i in func.args[1][1]) return a**-r, meijerg((an, ap), (bm, bq), z) coeff, m = _shift(G_list[0], po_list[0]) sol = fac_list[0] * coeff * from_meijerg(m, initcond=initcond, domain=domain) # add all the meijerg functions after converting to holonomic for i in range(1, len(G_list)): coeff, m = _shift(G_list[i], po_list[i]) sol += fac_list[i] * coeff * from_meijerg(m, initcond=initcond, domain=domain) return sol def _create_table(table, domain=QQ): """ Creates the look-up table. For a similar implementation see meijerint._create_lookup_table. """ def add(formula, annihilator, arg, x0=0, y0=[]): """ Adds a formula in the dictionary """ table.setdefault(_mytype(formula, x_1), []).append((formula, HolonomicFunction(annihilator, arg, x0, y0))) R = domain.old_poly_ring(x_1) _, Dx = DifferentialOperators(R, 'Dx') from sympy import (sin, cos, exp, log, erf, sqrt, pi, sinh, cosh, sinc, erfc, Si, Ci, Shi, erfi) # add some basic functions add(sin(x_1), Dx**2 + 1, x_1, 0, [0, 1]) add(cos(x_1), Dx**2 + 1, x_1, 0, [1, 0]) add(exp(x_1), Dx - 1, x_1, 0, 1) add(log(x_1), Dx + x_1*Dx**2, x_1, 1, [0, 1]) add(erf(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)]) add(erfc(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [1, -2/sqrt(pi)]) add(erfi(x_1), -2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)]) add(sinh(x_1), Dx**2 - 1, x_1, 0, [0, 1]) add(cosh(x_1), Dx**2 - 1, x_1, 0, [1, 0]) add(sinc(x_1), x_1 + 2*Dx + x_1*Dx**2, x_1) add(Si(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1) add(Ci(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1) add(Shi(x_1), -x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1) def _find_conditions(func, x, x0, order): y0 = [] for i in range(order): val = func.subs(x, x0) if isinstance(val, NaN): val = limit(func, x, x0) if val.is_finite is False or isinstance(val, NaN): return None y0.append(val) func = func.diff(x) return y0
dc977cd440c1f4364a357835f45c5c59bf6c862f208683d3605325d55f3e57e7
from __future__ import print_function, division from sympy.core import S, pi, Rational from sympy.functions import assoc_laguerre, sqrt, exp, factorial, factorial2 def R_nl(n, l, nu, r): """ Returns the radial wavefunction R_{nl} for a 3d isotropic harmonic oscillator. ``n`` the "nodal" quantum number. Corresponds to the number of nodes in the wavefunction. n >= 0 ``l`` the quantum number for orbital angular momentum ``nu`` mass-scaled frequency: nu = m*omega/(2*hbar) where `m` is the mass and `omega` the frequency of the oscillator. (in atomic units nu == omega/2) ``r`` Radial coordinate Examples ======== >>> from sympy.physics.sho import R_nl >>> from sympy import var >>> var("r nu l") (r, nu, l) >>> R_nl(0, 0, 1, r) 2*2**(3/4)*exp(-r**2)/pi**(1/4) >>> R_nl(1, 0, 1, r) 4*2**(1/4)*sqrt(3)*(3/2 - 2*r**2)*exp(-r**2)/(3*pi**(1/4)) l, nu and r may be symbolic: >>> R_nl(0, 0, nu, r) 2*2**(3/4)*sqrt(nu**(3/2))*exp(-nu*r**2)/pi**(1/4) >>> R_nl(0, l, 1, r) r**l*sqrt(2**(l + 3/2)*2**(l + 2)/factorial2(2*l + 1))*exp(-r**2)/pi**(1/4) The normalization of the radial wavefunction is: >>> from sympy import Integral, oo >>> Integral(R_nl(0, 0, 1, r)**2 * r**2, (r, 0, oo)).n() 1.00000000000000 >>> Integral(R_nl(1, 0, 1, r)**2 * r**2, (r, 0, oo)).n() 1.00000000000000 >>> Integral(R_nl(1, 1, 1, r)**2 * r**2, (r, 0, oo)).n() 1.00000000000000 """ n, l, nu, r = map(S, [n, l, nu, r]) # formula uses n >= 1 (instead of nodal n >= 0) n = n + 1 C = sqrt( ((2*nu)**(l + Rational(3, 2))*2**(n + l + 1)*factorial(n - 1))/ (sqrt(pi)*(factorial2(2*n + 2*l - 1))) ) return C*r**(l)*exp(-nu*r**2)*assoc_laguerre(n - 1, l + S(1)/2, 2*nu*r**2) def E_nl(n, l, hw): """ Returns the Energy of an isotropic harmonic oscillator ``n`` the "nodal" quantum number ``l`` the orbital angular momentum ``hw`` the harmonic oscillator parameter. The unit of the returned value matches the unit of hw, since the energy is calculated as: E_nl = (2*n + l + 3/2)*hw Examples ======== >>> from sympy.physics.sho import E_nl >>> from sympy import symbols >>> x, y, z = symbols('x, y, z') >>> E_nl(x, y, z) z*(2*x + y + 3/2) """ return (2*n + l + Rational(3, 2))*hw
ecaccdbf63a228df01659742727766f63956de8ee7af97abe65acd6783019c1f
from __future__ import print_function, division from sympy import factorial, sqrt, exp, S, assoc_laguerre, Float from sympy.functions.special.spherical_harmonics import Ynm def R_nl(n, l, r, Z=1): """ Returns the Hydrogen radial wavefunction R_{nl}. n, l quantum numbers 'n' and 'l' r radial coordinate Z atomic number (1 for Hydrogen, 2 for Helium, ...) Everything is in Hartree atomic units. Examples ======== >>> from sympy.physics.hydrogen import R_nl >>> from sympy import var >>> var("r Z") (r, Z) >>> R_nl(1, 0, r, Z) 2*sqrt(Z**3)*exp(-Z*r) >>> R_nl(2, 0, r, Z) sqrt(2)*(-Z*r + 2)*sqrt(Z**3)*exp(-Z*r/2)/4 >>> R_nl(2, 1, r, Z) sqrt(6)*Z*r*sqrt(Z**3)*exp(-Z*r/2)/12 For Hydrogen atom, you can just use the default value of Z=1: >>> R_nl(1, 0, r) 2*exp(-r) >>> R_nl(2, 0, r) sqrt(2)*(2 - r)*exp(-r/2)/4 >>> R_nl(3, 0, r) 2*sqrt(3)*(2*r**2/9 - 2*r + 3)*exp(-r/3)/27 For Silver atom, you would use Z=47: >>> R_nl(1, 0, r, Z=47) 94*sqrt(47)*exp(-47*r) >>> R_nl(2, 0, r, Z=47) 47*sqrt(94)*(2 - 47*r)*exp(-47*r/2)/4 >>> R_nl(3, 0, r, Z=47) 94*sqrt(141)*(4418*r**2/9 - 94*r + 3)*exp(-47*r/3)/27 The normalization of the radial wavefunction is: >>> from sympy import integrate, oo >>> integrate(R_nl(1, 0, r)**2 * r**2, (r, 0, oo)) 1 >>> integrate(R_nl(2, 0, r)**2 * r**2, (r, 0, oo)) 1 >>> integrate(R_nl(2, 1, r)**2 * r**2, (r, 0, oo)) 1 It holds for any atomic number: >>> integrate(R_nl(1, 0, r, Z=2)**2 * r**2, (r, 0, oo)) 1 >>> integrate(R_nl(2, 0, r, Z=3)**2 * r**2, (r, 0, oo)) 1 >>> integrate(R_nl(2, 1, r, Z=4)**2 * r**2, (r, 0, oo)) 1 """ # sympify arguments n, l, r, Z = S(n), S(l), S(r), S(Z) # radial quantum number n_r = n - l - 1 # rescaled "r" a = 1/Z # Bohr radius r0 = 2 * r / (n * a) # normalization coefficient C = sqrt((S(2)/(n*a))**3 * factorial(n_r) / (2*n*factorial(n + l))) # This is an equivalent normalization coefficient, that can be found in # some books. Both coefficients seem to be the same fast: # C = S(2)/n**2 * sqrt(1/a**3 * factorial(n_r) / (factorial(n+l))) return C * r0**l * assoc_laguerre(n_r, 2*l + 1, r0).expand() * exp(-r0/2) def Psi_nlm(n, l, m, r, phi, theta, Z=1): """ Returns the Hydrogen wave function psi_{nlm}. It's the product of the radial wavefunction R_{nl} and the spherical harmonic Y_{l}^{m}. n, l, m quantum numbers 'n', 'l' and 'm' r radial coordinate phi azimuthal angle theta polar angle Z atomic number (1 for Hydrogen, 2 for Helium, ...) Everything is in Hartree atomic units. Examples ======== >>> from sympy.physics.hydrogen import Psi_nlm >>> from sympy import Symbol >>> r=Symbol("r", real=True, positive=True) >>> phi=Symbol("phi", real=True) >>> theta=Symbol("theta", real=True) >>> Z=Symbol("Z", positive=True, integer=True, nonzero=True) >>> Psi_nlm(1,0,0,r,phi,theta,Z) Z**(3/2)*exp(-Z*r)/sqrt(pi) >>> Psi_nlm(2,1,1,r,phi,theta,Z) -Z**(5/2)*r*exp(I*phi)*exp(-Z*r/2)*sin(theta)/(8*sqrt(pi)) Integrating the absolute square of a hydrogen wavefunction psi_{nlm} over the whole space leads 1. The normalization of the hydrogen wavefunctions Psi_nlm is: >>> from sympy import integrate, conjugate, pi, oo, sin >>> wf=Psi_nlm(2,1,1,r,phi,theta,Z) >>> abs_sqrd=wf*conjugate(wf) >>> jacobi=r**2*sin(theta) >>> integrate(abs_sqrd*jacobi, (r,0,oo), (phi,0,2*pi), (theta,0,pi)) 1 """ # sympify arguments n, l, m, r, phi, theta, Z = S(n), S(l), S(m), S(r), S(phi), S(theta), S(Z) # check if values for n,l,m make physically sense if n.is_integer and n<1: raise ValueError("'n' must be positive integer") if l.is_integer and not (n > l): raise ValueError("'n' must be greater than 'l'") if m.is_integer and not (abs(m)<=l): raise ValueError("|'m'| must be less or equal 'l'") # return the hydrogen wave function return R_nl(n, l, r, Z)*Ynm(l,m,theta,phi).expand(func=True) def E_nl(n, Z=1): """ Returns the energy of the state (n, l) in Hartree atomic units. The energy doesn't depend on "l". Examples ======== >>> from sympy import var >>> from sympy.physics.hydrogen import E_nl >>> var("n Z") (n, Z) >>> E_nl(n, Z) -Z**2/(2*n**2) >>> E_nl(1) -1/2 >>> E_nl(2) -1/8 >>> E_nl(3) -1/18 >>> E_nl(3, 47) -2209/18 """ n, Z = S(n), S(Z) if n.is_integer and (n < 1): raise ValueError("'n' must be positive integer") return -Z**2/(2*n**2) def E_nl_dirac(n, l, spin_up=True, Z=1, c=Float("137.035999037")): """ Returns the relativistic energy of the state (n, l, spin) in Hartree atomic units. The energy is calculated from the Dirac equation. The rest mass energy is *not* included. n, l quantum numbers 'n' and 'l' spin_up True if the electron spin is up (default), otherwise down Z atomic number (1 for Hydrogen, 2 for Helium, ...) c speed of light in atomic units. Default value is 137.035999037, taken from: http://arxiv.org/abs/1012.3627 Examples ======== >>> from sympy.physics.hydrogen import E_nl_dirac >>> E_nl_dirac(1, 0) -0.500006656595360 >>> E_nl_dirac(2, 0) -0.125002080189006 >>> E_nl_dirac(2, 1) -0.125000416028342 >>> E_nl_dirac(2, 1, False) -0.125002080189006 >>> E_nl_dirac(3, 0) -0.0555562951740285 >>> E_nl_dirac(3, 1) -0.0555558020932949 >>> E_nl_dirac(3, 1, False) -0.0555562951740285 >>> E_nl_dirac(3, 2) -0.0555556377366884 >>> E_nl_dirac(3, 2, False) -0.0555558020932949 """ if not (l >= 0): raise ValueError("'l' must be positive or zero") if not (n > l): raise ValueError("'n' must be greater than 'l'") if (l == 0 and spin_up is False): raise ValueError("Spin must be up for l==0.") # skappa is sign*kappa, where sign contains the correct sign if spin_up: skappa = -l - 1 else: skappa = -l c = S(c) beta = sqrt(skappa**2 - Z**2/c**2) return c**2/sqrt(1 + Z**2/(n + skappa + beta)**2/c**2) - c**2
b28b56661e8700c1d6cd90f97f51f18b36a8175f6d11cadba940a6af985d4258
""" Second quantization operators and states for bosons. This follow the formulation of Fetter and Welecka, "Quantum Theory of Many-Particle Systems." """ from __future__ import print_function, division from collections import defaultdict from sympy import (Add, Basic, cacheit, Dummy, Expr, Function, I, KroneckerDelta, Mul, Pow, S, sqrt, Symbol, sympify, Tuple, zeros) from sympy.printing.str import StrPrinter from sympy.core.compatibility import range from sympy.utilities.iterables import has_dups from sympy.utilities import default_sort_key __all__ = [ 'Dagger', 'KroneckerDelta', 'BosonicOperator', 'AnnihilateBoson', 'CreateBoson', 'AnnihilateFermion', 'CreateFermion', 'FockState', 'FockStateBra', 'FockStateKet', 'FockStateBosonKet', 'FockStateBosonBra', 'BBra', 'BKet', 'FBra', 'FKet', 'F', 'Fd', 'B', 'Bd', 'apply_operators', 'InnerProduct', 'BosonicBasis', 'VarBosonicBasis', 'FixedBosonicBasis', 'Commutator', 'matrix_rep', 'contraction', 'wicks', 'NO', 'evaluate_deltas', 'AntiSymmetricTensor', 'substitute_dummies', 'PermutationOperator', 'simplify_index_permutations', ] class SecondQuantizationError(Exception): pass class AppliesOnlyToSymbolicIndex(SecondQuantizationError): pass class ContractionAppliesOnlyToFermions(SecondQuantizationError): pass class ViolationOfPauliPrinciple(SecondQuantizationError): pass class SubstitutionOfAmbigousOperatorFailed(SecondQuantizationError): pass class WicksTheoremDoesNotApply(SecondQuantizationError): pass class Dagger(Expr): """ Hermitian conjugate of creation/annihilation operators. Examples ======== >>> from sympy import I >>> from sympy.physics.secondquant import Dagger, B, Bd >>> Dagger(2*I) -2*I >>> Dagger(B(0)) CreateBoson(0) >>> Dagger(Bd(0)) AnnihilateBoson(0) """ def __new__(cls, arg): arg = sympify(arg) r = cls.eval(arg) if isinstance(r, Basic): return r obj = Basic.__new__(cls, arg) return obj @classmethod def eval(cls, arg): """ Evaluates the Dagger instance. Examples ======== >>> from sympy import I >>> from sympy.physics.secondquant import Dagger, B, Bd >>> Dagger(2*I) -2*I >>> Dagger(B(0)) CreateBoson(0) >>> Dagger(Bd(0)) AnnihilateBoson(0) The eval() method is called automatically. """ dagger = getattr(arg, '_dagger_', None) if dagger is not None: return dagger() if isinstance(arg, Basic): if arg.is_Add: return Add(*tuple(map(Dagger, arg.args))) if arg.is_Mul: return Mul(*tuple(map(Dagger, reversed(arg.args)))) if arg.is_Number: return arg if arg.is_Pow: return Pow(Dagger(arg.args[0]), arg.args[1]) if arg == I: return -arg else: return None def _dagger_(self): return self.args[0] class TensorSymbol(Expr): is_commutative = True class AntiSymmetricTensor(TensorSymbol): """Stores upper and lower indices in separate Tuple's. Each group of indices is assumed to be antisymmetric. Examples ======== >>> from sympy import symbols >>> from sympy.physics.secondquant import AntiSymmetricTensor >>> i, j = symbols('i j', below_fermi=True) >>> a, b = symbols('a b', above_fermi=True) >>> AntiSymmetricTensor('v', (a, i), (b, j)) AntiSymmetricTensor(v, (a, i), (b, j)) >>> AntiSymmetricTensor('v', (i, a), (b, j)) -AntiSymmetricTensor(v, (a, i), (b, j)) As you can see, the indices are automatically sorted to a canonical form. """ def __new__(cls, symbol, upper, lower): try: upper, signu = _sort_anticommuting_fermions( upper, key=cls._sortkey) lower, signl = _sort_anticommuting_fermions( lower, key=cls._sortkey) except ViolationOfPauliPrinciple: return S.Zero symbol = sympify(symbol) upper = Tuple(*upper) lower = Tuple(*lower) if (signu + signl) % 2: return -TensorSymbol.__new__(cls, symbol, upper, lower) else: return TensorSymbol.__new__(cls, symbol, upper, lower) @classmethod def _sortkey(cls, index): """Key for sorting of indices. particle < hole < general FIXME: This is a bottle-neck, can we do it faster? """ h = hash(index) label = str(index) if isinstance(index, Dummy): if index.assumptions0.get('above_fermi'): return (20, label, h) elif index.assumptions0.get('below_fermi'): return (21, label, h) else: return (22, label, h) if index.assumptions0.get('above_fermi'): return (10, label, h) elif index.assumptions0.get('below_fermi'): return (11, label, h) else: return (12, label, h) def _latex(self, printer): return "%s^{%s}_{%s}" % ( self.symbol, "".join([ i.name for i in self.args[1]]), "".join([ i.name for i in self.args[2]]) ) @property def symbol(self): """ Returns the symbol of the tensor. Examples ======== >>> from sympy import symbols >>> from sympy.physics.secondquant import AntiSymmetricTensor >>> i, j = symbols('i,j', below_fermi=True) >>> a, b = symbols('a,b', above_fermi=True) >>> AntiSymmetricTensor('v', (a, i), (b, j)) AntiSymmetricTensor(v, (a, i), (b, j)) >>> AntiSymmetricTensor('v', (a, i), (b, j)).symbol v """ return self.args[0] @property def upper(self): """ Returns the upper indices. Examples ======== >>> from sympy import symbols >>> from sympy.physics.secondquant import AntiSymmetricTensor >>> i, j = symbols('i,j', below_fermi=True) >>> a, b = symbols('a,b', above_fermi=True) >>> AntiSymmetricTensor('v', (a, i), (b, j)) AntiSymmetricTensor(v, (a, i), (b, j)) >>> AntiSymmetricTensor('v', (a, i), (b, j)).upper (a, i) """ return self.args[1] @property def lower(self): """ Returns the lower indices. Examples ======== >>> from sympy import symbols >>> from sympy.physics.secondquant import AntiSymmetricTensor >>> i, j = symbols('i,j', below_fermi=True) >>> a, b = symbols('a,b', above_fermi=True) >>> AntiSymmetricTensor('v', (a, i), (b, j)) AntiSymmetricTensor(v, (a, i), (b, j)) >>> AntiSymmetricTensor('v', (a, i), (b, j)).lower (b, j) """ return self.args[2] def __str__(self): return "%s(%s,%s)" % self.args def doit(self, **kw_args): """ Returns self. Examples ======== >>> from sympy import symbols >>> from sympy.physics.secondquant import AntiSymmetricTensor >>> i, j = symbols('i,j', below_fermi=True) >>> a, b = symbols('a,b', above_fermi=True) >>> AntiSymmetricTensor('v', (a, i), (b, j)).doit() AntiSymmetricTensor(v, (a, i), (b, j)) """ return self class SqOperator(Expr): """ Base class for Second Quantization operators. """ op_symbol = 'sq' is_commutative = False def __new__(cls, k): obj = Basic.__new__(cls, sympify(k)) return obj @property def state(self): """ Returns the state index related to this operator. >>> from sympy import Symbol >>> from sympy.physics.secondquant import F, Fd, B, Bd >>> p = Symbol('p') >>> F(p).state p >>> Fd(p).state p >>> B(p).state p >>> Bd(p).state p """ return self.args[0] @property def is_symbolic(self): """ Returns True if the state is a symbol (as opposed to a number). >>> from sympy import Symbol >>> from sympy.physics.secondquant import F >>> p = Symbol('p') >>> F(p).is_symbolic True >>> F(1).is_symbolic False """ if self.state.is_Integer: return False else: return True def doit(self, **kw_args): """ FIXME: hack to prevent crash further up... """ return self def __repr__(self): return NotImplemented def __str__(self): return "%s(%r)" % (self.op_symbol, self.state) def apply_operator(self, state): """ Applies an operator to itself. """ raise NotImplementedError('implement apply_operator in a subclass') class BosonicOperator(SqOperator): pass class Annihilator(SqOperator): pass class Creator(SqOperator): pass class AnnihilateBoson(BosonicOperator, Annihilator): """ Bosonic annihilation operator. Examples ======== >>> from sympy.physics.secondquant import B >>> from sympy.abc import x >>> B(x) AnnihilateBoson(x) """ op_symbol = 'b' def _dagger_(self): return CreateBoson(self.state) def apply_operator(self, state): """ Apply state to self if self is not symbolic and state is a FockStateKet, else multiply self by state. Examples ======== >>> from sympy.physics.secondquant import B, BKet >>> from sympy.abc import x, y, n >>> B(x).apply_operator(y) y*AnnihilateBoson(x) >>> B(0).apply_operator(BKet((n,))) sqrt(n)*FockStateBosonKet((n - 1,)) """ if not self.is_symbolic and isinstance(state, FockStateKet): element = self.state amp = sqrt(state[element]) return amp*state.down(element) else: return Mul(self, state) def __repr__(self): return "AnnihilateBoson(%s)" % self.state def _latex(self, printer): return "b_{%s}" % self.state.name class CreateBoson(BosonicOperator, Creator): """ Bosonic creation operator. """ op_symbol = 'b+' def _dagger_(self): return AnnihilateBoson(self.state) def apply_operator(self, state): """ Apply state to self if self is not symbolic and state is a FockStateKet, else multiply self by state. Examples ======== >>> from sympy.physics.secondquant import B, Dagger, BKet >>> from sympy.abc import x, y, n >>> Dagger(B(x)).apply_operator(y) y*CreateBoson(x) >>> B(0).apply_operator(BKet((n,))) sqrt(n)*FockStateBosonKet((n - 1,)) """ if not self.is_symbolic and isinstance(state, FockStateKet): element = self.state amp = sqrt(state[element] + 1) return amp*state.up(element) else: return Mul(self, state) def __repr__(self): return "CreateBoson(%s)" % self.state def _latex(self, printer): return "b^\\dagger_{%s}" % self.state.name B = AnnihilateBoson Bd = CreateBoson class FermionicOperator(SqOperator): @property def is_restricted(self): """ Is this FermionicOperator restricted with respect to fermi level? Return values: 1 : restricted to orbits above fermi 0 : no restriction -1 : restricted to orbits below fermi >>> from sympy import Symbol >>> from sympy.physics.secondquant import F, Fd >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> F(a).is_restricted 1 >>> Fd(a).is_restricted 1 >>> F(i).is_restricted -1 >>> Fd(i).is_restricted -1 >>> F(p).is_restricted 0 >>> Fd(p).is_restricted 0 """ ass = self.args[0].assumptions0 if ass.get("below_fermi"): return -1 if ass.get("above_fermi"): return 1 return 0 @property def is_above_fermi(self): """ Does the index of this FermionicOperator allow values above fermi? >>> from sympy import Symbol >>> from sympy.physics.secondquant import F >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> F(a).is_above_fermi True >>> F(i).is_above_fermi False >>> F(p).is_above_fermi True The same applies to creation operators Fd """ return not self.args[0].assumptions0.get("below_fermi") @property def is_below_fermi(self): """ Does the index of this FermionicOperator allow values below fermi? >>> from sympy import Symbol >>> from sympy.physics.secondquant import F >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> F(a).is_below_fermi False >>> F(i).is_below_fermi True >>> F(p).is_below_fermi True The same applies to creation operators Fd """ return not self.args[0].assumptions0.get("above_fermi") @property def is_only_below_fermi(self): """ Is the index of this FermionicOperator restricted to values below fermi? >>> from sympy import Symbol >>> from sympy.physics.secondquant import F >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> F(a).is_only_below_fermi False >>> F(i).is_only_below_fermi True >>> F(p).is_only_below_fermi False The same applies to creation operators Fd """ return self.is_below_fermi and not self.is_above_fermi @property def is_only_above_fermi(self): """ Is the index of this FermionicOperator restricted to values above fermi? >>> from sympy import Symbol >>> from sympy.physics.secondquant import F >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> F(a).is_only_above_fermi True >>> F(i).is_only_above_fermi False >>> F(p).is_only_above_fermi False The same applies to creation operators Fd """ return self.is_above_fermi and not self.is_below_fermi def _sortkey(self): h = hash(self) label = str(self.args[0]) if self.is_only_q_creator: return 1, label, h if self.is_only_q_annihilator: return 4, label, h if isinstance(self, Annihilator): return 3, label, h if isinstance(self, Creator): return 2, label, h class AnnihilateFermion(FermionicOperator, Annihilator): """ Fermionic annihilation operator. """ op_symbol = 'f' def _dagger_(self): return CreateFermion(self.state) def apply_operator(self, state): """ Apply state to self if self is not symbolic and state is a FockStateKet, else multiply self by state. Examples ======== >>> from sympy.physics.secondquant import B, Dagger, BKet >>> from sympy.abc import x, y, n >>> Dagger(B(x)).apply_operator(y) y*CreateBoson(x) >>> B(0).apply_operator(BKet((n,))) sqrt(n)*FockStateBosonKet((n - 1,)) """ if isinstance(state, FockStateFermionKet): element = self.state return state.down(element) elif isinstance(state, Mul): c_part, nc_part = state.args_cnc() if isinstance(nc_part[0], FockStateFermionKet): element = self.state return Mul(*(c_part + [nc_part[0].down(element)] + nc_part[1:])) else: return Mul(self, state) else: return Mul(self, state) @property def is_q_creator(self): """ Can we create a quasi-particle? (create hole or create particle) If so, would that be above or below the fermi surface? >>> from sympy import Symbol >>> from sympy.physics.secondquant import F >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> F(a).is_q_creator 0 >>> F(i).is_q_creator -1 >>> F(p).is_q_creator -1 """ if self.is_below_fermi: return -1 return 0 @property def is_q_annihilator(self): """ Can we destroy a quasi-particle? (annihilate hole or annihilate particle) If so, would that be above or below the fermi surface? >>> from sympy import Symbol >>> from sympy.physics.secondquant import F >>> a = Symbol('a', above_fermi=1) >>> i = Symbol('i', below_fermi=1) >>> p = Symbol('p') >>> F(a).is_q_annihilator 1 >>> F(i).is_q_annihilator 0 >>> F(p).is_q_annihilator 1 """ if self.is_above_fermi: return 1 return 0 @property def is_only_q_creator(self): """ Always create a quasi-particle? (create hole or create particle) >>> from sympy import Symbol >>> from sympy.physics.secondquant import F >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> F(a).is_only_q_creator False >>> F(i).is_only_q_creator True >>> F(p).is_only_q_creator False """ return self.is_only_below_fermi @property def is_only_q_annihilator(self): """ Always destroy a quasi-particle? (annihilate hole or annihilate particle) >>> from sympy import Symbol >>> from sympy.physics.secondquant import F >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> F(a).is_only_q_annihilator True >>> F(i).is_only_q_annihilator False >>> F(p).is_only_q_annihilator False """ return self.is_only_above_fermi def __repr__(self): return "AnnihilateFermion(%s)" % self.state def _latex(self, printer): return "a_{%s}" % self.state.name class CreateFermion(FermionicOperator, Creator): """ Fermionic creation operator. """ op_symbol = 'f+' def _dagger_(self): return AnnihilateFermion(self.state) def apply_operator(self, state): """ Apply state to self if self is not symbolic and state is a FockStateKet, else multiply self by state. Examples ======== >>> from sympy.physics.secondquant import B, Dagger, BKet >>> from sympy.abc import x, y, n >>> Dagger(B(x)).apply_operator(y) y*CreateBoson(x) >>> B(0).apply_operator(BKet((n,))) sqrt(n)*FockStateBosonKet((n - 1,)) """ if isinstance(state, FockStateFermionKet): element = self.state return state.up(element) elif isinstance(state, Mul): c_part, nc_part = state.args_cnc() if isinstance(nc_part[0], FockStateFermionKet): element = self.state return Mul(*(c_part + [nc_part[0].up(element)] + nc_part[1:])) return Mul(self, state) @property def is_q_creator(self): """ Can we create a quasi-particle? (create hole or create particle) If so, would that be above or below the fermi surface? >>> from sympy import Symbol >>> from sympy.physics.secondquant import Fd >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> Fd(a).is_q_creator 1 >>> Fd(i).is_q_creator 0 >>> Fd(p).is_q_creator 1 """ if self.is_above_fermi: return 1 return 0 @property def is_q_annihilator(self): """ Can we destroy a quasi-particle? (annihilate hole or annihilate particle) If so, would that be above or below the fermi surface? >>> from sympy import Symbol >>> from sympy.physics.secondquant import Fd >>> a = Symbol('a', above_fermi=1) >>> i = Symbol('i', below_fermi=1) >>> p = Symbol('p') >>> Fd(a).is_q_annihilator 0 >>> Fd(i).is_q_annihilator -1 >>> Fd(p).is_q_annihilator -1 """ if self.is_below_fermi: return -1 return 0 @property def is_only_q_creator(self): """ Always create a quasi-particle? (create hole or create particle) >>> from sympy import Symbol >>> from sympy.physics.secondquant import Fd >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> Fd(a).is_only_q_creator True >>> Fd(i).is_only_q_creator False >>> Fd(p).is_only_q_creator False """ return self.is_only_above_fermi @property def is_only_q_annihilator(self): """ Always destroy a quasi-particle? (annihilate hole or annihilate particle) >>> from sympy import Symbol >>> from sympy.physics.secondquant import Fd >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> Fd(a).is_only_q_annihilator False >>> Fd(i).is_only_q_annihilator True >>> Fd(p).is_only_q_annihilator False """ return self.is_only_below_fermi def __repr__(self): return "CreateFermion(%s)" % self.state def _latex(self, printer): return "a^\\dagger_{%s}" % self.state.name Fd = CreateFermion F = AnnihilateFermion class FockState(Expr): """ Many particle Fock state with a sequence of occupation numbers. Anywhere you can have a FockState, you can also have S.Zero. All code must check for this! Base class to represent FockStates. """ is_commutative = False def __new__(cls, occupations): """ occupations is a list with two possible meanings: - For bosons it is a list of occupation numbers. Element i is the number of particles in state i. - For fermions it is a list of occupied orbits. Element 0 is the state that was occupied first, element i is the i'th occupied state. """ occupations = list(map(sympify, occupations)) obj = Basic.__new__(cls, Tuple(*occupations)) return obj def __getitem__(self, i): i = int(i) return self.args[0][i] def __repr__(self): return ("FockState(%r)") % (self.args) def __str__(self): return "%s%r%s" % (self.lbracket, self._labels(), self.rbracket) def _labels(self): return self.args[0] def __len__(self): return len(self.args[0]) class BosonState(FockState): """ Base class for FockStateBoson(Ket/Bra). """ def up(self, i): """ Performs the action of a creation operator. Examples ======== >>> from sympy.physics.secondquant import BBra >>> b = BBra([1, 2]) >>> b FockStateBosonBra((1, 2)) >>> b.up(1) FockStateBosonBra((1, 3)) """ i = int(i) new_occs = list(self.args[0]) new_occs[i] = new_occs[i] + S.One return self.__class__(new_occs) def down(self, i): """ Performs the action of an annihilation operator. Examples ======== >>> from sympy.physics.secondquant import BBra >>> b = BBra([1, 2]) >>> b FockStateBosonBra((1, 2)) >>> b.down(1) FockStateBosonBra((1, 1)) """ i = int(i) new_occs = list(self.args[0]) if new_occs[i] == S.Zero: return S.Zero else: new_occs[i] = new_occs[i] - S.One return self.__class__(new_occs) class FermionState(FockState): """ Base class for FockStateFermion(Ket/Bra). """ fermi_level = 0 def __new__(cls, occupations, fermi_level=0): occupations = list(map(sympify, occupations)) if len(occupations) > 1: try: (occupations, sign) = _sort_anticommuting_fermions( occupations, key=hash) except ViolationOfPauliPrinciple: return S.Zero else: sign = 0 cls.fermi_level = fermi_level if cls._count_holes(occupations) > fermi_level: return S.Zero if sign % 2: return S.NegativeOne*FockState.__new__(cls, occupations) else: return FockState.__new__(cls, occupations) def up(self, i): """ Performs the action of a creation operator. If below fermi we try to remove a hole, if above fermi we try to create a particle. if general index p we return Kronecker(p,i)*self where i is a new symbol with restriction above or below. >>> from sympy import Symbol >>> from sympy.physics.secondquant import FKet >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> FKet([]).up(a) FockStateFermionKet((a,)) A creator acting on vacuum below fermi vanishes >>> FKet([]).up(i) 0 """ present = i in self.args[0] if self._only_above_fermi(i): if present: return S.Zero else: return self._add_orbit(i) elif self._only_below_fermi(i): if present: return self._remove_orbit(i) else: return S.Zero else: if present: hole = Dummy("i", below_fermi=True) return KroneckerDelta(i, hole)*self._remove_orbit(i) else: particle = Dummy("a", above_fermi=True) return KroneckerDelta(i, particle)*self._add_orbit(i) def down(self, i): """ Performs the action of an annihilation operator. If below fermi we try to create a hole, if above fermi we try to remove a particle. if general index p we return Kronecker(p,i)*self where i is a new symbol with restriction above or below. >>> from sympy import Symbol >>> from sympy.physics.secondquant import FKet >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') An annihilator acting on vacuum above fermi vanishes >>> FKet([]).down(a) 0 Also below fermi, it vanishes, unless we specify a fermi level > 0 >>> FKet([]).down(i) 0 >>> FKet([],4).down(i) FockStateFermionKet((i,)) """ present = i in self.args[0] if self._only_above_fermi(i): if present: return self._remove_orbit(i) else: return S.Zero elif self._only_below_fermi(i): if present: return S.Zero else: return self._add_orbit(i) else: if present: hole = Dummy("i", below_fermi=True) return KroneckerDelta(i, hole)*self._add_orbit(i) else: particle = Dummy("a", above_fermi=True) return KroneckerDelta(i, particle)*self._remove_orbit(i) @classmethod def _only_below_fermi(cls, i): """ Tests if given orbit is only below fermi surface. If nothing can be concluded we return a conservative False. """ if i.is_number: return i <= cls.fermi_level if i.assumptions0.get('below_fermi'): return True return False @classmethod def _only_above_fermi(cls, i): """ Tests if given orbit is only above fermi surface. If fermi level has not been set we return True. If nothing can be concluded we return a conservative False. """ if i.is_number: return i > cls.fermi_level if i.assumptions0.get('above_fermi'): return True return not cls.fermi_level def _remove_orbit(self, i): """ Removes particle/fills hole in orbit i. No input tests performed here. """ new_occs = list(self.args[0]) pos = new_occs.index(i) del new_occs[pos] if (pos) % 2: return S.NegativeOne*self.__class__(new_occs, self.fermi_level) else: return self.__class__(new_occs, self.fermi_level) def _add_orbit(self, i): """ Adds particle/creates hole in orbit i. No input tests performed here. """ return self.__class__((i,) + self.args[0], self.fermi_level) @classmethod def _count_holes(cls, list): """ returns number of identified hole states in list. """ return len([i for i in list if cls._only_below_fermi(i)]) def _negate_holes(self, list): return tuple([-i if i <= self.fermi_level else i for i in list]) def __repr__(self): if self.fermi_level: return "FockStateKet(%r, fermi_level=%s)" % (self.args[0], self.fermi_level) else: return "FockStateKet(%r)" % (self.args[0],) def _labels(self): return self._negate_holes(self.args[0]) class FockStateKet(FockState): """ Representation of a ket. """ lbracket = '|' rbracket = '>' class FockStateBra(FockState): """ Representation of a bra. """ lbracket = '<' rbracket = '|' def __mul__(self, other): if isinstance(other, FockStateKet): return InnerProduct(self, other) else: return Expr.__mul__(self, other) class FockStateBosonKet(BosonState, FockStateKet): """ Many particle Fock state with a sequence of occupation numbers. Occupation numbers can be any integer >= 0. Examples ======== >>> from sympy.physics.secondquant import BKet >>> BKet([1, 2]) FockStateBosonKet((1, 2)) """ def _dagger_(self): return FockStateBosonBra(*self.args) class FockStateBosonBra(BosonState, FockStateBra): """ Describes a collection of BosonBra particles. Examples ======== >>> from sympy.physics.secondquant import BBra >>> BBra([1, 2]) FockStateBosonBra((1, 2)) """ def _dagger_(self): return FockStateBosonKet(*self.args) class FockStateFermionKet(FermionState, FockStateKet): """ Many-particle Fock state with a sequence of occupied orbits. Each state can only have one particle, so we choose to store a list of occupied orbits rather than a tuple with occupation numbers (zeros and ones). states below fermi level are holes, and are represented by negative labels in the occupation list. For symbolic state labels, the fermi_level caps the number of allowed hole- states. Examples ======== >>> from sympy.physics.secondquant import FKet >>> FKet([1, 2]) #doctest: +SKIP FockStateFermionKet((1, 2)) """ def _dagger_(self): return FockStateFermionBra(*self.args) class FockStateFermionBra(FermionState, FockStateBra): """ See Also ======== FockStateFermionKet Examples ======== >>> from sympy.physics.secondquant import FBra >>> FBra([1, 2]) #doctest: +SKIP FockStateFermionBra((1, 2)) """ def _dagger_(self): return FockStateFermionKet(*self.args) BBra = FockStateBosonBra BKet = FockStateBosonKet FBra = FockStateFermionBra FKet = FockStateFermionKet def _apply_Mul(m): """ Take a Mul instance with operators and apply them to states. This method applies all operators with integer state labels to the actual states. For symbolic state labels, nothing is done. When inner products of FockStates are encountered (like <a|b>), they are converted to instances of InnerProduct. This does not currently work on double inner products like, <a|b><c|d>. If the argument is not a Mul, it is simply returned as is. """ if not isinstance(m, Mul): return m c_part, nc_part = m.args_cnc() n_nc = len(nc_part) if n_nc == 0 or n_nc == 1: return m else: last = nc_part[-1] next_to_last = nc_part[-2] if isinstance(last, FockStateKet): if isinstance(next_to_last, SqOperator): if next_to_last.is_symbolic: return m else: result = next_to_last.apply_operator(last) if result == 0: return S.Zero else: return _apply_Mul(Mul(*(c_part + nc_part[:-2] + [result]))) elif isinstance(next_to_last, Pow): if isinstance(next_to_last.base, SqOperator) and \ next_to_last.exp.is_Integer: if next_to_last.base.is_symbolic: return m else: result = last for i in range(next_to_last.exp): result = next_to_last.base.apply_operator(result) if result == 0: break if result == 0: return S.Zero else: return _apply_Mul(Mul(*(c_part + nc_part[:-2] + [result]))) else: return m elif isinstance(next_to_last, FockStateBra): result = InnerProduct(next_to_last, last) if result == 0: return S.Zero else: return _apply_Mul(Mul(*(c_part + nc_part[:-2] + [result]))) else: return m else: return m def apply_operators(e): """ Take a sympy expression with operators and states and apply the operators. Examples ======== >>> from sympy.physics.secondquant import apply_operators >>> from sympy import sympify >>> apply_operators(sympify(3)+4) 7 """ e = e.expand() muls = e.atoms(Mul) subs_list = [(m, _apply_Mul(m)) for m in iter(muls)] return e.subs(subs_list) class InnerProduct(Basic): """ An unevaluated inner product between a bra and ket. Currently this class just reduces things to a product of Kronecker Deltas. In the future, we could introduce abstract states like ``|a>`` and ``|b>``, and leave the inner product unevaluated as ``<a|b>``. """ is_commutative = True def __new__(cls, bra, ket): if not isinstance(bra, FockStateBra): raise TypeError("must be a bra") if not isinstance(ket, FockStateKet): raise TypeError("must be a key") return cls.eval(bra, ket) @classmethod def eval(cls, bra, ket): result = S.One for i, j in zip(bra.args[0], ket.args[0]): result *= KroneckerDelta(i, j) if result == 0: break return result @property def bra(self): """Returns the bra part of the state""" return self.args[0] @property def ket(self): """Returns the ket part of the state""" return self.args[1] def __repr__(self): sbra = repr(self.bra) sket = repr(self.ket) return "%s|%s" % (sbra[:-1], sket[1:]) def __str__(self): return self.__repr__() def matrix_rep(op, basis): """ Find the representation of an operator in a basis. Examples ======== >>> from sympy.physics.secondquant import VarBosonicBasis, B, matrix_rep >>> b = VarBosonicBasis(5) >>> o = B(0) >>> matrix_rep(o, b) Matrix([ [0, 1, 0, 0, 0], [0, 0, sqrt(2), 0, 0], [0, 0, 0, sqrt(3), 0], [0, 0, 0, 0, 2], [0, 0, 0, 0, 0]]) """ a = zeros(len(basis)) for i in range(len(basis)): for j in range(len(basis)): a[i, j] = apply_operators(Dagger(basis[i])*op*basis[j]) return a class BosonicBasis(object): """ Base class for a basis set of bosonic Fock states. """ pass class VarBosonicBasis(object): """ A single state, variable particle number basis set. Examples ======== >>> from sympy.physics.secondquant import VarBosonicBasis >>> b = VarBosonicBasis(5) >>> b [FockState((0,)), FockState((1,)), FockState((2,)), FockState((3,)), FockState((4,))] """ def __init__(self, n_max): self.n_max = n_max self._build_states() def _build_states(self): self.basis = [] for i in range(self.n_max): self.basis.append(FockStateBosonKet([i])) self.n_basis = len(self.basis) def index(self, state): """ Returns the index of state in basis. Examples ======== >>> from sympy.physics.secondquant import VarBosonicBasis >>> b = VarBosonicBasis(3) >>> state = b.state(1) >>> b [FockState((0,)), FockState((1,)), FockState((2,))] >>> state FockStateBosonKet((1,)) >>> b.index(state) 1 """ return self.basis.index(state) def state(self, i): """ The state of a single basis. Examples ======== >>> from sympy.physics.secondquant import VarBosonicBasis >>> b = VarBosonicBasis(5) >>> b.state(3) FockStateBosonKet((3,)) """ return self.basis[i] def __getitem__(self, i): return self.state(i) def __len__(self): return len(self.basis) def __repr__(self): return repr(self.basis) class FixedBosonicBasis(BosonicBasis): """ Fixed particle number basis set. Examples ======== >>> from sympy.physics.secondquant import FixedBosonicBasis >>> b = FixedBosonicBasis(2, 2) >>> state = b.state(1) >>> b [FockState((2, 0)), FockState((1, 1)), FockState((0, 2))] >>> state FockStateBosonKet((1, 1)) >>> b.index(state) 1 """ def __init__(self, n_particles, n_levels): self.n_particles = n_particles self.n_levels = n_levels self._build_particle_locations() self._build_states() def _build_particle_locations(self): tup = ["i%i" % i for i in range(self.n_particles)] first_loop = "for i0 in range(%i)" % self.n_levels other_loops = '' for cur, prev in zip(tup[1:], tup): temp = "for %s in range(%s + 1) " % (cur, prev) other_loops = other_loops + temp tup_string = "(%s)" % ", ".join(tup) list_comp = "[%s %s %s]" % (tup_string, first_loop, other_loops) result = eval(list_comp) if self.n_particles == 1: result = [(item,) for item in result] self.particle_locations = result def _build_states(self): self.basis = [] for tuple_of_indices in self.particle_locations: occ_numbers = self.n_levels*[0] for level in tuple_of_indices: occ_numbers[level] += 1 self.basis.append(FockStateBosonKet(occ_numbers)) self.n_basis = len(self.basis) def index(self, state): """Returns the index of state in basis. Examples ======== >>> from sympy.physics.secondquant import FixedBosonicBasis >>> b = FixedBosonicBasis(2, 3) >>> b.index(b.state(3)) 3 """ return self.basis.index(state) def state(self, i): """Returns the state that lies at index i of the basis Examples ======== >>> from sympy.physics.secondquant import FixedBosonicBasis >>> b = FixedBosonicBasis(2, 3) >>> b.state(3) FockStateBosonKet((1, 0, 1)) """ return self.basis[i] def __getitem__(self, i): return self.state(i) def __len__(self): return len(self.basis) def __repr__(self): return repr(self.basis) class Commutator(Function): """ The Commutator: [A, B] = A*B - B*A The arguments are ordered according to .__cmp__() >>> from sympy import symbols >>> from sympy.physics.secondquant import Commutator >>> A, B = symbols('A,B', commutative=False) >>> Commutator(B, A) -Commutator(A, B) Evaluate the commutator with .doit() >>> comm = Commutator(A,B); comm Commutator(A, B) >>> comm.doit() A*B - B*A For two second quantization operators the commutator is evaluated immediately: >>> from sympy.physics.secondquant import Fd, F >>> a = symbols('a', above_fermi=True) >>> i = symbols('i', below_fermi=True) >>> p,q = symbols('p,q') >>> Commutator(Fd(a),Fd(i)) 2*NO(CreateFermion(a)*CreateFermion(i)) But for more complicated expressions, the evaluation is triggered by a call to .doit() >>> comm = Commutator(Fd(p)*Fd(q),F(i)); comm Commutator(CreateFermion(p)*CreateFermion(q), AnnihilateFermion(i)) >>> comm.doit(wicks=True) -KroneckerDelta(i, p)*CreateFermion(q) + KroneckerDelta(i, q)*CreateFermion(p) """ is_commutative = False @classmethod def eval(cls, a, b): """ The Commutator [A,B] is on canonical form if A < B. Examples ======== >>> from sympy.physics.secondquant import Commutator, F, Fd >>> from sympy.abc import x >>> c1 = Commutator(F(x), Fd(x)) >>> c2 = Commutator(Fd(x), F(x)) >>> Commutator.eval(c1, c2) 0 """ if not (a and b): return S.Zero if a == b: return S.Zero if a.is_commutative or b.is_commutative: return S.Zero # # [A+B,C] -> [A,C] + [B,C] # a = a.expand() if isinstance(a, Add): return Add(*[cls(term, b) for term in a.args]) b = b.expand() if isinstance(b, Add): return Add(*[cls(a, term) for term in b.args]) # # [xA,yB] -> xy*[A,B] # ca, nca = a.args_cnc() cb, ncb = b.args_cnc() c_part = list(ca) + list(cb) if c_part: return Mul(Mul(*c_part), cls(Mul._from_args(nca), Mul._from_args(ncb))) # # single second quantization operators # if isinstance(a, BosonicOperator) and isinstance(b, BosonicOperator): if isinstance(b, CreateBoson) and isinstance(a, AnnihilateBoson): return KroneckerDelta(a.state, b.state) if isinstance(a, CreateBoson) and isinstance(b, AnnihilateBoson): return S.NegativeOne*KroneckerDelta(a.state, b.state) else: return S.Zero if isinstance(a, FermionicOperator) and isinstance(b, FermionicOperator): return wicks(a*b) - wicks(b*a) # # Canonical ordering of arguments # if a.sort_key() > b.sort_key(): return S.NegativeOne*cls(b, a) def doit(self, **hints): """ Enables the computation of complex expressions. Examples ======== >>> from sympy.physics.secondquant import Commutator, F, Fd >>> from sympy import symbols >>> i, j = symbols('i,j', below_fermi=True) >>> a, b = symbols('a,b', above_fermi=True) >>> c = Commutator(Fd(a)*F(i),Fd(b)*F(j)) >>> c.doit(wicks=True) 0 """ a = self.args[0] b = self.args[1] if hints.get("wicks"): a = a.doit(**hints) b = b.doit(**hints) try: return wicks(a*b) - wicks(b*a) except ContractionAppliesOnlyToFermions: pass except WicksTheoremDoesNotApply: pass return (a*b - b*a).doit(**hints) def __repr__(self): return "Commutator(%s,%s)" % (self.args[0], self.args[1]) def __str__(self): return "[%s,%s]" % (self.args[0], self.args[1]) def _latex(self, printer): return "\\left[%s,%s\\right]" % tuple([ printer._print(arg) for arg in self.args]) class NO(Expr): """ This Object is used to represent normal ordering brackets. i.e. {abcd} sometimes written :abcd: Applying the function NO(arg) to an argument means that all operators in the argument will be assumed to anticommute, and have vanishing contractions. This allows an immediate reordering to canonical form upon object creation. >>> from sympy import symbols >>> from sympy.physics.secondquant import NO, F, Fd >>> p,q = symbols('p,q') >>> NO(Fd(p)*F(q)) NO(CreateFermion(p)*AnnihilateFermion(q)) >>> NO(F(q)*Fd(p)) -NO(CreateFermion(p)*AnnihilateFermion(q)) Note: If you want to generate a normal ordered equivalent of an expression, you should use the function wicks(). This class only indicates that all operators inside the brackets anticommute, and have vanishing contractions. Nothing more, nothing less. """ is_commutative = False def __new__(cls, arg): """ Use anticommutation to get canonical form of operators. Employ associativity of normal ordered product: {ab{cd}} = {abcd} but note that {ab}{cd} /= {abcd}. We also employ distributivity: {ab + cd} = {ab} + {cd}. Canonical form also implies expand() {ab(c+d)} = {abc} + {abd}. """ # {ab + cd} = {ab} + {cd} arg = sympify(arg) arg = arg.expand() if arg.is_Add: return Add(*[ cls(term) for term in arg.args]) if arg.is_Mul: # take coefficient outside of normal ordering brackets c_part, seq = arg.args_cnc() if c_part: coeff = Mul(*c_part) if not seq: return coeff else: coeff = S.One # {ab{cd}} = {abcd} newseq = [] foundit = False for fac in seq: if isinstance(fac, NO): newseq.extend(fac.args) foundit = True else: newseq.append(fac) if foundit: return coeff*cls(Mul(*newseq)) # We assume that the user don't mix B and F operators if isinstance(seq[0], BosonicOperator): raise NotImplementedError try: newseq, sign = _sort_anticommuting_fermions(seq) except ViolationOfPauliPrinciple: return S.Zero if sign % 2: return (S.NegativeOne*coeff)*cls(Mul(*newseq)) elif sign: return coeff*cls(Mul(*newseq)) else: pass # since sign==0, no permutations was necessary # if we couldn't do anything with Mul object, we just # mark it as normal ordered if coeff != S.One: return coeff*cls(Mul(*newseq)) return Expr.__new__(cls, Mul(*newseq)) if isinstance(arg, NO): return arg # if object was not Mul or Add, normal ordering does not apply return arg @property def has_q_creators(self): """ Return 0 if the leftmost argument of the first argument is a not a q_creator, else 1 if it is above fermi or -1 if it is below fermi. Examples ======== >>> from sympy import symbols >>> from sympy.physics.secondquant import NO, F, Fd >>> a = symbols('a', above_fermi=True) >>> i = symbols('i', below_fermi=True) >>> NO(Fd(a)*Fd(i)).has_q_creators 1 >>> NO(F(i)*F(a)).has_q_creators -1 >>> NO(Fd(i)*F(a)).has_q_creators #doctest: +SKIP 0 """ return self.args[0].args[0].is_q_creator @property def has_q_annihilators(self): """ Return 0 if the rightmost argument of the first argument is a not a q_annihilator, else 1 if it is above fermi or -1 if it is below fermi. Examples ======== >>> from sympy import symbols >>> from sympy.physics.secondquant import NO, F, Fd >>> a = symbols('a', above_fermi=True) >>> i = symbols('i', below_fermi=True) >>> NO(Fd(a)*Fd(i)).has_q_annihilators -1 >>> NO(F(i)*F(a)).has_q_annihilators 1 >>> NO(Fd(a)*F(i)).has_q_annihilators 0 """ return self.args[0].args[-1].is_q_annihilator def doit(self, **kw_args): """ Either removes the brackets or enables complex computations in its arguments. Examples ======== >>> from sympy.physics.secondquant import NO, Fd, F >>> from textwrap import fill >>> from sympy import symbols, Dummy >>> p,q = symbols('p,q', cls=Dummy) >>> print(fill(str(NO(Fd(p)*F(q)).doit()))) KroneckerDelta(_a, _p)*KroneckerDelta(_a, _q)*CreateFermion(_a)*AnnihilateFermion(_a) + KroneckerDelta(_a, _p)*KroneckerDelta(_i, _q)*CreateFermion(_a)*AnnihilateFermion(_i) - KroneckerDelta(_a, _q)*KroneckerDelta(_i, _p)*AnnihilateFermion(_a)*CreateFermion(_i) - KroneckerDelta(_i, _p)*KroneckerDelta(_i, _q)*AnnihilateFermion(_i)*CreateFermion(_i) """ if kw_args.get("remove_brackets", True): return self._remove_brackets() else: return self.__new__(type(self), self.args[0].doit(**kw_args)) def _remove_brackets(self): """ Returns the sorted string without normal order brackets. The returned string have the property that no nonzero contractions exist. """ # check if any creator is also an annihilator subslist = [] for i in self.iter_q_creators(): if self[i].is_q_annihilator: assume = self[i].state.assumptions0 # only operators with a dummy index can be split in two terms if isinstance(self[i].state, Dummy): # create indices with fermi restriction assume.pop("above_fermi", None) assume["below_fermi"] = True below = Dummy('i', **assume) assume.pop("below_fermi", None) assume["above_fermi"] = True above = Dummy('a', **assume) cls = type(self[i]) split = ( self[i].__new__(cls, below) * KroneckerDelta(below, self[i].state) + self[i].__new__(cls, above) * KroneckerDelta(above, self[i].state) ) subslist.append((self[i], split)) else: raise SubstitutionOfAmbigousOperatorFailed(self[i]) if subslist: result = NO(self.subs(subslist)) if isinstance(result, Add): return Add(*[term.doit() for term in result.args]) else: return self.args[0] def _expand_operators(self): """ Returns a sum of NO objects that contain no ambiguous q-operators. If an index q has range both above and below fermi, the operator F(q) is ambiguous in the sense that it can be both a q-creator and a q-annihilator. If q is dummy, it is assumed to be a summation variable and this method rewrites it into a sum of NO terms with unambiguous operators: {Fd(p)*F(q)} = {Fd(a)*F(b)} + {Fd(a)*F(i)} + {Fd(j)*F(b)} -{F(i)*Fd(j)} where a,b are above and i,j are below fermi level. """ return NO(self._remove_brackets) def __getitem__(self, i): if isinstance(i, slice): indices = i.indices(len(self)) return [self.args[0].args[i] for i in range(*indices)] else: return self.args[0].args[i] def __len__(self): return len(self.args[0].args) def iter_q_annihilators(self): """ Iterates over the annihilation operators. Examples ======== >>> from sympy import symbols >>> i, j = symbols('i j', below_fermi=True) >>> a, b = symbols('a b', above_fermi=True) >>> from sympy.physics.secondquant import NO, F, Fd >>> no = NO(Fd(a)*F(i)*F(b)*Fd(j)) >>> no.iter_q_creators() <generator object... at 0x...> >>> list(no.iter_q_creators()) [0, 1] >>> list(no.iter_q_annihilators()) [3, 2] """ ops = self.args[0].args iter = range(len(ops) - 1, -1, -1) for i in iter: if ops[i].is_q_annihilator: yield i else: break def iter_q_creators(self): """ Iterates over the creation operators. Examples ======== >>> from sympy import symbols >>> i, j = symbols('i j', below_fermi=True) >>> a, b = symbols('a b', above_fermi=True) >>> from sympy.physics.secondquant import NO, F, Fd >>> no = NO(Fd(a)*F(i)*F(b)*Fd(j)) >>> no.iter_q_creators() <generator object... at 0x...> >>> list(no.iter_q_creators()) [0, 1] >>> list(no.iter_q_annihilators()) [3, 2] """ ops = self.args[0].args iter = range(0, len(ops)) for i in iter: if ops[i].is_q_creator: yield i else: break def get_subNO(self, i): """ Returns a NO() without FermionicOperator at index i. Examples ======== >>> from sympy import symbols >>> from sympy.physics.secondquant import F, NO >>> p,q,r = symbols('p,q,r') >>> NO(F(p)*F(q)*F(r)).get_subNO(1) # doctest: +SKIP NO(AnnihilateFermion(p)*AnnihilateFermion(r)) """ arg0 = self.args[0] # it's a Mul by definition of how it's created mul = arg0._new_rawargs(arg0.args[:i] + arg0.args[i + 1:]) return NO(mul) def _latex(self, printer): return "\\left\\{%s\\right\\}" % printer._print(self.args[0]) def __repr__(self): return "NO(%s)" % self.args[0] def __str__(self): return ":%s:" % self.args[0] def contraction(a, b): """ Calculates contraction of Fermionic operators a and b. Examples ======== >>> from sympy import symbols >>> from sympy.physics.secondquant import F, Fd, contraction >>> p, q = symbols('p,q') >>> a, b = symbols('a,b', above_fermi=True) >>> i, j = symbols('i,j', below_fermi=True) A contraction is non-zero only if a quasi-creator is to the right of a quasi-annihilator: >>> contraction(F(a),Fd(b)) KroneckerDelta(a, b) >>> contraction(Fd(i),F(j)) KroneckerDelta(i, j) For general indices a non-zero result restricts the indices to below/above the fermi surface: >>> contraction(Fd(p),F(q)) KroneckerDelta(_i, q)*KroneckerDelta(p, q) >>> contraction(F(p),Fd(q)) KroneckerDelta(_a, q)*KroneckerDelta(p, q) Two creators or two annihilators always vanishes: >>> contraction(F(p),F(q)) 0 >>> contraction(Fd(p),Fd(q)) 0 """ if isinstance(b, FermionicOperator) and isinstance(a, FermionicOperator): if isinstance(a, AnnihilateFermion) and isinstance(b, CreateFermion): if b.state.assumptions0.get("below_fermi"): return S.Zero if a.state.assumptions0.get("below_fermi"): return S.Zero if b.state.assumptions0.get("above_fermi"): return KroneckerDelta(a.state, b.state) if a.state.assumptions0.get("above_fermi"): return KroneckerDelta(a.state, b.state) return (KroneckerDelta(a.state, b.state)* KroneckerDelta(b.state, Dummy('a', above_fermi=True))) if isinstance(b, AnnihilateFermion) and isinstance(a, CreateFermion): if b.state.assumptions0.get("above_fermi"): return S.Zero if a.state.assumptions0.get("above_fermi"): return S.Zero if b.state.assumptions0.get("below_fermi"): return KroneckerDelta(a.state, b.state) if a.state.assumptions0.get("below_fermi"): return KroneckerDelta(a.state, b.state) return (KroneckerDelta(a.state, b.state)* KroneckerDelta(b.state, Dummy('i', below_fermi=True))) # vanish if 2xAnnihilator or 2xCreator return S.Zero else: #not fermion operators t = ( isinstance(i, FermionicOperator) for i in (a, b) ) raise ContractionAppliesOnlyToFermions(*t) def _sqkey(sq_operator): """Generates key for canonical sorting of SQ operators.""" return sq_operator._sortkey() def _sort_anticommuting_fermions(string1, key=_sqkey): """Sort fermionic operators to canonical order, assuming all pairs anticommute. Uses a bidirectional bubble sort. Items in string1 are not referenced so in principle they may be any comparable objects. The sorting depends on the operators '>' and '=='. If the Pauli principle is violated, an exception is raised. Returns ======= tuple (sorted_str, sign) sorted_str: list containing the sorted operators sign: int telling how many times the sign should be changed (if sign==0 the string was already sorted) """ verified = False sign = 0 rng = list(range(len(string1) - 1)) rev = list(range(len(string1) - 3, -1, -1)) keys = list(map(key, string1)) key_val = dict(list(zip(keys, string1))) while not verified: verified = True for i in rng: left = keys[i] right = keys[i + 1] if left == right: raise ViolationOfPauliPrinciple([left, right]) if left > right: verified = False keys[i:i + 2] = [right, left] sign = sign + 1 if verified: break for i in rev: left = keys[i] right = keys[i + 1] if left == right: raise ViolationOfPauliPrinciple([left, right]) if left > right: verified = False keys[i:i + 2] = [right, left] sign = sign + 1 string1 = [ key_val[k] for k in keys ] return (string1, sign) def evaluate_deltas(e): """ We evaluate KroneckerDelta symbols in the expression assuming Einstein summation. If one index is repeated it is summed over and in effect substituted with the other one. If both indices are repeated we substitute according to what is the preferred index. this is determined by KroneckerDelta.preferred_index and KroneckerDelta.killable_index. In case there are no possible substitutions or if a substitution would imply a loss of information, nothing is done. In case an index appears in more than one KroneckerDelta, the resulting substitution depends on the order of the factors. Since the ordering is platform dependent, the literal expression resulting from this function may be hard to predict. Examples ======== We assume the following: >>> from sympy import symbols, Function, Dummy, KroneckerDelta >>> from sympy.physics.secondquant import evaluate_deltas >>> i,j = symbols('i j', below_fermi=True, cls=Dummy) >>> a,b = symbols('a b', above_fermi=True, cls=Dummy) >>> p,q = symbols('p q', cls=Dummy) >>> f = Function('f') >>> t = Function('t') The order of preference for these indices according to KroneckerDelta is (a, b, i, j, p, q). Trivial cases: >>> evaluate_deltas(KroneckerDelta(i,j)*f(i)) # d_ij f(i) -> f(j) f(_j) >>> evaluate_deltas(KroneckerDelta(i,j)*f(j)) # d_ij f(j) -> f(i) f(_i) >>> evaluate_deltas(KroneckerDelta(i,p)*f(p)) # d_ip f(p) -> f(i) f(_i) >>> evaluate_deltas(KroneckerDelta(q,p)*f(p)) # d_qp f(p) -> f(q) f(_q) >>> evaluate_deltas(KroneckerDelta(q,p)*f(q)) # d_qp f(q) -> f(p) f(_p) More interesting cases: >>> evaluate_deltas(KroneckerDelta(i,p)*t(a,i)*f(p,q)) f(_i, _q)*t(_a, _i) >>> evaluate_deltas(KroneckerDelta(a,p)*t(a,i)*f(p,q)) f(_a, _q)*t(_a, _i) >>> evaluate_deltas(KroneckerDelta(p,q)*f(p,q)) f(_p, _p) Finally, here are some cases where nothing is done, because that would imply a loss of information: >>> evaluate_deltas(KroneckerDelta(i,p)*f(q)) f(_q)*KroneckerDelta(_i, _p) >>> evaluate_deltas(KroneckerDelta(i,p)*f(i)) f(_i)*KroneckerDelta(_i, _p) """ # We treat Deltas only in mul objects # for general function objects we don't evaluate KroneckerDeltas in arguments, # but here we hard code exceptions to this rule accepted_functions = ( Add, ) if isinstance(e, accepted_functions): return e.func(*[evaluate_deltas(arg) for arg in e.args]) elif isinstance(e, Mul): # find all occurrences of delta function and count each index present in # expression. deltas = [] indices = {} for i in e.args: for s in i.free_symbols: if s in indices: indices[s] += 1 else: indices[s] = 0 # geek counting simplifies logic below if isinstance(i, KroneckerDelta): deltas.append(i) for d in deltas: # If we do something, and there are more deltas, we should recurse # to treat the resulting expression properly if d.killable_index.is_Symbol and indices[d.killable_index]: e = e.subs(d.killable_index, d.preferred_index) if len(deltas) > 1: return evaluate_deltas(e) elif (d.preferred_index.is_Symbol and indices[d.preferred_index] and d.indices_contain_equal_information): e = e.subs(d.preferred_index, d.killable_index) if len(deltas) > 1: return evaluate_deltas(e) else: pass return e # nothing to do, maybe we hit a Symbol or a number else: return e def substitute_dummies(expr, new_indices=False, pretty_indices={}): """ Collect terms by substitution of dummy variables. This routine allows simplification of Add expressions containing terms which differ only due to dummy variables. The idea is to substitute all dummy variables consistently depending on the structure of the term. For each term, we obtain a sequence of all dummy variables, where the order is determined by the index range, what factors the index belongs to and its position in each factor. See _get_ordered_dummies() for more inforation about the sorting of dummies. The index sequence is then substituted consistently in each term. Examples ======== >>> from sympy import symbols, Function, Dummy >>> from sympy.physics.secondquant import substitute_dummies >>> a,b,c,d = symbols('a b c d', above_fermi=True, cls=Dummy) >>> i,j = symbols('i j', below_fermi=True, cls=Dummy) >>> f = Function('f') >>> expr = f(a,b) + f(c,d); expr f(_a, _b) + f(_c, _d) Since a, b, c and d are equivalent summation indices, the expression can be simplified to a single term (for which the dummy indices are still summed over) >>> substitute_dummies(expr) 2*f(_a, _b) Controlling output: By default the dummy symbols that are already present in the expression will be reused in a different permutation. However, if new_indices=True, new dummies will be generated and inserted. The keyword 'pretty_indices' can be used to control this generation of new symbols. By default the new dummies will be generated on the form i_1, i_2, a_1, etc. If you supply a dictionary with key:value pairs in the form: { index_group: string_of_letters } The letters will be used as labels for the new dummy symbols. The index_groups must be one of 'above', 'below' or 'general'. >>> expr = f(a,b,i,j) >>> my_dummies = { 'above':'st', 'below':'uv' } >>> substitute_dummies(expr, new_indices=True, pretty_indices=my_dummies) f(_s, _t, _u, _v) If we run out of letters, or if there is no keyword for some index_group the default dummy generator will be used as a fallback: >>> p,q = symbols('p q', cls=Dummy) # general indices >>> expr = f(p,q) >>> substitute_dummies(expr, new_indices=True, pretty_indices=my_dummies) f(_p_0, _p_1) """ # setup the replacing dummies if new_indices: letters_above = pretty_indices.get('above', "") letters_below = pretty_indices.get('below', "") letters_general = pretty_indices.get('general', "") len_above = len(letters_above) len_below = len(letters_below) len_general = len(letters_general) def _i(number): try: return letters_below[number] except IndexError: return 'i_' + str(number - len_below) def _a(number): try: return letters_above[number] except IndexError: return 'a_' + str(number - len_above) def _p(number): try: return letters_general[number] except IndexError: return 'p_' + str(number - len_general) aboves = [] belows = [] generals = [] dummies = expr.atoms(Dummy) if not new_indices: dummies = sorted(dummies, key=default_sort_key) # generate lists with the dummies we will insert a = i = p = 0 for d in dummies: assum = d.assumptions0 if assum.get("above_fermi"): if new_indices: sym = _a(a) a += 1 l1 = aboves elif assum.get("below_fermi"): if new_indices: sym = _i(i) i += 1 l1 = belows else: if new_indices: sym = _p(p) p += 1 l1 = generals if new_indices: l1.append(Dummy(sym, **assum)) else: l1.append(d) expr = expr.expand() terms = Add.make_args(expr) new_terms = [] for term in terms: i = iter(belows) a = iter(aboves) p = iter(generals) ordered = _get_ordered_dummies(term) subsdict = {} for d in ordered: if d.assumptions0.get('below_fermi'): subsdict[d] = next(i) elif d.assumptions0.get('above_fermi'): subsdict[d] = next(a) else: subsdict[d] = next(p) subslist = [] final_subs = [] for k, v in subsdict.items(): if k == v: continue if v in subsdict: # We check if the sequence of substitutions end quickly. In # that case, we can avoid temporary symbols if we ensure the # correct substitution order. if subsdict[v] in subsdict: # (x, y) -> (y, x), we need a temporary variable x = Dummy('x') subslist.append((k, x)) final_subs.append((x, v)) else: # (x, y) -> (y, a), x->y must be done last # but before temporary variables are resolved final_subs.insert(0, (k, v)) else: subslist.append((k, v)) subslist.extend(final_subs) new_terms.append(term.subs(subslist)) return Add(*new_terms) class KeyPrinter(StrPrinter): """Printer for which only equal objects are equal in print""" def _print_Dummy(self, expr): return "(%s_%i)" % (expr.name, expr.dummy_index) def __kprint(expr): p = KeyPrinter() return p.doprint(expr) def _get_ordered_dummies(mul, verbose=False): """Returns all dummies in the mul sorted in canonical order The purpose of the canonical ordering is that dummies can be substituted consistently across terms with the result that equivalent terms can be simplified. It is not possible to determine if two terms are equivalent based solely on the dummy order. However, a consistent substitution guided by the ordered dummies should lead to trivially (non-)equivalent terms, thereby revealing the equivalence. This also means that if two terms have identical sequences of dummies, the (non-)equivalence should already be apparent. Strategy -------- The canoncial order is given by an arbitrary sorting rule. A sort key is determined for each dummy as a tuple that depends on all factors where the index is present. The dummies are thereby sorted according to the contraction structure of the term, instead of sorting based solely on the dummy symbol itself. After all dummies in the term has been assigned a key, we check for identical keys, i.e. unorderable dummies. If any are found, we call a specialized method, _determine_ambiguous(), that will determine a unique order based on recursive calls to _get_ordered_dummies(). Key description --------------- A high level description of the sort key: 1. Range of the dummy index 2. Relation to external (non-dummy) indices 3. Position of the index in the first factor 4. Position of the index in the second factor The sort key is a tuple with the following components: 1. A single character indicating the range of the dummy (above, below or general.) 2. A list of strings with fully masked string representations of all factors where the dummy is present. By masked, we mean that dummies are represented by a symbol to indicate either below fermi, above or general. No other information is displayed about the dummies at this point. The list is sorted stringwise. 3. An integer number indicating the position of the index, in the first factor as sorted in 2. 4. An integer number indicating the position of the index, in the second factor as sorted in 2. If a factor is either of type AntiSymmetricTensor or SqOperator, the index position in items 3 and 4 is indicated as 'upper' or 'lower' only. (Creation operators are considered upper and annihilation operators lower.) If the masked factors are identical, the two factors cannot be ordered unambiguously in item 2. In this case, items 3, 4 are left out. If several indices are contracted between the unorderable factors, it will be handled by _determine_ambiguous() """ # setup dicts to avoid repeated calculations in key() args = Mul.make_args(mul) fac_dum = dict([ (fac, fac.atoms(Dummy)) for fac in args] ) fac_repr = dict([ (fac, __kprint(fac)) for fac in args] ) all_dums = set().union(*fac_dum.values()) mask = {} for d in all_dums: if d.assumptions0.get('below_fermi'): mask[d] = '0' elif d.assumptions0.get('above_fermi'): mask[d] = '1' else: mask[d] = '2' dum_repr = {d: __kprint(d) for d in all_dums} def _key(d): dumstruct = [ fac for fac in fac_dum if d in fac_dum[fac] ] other_dums = set().union(*[fac_dum[fac] for fac in dumstruct]) fac = dumstruct[-1] if other_dums is fac_dum[fac]: other_dums = fac_dum[fac].copy() other_dums.remove(d) masked_facs = [ fac_repr[fac] for fac in dumstruct ] for d2 in other_dums: masked_facs = [ fac.replace(dum_repr[d2], mask[d2]) for fac in masked_facs ] all_masked = [ fac.replace(dum_repr[d], mask[d]) for fac in masked_facs ] masked_facs = dict(list(zip(dumstruct, masked_facs))) # dummies for which the ordering cannot be determined if has_dups(all_masked): all_masked.sort() return mask[d], tuple(all_masked) # positions are ambiguous # sort factors according to fully masked strings keydict = dict(list(zip(dumstruct, all_masked))) dumstruct.sort(key=lambda x: keydict[x]) all_masked.sort() pos_val = [] for fac in dumstruct: if isinstance(fac, AntiSymmetricTensor): if d in fac.upper: pos_val.append('u') if d in fac.lower: pos_val.append('l') elif isinstance(fac, Creator): pos_val.append('u') elif isinstance(fac, Annihilator): pos_val.append('l') elif isinstance(fac, NO): ops = [ op for op in fac if op.has(d) ] for op in ops: if isinstance(op, Creator): pos_val.append('u') else: pos_val.append('l') else: # fallback to position in string representation facpos = -1 while 1: facpos = masked_facs[fac].find(dum_repr[d], facpos + 1) if facpos == -1: break pos_val.append(facpos) return (mask[d], tuple(all_masked), pos_val[0], pos_val[-1]) dumkey = dict(list(zip(all_dums, list(map(_key, all_dums))))) result = sorted(all_dums, key=lambda x: dumkey[x]) if has_dups(iter(dumkey.values())): # We have ambiguities unordered = defaultdict(set) for d, k in dumkey.items(): unordered[k].add(d) for k in [ k for k in unordered if len(unordered[k]) < 2 ]: del unordered[k] unordered = [ unordered[k] for k in sorted(unordered) ] result = _determine_ambiguous(mul, result, unordered) return result def _determine_ambiguous(term, ordered, ambiguous_groups): # We encountered a term for which the dummy substitution is ambiguous. # This happens for terms with 2 or more contractions between factors that # cannot be uniquely ordered independent of summation indices. For # example: # # Sum(p, q) v^{p, .}_{q, .}v^{q, .}_{p, .} # # Assuming that the indices represented by . are dummies with the # same range, the factors cannot be ordered, and there is no # way to determine a consistent ordering of p and q. # # The strategy employed here, is to relabel all unambiguous dummies with # non-dummy symbols and call _get_ordered_dummies again. This procedure is # applied to the entire term so there is a possibility that # _determine_ambiguous() is called again from a deeper recursion level. # break recursion if there are no ordered dummies all_ambiguous = set() for dummies in ambiguous_groups: all_ambiguous |= dummies all_ordered = set(ordered) - all_ambiguous if not all_ordered: # FIXME: If we arrive here, there are no ordered dummies. A method to # handle this needs to be implemented. In order to return something # useful nevertheless, we choose arbitrarily the first dummy and # determine the rest from this one. This method is dependent on the # actual dummy labels which violates an assumption for the # canonicalization procedure. A better implementation is needed. group = [ d for d in ordered if d in ambiguous_groups[0] ] d = group[0] all_ordered.add(d) ambiguous_groups[0].remove(d) stored_counter = _symbol_factory._counter subslist = [] for d in [ d for d in ordered if d in all_ordered ]: nondum = _symbol_factory._next() subslist.append((d, nondum)) newterm = term.subs(subslist) neworder = _get_ordered_dummies(newterm) _symbol_factory._set_counter(stored_counter) # update ordered list with new information for group in ambiguous_groups: ordered_group = [ d for d in neworder if d in group ] ordered_group.reverse() result = [] for d in ordered: if d in group: result.append(ordered_group.pop()) else: result.append(d) ordered = result return ordered class _SymbolFactory(object): def __init__(self, label): self._counterVar = 0 self._label = label def _set_counter(self, value): """ Sets counter to value. """ self._counterVar = value @property def _counter(self): """ What counter is currently at. """ return self._counterVar def _next(self): """ Generates the next symbols and increments counter by 1. """ s = Symbol("%s%i" % (self._label, self._counterVar)) self._counterVar += 1 return s _symbol_factory = _SymbolFactory('_]"]_') # most certainly a unique label @cacheit def _get_contractions(string1, keep_only_fully_contracted=False): """ Returns Add-object with contracted terms. Uses recursion to find all contractions. -- Internal helper function -- Will find nonzero contractions in string1 between indices given in leftrange and rightrange. """ # Should we store current level of contraction? if keep_only_fully_contracted and string1: result = [] else: result = [NO(Mul(*string1))] for i in range(len(string1) - 1): for j in range(i + 1, len(string1)): c = contraction(string1[i], string1[j]) if c: sign = (j - i + 1) % 2 if sign: coeff = S.NegativeOne*c else: coeff = c # # Call next level of recursion # ============================ # # We now need to find more contractions among operators # # oplist = string1[:i]+ string1[i+1:j] + string1[j+1:] # # To prevent overcounting, we don't allow contractions # we have already encountered. i.e. contractions between # string1[:i] <---> string1[i+1:j] # and string1[:i] <---> string1[j+1:]. # # This leaves the case: oplist = string1[i + 1:j] + string1[j + 1:] if oplist: result.append(coeff*NO( Mul(*string1[:i])*_get_contractions( oplist, keep_only_fully_contracted=keep_only_fully_contracted))) else: result.append(coeff*NO( Mul(*string1[:i]))) if keep_only_fully_contracted: break # next iteration over i leaves leftmost operator string1[0] uncontracted return Add(*result) def wicks(e, **kw_args): """ Returns the normal ordered equivalent of an expression using Wicks Theorem. Examples ======== >>> from sympy import symbols, Function, Dummy >>> from sympy.physics.secondquant import wicks, F, Fd, NO >>> p,q,r = symbols('p,q,r') >>> wicks(Fd(p)*F(q)) # doctest: +SKIP d(p, q)*d(q, _i) + NO(CreateFermion(p)*AnnihilateFermion(q)) By default, the expression is expanded: >>> wicks(F(p)*(F(q)+F(r))) # doctest: +SKIP NO(AnnihilateFermion(p)*AnnihilateFermion(q)) + NO( AnnihilateFermion(p)*AnnihilateFermion(r)) With the keyword 'keep_only_fully_contracted=True', only fully contracted terms are returned. By request, the result can be simplified in the following order: -- KroneckerDelta functions are evaluated -- Dummy variables are substituted consistently across terms >>> p, q, r = symbols('p q r', cls=Dummy) >>> wicks(Fd(p)*(F(q)+F(r)), keep_only_fully_contracted=True) # doctest: +SKIP KroneckerDelta(_i, _q)*KroneckerDelta( _p, _q) + KroneckerDelta(_i, _r)*KroneckerDelta(_p, _r) """ if not e: return S.Zero opts = { 'simplify_kronecker_deltas': False, 'expand': True, 'simplify_dummies': False, 'keep_only_fully_contracted': False } opts.update(kw_args) # check if we are already normally ordered if isinstance(e, NO): if opts['keep_only_fully_contracted']: return S.Zero else: return e elif isinstance(e, FermionicOperator): if opts['keep_only_fully_contracted']: return S.Zero else: return e # break up any NO-objects, and evaluate commutators e = e.doit(wicks=True) # make sure we have only one term to consider e = e.expand() if isinstance(e, Add): if opts['simplify_dummies']: return substitute_dummies(Add(*[ wicks(term, **kw_args) for term in e.args])) else: return Add(*[ wicks(term, **kw_args) for term in e.args]) # For Mul-objects we can actually do something if isinstance(e, Mul): # we don't want to mess around with commuting part of Mul # so we factorize it out before starting recursion c_part = [] string1 = [] for factor in e.args: if factor.is_commutative: c_part.append(factor) else: string1.append(factor) n = len(string1) # catch trivial cases if n == 0: result = e elif n == 1: if opts['keep_only_fully_contracted']: return S.Zero else: result = e else: # non-trivial if isinstance(string1[0], BosonicOperator): raise NotImplementedError string1 = tuple(string1) # recursion over higher order contractions result = _get_contractions(string1, keep_only_fully_contracted=opts['keep_only_fully_contracted'] ) result = Mul(*c_part)*result if opts['expand']: result = result.expand() if opts['simplify_kronecker_deltas']: result = evaluate_deltas(result) return result # there was nothing to do return e class PermutationOperator(Expr): """ Represents the index permutation operator P(ij). P(ij)*f(i)*g(j) = f(i)*g(j) - f(j)*g(i) """ is_commutative = True def __new__(cls, i, j): i, j = sorted(map(sympify, (i, j)), key=default_sort_key) obj = Basic.__new__(cls, i, j) return obj def get_permuted(self, expr): """ Returns -expr with permuted indices. >>> from sympy import symbols, Function >>> from sympy.physics.secondquant import PermutationOperator >>> p,q = symbols('p,q') >>> f = Function('f') >>> PermutationOperator(p,q).get_permuted(f(p,q)) -f(q, p) """ i = self.args[0] j = self.args[1] if expr.has(i) and expr.has(j): tmp = Dummy() expr = expr.subs(i, tmp) expr = expr.subs(j, i) expr = expr.subs(tmp, j) return S.NegativeOne*expr else: return expr def _latex(self, printer): return "P(%s%s)" % self.args def simplify_index_permutations(expr, permutation_operators): """ Performs simplification by introducing PermutationOperators where appropriate. Schematically: [abij] - [abji] - [baij] + [baji] -> P(ab)*P(ij)*[abij] permutation_operators is a list of PermutationOperators to consider. If permutation_operators=[P(ab),P(ij)] we will try to introduce the permutation operators P(ij) and P(ab) in the expression. If there are other possible simplifications, we ignore them. >>> from sympy import symbols, Function >>> from sympy.physics.secondquant import simplify_index_permutations >>> from sympy.physics.secondquant import PermutationOperator >>> p,q,r,s = symbols('p,q,r,s') >>> f = Function('f') >>> g = Function('g') >>> expr = f(p)*g(q) - f(q)*g(p); expr f(p)*g(q) - f(q)*g(p) >>> simplify_index_permutations(expr,[PermutationOperator(p,q)]) f(p)*g(q)*PermutationOperator(p, q) >>> PermutList = [PermutationOperator(p,q),PermutationOperator(r,s)] >>> expr = f(p,r)*g(q,s) - f(q,r)*g(p,s) + f(q,s)*g(p,r) - f(p,s)*g(q,r) >>> simplify_index_permutations(expr,PermutList) f(p, r)*g(q, s)*PermutationOperator(p, q)*PermutationOperator(r, s) """ def _get_indices(expr, ind): """ Collects indices recursively in predictable order. """ result = [] for arg in expr.args: if arg in ind: result.append(arg) else: if arg.args: result.extend(_get_indices(arg, ind)) return result def _choose_one_to_keep(a, b, ind): # we keep the one where indices in ind are in order ind[0] < ind[1] return min(a, b, key=lambda x: default_sort_key(_get_indices(x, ind))) expr = expr.expand() if isinstance(expr, Add): terms = set(expr.args) for P in permutation_operators: new_terms = set([]) on_hold = set([]) while terms: term = terms.pop() permuted = P.get_permuted(term) if permuted in terms | on_hold: try: terms.remove(permuted) except KeyError: on_hold.remove(permuted) keep = _choose_one_to_keep(term, permuted, P.args) new_terms.add(P*keep) else: # Some terms must get a second chance because the permuted # term may already have canonical dummy ordering. Then # substitute_dummies() does nothing. However, the other # term, if it exists, will be able to match with us. permuted1 = permuted permuted = substitute_dummies(permuted) if permuted1 == permuted: on_hold.add(term) elif permuted in terms | on_hold: try: terms.remove(permuted) except KeyError: on_hold.remove(permuted) keep = _choose_one_to_keep(term, permuted, P.args) new_terms.add(P*keep) else: new_terms.add(term) terms = new_terms | on_hold return Add(*terms) return expr
ec443a776ca2c92f8a11ba94ef4e0afdad84d4aaaade09660ea5db743cc4ba91
