hash
stringlengths 64
64
| content
stringlengths 0
1.51M
|
---|---|
5bd040a6a612d608efa0e690f5b74d507b5de56913e11e3b5b68ccba8bf22e02
|
"""
This is our testing framework.
Goals:
* it should be compatible with py.test and operate very similarly
(or identically)
* doesn't require any external dependencies
* preferably all the functionality should be in this file only
* no magic, just import the test file and execute the test functions, that's it
* portable
"""
from __future__ import print_function, division
import os
import sys
import platform
import inspect
import traceback
import pdb
import re
import linecache
import time
from fnmatch import fnmatch
from timeit import default_timer as clock
import doctest as pdoctest # avoid clashing with our doctest() function
from doctest import DocTestFinder, DocTestRunner
import random
import subprocess
import signal
import stat
import tempfile
from sympy.core.cache import clear_cache
from sympy.core.compatibility import exec_, PY3, string_types, range, unwrap
from sympy.utilities.misc import find_executable
from sympy.external import import_module
from sympy.utilities.exceptions import SymPyDeprecationWarning
IS_WINDOWS = (os.name == 'nt')
ON_TRAVIS = os.getenv('TRAVIS_BUILD_NUMBER', None)
# emperically generated list of the proportion of time spent running
# an even split of tests. This should periodically be regenerated.
# A list of [.6, .1, .3] would mean that if the tests are evenly split
# into '1/3', '2/3', '3/3', the first split would take 60% of the time,
# the second 10% and the third 30%. These lists are normalized to sum
# to 1, so [60, 10, 30] has the same behavior as [6, 1, 3] or [.6, .1, .3].
#
# This list can be generated with the code:
# from time import time
# import sympy
#
# delays, num_splits = [], 30
# for i in range(1, num_splits + 1):
# tic = time()
# sympy.test(split='{}/{}'.format(i, num_splits), time_balance=False) # Add slow=True for slow tests
# delays.append(time() - tic)
# tot = sum(delays)
# print([round(x / tot, 4) for x in delays])
SPLIT_DENSITY = [0.0801, 0.0099, 0.0429, 0.0103, 0.0122, 0.0055, 0.0533, 0.0191, 0.0977, 0.0878, 0.0026, 0.0028, 0.0147, 0.0118, 0.0358, 0.0063, 0.0026, 0.0351, 0.0084, 0.0027, 0.0158, 0.0156, 0.0024, 0.0416, 0.0566, 0.0425, 0.2123, 0.0042, 0.0099, 0.0576]
SPLIT_DENSITY_SLOW = [0.1525, 0.0342, 0.0092, 0.0004, 0.0005, 0.0005, 0.0379, 0.0353, 0.0637, 0.0801, 0.0005, 0.0004, 0.0133, 0.0021, 0.0098, 0.0108, 0.0005, 0.0076, 0.0005, 0.0004, 0.0056, 0.0093, 0.0005, 0.0264, 0.0051, 0.0956, 0.2983, 0.0005, 0.0005, 0.0981]
class Skipped(Exception):
pass
class TimeOutError(Exception):
pass
class DependencyError(Exception):
pass
# add more flags ??
future_flags = division.compiler_flag
def _indent(s, indent=4):
"""
Add the given number of space characters to the beginning of
every non-blank line in ``s``, and return the result.
If the string ``s`` is Unicode, it is encoded using the stdout
encoding and the ``backslashreplace`` error handler.
"""
# After a 2to3 run the below code is bogus, so wrap it with a version check
if not PY3:
if isinstance(s, unicode):
s = s.encode(pdoctest._encoding, 'backslashreplace')
# This regexp matches the start of non-blank lines:
return re.sub('(?m)^(?!$)', indent*' ', s)
pdoctest._indent = _indent
# override reporter to maintain windows and python3
def _report_failure(self, out, test, example, got):
"""
Report that the given example failed.
"""
s = self._checker.output_difference(example, got, self.optionflags)
s = s.encode('raw_unicode_escape').decode('utf8', 'ignore')
out(self._failure_header(test, example) + s)
if PY3 and IS_WINDOWS:
DocTestRunner.report_failure = _report_failure
def convert_to_native_paths(lst):
"""
Converts a list of '/' separated paths into a list of
native (os.sep separated) paths and converts to lowercase
if the system is case insensitive.
"""
newlst = []
for i, rv in enumerate(lst):
rv = os.path.join(*rv.split("/"))
# on windows the slash after the colon is dropped
if sys.platform == "win32":
pos = rv.find(':')
if pos != -1:
if rv[pos + 1] != '\\':
rv = rv[:pos + 1] + '\\' + rv[pos + 1:]
newlst.append(os.path.normcase(rv))
return newlst
def get_sympy_dir():
"""
Returns the root sympy directory and set the global value
indicating whether the system is case sensitive or not.
"""
this_file = os.path.abspath(__file__)
sympy_dir = os.path.join(os.path.dirname(this_file), "..", "..")
sympy_dir = os.path.normpath(sympy_dir)
return os.path.normcase(sympy_dir)
def setup_pprint():
from sympy import pprint_use_unicode, init_printing
import sympy.interactive.printing as interactive_printing
# force pprint to be in ascii mode in doctests
use_unicode_prev = pprint_use_unicode(False)
# hook our nice, hash-stable strprinter
init_printing(pretty_print=False)
# Prevent init_printing() in doctests from affecting other doctests
interactive_printing.NO_GLOBAL = True
return use_unicode_prev
def run_in_subprocess_with_hash_randomization(
function, function_args=(),
function_kwargs=None, command=sys.executable,
module='sympy.utilities.runtests', force=False):
"""
Run a function in a Python subprocess with hash randomization enabled.
If hash randomization is not supported by the version of Python given, it
returns False. Otherwise, it returns the exit value of the command. The
function is passed to sys.exit(), so the return value of the function will
be the return value.
The environment variable PYTHONHASHSEED is used to seed Python's hash
randomization. If it is set, this function will return False, because
starting a new subprocess is unnecessary in that case. If it is not set,
one is set at random, and the tests are run. Note that if this
environment variable is set when Python starts, hash randomization is
automatically enabled. To force a subprocess to be created even if
PYTHONHASHSEED is set, pass ``force=True``. This flag will not force a
subprocess in Python versions that do not support hash randomization (see
below), because those versions of Python do not support the ``-R`` flag.
``function`` should be a string name of a function that is importable from
the module ``module``, like "_test". The default for ``module`` is
"sympy.utilities.runtests". ``function_args`` and ``function_kwargs``
should be a repr-able tuple and dict, respectively. The default Python
command is sys.executable, which is the currently running Python command.
This function is necessary because the seed for hash randomization must be
set by the environment variable before Python starts. Hence, in order to
use a predetermined seed for tests, we must start Python in a separate
subprocess.
Hash randomization was added in the minor Python versions 2.6.8, 2.7.3,
3.1.5, and 3.2.3, and is enabled by default in all Python versions after
and including 3.3.0.
Examples
========
>>> from sympy.utilities.runtests import (
... run_in_subprocess_with_hash_randomization)
>>> # run the core tests in verbose mode
>>> run_in_subprocess_with_hash_randomization("_test",
... function_args=("core",),
... function_kwargs={'verbose': True}) # doctest: +SKIP
# Will return 0 if sys.executable supports hash randomization and tests
# pass, 1 if they fail, and False if it does not support hash
# randomization.
"""
# Note, we must return False everywhere, not None, as subprocess.call will
# sometimes return None.
# First check if the Python version supports hash randomization
# If it doesn't have this support, it won't reconize the -R flag
p = subprocess.Popen([command, "-RV"], stdout=subprocess.PIPE,
stderr=subprocess.STDOUT)
p.communicate()
if p.returncode != 0:
return False
hash_seed = os.getenv("PYTHONHASHSEED")
if not hash_seed:
os.environ["PYTHONHASHSEED"] = str(random.randrange(2**32))
else:
if not force:
return False
function_kwargs = function_kwargs or {}
# Now run the command
commandstring = ("import sys; from %s import %s;sys.exit(%s(*%s, **%s))" %
(module, function, function, repr(function_args),
repr(function_kwargs)))
try:
p = subprocess.Popen([command, "-R", "-c", commandstring])
p.communicate()
except KeyboardInterrupt:
p.wait()
finally:
# Put the environment variable back, so that it reads correctly for
# the current Python process.
if hash_seed is None:
del os.environ["PYTHONHASHSEED"]
else:
os.environ["PYTHONHASHSEED"] = hash_seed
return p.returncode
def run_all_tests(test_args=(), test_kwargs=None,
doctest_args=(), doctest_kwargs=None,
examples_args=(), examples_kwargs=None):
"""
Run all tests.
Right now, this runs the regular tests (bin/test), the doctests
(bin/doctest), the examples (examples/all.py), and the sage tests (see
sympy/external/tests/test_sage.py).
This is what ``setup.py test`` uses.
You can pass arguments and keyword arguments to the test functions that
support them (for now, test, doctest, and the examples). See the
docstrings of those functions for a description of the available options.
For example, to run the solvers tests with colors turned off:
>>> from sympy.utilities.runtests import run_all_tests
>>> run_all_tests(test_args=("solvers",),
... test_kwargs={"colors:False"}) # doctest: +SKIP
"""
tests_successful = True
test_kwargs = test_kwargs or {}
doctest_kwargs = doctest_kwargs or {}
examples_kwargs = examples_kwargs or {'quiet': True}
try:
# Regular tests
if not test(*test_args, **test_kwargs):
# some regular test fails, so set the tests_successful
# flag to false and continue running the doctests
tests_successful = False
# Doctests
print()
if not doctest(*doctest_args, **doctest_kwargs):
tests_successful = False
# Examples
print()
sys.path.append("examples")
from all import run_examples # examples/all.py
if not run_examples(*examples_args, **examples_kwargs):
tests_successful = False
# Sage tests
if sys.platform != "win32" and not PY3 and os.path.exists("bin/test"):
# run Sage tests; Sage currently doesn't support Windows or Python 3
# Only run Sage tests if 'bin/test' is present (it is missing from
# our release because everything in the 'bin' directory gets
# installed).
dev_null = open(os.devnull, 'w')
if subprocess.call("sage -v", shell=True, stdout=dev_null,
stderr=dev_null) == 0:
if subprocess.call("sage -python bin/test "
"sympy/external/tests/test_sage.py",
shell=True, cwd=os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) != 0:
tests_successful = False
if tests_successful:
return
else:
# Return nonzero exit code
sys.exit(1)
except KeyboardInterrupt:
print()
print("DO *NOT* COMMIT!")
sys.exit(1)
def test(*paths, **kwargs):
"""
Run tests in the specified test_*.py files.
Tests in a particular test_*.py file are run if any of the given strings
in ``paths`` matches a part of the test file's path. If ``paths=[]``,
tests in all test_*.py files are run.
Notes:
- If sort=False, tests are run in random order (not default).
- Paths can be entered in native system format or in unix,
forward-slash format.
- Files that are on the blacklist can be tested by providing
their path; they are only excluded if no paths are given.
**Explanation of test results**
====== ===============================================================
Output Meaning
====== ===============================================================
. passed
F failed
X XPassed (expected to fail but passed)
f XFAILed (expected to fail and indeed failed)
s skipped
w slow
T timeout (e.g., when ``--timeout`` is used)
K KeyboardInterrupt (when running the slow tests with ``--slow``,
you can interrupt one of them without killing the test runner)
====== ===============================================================
Colors have no additional meaning and are used just to facilitate
interpreting the output.
Examples
========
>>> import sympy
Run all tests:
>>> sympy.test() # doctest: +SKIP
Run one file:
>>> sympy.test("sympy/core/tests/test_basic.py") # doctest: +SKIP
>>> sympy.test("_basic") # doctest: +SKIP
Run all tests in sympy/functions/ and some particular file:
>>> sympy.test("sympy/core/tests/test_basic.py",
... "sympy/functions") # doctest: +SKIP
Run all tests in sympy/core and sympy/utilities:
>>> sympy.test("/core", "/util") # doctest: +SKIP
Run specific test from a file:
>>> sympy.test("sympy/core/tests/test_basic.py",
... kw="test_equality") # doctest: +SKIP
Run specific test from any file:
>>> sympy.test(kw="subs") # doctest: +SKIP
Run the tests with verbose mode on:
>>> sympy.test(verbose=True) # doctest: +SKIP
Don't sort the test output:
>>> sympy.test(sort=False) # doctest: +SKIP
Turn on post-mortem pdb:
>>> sympy.test(pdb=True) # doctest: +SKIP
Turn off colors:
>>> sympy.test(colors=False) # doctest: +SKIP
Force colors, even when the output is not to a terminal (this is useful,
e.g., if you are piping to ``less -r`` and you still want colors)
>>> sympy.test(force_colors=False) # doctest: +SKIP
The traceback verboseness can be set to "short" or "no" (default is
"short")
>>> sympy.test(tb='no') # doctest: +SKIP
The ``split`` option can be passed to split the test run into parts. The
split currently only splits the test files, though this may change in the
future. ``split`` should be a string of the form 'a/b', which will run
part ``a`` of ``b``. For instance, to run the first half of the test suite:
>>> sympy.test(split='1/2') # doctest: +SKIP
The ``time_balance`` option can be passed in conjunction with ``split``.
If ``time_balance=True`` (the default for ``sympy.test``), sympy will attempt
to split the tests such that each split takes equal time. This heuristic
for balancing is based on pre-recorded test data.
>>> sympy.test(split='1/2', time_balance=True) # doctest: +SKIP
You can disable running the tests in a separate subprocess using
``subprocess=False``. This is done to support seeding hash randomization,
which is enabled by default in the Python versions where it is supported.
If subprocess=False, hash randomization is enabled/disabled according to
whether it has been enabled or not in the calling Python process.
However, even if it is enabled, the seed cannot be printed unless it is
called from a new Python process.
Hash randomization was added in the minor Python versions 2.6.8, 2.7.3,
3.1.5, and 3.2.3, and is enabled by default in all Python versions after
and including 3.3.0.
If hash randomization is not supported ``subprocess=False`` is used
automatically.
>>> sympy.test(subprocess=False) # doctest: +SKIP
To set the hash randomization seed, set the environment variable
``PYTHONHASHSEED`` before running the tests. This can be done from within
Python using
>>> import os
>>> os.environ['PYTHONHASHSEED'] = '42' # doctest: +SKIP
Or from the command line using
$ PYTHONHASHSEED=42 ./bin/test
If the seed is not set, a random seed will be chosen.
Note that to reproduce the same hash values, you must use both the same seed
as well as the same architecture (32-bit vs. 64-bit).
"""
subprocess = kwargs.pop("subprocess", True)
rerun = kwargs.pop("rerun", 0)
# count up from 0, do not print 0
print_counter = lambda i : (print("rerun %d" % (rerun-i))
if rerun-i else None)
if subprocess:
# loop backwards so last i is 0
for i in range(rerun, -1, -1):
print_counter(i)
ret = run_in_subprocess_with_hash_randomization("_test",
function_args=paths, function_kwargs=kwargs)
if ret is False:
break
val = not bool(ret)
# exit on the first failure or if done
if not val or i == 0:
return val
# rerun even if hash randomization is not supported
for i in range(rerun, -1, -1):
print_counter(i)
val = not bool(_test(*paths, **kwargs))
if not val or i == 0:
return val
def _test(*paths, **kwargs):
"""
Internal function that actually runs the tests.
All keyword arguments from ``test()`` are passed to this function except for
``subprocess``.
Returns 0 if tests passed and 1 if they failed. See the docstring of
``test()`` for more information.
"""
verbose = kwargs.get("verbose", False)
tb = kwargs.get("tb", "short")
kw = kwargs.get("kw", None) or ()
# ensure that kw is a tuple
if isinstance(kw, string_types):
kw = (kw, )
post_mortem = kwargs.get("pdb", False)
colors = kwargs.get("colors", True)
force_colors = kwargs.get("force_colors", False)
sort = kwargs.get("sort", True)
seed = kwargs.get("seed", None)
if seed is None:
seed = random.randrange(100000000)
timeout = kwargs.get("timeout", False)
fail_on_timeout = kwargs.get("fail_on_timeout", False)
if ON_TRAVIS and timeout is False:
# Travis times out if no activity is seen for 10 minutes.
timeout = 595
fail_on_timeout = True
slow = kwargs.get("slow", False)
enhance_asserts = kwargs.get("enhance_asserts", False)
split = kwargs.get('split', None)
time_balance = kwargs.get('time_balance', True)
blacklist = kwargs.get('blacklist', ['sympy/integrals/rubi/rubi_tests/tests'])
blacklist = convert_to_native_paths(blacklist)
fast_threshold = kwargs.get('fast_threshold', None)
slow_threshold = kwargs.get('slow_threshold', None)
r = PyTestReporter(verbose=verbose, tb=tb, colors=colors,
force_colors=force_colors, split=split)
t = SymPyTests(r, kw, post_mortem, seed,
fast_threshold=fast_threshold,
slow_threshold=slow_threshold)
# Show deprecation warnings
import warnings
warnings.simplefilter("error", SymPyDeprecationWarning)
warnings.filterwarnings('error', '.*', DeprecationWarning, module='sympy.*')
test_files = t.get_test_files('sympy')
not_blacklisted = [f for f in test_files
if not any(b in f for b in blacklist)]
if len(paths) == 0:
matched = not_blacklisted
else:
paths = convert_to_native_paths(paths)
matched = []
for f in not_blacklisted:
basename = os.path.basename(f)
for p in paths:
if p in f or fnmatch(basename, p):
matched.append(f)
break
density = None
if time_balance:
if slow:
density = SPLIT_DENSITY_SLOW
else:
density = SPLIT_DENSITY
if split:
matched = split_list(matched, split, density=density)
t._testfiles.extend(matched)
return int(not t.test(sort=sort, timeout=timeout, slow=slow,
enhance_asserts=enhance_asserts, fail_on_timeout=fail_on_timeout))
def doctest(*paths, **kwargs):
r"""
Runs doctests in all \*.py files in the sympy directory which match
any of the given strings in ``paths`` or all tests if paths=[].
Notes:
- Paths can be entered in native system format or in unix,
forward-slash format.
- Files that are on the blacklist can be tested by providing
their path; they are only excluded if no paths are given.
Examples
========
>>> import sympy
Run all tests:
>>> sympy.doctest() # doctest: +SKIP
Run one file:
>>> sympy.doctest("sympy/core/basic.py") # doctest: +SKIP
>>> sympy.doctest("polynomial.rst") # doctest: +SKIP
Run all tests in sympy/functions/ and some particular file:
>>> sympy.doctest("/functions", "basic.py") # doctest: +SKIP
Run any file having polynomial in its name, doc/src/modules/polynomial.rst,
sympy/functions/special/polynomials.py, and sympy/polys/polynomial.py:
>>> sympy.doctest("polynomial") # doctest: +SKIP
The ``split`` option can be passed to split the test run into parts. The
split currently only splits the test files, though this may change in the
future. ``split`` should be a string of the form 'a/b', which will run
part ``a`` of ``b``. Note that the regular doctests and the Sphinx
doctests are split independently. For instance, to run the first half of
the test suite:
>>> sympy.doctest(split='1/2') # doctest: +SKIP
The ``subprocess`` and ``verbose`` options are the same as with the function
``test()``. See the docstring of that function for more information.
"""
subprocess = kwargs.pop("subprocess", True)
rerun = kwargs.pop("rerun", 0)
# count up from 0, do not print 0
print_counter = lambda i : (print("rerun %d" % (rerun-i))
if rerun-i else None)
if subprocess:
# loop backwards so last i is 0
for i in range(rerun, -1, -1):
print_counter(i)
ret = run_in_subprocess_with_hash_randomization("_doctest",
function_args=paths, function_kwargs=kwargs)
if ret is False:
break
val = not bool(ret)
# exit on the first failure or if done
if not val or i == 0:
return val
# rerun even if hash randomization is not supported
for i in range(rerun, -1, -1):
print_counter(i)
val = not bool(_doctest(*paths, **kwargs))
if not val or i == 0:
return val
def _get_doctest_blacklist():
'''Get the default blacklist for the doctests'''
blacklist = []
blacklist.extend([
"doc/src/modules/plotting.rst", # generates live plots
"doc/src/modules/physics/mechanics/autolev_parser.rst",
"sympy/physics/gaussopt.py", # raises deprecation warning
"sympy/galgebra.py", # raises ImportError
"sympy/this.py", # Prints text to the terminal
"sympy/matrices/densearith.py", # raises deprecation warning
"sympy/matrices/densesolve.py", # raises deprecation warning
"sympy/matrices/densetools.py", # raises deprecation warning
"sympy/physics/unitsystems.py", # raises deprecation warning
"sympy/parsing/autolev/_antlr/autolevlexer.py", # generated code
"sympy/parsing/autolev/_antlr/autolevparser.py", # generated code
"sympy/parsing/autolev/_antlr/autolevlistener.py", # generated code
"sympy/parsing/latex/_antlr/latexlexer.py", # generated code
"sympy/parsing/latex/_antlr/latexparser.py", # generated code
"sympy/integrals/rubi/rubi.py"
])
# autolev parser tests
num = 12
for i in range (1, num+1):
blacklist.append("sympy/parsing/autolev/test-examples/ruletest" + str(i) + ".py")
blacklist.extend(["sympy/parsing/autolev/test-examples/pydy-example-repo/mass_spring_damper.py",
"sympy/parsing/autolev/test-examples/pydy-example-repo/chaos_pendulum.py",
"sympy/parsing/autolev/test-examples/pydy-example-repo/double_pendulum.py",
"sympy/parsing/autolev/test-examples/pydy-example-repo/non_min_pendulum.py"])
if import_module('numpy') is None:
blacklist.extend([
"sympy/plotting/experimental_lambdify.py",
"sympy/plotting/plot_implicit.py",
"examples/advanced/autowrap_integrators.py",
"examples/advanced/autowrap_ufuncify.py",
"examples/intermediate/sample.py",
"examples/intermediate/mplot2d.py",
"examples/intermediate/mplot3d.py",
"doc/src/modules/numeric-computation.rst"
])
else:
if import_module('matplotlib') is None:
blacklist.extend([
"examples/intermediate/mplot2d.py",
"examples/intermediate/mplot3d.py"
])
else:
# Use a non-windowed backend, so that the tests work on Travis
import matplotlib
matplotlib.use('Agg')
if import_module('pyglet') is None:
blacklist.extend(["sympy/plotting/pygletplot"])
if import_module('theano') is None:
blacklist.extend([
"sympy/printing/theanocode.py",
"doc/src/modules/numeric-computation.rst",
])
if import_module('antlr4') is None:
blacklist.extend([
"sympy/parsing/autolev/__init__.py",
"sympy/parsing/latex/_parse_latex_antlr.py",
])
# disabled because of doctest failures in asmeurer's bot
blacklist.extend([
"sympy/utilities/autowrap.py",
"examples/advanced/autowrap_integrators.py",
"examples/advanced/autowrap_ufuncify.py"
])
# blacklist these modules until issue 4840 is resolved
blacklist.extend([
"sympy/conftest.py",
"sympy/utilities/benchmarking.py"
])
blacklist = convert_to_native_paths(blacklist)
return blacklist
def _doctest(*paths, **kwargs):
"""
Internal function that actually runs the doctests.
All keyword arguments from ``doctest()`` are passed to this function
except for ``subprocess``.
Returns 0 if tests passed and 1 if they failed. See the docstrings of
``doctest()`` and ``test()`` for more information.
"""
from sympy import pprint_use_unicode
normal = kwargs.get("normal", False)
verbose = kwargs.get("verbose", False)
colors = kwargs.get("colors", True)
force_colors = kwargs.get("force_colors", False)
blacklist = kwargs.get("blacklist", [])
split = kwargs.get('split', None)
blacklist.extend(_get_doctest_blacklist())
# Use a non-windowed backend, so that the tests work on Travis
if import_module('matplotlib') is not None:
import matplotlib
matplotlib.use('Agg')
# Disable warnings for external modules
import sympy.external
sympy.external.importtools.WARN_OLD_VERSION = False
sympy.external.importtools.WARN_NOT_INSTALLED = False
# Disable showing up of plots
from sympy.plotting.plot import unset_show
unset_show()
# Show deprecation warnings
import warnings
warnings.simplefilter("error", SymPyDeprecationWarning)
warnings.filterwarnings('error', '.*', DeprecationWarning, module='sympy.*')
r = PyTestReporter(verbose, split=split, colors=colors,\
force_colors=force_colors)
t = SymPyDocTests(r, normal)
test_files = t.get_test_files('sympy')
test_files.extend(t.get_test_files('examples', init_only=False))
not_blacklisted = [f for f in test_files
if not any(b in f for b in blacklist)]
if len(paths) == 0:
matched = not_blacklisted
else:
# take only what was requested...but not blacklisted items
# and allow for partial match anywhere or fnmatch of name
paths = convert_to_native_paths(paths)
matched = []
for f in not_blacklisted:
basename = os.path.basename(f)
for p in paths:
if p in f or fnmatch(basename, p):
matched.append(f)
break
if split:
matched = split_list(matched, split)
t._testfiles.extend(matched)
# run the tests and record the result for this *py portion of the tests
if t._testfiles:
failed = not t.test()
else:
failed = False
# N.B.
# --------------------------------------------------------------------
# Here we test *.rst files at or below doc/src. Code from these must
# be self supporting in terms of imports since there is no importing
# of necessary modules by doctest.testfile. If you try to pass *.py
# files through this they might fail because they will lack the needed
# imports and smarter parsing that can be done with source code.
#
test_files = t.get_test_files('doc/src', '*.rst', init_only=False)
test_files.sort()
not_blacklisted = [f for f in test_files
if not any(b in f for b in blacklist)]
if len(paths) == 0:
matched = not_blacklisted
else:
# Take only what was requested as long as it's not on the blacklist.
# Paths were already made native in *py tests so don't repeat here.
# There's no chance of having a *py file slip through since we
# only have *rst files in test_files.
matched = []
for f in not_blacklisted:
basename = os.path.basename(f)
for p in paths:
if p in f or fnmatch(basename, p):
matched.append(f)
break
if split:
matched = split_list(matched, split)
first_report = True
for rst_file in matched:
if not os.path.isfile(rst_file):
continue
old_displayhook = sys.displayhook
try:
use_unicode_prev = setup_pprint()
out = sympytestfile(
rst_file, module_relative=False, encoding='utf-8',
optionflags=pdoctest.ELLIPSIS | pdoctest.NORMALIZE_WHITESPACE |
pdoctest.IGNORE_EXCEPTION_DETAIL)
finally:
# make sure we return to the original displayhook in case some
# doctest has changed that
sys.displayhook = old_displayhook
# The NO_GLOBAL flag overrides the no_global flag to init_printing
# if True
import sympy.interactive.printing as interactive_printing
interactive_printing.NO_GLOBAL = False
pprint_use_unicode(use_unicode_prev)
rstfailed, tested = out
if tested:
failed = rstfailed or failed
if first_report:
first_report = False
msg = 'rst doctests start'
if not t._testfiles:
r.start(msg=msg)
else:
r.write_center(msg)
print()
# use as the id, everything past the first 'sympy'
file_id = rst_file[rst_file.find('sympy') + len('sympy') + 1:]
print(file_id, end=" ")
# get at least the name out so it is know who is being tested
wid = r.terminal_width - len(file_id) - 1 # update width
test_file = '[%s]' % (tested)
report = '[%s]' % (rstfailed or 'OK')
print(''.join(
[test_file, ' '*(wid - len(test_file) - len(report)), report])
)
# the doctests for *py will have printed this message already if there was
# a failure, so now only print it if there was intervening reporting by
# testing the *rst as evidenced by first_report no longer being True.
if not first_report and failed:
print()
print("DO *NOT* COMMIT!")
return int(failed)
sp = re.compile(r'([0-9]+)/([1-9][0-9]*)')
def split_list(l, split, density=None):
"""
Splits a list into part a of b
split should be a string of the form 'a/b'. For instance, '1/3' would give
the split one of three.
If the length of the list is not divisible by the number of splits, the
last split will have more items.
`density` may be specified as a list. If specified,
tests will be balanced so that each split has as equal-as-possible
amount of mass according to `density`.
>>> from sympy.utilities.runtests import split_list
>>> a = list(range(10))
>>> split_list(a, '1/3')
[0, 1, 2]
>>> split_list(a, '2/3')
[3, 4, 5]
>>> split_list(a, '3/3')
[6, 7, 8, 9]
"""
m = sp.match(split)
if not m:
raise ValueError("split must be a string of the form a/b where a and b are ints")
i, t = map(int, m.groups())
if not density:
return l[(i - 1)*len(l)//t : i*len(l)//t]
# normalize density
tot = sum(density)
density = [x / tot for x in density]
def density_inv(x):
"""Interpolate the inverse to the cumulative
distribution function given by density"""
if x <= 0:
return 0
if x >= sum(density):
return 1
# find the first time the cumulative sum surpasses x
# and linearly interpolate
cumm = 0
for i, d in enumerate(density):
cumm += d
if cumm >= x:
break
frac = (d - (cumm - x)) / d
return (i + frac) / len(density)
lower_frac = density_inv((i - 1) / t)
higher_frac = density_inv(i / t)
return l[int(lower_frac*len(l)) : int(higher_frac*len(l))]
from collections import namedtuple
SymPyTestResults = namedtuple('TestResults', 'failed attempted')
def sympytestfile(filename, module_relative=True, name=None, package=None,
globs=None, verbose=None, report=True, optionflags=0,
extraglobs=None, raise_on_error=False,
parser=pdoctest.DocTestParser(), encoding=None):
"""
Test examples in the given file. Return (#failures, #tests).
Optional keyword arg ``module_relative`` specifies how filenames
should be interpreted:
- If ``module_relative`` is True (the default), then ``filename``
specifies a module-relative path. By default, this path is
relative to the calling module's directory; but if the
``package`` argument is specified, then it is relative to that
package. To ensure os-independence, ``filename`` should use
"/" characters to separate path segments, and should not
be an absolute path (i.e., it may not begin with "/").
- If ``module_relative`` is False, then ``filename`` specifies an
os-specific path. The path may be absolute or relative (to
the current working directory).
Optional keyword arg ``name`` gives the name of the test; by default
use the file's basename.
Optional keyword argument ``package`` is a Python package or the
name of a Python package whose directory should be used as the
base directory for a module relative filename. If no package is
specified, then the calling module's directory is used as the base
directory for module relative filenames. It is an error to
specify ``package`` if ``module_relative`` is False.
Optional keyword arg ``globs`` gives a dict to be used as the globals
when executing examples; by default, use {}. A copy of this dict
is actually used for each docstring, so that each docstring's
examples start with a clean slate.
Optional keyword arg ``extraglobs`` gives a dictionary that should be
merged into the globals that are used to execute examples. By
default, no extra globals are used.
Optional keyword arg ``verbose`` prints lots of stuff if true, prints
only failures if false; by default, it's true iff "-v" is in sys.argv.
Optional keyword arg ``report`` prints a summary at the end when true,
else prints nothing at the end. In verbose mode, the summary is
detailed, else very brief (in fact, empty if all tests passed).
Optional keyword arg ``optionflags`` or's together module constants,
and defaults to 0. Possible values (see the docs for details):
- DONT_ACCEPT_TRUE_FOR_1
- DONT_ACCEPT_BLANKLINE
- NORMALIZE_WHITESPACE
- ELLIPSIS
- SKIP
- IGNORE_EXCEPTION_DETAIL
- REPORT_UDIFF
- REPORT_CDIFF
- REPORT_NDIFF
- REPORT_ONLY_FIRST_FAILURE
Optional keyword arg ``raise_on_error`` raises an exception on the
first unexpected exception or failure. This allows failures to be
post-mortem debugged.
Optional keyword arg ``parser`` specifies a DocTestParser (or
subclass) that should be used to extract tests from the files.
Optional keyword arg ``encoding`` specifies an encoding that should
be used to convert the file to unicode.
Advanced tomfoolery: testmod runs methods of a local instance of
class doctest.Tester, then merges the results into (or creates)
global Tester instance doctest.master. Methods of doctest.master
can be called directly too, if you want to do something unusual.
Passing report=0 to testmod is especially useful then, to delay
displaying a summary. Invoke doctest.master.summarize(verbose)
when you're done fiddling.
"""
if package and not module_relative:
raise ValueError("Package may only be specified for module-"
"relative paths.")
# Relativize the path
if not PY3:
text, filename = pdoctest._load_testfile(
filename, package, module_relative)
if encoding is not None:
text = text.decode(encoding)
else:
text, filename = pdoctest._load_testfile(
filename, package, module_relative, encoding)
# If no name was given, then use the file's name.
if name is None:
name = os.path.basename(filename)
# Assemble the globals.
if globs is None:
globs = {}
else:
globs = globs.copy()
if extraglobs is not None:
globs.update(extraglobs)
if '__name__' not in globs:
globs['__name__'] = '__main__'
if raise_on_error:
runner = pdoctest.DebugRunner(verbose=verbose, optionflags=optionflags)
else:
runner = SymPyDocTestRunner(verbose=verbose, optionflags=optionflags)
runner._checker = SymPyOutputChecker()
# Read the file, convert it to a test, and run it.
test = parser.get_doctest(text, globs, name, filename, 0)
runner.run(test, compileflags=future_flags)
if report:
runner.summarize()
if pdoctest.master is None:
pdoctest.master = runner
else:
pdoctest.master.merge(runner)
return SymPyTestResults(runner.failures, runner.tries)
class SymPyTests(object):
def __init__(self, reporter, kw="", post_mortem=False,
seed=None, fast_threshold=None, slow_threshold=None):
self._post_mortem = post_mortem
self._kw = kw
self._count = 0
self._root_dir = sympy_dir
self._reporter = reporter
self._reporter.root_dir(self._root_dir)
self._testfiles = []
self._seed = seed if seed is not None else random.random()
# Defaults in seconds, from human / UX design limits
# http://www.nngroup.com/articles/response-times-3-important-limits/
#
# These defaults are *NOT* set in stone as we are measuring different
# things, so others feel free to come up with a better yardstick :)
if fast_threshold:
self._fast_threshold = float(fast_threshold)
else:
self._fast_threshold = 5
if slow_threshold:
self._slow_threshold = float(slow_threshold)
else:
self._slow_threshold = 10
def test(self, sort=False, timeout=False, slow=False,
enhance_asserts=False, fail_on_timeout=False):
"""
Runs the tests returning True if all tests pass, otherwise False.
If sort=False run tests in random order.
"""
if sort:
self._testfiles.sort()
elif slow:
pass
else:
random.seed(self._seed)
random.shuffle(self._testfiles)
self._reporter.start(self._seed)
for f in self._testfiles:
try:
self.test_file(f, sort, timeout, slow,
enhance_asserts, fail_on_timeout)
except KeyboardInterrupt:
print(" interrupted by user")
self._reporter.finish()
raise
return self._reporter.finish()
def _enhance_asserts(self, source):
from ast import (NodeTransformer, Compare, Name, Store, Load, Tuple,
Assign, BinOp, Str, Mod, Assert, parse, fix_missing_locations)
ops = {"Eq": '==', "NotEq": '!=', "Lt": '<', "LtE": '<=',
"Gt": '>', "GtE": '>=', "Is": 'is', "IsNot": 'is not',
"In": 'in', "NotIn": 'not in'}
class Transform(NodeTransformer):
def visit_Assert(self, stmt):
if isinstance(stmt.test, Compare):
compare = stmt.test
values = [compare.left] + compare.comparators
names = [ "_%s" % i for i, _ in enumerate(values) ]
names_store = [ Name(n, Store()) for n in names ]
names_load = [ Name(n, Load()) for n in names ]
target = Tuple(names_store, Store())
value = Tuple(values, Load())
assign = Assign([target], value)
new_compare = Compare(names_load[0], compare.ops, names_load[1:])
msg_format = "\n%s " + "\n%s ".join([ ops[op.__class__.__name__] for op in compare.ops ]) + "\n%s"
msg = BinOp(Str(msg_format), Mod(), Tuple(names_load, Load()))
test = Assert(new_compare, msg, lineno=stmt.lineno, col_offset=stmt.col_offset)
return [assign, test]
else:
return stmt
tree = parse(source)
new_tree = Transform().visit(tree)
return fix_missing_locations(new_tree)
def test_file(self, filename, sort=True, timeout=False, slow=False,
enhance_asserts=False, fail_on_timeout=False):
reporter = self._reporter
funcs = []
try:
gl = {'__file__': filename}
try:
if PY3:
open_file = lambda: open(filename, encoding="utf8")
else:
open_file = lambda: open(filename)
with open_file() as f:
source = f.read()
if self._kw:
for l in source.splitlines():
if l.lstrip().startswith('def '):
if any(l.find(k) != -1 for k in self._kw):
break
else:
return
if enhance_asserts:
try:
source = self._enhance_asserts(source)
except ImportError:
pass
code = compile(source, filename, "exec", flags=0, dont_inherit=True)
exec_(code, gl)
except (SystemExit, KeyboardInterrupt):
raise
except ImportError:
reporter.import_error(filename, sys.exc_info())
return
except Exception:
reporter.test_exception(sys.exc_info())
clear_cache()
self._count += 1
random.seed(self._seed)
disabled = gl.get("disabled", False)
if not disabled:
# we need to filter only those functions that begin with 'test_'
# We have to be careful about decorated functions. As long as
# the decorator uses functools.wraps, we can detect it.
funcs = []
for f in gl:
if (f.startswith("test_") and (inspect.isfunction(gl[f])
or inspect.ismethod(gl[f]))):
func = gl[f]
# Handle multiple decorators
while hasattr(func, '__wrapped__'):
func = func.__wrapped__
if inspect.getsourcefile(func) == filename:
funcs.append(gl[f])
if slow:
funcs = [f for f in funcs if getattr(f, '_slow', False)]
# Sorting of XFAILed functions isn't fixed yet :-(
funcs.sort(key=lambda x: inspect.getsourcelines(x)[1])
i = 0
while i < len(funcs):
if inspect.isgeneratorfunction(funcs[i]):
# some tests can be generators, that return the actual
# test functions. We unpack it below:
f = funcs.pop(i)
for fg in f():
func = fg[0]
args = fg[1:]
fgw = lambda: func(*args)
funcs.insert(i, fgw)
i += 1
else:
i += 1
# drop functions that are not selected with the keyword expression:
funcs = [x for x in funcs if self.matches(x)]
if not funcs:
return
except Exception:
reporter.entering_filename(filename, len(funcs))
raise
reporter.entering_filename(filename, len(funcs))
if not sort:
random.shuffle(funcs)
for f in funcs:
start = time.time()
reporter.entering_test(f)
try:
if getattr(f, '_slow', False) and not slow:
raise Skipped("Slow")
if timeout:
self._timeout(f, timeout, fail_on_timeout)
else:
random.seed(self._seed)
f()
except KeyboardInterrupt:
if getattr(f, '_slow', False):
reporter.test_skip("KeyboardInterrupt")
else:
raise
except Exception:
if timeout:
signal.alarm(0) # Disable the alarm. It could not be handled before.
t, v, tr = sys.exc_info()
if t is AssertionError:
reporter.test_fail((t, v, tr))
if self._post_mortem:
pdb.post_mortem(tr)
elif t.__name__ == "Skipped":
reporter.test_skip(v)
elif t.__name__ == "XFail":
reporter.test_xfail()
elif t.__name__ == "XPass":
reporter.test_xpass(v)
else:
reporter.test_exception((t, v, tr))
if self._post_mortem:
pdb.post_mortem(tr)
else:
reporter.test_pass()
taken = time.time() - start
if taken > self._slow_threshold:
reporter.slow_test_functions.append((f.__name__, taken))
if getattr(f, '_slow', False) and slow:
if taken < self._fast_threshold:
reporter.fast_test_functions.append((f.__name__, taken))
reporter.leaving_filename()
def _timeout(self, function, timeout, fail_on_timeout):
def callback(x, y):
signal.alarm(0)
if fail_on_timeout:
raise TimeOutError("Timed out after %d seconds" % timeout)
else:
raise Skipped("Timeout")
signal.signal(signal.SIGALRM, callback)
signal.alarm(timeout) # Set an alarm with a given timeout
function()
signal.alarm(0) # Disable the alarm
def matches(self, x):
"""
Does the keyword expression self._kw match "x"? Returns True/False.
Always returns True if self._kw is "".
"""
if not self._kw:
return True
for kw in self._kw:
if x.__name__.find(kw) != -1:
return True
return False
def get_test_files(self, dir, pat='test_*.py'):
"""
Returns the list of test_*.py (default) files at or below directory
``dir`` relative to the sympy home directory.
"""
dir = os.path.join(self._root_dir, convert_to_native_paths([dir])[0])
g = []
for path, folders, files in os.walk(dir):
g.extend([os.path.join(path, f) for f in files if fnmatch(f, pat)])
return sorted([os.path.normcase(gi) for gi in g])
class SymPyDocTests(object):
def __init__(self, reporter, normal):
self._count = 0
self._root_dir = sympy_dir
self._reporter = reporter
self._reporter.root_dir(self._root_dir)
self._normal = normal
self._testfiles = []
def test(self):
"""
Runs the tests and returns True if all tests pass, otherwise False.
"""
self._reporter.start()
for f in self._testfiles:
try:
self.test_file(f)
except KeyboardInterrupt:
print(" interrupted by user")
self._reporter.finish()
raise
return self._reporter.finish()
def test_file(self, filename):
clear_cache()
from sympy.core.compatibility import StringIO
import sympy.interactive.printing as interactive_printing
from sympy import pprint_use_unicode
rel_name = filename[len(self._root_dir) + 1:]
dirname, file = os.path.split(filename)
module = rel_name.replace(os.sep, '.')[:-3]
if rel_name.startswith("examples"):
# Examples files do not have __init__.py files,
# So we have to temporarily extend sys.path to import them
sys.path.insert(0, dirname)
module = file[:-3] # remove ".py"
try:
module = pdoctest._normalize_module(module)
tests = SymPyDocTestFinder().find(module)
except (SystemExit, KeyboardInterrupt):
raise
except ImportError:
self._reporter.import_error(filename, sys.exc_info())
return
finally:
if rel_name.startswith("examples"):
del sys.path[0]
tests = [test for test in tests if len(test.examples) > 0]
# By default tests are sorted by alphabetical order by function name.
# We sort by line number so one can edit the file sequentially from
# bottom to top. However, if there are decorated functions, their line
# numbers will be too large and for now one must just search for these
# by text and function name.
tests.sort(key=lambda x: -x.lineno)
if not tests:
return
self._reporter.entering_filename(filename, len(tests))
for test in tests:
assert len(test.examples) != 0
if self._reporter._verbose:
self._reporter.write("\n{} ".format(test.name))
# check if there are external dependencies which need to be met
if '_doctest_depends_on' in test.globs:
try:
self._check_dependencies(**test.globs['_doctest_depends_on'])
except DependencyError as e:
self._reporter.test_skip(v=str(e))
continue
runner = SymPyDocTestRunner(optionflags=pdoctest.ELLIPSIS |
pdoctest.NORMALIZE_WHITESPACE |
pdoctest.IGNORE_EXCEPTION_DETAIL)
runner._checker = SymPyOutputChecker()
old = sys.stdout
new = StringIO()
sys.stdout = new
# If the testing is normal, the doctests get importing magic to
# provide the global namespace. If not normal (the default) then
# then must run on their own; all imports must be explicit within
# a function's docstring. Once imported that import will be
# available to the rest of the tests in a given function's
# docstring (unless clear_globs=True below).
if not self._normal:
test.globs = {}
# if this is uncommented then all the test would get is what
# comes by default with a "from sympy import *"
#exec('from sympy import *') in test.globs
test.globs['print_function'] = print_function
old_displayhook = sys.displayhook
use_unicode_prev = setup_pprint()
try:
f, t = runner.run(test, compileflags=future_flags,
out=new.write, clear_globs=False)
except KeyboardInterrupt:
raise
finally:
sys.stdout = old
if f > 0:
self._reporter.doctest_fail(test.name, new.getvalue())
else:
self._reporter.test_pass()
sys.displayhook = old_displayhook
interactive_printing.NO_GLOBAL = False
pprint_use_unicode(use_unicode_prev)
self._reporter.leaving_filename()
def get_test_files(self, dir, pat='*.py', init_only=True):
r"""
Returns the list of \*.py files (default) from which docstrings
will be tested which are at or below directory ``dir``. By default,
only those that have an __init__.py in their parent directory
and do not start with ``test_`` will be included.
"""
def importable(x):
"""
Checks if given pathname x is an importable module by checking for
__init__.py file.
Returns True/False.
Currently we only test if the __init__.py file exists in the
directory with the file "x" (in theory we should also test all the
parent dirs).
"""
init_py = os.path.join(os.path.dirname(x), "__init__.py")
return os.path.exists(init_py)
dir = os.path.join(self._root_dir, convert_to_native_paths([dir])[0])
g = []
for path, folders, files in os.walk(dir):
g.extend([os.path.join(path, f) for f in files
if not f.startswith('test_') and fnmatch(f, pat)])
if init_only:
# skip files that are not importable (i.e. missing __init__.py)
g = [x for x in g if importable(x)]
return [os.path.normcase(gi) for gi in g]
def _check_dependencies(self,
executables=(),
modules=(),
disable_viewers=(),
python_version=(2,)):
"""
Checks if the dependencies for the test are installed.
Raises ``DependencyError`` it at least one dependency is not installed.
"""
for executable in executables:
if not find_executable(executable):
raise DependencyError("Could not find %s" % executable)
for module in modules:
if module == 'matplotlib':
matplotlib = import_module(
'matplotlib',
__import__kwargs={'fromlist':
['pyplot', 'cm', 'collections']},
min_module_version='1.0.0', catch=(RuntimeError,))
if matplotlib is None:
raise DependencyError("Could not import matplotlib")
else:
if not import_module(module):
raise DependencyError("Could not import %s" % module)
if disable_viewers:
tempdir = tempfile.mkdtemp()
os.environ['PATH'] = '%s:%s' % (tempdir, os.environ['PATH'])
vw = ('#!/usr/bin/env {}\n'
'import sys\n'
'if len(sys.argv) <= 1:\n'
' exit("wrong number of args")\n').format(
'python3' if PY3 else 'python')
for viewer in disable_viewers:
with open(os.path.join(tempdir, viewer), 'w') as fh:
fh.write(vw)
# make the file executable
os.chmod(os.path.join(tempdir, viewer),
stat.S_IREAD | stat.S_IWRITE | stat.S_IXUSR)
if python_version:
if sys.version_info < python_version:
raise DependencyError("Requires Python >= " + '.'.join(map(str, python_version)))
if 'pyglet' in modules:
# monkey-patch pyglet s.t. it does not open a window during
# doctesting
import pyglet
class DummyWindow(object):
def __init__(self, *args, **kwargs):
self.has_exit = True
self.width = 600
self.height = 400
def set_vsync(self, x):
pass
def switch_to(self):
pass
def push_handlers(self, x):
pass
def close(self):
pass
pyglet.window.Window = DummyWindow
class SymPyDocTestFinder(DocTestFinder):
"""
A class used to extract the DocTests that are relevant to a given
object, from its docstring and the docstrings of its contained
objects. Doctests can currently be extracted from the following
object types: modules, functions, classes, methods, staticmethods,
classmethods, and properties.
Modified from doctest's version to look harder for code that
appears comes from a different module. For example, the @vectorize
decorator makes it look like functions come from multidimensional.py
even though their code exists elsewhere.
"""
def _find(self, tests, obj, name, module, source_lines, globs, seen):
"""
Find tests for the given object and any contained objects, and
add them to ``tests``.
"""
if self._verbose:
print('Finding tests in %s' % name)
# If we've already processed this object, then ignore it.
if id(obj) in seen:
return
seen[id(obj)] = 1
# Make sure we don't run doctests for classes outside of sympy, such
# as in numpy or scipy.
if inspect.isclass(obj):
if obj.__module__.split('.')[0] != 'sympy':
return
# Find a test for this object, and add it to the list of tests.
test = self._get_test(obj, name, module, globs, source_lines)
if test is not None:
tests.append(test)
if not self._recurse:
return
# Look for tests in a module's contained objects.
if inspect.ismodule(obj):
for rawname, val in obj.__dict__.items():
# Recurse to functions & classes.
if inspect.isfunction(val) or inspect.isclass(val):
# Make sure we don't run doctests functions or classes
# from different modules
if val.__module__ != module.__name__:
continue
assert self._from_module(module, val), \
"%s is not in module %s (rawname %s)" % (val, module, rawname)
try:
valname = '%s.%s' % (name, rawname)
self._find(tests, val, valname, module,
source_lines, globs, seen)
except KeyboardInterrupt:
raise
# Look for tests in a module's __test__ dictionary.
for valname, val in getattr(obj, '__test__', {}).items():
if not isinstance(valname, string_types):
raise ValueError("SymPyDocTestFinder.find: __test__ keys "
"must be strings: %r" %
(type(valname),))
if not (inspect.isfunction(val) or inspect.isclass(val) or
inspect.ismethod(val) or inspect.ismodule(val) or
isinstance(val, string_types)):
raise ValueError("SymPyDocTestFinder.find: __test__ values "
"must be strings, functions, methods, "
"classes, or modules: %r" %
(type(val),))
valname = '%s.__test__.%s' % (name, valname)
self._find(tests, val, valname, module, source_lines,
globs, seen)
# Look for tests in a class's contained objects.
if inspect.isclass(obj):
for valname, val in obj.__dict__.items():
# Special handling for staticmethod/classmethod.
if isinstance(val, staticmethod):
val = getattr(obj, valname)
if isinstance(val, classmethod):
val = getattr(obj, valname).__func__
# Recurse to methods, properties, and nested classes.
if ((inspect.isfunction(unwrap(val)) or
inspect.isclass(val) or
isinstance(val, property)) and
self._from_module(module, val)):
# Make sure we don't run doctests functions or classes
# from different modules
if isinstance(val, property):
if hasattr(val.fget, '__module__'):
if val.fget.__module__ != module.__name__:
continue
else:
if val.__module__ != module.__name__:
continue
assert self._from_module(module, val), \
"%s is not in module %s (valname %s)" % (
val, module, valname)
valname = '%s.%s' % (name, valname)
self._find(tests, val, valname, module, source_lines,
globs, seen)
def _get_test(self, obj, name, module, globs, source_lines):
"""
Return a DocTest for the given object, if it defines a docstring;
otherwise, return None.
"""
lineno = None
# Extract the object's docstring. If it doesn't have one,
# then return None (no test for this object).
if isinstance(obj, string_types):
# obj is a string in the case for objects in the polys package.
# Note that source_lines is a binary string (compiled polys
# modules), which can't be handled by _find_lineno so determine
# the line number here.
docstring = obj
matches = re.findall(r"line \d+", name)
assert len(matches) == 1, \
"string '%s' does not contain lineno " % name
# NOTE: this is not the exact linenumber but its better than no
# lineno ;)
lineno = int(matches[0][5:])
else:
try:
if obj.__doc__ is None:
docstring = ''
else:
docstring = obj.__doc__
if not isinstance(docstring, string_types):
docstring = str(docstring)
except (TypeError, AttributeError):
docstring = ''
# Don't bother if the docstring is empty.
if self._exclude_empty and not docstring:
return None
# check that properties have a docstring because _find_lineno
# assumes it
if isinstance(obj, property):
if obj.fget.__doc__ is None:
return None
# Find the docstring's location in the file.
if lineno is None:
obj = unwrap(obj)
# handling of properties is not implemented in _find_lineno so do
# it here
if hasattr(obj, 'func_closure') and obj.func_closure is not None:
tobj = obj.func_closure[0].cell_contents
elif isinstance(obj, property):
tobj = obj.fget
else:
tobj = obj
lineno = self._find_lineno(tobj, source_lines)
if lineno is None:
return None
# Return a DocTest for this object.
if module is None:
filename = None
else:
filename = getattr(module, '__file__', module.__name__)
if filename[-4:] in (".pyc", ".pyo"):
filename = filename[:-1]
globs['_doctest_depends_on'] = getattr(obj, '_doctest_depends_on', {})
return self._parser.get_doctest(docstring, globs, name,
filename, lineno)
class SymPyDocTestRunner(DocTestRunner):
"""
A class used to run DocTest test cases, and accumulate statistics.
The ``run`` method is used to process a single DocTest case. It
returns a tuple ``(f, t)``, where ``t`` is the number of test cases
tried, and ``f`` is the number of test cases that failed.
Modified from the doctest version to not reset the sys.displayhook (see
issue 5140).
See the docstring of the original DocTestRunner for more information.
"""
def run(self, test, compileflags=None, out=None, clear_globs=True):
"""
Run the examples in ``test``, and display the results using the
writer function ``out``.
The examples are run in the namespace ``test.globs``. If
``clear_globs`` is true (the default), then this namespace will
be cleared after the test runs, to help with garbage
collection. If you would like to examine the namespace after
the test completes, then use ``clear_globs=False``.
``compileflags`` gives the set of flags that should be used by
the Python compiler when running the examples. If not
specified, then it will default to the set of future-import
flags that apply to ``globs``.
The output of each example is checked using
``SymPyDocTestRunner.check_output``, and the results are
formatted by the ``SymPyDocTestRunner.report_*`` methods.
"""
self.test = test
if compileflags is None:
compileflags = pdoctest._extract_future_flags(test.globs)
save_stdout = sys.stdout
if out is None:
out = save_stdout.write
sys.stdout = self._fakeout
# Patch pdb.set_trace to restore sys.stdout during interactive
# debugging (so it's not still redirected to self._fakeout).
# Note that the interactive output will go to *our*
# save_stdout, even if that's not the real sys.stdout; this
# allows us to write test cases for the set_trace behavior.
save_set_trace = pdb.set_trace
self.debugger = pdoctest._OutputRedirectingPdb(save_stdout)
self.debugger.reset()
pdb.set_trace = self.debugger.set_trace
# Patch linecache.getlines, so we can see the example's source
# when we're inside the debugger.
self.save_linecache_getlines = pdoctest.linecache.getlines
linecache.getlines = self.__patched_linecache_getlines
try:
test.globs['print_function'] = print_function
return self.__run(test, compileflags, out)
finally:
sys.stdout = save_stdout
pdb.set_trace = save_set_trace
linecache.getlines = self.save_linecache_getlines
if clear_globs:
test.globs.clear()
# We have to override the name mangled methods.
SymPyDocTestRunner._SymPyDocTestRunner__patched_linecache_getlines = \
DocTestRunner._DocTestRunner__patched_linecache_getlines
SymPyDocTestRunner._SymPyDocTestRunner__run = DocTestRunner._DocTestRunner__run
SymPyDocTestRunner._SymPyDocTestRunner__record_outcome = \
DocTestRunner._DocTestRunner__record_outcome
class SymPyOutputChecker(pdoctest.OutputChecker):
"""
Compared to the OutputChecker from the stdlib our OutputChecker class
supports numerical comparison of floats occurring in the output of the
doctest examples
"""
def __init__(self):
# NOTE OutputChecker is an old-style class with no __init__ method,
# so we can't call the base class version of __init__ here
got_floats = r'(\d+\.\d*|\.\d+)'
# floats in the 'want' string may contain ellipses
want_floats = got_floats + r'(\.{3})?'
front_sep = r'\s|\+|\-|\*|,'
back_sep = front_sep + r'|j|e'
fbeg = r'^%s(?=%s|$)' % (got_floats, back_sep)
fmidend = r'(?<=%s)%s(?=%s|$)' % (front_sep, got_floats, back_sep)
self.num_got_rgx = re.compile(r'(%s|%s)' %(fbeg, fmidend))
fbeg = r'^%s(?=%s|$)' % (want_floats, back_sep)
fmidend = r'(?<=%s)%s(?=%s|$)' % (front_sep, want_floats, back_sep)
self.num_want_rgx = re.compile(r'(%s|%s)' %(fbeg, fmidend))
def check_output(self, want, got, optionflags):
"""
Return True iff the actual output from an example (`got`)
matches the expected output (`want`). These strings are
always considered to match if they are identical; but
depending on what option flags the test runner is using,
several non-exact match types are also possible. See the
documentation for `TestRunner` for more information about
option flags.
"""
# Handle the common case first, for efficiency:
# if they're string-identical, always return true.
if got == want:
return True
# TODO parse integers as well ?
# Parse floats and compare them. If some of the parsed floats contain
# ellipses, skip the comparison.
matches = self.num_got_rgx.finditer(got)
numbers_got = [match.group(1) for match in matches] # list of strs
matches = self.num_want_rgx.finditer(want)
numbers_want = [match.group(1) for match in matches] # list of strs
if len(numbers_got) != len(numbers_want):
return False
if len(numbers_got) > 0:
nw_ = []
for ng, nw in zip(numbers_got, numbers_want):
if '...' in nw:
nw_.append(ng)
continue
else:
nw_.append(nw)
if abs(float(ng)-float(nw)) > 1e-5:
return False
got = self.num_got_rgx.sub(r'%s', got)
got = got % tuple(nw_)
# <BLANKLINE> can be used as a special sequence to signify a
# blank line, unless the DONT_ACCEPT_BLANKLINE flag is used.
if not (optionflags & pdoctest.DONT_ACCEPT_BLANKLINE):
# Replace <BLANKLINE> in want with a blank line.
want = re.sub(r'(?m)^%s\s*?$' % re.escape(pdoctest.BLANKLINE_MARKER),
'', want)
# If a line in got contains only spaces, then remove the
# spaces.
got = re.sub(r'(?m)^\s*?$', '', got)
if got == want:
return True
# This flag causes doctest to ignore any differences in the
# contents of whitespace strings. Note that this can be used
# in conjunction with the ELLIPSIS flag.
if optionflags & pdoctest.NORMALIZE_WHITESPACE:
got = ' '.join(got.split())
want = ' '.join(want.split())
if got == want:
return True
# The ELLIPSIS flag says to let the sequence "..." in `want`
# match any substring in `got`.
if optionflags & pdoctest.ELLIPSIS:
if pdoctest._ellipsis_match(want, got):
return True
# We didn't find any match; return false.
return False
class Reporter(object):
"""
Parent class for all reporters.
"""
pass
class PyTestReporter(Reporter):
"""
Py.test like reporter. Should produce output identical to py.test.
"""
def __init__(self, verbose=False, tb="short", colors=True,
force_colors=False, split=None):
self._verbose = verbose
self._tb_style = tb
self._colors = colors
self._force_colors = force_colors
self._xfailed = 0
self._xpassed = []
self._failed = []
self._failed_doctest = []
self._passed = 0
self._skipped = 0
self._exceptions = []
self._terminal_width = None
self._default_width = 80
self._split = split
self._active_file = ''
self._active_f = None
# TODO: Should these be protected?
self.slow_test_functions = []
self.fast_test_functions = []
# this tracks the x-position of the cursor (useful for positioning
# things on the screen), without the need for any readline library:
self._write_pos = 0
self._line_wrap = False
def root_dir(self, dir):
self._root_dir = dir
@property
def terminal_width(self):
if self._terminal_width is not None:
return self._terminal_width
def findout_terminal_width():
if sys.platform == "win32":
# Windows support is based on:
#
# http://code.activestate.com/recipes/
# 440694-determine-size-of-console-window-on-windows/
from ctypes import windll, create_string_buffer
h = windll.kernel32.GetStdHandle(-12)
csbi = create_string_buffer(22)
res = windll.kernel32.GetConsoleScreenBufferInfo(h, csbi)
if res:
import struct
(_, _, _, _, _, left, _, right, _, _, _) = \
struct.unpack("hhhhHhhhhhh", csbi.raw)
return right - left
else:
return self._default_width
if hasattr(sys.stdout, 'isatty') and not sys.stdout.isatty():
return self._default_width # leave PIPEs alone
try:
process = subprocess.Popen(['stty', '-a'],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
stdout = process.stdout.read()
if PY3:
stdout = stdout.decode("utf-8")
except (OSError, IOError):
pass
else:
# We support the following output formats from stty:
#
# 1) Linux -> columns 80
# 2) OS X -> 80 columns
# 3) Solaris -> columns = 80
re_linux = r"columns\s+(?P<columns>\d+);"
re_osx = r"(?P<columns>\d+)\s*columns;"
re_solaris = r"columns\s+=\s+(?P<columns>\d+);"
for regex in (re_linux, re_osx, re_solaris):
match = re.search(regex, stdout)
if match is not None:
columns = match.group('columns')
try:
width = int(columns)
except ValueError:
pass
if width != 0:
return width
return self._default_width
width = findout_terminal_width()
self._terminal_width = width
return width
def write(self, text, color="", align="left", width=None,
force_colors=False):
"""
Prints a text on the screen.
It uses sys.stdout.write(), so no readline library is necessary.
Parameters
==========
color : choose from the colors below, "" means default color
align : "left"/"right", "left" is a normal print, "right" is aligned on
the right-hand side of the screen, filled with spaces if
necessary
width : the screen width
"""
color_templates = (
("Black", "0;30"),
("Red", "0;31"),
("Green", "0;32"),
("Brown", "0;33"),
("Blue", "0;34"),
("Purple", "0;35"),
("Cyan", "0;36"),
("LightGray", "0;37"),
("DarkGray", "1;30"),
("LightRed", "1;31"),
("LightGreen", "1;32"),
("Yellow", "1;33"),
("LightBlue", "1;34"),
("LightPurple", "1;35"),
("LightCyan", "1;36"),
("White", "1;37"),
)
colors = {}
for name, value in color_templates:
colors[name] = value
c_normal = '\033[0m'
c_color = '\033[%sm'
if width is None:
width = self.terminal_width
if align == "right":
if self._write_pos + len(text) > width:
# we don't fit on the current line, create a new line
self.write("\n")
self.write(" "*(width - self._write_pos - len(text)))
if not self._force_colors and hasattr(sys.stdout, 'isatty') and not \
sys.stdout.isatty():
# the stdout is not a terminal, this for example happens if the
# output is piped to less, e.g. "bin/test | less". In this case,
# the terminal control sequences would be printed verbatim, so
# don't use any colors.
color = ""
elif sys.platform == "win32":
# Windows consoles don't support ANSI escape sequences
color = ""
elif not self._colors:
color = ""
if self._line_wrap:
if text[0] != "\n":
sys.stdout.write("\n")
# Avoid UnicodeEncodeError when printing out test failures
if PY3 and IS_WINDOWS:
text = text.encode('raw_unicode_escape').decode('utf8', 'ignore')
elif PY3 and not sys.stdout.encoding.lower().startswith('utf'):
text = text.encode(sys.stdout.encoding, 'backslashreplace'
).decode(sys.stdout.encoding)
if color == "":
sys.stdout.write(text)
else:
sys.stdout.write("%s%s%s" %
(c_color % colors[color], text, c_normal))
sys.stdout.flush()
l = text.rfind("\n")
if l == -1:
self._write_pos += len(text)
else:
self._write_pos = len(text) - l - 1
self._line_wrap = self._write_pos >= width
self._write_pos %= width
def write_center(self, text, delim="="):
width = self.terminal_width
if text != "":
text = " %s " % text
idx = (width - len(text)) // 2
t = delim*idx + text + delim*(width - idx - len(text))
self.write(t + "\n")
def write_exception(self, e, val, tb):
# remove the first item, as that is always runtests.py
tb = tb.tb_next
t = traceback.format_exception(e, val, tb)
self.write("".join(t))
def start(self, seed=None, msg="test process starts"):
self.write_center(msg)
executable = sys.executable
v = tuple(sys.version_info)
python_version = "%s.%s.%s-%s-%s" % v
implementation = platform.python_implementation()
if implementation == 'PyPy':
implementation += " %s.%s.%s-%s-%s" % sys.pypy_version_info
self.write("executable: %s (%s) [%s]\n" %
(executable, python_version, implementation))
from .misc import ARCH
self.write("architecture: %s\n" % ARCH)
from sympy.core.cache import USE_CACHE
self.write("cache: %s\n" % USE_CACHE)
from sympy.core.compatibility import GROUND_TYPES, HAS_GMPY
version = ''
if GROUND_TYPES =='gmpy':
if HAS_GMPY == 1:
import gmpy
elif HAS_GMPY == 2:
import gmpy2 as gmpy
version = gmpy.version()
self.write("ground types: %s %s\n" % (GROUND_TYPES, version))
numpy = import_module('numpy')
self.write("numpy: %s\n" % (None if not numpy else numpy.__version__))
if seed is not None:
self.write("random seed: %d\n" % seed)
from .misc import HASH_RANDOMIZATION
self.write("hash randomization: ")
hash_seed = os.getenv("PYTHONHASHSEED") or '0'
if HASH_RANDOMIZATION and (hash_seed == "random" or int(hash_seed)):
self.write("on (PYTHONHASHSEED=%s)\n" % hash_seed)
else:
self.write("off\n")
if self._split:
self.write("split: %s\n" % self._split)
self.write('\n')
self._t_start = clock()
def finish(self):
self._t_end = clock()
self.write("\n")
global text, linelen
text = "tests finished: %d passed, " % self._passed
linelen = len(text)
def add_text(mytext):
global text, linelen
"""Break new text if too long."""
if linelen + len(mytext) > self.terminal_width:
text += '\n'
linelen = 0
text += mytext
linelen += len(mytext)
if len(self._failed) > 0:
add_text("%d failed, " % len(self._failed))
if len(self._failed_doctest) > 0:
add_text("%d failed, " % len(self._failed_doctest))
if self._skipped > 0:
add_text("%d skipped, " % self._skipped)
if self._xfailed > 0:
add_text("%d expected to fail, " % self._xfailed)
if len(self._xpassed) > 0:
add_text("%d expected to fail but passed, " % len(self._xpassed))
if len(self._exceptions) > 0:
add_text("%d exceptions, " % len(self._exceptions))
add_text("in %.2f seconds" % (self._t_end - self._t_start))
if self.slow_test_functions:
self.write_center('slowest tests', '_')
sorted_slow = sorted(self.slow_test_functions, key=lambda r: r[1])
for slow_func_name, taken in sorted_slow:
print('%s - Took %.3f seconds' % (slow_func_name, taken))
if self.fast_test_functions:
self.write_center('unexpectedly fast tests', '_')
sorted_fast = sorted(self.fast_test_functions,
key=lambda r: r[1])
for fast_func_name, taken in sorted_fast:
print('%s - Took %.3f seconds' % (fast_func_name, taken))
if len(self._xpassed) > 0:
self.write_center("xpassed tests", "_")
for e in self._xpassed:
self.write("%s: %s\n" % (e[0], e[1]))
self.write("\n")
if self._tb_style != "no" and len(self._exceptions) > 0:
for e in self._exceptions:
filename, f, (t, val, tb) = e
self.write_center("", "_")
if f is None:
s = "%s" % filename
else:
s = "%s:%s" % (filename, f.__name__)
self.write_center(s, "_")
self.write_exception(t, val, tb)
self.write("\n")
if self._tb_style != "no" and len(self._failed) > 0:
for e in self._failed:
filename, f, (t, val, tb) = e
self.write_center("", "_")
self.write_center("%s:%s" % (filename, f.__name__), "_")
self.write_exception(t, val, tb)
self.write("\n")
if self._tb_style != "no" and len(self._failed_doctest) > 0:
for e in self._failed_doctest:
filename, msg = e
self.write_center("", "_")
self.write_center("%s" % filename, "_")
self.write(msg)
self.write("\n")
self.write_center(text)
ok = len(self._failed) == 0 and len(self._exceptions) == 0 and \
len(self._failed_doctest) == 0
if not ok:
self.write("DO *NOT* COMMIT!\n")
return ok
def entering_filename(self, filename, n):
rel_name = filename[len(self._root_dir) + 1:]
self._active_file = rel_name
self._active_file_error = False
self.write(rel_name)
self.write("[%d] " % n)
def leaving_filename(self):
self.write(" ")
if self._active_file_error:
self.write("[FAIL]", "Red", align="right")
else:
self.write("[OK]", "Green", align="right")
self.write("\n")
if self._verbose:
self.write("\n")
def entering_test(self, f):
self._active_f = f
if self._verbose:
self.write("\n" + f.__name__ + " ")
def test_xfail(self):
self._xfailed += 1
self.write("f", "Green")
def test_xpass(self, v):
message = str(v)
self._xpassed.append((self._active_file, message))
self.write("X", "Green")
def test_fail(self, exc_info):
self._failed.append((self._active_file, self._active_f, exc_info))
self.write("F", "Red")
self._active_file_error = True
def doctest_fail(self, name, error_msg):
# the first line contains "******", remove it:
error_msg = "\n".join(error_msg.split("\n")[1:])
self._failed_doctest.append((name, error_msg))
self.write("F", "Red")
self._active_file_error = True
def test_pass(self, char="."):
self._passed += 1
if self._verbose:
self.write("ok", "Green")
else:
self.write(char, "Green")
def test_skip(self, v=None):
char = "s"
self._skipped += 1
if v is not None:
message = str(v)
if message == "KeyboardInterrupt":
char = "K"
elif message == "Timeout":
char = "T"
elif message == "Slow":
char = "w"
if self._verbose:
if v is not None:
self.write(message + ' ', "Blue")
else:
self.write(" - ", "Blue")
self.write(char, "Blue")
def test_exception(self, exc_info):
self._exceptions.append((self._active_file, self._active_f, exc_info))
if exc_info[0] is TimeOutError:
self.write("T", "Red")
else:
self.write("E", "Red")
self._active_file_error = True
def import_error(self, filename, exc_info):
self._exceptions.append((filename, None, exc_info))
rel_name = filename[len(self._root_dir) + 1:]
self.write(rel_name)
self.write("[?] Failed to import", "Red")
self.write(" ")
self.write("[FAIL]", "Red", align="right")
self.write("\n")
sympy_dir = get_sympy_dir()
|
d2206244db3d7da0235f316e245248a0bfc2958d22f7aabb8409360b08f48323
|
""" Helpers for randomized testing """
from __future__ import print_function, division
from random import uniform, Random, randrange, randint
from sympy.core.compatibility import is_sequence, as_int
from sympy.core.containers import Tuple
from sympy.core.numbers import comp, I
from sympy.core.symbol import Symbol
from sympy.simplify.simplify import nsimplify
def random_complex_number(a=2, b=-1, c=3, d=1, rational=False, tolerance=None):
"""
Return a random complex number.
To reduce chance of hitting branch cuts or anything, we guarantee
b <= Im z <= d, a <= Re z <= c
When rational is True, a rational approximation to a random number
is obtained within specified tolerance, if any.
"""
A, B = uniform(a, c), uniform(b, d)
if not rational:
return A + I*B
return (nsimplify(A, rational=True, tolerance=tolerance) +
I*nsimplify(B, rational=True, tolerance=tolerance))
def verify_numerically(f, g, z=None, tol=1.0e-6, a=2, b=-1, c=3, d=1):
"""
Test numerically that f and g agree when evaluated in the argument z.
If z is None, all symbols will be tested. This routine does not test
whether there are Floats present with precision higher than 15 digits
so if there are, your results may not be what you expect due to round-
off errors.
Examples
========
>>> from sympy import sin, cos
>>> from sympy.abc import x
>>> from sympy.utilities.randtest import verify_numerically as tn
>>> tn(sin(x)**2 + cos(x)**2, 1, x)
True
"""
f, g, z = Tuple(f, g, z)
z = [z] if isinstance(z, Symbol) else (f.free_symbols | g.free_symbols)
reps = list(zip(z, [random_complex_number(a, b, c, d) for _ in z]))
z1 = f.subs(reps).n()
z2 = g.subs(reps).n()
return comp(z1, z2, tol)
def test_derivative_numerically(f, z, tol=1.0e-6, a=2, b=-1, c=3, d=1):
"""
Test numerically that the symbolically computed derivative of f
with respect to z is correct.
This routine does not test whether there are Floats present with
precision higher than 15 digits so if there are, your results may
not be what you expect due to round-off errors.
Examples
========
>>> from sympy import sin
>>> from sympy.abc import x
>>> from sympy.utilities.randtest import test_derivative_numerically as td
>>> td(sin(x), x)
True
"""
from sympy.core.function import Derivative
z0 = random_complex_number(a, b, c, d)
f1 = f.diff(z).subs(z, z0)
f2 = Derivative(f, z).doit_numerically(z0)
return comp(f1.n(), f2.n(), tol)
def _randrange(seed=None):
"""Return a randrange generator. ``seed`` can be
o None - return randomly seeded generator
o int - return a generator seeded with the int
o list - the values to be returned will be taken from the list
in the order given; the provided list is not modified.
Examples
========
>>> from sympy.utilities.randtest import _randrange
>>> rr = _randrange()
>>> rr(1000) # doctest: +SKIP
999
>>> rr = _randrange(3)
>>> rr(1000) # doctest: +SKIP
238
>>> rr = _randrange([0, 5, 1, 3, 4])
>>> rr(3), rr(3)
(0, 1)
"""
if seed is None:
return randrange
elif isinstance(seed, int):
return Random(seed).randrange
elif is_sequence(seed):
seed = list(seed) # make a copy
seed.reverse()
def give(a, b=None, seq=seed):
if b is None:
a, b = 0, a
a, b = as_int(a), as_int(b)
w = b - a
if w < 1:
raise ValueError('_randrange got empty range')
try:
x = seq.pop()
except IndexError as e:
raise ValueError('_randrange sequence was too short')
if a <= x < b:
return x
else:
return give(a, b, seq)
return give
else:
raise ValueError('_randrange got an unexpected seed')
def _randint(seed=None):
"""Return a randint generator. ``seed`` can be
o None - return randomly seeded generator
o int - return a generator seeded with the int
o list - the values to be returned will be taken from the list
in the order given; the provided list is not modified.
Examples
========
>>> from sympy.utilities.randtest import _randint
>>> ri = _randint()
>>> ri(1, 1000) # doctest: +SKIP
999
>>> ri = _randint(3)
>>> ri(1, 1000) # doctest: +SKIP
238
>>> ri = _randint([0, 5, 1, 2, 4])
>>> ri(1, 3), ri(1, 3)
(1, 2)
"""
if seed is None:
return randint
elif isinstance(seed, int):
return Random(seed).randint
elif is_sequence(seed):
seed = list(seed) # make a copy
seed.reverse()
def give(a, b, seq=seed):
a, b = as_int(a), as_int(b)
w = b - a
if w < 0:
raise ValueError('_randint got empty range')
try:
x = seq.pop()
except IndexError:
raise ValueError('_randint sequence was too short')
if a <= x <= b:
return x
else:
return give(a, b, seq)
return give
else:
raise ValueError('_randint got an unexpected seed')
|
d1c086fc9c84302be04f7b6db06be5fc08fc3640e48eab92deb84fa2b0d49055
|
"""Miscellaneous stuff that doesn't really fit anywhere else."""
from __future__ import print_function, division
import sys
import os
import re as _re
import struct
from textwrap import fill, dedent
from sympy.core.compatibility import (get_function_name, range, as_int,
string_types)
class Undecidable(ValueError):
# an error to be raised when a decision cannot be made definitively
# where a definitive answer is needed
pass
def filldedent(s, w=70):
"""
Strips leading and trailing empty lines from a copy of `s`, then dedents,
fills and returns it.
Empty line stripping serves to deal with docstrings like this one that
start with a newline after the initial triple quote, inserting an empty
line at the beginning of the string.
See Also
========
strlines, rawlines
"""
return '\n' + fill(dedent(str(s)).strip('\n'), width=w)
def strlines(s, c=64, short=False):
"""Return a cut-and-pastable string that, when printed, is
equivalent to the input. The lines will be surrounded by
parentheses and no line will be longer than c (default 64)
characters. If the line contains newlines characters, the
`rawlines` result will be returned. If ``short`` is True
(default is False) then if there is one line it will be
returned without bounding parentheses.
Examples
========
>>> from sympy.utilities.misc import strlines
>>> q = 'this is a long string that should be broken into shorter lines'
>>> print(strlines(q, 40))
(
'this is a long string that should be b'
'roken into shorter lines'
)
>>> q == (
... 'this is a long string that should be b'
... 'roken into shorter lines'
... )
True
See Also
========
filldedent, rawlines
"""
if type(s) not in string_types:
raise ValueError('expecting string input')
if '\n' in s:
return rawlines(s)
q = '"' if repr(s).startswith('"') else "'"
q = (q,)*2
if '\\' in s: # use r-string
m = '(\nr%s%%s%s\n)' % q
j = '%s\nr%s' % q
c -= 3
else:
m = '(\n%s%%s%s\n)' % q
j = '%s\n%s' % q
c -= 2
out = []
while s:
out.append(s[:c])
s=s[c:]
if short and len(out) == 1:
return (m % out[0]).splitlines()[1] # strip bounding (\n...\n)
return m % j.join(out)
def rawlines(s):
"""Return a cut-and-pastable string that, when printed, is equivalent
to the input. Use this when there is more than one line in the
string. The string returned is formatted so it can be indented
nicely within tests; in some cases it is wrapped in the dedent
function which has to be imported from textwrap.
Examples
========
Note: because there are characters in the examples below that need
to be escaped because they are themselves within a triple quoted
docstring, expressions below look more complicated than they would
be if they were printed in an interpreter window.
>>> from sympy.utilities.misc import rawlines
>>> from sympy import TableForm
>>> s = str(TableForm([[1, 10]], headings=(None, ['a', 'bee'])))
>>> print(rawlines(s))
(
'a bee\\n'
'-----\\n'
'1 10 '
)
>>> print(rawlines('''this
... that'''))
dedent('''\\
this
that''')
>>> print(rawlines('''this
... that
... '''))
dedent('''\\
this
that
''')
>>> s = \"\"\"this
... is a triple '''
... \"\"\"
>>> print(rawlines(s))
dedent(\"\"\"\\
this
is a triple '''
\"\"\")
>>> print(rawlines('''this
... that
... '''))
(
'this\\n'
'that\\n'
' '
)
See Also
========
filldedent, strlines
"""
lines = s.split('\n')
if len(lines) == 1:
return repr(lines[0])
triple = ["'''" in s, '"""' in s]
if any(li.endswith(' ') for li in lines) or '\\' in s or all(triple):
rv = []
# add on the newlines
trailing = s.endswith('\n')
last = len(lines) - 1
for i, li in enumerate(lines):
if i != last or trailing:
rv.append(repr(li + '\n'))
else:
rv.append(repr(li))
return '(\n %s\n)' % '\n '.join(rv)
else:
rv = '\n '.join(lines)
if triple[0]:
return 'dedent("""\\\n %s""")' % rv
else:
return "dedent('''\\\n %s''')" % rv
ARCH = str(struct.calcsize('P') * 8) + "-bit"
# XXX: PyPy doesn't support hash randomization
HASH_RANDOMIZATION = getattr(sys.flags, 'hash_randomization', False)
_debug_tmp = []
_debug_iter = 0
def debug_decorator(func):
"""If SYMPY_DEBUG is True, it will print a nice execution tree with
arguments and results of all decorated functions, else do nothing.
"""
from sympy import SYMPY_DEBUG
if not SYMPY_DEBUG:
return func
def maketree(f, *args, **kw):
global _debug_tmp
global _debug_iter
oldtmp = _debug_tmp
_debug_tmp = []
_debug_iter += 1
def tree(subtrees):
def indent(s, type=1):
x = s.split("\n")
r = "+-%s\n" % x[0]
for a in x[1:]:
if a == "":
continue
if type == 1:
r += "| %s\n" % a
else:
r += " %s\n" % a
return r
if len(subtrees) == 0:
return ""
f = []
for a in subtrees[:-1]:
f.append(indent(a))
f.append(indent(subtrees[-1], 2))
return ''.join(f)
# If there is a bug and the algorithm enters an infinite loop, enable the
# following lines. It will print the names and parameters of all major functions
# that are called, *before* they are called
#from sympy.core.compatibility import reduce
#print("%s%s %s%s" % (_debug_iter, reduce(lambda x, y: x + y, \
# map(lambda x: '-', range(1, 2 + _debug_iter))), get_function_name(f), args))
r = f(*args, **kw)
_debug_iter -= 1
s = "%s%s = %s\n" % (get_function_name(f), args, r)
if _debug_tmp != []:
s += tree(_debug_tmp)
_debug_tmp = oldtmp
_debug_tmp.append(s)
if _debug_iter == 0:
print((_debug_tmp[0]))
_debug_tmp = []
return r
def decorated(*args, **kwargs):
return maketree(func, *args, **kwargs)
return decorated
def debug(*args):
"""
Print ``*args`` if SYMPY_DEBUG is True, else do nothing.
"""
from sympy import SYMPY_DEBUG
if SYMPY_DEBUG:
print(*args, file=sys.stderr)
def find_executable(executable, path=None):
"""Try to find 'executable' in the directories listed in 'path' (a
string listing directories separated by 'os.pathsep'; defaults to
os.environ['PATH']). Returns the complete filename or None if not
found
"""
if path is None:
path = os.environ['PATH']
paths = path.split(os.pathsep)
extlist = ['']
if os.name == 'os2':
(base, ext) = os.path.splitext(executable)
# executable files on OS/2 can have an arbitrary extension, but
# .exe is automatically appended if no dot is present in the name
if not ext:
executable = executable + ".exe"
elif sys.platform == 'win32':
pathext = os.environ['PATHEXT'].lower().split(os.pathsep)
(base, ext) = os.path.splitext(executable)
if ext.lower() not in pathext:
extlist = pathext
for ext in extlist:
execname = executable + ext
if os.path.isfile(execname):
return execname
else:
for p in paths:
f = os.path.join(p, execname)
if os.path.isfile(f):
return f
else:
return None
def func_name(x, short=False):
"""Return function name of `x` (if defined) else the `type(x)`.
If short is True and there is a shorter alias for the result,
return the alias.
Examples
========
>>> from sympy.utilities.misc import func_name
>>> from sympy import Matrix
>>> from sympy.abc import x
>>> func_name(Matrix.eye(3))
'MutableDenseMatrix'
>>> func_name(x < 1)
'StrictLessThan'
>>> func_name(x < 1, short=True)
'Lt'
See Also
========
sympy.core.compatibility get_function_name
"""
alias = {
'GreaterThan': 'Ge',
'StrictGreaterThan': 'Gt',
'LessThan': 'Le',
'StrictLessThan': 'Lt',
'Equality': 'Eq',
'Unequality': 'Ne',
}
typ = type(x)
if str(typ).startswith("<type '"):
typ = str(typ).split("'")[1].split("'")[0]
elif str(typ).startswith("<class '"):
typ = str(typ).split("'")[1].split("'")[0]
rv = getattr(getattr(x, 'func', x), '__name__', typ)
if '.' in rv:
rv = rv.split('.')[-1]
if short:
rv = alias.get(rv, rv)
return rv
def _replace(reps):
"""Return a function that can make the replacements, given in
``reps``, on a string. The replacements should be given as mapping.
Examples
========
>>> from sympy.utilities.misc import _replace
>>> f = _replace(dict(foo='bar', d='t'))
>>> f('food')
'bart'
>>> f = _replace({})
>>> f('food')
'food'
"""
if not reps:
return lambda x: x
D = lambda match: reps[match.group(0)]
pattern = _re.compile("|".join(
[_re.escape(k) for k, v in reps.items()]), _re.M)
return lambda string: pattern.sub(D, string)
def replace(string, *reps):
"""Return ``string`` with all keys in ``reps`` replaced with
their corresponding values, longer strings first, irrespective
of the order they are given. ``reps`` may be passed as tuples
or a single mapping.
Examples
========
>>> from sympy.utilities.misc import replace
>>> replace('foo', {'oo': 'ar', 'f': 'b'})
'bar'
>>> replace("spamham sha", ("spam", "eggs"), ("sha","md5"))
'eggsham md5'
There is no guarantee that a unique answer will be
obtained if keys in a mapping overlap (i.e. are the same
length and have some identical sequence at the
beginning/end):
>>> reps = [
... ('ab', 'x'),
... ('bc', 'y')]
>>> replace('abc', *reps) in ('xc', 'ay')
True
References
==========
.. [1] https://stackoverflow.com/questions/6116978/python-replace-multiple-strings
"""
if len(reps) == 1:
kv = reps[0]
if type(kv) is dict:
reps = kv
else:
return string.replace(*kv)
else:
reps = dict(reps)
return _replace(reps)(string)
def translate(s, a, b=None, c=None):
"""Return ``s`` where characters have been replaced or deleted.
SYNTAX
======
translate(s, None, deletechars):
all characters in ``deletechars`` are deleted
translate(s, map [,deletechars]):
all characters in ``deletechars`` (if provided) are deleted
then the replacements defined by map are made; if the keys
of map are strings then the longer ones are handled first.
Multicharacter deletions should have a value of ''.
translate(s, oldchars, newchars, deletechars)
all characters in ``deletechars`` are deleted
then each character in ``oldchars`` is replaced with the
corresponding character in ``newchars``
Examples
========
>>> from sympy.utilities.misc import translate
>>> from sympy.core.compatibility import unichr
>>> abc = 'abc'
>>> translate(abc, None, 'a')
'bc'
>>> translate(abc, {'a': 'x'}, 'c')
'xb'
>>> translate(abc, {'abc': 'x', 'a': 'y'})
'x'
>>> translate('abcd', 'ac', 'AC', 'd')
'AbC'
There is no guarantee that a unique answer will be
obtained if keys in a mapping overlap are the same
length and have some identical sequences at the
beginning/end:
>>> translate(abc, {'ab': 'x', 'bc': 'y'}) in ('xc', 'ay')
True
"""
from sympy.core.compatibility import maketrans, PY3
mr = {}
if a is None:
assert c is None
if not b:
return s
c = b
a = b = ''
else:
if type(a) is dict:
short = {}
for k in list(a.keys()):
if len(k) == 1 and len(a[k]) == 1:
short[k] = a.pop(k)
mr = a
c = b
if short:
a, b = [''.join(i) for i in list(zip(*short.items()))]
else:
a = b = ''
else:
assert len(a) == len(b)
if PY3:
if c:
s = s.translate(maketrans('', '', c))
s = replace(s, mr)
return s.translate(maketrans(a, b))
else:
# when support for Python 2 is dropped, this if-else-block
# can be replaced with the if-clause
if c:
c = list(c)
rem = {}
for i in range(-1, -1 - len(c), -1):
if ord(c[i]) > 255:
rem[c[i]] = ''
c.pop(i)
s = s.translate(None, ''.join(c))
s = replace(s, rem)
if a:
a = list(a)
b = list(b)
for i in range(-1, -1 - len(a), -1):
if ord(a[i]) > 255 or ord(b[i]) > 255:
mr[a.pop(i)] = b.pop(i)
a = ''.join(a)
b = ''.join(b)
s = replace(s, mr)
table = maketrans(a, b)
# s may have become unicode which uses the py3 syntax for translate
if isinstance(table, str) and isinstance(s, str):
s = s.translate(table)
else:
s = s.translate(dict(
[(i, ord(c)) for i, c in enumerate(table)]))
return s
def ordinal(num):
"""Return ordinal number string of num, e.g. 1 becomes 1st.
"""
# modified from https://codereview.stackexchange.com/questions/41298/producing-ordinal-numbers
n = as_int(num)
k = abs(n) % 100
if 11 <= k <= 13:
suffix = 'th'
elif k % 10 == 1:
suffix = 'st'
elif k % 10 == 2:
suffix = 'nd'
elif k % 10 == 3:
suffix = 'rd'
else:
suffix = 'th'
return str(n) + suffix
|
4c3f2399eaf88bc001eedfb01d0ab62951aa04a0e61e774d6f998e5eac35fc72
|
"""A module providing information about the necessity of brackets"""
from __future__ import print_function, division
from sympy.core.function import _coeff_isneg
# Default precedence values for some basic types
PRECEDENCE = {
"Lambda": 1,
"Xor": 10,
"Or": 20,
"And": 30,
"Relational": 35,
"Add": 40,
"Mul": 50,
"Pow": 60,
"Func": 70,
"Not": 100,
"Atom": 1000,
"BitwiseOr": 36,
"BitwiseAnd": 38
}
# A dictionary assigning precedence values to certain classes. These values are
# treated like they were inherited, so not every single class has to be named
# here.
PRECEDENCE_VALUES = {
"Equivalent": PRECEDENCE["Xor"],
"Xor": PRECEDENCE["Xor"],
"Implies": PRECEDENCE["Xor"],
"Or": PRECEDENCE["Or"],
"And": PRECEDENCE["And"],
"Add": PRECEDENCE["Add"],
"Pow": PRECEDENCE["Pow"],
"Relational": PRECEDENCE["Relational"],
"Sub": PRECEDENCE["Add"],
"Not": PRECEDENCE["Not"],
"Function" : PRECEDENCE["Func"],
"NegativeInfinity": PRECEDENCE["Add"],
"MatAdd": PRECEDENCE["Add"],
"MatPow": PRECEDENCE["Pow"],
"TensAdd": PRECEDENCE["Add"],
# As soon as `TensMul` is a subclass of `Mul`, remove this:
"TensMul": PRECEDENCE["Mul"],
"HadamardProduct": PRECEDENCE["Mul"],
"KroneckerProduct": PRECEDENCE["Mul"],
"Equality": PRECEDENCE["Mul"],
"Unequality": PRECEDENCE["Mul"],
}
# Sometimes it's not enough to assign a fixed precedence value to a
# class. Then a function can be inserted in this dictionary that takes
# an instance of this class as argument and returns the appropriate
# precedence value.
# Precedence functions
def precedence_Mul(item):
if _coeff_isneg(item):
return PRECEDENCE["Add"]
return PRECEDENCE["Mul"]
def precedence_Rational(item):
if item.p < 0:
return PRECEDENCE["Add"]
return PRECEDENCE["Mul"]
def precedence_Integer(item):
if item.p < 0:
return PRECEDENCE["Add"]
return PRECEDENCE["Atom"]
def precedence_Float(item):
if item < 0:
return PRECEDENCE["Add"]
return PRECEDENCE["Atom"]
def precedence_PolyElement(item):
if item.is_generator:
return PRECEDENCE["Atom"]
elif item.is_ground:
return precedence(item.coeff(1))
elif item.is_term:
return PRECEDENCE["Mul"]
else:
return PRECEDENCE["Add"]
def precedence_FracElement(item):
if item.denom == 1:
return precedence_PolyElement(item.numer)
else:
return PRECEDENCE["Mul"]
def precedence_UnevaluatedExpr(item):
return precedence(item.args[0])
PRECEDENCE_FUNCTIONS = {
"Integer": precedence_Integer,
"Mul": precedence_Mul,
"Rational": precedence_Rational,
"Float": precedence_Float,
"PolyElement": precedence_PolyElement,
"FracElement": precedence_FracElement,
"UnevaluatedExpr": precedence_UnevaluatedExpr,
}
def precedence(item):
"""
Returns the precedence of a given object.
"""
if hasattr(item, "precedence"):
return item.precedence
try:
mro = item.__class__.__mro__
except AttributeError:
return PRECEDENCE["Atom"]
for i in mro:
n = i.__name__
if n in PRECEDENCE_FUNCTIONS:
return PRECEDENCE_FUNCTIONS[n](item)
elif n in PRECEDENCE_VALUES:
return PRECEDENCE_VALUES[n]
return PRECEDENCE["Atom"]
def precedence_traditional(item):
"""
Returns the precedence of a given object according to the traditional rules
of mathematics. This is the precedence for the LaTeX and pretty printer.
"""
# Integral, Sum, Product, Limit have the precedence of Mul in LaTeX,
# the precedence of Atom for other printers:
from sympy import Integral, Sum, Product, Limit, Derivative
from sympy.core.expr import UnevaluatedExpr
from sympy.tensor.functions import TensorProduct
if isinstance(item, (Integral, Sum, Product, Limit, Derivative, TensorProduct)):
return PRECEDENCE["Mul"]
if (item.__class__.__name__ in ("Dot", "Cross", "Gradient", "Divergence",
"Curl", "Laplacian")):
return PRECEDENCE["Mul"]-1
elif isinstance(item, UnevaluatedExpr):
return precedence_traditional(item.args[0])
else:
return precedence(item)
|
6873b84b4b9504807961213872033086e6e992c504b4999d1bbd2473bc1e88cb
|
from __future__ import print_function, division
from sympy.printing.mathml import mathml
import tempfile
import os
def print_gtk(x, start_viewer=True):
"""Print to Gtkmathview, a gtk widget capable of rendering MathML.
Needs libgtkmathview-bin
"""
from sympy.utilities.mathml import c2p
tmp = tempfile.mkstemp() # create a temp file to store the result
with open(tmp, 'wb') as file:
file.write(c2p(mathml(x), simple=True))
if start_viewer:
os.system("mathmlviewer " + tmp)
|
75f23c600e213b997a34c2ef6f520325c9586f339cfc61b5c04871804fe8a206
|
"""
Python code printers
This module contains python code printers for plain python as well as NumPy & SciPy enabled code.
"""
from collections import defaultdict
from itertools import chain
from sympy.core import S, Number, Symbol, Mul, Add
from .precedence import precedence
from .codeprinter import CodePrinter
_kw_py2and3 = {
'and', 'as', 'assert', 'break', 'class', 'continue', 'def', 'del', 'elif',
'else', 'except', 'finally', 'for', 'from', 'global', 'if', 'import', 'in',
'is', 'lambda', 'not', 'or', 'pass', 'raise', 'return', 'try', 'while',
'with', 'yield', 'None' # 'None' is actually not in Python 2's keyword.kwlist
}
_kw_only_py2 = {'exec', 'print'}
_kw_only_py3 = {'False', 'nonlocal', 'True'}
_known_functions = {
'Abs': 'abs',
}
_known_functions_math = {
'acos': 'acos',
'acosh': 'acosh',
'asin': 'asin',
'asinh': 'asinh',
'atan': 'atan',
'atan2': 'atan2',
'atanh': 'atanh',
'ceiling': 'ceil',
'cos': 'cos',
'cosh': 'cosh',
'erf': 'erf',
'erfc': 'erfc',
'exp': 'exp',
'expm1': 'expm1',
'factorial': 'factorial',
'floor': 'floor',
'gamma': 'gamma',
'hypot': 'hypot',
'loggamma': 'lgamma',
'log': 'log',
'ln': 'log',
'log10': 'log10',
'log1p': 'log1p',
'log2': 'log2',
'sin': 'sin',
'sinh': 'sinh',
'Sqrt': 'sqrt',
'tan': 'tan',
'tanh': 'tanh'
} # Not used from ``math``: [copysign isclose isfinite isinf isnan ldexp frexp pow modf
# radians trunc fmod fsum gcd degrees fabs]
_known_constants_math = {
'Exp1': 'e',
'Pi': 'pi',
'E': 'e'
# Only in python >= 3.5:
# 'Infinity': 'inf',
# 'NaN': 'nan'
}
def _print_known_func(self, expr):
known = self.known_functions[expr.__class__.__name__]
return '{name}({args})'.format(name=self._module_format(known),
args=', '.join(map(lambda arg: self._print(arg), expr.args)))
def _print_known_const(self, expr):
known = self.known_constants[expr.__class__.__name__]
return self._module_format(known)
class AbstractPythonCodePrinter(CodePrinter):
printmethod = "_pythoncode"
language = "Python"
standard = "python3"
reserved_words = _kw_py2and3.union(_kw_only_py3)
modules = None # initialized to a set in __init__
tab = ' '
_kf = dict(chain(
_known_functions.items(),
[(k, 'math.' + v) for k, v in _known_functions_math.items()]
))
_kc = {k: 'math.'+v for k, v in _known_constants_math.items()}
_operators = {'and': 'and', 'or': 'or', 'not': 'not'}
_default_settings = dict(
CodePrinter._default_settings,
user_functions={},
precision=17,
inline=True,
fully_qualified_modules=True,
contract=False
)
def __init__(self, settings=None):
super(AbstractPythonCodePrinter, self).__init__(settings)
self.module_imports = defaultdict(set)
self.known_functions = dict(self._kf, **(settings or {}).get(
'user_functions', {}))
self.known_constants = dict(self._kc, **(settings or {}).get(
'user_constants', {}))
def _declare_number_const(self, name, value):
return "%s = %s" % (name, value)
def _module_format(self, fqn, register=True):
parts = fqn.split('.')
if register and len(parts) > 1:
self.module_imports['.'.join(parts[:-1])].add(parts[-1])
if self._settings['fully_qualified_modules']:
return fqn
else:
return fqn.split('(')[0].split('[')[0].split('.')[-1]
def _format_code(self, lines):
return lines
def _get_statement(self, codestring):
return "{}".format(codestring)
def _get_comment(self, text):
return " # {0}".format(text)
def _expand_fold_binary_op(self, op, args):
"""
This method expands a fold on binary operations.
``functools.reduce`` is an example of a folded operation.
For example, the expression
`A + B + C + D`
is folded into
`((A + B) + C) + D`
"""
if len(args) == 1:
return self._print(args[0])
else:
return "%s(%s, %s)" % (
self._module_format(op),
self._expand_fold_binary_op(op, args[:-1]),
self._print(args[-1]),
)
def _expand_reduce_binary_op(self, op, args):
"""
This method expands a reductin on binary operations.
Notice: this is NOT the same as ``functools.reduce``.
For example, the expression
`A + B + C + D`
is reduced into:
`(A + B) + (C + D)`
"""
if len(args) == 1:
return self._print(args[0])
else:
N = len(args)
Nhalf = N // 2
return "%s(%s, %s)" % (
self._module_format(op),
self._expand_reduce_binary_op(args[:Nhalf]),
self._expand_reduce_binary_op(args[Nhalf:]),
)
def _get_einsum_string(self, subranks, contraction_indices):
letters = self._get_letter_generator_for_einsum()
contraction_string = ""
counter = 0
d = {j: min(i) for i in contraction_indices for j in i}
indices = []
for rank_arg in subranks:
lindices = []
for i in range(rank_arg):
if counter in d:
lindices.append(d[counter])
else:
lindices.append(counter)
counter += 1
indices.append(lindices)
mapping = {}
letters_free = []
letters_dum = []
for i in indices:
for j in i:
if j not in mapping:
l = next(letters)
mapping[j] = l
else:
l = mapping[j]
contraction_string += l
if j in d:
if l not in letters_dum:
letters_dum.append(l)
else:
letters_free.append(l)
contraction_string += ","
contraction_string = contraction_string[:-1]
return contraction_string, letters_free, letters_dum
def _print_NaN(self, expr):
return "float('nan')"
def _print_Infinity(self, expr):
return "float('inf')"
def _print_NegativeInfinity(self, expr):
return "float('-inf')"
def _print_ComplexInfinity(self, expr):
return self._print_NaN(expr)
def _print_Mod(self, expr):
PREC = precedence(expr)
return ('{0} % {1}'.format(*map(lambda x: self.parenthesize(x, PREC), expr.args)))
def _print_Piecewise(self, expr):
result = []
i = 0
for arg in expr.args:
e = arg.expr
c = arg.cond
if i == 0:
result.append('(')
result.append('(')
result.append(self._print(e))
result.append(')')
result.append(' if ')
result.append(self._print(c))
result.append(' else ')
i += 1
result = result[:-1]
if result[-1] == 'True':
result = result[:-2]
result.append(')')
else:
result.append(' else None)')
return ''.join(result)
def _print_Relational(self, expr):
"Relational printer for Equality and Unequality"
op = {
'==' :'equal',
'!=' :'not_equal',
'<' :'less',
'<=' :'less_equal',
'>' :'greater',
'>=' :'greater_equal',
}
if expr.rel_op in op:
lhs = self._print(expr.lhs)
rhs = self._print(expr.rhs)
return '({lhs} {op} {rhs})'.format(op=expr.rel_op, lhs=lhs, rhs=rhs)
return super(AbstractPythonCodePrinter, self)._print_Relational(expr)
def _print_ITE(self, expr):
from sympy.functions.elementary.piecewise import Piecewise
return self._print(expr.rewrite(Piecewise))
def _print_Sum(self, expr):
loops = (
'for {i} in range({a}, {b}+1)'.format(
i=self._print(i),
a=self._print(a),
b=self._print(b))
for i, a, b in expr.limits)
return '(builtins.sum({function} {loops}))'.format(
function=self._print(expr.function),
loops=' '.join(loops))
def _print_ImaginaryUnit(self, expr):
return '1j'
def _print_MatrixBase(self, expr):
name = expr.__class__.__name__
func = self.known_functions.get(name, name)
return "%s(%s)" % (func, self._print(expr.tolist()))
_print_SparseMatrix = \
_print_MutableSparseMatrix = \
_print_ImmutableSparseMatrix = \
_print_Matrix = \
_print_DenseMatrix = \
_print_MutableDenseMatrix = \
_print_ImmutableMatrix = \
_print_ImmutableDenseMatrix = \
lambda self, expr: self._print_MatrixBase(expr)
def _indent_codestring(self, codestring):
return '\n'.join([self.tab + line for line in codestring.split('\n')])
def _print_FunctionDefinition(self, fd):
body = '\n'.join(map(lambda arg: self._print(arg), fd.body))
return "def {name}({parameters}):\n{body}".format(
name=self._print(fd.name),
parameters=', '.join([self._print(var.symbol) for var in fd.parameters]),
body=self._indent_codestring(body)
)
def _print_While(self, whl):
body = '\n'.join(map(lambda arg: self._print(arg), whl.body))
return "while {cond}:\n{body}".format(
cond=self._print(whl.condition),
body=self._indent_codestring(body)
)
def _print_Declaration(self, decl):
return '%s = %s' % (
self._print(decl.variable.symbol),
self._print(decl.variable.value)
)
def _print_Return(self, ret):
arg, = ret.args
return 'return %s' % self._print(arg)
def _print_Print(self, prnt):
print_args = ', '.join(map(lambda arg: self._print(arg), prnt.print_args))
if prnt.format_string != None: # Must be '!= None', cannot be 'is not None'
print_args = '{0} % ({1})'.format(
self._print(prnt.format_string), print_args)
if prnt.file != None: # Must be '!= None', cannot be 'is not None'
print_args += ', file=%s' % self._print(prnt.file)
return 'print(%s)' % print_args
def _print_Stream(self, strm):
if str(strm.name) == 'stdout':
return self._module_format('sys.stdout')
elif str(strm.name) == 'stderr':
return self._module_format('sys.stderr')
else:
return self._print(strm.name)
def _print_NoneToken(self, arg):
return 'None'
class PythonCodePrinter(AbstractPythonCodePrinter):
def _print_sign(self, e):
return '(0.0 if {e} == 0 else {f}(1, {e}))'.format(
f=self._module_format('math.copysign'), e=self._print(e.args[0]))
def _print_Not(self, expr):
PREC = precedence(expr)
return self._operators['not'] + self.parenthesize(expr.args[0], PREC)
for k in PythonCodePrinter._kf:
setattr(PythonCodePrinter, '_print_%s' % k, _print_known_func)
for k in _known_constants_math:
setattr(PythonCodePrinter, '_print_%s' % k, _print_known_const)
def pycode(expr, **settings):
""" Converts an expr to a string of Python code
Parameters
==========
expr : Expr
A SymPy expression.
fully_qualified_modules : bool
Whether or not to write out full module names of functions
(``math.sin`` vs. ``sin``). default: ``True``.
Examples
========
>>> from sympy import tan, Symbol
>>> from sympy.printing.pycode import pycode
>>> pycode(tan(Symbol('x')) + 1)
'math.tan(x) + 1'
"""
return PythonCodePrinter(settings).doprint(expr)
_not_in_mpmath = 'log1p log2'.split()
_in_mpmath = [(k, v) for k, v in _known_functions_math.items() if k not in _not_in_mpmath]
_known_functions_mpmath = dict(_in_mpmath, **{
'sign': 'sign',
})
_known_constants_mpmath = {
'Pi': 'pi'
}
class MpmathPrinter(PythonCodePrinter):
"""
Lambda printer for mpmath which maintains precision for floats
"""
printmethod = "_mpmathcode"
_kf = dict(chain(
_known_functions.items(),
[(k, 'mpmath.' + v) for k, v in _known_functions_mpmath.items()]
))
def _print_Float(self, e):
# XXX: This does not handle setting mpmath.mp.dps. It is assumed that
# the caller of the lambdified function will have set it to sufficient
# precision to match the Floats in the expression.
# Remove 'mpz' if gmpy is installed.
args = str(tuple(map(int, e._mpf_)))
return '{func}({args})'.format(func=self._module_format('mpmath.mpf'), args=args)
def _print_Rational(self, e):
return '{0}({1})/{0}({2})'.format(
self._module_format('mpmath.mpf'),
e.p,
e.q,
)
def _print_uppergamma(self, e):
return "{0}({1}, {2}, {3})".format(
self._module_format('mpmath.gammainc'),
self._print(e.args[0]),
self._print(e.args[1]),
self._module_format('mpmath.inf'))
def _print_lowergamma(self, e):
return "{0}({1}, 0, {2})".format(
self._module_format('mpmath.gammainc'),
self._print(e.args[0]),
self._print(e.args[1]))
def _print_log2(self, e):
return '{0}({1})/{0}(2)'.format(
self._module_format('mpmath.log'), self._print(e.args[0]))
def _print_log1p(self, e):
return '{0}({1}+1)'.format(
self._module_format('mpmath.log'), self._print(e.args[0]))
for k in MpmathPrinter._kf:
setattr(MpmathPrinter, '_print_%s' % k, _print_known_func)
for k in _known_constants_mpmath:
setattr(MpmathPrinter, '_print_%s' % k, _print_known_const)
_not_in_numpy = 'erf erfc factorial gamma loggamma'.split()
_in_numpy = [(k, v) for k, v in _known_functions_math.items() if k not in _not_in_numpy]
_known_functions_numpy = dict(_in_numpy, **{
'acos': 'arccos',
'acosh': 'arccosh',
'asin': 'arcsin',
'asinh': 'arcsinh',
'atan': 'arctan',
'atan2': 'arctan2',
'atanh': 'arctanh',
'exp2': 'exp2',
'sign': 'sign',
})
class NumPyPrinter(PythonCodePrinter):
"""
Numpy printer which handles vectorized piecewise functions,
logical operators, etc.
"""
printmethod = "_numpycode"
_kf = dict(chain(
PythonCodePrinter._kf.items(),
[(k, 'numpy.' + v) for k, v in _known_functions_numpy.items()]
))
_kc = {k: 'numpy.'+v for k, v in _known_constants_math.items()}
def _print_seq(self, seq):
"General sequence printer: converts to tuple"
# Print tuples here instead of lists because numba supports
# tuples in nopython mode.
delimiter=', '
return '({},)'.format(delimiter.join(self._print(item) for item in seq))
def _print_MatMul(self, expr):
"Matrix multiplication printer"
if expr.as_coeff_matrices()[0] is not S(1):
expr_list = expr.as_coeff_matrices()[1]+[(expr.as_coeff_matrices()[0])]
return '({0})'.format(').dot('.join(self._print(i) for i in expr_list))
return '({0})'.format(').dot('.join(self._print(i) for i in expr.args))
def _print_MatPow(self, expr):
"Matrix power printer"
return '{0}({1}, {2})'.format(self._module_format('numpy.linalg.matrix_power'),
self._print(expr.args[0]), self._print(expr.args[1]))
def _print_Inverse(self, expr):
"Matrix inverse printer"
return '{0}({1})'.format(self._module_format('numpy.linalg.inv'),
self._print(expr.args[0]))
def _print_DotProduct(self, expr):
# DotProduct allows any shape order, but numpy.dot does matrix
# multiplication, so we have to make sure it gets 1 x n by n x 1.
arg1, arg2 = expr.args
if arg1.shape[0] != 1:
arg1 = arg1.T
if arg2.shape[1] != 1:
arg2 = arg2.T
return "%s(%s, %s)" % (self._module_format('numpy.dot'),
self._print(arg1),
self._print(arg2))
def _print_Piecewise(self, expr):
"Piecewise function printer"
exprs = '[{0}]'.format(','.join(self._print(arg.expr) for arg in expr.args))
conds = '[{0}]'.format(','.join(self._print(arg.cond) for arg in expr.args))
# If [default_value, True] is a (expr, cond) sequence in a Piecewise object
# it will behave the same as passing the 'default' kwarg to select()
# *as long as* it is the last element in expr.args.
# If this is not the case, it may be triggered prematurely.
return '{0}({1}, {2}, default=numpy.nan)'.format(self._module_format('numpy.select'), conds, exprs)
def _print_Relational(self, expr):
"Relational printer for Equality and Unequality"
op = {
'==' :'equal',
'!=' :'not_equal',
'<' :'less',
'<=' :'less_equal',
'>' :'greater',
'>=' :'greater_equal',
}
if expr.rel_op in op:
lhs = self._print(expr.lhs)
rhs = self._print(expr.rhs)
return '{op}({lhs}, {rhs})'.format(op=self._module_format('numpy.'+op[expr.rel_op]),
lhs=lhs, rhs=rhs)
return super(NumPyPrinter, self)._print_Relational(expr)
def _print_And(self, expr):
"Logical And printer"
# We have to override LambdaPrinter because it uses Python 'and' keyword.
# If LambdaPrinter didn't define it, we could use StrPrinter's
# version of the function and add 'logical_and' to NUMPY_TRANSLATIONS.
return '{0}.reduce(({1}))'.format(self._module_format('numpy.logical_and'), ','.join(self._print(i) for i in expr.args))
def _print_Or(self, expr):
"Logical Or printer"
# We have to override LambdaPrinter because it uses Python 'or' keyword.
# If LambdaPrinter didn't define it, we could use StrPrinter's
# version of the function and add 'logical_or' to NUMPY_TRANSLATIONS.
return '{0}.reduce(({1}))'.format(self._module_format('numpy.logical_or'), ','.join(self._print(i) for i in expr.args))
def _print_Not(self, expr):
"Logical Not printer"
# We have to override LambdaPrinter because it uses Python 'not' keyword.
# If LambdaPrinter didn't define it, we would still have to define our
# own because StrPrinter doesn't define it.
return '{0}({1})'.format(self._module_format('numpy.logical_not'), ','.join(self._print(i) for i in expr.args))
def _print_Min(self, expr):
return '{0}(({1}))'.format(self._module_format('numpy.amin'), ','.join(self._print(i) for i in expr.args))
def _print_Max(self, expr):
return '{0}(({1}))'.format(self._module_format('numpy.amax'), ','.join(self._print(i) for i in expr.args))
def _print_Pow(self, expr):
if expr.exp == 0.5:
return '{0}({1})'.format(self._module_format('numpy.sqrt'), self._print(expr.base))
else:
return super(NumPyPrinter, self)._print_Pow(expr)
def _print_arg(self, expr):
return "%s(%s)" % (self._module_format('numpy.angle'), self._print(expr.args[0]))
def _print_im(self, expr):
return "%s(%s)" % (self._module_format('numpy.imag'), self._print(expr.args[0]))
def _print_Mod(self, expr):
return "%s(%s)" % (self._module_format('numpy.mod'), ', '.join(
map(lambda arg: self._print(arg), expr.args)))
def _print_re(self, expr):
return "%s(%s)" % (self._module_format('numpy.real'), self._print(expr.args[0]))
def _print_sinc(self, expr):
return "%s(%s)" % (self._module_format('numpy.sinc'), self._print(expr.args[0]/S.Pi))
def _print_MatrixBase(self, expr):
func = self.known_functions.get(expr.__class__.__name__, None)
if func is None:
func = self._module_format('numpy.array')
return "%s(%s)" % (func, self._print(expr.tolist()))
def _print_CodegenArrayTensorProduct(self, expr):
array_list = [j for i, arg in enumerate(expr.args) for j in
(self._print(arg), "[%i, %i]" % (2*i, 2*i+1))]
return "%s(%s)" % (self._module_format('numpy.einsum'), ", ".join(array_list))
def _print_CodegenArrayContraction(self, expr):
from sympy.codegen.array_utils import CodegenArrayTensorProduct
base = expr.expr
contraction_indices = expr.contraction_indices
if not contraction_indices:
return self._print(base)
if isinstance(base, CodegenArrayTensorProduct):
counter = 0
d = {j: min(i) for i in contraction_indices for j in i}
indices = []
for rank_arg in base.subranks:
lindices = []
for i in range(rank_arg):
if counter in d:
lindices.append(d[counter])
else:
lindices.append(counter)
counter += 1
indices.append(lindices)
elems = ["%s, %s" % (self._print(arg), ind) for arg, ind in zip(base.args, indices)]
return "%s(%s)" % (
self._module_format('numpy.einsum'),
", ".join(elems)
)
raise NotImplementedError()
def _print_CodegenArrayDiagonal(self, expr):
diagonal_indices = list(expr.diagonal_indices)
if len(diagonal_indices) > 1:
# TODO: this should be handled in sympy.codegen.array_utils,
# possibly by creating the possibility of unfolding the
# CodegenArrayDiagonal object into nested ones. Same reasoning for
# the array contraction.
raise NotImplementedError
if len(diagonal_indices[0]) != 2:
raise NotImplementedError
return "%s(%s, 0, axis1=%s, axis2=%s)" % (
self._module_format("numpy.diagonal"),
self._print(expr.expr),
diagonal_indices[0][0],
diagonal_indices[0][1],
)
def _print_CodegenArrayPermuteDims(self, expr):
return "%s(%s, %s)" % (
self._module_format("numpy.transpose"),
self._print(expr.expr),
self._print(expr.permutation.args[0]),
)
def _print_CodegenArrayElementwiseAdd(self, expr):
return self._expand_fold_binary_op('numpy.add', expr.args)
for k in NumPyPrinter._kf:
setattr(NumPyPrinter, '_print_%s' % k, _print_known_func)
for k in NumPyPrinter._kc:
setattr(NumPyPrinter, '_print_%s' % k, _print_known_const)
_known_functions_scipy_special = {
'erf': 'erf',
'erfc': 'erfc',
'besselj': 'jv',
'bessely': 'yv',
'besseli': 'iv',
'besselk': 'kv',
'factorial': 'factorial',
'gamma': 'gamma',
'loggamma': 'gammaln',
'digamma': 'psi',
'RisingFactorial': 'poch',
'jacobi': 'eval_jacobi',
'gegenbauer': 'eval_gegenbauer',
'chebyshevt': 'eval_chebyt',
'chebyshevu': 'eval_chebyu',
'legendre': 'eval_legendre',
'hermite': 'eval_hermite',
'laguerre': 'eval_laguerre',
'assoc_laguerre': 'eval_genlaguerre',
}
_known_constants_scipy_constants = {
'GoldenRatio': 'golden_ratio',
'Pi': 'pi',
'E': 'e'
}
class SciPyPrinter(NumPyPrinter):
_kf = dict(chain(
NumPyPrinter._kf.items(),
[(k, 'scipy.special.' + v) for k, v in _known_functions_scipy_special.items()]
))
_kc = {k: 'scipy.constants.' + v for k, v in _known_constants_scipy_constants.items()}
def _print_SparseMatrix(self, expr):
i, j, data = [], [], []
for (r, c), v in expr._smat.items():
i.append(r)
j.append(c)
data.append(v)
return "{name}({data}, ({i}, {j}), shape={shape})".format(
name=self._module_format('scipy.sparse.coo_matrix'),
data=data, i=i, j=j, shape=expr.shape
)
_print_ImmutableSparseMatrix = _print_SparseMatrix
# SciPy's lpmv has a different order of arguments from assoc_legendre
def _print_assoc_legendre(self, expr):
return "{0}({2}, {1}, {3})".format(
self._module_format('scipy.special.lpmv'),
self._print(expr.args[0]),
self._print(expr.args[1]),
self._print(expr.args[2]))
for k in SciPyPrinter._kf:
setattr(SciPyPrinter, '_print_%s' % k, _print_known_func)
for k in SciPyPrinter._kc:
setattr(SciPyPrinter, '_print_%s' % k, _print_known_const)
class SymPyPrinter(PythonCodePrinter):
_kf = {k: 'sympy.' + v for k, v in chain(
_known_functions.items(),
_known_functions_math.items()
)}
def _print_Function(self, expr):
mod = expr.func.__module__ or ''
return '%s(%s)' % (self._module_format(mod + ('.' if mod else '') + expr.func.__name__),
', '.join(map(lambda arg: self._print(arg), expr.args)))
|
b91af432d63e8cfabf51e10580698325adcdee71b4460b764f04d154608e31b4
|
"""
A Printer for generating readable representation of most sympy classes.
"""
from __future__ import print_function, division
from sympy.core import S, Rational, Pow, Basic, Mul
from sympy.core.mul import _keep_coeff
from sympy.core.compatibility import string_types
from .printer import Printer
from sympy.printing.precedence import precedence, PRECEDENCE
from mpmath.libmp import prec_to_dps, to_str as mlib_to_str
from sympy.utilities import default_sort_key
class StrPrinter(Printer):
printmethod = "_sympystr"
_default_settings = {
"order": None,
"full_prec": "auto",
"sympy_integers": False,
"abbrev": False,
}
_relationals = dict()
def parenthesize(self, item, level, strict=False):
if (precedence(item) < level) or ((not strict) and precedence(item) <= level):
return "(%s)" % self._print(item)
else:
return self._print(item)
def stringify(self, args, sep, level=0):
return sep.join([self.parenthesize(item, level) for item in args])
def emptyPrinter(self, expr):
if isinstance(expr, string_types):
return expr
elif isinstance(expr, Basic):
return repr(expr)
else:
return str(expr)
def _print_Add(self, expr, order=None):
if self.order == 'none':
terms = list(expr.args)
else:
terms = self._as_ordered_terms(expr, order=order)
PREC = precedence(expr)
l = []
for term in terms:
t = self._print(term)
if t.startswith('-'):
sign = "-"
t = t[1:]
else:
sign = "+"
if precedence(term) < PREC:
l.extend([sign, "(%s)" % t])
else:
l.extend([sign, t])
sign = l.pop(0)
if sign == '+':
sign = ""
return sign + ' '.join(l)
def _print_BooleanTrue(self, expr):
return "True"
def _print_BooleanFalse(self, expr):
return "False"
def _print_Not(self, expr):
return '~%s' %(self.parenthesize(expr.args[0],PRECEDENCE["Not"]))
def _print_And(self, expr):
return self.stringify(expr.args, " & ", PRECEDENCE["BitwiseAnd"])
def _print_Or(self, expr):
return self.stringify(expr.args, " | ", PRECEDENCE["BitwiseOr"])
def _print_AppliedPredicate(self, expr):
return '%s(%s)' % (self._print(expr.func), self._print(expr.arg))
def _print_Basic(self, expr):
l = [self._print(o) for o in expr.args]
return expr.__class__.__name__ + "(%s)" % ", ".join(l)
def _print_BlockMatrix(self, B):
if B.blocks.shape == (1, 1):
self._print(B.blocks[0, 0])
return self._print(B.blocks)
def _print_Catalan(self, expr):
return 'Catalan'
def _print_ComplexInfinity(self, expr):
return 'zoo'
def _print_ConditionSet(self, s):
args = tuple([self._print(i) for i in (s.sym, s.condition)])
if s.base_set is S.UniversalSet:
return 'ConditionSet(%s, %s)' % args
args += (self._print(s.base_set),)
return 'ConditionSet(%s, %s, %s)' % args
def _print_Derivative(self, expr):
dexpr = expr.expr
dvars = [i[0] if i[1] == 1 else i for i in expr.variable_count]
return 'Derivative(%s)' % ", ".join(map(lambda arg: self._print(arg), [dexpr] + dvars))
def _print_dict(self, d):
keys = sorted(d.keys(), key=default_sort_key)
items = []
for key in keys:
item = "%s: %s" % (self._print(key), self._print(d[key]))
items.append(item)
return "{%s}" % ", ".join(items)
def _print_Dict(self, expr):
return self._print_dict(expr)
def _print_RandomDomain(self, d):
if hasattr(d, 'as_boolean'):
return 'Domain: ' + self._print(d.as_boolean())
elif hasattr(d, 'set'):
return ('Domain: ' + self._print(d.symbols) + ' in ' +
self._print(d.set))
else:
return 'Domain on ' + self._print(d.symbols)
def _print_Dummy(self, expr):
return '_' + expr.name
def _print_EulerGamma(self, expr):
return 'EulerGamma'
def _print_Exp1(self, expr):
return 'E'
def _print_ExprCondPair(self, expr):
return '(%s, %s)' % (self._print(expr.expr), self._print(expr.cond))
def _print_FiniteSet(self, s):
s = sorted(s, key=default_sort_key)
if len(s) > 10:
printset = s[:3] + ['...'] + s[-3:]
else:
printset = s
return '{' + ', '.join(self._print(el) for el in printset) + '}'
def _print_Function(self, expr):
return expr.func.__name__ + "(%s)" % self.stringify(expr.args, ", ")
def _print_GeometryEntity(self, expr):
# GeometryEntity is special -- it's base is tuple
return str(expr)
def _print_GoldenRatio(self, expr):
return 'GoldenRatio'
def _print_TribonacciConstant(self, expr):
return 'TribonacciConstant'
def _print_ImaginaryUnit(self, expr):
return 'I'
def _print_Infinity(self, expr):
return 'oo'
def _print_Integral(self, expr):
def _xab_tostr(xab):
if len(xab) == 1:
return self._print(xab[0])
else:
return self._print((xab[0],) + tuple(xab[1:]))
L = ', '.join([_xab_tostr(l) for l in expr.limits])
return 'Integral(%s, %s)' % (self._print(expr.function), L)
def _print_Interval(self, i):
fin = 'Interval{m}({a}, {b})'
a, b, l, r = i.args
if a.is_infinite and b.is_infinite:
m = ''
elif a.is_infinite and not r:
m = ''
elif b.is_infinite and not l:
m = ''
elif not l and not r:
m = ''
elif l and r:
m = '.open'
elif l:
m = '.Lopen'
else:
m = '.Ropen'
return fin.format(**{'a': a, 'b': b, 'm': m})
def _print_AccumulationBounds(self, i):
return "AccumBounds(%s, %s)" % (self._print(i.min),
self._print(i.max))
def _print_Inverse(self, I):
return "%s**(-1)" % self.parenthesize(I.arg, PRECEDENCE["Pow"])
def _print_Lambda(self, obj):
args, expr = obj.args
if len(args) == 1:
return "Lambda(%s, %s)" % (self._print(args.args[0]), self._print(expr))
else:
arg_string = ", ".join(self._print(arg) for arg in args)
return "Lambda((%s), %s)" % (arg_string, self._print(expr))
def _print_LatticeOp(self, expr):
args = sorted(expr.args, key=default_sort_key)
return expr.func.__name__ + "(%s)" % ", ".join(self._print(arg) for arg in args)
def _print_Limit(self, expr):
e, z, z0, dir = expr.args
if str(dir) == "+":
return "Limit(%s, %s, %s)" % tuple(map(self._print, (e, z, z0)))
else:
return "Limit(%s, %s, %s, dir='%s')" % tuple(map(self._print,
(e, z, z0, dir)))
def _print_list(self, expr):
return "[%s]" % self.stringify(expr, ", ")
def _print_MatrixBase(self, expr):
return expr._format_str(self)
_print_SparseMatrix = \
_print_MutableSparseMatrix = \
_print_ImmutableSparseMatrix = \
_print_Matrix = \
_print_DenseMatrix = \
_print_MutableDenseMatrix = \
_print_ImmutableMatrix = \
_print_ImmutableDenseMatrix = \
_print_MatrixBase
def _print_MatrixElement(self, expr):
return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) \
+ '[%s, %s]' % (self._print(expr.i), self._print(expr.j))
def _print_MatrixSlice(self, expr):
def strslice(x):
x = list(x)
if x[2] == 1:
del x[2]
if x[1] == x[0] + 1:
del x[1]
if x[0] == 0:
x[0] = ''
return ':'.join(map(lambda arg: self._print(arg), x))
return (self._print(expr.parent) + '[' +
strslice(expr.rowslice) + ', ' +
strslice(expr.colslice) + ']')
def _print_DeferredVector(self, expr):
return expr.name
def _print_Mul(self, expr):
prec = precedence(expr)
c, e = expr.as_coeff_Mul()
if c < 0:
expr = _keep_coeff(-c, e)
sign = "-"
else:
sign = ""
a = [] # items in the numerator
b = [] # items that are in the denominator (if any)
pow_paren = [] # Will collect all pow with more than one base element and exp = -1
if self.order not in ('old', 'none'):
args = expr.as_ordered_factors()
else:
# use make_args in case expr was something like -x -> x
args = Mul.make_args(expr)
# Gather args for numerator/denominator
for item in args:
if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative:
if item.exp != -1:
b.append(Pow(item.base, -item.exp, evaluate=False))
else:
if len(item.args[0].args) != 1 and isinstance(item.base, Mul): # To avoid situations like #14160
pow_paren.append(item)
b.append(Pow(item.base, -item.exp))
elif item.is_Rational and item is not S.Infinity:
if item.p != 1:
a.append(Rational(item.p))
if item.q != 1:
b.append(Rational(item.q))
else:
a.append(item)
a = a or [S.One]
a_str = [self.parenthesize(x, prec, strict=False) for x in a]
b_str = [self.parenthesize(x, prec, strict=False) for x in b]
# To parenthesize Pow with exp = -1 and having more than one Symbol
for item in pow_paren:
if item.base in b:
b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)]
if not b:
return sign + '*'.join(a_str)
elif len(b) == 1:
return sign + '*'.join(a_str) + "/" + b_str[0]
else:
return sign + '*'.join(a_str) + "/(%s)" % '*'.join(b_str)
def _print_MatMul(self, expr):
c, m = expr.as_coeff_mmul()
if c.is_number and c < 0:
expr = _keep_coeff(-c, m)
sign = "-"
else:
sign = ""
return sign + '*'.join(
[self.parenthesize(arg, precedence(expr)) for arg in expr.args]
)
def _print_HadamardProduct(self, expr):
return '.*'.join([self.parenthesize(arg, precedence(expr))
for arg in expr.args])
def _print_NaN(self, expr):
return 'nan'
def _print_NegativeInfinity(self, expr):
return '-oo'
def _print_Normal(self, expr):
return "Normal(%s, %s)" % (self._print(expr.mu), self._print(expr.sigma))
def _print_Order(self, expr):
if not expr.variables or all(p is S.Zero for p in expr.point):
if len(expr.variables) <= 1:
return 'O(%s)' % self._print(expr.expr)
else:
return 'O(%s)' % self.stringify((expr.expr,) + expr.variables, ', ', 0)
else:
return 'O(%s)' % self.stringify(expr.args, ', ', 0)
def _print_Ordinal(self, expr):
return expr.__str__()
def _print_Cycle(self, expr):
return expr.__str__()
def _print_Permutation(self, expr):
from sympy.combinatorics.permutations import Permutation, Cycle
if Permutation.print_cyclic:
if not expr.size:
return '()'
# before taking Cycle notation, see if the last element is
# a singleton and move it to the head of the string
s = Cycle(expr)(expr.size - 1).__repr__()[len('Cycle'):]
last = s.rfind('(')
if not last == 0 and ',' not in s[last:]:
s = s[last:] + s[:last]
s = s.replace(',', '')
return s
else:
s = expr.support()
if not s:
if expr.size < 5:
return 'Permutation(%s)' % self._print(expr.array_form)
return 'Permutation([], size=%s)' % self._print(expr.size)
trim = self._print(expr.array_form[:s[-1] + 1]) + ', size=%s' % self._print(expr.size)
use = full = self._print(expr.array_form)
if len(trim) < len(full):
use = trim
return 'Permutation(%s)' % use
def _print_Subs(self, obj):
expr, old, new = obj.args
if len(obj.point) == 1:
old = old[0]
new = new[0]
return "Subs(%s, %s, %s)" % (
self._print(expr), self._print(old), self._print(new))
def _print_TensorIndex(self, expr):
return expr._print()
def _print_TensorHead(self, expr):
return expr._print()
def _print_Tensor(self, expr):
return expr._print()
def _print_TensMul(self, expr):
# prints expressions like "A(a)", "3*A(a)", "(1+x)*A(a)"
sign, args = expr._get_args_for_traditional_printer()
return sign + "*".join(
[self.parenthesize(arg, precedence(expr)) for arg in args]
)
def _print_TensAdd(self, expr):
return expr._print()
def _print_PermutationGroup(self, expr):
p = [' %s' % self._print(a) for a in expr.args]
return 'PermutationGroup([\n%s])' % ',\n'.join(p)
def _print_PDF(self, expr):
return 'PDF(%s, (%s, %s, %s))' % \
(self._print(expr.pdf.args[1]), self._print(expr.pdf.args[0]),
self._print(expr.domain[0]), self._print(expr.domain[1]))
def _print_Pi(self, expr):
return 'pi'
def _print_PolyRing(self, ring):
return "Polynomial ring in %s over %s with %s order" % \
(", ".join(map(lambda rs: self._print(rs), ring.symbols)),
self._print(ring.domain), self._print(ring.order))
def _print_FracField(self, field):
return "Rational function field in %s over %s with %s order" % \
(", ".join(map(lambda fs: self._print(fs), field.symbols)),
self._print(field.domain), self._print(field.order))
def _print_FreeGroupElement(self, elm):
return elm.__str__()
def _print_PolyElement(self, poly):
return poly.str(self, PRECEDENCE, "%s**%s", "*")
def _print_FracElement(self, frac):
if frac.denom == 1:
return self._print(frac.numer)
else:
numer = self.parenthesize(frac.numer, PRECEDENCE["Mul"], strict=True)
denom = self.parenthesize(frac.denom, PRECEDENCE["Atom"], strict=True)
return numer + "/" + denom
def _print_Poly(self, expr):
ATOM_PREC = PRECEDENCE["Atom"] - 1
terms, gens = [], [ self.parenthesize(s, ATOM_PREC) for s in expr.gens ]
for monom, coeff in expr.terms():
s_monom = []
for i, exp in enumerate(monom):
if exp > 0:
if exp == 1:
s_monom.append(gens[i])
else:
s_monom.append(gens[i] + "**%d" % exp)
s_monom = "*".join(s_monom)
if coeff.is_Add:
if s_monom:
s_coeff = "(" + self._print(coeff) + ")"
else:
s_coeff = self._print(coeff)
else:
if s_monom:
if coeff is S.One:
terms.extend(['+', s_monom])
continue
if coeff is S.NegativeOne:
terms.extend(['-', s_monom])
continue
s_coeff = self._print(coeff)
if not s_monom:
s_term = s_coeff
else:
s_term = s_coeff + "*" + s_monom
if s_term.startswith('-'):
terms.extend(['-', s_term[1:]])
else:
terms.extend(['+', s_term])
if terms[0] in ['-', '+']:
modifier = terms.pop(0)
if modifier == '-':
terms[0] = '-' + terms[0]
format = expr.__class__.__name__ + "(%s, %s"
from sympy.polys.polyerrors import PolynomialError
try:
format += ", modulus=%s" % expr.get_modulus()
except PolynomialError:
format += ", domain='%s'" % expr.get_domain()
format += ")"
for index, item in enumerate(gens):
if len(item) > 2 and (item[:1] == "(" and item[len(item) - 1:] == ")"):
gens[index] = item[1:len(item) - 1]
return format % (' '.join(terms), ', '.join(gens))
def _print_ProductSet(self, p):
return ' x '.join(self._print(set) for set in p.sets)
def _print_AlgebraicNumber(self, expr):
if expr.is_aliased:
return self._print(expr.as_poly().as_expr())
else:
return self._print(expr.as_expr())
def _print_Pow(self, expr, rational=False):
PREC = precedence(expr)
if expr.exp is S.Half and not rational:
return "sqrt(%s)" % self._print(expr.base)
if expr.is_commutative:
if -expr.exp is S.Half and not rational:
# Note: Don't test "expr.exp == -S.Half" here, because that will
# match -0.5, which we don't want.
return "%s/sqrt(%s)" % tuple(map(lambda arg: self._print(arg), (S.One, expr.base)))
if expr.exp is -S.One:
# Similarly to the S.Half case, don't test with "==" here.
return '%s/%s' % (self._print(S.One),
self.parenthesize(expr.base, PREC, strict=False))
e = self.parenthesize(expr.exp, PREC, strict=False)
if self.printmethod == '_sympyrepr' and expr.exp.is_Rational and expr.exp.q != 1:
# the parenthesized exp should be '(Rational(a, b))' so strip parens,
# but just check to be sure.
if e.startswith('(Rational'):
return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), e[1:-1])
return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), e)
def _print_UnevaluatedExpr(self, expr):
return self._print(expr.args[0])
def _print_MatPow(self, expr):
PREC = precedence(expr)
return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False),
self.parenthesize(expr.exp, PREC, strict=False))
def _print_ImmutableDenseNDimArray(self, expr):
return str(expr)
def _print_ImmutableSparseNDimArray(self, expr):
return str(expr)
def _print_Integer(self, expr):
if self._settings.get("sympy_integers", False):
return "S(%s)" % (expr)
return str(expr.p)
def _print_Integers(self, expr):
return 'Integers'
def _print_Naturals(self, expr):
return 'Naturals'
def _print_Naturals0(self, expr):
return 'Naturals0'
def _print_Reals(self, expr):
return 'Reals'
def _print_int(self, expr):
return str(expr)
def _print_mpz(self, expr):
return str(expr)
def _print_Rational(self, expr):
if expr.q == 1:
return str(expr.p)
else:
if self._settings.get("sympy_integers", False):
return "S(%s)/%s" % (expr.p, expr.q)
return "%s/%s" % (expr.p, expr.q)
def _print_PythonRational(self, expr):
if expr.q == 1:
return str(expr.p)
else:
return "%d/%d" % (expr.p, expr.q)
def _print_Fraction(self, expr):
if expr.denominator == 1:
return str(expr.numerator)
else:
return "%s/%s" % (expr.numerator, expr.denominator)
def _print_mpq(self, expr):
if expr.denominator == 1:
return str(expr.numerator)
else:
return "%s/%s" % (expr.numerator, expr.denominator)
def _print_Float(self, expr):
prec = expr._prec
if prec < 5:
dps = 0
else:
dps = prec_to_dps(expr._prec)
if self._settings["full_prec"] is True:
strip = False
elif self._settings["full_prec"] is False:
strip = True
elif self._settings["full_prec"] == "auto":
strip = self._print_level > 1
rv = mlib_to_str(expr._mpf_, dps, strip_zeros=strip)
if rv.startswith('-.0'):
rv = '-0.' + rv[3:]
elif rv.startswith('.0'):
rv = '0.' + rv[2:]
if rv.startswith('+'):
# e.g., +inf -> inf
rv = rv[1:]
return rv
def _print_Relational(self, expr):
charmap = {
"==": "Eq",
"!=": "Ne",
":=": "Assignment",
'+=': "AddAugmentedAssignment",
"-=": "SubAugmentedAssignment",
"*=": "MulAugmentedAssignment",
"/=": "DivAugmentedAssignment",
"%=": "ModAugmentedAssignment",
}
if expr.rel_op in charmap:
return '%s(%s, %s)' % (charmap[expr.rel_op], self._print(expr.lhs),
self._print(expr.rhs))
return '%s %s %s' % (self.parenthesize(expr.lhs, precedence(expr)),
self._relationals.get(expr.rel_op) or expr.rel_op,
self.parenthesize(expr.rhs, precedence(expr)))
def _print_ComplexRootOf(self, expr):
return "CRootOf(%s, %d)" % (self._print_Add(expr.expr, order='lex'),
expr.index)
def _print_RootSum(self, expr):
args = [self._print_Add(expr.expr, order='lex')]
if expr.fun is not S.IdentityFunction:
args.append(self._print(expr.fun))
return "RootSum(%s)" % ", ".join(args)
def _print_GroebnerBasis(self, basis):
cls = basis.__class__.__name__
exprs = [self._print_Add(arg, order=basis.order) for arg in basis.exprs]
exprs = "[%s]" % ", ".join(exprs)
gens = [ self._print(gen) for gen in basis.gens ]
domain = "domain='%s'" % self._print(basis.domain)
order = "order='%s'" % self._print(basis.order)
args = [exprs] + gens + [domain, order]
return "%s(%s)" % (cls, ", ".join(args))
def _print_Sample(self, expr):
return "Sample([%s])" % self.stringify(expr, ", ", 0)
def _print_set(self, s):
items = sorted(s, key=default_sort_key)
args = ', '.join(self._print(item) for item in items)
if not args:
return "set()"
return '{%s}' % args
def _print_frozenset(self, s):
if not s:
return "frozenset()"
return "frozenset(%s)" % self._print_set(s)
def _print_SparseMatrix(self, expr):
from sympy.matrices import Matrix
return self._print(Matrix(expr))
def _print_Sum(self, expr):
def _xab_tostr(xab):
if len(xab) == 1:
return self._print(xab[0])
else:
return self._print((xab[0],) + tuple(xab[1:]))
L = ', '.join([_xab_tostr(l) for l in expr.limits])
return 'Sum(%s, %s)' % (self._print(expr.function), L)
def _print_Symbol(self, expr):
return expr.name
_print_MatrixSymbol = _print_Symbol
_print_RandomSymbol = _print_Symbol
def _print_Identity(self, expr):
return "I"
def _print_ZeroMatrix(self, expr):
return "0"
def _print_Predicate(self, expr):
return "Q.%s" % expr.name
def _print_str(self, expr):
return str(expr)
def _print_tuple(self, expr):
if len(expr) == 1:
return "(%s,)" % self._print(expr[0])
else:
return "(%s)" % self.stringify(expr, ", ")
def _print_Tuple(self, expr):
return self._print_tuple(expr)
def _print_Transpose(self, T):
return "%s.T" % self.parenthesize(T.arg, PRECEDENCE["Pow"])
def _print_Uniform(self, expr):
return "Uniform(%s, %s)" % (self._print(expr.a), self._print(expr.b))
def _print_Union(self, expr):
return 'Union(%s)' %(', '.join([self._print(a) for a in expr.args]))
def _print_Complement(self, expr):
return r' \ '.join(self._print(set_) for set_ in expr.args)
def _print_Quantity(self, expr):
if self._settings.get("abbrev", False):
return "%s" % expr.abbrev
return "%s" % expr.name
def _print_Quaternion(self, expr):
s = [self.parenthesize(i, PRECEDENCE["Mul"], strict=True) for i in expr.args]
a = [s[0]] + [i+"*"+j for i, j in zip(s[1:], "ijk")]
return " + ".join(a)
def _print_Dimension(self, expr):
return str(expr)
def _print_Wild(self, expr):
return expr.name + '_'
def _print_WildFunction(self, expr):
return expr.name + '_'
def _print_Zero(self, expr):
if self._settings.get("sympy_integers", False):
return "S(0)"
return "0"
def _print_DMP(self, p):
from sympy.core.sympify import SympifyError
try:
if p.ring is not None:
# TODO incorporate order
return self._print(p.ring.to_sympy(p))
except SympifyError:
pass
cls = p.__class__.__name__
rep = self._print(p.rep)
dom = self._print(p.dom)
ring = self._print(p.ring)
return "%s(%s, %s, %s)" % (cls, rep, dom, ring)
def _print_DMF(self, expr):
return self._print_DMP(expr)
def _print_Object(self, obj):
return 'Object("%s")' % obj.name
def _print_IdentityMorphism(self, morphism):
return 'IdentityMorphism(%s)' % morphism.domain
def _print_NamedMorphism(self, morphism):
return 'NamedMorphism(%s, %s, "%s")' % \
(morphism.domain, morphism.codomain, morphism.name)
def _print_Category(self, category):
return 'Category("%s")' % category.name
def _print_BaseScalarField(self, field):
return field._coord_sys._names[field._index]
def _print_BaseVectorField(self, field):
return 'e_%s' % field._coord_sys._names[field._index]
def _print_Differential(self, diff):
field = diff._form_field
if hasattr(field, '_coord_sys'):
return 'd%s' % field._coord_sys._names[field._index]
else:
return 'd(%s)' % self._print(field)
def _print_Tr(self, expr):
#TODO : Handle indices
return "%s(%s)" % ("Tr", self._print(expr.args[0]))
def sstr(expr, **settings):
"""Returns the expression as a string.
For large expressions where speed is a concern, use the setting
order='none'. If abbrev=True setting is used then units are printed in
abbreviated form.
Examples
========
>>> from sympy import symbols, Eq, sstr
>>> a, b = symbols('a b')
>>> sstr(Eq(a + b, 0))
'Eq(a + b, 0)'
"""
p = StrPrinter(settings)
s = p.doprint(expr)
return s
class StrReprPrinter(StrPrinter):
"""(internal) -- see sstrrepr"""
def _print_str(self, s):
return repr(s)
def sstrrepr(expr, **settings):
"""return expr in mixed str/repr form
i.e. strings are returned in repr form with quotes, and everything else
is returned in str form.
This function could be useful for hooking into sys.displayhook
"""
p = StrReprPrinter(settings)
s = p.doprint(expr)
return s
|
1ad13acb27ae10cbec056cb1caecd536fa246e058c82eb36e55bcab73ec97bba
|
from __future__ import print_function, division
def pprint_nodes(subtrees):
"""
Prettyprints systems of nodes.
Examples
========
>>> from sympy.printing.tree import pprint_nodes
>>> print(pprint_nodes(["a", "b1\\nb2", "c"]))
+-a
+-b1
| b2
+-c
"""
def indent(s, type=1):
x = s.split("\n")
r = "+-%s\n" % x[0]
for a in x[1:]:
if a == "":
continue
if type == 1:
r += "| %s\n" % a
else:
r += " %s\n" % a
return r
if not subtrees:
return ""
f = ""
for a in subtrees[:-1]:
f += indent(a)
f += indent(subtrees[-1], 2)
return f
def print_node(node):
"""
Returns information about the "node".
This includes class name, string representation and assumptions.
"""
s = "%s: %s\n" % (node.__class__.__name__, str(node))
d = node._assumptions
if d:
for a in sorted(d):
v = d[a]
if v is None:
continue
s += "%s: %s\n" % (a, v)
return s
def tree(node):
"""
Returns a tree representation of "node" as a string.
It uses print_node() together with pprint_nodes() on node.args recursively.
See Also
========
print_tree
"""
subtrees = []
for arg in node.args:
subtrees.append(tree(arg))
s = print_node(node) + pprint_nodes(subtrees)
return s
def print_tree(node):
"""
Prints a tree representation of "node".
Examples
========
>>> from sympy.printing import print_tree
>>> from sympy import Symbol
>>> x = Symbol('x', odd=True)
>>> y = Symbol('y', even=True)
>>> print_tree(y**x)
Pow: y**x
+-Symbol: y
| algebraic: True
| commutative: True
| complex: True
| even: True
| hermitian: True
| imaginary: False
| integer: True
| irrational: False
| noninteger: False
| odd: False
| rational: True
| real: True
| transcendental: False
+-Symbol: x
algebraic: True
commutative: True
complex: True
even: False
hermitian: True
imaginary: False
integer: True
irrational: False
noninteger: False
nonzero: True
odd: True
rational: True
real: True
transcendental: False
zero: False
See Also
========
tree
"""
print(tree(node))
|
85c147cf29f9e3d4126d65ac2b0c4237aa9fc988eb269dc7aa4922bf17baec79
|
"""
Rust code printer
The `RustCodePrinter` converts SymPy expressions into Rust expressions.
A complete code generator, which uses `rust_code` extensively, can be found
in `sympy.utilities.codegen`. The `codegen` module can be used to generate
complete source code files.
"""
# Possible Improvement
#
# * make sure we follow Rust Style Guidelines_
# * make use of pattern matching
# * better support for reference
# * generate generic code and use trait to make sure they have specific methods
# * use crates_ to get more math support
# - num_
# + BigInt_, BigUint_
# + Complex_
# + Rational64_, Rational32_, BigRational_
#
# .. _crates: https://crates.io/
# .. _Guidelines: https://github.com/rust-lang/rust/tree/master/src/doc/style
# .. _num: http://rust-num.github.io/num/num/
# .. _BigInt: http://rust-num.github.io/num/num/bigint/struct.BigInt.html
# .. _BigUint: http://rust-num.github.io/num/num/bigint/struct.BigUint.html
# .. _Complex: http://rust-num.github.io/num/num/complex/struct.Complex.html
# .. _Rational32: http://rust-num.github.io/num/num/rational/type.Rational32.html
# .. _Rational64: http://rust-num.github.io/num/num/rational/type.Rational64.html
# .. _BigRational: http://rust-num.github.io/num/num/rational/type.BigRational.html
from __future__ import print_function, division
from sympy.core import S, numbers, Rational, Float, Lambda
from sympy.core.compatibility import string_types, range
from sympy.printing.codeprinter import CodePrinter, Assignment
from sympy.printing.precedence import precedence
# Rust's methods for integer and float can be found at here :
#
# * `Rust - Primitive Type f64 <https://doc.rust-lang.org/std/primitive.f64.html>`_
# * `Rust - Primitive Type i64 <https://doc.rust-lang.org/std/primitive.i64.html>`_
#
# Function Style :
#
# 1. args[0].func(args[1:]), method with arguments
# 2. args[0].func(), method without arguments
# 3. args[1].func(), method without arguments (e.g. (e, x) => x.exp())
# 4. func(args), function with arguments
# dictionary mapping sympy function to (argument_conditions, Rust_function).
# Used in RustCodePrinter._print_Function(self)
# f64 method in Rust
known_functions = {
"": "is_nan",
"": "is_infinite",
"": "is_finite",
"": "is_normal",
"": "classify",
"floor": "floor",
"ceiling": "ceil",
"": "round",
"": "trunc",
"": "fract",
"Abs": "abs",
"sign": "signum",
"": "is_sign_positive",
"": "is_sign_negative",
"": "mul_add",
"Pow": [(lambda base, exp: exp == -S.One, "recip", 2), # 1.0/x
(lambda base, exp: exp == S.Half, "sqrt", 2), # x ** 0.5
(lambda base, exp: exp == -S.Half, "sqrt().recip", 2), # 1/(x ** 0.5)
(lambda base, exp: exp == Rational(1, 3), "cbrt", 2), # x ** (1/3)
(lambda base, exp: base == S.One*2, "exp2", 3), # 2 ** x
(lambda base, exp: exp.is_integer, "powi", 1), # x ** y, for i32
(lambda base, exp: not exp.is_integer, "powf", 1)], # x ** y, for f64
"exp": [(lambda exp: True, "exp", 2)], # e ** x
"log": "ln",
"": "log", # number.log(base)
"": "log2",
"": "log10",
"": "to_degrees",
"": "to_radians",
"Max": "max",
"Min": "min",
"": "hypot", # (x**2 + y**2) ** 0.5
"sin": "sin",
"cos": "cos",
"tan": "tan",
"asin": "asin",
"acos": "acos",
"atan": "atan",
"atan2": "atan2",
"": "sin_cos",
"": "exp_m1", # e ** x - 1
"": "ln_1p", # ln(1 + x)
"sinh": "sinh",
"cosh": "cosh",
"tanh": "tanh",
"asinh": "asinh",
"acosh": "acosh",
"atanh": "atanh",
}
# i64 method in Rust
# known_functions_i64 = {
# "": "min_value",
# "": "max_value",
# "": "from_str_radix",
# "": "count_ones",
# "": "count_zeros",
# "": "leading_zeros",
# "": "trainling_zeros",
# "": "rotate_left",
# "": "rotate_right",
# "": "swap_bytes",
# "": "from_be",
# "": "from_le",
# "": "to_be", # to big endian
# "": "to_le", # to little endian
# "": "checked_add",
# "": "checked_sub",
# "": "checked_mul",
# "": "checked_div",
# "": "checked_rem",
# "": "checked_neg",
# "": "checked_shl",
# "": "checked_shr",
# "": "checked_abs",
# "": "saturating_add",
# "": "saturating_sub",
# "": "saturating_mul",
# "": "wrapping_add",
# "": "wrapping_sub",
# "": "wrapping_mul",
# "": "wrapping_div",
# "": "wrapping_rem",
# "": "wrapping_neg",
# "": "wrapping_shl",
# "": "wrapping_shr",
# "": "wrapping_abs",
# "": "overflowing_add",
# "": "overflowing_sub",
# "": "overflowing_mul",
# "": "overflowing_div",
# "": "overflowing_rem",
# "": "overflowing_neg",
# "": "overflowing_shl",
# "": "overflowing_shr",
# "": "overflowing_abs",
# "Pow": "pow",
# "Abs": "abs",
# "sign": "signum",
# "": "is_positive",
# "": "is_negnative",
# }
# These are the core reserved words in the Rust language. Taken from:
# http://doc.rust-lang.org/grammar.html#keywords
reserved_words = ['abstract',
'alignof',
'as',
'become',
'box',
'break',
'const',
'continue',
'crate',
'do',
'else',
'enum',
'extern',
'false',
'final',
'fn',
'for',
'if',
'impl',
'in',
'let',
'loop',
'macro',
'match',
'mod',
'move',
'mut',
'offsetof',
'override',
'priv',
'proc',
'pub',
'pure',
'ref',
'return',
'Self',
'self',
'sizeof',
'static',
'struct',
'super',
'trait',
'true',
'type',
'typeof',
'unsafe',
'unsized',
'use',
'virtual',
'where',
'while',
'yield']
class RustCodePrinter(CodePrinter):
"""A printer to convert python expressions to strings of Rust code"""
printmethod = "_rust_code"
language = "Rust"
_default_settings = {
'order': None,
'full_prec': 'auto',
'precision': 17,
'user_functions': {},
'human': True,
'contract': True,
'dereference': set(),
'error_on_reserved': False,
'reserved_word_suffix': '_',
'inline': False,
}
def __init__(self, settings={}):
CodePrinter.__init__(self, settings)
self.known_functions = dict(known_functions)
userfuncs = settings.get('user_functions', {})
self.known_functions.update(userfuncs)
self._dereference = set(settings.get('dereference', []))
self.reserved_words = set(reserved_words)
def _rate_index_position(self, p):
return p*5
def _get_statement(self, codestring):
return "%s;" % codestring
def _get_comment(self, text):
return "// %s" % text
def _declare_number_const(self, name, value):
return "const %s: f64 = %s;" % (name, value)
def _format_code(self, lines):
return self.indent_code(lines)
def _traverse_matrix_indices(self, mat):
rows, cols = mat.shape
return ((i, j) for i in range(rows) for j in range(cols))
def _get_loop_opening_ending(self, indices):
open_lines = []
close_lines = []
loopstart = "for %(var)s in %(start)s..%(end)s {"
for i in indices:
# Rust arrays start at 0 and end at dimension-1
open_lines.append(loopstart % {
'var': self._print(i),
'start': self._print(i.lower),
'end': self._print(i.upper + 1)})
close_lines.append("}")
return open_lines, close_lines
def _print_caller_var(self, expr):
if len(expr.args) > 1:
# for something like `sin(x + y + z)`,
# make sure we can get '(x + y + z).sin()'
# instead of 'x + y + z.sin()'
return '(' + self._print(expr) + ')'
elif expr.is_number:
return self._print(expr, _type=True)
else:
return self._print(expr)
def _print_Function(self, expr):
"""
basic function for printing `Function`
Function Style :
1. args[0].func(args[1:]), method with arguments
2. args[0].func(), method without arguments
3. args[1].func(), method without arguments (e.g. (e, x) => x.exp())
4. func(args), function with arguments
"""
if expr.func.__name__ in self.known_functions:
cond_func = self.known_functions[expr.func.__name__]
func = None
style = 1
if isinstance(cond_func, string_types):
func = cond_func
else:
for cond, func, style in cond_func:
if cond(*expr.args):
break
if func is not None:
if style == 1:
ret = "%(var)s.%(method)s(%(args)s)" % {
'var': self._print_caller_var(expr.args[0]),
'method': func,
'args': self.stringify(expr.args[1:], ", ") if len(expr.args) > 1 else ''
}
elif style == 2:
ret = "%(var)s.%(method)s()" % {
'var': self._print_caller_var(expr.args[0]),
'method': func,
}
elif style == 3:
ret = "%(var)s.%(method)s()" % {
'var': self._print_caller_var(expr.args[1]),
'method': func,
}
else:
ret = "%(func)s(%(args)s)" % {
'func': func,
'args': self.stringify(expr.args, ", "),
}
return ret
elif hasattr(expr, '_imp_') and isinstance(expr._imp_, Lambda):
# inlined function
return self._print(expr._imp_(*expr.args))
else:
return self._print_not_supported(expr)
def _print_Pow(self, expr):
if expr.base.is_integer and not expr.exp.is_integer:
expr = type(expr)(Float(expr.base), expr.exp)
return self._print(expr)
return self._print_Function(expr)
def _print_Float(self, expr, _type=False):
ret = super(RustCodePrinter, self)._print_Float(expr)
if _type:
return ret + '_f64'
else:
return ret
def _print_Integer(self, expr, _type=False):
ret = super(RustCodePrinter, self)._print_Integer(expr)
if _type:
return ret + '_i32'
else:
return ret
def _print_Rational(self, expr):
p, q = int(expr.p), int(expr.q)
return '%d_f64/%d.0' % (p, q)
def _print_Indexed(self, expr):
# calculate index for 1d array
dims = expr.shape
elem = S.Zero
offset = S.One
for i in reversed(range(expr.rank)):
elem += expr.indices[i]*offset
offset *= dims[i]
return "%s[%s]" % (self._print(expr.base.label), self._print(elem))
def _print_Idx(self, expr):
return expr.label.name
def _print_Dummy(self, expr):
return expr.name
def _print_Exp1(self, expr, _type=False):
return "E"
def _print_Pi(self, expr, _type=False):
return 'PI'
def _print_Infinity(self, expr, _type=False):
return 'INFINITY'
def _print_NegativeInfinity(self, expr, _type=False):
return 'NEG_INFINITY'
def _print_BooleanTrue(self, expr, _type=False):
return "true"
def _print_BooleanFalse(self, expr, _type=False):
return "false"
def _print_bool(self, expr, _type=False):
return str(expr).lower()
def _print_NaN(self, expr, _type=False):
return "NAN"
def _print_Piecewise(self, expr):
if expr.args[-1].cond != True:
# We need the last conditional to be a True, otherwise the resulting
# function may not return a result.
raise ValueError("All Piecewise expressions must contain an "
"(expr, True) statement to be used as a default "
"condition. Without one, the generated "
"expression may not evaluate to anything under "
"some condition.")
lines = []
for i, (e, c) in enumerate(expr.args):
if i == 0:
lines.append("if (%s) {" % self._print(c))
elif i == len(expr.args) - 1 and c == True:
lines[-1] += " else {"
else:
lines[-1] += " else if (%s) {" % self._print(c)
code0 = self._print(e)
lines.append(code0)
lines.append("}")
if self._settings['inline']:
return " ".join(lines)
else:
return "\n".join(lines)
def _print_ITE(self, expr):
from sympy.functions import Piecewise
_piecewise = Piecewise((expr.args[1], expr.args[0]), (expr.args[2], True))
return self._print(_piecewise)
def _print_Matrix(self, expr):
return "%s[%s]" % (expr.parent,
expr.j + expr.i*expr.parent.shape[1])
def _print_MatrixBase(self, A):
if A.cols == 1:
return "[%s]" % ", ".join(self._print(a) for a in A)
else:
raise ValueError("Full Matrix Support in Rust need Crates (https://crates.io/keywords/matrix).")
def _print_MatrixElement(self, expr):
return "%s[%s]" % (expr.parent,
expr.j + expr.i*expr.parent.shape[1])
# FIXME: Str/CodePrinter could define each of these to call the _print
# method from higher up the class hierarchy (see _print_NumberSymbol).
# Then subclasses like us would not need to repeat all this.
_print_Matrix = \
_print_MatrixElement = \
_print_DenseMatrix = \
_print_MutableDenseMatrix = \
_print_ImmutableMatrix = \
_print_ImmutableDenseMatrix = \
_print_MatrixBase
def _print_Symbol(self, expr):
name = super(RustCodePrinter, self)._print_Symbol(expr)
if expr in self._dereference:
return '(*%s)' % name
else:
return name
def _print_Assignment(self, expr):
from sympy.tensor.indexed import IndexedBase
lhs = expr.lhs
rhs = expr.rhs
if self._settings["contract"] and (lhs.has(IndexedBase) or
rhs.has(IndexedBase)):
# Here we check if there is looping to be done, and if so
# print the required loops.
return self._doprint_loops(rhs, lhs)
else:
lhs_code = self._print(lhs)
rhs_code = self._print(rhs)
return self._get_statement("%s = %s" % (lhs_code, rhs_code))
def indent_code(self, code):
"""Accepts a string of code or a list of code lines"""
if isinstance(code, string_types):
code_lines = self.indent_code(code.splitlines(True))
return ''.join(code_lines)
tab = " "
inc_token = ('{', '(', '{\n', '(\n')
dec_token = ('}', ')')
code = [ line.lstrip(' \t') for line in code ]
increase = [ int(any(map(line.endswith, inc_token))) for line in code ]
decrease = [ int(any(map(line.startswith, dec_token)))
for line in code ]
pretty = []
level = 0
for n, line in enumerate(code):
if line == '' or line == '\n':
pretty.append(line)
continue
level -= decrease[n]
pretty.append("%s%s" % (tab*level, line))
level += increase[n]
return pretty
def rust_code(expr, assign_to=None, **settings):
"""Converts an expr to a string of Rust code
Parameters
==========
expr : Expr
A sympy expression to be converted.
assign_to : optional
When given, the argument is used as the name of the variable to which
the expression is assigned. Can be a string, ``Symbol``,
``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of
line-wrapping, or for expressions that generate multi-line statements.
precision : integer, optional
The precision for numbers such as pi [default=15].
user_functions : dict, optional
A dictionary where the keys are string representations of either
``FunctionClass`` or ``UndefinedFunction`` instances and the values
are their desired C string representations. Alternatively, the
dictionary value can be a list of tuples i.e. [(argument_test,
cfunction_string)]. See below for examples.
dereference : iterable, optional
An iterable of symbols that should be dereferenced in the printed code
expression. These would be values passed by address to the function.
For example, if ``dereference=[a]``, the resulting code would print
``(*a)`` instead of ``a``.
human : bool, optional
If True, the result is a single string that may contain some constant
declarations for the number symbols. If False, the same information is
returned in a tuple of (symbols_to_declare, not_supported_functions,
code_text). [default=True].
contract: bool, optional
If True, ``Indexed`` instances are assumed to obey tensor contraction
rules and the corresponding nested loops over indices are generated.
Setting contract=False will not generate loops, instead the user is
responsible to provide values for the indices in the code.
[default=True].
Examples
========
>>> from sympy import rust_code, symbols, Rational, sin, ceiling, Abs, Function
>>> x, tau = symbols("x, tau")
>>> rust_code((2*tau)**Rational(7, 2))
'8*1.4142135623731*tau.powf(7_f64/2.0)'
>>> rust_code(sin(x), assign_to="s")
's = x.sin();'
Simple custom printing can be defined for certain types by passing a
dictionary of {"type" : "function"} to the ``user_functions`` kwarg.
Alternatively, the dictionary value can be a list of tuples i.e.
[(argument_test, cfunction_string)].
>>> custom_functions = {
... "ceiling": "CEIL",
... "Abs": [(lambda x: not x.is_integer, "fabs", 4),
... (lambda x: x.is_integer, "ABS", 4)],
... "func": "f"
... }
>>> func = Function('func')
>>> rust_code(func(Abs(x) + ceiling(x)), user_functions=custom_functions)
'(fabs(x) + x.CEIL()).f()'
``Piecewise`` expressions are converted into conditionals. If an
``assign_to`` variable is provided an if statement is created, otherwise
the ternary operator is used. Note that if the ``Piecewise`` lacks a
default term, represented by ``(expr, True)`` then an error will be thrown.
This is to prevent generating an expression that may not evaluate to
anything.
>>> from sympy import Piecewise
>>> expr = Piecewise((x + 1, x > 0), (x, True))
>>> print(rust_code(expr, tau))
tau = if (x > 0) {
x + 1
} else {
x
};
Support for loops is provided through ``Indexed`` types. With
``contract=True`` these expressions will be turned into loops, whereas
``contract=False`` will just print the assignment expression that should be
looped over:
>>> from sympy import Eq, IndexedBase, Idx
>>> len_y = 5
>>> y = IndexedBase('y', shape=(len_y,))
>>> t = IndexedBase('t', shape=(len_y,))
>>> Dy = IndexedBase('Dy', shape=(len_y-1,))
>>> i = Idx('i', len_y-1)
>>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
>>> rust_code(e.rhs, assign_to=e.lhs, contract=False)
'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);'
Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions
must be provided to ``assign_to``. Note that any expression that can be
generated normally can also exist inside a Matrix:
>>> from sympy import Matrix, MatrixSymbol
>>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)])
>>> A = MatrixSymbol('A', 3, 1)
>>> print(rust_code(mat, A))
A = [x.powi(2), if (x > 0) {
x + 1
} else {
x
}, x.sin()];
"""
return RustCodePrinter(settings).doprint(expr, assign_to)
def print_rust_code(expr, **settings):
"""Prints Rust representation of the given expression."""
print(rust_code(expr, **settings))
|
14c67e512ab824d25d67dad4ba8e82148ab0ff4ca2e9baf24fc427f67c56bcd7
|
"""
A few practical conventions common to all printers.
"""
from __future__ import print_function, division
import re
from sympy.core.compatibility import Iterable
_name_with_digits_p = re.compile(r'^([a-zA-Z]+)([0-9]+)$')
def split_super_sub(text):
"""Split a symbol name into a name, superscripts and subscripts
The first part of the symbol name is considered to be its actual
'name', followed by super- and subscripts. Each superscript is
preceded with a "^" character or by "__". Each subscript is preceded
by a "_" character. The three return values are the actual name, a
list with superscripts and a list with subscripts.
Examples
========
>>> from sympy.printing.conventions import split_super_sub
>>> split_super_sub('a_x^1')
('a', ['1'], ['x'])
>>> split_super_sub('var_sub1__sup_sub2')
('var', ['sup'], ['sub1', 'sub2'])
"""
if not text:
return text, [], []
pos = 0
name = None
supers = []
subs = []
while pos < len(text):
start = pos + 1
if text[pos:pos + 2] == "__":
start += 1
pos_hat = text.find("^", start)
if pos_hat < 0:
pos_hat = len(text)
pos_usc = text.find("_", start)
if pos_usc < 0:
pos_usc = len(text)
pos_next = min(pos_hat, pos_usc)
part = text[pos:pos_next]
pos = pos_next
if name is None:
name = part
elif part.startswith("^"):
supers.append(part[1:])
elif part.startswith("__"):
supers.append(part[2:])
elif part.startswith("_"):
subs.append(part[1:])
else:
raise RuntimeError("This should never happen.")
# make a little exception when a name ends with digits, i.e. treat them
# as a subscript too.
m = _name_with_digits_p.match(name)
if m:
name, sub = m.groups()
subs.insert(0, sub)
return name, supers, subs
def requires_partial(expr):
"""Return whether a partial derivative symbol is required for printing
This requires checking how many free variables there are,
filtering out the ones that are integers. Some expressions don't have
free variables. In that case, check its variable list explicitly to
get the context of the expression.
"""
if not isinstance(expr.free_symbols, Iterable):
return len(set(expr.variables)) > 1
return sum(not s.is_integer for s in expr.free_symbols) > 1
|
69b6d769a66b3d8b83db23416f679874734efd5ce4468d965e9900d9951e5012
|
"""
A Printer which converts an expression into its LaTeX equivalent.
"""
from __future__ import print_function, division
import itertools
from sympy.core import S, Add, Symbol, Mod
from sympy.core.alphabets import greeks
from sympy.core.containers import Tuple
from sympy.core.function import _coeff_isneg, AppliedUndef, Derivative
from sympy.core.operations import AssocOp
from sympy.core.sympify import SympifyError
from sympy.logic.boolalg import true
# sympy.printing imports
from sympy.printing.precedence import precedence_traditional
from sympy.printing.printer import Printer
from sympy.printing.conventions import split_super_sub, requires_partial
from sympy.printing.precedence import precedence, PRECEDENCE
import mpmath.libmp as mlib
from mpmath.libmp import prec_to_dps
from sympy.core.compatibility import default_sort_key, range
from sympy.utilities.iterables import has_variety
import re
# Hand-picked functions which can be used directly in both LaTeX and MathJax
# Complete list at
# https://docs.mathjax.org/en/latest/tex.html#supported-latex-commands
# This variable only contains those functions which sympy uses.
accepted_latex_functions = ['arcsin', 'arccos', 'arctan', 'sin', 'cos', 'tan',
'sinh', 'cosh', 'tanh', 'sqrt', 'ln', 'log', 'sec',
'csc', 'cot', 'coth', 're', 'im', 'frac', 'root',
'arg',
]
tex_greek_dictionary = {
'Alpha': 'A',
'Beta': 'B',
'Gamma': r'\Gamma',
'Delta': r'\Delta',
'Epsilon': 'E',
'Zeta': 'Z',
'Eta': 'H',
'Theta': r'\Theta',
'Iota': 'I',
'Kappa': 'K',
'Lambda': r'\Lambda',
'Mu': 'M',
'Nu': 'N',
'Xi': r'\Xi',
'omicron': 'o',
'Omicron': 'O',
'Pi': r'\Pi',
'Rho': 'P',
'Sigma': r'\Sigma',
'Tau': 'T',
'Upsilon': r'\Upsilon',
'Phi': r'\Phi',
'Chi': 'X',
'Psi': r'\Psi',
'Omega': r'\Omega',
'lamda': r'\lambda',
'Lamda': r'\Lambda',
'khi': r'\chi',
'Khi': r'X',
'varepsilon': r'\varepsilon',
'varkappa': r'\varkappa',
'varphi': r'\varphi',
'varpi': r'\varpi',
'varrho': r'\varrho',
'varsigma': r'\varsigma',
'vartheta': r'\vartheta',
}
other_symbols = set(['aleph', 'beth', 'daleth', 'gimel', 'ell', 'eth', 'hbar',
'hslash', 'mho', 'wp', ])
# Variable name modifiers
modifier_dict = {
# Accents
'mathring': lambda s: r'\mathring{'+s+r'}',
'ddddot': lambda s: r'\ddddot{'+s+r'}',
'dddot': lambda s: r'\dddot{'+s+r'}',
'ddot': lambda s: r'\ddot{'+s+r'}',
'dot': lambda s: r'\dot{'+s+r'}',
'check': lambda s: r'\check{'+s+r'}',
'breve': lambda s: r'\breve{'+s+r'}',
'acute': lambda s: r'\acute{'+s+r'}',
'grave': lambda s: r'\grave{'+s+r'}',
'tilde': lambda s: r'\tilde{'+s+r'}',
'hat': lambda s: r'\hat{'+s+r'}',
'bar': lambda s: r'\bar{'+s+r'}',
'vec': lambda s: r'\vec{'+s+r'}',
'prime': lambda s: "{"+s+"}'",
'prm': lambda s: "{"+s+"}'",
# Faces
'bold': lambda s: r'\boldsymbol{'+s+r'}',
'bm': lambda s: r'\boldsymbol{'+s+r'}',
'cal': lambda s: r'\mathcal{'+s+r'}',
'scr': lambda s: r'\mathscr{'+s+r'}',
'frak': lambda s: r'\mathfrak{'+s+r'}',
# Brackets
'norm': lambda s: r'\left\|{'+s+r'}\right\|',
'avg': lambda s: r'\left\langle{'+s+r'}\right\rangle',
'abs': lambda s: r'\left|{'+s+r'}\right|',
'mag': lambda s: r'\left|{'+s+r'}\right|',
}
greek_letters_set = frozenset(greeks)
_between_two_numbers_p = (
re.compile(r'[0-9][} ]*$'), # search
re.compile(r'[{ ]*[-+0-9]'), # match
)
class LatexPrinter(Printer):
printmethod = "_latex"
_default_settings = {
"fold_frac_powers": False,
"fold_func_brackets": False,
"fold_short_frac": None,
"inv_trig_style": "abbreviated",
"itex": False,
"ln_notation": False,
"long_frac_ratio": None,
"mat_delim": "[",
"mat_str": None,
"mode": "plain",
"mul_symbol": None,
"order": None,
"symbol_names": {},
"root_notation": True,
"mat_symbol_style": "plain",
"imaginary_unit": "i",
"gothic_re_im": False,
}
def __init__(self, settings=None):
Printer.__init__(self, settings)
if 'mode' in self._settings:
valid_modes = ['inline', 'plain', 'equation',
'equation*']
if self._settings['mode'] not in valid_modes:
raise ValueError("'mode' must be one of 'inline', 'plain', "
"'equation' or 'equation*'")
if self._settings['fold_short_frac'] is None and \
self._settings['mode'] == 'inline':
self._settings['fold_short_frac'] = True
mul_symbol_table = {
None: r" ",
"ldot": r" \,.\, ",
"dot": r" \cdot ",
"times": r" \times "
}
try:
self._settings['mul_symbol_latex'] = \
mul_symbol_table[self._settings['mul_symbol']]
except KeyError:
self._settings['mul_symbol_latex'] = \
self._settings['mul_symbol']
try:
self._settings['mul_symbol_latex_numbers'] = \
mul_symbol_table[self._settings['mul_symbol'] or 'dot']
except KeyError:
if (self._settings['mul_symbol'].strip() in
['', ' ', '\\', '\\,', '\\:', '\\;', '\\quad']):
self._settings['mul_symbol_latex_numbers'] = \
mul_symbol_table['dot']
else:
self._settings['mul_symbol_latex_numbers'] = \
self._settings['mul_symbol']
self._delim_dict = {'(': ')', '[': ']'}
imaginary_unit_table = {
None: r"i",
"i": r"i",
"ri": r"\mathrm{i}",
"ti": r"\text{i}",
"j": r"j",
"rj": r"\mathrm{j}",
"tj": r"\text{j}",
}
try:
self._settings['imaginary_unit_latex'] = \
imaginary_unit_table[self._settings['imaginary_unit']]
except KeyError:
self._settings['imaginary_unit_latex'] = \
self._settings['imaginary_unit']
def parenthesize(self, item, level, strict=False):
prec_val = precedence_traditional(item)
if (prec_val < level) or ((not strict) and prec_val <= level):
return r"\left({}\right)".format(self._print(item))
else:
return self._print(item)
def doprint(self, expr):
tex = Printer.doprint(self, expr)
if self._settings['mode'] == 'plain':
return tex
elif self._settings['mode'] == 'inline':
return r"$%s$" % tex
elif self._settings['itex']:
return r"$$%s$$" % tex
else:
env_str = self._settings['mode']
return r"\begin{%s}%s\end{%s}" % (env_str, tex, env_str)
def _needs_brackets(self, expr):
"""
Returns True if the expression needs to be wrapped in brackets when
printed, False otherwise. For example: a + b => True; a => False;
10 => False; -10 => True.
"""
return not ((expr.is_Integer and expr.is_nonnegative)
or (expr.is_Atom and (expr is not S.NegativeOne
and expr.is_Rational is False)))
def _needs_function_brackets(self, expr):
"""
Returns True if the expression needs to be wrapped in brackets when
passed as an argument to a function, False otherwise. This is a more
liberal version of _needs_brackets, in that many expressions which need
to be wrapped in brackets when added/subtracted/raised to a power do
not need them when passed to a function. Such an example is a*b.
"""
if not self._needs_brackets(expr):
return False
else:
# Muls of the form a*b*c... can be folded
if expr.is_Mul and not self._mul_is_clean(expr):
return True
# Pows which don't need brackets can be folded
elif expr.is_Pow and not self._pow_is_clean(expr):
return True
# Add and Function always need brackets
elif expr.is_Add or expr.is_Function:
return True
else:
return False
def _needs_mul_brackets(self, expr, first=False, last=False):
"""
Returns True if the expression needs to be wrapped in brackets when
printed as part of a Mul, False otherwise. This is True for Add,
but also for some container objects that would not need brackets
when appearing last in a Mul, e.g. an Integral. ``last=True``
specifies that this expr is the last to appear in a Mul.
``first=True`` specifies that this expr is the first to appear in
a Mul.
"""
from sympy import Integral, Product, Sum
if expr.is_Mul:
if not first and _coeff_isneg(expr):
return True
elif precedence_traditional(expr) < PRECEDENCE["Mul"]:
return True
elif expr.is_Relational:
return True
if expr.is_Piecewise:
return True
if any([expr.has(x) for x in (Mod,)]):
return True
if (not last and
any([expr.has(x) for x in (Integral, Product, Sum)])):
return True
return False
def _needs_add_brackets(self, expr):
"""
Returns True if the expression needs to be wrapped in brackets when
printed as part of an Add, False otherwise. This is False for most
things.
"""
if expr.is_Relational:
return True
if any([expr.has(x) for x in (Mod,)]):
return True
if expr.is_Add:
return True
return False
def _mul_is_clean(self, expr):
for arg in expr.args:
if arg.is_Function:
return False
return True
def _pow_is_clean(self, expr):
return not self._needs_brackets(expr.base)
def _do_exponent(self, expr, exp):
if exp is not None:
return r"\left(%s\right)^{%s}" % (expr, exp)
else:
return expr
def _print_Basic(self, expr):
ls = [self._print(o) for o in expr.args]
return self._deal_with_super_sub(expr.__class__.__name__) + \
r"\left(%s\right)" % ", ".join(ls)
def _print_bool(self, e):
return r"\text{%s}" % e
_print_BooleanTrue = _print_bool
_print_BooleanFalse = _print_bool
def _print_NoneType(self, e):
return r"\text{%s}" % e
def _print_Add(self, expr, order=None):
if self.order == 'none':
terms = list(expr.args)
else:
terms = self._as_ordered_terms(expr, order=order)
tex = ""
for i, term in enumerate(terms):
if i == 0:
pass
elif _coeff_isneg(term):
tex += " - "
term = -term
else:
tex += " + "
term_tex = self._print(term)
if self._needs_add_brackets(term):
term_tex = r"\left(%s\right)" % term_tex
tex += term_tex
return tex
def _print_Cycle(self, expr):
from sympy.combinatorics.permutations import Permutation
if expr.size == 0:
return r"\left( \right)"
expr = Permutation(expr)
expr_perm = expr.cyclic_form
siz = expr.size
if expr.array_form[-1] == siz - 1:
expr_perm = expr_perm + [[siz - 1]]
term_tex = ''
for i in expr_perm:
term_tex += str(i).replace(',', r"\;")
term_tex = term_tex.replace('[', r"\left( ")
term_tex = term_tex.replace(']', r"\right)")
return term_tex
_print_Permutation = _print_Cycle
def _print_Float(self, expr):
# Based off of that in StrPrinter
dps = prec_to_dps(expr._prec)
str_real = mlib.to_str(expr._mpf_, dps, strip_zeros=True)
# Must always have a mul symbol (as 2.5 10^{20} just looks odd)
# thus we use the number separator
separator = self._settings['mul_symbol_latex_numbers']
if 'e' in str_real:
(mant, exp) = str_real.split('e')
if exp[0] == '+':
exp = exp[1:]
return r"%s%s10^{%s}" % (mant, separator, exp)
elif str_real == "+inf":
return r"\infty"
elif str_real == "-inf":
return r"- \infty"
else:
return str_real
def _print_Cross(self, expr):
vec1 = expr._expr1
vec2 = expr._expr2
return r"%s \times %s" % (self.parenthesize(vec1, PRECEDENCE['Mul']),
self.parenthesize(vec2, PRECEDENCE['Mul']))
def _print_Curl(self, expr):
vec = expr._expr
return r"\nabla\times %s" % self.parenthesize(vec, PRECEDENCE['Mul'])
def _print_Divergence(self, expr):
vec = expr._expr
return r"\nabla\cdot %s" % self.parenthesize(vec, PRECEDENCE['Mul'])
def _print_Dot(self, expr):
vec1 = expr._expr1
vec2 = expr._expr2
return r"%s \cdot %s" % (self.parenthesize(vec1, PRECEDENCE['Mul']),
self.parenthesize(vec2, PRECEDENCE['Mul']))
def _print_Gradient(self, expr):
func = expr._expr
return r"\nabla %s" % self.parenthesize(func, PRECEDENCE['Mul'])
def _print_Laplacian(self, expr):
func = expr._expr
return r"\triangle %s" % self.parenthesize(func, PRECEDENCE['Mul'])
def _print_Mul(self, expr):
from sympy.core.power import Pow
from sympy.physics.units import Quantity
include_parens = False
if _coeff_isneg(expr):
expr = -expr
tex = "- "
if expr.is_Add:
tex += "("
include_parens = True
else:
tex = ""
from sympy.simplify import fraction
numer, denom = fraction(expr, exact=True)
separator = self._settings['mul_symbol_latex']
numbersep = self._settings['mul_symbol_latex_numbers']
def convert(expr):
if not expr.is_Mul:
return str(self._print(expr))
else:
_tex = last_term_tex = ""
if self.order not in ('old', 'none'):
args = expr.as_ordered_factors()
else:
args = list(expr.args)
# If quantities are present append them at the back
args = sorted(args, key=lambda x: isinstance(x, Quantity) or
(isinstance(x, Pow) and
isinstance(x.base, Quantity)))
for i, term in enumerate(args):
term_tex = self._print(term)
if self._needs_mul_brackets(term, first=(i == 0),
last=(i == len(args) - 1)):
term_tex = r"\left(%s\right)" % term_tex
if _between_two_numbers_p[0].search(last_term_tex) and \
_between_two_numbers_p[1].match(term_tex):
# between two numbers
_tex += numbersep
elif _tex:
_tex += separator
_tex += term_tex
last_term_tex = term_tex
return _tex
if denom is S.One and Pow(1, -1, evaluate=False) not in expr.args:
# use the original expression here, since fraction() may have
# altered it when producing numer and denom
tex += convert(expr)
else:
snumer = convert(numer)
sdenom = convert(denom)
ldenom = len(sdenom.split())
ratio = self._settings['long_frac_ratio']
if self._settings['fold_short_frac'] and ldenom <= 2 and \
"^" not in sdenom:
# handle short fractions
if self._needs_mul_brackets(numer, last=False):
tex += r"\left(%s\right) / %s" % (snumer, sdenom)
else:
tex += r"%s / %s" % (snumer, sdenom)
elif ratio is not None and \
len(snumer.split()) > ratio*ldenom:
# handle long fractions
if self._needs_mul_brackets(numer, last=True):
tex += r"\frac{1}{%s}%s\left(%s\right)" \
% (sdenom, separator, snumer)
elif numer.is_Mul:
# split a long numerator
a = S.One
b = S.One
for x in numer.args:
if self._needs_mul_brackets(x, last=False) or \
len(convert(a*x).split()) > ratio*ldenom or \
(b.is_commutative is x.is_commutative is False):
b *= x
else:
a *= x
if self._needs_mul_brackets(b, last=True):
tex += r"\frac{%s}{%s}%s\left(%s\right)" \
% (convert(a), sdenom, separator, convert(b))
else:
tex += r"\frac{%s}{%s}%s%s" \
% (convert(a), sdenom, separator, convert(b))
else:
tex += r"\frac{1}{%s}%s%s" % (sdenom, separator, snumer)
else:
tex += r"\frac{%s}{%s}" % (snumer, sdenom)
if include_parens:
tex += ")"
return tex
def _print_Pow(self, expr):
# Treat x**Rational(1,n) as special case
if expr.exp.is_Rational and abs(expr.exp.p) == 1 and expr.exp.q != 1 \
and self._settings['root_notation']:
base = self._print(expr.base)
expq = expr.exp.q
if expq == 2:
tex = r"\sqrt{%s}" % base
elif self._settings['itex']:
tex = r"\root{%d}{%s}" % (expq, base)
else:
tex = r"\sqrt[%d]{%s}" % (expq, base)
if expr.exp.is_negative:
return r"\frac{1}{%s}" % tex
else:
return tex
elif self._settings['fold_frac_powers'] \
and expr.exp.is_Rational \
and expr.exp.q != 1:
base = self.parenthesize(expr.base, PRECEDENCE['Pow'])
p, q = expr.exp.p, expr.exp.q
# issue #12886: add parentheses for superscripts raised to powers
if '^' in base and expr.base.is_Symbol:
base = r"\left(%s\right)" % base
if expr.base.is_Function:
return self._print(expr.base, exp="%s/%s" % (p, q))
return r"%s^{%s/%s}" % (base, p, q)
elif expr.exp.is_Rational and expr.exp.is_negative and \
expr.base.is_commutative:
# special case for 1^(-x), issue 9216
if expr.base == 1:
return r"%s^{%s}" % (expr.base, expr.exp)
# things like 1/x
return self._print_Mul(expr)
else:
if expr.base.is_Function:
return self._print(expr.base, exp=self._print(expr.exp))
else:
tex = r"%s^{%s}"
exp = self._print(expr.exp)
# issue #12886: add parentheses around superscripts raised
# to powers
base = self.parenthesize(expr.base, PRECEDENCE['Pow'])
if '^' in base and expr.base.is_Symbol:
base = r"\left(%s\right)" % base
elif (isinstance(expr.base, Derivative)
and base.startswith(r'\left(')
and re.match(r'\\left\(\\d?d?dot', base)
and base.endswith(r'\right)')):
# don't use parentheses around dotted derivative
base = base[6: -7] # remove outermost added parens
return tex % (base, exp)
def _print_UnevaluatedExpr(self, expr):
return self._print(expr.args[0])
def _print_Sum(self, expr):
if len(expr.limits) == 1:
tex = r"\sum_{%s=%s}^{%s} " % \
tuple([self._print(i) for i in expr.limits[0]])
else:
def _format_ineq(l):
return r"%s \leq %s \leq %s" % \
tuple([self._print(s) for s in (l[1], l[0], l[2])])
tex = r"\sum_{\substack{%s}} " % \
str.join('\\\\', [_format_ineq(l) for l in expr.limits])
if isinstance(expr.function, Add):
tex += r"\left(%s\right)" % self._print(expr.function)
else:
tex += self._print(expr.function)
return tex
def _print_Product(self, expr):
if len(expr.limits) == 1:
tex = r"\prod_{%s=%s}^{%s} " % \
tuple([self._print(i) for i in expr.limits[0]])
else:
def _format_ineq(l):
return r"%s \leq %s \leq %s" % \
tuple([self._print(s) for s in (l[1], l[0], l[2])])
tex = r"\prod_{\substack{%s}} " % \
str.join('\\\\', [_format_ineq(l) for l in expr.limits])
if isinstance(expr.function, Add):
tex += r"\left(%s\right)" % self._print(expr.function)
else:
tex += self._print(expr.function)
return tex
def _print_BasisDependent(self, expr):
from sympy.vector import Vector
o1 = []
if expr == expr.zero:
return expr.zero._latex_form
if isinstance(expr, Vector):
items = expr.separate().items()
else:
items = [(0, expr)]
for system, vect in items:
inneritems = list(vect.components.items())
inneritems.sort(key=lambda x: x[0].__str__())
for k, v in inneritems:
if v == 1:
o1.append(' + ' + k._latex_form)
elif v == -1:
o1.append(' - ' + k._latex_form)
else:
arg_str = '(' + LatexPrinter().doprint(v) + ')'
o1.append(' + ' + arg_str + k._latex_form)
outstr = (''.join(o1))
if outstr[1] != '-':
outstr = outstr[3:]
else:
outstr = outstr[1:]
return outstr
def _print_Indexed(self, expr):
tex_base = self._print(expr.base)
tex = '{'+tex_base+'}'+'_{%s}' % ','.join(
map(self._print, expr.indices))
return tex
def _print_IndexedBase(self, expr):
return self._print(expr.label)
def _print_Derivative(self, expr):
if requires_partial(expr):
diff_symbol = r'\partial'
else:
diff_symbol = r'd'
tex = ""
dim = 0
for x, num in reversed(expr.variable_count):
dim += num
if num == 1:
tex += r"%s %s" % (diff_symbol, self._print(x))
else:
tex += r"%s %s^{%s}" % (diff_symbol, self._print(x), num)
if dim == 1:
tex = r"\frac{%s}{%s}" % (diff_symbol, tex)
else:
tex = r"\frac{%s^{%s}}{%s}" % (diff_symbol, dim, tex)
return r"%s %s" % (tex, self.parenthesize(expr.expr,
PRECEDENCE["Mul"],
strict=True))
def _print_Subs(self, subs):
expr, old, new = subs.args
latex_expr = self._print(expr)
latex_old = (self._print(e) for e in old)
latex_new = (self._print(e) for e in new)
latex_subs = r'\\ '.join(
e[0] + '=' + e[1] for e in zip(latex_old, latex_new))
return r'\left. %s \right|_{\substack{ %s }}' % (latex_expr,
latex_subs)
def _print_Integral(self, expr):
tex, symbols = "", []
# Only up to \iiiint exists
if len(expr.limits) <= 4 and all(len(lim) == 1 for lim in expr.limits):
# Use len(expr.limits)-1 so that syntax highlighters don't think
# \" is an escaped quote
tex = r"\i" + "i"*(len(expr.limits) - 1) + "nt"
symbols = [r"\, d%s" % self._print(symbol[0])
for symbol in expr.limits]
else:
for lim in reversed(expr.limits):
symbol = lim[0]
tex += r"\int"
if len(lim) > 1:
if self._settings['mode'] != 'inline' \
and not self._settings['itex']:
tex += r"\limits"
if len(lim) == 3:
tex += "_{%s}^{%s}" % (self._print(lim[1]),
self._print(lim[2]))
if len(lim) == 2:
tex += "^{%s}" % (self._print(lim[1]))
symbols.insert(0, r"\, d%s" % self._print(symbol))
return r"%s %s%s" % (tex, self.parenthesize(expr.function,
PRECEDENCE["Mul"],
strict=True),
"".join(symbols))
def _print_Limit(self, expr):
e, z, z0, dir = expr.args
tex = r"\lim_{%s \to " % self._print(z)
if str(dir) == '+-' or z0 in (S.Infinity, S.NegativeInfinity):
tex += r"%s}" % self._print(z0)
else:
tex += r"%s^%s}" % (self._print(z0), self._print(dir))
if isinstance(e, AssocOp):
return r"%s\left(%s\right)" % (tex, self._print(e))
else:
return r"%s %s" % (tex, self._print(e))
def _hprint_Function(self, func):
r'''
Logic to decide how to render a function to latex
- if it is a recognized latex name, use the appropriate latex command
- if it is a single letter, just use that letter
- if it is a longer name, then put \operatorname{} around it and be
mindful of undercores in the name
'''
func = self._deal_with_super_sub(func)
if func in accepted_latex_functions:
name = r"\%s" % func
elif len(func) == 1 or func.startswith('\\'):
name = func
else:
name = r"\operatorname{%s}" % func
return name
def _print_Function(self, expr, exp=None):
r'''
Render functions to LaTeX, handling functions that LaTeX knows about
e.g., sin, cos, ... by using the proper LaTeX command (\sin, \cos, ...).
For single-letter function names, render them as regular LaTeX math
symbols. For multi-letter function names that LaTeX does not know
about, (e.g., Li, sech) use \operatorname{} so that the function name
is rendered in Roman font and LaTeX handles spacing properly.
expr is the expression involving the function
exp is an exponent
'''
func = expr.func.__name__
if hasattr(self, '_print_' + func) and \
not isinstance(expr, AppliedUndef):
return getattr(self, '_print_' + func)(expr, exp)
else:
args = [str(self._print(arg)) for arg in expr.args]
# How inverse trig functions should be displayed, formats are:
# abbreviated: asin, full: arcsin, power: sin^-1
inv_trig_style = self._settings['inv_trig_style']
# If we are dealing with a power-style inverse trig function
inv_trig_power_case = False
# If it is applicable to fold the argument brackets
can_fold_brackets = self._settings['fold_func_brackets'] and \
len(args) == 1 and \
not self._needs_function_brackets(expr.args[0])
inv_trig_table = ["asin", "acos", "atan", "acsc", "asec", "acot"]
# If the function is an inverse trig function, handle the style
if func in inv_trig_table:
if inv_trig_style == "abbreviated":
pass
elif inv_trig_style == "full":
func = "arc" + func[1:]
elif inv_trig_style == "power":
func = func[1:]
inv_trig_power_case = True
# Can never fold brackets if we're raised to a power
if exp is not None:
can_fold_brackets = False
if inv_trig_power_case:
if func in accepted_latex_functions:
name = r"\%s^{-1}" % func
else:
name = r"\operatorname{%s}^{-1}" % func
elif exp is not None:
name = r'%s^{%s}' % (self._hprint_Function(func), exp)
else:
name = self._hprint_Function(func)
if can_fold_brackets:
if func in accepted_latex_functions:
# Wrap argument safely to avoid parse-time conflicts
# with the function name itself
name += r" {%s}"
else:
name += r"%s"
else:
name += r"{\left(%s \right)}"
if inv_trig_power_case and exp is not None:
name += r"^{%s}" % exp
return name % ",".join(args)
def _print_UndefinedFunction(self, expr):
return self._hprint_Function(str(expr))
@property
def _special_function_classes(self):
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.functions.special.gamma_functions import gamma, lowergamma
from sympy.functions.special.beta_functions import beta
from sympy.functions.special.delta_functions import DiracDelta
from sympy.functions.special.error_functions import Chi
return {KroneckerDelta: r'\delta',
gamma: r'\Gamma',
lowergamma: r'\gamma',
beta: r'\operatorname{B}',
DiracDelta: r'\delta',
Chi: r'\operatorname{Chi}'}
def _print_FunctionClass(self, expr):
for cls in self._special_function_classes:
if issubclass(expr, cls) and expr.__name__ == cls.__name__:
return self._special_function_classes[cls]
return self._hprint_Function(str(expr))
def _print_Lambda(self, expr):
symbols, expr = expr.args
if len(symbols) == 1:
symbols = self._print(symbols[0])
else:
symbols = self._print(tuple(symbols))
tex = r"\left( %s \mapsto %s \right)" % (symbols, self._print(expr))
return tex
def _hprint_variadic_function(self, expr, exp=None):
args = sorted(expr.args, key=default_sort_key)
texargs = [r"%s" % self._print(symbol) for symbol in args]
tex = r"\%s\left(%s\right)" % (self._print((str(expr.func)).lower()),
", ".join(texargs))
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
_print_Min = _print_Max = _hprint_variadic_function
def _print_floor(self, expr, exp=None):
tex = r"\left\lfloor{%s}\right\rfloor" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_ceiling(self, expr, exp=None):
tex = r"\left\lceil{%s}\right\rceil" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_log(self, expr, exp=None):
if not self._settings["ln_notation"]:
tex = r"\log{\left(%s \right)}" % self._print(expr.args[0])
else:
tex = r"\ln{\left(%s \right)}" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_Abs(self, expr, exp=None):
tex = r"\left|{%s}\right|" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
_print_Determinant = _print_Abs
def _print_re(self, expr, exp=None):
if self._settings['gothic_re_im']:
tex = r"\Re{%s}" % self.parenthesize(expr.args[0], PRECEDENCE['Atom'])
else:
tex = r"\operatorname{{re}}{{{}}}".format(self.parenthesize(expr.args[0], PRECEDENCE['Atom']))
return self._do_exponent(tex, exp)
def _print_im(self, expr, exp=None):
if self._settings['gothic_re_im']:
tex = r"\Im{%s}" % self.parenthesize(expr.args[0], PRECEDENCE['Atom'])
else:
tex = r"\operatorname{{im}}{{{}}}".format(self.parenthesize(expr.args[0], PRECEDENCE['Atom']))
return self._do_exponent(tex, exp)
def _print_Not(self, e):
from sympy import Equivalent, Implies
if isinstance(e.args[0], Equivalent):
return self._print_Equivalent(e.args[0], r"\not\Leftrightarrow")
if isinstance(e.args[0], Implies):
return self._print_Implies(e.args[0], r"\not\Rightarrow")
if (e.args[0].is_Boolean):
return r"\neg (%s)" % self._print(e.args[0])
else:
return r"\neg %s" % self._print(e.args[0])
def _print_LogOp(self, args, char):
arg = args[0]
if arg.is_Boolean and not arg.is_Not:
tex = r"\left(%s\right)" % self._print(arg)
else:
tex = r"%s" % self._print(arg)
for arg in args[1:]:
if arg.is_Boolean and not arg.is_Not:
tex += r" %s \left(%s\right)" % (char, self._print(arg))
else:
tex += r" %s %s" % (char, self._print(arg))
return tex
def _print_And(self, e):
args = sorted(e.args, key=default_sort_key)
return self._print_LogOp(args, r"\wedge")
def _print_Or(self, e):
args = sorted(e.args, key=default_sort_key)
return self._print_LogOp(args, r"\vee")
def _print_Xor(self, e):
args = sorted(e.args, key=default_sort_key)
return self._print_LogOp(args, r"\veebar")
def _print_Implies(self, e, altchar=None):
return self._print_LogOp(e.args, altchar or r"\Rightarrow")
def _print_Equivalent(self, e, altchar=None):
args = sorted(e.args, key=default_sort_key)
return self._print_LogOp(args, altchar or r"\Leftrightarrow")
def _print_conjugate(self, expr, exp=None):
tex = r"\overline{%s}" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_polar_lift(self, expr, exp=None):
func = r"\operatorname{polar\_lift}"
arg = r"{\left(%s \right)}" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}%s" % (func, exp, arg)
else:
return r"%s%s" % (func, arg)
def _print_ExpBase(self, expr, exp=None):
# TODO should exp_polar be printed differently?
# what about exp_polar(0), exp_polar(1)?
tex = r"e^{%s}" % self._print(expr.args[0])
return self._do_exponent(tex, exp)
def _print_elliptic_k(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"K^{%s}%s" % (exp, tex)
else:
return r"K%s" % tex
def _print_elliptic_f(self, expr, exp=None):
tex = r"\left(%s\middle| %s\right)" % \
(self._print(expr.args[0]), self._print(expr.args[1]))
if exp is not None:
return r"F^{%s}%s" % (exp, tex)
else:
return r"F%s" % tex
def _print_elliptic_e(self, expr, exp=None):
if len(expr.args) == 2:
tex = r"\left(%s\middle| %s\right)" % \
(self._print(expr.args[0]), self._print(expr.args[1]))
else:
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"E^{%s}%s" % (exp, tex)
else:
return r"E%s" % tex
def _print_elliptic_pi(self, expr, exp=None):
if len(expr.args) == 3:
tex = r"\left(%s; %s\middle| %s\right)" % \
(self._print(expr.args[0]), self._print(expr.args[1]),
self._print(expr.args[2]))
else:
tex = r"\left(%s\middle| %s\right)" % \
(self._print(expr.args[0]), self._print(expr.args[1]))
if exp is not None:
return r"\Pi^{%s}%s" % (exp, tex)
else:
return r"\Pi%s" % tex
def _print_beta(self, expr, exp=None):
tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]),
self._print(expr.args[1]))
if exp is not None:
return r"\operatorname{B}^{%s}%s" % (exp, tex)
else:
return r"\operatorname{B}%s" % tex
def _print_uppergamma(self, expr, exp=None):
tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]),
self._print(expr.args[1]))
if exp is not None:
return r"\Gamma^{%s}%s" % (exp, tex)
else:
return r"\Gamma%s" % tex
def _print_lowergamma(self, expr, exp=None):
tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]),
self._print(expr.args[1]))
if exp is not None:
return r"\gamma^{%s}%s" % (exp, tex)
else:
return r"\gamma%s" % tex
def _hprint_one_arg_func(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}%s" % (self._print(expr.func), exp, tex)
else:
return r"%s%s" % (self._print(expr.func), tex)
_print_gamma = _hprint_one_arg_func
def _print_Chi(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"\operatorname{Chi}^{%s}%s" % (exp, tex)
else:
return r"\operatorname{Chi}%s" % tex
def _print_expint(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[1])
nu = self._print(expr.args[0])
if exp is not None:
return r"\operatorname{E}_{%s}^{%s}%s" % (nu, exp, tex)
else:
return r"\operatorname{E}_{%s}%s" % (nu, tex)
def _print_fresnels(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"S^{%s}%s" % (exp, tex)
else:
return r"S%s" % tex
def _print_fresnelc(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"C^{%s}%s" % (exp, tex)
else:
return r"C%s" % tex
def _print_subfactorial(self, expr, exp=None):
tex = r"!%s" % self.parenthesize(expr.args[0], PRECEDENCE["Func"])
if exp is not None:
return r"\left(%s\right)^{%s}" % (tex, exp)
else:
return tex
def _print_factorial(self, expr, exp=None):
tex = r"%s!" % self.parenthesize(expr.args[0], PRECEDENCE["Func"])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_factorial2(self, expr, exp=None):
tex = r"%s!!" % self.parenthesize(expr.args[0], PRECEDENCE["Func"])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_binomial(self, expr, exp=None):
tex = r"{\binom{%s}{%s}}" % (self._print(expr.args[0]),
self._print(expr.args[1]))
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_RisingFactorial(self, expr, exp=None):
n, k = expr.args
base = r"%s" % self.parenthesize(n, PRECEDENCE['Func'])
tex = r"{%s}^{\left(%s\right)}" % (base, self._print(k))
return self._do_exponent(tex, exp)
def _print_FallingFactorial(self, expr, exp=None):
n, k = expr.args
sub = r"%s" % self.parenthesize(k, PRECEDENCE['Func'])
tex = r"{\left(%s\right)}_{%s}" % (self._print(n), sub)
return self._do_exponent(tex, exp)
def _hprint_BesselBase(self, expr, exp, sym):
tex = r"%s" % (sym)
need_exp = False
if exp is not None:
if tex.find('^') == -1:
tex = r"%s^{%s}" % (tex, self._print(exp))
else:
need_exp = True
tex = r"%s_{%s}\left(%s\right)" % (tex, self._print(expr.order),
self._print(expr.argument))
if need_exp:
tex = self._do_exponent(tex, exp)
return tex
def _hprint_vec(self, vec):
if not vec:
return ""
s = ""
for i in vec[:-1]:
s += "%s, " % self._print(i)
s += self._print(vec[-1])
return s
def _print_besselj(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'J')
def _print_besseli(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'I')
def _print_besselk(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'K')
def _print_bessely(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'Y')
def _print_yn(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'y')
def _print_jn(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'j')
def _print_hankel1(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'H^{(1)}')
def _print_hankel2(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'H^{(2)}')
def _print_hn1(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'h^{(1)}')
def _print_hn2(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'h^{(2)}')
def _hprint_airy(self, expr, exp=None, notation=""):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}%s" % (notation, exp, tex)
else:
return r"%s%s" % (notation, tex)
def _hprint_airy_prime(self, expr, exp=None, notation=""):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"{%s^\prime}^{%s}%s" % (notation, exp, tex)
else:
return r"%s^\prime%s" % (notation, tex)
def _print_airyai(self, expr, exp=None):
return self._hprint_airy(expr, exp, 'Ai')
def _print_airybi(self, expr, exp=None):
return self._hprint_airy(expr, exp, 'Bi')
def _print_airyaiprime(self, expr, exp=None):
return self._hprint_airy_prime(expr, exp, 'Ai')
def _print_airybiprime(self, expr, exp=None):
return self._hprint_airy_prime(expr, exp, 'Bi')
def _print_hyper(self, expr, exp=None):
tex = r"{{}_{%s}F_{%s}\left(\begin{matrix} %s \\ %s \end{matrix}" \
r"\middle| {%s} \right)}" % \
(self._print(len(expr.ap)), self._print(len(expr.bq)),
self._hprint_vec(expr.ap), self._hprint_vec(expr.bq),
self._print(expr.argument))
if exp is not None:
tex = r"{%s}^{%s}" % (tex, self._print(exp))
return tex
def _print_meijerg(self, expr, exp=None):
tex = r"{G_{%s, %s}^{%s, %s}\left(\begin{matrix} %s & %s \\" \
r"%s & %s \end{matrix} \middle| {%s} \right)}" % \
(self._print(len(expr.ap)), self._print(len(expr.bq)),
self._print(len(expr.bm)), self._print(len(expr.an)),
self._hprint_vec(expr.an), self._hprint_vec(expr.aother),
self._hprint_vec(expr.bm), self._hprint_vec(expr.bother),
self._print(expr.argument))
if exp is not None:
tex = r"{%s}^{%s}" % (tex, self._print(exp))
return tex
def _print_dirichlet_eta(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"\eta^{%s}%s" % (self._print(exp), tex)
return r"\eta%s" % tex
def _print_zeta(self, expr, exp=None):
if len(expr.args) == 2:
tex = r"\left(%s, %s\right)" % tuple(map(self._print, expr.args))
else:
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"\zeta^{%s}%s" % (self._print(exp), tex)
return r"\zeta%s" % tex
def _print_lerchphi(self, expr, exp=None):
tex = r"\left(%s, %s, %s\right)" % tuple(map(self._print, expr.args))
if exp is None:
return r"\Phi%s" % tex
return r"\Phi^{%s}%s" % (self._print(exp), tex)
def _print_polylog(self, expr, exp=None):
s, z = map(self._print, expr.args)
tex = r"\left(%s\right)" % z
if exp is None:
return r"\operatorname{Li}_{%s}%s" % (s, tex)
return r"\operatorname{Li}_{%s}^{%s}%s" % (s, self._print(exp), tex)
def _print_jacobi(self, expr, exp=None):
n, a, b, x = map(self._print, expr.args)
tex = r"P_{%s}^{\left(%s,%s\right)}\left(%s\right)" % (n, a, b, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp))
return tex
def _print_gegenbauer(self, expr, exp=None):
n, a, x = map(self._print, expr.args)
tex = r"C_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp))
return tex
def _print_chebyshevt(self, expr, exp=None):
n, x = map(self._print, expr.args)
tex = r"T_{%s}\left(%s\right)" % (n, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp))
return tex
def _print_chebyshevu(self, expr, exp=None):
n, x = map(self._print, expr.args)
tex = r"U_{%s}\left(%s\right)" % (n, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp))
return tex
def _print_legendre(self, expr, exp=None):
n, x = map(self._print, expr.args)
tex = r"P_{%s}\left(%s\right)" % (n, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp))
return tex
def _print_assoc_legendre(self, expr, exp=None):
n, a, x = map(self._print, expr.args)
tex = r"P_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp))
return tex
def _print_hermite(self, expr, exp=None):
n, x = map(self._print, expr.args)
tex = r"H_{%s}\left(%s\right)" % (n, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp))
return tex
def _print_laguerre(self, expr, exp=None):
n, x = map(self._print, expr.args)
tex = r"L_{%s}\left(%s\right)" % (n, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp))
return tex
def _print_assoc_laguerre(self, expr, exp=None):
n, a, x = map(self._print, expr.args)
tex = r"L_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp))
return tex
def _print_Ynm(self, expr, exp=None):
n, m, theta, phi = map(self._print, expr.args)
tex = r"Y_{%s}^{%s}\left(%s,%s\right)" % (n, m, theta, phi)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp))
return tex
def _print_Znm(self, expr, exp=None):
n, m, theta, phi = map(self._print, expr.args)
tex = r"Z_{%s}^{%s}\left(%s,%s\right)" % (n, m, theta, phi)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp))
return tex
def _print_Rational(self, expr):
if expr.q != 1:
sign = ""
p = expr.p
if expr.p < 0:
sign = "- "
p = -p
if self._settings['fold_short_frac']:
return r"%s%d / %d" % (sign, p, expr.q)
return r"%s\frac{%d}{%d}" % (sign, p, expr.q)
else:
return self._print(expr.p)
def _print_Order(self, expr):
s = self._print(expr.expr)
if expr.point and any(p != S.Zero for p in expr.point) or \
len(expr.variables) > 1:
s += '; '
if len(expr.variables) > 1:
s += self._print(expr.variables)
elif expr.variables:
s += self._print(expr.variables[0])
s += r'\rightarrow '
if len(expr.point) > 1:
s += self._print(expr.point)
else:
s += self._print(expr.point[0])
return r"O\left(%s\right)" % s
def _print_Symbol(self, expr, style='plain'):
if expr in self._settings['symbol_names']:
return self._settings['symbol_names'][expr]
result = self._deal_with_super_sub(expr.name) if \
'\\' not in expr.name else expr.name
if style == 'bold':
result = r"\mathbf{{{}}}".format(result)
return result
_print_RandomSymbol = _print_Symbol
def _print_MatrixSymbol(self, expr):
return self._print_Symbol(expr,
style=self._settings['mat_symbol_style'])
def _deal_with_super_sub(self, string):
if '{' in string:
return string
name, supers, subs = split_super_sub(string)
name = translate(name)
supers = [translate(sup) for sup in supers]
subs = [translate(sub) for sub in subs]
# glue all items together:
if supers:
name += "^{%s}" % " ".join(supers)
if subs:
name += "_{%s}" % " ".join(subs)
return name
def _print_Relational(self, expr):
if self._settings['itex']:
gt = r"\gt"
lt = r"\lt"
else:
gt = ">"
lt = "<"
charmap = {
"==": "=",
">": gt,
"<": lt,
">=": r"\geq",
"<=": r"\leq",
"!=": r"\neq",
}
return "%s %s %s" % (self._print(expr.lhs),
charmap[expr.rel_op], self._print(expr.rhs))
def _print_Piecewise(self, expr):
ecpairs = [r"%s & \text{for}\: %s" % (self._print(e), self._print(c))
for e, c in expr.args[:-1]]
if expr.args[-1].cond == true:
ecpairs.append(r"%s & \text{otherwise}" %
self._print(expr.args[-1].expr))
else:
ecpairs.append(r"%s & \text{for}\: %s" %
(self._print(expr.args[-1].expr),
self._print(expr.args[-1].cond)))
tex = r"\begin{cases} %s \end{cases}"
return tex % r" \\".join(ecpairs)
def _print_MatrixBase(self, expr):
lines = []
for line in range(expr.rows): # horrible, should be 'rows'
lines.append(" & ".join([self._print(i) for i in expr[line, :]]))
mat_str = self._settings['mat_str']
if mat_str is None:
if self._settings['mode'] == 'inline':
mat_str = 'smallmatrix'
else:
if (expr.cols <= 10) is True:
mat_str = 'matrix'
else:
mat_str = 'array'
out_str = r'\begin{%MATSTR%}%s\end{%MATSTR%}'
out_str = out_str.replace('%MATSTR%', mat_str)
if mat_str == 'array':
out_str = out_str.replace('%s', '{' + 'c'*expr.cols + '}%s')
if self._settings['mat_delim']:
left_delim = self._settings['mat_delim']
right_delim = self._delim_dict[left_delim]
out_str = r'\left' + left_delim + out_str + \
r'\right' + right_delim
return out_str % r"\\".join(lines)
_print_ImmutableMatrix = _print_ImmutableDenseMatrix \
= _print_Matrix \
= _print_MatrixBase
def _print_MatrixElement(self, expr):
return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True)\
+ '_{%s, %s}' % (self._print(expr.i), self._print(expr.j))
def _print_MatrixSlice(self, expr):
def latexslice(x):
x = list(x)
if x[2] == 1:
del x[2]
if x[1] == x[0] + 1:
del x[1]
if x[0] == 0:
x[0] = ''
return ':'.join(map(self._print, x))
return (self._print(expr.parent) + r'\left[' +
latexslice(expr.rowslice) + ', ' +
latexslice(expr.colslice) + r'\right]')
def _print_BlockMatrix(self, expr):
return self._print(expr.blocks)
def _print_Transpose(self, expr):
mat = expr.arg
from sympy.matrices import MatrixSymbol
if not isinstance(mat, MatrixSymbol):
return r"\left(%s\right)^{T}" % self._print(mat)
else:
return "%s^{T}" % self._print(mat)
def _print_Trace(self, expr):
mat = expr.arg
return r"\operatorname{tr}\left(%s \right)" % self._print(mat)
def _print_Adjoint(self, expr):
mat = expr.arg
from sympy.matrices import MatrixSymbol
if not isinstance(mat, MatrixSymbol):
return r"\left(%s\right)^{\dagger}" % self._print(mat)
else:
return r"%s^{\dagger}" % self._print(mat)
def _print_MatMul(self, expr):
from sympy import MatMul, Mul
parens = lambda x: self.parenthesize(x, precedence_traditional(expr),
False)
args = expr.args
if isinstance(args[0], Mul):
args = args[0].as_ordered_factors() + list(args[1:])
else:
args = list(args)
if isinstance(expr, MatMul) and _coeff_isneg(expr):
if args[0] == -1:
args = args[1:]
else:
args[0] = -args[0]
return '- ' + ' '.join(map(parens, args))
else:
return ' '.join(map(parens, args))
def _print_Mod(self, expr, exp=None):
if exp is not None:
return r'\left(%s\bmod{%s}\right)^{%s}' % \
(self.parenthesize(expr.args[0], PRECEDENCE['Mul'],
strict=True), self._print(expr.args[1]),
self._print(exp))
return r'%s\bmod{%s}' % (self.parenthesize(expr.args[0],
PRECEDENCE['Mul'], strict=True),
self._print(expr.args[1]))
def _print_HadamardProduct(self, expr):
from sympy import Add, MatAdd, MatMul
def parens(x):
if isinstance(x, (Add, MatAdd, MatMul)):
return r"\left(%s\right)" % self._print(x)
return self._print(x)
return r' \circ '.join(map(parens, expr.args))
def _print_KroneckerProduct(self, expr):
from sympy import Add, MatAdd, MatMul
def parens(x):
if isinstance(x, (Add, MatAdd, MatMul)):
return r"\left(%s\right)" % self._print(x)
return self._print(x)
return r' \otimes '.join(map(parens, expr.args))
def _print_MatPow(self, expr):
base, exp = expr.base, expr.exp
from sympy.matrices import MatrixSymbol
if not isinstance(base, MatrixSymbol):
return r"\left(%s\right)^{%s}" % (self._print(base),
self._print(exp))
else:
return "%s^{%s}" % (self._print(base), self._print(exp))
def _print_ZeroMatrix(self, Z):
return r"\mathbb{0}"
def _print_Identity(self, I):
return r"\mathbb{I}"
def _print_NDimArray(self, expr):
if expr.rank() == 0:
return self._print(expr[()])
mat_str = self._settings['mat_str']
if mat_str is None:
if self._settings['mode'] == 'inline':
mat_str = 'smallmatrix'
else:
if (expr.rank() == 0) or (expr.shape[-1] <= 10):
mat_str = 'matrix'
else:
mat_str = 'array'
block_str = r'\begin{%MATSTR%}%s\end{%MATSTR%}'
block_str = block_str.replace('%MATSTR%', mat_str)
if self._settings['mat_delim']:
left_delim = self._settings['mat_delim']
right_delim = self._delim_dict[left_delim]
block_str = r'\left' + left_delim + block_str + \
r'\right' + right_delim
if expr.rank() == 0:
return block_str % ""
level_str = [[]] + [[] for i in range(expr.rank())]
shape_ranges = [list(range(i)) for i in expr.shape]
for outer_i in itertools.product(*shape_ranges):
level_str[-1].append(self._print(expr[outer_i]))
even = True
for back_outer_i in range(expr.rank()-1, -1, -1):
if len(level_str[back_outer_i+1]) < expr.shape[back_outer_i]:
break
if even:
level_str[back_outer_i].append(
r" & ".join(level_str[back_outer_i+1]))
else:
level_str[back_outer_i].append(
block_str % (r"\\".join(level_str[back_outer_i+1])))
if len(level_str[back_outer_i+1]) == 1:
level_str[back_outer_i][-1] = r"\left[" + \
level_str[back_outer_i][-1] + r"\right]"
even = not even
level_str[back_outer_i+1] = []
out_str = level_str[0][0]
if expr.rank() % 2 == 1:
out_str = block_str % out_str
return out_str
_print_ImmutableDenseNDimArray = _print_NDimArray
_print_ImmutableSparseNDimArray = _print_NDimArray
_print_MutableDenseNDimArray = _print_NDimArray
_print_MutableSparseNDimArray = _print_NDimArray
def _printer_tensor_indices(self, name, indices, index_map={}):
out_str = self._print(name)
last_valence = None
prev_map = None
for index in indices:
new_valence = index.is_up
if ((index in index_map) or prev_map) and \
last_valence == new_valence:
out_str += ","
if last_valence != new_valence:
if last_valence is not None:
out_str += "}"
if index.is_up:
out_str += "{}^{"
else:
out_str += "{}_{"
out_str += self._print(index.args[0])
if index in index_map:
out_str += "="
out_str += self._print(index_map[index])
prev_map = True
else:
prev_map = False
last_valence = new_valence
if last_valence is not None:
out_str += "}"
return out_str
def _print_Tensor(self, expr):
name = expr.args[0].args[0]
indices = expr.get_indices()
return self._printer_tensor_indices(name, indices)
def _print_TensorElement(self, expr):
name = expr.expr.args[0].args[0]
indices = expr.expr.get_indices()
index_map = expr.index_map
return self._printer_tensor_indices(name, indices, index_map)
def _print_TensMul(self, expr):
# prints expressions like "A(a)", "3*A(a)", "(1+x)*A(a)"
sign, args = expr._get_args_for_traditional_printer()
return sign + "".join(
[self.parenthesize(arg, precedence(expr)) for arg in args]
)
def _print_TensAdd(self, expr):
a = []
args = expr.args
for x in args:
a.append(self.parenthesize(x, precedence(expr)))
a.sort()
s = ' + '.join(a)
s = s.replace('+ -', '- ')
return s
def _print_TensorIndex(self, expr):
return "{}%s{%s}" % (
"^" if expr.is_up else "_",
self._print(expr.args[0])
)
def _print_tuple(self, expr):
return r"\left( %s\right)" % \
r", \ ".join([self._print(i) for i in expr])
def _print_TensorProduct(self, expr):
elements = [self._print(a) for a in expr.args]
return r' \otimes '.join(elements)
def _print_WedgeProduct(self, expr):
elements = [self._print(a) for a in expr.args]
return r' \wedge '.join(elements)
def _print_Tuple(self, expr):
return self._print_tuple(expr)
def _print_list(self, expr):
return r"\left[ %s\right]" % \
r", \ ".join([self._print(i) for i in expr])
def _print_dict(self, d):
keys = sorted(d.keys(), key=default_sort_key)
items = []
for key in keys:
val = d[key]
items.append("%s : %s" % (self._print(key), self._print(val)))
return r"\left\{ %s\right\}" % r", \ ".join(items)
def _print_Dict(self, expr):
return self._print_dict(expr)
def _print_DiracDelta(self, expr, exp=None):
if len(expr.args) == 1 or expr.args[1] == 0:
tex = r"\delta\left(%s\right)" % self._print(expr.args[0])
else:
tex = r"\delta^{\left( %s \right)}\left( %s \right)" % (
self._print(expr.args[1]), self._print(expr.args[0]))
if exp:
tex = r"\left(%s\right)^{%s}" % (tex, exp)
return tex
def _print_SingularityFunction(self, expr):
shift = self._print(expr.args[0] - expr.args[1])
power = self._print(expr.args[2])
tex = r"{\left\langle %s \right\rangle}^{%s}" % (shift, power)
return tex
def _print_Heaviside(self, expr, exp=None):
tex = r"\theta\left(%s\right)" % self._print(expr.args[0])
if exp:
tex = r"\left(%s\right)^{%s}" % (tex, exp)
return tex
def _print_KroneckerDelta(self, expr, exp=None):
i = self._print(expr.args[0])
j = self._print(expr.args[1])
if expr.args[0].is_Atom and expr.args[1].is_Atom:
tex = r'\delta_{%s %s}' % (i, j)
else:
tex = r'\delta_{%s, %s}' % (i, j)
if exp is not None:
tex = r'\left(%s\right)^{%s}' % (tex, exp)
return tex
def _print_LeviCivita(self, expr, exp=None):
indices = map(self._print, expr.args)
if all(x.is_Atom for x in expr.args):
tex = r'\varepsilon_{%s}' % " ".join(indices)
else:
tex = r'\varepsilon_{%s}' % ", ".join(indices)
if exp:
tex = r'\left(%s\right)^{%s}' % (tex, exp)
return tex
def _print_ProductSet(self, p):
if len(p.sets) > 1 and not has_variety(p.sets):
return self._print(p.sets[0]) + "^{%d}" % len(p.sets)
else:
return r" \times ".join(self._print(set) for set in p.sets)
def _print_RandomDomain(self, d):
if hasattr(d, 'as_boolean'):
return '\\text{Domain: }' + self._print(d.as_boolean())
elif hasattr(d, 'set'):
return ('\\text{Domain: }' + self._print(d.symbols) + '\\text{ in }' +
self._print(d.set))
elif hasattr(d, 'symbols'):
return '\\text{Domain on }' + self._print(d.symbols)
else:
return self._print(None)
def _print_FiniteSet(self, s):
items = sorted(s.args, key=default_sort_key)
return self._print_set(items)
def _print_set(self, s):
items = sorted(s, key=default_sort_key)
items = ", ".join(map(self._print, items))
return r"\left\{%s\right\}" % items
_print_frozenset = _print_set
def _print_Range(self, s):
dots = r'\ldots'
if s.start.is_infinite:
printset = dots, s[-1] - s.step, s[-1]
elif s.stop.is_infinite:
it = iter(s)
printset = next(it), next(it), dots
elif len(s) > 4:
it = iter(s)
printset = next(it), next(it), dots, s[-1]
else:
printset = tuple(s)
return (r"\left\{" +
r", ".join(self._print(el) for el in printset) +
r"\right\}")
def _print_bernoulli(self, expr, exp=None):
tex = r"B_{%s}" % self._print(expr.args[0])
if exp is not None:
tex = r"%s^{%s}" % (tex, self._print(exp))
return tex
_print_bell = _print_bernoulli
def _print_fibonacci(self, expr, exp=None):
tex = r"F_{%s}" % self._print(expr.args[0])
if exp is not None:
tex = r"%s^{%s}" % (tex, self._print(exp))
return tex
def _print_lucas(self, expr, exp=None):
tex = r"L_{%s}" % self._print(expr.args[0])
if exp is not None:
tex = r"%s^{%s}" % (tex, self._print(exp))
return tex
def _print_tribonacci(self, expr, exp=None):
tex = r"T_{%s}" % self._print(expr.args[0])
if exp is not None:
tex = r"%s^{%s}" % (tex, self._print(exp))
return tex
def _print_SeqFormula(self, s):
if len(s.start.free_symbols) > 0 or len(s.stop.free_symbols) > 0:
return r"\left\{%s\right\}_{%s=%s}^{%s}" % (
self._print(s.formula),
self._print(s.variables[0]),
self._print(s.start),
self._print(s.stop)
)
if s.start is S.NegativeInfinity:
stop = s.stop
printset = (r'\ldots', s.coeff(stop - 3), s.coeff(stop - 2),
s.coeff(stop - 1), s.coeff(stop))
elif s.stop is S.Infinity or s.length > 4:
printset = s[:4]
printset.append(r'\ldots')
else:
printset = tuple(s)
return (r"\left[" +
r", ".join(self._print(el) for el in printset) +
r"\right]")
_print_SeqPer = _print_SeqFormula
_print_SeqAdd = _print_SeqFormula
_print_SeqMul = _print_SeqFormula
def _print_Interval(self, i):
if i.start == i.end:
return r"\left\{%s\right\}" % self._print(i.start)
else:
if i.left_open:
left = '('
else:
left = '['
if i.right_open:
right = ')'
else:
right = ']'
return r"\left%s%s, %s\right%s" % \
(left, self._print(i.start), self._print(i.end), right)
def _print_AccumulationBounds(self, i):
return r"\left\langle %s, %s\right\rangle" % \
(self._print(i.min), self._print(i.max))
def _print_Union(self, u):
return r" \cup ".join([self._print(i) for i in u.args])
def _print_Complement(self, u):
return r" \setminus ".join([self._print(i) for i in u.args])
def _print_Intersection(self, u):
return r" \cap ".join([self._print(i) for i in u.args])
def _print_SymmetricDifference(self, u):
return r" \triangle ".join([self._print(i) for i in u.args])
def _print_EmptySet(self, e):
return r"\emptyset"
def _print_Naturals(self, n):
return r"\mathbb{N}"
def _print_Naturals0(self, n):
return r"\mathbb{N}_0"
def _print_Integers(self, i):
return r"\mathbb{Z}"
def _print_Reals(self, i):
return r"\mathbb{R}"
def _print_Complexes(self, i):
return r"\mathbb{C}"
def _print_ImageSet(self, s):
sets = s.args[1:]
varsets = [r"%s \in %s" % (self._print(var), self._print(setv))
for var, setv in zip(s.lamda.variables, sets)]
return r"\left\{%s\; |\; %s\right\}" % (
self._print(s.lamda.expr),
', '.join(varsets))
def _print_ConditionSet(self, s):
vars_print = ', '.join([self._print(var) for var in Tuple(s.sym)])
if s.base_set is S.UniversalSet:
return r"\left\{%s \mid %s \right\}" % \
(vars_print, self._print(s.condition.as_expr()))
return r"\left\{%s \mid %s \in %s \wedge %s \right\}" % (
vars_print,
vars_print,
self._print(s.base_set),
self._print(s.condition))
def _print_ComplexRegion(self, s):
vars_print = ', '.join([self._print(var) for var in s.variables])
return r"\left\{%s\; |\; %s \in %s \right\}" % (
self._print(s.expr),
vars_print,
self._print(s.sets))
def _print_Contains(self, e):
return r"%s \in %s" % tuple(self._print(a) for a in e.args)
def _print_FourierSeries(self, s):
return self._print_Add(s.truncate()) + self._print(r' + \ldots')
def _print_FormalPowerSeries(self, s):
return self._print_Add(s.infinite)
def _print_FiniteField(self, expr):
return r"\mathbb{F}_{%s}" % expr.mod
def _print_IntegerRing(self, expr):
return r"\mathbb{Z}"
def _print_RationalField(self, expr):
return r"\mathbb{Q}"
def _print_RealField(self, expr):
return r"\mathbb{R}"
def _print_ComplexField(self, expr):
return r"\mathbb{C}"
def _print_PolynomialRing(self, expr):
domain = self._print(expr.domain)
symbols = ", ".join(map(self._print, expr.symbols))
return r"%s\left[%s\right]" % (domain, symbols)
def _print_FractionField(self, expr):
domain = self._print(expr.domain)
symbols = ", ".join(map(self._print, expr.symbols))
return r"%s\left(%s\right)" % (domain, symbols)
def _print_PolynomialRingBase(self, expr):
domain = self._print(expr.domain)
symbols = ", ".join(map(self._print, expr.symbols))
inv = ""
if not expr.is_Poly:
inv = r"S_<^{-1}"
return r"%s%s\left[%s\right]" % (inv, domain, symbols)
def _print_Poly(self, poly):
cls = poly.__class__.__name__
terms = []
for monom, coeff in poly.terms():
s_monom = ''
for i, exp in enumerate(monom):
if exp > 0:
if exp == 1:
s_monom += self._print(poly.gens[i])
else:
s_monom += self._print(pow(poly.gens[i], exp))
if coeff.is_Add:
if s_monom:
s_coeff = r"\left(%s\right)" % self._print(coeff)
else:
s_coeff = self._print(coeff)
else:
if s_monom:
if coeff is S.One:
terms.extend(['+', s_monom])
continue
if coeff is S.NegativeOne:
terms.extend(['-', s_monom])
continue
s_coeff = self._print(coeff)
if not s_monom:
s_term = s_coeff
else:
s_term = s_coeff + " " + s_monom
if s_term.startswith('-'):
terms.extend(['-', s_term[1:]])
else:
terms.extend(['+', s_term])
if terms[0] in ['-', '+']:
modifier = terms.pop(0)
if modifier == '-':
terms[0] = '-' + terms[0]
expr = ' '.join(terms)
gens = list(map(self._print, poly.gens))
domain = "domain=%s" % self._print(poly.get_domain())
args = ", ".join([expr] + gens + [domain])
if cls in accepted_latex_functions:
tex = r"\%s {\left(%s \right)}" % (cls, args)
else:
tex = r"\operatorname{%s}{\left( %s \right)}" % (cls, args)
return tex
def _print_ComplexRootOf(self, root):
cls = root.__class__.__name__
if cls == "ComplexRootOf":
cls = "CRootOf"
expr = self._print(root.expr)
index = root.index
if cls in accepted_latex_functions:
return r"\%s {\left(%s, %d\right)}" % (cls, expr, index)
else:
return r"\operatorname{%s} {\left(%s, %d\right)}" % (cls, expr,
index)
def _print_RootSum(self, expr):
cls = expr.__class__.__name__
args = [self._print(expr.expr)]
if expr.fun is not S.IdentityFunction:
args.append(self._print(expr.fun))
if cls in accepted_latex_functions:
return r"\%s {\left(%s\right)}" % (cls, ", ".join(args))
else:
return r"\operatorname{%s} {\left(%s\right)}" % (cls,
", ".join(args))
def _print_PolyElement(self, poly):
mul_symbol = self._settings['mul_symbol_latex']
return poly.str(self, PRECEDENCE, "{%s}^{%d}", mul_symbol)
def _print_FracElement(self, frac):
if frac.denom == 1:
return self._print(frac.numer)
else:
numer = self._print(frac.numer)
denom = self._print(frac.denom)
return r"\frac{%s}{%s}" % (numer, denom)
def _print_euler(self, expr, exp=None):
m, x = (expr.args[0], None) if len(expr.args) == 1 else expr.args
tex = r"E_{%s}" % self._print(m)
if exp is not None:
tex = r"%s^{%s}" % (tex, self._print(exp))
if x is not None:
tex = r"%s\left(%s\right)" % (tex, self._print(x))
return tex
def _print_catalan(self, expr, exp=None):
tex = r"C_{%s}" % self._print(expr.args[0])
if exp is not None:
tex = r"%s^{%s}" % (tex, self._print(exp))
return tex
def _print_UnifiedTransform(self, expr, s, inverse=False):
return r"\mathcal{{{}}}{}_{{{}}}\left[{}\right]\left({}\right)".format(s, '^{-1}' if inverse else '', self._print(expr.args[1]), self._print(expr.args[0]), self._print(expr.args[2]))
def _print_MellinTransform(self, expr):
return self._print_UnifiedTransform(expr, 'M')
def _print_InverseMellinTransform(self, expr):
return self._print_UnifiedTransform(expr, 'M', True)
def _print_LaplaceTransform(self, expr):
return self._print_UnifiedTransform(expr, 'L')
def _print_InverseLaplaceTransform(self, expr):
return self._print_UnifiedTransform(expr, 'L', True)
def _print_FourierTransform(self, expr):
return self._print_UnifiedTransform(expr, 'F')
def _print_InverseFourierTransform(self, expr):
return self._print_UnifiedTransform(expr, 'F', True)
def _print_SineTransform(self, expr):
return self._print_UnifiedTransform(expr, 'SIN')
def _print_InverseSineTransform(self, expr):
return self._print_UnifiedTransform(expr, 'SIN', True)
def _print_CosineTransform(self, expr):
return self._print_UnifiedTransform(expr, 'COS')
def _print_InverseCosineTransform(self, expr):
return self._print_UnifiedTransform(expr, 'COS', True)
def _print_DMP(self, p):
try:
if p.ring is not None:
# TODO incorporate order
return self._print(p.ring.to_sympy(p))
except SympifyError:
pass
return self._print(repr(p))
def _print_DMF(self, p):
return self._print_DMP(p)
def _print_Object(self, object):
return self._print(Symbol(object.name))
def _print_Morphism(self, morphism):
domain = self._print(morphism.domain)
codomain = self._print(morphism.codomain)
return "%s\\rightarrow %s" % (domain, codomain)
def _print_NamedMorphism(self, morphism):
pretty_name = self._print(Symbol(morphism.name))
pretty_morphism = self._print_Morphism(morphism)
return "%s:%s" % (pretty_name, pretty_morphism)
def _print_IdentityMorphism(self, morphism):
from sympy.categories import NamedMorphism
return self._print_NamedMorphism(NamedMorphism(
morphism.domain, morphism.codomain, "id"))
def _print_CompositeMorphism(self, morphism):
# All components of the morphism have names and it is thus
# possible to build the name of the composite.
component_names_list = [self._print(Symbol(component.name)) for
component in morphism.components]
component_names_list.reverse()
component_names = "\\circ ".join(component_names_list) + ":"
pretty_morphism = self._print_Morphism(morphism)
return component_names + pretty_morphism
def _print_Category(self, morphism):
return r"\mathbf{{{}}}".format(self._print(Symbol(morphism.name)))
def _print_Diagram(self, diagram):
if not diagram.premises:
# This is an empty diagram.
return self._print(S.EmptySet)
latex_result = self._print(diagram.premises)
if diagram.conclusions:
latex_result += "\\Longrightarrow %s" % \
self._print(diagram.conclusions)
return latex_result
def _print_DiagramGrid(self, grid):
latex_result = "\\begin{array}{%s}\n" % ("c" * grid.width)
for i in range(grid.height):
for j in range(grid.width):
if grid[i, j]:
latex_result += latex(grid[i, j])
latex_result += " "
if j != grid.width - 1:
latex_result += "& "
if i != grid.height - 1:
latex_result += "\\\\"
latex_result += "\n"
latex_result += "\\end{array}\n"
return latex_result
def _print_FreeModule(self, M):
return '{{{}}}^{{{}}}'.format(self._print(M.ring), self._print(M.rank))
def _print_FreeModuleElement(self, m):
# Print as row vector for convenience, for now.
return r"\left[ {} \right]".format(",".join(
'{' + self._print(x) + '}' for x in m))
def _print_SubModule(self, m):
return r"\left\langle {} \right\rangle".format(",".join(
'{' + self._print(x) + '}' for x in m.gens))
def _print_ModuleImplementedIdeal(self, m):
return r"\left\langle {} \right\rangle".format(",".join(
'{' + self._print(x) + '}' for [x] in m._module.gens))
def _print_Quaternion(self, expr):
# TODO: This expression is potentially confusing,
# shall we print it as `Quaternion( ... )`?
s = [self.parenthesize(i, PRECEDENCE["Mul"], strict=True)
for i in expr.args]
a = [s[0]] + [i+" "+j for i, j in zip(s[1:], "ijk")]
return " + ".join(a)
def _print_QuotientRing(self, R):
# TODO nicer fractions for few generators...
return r"\frac{{{}}}{{{}}}".format(self._print(R.ring),
self._print(R.base_ideal))
def _print_QuotientRingElement(self, x):
return r"{{{}}} + {{{}}}".format(self._print(x.data),
self._print(x.ring.base_ideal))
def _print_QuotientModuleElement(self, m):
return r"{{{}}} + {{{}}}".format(self._print(m.data),
self._print(m.module.killed_module))
def _print_QuotientModule(self, M):
# TODO nicer fractions for few generators...
return r"\frac{{{}}}{{{}}}".format(self._print(M.base),
self._print(M.killed_module))
def _print_MatrixHomomorphism(self, h):
return r"{{{}}} : {{{}}} \to {{{}}}".format(self._print(h._sympy_matrix()),
self._print(h.domain), self._print(h.codomain))
def _print_BaseScalarField(self, field):
string = field._coord_sys._names[field._index]
return r'\mathbf{{{}}}'.format(self._print(Symbol(string)))
def _print_BaseVectorField(self, field):
string = field._coord_sys._names[field._index]
return r'\partial_{{{}}}'.format(self._print(Symbol(string)))
def _print_Differential(self, diff):
field = diff._form_field
if hasattr(field, '_coord_sys'):
string = field._coord_sys._names[field._index]
return r'\operatorname{{d}}{}'.format(self._print(Symbol(string)))
else:
string = self._print(field)
return r'\operatorname{{d}}\left({}\right)'.format(string)
def _print_Tr(self, p):
# TODO: Handle indices
contents = self._print(p.args[0])
return r'\operatorname{{tr}}\left({}\right)'.format(contents)
def _print_totient(self, expr, exp=None):
if exp is not None:
return r'\left(\phi\left(%s\right)\right)^{%s}' % \
(self._print(expr.args[0]), self._print(exp))
return r'\phi\left(%s\right)' % self._print(expr.args[0])
def _print_reduced_totient(self, expr, exp=None):
if exp is not None:
return r'\left(\lambda\left(%s\right)\right)^{%s}' % \
(self._print(expr.args[0]), self._print(exp))
return r'\lambda\left(%s\right)' % self._print(expr.args[0])
def _print_divisor_sigma(self, expr, exp=None):
if len(expr.args) == 2:
tex = r"_%s\left(%s\right)" % tuple(map(self._print,
(expr.args[1], expr.args[0])))
else:
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"\sigma^{%s}%s" % (self._print(exp), tex)
return r"\sigma%s" % tex
def _print_udivisor_sigma(self, expr, exp=None):
if len(expr.args) == 2:
tex = r"_%s\left(%s\right)" % tuple(map(self._print,
(expr.args[1], expr.args[0])))
else:
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"\sigma^*^{%s}%s" % (self._print(exp), tex)
return r"\sigma^*%s" % tex
def _print_primenu(self, expr, exp=None):
if exp is not None:
return r'\left(\nu\left(%s\right)\right)^{%s}' % \
(self._print(expr.args[0]), self._print(exp))
return r'\nu\left(%s\right)' % self._print(expr.args[0])
def _print_primeomega(self, expr, exp=None):
if exp is not None:
return r'\left(\Omega\left(%s\right)\right)^{%s}' % \
(self._print(expr.args[0]), self._print(exp))
return r'\Omega\left(%s\right)' % self._print(expr.args[0])
def translate(s):
r'''
Check for a modifier ending the string. If present, convert the
modifier to latex and translate the rest recursively.
Given a description of a Greek letter or other special character,
return the appropriate latex.
Let everything else pass as given.
>>> from sympy.printing.latex import translate
>>> translate('alphahatdotprime')
"{\\dot{\\hat{\\alpha}}}'"
'''
# Process the rest
tex = tex_greek_dictionary.get(s)
if tex:
return tex
elif s.lower() in greek_letters_set:
return "\\" + s.lower()
elif s in other_symbols:
return "\\" + s
else:
# Process modifiers, if any, and recurse
for key in sorted(modifier_dict.keys(), key=lambda k:len(k), reverse=True):
if s.lower().endswith(key) and len(s) > len(key):
return modifier_dict[key](translate(s[:-len(key)]))
return s
def latex(expr, fold_frac_powers=False, fold_func_brackets=False,
fold_short_frac=None, inv_trig_style="abbreviated",
itex=False, ln_notation=False, long_frac_ratio=None,
mat_delim="[", mat_str=None, mode="plain", mul_symbol=None,
order=None, symbol_names=None, root_notation=True,
mat_symbol_style="plain", imaginary_unit="i", gothic_re_im=False):
r"""Convert the given expression to LaTeX string representation.
Parameters
==========
fold_frac_powers : boolean, optional
Emit ``^{p/q}`` instead of ``^{\frac{p}{q}}`` for fractional powers.
fold_func_brackets : boolean, optional
Fold function brackets where applicable.
fold_short_frac : boolean, optional
Emit ``p / q`` instead of ``\frac{p}{q}`` when the denominator is
simple enough (at most two terms and no powers). The default value is
``True`` for inline mode, ``False`` otherwise.
inv_trig_style : string, optional
How inverse trig functions should be displayed. Can be one of
``abbreviated``, ``full``, or ``power``. Defaults to ``abbreviated``.
itex : boolean, optional
Specifies if itex-specific syntax is used, including emitting
``$$...$$``.
ln_notation : boolean, optional
If set to ``True``, ``\ln`` is used instead of default ``\log``.
long_frac_ratio : float or None, optional
The allowed ratio of the width of the numerator to the width of the
denominator before the printer breaks off long fractions. If ``None``
(the default value), long fractions are not broken up.
mat_delim : string, optional
The delimiter to wrap around matrices. Can be one of ``[``, ``(``, or
the empty string. Defaults to ``[``.
mat_str : string, optional
Which matrix environment string to emit. ``smallmatrix``, ``matrix``,
``array``, etc. Defaults to ``smallmatrix`` for inline mode, ``matrix``
for matrices of no more than 10 columns, and ``array`` otherwise.
mode: string, optional
Specifies how the generated code will be delimited. ``mode`` can be one
of ``plain``, ``inline``, ``equation`` or ``equation*``. If ``mode``
is set to ``plain``, then the resulting code will not be delimited at
all (this is the default). If ``mode`` is set to ``inline`` then inline
LaTeX ``$...$`` will be used. If ``mode`` is set to ``equation`` or
``equation*``, the resulting code will be enclosed in the ``equation``
or ``equation*`` environment (remember to import ``amsmath`` for
``equation*``), unless the ``itex`` option is set. In the latter case,
the ``$$...$$`` syntax is used.
mul_symbol : string or None, optional
The symbol to use for multiplication. Can be one of ``None``, ``ldot``,
``dot``, or ``times``.
order: string, optional
Any of the supported monomial orderings (currently ``lex``, ``grlex``,
or ``grevlex``), ``old``, and ``none``. This parameter does nothing for
Mul objects. Setting order to ``old`` uses the compatibility ordering
for Add defined in Printer. For very large expressions, set the
``order`` keyword to ``none`` if speed is a concern.
symbol_names : dictionary of strings mapped to symbols, optional
Dictionary of symbols and the custom strings they should be emitted as.
root_notation : boolean, optional
If set to ``False``, exponents of the form 1/n are printed in fractonal
form. Default is ``True``, to print exponent in root form.
mat_symbol_style : string, optional
Can be either ``plain`` (default) or ``bold``. If set to ``bold``,
a MatrixSymbol A will be printed as ``\mathbf{A}``, otherwise as ``A``.
imaginary_unit : string, optional
String to use for the imaginary unit. Defined options are "i" (default)
and "j". Adding "r" or "t" in front gives ``\mathrm`` or ``\text``, so
"ri" leads to ``\mathrm{i}`` which gives `\mathrm{i}`.
gothic_re_im : boolean, optional
If set to ``True``, `\Re` and `\Im` is used for ``re`` and ``im``, respectively.
The default is ``False`` leading to `\operatorname{re}` and `\operatorname{im}`.
Notes
=====
Not using a print statement for printing, results in double backslashes for
latex commands since that's the way Python escapes backslashes in strings.
>>> from sympy import latex, Rational
>>> from sympy.abc import tau
>>> latex((2*tau)**Rational(7,2))
'8 \\sqrt{2} \\tau^{\\frac{7}{2}}'
>>> print(latex((2*tau)**Rational(7,2)))
8 \sqrt{2} \tau^{\frac{7}{2}}
Examples
========
>>> from sympy import latex, pi, sin, asin, Integral, Matrix, Rational, log
>>> from sympy.abc import x, y, mu, r, tau
Basic usage:
>>> print(latex((2*tau)**Rational(7,2)))
8 \sqrt{2} \tau^{\frac{7}{2}}
``mode`` and ``itex`` options:
>>> print(latex((2*mu)**Rational(7,2), mode='plain'))
8 \sqrt{2} \mu^{\frac{7}{2}}
>>> print(latex((2*tau)**Rational(7,2), mode='inline'))
$8 \sqrt{2} \tau^{7 / 2}$
>>> print(latex((2*mu)**Rational(7,2), mode='equation*'))
\begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*}
>>> print(latex((2*mu)**Rational(7,2), mode='equation'))
\begin{equation}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation}
>>> print(latex((2*mu)**Rational(7,2), mode='equation', itex=True))
$$8 \sqrt{2} \mu^{\frac{7}{2}}$$
>>> print(latex((2*mu)**Rational(7,2), mode='plain'))
8 \sqrt{2} \mu^{\frac{7}{2}}
>>> print(latex((2*tau)**Rational(7,2), mode='inline'))
$8 \sqrt{2} \tau^{7 / 2}$
>>> print(latex((2*mu)**Rational(7,2), mode='equation*'))
\begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*}
>>> print(latex((2*mu)**Rational(7,2), mode='equation'))
\begin{equation}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation}
>>> print(latex((2*mu)**Rational(7,2), mode='equation', itex=True))
$$8 \sqrt{2} \mu^{\frac{7}{2}}$$
Fraction options:
>>> print(latex((2*tau)**Rational(7,2), fold_frac_powers=True))
8 \sqrt{2} \tau^{7/2}
>>> print(latex((2*tau)**sin(Rational(7,2))))
\left(2 \tau\right)^{\sin{\left(\frac{7}{2} \right)}}
>>> print(latex((2*tau)**sin(Rational(7,2)), fold_func_brackets=True))
\left(2 \tau\right)^{\sin {\frac{7}{2}}}
>>> print(latex(3*x**2/y))
\frac{3 x^{2}}{y}
>>> print(latex(3*x**2/y, fold_short_frac=True))
3 x^{2} / y
>>> print(latex(Integral(r, r)/2/pi, long_frac_ratio=2))
\frac{\int r\, dr}{2 \pi}
>>> print(latex(Integral(r, r)/2/pi, long_frac_ratio=0))
\frac{1}{2 \pi} \int r\, dr
Multiplication options:
>>> print(latex((2*tau)**sin(Rational(7,2)), mul_symbol="times"))
\left(2 \times \tau\right)^{\sin{\left(\frac{7}{2} \right)}}
Trig options:
>>> print(latex(asin(Rational(7,2))))
\operatorname{asin}{\left(\frac{7}{2} \right)}
>>> print(latex(asin(Rational(7,2)), inv_trig_style="full"))
\arcsin{\left(\frac{7}{2} \right)}
>>> print(latex(asin(Rational(7,2)), inv_trig_style="power"))
\sin^{-1}{\left(\frac{7}{2} \right)}
Matrix options:
>>> print(latex(Matrix(2, 1, [x, y])))
\left[\begin{matrix}x\\y\end{matrix}\right]
>>> print(latex(Matrix(2, 1, [x, y]), mat_str = "array"))
\left[\begin{array}{c}x\\y\end{array}\right]
>>> print(latex(Matrix(2, 1, [x, y]), mat_delim="("))
\left(\begin{matrix}x\\y\end{matrix}\right)
Custom printing of symbols:
>>> print(latex(x**2, symbol_names={x: 'x_i'}))
x_i^{2}
Logarithms:
>>> print(latex(log(10)))
\log{\left(10 \right)}
>>> print(latex(log(10), ln_notation=True))
\ln{\left(10 \right)}
``latex()`` also supports the builtin container types list, tuple, and
dictionary.
>>> print(latex([2/x, y], mode='inline'))
$\left[ 2 / x, \ y\right]$
"""
if symbol_names is None:
symbol_names = {}
settings = {
'fold_frac_powers': fold_frac_powers,
'fold_func_brackets': fold_func_brackets,
'fold_short_frac': fold_short_frac,
'inv_trig_style': inv_trig_style,
'itex': itex,
'ln_notation': ln_notation,
'long_frac_ratio': long_frac_ratio,
'mat_delim': mat_delim,
'mat_str': mat_str,
'mode': mode,
'mul_symbol': mul_symbol,
'order': order,
'symbol_names': symbol_names,
'root_notation': root_notation,
'mat_symbol_style': mat_symbol_style,
'imaginary_unit': imaginary_unit,
'gothic_re_im': gothic_re_im,
}
return LatexPrinter(settings).doprint(expr)
def print_latex(expr, **settings):
"""Prints LaTeX representation of the given expression. Takes the same
settings as ``latex()``."""
print(latex(expr, **settings))
|
fc775f36f225904514e0b0b803c985f8b5d85524fe0d26d05e3020cb0be36849
|
from __future__ import print_function, division
from sympy.core.compatibility import range
from sympy.core.containers import Tuple
from types import FunctionType
class TableForm(object):
r"""
Create a nice table representation of data.
Examples
========
>>> from sympy import TableForm
>>> t = TableForm([[5, 7], [4, 2], [10, 3]])
>>> print(t)
5 7
4 2
10 3
You can use the SymPy's printing system to produce tables in any
format (ascii, latex, html, ...).
>>> print(t.as_latex())
\begin{tabular}{l l}
$5$ & $7$ \\
$4$ & $2$ \\
$10$ & $3$ \\
\end{tabular}
"""
def __init__(self, data, **kwarg):
"""
Creates a TableForm.
Parameters:
data ...
2D data to be put into the table; data can be
given as a Matrix
headings ...
gives the labels for rows and columns:
Can be a single argument that applies to both
dimensions:
- None ... no labels
- "automatic" ... labels are 1, 2, 3, ...
Can be a list of labels for rows and columns:
The labels for each dimension can be given
as None, "automatic", or [l1, l2, ...] e.g.
["automatic", None] will number the rows
[default: None]
alignments ...
alignment of the columns with:
- "left" or "<"
- "center" or "^"
- "right" or ">"
When given as a single value, the value is used for
all columns. The row headings (if given) will be
right justified unless an explicit alignment is
given for it and all other columns.
[default: "left"]
formats ...
a list of format strings or functions that accept
3 arguments (entry, row number, col number) and
return a string for the table entry. (If a function
returns None then the _print method will be used.)
wipe_zeros ...
Don't show zeros in the table.
[default: True]
pad ...
the string to use to indicate a missing value (e.g.
elements that are None or those that are missing
from the end of a row (i.e. any row that is shorter
than the rest is assumed to have missing values).
When None, nothing will be shown for values that
are missing from the end of a row; values that are
None, however, will be shown.
[default: None]
Examples
========
>>> from sympy import TableForm, Matrix
>>> TableForm([[5, 7], [4, 2], [10, 3]])
5 7
4 2
10 3
>>> TableForm([list('.'*i) for i in range(1, 4)], headings='automatic')
| 1 2 3
---------
1 | .
2 | . .
3 | . . .
>>> TableForm([['.'*(j if not i%2 else 1) for i in range(3)]
... for j in range(4)], alignments='rcl')
.
. . .
.. . ..
... . ...
"""
from sympy import Symbol, S, Matrix
from sympy.core.sympify import SympifyError
# We only support 2D data. Check the consistency:
if isinstance(data, Matrix):
data = data.tolist()
_h = len(data)
# fill out any short lines
pad = kwarg.get('pad', None)
ok_None = False
if pad is None:
pad = " "
ok_None = True
pad = Symbol(pad)
_w = max(len(line) for line in data)
for i, line in enumerate(data):
if len(line) != _w:
line.extend([pad]*(_w - len(line)))
for j, lj in enumerate(line):
if lj is None:
if not ok_None:
lj = pad
else:
try:
lj = S(lj)
except SympifyError:
lj = Symbol(str(lj))
line[j] = lj
data[i] = line
_lines = Tuple(*data)
headings = kwarg.get("headings", [None, None])
if headings == "automatic":
_headings = [range(1, _h + 1), range(1, _w + 1)]
else:
h1, h2 = headings
if h1 == "automatic":
h1 = range(1, _h + 1)
if h2 == "automatic":
h2 = range(1, _w + 1)
_headings = [h1, h2]
allow = ('l', 'r', 'c')
alignments = kwarg.get("alignments", "l")
def _std_align(a):
a = a.strip().lower()
if len(a) > 1:
return {'left': 'l', 'right': 'r', 'center': 'c'}.get(a, a)
else:
return {'<': 'l', '>': 'r', '^': 'c'}.get(a, a)
std_align = _std_align(alignments)
if std_align in allow:
_alignments = [std_align]*_w
else:
_alignments = []
for a in alignments:
std_align = _std_align(a)
_alignments.append(std_align)
if std_align not in ('l', 'r', 'c'):
raise ValueError('alignment "%s" unrecognized' %
alignments)
if _headings[0] and len(_alignments) == _w + 1:
_head_align = _alignments[0]
_alignments = _alignments[1:]
else:
_head_align = 'r'
if len(_alignments) != _w:
raise ValueError(
'wrong number of alignments: expected %s but got %s' %
(_w, len(_alignments)))
_column_formats = kwarg.get("formats", [None]*_w)
_wipe_zeros = kwarg.get("wipe_zeros", True)
self._w = _w
self._h = _h
self._lines = _lines
self._headings = _headings
self._head_align = _head_align
self._alignments = _alignments
self._column_formats = _column_formats
self._wipe_zeros = _wipe_zeros
def __repr__(self):
from .str import sstr
return sstr(self, order=None)
def __str__(self):
from .str import sstr
return sstr(self, order=None)
def as_matrix(self):
"""Returns the data of the table in Matrix form.
Examples
========
>>> from sympy import TableForm
>>> t = TableForm([[5, 7], [4, 2], [10, 3]], headings='automatic')
>>> t
| 1 2
--------
1 | 5 7
2 | 4 2
3 | 10 3
>>> t.as_matrix()
Matrix([
[ 5, 7],
[ 4, 2],
[10, 3]])
"""
from sympy import Matrix
return Matrix(self._lines)
def as_str(self):
# XXX obsolete ?
return str(self)
def as_latex(self):
from .latex import latex
return latex(self)
def _sympystr(self, p):
"""
Returns the string representation of 'self'.
Examples
========
>>> from sympy import TableForm
>>> t = TableForm([[5, 7], [4, 2], [10, 3]])
>>> s = t.as_str()
"""
column_widths = [0] * self._w
lines = []
for line in self._lines:
new_line = []
for i in range(self._w):
# Format the item somehow if needed:
s = str(line[i])
if self._wipe_zeros and (s == "0"):
s = " "
w = len(s)
if w > column_widths[i]:
column_widths[i] = w
new_line.append(s)
lines.append(new_line)
# Check heading:
if self._headings[0]:
self._headings[0] = [str(x) for x in self._headings[0]]
_head_width = max([len(x) for x in self._headings[0]])
if self._headings[1]:
new_line = []
for i in range(self._w):
# Format the item somehow if needed:
s = str(self._headings[1][i])
w = len(s)
if w > column_widths[i]:
column_widths[i] = w
new_line.append(s)
self._headings[1] = new_line
format_str = []
def _align(align, w):
return '%%%s%ss' % (
("-" if align == "l" else ""),
str(w))
format_str = [_align(align, w) for align, w in
zip(self._alignments, column_widths)]
if self._headings[0]:
format_str.insert(0, _align(self._head_align, _head_width))
format_str.insert(1, '|')
format_str = ' '.join(format_str) + '\n'
s = []
if self._headings[1]:
d = self._headings[1]
if self._headings[0]:
d = [""] + d
first_line = format_str % tuple(d)
s.append(first_line)
s.append("-" * (len(first_line) - 1) + "\n")
for i, line in enumerate(lines):
d = [l if self._alignments[j] != 'c' else
l.center(column_widths[j]) for j, l in enumerate(line)]
if self._headings[0]:
l = self._headings[0][i]
l = (l if self._head_align != 'c' else
l.center(_head_width))
d = [l] + d
s.append(format_str % tuple(d))
return ''.join(s)[:-1] # don't include trailing newline
def _latex(self, printer):
"""
Returns the string representation of 'self'.
"""
# Check heading:
if self._headings[1]:
new_line = []
for i in range(self._w):
# Format the item somehow if needed:
new_line.append(str(self._headings[1][i]))
self._headings[1] = new_line
alignments = []
if self._headings[0]:
self._headings[0] = [str(x) for x in self._headings[0]]
alignments = [self._head_align]
alignments.extend(self._alignments)
s = r"\begin{tabular}{" + " ".join(alignments) + "}\n"
if self._headings[1]:
d = self._headings[1]
if self._headings[0]:
d = [""] + d
first_line = " & ".join(d) + r" \\" + "\n"
s += first_line
s += r"\hline" + "\n"
for i, line in enumerate(self._lines):
d = []
for j, x in enumerate(line):
if self._wipe_zeros and (x in (0, "0")):
d.append(" ")
continue
f = self._column_formats[j]
if f:
if isinstance(f, FunctionType):
v = f(x, i, j)
if v is None:
v = printer._print(x)
else:
v = f % x
d.append(v)
else:
v = printer._print(x)
d.append("$%s$" % v)
if self._headings[0]:
d = [self._headings[0][i]] + d
s += " & ".join(d) + r" \\" + "\n"
s += r"\end{tabular}"
return s
|
e17d3f2611f1da2af7d3332634199324589371694b48d894cdc2dc6429508515
|
"""
Mathematica code printer
"""
from __future__ import print_function, division
from sympy.printing.codeprinter import CodePrinter
from sympy.printing.precedence import precedence
from sympy.printing.str import StrPrinter
# Used in MCodePrinter._print_Function(self)
known_functions = {
"exp": [(lambda x: True, "Exp")],
"log": [(lambda x: True, "Log")],
"sin": [(lambda x: True, "Sin")],
"cos": [(lambda x: True, "Cos")],
"tan": [(lambda x: True, "Tan")],
"cot": [(lambda x: True, "Cot")],
"asin": [(lambda x: True, "ArcSin")],
"acos": [(lambda x: True, "ArcCos")],
"atan": [(lambda x: True, "ArcTan")],
"sinh": [(lambda x: True, "Sinh")],
"cosh": [(lambda x: True, "Cosh")],
"tanh": [(lambda x: True, "Tanh")],
"coth": [(lambda x: True, "Coth")],
"sech": [(lambda x: True, "Sech")],
"csch": [(lambda x: True, "Csch")],
"asinh": [(lambda x: True, "ArcSinh")],
"acosh": [(lambda x: True, "ArcCosh")],
"atanh": [(lambda x: True, "ArcTanh")],
"acoth": [(lambda x: True, "ArcCoth")],
"asech": [(lambda x: True, "ArcSech")],
"acsch": [(lambda x: True, "ArcCsch")],
"conjugate": [(lambda x: True, "Conjugate")],
"Max": [(lambda *x: True, "Max")],
"Min": [(lambda *x: True, "Min")],
}
class MCodePrinter(CodePrinter):
"""A printer to convert python expressions to
strings of the Wolfram's Mathematica code
"""
printmethod = "_mcode"
language = "Wolfram Language"
_default_settings = {
'order': None,
'full_prec': 'auto',
'precision': 15,
'user_functions': {},
'human': True,
'allow_unknown_functions': False,
}
_number_symbols = set()
_not_supported = set()
def __init__(self, settings={}):
"""Register function mappings supplied by user"""
CodePrinter.__init__(self, settings)
self.known_functions = dict(known_functions)
userfuncs = settings.get('user_functions', {}).copy()
for k, v in userfuncs.items():
if not isinstance(v, list):
userfuncs[k] = [(lambda *x: True, v)]
self.known_functions.update(userfuncs)
def _format_code(self, lines):
return lines
def _print_Pow(self, expr):
PREC = precedence(expr)
return '%s^%s' % (self.parenthesize(expr.base, PREC),
self.parenthesize(expr.exp, PREC))
def _print_Mul(self, expr):
PREC = precedence(expr)
c, nc = expr.args_cnc()
res = super(MCodePrinter, self)._print_Mul(expr.func(*c))
if nc:
res += '*'
res += '**'.join(self.parenthesize(a, PREC) for a in nc)
return res
# Primitive numbers
def _print_Zero(self, expr):
return '0'
def _print_One(self, expr):
return '1'
def _print_NegativeOne(self, expr):
return '-1'
def _print_half(self, expr):
return '1/2'
def _print_ImaginaryUnit(self, expr):
return 'I'
# Infinity and invalid numbers
def _print_Infinity(self, expr):
return 'Infinity'
def _print_NegativeInfinity(self, expr):
return '-Infinity'
def _print_ComplexInfinity(self, expr):
return 'ComplexInfinity'
def _print_NaN(self, expr):
return 'Indeterminate'
# Mathematical constants
def _print_Exp1(self, expr):
return 'E'
def _print_Pi(self, expr):
return 'Pi'
def _print_GoldenRatio(self, expr):
return 'GoldenRatio'
def _print_TribonacciConstant(self, expr):
return self.doprint(expr._eval_expand_func())
def _print_EulerGamma(self, expr):
return 'EulerGamma'
def _print_Catalan(self, expr):
return 'Catalan'
def _print_list(self, expr):
return '{' + ', '.join(self.doprint(a) for a in expr) + '}'
_print_tuple = _print_list
_print_Tuple = _print_list
def _print_ImmutableDenseMatrix(self, expr):
return self.doprint(expr.tolist())
def _print_ImmutableSparseMatrix(self, expr):
from sympy.core.compatibility import default_sort_key
def print_rule(pos, val):
return '{} -> {}'.format(
self.doprint((pos[0]+1, pos[1]+1)), self.doprint(val))
def print_data():
items = sorted(expr._smat.items(), key=default_sort_key)
return '{' + \
', '.join(print_rule(k, v) for k, v in items) + \
'}'
def print_dims():
return self.doprint(expr.shape)
return 'SparseArray[{}, {}]'.format(print_data(), print_dims())
def _print_ImmutableDenseNDimArray(self, expr):
return self.doprint(expr.tolist())
def _print_ImmutableSparseNDimArray(self, expr):
def print_string_list(string_list):
return '{' + ', '.join(a for a in string_list) + '}'
def to_mathematica_index(*args):
"""Helper function to change Python style indexing to
Pathematica indexing.
Python indexing (0, 1 ... n-1)
-> Mathematica indexing (1, 2 ... n)
"""
return tuple(i + 1 for i in args)
def print_rule(pos, val):
"""Helper function to print a rule of Mathematica"""
return '{} -> {}'.format(self.doprint(pos), self.doprint(val))
def print_data():
"""Helper function to print data part of Mathematica
sparse array.
It uses the fourth notation ``SparseArray[data,{d1,d2,...}]``
from
https://reference.wolfram.com/language/ref/SparseArray.html
``data`` must be formatted with rule.
"""
return print_string_list(
[print_rule(
to_mathematica_index(*(expr._get_tuple_index(key))),
value)
for key, value in sorted(expr._sparse_array.items())]
)
def print_dims():
"""Helper function to print dimensions part of Mathematica
sparse array.
It uses the fourth notation ``SparseArray[data,{d1,d2,...}]``
from
https://reference.wolfram.com/language/ref/SparseArray.html
"""
return self.doprint(expr.shape)
return 'SparseArray[{}, {}]'.format(print_data(), print_dims())
def _print_Function(self, expr):
if expr.func.__name__ in self.known_functions:
cond_mfunc = self.known_functions[expr.func.__name__]
for cond, mfunc in cond_mfunc:
if cond(*expr.args):
return "%s[%s]" % (mfunc, self.stringify(expr.args, ", "))
return expr.func.__name__ + "[%s]" % self.stringify(expr.args, ", ")
_print_MinMaxBase = _print_Function
def _print_Integral(self, expr):
if len(expr.variables) == 1 and not expr.limits[0][1:]:
args = [expr.args[0], expr.variables[0]]
else:
args = expr.args
return "Hold[Integrate[" + ', '.join(self.doprint(a) for a in args) + "]]"
def _print_Sum(self, expr):
return "Hold[Sum[" + ', '.join(self.doprint(a) for a in expr.args) + "]]"
def _print_Derivative(self, expr):
dexpr = expr.expr
dvars = [i[0] if i[1] == 1 else i for i in expr.variable_count]
return "Hold[D[" + ', '.join(self.doprint(a) for a in [dexpr] + dvars) + "]]"
def _get_comment(self, text):
return "(* {} *)".format(text)
def mathematica_code(expr, **settings):
r"""Converts an expr to a string of the Wolfram Mathematica code
Examples
========
>>> from sympy import mathematica_code as mcode, symbols, sin
>>> x = symbols('x')
>>> mcode(sin(x).series(x).removeO())
'(1/120)*x^5 - 1/6*x^3 + x'
"""
return MCodePrinter(settings).doprint(expr)
|
9d1134048c95cfff13341a8695beb47f14ff5a26594d124052769bb1a12bdecf
|
"""
C code printer
The C89CodePrinter & C99CodePrinter converts single sympy expressions into
single C expressions, using the functions defined in math.h where possible.
A complete code generator, which uses ccode extensively, can be found in
sympy.utilities.codegen. The codegen module can be used to generate complete
source code files that are compilable without further modifications.
"""
from __future__ import print_function, division
from functools import wraps
from itertools import chain
from sympy.core import S
from sympy.core.compatibility import string_types, range
from sympy.core.decorators import deprecated
from sympy.codegen.ast import (
Assignment, Pointer, Variable, Declaration,
real, complex_, integer, bool_, float32, float64, float80,
complex64, complex128, intc, value_const, pointer_const,
int8, int16, int32, int64, uint8, uint16, uint32, uint64, untyped
)
from sympy.printing.codeprinter import CodePrinter, requires
from sympy.printing.precedence import precedence, PRECEDENCE
from sympy.sets.fancysets import Range
# dictionary mapping sympy function to (argument_conditions, C_function).
# Used in C89CodePrinter._print_Function(self)
known_functions_C89 = {
"Abs": [(lambda x: not x.is_integer, "fabs"), (lambda x: x.is_integer, "abs")],
"sin": "sin",
"cos": "cos",
"tan": "tan",
"asin": "asin",
"acos": "acos",
"atan": "atan",
"atan2": "atan2",
"exp": "exp",
"log": "log",
"sinh": "sinh",
"cosh": "cosh",
"tanh": "tanh",
"floor": "floor",
"ceiling": "ceil",
}
# move to C99 once CCodePrinter is removed:
_known_functions_C9X = dict(known_functions_C89, **{
"asinh": "asinh",
"acosh": "acosh",
"atanh": "atanh",
"erf": "erf",
"gamma": "tgamma",
})
known_functions = _known_functions_C9X
known_functions_C99 = dict(_known_functions_C9X, **{
'exp2': 'exp2',
'expm1': 'expm1',
'expm1': 'expm1',
'log10': 'log10',
'log2': 'log2',
'log1p': 'log1p',
'Cbrt': 'cbrt',
'hypot': 'hypot',
'fma': 'fma',
'loggamma': 'lgamma',
'erfc': 'erfc',
'Max': 'fmax',
'Min': 'fmin'
})
# These are the core reserved words in the C language. Taken from:
# http://en.cppreference.com/w/c/keyword
reserved_words = [
'auto', 'break', 'case', 'char', 'const', 'continue', 'default', 'do',
'double', 'else', 'enum', 'extern', 'float', 'for', 'goto', 'if', 'int',
'long', 'register', 'return', 'short', 'signed', 'sizeof', 'static',
'struct', 'entry', # never standardized, we'll leave it here anyway
'switch', 'typedef', 'union', 'unsigned', 'void', 'volatile', 'while'
]
reserved_words_c99 = ['inline', 'restrict']
def get_math_macros():
""" Returns a dictionary with math-related macros from math.h/cmath
Note that these macros are not strictly required by the C/C++-standard.
For MSVC they are enabled by defining "_USE_MATH_DEFINES" (preferably
via a compilation flag).
Returns
=======
Dictionary mapping sympy expressions to strings (macro names)
"""
from sympy.codegen.cfunctions import log2, Sqrt
from sympy.functions.elementary.exponential import log
from sympy.functions.elementary.miscellaneous import sqrt
return {
S.Exp1: 'M_E',
log2(S.Exp1): 'M_LOG2E',
1/log(2): 'M_LOG2E',
log(2): 'M_LN2',
log(10): 'M_LN10',
S.Pi: 'M_PI',
S.Pi/2: 'M_PI_2',
S.Pi/4: 'M_PI_4',
1/S.Pi: 'M_1_PI',
2/S.Pi: 'M_2_PI',
2/sqrt(S.Pi): 'M_2_SQRTPI',
2/Sqrt(S.Pi): 'M_2_SQRTPI',
sqrt(2): 'M_SQRT2',
Sqrt(2): 'M_SQRT2',
1/sqrt(2): 'M_SQRT1_2',
1/Sqrt(2): 'M_SQRT1_2'
}
def _as_macro_if_defined(meth):
""" Decorator for printer methods
When a Printer's method is decorated using this decorator the expressions printed
will first be looked for in the attribute ``math_macros``, and if present it will
print the macro name in ``math_macros`` followed by a type suffix for the type
``real``. e.g. printing ``sympy.pi`` would print ``M_PIl`` if real is mapped to float80.
"""
@wraps(meth)
def _meth_wrapper(self, expr, **kwargs):
if expr in self.math_macros:
return '%s%s' % (self.math_macros[expr], self._get_math_macro_suffix(real))
else:
return meth(self, expr, **kwargs)
return _meth_wrapper
class C89CodePrinter(CodePrinter):
"""A printer to convert python expressions to strings of c code"""
printmethod = "_ccode"
language = "C"
standard = "C89"
reserved_words = set(reserved_words)
_default_settings = {
'order': None,
'full_prec': 'auto',
'precision': 17,
'user_functions': {},
'human': True,
'allow_unknown_functions': False,
'contract': True,
'dereference': set(),
'error_on_reserved': False,
'reserved_word_suffix': '_',
}
type_aliases = {
real: float64,
complex_: complex128,
integer: intc
}
type_mappings = {
real: 'double',
intc: 'int',
float32: 'float',
float64: 'double',
integer: 'int',
bool_: 'bool',
int8: 'int8_t',
int16: 'int16_t',
int32: 'int32_t',
int64: 'int64_t',
uint8: 'int8_t',
uint16: 'int16_t',
uint32: 'int32_t',
uint64: 'int64_t',
}
type_headers = {
bool_: {'stdbool.h'},
int8: {'stdint.h'},
int16: {'stdint.h'},
int32: {'stdint.h'},
int64: {'stdint.h'},
uint8: {'stdint.h'},
uint16: {'stdint.h'},
uint32: {'stdint.h'},
uint64: {'stdint.h'},
}
type_macros = {} # Macros needed to be defined when using a Type
type_func_suffixes = {
float32: 'f',
float64: '',
float80: 'l'
}
type_literal_suffixes = {
float32: 'F',
float64: '',
float80: 'L'
}
type_math_macro_suffixes = {
float80: 'l'
}
math_macros = None
_ns = '' # namespace, C++ uses 'std::'
_kf = known_functions_C89 # known_functions-dict to copy
def __init__(self, settings={}):
if self.math_macros is None:
self.math_macros = settings.pop('math_macros', get_math_macros())
self.type_aliases = dict(chain(self.type_aliases.items(),
settings.pop('type_aliases', {}).items()))
self.type_mappings = dict(chain(self.type_mappings.items(),
settings.pop('type_mappings', {}).items()))
self.type_headers = dict(chain(self.type_headers.items(),
settings.pop('type_headers', {}).items()))
self.type_macros = dict(chain(self.type_macros.items(),
settings.pop('type_macros', {}).items()))
self.type_func_suffixes = dict(chain(self.type_func_suffixes.items(),
settings.pop('type_func_suffixes', {}).items()))
self.type_literal_suffixes = dict(chain(self.type_literal_suffixes.items(),
settings.pop('type_literal_suffixes', {}).items()))
self.type_math_macro_suffixes = dict(chain(self.type_math_macro_suffixes.items(),
settings.pop('type_math_macro_suffixes', {}).items()))
super(C89CodePrinter, self).__init__(settings)
self.known_functions = dict(self._kf, **settings.get('user_functions', {}))
self._dereference = set(settings.get('dereference', []))
self.headers = set()
self.libraries = set()
self.macros = set()
def _rate_index_position(self, p):
return p*5
def _get_statement(self, codestring):
""" Get code string as a statement - i.e. ending with a semicolon. """
return codestring if codestring.endswith(';') else codestring + ';'
def _get_comment(self, text):
return "// {0}".format(text)
def _declare_number_const(self, name, value):
type_ = self.type_aliases[real]
var = Variable(name, type=type_, value=value.evalf(type_.decimal_dig), attrs={value_const})
decl = Declaration(var)
return self._get_statement(self._print(decl))
def _format_code(self, lines):
return self.indent_code(lines)
def _traverse_matrix_indices(self, mat):
rows, cols = mat.shape
return ((i, j) for i in range(rows) for j in range(cols))
@_as_macro_if_defined
def _print_Mul(self, expr, **kwargs):
return super(C89CodePrinter, self)._print_Mul(expr, **kwargs)
@_as_macro_if_defined
def _print_Pow(self, expr):
if "Pow" in self.known_functions:
return self._print_Function(expr)
PREC = precedence(expr)
suffix = self._get_func_suffix(real)
if expr.exp == -1:
return '1.0%s/%s' % (suffix.upper(), self.parenthesize(expr.base, PREC))
elif expr.exp == 0.5:
return '%ssqrt%s(%s)' % (self._ns, suffix, self._print(expr.base))
elif expr.exp == S.One/3 and self.standard != 'C89':
return '%scbrt%s(%s)' % (self._ns, suffix, self._print(expr.base))
else:
return '%spow%s(%s, %s)' % (self._ns, suffix, self._print(expr.base),
self._print(expr.exp))
def _print_Mod(self, expr):
num, den = expr.args
if num.is_integer and den.is_integer:
return "(({}) % ({}))".format(self._print(num), self._print(den))
else:
return self._print_math_func(expr, known='fmod')
def _print_Rational(self, expr):
p, q = int(expr.p), int(expr.q)
suffix = self._get_literal_suffix(real)
return '%d.0%s/%d.0%s' % (p, suffix, q, suffix)
def _print_Indexed(self, expr):
# calculate index for 1d array
offset = getattr(expr.base, 'offset', S.Zero)
strides = getattr(expr.base, 'strides', None)
indices = expr.indices
if strides is None or isinstance(strides, string_types):
dims = expr.shape
shift = S.One
temp = tuple()
if strides == 'C' or strides is None:
traversal = reversed(range(expr.rank))
indices = indices[::-1]
elif strides == 'F':
traversal = range(expr.rank)
for i in traversal:
temp += (shift,)
shift *= dims[i]
strides = temp
flat_index = sum([x[0]*x[1] for x in zip(indices, strides)]) + offset
return "%s[%s]" % (self._print(expr.base.label),
self._print(flat_index))
def _print_Idx(self, expr):
return self._print(expr.label)
@_as_macro_if_defined
def _print_NumberSymbol(self, expr):
return super(C89CodePrinter, self)._print_NumberSymbol(expr)
def _print_Infinity(self, expr):
return 'HUGE_VAL'
def _print_NegativeInfinity(self, expr):
return '-HUGE_VAL'
def _print_Piecewise(self, expr):
if expr.args[-1].cond != True:
# We need the last conditional to be a True, otherwise the resulting
# function may not return a result.
raise ValueError("All Piecewise expressions must contain an "
"(expr, True) statement to be used as a default "
"condition. Without one, the generated "
"expression may not evaluate to anything under "
"some condition.")
lines = []
if expr.has(Assignment):
for i, (e, c) in enumerate(expr.args):
if i == 0:
lines.append("if (%s) {" % self._print(c))
elif i == len(expr.args) - 1 and c == True:
lines.append("else {")
else:
lines.append("else if (%s) {" % self._print(c))
code0 = self._print(e)
lines.append(code0)
lines.append("}")
return "\n".join(lines)
else:
# The piecewise was used in an expression, need to do inline
# operators. This has the downside that inline operators will
# not work for statements that span multiple lines (Matrix or
# Indexed expressions).
ecpairs = ["((%s) ? (\n%s\n)\n" % (self._print(c),
self._print(e))
for e, c in expr.args[:-1]]
last_line = ": (\n%s\n)" % self._print(expr.args[-1].expr)
return ": ".join(ecpairs) + last_line + " ".join([")"*len(ecpairs)])
def _print_ITE(self, expr):
from sympy.functions import Piecewise
_piecewise = Piecewise((expr.args[1], expr.args[0]), (expr.args[2], True))
return self._print(_piecewise)
def _print_MatrixElement(self, expr):
return "{0}[{1}]".format(self.parenthesize(expr.parent, PRECEDENCE["Atom"],
strict=True), expr.j + expr.i*expr.parent.shape[1])
def _print_Symbol(self, expr):
name = super(C89CodePrinter, self)._print_Symbol(expr)
if expr in self._settings['dereference']:
return '(*{0})'.format(name)
else:
return name
def _print_Relational(self, expr):
lhs_code = self._print(expr.lhs)
rhs_code = self._print(expr.rhs)
op = expr.rel_op
return ("{0} {1} {2}").format(lhs_code, op, rhs_code)
def _print_sinc(self, expr):
from sympy.functions.elementary.trigonometric import sin
from sympy.core.relational import Ne
from sympy.functions import Piecewise
_piecewise = Piecewise(
(sin(expr.args[0]) / expr.args[0], Ne(expr.args[0], 0)), (1, True))
return self._print(_piecewise)
def _print_For(self, expr):
target = self._print(expr.target)
if isinstance(expr.iterable, Range):
start, stop, step = expr.iterable.args
else:
raise NotImplementedError("Only iterable currently supported is Range")
body = self._print(expr.body)
return ('for ({target} = {start}; {target} < {stop}; {target} += '
'{step}) {{\n{body}\n}}').format(target=target, start=start,
stop=stop, step=step, body=body)
def _print_sign(self, func):
return '((({0}) > 0) - (({0}) < 0))'.format(self._print(func.args[0]))
def _print_Max(self, expr):
if "Max" in self.known_functions:
return self._print_Function(expr)
def inner_print_max(args): # The more natural abstraction of creating
if len(args) == 1: # and printing smaller Max objects is slow
return self._print(args[0]) # when there are many arguments.
half = len(args) // 2
return "((%(a)s > %(b)s) ? %(a)s : %(b)s)" % {
'a': inner_print_max(args[:half]),
'b': inner_print_max(args[half:])
}
return inner_print_max(expr.args)
def _print_Min(self, expr):
if "Min" in self.known_functions:
return self._print_Function(expr)
def inner_print_min(args): # The more natural abstraction of creating
if len(args) == 1: # and printing smaller Min objects is slow
return self._print(args[0]) # when there are many arguments.
half = len(args) // 2
return "((%(a)s < %(b)s) ? %(a)s : %(b)s)" % {
'a': inner_print_min(args[:half]),
'b': inner_print_min(args[half:])
}
return inner_print_min(expr.args)
def indent_code(self, code):
"""Accepts a string of code or a list of code lines"""
if isinstance(code, string_types):
code_lines = self.indent_code(code.splitlines(True))
return ''.join(code_lines)
tab = " "
inc_token = ('{', '(', '{\n', '(\n')
dec_token = ('}', ')')
code = [line.lstrip(' \t') for line in code]
increase = [int(any(map(line.endswith, inc_token))) for line in code]
decrease = [int(any(map(line.startswith, dec_token))) for line in code]
pretty = []
level = 0
for n, line in enumerate(code):
if line == '' or line == '\n':
pretty.append(line)
continue
level -= decrease[n]
pretty.append("%s%s" % (tab*level, line))
level += increase[n]
return pretty
def _get_func_suffix(self, type_):
return self.type_func_suffixes[self.type_aliases.get(type_, type_)]
def _get_literal_suffix(self, type_):
return self.type_literal_suffixes[self.type_aliases.get(type_, type_)]
def _get_math_macro_suffix(self, type_):
alias = self.type_aliases.get(type_, type_)
dflt = self.type_math_macro_suffixes.get(alias, '')
return self.type_math_macro_suffixes.get(type_, dflt)
def _print_Type(self, type_):
self.headers.update(self.type_headers.get(type_, set()))
self.macros.update(self.type_macros.get(type_, set()))
return self._print(self.type_mappings.get(type_, type_.name))
def _print_Declaration(self, decl):
from sympy.codegen.cnodes import restrict
var = decl.variable
val = var.value
if var.type == untyped:
raise ValueError("C does not support untyped variables")
if isinstance(var, Pointer):
result = '{vc}{t} *{pc} {r}{s}'.format(
vc='const ' if value_const in var.attrs else '',
t=self._print(var.type),
pc=' const' if pointer_const in var.attrs else '',
r='restrict ' if restrict in var.attrs else '',
s=self._print(var.symbol)
)
elif isinstance(var, Variable):
result = '{vc}{t} {s}'.format(
vc='const ' if value_const in var.attrs else '',
t=self._print(var.type),
s=self._print(var.symbol)
)
else:
raise NotImplementedError("Unknown type of var: %s" % type(var))
if val != None: # Must be "!= None", cannot be "is not None"
result += ' = %s' % self._print(val)
return result
def _print_Float(self, flt):
type_ = self.type_aliases.get(real, real)
self.macros.update(self.type_macros.get(type_, set()))
suffix = self._get_literal_suffix(type_)
num = str(flt.evalf(type_.decimal_dig))
if 'e' not in num and '.' not in num:
num += '.0'
num_parts = num.split('e')
num_parts[0] = num_parts[0].rstrip('0')
if num_parts[0].endswith('.'):
num_parts[0] += '0'
return 'e'.join(num_parts) + suffix
@requires(headers={'stdbool.h'})
def _print_BooleanTrue(self, expr):
return 'true'
@requires(headers={'stdbool.h'})
def _print_BooleanFalse(self, expr):
return 'false'
def _print_Element(self, elem):
if elem.strides == None: # Must be "== None", cannot be "is None"
if elem.offset != None: # Must be "!= None", cannot be "is not None"
raise ValueError("Expected strides when offset is given")
idxs = ']['.join(map(lambda arg: self._print(arg),
elem.indices))
else:
global_idx = sum([i*s for i, s in zip(elem.indices, elem.strides)])
if elem.offset != None: # Must be "!= None", cannot be "is not None"
global_idx += elem.offset
idxs = self._print(global_idx)
return "{symb}[{idxs}]".format(
symb=self._print(elem.symbol),
idxs=idxs
)
def _print_CodeBlock(self, expr):
""" Elements of code blocks printed as statements. """
return '\n'.join([self._get_statement(self._print(i)) for i in expr.args])
def _print_While(self, expr):
return 'while ({condition}) {{\n{body}\n}}'.format(**expr.kwargs(
apply=lambda arg: self._print(arg)))
def _print_Scope(self, expr):
return '{\n%s\n}' % self._print_CodeBlock(expr.body)
@requires(headers={'stdio.h'})
def _print_Print(self, expr):
return 'printf({fmt}, {pargs})'.format(
fmt=self._print(expr.format_string),
pargs=', '.join(map(lambda arg: self._print(arg), expr.print_args))
)
def _print_FunctionPrototype(self, expr):
pars = ', '.join(map(lambda arg: self._print(Declaration(arg)),
expr.parameters))
return "%s %s(%s)" % (
tuple(map(lambda arg: self._print(arg),
(expr.return_type, expr.name))) + (pars,)
)
def _print_FunctionDefinition(self, expr):
return "%s%s" % (self._print_FunctionPrototype(expr),
self._print_Scope(expr))
def _print_Return(self, expr):
arg, = expr.args
return 'return %s' % self._print(arg)
def _print_CommaOperator(self, expr):
return '(%s)' % ', '.join(map(lambda arg: self._print(arg), expr.args))
def _print_Label(self, expr):
return '%s:' % str(expr)
def _print_goto(self, expr):
return 'goto %s' % expr.label
def _print_PreIncrement(self, expr):
arg, = expr.args
return '++(%s)' % self._print(arg)
def _print_PostIncrement(self, expr):
arg, = expr.args
return '(%s)++' % self._print(arg)
def _print_PreDecrement(self, expr):
arg, = expr.args
return '--(%s)' % self._print(arg)
def _print_PostDecrement(self, expr):
arg, = expr.args
return '(%s)--' % self._print(arg)
def _print_struct(self, expr):
return "%(keyword)s %(name)s {\n%(lines)s}" % dict(
keyword=expr.__class__.__name__, name=expr.name, lines=';\n'.join(
[self._print(decl) for decl in expr.declarations] + [''])
)
def _print_BreakToken(self, _):
return 'break'
def _print_ContinueToken(self, _):
return 'continue'
_print_union = _print_struct
class _C9XCodePrinter(object):
# Move these methods to C99CodePrinter when removing CCodePrinter
def _get_loop_opening_ending(self, indices):
open_lines = []
close_lines = []
loopstart = "for (int %(var)s=%(start)s; %(var)s<%(end)s; %(var)s++){" # C99
for i in indices:
# C arrays start at 0 and end at dimension-1
open_lines.append(loopstart % {
'var': self._print(i.label),
'start': self._print(i.lower),
'end': self._print(i.upper + 1)})
close_lines.append("}")
return open_lines, close_lines
@deprecated(
last_supported_version='1.0',
useinstead="C89CodePrinter or C99CodePrinter, e.g. ccode(..., standard='C99')",
issue=12220,
deprecated_since_version='1.1')
class CCodePrinter(_C9XCodePrinter, C89CodePrinter):
"""
Deprecated.
Alias for C89CodePrinter, for backwards compatibility.
"""
_kf = _known_functions_C9X # known_functions-dict to copy
class C99CodePrinter(_C9XCodePrinter, C89CodePrinter):
standard = 'C99'
reserved_words = set(reserved_words + reserved_words_c99)
type_mappings=dict(chain(C89CodePrinter.type_mappings.items(), {
complex64: 'float complex',
complex128: 'double complex',
}.items()))
type_headers = dict(chain(C89CodePrinter.type_headers.items(), {
complex64: {'complex.h'},
complex128: {'complex.h'}
}.items()))
_kf = known_functions_C99 # known_functions-dict to copy
# functions with versions with 'f' and 'l' suffixes:
_prec_funcs = ('fabs fmod remainder remquo fma fmax fmin fdim nan exp exp2'
' expm1 log log10 log2 log1p pow sqrt cbrt hypot sin cos tan'
' asin acos atan atan2 sinh cosh tanh asinh acosh atanh erf'
' erfc tgamma lgamma ceil floor trunc round nearbyint rint'
' frexp ldexp modf scalbn ilogb logb nextafter copysign').split()
def _print_Infinity(self, expr):
return 'INFINITY'
def _print_NegativeInfinity(self, expr):
return '-INFINITY'
def _print_NaN(self, expr):
return 'NAN'
# tgamma was already covered by 'known_functions' dict
@requires(headers={'math.h'}, libraries={'m'})
@_as_macro_if_defined
def _print_math_func(self, expr, nest=False, known=None):
if known is None:
known = self.known_functions[expr.__class__.__name__]
if not isinstance(known, string_types):
for cb, name in known:
if cb(*expr.args):
known = name
break
else:
raise ValueError("No matching printer")
try:
return known(self, *expr.args)
except TypeError:
suffix = self._get_func_suffix(real) if self._ns + known in self._prec_funcs else ''
if nest:
args = self._print(expr.args[0])
if len(expr.args) > 1:
paren_pile = ''
for curr_arg in expr.args[1:-1]:
paren_pile += ')'
args += ', {ns}{name}{suffix}({next}'.format(
ns=self._ns,
name=known,
suffix=suffix,
next = self._print(curr_arg)
)
args += ', %s%s' % (
self._print(expr.func(expr.args[-1])),
paren_pile
)
else:
args = ', '.join(map(lambda arg: self._print(arg), expr.args))
return '{ns}{name}{suffix}({args})'.format(
ns=self._ns,
name=known,
suffix=suffix,
args=args
)
def _print_Max(self, expr):
return self._print_math_func(expr, nest=True)
def _print_Min(self, expr):
return self._print_math_func(expr, nest=True)
for k in ('Abs Sqrt exp exp2 expm1 log log10 log2 log1p Cbrt hypot fma'
' loggamma sin cos tan asin acos atan atan2 sinh cosh tanh asinh acosh '
'atanh erf erfc loggamma gamma ceiling floor').split():
setattr(C99CodePrinter, '_print_%s' % k, C99CodePrinter._print_math_func)
class C11CodePrinter(C99CodePrinter):
@requires(headers={'stdalign.h'})
def _print_alignof(self, expr):
arg, = expr.args
return 'alignof(%s)' % self._print(arg)
c_code_printers = {
'c89': C89CodePrinter,
'c99': C99CodePrinter,
'c11': C11CodePrinter
}
def ccode(expr, assign_to=None, standard='c99', **settings):
"""Converts an expr to a string of c code
Parameters
==========
expr : Expr
A sympy expression to be converted.
assign_to : optional
When given, the argument is used as the name of the variable to which
the expression is assigned. Can be a string, ``Symbol``,
``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of
line-wrapping, or for expressions that generate multi-line statements.
standard : str, optional
String specifying the standard. If your compiler supports a more modern
standard you may set this to 'c99' to allow the printer to use more math
functions. [default='c89'].
precision : integer, optional
The precision for numbers such as pi [default=17].
user_functions : dict, optional
A dictionary where the keys are string representations of either
``FunctionClass`` or ``UndefinedFunction`` instances and the values
are their desired C string representations. Alternatively, the
dictionary value can be a list of tuples i.e. [(argument_test,
cfunction_string)] or [(argument_test, cfunction_formater)]. See below
for examples.
dereference : iterable, optional
An iterable of symbols that should be dereferenced in the printed code
expression. These would be values passed by address to the function.
For example, if ``dereference=[a]``, the resulting code would print
``(*a)`` instead of ``a``.
human : bool, optional
If True, the result is a single string that may contain some constant
declarations for the number symbols. If False, the same information is
returned in a tuple of (symbols_to_declare, not_supported_functions,
code_text). [default=True].
contract: bool, optional
If True, ``Indexed`` instances are assumed to obey tensor contraction
rules and the corresponding nested loops over indices are generated.
Setting contract=False will not generate loops, instead the user is
responsible to provide values for the indices in the code.
[default=True].
Examples
========
>>> from sympy import ccode, symbols, Rational, sin, ceiling, Abs, Function
>>> x, tau = symbols("x, tau")
>>> expr = (2*tau)**Rational(7, 2)
>>> ccode(expr)
'8*M_SQRT2*pow(tau, 7.0/2.0)'
>>> ccode(expr, math_macros={})
'8*sqrt(2)*pow(tau, 7.0/2.0)'
>>> ccode(sin(x), assign_to="s")
's = sin(x);'
>>> from sympy.codegen.ast import real, float80
>>> ccode(expr, type_aliases={real: float80})
'8*M_SQRT2l*powl(tau, 7.0L/2.0L)'
Simple custom printing can be defined for certain types by passing a
dictionary of {"type" : "function"} to the ``user_functions`` kwarg.
Alternatively, the dictionary value can be a list of tuples i.e.
[(argument_test, cfunction_string)].
>>> custom_functions = {
... "ceiling": "CEIL",
... "Abs": [(lambda x: not x.is_integer, "fabs"),
... (lambda x: x.is_integer, "ABS")],
... "func": "f"
... }
>>> func = Function('func')
>>> ccode(func(Abs(x) + ceiling(x)), standard='C89', user_functions=custom_functions)
'f(fabs(x) + CEIL(x))'
or if the C-function takes a subset of the original arguments:
>>> ccode(2**x + 3**x, standard='C99', user_functions={'Pow': [
... (lambda b, e: b == 2, lambda b, e: 'exp2(%s)' % e),
... (lambda b, e: b != 2, 'pow')]})
'exp2(x) + pow(3, x)'
``Piecewise`` expressions are converted into conditionals. If an
``assign_to`` variable is provided an if statement is created, otherwise
the ternary operator is used. Note that if the ``Piecewise`` lacks a
default term, represented by ``(expr, True)`` then an error will be thrown.
This is to prevent generating an expression that may not evaluate to
anything.
>>> from sympy import Piecewise
>>> expr = Piecewise((x + 1, x > 0), (x, True))
>>> print(ccode(expr, tau, standard='C89'))
if (x > 0) {
tau = x + 1;
}
else {
tau = x;
}
Support for loops is provided through ``Indexed`` types. With
``contract=True`` these expressions will be turned into loops, whereas
``contract=False`` will just print the assignment expression that should be
looped over:
>>> from sympy import Eq, IndexedBase, Idx
>>> len_y = 5
>>> y = IndexedBase('y', shape=(len_y,))
>>> t = IndexedBase('t', shape=(len_y,))
>>> Dy = IndexedBase('Dy', shape=(len_y-1,))
>>> i = Idx('i', len_y-1)
>>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
>>> ccode(e.rhs, assign_to=e.lhs, contract=False, standard='C89')
'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);'
Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions
must be provided to ``assign_to``. Note that any expression that can be
generated normally can also exist inside a Matrix:
>>> from sympy import Matrix, MatrixSymbol
>>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)])
>>> A = MatrixSymbol('A', 3, 1)
>>> print(ccode(mat, A, standard='C89'))
A[0] = pow(x, 2);
if (x > 0) {
A[1] = x + 1;
}
else {
A[1] = x;
}
A[2] = sin(x);
"""
return c_code_printers[standard.lower()](settings).doprint(expr, assign_to)
def print_ccode(expr, **settings):
"""Prints C representation of the given expression."""
print(ccode(expr, **settings))
|
f2f807a6b8248b42907619def12b7b9b58364ad1f0eec48f679364d268bca3a4
|
"""
A MathML printer.
"""
from __future__ import print_function, division
from sympy import sympify, S, Mul
from sympy.core.compatibility import range, string_types, default_sort_key
from sympy.core.function import _coeff_isneg
from sympy.printing.conventions import split_super_sub, requires_partial
from sympy.printing.precedence import precedence_traditional, PRECEDENCE
from sympy.printing.pretty.pretty_symbology import greek_unicode
from sympy.printing.printer import Printer
import mpmath.libmp as mlib
from mpmath.libmp import prec_to_dps
class MathMLPrinterBase(Printer):
"""Contains common code required for MathMLContentPrinter and
MathMLPresentationPrinter.
"""
_default_settings = {
"order": None,
"encoding": "utf-8",
"fold_frac_powers": False,
"fold_func_brackets": False,
"fold_short_frac": None,
"inv_trig_style": "abbreviated",
"ln_notation": False,
"long_frac_ratio": None,
"mat_delim": "[",
"mat_symbol_style": "plain",
"mul_symbol": None,
"root_notation": True,
"symbol_names": {},
"mul_symbol_mathml_numbers": '·',
}
def __init__(self, settings=None):
Printer.__init__(self, settings)
from xml.dom.minidom import Document, Text
self.dom = Document()
# Workaround to allow strings to remain unescaped
# Based on
# https://stackoverflow.com/questions/38015864/python-xml-dom-minidom-\
# please-dont-escape-my-strings/38041194
class RawText(Text):
def writexml(self, writer, indent='', addindent='', newl=''):
if self.data:
writer.write(u'{}{}{}'.format(indent, self.data, newl))
def createRawTextNode(data):
r = RawText()
r.data = data
r.ownerDocument = self.dom
return r
self.dom.createTextNode = createRawTextNode
def doprint(self, expr):
"""
Prints the expression as MathML.
"""
mathML = Printer._print(self, expr)
unistr = mathML.toxml()
xmlbstr = unistr.encode('ascii', 'xmlcharrefreplace')
res = xmlbstr.decode()
return res
def apply_patch(self):
# Applying the patch of xml.dom.minidom bug
# Date: 2011-11-18
# Description: http://ronrothman.com/public/leftbraned/xml-dom-minidom\
# -toprettyxml-and-silly-whitespace/#best-solution
# Issue: http://bugs.python.org/issue4147
# Patch: http://hg.python.org/cpython/rev/7262f8f276ff/
from xml.dom.minidom import Element, Text, Node, _write_data
def writexml(self, writer, indent="", addindent="", newl=""):
# indent = current indentation
# addindent = indentation to add to higher levels
# newl = newline string
writer.write(indent + "<" + self.tagName)
attrs = self._get_attributes()
a_names = list(attrs.keys())
a_names.sort()
for a_name in a_names:
writer.write(" %s=\"" % a_name)
_write_data(writer, attrs[a_name].value)
writer.write("\"")
if self.childNodes:
writer.write(">")
if (len(self.childNodes) == 1 and
self.childNodes[0].nodeType == Node.TEXT_NODE):
self.childNodes[0].writexml(writer, '', '', '')
else:
writer.write(newl)
for node in self.childNodes:
node.writexml(
writer, indent + addindent, addindent, newl)
writer.write(indent)
writer.write("</%s>%s" % (self.tagName, newl))
else:
writer.write("/>%s" % (newl))
self._Element_writexml_old = Element.writexml
Element.writexml = writexml
def writexml(self, writer, indent="", addindent="", newl=""):
_write_data(writer, "%s%s%s" % (indent, self.data, newl))
self._Text_writexml_old = Text.writexml
Text.writexml = writexml
def restore_patch(self):
from xml.dom.minidom import Element, Text
Element.writexml = self._Element_writexml_old
Text.writexml = self._Text_writexml_old
class MathMLContentPrinter(MathMLPrinterBase):
"""Prints an expression to the Content MathML markup language.