""" This module defines tensors with abstract index notation. The abstract index notation has been first formalized by Penrose. Tensor indices are formal objects, with a tensor type; there is no notion of index range, it is only possible to assign the dimension, used to trace the Kronecker delta; the dimension can be a Symbol. The Einstein summation convention is used. The covariant indices are indicated with a minus sign in front of the index. For instance the tensor ``t = p(a)*A(b,c)*q(-c)`` has the index ``c`` contracted. A tensor expression ``t`` can be called; called with its indices in sorted order it is equal to itself: in the above example ``t(a, b) == t``; one can call ``t`` with different indices; ``t(c, d) == p(c)*A(d,a)*q(-a)``. The contracted indices are dummy indices, internally they have no name, the indices being represented by a graph-like structure. Tensors are put in canonical form using ``canon_bp``, which uses the Butler-Portugal algorithm for canonicalization using the monoterm symmetries of the tensors. If there is a (anti)symmetric metric, the indices can be raised and lowered when the tensor is put in canonical form. """ from __future__ import print_function, division from collections import defaultdict import operator import itertools from sympy import Rational, prod, Integer from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, \ bsgs_direct_product, canonicalize, riemann_bsgs from sympy.core import Basic, Expr, sympify, Add, Mul, S from sympy.core.compatibility import string_types, reduce, range, SYMPY_INTS from sympy.core.containers import Tuple, Dict from sympy.core.decorators import deprecated from sympy.core.symbol import Symbol, symbols from sympy.core.sympify import CantSympify, _sympify from sympy.core.operations import AssocOp from sympy.matrices import eye from sympy.utilities.exceptions import SymPyDeprecationWarning import warnings @deprecated(useinstead=".replace_with_arrays", issue=15276, deprecated_since_version="1.4") def deprecate_data(): pass class _IndexStructure(CantSympify): """ This class handles the indices (free and dummy ones). It contains the algorithms to manage the dummy indices replacements and contractions of free indices under multiplications of tensor expressions, as well as stuff related to canonicalization sorting, getting the permutation of the expression and so on. It also includes tools to get the ``TensorIndex`` objects corresponding to the given index structure. """ def __init__(self, free, dum, index_types, indices, canon_bp=False): self.free = free self.dum = dum self.index_types = index_types self.indices = indices self._ext_rank = len(self.free) + 2*len(self.dum) self.dum.sort(key=lambda x: x[0]) @staticmethod def from_indices(*indices): """ Create a new ``_IndexStructure`` object from a list of ``indices`` ``indices`` ``TensorIndex`` objects, the indices. Contractions are detected upon construction. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, _IndexStructure >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz) >>> _IndexStructure.from_indices(m0, m1, -m1, m3) _IndexStructure([(m0, 0), (m3, 3)], [(1, 2)], [Lorentz, Lorentz, Lorentz, Lorentz]) In case of many components the same indices have slightly different indexes: >>> _IndexStructure.from_indices(m0, m1, -m1, m3) _IndexStructure([(m0, 0), (m3, 3)], [(1, 2)], [Lorentz, Lorentz, Lorentz, Lorentz]) """ free, dum = _IndexStructure._free_dum_from_indices(*indices) index_types = [i.tensor_index_type for i in indices] indices = _IndexStructure._replace_dummy_names(indices, free, dum) return _IndexStructure(free, dum, index_types, indices) @staticmethod def from_components_free_dum(components, free, dum): index_types = [] for component in components: index_types.extend(component.index_types) indices = _IndexStructure.generate_indices_from_free_dum_index_types(free, dum, index_types) return _IndexStructure(free, dum, index_types, indices) @staticmethod def _free_dum_from_indices(*indices): """ Convert ``indices`` into ``free``, ``dum`` for single component tensor ``free`` list of tuples ``(index, pos, 0)``, where ``pos`` is the position of index in the list of indices formed by the component tensors ``dum`` list of tuples ``(pos_contr, pos_cov, 0, 0)`` Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, \ _IndexStructure >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz) >>> _IndexStructure._free_dum_from_indices(m0, m1, -m1, m3) ([(m0, 0), (m3, 3)], [(1, 2)]) """ n = len(indices) if n == 1: return [(indices[0], 0)], [] # find the positions of the free indices and of the dummy indices free = [True]*len(indices) index_dict = {} dum = [] for i, index in enumerate(indices): name = index._name typ = index.tensor_index_type contr = index._is_up if (name, typ) in index_dict: # found a pair of dummy indices is_contr, pos = index_dict[(name, typ)] # check consistency and update free if is_contr: if contr: raise ValueError('two equal contravariant indices in slots %d and %d' %(pos, i)) else: free[pos] = False free[i] = False else: if contr: free[pos] = False free[i] = False else: raise ValueError('two equal covariant indices in slots %d and %d' %(pos, i)) if contr: dum.append((i, pos)) else: dum.append((pos, i)) else: index_dict[(name, typ)] = index._is_up, i free = [(index, i) for i, index in enumerate(indices) if free[i]] free.sort() return free, dum def get_indices(self): """ Get a list of indices, creating new tensor indices to complete dummy indices. """ return self.indices[:] @staticmethod def generate_indices_from_free_dum_index_types(free, dum, index_types): indices = [None]*(len(free)+2*len(dum)) for idx, pos in free: indices[pos] = idx generate_dummy_name = _IndexStructure._get_generator_for_dummy_indices(free) for pos1, pos2 in dum: typ1 = index_types[pos1] indname = generate_dummy_name(typ1) indices[pos1] = TensorIndex(indname, typ1, True) indices[pos2] = TensorIndex(indname, typ1, False) return _IndexStructure._replace_dummy_names(indices, free, dum) @staticmethod def _get_generator_for_dummy_indices(free): cdt = defaultdict(int) # if the free indices have names with dummy_fmt, start with an # index higher than those for the dummy indices # to avoid name collisions for indx, ipos in free: if indx._name.split('_')[0] == indx.tensor_index_type.dummy_fmt[:-3]: cdt[indx.tensor_index_type] = max(cdt[indx.tensor_index_type], int(indx._name.split('_')[1]) + 1) def dummy_fmt_gen(tensor_index_type): fmt = tensor_index_type.dummy_fmt nd = cdt[tensor_index_type] cdt[tensor_index_type] += 1 return fmt % nd return dummy_fmt_gen @staticmethod def _replace_dummy_names(indices, free, dum): dum.sort(key=lambda x: x[0]) new_indices = [ind for ind in indices] assert len(indices) == len(free) + 2*len(dum) generate_dummy_name = _IndexStructure._get_generator_for_dummy_indices(free) for ipos1, ipos2 in dum: typ1 = new_indices[ipos1].tensor_index_type indname = generate_dummy_name(typ1) new_indices[ipos1] = TensorIndex(indname, typ1, True) new_indices[ipos2] = TensorIndex(indname, typ1, False) return new_indices def get_free_indices(self): """ Get a list of free indices. """ # get sorted indices according to their position: free = sorted(self.free, key=lambda x: x[1]) return [i[0] for i in free] def __str__(self): return "_IndexStructure({0}, {1}, {2})".format(self.free, self.dum, self.index_types) def __repr__(self): return self.__str__() def _get_sorted_free_indices_for_canon(self): sorted_free = self.free[:] sorted_free.sort(key=lambda x: x[0]) return sorted_free def _get_sorted_dum_indices_for_canon(self): return sorted(self.dum, key=lambda x: x[0]) def _get_lexicographically_sorted_index_types(self): permutation = self.indices_canon_args()[0] index_types = [None]*self._ext_rank for i, it in enumerate(self.index_types): index_types[permutation(i)] = it return index_types def _get_lexicographically_sorted_indices(self): permutation = self.indices_canon_args()[0] indices = [None]*self._ext_rank for i, it in enumerate(self.indices): indices[permutation(i)] = it return indices def perm2tensor(self, g, is_canon_bp=False): """ Returns a ``_IndexStructure`` instance corresponding to the permutation ``g`` ``g`` permutation corresponding to the tensor in the representation used in canonicalization ``is_canon_bp`` if True, then ``g`` is the permutation corresponding to the canonical form of the tensor """ sorted_free = [i[0] for i in self._get_sorted_free_indices_for_canon()] lex_index_types = self._get_lexicographically_sorted_index_types() lex_indices = self._get_lexicographically_sorted_indices() nfree = len(sorted_free) rank = self._ext_rank dum = [[None]*2 for i in range((rank - nfree)//2)] free = [] index_types = [None]*rank indices = [None]*rank for i in range(rank): gi = g[i] index_types[i] = lex_index_types[gi] indices[i] = lex_indices[gi] if gi < nfree: ind = sorted_free[gi] assert index_types[i] == sorted_free[gi].tensor_index_type free.append((ind, i)) else: j = gi - nfree idum, cov = divmod(j, 2) if cov: dum[idum][1] = i else: dum[idum][0] = i dum = [tuple(x) for x in dum] return _IndexStructure(free, dum, index_types, indices) def indices_canon_args(self): """ Returns ``(g, dummies, msym, v)``, the entries of ``canonicalize`` see ``canonicalize`` in ``tensor_can.py`` """ # to be called after sorted_components from sympy.combinatorics.permutations import _af_new n = self._ext_rank g = [None]*n + [n, n+1] # ordered indices: first the free indices, ordered by types # then the dummy indices, ordered by types and contravariant before # covariant # g[position in tensor] = position in ordered indices for i, (indx, ipos) in enumerate(self._get_sorted_free_indices_for_canon()): g[ipos] = i pos = len(self.free) j = len(self.free) dummies = [] prev = None a = [] msym = [] for ipos1, ipos2 in self._get_sorted_dum_indices_for_canon(): g[ipos1] = j g[ipos2] = j + 1 j += 2 typ = self.index_types[ipos1] if typ != prev: if a: dummies.append(a) a = [pos, pos + 1] prev = typ msym.append(typ.metric_antisym) else: a.extend([pos, pos + 1]) pos += 2 if a: dummies.append(a) return _af_new(g), dummies, msym def components_canon_args(components): numtyp = [] prev = None for t in components: if t == prev: numtyp[-1][1] += 1 else: prev = t numtyp.append([prev, 1]) v = [] for h, n in numtyp: if h._comm == 0 or h._comm == 1: comm = h._comm else: comm = TensorManager.get_comm(h._comm, h._comm) v.append((h._symmetry.base, h._symmetry.generators, n, comm)) return v class _TensorDataLazyEvaluator(CantSympify): """ EXPERIMENTAL: do not rely on this class, it may change without deprecation warnings in future versions of SymPy. This object contains the logic to associate components data to a tensor expression. Components data are set via the ``.data`` property of tensor expressions, is stored inside this class as a mapping between the tensor expression and the ``ndarray``. Computations are executed lazily: whereas the tensor expressions can have contractions, tensor products, and additions, components data are not computed until they are accessed by reading the ``.data`` property associated to the tensor expression. """ _substitutions_dict = dict() _substitutions_dict_tensmul = dict() def __getitem__(self, key): dat = self._get(key) if dat is None: return None from .array import NDimArray if not isinstance(dat, NDimArray): return dat if dat.rank() == 0: return dat[()] elif dat.rank() == 1 and len(dat) == 1: return dat[0] return dat def _get(self, key): """ Retrieve ``data`` associated with ``key``. This algorithm looks into ``self._substitutions_dict`` for all ``TensorHead`` in the ``TensExpr`` (or just ``TensorHead`` if key is a TensorHead instance). It reconstructs the components data that the tensor expression should have by performing on components data the operations that correspond to the abstract tensor operations applied. Metric tensor is handled in a different manner: it is pre-computed in ``self._substitutions_dict_tensmul``. """ if key in self._substitutions_dict: return self._substitutions_dict[key] if isinstance(key, TensorHead): return None if isinstance(key, Tensor): # special case to handle metrics. Metric tensors cannot be # constructed through contraction by the metric, their # components show if they are a matrix or its inverse. signature = tuple([i.is_up for i in key.get_indices()]) srch = (key.component,) + signature if srch in self._substitutions_dict_tensmul: return self._substitutions_dict_tensmul[srch] array_list = [self.data_from_tensor(key)] return self.data_contract_dum(array_list, key.dum, key.ext_rank) if isinstance(key, TensMul): tensmul_args = key.args if len(tensmul_args) == 1 and len(tensmul_args[0].components) == 1: # special case to handle metrics. Metric tensors cannot be # constructed through contraction by the metric, their # components show if they are a matrix or its inverse. signature = tuple([i.is_up for i in tensmul_args[0].get_indices()]) srch = (tensmul_args[0].components[0],) + signature if srch in self._substitutions_dict_tensmul: return self._substitutions_dict_tensmul[srch] #data_list = [self.data_from_tensor(i) for i in tensmul_args if isinstance(i, TensExpr)] data_list = [self.data_from_tensor(i) if isinstance(i, Tensor) else i.data for i in tensmul_args if isinstance(i, TensExpr)] coeff = prod([i for i in tensmul_args if not isinstance(i, TensExpr)]) if all([i is None for i in data_list]): return None if any([i is None for i in data_list]): raise ValueError("Mixing tensors with associated components "\ "data with tensors without components data") data_result = self.data_contract_dum(data_list, key.dum, key.ext_rank) return coeff*data_result if isinstance(key, TensAdd): data_list = [] free_args_list = [] for arg in key.args: if isinstance(arg, TensExpr): data_list.append(arg.data) free_args_list.append([x[0] for x in arg.free]) else: data_list.append(arg) free_args_list.append([]) if all([i is None for i in data_list]): return None if any([i is None for i in data_list]): raise ValueError("Mixing tensors with associated components "\ "data with tensors without components data") sum_list = [] from .array import permutedims for data, free_args in zip(data_list, free_args_list): if len(free_args) < 2: sum_list.append(data) else: free_args_pos = {y: x for x, y in enumerate(free_args)} axes = [free_args_pos[arg] for arg in key.free_args] sum_list.append(permutedims(data, axes)) return reduce(lambda x, y: x+y, sum_list) return None @staticmethod def data_contract_dum(ndarray_list, dum, ext_rank): from .array import tensorproduct, tensorcontraction, MutableDenseNDimArray arrays = list(map(MutableDenseNDimArray, ndarray_list)) prodarr = tensorproduct(*arrays) return tensorcontraction(prodarr, *dum) def data_tensorhead_from_tensmul(self, data, tensmul, tensorhead): """ This method is used when assigning components data to a ``TensMul`` object, it converts components data to a fully contravariant ndarray, which is then stored according to the ``TensorHead`` key. """ if data is None: return None return self._correct_signature_from_indices( data, tensmul.get_indices(), tensmul.free, tensmul.dum, True) def data_from_tensor(self, tensor): """ This method corrects the components data to the right signature (covariant/contravariant) using the metric associated with each ``TensorIndexType``. """ tensorhead = tensor.component if tensorhead.data is None: return None return self._correct_signature_from_indices( tensorhead.data, tensor.get_indices(), tensor.free, tensor.dum) def _assign_data_to_tensor_expr(self, key, data): if isinstance(key, TensAdd): raise ValueError('cannot assign data to TensAdd') # here it is assumed that `key` is a `TensMul` instance. if len(key.components) != 1: raise ValueError('cannot assign data to TensMul with multiple components') tensorhead = key.components[0] newdata = self.data_tensorhead_from_tensmul(data, key, tensorhead) return tensorhead, newdata def _check_permutations_on_data(self, tens, data): from .array import permutedims if isinstance(tens, TensorHead): rank = tens.rank generators = tens.symmetry.generators elif isinstance(tens, Tensor): rank = tens.rank generators = tens.components[0].symmetry.generators elif isinstance(tens, TensorIndexType): rank = tens.metric.rank generators = tens.metric.symmetry.generators # Every generator is a permutation, check that by permuting the array # by that permutation, the array will be the same, except for a # possible sign change if the permutation admits it. for gener in generators: sign_change = +1 if (gener(rank) == rank) else -1 data_swapped = data last_data = data permute_axes = list(map(gener, list(range(rank)))) # the order of a permutation is the number of times to get the # identity by applying that permutation. for i in range(gener.order()-1): data_swapped = permutedims(data_swapped, permute_axes) # if any value in the difference array is non-zero, raise an error: if any(last_data - sign_change*data_swapped): raise ValueError("Component data symmetry structure error") last_data = data_swapped def __setitem__(self, key, value): """ Set the components data of a tensor object/expression. Components data are transformed to the all-contravariant form and stored with the corresponding ``TensorHead`` object. If a ``TensorHead`` object cannot be uniquely identified, it will raise an error. """ data = _TensorDataLazyEvaluator.parse_data(value) self._check_permutations_on_data(key, data) # TensorHead and TensorIndexType can be assigned data directly, while # TensMul must first convert data to a fully contravariant form, and # assign it to its corresponding TensorHead single component. if not isinstance(key, (TensorHead, TensorIndexType)): key, data = self._assign_data_to_tensor_expr(key, data) if isinstance(key, TensorHead): for dim, indextype in zip(data.shape, key.index_types): if indextype.data is None: raise ValueError("index type {} has no components data"\ " associated (needed to raise/lower index)".format(indextype)) if indextype.dim is None: continue if dim != indextype.dim: raise ValueError("wrong dimension of ndarray") self._substitutions_dict[key] = data def __delitem__(self, key): del self._substitutions_dict[key] def __contains__(self, key): return key in self._substitutions_dict def add_metric_data(self, metric, data): """ Assign data to the ``metric`` tensor. The metric tensor behaves in an anomalous way when raising and lowering indices. A fully covariant metric is the inverse transpose of the fully contravariant metric (it is meant matrix inverse). If the metric is symmetric, the transpose is not necessary and mixed covariant/contravariant metrics are Kronecker deltas. """ # hard assignment, data should not be added to `TensorHead` for metric: # the problem with `TensorHead` is that the metric is anomalous, i.e. # raising and lowering the index means considering the metric or its # inverse, this is not the case for other tensors. self._substitutions_dict_tensmul[metric, True, True] = data inverse_transpose = self.inverse_transpose_matrix(data) # in symmetric spaces, the traspose is the same as the original matrix, # the full covariant metric tensor is the inverse transpose, so this # code will be able to handle non-symmetric metrics. self._substitutions_dict_tensmul[metric, False, False] = inverse_transpose # now mixed cases, these are identical to the unit matrix if the metric # is symmetric. m = data.tomatrix() invt = inverse_transpose.tomatrix() self._substitutions_dict_tensmul[metric, True, False] = m * invt self._substitutions_dict_tensmul[metric, False, True] = invt * m @staticmethod def _flip_index_by_metric(data, metric, pos): from .array import tensorproduct, tensorcontraction mdim = metric.rank() ddim = data.rank() if pos == 0: data = tensorcontraction( tensorproduct( metric, data ), (1, mdim+pos) ) else: data = tensorcontraction( tensorproduct( data, metric ), (pos, ddim) ) return data @staticmethod def inverse_matrix(ndarray): m = ndarray.tomatrix().inv() return _TensorDataLazyEvaluator.parse_data(m) @staticmethod def inverse_transpose_matrix(ndarray): m = ndarray.tomatrix().inv().T return _TensorDataLazyEvaluator.parse_data(m) @staticmethod def _correct_signature_from_indices(data, indices, free, dum, inverse=False): """ Utility function to correct the values inside the components data ndarray according to whether indices are covariant or contravariant. It uses the metric matrix to lower values of covariant indices. """ # change the ndarray values according covariantness/contravariantness of the indices # use the metric for i, indx in enumerate(indices): if not indx.is_up and not inverse: data = _TensorDataLazyEvaluator._flip_index_by_metric(data, indx.tensor_index_type.data, i) elif not indx.is_up and inverse: data = _TensorDataLazyEvaluator._flip_index_by_metric( data, _TensorDataLazyEvaluator.inverse_matrix(indx.tensor_index_type.data), i ) return data @staticmethod def _sort_data_axes(old, new): from .array import permutedims new_data = old.data.copy() old_free = [i[0] for i in old.free] new_free = [i[0] for i in new.free] for i in range(len(new_free)): for j in range(i, len(old_free)): if old_free[j] == new_free[i]: old_free[i], old_free[j] = old_free[j], old_free[i] new_data = permutedims(new_data, (i, j)) break return new_data @staticmethod def add_rearrange_tensmul_parts(new_tensmul, old_tensmul): def sorted_compo(): return _TensorDataLazyEvaluator._sort_data_axes(old_tensmul, new_tensmul) _TensorDataLazyEvaluator._substitutions_dict[new_tensmul] = sorted_compo() @staticmethod def parse_data(data): """ Transform ``data`` to array. The parameter ``data`` may contain data in various formats, e.g. nested lists, sympy ``Matrix``, and so on. Examples ======== >>> from sympy.tensor.tensor import _TensorDataLazyEvaluator >>> _TensorDataLazyEvaluator.parse_data([1, 3, -6, 12]) [1, 3, -6, 12] >>> _TensorDataLazyEvaluator.parse_data([[1, 2], [4, 7]]) [[1, 2], [4, 7]] """ from .array import MutableDenseNDimArray if not isinstance(data, MutableDenseNDimArray): if len(data) == 2 and hasattr(data[0], '__call__'): data = MutableDenseNDimArray(data[0], data[1]) else: data = MutableDenseNDimArray(data) return data _tensor_data_substitution_dict = _TensorDataLazyEvaluator() class _TensorManager(object): """ Class to manage tensor properties. Notes ===== Tensors belong to tensor commutation groups; each group has a label ``comm``; there are predefined labels: ``0`` tensors commuting with any other tensor ``1`` tensors anticommuting among themselves ``2`` tensors not commuting, apart with those with ``comm=0`` Other groups can be defined using ``set_comm``; tensors in those groups commute with those with ``comm=0``; by default they do not commute with any other group. """ def __init__(self): self._comm_init() def _comm_init(self): self._comm = [{} for i in range(3)] for i in range(3): self._comm[0][i] = 0 self._comm[i][0] = 0 self._comm[1][1] = 1 self._comm[2][1] = None self._comm[1][2] = None self._comm_symbols2i = {0:0, 1:1, 2:2} self._comm_i2symbol = {0:0, 1:1, 2:2} @property def comm(self): return self._comm def comm_symbols2i(self, i): """ get the commutation group number corresponding to ``i`` ``i`` can be a symbol or a number or a string If ``i`` is not already defined its commutation group number is set. """ if i not in self._comm_symbols2i: n = len(self._comm) self._comm.append({}) self._comm[n][0] = 0 self._comm[0][n] = 0 self._comm_symbols2i[i] = n self._comm_i2symbol[n] = i return n return self._comm_symbols2i[i] def comm_i2symbol(self, i): """ Returns the symbol corresponding to the commutation group number. """ return self._comm_i2symbol[i] def set_comm(self, i, j, c): """ set the commutation parameter ``c`` for commutation groups ``i, j`` Parameters ========== i, j : symbols representing commutation groups c : group commutation number Notes ===== ``i, j`` can be symbols, strings or numbers, apart from ``0, 1`` and ``2`` which are reserved respectively for commuting, anticommuting tensors and tensors not commuting with any other group apart with the commuting tensors. For the remaining cases, use this method to set the commutation rules; by default ``c=None``. The group commutation number ``c`` is assigned in correspondence to the group commutation symbols; it can be 0 commuting 1 anticommuting None no commutation property Examples ======== ``G`` and ``GH`` do not commute with themselves and commute with each other; A is commuting. >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead, TensorManager >>> Lorentz = TensorIndexType('Lorentz') >>> i0,i1,i2,i3,i4 = tensor_indices('i0:5', Lorentz) >>> A = tensorhead('A', [Lorentz], [[1]]) >>> G = tensorhead('G', [Lorentz], [[1]], 'Gcomm') >>> GH = tensorhead('GH', [Lorentz], [[1]], 'GHcomm') >>> TensorManager.set_comm('Gcomm', 'GHcomm', 0) >>> (GH(i1)*G(i0)).canon_bp() G(i0)*GH(i1) >>> (G(i1)*G(i0)).canon_bp() G(i1)*G(i0) >>> (G(i1)*A(i0)).canon_bp() A(i0)*G(i1) """ if c not in (0, 1, None): raise ValueError('`c` can assume only the values 0, 1 or None') if i not in self._comm_symbols2i: n = len(self._comm) self._comm.append({}) self._comm[n][0] = 0 self._comm[0][n] = 0 self._comm_symbols2i[i] = n self._comm_i2symbol[n] = i if j not in self._comm_symbols2i: n = len(self._comm) self._comm.append({}) self._comm[0][n] = 0 self._comm[n][0] = 0 self._comm_symbols2i[j] = n self._comm_i2symbol[n] = j ni = self._comm_symbols2i[i] nj = self._comm_symbols2i[j] self._comm[ni][nj] = c self._comm[nj][ni] = c def set_comms(self, *args): """ set the commutation group numbers ``c`` for symbols ``i, j`` Parameters ========== args : sequence of ``(i, j, c)`` """ for i, j, c in args: self.set_comm(i, j, c) def get_comm(self, i, j): """ Return the commutation parameter for commutation group numbers ``i, j`` see ``_TensorManager.set_comm`` """ return self._comm[i].get(j, 0 if i == 0 or j == 0 else None) def clear(self): """ Clear the TensorManager. """ self._comm_init() TensorManager = _TensorManager() class TensorIndexType(Basic): """ A TensorIndexType is characterized by its name and its metric. Parameters ========== name : name of the tensor type metric : metric symmetry or metric object or ``None`` dim : dimension, it can be a symbol or an integer or ``None`` eps_dim : dimension of the epsilon tensor dummy_fmt : name of the head of dummy indices Attributes ========== ``name`` ``metric_name`` : it is 'metric' or metric.name ``metric_antisym`` ``metric`` : the metric tensor ``delta`` : ``Kronecker delta`` ``epsilon`` : the ``Levi-Civita epsilon`` tensor ``dim`` ``eps_dim`` ``dummy_fmt`` ``data`` : a property to add ``ndarray`` values, to work in a specified basis. Notes ===== The ``metric`` parameter can be: ``metric = False`` symmetric metric (in Riemannian geometry) ``metric = True`` antisymmetric metric (for spinor calculus) ``metric = None`` there is no metric ``metric`` can be an object having ``name`` and ``antisym`` attributes. If there is a metric the metric is used to raise and lower indices. In the case of antisymmetric metric, the following raising and lowering conventions will be adopted: ``psi(a) = g(a, b)*psi(-b); chi(-a) = chi(b)*g(-b, -a)`` ``g(-a, b) = delta(-a, b); g(b, -a) = -delta(a, -b)`` where ``delta(-a, b) = delta(b, -a)`` is the ``Kronecker delta`` (see ``TensorIndex`` for the conventions on indices). If there is no metric it is not possible to raise or lower indices; e.g. the index of the defining representation of ``SU(N)`` is 'covariant' and the conjugate representation is 'contravariant'; for ``N > 2`` they are linearly independent. ``eps_dim`` is by default equal to ``dim``, if the latter is an integer; else it can be assigned (for use in naive dimensional regularization); if ``eps_dim`` is not an integer ``epsilon`` is ``None``. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> Lorentz.metric metric(Lorentz,Lorentz) """ def __new__(cls, name, metric=False, dim=None, eps_dim=None, dummy_fmt=None): if isinstance(name, string_types): name = Symbol(name) obj = Basic.__new__(cls, name, S.One if metric else S.Zero) obj._name = str(name) if not dummy_fmt: obj._dummy_fmt = '%s_%%d' % obj.name else: obj._dummy_fmt = '%s_%%d' % dummy_fmt if metric is None: obj.metric_antisym = None obj.metric = None else: if metric in (True, False, 0, 1): metric_name = 'metric' obj.metric_antisym = metric else: metric_name = metric.name obj.metric_antisym = metric.antisym sym2 = TensorSymmetry(get_symmetric_group_sgs(2, obj.metric_antisym)) S2 = TensorType([obj]*2, sym2) obj.metric = S2(metric_name) obj._dim = dim obj._delta = obj.get_kronecker_delta() obj._eps_dim = eps_dim if eps_dim else dim obj._epsilon = obj.get_epsilon() obj._autogenerated = [] return obj @property @deprecated(useinstead="TensorIndex", issue=12857, deprecated_since_version="1.1") def auto_right(self): if not hasattr(self, '_auto_right'): self._auto_right = TensorIndex("auto_right", self) return self._auto_right @property @deprecated(useinstead="TensorIndex", issue=12857, deprecated_since_version="1.1") def auto_left(self): if not hasattr(self, '_auto_left'): self._auto_left = TensorIndex("auto_left", self) return self._auto_left @property @deprecated(useinstead="TensorIndex", issue=12857, deprecated_since_version="1.1") def auto_index(self): if not hasattr(self, '_auto_index'): self._auto_index = TensorIndex("auto_index", self) return self._auto_index @property def data(self): deprecate_data() return _tensor_data_substitution_dict[self] @data.setter def data(self, data): deprecate_data() # This assignment is a bit controversial, should metric components be assigned # to the metric only or also to the TensorIndexType object? The advantage here # is the ability to assign a 1D array and transform it to a 2D diagonal array. from .array import MutableDenseNDimArray data = _TensorDataLazyEvaluator.parse_data(data) if data.rank() > 2: raise ValueError("data have to be of rank 1 (diagonal metric) or 2.") if data.rank() == 1: if self.dim is not None: nda_dim = data.shape[0] if nda_dim != self.dim: raise ValueError("Dimension mismatch") dim = data.shape[0] newndarray = MutableDenseNDimArray.zeros(dim, dim) for i, val in enumerate(data): newndarray[i, i] = val data = newndarray dim1, dim2 = data.shape if dim1 != dim2: raise ValueError("Non-square matrix tensor.") if self.dim is not None: if self.dim != dim1: raise ValueError("Dimension mismatch") _tensor_data_substitution_dict[self] = data _tensor_data_substitution_dict.add_metric_data(self.metric, data) delta = self.get_kronecker_delta() i1 = TensorIndex('i1', self) i2 = TensorIndex('i2', self) delta(i1, -i2).data = _TensorDataLazyEvaluator.parse_data(eye(dim1)) @data.deleter def data(self): deprecate_data() if self in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[self] if self.metric in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[self.metric] def _get_matrix_fmt(self, number): return ("m" + self.dummy_fmt) % (number) @property def name(self): return self._name @property def dim(self): return self._dim @property def delta(self): return self._delta @property def eps_dim(self): return self._eps_dim @property def epsilon(self): return self._epsilon @property def dummy_fmt(self): return self._dummy_fmt def get_kronecker_delta(self): sym2 = TensorSymmetry(get_symmetric_group_sgs(2)) S2 = TensorType([self]*2, sym2) delta = S2('KD') return delta def get_epsilon(self): if not isinstance(self._eps_dim, (SYMPY_INTS, Integer)): return None sym = TensorSymmetry(get_symmetric_group_sgs(self._eps_dim, 1)) Sdim = TensorType([self]*self._eps_dim, sym) epsilon = Sdim('Eps') return epsilon def __lt__(self, other): return self.name < other.name def __str__(self): return self.name __repr__ = __str__ def _components_data_full_destroy(self): """ EXPERIMENTAL: do not rely on this API method. This destroys components data associated to the ``TensorIndexType``, if any, specifically: * metric tensor data * Kronecker tensor data """ if self in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[self] def delete_tensmul_data(key): if key in _tensor_data_substitution_dict._substitutions_dict_tensmul: del _tensor_data_substitution_dict._substitutions_dict_tensmul[key] # delete metric data: delete_tensmul_data((self.metric, True, True)) delete_tensmul_data((self.metric, True, False)) delete_tensmul_data((self.metric, False, True)) delete_tensmul_data((self.metric, False, False)) # delete delta tensor data: delta = self.get_kronecker_delta() if delta in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[delta] class TensorIndex(Basic): """ Represents an abstract tensor index. Parameters ========== name : name of the index, or ``True`` if you want it to be automatically assigned tensortype : ``TensorIndexType`` of the index is_up : flag for contravariant index Attributes ========== ``name`` ``tensortype`` ``is_up`` Notes ===== Tensor indices are contracted with the Einstein summation convention. An index can be in contravariant or in covariant form; in the latter case it is represented prepending a ``-`` to the index name. Dummy indices have a name with head given by ``tensortype._dummy_fmt`` Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, TensorIndex, TensorSymmetry, TensorType, get_symmetric_group_sgs >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> i = TensorIndex('i', Lorentz); i i >>> sym1 = TensorSymmetry(*get_symmetric_group_sgs(1)) >>> S1 = TensorType([Lorentz], sym1) >>> A, B = S1('A,B') >>> A(i)*B(-i) A(L_0)*B(-L_0) If you want the index name to be automatically assigned, just put ``True`` in the ``name`` field, it will be generated using the reserved character ``_`` in front of its name, in order to avoid conflicts with possible existing indices: >>> i0 = TensorIndex(True, Lorentz) >>> i0 _i0 >>> i1 = TensorIndex(True, Lorentz) >>> i1 _i1 >>> A(i0)*B(-i1) A(_i0)*B(-_i1) >>> A(i0)*B(-i0) A(L_0)*B(-L_0) """ def __new__(cls, name, tensortype, is_up=True): if isinstance(name, string_types): name_symbol = Symbol(name) elif isinstance(name, Symbol): name_symbol = name elif name is True: name = "_i{0}".format(len(tensortype._autogenerated)) name_symbol = Symbol(name) tensortype._autogenerated.append(name_symbol) else: raise ValueError("invalid name") is_up = sympify(is_up) obj = Basic.__new__(cls, name_symbol, tensortype, is_up) obj._name = str(name) obj._tensor_index_type = tensortype obj._is_up = is_up return obj @property def name(self): return self._name @property @deprecated(useinstead="tensor_index_type", issue=12857, deprecated_since_version="1.1") def tensortype(self): return self.tensor_index_type @property def tensor_index_type(self): return self._tensor_index_type @property def is_up(self): return self._is_up def _print(self): s = self._name if not self._is_up: s = '-%s' % s return s def __lt__(self, other): return (self.tensor_index_type, self._name) < (other.tensor_index_type, other._name) def __neg__(self): t1 = TensorIndex(self.name, self.tensor_index_type, (not self.is_up)) return t1 def tensor_indices(s, typ): """ Returns list of tensor indices given their names and their types Parameters ========== s : string of comma separated names of indices typ : ``TensorIndexType`` of the indices Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> a, b, c, d = tensor_indices('a,b,c,d', Lorentz) """ if isinstance(s, string_types): a = [x.name for x in symbols(s, seq=True)] else: raise ValueError('expecting a string') tilist = [TensorIndex(i, typ) for i in a] if len(tilist) == 1: return tilist[0] return tilist class TensorSymmetry(Basic): """ Monoterm symmetry of a tensor Parameters ========== bsgs : tuple ``(base, sgs)`` BSGS of the symmetry of the tensor Attributes ========== ``base`` : base of the BSGS ``generators`` : generators of the BSGS ``rank`` : rank of the tensor Notes ===== A tensor can have an arbitrary monoterm symmetry provided by its BSGS. Multiterm symmetries, like the cyclic symmetry of the Riemann tensor, are not covered. See Also ======== sympy.combinatorics.tensor_can.get_symmetric_group_sgs Examples ======== Define a symmetric tensor >>> from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, TensorType, get_symmetric_group_sgs >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> sym2 = TensorSymmetry(get_symmetric_group_sgs(2)) >>> S2 = TensorType([Lorentz]*2, sym2) >>> V = S2('V') """ def __new__(cls, *args, **kw_args): if len(args) == 1: base, generators = args[0] elif len(args) == 2: base, generators = args else: raise TypeError("bsgs required, either two separate parameters or one tuple") if not isinstance(base, Tuple): base = Tuple(*base) if not isinstance(generators, Tuple): generators = Tuple(*generators) obj = Basic.__new__(cls, base, generators, **kw_args) return obj @property def base(self): return self.args[0] @property def generators(self): return self.args[1] @property def rank(self): return self.args[1][0].size - 2 def tensorsymmetry(*args): """ Return a ``TensorSymmetry`` object. One can represent a tensor with any monoterm slot symmetry group using a BSGS. ``args`` can be a BSGS ``args[0]`` base ``args[1]`` sgs Usually tensors are in (direct products of) representations of the symmetric group; ``args`` can be a list of lists representing the shapes of Young tableaux Notes ===== For instance: ``[[1]]`` vector ``[[1]*n]`` symmetric tensor of rank ``n`` ``[[n]]`` antisymmetric tensor of rank ``n`` ``[[2, 2]]`` monoterm slot symmetry of the Riemann tensor ``[[1],[1]]`` vector*vector ``[[2],[1],[1]`` (antisymmetric tensor)*vector*vector Notice that with the shape ``[2, 2]`` we associate only the monoterm symmetries of the Riemann tensor; this is an abuse of notation, since the shape ``[2, 2]`` corresponds usually to the irreducible representation characterized by the monoterm symmetries and by the cyclic symmetry. Examples ======== Symmetric tensor using a Young tableau >>> from sympy.tensor.tensor import TensorIndexType, TensorType, tensorsymmetry >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> sym2 = tensorsymmetry([1, 1]) >>> S2 = TensorType([Lorentz]*2, sym2) >>> V = S2('V') Symmetric tensor using a ``BSGS`` (base, strong generator set) >>> from sympy.tensor.tensor import get_symmetric_group_sgs >>> sym2 = tensorsymmetry(*get_symmetric_group_sgs(2)) >>> S2 = TensorType([Lorentz]*2, sym2) >>> V = S2('V') """ from sympy.combinatorics import Permutation def tableau2bsgs(a): if len(a) == 1: # antisymmetric vector n = a[0] bsgs = get_symmetric_group_sgs(n, 1) else: if all(x == 1 for x in a): # symmetric vector n = len(a) bsgs = get_symmetric_group_sgs(n) elif a == [2, 2]: bsgs = riemann_bsgs else: raise NotImplementedError return bsgs if not args: return TensorSymmetry(Tuple(), Tuple(Permutation(1))) if len(args) == 2 and isinstance(args[1][0], Permutation): return TensorSymmetry(args) base, sgs = tableau2bsgs(args[0]) for a in args[1:]: basex, sgsx = tableau2bsgs(a) base, sgs = bsgs_direct_product(base, sgs, basex, sgsx) return TensorSymmetry(Tuple(base, sgs)) class TensorType(Basic): """ Class of tensor types. Parameters ========== index_types : list of ``TensorIndexType`` of the tensor indices symmetry : ``TensorSymmetry`` of the tensor Attributes ========== ``index_types`` ``symmetry`` ``types`` : list of ``TensorIndexType`` without repetitions Examples ======== Define a symmetric tensor >>> from sympy.tensor.tensor import TensorIndexType, tensorsymmetry, TensorType >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> sym2 = tensorsymmetry([1, 1]) >>> S2 = TensorType([Lorentz]*2, sym2) >>> V = S2('V') """ is_commutative = False def __new__(cls, index_types, symmetry, **kw_args): assert symmetry.rank == len(index_types) obj = Basic.__new__(cls, Tuple(*index_types), symmetry, **kw_args) return obj @property def index_types(self): return self.args[0] @property def symmetry(self): return self.args[1] @property def types(self): return sorted(set(self.index_types), key=lambda x: x.name) def __str__(self): return 'TensorType(%s)' % ([str(x) for x in self.index_types]) def __call__(self, s, comm=0): """ Return a TensorHead object or a list of TensorHead objects. ``s`` name or string of names ``comm``: commutation group number see ``_TensorManager.set_comm`` Examples ======== Define symmetric tensors ``V``, ``W`` and ``G``, respectively commuting, anticommuting and with no commutation symmetry >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorsymmetry, TensorType, canon_bp >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> a, b = tensor_indices('a,b', Lorentz) >>> sym2 = tensorsymmetry([1]*2) >>> S2 = TensorType([Lorentz]*2, sym2) >>> V = S2('V') >>> W = S2('W', 1) >>> G = S2('G', 2) >>> canon_bp(V(a, b)*V(-b, -a)) V(L_0, L_1)*V(-L_0, -L_1) >>> canon_bp(W(a, b)*W(-b, -a)) 0 """ if isinstance(s, string_types): names = [x.name for x in symbols(s, seq=True)] else: raise ValueError('expecting a string') if len(names) == 1: return TensorHead(names[0], self, comm) else: return [TensorHead(name, self, comm) for name in names] def tensorhead(name, typ, sym=None, comm=0): """ Function generating tensorhead(s). Parameters ========== name : name or sequence of names (as in ``symbol``) typ : index types sym : same as ``*args`` in ``tensorsymmetry`` comm : commutation group number see ``_TensorManager.set_comm`` Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> a, b = tensor_indices('a,b', Lorentz) >>> A = tensorhead('A', [Lorentz]*2, [[1]*2]) >>> A(a, -b) A(a, -b) If no symmetry parameter is provided, assume there are not index symmetries: >>> B = tensorhead('B', [Lorentz, Lorentz]) >>> B(a, -b) B(a, -b) """ if sym is None: sym = [[1] for i in range(len(typ))] sym = tensorsymmetry(*sym) S = TensorType(typ, sym) th = S(name, comm) return th class TensorHead(Basic): r""" Tensor head of the tensor Parameters ========== name : name of the tensor typ : list of TensorIndexType comm : commutation group number Attributes ========== ``name`` ``index_types`` ``rank`` ``types`` : equal to ``typ.types`` ``symmetry`` : equal to ``typ.symmetry`` ``comm`` : commutation group Notes ===== A ``TensorHead`` belongs to a commutation group, defined by a symbol on number ``comm`` (see ``_TensorManager.set_comm``); tensors in a commutation group have the same commutation properties; by default ``comm`` is ``0``, the group of the commuting tensors. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensorhead, TensorType >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> A = tensorhead('A', [Lorentz, Lorentz], [[1],[1]]) Examples with ndarray values, the components data assigned to the ``TensorHead`` object are assumed to be in a fully-contravariant representation. In case it is necessary to assign components data which represents the values of a non-fully covariant tensor, see the other examples. >>> from sympy.tensor.tensor import tensor_indices, tensorhead >>> from sympy import diag >>> i0, i1 = tensor_indices('i0:2', Lorentz) Specify a replacement dictionary to keep track of the arrays to use for replacements in the tensorial expression. The ``TensorIndexType`` is associated to the metric used for contractions (in fully covariant form): >>> repl = {Lorentz: diag(1, -1, -1, -1)} Let's see some examples of working with components with the electromagnetic tensor: >>> from sympy import symbols >>> Ex, Ey, Ez, Bx, By, Bz = symbols('E_x E_y E_z B_x B_y B_z') >>> c = symbols('c', positive=True) Let's define `F`, an antisymmetric tensor, we have to assign an antisymmetric matrix to it, because `[[2]]` stands for the Young tableau representation of an antisymmetric set of two elements: >>> F = tensorhead('F', [Lorentz, Lorentz], [[2]]) Let's update the dictionary to contain the matrix to use in the replacements: >>> repl.update({F(-i0, -i1): [ ... [0, Ex/c, Ey/c, Ez/c], ... [-Ex/c, 0, -Bz, By], ... [-Ey/c, Bz, 0, -Bx], ... [-Ez/c, -By, Bx, 0]]}) Now it is possible to retrieve the contravariant form of the Electromagnetic tensor: >>> F(i0, i1).replace_with_arrays(repl, [i0, i1]) [[0, -E_x/c, -E_y/c, -E_z/c], [E_x/c, 0, -B_z, B_y], [E_y/c, B_z, 0, -B_x], [E_z/c, -B_y, B_x, 0]] and the mixed contravariant-covariant form: >>> F(i0, -i1).replace_with_arrays(repl, [i0, -i1]) [[0, E_x/c, E_y/c, E_z/c], [E_x/c, 0, B_z, -B_y], [E_y/c, -B_z, 0, B_x], [E_z/c, B_y, -B_x, 0]] Energy-momentum of a particle may be represented as: >>> from sympy import symbols >>> P = tensorhead('P', [Lorentz], [[1]]) >>> E, px, py, pz = symbols('E p_x p_y p_z', positive=True) >>> repl.update({P(i0): [E, px, py, pz]}) The contravariant and covariant components are, respectively: >>> P(i0).replace_with_arrays(repl, [i0]) [E, p_x, p_y, p_z] >>> P(-i0).replace_with_arrays(repl, [-i0]) [E, -p_x, -p_y, -p_z] The contraction of a 1-index tensor by itself: >>> expr = P(i0)*P(-i0) >>> expr.replace_with_arrays(repl, []) E**2 - p_x**2 - p_y**2 - p_z**2 """ is_commutative = False def __new__(cls, name, typ, comm=0, **kw_args): if isinstance(name, string_types): name_symbol = Symbol(name) elif isinstance(name, Symbol): name_symbol = name else: raise ValueError("invalid name") comm2i = TensorManager.comm_symbols2i(comm) obj = Basic.__new__(cls, name_symbol, typ, **kw_args) obj._name = obj.args[0].name obj._rank = len(obj.index_types) obj._symmetry = typ.symmetry obj._comm = comm2i return obj @property def name(self): return self._name @property def rank(self): return self._rank @property def symmetry(self): return self._symmetry @property def typ(self): return self.args[1] @property def comm(self): return self._comm @property def types(self): return self.args[1].types[:] @property def index_types(self): return self.args[1].index_types[:] def __lt__(self, other): return (self.name, self.index_types) < (other.name, other.index_types) def commutes_with(self, other): """ Returns ``0`` if ``self`` and ``other`` commute, ``1`` if they anticommute. Returns ``None`` if ``self`` and ``other`` neither commute nor anticommute. """ r = TensorManager.get_comm(self._comm, other._comm) return r def _print(self): return '%s(%s)' %(self.name, ','.join([str(x) for x in self.index_types])) def __call__(self, *indices, **kw_args): """ Returns a tensor with indices. There is a special behavior in case of indices denoted by ``True``, they are considered auto-matrix indices, their slots are automatically filled, and confer to the tensor the behavior of a matrix or vector upon multiplication with another tensor containing auto-matrix indices of the same ``TensorIndexType``. This means indices get summed over the same way as in matrix multiplication. For matrix behavior, define two auto-matrix indices, for vector behavior define just one. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> a, b = tensor_indices('a,b', Lorentz) >>> A = tensorhead('A', [Lorentz]*2, [[1]*2]) >>> t = A(a, -b) >>> t A(a, -b) """ tensor = Tensor(self, indices, **kw_args) return tensor.doit() def __pow__(self, other): with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=SymPyDeprecationWarning) if self.data is None: raise ValueError("No power on abstract tensors.") deprecate_data() from .array import tensorproduct, tensorcontraction metrics = [_.data for _ in self.args[1].args[0]] marray = self.data marraydim = marray.rank() for metric in metrics: marray = tensorproduct(marray, metric, marray) marray = tensorcontraction(marray, (0, marraydim), (marraydim+1, marraydim+2)) return marray ** (Rational(1, 2) * other) @property def data(self): deprecate_data() return _tensor_data_substitution_dict[self] @data.setter def data(self, data): deprecate_data() _tensor_data_substitution_dict[self] = data @data.deleter def data(self): deprecate_data() if self in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[self] def __iter__(self): deprecate_data() return self.data.__iter__() def _components_data_full_destroy(self): """ EXPERIMENTAL: do not rely on this API method. Destroy components data associated to the ``TensorHead`` object, this checks for attached components data, and destroys components data too. """ # do not garbage collect Kronecker tensor (it should be done by # ``TensorIndexType`` garbage collection) if self.name == "KD": return # the data attached to a tensor must be deleted only by the TensorHead # destructor. If the TensorHead is deleted, it means that there are no # more instances of that tensor anywhere. if self in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[self] def _get_argtree_pos(expr, pos): for p in pos: expr = expr.args[p] return expr class TensExpr(Expr): """ Abstract base class for tensor expressions Notes ===== A tensor expression is an expression formed by tensors; currently the sums of tensors are distributed. A ``TensExpr`` can be a ``TensAdd`` or a ``TensMul``. ``TensAdd`` objects are put in canonical form using the Butler-Portugal algorithm for canonicalization under monoterm symmetries. ``TensMul`` objects are formed by products of component tensors, and include a coefficient, which is a SymPy expression. In the internal representation contracted indices are represented by ``(ipos1, ipos2, icomp1, icomp2)``, where ``icomp1`` is the position of the component tensor with contravariant index, ``ipos1`` is the slot which the index occupies in that component tensor. Contracted indices are therefore nameless in the internal representation. """ _op_priority = 12.0 is_commutative = False def __neg__(self): return self*S.NegativeOne def __abs__(self): raise NotImplementedError def __add__(self, other): return TensAdd(self, other).doit() def __radd__(self, other): return TensAdd(other, self).doit() def __sub__(self, other): return TensAdd(self, -other).doit() def __rsub__(self, other): return TensAdd(other, -self).doit() def __mul__(self, other): """ Multiply two tensors using Einstein summation convention. If the two tensors have an index in common, one contravariant and the other covariant, in their product the indices are summed Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz) >>> g = Lorentz.metric >>> p, q = tensorhead('p,q', [Lorentz], [[1]]) >>> t1 = p(m0) >>> t2 = q(-m0) >>> t1*t2 p(L_0)*q(-L_0) """ return TensMul(self, other).doit() def __rmul__(self, other): return TensMul(other, self).doit() def __div__(self, other): other = _sympify(other) if isinstance(other, TensExpr): raise ValueError('cannot divide by a tensor') return TensMul(self, S.One/other).doit() def __rdiv__(self, other): raise ValueError('cannot divide by a tensor') def __pow__(self, other): with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=SymPyDeprecationWarning) if self.data is None: raise ValueError("No power without ndarray data.") deprecate_data() from .array import tensorproduct, tensorcontraction free = self.free marray = self.data mdim = marray.rank() for metric in free: marray = tensorcontraction( tensorproduct( marray, metric[0].tensor_index_type.data, marray), (0, mdim), (mdim+1, mdim+2) ) return marray ** (Rational(1, 2) * other) def __rpow__(self, other): raise NotImplementedError __truediv__ = __div__ __rtruediv__ = __rdiv__ def fun_eval(self, *index_tuples): """ Return a tensor with free indices substituted according to ``index_tuples`` ``index_types`` list of tuples ``(old_index, new_index)`` Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz) >>> A, B = tensorhead('A,B', [Lorentz]*2, [[1]*2]) >>> t = A(i, k)*B(-k, -j); t A(i, L_0)*B(-L_0, -j) >>> t.fun_eval((i, k),(-j, l)) A(k, L_0)*B(-L_0, l) """ expr = self.xreplace(dict(index_tuples)) expr = expr.replace(lambda x: isinstance(x, Tensor), lambda x: x.args[0](*x.args[1])) # For some reason, `TensMul` gets replaced by `Mul`, correct it: expr = expr.replace(lambda x: isinstance(x, (Mul, TensMul)), lambda x: TensMul(*x.args).doit()) return expr def get_matrix(self): """ DEPRECATED: do not use. Returns ndarray components data as a matrix, if components data are available and ndarray dimension does not exceed 2. """ from sympy import Matrix deprecate_data() if 0 < self.rank <= 2: rows = self.data.shape[0] columns = self.data.shape[1] if self.rank == 2 else 1 if self.rank == 2: mat_list = [] * rows for i in range(rows): mat_list.append([]) for j in range(columns): mat_list[i].append(self[i, j]) else: mat_list = [None] * rows for i in range(rows): mat_list[i] = self[i] return Matrix(mat_list) else: raise NotImplementedError( "missing multidimensional reduction to matrix.") @staticmethod def _get_indices_permutation(indices1, indices2): return [indices1.index(i) for i in indices2] def expand(self, **hints): return _expand(self, **hints).doit() def _expand(self, **kwargs): return self def _get_free_indices_set(self): indset = set([]) for arg in self.args: if isinstance(arg, TensExpr): indset.update(arg._get_free_indices_set()) return indset def _get_dummy_indices_set(self): indset = set([]) for arg in self.args: if isinstance(arg, TensExpr): indset.update(arg._get_dummy_indices_set()) return indset def _get_indices_set(self): indset = set([]) for arg in self.args: if isinstance(arg, TensExpr): indset.update(arg._get_indices_set()) return indset @property def _iterate_dummy_indices(self): dummy_set = self._get_dummy_indices_set() def recursor(expr, pos): if isinstance(expr, TensorIndex): if expr in dummy_set: yield (expr, pos) elif isinstance(expr, (Tuple, TensExpr)): for p, arg in enumerate(expr.args): for i in recursor(arg, pos+(p,)): yield i return recursor(self, ()) @property def _iterate_free_indices(self): free_set = self._get_free_indices_set() def recursor(expr, pos): if isinstance(expr, TensorIndex): if expr in free_set: yield (expr, pos) elif isinstance(expr, (Tuple, TensExpr)): for p, arg in enumerate(expr.args): for i in recursor(arg, pos+(p,)): yield i return recursor(self, ()) @property def _iterate_indices(self): def recursor(expr, pos): if isinstance(expr, TensorIndex): yield (expr, pos) elif isinstance(expr, (Tuple, TensExpr)): for p, arg in enumerate(expr.args): for i in recursor(arg, pos+(p,)): yield i return recursor(self, ()) @staticmethod def _match_indices_with_other_tensor(array, free_ind1, free_ind2, replacement_dict): from .array import tensorcontraction, tensorproduct, permutedims index_types1 = [i.tensor_index_type for i in free_ind1] # Check if variance of indices needs to be fixed: pos2up = [] pos2down = [] free2remaining = free_ind2[:] for pos1, index1 in enumerate(free_ind1): if index1 in free2remaining: pos2 = free2remaining.index(index1) free2remaining[pos2] = None continue if -index1 in free2remaining: pos2 = free2remaining.index(-index1) free2remaining[pos2] = None free_ind2[pos2] = index1 if index1.is_up: pos2up.append(pos2) else: pos2down.append(pos2) else: index2 = free2remaining[pos1] if index2 is None: raise ValueError("incompatible indices: %s and %s" % (free_ind1, free_ind2)) free2remaining[pos1] = None free_ind2[pos1] = index1 if index1.is_up ^ index2.is_up: if index1.is_up: pos2up.append(pos1) else: pos2down.append(pos1) if len(set(free_ind1) & set(free_ind2)) < len(free_ind1): raise ValueError("incompatible indices: %s and %s" % (free_ind1, free_ind2)) # TODO: add possibility of metric after (spinors) def contract_and_permute(metric, array, pos): array = tensorcontraction(tensorproduct(metric, array), (1, 2+pos)) permu = list(range(len(free_ind1))) permu[0], permu[pos] = permu[pos], permu[0] return permutedims(array, permu) # Raise indices: for pos in pos2up: metric = replacement_dict[index_types1[pos]] metric_inverse = _TensorDataLazyEvaluator.inverse_matrix(metric) array = contract_and_permute(metric_inverse, array, pos) # Lower indices: for pos in pos2down: metric = replacement_dict[index_types1[pos]] array = contract_and_permute(metric, array, pos) if free_ind1: permutation = TensExpr._get_indices_permutation(free_ind2, free_ind1) array = permutedims(array, permutation) if hasattr(array, "rank") and array.rank() == 0: array = array[()] return free_ind2, array def replace_with_arrays(self, replacement_dict, indices): """ Replace the tensorial expressions with arrays. The final array will correspond to the N-dimensional array with indices arranged according to ``indices``. Parameters ========== replacement_dict dictionary containing the replacement rules for tensors. indices the index order with respect to which the array is read. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices >>> from sympy.tensor.tensor import tensorhead >>> from sympy import symbols, diag >>> L = TensorIndexType("L") >>> i, j = tensor_indices("i j", L) >>> A = tensorhead("A", [L], [[1]]) >>> A(i).replace_with_arrays({A(i): [1, 2]}, [i]) [1, 2] >>> expr = A(i)*A(j) >>> expr.replace_with_arrays({A(i): [1, 2]}, [i, j]) [[1, 2], [2, 4]] For contractions, specify the metric of the ``TensorIndexType``, which in this case is ``L``, in its covariant form: >>> expr = A(i)*A(-i) >>> expr.replace_with_arrays({A(i): [1, 2], L: diag(1, -1)}, []) -3 Symmetrization of an array: >>> H = tensorhead("H", [L, L], [[1], [1]]) >>> a, b, c, d = symbols("a b c d") >>> expr = H(i, j)/2 + H(j, i)/2 >>> expr.replace_with_arrays({H(i, j): [[a, b], [c, d]]}, [i, j]) [[a, b/2 + c/2], [b/2 + c/2, d]] Anti-symmetrization of an array: >>> expr = H(i, j)/2 - H(j, i)/2 >>> repl = {H(i, j): [[a, b], [c, d]]} >>> expr.replace_with_arrays(repl, [i, j]) [[0, b/2 - c/2], [-b/2 + c/2, 0]] The same expression can be read as the transpose by inverting ``i`` and ``j``: >>> expr.replace_with_arrays(repl, [j, i]) [[0, -b/2 + c/2], [b/2 - c/2, 0]] """ from .array import Array replacement_dict = {tensor: Array(array) for tensor, array in replacement_dict.items()} # Check dimensions of replaced arrays: for tensor, array in replacement_dict.items(): if isinstance(tensor, TensorIndexType): expected_shape = [tensor.dim for i in range(2)] else: expected_shape = [index_type.dim for index_type in tensor.index_types] if len(expected_shape) != array.rank() or (not all([dim1 == dim2 if dim1 is not None else True for dim1, dim2 in zip(expected_shape, array.shape)])): raise ValueError("shapes for tensor %s expected to be %s, "\ "replacement array shape is %s" % (tensor, expected_shape, array.shape)) ret_indices, array = self._extract_data(replacement_dict) last_indices, array = self._match_indices_with_other_tensor(array, indices, ret_indices, replacement_dict) #permutation = self._get_indices_permutation(indices, ret_indices) #if not hasattr(array, "rank"): #return array #if array.rank() == 0: #array = array[()] #return array #array = permutedims(array, permutation) return array def _check_add_Sum(self, expr, index_symbols): from sympy import Sum indices = self.get_indices() dum = self.dum sum_indices = [ (index_symbols[i], 0, indices[i].tensor_index_type.dim-1) for i, j in dum] if sum_indices: expr = Sum(expr, *sum_indices) return expr class TensAdd(TensExpr, AssocOp): """ Sum of tensors Parameters ========== free_args : list of the free indices Attributes ========== ``args`` : tuple of addends ``rank`` : rank of the tensor ``free_args`` : list of the free indices in sorted order Notes ===== Sum of more than one tensor are put automatically in canonical form. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensorhead, tensor_indices >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> a, b = tensor_indices('a,b', Lorentz) >>> p, q = tensorhead('p,q', [Lorentz], [[1]]) >>> t = p(a) + q(a); t p(a) + q(a) >>> t(b) p(b) + q(b) Examples with components data added to the tensor expression: >>> from sympy import symbols, diag >>> x, y, z, t = symbols("x y z t") >>> repl = {} >>> repl[Lorentz] = diag(1, -1, -1, -1) >>> repl[p(a)] = [1, 2, 3, 4] >>> repl[q(a)] = [x, y, z, t] The following are: 2**2 - 3**2 - 2**2 - 7**2 ==> -58 >>> expr = p(a) + q(a) >>> expr.replace_with_arrays(repl, [a]) [x + 1, y + 2, z + 3, t + 4] """ def __new__(cls, *args, **kw_args): args = [_sympify(x) for x in args if x] args = TensAdd._tensAdd_flatten(args) obj = Basic.__new__(cls, *args, **kw_args) return obj def doit(self, **kwargs): deep = kwargs.get('deep', True) if deep: args = [arg.doit(**kwargs) for arg in self.args] else: args = self.args if not args: return S.Zero if len(args) == 1 and not isinstance(args[0], TensExpr): return args[0] # now check that all addends have the same indices: TensAdd._tensAdd_check(args) # if TensAdd has only 1 element in its `args`: if len(args) == 1: # and isinstance(args[0], TensMul): return args[0] # Remove zeros: args = [x for x in args if x] # if there are no more args (i.e. have cancelled out), # just return zero: if not args: return S.Zero if len(args) == 1: return args[0] # Collect terms appearing more than once, differing by their coefficients: args = TensAdd._tensAdd_collect_terms(args) # collect canonicalized terms def sort_key(t): x = get_index_structure(t) if not isinstance(t, TensExpr): return ([], [], []) return (t.components, x.free, x.dum) args.sort(key=sort_key) if not args: return S.Zero # it there is only a component tensor return it if len(args) == 1: return args[0] obj = self.func(*args) return obj @staticmethod def _tensAdd_flatten(args): # flatten TensAdd, coerce terms which are not tensors to tensors a = [] for x in args: if isinstance(x, (Add, TensAdd)): a.extend(list(x.args)) else: a.append(x) args = [x for x in a if x.coeff] return args @staticmethod def _tensAdd_check(args): # check that all addends have the same free indices indices0 = set([x[0] for x in get_index_structure(args[0]).free]) list_indices = [set([y[0] for y in get_index_structure(x).free]) for x in args[1:]] if not all(x == indices0 for x in list_indices): raise ValueError('all tensors must have the same indices') @staticmethod def _tensAdd_collect_terms(args): # collect TensMul terms differing at most by their coefficient terms_dict = defaultdict(list) scalars = S.Zero if isinstance(args[0], TensExpr): free_indices = set(args[0].get_free_indices()) else: free_indices = set([]) for arg in args: if not isinstance(arg, TensExpr): if free_indices != set([]): raise ValueError("wrong valence") scalars += arg continue if free_indices != set(arg.get_free_indices()): raise ValueError("wrong valence") # TODO: what is the part which is not a coeff? # needs an implementation similar to .as_coeff_Mul() terms_dict[arg.nocoeff].append(arg.coeff) new_args = [TensMul(Add(*coeff), t).doit() for t, coeff in terms_dict.items() if Add(*coeff) != 0] if isinstance(scalars, Add): new_args = list(scalars.args) + new_args elif scalars != 0: new_args = [scalars] + new_args return new_args def get_indices(self): indices = [] for arg in self.args: indices.extend([i for i in get_indices(arg) if i not in indices]) return indices @property def rank(self): return self.args[0].rank @property def free_args(self): return self.args[0].free_args def _expand(self, **hints): return TensAdd(*[_expand(i, **hints) for i in self.args]) def __call__(self, *indices): """Returns tensor with ordered free indices replaced by ``indices`` Parameters ========== indices Examples ======== >>> from sympy import Symbol >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead >>> D = Symbol('D') >>> Lorentz = TensorIndexType('Lorentz', dim=D, dummy_fmt='L') >>> i0,i1,i2,i3,i4 = tensor_indices('i0:5', Lorentz) >>> p, q = tensorhead('p,q', [Lorentz], [[1]]) >>> g = Lorentz.metric >>> t = p(i0)*p(i1) + g(i0,i1)*q(i2)*q(-i2) >>> t(i0,i2) metric(i0, i2)*q(L_0)*q(-L_0) + p(i0)*p(i2) >>> from sympy.tensor.tensor import canon_bp >>> canon_bp(t(i0,i1) - t(i1,i0)) 0 """ free_args = self.free_args indices = list(indices) if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]: raise ValueError('incompatible types') if indices == free_args: return self index_tuples = list(zip(free_args, indices)) a = [x.func(*x.fun_eval(*index_tuples).args) for x in self.args] res = TensAdd(*a).doit() return res def canon_bp(self): """ canonicalize using the Butler-Portugal algorithm for canonicalization under monoterm symmetries. """ expr = self.expand() args = [canon_bp(x) for x in expr.args] res = TensAdd(*args).doit() return res def equals(self, other): other = _sympify(other) if isinstance(other, TensMul) and other._coeff == 0: return all(x._coeff == 0 for x in self.args) if isinstance(other, TensExpr): if self.rank != other.rank: return False if isinstance(other, TensAdd): if set(self.args) != set(other.args): return False else: return True t = self - other if not isinstance(t, TensExpr): return t == 0 else: if isinstance(t, TensMul): return t._coeff == 0 else: return all(x._coeff == 0 for x in t.args) def __getitem__(self, item): deprecate_data() return self.data[item] def contract_delta(self, delta): args = [x.contract_delta(delta) for x in self.args] t = TensAdd(*args).doit() return canon_bp(t) def contract_metric(self, g): """ Raise or lower indices with the metric ``g`` Parameters ========== g : metric contract_all : if True, eliminate all ``g`` which are contracted Notes ===== see the ``TensorIndexType`` docstring for the contraction conventions """ args = [contract_metric(x, g) for x in self.args] t = TensAdd(*args).doit() return canon_bp(t) def fun_eval(self, *index_tuples): """ Return a tensor with free indices substituted according to ``index_tuples`` Parameters ========== index_types : list of tuples ``(old_index, new_index)`` Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz) >>> A, B = tensorhead('A,B', [Lorentz]*2, [[1]*2]) >>> t = A(i, k)*B(-k, -j) + A(i, -j) >>> t.fun_eval((i, k),(-j, l)) A(k, L_0)*B(-L_0, l) + A(k, l) """ args = self.args args1 = [] for x in args: y = x.fun_eval(*index_tuples) args1.append(y) return TensAdd(*args1).doit() def substitute_indices(self, *index_tuples): """ Return a tensor with free indices substituted according to ``index_tuples`` Parameters ========== index_types : list of tuples ``(old_index, new_index)`` Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz) >>> A, B = tensorhead('A,B', [Lorentz]*2, [[1]*2]) >>> t = A(i, k)*B(-k, -j); t A(i, L_0)*B(-L_0, -j) >>> t.substitute_indices((i,j), (j, k)) A(j, L_0)*B(-L_0, -k) """ args = self.args args1 = [] for x in args: y = x.substitute_indices(*index_tuples) args1.append(y) return TensAdd(*args1).doit() def _print(self): a = [] args = self.args for x in args: a.append(str(x)) a.sort() s = ' + '.join(a) s = s.replace('+ -', '- ') return s def _extract_data(self, replacement_dict): from sympy.tensor.array import Array, permutedims args_indices, arrays = zip(*[ arg._extract_data(replacement_dict) if isinstance(arg, TensExpr) else ([], arg) for arg in self.args ]) arrays = [Array(i) for i in arrays] ref_indices = args_indices[0] for i in range(1, len(args_indices)): indices = args_indices[i] array = arrays[i] permutation = TensMul._get_indices_permutation(indices, ref_indices) arrays[i] = permutedims(array, permutation) return ref_indices, sum(arrays, Array.zeros(*array.shape)) @property def data(self): deprecate_data() return _tensor_data_substitution_dict[self.expand()] @data.setter def data(self, data): deprecate_data() _tensor_data_substitution_dict[self] = data @data.deleter def data(self): deprecate_data() if self in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[self] def __iter__(self): deprecate_data() if not self.data: raise ValueError("No iteration on abstract tensors") return self.data.flatten().__iter__() def _eval_rewrite_as_Indexed(self, *args): return Add.fromiter(args) class Tensor(TensExpr): """ Base tensor class, i.e. this represents a tensor, the single unit to be put into an expression. This object is usually created from a ``TensorHead``, by attaching indices to it. Indices preceded by a minus sign are considered contravariant, otherwise covariant. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead >>> Lorentz = TensorIndexType("Lorentz", dummy_fmt="L") >>> mu, nu = tensor_indices('mu nu', Lorentz) >>> A = tensorhead("A", [Lorentz, Lorentz], [[1], [1]]) >>> A(mu, -nu) A(mu, -nu) >>> A(mu, -mu) A(L_0, -L_0) """ is_commutative = False def __new__(cls, tensor_head, indices, **kw_args): is_canon_bp = kw_args.pop('is_canon_bp', False) indices = cls._parse_indices(tensor_head, indices) obj = Basic.__new__(cls, tensor_head, Tuple(*indices), **kw_args) obj._index_structure = _IndexStructure.from_indices(*indices) obj._free_indices_set = set(obj._index_structure.get_free_indices()) if tensor_head.rank != len(indices): raise ValueError("wrong number of indices") obj._indices = indices obj._is_canon_bp = is_canon_bp obj._index_map = Tensor._build_index_map(indices, obj._index_structure) return obj @staticmethod def _build_index_map(indices, index_structure): index_map = {} for idx in indices: index_map[idx] = (indices.index(idx),) return index_map def doit(self, **kwargs): args, indices, free, dum = TensMul._tensMul_contract_indices([self]) return args[0] @staticmethod def _parse_indices(tensor_head, indices): if not isinstance(indices, (tuple, list, Tuple)): raise TypeError("indices should be an array, got %s" % type(indices)) indices = list(indices) for i, index in enumerate(indices): if isinstance(index, Symbol): indices[i] = TensorIndex(index, tensor_head.index_types[i], True) elif isinstance(index, Mul): c, e = index.as_coeff_Mul() if c == -1 and isinstance(e, Symbol): indices[i] = TensorIndex(e, tensor_head.index_types[i], False) else: raise ValueError("index not understood: %s" % index) elif not isinstance(index, TensorIndex): raise TypeError("wrong type for index: %s is %s" % (index, type(index))) return indices def _set_new_index_structure(self, im, is_canon_bp=False): indices = im.get_indices() return self._set_indices(*indices, is_canon_bp=is_canon_bp) def _set_indices(self, *indices, **kw_args): if len(indices) != self.ext_rank: raise ValueError("indices length mismatch") return self.func(self.args[0], indices, is_canon_bp=kw_args.pop('is_canon_bp', False)).doit() def _get_free_indices_set(self): return set([i[0] for i in self._index_structure.free]) def _get_dummy_indices_set(self): dummy_pos = set(itertools.chain(*self._index_structure.dum)) return set(idx for i, idx in enumerate(self.args[1]) if i in dummy_pos) def _get_indices_set(self): return set(self.args[1].args) @property def is_canon_bp(self): return self._is_canon_bp @property def indices(self): return self._indices @property def free(self): return self._index_structure.free[:] @property def free_in_args(self): return [(ind, pos, 0) for ind, pos in self.free] @property def dum(self): return self._index_structure.dum[:] @property def dum_in_args(self): return [(p1, p2, 0, 0) for p1, p2 in self.dum] @property def rank(self): return len(self.free) @property def ext_rank(self): return self._index_structure._ext_rank @property def free_args(self): return sorted([x[0] for x in self.free]) def commutes_with(self, other): """ :param other: :return: 0 commute 1 anticommute None neither commute nor anticommute """ if not isinstance(other, TensExpr): return 0 elif isinstance(other, Tensor): return self.component.commutes_with(other.component) return NotImplementedError def perm2tensor(self, g, is_canon_bp=False): """ Returns the tensor corresponding to the permutation ``g`` For further details, see the method in ``TIDS`` with the same name. """ return perm2tensor(self, g, is_canon_bp) def canon_bp(self): if self._is_canon_bp: return self expr = self.expand() g, dummies, msym = expr._index_structure.indices_canon_args() v = components_canon_args([expr.component]) can = canonicalize(g, dummies, msym, *v) if can == 0: return S.Zero tensor = self.perm2tensor(can, True) return tensor @property def index_types(self): return list(self.component.index_types) @property def coeff(self): return S.One @property def nocoeff(self): return self @property def component(self): return self.args[0] @property def components(self): return [self.args[0]] def split(self): return [self] def _expand(self, **kwargs): return self def sorted_components(self): return self def get_indices(self): """ Get a list of indices, corresponding to those of the tensor. """ return list(self.args[1]) def get_free_indices(self): """ Get a list of free indices, corresponding to those of the tensor. """ return self._index_structure.get_free_indices() def as_base_exp(self): return self, S.One def substitute_indices(self, *index_tuples): return substitute_indices(self, *index_tuples) def __call__(self, *indices): """Returns tensor with ordered free indices replaced by ``indices`` Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> i0,i1,i2,i3,i4 = tensor_indices('i0:5', Lorentz) >>> A = tensorhead('A', [Lorentz]*5, [[1]*5]) >>> t = A(i2, i1, -i2, -i3, i4) >>> t A(L_0, i1, -L_0, -i3, i4) >>> t(i1, i2, i3) A(L_0, i1, -L_0, i2, i3) """ free_args = self.free_args indices = list(indices) if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]: raise ValueError('incompatible types') if indices == free_args: return self t = self.fun_eval(*list(zip(free_args, indices))) # object is rebuilt in order to make sure that all contracted indices # get recognized as dummies, but only if there are contracted indices. if len(set(i if i.is_up else -i for i in indices)) != len(indices): return t.func(*t.args) return t # TODO: put this into TensExpr? def __iter__(self): deprecate_data() return self.data.__iter__() # TODO: put this into TensExpr? def __getitem__(self, item): deprecate_data() return self.data[item] def _extract_data(self, replacement_dict): from .array import Array for k, v in replacement_dict.items(): if isinstance(k, Tensor) and k.args[0] == self.args[0]: other = k array = v break else: raise ValueError("%s not found in %s" % (self, replacement_dict)) # TODO: inefficient, this should be done at root level only: replacement_dict = {k: Array(v) for k, v in replacement_dict.items()} array = Array(array) dum1 = self.dum dum2 = other.dum if len(dum2) > 0: for pair in dum2: # allow `dum2` if the contained values are also in `dum1`. if pair not in dum1: raise NotImplementedError("%s with contractions is not implemented" % other) # Remove elements in `dum2` from `dum1`: dum1 = [pair for pair in dum1 if pair not in dum2] if len(dum1) > 0: indices2 = other.get_indices() repl = {} for p1, p2 in dum1: repl[indices2[p2]] = -indices2[p1] other = other.xreplace(repl).doit() array = _TensorDataLazyEvaluator.data_contract_dum([array], dum1, len(indices2)) free_ind1 = self.get_free_indices() free_ind2 = other.get_free_indices() return self._match_indices_with_other_tensor(array, free_ind1, free_ind2, replacement_dict) @property def data(self): deprecate_data() return _tensor_data_substitution_dict[self] @data.setter def data(self, data): deprecate_data() # TODO: check data compatibility with properties of tensor. _tensor_data_substitution_dict[self] = data @data.deleter def data(self): deprecate_data() if self in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[self] if self.metric in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[self.metric] def _print(self): indices = [str(ind) for ind in self.indices] component = self.component if component.rank > 0: return ('%s(%s)' % (component.name, ', '.join(indices))) else: return ('%s' % component.name) def equals(self, other): if other == 0: return self.coeff == 0 other = _sympify(other) if not isinstance(other, TensExpr): assert not self.components return S.One == other def _get_compar_comp(self): t = self.canon_bp() r = (t.coeff, tuple(t.components), \ tuple(sorted(t.free)), tuple(sorted(t.dum))) return r return _get_compar_comp(self) == _get_compar_comp(other) def contract_metric(self, g): # if metric is not the same, ignore this step: if self.component != g: return self # in case there are free components, do not perform anything: if len(self.free) != 0: return self antisym = g.index_types[0].metric_antisym sign = S.One typ = g.index_types[0] if not antisym: # g(i, -i) if typ._dim is None: raise ValueError('dimension not assigned') sign = sign*typ._dim else: # g(i, -i) if typ._dim is None: raise ValueError('dimension not assigned') sign = sign*typ._dim dp0, dp1 = self.dum[0] if dp0 < dp1: # g(i, -i) = -D with antisymmetric metric sign = -sign return sign def contract_delta(self, metric): return self.contract_metric(metric) def _eval_rewrite_as_Indexed(self, tens, indices): from sympy import Indexed # TODO: replace .args[0] with .name: index_symbols = [i.args[0] for i in self.get_indices()] expr = Indexed(tens.args[0], *index_symbols) return self._check_add_Sum(expr, index_symbols) class TensMul(TensExpr, AssocOp): """ Product of tensors Parameters ========== coeff : SymPy coefficient of the tensor args Attributes ========== ``components`` : list of ``TensorHead`` of the component tensors ``types`` : list of nonrepeated ``TensorIndexType`` ``free`` : list of ``(ind, ipos, icomp)``, see Notes ``dum`` : list of ``(ipos1, ipos2, icomp1, icomp2)``, see Notes ``ext_rank`` : rank of the tensor counting the dummy indices ``rank`` : rank of the tensor ``coeff`` : SymPy coefficient of the tensor ``free_args`` : list of the free indices in sorted order ``is_canon_bp`` : ``True`` if the tensor in in canonical form Notes ===== ``args[0]`` list of ``TensorHead`` of the component tensors. ``args[1]`` list of ``(ind, ipos, icomp)`` where ``ind`` is a free index, ``ipos`` is the slot position of ``ind`` in the ``icomp``-th component tensor. ``args[2]`` list of tuples representing dummy indices. ``(ipos1, ipos2, icomp1, icomp2)`` indicates that the contravariant dummy index is the ``ipos1``-th slot position in the ``icomp1``-th component tensor; the corresponding covariant index is in the ``ipos2`` slot position in the ``icomp2``-th component tensor. """ identity = S.One def __new__(cls, *args, **kw_args): is_canon_bp = kw_args.get('is_canon_bp', False) args = list(map(_sympify, args)) # Flatten: args = [i for arg in args for i in (arg.args if isinstance(arg, (TensMul, Mul)) else [arg])] args, indices, free, dum = TensMul._tensMul_contract_indices(args, replace_indices=False) # Data for indices: index_types = [i.tensor_index_type for i in indices] index_structure = _IndexStructure(free, dum, index_types, indices, canon_bp=is_canon_bp) obj = TensExpr.__new__(cls, *args) obj._indices = indices obj._index_types = index_types obj._index_structure = index_structure obj._ext_rank = len(obj._index_structure.free) + 2*len(obj._index_structure.dum) obj._coeff = S.One obj._is_canon_bp = is_canon_bp return obj @staticmethod def _indices_to_free_dum(args_indices): free2pos1 = {} free2pos2 = {} dummy_data = [] indices = [] # Notation for positions (to better understand the code): # `pos1`: position in the `args`. # `pos2`: position in the indices. # Example: # A(i, j)*B(k, m, n)*C(p) # `pos1` of `n` is 1 because it's in `B` (second `args` of TensMul). # `pos2` of `n` is 4 because it's the fifth overall index. # Counter for the index position wrt the whole expression: pos2 = 0 for pos1, arg_indices in enumerate(args_indices): for index_pos, index in enumerate(arg_indices): if not isinstance(index, TensorIndex): raise TypeError("expected TensorIndex") if -index in free2pos1: # Dummy index detected: other_pos1 = free2pos1.pop(-index) other_pos2 = free2pos2.pop(-index) if index.is_up: dummy_data.append((index, pos1, other_pos1, pos2, other_pos2)) else: dummy_data.append((-index, other_pos1, pos1, other_pos2, pos2)) indices.append(index) elif index in free2pos1: raise ValueError("Repeated index: %s" % index) else: free2pos1[index] = pos1 free2pos2[index] = pos2 indices.append(index) pos2 += 1 free = [(i, p) for (i, p) in free2pos2.items()] free_names = [i.name for i in free2pos2.keys()] dummy_data.sort(key=lambda x: x[3]) return indices, free, free_names, dummy_data @staticmethod def _dummy_data_to_dum(dummy_data): return [(p2a, p2b) for (i, p1a, p1b, p2a, p2b) in dummy_data] @staticmethod def _tensMul_contract_indices(args, replace_indices=True): replacements = [{} for _ in args] #_index_order = all([_has_index_order(arg) for arg in args]) args_indices = [get_indices(arg) for arg in args] indices, free, free_names, dummy_data = TensMul._indices_to_free_dum(args_indices) cdt = defaultdict(int) def dummy_fmt_gen(tensor_index_type): fmt = tensor_index_type.dummy_fmt nd = cdt[tensor_index_type] cdt[tensor_index_type] += 1 return fmt % nd if replace_indices: for old_index, pos1cov, pos1contra, pos2cov, pos2contra in dummy_data: index_type = old_index.tensor_index_type while True: dummy_name = dummy_fmt_gen(index_type) if dummy_name not in free_names: break dummy = TensorIndex(dummy_name, index_type, True) replacements[pos1cov][old_index] = dummy replacements[pos1contra][-old_index] = -dummy indices[pos2cov] = dummy indices[pos2contra] = -dummy args = [arg.xreplace(repl) for arg, repl in zip(args, replacements)] dum = TensMul._dummy_data_to_dum(dummy_data) return args, indices, free, dum @staticmethod def _get_components_from_args(args): """ Get a list of ``Tensor`` objects having the same ``TIDS`` if multiplied by one another. """ components = [] for arg in args: if not isinstance(arg, TensExpr): continue if isinstance(arg, TensAdd): continue components.extend(arg.components) return components @staticmethod def _rebuild_tensors_list(args, index_structure): indices = index_structure.get_indices() #tensors = [None for i in components] # pre-allocate list ind_pos = 0 for i, arg in enumerate(args): if not isinstance(arg, TensExpr): continue prev_pos = ind_pos ind_pos += arg.ext_rank args[i] = Tensor(arg.component, indices[prev_pos:ind_pos]) def doit(self, **kwargs): is_canon_bp = self._is_canon_bp deep = kwargs.get('deep', True) if deep: args = [arg.doit(**kwargs) for arg in self.args] else: args = self.args args = [arg for arg in args if arg != self.identity] # Extract non-tensor coefficients: coeff = reduce(lambda a, b: a*b, [arg for arg in args if not isinstance(arg, TensExpr)], S.One) args = [arg for arg in args if isinstance(arg, TensExpr)] if len(args) == 0: return coeff if coeff != self.identity: args = [coeff] + args if coeff == 0: return S.Zero if len(args) == 1: return args[0] args, indices, free, dum = TensMul._tensMul_contract_indices(args) # Data for indices: index_types = [i.tensor_index_type for i in indices] index_structure = _IndexStructure(free, dum, index_types, indices, canon_bp=is_canon_bp) obj = self.func(*args) obj._index_types = index_types obj._index_structure = index_structure obj._ext_rank = len(obj._index_structure.free) + 2*len(obj._index_structure.dum) obj._coeff = coeff obj._is_canon_bp = is_canon_bp return obj # TODO: this method should be private # TODO: should this method be renamed _from_components_free_dum ? @staticmethod def from_data(coeff, components, free, dum, **kw_args): return TensMul(coeff, *TensMul._get_tensors_from_components_free_dum(components, free, dum), **kw_args).doit() @staticmethod def _get_tensors_from_components_free_dum(components, free, dum): """ Get a list of ``Tensor`` objects by distributing ``free`` and ``dum`` indices on the ``components``. """ index_structure = _IndexStructure.from_components_free_dum(components, free, dum) indices = index_structure.get_indices() tensors = [None for i in components] # pre-allocate list # distribute indices on components to build a list of tensors: ind_pos = 0 for i, component in enumerate(components): prev_pos = ind_pos ind_pos += component.rank tensors[i] = Tensor(component, indices[prev_pos:ind_pos]) return tensors def _get_free_indices_set(self): return set([i[0] for i in self.free]) def _get_dummy_indices_set(self): dummy_pos = set(itertools.chain(*self.dum)) return set(idx for i, idx in enumerate(self._index_structure.get_indices()) if i in dummy_pos) def _get_position_offset_for_indices(self): arg_offset = [None for i in range(self.ext_rank)] counter = 0 for i, arg in enumerate(self.args): if not isinstance(arg, TensExpr): continue for j in range(arg.ext_rank): arg_offset[j + counter] = counter counter += arg.ext_rank return arg_offset @property def free_args(self): return sorted([x[0] for x in self.free]) @property def components(self): return self._get_components_from_args(self.args) @property def free(self): return self._index_structure.free[:] @property def free_in_args(self): arg_offset = self._get_position_offset_for_indices() argpos = self._get_indices_to_args_pos() return [(ind, pos-arg_offset[pos], argpos[pos]) for (ind, pos) in self.free] @property def coeff(self): return self._coeff @property def nocoeff(self): return self.func(*[t for t in self.args if isinstance(t, TensExpr)]).doit() @property def dum(self): return self._index_structure.dum[:] @property def dum_in_args(self): arg_offset = self._get_position_offset_for_indices() argpos = self._get_indices_to_args_pos() return [(p1-arg_offset[p1], p2-arg_offset[p2], argpos[p1], argpos[p2]) for p1, p2 in self.dum] @property def rank(self): return len(self.free) @property def ext_rank(self): return self._ext_rank @property def index_types(self): return self._index_types[:] def equals(self, other): if other == 0: return self.coeff == 0 other = _sympify(other) if not isinstance(other, TensExpr): assert not self.components return self._coeff == other return self.canon_bp() == other.canon_bp() def get_indices(self): """ Returns the list of indices of the tensor The indices are listed in the order in which they appear in the component tensors. The dummy indices are given a name which does not collide with the names of the free indices. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz) >>> g = Lorentz.metric >>> p, q = tensorhead('p,q', [Lorentz], [[1]]) >>> t = p(m1)*g(m0,m2) >>> t.get_indices() [m1, m0, m2] >>> t2 = p(m1)*g(-m1, m2) >>> t2.get_indices() [L_0, -L_0, m2] """ return self._indices def get_free_indices(self): """ Returns the list of free indices of the tensor The indices are listed in the order in which they appear in the component tensors. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz) >>> g = Lorentz.metric >>> p, q = tensorhead('p,q', [Lorentz], [[1]]) >>> t = p(m1)*g(m0,m2) >>> t.get_free_indices() [m1, m0, m2] >>> t2 = p(m1)*g(-m1, m2) >>> t2.get_free_indices() [m2] """ return self._index_structure.get_free_indices() def split(self): """ Returns a list of tensors, whose product is ``self`` Dummy indices contracted among different tensor components become free indices with the same name as the one used to represent the dummy indices. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> a, b, c, d = tensor_indices('a,b,c,d', Lorentz) >>> A, B = tensorhead('A,B', [Lorentz]*2, [[1]*2]) >>> t = A(a,b)*B(-b,c) >>> t A(a, L_0)*B(-L_0, c) >>> t.split() [A(a, L_0), B(-L_0, c)] """ if self.args == (): return [self] splitp = [] res = 1 for arg in self.args: if isinstance(arg, Tensor): splitp.append(res*arg) res = 1 else: res *= arg return splitp def _expand(self, **hints): # TODO: temporary solution, in the future this should be linked to # `Expr.expand`. args = [_expand(arg, **hints) for arg in self.args] args1 = [arg.args if isinstance(arg, (Add, TensAdd)) else (arg,) for arg in args] return TensAdd(*[ TensMul(*i) for i in itertools.product(*args1)] ) def __neg__(self): return TensMul(S.NegativeOne, self, is_canon_bp=self._is_canon_bp).doit() def __getitem__(self, item): deprecate_data() return self.data[item] def _get_args_for_traditional_printer(self): args = list(self.args) if (self.coeff < 0) == True: # expressions like "-A(a)" sign = "-" if self.coeff == S.NegativeOne: args = args[1:] else: args[0] = -args[0] else: sign = "" return sign, args def _sort_args_for_sorted_components(self): """ Returns the ``args`` sorted according to the components commutation properties. The sorting is done taking into account the commutation group of the component tensors. """ cv = [arg for arg in self.args if isinstance(arg, TensExpr)] sign = 1 n = len(cv) - 1 for i in range(n): for j in range(n, i, -1): c = cv[j-1].commutes_with(cv[j]) # if `c` is `None`, it does neither commute nor anticommute, skip: if c not in [0, 1]: continue if (cv[j-1].component.types, cv[j-1].component.name) > \ (cv[j].component.types, cv[j].component.name): cv[j-1], cv[j] = cv[j], cv[j-1] # if `c` is 1, the anticommute, so change sign: if c: sign = -sign coeff = sign * self.coeff if coeff != 1: return [coeff] + cv return cv def sorted_components(self): """ Returns a tensor product with sorted components. """ return TensMul(*self._sort_args_for_sorted_components()).doit() def perm2tensor(self, g, is_canon_bp=False): """ Returns the tensor corresponding to the permutation ``g`` For further details, see the method in ``TIDS`` with the same name. """ return perm2tensor(self, g, is_canon_bp=is_canon_bp) def canon_bp(self): """ Canonicalize using the Butler-Portugal algorithm for canonicalization under monoterm symmetries. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz) >>> A = tensorhead('A', [Lorentz]*2, [[2]]) >>> t = A(m0,-m1)*A(m1,-m0) >>> t.canon_bp() -A(L_0, L_1)*A(-L_0, -L_1) >>> t = A(m0,-m1)*A(m1,-m2)*A(m2,-m0) >>> t.canon_bp() 0 """ if self._is_canon_bp: return self expr = self.expand() if isinstance(expr, TensAdd): return expr.canon_bp() if not expr.components: return expr t = expr.sorted_components() g, dummies, msym = t._index_structure.indices_canon_args() v = components_canon_args(t.components) can = canonicalize(g, dummies, msym, *v) if can == 0: return S.Zero tmul = t.perm2tensor(can, True) return tmul def contract_delta(self, delta): t = self.contract_metric(delta) return t def _get_indices_to_args_pos(self): """ Get a dict mapping the index position to TensMul's argument number. """ pos_map = dict() pos_counter = 0 for arg_i, arg in enumerate(self.args): if not isinstance(arg, TensExpr): continue assert isinstance(arg, Tensor) for i in range(arg.ext_rank): pos_map[pos_counter] = arg_i pos_counter += 1 return pos_map def contract_metric(self, g): """ Raise or lower indices with the metric ``g`` Parameters ========== g : metric Notes ===== see the ``TensorIndexType`` docstring for the contraction conventions Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz) >>> g = Lorentz.metric >>> p, q = tensorhead('p,q', [Lorentz], [[1]]) >>> t = p(m0)*q(m1)*g(-m0, -m1) >>> t.canon_bp() metric(L_0, L_1)*p(-L_0)*q(-L_1) >>> t.contract_metric(g).canon_bp() p(L_0)*q(-L_0) """ expr = self.expand() if self != expr: expr = expr.canon_bp() return expr.contract_metric(g) pos_map = self._get_indices_to_args_pos() args = list(self.args) antisym = g.index_types[0].metric_antisym # list of positions of the metric ``g`` inside ``args`` gpos = [i for i, x in enumerate(self.args) if isinstance(x, Tensor) and x.component == g] if not gpos: return self # Sign is either 1 or -1, to correct the sign after metric contraction # (for spinor indices). sign = 1 dum = self.dum[:] free = self.free[:] elim = set() for gposx in gpos: if gposx in elim: continue free1 = [x for x in free if pos_map[x[1]] == gposx] dum1 = [x for x in dum if pos_map[x[0]] == gposx or pos_map[x[1]] == gposx] if not dum1: continue elim.add(gposx) # subs with the multiplication neutral element, that is, remove it: args[gposx] = 1 if len(dum1) == 2: if not antisym: dum10, dum11 = dum1 if pos_map[dum10[1]] == gposx: # the index with pos p0 contravariant p0 = dum10[0] else: # the index with pos p0 is covariant p0 = dum10[1] if pos_map[dum11[1]] == gposx: # the index with pos p1 is contravariant p1 = dum11[0] else: # the index with pos p1 is covariant p1 = dum11[1] dum.append((p0, p1)) else: dum10, dum11 = dum1 # change the sign to bring the indices of the metric to contravariant # form; change the sign if dum10 has the metric index in position 0 if pos_map[dum10[1]] == gposx: # the index with pos p0 is contravariant p0 = dum10[0] if dum10[1] == 1: sign = -sign else: # the index with pos p0 is covariant p0 = dum10[1] if dum10[0] == 0: sign = -sign if pos_map[dum11[1]] == gposx: # the index with pos p1 is contravariant p1 = dum11[0] sign = -sign else: # the index with pos p1 is covariant p1 = dum11[1] dum.append((p0, p1)) elif len(dum1) == 1: if not antisym: dp0, dp1 = dum1[0] if pos_map[dp0] == pos_map[dp1]: # g(i, -i) typ = g.index_types[0] if typ._dim is None: raise ValueError('dimension not assigned') sign = sign*typ._dim else: # g(i0, i1)*p(-i1) if pos_map[dp0] == gposx: p1 = dp1 else: p1 = dp0 ind, p = free1[0] free.append((ind, p1)) else: dp0, dp1 = dum1[0] if pos_map[dp0] == pos_map[dp1]: # g(i, -i) typ = g.index_types[0] if typ._dim is None: raise ValueError('dimension not assigned') sign = sign*typ._dim if dp0 < dp1: # g(i, -i) = -D with antisymmetric metric sign = -sign else: # g(i0, i1)*p(-i1) if pos_map[dp0] == gposx: p1 = dp1 if dp0 == 0: sign = -sign else: p1 = dp0 ind, p = free1[0] free.append((ind, p1)) dum = [x for x in dum if x not in dum1] free = [x for x in free if x not in free1] # shift positions: shift = 0 shifts = [0]*len(args) for i in range(len(args)): if i in elim: shift += 2 continue shifts[i] = shift free = [(ind, p - shifts[pos_map[p]]) for (ind, p) in free if pos_map[p] not in elim] dum = [(p0 - shifts[pos_map[p0]], p1 - shifts[pos_map[p1]]) for i, (p0, p1) in enumerate(dum) if pos_map[p0] not in elim and pos_map[p1] not in elim] res = sign*TensMul(*args).doit() if not isinstance(res, TensExpr): return res im = _IndexStructure.from_components_free_dum(res.components, free, dum) return res._set_new_index_structure(im) def _set_new_index_structure(self, im, is_canon_bp=False): indices = im.get_indices() return self._set_indices(*indices, is_canon_bp=is_canon_bp) def _set_indices(self, *indices, **kw_args): if len(indices) != self.ext_rank: raise ValueError("indices length mismatch") args = list(self.args)[:] pos = 0 is_canon_bp = kw_args.pop('is_canon_bp', False) for i, arg in enumerate(args): if not isinstance(arg, TensExpr): continue assert isinstance(arg, Tensor) ext_rank = arg.ext_rank args[i] = arg._set_indices(*indices[pos:pos+ext_rank]) pos += ext_rank return TensMul(*args, is_canon_bp=is_canon_bp).doit() @staticmethod def _index_replacement_for_contract_metric(args, free, dum): for arg in args: if not isinstance(arg, TensExpr): continue assert isinstance(arg, Tensor) def substitute_indices(self, *index_tuples): return substitute_indices(self, *index_tuples) def __call__(self, *indices): """Returns tensor product with ordered free indices replaced by ``indices`` Examples ======== >>> from sympy import Symbol >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead >>> D = Symbol('D') >>> Lorentz = TensorIndexType('Lorentz', dim=D, dummy_fmt='L') >>> i0,i1,i2,i3,i4 = tensor_indices('i0:5', Lorentz) >>> g = Lorentz.metric >>> p, q = tensorhead('p,q', [Lorentz], [[1]]) >>> t = p(i0)*q(i1)*q(-i1) >>> t(i1) p(i1)*q(L_0)*q(-L_0) """ free_args = self.free_args indices = list(indices) if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]: raise ValueError('incompatible types') if indices == free_args: return self t = self.fun_eval(*list(zip(free_args, indices))) # object is rebuilt in order to make sure that all contracted indices # get recognized as dummies, but only if there are contracted indices. if len(set(i if i.is_up else -i for i in indices)) != len(indices): return t.func(*t.args) return t def _extract_data(self, replacement_dict): args_indices, arrays = zip(*[arg._extract_data(replacement_dict) for arg in self.args if isinstance(arg, TensExpr)]) coeff = reduce(operator.mul, [a for a in self.args if not isinstance(a, TensExpr)], S.One) indices, free, free_names, dummy_data = TensMul._indices_to_free_dum(args_indices) dum = TensMul._dummy_data_to_dum(dummy_data) ext_rank = self.ext_rank free.sort(key=lambda x: x[1]) free_indices = [i[0] for i in free] return free_indices, coeff*_TensorDataLazyEvaluator.data_contract_dum(arrays, dum, ext_rank) @property def data(self): deprecate_data() dat = _tensor_data_substitution_dict[self.expand()] return dat @data.setter def data(self, data): deprecate_data() raise ValueError("Not possible to set component data to a tensor expression") @data.deleter def data(self): deprecate_data() raise ValueError("Not possible to delete component data to a tensor expression") def __iter__(self): deprecate_data() if self.data is None: raise ValueError("No iteration on abstract tensors") return self.data.__iter__() def _eval_rewrite_as_Indexed(self, *args): from sympy import Sum index_symbols = [i.args[0] for i in self.get_indices()] args = [arg.args[0] if isinstance(arg, Sum) else arg for arg in args] expr = Mul.fromiter(args) return self._check_add_Sum(expr, index_symbols) class TensorElement(TensExpr): """ Tensor with evaluated components. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensorhead >>> from sympy import symbols >>> L = TensorIndexType("L") >>> i, j, k = symbols("i j k") >>> A = tensorhead("A", [L, L], [[1], [1]]) >>> A(i, j).get_free_indices() [i, j] If we want to set component ``i`` to a specific value, use the ``TensorElement`` class: >>> from sympy.tensor.tensor import TensorElement >>> te = TensorElement(A(i, j), {i: 2}) As index ``i`` has been accessed (``{i: 2}`` is the evaluation of its 3rd element), the free indices will only contain ``j``: >>> te.get_free_indices() [j] """ def __new__(cls, expr, index_map): if not isinstance(expr, Tensor): # remap if not isinstance(expr, TensExpr): raise TypeError("%s is not a tensor expression" % expr) return expr.func(*[TensorElement(arg, index_map) for arg in expr.args]) expr_free_indices = expr.get_free_indices() name_translation = {i.args[0]: i for i in expr_free_indices} index_map = {name_translation.get(index, index): value for index, value in index_map.items()} index_map = {index: value for index, value in index_map.items() if index in expr_free_indices} if len(index_map) == 0: return expr free_indices = [i for i in expr_free_indices if i not in index_map.keys()] index_map = Dict(index_map) obj = TensExpr.__new__(cls, expr, index_map) obj._free_indices = free_indices return obj @property def free(self): return [(index, i) for i, index in enumerate(self.get_free_indices())] @property def dum(self): # TODO: inherit dummies from expr return [] @property def expr(self): return self._args[0] @property def index_map(self): return self._args[1] def get_free_indices(self): return self._free_indices def get_indices(self): return self.get_free_indices() def _extract_data(self, replacement_dict): ret_indices, array = self.expr._extract_data(replacement_dict) index_map = self.index_map slice_tuple = tuple(index_map.get(i, slice(None)) for i in ret_indices) ret_indices = [i for i in ret_indices if i not in index_map] array = array.__getitem__(slice_tuple) return ret_indices, array def canon_bp(p): """ Butler-Portugal canonicalization """ if isinstance(p, TensExpr): return p.canon_bp() return p def tensor_mul(*a): """ product of tensors """ if not a: return TensMul.from_data(S.One, [], [], []) t = a[0] for tx in a[1:]: t = t*tx return t def riemann_cyclic_replace(t_r): """ replace Riemann tensor with an equivalent expression ``R(m,n,p,q) -> 2/3*R(m,n,p,q) - 1/3*R(m,q,n,p) + 1/3*R(m,p,n,q)`` """ free = sorted(t_r.free, key=lambda x: x[1]) m, n, p, q = [x[0] for x in free] t0 = S(2)/3*t_r t1 = - S(1)/3*t_r.substitute_indices((m,m),(n,q),(p,n),(q,p)) t2 = S(1)/3*t_r.substitute_indices((m,m),(n,p),(p,n),(q,q)) t3 = t0 + t1 + t2 return t3 def riemann_cyclic(t2): """ replace each Riemann tensor with an equivalent expression satisfying the cyclic identity. This trick is discussed in the reference guide to Cadabra. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead, riemann_cyclic >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz) >>> R = tensorhead('R', [Lorentz]*4, [[2, 2]]) >>> t = R(i,j,k,l)*(R(-i,-j,-k,-l) - 2*R(-i,-k,-j,-l)) >>> riemann_cyclic(t) 0 """ t2 = t2.expand() if isinstance(t2, (TensMul, Tensor)): args = [t2] else: args = t2.args a1 = [x.split() for x in args] a2 = [[riemann_cyclic_replace(tx) for tx in y] for y in a1] a3 = [tensor_mul(*v) for v in a2] t3 = TensAdd(*a3).doit() if not t3: return t3 else: return canon_bp(t3) def get_lines(ex, index_type): """ returns ``(lines, traces, rest)`` for an index type, where ``lines`` is the list of list of positions of a matrix line, ``traces`` is the list of list of traced matrix lines, ``rest`` is the rest of the elements ot the tensor. """ def _join_lines(a): i = 0 while i < len(a): x = a[i] xend = x[-1] xstart = x[0] hit = True while hit: hit = False for j in range(i + 1, len(a)): if j >= len(a): break if a[j][0] == xend: hit = True x.extend(a[j][1:]) xend = x[-1] a.pop(j) continue if a[j][0] == xstart: hit = True a[i] = reversed(a[j][1:]) + x x = a[i] xstart = a[i][0] a.pop(j) continue if a[j][-1] == xend: hit = True x.extend(reversed(a[j][:-1])) xend = x[-1] a.pop(j) continue if a[j][-1] == xstart: hit = True a[i] = a[j][:-1] + x x = a[i] xstart = x[0] a.pop(j) continue i += 1 return a arguments = ex.args dt = {} for c in ex.args: if not isinstance(c, TensExpr): continue if c in dt: continue index_types = c.index_types a = [] for i in range(len(index_types)): if index_types[i] is index_type: a.append(i) if len(a) > 2: raise ValueError('at most two indices of type %s allowed' % index_type) if len(a) == 2: dt[c] = a #dum = ex.dum lines = [] traces = [] traces1 = [] #indices_to_args_pos = ex._get_indices_to_args_pos() # TODO: add a dum_to_components_map ? for p0, p1, c0, c1 in ex.dum_in_args: if arguments[c0] not in dt: continue if c0 == c1: traces.append([c0]) continue ta0 = dt[arguments[c0]] ta1 = dt[arguments[c1]] if p0 not in ta0: continue if ta0.index(p0) == ta1.index(p1): # case gamma(i,s0,-s1) in c0, gamma(j,-s0,s2) in c1; # to deal with this case one could add to the position # a flag for transposition; # one could write [(c0, False), (c1, True)] raise NotImplementedError # if p0 == ta0[1] then G in pos c0 is mult on the right by G in c1 # if p0 == ta0[0] then G in pos c1 is mult on the right by G in c0 ta0 = dt[arguments[c0]] b0, b1 = (c0, c1) if p0 == ta0[1] else (c1, c0) lines1 = lines[:] for line in lines: if line[-1] == b0: if line[0] == b1: n = line.index(min(line)) traces1.append(line) traces.append(line[n:] + line[:n]) else: line.append(b1) break elif line[0] == b1: line.insert(0, b0) break else: lines1.append([b0, b1]) lines = [x for x in lines1 if x not in traces1] lines = _join_lines(lines) rest = [] for line in lines: for y in line: rest.append(y) for line in traces: for y in line: rest.append(y) rest = [x for x in range(len(arguments)) if x not in rest] return lines, traces, rest def get_free_indices(t): if not isinstance(t, TensExpr): return () return t.get_free_indices() def get_indices(t): if not isinstance(t, TensExpr): return () return t.get_indices() def get_index_structure(t): if isinstance(t, TensExpr): return t._index_structure return _IndexStructure([], [], [], []) def get_coeff(t): if isinstance(t, Tensor): return S.One if isinstance(t, TensMul): return t.coeff if isinstance(t, TensExpr): raise ValueError("no coefficient associated to this tensor expression") return t def contract_metric(t, g): if isinstance(t, TensExpr): return t.contract_metric(g) return t def perm2tensor(t, g, is_canon_bp=False): """ Returns the tensor corresponding to the permutation ``g`` For further details, see the method in ``TIDS`` with the same name. """ if not isinstance(t, TensExpr): return t elif isinstance(t, (Tensor, TensMul)): nim = get_index_structure(t).perm2tensor(g, is_canon_bp=is_canon_bp) res = t._set_new_index_structure(nim, is_canon_bp=is_canon_bp) if g[-1] != len(g) - 1: return -res return res raise NotImplementedError() def substitute_indices(t, *index_tuples): """ Return a tensor with free indices substituted according to ``index_tuples`` ``index_types`` list of tuples ``(old_index, new_index)`` Note: this method will neither raise or lower the indices, it will just replace their symbol. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz) >>> A, B = tensorhead('A,B', [Lorentz]*2, [[1]*2]) >>> t = A(i, k)*B(-k, -j); t A(i, L_0)*B(-L_0, -j) >>> t.substitute_indices((i,j), (j, k)) A(j, L_0)*B(-L_0, -k) """ if not isinstance(t, TensExpr): return t free = t.free free1 = [] for j, ipos in free: for i, v in index_tuples: if i._name == j._name and i.tensor_index_type == j.tensor_index_type: if i._is_up == j._is_up: free1.append((v, ipos)) else: free1.append((-v, ipos)) break else: free1.append((j, ipos)) t = TensMul.from_data(t.coeff, t.components, free1, t.dum) return t def _expand(expr, **kwargs): if isinstance(expr, TensExpr): return expr._expand(**kwargs) else: return expr.expand(**kwargs)