References: https://www.w3.org/TR/MathML2/chapter4.html
"""
printmethod = "_mathml_content"
def mathml_tag(self, e):
"""Returns the MathML tag for an expression."""
translate = {
'Add': 'plus',
'Mul': 'times',
'Derivative': 'diff',
'Number': 'cn',
'int': 'cn',
'Pow': 'power',
'Symbol': 'ci',
'MatrixSymbol': 'ci',
'RandomSymbol': 'ci',
'Integral': 'int',
'Sum': 'sum',
'sin': 'sin',
'cos': 'cos',
'tan': 'tan',
'cot': 'cot',
'asin': 'arcsin',
'asinh': 'arcsinh',
'acos': 'arccos',
'acosh': 'arccosh',
'atan': 'arctan',
'atanh': 'arctanh',
'acot': 'arccot',
'atan2': 'arctan',
'log': 'ln',
'Equality': 'eq',
'Unequality': 'neq',
'GreaterThan': 'geq',
'LessThan': 'leq',
'StrictGreaterThan': 'gt',
'StrictLessThan': 'lt',
}
for cls in e.__class__.__mro__:
n = cls.__name__
if n in translate:
return translate[n]
# Not found in the MRO set
n = e.__class__.__name__
return n.lower()
def _print_Mul(self, expr):
if _coeff_isneg(expr):
x = self.dom.createElement('apply')
x.appendChild(self.dom.createElement('minus'))
x.appendChild(self._print_Mul(-expr))
return x
from sympy.simplify import fraction
numer, denom = fraction(expr)
if denom is not S.One:
x = self.dom.createElement('apply')
x.appendChild(self.dom.createElement('divide'))
x.appendChild(self._print(numer))
x.appendChild(self._print(denom))
return x
coeff, terms = expr.as_coeff_mul()
if coeff is S.One and len(terms) == 1:
# XXX since the negative coefficient has been handled, I don't
# think a coeff of 1 can remain
return self._print(terms[0])
if self.order != 'old':
terms = Mul._from_args(terms).as_ordered_factors()
x = self.dom.createElement('apply')
x.appendChild(self.dom.createElement('times'))
if coeff != 1:
x.appendChild(self._print(coeff))
for term in terms:
x.appendChild(self._print(term))
return x
def _print_Add(self, expr, order=None):
args = self._as_ordered_terms(expr, order=order)
lastProcessed = self._print(args[0])
plusNodes = []
for arg in args[1:]:
if _coeff_isneg(arg):
# use minus
x = self.dom.createElement('apply')
x.appendChild(self.dom.createElement('minus'))
x.appendChild(lastProcessed)
x.appendChild(self._print(-arg))
# invert expression since this is now minused
lastProcessed = x
if arg == args[-1]:
plusNodes.append(lastProcessed)
else:
plusNodes.append(lastProcessed)
lastProcessed = self._print(arg)
if arg == args[-1]:
plusNodes.append(self._print(arg))
if len(plusNodes) == 1:
return lastProcessed
x = self.dom.createElement('apply')
x.appendChild(self.dom.createElement('plus'))
while plusNodes:
x.appendChild(plusNodes.pop(0))
return x
def _print_MatrixBase(self, m):
x = self.dom.createElement('matrix')
for i in range(m.rows):
x_r = self.dom.createElement('matrixrow')
for j in range(m.cols):
x_r.appendChild(self._print(m[i, j]))
x.appendChild(x_r)
return x
def _print_Rational(self, e):
if e.q == 1:
# don't divide
x = self.dom.createElement('cn')
x.appendChild(self.dom.createTextNode(str(e.p)))
return x
x = self.dom.createElement('apply')
x.appendChild(self.dom.createElement('divide'))
# numerator
xnum = self.dom.createElement('cn')
xnum.appendChild(self.dom.createTextNode(str(e.p)))
# denominator
xdenom = self.dom.createElement('cn')
xdenom.appendChild(self.dom.createTextNode(str(e.q)))
x.appendChild(xnum)
x.appendChild(xdenom)
return x
def _print_Limit(self, e):
x = self.dom.createElement('apply')
x.appendChild(self.dom.createElement(self.mathml_tag(e)))
x_1 = self.dom.createElement('bvar')
x_2 = self.dom.createElement('lowlimit')
x_1.appendChild(self._print(e.args[1]))
x_2.appendChild(self._print(e.args[2]))
x.appendChild(x_1)
x.appendChild(x_2)
x.appendChild(self._print(e.args[0]))
return x
def _print_ImaginaryUnit(self, e):
return self.dom.createElement('imaginaryi')
def _print_EulerGamma(self, e):
return self.dom.createElement('eulergamma')
def _print_GoldenRatio(self, e):
"""We use unicode #x3c6 for Greek letter phi as defined here
http://www.w3.org/2003/entities/2007doc/isogrk1.html"""
x = self.dom.createElement('cn')
x.appendChild(self.dom.createTextNode(u"\N{GREEK SMALL LETTER PHI}"))
return x
def _print_Exp1(self, e):
return self.dom.createElement('exponentiale')
def _print_Pi(self, e):
return self.dom.createElement('pi')
def _print_Infinity(self, e):
return self.dom.createElement('infinity')
def _print_NegativeInfinity(self, e):
x = self.dom.createElement('apply')
x.appendChild(self.dom.createElement('minus'))
x.appendChild(self.dom.createElement('infinity'))
return x
def _print_Integral(self, e):
def lime_recur(limits):
x = self.dom.createElement('apply')
x.appendChild(self.dom.createElement(self.mathml_tag(e)))
bvar_elem = self.dom.createElement('bvar')
bvar_elem.appendChild(self._print(limits[0][0]))
x.appendChild(bvar_elem)
if len(limits[0]) == 3:
low_elem = self.dom.createElement('lowlimit')
low_elem.appendChild(self._print(limits[0][1]))
x.appendChild(low_elem)
up_elem = self.dom.createElement('uplimit')
up_elem.appendChild(self._print(limits[0][2]))
x.appendChild(up_elem)
if len(limits[0]) == 2:
up_elem = self.dom.createElement('uplimit')
up_elem.appendChild(self._print(limits[0][1]))
x.appendChild(up_elem)
if len(limits) == 1:
x.appendChild(self._print(e.function))
else:
x.appendChild(lime_recur(limits[1:]))
return x
limits = list(e.limits)
limits.reverse()
return lime_recur(limits)
def _print_Sum(self, e):
# Printer can be shared because Sum and Integral have the
# same internal representation.
return self._print_Integral(e)
def _print_Symbol(self, sym):
ci = self.dom.createElement(self.mathml_tag(sym))
def join(items):
if len(items) > 1:
mrow = self.dom.createElement('mml:mrow')
for i, item in enumerate(items):
if i > 0:
mo = self.dom.createElement('mml:mo')
mo.appendChild(self.dom.createTextNode(" "))
mrow.appendChild(mo)
mi = self.dom.createElement('mml:mi')
mi.appendChild(self.dom.createTextNode(item))
mrow.appendChild(mi)
return mrow
else:
mi = self.dom.createElement('mml:mi')
mi.appendChild(self.dom.createTextNode(items[0]))
return mi
# translate name, supers and subs to unicode characters
def translate(s):
if s in greek_unicode:
return greek_unicode.get(s)
else:
return s
name, supers, subs = split_super_sub(sym.name)
name = translate(name)
supers = [translate(sup) for sup in supers]
subs = [translate(sub) for sub in subs]
mname = self.dom.createElement('mml:mi')
mname.appendChild(self.dom.createTextNode(name))
if not supers:
if not subs:
ci.appendChild(self.dom.createTextNode(name))
else:
msub = self.dom.createElement('mml:msub')
msub.appendChild(mname)
msub.appendChild(join(subs))
ci.appendChild(msub)
else:
if not subs:
msup = self.dom.createElement('mml:msup')
msup.appendChild(mname)
msup.appendChild(join(supers))
ci.appendChild(msup)
else:
msubsup = self.dom.createElement('mml:msubsup')
msubsup.appendChild(mname)
msubsup.appendChild(join(subs))
msubsup.appendChild(join(supers))
ci.appendChild(msubsup)
return ci
_print_MatrixSymbol = _print_Symbol
_print_RandomSymbol = _print_Symbol
def _print_Pow(self, e):
# Here we use root instead of power if the exponent is the reciprocal
# of an integer
if (self._settings['root_notation'] and e.exp.is_Rational
and e.exp.p == 1):
x = self.dom.createElement('apply')
x.appendChild(self.dom.createElement('root'))
if e.exp.q != 2:
xmldeg = self.dom.createElement('degree')
xmlci = self.dom.createElement('ci')
xmlci.appendChild(self.dom.createTextNode(str(e.exp.q)))
xmldeg.appendChild(xmlci)
x.appendChild(xmldeg)
x.appendChild(self._print(e.base))
return x
x = self.dom.createElement('apply')
x_1 = self.dom.createElement(self.mathml_tag(e))
x.appendChild(x_1)
x.appendChild(self._print(e.base))
x.appendChild(self._print(e.exp))
return x
def _print_Number(self, e):
x = self.dom.createElement(self.mathml_tag(e))
x.appendChild(self.dom.createTextNode(str(e)))
return x
def _print_Derivative(self, e):
x = self.dom.createElement('apply')
diff_symbol = self.mathml_tag(e)
if requires_partial(e):
diff_symbol = 'partialdiff'
x.appendChild(self.dom.createElement(diff_symbol))
x_1 = self.dom.createElement('bvar')
for sym, times in reversed(e.variable_count):
x_1.appendChild(self._print(sym))
if times > 1:
degree = self.dom.createElement('degree')
degree.appendChild(self._print(sympify(times)))
x_1.appendChild(degree)
x.appendChild(x_1)
x.appendChild(self._print(e.expr))
return x
def _print_Function(self, e):
x = self.dom.createElement("apply")
x.appendChild(self.dom.createElement(self.mathml_tag(e)))
for arg in e.args:
x.appendChild(self._print(arg))
return x
def _print_Basic(self, e):
x = self.dom.createElement(self.mathml_tag(e))
for arg in e.args:
x.appendChild(self._print(arg))
return x
def _print_AssocOp(self, e):
x = self.dom.createElement('apply')
x_1 = self.dom.createElement(self.mathml_tag(e))
x.appendChild(x_1)
for arg in e.args:
x.appendChild(self._print(arg))
return x
def _print_Relational(self, e):
x = self.dom.createElement('apply')
x.appendChild(self.dom.createElement(self.mathml_tag(e)))
x.appendChild(self._print(e.lhs))
x.appendChild(self._print(e.rhs))
return x
def _print_list(self, seq):
"""MathML reference for the <list> element:
http://www.w3.org/TR/MathML2/chapter4.html#contm.list"""
dom_element = self.dom.createElement('list')
for item in seq:
dom_element.appendChild(self._print(item))
return dom_element
def _print_int(self, p):
dom_element = self.dom.createElement(self.mathml_tag(p))
dom_element.appendChild(self.dom.createTextNode(str(p)))
return dom_element
class MathMLPresentationPrinter(MathMLPrinterBase):
"""Prints an expression to the Presentation MathML markup language.
References: https://www.w3.org/TR/MathML2/chapter3.html
"""
printmethod = "_mathml_presentation"
def mathml_tag(self, e):
"""Returns the MathML tag for an expression."""
translate = {
'Number': 'mn',
'Limit': '→',
'Derivative': 'ⅆ',
'int': 'mn',
'Symbol': 'mi',
'Integral': '∫',
'Sum': '∑',
'sin': 'sin',
'cos': 'cos',
'tan': 'tan',
'cot': 'cot',
'asin': 'arcsin',
'asinh': 'arcsinh',
'acos': 'arccos',
'acosh': 'arccosh',
'atan': 'arctan',
'atanh': 'arctanh',
'acot': 'arccot',
'atan2': 'arctan',
'Equality': '=',
'Unequality': '≠',
'GreaterThan': '≥',
'LessThan': '≤',
'StrictGreaterThan': '>',
'StrictLessThan': '<',
'lerchphi': 'Φ',
'zeta': 'ζ',
'dirichlet_eta': 'η',
'elliptic_k': 'Κ',
'lowergamma': 'γ',
'uppergamma': 'Γ',
'gamma': 'Γ',
'totient': 'ϕ',
'reduced_totient': 'λ',
'primenu': 'ν',
'primeomega': 'Ω',
'fresnels': 'S',
'fresnelc': 'C',
'Heaviside': 'Θ',
'BooleanTrue': 'True',
'BooleanFalse': 'False',
'NoneType': 'None',
}
def mul_symbol_selection():
if (self._settings["mul_symbol"] is None or
self._settings["mul_symbol"] == 'None'):
return '⁢'
elif self._settings["mul_symbol"] == 'times':
return '×'
elif self._settings["mul_symbol"] == 'dot':
return '·'
elif self._settings["mul_symbol"] == 'ldot':
return '․'
elif not isinstance(self._settings["mul_symbol"], string_types):
raise TypeError
else:
return self._settings["mul_symbol"]
for cls in e.__class__.__mro__:
n = cls.__name__
if n in translate:
return translate[n]
# Not found in the MRO set
if e.__class__.__name__ == "Mul":
return mul_symbol_selection()
n = e.__class__.__name__
return n.lower()
def parenthesize(self, item, level, strict=False):
prec_val = precedence_traditional(item)
if (prec_val < level) or ((not strict) and prec_val <= level):
brac = self.dom.createElement('mfenced')
brac.appendChild(self._print(item))
return brac
else:
return self._print(item)
def _print_Mul(self, expr):
def multiply(expr, mrow):
from sympy.simplify import fraction
numer, denom = fraction(expr)
if denom is not S.One:
frac = self.dom.createElement('mfrac')
if self._settings["fold_short_frac"] and len(str(expr)) < 7:
frac.setAttribute('bevelled', 'true')
xnum = self._print(numer)
xden = self._print(denom)
frac.appendChild(xnum)
frac.appendChild(xden)
mrow.appendChild(frac)
return mrow
coeff, terms = expr.as_coeff_mul()
if coeff is S.One and len(terms) == 1:
mrow.appendChild(self._print(terms[0]))
return mrow
if self.order != 'old':
terms = Mul._from_args(terms).as_ordered_factors()
if coeff != 1:
x = self._print(coeff)
y = self.dom.createElement('mo')
y.appendChild(self.dom.createTextNode(self.mathml_tag(expr)))
mrow.appendChild(x)
mrow.appendChild(y)
for term in terms:
x = self._print(term)
mrow.appendChild(x)
if not term == terms[-1]:
y = self.dom.createElement('mo')
y.appendChild(self.dom.createTextNode(self.mathml_tag(expr)))
mrow.appendChild(y)
return mrow
mrow = self.dom.createElement('mrow')
if _coeff_isneg(expr):
x = self.dom.createElement('mo')
x.appendChild(self.dom.createTextNode('-'))
mrow.appendChild(x)
mrow = multiply(-expr, mrow)
else:
mrow = multiply(expr, mrow)
return mrow
def _print_Add(self, expr, order=None):
mrow = self.dom.createElement('mrow')
args = self._as_ordered_terms(expr, order=order)
mrow.appendChild(self._print(args[0]))
for arg in args[1:]:
if _coeff_isneg(arg):
# use minus
x = self.dom.createElement('mo')
x.appendChild(self.dom.createTextNode('-'))
y = self._print(-arg)
# invert expression since this is now minused
else:
x = self.dom.createElement('mo')
x.appendChild(self.dom.createTextNode('+'))
y = self._print(arg)
mrow.appendChild(x)
mrow.appendChild(y)
return mrow
def _print_MatrixBase(self, m):
table = self.dom.createElement('mtable')
for i in range(m.rows):
x = self.dom.createElement('mtr')
for j in range(m.cols):
y = self.dom.createElement('mtd')
y.appendChild(self._print(m[i, j]))
x.appendChild(y)
table.appendChild(x)
if self._settings["mat_delim"] == '':
return table
brac = self.dom.createElement('mfenced')
if self._settings["mat_delim"] == "[":
brac.setAttribute('open', '[')
brac.setAttribute('close', ']')
brac.appendChild(table)
return brac
def _get_printed_Rational(self, e, folded=None):
if e.p < 0:
p = -e.p
else:
p = e.p
x = self.dom.createElement('mfrac')
if folded or self._settings["fold_short_frac"]:
x.setAttribute('bevelled', 'true')
x.appendChild(self._print(p))
x.appendChild(self._print(e.q))
if e.p < 0:
mrow = self.dom.createElement('mrow')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('-'))
mrow.appendChild(mo)
mrow.appendChild(x)
return mrow
else:
return x
def _print_Rational(self, e):
if e.q == 1:
# don't divide
return self._print(e.p)
return self._get_printed_Rational(e, self._settings["fold_short_frac"])
def _print_Limit(self, e):
mrow = self.dom.createElement('mrow')
munder = self.dom.createElement('munder')
mi = self.dom.createElement('mi')
mi.appendChild(self.dom.createTextNode('lim'))
x = self.dom.createElement('mrow')
x_1 = self._print(e.args[1])
arrow = self.dom.createElement('mo')
arrow.appendChild(self.dom.createTextNode(self.mathml_tag(e)))
x_2 = self._print(e.args[2])
x.appendChild(x_1)
x.appendChild(arrow)
x.appendChild(x_2)
munder.appendChild(mi)
munder.appendChild(x)
mrow.appendChild(munder)
mrow.appendChild(self._print(e.args[0]))
return mrow
def _print_ImaginaryUnit(self, e):
x = self.dom.createElement('mi')
x.appendChild(self.dom.createTextNode('ⅈ'))
return x
def _print_GoldenRatio(self, e):
x = self.dom.createElement('mi')
x.appendChild(self.dom.createTextNode('Φ'))
return x
def _print_Exp1(self, e):
x = self.dom.createElement('mi')
x.appendChild(self.dom.createTextNode('ⅇ'))
return x
def _print_Pi(self, e):
x = self.dom.createElement('mi')
x.appendChild(self.dom.createTextNode('π'))
return x
def _print_Infinity(self, e):
x = self.dom.createElement('mi')
x.appendChild(self.dom.createTextNode('∞'))
return x
def _print_NegativeInfinity(self, e):
mrow = self.dom.createElement('mrow')
y = self.dom.createElement('mo')
y.appendChild(self.dom.createTextNode('-'))
x = self._print_Infinity(e)
mrow.appendChild(y)
mrow.appendChild(x)
return mrow
def _print_Integral(self, expr):
intsymbols = {1: "∫", 2: "∬", 3: "∭"}
mrow = self.dom.createElement('mrow')
if len(expr.limits) <= 3 and all(len(lim) == 1 for lim in expr.limits):
# Only up to three-integral signs exists
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode(intsymbols[len(expr.limits)]))
mrow.appendChild(mo)
else:
# Either more than three or limits provided
for lim in reversed(expr.limits):
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode(intsymbols[1]))
if len(lim) == 1:
mrow.appendChild(mo)
if len(lim) == 2:
msup = self.dom.createElement('msup')
msup.appendChild(mo)
msup.appendChild(self._print(lim[1]))
mrow.appendChild(msup)
if len(lim) == 3:
msubsup = self.dom.createElement('msubsup')
msubsup.appendChild(mo)
msubsup.appendChild(self._print(lim[1]))
msubsup.appendChild(self._print(lim[2]))
mrow.appendChild(msubsup)
# print function
mrow.appendChild(self.parenthesize(expr.function, PRECEDENCE["Mul"],
strict=True))
# print integration variables
for lim in reversed(expr.limits):
d = self.dom.createElement('mo')
d.appendChild(self.dom.createTextNode('ⅆ'))
mrow.appendChild(d)
mrow.appendChild(self._print(lim[0]))
return mrow
def _print_Sum(self, e):
limits = list(e.limits)
subsup = self.dom.createElement('munderover')
low_elem = self._print(limits[0][1])
up_elem = self._print(limits[0][2])
summand = self.dom.createElement('mo')
summand.appendChild(self.dom.createTextNode(self.mathml_tag(e)))
low = self.dom.createElement('mrow')
var = self._print(limits[0][0])
equal = self.dom.createElement('mo')
equal.appendChild(self.dom.createTextNode('='))
low.appendChild(var)
low.appendChild(equal)
low.appendChild(low_elem)
subsup.appendChild(summand)
subsup.appendChild(low)
subsup.appendChild(up_elem)
mrow = self.dom.createElement('mrow')
mrow.appendChild(subsup)
if len(str(e.function)) == 1:
mrow.appendChild(self._print(e.function))
else:
fence = self.dom.createElement('mfenced')
fence.appendChild(self._print(e.function))
mrow.appendChild(fence)
return mrow
def _print_Symbol(self, sym, style='plain'):
def join(items):
if len(items) > 1:
mrow = self.dom.createElement('mrow')
for i, item in enumerate(items):
if i > 0:
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode(" "))
mrow.appendChild(mo)
mi = self.dom.createElement('mi')
mi.appendChild(self.dom.createTextNode(item))
mrow.appendChild(mi)
return mrow
else:
mi = self.dom.createElement('mi')
mi.appendChild(self.dom.createTextNode(items[0]))
return mi
# translate name, supers and subs to unicode characters
def translate(s):
if s in greek_unicode:
return greek_unicode.get(s)
else:
return s
name, supers, subs = split_super_sub(sym.name)
name = translate(name)
supers = [translate(sup) for sup in supers]
subs = [translate(sub) for sub in subs]
mname = self.dom.createElement('mi')
mname.appendChild(self.dom.createTextNode(name))
if len(supers) == 0:
if len(subs) == 0:
x = mname
else:
x = self.dom.createElement('msub')
x.appendChild(mname)
x.appendChild(join(subs))
else:
if len(subs) == 0:
x = self.dom.createElement('msup')
x.appendChild(mname)
x.appendChild(join(supers))
else:
x = self.dom.createElement('msubsup')
x.appendChild(mname)
x.appendChild(join(subs))
x.appendChild(join(supers))
# Set bold font?
if style == 'bold':
x.setAttribute('mathvariant', 'bold')
return x
def _print_MatrixSymbol(self, sym):
return self._print_Symbol(sym,
style=self._settings['mat_symbol_style'])
_print_RandomSymbol = _print_Symbol
def _print_conjugate(self, expr):
enc = self.dom.createElement('menclose')
enc.setAttribute('notation', 'top')
enc.appendChild(self._print(expr.args[0]))
return enc
def _print_operator_after(self, op, expr):
row = self.dom.createElement('mrow')
row.appendChild(self.parenthesize(expr, PRECEDENCE["Func"]))
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode(op))
row.appendChild(mo)
return row
def _print_factorial(self, expr):
return self._print_operator_after('!', expr.args[0])
def _print_factorial2(self, expr):
return self._print_operator_after('!!', expr.args[0])
def _print_binomial(self, expr):
brac = self.dom.createElement('mfenced')
frac = self.dom.createElement('mfrac')
frac.setAttribute('linethickness', '0')
frac.appendChild(self._print(expr.args[0]))
frac.appendChild(self._print(expr.args[1]))
brac.appendChild(frac)
return brac
def _print_Pow(self, e):
# Here we use root instead of power if the exponent is the
# reciprocal of an integer
if (e.exp.is_Rational and abs(e.exp.p) == 1 and e.exp.q != 1 and
self._settings['root_notation']):
if e.exp.q == 2:
x = self.dom.createElement('msqrt')
x.appendChild(self._print(e.base))
if e.exp.q != 2:
x = self.dom.createElement('mroot')
x.appendChild(self._print(e.base))
x.appendChild(self._print(e.exp.q))
if e.exp.p == -1:
frac = self.dom.createElement('mfrac')
frac.appendChild(self._print(1))
frac.appendChild(x)
return frac
else:
return x
if e.exp.is_Rational and e.exp.q != 1:
if e.exp.is_negative:
top = self.dom.createElement('mfrac')
top.appendChild(self._print(1))
x = self.dom.createElement('msup')
x.appendChild(self.parenthesize(e.base, PRECEDENCE['Pow']))
x.appendChild(self._get_printed_Rational(-e.exp,
self._settings['fold_frac_powers']))
top.appendChild(x)
return top
else:
x = self.dom.createElement('msup')
x.appendChild(self.parenthesize(e.base, PRECEDENCE['Pow']))
x.appendChild(self._get_printed_Rational(e.exp,
self._settings['fold_frac_powers']))
return x
if e.exp.is_negative:
top = self.dom.createElement('mfrac')
top.appendChild(self._print(1))
if e.exp == -1:
top.appendChild(self._print(e.base))
else:
x = self.dom.createElement('msup')
x.appendChild(self.parenthesize(e.base, PRECEDENCE['Pow']))
x.appendChild(self._print(-e.exp))
top.appendChild(x)
return top
x = self.dom.createElement('msup')
x.appendChild(self.parenthesize(e.base, PRECEDENCE['Pow']))
x.appendChild(self._print(e.exp))
return x
def _print_Number(self, e):
x = self.dom.createElement(self.mathml_tag(e))
x.appendChild(self.dom.createTextNode(str(e)))
return x
def _print_AccumulationBounds(self, i):
brac = self.dom.createElement('mfenced')
brac.setAttribute('open', u'\u27e8')
brac.setAttribute('close', u'\u27e9')
brac.appendChild(self._print(i.min))
brac.appendChild(self._print(i.max))
return brac
def _print_Derivative(self, e):
if requires_partial(e):
d = '∂'
else:
d = self.mathml_tag(e)
# Determine denominator
m = self.dom.createElement('mrow')
dim = 0 # Total diff dimension, for numerator
for sym, num in reversed(e.variable_count):
dim += num
if num >= 2:
x = self.dom.createElement('msup')
xx = self.dom.createElement('mo')
xx.appendChild(self.dom.createTextNode(d))
x.appendChild(xx)
x.appendChild(self._print(num))
else:
x = self.dom.createElement('mo')
x.appendChild(self.dom.createTextNode(d))
m.appendChild(x)
y = self._print(sym)
m.appendChild(y)
mnum = self.dom.createElement('mrow')
if dim >= 2:
x = self.dom.createElement('msup')
xx = self.dom.createElement('mo')
xx.appendChild(self.dom.createTextNode(d))
x.appendChild(xx)
x.appendChild(self._print(dim))
else:
x = self.dom.createElement('mo')
x.appendChild(self.dom.createTextNode(d))
mnum.appendChild(x)
mrow = self.dom.createElement('mrow')
frac = self.dom.createElement('mfrac')
frac.appendChild(mnum)
frac.appendChild(m)
mrow.appendChild(frac)
# Print function
mrow.appendChild(self._print(e.expr))
return mrow
def _print_Function(self, e):
mrow = self.dom.createElement('mrow')
x = self.dom.createElement('mi')
if self.mathml_tag(e) == 'log' and self._settings["ln_notation"]:
x.appendChild(self.dom.createTextNode('ln'))
else:
x.appendChild(self.dom.createTextNode(self.mathml_tag(e)))
y = self.dom.createElement('mfenced')
for arg in e.args:
y.appendChild(self._print(arg))
mrow.appendChild(x)
mrow.appendChild(y)
return mrow
def _print_Float(self, expr):
# Based off of that in StrPrinter
dps = prec_to_dps(expr._prec)
str_real = mlib.to_str(expr._mpf_, dps, strip_zeros=True)
# Must always have a mul symbol (as 2.5 10^{20} just looks odd)
# thus we use the number separator
separator = self._settings['mul_symbol_mathml_numbers']
mrow = self.dom.createElement('mrow')
if 'e' in str_real:
(mant, exp) = str_real.split('e')
if exp[0] == '+':
exp = exp[1:]
mn = self.dom.createElement('mn')
mn.appendChild(self.dom.createTextNode(mant))
mrow.appendChild(mn)
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode(separator))
mrow.appendChild(mo)
msup = self.dom.createElement('msup')
mn = self.dom.createElement('mn')
mn.appendChild(self.dom.createTextNode("10"))
msup.appendChild(mn)
mn = self.dom.createElement('mn')
mn.appendChild(self.dom.createTextNode(exp))
msup.appendChild(mn)
mrow.appendChild(msup)
return mrow
elif str_real == "+inf":
return self._print_Infinity(None)
elif str_real == "-inf":
return self._print_NegativeInfinity(None)
else:
mn = self.dom.createElement('mn')
mn.appendChild(self.dom.createTextNode(str_real))
return mn
def _print_polylog(self, expr):
mrow = self.dom.createElement('mrow')
m = self.dom.createElement('msub')
mi = self.dom.createElement('mi')
mi.appendChild(self.dom.createTextNode('Li'))
m.appendChild(mi)
m.appendChild(self._print(expr.args[0]))
mrow.appendChild(m)
brac = self.dom.createElement('mfenced')
brac.appendChild(self._print(expr.args[1]))
mrow.appendChild(brac)
return mrow
def _print_Basic(self, e):
mrow = self.dom.createElement('mrow')
mi = self.dom.createElement('mi')
mi.appendChild(self.dom.createTextNode(self.mathml_tag(e)))
mrow.appendChild(mi)
brac = self.dom.createElement('mfenced')
for arg in e.args:
brac.appendChild(self._print(arg))
mrow.appendChild(brac)
return mrow
def _print_Tuple(self, e):
mrow = self.dom.createElement('mrow')
x = self.dom.createElement('mfenced')
for arg in e.args:
x.appendChild(self._print(arg))
mrow.appendChild(x)
return mrow
def _print_Interval(self, i):
mrow = self.dom.createElement('mrow')
brac = self.dom.createElement('mfenced')
if i.start == i.end:
# Most often, this type of Interval is converted to a FiniteSet
brac.setAttribute('open', '{')
brac.setAttribute('close', '}')
brac.appendChild(self._print(i.start))
else:
if i.left_open:
brac.setAttribute('open', '(')
else:
brac.setAttribute('open', '[')
if i.right_open:
brac.setAttribute('close', ')')
else:
brac.setAttribute('close', ']')
brac.appendChild(self._print(i.start))
brac.appendChild(self._print(i.end))
mrow.appendChild(brac)
return mrow
def _print_Abs(self, expr, exp=None):
mrow = self.dom.createElement('mrow')
x = self.dom.createElement('mfenced')
x.setAttribute('open', '|')
x.setAttribute('close', '|')
x.appendChild(self._print(expr.args[0]))
mrow.appendChild(x)
return mrow
_print_Determinant = _print_Abs
def _print_re_im(self, c, expr):
mrow = self.dom.createElement('mrow')
mi = self.dom.createElement('mi')
mi.setAttribute('mathvariant', 'fraktur')
mi.appendChild(self.dom.createTextNode(c))
mrow.appendChild(mi)
brac = self.dom.createElement('mfenced')
brac.appendChild(self._print(expr))
mrow.appendChild(brac)
return mrow
def _print_re(self, expr, exp=None):
return self._print_re_im('R', expr.args[0])
def _print_im(self, expr, exp=None):
return self._print_re_im('I', expr.args[0])
def _print_AssocOp(self, e):
mrow = self.dom.createElement('mrow')
mi = self.dom.createElement('mi')
mi.appendChild(self.dom.createTextNode(self.mathml_tag(e)))
mrow.appendChild(mi)
for arg in e.args:
mrow.appendChild(self._print(arg))
return mrow
def _print_SetOp(self, expr, symbol):
mrow = self.dom.createElement('mrow')
mrow.appendChild(self._print(expr.args[0]))
for arg in expr.args[1:]:
x = self.dom.createElement('mo')
x.appendChild(self.dom.createTextNode(symbol))
y = self._print(arg)
mrow.appendChild(x)
mrow.appendChild(y)
return mrow
def _print_Union(self, expr):
return self._print_SetOp(expr, '∪')
def _print_Intersection(self, expr):
return self._print_SetOp(expr, '∩')
def _print_Complement(self, expr):
return self._print_SetOp(expr, '∖')
def _print_SymmetricDifference(self, expr):
return self._print_SetOp(expr, '∆')
def _print_FiniteSet(self, s):
return self._print_set(s.args)
def _print_set(self, s):
items = sorted(s, key=default_sort_key)
brac = self.dom.createElement('mfenced')
brac.setAttribute('open', '{')
brac.setAttribute('close', '}')
for item in items:
brac.appendChild(self._print(item))
return brac
_print_frozenset = _print_set
def _print_LogOp(self, args, symbol):
mrow = self.dom.createElement('mrow')
if args[0].is_Boolean and not args[0].is_Not:
brac = self.dom.createElement('mfenced')
brac.appendChild(self._print(args[0]))
mrow.appendChild(brac)
else:
mrow.appendChild(self._print(args[0]))
for arg in args[1:]:
x = self.dom.createElement('mo')
x.appendChild(self.dom.createTextNode(symbol))
if arg.is_Boolean and not arg.is_Not:
y = self.dom.createElement('mfenced')
y.appendChild(self._print(arg))
else:
y = self._print(arg)
mrow.appendChild(x)
mrow.appendChild(y)
return mrow
def _print_BasisDependent(self, expr):
from sympy.vector import Vector
if expr == expr.zero:
# Not clear if this is ever called
return self._print(expr.zero)
if isinstance(expr, Vector):
items = expr.separate().items()
else:
items = [(0, expr)]
mrow = self.dom.createElement('mrow')
for system, vect in items:
inneritems = list(vect.components.items())
inneritems.sort(key = lambda x:x[0].__str__())
for i, (k, v) in enumerate(inneritems):
if v == 1:
if i: # No + for first item
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('+'))
mrow.appendChild(mo)
mrow.appendChild(self._print(k))
elif v == -1:
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('-'))
mrow.appendChild(mo)
mrow.appendChild(self._print(k))
else:
if i: # No + for first item
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('+'))
mrow.appendChild(mo)
mbrac = self.dom.createElement('mfenced')
mbrac.appendChild(self._print(v))
mrow.appendChild(mbrac)
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('⁢'))
mrow.appendChild(mo)
mrow.appendChild(self._print(k))
return mrow
def _print_And(self, expr):
args = sorted(expr.args, key=default_sort_key)
return self._print_LogOp(args, '∧')
def _print_Or(self, expr):
args = sorted(expr.args, key=default_sort_key)
return self._print_LogOp(args, '∨')
def _print_Xor(self, expr):
args = sorted(expr.args, key=default_sort_key)
return self._print_LogOp(args, '⊻')
def _print_Implies(self, expr):
return self._print_LogOp(expr.args, '⇒')
def _print_Equivalent(self, expr):
args = sorted(expr.args, key=default_sort_key)
return self._print_LogOp(args, '⇔')
def _print_Not(self, e):
mrow = self.dom.createElement('mrow')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('¬'))
mrow.appendChild(mo)
if (e.args[0].is_Boolean):
x = self.dom.createElement('mfenced')
x.appendChild(self._print(e.args[0]))
else:
x = self._print(e.args[0])
mrow.appendChild(x)
return mrow
def _print_bool(self, e):
mi = self.dom.createElement('mi')
mi.appendChild(self.dom.createTextNode(self.mathml_tag(e)))
return mi
_print_BooleanTrue = _print_bool
_print_BooleanFalse = _print_bool
def _print_NoneType(self, e):
mi = self.dom.createElement('mi')
mi.appendChild(self.dom.createTextNode(self.mathml_tag(e)))
return mi
def _print_Range(self, s):
dots = u"\u2026"
brac = self.dom.createElement('mfenced')
brac.setAttribute('open', '{')
brac.setAttribute('close', '}')
if s.start.is_infinite:
printset = dots, s[-1] - s.step, s[-1]
elif s.stop.is_infinite:
it = iter(s)
printset = next(it), next(it), dots
elif len(s) > 4:
it = iter(s)
printset = next(it), next(it), dots, s[-1]
else:
printset = tuple(s)
for el in printset:
if el == dots:
mi = self.dom.createElement('mi')
mi.appendChild(self.dom.createTextNode(dots))
brac.appendChild(mi)
else:
brac.appendChild(self._print(el))
return brac
def _hprint_variadic_function(self, expr):
args = sorted(expr.args, key=default_sort_key)
mrow = self.dom.createElement('mrow')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode((str(expr.func)).lower()))
mrow.appendChild(mo)
brac = self.dom.createElement('mfenced')
for symbol in args:
brac.appendChild(self._print(symbol))
mrow.appendChild(brac)
return mrow
_print_Min = _print_Max = _hprint_variadic_function
def _print_exp(self, expr):
msup = self.dom.createElement('msup')
msup.appendChild(self._print_Exp1(None))
msup.appendChild(self._print(expr.args[0]))
return msup
def _print_Relational(self, e):
mrow = self.dom.createElement('mrow')
mrow.appendChild(self._print(e.lhs))
x = self.dom.createElement('mo')
x.appendChild(self.dom.createTextNode(self.mathml_tag(e)))
mrow.appendChild(x)
mrow.appendChild(self._print(e.rhs))
return mrow
def _print_int(self, p):
dom_element = self.dom.createElement(self.mathml_tag(p))
dom_element.appendChild(self.dom.createTextNode(str(p)))
return dom_element
def _print_BaseScalar(self, e):
msub = self.dom.createElement('msub')
index, system = e._id
mi = self.dom.createElement('mi')
mi.setAttribute('mathvariant', 'bold')
mi.appendChild(self.dom.createTextNode(system._variable_names[index]))
msub.appendChild(mi)
mi = self.dom.createElement('mi')
mi.setAttribute('mathvariant', 'bold')
mi.appendChild(self.dom.createTextNode(system._name))
msub.appendChild(mi)
return msub
def _print_BaseVector(self, e):
msub = self.dom.createElement('msub')
index, system = e._id
mover = self.dom.createElement('mover')
mi = self.dom.createElement('mi')
mi.setAttribute('mathvariant', 'bold')
mi.appendChild(self.dom.createTextNode(system._vector_names[index]))
mover.appendChild(mi)
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('^'))
mover.appendChild(mo)
msub.appendChild(mover)
mi = self.dom.createElement('mi')
mi.setAttribute('mathvariant', 'bold')
mi.appendChild(self.dom.createTextNode(system._name))
msub.appendChild(mi)
return msub
def _print_VectorZero(self, e):
mover = self.dom.createElement('mover')
mi = self.dom.createElement('mi')
mi.setAttribute('mathvariant', 'bold')
mi.appendChild(self.dom.createTextNode("0"))
mover.appendChild(mi)
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('^'))
mover.appendChild(mo)
return mover
def _print_Cross(self, expr):
mrow = self.dom.createElement('mrow')
vec1 = expr._expr1
vec2 = expr._expr2
mrow.appendChild(self.parenthesize(vec1, PRECEDENCE['Mul']))
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('×'))
mrow.appendChild(mo)
mrow.appendChild(self.parenthesize(vec2, PRECEDENCE['Mul']))
return mrow
def _print_Curl(self, expr):
mrow = self.dom.createElement('mrow')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('∇'))
mrow.appendChild(mo)
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('×'))
mrow.appendChild(mo)
mrow.appendChild(self.parenthesize(expr._expr, PRECEDENCE['Mul']))
return mrow
def _print_Divergence(self, expr):
mrow = self.dom.createElement('mrow')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('∇'))
mrow.appendChild(mo)
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('·'))
mrow.appendChild(mo)
mrow.appendChild(self.parenthesize(expr._expr, PRECEDENCE['Mul']))
return mrow
def _print_Dot(self, expr):
mrow = self.dom.createElement('mrow')
vec1 = expr._expr1
vec2 = expr._expr2
mrow.appendChild(self.parenthesize(vec1, PRECEDENCE['Mul']))
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('·'))
mrow.appendChild(mo)
mrow.appendChild(self.parenthesize(vec2, PRECEDENCE['Mul']))
return mrow
def _print_Gradient(self, expr):
mrow = self.dom.createElement('mrow')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('∇'))
mrow.appendChild(mo)
mrow.appendChild(self.parenthesize(expr._expr, PRECEDENCE['Mul']))
return mrow
def _print_Laplacian(self, expr):
mrow = self.dom.createElement('mrow')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('∆'))
mrow.appendChild(mo)
mrow.appendChild(self.parenthesize(expr._expr, PRECEDENCE['Mul']))
return mrow
def _print_Integers(self, e):
x = self.dom.createElement('mi')
x.setAttribute('mathvariant', 'normal')
x.appendChild(self.dom.createTextNode('ℤ'))
return x
def _print_Complexes(self, e):
x = self.dom.createElement('mi')
x.setAttribute('mathvariant', 'normal')
x.appendChild(self.dom.createTextNode('ℂ'))
return x
def _print_Reals(self, e):
x = self.dom.createElement('mi')
x.setAttribute('mathvariant', 'normal')
x.appendChild(self.dom.createTextNode('ℝ'))
return x
def _print_Naturals(self, e):
x = self.dom.createElement('mi')
x.setAttribute('mathvariant', 'normal')
x.appendChild(self.dom.createTextNode('ℕ'))
return x
def _print_Naturals0(self, e):
sub = self.dom.createElement('msub')
x = self.dom.createElement('mi')
x.setAttribute('mathvariant', 'normal')
x.appendChild(self.dom.createTextNode('ℕ'))
sub.appendChild(x)
sub.appendChild(self._print(S.Zero))
return sub
def _print_SingularityFunction(self, expr):
shift = expr.args[0] - expr.args[1]
power = expr.args[2]
sup = self.dom.createElement('msup')
brac = self.dom.createElement('mfenced')
brac.setAttribute('open', u'\u27e8')
brac.setAttribute('close', u'\u27e9')
brac.appendChild(self._print(shift))
sup.appendChild(brac)
sup.appendChild(self._print(power))
return sup
def _print_NaN(self, e):
x = self.dom.createElement('mi')
x.appendChild(self.dom.createTextNode('NaN'))
return x
def _print_bernoulli(self, e):
sub = self.dom.createElement('msub')
mi = self.dom.createElement('mi')
mi.appendChild(self.dom.createTextNode('B'))
sub.appendChild(mi)
sub.appendChild(self._print(e.args[0]))
return sub
_print_bell = _print_bernoulli
def _print_catalan(self, e):
sub = self.dom.createElement('msub')
mi = self.dom.createElement('mi')
mi.appendChild(self.dom.createTextNode('C'))
sub.appendChild(mi)
sub.appendChild(self._print(e.args[0]))
return sub
def _print_fibonacci(self, e):
sub = self.dom.createElement('msub')
mi = self.dom.createElement('mi')
mi.appendChild(self.dom.createTextNode('F'))
sub.appendChild(mi)
sub.appendChild(self._print(e.args[0]))
return sub
def _print_lucas(self, e):
sub = self.dom.createElement('msub')
mi = self.dom.createElement('mi')
mi.appendChild(self.dom.createTextNode('L'))
sub.appendChild(mi)
sub.appendChild(self._print(e.args[0]))
return sub
def _print_tribonacci(self, e):
sub = self.dom.createElement('msub')
mi = self.dom.createElement('mi')
mi.appendChild(self.dom.createTextNode('T'))
sub.appendChild(mi)
sub.appendChild(self._print(e.args[0]))
return sub
def _print_ComplexInfinity(self, e):
x = self.dom.createElement('mover')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('∞'))
x.appendChild(mo)
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('~'))
x.appendChild(mo)
return x
def _print_EmptySet(self, e):
x = self.dom.createElement('mo')
x.appendChild(self.dom.createTextNode('∅'))
return x
def _print_Adjoint(self, expr):
from sympy.matrices import MatrixSymbol
mat = expr.arg
sup = self.dom.createElement('msup')
if not isinstance(mat, MatrixSymbol):
brac = self.dom.createElement('mfenced')
brac.appendChild(self._print(mat))
sup.appendChild(brac)
else:
sup.appendChild(self._print(mat))
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('†'))
sup.appendChild(mo)
return sup
def _print_Transpose(self, expr):
from sympy.matrices import MatrixSymbol
mat = expr.arg
sup = self.dom.createElement('msup')
if not isinstance(mat, MatrixSymbol):
brac = self.dom.createElement('mfenced')
brac.appendChild(self._print(mat))
sup.appendChild(brac)
else:
sup.appendChild(self._print(mat))
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('T'))
sup.appendChild(mo)
return sup
def _print_Inverse(self, expr):
from sympy.matrices import MatrixSymbol
mat = expr.arg
sup = self.dom.createElement('msup')
if not isinstance(mat, MatrixSymbol):
brac = self.dom.createElement('mfenced')
brac.appendChild(self._print(mat))
sup.appendChild(brac)
else:
sup.appendChild(self._print(mat))
sup.appendChild(self._print(-1))
return sup
def _print_MatMul(self, expr):
from sympy import MatMul
x = self.dom.createElement('mrow')
args = expr.args
if isinstance(args[0], Mul):
args = args[0].as_ordered_factors() + list(args[1:])
else:
args = list(args)
if isinstance(expr, MatMul) and _coeff_isneg(expr):
if args[0] == -1:
args = args[1:]
else:
args[0] = -args[0]
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('-'))
x.appendChild(mo)
for arg in args[:-1]:
x.appendChild(self.parenthesize(arg, precedence_traditional(expr),
False))
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('⁢'))
x.appendChild(mo)
x.appendChild(self.parenthesize(args[-1], precedence_traditional(expr),
False))
return x
def _print_MatPow(self, expr):
from sympy.matrices import MatrixSymbol
base, exp = expr.base, expr.exp
sup = self.dom.createElement('msup')
if not isinstance(base, MatrixSymbol):
brac = self.dom.createElement('mfenced')
brac.appendChild(self._print(base))
sup.appendChild(brac)
else:
sup.appendChild(self._print(base))
sup.appendChild(self._print(exp))
return sup
def _print_ZeroMatrix(self, Z):
x = self.dom.createElement('mn')
x.appendChild(self.dom.createTextNode('𝟘'))
return x
def _print_Identity(self, I):
x = self.dom.createElement('mi')
x.appendChild(self.dom.createTextNode('𝕀'))
return x
def _print_floor(self, e):
mrow = self.dom.createElement('mrow')
x = self.dom.createElement('mfenced')
x.setAttribute('open', u'\u230A')
x.setAttribute('close', u'\u230B')
x.appendChild(self._print(e.args[0]))
mrow.appendChild(x)
return mrow
def _print_ceiling(self, e):
mrow = self.dom.createElement('mrow')
x = self.dom.createElement('mfenced')
x.setAttribute('open', u'\u2308')
x.setAttribute('close', u'\u2309')
x.appendChild(self._print(e.args[0]))
mrow.appendChild(x)
return mrow
def _print_Lambda(self, e):
x = self.dom.createElement('mfenced')
mrow = self.dom.createElement('mrow')
symbols = e.args[0]
if len(symbols) == 1:
symbols = self._print(symbols[0])
else:
symbols = self._print(symbols)
mrow.appendChild(symbols)
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('↦'))
mrow.appendChild(mo)
mrow.appendChild(self._print(e.args[1]))
x.appendChild(mrow)
return x
def _print_tuple(self, e):
x = self.dom.createElement('mfenced')
for i in e:
x.appendChild(self._print(i))
return x
def _print_IndexedBase(self, e):
return self._print(e.label)
def _print_Indexed(self, e):
x = self.dom.createElement('msub')
x.appendChild(self._print(e.base))
if len(e.indices) == 1:
x.appendChild(self._print(e.indices[0]))
return x
x.appendChild(self._print(e.indices))
return x
def _print_MatrixElement(self, e):
x = self.dom.createElement('msub')
x.appendChild(self.parenthesize(e.parent, PRECEDENCE["Atom"], strict = True))
brac = self.dom.createElement('mfenced')
brac.setAttribute("open", "")
brac.setAttribute("close", "")
for i in e.indices:
brac.appendChild(self._print(i))
x.appendChild(brac)
return x
def _print_elliptic_f(self, e):
x = self.dom.createElement('mrow')
mi = self.dom.createElement('mi')
mi.appendChild(self.dom.createTextNode('𝖥'))
x.appendChild(mi)
y = self.dom.createElement('mfenced')
y.setAttribute("separators", "|")
for i in e.args:
y.appendChild(self._print(i))
x.appendChild(y)
return x
def _print_elliptic_e(self, e):
x = self.dom.createElement('mrow')
mi = self.dom.createElement('mi')
mi.appendChild(self.dom.createTextNode('𝖤'))
x.appendChild(mi)
y = self.dom.createElement('mfenced')
y.setAttribute("separators", "|")
for i in e.args:
y.appendChild(self._print(i))
x.appendChild(y)
return x
def _print_elliptic_pi(self, e):
x = self.dom.createElement('mrow')
mi = self.dom.createElement('mi')
mi.appendChild(self.dom.createTextNode('𝛱'))
x.appendChild(mi)
y = self.dom.createElement('mfenced')
if len(e.args) == 2:
y.setAttribute("separators", "|")
else:
y.setAttribute("separators", ";|")
for i in e.args:
y.appendChild(self._print(i))
x.appendChild(y)
return x
def _print_Ei(self, e):
x = self.dom.createElement('mrow')
mi = self.dom.createElement('mi')
mi.appendChild(self.dom.createTextNode('Ei'))
x.appendChild(mi)
x.appendChild(self._print(e.args))
return x
def _print_expint(self, e):
x = self.dom.createElement('mrow')
y = self.dom.createElement('msub')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('E'))
y.appendChild(mo)
y.appendChild(self._print(e.args[0]))
x.appendChild(y)
x.appendChild(self._print(e.args[1:]))
return x
def _print_jacobi(self, e):
x = self.dom.createElement('mrow')
y = self.dom.createElement('msubsup')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('P'))
y.appendChild(mo)
y.appendChild(self._print(e.args[0]))
y.appendChild(self._print(e.args[1:3]))
x.appendChild(y)
x.appendChild(self._print(e.args[3:]))
return x
def _print_gegenbauer(self, e):
x = self.dom.createElement('mrow')
y = self.dom.createElement('msubsup')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('C'))
y.appendChild(mo)
y.appendChild(self._print(e.args[0]))
y.appendChild(self._print(e.args[1:2]))
x.appendChild(y)
x.appendChild(self._print(e.args[2:]))
return x
def _print_chebyshevt(self, e):
x = self.dom.createElement('mrow')
y = self.dom.createElement('msub')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('T'))
y.appendChild(mo)
y.appendChild(self._print(e.args[0]))
x.appendChild(y)
x.appendChild(self._print(e.args[1:]))
return x
def _print_chebyshevu(self, e):
x = self.dom.createElement('mrow')
y = self.dom.createElement('msub')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('U'))
y.appendChild(mo)
y.appendChild(self._print(e.args[0]))
x.appendChild(y)
x.appendChild(self._print(e.args[1:]))
return x
def _print_legendre(self, e):
x = self.dom.createElement('mrow')
y = self.dom.createElement('msub')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('P'))
y.appendChild(mo)
y.appendChild(self._print(e.args[0]))
x.appendChild(y)
x.appendChild(self._print(e.args[1:]))
return x
def _print_assoc_legendre(self, e):
x = self.dom.createElement('mrow')
y = self.dom.createElement('msubsup')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('P'))
y.appendChild(mo)
y.appendChild(self._print(e.args[0]))
y.appendChild(self._print(e.args[1:2]))
x.appendChild(y)
x.appendChild(self._print(e.args[2:]))
return x
def _print_laguerre(self, e):
x = self.dom.createElement('mrow')
y = self.dom.createElement('msub')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('L'))
y.appendChild(mo)
y.appendChild(self._print(e.args[0]))
x.appendChild(y)
x.appendChild(self._print(e.args[1:]))
return x
def _print_assoc_laguerre(self, e):
x = self.dom.createElement('mrow')
y = self.dom.createElement('msubsup')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('L'))
y.appendChild(mo)
y.appendChild(self._print(e.args[0]))
y.appendChild(self._print(e.args[1:2]))
x.appendChild(y)
x.appendChild(self._print(e.args[2:]))
return x
def _print_hermite(self, e):
x = self.dom.createElement('mrow')
y = self.dom.createElement('msub')
mo = self.dom.createElement('mo')
mo.appendChild(self.dom.createTextNode('H'))
y.appendChild(mo)
y.appendChild(self._print(e.args[0]))
x.appendChild(y)
x.appendChild(self._print(e.args[1:]))
return x
def mathml(expr, printer='content', **settings):
"""Returns the MathML representation of expr. If printer is presentation
then prints Presentation MathML else prints content MathML.
"""
if printer == 'presentation':
return MathMLPresentationPrinter(settings).doprint(expr)
else:
return MathMLContentPrinter(settings).doprint(expr)
def print_mathml(expr, printer='content', **settings):
"""
Prints a pretty representation of the MathML code for expr. If printer is
presentation then prints Presentation MathML else prints content MathML.
Examples
========
>>> ##
>>> from sympy.printing.mathml import print_mathml
>>> from sympy.abc import x
>>> print_mathml(x+1) #doctest: +NORMALIZE_WHITESPACE
<apply>
<plus/>
<ci>x</ci>
<cn>1</cn>
</apply>
>>> print_mathml(x+1, printer='presentation')
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
"""
if printer == 'presentation':
s = MathMLPresentationPrinter(settings)
else:
s = MathMLContentPrinter(settings)
xml = s._print(sympify(expr))
s.apply_patch()
pretty_xml = xml.toprettyxml()
s.restore_patch()
print(pretty_xml)
# For backward compatibility
MathMLPrinter = MathMLContentPrinter
|
1664e71494a313e21b591c38cd1698d76bf9a86c0d2ab6b9a383507125d3442f
|
"""
Octave (and Matlab) code printer
The `OctaveCodePrinter` converts SymPy expressions into Octave expressions.
It uses a subset of the Octave language for Matlab compatibility.
A complete code generator, which uses `octave_code` extensively, can be found
in `sympy.utilities.codegen`. The `codegen` module can be used to generate
complete source code files.
"""
from __future__ import print_function, division
from sympy.codegen.ast import Assignment
from sympy.core import Mul, Pow, S, Rational
from sympy.core.compatibility import string_types, range
from sympy.core.mul import _keep_coeff
from sympy.printing.codeprinter import CodePrinter
from sympy.printing.precedence import precedence, PRECEDENCE
from re import search
# List of known functions. First, those that have the same name in
# SymPy and Octave. This is almost certainly incomplete!
known_fcns_src1 = ["sin", "cos", "tan", "cot", "sec", "csc",
"asin", "acos", "acot", "atan", "atan2", "asec", "acsc",
"sinh", "cosh", "tanh", "coth", "csch", "sech",
"asinh", "acosh", "atanh", "acoth", "asech", "acsch",
"erfc", "erfi", "erf", "erfinv", "erfcinv",
"besseli", "besselj", "besselk", "bessely",
"bernoulli", "beta", "euler", "exp", "factorial", "floor",
"fresnelc", "fresnels", "gamma", "harmonic", "log",
"polylog", "sign", "zeta"]
# These functions have different names ("Sympy": "Octave"), more
# generally a mapping to (argument_conditions, octave_function).
known_fcns_src2 = {
"Abs": "abs",
"arg": "angle", # arg/angle ok in Octave but only angle in Matlab
"ceiling": "ceil",
"chebyshevu": "chebyshevU",
"chebyshevt": "chebyshevT",
"Chi": "coshint",
"Ci": "cosint",
"conjugate": "conj",
"DiracDelta": "dirac",
"Heaviside": "heaviside",
"im": "imag",
"laguerre": "laguerreL",
"LambertW": "lambertw",
"li": "logint",
"loggamma": "gammaln",
"Max": "max",
"Min": "min",
"polygamma": "psi",
"re": "real",
"RisingFactorial": "pochhammer",
"Shi": "sinhint",
"Si": "sinint",
}
class OctaveCodePrinter(CodePrinter):
"""
A printer to convert expressions to strings of Octave/Matlab code.
"""
printmethod = "_octave"
language = "Octave"
_operators = {
'and': '&',
'or': '|',
'not': '~',
}
_default_settings = {
'order': None,
'full_prec': 'auto',
'precision': 17,
'user_functions': {},
'human': True,
'allow_unknown_functions': False,
'contract': True,
'inline': True,
}
# Note: contract is for expressing tensors as loops (if True), or just
# assignment (if False). FIXME: this should be looked a more carefully
# for Octave.
def __init__(self, settings={}):
super(OctaveCodePrinter, self).__init__(settings)
self.known_functions = dict(zip(known_fcns_src1, known_fcns_src1))
self.known_functions.update(dict(known_fcns_src2))
userfuncs = settings.get('user_functions', {})
self.known_functions.update(userfuncs)
def _rate_index_position(self, p):
return p*5
def _get_statement(self, codestring):
return "%s;" % codestring
def _get_comment(self, text):
return "% {0}".format(text)
def _declare_number_const(self, name, value):
return "{0} = {1};".format(name, value)
def _format_code(self, lines):
return self.indent_code(lines)
def _traverse_matrix_indices(self, mat):
# Octave uses Fortran order (column-major)
rows, cols = mat.shape
return ((i, j) for j in range(cols) for i in range(rows))
def _get_loop_opening_ending(self, indices):
open_lines = []
close_lines = []
for i in indices:
# Octave arrays start at 1 and end at dimension
var, start, stop = map(self._print,
[i.label, i.lower + 1, i.upper + 1])
open_lines.append("for %s = %s:%s" % (var, start, stop))
close_lines.append("end")
return open_lines, close_lines
def _print_Mul(self, expr):
# print complex numbers nicely in Octave
if (expr.is_number and expr.is_imaginary and
(S.ImaginaryUnit*expr).is_Integer):
return "%si" % self._print(-S.ImaginaryUnit*expr)
# cribbed from str.py
prec = precedence(expr)
c, e = expr.as_coeff_Mul()
if c < 0:
expr = _keep_coeff(-c, e)
sign = "-"
else:
sign = ""
a = [] # items in the numerator
b = [] # items that are in the denominator (if any)
pow_paren = [] # Will collect all pow with more than one base element and exp = -1
if self.order not in ('old', 'none'):
args = expr.as_ordered_factors()
else:
# use make_args in case expr was something like -x -> x
args = Mul.make_args(expr)
# Gather args for numerator/denominator
for item in args:
if (item.is_commutative and item.is_Pow and item.exp.is_Rational
and item.exp.is_negative):
if item.exp != -1:
b.append(Pow(item.base, -item.exp, evaluate=False))
else:
if len(item.args[0].args) != 1 and isinstance(item.base, Mul): # To avoid situations like #14160
pow_paren.append(item)
b.append(Pow(item.base, -item.exp))
elif item.is_Rational and item is not S.Infinity:
if item.p != 1:
a.append(Rational(item.p))
if item.q != 1:
b.append(Rational(item.q))
else:
a.append(item)
a = a or [S.One]
a_str = [self.parenthesize(x, prec) for x in a]
b_str = [self.parenthesize(x, prec) for x in b]
# To parenthesize Pow with exp = -1 and having more than one Symbol
for item in pow_paren:
if item.base in b:
b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)]
# from here it differs from str.py to deal with "*" and ".*"
def multjoin(a, a_str):
# here we probably are assuming the constants will come first
r = a_str[0]
for i in range(1, len(a)):
mulsym = '*' if a[i-1].is_number else '.*'
r = r + mulsym + a_str[i]
return r
if not b:
return sign + multjoin(a, a_str)
elif len(b) == 1:
divsym = '/' if b[0].is_number else './'
return sign + multjoin(a, a_str) + divsym + b_str[0]
else:
divsym = '/' if all([bi.is_number for bi in b]) else './'
return (sign + multjoin(a, a_str) +
divsym + "(%s)" % multjoin(b, b_str))
def _print_Pow(self, expr):
powsymbol = '^' if all([x.is_number for x in expr.args]) else '.^'
PREC = precedence(expr)
if expr.exp == S.Half:
return "sqrt(%s)" % self._print(expr.base)
if expr.is_commutative:
if expr.exp == -S.Half:
sym = '/' if expr.base.is_number else './'
return "1" + sym + "sqrt(%s)" % self._print(expr.base)
if expr.exp == -S.One:
sym = '/' if expr.base.is_number else './'
return "1" + sym + "%s" % self.parenthesize(expr.base, PREC)
return '%s%s%s' % (self.parenthesize(expr.base, PREC), powsymbol,
self.parenthesize(expr.exp, PREC))
def _print_MatPow(self, expr):
PREC = precedence(expr)
return '%s^%s' % (self.parenthesize(expr.base, PREC),
self.parenthesize(expr.exp, PREC))
def _print_Pi(self, expr):
return 'pi'
def _print_ImaginaryUnit(self, expr):
return "1i"
def _print_Exp1(self, expr):
return "exp(1)"
def _print_GoldenRatio(self, expr):
# FIXME: how to do better, e.g., for octave_code(2*GoldenRatio)?
#return self._print((1+sqrt(S(5)))/2)
return "(1+sqrt(5))/2"
def _print_Assignment(self, expr):
from sympy.functions.elementary.piecewise import Piecewise
from sympy.tensor.indexed import IndexedBase
# Copied from codeprinter, but remove special MatrixSymbol treatment
lhs = expr.lhs
rhs = expr.rhs
# We special case assignments that take multiple lines
if not self._settings["inline"] and isinstance(expr.rhs, Piecewise):
# Here we modify Piecewise so each expression is now
# an Assignment, and then continue on the print.
expressions = []
conditions = []
for (e, c) in rhs.args:
expressions.append(Assignment(lhs, e))
conditions.append(c)
temp = Piecewise(*zip(expressions, conditions))
return self._print(temp)
if self._settings["contract"] and (lhs.has(IndexedBase) or
rhs.has(IndexedBase)):
# Here we check if there is looping to be done, and if so
# print the required loops.
return self._doprint_loops(rhs, lhs)
else:
lhs_code = self._print(lhs)
rhs_code = self._print(rhs)
return self._get_statement("%s = %s" % (lhs_code, rhs_code))
def _print_Infinity(self, expr):
return 'inf'
def _print_NegativeInfinity(self, expr):
return '-inf'
def _print_NaN(self, expr):
return 'NaN'
def _print_list(self, expr):
return '{' + ', '.join(self._print(a) for a in expr) + '}'
_print_tuple = _print_list
_print_Tuple = _print_list
def _print_BooleanTrue(self, expr):
return "true"
def _print_BooleanFalse(self, expr):
return "false"
def _print_bool(self, expr):
return str(expr).lower()
# Could generate quadrature code for definite Integrals?
#_print_Integral = _print_not_supported
def _print_MatrixBase(self, A):
# Handle zero dimensions:
if (A.rows, A.cols) == (0, 0):
return '[]'
elif A.rows == 0 or A.cols == 0:
return 'zeros(%s, %s)' % (A.rows, A.cols)
elif (A.rows, A.cols) == (1, 1):
# Octave does not distinguish between scalars and 1x1 matrices
return self._print(A[0, 0])
return "[%s]" % "; ".join(" ".join([self._print(a) for a in A[r, :]])
for r in range(A.rows))
def _print_SparseMatrix(self, A):
from sympy.matrices import Matrix
L = A.col_list();
# make row vectors of the indices and entries
I = Matrix([[k[0] + 1 for k in L]])
J = Matrix([[k[1] + 1 for k in L]])
AIJ = Matrix([[k[2] for k in L]])
return "sparse(%s, %s, %s, %s, %s)" % (self._print(I), self._print(J),
self._print(AIJ), A.rows, A.cols)
# FIXME: Str/CodePrinter could define each of these to call the _print
# method from higher up the class hierarchy (see _print_NumberSymbol).
# Then subclasses like us would not need to repeat all this.
_print_Matrix = \
_print_DenseMatrix = \
_print_MutableDenseMatrix = \
_print_ImmutableMatrix = \
_print_ImmutableDenseMatrix = \
_print_MatrixBase
_print_MutableSparseMatrix = \
_print_ImmutableSparseMatrix = \
_print_SparseMatrix
def _print_MatrixElement(self, expr):
return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) \
+ '(%s, %s)' % (expr.i + 1, expr.j + 1)
def _print_MatrixSlice(self, expr):
def strslice(x, lim):
l = x[0] + 1
h = x[1]
step = x[2]
lstr = self._print(l)
hstr = 'end' if h == lim else self._print(h)
if step == 1:
if l == 1 and h == lim:
return ':'
if l == h:
return lstr
else:
return lstr + ':' + hstr
else:
return ':'.join((lstr, self._print(step), hstr))
return (self._print(expr.parent) + '(' +
strslice(expr.rowslice, expr.parent.shape[0]) + ', ' +
strslice(expr.colslice, expr.parent.shape[1]) + ')')
def _print_Indexed(self, expr):
inds = [ self._print(i) for i in expr.indices ]
return "%s(%s)" % (self._print(expr.base.label), ", ".join(inds))
def _print_Idx(self, expr):
return self._print(expr.label)
def _print_KroneckerDelta(self, expr):
prec = PRECEDENCE["Pow"]
return "double(%s == %s)" % tuple(self.parenthesize(x, prec)
for x in expr.args)
def _print_Identity(self, expr):
shape = expr.shape
if len(shape) == 2 and shape[0] == shape[1]:
shape = [shape[0]]
s = ", ".join(self._print(n) for n in shape)
return "eye(" + s + ")"
def _print_uppergamma(self, expr):
return "gammainc(%s, %s, 'upper')" % (self._print(expr.args[1]),
self._print(expr.args[0]))
def _print_lowergamma(self, expr):
return "gammainc(%s, %s, 'lower')" % (self._print(expr.args[1]),
self._print(expr.args[0]))
def _print_sinc(self, expr):
#Note: Divide by pi because Octave implements normalized sinc function.
return "sinc(%s)" % self._print(expr.args[0]/S.Pi)
def _print_hankel1(self, expr):
return "besselh(%s, 1, %s)" % (self._print(expr.order),
self._print(expr.argument))
def _print_hankel2(self, expr):
return "besselh(%s, 2, %s)" % (self._print(expr.order),
self._print(expr.argument))
# Note: as of 2015, Octave doesn't have spherical Bessel functions
def _print_jn(self, expr):
from sympy.functions import sqrt, besselj
x = expr.argument
expr2 = sqrt(S.Pi/(2*x))*besselj(expr.order + S.Half, x)
return self._print(expr2)
def _print_yn(self, expr):
from sympy.functions import sqrt, bessely
x = expr.argument
expr2 = sqrt(S.Pi/(2*x))*bessely(expr.order + S.Half, x)
return self._print(expr2)
def _print_airyai(self, expr):
return "airy(0, %s)" % self._print(expr.args[0])
def _print_airyaiprime(self, expr):
return "airy(1, %s)" % self._print(expr.args[0])
def _print_airybi(self, expr):
return "airy(2, %s)" % self._print(expr.args[0])
def _print_airybiprime(self, expr):
return "airy(3, %s)" % self._print(expr.args[0])
def _print_expint(self, expr):
mu, x = expr.args
if mu != 1:
return self._print_not_supported(expr)
return "expint(%s)" % self._print(x)
def _one_or_two_reversed_args(self, expr):
assert len(expr.args) <= 2
return '{name}({args})'.format(
name=self.known_functions[expr.__class__.__name__],
args=", ".join([self._print(x) for x in reversed(expr.args)])
)
_print_DiracDelta = _print_LambertW = _one_or_two_reversed_args
def _nested_binary_math_func(self, expr):
return '{name}({arg1}, {arg2})'.format(
name=self.known_functions[expr.__class__.__name__],
arg1=self._print(expr.args[0]),
arg2=self._print(expr.func(*expr.args[1:]))
)
_print_Max = _print_Min = _nested_binary_math_func
def _print_Piecewise(self, expr):
if expr.args[-1].cond != True:
# We need the last conditional to be a True, otherwise the resulting
# function may not return a result.
raise ValueError("All Piecewise expressions must contain an "
"(expr, True) statement to be used as a default "
"condition. Without one, the generated "
"expression may not evaluate to anything under "
"some condition.")
lines = []
if self._settings["inline"]:
# Express each (cond, expr) pair in a nested Horner form:
# (condition) .* (expr) + (not cond) .* (<others>)
# Expressions that result in multiple statements won't work here.
ecpairs = ["({0}).*({1}) + (~({0})).*(".format
(self._print(c), self._print(e))
for e, c in expr.args[:-1]]
elast = "%s" % self._print(expr.args[-1].expr)
pw = " ...\n".join(ecpairs) + elast + ")"*len(ecpairs)
# Note: current need these outer brackets for 2*pw. Would be
# nicer to teach parenthesize() to do this for us when needed!
return "(" + pw + ")"
else:
for i, (e, c) in enumerate(expr.args):
if i == 0:
lines.append("if (%s)" % self._print(c))
elif i == len(expr.args) - 1 and c == True:
lines.append("else")
else:
lines.append("elseif (%s)" % self._print(c))
code0 = self._print(e)
lines.append(code0)
if i == len(expr.args) - 1:
lines.append("end")
return "\n".join(lines)
def _print_zeta(self, expr):
if len(expr.args) == 1:
return "zeta(%s)" % self._print(expr.args[0])
else:
# Matlab two argument zeta is not equivalent to SymPy's
return self._print_not_supported(expr)
def indent_code(self, code):
"""Accepts a string of code or a list of code lines"""
# code mostly copied from ccode
if isinstance(code, string_types):
code_lines = self.indent_code(code.splitlines(True))
return ''.join(code_lines)
tab = " "
inc_regex = ('^function ', '^if ', '^elseif ', '^else$', '^for ')
dec_regex = ('^end$', '^elseif ', '^else$')
# pre-strip left-space from the code
code = [ line.lstrip(' \t') for line in code ]
increase = [ int(any([search(re, line) for re in inc_regex]))
for line in code ]
decrease = [ int(any([search(re, line) for re in dec_regex]))
for line in code ]
pretty = []
level = 0
for n, line in enumerate(code):
if line == '' or line == '\n':
pretty.append(line)
continue
level -= decrease[n]
pretty.append("%s%s" % (tab*level, line))
level += increase[n]
return pretty
def octave_code(expr, assign_to=None, **settings):
r"""Converts `expr` to a string of Octave (or Matlab) code.
The string uses a subset of the Octave language for Matlab compatibility.
Parameters
==========
expr : Expr
A sympy expression to be converted.
assign_to : optional
When given, the argument is used as the name of the variable to which
the expression is assigned. Can be a string, ``Symbol``,
``MatrixSymbol``, or ``Indexed`` type. This can be helpful for
expressions that generate multi-line statements.
precision : integer, optional
The precision for numbers such as pi [default=16].
user_functions : dict, optional
A dictionary where keys are ``FunctionClass`` instances and values are
their string representations. Alternatively, the dictionary value can
be a list of tuples i.e. [(argument_test, cfunction_string)]. See
below for examples.
human : bool, optional
If True, the result is a single string that may contain some constant
declarations for the number symbols. If False, the same information is
returned in a tuple of (symbols_to_declare, not_supported_functions,
code_text). [default=True].
contract: bool, optional
If True, ``Indexed`` instances are assumed to obey tensor contraction
rules and the corresponding nested loops over indices are generated.
Setting contract=False will not generate loops, instead the user is
responsible to provide values for the indices in the code.
[default=True].
inline: bool, optional
If True, we try to create single-statement code instead of multiple
statements. [default=True].
Examples
========
>>> from sympy import octave_code, symbols, sin, pi
>>> x = symbols('x')
>>> octave_code(sin(x).series(x).removeO())
'x.^5/120 - x.^3/6 + x'
>>> from sympy import Rational, ceiling, Abs
>>> x, y, tau = symbols("x, y, tau")
>>> octave_code((2*tau)**Rational(7, 2))
'8*sqrt(2)*tau.^(7/2)'
Note that element-wise (Hadamard) operations are used by default between
symbols. This is because its very common in Octave to write "vectorized"
code. It is harmless if the values are scalars.
>>> octave_code(sin(pi*x*y), assign_to="s")
's = sin(pi*x.*y);'
If you need a matrix product "*" or matrix power "^", you can specify the
symbol as a ``MatrixSymbol``.
>>> from sympy import Symbol, MatrixSymbol
>>> n = Symbol('n', integer=True, positive=True)
>>> A = MatrixSymbol('A', n, n)
>>> octave_code(3*pi*A**3)
'(3*pi)*A^3'
This class uses several rules to decide which symbol to use a product.
Pure numbers use "*", Symbols use ".*" and MatrixSymbols use "*".
A HadamardProduct can be used to specify componentwise multiplication ".*"
of two MatrixSymbols. There is currently there is no easy way to specify
scalar symbols, so sometimes the code might have some minor cosmetic
issues. For example, suppose x and y are scalars and A is a Matrix, then
while a human programmer might write "(x^2*y)*A^3", we generate:
>>> octave_code(x**2*y*A**3)
'(x.^2.*y)*A^3'
Matrices are supported using Octave inline notation. When using
``assign_to`` with matrices, the name can be specified either as a string
or as a ``MatrixSymbol``. The dimensions must align in the latter case.
>>> from sympy import Matrix, MatrixSymbol
>>> mat = Matrix([[x**2, sin(x), ceiling(x)]])
>>> octave_code(mat, assign_to='A')
'A = [x.^2 sin(x) ceil(x)];'
``Piecewise`` expressions are implemented with logical masking by default.
Alternatively, you can pass "inline=False" to use if-else conditionals.
Note that if the ``Piecewise`` lacks a default term, represented by
``(expr, True)`` then an error will be thrown. This is to prevent
generating an expression that may not evaluate to anything.
>>> from sympy import Piecewise
>>> pw = Piecewise((x + 1, x > 0), (x, True))
>>> octave_code(pw, assign_to=tau)
'tau = ((x > 0).*(x + 1) + (~(x > 0)).*(x));'
Note that any expression that can be generated normally can also exist
inside a Matrix:
>>> mat = Matrix([[x**2, pw, sin(x)]])
>>> octave_code(mat, assign_to='A')
'A = [x.^2 ((x > 0).*(x + 1) + (~(x > 0)).*(x)) sin(x)];'
Custom printing can be defined for certain types by passing a dictionary of
"type" : "function" to the ``user_functions`` kwarg. Alternatively, the
dictionary value can be a list of tuples i.e., [(argument_test,
cfunction_string)]. This can be used to call a custom Octave function.
>>> from sympy import Function
>>> f = Function('f')
>>> g = Function('g')
>>> custom_functions = {
... "f": "existing_octave_fcn",
... "g": [(lambda x: x.is_Matrix, "my_mat_fcn"),
... (lambda x: not x.is_Matrix, "my_fcn")]
... }
>>> mat = Matrix([[1, x]])
>>> octave_code(f(x) + g(x) + g(mat), user_functions=custom_functions)
'existing_octave_fcn(x) + my_fcn(x) + my_mat_fcn([1 x])'
Support for loops is provided through ``Indexed`` types. With
``contract=True`` these expressions will be turned into loops, whereas
``contract=False`` will just print the assignment expression that should be
looped over:
>>> from sympy import Eq, IndexedBase, Idx, ccode
>>> len_y = 5
>>> y = IndexedBase('y', shape=(len_y,))
>>> t = IndexedBase('t', shape=(len_y,))
>>> Dy = IndexedBase('Dy', shape=(len_y-1,))
>>> i = Idx('i', len_y-1)
>>> e = Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
>>> octave_code(e.rhs, assign_to=e.lhs, contract=False)
'Dy(i) = (y(i + 1) - y(i))./(t(i + 1) - t(i));'
"""
return OctaveCodePrinter(settings).doprint(expr, assign_to)
def print_octave_code(expr, **settings):
"""Prints the Octave (or Matlab) representation of the given expression.
See `octave_code` for the meaning of the optional arguments.
"""
print(octave_code(expr, **settings))
|
9f6711089d93408f20c972a613bc9a3c24677f6e7e8b9b6b606ab6a210f85436
|
"""
Fortran code printer
The FCodePrinter converts single sympy expressions into single Fortran
expressions, using the functions defined in the Fortran 77 standard where
possible. Some useful pointers to Fortran can be found on wikipedia:
https://en.wikipedia.org/wiki/Fortran
Most of the code below is based on the "Professional Programmer\'s Guide to
Fortran77" by Clive G. Page:
http://www.star.le.ac.uk/~cgp/prof77.html
Fortran is a case-insensitive language. This might cause trouble because
SymPy is case sensitive. So, fcode adds underscores to variable names when
it is necessary to make them different for Fortran.
"""
from __future__ import print_function, division
from collections import defaultdict
from itertools import chain
import string
from sympy.codegen.ast import (
Assignment, Declaration, Pointer, value_const,
float32, float64, float80, complex64, complex128, int8, int16, int32,
int64, intc, real, integer, bool_, complex_
)
from sympy.codegen.fnodes import (
allocatable, isign, dsign, cmplx, merge, literal_dp, elemental, pure,
intent_in, intent_out, intent_inout
)
from sympy.core import S, Add, N, Float, Symbol
from sympy.core.compatibility import string_types, range
from sympy.core.function import Function
from sympy.core.relational import Eq
from sympy.sets import Range
from sympy.printing.codeprinter import CodePrinter
from sympy.printing.precedence import precedence, PRECEDENCE
from sympy.printing.printer import printer_context
known_functions = {
"sin": "sin",
"cos": "cos",
"tan": "tan",
"asin": "asin",
"acos": "acos",
"atan": "atan",
"atan2": "atan2",
"sinh": "sinh",
"cosh": "cosh",
"tanh": "tanh",
"log": "log",
"exp": "exp",
"erf": "erf",
"Abs": "abs",
"conjugate": "conjg",
"Max": "max",
"Min": "min",
}
class FCodePrinter(CodePrinter):
"""A printer to convert sympy expressions to strings of Fortran code"""
printmethod = "_fcode"
language = "Fortran"
type_aliases = {
integer: int32,
real: float64,
complex_: complex128,
}
type_mappings = {
intc: 'integer(c_int)',
float32: 'real*4', # real(kind(0.e0))
float64: 'real*8', # real(kind(0.d0))
float80: 'real*10', # real(kind(????))
complex64: 'complex*8',
complex128: 'complex*16',
int8: 'integer*1',
int16: 'integer*2',
int32: 'integer*4',
int64: 'integer*8',
bool_: 'logical'
}
type_modules = {
intc: {'iso_c_binding': 'c_int'}
}
_default_settings = {
'order': None,
'full_prec': 'auto',
'precision': 17,
'user_functions': {},
'human': True,
'allow_unknown_functions': False,
'source_format': 'fixed',
'contract': True,
'standard': 77,
'name_mangling' : True,
}
_operators = {
'and': '.and.',
'or': '.or.',
'xor': '.neqv.',
'equivalent': '.eqv.',
'not': '.not. ',
}
_relationals = {
'!=': '/=',
}
def __init__(self, settings={}):
self.mangled_symbols = {} ## Dict showing mapping of all words
self.used_name= []
self.type_aliases = dict(chain(self.type_aliases.items(),
settings.pop('type_aliases', {}).items()))
self.type_mappings = dict(chain(self.type_mappings.items(),
settings.pop('type_mappings', {}).items()))
super(FCodePrinter, self).__init__(settings)
self.known_functions = dict(known_functions)
userfuncs = settings.get('user_functions', {})
self.known_functions.update(userfuncs)
# leading columns depend on fixed or free format
standards = {66, 77, 90, 95, 2003, 2008}
if self._settings['standard'] not in standards:
raise ValueError("Unknown Fortran standard: %s" % self._settings[
'standard'])
self.module_uses = defaultdict(set) # e.g.: use iso_c_binding, only: c_int
@property
def _lead(self):
if self._settings['source_format'] == 'fixed':
return {'code': " ", 'cont': " @ ", 'comment': "C "}
elif self._settings['source_format'] == 'free':
return {'code': "", 'cont': " ", 'comment': "! "}
else:
raise ValueError("Unknown source format: %s" % self._settings['source_format'])
def _print_Symbol(self, expr):
if self._settings['name_mangling'] == True:
if expr not in self.mangled_symbols:
name = expr.name
while name.lower() in self.used_name:
name += '_'
self.used_name.append(name.lower())
if name == expr.name:
self.mangled_symbols[expr] = expr
else:
self.mangled_symbols[expr] = Symbol(name)
expr = expr.xreplace(self.mangled_symbols)
name = super(FCodePrinter, self)._print_Symbol(expr)
return name
def _rate_index_position(self, p):
return -p*5
def _get_statement(self, codestring):
return codestring
def _get_comment(self, text):
return "! {0}".format(text)
def _declare_number_const(self, name, value):
return "parameter ({0} = {1})".format(name, self._print(value))
def _print_NumberSymbol(self, expr):
# A Number symbol that is not implemented here or with _printmethod
# is registered and evaluated
self._number_symbols.add((expr, Float(expr.evalf(self._settings['precision']))))
return str(expr)
def _format_code(self, lines):
return self._wrap_fortran(self.indent_code(lines))
def _traverse_matrix_indices(self, mat):
rows, cols = mat.shape
return ((i, j) for j in range(cols) for i in range(rows))
def _get_loop_opening_ending(self, indices):
open_lines = []
close_lines = []
for i in indices:
# fortran arrays start at 1 and end at dimension
var, start, stop = map(self._print,
[i.label, i.lower + 1, i.upper + 1])
open_lines.append("do %s = %s, %s" % (var, start, stop))
close_lines.append("end do")
return open_lines, close_lines
def _print_sign(self, expr):
from sympy import Abs
arg, = expr.args
if arg.is_integer:
new_expr = merge(0, isign(1, arg), Eq(arg, 0))
elif arg.is_complex:
new_expr = merge(cmplx(literal_dp(0), literal_dp(0)), arg/Abs(arg), Eq(Abs(arg), literal_dp(0)))
else:
new_expr = merge(literal_dp(0), dsign(literal_dp(1), arg), Eq(arg, literal_dp(0)))
return self._print(new_expr)
def _print_Piecewise(self, expr):
if expr.args[-1].cond != True:
# We need the last conditional to be a True, otherwise the resulting
# function may not return a result.
raise ValueError("All Piecewise expressions must contain an "
"(expr, True) statement to be used as a default "
"condition. Without one, the generated "
"expression may not evaluate to anything under "
"some condition.")
lines = []
if expr.has(Assignment):
for i, (e, c) in enumerate(expr.args):
if i == 0:
lines.append("if (%s) then" % self._print(c))
elif i == len(expr.args) - 1 and c == True:
lines.append("else")
else:
lines.append("else if (%s) then" % self._print(c))
lines.append(self._print(e))
lines.append("end if")
return "\n".join(lines)
elif self._settings["standard"] >= 95:
# Only supported in F95 and newer:
# The piecewise was used in an expression, need to do inline
# operators. This has the downside that inline operators will
# not work for statements that span multiple lines (Matrix or
# Indexed expressions).
pattern = "merge({T}, {F}, {COND})"
code = self._print(expr.args[-1].expr)
terms = list(expr.args[:-1])
while terms:
e, c = terms.pop()
expr = self._print(e)
cond = self._print(c)
code = pattern.format(T=expr, F=code, COND=cond)
return code
else:
# `merge` is not supported prior to F95
raise NotImplementedError("Using Piecewise as an expression using "
"inline operators is not supported in "
"standards earlier than Fortran95.")
def _print_MatrixElement(self, expr):
return "{0}({1}, {2})".format(self.parenthesize(expr.parent,
PRECEDENCE["Atom"], strict=True), expr.i + 1, expr.j + 1)
def _print_Add(self, expr):
# purpose: print complex numbers nicely in Fortran.
# collect the purely real and purely imaginary parts:
pure_real = []
pure_imaginary = []
mixed = []
for arg in expr.args:
if arg.is_number and arg.is_real:
pure_real.append(arg)
elif arg.is_number and arg.is_imaginary:
pure_imaginary.append(arg)
else:
mixed.append(arg)
if pure_imaginary:
if mixed:
PREC = precedence(expr)
term = Add(*mixed)
t = self._print(term)
if t.startswith('-'):
sign = "-"
t = t[1:]
else:
sign = "+"
if precedence(term) < PREC:
t = "(%s)" % t
return "cmplx(%s,%s) %s %s" % (
self._print(Add(*pure_real)),
self._print(-S.ImaginaryUnit*Add(*pure_imaginary)),
sign, t,
)
else:
return "cmplx(%s,%s)" % (
self._print(Add(*pure_real)),
self._print(-S.ImaginaryUnit*Add(*pure_imaginary)),
)
else:
return CodePrinter._print_Add(self, expr)
def _print_Function(self, expr):
# All constant function args are evaluated as floats
prec = self._settings['precision']
args = [N(a, prec) for a in expr.args]
eval_expr = expr.func(*args)
if not isinstance(eval_expr, Function):
return self._print(eval_expr)
else:
return CodePrinter._print_Function(self, expr.func(*args))
def _print_Mod(self, expr):
# NOTE : Fortran has the functions mod() and modulo(). modulo() behaves
# the same wrt to the sign of the arguments as Python and SymPy's
# modulus computations (% and Mod()) but is not available in Fortran 66
# or Fortran 77, thus we raise an error.
if self._settings['standard'] in [66, 77]:
msg = ("Python % operator and SymPy's Mod() function are not "
"supported by Fortran 66 or 77 standards.")
raise NotImplementedError(msg)
else:
x, y = expr.args
return " modulo({}, {})".format(self._print(x), self._print(y))
def _print_ImaginaryUnit(self, expr):
# purpose: print complex numbers nicely in Fortran.
return "cmplx(0,1)"
def _print_int(self, expr):
return str(expr)
def _print_Mul(self, expr):
# purpose: print complex numbers nicely in Fortran.
if expr.is_number and expr.is_imaginary:
return "cmplx(0,%s)" % (
self._print(-S.ImaginaryUnit*expr)
)
else:
return CodePrinter._print_Mul(self, expr)
def _print_Pow(self, expr):
PREC = precedence(expr)
if expr.exp == -1:
return '%s/%s' % (
self._print(literal_dp(1)),
self.parenthesize(expr.base, PREC)
)
elif expr.exp == 0.5:
if expr.base.is_integer:
# Fortran intrinsic sqrt() does not accept integer argument
if expr.base.is_Number:
return 'sqrt(%s.0d0)' % self._print(expr.base)
else:
return 'sqrt(dble(%s))' % self._print(expr.base)
else:
return 'sqrt(%s)' % self._print(expr.base)
else:
return CodePrinter._print_Pow(self, expr)
def _print_Rational(self, expr):
p, q = int(expr.p), int(expr.q)
return "%d.0d0/%d.0d0" % (p, q)
def _print_Float(self, expr):
printed = CodePrinter._print_Float(self, expr)
e = printed.find('e')
if e > -1:
return "%sd%s" % (printed[:e], printed[e + 1:])
return "%sd0" % printed
def _print_Indexed(self, expr):
inds = [ self._print(i) for i in expr.indices ]
return "%s(%s)" % (self._print(expr.base.label), ", ".join(inds))
def _print_Idx(self, expr):
return self._print(expr.label)
def _print_AugmentedAssignment(self, expr):
lhs_code = self._print(expr.lhs)
rhs_code = self._print(expr.rhs)
return self._get_statement("{0} = {0} {1} {2}".format(
*map(lambda arg: self._print(arg),
[lhs_code, expr.binop, rhs_code])))
def _print_sum_(self, sm):
params = self._print(sm.array)
if sm.dim != None: # Must use '!= None', cannot use 'is not None'
params += ', ' + self._print(sm.dim)
if sm.mask != None: # Must use '!= None', cannot use 'is not None'
params += ', mask=' + self._print(sm.mask)
return '%s(%s)' % (sm.__class__.__name__.rstrip('_'), params)
def _print_product_(self, prod):
return self._print_sum_(prod)
def _print_Do(self, do):
excl = ['concurrent']
if do.step == 1:
excl.append('step')
step = ''
else:
step = ', {step}'
return (
'do {concurrent}{counter} = {first}, {last}'+step+'\n'
'{body}\n'
'end do\n'
).format(
concurrent='concurrent ' if do.concurrent else '',
**do.kwargs(apply=lambda arg: self._print(arg), exclude=excl)
)
def _print_ImpliedDoLoop(self, idl):
step = '' if idl.step == 1 else ', {step}'
return ('({expr}, {counter} = {first}, {last}'+step+')').format(
**idl.kwargs(apply=lambda arg: self._print(arg))
)
def _print_For(self, expr):
target = self._print(expr.target)
if isinstance(expr.iterable, Range):
start, stop, step = expr.iterable.args
else:
raise NotImplementedError("Only iterable currently supported is Range")
body = self._print(expr.body)
return ('do {target} = {start}, {stop}, {step}\n'
'{body}\n'
'end do').format(target=target, start=start, stop=stop,
step=step, body=body)
def _print_Equality(self, expr):
lhs, rhs = expr.args
return ' == '.join(map(lambda arg: self._print(arg), (lhs, rhs)))
def _print_Unequality(self, expr):
lhs, rhs = expr.args
return ' /= '.join(map(lambda arg: self._print(arg), (lhs, rhs)))
def _print_Type(self, type_):
type_ = self.type_aliases.get(type_, type_)
type_str = self.type_mappings.get(type_, type_.name)
module_uses = self.type_modules.get(type_)
if module_uses:
for k, v in module_uses:
self.module_uses[k].add(v)
return type_str
def _print_Element(self, elem):
return '{symbol}({idxs})'.format(
symbol=self._print(elem.symbol),
idxs=', '.join(map(lambda arg: self._print(arg), elem.indices))
)
def _print_Extent(self, ext):
return str(ext)
def _print_Declaration(self, expr):
var = expr.variable
val = var.value
dim = var.attr_params('dimension')
intents = [intent in var.attrs for intent in (intent_in, intent_out, intent_inout)]
if intents.count(True) == 0:
intent = ''
elif intents.count(True) == 1:
intent = ', intent(%s)' % ['in', 'out', 'inout'][intents.index(True)]
else:
raise ValueError("Multiple intents specified for %s" % self)
if isinstance(var, Pointer):
raise NotImplementedError("Pointers are not available by default in Fortran.")
if self._settings["standard"] >= 90:
result = '{t}{vc}{dim}{intent}{alloc} :: {s}'.format(
t=self._print(var.type),
vc=', parameter' if value_const in var.attrs else '',
dim=', dimension(%s)' % ', '.join(map(lambda arg: self._print(arg), dim)) if dim else '',
intent=intent,
alloc=', allocatable' if allocatable in var.attrs else '',
s=self._print(var.symbol)
)
if val != None: # Must be "!= None", cannot be "is not None"
result += ' = %s' % self._print(val)
else:
if value_const in var.attrs or val:
raise NotImplementedError("F77 init./parameter statem. req. multiple lines.")
result = ' '.join(map(lambda arg: self._print(arg), [var.type, var.symbol]))
return result
def _print_Infinity(self, expr):
return '(huge(%s) + 1)' % self._print(literal_dp(0))
def _print_While(self, expr):
return 'do while ({condition})\n{body}\nend do'.format(**expr.kwargs(
apply=lambda arg: self._print(arg)))
def _print_BooleanTrue(self, expr):
return '.true.'
def _print_BooleanFalse(self, expr):
return '.false.'
def _pad_leading_columns(self, lines):
result = []
for line in lines:
if line.startswith('!'):
result.append(self._lead['comment'] + line[1:].lstrip())
else:
result.append(self._lead['code'] + line)
return result
def _wrap_fortran(self, lines):
"""Wrap long Fortran lines
Argument:
lines -- a list of lines (without \\n character)
A comment line is split at white space. Code lines are split with a more
complex rule to give nice results.
"""
# routine to find split point in a code line
my_alnum = set("_+-." + string.digits + string.ascii_letters)
my_white = set(" \t()")
def split_pos_code(line, endpos):
if len(line) <= endpos:
return len(line)
pos = endpos
split = lambda pos: \
(line[pos] in my_alnum and line[pos - 1] not in my_alnum) or \
(line[pos] not in my_alnum and line[pos - 1] in my_alnum) or \
(line[pos] in my_white and line[pos - 1] not in my_white) or \
(line[pos] not in my_white and line[pos - 1] in my_white)
while not split(pos):
pos -= 1
if pos == 0:
return endpos
return pos
# split line by line and add the split lines to result
result = []
if self._settings['source_format'] == 'free':
trailing = ' &'
else:
trailing = ''
for line in lines:
if line.startswith(self._lead['comment']):
# comment line
if len(line) > 72:
pos = line.rfind(" ", 6, 72)
if pos == -1:
pos = 72
hunk = line[:pos]
line = line[pos:].lstrip()
result.append(hunk)
while line:
pos = line.rfind(" ", 0, 66)
if pos == -1 or len(line) < 66:
pos = 66
hunk = line[:pos]
line = line[pos:].lstrip()
result.append("%s%s" % (self._lead['comment'], hunk))
else:
result.append(line)
elif line.startswith(self._lead['code']):
# code line
pos = split_pos_code(line, 72)
hunk = line[:pos].rstrip()
line = line[pos:].lstrip()
if line:
hunk += trailing
result.append(hunk)
while line:
pos = split_pos_code(line, 65)
hunk = line[:pos].rstrip()
line = line[pos:].lstrip()
if line:
hunk += trailing
result.append("%s%s" % (self._lead['cont'], hunk))
else:
result.append(line)
return result
def indent_code(self, code):
"""Accepts a string of code or a list of code lines"""
if isinstance(code, string_types):
code_lines = self.indent_code(code.splitlines(True))
return ''.join(code_lines)
free = self._settings['source_format'] == 'free'
code = [ line.lstrip(' \t') for line in code ]
inc_keyword = ('do ', 'if(', 'if ', 'do\n', 'else', 'program', 'interface')
dec_keyword = ('end do', 'enddo', 'end if', 'endif', 'else', 'end program', 'end interface')
increase = [ int(any(map(line.startswith, inc_keyword)))
for line in code ]
decrease = [ int(any(map(line.startswith, dec_keyword)))
for line in code ]
continuation = [ int(any(map(line.endswith, ['&', '&\n'])))
for line in code ]
level = 0
cont_padding = 0
tabwidth = 3
new_code = []
for i, line in enumerate(code):
if line == '' or line == '\n':
new_code.append(line)
continue
level -= decrease[i]
if free:
padding = " "*(level*tabwidth + cont_padding)
else:
padding = " "*level*tabwidth
line = "%s%s" % (padding, line)
if not free:
line = self._pad_leading_columns([line])[0]
new_code.append(line)
if continuation[i]:
cont_padding = 2*tabwidth
else:
cont_padding = 0
level += increase[i]
if not free:
return self._wrap_fortran(new_code)
return new_code
def _print_GoTo(self, goto):
if goto.expr: # computed goto
return "go to ({labels}), {expr}".format(
labels=', '.join(map(lambda arg: self._print(arg), goto.labels)),
expr=self._print(goto.expr)
)
else:
lbl, = goto.labels
return "go to %s" % self._print(lbl)
def _print_Program(self, prog):
return (
"program {name}\n"
"{body}\n"
"end program\n"
).format(**prog.kwargs(apply=lambda arg: self._print(arg)))
def _print_Module(self, mod):
return (
"module {name}\n"
"{declarations}\n"
"\ncontains\n\n"
"{definitions}\n"
"end module\n"
).format(**mod.kwargs(apply=lambda arg: self._print(arg)))
def _print_Stream(self, strm):
if strm.name == 'stdout' and self._settings["standard"] >= 2003:
self.module_uses['iso_c_binding'].add('stdint=>input_unit')
return 'input_unit'
elif strm.name == 'stderr' and self._settings["standard"] >= 2003:
self.module_uses['iso_c_binding'].add('stdint=>error_unit')
return 'error_unit'
else:
if strm.name == 'stdout':
return '*'
else:
return strm.name
def _print_Print(self, ps):
if ps.format_string != None: # Must be '!= None', cannot be 'is not None'
fmt = self._print(ps.format_string)
else:
fmt = "*"
return "print {fmt}, {iolist}".format(fmt=fmt, iolist=', '.join(
map(lambda arg: self._print(arg), ps.print_args)))
def _print_Return(self, rs):
arg, = rs.args
return "{result_name} = {arg}".format(
result_name=self._context.get('result_name', 'sympy_result'),
arg=self._print(arg)
)
def _print_FortranReturn(self, frs):
arg, = frs.args
if arg:
return 'return %s' % self._print(arg)
else:
return 'return'
def _head(self, entity, fp, **kwargs):
bind_C_params = fp.attr_params('bind_C')
if bind_C_params is None:
bind = ''
else:
bind = ' bind(C, name="%s")' % bind_C_params[0] if bind_C_params else ' bind(C)'
result_name = self._settings.get('result_name', None)
return (
"{entity}{name}({arg_names}){result}{bind}\n"
"{arg_declarations}"
).format(
entity=entity,
name=self._print(fp.name),
arg_names=', '.join([self._print(arg.symbol) for arg in fp.parameters]),
result=(' result(%s)' % result_name) if result_name else '',
bind=bind,
arg_declarations='\n'.join(map(lambda arg: self._print(Declaration(arg)), fp.parameters))
)
def _print_FunctionPrototype(self, fp):
entity = "{0} function ".format(self._print(fp.return_type))
return (
"interface\n"
"{function_head}\n"
"end function\n"
"end interface"
).format(function_head=self._head(entity, fp))
def _print_FunctionDefinition(self, fd):
if elemental in fd.attrs:
prefix = 'elemental '
elif pure in fd.attrs:
prefix = 'pure '
else:
prefix = ''
entity = "{0} function ".format(self._print(fd.return_type))
with printer_context(self, result_name=fd.name):
return (
"{prefix}{function_head}\n"
"{body}\n"
"end function\n"
).format(
prefix=prefix,
function_head=self._head(entity, fd),
body=self._print(fd.body)
)
def _print_Subroutine(self, sub):
return (
'{subroutine_head}\n'
'{body}\n'
'end subroutine\n'
).format(
subroutine_head=self._head('subroutine ', sub),
body=self._print(sub.body)
)
def _print_SubroutineCall(self, scall):
return 'call {name}({args})'.format(
name=self._print(scall.name),
args=', '.join(map(lambda arg: self._print(arg), scall.subroutine_args))
)
def _print_use_rename(self, rnm):
return "%s => %s" % tuple(map(lambda arg: self._print(arg), rnm.args))
def _print_use(self, use):
result = 'use %s' % self._print(use.namespace)
if use.rename != None: # Must be '!= None', cannot be 'is not None'
result += ', ' + ', '.join([self._print(rnm) for rnm in use.rename])
if use.only != None: # Must be '!= None', cannot be 'is not None'
result += ', only: ' + ', '.join([self._print(nly) for nly in use.only])
return result
def _print_BreakToken(self, _):
return 'exit'
def _print_ContinueToken(self, _):
return 'cycle'
def _print_ArrayConstructor(self, ac):
fmtstr = "[%s]" if self._settings["standard"] >= 2003 else '(/%s/)'
return fmtstr % ', '.join(map(lambda arg: self._print(arg), ac.elements))
def fcode(expr, assign_to=None, **settings):
"""Converts an expr to a string of fortran code
Parameters
==========
expr : Expr
A sympy expression to be converted.
assign_to : optional
When given, the argument is used as the name of the variable to which
the expression is assigned. Can be a string, ``Symbol``,
``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of
line-wrapping, or for expressions that generate multi-line statements.
precision : integer, optional
DEPRECATED. Use type_mappings instead. The precision for numbers such
as pi [default=17].
user_functions : dict, optional
A dictionary where keys are ``FunctionClass`` instances and values are
their string representations. Alternatively, the dictionary value can
be a list of tuples i.e. [(argument_test, cfunction_string)]. See below
for examples.
human : bool, optional
If True, the result is a single string that may contain some constant
declarations for the number symbols. If False, the same information is
returned in a tuple of (symbols_to_declare, not_supported_functions,
code_text). [default=True].
contract: bool, optional
If True, ``Indexed`` instances are assumed to obey tensor contraction
rules and the corresponding nested loops over indices are generated.
Setting contract=False will not generate loops, instead the user is
responsible to provide values for the indices in the code.
[default=True].
source_format : optional
The source format can be either 'fixed' or 'free'. [default='fixed']
standard : integer, optional
The Fortran standard to be followed. This is specified as an integer.
Acceptable standards are 66, 77, 90, 95, 2003, and 2008. Default is 77.
Note that currently the only distinction internally is between
standards before 95, and those 95 and after. This may change later as
more features are added.
name_mangling : bool, optional
If True, then the variables that would become identical in
case-insensitive Fortran are mangled by appending different number
of ``_`` at the end. If False, SymPy won't interfere with naming of
variables. [default=True]
Examples
========
>>> from sympy import fcode, symbols, Rational, sin, ceiling, floor
>>> x, tau = symbols("x, tau")
>>> fcode((2*tau)**Rational(7, 2))
' 8*sqrt(2.0d0)*tau**(7.0d0/2.0d0)'
>>> fcode(sin(x), assign_to="s")
' s = sin(x)'
Custom printing can be defined for certain types by passing a dictionary of
"type" : "function" to the ``user_functions`` kwarg. Alternatively, the
dictionary value can be a list of tuples i.e. [(argument_test,
cfunction_string)].
>>> custom_functions = {
... "ceiling": "CEIL",
... "floor": [(lambda x: not x.is_integer, "FLOOR1"),
... (lambda x: x.is_integer, "FLOOR2")]
... }
>>> fcode(floor(x) + ceiling(x), user_functions=custom_functions)
' CEIL(x) + FLOOR1(x)'
``Piecewise`` expressions are converted into conditionals. If an
``assign_to`` variable is provided an if statement is created, otherwise
the ternary operator is used. Note that if the ``Piecewise`` lacks a
default term, represented by ``(expr, True)`` then an error will be thrown.
This is to prevent generating an expression that may not evaluate to
anything.
>>> from sympy import Piecewise
>>> expr = Piecewise((x + 1, x > 0), (x, True))
>>> print(fcode(expr, tau))
if (x > 0) then
tau = x + 1
else
tau = x
end if
Support for loops is provided through ``Indexed`` types. With
``contract=True`` these expressions will be turned into loops, whereas
``contract=False`` will just print the assignment expression that should be
looped over:
>>> from sympy import Eq, IndexedBase, Idx
>>> len_y = 5
>>> y = IndexedBase('y', shape=(len_y,))
>>> t = IndexedBase('t', shape=(len_y,))
>>> Dy = IndexedBase('Dy', shape=(len_y-1,))
>>> i = Idx('i', len_y-1)
>>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
>>> fcode(e.rhs, assign_to=e.lhs, contract=False)
' Dy(i) = (y(i + 1) - y(i))/(t(i + 1) - t(i))'
Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions
must be provided to ``assign_to``. Note that any expression that can be
generated normally can also exist inside a Matrix:
>>> from sympy import Matrix, MatrixSymbol
>>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)])
>>> A = MatrixSymbol('A', 3, 1)
>>> print(fcode(mat, A))
A(1, 1) = x**2
if (x > 0) then
A(2, 1) = x + 1
else
A(2, 1) = x
end if
A(3, 1) = sin(x)
"""
return FCodePrinter(settings).doprint(expr, assign_to)
def print_fcode(expr, **settings):
"""Prints the Fortran representation of the given expression.
See fcode for the meaning of the optional arguments.
"""
print(fcode(expr, **settings))
|
56b03e25aa20c36bc399478abd0f7403a40a01e2d673daeb1bc664089a63f0e7
|
from __future__ import print_function, division
from functools import wraps
from sympy.core import Add, Mul, Pow, S, sympify, Float
from sympy.core.basic import Basic
from sympy.core.compatibility import default_sort_key, string_types
from sympy.core.function import Lambda
from sympy.core.mul import _keep_coeff
from sympy.core.symbol import Symbol
from sympy.printing.str import StrPrinter
from sympy.printing.precedence import precedence
# Backwards compatibility
from sympy.codegen.ast import Assignment
class requires(object):
""" Decorator for registering requirements on print methods. """
def __init__(self, **kwargs):
self._req = kwargs
def __call__(self, method):
def _method_wrapper(self_, *args, **kwargs):
for k, v in self._req.items():
getattr(self_, k).update(v)
return method(self_, *args, **kwargs)
return wraps(method)(_method_wrapper)
class AssignmentError(Exception):
"""
Raised if an assignment variable for a loop is missing.
"""
pass
class CodePrinter(StrPrinter):
"""
The base class for code-printing subclasses.
"""
_operators = {
'and': '&&',
'or': '||',
'not': '!',
}
_default_settings = {
'order': None,
'full_prec': 'auto',
'error_on_reserved': False,
'reserved_word_suffix': '_',
'human': True,
'inline': False,
'allow_unknown_functions': False,
}
def __init__(self, settings=None):
super(CodePrinter, self).__init__(settings=settings)
if not hasattr(self, 'reserved_words'):
self.reserved_words = set()
def doprint(self, expr, assign_to=None):
"""
Print the expression as code.
Parameters
----------
expr : Expression
The expression to be printed.
assign_to : Symbol, MatrixSymbol, or string (optional)
If provided, the printed code will set the expression to a
variable with name ``assign_to``.
"""
from sympy.matrices.expressions.matexpr import MatrixSymbol
if isinstance(assign_to, string_types):
if expr.is_Matrix:
assign_to = MatrixSymbol(assign_to, *expr.shape)
else:
assign_to = Symbol(assign_to)
elif not isinstance(assign_to, (Basic, type(None))):
raise TypeError("{0} cannot assign to object of type {1}".format(
type(self).__name__, type(assign_to)))
if assign_to:
expr = Assignment(assign_to, expr)
else:
# _sympify is not enough b/c it errors on iterables
expr = sympify(expr)
# keep a set of expressions that are not strictly translatable to Code
# and number constants that must be declared and initialized
self._not_supported = set()
self._number_symbols = set()
lines = self._print(expr).splitlines()
# format the output
if self._settings["human"]:
frontlines = []
if self._not_supported:
frontlines.append(self._get_comment(
"Not supported in {0}:".format(self.language)))
for expr in sorted(self._not_supported, key=str):
frontlines.append(self._get_comment(type(expr).__name__))
for name, value in sorted(self._number_symbols, key=str):
frontlines.append(self._declare_number_const(name, value))
lines = frontlines + lines
lines = self._format_code(lines)
result = "\n".join(lines)
else:
lines = self._format_code(lines)
num_syms = set([(k, self._print(v)) for k, v in self._number_symbols])
result = (num_syms, self._not_supported, "\n".join(lines))
self._not_supported = set()
self._number_symbols = set()
return result
def _doprint_loops(self, expr, assign_to=None):
# Here we print an expression that contains Indexed objects, they
# correspond to arrays in the generated code. The low-level implementation
# involves looping over array elements and possibly storing results in temporary
# variables or accumulate it in the assign_to object.
if self._settings.get('contract', True):
from sympy.tensor import get_contraction_structure
# Setup loops over non-dummy indices -- all terms need these
indices = self._get_expression_indices(expr, assign_to)
# Setup loops over dummy indices -- each term needs separate treatment
dummies = get_contraction_structure(expr)
else:
indices = []
dummies = {None: (expr,)}
openloop, closeloop = self._get_loop_opening_ending(indices)
# terms with no summations first
if None in dummies:
text = StrPrinter.doprint(self, Add(*dummies[None]))
else:
# If all terms have summations we must initialize array to Zero
text = StrPrinter.doprint(self, 0)
# skip redundant assignments (where lhs == rhs)
lhs_printed = self._print(assign_to)
lines = []
if text != lhs_printed:
lines.extend(openloop)
if assign_to is not None:
text = self._get_statement("%s = %s" % (lhs_printed, text))
lines.append(text)
lines.extend(closeloop)
# then terms with summations
for d in dummies:
if isinstance(d, tuple):
indices = self._sort_optimized(d, expr)
openloop_d, closeloop_d = self._get_loop_opening_ending(
indices)
for term in dummies[d]:
if term in dummies and not ([list(f.keys()) for f in dummies[term]]
== [[None] for f in dummies[term]]):
# If one factor in the term has it's own internal
# contractions, those must be computed first.
# (temporary variables?)
raise NotImplementedError(
"FIXME: no support for contractions in factor yet")
else:
# We need the lhs expression as an accumulator for
# the loops, i.e
#
# for (int d=0; d < dim; d++){
# lhs[] = lhs[] + term[][d]
# } ^.................. the accumulator
#
# We check if the expression already contains the
# lhs, and raise an exception if it does, as that
# syntax is currently undefined. FIXME: What would be
# a good interpretation?
if assign_to is None:
raise AssignmentError(
"need assignment variable for loops")
if term.has(assign_to):
raise ValueError("FIXME: lhs present in rhs,\
this is undefined in CodePrinter")
lines.extend(openloop)
lines.extend(openloop_d)
text = "%s = %s" % (lhs_printed, StrPrinter.doprint(
self, assign_to + term))
lines.append(self._get_statement(text))
lines.extend(closeloop_d)
lines.extend(closeloop)
return "\n".join(lines)
def _get_expression_indices(self, expr, assign_to):
from sympy.tensor import get_indices
rinds, junk = get_indices(expr)
linds, junk = get_indices(assign_to)
# support broadcast of scalar
if linds and not rinds:
rinds = linds
if rinds != linds:
raise ValueError("lhs indices must match non-dummy"
" rhs indices in %s" % expr)
return self._sort_optimized(rinds, assign_to)
def _sort_optimized(self, indices, expr):
from sympy.tensor.indexed import Indexed
if not indices:
return []
# determine optimized loop order by giving a score to each index
# the index with the highest score are put in the innermost loop.
score_table = {}
for i in indices:
score_table[i] = 0
arrays = expr.atoms(Indexed)
for arr in arrays:
for p, ind in enumerate(arr.indices):
try:
score_table[ind] += self._rate_index_position(p)
except KeyError:
pass
return sorted(indices, key=lambda x: score_table[x])
def _rate_index_position(self, p):
"""function to calculate score based on position among indices
This method is used to sort loops in an optimized order, see
CodePrinter._sort_optimized()
"""
raise NotImplementedError("This function must be implemented by "
"subclass of CodePrinter.")
def _get_statement(self, codestring):
"""Formats a codestring with the proper line ending."""
raise NotImplementedError("This function must be implemented by "
"subclass of CodePrinter.")
def _get_comment(self, text):
"""Formats a text string as a comment."""
raise NotImplementedError("This function must be implemented by "
"subclass of CodePrinter.")
def _declare_number_const(self, name, value):
"""Declare a numeric constant at the top of a function"""
raise NotImplementedError("This function must be implemented by "
"subclass of CodePrinter.")
def _format_code(self, lines):
"""Take in a list of lines of code, and format them accordingly.
This may include indenting, wrapping long lines, etc..."""
raise NotImplementedError("This function must be implemented by "
"subclass of CodePrinter.")
def _get_loop_opening_ending(self, indices):
"""Returns a tuple (open_lines, close_lines) containing lists
of codelines"""
raise NotImplementedError("This function must be implemented by "
"subclass of CodePrinter.")
def _print_Dummy(self, expr):
if expr.name.startswith('Dummy_'):
return '_' + expr.name
else:
return '%s_%d' % (expr.name, expr.dummy_index)
def _print_CodeBlock(self, expr):
return '\n'.join([self._print(i) for i in expr.args])
def _print_String(self, string):
return str(string)
def _print_QuotedString(self, arg):
return '"%s"' % arg.text
def _print_Comment(self, string):
return self._get_comment(str(string))
def _print_Assignment(self, expr):
from sympy.functions.elementary.piecewise import Piecewise
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.tensor.indexed import IndexedBase
lhs = expr.lhs
rhs = expr.rhs
# We special case assignments that take multiple lines
if isinstance(expr.rhs, Piecewise):
# Here we modify Piecewise so each expression is now
# an Assignment, and then continue on the print.
expressions = []
conditions = []
for (e, c) in rhs.args:
expressions.append(Assignment(lhs, e))
conditions.append(c)
temp = Piecewise(*zip(expressions, conditions))
return self._print(temp)
elif isinstance(lhs, MatrixSymbol):
# Here we form an Assignment for each element in the array,
# printing each one.
lines = []
for (i, j) in self._traverse_matrix_indices(lhs):
temp = Assignment(lhs[i, j], rhs[i, j])
code0 = self._print(temp)
lines.append(code0)
return "\n".join(lines)
elif self._settings.get("contract", False) and (lhs.has(IndexedBase) or
rhs.has(IndexedBase)):
# Here we check if there is looping to be done, and if so
# print the required loops.
return self._doprint_loops(rhs, lhs)
else:
lhs_code = self._print(lhs)
rhs_code = self._print(rhs)
return self._get_statement("%s = %s" % (lhs_code, rhs_code))
def _print_AugmentedAssignment(self, expr):
lhs_code = self._print(expr.lhs)
rhs_code = self._print(expr.rhs)
return self._get_statement("{0} {1} {2}".format(
*map(lambda arg: self._print(arg),
[lhs_code, expr.op, rhs_code])))
def _print_FunctionCall(self, expr):
return '%s(%s)' % (
expr.name,
', '.join(map(lambda arg: self._print(arg),
expr.function_args)))
def _print_Variable(self, expr):
return self._print(expr.symbol)
def _print_Statement(self, expr):
arg, = expr.args
return self._get_statement(self._print(arg))
def _print_Symbol(self, expr):
name = super(CodePrinter, self)._print_Symbol(expr)
if name in self.reserved_words:
if self._settings['error_on_reserved']:
msg = ('This expression includes the symbol "{}" which is a '
'reserved keyword in this language.')
raise ValueError(msg.format(name))
return name + self._settings['reserved_word_suffix']
else:
return name
def _print_Function(self, expr):
if expr.func.__name__ in self.known_functions:
cond_func = self.known_functions[expr.func.__name__]
func = None
if isinstance(cond_func, string_types):
func = cond_func
else:
for cond, func in cond_func:
if cond(*expr.args):
break
if func is not None:
try:
return func(*[self.parenthesize(item, 0) for item in expr.args])
except TypeError:
return "%s(%s)" % (func, self.stringify(expr.args, ", "))
elif hasattr(expr, '_imp_') and isinstance(expr._imp_, Lambda):
# inlined function
return self._print(expr._imp_(*expr.args))
elif expr.is_Function and self._settings.get('allow_unknown_functions', False):
return '%s(%s)' % (self._print(expr.func), ', '.join(map(self._print, expr.args)))
else:
return self._print_not_supported(expr)
_print_Expr = _print_Function
def _print_NumberSymbol(self, expr):
if self._settings.get("inline", False):
return self._print(Float(expr.evalf(self._settings["precision"])))
else:
# A Number symbol that is not implemented here or with _printmethod
# is registered and evaluated
self._number_symbols.add((expr,
Float(expr.evalf(self._settings["precision"]))))
return str(expr)
def _print_Catalan(self, expr):
return self._print_NumberSymbol(expr)
def _print_EulerGamma(self, expr):
return self._print_NumberSymbol(expr)
def _print_GoldenRatio(self, expr):
return self._print_NumberSymbol(expr)
def _print_TribonacciConstant(self, expr):
return self._print_NumberSymbol(expr)
def _print_Exp1(self, expr):
return self._print_NumberSymbol(expr)
def _print_Pi(self, expr):
return self._print_NumberSymbol(expr)
def _print_And(self, expr):
PREC = precedence(expr)
return (" %s " % self._operators['and']).join(self.parenthesize(a, PREC)
for a in sorted(expr.args, key=default_sort_key))
def _print_Or(self, expr):
PREC = precedence(expr)
return (" %s " % self._operators['or']).join(self.parenthesize(a, PREC)
for a in sorted(expr.args, key=default_sort_key))
def _print_Xor(self, expr):
if self._operators.get('xor') is None:
return self._print_not_supported(expr)
PREC = precedence(expr)
return (" %s " % self._operators['xor']).join(self.parenthesize(a, PREC)
for a in expr.args)
def _print_Equivalent(self, expr):
if self._operators.get('equivalent') is None:
return self._print_not_supported(expr)
PREC = precedence(expr)
return (" %s " % self._operators['equivalent']).join(self.parenthesize(a, PREC)
for a in expr.args)
def _print_Not(self, expr):
PREC = precedence(expr)
return self._operators['not'] + self.parenthesize(expr.args[0], PREC)
def _print_Mul(self, expr):
prec = precedence(expr)
c, e = expr.as_coeff_Mul()
if c < 0:
expr = _keep_coeff(-c, e)
sign = "-"
else:
sign = ""
a = [] # items in the numerator
b = [] # items that are in the denominator (if any)
pow_paren = [] # Will collect all pow with more than one base element and exp = -1
if self.order not in ('old', 'none'):
args = expr.as_ordered_factors()
else:
# use make_args in case expr was something like -x -> x
args = Mul.make_args(expr)
# Gather args for numerator/denominator
for item in args:
if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative:
if item.exp != -1:
b.append(Pow(item.base, -item.exp, evaluate=False))
else:
if len(item.args[0].args) != 1 and isinstance(item.base, Mul): # To avoid situations like #14160
pow_paren.append(item)
b.append(Pow(item.base, -item.exp))
else:
a.append(item)
a = a or [S.One]
a_str = [self.parenthesize(x, prec) for x in a]
b_str = [self.parenthesize(x, prec) for x in b]
# To parenthesize Pow with exp = -1 and having more than one Symbol
for item in pow_paren:
if item.base in b:
b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)]
if not b:
return sign + '*'.join(a_str)
elif len(b) == 1:
return sign + '*'.join(a_str) + "/" + b_str[0]
else:
return sign + '*'.join(a_str) + "/(%s)" % '*'.join(b_str)
def _print_not_supported(self, expr):
self._not_supported.add(expr)
return self.emptyPrinter(expr)
# The following can not be simply translated into C or Fortran
_print_Basic = _print_not_supported
_print_ComplexInfinity = _print_not_supported
_print_Derivative = _print_not_supported
_print_ExprCondPair = _print_not_supported
_print_GeometryEntity = _print_not_supported
_print_Infinity = _print_not_supported
_print_Integral = _print_not_supported
_print_Interval = _print_not_supported
_print_AccumulationBounds = _print_not_supported
_print_Limit = _print_not_supported
_print_Matrix = _print_not_supported
_print_ImmutableMatrix = _print_not_supported
_print_ImmutableDenseMatrix = _print_not_supported
_print_MutableDenseMatrix = _print_not_supported
_print_MatrixBase = _print_not_supported
_print_DeferredVector = _print_not_supported
_print_NaN = _print_not_supported
_print_NegativeInfinity = _print_not_supported
_print_Normal = _print_not_supported
_print_Order = _print_not_supported
_print_PDF = _print_not_supported
_print_RootOf = _print_not_supported
_print_RootsOf = _print_not_supported
_print_RootSum = _print_not_supported
_print_Sample = _print_not_supported
_print_SparseMatrix = _print_not_supported
_print_MutableSparseMatrix = _print_not_supported
_print_ImmutableSparseMatrix = _print_not_supported
_print_Uniform = _print_not_supported
_print_Unit = _print_not_supported
_print_Wild = _print_not_supported
_print_WildFunction = _print_not_supported
|
bef061cf203f7b111439c38a8e9e6db247a5918dd06180c3081fec1af3e59772
|
# -*- coding: utf-8 -*-
from __future__ import print_function, division
import keyword as kw
import sympy
from .repr import ReprPrinter
from .str import StrPrinter
# A list of classes that should be printed using StrPrinter
STRPRINT = ("Add", "Infinity", "Integer", "Mul", "NegativeInfinity",
"Pow", "Zero")
class PythonPrinter(ReprPrinter, StrPrinter):
"""A printer which converts an expression into its Python interpretation."""
def __init__(self, settings=None):
ReprPrinter.__init__(self)
StrPrinter.__init__(self, settings)
self.symbols = []
self.functions = []
# Create print methods for classes that should use StrPrinter instead
# of ReprPrinter.
for name in STRPRINT:
f_name = "_print_%s" % name
f = getattr(StrPrinter, f_name)
setattr(PythonPrinter, f_name, f)
def _print_Function(self, expr):
func = expr.func.__name__
if not hasattr(sympy, func) and not func in self.functions:
self.functions.append(func)
return StrPrinter._print_Function(self, expr)
# procedure (!) for defining symbols which have be defined in print_python()
def _print_Symbol(self, expr):
symbol = self._str(expr)
if symbol not in self.symbols:
self.symbols.append(symbol)
return StrPrinter._print_Symbol(self, expr)
def _print_module(self, expr):
raise ValueError('Modules in the expression are unacceptable')
def python(expr, **settings):
"""Return Python interpretation of passed expression
(can be passed to the exec() function without any modifications)"""
printer = PythonPrinter(settings)
exprp = printer.doprint(expr)
result = ''
# Returning found symbols and functions
renamings = {}
for symbolname in printer.symbols:
newsymbolname = symbolname
# Escape symbol names that are reserved python keywords
if kw.iskeyword(newsymbolname):
while True:
newsymbolname += "_"
if (newsymbolname not in printer.symbols and
newsymbolname not in printer.functions):
renamings[sympy.Symbol(
symbolname)] = sympy.Symbol(newsymbolname)
break
result += newsymbolname + ' = Symbol(\'' + symbolname + '\')\n'
for functionname in printer.functions:
newfunctionname = functionname
# Escape function names that are reserved python keywords
if kw.iskeyword(newfunctionname):
while True:
newfunctionname += "_"
if (newfunctionname not in printer.symbols and
newfunctionname not in printer.functions):
renamings[sympy.Function(
functionname)] = sympy.Function(newfunctionname)
break
result += newfunctionname + ' = Function(\'' + functionname + '\')\n'
if renamings:
exprp = expr.subs(renamings)
result += 'e = ' + printer._str(exprp)
return result
def print_python(expr, **settings):
"""Print output of python() function"""
print(python(expr, **settings))
|
267a42d7da6e262b802365124e9bba39ca0b3a4917dbb958c4407c9276ab63b2
|
from distutils.version import LooseVersion as V
from sympy import Mul
from sympy.core.compatibility import Iterable
from sympy.external import import_module
from sympy.printing.precedence import PRECEDENCE
from sympy.printing.pycode import AbstractPythonCodePrinter
import sympy
class TensorflowPrinter(AbstractPythonCodePrinter):
"""
Tensorflow printer which handles vectorized piecewise functions,
logical operators, max/min, and relational operators.
"""
printmethod = "_tensorflowcode"
mapping = {
sympy.Abs: "tensorflow.abs",
sympy.sign: "tensorflow.sign",
sympy.ceiling: "tensorflow.ceil",
sympy.floor: "tensorflow.floor",
sympy.log: "tensorflow.log",
sympy.exp: "tensorflow.exp",
sympy.sqrt: "tensorflow.sqrt",
sympy.cos: "tensorflow.cos",
sympy.acos: "tensorflow.acos",
sympy.sin: "tensorflow.sin",
sympy.asin: "tensorflow.asin",
sympy.tan: "tensorflow.tan",
sympy.atan: "tensorflow.atan",
sympy.atan2: "tensorflow.atan2",
sympy.cosh: "tensorflow.cosh",
sympy.acosh: "tensorflow.acosh",
sympy.sinh: "tensorflow.sinh",
sympy.asinh: "tensorflow.asinh",
sympy.tanh: "tensorflow.tanh",
sympy.atanh: "tensorflow.atanh",
sympy.re: "tensorflow.real",
sympy.im: "tensorflow.imag",
sympy.arg: "tensorflow.angle",
sympy.erf: "tensorflow.erf",
sympy.loggamma: "tensorflow.gammaln",
sympy.Pow: "tensorflow.pow",
sympy.Eq: "tensorflow.equal",
sympy.Ne: "tensorflow.not_equal",
sympy.StrictGreaterThan: "tensorflow.greater",
sympy.StrictLessThan: "tensorflow.less",
sympy.LessThan: "tensorflow.less_equal",
sympy.GreaterThan: "tensorflow.greater_equal",
sympy.And: "tensorflow.logical_and",
sympy.Or: "tensorflow.logical_or",
sympy.Not: "tensorflow.logical_not",
sympy.Max: "tensorflow.maximum",
sympy.Min: "tensorflow.minimum",
# Matrices
sympy.MatAdd: "tensorflow.add",
sympy.HadamardProduct: "tensorflow.multiply",
sympy.Trace: "tensorflow.trace",
sympy.Determinant : "tensorflow.matrix_determinant",
sympy.Inverse: "tensorflow.matrix_inverse",
sympy.Transpose: "tensorflow.matrix_transpose",
}
def _print_Function(self, expr):
op = self.mapping.get(type(expr), None)
if op is None:
return super(TensorflowPrinter, self)._print_Basic(expr)
children = [self._print(arg) for arg in expr.args]
if len(children) == 1:
return "%s(%s)" % (
self._module_format(op),
children[0]
)
else:
return self._expand_fold_binary_op(op, children)
_print_Expr = _print_Function
_print_Application = _print_Function
_print_MatrixExpr = _print_Function
# TODO: a better class structure would avoid this mess:
_print_Not = _print_Function
_print_And = _print_Function
_print_Or = _print_Function
_print_Transpose = _print_Function
_print_Trace = _print_Function
def _print_Derivative(self, expr):
variables = expr.variables
if any(isinstance(i, Iterable) for i in variables):
raise NotImplementedError("derivation by multiple variables is not supported")
def unfold(expr, args):
if not args:
return self._print(expr)
return "%s(%s, %s)[0]" % (
self._module_format("tensorflow.gradients"),
unfold(expr, args[:-1]),
self._print(args[-1]),
)
return unfold(expr.expr, variables)
def _print_Piecewise(self, expr):
tensorflow = import_module('tensorflow')
if tensorflow and V(tensorflow.__version__) < '1.0':
tensorflow_piecewise = "select"
else:
tensorflow_piecewise = "where"
from sympy import Piecewise
e, cond = expr.args[0].args
if len(expr.args) == 1:
return '{0}({1}, {2}, {3})'.format(
tensorflow_piecewise,
self._print(cond),
self._print(e),
0)
return '{0}({1}, {2}, {3})'.format(
tensorflow_piecewise,
self._print(cond),
self._print(e),
self._print(Piecewise(*expr.args[1:])))
def _print_MatrixBase(self, expr):
tensorflow_f = "tensorflow.Variable" if expr.free_symbols else "tensorflow.constant"
data = "["+", ".join(["["+", ".join([self._print(j) for j in i])+"]" for i in expr.tolist()])+"]"
return "%s(%s)" % (
self._module_format(tensorflow_f),
data,
)
def _print_MatMul(self, expr):
from sympy.matrices.expressions import MatrixExpr
mat_args = [arg for arg in expr.args if isinstance(arg, MatrixExpr)]
args = [arg for arg in expr.args if arg not in mat_args]
if args:
return "%s*%s" % (
self.parenthesize(Mul.fromiter(args), PRECEDENCE["Mul"]),
self._expand_fold_binary_op("tensorflow.matmul", mat_args)
)
else:
return self._expand_fold_binary_op("tensorflow.matmul", mat_args)
def _print_MatPow(self, expr):
return self._expand_fold_binary_op("tensorflow.matmul", [expr.base]*expr.exp)
def _print_Assignment(self, expr):
# TODO: is this necessary?
return "%s = %s" % (
self._print(expr.lhs),
self._print(expr.rhs),
)
def _print_CodeBlock(self, expr):
# TODO: is this necessary?
ret = []
for subexpr in expr.args:
ret.append(self._print(subexpr))
return "\n".join(ret)
def _get_letter_generator_for_einsum(self):
for i in range(97, 123):
yield chr(i)
for i in range(65, 91):
yield chr(i)
raise ValueError("out of letters")
def _print_CodegenArrayTensorProduct(self, expr):
array_list = [j for i, arg in enumerate(expr.args) for j in
(self._print(arg), "[%i, %i]" % (2*i, 2*i+1))]
letters = self._get_letter_generator_for_einsum()
contraction_string = ",".join(["".join([next(letters) for j in range(i)]) for i in expr.subranks])
return '%s("%s", %s)' % (
self._module_format('tensorflow.einsum'),
contraction_string,
", ".join([self._print(arg) for arg in expr.args])
)
def _print_CodegenArrayContraction(self, expr):
from sympy.codegen.array_utils import CodegenArrayTensorProduct
base = expr.expr
contraction_indices = expr.contraction_indices
contraction_string, letters_free, letters_dum = self._get_einsum_string(base.subranks, contraction_indices)
if not contraction_indices:
return self._print(base)
if isinstance(base, CodegenArrayTensorProduct):
elems = ["%s" % (self._print(arg)) for arg in base.args]
return "%s(\"%s\", %s)" % (
self._module_format("tensorflow.einsum"),
contraction_string,
", ".join(elems)
)
raise NotImplementedError()
def _print_CodegenArrayDiagonal(self, expr):
from sympy.codegen.array_utils import CodegenArrayTensorProduct
diagonal_indices = list(expr.diagonal_indices)
if len(diagonal_indices) > 1:
# TODO: this should be handled in sympy.codegen.array_utils,
# possibly by creating the possibility of unfolding the
# CodegenArrayDiagonal object into nested ones. Same reasoning for
# the array contraction.
raise NotImplementedError
if len(diagonal_indices[0]) != 2:
raise NotImplementedError
if isinstance(expr.expr, CodegenArrayTensorProduct):
subranks = expr.expr.subranks
elems = expr.expr.args
else:
subranks = expr.subranks
elems = [expr.expr]
diagonal_string, letters_free, letters_dum = self._get_einsum_string(subranks, diagonal_indices)
elems = [self._print(i) for i in elems]
return '%s("%s", %s)' % (
self._module_format("tensorflow.einsum"),
"{0}->{1}{2}".format(diagonal_string, "".join(letters_free), "".join(letters_dum)),
", ".join(elems)
)
def _print_CodegenArrayPermuteDims(self, expr):
return "%s(%s, %s)" % (
self._module_format("tensorflow.transpose"),
self._print(expr.expr),
self._print(expr.permutation.args[0]),
)
def _print_CodegenArrayElementwiseAdd(self, expr):
return self._expand_fold_binary_op('tensorflow.add', expr.args)
def tensorflow_code(expr):
printer = TensorflowPrinter()
return printer.doprint(expr)
|
aaa16d1a5c9fe0e3894bcf726b5b888ada860386e6d51216cedcb51f2df1ef29
|
from __future__ import print_function, division
import io
from io import BytesIO
import os
from os.path import join
import shutil
import tempfile
try:
from subprocess import STDOUT, CalledProcessError, check_output
except ImportError:
pass
from sympy.core.compatibility import unicode, u_decode, string_types
from sympy.utilities.decorator import doctest_depends_on
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.utilities.misc import find_executable
from .latex import latex
__doctest_requires__ = {('preview',): ['pyglet']}
@doctest_depends_on(exe=('latex', 'dvipng'), modules=('pyglet',),
disable_viewers=('evince', 'gimp', 'superior-dvi-viewer'))
def preview(expr, output='png', viewer=None, euler=True, packages=(),
filename=None, outputbuffer=None, preamble=None, dvioptions=None,
outputTexFile=None, **latex_settings):
r"""
View expression or LaTeX markup in PNG, DVI, PostScript or PDF form.
If the expr argument is an expression, it will be exported to LaTeX and
then compiled using the available TeX distribution. The first argument,
'expr', may also be a LaTeX string. The function will then run the
appropriate viewer for the given output format or use the user defined
one. By default png output is generated.
By default pretty Euler fonts are used for typesetting (they were used to
typeset the well known "Concrete Mathematics" book). For that to work, you
need the 'eulervm.sty' LaTeX style (in Debian/Ubuntu, install the
texlive-fonts-extra package). If you prefer default AMS fonts or your
system lacks 'eulervm' LaTeX package then unset the 'euler' keyword
argument.
To use viewer auto-detection, lets say for 'png' output, issue
>>> from sympy import symbols, preview, Symbol
>>> x, y = symbols("x,y")
>>> preview(x + y, output='png')
This will choose 'pyglet' by default. To select a different one, do
>>> preview(x + y, output='png', viewer='gimp')
The 'png' format is considered special. For all other formats the rules
are slightly different. As an example we will take 'dvi' output format. If
you would run
>>> preview(x + y, output='dvi')
then 'view' will look for available 'dvi' viewers on your system
(predefined in the function, so it will try evince, first, then kdvi and
xdvi). If nothing is found you will need to set the viewer explicitly.
>>> preview(x + y, output='dvi', viewer='superior-dvi-viewer')
This will skip auto-detection and will run user specified
'superior-dvi-viewer'. If 'view' fails to find it on your system it will
gracefully raise an exception.
You may also enter 'file' for the viewer argument. Doing so will cause
this function to return a file object in read-only mode, if 'filename'
is unset. However, if it was set, then 'preview' writes the genereted
file to this filename instead.
There is also support for writing to a BytesIO like object, which needs
to be passed to the 'outputbuffer' argument.
>>> from io import BytesIO
>>> obj = BytesIO()
>>> preview(x + y, output='png', viewer='BytesIO',
... outputbuffer=obj)
The LaTeX preamble can be customized by setting the 'preamble' keyword
argument. This can be used, e.g., to set a different font size, use a
custom documentclass or import certain set of LaTeX packages.
>>> preamble = "\\documentclass[10pt]{article}\n" \
... "\\usepackage{amsmath,amsfonts}\\begin{document}"
>>> preview(x + y, output='png', preamble=preamble)
If the value of 'output' is different from 'dvi' then command line
options can be set ('dvioptions' argument) for the execution of the
'dvi'+output conversion tool. These options have to be in the form of a
list of strings (see subprocess.Popen).
Additional keyword args will be passed to the latex call, e.g., the
symbol_names flag.
>>> phidd = Symbol('phidd')
>>> preview(phidd, symbol_names={phidd:r'\ddot{\varphi}'})
For post-processing the generated TeX File can be written to a file by
passing the desired filename to the 'outputTexFile' keyword
argument. To write the TeX code to a file named
"sample.tex" and run the default png viewer to display the resulting
bitmap, do
>>> preview(x + y, outputTexFile="sample.tex")
"""
special = [ 'pyglet' ]
if viewer is None:
if output == "png":
viewer = "pyglet"
else:
# sorted in order from most pretty to most ugly
# very discussable, but indeed 'gv' looks awful :)
# TODO add candidates for windows to list
candidates = {
"dvi": [ "evince", "okular", "kdvi", "xdvi" ],
"ps": [ "evince", "okular", "gsview", "gv" ],
"pdf": [ "evince", "okular", "kpdf", "acroread", "xpdf", "gv" ],
}
try:
for candidate in candidates[output]:
path = find_executable(candidate)
if path is not None:
viewer = path
break
else:
raise SystemError(
"No viewers found for '%s' output format." % output)
except KeyError:
raise SystemError("Invalid output format: %s" % output)
else:
if viewer == "file":
if filename is None:
SymPyDeprecationWarning(feature="Using viewer=\"file\" without a "
"specified filename", deprecated_since_version="0.7.3",
useinstead="viewer=\"file\" and filename=\"desiredname\"",
issue=7018).warn()
elif viewer == "StringIO":
SymPyDeprecationWarning(feature="The preview() viewer StringIO",
useinstead="BytesIO", deprecated_since_version="0.7.4",
issue=7083).warn()
viewer = "BytesIO"
if outputbuffer is None:
raise ValueError("outputbuffer has to be a BytesIO "
"compatible object if viewer=\"StringIO\"")
elif viewer == "BytesIO":
if outputbuffer is None:
raise ValueError("outputbuffer has to be a BytesIO "
"compatible object if viewer=\"BytesIO\"")
elif viewer not in special and not find_executable(viewer):
raise SystemError("Unrecognized viewer: %s" % viewer)
if preamble is None:
actual_packages = packages + ("amsmath", "amsfonts")
if euler:
actual_packages += ("euler",)
package_includes = "\n" + "\n".join(["\\usepackage{%s}" % p
for p in actual_packages])
preamble = r"""\documentclass[varwidth,12pt]{standalone}
%s
\begin{document}
""" % (package_includes)
else:
if packages:
raise ValueError("The \"packages\" keyword must not be set if a "
"custom LaTeX preamble was specified")
latex_main = preamble + '\n%s\n\n' + r"\end{document}"
if isinstance(expr, string_types):
latex_string = expr
else:
latex_string = ('$\\displaystyle ' +
latex(expr, mode='plain', **latex_settings) +
'$')
try:
workdir = tempfile.mkdtemp()
with io.open(join(workdir, 'texput.tex'), 'w', encoding='utf-8') as fh:
fh.write(unicode(latex_main) % u_decode(latex_string))
if outputTexFile is not None:
shutil.copyfile(join(workdir, 'texput.tex'), outputTexFile)
if not find_executable('latex'):
raise RuntimeError("latex program is not installed")
try:
# Avoid showing a cmd.exe window when running this
# on Windows
if os.name == 'nt':
creation_flag = 0x08000000 # CREATE_NO_WINDOW
else:
creation_flag = 0 # Default value
check_output(['latex', '-halt-on-error', '-interaction=nonstopmode',
'texput.tex'],
cwd=workdir,
stderr=STDOUT,
creationflags=creation_flag)
except CalledProcessError as e:
raise RuntimeError(
"'latex' exited abnormally with the following output:\n%s" %
e.output)
if output != "dvi":
defaultoptions = {
"ps": [],
"pdf": [],
"png": ["-T", "tight", "-z", "9", "--truecolor"],
"svg": ["--no-fonts"],
}
commandend = {
"ps": ["-o", "texput.ps", "texput.dvi"],
"pdf": ["texput.dvi", "texput.pdf"],
"png": ["-o", "texput.png", "texput.dvi"],
"svg": ["-o", "texput.svg", "texput.dvi"],
}
if output == "svg":
cmd = ["dvisvgm"]
else:
cmd = ["dvi" + output]
if not find_executable(cmd[0]):
raise RuntimeError("%s is not installed" % cmd[0])
try:
if dvioptions is not None:
cmd.extend(dvioptions)
else:
cmd.extend(defaultoptions[output])
cmd.extend(commandend[output])
except KeyError:
raise SystemError("Invalid output format: %s" % output)
try:
# Avoid showing a cmd.exe window when running this
# on Windows
if os.name == 'nt':
creation_flag = 0x08000000 # CREATE_NO_WINDOW
else:
creation_flag = 0 # Default value
check_output(cmd, cwd=workdir, stderr=STDOUT,
creationflags=creation_flag)
except CalledProcessError as e:
raise RuntimeError(
"'%s' exited abnormally with the following output:\n%s" %
(' '.join(cmd), e.output))
src = "texput.%s" % (output)
if viewer == "file":
if filename is None:
buffer = BytesIO()
with open(join(workdir, src), 'rb') as fh:
buffer.write(fh.read())
return buffer
else:
shutil.move(join(workdir,src), filename)
elif viewer == "BytesIO":
with open(join(workdir, src), 'rb') as fh:
outputbuffer.write(fh.read())
elif viewer == "pyglet":
try:
from pyglet import window, image, gl
from pyglet.window import key
except ImportError:
raise ImportError("pyglet is required for preview.\n visit http://www.pyglet.org/")
if output == "png":
from pyglet.image.codecs.png import PNGImageDecoder
img = image.load(join(workdir, src), decoder=PNGImageDecoder())
else:
raise SystemError("pyglet preview works only for 'png' files.")
offset = 25
config = gl.Config(double_buffer=False)
win = window.Window(
width=img.width + 2*offset,
height=img.height + 2*offset,
caption="sympy",
resizable=False,
config=config
)
win.set_vsync(False)
try:
def on_close():
win.has_exit = True
win.on_close = on_close
def on_key_press(symbol, modifiers):
if symbol in [key.Q, key.ESCAPE]:
on_close()
win.on_key_press = on_key_press
def on_expose():
gl.glClearColor(1.0, 1.0, 1.0, 1.0)
gl.glClear(gl.GL_COLOR_BUFFER_BIT)
img.blit(
(win.width - img.width) / 2,
(win.height - img.height) / 2
)
win.on_expose = on_expose
while not win.has_exit:
win.dispatch_events()
win.flip()
except KeyboardInterrupt:
pass
win.close()
else:
try:
# Avoid showing a cmd.exe window when running this
# on Windows
if os.name == 'nt':
creation_flag = 0x08000000 # CREATE_NO_WINDOW
else:
creation_flag = 0 # Default value
check_output([viewer, src], cwd=workdir, stderr=STDOUT,
creationflags=creation_flag)
except CalledProcessError as e:
raise RuntimeError(
"'%s %s' exited abnormally with the following output:\n%s" %
(viewer, src, e.output))
finally:
try:
shutil.rmtree(workdir) # delete directory
except OSError as e:
if e.errno != 2: # code 2 - no such file or directory
raise
|
e6079ee4ebeec37c6c584cb222d2f1312bcf472cc51fd3c5a981ab6c7d0bd28f
|
"""
A Printer for generating executable code.
The most important function here is srepr that returns a string so that the
relation eval(srepr(expr))=expr holds in an appropriate environment.
"""
from __future__ import print_function, division
from sympy.core.function import AppliedUndef
from .printer import Printer
from mpmath.libmp import repr_dps, to_str as mlib_to_str
from sympy.core.compatibility import range, string_types
class ReprPrinter(Printer):
printmethod = "_sympyrepr"
_default_settings = {
"order": None
}
def reprify(self, args, sep):
"""
Prints each item in `args` and joins them with `sep`.
"""
return sep.join([self.doprint(item) for item in args])
def emptyPrinter(self, expr):
"""
The fallback printer.
"""
if isinstance(expr, string_types):
return expr
elif hasattr(expr, "__srepr__"):
return expr.__srepr__()
elif hasattr(expr, "args") and hasattr(expr.args, "__iter__"):
l = []
for o in expr.args:
l.append(self._print(o))
return expr.__class__.__name__ + '(%s)' % ', '.join(l)
elif hasattr(expr, "__module__") and hasattr(expr, "__name__"):
return "<'%s.%s'>" % (expr.__module__, expr.__name__)
else:
return str(expr)
def _print_Add(self, expr, order=None):
args = self._as_ordered_terms(expr, order=order)
nargs = len(args)
args = map(self._print, args)
if nargs > 255: # Issue #10259, Python < 3.7
return "Add(*[%s])" % ", ".join(args)
return "Add(%s)" % ", ".join(args)
def _print_Cycle(self, expr):
return expr.__repr__()
def _print_Function(self, expr):
r = self._print(expr.func)
r += '(%s)' % ', '.join([self._print(a) for a in expr.args])
return r
def _print_FunctionClass(self, expr):
if issubclass(expr, AppliedUndef):
return 'Function(%r)' % (expr.__name__)
else:
return expr.__name__
def _print_Half(self, expr):
return 'Rational(1, 2)'
def _print_RationalConstant(self, expr):
return str(expr)
def _print_AtomicExpr(self, expr):
return str(expr)
def _print_NumberSymbol(self, expr):
return str(expr)
def _print_Integer(self, expr):
return 'Integer(%i)' % expr.p
def _print_Integers(self, expr):
return 'Integers'
def _print_Naturals(self, expr):
return 'Naturals'
def _print_Naturals0(self, expr):
return 'Naturals0'
def _print_Reals(self, expr):
return 'Reals'
def _print_list(self, expr):
return "[%s]" % self.reprify(expr, ", ")
def _print_MatrixBase(self, expr):
# special case for some empty matrices
if (expr.rows == 0) ^ (expr.cols == 0):
return '%s(%s, %s, %s)' % (expr.__class__.__name__,
self._print(expr.rows),
self._print(expr.cols),
self._print([]))
l = []
for i in range(expr.rows):
l.append([])
for j in range(expr.cols):
l[-1].append(expr[i, j])
return '%s(%s)' % (expr.__class__.__name__, self._print(l))
_print_SparseMatrix = \
_print_MutableSparseMatrix = \
_print_ImmutableSparseMatrix = \
_print_Matrix = \
_print_DenseMatrix = \
_print_MutableDenseMatrix = \
_print_ImmutableMatrix = \
_print_ImmutableDenseMatrix = \
_print_MatrixBase
def _print_BooleanTrue(self, expr):
return "true"
def _print_BooleanFalse(self, expr):
return "false"
def _print_NaN(self, expr):
return "nan"
def _print_Mul(self, expr, order=None):
terms = expr.args
if self.order != 'old':
args = expr._new_rawargs(*terms).as_ordered_factors()
else:
args = terms
nargs = len(args)
args = map(self._print, args)
if nargs > 255: # Issue #10259, Python < 3.7
return "Mul(*[%s])" % ", ".join(args)
return "Mul(%s)" % ", ".join(args)
def _print_Rational(self, expr):
return 'Rational(%s, %s)' % (self._print(expr.p), self._print(expr.q))
def _print_PythonRational(self, expr):
return "%s(%d, %d)" % (expr.__class__.__name__, expr.p, expr.q)
def _print_Fraction(self, expr):
return 'Fraction(%s, %s)' % (self._print(expr.numerator), self._print(expr.denominator))
def _print_Float(self, expr):
r = mlib_to_str(expr._mpf_, repr_dps(expr._prec))
return "%s('%s', precision=%i)" % (expr.__class__.__name__, r, expr._prec)
def _print_Sum2(self, expr):
return "Sum2(%s, (%s, %s, %s))" % (self._print(expr.f), self._print(expr.i),
self._print(expr.a), self._print(expr.b))
def _print_Symbol(self, expr):
d = expr._assumptions.generator
# print the dummy_index like it was an assumption
if expr.is_Dummy:
d['dummy_index'] = expr.dummy_index
if d == {}:
return "%s(%s)" % (expr.__class__.__name__, self._print(expr.name))
else:
attr = ['%s=%s' % (k, v) for k, v in d.items()]
return "%s(%s, %s)" % (expr.__class__.__name__,
self._print(expr.name), ', '.join(attr))
def _print_Predicate(self, expr):
return "%s(%s)" % (expr.__class__.__name__, self._print(expr.name))
def _print_AppliedPredicate(self, expr):
return "%s(%s, %s)" % (expr.__class__.__name__, expr.func, expr.arg)
def _print_str(self, expr):
return repr(expr)
def _print_tuple(self, expr):
if len(expr) == 1:
return "(%s,)" % self._print(expr[0])
else:
return "(%s)" % self.reprify(expr, ", ")
def _print_WildFunction(self, expr):
return "%s('%s')" % (expr.__class__.__name__, expr.name)
def _print_AlgebraicNumber(self, expr):
return "%s(%s, %s)" % (expr.__class__.__name__,
self._print(expr.root), self._print(expr.coeffs()))
def _print_PolyRing(self, ring):
return "%s(%s, %s, %s)" % (ring.__class__.__name__,
self._print(ring.symbols), self._print(ring.domain), self._print(ring.order))
def _print_FracField(self, field):
return "%s(%s, %s, %s)" % (field.__class__.__name__,
self._print(field.symbols), self._print(field.domain), self._print(field.order))
def _print_PolyElement(self, poly):
terms = list(poly.terms())
terms.sort(key=poly.ring.order, reverse=True)
return "%s(%s, %s)" % (poly.__class__.__name__, self._print(poly.ring), self._print(terms))
def _print_FracElement(self, frac):
numer_terms = list(frac.numer.terms())
numer_terms.sort(key=frac.field.order, reverse=True)
denom_terms = list(frac.denom.terms())
denom_terms.sort(key=frac.field.order, reverse=True)
numer = self._print(numer_terms)
denom = self._print(denom_terms)
return "%s(%s, %s, %s)" % (frac.__class__.__name__, self._print(frac.field), numer, denom)
def _print_FractionField(self, domain):
cls = domain.__class__.__name__
field = self._print(domain.field)
return "%s(%s)" % (cls, field)
def _print_PolynomialRingBase(self, ring):
cls = ring.__class__.__name__
dom = self._print(ring.domain)
gens = ', '.join(map(self._print, ring.gens))
order = str(ring.order)
if order != ring.default_order:
orderstr = ", order=" + order
else:
orderstr = ""
return "%s(%s, %s%s)" % (cls, dom, gens, orderstr)
def _print_DMP(self, p):
cls = p.__class__.__name__
rep = self._print(p.rep)
dom = self._print(p.dom)
if p.ring is not None:
ringstr = ", ring=" + self._print(p.ring)
else:
ringstr = ""
return "%s(%s, %s%s)" % (cls, rep, dom, ringstr)
def _print_MonogenicFiniteExtension(self, ext):
# The expanded tree shown by srepr(ext.modulus)
# is not practical.
return "FiniteExtension(%s)" % str(ext.modulus)
def _print_ExtensionElement(self, f):
rep = self._print(f.rep)
ext = self._print(f.ext)
return "ExtElem(%s, %s)" % (rep, ext)
def srepr(expr, **settings):
"""return expr in repr form"""
return ReprPrinter(settings).doprint(expr)
|
4094e809d6e2b7a32a3952b8e5b4293675ec4c51afbb0f415e4e7489a81e38fa
|
"""
Julia code printer
The `JuliaCodePrinter` converts SymPy expressions into Julia expressions.
A complete code generator, which uses `julia_code` extensively, can be found
in `sympy.utilities.codegen`. The `codegen` module can be used to generate
complete source code files.
"""
from __future__ import print_function, division
from sympy.core import Mul, Pow, S, Rational
from sympy.core.compatibility import string_types, range
from sympy.core.mul import _keep_coeff
from sympy.printing.codeprinter import CodePrinter, Assignment
from sympy.printing.precedence import precedence, PRECEDENCE
from re import search
# List of known functions. First, those that have the same name in
# SymPy and Julia. This is almost certainly incomplete!
known_fcns_src1 = ["sin", "cos", "tan", "cot", "sec", "csc",
"asin", "acos", "atan", "acot", "asec", "acsc",
"sinh", "cosh", "tanh", "coth", "sech", "csch",
"asinh", "acosh", "atanh", "acoth", "asech", "acsch"
"sinc", "atan2", "sign", "floor", "log", "exp",
"cbrt", "sqrt", "erf", "erfc", "erfi",
"factorial", "gamma", "digamma", "trigamma",
"polygamma", "beta",
"airyai", "airyaiprime", "airybi", "airybiprime",
"besselj", "bessely", "besseli", "besselk",
"erfinv", "erfcinv"]
# These functions have different names ("Sympy": "Julia"), more
# generally a mapping to (argument_conditions, julia_function).
known_fcns_src2 = {
"Abs": "abs",
"ceiling": "ceil",
"conjugate": "conj",
"hankel1": "hankelh1",
"hankel2": "hankelh2",
"im": "imag",
"re": "real"
}
class JuliaCodePrinter(CodePrinter):
"""
A printer to convert expressions to strings of Julia code.
"""
printmethod = "_julia"
language = "Julia"
_operators = {
'and': '&&',
'or': '||',
'not': '!',
}
_default_settings = {
'order': None,
'full_prec': 'auto',
'precision': 17,
'user_functions': {},
'human': True,
'allow_unknown_functions': False,
'contract': True,
'inline': True,
}
# Note: contract is for expressing tensors as loops (if True), or just
# assignment (if False). FIXME: this should be looked a more carefully
# for Julia.
def __init__(self, settings={}):
super(JuliaCodePrinter, self).__init__(settings)
self.known_functions = dict(zip(known_fcns_src1, known_fcns_src1))
self.known_functions.update(dict(known_fcns_src2))
userfuncs = settings.get('user_functions', {})
self.known_functions.update(userfuncs)
def _rate_index_position(self, p):
return p*5
def _get_statement(self, codestring):
return "%s" % codestring
def _get_comment(self, text):
return "# {0}".format(text)
def _declare_number_const(self, name, value):
return "const {0} = {1}".format(name, value)
def _format_code(self, lines):
return self.indent_code(lines)
def _traverse_matrix_indices(self, mat):
# Julia uses Fortran order (column-major)
rows, cols = mat.shape
return ((i, j) for j in range(cols) for i in range(rows))
def _get_loop_opening_ending(self, indices):
open_lines = []
close_lines = []
for i in indices:
# Julia arrays start at 1 and end at dimension
var, start, stop = map(self._print,
[i.label, i.lower + 1, i.upper + 1])
open_lines.append("for %s = %s:%s" % (var, start, stop))
close_lines.append("end")
return open_lines, close_lines
def _print_Mul(self, expr):
# print complex numbers nicely in Julia
if (expr.is_number and expr.is_imaginary and
expr.as_coeff_Mul()[0].is_integer):
return "%sim" % self._print(-S.ImaginaryUnit*expr)
# cribbed from str.py
prec = precedence(expr)
c, e = expr.as_coeff_Mul()
if c < 0:
expr = _keep_coeff(-c, e)
sign = "-"
else:
sign = ""
a = [] # items in the numerator
b = [] # items that are in the denominator (if any)
pow_paren = [] # Will collect all pow with more than one base element and exp = -1
if self.order not in ('old', 'none'):
args = expr.as_ordered_factors()
else:
# use make_args in case expr was something like -x -> x
args = Mul.make_args(expr)
# Gather args for numerator/denominator
for item in args:
if (item.is_commutative and item.is_Pow and item.exp.is_Rational
and item.exp.is_negative):
if item.exp != -1:
b.append(Pow(item.base, -item.exp, evaluate=False))
else:
if len(item.args[0].args) != 1 and isinstance(item.base, Mul): # To avoid situations like #14160
pow_paren.append(item)
b.append(Pow(item.base, -item.exp))
elif item.is_Rational and item is not S.Infinity:
if item.p != 1:
a.append(Rational(item.p))
if item.q != 1:
b.append(Rational(item.q))
else:
a.append(item)
a = a or [S.One]
a_str = [self.parenthesize(x, prec) for x in a]
b_str = [self.parenthesize(x, prec) for x in b]
# To parenthesize Pow with exp = -1 and having more than one Symbol
for item in pow_paren:
if item.base in b:
b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)]
# from here it differs from str.py to deal with "*" and ".*"
def multjoin(a, a_str):
# here we probably are assuming the constants will come first
r = a_str[0]
for i in range(1, len(a)):
mulsym = '*' if a[i-1].is_number else '.*'
r = r + mulsym + a_str[i]
return r
if not b:
return sign + multjoin(a, a_str)
elif len(b) == 1:
divsym = '/' if b[0].is_number else './'
return sign + multjoin(a, a_str) + divsym + b_str[0]
else:
divsym = '/' if all([bi.is_number for bi in b]) else './'
return (sign + multjoin(a, a_str) +
divsym + "(%s)" % multjoin(b, b_str))
def _print_Pow(self, expr):
powsymbol = '^' if all([x.is_number for x in expr.args]) else '.^'
PREC = precedence(expr)
if expr.exp == S.Half:
return "sqrt(%s)" % self._print(expr.base)
if expr.is_commutative:
if expr.exp == -S.Half:
sym = '/' if expr.base.is_number else './'
return "1" + sym + "sqrt(%s)" % self._print(expr.base)
if expr.exp == -S.One:
sym = '/' if expr.base.is_number else './'
return "1" + sym + "%s" % self.parenthesize(expr.base, PREC)
return '%s%s%s' % (self.parenthesize(expr.base, PREC), powsymbol,
self.parenthesize(expr.exp, PREC))
def _print_MatPow(self, expr):
PREC = precedence(expr)
return '%s^%s' % (self.parenthesize(expr.base, PREC),
self.parenthesize(expr.exp, PREC))
def _print_Pi(self, expr):
if self._settings["inline"]:
return "pi"
else:
return super(JuliaCodePrinter, self)._print_NumberSymbol(expr)
def _print_ImaginaryUnit(self, expr):
return "im"
def _print_Exp1(self, expr):
if self._settings["inline"]:
return "e"
else:
return super(JuliaCodePrinter, self)._print_NumberSymbol(expr)
def _print_EulerGamma(self, expr):
if self._settings["inline"]:
return "eulergamma"
else:
return super(JuliaCodePrinter, self)._print_NumberSymbol(expr)
def _print_Catalan(self, expr):
if self._settings["inline"]:
return "catalan"
else:
return super(JuliaCodePrinter, self)._print_NumberSymbol(expr)
def _print_GoldenRatio(self, expr):
if self._settings["inline"]:
return "golden"
else:
return super(JuliaCodePrinter, self)._print_NumberSymbol(expr)
def _print_Assignment(self, expr):
from sympy.functions.elementary.piecewise import Piecewise
from sympy.tensor.indexed import IndexedBase
# Copied from codeprinter, but remove special MatrixSymbol treatment
lhs = expr.lhs
rhs = expr.rhs
# We special case assignments that take multiple lines
if not self._settings["inline"] and isinstance(expr.rhs, Piecewise):
# Here we modify Piecewise so each expression is now
# an Assignment, and then continue on the print.
expressions = []
conditions = []
for (e, c) in rhs.args:
expressions.append(Assignment(lhs, e))
conditions.append(c)
temp = Piecewise(*zip(expressions, conditions))
return self._print(temp)
if self._settings["contract"] and (lhs.has(IndexedBase) or
rhs.has(IndexedBase)):
# Here we check if there is looping to be done, and if so
# print the required loops.
return self._doprint_loops(rhs, lhs)
else:
lhs_code = self._print(lhs)
rhs_code = self._print(rhs)
return self._get_statement("%s = %s" % (lhs_code, rhs_code))
def _print_Infinity(self, expr):
return 'Inf'
def _print_NegativeInfinity(self, expr):
return '-Inf'
def _print_NaN(self, expr):
return 'NaN'
def _print_list(self, expr):
return 'Any[' + ', '.join(self._print(a) for a in expr) + ']'
def _print_tuple(self, expr):
if len(expr) == 1:
return "(%s,)" % self._print(expr[0])
else:
return "(%s)" % self.stringify(expr, ", ")
_print_Tuple = _print_tuple
def _print_BooleanTrue(self, expr):
return "true"
def _print_BooleanFalse(self, expr):
return "false"
def _print_bool(self, expr):
return str(expr).lower()
# Could generate quadrature code for definite Integrals?
#_print_Integral = _print_not_supported
def _print_MatrixBase(self, A):
# Handle zero dimensions:
if A.rows == 0 or A.cols == 0:
return 'zeros(%s, %s)' % (A.rows, A.cols)
elif (A.rows, A.cols) == (1, 1):
return "[%s]" % A[0, 0]
elif A.rows == 1:
return "[%s]" % A.table(self, rowstart='', rowend='', colsep=' ')
elif A.cols == 1:
# note .table would unnecessarily equispace the rows
return "[%s]" % ", ".join([self._print(a) for a in A])
return "[%s]" % A.table(self, rowstart='', rowend='',
rowsep=';\n', colsep=' ')
def _print_SparseMatrix(self, A):
from sympy.matrices import Matrix
L = A.col_list();
# make row vectors of the indices and entries
I = Matrix([k[0] + 1 for k in L])
J = Matrix([k[1] + 1 for k in L])
AIJ = Matrix([k[2] for k in L])
return "sparse(%s, %s, %s, %s, %s)" % (self._print(I), self._print(J),
self._print(AIJ), A.rows, A.cols)
# FIXME: Str/CodePrinter could define each of these to call the _print
# method from higher up the class hierarchy (see _print_NumberSymbol).
# Then subclasses like us would not need to repeat all this.
_print_Matrix = \
_print_DenseMatrix = \
_print_MutableDenseMatrix = \
_print_ImmutableMatrix = \
_print_ImmutableDenseMatrix = \
_print_MatrixBase
_print_MutableSparseMatrix = \
_print_ImmutableSparseMatrix = \
_print_SparseMatrix
def _print_MatrixElement(self, expr):
return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) \
+ '[%s,%s]' % (expr.i + 1, expr.j + 1)
def _print_MatrixSlice(self, expr):
def strslice(x, lim):
l = x[0] + 1
h = x[1]
step = x[2]
lstr = self._print(l)
hstr = 'end' if h == lim else self._print(h)
if step == 1:
if l == 1 and h == lim:
return ':'
if l == h:
return lstr
else:
return lstr + ':' + hstr
else:
return ':'.join((lstr, self._print(step), hstr))
return (self._print(expr.parent) + '[' +
strslice(expr.rowslice, expr.parent.shape[0]) + ',' +
strslice(expr.colslice, expr.parent.shape[1]) + ']')
def _print_Indexed(self, expr):
inds = [ self._print(i) for i in expr.indices ]
return "%s[%s]" % (self._print(expr.base.label), ",".join(inds))
def _print_Idx(self, expr):
return self._print(expr.label)
def _print_Identity(self, expr):
return "eye(%s)" % self._print(expr.shape[0])
# Note: as of 2015, Julia doesn't have spherical Bessel functions
def _print_jn(self, expr):
from sympy.functions import sqrt, besselj
x = expr.argument
expr2 = sqrt(S.Pi/(2*x))*besselj(expr.order + S.Half, x)
return self._print(expr2)
def _print_yn(self, expr):
from sympy.functions import sqrt, bessely
x = expr.argument
expr2 = sqrt(S.Pi/(2*x))*bessely(expr.order + S.Half, x)
return self._print(expr2)
def _print_Piecewise(self, expr):
if expr.args[-1].cond != True:
# We need the last conditional to be a True, otherwise the resulting
# function may not return a result.
raise ValueError("All Piecewise expressions must contain an "
"(expr, True) statement to be used as a default "
"condition. Without one, the generated "
"expression may not evaluate to anything under "
"some condition.")
lines = []
if self._settings["inline"]:
# Express each (cond, expr) pair in a nested Horner form:
# (condition) .* (expr) + (not cond) .* (<others>)
# Expressions that result in multiple statements won't work here.
ecpairs = ["({0}) ? ({1}) :".format
(self._print(c), self._print(e))
for e, c in expr.args[:-1]]
elast = " (%s)" % self._print(expr.args[-1].expr)
pw = "\n".join(ecpairs) + elast
# Note: current need these outer brackets for 2*pw. Would be
# nicer to teach parenthesize() to do this for us when needed!
return "(" + pw + ")"
else:
for i, (e, c) in enumerate(expr.args):
if i == 0:
lines.append("if (%s)" % self._print(c))
elif i == len(expr.args) - 1 and c == True:
lines.append("else")
else:
lines.append("elseif (%s)" % self._print(c))
code0 = self._print(e)
lines.append(code0)
if i == len(expr.args) - 1:
lines.append("end")
return "\n".join(lines)
def indent_code(self, code):
"""Accepts a string of code or a list of code lines"""
# code mostly copied from ccode
if isinstance(code, string_types):
code_lines = self.indent_code(code.splitlines(True))
return ''.join(code_lines)
tab = " "
inc_regex = ('^function ', '^if ', '^elseif ', '^else$', '^for ')
dec_regex = ('^end$', '^elseif ', '^else$')
# pre-strip left-space from the code
code = [ line.lstrip(' \t') for line in code ]
increase = [ int(any([search(re, line) for re in inc_regex]))
for line in code ]
decrease = [ int(any([search(re, line) for re in dec_regex]))
for line in code ]
pretty = []
level = 0
for n, line in enumerate(code):
if line == '' or line == '\n':
pretty.append(line)
continue
level -= decrease[n]
pretty.append("%s%s" % (tab*level, line))
level += increase[n]
return pretty
def julia_code(expr, assign_to=None, **settings):
r"""Converts `expr` to a string of Julia code.
Parameters
==========
expr : Expr
A sympy expression to be converted.
assign_to : optional
When given, the argument is used as the name of the variable to which
the expression is assigned. Can be a string, ``Symbol``,
``MatrixSymbol``, or ``Indexed`` type. This can be helpful for
expressions that generate multi-line statements.
precision : integer, optional
The precision for numbers such as pi [default=16].
user_functions : dict, optional
A dictionary where keys are ``FunctionClass`` instances and values are
their string representations. Alternatively, the dictionary value can
be a list of tuples i.e. [(argument_test, cfunction_string)]. See
below for examples.
human : bool, optional
If True, the result is a single string that may contain some constant
declarations for the number symbols. If False, the same information is
returned in a tuple of (symbols_to_declare, not_supported_functions,
code_text). [default=True].
contract: bool, optional
If True, ``Indexed`` instances are assumed to obey tensor contraction
rules and the corresponding nested loops over indices are generated.
Setting contract=False will not generate loops, instead the user is
responsible to provide values for the indices in the code.
[default=True].
inline: bool, optional
If True, we try to create single-statement code instead of multiple
statements. [default=True].
Examples
========
>>> from sympy import julia_code, symbols, sin, pi
>>> x = symbols('x')
>>> julia_code(sin(x).series(x).removeO())
'x.^5/120 - x.^3/6 + x'
>>> from sympy import Rational, ceiling, Abs
>>> x, y, tau = symbols("x, y, tau")
>>> julia_code((2*tau)**Rational(7, 2))
'8*sqrt(2)*tau.^(7/2)'
Note that element-wise (Hadamard) operations are used by default between
symbols. This is because its possible in Julia to write "vectorized"
code. It is harmless if the values are scalars.
>>> julia_code(sin(pi*x*y), assign_to="s")
's = sin(pi*x.*y)'
If you need a matrix product "*" or matrix power "^", you can specify the
symbol as a ``MatrixSymbol``.
>>> from sympy import Symbol, MatrixSymbol
>>> n = Symbol('n', integer=True, positive=True)
>>> A = MatrixSymbol('A', n, n)
>>> julia_code(3*pi*A**3)
'(3*pi)*A^3'
This class uses several rules to decide which symbol to use a product.
Pure numbers use "*", Symbols use ".*" and MatrixSymbols use "*".
A HadamardProduct can be used to specify componentwise multiplication ".*"
of two MatrixSymbols. There is currently there is no easy way to specify
scalar symbols, so sometimes the code might have some minor cosmetic
issues. For example, suppose x and y are scalars and A is a Matrix, then
while a human programmer might write "(x^2*y)*A^3", we generate:
>>> julia_code(x**2*y*A**3)
'(x.^2.*y)*A^3'
Matrices are supported using Julia inline notation. When using
``assign_to`` with matrices, the name can be specified either as a string
or as a ``MatrixSymbol``. The dimensions must align in the latter case.
>>> from sympy import Matrix, MatrixSymbol
>>> mat = Matrix([[x**2, sin(x), ceiling(x)]])
>>> julia_code(mat, assign_to='A')
'A = [x.^2 sin(x) ceil(x)]'
``Piecewise`` expressions are implemented with logical masking by default.
Alternatively, you can pass "inline=False" to use if-else conditionals.
Note that if the ``Piecewise`` lacks a default term, represented by
``(expr, True)`` then an error will be thrown. This is to prevent
generating an expression that may not evaluate to anything.
>>> from sympy import Piecewise
>>> pw = Piecewise((x + 1, x > 0), (x, True))
>>> julia_code(pw, assign_to=tau)
'tau = ((x > 0) ? (x + 1) : (x))'
Note that any expression that can be generated normally can also exist
inside a Matrix:
>>> mat = Matrix([[x**2, pw, sin(x)]])
>>> julia_code(mat, assign_to='A')
'A = [x.^2 ((x > 0) ? (x + 1) : (x)) sin(x)]'
Custom printing can be defined for certain types by passing a dictionary of
"type" : "function" to the ``user_functions`` kwarg. Alternatively, the
dictionary value can be a list of tuples i.e., [(argument_test,
cfunction_string)]. This can be used to call a custom Julia function.
>>> from sympy import Function
>>> f = Function('f')
>>> g = Function('g')
>>> custom_functions = {
... "f": "existing_julia_fcn",
... "g": [(lambda x: x.is_Matrix, "my_mat_fcn"),
... (lambda x: not x.is_Matrix, "my_fcn")]
... }
>>> mat = Matrix([[1, x]])
>>> julia_code(f(x) + g(x) + g(mat), user_functions=custom_functions)
'existing_julia_fcn(x) + my_fcn(x) + my_mat_fcn([1 x])'
Support for loops is provided through ``Indexed`` types. With
``contract=True`` these expressions will be turned into loops, whereas
``contract=False`` will just print the assignment expression that should be
looped over:
>>> from sympy import Eq, IndexedBase, Idx, ccode
>>> len_y = 5
>>> y = IndexedBase('y', shape=(len_y,))
>>> t = IndexedBase('t', shape=(len_y,))
>>> Dy = IndexedBase('Dy', shape=(len_y-1,))
>>> i = Idx('i', len_y-1)
>>> e = Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
>>> julia_code(e.rhs, assign_to=e.lhs, contract=False)
'Dy[i] = (y[i + 1] - y[i])./(t[i + 1] - t[i])'
"""
return JuliaCodePrinter(settings).doprint(expr, assign_to)
def print_julia_code(expr, **settings):
"""Prints the Julia representation of the given expression.
See `julia_code` for the meaning of the optional arguments.
"""
print(julia_code(expr, **settings))
|
9d56a42a6705c68a622b6f3bb4bbde5ab668075f9aa34e07e9ed83e441de018e
|
from sympy.codegen.ast import Assignment
from sympy.core import S
from sympy.core.compatibility import string_types, range
from sympy.core.function import _coeff_isneg, Lambda
from sympy.printing.codeprinter import CodePrinter
from sympy.printing.precedence import precedence
from functools import reduce
known_functions = {
'Abs': 'abs',
'sin': 'sin',
'cos': 'cos',
'tan': 'tan',
'acos': 'acos',
'asin': 'asin',
'atan': 'atan',
'atan2': 'atan',
'ceiling': 'ceil',
'floor': 'floor',
'sign': 'sign',
'exp': 'exp',
'log': 'log',
'add': 'add',
'sub': 'sub',
'mul': 'mul',
'pow': 'pow'
}
class GLSLPrinter(CodePrinter):
"""
Rudimentary, generic GLSL printing tools.
Additional settings:
'use_operators': Boolean (should the printer use operators for +,-,*, or functions?)
"""
_not_supported = set()
printmethod = "_glsl"
language = "GLSL"
_default_settings = {
'use_operators': True,
'mat_nested': False,
'mat_separator': ',\n',
'mat_transpose': False,
'glsl_types': True,
'order': None,
'full_prec': 'auto',
'precision': 9,
'user_functions': {},
'human': True,
'allow_unknown_functions': False,
'contract': True,
'error_on_reserved': False,
'reserved_word_suffix': '_'
}
def __init__(self, settings={}):
CodePrinter.__init__(self, settings)
self.known_functions = dict(known_functions)
userfuncs = settings.get('user_functions', {})
self.known_functions.update(userfuncs)
def _rate_index_position(self, p):
return p*5
def _get_statement(self, codestring):
return "%s;" % codestring
def _get_comment(self, text):
return "// {0}".format(text)
def _declare_number_const(self, name, value):
return "float {0} = {1};".format(name, value)
def _format_code(self, lines):
return self.indent_code(lines)
def indent_code(self, code):
"""Accepts a string of code or a list of code lines"""
if isinstance(code, string_types):
code_lines = self.indent_code(code.splitlines(True))
return ''.join(code_lines)
tab = " "
inc_token = ('{', '(', '{\n', '(\n')
dec_token = ('}', ')')
code = [line.lstrip(' \t') for line in code]
increase = [int(any(map(line.endswith, inc_token))) for line in code]
decrease = [int(any(map(line.startswith, dec_token))) for line in code]
pretty = []
level = 0
for n, line in enumerate(code):
if line == '' or line == '\n':
pretty.append(line)
continue
level -= decrease[n]
pretty.append("%s%s" % (tab*level, line))
level += increase[n]
return pretty
def _print_MatrixBase(self, mat):
mat_separator = self._settings['mat_separator']
mat_transpose = self._settings['mat_transpose']
glsl_types = self._settings['glsl_types']
column_vector = (mat.rows == 1) if mat_transpose else (mat.cols == 1)
A = mat.transpose() if mat_transpose != column_vector else mat
if A.cols == 1:
return self._print(A[0]);
if A.rows <= 4 and A.cols <= 4 and glsl_types:
if A.rows == 1:
return 'vec%s%s' % (A.cols, A.table(self,rowstart='(',rowend=')'))
elif A.rows == A.cols:
return 'mat%s(%s)' % (A.rows, A.table(self,rowsep=', ',
rowstart='',rowend=''))
else:
return 'mat%sx%s(%s)' % (A.cols, A.rows,
A.table(self,rowsep=', ',
rowstart='',rowend=''))
elif A.cols == 1 or A.rows == 1:
return 'float[%s](%s)' % (A.cols*A.rows, A.table(self,rowsep=mat_separator,rowstart='',rowend=''))
elif not self._settings['mat_nested']:
return 'float[%s](\n%s\n) /* a %sx%s matrix */' % (A.cols*A.rows,
A.table(self,rowsep=mat_separator,rowstart='',rowend=''),
A.rows,A.cols)
elif self._settings['mat_nested']:
return 'float[%s][%s](\n%s\n)' % (A.rows,A.cols,A.table(self,rowsep=mat_separator,rowstart='float[](',rowend=')'))
_print_Matrix = \
_print_MatrixElement = \
_print_DenseMatrix = \
_print_MutableDenseMatrix = \
_print_ImmutableMatrix = \
_print_ImmutableDenseMatrix = \
_print_MatrixBase
def _traverse_matrix_indices(self, mat):
mat_transpose = self._settings['mat_transpose']
if mat_transpose:
rows,cols = mat.shape
else:
cols,rows = mat.shape
return ((i, j) for i in range(cols) for j in range(rows))
def _print_MatrixElement(self, expr):
# print('begin _print_MatrixElement')
nest = self._settings['mat_nested'];
glsl_types = self._settings['glsl_types'];
mat_transpose = self._settings['mat_transpose'];
if mat_transpose:
cols,rows = expr.parent.shape
i,j = expr.j,expr.i
else:
rows,cols = expr.parent.shape
i,j = expr.i,expr.j
pnt = self._print(expr.parent)
if glsl_types and ((rows <= 4 and cols <=4) or nest):
# print('end _print_MatrixElement case A',nest,glsl_types)
return "%s[%s][%s]" % (pnt, i, j)
else:
# print('end _print_MatrixElement case B',nest,glsl_types)
return "{0}[{1}]".format(pnt, i + j*rows)
def _print_list(self, expr):
l = ', '.join(self._print(item) for item in expr)
glsl_types = self._settings['glsl_types']
if len(expr) <= 4 and glsl_types:
return 'vec%s(%s)' % (len(expr),l)
else:
return 'float[%s](%s)' % (len(expr),l)
_print_tuple = _print_list
_print_Tuple = _print_list
def _get_loop_opening_ending(self, indices):
open_lines = []
close_lines = []
loopstart = "for (int %(varble)s=%(start)s; %(varble)s<%(end)s; %(varble)s++){"
for i in indices:
# GLSL arrays start at 0 and end at dimension-1
open_lines.append(loopstart % {
'varble': self._print(i.label),
'start': self._print(i.lower),
'end': self._print(i.upper + 1)})
close_lines.append("}")
return open_lines, close_lines
def _print_Function_with_args(self, func, func_args):
if func in self.known_functions:
cond_func = self.known_functions[func]
func = None
if isinstance(cond_func, string_types):
func = cond_func
else:
for cond, func in cond_func:
if cond(func_args):
break
if func is not None:
try:
return func(*[self.parenthesize(item, 0) for item in func_args])
except TypeError:
return "%s(%s)" % (func, self.stringify(func_args, ", "))
elif isinstance(func, Lambda):
# inlined function
return self._print(func(*func_args))
else:
return self._print_not_supported(func)
def _print_Piecewise(self, expr):
if expr.args[-1].cond != True:
# We need the last conditional to be a True, otherwise the resulting
# function may not return a result.
raise ValueError("All Piecewise expressions must contain an "
"(expr, True) statement to be used as a default "
"condition. Without one, the generated "
"expression may not evaluate to anything under "
"some condition.")
lines = []
if expr.has(Assignment):
for i, (e, c) in enumerate(expr.args):
if i == 0:
lines.append("if (%s) {" % self._print(c))
elif i == len(expr.args) - 1 and c == True:
lines.append("else {")
else:
lines.append("else if (%s) {" % self._print(c))
code0 = self._print(e)
lines.append(code0)
lines.append("}")
return "\n".join(lines)
else:
# The piecewise was used in an expression, need to do inline
# operators. This has the downside that inline operators will
# not work for statements that span multiple lines (Matrix or
# Indexed expressions).
ecpairs = ["((%s) ? (\n%s\n)\n" % (self._print(c),
self._print(e))
for e, c in expr.args[:-1]]
last_line = ": (\n%s\n)" % self._print(expr.args[-1].expr)
return ": ".join(ecpairs) + last_line + " ".join([")"*len(ecpairs)])
def _print_Idx(self, expr):
return self._print(expr.label)
def _print_Indexed(self, expr):
# calculate index for 1d array
dims = expr.shape
elem = S.Zero
offset = S.One
for i in reversed(range(expr.rank)):
elem += expr.indices[i]*offset
offset *= dims[i]
return "%s[%s]" % (self._print(expr.base.label),
self._print(elem))
def _print_Pow(self, expr):
PREC = precedence(expr)
if expr.exp == -1:
return '1.0/%s' % (self.parenthesize(expr.base, PREC))
elif expr.exp == 0.5:
return 'sqrt(%s)' % self._print(expr.base)
else:
try:
e = self._print(float(expr.exp))
except TypeError:
e = self._print(expr.exp)
# return self.known_functions['pow']+'(%s, %s)' % (self._print(expr.base),e)
return self._print_Function_with_args('pow', (
self._print(expr.base),
e
))
def _print_int(self, expr):
return str(float(expr))
def _print_Rational(self, expr):
return "%s.0/%s.0" % (expr.p, expr.q)
def _print_Add(self, expr, order=None):
if self._settings['use_operators']:
return CodePrinter._print_Add(self, expr, order=order)
terms = expr.as_ordered_terms()
def partition(p,l):
return reduce(lambda x, y: (x[0]+[y], x[1]) if p(y) else (x[0], x[1]+[y]), l, ([], []))
def add(a,b):
return self._print_Function_with_args('add', (a, b))
# return self.known_functions['add']+'(%s, %s)' % (a,b)
neg, pos = partition(lambda arg: _coeff_isneg(arg), terms)
s = pos = reduce(lambda a,b: add(a,b), map(lambda t: self._print(t),pos))
if neg:
# sum the absolute values of the negative terms
neg = reduce(lambda a,b: add(a,b), map(lambda n: self._print(-n),neg))
# then subtract them from the positive terms
s = self._print_Function_with_args('sub', (pos,neg))
# s = self.known_functions['sub']+'(%s, %s)' % (pos,neg)
return s
def _print_Mul(self, expr, **kwargs):
if self._settings['use_operators']:
return CodePrinter._print_Mul(self, expr, **kwargs)
terms = expr.as_ordered_factors()
def mul(a,b):
# return self.known_functions['mul']+'(%s, %s)' % (a,b)
return self._print_Function_with_args('mul', (a,b))
s = reduce(lambda a,b: mul(a,b), map(lambda t: self._print(t), terms))
return s
def glsl_code(expr,assign_to=None,**settings):
"""Converts an expr to a string of GLSL code
Parameters
==========
expr : Expr
A sympy expression to be converted.
assign_to : optional
When given, the argument is used as the name of the variable to which
the expression is assigned. Can be a string, ``Symbol``,
``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of
line-wrapping, or for expressions that generate multi-line statements.
use_operators: bool, optional
If set to False, then *,/,+,- operators will be replaced with functions
mul, add, and sub, which must be implemented by the user, e.g. for
implementing non-standard rings or emulated quad/octal precision.
[default=True]
glsl_types: bool, optional
Set this argument to ``False`` in order to avoid using the ``vec`` and ``mat``
types. The printer will instead use arrays (or nested arrays).
[default=True]
mat_nested: bool, optional
GLSL version 4.3 and above support nested arrays (arrays of arrays). Set this to ``True``
to render matrices as nested arrays.
[default=False]
mat_separator: str, optional
By default, matrices are rendered with newlines using this separator,
making them easier to read, but less compact. By removing the newline
this option can be used to make them more vertically compact.
[default=',\n']
mat_transpose: bool, optional
GLSL's matrix multiplication implementation assumes column-major indexing.
By default, this printer ignores that convention. Setting this option to
``True`` transposes all matrix output.
[default=False]
precision : integer, optional
The precision for numbers such as pi [default=15].
user_functions : dict, optional
A dictionary where keys are ``FunctionClass`` instances and values are
their string representations. Alternatively, the dictionary value can
be a list of tuples i.e. [(argument_test, js_function_string)]. See
below for examples.
human : bool, optional
If True, the result is a single string that may contain some constant
declarations for the number symbols. If False, the same information is
returned in a tuple of (symbols_to_declare, not_supported_functions,
code_text). [default=True].
contract: bool, optional
If True, ``Indexed`` instances are assumed to obey tensor contraction
rules and the corresponding nested loops over indices are generated.
Setting contract=False will not generate loops, instead the user is
responsible to provide values for the indices in the code.
[default=True].
Examples
========
>>> from sympy import glsl_code, symbols, Rational, sin, ceiling, Abs
>>> x, tau = symbols("x, tau")
>>> glsl_code((2*tau)**Rational(7, 2))
'8*sqrt(2)*pow(tau, 3.5)'
>>> glsl_code(sin(x), assign_to="float y")
'float y = sin(x);'
Various GLSL types are supported:
>>> from sympy import Matrix, glsl_code
>>> glsl_code(Matrix([1,2,3]))
'vec3(1, 2, 3)'
>>> glsl_code(Matrix([[1, 2],[3, 4]]))
'mat2(1, 2, 3, 4)'
Pass ``mat_transpose = True`` to switch to column-major indexing:
>>> glsl_code(Matrix([[1, 2],[3, 4]]), mat_transpose = True)
'mat2(1, 3, 2, 4)'
By default, larger matrices get collapsed into float arrays:
>>> print(glsl_code( Matrix([[1,2,3,4,5],[6,7,8,9,10]]) ))
float[10](
1, 2, 3, 4, 5,
6, 7, 8, 9, 10
) /* a 2x5 matrix */
Passing ``mat_nested = True`` instead prints out nested float arrays, which are
supported in GLSL 4.3 and above.
>>> mat = Matrix([
... [ 0, 1, 2],
... [ 3, 4, 5],
... [ 6, 7, 8],
... [ 9, 10, 11],
... [12, 13, 14]])
>>> print(glsl_code( mat, mat_nested = True ))
float[5][3](
float[]( 0, 1, 2),
float[]( 3, 4, 5),
float[]( 6, 7, 8),
float[]( 9, 10, 11),
float[](12, 13, 14)
)
Custom printing can be defined for certain types by passing a dictionary of
"type" : "function" to the ``user_functions`` kwarg. Alternatively, the
dictionary value can be a list of tuples i.e. [(argument_test,
js_function_string)].
>>> custom_functions = {
... "ceiling": "CEIL",
... "Abs": [(lambda x: not x.is_integer, "fabs"),
... (lambda x: x.is_integer, "ABS")]
... }
>>> glsl_code(Abs(x) + ceiling(x), user_functions=custom_functions)
'fabs(x) + CEIL(x)'
If further control is needed, addition, subtraction, multiplication and
division operators can be replaced with ``add``, ``sub``, and ``mul``
functions. This is done by passing ``use_operators = False``:
>>> x,y,z = symbols('x,y,z')
>>> glsl_code(x*(y+z), use_operators = False)
'mul(x, add(y, z))'
>>> glsl_code(x*(y+z*(x-y)**z), use_operators = False)
'mul(x, add(y, mul(z, pow(sub(x, y), z))))'
``Piecewise`` expressions are converted into conditionals. If an
``assign_to`` variable is provided an if statement is created, otherwise
the ternary operator is used. Note that if the ``Piecewise`` lacks a
default term, represented by ``(expr, True)`` then an error will be thrown.
This is to prevent generating an expression that may not evaluate to
anything.
>>> from sympy import Piecewise
>>> expr = Piecewise((x + 1, x > 0), (x, True))
>>> print(glsl_code(expr, tau))
if (x > 0) {
tau = x + 1;
}
else {
tau = x;
}
Support for loops is provided through ``Indexed`` types. With
``contract=True`` these expressions will be turned into loops, whereas
``contract=False`` will just print the assignment expression that should be
looped over:
>>> from sympy import Eq, IndexedBase, Idx
>>> len_y = 5
>>> y = IndexedBase('y', shape=(len_y,))
>>> t = IndexedBase('t', shape=(len_y,))
>>> Dy = IndexedBase('Dy', shape=(len_y-1,))
>>> i = Idx('i', len_y-1)
>>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
>>> glsl_code(e.rhs, assign_to=e.lhs, contract=False)
'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);'
>>> from sympy import Matrix, MatrixSymbol
>>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)])
>>> A = MatrixSymbol('A', 3, 1)
>>> print(glsl_code(mat, A))
A[0][0] = pow(x, 2.0);
if (x > 0) {
A[1][0] = x + 1;
}
else {
A[1][0] = x;
}
A[2][0] = sin(x);
"""
return GLSLPrinter(settings).doprint(expr,assign_to)
def print_glsl(expr, **settings):
"""Prints the GLSL representation of the given expression.
See GLSLPrinter init function for settings.
"""
print(glsl_code(expr, **settings))
|
568f790bfbb825fa16e57046b81f62042879c0a17737c22e8391a46bcbfe9405
|
from __future__ import print_function, division
from sympy.core.compatibility import range, is_sequence
from sympy.external import import_module
from sympy.printing.printer import Printer
import sympy
from functools import partial
theano = import_module('theano')
if theano:
ts = theano.scalar
tt = theano.tensor
from theano.sandbox import linalg as tlinalg
mapping = {
sympy.Add: tt.add,
sympy.Mul: tt.mul,
sympy.Abs: tt.abs_,
sympy.sign: tt.sgn,
sympy.ceiling: tt.ceil,
sympy.floor: tt.floor,
sympy.log: tt.log,
sympy.exp: tt.exp,
sympy.sqrt: tt.sqrt,
sympy.cos: tt.cos,
sympy.acos: tt.arccos,
sympy.sin: tt.sin,
sympy.asin: tt.arcsin,
sympy.tan: tt.tan,
sympy.atan: tt.arctan,
sympy.atan2: tt.arctan2,
sympy.cosh: tt.cosh,
sympy.acosh: tt.arccosh,
sympy.sinh: tt.sinh,
sympy.asinh: tt.arcsinh,
sympy.tanh: tt.tanh,
sympy.atanh: tt.arctanh,
sympy.re: tt.real,
sympy.im: tt.imag,
sympy.arg: tt.angle,
sympy.erf: tt.erf,
sympy.gamma: tt.gamma,
sympy.loggamma: tt.gammaln,
sympy.Pow: tt.pow,
sympy.Eq: tt.eq,
sympy.StrictGreaterThan: tt.gt,
sympy.StrictLessThan: tt.lt,
sympy.LessThan: tt.le,
sympy.GreaterThan: tt.ge,
sympy.And: tt.and_,
sympy.Or: tt.or_,
sympy.Max: tt.maximum, # Sympy accept >2 inputs, Theano only 2
sympy.Min: tt.minimum, # Sympy accept >2 inputs, Theano only 2
# Matrices
sympy.MatAdd: tt.Elemwise(ts.add),
sympy.HadamardProduct: tt.Elemwise(ts.mul),
sympy.Trace: tlinalg.trace,
sympy.Determinant : tlinalg.det,
sympy.Inverse: tlinalg.matrix_inverse,
sympy.Transpose: tt.DimShuffle((False, False), [1, 0]),
}
class TheanoPrinter(Printer):
""" Code printer which creates Theano symbolic expression graphs.
Parameters
==========
cache : dict
Cache dictionary to use (see :attr:`cache`). If None (default) will use
the global cache. To create a printer which does not depend on or alter
global state pass an empty dictionary. Note: the dictionary is not
copied on initialization of the printer and will be updated in-place,
so using the same dict object when creating multiple printers or making
multiple calls to :func:`.theano_code` or :func:`.theano_function` means
the cache is shared between all these applications.
Attributes
==========
cache : dict
A cache of Theano variables which have been created for Sympy
symbol-like objects (e.g. :class:`sympy.core.symbol.Symbol` or
:class:`sympy.matrices.expressions.MatrixSymbol`). This is used to
ensure that all references to a given symbol in an expression (or
multiple expressions) are printed as the same Theano variable, which is
created only once. Symbols are differentiated only by name and type. The
format of the cache's contents should be considered opaque to the user.
"""
printmethod = "_theano"
def __init__(self, *args, **kwargs):
self.cache = kwargs.pop('cache', dict())
super(TheanoPrinter, self).__init__(*args, **kwargs)
def _get_key(self, s, name=None, dtype=None, broadcastable=None):
""" Get the cache key for a Sympy object.
Parameters
==========
s : sympy.core.basic.Basic
Sympy object to get key for.
name : str
Name of object, if it does not have a ``name`` attribute.
"""
if name is None:
name = s.name
return (name, type(s), s.args, dtype, broadcastable)
def _get_or_create(self, s, name=None, dtype=None, broadcastable=None):
"""
Get the Theano variable for a Sympy symbol from the cache, or create it
if it does not exist.
"""
# Defaults
if name is None:
name = s.name
if dtype is None:
dtype = 'floatX'
if broadcastable is None:
broadcastable = ()
key = self._get_key(s, name, dtype=dtype, broadcastable=broadcastable)
if key in self.cache:
return self.cache[key]
value = tt.tensor(name=name, dtype=dtype, broadcastable=broadcastable)
self.cache[key] = value
return value
def _print_Symbol(self, s, **kwargs):
dtype = kwargs.get('dtypes', {}).get(s)
bc = kwargs.get('broadcastables', {}).get(s)
return self._get_or_create(s, dtype=dtype, broadcastable=bc)
def _print_AppliedUndef(self, s, **kwargs):
name = str(type(s)) + '_' + str(s.args[0])
dtype = kwargs.get('dtypes', {}).get(s)
bc = kwargs.get('broadcastables', {}).get(s)
return self._get_or_create(s, name=name, dtype=dtype, broadcastable=bc)
def _print_Basic(self, expr, **kwargs):
op = mapping[type(expr)]
children = [self._print(arg, **kwargs) for arg in expr.args]
return op(*children)
def _print_Number(self, n, **kwargs):
# Integers already taken care of below, interpret as float
return float(n.evalf())
def _print_MatrixSymbol(self, X, **kwargs):
dtype = kwargs.get('dtypes', {}).get(X)
return self._get_or_create(X, dtype=dtype, broadcastable=(None, None))
def _print_DenseMatrix(self, X, **kwargs):
if not hasattr(tt, 'stacklists'):
raise NotImplementedError(
"Matrix translation not yet supported in this version of Theano")
return tt.stacklists([
[self._print(arg, **kwargs) for arg in L]
for L in X.tolist()
])
_print_ImmutableMatrix = _print_ImmutableDenseMatrix = _print_DenseMatrix
def _print_MatMul(self, expr, **kwargs):
children = [self._print(arg, **kwargs) for arg in expr.args]
result = children[0]
for child in children[1:]:
result = tt.dot(result, child)
return result
def _print_MatPow(self, expr, **kwargs):
children = [self._print(arg, **kwargs) for arg in expr.args]
result = 1
if isinstance(children[1], int) and children[1] > 0:
for i in range(children[1]):
result = tt.dot(result, children[0])
else:
raise NotImplementedError('''Only non-negative integer
powers of matrices can be handled by Theano at the moment''')
return result
def _print_MatrixSlice(self, expr, **kwargs):
parent = self._print(expr.parent, **kwargs)
rowslice = self._print(slice(*expr.rowslice), **kwargs)
colslice = self._print(slice(*expr.colslice), **kwargs)
return parent[rowslice, colslice]
def _print_BlockMatrix(self, expr, **kwargs):
nrows, ncols = expr.blocks.shape
blocks = [[self._print(expr.blocks[r, c], **kwargs)
for c in range(ncols)]
for r in range(nrows)]
return tt.join(0, *[tt.join(1, *row) for row in blocks])
def _print_slice(self, expr, **kwargs):
return slice(*[self._print(i, **kwargs)
if isinstance(i, sympy.Basic) else i
for i in (expr.start, expr.stop, expr.step)])
def _print_Pi(self, expr, **kwargs):
return 3.141592653589793
def _print_Piecewise(self, expr, **kwargs):
import numpy as np
e, cond = expr.args[0].args # First condition and corresponding value
# Print conditional expression and value for first condition
p_cond = self._print(cond, **kwargs)
p_e = self._print(e, **kwargs)
# One condition only
if len(expr.args) == 1:
# Return value if condition else NaN
return tt.switch(p_cond, p_e, np.nan)
# Return value_1 if condition_1 else evaluate remaining conditions
p_remaining = self._print(sympy.Piecewise(*expr.args[1:]), **kwargs)
return tt.switch(p_cond, p_e, p_remaining)
def _print_Rational(self, expr, **kwargs):
return tt.true_div(self._print(expr.p, **kwargs),
self._print(expr.q, **kwargs))
def _print_Integer(self, expr, **kwargs):
return expr.p
def _print_factorial(self, expr, **kwargs):
return self._print(sympy.gamma(expr.args[0] + 1), **kwargs)
def _print_Derivative(self, deriv, **kwargs):
rv = self._print(deriv.expr, **kwargs)
for var in deriv.variables:
var = self._print(var, **kwargs)
rv = tt.Rop(rv, var, tt.ones_like(var))
return rv
def emptyPrinter(self, expr):
return expr
def doprint(self, expr, dtypes=None, broadcastables=None):
""" Convert a Sympy expression to a Theano graph variable.
The ``dtypes`` and ``broadcastables`` arguments are used to specify the
data type, dimension, and broadcasting behavior of the Theano variables
corresponding to the free symbols in ``expr``. Each is a mapping from
Sympy symbols to the value of the corresponding argument to
:func:`theano.tensor.Tensor`.
See the corresponding `documentation page`__ for more information on
broadcasting in Theano.
.. __: http://deeplearning.net/software/theano/tutorial/broadcasting.html
Parameters
==========
expr : sympy.core.expr.Expr
Sympy expression to print.
dtypes : dict
Mapping from Sympy symbols to Theano datatypes to use when creating
new Theano variables for those symbols. Corresponds to the ``dtype``
argument to :func:`theano.tensor.Tensor`. Defaults to ``'floatX'``
for symbols not included in the mapping.
broadcastables : dict
Mapping from Sympy symbols to the value of the ``broadcastable``
argument to :func:`theano.tensor.Tensor` to use when creating Theano
variables for those symbols. Defaults to the empty tuple for symbols
not included in the mapping (resulting in a scalar).
Returns
=======
theano.gof.graph.Variable
A variable corresponding to the expression's value in a Theano
symbolic expression graph.
See Also
========
theano.tensor.Tensor
"""
if dtypes is None:
dtypes = {}
if broadcastables is None:
broadcastables = {}
return self._print(expr, dtypes=dtypes, broadcastables=broadcastables)
global_cache = {}
def theano_code(expr, cache=None, **kwargs):
""" Convert a Sympy expression into a Theano graph variable.
Parameters
==========
expr : sympy.core.expr.Expr
Sympy expression object to convert.
cache : dict
Cached Theano variables (see :attr:`.TheanoPrinter.cache`). Defaults to
the module-level global cache.
dtypes : dict
Passed to :meth:`.TheanoPrinter.doprint`.
broadcastables : dict
Passed to :meth:`.TheanoPrinter.doprint`.
Returns
=======
theano.gof.graph.Variable
A variable corresponding to the expression's value in a Theano symbolic
expression graph.
"""
if not theano:
raise ImportError("theano is required for theano_code")
if cache is None:
cache = global_cache
return TheanoPrinter(cache=cache, settings={}).doprint(expr, **kwargs)
def dim_handling(inputs, dim=None, dims=None, broadcastables=None):
"""
Get value of ``broadcastables`` argument to :func:`.theano_code` from
keyword arguments to :func:`.theano_function`.
Included for backwards compatibility.
Parameters
==========
inputs
Sequence of input symbols.
dim : int
Common number of dimensions for all inputs. Overrides other arguments
if given.
dims : dict
Mapping from input symbols to number of dimensions. Overrides
``broadcastables`` argument if given.
broadcastables : dict
Explicit value of ``broadcastables`` argument to
:meth:`.TheanoPrinter.doprint`. If not None function will return this value unchanged.
Returns
=======
dict
Dictionary mapping elements of ``inputs`` to their "broadcastable"
values (tuple of ``bool``s).
"""
if dim is not None:
return {s: (False,) * dim for s in inputs}
if dims is not None:
maxdim = max(dims.values())
return {
s: (False,) * d + (True,) * (maxdim - d)
for s, d in dims.items()
}
if broadcastables is not None:
return broadcastables
return {}
def theano_function(inputs, outputs, scalar=False, **kwargs):
""" Create a Theano function from SymPy expressions.
The inputs and outputs are converted to Theano variables using
:func:`.theano_code` and then passed to :func:`theano.function`.
Parameters
==========
inputs
Sequence of symbols which constitute the inputs of the function.
outputs
Sequence of expressions which constitute the outputs(s) of the
function. The free symbols of each expression must be a subset of
``inputs``.
scalar : bool
Convert 0-dimensional arrays in output to scalars. This will return a
Python wrapper function around the Theano function object.
cache : dict
Cached Theano variables (see :attr:`.TheanoPrinter.cache`). Defaults to
the module-level global cache.
dtypes : dict
Passed to :meth:`.TheanoPrinter.doprint`.
broadcastables : dict
Passed to :meth:`.TheanoPrinter.doprint`.
dims : dict
Alternative to ``broadcastables`` argument. Mapping from elements of
``inputs`` to integers indicating the dimension of their associated
arrays/tensors. Overrides ``broadcastables`` argument if given.
dim : int
Another alternative to the ``broadcastables`` argument. Common number of
dimensions to use for all arrays/tensors.
``theano_function([x, y], [...], dim=2)`` is equivalent to using
``broadcastables={x: (False, False), y: (False, False)}``.
Returns
=======
callable
A callable object which takes values of ``inputs`` as positional
arguments and returns an output array for each of the expressions
in ``outputs``. If ``outputs`` is a single expression the function will
return a Numpy array, if it is a list of multiple expressions the
function will return a list of arrays. See description of the ``squeeze``
argument above for the behavior when a single output is passed in a list.
The returned object will either be an instance of
:class:`theano.compile.function_module.Function` or a Python wrapper
function around one. In both cases, the returned value will have a
``theano_function`` attribute which points to the return value of
:func:`theano.function`.
Examples
========
>>> from sympy.abc import x, y, z
>>> from sympy.printing.theanocode import theano_function
A simple function with one input and one output:
>>> f1 = theano_function([x], [x**2 - 1], scalar=True)
>>> f1(3)
8.0
A function with multiple inputs and one output:
>>> f2 = theano_function([x, y, z], [(x**z + y**z)**(1/z)], scalar=True)
>>> f2(3, 4, 2)
5.0
A function with multiple inputs and multiple outputs:
>>> f3 = theano_function([x, y], [x**2 + y**2, x**2 - y**2], scalar=True)
>>> f3(2, 3)
[13.0, -5.0]
See also
========
theano.function
dim_handling
"""
if not theano:
raise ImportError("theano is required for theano_function")
# Pop off non-theano keyword args
cache = kwargs.pop('cache', {})
dtypes = kwargs.pop('dtypes', {})
broadcastables = dim_handling(
inputs,
dim=kwargs.pop('dim', None),
dims=kwargs.pop('dims', None),
broadcastables=kwargs.pop('broadcastables', None),
)
# Print inputs/outputs
code = partial(theano_code, cache=cache, dtypes=dtypes,
broadcastables=broadcastables)
tinputs = list(map(code, inputs))
toutputs = list(map(code, outputs))
if len(toutputs) == 1:
toutputs = toutputs[0]
# Compile theano func
func = theano.function(tinputs, toutputs, **kwargs)
is_0d = [len(o.variable.broadcastable) == 0 for o in func.outputs]
# No wrapper required
if not scalar or not any(is_0d):
func.theano_function = func
return func
# Create wrapper to convert 0-dimensional outputs to scalars
def wrapper(*args):
out = func(*args)
# out can be array(1.0) or [array(1.0), array(2.0)]
if is_sequence(out):
return [o[()] if is_0d[i] else o for i, o in enumerate(out)]
else:
return out[()]
wrapper.__wrapped__ = func
wrapper.__doc__ = func.__doc__
wrapper.theano_function = func
return wrapper
|
5461f77ff71cfd2a98504cb40c3e3a403d620a376ef6f35ef7c52e61516bfc1a
|
""" Integral Transforms """
from __future__ import print_function, division
from sympy.core import S
from sympy.core.compatibility import reduce, range, iterable
from sympy.core.function import Function
from sympy.core.relational import _canonical, Ge, Gt
from sympy.core.numbers import oo
from sympy.core.symbol import Dummy
from sympy.integrals import integrate, Integral
from sympy.integrals.meijerint import _dummy
from sympy.logic.boolalg import to_cnf, conjuncts, disjuncts, Or, And
from sympy.simplify import simplify
from sympy.utilities import default_sort_key
from sympy.matrices.matrices import MatrixBase
##########################################################################
# Helpers / Utilities
##########################################################################
class IntegralTransformError(NotImplementedError):
"""
Exception raised in relation to problems computing transforms.
This class is mostly used internally; if integrals cannot be computed
objects representing unevaluated transforms are usually returned.
The hint ``needeval=True`` can be used to disable returning transform
objects, and instead raise this exception if an integral cannot be
computed.
"""
def __init__(self, transform, function, msg):
super(IntegralTransformError, self).__init__(
"%s Transform could not be computed: %s." % (transform, msg))
self.function = function
class IntegralTransform(Function):
"""
Base class for integral transforms.
This class represents unevaluated transforms.
To implement a concrete transform, derive from this class and implement
the _compute_transform(f, x, s, **hints) and _as_integral(f, x, s)
functions. If the transform cannot be computed, raise IntegralTransformError.
Also set cls._name.
Implement self._collapse_extra if your function returns more than just a
number and possibly a convergence condition.
"""
@property
def function(self):
""" The function to be transformed. """
return self.args[0]
@property
def function_variable(self):
""" The dependent variable of the function to be transformed. """
return self.args[1]
@property
def transform_variable(self):
""" The independent transform variable. """
return self.args[2]
@property
def free_symbols(self):
"""
This method returns the symbols that will exist when the transform
is evaluated.
"""
return self.function.free_symbols.union({self.transform_variable}) \
- {self.function_variable}
def _compute_transform(self, f, x, s, **hints):
raise NotImplementedError
def _as_integral(self, f, x, s):
raise NotImplementedError
def _collapse_extra(self, extra):
cond = And(*extra)
if cond == False:
raise IntegralTransformError(self.__class__.name, None, '')
return cond
def doit(self, **hints):
"""
Try to evaluate the transform in closed form.
This general function handles linearity, but apart from that leaves
pretty much everything to _compute_transform.
Standard hints are the following:
- ``simplify``: whether or not to simplify the result
- ``noconds``: if True, don't return convergence conditions
- ``needeval``: if True, raise IntegralTransformError instead of
returning IntegralTransform objects
The default values of these hints depend on the concrete transform,
usually the default is
``(simplify, noconds, needeval) = (True, False, False)``.
"""
from sympy import Add, expand_mul, Mul
from sympy.core.function import AppliedUndef
needeval = hints.pop('needeval', False)
try_directly = not any(func.has(self.function_variable)
for func in self.function.atoms(AppliedUndef))
if try_directly:
try:
return self._compute_transform(self.function,
self.function_variable, self.transform_variable, **hints)
except IntegralTransformError:
pass
fn = self.function
if not fn.is_Add:
fn = expand_mul(fn)
if fn.is_Add:
hints['needeval'] = needeval
res = [self.__class__(*([x] + list(self.args[1:]))).doit(**hints)
for x in fn.args]
extra = []
ress = []
for x in res:
if not isinstance(x, tuple):
x = [x]
ress.append(x[0])
if len(x) == 2:
# only a condition
extra.append(x[1])
elif len(x) > 2:
# some region parameters and a condition (Mellin, Laplace)
extra += [x[1:]]
res = Add(*ress)
if not extra:
return res
try:
extra = self._collapse_extra(extra)
if iterable(extra):
return tuple([res]) + tuple(extra)
else:
return (res, extra)
except IntegralTransformError:
pass
if needeval:
raise IntegralTransformError(
self.__class__._name, self.function, 'needeval')
# TODO handle derivatives etc
# pull out constant coefficients
coeff, rest = fn.as_coeff_mul(self.function_variable)
return coeff*self.__class__(*([Mul(*rest)] + list(self.args[1:])))
@property
def as_integral(self):
return self._as_integral(self.function, self.function_variable,
self.transform_variable)
def _eval_rewrite_as_Integral(self, *args, **kwargs):
return self.as_integral
from sympy.solvers.inequalities import _solve_inequality
def _simplify(expr, doit):
from sympy import powdenest, piecewise_fold
if doit:
return simplify(powdenest(piecewise_fold(expr), polar=True))
return expr
def _noconds_(default):
"""
This is a decorator generator for dropping convergence conditions.
Suppose you define a function ``transform(*args)`` which returns a tuple of
the form ``(result, cond1, cond2, ...)``.
Decorating it ``@_noconds_(default)`` will add a new keyword argument
``noconds`` to it. If ``noconds=True``, the return value will be altered to
be only ``result``, whereas if ``noconds=False`` the return value will not
be altered.
The default value of the ``noconds`` keyword will be ``default`` (i.e. the
argument of this function).
"""
def make_wrapper(func):
from sympy.core.decorators import wraps
@wraps(func)
def wrapper(*args, **kwargs):
noconds = kwargs.pop('noconds', default)
res = func(*args, **kwargs)
if noconds:
return res[0]
return res
return wrapper
return make_wrapper
_noconds = _noconds_(False)
##########################################################################
# Mellin Transform
##########################################################################
def _default_integrator(f, x):
return integrate(f, (x, 0, oo))
@_noconds
def _mellin_transform(f, x, s_, integrator=_default_integrator, simplify=True):
""" Backend function to compute Mellin transforms. """
from sympy import re, Max, Min, count_ops
# We use a fresh dummy, because assumptions on s might drop conditions on
# convergence of the integral.
s = _dummy('s', 'mellin-transform', f)
F = integrator(x**(s - 1) * f, x)
if not F.has(Integral):
return _simplify(F.subs(s, s_), simplify), (-oo, oo), S.true
if not F.is_Piecewise: # XXX can this work if integration gives continuous result now?
raise IntegralTransformError('Mellin', f, 'could not compute integral')
F, cond = F.args[0]
if F.has(Integral):
raise IntegralTransformError(
'Mellin', f, 'integral in unexpected form')
def process_conds(cond):
"""
Turn ``cond`` into a strip (a, b), and auxiliary conditions.
"""
a = -oo
b = oo
aux = S.true
conds = conjuncts(to_cnf(cond))
t = Dummy('t', real=True)
for c in conds:
a_ = oo
b_ = -oo
aux_ = []
for d in disjuncts(c):
d_ = d.replace(
re, lambda x: x.as_real_imag()[0]).subs(re(s), t)
if not d.is_Relational or \
d.rel_op in ('==', '!=') \
or d_.has(s) or not d_.has(t):
aux_ += [d]
continue
soln = _solve_inequality(d_, t)
if not soln.is_Relational or \
soln.rel_op in ('==', '!='):
aux_ += [d]
continue
if soln.lts == t:
b_ = Max(soln.gts, b_)
else:
a_ = Min(soln.lts, a_)
if a_ != oo and a_ != b:
a = Max(a_, a)
elif b_ != -oo and b_ != a:
b = Min(b_, b)
else:
aux = And(aux, Or(*aux_))
return a, b, aux
conds = [process_conds(c) for c in disjuncts(cond)]
conds = [x for x in conds if x[2] != False]
conds.sort(key=lambda x: (x[0] - x[1], count_ops(x[2])))
if not conds:
raise IntegralTransformError('Mellin', f, 'no convergence found')
a, b, aux = conds[0]
return _simplify(F.subs(s, s_), simplify), (a, b), aux
class MellinTransform(IntegralTransform):
"""
Class representing unevaluated Mellin transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute Mellin transforms, see the :func:`mellin_transform`
docstring.
"""
_name = 'Mellin'
def _compute_transform(self, f, x, s, **hints):
return _mellin_transform(f, x, s, **hints)
def _as_integral(self, f, x, s):
return Integral(f*x**(s - 1), (x, 0, oo))
def _collapse_extra(self, extra):
from sympy import Max, Min
a = []
b = []
cond = []
for (sa, sb), c in extra:
a += [sa]
b += [sb]
cond += [c]
res = (Max(*a), Min(*b)), And(*cond)
if (res[0][0] >= res[0][1]) == True or res[1] == False:
raise IntegralTransformError(
'Mellin', None, 'no combined convergence.')
return res
def mellin_transform(f, x, s, **hints):
r"""
Compute the Mellin transform `F(s)` of `f(x)`,
.. math :: F(s) = \int_0^\infty x^{s-1} f(x) \mathrm{d}x.
For all "sensible" functions, this converges absolutely in a strip
`a < \operatorname{Re}(s) < b`.
The Mellin transform is related via change of variables to the Fourier
transform, and also to the (bilateral) Laplace transform.
This function returns ``(F, (a, b), cond)``
where ``F`` is the Mellin transform of ``f``, ``(a, b)`` is the fundamental strip
(as above), and ``cond`` are auxiliary convergence conditions.
If the integral cannot be computed in closed form, this function returns
an unevaluated :class:`MellinTransform` object.
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`. If ``noconds=False``,
then only `F` will be returned (i.e. not ``cond``, and also not the strip
``(a, b)``).
>>> from sympy.integrals.transforms import mellin_transform
>>> from sympy import exp
>>> from sympy.abc import x, s
>>> mellin_transform(exp(-x), x, s)
(gamma(s), (0, oo), True)
See Also
========
inverse_mellin_transform, laplace_transform, fourier_transform
hankel_transform, inverse_hankel_transform
"""
return MellinTransform(f, x, s).doit(**hints)
def _rewrite_sin(m_n, s, a, b):
"""
Re-write the sine function ``sin(m*s + n)`` as gamma functions, compatible
with the strip (a, b).
Return ``(gamma1, gamma2, fac)`` so that ``f == fac/(gamma1 * gamma2)``.
>>> from sympy.integrals.transforms import _rewrite_sin
>>> from sympy import pi, S
>>> from sympy.abc import s
>>> _rewrite_sin((pi, 0), s, 0, 1)
(gamma(s), gamma(1 - s), pi)
>>> _rewrite_sin((pi, 0), s, 1, 0)
(gamma(s - 1), gamma(2 - s), -pi)
>>> _rewrite_sin((pi, 0), s, -1, 0)
(gamma(s + 1), gamma(-s), -pi)
>>> _rewrite_sin((pi, pi/2), s, S(1)/2, S(3)/2)
(gamma(s - 1/2), gamma(3/2 - s), -pi)
>>> _rewrite_sin((pi, pi), s, 0, 1)
(gamma(s), gamma(1 - s), -pi)
>>> _rewrite_sin((2*pi, 0), s, 0, S(1)/2)
(gamma(2*s), gamma(1 - 2*s), pi)
>>> _rewrite_sin((2*pi, 0), s, S(1)/2, 1)
(gamma(2*s - 1), gamma(2 - 2*s), -pi)
"""
# (This is a separate function because it is moderately complicated,
# and I want to doctest it.)
# We want to use pi/sin(pi*x) = gamma(x)*gamma(1-x).
# But there is one comlication: the gamma functions determine the
# inegration contour in the definition of the G-function. Usually
# it would not matter if this is slightly shifted, unless this way
# we create an undefined function!
# So we try to write this in such a way that the gammas are
# eminently on the right side of the strip.
from sympy import expand_mul, pi, ceiling, gamma
m, n = m_n
m = expand_mul(m/pi)
n = expand_mul(n/pi)
r = ceiling(-m*a - n.as_real_imag()[0]) # Don't use re(n), does not expand
return gamma(m*s + n + r), gamma(1 - n - r - m*s), (-1)**r*pi
class MellinTransformStripError(ValueError):
"""
Exception raised by _rewrite_gamma. Mainly for internal use.
"""
pass
def _rewrite_gamma(f, s, a, b):
"""
Try to rewrite the product f(s) as a product of gamma functions,
so that the inverse Mellin transform of f can be expressed as a meijer
G function.
Return (an, ap), (bm, bq), arg, exp, fac such that
G((an, ap), (bm, bq), arg/z**exp)*fac is the inverse Mellin transform of f(s).
Raises IntegralTransformError or MellinTransformStripError on failure.
It is asserted that f has no poles in the fundamental strip designated by
(a, b). One of a and b is allowed to be None. The fundamental strip is
important, because it determines the inversion contour.
This function can handle exponentials, linear factors, trigonometric
functions.
This is a helper function for inverse_mellin_transform that will not
attempt any transformations on f.
>>> from sympy.integrals.transforms import _rewrite_gamma
>>> from sympy.abc import s
>>> from sympy import oo
>>> _rewrite_gamma(s*(s+3)*(s-1), s, -oo, oo)
(([], [-3, 0, 1]), ([-2, 1, 2], []), 1, 1, -1)
>>> _rewrite_gamma((s-1)**2, s, -oo, oo)
(([], [1, 1]), ([2, 2], []), 1, 1, 1)
Importance of the fundamental strip:
>>> _rewrite_gamma(1/s, s, 0, oo)
(([1], []), ([], [0]), 1, 1, 1)
>>> _rewrite_gamma(1/s, s, None, oo)
(([1], []), ([], [0]), 1, 1, 1)
>>> _rewrite_gamma(1/s, s, 0, None)
(([1], []), ([], [0]), 1, 1, 1)
>>> _rewrite_gamma(1/s, s, -oo, 0)
(([], [1]), ([0], []), 1, 1, -1)
>>> _rewrite_gamma(1/s, s, None, 0)
(([], [1]), ([0], []), 1, 1, -1)
>>> _rewrite_gamma(1/s, s, -oo, None)
(([], [1]), ([0], []), 1, 1, -1)
>>> _rewrite_gamma(2**(-s+3), s, -oo, oo)
(([], []), ([], []), 1/2, 1, 8)
"""
from itertools import repeat
from sympy import (Poly, gamma, Mul, re, CRootOf, exp as exp_, expand,
roots, ilcm, pi, sin, cos, tan, cot, igcd, exp_polar)
# Our strategy will be as follows:
# 1) Guess a constant c such that the inversion integral should be
# performed wrt s'=c*s (instead of plain s). Write s for s'.
# 2) Process all factors, rewrite them independently as gamma functions in
# argument s, or exponentials of s.
# 3) Try to transform all gamma functions s.t. they have argument
# a+s or a-s.
# 4) Check that the resulting G function parameters are valid.
# 5) Combine all the exponentials.
a_, b_ = S([a, b])
def left(c, is_numer):
"""
Decide whether pole at c lies to the left of the fundamental strip.
"""
# heuristically, this is the best chance for us to solve the inequalities
c = expand(re(c))
if a_ is None and b_ is oo:
return True
if a_ is None:
return c < b_
if b_ is None:
return c <= a_
if (c >= b_) == True:
return False
if (c <= a_) == True:
return True
if is_numer:
return None
if a_.free_symbols or b_.free_symbols or c.free_symbols:
return None # XXX
#raise IntegralTransformError('Inverse Mellin', f,
# 'Could not determine position of singularity %s'
# ' relative to fundamental strip' % c)
raise MellinTransformStripError('Pole inside critical strip?')
# 1)
s_multipliers = []
for g in f.atoms(gamma):
if not g.has(s):
continue
arg = g.args[0]
if arg.is_Add:
arg = arg.as_independent(s)[1]
coeff, _ = arg.as_coeff_mul(s)
s_multipliers += [coeff]
for g in f.atoms(sin, cos, tan, cot):
if not g.has(s):
continue
arg = g.args[0]
if arg.is_Add:
arg = arg.as_independent(s)[1]
coeff, _ = arg.as_coeff_mul(s)
s_multipliers += [coeff/pi]
s_multipliers = [abs(x) if x.is_real else x for x in s_multipliers]
common_coefficient = S(1)
for x in s_multipliers:
if not x.is_Rational:
common_coefficient = x
break
s_multipliers = [x/common_coefficient for x in s_multipliers]
if (any(not x.is_Rational for x in s_multipliers) or
not common_coefficient.is_real):
raise IntegralTransformError("Gamma", None, "Nonrational multiplier")
s_multiplier = common_coefficient/reduce(ilcm, [S(x.q)
for x in s_multipliers], S(1))
if s_multiplier == common_coefficient:
if len(s_multipliers) == 0:
s_multiplier = common_coefficient
else:
s_multiplier = common_coefficient \
*reduce(igcd, [S(x.p) for x in s_multipliers])
f = f.subs(s, s/s_multiplier)
fac = S(1)/s_multiplier
exponent = S(1)/s_multiplier
if a_ is not None:
a_ *= s_multiplier
if b_ is not None:
b_ *= s_multiplier
# 2)
numer, denom = f.as_numer_denom()
numer = Mul.make_args(numer)
denom = Mul.make_args(denom)
args = list(zip(numer, repeat(True))) + list(zip(denom, repeat(False)))
facs = []
dfacs = []
# *_gammas will contain pairs (a, c) representing Gamma(a*s + c)
numer_gammas = []
denom_gammas = []
# exponentials will contain bases for exponentials of s
exponentials = []
def exception(fact):
return IntegralTransformError("Inverse Mellin", f, "Unrecognised form '%s'." % fact)
while args:
fact, is_numer = args.pop()
if is_numer:
ugammas, lgammas = numer_gammas, denom_gammas
ufacs, lfacs = facs, dfacs
else:
ugammas, lgammas = denom_gammas, numer_gammas
ufacs, lfacs = dfacs, facs
def linear_arg(arg):
""" Test if arg is of form a*s+b, raise exception if not. """
if not arg.is_polynomial(s):
raise exception(fact)
p = Poly(arg, s)
if p.degree() != 1:
raise exception(fact)
return p.all_coeffs()
# constants
if not fact.has(s):
ufacs += [fact]
# exponentials
elif fact.is_Pow or isinstance(fact, exp_):
if fact.is_Pow:
base = fact.base
exp = fact.exp
else:
base = exp_polar(1)
exp = fact.args[0]
if exp.is_Integer:
cond = is_numer
if exp < 0:
cond = not cond
args += [(base, cond)]*abs(exp)
continue
elif not base.has(s):
a, b = linear_arg(exp)
if not is_numer:
base = 1/base
exponentials += [base**a]
facs += [base**b]
else:
raise exception(fact)
# linear factors
elif fact.is_polynomial(s):
p = Poly(fact, s)
if p.degree() != 1:
# We completely factor the poly. For this we need the roots.
# Now roots() only works in some cases (low degree), and CRootOf
# only works without parameters. So try both...
coeff = p.LT()[1]
rs = roots(p, s)
if len(rs) != p.degree():
rs = CRootOf.all_roots(p)
ufacs += [coeff]
args += [(s - c, is_numer) for c in rs]
continue
a, c = p.all_coeffs()
ufacs += [a]
c /= -a
# Now need to convert s - c
if left(c, is_numer):
ugammas += [(S(1), -c + 1)]
lgammas += [(S(1), -c)]
else:
ufacs += [-1]
ugammas += [(S(-1), c + 1)]
lgammas += [(S(-1), c)]
elif isinstance(fact, gamma):
a, b = linear_arg(fact.args[0])
if is_numer:
if (a > 0 and (left(-b/a, is_numer) == False)) or \
(a < 0 and (left(-b/a, is_numer) == True)):
raise NotImplementedError(
'Gammas partially over the strip.')
ugammas += [(a, b)]
elif isinstance(fact, sin):
# We try to re-write all trigs as gammas. This is not in
# general the best strategy, since sometimes this is impossible,
# but rewriting as exponentials would work. However trig functions
# in inverse mellin transforms usually all come from simplifying
# gamma terms, so this should work.
a = fact.args[0]
if is_numer:
# No problem with the poles.
gamma1, gamma2, fac_ = gamma(a/pi), gamma(1 - a/pi), pi
else:
gamma1, gamma2, fac_ = _rewrite_sin(linear_arg(a), s, a_, b_)
args += [(gamma1, not is_numer), (gamma2, not is_numer)]
ufacs += [fac_]
elif isinstance(fact, tan):
a = fact.args[0]
args += [(sin(a, evaluate=False), is_numer),
(sin(pi/2 - a, evaluate=False), not is_numer)]
elif isinstance(fact, cos):
a = fact.args[0]
args += [(sin(pi/2 - a, evaluate=False), is_numer)]
elif isinstance(fact, cot):
a = fact.args[0]
args += [(sin(pi/2 - a, evaluate=False), is_numer),
(sin(a, evaluate=False), not is_numer)]
else:
raise exception(fact)
fac *= Mul(*facs)/Mul(*dfacs)
# 3)
an, ap, bm, bq = [], [], [], []
for gammas, plus, minus, is_numer in [(numer_gammas, an, bm, True),
(denom_gammas, bq, ap, False)]:
while gammas:
a, c = gammas.pop()
if a != -1 and a != +1:
# We use the gamma function multiplication theorem.
p = abs(S(a))
newa = a/p
newc = c/p
if not a.is_Integer:
raise TypeError("a is not an integer")
for k in range(p):
gammas += [(newa, newc + k/p)]
if is_numer:
fac *= (2*pi)**((1 - p)/2) * p**(c - S(1)/2)
exponentials += [p**a]
else:
fac /= (2*pi)**((1 - p)/2) * p**(c - S(1)/2)
exponentials += [p**(-a)]
continue
if a == +1:
plus.append(1 - c)
else:
minus.append(c)
# 4)
# TODO
# 5)
arg = Mul(*exponentials)
# for testability, sort the arguments
an.sort(key=default_sort_key)
ap.sort(key=default_sort_key)
bm.sort(key=default_sort_key)
bq.sort(key=default_sort_key)
return (an, ap), (bm, bq), arg, exponent, fac
@_noconds_(True)
def _inverse_mellin_transform(F, s, x_, strip, as_meijerg=False):
""" A helper for the real inverse_mellin_transform function, this one here
assumes x to be real and positive. """
from sympy import (expand, expand_mul, hyperexpand, meijerg,
arg, pi, re, factor, Heaviside, gamma, Add)
x = _dummy('t', 'inverse-mellin-transform', F, positive=True)
# Actually, we won't try integration at all. Instead we use the definition
# of the Meijer G function as a fairly general inverse mellin transform.
F = F.rewrite(gamma)
for g in [factor(F), expand_mul(F), expand(F)]:
if g.is_Add:
# do all terms separately
ress = [_inverse_mellin_transform(G, s, x, strip, as_meijerg,
noconds=False)
for G in g.args]
conds = [p[1] for p in ress]
ress = [p[0] for p in ress]
res = Add(*ress)
if not as_meijerg:
res = factor(res, gens=res.atoms(Heaviside))
return res.subs(x, x_), And(*conds)
try:
a, b, C, e, fac = _rewrite_gamma(g, s, strip[0], strip[1])
except IntegralTransformError:
continue
G = meijerg(a, b, C/x**e)
if as_meijerg:
h = G
else:
try:
h = hyperexpand(G)
except NotImplementedError as detail:
raise IntegralTransformError(
'Inverse Mellin', F, 'Could not calculate integral')
if h.is_Piecewise and len(h.args) == 3:
# XXX we break modularity here!
h = Heaviside(x - abs(C))*h.args[0].args[0] \
+ Heaviside(abs(C) - x)*h.args[1].args[0]
# We must ensure that the integral along the line we want converges,
# and return that value.
# See [L], 5.2
cond = [abs(arg(G.argument)) < G.delta*pi]
# Note: we allow ">=" here, this corresponds to convergence if we let
# limits go to oo symmetrically. ">" corresponds to absolute convergence.
cond += [And(Or(len(G.ap) != len(G.bq), 0 >= re(G.nu) + 1),
abs(arg(G.argument)) == G.delta*pi)]
cond = Or(*cond)
if cond == False:
raise IntegralTransformError(
'Inverse Mellin', F, 'does not converge')
return (h*fac).subs(x, x_), cond
raise IntegralTransformError('Inverse Mellin', F, '')
_allowed = None
class InverseMellinTransform(IntegralTransform):
"""
Class representing unevaluated inverse Mellin transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute inverse Mellin transforms, see the
:func:`inverse_mellin_transform` docstring.
"""
_name = 'Inverse Mellin'
_none_sentinel = Dummy('None')
_c = Dummy('c')
def __new__(cls, F, s, x, a, b, **opts):
if a is None:
a = InverseMellinTransform._none_sentinel
if b is None:
b = InverseMellinTransform._none_sentinel
return IntegralTransform.__new__(cls, F, s, x, a, b, **opts)
@property
def fundamental_strip(self):
a, b = self.args[3], self.args[4]
if a is InverseMellinTransform._none_sentinel:
a = None
if b is InverseMellinTransform._none_sentinel:
b = None
return a, b
def _compute_transform(self, F, s, x, **hints):
from sympy import postorder_traversal
global _allowed
if _allowed is None:
from sympy import (
exp, gamma, sin, cos, tan, cot, cosh, sinh, tanh,
coth, factorial, rf)
_allowed = set(
[exp, gamma, sin, cos, tan, cot, cosh, sinh, tanh, coth,
factorial, rf])
for f in postorder_traversal(F):
if f.is_Function and f.has(s) and f.func not in _allowed:
raise IntegralTransformError('Inverse Mellin', F,
'Component %s not recognised.' % f)
strip = self.fundamental_strip
return _inverse_mellin_transform(F, s, x, strip, **hints)
def _as_integral(self, F, s, x):
from sympy import I
c = self.__class__._c
return Integral(F*x**(-s), (s, c - I*oo, c + I*oo))/(2*S.Pi*S.ImaginaryUnit)
def inverse_mellin_transform(F, s, x, strip, **hints):
r"""
Compute the inverse Mellin transform of `F(s)` over the fundamental
strip given by ``strip=(a, b)``.
This can be defined as
.. math:: f(x) = \frac{1}{2\pi i} \int_{c - i\infty}^{c + i\infty} x^{-s} F(s) \mathrm{d}s,
for any `c` in the fundamental strip. Under certain regularity
conditions on `F` and/or `f`,
this recovers `f` from its Mellin transform `F`
(and vice versa), for positive real `x`.
One of `a` or `b` may be passed as ``None``; a suitable `c` will be
inferred.
If the integral cannot be computed in closed form, this function returns
an unevaluated :class:`InverseMellinTransform` object.
Note that this function will assume x to be positive and real, regardless
of the sympy assumptions!
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`.
>>> from sympy.integrals.transforms import inverse_mellin_transform
>>> from sympy import oo, gamma
>>> from sympy.abc import x, s
>>> inverse_mellin_transform(gamma(s), s, x, (0, oo))
exp(-x)
The fundamental strip matters:
>>> f = 1/(s**2 - 1)
>>> inverse_mellin_transform(f, s, x, (-oo, -1))
(x/2 - 1/(2*x))*Heaviside(x - 1)
>>> inverse_mellin_transform(f, s, x, (-1, 1))
-x*Heaviside(1 - x)/2 - Heaviside(x - 1)/(2*x)
>>> inverse_mellin_transform(f, s, x, (1, oo))
(-x/2 + 1/(2*x))*Heaviside(1 - x)
See Also
========
mellin_transform
hankel_transform, inverse_hankel_transform
"""
return InverseMellinTransform(F, s, x, strip[0], strip[1]).doit(**hints)
##########################################################################
# Laplace Transform
##########################################################################
def _simplifyconds(expr, s, a):
r"""
Naively simplify some conditions occurring in ``expr``, given that `\operatorname{Re}(s) > a`.
>>> from sympy.integrals.transforms import _simplifyconds as simp
>>> from sympy.abc import x
>>> from sympy import sympify as S
>>> simp(abs(x**2) < 1, x, 1)
False
>>> simp(abs(x**2) < 1, x, 2)
False
>>> simp(abs(x**2) < 1, x, 0)
Abs(x**2) < 1
>>> simp(abs(1/x**2) < 1, x, 1)
True
>>> simp(S(1) < abs(x), x, 1)
True
>>> simp(S(1) < abs(1/x), x, 1)
False
>>> from sympy import Ne
>>> simp(Ne(1, x**3), x, 1)
True
>>> simp(Ne(1, x**3), x, 2)
True
>>> simp(Ne(1, x**3), x, 0)
Ne(1, x**3)
"""
from sympy.core.relational import ( StrictGreaterThan, StrictLessThan,
Unequality )
from sympy import Abs
def power(ex):
if ex == s:
return 1
if ex.is_Pow and ex.base == s:
return ex.exp
return None
def bigger(ex1, ex2):
""" Return True only if |ex1| > |ex2|, False only if |ex1| < |ex2|.
Else return None. """
if ex1.has(s) and ex2.has(s):
return None
if isinstance(ex1, Abs):
ex1 = ex1.args[0]
if isinstance(ex2, Abs):
ex2 = ex2.args[0]
if ex1.has(s):
return bigger(1/ex2, 1/ex1)
n = power(ex2)
if n is None:
return None
try:
if n > 0 and (abs(ex1) <= abs(a)**n) == True:
return False
if n < 0 and (abs(ex1) >= abs(a)**n) == True:
return True
except TypeError:
pass
def replie(x, y):
""" simplify x < y """
if not (x.is_positive or isinstance(x, Abs)) \
or not (y.is_positive or isinstance(y, Abs)):
return (x < y)
r = bigger(x, y)
if r is not None:
return not r
return (x < y)
def replue(x, y):
b = bigger(x, y)
if b == True or b == False:
return True
return Unequality(x, y)
def repl(ex, *args):
if ex == True or ex == False:
return bool(ex)
return ex.replace(*args)
expr = repl(expr, StrictLessThan, replie)
expr = repl(expr, StrictGreaterThan, lambda x, y: replie(y, x))
expr = repl(expr, Unequality, replue)
return S(expr)
@_noconds
def _laplace_transform(f, t, s_, simplify=True):
""" The backend function for Laplace transforms. """
from sympy import (re, Max, exp, pi, Min, periodic_argument as arg_,
arg, cos, Wild, symbols, polar_lift)
s = Dummy('s')
F = integrate(exp(-s*t) * f, (t, 0, oo))
if not F.has(Integral):
return _simplify(F.subs(s, s_), simplify), -oo, S.true
if not F.is_Piecewise:
raise IntegralTransformError(
'Laplace', f, 'could not compute integral')
F, cond = F.args[0]
if F.has(Integral):
raise IntegralTransformError(
'Laplace', f, 'integral in unexpected form')
def process_conds(conds):
""" Turn ``conds`` into a strip and auxiliary conditions. """
a = -oo
aux = S.true
conds = conjuncts(to_cnf(conds))
p, q, w1, w2, w3, w4, w5 = symbols(
'p q w1 w2 w3 w4 w5', cls=Wild, exclude=[s])
patterns = (
p*abs(arg((s + w3)*q)) < w2,
p*abs(arg((s + w3)*q)) <= w2,
abs(arg_((s + w3)**p*q, w1)) < w2,
abs(arg_((s + w3)**p*q, w1)) <= w2,
abs(arg_((polar_lift(s + w3))**p*q, w1)) < w2,
abs(arg_((polar_lift(s + w3))**p*q, w1)) <= w2)
for c in conds:
a_ = oo
aux_ = []
for d in disjuncts(c):
if d.is_Relational and s in d.rhs.free_symbols:
d = d.reversed
if d.is_Relational and isinstance(d, (Ge, Gt)):
d = d.reversedsign
for pat in patterns:
m = d.match(pat)
if m:
break
if m:
if m[q].is_positive and m[w2]/m[p] == pi/2:
d = -re(s + m[w3]) < 0
m = d.match(p - cos(w1*abs(arg(s*w5))*w2)*abs(s**w3)**w4 < 0)
if not m:
m = d.match(
cos(p - abs(arg_(s**w1*w5, q))*w2)*abs(s**w3)**w4 < 0)
if not m:
m = d.match(
p - cos(abs(arg_(polar_lift(s)**w1*w5, q))*w2
)*abs(s**w3)**w4 < 0)
if m and all(m[wild].is_positive for wild in [w1, w2, w3, w4, w5]):
d = re(s) > m[p]
d_ = d.replace(
re, lambda x: x.expand().as_real_imag()[0]).subs(re(s), t)
if not d.is_Relational or \
d.rel_op in ('==', '!=') \
or d_.has(s) or not d_.has(t):
aux_ += [d]
continue
soln = _solve_inequality(d_, t)
if not soln.is_Relational or \
soln.rel_op in ('==', '!='):
aux_ += [d]
continue
if soln.lts == t:
raise IntegralTransformError('Laplace', f,
'convergence not in half-plane?')
else:
a_ = Min(soln.lts, a_)
if a_ != oo:
a = Max(a_, a)
else:
aux = And(aux, Or(*aux_))
return a, aux
conds = [process_conds(c) for c in disjuncts(cond)]
conds2 = [x for x in conds if x[1] != False and x[0] != -oo]
if not conds2:
conds2 = [x for x in conds if x[1] != False]
conds = conds2
def cnt(expr):
if expr == True or expr == False:
return 0
return expr.count_ops()
conds.sort(key=lambda x: (-x[0], cnt(x[1])))
if not conds:
raise IntegralTransformError('Laplace', f, 'no convergence found')
a, aux = conds[0]
def sbs(expr):
return expr.subs(s, s_)
if simplify:
F = _simplifyconds(F, s, a)
aux = _simplifyconds(aux, s, a)
return _simplify(F.subs(s, s_), simplify), sbs(a), _canonical(sbs(aux))
class LaplaceTransform(IntegralTransform):
"""
Class representing unevaluated Laplace transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute Laplace transforms, see the :func:`laplace_transform`
docstring.
"""
_name = 'Laplace'
def _compute_transform(self, f, t, s, **hints):
return _laplace_transform(f, t, s, **hints)
def _as_integral(self, f, t, s):
from sympy import exp
return Integral(f*exp(-s*t), (t, 0, oo))
def _collapse_extra(self, extra):
from sympy import Max
conds = []
planes = []
for plane, cond in extra:
conds.append(cond)
planes.append(plane)
cond = And(*conds)
plane = Max(*planes)
if cond == False:
raise IntegralTransformError(
'Laplace', None, 'No combined convergence.')
return plane, cond
def laplace_transform(f, t, s, **hints):
r"""
Compute the Laplace Transform `F(s)` of `f(t)`,
.. math :: F(s) = \int_0^\infty e^{-st} f(t) \mathrm{d}t.
For all "sensible" functions, this converges absolutely in a
half plane `a < \operatorname{Re}(s)`.
This function returns ``(F, a, cond)``
where ``F`` is the Laplace transform of ``f``, `\operatorname{Re}(s) > a` is the half-plane
of convergence, and ``cond`` are auxiliary convergence conditions.
If the integral cannot be computed in closed form, this function returns
an unevaluated :class:`LaplaceTransform` object.
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`. If ``noconds=True``,
only `F` will be returned (i.e. not ``cond``, and also not the plane ``a``).
>>> from sympy.integrals import laplace_transform
>>> from sympy.abc import t, s, a
>>> laplace_transform(t**a, t, s)
(s**(-a)*gamma(a + 1)/s, 0, re(a) > -1)
See Also
========
inverse_laplace_transform, mellin_transform, fourier_transform
hankel_transform, inverse_hankel_transform
"""
if isinstance(f, MatrixBase) and hasattr(f, 'applyfunc'):
return f.applyfunc(lambda fij: laplace_transform(fij, t, s, **hints))
return LaplaceTransform(f, t, s).doit(**hints)
@_noconds_(True)
def _inverse_laplace_transform(F, s, t_, plane, simplify=True):
""" The backend function for inverse Laplace transforms. """
from sympy import exp, Heaviside, log, expand_complex, Integral, Piecewise
from sympy.integrals.meijerint import meijerint_inversion, _get_coeff_exp
# There are two strategies we can try:
# 1) Use inverse mellin transforms - related by a simple change of variables.
# 2) Use the inversion integral.
t = Dummy('t', real=True)
def pw_simp(*args):
""" Simplify a piecewise expression from hyperexpand. """
# XXX we break modularity here!
if len(args) != 3:
return Piecewise(*args)
arg = args[2].args[0].argument
coeff, exponent = _get_coeff_exp(arg, t)
e1 = args[0].args[0]
e2 = args[1].args[0]
return Heaviside(1/abs(coeff) - t**exponent)*e1 \
+ Heaviside(t**exponent - 1/abs(coeff))*e2
try:
f, cond = inverse_mellin_transform(F, s, exp(-t), (None, oo),
needeval=True, noconds=False)
except IntegralTransformError:
f = None
if f is None:
f = meijerint_inversion(F, s, t)
if f is None:
raise IntegralTransformError('Inverse Laplace', f, '')
if f.is_Piecewise:
f, cond = f.args[0]
if f.has(Integral):
raise IntegralTransformError('Inverse Laplace', f,
'inversion integral of unrecognised form.')
else:
cond = S.true
f = f.replace(Piecewise, pw_simp)
if f.is_Piecewise:
# many of the functions called below can't work with piecewise
# (b/c it has a bool in args)
return f.subs(t, t_), cond
u = Dummy('u')
def simp_heaviside(arg):
a = arg.subs(exp(-t), u)
if a.has(t):
return Heaviside(arg)
rel = _solve_inequality(a > 0, u)
if rel.lts == u:
k = log(rel.gts)
return Heaviside(t + k)
else:
k = log(rel.lts)
return Heaviside(-(t + k))
f = f.replace(Heaviside, simp_heaviside)
def simp_exp(arg):
return expand_complex(exp(arg))
f = f.replace(exp, simp_exp)
# TODO it would be nice to fix cosh and sinh ... simplify messes these
# exponentials up
return _simplify(f.subs(t, t_), simplify), cond
class InverseLaplaceTransform(IntegralTransform):
"""
Class representing unevaluated inverse Laplace transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute inverse Laplace transforms, see the
:func:`inverse_laplace_transform` docstring.
"""
_name = 'Inverse Laplace'
_none_sentinel = Dummy('None')
_c = Dummy('c')
def __new__(cls, F, s, x, plane, **opts):
if plane is None:
plane = InverseLaplaceTransform._none_sentinel
return IntegralTransform.__new__(cls, F, s, x, plane, **opts)
@property
def fundamental_plane(self):
plane = self.args[3]
if plane is InverseLaplaceTransform._none_sentinel:
plane = None
return plane
def _compute_transform(self, F, s, t, **hints):
return _inverse_laplace_transform(F, s, t, self.fundamental_plane, **hints)
def _as_integral(self, F, s, t):
from sympy import I, exp
c = self.__class__._c
return Integral(exp(s*t)*F, (s, c - I*oo, c + I*oo))/(2*S.Pi*S.ImaginaryUnit)
def inverse_laplace_transform(F, s, t, plane=None, **hints):
r"""
Compute the inverse Laplace transform of `F(s)`, defined as
.. math :: f(t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{st} F(s) \mathrm{d}s,
for `c` so large that `F(s)` has no singularites in the
half-plane `\operatorname{Re}(s) > c-\epsilon`.
The plane can be specified by
argument ``plane``, but will be inferred if passed as None.
Under certain regularity conditions, this recovers `f(t)` from its
Laplace Transform `F(s)`, for non-negative `t`, and vice
versa.
If the integral cannot be computed in closed form, this function returns
an unevaluated :class:`InverseLaplaceTransform` object.
Note that this function will always assume `t` to be real,
regardless of the sympy assumption on `t`.
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`.
>>> from sympy.integrals.transforms import inverse_laplace_transform
>>> from sympy import exp, Symbol
>>> from sympy.abc import s, t
>>> a = Symbol('a', positive=True)
>>> inverse_laplace_transform(exp(-a*s)/s, s, t)
Heaviside(-a + t)
See Also
========
laplace_transform
hankel_transform, inverse_hankel_transform
"""
if isinstance(F, MatrixBase) and hasattr(F, 'applyfunc'):
return F.applyfunc(lambda Fij: inverse_laplace_transform(Fij, s, t, plane, **hints))
return InverseLaplaceTransform(F, s, t, plane).doit(**hints)
##########################################################################
# Fourier Transform
##########################################################################
@_noconds_(True)
def _fourier_transform(f, x, k, a, b, name, simplify=True):
"""
Compute a general Fourier-type transform
F(k) = a int_-oo^oo exp(b*I*x*k) f(x) dx.
For suitable choice of a and b, this reduces to the standard Fourier
and inverse Fourier transforms.
"""
from sympy import exp, I
F = integrate(a*f*exp(b*I*x*k), (x, -oo, oo))
if not F.has(Integral):
return _simplify(F, simplify), S.true
integral_f = integrate(f, (x, -oo, oo))
if integral_f in (-oo, oo, S.NaN) or integral_f.has(Integral):
raise IntegralTransformError(name, f, 'function not integrable on real axis')
if not F.is_Piecewise:
raise IntegralTransformError(name, f, 'could not compute integral')
F, cond = F.args[0]
if F.has(Integral):
raise IntegralTransformError(name, f, 'integral in unexpected form')
return _simplify(F, simplify), cond
class FourierTypeTransform(IntegralTransform):
""" Base class for Fourier transforms."""
def a(self):
raise NotImplementedError(
"Class %s must implement a(self) but does not" % self.__class__)
def b(self):
raise NotImplementedError(
"Class %s must implement b(self) but does not" % self.__class__)
def _compute_transform(self, f, x, k, **hints):
return _fourier_transform(f, x, k,
self.a(), self.b(),
self.__class__._name, **hints)
def _as_integral(self, f, x, k):
from sympy import exp, I
a = self.a()
b = self.b()
return Integral(a*f*exp(b*I*x*k), (x, -oo, oo))
class FourierTransform(FourierTypeTransform):
"""
Class representing unevaluated Fourier transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute Fourier transforms, see the :func:`fourier_transform`
docstring.
"""
_name = 'Fourier'
def a(self):
return 1
def b(self):
return -2*S.Pi
def fourier_transform(f, x, k, **hints):
r"""
Compute the unitary, ordinary-frequency Fourier transform of `f`, defined
as
.. math:: F(k) = \int_{-\infty}^\infty f(x) e^{-2\pi i x k} \mathrm{d} x.
If the transform cannot be computed in closed form, this
function returns an unevaluated :class:`FourierTransform` object.
For other Fourier transform conventions, see the function
:func:`sympy.integrals.transforms._fourier_transform`.
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`.
Note that for this transform, by default ``noconds=True``.
>>> from sympy import fourier_transform, exp
>>> from sympy.abc import x, k
>>> fourier_transform(exp(-x**2), x, k)
sqrt(pi)*exp(-pi**2*k**2)
>>> fourier_transform(exp(-x**2), x, k, noconds=False)
(sqrt(pi)*exp(-pi**2*k**2), True)
See Also
========
inverse_fourier_transform
sine_transform, inverse_sine_transform
cosine_transform, inverse_cosine_transform
hankel_transform, inverse_hankel_transform
mellin_transform, laplace_transform
"""
return FourierTransform(f, x, k).doit(**hints)
class InverseFourierTransform(FourierTypeTransform):
"""
Class representing unevaluated inverse Fourier transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute inverse Fourier transforms, see the
:func:`inverse_fourier_transform` docstring.
"""
_name = 'Inverse Fourier'
def a(self):
return 1
def b(self):
return 2*S.Pi
def inverse_fourier_transform(F, k, x, **hints):
r"""
Compute the unitary, ordinary-frequency inverse Fourier transform of `F`,
defined as
.. math:: f(x) = \int_{-\infty}^\infty F(k) e^{2\pi i x k} \mathrm{d} k.
If the transform cannot be computed in closed form, this
function returns an unevaluated :class:`InverseFourierTransform` object.
For other Fourier transform conventions, see the function
:func:`sympy.integrals.transforms._fourier_transform`.
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`.
Note that for this transform, by default ``noconds=True``.
>>> from sympy import inverse_fourier_transform, exp, sqrt, pi
>>> from sympy.abc import x, k
>>> inverse_fourier_transform(sqrt(pi)*exp(-(pi*k)**2), k, x)
exp(-x**2)
>>> inverse_fourier_transform(sqrt(pi)*exp(-(pi*k)**2), k, x, noconds=False)
(exp(-x**2), True)
See Also
========
fourier_transform
sine_transform, inverse_sine_transform
cosine_transform, inverse_cosine_transform
hankel_transform, inverse_hankel_transform
mellin_transform, laplace_transform
"""
return InverseFourierTransform(F, k, x).doit(**hints)
##########################################################################
# Fourier Sine and Cosine Transform
##########################################################################
from sympy import sin, cos, sqrt, pi
@_noconds_(True)
def _sine_cosine_transform(f, x, k, a, b, K, name, simplify=True):
"""
Compute a general sine or cosine-type transform
F(k) = a int_0^oo b*sin(x*k) f(x) dx.
F(k) = a int_0^oo b*cos(x*k) f(x) dx.
For suitable choice of a and b, this reduces to the standard sine/cosine
and inverse sine/cosine transforms.
"""
F = integrate(a*f*K(b*x*k), (x, 0, oo))
if not F.has(Integral):
return _simplify(F, simplify), S.true
if not F.is_Piecewise:
raise IntegralTransformError(name, f, 'could not compute integral')
F, cond = F.args[0]
if F.has(Integral):
raise IntegralTransformError(name, f, 'integral in unexpected form')
return _simplify(F, simplify), cond
class SineCosineTypeTransform(IntegralTransform):
"""
Base class for sine and cosine transforms.
Specify cls._kern.
"""
def a(self):
raise NotImplementedError(
"Class %s must implement a(self) but does not" % self.__class__)
def b(self):
raise NotImplementedError(
"Class %s must implement b(self) but does not" % self.__class__)
def _compute_transform(self, f, x, k, **hints):
return _sine_cosine_transform(f, x, k,
self.a(), self.b(),
self.__class__._kern,
self.__class__._name, **hints)
def _as_integral(self, f, x, k):
a = self.a()
b = self.b()
K = self.__class__._kern
return Integral(a*f*K(b*x*k), (x, 0, oo))
class SineTransform(SineCosineTypeTransform):
"""
Class representing unevaluated sine transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute sine transforms, see the :func:`sine_transform`
docstring.
"""
_name = 'Sine'
_kern = sin
def a(self):
return sqrt(2)/sqrt(pi)
def b(self):
return 1
def sine_transform(f, x, k, **hints):
r"""
Compute the unitary, ordinary-frequency sine transform of `f`, defined
as
.. math:: F(k) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty f(x) \sin(2\pi x k) \mathrm{d} x.
If the transform cannot be computed in closed form, this
function returns an unevaluated :class:`SineTransform` object.
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`.
Note that for this transform, by default ``noconds=True``.
>>> from sympy import sine_transform, exp
>>> from sympy.abc import x, k, a
>>> sine_transform(x*exp(-a*x**2), x, k)
sqrt(2)*k*exp(-k**2/(4*a))/(4*a**(3/2))
>>> sine_transform(x**(-a), x, k)
2**(1/2 - a)*k**(a - 1)*gamma(1 - a/2)/gamma(a/2 + 1/2)
See Also
========
fourier_transform, inverse_fourier_transform
inverse_sine_transform
cosine_transform, inverse_cosine_transform
hankel_transform, inverse_hankel_transform
mellin_transform, laplace_transform
"""
return SineTransform(f, x, k).doit(**hints)
class InverseSineTransform(SineCosineTypeTransform):
"""
Class representing unevaluated inverse sine transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute inverse sine transforms, see the
:func:`inverse_sine_transform` docstring.
"""
_name = 'Inverse Sine'
_kern = sin
def a(self):
return sqrt(2)/sqrt(pi)
def b(self):
return 1
def inverse_sine_transform(F, k, x, **hints):
r"""
Compute the unitary, ordinary-frequency inverse sine transform of `F`,
defined as
.. math:: f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty F(k) \sin(2\pi x k) \mathrm{d} k.
If the transform cannot be computed in closed form, this
function returns an unevaluated :class:`InverseSineTransform` object.
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`.
Note that for this transform, by default ``noconds=True``.
>>> from sympy import inverse_sine_transform, exp, sqrt, gamma, pi
>>> from sympy.abc import x, k, a
>>> inverse_sine_transform(2**((1-2*a)/2)*k**(a - 1)*
... gamma(-a/2 + 1)/gamma((a+1)/2), k, x)
x**(-a)
>>> inverse_sine_transform(sqrt(2)*k*exp(-k**2/(4*a))/(4*sqrt(a)**3), k, x)
x*exp(-a*x**2)
See Also
========
fourier_transform, inverse_fourier_transform
sine_transform
cosine_transform, inverse_cosine_transform
hankel_transform, inverse_hankel_transform
mellin_transform, laplace_transform
"""
return InverseSineTransform(F, k, x).doit(**hints)
class CosineTransform(SineCosineTypeTransform):
"""
Class representing unevaluated cosine transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute cosine transforms, see the :func:`cosine_transform`
docstring.
"""
_name = 'Cosine'
_kern = cos
def a(self):
return sqrt(2)/sqrt(pi)
def b(self):
return 1
def cosine_transform(f, x, k, **hints):
r"""
Compute the unitary, ordinary-frequency cosine transform of `f`, defined
as
.. math:: F(k) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty f(x) \cos(2\pi x k) \mathrm{d} x.
If the transform cannot be computed in closed form, this
function returns an unevaluated :class:`CosineTransform` object.
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`.
Note that for this transform, by default ``noconds=True``.
>>> from sympy import cosine_transform, exp, sqrt, cos
>>> from sympy.abc import x, k, a
>>> cosine_transform(exp(-a*x), x, k)
sqrt(2)*a/(sqrt(pi)*(a**2 + k**2))
>>> cosine_transform(exp(-a*sqrt(x))*cos(a*sqrt(x)), x, k)
a*exp(-a**2/(2*k))/(2*k**(3/2))
See Also
========
fourier_transform, inverse_fourier_transform,
sine_transform, inverse_sine_transform
inverse_cosine_transform
hankel_transform, inverse_hankel_transform
mellin_transform, laplace_transform
"""
return CosineTransform(f, x, k).doit(**hints)
class InverseCosineTransform(SineCosineTypeTransform):
"""
Class representing unevaluated inverse cosine transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute inverse cosine transforms, see the
:func:`inverse_cosine_transform` docstring.
"""
_name = 'Inverse Cosine'
_kern = cos
def a(self):
return sqrt(2)/sqrt(pi)
def b(self):
return 1
def inverse_cosine_transform(F, k, x, **hints):
r"""
Compute the unitary, ordinary-frequency inverse cosine transform of `F`,
defined as
.. math:: f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty F(k) \cos(2\pi x k) \mathrm{d} k.
If the transform cannot be computed in closed form, this
function returns an unevaluated :class:`InverseCosineTransform` object.
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`.
Note that for this transform, by default ``noconds=True``.
>>> from sympy import inverse_cosine_transform, exp, sqrt, pi
>>> from sympy.abc import x, k, a
>>> inverse_cosine_transform(sqrt(2)*a/(sqrt(pi)*(a**2 + k**2)), k, x)
exp(-a*x)
>>> inverse_cosine_transform(1/sqrt(k), k, x)
1/sqrt(x)
See Also
========
fourier_transform, inverse_fourier_transform,
sine_transform, inverse_sine_transform
cosine_transform
hankel_transform, inverse_hankel_transform
mellin_transform, laplace_transform
"""
return InverseCosineTransform(F, k, x).doit(**hints)
##########################################################################
# Hankel Transform
##########################################################################
@_noconds_(True)
def _hankel_transform(f, r, k, nu, name, simplify=True):
r"""
Compute a general Hankel transform
.. math:: F_\nu(k) = \int_{0}^\infty f(r) J_\nu(k r) r \mathrm{d} r.
"""
from sympy import besselj
F = integrate(f*besselj(nu, k*r)*r, (r, 0, oo))
if not F.has(Integral):
return _simplify(F, simplify), S.true
if not F.is_Piecewise:
raise IntegralTransformError(name, f, 'could not compute integral')
F, cond = F.args[0]
if F.has(Integral):
raise IntegralTransformError(name, f, 'integral in unexpected form')
return _simplify(F, simplify), cond
class HankelTypeTransform(IntegralTransform):
"""
Base class for Hankel transforms.
"""
def doit(self, **hints):
return self._compute_transform(self.function,
self.function_variable,
self.transform_variable,
self.args[3],
**hints)
def _compute_transform(self, f, r, k, nu, **hints):
return _hankel_transform(f, r, k, nu, self._name, **hints)
def _as_integral(self, f, r, k, nu):
from sympy import besselj
return Integral(f*besselj(nu, k*r)*r, (r, 0, oo))
@property
def as_integral(self):
return self._as_integral(self.function,
self.function_variable,
self.transform_variable,
self.args[3])
class HankelTransform(HankelTypeTransform):
"""
Class representing unevaluated Hankel transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute Hankel transforms, see the :func:`hankel_transform`
docstring.
"""
_name = 'Hankel'
def hankel_transform(f, r, k, nu, **hints):
r"""
Compute the Hankel transform of `f`, defined as
.. math:: F_\nu(k) = \int_{0}^\infty f(r) J_\nu(k r) r \mathrm{d} r.
If the transform cannot be computed in closed form, this
function returns an unevaluated :class:`HankelTransform` object.
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`.
Note that for this transform, by default ``noconds=True``.
>>> from sympy import hankel_transform, inverse_hankel_transform
>>> from sympy import gamma, exp, sinh, cosh
>>> from sympy.abc import r, k, m, nu, a
>>> ht = hankel_transform(1/r**m, r, k, nu)
>>> ht
2*2**(-m)*k**(m - 2)*gamma(-m/2 + nu/2 + 1)/gamma(m/2 + nu/2)
>>> inverse_hankel_transform(ht, k, r, nu)
r**(-m)
>>> ht = hankel_transform(exp(-a*r), r, k, 0)
>>> ht
a/(k**3*(a**2/k**2 + 1)**(3/2))
>>> inverse_hankel_transform(ht, k, r, 0)
exp(-a*r)
See Also
========
fourier_transform, inverse_fourier_transform
sine_transform, inverse_sine_transform
cosine_transform, inverse_cosine_transform
inverse_hankel_transform
mellin_transform, laplace_transform
"""
return HankelTransform(f, r, k, nu).doit(**hints)
class InverseHankelTransform(HankelTypeTransform):
"""
Class representing unevaluated inverse Hankel transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute inverse Hankel transforms, see the
:func:`inverse_hankel_transform` docstring.
"""
_name = 'Inverse Hankel'
def inverse_hankel_transform(F, k, r, nu, **hints):
r"""
Compute the inverse Hankel transform of `F` defined as
.. math:: f(r) = \int_{0}^\infty F_\nu(k) J_\nu(k r) k \mathrm{d} k.
If the transform cannot be computed in closed form, this
function returns an unevaluated :class:`InverseHankelTransform` object.
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`.
Note that for this transform, by default ``noconds=True``.
>>> from sympy import hankel_transform, inverse_hankel_transform, gamma
>>> from sympy import gamma, exp, sinh, cosh
>>> from sympy.abc import r, k, m, nu, a
>>> ht = hankel_transform(1/r**m, r, k, nu)
>>> ht
2*2**(-m)*k**(m - 2)*gamma(-m/2 + nu/2 + 1)/gamma(m/2 + nu/2)
>>> inverse_hankel_transform(ht, k, r, nu)
r**(-m)
>>> ht = hankel_transform(exp(-a*r), r, k, 0)
>>> ht
a/(k**3*(a**2/k**2 + 1)**(3/2))
>>> inverse_hankel_transform(ht, k, r, 0)
exp(-a*r)
See Also
========
fourier_transform, inverse_fourier_transform
sine_transform, inverse_sine_transform
cosine_transform, inverse_cosine_transform
hankel_transform
mellin_transform, laplace_transform
"""
return InverseHankelTransform(F, k, r, nu).doit(**hints)
|
22f47e913cbcdf119f4c0838b75c442a657e29f19d3a005be1eeb7252f9fb03d
|
"""
Module to implement integration of uni/bivariate polynomials over
2D Polytopes and uni/bi/trivariate polynomials over 3D Polytopes.
Uses evaluation techniques as described in Chin et al. (2015) [1].
References
===========
[1] : Chin, Eric B., Jean B. Lasserre, and N. Sukumar. "Numerical integration
of homogeneous functions on convex and nonconvex polygons and polyhedra."
Computational Mechanics 56.6 (2015): 967-981
PDF link : http://dilbert.engr.ucdavis.edu/~suku/quadrature/cls-integration.pdf
"""
from __future__ import print_function, division
from functools import cmp_to_key
from sympy.core import S, diff, Expr, Symbol
from sympy.simplify.simplify import nsimplify
from sympy.geometry import Segment2D, Polygon, Point, Point2D
from sympy.abc import x, y, z
from sympy.polys.polytools import LC, gcd_list, degree_list
def polytope_integrate(poly, expr=None, **kwargs):
"""Integrates polynomials over 2/3-Polytopes.
This function accepts the polytope in `poly` and the function in `expr`
(uni/bi/trivariate polynomials are implemented) and returns
the exact integral of `expr` over `poly`.
Parameters
==========
poly : The input Polygon.
expr : The input polynomial.
clockwise : Binary value to sort input points of 2-Polytope clockwise.(Optional)
max_degree : The maximum degree of any monomial of the input polynomial.(Optional)
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.geometry.polygon import Polygon
>>> from sympy.geometry.point import Point
>>> from sympy.integrals.intpoly import polytope_integrate
>>> polygon = Polygon(Point(0, 0), Point(0, 1), Point(1, 1), Point(1, 0))
>>> polys = [1, x, y, x*y, x**2*y, x*y**2]
>>> expr = x*y
>>> polytope_integrate(polygon, expr)
1/4
>>> polytope_integrate(polygon, polys, max_degree=3)
{1: 1, x: 1/2, y: 1/2, x*y: 1/4, x*y**2: 1/6, x**2*y: 1/6}
"""
clockwise = kwargs.get('clockwise', False)
max_degree = kwargs.get('max_degree', None)
if clockwise:
if isinstance(poly, Polygon):
poly = Polygon(*point_sort(poly.vertices), evaluate=False)
else:
raise TypeError("clockwise=True works for only 2-Polytope"
"V-representation input")
if isinstance(poly, Polygon):
# For Vertex Representation(2D case)
hp_params = hyperplane_parameters(poly)
facets = poly.sides
elif len(poly[0]) == 2:
# For Hyperplane Representation(2D case)
plen = len(poly)
if len(poly[0][0]) == 2:
intersections = [intersection(poly[(i - 1) % plen], poly[i],
"plane2D")
for i in range(0, plen)]
hp_params = poly
lints = len(intersections)
facets = [Segment2D(intersections[i],
intersections[(i + 1) % lints])
for i in range(0, lints)]
else:
raise NotImplementedError("Integration for H-representation 3D"
"case not implemented yet.")
else:
# For Vertex Representation(3D case)
vertices = poly[0]
facets = poly[1:]
hp_params = hyperplane_parameters(facets, vertices)
if max_degree is None:
if expr is None:
raise TypeError('Input expression be must'
'be a valid SymPy expression')
return main_integrate3d(expr, facets, vertices, hp_params)
if max_degree is not None:
result = {}
if not isinstance(expr, list) and expr is not None:
raise TypeError('Input polynomials must be list of expressions')
if len(hp_params[0][0]) == 3:
result_dict = main_integrate3d(0, facets, vertices, hp_params,
max_degree)
else:
result_dict = main_integrate(0, facets, hp_params, max_degree)
if expr is None:
return result_dict
for poly in expr:
if poly not in result:
if poly is S.Zero:
result[S.Zero] = S.Zero
continue
integral_value = S.Zero
monoms = decompose(poly, separate=True)
for monom in monoms:
monom = nsimplify(monom)
coeff, m = strip(monom)
integral_value += result_dict[m] * coeff
result[poly] = integral_value
return result
if expr is None:
raise TypeError('Input expression be must'
'be a valid SymPy expression')
return main_integrate(expr, facets, hp_params)
def strip(monom):
if monom == S.Zero:
return 0, 0
elif monom.is_number:
return monom, 1
else:
coeff = LC(monom)
return coeff, S(monom) / coeff
def main_integrate3d(expr, facets, vertices, hp_params, max_degree=None):
"""Function to translate the problem of integrating uni/bi/tri-variate
polynomials over a 3-Polytope to integrating over its faces.
This is done using Generalized Stokes' Theorem and Euler's Theorem.
Parameters
===========
expr : The input polynomial
facets : Faces of the 3-Polytope(expressed as indices of `vertices`)
vertices : Vertices that constitute the Polytope
hp_params : Hyperplane Parameters of the facets
Optional Parameters
-------------------
max_degree : Max degree of constituent monomial in given list of polynomial
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.integrals.intpoly import main_integrate3d, \
hyperplane_parameters
>>> cube = [[(0, 0, 0), (0, 0, 5), (0, 5, 0), (0, 5, 5), (5, 0, 0),\
(5, 0, 5), (5, 5, 0), (5, 5, 5)],\
[2, 6, 7, 3], [3, 7, 5, 1], [7, 6, 4, 5], [1, 5, 4, 0],\
[3, 1, 0, 2], [0, 4, 6, 2]]
>>> vertices = cube[0]
>>> faces = cube[1:]
>>> hp_params = hyperplane_parameters(faces, vertices)
>>> main_integrate3d(1, faces, vertices, hp_params)
-125
"""
result = {}
dims = (x, y, z)
dim_length = len(dims)
if max_degree:
grad_terms = gradient_terms(max_degree, 3)
flat_list = [term for z_terms in grad_terms
for x_term in z_terms
for term in x_term]
for term in flat_list:
result[term[0]] = 0
for facet_count, hp in enumerate(hp_params):
a, b = hp[0], hp[1]
x0 = vertices[facets[facet_count][0]]
for i, monom in enumerate(flat_list):
# Every monomial is a tuple :
# (term, x_degree, y_degree, z_degree, value over boundary)
expr, x_d, y_d, z_d, z_index, y_index, x_index, _ = monom
degree = x_d + y_d + z_d
if b is S.Zero:
value_over_face = S.Zero
else:
value_over_face = \
integration_reduction_dynamic(facets, facet_count, a,
b, expr, degree, dims,
x_index, y_index,
z_index, x0, grad_terms,
i, vertices, hp)
monom[7] = value_over_face
result[expr] += value_over_face * \
(b / norm(a)) / (dim_length + x_d + y_d + z_d)
return result
else:
integral_value = S.Zero
polynomials = decompose(expr)
for deg in polynomials:
poly_contribute = S.Zero
facet_count = 0
for i, facet in enumerate(facets):
hp = hp_params[i]
if hp[1] == S.Zero:
continue
pi = polygon_integrate(facet, hp, i, facets, vertices, expr, deg)
poly_contribute += pi *\
(hp[1] / norm(tuple(hp[0])))
facet_count += 1
poly_contribute /= (dim_length + deg)
integral_value += poly_contribute
return integral_value
def main_integrate(expr, facets, hp_params, max_degree=None):
"""Function to translate the problem of integrating univariate/bivariate
polynomials over a 2-Polytope to integrating over its boundary facets.
This is done using Generalized Stokes's Theorem and Euler's Theorem.
Parameters
===========
expr : The input polynomial
facets : Facets(Line Segments) of the 2-Polytope
hp_params : Hyperplane Parameters of the facets
Optional Parameters:
--------------------
max_degree : The maximum degree of any monomial of the input polynomial.
>>> from sympy.abc import x, y
>>> from sympy.integrals.intpoly import main_integrate,\
hyperplane_parameters
>>> from sympy.geometry.polygon import Polygon
>>> from sympy.geometry.point import Point
>>> triangle = Polygon(Point(0, 3), Point(5, 3), Point(1, 1))
>>> facets = triangle.sides
>>> hp_params = hyperplane_parameters(triangle)
>>> main_integrate(x**2 + y**2, facets, hp_params)
325/6
"""
dims = (x, y)
dim_length = len(dims)
result = {}
integral_value = S.Zero
if max_degree:
grad_terms = [[0, 0, 0, 0]] + gradient_terms(max_degree)
for facet_count, hp in enumerate(hp_params):
a, b = hp[0], hp[1]
x0 = facets[facet_count].points[0]
for i, monom in enumerate(grad_terms):
# Every monomial is a tuple :
# (term, x_degree, y_degree, value over boundary)
m, x_d, y_d, _ = monom
value = result.get(m, None)
degree = S.Zero
if b is S.Zero:
value_over_boundary = S.Zero
else:
degree = x_d + y_d
value_over_boundary = \
integration_reduction_dynamic(facets, facet_count, a,
b, m, degree, dims, x_d,
y_d, max_degree, x0,
grad_terms, i)
monom[3] = value_over_boundary
if value is not None:
result[m] += value_over_boundary * \
(b / norm(a)) / (dim_length + degree)
else:
result[m] = value_over_boundary * \
(b / norm(a)) / (dim_length + degree)
return result
else:
polynomials = decompose(expr)
for deg in polynomials:
poly_contribute = S.Zero
facet_count = 0
for hp in hp_params:
value_over_boundary = integration_reduction(facets,
facet_count,
hp[0], hp[1],
polynomials[deg],
dims, deg)
poly_contribute += value_over_boundary * (hp[1] / norm(hp[0]))
facet_count += 1
poly_contribute /= (dim_length + deg)
integral_value += poly_contribute
return integral_value
def polygon_integrate(facet, hp_param, index, facets, vertices, expr, degree):
"""Helper function to integrate the input uni/bi/trivariate polynomial
over a certain face of the 3-Polytope.
Parameters
===========
facet : Particular face of the 3-Polytope over which `expr` is integrated
index : The index of `facet` in `facets`
facets : Faces of the 3-Polytope(expressed as indices of `vertices`)
vertices : Vertices that constitute the facet
expr : The input polynomial
degree : Degree of `expr`
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.integrals.intpoly import polygon_integrate
>>> cube = [[(0, 0, 0), (0, 0, 5), (0, 5, 0), (0, 5, 5), (5, 0, 0),\
(5, 0, 5), (5, 5, 0), (5, 5, 5)],\
[2, 6, 7, 3], [3, 7, 5, 1], [7, 6, 4, 5], [1, 5, 4, 0],\
[3, 1, 0, 2], [0, 4, 6, 2]]
>>> facet = cube[1]
>>> facets = cube[1:]
>>> vertices = cube[0]
>>> polygon_integrate(facet, [(0, 1, 0), 5], 0, facets, vertices, 1, 0)
-25
"""
expr = S(expr)
if expr == S.Zero:
return S.Zero
result = S.Zero
x0 = vertices[facet[0]]
for i in range(len(facet)):
side = (vertices[facet[i]], vertices[facet[(i + 1) % len(facet)]])
result += distance_to_side(x0, side, hp_param[0]) *\
lineseg_integrate(facet, i, side, expr, degree)
if not expr.is_number:
expr = diff(expr, x) * x0[0] + diff(expr, y) * x0[1] +\
diff(expr, z) * x0[2]
result += polygon_integrate(facet, hp_param, index, facets, vertices,
expr, degree - 1)
result /= (degree + 2)
return result
def distance_to_side(point, line_seg, A):
"""Helper function to compute the signed distance between given 3D point
and a line segment.
Parameters
===========
point : 3D Point
line_seg : Line Segment
Examples
========
>>> from sympy.integrals.intpoly import distance_to_side
>>> point = (0, 0, 0)
>>> distance_to_side(point, [(0, 0, 1), (0, 1, 0)], (1, 0, 0))
-sqrt(2)/2
"""
x1, x2 = line_seg
rev_normal = [-1 * S(i)/norm(A) for i in A]
vector = [x2[i] - x1[i] for i in range(0, 3)]
vector = [vector[i]/norm(vector) for i in range(0, 3)]
n_side = cross_product((0, 0, 0), rev_normal, vector)
vectorx0 = [line_seg[0][i] - point[i] for i in range(0, 3)]
dot_product = sum([vectorx0[i] * n_side[i] for i in range(0, 3)])
return dot_product
def lineseg_integrate(polygon, index, line_seg, expr, degree):
"""Helper function to compute the line integral of `expr` over `line_seg`
Parameters
===========
polygon : Face of a 3-Polytope
index : index of line_seg in polygon
line_seg : Line Segment
Examples
========
>>> from sympy.integrals.intpoly import lineseg_integrate
>>> polygon = [(0, 5, 0), (5, 5, 0), (5, 5, 5), (0, 5, 5)]
>>> line_seg = [(0, 5, 0), (5, 5, 0)]
>>> lineseg_integrate(polygon, 0, line_seg, 1, 0)
5
"""
if expr == S.Zero:
return S.Zero
result = S.Zero
x0 = line_seg[0]
distance = norm(tuple([line_seg[1][i] - line_seg[0][i] for i in
range(3)]))
if isinstance(expr, Expr):
expr_dict = {x: line_seg[1][0],
y: line_seg[1][1],
z: line_seg[1][2]}
result += distance * expr.subs(expr_dict)
else:
result += distance * expr
expr = diff(expr, x) * x0[0] + diff(expr, y) * x0[1] +\
diff(expr, z) * x0[2]
result += lineseg_integrate(polygon, index, line_seg, expr, degree - 1)
result /= (degree + 1)
return result
def integration_reduction(facets, index, a, b, expr, dims, degree):
"""Helper method for main_integrate. Returns the value of the input
expression evaluated over the polytope facet referenced by a given index.
Parameters
===========
facets : List of facets of the polytope.
index : Index referencing the facet to integrate the expression over.
a : Hyperplane parameter denoting direction.
b : Hyperplane parameter denoting distance.
expr : The expression to integrate over the facet.
dims : List of symbols denoting axes.
degree : Degree of the homogeneous polynomial.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.integrals.intpoly import integration_reduction,\
hyperplane_parameters
>>> from sympy.geometry.point import Point
>>> from sympy.geometry.polygon import Polygon
>>> triangle = Polygon(Point(0, 3), Point(5, 3), Point(1, 1))
>>> facets = triangle.sides
>>> a, b = hyperplane_parameters(triangle)[0]
>>> integration_reduction(facets, 0, a, b, 1, (x, y), 0)
5
"""
if expr == S.Zero:
return expr
value = S.Zero
x0 = facets[index].points[0]
m = len(facets)
gens = (x, y)
inner_product = diff(expr, gens[0]) * x0[0] + diff(expr, gens[1]) * x0[1]
if inner_product != 0:
value += integration_reduction(facets, index, a, b,
inner_product, dims, degree - 1)
value += left_integral2D(m, index, facets, x0, expr, gens)
return value/(len(dims) + degree - 1)
def left_integral2D(m, index, facets, x0, expr, gens):
"""Computes the left integral of Eq 10 in Chin et al.
For the 2D case, the integral is just an evaluation of the polynomial
at the intersection of two facets which is multiplied by the distance
between the first point of facet and that intersection.
Parameters
===========
m : No. of hyperplanes.
index : Index of facet to find intersections with.
facets : List of facets(Line Segments in 2D case).
x0 : First point on facet referenced by index.
expr : Input polynomial
gens : Generators which generate the polynomial
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.integrals.intpoly import left_integral2D
>>> from sympy.geometry.point import Point
>>> from sympy.geometry.polygon import Polygon
>>> triangle = Polygon(Point(0, 3), Point(5, 3), Point(1, 1))
>>> facets = triangle.sides
>>> left_integral2D(3, 0, facets, facets[0].points[0], 1, (x, y))
5
"""
value = S.Zero
for j in range(0, m):
intersect = ()
if j == (index - 1) % m or j == (index + 1) % m:
intersect = intersection(facets[index], facets[j], "segment2D")
if intersect:
distance_origin = norm(tuple(map(lambda x, y: x - y,
intersect, x0)))
if is_vertex(intersect):
if isinstance(expr, Expr):
if len(gens) == 3:
expr_dict = {gens[0]: intersect[0],
gens[1]: intersect[1],
gens[2]: intersect[2]}
else:
expr_dict = {gens[0]: intersect[0],
gens[1]: intersect[1]}
value += distance_origin * expr.subs(expr_dict)
else:
value += distance_origin * expr
return value
def integration_reduction_dynamic(facets, index, a, b, expr, degree, dims,
x_index, y_index, max_index, x0,
monomial_values, monom_index, vertices=None,
hp_param=None):
"""The same integration_reduction function which uses a dynamic
programming approach to compute terms by using the values of the integral
of previously computed terms.
Parameters
===========
facets : Facets of the Polytope
index : Index of facet to find intersections with.(Used in left_integral())
a, b : Hyperplane parameters
expr : Input monomial
degree : Total degree of `expr`
dims : Tuple denoting axes variables
x_index : Exponent of 'x' in expr
y_index : Exponent of 'y' in expr
max_index : Maximum exponent of any monomial in monomial_values
x0 : First point on facets[index]
monomial_values : List of monomial values constituting the polynomial
monom_index : Index of monomial whose integration is being found.
Optional Parameters
-------------------
vertices : Coordinates of vertices constituting the 3-Polytope
hp_param : Hyperplane Parameter of the face of the facets[index]
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.integrals.intpoly import integration_reduction_dynamic,\
hyperplane_parameters, gradient_terms
>>> from sympy.geometry.point import Point
>>> from sympy.geometry.polygon import Polygon
>>> triangle = Polygon(Point(0, 3), Point(5, 3), Point(1, 1))
>>> facets = triangle.sides
>>> a, b = hyperplane_parameters(triangle)[0]
>>> x0 = facets[0].points[0]
>>> monomial_values = [[0, 0, 0, 0], [1, 0, 0, 5],\
[y, 0, 1, 15], [x, 1, 0, None]]
>>> integration_reduction_dynamic(facets, 0, a, b, x, 1, (x, y), 1, 0, 1,\
x0, monomial_values, 3)
25/2
"""
value = S.Zero
m = len(facets)
if expr == S.Zero:
return expr
if len(dims) == 2:
if not expr.is_number:
_, x_degree, y_degree, _ = monomial_values[monom_index]
x_index = monom_index - max_index + \
x_index - 2 if x_degree > 0 else 0
y_index = monom_index - 1 if y_degree > 0 else 0
x_value, y_value =\
monomial_values[x_index][3], monomial_values[y_index][3]
value += x_degree * x_value * x0[0] + y_degree * y_value * x0[1]
value += left_integral2D(m, index, facets, x0, expr, dims)
else:
# For 3D use case the max_index contains the z_degree of the term
z_index = max_index
if not expr.is_number:
x_degree, y_degree, z_degree = y_index,\
z_index - x_index - y_index, x_index
x_value = monomial_values[z_index - 1][y_index - 1][x_index][7]\
if x_degree > 0 else 0
y_value = monomial_values[z_index - 1][y_index][x_index][7]\
if y_degree > 0 else 0
z_value = monomial_values[z_index - 1][y_index][x_index - 1][7]\
if z_degree > 0 else 0
value += x_degree * x_value * x0[0] + y_degree * y_value * x0[1] \
+ z_degree * z_value * x0[2]
value += left_integral3D(facets, index, expr,
vertices, hp_param, degree)
return value / (len(dims) + degree - 1)
def left_integral3D(facets, index, expr, vertices, hp_param, degree):
"""Computes the left integral of Eq 10 in Chin et al.
For the 3D case, this is the sum of the integral values over constituting
line segments of the face (which is accessed by facets[index]) multiplied
by the distance between the first point of facet and that line segment.
Parameters
===========
facets : List of faces of the 3-Polytope.
index : Index of face over which integral is to be calculated.
expr : Input polynomial
vertices : List of vertices that constitute the 3-Polytope
hp_param : The hyperplane parameters of the face
degree : Degree of the expr
>>> from sympy.abc import x, y
>>> from sympy.integrals.intpoly import left_integral3D
>>> cube = [[(0, 0, 0), (0, 0, 5), (0, 5, 0), (0, 5, 5), (5, 0, 0),\
(5, 0, 5), (5, 5, 0), (5, 5, 5)],\
[2, 6, 7, 3], [3, 7, 5, 1], [7, 6, 4, 5], [1, 5, 4, 0],\
[3, 1, 0, 2], [0, 4, 6, 2]]
>>> facets = cube[1:]
>>> vertices = cube[0]
>>> left_integral3D(facets, 3, 1, vertices, ([0, -1, 0], -5), 0)
-50
"""
value = S.Zero
facet = facets[index]
x0 = vertices[facet[0]]
for i in range(len(facet)):
side = (vertices[facet[i]], vertices[facet[(i + 1) % len(facet)]])
value += distance_to_side(x0, side, hp_param[0]) * \
lineseg_integrate(facet, i, side, expr, degree)
return value
def gradient_terms(binomial_power=0, no_of_gens=2):
"""Returns a list of all the possible monomials between
0 and y**binomial_power for 2D case and z**binomial_power
for 3D case.
Parameters
===========
binomial_power : Power upto which terms are generated.
no_of_gens : Denotes whether terms are being generated for 2D or 3D case.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.integrals.intpoly import gradient_terms
>>> gradient_terms(2)
[[1, 0, 0, 0], [y, 0, 1, 0], [y**2, 0, 2, 0], [x, 1, 0, 0],
[x*y, 1, 1, 0], [x**2, 2, 0, 0]]
>>> gradient_terms(2, 3)
[[[[1, 0, 0, 0, 0, 0, 0, 0]]], [[[y, 0, 1, 0, 1, 0, 0, 0],
[z, 0, 0, 1, 1, 0, 1, 0]], [[x, 1, 0, 0, 1, 1, 0, 0]]],
[[[y**2, 0, 2, 0, 2, 0, 0, 0], [y*z, 0, 1, 1, 2, 0, 1, 0],
[z**2, 0, 0, 2, 2, 0, 2, 0]], [[x*y, 1, 1, 0, 2, 1, 0, 0],
[x*z, 1, 0, 1, 2, 1, 1, 0]], [[x**2, 2, 0, 0, 2, 2, 0, 0]]]]
"""
if no_of_gens == 2:
count = 0
terms = [None] * int((binomial_power ** 2 + 3 * binomial_power + 2) / 2)
for x_count in range(0, binomial_power + 1):
for y_count in range(0, binomial_power - x_count + 1):
terms[count] = [x**x_count*y**y_count,
x_count, y_count, 0]
count += 1
else:
terms = [[[[x ** x_count * y ** y_count *
z ** (z_count - y_count - x_count),
x_count, y_count, z_count - y_count - x_count,
z_count, x_count, z_count - y_count - x_count, 0]
for y_count in range(z_count - x_count, -1, -1)]
for x_count in range(0, z_count + 1)]
for z_count in range(0, binomial_power + 1)]
return terms
def hyperplane_parameters(poly, vertices=None):
"""A helper function to return the hyperplane parameters
of which the facets of the polytope are a part of.
Parameters
==========
poly : The input 2/3-Polytope
vertices : Vertex indices of 3-Polytope
Examples
========
>>> from sympy.geometry.point import Point
>>> from sympy.geometry.polygon import Polygon
>>> from sympy.integrals.intpoly import hyperplane_parameters
>>> hyperplane_parameters(Polygon(Point(0, 3), Point(5, 3), Point(1, 1)))
[((0, 1), 3), ((1, -2), -1), ((-2, -1), -3)]
>>> cube = [[(0, 0, 0), (0, 0, 5), (0, 5, 0), (0, 5, 5), (5, 0, 0),\
(5, 0, 5), (5, 5, 0), (5, 5, 5)],\
[2, 6, 7, 3], [3, 7, 5, 1], [7, 6, 4, 5], [1, 5, 4, 0],\
[3, 1, 0, 2], [0, 4, 6, 2]]
>>> hyperplane_parameters(cube[1:], cube[0])
[([0, -1, 0], -5), ([0, 0, -1], -5), ([-1, 0, 0], -5),
([0, 1, 0], 0), ([1, 0, 0], 0), ([0, 0, 1], 0)]
"""
if isinstance(poly, Polygon):
vertices = list(poly.vertices) + [poly.vertices[0]] # Close the polygon
params = [None] * (len(vertices) - 1)
for i in range(len(vertices) - 1):
v1 = vertices[i]
v2 = vertices[i + 1]
a1 = v1[1] - v2[1]
a2 = v2[0] - v1[0]
b = v2[0] * v1[1] - v2[1] * v1[0]
factor = gcd_list([a1, a2, b])
b = S(b) / factor
a = (S(a1) / factor, S(a2) / factor)
params[i] = (a, b)
else:
params = [None] * len(poly)
for i, polygon in enumerate(poly):
v1, v2, v3 = [vertices[vertex] for vertex in polygon[:3]]
normal = cross_product(v1, v2, v3)
b = sum([normal[j] * v1[j] for j in range(0, 3)])
fac = gcd_list(normal)
if fac is S.Zero:
fac = 1
normal = [j / fac for j in normal]
b = b / fac
params[i] = (normal, b)
return params
def cross_product(v1, v2, v3):
"""Returns the cross-product of vectors (v2 - v1) and (v3 - v1)
That is : (v2 - v1) X (v3 - v1)
"""
v2 = [v2[j] - v1[j] for j in range(0, 3)]
v3 = [v3[j] - v1[j] for j in range(0, 3)]
return [v3[2] * v2[1] - v3[1] * v2[2],
v3[0] * v2[2] - v3[2] * v2[0],
v3[1] * v2[0] - v3[0] * v2[1]]
def best_origin(a, b, lineseg, expr):
"""Helper method for polytope_integrate. Currently not used in the main
algorithm.
Returns a point on the lineseg whose vector inner product with the
divergence of `expr` yields an expression with the least maximum
total power.
Parameters
==========
a : Hyperplane parameter denoting direction.
b : Hyperplane parameter denoting distance.
lineseg : Line segment on which to find the origin.
expr : The expression which determines the best point.
Algorithm(currently works only for 2D use case)
===============================================
1 > Firstly, check for edge cases. Here that would refer to vertical
or horizontal lines.
2 > If input expression is a polynomial containing more than one generator
then find out the total power of each of the generators.
x**2 + 3 + x*y + x**4*y**5 ---> {x: 7, y: 6}
If expression is a constant value then pick the first boundary point
of the line segment.
3 > First check if a point exists on the line segment where the value of
the highest power generator becomes 0. If not check if the value of
the next highest becomes 0. If none becomes 0 within line segment
constraints then pick the first boundary point of the line segment.
Actually, any point lying on the segment can be picked as best origin
in the last case.
Examples
========
>>> from sympy.integrals.intpoly import best_origin
>>> from sympy.abc import x, y
>>> from sympy.geometry.line import Segment2D
>>> from sympy.geometry.point import Point
>>> l = Segment2D(Point(0, 3), Point(1, 1))
>>> expr = x**3*y**7
>>> best_origin((2, 1), 3, l, expr)
(0, 3.0)
"""
a1, b1 = lineseg.points[0]
def x_axis_cut(ls):
"""Returns the point where the input line segment
intersects the x-axis.
Parameters
==========
ls : Line segment
"""
p, q = ls.points
if p.y == S.Zero:
return tuple(p)
elif q.y == S.Zero:
return tuple(q)
elif p.y/q.y < S.Zero:
return p.y * (p.x - q.x)/(q.y - p.y) + p.x, S.Zero
else:
return ()
def y_axis_cut(ls):
"""Returns the point where the input line segment
intersects the y-axis.
Parameters
==========
ls : Line segment
"""
p, q = ls.points
if p.x == S.Zero:
return tuple(p)
elif q.x == S.Zero:
return tuple(q)
elif p.x/q.x < S.Zero:
return S.Zero, p.x * (p.y - q.y)/(q.x - p.x) + p.y
else:
return ()
gens = (x, y)
power_gens = {}
for i in gens:
power_gens[i] = S.Zero
if len(gens) > 1:
# Special case for vertical and horizontal lines
if len(gens) == 2:
if a[0] == S.Zero:
if y_axis_cut(lineseg):
return S.Zero, b/a[1]
else:
return a1, b1
elif a[1] == S.Zero:
if x_axis_cut(lineseg):
return b/a[0], S.Zero
else:
return a1, b1
if isinstance(expr, Expr): # Find the sum total of power of each
if expr.is_Add: # generator and store in a dictionary.
for monomial in expr.args:
if monomial.is_Pow:
if monomial.args[0] in gens:
power_gens[monomial.args[0]] += monomial.args[1]
else:
for univariate in monomial.args:
term_type = len(univariate.args)
if term_type == 0 and univariate in gens:
power_gens[univariate] += 1
elif term_type == 2 and univariate.args[0] in gens:
power_gens[univariate.args[0]] +=\
univariate.args[1]
elif expr.is_Mul:
for term in expr.args:
term_type = len(term.args)
if term_type == 0 and term in gens:
power_gens[term] += 1
elif term_type == 2 and term.args[0] in gens:
power_gens[term.args[0]] += term.args[1]
elif expr.is_Pow:
power_gens[expr.args[0]] = expr.args[1]
elif expr.is_Symbol:
power_gens[expr] += 1
else: # If `expr` is a constant take first vertex of the line segment.
return a1, b1
# TODO : This part is quite hacky. Should be made more robust with
# TODO : respect to symbol names and scalable w.r.t higher dimensions.
power_gens = sorted(power_gens.items(), key=lambda k: str(k[0]))
if power_gens[0][1] >= power_gens[1][1]:
if y_axis_cut(lineseg):
x0 = (S.Zero, b / a[1])
elif x_axis_cut(lineseg):
x0 = (b / a[0], S.Zero)
else:
x0 = (a1, b1)
else:
if x_axis_cut(lineseg):
x0 = (b/a[0], S.Zero)
elif y_axis_cut(lineseg):
x0 = (S.Zero, b/a[1])
else:
x0 = (a1, b1)
else:
x0 = (b/a[0])
return x0
def decompose(expr, separate=False):
"""Decomposes an input polynomial into homogeneous ones of
smaller or equal degree.
Returns a dictionary with keys as the degree of the smaller
constituting polynomials. Values are the constituting polynomials.
Parameters
==========
expr : Polynomial(SymPy expression)
Optional Parameters:
--------------------
separate : If True then simply return a list of the constituent monomials
If not then break up the polynomial into constituent homogeneous
polynomials.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.integrals.intpoly import decompose
>>> decompose(x**2 + x*y + x + y + x**3*y**2 + y**5)
{1: x + y, 2: x**2 + x*y, 5: x**3*y**2 + y**5}
>>> decompose(x**2 + x*y + x + y + x**3*y**2 + y**5, True)
{x, x**2, y, y**5, x*y, x**3*y**2}
"""
poly_dict = {}
if isinstance(expr, Expr) and not expr.is_number:
if expr.is_Symbol:
poly_dict[1] = expr
elif expr.is_Add:
symbols = expr.atoms(Symbol)
degrees = [(sum(degree_list(monom, *symbols)), monom)
for monom in expr.args]
if separate:
return {monom[1] for monom in degrees}
else:
for monom in degrees:
degree, term = monom
if poly_dict.get(degree):
poly_dict[degree] += term
else:
poly_dict[degree] = term
elif expr.is_Pow:
_, degree = expr.args
poly_dict[degree] = expr
else: # Now expr can only be of `Mul` type
degree = 0
for term in expr.args:
term_type = len(term.args)
if term_type == 0 and term.is_Symbol:
degree += 1
elif term_type == 2:
degree += term.args[1]
poly_dict[degree] = expr
else:
poly_dict[0] = expr
if separate:
return set(poly_dict.values())
return poly_dict
def point_sort(poly, normal=None, clockwise=True):
"""Returns the same polygon with points sorted in clockwise or
anti-clockwise order.
Note that it's necessary for input points to be sorted in some order
(clockwise or anti-clockwise) for the integration algorithm to work.
As a convention algorithm has been implemented keeping clockwise
orientation in mind.
Parameters
==========
poly: 2D or 3D Polygon
Optional Parameters:
---------------------
normal : The normal of the plane which the 3-Polytope is a part of.
clockwise : Returns points sorted in clockwise order if True and
anti-clockwise if False.
Examples
========
>>> from sympy.integrals.intpoly import point_sort
>>> from sympy.geometry.point import Point
>>> point_sort([Point(0, 0), Point(1, 0), Point(1, 1)])
[Point2D(1, 1), Point2D(1, 0), Point2D(0, 0)]
"""
pts = poly.vertices if isinstance(poly, Polygon) else poly
n = len(pts)
if n < 2:
return list(pts)
order = S(1) if clockwise else S(-1)
dim = len(pts[0])
if dim == 2:
center = Point(sum(map(lambda vertex: vertex.x, pts)) / n,
sum(map(lambda vertex: vertex.y, pts)) / n)
else:
center = Point(sum(map(lambda vertex: vertex.x, pts)) / n,
sum(map(lambda vertex: vertex.y, pts)) / n,
sum(map(lambda vertex: vertex.z, pts)) / n)
def compare(a, b):
if a.x - center.x >= S.Zero and b.x - center.x < S.Zero:
return -order
elif a.x - center.x < S.Zero and b.x - center.x >= S.Zero:
return order
elif a.x - center.x == S.Zero and b.x - center.x == S.Zero:
if a.y - center.y >= S.Zero or b.y - center.y >= S.Zero:
return -order if a.y > b.y else order
return -order if b.y > a.y else order
det = (a.x - center.x) * (b.y - center.y) -\
(b.x - center.x) * (a.y - center.y)
if det < S.Zero:
return -order
elif det > S.Zero:
return order
first = (a.x - center.x) * (a.x - center.x) +\
(a.y - center.y) * (a.y - center.y)
second = (b.x - center.x) * (b.x - center.x) +\
(b.y - center.y) * (b.y - center.y)
return -order if first > second else order
def compare3d(a, b):
det = cross_product(center, a, b)
dot_product = sum([det[i] * normal[i] for i in range(0, 3)])
if dot_product < S.Zero:
return -order
elif dot_product > S.Zero:
return order
return sorted(pts, key=cmp_to_key(compare if dim==2 else compare3d))
def norm(point):
"""Returns the Euclidean norm of a point from origin.
Parameters
==========
point: This denotes a point in the dimension_al spac_e.
Examples
========
>>> from sympy.integrals.intpoly import norm
>>> from sympy.geometry.point import Point
>>> norm(Point(2, 7))
sqrt(53)
"""
half = S(1)/2
if isinstance(point, (list, tuple)):
return sum([coord ** 2 for coord in point]) ** half
elif isinstance(point, Point):
if isinstance(point, Point2D):
return (point.x ** 2 + point.y ** 2) ** half
else:
return (point.x ** 2 + point.y ** 2 + point.z) ** half
elif isinstance(point, dict):
return sum(i**2 for i in point.values()) ** half
def intersection(geom_1, geom_2, intersection_type):
"""Returns intersection between geometric objects.
Note that this function is meant for use in integration_reduction and
at that point in the calling function the lines denoted by the segments
surely intersect within segment boundaries. Coincident lines are taken
to be non-intersecting. Also, the hyperplane intersection for 2D case is
also implemented.
Parameters
==========
geom_1, geom_2: The input line segments
Examples
========
>>> from sympy.integrals.intpoly import intersection
>>> from sympy.geometry.point import Point
>>> from sympy.geometry.line import Segment2D
>>> l1 = Segment2D(Point(1, 1), Point(3, 5))
>>> l2 = Segment2D(Point(2, 0), Point(2, 5))
>>> intersection(l1, l2, "segment2D")
(2, 3)
>>> p1 = ((-1, 0), 0)
>>> p2 = ((0, 1), 1)
>>> intersection(p1, p2, "plane2D")
(0, 1)
"""
if intersection_type[:-2] == "segment":
if intersection_type == "segment2D":
x1, y1 = geom_1.points[0]
x2, y2 = geom_1.points[1]
x3, y3 = geom_2.points[0]
x4, y4 = geom_2.points[1]
elif intersection_type == "segment3D":
x1, y1, z1 = geom_1.points[0]
x2, y2, z2 = geom_1.points[1]
x3, y3, z3 = geom_2.points[0]
x4, y4, z4 = geom_2.points[1]
denom = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4)
if denom:
t1 = x1 * y2 - y1 * x2
t2 = x3 * y4 - x4 * y3
return (S(t1 * (x3 - x4) - t2 * (x1 - x2)) / denom,
S(t1 * (y3 - y4) - t2 * (y1 - y2)) / denom)
if intersection_type[:-2] == "plane":
if intersection_type == "plane2D": # Intersection of hyperplanes
a1x, a1y = geom_1[0]
a2x, a2y = geom_2[0]
b1, b2 = geom_1[1], geom_2[1]
denom = a1x * a2y - a2x * a1y
if denom:
return (S(b1 * a2y - b2 * a1y) / denom,
S(b2 * a1x - b1 * a2x) / denom)
def is_vertex(ent):
"""If the input entity is a vertex return True
Parameter
=========
ent : Denotes a geometric entity representing a point
Examples
========
>>> from sympy.geometry.point import Point
>>> from sympy.integrals.intpoly import is_vertex
>>> is_vertex((2, 3))
True
>>> is_vertex((2, 3, 6))
True
>>> is_vertex(Point(2, 3))
True
"""
if isinstance(ent, tuple):
if len(ent) in [2, 3]:
return True
elif isinstance(ent, Point):
return True
return False
def plot_polytope(poly):
"""Plots the 2D polytope using the functions written in plotting
module which in turn uses matplotlib backend.
Parameter
=========
poly: Denotes a 2-Polytope
"""
from sympy.plotting.plot import Plot, List2DSeries
xl = list(map(lambda vertex: vertex.x, poly.vertices))
yl = list(map(lambda vertex: vertex.y, poly.vertices))
xl.append(poly.vertices[0].x) # Closing the polygon
yl.append(poly.vertices[0].y)
l2ds = List2DSeries(xl, yl)
p = Plot(l2ds, axes='label_axes=True')
p.show()
def plot_polynomial(expr):
"""Plots the polynomial using the functions written in
plotting module which in turn uses matplotlib backend.
Parameter
=========
expr: Denotes a polynomial(SymPy expression)
"""
from sympy.plotting.plot import plot3d, plot
gens = expr.free_symbols
if len(gens) == 2:
plot3d(expr)
else:
plot(expr)
|
f1d50761051acaec0590693e5ea24abae61db183a747eb48e9c89b0beba95638
|
from __future__ import print_function, division
from sympy.concrete.expr_with_limits import AddWithLimits
from sympy.core.add import Add
from sympy.core.basic import Basic
from sympy.core.compatibility import is_sequence, range
from sympy.core.containers import Tuple
from sympy.core.expr import Expr
from sympy.core.function import diff
from sympy.core.mul import Mul
from sympy.core.numbers import oo, pi
from sympy.core.relational import Eq, Ne
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, Symbol, Wild)
from sympy.core.sympify import sympify
from sympy.integrals.manualintegrate import manualintegrate
from sympy.integrals.trigonometry import trigintegrate
from sympy.integrals.meijerint import meijerint_definite, meijerint_indefinite
from sympy.matrices import MatrixBase
from sympy.utilities.misc import filldedent
from sympy.polys import Poly, PolynomialError
from sympy.functions import Piecewise, sqrt, sign, piecewise_fold, tan, cot, atan
from sympy.functions.elementary.exponential import log
from sympy.functions.elementary.integers import floor
from sympy.functions.elementary.complexes import Abs, sign
from sympy.functions.elementary.miscellaneous import Min, Max
from sympy.series import limit
from sympy.series.order import Order
from sympy.series.formal import FormalPowerSeries
from sympy.simplify.fu import sincos_to_sum
class Integral(AddWithLimits):
"""Represents unevaluated integral."""
__slots__ = ['is_commutative']
def __new__(cls, function, *symbols, **assumptions):
"""Create an unevaluated integral.
Arguments are an integrand followed by one or more limits.
If no limits are given and there is only one free symbol in the
expression, that symbol will be used, otherwise an error will be
raised.
>>> from sympy import Integral
>>> from sympy.abc import x, y
>>> Integral(x)
Integral(x, x)
>>> Integral(y)
Integral(y, y)
When limits are provided, they are interpreted as follows (using
``x`` as though it were the variable of integration):
(x,) or x - indefinite integral
(x, a) - "evaluate at" integral is an abstract antiderivative
(x, a, b) - definite integral
The ``as_dummy`` method can be used to see which symbols cannot be
targeted by subs: those with a preppended underscore cannot be
changed with ``subs``. (Also, the integration variables themselves --
the first element of a limit -- can never be changed by subs.)
>>> i = Integral(x, x)
>>> at = Integral(x, (x, x))
>>> i.as_dummy()
Integral(x, x)
>>> at.as_dummy()
Integral(_0, (_0, x))
"""
#This will help other classes define their own definitions
#of behaviour with Integral.
if hasattr(function, '_eval_Integral'):
return function._eval_Integral(*symbols, **assumptions)
obj = AddWithLimits.__new__(cls, function, *symbols, **assumptions)
return obj
def __getnewargs__(self):
return (self.function,) + tuple([tuple(xab) for xab in self.limits])
@property
def free_symbols(self):
"""
This method returns the symbols that will exist when the
integral is evaluated. This is useful if one is trying to
determine whether an integral depends on a certain
symbol or not.
Examples
========
>>> from sympy import Integral
>>> from sympy.abc import x, y
>>> Integral(x, (x, y, 1)).free_symbols
{y}
See Also
========
function, limits, variables
"""
return AddWithLimits.free_symbols.fget(self)
def _eval_is_zero(self):
# This is a very naive and quick test, not intended to do the integral to
# answer whether it is zero or not, e.g. Integral(sin(x), (x, 0, 2*pi))
# is zero but this routine should return None for that case. But, like
# Mul, there are trivial situations for which the integral will be
# zero so we check for those.
if self.function.is_zero:
return True
got_none = False
for l in self.limits:
if len(l) == 3:
z = (l[1] == l[2]) or (l[1] - l[2]).is_zero
if z:
return True
elif z is None:
got_none = True
free = self.function.free_symbols
for xab in self.limits:
if len(xab) == 1:
free.add(xab[0])
continue
if len(xab) == 2 and xab[0] not in free:
if xab[1].is_zero:
return True
elif xab[1].is_zero is None:
got_none = True
# take integration symbol out of free since it will be replaced
# with the free symbols in the limits
free.discard(xab[0])
# add in the new symbols
for i in xab[1:]:
free.update(i.free_symbols)
if self.function.is_zero is False and got_none is False:
return False
def transform(self, x, u):
r"""
Performs a change of variables from `x` to `u` using the relationship
given by `x` and `u` which will define the transformations `f` and `F`
(which are inverses of each other) as follows:
1) If `x` is a Symbol (which is a variable of integration) then `u`
will be interpreted as some function, f(u), with inverse F(u).