4c85a4a751a41241d57c8a4b6be296236d1f82927011f3b019ad4ffa0c71fd0a
r"""Module that defines indexed objects The classes ``IndexedBase``, ``Indexed``, and ``Idx`` represent a matrix element ``M[i, j]`` as in the following diagram:: 1) The Indexed class represents the entire indexed object. | ___|___ ' ' M[i, j] / \__\______ | | | | | 2) The Idx class represents indices; each Idx can | optionally contain information about its range. | 3) IndexedBase represents the 'stem' of an indexed object, here `M`. The stem used by itself is usually taken to represent the entire array. There can be any number of indices on an Indexed object. No transformation properties are implemented in these Base objects, but implicit contraction of repeated indices is supported. Note that the support for complicated (i.e. non-atomic) integer expressions as indices is limited. (This should be improved in future releases.) Examples ======== To express the above matrix element example you would write: >>> from sympy import symbols, IndexedBase, Idx >>> M = IndexedBase('M') >>> i, j = symbols('i j', cls=Idx) >>> M[i, j] M[i, j] Repeated indices in a product implies a summation, so to express a matrix-vector product in terms of Indexed objects: >>> x = IndexedBase('x') >>> M[i, j]*x[j] M[i, j]*x[j] If the indexed objects will be converted to component based arrays, e.g. with the code printers or the autowrap framework, you also need to provide (symbolic or numerical) dimensions. This can be done by passing an optional shape parameter to IndexedBase upon construction: >>> dim1, dim2 = symbols('dim1 dim2', integer=True) >>> A = IndexedBase('A', shape=(dim1, 2*dim1, dim2)) >>> A.shape (dim1, 2*dim1, dim2) >>> A[i, j, 3].shape (dim1, 2*dim1, dim2) If an IndexedBase object has no shape information, it is assumed that the array is as large as the ranges of its indices: >>> n, m = symbols('n m', integer=True) >>> i = Idx('i', m) >>> j = Idx('j', n) >>> M[i, j].shape (m, n) >>> M[i, j].ranges [(0, m - 1), (0, n - 1)] The above can be compared with the following: >>> A[i, 2, j].shape (dim1, 2*dim1, dim2) >>> A[i, 2, j].ranges [(0, m - 1), None, (0, n - 1)] To analyze the structure of indexed expressions, you can use the methods get_indices() and get_contraction_structure(): >>> from sympy.tensor import get_indices, get_contraction_structure >>> get_indices(A[i, j, j]) ({i}, {}) >>> get_contraction_structure(A[i, j, j]) {(j,): {A[i, j, j]}} See the appropriate docstrings for a detailed explanation of the output. """ # TODO: (some ideas for improvement) # # o test and guarantee numpy compatibility # - implement full support for broadcasting # - strided arrays # # o more functions to analyze indexed expressions # - identify standard constructs, e.g matrix-vector product in a subexpression # # o functions to generate component based arrays (numpy and sympy.Matrix) # - generate a single array directly from Indexed # - convert simple sub-expressions # # o sophisticated indexing (possibly in subclasses to preserve simplicity) # - Idx with range smaller than dimension of Indexed # - Idx with stepsize != 1 # - Idx with step determined by function call from __future__ import print_function, division from sympy.core import Expr, Tuple, Symbol, sympify, S from sympy.core.compatibility import (is_sequence, string_types, NotIterable, Iterable) from sympy.core.sympify import _sympify from sympy.functions.special.tensor_functions import KroneckerDelta class IndexException(Exception): pass class Indexed(Expr): """Represents a mathematical object with indices. >>> from sympy import Indexed, IndexedBase, Idx, symbols >>> i, j = symbols('i j', cls=Idx) >>> Indexed('A', i, j) A[i, j] It is recommended that ``Indexed`` objects be created via ``IndexedBase``: >>> A = IndexedBase('A') >>> Indexed('A', i, j) == A[i, j] True """ is_commutative = True is_Indexed = True is_symbol = True is_Atom = True def __new__(cls, base, *args, **kw_args): from sympy.utilities.misc import filldedent from sympy.tensor.array.ndim_array import NDimArray from sympy.matrices.matrices import MatrixBase if not args: raise IndexException("Indexed needs at least one index.") if isinstance(base, (string_types, Symbol)): base = IndexedBase(base) elif not hasattr(base, '__getitem__') and not isinstance(base, IndexedBase): raise TypeError(filldedent(""" Indexed expects string, Symbol, or IndexedBase as base.""")) args = list(map(sympify, args)) if isinstance(base, (NDimArray, Iterable, Tuple, MatrixBase)) and all([i.is_number for i in args]): if len(args) == 1: return base[args[0]] else: return base[args] return Expr.__new__(cls, base, *args, **kw_args) @property def name(self): return str(self) @property def _diff_wrt(self): """Allow derivatives with respect to an ``Indexed`` object.""" return True def _eval_derivative(self, wrt): from sympy.tensor.array.ndim_array import NDimArray if isinstance(wrt, Indexed) and wrt.base == self.base: if len(self.indices) != len(wrt.indices): msg = "Different # of indices: d({!s})/d({!s})".format(self, wrt) raise IndexException(msg) result = S.One for index1, index2 in zip(self.indices, wrt.indices): result *= KroneckerDelta(index1, index2) return result elif isinstance(self.base, NDimArray): from sympy.tensor.array import derive_by_array return Indexed(derive_by_array(self.base, wrt), *self.args[1:]) else: if Tuple(self.indices).has(wrt): return S.NaN return S.Zero @property def base(self): """Returns the ``IndexedBase`` of the ``Indexed`` object. Examples ======== >>> from sympy import Indexed, IndexedBase, Idx, symbols >>> i, j = symbols('i j', cls=Idx) >>> Indexed('A', i, j).base A >>> B = IndexedBase('B') >>> B == B[i, j].base True """ return self.args[0] @property def indices(self): """ Returns the indices of the ``Indexed`` object. Examples ======== >>> from sympy import Indexed, Idx, symbols >>> i, j = symbols('i j', cls=Idx) >>> Indexed('A', i, j).indices (i, j) """ return self.args[1:] @property def rank(self): """ Returns the rank of the ``Indexed`` object. Examples ======== >>> from sympy import Indexed, Idx, symbols >>> i, j, k, l, m = symbols('i:m', cls=Idx) >>> Indexed('A', i, j).rank 2 >>> q = Indexed('A', i, j, k, l, m) >>> q.rank 5 >>> q.rank == len(q.indices) True """ return len(self.args) - 1 @property def shape(self): """Returns a list with dimensions of each index. Dimensions is a property of the array, not of the indices. Still, if the ``IndexedBase`` does not define a shape attribute, it is assumed that the ranges of the indices correspond to the shape of the array. >>> from sympy import IndexedBase, Idx, symbols >>> n, m = symbols('n m', integer=True) >>> i = Idx('i', m) >>> j = Idx('j', m) >>> A = IndexedBase('A', shape=(n, n)) >>> B = IndexedBase('B') >>> A[i, j].shape (n, n) >>> B[i, j].shape (m, m) """ from sympy.utilities.misc import filldedent if self.base.shape: return self.base.shape sizes = [] for i in self.indices: upper = getattr(i, 'upper', None) lower = getattr(i, 'lower', None) if None in (upper, lower): raise IndexException(filldedent(""" Range is not defined for all indices in: %s""" % self)) try: size = upper - lower + 1 except TypeError: raise IndexException(filldedent(""" Shape cannot be inferred from Idx with undefined range: %s""" % self)) sizes.append(size) return Tuple(*sizes) @property def ranges(self): """Returns a list of tuples with lower and upper range of each index. If an index does not define the data members upper and lower, the corresponding slot in the list contains ``None`` instead of a tuple. Examples ======== >>> from sympy import Indexed,Idx, symbols >>> Indexed('A', Idx('i', 2), Idx('j', 4), Idx('k', 8)).ranges [(0, 1), (0, 3), (0, 7)] >>> Indexed('A', Idx('i', 3), Idx('j', 3), Idx('k', 3)).ranges [(0, 2), (0, 2), (0, 2)] >>> x, y, z = symbols('x y z', integer=True) >>> Indexed('A', x, y, z).ranges [None, None, None] """ ranges = [] for i in self.indices: sentinel = object() upper = getattr(i, 'upper', sentinel) lower = getattr(i, 'lower', sentinel) if sentinel not in (upper, lower): ranges.append(Tuple(lower, upper)) else: ranges.append(None) return ranges def _sympystr(self, p): indices = list(map(p.doprint, self.indices)) return "%s[%s]" % (p.doprint(self.base), ", ".join(indices)) @property def free_symbols(self): base_free_symbols = self.base.free_symbols indices_free_symbols = { fs for i in self.indices for fs in i.free_symbols} if base_free_symbols: return {self} | base_free_symbols | indices_free_symbols else: return indices_free_symbols @property def expr_free_symbols(self): return {self} class IndexedBase(Expr, NotIterable): """Represent the base or stem of an indexed object The IndexedBase class represent an array that contains elements. The main purpose of this class is to allow the convenient creation of objects of the Indexed class. The __getitem__ method of IndexedBase returns an instance of Indexed. Alone, without indices, the IndexedBase class can be used as a notation for e.g. matrix equations, resembling what you could do with the Symbol class. But, the IndexedBase class adds functionality that is not available for Symbol instances: - An IndexedBase object can optionally store shape information. This can be used in to check array conformance and conditions for numpy broadcasting. (TODO) - An IndexedBase object implements syntactic sugar that allows easy symbolic representation of array operations, using implicit summation of repeated indices. - The IndexedBase object symbolizes a mathematical structure equivalent to arrays, and is recognized as such for code generation and automatic compilation and wrapping. >>> from sympy.tensor import IndexedBase, Idx >>> from sympy import symbols >>> A = IndexedBase('A'); A A >>> type(A) <class 'sympy.tensor.indexed.IndexedBase'> When an IndexedBase object receives indices, it returns an array with named axes, represented by an Indexed object: >>> i, j = symbols('i j', integer=True) >>> A[i, j, 2] A[i, j, 2] >>> type(A[i, j, 2]) <class 'sympy.tensor.indexed.Indexed'> The IndexedBase constructor takes an optional shape argument. If given, it overrides any shape information in the indices. (But not the index ranges!) >>> m, n, o, p = symbols('m n o p', integer=True) >>> i = Idx('i', m) >>> j = Idx('j', n) >>> A[i, j].shape (m, n) >>> B = IndexedBase('B', shape=(o, p)) >>> B[i, j].shape (o, p) """ is_commutative = True is_symbol = True is_Atom = True def __new__(cls, label, shape=None, **kw_args): from sympy import MatrixBase, NDimArray if isinstance(label, string_types): label = Symbol(label) elif isinstance(label, Symbol): pass elif isinstance(label, (MatrixBase, NDimArray)): return label elif isinstance(label, Iterable): return _sympify(label) else: label = _sympify(label) if is_sequence(shape): shape = Tuple(*shape) elif shape is not None: shape = Tuple(shape) offset = kw_args.pop('offset', S.Zero) strides = kw_args.pop('strides', None) if shape is not None: obj = Expr.__new__(cls, label, shape) else: obj = Expr.__new__(cls, label) obj._shape = shape obj._offset = offset obj._strides = strides obj._name = str(label) return obj @property def name(self): return self._name def __getitem__(self, indices, **kw_args): if is_sequence(indices): # Special case needed because M[*my_tuple] is a syntax error. if self.shape and len(self.shape) != len(indices): raise IndexException("Rank mismatch.") return Indexed(self, *indices, **kw_args) else: if self.shape and len(self.shape) != 1: raise IndexException("Rank mismatch.") return Indexed(self, indices, **kw_args) @property def shape(self): """Returns the shape of the ``IndexedBase`` object. Examples ======== >>> from sympy import IndexedBase, Idx, Symbol >>> from sympy.abc import x, y >>> IndexedBase('A', shape=(x, y)).shape (x, y) Note: If the shape of the ``IndexedBase`` is specified, it will override any shape information given by the indices. >>> A = IndexedBase('A', shape=(x, y)) >>> B = IndexedBase('B') >>> i = Idx('i', 2) >>> j = Idx('j', 1) >>> A[i, j].shape (x, y) >>> B[i, j].shape (2, 1) """ return self._shape @property def strides(self): """Returns the strided scheme for the ``IndexedBase`` object. Normally this is a tuple denoting the number of steps to take in the respective dimension when traversing an array. For code generation purposes strides='C' and strides='F' can also be used. strides='C' would mean that code printer would unroll in row-major order and 'F' means unroll in column major order. """ return self._strides @property def offset(self): """Returns the offset for the ``IndexedBase`` object. This is the value added to the resulting index when the 2D Indexed object is unrolled to a 1D form. Used in code generation. Examples ========== >>> from sympy.printing import ccode >>> from sympy.tensor import IndexedBase, Idx >>> from sympy import symbols >>> l, m, n, o = symbols('l m n o', integer=True) >>> A = IndexedBase('A', strides=(l, m, n), offset=o) >>> i, j, k = map(Idx, 'ijk') >>> ccode(A[i, j, k]) 'A[l*i + m*j + n*k + o]' """ return self._offset @property def label(self): """Returns the label of the ``IndexedBase`` object. Examples ======== >>> from sympy import IndexedBase >>> from sympy.abc import x, y >>> IndexedBase('A', shape=(x, y)).label A """ return self.args[0] def _sympystr(self, p): return p.doprint(self.label) class Idx(Expr): """Represents an integer index as an ``Integer`` or integer expression. There are a number of ways to create an ``Idx`` object. The constructor takes two arguments: ``label`` An integer or a symbol that labels the index. ``range`` Optionally you can specify a range as either * ``Symbol`` or integer: This is interpreted as a dimension. Lower and upper bounds are set to ``0`` and ``range - 1``, respectively. * ``tuple``: The two elements are interpreted as the lower and upper bounds of the range, respectively. Note: bounds of the range are assumed to be either integer or infinite (oo and -oo are allowed to specify an unbounded range). If ``n`` is given as a bound, then ``n.is_integer`` must not return false. For convenience, if the label is given as a string it is automatically converted to an integer symbol. (Note: this conversion is not done for range or dimension arguments.) Examples ======== >>> from sympy import IndexedBase, Idx, symbols, oo >>> n, i, L, U = symbols('n i L U', integer=True) If a string is given for the label an integer ``Symbol`` is created and the bounds are both ``None``: >>> idx = Idx('qwerty'); idx qwerty >>> idx.lower, idx.upper (None, None) Both upper and lower bounds can be specified: >>> idx = Idx(i, (L, U)); idx i >>> idx.lower, idx.upper (L, U) When only a single bound is given it is interpreted as the dimension and the lower bound defaults to 0: >>> idx = Idx(i, n); idx.lower, idx.upper (0, n - 1) >>> idx = Idx(i, 4); idx.lower, idx.upper (0, 3) >>> idx = Idx(i, oo); idx.lower, idx.upper (0, oo) """ is_integer = True is_finite = True is_real = True is_symbol = True is_Atom = True _diff_wrt = True def __new__(cls, label, range=None, **kw_args): from sympy.utilities.misc import filldedent if isinstance(label, string_types): label = Symbol(label, integer=True) label, range = list(map(sympify, (label, range))) if label.is_Number: if not label.is_integer: raise TypeError("Index is not an integer number.") return label if not label.is_integer: raise TypeError("Idx object requires an integer label.") elif is_sequence(range): if len(range) != 2: raise ValueError(filldedent(""" Idx range tuple must have length 2, but got %s""" % len(range))) for bound in range: if bound.is_integer is False: raise TypeError("Idx object requires integer bounds.") args = label, Tuple(*range) elif isinstance(range, Expr): if not (range.is_integer or range is S.Infinity): raise TypeError("Idx object requires an integer dimension.") args = label, Tuple(0, range - 1) elif range: raise TypeError(filldedent(""" The range must be an ordered iterable or integer SymPy expression.""")) else: args = label, obj = Expr.__new__(cls, *args, **kw_args) obj._assumptions["finite"] = True obj._assumptions["real"] = True return obj @property def label(self): """Returns the label (Integer or integer expression) of the Idx object. Examples ======== >>> from sympy import Idx, Symbol >>> x = Symbol('x', integer=True) >>> Idx(x).label x >>> j = Symbol('j', integer=True) >>> Idx(j).label j >>> Idx(j + 1).label j + 1 """ return self.args[0] @property def lower(self): """Returns the lower bound of the ``Idx``. Examples ======== >>> from sympy import Idx >>> Idx('j', 2).lower 0 >>> Idx('j', 5).lower 0 >>> Idx('j').lower is None True """ try: return self.args[1][0] except IndexError: return @property def upper(self): """Returns the upper bound of the ``Idx``. Examples ======== >>> from sympy import Idx >>> Idx('j', 2).upper 1 >>> Idx('j', 5).upper 4 >>> Idx('j').upper is None True """ try: return self.args[1][1] except IndexError: return def _sympystr(self, p): return p.doprint(self.label) @property def name(self): return self.label.name if self.label.is_Symbol else str(self.label) @property def free_symbols(self): return {self} def __le__(self, other): if isinstance(other, Idx): other_upper = other if other.upper is None else other.upper other_lower = other if other.lower is None else other.lower else: other_upper = other other_lower = other if self.upper is not None and (self.upper <= other_lower) == True: return True if self.lower is not None and (self.lower > other_upper) == True: return False return super(Idx, self).__le__(other) def __ge__(self, other): if isinstance(other, Idx): other_upper = other if other.upper is None else other.upper other_lower = other if other.lower is None else other.lower else: other_upper = other other_lower = other if self.lower is not None and (self.lower >= other_upper) == True: return True if self.upper is not None and (self.upper < other_lower) == True: return False return super(Idx, self).__ge__(other) def __lt__(self, other): if isinstance(other, Idx): other_upper = other if other.upper is None else other.upper other_lower = other if other.lower is None else other.lower else: other_upper = other other_lower = other if self.upper is not None and (self.upper < other_lower) == True: return True if self.lower is not None and (self.lower >= other_upper) == True: return False return super(Idx, self).__lt__(other) def __gt__(self, other): if isinstance(other, Idx): other_upper = other if other.upper is None else other.upper other_lower = other if other.lower is None else other.lower else: other_upper = other other_lower = other if self.lower is not None and (self.lower > other_upper) == True: return True if self.upper is not None and (self.upper <= other_lower) == True: return False return super(Idx, self).__gt__(other)
36beb1f7a47d26e542b2734cee204e9470b0e9f5a8ade311f40f8f9c6cf3e8fe
import inspect from .dispatcher import Dispatcher, MethodDispatcher, ambiguity_warn global_namespace = dict() def dispatch(*types, **kwargs): """ Dispatch function on the types of the inputs Supports dispatch on all non-keyword arguments. Collects implementations based on the function name. Ignores namespaces. If ambiguous type signatures occur a warning is raised when the function is defined suggesting the additional method to break the ambiguity. Examples -------- >>> from sympy.multipledispatch import dispatch >>> @dispatch(int) ... def f(x): ... return x + 1 >>> @dispatch(float) ... def f(x): ... return x - 1 >>> f(3) 4 >>> f(3.0) 2.0 Specify an isolated namespace with the namespace keyword argument >>> my_namespace = dict() >>> @dispatch(int, namespace=my_namespace) ... def foo(x): ... return x + 1 Dispatch on instance methods within classes >>> class MyClass(object): ... @dispatch(list) ... def __init__(self, data): ... self.data = data ... @dispatch(int) ... def __init__(self, datum): ... self.data = [datum] """ namespace = kwargs.get('namespace', global_namespace) on_ambiguity = kwargs.get('on_ambiguity', ambiguity_warn) types = tuple(types) def _(func): name = func.__name__ if ismethod(func): dispatcher = inspect.currentframe().f_back.f_locals.get( name, MethodDispatcher(name)) else: if name not in namespace: namespace[name] = Dispatcher(name) dispatcher = namespace[name] dispatcher.add(types, func, on_ambiguity=on_ambiguity) return dispatcher return _ def ismethod(func): """ Is func a method? Note that this has to work as the method is defined but before the class is defined. At this stage methods look like functions. """ if hasattr(inspect, "signature"): signature = inspect.signature(func) return signature.parameters.get('self', None) is not None else: spec = inspect.getargspec(func) return spec and spec.args and spec.args[0] == 'self'
521cee06417dfc3a16b52b2bb4b41a815f107538506ef5d901ed8940a73448ff
""" Boolean algebra module for SymPy """ from __future__ import print_function, division from collections import defaultdict from itertools import combinations, product from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.cache import cacheit from sympy.core.compatibility import (ordered, range, with_metaclass, as_int) from sympy.core.function import Application, Derivative, count_ops from sympy.core.numbers import Number from sympy.core.operations import LatticeOp from sympy.core.singleton import Singleton, S from sympy.core.sympify import converter, _sympify, sympify from sympy.utilities.iterables import sift, ibin from sympy.utilities.misc import filldedent def as_Boolean(e): """Like bool, return the Boolean value of an expression, e, which can be any instance of Boolean or bool. Examples ======== >>> from sympy import true, false, nan >>> from sympy.logic.boolalg import as_Boolean >>> from sympy.abc import x >>> as_Boolean(1) is true True >>> as_Boolean(x) x >>> as_Boolean(2) Traceback (most recent call last): ... TypeError: expecting bool or Boolean, not `2`. """ from sympy.core.symbol import Symbol if e == True: return S.true if e == False: return S.false if isinstance(e, Symbol): z = e.is_zero if z is None: return e return S.false if z else S.true if isinstance(e, Boolean): return e raise TypeError('expecting bool or Boolean, not `%s`.' % e) class Boolean(Basic): """A boolean object is an object for which logic operations make sense.""" __slots__ = [] def __and__(self, other): """Overloading for & operator""" return And(self, other) __rand__ = __and__ def __or__(self, other): """Overloading for |""" return Or(self, other) __ror__ = __or__ def __invert__(self): """Overloading for ~""" return Not(self) def __rshift__(self, other): """Overloading for >>""" return Implies(self, other) def __lshift__(self, other): """Overloading for <<""" return Implies(other, self) __rrshift__ = __lshift__ __rlshift__ = __rshift__ def __xor__(self, other): return Xor(self, other) __rxor__ = __xor__ def equals(self, other): """ Returns True if the given formulas have the same truth table. For two formulas to be equal they must have the same literals. Examples ======== >>> from sympy.abc import A, B, C >>> from sympy.logic.boolalg import And, Or, Not >>> (A >> B).equals(~B >> ~A) True >>> Not(And(A, B, C)).equals(And(Not(A), Not(B), Not(C))) False >>> Not(And(A, Not(A))).equals(Or(B, Not(B))) False """ from sympy.logic.inference import satisfiable from sympy.core.relational import Relational if self.has(Relational) or other.has(Relational): raise NotImplementedError('handling of relationals') return self.atoms() == other.atoms() and \ not satisfiable(Not(Equivalent(self, other))) def to_nnf(self, simplify=True): # override where necessary return self def as_set(self): """ Rewrites Boolean expression in terms of real sets. Examples ======== >>> from sympy import Symbol, Eq, Or, And >>> x = Symbol('x', real=True) >>> Eq(x, 0).as_set() {0} >>> (x > 0).as_set() Interval.open(0, oo) >>> And(-2 < x, x < 2).as_set() Interval.open(-2, 2) >>> Or(x < -2, 2 < x).as_set() Union(Interval.open(-oo, -2), Interval.open(2, oo)) """ from sympy.calculus.util import periodicity from sympy.core.relational import Relational free = self.free_symbols if len(free) == 1: x = free.pop() reps = {} for r in self.atoms(Relational): if periodicity(r, x) not in (0, None): s = r._eval_as_set() if s in (S.EmptySet, S.UniversalSet, S.Reals): reps[r] = s.as_relational(x) continue raise NotImplementedError(filldedent(''' as_set is not implemented for relationals with periodic solutions ''')) return self.subs(reps)._eval_as_set() else: raise NotImplementedError("Sorry, as_set has not yet been" " implemented for multivariate" " expressions") @property def binary_symbols(self): from sympy.core.relational import Eq, Ne return set().union(*[i.binary_symbols for i in self.args if i.is_Boolean or i.is_Symbol or isinstance(i, (Eq, Ne))]) class BooleanAtom(Boolean): """ Base class of BooleanTrue and BooleanFalse. """ is_Boolean = True is_Atom = True _op_priority = 11 # higher than Expr def simplify(self, *a, **kw): return self def expand(self, *a, **kw): return self @property def canonical(self): return self def _noop(self, other=None): raise TypeError('BooleanAtom not allowed in this context.') __add__ = _noop __radd__ = _noop __sub__ = _noop __rsub__ = _noop __mul__ = _noop __rmul__ = _noop __pow__ = _noop __rpow__ = _noop __rdiv__ = _noop __truediv__ = _noop __div__ = _noop __rtruediv__ = _noop __mod__ = _noop __rmod__ = _noop _eval_power = _noop # /// drop when Py2 is no longer supported def __lt__(self, other): from sympy.utilities.misc import filldedent raise TypeError(filldedent(''' A Boolean argument can only be used in Eq and Ne; all other relationals expect real expressions. ''')) __le__ = __lt__ __gt__ = __lt__ __ge__ = __lt__ # \\\ class BooleanTrue(with_metaclass(Singleton, BooleanAtom)): """ SymPy version of True, a singleton that can be accessed via S.true. This is the SymPy version of True, for use in the logic module. The primary advantage of using true instead of True is that shorthand boolean operations like ~ and >> will work as expected on this class, whereas with True they act bitwise on 1. Functions in the logic module will return this class when they evaluate to true. Notes ===== There is liable to be some confusion as to when ``True`` should be used and when ``S.true`` should be used in various contexts throughout SymPy. An important thing to remember is that ``sympify(True)`` returns ``S.true``. This means that for the most part, you can just use ``True`` and it will automatically be converted to ``S.true`` when necessary, similar to how you can generally use 1 instead of ``S.One``. The rule of thumb is: "If the boolean in question can be replaced by an arbitrary symbolic ``Boolean``, like ``Or(x, y)`` or ``x > 1``, use ``S.true``. Otherwise, use ``True``" In other words, use ``S.true`` only on those contexts where the boolean is being used as a symbolic representation of truth. For example, if the object ends up in the ``.args`` of any expression, then it must necessarily be ``S.true`` instead of ``True``, as elements of ``.args`` must be ``Basic``. On the other hand, ``==`` is not a symbolic operation in SymPy, since it always returns ``True`` or ``False``, and does so in terms of structural equality rather than mathematical, so it should return ``True``. The assumptions system should use ``True`` and ``False``. Aside from not satisfying the above rule of thumb, the assumptions system uses a three-valued logic (``True``, ``False``, ``None``), whereas ``S.true`` and ``S.false`` represent a two-valued logic. When in doubt, use ``True``. "``S.true == True is True``." While "``S.true is True``" is ``False``, "``S.true == True``" is ``True``, so if there is any doubt over whether a function or expression will return ``S.true`` or ``True``, just use ``==`` instead of ``is`` to do the comparison, and it will work in either case. Finally, for boolean flags, it's better to just use ``if x`` instead of ``if x is True``. To quote PEP 8: Don't compare boolean values to ``True`` or ``False`` using ``==``. * Yes: ``if greeting:`` * No: ``if greeting == True:`` * Worse: ``if greeting is True:`` Examples ======== >>> from sympy import sympify, true, false, Or >>> sympify(True) True >>> _ is True, _ is true (False, True) >>> Or(true, false) True >>> _ is true True Python operators give a boolean result for true but a bitwise result for True >>> ~true, ~True (False, -2) >>> true >> true, True >> True (True, 0) Python operators give a boolean result for true but a bitwise result for True >>> ~true, ~True (False, -2) >>> true >> true, True >> True (True, 0) See Also ======== sympy.logic.boolalg.BooleanFalse """ def __nonzero__(self): return True __bool__ = __nonzero__ def __hash__(self): return hash(True) @property def negated(self): return S.false def as_set(self): """ Rewrite logic operators and relationals in terms of real sets. Examples ======== >>> from sympy import true >>> true.as_set() UniversalSet() """ return S.UniversalSet class BooleanFalse(with_metaclass(Singleton, BooleanAtom)): """ SymPy version of False, a singleton that can be accessed via S.false. This is the SymPy version of False, for use in the logic module. The primary advantage of using false instead of False is that shorthand boolean operations like ~ and >> will work as expected on this class, whereas with False they act bitwise on 0. Functions in the logic module will return this class when they evaluate to false. Notes ====== See note in :py:class`sympy.logic.boolalg.BooleanTrue` Examples ======== >>> from sympy import sympify, true, false, Or >>> sympify(False) False >>> _ is False, _ is false (False, True) >>> Or(true, false) True >>> _ is true True Python operators give a boolean result for false but a bitwise result for False >>> ~false, ~False (True, -1) >>> false >> false, False >> False (True, 0) See Also ======== sympy.logic.boolalg.BooleanTrue """ def __nonzero__(self): return False __bool__ = __nonzero__ def __hash__(self): return hash(False) @property def negated(self): return S.true def as_set(self): """ Rewrite logic operators and relationals in terms of real sets. Examples ======== >>> from sympy import false >>> false.as_set() EmptySet() """ return S.EmptySet true = BooleanTrue() false = BooleanFalse() # We want S.true and S.false to work, rather than S.BooleanTrue and # S.BooleanFalse, but making the class and instance names the same causes some # major issues (like the inability to import the class directly from this # file). S.true = true S.false = false converter[bool] = lambda x: S.true if x else S.false class BooleanFunction(Application, Boolean): """Boolean function is a function that lives in a boolean space It is used as base class for And, Or, Not, etc. """ is_Boolean = True def _eval_simplify(self, ratio, measure, rational, inverse): rv = self.func(*[a._eval_simplify(ratio=ratio, measure=measure, rational=rational, inverse=inverse) for a in self.args]) return simplify_logic(rv) def simplify(self, ratio=1.7, measure=count_ops, rational=False, inverse=False): return self._eval_simplify(ratio, measure, rational, inverse) # /// drop when Py2 is no longer supported def __lt__(self, other): from sympy.utilities.misc import filldedent raise TypeError(filldedent(''' A Boolean argument can only be used in Eq and Ne; all other relationals expect real expressions. ''')) __le__ = __lt__ __ge__ = __lt__ __gt__ = __lt__ # \\\ @classmethod def binary_check_and_simplify(self, *args): from sympy.core.relational import Relational, Eq, Ne args = [as_Boolean(i) for i in args] bin = set().union(*[i.binary_symbols for i in args]) rel = set().union(*[i.atoms(Relational) for i in args]) reps = {} for x in bin: for r in rel: if x in bin and x in r.free_symbols: if isinstance(r, (Eq, Ne)): if not ( S.true in r.args or S.false in r.args): reps[r] = S.false else: raise TypeError(filldedent(''' Incompatible use of binary symbol `%s` as a real variable in `%s` ''' % (x, r))) return [i.subs(reps) for i in args] def to_nnf(self, simplify=True): return self._to_nnf(*self.args, simplify=simplify) @classmethod def _to_nnf(cls, *args, **kwargs): simplify = kwargs.get('simplify', True) argset = set([]) for arg in args: if not is_literal(arg): arg = arg.to_nnf(simplify) if simplify: if isinstance(arg, cls): arg = arg.args else: arg = (arg,) for a in arg: if Not(a) in argset: return cls.zero argset.add(a) else: argset.add(arg) return cls(*argset) # the diff method below is copied from Expr class def diff(self, *symbols, **assumptions): assumptions.setdefault("evaluate", True) return Derivative(self, *symbols, **assumptions) def _eval_derivative(self, x): from sympy.core.relational import Eq from sympy.functions.elementary.piecewise import Piecewise if x in self.binary_symbols: return Piecewise( (0, Eq(self.subs(x, 0), self.subs(x, 1))), (1, True)) elif x in self.free_symbols: # not implemented, see https://www.encyclopediaofmath.org/ # index.php/Boolean_differential_calculus pass else: return S.Zero def _apply_patternbased_simplification(self, rv, patterns, measure, dominatingvalue, replacementvalue=None): """ Replace patterns of Relational Parameters ========== rv : Expr Boolean expression patterns : tuple Tuple of tuples, with (pattern to simplify, simplified pattern) measure : function Simplification measure dominatingvalue : boolean or None The dominating value for the function of consideration. For example, for And S.false is dominating. As soon as one expression is S.false in And, the whole expression is S.false. replacementvalue : boolean or None, optional The resulting value for the whole expression if one argument evaluates to dominatingvalue. For example, for Nand S.false is dominating, but in this case the resulting value is S.true. Default is None. If replacementvalue is None and dominatingvalue is not None, replacementvalue = dominatingvalue """ from sympy.core.relational import Relational, _canonical if replacementvalue is None and dominatingvalue is not None: replacementvalue = dominatingvalue # Use replacement patterns for Relationals changed = True Rel, nonRel = sift(rv.args, lambda i: isinstance(i, Relational), binary=True) if len(Rel) <= 1: return rv Rel, nonRealRel = sift(rv.args, lambda i: all(s.is_real is not False for s in i.free_symbols), binary=True) Rel = [i.canonical for i in Rel] while changed and len(Rel) >= 2: changed = False # Sort based on ordered Rel = list(ordered(Rel)) # Create a list of possible replacements results = [] # Try all combinations for ((i, pi), (j, pj)) in combinations(enumerate(Rel), 2): for k, (pattern, simp) in enumerate(patterns): res = [] # use SymPy matching oldexpr = rv.func(pi, pj) tmpres = oldexpr.match(pattern) if tmpres: res.append((tmpres, oldexpr)) # Try reversing first relational # This and the rest should not be required with a better # canonical oldexpr = rv.func(pi.reversed, pj) tmpres = oldexpr.match(pattern) if tmpres: res.append((tmpres, oldexpr)) # Try reversing second relational oldexpr = rv.func(pi, pj.reversed) tmpres = oldexpr.match(pattern) if tmpres: res.append((tmpres, oldexpr)) # Try reversing both relationals oldexpr = rv.func(pi.reversed, pj.reversed) tmpres = oldexpr.match(pattern) if tmpres: res.append((tmpres, oldexpr)) if res: for tmpres, oldexpr in res: # we have a matching, compute replacement np = simp.subs(tmpres) if np == dominatingvalue: # if dominatingvalue, the whole expression # will be replacementvalue return replacementvalue # add replacement if not isinstance(np, ITE): # We only want to use ITE replacements if # they simplify to a relational costsaving = measure(oldexpr) - measure(np) if costsaving > 0: results.append((costsaving, (i, j, np))) if results: # Sort results based on complexity results = list(reversed(sorted(results, key=lambda pair: pair[0]))) # Replace the one providing most simplification cost, replacement = results[0] i, j, newrel = replacement # Remove the old relationals del Rel[j] del Rel[i] if dominatingvalue is None or newrel != ~dominatingvalue: # Insert the new one (no need to insert a value that will # not affect the result) Rel.append(newrel) # We did change something so try again changed = True rv = rv.func(*([_canonical(i) for i in ordered(Rel)] + nonRel + nonRealRel)) return rv class And(LatticeOp, BooleanFunction): """ Logical AND function. It evaluates its arguments in order, giving False immediately if any of them are False, and True if they are all True. Examples ======== >>> from sympy.core import symbols >>> from sympy.abc import x, y >>> from sympy.logic.boolalg import And >>> x & y x & y Notes ===== The ``&`` operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise and. Hence, ``And(a, b)`` and ``a & b`` will return different things if ``a`` and ``b`` are integers. >>> And(x, y).subs(x, 1) y """ zero = false identity = true nargs = None @classmethod def _new_args_filter(cls, args): newargs = [] rel = [] args = BooleanFunction.binary_check_and_simplify(*args) for x in reversed(args): if x.is_Relational: c = x.canonical if c in rel: continue nc = c.negated.canonical if any(r == nc for r in rel): return [S.false] rel.append(c) newargs.append(x) return LatticeOp._new_args_filter(newargs, And) def _eval_simplify(self, ratio, measure, rational, inverse): from sympy.core.relational import Equality, Relational from sympy.solvers.solveset import linear_coeffs # standard simplify rv = super(And, self)._eval_simplify( ratio, measure, rational, inverse) if not isinstance(rv, And): return rv # simplify args that are equalities involving # symbols so x == 0 & x == y -> x==0 & y == 0 Rel, nonRel = sift(rv.args, lambda i: isinstance(i, Relational), binary=True) if not Rel: return rv eqs, other = sift(Rel, lambda i: isinstance(i, Equality), binary=True) if not eqs: return rv reps = {} sifted = {} if eqs: # group by length of free symbols sifted = sift(ordered([ (i.free_symbols, i) for i in eqs]), lambda x: len(x[0])) eqs = [] while 1 in sifted: for free, e in sifted.pop(1): x = free.pop() if e.lhs != x or x in e.rhs.free_symbols: try: m, b = linear_coeffs( e.rewrite(Add, evaluate=False), x) enew = e.func(x, -b/m) if measure(enew) <= ratio*measure(e): e = enew else: eqs.append(e) continue except ValueError: pass if x in reps: eqs.append(e.func(e.rhs, reps[x])) else: reps[x] = e.rhs eqs.append(e) resifted = defaultdict(list) for k in sifted: for f, e in sifted[k]: e = e.subs(reps) f = e.free_symbols resifted[len(f)].append((f, e)) sifted = resifted for k in sifted: eqs.extend([e for f, e in sifted[k]]) other = [ei.subs(reps) for ei in other] rv = rv.func(*([i.canonical for i in (eqs + other)] + nonRel)) patterns = simplify_patterns_and() return self._apply_patternbased_simplification(rv, patterns, measure, False) def _eval_as_set(self): from sympy.sets.sets import Intersection return Intersection(*[arg.as_set() for arg in self.args]) class Or(LatticeOp, BooleanFunction): """ Logical OR function It evaluates its arguments in order, giving True immediately if any of them are True, and False if they are all False. Examples ======== >>> from sympy.core import symbols >>> from sympy.abc import x, y >>> from sympy.logic.boolalg import Or >>> x | y x | y Notes ===== The ``|`` operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise or. Hence, ``Or(a, b)`` and ``a | b`` will return different things if ``a`` and ``b`` are integers. >>> Or(x, y).subs(x, 0) y """ zero = true identity = false @classmethod def _new_args_filter(cls, args): newargs = [] rel = [] args = BooleanFunction.binary_check_and_simplify(*args) for x in args: if x.is_Relational: c = x.canonical if c in rel: continue nc = c.negated.canonical if any(r == nc for r in rel): return [S.true] rel.append(c) newargs.append(x) return LatticeOp._new_args_filter(newargs, Or) def _eval_as_set(self): from sympy.sets.sets import Union return Union(*[arg.as_set() for arg in self.args]) def _eval_simplify(self, ratio, measure, rational, inverse): # standard simplify rv = super(Or, self)._eval_simplify( ratio, measure, rational, inverse) if not isinstance(rv, Or): return rv patterns = simplify_patterns_or() return self._apply_patternbased_simplification(rv, patterns, measure, S.true) class Not(BooleanFunction): """ Logical Not function (negation) Returns True if the statement is False Returns False if the statement is True Examples ======== >>> from sympy.logic.boolalg import Not, And, Or >>> from sympy.abc import x, A, B >>> Not(True) False >>> Not(False) True >>> Not(And(True, False)) True >>> Not(Or(True, False)) False >>> Not(And(And(True, x), Or(x, False))) ~x >>> ~x ~x >>> Not(And(Or(A, B), Or(~A, ~B))) ~((A | B) & (~A | ~B)) Notes ===== - The ``~`` operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise not. In particular, ``~a`` and ``Not(a)`` will be different if ``a`` is an integer. Furthermore, since bools in Python subclass from ``int``, ``~True`` is the same as ``~1`` which is ``-2``, which has a boolean value of True. To avoid this issue, use the SymPy boolean types ``true`` and ``false``. >>> from sympy import true >>> ~True -2 >>> ~true False """ is_Not = True @classmethod def eval(cls, arg): from sympy import ( Equality, GreaterThan, LessThan, StrictGreaterThan, StrictLessThan, Unequality) if isinstance(arg, Number) or arg in (True, False): return false if arg else true if arg.is_Not: return arg.args[0] # Simplify Relational objects. if isinstance(arg, Equality): return Unequality(*arg.args) if isinstance(arg, Unequality): return Equality(*arg.args) if isinstance(arg, StrictLessThan): return GreaterThan(*arg.args) if isinstance(arg, StrictGreaterThan): return LessThan(*arg.args) if isinstance(arg, LessThan): return StrictGreaterThan(*arg.args) if isinstance(arg, GreaterThan): return StrictLessThan(*arg.args) def _eval_as_set(self): """ Rewrite logic operators and relationals in terms of real sets. Examples ======== >>> from sympy import Not, Symbol >>> x = Symbol('x') >>> Not(x > 0).as_set() Interval(-oo, 0) """ return self.args[0].as_set().complement(S.Reals) def to_nnf(self, simplify=True): if is_literal(self): return self expr = self.args[0] func, args = expr.func, expr.args if func == And: return Or._to_nnf(*[~arg for arg in args], simplify=simplify) if func == Or: return And._to_nnf(*[~arg for arg in args], simplify=simplify) if func == Implies: a, b = args return And._to_nnf(a, ~b, simplify=simplify) if func == Equivalent: return And._to_nnf(Or(*args), Or(*[~arg for arg in args]), simplify=simplify) if func == Xor: result = [] for i in range(1, len(args)+1, 2): for neg in combinations(args, i): clause = [~s if s in neg else s for s in args] result.append(Or(*clause)) return And._to_nnf(*result, simplify=simplify) if func == ITE: a, b, c = args return And._to_nnf(Or(a, ~c), Or(~a, ~b), simplify=simplify) raise ValueError("Illegal operator %s in expression" % func) class Xor(BooleanFunction): """ Logical XOR (exclusive OR) function. Returns True if an odd number of the arguments are True and the rest are False. Returns False if an even number of the arguments are True and the rest are False. Examples ======== >>> from sympy.logic.boolalg import Xor >>> from sympy import symbols >>> x, y = symbols('x y') >>> Xor(True, False) True >>> Xor(True, True) False >>> Xor(True, False, True, True, False) True >>> Xor(True, False, True, False) False >>> x ^ y Xor(x, y) Notes ===== The ``^`` operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise xor. In particular, ``a ^ b`` and ``Xor(a, b)`` will be different if ``a`` and ``b`` are integers. >>> Xor(x, y).subs(y, 0) x """ def __new__(cls, *args, **kwargs): argset = set([]) obj = super(Xor, cls).__new__(cls, *args, **kwargs) for arg in obj._args: if isinstance(arg, Number) or arg in (True, False): if arg: arg = true else: continue if isinstance(arg, Xor): for a in arg.args: argset.remove(a) if a in argset else argset.add(a) elif arg in argset: argset.remove(arg) else: argset.add(arg) rel = [(r, r.canonical, r.negated.canonical) for r in argset if r.is_Relational] odd = False # is number of complimentary pairs odd? start 0 -> False remove = [] for i, (r, c, nc) in enumerate(rel): for j in range(i + 1, len(rel)): rj, cj = rel[j][:2] if cj == nc: odd = ~odd break elif cj == c: break else: continue remove.append((r, rj)) if odd: argset.remove(true) if true in argset else argset.add(true) for a, b in remove: argset.remove(a) argset.remove(b) if len(argset) == 0: return false elif len(argset) == 1: return argset.pop() elif True in argset: argset.remove(True) return Not(Xor(*argset)) else: obj._args = tuple(ordered(argset)) obj._argset = frozenset(argset) return obj @property @cacheit def args(self): return tuple(ordered(self._argset)) def to_nnf(self, simplify=True): args = [] for i in range(0, len(self.args)+1, 2): for neg in combinations(self.args, i): clause = [~s if s in neg else s for s in self.args] args.append(Or(*clause)) return And._to_nnf(*args, simplify=simplify) def _eval_simplify(self, ratio, measure, rational, inverse): # as standard simplify uses simplify_logic which writes things as # And and Or, we only simplify the partial expressions before using # patterns rv = self.func(*[a._eval_simplify(ratio=ratio, measure=measure, rational=rational, inverse=inverse) for a in self.args]) if not isinstance(rv, Xor): # This shouldn't really happen here return rv patterns = simplify_patterns_xor() return self._apply_patternbased_simplification(rv, patterns, measure, None) class Nand(BooleanFunction): """ Logical NAND function. It evaluates its arguments in order, giving True immediately if any of them are False, and False if they are all True. Returns True if any of the arguments are False Returns False if all arguments are True Examples ======== >>> from sympy.logic.boolalg import Nand >>> from sympy import symbols >>> x, y = symbols('x y') >>> Nand(False, True) True >>> Nand(True, True) False >>> Nand(x, y) ~(x & y) """ @classmethod def eval(cls, *args): return Not(And(*args)) class Nor(BooleanFunction): """ Logical NOR function. It evaluates its arguments in order, giving False immediately if any of them are True, and True if they are all False. Returns False if any argument is True Returns True if all arguments are False Examples ======== >>> from sympy.logic.boolalg import Nor >>> from sympy import symbols >>> x, y = symbols('x y') >>> Nor(True, False) False >>> Nor(True, True) False >>> Nor(False, True) False >>> Nor(False, False) True >>> Nor(x, y) ~(x | y) """ @classmethod def eval(cls, *args): return Not(Or(*args)) class Xnor(BooleanFunction): """ Logical XNOR function. Returns False if an odd number of the arguments are True and the rest are False. Returns True if an even number of the arguments are True and the rest are False. Examples ======== >>> from sympy.logic.boolalg import Xnor >>> from sympy import symbols >>> x, y = symbols('x y') >>> Xnor(True, False) False >>> Xnor(True, True) True >>> Xnor(True, False, True, True, False) False >>> Xnor(True, False, True, False) True """ @classmethod def eval(cls, *args): return Not(Xor(*args)) class Implies(BooleanFunction): """ Logical implication. A implies B is equivalent to !A v B Accepts two Boolean arguments; A and B. Returns False if A is True and B is False Returns True otherwise. Examples ======== >>> from sympy.logic.boolalg import Implies >>> from sympy import symbols >>> x, y = symbols('x y') >>> Implies(True, False) False >>> Implies(False, False) True >>> Implies(True, True) True >>> Implies(False, True) True >>> x >> y Implies(x, y) >>> y << x Implies(x, y) Notes ===== The ``>>`` and ``<<`` operators are provided as a convenience, but note that their use here is different from their normal use in Python, which is bit shifts. Hence, ``Implies(a, b)`` and ``a >> b`` will return different things if ``a`` and ``b`` are integers. In particular, since Python considers ``True`` and ``False`` to be integers, ``True >> True`` will be the same as ``1 >> 1``, i.e., 0, which has a truth value of False. To avoid this issue, use the SymPy objects ``true`` and ``false``. >>> from sympy import true, false >>> True >> False 1 >>> true >> false False """ @classmethod def eval(cls, *args): try: newargs = [] for x in args: if isinstance(x, Number) or x in (0, 1): newargs.append(True if x else False) else: newargs.append(x) A, B = newargs except ValueError: raise ValueError( "%d operand(s) used for an Implies " "(pairs are required): %s" % (len(args), str(args))) if A == True or A == False or B == True or B == False: return Or(Not(A), B) elif A == B: return S.true elif A.is_Relational and B.is_Relational: if A.canonical == B.canonical: return S.true if A.negated.canonical == B.canonical: return B else: return Basic.__new__(cls, *args) def to_nnf(self, simplify=True): a, b = self.args return Or._to_nnf(~a, b, simplify=simplify) class Equivalent(BooleanFunction): """ Equivalence relation. Equivalent(A, B) is True iff A and B are both True or both False Returns True if all of the arguments are logically equivalent. Returns False otherwise. Examples ======== >>> from sympy.logic.boolalg import Equivalent, And >>> from sympy.abc import x, y >>> Equivalent(False, False, False) True >>> Equivalent(True, False, False) False >>> Equivalent(x, And(x, True)) True """ def __new__(cls, *args, **options): from sympy.core.relational import Relational args = [_sympify(arg) for arg in args] argset = set(args) for x in args: if isinstance(x, Number) or x in [True, False]: # Includes 0, 1 argset.discard(x) argset.add(True if x else False) rel = [] for r in argset: if isinstance(r, Relational): rel.append((r, r.canonical, r.negated.canonical)) remove = [] for i, (r, c, nc) in enumerate(rel): for j in range(i + 1, len(rel)): rj, cj = rel[j][:2] if cj == nc: return false elif cj == c: remove.append((r, rj)) break for a, b in remove: argset.remove(a) argset.remove(b) argset.add(True) if len(argset) <= 1: return true if True in argset: argset.discard(True) return And(*argset) if False in argset: argset.discard(False) return And(*[~arg for arg in argset]) _args = frozenset(argset) obj = super(Equivalent, cls).__new__(cls, _args) obj._argset = _args return obj @property @cacheit def args(self): return tuple(ordered(self._argset)) def to_nnf(self, simplify=True): args = [] for a, b in zip(self.args, self.args[1:]): args.append(Or(~a, b)) args.append(Or(~self.args[-1], self.args[0])) return And._to_nnf(*args, simplify=simplify) class ITE(BooleanFunction): """ If then else clause. ITE(A, B, C) evaluates and returns the result of B if A is true else it returns the result of C. All args must be Booleans. Examples ======== >>> from sympy.logic.boolalg import ITE, And, Xor, Or >>> from sympy.abc import x, y, z >>> ITE(True, False, True) False >>> ITE(Or(True, False), And(True, True), Xor(True, True)) True >>> ITE(x, y, z) ITE(x, y, z) >>> ITE(True, x, y) x >>> ITE(False, x, y) y >>> ITE(x, y, y) y Trying to use non-Boolean args will generate a TypeError: >>> ITE(True, [], ()) Traceback (most recent call last): ... TypeError: expecting bool, Boolean or ITE, not `[]` """ def __new__(cls, *args, **kwargs): from sympy.core.relational import Eq, Ne if len(args) != 3: raise ValueError('expecting exactly 3 args') a, b, c = args # check use of binary symbols if isinstance(a, (Eq, Ne)): # in this context, we can evaluate the Eq/Ne # if one arg is a binary symbol and the other # is true/false b, c = map(as_Boolean, (b, c)) bin = set().union(*[i.binary_symbols for i in (b, c)]) if len(set(a.args) - bin) == 1: # one arg is a binary_symbols _a = a if a.lhs is S.true: a = a.rhs elif a.rhs is S.true: a = a.lhs elif a.lhs is S.false: a = ~a.rhs elif a.rhs is S.false: a = ~a.lhs else: # binary can only equal True or False a = S.false if isinstance(_a, Ne): a = ~a else: a, b, c = BooleanFunction.binary_check_and_simplify( a, b, c) rv = None if kwargs.get('evaluate', True): rv = cls.eval(a, b, c) if rv is None: rv = BooleanFunction.__new__(cls, a, b, c, evaluate=False) return rv @classmethod def eval(cls, *args): from sympy.core.relational import Eq, Ne # do the args give a singular result? a, b, c = args if isinstance(a, (Ne, Eq)): _a = a if S.true in a.args: a = a.lhs if a.rhs is S.true else a.rhs elif S.false in a.args: a = ~a.lhs if a.rhs is S.false else ~a.rhs else: _a = None if _a is not None and isinstance(_a, Ne): a = ~a if a is S.true: return b if a is S.false: return c if b == c: return b else: # or maybe the results allow the answer to be expressed # in terms of the condition if b is S.true and c is S.false: return a if b is S.false and c is S.true: return Not(a) if [a, b, c] != args: return cls(a, b, c, evaluate=False) def to_nnf(self, simplify=True): a, b, c = self.args return And._to_nnf(Or(~a, b), Or(a, c), simplify=simplify) def _eval_as_set(self): return self.to_nnf().as_set() def _eval_rewrite_as_Piecewise(self, *args, **kwargs): from sympy.functions import Piecewise return Piecewise((args[1], args[0]), (args[2], True)) # end class definitions. Some useful methods def conjuncts(expr): """Return a list of the conjuncts in the expr s. Examples ======== >>> from sympy.logic.boolalg import conjuncts >>> from sympy.abc import A, B >>> conjuncts(A & B) frozenset({A, B}) >>> conjuncts(A | B) frozenset({A | B}) """ return And.make_args(expr) def disjuncts(expr): """Return a list of the disjuncts in the sentence s. Examples ======== >>> from sympy.logic.boolalg import disjuncts >>> from sympy.abc import A, B >>> disjuncts(A | B) frozenset({A, B}) >>> disjuncts(A & B) frozenset({A & B}) """ return Or.make_args(expr) def distribute_and_over_or(expr): """ Given a sentence s consisting of conjunctions and disjunctions of literals, return an equivalent sentence in CNF. Examples ======== >>> from sympy.logic.boolalg import distribute_and_over_or, And, Or, Not >>> from sympy.abc import A, B, C >>> distribute_and_over_or(Or(A, And(Not(B), Not(C)))) (A | ~B) & (A | ~C) """ return _distribute((expr, And, Or)) def distribute_or_over_and(expr): """ Given a sentence s consisting of conjunctions and disjunctions of literals, return an equivalent sentence in DNF. Note that the output is NOT simplified. Examples ======== >>> from sympy.logic.boolalg import distribute_or_over_and, And, Or, Not >>> from sympy.abc import A, B, C >>> distribute_or_over_and(And(Or(Not(A), B), C)) (B & C) | (C & ~A) """ return _distribute((expr, Or, And)) def _distribute(info): """ Distributes info[1] over info[2] with respect to info[0]. """ if isinstance(info[0], info[2]): for arg in info[0].args: if isinstance(arg, info[1]): conj = arg break else: return info[0] rest = info[2](*[a for a in info[0].args if a is not conj]) return info[1](*list(map(_distribute, [(info[2](c, rest), info[1], info[2]) for c in conj.args]))) elif isinstance(info[0], info[1]): return info[1](*list(map(_distribute, [(x, info[1], info[2]) for x in info[0].args]))) else: return info[0] def to_nnf(expr, simplify=True): """ Converts expr to Negation Normal Form. A logical expression is in Negation Normal Form (NNF) if it contains only And, Or and Not, and Not is applied only to literals. If simplify is True, the result contains no redundant clauses. Examples ======== >>> from sympy.abc import A, B, C, D >>> from sympy.logic.boolalg import Not, Equivalent, to_nnf >>> to_nnf(Not((~A & ~B) | (C & D))) (A | B) & (~C | ~D) >>> to_nnf(Equivalent(A >> B, B >> A)) (A | ~B | (A & ~B)) & (B | ~A | (B & ~A)) """ if is_nnf(expr, simplify): return expr return expr.to_nnf(simplify) def to_cnf(expr, simplify=False): """ Convert a propositional logical sentence s to conjunctive normal form. That is, of the form ((A | ~B | ...) & (B | C | ...) & ...) If simplify is True, the expr is evaluated to its simplest CNF form using the Quine-McCluskey algorithm. Examples ======== >>> from sympy.logic.boolalg import to_cnf >>> from sympy.abc import A, B, D >>> to_cnf(~(A | B) | D) (D | ~A) & (D | ~B) >>> to_cnf((A | B) & (A | ~A), True) A | B """ expr = sympify(expr) if not isinstance(expr, BooleanFunction): return expr if simplify: return simplify_logic(expr, 'cnf', True) # Don't convert unless we have to if is_cnf(expr): return expr expr = eliminate_implications(expr) return distribute_and_over_or(expr) def to_dnf(expr, simplify=False): """ Convert a propositional logical sentence s to disjunctive normal form. That is, of the form ((A & ~B & ...) | (B & C & ...) | ...) If simplify is True, the expr is evaluated to its simplest DNF form using the Quine-McCluskey algorithm. Examples ======== >>> from sympy.logic.boolalg import to_dnf >>> from sympy.abc import A, B, C >>> to_dnf(B & (A | C)) (A & B) | (B & C) >>> to_dnf((A & B) | (A & ~B) | (B & C) | (~B & C), True) A | C """ expr = sympify(expr) if not isinstance(expr, BooleanFunction): return expr if simplify: return simplify_logic(expr, 'dnf', True) # Don't convert unless we have to if is_dnf(expr): return expr expr = eliminate_implications(expr) return distribute_or_over_and(expr) def is_nnf(expr, simplified=True): """ Checks if expr is in Negation Normal Form. A logical expression is in Negation Normal Form (NNF) if it contains only And, Or and Not, and Not is applied only to literals. If simpified is True, checks if result contains no redundant clauses. Examples ======== >>> from sympy.abc import A, B, C >>> from sympy.logic.boolalg import Not, is_nnf >>> is_nnf(A & B | ~C) True >>> is_nnf((A | ~A) & (B | C)) False >>> is_nnf((A | ~A) & (B | C), False) True >>> is_nnf(Not(A & B) | C) False >>> is_nnf((A >> B) & (B >> A)) False """ expr = sympify(expr) if is_literal(expr): return True stack = [expr] while stack: expr = stack.pop() if expr.func in (And, Or): if simplified: args = expr.args for arg in args: if Not(arg) in args: return False stack.extend(expr.args) elif not is_literal(expr): return False return True def is_cnf(expr): """ Test whether or not an expression is in conjunctive normal form. Examples ======== >>> from sympy.logic.boolalg import is_cnf >>> from sympy.abc import A, B, C >>> is_cnf(A | B | C) True >>> is_cnf(A & B & C) True >>> is_cnf((A & B) | C) False """ return _is_form(expr, And, Or) def is_dnf(expr): """ Test whether or not an expression is in disjunctive normal form. Examples ======== >>> from sympy.logic.boolalg import is_dnf >>> from sympy.abc import A, B, C >>> is_dnf(A | B | C) True >>> is_dnf(A & B & C) True >>> is_dnf((A & B) | C) True >>> is_dnf(A & (B | C)) False """ return _is_form(expr, Or, And) def _is_form(expr, function1, function2): """ Test whether or not an expression is of the required form. """ expr = sympify(expr) # Special case of an Atom if expr.is_Atom: return True # Special case of a single expression of function2 if isinstance(expr, function2): for lit in expr.args: if isinstance(lit, Not): if not lit.args[0].is_Atom: return False else: if not lit.is_Atom: return False return True # Special case of a single negation if isinstance(expr, Not): if not expr.args[0].is_Atom: return False if not isinstance(expr, function1): return False for cls in expr.args: if cls.is_Atom: continue if isinstance(cls, Not): if not cls.args[0].is_Atom: return False elif not isinstance(cls, function2): return False for lit in cls.args: if isinstance(lit, Not): if not lit.args[0].is_Atom: return False else: if not lit.is_Atom: return False return True def eliminate_implications(expr): """ Change >>, <<, and Equivalent into &, |, and ~. That is, return an expression that is equivalent to s, but has only &, |, and ~ as logical operators. Examples ======== >>> from sympy.logic.boolalg import Implies, Equivalent, \ eliminate_implications >>> from sympy.abc import A, B, C >>> eliminate_implications(Implies(A, B)) B | ~A >>> eliminate_implications(Equivalent(A, B)) (A | ~B) & (B | ~A) >>> eliminate_implications(Equivalent(A, B, C)) (A | ~C) & (B | ~A) & (C | ~B) """ return to_nnf(expr, simplify=False) def is_literal(expr): """ Returns True if expr is a literal, else False. Examples ======== >>> from sympy import Or, Q >>> from sympy.abc import A, B >>> from sympy.logic.boolalg import is_literal >>> is_literal(A) True >>> is_literal(~A) True >>> is_literal(Q.zero(A)) True >>> is_literal(A + B) True >>> is_literal(Or(A, B)) False """ if isinstance(expr, Not): return not isinstance(expr.args[0], BooleanFunction) else: return not isinstance(expr, BooleanFunction) def to_int_repr(clauses, symbols): """ Takes clauses in CNF format and puts them into an integer representation. Examples ======== >>> from sympy.logic.boolalg import to_int_repr >>> from sympy.abc import x, y >>> to_int_repr([x | y, y], [x, y]) == [{1, 2}, {2}] True """ # Convert the symbol list into a dict symbols = dict(list(zip(symbols, list(range(1, len(symbols) + 1))))) def append_symbol(arg, symbols): if isinstance(arg, Not): return -symbols[arg.args[0]] else: return symbols[arg] return [set(append_symbol(arg, symbols) for arg in Or.make_args(c)) for c in clauses] def term_to_integer(term): """ Return an integer corresponding to the base-2 digits given by ``term``. Parameters ========== term : a string or list of ones and zeros Examples ======== >>> from sympy.logic.boolalg import term_to_integer >>> term_to_integer([1, 0, 0]) 4 >>> term_to_integer('100') 4 """ return int(''.join(list(map(str, list(term)))), 2) def integer_to_term(k, n_bits=None): """ Return a list of the base-2 digits in the integer, ``k``. Parameters ========== k : int n_bits : int If ``n_bits`` is given and the number of digits in the binary representation of ``k`` is smaller than ``n_bits`` then left-pad the list with 0s. Examples ======== >>> from sympy.logic.boolalg import integer_to_term >>> integer_to_term(4) [1, 0, 0] >>> integer_to_term(4, 6) [0, 0, 0, 1, 0, 0] """ s = '{0:0{1}b}'.format(abs(as_int(k)), as_int(abs(n_bits or 0))) return list(map(int, s)) def truth_table(expr, variables, input=True): """ Return a generator of all possible configurations of the input variables, and the result of the boolean expression for those values. Parameters ========== expr : string or boolean expression variables : list of variables input : boolean (default True) indicates whether to return the input combinations. Examples ======== >>> from sympy.logic.boolalg import truth_table >>> from sympy.abc import x,y >>> table = truth_table(x >> y, [x, y]) >>> for t in table: ... print('{0} -> {1}'.format(*t)) [0, 0] -> True [0, 1] -> True [1, 0] -> False [1, 1] -> True >>> table = truth_table(x | y, [x, y]) >>> list(table) [([0, 0], False), ([0, 1], True), ([1, 0], True), ([1, 1], True)] If input is false, truth_table returns only a list of truth values. In this case, the corresponding input values of variables can be deduced from the index of a given output. >>> from sympy.logic.boolalg import integer_to_term >>> vars = [y, x] >>> values = truth_table(x >> y, vars, input=False) >>> values = list(values) >>> values [True, False, True, True] >>> for i, value in enumerate(values): ... print('{0} -> {1}'.format(list(zip( ... vars, integer_to_term(i, len(vars)))), value)) [(y, 0), (x, 0)] -> True [(y, 0), (x, 1)] -> False [(y, 1), (x, 0)] -> True [(y, 1), (x, 1)] -> True """ variables = [sympify(v) for v in variables] expr = sympify(expr) if not isinstance(expr, BooleanFunction) and not is_literal(expr): return table = product([0, 1], repeat=len(variables)) for term in table: term = list(term) value = expr.xreplace(dict(zip(variables, term))) if input: yield term, value else: yield value def _check_pair(minterm1, minterm2): """ Checks if a pair of minterms differs by only one bit. If yes, returns index, else returns -1. """ index = -1 for x, (i, j) in enumerate(zip(minterm1, minterm2)): if i != j: if index == -1: index = x else: return -1 return index def _convert_to_varsSOP(minterm, variables): """ Converts a term in the expansion of a function from binary to its variable form (for SOP). """ temp = [] for i, m in enumerate(minterm): if m == 0: temp.append(Not(variables[i])) elif m == 1: temp.append(variables[i]) else: pass # ignore the 3s return And(*temp) def _convert_to_varsPOS(maxterm, variables): """ Converts a term in the expansion of a function from binary to its variable form (for POS). """ temp = [] for i, m in enumerate(maxterm): if m == 1: temp.append(Not(variables[i])) elif m == 0: temp.append(variables[i]) else: pass # ignore the 3s return Or(*temp) def _simplified_pairs(terms): """ Reduces a set of minterms, if possible, to a simplified set of minterms with one less variable in the terms using QM method. """ simplified_terms = [] todo = list(range(len(terms))) for i, ti in enumerate(terms[:-1]): for j_i, tj in enumerate(terms[(i + 1):]): index = _check_pair(ti, tj) if index != -1: todo[i] = todo[j_i + i + 1] = None newterm = ti[:] newterm[index] = 3 if newterm not in simplified_terms: simplified_terms.append(newterm) simplified_terms.extend( [terms[i] for i in [_ for _ in todo if _ is not None]]) return simplified_terms def _compare_term(minterm, term): """ Return True if a binary term is satisfied by the given term. Used for recognizing prime implicants. """ for i, x in enumerate(term): if x != 3 and x != minterm[i]: return False return True def _rem_redundancy(l1, terms): """ After the truth table has been sufficiently simplified, use the prime implicant table method to recognize and eliminate redundant pairs, and return the essential arguments. """ if len(terms): # Create dominating matrix dommatrix = [[0]*len(l1) for n in range(len(terms))] for primei, prime in enumerate(l1): for termi, term in enumerate(terms): if _compare_term(term, prime): dommatrix[termi][primei] = 1 # Non-dominated prime implicants, dominated set to None ndprimeimplicants = list(range(len(l1))) # Non-dominated terms, dominated set to None ndterms = list(range(len(terms))) # Mark dominated rows and columns oldndterms = None oldndprimeimplicants = None while ndterms != oldndterms or \ ndprimeimplicants != oldndprimeimplicants: oldndterms = ndterms[:] oldndprimeimplicants = ndprimeimplicants[:] for rowi, row in enumerate(dommatrix): if ndterms[rowi] is not None: row = [row[i] for i in [_ for _ in ndprimeimplicants if _ is not None]] for row2i, row2 in enumerate(dommatrix): if rowi != row2i and ndterms[row2i] is not None: row2 = [row2[i] for i in [_ for _ in ndprimeimplicants if _ is not None]] if all(a >= b for (a, b) in zip(row2, row)): # row2 dominating row, keep row ndterms[row2i] = None for coli in range(len(l1)): if ndprimeimplicants[coli] is not None: col = [dommatrix[a][coli] for a in range(len(terms))] col = [col[i] for i in [_ for _ in oldndterms if _ is not None]] for col2i in range(len(l1)): if coli != col2i and \ ndprimeimplicants[col2i] is not None: col2 = [dommatrix[a][col2i] for a in range(len(terms))] col2 = [col2[i] for i in [_ for _ in oldndterms if _ is not None]] if all(a >= b for (a, b) in zip(col, col2)): # col dominating col2, keep col ndprimeimplicants[col2i] = None l1 = [l1[i] for i in [_ for _ in ndprimeimplicants if _ is not None]] return l1 else: return [] def _input_to_binlist(inputlist, variables): binlist = [] bits = len(variables) for val in inputlist: if isinstance(val, int): binlist.append(ibin(val, bits)) elif isinstance(val, dict): nonspecvars = list(variables) for key in val.keys(): nonspecvars.remove(key) for t in product([0, 1], repeat=len(nonspecvars)): d = dict(zip(nonspecvars, t)) d.update(val) binlist.append([d[v] for v in variables]) elif isinstance(val, (list, tuple)): if len(val) != bits: raise ValueError("Each term must contain {} bits as there are" "\n{} variables (or be an integer)." "".format(bits, bits)) binlist.append(list(val)) else: raise TypeError("A term list can only contain lists," " ints or dicts.") return binlist def SOPform(variables, minterms, dontcares=None): """ The SOPform function uses simplified_pairs and a redundant group- eliminating algorithm to convert the list of all input combos that generate '1' (the minterms) into the smallest Sum of Products form. The variables must be given as the first argument. Return a logical Or function (i.e., the "sum of products" or "SOP" form) that gives the desired outcome. If there are inputs that can be ignored, pass them as a list, too. The result will be one of the (perhaps many) functions that satisfy the conditions. Examples ======== >>> from sympy.logic import SOPform >>> from sympy import symbols >>> w, x, y, z = symbols('w x y z') >>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1], ... [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]] >>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]] >>> SOPform([w, x, y, z], minterms, dontcares) (y & z) | (z & ~w) The terms can also be represented as integers: >>> minterms = [1, 3, 7, 11, 15] >>> dontcares = [0, 2, 5] >>> SOPform([w, x, y, z], minterms, dontcares) (y & z) | (z & ~w) They can also be specified using dicts, which does not have to be fully specified: >>> minterms = [{w: 0, x: 1}, {y: 1, z: 1, x: 0}] >>> SOPform([w, x, y, z], minterms) (x & ~w) | (y & z & ~x) Or a combination: >>> minterms = [4, 7, 11, [1, 1, 1, 1]] >>> dontcares = [{w : 0, x : 0, y: 0}, 5] >>> SOPform([w, x, y, z], minterms, dontcares) (w & y & z) | (x & y & z) | (~w & ~y) References ========== .. [1] en.wikipedia.org/wiki/Quine-McCluskey_algorithm """ variables = [sympify(v) for v in variables] if minterms == []: return false minterms = _input_to_binlist(minterms, variables) dontcares = _input_to_binlist((dontcares or []), variables) for d in dontcares: if d in minterms: raise ValueError('%s in minterms is also in dontcares' % d) old = None new = minterms + dontcares while new != old: old = new new = _simplified_pairs(old) essential = _rem_redundancy(new, minterms) return Or(*[_convert_to_varsSOP(x, variables) for x in essential]) def POSform(variables, minterms, dontcares=None): """ The POSform function uses simplified_pairs and a redundant-group eliminating algorithm to convert the list of all input combinations that generate '1' (the minterms) into the smallest Product of Sums form. The variables must be given as the first argument. Return a logical And function (i.e., the "product of sums" or "POS" form) that gives the desired outcome. If there are inputs that can be ignored, pass them as a list, too. The result will be one of the (perhaps many) functions that satisfy the conditions. Examples ======== >>> from sympy.logic import POSform >>> from sympy import symbols >>> w, x, y, z = symbols('w x y z') >>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], ... [1, 0, 1, 1], [1, 1, 1, 1]] >>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]] >>> POSform([w, x, y, z], minterms, dontcares) z & (y | ~w) The terms can also be represented as integers: >>> minterms = [1, 3, 7, 11, 15] >>> dontcares = [0, 2, 5] >>> POSform([w, x, y, z], minterms, dontcares) z & (y | ~w) They can also be specified using dicts, which does not have to be fully specified: >>> minterms = [{w: 0, x: 1}, {y: 1, z: 1, x: 0}] >>> POSform([w, x, y, z], minterms) (x | y) & (x | z) & (~w | ~x) Or a combination: >>> minterms = [4, 7, 11, [1, 1, 1, 1]] >>> dontcares = [{w : 0, x : 0, y: 0}, 5] >>> POSform([w, x, y, z], minterms, dontcares) (w | x) & (y | ~w) & (z | ~y) References ========== .. [1] en.wikipedia.org/wiki/Quine-McCluskey_algorithm """ variables = [sympify(v) for v in variables] if minterms == []: return false minterms = _input_to_binlist(minterms, variables) dontcares = _input_to_binlist((dontcares or []), variables) for d in dontcares: if d in minterms: raise ValueError('%s in minterms is also in dontcares' % d) maxterms = [] for t in product([0, 1], repeat=len(variables)): t = list(t) if (t not in minterms) and (t not in dontcares): maxterms.append(t) old = None new = maxterms + dontcares while new != old: old = new new = _simplified_pairs(old) essential = _rem_redundancy(new, maxterms) return And(*[_convert_to_varsPOS(x, variables) for x in essential]) def _find_predicates(expr): """Helper to find logical predicates in BooleanFunctions. A logical predicate is defined here as anything within a BooleanFunction that is not a BooleanFunction itself. """ if not isinstance(expr, BooleanFunction): return {expr} return set().union(*(_find_predicates(i) for i in expr.args)) def simplify_logic(expr, form=None, deep=True, force=False): """ This function simplifies a boolean function to its simplified version in SOP or POS form. The return type is an Or or And object in SymPy. Parameters ========== expr : string or boolean expression form : string ('cnf' or 'dnf') or None (default). If 'cnf' or 'dnf', the simplest expression in the corresponding normal form is returned; if None, the answer is returned according to the form with fewest args (in CNF by default). deep : boolean (default True) Indicates whether to recursively simplify any non-boolean functions contained within the input. force : boolean (default False) As the simplifications require exponential time in the number of variables, there is by default a limit on expressions with 8 variables. When the expression has more than 8 variables only symbolical simplification (controlled by ``deep``) is made. By setting force to ``True``, this limit is removed. Be aware that this can lead to very long simplification times. Examples ======== >>> from sympy.logic import simplify_logic >>> from sympy.abc import x, y, z >>> from sympy import S >>> b = (~x & ~y & ~z) | ( ~x & ~y & z) >>> simplify_logic(b) ~x & ~y >>> S(b) (z & ~x & ~y) | (~x & ~y & ~z) >>> simplify_logic(_) ~x & ~y """ if form not in (None, 'cnf', 'dnf'): raise ValueError("form can be cnf or dnf only") expr = sympify(expr) if deep: variables = _find_predicates(expr) from sympy.simplify.simplify import simplify s = [simplify(v) for v in variables] expr = expr.xreplace(dict(zip(variables, s))) if not isinstance(expr, BooleanFunction): return expr # get variables in case not deep or after doing # deep simplification since they may have changed variables = _find_predicates(expr) if not force and len(variables) > 8: return expr # group into constants and variable values c, v = sift(variables, lambda x: x in (True, False), binary=True) variables = c + v truthtable = [] # standardize constants to be 1 or 0 in keeping with truthtable c = [1 if i == True else 0 for i in c] for t in product([0, 1], repeat=len(v)): if expr.xreplace(dict(zip(v, t))) == True: truthtable.append(c + list(t)) big = len(truthtable) >= (2 ** (len(variables) - 1)) if form == 'dnf' or form is None and big: return SOPform(variables, truthtable) return POSform(variables, truthtable) def _finger(eq): """ Assign a 5-item fingerprint to each symbol in the equation: [ # of times it appeared as a Symbol, # of times it appeared as a Not(symbol), # of times it appeared as a Symbol in an And or Or, # of times it appeared as a Not(Symbol) in an And or Or, sum of the number of arguments with which it appeared as a Symbol, counting Symbol as 1 and Not(Symbol) as 2 and counting self as 1 ] >>> from sympy.logic.boolalg import _finger as finger >>> from sympy import And, Or, Not >>> from sympy.abc import a, b, x, y >>> eq = Or(And(Not(y), a), And(Not(y), b), And(x, y)) >>> dict(finger(eq)) {(0, 0, 1, 0, 2): [x], (0, 0, 1, 0, 3): [a, b], (0, 0, 1, 2, 2): [y]} >>> dict(finger(x & ~y)) {(0, 1, 0, 0, 0): [y], (1, 0, 0, 0, 0): [x]} The equation must not have more than one level of nesting: >>> dict(finger(And(Or(x, y), y))) {(0, 0, 1, 0, 2): [x], (1, 0, 1, 0, 2): [y]} >>> dict(finger(And(Or(x, And(a, x)), y))) Traceback (most recent call last): ... NotImplementedError: unexpected level of nesting So y and x have unique fingerprints, but a and b do not. """ f = eq.free_symbols d = dict(list(zip(f, [[0] * 5 for fi in f]))) for a in eq.args: if a.is_Symbol: d[a][0] += 1 elif a.is_Not: d[a.args[0]][1] += 1 else: o = len(a.args) + sum(isinstance(ai, Not) for ai in a.args) for ai in a.args: if ai.is_Symbol: d[ai][2] += 1 d[ai][-1] += o elif ai.is_Not: d[ai.args[0]][3] += 1 else: raise NotImplementedError('unexpected level of nesting') inv = defaultdict(list) for k, v in ordered(iter(d.items())): inv[tuple(v)].append(k) return inv def bool_map(bool1, bool2): """ Return the simplified version of bool1, and the mapping of variables that makes the two expressions bool1 and bool2 represent the same logical behaviour for some correspondence between the variables of each. If more than one mappings of this sort exist, one of them is returned. For example, And(x, y) is logically equivalent to And(a, b) for the mapping {x: a, y:b} or {x: b, y:a}. If no such mapping exists, return False. Examples ======== >>> from sympy import SOPform, bool_map, Or, And, Not, Xor >>> from sympy.abc import w, x, y, z, a, b, c, d >>> function1 = SOPform([x, z, y],[[1, 0, 1], [0, 0, 1]]) >>> function2 = SOPform([a, b, c],[[1, 0, 1], [1, 0, 0]]) >>> bool_map(function1, function2) (y & ~z, {y: a, z: b}) The results are not necessarily unique, but they are canonical. Here, ``(w, z)`` could be ``(a, d)`` or ``(d, a)``: >>> eq = Or(And(Not(y), w), And(Not(y), z), And(x, y)) >>> eq2 = Or(And(Not(c), a), And(Not(c), d), And(b, c)) >>> bool_map(eq, eq2) ((x & y) | (w & ~y) | (z & ~y), {w: a, x: b, y: c, z: d}) >>> eq = And(Xor(a, b), c, And(c,d)) >>> bool_map(eq, eq.subs(c, x)) (c & d & (a | b) & (~a | ~b), {a: a, b: b, c: d, d: x}) """ def match(function1, function2): """Return the mapping that equates variables between two simplified boolean expressions if possible. By "simplified" we mean that a function has been denested and is either an And (or an Or) whose arguments are either symbols (x), negated symbols (Not(x)), or Or (or an And) whose arguments are only symbols or negated symbols. For example, And(x, Not(y), Or(w, Not(z))). Basic.match is not robust enough (see issue 4835) so this is a workaround that is valid for simplified boolean expressions """ # do some quick checks if function1.__class__ != function2.__class__: return None # maybe simplification makes them the same? if len(function1.args) != len(function2.args): return None # maybe simplification makes them the same? if function1.is_Symbol: return {function1: function2} # get the fingerprint dictionaries f1 = _finger(function1) f2 = _finger(function2) # more quick checks if len(f1) != len(f2): return False # assemble the match dictionary if possible matchdict = {} for k in f1.keys(): if k not in f2: return False if len(f1[k]) != len(f2[k]): return False for i, x in enumerate(f1[k]): matchdict[x] = f2[k][i] return matchdict a = simplify_logic(bool1) b = simplify_logic(bool2) m = match(a, b) if m: return a, m return m def simplify_patterns_and(): from sympy.functions.elementary.miscellaneous import Min, Max from sympy.core import Wild from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt a = Wild('a') b = Wild('b') c = Wild('c') # With a better canonical fewer results are required _matchers_and = ((And(Eq(a, b), Ge(a, b)), Eq(a, b)), (And(Eq(a, b), Gt(a, b)), S.false), (And(Eq(a, b), Le(a, b)), Eq(a, b)), (And(Eq(a, b), Lt(a, b)), S.false), (And(Ge(a, b), Gt(a, b)), Gt(a, b)), (And(Ge(a, b), Le(a, b)), Eq(a, b)), (And(Ge(a, b), Lt(a, b)), S.false), (And(Ge(a, b), Ne(a, b)), Gt(a, b)), (And(Gt(a, b), Le(a, b)), S.false), (And(Gt(a, b), Lt(a, b)), S.false), (And(Gt(a, b), Ne(a, b)), Gt(a, b)), (And(Le(a, b), Lt(a, b)), Lt(a, b)), (And(Le(a, b), Ne(a, b)), Lt(a, b)), (And(Lt(a, b), Ne(a, b)), Lt(a, b)), # Min/max (And(Ge(a, b), Ge(a, c)), Ge(a, Max(b, c))), (And(Ge(a, b), Gt(a, c)), ITE(b > c, Ge(a, b), Gt(a, c))), (And(Gt(a, b), Gt(a, c)), Gt(a, Max(b, c))), (And(Le(a, b), Le(a, c)), Le(a, Min(b, c))), (And(Le(a, b), Lt(a, c)), ITE(b < c, Le(a, b), Lt(a, c))), (And(Lt(a, b), Lt(a, c)), Lt(a, Min(b, c))), # Sign (And(Eq(a, b), Eq(a, -b)), And(Eq(a, S(0)), Eq(b, S(0)))), ) return _matchers_and def simplify_patterns_or(): from sympy.functions.elementary.miscellaneous import Min, Max from sympy.core import Wild from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt a = Wild('a') b = Wild('b') c = Wild('c') _matchers_or = ((Or(Eq(a, b), Ge(a, b)), Ge(a, b)), (Or(Eq(a, b), Gt(a, b)), Ge(a, b)), (Or(Eq(a, b), Le(a, b)), Le(a, b)), (Or(Eq(a, b), Lt(a, b)), Le(a, b)), (Or(Ge(a, b), Gt(a, b)), Ge(a, b)), (Or(Ge(a, b), Le(a, b)), S.true), (Or(Ge(a, b), Lt(a, b)), S.true), (Or(Ge(a, b), Ne(a, b)), S.true), (Or(Gt(a, b), Le(a, b)), S.true), (Or(Gt(a, b), Lt(a, b)), Ne(a, b)), (Or(Gt(a, b), Ne(a, b)), Ne(a, b)), (Or(Le(a, b), Lt(a, b)), Le(a, b)), (Or(Le(a, b), Ne(a, b)), S.true), (Or(Lt(a, b), Ne(a, b)), Ne(a, b)), # Min/max (Or(Ge(a, b), Ge(a, c)), Ge(a, Min(b, c))), (Or(Ge(a, b), Gt(a, c)), ITE(b > c, Gt(a, c), Ge(a, b))), (Or(Gt(a, b), Gt(a, c)), Gt(a, Min(b, c))), (Or(Le(a, b), Le(a, c)), Le(a, Max(b, c))), (Or(Le(a, b), Lt(a, c)), ITE(b >= c, Le(a, b), Lt(a, c))), (Or(Lt(a, b), Lt(a, c)), Lt(a, Max(b, c))), ) return _matchers_or def simplify_patterns_xor(): from sympy.functions.elementary.miscellaneous import Min, Max from sympy.core import Wild from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt a = Wild('a') b = Wild('b') c = Wild('c') _matchers_xor = ((Xor(Eq(a, b), Ge(a, b)), Gt(a, b)), (Xor(Eq(a, b), Gt(a, b)), Ge(a, b)), (Xor(Eq(a, b), Le(a, b)), Lt(a, b)), (Xor(Eq(a, b), Lt(a, b)), Le(a, b)), (Xor(Ge(a, b), Gt(a, b)), Eq(a, b)), (Xor(Ge(a, b), Le(a, b)), Ne(a, b)), (Xor(Ge(a, b), Lt(a, b)), S.true), (Xor(Ge(a, b), Ne(a, b)), Le(a, b)), (Xor(Gt(a, b), Le(a, b)), S.true), (Xor(Gt(a, b), Lt(a, b)), Ne(a, b)), (Xor(Gt(a, b), Ne(a, b)), Lt(a, b)), (Xor(Le(a, b), Lt(a, b)), Eq(a, b)), (Xor(Le(a, b), Ne(a, b)), Ge(a, b)), (Xor(Lt(a, b), Ne(a, b)), Gt(a, b)), # Min/max (Xor(Ge(a, b), Ge(a, c)), And(Ge(a, Min(b, c)), Lt(a, Max(b, c)))), (Xor(Ge(a, b), Gt(a, c)), ITE(b > c, And(Gt(a, c), Lt(a, b)), And(Ge(a, b), Le(a, c)))), (Xor(Gt(a, b), Gt(a, c)), And(Gt(a, Min(b, c)), Le(a, Max(b, c)))), (Xor(Le(a, b), Le(a, c)), And(Le(a, Max(b, c)), Gt(a, Min(b, c)))), (Xor(Le(a, b), Lt(a, c)), ITE(b < c, And(Lt(a, c), Gt(a, b)), And(Le(a, b), Ge(a, c)))), (Xor(Lt(a, b), Lt(a, c)), And(Lt(a, Max(b, c)), Ge(a, Min(b, c)))), ) return _matchers_xor
e67d792bc8905995f3bf54a99e86bccb3ef38d0cb8738d69fb0c2e47d603f7fc
'''Functions returning normal forms of matrices''' from __future__ import division, print_function from sympy.matrices.dense import diag def smith_normal_form(m, domain = None): ''' Return the Smith Normal Form of a matrix `m` over the ring `domain`. This will only work if the ring is a principal ideal domain. Examples ======== >>> from sympy.polys.solvers import RawMatrix as Matrix >>> from sympy.polys.domains import ZZ >>> from sympy.matrices.normalforms import smith_normal_form >>> m = Matrix([[12, 6, 4], [3, 9, 6], [2, 16, 14]]) >>> setattr(m, "ring", ZZ) >>> print(smith_normal_form(m)) Matrix([[1, 0, 0], [0, 10, 0], [0, 0, -30]]) ''' invs = invariant_factors(m, domain=domain) smf = diag(*invs) n = len(invs) if m.rows > n: smf = smf.row_insert(m.rows, zeros(m.rows-n, m.cols)) elif m.cols > n: smf = smf.col_insert(m.cols, zeros(m.rows, m.cols-n)) return smf def invariant_factors(m, domain = None): ''' Return the tuple of abelian invariants for a matrix `m` (as in the Smith-Normal form) References ========== [1] https://en.wikipedia.org/wiki/Smith_normal_form#Algorithm [2] http://sierra.nmsu.edu/morandi/notes/SmithNormalForm.pdf ''' if not domain: if not (hasattr(m, "ring") and m.ring.is_PID): raise ValueError( "The matrix entries must be over a principal ideal domain") else: domain = m.ring if len(m) == 0: return () m = m[:, :] def add_rows(m, i, j, a, b, c, d): # replace m[i, :] by a*m[i, :] + b*m[j, :] # and m[j, :] by c*m[i, :] + d*m[j, :] for k in range(m.cols): e = m[i, k] m[i, k] = a*e + b*m[j, k] m[j, k] = c*e + d*m[j, k] def add_columns(m, i, j, a, b, c, d): # replace m[:, i] by a*m[:, i] + b*m[:, j] # and m[:, j] by c*m[:, i] + d*m[:, j] for k in range(m.rows): e = m[k, i] m[k, i] = a*e + b*m[k, j] m[k, j] = c*e + d*m[k, j] def clear_column(m): # make m[1:, 0] zero by row and column operations if m[0,0] == 0: return m pivot = m[0, 0] for j in range(1, m.rows): if m[j, 0] == 0: continue d, r = domain.div(m[j,0], pivot) if r == 0: add_rows(m, 0, j, 1, 0, -d, 1) else: a, b, g = domain.gcdex(pivot, m[j,0]) d_0 = domain.div(m[j, 0], g)[0] d_j = domain.div(pivot, g)[0] add_rows(m, 0, j, a, b, d_0, -d_j) pivot = g return m def clear_row(m): # make m[0, 1:] zero by row and column operations if m[0] == 0: return m pivot = m[0, 0] for j in range(1, m.cols): if m[0, j] == 0: continue d, r = domain.div(m[0, j], pivot) if r == 0: add_columns(m, 0, j, 1, 0, -d, 1) else: a, b, g = domain.gcdex(pivot, m[0, j]) d_0 = domain.div(m[0, j], g)[0] d_j = domain.div(pivot, g)[0] add_columns(m, 0, j, a, b, d_0, -d_j) pivot = g return m # permute the rows and columns until m[0,0] is non-zero if possible ind = [i for i in range(m.rows) if m[i,0] != 0] if ind: m = m.permute_rows([[0, ind[0]]]) else: ind = [j for j in range(m.cols) if m[0,j] != 0] if ind: m = m.permute_cols([[0, ind[0]]]) # make the first row and column except m[0,0] zero while (any([m[0,i] != 0 for i in range(1,m.cols)]) or any([m[i,0] != 0 for i in range(1,m.rows)])): m = clear_column(m) m = clear_row(m) if 1 in m.shape: invs = () else: invs = invariant_factors(m[1:,1:], domain=domain) if m[0,0]: result = [m[0,0]] result.extend(invs) # in case m[0] doesn't divide the invariants of the rest of the matrix for i in range(len(result)-1): if result[i] and domain.div(result[i+1], result[i])[1] != 0: g = domain.gcd(result[i+1], result[i]) result[i+1] = domain.div(result[i], g)[0]*result[i+1] result[i] = g else: break else: result = invs + (m[0,0],) return tuple(result)
9873f2719c5429e607c3de4b6573593b80cbfd1403da9441e06bda67c671351f
""" Solution of equations using dense matrices. The dense matrix is stored as a list of lists. """ import copy from sympy.core.compatibility import range from sympy.core.power import isqrt from sympy.core.symbol import symbols from sympy.matrices.densetools import ( augment, col, conjugate_transpose, eye, rowadd, rowmul) from sympy.utilities.exceptions import SymPyDeprecationWarning SymPyDeprecationWarning( feature="densesolve", issue=12695, deprecated_since_version="1.1").warn() def row_echelon(matlist, K): """ Returns the row echelon form of a matrix with diagonal elements reduced to 1. Examples ======== >>> from sympy.matrices.densesolve import row_echelon >>> from sympy import QQ >>> a = [ ... [QQ(3), QQ(7), QQ(4)], ... [QQ(2), QQ(4), QQ(5)], ... [QQ(6), QQ(2), QQ(3)]] >>> row_echelon(a, QQ) [[1, 7/3, 4/3], [0, 1, -7/2], [0, 0, 1]] See Also ======== rref """ result_matlist = copy.deepcopy(matlist) nrow = len(result_matlist) for i in range(nrow): if (result_matlist[i][i] != 1 and result_matlist[i][i] != 0): rowmul(result_matlist, i, 1/result_matlist[i][i], K) for j in range(i + 1, nrow): if (result_matlist[j][i] != 0): rowadd(result_matlist, j, i, -result_matlist[j][i], K) return result_matlist def rref(matlist, K): """ Returns the reduced row echelon form of a Matrix. Examples ======== >>> from sympy.matrices.densesolve import rref >>> from sympy import QQ >>> a = [ ... [QQ(1), QQ(2), QQ(1)], ... [QQ(-2), QQ(-3), QQ(1)], ... [QQ(3), QQ(5), QQ(0)]] >>> rref(a, QQ) [[1, 0, -5], [0, 1, 3], [0, 0, 0]] See Also ======== row_echelon """ result_matlist = copy.deepcopy(matlist) result_matlist = row_echelon(result_matlist, K) nrow = len(result_matlist) for i in range(nrow): if result_matlist[i][i] == 1: for j in range(i): rowadd(result_matlist, j, i, -result_matlist[j][i], K) return result_matlist def LU(matlist, K, reverse = 0): """ It computes the LU decomposition of a matrix and returns L and U matrices. Examples ======== >>> from sympy.matrices.densesolve import LU >>> from sympy import QQ >>> a = [ ... [QQ(1), QQ(2), QQ(3)], ... [QQ(2), QQ(-4), QQ(6)], ... [QQ(3), QQ(-9), QQ(-3)]] >>> LU(a, QQ) ([[1, 0, 0], [2, 1, 0], [3, 15/8, 1]], [[1, 2, 3], [0, -8, 0], [0, 0, -12]]) See Also ======== upper_triangle lower_triangle """ nrow = len(matlist) new_matlist1, new_matlist2 = eye(nrow, K), copy.deepcopy(matlist) for i in range(nrow): for j in range(i + 1, nrow): if (new_matlist2[j][i] != 0): new_matlist1[j][i] = new_matlist2[j][i]/new_matlist2[i][i] rowadd(new_matlist2, j, i, -new_matlist2[j][i]/new_matlist2[i][i], K) return new_matlist1, new_matlist2 def cholesky(matlist, K): """ Performs the cholesky decomposition of a Hermitian matrix and returns L and it's conjugate transpose. Examples ======== >>> from sympy.matrices.densesolve import cholesky >>> from sympy import QQ >>> cholesky([[QQ(25), QQ(15), QQ(-5)], [QQ(15), QQ(18), QQ(0)], [QQ(-5), QQ(0), QQ(11)]], QQ) ([[5, 0, 0], [3, 3, 0], [-1, 1, 3]], [[5, 3, -1], [0, 3, 1], [0, 0, 3]]) See Also ======== cholesky_solve """ new_matlist = copy.deepcopy(matlist) nrow = len(new_matlist) L = eye(nrow, K) for i in range(nrow): for j in range(i + 1): a = K.zero for k in range(j): a += L[i][k]*L[j][k] if i == j: L[i][j] = isqrt(new_matlist[i][j] - a) else: L[i][j] = (new_matlist[i][j] - a)/L[j][j] return L, conjugate_transpose(L, K) def LDL(matlist, K): """ Performs the LDL decomposition of a hermitian matrix and returns L, D and transpose of L. Only applicable to rational entries. Examples ======== >>> from sympy.matrices.densesolve import LDL >>> from sympy import QQ >>> a = [ ... [QQ(4), QQ(12), QQ(-16)], ... [QQ(12), QQ(37), QQ(-43)], ... [QQ(-16), QQ(-43), QQ(98)]] >>> LDL(a, QQ) ([[1, 0, 0], [3, 1, 0], [-4, 5, 1]], [[4, 0, 0], [0, 1, 0], [0, 0, 9]], [[1, 3, -4], [0, 1, 5], [0, 0, 1]]) """ new_matlist = copy.deepcopy(matlist) nrow = len(new_matlist) L, D = eye(nrow, K), eye(nrow, K) for i in range(nrow): for j in range(i + 1): a = K.zero for k in range(j): a += L[i][k]*L[j][k]*D[k][k] if i == j: D[j][j] = new_matlist[j][j] - a else: L[i][j] = (new_matlist[i][j] - a)/D[j][j] return L, D, conjugate_transpose(L, K) def upper_triangle(matlist, K): """ Transforms a given matrix to an upper triangle matrix by performing row operations on it. Examples ======== >>> from sympy.matrices.densesolve import upper_triangle >>> from sympy import QQ >>> a = [ ... [QQ(4,1), QQ(12,1), QQ(-16,1)], ... [QQ(12,1), QQ(37,1), QQ(-43,1)], ... [QQ(-16,1), QQ(-43,1), QQ(98,1)]] >>> upper_triangle(a, QQ) [[4, 12, -16], [0, 1, 5], [0, 0, 9]] See Also ======== LU """ copy_matlist = copy.deepcopy(matlist) lower_triangle, upper_triangle = LU(copy_matlist, K) return upper_triangle def lower_triangle(matlist, K): """ Transforms a given matrix to a lower triangle matrix by performing row operations on it. Examples ======== >>> from sympy.matrices.densesolve import lower_triangle >>> from sympy import QQ >>> a = [ ... [QQ(4,1), QQ(12,1), QQ(-16)], ... [QQ(12,1), QQ(37,1), QQ(-43,1)], ... [QQ(-16,1), QQ(-43,1), QQ(98,1)]] >>> lower_triangle(a, QQ) [[1, 0, 0], [3, 1, 0], [-4, 5, 1]] See Also ======== LU """ copy_matlist = copy.deepcopy(matlist) lower_triangle, upper_triangle = LU(copy_matlist, K, reverse = 1) return lower_triangle def rref_solve(matlist, variable, constant, K): """ Solves a system of equations using reduced row echelon form given a matrix of coefficients, a vector of variables and a vector of constants. Examples ======== >>> from sympy.matrices.densesolve import rref_solve >>> from sympy import QQ >>> from sympy import Dummy >>> x, y, z = Dummy('x'), Dummy('y'), Dummy('z') >>> coefficients = [ ... [QQ(25), QQ(15), QQ(-5)], ... [QQ(15), QQ(18), QQ(0)], ... [QQ(-5), QQ(0), QQ(11)]] >>> constants = [ ... [QQ(2)], ... [QQ(3)], ... [QQ(1)]] >>> variables = [ ... [x], ... [y], ... [z]] >>> rref_solve(coefficients, variables, constants, QQ) [[-1/225], [23/135], [4/45]] See Also ======== row_echelon augment """ new_matlist = copy.deepcopy(matlist) augmented = augment(new_matlist, constant, K) solution = rref(augmented, K) return col(solution, -1) def LU_solve(matlist, variable, constant, K): """ Solves a system of equations using LU decomposition given a matrix of coefficients, a vector of variables and a vector of constants. Examples ======== >>> from sympy.matrices.densesolve import LU_solve >>> from sympy import QQ >>> from sympy import Dummy >>> x, y, z = Dummy('x'), Dummy('y'), Dummy('z') >>> coefficients = [ ... [QQ(2), QQ(-1), QQ(-2)], ... [QQ(-4), QQ(6), QQ(3)], ... [QQ(-4), QQ(-2), QQ(8)]] >>> variables = [ ... [x], ... [y], ... [z]] >>> constants = [ ... [QQ(-1)], ... [QQ(13)], ... [QQ(-6)]] >>> LU_solve(coefficients, variables, constants, QQ) [[2], [3], [1]] See Also ======== LU forward_substitution backward_substitution """ new_matlist = copy.deepcopy(matlist) nrow = len(new_matlist) L, U = LU(new_matlist, K) y = [[i] for i in symbols('y:%i' % nrow)] forward_substitution(L, y, constant, K) backward_substitution(U, variable, y, K) return variable def cholesky_solve(matlist, variable, constant, K): """ Solves a system of equations using Cholesky decomposition given a matrix of coefficients, a vector of variables and a vector of constants. Examples ======== >>> from sympy.matrices.densesolve import cholesky_solve >>> from sympy import QQ >>> from sympy import Dummy >>> x, y, z = Dummy('x'), Dummy('y'), Dummy('z') >>> coefficients = [ ... [QQ(25), QQ(15), QQ(-5)], ... [QQ(15), QQ(18), QQ(0)], ... [QQ(-5), QQ(0), QQ(11)]] >>> variables = [ ... [x], ... [y], ... [z]] >>> coefficients = [ ... [QQ(2)], ... [QQ(3)], ... [QQ(1)]] >>> cholesky_solve([[QQ(25), QQ(15), QQ(-5)], [QQ(15), QQ(18), QQ(0)], [QQ(-5), QQ(0), QQ(11)]], [[x], [y], [z]], [[QQ(2)], [QQ(3)], [QQ(1)]], QQ) [[-1/225], [23/135], [4/45]] See Also ======== cholesky forward_substitution backward_substitution """ new_matlist = copy.deepcopy(matlist) nrow = len(new_matlist) L, Lstar = cholesky(new_matlist, K) y = [[i] for i in symbols('y:%i' % nrow)] forward_substitution(L, y, constant, K) backward_substitution(Lstar, variable, y, K) return variable def forward_substitution(lower_triangle, variable, constant, K): """ Performs forward substitution given a lower triangular matrix, a vector of variables and a vector of constants. Examples ======== >>> from sympy.matrices.densesolve import forward_substitution >>> from sympy import QQ >>> from sympy import Dummy >>> x, y, z = Dummy('x'), Dummy('y'), Dummy('z') >>> a = [ ... [QQ(1), QQ(0), QQ(0)], ... [QQ(-2), QQ(1), QQ(0)], ... [QQ(-2), QQ(-1), QQ(1)]] >>> variables = [ ... [x], ... [y], ... [z]] >>> constants = [ ... [QQ(-1)], ... [QQ(13)], ... [QQ(-6)]] >>> forward_substitution(a, variables, constants, QQ) [[-1], [11], [3]] See Also ======== LU_solve cholesky_solve """ copy_lower_triangle = copy.deepcopy(lower_triangle) nrow = len(copy_lower_triangle) result = [] for i in range(nrow): a = K.zero for j in range(i): a += copy_lower_triangle[i][j]*variable[j][0] variable[i][0] = (constant[i][0] - a)/copy_lower_triangle[i][i] return variable def backward_substitution(upper_triangle, variable, constant, K): """ Performs forward substitution given a lower triangular matrix, a vector of variables and a vector constants. Examples ======== >>> from sympy.matrices.densesolve import backward_substitution >>> from sympy import QQ >>> from sympy import Dummy >>> x, y, z = Dummy('x'), Dummy('y'), Dummy('z') >>> a = [ ... [QQ(2), QQ(-1), QQ(-2)], ... [QQ(0), QQ(4), QQ(-1)], ... [QQ(0), QQ(0), QQ(3)]] >>> variables = [ ... [x], ... [y], ... [z]] >>> constants = [ ... [QQ(-1)], ... [QQ(11)], ... [QQ(3)]] >>> backward_substitution(a, variables, constants, QQ) [[2], [3], [1]] See Also ======== LU_solve cholesky_solve """ copy_upper_triangle = copy.deepcopy(upper_triangle) nrow = len(copy_upper_triangle) result = [] for i in reversed(range(nrow)): a = K.zero for j in reversed(range(i + 1, nrow)): a += copy_upper_triangle[i][j]*variable[j][0] variable[i][0] = (constant[i][0] - a)/copy_upper_triangle[i][i] return variable
d9b23850e9560032b4be4246b57eaabf9f79c82839a04ec2d017cf8f02bcd19e
""" Fundamental operations of dense matrices. The dense matrix is stored as a list of lists """ from sympy.core.compatibility import range from sympy.utilities.exceptions import SymPyDeprecationWarning SymPyDeprecationWarning( feature="densetools", issue=12695, deprecated_since_version="1.1").warn() def trace(matlist, K): """ Returns the trace of a matrix. Examples ======== >>> from sympy.matrices.densetools import trace, eye >>> from sympy import ZZ >>> a = [ ... [ZZ(3), ZZ(7), ZZ(4)], ... [ZZ(2), ZZ(4), ZZ(5)], ... [ZZ(6), ZZ(2), ZZ(3)]] >>> b = eye(4, ZZ) >>> trace(a, ZZ) 10 >>> trace(b, ZZ) 4 """ result = K.zero for i in range(len(matlist)): result += matlist[i][i] return result def transpose(matlist, K): """ Returns the transpose of a matrix Examples ======== >>> from sympy.matrices.densetools import transpose >>> from sympy import ZZ >>> a = [ ... [ZZ(3), ZZ(7), ZZ(4)], ... [ZZ(2), ZZ(4), ZZ(5)], ... [ZZ(6), ZZ(2), ZZ(3)]] >>> transpose(a, ZZ) [[3, 2, 6], [7, 4, 2], [4, 5, 3]] """ return [list(a) for a in (zip(*matlist))] def conjugate(matlist, K): """ Returns the conjugate of a matrix row-wise. Examples ======== >>> from sympy.matrices.densetools import conjugate >>> from sympy import ZZ >>> a = [ ... [ZZ(3), ZZ(2), ZZ(6)], ... [ZZ(7), ZZ(4), ZZ(2)], ... [ZZ(4), ZZ(5), ZZ(3)]] >>> conjugate(a, ZZ) [[3, 2, 6], [7, 4, 2], [4, 5, 3]] See Also ======== conjugate_row """ return [conjugate_row(row, K) for row in matlist] def conjugate_row(row, K): """ Returns the conjugate of a row element-wise Examples ======== >>> from sympy.matrices.densetools import conjugate_row >>> from sympy import ZZ >>> a = [ZZ(3), ZZ(2), ZZ(6)] >>> conjugate_row(a, ZZ) [3, 2, 6] """ result = [] for r in row: conj = getattr(r, 'conjugate', None) if conj is not None: conjrow = conj() else: conjrow = r result.append(conjrow) return result def conjugate_transpose(matlist, K): """ Returns the conjugate-transpose of a matrix Examples ======== >>> from sympy import ZZ >>> from sympy.matrices.densetools import conjugate_transpose >>> a = [ ... [ZZ(3), ZZ(7), ZZ(4)], ... [ZZ(2), ZZ(4), ZZ(5)], ... [ZZ(6), ZZ(2), ZZ(3)]] >>> conjugate_transpose(a, ZZ) [[3, 2, 6], [7, 4, 2], [4, 5, 3]] """ return conjugate(transpose(matlist, K), K) def augment(matlist, column, K): """ Augments a matrix and a column. Examples ======== >>> from sympy.matrices.densetools import augment >>> from sympy import ZZ >>> a = [ ... [ZZ(3), ZZ(7), ZZ(4)], ... [ZZ(2), ZZ(4), ZZ(5)], ... [ZZ(6), ZZ(2), ZZ(3)]] >>> b = [ ... [ZZ(4)], ... [ZZ(5)], ... [ZZ(6)]] >>> augment(a, b, ZZ) [[3, 7, 4, 4], [2, 4, 5, 5], [6, 2, 3, 6]] """ return [row + element for row, element in zip(matlist, column)] def eye(n, K): """ Returns an identity matrix of size n. Examples ======== >>> from sympy.matrices.densetools import eye >>> from sympy import ZZ >>> eye(3, ZZ) [[1, 0, 0], [0, 1, 0], [0, 0, 1]] """ result = [] for i in range(n): result.append([]) for j in range(n): if (i == j): result[i].append(K(1)) else: result[i].append(K.zero) return result def row(matlist, i): """ Returns the ith row of a matrix Examples ======== >>> from sympy.matrices.densetools import row >>> from sympy import ZZ >>> a = [ ... [ZZ(3), ZZ(7), ZZ(4)], ... [ZZ(2), ZZ(4), ZZ(5)], ... [ZZ(6), ZZ(2), ZZ(3)]] >>> row(a, 2) [6, 2, 3] """ return matlist[i] def col(matlist, i): """ Returns the ith column of a matrix Note: Currently very expensive Examples ======== >>> from sympy.matrices.densetools import col >>> from sympy import ZZ >>> a = [ ... [ZZ(3), ZZ(7), ZZ(4)], ... [ZZ(2), ZZ(4), ZZ(5)], ... [ZZ(6), ZZ(2), ZZ(3)]] >>> col(a, 1) [[7], [4], [2]] """ matcol = [list(l) for l in zip(*matlist)] return [[l] for l in matcol[i]] def rowswap(matlist, index1, index2, K): """ Returns the matrix with index1 row and index2 row swapped """ matlist[index1], matlist[index2] = matlist[index2], matlist[index1] return matlist def rowmul(matlist, index, k, K): """ Multiplies index row with k """ for i in range(len(matlist[index])): matlist[index][i] = k*matlist[index][i] return matlist def rowadd(matlist, index1, index2 , k, K): """ Adds the index1 row with index2 row which in turn is multiplied by k """ result = [] for i in range(len(matlist[index1])): matlist[index1][i] = (matlist[index1][i] + k*matlist[index2][i]) return matlist def isHermitian(matlist, K): """ Checks whether matrix is hermitian Examples ======== >>> from sympy.matrices.densetools import isHermitian >>> from sympy import QQ >>> a = [ ... [QQ(2,1), QQ(-1,1), QQ(-1,1)], ... [QQ(0,1), QQ(4,1), QQ(-1,1)], ... [QQ(0,1), QQ(0,1), QQ(3,1)]] >>> isHermitian(a, QQ) False """ return conjugate_transpose(matlist, K) == matlist
970fd86f001809f9a9e4cb54068c265b10a5dbf21efd4450491919e0ebbf7290
"""A module that handles matrices. Includes functions for fast creating matrices like zero, one/eye, random matrix, etc. """ from .common import ShapeError, NonSquareMatrixError from .dense import ( GramSchmidt, casoratian, diag, eye, hessian, jordan_cell, list2numpy, matrix2numpy, matrix_multiply_elementwise, ones, randMatrix, rot_axis1, rot_axis2, rot_axis3, symarray, wronskian, zeros) from .dense import MutableDenseMatrix from .matrices import DeferredVector, MatrixBase Matrix = MutableMatrix = MutableDenseMatrix from .sparse import MutableSparseMatrix from .immutable import ImmutableDenseMatrix, ImmutableSparseMatrix ImmutableMatrix = ImmutableDenseMatrix SparseMatrix = MutableSparseMatrix from .expressions import ( MatrixSlice, BlockDiagMatrix, BlockMatrix, FunctionMatrix, Identity, Inverse, MatAdd, MatMul, MatPow, MatrixExpr, MatrixSymbol, Trace, Transpose, ZeroMatrix, blockcut, block_collapse, matrix_symbols, Adjoint, hadamard_product, HadamardProduct, Determinant, det, DiagonalMatrix, DiagonalOf, trace, DotProduct, kronecker_product, KroneckerProduct)
05b6861cddbadba089c0dc145858393ea392bbc348e7311e71e584440b5ace31
from __future__ import division, print_function from sympy.core import Basic, Dict, Integer, S, Tuple, sympify from sympy.core.cache import cacheit from sympy.core.sympify import converter as sympify_converter from sympy.matrices.dense import DenseMatrix from sympy.matrices.expressions import MatrixExpr from sympy.matrices.matrices import MatrixBase from sympy.matrices.sparse import MutableSparseMatrix, SparseMatrix def sympify_matrix(arg): return arg.as_immutable() sympify_converter[MatrixBase] = sympify_matrix class ImmutableDenseMatrix(DenseMatrix, MatrixExpr): """Create an immutable version of a matrix. Examples ======== >>> from sympy import eye >>> from sympy.matrices import ImmutableMatrix >>> ImmutableMatrix(eye(3)) Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> _[0, 0] = 42 Traceback (most recent call last): ... TypeError: Cannot set values of ImmutableDenseMatrix """ # MatrixExpr is set as NotIterable, but we want explicit matrices to be # iterable _iterable = True _class_priority = 8 _op_priority = 10.001 def __new__(cls, *args, **kwargs): return cls._new(*args, **kwargs) __hash__ = MatrixExpr.__hash__ @classmethod def _new(cls, *args, **kwargs): if len(args) == 1 and isinstance(args[0], ImmutableDenseMatrix): return args[0] if kwargs.get('copy', True) is False: if len(args) != 3: raise TypeError("'copy=False' requires a matrix be initialized as rows,cols,[list]") rows, cols, flat_list = args else: rows, cols, flat_list = cls._handle_creation_inputs(*args, **kwargs) flat_list = list(flat_list) # create a shallow copy rows = Integer(rows) cols = Integer(cols) if not isinstance(flat_list, Tuple): flat_list = Tuple(*flat_list) return Basic.__new__(cls, rows, cols, flat_list) @property def _mat(self): # self.args[2] is a Tuple. Access to the elements # of a tuple are significantly faster than Tuple, # so return the internal tuple. return self.args[2].args def _entry(self, i, j): return DenseMatrix.__getitem__(self, (i, j)) def __setitem__(self, *args): raise TypeError("Cannot set values of {}".format(self.__class__)) def _eval_Eq(self, other): """Helper method for Equality with matrices. Relational automatically converts matrices to ImmutableDenseMatrix instances, so this method only applies here. Returns True if the matrices are definitively the same, False if they are definitively different, and None if undetermined (e.g. if they contain Symbols). Returning None triggers default handling of Equalities. """ if not hasattr(other, 'shape') or self.shape != other.shape: return S.false if isinstance(other, MatrixExpr) and not isinstance( other, ImmutableDenseMatrix): return None diff = self - other return sympify(diff.is_zero) def _eval_extract(self, rowsList, colsList): # self._mat is a Tuple. It is slightly faster to index a # tuple over a Tuple, so grab the internal tuple directly mat = self._mat cols = self.cols indices = (i * cols + j for i in rowsList for j in colsList) return self._new(len(rowsList), len(colsList), Tuple(*(mat[i] for i in indices), sympify=False), copy=False) @property def cols(self): return int(self.args[1]) @property def rows(self): return int(self.args[0]) @property def shape(self): return tuple(int(i) for i in self.args[:2]) def is_diagonalizable(self, reals_only=False, **kwargs): return super(ImmutableDenseMatrix, self).is_diagonalizable( reals_only=reals_only, **kwargs) is_diagonalizable.__doc__ = DenseMatrix.is_diagonalizable.__doc__ is_diagonalizable = cacheit(is_diagonalizable) # This is included after the class definition as a workaround for issue 7213. # See https://github.com/sympy/sympy/issues/7213 # the object is non-zero # See https://github.com/sympy/sympy/issues/7213 ImmutableDenseMatrix.is_zero = DenseMatrix.is_zero # make sure ImmutableDenseMatrix is aliased as ImmutableMatrix ImmutableMatrix = ImmutableDenseMatrix class ImmutableSparseMatrix(SparseMatrix, Basic): """Create an immutable version of a sparse matrix. Examples ======== >>> from sympy import eye >>> from sympy.matrices.immutable import ImmutableSparseMatrix >>> ImmutableSparseMatrix(1, 1, {}) Matrix([[0]]) >>> ImmutableSparseMatrix(eye(3)) Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> _[0, 0] = 42 Traceback (most recent call last): ... TypeError: Cannot set values of ImmutableSparseMatrix >>> _.shape (3, 3) """ is_Matrix = True _class_priority = 9 @classmethod def _new(cls, *args, **kwargs): s = MutableSparseMatrix(*args) rows = Integer(s.rows) cols = Integer(s.cols) mat = Dict(s._smat) obj = Basic.__new__(cls, rows, cols, mat) obj.rows = s.rows obj.cols = s.cols obj._smat = s._smat return obj def __new__(cls, *args, **kwargs): return cls._new(*args, **kwargs) def __setitem__(self, *args): raise TypeError("Cannot set values of ImmutableSparseMatrix") def __hash__(self): return hash((type(self).__name__,) + (self.shape, tuple(self._smat))) _eval_Eq = ImmutableDenseMatrix._eval_Eq def is_diagonalizable(self, reals_only=False, **kwargs): return super(ImmutableSparseMatrix, self).is_diagonalizable( reals_only=reals_only, **kwargs) is_diagonalizable.__doc__ = SparseMatrix.is_diagonalizable.__doc__ is_diagonalizable = cacheit(is_diagonalizable)
75376f1bc6e1bcd84cc15fddd1cb12264a8bbafd548754e31db7b8b6ffe00d5a
""" Basic methods common to all matrices to be used when creating more advanced matrices (e.g., matrices over rings, etc.). """ from __future__ import division, print_function from collections import defaultdict from inspect import isfunction from sympy.assumptions.refine import refine from sympy.core.basic import Atom from sympy.core.compatibility import ( Iterable, as_int, is_sequence, range, reduce) from sympy.core.decorators import call_highest_priority from sympy.core.expr import Expr from sympy.core.function import count_ops from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.core.sympify import sympify from sympy.functions import Abs from sympy.simplify import simplify as _simplify from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.utilities.iterables import flatten from sympy.utilities.misc import filldedent class MatrixError(Exception): pass class ShapeError(ValueError, MatrixError): """Wrong matrix shape""" pass class NonSquareMatrixError(ShapeError): pass class MatrixRequired(object): """All subclasses of matrix objects must implement the required matrix properties listed here.""" rows = None cols = None shape = None _simplify = None @classmethod def _new(cls, *args, **kwargs): """`_new` must, at minimum, be callable as `_new(rows, cols, mat) where mat is a flat list of the elements of the matrix.""" raise NotImplementedError("Subclasses must implement this.") def __eq__(self, other): raise NotImplementedError("Subclasses must implement this.") def __getitem__(self, key): """Implementations of __getitem__ should accept ints, in which case the matrix is indexed as a flat list, tuples (i,j) in which case the (i,j) entry is returned, slices, or mixed tuples (a,b) where a and b are any combintion of slices and integers.""" raise NotImplementedError("Subclasses must implement this.") def __len__(self): """The total number of entries in the matrix.""" raise NotImplementedError("Subclasses must implement this.") class MatrixShaping(MatrixRequired): """Provides basic matrix shaping and extracting of submatrices""" def _eval_col_del(self, col): def entry(i, j): return self[i, j] if j < col else self[i, j + 1] return self._new(self.rows, self.cols - 1, entry) def _eval_col_insert(self, pos, other): cols = self.cols def entry(i, j): if j < pos: return self[i, j] elif pos <= j < pos + other.cols: return other[i, j - pos] return self[i, j - other.cols] return self._new(self.rows, self.cols + other.cols, lambda i, j: entry(i, j)) def _eval_col_join(self, other): rows = self.rows def entry(i, j): if i < rows: return self[i, j] return other[i - rows, j] return classof(self, other)._new(self.rows + other.rows, self.cols, lambda i, j: entry(i, j)) def _eval_extract(self, rowsList, colsList): mat = list(self) cols = self.cols indices = (i * cols + j for i in rowsList for j in colsList) return self._new(len(rowsList), len(colsList), list(mat[i] for i in indices)) def _eval_get_diag_blocks(self): sub_blocks = [] def recurse_sub_blocks(M): i = 1 while i <= M.shape[0]: if i == 1: to_the_right = M[0, i:] to_the_bottom = M[i:, 0] else: to_the_right = M[:i, i:] to_the_bottom = M[i:, :i] if any(to_the_right) or any(to_the_bottom): i += 1 continue else: sub_blocks.append(M[:i, :i]) if M.shape == M[:i, :i].shape: return else: recurse_sub_blocks(M[i:, i:]) return recurse_sub_blocks(self) return sub_blocks def _eval_row_del(self, row): def entry(i, j): return self[i, j] if i < row else self[i + 1, j] return self._new(self.rows - 1, self.cols, entry) def _eval_row_insert(self, pos, other): entries = list(self) insert_pos = pos * self.cols entries[insert_pos:insert_pos] = list(other) return self._new(self.rows + other.rows, self.cols, entries) def _eval_row_join(self, other): cols = self.cols def entry(i, j): if j < cols: return self[i, j] return other[i, j - cols] return classof(self, other)._new(self.rows, self.cols + other.cols, lambda i, j: entry(i, j)) def _eval_tolist(self): return [list(self[i,:]) for i in range(self.rows)] def _eval_vec(self): rows = self.rows def entry(n, _): # we want to read off the columns first j = n // rows i = n - j * rows return self[i, j] return self._new(len(self), 1, entry) def col_del(self, col): """Delete the specified column.""" if col < 0: col += self.cols if not 0 <= col < self.cols: raise ValueError("Column {} out of range.".format(col)) return self._eval_col_del(col) def col_insert(self, pos, other): """Insert one or more columns at the given column position. Examples ======== >>> from sympy import zeros, ones >>> M = zeros(3) >>> V = ones(3, 1) >>> M.col_insert(1, V) Matrix([ [0, 1, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0]]) See Also ======== col row_insert """ # Allows you to build a matrix even if it is null matrix if not self: return type(self)(other) pos = as_int(pos) if pos < 0: pos = self.cols + pos if pos < 0: pos = 0 elif pos > self.cols: pos = self.cols if self.rows != other.rows: raise ShapeError( "`self` and `other` must have the same number of rows.") return self._eval_col_insert(pos, other) def col_join(self, other): """Concatenates two matrices along self's last and other's first row. Examples ======== >>> from sympy import zeros, ones >>> M = zeros(3) >>> V = ones(1, 3) >>> M.col_join(V) Matrix([ [0, 0, 0], [0, 0, 0], [0, 0, 0], [1, 1, 1]]) See Also ======== col row_join """ # A null matrix can always be stacked (see #10770) if self.rows == 0 and self.cols != other.cols: return self._new(0, other.cols, []).col_join(other) if self.cols != other.cols: raise ShapeError( "`self` and `other` must have the same number of columns.") return self._eval_col_join(other) def col(self, j): """Elementary column selector. Examples ======== >>> from sympy import eye >>> eye(2).col(0) Matrix([ [1], [0]]) See Also ======== row col_op col_swap col_del col_join col_insert """ return self[:, j] def extract(self, rowsList, colsList): """Return a submatrix by specifying a list of rows and columns. Negative indices can be given. All indices must be in the range -n <= i < n where n is the number of rows or columns. Examples ======== >>> from sympy import Matrix >>> m = Matrix(4, 3, range(12)) >>> m Matrix([ [0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]]) >>> m.extract([0, 1, 3], [0, 1]) Matrix([ [0, 1], [3, 4], [9, 10]]) Rows or columns can be repeated: >>> m.extract([0, 0, 1], [-1]) Matrix([ [2], [2], [5]]) Every other row can be taken by using range to provide the indices: >>> m.extract(range(0, m.rows, 2), [-1]) Matrix([ [2], [8]]) RowsList or colsList can also be a list of booleans, in which case the rows or columns corresponding to the True values will be selected: >>> m.extract([0, 1, 2, 3], [True, False, True]) Matrix([ [0, 2], [3, 5], [6, 8], [9, 11]]) """ if not is_sequence(rowsList) or not is_sequence(colsList): raise TypeError("rowsList and colsList must be iterable") # ensure rowsList and colsList are lists of integers if rowsList and all(isinstance(i, bool) for i in rowsList): rowsList = [index for index, item in enumerate(rowsList) if item] if colsList and all(isinstance(i, bool) for i in colsList): colsList = [index for index, item in enumerate(colsList) if item] # ensure everything is in range rowsList = [a2idx(k, self.rows) for k in rowsList] colsList = [a2idx(k, self.cols) for k in colsList] return self._eval_extract(rowsList, colsList) def get_diag_blocks(self): """Obtains the square sub-matrices on the main diagonal of a square matrix. Useful for inverting symbolic matrices or solving systems of linear equations which may be decoupled by having a block diagonal structure. Examples ======== >>> from sympy import Matrix >>> from sympy.abc import x, y, z >>> A = Matrix([[1, 3, 0, 0], [y, z*z, 0, 0], [0, 0, x, 0], [0, 0, 0, 0]]) >>> a1, a2, a3 = A.get_diag_blocks() >>> a1 Matrix([ [1, 3], [y, z**2]]) >>> a2 Matrix([[x]]) >>> a3 Matrix([[0]]) """ return self._eval_get_diag_blocks() @classmethod def hstack(cls, *args): """Return a matrix formed by joining args horizontally (i.e. by repeated application of row_join). Examples ======== >>> from sympy.matrices import Matrix, eye >>> Matrix.hstack(eye(2), 2*eye(2)) Matrix([ [1, 0, 2, 0], [0, 1, 0, 2]]) """ if len(args) == 0: return cls._new() kls = type(args[0]) return reduce(kls.row_join, args) def reshape(self, rows, cols): """Reshape the matrix. Total number of elements must remain the same. Examples ======== >>> from sympy import Matrix >>> m = Matrix(2, 3, lambda i, j: 1) >>> m Matrix([ [1, 1, 1], [1, 1, 1]]) >>> m.reshape(1, 6) Matrix([[1, 1, 1, 1, 1, 1]]) >>> m.reshape(3, 2) Matrix([ [1, 1], [1, 1], [1, 1]]) """ if self.rows * self.cols != rows * cols: raise ValueError("Invalid reshape parameters %d %d" % (rows, cols)) return self._new(rows, cols, lambda i, j: self[i * cols + j]) def row_del(self, row): """Delete the specified row.""" if row < 0: row += self.rows if not 0 <= row < self.rows: raise ValueError("Row {} out of range.".format(row)) return self._eval_row_del(row) def row_insert(self, pos, other): """Insert one or more rows at the given row position. Examples ======== >>> from sympy import zeros, ones >>> M = zeros(3) >>> V = ones(1, 3) >>> M.row_insert(1, V) Matrix([ [0, 0, 0], [1, 1, 1], [0, 0, 0], [0, 0, 0]]) See Also ======== row col_insert """ # Allows you to build a matrix even if it is null matrix if not self: return self._new(other) pos = as_int(pos) if pos < 0: pos = self.rows + pos if pos < 0: pos = 0 elif pos > self.rows: pos = self.rows if self.cols != other.cols: raise ShapeError( "`self` and `other` must have the same number of columns.") return self._eval_row_insert(pos, other) def row_join(self, other): """Concatenates two matrices along self's last and rhs's first column Examples ======== >>> from sympy import zeros, ones >>> M = zeros(3) >>> V = ones(3, 1) >>> M.row_join(V) Matrix([ [0, 0, 0, 1], [0, 0, 0, 1], [0, 0, 0, 1]]) See Also ======== row col_join """ # A null matrix can always be stacked (see #10770) if self.cols == 0 and self.rows != other.rows: return self._new(other.rows, 0, []).row_join(other) if self.rows != other.rows: raise ShapeError( "`self` and `rhs` must have the same number of rows.") return self._eval_row_join(other) def row(self, i): """Elementary row selector. Examples ======== >>> from sympy import eye >>> eye(2).row(0) Matrix([[1, 0]]) See Also ======== col row_op row_swap row_del row_join row_insert """ return self[i, :] @property def shape(self): """The shape (dimensions) of the matrix as the 2-tuple (rows, cols). Examples ======== >>> from sympy.matrices import zeros >>> M = zeros(2, 3) >>> M.shape (2, 3) >>> M.rows 2 >>> M.cols 3 """ return (self.rows, self.cols) def tolist(self): """Return the Matrix as a nested Python list. Examples ======== >>> from sympy import Matrix, ones >>> m = Matrix(3, 3, range(9)) >>> m Matrix([ [0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> m.tolist() [[0, 1, 2], [3, 4, 5], [6, 7, 8]] >>> ones(3, 0).tolist() [[], [], []] When there are no rows then it will not be possible to tell how many columns were in the original matrix: >>> ones(0, 3).tolist() [] """ if not self.rows: return [] if not self.cols: return [[] for i in range(self.rows)] return self._eval_tolist() def vec(self): """Return the Matrix converted into a one column matrix by stacking columns Examples ======== >>> from sympy import Matrix >>> m=Matrix([[1, 3], [2, 4]]) >>> m Matrix([ [1, 3], [2, 4]]) >>> m.vec() Matrix([ [1], [2], [3], [4]]) See Also ======== vech """ return self._eval_vec() @classmethod def vstack(cls, *args): """Return a matrix formed by joining args vertically (i.e. by repeated application of col_join). Examples ======== >>> from sympy.matrices import Matrix, eye >>> Matrix.vstack(eye(2), 2*eye(2)) Matrix([ [1, 0], [0, 1], [2, 0], [0, 2]]) """ if len(args) == 0: return cls._new() kls = type(args[0]) return reduce(kls.col_join, args) class MatrixSpecial(MatrixRequired): """Construction of special matrices""" @classmethod def _eval_diag(cls, rows, cols, diag_dict): """diag_dict is a defaultdict containing all the entries of the diagonal matrix.""" def entry(i, j): return diag_dict[(i, j)] return cls._new(rows, cols, entry) @classmethod def _eval_eye(cls, rows, cols): def entry(i, j): return S.One if i == j else S.Zero return cls._new(rows, cols, entry) @classmethod def _eval_jordan_block(cls, rows, cols, eigenvalue, band='upper'): if band == 'lower': def entry(i, j): if i == j: return eigenvalue elif j + 1 == i: return S.One return S.Zero else: def entry(i, j): if i == j: return eigenvalue elif i + 1 == j: return S.One return S.Zero return cls._new(rows, cols, entry) @classmethod def _eval_ones(cls, rows, cols): def entry(i, j): return S.One return cls._new(rows, cols, entry) @classmethod def _eval_zeros(cls, rows, cols): def entry(i, j): return S.Zero return cls._new(rows, cols, entry) @classmethod def diag(kls, *args, **kwargs): """Returns a matrix with the specified diagonal. If matrices are passed, a block-diagonal matrix is created (i.e. the "direct sum" of the matrices). kwargs ====== rows : rows of the resulting matrix; computed if not given. cols : columns of the resulting matrix; computed if not given. cls : class for the resulting matrix unpack : bool which, when True (default), unpacks a single sequence rather than interpreting it as a Matrix. strict : bool which, when False (default), allows Matrices to have variable-length rows. Examples ======== >>> from sympy.matrices import Matrix >>> Matrix.diag(1, 2, 3) Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]]) The current default is to unpack a single sequence. If this is not desired, set `unpack=False` and it will be interpreted as a matrix. >>> Matrix.diag([1, 2, 3]) == Matrix.diag(1, 2, 3) True When more than one element is passed, each is interpreted as something to put on the diagonal. Lists are converted to matricecs. Filling of the diagonal always continues from the bottom right hand corner of the previous item: this will create a block-diagonal matrix whether the matrices are square or not. >>> col = [1, 2, 3] >>> row = [[4, 5]] >>> Matrix.diag(col, row) Matrix([ [1, 0, 0], [2, 0, 0], [3, 0, 0], [0, 4, 5]]) Elements within a list need not all be of the same length unless `strict` is set to True: >>> Matrix.diag([[1, 2, 3], [4, 5], [6]], unpack=False) Matrix([ [1, 2, 3], [4, 5, 0], [6, 0, 0]]) The type of the returned matrix can be set with the ``cls`` keyword. >>> from sympy.matrices import ImmutableMatrix >>> from sympy.utilities.misc import func_name >>> func_name(Matrix.diag(1, cls=ImmutableMatrix)) 'ImmutableDenseMatrix' A zero dimension matrix can be used to position the start of the filling at the start of an arbitrary row or column: >>> from sympy import ones >>> r2 = ones(0, 2) >>> Matrix.diag(r2, 1, 2) Matrix([ [0, 0, 1, 0], [0, 0, 0, 2]]) """ from sympy.matrices.matrices import MatrixBase from sympy.matrices.dense import Matrix klass = kwargs.get('cls', kls) strict = kwargs.get('strict', False) # lists -> Matrices unpack = kwargs.get('unpack', True) # unpack single sequence if unpack and len(args) == 1 and is_sequence(args[0]) and \ not isinstance(args[0], MatrixBase): args = args[0] # fill a default dict with the diagonal entries diag_entries = defaultdict(int) R = C = 0 # keep track of the biggest index seen for m in args: if hasattr(m, 'rows') or isinstance(m, list): # in this case, we're a matrix or list if hasattr(m, 'rows'): # convert to list of lists r, c = m.shape m = m.tolist() else: # make sure all list elements are lists r = len(m) if strict: # let Matrix raise the error m = Matrix(m) c = m.cols m = m.tolist() else: m = [mi if isinstance(mi, list) else [mi] for mi in m] c = max(map(len, m)) # process list of lists for i in range(len(m)): for j, mij in enumerate(m[i]): diag_entries[(i + R, j + C)] = mij R += r C += c else: # in this case, we're a single value diag_entries[(R, C)] = m R += 1 C += 1 rows = kwargs.get('rows', None) cols = kwargs.get('cols', None) if rows is None: rows, cols = cols, rows if rows is None: rows, cols = R, C else: cols = rows if cols is None else cols if rows < R or cols < C: raise ValueError(filldedent(''' The constructed matrix is {} x {} but a size of {} x {} was specified.'''.format(R, C, rows, cols))) return klass._eval_diag(rows, cols, diag_entries) @classmethod def eye(kls, rows, cols=None, **kwargs): """Returns an identity matrix. Args ==== rows : rows of the matrix cols : cols of the matrix (if None, cols=rows) kwargs ====== cls : class of the returned matrix """ if cols is None: cols = rows klass = kwargs.get('cls', kls) rows, cols = as_int(rows), as_int(cols) return klass._eval_eye(rows, cols) @classmethod def jordan_block(kls, size=None, eigenvalue=None, **kwargs): """Returns a Jordan block Parameters ========== size : Integer, optional Specifies the shape of the Jordan block matrix. eigenvalue : Number or Symbol Specifies the value for the main diagonal of the matrix. .. note:: The keyword ``eigenval`` is also specified as an alias of this keyword, but it is not recommended to use. We may deprecate the alias in later release. band : 'upper' or 'lower', optional Specifies the position of the off-diagonal to put `1` s on. cls : Matrix, optional Specifies the matrix class of the output form. If it is not specified, the class type where the method is being executed on will be returned. rows, cols : Integer, optional Specifies the shape of the Jordan block matrix. See Notes section for the details of how these key works. .. note:: This feature will be deprecated in the future. Returns ======= Matrix A Jordan block matrix. Raises ====== ValueError If insufficient arguments are given for matrix size specification, or no eigenvalue is given. Examples ======== Creating a default Jordan block: >>> from sympy import Matrix >>> from sympy.abc import x >>> Matrix.jordan_block(4, x) Matrix([ [x, 1, 0, 0], [0, x, 1, 0], [0, 0, x, 1], [0, 0, 0, x]]) Creating an alternative Jordan block matrix where `1` is on lower off-diagonal: >>> Matrix.jordan_block(4, x, band='lower') Matrix([ [x, 0, 0, 0], [1, x, 0, 0], [0, 1, x, 0], [0, 0, 1, x]]) Creating a Jordan block with keyword arguments >>> Matrix.jordan_block(size=4, eigenvalue=x) Matrix([ [x, 1, 0, 0], [0, x, 1, 0], [0, 0, x, 1], [0, 0, 0, x]]) Notes ===== .. note:: This feature will be deprecated in the future. The keyword arguments ``size``, ``rows``, ``cols`` relates to the Jordan block size specifications. If you want to create a square Jordan block, specify either one of the three arguments. If you want to create a rectangular Jordan block, specify ``rows`` and ``cols`` individually. +--------------------------------+---------------------+ | Arguments Given | Matrix Shape | +----------+----------+----------+----------+----------+ | size | rows | cols | rows | cols | +==========+==========+==========+==========+==========+ | size | Any | size | size | +----------+----------+----------+----------+----------+ | | None | ValueError | | +----------+----------+----------+----------+ | None | rows | None | rows | rows | | +----------+----------+----------+----------+ | | None | cols | cols | cols | + +----------+----------+----------+----------+ | | rows | cols | rows | cols | +----------+----------+----------+----------+----------+ References ========== .. [1] https://en.wikipedia.org/wiki/Jordan_matrix """ if 'rows' in kwargs or 'cols' in kwargs: SymPyDeprecationWarning( feature="Keyword arguments 'rows' or 'cols'", issue=16102, useinstead="a more generic banded matrix constructor", deprecated_since_version="1.4" ).warn() klass = kwargs.pop('cls', kls) band = kwargs.pop('band', 'upper') rows = kwargs.pop('rows', None) cols = kwargs.pop('cols', None) eigenval = kwargs.get('eigenval', None) if eigenvalue is None and eigenval is None: raise ValueError("Must supply an eigenvalue") elif eigenvalue != eigenval and None not in (eigenval, eigenvalue): raise ValueError( "Inconsistent values are given: 'eigenval'={}, " "'eigenvalue'={}".format(eigenval, eigenvalue)) else: if eigenval is not None: eigenvalue = eigenval if (size, rows, cols) == (None, None, None): raise ValueError("Must supply a matrix size") if size is not None: rows, cols = size, size elif rows is not None and cols is None: cols = rows elif cols is not None and rows is None: rows = cols rows, cols = as_int(rows), as_int(cols) return klass._eval_jordan_block(rows, cols, eigenvalue, band) @classmethod def ones(kls, rows, cols=None, **kwargs): """Returns a matrix of ones. Args ==== rows : rows of the matrix cols : cols of the matrix (if None, cols=rows) kwargs ====== cls : class of the returned matrix """ if cols is None: cols = rows klass = kwargs.get('cls', kls) rows, cols = as_int(rows), as_int(cols) return klass._eval_ones(rows, cols) @classmethod def zeros(kls, rows, cols=None, **kwargs): """Returns a matrix of zeros. Args ==== rows : rows of the matrix cols : cols of the matrix (if None, cols=rows) kwargs ====== cls : class of the returned matrix """ if cols is None: cols = rows klass = kwargs.get('cls', kls) rows, cols = as_int(rows), as_int(cols) return klass._eval_zeros(rows, cols) class MatrixProperties(MatrixRequired): """Provides basic properties of a matrix.""" def _eval_atoms(self, *types): result = set() for i in self: result.update(i.atoms(*types)) return result def _eval_free_symbols(self): return set().union(*(i.free_symbols for i in self)) def _eval_has(self, *patterns): return any(a.has(*patterns) for a in self) def _eval_is_anti_symmetric(self, simpfunc): if not all(simpfunc(self[i, j] + self[j, i]).is_zero for i in range(self.rows) for j in range(self.cols)): return False return True def _eval_is_diagonal(self): for i in range(self.rows): for j in range(self.cols): if i != j and self[i, j]: return False return True # _eval_is_hermitian is called by some general sympy # routines and has a different *args signature. Make # sure the names don't clash by adding `_matrix_` in name. def _eval_is_matrix_hermitian(self, simpfunc): mat = self._new(self.rows, self.cols, lambda i, j: simpfunc(self[i, j] - self[j, i].conjugate())) return mat.is_zero def _eval_is_Identity(self): def dirac(i, j): if i == j: return 1 return 0 return all(self[i, j] == dirac(i, j) for i in range(self.rows) for j in range(self.cols)) def _eval_is_lower_hessenberg(self): return all(self[i, j].is_zero for i in range(self.rows) for j in range(i + 2, self.cols)) def _eval_is_lower(self): return all(self[i, j].is_zero for i in range(self.rows) for j in range(i + 1, self.cols)) def _eval_is_symbolic(self): return self.has(Symbol) def _eval_is_symmetric(self, simpfunc): mat = self._new(self.rows, self.cols, lambda i, j: simpfunc(self[i, j] - self[j, i])) return mat.is_zero def _eval_is_zero(self): if any(i.is_zero == False for i in self): return False if any(i.is_zero is None for i in self): return None return True def _eval_is_upper_hessenberg(self): return all(self[i, j].is_zero for i in range(2, self.rows) for j in range(min(self.cols, (i - 1)))) def _eval_values(self): return [i for i in self if not i.is_zero] def atoms(self, *types): """Returns the atoms that form the current object. Examples ======== >>> from sympy.abc import x, y >>> from sympy.matrices import Matrix >>> Matrix([[x]]) Matrix([[x]]) >>> _.atoms() {x} """ types = tuple(t if isinstance(t, type) else type(t) for t in types) if not types: types = (Atom,) return self._eval_atoms(*types) @property def free_symbols(self): """Returns the free symbols within the matrix. Examples ======== >>> from sympy.abc import x >>> from sympy.matrices import Matrix >>> Matrix([[x], [1]]).free_symbols {x} """ return self._eval_free_symbols() def has(self, *patterns): """Test whether any subexpression matches any of the patterns. Examples ======== >>> from sympy import Matrix, SparseMatrix, Float >>> from sympy.abc import x, y >>> A = Matrix(((1, x), (0.2, 3))) >>> B = SparseMatrix(((1, x), (0.2, 3))) >>> A.has(x) True >>> A.has(y) False >>> A.has(Float) True >>> B.has(x) True >>> B.has(y) False >>> B.has(Float) True """ return self._eval_has(*patterns) def is_anti_symmetric(self, simplify=True): """Check if matrix M is an antisymmetric matrix, that is, M is a square matrix with all M[i, j] == -M[j, i]. When ``simplify=True`` (default), the sum M[i, j] + M[j, i] is simplified before testing to see if it is zero. By default, the SymPy simplify function is used. To use a custom function set simplify to a function that accepts a single argument which returns a simplified expression. To skip simplification, set simplify to False but note that although this will be faster, it may induce false negatives. Examples ======== >>> from sympy import Matrix, symbols >>> m = Matrix(2, 2, [0, 1, -1, 0]) >>> m Matrix([ [ 0, 1], [-1, 0]]) >>> m.is_anti_symmetric() True >>> x, y = symbols('x y') >>> m = Matrix(2, 3, [0, 0, x, -y, 0, 0]) >>> m Matrix([ [ 0, 0, x], [-y, 0, 0]]) >>> m.is_anti_symmetric() False >>> from sympy.abc import x, y >>> m = Matrix(3, 3, [0, x**2 + 2*x + 1, y, ... -(x + 1)**2 , 0, x*y, ... -y, -x*y, 0]) Simplification of matrix elements is done by default so even though two elements which should be equal and opposite wouldn't pass an equality test, the matrix is still reported as anti-symmetric: >>> m[0, 1] == -m[1, 0] False >>> m.is_anti_symmetric() True If 'simplify=False' is used for the case when a Matrix is already simplified, this will speed things up. Here, we see that without simplification the matrix does not appear anti-symmetric: >>> m.is_anti_symmetric(simplify=False) False But if the matrix were already expanded, then it would appear anti-symmetric and simplification in the is_anti_symmetric routine is not needed: >>> m = m.expand() >>> m.is_anti_symmetric(simplify=False) True """ # accept custom simplification simpfunc = simplify if not isfunction(simplify): simpfunc = _simplify if simplify else lambda x: x if not self.is_square: return False return self._eval_is_anti_symmetric(simpfunc) def is_diagonal(self): """Check if matrix is diagonal, that is matrix in which the entries outside the main diagonal are all zero. Examples ======== >>> from sympy import Matrix, diag >>> m = Matrix(2, 2, [1, 0, 0, 2]) >>> m Matrix([ [1, 0], [0, 2]]) >>> m.is_diagonal() True >>> m = Matrix(2, 2, [1, 1, 0, 2]) >>> m Matrix([ [1, 1], [0, 2]]) >>> m.is_diagonal() False >>> m = diag(1, 2, 3) >>> m Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]]) >>> m.is_diagonal() True See Also ======== is_lower is_upper is_diagonalizable diagonalize """ return self._eval_is_diagonal() @property def is_hermitian(self, simplify=True): """Checks if the matrix is Hermitian. In a Hermitian matrix element i,j is the complex conjugate of element j,i. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy import I >>> from sympy.abc import x >>> a = Matrix([[1, I], [-I, 1]]) >>> a Matrix([ [ 1, I], [-I, 1]]) >>> a.is_hermitian True >>> a[0, 0] = 2*I >>> a.is_hermitian False >>> a[0, 0] = x >>> a.is_hermitian >>> a[0, 1] = a[1, 0]*I >>> a.is_hermitian False """ if not self.is_square: return False simpfunc = simplify if not isfunction(simplify): simpfunc = _simplify if simplify else lambda x: x return self._eval_is_matrix_hermitian(simpfunc) @property def is_Identity(self): if not self.is_square: return False return self._eval_is_Identity() @property def is_lower_hessenberg(self): r"""Checks if the matrix is in the lower-Hessenberg form. The lower hessenberg matrix has zero entries above the first superdiagonal. Examples ======== >>> from sympy.matrices import Matrix >>> a = Matrix([[1, 2, 0, 0], [5, 2, 3, 0], [3, 4, 3, 7], [5, 6, 1, 1]]) >>> a Matrix([ [1, 2, 0, 0], [5, 2, 3, 0], [3, 4, 3, 7], [5, 6, 1, 1]]) >>> a.is_lower_hessenberg True See Also ======== is_upper_hessenberg is_lower """ return self._eval_is_lower_hessenberg() @property def is_lower(self): """Check if matrix is a lower triangular matrix. True can be returned even if the matrix is not square. Examples ======== >>> from sympy import Matrix >>> m = Matrix(2, 2, [1, 0, 0, 1]) >>> m Matrix([ [1, 0], [0, 1]]) >>> m.is_lower True >>> m = Matrix(4, 3, [0, 0, 0, 2, 0, 0, 1, 4 , 0, 6, 6, 5]) >>> m Matrix([ [0, 0, 0], [2, 0, 0], [1, 4, 0], [6, 6, 5]]) >>> m.is_lower True >>> from sympy.abc import x, y >>> m = Matrix(2, 2, [x**2 + y, y**2 + x, 0, x + y]) >>> m Matrix([ [x**2 + y, x + y**2], [ 0, x + y]]) >>> m.is_lower False See Also ======== is_upper is_diagonal is_lower_hessenberg """ return self._eval_is_lower() @property def is_square(self): """Checks if a matrix is square. A matrix is square if the number of rows equals the number of columns. The empty matrix is square by definition, since the number of rows and the number of columns are both zero. Examples ======== >>> from sympy import Matrix >>> a = Matrix([[1, 2, 3], [4, 5, 6]]) >>> b = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> c = Matrix([]) >>> a.is_square False >>> b.is_square True >>> c.is_square True """ return self.rows == self.cols def is_symbolic(self): """Checks if any elements contain Symbols. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy.abc import x, y >>> M = Matrix([[x, y], [1, 0]]) >>> M.is_symbolic() True """ return self._eval_is_symbolic() def is_symmetric(self, simplify=True): """Check if matrix is symmetric matrix, that is square matrix and is equal to its transpose. By default, simplifications occur before testing symmetry. They can be skipped using 'simplify=False'; while speeding things a bit, this may however induce false negatives. Examples ======== >>> from sympy import Matrix >>> m = Matrix(2, 2, [0, 1, 1, 2]) >>> m Matrix([ [0, 1], [1, 2]]) >>> m.is_symmetric() True >>> m = Matrix(2, 2, [0, 1, 2, 0]) >>> m Matrix([ [0, 1], [2, 0]]) >>> m.is_symmetric() False >>> m = Matrix(2, 3, [0, 0, 0, 0, 0, 0]) >>> m Matrix([ [0, 0, 0], [0, 0, 0]]) >>> m.is_symmetric() False >>> from sympy.abc import x, y >>> m = Matrix(3, 3, [1, x**2 + 2*x + 1, y, (x + 1)**2 , 2, 0, y, 0, 3]) >>> m Matrix([ [ 1, x**2 + 2*x + 1, y], [(x + 1)**2, 2, 0], [ y, 0, 3]]) >>> m.is_symmetric() True If the matrix is already simplified, you may speed-up is_symmetric() test by using 'simplify=False'. >>> bool(m.is_symmetric(simplify=False)) False >>> m1 = m.expand() >>> m1.is_symmetric(simplify=False) True """ simpfunc = simplify if not isfunction(simplify): simpfunc = _simplify if simplify else lambda x: x if not self.is_square: return False return self._eval_is_symmetric(simpfunc) @property def is_upper_hessenberg(self): """Checks if the matrix is the upper-Hessenberg form. The upper hessenberg matrix has zero entries below the first subdiagonal. Examples ======== >>> from sympy.matrices import Matrix >>> a = Matrix([[1, 4, 2, 3], [3, 4, 1, 7], [0, 2, 3, 4], [0, 0, 1, 3]]) >>> a Matrix([ [1, 4, 2, 3], [3, 4, 1, 7], [0, 2, 3, 4], [0, 0, 1, 3]]) >>> a.is_upper_hessenberg True See Also ======== is_lower_hessenberg is_upper """ return self._eval_is_upper_hessenberg() @property def is_upper(self): """Check if matrix is an upper triangular matrix. True can be returned even if the matrix is not square. Examples ======== >>> from sympy import Matrix >>> m = Matrix(2, 2, [1, 0, 0, 1]) >>> m Matrix([ [1, 0], [0, 1]]) >>> m.is_upper True >>> m = Matrix(4, 3, [5, 1, 9, 0, 4 , 6, 0, 0, 5, 0, 0, 0]) >>> m Matrix([ [5, 1, 9], [0, 4, 6], [0, 0, 5], [0, 0, 0]]) >>> m.is_upper True >>> m = Matrix(2, 3, [4, 2, 5, 6, 1, 1]) >>> m Matrix([ [4, 2, 5], [6, 1, 1]]) >>> m.is_upper False See Also ======== is_lower is_diagonal is_upper_hessenberg """ return all(self[i, j].is_zero for i in range(1, self.rows) for j in range(min(i, self.cols))) @property def is_zero(self): """Checks if a matrix is a zero matrix. A matrix is zero if every element is zero. A matrix need not be square to be considered zero. The empty matrix is zero by the principle of vacuous truth. For a matrix that may or may not be zero (e.g. contains a symbol), this will be None Examples ======== >>> from sympy import Matrix, zeros >>> from sympy.abc import x >>> a = Matrix([[0, 0], [0, 0]]) >>> b = zeros(3, 4) >>> c = Matrix([[0, 1], [0, 0]]) >>> d = Matrix([]) >>> e = Matrix([[x, 0], [0, 0]]) >>> a.is_zero True >>> b.is_zero True >>> c.is_zero False >>> d.is_zero True >>> e.is_zero """ return self._eval_is_zero() def values(self): """Return non-zero values of self.""" return self._eval_values() class MatrixOperations(MatrixRequired): """Provides basic matrix shape and elementwise operations. Should not be instantiated directly.""" def _eval_adjoint(self): return self.transpose().conjugate() def _eval_applyfunc(self, f): out = self._new(self.rows, self.cols, [f(x) for x in self]) return out def _eval_as_real_imag(self): from sympy.functions.elementary.complexes import re, im return (self.applyfunc(re), self.applyfunc(im)) def _eval_conjugate(self): return self.applyfunc(lambda x: x.conjugate()) def _eval_permute_cols(self, perm): # apply the permutation to a list mapping = list(perm) def entry(i, j): return self[i, mapping[j]] return self._new(self.rows, self.cols, entry) def _eval_permute_rows(self, perm): # apply the permutation to a list mapping = list(perm) def entry(i, j): return self[mapping[i], j] return self._new(self.rows, self.cols, entry) def _eval_trace(self): return sum(self[i, i] for i in range(self.rows)) def _eval_transpose(self): return self._new(self.cols, self.rows, lambda i, j: self[j, i]) def adjoint(self): """Conjugate transpose or Hermitian conjugation.""" return self._eval_adjoint() def applyfunc(self, f): """Apply a function to each element of the matrix. Examples ======== >>> from sympy import Matrix >>> m = Matrix(2, 2, lambda i, j: i*2+j) >>> m Matrix([ [0, 1], [2, 3]]) >>> m.applyfunc(lambda i: 2*i) Matrix([ [0, 2], [4, 6]]) """ if not callable(f): raise TypeError("`f` must be callable.") return self._eval_applyfunc(f) def as_real_imag(self): """Returns a tuple containing the (real, imaginary) part of matrix.""" return self._eval_as_real_imag() def conjugate(self): """Return the by-element conjugation. Examples ======== >>> from sympy.matrices import SparseMatrix >>> from sympy import I >>> a = SparseMatrix(((1, 2 + I), (3, 4), (I, -I))) >>> a Matrix([ [1, 2 + I], [3, 4], [I, -I]]) >>> a.C Matrix([ [ 1, 2 - I], [ 3, 4], [-I, I]]) See Also ======== transpose: Matrix transposition H: Hermite conjugation D: Dirac conjugation """ return self._eval_conjugate() def doit(self, **kwargs): return self.applyfunc(lambda x: x.doit()) def evalf(self, prec=None, **options): """Apply evalf() to each element of self.""" return self.applyfunc(lambda i: i.evalf(prec, **options)) def expand(self, deep=True, modulus=None, power_base=True, power_exp=True, mul=True, log=True, multinomial=True, basic=True, **hints): """Apply core.function.expand to each entry of the matrix. Examples ======== >>> from sympy.abc import x >>> from sympy.matrices import Matrix >>> Matrix(1, 1, [x*(x+1)]) Matrix([[x*(x + 1)]]) >>> _.expand() Matrix([[x**2 + x]]) """ return self.applyfunc(lambda x: x.expand( deep, modulus, power_base, power_exp, mul, log, multinomial, basic, **hints)) @property def H(self): """Return Hermite conjugate. Examples ======== >>> from sympy import Matrix, I >>> m = Matrix((0, 1 + I, 2, 3)) >>> m Matrix([ [ 0], [1 + I], [ 2], [ 3]]) >>> m.H Matrix([[0, 1 - I, 2, 3]]) See Also ======== conjugate: By-element conjugation D: Dirac conjugation """ return self.T.C def permute(self, perm, orientation='rows', direction='forward'): """Permute the rows or columns of a matrix by the given list of swaps. Parameters ========== perm : a permutation. This may be a list swaps (e.g., `[[1, 2], [0, 3]]`), or any valid input to the `Permutation` constructor, including a `Permutation()` itself. If `perm` is given explicitly as a list of indices or a `Permutation`, `direction` has no effect. orientation : ('rows' or 'cols') whether to permute the rows or the columns direction : ('forward', 'backward') whether to apply the permutations from the start of the list first, or from the back of the list first Examples ======== >>> from sympy.matrices import eye >>> M = eye(3) >>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='forward') Matrix([ [0, 0, 1], [1, 0, 0], [0, 1, 0]]) >>> from sympy.matrices import eye >>> M = eye(3) >>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='backward') Matrix([ [0, 1, 0], [0, 0, 1], [1, 0, 0]]) """ # allow british variants and `columns` if direction == 'forwards': direction = 'forward' if direction == 'backwards': direction = 'backward' if orientation == 'columns': orientation = 'cols' if direction not in ('forward', 'backward'): raise TypeError("direction='{}' is an invalid kwarg. " "Try 'forward' or 'backward'".format(direction)) if orientation not in ('rows', 'cols'): raise TypeError("orientation='{}' is an invalid kwarg. " "Try 'rows' or 'cols'".format(orientation)) # ensure all swaps are in range max_index = self.rows if orientation == 'rows' else self.cols if not all(0 <= t <= max_index for t in flatten(list(perm))): raise IndexError("`swap` indices out of range.") # see if we are a list of pairs try: assert len(perm[0]) == 2 # we are a list of swaps, so `direction` matters if direction == 'backward': perm = reversed(perm) # since Permutation doesn't let us have non-disjoint cycles, # we'll construct the explicit mapping ourselves XXX Bug #12479 mapping = list(range(max_index)) for (i, j) in perm: mapping[i], mapping[j] = mapping[j], mapping[i] perm = mapping except (TypeError, AssertionError, IndexError): pass from sympy.combinatorics import Permutation perm = Permutation(perm, size=max_index) if orientation == 'rows': return self._eval_permute_rows(perm) if orientation == 'cols': return self._eval_permute_cols(perm) def permute_cols(self, swaps, direction='forward'): """Alias for `self.permute(swaps, orientation='cols', direction=direction)` See Also ======== permute """ return self.permute(swaps, orientation='cols', direction=direction) def permute_rows(self, swaps, direction='forward'): """Alias for `self.permute(swaps, orientation='rows', direction=direction)` See Also ======== permute """ return self.permute(swaps, orientation='rows', direction=direction) def refine(self, assumptions=True): """Apply refine to each element of the matrix. Examples ======== >>> from sympy import Symbol, Matrix, Abs, sqrt, Q >>> x = Symbol('x') >>> Matrix([[Abs(x)**2, sqrt(x**2)],[sqrt(x**2), Abs(x)**2]]) Matrix([ [ Abs(x)**2, sqrt(x**2)], [sqrt(x**2), Abs(x)**2]]) >>> _.refine(Q.real(x)) Matrix([ [ x**2, Abs(x)], [Abs(x), x**2]]) """ return self.applyfunc(lambda x: refine(x, assumptions)) def replace(self, F, G, map=False): """Replaces Function F in Matrix entries with Function G. Examples ======== >>> from sympy import symbols, Function, Matrix >>> F, G = symbols('F, G', cls=Function) >>> M = Matrix(2, 2, lambda i, j: F(i+j)) ; M Matrix([ [F(0), F(1)], [F(1), F(2)]]) >>> N = M.replace(F,G) >>> N Matrix([ [G(0), G(1)], [G(1), G(2)]]) """ return self.applyfunc(lambda x: x.replace(F, G, map)) def simplify(self, ratio=1.7, measure=count_ops, rational=False, inverse=False): """Apply simplify to each element of the matrix. Examples ======== >>> from sympy.abc import x, y >>> from sympy import sin, cos >>> from sympy.matrices import SparseMatrix >>> SparseMatrix(1, 1, [x*sin(y)**2 + x*cos(y)**2]) Matrix([[x*sin(y)**2 + x*cos(y)**2]]) >>> _.simplify() Matrix([[x]]) """ return self.applyfunc(lambda x: x.simplify(ratio=ratio, measure=measure, rational=rational, inverse=inverse)) def subs(self, *args, **kwargs): # should mirror core.basic.subs """Return a new matrix with subs applied to each entry. Examples ======== >>> from sympy.abc import x, y >>> from sympy.matrices import SparseMatrix, Matrix >>> SparseMatrix(1, 1, [x]) Matrix([[x]]) >>> _.subs(x, y) Matrix([[y]]) >>> Matrix(_).subs(y, x) Matrix([[x]]) """ return self.applyfunc(lambda x: x.subs(*args, **kwargs)) def trace(self): """ Returns the trace of a square matrix i.e. the sum of the diagonal elements. Examples ======== >>> from sympy import Matrix >>> A = Matrix(2, 2, [1, 2, 3, 4]) >>> A.trace() 5 """ if self.rows != self.cols: raise NonSquareMatrixError() return self._eval_trace() def transpose(self): """ Returns the transpose of the matrix. Examples ======== >>> from sympy import Matrix >>> A = Matrix(2, 2, [1, 2, 3, 4]) >>> A.transpose() Matrix([ [1, 3], [2, 4]]) >>> from sympy import Matrix, I >>> m=Matrix(((1, 2+I), (3, 4))) >>> m Matrix([ [1, 2 + I], [3, 4]]) >>> m.transpose() Matrix([ [ 1, 3], [2 + I, 4]]) >>> m.T == m.transpose() True See Also ======== conjugate: By-element conjugation """ return self._eval_transpose() T = property(transpose, None, None, "Matrix transposition.") C = property(conjugate, None, None, "By-element conjugation.") n = evalf def xreplace(self, rule): # should mirror core.basic.xreplace """Return a new matrix with xreplace applied to each entry. Examples ======== >>> from sympy.abc import x, y >>> from sympy.matrices import SparseMatrix, Matrix >>> SparseMatrix(1, 1, [x]) Matrix([[x]]) >>> _.xreplace({x: y}) Matrix([[y]]) >>> Matrix(_).xreplace({y: x}) Matrix([[x]]) """ return self.applyfunc(lambda x: x.xreplace(rule)) _eval_simplify = simplify def _eval_trigsimp(self, **opts): from sympy.simplify import trigsimp return self.applyfunc(lambda x: trigsimp(x, **opts)) class MatrixArithmetic(MatrixRequired): """Provides basic matrix arithmetic operations. Should not be instantiated directly.""" _op_priority = 10.01 def _eval_Abs(self): return self._new(self.rows, self.cols, lambda i, j: Abs(self[i, j])) def _eval_add(self, other): return self._new(self.rows, self.cols, lambda i, j: self[i, j] + other[i, j]) def _eval_matrix_mul(self, other): def entry(i, j): try: return sum(self[i,k]*other[k,j] for k in range(self.cols)) except TypeError: # Block matrices don't work with `sum` or `Add` (ISSUE #11599) # They don't work with `sum` because `sum` tries to add `0` # initially, and for a matrix, that is a mix of a scalar and # a matrix, which raises a TypeError. Fall back to a # block-matrix-safe way to multiply if the `sum` fails. ret = self[i, 0]*other[0, j] for k in range(1, self.cols): ret += self[i, k]*other[k, j] return ret return self._new(self.rows, other.cols, entry) def _eval_matrix_mul_elementwise(self, other): return self._new(self.rows, self.cols, lambda i, j: self[i,j]*other[i,j]) def _eval_matrix_rmul(self, other): def entry(i, j): return sum(other[i,k]*self[k,j] for k in range(other.cols)) return self._new(other.rows, self.cols, entry) def _eval_pow_by_recursion(self, num): if num == 1: return self if num % 2 == 1: return self * self._eval_pow_by_recursion(num - 1) ret = self._eval_pow_by_recursion(num // 2) return ret * ret def _eval_scalar_mul(self, other): return self._new(self.rows, self.cols, lambda i, j: self[i,j]*other) def _eval_scalar_rmul(self, other): return self._new(self.rows, self.cols, lambda i, j: other*self[i,j]) def _eval_Mod(self, other): from sympy import Mod return self._new(self.rows, self.cols, lambda i, j: Mod(self[i, j], other)) # python arithmetic functions def __abs__(self): """Returns a new matrix with entry-wise absolute values.""" return self._eval_Abs() @call_highest_priority('__radd__') def __add__(self, other): """Return self + other, raising ShapeError if shapes don't match.""" other = _matrixify(other) # matrix-like objects can have shapes. This is # our first sanity check. if hasattr(other, 'shape'): if self.shape != other.shape: raise ShapeError("Matrix size mismatch: %s + %s" % ( self.shape, other.shape)) # honest sympy matrices defer to their class's routine if getattr(other, 'is_Matrix', False): # call the highest-priority class's _eval_add a, b = self, other if a.__class__ != classof(a, b): b, a = a, b return a._eval_add(b) # Matrix-like objects can be passed to CommonMatrix routines directly. if getattr(other, 'is_MatrixLike', False): return MatrixArithmetic._eval_add(self, other) raise TypeError('cannot add %s and %s' % (type(self), type(other))) @call_highest_priority('__rdiv__') def __div__(self, other): return self * (S.One / other) @call_highest_priority('__rmatmul__') def __matmul__(self, other): other = _matrixify(other) if not getattr(other, 'is_Matrix', False) and not getattr(other, 'is_MatrixLike', False): return NotImplemented return self.__mul__(other) @call_highest_priority('__rmul__') def __mul__(self, other): """Return self*other where other is either a scalar or a matrix of compatible dimensions. Examples ======== >>> from sympy.matrices import Matrix >>> A = Matrix([[1, 2, 3], [4, 5, 6]]) >>> 2*A == A*2 == Matrix([[2, 4, 6], [8, 10, 12]]) True >>> B = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> A*B Matrix([ [30, 36, 42], [66, 81, 96]]) >>> B*A Traceback (most recent call last): ... ShapeError: Matrices size mismatch. >>> See Also ======== matrix_multiply_elementwise """ other = _matrixify(other) # matrix-like objects can have shapes. This is # our first sanity check. if hasattr(other, 'shape') and len(other.shape) == 2: if self.shape[1] != other.shape[0]: raise ShapeError("Matrix size mismatch: %s * %s." % ( self.shape, other.shape)) # honest sympy matrices defer to their class's routine if getattr(other, 'is_Matrix', False): return self._eval_matrix_mul(other) # Matrix-like objects can be passed to CommonMatrix routines directly. if getattr(other, 'is_MatrixLike', False): return MatrixArithmetic._eval_matrix_mul(self, other) # if 'other' is not iterable then scalar multiplication. if not isinstance(other, Iterable): try: return self._eval_scalar_mul(other) except TypeError: pass return NotImplemented def __neg__(self): return self._eval_scalar_mul(-1) @call_highest_priority('__rpow__') def __pow__(self, num): if self.rows != self.cols: raise NonSquareMatrixError() a = self jordan_pow = getattr(a, '_matrix_pow_by_jordan_blocks', None) num = sympify(num) if num.is_Number and num % 1 == 0: if a.rows == 1: return a._new([[a[0]**num]]) if num == 0: return self._new(self.rows, self.cols, lambda i, j: int(i == j)) if num < 0: num = -num a = a.inv() # When certain conditions are met, # Jordan block algorithm is faster than # computation by recursion. elif a.rows == 2 and num > 100000 and jordan_pow is not None: try: return jordan_pow(num) except MatrixError: pass return a._eval_pow_by_recursion(num) elif not num.is_Number and num.is_negative is None and a.det() == 0: from sympy.matrices.expressions import MatPow return MatPow(a, num) elif isinstance(num, (Expr, float)): return jordan_pow(num) else: raise TypeError( "Only SymPy expressions or integers are supported as exponent for matrices") @call_highest_priority('__add__') def __radd__(self, other): return self + other @call_highest_priority('__matmul__') def __rmatmul__(self, other): other = _matrixify(other) if not getattr(other, 'is_Matrix', False) and not getattr(other, 'is_MatrixLike', False): return NotImplemented return self.__rmul__(other) @call_highest_priority('__mul__') def __rmul__(self, other): other = _matrixify(other) # matrix-like objects can have shapes. This is # our first sanity check. if hasattr(other, 'shape') and len(other.shape) == 2: if self.shape[0] != other.shape[1]: raise ShapeError("Matrix size mismatch.") # honest sympy matrices defer to their class's routine if getattr(other, 'is_Matrix', False): return other._new(other.as_mutable() * self) # Matrix-like objects can be passed to CommonMatrix routines directly. if getattr(other, 'is_MatrixLike', False): return MatrixArithmetic._eval_matrix_rmul(self, other) # if 'other' is not iterable then scalar multiplication. if not isinstance(other, Iterable): try: return self._eval_scalar_rmul(other) except TypeError: pass return NotImplemented @call_highest_priority('__sub__') def __rsub__(self, a): return (-self) + a @call_highest_priority('__rsub__') def __sub__(self, a): return self + (-a) @call_highest_priority('__rtruediv__') def __truediv__(self, other): return self.__div__(other) def multiply_elementwise(self, other): """Return the Hadamard product (elementwise product) of A and B Examples ======== >>> from sympy.matrices import Matrix >>> A = Matrix([[0, 1, 2], [3, 4, 5]]) >>> B = Matrix([[1, 10, 100], [100, 10, 1]]) >>> A.multiply_elementwise(B) Matrix([ [ 0, 10, 200], [300, 40, 5]]) See Also ======== cross dot multiply """ if self.shape != other.shape: raise ShapeError("Matrix shapes must agree {} != {}".format(self.shape, other.shape)) return self._eval_matrix_mul_elementwise(other) class MatrixCommon(MatrixArithmetic, MatrixOperations, MatrixProperties, MatrixSpecial, MatrixShaping): """All common matrix operations including basic arithmetic, shaping, and special matrices like `zeros`, and `eye`.""" _diff_wrt = True class _MinimalMatrix(object): """Class providing the minimum functionality for a matrix-like object and implementing every method required for a `MatrixRequired`. This class does not have everything needed to become a full-fledged SymPy object, but it will satisfy the requirements of anything inheriting from `MatrixRequired`. If you wish to make a specialized matrix type, make sure to implement these methods and properties with the exception of `__init__` and `__repr__` which are included for convenience.""" is_MatrixLike = True _sympify = staticmethod(sympify) _class_priority = 3 is_Matrix = True is_MatrixExpr = False @classmethod def _new(cls, *args, **kwargs): return cls(*args, **kwargs) def __init__(self, rows, cols=None, mat=None): if isfunction(mat): # if we passed in a function, use that to populate the indices mat = list(mat(i, j) for i in range(rows) for j in range(cols)) if cols is None and mat is None: mat = rows rows, cols = getattr(mat, 'shape', (rows, cols)) try: # if we passed in a list of lists, flatten it and set the size if cols is None and mat is None: mat = rows cols = len(mat[0]) rows = len(mat) mat = [x for l in mat for x in l] except (IndexError, TypeError): pass self.mat = tuple(self._sympify(x) for x in mat) self.rows, self.cols = rows, cols if self.rows is None or self.cols is None: raise NotImplementedError("Cannot initialize matrix with given parameters") def __getitem__(self, key): def _normalize_slices(row_slice, col_slice): """Ensure that row_slice and col_slice don't have `None` in their arguments. Any integers are converted to slices of length 1""" if not isinstance(row_slice, slice): row_slice = slice(row_slice, row_slice + 1, None) row_slice = slice(*row_slice.indices(self.rows)) if not isinstance(col_slice, slice): col_slice = slice(col_slice, col_slice + 1, None) col_slice = slice(*col_slice.indices(self.cols)) return (row_slice, col_slice) def _coord_to_index(i, j): """Return the index in _mat corresponding to the (i,j) position in the matrix. """ return i * self.cols + j if isinstance(key, tuple): i, j = key if isinstance(i, slice) or isinstance(j, slice): # if the coordinates are not slices, make them so # and expand the slices so they don't contain `None` i, j = _normalize_slices(i, j) rowsList, colsList = list(range(self.rows))[i], \ list(range(self.cols))[j] indices = (i * self.cols + j for i in rowsList for j in colsList) return self._new(len(rowsList), len(colsList), list(self.mat[i] for i in indices)) # if the key is a tuple of ints, change # it to an array index key = _coord_to_index(i, j) return self.mat[key] def __eq__(self, other): try: classof(self, other) except TypeError: return False return ( self.shape == other.shape and list(self) == list(other)) def __len__(self): return self.rows*self.cols def __repr__(self): return "_MinimalMatrix({}, {}, {})".format(self.rows, self.cols, self.mat) @property def shape(self): return (self.rows, self.cols) class _MatrixWrapper(object): """Wrapper class providing the minimum functionality for a matrix-like object: .rows, .cols, .shape, indexability, and iterability. CommonMatrix math operations should work on matrix-like objects. For example, wrapping a numpy matrix in a MatrixWrapper allows it to be passed to CommonMatrix. """ is_MatrixLike = True def __init__(self, mat, shape=None): self.mat = mat self.rows, self.cols = mat.shape if shape is None else shape def __getattr__(self, attr): """Most attribute access is passed straight through to the stored matrix""" return getattr(self.mat, attr) def __getitem__(self, key): return self.mat.__getitem__(key) def _matrixify(mat): """If `mat` is a Matrix or is matrix-like, return a Matrix or MatrixWrapper object. Otherwise `mat` is passed through without modification.""" if getattr(mat, 'is_Matrix', False): return mat if hasattr(mat, 'shape'): if len(mat.shape) == 2: return _MatrixWrapper(mat) return mat def a2idx(j, n=None): """Return integer after making positive and validating against n.""" if type(j) is not int: jindex = getattr(j, '__index__', None) if jindex is not None: j = jindex() else: raise IndexError("Invalid index a[%r]" % (j,)) if n is not None: if j < 0: j += n if not (j >= 0 and j < n): raise IndexError("Index out of range: a[%s]" % (j,)) return int(j) def classof(A, B): """ Get the type of the result when combining matrices of different types. Currently the strategy is that immutability is contagious. Examples ======== >>> from sympy import Matrix, ImmutableMatrix >>> from sympy.matrices.common import classof >>> M = Matrix([[1, 2], [3, 4]]) # a Mutable Matrix >>> IM = ImmutableMatrix([[1, 2], [3, 4]]) >>> classof(M, IM) <class 'sympy.matrices.immutable.ImmutableDenseMatrix'> """ priority_A = getattr(A, '_class_priority', None) priority_B = getattr(B, '_class_priority', None) if None not in (priority_A, priority_B): if A._class_priority > B._class_priority: return A.__class__ else: return B.__class__ try: import numpy except ImportError: pass else: if isinstance(A, numpy.ndarray): return B.__class__ if isinstance(B, numpy.ndarray): return A.__class__ raise TypeError("Incompatible classes %s, %s" % (A.__class__, B.__class__))
cc00a62499d47a45cee476840e1e95b508b9fd1e14db9a12623d15da96c9bf8b