This, in effect, just makes the substitution of x with f(x).
2) If `u` is a Symbol then `x` will be interpreted as some function,
F(x), with inverse f(u). This is commonly referred to as
u-substitution.
Once f and F have been identified, the transformation is made as
follows:
.. math:: \int_a^b x \mathrm{d}x \rightarrow \int_{F(a)}^{F(b)} f(x)
\frac{\mathrm{d}}{\mathrm{d}x}
where `F(x)` is the inverse of `f(x)` and the limits and integrand have
been corrected so as to retain the same value after integration.
Notes
=====
The mappings, F(x) or f(u), must lead to a unique integral. Linear
or rational linear expression, `2*x`, `1/x` and `sqrt(x)`, will
always work; quadratic expressions like `x**2 - 1` are acceptable
as long as the resulting integrand does not depend on the sign of
the solutions (see examples).
The integral will be returned unchanged if `x` is not a variable of
integration.
`x` must be (or contain) only one of of the integration variables. If
`u` has more than one free symbol then it should be sent as a tuple
(`u`, `uvar`) where `uvar` identifies which variable is replacing
the integration variable.
XXX can it contain another integration variable?
Examples
========
>>> from sympy.abc import a, b, c, d, x, u, y
>>> from sympy import Integral, S, cos, sqrt
>>> i = Integral(x*cos(x**2 - 1), (x, 0, 1))
transform can change the variable of integration
>>> i.transform(x, u)
Integral(u*cos(u**2 - 1), (u, 0, 1))
transform can perform u-substitution as long as a unique
integrand is obtained:
>>> i.transform(x**2 - 1, u)
Integral(cos(u)/2, (u, -1, 0))
This attempt fails because x = +/-sqrt(u + 1) and the
sign does not cancel out of the integrand:
>>> Integral(cos(x**2 - 1), (x, 0, 1)).transform(x**2 - 1, u)
Traceback (most recent call last):
...
ValueError:
The mapping between F(x) and f(u) did not give a unique integrand.
transform can do a substitution. Here, the previous
result is transformed back into the original expression
using "u-substitution":
>>> ui = _
>>> _.transform(sqrt(u + 1), x) == i
True
We can accomplish the same with a regular substitution:
>>> ui.transform(u, x**2 - 1) == i
True
If the `x` does not contain a symbol of integration then
the integral will be returned unchanged. Integral `i` does
not have an integration variable `a` so no change is made:
>>> i.transform(a, x) == i
True
When `u` has more than one free symbol the symbol that is
replacing `x` must be identified by passing `u` as a tuple:
>>> Integral(x, (x, 0, 1)).transform(x, (u + a, u))
Integral(a + u, (u, -a, 1 - a))
>>> Integral(x, (x, 0, 1)).transform(x, (u + a, a))
Integral(a + u, (a, -u, 1 - u))
See Also
========
variables : Lists the integration variables
as_dummy : Replace integration variables with dummy ones
"""
from sympy.solvers.solvers import solve, posify
d = Dummy('d')
xfree = x.free_symbols.intersection(self.variables)
if len(xfree) > 1:
raise ValueError(
'F(x) can only contain one of: %s' % self.variables)
xvar = xfree.pop() if xfree else d
if xvar not in self.variables:
return self
u = sympify(u)
if isinstance(u, Expr):
ufree = u.free_symbols
if len(ufree) != 1:
raise ValueError(filldedent('''
When f(u) has more than one free symbol, the one replacing x
must be identified: pass f(u) as (f(u), u)'''))
uvar = ufree.pop()
else:
u, uvar = u
if uvar not in u.free_symbols:
raise ValueError(filldedent('''
Expecting a tuple (expr, symbol) where symbol identified
a free symbol in expr, but symbol is not in expr's free
symbols.'''))
if not isinstance(uvar, Symbol):
raise ValueError(filldedent('''
Expecting a tuple (expr, symbol) but didn't get
a symbol; got %s''' % uvar))
if x.is_Symbol and u.is_Symbol:
return self.xreplace({x: u})
if not x.is_Symbol and not u.is_Symbol:
raise ValueError('either x or u must be a symbol')
if uvar == xvar:
return self.transform(x, (u.subs(uvar, d), d)).xreplace({d: uvar})
if uvar in self.limits:
raise ValueError(filldedent('''
u must contain the same variable as in x
or a variable that is not already an integration variable'''))
if not x.is_Symbol:
F = [x.subs(xvar, d)]
soln = solve(u - x, xvar, check=False)
if not soln:
raise ValueError('no solution for solve(F(x) - f(u), x)')
f = [fi.subs(uvar, d) for fi in soln]
else:
f = [u.subs(uvar, d)]
pdiff, reps = posify(u - x)
puvar = uvar.subs([(v, k) for k, v in reps.items()])
soln = [s.subs(reps) for s in solve(pdiff, puvar)]
if not soln:
raise ValueError('no solution for solve(F(x) - f(u), u)')
F = [fi.subs(xvar, d) for fi in soln]
newfuncs = set([(self.function.subs(xvar, fi)*fi.diff(d)
).subs(d, uvar) for fi in f])
if len(newfuncs) > 1:
raise ValueError(filldedent('''
The mapping between F(x) and f(u) did not give
a unique integrand.'''))
newfunc = newfuncs.pop()
def _calc_limit_1(F, a, b):
"""
replace d with a, using subs if possible, otherwise limit
where sign of b is considered
"""
wok = F.subs(d, a)
if wok is S.NaN or wok.is_finite is False and a.is_finite:
return limit(sign(b)*F, d, a)
return wok
def _calc_limit(a, b):
"""
replace d with a, using subs if possible, otherwise limit
where sign of b is considered
"""
avals = list({_calc_limit_1(Fi, a, b) for Fi in F})
if len(avals) > 1:
raise ValueError(filldedent('''
The mapping between F(x) and f(u) did not
give a unique limit.'''))
return avals[0]
newlimits = []
for xab in self.limits:
sym = xab[0]
if sym == xvar:
if len(xab) == 3:
a, b = xab[1:]
a, b = _calc_limit(a, b), _calc_limit(b, a)
if a - b > 0:
a, b = b, a
newfunc = -newfunc
newlimits.append((uvar, a, b))
elif len(xab) == 2:
a = _calc_limit(xab[1], 1)
newlimits.append((uvar, a))
else:
newlimits.append(uvar)
else:
newlimits.append(xab)
return self.func(newfunc, *newlimits)
def doit(self, **hints):
"""
Perform the integration using any hints given.
Examples
========
>>> from sympy import Integral
>>> from sympy.abc import x, i
>>> Integral(x**i, (i, 1, 3)).doit()
Piecewise((x**3/log(x) - x/log(x),
(x > 1) | ((x >= 0) & (x < 1))), (2, True))
See Also
========
sympy.integrals.trigonometry.trigintegrate
sympy.integrals.risch.heurisch
sympy.integrals.rationaltools.ratint
as_sum : Approximate the integral using a sum
"""
if not hints.get('integrals', True):
return self
deep = hints.get('deep', True)
meijerg = hints.get('meijerg', None)
conds = hints.get('conds', 'piecewise')
risch = hints.get('risch', None)
heurisch = hints.get('heurisch', None)
manual = hints.get('manual', None)
if len(list(filter(None, (manual, meijerg, risch, heurisch)))) > 1:
raise ValueError("At most one of manual, meijerg, risch, heurisch can be True")
elif manual:
meijerg = risch = heurisch = False
elif meijerg:
manual = risch = heurisch = False
elif risch:
manual = meijerg = heurisch = False
elif heurisch:
manual = meijerg = risch = False
eval_kwargs = dict(meijerg=meijerg, risch=risch, manual=manual, heurisch=heurisch,
conds=conds)
if conds not in ['separate', 'piecewise', 'none']:
raise ValueError('conds must be one of "separate", "piecewise", '
'"none", got: %s' % conds)
if risch and any(len(xab) > 1 for xab in self.limits):
raise ValueError('risch=True is only allowed for indefinite integrals.')
# check for the trivial zero
if self.is_zero:
return S.Zero
# now compute and check the function
function = self.function
if deep:
function = function.doit(**hints)
if function.is_zero:
return S.Zero
# hacks to handle special cases
if isinstance(function, MatrixBase):
return function.applyfunc(
lambda f: self.func(f, self.limits).doit(**hints))
if isinstance(function, FormalPowerSeries):
if len(self.limits) > 1:
raise NotImplementedError
xab = self.limits[0]
if len(xab) > 1:
return function.integrate(xab, **eval_kwargs)
else:
return function.integrate(xab[0], **eval_kwargs)
# There is no trivial answer and special handling
# is done so continue
undone_limits = []
# ulj = free symbols of any undone limits' upper and lower limits
ulj = set()
for xab in self.limits:
# compute uli, the free symbols in the
# Upper and Lower limits of limit I
if len(xab) == 1:
uli = set(xab[:1])
elif len(xab) == 2:
uli = xab[1].free_symbols
elif len(xab) == 3:
uli = xab[1].free_symbols.union(xab[2].free_symbols)
# this integral can be done as long as there is no blocking
# limit that has been undone. An undone limit is blocking if
# it contains an integration variable that is in this limit's
# upper or lower free symbols or vice versa
if xab[0] in ulj or any(v[0] in uli for v in undone_limits):
undone_limits.append(xab)
ulj.update(uli)
function = self.func(*([function] + [xab]))
factored_function = function.factor()
if not isinstance(factored_function, Integral):
function = factored_function
continue
if function.has(Abs, sign) and (
(len(xab) < 3 and all(x.is_real for x in xab)) or
(len(xab) == 3 and all(x.is_real and not x.is_infinite for
x in xab[1:]))):
# some improper integrals are better off with Abs
xr = Dummy("xr", real=True)
function = (function.xreplace({xab[0]: xr})
.rewrite(Piecewise).xreplace({xr: xab[0]}))
elif function.has(Min, Max):
function = function.rewrite(Piecewise)
if (function.has(Piecewise) and
not isinstance(function, Piecewise)):
function = piecewise_fold(function)
if isinstance(function, Piecewise):
if len(xab) == 1:
antideriv = function._eval_integral(xab[0],
**eval_kwargs)
else:
antideriv = self._eval_integral(
function, xab[0], **eval_kwargs)
else:
# There are a number of tradeoffs in using the
# Meijer G method. It can sometimes be a lot faster
# than other methods, and sometimes slower. And
# there are certain types of integrals for which it
# is more likely to work than others. These
# heuristics are incorporated in deciding what
# integration methods to try, in what order. See the
# integrate() docstring for details.
def try_meijerg(function, xab):
ret = None
if len(xab) == 3 and meijerg is not False:
x, a, b = xab
try:
res = meijerint_definite(function, x, a, b)
except NotImplementedError:
from sympy.integrals.meijerint import _debug
_debug('NotImplementedError '
'from meijerint_definite')
res = None
if res is not None:
f, cond = res
if conds == 'piecewise':
ret = Piecewise(
(f, cond),
(self.func(
function, (x, a, b)), True))
elif conds == 'separate':
if len(self.limits) != 1:
raise ValueError(filldedent('''
conds=separate not supported in
multiple integrals'''))
ret = f, cond
else:
ret = f
return ret
meijerg1 = meijerg
if (meijerg is not False and
len(xab) == 3 and xab[1].is_real and xab[2].is_real
and not function.is_Poly and
(xab[1].has(oo, -oo) or xab[2].has(oo, -oo))):
ret = try_meijerg(function, xab)
if ret is not None:
function = ret
continue
meijerg1 = False
# If the special meijerg code did not succeed in
# finding a definite integral, then the code using
# meijerint_indefinite will not either (it might
# find an antiderivative, but the answer is likely
# to be nonsensical). Thus if we are requested to
# only use Meijer G-function methods, we give up at
# this stage. Otherwise we just disable G-function
# methods.
if meijerg1 is False and meijerg is True:
antideriv = None
else:
antideriv = self._eval_integral(
function, xab[0], **eval_kwargs)
if antideriv is None and meijerg is True:
ret = try_meijerg(function, xab)
if ret is not None:
function = ret
continue
if not isinstance(antideriv, Integral) and antideriv is not None:
sym = xab[0]
for atan_term in antideriv.atoms(atan):
atan_arg = atan_term.args[0]
# Checking `atan_arg` to be linear combination of `tan` or `cot`
for tan_part in atan_arg.atoms(tan):
x1 = Dummy('x1')
tan_exp1 = atan_arg.subs(tan_part, x1)
# The coefficient of `tan` should be constant
coeff = tan_exp1.diff(x1)
if x1 not in coeff.free_symbols:
a = tan_part.args[0]
antideriv = antideriv.subs(atan_term, Add(atan_term,
sign(coeff)*pi*floor((a-pi/2)/pi)))
for cot_part in atan_arg.atoms(cot):
x1 = Dummy('x1')
cot_exp1 = atan_arg.subs(cot_part, x1)
# The coefficient of `cot` should be constant
coeff = cot_exp1.diff(x1)
if x1 not in coeff.free_symbols:
a = cot_part.args[0]
antideriv = antideriv.subs(atan_term, Add(atan_term,
sign(coeff)*pi*floor((a)/pi)))
if antideriv is None:
undone_limits.append(xab)
function = self.func(*([function] + [xab])).factor()
factored_function = function.factor()
if not isinstance(factored_function, Integral):
function = factored_function
continue
else:
if len(xab) == 1:
function = antideriv
else:
if len(xab) == 3:
x, a, b = xab
elif len(xab) == 2:
x, b = xab
a = None
else:
raise NotImplementedError
if deep:
if isinstance(a, Basic):
a = a.doit(**hints)
if isinstance(b, Basic):
b = b.doit(**hints)
if antideriv.is_Poly:
gens = list(antideriv.gens)
gens.remove(x)
antideriv = antideriv.as_expr()
function = antideriv._eval_interval(x, a, b)
function = Poly(function, *gens)
else:
def is_indef_int(g, x):
return (isinstance(g, Integral) and
any(i == (x,) for i in g.limits))
def eval_factored(f, x, a, b):
# _eval_interval for integrals with
# (constant) factors
# a single indefinite integral is assumed
args = []
for g in Mul.make_args(f):
if is_indef_int(g, x):
args.append(g._eval_interval(x, a, b))
else:
args.append(g)
return Mul(*args)
integrals, others, piecewises = [], [], []
for f in Add.make_args(antideriv):
if any(is_indef_int(g, x)
for g in Mul.make_args(f)):
integrals.append(f)
elif any(isinstance(g, Piecewise)
for g in Mul.make_args(f)):
piecewises.append(piecewise_fold(f))
else:
others.append(f)
uneval = Add(*[eval_factored(f, x, a, b)
for f in integrals])
try:
evalued = Add(*others)._eval_interval(x, a, b)
evalued_pw = piecewise_fold(Add(*piecewises))._eval_interval(x, a, b)
function = uneval + evalued + evalued_pw
except NotImplementedError:
# This can happen if _eval_interval depends in a
# complicated way on limits that cannot be computed
undone_limits.append(xab)
function = self.func(*([function] + [xab]))
factored_function = function.factor()
if not isinstance(factored_function, Integral):
function = factored_function
return function
def _eval_derivative(self, sym):
"""Evaluate the derivative of the current Integral object by
differentiating under the integral sign [1], using the Fundamental
Theorem of Calculus [2] when possible.
Whenever an Integral is encountered that is equivalent to zero or
has an integrand that is independent of the variable of integration
those integrals are performed. All others are returned as Integral
instances which can be resolved with doit() (provided they are integrable).
References:
[1] https://en.wikipedia.org/wiki/Differentiation_under_the_integral_sign
[2] https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus
Examples
========
>>> from sympy import Integral
>>> from sympy.abc import x, y
>>> i = Integral(x + y, y, (y, 1, x))
>>> i.diff(x)
Integral(x + y, (y, x)) + Integral(1, y, (y, 1, x))
>>> i.doit().diff(x) == i.diff(x).doit()
True
>>> i.diff(y)
0
The previous must be true since there is no y in the evaluated integral:
>>> i.free_symbols
{x}
>>> i.doit()
2*x**3/3 - x/2 - 1/6
"""
# differentiate under the integral sign; we do not
# check for regularity conditions (TODO), see issue 4215
# get limits and the function
f, limits = self.function, list(self.limits)
# the order matters if variables of integration appear in the limits
# so work our way in from the outside to the inside.
limit = limits.pop(-1)
if len(limit) == 3:
x, a, b = limit
elif len(limit) == 2:
x, b = limit
a = None
else:
a = b = None
x = limit[0]
if limits: # f is the argument to an integral
f = self.func(f, *tuple(limits))
# assemble the pieces
def _do(f, ab):
dab_dsym = diff(ab, sym)
if not dab_dsym:
return S.Zero
if isinstance(f, Integral):
limits = [(x, x) if (len(l) == 1 and l[0] == x) else l
for l in f.limits]
f = self.func(f.function, *limits)
return f.subs(x, ab)*dab_dsym
rv = S.Zero
if b is not None:
rv += _do(f, b)
if a is not None:
rv -= _do(f, a)
if len(limit) == 1 and sym == x:
# the dummy variable *is* also the real-world variable
arg = f
rv += arg
else:
# the dummy variable might match sym but it's
# only a dummy and the actual variable is determined
# by the limits, so mask off the variable of integration
# while differentiating
u = Dummy('u')
arg = f.subs(x, u).diff(sym).subs(u, x)
if arg:
rv += self.func(arg, Tuple(x, a, b))
return rv
def _eval_integral(self, f, x, meijerg=None, risch=None, manual=None,
heurisch=None, conds='piecewise'):
"""
Calculate the anti-derivative to the function f(x).
The following algorithms are applied (roughly in this order):
1. Simple heuristics (based on pattern matching and integral table):
- most frequently used functions (e.g. polynomials, products of
trig functions)
2. Integration of rational functions:
- A complete algorithm for integrating rational functions is
implemented (the Lazard-Rioboo-Trager algorithm). The algorithm
also uses the partial fraction decomposition algorithm
implemented in apart() as a preprocessor to make this process
faster. Note that the integral of a rational function is always
elementary, but in general, it may include a RootSum.
3. Full Risch algorithm:
- The Risch algorithm is a complete decision
procedure for integrating elementary functions, which means that
given any elementary function, it will either compute an
elementary antiderivative, or else prove that none exists.
Currently, part of transcendental case is implemented, meaning
elementary integrals containing exponentials, logarithms, and
(soon!) trigonometric functions can be computed. The algebraic
case, e.g., functions containing roots, is much more difficult
and is not implemented yet.
- If the routine fails (because the integrand is not elementary, or
because a case is not implemented yet), it continues on to the
next algorithms below. If the routine proves that the integrals
is nonelementary, it still moves on to the algorithms below,
because we might be able to find a closed-form solution in terms
of special functions. If risch=True, however, it will stop here.
4. The Meijer G-Function algorithm:
- This algorithm works by first rewriting the integrand in terms of
very general Meijer G-Function (meijerg in SymPy), integrating
it, and then rewriting the result back, if possible. This
algorithm is particularly powerful for definite integrals (which
is actually part of a different method of Integral), since it can
compute closed-form solutions of definite integrals even when no
closed-form indefinite integral exists. But it also is capable
of computing many indefinite integrals as well.
- Another advantage of this method is that it can use some results
about the Meijer G-Function to give a result in terms of a
Piecewise expression, which allows to express conditionally
convergent integrals.
- Setting meijerg=True will cause integrate() to use only this
method.
5. The "manual integration" algorithm:
- This algorithm tries to mimic how a person would find an
antiderivative by hand, for example by looking for a
substitution or applying integration by parts. This algorithm
does not handle as many integrands but can return results in a
more familiar form.
- Sometimes this algorithm can evaluate parts of an integral; in
this case integrate() will try to evaluate the rest of the
integrand using the other methods here.
- Setting manual=True will cause integrate() to use only this
method.
6. The Heuristic Risch algorithm:
- This is a heuristic version of the Risch algorithm, meaning that
it is not deterministic. This is tried as a last resort because
it can be very slow. It is still used because not enough of the
full Risch algorithm is implemented, so that there are still some
integrals that can only be computed using this method. The goal
is to implement enough of the Risch and Meijer G-function methods
so that this can be deleted.
Setting heurisch=True will cause integrate() to use only this
method. Set heurisch=False to not use it.
"""
from sympy.integrals.deltafunctions import deltaintegrate
from sympy.integrals.singularityfunctions import singularityintegrate
from sympy.integrals.heurisch import heurisch as heurisch_, heurisch_wrapper
from sympy.integrals.rationaltools import ratint
from sympy.integrals.risch import risch_integrate
if risch:
try:
return risch_integrate(f, x, conds=conds)
except NotImplementedError:
return None
if manual:
try:
result = manualintegrate(f, x)
if result is not None and result.func != Integral:
return result
except (ValueError, PolynomialError):
pass
eval_kwargs = dict(meijerg=meijerg, risch=risch, manual=manual,
heurisch=heurisch, conds=conds)
# if it is a poly(x) then let the polynomial integrate itself (fast)
#
# It is important to make this check first, otherwise the other code
# will return a sympy expression instead of a Polynomial.
#
# see Polynomial for details.
if isinstance(f, Poly) and not (manual or meijerg or risch):
return f.integrate(x)
# Piecewise antiderivatives need to call special integrate.
if isinstance(f, Piecewise):
return f.piecewise_integrate(x, **eval_kwargs)
# let's cut it short if `f` does not depend on `x`; if
# x is only a dummy, that will be handled below
if not f.has(x):
return f*x
# try to convert to poly(x) and then integrate if successful (fast)
poly = f.as_poly(x)
if poly is not None and not (manual or meijerg or risch):
return poly.integrate().as_expr()
if risch is not False:
try:
result, i = risch_integrate(f, x, separate_integral=True,
conds=conds)
except NotImplementedError:
pass
else:
if i:
# There was a nonelementary integral. Try integrating it.
# if no part of the NonElementaryIntegral is integrated by
# the Risch algorithm, then use the original function to
# integrate, instead of re-written one
if result == 0:
from sympy.integrals.risch import NonElementaryIntegral
return NonElementaryIntegral(f, x).doit(risch=False)
else:
return result + i.doit(risch=False)
else:
return result
# since Integral(f=g1+g2+...) == Integral(g1) + Integral(g2) + ...
# we are going to handle Add terms separately,
# if `f` is not Add -- we only have one term
# Note that in general, this is a bad idea, because Integral(g1) +
# Integral(g2) might not be computable, even if Integral(g1 + g2) is.
# For example, Integral(x**x + x**x*log(x)). But many heuristics only
# work term-wise. So we compute this step last, after trying
# risch_integrate. We also try risch_integrate again in this loop,
# because maybe the integral is a sum of an elementary part and a
# nonelementary part (like erf(x) + exp(x)). risch_integrate() is
# quite fast, so this is acceptable.
parts = []
args = Add.make_args(f)
for g in args:
coeff, g = g.as_independent(x)
# g(x) = const
if g is S.One and not meijerg:
parts.append(coeff*x)
continue
# g(x) = expr + O(x**n)
order_term = g.getO()
if order_term is not None:
h = self._eval_integral(g.removeO(), x, **eval_kwargs)
if h is not None:
h_order_expr = self._eval_integral(order_term.expr, x, **eval_kwargs)
if h_order_expr is not None:
h_order_term = order_term.func(
h_order_expr, *order_term.variables)
parts.append(coeff*(h + h_order_term))
continue
# NOTE: if there is O(x**n) and we fail to integrate then
# there is no point in trying other methods because they
# will fail, too.
return None
# c
# g(x) = (a*x+b)
if g.is_Pow and not g.exp.has(x) and not meijerg:
a = Wild('a', exclude=[x])
b = Wild('b', exclude=[x])
M = g.base.match(a*x + b)
if M is not None:
if g.exp == -1:
h = log(g.base)
elif conds != 'piecewise':
h = g.base**(g.exp + 1) / (g.exp + 1)
else:
h1 = log(g.base)
h2 = g.base**(g.exp + 1) / (g.exp + 1)
h = Piecewise((h2, Ne(g.exp, -1)), (h1, True))
parts.append(coeff * h / M[a])
continue
# poly(x)
# g(x) = -------
# poly(x)
if g.is_rational_function(x) and not (manual or meijerg or risch):
parts.append(coeff * ratint(g, x))
continue
if not (manual or meijerg or risch):
# g(x) = Mul(trig)
h = trigintegrate(g, x, conds=conds)
if h is not None:
parts.append(coeff * h)
continue
# g(x) has at least a DiracDelta term
h = deltaintegrate(g, x)
if h is not None:
parts.append(coeff * h)
continue
# g(x) has at least a Singularity Function term
h = singularityintegrate(g, x)
if h is not None:
parts.append(coeff * h)
continue
# Try risch again.
if risch is not False:
try:
h, i = risch_integrate(g, x,
separate_integral=True, conds=conds)
except NotImplementedError:
h = None
else:
if i:
h = h + i.doit(risch=False)
parts.append(coeff*h)
continue
# fall back to heurisch
if heurisch is not False:
try:
if conds == 'piecewise':
h = heurisch_wrapper(g, x, hints=[])
else:
h = heurisch_(g, x, hints=[])
except PolynomialError:
# XXX: this exception means there is a bug in the
# implementation of heuristic Risch integration
# algorithm.
h = None
else:
h = None
if meijerg is not False and h is None:
# rewrite using G functions
try:
h = meijerint_indefinite(g, x)
except NotImplementedError:
from sympy.integrals.meijerint import _debug
_debug('NotImplementedError from meijerint_definite')
res = None
if h is not None:
parts.append(coeff * h)
continue
if h is None and manual is not False:
try:
result = manualintegrate(g, x)
if result is not None and not isinstance(result, Integral):
if result.has(Integral) and not manual:
# Try to have other algorithms do the integrals
# manualintegrate can't handle,
# unless we were asked to use manual only.
# Keep the rest of eval_kwargs in case another
# method was set to False already
new_eval_kwargs = eval_kwargs
new_eval_kwargs["manual"] = False
result = result.func(*[
arg.doit(**new_eval_kwargs) if
arg.has(Integral) else arg
for arg in result.args
]).expand(multinomial=False,
log=False,
power_exp=False,
power_base=False)
if not result.has(Integral):
parts.append(coeff * result)
continue
except (ValueError, PolynomialError):
# can't handle some SymPy expressions
pass
# if we failed maybe it was because we had
# a product that could have been expanded,
# so let's try an expansion of the whole
# thing before giving up; we don't try this
# at the outset because there are things
# that cannot be solved unless they are
# NOT expanded e.g., x**x*(1+log(x)). There
# should probably be a checker somewhere in this
# routine to look for such cases and try to do
# collection on the expressions if they are already
# in an expanded form
if not h and len(args) == 1:
f = sincos_to_sum(f).expand(mul=True, deep=False)
if f.is_Add:
# Note: risch will be identical on the expanded
# expression, but maybe it will be able to pick out parts,
# like x*(exp(x) + erf(x)).
return self._eval_integral(f, x, **eval_kwargs)
if h is not None:
parts.append(coeff * h)
else:
return None
return Add(*parts)
def _eval_lseries(self, x, logx):
expr = self.as_dummy()
symb = x
for l in expr.limits:
if x in l[1:]:
symb = l[0]
break
for term in expr.function.lseries(symb, logx):
yield integrate(term, *expr.limits)
def _eval_nseries(self, x, n, logx):
expr = self.as_dummy()
symb = x
for l in expr.limits:
if x in l[1:]:
symb = l[0]
break
terms, order = expr.function.nseries(
x=symb, n=n, logx=logx).as_coeff_add(Order)
order = [o.subs(symb, x) for o in order]
return integrate(terms, *expr.limits) + Add(*order)*x
def _eval_as_leading_term(self, x):
series_gen = self.args[0].lseries(x)
for leading_term in series_gen:
if leading_term != 0:
break
return integrate(leading_term, *self.args[1:])
def as_sum(self, n=None, method="midpoint", evaluate=True):
"""
Approximates a definite integral by a sum.
Arguments
---------
n
The number of subintervals to use, optional.
method
One of: 'left', 'right', 'midpoint', 'trapezoid'.
evaluate
If False, returns an unevaluated Sum expression. The default
is True, evaluate the sum.
These methods of approximate integration are described in [1].
[1] https://en.wikipedia.org/wiki/Riemann_sum#Methods
Examples
========
>>> from sympy import sin, sqrt
>>> from sympy.abc import x, n
>>> from sympy.integrals import Integral
>>> e = Integral(sin(x), (x, 3, 7))
>>> e
Integral(sin(x), (x, 3, 7))
For demonstration purposes, this interval will only be split into 2
regions, bounded by [3, 5] and [5, 7].
The left-hand rule uses function evaluations at the left of each
interval:
>>> e.as_sum(2, 'left')
2*sin(5) + 2*sin(3)
The midpoint rule uses evaluations at the center of each interval:
>>> e.as_sum(2, 'midpoint')
2*sin(4) + 2*sin(6)
The right-hand rule uses function evaluations at the right of each
interval:
>>> e.as_sum(2, 'right')
2*sin(5) + 2*sin(7)
The trapezoid rule uses function evaluations on both sides of the
intervals. This is equivalent to taking the average of the left and
right hand rule results:
>>> e.as_sum(2, 'trapezoid')
2*sin(5) + sin(3) + sin(7)
>>> (e.as_sum(2, 'left') + e.as_sum(2, 'right'))/2 == _
True
Here, the discontinuity at x = 0 can be avoided by using the
midpoint or right-hand method:
>>> e = Integral(1/sqrt(x), (x, 0, 1))
>>> e.as_sum(5).n(4)
1.730
>>> e.as_sum(10).n(4)
1.809
>>> e.doit().n(4) # the actual value is 2
2.000
The left- or trapezoid method will encounter the discontinuity and
return infinity:
>>> e.as_sum(5, 'left')
zoo
The number of intervals can be symbolic. If omitted, a dummy symbol
will be used for it.
>>> e = Integral(x**2, (x, 0, 2))
>>> e.as_sum(n, 'right').expand()
8/3 + 4/n + 4/(3*n**2)
This shows that the midpoint rule is more accurate, as its error
term decays as the square of n:
>>> e.as_sum(method='midpoint').expand()
8/3 - 2/(3*_n**2)
A symbolic sum is returned with evaluate=False:
>>> e.as_sum(n, 'midpoint', evaluate=False)
2*Sum((2*_k/n - 1/n)**2, (_k, 1, n))/n
See Also
========
Integral.doit : Perform the integration using any hints
"""
from sympy.concrete.summations import Sum
limits = self.limits
if len(limits) > 1:
raise NotImplementedError(
"Multidimensional midpoint rule not implemented yet")
else:
limit = limits[0]
if (len(limit) != 3 or limit[1].is_finite is False or
limit[2].is_finite is False):
raise ValueError("Expecting a definite integral over "
"a finite interval.")
if n is None:
n = Dummy('n', integer=True, positive=True)
else:
n = sympify(n)
if (n.is_positive is False or n.is_integer is False or
n.is_finite is False):
raise ValueError("n must be a positive integer, got %s" % n)
x, a, b = limit
dx = (b - a)/n
k = Dummy('k', integer=True, positive=True)
f = self.function
if method == "left":
result = dx*Sum(f.subs(x, a + (k-1)*dx), (k, 1, n))
elif method == "right":
result = dx*Sum(f.subs(x, a + k*dx), (k, 1, n))
elif method == "midpoint":
result = dx*Sum(f.subs(x, a + k*dx - dx/2), (k, 1, n))
elif method == "trapezoid":
result = dx*((f.subs(x, a) + f.subs(x, b))/2 +
Sum(f.subs(x, a + k*dx), (k, 1, n - 1)))
else:
raise ValueError("Unknown method %s" % method)
return result.doit() if evaluate else result
def _sage_(self):
import sage.all as sage
f, limits = self.function._sage_(), list(self.limits)
for limit in limits:
if len(limit) == 1:
x = limit[0]
f = sage.integral(f,
x._sage_(),
hold=True)
elif len(limit) == 2:
x, b = limit
f = sage.integral(f,
x._sage_(),
b._sage_(),
hold=True)
else:
x, a, b = limit
f = sage.integral(f,
(x._sage_(),
a._sage_(),
b._sage_()),
hold=True)
return f
def principal_value(self, **kwargs):
"""
Compute the Cauchy Principal Value of the definite integral of a real function in the given interval
on the real axis.
In mathematics, the Cauchy principal value, is a method for assigning values to certain improper
integrals which would otherwise be undefined.
Examples
========
>>> from sympy import Dummy, symbols, integrate, limit, oo
>>> from sympy.integrals.integrals import Integral
>>> from sympy.calculus.singularities import singularities
>>> x = symbols('x')
>>> Integral(x+1, (x, -oo, oo)).principal_value()
oo
>>> f = 1 / (x**3)
>>> Integral(f, (x, -oo, oo)).principal_value()
0
>>> Integral(f, (x, -10, 10)).principal_value()
0
>>> Integral(f, (x, -10, oo)).principal_value() + Integral(f, (x, -oo, 10)).principal_value()
0
References
==========
.. [1] https://en.wikipedia.org/wiki/Cauchy_principal_value
.. [2] http://mathworld.wolfram.com/CauchyPrincipalValue.html
"""
from sympy.calculus import singularities
if len(self.limits) != 1 or len(list(self.limits[0])) != 3:
raise ValueError("You need to insert a variable, lower_limit, and upper_limit correctly to calculate "
"cauchy's principal value")
x, a, b = self.limits[0]
if not (a.is_comparable and b.is_comparable and a <= b):
raise ValueError("The lower_limit must be smaller than or equal to the upper_limit to calculate "
"cauchy's principal value. Also, a and b need to be comparable.")
if a == b:
return 0
r = Dummy('r')
f = self.function
singularities_list = [s for s in singularities(f, x) if s.is_comparable and a <= s <= b]
for i in singularities_list:
if (i == b) or (i == a):
raise ValueError(
'The principal value is not defined in the given interval due to singularity at %d.' % (i))
F = integrate(f, x, **kwargs)
if F.has(Integral):
return self
if a is -oo and b is oo:
I = limit(F - F.subs(x, -x), x, oo)
else:
I = limit(F, x, b, '-') - limit(F, x, a, '+')
for s in singularities_list:
I += limit(((F.subs(x, s - r)) - F.subs(x, s + r)), r, 0, '+')
return I
def integrate(*args, **kwargs):
"""integrate(f, var, ...)
Compute definite or indefinite integral of one or more variables
using Risch-Norman algorithm and table lookup. This procedure is
able to handle elementary algebraic and transcendental functions
and also a huge class of special functions, including Airy,
Bessel, Whittaker and Lambert.
var can be:
- a symbol -- indefinite integration
- a tuple (symbol, a) -- indefinite integration with result
given with `a` replacing `symbol`
- a tuple (symbol, a, b) -- definite integration
Several variables can be specified, in which case the result is
multiple integration. (If var is omitted and the integrand is
univariate, the indefinite integral in that variable will be performed.)
Indefinite integrals are returned without terms that are independent
of the integration variables. (see examples)
Definite improper integrals often entail delicate convergence
conditions. Pass conds='piecewise', 'separate' or 'none' to have
these returned, respectively, as a Piecewise function, as a separate
result (i.e. result will be a tuple), or not at all (default is
'piecewise').
**Strategy**
SymPy uses various approaches to definite integration. One method is to
find an antiderivative for the integrand, and then use the fundamental
theorem of calculus. Various functions are implemented to integrate
polynomial, rational and trigonometric functions, and integrands
containing DiracDelta terms.
SymPy also implements the part of the Risch algorithm, which is a decision
procedure for integrating elementary functions, i.e., the algorithm can
either find an elementary antiderivative, or prove that one does not
exist. There is also a (very successful, albeit somewhat slow) general
implementation of the heuristic Risch algorithm. This algorithm will
eventually be phased out as more of the full Risch algorithm is
implemented. See the docstring of Integral._eval_integral() for more
details on computing the antiderivative using algebraic methods.
The option risch=True can be used to use only the (full) Risch algorithm.
This is useful if you want to know if an elementary function has an
elementary antiderivative. If the indefinite Integral returned by this
function is an instance of NonElementaryIntegral, that means that the
Risch algorithm has proven that integral to be non-elementary. Note that
by default, additional methods (such as the Meijer G method outlined
below) are tried on these integrals, as they may be expressible in terms
of special functions, so if you only care about elementary answers, use
risch=True. Also note that an unevaluated Integral returned by this
function is not necessarily a NonElementaryIntegral, even with risch=True,
as it may just be an indication that the particular part of the Risch
algorithm needed to integrate that function is not yet implemented.
Another family of strategies comes from re-writing the integrand in
terms of so-called Meijer G-functions. Indefinite integrals of a
single G-function can always be computed, and the definite integral
of a product of two G-functions can be computed from zero to
infinity. Various strategies are implemented to rewrite integrands
as G-functions, and use this information to compute integrals (see
the ``meijerint`` module).
The option manual=True can be used to use only an algorithm that tries
to mimic integration by hand. This algorithm does not handle as many
integrands as the other algorithms implemented but may return results in
a more familiar form. The ``manualintegrate`` module has functions that
return the steps used (see the module docstring for more information).
In general, the algebraic methods work best for computing
antiderivatives of (possibly complicated) combinations of elementary
functions. The G-function methods work best for computing definite
integrals from zero to infinity of moderately complicated
combinations of special functions, or indefinite integrals of very
simple combinations of special functions.
The strategy employed by the integration code is as follows:
- If computing a definite integral, and both limits are real,
and at least one limit is +- oo, try the G-function method of
definite integration first.
- Try to find an antiderivative, using all available methods, ordered
by performance (that is try fastest method first, slowest last; in
particular polynomial integration is tried first, Meijer
G-functions second to last, and heuristic Risch last).
- If still not successful, try G-functions irrespective of the
limits.
The option meijerg=True, False, None can be used to, respectively:
always use G-function methods and no others, never use G-function
methods, or use all available methods (in order as described above).
It defaults to None.
Examples
========
>>> from sympy import integrate, log, exp, oo
>>> from sympy.abc import a, x, y
>>> integrate(x*y, x)
x**2*y/2
>>> integrate(log(x), x)
x*log(x) - x
>>> integrate(log(x), (x, 1, a))
a*log(a) - a + 1
>>> integrate(x)
x**2/2
Terms that are independent of x are dropped by indefinite integration:
>>> from sympy import sqrt
>>> integrate(sqrt(1 + x), (x, 0, x))
2*(x + 1)**(3/2)/3 - 2/3
>>> integrate(sqrt(1 + x), x)
2*(x + 1)**(3/2)/3
>>> integrate(x*y)
Traceback (most recent call last):
...
ValueError: specify integration variables to integrate x*y
Note that ``integrate(x)`` syntax is meant only for convenience
in interactive sessions and should be avoided in library code.
>>> integrate(x**a*exp(-x), (x, 0, oo)) # same as conds='piecewise'
Piecewise((gamma(a + 1), re(a) > -1),
(Integral(x**a*exp(-x), (x, 0, oo)), True))
>>> integrate(x**a*exp(-x), (x, 0, oo), conds='none')
gamma(a + 1)
>>> integrate(x**a*exp(-x), (x, 0, oo), conds='separate')
(gamma(a + 1), -re(a) < 1)
See Also
========
Integral, Integral.doit
"""
doit_flags = {
'deep': False,
'meijerg': kwargs.pop('meijerg', None),
'conds': kwargs.pop('conds', 'piecewise'),
'risch': kwargs.pop('risch', None),
'heurisch': kwargs.pop('heurisch', None),
'manual': kwargs.pop('manual', None)
}
integral = Integral(*args, **kwargs)
if isinstance(integral, Integral):
return integral.doit(**doit_flags)
else:
new_args = [a.doit(**doit_flags) if isinstance(a, Integral) else a
for a in integral.args]
return integral.func(*new_args)
def line_integrate(field, curve, vars):
"""line_integrate(field, Curve, variables)
Compute the line integral.
Examples
========
>>> from sympy import Curve, line_integrate, E, ln
>>> from sympy.abc import x, y, t
>>> C = Curve([E**t + 1, E**t - 1], (t, 0, ln(2)))
>>> line_integrate(x + y, C, [x, y])
3*sqrt(2)
See Also
========
integrate, Integral
"""
from sympy.geometry import Curve
F = sympify(field)
if not F:
raise ValueError(
"Expecting function specifying field as first argument.")
if not isinstance(curve, Curve):
raise ValueError("Expecting Curve entity as second argument.")
if not is_sequence(vars):
raise ValueError("Expecting ordered iterable for variables.")
if len(curve.functions) != len(vars):
raise ValueError("Field variable size does not match curve dimension.")
if curve.parameter in vars:
raise ValueError("Curve parameter clashes with field parameters.")
# Calculate derivatives for line parameter functions
# F(r) -> F(r(t)) and finally F(r(t)*r'(t))
Ft = F
dldt = 0
for i, var in enumerate(vars):
_f = curve.functions[i]
_dn = diff(_f, curve.parameter)
# ...arc length
dldt = dldt + (_dn * _dn)
Ft = Ft.subs(var, _f)
Ft = Ft * sqrt(dldt)
integral = Integral(Ft, curve.limits).doit(deep=False)
return integral
|
08d5328b61ea749ed5539f1d9f3a2493fd233b0f1c6982a2609871a7fa722f6f
|
from __future__ import print_function, division
from itertools import permutations
from sympy.core.add import Add
from sympy.core.basic import Basic
from sympy.core.mul import Mul
from sympy.core.symbol import Wild, Dummy, symbols
from sympy.core.basic import sympify
from sympy.core.numbers import Rational, pi, I
from sympy.core.relational import Eq, Ne
from sympy.core.singleton import S
from sympy.functions import exp, sin, cos, tan, cot, asin, atan
from sympy.functions import log, sinh, cosh, tanh, coth, asinh, acosh
from sympy.functions import sqrt, erf, erfi, li, Ei
from sympy.functions import besselj, bessely, besseli, besselk
from sympy.functions import hankel1, hankel2, jn, yn
from sympy.functions.elementary.exponential import LambertW
from sympy.functions.elementary.piecewise import Piecewise
from sympy.simplify.radsimp import collect
from sympy.logic.boolalg import And, Or
from sympy.utilities.iterables import uniq
from sympy.polys import quo, gcd, lcm, factor, cancel, PolynomialError
from sympy.polys.monomials import itermonomials
from sympy.polys.polyroots import root_factors
from sympy.polys.rings import PolyRing
from sympy.polys.solvers import solve_lin_sys
from sympy.polys.constructor import construct_domain
from sympy.core.compatibility import reduce, ordered
def components(f, x):
"""
Returns a set of all functional components of the given expression
which includes symbols, function applications and compositions and
non-integer powers. Fractional powers are collected with
minimal, positive exponents.
>>> from sympy import cos, sin
>>> from sympy.abc import x, y
>>> from sympy.integrals.heurisch import components
>>> components(sin(x)*cos(x)**2, x)
{x, sin(x), cos(x)}
See Also
========
heurisch
"""
result = set()
if x in f.free_symbols:
if f.is_symbol and f.is_commutative:
result.add(f)
elif f.is_Function or f.is_Derivative:
for g in f.args:
result |= components(g, x)
result.add(f)
elif f.is_Pow:
result |= components(f.base, x)
if not f.exp.is_Integer:
if f.exp.is_Rational:
result.add(f.base**Rational(1, f.exp.q))
else:
result |= components(f.exp, x) | {f}
else:
for g in f.args:
result |= components(g, x)
return result
# name -> [] of symbols
_symbols_cache = {}
# NB @cacheit is not convenient here
def _symbols(name, n):
"""get vector of symbols local to this module"""
try:
lsyms = _symbols_cache[name]
except KeyError:
lsyms = []
_symbols_cache[name] = lsyms
while len(lsyms) < n:
lsyms.append( Dummy('%s%i' % (name, len(lsyms))) )
return lsyms[:n]
def heurisch_wrapper(f, x, rewrite=False, hints=None, mappings=None, retries=3,
degree_offset=0, unnecessary_permutations=None):
"""
A wrapper around the heurisch integration algorithm.
This method takes the result from heurisch and checks for poles in the
denominator. For each of these poles, the integral is reevaluated, and
the final integration result is given in terms of a Piecewise.
Examples
========
>>> from sympy.core import symbols
>>> from sympy.functions import cos
>>> from sympy.integrals.heurisch import heurisch, heurisch_wrapper
>>> n, x = symbols('n x')
>>> heurisch(cos(n*x), x)
sin(n*x)/n
>>> heurisch_wrapper(cos(n*x), x)
Piecewise((sin(n*x)/n, Ne(n, 0)), (x, True))
See Also
========
heurisch
"""
from sympy.solvers.solvers import solve, denoms
f = sympify(f)
if x not in f.free_symbols:
return f*x
res = heurisch(f, x, rewrite, hints, mappings, retries, degree_offset,
unnecessary_permutations)
if not isinstance(res, Basic):
return res
# We consider each denominator in the expression, and try to find
# cases where one or more symbolic denominator might be zero. The
# conditions for these cases are stored in the list slns.
slns = []
for d in denoms(res):
try:
slns += solve(d, dict=True, exclude=(x,))
except NotImplementedError:
pass
if not slns:
return res
slns = list(uniq(slns))
# Remove the solutions corresponding to poles in the original expression.
slns0 = []
for d in denoms(f):
try:
slns0 += solve(d, dict=True, exclude=(x,))
except NotImplementedError:
pass
slns = [s for s in slns if s not in slns0]
if not slns:
return res
if len(slns) > 1:
eqs = []
for sub_dict in slns:
eqs.extend([Eq(key, value) for key, value in sub_dict.items()])
slns = solve(eqs, dict=True, exclude=(x,)) + slns
# For each case listed in the list slns, we reevaluate the integral.
pairs = []
for sub_dict in slns:
expr = heurisch(f.subs(sub_dict), x, rewrite, hints, mappings, retries,
degree_offset, unnecessary_permutations)
cond = And(*[Eq(key, value) for key, value in sub_dict.items()])
generic = Or(*[Ne(key, value) for key, value in sub_dict.items()])
pairs.append((expr, cond))
# If there is one condition, put the generic case first. Otherwise,
# doing so may lead to longer Piecewise formulas
if len(pairs) == 1:
pairs = [(heurisch(f, x, rewrite, hints, mappings, retries,
degree_offset, unnecessary_permutations),
generic),
(pairs[0][0], True)]
else:
pairs.append((heurisch(f, x, rewrite, hints, mappings, retries,
degree_offset, unnecessary_permutations),
True))
return Piecewise(*pairs)
class BesselTable(object):
"""
Derivatives of Bessel functions of orders n and n-1
in terms of each other.
See the docstring of DiffCache.
"""
def __init__(self):
self.table = {}
self.n = Dummy('n')
self.z = Dummy('z')
self._create_table()
def _create_table(t):
table, n, z = t.table, t.n, t.z
for f in (besselj, bessely, hankel1, hankel2):
table[f] = (f(n-1, z) - n*f(n, z)/z,
(n-1)*f(n-1, z)/z - f(n, z))
f = besseli
table[f] = (f(n-1, z) - n*f(n, z)/z,
(n-1)*f(n-1, z)/z + f(n, z))
f = besselk
table[f] = (-f(n-1, z) - n*f(n, z)/z,
(n-1)*f(n-1, z)/z - f(n, z))
for f in (jn, yn):
table[f] = (f(n-1, z) - (n+1)*f(n, z)/z,
(n-1)*f(n-1, z)/z - f(n, z))
def diffs(t, f, n, z):
if f in t.table:
diff0, diff1 = t.table[f]
repl = [(t.n, n), (t.z, z)]
return (diff0.subs(repl), diff1.subs(repl))
def has(t, f):
return f in t.table
_bessel_table = None
class DiffCache(object):
"""
Store for derivatives of expressions.
The standard form of the derivative of a Bessel function of order n
contains two Bessel functions of orders n-1 and n+1, respectively.
Such forms cannot be used in parallel Risch algorithm, because
there is a linear recurrence relation between the three functions
while the algorithm expects that functions and derivatives are
represented in terms of algebraically independent transcendentals.
The solution is to take two of the functions, e.g., those of orders
n and n-1, and to express the derivatives in terms of the pair.
To guarantee that the proper form is used the two derivatives are
cached as soon as one is encountered.
Derivatives of other functions are also cached at no extra cost.
All derivatives are with respect to the same variable `x`.
"""
def __init__(self, x):
self.cache = {}
self.x = x
global _bessel_table
if not _bessel_table:
_bessel_table = BesselTable()
def get_diff(self, f):
cache = self.cache
if f in cache:
pass
elif (not hasattr(f, 'func') or
not _bessel_table.has(f.func)):
cache[f] = cancel(f.diff(self.x))
else:
n, z = f.args
d0, d1 = _bessel_table.diffs(f.func, n, z)
dz = self.get_diff(z)
cache[f] = d0*dz
cache[f.func(n-1, z)] = d1*dz
return cache[f]
def heurisch(f, x, rewrite=False, hints=None, mappings=None, retries=3,
degree_offset=0, unnecessary_permutations=None):
"""
Compute indefinite integral using heuristic Risch algorithm.
This is a heuristic approach to indefinite integration in finite
terms using the extended heuristic (parallel) Risch algorithm, based
on Manuel Bronstein's "Poor Man's Integrator".
The algorithm supports various classes of functions including
transcendental elementary or special functions like Airy,
Bessel, Whittaker and Lambert.
Note that this algorithm is not a decision procedure. If it isn't
able to compute the antiderivative for a given function, then this is
not a proof that such a functions does not exist. One should use
recursive Risch algorithm in such case. It's an open question if
this algorithm can be made a full decision procedure.
This is an internal integrator procedure. You should use toplevel
'integrate' function in most cases, as this procedure needs some
preprocessing steps and otherwise may fail.
Specification
=============
heurisch(f, x, rewrite=False, hints=None)
where
f : expression
x : symbol
rewrite -> force rewrite 'f' in terms of 'tan' and 'tanh'
hints -> a list of functions that may appear in anti-derivate
- hints = None --> no suggestions at all
- hints = [ ] --> try to figure out
- hints = [f1, ..., fn] --> we know better
Examples
========
>>> from sympy import tan
>>> from sympy.integrals.heurisch import heurisch
>>> from sympy.abc import x, y
>>> heurisch(y*tan(x), x)
y*log(tan(x)**2 + 1)/2
See Manuel Bronstein's "Poor Man's Integrator":
[1] http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/index.html
For more information on the implemented algorithm refer to:
[2] K. Geddes, L. Stefanus, On the Risch-Norman Integration
Method and its Implementation in Maple, Proceedings of
ISSAC'89, ACM Press, 212-217.
[3] J. H. Davenport, On the Parallel Risch Algorithm (I),
Proceedings of EUROCAM'82, LNCS 144, Springer, 144-157.
[4] J. H. Davenport, On the Parallel Risch Algorithm (III):
Use of Tangents, SIGSAM Bulletin 16 (1982), 3-6.
[5] J. H. Davenport, B. M. Trager, On the Parallel Risch
Algorithm (II), ACM Transactions on Mathematical
Software 11 (1985), 356-362.
See Also
========
sympy.integrals.integrals.Integral.doit
sympy.integrals.integrals.Integral
components
"""
f = sympify(f)
if x not in f.free_symbols:
return f*x
if not f.is_Add:
indep, f = f.as_independent(x)
else:
indep = S.One
rewritables = {
(sin, cos, cot): tan,
(sinh, cosh, coth): tanh,
}
if rewrite:
for candidates, rule in rewritables.items():
f = f.rewrite(candidates, rule)
else:
for candidates in rewritables.keys():
if f.has(*candidates):
break
else:
rewrite = True
terms = components(f, x)
if hints is not None:
if not hints:
a = Wild('a', exclude=[x])
b = Wild('b', exclude=[x])
c = Wild('c', exclude=[x])
for g in set(terms): # using copy of terms
if g.is_Function:
if isinstance(g, li):
M = g.args[0].match(a*x**b)
if M is not None:
terms.add( x*(li(M[a]*x**M[b]) - (M[a]*x**M[b])**(-1/M[b])*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) )
#terms.add( x*(li(M[a]*x**M[b]) - (x**M[b])**(-1/M[b])*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) )
#terms.add( x*(li(M[a]*x**M[b]) - x*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) )
#terms.add( li(M[a]*x**M[b]) - Ei((M[b]+1)*log(M[a]*x**M[b])/M[b]) )
elif isinstance(g, exp):
M = g.args[0].match(a*x**2)
if M is not None:
if M[a].is_positive:
terms.add(erfi(sqrt(M[a])*x))
else: # M[a].is_negative or unknown
terms.add(erf(sqrt(-M[a])*x))
M = g.args[0].match(a*x**2 + b*x + c)
if M is not None:
if M[a].is_positive:
terms.add(sqrt(pi/4*(-M[a]))*exp(M[c] - M[b]**2/(4*M[a]))*
erfi(sqrt(M[a])*x + M[b]/(2*sqrt(M[a]))))
elif M[a].is_negative:
terms.add(sqrt(pi/4*(-M[a]))*exp(M[c] - M[b]**2/(4*M[a]))*
erf(sqrt(-M[a])*x - M[b]/(2*sqrt(-M[a]))))
M = g.args[0].match(a*log(x)**2)
if M is not None:
if M[a].is_positive:
terms.add(erfi(sqrt(M[a])*log(x) + 1/(2*sqrt(M[a]))))
if M[a].is_negative:
terms.add(erf(sqrt(-M[a])*log(x) - 1/(2*sqrt(-M[a]))))
elif g.is_Pow:
if g.exp.is_Rational and g.exp.q == 2:
M = g.base.match(a*x**2 + b)
if M is not None and M[b].is_positive:
if M[a].is_positive:
terms.add(asinh(sqrt(M[a]/M[b])*x))
elif M[a].is_negative:
terms.add(asin(sqrt(-M[a]/M[b])*x))
M = g.base.match(a*x**2 - b)
if M is not None and M[b].is_positive:
if M[a].is_positive:
terms.add(acosh(sqrt(M[a]/M[b])*x))
elif M[a].is_negative:
terms.add((-M[b]/2*sqrt(-M[a])*
atan(sqrt(-M[a])*x/sqrt(M[a]*x**2 - M[b]))))
else:
terms |= set(hints)
dcache = DiffCache(x)
for g in set(terms): # using copy of terms
terms |= components(dcache.get_diff(g), x)
# TODO: caching is significant factor for why permutations work at all. Change this.
V = _symbols('x', len(terms))
# sort mapping expressions from largest to smallest (last is always x).
mapping = list(reversed(list(zip(*ordered( #
[(a[0].as_independent(x)[1], a) for a in zip(terms, V)])))[1])) #
rev_mapping = {v: k for k, v in mapping} #
if mappings is None: #
# optimizing the number of permutations of mapping #
assert mapping[-1][0] == x # if not, find it and correct this comment
unnecessary_permutations = [mapping.pop(-1)]
mappings = permutations(mapping)
else:
unnecessary_permutations = unnecessary_permutations or []
def _substitute(expr):
return expr.subs(mapping)
for mapping in mappings:
mapping = list(mapping)
mapping = mapping + unnecessary_permutations
diffs = [ _substitute(dcache.get_diff(g)) for g in terms ]
denoms = [ g.as_numer_denom()[1] for g in diffs ]
if all(h.is_polynomial(*V) for h in denoms) and _substitute(f).is_rational_function(*V):
denom = reduce(lambda p, q: lcm(p, q, *V), denoms)
break
else:
if not rewrite:
result = heurisch(f, x, rewrite=True, hints=hints,
unnecessary_permutations=unnecessary_permutations)
if result is not None:
return indep*result
return None
numers = [ cancel(denom*g) for g in diffs ]
def _derivation(h):
return Add(*[ d * h.diff(v) for d, v in zip(numers, V) ])
def _deflation(p):
for y in V:
if not p.has(y):
continue
if _derivation(p) is not S.Zero:
c, q = p.as_poly(y).primitive()
return _deflation(c)*gcd(q, q.diff(y)).as_expr()
else:
return p
def _splitter(p):
for y in V:
if not p.has(y):
continue
if _derivation(y) is not S.Zero:
c, q = p.as_poly(y).primitive()
q = q.as_expr()
h = gcd(q, _derivation(q), y)
s = quo(h, gcd(q, q.diff(y), y), y)
c_split = _splitter(c)
if s.as_poly(y).degree() == 0:
return (c_split[0], q * c_split[1])
q_split = _splitter(cancel(q / s))
return (c_split[0]*q_split[0]*s, c_split[1]*q_split[1])
else:
return (S.One, p)
special = {}
for term in terms:
if term.is_Function:
if isinstance(term, tan):
special[1 + _substitute(term)**2] = False
elif isinstance(term, tanh):
special[1 + _substitute(term)] = False
special[1 - _substitute(term)] = False
elif isinstance(term, LambertW):
special[_substitute(term)] = True
F = _substitute(f)
P, Q = F.as_numer_denom()
u_split = _splitter(denom)
v_split = _splitter(Q)
polys = set(list(v_split) + [ u_split[0] ] + list(special.keys()))
s = u_split[0] * Mul(*[ k for k, v in special.items() if v ])
polified = [ p.as_poly(*V) for p in [s, P, Q] ]
if None in polified:
return None
#--- definitions for _integrate
a, b, c = [ p.total_degree() for p in polified ]
poly_denom = (s * v_split[0] * _deflation(v_split[1])).as_expr()
def _exponent(g):
if g.is_Pow:
if g.exp.is_Rational and g.exp.q != 1:
if g.exp.p > 0:
return g.exp.p + g.exp.q - 1
else:
return abs(g.exp.p + g.exp.q)
else:
return 1
elif not g.is_Atom and g.args:
return max([ _exponent(h) for h in g.args ])
else:
return 1
A, B = _exponent(f), a + max(b, c)
if A > 1 and B > 1:
monoms = itermonomials(V, A + B - 1 + degree_offset)
else:
monoms = itermonomials(V, A + B + degree_offset)
poly_coeffs = _symbols('A', len(monoms))
poly_part = Add(*[ poly_coeffs[i]*monomial
for i, monomial in enumerate(monoms) ])
reducibles = set()
for poly in polys:
if poly.has(*V):
try:
factorization = factor(poly, greedy=True)
except PolynomialError:
factorization = poly
if factorization.is_Mul:
factors = factorization.args
else:
factors = (factorization, )
for fact in factors:
if fact.is_Pow:
reducibles.add(fact.base)
else:
reducibles.add(fact)
def _integrate(field=None):
irreducibles = set()
atans = set()
pairs = set()
for poly in reducibles:
for z in poly.free_symbols:
if z in V:
break # should this be: `irreducibles |= \
else: # set(root_factors(poly, z, filter=field))`
continue # and the line below deleted?
# |
# V
irreducibles |= set(root_factors(poly, z, filter=field))
log_part, atan_part = [], []
for poly in list(irreducibles):
m = collect(poly, I, evaluate=False)
y = m.get(I, S.Zero)
if y:
x = m.get(S.One, S.Zero)
if x.has(I) or y.has(I):
continue # nontrivial x + I*y
pairs.add((x, y))
irreducibles.remove(poly)
while pairs:
x, y = pairs.pop()
if (x, -y) in pairs:
pairs.remove((x, -y))
# Choosing b with no minus sign
if y.could_extract_minus_sign():
y = -y
irreducibles.add(x*x + y*y)
atans.add(atan(x/y))
else:
irreducibles.add(x + I*y)
B = _symbols('B', len(irreducibles))
C = _symbols('C', len(atans))
# Note: the ordering matters here
for poly, b in reversed(list(ordered(zip(irreducibles, B)))):
if poly.has(*V):
poly_coeffs.append(b)
log_part.append(b * log(poly))
for poly, c in reversed(list(ordered(zip(atans, C)))):
if poly.has(*V):
poly_coeffs.append(c)
atan_part.append(c * poly)
# TODO: Currently it's better to use symbolic expressions here instead
# of rational functions, because it's simpler and FracElement doesn't
# give big speed improvement yet. This is because cancellation is slow
# due to slow polynomial GCD algorithms. If this gets improved then
# revise this code.
candidate = poly_part/poly_denom + Add(*log_part) + Add(*atan_part)
h = F - _derivation(candidate) / denom
raw_numer = h.as_numer_denom()[0]
# Rewrite raw_numer as a polynomial in K[coeffs][V] where K is a field
# that we have to determine. We can't use simply atoms() because log(3),
# sqrt(y) and similar expressions can appear, leading to non-trivial
# domains.
syms = set(poly_coeffs) | set(V)
non_syms = set([])
def find_non_syms(expr):
if expr.is_Integer or expr.is_Rational:
pass # ignore trivial numbers
elif expr in syms:
pass # ignore variables
elif not expr.has(*syms):
non_syms.add(expr)
elif expr.is_Add or expr.is_Mul or expr.is_Pow:
list(map(find_non_syms, expr.args))
else:
# TODO: Non-polynomial expression. This should have been
# filtered out at an earlier stage.
raise PolynomialError
try:
find_non_syms(raw_numer)
except PolynomialError:
return None
else:
ground, _ = construct_domain(non_syms, field=True)
coeff_ring = PolyRing(poly_coeffs, ground)
ring = PolyRing(V, coeff_ring)
try:
numer = ring.from_expr(raw_numer)
except ValueError:
raise PolynomialError
solution = solve_lin_sys(numer.coeffs(), coeff_ring, _raw=False)
if solution is None:
return None
else:
return candidate.subs(solution).subs(
list(zip(poly_coeffs, [S.Zero]*len(poly_coeffs))))
if not (F.free_symbols - set(V)):
solution = _integrate('Q')
if solution is None:
solution = _integrate()
else:
solution = _integrate()
if solution is not None:
antideriv = solution.subs(rev_mapping)
antideriv = cancel(antideriv).expand(force=True)
if antideriv.is_Add:
antideriv = antideriv.as_independent(x)[1]
return indep*antideriv
else:
if retries >= 0:
result = heurisch(f, x, mappings=mappings, rewrite=rewrite, hints=hints, retries=retries - 1, unnecessary_permutations=unnecessary_permutations)
if result is not None:
return indep*result
return None
|
7b13634438a489dfd21e3f4c3f0c43fcf3abf92f75eb3f27a460aa3d21ae35cd
|
"""
The Risch Algorithm for transcendental function integration.
The core algorithms for the Risch algorithm are here. The subproblem
algorithms are in the rde.py and prde.py files for the Risch
Differential Equation solver and the parametric problems solvers,
respectively. All important information concerning the differential extension
for an integrand is stored in a DifferentialExtension object, which in the code
is usually called DE. Throughout the code and Inside the DifferentialExtension
object, the conventions/attribute names are that the base domain is QQ and each
differential extension is x, t0, t1, ..., tn-1 = DE.t. DE.x is the variable of
integration (Dx == 1), DE.D is a list of the derivatives of
x, t1, t2, ..., tn-1 = t, DE.T is the list [x, t1, t2, ..., tn-1], DE.t is the
outer-most variable of the differential extension at the given level (the level
can be adjusted using DE.increment_level() and DE.decrement_level()),
k is the field C(x, t0, ..., tn-2), where C is the constant field. The
numerator of a fraction is denoted by a and the denominator by
d. If the fraction is named f, fa == numer(f) and fd == denom(f).
Fractions are returned as tuples (fa, fd). DE.d and DE.t are used to
represent the topmost derivation and extension variable, respectively.
The docstring of a function signifies whether an argument is in k[t], in
which case it will just return a Poly in t, or in k(t), in which case it
will return the fraction (fa, fd). Other variable names probably come
from the names used in Bronstein's book.
"""
from __future__ import print_function, division
from sympy import real_roots, default_sort_key
from sympy.abc import z
from sympy.core.function import Lambda
from sympy.core.numbers import ilcm, oo, I
from sympy.core.mul import Mul
from sympy.core.power import Pow
from sympy.core.relational import Ne
from sympy.core.singleton import S
from sympy.core.symbol import Symbol, Dummy
from sympy.core.compatibility import reduce, ordered, range
from sympy.integrals.heurisch import _symbols
from sympy.functions import (acos, acot, asin, atan, cos, cot, exp, log,
Piecewise, sin, tan)
from sympy.functions import sinh, cosh, tanh, coth
from sympy.integrals import Integral, integrate
from sympy.polys import gcd, cancel, PolynomialError, Poly, reduced, RootSum, DomainError
from sympy.utilities.iterables import numbered_symbols
from types import GeneratorType
def integer_powers(exprs):
"""
Rewrites a list of expressions as integer multiples of each other.
For example, if you have [x, x/2, x**2 + 1, 2*x/3], then you can rewrite
this as [(x/6) * 6, (x/6) * 3, (x**2 + 1) * 1, (x/6) * 4]. This is useful
in the Risch integration algorithm, where we must write exp(x) + exp(x/2)
as (exp(x/2))**2 + exp(x/2), but not as exp(x) + sqrt(exp(x)) (this is
because only the transcendental case is implemented and we therefore cannot
integrate algebraic extensions). The integer multiples returned by this
function for each term are the smallest possible (their content equals 1).
Returns a list of tuples where the first element is the base term and the
second element is a list of `(item, factor)` terms, where `factor` is the
integer multiplicative factor that must multiply the base term to obtain
the original item.
The easiest way to understand this is to look at an example:
>>> from sympy.abc import x
>>> from sympy.integrals.risch import integer_powers
>>> integer_powers([x, x/2, x**2 + 1, 2*x/3])
[(x/6, [(x, 6), (x/2, 3), (2*x/3, 4)]), (x**2 + 1, [(x**2 + 1, 1)])]
We can see how this relates to the example at the beginning of the
docstring. It chose x/6 as the first base term. Then, x can be written as
(x/2) * 2, so we get (0, 2), and so on. Now only element (x**2 + 1)
remains, and there are no other terms that can be written as a rational
multiple of that, so we get that it can be written as (x**2 + 1) * 1.
"""
# Here is the strategy:
# First, go through each term and determine if it can be rewritten as a
# rational multiple of any of the terms gathered so far.
# cancel(a/b).is_Rational is sufficient for this. If it is a multiple, we
# add its multiple to the dictionary.
terms = {}
for term in exprs:
for j in terms:
a = cancel(term/j)
if a.is_Rational:
terms[j].append((term, a))
break
else:
terms[term] = [(term, S(1))]
# After we have done this, we have all the like terms together, so we just
# need to find a common denominator so that we can get the base term and
# integer multiples such that each term can be written as an integer
# multiple of the base term, and the content of the integers is 1.
newterms = {}
for term in terms:
common_denom = reduce(ilcm, [i.as_numer_denom()[1] for _, i in
terms[term]])
newterm = term/common_denom
newmults = [(i, j*common_denom) for i, j in terms[term]]
newterms[newterm] = newmults
return sorted(iter(newterms.items()), key=lambda item: item[0].sort_key())
class DifferentialExtension(object):
"""
A container for all the information relating to a differential extension.
The attributes of this object are (see also the docstring of __init__):
- f: The original (Expr) integrand.
- x: The variable of integration.
- T: List of variables in the extension.
- D: List of derivations in the extension; corresponds to the elements of T.
- fa: Poly of the numerator of the integrand.
- fd: Poly of the denominator of the integrand.
- Tfuncs: Lambda() representations of each element of T (except for x).
For back-substitution after integration.
- backsubs: A (possibly empty) list of further substitutions to be made on
the final integral to make it look more like the integrand.
- exts:
- extargs:
- cases: List of string representations of the cases of T.
- t: The top level extension variable, as defined by the current level
(see level below).
- d: The top level extension derivation, as defined by the current
derivation (see level below).
- case: The string representation of the case of self.d.
(Note that self.T and self.D will always contain the complete extension,
regardless of the level. Therefore, you should ALWAYS use DE.t and DE.d
instead of DE.T[-1] and DE.D[-1]. If you want to have a list of the
derivations or variables only up to the current level, use
DE.D[:len(DE.D) + DE.level + 1] and DE.T[:len(DE.T) + DE.level + 1]. Note
that, in particular, the derivation() function does this.)
The following are also attributes, but will probably not be useful other
than in internal use:
- newf: Expr form of fa/fd.
- level: The number (between -1 and -len(self.T)) such that
self.T[self.level] == self.t and self.D[self.level] == self.d.
Use the methods self.increment_level() and self.decrement_level() to change
the current level.
"""
# __slots__ is defined mainly so we can iterate over all the attributes
# of the class easily (the memory use doesn't matter too much, since we
# only create one DifferentialExtension per integration). Also, it's nice
# to have a safeguard when debugging.
__slots__ = ('f', 'x', 'T', 'D', 'fa', 'fd', 'Tfuncs', 'backsubs',
'exts', 'extargs', 'cases', 'case', 't', 'd', 'newf', 'level',
'ts', 'dummy')
def __init__(self, f=None, x=None, handle_first='log', dummy=False, extension=None, rewrite_complex=None):
"""
Tries to build a transcendental extension tower from f with respect to x.
If it is successful, creates a DifferentialExtension object with, among
others, the attributes fa, fd, D, T, Tfuncs, and backsubs such that
fa and fd are Polys in T[-1] with rational coefficients in T[:-1],
fa/fd == f, and D[i] is a Poly in T[i] with rational coefficients in
T[:i] representing the derivative of T[i] for each i from 1 to len(T).
Tfuncs is a list of Lambda objects for back replacing the functions
after integrating. Lambda() is only used (instead of lambda) to make
them easier to test and debug. Note that Tfuncs corresponds to the
elements of T, except for T[0] == x, but they should be back-substituted
in reverse order. backsubs is a (possibly empty) back-substitution list
that should be applied on the completed integral to make it look more
like the original integrand.
If it is unsuccessful, it raises NotImplementedError.
You can also create an object by manually setting the attributes as a
dictionary to the extension keyword argument. You must include at least
D. Warning, any attribute that is not given will be set to None. The
attributes T, t, d, cases, case, x, and level are set automatically and
do not need to be given. The functions in the Risch Algorithm will NOT
check to see if an attribute is None before using it. This also does not
check to see if the extension is valid (non-algebraic) or even if it is
self-consistent. Therefore, this should only be used for
testing/debugging purposes.
"""
# XXX: If you need to debug this function, set the break point here
if extension:
if 'D' not in extension:
raise ValueError("At least the key D must be included with "
"the extension flag to DifferentialExtension.")
for attr in extension:
setattr(self, attr, extension[attr])
self._auto_attrs()
return
elif f is None or x is None:
raise ValueError("Either both f and x or a manual extension must "
"be given.")
if handle_first not in ['log', 'exp']:
raise ValueError("handle_first must be 'log' or 'exp', not %s." %
str(handle_first))
# f will be the original function, self.f might change if we reset
# (e.g., we pull out a constant from an exponential)
self.f = f
self.x = x
# setting the default value 'dummy'
self.dummy = dummy
self.reset()
exp_new_extension, log_new_extension = True, True
# case of 'automatic' choosing
if rewrite_complex is None:
rewrite_complex = I in self.f.atoms()
if rewrite_complex:
rewritables = {
(sin, cos, cot, tan, sinh, cosh, coth, tanh): exp,
(asin, acos, acot, atan): log,
}
# rewrite the trigonometric components
for candidates, rule in rewritables.items():
self.newf = self.newf.rewrite(candidates, rule)
self.newf = cancel(self.newf)
else:
if any(i.has(x) for i in self.f.atoms(sin, cos, tan, atan, asin, acos)):
raise NotImplementedError("Trigonometric extensions are not "
"supported (yet!)")
exps = set()
pows = set()
numpows = set()
sympows = set()
logs = set()
symlogs = set()
while True:
if self.newf.is_rational_function(*self.T):
break
if not exp_new_extension and not log_new_extension:
# We couldn't find a new extension on the last pass, so I guess
# we can't do it.
raise NotImplementedError("Couldn't find an elementary "
"transcendental extension for %s. Try using a " % str(f) +
"manual extension with the extension flag.")
exps, pows, numpows, sympows, log_new_extension = \
self._rewrite_exps_pows(exps, pows, numpows, sympows, log_new_extension)
logs, symlogs = self._rewrite_logs(logs, symlogs)
if handle_first == 'exp' or not log_new_extension:
exp_new_extension = self._exp_part(exps)
if exp_new_extension is None:
# reset and restart
self.f = self.newf
self.reset()
exp_new_extension = True
continue
if handle_first == 'log' or not exp_new_extension:
log_new_extension = self._log_part(logs)
self.fa, self.fd = frac_in(self.newf, self.t)
self._auto_attrs()
return
def __getattr__(self, attr):
# Avoid AttributeErrors when debugging
if attr not in self.__slots__:
raise AttributeError("%s has no attribute %s" % (repr(self), repr(attr)))
return None
def _rewrite_exps_pows(self, exps, pows, numpows,
sympows, log_new_extension):
"""
Rewrite exps/pows for better processing.
"""
# Pre-preparsing.
#################
# Get all exp arguments, so we can avoid ahead of time doing
# something like t1 = exp(x), t2 = exp(x/2) == sqrt(t1).
# Things like sqrt(exp(x)) do not automatically simplify to
# exp(x/2), so they will be viewed as algebraic. The easiest way
# to handle this is to convert all instances of (a**b)**Rational
# to a**(Rational*b) before doing anything else. Note that the
# _exp_part code can generate terms of this form, so we do need to
# do this at each pass (or else modify it to not do that).
from sympy.integrals.prde import is_deriv_k
ratpows = [i for i in self.newf.atoms(Pow).union(self.newf.atoms(exp))
if (i.base.is_Pow or isinstance(i.base, exp) and i.exp.is_Rational)]
ratpows_repl = [
(i, i.base.base**(i.exp*i.base.exp)) for i in ratpows]
self.backsubs += [(j, i) for i, j in ratpows_repl]
self.newf = self.newf.xreplace(dict(ratpows_repl))
# To make the process deterministic, the args are sorted
# so that functions with smaller op-counts are processed first.
# Ties are broken with the default_sort_key.
# XXX Although the method is deterministic no additional work
# has been done to guarantee that the simplest solution is
# returned and that it would be affected be using different
# variables. Though it is possible that this is the case
# one should know that it has not been done intentionally, so
# further improvements may be possible.
# TODO: This probably doesn't need to be completely recomputed at
# each pass.
exps = update_sets(exps, self.newf.atoms(exp),
lambda i: i.exp.is_rational_function(*self.T) and
i.exp.has(*self.T))
pows = update_sets(pows, self.newf.atoms(Pow),
lambda i: i.exp.is_rational_function(*self.T) and
i.exp.has(*self.T))
numpows = update_sets(numpows, set(pows),
lambda i: not i.base.has(*self.T))
sympows = update_sets(sympows, set(pows) - set(numpows),
lambda i: i.base.is_rational_function(*self.T) and
not i.exp.is_Integer)
# The easiest way to deal with non-base E powers is to convert them
# into base E, integrate, and then convert back.
for i in ordered(pows):
old = i
new = exp(i.exp*log(i.base))
# If exp is ever changed to automatically reduce exp(x*log(2))
# to 2**x, then this will break. The solution is to not change
# exp to do that :)
if i in sympows:
if i.exp.is_Rational:
raise NotImplementedError("Algebraic extensions are "
"not supported (%s)." % str(i))
# We can add a**b only if log(a) in the extension, because
# a**b == exp(b*log(a)).
basea, based = frac_in(i.base, self.t)
A = is_deriv_k(basea, based, self)
if A is None:
# Nonelementary monomial (so far)
# TODO: Would there ever be any benefit from just
# adding log(base) as a new monomial?
# ANSWER: Yes, otherwise we can't integrate x**x (or
# rather prove that it has no elementary integral)
# without first manually rewriting it as exp(x*log(x))
self.newf = self.newf.xreplace({old: new})
self.backsubs += [(new, old)]
log_new_extension = self._log_part([log(i.base)])
exps = update_sets(exps, self.newf.atoms(exp), lambda i:
i.exp.is_rational_function(*self.T) and i.exp.has(*self.T))
continue
ans, u, const = A
newterm = exp(i.exp*(log(const) + u))
# Under the current implementation, exp kills terms
# only if they are of the form a*log(x), where a is a
# Number. This case should have already been killed by the
# above tests. Again, if this changes to kill more than
# that, this will break, which maybe is a sign that you
# shouldn't be changing that. Actually, if anything, this
# auto-simplification should be removed. See
# http://groups.google.com/group/sympy/browse_thread/thread/a61d48235f16867f
self.newf = self.newf.xreplace({i: newterm})
elif i not in numpows:
continue
else:
# i in numpows
newterm = new
# TODO: Just put it in self.Tfuncs
self.backsubs.append((new, old))
self.newf = self.newf.xreplace({old: newterm})
exps.append(newterm)
return exps, pows, numpows, sympows, log_new_extension
def _rewrite_logs(self, logs, symlogs):
"""
Rewrite logs for better processing.
"""
atoms = self.newf.atoms(log)
logs = update_sets(logs, atoms,
lambda i: i.args[0].is_rational_function(*self.T) and
i.args[0].has(*self.T))
symlogs = update_sets(symlogs, atoms,
lambda i: i.has(*self.T) and i.args[0].is_Pow and
i.args[0].base.is_rational_function(*self.T) and
not i.args[0].exp.is_Integer)
# We can handle things like log(x**y) by converting it to y*log(x)
# This will fix not only symbolic exponents of the argument, but any
# non-Integer exponent, like log(sqrt(x)). The exponent can also
# depend on x, like log(x**x).
for i in ordered(symlogs):
# Unlike in the exponential case above, we do not ever
# potentially add new monomials (above we had to add log(a)).
# Therefore, there is no need to run any is_deriv functions
# here. Just convert log(a**b) to b*log(a) and let
# log_new_extension() handle it from there.
lbase = log(i.args[0].base)
logs.append(lbase)
new = i.args[0].exp*lbase
self.newf = self.newf.xreplace({i: new})
self.backsubs.append((new, i))
# remove any duplicates
logs = sorted(set(logs), key=default_sort_key)
return logs, symlogs
def _auto_attrs(self):
"""
Set attributes that are generated automatically.
"""
if not self.T:
# i.e., when using the extension flag and T isn't given
self.T = [i.gen for i in self.D]
if not self.x:
self.x = self.T[0]
self.cases = [get_case(d, t) for d, t in zip(self.D, self.T)]
self.level = -1
self.t = self.T[self.level]
self.d = self.D[self.level]
self.case = self.cases[self.level]
def _exp_part(self, exps):
"""
Try to build an exponential extension.
Returns True if there was a new extension, False if there was no new
extension but it was able to rewrite the given exponentials in terms
of the existing extension, and None if the entire extension building
process should be restarted. If the process fails because there is no
way around an algebraic extension (e.g., exp(log(x)/2)), it will raise
NotImplementedError.
"""
from sympy.integrals.prde import is_log_deriv_k_t_radical
new_extension = False
restart = False
expargs = [i.exp for i in exps]
ip = integer_powers(expargs)
for arg, others in ip:
# Minimize potential problems with algebraic substitution
others.sort(key=lambda i: i[1])
arga, argd = frac_in(arg, self.t)
A = is_log_deriv_k_t_radical(arga, argd, self)
if A is not None:
ans, u, n, const = A
# if n is 1 or -1, it's algebraic, but we can handle it
if n == -1:
# This probably will never happen, because
# Rational.as_numer_denom() returns the negative term in
# the numerator. But in case that changes, reduce it to
# n == 1.
n = 1
u **= -1
const *= -1
ans = [(i, -j) for i, j in ans]
if n == 1:
# Example: exp(x + x**2) over QQ(x, exp(x), exp(x**2))
self.newf = self.newf.xreplace({exp(arg): exp(const)*Mul(*[
u**power for u, power in ans])})
self.newf = self.newf.xreplace({exp(p*exparg):
exp(const*p) * Mul(*[u**power for u, power in ans])
for exparg, p in others})
# TODO: Add something to backsubs to put exp(const*p)
# back together.
continue
else:
# Bad news: we have an algebraic radical. But maybe we
# could still avoid it by choosing a different extension.
# For example, integer_powers() won't handle exp(x/2 + 1)
# over QQ(x, exp(x)), but if we pull out the exp(1), it
# will. Or maybe we have exp(x + x**2/2), over
# QQ(x, exp(x), exp(x**2)), which is exp(x)*sqrt(exp(x**2)),
# but if we use QQ(x, exp(x), exp(x**2/2)), then they will
# all work.
#
# So here is what we do: If there is a non-zero const, pull
# it out and retry. Also, if len(ans) > 1, then rewrite
# exp(arg) as the product of exponentials from ans, and
# retry that. If const == 0 and len(ans) == 1, then we
# assume that it would have been handled by either
# integer_powers() or n == 1 above if it could be handled,
# so we give up at that point. For example, you can never
# handle exp(log(x)/2) because it equals sqrt(x).
if const or len(ans) > 1:
rad = Mul(*[term**(power/n) for term, power in ans])
self.newf = self.newf.xreplace(dict((exp(p*exparg),
exp(const*p)*rad) for exparg, p in others))
self.newf = self.newf.xreplace(dict(list(zip(reversed(self.T),
reversed([f(self.x) for f in self.Tfuncs])))))
restart = True
break
else:
# TODO: give algebraic dependence in error string
raise NotImplementedError("Cannot integrate over "
"algebraic extensions.")
else:
arga, argd = frac_in(arg, self.t)
darga = (argd*derivation(Poly(arga, self.t), self) -
arga*derivation(Poly(argd, self.t), self))
dargd = argd**2
darga, dargd = darga.cancel(dargd, include=True)
darg = darga.as_expr()/dargd.as_expr()
self.t = next(self.ts)
self.T.append(self.t)
self.extargs.append(arg)
self.exts.append('exp')
self.D.append(darg.as_poly(self.t, expand=False)*Poly(self.t,
self.t, expand=False))
if self.dummy:
i = Dummy("i")
else:
i = Symbol('i')
self.Tfuncs += [Lambda(i, exp(arg.subs(self.x, i)))]
self.newf = self.newf.xreplace(
dict((exp(exparg), self.t**p) for exparg, p in others))
new_extension = True
if restart:
return None
return new_extension
def _log_part(self, logs):
"""
Try to build a logarithmic extension.
Returns True if there was a new extension and False if there was no new
extension but it was able to rewrite the given logarithms in terms
of the existing extension. Unlike with exponential extensions, there
is no way that a logarithm is not transcendental over and cannot be
rewritten in terms of an already existing extension in a non-algebraic
way, so this function does not ever return None or raise
NotImplementedError.
"""
from sympy.integrals.prde import is_deriv_k
new_extension = False
logargs = [i.args[0] for i in logs]
for arg in ordered(logargs):
# The log case is easier, because whenever a logarithm is algebraic
# over the base field, it is of the form a1*t1 + ... an*tn + c,
# which is a polynomial, so we can just replace it with that.
# In other words, we don't have to worry about radicals.
arga, argd = frac_in(arg, self.t)
A = is_deriv_k(arga, argd, self)
if A is not None:
ans, u, const = A
newterm = log(const) + u
self.newf = self.newf.xreplace({log(arg): newterm})
continue
else:
arga, argd = frac_in(arg, self.t)
darga = (argd*derivation(Poly(arga, self.t), self) -
arga*derivation(Poly(argd, self.t), self))
dargd = argd**2
darg = darga.as_expr()/dargd.as_expr()
self.t = next(self.ts)
self.T.append(self.t)
self.extargs.append(arg)
self.exts.append('log')
self.D.append(cancel(darg.as_expr()/arg).as_poly(self.t,
expand=False))
if self.dummy:
i = Dummy("i")
else:
i = Symbol('i')
self.Tfuncs += [Lambda(i, log(arg.subs(self.x, i)))]
self.newf = self.newf.xreplace({log(arg): self.t})
new_extension = True
return new_extension
@property
def _important_attrs(self):
"""
Returns some of the more important attributes of self.
Used for testing and debugging purposes.
The attributes are (fa, fd, D, T, Tfuncs, backsubs,
exts, extargs).
"""
return (self.fa, self.fd, self.D, self.T, self.Tfuncs,
self.backsubs, self.exts, self.extargs)
# NOTE: this printing doesn't follow the Python's standard
# eval(repr(DE)) == DE, where DE is the DifferentialExtension object
# , also this printing is supposed to contain all the important
# attributes of a DifferentialExtension object
def __repr__(self):
# no need to have GeneratorType object printed in it
r = [(attr, getattr(self, attr)) for attr in self.__slots__
if not isinstance(getattr(self, attr), GeneratorType)]
return self.__class__.__name__ + '(dict(%r))' % (r)
# fancy printing of DifferentialExtension object
def __str__(self):
return (self.__class__.__name__ + '({fa=%s, fd=%s, D=%s})' %
(self.fa, self.fd, self.D))
# should only be used for debugging purposes, internally
# f1 = f2 = log(x) at different places in code execution
# may return D1 != D2 as True, since 'level' or other attribute
# may differ
def __eq__(self, other):
for attr in self.__class__.__slots__:
d1, d2 = getattr(self, attr), getattr(other, attr)
if not (isinstance(d1, GeneratorType) or d1 == d2):
return False
return True
def reset(self):
"""
Reset self to an initial state. Used by __init__.
"""
self.t = self.x
self.T = [self.x]
self.D = [Poly(1, self.x)]
self.level = -1
self.exts = [None]
self.extargs = [None]
if self.dummy:
self.ts = numbered_symbols('t', cls=Dummy)
else:
# For testing
self.ts = numbered_symbols('t')
# For various things that we change to make things work that we need to
# change back when we are done.
self.backsubs = []
self.Tfuncs = []
self.newf = self.f
def indices(self, extension):
"""
Args:
extension (str): represents a valid extension type.
Returns:
list: A list of indices of 'exts' where extension of
type 'extension' is present.
Examples
========
>>> from sympy.integrals.risch import DifferentialExtension
>>> from sympy import log, exp
>>> from sympy.abc import x
>>> DE = DifferentialExtension(log(x) + exp(x), x, handle_first='exp')
>>> DE.indices('log')
[2]
>>> DE.indices('exp')
[1]
"""
return [i for i, ext in enumerate(self.exts) if ext == extension]
def increment_level(self):
"""
Increment the level of self.
This makes the working differential extension larger. self.level is
given relative to the end of the list (-1, -2, etc.), so we don't need
do worry about it when building the extension.
"""
if self.level >= -1:
raise ValueError("The level of the differential extension cannot "
"be incremented any further.")
self.level += 1
self.t = self.T[self.level]
self.d = self.D[self.level]
self.case = self.cases[self.level]
return None
def decrement_level(self):
"""
Decrease the level of self.
This makes the working differential extension smaller. self.level is
given relative to the end of the list (-1, -2, etc.), so we don't need
do worry about it when building the extension.
"""
if self.level <= -len(self.T):
raise ValueError("The level of the differential extension cannot "
"be decremented any further.")
self.level -= 1
self.t = self.T[self.level]
self.d = self.D[self.level]
self.case = self.cases[self.level]
return None
def update_sets(seq, atoms, func):
s = set(seq)
s = atoms.intersection(s)
new = atoms - s
s.update(list(filter(func, new)))
return list(s)
class DecrementLevel(object):
"""
A context manager for decrementing the level of a DifferentialExtension.
"""
__slots__ = ('DE',)
def __init__(self, DE):
self.DE = DE
return
def __enter__(self):
self.DE.decrement_level()
def __exit__(self, exc_type, exc_value, traceback):
self.DE.increment_level()
class NonElementaryIntegralException(Exception):
"""
Exception used by subroutines within the Risch algorithm to indicate to one
another that the function being integrated does not have an elementary
integral in the given differential field.
"""
# TODO: Rewrite algorithms below to use this (?)
# TODO: Pass through information about why the integral was nonelementary,
# and store that in the resulting NonElementaryIntegral somehow.
pass
def gcdex_diophantine(a, b, c):
"""
Extended Euclidean Algorithm, Diophantine version.
Given a, b in K[x] and c in (a, b), the ideal generated by a and b,
return (s, t) such that s*a + t*b == c and either s == 0 or s.degree()
< b.degree().
"""
# Extended Euclidean Algorithm (Diophantine Version) pg. 13
# TODO: This should go in densetools.py.
# XXX: Bettter name?
s, g = a.half_gcdex(b)
q = c.exquo(g) # Inexact division means c is not in (a, b)
s = q*s
if not s.is_zero and b.degree() >= b.degree():
q, s = s.div(b)
t = (c - s*a).exquo(b)
return (s, t)
def frac_in(f, t, **kwargs):
"""
Returns the tuple (fa, fd), where fa and fd are Polys in t.
This is a common idiom in the Risch Algorithm functions, so we abstract
it out here. f should be a basic expression, a Poly, or a tuple (fa, fd),
where fa and fd are either basic expressions or Polys, and f == fa/fd.
**kwargs are applied to Poly.
"""
cancel = kwargs.pop('cancel', False)
if type(f) is tuple:
fa, fd = f
f = fa.as_expr()/fd.as_expr()
fa, fd = f.as_expr().as_numer_denom()
fa, fd = fa.as_poly(t, **kwargs), fd.as_poly(t, **kwargs)
if cancel:
fa, fd = fa.cancel(fd, include=True)
if fa is None or fd is None:
raise ValueError("Could not turn %s into a fraction in %s." % (f, t))
return (fa, fd)
def as_poly_1t(p, t, z):
"""
(Hackish) way to convert an element p of K[t, 1/t] to K[t, z].
In other words, z == 1/t will be a dummy variable that Poly can handle
better.
See issue 5131.
Examples
========
>>> from sympy import random_poly
>>> from sympy.integrals.risch import as_poly_1t
>>> from sympy.abc import x, z
>>> p1 = random_poly(x, 10, -10, 10)
>>> p2 = random_poly(x, 10, -10, 10)
>>> p = p1 + p2.subs(x, 1/x)
>>> as_poly_1t(p, x, z).as_expr().subs(z, 1/x) == p
True
"""
# TODO: Use this on the final result. That way, we can avoid answers like
# (...)*exp(-x).
pa, pd = frac_in(p, t, cancel=True)
if not pd.is_monomial:
# XXX: Is there a better Poly exception that we could raise here?
# Either way, if you see this (from the Risch Algorithm) it indicates
# a bug.
raise PolynomialError("%s is not an element of K[%s, 1/%s]." % (p, t, t))
d = pd.degree(t)
one_t_part = pa.slice(0, d + 1)
r = pd.degree() - pa.degree()
t_part = pa - one_t_part
try:
t_part = t_part.to_field().exquo(pd)
except DomainError as e:
# issue 4950
raise NotImplementedError(e)
# Compute the negative degree parts.
one_t_part = Poly.from_list(reversed(one_t_part.rep.rep), *one_t_part.gens,
domain=one_t_part.domain)
if 0 < r < oo:
one_t_part *= Poly(t**r, t)
one_t_part = one_t_part.replace(t, z) # z will be 1/t
if pd.nth(d):
one_t_part *= Poly(1/pd.nth(d), z, expand=False)
ans = t_part.as_poly(t, z, expand=False) + one_t_part.as_poly(t, z,
expand=False)
return ans
def derivation(p, DE, coefficientD=False, basic=False):
"""
Computes Dp.
Given the derivation D with D = d/dx and p is a polynomial in t over
K(x), return Dp.
If coefficientD is True, it computes the derivation kD
(kappaD), which is defined as kD(sum(ai*Xi**i, (i, 0, n))) ==
sum(Dai*Xi**i, (i, 1, n)) (Definition 3.2.2, page 80). X in this case is
T[-1], so coefficientD computes the derivative just with respect to T[:-1],
with T[-1] treated as a constant.
If basic=True, the returns a Basic expression. Elements of D can still be
instances of Poly.
"""
if basic:
r = 0
else:
r = Poly(0, DE.t)
t = DE.t
if coefficientD:
if DE.level <= -len(DE.T):
# 'base' case, the answer is 0.
return r
DE.decrement_level()
D = DE.D[:len(DE.D) + DE.level + 1]
T = DE.T[:len(DE.T) + DE.level + 1]
for d, v in zip(D, T):
pv = p.as_poly(v)
if pv is None or basic:
pv = p.as_expr()
if basic:
r += d.as_expr()*pv.diff(v)
else:
r += (d*pv.diff(v)).as_poly(t)
if basic:
r = cancel(r)
if coefficientD:
DE.increment_level()
return r
def get_case(d, t):
"""
Returns the type of the derivation d.
Returns one of {'exp', 'tan', 'base', 'primitive', 'other_linear',
'other_nonlinear'}.
"""
if not d.has(t):
if d.is_one:
return 'base'
return 'primitive'
if d.rem(Poly(t, t)).is_zero:
return 'exp'
if d.rem(Poly(1 + t**2, t)).is_zero:
return 'tan'
if d.degree(t) > 1:
return 'other_nonlinear'
return 'other_linear'
def splitfactor(p, DE, coefficientD=False, z=None):
"""
Splitting factorization.
Given a derivation D on k[t] and p in k[t], return (p_n, p_s) in
k[t] x k[t] such that p = p_n*p_s, p_s is special, and each square
factor of p_n is normal.
Page. 100
"""
kinv = [1/x for x in DE.T[:DE.level]]
if z:
kinv.append(z)
One = Poly(1, DE.t, domain=p.get_domain())
Dp = derivation(p, DE, coefficientD=coefficientD)
# XXX: Is this right?
if p.is_zero:
return (p, One)
if not p.has(DE.t):
s = p.as_poly(*kinv).gcd(Dp.as_poly(*kinv)).as_poly(DE.t)
n = p.exquo(s)
return (n, s)
if not Dp.is_zero:
h = p.gcd(Dp).to_field()
g = p.gcd(p.diff(DE.t)).to_field()
s = h.exquo(g)
if s.degree(DE.t) == 0:
return (p, One)
q_split = splitfactor(p.exquo(s), DE, coefficientD=coefficientD)
return (q_split[0], q_split[1]*s)
else:
return (p, One)
def splitfactor_sqf(p, DE, coefficientD=False, z=None, basic=False):
"""
Splitting Square-free Factorization
Given a derivation D on k[t] and p in k[t], returns (N1, ..., Nm)
and (S1, ..., Sm) in k[t]^m such that p =
(N1*N2**2*...*Nm**m)*(S1*S2**2*...*Sm**m) is a splitting
factorization of p and the Ni and Si are square-free and coprime.
"""
# TODO: This algorithm appears to be faster in every case
# TODO: Verify this and splitfactor() for multiple extensions
kkinv = [1/x for x in DE.T[:DE.level]] + DE.T[:DE.level]
if z:
kkinv = [z]
S = []
N = []
p_sqf = p.sqf_list_include()
if p.is_zero:
return (((p, 1),), ())
for pi, i in p_sqf:
Si = pi.as_poly(*kkinv).gcd(derivation(pi, DE,
coefficientD=coefficientD,basic=basic).as_poly(*kkinv)).as_poly(DE.t)
pi = Poly(pi, DE.t)
Si = Poly(Si, DE.t)
Ni = pi.exquo(Si)
if not Si.is_one:
S.append((Si, i))
if not Ni.is_one:
N.append((Ni, i))
return (tuple(N), tuple(S))
def canonical_representation(a, d, DE):
"""
Canonical Representation.
Given a derivation D on k[t] and f = a/d in k(t), return (f_p, f_s,
f_n) in k[t] x k(t) x k(t) such that f = f_p + f_s + f_n is the
canonical representation of f (f_p is a polynomial, f_s is reduced
(has a special denominator), and f_n is simple (has a normal
denominator).
"""
# Make d monic
l = Poly(1/d.LC(), DE.t)
a, d = a.mul(l), d.mul(l)
q, r = a.div(d)
dn, ds = splitfactor(d, DE)
b, c = gcdex_diophantine(dn.as_poly(DE.t), ds.as_poly(DE.t), r.as_poly(DE.t))
b, c = b.as_poly(DE.t), c.as_poly(DE.t)
return (q, (b, ds), (c, dn))
def hermite_reduce(a, d, DE):
"""
Hermite Reduction - Mack's Linear Version.
Given a derivation D on k(t) and f = a/d in k(t), returns g, h, r in
k(t) such that f = Dg + h + r, h is simple, and r is reduced.
"""
# Make d monic
l = Poly(1/d.LC(), DE.t)
a, d = a.mul(l), d.mul(l)
fp, fs, fn = canonical_representation(a, d, DE)
a, d = fn
l = Poly(1/d.LC(), DE.t)
a, d = a.mul(l), d.mul(l)
ga = Poly(0, DE.t)
gd = Poly(1, DE.t)
dd = derivation(d, DE)
dm = gcd(d, dd).as_poly(DE.t)
ds, r = d.div(dm)
while dm.degree(DE.t)>0:
ddm = derivation(dm, DE)
dm2 = gcd(dm, ddm)
dms, r = dm.div(dm2)
ds_ddm = ds.mul(ddm)
ds_ddm_dm, r = ds_ddm.div(dm)
b, c = gcdex_diophantine(-ds_ddm_dm.as_poly(DE.t), dms.as_poly(DE.t), a.as_poly(DE.t))
b, c = b.as_poly(DE.t), c.as_poly(DE.t)
db = derivation(b, DE).as_poly(DE.t)
ds_dms, r = ds.div(dms)
a = c.as_poly(DE.t) - db.mul(ds_dms).as_poly(DE.t)
ga = ga*dm + b*gd
gd = gd*dm
ga, gd = ga.cancel(gd, include=True)
dm = dm2
d = ds
q, r = a.div(d)
ga, gd = ga.cancel(gd, include=True)
r, d = r.cancel(d, include=True)
rra = q*fs[1] + fp*fs[1] + fs[0]
rrd = fs[1]
rra, rrd = rra.cancel(rrd, include=True)
return ((ga, gd), (r, d), (rra, rrd))
def polynomial_reduce(p, DE):
"""
Polynomial Reduction.
Given a derivation D on k(t) and p in k[t] where t is a nonlinear
monomial over k, return q, r in k[t] such that p = Dq + r, and
deg(r) < deg_t(Dt).
"""
q = Poly(0, DE.t)
while p.degree(DE.t) >= DE.d.degree(DE.t):
m = p.degree(DE.t) - DE.d.degree(DE.t) + 1
q0 = Poly(DE.t**m, DE.t).mul(Poly(p.as_poly(DE.t).LC()/
(m*DE.d.LC()), DE.t))
q += q0
p = p - derivation(q0, DE)
return (q, p)
def laurent_series(a, d, F, n, DE):
"""
Contribution of F to the full partial fraction decomposition of A/D
Given a field K of characteristic 0 and A,D,F in K[x] with D monic,
nonzero, coprime with A, and F the factor of multiplicity n in the square-
free factorization of D, return the principal parts of the Laurent series of
A/D at all the zeros of F.
"""
if F.degree()==0:
return 0
Z = _symbols('z', n)
Z.insert(0, z)
delta_a = Poly(0, DE.t)
delta_d = Poly(1, DE.t)
E = d.quo(F**n)
ha, hd = (a, E*Poly(z**n, DE.t))
dF = derivation(F,DE)
B, G = gcdex_diophantine(E, F, Poly(1,DE.t))
C, G = gcdex_diophantine(dF, F, Poly(1,DE.t))
# initialization
F_store = F
V, DE_D_list, H_list= [], [], []
for j in range(0, n):
# jth derivative of z would be substituted with dfnth/(j+1) where dfnth =(d^n)f/(dx)^n
F_store = derivation(F_store, DE)
v = (F_store.as_expr())/(j + 1)
V.append(v)
DE_D_list.append(Poly(Z[j + 1],Z[j]))
DE_new = DifferentialExtension(extension = {'D': DE_D_list}) #a differential indeterminate
for j in range(0, n):
zEha = Poly(z**(n + j), DE.t)*E**(j + 1)*ha
zEhd = hd
Pa, Pd = cancel((zEha, zEhd))[1], cancel((zEha, zEhd))[2]
Q = Pa.quo(Pd)
for i in range(0, j + 1):
Q = Q.subs(Z[i], V[i])
Dha = hd*derivation(ha, DE, basic=True) + ha*derivation(hd, DE, basic=True)
Dha += hd*derivation(ha, DE_new, basic=True) + ha*derivation(hd, DE_new, basic=True)
Dhd = Poly(j + 1, DE.t)*hd**2
ha, hd = Dha, Dhd
Ff, Fr = F.div(gcd(F, Q))
F_stara, F_stard = frac_in(Ff, DE.t)
if F_stara.degree(DE.t) - F_stard.degree(DE.t) > 0:
QBC = Poly(Q, DE.t)*B**(1 + j)*C**(n + j)
H = QBC
H_list.append(H)
H = (QBC*F_stard).rem(F_stara)
alphas = real_roots(F_stara)
for alpha in list(alphas):
delta_a = delta_a*Poly((DE.t - alpha)**(n - j), DE.t) + Poly(H.eval(alpha), DE.t)
delta_d = delta_d*Poly((DE.t - alpha)**(n - j), DE.t)
return (delta_a, delta_d, H_list)
def recognize_derivative(a, d, DE, z=None):
"""
Compute the squarefree factorization of the denominator of f
and for each Di the polynomial H in K[x] (see Theorem 2.7.1), using the
LaurentSeries algorithm. Write Di = GiEi where Gj = gcd(Hn, Di) and
gcd(Ei,Hn) = 1. Since the residues of f at the roots of Gj are all 0, and
the residue of f at a root alpha of Ei is Hi(a) != 0, f is the derivative of a
rational function if and only if Ei = 1 for each i, which is equivalent to
Di | H[-1] for each i.
"""
flag =True
a, d = a.cancel(d, include=True)
q, r = a.div(d)
Np, Sp = splitfactor_sqf(d, DE, coefficientD=True, z=z)
j = 1
for (s, i) in Sp:
delta_a, delta_d, H = laurent_series(r, d, s, j, DE)
g = gcd(d, H[-1]).as_poly()
if g is not d:
flag = False
break
j = j + 1
return flag
def recognize_log_derivative(a, d, DE, z=None):
"""
There exists a v in K(x)* such that f = dv/v
where f a rational function if and only if f can be written as f = A/D
where D is squarefree,deg(A) < deg(D), gcd(A, D) = 1,
and all the roots of the Rothstein-Trager resultant are integers. In that case,
any of the Rothstein-Trager, Lazard-Rioboo-Trager or Czichowski algorithm
produces u in K(x) such that du/dx = uf.
"""
z = z or Dummy('z')
a, d = a.cancel(d, include=True)
p, a = a.div(d)
pz = Poly(z, DE.t)
Dd = derivation(d, DE)
q = a - pz*Dd
r, R = d.resultant(q, includePRS=True)
r = Poly(r, z)
Np, Sp = splitfactor_sqf(r, DE, coefficientD=True, z=z)
for s, i in Sp:
# TODO also consider the complex roots
# incase we have complex roots it should turn the flag false
a = real_roots(s.as_poly(z))
if any(not j.is_Integer for j in a):
return False
return True
def residue_reduce(a, d, DE, z=None, invert=True):
"""
Lazard-Rioboo-Rothstein-Trager resultant reduction.
Given a derivation D on k(t) and f in k(t) simple, return g
elementary over k(t) and a Boolean b in {True, False} such that f -
Dg in k[t] if b == True or f + h and f + h - Dg do not have an
elementary integral over k(t) for any h in k<t> (reduced) if b ==
False.
Returns (G, b), where G is a tuple of tuples of the form (s_i, S_i),
such that g = Add(*[RootSum(s_i, lambda z: z*log(S_i(z, t))) for
S_i, s_i in G]). f - Dg is the remaining integral, which is elementary
only if b == True, and hence the integral of f is elementary only if
b == True.
f - Dg is not calculated in this function because that would require
explicitly calculating the RootSum. Use residue_reduce_derivation().
"""
# TODO: Use log_to_atan() from rationaltools.py
# If r = residue_reduce(...), then the logarithmic part is given by:
# sum([RootSum(a[0].as_poly(z), lambda i: i*log(a[1].as_expr()).subs(z,
# i)).subs(t, log(x)) for a in r[0]])
z = z or Dummy('z')
a, d = a.cancel(d, include=True)
a, d = a.to_field().mul_ground(1/d.LC()), d.to_field().mul_ground(1/d.LC())
kkinv = [1/x for x in DE.T[:DE.level]] + DE.T[:DE.level]
if a.is_zero:
return ([], True)
p, a = a.div(d)
pz = Poly(z, DE.t)
Dd = derivation(d, DE)
q = a - pz*Dd
if Dd.degree(DE.t) <= d.degree(DE.t):
r, R = d.resultant(q, includePRS=True)
else:
r, R = q.resultant(d, includePRS=True)
R_map, H = {}, []
for i in R:
R_map[i.degree()] = i
r = Poly(r, z)
Np, Sp = splitfactor_sqf(r, DE, coefficientD=True, z=z)
for s, i in Sp:
if i == d.degree(DE.t):
s = Poly(s, z).monic()
H.append((s, d))
else:
h = R_map.get(i)
if h is None:
continue
h_lc = Poly(h.as_poly(DE.t).LC(), DE.t, field=True)
h_lc_sqf = h_lc.sqf_list_include(all=True)
for a, j in h_lc_sqf:
h = Poly(h, DE.t, field=True).exquo(Poly(gcd(a, s**j, *kkinv),
DE.t))
s = Poly(s, z).monic()
if invert:
h_lc = Poly(h.as_poly(DE.t).LC(), DE.t, field=True, expand=False)
inv, coeffs = h_lc.as_poly(z, field=True).invert(s), [S(1)]
for coeff in h.coeffs()[1:]:
L = reduced(inv*coeff, [s])[1]
coeffs.append(L.as_expr())
h = Poly(dict(list(zip(h.monoms(), coeffs))), DE.t)
H.append((s, h))
b = all([not cancel(i.as_expr()).has(DE.t, z) for i, _ in Np])
return (H, b)
def residue_reduce_to_basic(H, DE, z):
"""
Converts the tuple returned by residue_reduce() into a Basic expression.
"""
# TODO: check what Lambda does with RootOf
i = Dummy('i')
s = list(zip(reversed(DE.T), reversed([f(DE.x) for f in DE.Tfuncs])))
return sum((RootSum(a[0].as_poly(z), Lambda(i, i*log(a[1].as_expr()).subs(
{z: i}).subs(s))) for a in H))
def residue_reduce_derivation(H, DE, z):
"""
Computes the derivation of an expression returned by residue_reduce().
In general, this is a rational function in t, so this returns an
as_expr() result.
"""
# TODO: verify that this is correct for multiple extensions
i = Dummy('i')
return S(sum((RootSum(a[0].as_poly(z), Lambda(i, i*derivation(a[1],
DE).as_expr().subs(z, i)/a[1].as_expr().subs(z, i))) for a in H)))
def integrate_primitive_polynomial(p, DE):
"""
Integration of primitive polynomials.
Given a primitive monomial t over k, and p in k[t], return q in k[t],
r in k, and a bool b in {True, False} such that r = p - Dq is in k if b is
True, or r = p - Dq does not have an elementary integral over k(t) if b is
False.
"""
from sympy.integrals.prde import limited_integrate
Zero = Poly(0, DE.t)
q = Poly(0, DE.t)
if not p.has(DE.t):
return (Zero, p, True)
while True:
if not p.has(DE.t):
return (q, p, True)
Dta, Dtb = frac_in(DE.d, DE.T[DE.level - 1])
with DecrementLevel(DE): # We had better be integrating the lowest extension (x)
# with ratint().
a = p.LC()
aa, ad = frac_in(a, DE.t)
try:
rv = limited_integrate(aa, ad, [(Dta, Dtb)], DE)
if rv is None:
raise NonElementaryIntegralException
(ba, bd), c = rv
except NonElementaryIntegralException:
return (q, p, False)
m = p.degree(DE.t)
q0 = c[0].as_poly(DE.t)*Poly(DE.t**(m + 1)/(m + 1), DE.t) + \
(ba.as_expr()/bd.as_expr()).as_poly(DE.t)*Poly(DE.t**m, DE.t)
p = p - derivation(q0, DE)
q = q + q0
def integrate_primitive(a, d, DE, z=None):
"""
Integration of primitive functions.
Given a primitive monomial t over k and f in k(t), return g elementary over
k(t), i in k(t), and b in {True, False} such that i = f - Dg is in k if b
is True or i = f - Dg does not have an elementary integral over k(t) if b
is False.
This function returns a Basic expression for the first argument. If b is
True, the second argument is Basic expression in k to recursively integrate.
If b is False, the second argument is an unevaluated Integral, which has
been proven to be nonelementary.
"""
# XXX: a and d must be canceled, or this might return incorrect results
z = z or Dummy("z")
s = list(zip(reversed(DE.T), reversed([f(DE.x) for f in DE.Tfuncs])))
g1, h, r = hermite_reduce(a, d, DE)
g2, b = residue_reduce(h[0], h[1], DE, z=z)
if not b:
i = cancel(a.as_expr()/d.as_expr() - (g1[1]*derivation(g1[0], DE) -
g1[0]*derivation(g1[1], DE)).as_expr()/(g1[1]**2).as_expr() -
residue_reduce_derivation(g2, DE, z))
i = NonElementaryIntegral(cancel(i).subs(s), DE.x)
return ((g1[0].as_expr()/g1[1].as_expr()).subs(s) +
residue_reduce_to_basic(g2, DE, z), i, b)
# h - Dg2 + r
p = cancel(h[0].as_expr()/h[1].as_expr() - residue_reduce_derivation(g2,
DE, z) + r[0].as_expr()/r[1].as_expr())
p = p.as_poly(DE.t)
q, i, b = integrate_primitive_polynomial(p, DE)
ret = ((g1[0].as_expr()/g1[1].as_expr() + q.as_expr()).subs(s) +
residue_reduce_to_basic(g2, DE, z))
if not b:
# TODO: This does not do the right thing when b is False
i = NonElementaryIntegral(cancel(i.as_expr()).subs(s), DE.x)
else:
i = cancel(i.as_expr())
return (ret, i, b)
def integrate_hyperexponential_polynomial(p, DE, z):
"""
Integration of hyperexponential polynomials.
Given a hyperexponential monomial t over k and p in k[t, 1/t], return q in
k[t, 1/t] and a bool b in {True, False} such that p - Dq in k if b is True,
or p - Dq does not have an elementary integral over k(t) if b is False.
"""
from sympy.integrals.rde import rischDE
t1 = DE.t
dtt = DE.d.exquo(Poly(DE.t, DE.t))
qa = Poly(0, DE.t)
qd = Poly(1, DE.t)
b = True
if p.is_zero:
return(qa, qd, b)
with DecrementLevel(DE):
for i in range(-p.degree(z), p.degree(t1) + 1):
if not i:
continue
elif i < 0:
# If you get AttributeError: 'NoneType' object has no attribute 'nth'
# then this should really not have expand=False
# But it shouldn't happen because p is already a Poly in t and z
a = p.as_poly(z, expand=False).nth(-i)
else:
# If you get AttributeError: 'NoneType' object has no attribute 'nth'
# then this should really not have expand=False
a = p.as_poly(t1, expand=False).nth(i)
aa, ad = frac_in(a, DE.t, field=True)
aa, ad = aa.cancel(ad, include=True)
iDt = Poly(i, t1)*dtt
iDta, iDtd = frac_in(iDt, DE.t, field=True)
try:
va, vd = rischDE(iDta, iDtd, Poly(aa, DE.t), Poly(ad, DE.t), DE)
va, vd = frac_in((va, vd), t1, cancel=True)
except NonElementaryIntegralException:
b = False
else:
qa = qa*vd + va*Poly(t1**i)*qd
qd *= vd
return (qa, qd, b)
def integrate_hyperexponential(a, d, DE, z=None, conds='piecewise'):
"""
Integration of hyperexponential functions.
Given a hyperexponential monomial t over k and f in k(t), return g
elementary over k(t), i in k(t), and a bool b in {True, False} such that
i = f - Dg is in k if b is True or i = f - Dg does not have an elementary
integral over k(t) if b is False.
This function returns a Basic expression for the first argument. If b is
True, the second argument is Basic expression in k to recursively integrate.
If b is False, the second argument is an unevaluated Integral, which has
been proven to be nonelementary.
"""
# XXX: a and d must be canceled, or this might return incorrect results
z = z or Dummy("z")
s = list(zip(reversed(DE.T), reversed([f(DE.x) for f in DE.Tfuncs])))
g1, h, r = hermite_reduce(a, d, DE)
g2, b = residue_reduce(h[0], h[1], DE, z=z)
if not b:
i = cancel(a.as_expr()/d.as_expr() - (g1[1]*derivation(g1[0], DE) -
g1[0]*derivation(g1[1], DE)).as_expr()/(g1[1]**2).as_expr() -
residue_reduce_derivation(g2, DE, z))
i = NonElementaryIntegral(cancel(i.subs(s)), DE.x)
return ((g1[0].as_expr()/g1[1].as_expr()).subs(s) +
residue_reduce_to_basic(g2, DE, z), i, b)
# p should be a polynomial in t and 1/t, because Sirr == k[t, 1/t]
# h - Dg2 + r
p = cancel(h[0].as_expr()/h[1].as_expr() - residue_reduce_derivation(g2,
DE, z) + r[0].as_expr()/r[1].as_expr())
pp = as_poly_1t(p, DE.t, z)
qa, qd, b = integrate_hyperexponential_polynomial(pp, DE, z)
i = pp.nth(0, 0)
ret = ((g1[0].as_expr()/g1[1].as_expr()).subs(s) \
+ residue_reduce_to_basic(g2, DE, z))
qas = qa.as_expr().subs(s)
qds = qd.as_expr().subs(s)
if conds == 'piecewise' and DE.x not in qds.free_symbols:
# We have to be careful if the exponent is S.Zero!
# XXX: Does qd = 0 always necessarily correspond to the exponential
# equaling 1?
ret += Piecewise(
(qas/qds, Ne(qds, 0)),
(integrate((p - i).subs(DE.t, 1).subs(s), DE.x), True)
)
else:
ret += qas/qds
if not b:
i = p - (qd*derivation(qa, DE) - qa*derivation(qd, DE)).as_expr()/\
(qd**2).as_expr()
i = NonElementaryIntegral(cancel(i).subs(s), DE.x)
return (ret, i, b)
def integrate_hypertangent_polynomial(p, DE):
"""
Integration of hypertangent polynomials.
Given a differential field k such that sqrt(-1) is not in k, a
hypertangent monomial t over k, and p in k[t], return q in k[t] and
c in k such that p - Dq - c*D(t**2 + 1)/(t**1 + 1) is in k and p -
Dq does not have an elementary integral over k(t) if Dc != 0.
"""
# XXX: Make sure that sqrt(-1) is not in k.
q, r = polynomial_reduce(p, DE)
a = DE.d.exquo(Poly(DE.t**2 + 1, DE.t))
c = Poly(r.nth(1)/(2*a.as_expr()), DE.t)
return (q, c)
def integrate_nonlinear_no_specials(a, d, DE, z=None):
"""
Integration of nonlinear monomials with no specials.
Given a nonlinear monomial t over k such that Sirr ({p in k[t] | p is
special, monic, and irreducible}) is empty, and f in k(t), returns g
elementary over k(t) and a Boolean b in {True, False} such that f - Dg is
in k if b == True, or f - Dg does not have an elementary integral over k(t)
if b == False.
This function is applicable to all nonlinear extensions, but in the case
where it returns b == False, it will only have proven that the integral of
f - Dg is nonelementary if Sirr is empty.
This function returns a Basic expression.
"""
# TODO: Integral from k?
# TODO: split out nonelementary integral
# XXX: a and d must be canceled, or this might not return correct results
z = z or Dummy("z")
s = list(zip(reversed(DE.T), reversed([f(DE.x) for f in DE.Tfuncs])))
g1, h, r = hermite_reduce(a, d, DE)
g2, b = residue_reduce(h[0], h[1], DE, z=z)
if not b:
return ((g1[0].as_expr()/g1[1].as_expr()).subs(s) +
residue_reduce_to_basic(g2, DE, z), b)
# Because f has no specials, this should be a polynomial in t, or else
# there is a bug.
p = cancel(h[0].as_expr()/h[1].as_expr() - residue_reduce_derivation(g2,
DE, z).as_expr() + r[0].as_expr()/r[1].as_expr()).as_poly(DE.t)
q1, q2 = polynomial_reduce(p, DE)
if q2.has(DE.t):
b = False
else:
b = True
ret = (cancel(g1[0].as_expr()/g1[1].as_expr() + q1.as_expr()).subs(s) +
residue_reduce_to_basic(g2, DE, z))
return (ret, b)
class NonElementaryIntegral(Integral):
"""
Represents a nonelementary Integral.
If the result of integrate() is an instance of this class, it is
guaranteed to be nonelementary. Note that integrate() by default will try
to find any closed-form solution, even in terms of special functions which
may themselves not be elementary. To make integrate() only give
elementary solutions, or, in the cases where it can prove the integral to
be nonelementary, instances of this class, use integrate(risch=True).
In this case, integrate() may raise NotImplementedError if it cannot make
such a determination.
integrate() uses the deterministic Risch algorithm to integrate elementary
functions or prove that they have no elementary integral. In some cases,
this algorithm can split an integral into an elementary and nonelementary
part, so that the result of integrate will be the sum of an elementary
expression and a NonElementaryIntegral.
Examples
========
>>> from sympy import integrate, exp, log, Integral
>>> from sympy.abc import x
>>> a = integrate(exp(-x**2), x, risch=True)
>>> print(a)
Integral(exp(-x**2), x)
>>> type(a)
<class 'sympy.integrals.risch.NonElementaryIntegral'>
>>> expr = (2*log(x)**2 - log(x) - x**2)/(log(x)**3 - x**2*log(x))
>>> b = integrate(expr, x, risch=True)
>>> print(b)
-log(-x + log(x))/2 + log(x + log(x))/2 + Integral(1/log(x), x)
>>> type(b.atoms(Integral).pop())
<class 'sympy.integrals.risch.NonElementaryIntegral'>
"""
# TODO: This is useful in and of itself, because isinstance(result,
# NonElementaryIntegral) will tell if the integral has been proven to be
# elementary. But should we do more? Perhaps a no-op .doit() if
# elementary=True? Or maybe some information on why the integral is
# nonelementary.
pass
def risch_integrate(f, x, extension=None, handle_first='log',
separate_integral=False, rewrite_complex=None,
conds='piecewise'):
r"""
The Risch Integration Algorithm.
Only transcendental functions are supported. Currently, only exponentials
and logarithms are supported, but support for trigonometric functions is
forthcoming.
If this function returns an unevaluated Integral in the result, it means
that it has proven that integral to be nonelementary. Any errors will
result in raising NotImplementedError. The unevaluated Integral will be
an instance of NonElementaryIntegral, a subclass of Integral.
handle_first may be either 'exp' or 'log'. This changes the order in
which the extension is built, and may result in a different (but
equivalent) solution (for an example of this, see issue 5109). It is also
possible that the integral may be computed with one but not the other,
because not all cases have been implemented yet. It defaults to 'log' so
that the outer extension is exponential when possible, because more of the
exponential case has been implemented.
If separate_integral is True, the result is returned as a tuple (ans, i),
where the integral is ans + i, ans is elementary, and i is either a
NonElementaryIntegral or 0. This useful if you want to try further
integrating the NonElementaryIntegral part using other algorithms to
possibly get a solution in terms of special functions. It is False by
default.
Examples
========
>>> from sympy.integrals.risch import risch_integrate
>>> from sympy import exp, log, pprint
>>> from sympy.abc import x
First, we try integrating exp(-x**2). Except for a constant factor of
2/sqrt(pi), this is the famous error function.
>>> pprint(risch_integrate(exp(-x**2), x))
/
|
| 2
| -x
| e dx
|
/
The unevaluated Integral in the result means that risch_integrate() has
proven that exp(-x**2) does not have an elementary anti-derivative.
In many cases, risch_integrate() can split out the elementary
anti-derivative part from the nonelementary anti-derivative part.
For example,
>>> pprint(risch_integrate((2*log(x)**2 - log(x) - x**2)/(log(x)**3 -
... x**2*log(x)), x))
/
|
log(-x + log(x)) log(x + log(x)) | 1
- ---------------- + --------------- + | ------ dx
2 2 | log(x)
|
/
This means that it has proven that the integral of 1/log(x) is
nonelementary. This function is also known as the logarithmic integral,
and is often denoted as Li(x).
risch_integrate() currently only accepts purely transcendental functions
with exponentials and logarithms, though note that this can include
nested exponentials and logarithms, as well as exponentials with bases
other than E.
>>> pprint(risch_integrate(exp(x)*exp(exp(x)), x))
/ x\
\e /
e
>>> pprint(risch_integrate(exp(exp(x)), x))
/
|
| / x\
| \e /
| e dx
|
/
>>> pprint(risch_integrate(x*x**x*log(x) + x**x + x*x**x, x))
x
x*x
>>> pprint(risch_integrate(x**x, x))
/
|
| x
| x dx
|
/
>>> pprint(risch_integrate(-1/(x*log(x)*log(log(x))**2), x))
1
-----------
log(log(x))
"""
f = S(f)
DE = extension or DifferentialExtension(f, x, handle_first=handle_first,
dummy=True, rewrite_complex=rewrite_complex)
fa, fd = DE.fa, DE.fd
result = S(0)
for case in reversed(DE.cases):
if not fa.has(DE.t) and not fd.has(DE.t) and not case == 'base':
DE.decrement_level()
fa, fd = frac_in((fa, fd), DE.t)
continue
fa, fd = fa.cancel(fd, include=True)
if case == 'exp':
ans, i, b = integrate_hyperexponential(fa, fd, DE, conds=conds)
elif case == 'primitive':
ans, i, b = integrate_primitive(fa, fd, DE)
elif case == 'base':
# XXX: We can't call ratint() directly here because it doesn't
# handle polynomials correctly.
ans = integrate(fa.as_expr()/fd.as_expr(), DE.x, risch=False)
b = False
i = S(0)
else:
raise NotImplementedError("Only exponential and logarithmic "
"extensions are currently supported.")
result += ans
if b:
DE.decrement_level()
fa, fd = frac_in(i, DE.t)
else:
result = result.subs(DE.backsubs)
if not i.is_zero:
i = NonElementaryIntegral(i.function.subs(DE.backsubs),i.limits)
if not separate_integral:
result += i
return result
else:
if isinstance(i, NonElementaryIntegral):
return (result, i)
else:
return (result, 0)
|
14abcea340ccaf74dfa28f9dc373b422c089c4a54a04032d77e91dbd9516c95d
|
"""
Algorithms for solving Parametric Risch Differential Equations.
The methods used for solving Parametric Risch Differential Equations parallel
those for solving Risch Differential Equations. See the outline in the
docstring of rde.py for more information.
The Parametric Risch Differential Equation problem is, given f, g1, ..., gm in
K(t), to determine if there exist y in K(t) and c1, ..., cm in Const(K) such
that Dy + f*y == Sum(ci*gi, (i, 1, m)), and to find such y and ci if they exist.
For the algorithms here G is a list of tuples of factions of the terms on the
right hand side of the equation (i.e., gi in k(t)), and Q is a list of terms on
the right hand side of the equation (i.e., qi in k[t]). See the docstring of
each function for more information.
"""
from __future__ import print_function, division
from sympy.core import Dummy, ilcm, Add, Mul, Pow, S, oo
from sympy.matrices import zeros, eye
from sympy.polys.polymatrix import PolyMatrix as Matrix
from sympy.solvers import solve
from sympy.polys import Poly, lcm, cancel, sqf_list
from sympy.integrals.risch import (gcdex_diophantine, frac_in, derivation,
NonElementaryIntegralException, residue_reduce, splitfactor,
residue_reduce_derivation, DecrementLevel, recognize_log_derivative)
from sympy.integrals.rde import (order_at, order_at_oo, weak_normalizer,
bound_degree, spde, solve_poly_rde)
from sympy.core.compatibility import reduce, range
from sympy.utilities.misc import debug
def prde_normal_denom(fa, fd, G, DE):
"""
Parametric Risch Differential Equation - Normal part of the denominator.
Given a derivation D on k[t] and f, g1, ..., gm in k(t) with f weakly
normalized with respect to t, return the tuple (a, b, G, h) such that
a, h in k[t], b in k<t>, G = [g1, ..., gm] in k(t)^m, and for any solution
c1, ..., cm in Const(k) and y in k(t) of Dy + f*y == Sum(ci*gi, (i, 1, m)),
q == y*h in k<t> satisfies a*Dq + b*q == Sum(ci*Gi, (i, 1, m)).
"""
dn, ds = splitfactor(fd, DE)
Gas, Gds = list(zip(*G))
gd = reduce(lambda i, j: i.lcm(j), Gds, Poly(1, DE.t))
en, es = splitfactor(gd, DE)
p = dn.gcd(en)
h = en.gcd(en.diff(DE.t)).quo(p.gcd(p.diff(DE.t)))
a = dn*h
c = a*h
ba = a*fa - dn*derivation(h, DE)*fd
ba, bd = ba.cancel(fd, include=True)
G = [(c*A).cancel(D, include=True) for A, D in G]
return (a, (ba, bd), G, h)
def real_imag(ba, bd, gen):
"""
Helper function, to get the real and imaginary part of a rational function
evaluated at sqrt(-1) without actually evaluating it at sqrt(-1)
Separates the even and odd power terms by checking the degree of terms wrt
mod 4. Returns a tuple (ba[0], ba[1], bd) where ba[0] is real part
of the numerator ba[1] is the imaginary part and bd is the denominator
of the rational function.
"""
bd = bd.as_poly(gen).as_dict()
ba = ba.as_poly(gen).as_dict()
denom_real = [value if key[0] % 4 == 0 else -value if key[0] % 4 == 2 else 0 for key, value in bd.items()]
denom_imag = [value if key[0] % 4 == 1 else -value if key[0] % 4 == 3 else 0 for key, value in bd.items()]
bd_real = sum(r for r in denom_real)
bd_imag = sum(r for r in denom_imag)
num_real = [value if key[0] % 4 == 0 else -value if key[0] % 4 == 2 else 0 for key, value in ba.items()]
num_imag = [value if key[0] % 4 == 1 else -value if key[0] % 4 == 3 else 0 for key, value in ba.items()]
ba_real = sum(r for r in num_real)
ba_imag = sum(r for r in num_imag)
ba = ((ba_real*bd_real + ba_imag*bd_imag).as_poly(gen), (ba_imag*bd_real - ba_real*bd_imag).as_poly(gen))
bd = (bd_real*bd_real + bd_imag*bd_imag).as_poly(gen)
return (ba[0], ba[1], bd)
def prde_special_denom(a, ba, bd, G, DE, case='auto'):
"""
Parametric Risch Differential Equation - Special part of the denominator.
case is one of {'exp', 'tan', 'primitive'} for the hyperexponential,
hypertangent, and primitive cases, respectively. For the hyperexponential
(resp. hypertangent) case, given a derivation D on k[t] and a in k[t],
b in k<t>, and g1, ..., gm in k(t) with Dt/t in k (resp. Dt/(t**2 + 1) in
k, sqrt(-1) not in k), a != 0, and gcd(a, t) == 1 (resp.
gcd(a, t**2 + 1) == 1), return the tuple (A, B, GG, h) such that A, B, h in
k[t], GG = [gg1, ..., ggm] in k(t)^m, and for any solution c1, ..., cm in
Const(k) and q in k<t> of a*Dq + b*q == Sum(ci*gi, (i, 1, m)), r == q*h in
k[t] satisfies A*Dr + B*r == Sum(ci*ggi, (i, 1, m)).
For case == 'primitive', k<t> == k[t], so it returns (a, b, G, 1) in this
case.
"""
# TODO: Merge this with the very similar special_denom() in rde.py
if case == 'auto':
case = DE.case
if case == 'exp':
p = Poly(DE.t, DE.t)
elif case == 'tan':
p = Poly(DE.t**2 + 1, DE.t)
elif case in ['primitive', 'base']:
B = ba.quo(bd)
return (a, B, G, Poly(1, DE.t))
else:
raise ValueError("case must be one of {'exp', 'tan', 'primitive', "
"'base'}, not %s." % case)
nb = order_at(ba, p, DE.t) - order_at(bd, p, DE.t)
nc = min([order_at(Ga, p, DE.t) - order_at(Gd, p, DE.t) for Ga, Gd in G])
n = min(0, nc - min(0, nb))
if not nb:
# Possible cancellation.
if case == 'exp':
dcoeff = DE.d.quo(Poly(DE.t, DE.t))
with DecrementLevel(DE): # We are guaranteed to not have problems,
# because case != 'base'.
alphaa, alphad = frac_in(-ba.eval(0)/bd.eval(0)/a.eval(0), DE.t)
etaa, etad = frac_in(dcoeff, DE.t)
A = parametric_log_deriv(alphaa, alphad, etaa, etad, DE)
if A is not None:
Q, m, z = A
if Q == 1:
n = min(n, m)
elif case == 'tan':
dcoeff = DE.d.quo(Poly(DE.t**2 + 1, DE.t))
with DecrementLevel(DE): # We are guaranteed to not have problems,
# because case != 'base'.
betaa, alphaa, alphad = real_imag(ba, bd*a, DE.t)
betad = alphad
etaa, etad = frac_in(dcoeff, DE.t)
if recognize_log_derivative(2*betaa, betad, DE):
A = parametric_log_deriv(alphaa, alphad, etaa, etad, DE)
B = parametric_log_deriv(betaa, betad, etaa, etad, DE)
if A is not None and B is not None:
Q, s, z = A
# TODO: Add test
if Q == 1:
n = min(n, s/2)
N = max(0, -nb)
pN = p**N
pn = p**-n # This is 1/h
A = a*pN
B = ba*pN.quo(bd) + Poly(n, DE.t)*a*derivation(p, DE).quo(p)*pN
G = [(Ga*pN*pn).cancel(Gd, include=True) for Ga, Gd in G]
h = pn
# (a*p**N, (b + n*a*Dp/p)*p**N, g1*p**(N - n), ..., gm*p**(N - n), p**-n)
return (A, B, G, h)
def prde_linear_constraints(a, b, G, DE):
"""
Parametric Risch Differential Equation - Generate linear constraints on the constants.
Given a derivation D on k[t], a, b, in k[t] with gcd(a, b) == 1, and
G = [g1, ..., gm] in k(t)^m, return Q = [q1, ..., qm] in k[t]^m and a
matrix M with entries in k(t) such that for any solution c1, ..., cm in
Const(k) and p in k[t] of a*Dp + b*p == Sum(ci*gi, (i, 1, m)),
(c1, ..., cm) is a solution of Mx == 0, and p and the ci satisfy
a*Dp + b*p == Sum(ci*qi, (i, 1, m)).
Because M has entries in k(t), and because Matrix doesn't play well with
Poly, M will be a Matrix of Basic expressions.
"""
m = len(G)
Gns, Gds = list(zip(*G))
d = reduce(lambda i, j: i.lcm(j), Gds)
d = Poly(d, field=True)
Q = [(ga*(d).quo(gd)).div(d) for ga, gd in G]
if not all([ri.is_zero for _, ri in Q]):
N = max([ri.degree(DE.t) for _, ri in Q])
M = Matrix(N + 1, m, lambda i, j: Q[j][1].nth(i))
else:
M = Matrix(0, m, []) # No constraints, return the empty matrix.
qs, _ = list(zip(*Q))
return (qs, M)
def poly_linear_constraints(p, d):
"""
Given p = [p1, ..., pm] in k[t]^m and d in k[t], return
q = [q1, ..., qm] in k[t]^m and a matrix M with entries in k such
that Sum(ci*pi, (i, 1, m)), for c1, ..., cm in k, is divisible
by d if and only if (c1, ..., cm) is a solution of Mx = 0, in
which case the quotient is Sum(ci*qi, (i, 1, m)).
"""
m = len(p)
q, r = zip(*[pi.div(d) for pi in p])
if not all([ri.is_zero for ri in r]):
n = max([ri.degree() for ri in r])
M = Matrix(n + 1, m, lambda i, j: r[j].nth(i))
else:
M = Matrix(0, m, []) # No constraints.
return q, M
def constant_system(A, u, DE):
"""
Generate a system for the constant solutions.
Given a differential field (K, D) with constant field C = Const(K), a Matrix
A, and a vector (Matrix) u with coefficients in K, returns the tuple
(B, v, s), where B is a Matrix with coefficients in C and v is a vector
(Matrix) such that either v has coefficients in C, in which case s is True
and the solutions in C of Ax == u are exactly all the solutions of Bx == v,
or v has a non-constant coefficient, in which case s is False Ax == u has no
constant solution.
This algorithm is used both in solving parametric problems and in
determining if an element a of K is a derivative of an element of K or the
logarithmic derivative of a K-radical using the structure theorem approach.
Because Poly does not play well with Matrix yet, this algorithm assumes that
all matrix entries are Basic expressions.
"""
if not A:
return A, u
Au = A.row_join(u)
Au = Au.rref(simplify=cancel, normalize_last=False)[0]
# Warning: This will NOT return correct results if cancel() cannot reduce
# an identically zero expression to 0. The danger is that we might
# incorrectly prove that an integral is nonelementary (such as
# risch_integrate(exp((sin(x)**2 + cos(x)**2 - 1)*x**2), x).
# But this is a limitation in computer algebra in general, and implicit
# in the correctness of the Risch Algorithm is the computability of the
# constant field (actually, this same correctness problem exists in any
# algorithm that uses rref()).
#
# We therefore limit ourselves to constant fields that are computable
# via the cancel() function, in order to prevent a speed bottleneck from
# calling some more complex simplification function (rational function
# coefficients will fall into this class). Furthermore, (I believe) this
# problem will only crop up if the integral explicitly contains an
# expression in the constant field that is identically zero, but cannot
# be reduced to such by cancel(). Therefore, a careful user can avoid this
# problem entirely by being careful with the sorts of expressions that
# appear in his integrand in the variables other than the integration
# variable (the structure theorems should be able to completely decide these
# problems in the integration variable).
Au = Au.applyfunc(cancel)
A, u = Au[:, :-1], Au[:, -1]
for j in range(A.cols):
for i in range(A.rows):
if A[i, j].has(*DE.T):
# This assumes that const(F(t0, ..., tn) == const(K) == F
Ri = A[i, :]
# Rm+1; m = A.rows
Rm1 = Ri.applyfunc(lambda x: derivation(x, DE, basic=True)/
derivation(A[i, j], DE, basic=True))
Rm1 = Rm1.applyfunc(cancel)
um1 = cancel(derivation(u[i], DE, basic=True)/
derivation(A[i, j], DE, basic=True))
for s in range(A.rows):
# A[s, :] = A[s, :] - A[s, i]*A[:, m+1]
Asj = A[s, j]
A.row_op(s, lambda r, jj: cancel(r - Asj*Rm1[jj]))
# u[s] = u[s] - A[s, j]*u[m+1
u.row_op(s, lambda r, jj: cancel(r - Asj*um1))
A = A.col_join(Rm1)
u = u.col_join(Matrix([um1]))
return (A, u)
def prde_spde(a, b, Q, n, DE):
"""
Special Polynomial Differential Equation algorithm: Parametric Version.
Given a derivation D on k[t], an integer n, and a, b, q1, ..., qm in k[t]
with deg(a) > 0 and gcd(a, b) == 1, return (A, B, Q, R, n1), with
Qq = [q1, ..., qm] and R = [r1, ..., rm], such that for any solution
c1, ..., cm in Const(k) and q in k[t] of degree at most n of
a*Dq + b*q == Sum(ci*gi, (i, 1, m)), p = (q - Sum(ci*ri, (i, 1, m)))/a has
degree at most n1 and satisfies A*Dp + B*p == Sum(ci*qi, (i, 1, m))
"""
R, Z = list(zip(*[gcdex_diophantine(b, a, qi) for qi in Q]))
A = a
B = b + derivation(a, DE)
Qq = [zi - derivation(ri, DE) for ri, zi in zip(R, Z)]
R = list(R)
n1 = n - a.degree(DE.t)
return (A, B, Qq, R, n1)
def prde_no_cancel_b_large(b, Q, n, DE):
"""
Parametric Poly Risch Differential Equation - No cancellation: deg(b) large enough.
Given a derivation D on k[t], n in ZZ, and b, q1, ..., qm in k[t] with
b != 0 and either D == d/dt or deg(b) > max(0, deg(D) - 1), returns
h1, ..., hr in k[t] and a matrix A with coefficients in Const(k) such that
if c1, ..., cm in Const(k) and q in k[t] satisfy deg(q) <= n and
Dq + b*q == Sum(ci*qi, (i, 1, m)), then q = Sum(dj*hj, (j, 1, r)), where
d1, ..., dr in Const(k) and A*Matrix([[c1, ..., cm, d1, ..., dr]]).T == 0.
"""
db = b.degree(DE.t)
m = len(Q)
H = [Poly(0, DE.t)]*m
for N in range(n, -1, -1): # [n, ..., 0]
for i in range(m):
si = Q[i].nth(N + db)/b.LC()
sitn = Poly(si*DE.t**N, DE.t)
H[i] = H[i] + sitn
Q[i] = Q[i] - derivation(sitn, DE) - b*sitn
if all(qi.is_zero for qi in Q):
dc = -1
M = zeros(0, 2)
else:
dc = max([qi.degree(DE.t) for qi in Q])
M = Matrix(dc + 1, m, lambda i, j: Q[j].nth(i))
A, u = constant_system(M, zeros(dc + 1, 1), DE)
c = eye(m)
A = A.row_join(zeros(A.rows, m)).col_join(c.row_join(-c))
return (H, A)
def prde_no_cancel_b_small(b, Q, n, DE):
"""
Parametric Poly Risch Differential Equation - No cancellation: deg(b) small enough.
Given a derivation D on k[t], n in ZZ, and b, q1, ..., qm in k[t] with
deg(b) < deg(D) - 1 and either D == d/dt or deg(D) >= 2, returns
h1, ..., hr in k[t] and a matrix A with coefficients in Const(k) such that
if c1, ..., cm in Const(k) and q in k[t] satisfy deg(q) <= n and
Dq + b*q == Sum(ci*qi, (i, 1, m)) then q = Sum(dj*hj, (j, 1, r)) where
d1, ..., dr in Const(k) and A*Matrix([[c1, ..., cm, d1, ..., dr]]).T == 0.
"""
m = len(Q)
H = [Poly(0, DE.t)]*m
for N in range(n, 0, -1): # [n, ..., 1]
for i in range(m):
si = Q[i].nth(N + DE.d.degree(DE.t) - 1)/(N*DE.d.LC())
sitn = Poly(si*DE.t**N, DE.t)
H[i] = H[i] + sitn
Q[i] = Q[i] - derivation(sitn, DE) - b*sitn
if b.degree(DE.t) > 0:
for i in range(m):
si = Poly(Q[i].nth(b.degree(DE.t))/b.LC(), DE.t)
H[i] = H[i] + si
Q[i] = Q[i] - derivation(si, DE) - b*si
if all(qi.is_zero for qi in Q):
dc = -1
M = Matrix()
else:
dc = max([qi.degree(DE.t) for qi in Q])
M = Matrix(dc + 1, m, lambda i, j: Q[j].nth(i))
A, u = constant_system(M, zeros(dc + 1, 1), DE)
c = eye(m)
A = A.row_join(zeros(A.rows, m)).col_join(c.row_join(-c))
return (H, A)
# else: b is in k, deg(qi) < deg(Dt)
t = DE.t
if DE.case != 'base':
with DecrementLevel(DE):
t0 = DE.t # k = k0(t0)
ba, bd = frac_in(b, t0, field=True)
Q0 = [frac_in(qi.TC(), t0, field=True) for qi in Q]
f, B = param_rischDE(ba, bd, Q0, DE)
# f = [f1, ..., fr] in k^r and B is a matrix with
# m + r columns and entries in Const(k) = Const(k0)
# such that Dy0 + b*y0 = Sum(ci*qi, (i, 1, m)) has
# a solution y0 in k with c1, ..., cm in Const(k)
# if and only y0 = Sum(dj*fj, (j, 1, r)) where
# d1, ..., dr ar in Const(k) and
# B*Matrix([c1, ..., cm, d1, ..., dr]) == 0.
# Transform fractions (fa, fd) in f into constant
# polynomials fa/fd in k[t].
# (Is there a better way?)
f = [Poly(fa.as_expr()/fd.as_expr(), t, field=True)
for fa, fd in f]
else:
# Base case. Dy == 0 for all y in k and b == 0.
# Dy + b*y = Sum(ci*qi) is solvable if and only if
# Sum(ci*qi) == 0 in which case the solutions are
# y = d1*f1 for f1 = 1 and any d1 in Const(k) = k.
f = [Poly(1, t, field=True)] # r = 1
B = Matrix([[qi.TC() for qi in Q] + [S(0)]])
# The condition for solvability is
# B*Matrix([c1, ..., cm, d1]) == 0
# There are no constraints on d1.
# Coefficients of t^j (j > 0) in Sum(ci*qi) must be zero.
d = max([qi.degree(DE.t) for qi in Q])
if d > 0:
M = Matrix(d, m, lambda i, j: Q[j].nth(i + 1))
A, _ = constant_system(M, zeros(d, 1), DE)
else:
# No constraints on the hj.
A = Matrix(0, m, [])
# Solutions of the original equation are
# y = Sum(dj*fj, (j, 1, r) + Sum(ei*hi, (i, 1, m)),
# where ei == ci (i = 1, ..., m), when
# A*Matrix([c1, ..., cm]) == 0 and
# B*Matrix([c1, ..., cm, d1, ..., dr]) == 0
# Build combined constraint matrix with m + r + m columns.
r = len(f)
I = eye(m)
A = A.row_join(zeros(A.rows, r + m))
B = B.row_join(zeros(B.rows, m))
C = I.row_join(zeros(m, r)).row_join(-I)
return f + H, A.col_join(B).col_join(C)
def prde_cancel_liouvillian(b, Q, n, DE):
"""
Pg, 237.
"""
H = []
# Why use DecrementLevel? Below line answers that:
# Assuming that we can solve such problems over 'k' (not k[t])
if DE.case == 'primitive':
with DecrementLevel(DE):
ba, bd = frac_in(b, DE.t, field=True)
for i in range(n, -1, -1):
if DE.case == 'exp': # this re-checking can be avoided
with DecrementLevel(DE):
ba, bd = frac_in(b + i*derivation(DE.t, DE)/DE.t,
DE.t, field=True)
with DecrementLevel(DE):
Qy = [frac_in(q.nth(i), DE.t, field=True) for q in Q]
fi, Ai = param_rischDE(ba, bd, Qy, DE)
fi = [Poly(fa.as_expr()/fd.as_expr(), DE.t, field=True)
for fa, fd in fi]
ri = len(fi)
if i == n:
M = Ai
else:
M = Ai.col_join(M.row_join(zeros(M.rows, ri)))
Fi, hi = [None]*ri, [None]*ri
# from eq. on top of p.238 (unnumbered)
for j in range(ri):
hji = fi[j]*DE.t**i
hi[j] = hji
# building up Sum(djn*(D(fjn*t^n) - b*fjnt^n))
Fi[j] = -(derivation(hji, DE) - b*hji)
H += hi
# in the next loop instead of Q it has
# to be Q + Fi taking its place
Q = Q + Fi
return (H, M)
def param_poly_rischDE(a, b, q, n, DE):
"""Polynomial solutions of a parametric Risch differential equation.
Given a derivation D in k[t], a, b in k[t] relatively prime, and q
= [q1, ..., qm] in k[t]^m, return h = [h1, ..., hr] in k[t]^r and
a matrix A with m + r columns and entries in Const(k) such that
a*Dp + b*p = Sum(ci*qi, (i, 1, m)) has a solution p of degree <= n
in k[t] with c1, ..., cm in Const(k) if and only if p = Sum(dj*hj,
(j, 1, r)) where d1, ..., dr are in Const(k) and (c1, ..., cm,
d1, ..., dr) is a solution of Ax == 0.
"""
m = len(q)
if n < 0:
# Only the trivial zero solution is possible.
# Find relations between the qi.
if all([qi.is_zero for qi in q]):
return [], zeros(1, m) # No constraints.
N = max([qi.degree(DE.t) for qi in q])
M = Matrix(N + 1, m, lambda i, j: q[j].nth(i))
A, _ = constant_system(M, zeros(M.rows, 1), DE)
return [], A
if a.is_ground:
# Normalization: a = 1.
a = a.LC()
b, q = b.quo_ground(a), [qi.quo_ground(a) for qi in q]
if not b.is_zero and (DE.case == 'base' or
b.degree() > max(0, DE.d.degree() - 1)):
return prde_no_cancel_b_large(b, q, n, DE)
elif ((b.is_zero or b.degree() < DE.d.degree() - 1)
and (DE.case == 'base' or DE.d.degree() >= 2)):
return prde_no_cancel_b_small(b, q, n, DE)
elif (DE.d.degree() >= 2 and
b.degree() == DE.d.degree() - 1 and
n > -b.as_poly().LC()/DE.d.as_poly().LC()):
raise NotImplementedError("prde_no_cancel_b_equal() is "
"not yet implemented.")
else:
# Liouvillian cases
if DE.case == 'primitive' or DE.case == 'exp':
return prde_cancel_liouvillian(b, q, n, DE)
else:
raise NotImplementedError("non-linear and hypertangent "
"cases have not yet been implemented")
# else: deg(a) > 0
# Iterate SPDE as long as possible cumulating coefficient
# and terms for the recovery of original solutions.
alpha, beta = 1, [0]*m
while n >= 0: # and a, b relatively prime
a, b, q, r, n = prde_spde(a, b, q, n, DE)
beta = [betai + alpha*ri for betai, ri in zip(beta, r)]
alpha *= a
# Solutions p of a*Dp + b*p = Sum(ci*qi) correspond to
# solutions alpha*p + Sum(ci*betai) of the initial equation.
d = a.gcd(b)
if not d.is_ground:
break
# a*Dp + b*p = Sum(ci*qi) may have a polynomial solution
# only if the sum is divisible by d.
qq, M = poly_linear_constraints(q, d)
# qq = [qq1, ..., qqm] where qqi = qi.quo(d).
# M is a matrix with m columns an entries in k.
# Sum(fi*qi, (i, 1, m)), where f1, ..., fm are elements of k, is
# divisible by d if and only if M*Matrix([f1, ..., fm]) == 0,
# in which case the quotient is Sum(fi*qqi).
A, _ = constant_system(M, zeros(M.rows, 1), DE)
# A is a matrix with m columns and entries in Const(k).
# Sum(ci*qqi) is Sum(ci*qi).quo(d), and the remainder is zero
# for c1, ..., cm in Const(k) if and only if
# A*Matrix([c1, ...,cm]) == 0.
V = A.nullspace()
# V = [v1, ..., vu] where each vj is a column matrix with
# entries aj1, ..., ajm in Const(k).
# Sum(aji*qi) is divisible by d with exact quotient Sum(aji*qqi).
# Sum(ci*qi) is divisible by d if and only if ci = Sum(dj*aji)
# (i = 1, ..., m) for some d1, ..., du in Const(k).
# In that case, solutions of
# a*Dp + b*p = Sum(ci*qi) = Sum(dj*Sum(aji*qi))
# are the same as those of
# (a/d)*Dp + (b/d)*p = Sum(dj*rj)
# where rj = Sum(aji*qqi).
if not V: # No non-trivial solution.
return [], eye(m) # Could return A, but this has
# the minimum number of rows.
Mqq = Matrix([qq]) # A single row.
r = [(Mqq*vj)[0] for vj in V] # [r1, ..., ru]
# Solutions of (a/d)*Dp + (b/d)*p = Sum(dj*rj) correspond to
# solutions alpha*p + Sum(Sum(dj*aji)*betai) of the initial
# equation. These are equal to alpha*p + Sum(dj*fj) where
# fj = Sum(aji*betai).
Mbeta = Matrix([beta])
f = [(Mbeta*vj)[0] for vj in V] # [f1, ..., fu]
#
# Solve the reduced equation recursively.
#
g, B = param_poly_rischDE(a.quo(d), b.quo(d), r, n, DE)
# g = [g1, ..., gv] in k[t]^v and and B is a matrix with u + v
# columns and entries in Const(k) such that
# (a/d)*Dp + (b/d)*p = Sum(dj*rj) has a solution p of degree <= n
# in k[t] if and only if p = Sum(ek*gk) where e1, ..., ev are in
# Const(k) and B*Matrix([d1, ..., du, e1, ..., ev]) == 0.
# The solutions of the original equation are then
# Sum(dj*fj, (j, 1, u)) + alpha*Sum(ek*gk, (k, 1, v)).
# Collect solution components.
h = f + [alpha*gk for gk in g]
# Build combined relation matrix.
A = -eye(m)
for vj in V:
A = A.row_join(vj)
A = A.row_join(zeros(m, len(g)))
A = A.col_join(zeros(B.rows, m).row_join(B))
return h, A
def param_rischDE(fa, fd, G, DE):
"""
Solve a Parametric Risch Differential Equation: Dy + f*y == Sum(ci*Gi, (i, 1, m)).