from __future__ import division, print_function import random from sympy.core import SympifyError from sympy.core.basic import Basic from sympy.core.compatibility import is_sequence, range, reduce from sympy.core.expr import Expr from sympy.core.function import count_ops, expand_mul from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.core.sympify import sympify from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import cos, sin from sympy.matrices.common import a2idx, classof from sympy.matrices.matrices import MatrixBase, ShapeError from sympy.simplify import simplify as _simplify from sympy.utilities.decorator import doctest_depends_on from sympy.utilities.misc import filldedent def _iszero(x): """Returns True if x is zero.""" return x.is_zero def _compare_sequence(a, b): """Compares the elements of a list/tuple `a` and a list/tuple `b`. `_compare_sequence((1,2), [1, 2])` is True, whereas `(1,2) == [1, 2]` is False""" if type(a) is type(b): # if they are the same type, compare directly return a == b # there is no overhead for calling `tuple` on a # tuple return tuple(a) == tuple(b) class DenseMatrix(MatrixBase): is_MatrixExpr = False _op_priority = 10.01 _class_priority = 4 def __eq__(self, other): other = sympify(other) self_shape = getattr(self, 'shape', None) other_shape = getattr(other, 'shape', None) if None in (self_shape, other_shape): return False if self_shape != other_shape: return False if isinstance(other, Matrix): return _compare_sequence(self._mat, other._mat) elif isinstance(other, MatrixBase): return _compare_sequence(self._mat, Matrix(other)._mat) def __getitem__(self, key): """Return portion of self defined by key. If the key involves a slice then a list will be returned (if key is a single slice) or a matrix (if key was a tuple involving a slice). Examples ======== >>> from sympy import Matrix, I >>> m = Matrix([ ... [1, 2 + I], ... [3, 4 ]]) If the key is a tuple that doesn't involve a slice then that element is returned: >>> m[1, 0] 3 When a tuple key involves a slice, a matrix is returned. Here, the first column is selected (all rows, column 0): >>> m[:, 0] Matrix([ [1], [3]]) If the slice is not a tuple then it selects from the underlying list of elements that are arranged in row order and a list is returned if a slice is involved: >>> m[0] 1 >>> m[::2] [1, 3] """ if isinstance(key, tuple): i, j = key try: i, j = self.key2ij(key) return self._mat[i*self.cols + j] except (TypeError, IndexError): if (isinstance(i, Expr) and not i.is_number) or (isinstance(j, Expr) and not j.is_number): if ((j < 0) is True) or ((j >= self.shape[1]) is True) or\ ((i < 0) is True) or ((i >= self.shape[0]) is True): raise ValueError("index out of boundary") from sympy.matrices.expressions.matexpr import MatrixElement return MatrixElement(self, i, j) if isinstance(i, slice): # XXX remove list() when PY2 support is dropped i = list(range(self.rows))[i] elif is_sequence(i): pass else: i = [i] if isinstance(j, slice): # XXX remove list() when PY2 support is dropped j = list(range(self.cols))[j] elif is_sequence(j): pass else: j = [j] return self.extract(i, j) else: # row-wise decomposition of matrix if isinstance(key, slice): return self._mat[key] return self._mat[a2idx(key)] def __setitem__(self, key, value): raise NotImplementedError() def _cholesky(self, hermitian=True): """Helper function of cholesky. Without the error checks. To be used privately. Implements the Cholesky-Banachiewicz algorithm. Returns L such that L*L.H == self if hermitian flag is True, or L*L.T == self if hermitian is False. """ L = zeros(self.rows, self.rows) if hermitian: for i in range(self.rows): for j in range(i): L[i, j] = (1 / L[j, j])*expand_mul(self[i, j] - sum(L[i, k]*L[j, k].conjugate() for k in range(j))) Lii2 = expand_mul(self[i, i] - sum(L[i, k]*L[i, k].conjugate() for k in range(i))) if Lii2.is_positive is False: raise ValueError("Matrix must be positive-definite") L[i, i] = sqrt(Lii2) else: for i in range(self.rows): for j in range(i): L[i, j] = (1 / L[j, j])*(self[i, j] - sum(L[i, k]*L[j, k] for k in range(j))) L[i, i] = sqrt(self[i, i] - sum(L[i, k]**2 for k in range(i))) return self._new(L) def _diagonal_solve(self, rhs): """Helper function of function diagonal_solve, without the error checks, to be used privately. """ return self._new(rhs.rows, rhs.cols, lambda i, j: rhs[i, j] / self[i, i]) def _eval_add(self, other): # we assume both arguments are dense matrices since # sparse matrices have a higher priority mat = [a + b for a,b in zip(self._mat, other._mat)] return classof(self, other)._new(self.rows, self.cols, mat, copy=False) def _eval_extract(self, rowsList, colsList): mat = self._mat cols = self.cols indices = (i * cols + j for i in rowsList for j in colsList) return self._new(len(rowsList), len(colsList), list(mat[i] for i in indices), copy=False) def _eval_matrix_mul(self, other): from sympy import Add # cache attributes for faster access self_rows, self_cols = self.rows, self.cols other_rows, other_cols = other.rows, other.cols other_len = other_rows * other_cols new_mat_rows = self.rows new_mat_cols = other.cols # preallocate the array new_mat = [S.Zero]*new_mat_rows*new_mat_cols # if we multiply an n x 0 with a 0 x m, the # expected behavior is to produce an n x m matrix of zeros if self.cols != 0 and other.rows != 0: # cache self._mat and other._mat for performance mat = self._mat other_mat = other._mat for i in range(len(new_mat)): row, col = i // new_mat_cols, i % new_mat_cols row_indices = range(self_cols*row, self_cols*(row+1)) col_indices = range(col, other_len, other_cols) vec = (mat[a]*other_mat[b] for a,b in zip(row_indices, col_indices)) try: new_mat[i] = Add(*vec) except (TypeError, SympifyError): # Block matrices don't work with `sum` or `Add` (ISSUE #11599) # They don't work with `sum` because `sum` tries to add `0` # initially, and for a matrix, that is a mix of a scalar and # a matrix, which raises a TypeError. Fall back to a # block-matrix-safe way to multiply if the `sum` fails. vec = (mat[a]*other_mat[b] for a,b in zip(row_indices, col_indices)) new_mat[i] = reduce(lambda a,b: a + b, vec) return classof(self, other)._new(new_mat_rows, new_mat_cols, new_mat, copy=False) def _eval_matrix_mul_elementwise(self, other): mat = [a*b for a,b in zip(self._mat, other._mat)] return classof(self, other)._new(self.rows, self.cols, mat, copy=False) def _eval_inverse(self, **kwargs): """Return the matrix inverse using the method indicated (default is Gauss elimination). kwargs ====== method : ('GE', 'LU', or 'ADJ') iszerofunc try_block_diag Notes ===== According to the ``method`` keyword, it calls the appropriate method: GE .... inverse_GE(); default LU .... inverse_LU() ADJ ... inverse_ADJ() According to the ``try_block_diag`` keyword, it will try to form block diagonal matrices using the method get_diag_blocks(), invert these individually, and then reconstruct the full inverse matrix. Note, the GE and LU methods may require the matrix to be simplified before it is inverted in order to properly detect zeros during pivoting. In difficult cases a custom zero detection function can be provided by setting the ``iszerosfunc`` argument to a function that should return True if its argument is zero. The ADJ routine computes the determinant and uses that to detect singular matrices in addition to testing for zeros on the diagonal. See Also ======== inverse_LU inverse_GE inverse_ADJ """ from sympy.matrices import diag method = kwargs.get('method', 'GE') iszerofunc = kwargs.get('iszerofunc', _iszero) if kwargs.get('try_block_diag', False): blocks = self.get_diag_blocks() r = [] for block in blocks: r.append(block.inv(method=method, iszerofunc=iszerofunc)) return diag(*r) M = self.as_mutable() if method == "GE": rv = M.inverse_GE(iszerofunc=iszerofunc) elif method == "LU": rv = M.inverse_LU(iszerofunc=iszerofunc) elif method == "ADJ": rv = M.inverse_ADJ(iszerofunc=iszerofunc) else: # make sure to add an invertibility check (as in inverse_LU) # if a new method is added. raise ValueError("Inversion method unrecognized") return self._new(rv) def _eval_scalar_mul(self, other): mat = [other*a for a in self._mat] return self._new(self.rows, self.cols, mat, copy=False) def _eval_scalar_rmul(self, other): mat = [a*other for a in self._mat] return self._new(self.rows, self.cols, mat, copy=False) def _eval_tolist(self): mat = list(self._mat) cols = self.cols return [mat[i*cols:(i + 1)*cols] for i in range(self.rows)] def _LDLdecomposition(self, hermitian=True): """Helper function of LDLdecomposition. Without the error checks. To be used privately. Returns L and D such that L*D*L.H == self if hermitian flag is True, or L*D*L.T == self if hermitian is False. """ # https://en.wikipedia.org/wiki/Cholesky_decomposition#LDL_decomposition_2 D = zeros(self.rows, self.rows) L = eye(self.rows) if hermitian: for i in range(self.rows): for j in range(i): L[i, j] = (1 / D[j, j])*expand_mul(self[i, j] - sum( L[i, k]*L[j, k].conjugate()*D[k, k] for k in range(j))) D[i, i] = expand_mul(self[i, i] - sum(L[i, k]*L[i, k].conjugate()*D[k, k] for k in range(i))) if D[i, i].is_positive is False: raise ValueError("Matrix must be positive-definite") else: for i in range(self.rows): for j in range(i): L[i, j] = (1 / D[j, j])*(self[i, j] - sum( L[i, k]*L[j, k]*D[k, k] for k in range(j))) D[i, i] = self[i, i] - sum(L[i, k]**2*D[k, k] for k in range(i)) return self._new(L), self._new(D) def _lower_triangular_solve(self, rhs): """Helper function of function lower_triangular_solve. Without the error checks. To be used privately. """ X = zeros(self.rows, rhs.cols) for j in range(rhs.cols): for i in range(self.rows): if self[i, i] == 0: raise TypeError("Matrix must be non-singular.") X[i, j] = (rhs[i, j] - sum(self[i, k]*X[k, j] for k in range(i))) / self[i, i] return self._new(X) def _upper_triangular_solve(self, rhs): """Helper function of function upper_triangular_solve. Without the error checks, to be used privately. """ X = zeros(self.rows, rhs.cols) for j in range(rhs.cols): for i in reversed(range(self.rows)): if self[i, i] == 0: raise ValueError("Matrix must be non-singular.") X[i, j] = (rhs[i, j] - sum(self[i, k]*X[k, j] for k in range(i + 1, self.rows))) / self[i, i] return self._new(X) def as_immutable(self): """Returns an Immutable version of this Matrix """ from .immutable import ImmutableDenseMatrix as cls if self.rows and self.cols: return cls._new(self.tolist()) return cls._new(self.rows, self.cols, []) def as_mutable(self): """Returns a mutable version of this matrix Examples ======== >>> from sympy import ImmutableMatrix >>> X = ImmutableMatrix([[1, 2], [3, 4]]) >>> Y = X.as_mutable() >>> Y[1, 1] = 5 # Can set values in Y >>> Y Matrix([ [1, 2], [3, 5]]) """ return Matrix(self) def equals(self, other, failing_expression=False): """Applies ``equals`` to corresponding elements of the matrices, trying to prove that the elements are equivalent, returning True if they are, False if any pair is not, and None (or the first failing expression if failing_expression is True) if it cannot be decided if the expressions are equivalent or not. This is, in general, an expensive operation. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy.abc import x >>> from sympy import cos >>> A = Matrix([x*(x - 1), 0]) >>> B = Matrix([x**2 - x, 0]) >>> A == B False >>> A.simplify() == B.simplify() True >>> A.equals(B) True >>> A.equals(2) False See Also ======== sympy.core.expr.equals """ self_shape = getattr(self, 'shape', None) other_shape = getattr(other, 'shape', None) if None in (self_shape, other_shape): return False if self_shape != other_shape: return False rv = True for i in range(self.rows): for j in range(self.cols): ans = self[i, j].equals(other[i, j], failing_expression) if ans is False: return False elif ans is not True and rv is True: rv = ans return rv def _force_mutable(x): """Return a matrix as a Matrix, otherwise return x.""" if getattr(x, 'is_Matrix', False): return x.as_mutable() elif isinstance(x, Basic): return x elif hasattr(x, '__array__'): a = x.__array__() if len(a.shape) == 0: return sympify(a) return Matrix(x) return x class MutableDenseMatrix(DenseMatrix, MatrixBase): def __new__(cls, *args, **kwargs): return cls._new(*args, **kwargs) @classmethod def _new(cls, *args, **kwargs): # if the `copy` flag is set to False, the input # was rows, cols, [list]. It should be used directly # without creating a copy. if kwargs.get('copy', True) is False: if len(args) != 3: raise TypeError("'copy=False' requires a matrix be initialized as rows,cols,[list]") rows, cols, flat_list = args else: rows, cols, flat_list = cls._handle_creation_inputs(*args, **kwargs) flat_list = list(flat_list) # create a shallow copy self = object.__new__(cls) self.rows = rows self.cols = cols self._mat = flat_list return self def __setitem__(self, key, value): """ Examples ======== >>> from sympy import Matrix, I, zeros, ones >>> m = Matrix(((1, 2+I), (3, 4))) >>> m Matrix([ [1, 2 + I], [3, 4]]) >>> m[1, 0] = 9 >>> m Matrix([ [1, 2 + I], [9, 4]]) >>> m[1, 0] = [[0, 1]] To replace row r you assign to position r*m where m is the number of columns: >>> M = zeros(4) >>> m = M.cols >>> M[3*m] = ones(1, m)*2; M Matrix([ [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [2, 2, 2, 2]]) And to replace column c you can assign to position c: >>> M[2] = ones(m, 1)*4; M Matrix([ [0, 0, 4, 0], [0, 0, 4, 0], [0, 0, 4, 0], [2, 2, 4, 2]]) """ rv = self._setitem(key, value) if rv is not None: i, j, value = rv self._mat[i*self.cols + j] = value def as_mutable(self): return self.copy() def col_del(self, i): """Delete the given column. Examples ======== >>> from sympy.matrices import eye >>> M = eye(3) >>> M.col_del(1) >>> M Matrix([ [1, 0], [0, 0], [0, 1]]) See Also ======== col row_del """ if i < -self.cols or i >= self.cols: raise IndexError("Index out of range: 'i=%s', valid -%s <= i < %s" % (i, self.cols, self.cols)) for j in range(self.rows - 1, -1, -1): del self._mat[i + j*self.cols] self.cols -= 1 def col_op(self, j, f): """In-place operation on col j using two-arg functor whose args are interpreted as (self[i, j], i). Examples ======== >>> from sympy.matrices import eye >>> M = eye(3) >>> M.col_op(1, lambda v, i: v + 2*M[i, 0]); M Matrix([ [1, 2, 0], [0, 1, 0], [0, 0, 1]]) See Also ======== col row_op """ self._mat[j::self.cols] = [f(*t) for t in list(zip(self._mat[j::self.cols], list(range(self.rows))))] def col_swap(self, i, j): """Swap the two given columns of the matrix in-place. Examples ======== >>> from sympy.matrices import Matrix >>> M = Matrix([[1, 0], [1, 0]]) >>> M Matrix([ [1, 0], [1, 0]]) >>> M.col_swap(0, 1) >>> M Matrix([ [0, 1], [0, 1]]) See Also ======== col row_swap """ for k in range(0, self.rows): self[k, i], self[k, j] = self[k, j], self[k, i] def copyin_list(self, key, value): """Copy in elements from a list. Parameters ========== key : slice The section of this matrix to replace. value : iterable The iterable to copy values from. Examples ======== >>> from sympy.matrices import eye >>> I = eye(3) >>> I[:2, 0] = [1, 2] # col >>> I Matrix([ [1, 0, 0], [2, 1, 0], [0, 0, 1]]) >>> I[1, :2] = [[3, 4]] >>> I Matrix([ [1, 0, 0], [3, 4, 0], [0, 0, 1]]) See Also ======== copyin_matrix """ if not is_sequence(value): raise TypeError("`value` must be an ordered iterable, not %s." % type(value)) return self.copyin_matrix(key, Matrix(value)) def copyin_matrix(self, key, value): """Copy in values from a matrix into the given bounds. Parameters ========== key : slice The section of this matrix to replace. value : Matrix The matrix to copy values from. Examples ======== >>> from sympy.matrices import Matrix, eye >>> M = Matrix([[0, 1], [2, 3], [4, 5]]) >>> I = eye(3) >>> I[:3, :2] = M >>> I Matrix([ [0, 1, 0], [2, 3, 0], [4, 5, 1]]) >>> I[0, 1] = M >>> I Matrix([ [0, 0, 1], [2, 2, 3], [4, 4, 5]]) See Also ======== copyin_list """ rlo, rhi, clo, chi = self.key2bounds(key) shape = value.shape dr, dc = rhi - rlo, chi - clo if shape != (dr, dc): raise ShapeError(filldedent("The Matrix `value` doesn't have the " "same dimensions " "as the in sub-Matrix given by `key`.")) for i in range(value.rows): for j in range(value.cols): self[i + rlo, j + clo] = value[i, j] def fill(self, value): """Fill the matrix with the scalar value. See Also ======== zeros ones """ self._mat = [value]*len(self) def row_del(self, i): """Delete the given row. Examples ======== >>> from sympy.matrices import eye >>> M = eye(3) >>> M.row_del(1) >>> M Matrix([ [1, 0, 0], [0, 0, 1]]) See Also ======== row col_del """ if i < -self.rows or i >= self.rows: raise IndexError("Index out of range: 'i = %s', valid -%s <= i" " < %s" % (i, self.rows, self.rows)) if i < 0: i += self.rows del self._mat[i*self.cols:(i+1)*self.cols] self.rows -= 1 def row_op(self, i, f): """In-place operation on row ``i`` using two-arg functor whose args are interpreted as ``(self[i, j], j)``. Examples ======== >>> from sympy.matrices import eye >>> M = eye(3) >>> M.row_op(1, lambda v, j: v + 2*M[0, j]); M Matrix([ [1, 0, 0], [2, 1, 0], [0, 0, 1]]) See Also ======== row zip_row_op col_op """ i0 = i*self.cols ri = self._mat[i0: i0 + self.cols] self._mat[i0: i0 + self.cols] = [f(x, j) for x, j in zip(ri, list(range(self.cols)))] def row_swap(self, i, j): """Swap the two given rows of the matrix in-place. Examples ======== >>> from sympy.matrices import Matrix >>> M = Matrix([[0, 1], [1, 0]]) >>> M Matrix([ [0, 1], [1, 0]]) >>> M.row_swap(0, 1) >>> M Matrix([ [1, 0], [0, 1]]) See Also ======== row col_swap """ for k in range(0, self.cols): self[i, k], self[j, k] = self[j, k], self[i, k] def simplify(self, ratio=1.7, measure=count_ops, rational=False, inverse=False): """Applies simplify to the elements of a matrix in place. This is a shortcut for M.applyfunc(lambda x: simplify(x, ratio, measure)) See Also ======== sympy.simplify.simplify.simplify """ for i in range(len(self._mat)): self._mat[i] = _simplify(self._mat[i], ratio=ratio, measure=measure, rational=rational, inverse=inverse) def zip_row_op(self, i, k, f): """In-place operation on row ``i`` using two-arg functor whose args are interpreted as ``(self[i, j], self[k, j])``. Examples ======== >>> from sympy.matrices import eye >>> M = eye(3) >>> M.zip_row_op(1, 0, lambda v, u: v + 2*u); M Matrix([ [1, 0, 0], [2, 1, 0], [0, 0, 1]]) See Also ======== row row_op col_op """ i0 = i*self.cols k0 = k*self.cols ri = self._mat[i0: i0 + self.cols] rk = self._mat[k0: k0 + self.cols] self._mat[i0: i0 + self.cols] = [f(x, y) for x, y in zip(ri, rk)] # Utility functions MutableMatrix = Matrix = MutableDenseMatrix ########### # Numpy Utility Functions: # list2numpy, matrix2numpy, symmarray, rot_axis[123] ########### def list2numpy(l, dtype=object): # pragma: no cover """Converts python list of SymPy expressions to a NumPy array. See Also ======== matrix2numpy """ from numpy import empty a = empty(len(l), dtype) for i, s in enumerate(l): a[i] = s return a def matrix2numpy(m, dtype=object): # pragma: no cover """Converts SymPy's matrix to a NumPy array. See Also ======== list2numpy """ from numpy import empty a = empty(m.shape, dtype) for i in range(m.rows): for j in range(m.cols): a[i, j] = m[i, j] return a def rot_axis3(theta): """Returns a rotation matrix for a rotation of theta (in radians) about the 3-axis. Examples ======== >>> from sympy import pi >>> from sympy.matrices import rot_axis3 A rotation of pi/3 (60 degrees): >>> theta = pi/3 >>> rot_axis3(theta) Matrix([ [ 1/2, sqrt(3)/2, 0], [-sqrt(3)/2, 1/2, 0], [ 0, 0, 1]]) If we rotate by pi/2 (90 degrees): >>> rot_axis3(pi/2) Matrix([ [ 0, 1, 0], [-1, 0, 0], [ 0, 0, 1]]) See Also ======== rot_axis1: Returns a rotation matrix for a rotation of theta (in radians) about the 1-axis rot_axis2: Returns a rotation matrix for a rotation of theta (in radians) about the 2-axis """ ct = cos(theta) st = sin(theta) lil = ((ct, st, 0), (-st, ct, 0), (0, 0, 1)) return Matrix(lil) def rot_axis2(theta): """Returns a rotation matrix for a rotation of theta (in radians) about the 2-axis. Examples ======== >>> from sympy import pi >>> from sympy.matrices import rot_axis2 A rotation of pi/3 (60 degrees): >>> theta = pi/3 >>> rot_axis2(theta) Matrix([ [ 1/2, 0, -sqrt(3)/2], [ 0, 1, 0], [sqrt(3)/2, 0, 1/2]]) If we rotate by pi/2 (90 degrees): >>> rot_axis2(pi/2) Matrix([ [0, 0, -1], [0, 1, 0], [1, 0, 0]]) See Also ======== rot_axis1: Returns a rotation matrix for a rotation of theta (in radians) about the 1-axis rot_axis3: Returns a rotation matrix for a rotation of theta (in radians) about the 3-axis """ ct = cos(theta) st = sin(theta) lil = ((ct, 0, -st), (0, 1, 0), (st, 0, ct)) return Matrix(lil) def rot_axis1(theta): """Returns a rotation matrix for a rotation of theta (in radians) about the 1-axis. Examples ======== >>> from sympy import pi >>> from sympy.matrices import rot_axis1 A rotation of pi/3 (60 degrees): >>> theta = pi/3 >>> rot_axis1(theta) Matrix([ [1, 0, 0], [0, 1/2, sqrt(3)/2], [0, -sqrt(3)/2, 1/2]]) If we rotate by pi/2 (90 degrees): >>> rot_axis1(pi/2) Matrix([ [1, 0, 0], [0, 0, 1], [0, -1, 0]]) See Also ======== rot_axis2: Returns a rotation matrix for a rotation of theta (in radians) about the 2-axis rot_axis3: Returns a rotation matrix for a rotation of theta (in radians) about the 3-axis """ ct = cos(theta) st = sin(theta) lil = ((1, 0, 0), (0, ct, st), (0, -st, ct)) return Matrix(lil) @doctest_depends_on(modules=('numpy',)) def symarray(prefix, shape, **kwargs): # pragma: no cover r"""Create a numpy ndarray of symbols (as an object array). The created symbols are named ``prefix_i1_i2_``... You should thus provide a non-empty prefix if you want your symbols to be unique for different output arrays, as SymPy symbols with identical names are the same object. Parameters ---------- prefix : string A prefix prepended to the name of every symbol. shape : int or tuple Shape of the created array. If an int, the array is one-dimensional; for more than one dimension the shape must be a tuple. \*\*kwargs : dict keyword arguments passed on to Symbol Examples ======== These doctests require numpy. >>> from sympy import symarray >>> symarray('', 3) [_0 _1 _2] If you want multiple symarrays to contain distinct symbols, you *must* provide unique prefixes: >>> a = symarray('', 3) >>> b = symarray('', 3) >>> a[0] == b[0] True >>> a = symarray('a', 3) >>> b = symarray('b', 3) >>> a[0] == b[0] False Creating symarrays with a prefix: >>> symarray('a', 3) [a_0 a_1 a_2] For more than one dimension, the shape must be given as a tuple: >>> symarray('a', (2, 3)) [[a_0_0 a_0_1 a_0_2] [a_1_0 a_1_1 a_1_2]] >>> symarray('a', (2, 3, 2)) [[[a_0_0_0 a_0_0_1] [a_0_1_0 a_0_1_1] [a_0_2_0 a_0_2_1]] <BLANKLINE> [[a_1_0_0 a_1_0_1] [a_1_1_0 a_1_1_1] [a_1_2_0 a_1_2_1]]] For setting assumptions of the underlying Symbols: >>> [s.is_real for s in symarray('a', 2, real=True)] [True, True] """ from numpy import empty, ndindex arr = empty(shape, dtype=object) for index in ndindex(shape): arr[index] = Symbol('%s_%s' % (prefix, '_'.join(map(str, index))), **kwargs) return arr ############### # Functions ############### def casoratian(seqs, n, zero=True): """Given linear difference operator L of order 'k' and homogeneous equation Ly = 0 we want to compute kernel of L, which is a set of 'k' sequences: a(n), b(n), ... z(n). Solutions of L are linearly independent iff their Casoratian, denoted as C(a, b, ..., z), do not vanish for n = 0. Casoratian is defined by k x k determinant:: + a(n) b(n) . . . z(n) + | a(n+1) b(n+1) . . . z(n+1) | | . . . . | | . . . . | | . . . . | + a(n+k-1) b(n+k-1) . . . z(n+k-1) + It proves very useful in rsolve_hyper() where it is applied to a generating set of a recurrence to factor out linearly dependent solutions and return a basis: >>> from sympy import Symbol, casoratian, factorial >>> n = Symbol('n', integer=True) Exponential and factorial are linearly independent: >>> casoratian([2**n, factorial(n)], n) != 0 True """ from .dense import Matrix seqs = list(map(sympify, seqs)) if not zero: f = lambda i, j: seqs[j].subs(n, n + i) else: f = lambda i, j: seqs[j].subs(n, i) k = len(seqs) return Matrix(k, k, f).det() def eye(*args, **kwargs): """Create square identity matrix n x n See Also ======== diag zeros ones """ from .dense import Matrix return Matrix.eye(*args, **kwargs) def diag(*values, **kwargs): """Returns a matrix with the provided values placed on the diagonal. If non-square matrices are included, they will produce a block-diagonal matrix. Examples ======== This version of diag is a thin wrapper to Matrix.diag that differs in that it treats all lists like matrices -- even when a single list is given. If this is not desired, either put a `*` before the list or set `unpack=True`. >>> from sympy import diag >>> diag([1, 2, 3], unpack=True) # = diag(1,2,3) or diag(*[1,2,3]) Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]]) >>> diag([1, 2, 3]) # a column vector Matrix([ [1], [2], [3]]) See Also ======== eye sympy.matrices.common.diag """ from .dense import Matrix # Extract any setting so we don't duplicate keywords sent # as named parameters: kw = kwargs.copy() strict = kw.pop('strict', True) # lists will be converted to Matrices unpack = kw.pop('unpack', False) return Matrix.diag(*values, strict=strict, unpack=unpack, **kw) def GramSchmidt(vlist, orthonormal=False): """ Apply the Gram-Schmidt process to a set of vectors. see: https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process """ out = [] m = len(vlist) for i in range(m): tmp = vlist[i] for j in range(i): tmp -= vlist[i].project(out[j]) if not tmp.values(): raise ValueError( "GramSchmidt: vector set not linearly independent") out.append(tmp) if orthonormal: for i in range(len(out)): out[i] = out[i].normalized() return out def hessian(f, varlist, constraints=[]): """Compute Hessian matrix for a function f wrt parameters in varlist which may be given as a sequence or a row/column vector. A list of constraints may optionally be given. Examples ======== >>> from sympy import Function, hessian, pprint >>> from sympy.abc import x, y >>> f = Function('f')(x, y) >>> g1 = Function('g')(x, y) >>> g2 = x**2 + 3*y >>> pprint(hessian(f, (x, y), [g1, g2])) [ d d ] [ 0 0 --(g(x, y)) --(g(x, y)) ] [ dx dy ] [ ] [ 0 0 2*x 3 ] [ ] [ 2 2 ] [d d d ] [--(g(x, y)) 2*x ---(f(x, y)) -----(f(x, y))] [dx 2 dy dx ] [ dx ] [ ] [ 2 2 ] [d d d ] [--(g(x, y)) 3 -----(f(x, y)) ---(f(x, y)) ] [dy dy dx 2 ] [ dy ] References ========== https://en.wikipedia.org/wiki/Hessian_matrix See Also ======== sympy.matrices.mutable.Matrix.jacobian wronskian """ # f is the expression representing a function f, return regular matrix if isinstance(varlist, MatrixBase): if 1 not in varlist.shape: raise ShapeError("`varlist` must be a column or row vector.") if varlist.cols == 1: varlist = varlist.T varlist = varlist.tolist()[0] if is_sequence(varlist): n = len(varlist) if not n: raise ShapeError("`len(varlist)` must not be zero.") else: raise ValueError("Improper variable list in hessian function") if not getattr(f, 'diff'): # check differentiability raise ValueError("Function `f` (%s) is not differentiable" % f) m = len(constraints) N = m + n out = zeros(N) for k, g in enumerate(constraints): if not getattr(g, 'diff'): # check differentiability raise ValueError("Function `f` (%s) is not differentiable" % f) for i in range(n): out[k, i + m] = g.diff(varlist[i]) for i in range(n): for j in range(i, n): out[i + m, j + m] = f.diff(varlist[i]).diff(varlist[j]) for i in range(N): for j in range(i + 1, N): out[j, i] = out[i, j] return out def jordan_cell(eigenval, n): """ Create a Jordan block: Examples ======== >>> from sympy.matrices import jordan_cell >>> from sympy.abc import x >>> jordan_cell(x, 4) Matrix([ [x, 1, 0, 0], [0, x, 1, 0], [0, 0, x, 1], [0, 0, 0, x]]) """ from .dense import Matrix return Matrix.jordan_block(size=n, eigenvalue=eigenval) def matrix_multiply_elementwise(A, B): """Return the Hadamard product (elementwise product) of A and B >>> from sympy.matrices import matrix_multiply_elementwise >>> from sympy.matrices import Matrix >>> A = Matrix([[0, 1, 2], [3, 4, 5]]) >>> B = Matrix([[1, 10, 100], [100, 10, 1]]) >>> matrix_multiply_elementwise(A, B) Matrix([ [ 0, 10, 200], [300, 40, 5]]) See Also ======== __mul__ """ return A.multiply_elementwise(B) def ones(*args, **kwargs): """Returns a matrix of ones with ``rows`` rows and ``cols`` columns; if ``cols`` is omitted a square matrix will be returned. See Also ======== zeros eye diag """ if 'c' in kwargs: kwargs['cols'] = kwargs.pop('c') from .dense import Matrix return Matrix.ones(*args, **kwargs) def randMatrix(r, c=None, min=0, max=99, seed=None, symmetric=False, percent=100, prng=None): """Create random matrix with dimensions ``r`` x ``c``. If ``c`` is omitted the matrix will be square. If ``symmetric`` is True the matrix must be square. If ``percent`` is less than 100 then only approximately the given percentage of elements will be non-zero. The pseudo-random number generator used to generate matrix is chosen in the following way. * If ``prng`` is supplied, it will be used as random number generator. It should be an instance of :class:`random.Random`, or at least have ``randint`` and ``shuffle`` methods with same signatures. * if ``prng`` is not supplied but ``seed`` is supplied, then new :class:`random.Random` with given ``seed`` will be created; * otherwise, a new :class:`random.Random` with default seed will be used. Examples ======== >>> from sympy.matrices import randMatrix >>> randMatrix(3) # doctest:+SKIP [25, 45, 27] [44, 54, 9] [23, 96, 46] >>> randMatrix(3, 2) # doctest:+SKIP [87, 29] [23, 37] [90, 26] >>> randMatrix(3, 3, 0, 2) # doctest:+SKIP [0, 2, 0] [2, 0, 1] [0, 0, 1] >>> randMatrix(3, symmetric=True) # doctest:+SKIP [85, 26, 29] [26, 71, 43] [29, 43, 57] >>> A = randMatrix(3, seed=1) >>> B = randMatrix(3, seed=2) >>> A == B # doctest:+SKIP False >>> A == randMatrix(3, seed=1) True >>> randMatrix(3, symmetric=True, percent=50) # doctest:+SKIP [77, 70, 0], [70, 0, 0], [ 0, 0, 88] """ if c is None: c = r # Note that ``Random()`` is equivalent to ``Random(None)`` prng = prng or random.Random(seed) if not symmetric: m = Matrix._new(r, c, lambda i, j: prng.randint(min, max)) if percent == 100: return m z = int(r*c*(100 - percent) // 100) m._mat[:z] = [S.Zero]*z prng.shuffle(m._mat) return m # Symmetric case if r != c: raise ValueError('For symmetric matrices, r must equal c, but %i != %i' % (r, c)) m = zeros(r) ij = [(i, j) for i in range(r) for j in range(i, r)] if percent != 100: ij = prng.sample(ij, int(len(ij)*percent // 100)) for i, j in ij: value = prng.randint(min, max) m[i, j] = m[j, i] = value return m def wronskian(functions, var, method='bareiss'): """ Compute Wronskian for [] of functions :: | f1 f2 ... fn | | f1' f2' ... fn' | | . . . . | W(f1, ..., fn) = | . . . . | | . . . . | | (n) (n) (n) | | D (f1) D (f2) ... D (fn) | see: https://en.wikipedia.org/wiki/Wronskian See Also ======== sympy.matrices.mutable.Matrix.jacobian hessian """ from .dense import Matrix for index in range(0, len(functions)): functions[index] = sympify(functions[index]) n = len(functions) if n == 0: return 1 W = Matrix(n, n, lambda i, j: functions[i].diff(var, j)) return W.det(method) def zeros(*args, **kwargs): """Returns a matrix of zeros with ``rows`` rows and ``cols`` columns; if ``cols`` is omitted a square matrix will be returned. See Also ======== ones eye diag """ if 'c' in kwargs: kwargs['cols'] = kwargs.pop('c') from .dense import Matrix return Matrix.zeros(*args, **kwargs)
0ccb38a3f71cf982ef32cddcf5f69ecf6092c8867507abf9551323cbeb968011
from __future__ import division, print_function import copy from collections import defaultdict from sympy.core.compatibility import Callable, as_int, is_sequence, range from sympy.core.containers import Dict from sympy.core.expr import Expr from sympy.core.singleton import S from sympy.functions import Abs from sympy.functions.elementary.miscellaneous import sqrt from sympy.utilities.iterables import uniq from sympy.utilities.misc import filldedent from .common import a2idx from .dense import Matrix from .matrices import MatrixBase, ShapeError class SparseMatrix(MatrixBase): """ A sparse matrix (a matrix with a large number of zero elements). Examples ======== >>> from sympy.matrices import SparseMatrix, ones >>> SparseMatrix(2, 2, range(4)) Matrix([ [0, 1], [2, 3]]) >>> SparseMatrix(2, 2, {(1, 1): 2}) Matrix([ [0, 0], [0, 2]]) A SparseMatrix can be instantiated from a ragged list of lists: >>> SparseMatrix([[1, 2, 3], [1, 2], [1]]) Matrix([ [1, 2, 3], [1, 2, 0], [1, 0, 0]]) For safety, one may include the expected size and then an error will be raised if the indices of any element are out of range or (for a flat list) if the total number of elements does not match the expected shape: >>> SparseMatrix(2, 2, [1, 2]) Traceback (most recent call last): ... ValueError: List length (2) != rows*columns (4) Here, an error is not raised because the list is not flat and no element is out of range: >>> SparseMatrix(2, 2, [[1, 2]]) Matrix([ [1, 2], [0, 0]]) But adding another element to the first (and only) row will cause an error to be raised: >>> SparseMatrix(2, 2, [[1, 2, 3]]) Traceback (most recent call last): ... ValueError: The location (0, 2) is out of designated range: (1, 1) To autosize the matrix, pass None for rows: >>> SparseMatrix(None, [[1, 2, 3]]) Matrix([[1, 2, 3]]) >>> SparseMatrix(None, {(1, 1): 1, (3, 3): 3}) Matrix([ [0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 3]]) Values that are themselves a Matrix are automatically expanded: >>> SparseMatrix(4, 4, {(1, 1): ones(2)}) Matrix([ [0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0], [0, 0, 0, 0]]) A ValueError is raised if the expanding matrix tries to overwrite a different element already present: >>> SparseMatrix(3, 3, {(0, 0): ones(2), (1, 1): 2}) Traceback (most recent call last): ... ValueError: collision at (1, 1) See Also ======== sympy.matrices.common.diag sympy.matrices.dense.Matrix """ def __new__(cls, *args, **kwargs): self = object.__new__(cls) if len(args) == 1 and isinstance(args[0], SparseMatrix): self.rows = args[0].rows self.cols = args[0].cols self._smat = dict(args[0]._smat) return self self._smat = {} # autosizing if len(args) == 2 and args[0] is None: args = (None,) + args if len(args) == 3: r, c = args[:2] if r is c is None: self.rows = self.cols = None elif None in (r, c): raise ValueError( 'Pass rows=None and no cols for autosizing.') else: self.rows, self.cols = map(as_int, args[:2]) if isinstance(args[2], Callable): op = args[2] for i in range(self.rows): for j in range(self.cols): value = self._sympify( op(self._sympify(i), self._sympify(j))) if value: self._smat[(i, j)] = value elif isinstance(args[2], (dict, Dict)): def update(i, j, v): # update self._smat and make sure there are # no collisions if v: if (i, j) in self._smat and v != self._smat[i, j]: raise ValueError('collision at %s' % ((i, j),)) self._smat[i, j] = v # manual copy, copy.deepcopy() doesn't work for key, v in args[2].items(): r, c = key if isinstance(v, SparseMatrix): for (i, j), vij in v._smat.items(): update(r + i, c + j, vij) else: if isinstance(v, (Matrix, list, tuple)): v = SparseMatrix(v) for i, j in v._smat: update(r + i, c + j, v[i, j]) else: v = self._sympify(v) update(r, c, self._sympify(v)) elif is_sequence(args[2]): flat = not any(is_sequence(i) for i in args[2]) if not flat: s = SparseMatrix(args[2]) self._smat = s._smat else: if len(args[2]) != self.rows*self.cols: raise ValueError( 'Flat list length (%s) != rows*columns (%s)' % (len(args[2]), self.rows*self.cols)) flat_list = args[2] for i in range(self.rows): for j in range(self.cols): value = self._sympify(flat_list[i*self.cols + j]) if value: self._smat[i, j] = value if self.rows is None: # autosizing k = self._smat.keys() self.rows = max([i[0] for i in k]) + 1 if k else 0 self.cols = max([i[1] for i in k]) + 1 if k else 0 else: for i, j in self._smat.keys(): if i and i >= self.rows or j and j >= self.cols: r, c = self.shape raise ValueError(filldedent(''' The location %s is out of designated range: %s''' % ((i, j), (r - 1, c - 1)))) else: if (len(args) == 1 and isinstance(args[0], (list, tuple))): # list of values or lists v = args[0] c = 0 for i, row in enumerate(v): if not isinstance(row, (list, tuple)): row = [row] for j, vij in enumerate(row): if vij: self._smat[(i, j)] = self._sympify(vij) c = max(c, len(row)) self.rows = len(v) if c else 0 self.cols = c else: # handle full matrix forms with _handle_creation_inputs r, c, _list = Matrix._handle_creation_inputs(*args) self.rows = r self.cols = c for i in range(self.rows): for j in range(self.cols): value = _list[self.cols*i + j] if value: self._smat[(i, j)] = value return self def __eq__(self, other): self_shape = getattr(self, 'shape', None) other_shape = getattr(other, 'shape', None) if None in (self_shape, other_shape): return False if self_shape != other_shape: return False if isinstance(other, SparseMatrix): return self._smat == other._smat elif isinstance(other, MatrixBase): return self._smat == MutableSparseMatrix(other)._smat def __getitem__(self, key): if isinstance(key, tuple): i, j = key try: i, j = self.key2ij(key) return self._smat.get((i, j), S.Zero) except (TypeError, IndexError): if isinstance(i, slice): # XXX remove list() when PY2 support is dropped i = list(range(self.rows))[i] elif is_sequence(i): pass elif isinstance(i, Expr) and not i.is_number: from sympy.matrices.expressions.matexpr import MatrixElement return MatrixElement(self, i, j) else: if i >= self.rows: raise IndexError('Row index out of bounds') i = [i] if isinstance(j, slice): # XXX remove list() when PY2 support is dropped j = list(range(self.cols))[j] elif is_sequence(j): pass elif isinstance(j, Expr) and not j.is_number: from sympy.matrices.expressions.matexpr import MatrixElement return MatrixElement(self, i, j) else: if j >= self.cols: raise IndexError('Col index out of bounds') j = [j] return self.extract(i, j) # check for single arg, like M[:] or M[3] if isinstance(key, slice): lo, hi = key.indices(len(self))[:2] L = [] for i in range(lo, hi): m, n = divmod(i, self.cols) L.append(self._smat.get((m, n), S.Zero)) return L i, j = divmod(a2idx(key, len(self)), self.cols) return self._smat.get((i, j), S.Zero) def __setitem__(self, key, value): raise NotImplementedError() def _cholesky_solve(self, rhs): # for speed reasons, this is not uncommented, but if you are # having difficulties, try uncommenting to make sure that the # input matrix is symmetric #assert self.is_symmetric() L = self._cholesky_sparse() Y = L._lower_triangular_solve(rhs) rv = L.T._upper_triangular_solve(Y) return rv def _cholesky_sparse(self): """Algorithm for numeric Cholesky factorization of a sparse matrix.""" Crowstruc = self.row_structure_symbolic_cholesky() C = self.zeros(self.rows) for i in range(len(Crowstruc)): for j in Crowstruc[i]: if i != j: C[i, j] = self[i, j] summ = 0 for p1 in Crowstruc[i]: if p1 < j: for p2 in Crowstruc[j]: if p2 < j: if p1 == p2: summ += C[i, p1]*C[j, p1] else: break else: break C[i, j] -= summ C[i, j] /= C[j, j] else: C[j, j] = self[j, j] summ = 0 for k in Crowstruc[j]: if k < j: summ += C[j, k]**2 else: break C[j, j] -= summ C[j, j] = sqrt(C[j, j]) return C def _diagonal_solve(self, rhs): "Diagonal solve." return self._new(self.rows, 1, lambda i, j: rhs[i, 0] / self[i, i]) def _eval_inverse(self, **kwargs): """Return the matrix inverse using Cholesky or LDL (default) decomposition as selected with the ``method`` keyword: 'CH' or 'LDL', respectively. Examples ======== >>> from sympy import SparseMatrix, Matrix >>> A = SparseMatrix([ ... [ 2, -1, 0], ... [-1, 2, -1], ... [ 0, 0, 2]]) >>> A.inv('CH') Matrix([ [2/3, 1/3, 1/6], [1/3, 2/3, 1/3], [ 0, 0, 1/2]]) >>> A.inv(method='LDL') # use of 'method=' is optional Matrix([ [2/3, 1/3, 1/6], [1/3, 2/3, 1/3], [ 0, 0, 1/2]]) >>> A * _ Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) """ sym = self.is_symmetric() M = self.as_mutable() I = M.eye(M.rows) if not sym: t = M.T r1 = M[0, :] M = t*M I = t*I method = kwargs.get('method', 'LDL') if method in "LDL": solve = M._LDL_solve elif method == "CH": solve = M._cholesky_solve else: raise NotImplementedError( 'Method may be "CH" or "LDL", not %s.' % method) rv = M.hstack(*[solve(I[:, i]) for i in range(I.cols)]) if not sym: scale = (r1*rv[:, 0])[0, 0] rv /= scale return self._new(rv) def _eval_Abs(self): return self.applyfunc(lambda x: Abs(x)) def _eval_add(self, other): """If `other` is a SparseMatrix, add efficiently. Otherwise, do standard addition.""" if not isinstance(other, SparseMatrix): return self + self._new(other) smat = {} zero = self._sympify(0) for key in set().union(self._smat.keys(), other._smat.keys()): sum = self._smat.get(key, zero) + other._smat.get(key, zero) if sum != 0: smat[key] = sum return self._new(self.rows, self.cols, smat) def _eval_col_insert(self, icol, other): if not isinstance(other, SparseMatrix): other = SparseMatrix(other) new_smat = {} # make room for the new rows for key, val in self._smat.items(): row, col = key if col >= icol: col += other.cols new_smat[(row, col)] = val # add other's keys for key, val in other._smat.items(): row, col = key new_smat[(row, col + icol)] = val return self._new(self.rows, self.cols + other.cols, new_smat) def _eval_conjugate(self): smat = {key: val.conjugate() for key,val in self._smat.items()} return self._new(self.rows, self.cols, smat) def _eval_extract(self, rowsList, colsList): urow = list(uniq(rowsList)) ucol = list(uniq(colsList)) smat = {} if len(urow)*len(ucol) < len(self._smat): # there are fewer elements requested than there are elements in the matrix for i, r in enumerate(urow): for j, c in enumerate(ucol): smat[i, j] = self._smat.get((r, c), 0) else: # most of the request will be zeros so check all of self's entries, # keeping only the ones that are desired for rk, ck in self._smat: if rk in urow and ck in ucol: smat[(urow.index(rk), ucol.index(ck))] = self._smat[(rk, ck)] rv = self._new(len(urow), len(ucol), smat) # rv is nominally correct but there might be rows/cols # which require duplication if len(rowsList) != len(urow): for i, r in enumerate(rowsList): i_previous = rowsList.index(r) if i_previous != i: rv = rv.row_insert(i, rv.row(i_previous)) if len(colsList) != len(ucol): for i, c in enumerate(colsList): i_previous = colsList.index(c) if i_previous != i: rv = rv.col_insert(i, rv.col(i_previous)) return rv @classmethod def _eval_eye(cls, rows, cols): entries = {(i,i): S.One for i in range(min(rows, cols))} return cls._new(rows, cols, entries) def _eval_has(self, *patterns): # if the matrix has any zeros, see if S.Zero # has the pattern. If _smat is full length, # the matrix has no zeros. zhas = S.Zero.has(*patterns) if len(self._smat) == self.rows*self.cols: zhas = False return any(self[key].has(*patterns) for key in self._smat) or zhas def _eval_is_Identity(self): if not all(self[i, i] == 1 for i in range(self.rows)): return False return len(self._smat) == self.rows def _eval_is_symmetric(self, simpfunc): diff = (self - self.T).applyfunc(simpfunc) return len(diff.values()) == 0 def _eval_matrix_mul(self, other): """Fast multiplication exploiting the sparsity of the matrix.""" if not isinstance(other, SparseMatrix): return self*self._new(other) # if we made it here, we're both sparse matrices # create quick lookups for rows and cols row_lookup = defaultdict(dict) for (i,j), val in self._smat.items(): row_lookup[i][j] = val col_lookup = defaultdict(dict) for (i,j), val in other._smat.items(): col_lookup[j][i] = val smat = {} for row in row_lookup.keys(): for col in col_lookup.keys(): # find the common indices of non-zero entries. # these are the only things that need to be multiplied. indices = set(col_lookup[col].keys()) & set(row_lookup[row].keys()) if indices: val = sum(row_lookup[row][k]*col_lookup[col][k] for k in indices) smat[(row, col)] = val return self._new(self.rows, other.cols, smat) def _eval_row_insert(self, irow, other): if not isinstance(other, SparseMatrix): other = SparseMatrix(other) new_smat = {} # make room for the new rows for key, val in self._smat.items(): row, col = key if row >= irow: row += other.rows new_smat[(row, col)] = val # add other's keys for key, val in other._smat.items(): row, col = key new_smat[(row + irow, col)] = val return self._new(self.rows + other.rows, self.cols, new_smat) def _eval_scalar_mul(self, other): return self.applyfunc(lambda x: x*other) def _eval_scalar_rmul(self, other): return self.applyfunc(lambda x: other*x) def _eval_transpose(self): """Returns the transposed SparseMatrix of this SparseMatrix. Examples ======== >>> from sympy.matrices import SparseMatrix >>> a = SparseMatrix(((1, 2), (3, 4))) >>> a Matrix([ [1, 2], [3, 4]]) >>> a.T Matrix([ [1, 3], [2, 4]]) """ smat = {(j,i): val for (i,j),val in self._smat.items()} return self._new(self.cols, self.rows, smat) def _eval_values(self): return [v for k,v in self._smat.items() if not v.is_zero] @classmethod def _eval_zeros(cls, rows, cols): return cls._new(rows, cols, {}) def _LDL_solve(self, rhs): # for speed reasons, this is not uncommented, but if you are # having difficulties, try uncommenting to make sure that the # input matrix is symmetric #assert self.is_symmetric() L, D = self._LDL_sparse() Z = L._lower_triangular_solve(rhs) Y = D._diagonal_solve(Z) return L.T._upper_triangular_solve(Y) def _LDL_sparse(self): """Algorithm for numeric LDL factization, exploiting sparse structure. """ Lrowstruc = self.row_structure_symbolic_cholesky() L = self.eye(self.rows) D = self.zeros(self.rows, self.cols) for i in range(len(Lrowstruc)): for j in Lrowstruc[i]: if i != j: L[i, j] = self[i, j] summ = 0 for p1 in Lrowstruc[i]: if p1 < j: for p2 in Lrowstruc[j]: if p2 < j: if p1 == p2: summ += L[i, p1]*L[j, p1]*D[p1, p1] else: break else: break L[i, j] -= summ L[i, j] /= D[j, j] elif i == j: D[i, i] = self[i, i] summ = 0 for k in Lrowstruc[i]: if k < i: summ += L[i, k]**2*D[k, k] else: break D[i, i] -= summ return L, D def _lower_triangular_solve(self, rhs): """Fast algorithm for solving a lower-triangular system, exploiting the sparsity of the given matrix. """ rows = [[] for i in range(self.rows)] for i, j, v in self.row_list(): if i > j: rows[i].append((j, v)) X = rhs.copy() for i in range(self.rows): for j, v in rows[i]: X[i, 0] -= v*X[j, 0] X[i, 0] /= self[i, i] return self._new(X) @property def _mat(self): """Return a list of matrix elements. Some routines in DenseMatrix use `_mat` directly to speed up operations.""" return list(self) def _upper_triangular_solve(self, rhs): """Fast algorithm for solving an upper-triangular system, exploiting the sparsity of the given matrix. """ rows = [[] for i in range(self.rows)] for i, j, v in self.row_list(): if i < j: rows[i].append((j, v)) X = rhs.copy() for i in range(self.rows - 1, -1, -1): rows[i].reverse() for j, v in rows[i]: X[i, 0] -= v*X[j, 0] X[i, 0] /= self[i, i] return self._new(X) def applyfunc(self, f): """Apply a function to each element of the matrix. Examples ======== >>> from sympy.matrices import SparseMatrix >>> m = SparseMatrix(2, 2, lambda i, j: i*2+j) >>> m Matrix([ [0, 1], [2, 3]]) >>> m.applyfunc(lambda i: 2*i) Matrix([ [0, 2], [4, 6]]) """ if not callable(f): raise TypeError("`f` must be callable.") out = self.copy() for k, v in self._smat.items(): fv = f(v) if fv: out._smat[k] = fv else: out._smat.pop(k, None) return out def as_immutable(self): """Returns an Immutable version of this Matrix.""" from .immutable import ImmutableSparseMatrix return ImmutableSparseMatrix(self) def as_mutable(self): """Returns a mutable version of this matrix. Examples ======== >>> from sympy import ImmutableMatrix >>> X = ImmutableMatrix([[1, 2], [3, 4]]) >>> Y = X.as_mutable() >>> Y[1, 1] = 5 # Can set values in Y >>> Y Matrix([ [1, 2], [3, 5]]) """ return MutableSparseMatrix(self) def cholesky(self): """ Returns the Cholesky decomposition L of a matrix A such that L * L.T = A A must be a square, symmetric, positive-definite and non-singular matrix Examples ======== >>> from sympy.matrices import SparseMatrix >>> A = SparseMatrix(((25,15,-5),(15,18,0),(-5,0,11))) >>> A.cholesky() Matrix([ [ 5, 0, 0], [ 3, 3, 0], [-1, 1, 3]]) >>> A.cholesky() * A.cholesky().T == A True """ from sympy.core.numbers import nan, oo if not self.is_symmetric(): raise ValueError('Cholesky decomposition applies only to ' 'symmetric matrices.') M = self.as_mutable()._cholesky_sparse() if M.has(nan) or M.has(oo): raise ValueError('Cholesky decomposition applies only to ' 'positive-definite matrices') return self._new(M) def col_list(self): """Returns a column-sorted list of non-zero elements of the matrix. Examples ======== >>> from sympy.matrices import SparseMatrix >>> a=SparseMatrix(((1, 2), (3, 4))) >>> a Matrix([ [1, 2], [3, 4]]) >>> a.CL [(0, 0, 1), (1, 0, 3), (0, 1, 2), (1, 1, 4)] See Also ======== col_op row_list """ return [tuple(k + (self[k],)) for k in sorted(list(self._smat.keys()), key=lambda k: list(reversed(k)))] def copy(self): return self._new(self.rows, self.cols, self._smat) def LDLdecomposition(self): """ Returns the LDL Decomposition (matrices ``L`` and ``D``) of matrix ``A``, such that ``L * D * L.T == A``. ``A`` must be a square, symmetric, positive-definite and non-singular. This method eliminates the use of square root and ensures that all the diagonal entries of L are 1. Examples ======== >>> from sympy.matrices import SparseMatrix >>> A = SparseMatrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) >>> L, D = A.LDLdecomposition() >>> L Matrix([ [ 1, 0, 0], [ 3/5, 1, 0], [-1/5, 1/3, 1]]) >>> D Matrix([ [25, 0, 0], [ 0, 9, 0], [ 0, 0, 9]]) >>> L * D * L.T == A True """ from sympy.core.numbers import nan, oo if not self.is_symmetric(): raise ValueError('LDL decomposition applies only to ' 'symmetric matrices.') L, D = self.as_mutable()._LDL_sparse() if L.has(nan) or L.has(oo) or D.has(nan) or D.has(oo): raise ValueError('LDL decomposition applies only to ' 'positive-definite matrices') return self._new(L), self._new(D) def liupc(self): """Liu's algorithm, for pre-determination of the Elimination Tree of the given matrix, used in row-based symbolic Cholesky factorization. Examples ======== >>> from sympy.matrices import SparseMatrix >>> S = SparseMatrix([ ... [1, 0, 3, 2], ... [0, 0, 1, 0], ... [4, 0, 0, 5], ... [0, 6, 7, 0]]) >>> S.liupc() ([[0], [], [0], [1, 2]], [4, 3, 4, 4]) References ========== Symbolic Sparse Cholesky Factorization using Elimination Trees, Jeroen Van Grondelle (1999) http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.7582 """ # Algorithm 2.4, p 17 of reference # get the indices of the elements that are non-zero on or below diag R = [[] for r in range(self.rows)] for r, c, _ in self.row_list(): if c <= r: R[r].append(c) inf = len(R) # nothing will be this large parent = [inf]*self.rows virtual = [inf]*self.rows for r in range(self.rows): for c in R[r][:-1]: while virtual[c] < r: t = virtual[c] virtual[c] = r c = t if virtual[c] == inf: parent[c] = virtual[c] = r return R, parent def nnz(self): """Returns the number of non-zero elements in Matrix.""" return len(self._smat) def row_list(self): """Returns a row-sorted list of non-zero elements of the matrix. Examples ======== >>> from sympy.matrices import SparseMatrix >>> a = SparseMatrix(((1, 2), (3, 4))) >>> a Matrix([ [1, 2], [3, 4]]) >>> a.RL [(0, 0, 1), (0, 1, 2), (1, 0, 3), (1, 1, 4)] See Also ======== row_op col_list """ return [tuple(k + (self[k],)) for k in sorted(list(self._smat.keys()), key=lambda k: list(k))] def row_structure_symbolic_cholesky(self): """Symbolic cholesky factorization, for pre-determination of the non-zero structure of the Cholesky factororization. Examples ======== >>> from sympy.matrices import SparseMatrix >>> S = SparseMatrix([ ... [1, 0, 3, 2], ... [0, 0, 1, 0], ... [4, 0, 0, 5], ... [0, 6, 7, 0]]) >>> S.row_structure_symbolic_cholesky() [[0], [], [0], [1, 2]] References ========== Symbolic Sparse Cholesky Factorization using Elimination Trees, Jeroen Van Grondelle (1999) http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.7582 """ R, parent = self.liupc() inf = len(R) # this acts as infinity Lrow = copy.deepcopy(R) for k in range(self.rows): for j in R[k]: while j != inf and j != k: Lrow[k].append(j) j = parent[j] Lrow[k] = list(sorted(set(Lrow[k]))) return Lrow def scalar_multiply(self, scalar): "Scalar element-wise multiplication" M = self.zeros(*self.shape) if scalar: for i in self._smat: v = scalar*self._smat[i] if v: M._smat[i] = v else: M._smat.pop(i, None) return M def solve_least_squares(self, rhs, method='LDL'): """Return the least-square fit to the data. By default the cholesky_solve routine is used (method='CH'); other methods of matrix inversion can be used. To find out which are available, see the docstring of the .inv() method. Examples ======== >>> from sympy.matrices import SparseMatrix, Matrix, ones >>> A = Matrix([1, 2, 3]) >>> B = Matrix([2, 3, 4]) >>> S = SparseMatrix(A.row_join(B)) >>> S Matrix([ [1, 2], [2, 3], [3, 4]]) If each line of S represent coefficients of Ax + By and x and y are [2, 3] then S*xy is: >>> r = S*Matrix([2, 3]); r Matrix([ [ 8], [13], [18]]) But let's add 1 to the middle value and then solve for the least-squares value of xy: >>> xy = S.solve_least_squares(Matrix([8, 14, 18])); xy Matrix([ [ 5/3], [10/3]]) The error is given by S*xy - r: >>> S*xy - r Matrix([ [1/3], [1/3], [1/3]]) >>> _.norm().n(2) 0.58 If a different xy is used, the norm will be higher: >>> xy += ones(2, 1)/10 >>> (S*xy - r).norm().n(2) 1.5 """ t = self.T return (t*self).inv(method=method)*t*rhs def solve(self, rhs, method='LDL'): """Return solution to self*soln = rhs using given inversion method. For a list of possible inversion methods, see the .inv() docstring. """ if not self.is_square: if self.rows < self.cols: raise ValueError('Under-determined system.') elif self.rows > self.cols: raise ValueError('For over-determined system, M, having ' 'more rows than columns, try M.solve_least_squares(rhs).') else: return self.inv(method=method)*rhs RL = property(row_list, None, None, "Alternate faster representation") CL = property(col_list, None, None, "Alternate faster representation") class MutableSparseMatrix(SparseMatrix, MatrixBase): @classmethod def _new(cls, *args, **kwargs): return cls(*args) def __setitem__(self, key, value): """Assign value to position designated by key. Examples ======== >>> from sympy.matrices import SparseMatrix, ones >>> M = SparseMatrix(2, 2, {}) >>> M[1] = 1; M Matrix([ [0, 1], [0, 0]]) >>> M[1, 1] = 2; M Matrix([ [0, 1], [0, 2]]) >>> M = SparseMatrix(2, 2, {}) >>> M[:, 1] = [1, 1]; M Matrix([ [0, 1], [0, 1]]) >>> M = SparseMatrix(2, 2, {}) >>> M[1, :] = [[1, 1]]; M Matrix([ [0, 0], [1, 1]]) To replace row r you assign to position r*m where m is the number of columns: >>> M = SparseMatrix(4, 4, {}) >>> m = M.cols >>> M[3*m] = ones(1, m)*2; M Matrix([ [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [2, 2, 2, 2]]) And to replace column c you can assign to position c: >>> M[2] = ones(m, 1)*4; M Matrix([ [0, 0, 4, 0], [0, 0, 4, 0], [0, 0, 4, 0], [2, 2, 4, 2]]) """ rv = self._setitem(key, value) if rv is not None: i, j, value = rv if value: self._smat[(i, j)] = value elif (i, j) in self._smat: del self._smat[(i, j)] def as_mutable(self): return self.copy() __hash__ = None def col_del(self, k): """Delete the given column of the matrix. Examples ======== >>> from sympy.matrices import SparseMatrix >>> M = SparseMatrix([[0, 0], [0, 1]]) >>> M Matrix([ [0, 0], [0, 1]]) >>> M.col_del(0) >>> M Matrix([ [0], [1]]) See Also ======== row_del """ newD = {} k = a2idx(k, self.cols) for (i, j) in self._smat: if j == k: pass elif j > k: newD[i, j - 1] = self._smat[i, j] else: newD[i, j] = self._smat[i, j] self._smat = newD self.cols -= 1 def col_join(self, other): """Returns B augmented beneath A (row-wise joining):: [A] [B] Examples ======== >>> from sympy import SparseMatrix, Matrix, ones >>> A = SparseMatrix(ones(3)) >>> A Matrix([ [1, 1, 1], [1, 1, 1], [1, 1, 1]]) >>> B = SparseMatrix.eye(3) >>> B Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> C = A.col_join(B); C Matrix([ [1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> C == A.col_join(Matrix(B)) True Joining along columns is the same as appending rows at the end of the matrix: >>> C == A.row_insert(A.rows, Matrix(B)) True """ # A null matrix can always be stacked (see #10770) if self.rows == 0 and self.cols != other.cols: return self._new(0, other.cols, []).col_join(other) A, B = self, other if not A.cols == B.cols: raise ShapeError() A = A.copy() if not isinstance(B, SparseMatrix): k = 0 b = B._mat for i in range(B.rows): for j in range(B.cols): v = b[k] if v: A._smat[(i + A.rows, j)] = v k += 1 else: for (i, j), v in B._smat.items(): A._smat[i + A.rows, j] = v A.rows += B.rows return A def col_op(self, j, f): """In-place operation on col j using two-arg functor whose args are interpreted as (self[i, j], i) for i in range(self.rows). Examples ======== >>> from sympy.matrices import SparseMatrix >>> M = SparseMatrix.eye(3)*2 >>> M[1, 0] = -1 >>> M.col_op(1, lambda v, i: v + 2*M[i, 0]); M Matrix([ [ 2, 4, 0], [-1, 0, 0], [ 0, 0, 2]]) """ for i in range(self.rows): v = self._smat.get((i, j), S.Zero) fv = f(v, i) if fv: self._smat[(i, j)] = fv elif v: self._smat.pop((i, j)) def col_swap(self, i, j): """Swap, in place, columns i and j. Examples ======== >>> from sympy.matrices import SparseMatrix >>> S = SparseMatrix.eye(3); S[2, 1] = 2 >>> S.col_swap(1, 0); S Matrix([ [0, 1, 0], [1, 0, 0], [2, 0, 1]]) """ if i > j: i, j = j, i rows = self.col_list() temp = [] for ii, jj, v in rows: if jj == i: self._smat.pop((ii, jj)) temp.append((ii, v)) elif jj == j: self._smat.pop((ii, jj)) self._smat[ii, i] = v elif jj > j: break for k, v in temp: self._smat[k, j] = v def copyin_list(self, key, value): if not is_sequence(value): raise TypeError("`value` must be of type list or tuple.") self.copyin_matrix(key, Matrix(value)) def copyin_matrix(self, key, value): # include this here because it's not part of BaseMatrix rlo, rhi, clo, chi = self.key2bounds(key) shape = value.shape dr, dc = rhi - rlo, chi - clo if shape != (dr, dc): raise ShapeError( "The Matrix `value` doesn't have the same dimensions " "as the in sub-Matrix given by `key`.") if not isinstance(value, SparseMatrix): for i in range(value.rows): for j in range(value.cols): self[i + rlo, j + clo] = value[i, j] else: if (rhi - rlo)*(chi - clo) < len(self): for i in range(rlo, rhi): for j in range(clo, chi): self._smat.pop((i, j), None) else: for i, j, v in self.row_list(): if rlo <= i < rhi and clo <= j < chi: self._smat.pop((i, j), None) for k, v in value._smat.items(): i, j = k self[i + rlo, j + clo] = value[i, j] def fill(self, value): """Fill self with the given value. Notes ===== Unless many values are going to be deleted (i.e. set to zero) this will create a matrix that is slower than a dense matrix in operations. Examples ======== >>> from sympy.matrices import SparseMatrix >>> M = SparseMatrix.zeros(3); M Matrix([ [0, 0, 0], [0, 0, 0], [0, 0, 0]]) >>> M.fill(1); M Matrix([ [1, 1, 1], [1, 1, 1], [1, 1, 1]]) """ if not value: self._smat = {} else: v = self._sympify(value) self._smat = {(i, j): v for i in range(self.rows) for j in range(self.cols)} def row_del(self, k): """Delete the given row of the matrix. Examples ======== >>> from sympy.matrices import SparseMatrix >>> M = SparseMatrix([[0, 0], [0, 1]]) >>> M Matrix([ [0, 0], [0, 1]]) >>> M.row_del(0) >>> M Matrix([[0, 1]]) See Also ======== col_del """ newD = {} k = a2idx(k, self.rows) for (i, j) in self._smat: if i == k: pass elif i > k: newD[i - 1, j] = self._smat[i, j] else: newD[i, j] = self._smat[i, j] self._smat = newD self.rows -= 1 def row_join(self, other): """Returns B appended after A (column-wise augmenting):: [A B] Examples ======== >>> from sympy import SparseMatrix, Matrix >>> A = SparseMatrix(((1, 0, 1), (0, 1, 0), (1, 1, 0))) >>> A Matrix([ [1, 0, 1], [0, 1, 0], [1, 1, 0]]) >>> B = SparseMatrix(((1, 0, 0), (0, 1, 0), (0, 0, 1))) >>> B Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> C = A.row_join(B); C Matrix([ [1, 0, 1, 1, 0, 0], [0, 1, 0, 0, 1, 0], [1, 1, 0, 0, 0, 1]]) >>> C == A.row_join(Matrix(B)) True Joining at row ends is the same as appending columns at the end of the matrix: >>> C == A.col_insert(A.cols, B) True """ # A null matrix can always be stacked (see #10770) if self.cols == 0 and self.rows != other.rows: return self._new(other.rows, 0, []).row_join(other) A, B = self, other if not A.rows == B.rows: raise ShapeError() A = A.copy() if not isinstance(B, SparseMatrix): k = 0 b = B._mat for i in range(B.rows): for j in range(B.cols): v = b[k] if v: A._smat[(i, j + A.cols)] = v k += 1 else: for (i, j), v in B._smat.items(): A._smat[(i, j + A.cols)] = v A.cols += B.cols return A def row_op(self, i, f): """In-place operation on row ``i`` using two-arg functor whose args are interpreted as ``(self[i, j], j)``. Examples ======== >>> from sympy.matrices import SparseMatrix >>> M = SparseMatrix.eye(3)*2 >>> M[0, 1] = -1 >>> M.row_op(1, lambda v, j: v + 2*M[0, j]); M Matrix([ [2, -1, 0], [4, 0, 0], [0, 0, 2]]) See Also ======== row zip_row_op col_op """ for j in range(self.cols): v = self._smat.get((i, j), S.Zero) fv = f(v, j) if fv: self._smat[(i, j)] = fv elif v: self._smat.pop((i, j)) def row_swap(self, i, j): """Swap, in place, columns i and j. Examples ======== >>> from sympy.matrices import SparseMatrix >>> S = SparseMatrix.eye(3); S[2, 1] = 2 >>> S.row_swap(1, 0); S Matrix([ [0, 1, 0], [1, 0, 0], [0, 2, 1]]) """ if i > j: i, j = j, i rows = self.row_list() temp = [] for ii, jj, v in rows: if ii == i: self._smat.pop((ii, jj)) temp.append((jj, v)) elif ii == j: self._smat.pop((ii, jj)) self._smat[i, jj] = v elif ii > j: break for k, v in temp: self._smat[j, k] = v def zip_row_op(self, i, k, f): """In-place operation on row ``i`` using two-arg functor whose args are interpreted as ``(self[i, j], self[k, j])``. Examples ======== >>> from sympy.matrices import SparseMatrix >>> M = SparseMatrix.eye(3)*2 >>> M[0, 1] = -1 >>> M.zip_row_op(1, 0, lambda v, u: v + 2*u); M Matrix([ [2, -1, 0], [4, 0, 0], [0, 0, 2]]) See Also ======== row row_op col_op """ self.row_op(i, lambda v, j: f(v, self[k, j]))
115071bc6117610adbc9c3019d110503fcc3f0ff4506701a7c3927ae87e87919
from __future__ import division, print_function from types import FunctionType from mpmath.libmp.libmpf import prec_to_dps from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.compatibility import ( Callable, NotIterable, as_int, default_sort_key, is_sequence, range, reduce, string_types) from sympy.core.decorators import deprecated from sympy.core.expr import Expr from sympy.core.function import expand_mul from sympy.core.numbers import Float, Integer, mod_inverse from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.symbol import Dummy, Symbol, _uniquely_named_symbol, symbols from sympy.core.sympify import sympify from sympy.functions import exp, factorial from sympy.functions.elementary.miscellaneous import Max, Min, sqrt from sympy.polys import PurePoly, cancel, roots from sympy.printing import sstr from sympy.simplify import nsimplify from sympy.simplify import simplify as _simplify from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.utilities.iterables import flatten, numbered_symbols from sympy.utilities.misc import filldedent from .common import ( MatrixCommon, MatrixError, NonSquareMatrixError, ShapeError) def _iszero(x): """Returns True if x is zero.""" return getattr(x, 'is_zero', None) def _is_zero_after_expand_mul(x): """Tests by expand_mul only, suitable for polynomials and rational functions.""" return expand_mul(x) == 0 class DeferredVector(Symbol, NotIterable): """A vector whose components are deferred (e.g. for use with lambdify) Examples ======== >>> from sympy import DeferredVector, lambdify >>> X = DeferredVector( 'X' ) >>> X X >>> expr = (X[0] + 2, X[2] + 3) >>> func = lambdify( X, expr) >>> func( [1, 2, 3] ) (3, 6) """ def __getitem__(self, i): if i == -0: i = 0 if i < 0: raise IndexError('DeferredVector index out of range') component_name = '%s[%d]' % (self.name, i) return Symbol(component_name) def __str__(self): return sstr(self) def __repr__(self): return "DeferredVector('%s')" % self.name class MatrixDeterminant(MatrixCommon): """Provides basic matrix determinant operations. Should not be instantiated directly.""" def _eval_berkowitz_toeplitz_matrix(self): """Return (A,T) where T the Toeplitz matrix used in the Berkowitz algorithm corresponding to ``self`` and A is the first principal submatrix.""" # the 0 x 0 case is trivial if self.rows == 0 and self.cols == 0: return self._new(1,1, [S.One]) # # Partition self = [ a_11 R ] # [ C A ] # a, R = self[0,0], self[0, 1:] C, A = self[1:, 0], self[1:,1:] # # The Toeplitz matrix looks like # # [ 1 ] # [ -a 1 ] # [ -RC -a 1 ] # [ -RAC -RC -a 1 ] # [ -RA**2C -RAC -RC -a 1 ] # etc. # Compute the diagonal entries. # Because multiplying matrix times vector is so much # more efficient than matrix times matrix, recursively # compute -R * A**n * C. diags = [C] for i in range(self.rows - 2): diags.append(A * diags[i]) diags = [(-R*d)[0, 0] for d in diags] diags = [S.One, -a] + diags def entry(i,j): if j > i: return S.Zero return diags[i - j] toeplitz = self._new(self.cols + 1, self.rows, entry) return (A, toeplitz) def _eval_berkowitz_vector(self): """ Run the Berkowitz algorithm and return a vector whose entries are the coefficients of the characteristic polynomial of ``self``. Given N x N matrix, efficiently compute coefficients of characteristic polynomials of ``self`` without division in the ground domain. This method is particularly useful for computing determinant, principal minors and characteristic polynomial when ``self`` has complicated coefficients e.g. polynomials. Semi-direct usage of this algorithm is also important in computing efficiently sub-resultant PRS. Assuming that M is a square matrix of dimension N x N and I is N x N identity matrix, then the Berkowitz vector is an N x 1 vector whose entries are coefficients of the polynomial charpoly(M) = det(t*I - M) As a consequence, all polynomials generated by Berkowitz algorithm are monic. For more information on the implemented algorithm refer to: [1] S.J. Berkowitz, On computing the determinant in small parallel time using a small number of processors, ACM, Information Processing Letters 18, 1984, pp. 147-150 [2] M. Keber, Division-Free computation of sub-resultants using Bezout matrices, Tech. Report MPI-I-2006-1-006, Saarbrucken, 2006 """ # handle the trivial cases if self.rows == 0 and self.cols == 0: return self._new(1, 1, [S.One]) elif self.rows == 1 and self.cols == 1: return self._new(2, 1, [S.One, -self[0,0]]) submat, toeplitz = self._eval_berkowitz_toeplitz_matrix() return toeplitz * submat._eval_berkowitz_vector() def _eval_det_bareiss(self, iszerofunc=_is_zero_after_expand_mul): """Compute matrix determinant using Bareiss' fraction-free algorithm which is an extension of the well known Gaussian elimination method. This approach is best suited for dense symbolic matrices and will result in a determinant with minimal number of fractions. It means that less term rewriting is needed on resulting formulae. TODO: Implement algorithm for sparse matrices (SFF), http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps. """ # Recursively implemented Bareiss' algorithm as per Deanna Richelle Leggett's # thesis http://www.math.usm.edu/perry/Research/Thesis_DRL.pdf def bareiss(mat, cumm=1): if mat.rows == 0: return S.One elif mat.rows == 1: return mat[0, 0] # find a pivot and extract the remaining matrix # With the default iszerofunc, _find_reasonable_pivot slows down # the computation by the factor of 2.5 in one test. # Relevant issues: #10279 and #13877. pivot_pos, pivot_val, _, _ = _find_reasonable_pivot(mat[:, 0], iszerofunc=iszerofunc) if pivot_pos is None: return S.Zero # if we have a valid pivot, we'll do a "row swap", so keep the # sign of the det sign = (-1) ** (pivot_pos % 2) # we want every row but the pivot row and every column rows = list(i for i in range(mat.rows) if i != pivot_pos) cols = list(range(mat.cols)) tmp_mat = mat.extract(rows, cols) def entry(i, j): ret = (pivot_val*tmp_mat[i, j + 1] - mat[pivot_pos, j + 1]*tmp_mat[i, 0]) / cumm if not ret.is_Atom: return cancel(ret) return ret return sign*bareiss(self._new(mat.rows - 1, mat.cols - 1, entry), pivot_val) return cancel(bareiss(self)) def _eval_det_berkowitz(self): """ Use the Berkowitz algorithm to compute the determinant.""" berk_vector = self._eval_berkowitz_vector() return (-1)**(len(berk_vector) - 1) * berk_vector[-1] def _eval_det_lu(self, iszerofunc=_iszero, simpfunc=None): """ Computes the determinant of a matrix from its LU decomposition. This function uses the LU decomposition computed by LUDecomposition_Simple(). The keyword arguments iszerofunc and simpfunc are passed to LUDecomposition_Simple(). iszerofunc is a callable that returns a boolean indicating if its input is zero, or None if it cannot make the determination. simpfunc is a callable that simplifies its input. The default is simpfunc=None, which indicate that the pivot search algorithm should not attempt to simplify any candidate pivots. If simpfunc fails to simplify its input, then it must return its input instead of a copy.""" if self.rows == 0: return S.One # sympy/matrices/tests/test_matrices.py contains a test that # suggests that the determinant of a 0 x 0 matrix is one, by # convention. lu, row_swaps = self.LUdecomposition_Simple(iszerofunc=iszerofunc, simpfunc=None) # P*A = L*U => det(A) = det(L)*det(U)/det(P) = det(P)*det(U). # Lower triangular factor L encoded in lu has unit diagonal => det(L) = 1. # P is a permutation matrix => det(P) in {-1, 1} => 1/det(P) = det(P). # LUdecomposition_Simple() returns a list of row exchange index pairs, rather # than a permutation matrix, but det(P) = (-1)**len(row_swaps). # Avoid forming the potentially time consuming product of U's diagonal entries # if the product is zero. # Bottom right entry of U is 0 => det(A) = 0. # It may be impossible to determine if this entry of U is zero when it is symbolic. if iszerofunc(lu[lu.rows-1, lu.rows-1]): return S.Zero # Compute det(P) det = -S.One if len(row_swaps)%2 else S.One # Compute det(U) by calculating the product of U's diagonal entries. # The upper triangular portion of lu is the upper triangular portion of the # U factor in the LU decomposition. for k in range(lu.rows): det *= lu[k, k] # return det(P)*det(U) return det def _eval_determinant(self): """Assumed to exist by matrix expressions; If we subclass MatrixDeterminant, we can fully evaluate determinants.""" return self.det() def adjugate(self, method="berkowitz"): """Returns the adjugate, or classical adjoint, of a matrix. That is, the transpose of the matrix of cofactors. https://en.wikipedia.org/wiki/Adjugate See Also ======== cofactor_matrix transpose """ return self.cofactor_matrix(method).transpose() def charpoly(self, x='lambda', simplify=_simplify): """Computes characteristic polynomial det(x*I - self) where I is the identity matrix. A PurePoly is returned, so using different variables for ``x`` does not affect the comparison or the polynomials: Examples ======== >>> from sympy import Matrix >>> from sympy.abc import x, y >>> A = Matrix([[1, 3], [2, 0]]) >>> A.charpoly(x) == A.charpoly(y) True Specifying ``x`` is optional; a symbol named ``lambda`` is used by default (which looks good when pretty-printed in unicode): >>> A.charpoly().as_expr() lambda**2 - lambda - 6 And if ``x`` clashes with an existing symbol, underscores will be preppended to the name to make it unique: >>> A = Matrix([[1, 2], [x, 0]]) >>> A.charpoly(x).as_expr() _x**2 - _x - 2*x Whether you pass a symbol or not, the generator can be obtained with the gen attribute since it may not be the same as the symbol that was passed: >>> A.charpoly(x).gen _x >>> A.charpoly(x).gen == x False Notes ===== The Samuelson-Berkowitz algorithm is used to compute the characteristic polynomial efficiently and without any division operations. Thus the characteristic polynomial over any commutative ring without zero divisors can be computed. See Also ======== det """ if not self.is_square: raise NonSquareMatrixError() berk_vector = self._eval_berkowitz_vector() x = _uniquely_named_symbol(x, berk_vector) return PurePoly([simplify(a) for a in berk_vector], x) def cofactor(self, i, j, method="berkowitz"): """Calculate the cofactor of an element. See Also ======== cofactor_matrix minor minor_submatrix """ if not self.is_square or self.rows < 1: raise NonSquareMatrixError() return (-1)**((i + j) % 2) * self.minor(i, j, method) def cofactor_matrix(self, method="berkowitz"): """Return a matrix containing the cofactor of each element. See Also ======== cofactor minor minor_submatrix adjugate """ if not self.is_square or self.rows < 1: raise NonSquareMatrixError() return self._new(self.rows, self.cols, lambda i, j: self.cofactor(i, j, method)) def det(self, method="bareiss", iszerofunc=None): """Computes the determinant of a matrix. Parameters ========== method : string, optional Specifies the algorithm used for computing the matrix determinant. If the matrix is at most 3x3, a hard-coded formula is used and the specified method is ignored. Otherwise, it defaults to ``'bareiss'``. If it is set to ``'bareiss'``, Bareiss' fraction-free algorithm will be used. If it is set to ``'berkowitz'``, Berkowitz' algorithm will be used. Otherwise, if it is set to ``'lu'``, LU decomposition will be used. .. note:: For backward compatibility, legacy keys like "bareis" and "det_lu" can still be used to indicate the corresponding methods. And the keys are also case-insensitive for now. However, it is suggested to use the precise keys for specifying the method. iszerofunc : FunctionType or None, optional If it is set to ``None``, it will be defaulted to ``_iszero`` if the method is set to ``'bareiss'``, and ``_is_zero_after_expand_mul`` if the method is set to ``'lu'``. It can also accept any user-specified zero testing function, if it is formatted as a function which accepts a single symbolic argument and returns ``True`` if it is tested as zero and ``False`` if it tested as non-zero, and also ``None`` if it is undecidable. Returns ======= det : Basic Result of determinant. Raises ====== ValueError If unrecognized keys are given for ``method`` or ``iszerofunc``. NonSquareMatrixError If attempted to calculate determinant from a non-square matrix. """ # sanitize `method` method = method.lower() if method == "bareis": method = "bareiss" if method == "det_lu": method = "lu" if method not in ("bareiss", "berkowitz", "lu"): raise ValueError("Determinant method '%s' unrecognized" % method) if iszerofunc is None: if method == "bareiss": iszerofunc = _is_zero_after_expand_mul elif method == "lu": iszerofunc = _iszero elif not isinstance(iszerofunc, FunctionType): raise ValueError("Zero testing method '%s' unrecognized" % iszerofunc) # if methods were made internal and all determinant calculations # passed through here, then these lines could be factored out of # the method routines if not self.is_square: raise NonSquareMatrixError() n = self.rows if n == 0: return S.One elif n == 1: return self[0,0] elif n == 2: return self[0, 0] * self[1, 1] - self[0, 1] * self[1, 0] elif n == 3: return (self[0, 0] * self[1, 1] * self[2, 2] + self[0, 1] * self[1, 2] * self[2, 0] + self[0, 2] * self[1, 0] * self[2, 1] - self[0, 2] * self[1, 1] * self[2, 0] - self[0, 0] * self[1, 2] * self[2, 1] - self[0, 1] * self[1, 0] * self[2, 2]) if method == "bareiss": return self._eval_det_bareiss(iszerofunc=iszerofunc) elif method == "berkowitz": return self._eval_det_berkowitz() elif method == "lu": return self._eval_det_lu(iszerofunc=iszerofunc) def minor(self, i, j, method="berkowitz"): """Return the (i,j) minor of ``self``. That is, return the determinant of the matrix obtained by deleting the `i`th row and `j`th column from ``self``. See Also ======== minor_submatrix cofactor det """ if not self.is_square or self.rows < 1: raise NonSquareMatrixError() return self.minor_submatrix(i, j).det(method=method) def minor_submatrix(self, i, j): """Return the submatrix obtained by removing the `i`th row and `j`th column from ``self``. See Also ======== minor cofactor """ if i < 0: i += self.rows if j < 0: j += self.cols if not 0 <= i < self.rows or not 0 <= j < self.cols: raise ValueError("`i` and `j` must satisfy 0 <= i < ``self.rows`` " "(%d)" % self.rows + "and 0 <= j < ``self.cols`` (%d)." % self.cols) rows = [a for a in range(self.rows) if a != i] cols = [a for a in range(self.cols) if a != j] return self.extract(rows, cols) class MatrixReductions(MatrixDeterminant): """Provides basic matrix row/column operations. Should not be instantiated directly.""" def _eval_col_op_swap(self, col1, col2): def entry(i, j): if j == col1: return self[i, col2] elif j == col2: return self[i, col1] return self[i, j] return self._new(self.rows, self.cols, entry) def _eval_col_op_multiply_col_by_const(self, col, k): def entry(i, j): if j == col: return k * self[i, j] return self[i, j] return self._new(self.rows, self.cols, entry) def _eval_col_op_add_multiple_to_other_col(self, col, k, col2): def entry(i, j): if j == col: return self[i, j] + k * self[i, col2] return self[i, j] return self._new(self.rows, self.cols, entry) def _eval_row_op_swap(self, row1, row2): def entry(i, j): if i == row1: return self[row2, j] elif i == row2: return self[row1, j] return self[i, j] return self._new(self.rows, self.cols, entry) def _eval_row_op_multiply_row_by_const(self, row, k): def entry(i, j): if i == row: return k * self[i, j] return self[i, j] return self._new(self.rows, self.cols, entry) def _eval_row_op_add_multiple_to_other_row(self, row, k, row2): def entry(i, j): if i == row: return self[i, j] + k * self[row2, j] return self[i, j] return self._new(self.rows, self.cols, entry) def _eval_echelon_form(self, iszerofunc, simpfunc): """Returns (mat, swaps) where ``mat`` is a row-equivalent matrix in echelon form and ``swaps`` is a list of row-swaps performed.""" reduced, pivot_cols, swaps = self._row_reduce(iszerofunc, simpfunc, normalize_last=True, normalize=False, zero_above=False) return reduced, pivot_cols, swaps def _eval_is_echelon(self, iszerofunc): if self.rows <= 0 or self.cols <= 0: return True zeros_below = all(iszerofunc(t) for t in self[1:, 0]) if iszerofunc(self[0, 0]): return zeros_below and self[:, 1:]._eval_is_echelon(iszerofunc) return zeros_below and self[1:, 1:]._eval_is_echelon(iszerofunc) def _eval_rref(self, iszerofunc, simpfunc, normalize_last=True): reduced, pivot_cols, swaps = self._row_reduce(iszerofunc, simpfunc, normalize_last, normalize=True, zero_above=True) return reduced, pivot_cols def _normalize_op_args(self, op, col, k, col1, col2, error_str="col"): """Validate the arguments for a row/column operation. ``error_str`` can be one of "row" or "col" depending on the arguments being parsed.""" if op not in ["n->kn", "n<->m", "n->n+km"]: raise ValueError("Unknown {} operation '{}'. Valid col operations " "are 'n->kn', 'n<->m', 'n->n+km'".format(error_str, op)) # normalize and validate the arguments if op == "n->kn": col = col if col is not None else col1 if col is None or k is None: raise ValueError("For a {0} operation 'n->kn' you must provide the " "kwargs `{0}` and `k`".format(error_str)) if not 0 <= col <= self.cols: raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col)) if op == "n<->m": # we need two cols to swap. It doesn't matter # how they were specified, so gather them together and # remove `None` cols = set((col, k, col1, col2)).difference([None]) if len(cols) > 2: # maybe the user left `k` by mistake? cols = set((col, col1, col2)).difference([None]) if len(cols) != 2: raise ValueError("For a {0} operation 'n<->m' you must provide the " "kwargs `{0}1` and `{0}2`".format(error_str)) col1, col2 = cols if not 0 <= col1 <= self.cols: raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col1)) if not 0 <= col2 <= self.cols: raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col2)) if op == "n->n+km": col = col1 if col is None else col col2 = col1 if col2 is None else col2 if col is None or col2 is None or k is None: raise ValueError("For a {0} operation 'n->n+km' you must provide the " "kwargs `{0}`, `k`, and `{0}2`".format(error_str)) if col == col2: raise ValueError("For a {0} operation 'n->n+km' `{0}` and `{0}2` must " "be different.".format(error_str)) if not 0 <= col <= self.cols: raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col)) if not 0 <= col2 <= self.cols: raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col2)) return op, col, k, col1, col2 def _permute_complexity_right(self, iszerofunc): """Permute columns with complicated elements as far right as they can go. Since the ``sympy`` row reduction algorithms start on the left, having complexity right-shifted speeds things up. Returns a tuple (mat, perm) where perm is a permutation of the columns to perform to shift the complex columns right, and mat is the permuted matrix.""" def complexity(i): # the complexity of a column will be judged by how many # element's zero-ness cannot be determined return sum(1 if iszerofunc(e) is None else 0 for e in self[:, i]) complex = [(complexity(i), i) for i in range(self.cols)] perm = [j for (i, j) in sorted(complex)] return (self.permute(perm, orientation='cols'), perm) def _row_reduce(self, iszerofunc, simpfunc, normalize_last=True, normalize=True, zero_above=True): """Row reduce ``self`` and return a tuple (rref_matrix, pivot_cols, swaps) where pivot_cols are the pivot columns and swaps are any row swaps that were used in the process of row reduction. Parameters ========== iszerofunc : determines if an entry can be used as a pivot simpfunc : used to simplify elements and test if they are zero if ``iszerofunc`` returns `None` normalize_last : indicates where all row reduction should happen in a fraction-free manner and then the rows are normalized (so that the pivots are 1), or whether rows should be normalized along the way (like the naive row reduction algorithm) normalize : whether pivot rows should be normalized so that the pivot value is 1 zero_above : whether entries above the pivot should be zeroed. If ``zero_above=False``, an echelon matrix will be returned. """ rows, cols = self.rows, self.cols mat = list(self) def get_col(i): return mat[i::cols] def row_swap(i, j): mat[i*cols:(i + 1)*cols], mat[j*cols:(j + 1)*cols] = \ mat[j*cols:(j + 1)*cols], mat[i*cols:(i + 1)*cols] def cross_cancel(a, i, b, j): """Does the row op row[i] = a*row[i] - b*row[j]""" q = (j - i)*cols for p in range(i*cols, (i + 1)*cols): mat[p] = a*mat[p] - b*mat[p + q] piv_row, piv_col = 0, 0 pivot_cols = [] swaps = [] # use a fraction free method to zero above and below each pivot while piv_col < cols and piv_row < rows: pivot_offset, pivot_val, \ assumed_nonzero, newly_determined = _find_reasonable_pivot( get_col(piv_col)[piv_row:], iszerofunc, simpfunc) # _find_reasonable_pivot may have simplified some things # in the process. Let's not let them go to waste for (offset, val) in newly_determined: offset += piv_row mat[offset*cols + piv_col] = val if pivot_offset is None: piv_col += 1 continue pivot_cols.append(piv_col) if pivot_offset != 0: row_swap(piv_row, pivot_offset + piv_row) swaps.append((piv_row, pivot_offset + piv_row)) # if we aren't normalizing last, we normalize # before we zero the other rows if normalize_last is False: i, j = piv_row, piv_col mat[i*cols + j] = S.One for p in range(i*cols + j + 1, (i + 1)*cols): mat[p] = mat[p] / pivot_val # after normalizing, the pivot value is 1 pivot_val = S.One # zero above and below the pivot for row in range(rows): # don't zero our current row if row == piv_row: continue # don't zero above the pivot unless we're told. if zero_above is False and row < piv_row: continue # if we're already a zero, don't do anything val = mat[row*cols + piv_col] if iszerofunc(val): continue cross_cancel(pivot_val, row, val, piv_row) piv_row += 1 # normalize each row if normalize_last is True and normalize is True: for piv_i, piv_j in enumerate(pivot_cols): pivot_val = mat[piv_i*cols + piv_j] mat[piv_i*cols + piv_j] = S.One for p in range(piv_i*cols + piv_j + 1, (piv_i + 1)*cols): mat[p] = mat[p] / pivot_val return self._new(self.rows, self.cols, mat), tuple(pivot_cols), tuple(swaps) def echelon_form(self, iszerofunc=_iszero, simplify=False, with_pivots=False): """Returns a matrix row-equivalent to ``self`` that is in echelon form. Note that echelon form of a matrix is *not* unique, however, properties like the row space and the null space are preserved.""" simpfunc = simplify if isinstance( simplify, FunctionType) else _simplify mat, pivots, swaps = self._eval_echelon_form(iszerofunc, simpfunc) if with_pivots: return mat, pivots return mat def elementary_col_op(self, op="n->kn", col=None, k=None, col1=None, col2=None): """Performs the elementary column operation `op`. `op` may be one of * "n->kn" (column n goes to k*n) * "n<->m" (swap column n and column m) * "n->n+km" (column n goes to column n + k*column m) Parameters ========== op : string; the elementary row operation col : the column to apply the column operation k : the multiple to apply in the column operation col1 : one column of a column swap col2 : second column of a column swap or column "m" in the column operation "n->n+km" """ op, col, k, col1, col2 = self._normalize_op_args(op, col, k, col1, col2, "col") # now that we've validated, we're all good to dispatch if op == "n->kn": return self._eval_col_op_multiply_col_by_const(col, k) if op == "n<->m": return self._eval_col_op_swap(col1, col2) if op == "n->n+km": return self._eval_col_op_add_multiple_to_other_col(col, k, col2) def elementary_row_op(self, op="n->kn", row=None, k=None, row1=None, row2=None): """Performs the elementary row operation `op`. `op` may be one of * "n->kn" (row n goes to k*n) * "n<->m" (swap row n and row m) * "n->n+km" (row n goes to row n + k*row m) Parameters ========== op : string; the elementary row operation row : the row to apply the row operation k : the multiple to apply in the row operation row1 : one row of a row swap row2 : second row of a row swap or row "m" in the row operation "n->n+km" """ op, row, k, row1, row2 = self._normalize_op_args(op, row, k, row1, row2, "row") # now that we've validated, we're all good to dispatch if op == "n->kn": return self._eval_row_op_multiply_row_by_const(row, k) if op == "n<->m": return self._eval_row_op_swap(row1, row2) if op == "n->n+km": return self._eval_row_op_add_multiple_to_other_row(row, k, row2) @property def is_echelon(self, iszerofunc=_iszero): """Returns `True` if the matrix is in echelon form. That is, all rows of zeros are at the bottom, and below each leading non-zero in a row are exclusively zeros.""" return self._eval_is_echelon(iszerofunc) def rank(self, iszerofunc=_iszero, simplify=False): """ Returns the rank of a matrix >>> from sympy import Matrix >>> from sympy.abc import x >>> m = Matrix([[1, 2], [x, 1 - 1/x]]) >>> m.rank() 2 >>> n = Matrix(3, 3, range(1, 10)) >>> n.rank() 2 """ simpfunc = simplify if isinstance( simplify, FunctionType) else _simplify # for small matrices, we compute the rank explicitly # if is_zero on elements doesn't answer the question # for small matrices, we fall back to the full routine. if self.rows <= 0 or self.cols <= 0: return 0 if self.rows <= 1 or self.cols <= 1: zeros = [iszerofunc(x) for x in self] if False in zeros: return 1 if self.rows == 2 and self.cols == 2: zeros = [iszerofunc(x) for x in self] if not False in zeros and not None in zeros: return 0 det = self.det() if iszerofunc(det) and False in zeros: return 1 if iszerofunc(det) is False: return 2 mat, _ = self._permute_complexity_right(iszerofunc=iszerofunc) echelon_form, pivots, swaps = mat._eval_echelon_form(iszerofunc=iszerofunc, simpfunc=simpfunc) return len(pivots) def rref(self, iszerofunc=_iszero, simplify=False, pivots=True, normalize_last=True): """Return reduced row-echelon form of matrix and indices of pivot vars. Parameters ========== iszerofunc : Function A function used for detecting whether an element can act as a pivot. ``lambda x: x.is_zero`` is used by default. simplify : Function A function used to simplify elements when looking for a pivot. By default SymPy's ``simplify`` is used. pivots : True or False If ``True``, a tuple containing the row-reduced matrix and a tuple of pivot columns is returned. If ``False`` just the row-reduced matrix is returned. normalize_last : True or False If ``True``, no pivots are normalized to `1` until after all entries above and below each pivot are zeroed. This means the row reduction algorithm is fraction free until the very last step. If ``False``, the naive row reduction procedure is used where each pivot is normalized to be `1` before row operations are used to zero above and below the pivot. Notes ===== The default value of ``normalize_last=True`` can provide significant speedup to row reduction, especially on matrices with symbols. However, if you depend on the form row reduction algorithm leaves entries of the matrix, set ``noramlize_last=False`` Examples ======== >>> from sympy import Matrix >>> from sympy.abc import x >>> m = Matrix([[1, 2], [x, 1 - 1/x]]) >>> m.rref() (Matrix([ [1, 0], [0, 1]]), (0, 1)) >>> rref_matrix, rref_pivots = m.rref() >>> rref_matrix Matrix([ [1, 0], [0, 1]]) >>> rref_pivots (0, 1) """ simpfunc = simplify if isinstance( simplify, FunctionType) else _simplify ret, pivot_cols = self._eval_rref(iszerofunc=iszerofunc, simpfunc=simpfunc, normalize_last=normalize_last) if pivots: ret = (ret, pivot_cols) return ret class MatrixSubspaces(MatrixReductions): """Provides methods relating to the fundamental subspaces of a matrix. Should not be instantiated directly.""" def columnspace(self, simplify=False): """Returns a list of vectors (Matrix objects) that span columnspace of ``self`` Examples ======== >>> from sympy.matrices import Matrix >>> m = Matrix(3, 3, [1, 3, 0, -2, -6, 0, 3, 9, 6]) >>> m Matrix([ [ 1, 3, 0], [-2, -6, 0], [ 3, 9, 6]]) >>> m.columnspace() [Matrix([ [ 1], [-2], [ 3]]), Matrix([ [0], [0], [6]])] See Also ======== nullspace rowspace """ reduced, pivots = self.echelon_form(simplify=simplify, with_pivots=True) return [self.col(i) for i in pivots] def nullspace(self, simplify=False, iszerofunc=_iszero): """Returns list of vectors (Matrix objects) that span nullspace of ``self`` Examples ======== >>> from sympy.matrices import Matrix >>> m = Matrix(3, 3, [1, 3, 0, -2, -6, 0, 3, 9, 6]) >>> m Matrix([ [ 1, 3, 0], [-2, -6, 0], [ 3, 9, 6]]) >>> m.nullspace() [Matrix([ [-3], [ 1], [ 0]])] See Also ======== columnspace rowspace """ reduced, pivots = self.rref(iszerofunc=iszerofunc, simplify=simplify) free_vars = [i for i in range(self.cols) if i not in pivots] basis = [] for free_var in free_vars: # for each free variable, we will set it to 1 and all others # to 0. Then, we will use back substitution to solve the system vec = [S.Zero]*self.cols vec[free_var] = S.One for piv_row, piv_col in enumerate(pivots): vec[piv_col] -= reduced[piv_row, free_var] basis.append(vec) return [self._new(self.cols, 1, b) for b in basis] def rowspace(self, simplify=False): """Returns a list of vectors that span the row space of ``self``.""" reduced, pivots = self.echelon_form(simplify=simplify, with_pivots=True) return [reduced.row(i) for i in range(len(pivots))] @classmethod def orthogonalize(cls, *vecs, **kwargs): """Apply the Gram-Schmidt orthogonalization procedure to vectors supplied in ``vecs``. Parameters ========== vecs vectors to be made orthogonal normalize : bool If true, return an orthonormal basis. """ normalize = kwargs.get('normalize', False) def project(a, b): return b * (a.dot(b) / b.dot(b)) def perp_to_subspace(vec, basis): """projects vec onto the subspace given by the orthogonal basis ``basis``""" components = [project(vec, b) for b in basis] if len(basis) == 0: return vec return vec - reduce(lambda a, b: a + b, components) ret = [] # make sure we start with a non-zero vector vecs = list(vecs) while len(vecs) > 0 and vecs[0].is_zero: del vecs[0] for vec in vecs: perp = perp_to_subspace(vec, ret) if not perp.is_zero: ret.append(perp) if normalize: ret = [vec / vec.norm() for vec in ret] return ret class MatrixEigen(MatrixSubspaces): """Provides basic matrix eigenvalue/vector operations. Should not be instantiated directly.""" @property def _cache_is_diagonalizable(self): SymPyDeprecationWarning( feature='_cache_is_diagonalizable', deprecated_since_version="1.4", issue=15887 ).warn() return None @property def _cache_eigenvects(self): SymPyDeprecationWarning( feature='_cache_eigenvects', deprecated_since_version="1.4", issue=15887 ).warn() return None def diagonalize(self, reals_only=False, sort=False, normalize=False): """ Return (P, D), where D is diagonal and D = P^-1 * M * P where M is current matrix. Parameters ========== reals_only : bool. Whether to throw an error if complex numbers are need to diagonalize. (Default: False) sort : bool. Sort the eigenvalues along the diagonal. (Default: False) normalize : bool. If True, normalize the columns of P. (Default: False) Examples ======== >>> from sympy import Matrix >>> m = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2]) >>> m Matrix([ [1, 2, 0], [0, 3, 0], [2, -4, 2]]) >>> (P, D) = m.diagonalize() >>> D Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]]) >>> P Matrix([ [-1, 0, -1], [ 0, 0, -1], [ 2, 1, 2]]) >>> P.inv() * m * P Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]]) See Also ======== is_diagonal is_diagonalizable """ if not self.is_square: raise NonSquareMatrixError() if not self.is_diagonalizable(reals_only=reals_only): raise MatrixError("Matrix is not diagonalizable") eigenvecs = self.eigenvects(simplify=True) if sort: eigenvecs = sorted(eigenvecs, key=default_sort_key) p_cols, diag = [], [] for val, mult, basis in eigenvecs: diag += [val] * mult p_cols += basis if normalize: p_cols = [v / v.norm() for v in p_cols] return self.hstack(*p_cols), self.diag(*diag) def eigenvals(self, error_when_incomplete=True, **flags): r"""Return eigenvalues using the Berkowitz agorithm to compute the characteristic polynomial. Parameters ========== error_when_incomplete : bool, optional If it is set to ``True``, it will raise an error if not all eigenvalues are computed. This is caused by ``roots`` not returning a full list of eigenvalues. simplify : bool or function, optional If it is set to ``True``, it attempts to return the most simplified form of expressions returned by applying default simplification method in every routine. If it is set to ``False``, it will skip simplification in this particular routine to save computation resources. If a function is passed to, it will attempt to apply the particular function as simplification method. rational : bool, optional If it is set to ``True``, every floating point numbers would be replaced with rationals before computation. It can solve some issues of ``roots`` routine not working well with floats. multiple : bool, optional If it is set to ``True``, the result will be in the form of a list. If it is set to ``False``, the result will