Given a derivation D in k(t), f in k(t), and G
= [G1, ..., Gm] in k(t)^m, return h = [h1, ..., hr] in k(t)^r and
a matrix A with m + r columns and entries in Const(k) such that
Dy + f*y = Sum(ci*Gi, (i, 1, m)) has a solution y
in k(t) with c1, ..., cm in Const(k) if and only if y = Sum(dj*hj,
(j, 1, r)) where d1, ..., dr are in Const(k) and (c1, ..., cm,
d1, ..., dr) is a solution of Ax == 0.
Elements of k(t) are tuples (a, d) with a and d in k[t].
"""
m = len(G)
q, (fa, fd) = weak_normalizer(fa, fd, DE)
# Solutions of the weakly normalized equation Dz + f*z = q*Sum(ci*Gi)
# correspond to solutions y = z/q of the original equation.
gamma = q
G = [(q*ga).cancel(gd, include=True) for ga, gd in G]
a, (ba, bd), G, hn = prde_normal_denom(fa, fd, G, DE)
# Solutions q in k<t> of a*Dq + b*q = Sum(ci*Gi) correspond
# to solutions z = q/hn of the weakly normalized equation.
gamma *= hn
A, B, G, hs = prde_special_denom(a, ba, bd, G, DE)
# Solutions p in k[t] of A*Dp + B*p = Sum(ci*Gi) correspond
# to solutions q = p/hs of the previous equation.
gamma *= hs
g = A.gcd(B)
a, b, g = A.quo(g), B.quo(g), [gia.cancel(gid*g, include=True) for
gia, gid in G]
# a*Dp + b*p = Sum(ci*gi) may have a polynomial solution
# only if the sum is in k[t].
q, M = prde_linear_constraints(a, b, g, DE)
# q = [q1, ..., qm] where qi in k[t] is the polynomial component
# of the partial fraction expansion of gi.
# M is a matrix with m columns and entries in k.
# Sum(fi*gi, (i, 1, m)), where f1, ..., fm are elements of k,
# is a polynomial if and only if M*Matrix([f1, ..., fm]) == 0,
# in which case the sum is equal to Sum(fi*qi).
M, _ = constant_system(M, zeros(M.rows, 1), DE)
# M is a matrix with m columns and entries in Const(k).
# Sum(ci*gi) is in k[t] for c1, ..., cm in Const(k)
# if and only if M*Matrix([c1, ..., cm]) == 0,
# in which case the sum is Sum(ci*qi).
## Reduce number of constants at this point
V = M.nullspace()
# V = [v1, ..., vu] where each vj is a column matrix with
# entries aj1, ..., ajm in Const(k).
# Sum(aji*gi) is in k[t] and equal to Sum(aji*qi) (j = 1, ..., u).
# Sum(ci*gi) is in k[t] if and only is ci = Sum(dj*aji)
# (i = 1, ..., m) for some d1, ..., du in Const(k).
# In that case,
# Sum(ci*gi) = Sum(ci*qi) = Sum(dj*Sum(aji*qi)) = Sum(dj*rj)
# where rj = Sum(aji*qi) (j = 1, ..., u) in k[t].
if not V: # No non-trivial solution
return [], eye(m)
Mq = Matrix([q]) # A single row.
r = [(Mq*vj)[0] for vj in V] # [r1, ..., ru]
# Solutions of a*Dp + b*p = Sum(dj*rj) correspond to solutions
# y = p/gamma of the initial equation with ci = Sum(dj*aji).
try:
# We try n=5. At least for prde_spde, it will always
# terminate no matter what n is.
n = bound_degree(a, b, r, DE, parametric=True)
except NotImplementedError:
# A temporary bound is set. Eventually, it will be removed.
# the currently added test case takes large time
# even with n=5, and much longer with large n's.
n = 5
h, B = param_poly_rischDE(a, b, r, n, DE)
# h = [h1, ..., hv] in k[t]^v and and B is a matrix with u + v
# columns and entries in Const(k) such that
# a*Dp + b*p = Sum(dj*rj) has a solution p of degree <= n
# in k[t] if and only if p = Sum(ek*hk) where e1, ..., ev are in
# Const(k) and B*Matrix([d1, ..., du, e1, ..., ev]) == 0.
# The solutions of the original equation for ci = Sum(dj*aji)
# (i = 1, ..., m) are then y = Sum(ek*hk, (k, 1, v))/gamma.
## Build combined relation matrix with m + u + v columns.
A = -eye(m)
for vj in V:
A = A.row_join(vj)
A = A.row_join(zeros(m, len(h)))
A = A.col_join(zeros(B.rows, m).row_join(B))
## Eliminate d1, ..., du.
W = A.nullspace()
# W = [w1, ..., wt] where each wl is a column matrix with
# entries blk (k = 1, ..., m + u + v) in Const(k).
# The vectors (bl1, ..., blm) generate the space of those
# constant families (c1, ..., cm) for which a solution of
# the equation Dy + f*y == Sum(ci*Gi) exists. They generate
# the space and form a basis except possibly when Dy + f*y == 0
# is solvable in k(t}. The corresponding solutions are
# y = Sum(blk'*hk, (k, 1, v))/gamma, where k' = k + m + u.
v = len(h)
M = Matrix([wl[:m] + wl[-v:] for wl in W]) # excise dj's.
N = M.nullspace()
# N = [n1, ..., ns] where the ni in Const(k)^(m + v) are column
# vectors generating the space of linear relations between
# c1, ..., cm, e1, ..., ev.
C = Matrix([ni[:] for ni in N]) # rows n1, ..., ns.
return [hk.cancel(gamma, include=True) for hk in h], C
def limited_integrate_reduce(fa, fd, G, DE):
"""
Simpler version of step 1 & 2 for the limited integration problem.
Given a derivation D on k(t) and f, g1, ..., gn in k(t), return
(a, b, h, N, g, V) such that a, b, h in k[t], N is a non-negative integer,
g in k(t), V == [v1, ..., vm] in k(t)^m, and for any solution v in k(t),
c1, ..., cm in C of f == Dv + Sum(ci*wi, (i, 1, m)), p = v*h is in k<t>, and
p and the ci satisfy a*Dp + b*p == g + Sum(ci*vi, (i, 1, m)). Furthermore,
if S1irr == Sirr, then p is in k[t], and if t is nonlinear or Liouvillian
over k, then deg(p) <= N.
So that the special part is always computed, this function calls the more
general prde_special_denom() automatically if it cannot determine that
S1irr == Sirr. Furthermore, it will automatically call bound_degree() when
t is linear and non-Liouvillian, which for the transcendental case, implies
that Dt == a*t + b with for some a, b in k*.
"""
dn, ds = splitfactor(fd, DE)
E = [splitfactor(gd, DE) for _, gd in G]
En, Es = list(zip(*E))
c = reduce(lambda i, j: i.lcm(j), (dn,) + En) # lcm(dn, en1, ..., enm)
hn = c.gcd(c.diff(DE.t))
a = hn
b = -derivation(hn, DE)
N = 0
# These are the cases where we know that S1irr = Sirr, but there could be
# others, and this algorithm will need to be extended to handle them.
if DE.case in ['base', 'primitive', 'exp', 'tan']:
hs = reduce(lambda i, j: i.lcm(j), (ds,) + Es) # lcm(ds, es1, ..., esm)
a = hn*hs
b -= (hn*derivation(hs, DE)).quo(hs)
mu = min(order_at_oo(fa, fd, DE.t), min([order_at_oo(ga, gd, DE.t) for
ga, gd in G]))
# So far, all the above are also nonlinear or Liouvillian, but if this
# changes, then this will need to be updated to call bound_degree()
# as per the docstring of this function (DE.case == 'other_linear').
N = hn.degree(DE.t) + hs.degree(DE.t) + max(0, 1 - DE.d.degree(DE.t) - mu)
else:
# TODO: implement this
raise NotImplementedError
V = [(-a*hn*ga).cancel(gd, include=True) for ga, gd in G]
return (a, b, a, N, (a*hn*fa).cancel(fd, include=True), V)
def limited_integrate(fa, fd, G, DE):
"""
Solves the limited integration problem: f = Dv + Sum(ci*wi, (i, 1, n))
"""
fa, fd = fa*Poly(1/fd.LC(), DE.t), fd.monic()
# interpretting limited integration problem as a
# parametric Risch DE problem
Fa = Poly(0, DE.t)
Fd = Poly(1, DE.t)
G = [(fa, fd)] + G
h, A = param_rischDE(Fa, Fd, G, DE)
V = A.nullspace()
V = [v for v in V if v[0] != 0]
if not V:
return None
else:
# we can take any vector from V, we take V[0]
c0 = V[0][0]
# v = [-1, c1, ..., cm, d1, ..., dr]
v = V[0]/(-c0)
r = len(h)
m = len(v) - r - 1
C = list(v[1: m + 1])
y = -sum([v[m + 1 + i]*h[i][0].as_expr()/h[i][1].as_expr() \
for i in range(r)])
y_num, y_den = y.as_numer_denom()
Ya, Yd = Poly(y_num, DE.t), Poly(y_den, DE.t)
Y = Ya*Poly(1/Yd.LC(), DE.t), Yd.monic()
return Y, C
def parametric_log_deriv_heu(fa, fd, wa, wd, DE, c1=None):
"""
Parametric logarithmic derivative heuristic.
Given a derivation D on k[t], f in k(t), and a hyperexponential monomial
theta over k(t), raises either NotImplementedError, in which case the
heuristic failed, or returns None, in which case it has proven that no
solution exists, or returns a solution (n, m, v) of the equation
n*f == Dv/v + m*Dtheta/theta, with v in k(t)* and n, m in ZZ with n != 0.
If this heuristic fails, the structure theorem approach will need to be
used.
The argument w == Dtheta/theta
"""
# TODO: finish writing this and write tests
c1 = c1 or Dummy('c1')
p, a = fa.div(fd)
q, b = wa.div(wd)
B = max(0, derivation(DE.t, DE).degree(DE.t) - 1)
C = max(p.degree(DE.t), q.degree(DE.t))
if q.degree(DE.t) > B:
eqs = [p.nth(i) - c1*q.nth(i) for i in range(B + 1, C + 1)]
s = solve(eqs, c1)
if not s or not s[c1].is_Rational:
# deg(q) > B, no solution for c.
return None
M, N = s[c1].as_numer_denom()
nfmwa = N*fa*wd - M*wa*fd
nfmwd = fd*wd
Qv = is_log_deriv_k_t_radical_in_field(N*fa*wd - M*wa*fd, fd*wd, DE,
'auto')
if Qv is None:
# (N*f - M*w) is not the logarithmic derivative of a k(t)-radical.
return None
Q, v = Qv
if Q.is_zero or v.is_zero:
return None
return (Q*N, Q*M, v)
if p.degree(DE.t) > B:
return None
c = lcm(fd.as_poly(DE.t).LC(), wd.as_poly(DE.t).LC())
l = fd.monic().lcm(wd.monic())*Poly(c, DE.t)
ln, ls = splitfactor(l, DE)
z = ls*ln.gcd(ln.diff(DE.t))
if not z.has(DE.t):
# TODO: We treat this as 'no solution', until the structure
# theorem version of parametric_log_deriv is implemented.
return None
u1, r1 = (fa*l.quo(fd)).div(z) # (l*f).div(z)
u2, r2 = (wa*l.quo(wd)).div(z) # (l*w).div(z)
eqs = [r1.nth(i) - c1*r2.nth(i) for i in range(z.degree(DE.t))]
s = solve(eqs, c1)
if not s or not s[c1].is_Rational:
# deg(q) <= B, no solution for c.
return None
M, N = s[c1].as_numer_denom()
nfmwa = N.as_poly(DE.t)*fa*wd - M.as_poly(DE.t)*wa*fd
nfmwd = fd*wd
Qv = is_log_deriv_k_t_radical_in_field(nfmwa, nfmwd, DE)
if Qv is None:
# (N*f - M*w) is not the logarithmic derivative of a k(t)-radical.
return None
Q, v = Qv
if Q.is_zero or v.is_zero:
return None
return (Q*N, Q*M, v)
def parametric_log_deriv(fa, fd, wa, wd, DE):
# TODO: Write the full algorithm using the structure theorems.
# try:
A = parametric_log_deriv_heu(fa, fd, wa, wd, DE)
# except NotImplementedError:
# Heuristic failed, we have to use the full method.
# TODO: This could be implemented more efficiently.
# It isn't too worrisome, because the heuristic handles most difficult
# cases.
return A
def is_deriv_k(fa, fd, DE):
r"""
Checks if Df/f is the derivative of an element of k(t).
a in k(t) is the derivative of an element of k(t) if there exists b in k(t)
such that a = Db. Either returns (ans, u), such that Df/f == Du, or None,
which means that Df/f is not the derivative of an element of k(t). ans is
a list of tuples such that Add(*[i*j for i, j in ans]) == u. This is useful
for seeing exactly which elements of k(t) produce u.
This function uses the structure theorem approach, which says that for any
f in K, Df/f is the derivative of a element of K if and only if there are ri
in QQ such that::
--- --- Dt
\ r * Dt + \ r * i Df
/ i i / i --- = --.
--- --- t f
i in L i in E i
K/C(x) K/C(x)
Where C = Const(K), L_K/C(x) = { i in {1, ..., n} such that t_i is
transcendental over C(x)(t_1, ..., t_i-1) and Dt_i = Da_i/a_i, for some a_i
in C(x)(t_1, ..., t_i-1)* } (i.e., the set of all indices of logarithmic
monomials of K over C(x)), and E_K/C(x) = { i in {1, ..., n} such that t_i
is transcendental over C(x)(t_1, ..., t_i-1) and Dt_i/t_i = Da_i, for some
a_i in C(x)(t_1, ..., t_i-1) } (i.e., the set of all indices of
hyperexponential monomials of K over C(x)). If K is an elementary extension
over C(x), then the cardinality of L_K/C(x) U E_K/C(x) is exactly the
transcendence degree of K over C(x). Furthermore, because Const_D(K) ==
Const_D(C(x)) == C, deg(Dt_i) == 1 when t_i is in E_K/C(x) and
deg(Dt_i) == 0 when t_i is in L_K/C(x), implying in particular that E_K/C(x)
and L_K/C(x) are disjoint.
The sets L_K/C(x) and E_K/C(x) must, by their nature, be computed
recursively using this same function. Therefore, it is required to pass
them as indices to D (or T). E_args are the arguments of the
hyperexponentials indexed by E_K (i.e., if i is in E_K, then T[i] ==
exp(E_args[i])). This is needed to compute the final answer u such that
Df/f == Du.
log(f) will be the same as u up to a additive constant. This is because
they will both behave the same as monomials. For example, both log(x) and
log(2*x) == log(x) + log(2) satisfy Dt == 1/x, because log(2) is constant.
Therefore, the term const is returned. const is such that
log(const) + f == u. This is calculated by dividing the arguments of one
logarithm from the other. Therefore, it is necessary to pass the arguments
of the logarithmic terms in L_args.
To handle the case where we are given Df/f, not f, use is_deriv_k_in_field().
See also
========
is_log_deriv_k_t_radical_in_field, is_log_deriv_k_t_radical
"""
# Compute Df/f
dfa, dfd = (fd*derivation(fa, DE) - fa*derivation(fd, DE)), fd*fa
dfa, dfd = dfa.cancel(dfd, include=True)
# Our assumption here is that each monomial is recursively transcendental
if len(DE.exts) != len(DE.D):
if [i for i in DE.cases if i == 'tan'] or \
(set([i for i in DE.cases if i == 'primitive']) -
set(DE.indices('log'))):
raise NotImplementedError("Real version of the structure "
"theorems with hypertangent support is not yet implemented.")
# TODO: What should really be done in this case?
raise NotImplementedError("Nonelementary extensions not supported "
"in the structure theorems.")
E_part = [DE.D[i].quo(Poly(DE.T[i], DE.T[i])).as_expr() for i in DE.indices('exp')]
L_part = [DE.D[i].as_expr() for i in DE.indices('log')]
lhs = Matrix([E_part + L_part])
rhs = Matrix([dfa.as_expr()/dfd.as_expr()])
A, u = constant_system(lhs, rhs, DE)
if not all(derivation(i, DE, basic=True).is_zero for i in u) or not A:
# If the elements of u are not all constant
# Note: See comment in constant_system
# Also note: derivation(basic=True) calls cancel()
return None
else:
if not all(i.is_Rational for i in u):
raise NotImplementedError("Cannot work with non-rational "
"coefficients in this case.")
else:
terms = ([DE.extargs[i] for i in DE.indices('exp')] +
[DE.T[i] for i in DE.indices('log')])
ans = list(zip(terms, u))
result = Add(*[Mul(i, j) for i, j in ans])
argterms = ([DE.T[i] for i in DE.indices('exp')] +
[DE.extargs[i] for i in DE.indices('log')])
l = []
ld = []
for i, j in zip(argterms, u):
# We need to get around things like sqrt(x**2) != x
# and also sqrt(x**2 + 2*x + 1) != x + 1
# Issue 10798: i need not be a polynomial
i, d = i.as_numer_denom()
icoeff, iterms = sqf_list(i)
l.append(Mul(*([Pow(icoeff, j)] + [Pow(b, e*j) for b, e in iterms])))
dcoeff, dterms = sqf_list(d)
ld.append(Mul(*([Pow(dcoeff, j)] + [Pow(b, e*j) for b, e in dterms])))
const = cancel(fa.as_expr()/fd.as_expr()/Mul(*l)*Mul(*ld))
return (ans, result, const)
def is_log_deriv_k_t_radical(fa, fd, DE, Df=True):
r"""
Checks if Df is the logarithmic derivative of a k(t)-radical.
b in k(t) can be written as the logarithmic derivative of a k(t) radical if
there exist n in ZZ and u in k(t) with n, u != 0 such that n*b == Du/u.
Either returns (ans, u, n, const) or None, which means that Df cannot be
written as the logarithmic derivative of a k(t)-radical. ans is a list of
tuples such that Mul(*[i**j for i, j in ans]) == u. This is useful for
seeing exactly what elements of k(t) produce u.
This function uses the structure theorem approach, which says that for any
f in K, Df is the logarithmic derivative of a K-radical if and only if there
are ri in QQ such that::
--- --- Dt
\ r * Dt + \ r * i
/ i i / i --- = Df.
--- --- t
i in L i in E i
K/C(x) K/C(x)
Where C = Const(K), L_K/C(x) = { i in {1, ..., n} such that t_i is
transcendental over C(x)(t_1, ..., t_i-1) and Dt_i = Da_i/a_i, for some a_i
in C(x)(t_1, ..., t_i-1)* } (i.e., the set of all indices of logarithmic
monomials of K over C(x)), and E_K/C(x) = { i in {1, ..., n} such that t_i
is transcendental over C(x)(t_1, ..., t_i-1) and Dt_i/t_i = Da_i, for some
a_i in C(x)(t_1, ..., t_i-1) } (i.e., the set of all indices of
hyperexponential monomials of K over C(x)). If K is an elementary extension
over C(x), then the cardinality of L_K/C(x) U E_K/C(x) is exactly the
transcendence degree of K over C(x). Furthermore, because Const_D(K) ==
Const_D(C(x)) == C, deg(Dt_i) == 1 when t_i is in E_K/C(x) and
deg(Dt_i) == 0 when t_i is in L_K/C(x), implying in particular that E_K/C(x)
and L_K/C(x) are disjoint.
The sets L_K/C(x) and E_K/C(x) must, by their nature, be computed
recursively using this same function. Therefore, it is required to pass
them as indices to D (or T). L_args are the arguments of the logarithms
indexed by L_K (i.e., if i is in L_K, then T[i] == log(L_args[i])). This is
needed to compute the final answer u such that n*f == Du/u.
exp(f) will be the same as u up to a multiplicative constant. This is
because they will both behave the same as monomials. For example, both
exp(x) and exp(x + 1) == E*exp(x) satisfy Dt == t. Therefore, the term const
is returned. const is such that exp(const)*f == u. This is calculated by
subtracting the arguments of one exponential from the other. Therefore, it
is necessary to pass the arguments of the exponential terms in E_args.
To handle the case where we are given Df, not f, use
is_log_deriv_k_t_radical_in_field().
See also
========
is_log_deriv_k_t_radical_in_field, is_deriv_k
"""
H = []
if Df:
dfa, dfd = (fd*derivation(fa, DE) - fa*derivation(fd, DE)).cancel(fd**2,
include=True)
else:
dfa, dfd = fa, fd
# Our assumption here is that each monomial is recursively transcendental
if len(DE.exts) != len(DE.D):
if [i for i in DE.cases if i == 'tan'] or \
(set([i for i in DE.cases if i == 'primitive']) -
set(DE.indices('log'))):
raise NotImplementedError("Real version of the structure "
"theorems with hypertangent support is not yet implemented.")
# TODO: What should really be done in this case?
raise NotImplementedError("Nonelementary extensions not supported "
"in the structure theorems.")
E_part = [DE.D[i].quo(Poly(DE.T[i], DE.T[i])).as_expr() for i in DE.indices('exp')]
L_part = [DE.D[i].as_expr() for i in DE.indices('log')]
lhs = Matrix([E_part + L_part])
rhs = Matrix([dfa.as_expr()/dfd.as_expr()])
A, u = constant_system(lhs, rhs, DE)
if not all(derivation(i, DE, basic=True).is_zero for i in u) or not A:
# If the elements of u are not all constant
# Note: See comment in constant_system
# Also note: derivation(basic=True) calls cancel()
return None
else:
if not all(i.is_Rational for i in u):
# TODO: But maybe we can tell if they're not rational, like
# log(2)/log(3). Also, there should be an option to continue
# anyway, even if the result might potentially be wrong.
raise NotImplementedError("Cannot work with non-rational "
"coefficients in this case.")
else:
n = reduce(ilcm, [i.as_numer_denom()[1] for i in u])
u *= n
terms = ([DE.T[i] for i in DE.indices('exp')] +
[DE.extargs[i] for i in DE.indices('log')])
ans = list(zip(terms, u))
result = Mul(*[Pow(i, j) for i, j in ans])
# exp(f) will be the same as result up to a multiplicative
# constant. We now find the log of that constant.
argterms = ([DE.extargs[i] for i in DE.indices('exp')] +
[DE.T[i] for i in DE.indices('log')])
const = cancel(fa.as_expr()/fd.as_expr() -
Add(*[Mul(i, j/n) for i, j in zip(argterms, u)]))
return (ans, result, n, const)
def is_log_deriv_k_t_radical_in_field(fa, fd, DE, case='auto', z=None):
"""
Checks if f can be written as the logarithmic derivative of a k(t)-radical.
It differs from is_log_deriv_k_t_radical(fa, fd, DE, Df=False)
for any given fa, fd, DE in that it finds the solution in the
given field not in some (possibly unspecified extension) and
"in_field" with the function name is used to indicate that.
f in k(t) can be written as the logarithmic derivative of a k(t) radical if
there exist n in ZZ and u in k(t) with n, u != 0 such that n*f == Du/u.
Either returns (n, u) or None, which means that f cannot be written as the
logarithmic derivative of a k(t)-radical.
case is one of {'primitive', 'exp', 'tan', 'auto'} for the primitive,
hyperexponential, and hypertangent cases, respectively. If case is 'auto',
it will attempt to determine the type of the derivation automatically.
See also
========
is_log_deriv_k_t_radical, is_deriv_k
"""
fa, fd = fa.cancel(fd, include=True)
# f must be simple
n, s = splitfactor(fd, DE)
if not s.is_one:
pass
z = z or Dummy('z')
H, b = residue_reduce(fa, fd, DE, z=z)
if not b:
# I will have to verify, but I believe that the answer should be
# None in this case. This should never happen for the
# functions given when solving the parametric logarithmic
# derivative problem when integration elementary functions (see
# Bronstein's book, page 255), so most likely this indicates a bug.
return None
roots = [(i, i.real_roots()) for i, _ in H]
if not all(len(j) == i.degree() and all(k.is_Rational for k in j) for
i, j in roots):
# If f is the logarithmic derivative of a k(t)-radical, then all the
# roots of the resultant must be rational numbers.
return None
# [(a, i), ...], where i*log(a) is a term in the log-part of the integral
# of f
respolys, residues = list(zip(*roots)) or [[], []]
# Note: this might be empty, but everything below should work find in that
# case (it should be the same as if it were [[1, 1]])
residueterms = [(H[j][1].subs(z, i), i) for j in range(len(H)) for
i in residues[j]]
# TODO: finish writing this and write tests
p = cancel(fa.as_expr()/fd.as_expr() - residue_reduce_derivation(H, DE, z))
p = p.as_poly(DE.t)
if p is None:
# f - Dg will be in k[t] if f is the logarithmic derivative of a k(t)-radical
return None
if p.degree(DE.t) >= max(1, DE.d.degree(DE.t)):
return None
if case == 'auto':
case = DE.case
if case == 'exp':
wa, wd = derivation(DE.t, DE).cancel(Poly(DE.t, DE.t), include=True)
with DecrementLevel(DE):
pa, pd = frac_in(p, DE.t, cancel=True)
wa, wd = frac_in((wa, wd), DE.t)
A = parametric_log_deriv(pa, pd, wa, wd, DE)
if A is None:
return None
n, e, u = A
u *= DE.t**e
elif case == 'primitive':
with DecrementLevel(DE):
pa, pd = frac_in(p, DE.t)
A = is_log_deriv_k_t_radical_in_field(pa, pd, DE, case='auto')
if A is None:
return None
n, u = A
elif case == 'base':
# TODO: we can use more efficient residue reduction from ratint()
if not fd.is_sqf or fa.degree() >= fd.degree():
# f is the logarithmic derivative in the base case if and only if
# f = fa/fd, fd is square-free, deg(fa) < deg(fd), and
# gcd(fa, fd) == 1. The last condition is handled by cancel() above.
return None
# Note: if residueterms = [], returns (1, 1)
# f had better be 0 in that case.
n = reduce(ilcm, [i.as_numer_denom()[1] for _, i in residueterms], S(1))
u = Mul(*[Pow(i, j*n) for i, j in residueterms])
return (n, u)
elif case == 'tan':
raise NotImplementedError("The hypertangent case is "
"not yet implemented for is_log_deriv_k_t_radical_in_field()")
elif case in ['other_linear', 'other_nonlinear']:
# XXX: If these are supported by the structure theorems, change to NotImplementedError.
raise ValueError("The %s case is not supported in this function." % case)
else:
raise ValueError("case must be one of {'primitive', 'exp', 'tan', "
"'base', 'auto'}, not %s" % case)
common_denom = reduce(ilcm, [i.as_numer_denom()[1] for i in [j for _, j in
residueterms]] + [n], S(1))
residueterms = [(i, j*common_denom) for i, j in residueterms]
m = common_denom//n
if common_denom != n*m: # Verify exact division
raise ValueError("Inexact division")
u = cancel(u**m*Mul(*[Pow(i, j) for i, j in residueterms]))
return (common_denom, u)
|
63f1d4215bbb176a0be85d1d7db5265868624e0157270307dcfff4279439c872
|
from __future__ import print_function, division
from sympy.core.compatibility import range
from sympy.core import cacheit, Dummy, Ne, Integer, Rational, S, Wild
from sympy.functions import binomial, sin, cos, Piecewise
# TODO sin(a*x)*cos(b*x) -> sin((a+b)x) + sin((a-b)x) ?
# creating, each time, Wild's and sin/cos/Mul is expensive. Also, our match &
# subs are very slow when not cached, and if we create Wild each time, we
# effectively block caching.
#
# so we cache the pattern
# need to use a function instead of lamda since hash of lambda changes on
# each call to _pat_sincos
def _integer_instance(n):
return isinstance(n , Integer)
@cacheit
def _pat_sincos(x):
a = Wild('a', exclude=[x])
n, m = [Wild(s, exclude=[x], properties=[_integer_instance])
for s in 'nm']
pat = sin(a*x)**n * cos(a*x)**m
return pat, a, n, m
_u = Dummy('u')
def trigintegrate(f, x, conds='piecewise'):
"""Integrate f = Mul(trig) over x
>>> from sympy import Symbol, sin, cos, tan, sec, csc, cot
>>> from sympy.integrals.trigonometry import trigintegrate
>>> from sympy.abc import x
>>> trigintegrate(sin(x)*cos(x), x)
sin(x)**2/2
>>> trigintegrate(sin(x)**2, x)
x/2 - sin(x)*cos(x)/2
>>> trigintegrate(tan(x)*sec(x), x)
1/cos(x)
>>> trigintegrate(sin(x)*tan(x), x)
-log(sin(x) - 1)/2 + log(sin(x) + 1)/2 - sin(x)
http://en.wikibooks.org/wiki/Calculus/Integration_techniques
See Also
========
sympy.integrals.integrals.Integral.doit
sympy.integrals.integrals.Integral
"""
from sympy.integrals.integrals import integrate
pat, a, n, m = _pat_sincos(x)
f = f.rewrite('sincos')
M = f.match(pat)
if M is None:
return
n, m = M[n], M[m]
if n is S.Zero and m is S.Zero:
return x
zz = x if n is S.Zero else S.Zero
a = M[a]
if n.is_odd or m.is_odd:
u = _u
n_, m_ = n.is_odd, m.is_odd
# take smallest n or m -- to choose simplest substitution
if n_ and m_:
# Make sure to choose the positive one
# otherwise an incorrect integral can occur.
if n < 0 and m > 0:
m_ = True
n_ = False
elif m < 0 and n > 0:
n_ = True
m_ = False
# Both are negative so choose the smallest n or m
# in absolute value for simplest substitution.
elif (n < 0 and m < 0):
n_ = n > m
m_ = not (n > m)
# Both n and m are odd and positive
else:
n_ = (n < m) # NB: careful here, one of the
m_ = not (n < m) # conditions *must* be true
# n m u=C (n-1)/2 m
# S(x) * C(x) dx --> -(1-u^2) * u du
if n_:
ff = -(1 - u**2)**((n - 1)/2) * u**m
uu = cos(a*x)
# n m u=S n (m-1)/2
# S(x) * C(x) dx --> u * (1-u^2) du
elif m_:
ff = u**n * (1 - u**2)**((m - 1)/2)
uu = sin(a*x)
fi = integrate(ff, u) # XXX cyclic deps
fx = fi.subs(u, uu)
if conds == 'piecewise':
return Piecewise((fx / a, Ne(a, 0)), (zz, True))
return fx / a
# n & m are both even
#
# 2k 2m 2l 2l
# we transform S (x) * C (x) into terms with only S (x) or C (x)
#
# example:
# 100 4 100 2 2 100 4 2
# S (x) * C (x) = S (x) * (1-S (x)) = S (x) * (1 + S (x) - 2*S (x))
#
# 104 102 100
# = S (x) - 2*S (x) + S (x)
# 2k
# then S is integrated with recursive formula
# take largest n or m -- to choose simplest substitution
n_ = (abs(n) > abs(m))
m_ = (abs(m) > abs(n))
res = S.Zero
if n_:
# 2k 2 k i 2i
# C = (1 - S ) = sum(i, (-) * B(k, i) * S )
if m > 0:
for i in range(0, m//2 + 1):
res += ((-1)**i * binomial(m//2, i) *
_sin_pow_integrate(n + 2*i, x))
elif m == 0:
res = _sin_pow_integrate(n, x)
else:
# m < 0 , |n| > |m|
# /
# |
# | m n
# | cos (x) sin (x) dx =
# |
# |
#/
# /
# |
# -1 m+1 n-1 n - 1 | m+2 n-2
# ________ cos (x) sin (x) + _______ | cos (x) sin (x) dx
# |
# m + 1 m + 1 |
# /
res = (Rational(-1, m + 1) * cos(x)**(m + 1) * sin(x)**(n - 1) +
Rational(n - 1, m + 1) *
trigintegrate(cos(x)**(m + 2)*sin(x)**(n - 2), x))
elif m_:
# 2k 2 k i 2i
# S = (1 - C ) = sum(i, (-) * B(k, i) * C )
if n > 0:
# / /
# | |
# | m n | -m n
# | cos (x)*sin (x) dx or | cos (x) * sin (x) dx
# | |
# / /
#
# |m| > |n| ; m, n >0 ; m, n belong to Z - {0}
# n 2
# sin (x) term is expanded here in terms of cos (x),
# and then integrated.
#
for i in range(0, n//2 + 1):
res += ((-1)**i * binomial(n//2, i) *
_cos_pow_integrate(m + 2*i, x))
elif n == 0:
# /
# |
# | 1
# | _ _ _
# | m
# | cos (x)
# /
#
res = _cos_pow_integrate(m, x)
else:
# n < 0 , |m| > |n|
# /
# |
# | m n
# | cos (x) sin (x) dx =
# |
# |
#/
# /
# |
# 1 m-1 n+1 m - 1 | m-2 n+2
# _______ cos (x) sin (x) + _______ | cos (x) sin (x) dx
# |
# n + 1 n + 1 |
# /
res = (Rational(1, n + 1) * cos(x)**(m - 1)*sin(x)**(n + 1) +
Rational(m - 1, n + 1) *
trigintegrate(cos(x)**(m - 2)*sin(x)**(n + 2), x))
else:
if m == n:
##Substitute sin(2x)/2 for sin(x)cos(x) and then Integrate.
res = integrate((Rational(1, 2)*sin(2*x))**m, x)
elif (m == -n):
if n < 0:
# Same as the scheme described above.
# the function argument to integrate in the end will
# be 1 , this cannot be integrated by trigintegrate.
# Hence use sympy.integrals.integrate.
res = (Rational(1, n + 1) * cos(x)**(m - 1) * sin(x)**(n + 1) +
Rational(m - 1, n + 1) *
integrate(cos(x)**(m - 2) * sin(x)**(n + 2), x))
else:
res = (Rational(-1, m + 1) * cos(x)**(m + 1) * sin(x)**(n - 1) +
Rational(n - 1, m + 1) *
integrate(cos(x)**(m + 2)*sin(x)**(n - 2), x))
if conds == 'piecewise':
return Piecewise((res.subs(x, a*x) / a, Ne(a, 0)), (zz, True))
return res.subs(x, a*x) / a
def _sin_pow_integrate(n, x):
if n > 0:
if n == 1:
#Recursion break
return -cos(x)
# n > 0
# / /
# | |
# | n -1 n-1 n - 1 | n-2
# | sin (x) dx = ______ cos (x) sin (x) + _______ | sin (x) dx
# | |
# | n n |
#/ /
#
#
return (Rational(-1, n) * cos(x) * sin(x)**(n - 1) +
Rational(n - 1, n) * _sin_pow_integrate(n - 2, x))
if n < 0:
if n == -1:
##Make sure this does not come back here again.
##Recursion breaks here or at n==0.
return trigintegrate(1/sin(x), x)
# n < 0
# / /
# | |
# | n 1 n+1 n + 2 | n+2
# | sin (x) dx = _______ cos (x) sin (x) + _______ | sin (x) dx
# | |
# | n + 1 n + 1 |
#/ /
#
return (Rational(1, n + 1) * cos(x) * sin(x)**(n + 1) +
Rational(n + 2, n + 1) * _sin_pow_integrate(n + 2, x))
else:
#n == 0
#Recursion break.
return x
def _cos_pow_integrate(n, x):
if n > 0:
if n == 1:
#Recursion break.
return sin(x)
# n > 0
# / /
# | |
# | n 1 n-1 n - 1 | n-2
# | sin (x) dx = ______ sin (x) cos (x) + _______ | cos (x) dx
# | |
# | n n |
#/ /
#
return (Rational(1, n) * sin(x) * cos(x)**(n - 1) +
Rational(n - 1, n) * _cos_pow_integrate(n - 2, x))
if n < 0:
if n == -1:
##Recursion break
return trigintegrate(1/cos(x), x)
# n < 0
# / /
# | |
# | n -1 n+1 n + 2 | n+2
# | cos (x) dx = _______ sin (x) cos (x) + _______ | cos (x) dx
# | |
# | n + 1 n + 1 |
#/ /
#
return (Rational(-1, n + 1) * sin(x) * cos(x)**(n + 1) +
Rational(n + 2, n + 1) * _cos_pow_integrate(n + 2, x))
else:
# n == 0
#Recursion Break.
return x
|
e255fd13d7713dfd610f3d71935f30ae1fb67fb1fab284f1c9c110cea32d051e
|
"""
SymPy core decorators.
The purpose of this module is to expose decorators without any other
dependencies, so that they can be easily imported anywhere in sympy/core.
"""
from __future__ import print_function, division
from functools import wraps
from .sympify import SympifyError, sympify
from sympy.core.compatibility import get_function_code
def deprecated(**decorator_kwargs):
"""This is a decorator which can be used to mark functions
as deprecated. It will result in a warning being emitted
when the function is used."""
from sympy.utilities.exceptions import SymPyDeprecationWarning
def _warn_deprecation(wrapped, stacklevel):
decorator_kwargs.setdefault('feature', wrapped.__name__)
SymPyDeprecationWarning(**decorator_kwargs).warn(stacklevel=stacklevel)
def deprecated_decorator(wrapped):
if hasattr(wrapped, '__mro__'): # wrapped is actually a class
class wrapper(wrapped):
__doc__ = wrapped.__doc__
__name__ = wrapped.__name__
__module__ = wrapped.__module__
_sympy_deprecated_func = wrapped
def __init__(self, *args, **kwargs):
_warn_deprecation(wrapped, 4)
super(wrapper, self).__init__(*args, **kwargs)
else:
@wraps(wrapped)
def wrapper(*args, **kwargs):
_warn_deprecation(wrapped, 3)
return wrapped(*args, **kwargs)
wrapper._sympy_deprecated_func = wrapped
return wrapper
return deprecated_decorator
def _sympifyit(arg, retval=None):
"""decorator to smartly _sympify function arguments
@_sympifyit('other', NotImplemented)
def add(self, other):
...
In add, other can be thought of as already being a SymPy object.
If it is not, the code is likely to catch an exception, then other will
be explicitly _sympified, and the whole code restarted.
if _sympify(arg) fails, NotImplemented will be returned
see: __sympifyit
"""
def deco(func):
return __sympifyit(func, arg, retval)
return deco
def __sympifyit(func, arg, retval=None):
"""decorator to _sympify `arg` argument for function `func`
don't use directly -- use _sympifyit instead
"""
# we support f(a,b) only
if not get_function_code(func).co_argcount:
raise LookupError("func not found")
# only b is _sympified
assert get_function_code(func).co_varnames[1] == arg
if retval is None:
@wraps(func)
def __sympifyit_wrapper(a, b):
return func(a, sympify(b, strict=True))
else:
@wraps(func)
def __sympifyit_wrapper(a, b):
try:
# If an external class has _op_priority, it knows how to deal
# with sympy objects. Otherwise, it must be converted.
if not hasattr(b, '_op_priority'):
b = sympify(b, strict=True)
return func(a, b)
except SympifyError:
return retval
return __sympifyit_wrapper
def call_highest_priority(method_name):
"""A decorator for binary special methods to handle _op_priority.
Binary special methods in Expr and its subclasses use a special attribute
'_op_priority' to determine whose special method will be called to
handle the operation. In general, the object having the highest value of
'_op_priority' will handle the operation. Expr and subclasses that define
custom binary special methods (__mul__, etc.) should decorate those
methods with this decorator to add the priority logic.
The ``method_name`` argument is the name of the method of the other class
that will be called. Use this decorator in the following manner::
# Call other.__rmul__ if other._op_priority > self._op_priority
@call_highest_priority('__rmul__')
def __mul__(self, other):
...
# Call other.__mul__ if other._op_priority > self._op_priority
@call_highest_priority('__mul__')
def __rmul__(self, other):
...
"""
def priority_decorator(func):
@wraps(func)
def binary_op_wrapper(self, other):
if hasattr(other, '_op_priority'):
if other._op_priority > self._op_priority:
f = getattr(other, method_name, None)
if f is not None:
return f(self)
return func(self, other)
return binary_op_wrapper
return priority_decorator
|
1cb01a15b432d101d285dc3b95c2201f2561feb4671a46a9cdfb6284cc99d862
|
"""Base class for all the objects in SymPy"""
from __future__ import print_function, division
from collections import defaultdict
from itertools import chain
from .assumptions import BasicMeta, ManagedProperties
from .cache import cacheit
from .sympify import _sympify, sympify, SympifyError
from .compatibility import (iterable, Iterator, ordered,
string_types, with_metaclass, zip_longest, range, PY3, Mapping)
from .singleton import S
from inspect import getmro
def as_Basic(expr):
"""Return expr as a Basic instance using strict sympify
or raise a TypeError; this is just a wrapper to _sympify,
raising a TypeError instead of a SympifyError."""
from sympy.utilities.misc import func_name
try:
return _sympify(expr)
except SympifyError:
raise TypeError(
'Argument must be a Basic object, not `%s`' % func_name(
expr))
class Basic(with_metaclass(ManagedProperties)):
"""
Base class for all objects in SymPy.
Conventions:
1) Always use ``.args``, when accessing parameters of some instance:
>>> from sympy import cot
>>> from sympy.abc import x, y
>>> cot(x).args
(x,)
>>> cot(x).args[0]
x
>>> (x*y).args
(x, y)
>>> (x*y).args[1]
y
2) Never use internal methods or variables (the ones prefixed with ``_``):
>>> cot(x)._args # do not use this, use cot(x).args instead
(x,)
"""
__slots__ = ['_mhash', # hash value
'_args', # arguments
'_assumptions'
]
# To be overridden with True in the appropriate subclasses
is_number = False
is_Atom = False
is_Symbol = False
is_symbol = False
is_Indexed = False
is_Dummy = False
is_Wild = False
is_Function = False
is_Add = False
is_Mul = False
is_Pow = False
is_Number = False
is_Float = False
is_Rational = False
is_Integer = False
is_NumberSymbol = False
is_Order = False
is_Derivative = False
is_Piecewise = False
is_Poly = False
is_AlgebraicNumber = False
is_Relational = False
is_Equality = False
is_Boolean = False
is_Not = False
is_Matrix = False
is_Vector = False
is_Point = False
is_MatAdd = False
is_MatMul = False
def __new__(cls, *args):
obj = object.__new__(cls)
obj._assumptions = cls.default_assumptions
obj._mhash = None # will be set by __hash__ method.
obj._args = args # all items in args must be Basic objects
return obj
def copy(self):
return self.func(*self.args)
def __reduce_ex__(self, proto):
""" Pickling support."""
return type(self), self.__getnewargs__(), self.__getstate__()
def __getnewargs__(self):
return self.args
def __getstate__(self):
return {}
def __setstate__(self, state):
for k, v in state.items():
setattr(self, k, v)
def __hash__(self):
# hash cannot be cached using cache_it because infinite recurrence
# occurs as hash is needed for setting cache dictionary keys
h = self._mhash
if h is None:
h = hash((type(self).__name__,) + self._hashable_content())
self._mhash = h
return h
def _hashable_content(self):
"""Return a tuple of information about self that can be used to
compute the hash. If a class defines additional attributes,
like ``name`` in Symbol, then this method should be updated
accordingly to return such relevant attributes.
Defining more than _hashable_content is necessary if __eq__ has
been defined by a class. See note about this in Basic.__eq__."""
return self._args
@property
def assumptions0(self):
"""
Return object `type` assumptions.
For example:
Symbol('x', real=True)
Symbol('x', integer=True)
are different objects. In other words, besides Python type (Symbol in
this case), the initial assumptions are also forming their typeinfo.
Examples
========
>>> from sympy import Symbol
>>> from sympy.abc import x
>>> x.assumptions0
{'commutative': True}
>>> x = Symbol("x", positive=True)
>>> x.assumptions0
{'commutative': True, 'complex': True, 'hermitian': True,
'imaginary': False, 'negative': False, 'nonnegative': True,
'nonpositive': False, 'nonzero': True, 'positive': True, 'real': True,
'zero': False}
"""
return {}
def compare(self, other):
"""
Return -1, 0, 1 if the object is smaller, equal, or greater than other.
Not in the mathematical sense. If the object is of a different type
from the "other" then their classes are ordered according to
the sorted_classes list.
Examples
========
>>> from sympy.abc import x, y
>>> x.compare(y)
-1
>>> x.compare(x)
0
>>> y.compare(x)
1
"""
# all redefinitions of __cmp__ method should start with the
# following lines:
if self is other:
return 0
n1 = self.__class__
n2 = other.__class__
c = (n1 > n2) - (n1 < n2)
if c:
return c
#
st = self._hashable_content()
ot = other._hashable_content()
c = (len(st) > len(ot)) - (len(st) < len(ot))
if c:
return c
for l, r in zip(st, ot):
l = Basic(*l) if isinstance(l, frozenset) else l
r = Basic(*r) if isinstance(r, frozenset) else r
if isinstance(l, Basic):
c = l.compare(r)
else:
c = (l > r) - (l < r)
if c:
return c
return 0
@staticmethod
def _compare_pretty(a, b):
from sympy.series.order import Order
if isinstance(a, Order) and not isinstance(b, Order):
return 1
if not isinstance(a, Order) and isinstance(b, Order):
return -1
if a.is_Rational and b.is_Rational:
l = a.p * b.q
r = b.p * a.q
return (l > r) - (l < r)
else:
from sympy.core.symbol import Wild
p1, p2, p3 = Wild("p1"), Wild("p2"), Wild("p3")
r_a = a.match(p1 * p2**p3)
if r_a and p3 in r_a:
a3 = r_a[p3]
r_b = b.match(p1 * p2**p3)
if r_b and p3 in r_b:
b3 = r_b[p3]
c = Basic.compare(a3, b3)
if c != 0:
return c
return Basic.compare(a, b)
@classmethod
def fromiter(cls, args, **assumptions):
"""
Create a new object from an iterable.
This is a convenience function that allows one to create objects from
any iterable, without having to convert to a list or tuple first.
Examples
========
>>> from sympy import Tuple
>>> Tuple.fromiter(i for i in range(5))
(0, 1, 2, 3, 4)
"""
return cls(*tuple(args), **assumptions)
@classmethod
def class_key(cls):
"""Nice order of classes. """
return 5, 0, cls.__name__
@cacheit
def sort_key(self, order=None):
"""
Return a sort key.
Examples
========
>>> from sympy.core import S, I
>>> sorted([S(1)/2, I, -I], key=lambda x: x.sort_key())
[1/2, -I, I]
>>> S("[x, 1/x, 1/x**2, x**2, x**(1/2), x**(1/4), x**(3/2)]")
[x, 1/x, x**(-2), x**2, sqrt(x), x**(1/4), x**(3/2)]
>>> sorted(_, key=lambda x: x.sort_key())
[x**(-2), 1/x, x**(1/4), sqrt(x), x, x**(3/2), x**2]
"""
# XXX: remove this when issue 5169 is fixed
def inner_key(arg):
if isinstance(arg, Basic):
return arg.sort_key(order)
else:
return arg
args = self._sorted_args
args = len(args), tuple([inner_key(arg) for arg in args])
return self.class_key(), args, S.One.sort_key(), S.One
def __eq__(self, other):
"""Return a boolean indicating whether a == b on the basis of
their symbolic trees.
This is the same as a.compare(b) == 0 but faster.
Notes
=====
If a class that overrides __eq__() needs to retain the
implementation of __hash__() from a parent class, the
interpreter must be told this explicitly by setting __hash__ =
<ParentClass>.__hash__. Otherwise the inheritance of __hash__()
will be blocked, just as if __hash__ had been explicitly set to
None.
References
==========
from http://docs.python.org/dev/reference/datamodel.html#object.__hash__
"""
if self is other:
return True
tself = type(self)
tother = type(other)
if tself is not tother:
try:
other = _sympify(other)
tother = type(other)
except SympifyError:
return NotImplemented
# As long as we have the ordering of classes (sympy.core),
# comparing types will be slow in Python 2, because it uses
# __cmp__. Until we can remove it
# (https://github.com/sympy/sympy/issues/4269), we only compare
# types in Python 2 directly if they actually have __ne__.
if PY3 or type(tself).__ne__ is not type.__ne__:
if tself != tother:
return False
elif tself is not tother:
return False
return self._hashable_content() == other._hashable_content()
def __ne__(self, other):
"""a != b -> Compare two symbolic trees and see whether they are different
this is the same as:
a.compare(b) != 0
but faster
"""
return not self == other
def dummy_eq(self, other, symbol=None):
"""
Compare two expressions and handle dummy symbols.
Examples
========
>>> from sympy import Dummy
>>> from sympy.abc import x, y
>>> u = Dummy('u')
>>> (u**2 + 1).dummy_eq(x**2 + 1)
True
>>> (u**2 + 1) == (x**2 + 1)
False
>>> (u**2 + y).dummy_eq(x**2 + y, x)
True
>>> (u**2 + y).dummy_eq(x**2 + y, y)
False
"""
s = self.as_dummy()
o = _sympify(other)
o = o.as_dummy()
dummy_symbols = [i for i in s.free_symbols if i.is_Dummy]
if len(dummy_symbols) == 1:
dummy = dummy_symbols.pop()
else:
return s == o
if symbol is None:
symbols = o.free_symbols
if len(symbols) == 1:
symbol = symbols.pop()
else:
return s == o
tmp = dummy.__class__()
return s.subs(dummy, tmp) == o.subs(symbol, tmp)
# Note, we always use the default ordering (lex) in __str__ and __repr__,
# regardless of the global setting. See issue 5487.
def __repr__(self):
"""Method to return the string representation.
Return the expression as a string.
"""
from sympy.printing import sstr
return sstr(self, order=None)
def __str__(self):
from sympy.printing import sstr
return sstr(self, order=None)
# We don't define _repr_png_ here because it would add a large amount of
# data to any notebook containing SymPy expressions, without adding
# anything useful to the notebook. It can still enabled manually, e.g.,
# for the qtconsole, with init_printing().
def _repr_latex_(self):
"""
IPython/Jupyter LaTeX printing
To change the behavior of this (e.g., pass in some settings to LaTeX),
use init_printing(). init_printing() will also enable LaTeX printing
for built in numeric types like ints and container types that contain
SymPy objects, like lists and dictionaries of expressions.
"""
from sympy.printing.latex import latex
s = latex(self, mode='plain')
return "$\\displaystyle %s$" % s
_repr_latex_orig = _repr_latex_
def atoms(self, *types):
"""Returns the atoms that form the current object.
By default, only objects that are truly atomic and can't
be divided into smaller pieces are returned: symbols, numbers,
and number symbols like I and pi. It is possible to request
atoms of any type, however, as demonstrated below.
Examples
========
>>> from sympy import I, pi, sin
>>> from sympy.abc import x, y
>>> (1 + x + 2*sin(y + I*pi)).atoms()
{1, 2, I, pi, x, y}
If one or more types are given, the results will contain only
those types of atoms.
>>> from sympy import Number, NumberSymbol, Symbol
>>> (1 + x + 2*sin(y + I*pi)).atoms(Symbol)
{x, y}
>>> (1 + x + 2*sin(y + I*pi)).atoms(Number)
{1, 2}
>>> (1 + x + 2*sin(y + I*pi)).atoms(Number, NumberSymbol)
{1, 2, pi}
>>> (1 + x + 2*sin(y + I*pi)).atoms(Number, NumberSymbol, I)
{1, 2, I, pi}
Note that I (imaginary unit) and zoo (complex infinity) are special
types of number symbols and are not part of the NumberSymbol class.
The type can be given implicitly, too:
>>> (1 + x + 2*sin(y + I*pi)).atoms(x) # x is a Symbol
{x, y}
Be careful to check your assumptions when using the implicit option
since ``S(1).is_Integer = True`` but ``type(S(1))`` is ``One``, a special type
of sympy atom, while ``type(S(2))`` is type ``Integer`` and will find all
integers in an expression:
>>> from sympy import S
>>> (1 + x + 2*sin(y + I*pi)).atoms(S(1))
{1}
>>> (1 + x + 2*sin(y + I*pi)).atoms(S(2))
{1, 2}
Finally, arguments to atoms() can select more than atomic atoms: any
sympy type (loaded in core/__init__.py) can be listed as an argument
and those types of "atoms" as found in scanning the arguments of the
expression recursively:
>>> from sympy import Function, Mul
>>> from sympy.core.function import AppliedUndef
>>> f = Function('f')
>>> (1 + f(x) + 2*sin(y + I*pi)).atoms(Function)
{f(x), sin(y + I*pi)}
>>> (1 + f(x) + 2*sin(y + I*pi)).atoms(AppliedUndef)
{f(x)}
>>> (1 + x + 2*sin(y + I*pi)).atoms(Mul)
{I*pi, 2*sin(y + I*pi)}
"""
if types:
types = tuple(
[t if isinstance(t, type) else type(t) for t in types])
else:
types = (Atom,)
result = set()
for expr in preorder_traversal(self):
if isinstance(expr, types):
result.add(expr)
return result
@property
def free_symbols(self):
"""Return from the atoms of self those which are free symbols.
For most expressions, all symbols are free symbols. For some classes
this is not true. e.g. Integrals use Symbols for the dummy variables
which are bound variables, so Integral has a method to return all
symbols except those. Derivative keeps track of symbols with respect
to which it will perform a derivative; those are
bound variables, too, so it has its own free_symbols method.
Any other method that uses bound variables should implement a
free_symbols method."""
return set().union(*[a.free_symbols for a in self.args])
@property
def expr_free_symbols(self):
return set([])
def as_dummy(self):
"""Return the expression with any objects having structurally
bound symbols replaced with unique, canonical symbols within
the object in which they appear and having only the default
assumption for commutativity being True.
Examples
========
>>> from sympy import Integral, Symbol
>>> from sympy.abc import x, y
>>> r = Symbol('r', real=True)
>>> Integral(r, (r, x)).as_dummy()
Integral(_0, (_0, x))
>>> _.variables[0].is_real is None
True
Notes
=====
Any object that has structural dummy variables should have
a property, `bound_symbols` that returns a list of structural
dummy symbols of the object itself.
Lambda and Subs have bound symbols, but because of how they
are cached, they already compare the same regardless of their
bound symbols:
>>> from sympy import Lambda
>>> Lambda(x, x + 1) == Lambda(y, y + 1)
True
"""
def can(x):
d = {i: i.as_dummy() for i in x.bound_symbols}
# mask free that shadow bound
x = x.subs(d)
c = x.canonical_variables
# replace bound
x = x.xreplace(c)
# undo masking
x = x.xreplace(dict((v, k) for k, v in d.items()))
return x
return self.replace(
lambda x: hasattr(x, 'bound_symbols'),
lambda x: can(x))
@property
def canonical_variables(self):
"""Return a dictionary mapping any variable defined in
``self.bound_symbols`` to Symbols that do not clash
with any existing symbol in the expression.
Examples
========
>>> from sympy import Lambda
>>> from sympy.abc import x
>>> Lambda(x, 2*x).canonical_variables
{x: _0}
"""
from sympy.core.symbol import Symbol
from sympy.utilities.iterables import numbered_symbols
if not hasattr(self, 'bound_symbols'):
return {}
dums = numbered_symbols('_')
reps = {}
v = self.bound_symbols
# this free will include bound symbols that are not part of
# self's bound symbols
free = set([i.name for i in self.atoms(Symbol) - set(v)])
for v in v:
d = next(dums)
if v.is_Symbol:
while v.name == d.name or d.name in free:
d = next(dums)
reps[v] = d
return reps
def rcall(self, *args):
"""Apply on the argument recursively through the expression tree.
This method is used to simulate a common abuse of notation for
operators. For instance in SymPy the the following will not work:
``(x+Lambda(y, 2*y))(z) == x+2*z``,
however you can use
>>> from sympy import Lambda
>>> from sympy.abc import x, y, z
>>> (x + Lambda(y, 2*y)).rcall(z)
x + 2*z
"""
return Basic._recursive_call(self, args)
@staticmethod
def _recursive_call(expr_to_call, on_args):
"""Helper for rcall method.
"""
from sympy import Symbol
def the_call_method_is_overridden(expr):
for cls in getmro(type(expr)):
if '__call__' in cls.__dict__:
return cls != Basic
if callable(expr_to_call) and the_call_method_is_overridden(expr_to_call):
if isinstance(expr_to_call, Symbol): # XXX When you call a Symbol it is
return expr_to_call # transformed into an UndefFunction
else:
return expr_to_call(*on_args)
elif expr_to_call.args:
args = [Basic._recursive_call(
sub, on_args) for sub in expr_to_call.args]
return type(expr_to_call)(*args)
else:
return expr_to_call
def is_hypergeometric(self, k):
from sympy.simplify import hypersimp
return hypersimp(self, k) is not None
@property
def is_comparable(self):
"""Return True if self can be computed to a real number
(or already is a real number) with precision, else False.
Examples
========
>>> from sympy import exp_polar, pi, I
>>> (I*exp_polar(I*pi/2)).is_comparable
True
>>> (I*exp_polar(I*pi*2)).is_comparable
False
A False result does not mean that `self` cannot be rewritten
into a form that would be comparable. For example, the
difference computed below is zero but without simplification
it does not evaluate to a zero with precision:
>>> e = 2**pi*(1 + 2**pi)
>>> dif = e - e.expand()
>>> dif.is_comparable
False
>>> dif.n(2)._prec
1
"""
is_real = self.is_real
if is_real is False:
return False
if not self.is_number:
return False
# don't re-eval numbers that are already evaluated since
# this will create spurious precision
n, i = [p.evalf(2) if not p.is_Number else p
for p in self.as_real_imag()]
if not (i.is_Number and n.is_Number):
return False
if i:
# if _prec = 1 we can't decide and if not,
# the answer is False because numbers with
# imaginary parts can't be compared
# so return False
return False
else:
return n._prec != 1
@property
def func(self):
"""
The top-level function in an expression.
The following should hold for all objects::
>> x == x.func(*x.args)
Examples
========
>>> from sympy.abc import x
>>> a = 2*x
>>> a.func
<class 'sympy.core.mul.Mul'>
>>> a.args
(2, x)
>>> a.func(*a.args)
2*x
>>> a == a.func(*a.args)
True
"""
return self.__class__
@property
def args(self):
"""Returns a tuple of arguments of 'self'.
Examples
========
>>> from sympy import cot
>>> from sympy.abc import x, y
>>> cot(x).args
(x,)
>>> cot(x).args[0]
x
>>> (x*y).args
(x, y)
>>> (x*y).args[1]
y
Notes
=====
Never use self._args, always use self.args.
Only use _args in __new__ when creating a new function.
Don't override .args() from Basic (so that it's easy to
change the interface in the future if needed).
"""
return self._args
@property
def _sorted_args(self):
"""
The same as ``args``. Derived classes which don't fix an
order on their arguments should override this method to
produce the sorted representation.
"""
return self.args
def as_poly(self, *gens, **args):
"""Converts ``self`` to a polynomial or returns ``None``.
>>> from sympy import sin
>>> from sympy.abc import x, y
>>> print((x**2 + x*y).as_poly())
Poly(x**2 + x*y, x, y, domain='ZZ')
>>> print((x**2 + x*y).as_poly(x, y))
Poly(x**2 + x*y, x, y, domain='ZZ')
>>> print((x**2 + sin(y)).as_poly(x, y))
None
"""
from sympy.polys import Poly, PolynomialError
try:
poly = Poly(self, *gens, **args)
if not poly.is_Poly:
return None
else:
return poly
except PolynomialError:
return None
def as_content_primitive(self, radical=False, clear=True):
"""A stub to allow Basic args (like Tuple) to be skipped when computing
the content and primitive components of an expression.
See Also
========
sympy.core.expr.Expr.as_content_primitive
"""
return S.One, self
def subs(self, *args, **kwargs):
"""
Substitutes old for new in an expression after sympifying args.
`args` is either:
- two arguments, e.g. foo.subs(old, new)
- one iterable argument, e.g. foo.subs(iterable). The iterable may be
o an iterable container with (old, new) pairs. In this case the
replacements are processed in the order given with successive
patterns possibly affecting replacements already made.
o a dict or set whose key/value items correspond to old/new pairs.
In this case the old/new pairs will be sorted by op count and in
case of a tie, by number of args and the default_sort_key. The
resulting sorted list is then processed as an iterable container
(see previous).
If the keyword ``simultaneous`` is True, the subexpressions will not be
evaluated until all the substitutions have been made.
Examples
========
>>> from sympy import pi, exp, limit, oo
>>> from sympy.abc import x, y
>>> (1 + x*y).subs(x, pi)
pi*y + 1
>>> (1 + x*y).subs({x:pi, y:2})
1 + 2*pi
>>> (1 + x*y).subs([(x, pi), (y, 2)])
1 + 2*pi
>>> reps = [(y, x**2), (x, 2)]
>>> (x + y).subs(reps)
6
>>> (x + y).subs(reversed(reps))
x**2 + 2
>>> (x**2 + x**4).subs(x**2, y)
y**2 + y
To replace only the x**2 but not the x**4, use xreplace:
>>> (x**2 + x**4).xreplace({x**2: y})
x**4 + y
To delay evaluation until all substitutions have been made,
set the keyword ``simultaneous`` to True:
>>> (x/y).subs([(x, 0), (y, 0)])
0
>>> (x/y).subs([(x, 0), (y, 0)], simultaneous=True)
nan
This has the added feature of not allowing subsequent substitutions
to affect those already made:
>>> ((x + y)/y).subs({x + y: y, y: x + y})
1
>>> ((x + y)/y).subs({x + y: y, y: x + y}, simultaneous=True)
y/(x + y)
In order to obtain a canonical result, unordered iterables are
sorted by count_op length, number of arguments and by the
default_sort_key to break any ties. All other iterables are left
unsorted.
>>> from sympy import sqrt, sin, cos
>>> from sympy.abc import a, b, c, d, e
>>> A = (sqrt(sin(2*x)), a)
>>> B = (sin(2*x), b)
>>> C = (cos(2*x), c)
>>> D = (x, d)
>>> E = (exp(x), e)
>>> expr = sqrt(sin(2*x))*sin(exp(x)*x)*cos(2*x) + sin(2*x)
>>> expr.subs(dict([A, B, C, D, E]))
a*c*sin(d*e) + b
The resulting expression represents a literal replacement of the
old arguments with the new arguments. This may not reflect the
limiting behavior of the expression:
>>> (x**3 - 3*x).subs({x: oo})
nan
>>> limit(x**3 - 3*x, x, oo)
oo
If the substitution will be followed by numerical
evaluation, it is better to pass the substitution to
evalf as
>>> (1/x).evalf(subs={x: 3.0}, n=21)
0.333333333333333333333
rather than
>>> (1/x).subs({x: 3.0}).evalf(21)
0.333333333333333314830
as the former will ensure that the desired level of precision is
obtained.
See Also
========
replace: replacement capable of doing wildcard-like matching,
parsing of match, and conditional replacements
xreplace: exact node replacement in expr tree; also capable of
using matching rules
evalf: calculates the given formula to a desired level of precision
"""
from sympy.core.containers import Dict
from sympy.utilities import default_sort_key
from sympy import Dummy, Symbol
unordered = False
if len(args) == 1:
sequence = args[0]
if isinstance(sequence, set):
unordered = True
elif isinstance(sequence, (Dict, Mapping)):
unordered = True
sequence = sequence.items()
elif not iterable(sequence):
from sympy.utilities.misc import filldedent
raise ValueError(filldedent("""
When a single argument is passed to subs
it should be a dictionary of old: new pairs or an iterable
of (old, new) tuples."""))
elif len(args) == 2:
sequence = [args]
else:
raise ValueError("subs accepts either 1 or 2 arguments")
sequence = list(sequence)
for i, s in enumerate(sequence):
if isinstance(s[0], string_types):
# when old is a string we prefer Symbol
s = Symbol(s[0]), s[1]
try:
s = [sympify(_, strict=not isinstance(_, string_types))
for _ in s]
except SympifyError:
# if it can't be sympified, skip it
sequence[i] = None
continue
# skip if there is no change
sequence[i] = None if _aresame(*s) else tuple(s)
sequence = list(filter(None, sequence))
if unordered:
sequence = dict(sequence)
if not all(k.is_Atom for k in sequence):
d = {}
for o, n in sequence.items():
try:
ops = o.count_ops(), len(o.args)
except TypeError:
ops = (0, 0)
d.setdefault(ops, []).append((o, n))
newseq = []
for k in sorted(d.keys(), reverse=True):
newseq.extend(
sorted([v[0] for v in d[k]], key=default_sort_key))
sequence = [(k, sequence[k]) for k in newseq]
del newseq, d
else:
sequence = sorted([(k, v) for (k, v) in sequence.items()],
key=default_sort_key)
if kwargs.pop('simultaneous', False): # XXX should this be the default for dict subs?
reps = {}
rv = self
kwargs['hack2'] = True
m = Dummy()
for old, new in sequence:
d = Dummy(commutative=new.is_commutative)
# using d*m so Subs will be used on dummy variables
# in things like Derivative(f(x, y), x) in which x
# is both free and bound
rv = rv._subs(old, d*m, **kwargs)
if not isinstance(rv, Basic):
break
reps[d] = new
reps[m] = S.One # get rid of m
return rv.xreplace(reps)
else:
rv = self
for old, new in sequence:
rv = rv._subs(old, new, **kwargs)
if not isinstance(rv, Basic):
break
return rv
@cacheit
def _subs(self, old, new, **hints):
"""Substitutes an expression old -> new.
If self is not equal to old then _eval_subs is called.
If _eval_subs doesn't want to make any special replacement
then a None is received which indicates that the fallback
should be applied wherein a search for replacements is made
amongst the arguments of self.
>>> from sympy import Add
>>> from sympy.abc import x, y, z
Examples
========
Add's _eval_subs knows how to target x + y in the following
so it makes the change:
>>> (x + y + z).subs(x + y, 1)
z + 1
Add's _eval_subs doesn't need to know how to find x + y in
the following:
>>> Add._eval_subs(z*(x + y) + 3, x + y, 1) is None
True
The returned None will cause the fallback routine to traverse the args and
pass the z*(x + y) arg to Mul where the change will take place and the
substitution will succeed:
>>> (z*(x + y) + 3).subs(x + y, 1)
z + 3
** Developers Notes **
An _eval_subs routine for a class should be written if:
1) any arguments are not instances of Basic (e.g. bool, tuple);
2) some arguments should not be targeted (as in integration
variables);
3) if there is something other than a literal replacement
that should be attempted (as in Piecewise where the condition
may be updated without doing a replacement).
If it is overridden, here are some special cases that might arise:
1) If it turns out that no special change was made and all
the original sub-arguments should be checked for
replacements then None should be returned.
2) If it is necessary to do substitutions on a portion of
the expression then _subs should be called. _subs will
handle the case of any sub-expression being equal to old
(which usually would not be the case) while its fallback
will handle the recursion into the sub-arguments. For
example, after Add's _eval_subs removes some matching terms
it must process the remaining terms so it calls _subs
on each of the un-matched terms and then adds them
onto the terms previously obtained.
3) If the initial expression should remain unchanged then
the original expression should be returned. (Whenever an
expression is returned, modified or not, no further
substitution of old -> new is attempted.) Sum's _eval_subs
routine uses this strategy when a substitution is attempted
on any of its summation variables.
"""
def fallback(self, old, new):
"""
Try to replace old with new in any of self's arguments.
"""
hit = False
args = list(self.args)
for i, arg in enumerate(args):
if not hasattr(arg, '_eval_subs'):
continue
arg = arg._subs(old, new, **hints)
if not _aresame(arg, args[i]):
hit = True
args[i] = arg
if hit:
rv = self.func(*args)
hack2 = hints.get('hack2', False)
if hack2 and self.is_Mul and not rv.is_Mul: # 2-arg hack
coeff = S.One
nonnumber = []
for i in args:
if i.is_Number:
coeff *= i
else:
nonnumber.append(i)
nonnumber = self.func(*nonnumber)
if coeff is S.One:
return nonnumber
else:
return self.func(coeff, nonnumber, evaluate=False)
return rv
return self
if _aresame(self, old):
return new
rv = self._eval_subs(old, new)
if rv is None:
rv = fallback(self, old, new)
return rv
def _eval_subs(self, old, new):
"""Override this stub if you want to do anything more than
attempt a replacement of old with new in the arguments of self.
See also: _subs
"""
return None
def xreplace(self, rule):
"""
Replace occurrences of objects within the expression.
Parameters
==========
rule : dict-like
Expresses a replacement rule
Returns
=======
xreplace : the result of the replacement
Examples
========
>>> from sympy import symbols, pi, exp
>>> x, y, z = symbols('x y z')
>>> (1 + x*y).xreplace({x: pi})
pi*y + 1
>>> (1 + x*y).xreplace({x: pi, y: 2})
1 + 2*pi
Replacements occur only if an entire node in the expression tree is
matched:
>>> (x*y + z).xreplace({x*y: pi})
z + pi
>>> (x*y*z).xreplace({x*y: pi})
x*y*z
>>> (2*x).xreplace({2*x: y, x: z})
y
>>> (2*2*x).xreplace({2*x: y, x: z})
4*z
>>> (x + y + 2).xreplace({x + y: 2})
x + y + 2
>>> (x + 2 + exp(x + 2)).xreplace({x + 2: y})
x + exp(y) + 2
xreplace doesn't differentiate between free and bound symbols. In the
following, subs(x, y) would not change x since it is a bound symbol,
but xreplace does:
>>> from sympy import Integral
>>> Integral(x, (x, 1, 2*x)).xreplace({x: y})
Integral(y, (y, 1, 2*y))
Trying to replace x with an expression raises an error:
>>> Integral(x, (x, 1, 2*x)).xreplace({x: 2*y}) # doctest: +SKIP
ValueError: Invalid limits given: ((2*y, 1, 4*y),)
See Also
========
replace: replacement capable of doing wildcard-like matching,
parsing of match, and conditional replacements
subs: substitution of subexpressions as defined by the objects
themselves.
"""
value, _ = self._xreplace(rule)
return value
def _xreplace(self, rule):
"""
Helper for xreplace. Tracks whether a replacement actually occurred.
"""
if self in rule:
return rule[self], True
elif rule:
args = []
changed = False
for a in self.args:
_xreplace = getattr(a, '_xreplace', None)
if _xreplace is not None:
a_xr = _xreplace(rule)
args.append(a_xr[0])
changed |= a_xr[1]
else:
args.append(a)
args = tuple(args)
if changed:
return self.func(*args), True
return self, False
@cacheit
def has(self, *patterns):
"""
Test whether any subexpression matches any of the patterns.
Examples
========
>>> from sympy import sin
>>> from sympy.abc import x, y, z
>>> (x**2 + sin(x*y)).has(z)
False
>>> (x**2 + sin(x*y)).has(x, y, z)
True
>>> x.has(x)
True
Note ``has`` is a structural algorithm with no knowledge of
mathematics. Consider the following half-open interval:
>>> from sympy.sets import Interval
>>> i = Interval.Lopen(0, 5); i
Interval.Lopen(0, 5)
>>> i.args
(0, 5, True, False)
>>> i.has(4) # there is no "4" in the arguments
False
>>> i.has(0) # there *is* a "0" in the arguments
True
Instead, use ``contains`` to determine whether a number is in the
interval or not:
>>> i.contains(4)
True
>>> i.contains(0)
False
Note that ``expr.has(*patterns)`` is exactly equivalent to
``any(expr.has(p) for p in patterns)``. In particular, ``False`` is
returned when the list of patterns is empty.
>>> x.has()
False
"""
return any(self._has(pattern) for pattern in patterns)
def _has(self, pattern):
"""Helper for .has()"""
from sympy.core.function import UndefinedFunction, Function
if isinstance(pattern, UndefinedFunction):
return any(f.func == pattern or f == pattern
for f in self.atoms(Function, UndefinedFunction))
pattern = sympify(pattern)
if isinstance(pattern, BasicMeta):
return any(isinstance(arg, pattern)
for arg in preorder_traversal(self))
_has_matcher = getattr(pattern, '_has_matcher', None)
if _has_matcher is not None:
match = _has_matcher()
return any(match(arg) for arg in preorder_traversal(self))
else:
return any(arg == pattern for arg in preorder_traversal(self))
def _has_matcher(self):
"""Helper for .has()"""
return lambda other: self == other
def replace(self, query, value, map=False, simultaneous=True, exact=None):
"""
Replace matching subexpressions of ``self`` with ``value``.
If ``map = True`` then also return the mapping {old: new} where ``old``
was a sub-expression found with query and ``new`` is the replacement
value for it. If the expression itself doesn't match the query, then
the returned value will be ``self.xreplace(map)`` otherwise it should
be ``self.subs(ordered(map.items()))``.
Traverses an expression tree and performs replacement of matching
subexpressions from the bottom to the top of the tree. The default
approach is to do the replacement in a simultaneous fashion so
changes made are targeted only once. If this is not desired or causes
problems, ``simultaneous`` can be set to False. In addition, if an
expression containing more than one Wild symbol is being used to match
subexpressions and the ``exact`` flag is True, then the match will only
succeed if non-zero values are received for each Wild that appears in
the match pattern.
The list of possible combinations of queries and replacement values
is listed below:
Examples
========
Initial setup
>>> from sympy import log, sin, cos, tan, Wild, Mul, Add
>>> from sympy.abc import x, y
>>> f = log(sin(x)) + tan(sin(x**2))
1.1. type -> type
obj.replace(type, newtype)
When object of type ``type`` is found, replace it with the
result of passing its argument(s) to ``newtype``.
>>> f.replace(sin, cos)
log(cos(x)) + tan(cos(x**2))
>>> sin(x).replace(sin, cos, map=True)
(cos(x), {sin(x): cos(x)})
>>> (x*y).replace(Mul, Add)
x + y
1.2. type -> func
obj.replace(type, func)
When object of type ``type`` is found, apply ``func`` to its
argument(s). ``func`` must be written to handle the number
of arguments of ``type``.
>>> f.replace(sin, lambda arg: sin(2*arg))
log(sin(2*x)) + tan(sin(2*x**2))
>>> (x*y).replace(Mul, lambda *args: sin(2*Mul(*args)))
sin(2*x*y)
2.1. pattern -> expr
obj.replace(pattern(wild), expr(wild))
Replace subexpressions matching ``pattern`` with the expression
written in terms of the Wild symbols in ``pattern``.
>>> a, b = map(Wild, 'ab')
>>> f.replace(sin(a), tan(a))
log(tan(x)) + tan(tan(x**2))
>>> f.replace(sin(a), tan(a/2))
log(tan(x/2)) + tan(tan(x**2/2))
>>> f.replace(sin(a), a)
log(x) + tan(x**2)
>>> (x*y).replace(a*x, a)
y
Matching is exact by default when more than one Wild symbol
is used: matching fails unless the match gives non-zero
values for all Wild symbols:
>>> (2*x + y).replace(a*x + b, b - a)
y - 2
>>> (2*x).replace(a*x + b, b - a)
2*x
When set to False, the results may be non-intuitive:
>>> (2*x).replace(a*x + b, b - a, exact=False)
2/x
2.2. pattern -> func
obj.replace(pattern(wild), lambda wild: expr(wild))
All behavior is the same as in 2.1 but now a function in terms of
pattern variables is used rather than an expression:
>>> f.replace(sin(a), lambda a: sin(2*a))
log(sin(2*x)) + tan(sin(2*x**2))
3.1. func -> func
obj.replace(filter, func)
Replace subexpression ``e`` with ``func(e)`` if ``filter(e)``
is True.
>>> g = 2*sin(x**3)
>>> g.replace(lambda expr: expr.is_Number, lambda expr: expr**2)
4*sin(x**9)
The expression itself is also targeted by the query but is done in
such a fashion that changes are not made twice.
>>> e = x*(x*y + 1)
>>> e.replace(lambda x: x.is_Mul, lambda x: 2*x)
2*x*(2*x*y + 1)
See Also
========
subs: substitution of subexpressions as defined by the objects
themselves.
xreplace: exact node replacement in expr tree; also capable of
using matching rules
"""
from sympy.core.symbol import Dummy, Wild
from sympy.simplify.simplify import bottom_up
try:
query = _sympify(query)
except SympifyError:
pass
try:
value = _sympify(value)
except SympifyError:
pass
if isinstance(query, type):
_query = lambda expr: isinstance(expr, query)
if isinstance(value, type):
_value = lambda expr, result: value(*expr.args)
elif callable(value):
_value = lambda expr, result: value(*expr.args)
else:
raise TypeError(
"given a type, replace() expects another "
"type or a callable")
elif isinstance(query, Basic):
_query = lambda expr: expr.match(query)
exact = len(query.atoms(Wild)) > 1 if exact is None else exact
if isinstance(value, Basic):
if exact:
_value = lambda expr, result: (value.subs(result)
if all(result.values()) else expr)
else:
_value = lambda expr, result: value.subs(result)
elif callable(value):
# match dictionary keys get the trailing underscore stripped
# from them and are then passed as keywords to the callable;
# if ``exact`` is True, only accept match if there are no null
# values amongst those matched.
if exact:
_value = lambda expr, result: (value(**
{str(k)[:-1]: v for k, v in result.items()})
if all(val for val in result.values()) else expr)
else:
_value = lambda expr, result: value(**
{str(k)[:-1]: v for k, v in result.items()})
else:
raise TypeError(
"given an expression, replace() expects "
"another expression or a callable")
elif callable(query):
_query = query
if callable(value):
_value = lambda expr, result: value(expr)
else:
raise TypeError(
"given a callable, replace() expects "
"another callable")
else:
raise TypeError(
"first argument to replace() must be a "
"type, an expression or a callable")
mapping = {} # changes that took place
mask = [] # the dummies that were used as change placeholders
def rec_replace(expr):
result = _query(expr)
if result or result == {}:
new = _value(expr, result)
if new is not None and new != expr:
mapping[expr] = new
if simultaneous:
# don't let this expression be changed during rebuilding
com = getattr(new, 'is_commutative', True)
if com is None:
com = True
d = Dummy(commutative=com)
mask.append((d, new))
expr = d
else:
expr = new
return expr
rv = bottom_up(self, rec_replace, atoms=True)
# restore original expressions for Dummy symbols
if simultaneous:
mask = list(reversed(mask))
for o, n in mask:
r = {o: n}
rv = rv.xreplace(r)
if not map:
return rv
else:
if simultaneous:
# restore subexpressions in mapping
for o, n in mask:
r = {o: n}
mapping = {k.xreplace(r): v.xreplace(r)
for k, v in mapping.items()}
return rv, mapping
def find(self, query, group=False):
"""Find all subexpressions matching a query. """
query = _make_find_query(query)
results = list(filter(query, preorder_traversal(self)))
if not group:
return set(results)
else:
groups = {}
for result in results:
if result in groups:
groups[result] += 1
else:
groups[result] = 1
return groups
def count(self, query):
"""Count the number of matching subexpressions. """
query = _make_find_query(query)
return sum(bool(query(sub)) for sub in preorder_traversal(self))
def matches(self, expr, repl_dict={}, old=False):
"""
Helper method for match() that looks for a match between Wild symbols
in self and expressions in expr.
Examples
========
>>> from sympy import symbols, Wild, Basic
>>> a, b, c = symbols('a b c')
>>> x = Wild('x')
>>> Basic(a + x, x).matches(Basic(a + b, c)) is None
True
>>> Basic(a + x, x).matches(Basic(a + b + c, b + c))
{x_: b + c}
"""
expr = sympify(expr)
if not isinstance(expr, self.__class__):
return None
if self == expr:
return repl_dict
if len(self.args) != len(expr.args):
return None
d = repl_dict.copy()
for arg, other_arg in zip(self.args, expr.args):
if arg == other_arg:
continue
d = arg.xreplace(d).matches(other_arg, d, old=old)
if d is None:
return None
return d
def match(self, pattern, old=False):
"""
Pattern matching.
Wild symbols match all.
Return ``None`` when expression (self) does not match
with pattern. Otherwise return a dictionary such that::
pattern.xreplace(self.match(pattern)) == self
Examples
========
>>> from sympy import Wild
>>> from sympy.abc import x, y
>>> p = Wild("p")
>>> q = Wild("q")
>>> r = Wild("r")
>>> e = (x+y)**(x+y)
>>> e.match(p**p)
{p_: x + y}
>>> e.match(p**q)
{p_: x + y, q_: x + y}
>>> e = (2*x)**2
>>> e.match(p*q**r)
{p_: 4, q_: x, r_: 2}
>>> (p*q**r).xreplace(e.match(p*q**r))
4*x**2
The ``old`` flag will give the old-style pattern matching where
expressions and patterns are essentially solved to give the
match. Both of the following give None unless ``old=True``:
>>> (x - 2).match(p - x, old=True)
{p_: 2*x - 2}
>>> (2/x).match(p*x, old=True)
{p_: 2/x**2}
"""
pattern = sympify(pattern)
return pattern.matches(self, old=old)
def count_ops(self, visual=None):
"""wrapper for count_ops that returns the operation count."""
from sympy import count_ops
return count_ops(self, visual)
def doit(self, **hints):
"""Evaluate objects that are not evaluated by default like limits,
integrals, sums and products. All objects of this kind will be
evaluated recursively, unless some species were excluded via 'hints'
or unless the 'deep' hint was set to 'False'.
>>> from sympy import Integral
>>> from sympy.abc import x
>>> 2*Integral(x, x)
2*Integral(x, x)
>>> (2*Integral(x, x)).doit()
x**2
>>> (2*Integral(x, x)).doit(deep=False)
2*Integral(x, x)
"""
if hints.get('deep', True):
terms = [term.doit(**hints) if isinstance(term, Basic) else term
for term in self.args]
return self.func(*terms)
else:
return self
def _eval_rewrite(self, pattern, rule, **hints):
if self.is_Atom:
if hasattr(self, rule):
return getattr(self, rule)()
return self
if hints.get('deep', True):
args = [a._eval_rewrite(pattern, rule, **hints)
if isinstance(a, Basic) else a
for a in self.args]
else:
args = self.args
if pattern is None or isinstance(self, pattern):
if hasattr(self, rule):
rewritten = getattr(self, rule)(*args, **hints)
if rewritten is not None:
return rewritten
return self.func(*args) if hints.get('evaluate', True) else self
def _accept_eval_derivative(self, s):
# This method needs to be overridden by array-like objects
return s._visit_eval_derivative_scalar(self)
def _visit_eval_derivative_scalar(self, base):
# Base is a scalar
# Types are (base: scalar, self: scalar)
return base._eval_derivative(self)
def _visit_eval_derivative_array(self, base):
# Types are (base: array/matrix, self: scalar)
# Base is some kind of array/matrix,
# it should have `.applyfunc(lambda x: x.diff(self)` implemented:
return base._eval_derivative(self)
def _eval_derivative_n_times(self, s, n):
# This is the default evaluator for derivatives (as called by `diff`
# and `Derivative`), it will attempt a loop to derive the expression
# `n` times by calling the corresponding `_eval_derivative` method,
# while leaving the derivative unevaluated if `n` is symbolic. This
# method should be overridden if the object has a closed form for its
# symbolic n-th derivative.
from sympy import Integer
if isinstance(n, (int, Integer)):
obj = self
for i in range(n):
obj2 = obj._accept_eval_derivative(s)
if obj == obj2 or obj2 is None:
break
obj = obj2
return obj2
else:
return None
def rewrite(self, *args, **hints):
""" Rewrite functions in terms of other functions.
Rewrites expression containing applications of functions
of one kind in terms of functions of different kind. For
example you can rewrite trigonometric functions as complex
exponentials or combinatorial functions as gamma function.
As a pattern this function accepts a list of functions to
to rewrite (instances of DefinedFunction class). As rule
you can use string or a destination function instance (in
this case rewrite() will use the str() function).
There is also the possibility to pass hints on how to rewrite
the given expressions. For now there is only one such hint
defined called 'deep'. When 'deep' is set to False it will
forbid functions to rewrite their contents.
Examples
========
>>> from sympy import sin, exp
>>> from sympy.abc import x
Unspecified pattern:
>>> sin(x).rewrite(exp)
-I*(exp(I*x) - exp(-I*x))/2
Pattern as a single function:
>>> sin(x).rewrite(sin, exp)
-I*(exp(I*x) - exp(-I*x))/2
Pattern as a list of functions:
>>> sin(x).rewrite([sin, ], exp)
-I*(exp(I*x) - exp(-I*x))/2
"""
if not args:
return self
else:
pattern = args[:-1]
if isinstance(args[-1], string_types):
rule = '_eval_rewrite_as_' + args[-1]
else:
try:
rule = '_eval_rewrite_as_' + args[-1].__name__
except:
rule = '_eval_rewrite_as_' + args[-1].__class__.__name__
if not pattern:
return self._eval_rewrite(None, rule, **hints)
else:
if iterable(pattern[0]):
pattern = pattern[0]
pattern = [p for p in pattern if self.has(p)]
if pattern:
return self._eval_rewrite(tuple(pattern), rule, **hints)
else:
return self
_constructor_postprocessor_mapping = {}
@classmethod
def _exec_constructor_postprocessors(cls, obj):
# WARNING: This API is experimental.
# This is an experimental API that introduces constructor
# postprosessors for SymPy Core elements. If an argument of a SymPy
# expression has a `_constructor_postprocessor_mapping` attribute, it will
# be interpreted as a dictionary containing lists of postprocessing
# functions for matching expression node names.
clsname = obj.__class__.__name__
postprocessors = defaultdict(list)
for i in obj.args:
try:
postprocessor_mappings = (
Basic._constructor_postprocessor_mapping[cls].items()
for cls in type(i).mro()
if cls in Basic._constructor_postprocessor_mapping
)
for k, v in chain.from_iterable(postprocessor_mappings):
postprocessors[k].extend([j for j in v if j not in postprocessors[k]])
except TypeError:
pass
for f in postprocessors.get(clsname, []):
obj = f(obj)
return obj
class Atom(Basic):
"""
A parent class for atomic things. An atom is an expression with no subexpressions.
Examples
========
Symbol, Number, Rational, Integer, ...
But not: Add, Mul, Pow, ...
"""
is_Atom = True
__slots__ = []
def matches(self, expr, repl_dict={}, old=False):
if self == expr:
return repl_dict
def xreplace(self, rule, hack2=False):
return rule.get(self, self)
def doit(self, **hints):
return self
@classmethod
def class_key(cls):
return 2, 0, cls.__name__
@cacheit
def sort_key(self, order=None):
return self.class_key(), (1, (str(self),)), S.One.sort_key(), S.One
def _eval_simplify(self, ratio, measure, rational, inverse):
return self
@property
def _sorted_args(self):
# this is here as a safeguard against accidentally using _sorted_args
# on Atoms -- they cannot be rebuilt as atom.func(*atom._sorted_args)
# since there are no args. So the calling routine should be checking
# to see that this property is not called for Atoms.
raise AttributeError('Atoms have no args. It might be necessary'
' to make a check for Atoms in the calling code.')
def _aresame(a, b):
"""Return True if a and b are structurally the same, else False.
Examples
========
To SymPy, 2.0 == 2:
>>> from sympy import S
>>> 2.0 == S(2)
True
Since a simple 'same or not' result is sometimes useful, this routine was
written to provide that query:
>>> from sympy.core.basic import _aresame
>>> _aresame(S(2.0), S(2))
False
"""
from .function import AppliedUndef, UndefinedFunction as UndefFunc
for i, j in zip_longest(preorder_traversal(a), preorder_traversal(b)):
if i != j or type(i) != type(j):
if ((isinstance(i, UndefFunc) and isinstance(j, UndefFunc)) or
(isinstance(i, AppliedUndef) and isinstance(j, AppliedUndef))):
if i.class_key() != j.class_key():
return False
else:
return False
return True
def _atomic(e, recursive=False):
"""Return atom-like quantities as far as substitution is
concerned: Derivatives, Functions and Symbols. Don't
return any 'atoms' that are inside such quantities unless
they also appear outside, too, unless `recursive` is True.
Examples
========
>>> from sympy import Derivative, Function, cos
>>> from sympy.abc import x, y
>>> from sympy.core.basic import _atomic
>>> f = Function('f')
>>> _atomic(x + y)
{x, y}
>>> _atomic(x + f(y))
{x, f(y)}
>>> _atomic(Derivative(f(x), x) + cos(x) + y)
{y, cos(x), Derivative(f(x), x)}
"""
from sympy import Derivative, Function, Symbol
pot = preorder_traversal(e)
seen = set()
if isinstance(e, Basic):
free = getattr(e, "free_symbols", None)
if free is None:
return {e}
else:
return set()
atoms = set()
for p in pot:
if p in seen:
pot.skip()
continue
seen.add(p)
if isinstance(p, Symbol) and p in free:
atoms.add(p)
elif isinstance(p, (Derivative, Function)):
if not recursive:
pot.skip()
atoms.add(p)
return atoms
class preorder_traversal(Iterator):
"""
Do a pre-order traversal of a tree.
This iterator recursively yields nodes that it has visited in a pre-order
fashion. That is, it yields the current node then descends through the
tree breadth-first to yield all of a node's children's pre-order
traversal.
For an expression, the order of the traversal depends on the order of
.args, which in many cases can be arbitrary.
Parameters
==========
node : sympy expression
The expression to traverse.
keys : (default None) sort key(s)
The key(s) used to sort args of Basic objects. When None, args of Basic
objects are processed in arbitrary order. If key is defined, it will
be passed along to ordered() as the only key(s) to use to sort the
arguments; if ``key`` is simply True then the default keys of ordered
will be used.
Yields
======
subtree : sympy expression
All of the subtrees in the tree.
Examples
========
>>> from sympy import symbols
>>> from sympy.core.basic import preorder_traversal
>>> x, y, z = symbols('x y z')
The nodes are returned in the order that they are encountered unless key
is given; simply passing key=True will guarantee that the traversal is
unique.
>>> list(preorder_traversal((x + y)*z, keys=None)) # doctest: +SKIP
[z*(x + y), z, x + y, y, x]
>>> list(preorder_traversal((x + y)*z, keys=True))
[z*(x + y), z, x + y, x, y]
"""
def __init__(self, node, keys=None):
self._skip_flag = False
self._pt = self._preorder_traversal(node, keys)
def _preorder_traversal(self, node, keys):
yield node
if self._skip_flag:
self._skip_flag = False
return
if isinstance(node, Basic):
if not keys and hasattr(node, '_argset'):
# LatticeOp keeps args as a set. We should use this if we
# don't care about the order, to prevent unnecessary sorting.
args = node._argset
else:
args = node.args
if keys:
if keys != True:
args = ordered(args, keys, default=False)
else:
args = ordered(args)
for arg in args:
for subtree in self._preorder_traversal(arg, keys):
yield subtree
elif iterable(node):
for item in node:
for subtree in self._preorder_traversal(item, keys):
yield subtree
def skip(self):
"""
Skip yielding current node's (last yielded node's) subtrees.
Examples
========
>>> from sympy.core import symbols
>>> from sympy.core.basic import preorder_traversal
>>> x, y, z = symbols('x y z')
>>> pt = preorder_traversal((x+y*z)*z)
>>> for i in pt:
... print(i)
... if i == x+y*z:
... pt.skip()
z*(x + y*z)
z
x + y*z
"""
self._skip_flag = True
def __next__(self):
return next(self._pt)
def __iter__(self):
return self
def _make_find_query(query):
"""Convert the argument of Basic.find() into a callable"""
try:
query = sympify(query)
except SympifyError:
pass
if isinstance(query, type):
return lambda expr: isinstance(expr, query)
elif isinstance(query, Basic):
return lambda expr: expr.match(query) is not None
return query
|
a9a8986f22dc86f71c48cbed71c3bceb47a11c9bdb4e5bbd8f8daaea4c6a9063
|
from __future__ import print_function, division
from math import log as _log
from .sympify import _sympify
from .cache import cacheit
from .singleton import S
from .expr import Expr
from .evalf import PrecisionExhausted
from .function import (_coeff_isneg, expand_complex, expand_multinomial,
expand_mul)
from .logic import fuzzy_bool, fuzzy_not
from .compatibility import as_int, range
from .evaluate import global_evaluate
from sympy.utilities.iterables import sift
from mpmath.libmp import sqrtrem as mpmath_sqrtrem
from math import sqrt as _sqrt
def isqrt(n):
"""Return the largest integer less than or equal to sqrt(n)."""
if n < 17984395633462800708566937239552:
return int(_sqrt(n))
return integer_nthroot(int(n), 2)[0]
def integer_nthroot(y, n):
"""
Return a tuple containing x = floor(y**(1/n))
and a boolean indicating whether the result is exact (that is,
whether x**n == y).
Examples
========
>>> from sympy import integer_nthroot
>>> integer_nthroot(16, 2)
(4, True)
>>> integer_nthroot(26, 2)
(5, False)
To simply determine if a number is a perfect square, the is_square
function should be used:
>>> from sympy.ntheory.primetest import is_square
>>> is_square(26)
False
See Also
========
sympy.ntheory.primetest.is_square
integer_log
"""
y, n = as_int(y), as_int(n)
if y < 0:
raise ValueError("y must be nonnegative")
if n < 1:
raise ValueError("n must be positive")
if y in (0, 1):
return y, True
if n == 1:
return y, True
if n == 2:
x, rem = mpmath_sqrtrem(y)
return int(x), not rem
if n > y:
return 1, False
# Get initial estimate for Newton's method. Care must be taken to
# avoid overflow
try:
guess = int(y**(1./n) + 0.5)
except OverflowError:
exp = _log(y, 2)/n
if exp > 53:
shift = int(exp - 53)
guess = int(2.0**(exp - shift) + 1) << shift
else:
guess = int(2.0**exp)
if guess > 2**50:
# Newton iteration
xprev, x = -1, guess
while 1:
t = x**(n - 1)
xprev, x = x, ((n - 1)*x + y//t)//n
if abs(x - xprev) < 2:
break
else:
x = guess
# Compensate
t = x**n
while t < y:
x += 1
t = x**n
while t > y:
x -= 1
t = x**n
return int(x), t == y # int converts long to int if possible
def integer_log(y, x):
"""Returns (e, bool) where e is the largest nonnegative integer
such that |y| >= |x**e| and bool is True if y == x**e
Examples
========
>>> from sympy import integer_log
>>> integer_log(125, 5)
(3, True)
>>> integer_log(17, 9)
(1, False)
>>> integer_log(4, -2)
(2, True)
>>> integer_log(-125,-5)
(3, True)
See Also
========
integer_nthroot
sympy.ntheory.primetest.is_square
sympy.ntheory.factor_.multiplicity
sympy.ntheory.factor_.perfect_power
"""
if x == 1:
raise ValueError('x cannot take value as 1')
if y == 0:
raise ValueError('y cannot take value as 0')
if x in (-2, 2):
x = int(x)
y = as_int(y)
e = y.bit_length() - 1
return e, x**e == y
if x < 0:
n, b = integer_log(y if y > 0 else -y, -x)
return n, b and bool(n % 2 if y < 0 else not n % 2)
x = as_int(x)
y = as_int(y)
r = e = 0
while y >= x:
d = x
m = 1
while y >= d:
y, rem = divmod(y, d)
r = r or rem
e += m
if y > d:
d *= d
m *= 2
return e, r == 0 and y == 1
class Pow(Expr):
"""
Defines the expression x**y as "x raised to a power y"
Singleton definitions involving (0, 1, -1, oo, -oo, I, -I):
+--------------+---------+-----------------------------------------------+
| expr | value | reason |
+==============+=========+===============================================+
| z**0 | 1 | Although arguments over 0**0 exist, see [2]. |
+--------------+---------+-----------------------------------------------+
| z**1 | z | |
+--------------+---------+-----------------------------------------------+
| (-oo)**(-1) | 0 | |
+--------------+---------+-----------------------------------------------+
| (-1)**-1 | -1 | |
+--------------+---------+-----------------------------------------------+
| S.Zero**-1 | zoo | This is not strictly true, as 0**-1 may be |
| | | undefined, but is convenient in some contexts |
| | | where the base is assumed to be positive. |
+--------------+---------+-----------------------------------------------+
| 1**-1 | 1 | |
+--------------+---------+-----------------------------------------------+
| oo**-1 | 0 | |
+--------------+---------+-----------------------------------------------+
| 0**oo | 0 | Because for all complex numbers z near |
| | | 0, z**oo -> 0. |
+--------------+---------+-----------------------------------------------+
| 0**-oo | zoo | This is not strictly true, as 0**oo may be |
| | | oscillating between positive and negative |
| | | values or rotating in the complex plane. |
| | | It is convenient, however, when the base |
| | | is positive. |
+--------------+---------+-----------------------------------------------+
| 1**oo | nan | Because there are various cases where |
| 1**-oo | | lim(x(t),t)=1, lim(y(t),t)=oo (or -oo), |
| | | but lim( x(t)**y(t), t) != 1. See [3]. |
+--------------+---------+-----------------------------------------------+
| b**zoo | nan | Because b**z has no limit as z -> zoo |
+--------------+---------+-----------------------------------------------+
| (-1)**oo | nan | Because of oscillations in the limit. |
| (-1)**(-oo) | | |
+--------------+---------+-----------------------------------------------+
| oo**oo | oo | |
+--------------+---------+-----------------------------------------------+
| oo**-oo | 0 | |
+--------------+---------+-----------------------------------------------+
| (-oo)**oo | nan | |
| (-oo)**-oo | | |
+--------------+---------+-----------------------------------------------+
| oo**I | nan | oo**e could probably be best thought of as |
| (-oo)**I | | the limit of x**e for real x as x tends to |
| | | oo. If e is I, then the limit does not exist |
| | | and nan is used to indicate that. |
+--------------+---------+-----------------------------------------------+
| oo**(1+I) | zoo | If the real part of e is positive, then the |
| (-oo)**(1+I) | | limit of abs(x**e) is oo. So the limit value |
| | | is zoo. |
+--------------+---------+-----------------------------------------------+
| oo**(-1+I) | 0 | If the real part of e is negative, then the |
| -oo**(-1+I) | | limit is 0. |
+--------------+---------+-----------------------------------------------+
Because symbolic computations are more flexible that floating point
calculations and we prefer to never return an incorrect answer,
we choose not to conform to all IEEE 754 conventions. This helps
us avoid extra test-case code in the calculation of limits.
See Also
========
sympy.core.numbers.Infinity
sympy.core.numbers.NegativeInfinity
sympy.core.numbers.NaN
References
==========
.. [1] https://en.wikipedia.org/wiki/Exponentiation
.. [2] https://en.wikipedia.org/wiki/Exponentiation#Zero_to_the_power_of_zero
.. [3] https://en.wikipedia.org/wiki/Indeterminate_forms
"""
is_Pow = True
__slots__ = ['is_commutative']
@cacheit
def __new__(cls, b, e, evaluate=None):
if evaluate is None:
evaluate = global_evaluate[0]
from sympy.functions.elementary.exponential import exp_polar
b = _sympify(b)
e = _sympify(e)
if evaluate:
if e is S.ComplexInfinity:
return S.NaN
if e is S.Zero:
return S.One
elif e is S.One:
return b
# Only perform autosimplification if exponent or base is a Symbol or number
elif (b.is_Symbol or b.is_number) and (e.is_Symbol or e.is_number) and\
e.is_integer and _coeff_isneg(b):
if e.is_even:
b = -b
elif e.is_odd:
return -Pow(-b, e)
if S.NaN in (b, e): # XXX S.NaN**x -> S.NaN under assumption that x != 0
return S.NaN
elif b is S.One:
if abs(e).is_infinite:
return S.NaN
return S.One
else:
# recognize base as E
if not e.is_Atom and b is not S.Exp1 and not isinstance(b, exp_polar):
from sympy import numer, denom, log, sign, im, factor_terms
c, ex = factor_terms(e, sign=False).as_coeff_Mul()
den = denom(ex)
if isinstance(den, log) and den.args[0] == b:
return S.Exp1**(c*numer(ex))
elif den.is_Add:
s = sign(im(b))
if s.is_Number and s and den == \
log(-factor_terms(b, sign=False)) + s*S.ImaginaryUnit*S.Pi:
return S.Exp1**(c*numer(ex))
obj = b._eval_power(e)
if obj is not None:
return obj
obj = Expr.__new__(cls, b, e)
obj = cls._exec_constructor_postprocessors(obj)
if not isinstance(obj, Pow):
return obj
obj.is_commutative = (b.is_commutative and e.is_commutative)
return obj
@property
def base(self):
return self._args[0]
@property
def exp(self):
return self._args[1]
@classmethod
def class_key(cls):
return 3, 2, cls.__name__
def _eval_refine(self, assumptions):
from sympy.assumptions.ask import ask, Q
b, e = self.as_base_exp()
if ask(Q.integer(e), assumptions) and _coeff_isneg(b):
if ask(Q.even(e), assumptions):
return Pow(-b, e)
elif ask(Q.odd(e), assumptions):
return -Pow(-b, e)
def _eval_power(self, other):
from sympy import Abs, arg, exp, floor, im, log, re, sign
b, e = self.as_base_exp()
if b is S.NaN:
return (b**e)**other # let __new__ handle it
s = None
if other.is_integer:
s = 1
elif b.is_polar: # e.g. exp_polar, besselj, var('p', polar=True)...
s = 1
elif e.is_real is not None:
# helper functions ===========================
def _half(e):
"""Return True if the exponent has a literal 2 as the
denominator, else None."""
if getattr(e, 'q', None) == 2:
return True
n, d = e.as_numer_denom()
if n.is_integer and d == 2:
return True
def _n2(e):
"""Return ``e`` evaluated to a Number with 2 significant
digits, else None."""
try:
rv = e.evalf(2, strict=True)
if rv.is_Number:
return rv
except PrecisionExhausted:
pass
# ===================================================
if e.is_real:
# we need _half(other) with constant floor or
# floor(S.Half - e*arg(b)/2/pi) == 0
# handle -1 as special case
if e == -1:
# floor arg. is 1/2 + arg(b)/2/pi
if _half(other):
if b.is_negative is True:
return S.NegativeOne**other*Pow(-b, e*other)
if b.is_real is False:
return Pow(b.conjugate()/Abs(b)**2, other)
elif e.is_even:
if b.is_real:
b = abs(b)
if b.is_imaginary:
b = abs(im(b))*S.ImaginaryUnit
if (abs(e) < 1) == True or e == 1:
s = 1 # floor = 0
elif b.is_nonnegative:
s = 1 # floor = 0
elif re(b).is_nonnegative and (abs(e) < 2) == True:
s = 1 # floor = 0
elif fuzzy_not(im(b).is_zero) and abs(e) == 2:
s = 1 # floor = 0
elif _half(other):
s = exp(2*S.Pi*S.ImaginaryUnit*other*floor(
S.Half - e*arg(b)/(2*S.Pi)))
if s.is_real and _n2(sign(s) - s) == 0:
s = sign(s)
else:
s = None
else:
# e.is_real is False requires:
# _half(other) with constant floor or
# floor(S.Half - im(e*log(b))/2/pi) == 0
try:
s = exp(2*S.ImaginaryUnit*S.Pi*other*
floor(S.Half - im(e*log(b))/2/S.Pi))
# be careful to test that s is -1 or 1 b/c sign(I) == I:
# so check that s is real
if s.is_real and _n2(sign(s) - s) == 0:
s = sign(s)
else:
s = None
except PrecisionExhausted:
s = None
if s is not None:
return s*Pow(b, e*other)
def _eval_Mod(self, q):
if self.exp.is_integer and self.exp.is_positive:
if q.is_integer and self.base % q == 0:
return S.Zero
'''
For unevaluated Integer power, use built-in pow modular
exponentiation, if powers are not too large wrt base.
'''
if self.base.is_Integer and self.exp.is_Integer and q.is_Integer:
b, e, m = int(self.base), int(self.exp), int(q)
# For very large powers, use totient reduction if e >= lg(m).
# Bound on m, is for safe factorization memory wise ie m^(1/4).
# For pollard-rho to be faster than built-in pow lg(e) > m^(1/4)
# check is added.
mb = m.bit_length()
if mb <= 80 and e >= mb and e.bit_length()**4 >= m:
from sympy.ntheory import totient
phi = totient(m)
return pow(b, phi + e%phi, m)
else:
return pow(b, e, m)
def _eval_is_even(self):
if self.exp.is_integer and self.exp.is_positive:
return self.base.is_even
def _eval_is_positive(self):
from sympy import log
if self.base == self.exp:
if self.base.is_nonnegative:
return True
elif self.base.is_positive:
if self.exp.is_real:
return True
elif self.base.is_negative:
if self.exp.is_even:
return True
if self.exp.is_odd:
return False
elif self.base.is_zero:
if self.exp.is_real:
return self.exp.is_zero
elif self.base.is_nonpositive:
if self.exp.is_odd:
return False
elif self.base.is_imaginary:
if self.exp.is_integer:
m = self.exp % 4
if m.is_zero:
return True
if m.is_integer and m.is_zero is False:
return False
if self.exp.is_imaginary:
return log(self.base).is_imaginary
def _eval_is_negative(self):
if self.base.is_negative:
if self.exp.is_odd:
return True
if self.exp.is_even:
return False
elif self.base.is_positive:
if self.exp.is_real:
return False
elif self.base.is_zero:
if self.exp.is_real:
return False
elif self.base.is_nonnegative:
if self.exp.is_nonnegative:
return False
elif self.base.is_nonpositive:
if self.exp.is_even:
return False
elif self.base.is_real:
if self.exp.is_even:
return False
def _eval_is_zero(self):
if self.base.is_zero:
if self.exp.is_positive:
return True
elif self.exp.is_nonpositive:
return False
elif self.base.is_zero is False:
if self.exp.is_finite:
return False
elif self.exp.is_infinite:
if (1 - abs(self.base)).is_positive:
return self.exp.is_positive
elif (1 - abs(self.base)).is_negative:
return self.exp.is_negative
else:
# when self.base.is_zero is None
return None
def _eval_is_integer(self):
b, e = self.args
if b.is_rational:
if b.is_integer is False and e.is_positive:
return False # rat**nonneg
if b.is_integer and e.is_integer:
if b is S.NegativeOne:
return True
if e.is_nonnegative or e.is_positive:
return True
if b.is_integer and e.is_negative and (e.is_finite or e.is_integer):
if fuzzy_not((b - 1).is_zero) and fuzzy_not((b + 1).is_zero):
return False
if b.is_Number and e.is_Number:
check = self.func(*self.args)
return check.is_Integer
def _eval_is_real(self):
from sympy import arg, exp, log, Mul
real_b = self.base.is_real
if real_b is None:
if self.base.func == exp and self.base.args[0].is_imaginary:
return self.exp.is_imaginary
return
real_e = self.exp.is_real
if real_e is None:
return
if real_b and real_e:
if self.base.is_positive:
return True
elif self.base.is_nonnegative:
if self.exp.is_nonnegative:
return True
else:
if self.exp.is_integer:
return True
elif self.base.is_negative:
if self.exp.is_Rational:
return False
if real_e and self.exp.is_negative:
return Pow(self.base, -self.exp).is_real
im_b = self.base.is_imaginary
im_e = self.exp.is_imaginary
if im_b:
if self.exp.is_integer:
if self.exp.is_even:
return True
elif self.exp.is_odd:
return False
elif im_e and log(self.base).is_imaginary:
return True
elif self.exp.is_Add:
c, a = self.exp.as_coeff_Add()
if c and c.is_Integer:
return Mul(
self.base**c, self.base**a, evaluate=False).is_real
elif self.base in (-S.ImaginaryUnit, S.ImaginaryUnit):
if (self.exp/2).is_integer is False:
return False
if real_b and im_e:
if self.base is S.NegativeOne:
return True
c = self.exp.coeff(S.ImaginaryUnit)
if c:
ok = (c*log(self.base)/S.Pi).is_Integer
if ok is not None:
return ok
if real_b is False: # we already know it's not imag
i = arg(self.base)*self.exp/S.Pi
return i.is_integer
def _eval_is_complex(self):
if all(a.is_complex for a in self.args):
return True
def _eval_is_imaginary(self):
from sympy import arg, log
if self.base.is_imaginary:
if self.exp.is_integer:
odd = self.exp.is_odd
if odd is not None:
return odd
return
if self.exp.is_imaginary:
imlog = log(self.base).is_imaginary
if imlog is not None:
return False # I**i -> real; (2*I)**i -> complex ==> not imaginary
if self.base.is_real and self.exp.is_real:
if self.base.is_positive:
return False
else:
rat = self.exp.is_rational
if not rat:
return rat
if self.exp.is_integer:
return False
else:
half = (2*self.exp).is_integer
if half:
return self.base.is_negative
return half
if self.base.is_real is False: # we already know it's not imag
i = arg(self.base)*self.exp/S.Pi
isodd = (2*i).is_odd
if isodd is not None:
return isodd
if self.exp.is_negative:
return (1/self).is_imaginary
def _eval_is_odd(self):
if self.exp.is_integer:
if self.exp.is_positive:
return self.base.is_odd
elif self.exp.is_nonnegative and self.base.is_odd:
return True
elif self.base is S.NegativeOne:
return True
def _eval_is_finite(self):
if self.exp.is_negative:
if self.base.is_zero:
return False
if self.base.is_infinite:
return True
c1 = self.base.is_finite
if c1 is None:
return
c2 = self.exp.is_finite
if c2 is None:
return
if c1 and c2:
if self.exp.is_nonnegative or fuzzy_not(self.base.is_zero):
return True
def _eval_is_prime(self):
'''
An integer raised to the n(>=2)-th power cannot be a prime.
'''
if self.base.is_integer and self.exp.is_integer and (self.exp - 1).is_positive:
return False
def _eval_is_composite(self):
"""
A power is composite if both base and exponent are greater than 1
"""
if (self.base.is_integer and self.exp.is_integer and
((self.base - 1).is_positive and (self.exp - 1).is_positive or
(self.base + 1).is_negative and self.exp.is_positive and self.exp.is_even)):
return True
def _eval_is_polar(self):
return self.base.is_polar
def _eval_subs(self, old, new):
from sympy import exp, log, Symbol
def _check(ct1, ct2, old):
"""Return (bool, pow, remainder_pow) where, if bool is True, then the
exponent of Pow `old` will combine with `pow` so the substitution
is valid, otherwise bool will be False.
For noncommutative objects, `pow` will be an integer, and a factor
`Pow(old.base, remainder_pow)` needs to be included. If there is
no such factor, None is returned. For commutative objects,
remainder_pow is always None.
cti are the coefficient and terms of an exponent of self or old
In this _eval_subs routine a change like (b**(2*x)).subs(b**x, y)
will give y**2 since (b**x)**2 == b**(2*x); if that equality does
not hold then the substitution should not occur so `bool` will be
False.
"""
coeff1, terms1 = ct1
coeff2, terms2 = ct2
if terms1 == terms2:
if old.is_commutative:
# Allow fractional powers for commutative objects
pow = coeff1/coeff2
try:
pow = as_int(pow, strict=False)
combines = True
except ValueError:
combines = isinstance(Pow._eval_power(
Pow(*old.as_base_exp(), evaluate=False),
pow), (Pow, exp, Symbol))
return combines, pow, None
else:
# With noncommutative symbols, substitute only integer powers
if not isinstance(terms1, tuple):
terms1 = (terms1,)
if not all(term.is_integer for term in terms1):
return False, None, None
try:
# Round pow toward zero
pow, remainder = divmod(as_int(coeff1), as_int(coeff2))
if pow < 0 and remainder != 0:
pow += 1
remainder -= as_int(coeff2)
if remainder == 0:
remainder_pow = None
else:
remainder_pow = Mul(remainder, *terms1)
return True, pow, remainder_pow
except ValueError:
# Can't substitute
pass
return False, None, None
if old == self.base:
return new**self.exp._subs(old, new)
# issue 10829: (4**x - 3*y + 2).subs(2**x, y) -> y**2 - 3*y + 2
if isinstance(old, self.func) and self.exp == old.exp:
l = log(self.base, old.base)
if l.is_Number:
return Pow(new, l)
if isinstance(old, self.func) and self.base == old.base:
if self.exp.is_Add is False:
ct1 = self.exp.as_independent(Symbol, as_Add=False)
ct2 = old.exp.as_independent(Symbol, as_Add=False)
ok, pow, remainder_pow = _check(ct1, ct2, old)
if ok:
# issue 5180: (x**(6*y)).subs(x**(3*y),z)->z**2
result = self.func(new, pow)
if remainder_pow is not None:
result = Mul(result, Pow(old.base, remainder_pow))
return result
else: # b**(6*x + a).subs(b**(3*x), y) -> y**2 * b**a
# exp(exp(x) + exp(x**2)).subs(exp(exp(x)), w) -> w * exp(exp(x**2))
oarg = old.exp
new_l = []
o_al = []
ct2 = oarg.as_coeff_mul()
for a in self.exp.args:
newa = a._subs(old, new)
ct1 = newa.as_coeff_mul()
ok, pow, remainder_pow = _check(ct1, ct2, old)
if ok:
new_l.append(new**pow)
if remainder_pow is not None:
o_al.append(remainder_pow)
continue
elif not old.is_commutative and not newa.is_integer:
# If any term in the exponent is non-integer,
# we do not do any substitutions in the noncommutative case
return
o_al.append(newa)
if new_l:
expo = Add(*o_al)
new_l.append(Pow(self.base, expo, evaluate=False) if expo != 1 else self.base)
return Mul(*new_l)
if isinstance(old, exp) and self.exp.is_real and self.base.is_positive:
ct1 = old.args[0].as_independent(Symbol, as_Add=False)
ct2 = (self.exp*log(self.base)).as_independent(
Symbol, as_Add=False)
ok, pow, remainder_pow = _check(ct1, ct2, old)
if ok:
result = self.func(new, pow) # (2**x).subs(exp(x*log(2)), z) -> z
if remainder_pow is not None:
result = Mul(result, Pow(old.base, remainder_pow))
return result
def as_base_exp(self):
"""Return base and exp of self.
If base is 1/Integer, then return Integer, -exp. If this extra
processing is not needed, the base and exp properties will
give the raw arguments
Examples
========
>>> from sympy import Pow, S
>>> p = Pow(S.Half, 2, evaluate=False)
>>> p.as_base_exp()
(2, -2)
>>> p.args
(1/2, 2)
"""
b, e = self.args
if b.is_Rational and b.p == 1 and b.q != 1:
return Integer(b.q), -e
return b, e
def _eval_adjoint(self):
from sympy.functions.elementary.complexes import adjoint
i, p = self.exp.is_integer, self.base.is_positive
if i:
return adjoint(self.base)**self.exp
if p:
return self.base**adjoint(self.exp)
if i is False and p is False:
expanded = expand_complex(self)
if expanded != self:
return adjoint(expanded)
def _eval_conjugate(self):
from sympy.functions.elementary.complexes import conjugate as c
i, p = self.exp.is_integer, self.base.is_positive
if i:
return c(self.base)**self.exp
if p:
return self.base**c(self.exp)
if i is False and p is False:
expanded = expand_complex(self)
if expanded != self:
return c(expanded)
if self.is_real:
return self
def _eval_transpose(self):
from sympy.functions.elementary.complexes import transpose
i, p = self.exp.is_integer, self.base.is_complex
if p:
return self.base**self.exp
if i:
return transpose(self.base)**self.exp
if i is False and p is False:
expanded = expand_complex(self)
if expanded != self:
return transpose(expanded)
def _eval_expand_power_exp(self, **hints):
"""a**(n + m) -> a**n*a**m"""
b = self.base
e = self.exp
if e.is_Add and e.is_commutative:
expr = []
for x in e.args:
expr.append(self.func(self.base, x))
return Mul(*expr)
return self.func(b, e)
def _eval_expand_power_base(self, **hints):
"""(a*b)**n -> a**n * b**n"""
force = hints.get('force', False)
b = self.base
e = self.exp
if not b.is_Mul:
return self
cargs, nc = b.args_cnc(split_1=False)
# expand each term - this is top-level-only
# expansion but we have to watch out for things
# that don't have an _eval_expand method
if nc:
nc = [i._eval_expand_power_base(**hints)
if hasattr(i, '_eval_expand_power_base') else i
for i in nc]
if e.is_Integer:
if e.is_positive:
rv = Mul(*nc*e)
else:
rv = Mul(*[i**-1 for i in nc[::-1]]*-e)
if cargs:
rv *= Mul(*cargs)**e
return rv
if not cargs:
return self.func(Mul(*nc), e, evaluate=False)
nc = [Mul(*nc)]
# sift the commutative bases
other, maybe_real = sift(cargs, lambda x: x.is_real is False,
binary=True)
def pred(x):
if x is S.ImaginaryUnit:
return S.ImaginaryUnit
polar = x.is_polar
if polar:
return True
if polar is None:
return fuzzy_bool(x.is_nonnegative)
sifted = sift(maybe_real, pred)
nonneg = sifted[True]
other += sifted[None]
neg = sifted[False]
imag = sifted[S.ImaginaryUnit]
if imag:
I = S.ImaginaryUnit
i = len(imag) % 4
if i == 0:
pass
elif i == 1:
other.append(I)
elif i == 2:
if neg:
nonn = -neg.pop()
if nonn is not S.One:
nonneg.append(nonn)
else:
neg.append(S.NegativeOne)
else:
if neg:
nonn = -neg.pop()
if nonn is not S.One:
nonneg.append(nonn)
else:
neg.append(S.NegativeOne)
other.append(I)
del imag
# bring out the bases that can be separated from the base
if force or e.is_integer:
# treat all commutatives the same and put nc in other
cargs = nonneg + neg + other
other = nc
else:
# this is just like what is happening automatically, except
# that now we are doing it for an arbitrary exponent for which
# no automatic expansion is done
assert not e.is_Integer
# handle negatives by making them all positive and putting
# the residual -1 in other
if len(neg) > 1:
o = S.One
if not other and neg[0].is_Number:
o *= neg.pop(0)
if len(neg) % 2:
o = -o
for n in neg:
nonneg.append(-n)
if o is not S.One:
other.append(o)
elif neg and other:
if neg[0].is_Number and neg[0] is not S.NegativeOne:
other.append(S.NegativeOne)
nonneg.append(-neg[0])
else:
other.extend(neg)
else:
other.extend(neg)
del neg
cargs = nonneg
other += nc
rv = S.One
if cargs:
rv *= Mul(*[self.func(b, e, evaluate=False) for b in cargs])
if other:
rv *= self.func(Mul(*other), e, evaluate=False)
return rv
def _eval_expand_multinomial(self, **hints):
"""(a + b + ..)**n -> a**n + n*a**(n-1)*b + .., n is nonzero integer"""
base, exp = self.args
result = self
if exp.is_Rational and exp.p > 0 and base.is_Add:
if not exp.is_Integer:
n = Integer(exp.p // exp.q)
if not n:
return result
else:
radical, result = self.func(base, exp - n), []
expanded_base_n = self.func(base, n)
if expanded_base_n.is_Pow:
expanded_base_n = \
expanded_base_n._eval_expand_multinomial()
for term in Add.make_args(expanded_base_n):
result.append(term*radical)
return Add(*result)
n = int(exp)
if base.is_commutative:
order_terms, other_terms = [], []
for b in base.args:
if b.is_Order:
order_terms.append(b)
else:
other_terms.append(b)
if order_terms:
# (f(x) + O(x^n))^m -> f(x)^m + m*f(x)^{m-1} *O(x^n)
f = Add(*other_terms)
o = Add(*order_terms)
if n == 2:
return expand_multinomial(f**n, deep=False) + n*f*o
else:
g = expand_multinomial(f**(n - 1), deep=False)
return expand_mul(f*g, deep=False) + n*g*o
if base.is_number:
# Efficiently expand expressions of the form (a + b*I)**n
# where 'a' and 'b' are real numbers and 'n' is integer.
a, b = base.as_real_imag()
if a.is_Rational and b.is_Rational:
if not a.is_Integer:
if not b.is_Integer:
k = self.func(a.q * b.q, n)
a, b = a.p*b.q, a.q*b.p
else:
k = self.func(a.q, n)
a, b = a.p, a.q*b
elif not b.is_Integer:
k = self.func(b.q, n)
a, b = a*b.q, b.p
else:
k = 1
a, b, c, d = int(a), int(b), 1, 0
while n:
if n & 1:
c, d = a*c - b*d, b*c + a*d
n -= 1
a, b = a*a - b*b, 2*a*b
n //= 2
I = S.ImaginaryUnit
if k == 1:
return c + I*d
else:
return Integer(c)/k + I*d/k
p = other_terms
# (x + y)**3 -> x**3 + 3*x**2*y + 3*x*y**2 + y**3
# in this particular example:
# p = [x,y]; n = 3
# so now it's easy to get the correct result -- we get the
# coefficients first:
from sympy import multinomial_coefficients
from sympy.polys.polyutils import basic_from_dict
expansion_dict = multinomial_coefficients(len(p), n)
# in our example: {(3, 0): 1, (1, 2): 3, (0, 3): 1, (2, 1): 3}
# and now construct the expression.
return basic_from_dict(expansion_dict, *p)
else:
if n == 2:
return Add(*[f*g for f in base.args for g in base.args])
else:
multi = (base**(n - 1))._eval_expand_multinomial()
if multi.is_Add:
return Add(*[f*g for f in base.args
for g in multi.args])
else:
# XXX can this ever happen if base was an Add?
return Add(*[f*multi for f in base.args])
elif (exp.is_Rational and exp.p < 0 and base.is_Add and
abs(exp.p) > exp.q):
return 1 / self.func(base, -exp)._eval_expand_multinomial()
elif exp.is_Add and base.is_Number:
# a + b a b
# n --> n n , where n, a, b are Numbers
coeff, tail = S.One, S.Zero
for term in exp.args:
if term.is_Number:
coeff *= self.func(base, term)
else:
tail += term
return coeff * self.func(base, tail)
else:
return result
def as_real_imag(self, deep=True, **hints):
from sympy import atan2, cos, im, re, sin
from sympy.polys.polytools import poly
if self.exp.is_Integer:
exp = self.exp
re, im = self.base.as_real_imag(deep=deep)
if not im:
return self, S.Zero
a, b = symbols('a b', cls=Dummy)
if exp >= 0:
if re.is_Number and im.is_Number:
# We can be more efficient in this case
expr = expand_multinomial(self.base**exp)
if expr != self:
return expr.as_real_imag()
expr = poly(
(a + b)**exp) # a = re, b = im; expr = (a + b*I)**exp
else:
mag = re**2 + im**2
re, im = re/mag, -im/mag
if re.is_Number and im.is_Number:
# We can be more efficient in this case
expr = expand_multinomial((re + im*S.ImaginaryUnit)**-exp)
if expr != self:
return expr.as_real_imag()
expr = poly((a + b)**-exp)
# Terms with even b powers will be real
r = [i for i in expr.terms() if not i[0][1] % 2]
re_part = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r])
# Terms with odd b powers will be imaginary
r = [i for i in expr.terms() if i[0][1] % 4 == 1]
im_part1 = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r])
r = [i for i in expr.terms() if i[0][1] % 4 == 3]
im_part3 = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r])
return (re_part.subs({a: re, b: S.ImaginaryUnit*im}),
im_part1.subs({a: re, b: im}) + im_part3.subs({a: re, b: -im}))
elif self.exp.is_Rational:
re, im = self.base.as_real_imag(deep=deep)
if im.is_zero and self.exp is S.Half:
if re.is_nonnegative:
return self, S.Zero
if re.is_nonpositive:
return S.Zero, (-self.base)**self.exp
# XXX: This is not totally correct since for x**(p/q) with
# x being imaginary there are actually q roots, but
# only a single one is returned from here.
r = self.func(self.func(re, 2) + self.func(im, 2), S.Half)
t = atan2(im, re)
rp, tp = self.func(r, self.exp), t*self.exp
return (rp*cos(tp), rp*sin(tp))
else:
if deep:
hints['complex'] = False
expanded = self.expand(deep, **hints)
if hints.get('ignore') == expanded:
return None
else:
return (re(expanded), im(expanded))
else:
return (re(self), im(self))
def _eval_derivative(self, s):
from sympy import log
dbase = self.base.diff(s)
dexp = self.exp.diff(s)
return self * (dexp * log(self.base) + dbase * self.exp/self.base)
def _eval_evalf(self, prec):
base, exp = self.as_base_exp()
base = base._evalf(prec)
if not exp.is_Integer:
exp = exp._evalf(prec)
if exp.is_negative and base.is_number and base.is_real is False:
base = base.conjugate() / (base * base.conjugate())._evalf(prec)
exp = -exp
return self.func(base, exp).expand()
return self.func(base, exp)
def _eval_is_polynomial(self, syms):
if self.exp.has(*syms):
return False
if self.base.has(*syms):
return bool(self.base._eval_is_polynomial(syms) and
self.exp.is_Integer and (self.exp >= 0))
else:
return True
def _eval_is_rational(self):
p = self.func(*self.as_base_exp()) # in case it's unevaluated
if not p.is_Pow:
return p.is_rational
b, e = p.as_base_exp()
if e.is_Rational and b.is_Rational:
# we didn't check that e is not an Integer
# because Rational**Integer autosimplifies
return False
if e.is_integer:
if b.is_rational:
if fuzzy_not(b.is_zero) or e.is_nonnegative:
return True
if b == e: # always rational, even for 0**0
return True
elif b.is_irrational:
return e.is_zero
def _eval_is_algebraic(self):
def _is_one(expr):
try:
return (expr - 1).is_zero
except ValueError:
# when the operation is not allowed
return False
if self.base.is_zero or _is_one(self.base):
return True
elif self.exp.is_rational:
if self.base.is_algebraic is False:
return self.exp.is_zero
return self.base.is_algebraic
elif self.base.is_algebraic and self.exp.is_algebraic:
if ((fuzzy_not(self.base.is_zero)
and fuzzy_not(_is_one(self.base)))
or self.base.is_integer is False
or self.base.is_irrational):
return self.exp.is_rational
def _eval_is_rational_function(self, syms):
if self.exp.has(*syms):
return False
if self.base.has(*syms):
return self.base._eval_is_rational_function(syms) and \
self.exp.is_Integer
else:
return True
def _eval_is_algebraic_expr(self, syms):
if self.exp.has(*syms):
return False
if self.base.has(*syms):
return self.base._eval_is_algebraic_expr(syms) and \
self.exp.is_Rational
else:
return True
def _eval_rewrite_as_exp(self, base, expo, **kwargs):
from sympy import exp, log, I, arg
if base.is_zero or base.has(exp) or expo.has(exp):
return base**expo
if base.has(Symbol):
# delay evaluation if expo is non symbolic
# (as exp(x*log(5)) automatically reduces to x**5)
return exp(log(base)*expo, evaluate=expo.has(Symbol))
else:
return exp((log(abs(base)) + I*arg(base))*expo)
def as_numer_denom(self):
if not self.is_commutative:
return self, S.One
base, exp = self.as_base_exp()
n, d = base.as_numer_denom()
# this should be the same as ExpBase.as_numer_denom wrt
# exponent handling
neg_exp = exp.is_negative
if not neg_exp and not (-exp).is_negative:
neg_exp = _coeff_isneg(exp)
int_exp = exp.is_integer
# the denominator cannot be separated from the numerator if
# its sign is unknown unless the exponent is an integer, e.g.
# sqrt(a/b) != sqrt(a)/sqrt(b) when a=1 and b=-1. But if the
# denominator is negative the numerator and denominator can
# be negated and the denominator (now positive) separated.
if not (d.is_real or int_exp):
n = base
d = S.One
dnonpos = d.is_nonpositive
if dnonpos:
n, d = -n, -d
elif dnonpos is None and not int_exp:
n = base
d = S.One
if neg_exp:
n, d = d, n
exp = -exp
if exp.is_infinite:
if n is S.One and d is not S.One:
return n, self.func(d, exp)
if n is not S.One and d is S.One:
return self.func(n, exp), d
return self.func(n, exp), self.func(d, exp)
def matches(self, expr, repl_dict={}, old=False):
expr = _sympify(expr)
# special case, pattern = 1 and expr.exp can match to 0
if expr is S.One:
d = repl_dict.copy()
d = self.exp.matches(S.Zero, d)
if d is not None:
return d
# make sure the expression to be matched is an Expr
if not isinstance(expr, Expr):
return None
b, e = expr.as_base_exp()
# special case number
sb, se = self.as_base_exp()
if sb.is_Symbol and se.is_Integer and expr:
if e.is_rational:
return sb.matches(b**(e/se), repl_dict)
return sb.matches(expr**(1/se), repl_dict)
d = repl_dict.copy()
d = self.base.matches(b, d)
if d is None:
return None
d = self.exp.xreplace(d).matches(e, d)
if d is None:
return Expr.matches(self, expr, repl_dict)
return d
def _eval_nseries(self, x, n, logx):
# NOTE! This function is an important part of the gruntz algorithm
# for computing limits. It has to return a generalized power
# series with coefficients in C(log, log(x)). In more detail:
# It has to return an expression
# c_0*x**e_0 + c_1*x**e_1 + ... (finitely many terms)
# where e_i are numbers (not necessarily integers) and c_i are
# expressions involving only numbers, the log function, and log(x).
from sympy import ceiling, collect, exp, log, O, Order, powsimp
b, e = self.args
if e.is_Integer:
if e > 0:
# positive integer powers are easy to expand, e.g.:
# sin(x)**4 = (x - x**3/3 + ...)**4 = ...
return expand_multinomial(self.func(b._eval_nseries(x, n=n,
logx=logx), e), deep=False)
elif e is S.NegativeOne:
# this is also easy to expand using the formula:
# 1/(1 + x) = 1 - x + x**2 - x**3 ...
# so we need to rewrite base to the form "1 + x"
nuse = n
cf = 1
try:
ord = b.as_leading_term(x)
cf = Order(ord, x).getn()
if cf and cf.is_Number:
nuse = n + 2*ceiling(cf)
else:
cf = 1
except NotImplementedError:
pass
b_orig, prefactor = b, O(1, x)
while prefactor.is_Order:
nuse += 1
b = b_orig._eval_nseries(x, n=nuse, logx=logx)
prefactor = b.as_leading_term(x)
# express "rest" as: rest = 1 + k*x**l + ... + O(x**n)
rest = expand_mul((b - prefactor)/prefactor)
if rest.is_Order:
return 1/prefactor + rest/prefactor + O(x**n, x)
k, l = rest.leadterm(x)
if l.is_Rational and l > 0:
pass
elif l.is_number and l > 0:
l = l.evalf()
elif l == 0:
k = k.simplify()
if k == 0:
# if prefactor == w**4 + x**2*w**4 + 2*x*w**4, we need to
# factor the w**4 out using collect:
return 1/collect(prefactor, x)
else:
raise NotImplementedError()
else:
raise NotImplementedError()
if cf < 0:
cf = S.One/abs(cf)
try:
dn = Order(1/prefactor, x).getn()
if dn and dn < 0:
pass
else:
dn = 0
except NotImplementedError:
dn = 0
terms = [1/prefactor]
for m in range(1, ceiling((n - dn + 1)/l*cf)):
new_term = terms[-1]*(-rest)
if new_term.is_Pow:
new_term = new_term._eval_expand_multinomial(
deep=False)
else:
new_term = expand_mul(new_term, deep=False)
terms.append(new_term)
terms.append(O(x**n, x))
return powsimp(Add(*terms), deep=True, combine='exp')
else:
# negative powers are rewritten to the cases above, for
# example:
# sin(x)**(-4) = 1/(sin(x)**4) = ...
# and expand the denominator:
nuse, denominator = n, O(1, x)
while denominator.is_Order:
denominator = (b**(-e))._eval_nseries(x, n=nuse, logx=logx)
nuse += 1
if 1/denominator == self:
return self
# now we have a type 1/f(x), that we know how to expand
return (1/denominator)._eval_nseries(x, n=n, logx=logx)
if e.has(Symbol):
return exp(e*log(b))._eval_nseries(x, n=n, logx=logx)
# see if the base is as simple as possible
bx = b
while bx.is_Pow and bx.exp.is_Rational:
bx = bx.base
if bx == x:
return self
# work for b(x)**e where e is not an Integer and does not contain x
# and hopefully has no other symbols
def e2int(e):
"""return the integer value (if possible) of e and a
flag indicating whether it is bounded or not."""
n = e.limit(x, 0)
infinite = n.is_infinite
if not infinite:
# XXX was int or floor intended? int used to behave like floor
# so int(-Rational(1, 2)) returned -1 rather than int's 0
try:
n = int(n)
except TypeError:
# well, the n is something more complicated (like 1 + log(2))
try:
n = int(n.evalf()) + 1 # XXX why is 1 being added?
except TypeError:
pass # hope that base allows this to be resolved
n = _sympify(n)
return n, infinite
order = O(x**n, x)
ei, infinite = e2int(e)
b0 = b.limit(x, 0)
if infinite and (b0 is S.One or b0.has(Symbol)):
# XXX what order
if b0 is S.One:
resid = (b - 1)
if resid.is_positive:
return S.Infinity
elif resid.is_negative:
return S.Zero
raise ValueError('cannot determine sign of %s' % resid)
return b0**ei
if (b0 is S.Zero or b0.is_infinite):
if infinite is not False:
return b0**e # XXX what order
if not ei.is_number: # if not, how will we proceed?
raise ValueError(
'expecting numerical exponent but got %s' % ei)
nuse = n - ei
if e.is_real and e.is_positive:
lt = b.as_leading_term(x)
# Try to correct nuse (= m) guess from:
# (lt + rest + O(x**m))**e =
# lt**e*(1 + rest/lt + O(x**m)/lt)**e =
# lt**e + ... + O(x**m)*lt**(e - 1) = ... + O(x**n)
try:
cf = Order(lt, x).getn()
nuse = ceiling(n - cf*(e - 1))
except NotImplementedError:
pass
bs = b._eval_nseries(x, n=nuse, logx=logx)
terms = bs.removeO()
if terms.is_Add:
bs = terms
lt = terms.as_leading_term(x)
# bs -> lt + rest -> lt*(1 + (bs/lt - 1))
return ((self.func(lt, e) * self.func((bs/lt).expand(), e).nseries(
x, n=nuse, logx=logx)).expand() + order)
if bs.is_Add:
from sympy import O
# So, bs + O() == terms
c = Dummy('c')
res = []
for arg in bs.args:
if arg.is_Order:
arg = c*arg.expr
res.append(arg)
bs = Add(*res)
rv = (bs**e).series(x).subs(c, O(1, x))
rv += order
return rv
rv = bs**e
if terms != bs:
rv += order
return rv
# either b0 is bounded but neither 1 nor 0 or e is infinite
# b -> b0 + (b - b0) -> b0 * (1 + (b/b0 - 1))
o2 = order*(b0**-e)
z = (b/b0 - 1)
o = O(z, x)
if o is S.Zero or o2 is S.Zero:
infinite = True
else:
if o.expr.is_number:
e2 = log(o2.expr*x)/log(x)
else:
e2 = log(o2.expr)/log(o.expr)
n, infinite = e2int(e2)
if infinite:
# requested accuracy gives infinite series,
# order is probably non-polynomial e.g. O(exp(-1/x), x).
r = 1 + z
else:
l = []
g = None
for i in range(n + 2):
g = self._taylor_term(i, z, g)
g = g.nseries(x, n=n, logx=logx)
l.append(g)
r = Add(*l)
return expand_mul(r*b0**e) + order
def _eval_as_leading_term(self, x):
from sympy import exp, log
if not self.exp.has(x):
return self.func(self.base.as_leading_term(x), self.exp)
return exp(self.exp * log(self.base)).as_leading_term(x)
@cacheit
def _taylor_term(self, n, x, *previous_terms): # of (1 + x)**e
from sympy import binomial
return binomial(self.exp, n) * self.func(x, n)
def _sage_(self):
return self.args[0]._sage_()**self.args[1]._sage_()
def as_content_primitive(self, radical=False, clear=True):
"""Return the tuple (R, self/R) where R is the positive Rational
extracted from self.
Examples
========
>>> from sympy import sqrt
>>> sqrt(4 + 4*sqrt(2)).as_content_primitive()
(2, sqrt(1 + sqrt(2)))
>>> sqrt(3 + 3*sqrt(2)).as_content_primitive()
(1, sqrt(3)*sqrt(1 + sqrt(2)))
>>> from sympy import expand_power_base, powsimp, Mul
>>> from sympy.abc import x, y
>>> ((2*x + 2)**2).as_content_primitive()
(4, (x + 1)**2)
>>> (4**((1 + y)/2)).as_content_primitive()
(2, 4**(y/2))
>>> (3**((1 + y)/2)).as_content_primitive()
(1, 3**((y + 1)/2))
>>> (3**((5 + y)/2)).as_content_primitive()
(9, 3**((y + 1)/2))
>>> eq = 3**(2 + 2*x)
>>> powsimp(eq) == eq
True
>>> eq.as_content_primitive()
(9, 3**(2*x))
>>> powsimp(Mul(*_))
3**(2*x + 2)
>>> eq = (2 + 2*x)**y
>>> s = expand_power_base(eq); s.is_Mul, s
(False, (2*x + 2)**y)
>>> eq.as_content_primitive()
(1, (2*(x + 1))**y)
>>> s = expand_power_base(_[1]); s.is_Mul, s
(True, 2**y*(x + 1)**y)
See docstring of Expr.as_content_primitive for more examples.
"""
b, e = self.as_base_exp()
b = _keep_coeff(*b.as_content_primitive(radical=radical, clear=clear))
ce, pe = e.as_content_primitive(radical=radical, clear=clear)
if b.is_Rational:
#e
#= ce*pe
#= ce*(h + t)
#= ce*h + ce*t
#=> self
#= b**(ce*h)*b**(ce*t)
#= b**(cehp/cehq)*b**(ce*t)
#= b**(iceh + r/cehq)*b**(ce*t)
#= b**(iceh)*b**(r/cehq)*b**(ce*t)
#= b**(iceh)*b**(ce*t + r/cehq)
h, t = pe.as_coeff_Add()
if h.is_Rational:
ceh = ce*h
c = self.func(b, ceh)
r = S.Zero
if not c.is_Rational:
iceh, r = divmod(ceh.p, ceh.q)
c = self.func(b, iceh)
return c, self.func(b, _keep_coeff(ce, t + r/ce/ceh.q))
e = _keep_coeff(ce, pe)
# b**e = (h*t)**e = h**e*t**e = c*m*t**e
if e.is_Rational and b.is_Mul:
h, t = b.as_content_primitive(radical=radical, clear=clear) # h is positive
c, m = self.func(h, e).as_coeff_Mul() # so c is positive
m, me = m.as_base_exp()
if m is S.One or me == e: # probably always true
# return the following, not return c, m*Pow(t, e)
# which would change Pow into Mul; we let sympy
# decide what to do by using the unevaluated Mul, e.g
# should it stay as sqrt(2 + 2*sqrt(5)) or become
# sqrt(2)*sqrt(1 + sqrt(5))
return c, self.func(_keep_coeff(m, t), e)
return S.One, self.func(b, e)
def is_constant(self, *wrt, **flags):
expr = self
if flags.get('simplify', True):
expr = expr.simplify()
b, e = expr.as_base_exp()
bz = b.equals(0)
if bz: # recalculate with assumptions in case it's unevaluated
new = b**e
if new != expr:
return new.is_constant()
econ = e.is_constant(*wrt)
bcon = b.is_constant(*wrt)
if bcon:
if econ:
return True
bz = b.equals(0)
if bz is False:
return False
elif bcon is None:
return None
return e.equals(0)
def _eval_difference_delta(self, n, step):
b, e = self.args
if e.has(n) and not b.has(n):
new_e = e.subs(n, n + step)
return (b**(new_e - e) - 1) * self
from .add import Add
from .numbers import Integer
from .mul import Mul, _keep_coeff
from .symbol import Symbol, Dummy, symbols
|
225c84cc35a3f412d1c6c0da69ff0d44924eb1289c2b0861455d16a3fd477f23
|
"""Tools for manipulating of large commutative expressions. """
from __future__ import print_function, division
from sympy.core.add import Add
from sympy.core.compatibility import iterable, is_sequence, SYMPY_INTS, range
from sympy.core.mul import Mul, _keep_coeff
from sympy.core.power import Pow
from sympy.core.basic import Basic, preorder_traversal
from sympy.core.expr import Expr
from sympy.core.sympify import sympify
from sympy.core.numbers import Rational, Integer, Number, I
from sympy.core.singleton import S
from sympy.core.symbol import Dummy
from sympy.core.coreerrors import NonCommutativeExpression
from sympy.core.containers import Tuple, Dict
from sympy.utilities import default_sort_key
from sympy.utilities.iterables import (common_prefix, common_suffix,
variations, ordered)
from collections import defaultdict
_eps = Dummy(positive=True)
def _isnumber(i):
return isinstance(i, (SYMPY_INTS, float)) or i.is_Number
def _monotonic_sign(self):
"""Return the value closest to 0 that ``self`` may have if all symbols
are signed and the result is uniformly the same sign for all values of symbols.
If a symbol is only signed but not known to be an
integer or the result is 0 then a symbol representative of the sign of self
will be returned. Otherwise, None is returned if a) the sign could be positive
or negative or b) self is not in one of the following forms:
- L(x, y, ...) + A: a function linear in all symbols x, y, ... with an
additive constant; if A is zero then the function can be a monomial whose
sign is monotonic over the range of the variables, e.g. (x + 1)**3 if x is
nonnegative.
- A/L(x, y, ...) + B: the inverse of a function linear in all symbols x, y, ...
that does not have a sign change from positive to negative for any set
of values for the variables.
- M(x, y, ...) + A: a monomial M whose factors are all signed and a constant, A.
- A/M(x, y, ...) + B: the inverse of a monomial and constants A and B.
- P(x): a univariate polynomial
Examples
========
>>> from sympy.core.exprtools import _monotonic_sign as F
>>> from sympy import Dummy, S
>>> nn = Dummy(integer=True, nonnegative=True)
>>> p = Dummy(integer=True, positive=True)
>>> p2 = Dummy(integer=True, positive=True)
>>> F(nn + 1)
1
>>> F(p - 1)
_nneg
>>> F(nn*p + 1)
1
>>> F(p2*p + 1)
2
>>> F(nn - 1) # could be negative, zero or positive
"""
if not self.is_real:
return
if (-self).is_Symbol:
rv = _monotonic_sign(-self)
return rv if rv is None else -rv
if not self.is_Add and self.as_numer_denom()[1].is_number:
s = self
if s.is_prime:
if s.is_odd:
return S(3)
else:
return S(2)
elif s.is_composite:
if s.is_odd:
return S(9)
else:
return S(4)
elif s.is_positive:
if s.is_even:
if s.is_prime is False:
return S(4)
else:
return S(2)
elif s.is_integer:
return S.One
else:
return _eps
elif s.is_negative:
if s.is_even:
return S(-2)
elif s.is_integer:
return S.NegativeOne
else:
return -_eps
if s.is_zero or s.is_nonpositive or s.is_nonnegative:
return S.Zero
return None
# univariate polynomial
free = self.free_symbols
if len(free) == 1:
if self.is_polynomial():
from sympy.polys.polytools import real_roots
from sympy.polys.polyroots import roots
from sympy.polys.polyerrors import PolynomialError
x = free.pop()
x0 = _monotonic_sign(x)
if x0 == _eps or x0 == -_eps:
x0 = S.Zero
if x0 is not None:
d = self.diff(x)
if d.is_number:
currentroots = []
else:
try:
currentroots = real_roots(d)
except (PolynomialError, NotImplementedError):
currentroots = [r for r in roots(d, x) if r.is_real]
y = self.subs(x, x0)
if x.is_nonnegative and all(r <= x0 for r in currentroots):
if y.is_nonnegative and d.is_positive:
if y:
return y if y.is_positive else Dummy('pos', positive=True)
else:
return Dummy('nneg', nonnegative=True)
if y.is_nonpositive and d.is_negative:
if y:
return y if y.is_negative else Dummy('neg', negative=True)
else:
return Dummy('npos', nonpositive=True)
elif x.is_nonpositive and all(r >= x0 for r in currentroots):
if y.is_nonnegative and d.is_negative:
if y:
return Dummy('pos', positive=True)
else:
return Dummy('nneg', nonnegative=True)
if y.is_nonpositive and d.is_positive:
if y:
return Dummy('neg', negative=True)
else:
return Dummy('npos', nonpositive=True)
else:
n, d = self.as_numer_denom()
den = None
if n.is_number:
den = _monotonic_sign(d)
elif not d.is_number:
if _monotonic_sign(n) is not None:
den = _monotonic_sign(d)
if den is not None and (den.is_positive or den.is_negative):
v = n*den
if v.is_positive:
return Dummy('pos', positive=True)
elif v.is_nonnegative:
return Dummy('nneg', nonnegative=True)
elif v.is_negative:
return Dummy('neg', negative=True)
elif v.is_nonpositive:
return Dummy('npos', nonpositive=True)
return None
# multivariate
c, a = self.as_coeff_Add()
v = None
if not a.is_polynomial():
# F/A or A/F where A is a number and F is a signed, rational monomial
n, d = a.as_numer_denom()
if not (n.is_number or d.is_number):
return
if (
a.is_Mul or a.is_Pow) and \
a.is_rational and \
all(p.exp.is_Integer for p in a.atoms(Pow) if p.is_Pow) and \
(a.is_positive or a.is_negative):
v = S(1)
for ai in Mul.make_args(a):
if ai.is_number:
v *= ai
continue
reps = {}
for x in ai.free_symbols:
reps[x] = _monotonic_sign(x)
if reps[x] is None:
return
v *= ai.subs(reps)
elif c:
# signed linear expression
if not any(p for p in a.atoms(Pow) if not p.is_number) and (a.is_nonpositive or a.is_nonnegative):
free = list(a.free_symbols)
p = {}
for i in free:
v = _monotonic_sign(i)
if v is None:
return
p[i] = v or (_eps if i.is_nonnegative else -_eps)
v = a.xreplace(p)
if v is not None:
rv = v + c
if v.is_nonnegative and rv.is_positive:
return rv.subs(_eps, 0)
if v.is_nonpositive and rv.is_negative:
return rv.subs(_eps, 0)
def decompose_power(expr):
"""
Decompose power into symbolic base and integer exponent.