be in the form of a dictionary. Returns ======= eigs : list or dict Eigenvalues of a matrix. The return format would be specified by the key ``multiple``. Raises ====== MatrixError If not enough roots had got computed. NonSquareMatrixError If attempted to compute eigenvalues from a non-square matrix. See Also ======== MatrixDeterminant.charpoly eigenvects Notes ===== Eigenvalues of a matrix `A` can be computed by solving a matrix equation `\det(A - \lambda I) = 0` """ simplify = flags.get('simplify', False) # Collect simplify flag before popped up, to reuse later in the routine. multiple = flags.get('multiple', False) # Collect multiple flag to decide whether return as a dict or list. rational = flags.pop('rational', True) mat = self if not mat: return {} if rational: mat = mat.applyfunc( lambda x: nsimplify(x, rational=True) if x.has(Float) else x) if mat.is_upper or mat.is_lower: if not self.is_square: raise NonSquareMatrixError() diagonal_entries = [mat[i, i] for i in range(mat.rows)] if multiple: eigs = diagonal_entries else: eigs = {} for diagonal_entry in diagonal_entries: if diagonal_entry not in eigs: eigs[diagonal_entry] = 0 eigs[diagonal_entry] += 1 else: flags.pop('simplify', None) # pop unsupported flag if isinstance(simplify, FunctionType): eigs = roots(mat.charpoly(x=Dummy('x'), simplify=simplify), **flags) else: eigs = roots(mat.charpoly(x=Dummy('x')), **flags) # make sure the algebraic multiplicty sums to the # size of the matrix if error_when_incomplete and (sum(eigs.values()) if isinstance(eigs, dict) else len(eigs)) != self.cols: raise MatrixError("Could not compute eigenvalues for {}".format(self)) # Since 'simplify' flag is unsupported in roots() # simplify() function will be applied once at the end of the routine. if not simplify: return eigs if not isinstance(simplify, FunctionType): simplify = _simplify # With 'multiple' flag set true, simplify() will be mapped for the list # Otherwise, simplify() will be mapped for the keys of the dictionary if not multiple: return {simplify(key): value for key, value in eigs.items()} else: return [simplify(value) for value in eigs] def eigenvects(self, error_when_incomplete=True, iszerofunc=_iszero, **flags): """Return list of triples (eigenval, multiplicity, eigenspace). Parameters ========== error_when_incomplete : bool, optional Raise an error when not all eigenvalues are computed. This is caused by ``roots`` not returning a full list of eigenvalues. iszerofunc : function, optional Specifies a zero testing function to be used in ``rref``. Default value is ``_iszero``, which uses SymPy's naive and fast default assumption handler. It can also accept any user-specified zero testing function, if it is formatted as a function which accepts a single symbolic argument and returns ``True`` if it is tested as zero and ``False`` if it is tested as non-zero, and ``None`` if it is undecidable. simplify : bool or function, optional If ``True``, ``as_content_primitive()`` will be used to tidy up normalization artifacts. It will also be used by the ``nullspace`` routine. chop : bool or positive number, optional If the matrix contains any Floats, they will be changed to Rationals for computation purposes, but the answers will be returned after being evaluated with evalf. The ``chop`` flag is passed to ``evalf``. When ``chop=True`` a default precision will be used; a number will be interpreted as the desired level of precision. Returns ======= ret : [(eigenval, multiplicity, eigenspace), ...] A ragged list containing tuples of data obtained by ``eigenvals`` and ``nullspace``. ``eigenspace`` is a list containing the ``eigenvector`` for each eigenvalue. ``eigenvector`` is a vector in the form of a ``Matrix``. e.g. a vector of length 3 is returned as ``Matrix([a_1, a_2, a_3])``. Raises ====== NotImplementedError If failed to compute nullspace. See Also ======== eigenvals MatrixSubspaces.nullspace """ from sympy.matrices import eye simplify = flags.get('simplify', True) if not isinstance(simplify, FunctionType): simpfunc = _simplify if simplify else lambda x: x primitive = flags.get('simplify', False) chop = flags.pop('chop', False) flags.pop('multiple', None) # remove this if it's there mat = self # roots doesn't like Floats, so replace them with Rationals has_floats = self.has(Float) if has_floats: mat = mat.applyfunc(lambda x: nsimplify(x, rational=True)) def eigenspace(eigenval): """Get a basis for the eigenspace for a particular eigenvalue""" m = mat - self.eye(mat.rows) * eigenval ret = m.nullspace(iszerofunc=iszerofunc) # the nullspace for a real eigenvalue should be # non-trivial. If we didn't find an eigenvector, try once # more a little harder if len(ret) == 0 and simplify: ret = m.nullspace(iszerofunc=iszerofunc, simplify=True) if len(ret) == 0: raise NotImplementedError( "Can't evaluate eigenvector for eigenvalue %s" % eigenval) return ret eigenvals = mat.eigenvals(rational=False, error_when_incomplete=error_when_incomplete, **flags) ret = [(val, mult, eigenspace(val)) for val, mult in sorted(eigenvals.items(), key=default_sort_key)] if primitive: # if the primitive flag is set, get rid of any common # integer denominators def denom_clean(l): from sympy import gcd return [(v / gcd(list(v))).applyfunc(simpfunc) for v in l] ret = [(val, mult, denom_clean(es)) for val, mult, es in ret] if has_floats: # if we had floats to start with, turn the eigenvectors to floats ret = [(val.evalf(chop=chop), mult, [v.evalf(chop=chop) for v in es]) for val, mult, es in ret] return ret def is_diagonalizable(self, reals_only=False, **kwargs): """Returns true if a matrix is diagonalizable. Parameters ========== reals_only : bool. If reals_only=True, determine whether the matrix can be diagonalized without complex numbers. (Default: False) kwargs ====== clear_cache : bool. If True, clear the result of any computations when finished. (Default: True) Examples ======== >>> from sympy import Matrix >>> m = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2]) >>> m Matrix([ [1, 2, 0], [0, 3, 0], [2, -4, 2]]) >>> m.is_diagonalizable() True >>> m = Matrix(2, 2, [0, 1, 0, 0]) >>> m Matrix([ [0, 1], [0, 0]]) >>> m.is_diagonalizable() False >>> m = Matrix(2, 2, [0, 1, -1, 0]) >>> m Matrix([ [ 0, 1], [-1, 0]]) >>> m.is_diagonalizable() True >>> m.is_diagonalizable(reals_only=True) False See Also ======== is_diagonal diagonalize """ if 'clear_cache' in kwargs: SymPyDeprecationWarning( feature='clear_cache', deprecated_since_version=1.4, issue=15887 ).warn() if 'clear_subproducts' in kwargs: SymPyDeprecationWarning( feature='clear_subproducts', deprecated_since_version=1.4, issue=15887 ).warn() if not self.is_square: return False if all(e.is_real for e in self) and self.is_symmetric(): # every real symmetric matrix is real diagonalizable return True eigenvecs = self.eigenvects(simplify=True) ret = True for val, mult, basis in eigenvecs: # if we have a complex eigenvalue if reals_only and not val.is_real: ret = False # if the geometric multiplicity doesn't equal the algebraic if mult != len(basis): ret = False return ret def jordan_form(self, calc_transform=True, **kwargs): """Return ``(P, J)`` where `J` is a Jordan block matrix and `P` is a matrix such that ``self == P*J*P**-1`` Parameters ========== calc_transform : bool If ``False``, then only `J` is returned. chop : bool All matrices are convered to exact types when computing eigenvalues and eigenvectors. As a result, there may be approximation errors. If ``chop==True``, these errors will be truncated. Examples ======== >>> from sympy import Matrix >>> m = Matrix([[ 6, 5, -2, -3], [-3, -1, 3, 3], [ 2, 1, -2, -3], [-1, 1, 5, 5]]) >>> P, J = m.jordan_form() >>> J Matrix([ [2, 1, 0, 0], [0, 2, 0, 0], [0, 0, 2, 1], [0, 0, 0, 2]]) See Also ======== jordan_block """ if not self.is_square: raise NonSquareMatrixError("Only square matrices have Jordan forms") chop = kwargs.pop('chop', False) mat = self has_floats = self.has(Float) if has_floats: try: max_prec = max(term._prec for term in self._mat if isinstance(term, Float)) except ValueError: # if no term in the matrix is explicitly a Float calling max() # will throw a error so setting max_prec to default value of 53 max_prec = 53 # setting minimum max_dps to 15 to prevent loss of precision in # matrix containing non evaluated expressions max_dps = max(prec_to_dps(max_prec), 15) def restore_floats(*args): """If ``has_floats`` is `True`, cast all ``args`` as matrices of floats.""" if has_floats: args = [m.evalf(prec=max_dps, chop=chop) for m in args] if len(args) == 1: return args[0] return args # cache calculations for some speedup mat_cache = {} def eig_mat(val, pow): """Cache computations of ``(self - val*I)**pow`` for quick retrieval""" if (val, pow) in mat_cache: return mat_cache[(val, pow)] if (val, pow - 1) in mat_cache: mat_cache[(val, pow)] = mat_cache[(val, pow - 1)] * mat_cache[(val, 1)] else: mat_cache[(val, pow)] = (mat - val*self.eye(self.rows))**pow return mat_cache[(val, pow)] # helper functions def nullity_chain(val, algebraic_multiplicity): """Calculate the sequence [0, nullity(E), nullity(E**2), ...] until it is constant where ``E = self - val*I``""" # mat.rank() is faster than computing the null space, # so use the rank-nullity theorem cols = self.cols ret = [0] nullity = cols - eig_mat(val, 1).rank() i = 2 while nullity != ret[-1]: ret.append(nullity) if nullity == algebraic_multiplicity: break nullity = cols - eig_mat(val, i).rank() i += 1 # Due to issues like #7146 and #15872, SymPy sometimes # gives the wrong rank. In this case, raise an error # instead of returning an incorrect matrix if nullity < ret[-1] or nullity > algebraic_multiplicity: raise MatrixError( "SymPy had encountered an inconsistent " "result while computing Jordan block: " "{}".format(self)) return ret def blocks_from_nullity_chain(d): """Return a list of the size of each Jordan block. If d_n is the nullity of E**n, then the number of Jordan blocks of size n is 2*d_n - d_(n-1) - d_(n+1)""" # d[0] is always the number of columns, so skip past it mid = [2*d[n] - d[n - 1] - d[n + 1] for n in range(1, len(d) - 1)] # d is assumed to plateau with "d[ len(d) ] == d[-1]", so # 2*d_n - d_(n-1) - d_(n+1) == d_n - d_(n-1) end = [d[-1] - d[-2]] if len(d) > 1 else [d[0]] return mid + end def pick_vec(small_basis, big_basis): """Picks a vector from big_basis that isn't in the subspace spanned by small_basis""" if len(small_basis) == 0: return big_basis[0] for v in big_basis: _, pivots = self.hstack(*(small_basis + [v])).echelon_form(with_pivots=True) if pivots[-1] == len(small_basis): return v # roots doesn't like Floats, so replace them with Rationals if has_floats: mat = mat.applyfunc(lambda x: nsimplify(x, rational=True)) # first calculate the jordan block structure eigs = mat.eigenvals() # make sure that we found all the roots by counting # the algebraic multiplicity if sum(m for m in eigs.values()) != mat.cols: raise MatrixError("Could not compute eigenvalues for {}".format(mat)) # most matrices have distinct eigenvalues # and so are diagonalizable. In this case, don't # do extra work! if len(eigs.keys()) == mat.cols: blocks = list(sorted(eigs.keys(), key=default_sort_key)) jordan_mat = mat.diag(*blocks) if not calc_transform: return restore_floats(jordan_mat) jordan_basis = [eig_mat(eig, 1).nullspace()[0] for eig in blocks] basis_mat = mat.hstack(*jordan_basis) return restore_floats(basis_mat, jordan_mat) block_structure = [] for eig in sorted(eigs.keys(), key=default_sort_key): algebraic_multiplicity = eigs[eig] chain = nullity_chain(eig, algebraic_multiplicity) block_sizes = blocks_from_nullity_chain(chain) # if block_sizes == [a, b, c, ...], then the number of # Jordan blocks of size 1 is a, of size 2 is b, etc. # create an array that has (eig, block_size) with one # entry for each block size_nums = [(i+1, num) for i, num in enumerate(block_sizes)] # we expect larger Jordan blocks to come earlier size_nums.reverse() block_structure.extend( (eig, size) for size, num in size_nums for _ in range(num)) jordan_form_size = sum(size for eig, size in block_structure) if jordan_form_size != self.rows: raise MatrixError( "SymPy had encountered an inconsistent result while " "computing Jordan block. : {}".format(self)) blocks = (mat.jordan_block(size=size, eigenvalue=eig) for eig, size in block_structure) jordan_mat = mat.diag(*blocks) if not calc_transform: return restore_floats(jordan_mat) # For each generalized eigenspace, calculate a basis. # We start by looking for a vector in null( (A - eig*I)**n ) # which isn't in null( (A - eig*I)**(n-1) ) where n is # the size of the Jordan block # # Ideally we'd just loop through block_structure and # compute each generalized eigenspace. However, this # causes a lot of unneeded computation. Instead, we # go through the eigenvalues separately, since we know # their generalized eigenspaces must have bases that # are linearly independent. jordan_basis = [] for eig in sorted(eigs.keys(), key=default_sort_key): eig_basis = [] for block_eig, size in block_structure: if block_eig != eig: continue null_big = (eig_mat(eig, size)).nullspace() null_small = (eig_mat(eig, size - 1)).nullspace() # we want to pick something that is in the big basis # and not the small, but also something that is independent # of any other generalized eigenvectors from a different # generalized eigenspace sharing the same eigenvalue. vec = pick_vec(null_small + eig_basis, null_big) new_vecs = [(eig_mat(eig, i))*vec for i in range(size)] eig_basis.extend(new_vecs) jordan_basis.extend(reversed(new_vecs)) basis_mat = mat.hstack(*jordan_basis) return restore_floats(basis_mat, jordan_mat) def left_eigenvects(self, **flags): """Returns left eigenvectors and eigenvalues. This function returns the list of triples (eigenval, multiplicity, basis) for the left eigenvectors. Options are the same as for eigenvects(), i.e. the ``**flags`` arguments gets passed directly to eigenvects(). Examples ======== >>> from sympy import Matrix >>> M = Matrix([[0, 1, 1], [1, 0, 0], [1, 1, 1]]) >>> M.eigenvects() [(-1, 1, [Matrix([ [-1], [ 1], [ 0]])]), (0, 1, [Matrix([ [ 0], [-1], [ 1]])]), (2, 1, [Matrix([ [2/3], [1/3], [ 1]])])] >>> M.left_eigenvects() [(-1, 1, [Matrix([[-2, 1, 1]])]), (0, 1, [Matrix([[-1, -1, 1]])]), (2, 1, [Matrix([[1, 1, 1]])])] """ eigs = self.transpose().eigenvects(**flags) return [(val, mult, [l.transpose() for l in basis]) for val, mult, basis in eigs] def singular_values(self): """Compute the singular values of a Matrix Examples ======== >>> from sympy import Matrix, Symbol >>> x = Symbol('x', real=True) >>> A = Matrix([[0, 1, 0], [0, x, 0], [-1, 0, 0]]) >>> A.singular_values() [sqrt(x**2 + 1), 1, 0] See Also ======== condition_number """ mat = self if self.rows >= self.cols: valmultpairs = (mat.H * mat).eigenvals() else: valmultpairs = (mat * mat.H).eigenvals() # Expands result from eigenvals into a simple list vals = [] for k, v in valmultpairs.items(): vals += [sqrt(k)] * v # dangerous! same k in several spots! # Pad with zeros if singular values are computed in reverse way, # to give consistent format. if len(vals) < self.cols: vals += [S.Zero] * (self.cols - len(vals)) # sort them in descending order vals.sort(reverse=True, key=default_sort_key) return vals class MatrixCalculus(MatrixCommon): """Provides calculus-related matrix operations.""" def diff(self, *args, **kwargs): """Calculate the derivative of each element in the matrix. ``args`` will be passed to the ``integrate`` function. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy.abc import x, y >>> M = Matrix([[x, y], [1, 0]]) >>> M.diff(x) Matrix([ [1, 0], [0, 0]]) See Also ======== integrate limit """ # XXX this should be handled here rather than in Derivative from sympy import Derivative kwargs.setdefault('evaluate', True) deriv = Derivative(self, *args, evaluate=True) if not isinstance(self, Basic): return deriv.as_mutable() else: return deriv def _eval_derivative(self, arg): return self.applyfunc(lambda x: x.diff(arg)) def _accept_eval_derivative(self, s): return s._visit_eval_derivative_array(self) def _visit_eval_derivative_scalar(self, base): # Types are (base: scalar, self: matrix) return self.applyfunc(lambda x: base.diff(x)) def _visit_eval_derivative_array(self, base): # Types are (base: array/matrix, self: matrix) from sympy import derive_by_array return derive_by_array(base, self) def integrate(self, *args): """Integrate each element of the matrix. ``args`` will be passed to the ``integrate`` function. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy.abc import x, y >>> M = Matrix([[x, y], [1, 0]]) >>> M.integrate((x, )) Matrix([ [x**2/2, x*y], [ x, 0]]) >>> M.integrate((x, 0, 2)) Matrix([ [2, 2*y], [2, 0]]) See Also ======== limit diff """ return self.applyfunc(lambda x: x.integrate(*args)) def jacobian(self, X): """Calculates the Jacobian matrix (derivative of a vector-valued function). Parameters ========== ``self`` : vector of expressions representing functions f_i(x_1, ..., x_n). X : set of x_i's in order, it can be a list or a Matrix Both ``self`` and X can be a row or a column matrix in any order (i.e., jacobian() should always work). Examples ======== >>> from sympy import sin, cos, Matrix >>> from sympy.abc import rho, phi >>> X = Matrix([rho*cos(phi), rho*sin(phi), rho**2]) >>> Y = Matrix([rho, phi]) >>> X.jacobian(Y) Matrix([ [cos(phi), -rho*sin(phi)], [sin(phi), rho*cos(phi)], [ 2*rho, 0]]) >>> X = Matrix([rho*cos(phi), rho*sin(phi)]) >>> X.jacobian(Y) Matrix([ [cos(phi), -rho*sin(phi)], [sin(phi), rho*cos(phi)]]) See Also ======== hessian wronskian """ if not isinstance(X, MatrixBase): X = self._new(X) # Both X and ``self`` can be a row or a column matrix, so we need to make # sure all valid combinations work, but everything else fails: if self.shape[0] == 1: m = self.shape[1] elif self.shape[1] == 1: m = self.shape[0] else: raise TypeError("``self`` must be a row or a column matrix") if X.shape[0] == 1: n = X.shape[1] elif X.shape[1] == 1: n = X.shape[0] else: raise TypeError("X must be a row or a column matrix") # m is the number of functions and n is the number of variables # computing the Jacobian is now easy: return self._new(m, n, lambda j, i: self[j].diff(X[i])) def limit(self, *args): """Calculate the limit of each element in the matrix. ``args`` will be passed to the ``limit`` function. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy.abc import x, y >>> M = Matrix([[x, y], [1, 0]]) >>> M.limit(x, 2) Matrix([ [2, y], [1, 0]]) See Also ======== integrate diff """ return self.applyfunc(lambda x: x.limit(*args)) # https://github.com/sympy/sympy/pull/12854 class MatrixDeprecated(MatrixCommon): """A class to house deprecated matrix methods.""" def _legacy_array_dot(self, b): """Compatibility function for deprecated behavior of ``matrix.dot(vector)`` """ from .dense import Matrix if not isinstance(b, MatrixBase): if is_sequence(b): if len(b) != self.cols and len(b) != self.rows: raise ShapeError( "Dimensions incorrect for dot product: %s, %s" % ( self.shape, len(b))) return self.dot(Matrix(b)) else: raise TypeError( "`b` must be an ordered iterable or Matrix, not %s." % type(b)) mat = self if mat.cols == b.rows: if b.cols != 1: mat = mat.T b = b.T prod = flatten((mat * b).tolist()) return prod if mat.cols == b.cols: return mat.dot(b.T) elif mat.rows == b.rows: return mat.T.dot(b) else: raise ShapeError("Dimensions incorrect for dot product: %s, %s" % ( self.shape, b.shape)) def berkowitz_charpoly(self, x=Dummy('lambda'), simplify=_simplify): return self.charpoly(x=x) def berkowitz_det(self): """Computes determinant using Berkowitz method. See Also ======== det berkowitz """ return self.det(method='berkowitz') def berkowitz_eigenvals(self, **flags): """Computes eigenvalues of a Matrix using Berkowitz method. See Also ======== berkowitz """ return self.eigenvals(**flags) def berkowitz_minors(self): """Computes principal minors using Berkowitz method. See Also ======== berkowitz """ sign, minors = S.One, [] for poly in self.berkowitz(): minors.append(sign * poly[-1]) sign = -sign return tuple(minors) def berkowitz(self): from sympy.matrices import zeros berk = ((1,),) if not self: return berk if not self.is_square: raise NonSquareMatrixError() A, N = self, self.rows transforms = [0] * (N - 1) for n in range(N, 1, -1): T, k = zeros(n + 1, n), n - 1 R, C = -A[k, :k], A[:k, k] A, a = A[:k, :k], -A[k, k] items = [C] for i in range(0, n - 2): items.append(A * items[i]) for i, B in enumerate(items): items[i] = (R * B)[0, 0] items = [S.One, a] + items for i in range(n): T[i:, i] = items[:n - i + 1] transforms[k - 1] = T polys = [self._new([S.One, -A[0, 0]])] for i, T in enumerate(transforms): polys.append(T * polys[i]) return berk + tuple(map(tuple, polys)) def cofactorMatrix(self, method="berkowitz"): return self.cofactor_matrix(method=method) def det_bareis(self): return self.det(method='bareiss') def det_bareiss(self): """Compute matrix determinant using Bareiss' fraction-free algorithm which is an extension of the well known Gaussian elimination method. This approach is best suited for dense symbolic matrices and will result in a determinant with minimal number of fractions. It means that less term rewriting is needed on resulting formulae. TODO: Implement algorithm for sparse matrices (SFF), http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps. See Also ======== det berkowitz_det """ return self.det(method='bareiss') def det_LU_decomposition(self): """Compute matrix determinant using LU decomposition Note that this method fails if the LU decomposition itself fails. In particular, if the matrix has no inverse this method will fail. TODO: Implement algorithm for sparse matrices (SFF), http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps. See Also ======== det det_bareiss berkowitz_det """ return self.det(method='lu') def jordan_cell(self, eigenval, n): return self.jordan_block(size=n, eigenvalue=eigenval) def jordan_cells(self, calc_transformation=True): P, J = self.jordan_form() return P, J.get_diag_blocks() def minorEntry(self, i, j, method="berkowitz"): return self.minor(i, j, method=method) def minorMatrix(self, i, j): return self.minor_submatrix(i, j) def permuteBkwd(self, perm): """Permute the rows of the matrix with the given permutation in reverse.""" return self.permute_rows(perm, direction='backward') def permuteFwd(self, perm): """Permute the rows of the matrix with the given permutation.""" return self.permute_rows(perm, direction='forward') class MatrixBase(MatrixDeprecated, MatrixCalculus, MatrixEigen, MatrixCommon): """Base class for matrix objects.""" # Added just for numpy compatibility __array_priority__ = 11 is_Matrix = True _class_priority = 3 _sympify = staticmethod(sympify) __hash__ = None # Mutable # Defined here the same as on Basic. # We don't define _repr_png_ here because it would add a large amount of # data to any notebook containing SymPy expressions, without adding # anything useful to the notebook. It can still enabled manually, e.g., # for the qtconsole, with init_printing(). def _repr_latex_(self): """ IPython/Jupyter LaTeX printing To change the behavior of this (e.g., pass in some settings to LaTeX), use init_printing(). init_printing() will also enable LaTeX printing for built in numeric types like ints and container types that contain SymPy objects, like lists and dictionaries of expressions. """ from sympy.printing.latex import latex s = latex(self, mode='plain') return "$\\displaystyle %s$" % s _repr_latex_orig = _repr_latex_ def __array__(self, dtype=object): from .dense import matrix2numpy return matrix2numpy(self, dtype=dtype) def __getattr__(self, attr): if attr in ('diff', 'integrate', 'limit'): def doit(*args): item_doit = lambda item: getattr(item, attr)(*args) return self.applyfunc(item_doit) return doit else: raise AttributeError( "%s has no attribute %s." % (self.__class__.__name__, attr)) def __len__(self): """Return the number of elements of ``self``. Implemented mainly so bool(Matrix()) == False. """ return self.rows * self.cols def __mathml__(self): mml = "" for i in range(self.rows): mml += "<matrixrow>" for j in range(self.cols): mml += self[i, j].__mathml__() mml += "</matrixrow>" return "<matrix>" + mml + "</matrix>" # needed for python 2 compatibility def __ne__(self, other): return not self == other def _matrix_pow_by_jordan_blocks(self, num): from sympy.matrices import diag, MutableMatrix from sympy import binomial def jordan_cell_power(jc, n): N = jc.shape[0] l = jc[0, 0] if l == 0 and (n < N - 1) != False: raise ValueError("Matrix det == 0; not invertible") elif l == 0 and N > 1 and n % 1 != 0: raise ValueError("Non-integer power cannot be evaluated") for i in range(N): for j in range(N-i): bn = binomial(n, i) if isinstance(bn, binomial): bn = bn._eval_expand_func() jc[j, i+j] = l**(n-i)*bn P, J = self.jordan_form() jordan_cells = J.get_diag_blocks() # Make sure jordan_cells matrices are mutable: jordan_cells = [MutableMatrix(j) for j in jordan_cells] for j in jordan_cells: jordan_cell_power(j, num) return self._new(P*diag(*jordan_cells)*P.inv()) def __repr__(self): return sstr(self) def __str__(self): if self.rows == 0 or self.cols == 0: return 'Matrix(%s, %s, [])' % (self.rows, self.cols) return "Matrix(%s)" % str(self.tolist()) def _diagonalize_clear_subproducts(self): del self._is_symbolic del self._is_symmetric del self._eigenvects def _format_str(self, printer=None): if not printer: from sympy.printing.str import StrPrinter printer = StrPrinter() # Handle zero dimensions: if self.rows == 0 or self.cols == 0: return 'Matrix(%s, %s, [])' % (self.rows, self.cols) if self.rows == 1: return "Matrix([%s])" % self.table(printer, rowsep=',\n') return "Matrix([\n%s])" % self.table(printer, rowsep=',\n') @classmethod def _handle_creation_inputs(cls, *args, **kwargs): """Return the number of rows, cols and flat matrix elements. Examples ======== >>> from sympy import Matrix, I Matrix can be constructed as follows: * from a nested list of iterables >>> Matrix( ((1, 2+I), (3, 4)) ) Matrix([ [1, 2 + I], [3, 4]]) * from un-nested iterable (interpreted as a column) >>> Matrix( [1, 2] ) Matrix([ [1], [2]]) * from un-nested iterable with dimensions >>> Matrix(1, 2, [1, 2] ) Matrix([[1, 2]]) * from no arguments (a 0 x 0 matrix) >>> Matrix() Matrix(0, 0, []) * from a rule >>> Matrix(2, 2, lambda i, j: i/(j + 1) ) Matrix([ [0, 0], [1, 1/2]]) """ from sympy.matrices.sparse import SparseMatrix flat_list = None if len(args) == 1: # Matrix(SparseMatrix(...)) if isinstance(args[0], SparseMatrix): return args[0].rows, args[0].cols, flatten(args[0].tolist()) # Matrix(Matrix(...)) elif isinstance(args[0], MatrixBase): return args[0].rows, args[0].cols, args[0]._mat # Matrix(MatrixSymbol('X', 2, 2)) elif isinstance(args[0], Basic) and args[0].is_Matrix: return args[0].rows, args[0].cols, args[0].as_explicit()._mat # Matrix(numpy.ones((2, 2))) elif hasattr(args[0], "__array__"): # NumPy array or matrix or some other object that implements # __array__. So let's first use this method to get a # numpy.array() and then make a python list out of it. arr = args[0].__array__() if len(arr.shape) == 2: rows, cols = arr.shape[0], arr.shape[1] flat_list = [cls._sympify(i) for i in arr.ravel()] return rows, cols, flat_list elif len(arr.shape) == 1: rows, cols = arr.shape[0], 1 flat_list = [S.Zero] * rows for i in range(len(arr)): flat_list[i] = cls._sympify(arr[i]) return rows, cols, flat_list else: raise NotImplementedError( "SymPy supports just 1D and 2D matrices") # Matrix([1, 2, 3]) or Matrix([[1, 2], [3, 4]]) elif is_sequence(args[0]) \ and not isinstance(args[0], DeferredVector): in_mat = [] ncol = set() for row in args[0]: if isinstance(row, MatrixBase): in_mat.extend(row.tolist()) if row.cols or row.rows: # only pay attention if it's not 0x0 ncol.add(row.cols) else: in_mat.append(row) try: ncol.add(len(row)) except TypeError: ncol.add(-1) if len(ncol) > 1: nolen = False if -1 in ncol: ncol.remove(-1) nolen = True nums = ', '.join(sorted([str(i) for i in ncol])) if nolen: nums = 'none, ' + nums raise ValueError( "Got rows of variable lengths: %s" % nums) if -1 in ncol: ncol = [1] cols = ncol.pop() if ncol else 0 rows = len(in_mat) if cols else 0 if not rows: flat_list = [] else: # how many of the rows are sequences? All or none are ok. nseq = sum([is_sequence(i) for i in in_mat]) if not nseq: cols = 1 flat_list = [cls._sympify(i) for i in in_mat] elif nseq == rows: flat_list = [cls._sympify(in_mat[j][i]) for j in range(rows) for i in range(cols)] else: pass # flat_list is still None; error raised below elif len(args) == 3: rows = as_int(args[0]) cols = as_int(args[1]) if rows < 0 or cols < 0: raise ValueError("Cannot create a {} x {} matrix. " "Both dimensions must be positive".format(rows, cols)) # Matrix(2, 2, lambda i, j: i+j) if len(args) == 3 and isinstance(args[2], Callable): op = args[2] flat_list = [] for i in range(rows): flat_list.extend( [cls._sympify(op(cls._sympify(i), cls._sympify(j))) for j in range(cols)]) # Matrix(2, 2, [1, 2, 3, 4]) elif len(args) == 3 and is_sequence(args[2]): flat_list = args[2] if len(flat_list) != rows * cols: raise ValueError( 'List length should be equal to rows*columns') flat_list = [cls._sympify(i) for i in flat_list] # Matrix() elif len(args) == 0: # Empty Matrix rows = cols = 0 flat_list = [] if flat_list is None: raise TypeError(filldedent(''' Data type not understood; expecting list of lists or lists of values.''')) return rows, cols, flat_list def _setitem(self, key, value): """Helper to set value at location given by key. Examples ======== >>> from sympy import Matrix, I, zeros, ones >>> m = Matrix(((1, 2+I), (3, 4))) >>> m Matrix([ [1, 2 + I], [3, 4]]) >>> m[1, 0] = 9 >>> m Matrix([ [1, 2 + I], [9, 4]]) >>> m[1, 0] = [[0, 1]] To replace row r you assign to position r*m where m is the number of columns: >>> M = zeros(4) >>> m = M.cols >>> M[3*m] = ones(1, m)*2; M Matrix([ [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [2, 2, 2, 2]]) And to replace column c you can assign to position c: >>> M[2] = ones(m, 1)*4; M Matrix([ [0, 0, 4, 0], [0, 0, 4, 0], [0, 0, 4, 0], [2, 2, 4, 2]]) """ from .dense import Matrix is_slice = isinstance(key, slice) i, j = key = self.key2ij(key) is_mat = isinstance(value, MatrixBase) if type(i) is slice or type(j) is slice: if is_mat: self.copyin_matrix(key, value) return if not isinstance(value, Expr) and is_sequence(value): self.copyin_list(key, value) return raise ValueError('unexpected value: %s' % value) else: if (not is_mat and not isinstance(value, Basic) and is_sequence(value)): value = Matrix(value) is_mat = True if is_mat: if is_slice: key = (slice(*divmod(i, self.cols)), slice(*divmod(j, self.cols))) else: key = (slice(i, i + value.rows), slice(j, j + value.cols)) self.copyin_matrix(key, value) else: return i, j, self._sympify(value) return def add(self, b): """Return self + b """ return self + b def cholesky_solve(self, rhs): """Solves ``Ax = B`` using Cholesky decomposition, for a general square non-singular matrix. For a non-square matrix with rows > cols, the least squares solution is returned. See Also ======== lower_triangular_solve upper_triangular_solve gauss_jordan_solve diagonal_solve LDLsolve LUsolve QRsolve pinv_solve """ hermitian = True if self.is_symmetric(): hermitian = False L = self._cholesky(hermitian=hermitian) elif self.is_hermitian: L = self._cholesky(hermitian=hermitian) elif self.rows >= self.cols: L = (self.H * self)._cholesky(hermitian=hermitian) rhs = self.H * rhs else: raise NotImplementedError('Under-determined System. ' 'Try M.gauss_jordan_solve(rhs)') Y = L._lower_triangular_solve(rhs) if hermitian: return (L.H)._upper_triangular_solve(Y) else: return (L.T)._upper_triangular_solve(Y) def cholesky(self, hermitian=True): """Returns the Cholesky-type decomposition L of a matrix A such that L * L.H == A if hermitian flag is True, or L * L.T == A if hermitian is False. A must be a Hermitian positive-definite matrix if hermitian is True, or a symmetric matrix if it is False. Examples ======== >>> from sympy.matrices import Matrix >>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) >>> A.cholesky() Matrix([ [ 5, 0, 0], [ 3, 3, 0], [-1, 1, 3]]) >>> A.cholesky() * A.cholesky().T Matrix([ [25, 15, -5], [15, 18, 0], [-5, 0, 11]]) The matrix can have complex entries: >>> from sympy import I >>> A = Matrix(((9, 3*I), (-3*I, 5))) >>> A.cholesky() Matrix([ [ 3, 0], [-I, 2]]) >>> A.cholesky() * A.cholesky().H Matrix([ [ 9, 3*I], [-3*I, 5]]) Non-hermitian Cholesky-type decomposition may be useful when the matrix is not positive-definite. >>> A = Matrix([[1, 2], [2, 1]]) >>> L = A.cholesky(hermitian=False) >>> L Matrix([ [1, 0], [2, sqrt(3)*I]]) >>> L*L.T == A True See Also ======== LDLdecomposition LUdecomposition QRdecomposition """ if not self.is_square: raise NonSquareMatrixError("Matrix must be square.") if hermitian and not self.is_hermitian: raise ValueError("Matrix must be Hermitian.") if not hermitian and not self.is_symmetric(): raise ValueError("Matrix must be symmetric.") return self._cholesky(hermitian=hermitian) def condition_number(self): """Returns the condition number of a matrix. This is the maximum singular value divided by the minimum singular value Examples ======== >>> from sympy import Matrix, S >>> A = Matrix([[1, 0, 0], [0, 10, 0], [0, 0, S.One/10]]) >>> A.condition_number() 100 See Also ======== singular_values """ if not self: return S.Zero singularvalues = self.singular_values() return Max(*singularvalues) / Min(*singularvalues) def copy(self): """ Returns the copy of a matrix. Examples ======== >>> from sympy import Matrix >>> A = Matrix(2, 2, [1, 2, 3, 4]) >>> A.copy() Matrix([ [1, 2], [3, 4]]) """ return self._new(self.rows, self.cols, self._mat) def cross(self, b): r""" Return the cross product of ``self`` and ``b`` relaxing the condition of compatible dimensions: if each has 3 elements, a matrix of the same type and shape as ``self`` will be returned. If ``b`` has the same shape as ``self`` then common identities for the cross product (like `a \times b = - b \times a`) will hold. Parameters ========== b : 3x1 or 1x3 Matrix See Also ======== dot multiply multiply_elementwise """ if not is_sequence(b): raise TypeError( "`b` must be an ordered iterable or Matrix, not %s." % type(b)) if not (self.rows * self.cols == b.rows * b.cols == 3): raise ShapeError("Dimensions incorrect for cross product: %s x %s" % ((self.rows, self.cols), (b.rows, b.cols))) else: return self._new(self.rows, self.cols, ( (self[1] * b[2] - self[2] * b[1]), (self[2] * b[0] - self[0] * b[2]), (self[0] * b[1] - self[1] * b[0]))) @property def D(self): """Return Dirac conjugate (if ``self.rows == 4``). Examples ======== >>> from sympy import Matrix, I, eye >>> m = Matrix((0, 1 + I, 2, 3)) >>> m.D Matrix([[0, 1 - I, -2, -3]]) >>> m = (eye(4) + I*eye(4)) >>> m[0, 3] = 2 >>> m.D Matrix([ [1 - I, 0, 0, 0], [ 0, 1 - I, 0, 0], [ 0, 0, -1 + I, 0], [ 2, 0, 0, -1 + I]]) If the matrix does not have 4 rows an AttributeError will be raised because this property is only defined for matrices with 4 rows. >>> Matrix(eye(2)).D Traceback (most recent call last): ... AttributeError: Matrix has no attribute D. See Also ======== conjugate: By-element conjugation H: Hermite conjugation """ from sympy.physics.matrices import mgamma if self.rows != 4: # In Python 3.2, properties can only return an AttributeError # so we can't raise a ShapeError -- see commit which added the # first line of this inline comment. Also, there is no need # for a message since MatrixBase will raise the AttributeError raise AttributeError return self.H * mgamma(0) def diagonal_solve(self, rhs): """Solves ``Ax = B`` efficiently, where A is a diagonal Matrix, with non-zero diagonal entries. Examples ======== >>> from sympy.matrices import Matrix, eye >>> A = eye(2)*2 >>> B = Matrix([[1, 2], [3, 4]]) >>> A.diagonal_solve(B) == B/2 True See Also ======== lower_triangular_solve upper_triangular_solve gauss_jordan_solve cholesky_solve LDLsolve LUsolve QRsolve pinv_solve """ if not self.is_diagonal(): raise TypeError("Matrix should be diagonal") if rhs.rows != self.rows: raise TypeError("Size mis-match") return self._diagonal_solve(rhs) def dot(self, b, hermitian=None, conjugate_convention=None): """Return the dot or inner product of two vectors of equal length. Here ``self`` must be a ``Matrix`` of size 1 x n or n x 1, and ``b`` must be either a matrix of size 1 x n, n x 1, or a list/tuple of length n. A scalar is returned. By default, ``dot`` does not conjugate ``self`` or ``b``, even if there are complex entries. Set ``hermitian=True`` (and optionally a ``conjugate_convention``) to compute the hermitian inner product. Possible kwargs are ``hermitian`` and ``conjugate_convention``. If ``conjugate_convention`` is ``"left"``, ``"math"`` or ``"maths"``, the conjugate of the first vector (``self``) is used. If ``"right"`` or ``"physics"`` is specified, the conjugate of the second vector ``b`` is used. Examples ======== >>> from sympy import Matrix >>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> v = Matrix([1, 1, 1]) >>> M.row(0).dot(v) 6 >>> M.col(0).dot(v) 12 >>> v = [3, 2, 1] >>> M.row(0).dot(v) 10 >>> from sympy import I >>> q = Matrix([1*I, 1*I, 1*I]) >>> q.dot(q, hermitian=False) -3 >>> q.dot(q, hermitian=True) 3 >>> q1 = Matrix([1, 1, 1*I]) >>> q.dot(q1, hermitian=True, conjugate_convention="maths") 1 - 2*I >>> q.dot(q1, hermitian=True, conjugate_convention="physics") 1 + 2*I See Also ======== cross multiply multiply_elementwise """ from .dense import Matrix if not isinstance(b, MatrixBase): if is_sequence(b): if len(b) != self.cols and len(b) != self.rows: raise ShapeError( "Dimensions incorrect for dot product: %s, %s" % ( self.shape, len(b))) return self.dot(Matrix(b)) else: raise TypeError( "`b` must be an ordered iterable or Matrix, not %s." % type(b)) mat = self if (1 not in mat.shape) or (1 not in b.shape) : SymPyDeprecationWarning( feature="Dot product of non row/column vectors", issue=13815, deprecated_since_version="1.2", useinstead="* to take matrix products").warn() return mat._legacy_array_dot(b) if len(mat) != len(b): raise ShapeError("Dimensions incorrect for dot product: %s, %s" % (self.shape, b.shape)) n = len(mat) if mat.shape != (1, n): mat = mat.reshape(1, n) if b.shape != (n, 1): b = b.reshape(n, 1) # Now ``mat`` is a row vector and ``b`` is a column vector. # If it so happens that only conjugate_convention is passed # then automatically set hermitian to True. If only hermitian # is true but no conjugate_convention is not passed then # automatically set it to ``"maths"`` if conjugate_convention is not None and hermitian is None: hermitian = True if hermitian and conjugate_convention is None: conjugate_convention = "maths" if hermitian == True: if conjugate_convention in ("maths", "left", "math"): mat = mat.conjugate() elif conjugate_convention in ("physics", "right"): b = b.conjugate() else: raise ValueError("Unknown conjugate_convention was entered." " conjugate_convention must be one of the" " following: math, maths, left, physics or right.") return (mat * b)[0] def dual(self): """Returns the dual of a matrix, which is: ``(1/2)*levicivita(i, j, k, l)*M(k, l)`` summed over indices `k` and `l` Since the levicivita method is anti_symmetric for any pairwise exchange of indices, the dual of a symmetric matrix is the zero matrix. Strictly speaking the dual defined here assumes that the 'matrix' `M` is a contravariant anti_symmetric second rank tensor, so that the dual is a covariant second rank tensor. """ from sympy import LeviCivita from sympy.matrices import zeros M, n = self[:, :], self.rows work = zeros(n) if self.is_symmetric(): return work for i in range(1, n): for j in range(1, n): acum = 0 for k in range(1, n): acum += LeviCivita(i, j, 0, k) * M[0, k] work[i, j] = acum work[j, i] = -acum for l in range(1, n): acum = 0 for a in range(1, n): for b in range(1, n): acum += LeviCivita(0, l, a, b) * M[a, b] acum /= 2 work[0, l] = -acum work[l, 0] = acum return work def exp(self): """Return the exponentiation of a square matrix.""" if not self.is_square: raise NonSquareMatrixError( "Exponentiation is valid only for square matrices") try: P, J = self.jordan_form() cells = J.get_diag_blocks() except MatrixError: raise NotImplementedError( "Exponentiation is implemented only for matrices for which the Jordan normal form can be computed") def _jblock_exponential(b): # This function computes the matrix exponential for one single Jordan block nr = b.rows l = b[0, 0] if nr == 1: res = exp(l) else: from sympy import eye # extract the diagonal part d = b[0, 0] * eye(nr) # and the nilpotent part n = b - d # compute its exponential nex = eye(nr) for i in range(1, nr): nex = nex + n ** i / factorial(i) # combine the two parts res = exp(b[0, 0]) * nex return (res) blocks = list(map(_jblock_exponential, cells)) from sympy.matrices import diag from sympy import re eJ = diag(*blocks) # n = self.rows ret = P * eJ * P.inv() if all(value.is_real for value in self.values()): return type(self)(re(ret)) else: return type(self)(ret) def gauss_jordan_solve(self, B, freevar=False): """ Solves ``Ax = B`` using Gauss Jordan elimination. There may be zero, one, or infinite solutions. If one solution exists, it will be returned. If infinite solutions exist, it will be returned parametrically. If no solutions exist, It will throw ValueError. Parameters ========== B : Matrix The right hand side of the equation to be solved for. Must have the same number of rows as matrix A. freevar : List If the system is underdetermined (e.g. A has more columns than rows), infinite solutions are possible, in terms of arbitrary values of free variables. Then the index of the free variables in the solutions (column Matrix) will be returned by freevar, if the flag `freevar` is set to `True`. Returns ======= x : Matrix The matrix that will satisfy ``Ax = B``. Will have as many rows as matrix A has columns, and as many columns as matrix B. params : Matrix If the system is underdetermined (e.g. A has more columns than rows), infinite solutions are possible, in terms of arbitrary parameters. These arbitrary parameters are returned as params Matrix. Examples ======== >>> from sympy import Matrix >>> A = Matrix([[1, 2, 1, 1], [1, 2, 2, -1], [2, 4, 0, 6]]) >>> B = Matrix([7, 12, 4]) >>> sol, params = A.gauss_jordan_solve(B) >>> sol Matrix([ [-2*tau0 - 3*tau1 + 2], [ tau0], [ 2*tau1 + 5], [ tau1]]) >>> params Matrix([ [tau0], [tau1]]) >>> taus_zeroes = { tau:0 for tau in params } >>> sol_unique = sol.xreplace(taus_zeroes) >>> sol_unique Matrix([ [2], [0], [5], [0]]) >>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 10]]) >>> B = Matrix([3, 6, 9]) >>> sol, params = A.gauss_jordan_solve(B) >>> sol Matrix([ [-1], [ 2], [ 0]]) >>> params Matrix(0, 1, []) >>> A = Matrix([[2, -7], [-1, 4]]) >>> B = Matrix([[-21, 3], [12, -2]]) >>> sol, params = A.gauss_jordan_solve(B) >>> sol Matrix([ [0, -2], [3, -1]]) >>> params Matrix(0, 2, []) See Also ======== lower_triangular_solve upper_triangular_solve cholesky_solve diagonal_solve LDLsolve LUsolve QRsolve pinv References ========== .. [1] https://en.wikipedia.org/wiki/Gaussian_elimination """ from sympy.matrices import Matrix, zeros aug = self.hstack(self.copy(), B.copy()) B_cols = B.cols row, col = aug[:, :-B_cols].shape # solve by reduced row echelon form A, pivots = aug.rref(simplify=True) A, v = A[:, :-B_cols], A[:, -B_cols:] pivots = list(filter(lambda p: p < col, pivots)) rank = len(pivots) # Bring to block form permutation = Matrix(range(col)).T for i, c in enumerate(pivots): permutation.col_swap(i, c) # check for existence of solutions # rank of aug Matrix should be equal to rank of coefficient matrix if not v[rank:, :].is_zero: raise ValueError("Linear system has no solution") # Get index of free symbols (free parameters) free_var_index = permutation[ len(pivots):] # non-pivots columns are free variables # Free parameters # what are current unnumbered free symbol names? name = _uniquely_named_symbol('tau', aug, compare=lambda i: str(i).rstrip('1234567890')).name gen = numbered_symbols(name) tau = Matrix([next(gen) for k in range((col - rank)*B_cols)]).reshape( col - rank, B_cols) # Full parametric solution V = A[:rank,:] for c in reversed(pivots): V.col_del(c) vt = v[:rank, :] free_sol = tau.vstack(vt - V * tau, tau) # Undo permutation sol = zeros(col, B_cols) for k in range(col): sol[permutation[k], :] = free_sol[k,:] if freevar: return sol, tau, free_var_index else: return sol, tau def inv_mod(self, m): r""" Returns the inverse of the matrix `K` (mod `m`), if it exists. Method to find the matrix inverse of `K` (mod `m`) implemented in this function: * Compute `\mathrm{adj}(K) = \mathrm{cof}(K)^t`, the adjoint matrix of `K`. * Compute `r = 1/\mathrm{det}(K) \pmod m`. * `K^{-1} = r\cdot \mathrm{adj}(K) \pmod m`. Examples ======== >>> from sympy import Matrix >>> A = Matrix(2, 2, [1, 2, 3, 4]) >>> A.inv_mod(5) Matrix([ [3, 1], [4, 2]]) >>> A.inv_mod(3) Matrix([ [1, 1], [0, 1]]) """ if not self.is_square: raise NonSquareMatrixError() N = self.cols det_K = self.det() det_inv = None try: det_inv = mod_inverse(det_K, m) except ValueError: raise ValueError('Matrix is not invertible (mod %d)' % m) K_adj = self.adjugate() K_inv = self.__class__(N, N, [det_inv * K_adj[i, j] % m for i in range(N) for j in range(N)]) return K_inv def inverse_ADJ(self, iszerofunc=_iszero): """Calculates the inverse using the adjugate matrix and a determinant. See Also ======== inv inverse_LU inverse_GE """ if not self.is_square: raise NonSquareMatrixError("A Matrix must be square to invert.") d = self.det(method='berkowitz') zero = d.equals(0) if zero is None: # if equals() can't decide, will rref be able to? ok = self.rref(simplify=True)[0] zero = any(iszerofunc(ok[j, j]) for j in range(ok.rows)) if zero: raise ValueError("Matrix det == 0; not invertible.") return self.adjugate() / d def inverse_GE(self, iszerofunc=_iszero): """Calculates the inverse using Gaussian elimination. See Also ======== inv inverse_LU inverse_ADJ """ from .dense import Matrix if not self.is_square: raise NonSquareMatrixError("A Matrix must be square to invert.") big = Matrix.hstack(self.as_mutable(), Matrix.eye(self.rows)) red = big.rref(iszerofunc=iszerofunc, simplify=True)[0] if any(iszerofunc(red[j, j]) for j in range(red.rows)): raise ValueError("Matrix det == 0; not invertible.") return self._new(red[:, big.rows:]) def inverse_LU(self, iszerofunc=_iszero): """Calculates the inverse using LU decomposition. See Also ======== inv inverse_GE inverse_ADJ """ if not self.is_square: raise NonSquareMatrixError() ok = self.rref(simplify=True)[0] if any(iszerofunc(ok[j, j]) for j in range(ok.rows)): raise ValueError("Matrix det == 0; not invertible.") return self.LUsolve(self.eye(self.rows), iszerofunc=_iszero) def inv(self, method=None, **kwargs): """ Return the inverse of a matrix. CASE 1: If the matrix is a dense matrix. Return the matrix inverse using the method indicated (default is Gauss elimination). Parameters ========== method : ('GE', 'LU', or 'ADJ') Notes ===== According to the ``method`` keyword, it calls the appropriate method: GE .... inverse_GE(); default LU .... inverse_LU() ADJ ... inverse_ADJ() See Also ======== inverse_LU inverse_GE inverse_ADJ Raises ------ ValueError If the determinant of the matrix is zero. CASE 2: If the matrix is a sparse matrix. Return the matrix inverse using Cholesky or LDL (default). kwargs ====== method : ('CH', 'LDL') Notes ===== According to the ``method`` keyword, it calls the appropriate method: LDL ... inverse_LDL(); default CH .... inverse_CH() Raises ------ ValueError If the determinant of the matrix is zero. """ if not self.is_square: raise NonSquareMatrixError() if method is not None: kwargs['method'] = method return self._eval_inverse(**kwargs) def is_nilpotent(self): """Checks if a matrix is nilpotent. A matrix B is nilpotent if for some integer k, B**k is a zero matrix. Examples ======== >>> from sympy import Matrix >>> a = Matrix([[0, 0, 0], [1, 0, 0], [1, 1, 0]]) >>> a.is_nilpotent() True >>> a = Matrix([[1, 0, 1], [1, 0, 0], [1, 1, 0]]) >>> a.is_nilpotent() False """ if not self: return True if not self.is_square: raise NonSquareMatrixError( "Nilpotency is valid only for square matrices") x = _uniquely_named_symbol('x', self) p = self.charpoly(x) if p.args[0] == x ** self.rows: return True return False def key2bounds(self, keys): """Converts a key with potentially mixed types of keys (integer and slice) into a tuple of ranges and raises an error if any index is out of ``self``'s range. See Also ======== key2ij """ from sympy.matrices.common import a2idx as a2idx_ # Remove this line after deprecation of a2idx from matrices.py islice, jslice = [isinstance(k, slice) for k in keys] if islice: if not self.rows: rlo = rhi = 0 else: rlo, rhi = keys[0].indices(self.rows)[:2] else: rlo = a2idx_(keys[0], self.rows) rhi = rlo + 1 if jslice: if not self.cols: clo = chi = 0 else: clo, chi = keys[1].indices(self.cols)[:2] else: clo = a2idx_(keys[1], self.cols) chi = clo + 1 return rlo, rhi, clo, chi def key2ij(self, key): """Converts key into canonical form, converting integers or indexable items into valid integers for ``self``'s range or returning slices unchanged. See Also ======== key2bounds """ from sympy.matrices.common import a2idx as a2idx_ # Remove this line after deprecation of a2idx from matrices.py if is_sequence(key): if not len(key) == 2: raise TypeError('key must be a sequence of length 2') return [a2idx_(i, n) if not isinstance(i, slice) else i for i, n in zip(key, self.shape)] elif isinstance(key, slice): return key.indices(len(self))[:2] else: return divmod(a2idx_(key, len(self)), self.cols) def LDLdecomposition(self, hermitian=True): """Returns the LDL Decomposition (L, D) of matrix A, such that L * D * L.H == A if hermitian flag is True, or L * D * L.T == A if hermitian is False. This method eliminates the use of square root. Further this ensures that all the diagonal entries of L are 1. A must be a Hermitian positive-definite matrix if hermitian is True, or a symmetric matrix otherwise. Examples ======== >>> from sympy.matrices import Matrix, eye >>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) >>> L, D = A.LDLdecomposition() >>> L Matrix([ [ 1, 0, 0], [ 3/5, 1, 0], [-1/5, 1/3, 1]]) >>> D Matrix([ [25, 0, 0], [ 0, 9, 0], [ 0, 0, 9]]) >>> L * D * L.T * A.inv() == eye(A.rows) True The matrix can have complex entries: >>> from sympy import I >>> A = Matrix(((9, 3*I), (-3*I, 5))) >>> L, D = A.LDLdecomposition() >>> L Matrix([ [ 1, 0], [-I/3, 1]]) >>> D Matrix([ [9, 0], [0, 4]]) >>> L*D*L.H == A True See Also ======== cholesky LUdecomposition QRdecomposition """ if not self.is_square: raise NonSquareMatrixError("Matrix must be square.") if hermitian and not self.is_hermitian: raise ValueError("Matrix must be Hermitian.") if not hermitian and not self.is_symmetric(): raise ValueError("Matrix must be symmetric.") return self._LDLdecomposition(hermitian=hermitian) def LDLsolve(self, rhs): """Solves ``Ax = B`` using LDL decomposition, for a general square and non-singular matrix. For a non-square matrix with rows > cols, the least squares solution is returned. Examples ======== >>> from sympy.matrices import Matrix, eye >>> A = eye(2)*2 >>> B = Matrix([[1, 2], [3, 4]]) >>> A.LDLsolve(B) == B/2 True See Also ======== LDLdecomposition lower_triangular_solve upper_triangular_solve gauss_jordan_solve cholesky_solve diagonal_solve LUsolve QRsolve pinv_solve """ hermitian = True if self.is_symmetric(): hermitian = False L, D = self.LDLdecomposition(hermitian=hermitian) elif self.is_hermitian: L, D = self.LDLdecomposition(hermitian=hermitian) elif self.rows >= self.cols: L, D = (self.H * self).LDLdecomposition(hermitian=hermitian) rhs = self.H * rhs else: raise NotImplementedError('Under-determined System. ' 'Try M.gauss_jordan_solve(rhs)') Y = L._lower_triangular_solve(rhs) Z = D._diagonal_solve(Y) if hermitian: return (L.H)._upper_triangular_solve(Z) else: return (L.T)._upper_triangular_solve(Z) def lower_triangular_solve(self, rhs): """Solves ``Ax = B``, where A is a lower triangular matrix. See Also ======== upper_triangular_solve gauss_jordan_solve cholesky_solve diagonal_solve LDLsolve LUsolve QRsolve pinv_solve """ if not self.is_square: raise NonSquareMatrixError("Matrix must be square.") if rhs.rows != self.rows: raise ShapeError("Matrices size mismatch.") if not self.is_lower: raise ValueError("Matrix must be lower triangular.") return self._lower_triangular_solve(rhs) def LUdecomposition(self, iszerofunc=_iszero, simpfunc=None, rankcheck=False): """Returns (L, U, perm) where L is a lower triangular matrix with unit diagonal, U is an upper triangular matrix, and perm is a list of row swap index pairs. If A is the original matrix, then A = (L*U).permuteBkwd(perm), and the row permutation matrix P such that P*A = L*U can be computed by P=eye(A.row).permuteFwd(perm). See documentation for LUCombined for details about the keyword argument rankcheck, iszerofunc, and simpfunc. Examples ======== >>> from sympy import Matrix >>> a = Matrix([[4, 3], [6, 3]]) >>> L, U, _ = a.LUdecomposition() >>> L Matrix([ [ 1, 0], [3/2, 1]]) >>> U Matrix([ [4, 3], [0, -3/2]]) See Also ======== cholesky LDLdecomposition QRdecomposition LUdecomposition_Simple LUdecompositionFF LUsolve """ combined, p = self.LUdecomposition_Simple(iszerofunc=iszerofunc, simpfunc=simpfunc, rankcheck=rankcheck) # L is lower triangular ``self.rows x self.rows`` # U is upper triangular ``self.rows x self.cols`` # L has unit diagonal. For each column in combined, the subcolumn # below the diagonal of combined is shared by L. # If L has more columns than combined, then the remaining subcolumns # below the diagonal of L are zero. # The upper triangular portion of L and combined are equal. def entry_L(i, j): if i < j: # Super diagonal entry return S.Zero elif i == j: return S.One elif j < combined.cols: return combined[i, j] # Subdiagonal entry of L with no corresponding # entry in combined return S.Zero def entry_U(i, j): return S.Zero if i > j else combined[i, j] L = self._new(combined.rows, combined.rows, entry_L) U = self._new(combined.rows, combined.cols, entry_U) return L, U, p def LUdecomposition_Simple(self, iszerofunc=_iszero, simpfunc=None, rankcheck=False): """Compute an lu decomposition of m x n matrix A, where P*A = L*U * L is m x m lower triangular with unit diagonal * U is m x n upper triangular * P is an m x m permutation matrix Returns an m x n matrix lu, and an m element list perm where each element of perm is a pair of row exchange indices. The factors L and U are stored in lu as follows: The subdiagonal elements of L are stored in the subdiagonal elements of lu, that is lu[i, j] = L[i, j] whenever i > j. The elements on the diagonal of L are all 1, and are not explicitly stored. U is stored in the upper triangular portion of lu, that is lu[i ,j] = U[i, j] whenever i <= j. The output matrix can be visualized as: Matrix([ [u, u, u, u], [l, u, u, u], [l, l, u, u], [l, l, l, u]]) where l represents a subdiagonal entry of the L factor, and u represents an entry from the upper triangular entry of the U factor. perm is a list row swap index pairs such that if A is the original matrix, then A = (L*U).permuteBkwd(perm), and the row permutation matrix P such that ``P*A = L*U`` can be computed by ``P=eye(A.row).permuteFwd(perm)``. The keyword argument rankcheck determines if this function raises a ValueError when passed a matrix whose rank is strictly less than min(num rows, num cols). The default behavior is to decompose a rank deficient matrix. Pass rankcheck=True to raise a ValueError instead. (This mimics the previous behavior of this function). The keyword arguments iszerofunc and simpfunc are used by the pivot search algorithm. iszerofunc is a callable that returns a boolean indicating if its input is zero, or None if it cannot make the determination. simpfunc is a callable that simplifies its input. The default is simpfunc=None, which indicate that the pivot search algorithm should not attempt to simplify any candidate pivots. If simpfunc fails to simplify its input, then it must return its input instead of a copy. When a matrix contains symbolic entries, the pivot search algorithm differs from the case where every entry can be categorized as zero or nonzero. The algorithm searches column by column through the submatrix whose top left entry coincides with the pivot position. If it exists, the pivot is the first entry in the current search column that iszerofunc guarantees is nonzero. If no such candidate exists, then each candidate pivot is simplified if simpfunc is not None. The search is repeated, with the difference that a candidate may be the pivot if ``iszerofunc()`` cannot guarantee that it is nonzero. In the second search the pivot is the first candidate that iszerofunc can guarantee is nonzero. If no such candidate exists, then the pivot is the first candidate for which iszerofunc returns None. If no such candidate exists, then the search is repeated in the next column to the right. The pivot search algorithm differs from the one in ``rref()``, which relies on ``_find_reasonable_pivot()``. Future versions of ``LUdecomposition_simple()`` may use ``_find_reasonable_pivot()``. See Also ======== LUdecomposition LUdecompositionFF LUsolve """ if rankcheck: # https://github.com/sympy/sympy/issues/9796 pass if self.rows == 0 or self.cols == 0: # Define LU decomposition of a matrix with no entries as a matrix # of the same dimensions with all zero entries. return self.zeros(self.rows, self.cols), [] lu = self.as_mutable() row_swaps = [] pivot_col = 0 for pivot_row in range(0, lu.rows - 1): # Search for pivot. Prefer entry that iszeropivot determines # is nonzero, over entry that iszeropivot cannot guarantee # is zero. # XXX ``_find_reasonable_pivot`` uses slow zero testing. Blocked by bug #10279 # Future versions of LUdecomposition_simple can pass iszerofunc and simpfunc # to _find_reasonable_pivot(). # In pass 3 of _find_reasonable_pivot(), the predicate in ``if x.equals(S.Zero):`` # calls sympy.simplify(), and not the simplification function passed in via # the keyword argument simpfunc. iszeropivot = True while pivot_col != self.cols and iszeropivot: sub_col = (lu[r, pivot_col] for r in range(pivot_row, self.rows)) pivot_row_offset, pivot_value, is_assumed_non_zero, ind_simplified_pairs =\ _find_reasonable_pivot_naive(sub_col, iszerofunc, simpfunc) iszeropivot = pivot_value is None if iszeropivot: # All candidate pivots in this column are zero. # Proceed to next column. pivot_col += 1 if rankcheck and pivot_col != pivot_row: # All entries including and below the pivot position are # zero, which indicates that the rank of the matrix is # strictly less than min(num rows, num cols) # Mimic behavior of previous implementation, by throwing a # ValueError. raise ValueError("Rank of matrix is strictly less than" " number of rows or columns." " Pass keyword argument" " rankcheck=False to compute" " the LU decomposition of this matrix.") candidate_pivot_row = None if pivot_row_offset is None else pivot_row + pivot_row_offset if candidate_pivot_row is None and iszeropivot: # If candidate_pivot_row is None and iszeropivot is True # after pivot search has completed, then the submatrix # below and to the right of (pivot_row, pivot_col) is # all zeros, indicating that Gaussian elimination is # complete. return lu, row_swaps # Update entries simplified during pivot search. for offset, val in ind_simplified_pairs: lu[pivot_row + offset, pivot_col] = val if pivot_row != candidate_pivot_row: # Row swap book keeping: # Record which rows were swapped. # Update stored portion of L factor by multiplying L on the # left and right with the current permutation. # Swap rows of U. row_swaps.append([pivot_row, candidate_pivot_row]) # Update L. lu[pivot_row, 0:pivot_row], lu[candidate_pivot_row, 0:pivot_row] = \ lu[candidate_pivot_row, 0:pivot_row], lu[pivot_row, 0:pivot_row] # Swap pivot row of U with candidate pivot row. lu[pivot_row, pivot_col:lu.cols], lu[candidate_pivot_row, pivot_col:lu.cols] = \ lu[candidate_pivot_row, pivot_col:lu.cols], lu[pivot_row, pivot_col:lu.cols] # Introduce zeros below the pivot by adding a multiple of the # pivot row to a row under it, and store the result in the # row under it. # Only entries in the target row whose index is greater than # start_col may be nonzero. start_col = pivot_col + 1 for row in range(pivot_row + 1, lu.rows): # Store factors of L in the subcolumn below # (pivot_row, pivot_row). lu[row, pivot_row] =\ lu[row, pivot_col]/lu[pivot_row, pivot_col] # Form the linear combination of the pivot row and the current # row below the pivot row that zeros the entries below the pivot. # Employing slicing instead of a loop here raises # NotImplementedError: Cannot add Zero to MutableSparseMatrix # in sympy/matrices/tests/test_sparse.py. # c = pivot_row + 1 if pivot_row == pivot_col else pivot_col for c in range(start_col, lu.cols): lu[row, c] = lu[row, c] - lu[row, pivot_row]*lu[pivot_row, c] if pivot_row != pivot_col: # matrix rank < min(num rows, num cols), # so factors of L are not stored directly below the pivot. # These entries are zero by construction, so don't bother # computing them. for row in range(pivot_row + 1, lu.rows): lu[row, pivot_col] = S.Zero pivot_col += 1 if pivot_col == lu.cols: # All candidate pivots are zero implies that Gaussian # elimination is complete. return lu, row_swaps if rankcheck: if iszerofunc( lu[Min(lu.rows, lu.cols) - 1, Min(lu.rows, lu.cols) - 1]): raise ValueError("Rank of matrix is strictly less than" " number of rows or columns." " Pass keyword argument" " rankcheck=False to compute" " the LU decomposition of this matrix.") return lu, row_swaps def LUdecompositionFF(self): """Compute a fraction-free LU decomposition. Returns 4 matrices P, L, D, U such that PA = L D**-1 U. If the elements of the matrix belong to some integral domain I, then all elements of L, D and U are guaranteed to belong to I. **Reference** - W. Zhou & D.J. Jeffrey, "Fraction-free matrix factors: new forms for LU and QR factors". Frontiers in Computer Science in China, Vol 2, no. 1, pp. 67-80, 2008. See Also ======== LUdecomposition LUdecomposition_Simple LUsolve """ from sympy.matrices import SparseMatrix zeros = SparseMatrix.zeros eye = SparseMatrix.eye n, m = self.rows, self.cols U, L, P = self.as_mutable(), eye(n), eye(n) DD = zeros(n, n) oldpivot = 1 for k in range(n - 1): if U[k, k] == 0: for kpivot in range(k + 1, n): if U[kpivot, k]: break else: raise ValueError("Matrix is not full rank") U[k, k:], U[kpivot, k:] = U[kpivot, k:], U[k, k:] L[k, :k], L[kpivot, :k] = L[kpivot, :k], L[k, :k] P[k, :], P[kpivot, :] = P[kpivot, :], P[k, :] L[k, k] = Ukk = U[k, k] DD[k, k] = oldpivot * Ukk for i in range(k + 1, n): L[i, k] = Uik = U[i, k] for j in range(k + 1, m): U[i, j] = (Ukk * U[i, j] - U[k, j] * Uik) / oldpivot U[i, k] = 0 oldpivot = Ukk DD[n - 1, n - 1] = oldpivot return P, L, DD, U def LUsolve(self, rhs, iszerofunc=_iszero): """Solve the linear system ``Ax = rhs`` for ``x`` where ``A = self``. This is for symbolic matrices, for real or complex ones use mpmath.lu_solve or mpmath.qr_solve. See Also ======== lower_triangular_solve upper_triangular_solve gauss_jordan_solve cholesky_solve diagonal_solve LDLsolve QRsolve pinv_solve LUdecomposition """ if rhs.rows != self.rows: raise ShapeError( "``self`` and ``rhs`` must have the same number of rows.") m = self.rows n = self.cols if m < n: raise NotImplementedError("Underdetermined systems not supported.") try: A, perm = self.LUdecomposition_Simple( iszerofunc=_iszero, rankcheck=True) except ValueError: raise NotImplementedError("Underdetermined systems not supported.") b = rhs.permute_rows(perm).as_mutable() # forward substitution, all diag entries are scaled to 1 for i in range(m): for j in range(min(i, n)): scale = A[i, j] b.zip_row_op(i, j, lambda x, y: x - y * scale) # consistency check for overdetermined systems if m > n: for i in range(n, m): for j in range(b.cols): if not iszerofunc(b[i, j]): raise ValueError("The system is inconsistent.") b = b[0:n, :] # truncate zero rows if consistent # backward substitution for i in range(n - 1, -1, -1): for j in range(i + 1, n): scale = A[i, j] b.zip_row_op(i, j, lambda x, y: x - y * scale) scale = A[i, i] b.row_op(i, lambda x, _: x / scale) return rhs.__class__(b) def multiply(self, b): """Returns ``self*b`` See Also ======== dot cross multiply_elementwise """ return self * b def normalized(self, iszerofunc=_iszero): """Return the normalized version of ``self``. Parameters ========== iszerofunc : Function, optional A function to determine whether ``self`` is a zero vector. The default ``_iszero`` tests to see if each element is exactly zero. Returns ======= Matrix Normalized vector form of ``self``. It has the same length as a unit vector. However, a zero vector will be returned for a vector with norm 0. Raises ====== ShapeError If the matrix is not in a vector form. See Also ======== norm """ if self.rows != 1 and self.cols != 1: raise ShapeError("A Matrix must be a vector to normalize.") norm = self.norm() if iszerofunc(norm): out = self.zeros(self.rows, self.cols) else: out = self.applyfunc(lambda i: i / norm) return out def norm(self, ord=None): """Return the Norm of a Matrix or Vector. In the simplest case this is the geometric size of the vector Other norms can be specified by the ord parameter ===== ============================ ========================== ord norm for matrices norm for vectors ===== ============================ ========================== None Frobenius norm 2-norm 'fro' Frobenius norm - does not exist inf maximum row sum max(abs(x)) -inf -- min(abs(x)) 1 maximum column sum as below -1 -- as below 2 2-norm (largest sing. value) as below -2 smallest singular value as below other - does not exist sum(abs(x)**ord)**(1./ord) ===== ============================ ========================== Examples ======== >>> from sympy import Matrix, Symbol, trigsimp, cos, sin, oo >>> x = Symbol('x', real=True) >>> v = Matrix([cos(x), sin(x)]) >>> trigsimp( v.norm() ) 1 >>> v.norm(10) (sin(x)**10 + cos(x)**10)**(1/10) >>> A = Matrix([[1, 1], [1, 1]]) >>> A.norm(1) # maximum sum of absolute values of A is 2 2 >>> A.norm(2) # Spectral norm (max of |Ax|/|x| under 2-vector-norm) 2 >>> A.norm(-2) # Inverse spectral norm (smallest singular value) 0 >>> A.norm() # Frobenius Norm 2 >>> A.norm(oo) # Infinity Norm 2 >>> Matrix([1, -2]).norm(oo) 2 >>> Matrix([-1, 2]).norm(-oo) 1 See Also ======== normalized """ # Row or Column Vector Norms vals = list(self.values()) or [0] if self.rows == 1 or self.cols == 1: if ord == 2 or ord is None: # Common case sqrt(<x, x>) return sqrt(Add(*(abs(i) ** 2 for i in vals))) elif ord == 1: # sum(abs(x)) return Add(*(abs(i) for i in vals)) elif ord == S.Infinity: # max(abs(x)) return Max(*[abs(i) for i in vals]) elif ord == S.NegativeInfinity: # min(abs(x)) return Min(*[abs(i) for i in vals]) # Otherwise generalize the 2-norm, Sum(x_i**ord)**(1/ord) # Note that while useful this is not mathematically a norm try: return Pow(Add(*(abs(i) ** ord for i in vals)), S(1) / ord) except (NotImplementedError, TypeError): raise ValueError("Expected order to be Number, Symbol, oo") # Matrix Norms else: if ord == 1: # Maximum column sum m = self.applyfunc(abs) return Max(*[sum(m.col(i)) for i in range(m.cols)]) elif ord == 2: # Spectral Norm # Maximum singular value return Max(*self.singular_values()) elif ord == -2: # Minimum singular value return Min(*self.singular_values()) elif ord == S.Infinity: # Infinity Norm - Maximum row sum m = self.applyfunc(abs) return Max(*[sum(m.row(i)) for i in range(m.rows)]) elif (ord is None or isinstance(ord, string_types) and ord.lower() in ['f', 'fro', 'frobenius', 'vector']): # Reshape as vector and send back to norm function return self.vec().norm(ord=2) else: raise NotImplementedError("Matrix Norms under development") def pinv_solve(self, B, arbitrary_matrix=None): """Solve ``Ax = B`` using the Moore-Penrose pseudoinverse. There may be zero, one, or infinite solutions. If one solution exists, it will be returned. If infinite solutions exist, one will be returned based on the value of arbitrary_matrix. If no solutions exist, the least-squares solution is returned. Parameters ========== B : Matrix The right hand side of the equation to be solved for. Must have the same number of rows as matrix A. arbitrary_matrix : Matrix If the system is underdetermined (e.g. A has more columns than rows), infinite solutions are possible, in terms of an arbitrary matrix. This parameter may be set to a specific matrix to use for that purpose; if so, it must be the same shape as x, with as many rows as matrix A has columns, and as many columns as matrix B. If left as None, an appropriate matrix containing dummy symbols in the form of ``wn_m`` will be used, with n and m being row and column position of each symbol. Returns ======= x : Matrix The matrix that will satisfy ``Ax = B``. Will have as many rows as matrix A has columns, and as many columns as matrix B. Examples ======== >>> from sympy import Matrix >>> A = Matrix([[1, 2, 3], [4, 5, 6]]) >>> B = Matrix([7, 8]) >>> A.pinv_solve(B) Matrix([ [ _w0_0/6 - _w1_0/3 + _w2_0/6 - 55/18], [-_w0_0/3 + 2*_w1_0/3 - _w2_0/3 + 1/9], [ _w0_0/6 - _w1_0/3 + _w2_0/6 + 59/18]]) >>> A.pinv_solve(B, arbitrary_matrix=Matrix([0, 0, 0])) Matrix([ [-55/18], [ 1/9], [ 59/18]]) See Also ======== lower_triangular_solve upper_triangular_solve gauss_jordan_solve cholesky_solve diagonal_solve LDLsolve LUsolve QRsolve pinv Notes ===== This may return either exact solutions or least squares solutions. To determine which, check ``A * A.pinv() * B == B``. It will be True if exact solutions exist, and False if only a least-squares solution exists. Be aware that the left hand side of that equation may need to be simplified to correctly compare to the right hand side. References ========== .. [1] https://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse#Obtaining_all_solutions_of_a_linear_system """ from sympy.matrices import eye A = self A_pinv = self.pinv() if arbitrary_matrix is None: rows, cols = A.cols, B.cols w = symbols('w:{0}_:{1}'.format(rows, cols), cls=Dummy) arbitrary_matrix = self.__class__(cols, rows, w).T return A_pinv * B + (eye(A.cols) - A_pinv * A) * arbitrary_matrix def pinv(self): """Calculate the Moore-Penrose pseudoinverse of the matrix. The Moore-Penrose pseudoinverse exists and is unique for any matrix. If the matrix is invertible, the pseudoinverse is the same as the inverse. Examples ======== >>> from sympy import Matrix >>> Matrix([[1, 2, 3], [4, 5, 6]]).pinv() Matrix([ [-17/18, 4/9], [ -1/9, 1/9], [ 13/18, -2/9]]) See Also ======== inv pinv_solve References ========== .. [1] https://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse """ A = self AH = self.H # Trivial case: pseudoinverse of all-zero matrix is its transpose. if A.is_zero: return AH try: if self.rows >= self.cols: return (AH * A).inv() * AH else: return AH * (A * AH).inv() except ValueError: # Matrix is not full rank, so A*AH cannot be inverted. pass try: # However, A*AH is Hermitian, so we can diagonalize it. if self.rows >= self.cols: P, D = (AH * A).diagonalize(normalize=True) D_pinv = D.applyfunc(lambda x: 0 if _iszero(x) else 1 / x) return P * D_pinv * P.H * AH else: P, D = (A * AH).diagonalize(normalize=True) D_pinv = D.applyfunc(lambda x: 0 if _iszero(x) else 1 / x) return AH * P * D_pinv * P.H except MatrixError: raise NotImplementedError('pinv for rank-deficient matrices where diagonalization ' 'of A.H*A fails is not supported yet.') def print_nonzero(self, symb="X"): """Shows location of non-zero entries for fast shape lookup. Examples ======== >>> from sympy.matrices import Matrix, eye >>> m = Matrix(2, 3, lambda i, j: i*3+j) >>> m Matrix([ [0, 1, 2], [3, 4, 5]]) >>> m.print_nonzero() [ XX] [XXX] >>> m = eye(4) >>> m.print_nonzero("x") [x ] [ x ] [ x ] [ x] """ s = [] for i in range(self.rows): line = [] for j in range(self.cols): if self[i, j] == 0: line.append(" ") else: line.append(str(symb)) s.append("[%s]" % ''.join(line)) print('\n'.join(s)) def project(self, v): """Return the projection of ``self`` onto the line containing ``v``. Examples ======== >>> from sympy import Matrix, S, sqrt >>> V = Matrix([sqrt(3)/2, S.Half]) >>> x = Matrix([[1, 0]]) >>> V.project(x) Matrix([[sqrt(3)/2, 0]]) >>> V.project(-x) Matrix([[sqrt(3)/2, 0]]) """ return v * (self.dot(v) / v.dot(v)) def QRdecomposition(self): """Return Q, R where A = Q*R, Q is orthogonal and R is upper triangular. Examples ======== This is the example from wikipedia: >>> from sympy import Matrix >>> A = Matrix([[12, -51, 4], [6, 167, -68], [-4, 24, -41]]) >>> Q, R = A.QRdecomposition() >>> Q Matrix([ [ 6/7, -69/175, -58/175], [ 3/7, 158/175, 6/175], [-2/7, 6/35, -33/35]]) >>> R Matrix([ [14, 21, -14], [ 0, 175, -70], [ 0, 0, 35]]) >>> A == Q*R True QR factorization of an identity matrix: >>> A = Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> Q, R = A.QRdecomposition() >>> Q Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> R Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) See Also ======== cholesky LDLdecomposition LUdecomposition QRsolve """ cls = self.__class__ mat = self.as_mutable() n = mat.rows m = mat.cols ranked = list() # Pad with additional rows to make wide matrices square # nOrig keeps track of original size so zeros can be trimmed from Q if n < m: nOrig = n n = m mat = mat.col_join(mat.zeros(n - nOrig, m)) else: nOrig = n Q, R = mat.zeros(n, m), mat.zeros(m) for j in range(m): # for each column vector tmp = mat[:, j] # take original v for i in range(j): # subtract the project of mat on new vector R[i, j] = Q[:, i].dot(mat[:, j]) tmp -= Q[:, i] * R[i, j] tmp.expand() # normalize it R[j, j] = tmp.norm() if not R[j, j].is_zero: ranked.append(j) Q[:, j] = tmp / R[j, j] if len(ranked) != 0: return ( cls(Q.extract(range(nOrig), ranked)), cls(R.extract(ranked, range(R.cols))) ) else: # Trivial case handling for zero-rank matrix # Force Q as matrix containing standard basis vectors for i in range(Min(nOrig, m)): Q[i, i] = 1 return ( cls(Q.extract(range(nOrig), range(Min(nOrig, m)))), cls(R.extract(range(Min(nOrig, m)), range(R.cols))) ) def QRsolve(self, b): """Solve the linear system ``Ax = b``. ``self`` is the matrix ``A``, the method argument is the vector ``b``. The method returns the solution vector ``x``. If ``b`` is a matrix, the system is solved for each column of ``b`` and the return value is a matrix of the same shape as ``b``. This method is slower (approximately by a factor of 2) but more stable for floating-point arithmetic than the LUsolve method. However, LUsolve usually uses an exact arithmetic, so you don't need to use QRsolve. This is mainly for educational purposes and symbolic matrices, for real (or complex) matrices use mpmath.qr_solve. See Also ======== lower_triangular_solve upper_triangular_solve gauss_jordan_solve cholesky_solve diagonal_solve LDLsolve LUsolve pinv_solve QRdecomposition """ Q, R = self.as_mutable().QRdecomposition() y = Q.T * b # back substitution to solve R*x = y: # We build up the result "backwards" in the vector 'x' and reverse it # only in the end. x = [] n = R.rows for j in range(n - 1, -1, -1): tmp = y[j, :] for k in range(j + 1, n): tmp -= R[j, k] * x[n - 1 - k] x.append(tmp / R[j, j]) return self._new([row._mat for row in reversed(x)]) def rank_decomposition(self, iszerofunc=_iszero, simplify=False): r"""Returns a pair of matrices (`C`, `F`) with matching rank such that `A = C F`. Parameters ========== iszerofunc : Function, optional A function used for detecting whether an element can act as a pivot. ``lambda x: x.is_zero`` is used by default. simplify : Bool or Function, optional A function used to simplify elements when looking for a pivot. By default SymPy's ``simplify`` is used. Returns ======= (C, F) : Matrices `C` and `F` are full-rank matrices with rank as same as `A`, whose product gives `A`. See Notes for additional mathematical details. Examples ======== >>> from sympy.matrices import Matrix >>> A = Matrix([ ... [1, 3, 1, 4], ... [2, 7, 3, 9], ... [1, 5, 3, 1], ... [1, 2, 0, 8] ... ]) >>> C, F = A.rank_decomposition() >>> C Matrix([ [1, 3, 4], [2, 7, 9], [1, 5, 1], [1, 2, 8]]) >>> F Matrix([ [1, 0, -2, 0], [0, 1, 1, 0], [0, 0, 0, 1]]) >>> C * F == A True Notes ===== Obtaining `F`, an RREF of `A`, is equivalent to creating a product .. math:: E_n E_{n-1} ... E_1 A = F where `E_n, E_{n-1}, ... , E_1` are the elimination matrices or permutation matrices equivalent to each row-reduction step. The inverse of the same product of elimination matrices gives `C`: .. math:: C = (E_n E_{n-1} ... E_1)^{-1} It is not necessary, however, to actually compute the inverse: the columns of `C` are those from the original matrix with the same column indices as the indices of the pivot columns of `F`. References ========== .. [1] https://en.wikipedia.org/wiki/Rank_factorization .. [2] Piziak, R.; Odell, P. L. (1 June 1999). "Full Rank Factorization of Matrices". Mathematics Magazine. 72 (3): 193. doi:10.2307/2690882 See Also ======== rref """ (F, pivot_cols) = self.rref( simplify=simplify, iszerofunc=iszerofunc, pivots=True) rank = len(pivot_cols) C = self.extract(range(self.rows), pivot_cols) F = F[:rank, :] return (C, F) def solve_least_squares(self, rhs, method='CH'): """Return the least-square fit to the data. Parameters ========== rhs : Matrix Vector representing the right hand side of the linear equation. method : string or boolean, optional If set to ``'CH'``, ``cholesky_solve`` routine will be used. If set to ``'LDL'``, ``LDLsolve`` routine will be used. If set to ``'QR'``, ``QRsolve`` routine will be used. If set to ``'PINV'``, ``pinv_solve`` routine will be used. Otherwise, the conjugate of ``self`` will be used to create a system of equations that is passed to ``solve`` along with the hint defined by ``method``. Returns ======= solutions : Matrix Vector representing the solution. Examples ======== >>> from sympy.matrices import Matrix, ones >>> A = Matrix([1, 2, 3]) >>> B = Matrix([2, 3, 4]) >>> S = Matrix(A.row_join(B)) >>> S Matrix([ [1, 2], [2, 3], [3, 4]]) If each line of S represent coefficients of Ax + By and x and y are [2, 3] then S*xy is: >>> r = S*Matrix([2, 3]); r Matrix([ [ 8], [13], [18]]) But let's add 1 to the middle value and then solve for the least-squares value of xy: >>> xy = S.solve_least_squares(Matrix([8, 14, 18])); xy Matrix([ [ 5/3], [10/3]]) The error is given by S*xy - r: >>> S*xy - r Matrix([ [1/3], [1/3], [1/3]]) >>> _.norm().n(2) 0.58 If a different xy is used, the norm will be higher: >>> xy += ones(2, 1)/10 >>> (S*xy - r).norm().n(2) 1.5 """ if method == 'CH': return self.cholesky_solve(rhs) elif method == 'QR': return self.QRsolve(rhs) elif method == 'LDL': return self.LDLsolve(rhs) elif method == 'PINV': return self.pinv_solve(rhs) else: t = self.H return (t * self).solve(t * rhs, method=method) def solve(self, rhs, method='GJ'): """Solves linear equation where the unique solution exists. Parameters ========== rhs : Matrix Vector representing the right hand side of the linear equation. method : string, optional If set to ``'GJ'``, the Gauss-Jordan elimination will be used, which is implemented in the routine ``gauss_jordan_solve``. If set to ``'LU'``, ``LUsolve`` routine will be used. If set to ``'QR'``, ``QRsolve`` routine will be used. If set to ``'PINV'``, ``pinv_solve`` routine will be used. It also supports the methods available for special linear systems For positive definite systems: If set to ``'CH'``, ``cholesky_solve`` routine will be used. If set to ``'LDL'``, ``LDLsolve`` routine will be used. To use a different method and to compute the solution via the inverse, use a method defined in the .inv() docstring. Returns ======= solutions : Matrix Vector representing the solution. Raises ====== ValueError If there is not a unique solution then a ``ValueError`` will be raised. If ``self`` is not square, a ``ValueError`` and a different routine for solving the system will be suggested. """ if method == 'GJ': try: soln, param = self.gauss_jordan_solve(rhs) if param: raise ValueError("Matrix det == 0; not invertible. " "Try ``self.gauss_jordan_solve(rhs)`` to obtain a parametric solution.") except ValueError: # raise same error as in inv: self.zeros(1).inv() return soln elif method == 'LU': return self.LUsolve(rhs) elif method == 'CH': return self.cholesky_solve(rhs) elif method == 'QR': return self.QRsolve(rhs) elif method == 'LDL': return self.LDLsolve(rhs) elif method == 'PINV': return self.pinv_solve(rhs) else: return self.inv(method=method)*rhs def table(self, printer, rowstart='[', rowend=']', rowsep='\n', colsep=', ', align='right'): r""" String form of Matrix as a table. ``printer`` is the printer to use for on the elements (generally something like StrPrinter()) ``rowstart`` is the string used to start each row (by default '['). ``rowend`` is the string used to end each row (by default ']'). ``rowsep`` is the string used to separate rows (by default a newline). ``colsep`` is the string used to separate columns (by default ', '). ``align`` defines how the elements are aligned. Must be one of 'left', 'right', or 'center'. You can also use '<', '>', and '^' to mean the same thing, respectively. This is used by the string printer for Matrix. Examples ======== >>> from sympy import Matrix >>> from sympy.printing.str import StrPrinter >>> M = Matrix([[1, 2], [-33, 4]]) >>> printer = StrPrinter() >>> M.table(printer) '[ 1, 2]\n[-33, 4]' >>> print(M.table(printer)) [ 1, 2] [-33, 4] >>> print(M.table(printer, rowsep=',\n')) [ 1, 2], [-33, 4] >>> print('[%s]' % M.table(printer, rowsep=',\n')) [[ 1, 2], [-33, 4]] >>> print(M.table(printer, colsep=' ')) [ 1 2] [-33 4] >>> print(M.table(printer, align='center')) [ 1 , 2] [-33, 4] >>> print(M.table(printer, rowstart='{', rowend='}')) { 1, 2} {-33, 4} """ # Handle zero dimensions: if self.rows == 0 or self.cols == 0: return '[]' # Build table of string representations of the elements res = [] # Track per-column max lengths for pretty alignment maxlen = [0] * self.cols for i in range(self.rows): res.append([]) for j in range(self.cols): s = printer._print(self[i, j]) res[-1].append(s) maxlen[j] = max(len(s), maxlen[j]) # Patch strings together align = { 'left': 'ljust', 'right': 'rjust', 'center': 'center', '<': 'ljust', '>': 'rjust', '^': 'center', }[align] for i, row in enumerate(res): for j, elem in enumerate(row): row[j] = getattr(elem, align)(maxlen[j]) res[i] = rowstart + colsep.join(row) + rowend return rowsep.join(res) def upper_triangular_solve(self, rhs): """Solves ``Ax = B``, where A is an upper triangular matrix. See Also ======== lower_triangular_solve gauss_jordan_solve cholesky_solve diagonal_solve LDLsolve LUsolve QRsolve pinv_solve """ if not self.is_square: raise NonSquareMatrixError("Matrix must be square.") if rhs.rows != self.rows: raise TypeError("Matrix size mismatch.") if not self.is_upper: raise TypeError("Matrix is not upper triangular.") return self._upper_triangular_solve(rhs) def vech(self, diagonal=True, check_symmetry=True): """Return the unique elements of a symmetric Matrix as a one column matrix by stacking the elements in the lower triangle. Arguments: diagonal -- include the diagonal cells of ``self`` or not check_symmetry -- checks symmetry of ``self`` but not completely reliably Examples ======== >>> from sympy import Matrix >>> m=Matrix([[1, 2], [2, 3]]) >>> m Matrix([ [1, 2], [2, 3]]) >>> m.vech() Matrix([ [1], [2], [3]]) >>> m.vech(diagonal=False) Matrix([[2]]) See Also ======== vec """ from sympy.matrices import zeros c = self.cols if c != self.rows: raise ShapeError("Matrix must be square") if check_symmetry: self.simplify() if self != self.transpose(): raise ValueError( "Matrix appears to be asymmetric; consider check_symmetry=False") count = 0 if diagonal: v = zeros(c * (c + 1) // 2, 1) for j in range(c): for i in range(j, c): v[count] = self[i, j] count += 1 else: v = zeros(c * (c - 1) // 2, 1) for j in range(c): for i in range(j + 1, c): v[count] = self[i, j] count += 1 return v @deprecated( issue=15109, useinstead="from sympy.matrices.common import classof", deprecated_since_version="1.3") def classof(A, B): from sympy.matrices.common import classof as classof_ return classof_(A, B) @deprecated( issue=15109, deprecated_since_version="1.3", useinstead="from sympy.matrices.common import a2idx") def a2idx(j, n=None): from sympy.matrices.common import a2idx as a2idx_ return a2idx_(j, n) def _find_reasonable_pivot(col, iszerofunc=_iszero, simpfunc=_simplify): """ Find the lowest index of an item in ``col`` that is suitable for a pivot. If ``col`` consists only of Floats, the pivot with the largest norm is returned. Otherwise, the first element where ``iszerofunc`` returns False is used. If ``iszerofunc`` doesn't return false, items are simplified and retested until a suitable pivot is found. Returns a 4-tuple (pivot_offset, pivot_val, assumed_nonzero, newly_determined) where pivot_offset is the index of the pivot, pivot_val is the (possibly simplified) value of the pivot, assumed_nonzero is True if an assumption that the pivot was non-zero was made without being proved, and newly_determined are elements that were simplified during the process of pivot finding.""" newly_determined = [] col = list(col) # a column that contains a mix of floats and integers # but at least one float is considered a numerical # column, and so we do partial pivoting if all(isinstance(x, (Float, Integer)) for x in col) and any( isinstance(x, Float) for x in col): col_abs = [abs(x) for x in col] max_value = max(col_abs) if iszerofunc(max_value): # just because iszerofunc returned True, doesn't # mean the value is numerically zero. Make sure # to replace all entries with numerical zeros if max_value != 0: newly_determined = [(i, 0) for i, x in enumerate(col) if x != 0] return (None, None, False, newly_determined) index = col_abs.index(max_value) return (index, col[index], False, newly_determined) # PASS 1 (iszerofunc directly) possible_zeros = [] for i, x in enumerate(col): is_zero = iszerofunc(x) # is someone wrote a custom iszerofunc, it may return # BooleanFalse or BooleanTrue instead of True or False, # so use == for comparison instead of `is` if is_zero == False: # we found something that is definitely not zero return (i, x, False, newly_determined) possible_zeros.append(is_zero) # by this point, we've found no certain non-zeros if all(possible_zeros): # if everything is definitely zero, we have # no pivot return (None, None, False, newly_determined) # PASS 2 (iszerofunc after simplify) # we haven't found any for-sure non-zeros, so # go through the elements iszerofunc couldn't # make a determination about and opportunistically # simplify to see if we find something for i, x in enumerate(col): if possible_zeros[i] is not None: continue simped = simpfunc(x) is_zero = iszerofunc(simped) if is_zero == True or is_zero == False: newly_determined.append((i, simped)) if is_zero == False: return (i, simped, False, newly_determined) possible_zeros[i] = is_zero # after simplifying, some things that were recognized # as zeros might be zeros if all(possible_zeros): # if everything is definitely zero, we have # no pivot return (None, None, False, newly_determined) # PASS 3 (.equals(0)) # some expressions fail to simplify to zero, but # ``.equals(0)`` evaluates to True. As a last-ditch # attempt, apply ``.equals`` to these expressions for i, x in enumerate(col): if possible_zeros[i] is not None: continue if x.equals(S.Zero): # ``.iszero`` may return False with # an implicit assumption (e.g., ``x.equals(0)`` # when ``x`` is a symbol), so only treat it # as proved when ``.equals(0)`` returns True possible_zeros[i] = True newly_determined.append((i, S.Zero)) if all(possible_zeros): return (None, None, False, newly_determined) # at this point there is nothing that could definitely # be a pivot. To maintain compatibility with existing # behavior, we'll assume that an illdetermined thing is # non-zero. We should probably raise a warning in this case i = possible_zeros.index(None) return (i, col[i], True, newly_determined) def _find_reasonable_pivot_naive(col, iszerofunc=_iszero, simpfunc=None): """ Helper that computes the pivot value and location from a sequence of contiguous matrix column elements. As a side effect of the pivot search, this function may simplify some of the elements of the input column. A list of these simplified entries and their indices are also returned. This function mimics the behavior of _find_reasonable_pivot(), but does less work trying to determine if an indeterminate candidate pivot simplifies to zero. This more naive approach can be much faster, with the trade-off that it may erroneously return a pivot that is zero. ``col`` is a sequence of contiguous column entries to be searched for a suitable pivot. ``iszerofunc`` is a callable that returns a Boolean that indicates if its input is zero, or None if no such determination can be made. ``simpfunc`` is a callable that simplifies its input. It must return its input if it does not simplify its input. Passing in ``simpfunc=None`` indicates that the pivot search should not attempt to simplify any candidate pivots. Returns a 4-tuple: (pivot_offset, pivot_val, assumed_nonzero, newly_determined) ``pivot_offset`` is the sequence index of the pivot. ``pivot_val`` is the value of the pivot. pivot_val and col[pivot_index] are equivalent, but will be different when col[pivot_index] was simplified during the pivot search. ``assumed_nonzero`` is a boolean indicating if the pivot cannot be guaranteed to be zero. If assumed_nonzero is true, then the pivot may or may not be non-zero. If assumed_nonzero is false, then the pivot is non-zero. ``newly_determined`` is a list of index-value pairs of pivot candidates that were simplified during the pivot search. """ # indeterminates holds the index-value pairs of each pivot candidate # that is neither zero or non-zero, as determined by iszerofunc(). # If iszerofunc() indicates that a candidate pivot is guaranteed # non-zero, or that every candidate pivot is zero then the contents # of indeterminates are unused. # Otherwise, the only viable candidate pivots are symbolic. # In this case, indeterminates will have at least one entry, # and all but the first entry are ignored when simpfunc is None. indeterminates = [] for i, col_val in enumerate(col): col_val_is_zero = iszerofunc(col_val) if col_val_is_zero == False: # This pivot candidate is non-zero. return i, col_val, False, [] elif col_val_is_zero is None: # The candidate pivot's comparison with zero # is indeterminate. indeterminates.append((i, col_val)) if len(indeterminates) == 0: # All candidate pivots are guaranteed to be zero, i.e. there is # no pivot. return None, None, False, [] if simpfunc is None: # Caller did not pass in a simplification function that might # determine if an indeterminate pivot candidate is guaranteed # to be nonzero, so assume the first indeterminate candidate # is non-zero. return indeterminates[0][0], indeterminates[0][1], True, [] # newly_determined holds index-value pairs of candidate pivots # that were simplified during the search for a non-zero pivot. newly_determined = [] for i, col_val in indeterminates: tmp_col_val = simpfunc(col_val) if id(col_val) != id(tmp_col_val): # simpfunc() simplified this candidate pivot. newly_determined.append((i, tmp_col_val)) if iszerofunc(tmp_col_val) == False: # Candidate pivot simplified to a guaranteed non-zero value. return i, tmp_col_val, False, newly_determined return indeterminates[0][0], indeterminates[0][1], True, newly_determined
f35b98162a598fc4ab6fa725c8400c1ae390fc9080d21380f780cfbd15065d5e
from __future__ import division, print_function from sympy.core.compatibility import range from .sparse import SparseMatrix def _doktocsr(dok): """Converts a sparse matrix to Compressed Sparse Row (CSR) format. Parameters ========== A : contains non-zero elements sorted by key (row, column) JA : JA[i] is the column corresponding to A[i] IA : IA[i] contains the index in A for the first non-zero element of row[i]. Thus IA[i+1] - IA[i] gives number of non-zero elements row[i]. The length of IA is always 1 more than the number of rows in the matrix. """ row, JA, A = [list(i) for i in zip(*dok.row_list())] IA = [0]*((row[0] if row else 0) + 1) for i, r in enumerate(row): IA.extend([i]*(r - row[i - 1])) # if i = 0 nothing is extended IA.extend([len(A)]*(dok.rows - len(IA) + 1)) shape = [dok.rows, dok.cols] return [A, JA, IA, shape] def _csrtodok(csr): """Converts a CSR representation to DOK representation""" smat = {} A, JA, IA, shape = csr for i in range(len(IA) - 1): indices = slice(IA[i], IA[i + 1]) for l, m in zip(A[indices], JA[indices]): smat[i, m] = l return SparseMatrix(*(shape + [smat]))
4b0efc57f995b2c67e903107acfbd3e6303498e89bed941479f403f9bfe68871
from sympy.core import Expr from sympy.core.decorators import call_highest_priority, _sympifyit from sympy.sets import ImageSet from sympy.sets.sets import set_add, set_sub, set_mul, set_div, set_pow, set_function class SetExpr(Expr): """An expression that can take on values of a set >>> from sympy import Interval, FiniteSet >>> from sympy.sets.setexpr import SetExpr >>> a = SetExpr(Interval(0, 5)) >>> b = SetExpr(FiniteSet(1, 10)) >>> (a + b).set Union(Interval(1, 6), Interval(10, 15)) >>> (2*a + b).set Interval(1, 20) """ _op_priority = 11.0 def __new__(cls, setarg): return Expr.__new__(cls, setarg) set = property(lambda self: self.args[0]) def _latex(self, printer): return r"SetExpr\left({0}\right)".format(printer._print(self.set)) @_sympifyit('other', NotImplemented) @call_highest_priority('__radd__') def __add__(self, other): return _setexpr_apply_operation(set_add, self, other) @_sympifyit('other', NotImplemented) @call_highest_priority('__add__') def __radd__(self, other): return _setexpr_apply_operation(set_add, other, self) @_sympifyit('other', NotImplemented) @call_highest_priority('__rmul__') def __mul__(self, other): return _setexpr_apply_operation(set_mul, self, other) @_sympifyit('other', NotImplemented) @call_highest_priority('__mul__') def __rmul__(self, other): return _setexpr_apply_operation(set_mul, other, self) @_sympifyit('other', NotImplemented) @call_highest_priority('__rsub__') def __sub__(self, other): return _setexpr_apply_operation(set_sub, self, other) @_sympifyit('other', NotImplemented) @call_highest_priority('__sub__') def __rsub__(self, other): return _setexpr_apply_operation(set_sub, other, self) @_sympifyit('other', NotImplemented) @call_highest_priority('__rpow__') def __pow__(self, other): return _setexpr_apply_operation(set_pow, self, other) @_sympifyit('other', NotImplemented) @call_highest_priority('__pow__') def __rpow__(self, other): return _setexpr_apply_operation(set_pow, other, self) @_sympifyit('other', NotImplemented) @call_highest_priority('__rdiv__') def __div__(self, other): return _setexpr_apply_operation(set_div, self, other) @_sympifyit('other', NotImplemented) @call_highest_priority('__div__') def __rdiv__(self, other): return _setexpr_apply_operation(set_div, other, self) __truediv__ = __div__ __rtruediv__ = __rdiv__ def _eval_func(self, func): # TODO: this could be implemented straight into `imageset`: res = set_function(func, self.set) if res is None: return SetExpr(ImageSet(func, self.set)) return SetExpr(res) def _setexpr_apply_operation(op, x, y): if isinstance(x, SetExpr): x = x.set if isinstance(y, SetExpr): y = y.set out = op(x, y) return SetExpr(out)
02d731a61709ef5151e9b652d993f534f5c1f58a5168e11527dbcf4e39724f1b
from __future__ import print_function, division from sympy.core.basic import Basic from sympy.core.compatibility import as_int, with_metaclass, range, PY3 from sympy.core.expr import Expr from sympy.core.function import Lambda from sympy.core.singleton import Singleton, S from sympy.core.symbol import Dummy, symbols from sympy.core.sympify import _sympify, sympify, converter from sympy.logic.boolalg import And from sympy.sets.sets import Set, Interval, Union, FiniteSet from sympy.utilities.misc import filldedent class Naturals(with_metaclass(Singleton, Set)): """ Represents the natural numbers (or counting numbers) which are all positive integers starting from 1. This set is also available as the Singleton, S.Naturals. Examples ======== >>> from sympy import S, Interval, pprint >>> 5 in S.Naturals True >>> iterable = iter(S.Naturals) >>> next(iterable) 1 >>> next(iterable) 2 >>> next(iterable) 3 >>> pprint(S.Naturals.intersect(Interval(0, 10))) {1, 2, ..., 10} See Also ======== Naturals0 : non-negative integers (i.e. includes 0, too) Integers : also includes negative integers """ is_iterable = True _inf = S.One _sup = S.Infinity def _contains(self, other): if not isinstance(other, Expr): return S.false elif other.is_positive and other.is_integer: return S.true elif other.is_integer is False or other.is_positive is False: return S.false def __iter__(self): i = self._inf while True: yield i i = i + 1 @property def _boundary(self): return self class Naturals0(Naturals): """Represents the whole numbers which are all the non-negative integers, inclusive of zero. See Also ======== Naturals : positive integers; does not include 0 Integers : also includes the negative integers """ _inf = S.Zero def _contains(self, other): if not isinstance(other, Expr): return S.false elif other.is_integer and other.is_nonnegative: return S.true elif other.is_integer is False or other.is_nonnegative is False: return S.false class Integers(with_metaclass(Singleton, Set)): """ Represents all integers: positive, negative and zero. This set is also available as the Singleton, S.Integers. Examples ======== >>> from sympy import S, Interval, pprint >>> 5 in S.Naturals True >>> iterable = iter(S.Integers) >>> next(iterable) 0 >>> next(iterable) 1 >>> next(iterable) -1 >>> next(iterable) 2 >>> pprint(S.Integers.intersect(Interval(-4, 4))) {-4, -3, ..., 4} See Also ======== Naturals0 : non-negative integers Integers : positive and negative integers and zero """ is_iterable = True def _contains(self, other): if not isinstance(other, Expr): return S.false elif other.is_integer: return S.true elif other.is_integer is False: return S.false def __iter__(self): yield S.Zero i = S.One while True: yield i yield -i i = i + 1 @property def _inf(self): return -S.Infinity @property def _sup(self): return S.Infinity @property def _boundary(self): return self class Reals(with_metaclass(Singleton, Interval)): def __new__(cls): return Interval.__new__(cls, -S.Infinity, S.Infinity) def __eq__(self, other): return other == Interval(-S.Infinity, S.Infinity) def __hash__(self): return hash(Interval(-S.Infinity, S.Infinity)) class ImageSet(Set): """ Image of a set under a mathematical function. The transformation must be given as a Lambda function which has as many arguments as the elements of the set upon which it operates, e.g. 1 argument when acting on the set of integers or 2 arguments when acting on a complex region. This function is not normally called directly, but is called from `imageset`. Examples ======== >>> from sympy import Symbol, S, pi, Dummy, Lambda >>> from sympy.sets.sets import FiniteSet, Interval >>> from sympy.sets.fancysets import ImageSet >>> x = Symbol('x') >>> N = S.Naturals >>> squares = ImageSet(Lambda(x, x**2), N) # {x**2 for x in N} >>> 4 in squares True >>> 5 in squares False >>> FiniteSet(0, 1, 2, 3, 4, 5, 6, 7, 9, 10).intersect(squares) {1, 4, 9} >>> square_iterable = iter(squares) >>> for i in range(4): ... next(square_iterable) 1 4 9 16 If you want to get value for `x` = 2, 1/2 etc. (Please check whether the `x` value is in `base_set` or not before passing it as args) >>> squares.lamda(2) 4 >>> squares.lamda(S(1)/2) 1/4 >>> n = Dummy('n') >>> solutions = ImageSet(Lambda(n, n*pi), S.Integers) # solutions of sin(x) = 0 >>> dom = Interval(-1, 1) >>> dom.intersect(solutions) {0} See Also ======== sympy.sets.sets.imageset """ def __new__(cls, flambda, *sets): if not isinstance(flambda, Lambda): raise ValueError('first argument must be a Lambda') if flambda is S.IdentityFunction and len(sets) == 1: return sets[0] if not flambda.expr.free_symbols or not flambda.expr.args: return FiniteSet(flambda.expr) return Basic.__new__(cls, flambda, *sets) lamda = property(lambda self: self.args[0]) base_set = property(lambda self: self.args[1]) def __iter__(self): already_seen = set() for i in self.base_set: val = self.lamda(i) if val in already_seen: continue else: already_seen.add(val) yield val def _is_multivariate(self): return len(self.lamda.variables) > 1 def _contains(self, other): from sympy.matrices import Matrix from sympy.solvers.solveset import solveset, linsolve from sympy.utilities.iterables import is_sequence, iterable, cartes L = self.lamda if is_sequence(other): if not is_sequence(L.expr): return S.false if len(L.expr) != len(other): raise ValueError(filldedent(''' Dimensions of other and output of Lambda are different.''')) elif iterable(other): raise ValueError(filldedent(''' `other` should be an ordered object like a Tuple.''')) solns = None if self._is_multivariate(): if not is_sequence(L.expr): # exprs -> (numer, denom) and check again # XXX this is a bad idea -- make the user # remap self to desired form return other.as_numer_denom() in self.func( Lambda(L.variables, L.expr.as_numer_denom()), self.base_set) eqs = [expr - val for val, expr in zip(other, L.expr)] variables = L.variables free = set(variables) if all(i.is_number for i in list(Matrix(eqs).jacobian(variables))): solns = list(linsolve([e - val for e, val in zip(L.expr, other)], variables)) else: syms = [e.free_symbols & free for e in eqs] solns = {} for i, (e, s, v) in enumerate(zip(eqs, syms, other)): if not s: if e != v: return S.false solns[vars[i]] = [v] continue elif len(s) == 1: sy = s.pop() sol = solveset(e, sy) if sol is S.EmptySet: return S.false elif isinstance(sol, FiniteSet): solns[sy] = list(sol) else: raise NotImplementedError else: raise NotImplementedError solns = cartes(*[solns[s] for s in variables]) else: x = L.variables[0] if isinstance(L.expr, Expr): # scalar -> scalar mapping solnsSet = solveset(L.expr - other, x) if solnsSet.is_FiniteSet: solns = list(solnsSet) else: msgset = solnsSet else: # scalar -> vector for e, o in zip(L.expr, other): solns = solveset(e - o, x) if solns is S.EmptySet: return S.false for soln in solns: try: if soln in self.base_set: break # check next pair except TypeError: if self.base_set.contains(soln.evalf()): break else: return S.false # never broke so there was no True return S.true if solns is None: raise NotImplementedError(filldedent(''' Determining whether %s contains %s has not been implemented.''' % (msgset, other))) for soln in solns: try: if soln in self.base_set: return S.true except TypeError: return self.base_set.contains(soln.evalf()) return S.false @property def is_iterable(self): return self.base_set.is_iterable def doit(self, **kwargs): from sympy.sets.setexpr import SetExpr f = self.lamda base_set = self.base_set return SetExpr(base_set)._eval_func(f).set class Range(Set): """ Represents a range of integers. Can be called as Range(stop), Range(start, stop), or Range(start, stop, step); when stop is not given it defaults to 1. `Range(stop)` is the same as `Range(0, stop, 1)` and the stop value (juse as for Python ranges) is not included in the Range values. >>> from sympy import Range >>> list(Range(3)) [0, 1, 2] The step can also be negative: >>> list(Range(10, 0, -2)) [10, 8, 6, 4, 2] The stop value is made canonical so equivalent ranges always have the same args: >>> Range(0, 10, 3) Range(0, 12, 3) Infinite ranges are allowed. ``oo`` and ``-oo`` are never included in the set (``Range`` is always a subset of ``Integers``). If the starting point is infinite, then the final value is ``stop - step``. To iterate such a range, it needs to be reversed: >>> from sympy import oo >>> r = Range(-oo, 1) >>> r[-1] 0 >>> next(iter(r)) Traceback (most recent call last): ... ValueError: Cannot iterate over Range with infinite start >>> next(iter(r.reversed)) 0 Although Range is a set (and supports the normal set operations) it maintains the order of the elements and can be used in contexts where `range` would be used. >>> from sympy import Interval >>> Range(0, 10, 2).intersect(Interval(3, 7)) Range(4, 8, 2) >>> list(_) [4, 6] Although slicing of a Range will always return a Range -- possibly empty -- an empty set will be returned from any intersection that is empty: >>> Range(3)[:0] Range(0, 0, 1) >>> Range(3).intersect(Interval(4, oo)) EmptySet() >>> Range(3).intersect(Range(4, oo)) EmptySet() """ is_iterable = True def __new__(cls, *args): from sympy.functions.elementary.integers import ceiling if len(args) == 1: if isinstance(args[0], range if PY3 else xrange): args = args[0].__reduce__()[1] # use pickle method # expand range slc = slice(*args) if slc.step == 0: raise ValueError("step cannot be 0") start, stop, step = slc.start or 0, slc.stop, slc.step or 1 try: start, stop, step = [ w if w in [S.NegativeInfinity, S.Infinity] else sympify(as_int(w)) for w in (start, stop, step)] except ValueError: raise ValueError(filldedent(''' Finite arguments to Range must be integers; `imageset` can define other cases, e.g. use `imageset(i, i/10, Range(3))` to give [0, 1/10, 1/5].''')) if not step.is_Integer: raise ValueError(filldedent(''' Ranges must have a literal integer step.''')) if all(i.is_infinite for i in (start, stop)): if start == stop: # canonical null handled below start = stop = S.One else: raise ValueError(filldedent(''' Either the start or end value of the Range must be finite.''')) if start.is_infinite: end = stop else: ref = start if start.is_finite else stop n = ceiling((stop - ref)/step) if n <= 0: # null Range start = end = 0 step = 1 else: end = ref + n*step return Basic.__new__(cls, start, end, step) start = property(lambda self: self.args[0]) stop = property(lambda self: self.args[1]) step = property(lambda self: self.args[2]) @property def reversed(self): """Return an equivalent Range in the opposite order. Examples ======== >>> from sympy import Range >>> Range(10).reversed Range(9, -1, -1) """ if not self: return self return self.func( self.stop - self.step, self.start - self.step, -self.step) def _contains(self, other): if not self: return S.false if other.is_infinite: return S.false if not other.is_integer: return other.is_integer ref = self.start if self.start.is_finite else self.stop if (ref - other) % self.step: # off sequence return S.false return _sympify(other >= self.inf and other <= self.sup) def __iter__(self): if self.start in [S.NegativeInfinity, S.Infinity]: raise ValueError("Cannot iterate over Range with infinite start") elif self: i = self.start step = self.step while True: if (step > 0 and not (self.start <= i < self.stop)) or \ (step < 0 and not (self.stop < i <= self.start)): break yield i i += step def __len__(self): if not self: return 0 dif = self.stop - self.start if dif.is_infinite: raise ValueError( "Use .size to get the length of an infinite Range") return abs(dif//self.step) @property def size(self): try: return _sympify(len(self)) except ValueError: return S.Infinity def __nonzero__(self): return self.start != self.stop __bool__ = __nonzero__ def __getitem__(self, i): from sympy.functions.elementary.integers import ceiling ooslice = "cannot slice from the end with an infinite value" zerostep = "slice step cannot be zero" # if we had to take every other element in the following # oo, ..., 6, 4, 2, 0 # we might get oo, ..., 4, 0 or oo, ..., 6, 2 ambiguous = "cannot unambiguously re-stride from the end " + \ "with an infinite value" if isinstance(i, slice): if self.size.is_finite: start, stop, step = i.indices(self.size) n = ceiling((stop - start)/step) if n <= 0: return Range(0) canonical_stop = start + n*step end = canonical_stop - step ss = step*self.step return Range(self[start], self[end] + ss, ss) else: # infinite Range start = i.start stop = i.stop if i.step == 0: raise ValueError(zerostep) step = i.step or 1 ss = step*self.step #--------------------- # handle infinite on right # e.g. Range(0, oo) or Range(0, -oo, -1) # -------------------- if self.stop.is_infinite: # start and stop are not interdependent -- # they only depend on step --so we use the # equivalent reversed values return self.reversed[ stop if stop is None else -stop + 1: start if start is None else -start: step].reversed #--------------------- # handle infinite on the left # e.g. Range(oo, 0, -1) or Range(-oo, 0) # -------------------- # consider combinations of # start/stop {== None, < 0, == 0, > 0} and # step {< 0, > 0} if start is None: if stop is None: if step < 0: return Range(self[-1], self.start, ss) elif step > 1: raise ValueError(ambiguous) else: # == 1 return self elif stop < 0: if step < 0: return Range(self[-1], self[stop], ss) else: # > 0 return Range(self.start, self[stop], ss) elif stop == 0: if step > 0: return Range(0) else: # < 0 raise ValueError(ooslice) elif stop == 1: if step > 0: raise ValueError(ooslice) # infinite singleton else: # < 0 raise ValueError(ooslice) else: # > 1 raise ValueError(ooslice) elif start < 0: if stop is None: if step < 0: return Range(self[start], self.start, ss) else: # > 0 return Range(self[start], self.stop, ss) elif stop < 0: return Range(self[start], self[stop], ss) elif stop == 0: if step < 0: raise ValueError(ooslice) else: # > 0 return Range(0) elif stop > 0: raise ValueError(ooslice) elif start == 0: if stop is None: if step < 0: raise ValueError(ooslice) # infinite singleton elif step > 1: raise ValueError(ambiguous) else: # == 1 return self elif stop < 0: if step > 1: raise ValueError(ambiguous) elif step == 1: return Range(self.start, self[stop], ss) else: # < 0 return Range(0) else: # >= 0 raise ValueError(ooslice) elif start > 0: raise ValueError(ooslice) else: if not self: raise IndexError('Range index out of range') if i == 0: return self.start if i == -1 or i is S.Infinity: return self.stop - self.step rv = (self.stop if i < 0 else self.start) + i*self.step if rv.is_infinite: raise ValueError(ooslice) if rv < self.inf or rv > self.sup: raise IndexError("Range index out of range") return rv @property def _inf(self): if not self: raise NotImplementedError if self.step > 0: return self.start else: return self.stop - self.step @property def _sup(self): if not self: raise NotImplementedError if self.step > 0: return self.stop - self.step else: return self.start @property def _boundary(self): return self if PY3: converter[range] = Range else: converter[xrange] = Range def normalize_theta_set(theta): """ Normalize a Real Set `theta` in the Interval [0, 2*pi). It returns a normalized value of theta in the Set. For Interval, a maximum of one cycle [0, 2*pi], is returned i.e. for theta equal to [0, 10*pi], returned normalized value would be [0, 2*pi). As of now intervals with end points as non-multiples of `pi` is not supported. Raises ====== NotImplementedError The algorithms for Normalizing theta Set are not yet implemented. ValueError The input is not valid, i.e. the input is not a real set. RuntimeError It is a bug, please report to the github issue tracker. Examples ======== >>> from sympy.sets.fancysets import normalize_theta_set >>> from sympy import Interval, FiniteSet, pi >>> normalize_theta_set(Interval(9*pi/2, 5*pi)) Interval(pi/2, pi) >>> normalize_theta_set(Interval(-3*pi/2, pi/2)) Interval.Ropen(0, 2*pi) >>> normalize_theta_set(Interval(-pi/2, pi/2)) Union(Interval(0, pi/2), Interval.Ropen(3*pi/2, 2*pi)) >>> normalize_theta_set(Interval(-4*pi, 3*pi)) Interval.Ropen(0, 2*pi) >>> normalize_theta_set(Interval(-3*pi/2, -pi/2)) Interval(pi/2, 3*pi/2) >>> normalize_theta_set(FiniteSet(0, pi, 3*pi)) {0, pi} """ from sympy.functions.elementary.trigonometric import _pi_coeff as coeff if theta.is_Interval: interval_len = theta.measure # one complete circle if interval_len >= 2*S.Pi: if interval_len == 2*S.Pi and theta.left_open and theta.right_open: k = coeff(theta.start) return Union(Interval(0, k*S.Pi, False, True), Interval(k*S.Pi, 2*S.Pi, True, True)) return Interval(0, 2*S.Pi, False, True) k_start, k_end = coeff(theta.start), coeff(theta.end) if k_start is None or k_end is None: raise NotImplementedError("Normalizing theta without pi as coefficient is " "not yet implemented") new_start = k_start*S.Pi new_end = k_end*S.Pi if new_start > new_end: return Union(Interval(S.Zero, new_end, False, theta.right_open), Interval(new_start, 2*S.Pi, theta.left_open, True)) else: return Interval(new_start, new_end, theta.left_open, theta.right_open) elif theta.is_FiniteSet: new_theta = [] for element in theta: k = coeff(element) if k is None: raise NotImplementedError('Normalizing theta without pi as ' 'coefficient, is not Implemented.') else: new_theta.append(k*S.Pi) return FiniteSet(*new_theta) elif theta.is_Union: return Union(*[normalize_theta_set(interval) for interval in theta.args]) elif theta.is_subset(S.Reals): raise NotImplementedError("Normalizing theta when, it is of type %s is not " "implemented" % type(theta)) else: raise ValueError(" %s is not a real set" % (theta)) class ComplexRegion(Set): """ Represents the Set of all Complex Numbers. It can represent a region of Complex Plane in both the standard forms Polar and Rectangular coordinates. * Polar Form Input is in the form of the ProductSet or Union of ProductSets of the intervals of r and theta, & use the flag polar=True. Z = {z in C | z = r*[cos(theta) + I*sin(theta)], r in [r], theta in [theta]} * Rectangular Form Input is in the form of the ProductSet or Union of ProductSets of interval of x and y the of the Complex numbers in a Plane. Default input type is in rectangular form. Z = {z in C | z = x + I*y, x in [Re(z)], y in [Im(z)]} Examples ======== >>> from sympy.sets.fancysets import ComplexRegion >>> from sympy.sets import Interval >>> from sympy import S, I, Union >>> a = Interval(2, 3) >>> b = Interval(4, 6) >>> c = Interval(1, 8) >>> c1 = ComplexRegion(a*b) # Rectangular Form >>> c1 ComplexRegion(Interval(2, 3) x Interval(4, 6), False) * c1 represents the rectangular region in complex plane surrounded by the coordinates (2, 4), (3, 4), (3, 6) and (2, 6), of the four vertices. >>> c2 = ComplexRegion(Union(a*b, b*c)) >>> c2 ComplexRegion(Union(Interval(2, 3) x Interval(4, 6), Interval(4, 6) x Interval(1, 8)), False) * c2 represents the Union of two rectangular regions in complex plane. One of them surrounded by the coordinates of c1 and other surrounded by the coordinates (4, 1), (6, 1), (6, 8) and (4, 8). >>> 2.5 + 4.5*I in c1 True >>> 2.5 + 6.5*I in c1 False >>> r = Interval(0, 1) >>> theta = Interval(0, 2*S.Pi) >>> c2 = ComplexRegion(r*theta, polar=True) # Polar Form >>> c2 # unit Disk ComplexRegion(Interval(0, 1) x Interval.Ropen(0, 2*pi), True) * c2 represents the region in complex plane inside the Unit Disk centered at the origin. >>> 0.5 + 0.5*I in c2 True >>> 1 + 2*I in c2 False >>> unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, 2*S.Pi), polar=True) >>> upper_half_unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, S.Pi), polar=True) >>> intersection = unit_disk.intersect(upper_half_unit_disk) >>> intersection ComplexRegion(Interval(0, 1) x Interval(0, pi), True) >>> intersection == upper_half_unit_disk True See Also ======== Reals """ is_ComplexRegion = True def __new__(cls, sets, polar=False): from sympy import sin, cos x, y, r, theta = symbols('x, y, r, theta', cls=Dummy) I = S.ImaginaryUnit polar = sympify(polar) # Rectangular Form if polar == False: if all(_a.is_FiniteSet for _a in sets.args) and (len(sets.args) == 2): # ** ProductSet of FiniteSets in the Complex Plane. ** # For Cases like ComplexRegion({2, 4}*{3}), It # would return {2 + 3*I, 4 + 3*I} complex_num = [] for x in sets.args[0]: for y in sets.args[1]: complex_num.append(x + I*y) obj = FiniteSet(*complex_num) else: obj = ImageSet.__new__(cls, Lambda((x, y), x + I*y), sets) obj._variables = (x, y) obj._expr = x + I*y # Polar Form elif polar == True: new_sets = [] # sets is Union of ProductSets if not sets.is_ProductSet: for k in sets.args: new_sets.append(k) # sets is ProductSets else: new_sets.append(sets) # Normalize input theta for k, v in enumerate(new_sets): from sympy.sets import ProductSet new_sets[k] = ProductSet(v.args[0], normalize_theta_set(v.args[1])) sets = Union(*new_sets) obj = ImageSet.__new__(cls, Lambda((r, theta), r*(cos(theta) + I*sin(theta))), sets) obj._variables = (r, theta) obj._expr = r*(cos(theta) + I*sin(theta)) else: raise ValueError("polar should be either True or False") obj._sets = sets obj._polar = polar return obj @property def sets(self): """ Return raw input sets to the self. Examples ======== >>> from sympy import Interval, ComplexRegion, Union >>> a = Interval(2, 3) >>> b = Interval(4, 5) >>> c = Interval(1, 7) >>> C1 = ComplexRegion(a*b) >>> C1.sets Interval(2, 3) x Interval(4, 5) >>> C2 = ComplexRegion(Union(a*b, b*c)) >>> C2.sets Union(Interval(2, 3) x Interval(4, 5), Interval(4, 5) x Interval(1, 7)) """ return self._sets @property def args(self): return (self._sets, self._polar) @property def variables(self): return self._variables @property def expr(self): return self._expr @property def psets(self): """ Return a tuple of sets (ProductSets) input of the self. Examples ======== >>> from sympy import Interval, ComplexRegion, Union >>> a = Interval(2, 3) >>> b = Interval(4, 5) >>> c = Interval(1, 7) >>> C1 = ComplexRegion(a*b) >>> C1.psets (Interval(2, 3) x Interval(4, 5),) >>> C2 = ComplexRegion(Union(a*b, b*c)) >>> C2.psets (Interval(2, 3) x Interval(4, 5), Interval(4, 5) x Interval(1, 7)) """ if self.sets.is_ProductSet: psets = () psets = psets + (self.sets, ) else: psets = self.sets.args return psets @property def a_interval(self): """ Return the union of intervals of `x` when, self is in rectangular form, or the union of intervals of `r` when self is in polar form. Examples ======== >>> from sympy import Interval, ComplexRegion, Union >>> a = Interval(2, 3) >>> b = Interval(4, 5) >>> c = Interval(1, 7) >>> C1 = ComplexRegion(a*b) >>> C1.a_interval Interval(2, 3) >>> C2 = ComplexRegion(Union(a*b, b*c)) >>> C2.a_interval Union(Interval(2, 3), Interval(4, 5)) """ a_interval = [] for element in self.psets: a_interval.append(element.args[0]) a_interval = Union(*a_interval) return a_interval @property def b_interval(self): """ Return the union of intervals of `y` when, self is in rectangular form, or the union of intervals of `theta` when self is in polar form. Examples ======== >>> from sympy import Interval, ComplexRegion, Union >>> a = Interval(2, 3) >>> b = Interval(4, 5) >>> c = Interval(1, 7) >>> C1 = ComplexRegion(a*b) >>> C1.b_interval Interval(4, 5) >>> C2 = ComplexRegion(Union(a*b, b*c)) >>> C2.b_interval Interval(1, 7) """ b_interval = [] for element in self.psets: b_interval.append(element.args[1]) b_interval = Union(*b_interval) return b_interval @property def polar(self): """ Returns True if self is in polar form. Examples ======== >>> from sympy import Interval, ComplexRegion, Union, S >>> a = Interval(2, 3) >>> b = Interval(4, 5) >>> theta = Interval(0, 2*S.Pi) >>> C1 = ComplexRegion(a*b) >>> C1.polar False >>> C2 = ComplexRegion(a*theta, polar=True) >>> C2.polar True """ return self._polar @property def _measure(self): """ The measure of self.sets. Examples ======== >>> from sympy import Interval, ComplexRegion, S >>> a, b = Interval(2, 5), Interval(4, 8) >>> c = Interval(0, 2*S.Pi) >>> c1 = ComplexRegion(a*b) >>> c1.measure 12 >>> c2 = ComplexRegion(a*c, polar=True) >>> c2.measure 6*pi """ return self.sets._measure @classmethod def from_real(cls, sets): """ Converts given subset of real numbers to a complex region. Examples ======== >>> from sympy import Interval, ComplexRegion >>> unit = Interval(0,1) >>> ComplexRegion.from_real(unit) ComplexRegion(Interval(0, 1) x {0}, False) """ if not sets.is_subset(S.Reals): raise ValueError("sets must be a subset of the real line") return cls(sets * FiniteSet(0)) def _contains(self, other): from sympy.functions import arg, Abs from sympy.core.containers import Tuple other = sympify(other) isTuple = isinstance(other, Tuple) if isTuple and len(other) != 2: raise ValueError('expecting Tuple of length 2') # If the other is not an Expression, and neither a Tuple if not isinstance(other, Expr) and not isinstance(other, Tuple): return S.false # self in rectangular form if not self.polar: re, im = other if isTuple else other.as_real_imag() for element in self.psets: if And(element.args[0]._contains(re), element.args[1]._contains(im)): return True return False # self in polar form elif self.polar: if isTuple: r, theta = other elif other.is_zero: r, theta = S.Zero, S.Zero else: r, theta = Abs(other), arg(other) for element in self.psets: if And(element.args[0]._contains(r), element.args[1]._contains(theta)): return True return False class Complexes(with_metaclass(Singleton, ComplexRegion)): def __new__(cls): return ComplexRegion.__new__(cls, S.Reals*S.Reals) def __eq__(self, other): return other == ComplexRegion(S.Reals*S.Reals) def __hash__(self): return hash(ComplexRegion(S.Reals*S.Reals)) def __str__(self): return "S.Complexes" def __repr__(self): return "S.Complexes"
3609fdd2a0fbaee10695558ab1a0cc68b642e987585bb8d9b3cc9aa6792e92cd
from __future__ import print_function, division from itertools import product from sympy.core.basic import Basic from sympy.core.compatibility import (iterable, with_metaclass, ordered, range, PY3) from sympy.core.cache import cacheit from sympy.core.evalf import EvalfMixin from sympy.core.evaluate import global_evaluate from sympy.core.expr import Expr from sympy.core.function import FunctionClass from sympy.core.logic import fuzzy_bool from sympy.core.mul import Mul from sympy.core.numbers import Float from sympy.core.operations import LatticeOp from sympy.core.relational import Eq, Ne from sympy.core.singleton import Singleton, S from sympy.core.symbol import Symbol, Dummy, _uniquely_named_symbol from sympy.core.sympify import _sympify, sympify, converter from sympy.logic.boolalg import And, Or, Not, true, false from sympy.sets.contains import Contains from sympy.utilities import subsets from sympy.utilities.iterables import sift from sympy.utilities.misc import func_name, filldedent from mpmath import mpi, mpf class Set(Basic): """ The base class for any kind of set. This is not meant to be used directly as a container of items. It does not behave like the builtin ``set``; see :class:`FiniteSet` for that. Real intervals are represented by the :class:`Interval` class and unions of sets by the :class:`Union` class. The empty set is represented by the :class:`EmptySet` class and available as a singleton as ``S.EmptySet``. """ is_number = False is_iterable = False is_interval = False is_FiniteSet = False is_Interval = False is_ProductSet = False is_Union = False is_Intersection = None is_EmptySet = None is_UniversalSet = None is_Complement = None is_ComplexRegion = False @staticmethod def _infimum_key(expr): """ Return infimum (if possible) else S.Infinity. """ try: infimum = expr.inf assert infimum.is_comparable except (NotImplementedError, AttributeError, AssertionError, ValueError): infimum = S.Infinity return infimum def union(self, other): """ Returns the union of 'self' and 'other'. Examples ======== As a shortcut it is possible to use the '+' operator: >>> from sympy import Interval, FiniteSet >>> Interval(0, 1).union(Interval(2, 3)) Union(Interval(0, 1), Interval(2, 3)) >>> Interval(0, 1) + Interval(2, 3) Union(Interval(0, 1), Interval(2, 3)) >>> Interval(1, 2, True, True) + FiniteSet(2, 3) Union(Interval.Lopen(1, 2), {3}) Similarly it is possible to use the '-' operator for set differences: >>> Interval(0, 2) - Interval(0, 1) Interval.Lopen(1, 2) >>> Interval(1, 3) - FiniteSet(2) Union(Interval.Ropen(1, 2), Interval.Lopen(2, 3)) """ return Union(self, other) def intersect(self, other): """ Returns the intersection of 'self' and 'other'. >>> from sympy import Interval >>> Interval(1, 3).intersect(Interval(1, 2)) Interval(1, 2) >>> from sympy import imageset, Lambda, symbols, S >>> n, m = symbols('n m') >>> a = imageset(Lambda(n, 2*n), S.Integers) >>> a.intersect(imageset(Lambda(m, 2*m + 1), S.Integers)) EmptySet() """ return Intersection(self, other) def intersection(self, other): """ Alias for :meth:`intersect()` """ return self.intersect(other) def is_disjoint(self, other): """ Returns True if 'self' and 'other' are disjoint Examples ======== >>> from sympy import Interval >>> Interval(0, 2).is_disjoint(Interval(1, 2)) False >>> Interval(0, 2).is_disjoint(Interval(3, 4)) True References ========== .. [1] https://en.wikipedia.org/wiki/Disjoint_sets """ return self.intersect(other) == S.EmptySet def isdisjoint(self, other): """ Alias for :meth:`is_disjoint()` """ return self.is_disjoint(other) def complement(self, universe): r""" The complement of 'self' w.r.t the given universe. Examples ======== >>> from sympy import Interval, S >>> Interval(0, 1).complement(S.Reals) Union(Interval.open(-oo, 0), Interval.open(1, oo)) >>> Interval(0, 1).complement(S.UniversalSet) UniversalSet() \ Interval(0, 1) """ return Complement(universe, self) def _complement(self, other): # this behaves as other - self if isinstance(other, ProductSet): # For each set consider it or it's complement # We need at least one of the sets to be complemented # Consider all 2^n combinations. # We can conveniently represent these options easily using a # ProductSet # XXX: this doesn't work if the dimensions of the sets isn't same. # A - B is essentially same as A if B has a different # dimensionality than A switch_sets = ProductSet(FiniteSet(o, o - s) for s, o in zip(self.sets, other.sets)) product_sets = (ProductSet(*set) for set in switch_sets) # Union of all combinations but this one return Union(*(p for p in product_sets if p != other)) elif isinstance(other, Interval): if isinstance(self, Interval) or isinstance(self, FiniteSet): return Intersection(other, self.complement(S.Reals)) elif isinstance(other, Union): return Union(*(o - self for o in other.args)) elif isinstance(other, Complement): return Complement(other.args[0], Union(other.args[1], self), evaluate=False) elif isinstance(other, EmptySet): return S.EmptySet elif isinstance(other, FiniteSet): from sympy.utilities.iterables import sift sifted = sift(other, lambda x: fuzzy_bool(self.contains(x))) # ignore those that are contained in self return Union(FiniteSet(*(sifted[False])), Complement(FiniteSet(*(sifted[None])), self, evaluate=False) if sifted[None] else S.EmptySet) def symmetric_difference(self, other): """ Returns symmetric difference of `self` and `other`. Examples ======== >>> from sympy import Interval, S >>> Interval(1, 3).symmetric_difference(S.Reals) Union(Interval.open(-oo, 1), Interval.open(3, oo)) >>> Interval(1, 10).symmetric_difference(S.Reals) Union(Interval.open(-oo, 1), Interval.open(10, oo)) >>> from sympy import S, EmptySet >>> S.Reals.symmetric_difference(EmptySet()) Reals References ========== .. [1] https://en.wikipedia.org/wiki/Symmetric_difference """ return SymmetricDifference(self, other) def _symmetric_difference(self, other): return Union(Complement(self, other), Complement(other, self)) @property def inf(self): """ The infimum of 'self' Examples ======== >>> from sympy import Interval, Union >>> Interval(0, 1).inf 0 >>> Union(Interval(0, 1), Interval(2, 3)).inf 0 """ return self._inf @property def _inf(self): raise NotImplementedError("(%s)._inf" % self) @property def sup(self): """ The supremum of 'self' Examples ======== >>> from sympy import Interval, Union >>> Interval(0, 1).sup 1 >>> Union(Interval(0, 1), Interval(2, 3)).sup 3 """ return self._sup @property def _sup(self): raise NotImplementedError("(%s)._sup" % self) def contains(self, other): """ Returns True if 'other' is contained in 'self' as an element. As a shortcut it is possible to use the 'in' operator: Examples ======== >>> from sympy import Interval >>> Interval(0, 1).contains(0.5) True >>> 0.5 in Interval(0, 1) True """ other = sympify(other, strict=True) ret = sympify(self._contains(other)) if ret is None: ret = Contains(other, self, evaluate=False) return ret def _contains(self, other): raise NotImplementedError("(%s)._contains(%s)" % (self, other)) def is_subset(self, other): """ Returns True if 'self' is a subset of 'other'. Examples ======== >>> from sympy import Interval >>> Interval(0, 0.5).is_subset(Interval(0, 1)) True >>> Interval(0, 1).is_subset(Interval(0, 1, left_open=True)) False """ if isinstance(other, Set): return self.intersect(other) == self else: raise ValueError("Unknown argument '%s'" % other) def issubset(self, other): """ Alias for :meth:`is_subset()` """ return self.is_subset(other) def is_proper_subset(self, other): """ Returns True if 'self' is a proper subset of 'other'. Examples ======== >>> from sympy import Interval >>> Interval(0, 0.5).is_proper_subset(Interval(0, 1)) True >>> Interval(0, 1).is_proper_subset(Interval(0, 1)) False """ if isinstance(other, Set): return self != other and self.is_subset(other) else: raise ValueError("Unknown argument '%s'" % other) def is_superset(self, other): """ Returns True if 'self' is a superset of 'other'. Examples ======== >>> from sympy import Interval >>> Interval(0, 0.5).is_superset(Interval(0, 1)) False >>> Interval(0, 1).is_superset(Interval(0, 1, left_open=True)) True """ if isinstance(other, Set): return other.is_subset(self) else: raise ValueError("Unknown argument '%s'" % other) def issuperset(self, other): """ Alias for :meth:`is_superset()` """ return self.is_superset(other) def is_proper_superset(self, other): """ Returns True if 'self' is a proper superset of 'other'. Examples ======== >>> from sympy import Interval >>> Interval(0, 1).is_proper_superset(Interval(0, 0.5)) True >>> Interval(0, 1).is_proper_superset(Interval(0, 1)) False """ if isinstance(other, Set): return self != other and self.is_superset(other) else: raise ValueError("Unknown argument '%s'" % other) def _eval_powerset(self): raise NotImplementedError('Power set not defined for: %s' % self.func) def powerset(self): """ Find the Power set of 'self'. Examples ======== >>> from sympy import FiniteSet, EmptySet >>> A = EmptySet() >>> A.powerset() {EmptySet()} >>> A = FiniteSet(1, 2) >>> a, b, c = FiniteSet(1), FiniteSet(2), FiniteSet(1, 2) >>> A.powerset() == FiniteSet(a, b, c, EmptySet()) True References ========== .. [1] https://en.wikipedia.org/wiki/Power_set """ return self._eval_powerset() @property def measure(self): """ The (Lebesgue) measure of 'self' Examples ======== >>> from sympy import Interval, Union >>> Interval(0, 1).measure 1 >>> Union(Interval(0, 1), Interval(2, 3)).measure 2 """ return self._measure @property def boundary(self): """ The boundary or frontier of a set A point x is on the boundary of a set S if 1. x is in the closure of S. I.e. Every neighborhood of x contains a point in S. 2. x is not in the interior of S. I.e. There does not exist an open set centered on x contained entirely within S. There are the points on the outer rim of S. If S is open then these points need not actually be contained within S. For example, the boundary of an interval is its start and end points. This is true regardless of whether or not the interval is open. Examples ======== >>> from sympy import Interval >>> Interval(0, 1).boundary {0, 1} >>> Interval(0, 1, True, False).boundary {0, 1} """ return self._boundary @property def is_open(self): """ Property method to check whether a set is open. A set is open if and only if it has an empty intersection with its boundary. Examples ======== >>> from sympy import S >>> S.Reals.is_open True """ if not Intersection(self, self.boundary): return True # We can't confidently claim that an intersection exists return None @property def is_closed(self): """ A property method to check whether a set is closed. A set is closed if it's complement is an open set. Examples ======== >>> from sympy import Interval >>> Interval(0, 1).is_closed True """ return self.boundary.is_subset(self) @property def closure(self): """ Property method which returns the closure of a set. The closure is defined as the union of the set itself and its boundary. Examples ======== >>> from sympy import S, Interval >>> S.Reals.closure Reals >>> Interval(0, 1).closure Interval(0, 1) """ return self + self.boundary @property def interior(self): """ Property method which returns the interior of a set. The interior of a set S consists all points of S that do not belong to the boundary of S. Examples ======== >>> from sympy import Interval >>> Interval(0, 1).interior Interval.open(0, 1) >>> Interval(0, 1).boundary.interior EmptySet() """ return self - self.boundary @property def _boundary(self): raise NotImplementedError() @property def _measure(self): raise NotImplementedError("(%s)._measure" % self) def __add__(self, other): return self.union(other) def __or__(self, other): return self.union(other) def __and__(self, other): return self.intersect(other) def __mul__(self, other): return ProductSet(self, other) def __xor__(self, other): return SymmetricDifference(self, other) def __pow__(self, exp): if not sympify(exp).is_Integer and exp >= 0: raise ValueError("%s: Exponent must be a positive Integer" % exp) return ProductSet([self]*exp) def __sub__(self, other): return Complement(self, other) def __contains__(self, other): symb = sympify(self.contains(other)) if not (symb is S.true or symb is S.false): raise TypeError('contains did not evaluate to a bool: %r' % symb) return bool(symb) class ProductSet(Set): """ Represents a Cartesian Product of Sets. Returns a Cartesian product given several sets as either an iterable or individual arguments. Can use '*' operator on any sets for convenient shorthand. Examples ======== >>> from sympy import Interval, FiniteSet, ProductSet >>> I = Interval(0, 5); S = FiniteSet(1, 2, 3) >>> ProductSet(I, S) Interval(0, 5) x {1, 2, 3} >>> (2, 2) in ProductSet(I, S) True >>> Interval(0, 1) * Interval(0, 1) # The unit square Interval(0, 1) x Interval(0, 1) >>> coin = FiniteSet('H', 'T') >>> set(coin**2) {(H, H), (H, T), (T, H), (T, T)} Notes ===== - Passes most operations down to the argument sets - Flattens Products of ProductSets References ========== .. [1] https://en.wikipedia.org/wiki/Cartesian_product """ is_ProductSet = True def __new__(cls, *sets, **assumptions): def flatten(arg): if isinstance(arg, Set): if arg.is_ProductSet: return sum(map(flatten, arg.args), []) else: return [arg] elif iterable(arg): return sum(map(flatten, arg), []) raise TypeError("Input must be Sets or iterables of Sets") sets = flatten(list(sets)) if EmptySet() in sets or len(sets) == 0: return EmptySet() if len(sets) == 1: return sets[0] return Basic.__new__(cls, *sets, **assumptions) def _eval_Eq(self, other): if not other.is_ProductSet: return if len(self.args) != len(other.args): return false return And(*(Eq(x, y) for x, y in zip(self.args, other.args))) def _contains(self, element): """ 'in' operator for ProductSets Examples ======== >>> from sympy import Interval >>> (2, 3) in Interval(0, 5) * Interval(0, 5) True >>> (10, 10) in Interval(0, 5) * Interval(0, 5) False Passes operation on to constituent sets """ try: if len(element) != len(self.args): return false except TypeError: # maybe element isn't an iterable return false return And(* [set.contains(item) for set, item in zip(self.sets, element)]) @property def sets(self): return self.args @property def _boundary(self): return Union(*(ProductSet(b + b.boundary if i != j else b.boundary for j, b in enumerate(self.sets)) for i, a in enumerate(self.sets))) @property def is_iterable(self): """ A property method which tests whether a set is iterable or not. Returns True if set is iterable, otherwise returns False. Examples ======== >>> from sympy import FiniteSet, Interval, ProductSet >>> I = Interval(0, 1) >>> A = FiniteSet(1, 2, 3, 4, 5) >>> I.is_iterable False >>> A.is_iterable True """ return all(set.is_iterable for set in self.sets) def __iter__(self): """ A method which implements is_iterable property method. If self.is_iterable returns True (both constituent sets are iterable), then return the Cartesian Product. Otherwise, raise TypeError. """ if self.is_iterable: return product(*self.sets) else: raise TypeError("Not all constituent sets are iterable") @property def _measure(self): measure = 1 for set in self.sets: measure *= set.measure return measure def __len__(self): return Mul(*[len(s) for s in self.args]) def __bool__(self): return all([bool(s) for s in self.args]) __nonzero__ = __bool__ class Interval(Set, EvalfMixin): """ Represents a real interval as a Set. Usage: Returns an interval with end points "start" and "end". For left_open=True (default left_open is False) the interval will be open on the left. Similarly, for right_open=True the interval will be open on the right. Examples ======== >>> from sympy import Symbol, Interval >>> Interval(0, 1) Interval(0, 1) >>> Interval.Ropen(0, 1) Interval.Ropen(0, 1) >>> Interval.Ropen(0, 1) Interval.Ropen(0, 1) >>> Interval.Lopen(0, 1) Interval.Lopen(0, 1) >>> Interval.open(0, 1) Interval.open(0, 1) >>> a = Symbol('a', real=True) >>> Interval(0, a) Interval(0, a) Notes ===== - Only real end points are supported - Interval(a, b) with a > b will return the empty set - Use the evalf() method to turn an Interval into an mpmath 'mpi' interval instance References ========== .. [1] https://en.wikipedia.org/wiki/Interval_%28mathematics%29 """ is_Interval = True def __new__(cls, start, end, left_open=False, right_open=False): start = _sympify(start) end = _sympify(end) left_open = _sympify(left_open) right_open = _sympify(right_open) if not all(isinstance(a, (type(true), type(false))) for a in [left_open, right_open]): raise NotImplementedError( "left_open and right_open can have only true/false values, " "got %s and %s" % (left_open, right_open)) inftys = [S.Infinity, S.NegativeInfinity] # Only allow real intervals (use symbols with 'is_real=True'). if not all(i.is_real is not False or i in inftys for i in (start, end)): raise ValueError("Non-real intervals are not supported") # evaluate if possible if (end < start) == True: return S.EmptySet elif (end - start).is_negative: return S.EmptySet if end == start and (left_open or right_open): return S.EmptySet if end == start and not (left_open or right_open): if start == S.Infinity or start == S.NegativeInfinity: return S.EmptySet return FiniteSet(end) # Make sure infinite interval end points are open. if start == S.NegativeInfinity: left_open = true if end == S.Infinity: right_open = true return Basic.__new__(cls, start, end, left_open, right_open) @property def start(self): """ The left end point of 'self'. This property takes the same value as the 'inf' property. Examples ======== >>> from sympy import Interval >>> Interval(0, 1).start 0 """ return self._args[0] _inf = left = start @classmethod def open(cls, a, b): """Return an interval including neither boundary.""" return cls(a, b, True, True) @classmethod def Lopen(cls, a, b): """Return an interval not including the left boundary.""" return cls(a, b, True, False) @classmethod def Ropen(cls, a, b): """Return an interval not including the right boundary.""" return cls(a, b, False, True) @property def end(self): """ The right end point of 'self'. This property takes the same value as the 'sup' property. Examples ======== >>> from sympy import Interval >>> Interval(0, 1).end 1 """ return self._args[1] _sup = right = end @property def left_open(self): """ True if 'self' is left-open. Examples ======== >>> from sympy import Interval >>> Interval(0, 1, left_open=True).left_open True >>> Interval(0, 1, left_open=False).left_open False """ return self._args[2] @property def right_open(self): """ True if 'self' is right-open. Examples ======== >>> from sympy import Interval >>> Interval(0, 1, right_open=True).right_open True >>> Interval(0, 1, right_open=False).right_open False """ return self._args[3] def _complement(self, other): if other == S.Reals: a = Interval(S.NegativeInfinity, self.start, True, not self.left_open) b = Interval(self.end, S.Infinity, not self.right_open, True) return Union(a, b) if isinstance(other, FiniteSet): nums = [m for m in other.args if m.is_number] if nums == []: return None return Set._complement(self, other) @property def _boundary(self): finite_points = [p for p in (self.start, self.end) if abs(p) != S.Infinity] return FiniteSet(*finite_points) def _contains(self, other): if not isinstance(other, Expr) or ( other is S.Infinity or other is S.NegativeInfinity or other is S.NaN or other is S.ComplexInfinity) or other.is_real is False: return false if self.start is S.NegativeInfinity and self.end is S.Infinity: if not other.is_real is None: return other.is_real if self.left_open: expr = other > self.start else: expr = other >= self.start if self.right_open: expr = And(expr, other < self.end) else: expr = And(expr, other <= self.end) return _sympify(expr) @property def _measure(self): return self.end - self.start def to_mpi(self, prec=53): return mpi(mpf(self.start._eval_evalf(prec)), mpf(self.end._eval_evalf(prec))) def _eval_evalf(self, prec): return Interval(self.left._eval_evalf(prec), self.right._eval_evalf(prec), left_open=self.left_open, right_open=self.right_open) def _is_comparable(self, other): is_comparable = self.start.is_comparable is_comparable &= self.end.is_comparable is_comparable &= other.start.is_comparable is_comparable &= other.end.is_comparable return is_comparable @property def is_left_unbounded(self): """Return ``True`` if the left endpoint is negative infinity. """ return self.left is S.NegativeInfinity or self.left == Float("-inf") @property def is_right_unbounded(self): """Return ``True`` if the right endpoint is positive infinity. """ return self.right is S.Infinity or self.right == Float("+inf") def as_relational(self, x): """Rewrite an interval in terms of inequalities and logic operators.""" x = sympify(x) if self.right_open: right = x < self.end else: right = x <= self.end if self.left_open: left = self.start < x else: left = self.start <= x return And(left, right) def _eval_Eq(self, other): if not isinstance(other, Interval): if isinstance(other, FiniteSet): return false elif isinstance(other, Set): return None return false return And(Eq(self.left, other.left), Eq(self.right, other.right), self.left_open == other.left_open, self.right_open == other.right_open) class Union(Set, LatticeOp, EvalfMixin): """ Represents a union of sets as a :class:`Set`. Examples ======== >>> from sympy import Union, Interval >>> Union(Interval(1, 2), Interval(3, 4)) Union(Interval(1, 2), Interval(3, 4)) The Union constructor will always try to merge overlapping intervals, if possible. For example: >>> Union(Interval(1, 2), Interval(2, 3)) Interval(1, 3) See Also ======== Intersection References ========== .. [1] https://en.wikipedia.org/wiki/Union_%28set_theory%29 """ is_Union = True @property def identity(self): return S.EmptySet @property def zero(self): return S.UniversalSet def __new__(cls, *args, **kwargs): evaluate = kwargs.get('evaluate', global_evaluate[0]) # flatten inputs to merge intersections and iterables args = _sympify(args) # Reduce sets using known rules if evaluate: args = list(cls._new_args_filter(args)) return simplify_union(args) args = list(ordered(args, Set._infimum_key)) obj = Basic.__new__(cls, *args) obj._argset = frozenset(args) return obj @property @cacheit def args(self): return self._args def _complement(self, universe): # DeMorgan's Law return Intersection(s.complement(universe) for s in self.args) @property def _inf(self): # We use Min so that sup is meaningful in combination with symbolic # interval end points. from sympy.functions.elementary.miscellaneous import Min return Min(*[set.inf for set in self.args]) @property def _sup(self): # We use Max so that sup is meaningful in combination with symbolic # end points. from sympy.functions.elementary.miscellaneous import Max return Max(*[set.sup for set in self.args]) def _contains(self, other): return Or(*[set.contains(other) for set in self.args]) @property def _measure(self): # Measure of a union is the sum of the measures of the sets minus # the sum of their pairwise intersections plus the sum of their # triple-wise intersections minus ... etc... # Sets is a collection of intersections and a set of elementary # sets which made up those intersections (called "sos" for set of sets) # An example element might of this list might be: # ( {A,B,C}, A.intersect(B).intersect(C) ) # Start with just elementary sets ( ({A}, A), ({B}, B), ... ) # Then get and subtract ( ({A,B}, (A int B), ... ) while non-zero sets = [(FiniteSet(s), s) for s in self.args] measure = 0 parity = 1 while sets: # Add up the measure of these sets and add or subtract it to total measure += parity * sum(inter.measure for sos, inter in sets) # For each intersection in sets, compute the intersection with every # other set not already part of the intersection. sets = ((sos + FiniteSet(newset), newset.intersect(intersection)) for sos, intersection in sets for newset in self.args if newset not in sos) # Clear out sets with no measure sets = [(sos, inter) for sos, inter in sets if inter.measure != 0] # Clear out duplicates sos_list = [] sets_list = [] for set in sets: if set[0] in sos_list: continue else: sos_list.append(set[0]) sets_list.append(set) sets = sets_list # Flip Parity - next time subtract/add if we added/subtracted here parity *= -1 return measure @property def _boundary(self): def boundary_of_set(i): """ The boundary of set i minus interior of all other sets """ b = self.args[i].boundary for j, a in enumerate(self.args): if j != i: b = b - a.interior return b return Union(*map(boundary_of_set, range(len(self.args)))) def as_relational(self, symbol): """Rewrite a Union in terms of equalities and logic operators. """ if len(self.args) == 2: a, b = self.args if (a.sup == b.inf and a.inf is S.NegativeInfinity and b.sup is S.Infinity): return And(Ne(symbol, a.sup), symbol < b.sup, symbol > a.inf) return Or(*[set.as_relational(symbol) for set in self.args]) @property def is_iterable(self): return all(arg.is_iterable for arg in self.args) def _eval_evalf(self, prec): try: return Union(*(set._eval_evalf(prec) for set in self.args)) except (TypeError, ValueError, NotImplementedError): import sys raise (TypeError("Not all sets are evalf-able"), None, sys.exc_info()[2]) def __iter__(self): import itertools # roundrobin recipe taken from itertools documentation: # https://docs.python.org/2/library/itertools.html#recipes def roundrobin(*iterables): "roundrobin('ABC', 'D', 'EF') --> A D E B F C" # Recipe credited to George Sakkis pending = len(iterables) if PY3: nexts = itertools.cycle(iter(it).__next__ for it in iterables) else: nexts = itertools.cycle(iter(it).next for it in iterables) while pending: try: for next in nexts: yield next() except StopIteration: pending -= 1 nexts = itertools.cycle(itertools.islice(nexts, pending)) if all(set.is_iterable for set in self.args): return roundrobin(*(iter(arg) for arg in self.args)) else: raise TypeError("Not all constituent sets are iterable") class Intersection(Set, LatticeOp): """ Represents an intersection of sets as a :class:`Set`. Examples ======== >>> from sympy import Intersection, Interval >>> Intersection(Interval(1, 3), Interval(2, 4)) Interval(2, 3) We often use the .intersect method >>> Interval(1,3).intersect(Interval(2,4)) Interval(2, 3) See Also ======== Union References ========== .. [1] https://en.wikipedia.org/wiki/Intersection_%28set_theory%29 """ is_Intersection = True @property def identity(self): return S.UniversalSet @property def zero(self): return S.EmptySet def __new__(cls, *args, **kwargs): evaluate = kwargs.get('evaluate', global_evaluate[0]) # flatten inputs to merge intersections and iterables args = _sympify(args) # Reduce sets using known rules if evaluate: args = list(cls._new_args_filter(args)) return simplify_intersection(args) args = list(ordered(args, Set._infimum_key)) obj = Basic.__new__(cls, *args) obj._argset = frozenset(args) return obj @property @cacheit def args(self): return self._args @property def is_iterable(self): return any(arg.is_iterable for arg in self.args) @property def _inf(self): raise NotImplementedError() @property def _sup(self): raise NotImplementedError() def _contains(self, other): return And(*[set.contains(other) for set in self.args]) def __iter__(self): no_iter = True for s in self.args: if s.is_iterable: no_iter = False other_sets = set(self.args) - set((s,)) other = Intersection(*other_sets, evaluate=False) for x in s: c = sympify(other.contains(x)) if c is S.true: yield x elif c is S.false: pass else: yield c if no_iter: raise ValueError("None of the constituent sets are iterable") @staticmethod def _handle_finite_sets(args): from sympy.core.logic import fuzzy_and, fuzzy_bool from sympy.core.compatibility import zip_longest fs_args, other = sift(args, lambda x: x.is_FiniteSet, binary=True) if not fs_args: return fs_args.sort(key=len) s = fs_args[0] fs_args = fs_args[1:] res = [] unk = [] for x in s: c = fuzzy_and(fuzzy_bool(o.contains(x)) for o in fs_args + other) if c: res.append(x) elif c is None: unk.append(x) else: pass # drop arg res = FiniteSet( *res, evaluate=False) if res else S.EmptySet if unk: symbolic_s_list = [x for x in s if x.has(Symbol)] non_symbolic_s = s - FiniteSet( *symbolic_s_list, evaluate=False) while fs_args: v = fs_args.pop() if all(i == j for i, j in zip_longest( symbolic_s_list, (x for x in v if x.has(Symbol)))): # all the symbolic elements of `v` are the same # as in `s` so remove the non-symbol containing # expressions from `unk`, since they cannot be # contained for x in non_symbolic_s: if x in unk: unk.remove(x) else: # if only a subset of elements in `s` are # contained in `v` then remove them from `v` # and add this as a new arg contained = [x for x in symbolic_s_list if sympify(v.contains(x)) is S.true] if contained != symbolic_s_list: other.append( v - FiniteSet( *contained, evaluate=False)) else: pass # for coverage other_sets = Intersection(*other) if not other_sets: return S.EmptySet # b/c we use evaluate=False below elif other_sets == S.UniversalSet: res += FiniteSet(*unk) else: res += Intersection( FiniteSet(*unk), other_sets, evaluate=False) return res def as_relational(self, symbol): """Rewrite an Intersection in terms of equalities and logic operators""" return And(*[set.as_relational(symbol) for set in self.args]) class Complement(Set, EvalfMixin): r"""Represents the set difference or relative complement of a set with another set. `A - B = \{x \in A| x \\notin B\}` Examples ======== >>> from sympy import Complement, FiniteSet >>> Complement(FiniteSet(0, 1, 2), FiniteSet(1)) {0, 2} See Also ========= Intersection, Union References ========== .. [1] http://mathworld.wolfram.com/ComplementSet.html """ is_Complement = True def __new__(cls, a, b, evaluate=True): if evaluate: return Complement.reduce(a, b) return Basic.__new__(cls, a, b) @staticmethod def reduce(A, B): """ Simplify a :class:`Complement`. """ if B == S.UniversalSet or A.is_subset(B): return EmptySet() if isinstance(B, Union): return Intersection(*(s.complement(A) for s in B.args)) result = B._complement(A) if result is not None: return result else: return Complement(A, B, evaluate=False) def _contains(self, other): A = self.args[0] B = self.args[1] return And(A.contains(other), Not(B.contains(other))) class EmptySet(with_metaclass(Singleton, Set)): """ Represents the empty set. The empty set is available as a singleton as S.EmptySet. Examples ======== >>> from sympy import S, Interval >>> S.EmptySet EmptySet() >>> Interval(1, 2).intersect(S.EmptySet) EmptySet() See Also ======== UniversalSet References ========== .. [1] https://en.wikipedia.org/wiki/Empty_set """ is_EmptySet = True is_FiniteSet = True @property def _measure(self): return 0 def _contains(self, other): return false def as_relational(self, symbol): return false def __len__(self): return 0 def __iter__(self): return iter([]) def _eval_powerset(self): return FiniteSet(self) @property def _boundary(self): return self def _complement(self, other): return other def _symmetric_difference(self, other): return other class UniversalSet(with_metaclass(Singleton, Set)): """ Represents the set of all things. The universal set is available as a singleton as S.UniversalSet Examples ======== >>> from sympy import S, Interval >>> S.UniversalSet UniversalSet() >>> Interval(1, 2).intersect(S.UniversalSet) Interval(1, 2) See Also ======== EmptySet References ========== .. [1] https://en.wikipedia.org/wiki/Universal_set """ is_UniversalSet = True def _complement(self, other): return S.EmptySet def _symmetric_difference(self, other): return other @property def _measure(self): return S.Infinity def _contains(self, other): return true def as_relational(self, symbol): return true @property def _boundary(self): return EmptySet() class FiniteSet(Set, EvalfMixin): """ Represents a finite set of discrete numbers Examples ======== >>> from sympy import FiniteSet >>> FiniteSet(1, 2, 3, 4) {1, 2, 3, 4} >>> 3 in FiniteSet(1, 2, 3, 4) True >>> members = [1, 2, 3, 4] >>> f = FiniteSet(*members) >>> f {1, 2, 3, 4} >>> f - FiniteSet(2) {1, 3, 4} >>> f + FiniteSet(2, 5) {1, 2, 3, 4, 5} References ========== .. [1] https://en.wikipedia.org/wiki/Finite_set """ is_FiniteSet = True is_iterable = True def __new__(cls, *args, **kwargs): evaluate = kwargs.get('evaluate', global_evaluate[0]) if evaluate: args = list(map(sympify, args)) if len(args) == 0: return EmptySet() else: args = list(map(sympify, args)) args = list(ordered(frozenset(tuple(args)), Set._infimum_key)) obj = Basic.__new__(cls, *args) obj._elements = frozenset(args) return obj def _eval_Eq(self, other): if not isinstance(other, FiniteSet): if isinstance(other, Interval): return false elif isinstance(other, Set): return None return false if len(self) != len(other): return false return And(*(Eq(x, y) for x, y in zip(self.args, other.args))) def __iter__(self): return iter(self.args) def _complement(self, other): if isinstance(other, Interval): nums = sorted(m for m in self.args if m.is_number) if other == S.Reals and nums != []: syms = [m for m in self.args if m.is_Symbol] # Reals cannot contain elements other than numbers and symbols. intervals = [] # Build up a list of intervals between the elements intervals += [Interval(S.NegativeInfinity, nums[0], True, True)] for a, b in zip(nums[:-1], nums[1:]): intervals.append(Interval(a, b, True, True)) # both open intervals.append(Interval(nums[-1], S.Infinity, True, True)) if syms != []: return Complement(Union(*intervals, evaluate=False), FiniteSet(*syms), evaluate=False) else: return Union(*intervals, evaluate=False) elif nums == []: return None elif isinstance(other, FiniteSet): unk = [] for i in self: c = sympify(other.contains(i)) if c is not S.true and c is not S.false: unk.append(i) unk = FiniteSet(*unk) if unk == self: return not_true = [] for i in other: c = sympify(self.contains(i)) if c is not S.true: not_true.append(i) return Complement(FiniteSet(*not_true), unk) return Set._complement(self, other) def _contains(self, other): """ Tests whether an element, other, is in the set. Relies on Python's set class. This tests for object equality All inputs are sympified Examples ======== >>> from sympy import FiniteSet >>> 1 in FiniteSet(1, 2) True >>> 5 in FiniteSet(1, 2) False """ r = false for e in self._elements: # override global evaluation so we can use Eq to do # do the evaluation t = Eq(e, other, evaluate=True) if t is true: return t elif t is not false: r = None return r @property def _boundary(self): return self @property def _inf(self): from sympy.functions.elementary.miscellaneous import Min return Min(*self) @property def _sup(self): from sympy.functions.elementary.miscellaneous import Max return Max(*self) @property def measure(self): return 0 def __len__(self): return len(self.args) def as_relational(self, symbol): """Rewrite a FiniteSet in terms of equalities and logic operators. """ from sympy.core.relational import Eq return Or(*[Eq(symbol, elem) for elem in self]) def compare(self, other): return (hash(self) - hash(other)) def _eval_evalf(self, prec): return FiniteSet(*[elem._eval_evalf(prec) for elem in self]) def _hashable_content(self): return (self._elements,) @property def _sorted_args(self): return tuple(ordered(self.args, Set._infimum_key)) def _eval_powerset(self): return self.func(*[self.func(*s) for s in subsets(self.args)]) def __ge__(self, other): if not isinstance(other, Set): raise TypeError("Invalid comparison of set with %s" % func_name(other)) return other.is_subset(self) def __gt__(self, other): if not isinstance(other, Set): raise TypeError("Invalid comparison of set with %s" % func_name(other)) return self.is_proper_superset(other) def __le__(self, other): if not isinstance(other, Set): raise TypeError("Invalid comparison of set with %s" % func_name(other)) return self.is_subset(other) def __lt__(self, other): if not isinstance(other, Set): raise TypeError("Invalid comparison of set with %s" % func_name(other)) return self.is_proper_subset(other) converter[set] = lambda x: FiniteSet(*x) converter[frozenset] = lambda x: FiniteSet(*x) class SymmetricDifference(Set): """Represents the set of elements which are in either of the sets and not in their intersection. Examples ======== >>> from sympy import SymmetricDifference, FiniteSet >>> SymmetricDifference(FiniteSet(1, 2, 3), FiniteSet(3, 4, 5)) {1, 2, 4, 5} See Also ======== Complement, Union References ========== .. [1] https://en.wikipedia.org/wiki/Symmetric_difference """ is_SymmetricDifference = True def __new__(cls, a, b, evaluate=True): if evaluate: return SymmetricDifference.reduce(a, b) return Basic.__new__(cls, a, b) @staticmethod def reduce(A, B): result = B._symmetric_difference(A) if result is not None: return result else: return SymmetricDifference(A, B, evaluate=False) def imageset(*args): r""" Return an image of the set under transformation ``f``. If this function can't compute the image, it returns an unevaluated ImageSet object. .. math:: { f(x) | x \in self } Examples ======== >>> from sympy import S, Interval, Symbol, imageset, sin, Lambda >>> from sympy.abc import x, y >>> imageset(x, 2*x, Interval(0, 2)) Interval(0, 4) >>> imageset(lambda x: 2*x, Interval(0, 2)) Interval(0, 4) >>> imageset(Lambda(x, sin(x)), Interval(-2, 1)) ImageSet(Lambda(x, sin(x)), Interval(-2, 1)) >>> imageset(sin, Interval(-2, 1)) ImageSet(Lambda(x, sin(x)), Interval(-2, 1)) >>> imageset(lambda y: x + y, Interval(-2, 1)) ImageSet(Lambda(_x, _x + x), Interval(-2, 1)) Expressions applied to the set of Integers are simplified to show as few negatives as possible and linear expressions are converted to a canonical form. If this is not desirable then the unevaluated ImageSet should be used. >>> imageset(x, -2*x + 5, S.Integers) ImageSet(Lambda(x, 2*x + 1), Integers) See Also ======== sympy.sets.fancysets.ImageSet """ from sympy.core import Lambda from sympy.sets.fancysets import ImageSet from sympy.sets.setexpr import set_function if len(args) < 2: raise ValueError('imageset expects at least 2 args, got: %s' % len(args)) if isinstance(args[0], (Symbol, tuple)) and len(args) > 2: f = Lambda(args[0], args[1]) set_list = args[2:] else: f = args[0] set_list = args[1:] if isinstance(f, Lambda): pass elif ( isinstance(f, FunctionClass) # like cos or func_name(f) == '<lambda>' ): # TODO: should we support a way to sympify `lambda`? if len(set_list) == 1: var = _uniquely_named_symbol(Symbol('x'), f(Dummy())) expr = f(var) else: var = [Symbol('x%i' % (i+1)) for i in range(len(set_list))] expr = f(*var) f = Lambda(var, expr) else: raise TypeError(filldedent(''' expecting lambda, Lambda, or FunctionClass, not \'%s\'.''' % func_name(f))) if any(not isinstance(s, Set) for s in set_list): name = [func_name(s) for s in set_list] raise ValueError( 'arguments after mapping should be sets, not %s' % name) if len(set_list) == 1: set = set_list[0] r = set_function(f, set) if r is None: r = ImageSet(f, set) if isinstance(r, ImageSet): f, set = r.args if f.variables[0] == f.expr: return set if isinstance(set, ImageSet): if len(set.lamda.variables) == 1 and len(f.variables) == 1: return imageset(Lambda(set.lamda.variables[0], f.expr.subs(f.variables[0], set.lamda.expr)), set.base_set) if r is not None: return r return ImageSet(f, *set_list) def is_function_invertible_in_set(func, setv): """ Checks whether function ``func`` is invertible when the domain is restricted to set ``setv``. """ from sympy import exp, log # Functions known to always be invertible: if func in (exp, log): return True u = Dummy("u") fdiff = func(u).diff(u) # monotonous functions: # TODO: check subsets (`func` in `setv`) if (fdiff > 0) == True or (fdiff < 0) == True: return True # TODO: support more return None def simplify_union(args): """ Simplify a :class:`Union` using known rules We first start with global rules like 'Merge all FiniteSets' Then we iterate through all pairs and ask the constituent sets if they can simplify themselves with any other constituent. This process depends on ``union_sets(a, b)`` functions. """ from sympy.sets.handlers.union import union_sets # ===== Global Rules ===== if not args: return S.EmptySet for arg in args: if not isinstance(arg, Set): raise TypeError("Input args to Union must be Sets") # Merge all finite sets finite_sets = [x for x in args if x.is_FiniteSet] if len(finite_sets) > 1: a = (x for set in finite_sets for x in set) finite_set = FiniteSet(*a) args = [finite_set] + [x for x in args if not x.is_FiniteSet] # ===== Pair-wise Rules ===== # Here we depend on rules built into the constituent sets args = set(args) new_args = True while new_args: for s in args: new_args = False for t in args - set((s,)): new_set = union_sets(s, t) # This returns None if s does not know how to intersect # with t. Returns the newly intersected set otherwise if new_set is not None: if not isinstance(new_set, set): new_set = set((new_set, )) new_args = (args - set((s, t))).union(new_set) break if new_args: args = new_args break if len(args) == 1: return args.pop() else: return Union(*args, evaluate=False) def simplify_intersection(args): """ Simplify an intersection using known rules We first start with global rules like 'if any empty sets return empty set' and 'distribute any unions' Then we iterate through all pairs and ask the constituent sets if they can simplify themselves with any other constituent """ # ===== Global Rules ===== if not args: return S.UniversalSet for arg in args: if not isinstance(arg, Set): raise TypeError("Input args to Union must be Sets") # If any EmptySets return EmptySet if any(s.is_EmptySet for s in args): return S.EmptySet # Handle Finite sets rv = Intersection._handle_finite_sets(args) if rv is not None: return rv # If any of the sets are unions, return a Union of Intersections for s in args: if s.is_Union: other_sets = set(args) - set((s,)) if len(other_sets) > 0: other = Intersection(*other_sets) return Union(*(Intersection(arg, other) for arg in s.args)) else: return Union(*[arg for arg in s.args]) for s in args: if s.is_Complement: args.remove(s) other_sets = args + [s.args[0]] return Complement(Intersection(*other_sets), s.args[1]) from sympy.sets.handlers.intersection import intersection_sets # At this stage we are guaranteed not to have any # EmptySets, FiniteSets, or Unions in the intersection # ===== Pair-wise Rules ===== # Here we depend on rules built into the constituent sets args = set(args) new_args = True while new_args: for s in args: new_args = False for t in args - set((s,)): new_set = intersection_sets(s, t) # This returns None if s does not know how to intersect # with t. Returns the newly intersected set otherwise if new_set is not None: new_args = (args - set((s, t))).union(set((new_set, ))) break if new_args: args = new_args break if len(args) == 1: return args.pop() else: return Intersection(*args, evaluate=False) def _handle_finite_sets(op, x, y, commutative): # Handle finite sets: fs_args, other = sift([x, y], lambda x: isinstance(x, FiniteSet), binary=True) if len(fs_args) == 2: return FiniteSet(*[op(i, j) for i in fs_args[0] for j in fs_args[1]]) elif len(fs_args) == 1: sets = [_apply_operation(op, other[0], i, commutative) for i in fs_args[0]] return Union(*sets) else: return None def _apply_operation(op, x, y, commutative): from sympy.sets import ImageSet from sympy import symbols,Lambda d = Dummy('d') out = _handle_finite_sets(op, x, y, commutative) if out is None: out = op(x, y) if out is None and commutative: out = op(y, x) if out is None: _x, _y = symbols("x y") if isinstance(x, Set) and not isinstance(y, Set): out = ImageSet(Lambda(d, op(d, y)), x).doit() elif not isinstance(x, Set) and isinstance(y, Set): out = ImageSet(Lambda(d, op(x, d)), y).doit() else: out = ImageSet(Lambda((_x, _y), op(_x, _y)), x, y) return out def set_add(x, y): from sympy.sets.handlers.add import _set_add return _apply_operation(_set_add, x, y, commutative=True) def set_sub(x, y): from sympy.sets.handlers.add import _set_sub return _apply_operation(_set_sub, x, y, commutative=False) def set_mul(x, y): from sympy.sets.handlers.mul import _set_mul return _apply_operation(_set_mul, x, y, commutative=True) def set_div(x, y): from sympy.sets.handlers.mul import _set_div return _apply_operation(_set_div, x, y, commutative=False) def set_pow(x, y): from sympy.sets.handlers.power import _set_pow return _apply_operation(_set_pow, x, y, commutative=False) def set_function(f, x): from sympy.sets.handlers.functions import _set_function return _set_function(f, x)
d7425897fffae8865bee717b8f6b795478bc972c3d3681ca6aa3fe386683469f
from __future__ import print_function, division from sympy import S from sympy.core.basic import Basic from sympy.core.containers import Tuple from sympy.core.expr import Expr from sympy.core.function import Lambda from sympy.core.logic import fuzzy_bool from sympy.core.symbol import Symbol, Dummy from sympy.logic.boolalg import And, as_Boolean from sympy.sets.contains import Contains from sympy.sets.sets import Set, EmptySet, Union, FiniteSet from sympy.utilities.iterables import sift from sympy.utilities.misc import filldedent class ConditionSet(Set): """ Set of elements which satisfies a given condition. {x | condition(x) is True for x in S} Examples ======== >>> from sympy import Symbol, S, ConditionSet, pi, Eq, sin, Interval >>> from sympy.abc import x, y, z >>> sin_sols = ConditionSet(x, Eq(sin(x), 0), Interval(0, 2*pi)) >>> 2*pi in sin_sols True >>> pi/2 in sin_sols False >>> 3*pi in sin_sols False >>> 5 in ConditionSet(x, x**2 > 4, S.Reals) True If the value is not in the base set, the result is false: >>> 5 in ConditionSet(x, x**2 > 4, Interval(2, 4)) False Notes ===== Symbols with assumptions should be avoided or else the condition may evaluate without consideration of the set: >>> n = Symbol('n', negative=True) >>> cond = (n > 0); cond False >>> ConditionSet(n, cond, S.Integers) EmptySet() In addition, substitution of a dummy symbol can only be done with a generic symbol with matching commutativity or else a symbol that has identical assumptions. If the base set contains the dummy symbol it is logically distinct and will be the target of substitution. >>> c = ConditionSet(x, x < 1, {x, z}) >>> c.subs(x, y) ConditionSet(x, x < 1, {y, z}) A second substitution is needed to change the dummy symbol, too: >>> _.subs(x, y) ConditionSet(y, y < 1, {y, z}) And trying to replace the dummy symbol with anything but a symbol is ignored: the only change possible will be in the base set: >>> ConditionSet(y, y < 1, {y, z}).subs(y, 1) ConditionSet(y, y < 1, {z}) >>> _.subs(y, 1) ConditionSet(y, y < 1, {z}) Notes ===== If no base set is specified, the universal set is implied: >>> ConditionSet(x, x < 1).base_set UniversalSet() Although expressions other than symbols may be used, this is discouraged and will raise an error if the expression is not found in the condition: >>> ConditionSet(x + 1, x + 1 < 1, S.Integers) ConditionSet(x + 1, x + 1 < 1, Integers) >>> ConditionSet(x + 1, x < 1, S.Integers) Traceback (most recent call last): ... ValueError: non-symbol dummy not recognized in condition Although the name is usually respected, it must be replaced if the base set is another ConditionSet and the dummy symbol and appears as a free symbol in the base set and the dummy symbol of the base set appears as a free symbol in the condition: >>> ConditionSet(x, x < y, ConditionSet(y, x + y < 2, S.Integers)) ConditionSet(lambda, (lambda < y) & (lambda + x < 2), Integers) The best way to do anything with the dummy symbol is to access it with the sym property. >>> _.subs(_.sym, Symbol('_x')) ConditionSet(_x, (_x < y) & (_x + x < 2), Integers) """ def __new__(cls, sym, condition, base_set=S.UniversalSet): # nonlinsolve uses ConditionSet to return an unsolved system # of equations (see _return_conditionset in solveset) so until # that is changed we do minimal checking of the args if isinstance(sym, (Tuple, tuple)): # unsolved eqns syntax sym = Tuple(*sym) condition = FiniteSet(*condition) return Basic.__new__(cls, sym, condition, base_set) condition = as_Boolean(condition) if isinstance(base_set, set): base_set = FiniteSet(*base_set) elif not isinstance(base_set, Set): raise TypeError('expecting set for base_set') if condition is S.false: return S.EmptySet if condition is S.true: return base_set if isinstance(base_set, EmptySet): return base_set know = None if isinstance(base_set, FiniteSet): sifted = sift( base_set, lambda _: fuzzy_bool( condition.subs(sym, _))) if sifted[None]: know = FiniteSet(*sifted[True]) base_set = FiniteSet(*sifted[None]) else: return FiniteSet(*sifted[True]) if isinstance(base_set, cls): s, c, base_set = base_set.args if sym == s: condition = And(condition, c) elif sym not in c.free_symbols: condition = And(condition, c.xreplace({s: sym})) elif s not in condition.free_symbols: condition = And(condition.xreplace({sym: s}), c) sym = s else: # user will have to use cls.sym to get symbol dum = Symbol('lambda') if dum in condition.free_symbols or \ dum in c.free_symbols: dum = Dummy(str(dum)) condition = And( condition.xreplace({sym: dum}), c.xreplace({s: dum})) sym = dum if not isinstance(sym, Symbol): s = Dummy('lambda') if s not in condition.xreplace({sym: s}).free_symbols: raise ValueError( 'non-symbol dummy not recognized in condition') rv = Basic.__new__(cls, sym, condition, base_set) return rv if know is None else Union(know, rv) sym = property(lambda self: self.args[0]) condition = property(lambda self: self.args[1]) base_set = property(lambda self: self.args[2]) @property def free_symbols(self): s, c, b = self.args return (c.free_symbols - s.free_symbols) | b.free_symbols def contains(self, other): return And(Lambda(self.sym, self.condition)( other), self.base_set.contains(other)) def _eval_subs(self, old, new): if not isinstance(self.sym, Expr): # Don't do anything with the equation set syntax; # that should go away, eventually. return self sym, cond, base = self.args if old == sym: # we try to be as lenient as possible to allow # the dummy symbol to be changed base = base.subs(old, new) if isinstance(new, Symbol): # if the assumptions don't match, the cond # might evaluate or change if (new.assumptions0 == old.assumptions0 or len(new.assumptions0) == 1 and old.is_commutative == new.is_commutative): if base != self.base_set: # it will be aggravating to have the dummy # symbol change if you are trying to target # the base set so if the base set is changed # leave the dummy symbol alone -- a second # subs will be needed to change the dummy return self.func(sym, cond, base) else: return self.func(new, cond.subs(old, new), base) raise ValueError(filldedent(''' A dummy symbol can only be replaced with a symbol having the same assumptions or one having a single assumption having the same commutativity. ''')) # don't target cond: it is there to tell how # the base set should be filtered and if new is not in # the base set then this substitution is ignored return self.func(sym, cond, base) cond = self.condition.subs(old, new) base = self.base_set.subs(old, new) if cond is S.true: return ConditionSet(new, Contains(new, base), base) return self.func(self.sym, cond, base) def dummy_eq(self, other, symbol=None): if not isinstance(other, self.func): return False if isinstance(self.sym, Symbol) != isinstance(other.sym, Symbol): # this test won't be necessary when unsolved equations # syntax is removed return False if symbol: raise ValueError('symbol arg not supported for ConditionSet') o = other if isinstance(self.sym, Symbol) and isinstance(other.sym, Symbol): # this code will not need to be in an if-block when # the unsolved equations syntax is removed o = other.func(self.sym, other.condition.subs(other.sym, self.sym), other.base_set) return self == o
d978107a005dcf934df1a4dc886f483a61d98e8b0df4c96d049de71e1d707d88