This is strictly only valid if the exponent from which
the integer is extracted is itself an integer or the
base is positive. These conditions are assumed and not
checked here.
Examples
========
>>> from sympy.core.exprtools import decompose_power
>>> from sympy.abc import x, y
>>> decompose_power(x)
(x, 1)
>>> decompose_power(x**2)
(x, 2)
>>> decompose_power(x**(2*y))
(x**y, 2)
>>> decompose_power(x**(2*y/3))
(x**(y/3), 2)
"""
base, exp = expr.as_base_exp()
if exp.is_Number:
if exp.is_Rational:
if not exp.is_Integer:
base = Pow(base, Rational(1, exp.q))
exp = exp.p
else:
base, exp = expr, 1
else:
exp, tail = exp.as_coeff_Mul(rational=True)
if exp is S.NegativeOne:
base, exp = Pow(base, tail), -1
elif exp is not S.One:
tail = _keep_coeff(Rational(1, exp.q), tail)
base, exp = Pow(base, tail), exp.p
else:
base, exp = expr, 1
return base, exp
def decompose_power_rat(expr):
"""
Decompose power into symbolic base and rational exponent.
"""
base, exp = expr.as_base_exp()
if exp.is_Number:
if not exp.is_Rational:
base, exp = expr, 1
else:
exp, tail = exp.as_coeff_Mul(rational=True)
if exp is S.NegativeOne:
base, exp = Pow(base, tail), -1
elif exp is not S.One:
tail = _keep_coeff(Rational(1, exp.q), tail)
base, exp = Pow(base, tail), exp.p
else:
base, exp = expr, 1
return base, exp
class Factors(object):
"""Efficient representation of ``f_1*f_2*...*f_n``."""
__slots__ = ['factors', 'gens']
def __init__(self, factors=None): # Factors
"""Initialize Factors from dict or expr.
Examples
========
>>> from sympy.core.exprtools import Factors
>>> from sympy.abc import x
>>> from sympy import I
>>> e = 2*x**3
>>> Factors(e)
Factors({2: 1, x: 3})
>>> Factors(e.as_powers_dict())
Factors({2: 1, x: 3})
>>> f = _
>>> f.factors # underlying dictionary
{2: 1, x: 3}
>>> f.gens # base of each factor
frozenset({2, x})
>>> Factors(0)
Factors({0: 1})
>>> Factors(I)
Factors({I: 1})
Notes
=====
Although a dictionary can be passed, only minimal checking is
performed: powers of -1 and I are made canonical.
"""
if isinstance(factors, (SYMPY_INTS, float)):
factors = S(factors)
if isinstance(factors, Factors):
factors = factors.factors.copy()
elif factors is None or factors is S.One:
factors = {}
elif factors is S.Zero or factors == 0:
factors = {S.Zero: S.One}
elif isinstance(factors, Number):
n = factors
factors = {}
if n < 0:
factors[S.NegativeOne] = S.One
n = -n
if n is not S.One:
if n.is_Float or n.is_Integer or n is S.Infinity:
factors[n] = S.One
elif n.is_Rational:
# since we're processing Numbers, the denominator is
# stored with a negative exponent; all other factors
# are left .
if n.p != 1:
factors[Integer(n.p)] = S.One
factors[Integer(n.q)] = S.NegativeOne
else:
raise ValueError('Expected Float|Rational|Integer, not %s' % n)
elif isinstance(factors, Basic) and not factors.args:
factors = {factors: S.One}
elif isinstance(factors, Expr):
c, nc = factors.args_cnc()
i = c.count(I)
for _ in range(i):
c.remove(I)
factors = dict(Mul._from_args(c).as_powers_dict())
if i:
factors[I] = S.One*i
if nc:
factors[Mul(*nc, evaluate=False)] = S.One
else:
factors = factors.copy() # /!\ should be dict-like
# tidy up -/+1 and I exponents if Rational
handle = []
for k in factors:
if k is I or k in (-1, 1):
handle.append(k)
if handle:
i1 = S.One
for k in handle:
if not _isnumber(factors[k]):
continue
i1 *= k**factors.pop(k)
if i1 is not S.One:
for a in i1.args if i1.is_Mul else [i1]: # at worst, -1.0*I*(-1)**e
if a is S.NegativeOne:
factors[a] = S.One
elif a is I:
factors[I] = S.One
elif a.is_Pow:
if S.NegativeOne not in factors:
factors[S.NegativeOne] = S.Zero
factors[S.NegativeOne] += a.exp
elif a == 1:
factors[a] = S.One
elif a == -1:
factors[-a] = S.One
factors[S.NegativeOne] = S.One
else:
raise ValueError('unexpected factor in i1: %s' % a)
self.factors = factors
keys = getattr(factors, 'keys', None)
if keys is None:
raise TypeError('expecting Expr or dictionary')
self.gens = frozenset(keys())
def __hash__(self): # Factors
keys = tuple(ordered(self.factors.keys()))
values = [self.factors[k] for k in keys]
return hash((keys, values))
def __repr__(self): # Factors
return "Factors({%s})" % ', '.join(
['%s: %s' % (k, v) for k, v in ordered(self.factors.items())])
@property
def is_zero(self): # Factors
"""
>>> from sympy.core.exprtools import Factors
>>> Factors(0).is_zero
True
"""
f = self.factors
return len(f) == 1 and S.Zero in f
@property
def is_one(self): # Factors
"""
>>> from sympy.core.exprtools import Factors
>>> Factors(1).is_one
True
"""
return not self.factors
def as_expr(self): # Factors
"""Return the underlying expression.
Examples
========
>>> from sympy.core.exprtools import Factors
>>> from sympy.abc import x, y
>>> Factors((x*y**2).as_powers_dict()).as_expr()
x*y**2
"""
args = []
for factor, exp in self.factors.items():
if exp != 1:
b, e = factor.as_base_exp()
if isinstance(exp, int):
e = _keep_coeff(Integer(exp), e)
elif isinstance(exp, Rational):
e = _keep_coeff(exp, e)
else:
e *= exp
args.append(b**e)
else:
args.append(factor)
return Mul(*args)
def mul(self, other): # Factors
"""Return Factors of ``self * other``.
Examples
========
>>> from sympy.core.exprtools import Factors
>>> from sympy.abc import x, y, z
>>> a = Factors((x*y**2).as_powers_dict())
>>> b = Factors((x*y/z).as_powers_dict())
>>> a.mul(b)
Factors({x: 2, y: 3, z: -1})
>>> a*b
Factors({x: 2, y: 3, z: -1})
"""
if not isinstance(other, Factors):
other = Factors(other)
if any(f.is_zero for f in (self, other)):
return Factors(S.Zero)
factors = dict(self.factors)
for factor, exp in other.factors.items():
if factor in factors:
exp = factors[factor] + exp
if not exp:
del factors[factor]
continue
factors[factor] = exp
return Factors(factors)
def normal(self, other):
"""Return ``self`` and ``other`` with ``gcd`` removed from each.
The only differences between this and method ``div`` is that this
is 1) optimized for the case when there are few factors in common and
2) this does not raise an error if ``other`` is zero.
See Also
========
div
"""
if not isinstance(other, Factors):
other = Factors(other)
if other.is_zero:
return (Factors(), Factors(S.Zero))
if self.is_zero:
return (Factors(S.Zero), Factors())
self_factors = dict(self.factors)
other_factors = dict(other.factors)
for factor, self_exp in self.factors.items():
try:
other_exp = other.factors[factor]
except KeyError:
continue
exp = self_exp - other_exp
if not exp:
del self_factors[factor]
del other_factors[factor]
elif _isnumber(exp):
if exp > 0:
self_factors[factor] = exp
del other_factors[factor]
else:
del self_factors[factor]
other_factors[factor] = -exp
else:
r = self_exp.extract_additively(other_exp)
if r is not None:
if r:
self_factors[factor] = r
del other_factors[factor]
else: # should be handled already
del self_factors[factor]
del other_factors[factor]
else:
sc, sa = self_exp.as_coeff_Add()
if sc:
oc, oa = other_exp.as_coeff_Add()
diff = sc - oc
if diff > 0:
self_factors[factor] -= oc
other_exp = oa
elif diff < 0:
self_factors[factor] -= sc
other_factors[factor] -= sc
other_exp = oa - diff
else:
self_factors[factor] = sa
other_exp = oa
if other_exp:
other_factors[factor] = other_exp
else:
del other_factors[factor]
return Factors(self_factors), Factors(other_factors)
def div(self, other): # Factors
"""Return ``self`` and ``other`` with ``gcd`` removed from each.
This is optimized for the case when there are many factors in common.
Examples
========
>>> from sympy.core.exprtools import Factors
>>> from sympy.abc import x, y, z
>>> from sympy import S
>>> a = Factors((x*y**2).as_powers_dict())
>>> a.div(a)
(Factors({}), Factors({}))
>>> a.div(x*z)
(Factors({y: 2}), Factors({z: 1}))
The ``/`` operator only gives ``quo``:
>>> a/x
Factors({y: 2})
Factors treats its factors as though they are all in the numerator, so
if you violate this assumption the results will be correct but will
not strictly correspond to the numerator and denominator of the ratio:
>>> a.div(x/z)
(Factors({y: 2}), Factors({z: -1}))
Factors is also naive about bases: it does not attempt any denesting
of Rational-base terms, for example the following does not become
2**(2*x)/2.
>>> Factors(2**(2*x + 2)).div(S(8))
(Factors({2: 2*x + 2}), Factors({8: 1}))
factor_terms can clean up such Rational-bases powers:
>>> from sympy.core.exprtools import factor_terms
>>> n, d = Factors(2**(2*x + 2)).div(S(8))
>>> n.as_expr()/d.as_expr()
2**(2*x + 2)/8
>>> factor_terms(_)
2**(2*x)/2
"""
quo, rem = dict(self.factors), {}
if not isinstance(other, Factors):
other = Factors(other)
if other.is_zero:
raise ZeroDivisionError
if self.is_zero:
return (Factors(S.Zero), Factors())
for factor, exp in other.factors.items():
if factor in quo:
d = quo[factor] - exp
if _isnumber(d):
if d <= 0:
del quo[factor]
if d >= 0:
if d:
quo[factor] = d
continue
exp = -d
else:
r = quo[factor].extract_additively(exp)
if r is not None:
if r:
quo[factor] = r
else: # should be handled already
del quo[factor]
else:
other_exp = exp
sc, sa = quo[factor].as_coeff_Add()
if sc:
oc, oa = other_exp.as_coeff_Add()
diff = sc - oc
if diff > 0:
quo[factor] -= oc
other_exp = oa
elif diff < 0:
quo[factor] -= sc
other_exp = oa - diff
else:
quo[factor] = sa
other_exp = oa
if other_exp:
rem[factor] = other_exp
else:
assert factor not in rem
continue
rem[factor] = exp
return Factors(quo), Factors(rem)
def quo(self, other): # Factors
"""Return numerator Factor of ``self / other``.
Examples
========
>>> from sympy.core.exprtools import Factors
>>> from sympy.abc import x, y, z
>>> a = Factors((x*y**2).as_powers_dict())
>>> b = Factors((x*y/z).as_powers_dict())
>>> a.quo(b) # same as a/b
Factors({y: 1})
"""
return self.div(other)[0]
def rem(self, other): # Factors
"""Return denominator Factors of ``self / other``.
Examples
========
>>> from sympy.core.exprtools import Factors
>>> from sympy.abc import x, y, z
>>> a = Factors((x*y**2).as_powers_dict())
>>> b = Factors((x*y/z).as_powers_dict())
>>> a.rem(b)
Factors({z: -1})
>>> a.rem(a)
Factors({})
"""
return self.div(other)[1]
def pow(self, other): # Factors
"""Return self raised to a non-negative integer power.
Examples
========
>>> from sympy.core.exprtools import Factors
>>> from sympy.abc import x, y
>>> a = Factors((x*y**2).as_powers_dict())
>>> a**2
Factors({x: 2, y: 4})
"""
if isinstance(other, Factors):
other = other.as_expr()
if other.is_Integer:
other = int(other)
if isinstance(other, SYMPY_INTS) and other >= 0:
factors = {}
if other:
for factor, exp in self.factors.items():
factors[factor] = exp*other
return Factors(factors)
else:
raise ValueError("expected non-negative integer, got %s" % other)
def gcd(self, other): # Factors
"""Return Factors of ``gcd(self, other)``. The keys are
the intersection of factors with the minimum exponent for
each factor.
Examples
========
>>> from sympy.core.exprtools import Factors
>>> from sympy.abc import x, y, z
>>> a = Factors((x*y**2).as_powers_dict())
>>> b = Factors((x*y/z).as_powers_dict())
>>> a.gcd(b)
Factors({x: 1, y: 1})
"""
if not isinstance(other, Factors):
other = Factors(other)
if other.is_zero:
return Factors(self.factors)
factors = {}
for factor, exp in self.factors.items():
factor, exp = sympify(factor), sympify(exp)
if factor in other.factors:
lt = (exp - other.factors[factor]).is_negative
if lt == True:
factors[factor] = exp
elif lt == False:
factors[factor] = other.factors[factor]
return Factors(factors)
def lcm(self, other): # Factors
"""Return Factors of ``lcm(self, other)`` which are
the union of factors with the maximum exponent for
each factor.
Examples
========
>>> from sympy.core.exprtools import Factors
>>> from sympy.abc import x, y, z
>>> a = Factors((x*y**2).as_powers_dict())
>>> b = Factors((x*y/z).as_powers_dict())
>>> a.lcm(b)
Factors({x: 1, y: 2, z: -1})
"""
if not isinstance(other, Factors):
other = Factors(other)
if any(f.is_zero for f in (self, other)):
return Factors(S.Zero)
factors = dict(self.factors)
for factor, exp in other.factors.items():
if factor in factors:
exp = max(exp, factors[factor])
factors[factor] = exp
return Factors(factors)
def __mul__(self, other): # Factors
return self.mul(other)
def __divmod__(self, other): # Factors
return self.div(other)
def __div__(self, other): # Factors
return self.quo(other)
__truediv__ = __div__
def __mod__(self, other): # Factors
return self.rem(other)
def __pow__(self, other): # Factors
return self.pow(other)
def __eq__(self, other): # Factors
if not isinstance(other, Factors):
other = Factors(other)
return self.factors == other.factors
def __ne__(self, other): # Factors
return not self == other
class Term(object):
"""Efficient representation of ``coeff*(numer/denom)``. """
__slots__ = ['coeff', 'numer', 'denom']
def __init__(self, term, numer=None, denom=None): # Term
if numer is None and denom is None:
if not term.is_commutative:
raise NonCommutativeExpression(
'commutative expression expected')
coeff, factors = term.as_coeff_mul()
numer, denom = defaultdict(int), defaultdict(int)
for factor in factors:
base, exp = decompose_power(factor)
if base.is_Add:
cont, base = base.primitive()
coeff *= cont**exp
if exp > 0:
numer[base] += exp
else:
denom[base] += -exp
numer = Factors(numer)
denom = Factors(denom)
else:
coeff = term
if numer is None:
numer = Factors()
if denom is None:
denom = Factors()
self.coeff = coeff
self.numer = numer
self.denom = denom
def __hash__(self): # Term
return hash((self.coeff, self.numer, self.denom))
def __repr__(self): # Term
return "Term(%s, %s, %s)" % (self.coeff, self.numer, self.denom)
def as_expr(self): # Term
return self.coeff*(self.numer.as_expr()/self.denom.as_expr())
def mul(self, other): # Term
coeff = self.coeff*other.coeff
numer = self.numer.mul(other.numer)
denom = self.denom.mul(other.denom)
numer, denom = numer.normal(denom)
return Term(coeff, numer, denom)
def inv(self): # Term
return Term(1/self.coeff, self.denom, self.numer)
def quo(self, other): # Term
return self.mul(other.inv())
def pow(self, other): # Term
if other < 0:
return self.inv().pow(-other)
else:
return Term(self.coeff ** other,
self.numer.pow(other),
self.denom.pow(other))
def gcd(self, other): # Term
return Term(self.coeff.gcd(other.coeff),
self.numer.gcd(other.numer),
self.denom.gcd(other.denom))
def lcm(self, other): # Term
return Term(self.coeff.lcm(other.coeff),
self.numer.lcm(other.numer),
self.denom.lcm(other.denom))
def __mul__(self, other): # Term
if isinstance(other, Term):
return self.mul(other)
else:
return NotImplemented
def __div__(self, other): # Term
if isinstance(other, Term):
return self.quo(other)
else:
return NotImplemented
__truediv__ = __div__
def __pow__(self, other): # Term
if isinstance(other, SYMPY_INTS):
return self.pow(other)
else:
return NotImplemented
def __eq__(self, other): # Term
return (self.coeff == other.coeff and
self.numer == other.numer and
self.denom == other.denom)
def __ne__(self, other): # Term
return not self == other
def _gcd_terms(terms, isprimitive=False, fraction=True):
"""Helper function for :func:`gcd_terms`.
If ``isprimitive`` is True then the call to primitive
for an Add will be skipped. This is useful when the
content has already been extrated.
If ``fraction`` is True then the expression will appear over a common
denominator, the lcm of all term denominators.
"""
if isinstance(terms, Basic) and not isinstance(terms, Tuple):
terms = Add.make_args(terms)
terms = list(map(Term, [t for t in terms if t]))
# there is some simplification that may happen if we leave this
# here rather than duplicate it before the mapping of Term onto
# the terms
if len(terms) == 0:
return S.Zero, S.Zero, S.One
if len(terms) == 1:
cont = terms[0].coeff
numer = terms[0].numer.as_expr()
denom = terms[0].denom.as_expr()
else:
cont = terms[0]
for term in terms[1:]:
cont = cont.gcd(term)
for i, term in enumerate(terms):
terms[i] = term.quo(cont)
if fraction:
denom = terms[0].denom
for term in terms[1:]:
denom = denom.lcm(term.denom)
numers = []
for term in terms:
numer = term.numer.mul(denom.quo(term.denom))
numers.append(term.coeff*numer.as_expr())
else:
numers = [t.as_expr() for t in terms]
denom = Term(S(1)).numer
cont = cont.as_expr()
numer = Add(*numers)
denom = denom.as_expr()
if not isprimitive and numer.is_Add:
_cont, numer = numer.primitive()
cont *= _cont
return cont, numer, denom
def gcd_terms(terms, isprimitive=False, clear=True, fraction=True):
"""Compute the GCD of ``terms`` and put them together.
``terms`` can be an expression or a non-Basic sequence of expressions
which will be handled as though they are terms from a sum.
If ``isprimitive`` is True the _gcd_terms will not run the primitive
method on the terms.
``clear`` controls the removal of integers from the denominator of an Add
expression. When True (default), all numerical denominator will be cleared;
when False the denominators will be cleared only if all terms had numerical
denominators other than 1.
``fraction``, when True (default), will put the expression over a common
denominator.
Examples
========
>>> from sympy.core import gcd_terms
>>> from sympy.abc import x, y
>>> gcd_terms((x + 1)**2*y + (x + 1)*y**2)
y*(x + 1)*(x + y + 1)
>>> gcd_terms(x/2 + 1)
(x + 2)/2
>>> gcd_terms(x/2 + 1, clear=False)
x/2 + 1
>>> gcd_terms(x/2 + y/2, clear=False)
(x + y)/2
>>> gcd_terms(x/2 + 1/x)
(x**2 + 2)/(2*x)
>>> gcd_terms(x/2 + 1/x, fraction=False)
(x + 2/x)/2
>>> gcd_terms(x/2 + 1/x, fraction=False, clear=False)
x/2 + 1/x
>>> gcd_terms(x/2/y + 1/x/y)
(x**2 + 2)/(2*x*y)
>>> gcd_terms(x/2/y + 1/x/y, clear=False)
(x**2/2 + 1)/(x*y)
>>> gcd_terms(x/2/y + 1/x/y, clear=False, fraction=False)
(x/2 + 1/x)/y
The ``clear`` flag was ignored in this case because the returned
expression was a rational expression, not a simple sum.
See Also
========
factor_terms, sympy.polys.polytools.terms_gcd
"""
def mask(terms):
"""replace nc portions of each term with a unique Dummy symbols
and return the replacements to restore them"""
args = [(a, []) if a.is_commutative else a.args_cnc() for a in terms]
reps = []
for i, (c, nc) in enumerate(args):
if nc:
nc = Mul(*nc)
d = Dummy()
reps.append((d, nc))
c.append(d)
args[i] = Mul(*c)
else:
args[i] = c
return args, dict(reps)
isadd = isinstance(terms, Add)
addlike = isadd or not isinstance(terms, Basic) and \
is_sequence(terms, include=set) and \
not isinstance(terms, Dict)
if addlike:
if isadd: # i.e. an Add
terms = list(terms.args)
else:
terms = sympify(terms)
terms, reps = mask(terms)
cont, numer, denom = _gcd_terms(terms, isprimitive, fraction)
numer = numer.xreplace(reps)
coeff, factors = cont.as_coeff_Mul()
if not clear:
c, _coeff = coeff.as_coeff_Mul()
if not c.is_Integer and not clear and numer.is_Add:
n, d = c.as_numer_denom()
_numer = numer/d
if any(a.as_coeff_Mul()[0].is_Integer
for a in _numer.args):
numer = _numer
coeff = n*_coeff
return _keep_coeff(coeff, factors*numer/denom, clear=clear)
if not isinstance(terms, Basic):
return terms
if terms.is_Atom:
return terms
if terms.is_Mul:
c, args = terms.as_coeff_mul()
return _keep_coeff(c, Mul(*[gcd_terms(i, isprimitive, clear, fraction)
for i in args]), clear=clear)
def handle(a):
# don't treat internal args like terms of an Add
if not isinstance(a, Expr):
if isinstance(a, Basic):
return a.func(*[handle(i) for i in a.args])
return type(a)([handle(i) for i in a])
return gcd_terms(a, isprimitive, clear, fraction)
if isinstance(terms, Dict):
return Dict(*[(k, handle(v)) for k, v in terms.args])
return terms.func(*[handle(i) for i in terms.args])
def factor_terms(expr, radical=False, clear=False, fraction=False, sign=True):
"""Remove common factors from terms in all arguments without
changing the underlying structure of the expr. No expansion or
simplification (and no processing of non-commutatives) is performed.
If radical=True then a radical common to all terms will be factored
out of any Add sub-expressions of the expr.
If clear=False (default) then coefficients will not be separated
from a single Add if they can be distributed to leave one or more
terms with integer coefficients.
If fraction=True (default is False) then a common denominator will be
constructed for the expression.
If sign=True (default) then even if the only factor in common is a -1,
it will be factored out of the expression.
Examples
========
>>> from sympy import factor_terms, Symbol
>>> from sympy.abc import x, y
>>> factor_terms(x + x*(2 + 4*y)**3)
x*(8*(2*y + 1)**3 + 1)
>>> A = Symbol('A', commutative=False)
>>> factor_terms(x*A + x*A + x*y*A)
x*(y*A + 2*A)
When ``clear`` is False, a rational will only be factored out of an
Add expression if all terms of the Add have coefficients that are
fractions:
>>> factor_terms(x/2 + 1, clear=False)
x/2 + 1
>>> factor_terms(x/2 + 1, clear=True)
(x + 2)/2
If a -1 is all that can be factored out, to *not* factor it out, the
flag ``sign`` must be False:
>>> factor_terms(-x - y)
-(x + y)
>>> factor_terms(-x - y, sign=False)
-x - y
>>> factor_terms(-2*x - 2*y, sign=False)
-2*(x + y)
See Also
========
gcd_terms, sympy.polys.polytools.terms_gcd
"""
def do(expr):
from sympy.concrete.summations import Sum
from sympy.simplify.simplify import factor_sum
is_iterable = iterable(expr)
if not isinstance(expr, Basic) or expr.is_Atom:
if is_iterable:
return type(expr)([do(i) for i in expr])
return expr
if expr.is_Pow or expr.is_Function or \
is_iterable or not hasattr(expr, 'args_cnc'):
args = expr.args
newargs = tuple([do(i) for i in args])
if newargs == args:
return expr
return expr.func(*newargs)
if isinstance(expr, Sum):
return factor_sum(expr, radical=radical, clear=clear, fraction=fraction, sign=sign)
cont, p = expr.as_content_primitive(radical=radical, clear=clear)
if p.is_Add:
list_args = [do(a) for a in Add.make_args(p)]
# get a common negative (if there) which gcd_terms does not remove
if all(a.as_coeff_Mul()[0].extract_multiplicatively(-1) is not None
for a in list_args):
cont = -cont
list_args = [-a for a in list_args]
# watch out for exp(-(x+2)) which gcd_terms will change to exp(-x-2)
special = {}
for i, a in enumerate(list_args):
b, e = a.as_base_exp()
if e.is_Mul and e != Mul(*e.args):
list_args[i] = Dummy()
special[list_args[i]] = a
# rebuild p not worrying about the order which gcd_terms will fix
p = Add._from_args(list_args)
p = gcd_terms(p,
isprimitive=True,
clear=clear,
fraction=fraction).xreplace(special)
elif p.args:
p = p.func(
*[do(a) for a in p.args])
rv = _keep_coeff(cont, p, clear=clear, sign=sign)
return rv
expr = sympify(expr)
return do(expr)
def _mask_nc(eq, name=None):
"""
Return ``eq`` with non-commutative objects replaced with Dummy
symbols. A dictionary that can be used to restore the original
values is returned: if it is None, the expression is noncommutative
and cannot be made commutative. The third value returned is a list
of any non-commutative symbols that appear in the returned equation.
``name``, if given, is the name that will be used with numbered Dummy
variables that will replace the non-commutative objects and is mainly
used for doctesting purposes.
Notes
=====
All non-commutative objects other than Symbols are replaced with
a non-commutative Symbol. Identical objects will be identified
by identical symbols.
If there is only 1 non-commutative object in an expression it will
be replaced with a commutative symbol. Otherwise, the non-commutative
entities are retained and the calling routine should handle
replacements in this case since some care must be taken to keep
track of the ordering of symbols when they occur within Muls.
Examples
========
>>> from sympy.physics.secondquant import Commutator, NO, F, Fd
>>> from sympy import symbols, Mul
>>> from sympy.core.exprtools import _mask_nc
>>> from sympy.abc import x, y
>>> A, B, C = symbols('A,B,C', commutative=False)
One nc-symbol:
>>> _mask_nc(A**2 - x**2, 'd')
(_d0**2 - x**2, {_d0: A}, [])
Multiple nc-symbols:
>>> _mask_nc(A**2 - B**2, 'd')
(A**2 - B**2, {}, [A, B])
An nc-object with nc-symbols but no others outside of it:
>>> _mask_nc(1 + x*Commutator(A, B), 'd')
(_d0*x + 1, {_d0: Commutator(A, B)}, [])
>>> _mask_nc(NO(Fd(x)*F(y)), 'd')
(_d0, {_d0: NO(CreateFermion(x)*AnnihilateFermion(y))}, [])
Multiple nc-objects:
>>> eq = x*Commutator(A, B) + x*Commutator(A, C)*Commutator(A, B)
>>> _mask_nc(eq, 'd')
(x*_d0 + x*_d1*_d0, {_d0: Commutator(A, B), _d1: Commutator(A, C)}, [_d0, _d1])
Multiple nc-objects and nc-symbols:
>>> eq = A*Commutator(A, B) + B*Commutator(A, C)
>>> _mask_nc(eq, 'd')
(A*_d0 + B*_d1, {_d0: Commutator(A, B), _d1: Commutator(A, C)}, [_d0, _d1, A, B])
If there is an object that:
- doesn't contain nc-symbols
- but has arguments which derive from Basic, not Expr
- and doesn't define an _eval_is_commutative routine
then it will give False (or None?) for the is_commutative test. Such
objects are also removed by this routine:
>>> from sympy import Basic
>>> eq = (1 + Mul(Basic(), Basic(), evaluate=False))
>>> eq.is_commutative
False
>>> _mask_nc(eq, 'd')
(_d0**2 + 1, {_d0: Basic()}, [])
"""
name = name or 'mask'
# Make Dummy() append sequential numbers to the name
def numbered_names():
i = 0
while True:
yield name + str(i)
i += 1
names = numbered_names()
def Dummy(*args, **kwargs):
from sympy import Dummy
return Dummy(next(names), *args, **kwargs)
expr = eq
if expr.is_commutative:
return eq, {}, []
# identify nc-objects; symbols and other
rep = []
nc_obj = set()
nc_syms = set()
pot = preorder_traversal(expr, keys=default_sort_key)
for i, a in enumerate(pot):
if any(a == r[0] for r in rep):
pot.skip()
elif not a.is_commutative:
if a.is_symbol:
nc_syms.add(a)
pot.skip()
elif not (a.is_Add or a.is_Mul or a.is_Pow):
nc_obj.add(a)
pot.skip()
# If there is only one nc symbol or object, it can be factored regularly
# but polys is going to complain, so replace it with a Dummy.
if len(nc_obj) == 1 and not nc_syms:
rep.append((nc_obj.pop(), Dummy()))
elif len(nc_syms) == 1 and not nc_obj:
rep.append((nc_syms.pop(), Dummy()))
# Any remaining nc-objects will be replaced with an nc-Dummy and
# identified as an nc-Symbol to watch out for
nc_obj = sorted(nc_obj, key=default_sort_key)
for n in nc_obj:
nc = Dummy(commutative=False)
rep.append((n, nc))
nc_syms.add(nc)
expr = expr.subs(rep)
nc_syms = list(nc_syms)
nc_syms.sort(key=default_sort_key)
return expr, {v: k for k, v in rep}, nc_syms
def factor_nc(expr):
"""Return the factored form of ``expr`` while handling non-commutative
expressions.
Examples
========
>>> from sympy.core.exprtools import factor_nc
>>> from sympy import Symbol
>>> from sympy.abc import x
>>> A = Symbol('A', commutative=False)
>>> B = Symbol('B', commutative=False)
>>> factor_nc((x**2 + 2*A*x + A**2).expand())
(x + A)**2
>>> factor_nc(((x + A)*(x + B)).expand())
(x + A)*(x + B)
"""
from sympy.simplify.simplify import powsimp
from sympy.polys import gcd, factor
def _pemexpand(expr):
"Expand with the minimal set of hints necessary to check the result."
return expr.expand(deep=True, mul=True, power_exp=True,
power_base=False, basic=False, multinomial=True, log=False)
expr = sympify(expr)
if not isinstance(expr, Expr) or not expr.args:
return expr
if not expr.is_Add:
return expr.func(*[factor_nc(a) for a in expr.args])
expr, rep, nc_symbols = _mask_nc(expr)
if rep:
return factor(expr).subs(rep)
else:
args = [a.args_cnc() for a in Add.make_args(expr)]
c = g = l = r = S.One
hit = False
# find any commutative gcd term
for i, a in enumerate(args):
if i == 0:
c = Mul._from_args(a[0])
elif a[0]:
c = gcd(c, Mul._from_args(a[0]))
else:
c = S.One
if c is not S.One:
hit = True
c, g = c.as_coeff_Mul()
if g is not S.One:
for i, (cc, _) in enumerate(args):
cc = list(Mul.make_args(Mul._from_args(list(cc))/g))
args[i][0] = cc
for i, (cc, _) in enumerate(args):
cc[0] = cc[0]/c
args[i][0] = cc
# find any noncommutative common prefix
for i, a in enumerate(args):
if i == 0:
n = a[1][:]
else:
n = common_prefix(n, a[1])
if not n:
# is there a power that can be extracted?
if not args[0][1]:
break
b, e = args[0][1][0].as_base_exp()
ok = False
if e.is_Integer:
for t in args:
if not t[1]:
break
bt, et = t[1][0].as_base_exp()
if et.is_Integer and bt == b:
e = min(e, et)
else:
break
else:
ok = hit = True
l = b**e
il = b**-e
for i, a in enumerate(args):
args[i][1][0] = il*args[i][1][0]
break
if not ok:
break
else:
hit = True
lenn = len(n)
l = Mul(*n)
for i, a in enumerate(args):
args[i][1] = args[i][1][lenn:]
# find any noncommutative common suffix
for i, a in enumerate(args):
if i == 0:
n = a[1][:]
else:
n = common_suffix(n, a[1])
if not n:
# is there a power that can be extracted?
if not args[0][1]:
break
b, e = args[0][1][-1].as_base_exp()
ok = False
if e.is_Integer:
for t in args:
if not t[1]:
break
bt, et = t[1][-1].as_base_exp()
if et.is_Integer and bt == b:
e = min(e, et)
else:
break
else:
ok = hit = True
r = b**e
il = b**-e
for i, a in enumerate(args):
args[i][1][-1] = args[i][1][-1]*il
break
if not ok:
break
else:
hit = True
lenn = len(n)
r = Mul(*n)
for i, a in enumerate(args):
args[i][1] = a[1][:len(a[1]) - lenn]
if hit:
mid = Add(*[Mul(*cc)*Mul(*nc) for cc, nc in args])
else:
mid = expr
# sort the symbols so the Dummys would appear in the same
# order as the original symbols, otherwise you may introduce
# a factor of -1, e.g. A**2 - B**2) -- {A:y, B:x} --> y**2 - x**2
# and the former factors into two terms, (A - B)*(A + B) while the
# latter factors into 3 terms, (-1)*(x - y)*(x + y)
rep1 = [(n, Dummy()) for n in sorted(nc_symbols, key=default_sort_key)]
unrep1 = [(v, k) for k, v in rep1]
unrep1.reverse()
new_mid, r2, _ = _mask_nc(mid.subs(rep1))
new_mid = powsimp(factor(new_mid))
new_mid = new_mid.subs(r2).subs(unrep1)
if new_mid.is_Pow:
return _keep_coeff(c, g*l*new_mid*r)
if new_mid.is_Mul:
# XXX TODO there should be a way to inspect what order the terms
# must be in and just select the plausible ordering without
# checking permutations
cfac = []
ncfac = []
for f in new_mid.args:
if f.is_commutative:
cfac.append(f)
else:
b, e = f.as_base_exp()
if e.is_Integer:
ncfac.extend([b]*e)
else:
ncfac.append(f)
pre_mid = g*Mul(*cfac)*l
target = _pemexpand(expr/c)
for s in variations(ncfac, len(ncfac)):
ok = pre_mid*Mul(*s)*r
if _pemexpand(ok) == target:
return _keep_coeff(c, ok)
# mid was an Add that didn't factor successfully
return _keep_coeff(c, g*l*mid*r)
|
cdab57388bab3e069796e4069b24be7a4180e1c19af5f6523e308211223c9542
|
"""Singleton mechanism"""
from __future__ import print_function, division
from .core import Registry
from .assumptions import ManagedProperties
from .sympify import sympify
class SingletonRegistry(Registry):
"""
The registry for the singleton classes (accessible as ``S``).
This class serves as two separate things.
The first thing it is is the ``SingletonRegistry``. Several classes in
SymPy appear so often that they are singletonized, that is, using some
metaprogramming they are made so that they can only be instantiated once
(see the :class:`sympy.core.singleton.Singleton` class for details). For
instance, every time you create ``Integer(0)``, this will return the same
instance, :class:`sympy.core.numbers.Zero`. All singleton instances are
attributes of the ``S`` object, so ``Integer(0)`` can also be accessed as
``S.Zero``.
Singletonization offers two advantages: it saves memory, and it allows
fast comparison. It saves memory because no matter how many times the
singletonized objects appear in expressions in memory, they all point to
the same single instance in memory. The fast comparison comes from the
fact that you can use ``is`` to compare exact instances in Python
(usually, you need to use ``==`` to compare things). ``is`` compares
objects by memory address, and is very fast. For instance
>>> from sympy import S, Integer
>>> a = Integer(0)
>>> a is S.Zero
True
For the most part, the fact that certain objects are singletonized is an
implementation detail that users shouldn't need to worry about. In SymPy
library code, ``is`` comparison is often used for performance purposes
The primary advantage of ``S`` for end users is the convenient access to
certain instances that are otherwise difficult to type, like ``S.Half``
(instead of ``Rational(1, 2)``).
When using ``is`` comparison, make sure the argument is sympified. For
instance,
>>> 0 is S.Zero
False
This problem is not an issue when using ``==``, which is recommended for
most use-cases:
>>> 0 == S.Zero
True
The second thing ``S`` is is a shortcut for
:func:`sympy.core.sympify.sympify`. :func:`sympy.core.sympify.sympify` is
the function that converts Python objects such as ``int(1)`` into SymPy
objects such as ``Integer(1)``. It also converts the string form of an
expression into a SymPy expression, like ``sympify("x**2")`` ->
``Symbol("x")**2``. ``S(1)`` is the same thing as ``sympify(1)``
(basically, ``S.__call__`` has been defined to call ``sympify``).
This is for convenience, since ``S`` is a single letter. It's mostly
useful for defining rational numbers. Consider an expression like ``x +
1/2``. If you enter this directly in Python, it will evaluate the ``1/2``
and give ``0.5`` (or just ``0`` in Python 2, because of integer division),
because both arguments are ints (see also
:ref:`tutorial-gotchas-final-notes`). However, in SymPy, you usually want
the quotient of two integers to give an exact rational number. The way
Python's evaluation works, at least one side of an operator needs to be a
SymPy object for the SymPy evaluation to take over. You could write this
as ``x + Rational(1, 2)``, but this is a lot more typing. A shorter
version is ``x + S(1)/2``. Since ``S(1)`` returns ``Integer(1)``, the
division will return a ``Rational`` type, since it will call
``Integer.__div__``, which knows how to return a ``Rational``.
"""
__slots__ = []
# Also allow things like S(5)
__call__ = staticmethod(sympify)
def __init__(self):
self._classes_to_install = {}
# Dict of classes that have been registered, but that have not have been
# installed as an attribute of this SingletonRegistry.
# Installation automatically happens at the first attempt to access the
# attribute.
# The purpose of this is to allow registration during class
# initialization during import, but not trigger object creation until
# actual use (which should not happen until after all imports are
# finished).
def register(self, cls):
# Make sure a duplicate class overwrites the old one
if hasattr(self, cls.__name__):
delattr(self, cls.__name__)
self._classes_to_install[cls.__name__] = cls
def __getattr__(self, name):
"""Python calls __getattr__ if no attribute of that name was installed
yet.
This __getattr__ checks whether a class with the requested name was
already registered but not installed; if no, raises an AttributeError.
Otherwise, retrieves the class, calculates its singleton value, installs
it as an attribute of the given name, and unregisters the class."""
if name not in self._classes_to_install:
raise AttributeError(
"Attribute '%s' was not installed on SymPy registry %s" % (
name, self))
class_to_install = self._classes_to_install[name]
value_to_install = class_to_install()
self.__setattr__(name, value_to_install)
del self._classes_to_install[name]
return value_to_install
def __repr__(self):
return "S"
S = SingletonRegistry()
class Singleton(ManagedProperties):
"""
Metaclass for singleton classes.
A singleton class has only one instance which is returned every time the
class is instantiated. Additionally, this instance can be accessed through
the global registry object S as S.<class_name>.
Examples
========
>>> from sympy import S, Basic
>>> from sympy.core.singleton import Singleton
>>> from sympy.core.compatibility import with_metaclass
>>> class MySingleton(with_metaclass(Singleton, Basic)):
... pass
>>> Basic() is Basic()
False
>>> MySingleton() is MySingleton()
True
>>> S.MySingleton is MySingleton()
True
Notes
=====
Instance creation is delayed until the first time the value is accessed.
(SymPy versions before 1.0 would create the instance during class
creation time, which would be prone to import cycles.)
This metaclass is a subclass of ManagedProperties because that is the
metaclass of many classes that need to be Singletons (Python does not allow
subclasses to have a different metaclass than the superclass, except the
subclass may use a subclassed metaclass).
"""
_instances = {}
"Maps singleton classes to their instances."
def __new__(cls, *args, **kwargs):
result = super(Singleton, cls).__new__(cls, *args, **kwargs)
S.register(result)
return result
def __call__(self, *args, **kwargs):
# Called when application code says SomeClass(), where SomeClass is a
# class of which Singleton is the metaclas.
# __call__ is invoked first, before __new__() and __init__().
if self not in Singleton._instances:
Singleton._instances[self] = \
super(Singleton, self).__call__(*args, **kwargs)
# Invokes the standard constructor of SomeClass.
return Singleton._instances[self]
# Inject pickling support.
def __getnewargs__(self):
return ()
self.__getnewargs__ = __getnewargs__
|
3ad7dc0869304ab13ba01864afbdafd83edf34a48e1d1f36850ce7967daaeb12
|
"""
This module contains the machinery handling assumptions.
All symbolic objects have assumption attributes that can be accessed via
.is_<assumption name> attribute.
Assumptions determine certain properties of symbolic objects and can
have 3 possible values: True, False, None. True is returned if the
object has the property and False is returned if it doesn't or can't
(i.e. doesn't make sense):
>>> from sympy import I
>>> I.is_algebraic
True
>>> I.is_real
False
>>> I.is_prime
False
When the property cannot be determined (or when a method is not
implemented) None will be returned, e.g. a generic symbol, x, may or
may not be positive so a value of None is returned for x.is_positive.
By default, all symbolic values are in the largest set in the given context
without specifying the property. For example, a symbol that has a property
being integer, is also real, complex, etc.
Here follows a list of possible assumption names:
.. glossary::
commutative
object commutes with any other object with
respect to multiplication operation.
complex
object can have only values from the set
of complex numbers.
imaginary
object value is a number that can be written as a real
number multiplied by the imaginary unit ``I``. See
[3]_. Please note, that ``0`` is not considered to be an
imaginary number, see
`issue #7649 <https://github.com/sympy/sympy/issues/7649>`_.
real
object can have only values from the set
of real numbers.
integer
object can have only values from the set
of integers.
odd
even
object can have only values from the set of
odd (even) integers [2]_.
prime
object is a natural number greater than ``1`` that has
no positive divisors other than ``1`` and itself. See [6]_.
composite
object is a positive integer that has at least one positive
divisor other than ``1`` or the number itself. See [4]_.
zero
object has the value of ``0``.
nonzero
object is a real number that is not zero.
rational
object can have only values from the set
of rationals.
algebraic
object can have only values from the set
of algebraic numbers [11]_.
transcendental
object can have only values from the set
of transcendental numbers [10]_.
irrational
object value cannot be represented exactly by Rational, see [5]_.
finite
infinite
object absolute value is bounded (arbitrarily large).
See [7]_, [8]_, [9]_.
negative
nonnegative
object can have only negative (nonnegative)
values [1]_.
positive
nonpositive
object can have only positive (only
nonpositive) values.
hermitian
antihermitian
object belongs to the field of hermitian
(antihermitian) operators.
Examples
========
>>> from sympy import Symbol
>>> x = Symbol('x', real=True); x
x
>>> x.is_real
True
>>> x.is_complex
True
See Also
========
.. seealso::
:py:class:`sympy.core.numbers.ImaginaryUnit`
:py:class:`sympy.core.numbers.Zero`
:py:class:`sympy.core.numbers.One`
Notes
=====
Assumption values are stored in obj._assumptions dictionary or
are returned by getter methods (with property decorators) or are
attributes of objects/classes.
References
==========
.. [1] https://en.wikipedia.org/wiki/Negative_number
.. [2] https://en.wikipedia.org/wiki/Parity_%28mathematics%29
.. [3] https://en.wikipedia.org/wiki/Imaginary_number
.. [4] https://en.wikipedia.org/wiki/Composite_number
.. [5] https://en.wikipedia.org/wiki/Irrational_number
.. [6] https://en.wikipedia.org/wiki/Prime_number
.. [7] https://en.wikipedia.org/wiki/Finite
.. [8] https://docs.python.org/3/library/math.html#math.isfinite
.. [9] http://docs.scipy.org/doc/numpy/reference/generated/numpy.isfinite.html
.. [10] https://en.wikipedia.org/wiki/Transcendental_number
.. [11] https://en.wikipedia.org/wiki/Algebraic_number
"""
from __future__ import print_function, division
from sympy.core.facts import FactRules, FactKB
from sympy.core.core import BasicMeta
from sympy.core.compatibility import integer_types
from random import shuffle
_assume_rules = FactRules([
'integer -> rational',
'rational -> real',
'rational -> algebraic',
'algebraic -> complex',
'real -> complex',
'real -> hermitian',
'imaginary -> complex',
'imaginary -> antihermitian',
'complex -> commutative',
'odd == integer & !even',
'even == integer & !odd',
'real == negative | zero | positive',
'transcendental == complex & !algebraic',
'negative == nonpositive & nonzero',
'positive == nonnegative & nonzero',
'zero == nonnegative & nonpositive',
'nonpositive == real & !positive',
'nonnegative == real & !negative',
'zero -> even & finite',
'prime -> integer & positive',
'composite -> integer & positive & !prime',
'!composite -> !positive | !even | prime',
'irrational == real & !rational',
'imaginary -> !real',
'infinite -> !finite',
'noninteger == real & !integer',
'nonzero == real & !zero',
])
_assume_defined = _assume_rules.defined_facts.copy()
_assume_defined.add('polar')
_assume_defined = frozenset(_assume_defined)
class StdFactKB(FactKB):
"""A FactKB specialised for the built-in rules
This is the only kind of FactKB that Basic objects should use.
"""
rules = _assume_rules
def __init__(self, facts=None):
# save a copy of the facts dict
if not facts:
self._generator = {}
elif not isinstance(facts, FactKB):
self._generator = facts.copy()
else:
self._generator = facts.generator
if facts:
self.deduce_all_facts(facts)
def copy(self):
return self.__class__(self)
@property
def generator(self):
return self._generator.copy()
def as_property(fact):
"""Convert a fact name to the name of the corresponding property"""
return 'is_%s' % fact
def make_property(fact):
"""Create the automagic property corresponding to a fact."""
def getit(self):
try:
return self._assumptions[fact]
except KeyError:
if self._assumptions is self.default_assumptions:
self._assumptions = self.default_assumptions.copy()
return _ask(fact, self)
getit.func_name = as_property(fact)
return property(getit)
def _ask(fact, obj):
"""
Find the truth value for a property of an object.
This function is called when a request is made to see what a fact
value is.
For this we use several techniques:
First, the fact-evaluation function is tried, if it exists (for
example _eval_is_integer). Then we try related facts. For example
rational --> integer
another example is joined rule:
integer & !odd --> even
so in the latter case if we are looking at what 'even' value is,
'integer' and 'odd' facts will be asked.
In all cases, when we settle on some fact value, its implications are
deduced, and the result is cached in ._assumptions.
"""
assumptions = obj._assumptions
handler_map = obj._prop_handler
# Store None into the assumptions so that recursive attempts at
# evaluating the same fact don't trigger infinite recursion.
assumptions._tell(fact, None)
# First try the assumption evaluation function if it exists
try:
evaluate = handler_map[fact]
except KeyError:
pass
else:
a = evaluate(obj)
if a is not None:
assumptions.deduce_all_facts(((fact, a),))
return a
# Try assumption's prerequisites
prereq = list(_assume_rules.prereq[fact])
shuffle(prereq)
for pk in prereq:
if pk in assumptions:
continue
if pk in handler_map:
_ask(pk, obj)
# we might have found the value of fact
ret_val = assumptions.get(fact)
if ret_val is not None:
return ret_val
# Note: the result has already been cached
return None
class ManagedProperties(BasicMeta):
"""Metaclass for classes with old-style assumptions"""
def __init__(cls, *args, **kws):
BasicMeta.__init__(cls, *args, **kws)
local_defs = {}
for k in _assume_defined:
attrname = as_property(k)
v = cls.__dict__.get(attrname, '')
if isinstance(v, (bool, integer_types, type(None))):
if v is not None:
v = bool(v)
local_defs[k] = v
defs = {}
for base in reversed(cls.__bases__):
assumptions = getattr(base, '_explicit_class_assumptions', None)
if assumptions is not None:
defs.update(assumptions)
defs.update(local_defs)
cls._explicit_class_assumptions = defs
cls.default_assumptions = StdFactKB(defs)
cls._prop_handler = {}
for k in _assume_defined:
eval_is_meth = getattr(cls, '_eval_is_%s' % k, None)
if eval_is_meth is not None:
cls._prop_handler[k] = eval_is_meth
# Put definite results directly into the class dict, for speed
for k, v in cls.default_assumptions.items():
setattr(cls, as_property(k), v)
# protection e.g. for Integer.is_even=F <- (Rational.is_integer=F)
derived_from_bases = set()
for base in cls.__bases__:
default_assumptions = getattr(base, 'default_assumptions', None)
# is an assumption-aware class
if default_assumptions is not None:
derived_from_bases.update(default_assumptions)
for fact in derived_from_bases - set(cls.default_assumptions):
pname = as_property(fact)
if pname not in cls.__dict__:
setattr(cls, pname, make_property(fact))
# Finally, add any missing automagic property (e.g. for Basic)
for fact in _assume_defined:
pname = as_property(fact)
if not hasattr(cls, pname):
setattr(cls, pname, make_property(fact))
|
0f28872af1bceaec794a0097db54248ddeb9ac4c62164ca065ce484c56e1193e
|
"""
There are three types of functions implemented in SymPy:
1) defined functions (in the sense that they can be evaluated) like
exp or sin; they have a name and a body:
f = exp
2) undefined function which have a name but no body. Undefined
functions can be defined using a Function class as follows:
f = Function('f')
(the result will be a Function instance)
3) anonymous function (or lambda function) which have a body (defined
with dummy variables) but have no name:
f = Lambda(x, exp(x)*x)
f = Lambda((x, y), exp(x)*y)
The fourth type of functions are composites, like (sin + cos)(x); these work in
SymPy core, but are not yet part of SymPy.
Examples
========
>>> import sympy
>>> f = sympy.Function("f")
>>> from sympy.abc import x
>>> f(x)
f(x)
>>> print(sympy.srepr(f(x).func))
Function('f')
>>> f(x).args
(x,)
"""
from __future__ import print_function, division
from .add import Add
from .assumptions import ManagedProperties, _assume_defined
from .basic import Basic, _atomic
from .cache import cacheit
from .compatibility import iterable, is_sequence, as_int, ordered, Iterable
from .decorators import _sympifyit
from .expr import Expr, AtomicExpr
from .numbers import Rational, Float
from .operations import LatticeOp
from .rules import Transform
from .singleton import S
from .sympify import sympify
from sympy.core.containers import Tuple, Dict
from sympy.core.logic import fuzzy_and
from sympy.core.compatibility import string_types, with_metaclass, PY3, range
from sympy.utilities import default_sort_key
from sympy.utilities.misc import filldedent
from sympy.utilities.iterables import has_dups, sift
from sympy.core.evaluate import global_evaluate
import mpmath
import mpmath.libmp as mlib
import inspect
from collections import Counter
def _coeff_isneg(a):
"""Return True if the leading Number is negative.
Examples
========
>>> from sympy.core.function import _coeff_isneg
>>> from sympy import S, Symbol, oo, pi
>>> _coeff_isneg(-3*pi)
True
>>> _coeff_isneg(S(3))
False
>>> _coeff_isneg(-oo)
True
>>> _coeff_isneg(Symbol('n', negative=True)) # coeff is 1
False
For matrix expressions:
>>> from sympy import MatrixSymbol, sqrt
>>> A = MatrixSymbol("A", 3, 3)
>>> _coeff_isneg(-sqrt(2)*A)
True
>>> _coeff_isneg(sqrt(2)*A)
False
"""
if a.is_MatMul:
a = a.args[0]
if a.is_Mul:
a = a.args[0]
return a.is_Number and a.is_negative
class PoleError(Exception):
pass
class ArgumentIndexError(ValueError):
def __str__(self):
return ("Invalid operation with argument number %s for Function %s" %
(self.args[1], self.args[0]))
# Python 2/3 version that does not raise a Deprecation warning
def arity(cls):
"""Return the arity of the function if it is known, else None.
When default values are specified for some arguments, they are
optional and the arity is reported as a tuple of possible values.
Examples
========
>>> from sympy.core.function import arity
>>> from sympy import log
>>> arity(lambda x: x)
1
>>> arity(log)
(1, 2)
>>> arity(lambda *x: sum(x)) is None
True
"""
eval_ = getattr(cls, 'eval', cls)
if PY3:
parameters = inspect.signature(eval_).parameters.items()
if [p for _, p in parameters if p.kind == p.VAR_POSITIONAL]:
return
p_or_k = [p for _, p in parameters if p.kind == p.POSITIONAL_OR_KEYWORD]
# how many have no default and how many have a default value
no, yes = map(len, sift(p_or_k,
lambda p:p.default == p.empty, binary=True))
return no if not yes else tuple(range(no, no + yes + 1))
else:
cls_ = int(hasattr(cls, 'eval')) # correction for cls arguments
evalargspec = inspect.getargspec(eval_)
if evalargspec.varargs:
return
else:
evalargs = len(evalargspec.args) - cls_
if evalargspec.defaults:
# if there are default args then they are optional; the
# fewest args will occur when all defaults are used and
# the most when none are used (i.e. all args are given)
fewest = evalargs - len(evalargspec.defaults)
return tuple(range(fewest, evalargs + 1))
return evalargs
class FunctionClass(ManagedProperties):
"""
Base class for function classes. FunctionClass is a subclass of type.
Use Function('<function name>' [ , signature ]) to create
undefined function classes.
"""
_new = type.__new__
def __init__(cls, *args, **kwargs):
# honor kwarg value or class-defined value before using
# the number of arguments in the eval function (if present)
nargs = kwargs.pop('nargs', cls.__dict__.get('nargs', arity(cls)))
# Canonicalize nargs here; change to set in nargs.
if is_sequence(nargs):
if not nargs:
raise ValueError(filldedent('''
Incorrectly specified nargs as %s:
if there are no arguments, it should be
`nargs = 0`;
if there are any number of arguments,
it should be
`nargs = None`''' % str(nargs)))
nargs = tuple(ordered(set(nargs)))
elif nargs is not None:
nargs = (as_int(nargs),)
cls._nargs = nargs
super(FunctionClass, cls).__init__(*args, **kwargs)
@property
def __signature__(self):
"""
Allow Python 3's inspect.signature to give a useful signature for
Function subclasses.
"""
# Python 3 only, but backports (like the one in IPython) still might
# call this.
try:
from inspect import signature
except ImportError:
return None
# TODO: Look at nargs
return signature(self.eval)
@property
def free_symbols(self):
return set()
@property
def xreplace(self):
# Function needs args so we define a property that returns
# a function that takes args...and then use that function
# to return the right value
return lambda rule, **_: rule.get(self, self)
@property
def nargs(self):
"""Return a set of the allowed number of arguments for the function.
Examples
========
>>> from sympy.core.function import Function
>>> from sympy.abc import x, y
>>> f = Function('f')
If the function can take any number of arguments, the set of whole
numbers is returned:
>>> Function('f').nargs
Naturals0
If the function was initialized to accept one or more arguments, a
corresponding set will be returned:
>>> Function('f', nargs=1).nargs
{1}
>>> Function('f', nargs=(2, 1)).nargs
{1, 2}
The undefined function, after application, also has the nargs
attribute; the actual number of arguments is always available by
checking the ``args`` attribute:
>>> f = Function('f')
>>> f(1).nargs
Naturals0
>>> len(f(1).args)
1
"""
from sympy.sets.sets import FiniteSet
# XXX it would be nice to handle this in __init__ but there are import
# problems with trying to import FiniteSet there
return FiniteSet(*self._nargs) if self._nargs else S.Naturals0
def __repr__(cls):
return cls.__name__
class Application(with_metaclass(FunctionClass, Basic)):
"""
Base class for applied functions.
Instances of Application represent the result of applying an application of
any type to any object.
"""
is_Function = True
@cacheit
def __new__(cls, *args, **options):
from sympy.sets.fancysets import Naturals0
from sympy.sets.sets import FiniteSet
args = list(map(sympify, args))
evaluate = options.pop('evaluate', global_evaluate[0])
# WildFunction (and anything else like it) may have nargs defined
# and we throw that value away here
options.pop('nargs', None)
if options:
raise ValueError("Unknown options: %s" % options)
if evaluate:
evaluated = cls.eval(*args)
if evaluated is not None:
return evaluated
obj = super(Application, cls).__new__(cls, *args, **options)
# make nargs uniform here
sentinel = object()
objnargs = getattr(obj, "nargs", sentinel)
if objnargs is not sentinel:
# things passing through here:
# - functions subclassed from Function (e.g. myfunc(1).nargs)
# - functions like cos(1).nargs
# - AppliedUndef with given nargs like Function('f', nargs=1)(1).nargs
# Canonicalize nargs here
if is_sequence(objnargs):
nargs = tuple(ordered(set(objnargs)))
elif objnargs is not None:
nargs = (as_int(objnargs),)
else:
nargs = None
else:
# things passing through here:
# - WildFunction('f').nargs
# - AppliedUndef with no nargs like Function('f')(1).nargs
nargs = obj._nargs # note the underscore here
# convert to FiniteSet
obj.nargs = FiniteSet(*nargs) if nargs else Naturals0()
return obj
@classmethod
def eval(cls, *args):
"""
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be
instantiated and it should return either some simplified instance
(possible of some other class), or if the class cls should be
unmodified, return None.
Examples of eval() for the function "sign"
---------------------------------------------
.. code-block:: python
@classmethod
def eval(cls, arg):
if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero
if arg.is_positive: return S.One
if arg.is_negative: return S.NegativeOne
if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True)
if coeff is not S.One:
return cls(coeff) * cls(terms)
"""
return
@property
def func(self):
return self.__class__
def _eval_subs(self, old, new):
if (old.is_Function and new.is_Function and
callable(old) and callable(new) and
old == self.func and len(self.args) in new.nargs):
return new(*[i._subs(old, new) for i in self.args])
class Function(Application, Expr):
"""
Base class for applied mathematical functions.
It also serves as a constructor for undefined function classes.
Examples
========
First example shows how to use Function as a constructor for undefined
function classes:
>>> from sympy import Function, Symbol
>>> x = Symbol('x')
>>> f = Function('f')
>>> g = Function('g')(x)
>>> f
f
>>> f(x)
f(x)
>>> g
g(x)
>>> f(x).diff(x)
Derivative(f(x), x)
>>> g.diff(x)
Derivative(g(x), x)
Assumptions can be passed to Function.
>>> f_real = Function('f', real=True)
>>> f_real(x).is_real
True
Note that assumptions on a function are unrelated to the assumptions on
the variable it is called on. If you want to add a relationship, subclass
Function and define the appropriate ``_eval_is_assumption`` methods.
In the following example Function is used as a base class for
``my_func`` that represents a mathematical function *my_func*. Suppose
that it is well known, that *my_func(0)* is *1* and *my_func* at infinity
goes to *0*, so we want those two simplifications to occur automatically.
Suppose also that *my_func(x)* is real exactly when *x* is real. Here is
an implementation that honours those requirements:
>>> from sympy import Function, S, oo, I, sin
>>> class my_func(Function):
...
... @classmethod
... def eval(cls, x):
... if x.is_Number:
... if x is S.Zero:
... return S.One
... elif x is S.Infinity:
... return S.Zero
...
... def _eval_is_real(self):
... return self.args[0].is_real
...
>>> x = S('x')
>>> my_func(0) + sin(0)
1
>>> my_func(oo)
0
>>> my_func(3.54).n() # Not yet implemented for my_func.
my_func(3.54)
>>> my_func(I).is_real
False
In order for ``my_func`` to become useful, several other methods would
need to be implemented. See source code of some of the already
implemented functions for more complete examples.
Also, if the function can take more than one argument, then ``nargs``
must be defined, e.g. if ``my_func`` can take one or two arguments
then,
>>> class my_func(Function):
... nargs = (1, 2)
...
>>>
"""
@property
def _diff_wrt(self):
return False
@cacheit
def __new__(cls, *args, **options):
# Handle calls like Function('f')
if cls is Function:
return UndefinedFunction(*args, **options)
n = len(args)
if n not in cls.nargs:
# XXX: exception message must be in exactly this format to
# make it work with NumPy's functions like vectorize(). See,
# for example, https://github.com/numpy/numpy/issues/1697.
# The ideal solution would be just to attach metadata to
# the exception and change NumPy to take advantage of this.
temp = ('%(name)s takes %(qual)s %(args)s '
'argument%(plural)s (%(given)s given)')
raise TypeError(temp % {
'name': cls,
'qual': 'exactly' if len(cls.nargs) == 1 else 'at least',
'args': min(cls.nargs),
'plural': 's'*(min(cls.nargs) != 1),
'given': n})
evaluate = options.get('evaluate', global_evaluate[0])
result = super(Function, cls).__new__(cls, *args, **options)
if evaluate and isinstance(result, cls) and result.args:
pr2 = min(cls._should_evalf(a) for a in result.args)
if pr2 > 0:
pr = max(cls._should_evalf(a) for a in result.args)
result = result.evalf(mlib.libmpf.prec_to_dps(pr))
return result
@classmethod
def _should_evalf(cls, arg):
"""
Decide if the function should automatically evalf().
By default (in this implementation), this happens if (and only if) the
ARG is a floating point number.
This function is used by __new__.
Returns the precision to evalf to, or -1 if it shouldn't evalf.
"""
from sympy.core.evalf import pure_complex
if arg.is_Float:
return arg._prec
if not arg.is_Add:
return -1
m = pure_complex(arg)
if m is None or not (m[0].is_Float or m[1].is_Float):
return -1
l = [i._prec for i in m if i.is_Float]
l.append(-1)
return max(l)
@classmethod
def class_key(cls):
from sympy.sets.fancysets import Naturals0
funcs = {
'exp': 10,
'log': 11,
'sin': 20,
'cos': 21,
'tan': 22,
'cot': 23,
'sinh': 30,
'cosh': 31,
'tanh': 32,
'coth': 33,
'conjugate': 40,
're': 41,
'im': 42,
'arg': 43,
}
name = cls.__name__
try:
i = funcs[name]
except KeyError:
i = 0 if isinstance(cls.nargs, Naturals0) else 10000
return 4, i, name
@property
def is_commutative(self):
"""
Returns whether the function is commutative.
"""
if all(getattr(t, 'is_commutative') for t in self.args):
return True
else:
return False
def _eval_evalf(self, prec):
def _get_mpmath_func(fname):
"""Lookup mpmath function based on name"""
if isinstance(self, AppliedUndef):
# Shouldn't lookup in mpmath but might have ._imp_
return None
if not hasattr(mpmath, fname):
from sympy.utilities.lambdify import MPMATH_TRANSLATIONS
fname = MPMATH_TRANSLATIONS.get(fname, None)
if fname is None:
return None
return getattr(mpmath, fname)
func = _get_mpmath_func(self.func.__name__)
# Fall-back evaluation
if func is None:
imp = getattr(self, '_imp_', None)
if imp is None:
return None
try:
return Float(imp(*[i.evalf(prec) for i in self.args]), prec)
except (TypeError, ValueError) as e:
return None
# Convert all args to mpf or mpc
# Convert the arguments to *higher* precision than requested for the
# final result.
# XXX + 5 is a guess, it is similar to what is used in evalf.py. Should
# we be more intelligent about it?
try:
args = [arg._to_mpmath(prec + 5) for arg in self.args]
def bad(m):
from mpmath import mpf, mpc
# the precision of an mpf value is the last element
# if that is 1 (and m[1] is not 1 which would indicate a
# power of 2), then the eval failed; so check that none of
# the arguments failed to compute to a finite precision.
# Note: An mpc value has two parts, the re and imag tuple;
# check each of those parts, too. Anything else is allowed to
# pass
if isinstance(m, mpf):
m = m._mpf_
return m[1] !=1 and m[-1] == 1
elif isinstance(m, mpc):
m, n = m._mpc_
return m[1] !=1 and m[-1] == 1 and \
n[1] !=1 and n[-1] == 1
else:
return False
if any(bad(a) for a in args):
raise ValueError # one or more args failed to compute with significance
except ValueError:
return
with mpmath.workprec(prec):
v = func(*args)
return Expr._from_mpmath(v, prec)
def _eval_derivative(self, s):
# f(x).diff(s) -> x.diff(s) * f.fdiff(1)(s)
i = 0
l = []
for a in self.args:
i += 1
da = a.diff(s)
if da is S.Zero:
continue
try:
df = self.fdiff(i)
except ArgumentIndexError:
df = Function.fdiff(self, i)
l.append(df * da)
return Add(*l)
def _eval_is_commutative(self):
return fuzzy_and(a.is_commutative for a in self.args)
def _eval_is_complex(self):
return fuzzy_and(a.is_complex for a in self.args)
def as_base_exp(self):
"""
Returns the method as the 2-tuple (base, exponent).
"""
return self, S.One
def _eval_aseries(self, n, args0, x, logx):
"""
Compute an asymptotic expansion around args0, in terms of self.args.
This function is only used internally by _eval_nseries and should not
be called directly; derived classes can overwrite this to implement
asymptotic expansions.
"""
from sympy.utilities.misc import filldedent
raise PoleError(filldedent('''
Asymptotic expansion of %s around %s is
not implemented.''' % (type(self), args0)))
def _eval_nseries(self, x, n, logx):
"""
This function does compute series for multivariate functions,
but the expansion is always in terms of *one* variable.
Examples
========
>>> from sympy import atan2
>>> from sympy.abc import x, y
>>> atan2(x, y).series(x, n=2)
atan2(0, y) + x/y + O(x**2)
>>> atan2(x, y).series(y, n=2)
-y/x + atan2(x, 0) + O(y**2)
This function also computes asymptotic expansions, if necessary
and possible:
>>> from sympy import loggamma
>>> loggamma(1/x)._eval_nseries(x,0,None)
-1/x - log(x)/x + log(x)/2 + O(1)
"""
from sympy import Order
from sympy.sets.sets import FiniteSet
args = self.args
args0 = [t.limit(x, 0) for t in args]
if any(t.is_finite is False for t in args0):
from sympy import oo, zoo, nan
# XXX could use t.as_leading_term(x) here but it's a little
# slower
a = [t.compute_leading_term(x, logx=logx) for t in args]
a0 = [t.limit(x, 0) for t in a]
if any([t.has(oo, -oo, zoo, nan) for t in a0]):
return self._eval_aseries(n, args0, x, logx)
# Careful: the argument goes to oo, but only logarithmically so. We
# are supposed to do a power series expansion "around the
# logarithmic term". e.g.
# f(1+x+log(x))
# -> f(1+logx) + x*f'(1+logx) + O(x**2)
# where 'logx' is given in the argument
a = [t._eval_nseries(x, n, logx) for t in args]
z = [r - r0 for (r, r0) in zip(a, a0)]
p = [Dummy() for _ in z]
q = []
v = None
for ai, zi, pi in zip(a0, z, p):
if zi.has(x):
if v is not None:
raise NotImplementedError
q.append(ai + pi)
v = pi
else:
q.append(ai)
e1 = self.func(*q)
if v is None:
return e1
s = e1._eval_nseries(v, n, logx)
o = s.getO()
s = s.removeO()
s = s.subs(v, zi).expand() + Order(o.expr.subs(v, zi), x)
return s
if (self.func.nargs is S.Naturals0
or (self.func.nargs == FiniteSet(1) and args0[0])
or any(c > 1 for c in self.func.nargs)):
e = self
e1 = e.expand()
if e == e1:
#for example when e = sin(x+1) or e = sin(cos(x))
#let's try the general algorithm
term = e.subs(x, S.Zero)
if term.is_finite is False or term is S.NaN:
raise PoleError("Cannot expand %s around 0" % (self))
series = term
fact = S.One
_x = Dummy('x')
e = e.subs(x, _x)
for i in range(n - 1):
i += 1
fact *= Rational(i)
e = e.diff(_x)
subs = e.subs(_x, S.Zero)
if subs is S.NaN:
# try to evaluate a limit if we have to
subs = e.limit(_x, S.Zero)
if subs.is_finite is False:
raise PoleError("Cannot expand %s around 0" % (self))
term = subs*(x**i)/fact
term = term.expand()
series += term
return series + Order(x**n, x)
return e1.nseries(x, n=n, logx=logx)
arg = self.args[0]
l = []
g = None
# try to predict a number of terms needed
nterms = n + 2
cf = Order(arg.as_leading_term(x), x).getn()
if cf != 0:
nterms = int(nterms / cf)
for i in range(nterms):
g = self.taylor_term(i, arg, g)
g = g.nseries(x, n=n, logx=logx)
l.append(g)
return Add(*l) + Order(x**n, x)
def fdiff(self, argindex=1):
"""
Returns the first derivative of the function.
"""
if not (1 <= argindex <= len(self.args)):
raise ArgumentIndexError(self, argindex)
ix = argindex - 1
A = self.args[ix]
if A._diff_wrt:
if len(self.args) == 1:
return Derivative(self, A)
if A.is_Symbol:
for i, v in enumerate(self.args):
if i != ix and A in v.free_symbols:
# it can't be in any other argument's free symbols
# issue 8510
break
else:
return Derivative(self, A)
else:
free = A.free_symbols
for i, a in enumerate(self.args):
if ix != i and a.free_symbols & free:
break
else:
# there is no possible interaction bewtween args
return Derivative(self, A)
# See issue 4624 and issue 4719, 5600 and 8510
D = Dummy('xi_%i' % argindex, dummy_index=hash(A))
args = self.args[:ix] + (D,) + self.args[ix + 1:]
return Subs(Derivative(self.func(*args), D), D, A)
def _eval_as_leading_term(self, x):
"""Stub that should be overridden by new Functions to return
the first non-zero term in a series if ever an x-dependent
argument whose leading term vanishes as x -> 0 might be encountered.
See, for example, cos._eval_as_leading_term.
"""
from sympy import Order
args = [a.as_leading_term(x) for a in self.args]
o = Order(1, x)
if any(x in a.free_symbols and o.contains(a) for a in args):
# Whereas x and any finite number are contained in O(1, x),
# expressions like 1/x are not. If any arg simplified to a
# vanishing expression as x -> 0 (like x or x**2, but not
# 3, 1/x, etc...) then the _eval_as_leading_term is needed
# to supply the first non-zero term of the series,
#
# e.g. expression leading term
# ---------- ------------
# cos(1/x) cos(1/x)
# cos(cos(x)) cos(1)
# cos(x) 1 <- _eval_as_leading_term needed
# sin(x) x <- _eval_as_leading_term needed
#
raise NotImplementedError(
'%s has no _eval_as_leading_term routine' % self.func)
else:
return self.func(*args)
def _sage_(self):
import sage.all as sage
fname = self.func.__name__
func = getattr(sage, fname, None)
args = [arg._sage_() for arg in self.args]
# In the case the function is not known in sage:
if func is None:
import sympy
if getattr(sympy, fname, None) is None:
# abstract function
return sage.function(fname)(*args)
else:
# the function defined in sympy is not known in sage
# this exception is caught in sage
raise AttributeError
return func(*args)
class AppliedUndef(Function):
"""
Base class for expressions resulting from the application of an undefined
function.
"""
is_number = False
def __new__(cls, *args, **options):
args = list(map(sympify, args))
obj = super(AppliedUndef, cls).__new__(cls, *args, **options)
return obj
def _eval_as_leading_term(self, x):
return self
def _sage_(self):
import sage.all as sage
fname = str(self.func)
args = [arg._sage_() for arg in self.args]
func = sage.function(fname)(*args)
return func
@property
def _diff_wrt(self):
"""
Allow derivatives wrt to undefined functions.
Examples
========
>>> from sympy import Function, Symbol
>>> f = Function('f')
>>> x = Symbol('x')
>>> f(x)._diff_wrt
True
>>> f(x).diff(x)
Derivative(f(x), x)
"""
return True
class UndefinedFunction(FunctionClass):
"""
The (meta)class of undefined functions.
"""
def __new__(mcl, name, bases=(AppliedUndef,), __dict__=None, **kwargs):
__dict__ = __dict__ or {}
# Allow Function('f', real=True)
__dict__.update({'is_' + arg: val for arg, val in kwargs.items() if arg in _assume_defined})
# You can add other attributes, although they do have to be hashable
# (but seriously, if you want to add anything other than assumptions,
# just subclass Function)
__dict__.update(kwargs)
# Save these for __eq__
__dict__.update({'_extra_kwargs': kwargs})
__dict__['__module__'] = None # For pickling
ret = super(UndefinedFunction, mcl).__new__(mcl, name, bases, __dict__)
ret.name = name
return ret
def __instancecheck__(cls, instance):
return cls in type(instance).__mro__
_extra_kwargs = {}
def __hash__(self):
return hash((self.class_key(), frozenset(self._extra_kwargs.items())))
def __eq__(self, other):
return (isinstance(other, self.__class__) and
self.class_key() == other.class_key() and
self._extra_kwargs == other._extra_kwargs)
def __ne__(self, other):
return not self == other
class WildFunction(Function, AtomicExpr):
"""
A WildFunction function matches any function (with its arguments).
Examples
========
>>> from sympy import WildFunction, Function, cos
>>> from sympy.abc import x, y
>>> F = WildFunction('F')
>>> f = Function('f')
>>> F.nargs
Naturals0
>>> x.match(F)
>>> F.match(F)
{F_: F_}
>>> f(x).match(F)
{F_: f(x)}
>>> cos(x).match(F)
{F_: cos(x)}
>>> f(x, y).match(F)
{F_: f(x, y)}
To match functions with a given number of arguments, set ``nargs`` to the
desired value at instantiation:
>>> F = WildFunction('F', nargs=2)
>>> F.nargs
{2}
>>> f(x).match(F)
>>> f(x, y).match(F)
{F_: f(x, y)}
To match functions with a range of arguments, set ``nargs`` to a tuple
containing the desired number of arguments, e.g. if ``nargs = (1, 2)``
then functions with 1 or 2 arguments will be matched.
>>> F = WildFunction('F', nargs=(1, 2))
>>> F.nargs
{1, 2}
>>> f(x).match(F)
{F_: f(x)}
>>> f(x, y).match(F)
{F_: f(x, y)}
>>> f(x, y, 1).match(F)
"""
include = set()
def __init__(cls, name, **assumptions):
from sympy.sets.sets import Set, FiniteSet
cls.name = name
nargs = assumptions.pop('nargs', S.Naturals0)
if not isinstance(nargs, Set):
# Canonicalize nargs here. See also FunctionClass.
if is_sequence(nargs):
nargs = tuple(ordered(set(nargs)))
elif nargs is not None:
nargs = (as_int(nargs),)
nargs = FiniteSet(*nargs)
cls.nargs = nargs
def matches(self, expr, repl_dict={}, old=False):
if not isinstance(expr, (AppliedUndef, Function)):
return None
if len(expr.args) not in self.nargs:
return None
repl_dict = repl_dict.copy()
repl_dict[self] = expr
return repl_dict
class Derivative(Expr):
"""
Carries out differentiation of the given expression with respect to symbols.
Examples
========
>>> from sympy import Derivative, Function, symbols, Subs
>>> from sympy.abc import x, y
>>> f, g = symbols('f g', cls=Function)
>>> Derivative(x**2, x, evaluate=True)
2*x
Denesting of derivatives retains the ordering of variables:
>>> Derivative(Derivative(f(x, y), y), x)
Derivative(f(x, y), y, x)
Contiguously identical symbols are merged into a tuple giving
the symbol and the count:
>>> Derivative(f(x), x, x, y, x)
Derivative(f(x), (x, 2), y, x)
If the derivative cannot be performed, and evaluate is True, the
order of the variables of differentiation will be made canonical:
>>> Derivative(f(x, y), y, x, evaluate=True)
Derivative(f(x, y), x, y)
Derivatives with respect to undefined functions can be calculated:
>>> Derivative(f(x)**2, f(x), evaluate=True)
2*f(x)
Such derivatives will show up when the chain rule is used to
evalulate a derivative:
>>> f(g(x)).diff(x)
Derivative(f(g(x)), g(x))*Derivative(g(x), x)
Substitution is used to represent derivatives of functions with
arguments that are not symbols or functions:
>>> f(2*x + 3).diff(x) == 2*Subs(f(y).diff(y), y, 2*x + 3)
True
Notes
=====
Simplification of high-order derivatives:
Because there can be a significant amount of simplification that can be
done when multiple differentiations are performed, results will be
automatically simplified in a fairly conservative fashion unless the
keyword ``simplify`` is set to False.
>>> from sympy import cos, sin, sqrt, diff, Function, symbols
>>> from sympy.abc import x, y, z
>>> f, g = symbols('f,g', cls=Function)
>>> e = sqrt((x + 1)**2 + x)
>>> diff(e, (x, 5), simplify=False).count_ops()
136
>>> diff(e, (x, 5)).count_ops()
30
Ordering of variables:
If evaluate is set to True and the expression cannot be evaluated, the
list of differentiation symbols will be sorted, that is, the expression is
assumed to have continuous derivatives up to the order asked.
Derivative wrt non-Symbols:
For the most part, one may not differentiate wrt non-symbols.
For example, we do not allow differentiation wrt `x*y` because
there are multiple ways of structurally defining where x*y appears
in an expression: a very strict definition would make
(x*y*z).diff(x*y) == 0. Derivatives wrt defined functions (like
cos(x)) are not allowed, either:
>>> (x*y*z).diff(x*y)
Traceback (most recent call last):
...
ValueError: Can't calculate derivative wrt x*y.
To make it easier to work with variational calculus, however,
derivatives wrt AppliedUndef and Derivatives are allowed.
For example, in the Euler-Lagrange method one may write
F(t, u, v) where u = f(t) and v = f'(t). These variables can be
written explicity as functions of time::
>>> from sympy.abc import t
>>> F = Function('F')
>>> U = f(t)
>>> V = U.diff(t)
The derivative wrt f(t) can be obtained directly:
>>> direct = F(t, U, V).diff(U)
When differentiation wrt a non-Symbol is attempted, the non-Symbol
is temporarily converted to a Symbol while the differentiation
is performed and the same answer is obtained:
>>> indirect = F(t, U, V).subs(U, x).diff(x).subs(x, U)
>>> assert direct == indirect
The implication of this non-symbol replacement is that all
functions are treated as independent of other functions and the
symbols are independent of the functions that contain them::
>>> x.diff(f(x))
0
>>> g(x).diff(f(x))
0
It also means that derivatives are assumed to depend only
on the variables of differentiation, not on anything contained
within the expression being differentiated::
>>> F = f(x)
>>> Fx = F.diff(x)
>>> Fx.diff(F) # derivative depends on x, not F
0
>>> Fxx = Fx.diff(x)
>>> Fxx.diff(Fx) # derivative depends on x, not Fx
0
The last example can be made explicit by showing the replacement
of Fx in Fxx with y:
>>> Fxx.subs(Fx, y)
Derivative(y, x)
Since that in itself will evaluate to zero, differentiating
wrt Fx will also be zero:
>>> _.doit()
0
Replacing undefined functions with concrete expressions
One must be careful to replace undefined functions with expressions
that contain variables consistent with the function definition and
the variables of differentiation or else insconsistent result will
be obtained. Consider the following example:
>>> eq = f(x)*g(y)
>>> eq.subs(f(x), x*y).diff(x, y).doit()
y*Derivative(g(y), y) + g(y)
>>> eq.diff(x, y).subs(f(x), x*y).doit()
y*Derivative(g(y), y)
The results differ because `f(x)` was replaced with an expression
that involved both variables of differentiation. In the abstract
case, differentiation of `f(x)` by `y` is 0; in the concrete case,
the presence of `y` made that derivative nonvanishing and produced
the extra `g(y)` term.
Defining differentiation for an object
An object must define ._eval_derivative(symbol) method that returns
the differentiation result. This function only needs to consider the
non-trivial case where expr contains symbol and it should call the diff()
method internally (not _eval_derivative); Derivative should be the only
one to call _eval_derivative.
Any class can allow derivatives to be taken with respect to
itself (while indicating its scalar nature). See the
docstring of Expr._diff_wrt.
See Also
========
_sort_variable_count
"""
is_Derivative = True
@property
def _diff_wrt(self):
"""An expression may be differentiated wrt a Derivative if
it is in elementary form.
Examples
========
>>> from sympy import Function, Derivative, cos
>>> from sympy.abc import x
>>> f = Function('f')
>>> Derivative(f(x), x)._diff_wrt
True
>>> Derivative(cos(x), x)._diff_wrt
False
>>> Derivative(x + 1, x)._diff_wrt
False
A Derivative might be an unevaluated form of what will not be
a valid variable of differentiation if evaluated. For example,
>>> Derivative(f(f(x)), x).doit()
Derivative(f(x), x)*Derivative(f(f(x)), f(x))
Such an expression will present the same ambiguities as arise
when dealing with any other product, like `2*x`, so `_diff_wrt`
is False:
>>> Derivative(f(f(x)), x)._diff_wrt
False
"""
return self.expr._diff_wrt and isinstance(self.doit(), Derivative)
def __new__(cls, expr, *variables, **kwargs):
from sympy.matrices.common import MatrixCommon
from sympy import Integer, MatrixExpr
from sympy.tensor.array import Array, NDimArray, derive_by_array
from sympy.utilities.misc import filldedent
expr = sympify(expr)
symbols_or_none = getattr(expr, "free_symbols", None)
has_symbol_set = isinstance(symbols_or_none, set)
if not has_symbol_set:
raise ValueError(filldedent('''
Since there are no variables in the expression %s,
it cannot be differentiated.''' % expr))
# determine value for variables if it wasn't given
if not variables:
variables = expr.free_symbols
if len(variables) != 1:
if expr.is_number:
return S.Zero
if len(variables) == 0:
raise ValueError(filldedent('''
Since there are no variables in the expression,
the variable(s) of differentiation must be supplied
to differentiate %s''' % expr))
else:
raise ValueError(filldedent('''
Since there is more than one variable in the
expression, the variable(s) of differentiation
must be supplied to differentiate %s''' % expr))
# Standardize the variables by sympifying them:
variables = list(sympify(variables))
# Split the list of variables into a list of the variables we are diff
# wrt, where each element of the list has the form (s, count) where
# s is the entity to diff wrt and count is the order of the
# derivative.
variable_count = []
array_likes = (tuple, list, Tuple)
for i, v in enumerate(variables):
if isinstance(v, Integer):
if i == 0:
raise ValueError("First variable cannot be a number: %i" % v)
count = v
prev, prevcount = variable_count[-1]
if prevcount != 1:
raise TypeError("tuple {0} followed by number {1}".format((prev, prevcount), v))
if count == 0:
variable_count.pop()
else:
variable_count[-1] = Tuple(prev, count)
else:
if isinstance(v, array_likes):
if len(v) == 0:
# Ignore empty tuples: Derivative(expr, ... , (), ... )
continue
if isinstance(v[0], array_likes):
# Derive by array: Derivative(expr, ... , [[x, y, z]], ... )
if len(v) == 1:
v = Array(v[0])
count = 1
else:
v, count = v
v = Array(v)
else:
v, count = v
if count == 0:
continue
else:
count = 1
variable_count.append(Tuple(v, count))
# light evaluation of contiguous, identical
# items: (x, 1), (x, 1) -> (x, 2)
merged = []
for t in variable_count:
v, c = t
if c.is_negative:
raise ValueError(
'order of differentiation must be nonnegative')
if merged and merged[-1][0] == v:
c += merged[-1][1]
if not c:
merged.pop()
else:
merged[-1] = Tuple(v, c)
else:
merged.append(t)
variable_count = merged
# sanity check of variables of differentation; we waited
# until the counts were computed since some variables may
# have been removed because the count was 0
for v, c in variable_count:
# v must have _diff_wrt True
if not v._diff_wrt:
__ = '' # filler to make error message neater
raise ValueError(filldedent('''
Can't calculate derivative wrt %s.%s''' % (v,
__)))
# We make a special case for 0th derivative, because there is no
# good way to unambiguously print this.
if len(variable_count) == 0:
return expr
evaluate = kwargs.get('evaluate', False)
if evaluate:
if isinstance(expr, Derivative):
expr = expr.canonical
variable_count = [
(v.canonical if isinstance(v, Derivative) else v, c)
for v, c in variable_count]
# Look for a quick exit if there are symbols that don't appear in
# expression at all. Note, this cannot check non-symbols like
# Derivatives as those can be created by intermediate
# derivatives.
zero = False
free = expr.free_symbols
for v, c in variable_count:
vfree = v.free_symbols
if c.is_positive and vfree:
if isinstance(v, AppliedUndef):
# these match exactly since
# x.diff(f(x)) == g(x).diff(f(x)) == 0
# and are not created by differentiation
D = Dummy()
if not expr.xreplace({v: D}).has(D):
zero = True
break
elif isinstance(v, MatrixExpr):
zero = False
break
elif isinstance(v, Symbol) and v not in free:
zero = True
break
else:
if not free & vfree:
# e.g. v is IndexedBase or Matrix
zero = True
break
if zero:
if isinstance(expr, (MatrixCommon, NDimArray)):
return expr.zeros(*expr.shape)
else:
return S.Zero
# make the order of symbols canonical
#TODO: check if assumption of discontinuous derivatives exist
variable_count = cls._sort_variable_count(variable_count)
# denest
if isinstance(expr, Derivative):
variable_count = list(expr.variable_count) + variable_count
expr = expr.expr
return Derivative(expr, *variable_count, **kwargs)
# we return here if evaluate is False or if there is no
# _eval_derivative method
if not evaluate or not hasattr(expr, '_eval_derivative'):
# return an unevaluated Derivative
if evaluate and variable_count == [(expr, 1)] and expr.is_scalar:
# special hack providing evaluation for classes
# that have defined is_scalar=True but have no
# _eval_derivative defined
return S.One
return Expr.__new__(cls, expr, *variable_count)
# evaluate the derivative by calling _eval_derivative method
# of expr for each variable
# -------------------------------------------------------------
nderivs = 0 # how many derivatives were performed
unhandled = []
for i, (v, count) in enumerate(variable_count):
old_expr = expr
old_v = None
is_symbol = v.is_symbol or isinstance(v,
(Iterable, Tuple, MatrixCommon, NDimArray))
if not is_symbol:
old_v = v
v = Dummy('xi')
expr = expr.xreplace({old_v: v})
# Derivatives and UndefinedFunctions are independent
# of all others
clashing = not (isinstance(old_v, Derivative) or \
isinstance(old_v, AppliedUndef))
if not v in expr.free_symbols and not clashing:
return expr.diff(v) # expr's version of 0
if not old_v.is_scalar and not hasattr(
old_v, '_eval_derivative'):
# special hack providing evaluation for classes
# that have defined is_scalar=True but have no
# _eval_derivative defined
expr *= old_v.diff(old_v)
# Evaluate the derivative `n` times. If
# `_eval_derivative_n_times` is not overridden by the current
# object, the default in `Basic` will call a loop over
# `_eval_derivative`:
obj = expr._eval_derivative_n_times(v, count)
if obj is not None and obj.is_zero:
return obj
nderivs += count
if old_v is not None:
if obj is not None:
# remove the dummy that was used
obj = obj.subs(v, old_v)
# restore expr
expr = old_expr
if obj is None:
# we've already checked for quick-exit conditions
# that give 0 so the remaining variables
# are contained in the expression but the expression
# did not compute a derivative so we stop taking
# derivatives
unhandled = variable_count[i:]
break
expr = obj
# what we have so far can be made canonical
expr = expr.replace(
lambda x: isinstance(x, Derivative),
lambda x: x.canonical)
if unhandled:
if isinstance(expr, Derivative):
unhandled = list(expr.variable_count) + unhandled
expr = expr.expr
expr = Expr.__new__(cls, expr, *unhandled)
if (nderivs > 1) == True and kwargs.get('simplify', True):
from sympy.core.exprtools import factor_terms
from sympy.simplify.simplify import signsimp
expr = factor_terms(signsimp(expr))
return expr
@property
def canonical(cls):
return cls.func(cls.expr,
*Derivative._sort_variable_count(cls.variable_count))
@classmethod
def _sort_variable_count(cls, vc):
"""
Sort (variable, count) pairs into canonical order while
retaining order of variables that do not commute during
differentiation:
* symbols and functions commute with each other
* derivatives commute with each other
* a derivative doesn't commute with anything it contains
* any other object is not allowed to commute if it has
free symbols in common with another object
Examples
========
>>> from sympy import Derivative, Function, symbols, cos
>>> vsort = Derivative._sort_variable_count
>>> x, y, z = symbols('x y z')
>>> f, g, h = symbols('f g h', cls=Function)
Contiguous items are collapsed into one pair:
>>> vsort([(x, 1), (x, 1)])
[(x, 2)]
>>> vsort([(y, 1), (f(x), 1), (y, 1), (f(x), 1)])
[(y, 2), (f(x), 2)]
Ordering is canonical.
>>> def vsort0(*v):
... # docstring helper to
... # change vi -> (vi, 0), sort, and return vi vals
... return [i[0] for i in vsort([(i, 0) for i in v])]
>>> vsort0(y, x)
[x, y]
>>> vsort0(g(y), g(x), f(y))
[f(y), g(x), g(y)]
Symbols are sorted as far to the left as possible but never
move to the left of a derivative having the same symbol in
its variables; the same applies to AppliedUndef which are
always sorted after Symbols:
>>> dfx = f(x).diff(x)
>>> assert vsort0(dfx, y) == [y, dfx]
>>> assert vsort0(dfx, x) == [dfx, x]
"""
from sympy.utilities.iterables import uniq, topological_sort
if not vc:
return []
vc = list(vc)
if len(vc) == 1:
return [Tuple(*vc[0])]
V = list(range(len(vc)))
E = []
v = lambda i: vc[i][0]
D = Dummy()
def _block(d, v, wrt=False):
# return True if v should not come before d else False
if d == v:
return wrt
if d.is_Symbol:
return False
if isinstance(d, Derivative):
# a derivative blocks if any of it's variables contain
# v; the wrt flag will return True for an exact match
# and will cause an AppliedUndef to block if v is in
# the arguments
if any(_block(k, v, wrt=True)
for k in d._wrt_variables):
return True
return False
if not wrt and isinstance(d, AppliedUndef):
return False
if v.is_Symbol:
return v in d.free_symbols
if isinstance(v, AppliedUndef):
return _block(d.xreplace({v: D}), D)
return d.free_symbols & v.free_symbols
for i in range(len(vc)):
for j in range(i):
if _block(v(j), v(i)):
E.append((j,i))
# this is the default ordering to use in case of ties
O = dict(zip(ordered(uniq([i for i, c in vc])), range(len(vc))))
ix = topological_sort((V, E), key=lambda i: O[v(i)])
# merge counts of contiguously identical items
merged = []
for v, c in [vc[i] for i in ix]:
if merged and merged[-1][0] == v:
merged[-1][1] += c
else:
merged.append([v, c])
return [Tuple(*i) for i in merged]
def _eval_is_commutative(self):
return self.expr.is_commutative
def _eval_derivative(self, v):
# If v (the variable of differentiation) is not in
# self.variables, we might be able to take the derivative.
if v not in self._wrt_variables:
dedv = self.expr.diff(v)
if isinstance(dedv, Derivative):
return dedv.func(dedv.expr, *(self.variable_count + dedv.variable_count))
# dedv (d(self.expr)/dv) could have simplified things such that the
# derivative wrt things in self.variables can now be done. Thus,
# we set evaluate=True to see if there are any other derivatives
# that can be done. The most common case is when dedv is a simple
# number so that the derivative wrt anything else will vanish.
return self.func(dedv, *self.variables, evaluate=True)
# In this case v was in self.variables so the derivative wrt v has
# already been attempted and was not computed, either because it
# couldn't be or evaluate=False originally.
variable_count = list(self.variable_count)
variable_count.append((v, 1))
return self.func(self.expr, *variable_count, evaluate=False)
def doit(self, **hints):
expr = self.expr
if hints.get('deep', True):
expr = expr.doit(**hints)
hints['evaluate'] = True
rv = self.func(expr, *self.variable_count, **hints)
if rv!= self and rv.has(Derivative):
rv = rv.doit(**hints)
return rv
@_sympifyit('z0', NotImplementedError)
def doit_numerically(self, z0):
"""
Evaluate the derivative at z numerically.
When we can represent derivatives at a point, this should be folded
into the normal evalf. For now, we need a special method.
"""
if len(self.free_symbols) != 1 or len(self.variables) != 1:
raise NotImplementedError('partials and higher order derivatives')
z = list(self.free_symbols)[0]
def eval(x):
f0 = self.expr.subs(z, Expr._from_mpmath(x, prec=mpmath.mp.prec))
f0 = f0.evalf(mlib.libmpf.prec_to_dps(mpmath.mp.prec))
return f0._to_mpmath(mpmath.mp.prec)
return Expr._from_mpmath(mpmath.diff(eval,
z0._to_mpmath(mpmath.mp.prec)),
mpmath.mp.prec)
@property
def expr(self):
return self._args[0]
@property
def _wrt_variables(self):
# return the variables of differentiation without
# respect to the type of count (int or symbolic)
return [i[0] for i in self.variable_count]
@property
def variables(self):
# TODO: deprecate? YES, make this 'enumerated_variables' and
# name _wrt_variables as variables
# TODO: support for `d^n`?
rv = []
for v, count in self.variable_count:
if not count.is_Integer:
raise TypeError(filldedent('''
Cannot give expansion for symbolic count. If you just
want a list of all variables of differentiation, use
_wrt_variables.'''))
rv.extend([v]*count)
return tuple(rv)
@property
def variable_count(self):
return self._args[1:]
@property
def derivative_count(self):
return sum([count for var, count in self.variable_count], 0)
@property
def free_symbols(self):
return self.expr.free_symbols
def _eval_subs(self, old, new):
# The substitution (old, new) cannot be done inside
# Derivative(expr, vars) for a variety of reasons
# as handled below.
if old in self._wrt_variables:
# first handle the counts
expr = self.func(self.expr, *[(v, c.subs(old, new))
for v, c in self.variable_count])
if expr != self:
return expr._eval_subs(old, new)
# quick exit case
if not getattr(new, '_diff_wrt', False):
# case (0): new is not a valid variable of
# differentiation
if isinstance(old, Symbol):
# don't introduce a new symbol if the old will do
return Subs(self, old, new)
else:
xi = Dummy('xi')
return Subs(self.xreplace({old: xi}), xi, new)
# If both are Derivatives with the same expr, check if old is
# equivalent to self or if old is a subderivative of self.
if old.is_Derivative and old.expr == self.expr:
if self.canonical == old.canonical:
return new
# collections.Counter doesn't have __le__
def _subset(a, b):
return all((a[i] <= b[i]) == True for i in a)
old_vars = Counter(dict(reversed(old.variable_count)))
self_vars = Counter(dict(reversed(self.variable_count)))
if _subset(old_vars, self_vars):
return Derivative(new, *(self_vars - old_vars).items()).canonical
args = list(self.args)
newargs = list(x._subs(old, new) for x in args)
if args[0] == old:
# complete replacement of self.expr
# we already checked that the new is valid so we know
# it won't be a problem should it appear in variables
return Derivative(*newargs)
if newargs[0] != args[0]:
# case (1) can't change expr by introducing something that is in
# the _wrt_variables if it was already in the expr
# e.g.
# for Derivative(f(x, g(y)), y), x cannot be replaced with
# anything that has y in it; for f(g(x), g(y)).diff(g(y))
# g(x) cannot be replaced with anything that has g(y)
syms = {vi: Dummy() for vi in self._wrt_variables
if not vi.is_Symbol}
wrt = set(syms.get(vi, vi) for vi in self._wrt_variables)
forbidden = args[0].xreplace(syms).free_symbols & wrt
nfree = new.xreplace(syms).free_symbols
ofree = old.xreplace(syms).free_symbols
if (nfree - ofree) & forbidden:
return Subs(self, old, new)
viter = ((i, j) for ((i, _), (j, _)) in zip(newargs[1:], args[1:]))
if any(i != j for i, j in viter): # a wrt-variable change
# case (2) can't change vars by introducing a variable
# that is contained in expr, e.g.
# for Derivative(f(z, g(h(x), y)), y), y cannot be changed to
# x, h(x), or g(h(x), y)
for a in _atomic(self.expr, recursive=True):
for i in range(1, len(newargs)):
vi, _ = newargs[i]
if a == vi and vi != args[i][0]:
return Subs(self, old, new)
# more arg-wise checks
vc = newargs[1:]
oldv = self._wrt_variables
newe = self.expr
subs = []
for i, (vi, ci) in enumerate(vc):
if not vi._diff_wrt:
# case (3) invalid differentiation expression so
# create a replacement dummy
xi = Dummy('xi_%i' % i)
# replace the old valid variable with the dummy
# in the expression
newe = newe.xreplace({oldv[i]: xi})
# and replace the bad variable with the dummy
vc[i] = (xi, ci)
# and record the dummy with the new (invalid)
# differentiation expression
subs.append((xi, vi))
if subs:
# handle any residual substitution in the expression
newe = newe._subs(old, new)
# return the Subs-wrapped derivative
return Subs(Derivative(newe, *vc), *zip(*subs))
# everything was ok
return Derivative(*newargs)
def _eval_lseries(self, x, logx):
dx = self.variables
for term in self.expr.lseries(x, logx=logx):
yield self.func(term, *dx)
def _eval_nseries(self, x, n, logx):
arg = self.expr.nseries(x, n=n, logx=logx)
o = arg.getO()
dx = self.variables
rv = [self.func(a, *dx) for a in Add.make_args(arg.removeO())]
if o:
rv.append(o/x)
return Add(*rv)
def _eval_as_leading_term(self, x):
series_gen = self.expr.lseries(x)
d = S.Zero
for leading_term in series_gen:
d = diff(leading_term, *self.variables)
if d != 0:
break
return d
def _sage_(self):
import sage.all as sage
args = [arg._sage_() for arg in self.args]
return sage.derivative(*args)
def as_finite_difference(self, points=1, x0=None, wrt=None):
""" Expresses a Derivative instance as a finite difference.
Parameters
==========
points : sequence or coefficient, optional
If sequence: discrete values (length >= order+1) of the
independent variable used for generating the finite
difference weights.
If it is a coefficient, it will be used as the step-size
for generating an equidistant sequence of length order+1
centered around ``x0``. Default: 1 (step-size 1)
x0 : number or Symbol, optional
the value of the independent variable (``wrt``) at which the
derivative is to be approximated. Default: same as ``wrt``.
wrt : Symbol, optional
"with respect to" the variable for which the (partial)
derivative is to be approximated for. If not provided it
is required that the derivative is ordinary. Default: ``None``.
Examples
========
>>> from sympy import symbols, Function, exp, sqrt, Symbol
>>> x, h = symbols('x h')
>>> f = Function('f')
>>> f(x).diff(x).as_finite_difference()
-f(x - 1/2) + f(x + 1/2)
The default step size and number of points are 1 and
``order + 1`` respectively. We can change the step size by
passing a symbol as a parameter:
>>> f(x).diff(x).as_finite_difference(h)
-f(-h/2 + x)/h + f(h/2 + x)/h
We can also specify the discretized values to be used in a
sequence:
>>> f(x).diff(x).as_finite_difference([x, x+h, x+2*h])
-3*f(x)/(2*h) + 2*f(h + x)/h - f(2*h + x)/(2*h)
The algorithm is not restricted to use equidistant spacing, nor
do we need to make the approximation around ``x0``, but we can get
an expression estimating the derivative at an offset:
>>> e, sq2 = exp(1), sqrt(2)
>>> xl = [x-h, x+h, x+e*h]
>>> f(x).diff(x, 1).as_finite_difference(xl, x+h*sq2) # doctest: +ELLIPSIS
2*h*((h + sqrt(2)*h)/(2*h) - (-sqrt(2)*h + h)/(2*h))*f(E*h + x)/...
Partial derivatives are also supported:
>>> y = Symbol('y')
>>> d2fdxdy=f(x,y).diff(x,y)
>>> d2fdxdy.as_finite_difference(wrt=x)
-Derivative(f(x - 1/2, y), y) + Derivative(f(x + 1/2, y), y)
We can apply ``as_finite_difference`` to ``Derivative`` instances in
compound expressions using ``replace``:
>>> (1 + 42**f(x).diff(x)).replace(lambda arg: arg.is_Derivative,
... lambda arg: arg.as_finite_difference())
42**(-f(x - 1/2) + f(x + 1/2)) + 1
See also
========
sympy.calculus.finite_diff.apply_finite_diff
sympy.calculus.finite_diff.differentiate_finite
sympy.calculus.finite_diff.finite_diff_weights
"""
from ..calculus.finite_diff import _as_finite_diff
return _as_finite_diff(self, points, x0, wrt)
class Lambda(Expr):
"""
Lambda(x, expr) represents a lambda function similar to Python's
'lambda x: expr'. A function of several variables is written as
Lambda((x, y, ...), expr).
A simple example:
>>> from sympy import Lambda
>>> from sympy.abc import x
>>> f = Lambda(x, x**2)
>>> f(4)
16
For multivariate functions, use:
>>> from sympy.abc import y, z, t
>>> f2 = Lambda((x, y, z, t), x + y**z + t**z)
>>> f2(1, 2, 3, 4)
73
A handy shortcut for lots of arguments:
>>> p = x, y, z
>>> f = Lambda(p, x + y*z)
>>> f(*p)
x + y*z
"""
is_Function = True
def __new__(cls, variables, expr):
from sympy.sets.sets import FiniteSet
v = list(variables) if iterable(variables) else [variables]
for i in v:
if not getattr(i, 'is_symbol', False):
raise TypeError('variable is not a symbol: %s' % i)
if len(v) == 1 and v[0] == expr:
return S.IdentityFunction
obj = Expr.__new__(cls, Tuple(*v), sympify(expr))
obj.nargs = FiniteSet(len(v))
return obj
@property
def variables(self):
"""The variables used in the internal representation of the function"""
return self._args[0]
bound_symbols = variables
@property
def expr(self):
"""The return value of the function"""
return self._args[1]
@property
def free_symbols(self):
return self.expr.free_symbols - set(self.variables)
def __call__(self, *args):
n = len(args)
if n not in self.nargs: # Lambda only ever has 1 value in nargs
# XXX: exception message must be in exactly this format to
# make it work with NumPy's functions like vectorize(). See,
# for example, https://github.com/numpy/numpy/issues/1697.
# The ideal solution would be just to attach metadata to
# the exception and change NumPy to take advantage of this.
## XXX does this apply to Lambda? If not, remove this comment.
temp = ('%(name)s takes exactly %(args)s '
'argument%(plural)s (%(given)s given)')
raise TypeError(temp % {
'name': self,
'args': list(self.nargs)[0],
'plural': 's'*(list(self.nargs)[0] != 1),
'given': n})
return self.expr.xreplace(dict(list(zip(self.variables, args))))
def __eq__(self, other):
if not isinstance(other, Lambda):
return False
if self.nargs != other.nargs:
return False
selfexpr = self.args[1]
otherexpr = other.args[1]
otherexpr = otherexpr.xreplace(dict(list(zip(other.args[0], self.args[0]))))
return selfexpr == otherexpr
def __ne__(self, other):
return not(self == other)
def __hash__(self):
return super(Lambda, self).__hash__()
def _hashable_content(self):
return (self.expr.xreplace(self.canonical_variables),)
@property
def is_identity(self):
"""Return ``True`` if this ``Lambda`` is an identity function. """
if len(self.args) == 2:
return self.args[0] == self.args[1]
else:
return None
class Subs(Expr):
"""
Represents unevaluated substitutions of an expression.
``Subs(expr, x, x0)`` receives 3 arguments: an expression, a variable or
list of distinct variables and a point or list of evaluation points
corresponding to those variables.
``Subs`` objects are generally useful to represent unevaluated derivatives
calculated at a point.
The variables may be expressions, but they are subjected to the limitations
of subs(), so it is usually a good practice to use only symbols for
variables, since in that case there can be no ambiguity.
There's no automatic expansion - use the method .doit() to effect all
possible substitutions of the object and also of objects inside the
expression.
When evaluating derivatives at a point that is not a symbol, a Subs object
is returned. One is also able to calculate derivatives of Subs objects - in
this case the expression is always expanded (for the unevaluated form, use
Derivative()).
Examples
========
>>> from sympy import Subs, Function, sin, cos
>>> from sympy.abc import x, y, z
>>> f = Function('f')
Subs are created when a particular substitution cannot be made. The
x in the derivative cannot be replaced with 0 because 0 is not a
valid variables of differentiation:
>>> f(x).diff(x).subs(x, 0)
Subs(Derivative(f(x), x), x, 0)
Once f is known, the derivative and evaluation at 0 can be done:
>>> _.subs(f, sin).doit() == sin(x).diff(x).subs(x, 0) == cos(0)
True
Subs can also be created directly with one or more variables:
>>> Subs(f(x)*sin(y) + z, (x, y), (0, 1))
Subs(z + f(x)*sin(y), (x, y), (0, 1))
>>> _.doit()
z + f(0)*sin(1)
Notes
=====
In order to allow expressions to combine before doit is done, a
representation of the Subs expression is used internally to make
expressions that are superficially different compare the same:
>>> a, b = Subs(x, x, 0), Subs(y, y, 0)
>>> a + b
2*Subs(x, x, 0)
This can lead to unexpected consequences when using methods
like `has` that are cached:
>>> s = Subs(x, x, 0)
>>> s.has(x), s.has(y)
(True, False)
>>> ss = s.subs(x, y)
>>> ss.has(x), ss.has(y)
(True, False)
>>> s, ss
(Subs(x, x, 0), Subs(y, y, 0))
"""
def __new__(cls, expr, variables, point, **assumptions):
from sympy import Symbol
if not is_sequence(variables, Tuple):
variables = [variables]
variables = Tuple(*variables)
if has_dups(variables):
repeated = [str(v) for v, i in Counter(variables).items() if i > 1]
__ = ', '.join(repeated)
raise ValueError(filldedent('''
The following expressions appear more than once: %s
''' % __))
point = Tuple(*(point if is_sequence(point, Tuple) else [point]))
if len(point) != len(variables):
raise ValueError('Number of point values must be the same as '
'the number of variables.')
if not point:
return sympify(expr)
# denest
if isinstance(expr, Subs):
variables = expr.variables + variables
point = expr.point + point
expr = expr.expr
else:
expr = sympify(expr)
# use symbols with names equal to the point value (with preppended _)
# to give a variable-independent expression
pre = "_"
pts = sorted(set(point), key=default_sort_key)
from sympy.printing import StrPrinter
class CustomStrPrinter(StrPrinter):
def _print_Dummy(self, expr):
return str(expr) + str(expr.dummy_index)
def mystr(expr, **settings):
p = CustomStrPrinter(settings)
return p.doprint(expr)
while 1:
s_pts = {p: Symbol(pre + mystr(p)) for p in pts}
reps = [(v, s_pts[p])
for v, p in zip(variables, point)]
# if any underscore-preppended symbol is already a free symbol
# and is a variable with a different point value, then there
# is a clash, e.g. _0 clashes in Subs(_0 + _1, (_0, _1), (1, 0))
# because the new symbol that would be created is _1 but _1
# is already mapped to 0 so __0 and __1 are used for the new
# symbols
if any(r in expr.free_symbols and
r in variables and
Symbol(pre + mystr(point[variables.index(r)])) != r
for _, r in reps):
pre += "_"
continue
break
obj = Expr.__new__(cls, expr, Tuple(*variables), point)
obj._expr = expr.xreplace(dict(reps))
return obj
def _eval_is_commutative(self):
return self.expr.is_commutative
def doit(self, **hints):
e, v, p = self.args
# remove self mappings
for i, (vi, pi) in enumerate(zip(v, p)):
if vi == pi:
v = v[:i] + v[i + 1:]
p = p[:i] + p[i + 1:]
if not v:
return self.expr
if isinstance(e, Derivative):
# apply functions first, e.g. f -> cos
undone = []
for i, vi in enumerate(v):
if isinstance(vi, FunctionClass):
e = e.subs(vi, p[i])
else:
undone.append((vi, p[i]))
if not isinstance(e, Derivative):
e = e.doit()
if isinstance(e, Derivative):
# do Subs that aren't related to differentiation
undone2 = []
D = Dummy()
for vi, pi in undone:
if D not in e.xreplace({vi: D}).free_symbols:
e = e.subs(vi, pi)
else:
undone2.append((vi, pi))
undone = undone2
# differentiate wrt variables that are present
wrt = []
D = Dummy()
expr = e.expr
free = expr.free_symbols
for vi, ci in e.variable_count:
if isinstance(vi, Symbol) and vi in free:
expr = expr.diff((vi, ci))
elif D in expr.subs(vi, D).free_symbols:
expr = expr.diff((vi, ci))
else:
wrt.append((vi, ci))
# inject remaining subs
rv = expr.subs(undone)
# do remaining differentiation *in order given*
for vc in wrt:
rv = rv.diff(vc)
else:
# inject remaining subs
rv = e.subs(undone)
else:
rv = e.doit(**hints).subs(list(zip(v, p)))
if hints.get('deep', True) and rv != self:
rv = rv.doit(**hints)
return rv
def evalf(self, prec=None, **options):
return self.doit().evalf(prec, **options)
n = evalf
@property
def variables(self):
"""The variables to be evaluated"""
return self._args[1]
bound_symbols = variables
@property
def expr(self):
"""The expression on which the substitution operates"""
return self._args[0]
@property
def point(self):
"""The values for which the variables are to be substituted"""
return self._args[2]
@property
def free_symbols(self):
return (self.expr.free_symbols - set(self.variables) |
set(self.point.free_symbols))
@property
def expr_free_symbols(self):
return (self.expr.expr_free_symbols - set(self.variables) |
set(self.point.expr_free_symbols))
def __eq__(self, other):
if not isinstance(other, Subs):
return False
return self._hashable_content() == other._hashable_content()
def __ne__(self, other):
return not(self == other)
def __hash__(self):
return super(Subs, self).__hash__()
def _hashable_content(self):
return (self._expr.xreplace(self.canonical_variables),
) + tuple(ordered([(v, p) for v, p in
zip(self.variables, self.point) if not self.expr.has(v)]))
def _eval_subs(self, old, new):
# Subs doit will do the variables in order; the semantics
# of subs for Subs is have the following invariant for
# Subs object foo:
# foo.doit().subs(reps) == foo.subs(reps).doit()
pt = list(self.point)
if old in self.variables:
if _atomic(new) == set([new]) and not any(
i.has(new) for i in self.args):
# the substitution is neutral
return self.xreplace({old: new})
# any occurance of old before this point will get
# handled by replacements from here on
i = self.variables.index(old)
for j in range(i, len(self.variables)):
pt[j] = pt[j]._subs(old, new)
return self.func(self.expr, self.variables, pt)
v = [i._subs(old, new) for i in self.variables]
if v != list(self.variables):
return self.func(self.expr, self.variables + (old,), pt + [new])
expr = self.expr._subs(old, new)
pt = [i._subs(old, new) for i in self.point]
return self.func(expr, v, pt)
def _eval_derivative(self, s):
# Apply the chain rule of the derivative on the substitution variables:
val = Add.fromiter(p.diff(s) * Subs(self.expr.diff(v), self.variables, self.point).doit() for v, p in zip(self.variables, self.point))
# Check if there are free symbols in `self.expr`:
# First get the `expr_free_symbols`, which returns the free symbols
# that are directly contained in an expression node (i.e. stop
# searching if the node isn't an expression). At this point turn the
# expressions into `free_symbols` and check if there are common free
# symbols in `self.expr` and the deriving factor.
fs1 = {j for i in self.expr_free_symbols for j in i.free_symbols}
if len(fs1 & s.free_symbols) > 0:
val += Subs(self.expr.diff(s), self.variables, self.point).doit()
return val
def _eval_nseries(self, x, n, logx):
if x in self.point:
# x is the variable being substituted into
apos = self.point.index(x)
other = self.variables[apos]
else:
other = x
arg = self.expr.nseries(other, n=n, logx=logx)
o = arg.getO()
terms = Add.make_args(arg.removeO())
rv = Add(*[self.func(a, *self.args[1:]) for a in terms])
if o:
rv += o.subs(other, x)
return rv
def _eval_as_leading_term(self, x):
if x in self.point:
ipos = self.point.index(x)
xvar = self.variables[ipos]
return self.expr.as_leading_term(xvar)
if x in self.variables:
# if `x` is a dummy variable, it means it won't exist after the
# substitution has been performed:
return self
# The variable is independent of the substitution:
return self.expr.as_leading_term(x)
def diff(f, *symbols, **kwargs):
"""
Differentiate f with respect to symbols.
This is just a wrapper to unify .diff() and the Derivative class; its
interface is similar to that of integrate(). You can use the same
shortcuts for multiple variables as with Derivative. For example,
diff(f(x), x, x, x) and diff(f(x), x, 3) both return the third derivative
of f(x).
You can pass evaluate=False to get an unevaluated Derivative class. Note
that if there are 0 symbols (such as diff(f(x), x, 0), then the result will
be the function (the zeroth derivative), even if evaluate=False.
Examples
========
>>> from sympy import sin, cos, Function, diff
>>> from sympy.abc import x, y
>>> f = Function('f')
>>> diff(sin(x), x)
cos(x)
>>> diff(f(x), x, x, x)
Derivative(f(x), (x, 3))
>>> diff(f(x), x, 3)
Derivative(f(x), (x, 3))
>>> diff(sin(x)*cos(y), x, 2, y, 2)
sin(x)*cos(y)
>>> type(diff(sin(x), x))
cos
>>> type(diff(sin(x), x, evaluate=False))
<class 'sympy.core.function.Derivative'>
>>> type(diff(sin(x), x, 0))
sin
>>> type(diff(sin(x), x, 0, evaluate=False))
sin
>>> diff(sin(x))
cos(x)
>>> diff(sin(x*y))
Traceback (most recent call last):
...
ValueError: specify differentiation variables to differentiate sin(x*y)
Note that ``diff(sin(x))`` syntax is meant only for convenience
in interactive sessions and should be avoided in library code.
References
==========
http://reference.wolfram.com/legacy/v5_2/Built-inFunctions/AlgebraicComputation/Calculus/D.html
See Also
========
Derivative
sympy.geometry.util.idiff: computes the derivative implicitly
"""
if hasattr(f, 'diff'):
return f.diff(*symbols, **kwargs)
kwargs.setdefault('evaluate', True)
return Derivative(f, *symbols, **kwargs)
def expand(e, deep=True, modulus=None, power_base=True, power_exp=True,
mul=True, log=True, multinomial=True, basic=True, **hints):
r"""
Expand an expression using methods given as hints.
Hints evaluated unless explicitly set to False are: ``basic``, ``log``,
``multinomial``, ``mul``, ``power_base``, and ``power_exp`` The following
hints are supported but not applied unless set to True: ``complex``,
``func``, and ``trig``. In addition, the following meta-hints are
supported by some or all of the other hints: ``frac``, ``numer``,
``denom``, ``modulus``, and ``force``. ``deep`` is supported by all
hints. Additionally, subclasses of Expr may define their own hints or
meta-hints.
The ``basic`` hint is used for any special rewriting of an object that
should be done automatically (along with the other hints like ``mul``)
when expand is called. This is a catch-all hint to handle any sort of
expansion that may not be described by the existing hint names. To use
this hint an object should override the ``_eval_expand_basic`` method.
Objects may also define their own expand methods, which are not run by
default. See the API section below.
If ``deep`` is set to ``True`` (the default), things like arguments of
functions are recursively expanded. Use ``deep=False`` to only expand on
the top level.
If the ``force`` hint is used, assumptions about variables will be ignored
in making the expansion.
Hints
=====
These hints are run by default
mul
---
Distributes multiplication over addition:
>>> from sympy import cos, exp, sin
>>> from sympy.abc import x, y, z
>>> (y*(x + z)).expand(mul=True)
x*y + y*z
multinomial
-----------
Expand (x + y + ...)**n where n is a positive integer.
>>> ((x + y + z)**2).expand(multinomial=True)
x**2 + 2*x*y + 2*x*z + y**2 + 2*y*z + z**2
power_exp
---------
Expand addition in exponents into multiplied bases.
>>> exp(x + y).expand(power_exp=True)
exp(x)*exp(y)
>>> (2**(x + y)).expand(power_exp=True)
2**x*2**y
power_base
----------
Split powers of multiplied bases.
This only happens by default if assumptions allow, or if the
``force`` meta-hint is used:
>>> ((x*y)**z).expand(power_base=True)
(x*y)**z
>>> ((x*y)**z).expand(power_base=True, force=True)
x**z*y**z
>>> ((2*y)**z).expand(power_base=True)
2**z*y**z
Note that in some cases where this expansion always holds, SymPy performs
it automatically:
>>> (x*y)**2
x**2*y**2
log
---
Pull out power of an argument as a coefficient and split logs products
into sums of logs.
Note that these only work if the arguments of the log function have the
proper assumptions--the arguments must be positive and the exponents must
be real--or else the ``force`` hint must be True:
>>> from sympy import log, symbols
>>> log(x**2*y).expand(log=True)
log(x**2*y)
>>> log(x**2*y).expand(log=True, force=True)
2*log(x) + log(y)
>>> x, y = symbols('x,y', positive=True)
>>> log(x**2*y).expand(log=True)
2*log(x) + log(y)
basic
-----
This hint is intended primarily as a way for custom subclasses to enable
expansion by default.
These hints are not run by default:
complex
-------
Split an expression into real and imaginary parts.
>>> x, y = symbols('x,y')
>>> (x + y).expand(complex=True)
re(x) + re(y) + I*im(x) + I*im(y)
>>> cos(x).expand(complex=True)
-I*sin(re(x))*sinh(im(x)) + cos(re(x))*cosh(im(x))
Note that this is just a wrapper around ``as_real_imag()``. Most objects
that wish to redefine ``_eval_expand_complex()`` should consider
redefining ``as_real_imag()`` instead.
func
----
Expand other functions.
>>> from sympy import gamma
>>> gamma(x + 1).expand(func=True)
x*gamma(x)
trig
----
Do trigonometric expansions.
>>> cos(x + y).expand(trig=True)
-sin(x)*sin(y) + cos(x)*cos(y)
>>> sin(2*x).expand(trig=True)
2*sin(x)*cos(x)
Note that the forms of ``sin(n*x)`` and ``cos(n*x)`` in terms of ``sin(x)``
and ``cos(x)`` are not unique, due to the identity `\sin^2(x) + \cos^2(x)
= 1`. The current implementation uses the form obtained from Chebyshev
polynomials, but this may change. See `this MathWorld article
<http://mathworld.wolfram.com/Multiple-AngleFormulas.html>`_ for more
information.
Notes
=====
- You can shut off unwanted methods::
>>> (exp(x + y)*(x + y)).expand()
x*exp(x)*exp(y) + y*exp(x)*exp(y)
>>> (exp(x + y)*(x + y)).expand(power_exp=False)
x*exp(x + y) + y*exp(x + y)
>>> (exp(x + y)*(x + y)).expand(mul=False)
(x + y)*exp(x)*exp(y)
- Use deep=False to only expand on the top level::
>>> exp(x + exp(x + y)).expand()
exp(x)*exp(exp(x)*exp(y))
>>> exp(x + exp(x + y)).expand(deep=False)
exp(x)*exp(exp(x + y))
- Hints are applied in an arbitrary, but consistent order (in the current
implementation, they are applied in alphabetical order, except
multinomial comes before mul, but this may change). Because of this,
some hints may prevent expansion by other hints if they are applied
first. For example, ``mul`` may distribute multiplications and prevent
``log`` and ``power_base`` from expanding them. Also, if ``mul`` is
applied before ``multinomial`, the expression might not be fully
distributed. The solution is to use the various ``expand_hint`` helper
functions or to use ``hint=False`` to this function to finely control
which hints are applied. Here are some examples::
>>> from sympy import expand, expand_mul, expand_power_base
>>> x, y, z = symbols('x,y,z', positive=True)
>>> expand(log(x*(y + z)))
log(x) + log(y + z)
Here, we see that ``log`` was applied before ``mul``. To get the mul
expanded form, either of the following will work::
>>> expand_mul(log(x*(y + z)))
log(x*y + x*z)
>>> expand(log(x*(y + z)), log=False)
log(x*y + x*z)
A similar thing can happen with the ``power_base`` hint::
>>> expand((x*(y + z))**x)
(x*y + x*z)**x
To get the ``power_base`` expanded form, either of the following will
work::
>>> expand((x*(y + z))**x, mul=False)
x**x*(y + z)**x
>>> expand_power_base((x*(y + z))**x)
x**x*(y + z)**x
>>> expand((x + y)*y/x)
y + y**2/x
The parts of a rational expression can be targeted::
>>> expand((x + y)*y/x/(x + 1), frac=True)
(x*y + y**2)/(x**2 + x)
>>> expand((x + y)*y/x/(x + 1), numer=True)
(x*y + y**2)/(x*(x + 1))
>>> expand((x + y)*y/x/(x + 1), denom=True)
y*(x + y)/(x**2 + x)
- The ``modulus`` meta-hint can be used to reduce the coefficients of an
expression post-expansion::
>>> expand((3*x + 1)**2)
9*x**2 + 6*x + 1
>>> expand((3*x + 1)**2, modulus=5)
4*x**2 + x + 1
- Either ``expand()`` the function or ``.expand()`` the method can be
used. Both are equivalent::
>>> expand((x + 1)**2)
x**2 + 2*x + 1
>>> ((x + 1)**2).expand()
x**2 + 2*x + 1
API
===
Objects can define their own expand hints by defining
``_eval_expand_hint()``. The function should take the form::
def _eval_expand_hint(self, **hints):
# Only apply the method to the top-level expression
...
See also the example below. Objects should define ``_eval_expand_hint()``
methods only if ``hint`` applies to that specific object. The generic
``_eval_expand_hint()`` method defined in Expr will handle the no-op case.
Each hint should be responsible for expanding that hint only.
Furthermore, the expansion should be applied to the top-level expression
only. ``expand()`` takes care of the recursion that happens when
``deep=True``.
You should only call ``_eval_expand_hint()`` methods directly if you are
100% sure that the object has the method, as otherwise you are liable to
get unexpected ``AttributeError``s. Note, again, that you do not need to
recursively apply the hint to args of your object: this is handled
automatically by ``expand()``. ``_eval_expand_hint()`` should
generally not be used at all outside of an ``_eval_expand_hint()`` method.
If you want to apply a specific expansion from within another method, use
the public ``expand()`` function, method, or ``expand_hint()`` functions.
In order for expand to work, objects must be rebuildable by their args,
i.e., ``obj.func(*obj.args) == obj`` must hold.
Expand methods are passed ``**hints`` so that expand hints may use
'metahints'--hints that control how different expand methods are applied.
For example, the ``force=True`` hint described above that causes
``expand(log=True)`` to ignore assumptions is such a metahint. The
``deep`` meta-hint is handled exclusively by ``expand()`` and is not
passed to ``_eval_expand_hint()`` methods.
Note that expansion hints should generally be methods that perform some
kind of 'expansion'. For hints that simply rewrite an expression, use the
.rewrite() API.
Examples
========
>>> from sympy import Expr, sympify
>>> class MyClass(Expr):
... def __new__(cls, *args):
... args = sympify(args)
... return Expr.__new__(cls, *args)
...
... def _eval_expand_double(self, **hints):
... '''
... Doubles the args of MyClass.
...
... If there more than four args, doubling is not performed,
... unless force=True is also used (False by default).
... '''
... force = hints.pop('force', False)
... if not force and len(self.args) > 4:
... return self
... return self.func(*(self.args + self.args))
...
>>> a = MyClass(1, 2, MyClass(3, 4))
>>> a
MyClass(1, 2, MyClass(3, 4))
>>> a.expand(double=True)
MyClass(1, 2, MyClass(3, 4, 3, 4), 1, 2, MyClass(3, 4, 3, 4))
>>> a.expand(double=True, deep=False)
MyClass(1, 2, MyClass(3, 4), 1, 2, MyClass(3, 4))
>>> b = MyClass(1, 2, 3, 4, 5)
>>> b.expand(double=True)
MyClass(1, 2, 3, 4, 5)
>>> b.expand(double=True, force=True)
MyClass(1, 2, 3, 4, 5, 1, 2, 3, 4, 5)
See Also
========
expand_log, expand_mul, expand_multinomial, expand_complex, expand_trig,
expand_power_base, expand_power_exp, expand_func, hyperexpand
"""
# don't modify this; modify the Expr.expand method
hints['power_base'] = power_base
hints['power_exp'] = power_exp
hints['mul'] = mul
hints['log'] = log
hints['multinomial'] = multinomial
hints['basic'] = basic
return sympify(e).expand(deep=deep, modulus=modulus, **hints)
# This is a special application of two hints
def _mexpand(expr, recursive=False):
# expand multinomials and then expand products; this may not always
# be sufficient to give a fully expanded expression (see
# test_issue_8247_8354 in test_arit)
if expr is None:
return
was = None
while was != expr:
was, expr = expr, expand_mul(expand_multinomial(expr))
if not recursive:
break
return expr
# These are simple wrappers around single hints.
def expand_mul(expr, deep=True):
"""
Wrapper around expand that only uses the mul hint. See the expand
docstring for more information.
Examples
========
>>> from sympy import symbols, expand_mul, exp, log
>>> x, y = symbols('x,y', positive=True)
>>> expand_mul(exp(x+y)*(x+y)*log(x*y**2))
x*exp(x + y)*log(x*y**2) + y*exp(x + y)*log(x*y**2)
"""
return sympify(expr).expand(deep=deep, mul=True, power_exp=False,
power_base=False, basic=False, multinomial=False, log=False)
def expand_multinomial(expr, deep=True):
"""
Wrapper around expand that only uses the multinomial hint. See the expand
docstring for more information.
Examples
========
>>> from sympy import symbols, expand_multinomial, exp
>>> x, y = symbols('x y', positive=True)
>>> expand_multinomial((x + exp(x + 1))**2)
x**2 + 2*x*exp(x + 1) + exp(2*x + 2)
"""
return sympify(expr).expand(deep=deep, mul=False, power_exp=False,
power_base=False, basic=False, multinomial=True, log=False)
def expand_log(expr, deep=True, force=False):
"""
Wrapper around expand that only uses the log hint. See the expand
docstring for more information.
Examples
========
>>> from sympy import symbols, expand_log, exp, log
>>> x, y = symbols('x,y', positive=True)
>>> expand_log(exp(x+y)*(x+y)*log(x*y**2))
(x + y)*(log(x) + 2*log(y))*exp(x + y)
"""
return sympify(expr).expand(deep=deep, log=True, mul=False,
power_exp=False, power_base=False, multinomial=False,
basic=False, force=force)
def expand_func(expr, deep=True):
"""
Wrapper around expand that only uses the func hint. See the expand
docstring for more information.
Examples
========
>>> from sympy import expand_func, gamma
>>> from sympy.abc import x
>>> expand_func(gamma(x + 2))
x*(x + 1)*gamma(x)
"""
return sympify(expr).expand(deep=deep, func=True, basic=False,
log=False, mul=False, power_exp=False, power_base=False, multinomial=False)
def expand_trig(expr, deep=True):
"""
Wrapper around expand that only uses the trig hint. See the expand
docstring for more information.
Examples
========
>>> from sympy import expand_trig, sin
>>> from sympy.abc import x, y
>>> expand_trig(sin(x+y)*(x+y))
(x + y)*(sin(x)*cos(y) + sin(y)*cos(x))
"""
return sympify(expr).expand(deep=deep, trig=True, basic=False,
log=False, mul=False, power_exp=False, power_base=False, multinomial=False)
def expand_complex(expr, deep=True):
"""
Wrapper around expand that only uses the complex hint. See the expand
docstring for more information.
Examples
========
>>> from sympy import expand_complex, exp, sqrt, I
>>> from sympy.abc import z
>>> expand_complex(exp(z))
I*exp(re(z))*sin(im(z)) + exp(re(z))*cos(im(z))
>>> expand_complex(sqrt(I))
sqrt(2)/2 + sqrt(2)*I/2
See Also
========
Expr.as_real_imag
"""
return sympify(expr).expand(deep=deep, complex=True, basic=False,
log=False, mul=False, power_exp=False, power_base=False, multinomial=False)
def expand_power_base(expr, deep=True, force=False):
"""
Wrapper around expand that only uses the power_base hint.
See the expand docstring for more information.
A wrapper to expand(power_base=True) which separates a power with a base
that is a Mul into a product of powers, without performing any other
expansions, provided that assumptions about the power's base and exponent
allow.
deep=False (default is True) will only apply to the top-level expression.
force=True (default is False) will cause the expansion to ignore
assumptions about the base and exponent. When False, the expansion will
only happen if the base is non-negative or the exponent is an integer.
>>> from sympy.abc import x, y, z
>>> from sympy import expand_power_base, sin, cos, exp
>>> (x*y)**2
x**2*y**2
>>> (2*x)**y
(2*x)**y
>>> expand_power_base(_)
2**y*x**y
>>> expand_power_base((x*y)**z)
(x*y)**z
>>> expand_power_base((x*y)**z, force=True)
x**z*y**z
>>> expand_power_base(sin((x*y)**z), deep=False)
sin((x*y)**z)
>>> expand_power_base(sin((x*y)**z), force=True)
sin(x**z*y**z)
>>> expand_power_base((2*sin(x))**y + (2*cos(x))**y)
2**y*sin(x)**y + 2**y*cos(x)**y
>>> expand_power_base((2*exp(y))**x)
2**x*exp(y)**x
>>> expand_power_base((2*cos(x))**y)
2**y*cos(x)**y
Notice that sums are left untouched. If this is not the desired behavior,
apply full ``expand()`` to the expression:
>>> expand_power_base(((x+y)*z)**2)
z**2*(x + y)**2
>>> (((x+y)*z)**2).expand()
x**2*z**2 + 2*x*y*z**2 + y**2*z**2
>>> expand_power_base((2*y)**(1+z))
2**(z + 1)*y**(z + 1)
>>> ((2*y)**(1+z)).expand()
2*2**z*y*y**z
"""
return sympify(expr).expand(deep=deep, log=False, mul=False,
power_exp=False, power_base=True, multinomial=False,
basic=False, force=force)
def expand_power_exp(expr, deep=True):
"""
Wrapper around expand that only uses the power_exp hint.
See the expand docstring for more information.
Examples
========
>>> from sympy import expand_power_exp
>>> from sympy.abc import x, y
>>> expand_power_exp(x**(y + 2))
x**2*x**y
"""
return sympify(expr).expand(deep=deep, complex=False, basic=False,
log=False, mul=False, power_exp=True, power_base=False, multinomial=False)
def count_ops(expr, visual=False):
"""
Return a representation (integer or expression) of the operations in expr.
If ``visual`` is ``False`` (default) then the sum of the coefficients of the
visual expression will be returned.
If ``visual`` is ``True`` then the number of each type of operation is shown
with the core class types (or their virtual equivalent) multiplied by the
number of times they occur.
If expr is an iterable, the sum of the op counts of the
items will be returned.
Examples
========
>>> from sympy.abc import a, b, x, y
>>> from sympy import sin, count_ops
Although there isn't a SUB object, minus signs are interpreted as
either negations or subtractions:
>>> (x - y).count_ops(visual=True)
SUB
>>> (-x).count_ops(visual=True)
NEG
Here, there are two Adds and a Pow:
>>> (1 + a + b**2).count_ops(visual=True)
2*ADD + POW
In the following, an Add, Mul, Pow and two functions:
>>> (sin(x)*x + sin(x)**2).count_ops(visual=True)
ADD + MUL + POW + 2*SIN
for a total of 5:
>>> (sin(x)*x + sin(x)**2).count_ops(visual=False)
5
Note that "what you type" is not always what you get. The expression
1/x/y is translated by sympy into 1/(x*y) so it gives a DIV and MUL rather
than two DIVs:
>>> (1/x/y).count_ops(visual=True)
DIV + MUL
The visual option can be used to demonstrate the difference in
operations for expressions in different forms. Here, the Horner
representation is compared with the expanded form of a polynomial:
>>> eq=x*(1 + x*(2 + x*(3 + x)))
>>> count_ops(eq.expand(), visual=True) - count_ops(eq, visual=True)
-MUL + 3*POW
The count_ops function also handles iterables:
>>> count_ops([x, sin(x), None, True, x + 2], visual=False)
2
>>> count_ops([x, sin(x), None, True, x + 2], visual=True)
ADD + SIN
>>> count_ops({x: sin(x), x + 2: y + 1}, visual=True)
2*ADD + SIN
"""
from sympy import Integral, Symbol
from sympy.core.relational import Relational
from sympy.simplify.radsimp import fraction
from sympy.logic.boolalg import BooleanFunction
from sympy.utilities.misc import func_name
expr = sympify(expr)
if isinstance(expr, Expr) and not expr.is_Relational:
ops = []
args = [expr]
NEG = Symbol('NEG')
DIV = Symbol('DIV')
SUB = Symbol('SUB')
ADD = Symbol('ADD')
while args:
a = args.pop()
# XXX: This is a hack to support non-Basic args
if isinstance(a, string_types):
continue
if a.is_Rational:
#-1/3 = NEG + DIV
if a is not S.One:
if a.p < 0:
ops.append(NEG)
if a.q != 1:
ops.append(DIV)
continue
elif a.is_Mul or a.is_MatMul:
if _coeff_isneg(a):
ops.append(NEG)
if a.args[0] is S.NegativeOne:
a = a.as_two_terms()[1]
else:
a = -a
n, d = fraction(a)
if n.is_Integer:
ops.append(DIV)
if n < 0:
ops.append(NEG)
args.append(d)
continue # won't be -Mul but could be Add
elif d is not S.One:
if not d.is_Integer:
args.append(d)
ops.append(DIV)
args.append(n)
continue # could be -Mul
elif a.is_Add or a.is_MatAdd:
aargs = list(a.args)
negs = 0
for i, ai in enumerate(aargs):
if _coeff_isneg(ai):
negs += 1
args.append(-ai)
if i > 0:
ops.append(SUB)
else:
args.append(ai)
if i > 0:
ops.append(ADD)
if negs == len(aargs): # -x - y = NEG + SUB
ops.append(NEG)
elif _coeff_isneg(aargs[0]): # -x + y = SUB, but already recorded ADD
ops.append(SUB - ADD)
continue
if a.is_Pow and a.exp is S.NegativeOne:
ops.append(DIV)
args.append(a.base) # won't be -Mul but could be Add
continue
if (a.is_Mul or
a.is_Pow or
a.is_Function or
isinstance(a, Derivative) or
isinstance(a, Integral)):
o = Symbol(a.func.__name__.upper())
# count the args
if (a.is_Mul or isinstance(a, LatticeOp)):
ops.append(o*(len(a.args) - 1))
else:
ops.append(o)
if not a.is_Symbol:
args.extend(a.args)
elif type(expr) is dict:
ops = [count_ops(k, visual=visual) +
count_ops(v, visual=visual) for k, v in expr.items()]
elif iterable(expr):
ops = [count_ops(i, visual=visual) for i in expr]
elif isinstance(expr, (Relational, BooleanFunction)):
ops = []
for arg in expr.args:
ops.append(count_ops(arg, visual=True))
o = Symbol(func_name(expr, short=True).upper())
ops.append(o)
elif not isinstance(expr, Basic):
ops = []
else: # it's Basic not isinstance(expr, Expr):
if not isinstance(expr, Basic):
raise TypeError("Invalid type of expr")
else:
ops = []
args = [expr]
while args:
a = args.pop()
# XXX: This is a hack to support non-Basic args
if isinstance(a, string_types):
continue
if a.args:
o = Symbol(a.func.__name__.upper())
if a.is_Boolean:
ops.append(o*(len(a.args)-1))
else:
ops.append(o)
args.extend(a.args)
if not ops:
if visual:
return S.Zero
return 0
ops = Add(*ops)
if visual:
return ops
if ops.is_Number:
return int(ops)
return sum(int((a.args or [1])[0]) for a in Add.make_args(ops))
def nfloat(expr, n=15, exponent=False):
"""Make all Rationals in expr Floats except those in exponents
(unless the exponents flag is set to True).
Examples
========
>>> from sympy.core.function import nfloat
>>> from sympy.abc import x, y
>>> from sympy import cos, pi, sqrt
>>> nfloat(x**4 + x/2 + cos(pi/3) + 1 + sqrt(y))
x**4 + 0.5*x + sqrt(y) + 1.5
>>> nfloat(x**4 + sqrt(y), exponent=True)
x**4.0 + y**0.5
"""
from sympy.core.power import Pow
from sympy.polys.rootoftools import RootOf
if iterable(expr, exclude=string_types):
if isinstance(expr, (dict, Dict)):
return type(expr)([(k, nfloat(v, n, exponent)) for k, v in
list(expr.items())])
return type(expr)([nfloat(a, n, exponent) for a in expr])
rv = sympify(expr)
if rv.is_Number:
return Float(rv, n)
elif rv.is_number:
# evalf doesn't always set the precision
rv = rv.n(n)
if rv.is_Number:
rv = Float(rv.n(n), n)
else:
pass # pure_complex(rv) is likely True
return rv
# watch out for RootOf instances that don't like to have
# their exponents replaced with Dummies and also sometimes have
# problems with evaluating at low precision (issue 6393)
rv = rv.xreplace({ro: ro.n(n) for ro in rv.atoms(RootOf)})
if not exponent:
reps = [(p, Pow(p.base, Dummy())) for p in rv.atoms(Pow)]
rv = rv.xreplace(dict(reps))
rv = rv.n(n)
if not exponent:
rv = rv.xreplace({d.exp: p.exp for p, d in reps})
else:
# Pow._eval_evalf special cases Integer exponents so if
# exponent is suppose to be handled we have to do so here
rv = rv.xreplace(Transform(
lambda x: Pow(x.base, Float(x.exp, n)),
lambda x: x.is_Pow and x.exp.is_Integer))
return rv.xreplace(Transform(
lambda x: x.func(*nfloat(x.args, n, exponent)),
lambda x: isinstance(x, Function)))
from sympy.core.symbol import Dummy, Symbol
|
c10d9b590af557571ed9097eb23b643604a84c558b11f589035e1573f6e748a7
|
"""Core module. Provides the basic operations needed in sympy.
"""
from .sympify import sympify, SympifyError
from .cache import cacheit
from .basic import Basic, Atom, preorder_traversal
from .singleton import S
from .expr import Expr, AtomicExpr, UnevaluatedExpr
from .symbol import Symbol, Wild, Dummy, symbols, var
from .numbers import Number, Float, Rational, Integer, NumberSymbol, \
RealNumber, igcd, ilcm, seterr, E, I, nan, oo, pi, zoo, \
AlgebraicNumber, comp, mod_inverse
from .power import Pow, integer_nthroot, integer_log
from .mul import Mul, prod
from .add import Add
from .mod import Mod
from .relational import ( Rel, Eq, Ne, Lt, Le, Gt, Ge,
Equality, GreaterThan, LessThan, Unequality, StrictGreaterThan,
StrictLessThan )
from .multidimensional import vectorize
from .function import Lambda, WildFunction, Derivative, diff, FunctionClass, \
Function, Subs, expand, PoleError, count_ops, \
expand_mul, expand_log, expand_func, \
expand_trig, expand_complex, expand_multinomial, nfloat, \
expand_power_base, expand_power_exp, arity
from .evalf import PrecisionExhausted, N
from .containers import Tuple, Dict
from .exprtools import gcd_terms, factor_terms, factor_nc
from .evaluate import evaluate
# expose singletons
Catalan = S.Catalan
EulerGamma = S.EulerGamma
GoldenRatio = S.GoldenRatio
TribonacciConstant = S.TribonacciConstant
|
d108f16d924c3945a3cb2eae44a93b71ab634ef2e818aa17da18cdf0220445c0
|
from __future__ import print_function, division
from collections import defaultdict
from functools import cmp_to_key
from .basic import Basic
from .compatibility import reduce, is_sequence, range
from .logic import _fuzzy_group, fuzzy_or, fuzzy_not
from .singleton import S
from .operations import AssocOp
from .cache import cacheit
from .numbers import ilcm, igcd
from .expr import Expr
# Key for sorting commutative args in canonical order
_args_sortkey = cmp_to_key(Basic.compare)
def _addsort(args):
# in-place sorting of args
args.sort(key=_args_sortkey)
def _unevaluated_Add(*args):
"""Return a well-formed unevaluated Add: Numbers are collected and
put in slot 0 and args are sorted. Use this when args have changed
but you still want to return an unevaluated Add.
Examples
========
>>> from sympy.core.add import _unevaluated_Add as uAdd
>>> from sympy import S, Add
>>> from sympy.abc import x, y
>>> a = uAdd(*[S(1.0), x, S(2)])
>>> a.args[0]
3.00000000000000
>>> a.args[1]
x
Beyond the Number being in slot 0, there is no other assurance of
order for the arguments since they are hash sorted. So, for testing
purposes, output produced by this in some other function can only
be tested against the output of this function or as one of several
options:
>>> opts = (Add(x, y, evaluated=False), Add(y, x, evaluated=False))
>>> a = uAdd(x, y)
>>> assert a in opts and a == uAdd(x, y)
>>> uAdd(x + 1, x + 2)
x + x + 3
"""
args = list(args)
newargs = []
co = S.Zero
while args:
a = args.pop()
if a.is_Add:
# this will keep nesting from building up
# so that x + (x + 1) -> x + x + 1 (3 args)
args.extend(a.args)
elif a.is_Number:
co += a
else:
newargs.append(a)
_addsort(newargs)
if co:
newargs.insert(0, co)
return Add._from_args(newargs)
class Add(Expr, AssocOp):
__slots__ = []
is_Add = True
@classmethod
def flatten(cls, seq):
"""
Takes the sequence "seq" of nested Adds and returns a flatten list.
Returns: (commutative_part, noncommutative_part, order_symbols)
Applies associativity, all terms are commutable with respect to
addition.
NB: the removal of 0 is already handled by AssocOp.__new__
See also
========
sympy.core.mul.Mul.flatten
"""
from sympy.calculus.util import AccumBounds
from sympy.matrices.expressions import MatrixExpr
from sympy.tensor.tensor import TensExpr
rv = None
if len(seq) == 2:
a, b = seq
if b.is_Rational:
a, b = b, a
if a.is_Rational:
if b.is_Mul:
rv = [a, b], [], None
if rv:
if all(s.is_commutative for s in rv[0]):
return rv
return [], rv[0], None
terms = {} # term -> coeff
# e.g. x**2 -> 5 for ... + 5*x**2 + ...
coeff = S.Zero # coefficient (Number or zoo) to always be in slot 0
# e.g. 3 + ...
order_factors = []
extra = []
for o in seq:
# O(x)
if o.is_Order:
for o1 in order_factors:
if o1.contains(o):
o = None
break
if o is None:
continue
order_factors = [o] + [
o1 for o1 in order_factors if not o.contains(o1)]
continue
# 3 or NaN
elif o.is_Number:
if (o is S.NaN or coeff is S.ComplexInfinity and
o.is_finite is False) and not extra:
# we know for sure the result will be nan
return [S.NaN], [], None
if coeff.is_Number:
coeff += o
if coeff is S.NaN and not extra:
# we know for sure the result will be nan
return [S.NaN], [], None
continue
elif isinstance(o, AccumBounds):
coeff = o.__add__(coeff)
continue
elif isinstance(o, MatrixExpr):
# can't add 0 to Matrix so make sure coeff is not 0
extra.append(o)
continue
elif isinstance(o, TensExpr):
coeff = o.__add__(coeff) if coeff else o
continue
elif o is S.ComplexInfinity:
if coeff.is_finite is False and not extra:
# we know for sure the result will be nan
return [S.NaN], [], None
coeff = S.ComplexInfinity
continue
# Add([...])
elif o.is_Add:
# NB: here we assume Add is always commutative
seq.extend(o.args) # TODO zerocopy?
continue
# Mul([...])
elif o.is_Mul:
c, s = o.as_coeff_Mul()
# check for unevaluated Pow, e.g. 2**3 or 2**(-1/2)
elif o.is_Pow:
b, e = o.as_base_exp()
if b.is_Number and (e.is_Integer or
(e.is_Rational and e.is_negative)):
seq.append(b**e)
continue
c, s = S.One, o
else:
# everything else
c = S.One
s = o
# now we have:
# o = c*s, where
#
# c is a Number
# s is an expression with number factor extracted
# let's collect terms with the same s, so e.g.
# 2*x**2 + 3*x**2 -> 5*x**2
if s in terms:
terms[s] += c
if terms[s] is S.NaN and not extra:
# we know for sure the result will be nan
return [S.NaN], [], None
else:
terms[s] = c
# now let's construct new args:
# [2*x**2, x**3, 7*x**4, pi, ...]
newseq = []
noncommutative = False
for s, c in terms.items():
# 0*s
if c is S.Zero:
continue
# 1*s
elif c is S.One:
newseq.append(s)
# c*s
else:
if s.is_Mul:
# Mul, already keeps its arguments in perfect order.
# so we can simply put c in slot0 and go the fast way.
cs = s._new_rawargs(*((c,) + s.args))
newseq.append(cs)
elif s.is_Add:
# we just re-create the unevaluated Mul
newseq.append(Mul(c, s, evaluate=False))
else:
# alternatively we have to call all Mul's machinery (slow)
newseq.append(Mul(c, s))
noncommutative = noncommutative or not s.is_commutative
# oo, -oo
if coeff is S.Infinity:
newseq = [f for f in newseq if not
(f.is_nonnegative or f.is_real and f.is_finite)]
elif coeff is S.NegativeInfinity:
newseq = [f for f in newseq if not
(f.is_nonpositive or f.is_real and f.is_finite)]
if coeff is S.ComplexInfinity:
# zoo might be
# infinite_real + finite_im
# finite_real + infinite_im
# infinite_real + infinite_im
# addition of a finite real or imaginary number won't be able to
# change the zoo nature; adding an infinite qualtity would result
# in a NaN condition if it had sign opposite of the infinite
# portion of zoo, e.g., infinite_real - infinite_real.
newseq = [c for c in newseq if not (c.is_finite and
c.is_real is not None)]
# process O(x)
if order_factors:
newseq2 = []
for t in newseq:
for o in order_factors:
# x + O(x) -> O(x)
if o.contains(t):
t = None
break
# x + O(x**2) -> x + O(x**2)
if t is not None:
newseq2.append(t)
newseq = newseq2 + order_factors
# 1 + O(1) -> O(1)
for o in order_factors:
if o.contains(coeff):
coeff = S.Zero
break
# order args canonically
_addsort(newseq)
# current code expects coeff to be first
if coeff is not S.Zero:
newseq.insert(0, coeff)
if extra:
newseq += extra
noncommutative = True
# we are done
if noncommutative:
return [], newseq, None
else:
return newseq, [], None
@classmethod
def class_key(cls):
"""Nice order of classes"""
return 3, 1, cls.__name__
def as_coefficients_dict(a):
"""Return a dictionary mapping terms to their Rational coefficient.