"""Implicit plotting module for SymPy The module implements a data series called ImplicitSeries which is used by ``Plot`` class to plot implicit plots for different backends. The module, by default, implements plotting using interval arithmetic. It switches to a fall back algorithm if the expression cannot be plotted using interval arithmetic. It is also possible to specify to use the fall back algorithm for all plots. Boolean combinations of expressions cannot be plotted by the fall back algorithm. See Also ======== sympy.plotting.plot References ========== - Jeffrey Allen Tupper. Reliable Two-Dimensional Graphing Methods for Mathematical Formulae with Two Free Variables. - Jeffrey Allen Tupper. Graphing Equations with Generalized Interval Arithmetic. Master's thesis. University of Toronto, 1996 """ from __future__ import print_function, division from .plot import BaseSeries, Plot from .experimental_lambdify import experimental_lambdify, vectorized_lambdify from .intervalmath import interval from sympy.core.relational import (Equality, GreaterThan, LessThan, Relational, StrictLessThan, StrictGreaterThan) from sympy import Eq, Tuple, sympify, Symbol, Dummy from sympy.external import import_module from sympy.logic.boolalg import BooleanFunction from sympy.polys.polyutils import _sort_gens from sympy.utilities.decorator import doctest_depends_on from sympy.utilities.iterables import flatten import warnings class ImplicitSeries(BaseSeries): """ Representation for Implicit plot """ is_implicit = True def __init__(self, expr, var_start_end_x, var_start_end_y, has_equality, use_interval_math, depth, nb_of_points, line_color): super(ImplicitSeries, self).__init__() self.expr = sympify(expr) self.var_x = sympify(var_start_end_x[0]) self.start_x = float(var_start_end_x[1]) self.end_x = float(var_start_end_x[2]) self.var_y = sympify(var_start_end_y[0]) self.start_y = float(var_start_end_y[1]) self.end_y = float(var_start_end_y[2]) self.get_points = self.get_raster self.has_equality = has_equality # If the expression has equality, i.e. #Eq, Greaterthan, LessThan. self.nb_of_points = nb_of_points self.use_interval_math = use_interval_math self.depth = 4 + depth self.line_color = line_color def __str__(self): return ('Implicit equation: %s for ' '%s over %s and %s over %s') % ( str(self.expr), str(self.var_x), str((self.start_x, self.end_x)), str(self.var_y), str((self.start_y, self.end_y))) def get_raster(self): func = experimental_lambdify((self.var_x, self.var_y), self.expr, use_interval=True) xinterval = interval(self.start_x, self.end_x) yinterval = interval(self.start_y, self.end_y) try: temp = func(xinterval, yinterval) except AttributeError: # XXX: AttributeError("'list' object has no attribute 'is_real'") # That needs fixing somehow - we shouldn't be catching # AttributeError here. if self.use_interval_math: warnings.warn("Adaptive meshing could not be applied to the" " expression. Using uniform meshing.") self.use_interval_math = False if self.use_interval_math: return self._get_raster_interval(func) else: return self._get_meshes_grid() def _get_raster_interval(self, func): """ Uses interval math to adaptively mesh and obtain the plot""" k = self.depth interval_list = [] #Create initial 32 divisions np = import_module('numpy') xsample = np.linspace(self.start_x, self.end_x, 33) ysample = np.linspace(self.start_y, self.end_y, 33) #Add a small jitter so that there are no false positives for equality. # Ex: y==x becomes True for x interval(1, 2) and y interval(1, 2) #which will draw a rectangle. jitterx = (np.random.rand( len(xsample)) * 2 - 1) * (self.end_x - self.start_x) / 2**20 jittery = (np.random.rand( len(ysample)) * 2 - 1) * (self.end_y - self.start_y) / 2**20 xsample += jitterx ysample += jittery xinter = [interval(x1, x2) for x1, x2 in zip(xsample[:-1], xsample[1:])] yinter = [interval(y1, y2) for y1, y2 in zip(ysample[:-1], ysample[1:])] interval_list = [[x, y] for x in xinter for y in yinter] plot_list = [] #recursive call refinepixels which subdivides the intervals which are #neither True nor False according to the expression. def refine_pixels(interval_list): """ Evaluates the intervals and subdivides the interval if the expression is partially satisfied.""" temp_interval_list = [] plot_list = [] for intervals in interval_list: #Convert the array indices to x and y values intervalx = intervals[0] intervaly = intervals[1] func_eval = func(intervalx, intervaly) #The expression is valid in the interval. Change the contour #array values to 1. if func_eval[1] is False or func_eval[0] is False: pass elif func_eval == (True, True): plot_list.append([intervalx, intervaly]) elif func_eval[1] is None or func_eval[0] is None: #Subdivide avgx = intervalx.mid avgy = intervaly.mid a = interval(intervalx.start, avgx) b = interval(avgx, intervalx.end) c = interval(intervaly.start, avgy) d = interval(avgy, intervaly.end) temp_interval_list.append([a, c]) temp_interval_list.append([a, d]) temp_interval_list.append([b, c]) temp_interval_list.append([b, d]) return temp_interval_list, plot_list while k >= 0 and len(interval_list): interval_list, plot_list_temp = refine_pixels(interval_list) plot_list.extend(plot_list_temp) k = k - 1 #Check whether the expression represents an equality #If it represents an equality, then none of the intervals #would have satisfied the expression due to floating point #differences. Add all the undecided values to the plot. if self.has_equality: for intervals in interval_list: intervalx = intervals[0] intervaly = intervals[1] func_eval = func(intervalx, intervaly) if func_eval[1] and func_eval[0] is not False: plot_list.append([intervalx, intervaly]) return plot_list, 'fill' def _get_meshes_grid(self): """Generates the mesh for generating a contour. In the case of equality, ``contour`` function of matplotlib can be used. In other cases, matplotlib's ``contourf`` is used. """ equal = False if isinstance(self.expr, Equality): expr = self.expr.lhs - self.expr.rhs equal = True elif isinstance(self.expr, (GreaterThan, StrictGreaterThan)): expr = self.expr.lhs - self.expr.rhs elif isinstance(self.expr, (LessThan, StrictLessThan)): expr = self.expr.rhs - self.expr.lhs else: raise NotImplementedError("The expression is not supported for " "plotting in uniform meshed plot.") np = import_module('numpy') xarray = np.linspace(self.start_x, self.end_x, self.nb_of_points) yarray = np.linspace(self.start_y, self.end_y, self.nb_of_points) x_grid, y_grid = np.meshgrid(xarray, yarray) func = vectorized_lambdify((self.var_x, self.var_y), expr) z_grid = func(x_grid, y_grid) z_grid[np.ma.where(z_grid < 0)] = -1 z_grid[np.ma.where(z_grid > 0)] = 1 if equal: return xarray, yarray, z_grid, 'contour' else: return xarray, yarray, z_grid, 'contourf' @doctest_depends_on(modules=('matplotlib',)) def plot_implicit(expr, x_var=None, y_var=None, adaptive=True, depth=0, points=300, line_color="blue", show=True, **kwargs): """A plot function to plot implicit equations / inequalities. Arguments ========= - ``expr`` : The equation / inequality that is to be plotted. - ``x_var`` (optional) : symbol to plot on x-axis or tuple giving symbol and range as ``(symbol, xmin, xmax)`` - ``y_var`` (optional) : symbol to plot on y-axis or tuple giving symbol and range as ``(symbol, ymin, ymax)`` If neither ``x_var`` nor ``y_var`` are given then the free symbols in the expression will be assigned in the order they are sorted. The following keyword arguments can also be used: - ``adaptive`` Boolean. The default value is set to True. It has to be set to False if you want to use a mesh grid. - ``depth`` integer. The depth of recursion for adaptive mesh grid. Default value is 0. Takes value in the range (0, 4). - ``points`` integer. The number of points if adaptive mesh grid is not used. Default value is 300. - ``show`` Boolean. Default value is True. If set to False, the plot will not be shown. See ``Plot`` for further information. - ``title`` string. The title for the plot. - ``xlabel`` string. The label for the x-axis - ``ylabel`` string. The label for the y-axis Aesthetics options: - ``line_color``: float or string. Specifies the color for the plot. See ``Plot`` to see how to set color for the plots. Default value is "Blue" plot_implicit, by default, uses interval arithmetic to plot functions. If the expression cannot be plotted using interval arithmetic, it defaults to a generating a contour using a mesh grid of fixed number of points. By setting adaptive to False, you can force plot_implicit to use the mesh grid. The mesh grid method can be effective when adaptive plotting using interval arithmetic, fails to plot with small line width. Examples ======== Plot expressions: >>> from sympy import plot_implicit, cos, sin, symbols, Eq, And >>> x, y = symbols('x y') Without any ranges for the symbols in the expression >>> p1 = plot_implicit(Eq(x**2 + y**2, 5)) With the range for the symbols >>> p2 = plot_implicit(Eq(x**2 + y**2, 3), ... (x, -3, 3), (y, -3, 3)) With depth of recursion as argument. >>> p3 = plot_implicit(Eq(x**2 + y**2, 5), ... (x, -4, 4), (y, -4, 4), depth = 2) Using mesh grid and not using adaptive meshing. >>> p4 = plot_implicit(Eq(x**2 + y**2, 5), ... (x, -5, 5), (y, -2, 2), adaptive=False) Using mesh grid with number of points as input. >>> p5 = plot_implicit(Eq(x**2 + y**2, 5), ... (x, -5, 5), (y, -2, 2), ... adaptive=False, points=400) Plotting regions. >>> p6 = plot_implicit(y > x**2) Plotting Using boolean conjunctions. >>> p7 = plot_implicit(And(y > x, y > -x)) When plotting an expression with a single variable (y - 1, for example), specify the x or the y variable explicitly: >>> p8 = plot_implicit(y - 1, y_var=y) >>> p9 = plot_implicit(x - 1, x_var=x) """ has_equality = False # Represents whether the expression contains an Equality, #GreaterThan or LessThan def arg_expand(bool_expr): """ Recursively expands the arguments of an Boolean Function """ for arg in bool_expr.args: if isinstance(arg, BooleanFunction): arg_expand(arg) elif isinstance(arg, Relational): arg_list.append(arg) arg_list = [] if isinstance(expr, BooleanFunction): arg_expand(expr) #Check whether there is an equality in the expression provided. if any(isinstance(e, (Equality, GreaterThan, LessThan)) for e in arg_list): has_equality = True elif not isinstance(expr, Relational): expr = Eq(expr, 0) has_equality = True elif isinstance(expr, (Equality, GreaterThan, LessThan)): has_equality = True xyvar = [i for i in (x_var, y_var) if i is not None] free_symbols = expr.free_symbols range_symbols = Tuple(*flatten(xyvar)).free_symbols undeclared = free_symbols - range_symbols if len(free_symbols & range_symbols) > 2: raise NotImplementedError("Implicit plotting is not implemented for " "more than 2 variables") #Create default ranges if the range is not provided. default_range = Tuple(-5, 5) def _range_tuple(s): if isinstance(s, Symbol): return Tuple(s) + default_range if len(s) == 3: return Tuple(*s) raise ValueError('symbol or `(symbol, min, max)` expected but got %s' % s) if len(xyvar) == 0: xyvar = list(_sort_gens(free_symbols)) var_start_end_x = _range_tuple(xyvar[0]) x = var_start_end_x[0] if len(xyvar) != 2: if x in undeclared or not undeclared: xyvar.append(Dummy('f(%s)' % x.name)) else: xyvar.append(undeclared.pop()) var_start_end_y = _range_tuple(xyvar[1]) #Check whether the depth is greater than 4 or less than 0. if depth > 4: depth = 4 elif depth < 0: depth = 0 series_argument = ImplicitSeries(expr, var_start_end_x, var_start_end_y, has_equality, adaptive, depth, points, line_color) #set the x and y limits kwargs['xlim'] = tuple(float(x) for x in var_start_end_x[1:]) kwargs['ylim'] = tuple(float(y) for y in var_start_end_y[1:]) # set the x and y labels kwargs.setdefault('xlabel', var_start_end_x[0].name) kwargs.setdefault('ylabel', var_start_end_y[0].name) p = Plot(series_argument, **kwargs) if show: p.show() return p
4d45088340bbb42281633fe79679db4e46a6e505be876d05f0474eda457c4551
"""Plotting module for Sympy. A plot is represented by the ``Plot`` class that contains a reference to the backend and a list of the data series to be plotted. The data series are instances of classes meant to simplify getting points and meshes from sympy expressions. ``plot_backends`` is a dictionary with all the backends. This module gives only the essential. For all the fancy stuff use directly the backend. You can get the backend wrapper for every plot from the ``_backend`` attribute. Moreover the data series classes have various useful methods like ``get_points``, ``get_segments``, ``get_meshes``, etc, that may be useful if you wish to use another plotting library. Especially if you need publication ready graphs and this module is not enough for you - just get the ``_backend`` attribute and add whatever you want directly to it. In the case of matplotlib (the common way to graph data in python) just copy ``_backend.fig`` which is the figure and ``_backend.ax`` which is the axis and work on them as you would on any other matplotlib object. Simplicity of code takes much greater importance than performance. Don't use it if you care at all about performance. A new backend instance is initialized every time you call ``show()`` and the old one is left to the garbage collector. """ from __future__ import print_function, division import warnings from sympy import sympify, Expr, Tuple, Dummy, Symbol from sympy.external import import_module from sympy.core.function import arity from sympy.core.compatibility import range, Callable from sympy.utilities.iterables import is_sequence from .experimental_lambdify import (vectorized_lambdify, lambdify) # N.B. # When changing the minimum module version for matplotlib, please change # the same in the `SymPyDocTestFinder`` in `sympy/utilities/runtests.py` # Backend specific imports - textplot from sympy.plotting.textplot import textplot # Global variable # Set to False when running tests / doctests so that the plots don't show. _show = True def unset_show(): """ Disable show(). For use in the tests. """ global _show _show = False ############################################################################## # The public interface ############################################################################## class Plot(object): """The central class of the plotting module. For interactive work the function ``plot`` is better suited. This class permits the plotting of sympy expressions using numerous backends (matplotlib, textplot, the old pyglet module for sympy, Google charts api, etc). The figure can contain an arbitrary number of plots of sympy expressions, lists of coordinates of points, etc. Plot has a private attribute _series that contains all data series to be plotted (expressions for lines or surfaces, lists of points, etc (all subclasses of BaseSeries)). Those data series are instances of classes not imported by ``from sympy import *``. The customization of the figure is on two levels. Global options that concern the figure as a whole (eg title, xlabel, scale, etc) and per-data series options (eg name) and aesthetics (eg. color, point shape, line type, etc.). The difference between options and aesthetics is that an aesthetic can be a function of the coordinates (or parameters in a parametric plot). The supported values for an aesthetic are: - None (the backend uses default values) - a constant - a function of one variable (the first coordinate or parameter) - a function of two variables (the first and second coordinate or parameters) - a function of three variables (only in nonparametric 3D plots) Their implementation depends on the backend so they may not work in some backends. If the plot is parametric and the arity of the aesthetic function permits it the aesthetic is calculated over parameters and not over coordinates. If the arity does not permit calculation over parameters the calculation is done over coordinates. Only cartesian coordinates are supported for the moment, but you can use the parametric plots to plot in polar, spherical and cylindrical coordinates. The arguments for the constructor Plot must be subclasses of BaseSeries. Any global option can be specified as a keyword argument. The global options for a figure are: - title : str - xlabel : str - ylabel : str - legend : bool - xscale : {'linear', 'log'} - yscale : {'linear', 'log'} - axis : bool - axis_center : tuple of two floats or {'center', 'auto'} - xlim : tuple of two floats - ylim : tuple of two floats - aspect_ratio : tuple of two floats or {'auto'} - autoscale : bool - margin : float in [0, 1] The per data series options and aesthetics are: There are none in the base series. See below for options for subclasses. Some data series support additional aesthetics or options: ListSeries, LineOver1DRangeSeries, Parametric2DLineSeries, Parametric3DLineSeries support the following: Aesthetics: - line_color : function which returns a float. options: - label : str - steps : bool - integers_only : bool SurfaceOver2DRangeSeries, ParametricSurfaceSeries support the following: aesthetics: - surface_color : function which returns a float. """ def __init__(self, *args, **kwargs): super(Plot, self).__init__() # Options for the graph as a whole. # The possible values for each option are described in the docstring of # Plot. They are based purely on convention, no checking is done. self.title = None self.xlabel = None self.ylabel = None self.aspect_ratio = 'auto' self.xlim = None self.ylim = None self.axis_center = 'auto' self.axis = True self.xscale = 'linear' self.yscale = 'linear' self.legend = False self.autoscale = True self.margin = 0 # Contains the data objects to be plotted. The backend should be smart # enough to iterate over this list. self._series = [] self._series.extend(args) # The backend type. On every show() a new backend instance is created # in self._backend which is tightly coupled to the Plot instance # (thanks to the parent attribute of the backend). self.backend = DefaultBackend # The keyword arguments should only contain options for the plot. for key, val in kwargs.items(): if hasattr(self, key): setattr(self, key, val) def show(self): # TODO move this to the backend (also for save) if hasattr(self, '_backend'): self._backend.close() self._backend = self.backend(self) self._backend.show() def save(self, path): if hasattr(self, '_backend'): self._backend.close() self._backend = self.backend(self) self._backend.save(path) def __str__(self): series_strs = [('[%d]: ' % i) + str(s) for i, s in enumerate(self._series)] return 'Plot object containing:\n' + '\n'.join(series_strs) def __getitem__(self, index): return self._series[index] def __setitem__(self, index, *args): if len(args) == 1 and isinstance(args[0], BaseSeries): self._series[index] = args def __delitem__(self, index): del self._series[index] def append(self, arg): """Adds an element from a plot's series to an existing plot. Examples ======== Consider two ``Plot`` objects, ``p1`` and ``p2``. To add the second plot's first series object to the first, use the ``append`` method, like so: .. plot:: :format: doctest :include-source: True >>> from sympy import symbols >>> from sympy.plotting import plot >>> x = symbols('x') >>> p1 = plot(x*x, show=False) >>> p2 = plot(x, show=False) >>> p1.append(p2[0]) >>> p1 Plot object containing: [0]: cartesian line: x**2 for x over (-10.0, 10.0) [1]: cartesian line: x for x over (-10.0, 10.0) >>> p1.show() See Also ======== extend """ if isinstance(arg, BaseSeries): self._series.append(arg) else: raise TypeError('Must specify element of plot to append.') def extend(self, arg): """Adds all series from another plot. Examples ======== Consider two ``Plot`` objects, ``p1`` and ``p2``. To add the second plot to the first, use the ``extend`` method, like so: .. plot:: :format: doctest :include-source: True >>> from sympy import symbols >>> from sympy.plotting import plot >>> x = symbols('x') >>> p1 = plot(x**2, show=False) >>> p2 = plot(x, -x, show=False) >>> p1.extend(p2) >>> p1 Plot object containing: [0]: cartesian line: x**2 for x over (-10.0, 10.0) [1]: cartesian line: x for x over (-10.0, 10.0) [2]: cartesian line: -x for x over (-10.0, 10.0) >>> p1.show() """ if isinstance(arg, Plot): self._series.extend(arg._series) elif is_sequence(arg): self._series.extend(arg) else: raise TypeError('Expecting Plot or sequence of BaseSeries') ############################################################################## # Data Series ############################################################################## #TODO more general way to calculate aesthetics (see get_color_array) ### The base class for all series class BaseSeries(object): """Base class for the data objects containing stuff to be plotted. The backend should check if it supports the data series that it's given. (eg TextBackend supports only LineOver1DRange). It's the backend responsibility to know how to use the class of data series that it's given. Some data series classes are grouped (using a class attribute like is_2Dline) according to the api they present (based only on convention). The backend is not obliged to use that api (eg. The LineOver1DRange belongs to the is_2Dline group and presents the get_points method, but the TextBackend does not use the get_points method). """ # Some flags follow. The rationale for using flags instead of checking base # classes is that setting multiple flags is simpler than multiple # inheritance. is_2Dline = False # Some of the backends expect: # - get_points returning 1D np.arrays list_x, list_y # - get_segments returning np.array (done in Line2DBaseSeries) # - get_color_array returning 1D np.array (done in Line2DBaseSeries) # with the colors calculated at the points from get_points is_3Dline = False # Some of the backends expect: # - get_points returning 1D np.arrays list_x, list_y, list_y # - get_segments returning np.array (done in Line2DBaseSeries) # - get_color_array returning 1D np.array (done in Line2DBaseSeries) # with the colors calculated at the points from get_points is_3Dsurface = False # Some of the backends expect: # - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays) # - get_points an alias for get_meshes is_contour = False # Some of the backends expect: # - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays) # - get_points an alias for get_meshes is_implicit = False # Some of the backends expect: # - get_meshes returning mesh_x (1D array), mesh_y(1D array, # mesh_z (2D np.arrays) # - get_points an alias for get_meshes #Different from is_contour as the colormap in backend will be #different is_parametric = False # The calculation of aesthetics expects: # - get_parameter_points returning one or two np.arrays (1D or 2D) # used for calculation aesthetics def __init__(self): super(BaseSeries, self).__init__() @property def is_3D(self): flags3D = [ self.is_3Dline, self.is_3Dsurface ] return any(flags3D) @property def is_line(self): flagslines = [ self.is_2Dline, self.is_3Dline ] return any(flagslines) ### 2D lines class Line2DBaseSeries(BaseSeries): """A base class for 2D lines. - adding the label, steps and only_integers options - making is_2Dline true - defining get_segments and get_color_array """ is_2Dline = True _dim = 2 def __init__(self): super(Line2DBaseSeries, self).__init__() self.label = None self.steps = False self.only_integers = False self.line_color = None def get_segments(self): np = import_module('numpy') points = self.get_points() if self.steps is True: x = np.array((points[0], points[0])).T.flatten()[1:] y = np.array((points[1], points[1])).T.flatten()[:-1] points = (x, y) points = np.ma.array(points).T.reshape(-1, 1, self._dim) return np.ma.concatenate([points[:-1], points[1:]], axis=1) def get_color_array(self): np = import_module('numpy') c = self.line_color if hasattr(c, '__call__'): f = np.vectorize(c) nargs = arity(c) if nargs == 1 and self.is_parametric: x = self.get_parameter_points() return f(centers_of_segments(x)) else: variables = list(map(centers_of_segments, self.get_points())) if nargs == 1: return f(variables[0]) elif nargs == 2: return f(*variables[:2]) else: # only if the line is 3D (otherwise raises an error) return f(*variables) else: return c*np.ones(self.nb_of_points) class List2DSeries(Line2DBaseSeries): """Representation for a line consisting of list of points.""" def __init__(self, list_x, list_y): np = import_module('numpy') super(List2DSeries, self).__init__() self.list_x = np.array(list_x) self.list_y = np.array(list_y) self.label = 'list' def __str__(self): return 'list plot' def get_points(self): return (self.list_x, self.list_y) class LineOver1DRangeSeries(Line2DBaseSeries): """Representation for a line consisting of a SymPy expression over a range.""" def __init__(self, expr, var_start_end, **kwargs): super(LineOver1DRangeSeries, self).__init__() self.expr = sympify(expr) self.label = str(self.expr) self.var = sympify(var_start_end[0]) self.start = float(var_start_end[1]) self.end = float(var_start_end[2]) self.nb_of_points = kwargs.get('nb_of_points', 300) self.adaptive = kwargs.get('adaptive', True) self.depth = kwargs.get('depth', 12) self.line_color = kwargs.get('line_color', None) self.xscale=kwargs.get('xscale','linear') self.flag=0 def __str__(self): return 'cartesian line: %s for %s over %s' % ( str(self.expr), str(self.var), str((self.start, self.end))) def get_segments(self): """ Adaptively gets segments for plotting. The adaptive sampling is done by recursively checking if three points are almost collinear. If they are not collinear, then more points are added between those points. References ========== [1] Adaptive polygonal approximation of parametric curves, Luiz Henrique de Figueiredo. """ if self.only_integers or not self.adaptive: return super(LineOver1DRangeSeries, self).get_segments() else: f = lambdify([self.var], self.expr) list_segments = [] np=import_module('numpy') def sample(p, q, depth): """ Samples recursively if three points are almost collinear. For depth < 6, points are added irrespective of whether they satisfy the collinearity condition or not. The maximum depth allowed is 12. """ np = import_module('numpy') #Randomly sample to avoid aliasing. random = 0.45 + np.random.rand() * 0.1 xnew = p[0] + random * (q[0] - p[0]) ynew = f(xnew) new_point = np.array([xnew, ynew]) if self.flag==1: return #Maximum depth if depth > self.depth: if p[1] is None or q[1] is None: self.flag=1 return list_segments.append([p, q]) #Sample irrespective of whether the line is flat till the #depth of 6. We are not using linspace to avoid aliasing. elif depth < 6: sample(p, new_point, depth + 1) sample(new_point, q, depth + 1) #Sample ten points if complex values are encountered #at both ends. If there is a real value in between, then #sample those points further. elif p[1] is None and q[1] is None: if self.xscale is 'log': xarray = np.logspace(p[0],q[0], 10) else: xarray = np.linspace(p[0], q[0], 10) yarray = list(map(f, xarray)) if any(y is not None for y in yarray): for i in range(len(yarray) - 1): if yarray[i] is not None or yarray[i + 1] is not None: sample([xarray[i], yarray[i]], [xarray[i + 1], yarray[i + 1]], depth + 1) #Sample further if one of the end points in None( i.e. a complex #value) or the three points are not almost collinear. elif (p[1] is None or q[1] is None or new_point[1] is None or not flat(p, new_point, q)): sample(p, new_point, depth + 1) sample(new_point, q, depth + 1) else: list_segments.append([p, q]) if self.xscale is 'log': self.start=np.log10(self.start) self.end=np.log10(self.end) f_start = f(self.start) f_end = f(self.end) sample([self.start, f_start], [self.end, f_end], 0) return list_segments def get_points(self): np = import_module('numpy') if self.only_integers is True: if self.xscale is 'log': list_x = np.logspace(int(self.start), int(self.end), num=int(self.end) - int(self.start) + 1) else: list_x = np.linspace(int(self.start), int(self.end), num=int(self.end) - int(self.start) + 1) else: if self.xscale is 'log': list_x = np.logspace(self.start, self.end, num=self.nb_of_points) else: list_x = np.linspace(self.start, self.end, num=self.nb_of_points) f = vectorized_lambdify([self.var], self.expr) list_y = f(list_x) return (list_x, list_y) class Parametric2DLineSeries(Line2DBaseSeries): """Representation for a line consisting of two parametric sympy expressions over a range.""" is_parametric = True def __init__(self, expr_x, expr_y, var_start_end, **kwargs): super(Parametric2DLineSeries, self).__init__() self.expr_x = sympify(expr_x) self.expr_y = sympify(expr_y) self.label = "(%s, %s)" % (str(self.expr_x), str(self.expr_y)) self.var = sympify(var_start_end[0]) self.start = float(var_start_end[1]) self.end = float(var_start_end[2]) self.nb_of_points = kwargs.get('nb_of_points', 300) self.adaptive = kwargs.get('adaptive', True) self.depth = kwargs.get('depth', 12) self.line_color = kwargs.get('line_color', None) def __str__(self): return 'parametric cartesian line: (%s, %s) for %s over %s' % ( str(self.expr_x), str(self.expr_y), str(self.var), str((self.start, self.end))) def get_parameter_points(self): np = import_module('numpy') return np.linspace(self.start, self.end, num=self.nb_of_points) def get_points(self): param = self.get_parameter_points() fx = vectorized_lambdify([self.var], self.expr_x) fy = vectorized_lambdify([self.var], self.expr_y) list_x = fx(param) list_y = fy(param) return (list_x, list_y) def get_segments(self): """ Adaptively gets segments for plotting. The adaptive sampling is done by recursively checking if three points are almost collinear. If they are not collinear, then more points are added between those points. References ========== [1] Adaptive polygonal approximation of parametric curves, Luiz Henrique de Figueiredo. """ if not self.adaptive: return super(Parametric2DLineSeries, self).get_segments() f_x = lambdify([self.var], self.expr_x) f_y = lambdify([self.var], self.expr_y) list_segments = [] def sample(param_p, param_q, p, q, depth): """ Samples recursively if three points are almost collinear. For depth < 6, points are added irrespective of whether they satisfy the collinearity condition or not. The maximum depth allowed is 12. """ #Randomly sample to avoid aliasing. np = import_module('numpy') random = 0.45 + np.random.rand() * 0.1 param_new = param_p + random * (param_q - param_p) xnew = f_x(param_new) ynew = f_y(param_new) new_point = np.array([xnew, ynew]) #Maximum depth if depth > self.depth: list_segments.append([p, q]) #Sample irrespective of whether the line is flat till the #depth of 6. We are not using linspace to avoid aliasing. elif depth < 6: sample(param_p, param_new, p, new_point, depth + 1) sample(param_new, param_q, new_point, q, depth + 1) #Sample ten points if complex values are encountered #at both ends. If there is a real value in between, then #sample those points further. elif ((p[0] is None and q[1] is None) or (p[1] is None and q[1] is None)): param_array = np.linspace(param_p, param_q, 10) x_array = list(map(f_x, param_array)) y_array = list(map(f_y, param_array)) if any(x is not None and y is not None for x, y in zip(x_array, y_array)): for i in range(len(y_array) - 1): if ((x_array[i] is not None and y_array[i] is not None) or (x_array[i + 1] is not None and y_array[i + 1] is not None)): point_a = [x_array[i], y_array[i]] point_b = [x_array[i + 1], y_array[i + 1]] sample(param_array[i], param_array[i], point_a, point_b, depth + 1) #Sample further if one of the end points in None( ie a complex #value) or the three points are not almost collinear. elif (p[0] is None or p[1] is None or q[1] is None or q[0] is None or not flat(p, new_point, q)): sample(param_p, param_new, p, new_point, depth + 1) sample(param_new, param_q, new_point, q, depth + 1) else: list_segments.append([p, q]) f_start_x = f_x(self.start) f_start_y = f_y(self.start) start = [f_start_x, f_start_y] f_end_x = f_x(self.end) f_end_y = f_y(self.end) end = [f_end_x, f_end_y] sample(self.start, self.end, start, end, 0) return list_segments ### 3D lines class Line3DBaseSeries(Line2DBaseSeries): """A base class for 3D lines. Most of the stuff is derived from Line2DBaseSeries.""" is_2Dline = False is_3Dline = True _dim = 3 def __init__(self): super(Line3DBaseSeries, self).__init__() class Parametric3DLineSeries(Line3DBaseSeries): """Representation for a 3D line consisting of two parametric sympy expressions and a range.""" def __init__(self, expr_x, expr_y, expr_z, var_start_end, **kwargs): super(Parametric3DLineSeries, self).__init__() self.expr_x = sympify(expr_x) self.expr_y = sympify(expr_y) self.expr_z = sympify(expr_z) self.label = "(%s, %s)" % (str(self.expr_x), str(self.expr_y)) self.var = sympify(var_start_end[0]) self.start = float(var_start_end[1]) self.end = float(var_start_end[2]) self.nb_of_points = kwargs.get('nb_of_points', 300) self.line_color = kwargs.get('line_color', None) def __str__(self): return '3D parametric cartesian line: (%s, %s, %s) for %s over %s' % ( str(self.expr_x), str(self.expr_y), str(self.expr_z), str(self.var), str((self.start, self.end))) def get_parameter_points(self): np = import_module('numpy') return np.linspace(self.start, self.end, num=self.nb_of_points) def get_points(self): param = self.get_parameter_points() fx = vectorized_lambdify([self.var], self.expr_x) fy = vectorized_lambdify([self.var], self.expr_y) fz = vectorized_lambdify([self.var], self.expr_z) list_x = fx(param) list_y = fy(param) list_z = fz(param) return (list_x, list_y, list_z) ### Surfaces class SurfaceBaseSeries(BaseSeries): """A base class for 3D surfaces.""" is_3Dsurface = True def __init__(self): super(SurfaceBaseSeries, self).__init__() self.surface_color = None def get_color_array(self): np = import_module('numpy') c = self.surface_color if isinstance(c, Callable): f = np.vectorize(c) nargs = arity(c) if self.is_parametric: variables = list(map(centers_of_faces, self.get_parameter_meshes())) if nargs == 1: return f(variables[0]) elif nargs == 2: return f(*variables) variables = list(map(centers_of_faces, self.get_meshes())) if nargs == 1: return f(variables[0]) elif nargs == 2: return f(*variables[:2]) else: return f(*variables) else: return c*np.ones(self.nb_of_points) class SurfaceOver2DRangeSeries(SurfaceBaseSeries): """Representation for a 3D surface consisting of a sympy expression and 2D range.""" def __init__(self, expr, var_start_end_x, var_start_end_y, **kwargs): super(SurfaceOver2DRangeSeries, self).__init__() self.expr = sympify(expr) self.var_x = sympify(var_start_end_x[0]) self.start_x = float(var_start_end_x[1]) self.end_x = float(var_start_end_x[2]) self.var_y = sympify(var_start_end_y[0]) self.start_y = float(var_start_end_y[1]) self.end_y = float(var_start_end_y[2]) self.nb_of_points_x = kwargs.get('nb_of_points_x', 50) self.nb_of_points_y = kwargs.get('nb_of_points_y', 50) self.surface_color = kwargs.get('surface_color', None) def __str__(self): return ('cartesian surface: %s for' ' %s over %s and %s over %s') % ( str(self.expr), str(self.var_x), str((self.start_x, self.end_x)), str(self.var_y), str((self.start_y, self.end_y))) def get_meshes(self): np = import_module('numpy') mesh_x, mesh_y = np.meshgrid(np.linspace(self.start_x, self.end_x, num=self.nb_of_points_x), np.linspace(self.start_y, self.end_y, num=self.nb_of_points_y)) f = vectorized_lambdify((self.var_x, self.var_y), self.expr) return (mesh_x, mesh_y, f(mesh_x, mesh_y)) class ParametricSurfaceSeries(SurfaceBaseSeries): """Representation for a 3D surface consisting of three parametric sympy expressions and a range.""" is_parametric = True def __init__( self, expr_x, expr_y, expr_z, var_start_end_u, var_start_end_v, **kwargs): super(ParametricSurfaceSeries, self).__init__() self.expr_x = sympify(expr_x) self.expr_y = sympify(expr_y) self.expr_z = sympify(expr_z) self.var_u = sympify(var_start_end_u[0]) self.start_u = float(var_start_end_u[1]) self.end_u = float(var_start_end_u[2]) self.var_v = sympify(var_start_end_v[0]) self.start_v = float(var_start_end_v[1]) self.end_v = float(var_start_end_v[2]) self.nb_of_points_u = kwargs.get('nb_of_points_u', 50) self.nb_of_points_v = kwargs.get('nb_of_points_v', 50) self.surface_color = kwargs.get('surface_color', None) def __str__(self): return ('parametric cartesian surface: (%s, %s, %s) for' ' %s over %s and %s over %s') % ( str(self.expr_x), str(self.expr_y), str(self.expr_z), str(self.var_u), str((self.start_u, self.end_u)), str(self.var_v), str((self.start_v, self.end_v))) def get_parameter_meshes(self): np = import_module('numpy') return np.meshgrid(np.linspace(self.start_u, self.end_u, num=self.nb_of_points_u), np.linspace(self.start_v, self.end_v, num=self.nb_of_points_v)) def get_meshes(self): mesh_u, mesh_v = self.get_parameter_meshes() fx = vectorized_lambdify((self.var_u, self.var_v), self.expr_x) fy = vectorized_lambdify((self.var_u, self.var_v), self.expr_y) fz = vectorized_lambdify((self.var_u, self.var_v), self.expr_z) return (fx(mesh_u, mesh_v), fy(mesh_u, mesh_v), fz(mesh_u, mesh_v)) ### Contours class ContourSeries(BaseSeries): """Representation for a contour plot.""" # The code is mostly repetition of SurfaceOver2DRange. # Presently used in contour_plot function is_contour = True def __init__(self, expr, var_start_end_x, var_start_end_y): super(ContourSeries, self).__init__() self.nb_of_points_x = 50 self.nb_of_points_y = 50 self.expr = sympify(expr) self.var_x = sympify(var_start_end_x[0]) self.start_x = float(var_start_end_x[1]) self.end_x = float(var_start_end_x[2]) self.var_y = sympify(var_start_end_y[0]) self.start_y = float(var_start_end_y[1]) self.end_y = float(var_start_end_y[2]) self.get_points = self.get_meshes def __str__(self): return ('contour: %s for ' '%s over %s and %s over %s') % ( str(self.expr), str(self.var_x), str((self.start_x, self.end_x)), str(self.var_y), str((self.start_y, self.end_y))) def get_meshes(self): np = import_module('numpy') mesh_x, mesh_y = np.meshgrid(np.linspace(self.start_x, self.end_x, num=self.nb_of_points_x), np.linspace(self.start_y, self.end_y, num=self.nb_of_points_y)) f = vectorized_lambdify((self.var_x, self.var_y), self.expr) return (mesh_x, mesh_y, f(mesh_x, mesh_y)) ############################################################################## # Backends ############################################################################## class BaseBackend(object): def __init__(self, parent): super(BaseBackend, self).__init__() self.parent = parent ## don't have to check for the success of importing matplotlib in each case; ## we will only be using this backend if we can successfully import matploblib class MatplotlibBackend(BaseBackend): def __init__(self, parent): super(MatplotlibBackend, self).__init__(parent) are_3D = [s.is_3D for s in self.parent._series] self.matplotlib = import_module('matplotlib', __import__kwargs={'fromlist': ['pyplot', 'cm', 'collections']}, min_module_version='1.1.0', catch=(RuntimeError,)) self.plt = self.matplotlib.pyplot self.cm = self.matplotlib.cm self.LineCollection = self.matplotlib.collections.LineCollection if any(are_3D) and not all(are_3D): raise ValueError('The matplotlib backend can not mix 2D and 3D.') elif not any(are_3D): self.fig = self.plt.figure() self.ax = self.fig.add_subplot(111) self.ax.spines['left'].set_position('zero') self.ax.spines['right'].set_color('none') self.ax.spines['bottom'].set_position('zero') self.ax.spines['top'].set_color('none') self.ax.spines['left'].set_smart_bounds(True) self.ax.spines['bottom'].set_smart_bounds(False) self.ax.xaxis.set_ticks_position('bottom') self.ax.yaxis.set_ticks_position('left') elif all(are_3D): ## mpl_toolkits.mplot3d is necessary for ## projection='3d' mpl_toolkits = import_module('mpl_toolkits', __import__kwargs={'fromlist': ['mplot3d']}) self.fig = self.plt.figure() self.ax = self.fig.add_subplot(111, projection='3d') def process_series(self): parent = self.parent for s in self.parent._series: # Create the collections if s.is_2Dline: collection = self.LineCollection(s.get_segments()) self.ax.add_collection(collection) elif s.is_contour: self.ax.contour(*s.get_meshes()) elif s.is_3Dline: # TODO too complicated, I blame matplotlib mpl_toolkits = import_module('mpl_toolkits', __import__kwargs={'fromlist': ['mplot3d']}) art3d = mpl_toolkits.mplot3d.art3d collection = art3d.Line3DCollection(s.get_segments()) self.ax.add_collection(collection) x, y, z = s.get_points() self.ax.set_xlim((min(x), max(x))) self.ax.set_ylim((min(y), max(y))) self.ax.set_zlim((min(z), max(z))) elif s.is_3Dsurface: x, y, z = s.get_meshes() collection = self.ax.plot_surface(x, y, z, cmap=getattr(self.cm, 'viridis', self.cm.jet), rstride=1, cstride=1, linewidth=0.1) elif s.is_implicit: #Smart bounds have to be set to False for implicit plots. self.ax.spines['left'].set_smart_bounds(False) self.ax.spines['bottom'].set_smart_bounds(False) points = s.get_raster() if len(points) == 2: #interval math plotting x, y = _matplotlib_list(points[0]) self.ax.fill(x, y, facecolor=s.line_color, edgecolor='None') else: # use contourf or contour depending on whether it is # an inequality or equality. #XXX: ``contour`` plots multiple lines. Should be fixed. ListedColormap = self.matplotlib.colors.ListedColormap colormap = ListedColormap(["white", s.line_color]) xarray, yarray, zarray, plot_type = points if plot_type == 'contour': self.ax.contour(xarray, yarray, zarray, cmap=colormap) else: self.ax.contourf(xarray, yarray, zarray, cmap=colormap) else: raise ValueError('The matplotlib backend supports only ' 'is_2Dline, is_3Dline, is_3Dsurface and ' 'is_contour objects.') # Customise the collections with the corresponding per-series # options. if hasattr(s, 'label'): collection.set_label(s.label) if s.is_line and s.line_color: if isinstance(s.line_color, (float, int)) or isinstance(s.line_color, Callable): color_array = s.get_color_array() collection.set_array(color_array) else: collection.set_color(s.line_color) if s.is_3Dsurface and s.surface_color: if self.matplotlib.__version__ < "1.2.0": # TODO in the distant future remove this check warnings.warn('The version of matplotlib is too old to use surface coloring.') elif isinstance(s.surface_color, (float, int)) or isinstance(s.surface_color, Callable): color_array = s.get_color_array() color_array = color_array.reshape(color_array.size) collection.set_array(color_array) else: collection.set_color(s.surface_color) # Set global options. # TODO The 3D stuff # XXX The order of those is important. mpl_toolkits = import_module('mpl_toolkits', __import__kwargs={'fromlist': ['mplot3d']}) Axes3D = mpl_toolkits.mplot3d.Axes3D if parent.xscale and not isinstance(self.ax, Axes3D): self.ax.set_xscale(parent.xscale) if parent.yscale and not isinstance(self.ax, Axes3D): self.ax.set_yscale(parent.yscale) if parent.xlim: from sympy.core.basic import Basic xlim = parent.xlim if any(isinstance(i,Basic) and not i.is_real for i in xlim): raise ValueError( "All numbers from xlim={} must be real".format(xlim)) if any(isinstance(i,Basic) and not i.is_finite for i in xlim): raise ValueError( "All numbers from xlim={} must be finite".format(xlim)) xlim = (float(i) for i in xlim) self.ax.set_xlim(xlim) else: if all(isinstance(s, LineOver1DRangeSeries) for s in parent._series): starts = [s.start for s in parent._series] ends = [s.end for s in parent._series] self.ax.set_xlim(min(starts), max(ends)) if parent.ylim: from sympy.core.basic import Basic ylim = parent.ylim if any(isinstance(i,Basic) and not i.is_real for i in ylim): raise ValueError( "All numbers from ylim={} must be real".format(ylim)) if any(isinstance(i,Basic) and not i.is_finite for i in ylim): raise ValueError( "All numbers from ylim={} must be finite".format(ylim)) ylim = (float(i) for i in ylim) self.ax.set_ylim(ylim) if not isinstance(self.ax, Axes3D) or self.matplotlib.__version__ >= '1.2.0': # XXX in the distant future remove this check self.ax.set_autoscale_on(parent.autoscale) if parent.axis_center: val = parent.axis_center if isinstance(self.ax, Axes3D): pass elif val == 'center': self.ax.spines['left'].set_position('center') self.ax.spines['bottom'].set_position('center') elif val == 'auto': xl, xh = self.ax.get_xlim() yl, yh = self.ax.get_ylim() pos_left = ('data', 0) if xl*xh <= 0 else 'center' pos_bottom = ('data', 0) if yl*yh <= 0 else 'center' self.ax.spines['left'].set_position(pos_left) self.ax.spines['bottom'].set_position(pos_bottom) else: self.ax.spines['left'].set_position(('data', val[0])) self.ax.spines['bottom'].set_position(('data', val[1])) if not parent.axis: self.ax.set_axis_off() if parent.legend: if self.ax.legend(): self.ax.legend_.set_visible(parent.legend) if parent.margin: self.ax.set_xmargin(parent.margin) self.ax.set_ymargin(parent.margin) if parent.title: self.ax.set_title(parent.title) if parent.xlabel: self.ax.set_xlabel(parent.xlabel, position=(1, 0)) if parent.ylabel: self.ax.set_ylabel(parent.ylabel, position=(0, 1)) def show(self): self.process_series() #TODO after fixing https://github.com/ipython/ipython/issues/1255 # you can uncomment the next line and remove the pyplot.show() call #self.fig.show() if _show: self.plt.show() else: self.close() def save(self, path): self.process_series() self.fig.savefig(path) def close(self): self.plt.close(self.fig) class TextBackend(BaseBackend): def __init__(self, parent): super(TextBackend, self).__init__(parent) def show(self): if not _show: return if len(self.parent._series) != 1: raise ValueError( 'The TextBackend supports only one graph per Plot.') elif not isinstance(self.parent._series[0], LineOver1DRangeSeries): raise ValueError( 'The TextBackend supports only expressions over a 1D range') else: ser = self.parent._series[0] textplot(ser.expr, ser.start, ser.end) def close(self): pass class DefaultBackend(BaseBackend): def __new__(cls, parent): matplotlib = import_module('matplotlib', min_module_version='1.1.0', catch=(RuntimeError,)) if matplotlib: return MatplotlibBackend(parent) else: return TextBackend(parent) plot_backends = { 'matplotlib': MatplotlibBackend, 'text': TextBackend, 'default': DefaultBackend } ############################################################################## # Finding the centers of line segments or mesh faces ############################################################################## def centers_of_segments(array): np = import_module('numpy') return np.mean(np.vstack((array[:-1], array[1:])), 0) def centers_of_faces(array): np = import_module('numpy') return np.mean(np.dstack((array[:-1, :-1], array[1:, :-1], array[:-1, 1: ], array[:-1, :-1], )), 2) def flat(x, y, z, eps=1e-3): """Checks whether three points are almost collinear""" np = import_module('numpy') # Workaround plotting piecewise (#8577): # workaround for `lambdify` in `.experimental_lambdify` fails # to return numerical values in some cases. Lower-level fix # in `lambdify` is possible. vector_a = (x - y).astype(np.float) vector_b = (z - y).astype(np.float) dot_product = np.dot(vector_a, vector_b) vector_a_norm = np.linalg.norm(vector_a) vector_b_norm = np.linalg.norm(vector_b) cos_theta = dot_product / (vector_a_norm * vector_b_norm) return abs(cos_theta + 1) < eps def _matplotlib_list(interval_list): """ Returns lists for matplotlib ``fill`` command from a list of bounding rectangular intervals """ xlist = [] ylist = [] if len(interval_list): for intervals in interval_list: intervalx = intervals[0] intervaly = intervals[1] xlist.extend([intervalx.start, intervalx.start, intervalx.end, intervalx.end, None]) ylist.extend([intervaly.start, intervaly.end, intervaly.end, intervaly.start, None]) else: #XXX Ugly hack. Matplotlib does not accept empty lists for ``fill`` xlist.extend([None, None, None, None]) ylist.extend([None, None, None, None]) return xlist, ylist ####New API for plotting module #### # TODO: Add color arrays for plots. # TODO: Add more plotting options for 3d plots. # TODO: Adaptive sampling for 3D plots. def plot(*args, **kwargs): """ Plots a function of a single variable and returns an instance of the ``Plot`` class (also, see the description of the ``show`` keyword argument below). The plotting uses an adaptive algorithm which samples recursively to accurately plot the plot. The adaptive algorithm uses a random point near the midpoint of two points that has to be further sampled. Hence the same plots can appear slightly different. Usage ===== Single Plot ``plot(expr, range, **kwargs)`` If the range is not specified, then a default range of (-10, 10) is used. Multiple plots with same range. ``plot(expr1, expr2, ..., range, **kwargs)`` If the range is not specified, then a default range of (-10, 10) is used. Multiple plots with different ranges. ``plot((expr1, range), (expr2, range), ..., **kwargs)`` Range has to be specified for every expression. Default range may change in the future if a more advanced default range detection algorithm is implemented. Arguments ========= ``expr`` : Expression representing the function of single variable ``range``: (x, 0, 5), A 3-tuple denoting the range of the free variable. Keyword Arguments ================= Arguments for ``plot`` function: ``show``: Boolean. The default value is set to ``True``. Set show to ``False`` and the function will not display the plot. The returned instance of the ``Plot`` class can then be used to save or display the plot by calling the ``save()`` and ``show()`` methods respectively. Arguments for ``LineOver1DRangeSeries`` class: ``adaptive``: Boolean. The default value is set to True. Set adaptive to False and specify ``nb_of_points`` if uniform sampling is required. ``depth``: int Recursion depth of the adaptive algorithm. A depth of value ``n`` samples a maximum of `2^{n}` points. ``nb_of_points``: int. Used when the ``adaptive`` is set to False. The function is uniformly sampled at ``nb_of_points`` number of points. Aesthetics options: ``line_color``: float. Specifies the color for the plot. See ``Plot`` to see how to set color for the plots. If there are multiple plots, then the same series series are applied to all the plots. If you want to set these options separately, you can index the ``Plot`` object returned and set it. Arguments for ``Plot`` class: ``title`` : str. Title of the plot. It is set to the latex representation of the expression, if the plot has only one expression. ``xlabel`` : str. Label for the x-axis. ``ylabel`` : str. Label for the y-axis. ``xscale``: {'linear', 'log'} Sets the scaling of the x-axis. ``yscale``: {'linear', 'log'} Sets the scaling if the y-axis. ``axis_center``: tuple of two floats denoting the coordinates of the center or {'center', 'auto'} ``xlim`` : tuple of two floats, denoting the x-axis limits. ``ylim`` : tuple of two floats, denoting the y-axis limits. Examples ======== .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy import symbols >>> from sympy.plotting import plot >>> x = symbols('x') Single Plot .. plot:: :context: close-figs :format: doctest :include-source: True >>> plot(x**2, (x, -5, 5)) Plot object containing: [0]: cartesian line: x**2 for x over (-5.0, 5.0) Multiple plots with single range. .. plot:: :context: close-figs :format: doctest :include-source: True >>> plot(x, x**2, x**3, (x, -5, 5)) Plot object containing: [0]: cartesian line: x for x over (-5.0, 5.0) [1]: cartesian line: x**2 for x over (-5.0, 5.0) [2]: cartesian line: x**3 for x over (-5.0, 5.0) Multiple plots with different ranges. .. plot:: :context: close-figs :format: doctest :include-source: True >>> plot((x**2, (x, -6, 6)), (x, (x, -5, 5))) Plot object containing: [0]: cartesian line: x**2 for x over (-6.0, 6.0) [1]: cartesian line: x for x over (-5.0, 5.0) No adaptive sampling. .. plot:: :context: close-figs :format: doctest :include-source: True >>> plot(x**2, adaptive=False, nb_of_points=400) Plot object containing: [0]: cartesian line: x**2 for x over (-10.0, 10.0) See Also ======== Plot, LineOver1DRangeSeries. """ args = list(map(sympify, args)) free = set() for a in args: if isinstance(a, Expr): free |= a.free_symbols if len(free) > 1: raise ValueError( 'The same variable should be used in all ' 'univariate expressions being plotted.') x = free.pop() if free else Symbol('x') kwargs.setdefault('xlabel', x.name) kwargs.setdefault('ylabel', 'f(%s)' % x.name) show = kwargs.pop('show', True) series = [] plot_expr = check_arguments(args, 1, 1) series = [LineOver1DRangeSeries(*arg, **kwargs) for arg in plot_expr] plots = Plot(*series, **kwargs) if show: plots.show() return plots def plot_parametric(*args, **kwargs): """ Plots a 2D parametric plot. The plotting uses an adaptive algorithm which samples recursively to accurately plot the plot. The adaptive algorithm uses a random point near the midpoint of two points that has to be further sampled. Hence the same plots can appear slightly different. Usage ===== Single plot. ``plot_parametric(expr_x, expr_y, range, **kwargs)`` If the range is not specified, then a default range of (-10, 10) is used. Multiple plots with same range. ``plot_parametric((expr1_x, expr1_y), (expr2_x, expr2_y), range, **kwargs)`` If the range is not specified, then a default range of (-10, 10) is used. Multiple plots with different ranges. ``plot_parametric((expr_x, expr_y, range), ..., **kwargs)`` Range has to be specified for every expression. Default range may change in the future if a more advanced default range detection algorithm is implemented. Arguments ========= ``expr_x`` : Expression representing the function along x. ``expr_y`` : Expression representing the function along y. ``range``: (u, 0, 5), A 3-tuple denoting the range of the parameter variable. Keyword Arguments ================= Arguments for ``Parametric2DLineSeries`` class: ``adaptive``: Boolean. The default value is set to True. Set adaptive to False and specify ``nb_of_points`` if uniform sampling is required. ``depth``: int Recursion depth of the adaptive algorithm. A depth of value ``n`` samples a maximum of `2^{n}` points. ``nb_of_points``: int. Used when the ``adaptive`` is set to False. The function is uniformly sampled at ``nb_of_points`` number of points. Aesthetics ---------- ``line_color``: function which returns a float. Specifies the color for the plot. See ``sympy.plotting.Plot`` for more details. If there are multiple plots, then the same Series arguments are applied to all the plots. If you want to set these options separately, you can index the returned ``Plot`` object and set it. Arguments for ``Plot`` class: ``xlabel`` : str. Label for the x-axis. ``ylabel`` : str. Label for the y-axis. ``xscale``: {'linear', 'log'} Sets the scaling of the x-axis. ``yscale``: {'linear', 'log'} Sets the scaling if the y-axis. ``axis_center``: tuple of two floats denoting the coordinates of the center or {'center', 'auto'} ``xlim`` : tuple of two floats, denoting the x-axis limits. ``ylim`` : tuple of two floats, denoting the y-axis limits. Examples ======== .. plot:: :context: reset :format: doctest :include-source: True >>> from sympy import symbols, cos, sin >>> from sympy.plotting import plot_parametric >>> u = symbols('u') Single Parametric plot .. plot:: :context: close-figs :format: doctest :include-source: True >>> plot_parametric(cos(u), sin(u), (u, -5, 5)) Plot object containing: [0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0) Multiple parametric plot with single range. .. plot:: :context: close-figs :format: doctest :include-source: True >>> plot_parametric((cos(u), sin(u)), (u, cos(u))) Plot object containing: [0]: parametric cartesian line: (cos(u), sin(u)) for u over (-10.0, 10.0) [1]: parametric cartesian line: (u, cos(u)) for u over (-10.0, 10.0) Multiple parametric plots. .. plot:: :context: close-figs :format: doctest :include-source: True >>> plot_parametric((cos(u), sin(u), (u, -5, 5)), ... (cos(u), u, (u, -5, 5))) Plot object containing: [0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0) [1]: parametric cartesian line: (cos(u), u) for u over (-5.0, 5.0) See Also ======== Plot, Parametric2DLineSeries """ args = list(map(sympify, args)) show = kwargs.pop('show', True) series = [] plot_expr = check_arguments(args, 2, 1) series = [Parametric2DLineSeries(*arg, **kwargs) for arg in plot_expr] plots = Plot(*series, **kwargs) if show: plots.show() return plots def plot3d_parametric_line(*args, **kwargs): """ Plots a 3D parametric line plot. Usage ===== Single plot: ``plot3d_parametric_line(expr_x, expr_y, expr_z, range, **kwargs)`` If the range is not specified, then a default range of (-10, 10) is used. Multiple plots. ``plot3d_parametric_line((expr_x, expr_y, expr_z, range), ..., **kwargs)`` Ranges have to be specified for every expression. Default range may change in the future if a more advanced default range detection algorithm is implemented. Arguments ========= ``expr_x`` : Expression representing the function along x. ``expr_y`` : Expression representing the function along y. ``expr_z`` : Expression representing the function along z. ``range``: ``(u, 0, 5)``, A 3-tuple denoting the range of the parameter variable. Keyword Arguments ================= Arguments for ``Parametric3DLineSeries`` class. ``nb_of_points``: The range is uniformly sampled at ``nb_of_points`` number of points. Aesthetics: ``line_color``: function which returns a float. Specifies the color for the plot. See ``sympy.plotting.Plot`` for more details. If there are multiple plots, then the same series arguments are applied to all the plots. If you want to set these options separately, you can index the returned ``Plot`` object and set it. Arguments for ``Plot`` class. ``title`` : str. Title of the plot. Examples ======== .. plot:: :context: reset :format: doctest :include-source: True >>> from sympy import symbols, cos, sin >>> from sympy.plotting import plot3d_parametric_line >>> u = symbols('u') Single plot. .. plot:: :context: close-figs :format: doctest :include-source: True >>> plot3d_parametric_line(cos(u), sin(u), u, (u, -5, 5)) Plot object containing: [0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0) Multiple plots. .. plot:: :context: close-figs :format: doctest :include-source: True >>> plot3d_parametric_line((cos(u), sin(u), u, (u, -5, 5)), ... (sin(u), u**2, u, (u, -5, 5))) Plot object containing: [0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0) [1]: 3D parametric cartesian line: (sin(u), u**2, u) for u over (-5.0, 5.0) See Also ======== Plot, Parametric3DLineSeries """ args = list(map(sympify, args)) show = kwargs.pop('show', True) series = [] plot_expr = check_arguments(args, 3, 1) series = [Parametric3DLineSeries(*arg, **kwargs) for arg in plot_expr] plots = Plot(*series, **kwargs) if show: plots.show() return plots def plot3d(*args, **kwargs): """ Plots a 3D surface plot. Usage ===== Single plot ``plot3d(expr, range_x, range_y, **kwargs)`` If the ranges are not specified, then a default range of (-10, 10) is used. Multiple plot with the same range. ``plot3d(expr1, expr2, range_x, range_y, **kwargs)`` If the ranges are not specified, then a default range of (-10, 10) is used. Multiple plots with different ranges. ``plot3d((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)`` Ranges have to be specified for every expression. Default range may change in the future if a more advanced default range detection algorithm is implemented. Arguments ========= ``expr`` : Expression representing the function along x. ``range_x``: (x, 0, 5), A 3-tuple denoting the range of the x variable. ``range_y``: (y, 0, 5), A 3-tuple denoting the range of the y variable. Keyword Arguments ================= Arguments for ``SurfaceOver2DRangeSeries`` class: ``nb_of_points_x``: int. The x range is sampled uniformly at ``nb_of_points_x`` of points. ``nb_of_points_y``: int. The y range is sampled uniformly at ``nb_of_points_y`` of points. Aesthetics: ``surface_color``: Function which returns a float. Specifies the color for the surface of the plot. See ``sympy.plotting.Plot`` for more details. If there are multiple plots, then the same series arguments are applied to all the plots. If you want to set these options separately, you can index the returned ``Plot`` object and set it. Arguments for ``Plot`` class: ``title`` : str. Title of the plot. Examples ======== .. plot:: :context: reset :format: doctest :include-source: True >>> from sympy import symbols >>> from sympy.plotting import plot3d >>> x, y = symbols('x y') Single plot .. plot:: :context: close-figs :format: doctest :include-source: True >>> plot3d(x*y, (x, -5, 5), (y, -5, 5)) Plot object containing: [0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0) Multiple plots with same range .. plot:: :context: close-figs :format: doctest :include-source: True >>> plot3d(x*y, -x*y, (x, -5, 5), (y, -5, 5)) Plot object containing: [0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0) [1]: cartesian surface: -x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0) Multiple plots with different ranges. .. plot:: :context: close-figs :format: doctest :include-source: True >>> plot3d((x**2 + y**2, (x, -5, 5), (y, -5, 5)), ... (x*y, (x, -3, 3), (y, -3, 3))) Plot object containing: [0]: cartesian surface: x**2 + y**2 for x over (-5.0, 5.0) and y over (-5.0, 5.0) [1]: cartesian surface: x*y for x over (-3.0, 3.0) and y over (-3.0, 3.0) See Also ======== Plot, SurfaceOver2DRangeSeries """ args = list(map(sympify, args)) show = kwargs.pop('show', True) series = [] plot_expr = check_arguments(args, 1, 2) series = [SurfaceOver2DRangeSeries(*arg, **kwargs) for arg in plot_expr] plots = Plot(*series, **kwargs) if show: plots.show() return plots def plot3d_parametric_surface(*args, **kwargs): """ Plots a 3D parametric surface plot. Usage ===== Single plot. ``plot3d_parametric_surface(expr_x, expr_y, expr_z, range_u, range_v, **kwargs)`` If the ranges is not specified, then a default range of (-10, 10) is used. Multiple plots. ``plot3d_parametric_surface((expr_x, expr_y, expr_z, range_u, range_v), ..., **kwargs)`` Ranges have to be specified for every expression. Default range may change in the future if a more advanced default range detection algorithm is implemented. Arguments ========= ``expr_x``: Expression representing the function along ``x``. ``expr_y``: Expression representing the function along ``y``. ``expr_z``: Expression representing the function along ``z``. ``range_u``: ``(u, 0, 5)``, A 3-tuple denoting the range of the ``u`` variable. ``range_v``: ``(v, 0, 5)``, A 3-tuple denoting the range of the v variable. Keyword Arguments ================= Arguments for ``ParametricSurfaceSeries`` class: ``nb_of_points_u``: int. The ``u`` range is sampled uniformly at ``nb_of_points_v`` of points ``nb_of_points_y``: int. The ``v`` range is sampled uniformly at ``nb_of_points_y`` of points Aesthetics: ``surface_color``: Function which returns a float. Specifies the color for the surface of the plot. See ``sympy.plotting.Plot`` for more details. If there are multiple plots, then the same series arguments are applied for all the plots. If you want to set these options separately, you can index the returned ``Plot`` object and set it. Arguments for ``Plot`` class: ``title`` : str. Title of the plot. Examples ======== .. plot:: :context: reset :format: doctest :include-source: True >>> from sympy import symbols, cos, sin >>> from sympy.plotting import plot3d_parametric_surface >>> u, v = symbols('u v') Single plot. .. plot:: :context: close-figs :format: doctest :include-source: True >>> plot3d_parametric_surface(cos(u + v), sin(u - v), u - v, ... (u, -5, 5), (v, -5, 5)) Plot object containing: [0]: parametric cartesian surface: (cos(u + v), sin(u - v), u - v) for u over (-5.0, 5.0) and v over (-5.0, 5.0) See Also ======== Plot, ParametricSurfaceSeries """ args = list(map(sympify, args)) show = kwargs.pop('show', True) series = [] plot_expr = check_arguments(args, 3, 2) series = [ParametricSurfaceSeries(*arg, **kwargs) for arg in plot_expr] plots = Plot(*series, **kwargs) if show: plots.show() return plots def plot_contour(*args, **kwargs): """ Draws contour plot of a function Usage ===== Single plot ``plot_contour(expr, range_x, range_y, **kwargs)`` If the ranges are not specified, then a default range of (-10, 10) is used. Multiple plot with the same range. ``plot_contour(expr1, expr2, range_x, range_y, **kwargs)`` If the ranges are not specified, then a default range of (-10, 10) is used. Multiple plots with different ranges. ``plot_contour((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)`` Ranges have to be specified for every expression. Default range may change in the future if a more advanced default range detection algorithm is implemented. Arguments ========= ``expr`` : Expression representing the function along x. ``range_x``: (x, 0, 5), A 3-tuple denoting the range of the x variable. ``range_y``: (y, 0, 5), A 3-tuple denoting the range of the y variable. Keyword Arguments ================= Arguments for ``ContourSeries`` class: ``nb_of_points_x``: int. The x range is sampled uniformly at ``nb_of_points_x`` of points. ``nb_of_points_y``: int. The y range is sampled uniformly at ``nb_of_points_y`` of points. Aesthetics: ``surface_color``: Function which returns a float. Specifies the color for the surface of the plot. See ``sympy.plotting.Plot`` for more details. If there are multiple plots, then the same series arguments are applied to all the plots. If you want to set these options separately, you can index the returned ``Plot`` object and set it. Arguments for ``Plot`` class: ``title`` : str. Title of the plot. See Also ======== Plot, ContourSeries """ args = list(map(sympify, args)) show = kwargs.pop('show', True) plot_expr = check_arguments(args, 1, 2) series = [ContourSeries(*arg) for arg in plot_expr] plot_contours = Plot(*series, **kwargs) if len(plot_expr[0].free_symbols) > 2: raise ValueError('Contour Plot cannot Plot for more than two variables.') if show: plot_contours.show() return plot_contours def check_arguments(args, expr_len, nb_of_free_symbols): """ Checks the arguments and converts into tuples of the form (exprs, ranges) Examples ======== .. plot:: :context: reset :format: doctest :include-source: True >>> from sympy import plot, cos, sin, symbols >>> from sympy.plotting.plot import check_arguments >>> x = symbols('x') >>> check_arguments([cos(x), sin(x)], 2, 1) [(cos(x), sin(x), (x, -10, 10))] >>> check_arguments([x, x**2], 1, 1) [(x, (x, -10, 10)), (x**2, (x, -10, 10))] """ if expr_len > 1 and isinstance(args[0], Expr): # Multiple expressions same range. # The arguments are tuples when the expression length is # greater than 1. if len(args) < expr_len: raise ValueError("len(args) should not be less than expr_len") for i in range(len(args)): if isinstance(args[i], Tuple): break else: i = len(args) + 1 exprs = Tuple(*args[:i]) free_symbols = list(set().union(*[e.free_symbols for e in exprs])) if len(args) == expr_len + nb_of_free_symbols: #Ranges given plots = [exprs + Tuple(*args[expr_len:])] else: default_range = Tuple(-10, 10) ranges = [] for symbol in free_symbols: ranges.append(Tuple(symbol) + default_range) for i in range(len(free_symbols) - nb_of_free_symbols): ranges.append(Tuple(Dummy()) + default_range) plots = [exprs + Tuple(*ranges)] return plots if isinstance(args[0], Expr) or (isinstance(args[0], Tuple) and len(args[0]) == expr_len and expr_len != 3): # Cannot handle expressions with number of expression = 3. It is # not possible to differentiate between expressions and ranges. #Series of plots with same range for i in range(len(args)): if isinstance(args[i], Tuple) and len(args[i]) != expr_len: break if not isinstance(args[i], Tuple): args[i] = Tuple(args[i]) else: i = len(args) + 1 exprs = args[:i] assert all(isinstance(e, Expr) for expr in exprs for e in expr) free_symbols = list(set().union(*[e.free_symbols for expr in exprs for e in expr])) if len(free_symbols) > nb_of_free_symbols: raise ValueError("The number of free_symbols in the expression " "is greater than %d" % nb_of_free_symbols) if len(args) == i + nb_of_free_symbols and isinstance(args[i], Tuple): ranges = Tuple(*[range_expr for range_expr in args[ i:i + nb_of_free_symbols]]) plots = [expr + ranges for expr in exprs] return plots else: #Use default ranges. default_range = Tuple(-10, 10) ranges = [] for symbol in free_symbols: ranges.append(Tuple(symbol) + default_range) for i in range(nb_of_free_symbols - len(free_symbols)): ranges.append(Tuple(Dummy()) + default_range) ranges = Tuple(*ranges) plots = [expr + ranges for expr in exprs] return plots elif isinstance(args[0], Tuple) and len(args[0]) == expr_len + nb_of_free_symbols: #Multiple plots with different ranges. for arg in args: for i in range(expr_len): if not isinstance(arg[i], Expr): raise ValueError("Expected an expression, given %s" % str(arg[i])) for i in range(nb_of_free_symbols): if not len(arg[i + expr_len]) == 3: raise ValueError("The ranges should be a tuple of " "length 3, got %s" % str(arg[i + expr_len])) return args
9886a836853981d42c3090f1fdd85d6dd4825ccaa1d4f25cc4e17f6be552ea77
""" rewrite of lambdify - This stuff is not stable at all. It is for internal use in the new plotting module. It may (will! see the Q'n'A in the source) be rewritten. It's completely self contained. Especially it does not use lambdarepr. It does not aim to replace the current lambdify. Most importantly it will never ever support anything else than sympy expressions (no Matrices, dictionaries and so on). """ from __future__ import print_function, division import re from sympy import Symbol, NumberSymbol, I, zoo, oo from sympy.core.compatibility import exec_, string_types from sympy.utilities.iterables import numbered_symbols # We parse the expression string into a tree that identifies functions. Then # we translate the names of the functions and we translate also some strings # that are not names of functions (all this according to translation # dictionaries). # If the translation goes to another module (like numpy) the # module is imported and 'func' is translated to 'module.func'. # If a function can not be translated, the inner nodes of that part of the # tree are not translated. So if we have Integral(sqrt(x)), sqrt is not # translated to np.sqrt and the Integral does not crash. # A namespace for all this is generated by crawling the (func, args) tree of # the expression. The creation of this namespace involves many ugly # workarounds. # The namespace consists of all the names needed for the sympy expression and # all the name of modules used for translation. Those modules are imported only # as a name (import numpy as np) in order to keep the namespace small and # manageable. # Please, if there is a bug, do not try to fix it here! Rewrite this by using # the method proposed in the last Q'n'A below. That way the new function will # work just as well, be just as simple, but it wont need any new workarounds. # If you insist on fixing it here, look at the workarounds in the function # sympy_expression_namespace and in lambdify. # Q: Why are you not using python abstract syntax tree? # A: Because it is more complicated and not much more powerful in this case. # Q: What if I have Symbol('sin') or g=Function('f')? # A: You will break the algorithm. We should use srepr to defend against this? # The problem with Symbol('sin') is that it will be printed as 'sin'. The # parser will distinguish it from the function 'sin' because functions are # detected thanks to the opening parenthesis, but the lambda expression won't # understand the difference if we have also the sin function. # The solution (complicated) is to use srepr and maybe ast. # The problem with the g=Function('f') is that it will be printed as 'f' but in # the global namespace we have only 'g'. But as the same printer is used in the # constructor of the namespace there will be no problem. # Q: What if some of the printers are not printing as expected? # A: The algorithm wont work. You must use srepr for those cases. But even # srepr may not print well. All problems with printers should be considered # bugs. # Q: What about _imp_ functions? # A: Those are taken care for by evalf. A special case treatment will work # faster but it's not worth the code complexity. # Q: Will ast fix all possible problems? # A: No. You will always have to use some printer. Even srepr may not work in # some cases. But if the printer does not work, that should be considered a # bug. # Q: Is there same way to fix all possible problems? # A: Probably by constructing our strings ourself by traversing the (func, # args) tree and creating the namespace at the same time. That actually sounds # good. from sympy.external import import_module import warnings #TODO debugging output class vectorized_lambdify(object): """ Return a sufficiently smart, vectorized and lambdified function. Returns only reals. This function uses experimental_lambdify to created a lambdified expression ready to be used with numpy. Many of the functions in sympy are not implemented in numpy so in some cases we resort to python cmath or even to evalf. The following translations are tried: only numpy complex - on errors raised by sympy trying to work with ndarray: only python cmath and then vectorize complex128 When using python cmath there is no need for evalf or float/complex because python cmath calls those. This function never tries to mix numpy directly with evalf because numpy does not understand sympy Float. If this is needed one can use the float_wrap_evalf/complex_wrap_evalf options of experimental_lambdify or better one can be explicit about the dtypes that numpy works with. Check numpy bug http://projects.scipy.org/numpy/ticket/1013 to know what types of errors to expect. """ def __init__(self, args, expr): self.args = args self.expr = expr self.lambda_func = experimental_lambdify(args, expr, use_np=True) self.vector_func = self.lambda_func self.failure = False def __call__(self, *args): np = import_module('numpy') np_old_err = np.seterr(invalid='raise') try: temp_args = (np.array(a, dtype=np.complex) for a in args) results = self.vector_func(*temp_args) results = np.ma.masked_where( np.abs(results.imag) > 1e-7 * np.abs(results), results.real, copy=False) except Exception as e: #DEBUG: print 'Error', type(e), e if ((isinstance(e, TypeError) and 'unhashable type: \'numpy.ndarray\'' in str(e)) or (isinstance(e, ValueError) and ('Invalid limits given:' in str(e) or 'negative dimensions are not allowed' in str(e) # XXX or 'sequence too large; must be smaller than 32' in str(e)))): # XXX # Almost all functions were translated to numpy, but some were # left as sympy functions. They received an ndarray as an # argument and failed. # sin(ndarray(...)) raises "unhashable type" # Integral(x, (x, 0, ndarray(...))) raises "Invalid limits" # other ugly exceptions that are not well understood (marked with XXX) # TODO: Cleanup the ugly special cases marked with xxx above. # Solution: use cmath and vectorize the final lambda. self.lambda_func = experimental_lambdify( self.args, self.expr, use_python_cmath=True) self.vector_func = np.vectorize( self.lambda_func, otypes=[np.complex]) results = self.vector_func(*args) results = np.ma.masked_where( np.abs(results.imag) > 1e-7 * np.abs(results), results.real, copy=False) else: # Complete failure. One last try with no translations, only # wrapping in complex((...).evalf()) and returning the real # part. if self.failure: raise e else: self.failure = True self.lambda_func = experimental_lambdify( self.args, self.expr, use_evalf=True, complex_wrap_evalf=True) self.vector_func = np.vectorize( self.lambda_func, otypes=[np.complex]) results = self.vector_func(*args) results = np.ma.masked_where( np.abs(results.imag) > 1e-7 * np.abs(results), results.real, copy=False) warnings.warn('The evaluation of the expression is' ' problematic. We are trying a failback method' ' that may still work. Please report this as a bug.') finally: np.seterr(**np_old_err) return results class lambdify(object): """Returns the lambdified function. This function uses experimental_lambdify to create a lambdified expression. It uses cmath to lambdify the expression. If the function is not implemented in python cmath, python cmath calls evalf on those functions. """ def __init__(self, args, expr): self.args = args self.expr = expr self.lambda_func = experimental_lambdify(args, expr, use_evalf=True, use_python_cmath=True) self.failure = False def __call__(self, args, kwargs = {}): if not self.lambda_func.use_python_math: args = complex(args) try: #The result can be sympy.Float. Hence wrap it with complex type. result = complex(self.lambda_func(args)) if abs(result.imag) > 1e-7 * abs(result): return None else: return result.real except Exception as e: # The exceptions raised by sympy, cmath are not consistent and # hence it is not possible to specify all the exceptions that # are to be caught. Presently there are no cases for which the code # reaches this block other than ZeroDivisionError and complex # comparison. Also the exception is caught only once. If the # exception repeats itself, # then it is not caught and the corresponding error is raised. # XXX: Remove catching all exceptions once the plotting module # is heavily tested. if isinstance(e, ZeroDivisionError): return None elif isinstance(e, TypeError) and ('no ordering relation is' ' defined for complex numbers' in str(e) or 'unorderable ' 'types' in str(e) or "not " "supported between instances of" in str(e)): self.lambda_func = experimental_lambdify(self.args, self.expr, use_evalf=True, use_python_math=True) result = self.lambda_func(args.real) return result else: if self.failure: raise e #Failure #Try wrapping it with complex(..).evalf() self.failure = True self.lambda_func = experimental_lambdify(self.args, self.expr, use_evalf=True, complex_wrap_evalf=True) result = self.lambda_func(args) warnings.warn('The evaluation of the expression is' ' problematic. We are trying a failback method' ' that may still work. Please report this as a bug.') if abs(result.imag) > 1e-7 * abs(result): return None else: return result.real def experimental_lambdify(*args, **kwargs): l = Lambdifier(*args, **kwargs) return l class Lambdifier(object): def __init__(self, args, expr, print_lambda=False, use_evalf=False, float_wrap_evalf=False, complex_wrap_evalf=False, use_np=False, use_python_math=False, use_python_cmath=False, use_interval=False): self.print_lambda = print_lambda self.use_evalf = use_evalf self.float_wrap_evalf = float_wrap_evalf self.complex_wrap_evalf = complex_wrap_evalf self.use_np = use_np self.use_python_math = use_python_math self.use_python_cmath = use_python_cmath self.use_interval = use_interval # Constructing the argument string # - check if not all([isinstance(a, Symbol) for a in args]): raise ValueError('The arguments must be Symbols.') # - use numbered symbols syms = numbered_symbols(exclude=expr.free_symbols) newargs = [next(syms) for _ in args] expr = expr.xreplace(dict(zip(args, newargs))) argstr = ', '.join([str(a) for a in newargs]) del syms, newargs, args # Constructing the translation dictionaries and making the translation self.dict_str = self.get_dict_str() self.dict_fun = self.get_dict_fun() exprstr = str(expr) # the & and | operators don't work on tuples, see discussion #12108 exprstr = exprstr.replace(" & "," and ").replace(" | "," or ") newexpr = self.tree2str_translate(self.str2tree(exprstr)) # Constructing the namespaces namespace = {} namespace.update(self.sympy_atoms_namespace(expr)) namespace.update(self.sympy_expression_namespace(expr)) # XXX Workaround # Ugly workaround because Pow(a,Half) prints as sqrt(a) # and sympy_expression_namespace can not catch it. from sympy import sqrt namespace.update({'sqrt': sqrt}) namespace.update({'Eq': lambda x, y: x == y}) # End workaround. if use_python_math: namespace.update({'math': __import__('math')}) if use_python_cmath: namespace.update({'cmath': __import__('cmath')}) if use_np: try: namespace.update({'np': __import__('numpy')}) except ImportError: raise ImportError( 'experimental_lambdify failed to import numpy.') if use_interval: namespace.update({'imath': __import__( 'sympy.plotting.intervalmath', fromlist=['intervalmath'])}) namespace.update({'math': __import__('math')}) # Construct the lambda if self.print_lambda: print(newexpr) eval_str = 'lambda %s : ( %s )' % (argstr, newexpr) self.eval_str = eval_str exec_("from __future__ import division; MYNEWLAMBDA = %s" % eval_str, namespace) self.lambda_func = namespace['MYNEWLAMBDA'] def __call__(self, *args, **kwargs): return self.lambda_func(*args, **kwargs) ############################################################################## # Dicts for translating from sympy to other modules ############################################################################## ### # builtins ### # Functions with different names in builtins builtin_functions_different = { 'Min': 'min', 'Max': 'max', 'Abs': 'abs', } # Strings that should be translated builtin_not_functions = { 'I': '1j', # 'oo': '1e400', } ### # numpy ### # Functions that are the same in numpy numpy_functions_same = [ 'sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'exp', 'log', 'sqrt', 'floor', 'conjugate', ] # Functions with different names in numpy numpy_functions_different = { "acos": "arccos", "acosh": "arccosh", "arg": "angle", "asin": "arcsin", "asinh": "arcsinh", "atan": "arctan", "atan2": "arctan2", "atanh": "arctanh", "ceiling": "ceil", "im": "imag", "ln": "log", "Max": "amax", "Min": "amin", "re": "real", "Abs": "abs", } # Strings that should be translated numpy_not_functions = { 'pi': 'np.pi', 'oo': 'np.inf', 'E': 'np.e', } ### # python math ### # Functions that are the same in math math_functions_same = [ 'sin', 'cos', 'tan', 'asin', 'acos', 'atan', 'atan2', 'sinh', 'cosh', 'tanh', 'asinh', 'acosh', 'atanh', 'exp', 'log', 'erf', 'sqrt', 'floor', 'factorial', 'gamma', ] # Functions with different names in math math_functions_different = { 'ceiling': 'ceil', 'ln': 'log', 'loggamma': 'lgamma' } # Strings that should be translated math_not_functions = { 'pi': 'math.pi', 'E': 'math.e', } ### # python cmath ### # Functions that are the same in cmath cmath_functions_same = [ 'sin', 'cos', 'tan', 'asin', 'acos', 'atan', 'sinh', 'cosh', 'tanh', 'asinh', 'acosh', 'atanh', 'exp', 'log', 'sqrt', ] # Functions with different names in cmath cmath_functions_different = { 'ln': 'log', 'arg': 'phase', } # Strings that should be translated cmath_not_functions = { 'pi': 'cmath.pi', 'E': 'cmath.e', } ### # intervalmath ### interval_not_functions = { 'pi': 'math.pi', 'E': 'math.e' } interval_functions_same = [ 'sin', 'cos', 'exp', 'tan', 'atan', 'log', 'sqrt', 'cosh', 'sinh', 'tanh', 'floor', 'acos', 'asin', 'acosh', 'asinh', 'atanh', 'Abs', 'And', 'Or' ] interval_functions_different = { 'Min': 'imin', 'Max': 'imax', 'ceiling': 'ceil', } ### # mpmath, etc ### #TODO ### # Create the final ordered tuples of dictionaries ### # For strings def get_dict_str(self): dict_str = dict(self.builtin_not_functions) if self.use_np: dict_str.update(self.numpy_not_functions) if self.use_python_math: dict_str.update(self.math_not_functions) if self.use_python_cmath: dict_str.update(self.cmath_not_functions) if self.use_interval: dict_str.update(self.interval_not_functions) return dict_str # For functions def get_dict_fun(self): dict_fun = dict(self.builtin_functions_different) if self.use_np: for s in self.numpy_functions_same: dict_fun[s] = 'np.' + s for k, v in self.numpy_functions_different.items(): dict_fun[k] = 'np.' + v if self.use_python_math: for s in self.math_functions_same: dict_fun[s] = 'math.' + s for k, v in self.math_functions_different.items(): dict_fun[k] = 'math.' + v if self.use_python_cmath: for s in self.cmath_functions_same: dict_fun[s] = 'cmath.' + s for k, v in self.cmath_functions_different.items(): dict_fun[k] = 'cmath.' + v if self.use_interval: for s in self.interval_functions_same: dict_fun[s] = 'imath.' + s for k, v in self.interval_functions_different.items(): dict_fun[k] = 'imath.' + v return dict_fun ############################################################################## # The translator functions, tree parsers, etc. ############################################################################## def str2tree(self, exprstr): """Converts an expression string to a tree. Functions are represented by ('func_name(', tree_of_arguments). Other expressions are (head_string, mid_tree, tail_str). Expressions that do not contain functions are directly returned. Examples ======== >>> from sympy.abc import x, y, z >>> from sympy import Integral, sin >>> from sympy.plotting.experimental_lambdify import Lambdifier >>> str2tree = Lambdifier([x], x).str2tree >>> str2tree(str(Integral(x, (x, 1, y)))) ('', ('Integral(', 'x, (x, 1, y)'), ')') >>> str2tree(str(x+y)) 'x + y' >>> str2tree(str(x+y*sin(z)+1)) ('x + y*', ('sin(', 'z'), ') + 1') >>> str2tree('sin(y*(y + 1.1) + (sin(y)))') ('', ('sin(', ('y*(y + 1.1) + (', ('sin(', 'y'), '))')), ')') """ #matches the first 'function_name(' first_par = re.search(r'(\w+\()', exprstr) if first_par is None: return exprstr else: start = first_par.start() end = first_par.end() head = exprstr[:start] func = exprstr[start:end] tail = exprstr[end:] count = 0 for i, c in enumerate(tail): if c == '(': count += 1 elif c == ')': count -= 1 if count == -1: break func_tail = self.str2tree(tail[:i]) tail = self.str2tree(tail[i:]) return (head, (func, func_tail), tail) @classmethod def tree2str(cls, tree): """Converts a tree to string without translations. Examples ======== >>> from sympy.abc import x, y, z >>> from sympy import Integral, sin >>> from sympy.plotting.experimental_lambdify import Lambdifier >>> str2tree = Lambdifier([x], x).str2tree >>> tree2str = Lambdifier([x], x).tree2str >>> tree2str(str2tree(str(x+y*sin(z)+1))) 'x + y*sin(z) + 1' """ if isinstance(tree, string_types): return tree else: return ''.join(map(cls.tree2str, tree)) def tree2str_translate(self, tree): """Converts a tree to string with translations. Function names are translated by translate_func. Other strings are translated by translate_str. """ if isinstance(tree, string_types): return self.translate_str(tree) elif isinstance(tree, tuple) and len(tree) == 2: return self.translate_func(tree[0][:-1], tree[1]) else: return ''.join([self.tree2str_translate(t) for t in tree]) def translate_str(self, estr): """Translate substrings of estr using in order the dictionaries in dict_tuple_str.""" for pattern, repl in self.dict_str.items(): estr = re.sub(pattern, repl, estr) return estr def translate_func(self, func_name, argtree): """Translate function names and the tree of arguments. If the function name is not in the dictionaries of dict_tuple_fun then the function is surrounded by a float((...).evalf()). The use of float is necessary as np.<function>(sympy.Float(..)) raises an error.""" if func_name in self.dict_fun: new_name = self.dict_fun[func_name] argstr = self.tree2str_translate(argtree) return new_name + '(' + argstr else: template = '(%s(%s)).evalf(' if self.use_evalf else '%s(%s' if self.float_wrap_evalf: template = 'float(%s)' % template elif self.complex_wrap_evalf: template = 'complex(%s)' % template # Wrapping should only happen on the outermost expression, which # is the only thing we know will be a number. float_wrap_evalf = self.float_wrap_evalf complex_wrap_evalf = self.complex_wrap_evalf self.float_wrap_evalf = False self.complex_wrap_evalf = False ret = template % (func_name, self.tree2str_translate(argtree)) self.float_wrap_evalf = float_wrap_evalf self.complex_wrap_evalf = complex_wrap_evalf return ret ############################################################################## # The namespace constructors ############################################################################## @classmethod def sympy_expression_namespace(cls, expr): """Traverses the (func, args) tree of an expression and creates a sympy namespace. All other modules are imported only as a module name. That way the namespace is not polluted and rests quite small. It probably causes much more variable lookups and so it takes more time, but there are no tests on that for the moment.""" if expr is None: return {} else: funcname = str(expr.func) # XXX Workaround # Here we add an ugly workaround because str(func(x)) # is not always the same as str(func). Eg # >>> str(Integral(x)) # "Integral(x)" # >>> str(Integral) # "<class 'sympy.integrals.integrals.Integral'>" # >>> str(sqrt(x)) # "sqrt(x)" # >>> str(sqrt) # "<function sqrt at 0x3d92de8>" # >>> str(sin(x)) # "sin(x)" # >>> str(sin) # "sin" # Either one of those can be used but not all at the same time. # The code considers the sin example as the right one. regexlist = [ r'<class \'sympy[\w.]*?.([\w]*)\'>$', # the example Integral r'<function ([\w]*) at 0x[\w]*>$', # the example sqrt ] for r in regexlist: m = re.match(r, funcname) if m is not None: funcname = m.groups()[0] # End of the workaround # XXX debug: print funcname args_dict = {} for a in expr.args: if (isinstance(a, Symbol) or isinstance(a, NumberSymbol) or a in [I, zoo, oo]): continue else: args_dict.update(cls.sympy_expression_namespace(a)) args_dict.update({funcname: expr.func}) return args_dict @staticmethod def sympy_atoms_namespace(expr): """For no real reason this function is separated from sympy_expression_namespace. It can be moved to it.""" atoms = expr.atoms(Symbol, NumberSymbol, I, zoo, oo) d = {} for a in atoms: # XXX debug: print 'atom:' + str(a) d[str(a)] = a return d