Since the dictionary is a defaultdict, inquiries about terms which
were not present will return a coefficient of 0. If an expression is
not an Add it is considered to have a single term.
Examples
========
>>> from sympy.abc import a, x
>>> (3*x + a*x + 4).as_coefficients_dict()
{1: 4, x: 3, a*x: 1}
>>> _[a]
0
>>> (3*a*x).as_coefficients_dict()
{a*x: 3}
"""
d = defaultdict(list)
for ai in a.args:
c, m = ai.as_coeff_Mul()
d[m].append(c)
for k, v in d.items():
if len(v) == 1:
d[k] = v[0]
else:
d[k] = Add(*v)
di = defaultdict(int)
di.update(d)
return di
@cacheit
def as_coeff_add(self, *deps):
"""
Returns a tuple (coeff, args) where self is treated as an Add and coeff
is the Number term and args is a tuple of all other terms.
Examples
========
>>> from sympy.abc import x
>>> (7 + 3*x).as_coeff_add()
(7, (3*x,))
>>> (7*x).as_coeff_add()
(0, (7*x,))
"""
if deps:
l1 = []
l2 = []
for f in self.args:
if f.has(*deps):
l2.append(f)
else:
l1.append(f)
return self._new_rawargs(*l1), tuple(l2)
coeff, notrat = self.args[0].as_coeff_add()
if coeff is not S.Zero:
return coeff, notrat + self.args[1:]
return S.Zero, self.args
def as_coeff_Add(self, rational=False):
"""Efficiently extract the coefficient of a summation. """
coeff, args = self.args[0], self.args[1:]
if coeff.is_Number and not rational or coeff.is_Rational:
return coeff, self._new_rawargs(*args)
return S.Zero, self
# Note, we intentionally do not implement Add.as_coeff_mul(). Rather, we
# let Expr.as_coeff_mul() just always return (S.One, self) for an Add. See
# issue 5524.
def _eval_power(self, e):
if e.is_Rational and self.is_number:
from sympy.core.evalf import pure_complex
from sympy.core.mul import _unevaluated_Mul
from sympy.core.exprtools import factor_terms
from sympy.core.function import expand_multinomial
from sympy.functions.elementary.complexes import sign
from sympy.functions.elementary.miscellaneous import sqrt
ri = pure_complex(self)
if ri:
r, i = ri
if e.q == 2:
D = sqrt(r**2 + i**2)
if D.is_Rational:
# (r, i, D) is a Pythagorean triple
root = sqrt(factor_terms((D - r)/2))**e.p
return root*expand_multinomial((
# principle value
(D + r)/abs(i) + sign(i)*S.ImaginaryUnit)**e.p)
elif e == -1:
return _unevaluated_Mul(
r - i*S.ImaginaryUnit,
1/(r**2 + i**2))
@cacheit
def _eval_derivative(self, s):
return self.func(*[a.diff(s) for a in self.args])
def _eval_nseries(self, x, n, logx):
terms = [t.nseries(x, n=n, logx=logx) for t in self.args]
return self.func(*terms)
def _matches_simple(self, expr, repl_dict):
# handle (w+3).matches('x+5') -> {w: x+2}
coeff, terms = self.as_coeff_add()
if len(terms) == 1:
return terms[0].matches(expr - coeff, repl_dict)
return
def matches(self, expr, repl_dict={}, old=False):
return AssocOp._matches_commutative(self, expr, repl_dict, old)
@staticmethod
def _combine_inverse(lhs, rhs):
"""
Returns lhs - rhs, but treats oo like a symbol so oo - oo
returns 0, instead of a nan.
"""
from sympy.core.function import expand_mul
from sympy.core.symbol import Dummy
inf = (S.Infinity, S.NegativeInfinity)
if lhs.has(*inf) or rhs.has(*inf):
oo = Dummy('oo')
reps = {
S.Infinity: oo,
S.NegativeInfinity: -oo}
ireps = {v: k for k, v in reps.items()}
eq = expand_mul(lhs.xreplace(reps) - rhs.xreplace(reps))
if eq.has(oo):
eq = eq.replace(
lambda x: x.is_Pow and x.base == oo,
lambda x: x.base)
return eq.xreplace(ireps)
else:
return expand_mul(lhs - rhs)
@cacheit
def as_two_terms(self):
"""Return head and tail of self.
This is the most efficient way to get the head and tail of an
expression.
- if you want only the head, use self.args[0];
- if you want to process the arguments of the tail then use
self.as_coef_add() which gives the head and a tuple containing
the arguments of the tail when treated as an Add.
- if you want the coefficient when self is treated as a Mul
then use self.as_coeff_mul()[0]
>>> from sympy.abc import x, y
>>> (3*x - 2*y + 5).as_two_terms()
(5, 3*x - 2*y)
"""
return self.args[0], self._new_rawargs(*self.args[1:])
def as_numer_denom(self):
# clear rational denominator
content, expr = self.primitive()
ncon, dcon = content.as_numer_denom()
# collect numerators and denominators of the terms
nd = defaultdict(list)
for f in expr.args:
ni, di = f.as_numer_denom()
nd[di].append(ni)
# check for quick exit
if len(nd) == 1:
d, n = nd.popitem()
return self.func(
*[_keep_coeff(ncon, ni) for ni in n]), _keep_coeff(dcon, d)
# sum up the terms having a common denominator
for d, n in nd.items():
if len(n) == 1:
nd[d] = n[0]
else:
nd[d] = self.func(*n)
# assemble single numerator and denominator
denoms, numers = [list(i) for i in zip(*iter(nd.items()))]
n, d = self.func(*[Mul(*(denoms[:i] + [numers[i]] + denoms[i + 1:]))
for i in range(len(numers))]), Mul(*denoms)
return _keep_coeff(ncon, n), _keep_coeff(dcon, d)
def _eval_is_polynomial(self, syms):
return all(term._eval_is_polynomial(syms) for term in self.args)
def _eval_is_rational_function(self, syms):
return all(term._eval_is_rational_function(syms) for term in self.args)
def _eval_is_algebraic_expr(self, syms):
return all(term._eval_is_algebraic_expr(syms) for term in self.args)
# assumption methods
_eval_is_real = lambda self: _fuzzy_group(
(a.is_real for a in self.args), quick_exit=True)
_eval_is_complex = lambda self: _fuzzy_group(
(a.is_complex for a in self.args), quick_exit=True)
_eval_is_antihermitian = lambda self: _fuzzy_group(
(a.is_antihermitian for a in self.args), quick_exit=True)
_eval_is_finite = lambda self: _fuzzy_group(
(a.is_finite for a in self.args), quick_exit=True)
_eval_is_hermitian = lambda self: _fuzzy_group(
(a.is_hermitian for a in self.args), quick_exit=True)
_eval_is_integer = lambda self: _fuzzy_group(
(a.is_integer for a in self.args), quick_exit=True)
_eval_is_rational = lambda self: _fuzzy_group(
(a.is_rational for a in self.args), quick_exit=True)
_eval_is_algebraic = lambda self: _fuzzy_group(
(a.is_algebraic for a in self.args), quick_exit=True)
_eval_is_commutative = lambda self: _fuzzy_group(
a.is_commutative for a in self.args)
def _eval_is_imaginary(self):
nz = []
im_I = []
for a in self.args:
if a.is_real:
if a.is_zero:
pass
elif a.is_zero is False:
nz.append(a)
else:
return
elif a.is_imaginary:
im_I.append(a*S.ImaginaryUnit)
elif (S.ImaginaryUnit*a).is_real:
im_I.append(a*S.ImaginaryUnit)
else:
return
b = self.func(*nz)
if b.is_zero:
return fuzzy_not(self.func(*im_I).is_zero)
elif b.is_zero is False:
return False
def _eval_is_zero(self):
if self.is_commutative is False:
# issue 10528: there is no way to know if a nc symbol
# is zero or not
return
nz = []
z = 0
im_or_z = False
im = False
for a in self.args:
if a.is_real:
if a.is_zero:
z += 1
elif a.is_zero is False:
nz.append(a)
else:
return
elif a.is_imaginary:
im = True
elif (S.ImaginaryUnit*a).is_real:
im_or_z = True
else:
return
if z == len(self.args):
return True
if len(nz) == 0 or len(nz) == len(self.args):
return None
b = self.func(*nz)
if b.is_zero:
if not im_or_z and not im:
return True
if im and not im_or_z:
return False
if b.is_zero is False:
return False
def _eval_is_odd(self):
l = [f for f in self.args if not (f.is_even is True)]
if not l:
return False
if l[0].is_odd:
return self._new_rawargs(*l[1:]).is_even
def _eval_is_irrational(self):
for t in self.args:
a = t.is_irrational
if a:
others = list(self.args)
others.remove(t)
if all(x.is_rational is True for x in others):
return True
return None
if a is None:
return
return False
def _eval_is_positive(self):
from sympy.core.exprtools import _monotonic_sign
if self.is_number:
return super(Add, self)._eval_is_positive()
c, a = self.as_coeff_Add()
if not c.is_zero:
v = _monotonic_sign(a)
if v is not None:
s = v + c
if s != self and s.is_positive and a.is_nonnegative:
return True
if len(self.free_symbols) == 1:
v = _monotonic_sign(self)
if v is not None and v != self and v.is_positive:
return True
pos = nonneg = nonpos = unknown_sign = False
saw_INF = set()
args = [a for a in self.args if not a.is_zero]
if not args:
return False
for a in args:
ispos = a.is_positive
infinite = a.is_infinite
if infinite:
saw_INF.add(fuzzy_or((ispos, a.is_nonnegative)))
if True in saw_INF and False in saw_INF:
return
if ispos:
pos = True
continue
elif a.is_nonnegative:
nonneg = True
continue
elif a.is_nonpositive:
nonpos = True
continue
if infinite is None:
return
unknown_sign = True
if saw_INF:
if len(saw_INF) > 1:
return
return saw_INF.pop()
elif unknown_sign:
return
elif not nonpos and not nonneg and pos:
return True
elif not nonpos and pos:
return True
elif not pos and not nonneg:
return False
def _eval_is_nonnegative(self):
from sympy.core.exprtools import _monotonic_sign
if not self.is_number:
c, a = self.as_coeff_Add()
if not c.is_zero and a.is_nonnegative:
v = _monotonic_sign(a)
if v is not None:
s = v + c
if s != self and s.is_nonnegative:
return True
if len(self.free_symbols) == 1:
v = _monotonic_sign(self)
if v is not None and v != self and v.is_nonnegative:
return True
def _eval_is_nonpositive(self):
from sympy.core.exprtools import _monotonic_sign
if not self.is_number:
c, a = self.as_coeff_Add()
if not c.is_zero and a.is_nonpositive:
v = _monotonic_sign(a)
if v is not None:
s = v + c
if s != self and s.is_nonpositive:
return True
if len(self.free_symbols) == 1:
v = _monotonic_sign(self)
if v is not None and v != self and v.is_nonpositive:
return True
def _eval_is_negative(self):
from sympy.core.exprtools import _monotonic_sign
if self.is_number:
return super(Add, self)._eval_is_negative()
c, a = self.as_coeff_Add()
if not c.is_zero:
v = _monotonic_sign(a)
if v is not None:
s = v + c
if s != self and s.is_negative and a.is_nonpositive:
return True
if len(self.free_symbols) == 1:
v = _monotonic_sign(self)
if v is not None and v != self and v.is_negative:
return True
neg = nonpos = nonneg = unknown_sign = False
saw_INF = set()
args = [a for a in self.args if not a.is_zero]
if not args:
return False
for a in args:
isneg = a.is_negative
infinite = a.is_infinite
if infinite:
saw_INF.add(fuzzy_or((isneg, a.is_nonpositive)))
if True in saw_INF and False in saw_INF:
return
if isneg:
neg = True
continue
elif a.is_nonpositive:
nonpos = True
continue
elif a.is_nonnegative:
nonneg = True
continue
if infinite is None:
return
unknown_sign = True
if saw_INF:
if len(saw_INF) > 1:
return
return saw_INF.pop()
elif unknown_sign:
return
elif not nonneg and not nonpos and neg:
return True
elif not nonneg and neg:
return True
elif not neg and not nonpos:
return False
def _eval_subs(self, old, new):
if not old.is_Add:
if old is S.Infinity and -old in self.args:
# foo - oo is foo + (-oo) internally
return self.xreplace({-old: -new})
return None
coeff_self, terms_self = self.as_coeff_Add()
coeff_old, terms_old = old.as_coeff_Add()
if coeff_self.is_Rational and coeff_old.is_Rational:
if terms_self == terms_old: # (2 + a).subs( 3 + a, y) -> -1 + y
return self.func(new, coeff_self, -coeff_old)
if terms_self == -terms_old: # (2 + a).subs(-3 - a, y) -> -1 - y
return self.func(-new, coeff_self, coeff_old)
if coeff_self.is_Rational and coeff_old.is_Rational \
or coeff_self == coeff_old:
args_old, args_self = self.func.make_args(
terms_old), self.func.make_args(terms_self)
if len(args_old) < len(args_self): # (a+b+c).subs(b+c,x) -> a+x
self_set = set(args_self)
old_set = set(args_old)
if old_set < self_set:
ret_set = self_set - old_set
return self.func(new, coeff_self, -coeff_old,
*[s._subs(old, new) for s in ret_set])
args_old = self.func.make_args(
-terms_old) # (a+b+c+d).subs(-b-c,x) -> a-x+d
old_set = set(args_old)
if old_set < self_set:
ret_set = self_set - old_set
return self.func(-new, coeff_self, coeff_old,
*[s._subs(old, new) for s in ret_set])
def removeO(self):
args = [a for a in self.args if not a.is_Order]
return self._new_rawargs(*args)
def getO(self):
args = [a for a in self.args if a.is_Order]
if args:
return self._new_rawargs(*args)
@cacheit
def extract_leading_order(self, symbols, point=None):
"""
Returns the leading term and its order.
Examples
========
>>> from sympy.abc import x
>>> (x + 1 + 1/x**5).extract_leading_order(x)
((x**(-5), O(x**(-5))),)
>>> (1 + x).extract_leading_order(x)
((1, O(1)),)
>>> (x + x**2).extract_leading_order(x)
((x, O(x)),)
"""
from sympy import Order
lst = []
symbols = list(symbols if is_sequence(symbols) else [symbols])
if not point:
point = [0]*len(symbols)
seq = [(f, Order(f, *zip(symbols, point))) for f in self.args]
for ef, of in seq:
for e, o in lst:
if o.contains(of) and o != of:
of = None
break
if of is None:
continue
new_lst = [(ef, of)]
for e, o in lst:
if of.contains(o) and o != of:
continue
new_lst.append((e, o))
lst = new_lst
return tuple(lst)
def as_real_imag(self, deep=True, **hints):
"""
returns a tuple representing a complex number
Examples
========
>>> from sympy import I
>>> (7 + 9*I).as_real_imag()
(7, 9)
>>> ((1 + I)/(1 - I)).as_real_imag()
(0, 1)
>>> ((1 + 2*I)*(1 + 3*I)).as_real_imag()
(-5, 5)
"""
sargs = self.args
re_part, im_part = [], []
for term in sargs:
re, im = term.as_real_imag(deep=deep)
re_part.append(re)
im_part.append(im)
return (self.func(*re_part), self.func(*im_part))
def _eval_as_leading_term(self, x):
from sympy import expand_mul, factor_terms
old = self
expr = expand_mul(self)
if not expr.is_Add:
return expr.as_leading_term(x)
infinite = [t for t in expr.args if t.is_infinite]
expr = expr.func(*[t.as_leading_term(x) for t in expr.args]).removeO()
if not expr:
# simple leading term analysis gave us 0 but we have to send
# back a term, so compute the leading term (via series)
return old.compute_leading_term(x)
elif expr is S.NaN:
return old.func._from_args(infinite)
elif not expr.is_Add:
return expr
else:
plain = expr.func(*[s for s, _ in expr.extract_leading_order(x)])
rv = factor_terms(plain, fraction=False)
rv_simplify = rv.simplify()
# if it simplifies to an x-free expression, return that;
# tests don't fail if we don't but it seems nicer to do this
if x not in rv_simplify.free_symbols:
if rv_simplify.is_zero and plain.is_zero is not True:
return (expr - plain)._eval_as_leading_term(x)
return rv_simplify
return rv
def _eval_adjoint(self):
return self.func(*[t.adjoint() for t in self.args])
def _eval_conjugate(self):
return self.func(*[t.conjugate() for t in self.args])
def _eval_transpose(self):
return self.func(*[t.transpose() for t in self.args])
def __neg__(self):
return self*(-1)
def _sage_(self):
s = 0
for x in self.args:
s += x._sage_()
return s
def primitive(self):
"""
Return ``(R, self/R)`` where ``R``` is the Rational GCD of ``self```.
``R`` is collected only from the leading coefficient of each term.
Examples
========
>>> from sympy.abc import x, y
>>> (2*x + 4*y).primitive()
(2, x + 2*y)
>>> (2*x/3 + 4*y/9).primitive()
(2/9, 3*x + 2*y)
>>> (2*x/3 + 4.2*y).primitive()
(1/3, 2*x + 12.6*y)
No subprocessing of term factors is performed:
>>> ((2 + 2*x)*x + 2).primitive()
(1, x*(2*x + 2) + 2)
Recursive processing can be done with the ``as_content_primitive()``
method:
>>> ((2 + 2*x)*x + 2).as_content_primitive()
(2, x*(x + 1) + 1)
See also: primitive() function in polytools.py
"""
terms = []
inf = False
for a in self.args:
c, m = a.as_coeff_Mul()
if not c.is_Rational:
c = S.One
m = a
inf = inf or m is S.ComplexInfinity
terms.append((c.p, c.q, m))
if not inf:
ngcd = reduce(igcd, [t[0] for t in terms], 0)
dlcm = reduce(ilcm, [t[1] for t in terms], 1)
else:
ngcd = reduce(igcd, [t[0] for t in terms if t[1]], 0)
dlcm = reduce(ilcm, [t[1] for t in terms if t[1]], 1)
if ngcd == dlcm == 1:
return S.One, self
if not inf:
for i, (p, q, term) in enumerate(terms):
terms[i] = _keep_coeff(Rational((p//ngcd)*(dlcm//q)), term)
else:
for i, (p, q, term) in enumerate(terms):
if q:
terms[i] = _keep_coeff(Rational((p//ngcd)*(dlcm//q)), term)
else:
terms[i] = _keep_coeff(Rational(p, q), term)
# we don't need a complete re-flattening since no new terms will join
# so we just use the same sort as is used in Add.flatten. When the
# coefficient changes, the ordering of terms may change, e.g.
# (3*x, 6*y) -> (2*y, x)
#
# We do need to make sure that term[0] stays in position 0, however.
#
if terms[0].is_Number or terms[0] is S.ComplexInfinity:
c = terms.pop(0)
else:
c = None
_addsort(terms)
if c:
terms.insert(0, c)
return Rational(ngcd, dlcm), self._new_rawargs(*terms)
def as_content_primitive(self, radical=False, clear=True):
"""Return the tuple (R, self/R) where R is the positive Rational
extracted from self. If radical is True (default is False) then
common radicals will be removed and included as a factor of the
primitive expression.
Examples
========
>>> from sympy import sqrt
>>> (3 + 3*sqrt(2)).as_content_primitive()
(3, 1 + sqrt(2))
Radical content can also be factored out of the primitive:
>>> (2*sqrt(2) + 4*sqrt(10)).as_content_primitive(radical=True)
(2, sqrt(2)*(1 + 2*sqrt(5)))
See docstring of Expr.as_content_primitive for more examples.
"""
con, prim = self.func(*[_keep_coeff(*a.as_content_primitive(
radical=radical, clear=clear)) for a in self.args]).primitive()
if not clear and not con.is_Integer and prim.is_Add:
con, d = con.as_numer_denom()
_p = prim/d
if any(a.as_coeff_Mul()[0].is_Integer for a in _p.args):
prim = _p
else:
con /= d
if radical and prim.is_Add:
# look for common radicals that can be removed
args = prim.args
rads = []
common_q = None
for m in args:
term_rads = defaultdict(list)
for ai in Mul.make_args(m):
if ai.is_Pow:
b, e = ai.as_base_exp()
if e.is_Rational and b.is_Integer:
term_rads[e.q].append(abs(int(b))**e.p)
if not term_rads:
break
if common_q is None:
common_q = set(term_rads.keys())
else:
common_q = common_q & set(term_rads.keys())
if not common_q:
break
rads.append(term_rads)
else:
# process rads
# keep only those in common_q
for r in rads:
for q in list(r.keys()):
if q not in common_q:
r.pop(q)
for q in r:
r[q] = prod(r[q])
# find the gcd of bases for each q
G = []
for q in common_q:
g = reduce(igcd, [r[q] for r in rads], 0)
if g != 1:
G.append(g**Rational(1, q))
if G:
G = Mul(*G)
args = [ai/G for ai in args]
prim = G*prim.func(*args)
return con, prim
@property
def _sorted_args(self):
from sympy.core.compatibility import default_sort_key
return tuple(sorted(self.args, key=default_sort_key))
def _eval_difference_delta(self, n, step):
from sympy.series.limitseq import difference_delta as dd
return self.func(*[dd(a, n, step) for a in self.args])
@property
def _mpc_(self):
"""
Convert self to an mpmath mpc if possible
"""
from sympy.core.numbers import I, Float
re_part, rest = self.as_coeff_Add()
im_part, imag_unit = rest.as_coeff_Mul()
if not imag_unit == I:
# ValueError may seem more reasonable but since it's a @property,
# we need to use AttributeError to keep from confusing things like
# hasattr.
raise AttributeError("Cannot convert Add to mpc. Must be of the form Number + Number*I")
return (Float(re_part)._mpf_, Float(im_part)._mpf_)
from .mul import Mul, _keep_coeff, prod
from sympy.core.numbers import Rational
|
e8797dc73655b3d1d61017b3f79834b588bf5c40ab5ac1541178f8477236c496
|
"""
Provides functionality for multidimensional usage of scalar-functions.
Read the vectorize docstring for more details.
"""
from __future__ import print_function, division
from sympy.core.decorators import wraps
from sympy.core.compatibility import range, string_types
def apply_on_element(f, args, kwargs, n):
"""
Returns a structure with the same dimension as the specified argument,
where each basic element is replaced by the function f applied on it. All
other arguments stay the same.
"""
# Get the specified argument.
if isinstance(n, int):
structure = args[n]
is_arg = True
elif isinstance(n, string_types):
structure = kwargs[n]
is_arg = False
# Define reduced function that is only dependent on the specified argument.
def f_reduced(x):
if hasattr(x, "__iter__"):
return list(map(f_reduced, x))
else:
if is_arg:
args[n] = x
else:
kwargs[n] = x
return f(*args, **kwargs)
# f_reduced will call itself recursively so that in the end f is applied to
# all basic elements.
return list(map(f_reduced, structure))
def iter_copy(structure):
"""
Returns a copy of an iterable object (also copying all embedded iterables).
"""
l = []
for i in structure:
if hasattr(i, "__iter__"):
l.append(iter_copy(i))
else:
l.append(i)
return l
def structure_copy(structure):
"""
Returns a copy of the given structure (numpy-array, list, iterable, ..).
"""
if hasattr(structure, "copy"):
return structure.copy()
return iter_copy(structure)
class vectorize:
"""
Generalizes a function taking scalars to accept multidimensional arguments.
For example
>>> from sympy import diff, sin, symbols, Function
>>> from sympy.core.multidimensional import vectorize
>>> x, y, z = symbols('x y z')
>>> f, g, h = list(map(Function, 'fgh'))
>>> @vectorize(0)
... def vsin(x):
... return sin(x)
>>> vsin([1, x, y])
[sin(1), sin(x), sin(y)]
>>> @vectorize(0, 1)
... def vdiff(f, y):
... return diff(f, y)
>>> vdiff([f(x, y, z), g(x, y, z), h(x, y, z)], [x, y, z])
[[Derivative(f(x, y, z), x), Derivative(f(x, y, z), y), Derivative(f(x, y, z), z)], [Derivative(g(x, y, z), x), Derivative(g(x, y, z), y), Derivative(g(x, y, z), z)], [Derivative(h(x, y, z), x), Derivative(h(x, y, z), y), Derivative(h(x, y, z), z)]]
"""
def __init__(self, *mdargs):
"""
The given numbers and strings characterize the arguments that will be
treated as data structures, where the decorated function will be applied
to every single element.
If no argument is given, everything is treated multidimensional.
"""
for a in mdargs:
if not isinstance(a, (int, string_types)):
raise TypeError("a is of invalid type")
self.mdargs = mdargs
def __call__(self, f):
"""
Returns a wrapper for the one-dimensional function that can handle
multidimensional arguments.
"""
@wraps(f)
def wrapper(*args, **kwargs):
# Get arguments that should be treated multidimensional
if self.mdargs:
mdargs = self.mdargs
else:
mdargs = range(len(args)) + kwargs.keys()
arglength = len(args)
for n in mdargs:
if isinstance(n, int):
if n >= arglength:
continue
entry = args[n]
is_arg = True
elif isinstance(n, string_types):
try:
entry = kwargs[n]
except KeyError:
continue
is_arg = False
if hasattr(entry, "__iter__"):
# Create now a copy of the given array and manipulate then
# the entries directly.
if is_arg:
args = list(args)
args[n] = structure_copy(entry)
else:
kwargs[n] = structure_copy(entry)
result = apply_on_element(wrapper, args, kwargs, n)
return result
return f(*args, **kwargs)
return wrapper
|
4bafd60dee73f546422a4ea810d6b606e1e09fca383b433b390f236765d3d98e
|
from __future__ import print_function, division
from .sympify import sympify, _sympify, SympifyError
from .basic import Basic, Atom
from .singleton import S
from .evalf import EvalfMixin, pure_complex
from .decorators import _sympifyit, call_highest_priority
from .cache import cacheit
from .compatibility import reduce, as_int, default_sort_key, range, Iterable
from mpmath.libmp import mpf_log, prec_to_dps
from collections import defaultdict
class Expr(Basic, EvalfMixin):
"""
Base class for algebraic expressions.
Everything that requires arithmetic operations to be defined
should subclass this class, instead of Basic (which should be
used only for argument storage and expression manipulation, i.e.
pattern matching, substitutions, etc).
See Also
========
sympy.core.basic.Basic
"""
__slots__ = []
is_scalar = True # self derivative is 1
@property
def _diff_wrt(self):
"""Return True if one can differentiate with respect to this
object, else False.
Subclasses such as Symbol, Function and Derivative return True
to enable derivatives wrt them. The implementation in Derivative
separates the Symbol and non-Symbol (_diff_wrt=True) variables and
temporarily converts the non-Symbols into Symbols when performing
the differentiation. By default, any object deriving from Expr
will behave like a scalar with self.diff(self) == 1. If this is
not desired then the object must also set `is_scalar = False` or
else define an _eval_derivative routine.
Note, see the docstring of Derivative for how this should work
mathematically. In particular, note that expr.subs(yourclass, Symbol)
should be well-defined on a structural level, or this will lead to
inconsistent results.
Examples
========
>>> from sympy import Expr
>>> e = Expr()
>>> e._diff_wrt
False
>>> class MyScalar(Expr):
... _diff_wrt = True
...
>>> MyScalar().diff(MyScalar())
1
>>> class MySymbol(Expr):
... _diff_wrt = True
... is_scalar = False
...
>>> MySymbol().diff(MySymbol())
Derivative(MySymbol(), MySymbol())
"""
return False
@cacheit
def sort_key(self, order=None):
coeff, expr = self.as_coeff_Mul()
if expr.is_Pow:
expr, exp = expr.args
else:
expr, exp = expr, S.One
if expr.is_Dummy:
args = (expr.sort_key(),)
elif expr.is_Atom:
args = (str(expr),)
else:
if expr.is_Add:
args = expr.as_ordered_terms(order=order)
elif expr.is_Mul:
args = expr.as_ordered_factors(order=order)
else:
args = expr.args
args = tuple(
[ default_sort_key(arg, order=order) for arg in args ])
args = (len(args), tuple(args))
exp = exp.sort_key(order=order)
return expr.class_key(), args, exp, coeff
# ***************
# * Arithmetics *
# ***************
# Expr and its sublcasses use _op_priority to determine which object
# passed to a binary special method (__mul__, etc.) will handle the
# operation. In general, the 'call_highest_priority' decorator will choose
# the object with the highest _op_priority to handle the call.
# Custom subclasses that want to define their own binary special methods
# should set an _op_priority value that is higher than the default.
#
# **NOTE**:
# This is a temporary fix, and will eventually be replaced with
# something better and more powerful. See issue 5510.
_op_priority = 10.0
def __pos__(self):
return self
def __neg__(self):
return Mul(S.NegativeOne, self)
def __abs__(self):
from sympy import Abs
return Abs(self)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__radd__')
def __add__(self, other):
return Add(self, other)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__add__')
def __radd__(self, other):
return Add(other, self)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rsub__')
def __sub__(self, other):
return Add(self, -other)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__sub__')
def __rsub__(self, other):
return Add(other, -self)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rmul__')
def __mul__(self, other):
return Mul(self, other)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__mul__')
def __rmul__(self, other):
return Mul(other, self)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rpow__')
def _pow(self, other):
return Pow(self, other)
def __pow__(self, other, mod=None):
if mod is None:
return self._pow(other)
try:
_self, other, mod = as_int(self), as_int(other), as_int(mod)
if other >= 0:
return pow(_self, other, mod)
else:
from sympy.core.numbers import mod_inverse
return mod_inverse(pow(_self, -other, mod), mod)
except ValueError:
power = self._pow(other)
try:
return power%mod
except TypeError:
return NotImplemented
@_sympifyit('other', NotImplemented)
@call_highest_priority('__pow__')
def __rpow__(self, other):
return Pow(other, self)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rdiv__')
def __div__(self, other):
return Mul(self, Pow(other, S.NegativeOne))
@_sympifyit('other', NotImplemented)
@call_highest_priority('__div__')
def __rdiv__(self, other):
return Mul(other, Pow(self, S.NegativeOne))
__truediv__ = __div__
__rtruediv__ = __rdiv__
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rmod__')
def __mod__(self, other):
return Mod(self, other)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__mod__')
def __rmod__(self, other):
return Mod(other, self)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rfloordiv__')
def __floordiv__(self, other):
from sympy.functions.elementary.integers import floor
return floor(self / other)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__floordiv__')
def __rfloordiv__(self, other):
from sympy.functions.elementary.integers import floor
return floor(other / self)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rdivmod__')
def __divmod__(self, other):
from sympy.functions.elementary.integers import floor
return floor(self / other), Mod(self, other)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__divmod__')
def __rdivmod__(self, other):
from sympy.functions.elementary.integers import floor
return floor(other / self), Mod(other, self)
def __int__(self):
# Although we only need to round to the units position, we'll
# get one more digit so the extra testing below can be avoided
# unless the rounded value rounded to an integer, e.g. if an
# expression were equal to 1.9 and we rounded to the unit position
# we would get a 2 and would not know if this rounded up or not
# without doing a test (as done below). But if we keep an extra
# digit we know that 1.9 is not the same as 1 and there is no
# need for further testing: our int value is correct. If the value
# were 1.99, however, this would round to 2.0 and our int value is
# off by one. So...if our round value is the same as the int value
# (regardless of how much extra work we do to calculate extra decimal
# places) we need to test whether we are off by one.
from sympy import Dummy
if not self.is_number:
raise TypeError("can't convert symbols to int")
r = self.round(2)
if not r.is_Number:
raise TypeError("can't convert complex to int")
if r in (S.NaN, S.Infinity, S.NegativeInfinity):
raise TypeError("can't convert %s to int" % r)
i = int(r)
if not i:
return 0
# off-by-one check
if i == r and not (self - i).equals(0):
isign = 1 if i > 0 else -1
x = Dummy()
# in the following (self - i).evalf(2) will not always work while
# (self - r).evalf(2) and the use of subs does; if the test that
# was added when this comment was added passes, it might be safe
# to simply use sign to compute this rather than doing this by hand:
diff_sign = 1 if (self - x).evalf(2, subs={x: i}) > 0 else -1
if diff_sign != isign:
i -= isign
return i
__long__ = __int__
def __float__(self):
# Don't bother testing if it's a number; if it's not this is going
# to fail, and if it is we still need to check that it evalf'ed to
# a number.
result = self.evalf()
if result.is_Number:
return float(result)
if result.is_number and result.as_real_imag()[1]:
raise TypeError("can't convert complex to float")
raise TypeError("can't convert expression to float")
def __complex__(self):
result = self.evalf()
re, im = result.as_real_imag()
return complex(float(re), float(im))
def __ge__(self, other):
from sympy import GreaterThan
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s >= %s" % (self, other))
for me in (self, other):
if me.is_complex and me.is_real is False:
raise TypeError("Invalid comparison of complex %s" % me)
if me is S.NaN:
raise TypeError("Invalid NaN comparison")
n2 = _n2(self, other)
if n2 is not None:
return _sympify(n2 >= 0)
if self.is_real or other.is_real:
dif = self - other
if dif.is_nonnegative is not None and \
dif.is_nonnegative is not dif.is_negative:
return sympify(dif.is_nonnegative)
return GreaterThan(self, other, evaluate=False)
def __le__(self, other):
from sympy import LessThan
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s <= %s" % (self, other))
for me in (self, other):
if me.is_complex and me.is_real is False:
raise TypeError("Invalid comparison of complex %s" % me)
if me is S.NaN:
raise TypeError("Invalid NaN comparison")
n2 = _n2(self, other)
if n2 is not None:
return _sympify(n2 <= 0)
if self.is_real or other.is_real:
dif = self - other
if dif.is_nonpositive is not None and \
dif.is_nonpositive is not dif.is_positive:
return sympify(dif.is_nonpositive)
return LessThan(self, other, evaluate=False)
def __gt__(self, other):
from sympy import StrictGreaterThan
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s > %s" % (self, other))
for me in (self, other):
if me.is_complex and me.is_real is False:
raise TypeError("Invalid comparison of complex %s" % me)
if me is S.NaN:
raise TypeError("Invalid NaN comparison")
n2 = _n2(self, other)
if n2 is not None:
return _sympify(n2 > 0)
if self.is_real or other.is_real:
dif = self - other
if dif.is_positive is not None and \
dif.is_positive is not dif.is_nonpositive:
return sympify(dif.is_positive)
return StrictGreaterThan(self, other, evaluate=False)
def __lt__(self, other):
from sympy import StrictLessThan
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s < %s" % (self, other))
for me in (self, other):
if me.is_complex and me.is_real is False:
raise TypeError("Invalid comparison of complex %s" % me)
if me is S.NaN:
raise TypeError("Invalid NaN comparison")
n2 = _n2(self, other)
if n2 is not None:
return _sympify(n2 < 0)
if self.is_real or other.is_real:
dif = self - other
if dif.is_negative is not None and \
dif.is_negative is not dif.is_nonnegative:
return sympify(dif.is_negative)
return StrictLessThan(self, other, evaluate=False)
def __trunc__(self):
if not self.is_number:
raise TypeError("can't truncate symbols and expressions")
else:
return Integer(self)
@staticmethod
def _from_mpmath(x, prec):
from sympy import Float
if hasattr(x, "_mpf_"):
return Float._new(x._mpf_, prec)
elif hasattr(x, "_mpc_"):
re, im = x._mpc_
re = Float._new(re, prec)
im = Float._new(im, prec)*S.ImaginaryUnit
return re + im
else:
raise TypeError("expected mpmath number (mpf or mpc)")
@property
def is_number(self):
"""Returns True if ``self`` has no free symbols and no
undefined functions (AppliedUndef, to be precise). It will be
faster than ``if not self.free_symbols``, however, since
``is_number`` will fail as soon as it hits a free symbol
or undefined function.
Examples
========
>>> from sympy import log, Integral, cos, sin, pi
>>> from sympy.core.function import Function
>>> from sympy.abc import x
>>> f = Function('f')
>>> x.is_number
False
>>> f(1).is_number
False
>>> (2*x).is_number
False
>>> (2 + Integral(2, x)).is_number
False
>>> (2 + Integral(2, (x, 1, 2))).is_number
True
Not all numbers are Numbers in the SymPy sense:
>>> pi.is_number, pi.is_Number
(True, False)
If something is a number it should evaluate to a number with
real and imaginary parts that are Numbers; the result may not
be comparable, however, since the real and/or imaginary part
of the result may not have precision.
>>> cos(1).is_number and cos(1).is_comparable
True
>>> z = cos(1)**2 + sin(1)**2 - 1
>>> z.is_number
True
>>> z.is_comparable
False
See Also
========
sympy.core.basic.is_comparable
"""
return all(obj.is_number for obj in self.args)
def _random(self, n=None, re_min=-1, im_min=-1, re_max=1, im_max=1):
"""Return self evaluated, if possible, replacing free symbols with
random complex values, if necessary.
The random complex value for each free symbol is generated
by the random_complex_number routine giving real and imaginary
parts in the range given by the re_min, re_max, im_min, and im_max
values. The returned value is evaluated to a precision of n
(if given) else the maximum of 15 and the precision needed
to get more than 1 digit of precision. If the expression
could not be evaluated to a number, or could not be evaluated
to more than 1 digit of precision, then None is returned.
Examples
========
>>> from sympy import sqrt
>>> from sympy.abc import x, y
>>> x._random() # doctest: +SKIP
0.0392918155679172 + 0.916050214307199*I
>>> x._random(2) # doctest: +SKIP
-0.77 - 0.87*I
>>> (x + y/2)._random(2) # doctest: +SKIP
-0.57 + 0.16*I
>>> sqrt(2)._random(2)
1.4
See Also
========
sympy.utilities.randtest.random_complex_number
"""
free = self.free_symbols
prec = 1
if free:
from sympy.utilities.randtest import random_complex_number
a, c, b, d = re_min, re_max, im_min, im_max
reps = dict(list(zip(free, [random_complex_number(a, b, c, d, rational=True)
for zi in free])))
try:
nmag = abs(self.evalf(2, subs=reps))
except (ValueError, TypeError):
# if an out of range value resulted in evalf problems
# then return None -- XXX is there a way to know how to
# select a good random number for a given expression?
# e.g. when calculating n! negative values for n should not
# be used
return None
else:
reps = {}
nmag = abs(self.evalf(2))
if not hasattr(nmag, '_prec'):
# e.g. exp_polar(2*I*pi) doesn't evaluate but is_number is True
return None
if nmag._prec == 1:
# increase the precision up to the default maximum
# precision to see if we can get any significance
from mpmath.libmp.libintmath import giant_steps
from sympy.core.evalf import DEFAULT_MAXPREC as target
# evaluate
for prec in giant_steps(2, target):
nmag = abs(self.evalf(prec, subs=reps))
if nmag._prec != 1:
break
if nmag._prec != 1:
if n is None:
n = max(prec, 15)
return self.evalf(n, subs=reps)
# never got any significance
return None
def is_constant(self, *wrt, **flags):
"""Return True if self is constant, False if not, or None if
the constancy could not be determined conclusively.
If an expression has no free symbols then it is a constant. If
there are free symbols it is possible that the expression is a
constant, perhaps (but not necessarily) zero. To test such
expressions, two strategies are tried:
1) numerical evaluation at two random points. If two such evaluations
give two different values and the values have a precision greater than
1 then self is not constant. If the evaluations agree or could not be
obtained with any precision, no decision is made. The numerical testing
is done only if ``wrt`` is different than the free symbols.
2) differentiation with respect to variables in 'wrt' (or all free
symbols if omitted) to see if the expression is constant or not. This
will not always lead to an expression that is zero even though an
expression is constant (see added test in test_expr.py). If
all derivatives are zero then self is constant with respect to the
given symbols.
If neither evaluation nor differentiation can prove the expression is
constant, None is returned unless two numerical values happened to be
the same and the flag ``failing_number`` is True -- in that case the
numerical value will be returned.
If flag simplify=False is passed, self will not be simplified;
the default is True since self should be simplified before testing.
Examples
========
>>> from sympy import cos, sin, Sum, S, pi
>>> from sympy.abc import a, n, x, y
>>> x.is_constant()
False
>>> S(2).is_constant()
True
>>> Sum(x, (x, 1, 10)).is_constant()
True
>>> Sum(x, (x, 1, n)).is_constant()
False
>>> Sum(x, (x, 1, n)).is_constant(y)
True
>>> Sum(x, (x, 1, n)).is_constant(n)
False
>>> Sum(x, (x, 1, n)).is_constant(x)
True
>>> eq = a*cos(x)**2 + a*sin(x)**2 - a
>>> eq.is_constant()
True
>>> eq.subs({x: pi, a: 2}) == eq.subs({x: pi, a: 3}) == 0
True
>>> (0**x).is_constant()
False
>>> x.is_constant()
False
>>> (x**x).is_constant()
False
>>> one = cos(x)**2 + sin(x)**2
>>> one.is_constant()
True
>>> ((one - 1)**(x + 1)).is_constant() in (True, False) # could be 0 or 1
True
"""
simplify = flags.get('simplify', True)
if self.is_number:
return True
free = self.free_symbols
if not free:
return True # assume f(1) is some constant
# if we are only interested in some symbols and they are not in the
# free symbols then this expression is constant wrt those symbols
wrt = set(wrt)
if wrt and not wrt & free:
return True
wrt = wrt or free
# simplify unless this has already been done
expr = self
if simplify:
expr = expr.simplify()
# is_zero should be a quick assumptions check; it can be wrong for
# numbers (see test_is_not_constant test), giving False when it
# shouldn't, but hopefully it will never give True unless it is sure.
if expr.is_zero:
return True
# try numerical evaluation to see if we get two different values
failing_number = None
if wrt == free:
# try 0 (for a) and 1 (for b)
try:
a = expr.subs(list(zip(free, [0]*len(free))),
simultaneous=True)
if a is S.NaN:
# evaluation may succeed when substitution fails
a = expr._random(None, 0, 0, 0, 0)
except ZeroDivisionError:
a = None
if a is not None and a is not S.NaN:
try:
b = expr.subs(list(zip(free, [1]*len(free))),
simultaneous=True)
if b is S.NaN:
# evaluation may succeed when substitution fails
b = expr._random(None, 1, 0, 1, 0)
except ZeroDivisionError:
b = None
if b is not None and b is not S.NaN and b.equals(a) is False:
return False
# try random real
b = expr._random(None, -1, 0, 1, 0)
if b is not None and b is not S.NaN and b.equals(a) is False:
return False
# try random complex
b = expr._random()
if b is not None and b is not S.NaN:
if b.equals(a) is False:
return False
failing_number = a if a.is_number else b
# now we will test each wrt symbol (or all free symbols) to see if the
# expression depends on them or not using differentiation. This is
# not sufficient for all expressions, however, so we don't return
# False if we get a derivative other than 0 with free symbols.
for w in wrt:
deriv = expr.diff(w)
if simplify:
deriv = deriv.simplify()
if deriv != 0:
if not (pure_complex(deriv, or_real=True)):
if flags.get('failing_number', False):
return failing_number
elif deriv.free_symbols:
# dead line provided _random returns None in such cases
return None
return False
return True
def equals(self, other, failing_expression=False):
"""Return True if self == other, False if it doesn't, or None. If
failing_expression is True then the expression which did not simplify
to a 0 will be returned instead of None.
If ``self`` is a Number (or complex number) that is not zero, then
the result is False.
If ``self`` is a number and has not evaluated to zero, evalf will be
used to test whether the expression evaluates to zero. If it does so
and the result has significance (i.e. the precision is either -1, for
a Rational result, or is greater than 1) then the evalf value will be
used to return True or False.
"""
from sympy.simplify.simplify import nsimplify, simplify
from sympy.solvers.solveset import solveset
from sympy.polys.polyerrors import NotAlgebraic
from sympy.polys.numberfields import minimal_polynomial
other = sympify(other)
if self == other:
return True
# they aren't the same so see if we can make the difference 0;
# don't worry about doing simplification steps one at a time
# because if the expression ever goes to 0 then the subsequent
# simplification steps that are done will be very fast.
diff = factor_terms(simplify(self - other), radical=True)
if not diff:
return True
if not diff.has(Add, Mod):
# if there is no expanding to be done after simplifying
# then this can't be a zero
return False
constant = diff.is_constant(simplify=False, failing_number=True)
if constant is False:
return False
if constant is None and not diff.is_number:
# e.g. unless the right simplification is done, a symbolic
# zero is possible (see expression of issue 6829: without
# simplification constant will be None).
return
if constant is True:
ndiff = diff._random()
if ndiff:
return False
# sometimes we can use a simplified result to give a clue as to
# what the expression should be; if the expression is *not* zero
# then we should have been able to compute that and so now
# we can just consider the cases where the approximation appears
# to be zero -- we try to prove it via minimal_polynomial.
if diff.is_number:
approx = diff.nsimplify()
if not approx:
# try to prove via self-consistency
surds = [s for s in diff.atoms(Pow) if s.args[0].is_Integer]
# it seems to work better to try big ones first
surds.sort(key=lambda x: -x.args[0])
for s in surds:
try:
# simplify is False here -- this expression has already
# been identified as being hard to identify as zero;
# we will handle the checking ourselves using nsimplify
# to see if we are in the right ballpark or not and if so
# *then* the simplification will be attempted.
if s.is_Symbol:
sol = list(solveset(diff, s))
else:
sol = [s]
if sol:
if s in sol:
return True
if s.is_real:
if any(nsimplify(si, [s]) == s and simplify(si) == s
for si in sol):
return True
except NotImplementedError:
pass
# try to prove with minimal_polynomial but know when
# *not* to use this or else it can take a long time. e.g. issue 8354
if True: # change True to condition that assures non-hang
try:
mp = minimal_polynomial(diff)
if mp.is_Symbol:
return True
return False
except (NotAlgebraic, NotImplementedError):
pass
# diff has not simplified to zero; constant is either None, True
# or the number with significance (prec != 1) that was randomly
# calculated twice as the same value.
if constant not in (True, None) and constant != 0:
return False
if failing_expression:
return diff
return None
def _eval_is_positive(self):
from sympy.polys.numberfields import minimal_polynomial
from sympy.polys.polyerrors import NotAlgebraic
if self.is_number:
if self.is_real is False:
return False
# check to see that we can get a value
try:
n2 = self._eval_evalf(2)
# XXX: This shouldn't be caught here
# Catches ValueError: hypsum() failed to converge to the requested
# 34 bits of accuracy
except ValueError:
return None
if n2 is None:
return None
if getattr(n2, '_prec', 1) == 1: # no significance
return None
if n2 == S.NaN:
return None
n, i = self.evalf(2).as_real_imag()
if not i.is_Number or not n.is_Number:
return False
if n._prec != 1 and i._prec != 1:
return bool(not i and n > 0)
elif n._prec == 1 and (not i or i._prec == 1) and \
self.is_algebraic and not self.has(Function):
try:
if minimal_polynomial(self).is_Symbol:
return False
except (NotAlgebraic, NotImplementedError):
pass
def _eval_is_negative(self):
from sympy.polys.numberfields import minimal_polynomial
from sympy.polys.polyerrors import NotAlgebraic
if self.is_number:
if self.is_real is False:
return False
# check to see that we can get a value
try:
n2 = self._eval_evalf(2)
# XXX: This shouldn't be caught here
# Catches ValueError: hypsum() failed to converge to the requested
# 34 bits of accuracy
except ValueError:
return None
if n2 is None:
return None
if getattr(n2, '_prec', 1) == 1: # no significance
return None
if n2 == S.NaN:
return None
n, i = self.evalf(2).as_real_imag()
if not i.is_Number or not n.is_Number:
return False
if n._prec != 1 and i._prec != 1:
return bool(not i and n < 0)
elif n._prec == 1 and (not i or i._prec == 1) and \
self.is_algebraic and not self.has(Function):
try:
if minimal_polynomial(self).is_Symbol:
return False
except (NotAlgebraic, NotImplementedError):
pass
def _eval_interval(self, x, a, b):
"""
Returns evaluation over an interval. For most functions this is:
self.subs(x, b) - self.subs(x, a),
possibly using limit() if NaN is returned from subs, or if
singularities are found between a and b.
If b or a is None, it only evaluates -self.subs(x, a) or self.subs(b, x),
respectively.
"""
from sympy.series import limit, Limit
from sympy.solvers.solveset import solveset
from sympy.sets.sets import Interval
from sympy.functions.elementary.exponential import log
from sympy.calculus.util import AccumBounds
if (a is None and b is None):
raise ValueError('Both interval ends cannot be None.')
if a == b:
return 0
if a is None:
A = 0
else:
A = self.subs(x, a)
if A.has(S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity, AccumBounds):
if (a < b) != False:
A = limit(self, x, a,"+")
else:
A = limit(self, x, a,"-")
if A is S.NaN:
return A
if isinstance(A, Limit):
raise NotImplementedError("Could not compute limit")
if b is None:
B = 0
else:
B = self.subs(x, b)
if B.has(S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity, AccumBounds):
if (a < b) != False:
B = limit(self, x, b,"-")
else:
B = limit(self, x, b,"+")
if isinstance(B, Limit):
raise NotImplementedError("Could not compute limit")
if (a and b) is None:
return B - A
value = B - A
if a.is_comparable and b.is_comparable:
if a < b:
domain = Interval(a, b)
else:
domain = Interval(b, a)
# check the singularities of self within the interval
# if singularities is a ConditionSet (not iterable), catch the exception and pass
singularities = solveset(self.cancel().as_numer_denom()[1], x,
domain=domain)
for logterm in self.atoms(log):
singularities = singularities | solveset(logterm.args[0], x,
domain=domain)
try:
for s in singularities:
if value is S.NaN:
# no need to keep adding, it will stay NaN
break
if not s.is_comparable:
continue
if (a < s) == (s < b) == True:
value += -limit(self, x, s, "+") + limit(self, x, s, "-")
elif (b < s) == (s < a) == True:
value += limit(self, x, s, "+") - limit(self, x, s, "-")
except TypeError:
pass
return value
def _eval_power(self, other):
# subclass to compute self**other for cases when
# other is not NaN, 0, or 1
return None
def _eval_conjugate(self):
if self.is_real:
return self
elif self.is_imaginary:
return -self
def conjugate(self):
from sympy.functions.elementary.complexes import conjugate as c
return c(self)
def _eval_transpose(self):
from sympy.functions.elementary.complexes import conjugate
if self.is_complex:
return self
elif self.is_hermitian:
return conjugate(self)
elif self.is_antihermitian:
return -conjugate(self)
def transpose(self):
from sympy.functions.elementary.complexes import transpose
return transpose(self)
def _eval_adjoint(self):
from sympy.functions.elementary.complexes import conjugate, transpose
if self.is_hermitian:
return self
elif self.is_antihermitian:
return -self
obj = self._eval_conjugate()
if obj is not None:
return transpose(obj)
obj = self._eval_transpose()
if obj is not None:
return conjugate(obj)
def adjoint(self):
from sympy.functions.elementary.complexes import adjoint
return adjoint(self)
@classmethod
def _parse_order(cls, order):
"""Parse and configure the ordering of terms. """
from sympy.polys.orderings import monomial_key
startswith = getattr(order, "startswith", None)
if startswith is None:
reverse = False
else:
reverse = startswith('rev-')
if reverse:
order = order[4:]
monom_key = monomial_key(order)
def neg(monom):
result = []
for m in monom:
if isinstance(m, tuple):
result.append(neg(m))
else:
result.append(-m)
return tuple(result)
def key(term):
_, ((re, im), monom, ncpart) = term
monom = neg(monom_key(monom))
ncpart = tuple([e.sort_key(order=order) for e in ncpart])
coeff = ((bool(im), im), (re, im))
return monom, ncpart, coeff
return key, reverse
def as_ordered_factors(self, order=None):
"""Return list of ordered factors (if Mul) else [self]."""
return [self]
def as_ordered_terms(self, order=None, data=False):
"""
Transform an expression to an ordered list of terms.
Examples
========
>>> from sympy import sin, cos
>>> from sympy.abc import x
>>> (sin(x)**2*cos(x) + sin(x)**2 + 1).as_ordered_terms()
[sin(x)**2*cos(x), sin(x)**2, 1]
"""
from .numbers import Number, NumberSymbol
if order is None and self.is_Add:
# Spot the special case of Add(Number, Mul(Number, expr)) with the
# first number positive and thhe second number nagative
key = lambda x:not isinstance(x, (Number, NumberSymbol))
add_args = sorted(Add.make_args(self), key=key)
if (len(add_args) == 2
and isinstance(add_args[0], (Number, NumberSymbol))
and isinstance(add_args[1], Mul)):
mul_args = sorted(Mul.make_args(add_args[1]), key=key)
if (len(mul_args) == 2
and isinstance(mul_args[0], Number)
and add_args[0].is_positive
and mul_args[0].is_negative):
return add_args
key, reverse = self._parse_order(order)
terms, gens = self.as_terms()
if not any(term.is_Order for term, _ in terms):
ordered = sorted(terms, key=key, reverse=reverse)
else:
_terms, _order = [], []
for term, repr in terms:
if not term.is_Order:
_terms.append((term, repr))
else:
_order.append((term, repr))
ordered = sorted(_terms, key=key, reverse=True) \
+ sorted(_order, key=key, reverse=True)
if data:
return ordered, gens
else:
return [term for term, _ in ordered]
def as_terms(self):
"""Transform an expression to a list of terms. """
from .add import Add
from .mul import Mul
from .exprtools import decompose_power
gens, terms = set([]), []
for term in Add.make_args(self):
coeff, _term = term.as_coeff_Mul()
coeff = complex(coeff)
cpart, ncpart = {}, []
if _term is not S.One:
for factor in Mul.make_args(_term):
if factor.is_number:
try:
coeff *= complex(factor)
except (TypeError, ValueError):
pass
else:
continue
if factor.is_commutative:
base, exp = decompose_power(factor)
cpart[base] = exp
gens.add(base)
else:
ncpart.append(factor)
coeff = coeff.real, coeff.imag
ncpart = tuple(ncpart)
terms.append((term, (coeff, cpart, ncpart)))
gens = sorted(gens, key=default_sort_key)
k, indices = len(gens), {}
for i, g in enumerate(gens):
indices[g] = i
result = []
for term, (coeff, cpart, ncpart) in terms:
monom = [0]*k
for base, exp in cpart.items():
monom[indices[base]] = exp
result.append((term, (coeff, tuple(monom), ncpart)))
return result, gens
def removeO(self):
"""Removes the additive O(..) symbol if there is one"""
return self
def getO(self):
"""Returns the additive O(..) symbol if there is one, else None."""
return None
def getn(self):
"""
Returns the order of the expression.
The order is determined either from the O(...) term. If there
is no O(...) term, it returns None.
Examples
========
>>> from sympy import O
>>> from sympy.abc import x
>>> (1 + x + O(x**2)).getn()
2
>>> (1 + x).getn()
"""
from sympy import Dummy, Symbol
o = self.getO()
if o is None:
return None
elif o.is_Order:
o = o.expr
if o is S.One:
return S.Zero
if o.is_Symbol:
return S.One
if o.is_Pow:
return o.args[1]
if o.is_Mul: # x**n*log(x)**n or x**n/log(x)**n
for oi in o.args:
if oi.is_Symbol:
return S.One
if oi.is_Pow:
syms = oi.atoms(Symbol)
if len(syms) == 1:
x = syms.pop()
oi = oi.subs(x, Dummy('x', positive=True))
if oi.base.is_Symbol and oi.exp.is_Rational:
return abs(oi.exp)
raise NotImplementedError('not sure of order of %s' % o)
def count_ops(self, visual=None):
"""wrapper for count_ops that returns the operation count."""
from .function import count_ops
return count_ops(self, visual)
def args_cnc(self, cset=False, warn=True, split_1=True):
"""Return [commutative factors, non-commutative factors] of self.
self is treated as a Mul and the ordering of the factors is maintained.
If ``cset`` is True the commutative factors will be returned in a set.
If there were repeated factors (as may happen with an unevaluated Mul)
then an error will be raised unless it is explicitly suppressed by
setting ``warn`` to False.
Note: -1 is always separated from a Number unless split_1 is False.
>>> from sympy import symbols, oo
>>> A, B = symbols('A B', commutative=0)
>>> x, y = symbols('x y')
>>> (-2*x*y).args_cnc()
[[-1, 2, x, y], []]
>>> (-2.5*x).args_cnc()
[[-1, 2.5, x], []]
>>> (-2*x*A*B*y).args_cnc()
[[-1, 2, x, y], [A, B]]
>>> (-2*x*A*B*y).args_cnc(split_1=False)
[[-2, x, y], [A, B]]
>>> (-2*x*y).args_cnc(cset=True)
[{-1, 2, x, y}, []]
The arg is always treated as a Mul:
>>> (-2 + x + A).args_cnc()
[[], [x - 2 + A]]
>>> (-oo).args_cnc() # -oo is a singleton
[[-1, oo], []]
"""
if self.is_Mul:
args = list(self.args)
else:
args = [self]
for i, mi in enumerate(args):
if not mi.is_commutative:
c = args[:i]
nc = args[i:]
break
else:
c = args
nc = []
if c and split_1 and (
c[0].is_Number and
c[0].is_negative and
c[0] is not S.NegativeOne):
c[:1] = [S.NegativeOne, -c[0]]
if cset:
clen = len(c)
c = set(c)
if clen and warn and len(c) != clen:
raise ValueError('repeated commutative arguments: %s' %
[ci for ci in c if list(self.args).count(ci) > 1])
return [c, nc]
def coeff(self, x, n=1, right=False):
"""
Returns the coefficient from the term(s) containing ``x**n``. If ``n``
is zero then all terms independent of ``x`` will be returned.
When ``x`` is noncommutative, the coefficient to the left (default) or
right of ``x`` can be returned. The keyword 'right' is ignored when
``x`` is commutative.
See Also
========
as_coefficient: separate the expression into a coefficient and factor
as_coeff_Add: separate the additive constant from an expression
as_coeff_Mul: separate the multiplicative constant from an expression
as_independent: separate x-dependent terms/factors from others
sympy.polys.polytools.coeff_monomial: efficiently find the single coefficient of a monomial in Poly
sympy.polys.polytools.nth: like coeff_monomial but powers of monomial terms are used
Examples
========
>>> from sympy import symbols
>>> from sympy.abc import x, y, z
You can select terms that have an explicit negative in front of them:
>>> (-x + 2*y).coeff(-1)
x
>>> (x - 2*y).coeff(-1)
2*y
You can select terms with no Rational coefficient:
>>> (x + 2*y).coeff(1)
x
>>> (3 + 2*x + 4*x**2).coeff(1)
0
You can select terms independent of x by making n=0; in this case
expr.as_independent(x)[0] is returned (and 0 will be returned instead
of None):
>>> (3 + 2*x + 4*x**2).coeff(x, 0)
3
>>> eq = ((x + 1)**3).expand() + 1
>>> eq
x**3 + 3*x**2 + 3*x + 2
>>> [eq.coeff(x, i) for i in reversed(range(4))]
[1, 3, 3, 2]
>>> eq -= 2
>>> [eq.coeff(x, i) for i in reversed(range(4))]
[1, 3, 3, 0]
You can select terms that have a numerical term in front of them:
>>> (-x - 2*y).coeff(2)
-y
>>> from sympy import sqrt
>>> (x + sqrt(2)*x).coeff(sqrt(2))
x
The matching is exact:
>>> (3 + 2*x + 4*x**2).coeff(x)
2
>>> (3 + 2*x + 4*x**2).coeff(x**2)
4
>>> (3 + 2*x + 4*x**2).coeff(x**3)
0
>>> (z*(x + y)**2).coeff((x + y)**2)
z
>>> (z*(x + y)**2).coeff(x + y)
0
In addition, no factoring is done, so 1 + z*(1 + y) is not obtained
from the following:
>>> (x + z*(x + x*y)).coeff(x)
1
If such factoring is desired, factor_terms can be used first:
>>> from sympy import factor_terms
>>> factor_terms(x + z*(x + x*y)).coeff(x)
z*(y + 1) + 1
>>> n, m, o = symbols('n m o', commutative=False)
>>> n.coeff(n)
1
>>> (3*n).coeff(n)
3
>>> (n*m + m*n*m).coeff(n) # = (1 + m)*n*m
1 + m
>>> (n*m + m*n*m).coeff(n, right=True) # = (1 + m)*n*m
m
If there is more than one possible coefficient 0 is returned:
>>> (n*m + m*n).coeff(n)
0
If there is only one possible coefficient, it is returned:
>>> (n*m + x*m*n).coeff(m*n)
x
>>> (n*m + x*m*n).coeff(m*n, right=1)
1
"""
x = sympify(x)
if not isinstance(x, Basic):
return S.Zero
n = as_int(n)
if not x:
return S.Zero
if x == self:
if n == 1:
return S.One
return S.Zero
if x is S.One:
co = [a for a in Add.make_args(self)
if a.as_coeff_Mul()[0] is S.One]
if not co:
return S.Zero
return Add(*co)
if n == 0:
if x.is_Add and self.is_Add:
c = self.coeff(x, right=right)
if not c:
return S.Zero
if not right:
return self - Add(*[a*x for a in Add.make_args(c)])
return self - Add(*[x*a for a in Add.make_args(c)])
return self.as_independent(x, as_Add=True)[0]
# continue with the full method, looking for this power of x:
x = x**n
def incommon(l1, l2):
if not l1 or not l2:
return []
n = min(len(l1), len(l2))
for i in range(n):
if l1[i] != l2[i]:
return l1[:i]
return l1[:]
def find(l, sub, first=True):
""" Find where list sub appears in list l. When ``first`` is True
the first occurrence from the left is returned, else the last
occurrence is returned. Return None if sub is not in l.
>> l = range(5)*2
>> find(l, [2, 3])
2
>> find(l, [2, 3], first=0)
7
>> find(l, [2, 4])
None
"""
if not sub or not l or len(sub) > len(l):
return None
n = len(sub)
if not first:
l.reverse()
sub.reverse()
for i in range(0, len(l) - n + 1):
if all(l[i + j] == sub[j] for j in range(n)):
break
else:
i = None
if not first:
l.reverse()
sub.reverse()
if i is not None and not first:
i = len(l) - (i + n)
return i
co = []
args = Add.make_args(self)
self_c = self.is_commutative
x_c = x.is_commutative
if self_c and not x_c:
return S.Zero
if self_c:
xargs = x.args_cnc(cset=True, warn=False)[0]
for a in args:
margs = a.args_cnc(cset=True, warn=False)[0]
if len(xargs) > len(margs):
continue
resid = margs.difference(xargs)
if len(resid) + len(xargs) == len(margs):
co.append(Mul(*resid))
if co == []:
return S.Zero
elif co:
return Add(*co)
elif x_c:
xargs = x.args_cnc(cset=True, warn=False)[0]
for a in args:
margs, nc = a.args_cnc(cset=True)
if len(xargs) > len(margs):
continue
resid = margs.difference(xargs)
if len(resid) + len(xargs) == len(margs):
co.append(Mul(*(list(resid) + nc)))
if co == []:
return S.Zero
elif co:
return Add(*co)
else: # both nc
xargs, nx = x.args_cnc(cset=True)
# find the parts that pass the commutative terms
for a in args:
margs, nc = a.args_cnc(cset=True)
if len(xargs) > len(margs):
continue
resid = margs.difference(xargs)
if len(resid) + len(xargs) == len(margs):
co.append((resid, nc))
# now check the non-comm parts
if not co:
return S.Zero
if all(n == co[0][1] for r, n in co):
ii = find(co[0][1], nx, right)
if ii is not None:
if not right:
return Mul(Add(*[Mul(*r) for r, c in co]), Mul(*co[0][1][:ii]))
else:
return Mul(*co[0][1][ii + len(nx):])
beg = reduce(incommon, (n[1] for n in co))
if beg:
ii = find(beg, nx, right)
if ii is not None:
if not right:
gcdc = co[0][0]
for i in range(1, len(co)):
gcdc = gcdc.intersection(co[i][0])
if not gcdc:
break
return Mul(*(list(gcdc) + beg[:ii]))
else:
m = ii + len(nx)
return Add(*[Mul(*(list(r) + n[m:])) for r, n in co])
end = list(reversed(
reduce(incommon, (list(reversed(n[1])) for n in co))))
if end:
ii = find(end, nx, right)
if ii is not None:
if not right:
return Add(*[Mul(*(list(r) + n[:-len(end) + ii])) for r, n in co])
else:
return Mul(*end[ii + len(nx):])
# look for single match
hit = None
for i, (r, n) in enumerate(co):
ii = find(n, nx, right)
if ii is not None:
if not hit:
hit = ii, r, n
else:
break
else:
if hit:
ii, r, n = hit
if not right:
return Mul(*(list(r) + n[:ii]))
else:
return Mul(*n[ii + len(nx):])
return S.Zero
def as_expr(self, *gens):
"""
Convert a polynomial to a SymPy expression.
Examples
========
>>> from sympy import sin
>>> from sympy.abc import x, y
>>> f = (x**2 + x*y).as_poly(x, y)
>>> f.as_expr()
x**2 + x*y
>>> sin(x).as_expr()
sin(x)
"""
return self
def as_coefficient(self, expr):
"""
Extracts symbolic coefficient at the given expression. In
other words, this functions separates 'self' into the product
of 'expr' and 'expr'-free coefficient. If such separation
is not possible it will return None.
Examples
========
>>> from sympy import E, pi, sin, I, Poly
>>> from sympy.abc import x
>>> E.as_coefficient(E)
1
>>> (2*E).as_coefficient(E)
2
>>> (2*sin(E)*E).as_coefficient(E)
Two terms have E in them so a sum is returned. (If one were
desiring the coefficient of the term exactly matching E then
the constant from the returned expression could be selected.
Or, for greater precision, a method of Poly can be used to
indicate the desired term from which the coefficient is
desired.)
>>> (2*E + x*E).as_coefficient(E)
x + 2
>>> _.args[0] # just want the exact match
2
>>> p = Poly(2*E + x*E); p
Poly(x*E + 2*E, x, E, domain='ZZ')
>>> p.coeff_monomial(E)
2
>>> p.nth(0, 1)
2
Since the following cannot be written as a product containing
E as a factor, None is returned. (If the coefficient ``2*x`` is
desired then the ``coeff`` method should be used.)
>>> (2*E*x + x).as_coefficient(E)
>>> (2*E*x + x).coeff(E)
2*x
>>> (E*(x + 1) + x).as_coefficient(E)
>>> (2*pi*I).as_coefficient(pi*I)
2
>>> (2*I).as_coefficient(pi*I)
See Also
========
coeff: return sum of terms have a given factor
as_coeff_Add: separate the additive constant from an expression
as_coeff_Mul: separate the multiplicative constant from an expression
as_independent: separate x-dependent terms/factors from others
sympy.polys.polytools.coeff_monomial: efficiently find the single coefficient of a monomial in Poly
sympy.polys.polytools.nth: like coeff_monomial but powers of monomial terms are used
"""
r = self.extract_multiplicatively(expr)
if r and not r.has(expr):
return r
def as_independent(self, *deps, **hint):
"""
A mostly naive separation of a Mul or Add into arguments that are not
are dependent on deps. To obtain as complete a separation of variables
as possible, use a separation method first, e.g.:
* separatevars() to change Mul, Add and Pow (including exp) into Mul
* .expand(mul=True) to change Add or Mul into Add
* .expand(log=True) to change log expr into an Add
The only non-naive thing that is done here is to respect noncommutative
ordering of variables and to always return (0, 0) for `self` of zero
regardless of hints.
For nonzero `self`, the returned tuple (i, d) has the
following interpretation:
* i will has no variable that appears in deps
* d will either have terms that contain variables that are in deps, or
be equal to 0 (when self is an Add) or 1 (when self is a Mul)
* if self is an Add then self = i + d
* if self is a Mul then self = i*d
* otherwise (self, S.One) or (S.One, self) is returned.
To force the expression to be treated as an Add, use the hint as_Add=True
Examples
========
-- self is an Add
>>> from sympy import sin, cos, exp
>>> from sympy.abc import x, y, z
>>> (x + x*y).as_independent(x)
(0, x*y + x)
>>> (x + x*y).as_independent(y)
(x, x*y)
>>> (2*x*sin(x) + y + x + z).as_independent(x)
(y + z, 2*x*sin(x) + x)
>>> (2*x*sin(x) + y + x + z).as_independent(x, y)
(z, 2*x*sin(x) + x + y)
-- self is a Mul
>>> (x*sin(x)*cos(y)).as_independent(x)
(cos(y), x*sin(x))
non-commutative terms cannot always be separated out when self is a Mul
>>> from sympy import symbols
>>> n1, n2, n3 = symbols('n1 n2 n3', commutative=False)
>>> (n1 + n1*n2).as_independent(n2)
(n1, n1*n2)
>>> (n2*n1 + n1*n2).as_independent(n2)
(0, n1*n2 + n2*n1)
>>> (n1*n2*n3).as_independent(n1)
(1, n1*n2*n3)
>>> (n1*n2*n3).as_independent(n2)
(n1, n2*n3)
>>> ((x-n1)*(x-y)).as_independent(x)
(1, (x - y)*(x - n1))
-- self is anything else:
>>> (sin(x)).as_independent(x)
(1, sin(x))
>>> (sin(x)).as_independent(y)
(sin(x), 1)
>>> exp(x+y).as_independent(x)
(1, exp(x + y))
-- force self to be treated as an Add:
>>> (3*x).as_independent(x, as_Add=True)
(0, 3*x)
-- force self to be treated as a Mul:
>>> (3+x).as_independent(x, as_Add=False)
(1, x + 3)
>>> (-3+x).as_independent(x, as_Add=False)
(1, x - 3)
Note how the below differs from the above in making the
constant on the dep term positive.
>>> (y*(-3+x)).as_independent(x)
(y, x - 3)
-- use .as_independent() for true independence testing instead
of .has(). The former considers only symbols in the free
symbols while the latter considers all symbols
>>> from sympy import Integral
>>> I = Integral(x, (x, 1, 2))
>>> I.has(x)
True
>>> x in I.free_symbols
False
>>> I.as_independent(x) == (I, 1)
True
>>> (I + x).as_independent(x) == (I, x)
True
Note: when trying to get independent terms, a separation method
might need to be used first. In this case, it is important to keep
track of what you send to this routine so you know how to interpret
the returned values
>>> from sympy import separatevars, log
>>> separatevars(exp(x+y)).as_independent(x)
(exp(y), exp(x))
>>> (x + x*y).as_independent(y)
(x, x*y)
>>> separatevars(x + x*y).as_independent(y)
(x, y + 1)
>>> (x*(1 + y)).as_independent(y)
(x, y + 1)
>>> (x*(1 + y)).expand(mul=True).as_independent(y)
(x, x*y)
>>> a, b=symbols('a b', positive=True)
>>> (log(a*b).expand(log=True)).as_independent(b)
(log(a), log(b))
See Also
========
.separatevars(), .expand(log=True), Add.as_two_terms(),
Mul.as_two_terms(), .as_coeff_add(), .as_coeff_mul()
"""
from .symbol import Symbol
from .add import _unevaluated_Add
from .mul import _unevaluated_Mul
from sympy.utilities.iterables import sift
if self.is_zero:
return S.Zero, S.Zero
func = self.func
if hint.get('as_Add', isinstance(self, Add) ):
want = Add
else:
want = Mul
# sift out deps into symbolic and other and ignore
# all symbols but those that are in the free symbols
sym = set()
other = []
for d in deps:
if isinstance(d, Symbol): # Symbol.is_Symbol is True
sym.add(d)
else:
other.append(d)
def has(e):
"""return the standard has() if there are no literal symbols, else
check to see that symbol-deps are in the free symbols."""
has_other = e.has(*other)
if not sym:
return has_other
return has_other or e.has(*(e.free_symbols & sym))
if (want is not func or
func is not Add and func is not Mul):
if has(self):
return (want.identity, self)
else:
return (self, want.identity)
else:
if func is Add:
args = list(self.args)
else:
args, nc = self.args_cnc()
d = sift(args, lambda x: has(x))
depend = d[True]
indep = d[False]
if func is Add: # all terms were treated as commutative
return (Add(*indep), _unevaluated_Add(*depend))
else: # handle noncommutative by stopping at first dependent term
for i, n in enumerate(nc):
if has(n):
depend.extend(nc[i:])
break
indep.append(n)
return Mul(*indep), (
Mul(*depend, evaluate=False) if nc else
_unevaluated_Mul(*depend))
def as_real_imag(self, deep=True, **hints):
"""Performs complex expansion on 'self' and returns a tuple
containing collected both real and imaginary parts. This
method can't be confused with re() and im() functions,
which does not perform complex expansion at evaluation.
However it is possible to expand both re() and im()
functions and get exactly the same results as with
a single call to this function.
>>> from sympy import symbols, I
>>> x, y = symbols('x,y', real=True)
>>> (x + y*I).as_real_imag()
(x, y)
>>> from sympy.abc import z, w
>>> (z + w*I).as_real_imag()
(re(z) - im(w), re(w) + im(z))
"""
from sympy import im, re
if hints.get('ignore') == self:
return None
else:
return (re(self), im(self))
def as_powers_dict(self):
"""Return self as a dictionary of factors with each factor being
treated as a power. The keys are the bases of the factors and the
values, the corresponding exponents. The resulting dictionary should
be used with caution if the expression is a Mul and contains non-
commutative factors since the order that they appeared will be lost in
the dictionary.
See Also
========
as_ordered_factors: An alternative for noncommutative applications,
returning an ordered list of factors.
args_cnc: Similar to as_ordered_factors, but guarantees separation
of commutative and noncommutative factors.
"""
d = defaultdict(int)
d.update(dict([self.as_base_exp()]))
return d
def as_coefficients_dict(self):
"""Return a dictionary mapping terms to their Rational coefficient.
Since the dictionary is a defaultdict, inquiries about terms which
were not present will return a coefficient of 0. If an expression is
not an Add it is considered to have a single term.
Examples
========
>>> from sympy.abc import a, x
>>> (3*x + a*x + 4).as_coefficients_dict()
{1: 4, x: 3, a*x: 1}
>>> _[a]
0
>>> (3*a*x).as_coefficients_dict()
{a*x: 3}
"""
c, m = self.as_coeff_Mul()
if not c.is_Rational:
c = S.One
m = self
d = defaultdict(int)
d.update({m: c})
return d
def as_base_exp(self):
# a -> b ** e
return self, S.One
def as_coeff_mul(self, *deps, **kwargs):
"""Return the tuple (c, args) where self is written as a Mul, ``m``.
c should be a Rational multiplied by any factors of the Mul that are
independent of deps.
args should be a tuple of all other factors of m; args is empty
if self is a Number or if self is independent of deps (when given).
This should be used when you don't know if self is a Mul or not but
you want to treat self as a Mul or if you want to process the
individual arguments of the tail of self as a Mul.
- if you know self is a Mul and want only the head, use self.args[0];
- if you don't want to process the arguments of the tail but need the
tail then use self.as_two_terms() which gives the head and tail;
- if you want to split self into an independent and dependent parts
use ``self.as_independent(*deps)``
>>> from sympy import S
>>> from sympy.abc import x, y
>>> (S(3)).as_coeff_mul()
(3, ())
>>> (3*x*y).as_coeff_mul()
(3, (x, y))
>>> (3*x*y).as_coeff_mul(x)
(3*y, (x,))
>>> (3*y).as_coeff_mul(x)
(3*y, ())
"""
if deps:
if not self.has(*deps):
return self, tuple()
return S.One, (self,)
def as_coeff_add(self, *deps):
"""Return the tuple (c, args) where self is written as an Add, ``a``.
c should be a Rational added to any terms of the Add that are
independent of deps.
args should be a tuple of all other terms of ``a``; args is empty
if self is a Number or if self is independent of deps (when given).
This should be used when you don't know if self is an Add or not but
you want to treat self as an Add or if you want to process the
individual arguments of the tail of self as an Add.
- if you know self is an Add and want only the head, use self.args[0];
- if you don't want to process the arguments of the tail but need the
tail then use self.as_two_terms() which gives the head and tail.
- if you want to split self into an independent and dependent parts
use ``self.as_independent(*deps)``
>>> from sympy import S
>>> from sympy.abc import x, y
>>> (S(3)).as_coeff_add()
(3, ())
>>> (3 + x).as_coeff_add()
(3, (x,))
>>> (3 + x + y).as_coeff_add(x)
(y + 3, (x,))
>>> (3 + y).as_coeff_add(x)
(y + 3, ())
"""
if deps:
if not self.has(*deps):
return self, tuple()
return S.Zero, (self,)
def primitive(self):
"""Return the positive Rational that can be extracted non-recursively
from every term of self (i.e., self is treated like an Add). This is
like the as_coeff_Mul() method but primitive always extracts a positive
Rational (never a negative or a Float).
Examples
========
>>> from sympy.abc import x
>>> (3*(x + 1)**2).primitive()
(3, (x + 1)**2)
>>> a = (6*x + 2); a.primitive()
(2, 3*x + 1)
>>> b = (x/2 + 3); b.primitive()
(1/2, x + 6)
>>> (a*b).primitive() == (1, a*b)
True
"""
if not self:
return S.One, S.Zero
c, r = self.as_coeff_Mul(rational=True)
if c.is_negative:
c, r = -c, -r
return c, r
def as_content_primitive(self, radical=False, clear=True):
"""This method should recursively remove a Rational from all arguments
and return that (content) and the new self (primitive). The content
should always be positive and ``Mul(*foo.as_content_primitive()) == foo``.
The primitive need not be in canonical form and should try to preserve
the underlying structure if possible (i.e. expand_mul should not be
applied to self).
Examples
========
>>> from sympy import sqrt
>>> from sympy.abc import x, y, z
>>> eq = 2 + 2*x + 2*y*(3 + 3*y)
The as_content_primitive function is recursive and retains structure:
>>> eq.as_content_primitive()
(2, x + 3*y*(y + 1) + 1)
Integer powers will have Rationals extracted from the base:
>>> ((2 + 6*x)**2).as_content_primitive()
(4, (3*x + 1)**2)
>>> ((2 + 6*x)**(2*y)).as_content_primitive()
(1, (2*(3*x + 1))**(2*y))
Terms may end up joining once their as_content_primitives are added:
>>> ((5*(x*(1 + y)) + 2*x*(3 + 3*y))).as_content_primitive()
(11, x*(y + 1))
>>> ((3*(x*(1 + y)) + 2*x*(3 + 3*y))).as_content_primitive()
(9, x*(y + 1))
>>> ((3*(z*(1 + y)) + 2.0*x*(3 + 3*y))).as_content_primitive()
(1, 6.0*x*(y + 1) + 3*z*(y + 1))
>>> ((5*(x*(1 + y)) + 2*x*(3 + 3*y))**2).as_content_primitive()
(121, x**2*(y + 1)**2)
>>> ((5*(x*(1 + y)) + 2.0*x*(3 + 3*y))**2).as_content_primitive()
(1, 121.0*x**2*(y + 1)**2)
Radical content can also be factored out of the primitive:
>>> (2*sqrt(2) + 4*sqrt(10)).as_content_primitive(radical=True)
(2, sqrt(2)*(1 + 2*sqrt(5)))
If clear=False (default is True) then content will not be removed
from an Add if it can be distributed to leave one or more
terms with integer coefficients.
>>> (x/2 + y).as_content_primitive()
(1/2, x + 2*y)
>>> (x/2 + y).as_content_primitive(clear=False)
(1, x/2 + y)
"""
return S.One, self
def as_numer_denom(self):
""" expression -> a/b -> a, b
This is just a stub that should be defined by
an object's class methods to get anything else.
See Also
========
normal: return a/b instead of a, b
"""
return self, S.One
def normal(self):
from .mul import _unevaluated_Mul
n, d = self.as_numer_denom()
if d is S.One:
return n
if d.is_Number:
return _unevaluated_Mul(n, 1/d)
else:
return n/d
def extract_multiplicatively(self, c):
"""Return None if it's not possible to make self in the form
c * something in a nice way, i.e. preserving the properties
of arguments of self.
Examples
========
>>> from sympy import symbols, Rational
>>> x, y = symbols('x,y', real=True)
>>> ((x*y)**3).extract_multiplicatively(x**2 * y)
x*y**2
>>> ((x*y)**3).extract_multiplicatively(x**4 * y)
>>> (2*x).extract_multiplicatively(2)
x
>>> (2*x).extract_multiplicatively(3)
>>> (Rational(1, 2)*x).extract_multiplicatively(3)
x/6
"""
c = sympify(c)
if self is S.NaN:
return None
if c is S.One:
return self
elif c == self:
return S.One
if c.is_Add:
cc, pc = c.primitive()
if cc is not S.One:
c = Mul(cc, pc, evaluate=False)
if c.is_Mul:
a, b = c.as_two_terms()
x = self.extract_multiplicatively(a)
if x is not None:
return x.extract_multiplicatively(b)
quotient = self / c
if self.is_Number:
if self is S.Infinity:
if c.is_positive:
return S.Infinity
elif self is S.NegativeInfinity:
if c.is_negative:
return S.Infinity
elif c.is_positive:
return S.NegativeInfinity
elif self is S.ComplexInfinity:
if not c.is_zero:
return S.ComplexInfinity
elif self.is_Integer:
if not quotient.is_Integer:
return None
elif self.is_positive and quotient.is_negative:
return None
else:
return quotient
elif self.is_Rational:
if not quotient.is_Rational:
return None
elif self.is_positive and quotient.is_negative:
return None
else:
return quotient
elif self.is_Float:
if not quotient.is_Float:
return None
elif self.is_positive and quotient.is_negative:
return None
else:
return quotient
elif self.is_NumberSymbol or self.is_Symbol or self is S.ImaginaryUnit:
if quotient.is_Mul and len(quotient.args) == 2:
if quotient.args[0].is_Integer and quotient.args[0].is_positive and quotient.args[1] == self:
return quotient
elif quotient.is_Integer and c.is_Number:
return quotient
elif self.is_Add:
cs, ps = self.primitive()
# assert cs >= 1
if c.is_Number and c is not S.NegativeOne:
# assert c != 1 (handled at top)
if cs is not S.One:
if c.is_negative:
xc = -(cs.extract_multiplicatively(-c))
else:
xc = cs.extract_multiplicatively(c)
if xc is not None:
return xc*ps # rely on 2-arg Mul to restore Add
return # |c| != 1 can only be extracted from cs
if c == ps:
return cs
# check args of ps
newargs = []
for arg in ps.args:
newarg = arg.extract_multiplicatively(c)
if newarg is None:
return # all or nothing
newargs.append(newarg)
# args should be in same order so use unevaluated return
if cs is not S.One:
return Add._from_args([cs*t for t in newargs])
else:
return Add._from_args(newargs)
elif self.is_Mul:
args = list(self.args)
for i, arg in enumerate(args):
newarg = arg.extract_multiplicatively(c)
if newarg is not None:
args[i] = newarg
return Mul(*args)
elif self.is_Pow:
if c.is_Pow and c.base == self.base:
new_exp = self.exp.extract_additively(c.exp)
if new_exp is not None:
return self.base ** (new_exp)
elif c == self.base:
new_exp = self.exp.extract_additively(1)
if new_exp is not None:
return self.base ** (new_exp)
def extract_additively(self, c):
"""Return self - c if it's possible to subtract c from self and
make all matching coefficients move towards zero, else return None.
Examples
========
>>> from sympy.abc import x, y
>>> e = 2*x + 3
>>> e.extract_additively(x + 1)
x + 2
>>> e.extract_additively(3*x)
>>> e.extract_additively(4)
>>> (y*(x + 1)).extract_additively(x + 1)
>>> ((x + 1)*(x + 2*y + 1) + 3).extract_additively(x + 1)
(x + 1)*(x + 2*y) + 3
Sometimes auto-expansion will return a less simplified result
than desired; gcd_terms might be used in such cases:
>>> from sympy import gcd_terms
>>> (4*x*(y + 1) + y).extract_additively(x)
4*x*(y + 1) + x*(4*y + 3) - x*(4*y + 4) + y
>>> gcd_terms(_)
x*(4*y + 3) + y
See Also
========
extract_multiplicatively
coeff
as_coefficient
"""
c = sympify(c)
if self is S.NaN:
return None
if c is S.Zero:
return self
elif c == self:
return S.Zero
elif self is S.Zero:
return None
if self.is_Number:
if not c.is_Number:
return None
co = self
diff = co - c
# XXX should we match types? i.e should 3 - .1 succeed?
if (co > 0 and diff > 0 and diff < co or
co < 0 and diff < 0 and diff > co):
return diff
return None
if c.is_Number:
co, t = self.as_coeff_Add()
xa = co.extract_additively(c)
if xa is None:
return None
return xa + t
# handle the args[0].is_Number case separately
# since we will have trouble looking for the coeff of
# a number.
if c.is_Add and c.args[0].is_Number:
# whole term as a term factor
co = self.coeff(c)
xa0 = (co.extract_additively(1) or 0)*c
if xa0:
diff = self - co*c
return (xa0 + (diff.extract_additively(c) or diff)) or None
# term-wise
h, t = c.as_coeff_Add()
sh, st = self.as_coeff_Add()
xa = sh.extract_additively(h)
if xa is None:
return None
xa2 = st.extract_additively(t)
if xa2 is None:
return None
return xa + xa2
# whole term as a term factor
co = self.coeff(c)
xa0 = (co.extract_additively(1) or 0)*c
if xa0:
diff = self - co*c
return (xa0 + (diff.extract_additively(c) or diff)) or None
# term-wise
coeffs = []
for a in Add.make_args(c):
ac, at = a.as_coeff_Mul()
co = self.coeff(at)
if not co:
return None
coc, cot = co.as_coeff_Add()
xa = coc.extract_additively(ac)
if xa is None:
return None
self -= co*at
coeffs.append((cot + xa)*at)
coeffs.append(self)
return Add(*coeffs)
@property
def expr_free_symbols(self):
"""
Like ``free_symbols``, but returns the free symbols only if they are contained in an expression node.
Examples
========
>>> from sympy.abc import x, y
>>> (x + y).expr_free_symbols
{x, y}
If the expression is contained in a non-expression object, don't return
the free symbols. Compare:
>>> from sympy import Tuple
>>> t = Tuple(x + y)
>>> t.expr_free_symbols
set()
>>> t.free_symbols
{x, y}
"""
return {j for i in self.args for j in i.expr_free_symbols}
def could_extract_minus_sign(self):
"""Return True if self is not in a canonical form with respect
to its sign.
For most expressions, e, there will be a difference in e and -e.
When there is, True will be returned for one and False for the
other; False will be returned if there is no difference.
Examples
========
>>> from sympy.abc import x, y
>>> e = x - y
>>> {i.could_extract_minus_sign() for i in (e, -e)}
{False, True}
"""
negative_self = -self
if self == negative_self:
return False # e.g. zoo*x == -zoo*x
self_has_minus = (self.extract_multiplicatively(-1) is not None)
negative_self_has_minus = (
(negative_self).extract_multiplicatively(-1) is not None)
if self_has_minus != negative_self_has_minus:
return self_has_minus
else:
if self.is_Add:
# We choose the one with less arguments with minus signs
all_args = len(self.args)
negative_args = len([False for arg in self.args if arg.could_extract_minus_sign()])
positive_args = all_args - negative_args
if positive_args > negative_args:
return False
elif positive_args < negative_args:
return True
elif self.is_Mul:
# We choose the one with an odd number of minus signs
num, den = self.as_numer_denom()
args = Mul.make_args(num) + Mul.make_args(den)
arg_signs = [arg.could_extract_minus_sign() for arg in args]
negative_args = list(filter(None, arg_signs))
return len(negative_args) % 2 == 1
# As a last resort, we choose the one with greater value of .sort_key()
return bool(self.sort_key() < negative_self.sort_key())
def extract_branch_factor(self, allow_half=False):
"""
Try to write self as ``exp_polar(2*pi*I*n)*z`` in a nice way.
Return (z, n).
>>> from sympy import exp_polar, I, pi
>>> from sympy.abc import x, y
>>> exp_polar(I*pi).extract_branch_factor()
(exp_polar(I*pi), 0)
>>> exp_polar(2*I*pi).extract_branch_factor()
(1, 1)
>>> exp_polar(-pi*I).extract_branch_factor()
(exp_polar(I*pi), -1)
>>> exp_polar(3*pi*I + x).extract_branch_factor()
(exp_polar(x + I*pi), 1)
>>> (y*exp_polar(-5*pi*I)*exp_polar(3*pi*I + 2*pi*x)).extract_branch_factor()
(y*exp_polar(2*pi*x), -1)
>>> exp_polar(-I*pi/2).extract_branch_factor()
(exp_polar(-I*pi/2), 0)
If allow_half is True, also extract exp_polar(I*pi):
>>> exp_polar(I*pi).extract_branch_factor(allow_half=True)
(1, 1/2)
>>> exp_polar(2*I*pi).extract_branch_factor(allow_half=True)
(1, 1)
>>> exp_polar(3*I*pi).extract_branch_factor(allow_half=True)
(1, 3/2)
>>> exp_polar(-I*pi).extract_branch_factor(allow_half=True)
(1, -1/2)
"""
from sympy import exp_polar, pi, I, ceiling, Add
n = S(0)
res = S(1)
args = Mul.make_args(self)
exps = []
for arg in args:
if isinstance(arg, exp_polar):
exps += [arg.exp]
else:
res *= arg
piimult = S(0)
extras = []
while exps:
exp = exps.pop()
if exp.is_Add:
exps += exp.args
continue
if exp.is_Mul:
coeff = exp.as_coefficient(pi*I)
if coeff is not None:
piimult += coeff
continue
extras += [exp]
if piimult.is_number:
coeff = piimult
tail = ()
else:
coeff, tail = piimult.as_coeff_add(*piimult.free_symbols)
# round down to nearest multiple of 2
branchfact = ceiling(coeff/2 - S(1)/2)*2
n += branchfact/2
c = coeff - branchfact
if allow_half:
nc = c.extract_additively(1)
if nc is not None:
n += S(1)/2
c = nc
newexp = pi*I*Add(*((c, ) + tail)) + Add(*extras)
if newexp != 0:
res *= exp_polar(newexp)
return res, n
def _eval_is_polynomial(self, syms):
if self.free_symbols.intersection(syms) == set([]):
return True
return False
def is_polynomial(self, *syms):
r"""
Return True if self is a polynomial in syms and False otherwise.
This checks if self is an exact polynomial in syms. This function
returns False for expressions that are "polynomials" with symbolic
exponents. Thus, you should be able to apply polynomial algorithms to
expressions for which this returns True, and Poly(expr, \*syms) should
work if and only if expr.is_polynomial(\*syms) returns True. The
polynomial does not have to be in expanded form. If no symbols are
given, all free symbols in the expression will be used.
This is not part of the assumptions system. You cannot do
Symbol('z', polynomial=True).
Examples
========
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> ((x**2 + 1)**4).is_polynomial(x)
True
>>> ((x**2 + 1)**4).is_polynomial()
True
>>> (2**x + 1).is_polynomial(x)
False
>>> n = Symbol('n', nonnegative=True, integer=True)
>>> (x**n + 1).is_polynomial(x)
False
This function does not attempt any nontrivial simplifications that may
result in an expression that does not appear to be a polynomial to
become one.
>>> from sympy import sqrt, factor, cancel
>>> y = Symbol('y', positive=True)
>>> a = sqrt(y**2 + 2*y + 1)
>>> a.is_polynomial(y)
False
>>> factor(a)
y + 1
>>> factor(a).is_polynomial(y)
True
>>> b = (y**2 + 2*y + 1)/(y + 1)
>>> b.is_polynomial(y)
False
>>> cancel(b)
y + 1
>>> cancel(b).is_polynomial(y)
True
See also .is_rational_function()
"""
if syms:
syms = set(map(sympify, syms))
else:
syms = self.free_symbols
if syms.intersection(self.free_symbols) == set([]):
# constant polynomial
return True
else:
return self._eval_is_polynomial(syms)
def _eval_is_rational_function(self, syms):
if self.free_symbols.intersection(syms) == set([]):
return True
return False
def is_rational_function(self, *syms):
"""
Test whether function is a ratio of two polynomials in the given
symbols, syms. When syms is not given, all free symbols will be used.
The rational function does not have to be in expanded or in any kind of
canonical form.
This function returns False for expressions that are "rational
functions" with symbolic exponents. Thus, you should be able to call
.as_numer_denom() and apply polynomial algorithms to the result for
expressions for which this returns True.
This is not part of the assumptions system. You cannot do
Symbol('z', rational_function=True).
Examples
========
>>> from sympy import Symbol, sin
>>> from sympy.abc import x, y
>>> (x/y).is_rational_function()
True
>>> (x**2).is_rational_function()
True
>>> (x/sin(y)).is_rational_function(y)
False
>>> n = Symbol('n', integer=True)
>>> (x**n + 1).is_rational_function(x)
False
This function does not attempt any nontrivial simplifications that may
result in an expression that does not appear to be a rational function
to become one.
>>> from sympy import sqrt, factor
>>> y = Symbol('y', positive=True)
>>> a = sqrt(y**2 + 2*y + 1)/y
>>> a.is_rational_function(y)
False
>>> factor(a)
(y + 1)/y
>>> factor(a).is_rational_function(y)
True
See also is_algebraic_expr().
"""
if self in [S.NaN, S.Infinity, -S.Infinity, S.ComplexInfinity]:
return False
if syms:
syms = set(map(sympify, syms))
else:
syms = self.free_symbols
if syms.intersection(self.free_symbols) == set([]):
# constant rational function
return True
else:
return self._eval_is_rational_function(syms)
def _eval_is_algebraic_expr(self, syms):
if self.free_symbols.intersection(syms) == set([]):
return True
return False
def is_algebraic_expr(self, *syms):
"""
This tests whether a given expression is algebraic or not, in the
given symbols, syms. When syms is not given, all free symbols
will be used. The rational function does not have to be in expanded
or in any kind of canonical form.
This function returns False for expressions that are "algebraic
expressions" with symbolic exponents. This is a simple extension to the
is_rational_function, including rational exponentiation.
Examples
========
>>> from sympy import Symbol, sqrt
>>> x = Symbol('x', real=True)
>>> sqrt(1 + x).is_rational_function()
False
>>> sqrt(1 + x).is_algebraic_expr()
True
This function does not attempt any nontrivial simplifications that may
result in an expression that does not appear to be an algebraic
expression to become one.
>>> from sympy import exp, factor
>>> a = sqrt(exp(x)**2 + 2*exp(x) + 1)/(exp(x) + 1)
>>> a.is_algebraic_expr(x)
False
>>> factor(a).is_algebraic_expr()
True
See Also
========
is_rational_function()
References
==========
- https://en.wikipedia.org/wiki/Algebraic_expression
"""
if syms:
syms = set(map(sympify, syms))
else:
syms = self.free_symbols
if syms.intersection(self.free_symbols) == set([]):
# constant algebraic expression
return True
else:
return self._eval_is_algebraic_expr(syms)
###################################################################################
##################### SERIES, LEADING TERM, LIMIT, ORDER METHODS ##################
###################################################################################
def series(self, x=None, x0=0, n=6, dir="+", logx=None):
"""
Series expansion of "self" around ``x = x0`` yielding either terms of
the series one by one (the lazy series given when n=None), else
all the terms at once when n != None.
Returns the series expansion of "self" around the point ``x = x0``
with respect to ``x`` up to ``O((x - x0)**n, x, x0)`` (default n is 6).
If ``x=None`` and ``self`` is univariate, the univariate symbol will
be supplied, otherwise an error will be raised.
>>> from sympy import cos, exp
>>> from sympy.abc import x, y
>>> cos(x).series()
1 - x**2/2 + x**4/24 + O(x**6)
>>> cos(x).series(n=4)
1 - x**2/2 + O(x**4)
>>> cos(x).series(x, x0=1, n=2)
cos(1) - (x - 1)*sin(1) + O((x - 1)**2, (x, 1))
>>> e = cos(x + exp(y))
>>> e.series(y, n=2)
cos(x + 1) - y*sin(x + 1) + O(y**2)
>>> e.series(x, n=2)
cos(exp(y)) - x*sin(exp(y)) + O(x**2)
If ``n=None`` then a generator of the series terms will be returned.
>>> term=cos(x).series(n=None)
>>> [next(term) for i in range(2)]
[1, -x**2/2]
For ``dir=+`` (default) the series is calculated from the right and
for ``dir=-`` the series from the left. For smooth functions this
flag will not alter the results.
>>> abs(x).series(dir="+")
x
>>> abs(x).series(dir="-")
-x
"""
from sympy import collect, Dummy, Order, Rational, Symbol, ceiling
if x is None:
syms = self.free_symbols
if not syms:
return self
elif len(syms) > 1:
raise ValueError('x must be given for multivariate functions.')
x = syms.pop()
if isinstance(x, Symbol):
dep = x in self.free_symbols
else:
d = Dummy()
dep = d in self.xreplace({x: d}).free_symbols
if not dep:
if n is None:
return (s for s in [self])
else:
return self
if len(dir) != 1 or dir not in '+-':
raise ValueError("Dir must be '+' or '-'")
if x0 in [S.Infinity, S.NegativeInfinity]:
sgn = 1 if x0 is S.Infinity else -1
s = self.subs(x, sgn/x).series(x, n=n, dir='+')
if n is None:
return (si.subs(x, sgn/x) for si in s)
return s.subs(x, sgn/x)
# use rep to shift origin to x0 and change sign (if dir is negative)
# and undo the process with rep2
if x0 or dir == '-':
if dir == '-':
rep = -x + x0
rep2 = -x
rep2b = x0
else:
rep = x + x0
rep2 = x
rep2b = -x0
s = self.subs(x, rep).series(x, x0=0, n=n, dir='+', logx=logx)
if n is None: # lseries...
return (si.subs(x, rep2 + rep2b) for si in s)
return s.subs(x, rep2 + rep2b)
# from here on it's x0=0 and dir='+' handling
if x.is_positive is x.is_negative is None or x.is_Symbol is not True:
# replace x with an x that has a positive assumption
xpos = Dummy('x', positive=True, finite=True)
rv = self.subs(x, xpos).series(xpos, x0, n, dir, logx=logx)
if n is None:
return (s.subs(xpos, x) for s in rv)
else:
return rv.subs(xpos, x)
if n is not None: # nseries handling
s1 = self._eval_nseries(x, n=n, logx=logx)
o = s1.getO() or S.Zero
if o:
# make sure the requested order is returned
ngot = o.getn()
if ngot > n:
# leave o in its current form (e.g. with x*log(x)) so
# it eats terms properly, then replace it below
if n != 0:
s1 += o.subs(x, x**Rational(n, ngot))
else:
s1 += Order(1, x)
elif ngot < n:
# increase the requested number of terms to get the desired
# number keep increasing (up to 9) until the received order
# is different than the original order and then predict how
# many additional terms are needed
for more in range(1, 9):
s1 = self._eval_nseries(x, n=n + more, logx=logx)
newn = s1.getn()
if newn != ngot:
ndo = n + ceiling((n - ngot)*more/(newn - ngot))
s1 = self._eval_nseries(x, n=ndo, logx=logx)
while s1.getn() < n:
s1 = self._eval_nseries(x, n=ndo, logx=logx)
ndo += 1
break
else:
raise ValueError('Could not calculate %s terms for %s'
% (str(n), self))
s1 += Order(x**n, x)
o = s1.getO()
s1 = s1.removeO()
else:
o = Order(x**n, x)
s1done = s1.doit()
if (s1done + o).removeO() == s1done:
o = S.Zero
try:
return collect(s1, x) + o
except NotImplementedError:
return s1 + o
else: # lseries handling
def yield_lseries(s):
"""Return terms of lseries one at a time."""
for si in s:
if not si.is_Add:
yield si
continue
# yield terms 1 at a time if possible
# by increasing order until all the
# terms have been returned
yielded = 0
o = Order(si, x)*x
ndid = 0
ndo = len(si.args)
while 1:
do = (si - yielded + o).removeO()
o *= x
if not do or do.is_Order:
continue
if do.is_Add:
ndid += len(do.args)
else:
ndid += 1
yield do
if ndid == ndo:
break
yielded += do
return yield_lseries(self.removeO()._eval_lseries(x, logx=logx))
def taylor_term(self, n, x, *previous_terms):
"""General method for the taylor term.
This method is slow, because it differentiates n-times. Subclasses can
redefine it to make it faster by using the "previous_terms".
"""
from sympy import Dummy, factorial
x = sympify(x)
_x = Dummy('x')
return self.subs(x, _x).diff(_x, n).subs(_x, x).subs(x, 0) * x**n / factorial(n)
def lseries(self, x=None, x0=0, dir='+', logx=None):
"""
Wrapper for series yielding an iterator of the terms of the series.
Note: an infinite series will yield an infinite iterator. The following,
for exaxmple, will never terminate. It will just keep printing terms
of the sin(x) series::
for term in sin(x).lseries(x):
print term
The advantage of lseries() over nseries() is that many times you are
just interested in the next term in the series (i.e. the first term for
example), but you don't know how many you should ask for in nseries()
using the "n" parameter.
See also nseries().
"""
return self.series(x, x0, n=None, dir=dir, logx=logx)
def _eval_lseries(self, x, logx=None):
# default implementation of lseries is using nseries(), and adaptively
# increasing the "n". As you can see, it is not very efficient, because
# we are calculating the series over and over again. Subclasses should
# override this method and implement much more efficient yielding of
# terms.
n = 0
series = self._eval_nseries(x, n=n, logx=logx)
if not series.is_Order:
if series.is_Add:
yield series.removeO()
else:
yield series
return
while series.is_Order:
n += 1
series = self._eval_nseries(x, n=n, logx=logx)
e = series.removeO()
yield e
while 1:
while 1:
n += 1
series = self._eval_nseries(x, n=n, logx=logx).removeO()
if e != series:
break
yield series - e
e = series
def nseries(self, x=None, x0=0, n=6, dir='+', logx=None):
"""
Wrapper to _eval_nseries if assumptions allow, else to series.
If x is given, x0 is 0, dir='+', and self has x, then _eval_nseries is
called. This calculates "n" terms in the innermost expressions and
then builds up the final series just by "cross-multiplying" everything
out.
The optional ``logx`` parameter can be used to replace any log(x) in the
returned series with a symbolic value to avoid evaluating log(x) at 0. A
symbol to use in place of log(x) should be provided.
Advantage -- it's fast, because we don't have to determine how many
terms we need to calculate in advance.
Disadvantage -- you may end up with less terms than you may have
expected, but the O(x**n) term appended will always be correct and
so the result, though perhaps shorter, will also be correct.
If any of those assumptions is not met, this is treated like a
wrapper to series which will try harder to return the correct
number of terms.
See also lseries().
Examples
========
>>> from sympy import sin, log, Symbol
>>> from sympy.abc import x, y
>>> sin(x).nseries(x, 0, 6)
x - x**3/6 + x**5/120 + O(x**6)
>>> log(x+1).nseries(x, 0, 5)
x - x**2/2 + x**3/3 - x**4/4 + O(x**5)
Handling of the ``logx`` parameter --- in the following example the
expansion fails since ``sin`` does not have an asymptotic expansion
at -oo (the limit of log(x) as x approaches 0):
>>> e = sin(log(x))
>>> e.nseries(x, 0, 6)
Traceback (most recent call last):
...
PoleError: ...
...
>>> logx = Symbol('logx')
>>> e.nseries(x, 0, 6, logx=logx)
sin(logx)
In the following example, the expansion works but gives only an Order term
unless the ``logx`` parameter is used:
>>> e = x**y
>>> e.nseries(x, 0, 2)
O(log(x)**2)
>>> e.nseries(x, 0, 2, logx=logx)
exp(logx*y)
"""
if x and not x in self.free_symbols:
return self
if x is None or x0 or dir != '+': # {see XPOS above} or (x.is_positive == x.is_negative == None):
return self.series(x, x0, n, dir)
else:
return self._eval_nseries(x, n=n, logx=logx)
def _eval_nseries(self, x, n, logx):
"""
Return terms of series for self up to O(x**n) at x=0
from the positive direction.
This is a method that should be overridden in subclasses. Users should
never call this method directly (use .nseries() instead), so you don't
have to write docstrings for _eval_nseries().
"""
from sympy.utilities.misc import filldedent
raise NotImplementedError(filldedent("""
The _eval_nseries method should be added to
%s to give terms up to O(x**n) at x=0
from the positive direction so it is available when
nseries calls it.""" % self.func)
)
def limit(self, x, xlim, dir='+'):
""" Compute limit x->xlim.
"""
from sympy.series.limits import limit
return limit(self, x, xlim, dir)
def compute_leading_term(self, x, logx=None):
"""
as_leading_term is only allowed for results of .series()
This is a wrapper to compute a series first.
"""
from sympy import Dummy, log
from sympy.series.gruntz import calculate_series
if self.removeO() == 0:
return self
if logx is None:
d = Dummy('logx')
s = calculate_series(self, x, d).subs(d, log(x))
else:
s = calculate_series(self, x, logx)
return s.as_leading_term(x)
@cacheit
def as_leading_term(self, *symbols):
"""
Returns the leading (nonzero) term of the series expansion of self.
The _eval_as_leading_term routines are used to do this, and they must
always return a non-zero value.
Examples
========
>>> from sympy.abc import x
>>> (1 + x + x**2).as_leading_term(x)
1
>>> (1/x**2 + x + x**2).as_leading_term(x)
x**(-2)
"""
from sympy import powsimp
if len(symbols) > 1:
c = self
for x in symbols:
c = c.as_leading_term(x)
return c
elif not symbols:
return self
x = sympify(symbols[0])
if not x.is_symbol:
raise ValueError('expecting a Symbol but got %s' % x)
if x not in self.free_symbols:
return self
obj = self._eval_as_leading_term(x)
if obj is not None:
return powsimp(obj, deep=True, combine='exp')
raise NotImplementedError('as_leading_term(%s, %s)' % (self, x))
def _eval_as_leading_term(self, x):
return self
def as_coeff_exponent(self, x):
""" ``c*x**e -> c,e`` where x can be any symbolic expression.
"""
from sympy import collect
s = collect(self, x)
c, p = s.as_coeff_mul(x)
if len(p) == 1:
b, e = p[0].as_base_exp()
if b == x:
return c, e
return s, S.Zero
def leadterm(self, x):
"""
Returns the leading term a*x**b as a tuple (a, b).
Examples
========
>>> from sympy.abc import x
>>> (1+x+x**2).leadterm(x)
(1, 0)
>>> (1/x**2+x+x**2).leadterm(x)
(1, -2)
"""
from sympy import Dummy, log
l = self.as_leading_term(x)
d = Dummy('logx')
if l.has(log(x)):
l = l.subs(log(x), d)
c, e = l.as_coeff_exponent(x)
if x in c.free_symbols:
from sympy.utilities.misc import filldedent
raise ValueError(filldedent("""
cannot compute leadterm(%s, %s). The coefficient
should have been free of x but got %s""" % (self, x, c)))
c = c.subs(d, log(x))
return c, e
def as_coeff_Mul(self, rational=False):
"""Efficiently extract the coefficient of a product. """
return S.One, self
def as_coeff_Add(self, rational=False):
"""Efficiently extract the coefficient of a summation. """
return S.Zero, self
def fps(self, x=None, x0=0, dir=1, hyper=True, order=4, rational=True,
full=False):
"""
Compute formal power power series of self.
See the docstring of the :func:`fps` function in sympy.series.formal for
more information.
"""
from sympy.series.formal import fps
return fps(self, x, x0, dir, hyper, order, rational, full)
def fourier_series(self, limits=None):
"""Compute fourier sine/cosine series of self.
See the docstring of the :func:`fourier_series` in sympy.series.fourier
for more information.
"""
from sympy.series.fourier import fourier_series
return fourier_series(self, limits)
###################################################################################
##################### DERIVATIVE, INTEGRAL, FUNCTIONAL METHODS ####################
###################################################################################
def diff(self, *symbols, **assumptions):
assumptions.setdefault("evaluate", True)
return Derivative(self, *symbols, **assumptions)
###########################################################################
###################### EXPRESSION EXPANSION METHODS #######################
###########################################################################
# Relevant subclasses should override _eval_expand_hint() methods. See
# the docstring of expand() for more info.
def _eval_expand_complex(self, **hints):
real, imag = self.as_real_imag(**hints)
return real + S.ImaginaryUnit*imag
@staticmethod
def _expand_hint(expr, hint, deep=True, **hints):
"""
Helper for ``expand()``. Recursively calls ``expr._eval_expand_hint()``.
Returns ``(expr, hit)``, where expr is the (possibly) expanded
``expr`` and ``hit`` is ``True`` if ``expr`` was truly expanded and
``False`` otherwise.
"""
hit = False
# XXX: Hack to support non-Basic args
# |
# V
if deep and getattr(expr, 'args', ()) and not expr.is_Atom:
sargs = []
for arg in expr.args:
arg, arghit = Expr._expand_hint(arg, hint, **hints)
hit |= arghit
sargs.append(arg)
if hit:
expr = expr.func(*sargs)
if hasattr(expr, hint):
newexpr = getattr(expr, hint)(**hints)
if newexpr != expr:
return (newexpr, True)
return (expr, hit)
@cacheit
def expand(self, deep=True, modulus=None, power_base=True, power_exp=True,
mul=True, log=True, multinomial=True, basic=True, **hints):
"""
Expand an expression using hints.
See the docstring of the expand() function in sympy.core.function for
more information.
"""
from sympy.simplify.radsimp import fraction
hints.update(power_base=power_base, power_exp=power_exp, mul=mul,
log=log, multinomial=multinomial, basic=basic)
expr = self
if hints.pop('frac', False):
n, d = [a.expand(deep=deep, modulus=modulus, **hints)
for a in fraction(self)]
return n/d
elif hints.pop('denom', False):
n, d = fraction(self)
return n/d.expand(deep=deep, modulus=modulus, **hints)
elif hints.pop('numer', False):
n, d = fraction(self)
return n.expand(deep=deep, modulus=modulus, **hints)/d
# Although the hints are sorted here, an earlier hint may get applied
# at a given node in the expression tree before another because of how
# the hints are applied. e.g. expand(log(x*(y + z))) -> log(x*y +
# x*z) because while applying log at the top level, log and mul are
# applied at the deeper level in the tree so that when the log at the
# upper level gets applied, the mul has already been applied at the
# lower level.
# Additionally, because hints are only applied once, the expression
# may not be expanded all the way. For example, if mul is applied
# before multinomial, x*(x + 1)**2 won't be expanded all the way. For
# now, we just use a special case to make multinomial run before mul,
# so that at least polynomials will be expanded all the way. In the
# future, smarter heuristics should be applied.
# TODO: Smarter heuristics
def _expand_hint_key(hint):
"""Make multinomial come before mul"""
if hint == 'mul':
return 'mulz'
return hint
for hint in sorted(hints.keys(), key=_expand_hint_key):
use_hint = hints[hint]
if use_hint:
hint = '_eval_expand_' + hint
expr, hit = Expr._expand_hint(expr, hint, deep=deep, **hints)
while True:
was = expr
if hints.get('multinomial', False):
expr, _ = Expr._expand_hint(
expr, '_eval_expand_multinomial', deep=deep, **hints)
if hints.get('mul', False):
expr, _ = Expr._expand_hint(
expr, '_eval_expand_mul', deep=deep, **hints)
if hints.get('log', False):
expr, _ = Expr._expand_hint(
expr, '_eval_expand_log', deep=deep, **hints)
if expr == was:
break
if modulus is not None:
modulus = sympify(modulus)
if not modulus.is_Integer or modulus <= 0:
raise ValueError(
"modulus must be a positive integer, got %s" % modulus)
terms = []
for term in Add.make_args(expr):
coeff, tail = term.as_coeff_Mul(rational=True)
coeff %= modulus
if coeff:
terms.append(coeff*tail)
expr = Add(*terms)
return expr
###########################################################################
################### GLOBAL ACTION VERB WRAPPER METHODS ####################
###########################################################################
def integrate(self, *args, **kwargs):
"""See the integrate function in sympy.integrals"""
from sympy.integrals import integrate
return integrate(self, *args, **kwargs)
def simplify(self, ratio=1.7, measure=None, rational=False, inverse=False):
"""See the simplify function in sympy.simplify"""
from sympy.simplify import simplify
from sympy.core.function import count_ops
measure = measure or count_ops
return simplify(self, ratio, measure)
def nsimplify(self, constants=[], tolerance=None, full=False):
"""See the nsimplify function in sympy.simplify"""
from sympy.simplify import nsimplify
return nsimplify(self, constants, tolerance, full)
def separate(self, deep=False, force=False):
"""See the separate function in sympy.simplify"""
from sympy.core.function import expand_power_base
return expand_power_base(self, deep=deep, force=force)
def collect(self, syms, func=None, evaluate=True, exact=False, distribute_order_term=True):
"""See the collect function in sympy.simplify"""
from sympy.simplify import collect
return collect(self, syms, func, evaluate, exact, distribute_order_term)
def together(self, *args, **kwargs):
"""See the together function in sympy.polys"""
from sympy.polys import together
return together(self, *args, **kwargs)
def apart(self, x=None, **args):
"""See the apart function in sympy.polys"""
from sympy.polys import apart
return apart(self, x, **args)
def ratsimp(self):
"""See the ratsimp function in sympy.simplify"""
from sympy.simplify import ratsimp
return ratsimp(self)
def trigsimp(self, **args):
"""See the trigsimp function in sympy.simplify"""
from sympy.simplify import trigsimp
return trigsimp(self, **args)
def radsimp(self, **kwargs):
"""See the radsimp function in sympy.simplify"""
from sympy.simplify import radsimp
return radsimp(self, **kwargs)
def powsimp(self, *args, **kwargs):
"""See the powsimp function in sympy.simplify"""
from sympy.simplify import powsimp
return powsimp(self, *args, **kwargs)
def combsimp(self):
"""See the combsimp function in sympy.simplify"""
from sympy.simplify import combsimp
return combsimp(self)
def gammasimp(self):
"""See the gammasimp function in sympy.simplify"""
from sympy.simplify import gammasimp
return gammasimp(self)
def factor(self, *gens, **args):
"""See the factor() function in sympy.polys.polytools"""
from sympy.polys import factor
return factor(self, *gens, **args)
def refine(self, assumption=True):
"""See the refine function in sympy.assumptions"""
from sympy.assumptions import refine
return refine(self, assumption)
def cancel(self, *gens, **args):
"""See the cancel function in sympy.polys"""
from sympy.polys import cancel
return cancel(self, *gens, **args)
def invert(self, g, *gens, **args):
"""Return the multiplicative inverse of ``self`` mod ``g``
where ``self`` (and ``g``) may be symbolic expressions).
See Also
========
sympy.core.numbers.mod_inverse, sympy.polys.polytools.invert
"""
from sympy.polys.polytools import invert
from sympy.core.numbers import mod_inverse
if self.is_number and getattr(g, 'is_number', True):
return mod_inverse(self, g)
return invert(self, g, *gens, **args)
def round(self, p=0):
"""Return x rounded to the given decimal place.
If a complex number would results, apply round to the real
and imaginary components of the number.
Examples
========
>>> from sympy import pi, E, I, S, Add, Mul, Number
>>> S(10.5).round()
11.
>>> pi.round()
3.
>>> pi.round(2)
3.14
>>> (2*pi + E*I).round()
6. + 3.*I
The round method has a chopping effect:
>>> (2*pi + I/10).round()
6.
>>> (pi/10 + 2*I).round()
2.*I
>>> (pi/10 + E*I).round(2)
0.31 + 2.72*I
Notes
=====
Do not confuse the Python builtin function, round, with the
SymPy method of the same name. The former always returns a float
(or raises an error if applied to a complex value) while the
latter returns either a Number or a complex number:
>>> isinstance(round(S(123), -2), Number)
False
>>> isinstance(S(123).round(-2), Number)
True
>>> isinstance((3*I).round(), Mul)
True
>>> isinstance((1 + 3*I).round(), Add)
True
"""
from sympy import Float
x = self
if not x.is_number:
raise TypeError("can't round symbolic expression")
if not x.is_Atom:
xn = x.n(2)
if not pure_complex(xn, or_real=True):
raise TypeError('Expected a number but got %s:' %
getattr(getattr(x,'func', x), '__name__', type(x)))
elif x in (S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity):
return x
if not x.is_real:
i, r = x.as_real_imag()
return i.round(p) + S.ImaginaryUnit*r.round(p)
if not x:
return x
p = int(p)
precs = [f._prec for f in x.atoms(Float)]
dps = prec_to_dps(max(precs)) if precs else None
mag_first_dig = _mag(x)
allow = digits_needed = mag_first_dig + p
if dps is not None and allow > dps:
allow = dps
mag = Pow(10, p) # magnitude needed to bring digit p to units place
xwas = x
x += 1/(2*mag) # add the half for rounding
i10 = 10*mag*x.n((dps if dps is not None else digits_needed) + 1)
if i10.is_negative:
x = xwas - 1/(2*mag) # should have gone the other way
i10 = 10*mag*x.n((dps if dps is not None else digits_needed) + 1)
rv = -(Integer(-i10)//10)
else:
rv = Integer(i10)//10
q = 1
if p > 0:
q = mag
elif p < 0:
rv /= mag
rv = Rational(rv, q)
if rv.is_Integer:
# use str or else it won't be a float
return Float(str(rv), digits_needed)
else:
if not allow and rv > self:
allow += 1
return Float(rv, allow)
def _eval_derivative_matrix_lines(self, x):
from sympy.matrices.expressions.matexpr import _LeftRightArgs
return [_LeftRightArgs(S.One, S.One, higher=self._eval_derivative(x))]
class AtomicExpr(Atom, Expr):
"""
A parent class for object which are both atoms and Exprs.
For example: Symbol, Number, Rational, Integer, ...
But not: Add, Mul, Pow, ...
"""
is_number = False
is_Atom = True
__slots__ = []
def _eval_derivative(self, s):
if self == s:
return S.One
return S.Zero
def _eval_derivative_n_times(self, s, n):
from sympy import Piecewise, Eq
from sympy import Tuple, MatrixExpr
from sympy.matrices.common import MatrixCommon
if isinstance(s, (MatrixCommon, Tuple, Iterable, MatrixExpr)):
return super(AtomicExpr, self)._eval_derivative_n_times(s, n)
if self == s:
return Piecewise((self, Eq(n, 0)), (1, Eq(n, 1)), (0, True))
else:
return Piecewise((self, Eq(n, 0)), (0, True))
def _eval_is_polynomial(self, syms):
return True
def _eval_is_rational_function(self, syms):
return True
def _eval_is_algebraic_expr(self, syms):
return True
def _eval_nseries(self, x, n, logx):
return self
@property
def expr_free_symbols(self):
return {self}
def _mag(x):
"""Return integer ``i`` such that .1 <= x/10**i < 1
Examples
========
>>> from sympy.core.expr import _mag
>>> from sympy import Float
>>> _mag(Float(.1))
0
>>> _mag(Float(.01))
-1
>>> _mag(Float(1234))
4
"""
from math import log10, ceil, log
from sympy import Float
xpos = abs(x.n())
if not xpos:
return S.Zero
try:
mag_first_dig = int(ceil(log10(xpos)))
except (ValueError, OverflowError):
mag_first_dig = int(ceil(Float(mpf_log(xpos._mpf_, 53))/log(10)))
# check that we aren't off by 1
if (xpos/10**mag_first_dig) >= 1:
assert 1 <= (xpos/10**mag_first_dig) < 10
mag_first_dig += 1
return mag_first_dig
class UnevaluatedExpr(Expr):
"""
Expression that is not evaluated unless released.
Examples
========
>>> from sympy import UnevaluatedExpr
>>> from sympy.abc import a, b, x, y
>>> x*(1/x)
1
>>> x*UnevaluatedExpr(1/x)
x*1/x
"""
def __new__(cls, arg, **kwargs):
arg = _sympify(arg)
obj = Expr.__new__(cls, arg, **kwargs)
return obj
def doit(self, **kwargs):
if kwargs.get("deep", True):
return self.args[0].doit(**kwargs)
else:
return self.args[0]
def _n2(a, b):
"""Return (a - b).evalf(2) if a and b are comparable, else None.
This should only be used when a and b are already sympified.
"""
# /!\ it is very important (see issue 8245) not to
# use a re-evaluated number in the calculation of dif
if a.is_comparable and b.is_comparable:
dif = (a - b).evalf(2)
if dif.is_comparable:
return dif
def unchanged(func, *args):
"""Return True if `func` applied to the `args` is unchanged.
Can be used instead of `assert foo == foo`.
Examples
========
>>> from sympy.core.expr import unchanged
>>> from sympy.functions.elementary.trigonometric import cos
>>> from sympy.core.numbers import pi
>>> unchanged(cos, 1) # instead of assert cos(1) == cos(1)
True
>>> unchanged(cos, pi)
False
"""
f = func(*args)
return f.func == func and f.args == tuple([sympify(a) for a in args])
from .mul import Mul
from .add import Add
from .power import Pow
from .function import Derivative, Function
from .mod import Mod
from .exprtools import factor_terms
from .numbers import Integer, Rational
|
db175fbed614a7756ab193f62764428ec8ecbedf4c25b8337192759a96a4002c
|
from __future__ import print_function, division
from .add import _unevaluated_Add, Add
from .basic import S
from .compatibility import ordered
from .expr import Expr
from .evalf import EvalfMixin
from .sympify import _sympify
from .evaluate import global_evaluate
from sympy.logic.boolalg import Boolean, BooleanAtom
__all__ = (
'Rel', 'Eq', 'Ne', 'Lt', 'Le', 'Gt', 'Ge',
'Relational', 'Equality', 'Unequality', 'StrictLessThan', 'LessThan',
'StrictGreaterThan', 'GreaterThan',
)
# Note, see issue 4986. Ideally, we wouldn't want to subclass both Boolean
# and Expr.
def _canonical(cond):
# return a condition in which all relationals are canonical
reps = {r: r.canonical for r in cond.atoms(Relational)}
return cond.xreplace(reps)
# XXX: AttributeError was being caught here but it wasn't triggered by any of
# the tests so I've removed it...
class Relational(Boolean, Expr, EvalfMixin):
"""Base class for all relation types.
Subclasses of Relational should generally be instantiated directly, but
Relational can be instantiated with a valid `rop` value to dispatch to
the appropriate subclass.
Parameters
==========
rop : str or None
Indicates what subclass to instantiate. Valid values can be found
in the keys of Relational.ValidRelationalOperator.
Examples
========
>>> from sympy import Rel
>>> from sympy.abc import x, y
>>> Rel(y, x + x**2, '==')
Eq(y, x**2 + x)
"""
__slots__ = []
is_Relational = True
# ValidRelationOperator - Defined below, because the necessary classes
# have not yet been defined
def __new__(cls, lhs, rhs, rop=None, **assumptions):
# If called by a subclass, do nothing special and pass on to Expr.
if cls is not Relational:
return Expr.__new__(cls, lhs, rhs, **assumptions)
# If called directly with an operator, look up the subclass
# corresponding to that operator and delegate to it
try:
cls = cls.ValidRelationOperator[rop]
rv = cls(lhs, rhs, **assumptions)
# /// drop when Py2 is no longer supported
# validate that Booleans are not being used in a relational
# other than Eq/Ne;
if isinstance(rv, (Eq, Ne)):
pass
elif isinstance(rv, Relational): # could it be otherwise?
from sympy.core.symbol import Symbol
from sympy.logic.boolalg import Boolean
for a in rv.args:
if isinstance(a, Symbol):
continue
if isinstance(a, Boolean):
from sympy.utilities.misc import filldedent
raise TypeError(filldedent('''
A Boolean argument can only be used in
Eq and Ne; all other relationals expect
real expressions.
'''))
# \\\
return rv
except KeyError:
raise ValueError(
"Invalid relational operator symbol: %r" % rop)
@property
def lhs(self):
"""The left-hand side of the relation."""
return self._args[0]
@property
def rhs(self):
"""The right-hand side of the relation."""
return self._args[1]
@property
def reversed(self):
"""Return the relationship with sides reversed.
Examples
========
>>> from sympy import Eq
>>> from sympy.abc import x
>>> Eq(x, 1)
Eq(x, 1)
>>> _.reversed
Eq(1, x)
>>> x < 1
x < 1
>>> _.reversed
1 > x
"""
ops = {Eq: Eq, Gt: Lt, Ge: Le, Lt: Gt, Le: Ge, Ne: Ne}
a, b = self.args
return Relational.__new__(ops.get(self.func, self.func), b, a)
@property
def reversedsign(self):
"""Return the relationship with signs reversed.
Examples
========
>>> from sympy import Eq
>>> from sympy.abc import x
>>> Eq(x, 1)
Eq(x, 1)
>>> _.reversedsign
Eq(-x, -1)
>>> x < 1
x < 1
>>> _.reversedsign
-x > -1
"""
a, b = self.args
if not (isinstance(a, BooleanAtom) or isinstance(b, BooleanAtom)):
ops = {Eq: Eq, Gt: Lt, Ge: Le, Lt: Gt, Le: Ge, Ne: Ne}
return Relational.__new__(ops.get(self.func, self.func), -a, -b)
else:
return self
@property
def negated(self):
"""Return the negated relationship.
Examples
========
>>> from sympy import Eq
>>> from sympy.abc import x
>>> Eq(x, 1)
Eq(x, 1)
>>> _.negated
Ne(x, 1)
>>> x < 1
x < 1
>>> _.negated
x >= 1
Notes
=====
This works more or less identical to ``~``/``Not``. The difference is
that ``negated`` returns the relationship even if `evaluate=False`.
Hence, this is useful in code when checking for e.g. negated relations
to exisiting ones as it will not be affected by the `evaluate` flag.
"""
ops = {Eq: Ne, Ge: Lt, Gt: Le, Le: Gt, Lt: Ge, Ne: Eq}
# If there ever will be new Relational subclasses, the following line
# will work until it is properly sorted out
# return ops.get(self.func, lambda a, b, evaluate=False: ~(self.func(a,
# b, evaluate=evaluate)))(*self.args, evaluate=False)
return Relational.__new__(ops.get(self.func), *self.args)
def _eval_evalf(self, prec):
return self.func(*[s._evalf(prec) for s in self.args])
@property
def canonical(self):
"""Return a canonical form of the relational by putting a
Number on the rhs else ordering the args. The relation is also changed
so that the left-hand side expression does not start with a `-`.
No other simplification is attempted.
Examples
========
>>> from sympy.abc import x, y
>>> x < 2
x < 2
>>> _.reversed.canonical
x < 2
>>> (-y < x).canonical
x > -y
>>> (-y > x).canonical
x < -y
"""
args = self.args
r = self
if r.rhs.is_number:
if r.rhs.is_Number and r.lhs.is_Number and r.lhs > r.rhs:
r = r.reversed
elif r.lhs.is_number:
r = r.reversed
elif tuple(ordered(args)) != args:
r = r.reversed
# Check if first value has negative sign
if not isinstance(r.lhs, BooleanAtom) and \
r.lhs.could_extract_minus_sign():
r = r.reversedsign
elif not isinstance(r.rhs, BooleanAtom) and not r.rhs.is_number and \
r.rhs.could_extract_minus_sign():
# Right hand side has a minus, but not lhs.
# How does the expression with reversed signs behave?
# This is so that expressions of the type Eq(x, -y) and Eq(-x, y)
# have the same canonical representation
expr1, _ = ordered([r.lhs, -r.rhs])
if expr1 != r.lhs:
r = r.reversed.reversedsign
return r
def equals(self, other, failing_expression=False):
"""Return True if the sides of the relationship are mathematically
identical and the type of relationship is the same.
If failing_expression is True, return the expression whose truth value
was unknown."""
if isinstance(other, Relational):
if self == other or self.reversed == other:
return True
a, b = self, other
if a.func in (Eq, Ne) or b.func in (Eq, Ne):
if a.func != b.func:
return False
left, right = [i.equals(j,
failing_expression=failing_expression)
for i, j in zip(a.args, b.args)]
if left is True:
return right
if right is True:
return left
lr, rl = [i.equals(j, failing_expression=failing_expression)
for i, j in zip(a.args, b.reversed.args)]
if lr is True:
return rl
if rl is True:
return lr
e = (left, right, lr, rl)
if all(i is False for i in e):
return False
for i in e:
if i not in (True, False):
return i
else:
if b.func != a.func:
b = b.reversed
if a.func != b.func:
return False
left = a.lhs.equals(b.lhs,
failing_expression=failing_expression)
if left is False:
return False
right = a.rhs.equals(b.rhs,
failing_expression=failing_expression)
if right is False:
return False
if left is True:
return right
return left
def _eval_simplify(self, ratio, measure, rational, inverse):
r = self
r = r.func(*[i.simplify(ratio=ratio, measure=measure,
rational=rational, inverse=inverse)
for i in r.args])
if r.is_Relational:
dif = r.lhs - r.rhs
# replace dif with a valid Number that will
# allow a definitive comparison with 0
v = None
if dif.is_comparable:
v = dif.n(2)
elif dif.equals(0): # XXX this is expensive
v = S.Zero
if v is not None:
r = r.func._eval_relation(v, S.Zero)
r = r.canonical
if measure(r) < ratio*measure(self):
return r
else:
return self
def __nonzero__(self):
raise TypeError("cannot determine truth value of Relational")
__bool__ = __nonzero__
def _eval_as_set(self):
# self is univariate and periodicity(self, x) in (0, None)
from sympy.solvers.inequalities import solve_univariate_inequality
syms = self.free_symbols
assert len(syms) == 1
x = syms.pop()
return solve_univariate_inequality(self, x, relational=False)
@property
def binary_symbols(self):
# override where necessary
return set()
Rel = Relational
class Equality(Relational):
"""An equal relation between two objects.
Represents that two objects are equal. If they can be easily shown
to be definitively equal (or unequal), this will reduce to True (or
False). Otherwise, the relation is maintained as an unevaluated
Equality object. Use the ``simplify`` function on this object for
more nontrivial evaluation of the equality relation.
As usual, the keyword argument ``evaluate=False`` can be used to
prevent any evaluation.
Examples
========
>>> from sympy import Eq, simplify, exp, cos
>>> from sympy.abc import x, y
>>> Eq(y, x + x**2)
Eq(y, x**2 + x)
>>> Eq(2, 5)
False
>>> Eq(2, 5, evaluate=False)
Eq(2, 5)
>>> _.doit()
False
>>> Eq(exp(x), exp(x).rewrite(cos))
Eq(exp(x), sinh(x) + cosh(x))
>>> simplify(_)
True
See Also
========
sympy.logic.boolalg.Equivalent : for representing equality between two
boolean expressions
Notes
=====
This class is not the same as the == operator. The == operator tests
for exact structural equality between two expressions; this class
compares expressions mathematically.
If either object defines an `_eval_Eq` method, it can be used in place of
the default algorithm. If `lhs._eval_Eq(rhs)` or `rhs._eval_Eq(lhs)`
returns anything other than None, that return value will be substituted for
the Equality. If None is returned by `_eval_Eq`, an Equality object will
be created as usual.
Since this object is already an expression, it does not respond to
the method `as_expr` if one tries to create `x - y` from Eq(x, y).
This can be done with the `rewrite(Add)` method.
"""
rel_op = '=='
__slots__ = []
is_Equality = True
def __new__(cls, lhs, rhs=0, **options):
from sympy.core.add import Add
from sympy.core.logic import fuzzy_bool
from sympy.core.expr import _n2
from sympy.simplify.simplify import clear_coefficients
lhs = _sympify(lhs)
rhs = _sympify(rhs)
evaluate = options.pop('evaluate', global_evaluate[0])
if evaluate:
# If one expression has an _eval_Eq, return its results.
if hasattr(lhs, '_eval_Eq'):
r = lhs._eval_Eq(rhs)
if r is not None:
return r
if hasattr(rhs, '_eval_Eq'):
r = rhs._eval_Eq(lhs)
if r is not None:
return r
# If expressions have the same structure, they must be equal.
if lhs == rhs:
return S.true # e.g. True == True
elif all(isinstance(i, BooleanAtom) for i in (rhs, lhs)):
return S.false # True != False
elif not (lhs.is_Symbol or rhs.is_Symbol) and (
isinstance(lhs, Boolean) !=
isinstance(rhs, Boolean)):
return S.false # only Booleans can equal Booleans
# check finiteness
fin = L, R = [i.is_finite for i in (lhs, rhs)]
if None not in fin:
if L != R:
return S.false
if L is False:
if lhs == -rhs: # Eq(oo, -oo)
return S.false
return S.true
elif None in fin and False in fin:
return Relational.__new__(cls, lhs, rhs, **options)
if all(isinstance(i, Expr) for i in (lhs, rhs)):
# see if the difference evaluates
dif = lhs - rhs
z = dif.is_zero
if z is not None:
if z is False and dif.is_commutative: # issue 10728
return S.false
if z:
return S.true
# evaluate numerically if possible
n2 = _n2(lhs, rhs)
if n2 is not None:
return _sympify(n2 == 0)
# see if the ratio evaluates
n, d = dif.as_numer_denom()
rv = None
if n.is_zero:
rv = d.is_nonzero
elif n.is_finite:
if d.is_infinite:
rv = S.true
elif n.is_zero is False:
rv = d.is_infinite
if rv is None:
# if the condition that makes the denominator
# infinite does not make the original expression
# True then False can be returned
l, r = clear_coefficients(d, S.Infinity)
args = [_.subs(l, r) for _ in (lhs, rhs)]
if args != [lhs, rhs]:
rv = fuzzy_bool(Eq(*args))
if rv is True:
rv = None
elif any(a.is_infinite for a in Add.make_args(n)):
# (inf or nan)/x != 0
rv = S.false
if rv is not None:
return _sympify(rv)
return Relational.__new__(cls, lhs, rhs, **options)
@classmethod
def _eval_relation(cls, lhs, rhs):
return _sympify(lhs == rhs)
def _eval_rewrite_as_Add(self, *args, **kwargs):
"""return Eq(L, R) as L - R. To control the evaluation of
the result set pass `evaluate=True` to give L - R;
if `evaluate=None` then terms in L and R will not cancel
but they will be listed in canonical order; otherwise
non-canonical args will be returned.
Examples
========
>>> from sympy import Eq, Add
>>> from sympy.abc import b, x
>>> eq = Eq(x + b, x - b)
>>> eq.rewrite(Add)
2*b
>>> eq.rewrite(Add, evaluate=None).args
(b, b, x, -x)
>>> eq.rewrite(Add, evaluate=False).args
(b, x, b, -x)
"""
L, R = args
evaluate = kwargs.get('evaluate', True)
if evaluate:
# allow cancellation of args
return L - R
args = Add.make_args(L) + Add.make_args(-R)
if evaluate is None:
# no cancellation, but canonical
return _unevaluated_Add(*args)
# no cancellation, not canonical
return Add._from_args(args)
@property
def binary_symbols(self):
if S.true in self.args or S.false in self.args:
if self.lhs.is_Symbol:
return set([self.lhs])
elif self.rhs.is_Symbol:
return set([self.rhs])
return set()
def _eval_simplify(self, ratio, measure, rational, inverse):
from sympy.solvers.solveset import linear_coeffs
# standard simplify
e = super(Equality, self)._eval_simplify(
ratio, measure, rational, inverse)
if not isinstance(e, Equality):
return e
free = self.free_symbols
if len(free) == 1:
try:
x = free.pop()
m, b = linear_coeffs(
e.rewrite(Add, evaluate=False), x)
if m.is_zero is False:
enew = e.func(x, -b/m)
else:
enew = e.func(m*x, -b)
if measure(enew) <= ratio*measure(e):
e = enew
except ValueError:
pass
return e.canonical
Eq = Equality
class Unequality(Relational):
"""An unequal relation between two objects.
Represents that two objects are not equal. If they can be shown to be
definitively equal, this will reduce to False; if definitively unequal,
this will reduce to True. Otherwise, the relation is maintained as an
Unequality object.
Examples
========
>>> from sympy import Ne
>>> from sympy.abc import x, y
>>> Ne(y, x+x**2)
Ne(y, x**2 + x)
See Also
========
Equality
Notes
=====
This class is not the same as the != operator. The != operator tests
for exact structural equality between two expressions; this class
compares expressions mathematically.
This class is effectively the inverse of Equality. As such, it uses the
same algorithms, including any available `_eval_Eq` methods.
"""
rel_op = '!='
__slots__ = []
def __new__(cls, lhs, rhs, **options):
lhs = _sympify(lhs)
rhs = _sympify(rhs)
evaluate = options.pop('evaluate', global_evaluate[0])
if evaluate:
is_equal = Equality(lhs, rhs)
if isinstance(is_equal, BooleanAtom):
return is_equal.negated
return Relational.__new__(cls, lhs, rhs, **options)
@classmethod
def _eval_relation(cls, lhs, rhs):
return _sympify(lhs != rhs)
@property
def binary_symbols(self):
if S.true in self.args or S.false in self.args:
if self.lhs.is_Symbol:
return set([self.lhs])
elif self.rhs.is_Symbol:
return set([self.rhs])
return set()
def _eval_simplify(self, ratio, measure, rational, inverse):
# simplify as an equality
eq = Equality(*self.args)._eval_simplify(
ratio, measure, rational, inverse)
if isinstance(eq, Equality):
# send back Ne with the new args
return self.func(*eq.args)
return eq.negated # result of Ne is the negated Eq
Ne = Unequality
class _Inequality(Relational):
"""Internal base class for all *Than types.
Each subclass must implement _eval_relation to provide the method for
comparing two real numbers.
"""
__slots__ = []
def __new__(cls, lhs, rhs, **options):
lhs = _sympify(lhs)
rhs = _sympify(rhs)
evaluate = options.pop('evaluate', global_evaluate[0])
if evaluate:
# First we invoke the appropriate inequality method of `lhs`
# (e.g., `lhs.__lt__`). That method will try to reduce to
# boolean or raise an exception. It may keep calling
# superclasses until it reaches `Expr` (e.g., `Expr.__lt__`).
# In some cases, `Expr` will just invoke us again (if neither it
# nor a subclass was able to reduce to boolean or raise an
# exception). In that case, it must call us with
# `evaluate=False` to prevent infinite recursion.
r = cls._eval_relation(lhs, rhs)
if r is not None:
return r
# Note: not sure r could be None, perhaps we never take this
# path? In principle, could use this to shortcut out if a
# class realizes the inequality cannot be evaluated further.
# make a "non-evaluated" Expr for the inequality
return Relational.__new__(cls, lhs, rhs, **options)
class _Greater(_Inequality):
"""Not intended for general use
_Greater is only used so that GreaterThan and StrictGreaterThan may
subclass it for the .gts and .lts properties.
"""
__slots__ = ()
@property
def gts(self):
return self._args[0]
@property
def lts(self):
return self._args[1]
class _Less(_Inequality):
"""Not intended for general use.
_Less is only used so that LessThan and StrictLessThan may subclass it for
the .gts and .lts properties.
"""
__slots__ = ()
@property
def gts(self):
return self._args[1]
@property
def lts(self):
return self._args[0]
class GreaterThan(_Greater):
"""Class representations of inequalities.
Extended Summary
================
The ``*Than`` classes represent inequal relationships, where the left-hand
side is generally bigger or smaller than the right-hand side. For example,
the GreaterThan class represents an inequal relationship where the
left-hand side is at least as big as the right side, if not bigger. In
mathematical notation:
lhs >= rhs
In total, there are four ``*Than`` classes, to represent the four
inequalities:
+-----------------+--------+
|Class Name | Symbol |
+=================+========+
|GreaterThan | (>=) |
+-----------------+--------+
|LessThan | (<=) |
+-----------------+--------+
|StrictGreaterThan| (>) |
+-----------------+--------+
|StrictLessThan | (<) |
+-----------------+--------+
All classes take two arguments, lhs and rhs.
+----------------------------+-----------------+
|Signature Example | Math equivalent |
+============================+=================+
|GreaterThan(lhs, rhs) | lhs >= rhs |
+----------------------------+-----------------+
|LessThan(lhs, rhs) | lhs <= rhs |
+----------------------------+-----------------+
|StrictGreaterThan(lhs, rhs) | lhs > rhs |
+----------------------------+-----------------+
|StrictLessThan(lhs, rhs) | lhs < rhs |
+----------------------------+-----------------+
In addition to the normal .lhs and .rhs of Relations, ``*Than`` inequality
objects also have the .lts and .gts properties, which represent the "less
than side" and "greater than side" of the operator. Use of .lts and .gts
in an algorithm rather than .lhs and .rhs as an assumption of inequality
direction will make more explicit the intent of a certain section of code,
and will make it similarly more robust to client code changes:
>>> from sympy import GreaterThan, StrictGreaterThan
>>> from sympy import LessThan, StrictLessThan
>>> from sympy import And, Ge, Gt, Le, Lt, Rel, S
>>> from sympy.abc import x, y, z
>>> from sympy.core.relational import Relational
>>> e = GreaterThan(x, 1)
>>> e
x >= 1
>>> '%s >= %s is the same as %s <= %s' % (e.gts, e.lts, e.lts, e.gts)
'x >= 1 is the same as 1 <= x'
Examples
========
One generally does not instantiate these classes directly, but uses various
convenience methods:
>>> for f in [Ge, Gt, Le, Lt]: # convenience wrappers
... print(f(x, 2))
x >= 2
x > 2
x <= 2
x < 2
Another option is to use the Python inequality operators (>=, >, <=, <)
directly. Their main advantage over the Ge, Gt, Le, and Lt counterparts,
is that one can write a more "mathematical looking" statement rather than
littering the math with oddball function calls. However there are certain
(minor) caveats of which to be aware (search for 'gotcha', below).
>>> x >= 2
x >= 2
>>> _ == Ge(x, 2)
True
However, it is also perfectly valid to instantiate a ``*Than`` class less
succinctly and less conveniently:
>>> Rel(x, 1, ">")
x > 1
>>> Relational(x, 1, ">")
x > 1
>>> StrictGreaterThan(x, 1)
x > 1
>>> GreaterThan(x, 1)
x >= 1
>>> LessThan(x, 1)
x <= 1
>>> StrictLessThan(x, 1)
x < 1
Notes
=====
There are a couple of "gotchas" to be aware of when using Python's
operators.
The first is that what your write is not always what you get:
>>> 1 < x
x > 1
Due to the order that Python parses a statement, it may
not immediately find two objects comparable. When "1 < x"
is evaluated, Python recognizes that the number 1 is a native
number and that x is *not*. Because a native Python number does
not know how to compare itself with a SymPy object
Python will try the reflective operation, "x > 1" and that is the
form that gets evaluated, hence returned.
If the order of the statement is important (for visual output to
the console, perhaps), one can work around this annoyance in a
couple ways:
(1) "sympify" the literal before comparison
>>> S(1) < x
1 < x
(2) use one of the wrappers or less succinct methods described
above
>>> Lt(1, x)
1 < x
>>> Relational(1, x, "<")
1 < x
The second gotcha involves writing equality tests between relationals
when one or both sides of the test involve a literal relational:
>>> e = x < 1; e
x < 1
>>> e == e # neither side is a literal
True
>>> e == x < 1 # expecting True, too
False
>>> e != x < 1 # expecting False
x < 1
>>> x < 1 != x < 1 # expecting False or the same thing as before
Traceback (most recent call last):
...
TypeError: cannot determine truth value of Relational
The solution for this case is to wrap literal relationals in
parentheses:
>>> e == (x < 1)
True
>>> e != (x < 1)
False
>>> (x < 1) != (x < 1)
False
The third gotcha involves chained inequalities not involving
'==' or '!='. Occasionally, one may be tempted to write:
>>> e = x < y < z
Traceback (most recent call last):
...
TypeError: symbolic boolean expression has no truth value.
Due to an implementation detail or decision of Python [1]_,
there is no way for SymPy to create a chained inequality with
that syntax so one must use And:
>>> e = And(x < y, y < z)
>>> type( e )
And
>>> e
(x < y) & (y < z)
Although this can also be done with the '&' operator, it cannot
be done with the 'and' operarator:
>>> (x < y) & (y < z)
(x < y) & (y < z)
>>> (x < y) and (y < z)
Traceback (most recent call last):
...
TypeError: cannot determine truth value of Relational
.. [1] This implementation detail is that Python provides no reliable
method to determine that a chained inequality is being built.
Chained comparison operators are evaluated pairwise, using "and"
logic (see
http://docs.python.org/2/reference/expressions.html#notin). This
is done in an efficient way, so that each object being compared
is only evaluated once and the comparison can short-circuit. For
example, ``1 > 2 > 3`` is evaluated by Python as ``(1 > 2) and (2
> 3)``. The ``and`` operator coerces each side into a bool,
returning the object itself when it short-circuits. The bool of
the --Than operators will raise TypeError on purpose, because
SymPy cannot determine the mathematical ordering of symbolic
expressions. Thus, if we were to compute ``x > y > z``, with
``x``, ``y``, and ``z`` being Symbols, Python converts the
statement (roughly) into these steps:
(1) x > y > z
(2) (x > y) and (y > z)
(3) (GreaterThanObject) and (y > z)
(4) (GreaterThanObject.__nonzero__()) and (y > z)
(5) TypeError
Because of the "and" added at step 2, the statement gets turned into a
weak ternary statement, and the first object's __nonzero__ method will
raise TypeError. Thus, creating a chained inequality is not possible.
In Python, there is no way to override the ``and`` operator, or to
control how it short circuits, so it is impossible to make something
like ``x > y > z`` work. There was a PEP to change this,
:pep:`335`, but it was officially closed in March, 2012.
"""
__slots__ = ()
rel_op = '>='
@classmethod
def _eval_relation(cls, lhs, rhs):
# We don't use the op symbol here: workaround issue #7951
return _sympify(lhs.__ge__(rhs))
Ge = GreaterThan
class LessThan(_Less):
__doc__ = GreaterThan.__doc__
__slots__ = ()
rel_op = '<='
@classmethod
def _eval_relation(cls, lhs, rhs):
# We don't use the op symbol here: workaround issue #7951
return _sympify(lhs.__le__(rhs))
Le = LessThan
class StrictGreaterThan(_Greater):
__doc__ = GreaterThan.__doc__
__slots__ = ()
rel_op = '>'
@classmethod
def _eval_relation(cls, lhs, rhs):
# We don't use the op symbol here: workaround issue #7951
return _sympify(lhs.__gt__(rhs))
Gt = StrictGreaterThan
class StrictLessThan(_Less):
__doc__ = GreaterThan.__doc__
__slots__ = ()
rel_op = '<'
@classmethod
def _eval_relation(cls, lhs, rhs):
# We don't use the op symbol here: workaround issue #7951
return _sympify(lhs.__lt__(rhs))
Lt = StrictLessThan
# A class-specific (not object-specific) data item used for a minor speedup.
# It is defined here, rather than directly in the class, because the classes
# that it references have not been defined until now (e.g. StrictLessThan).
Relational.ValidRelationOperator = {
None: Equality,
'==': Equality,
'eq': Equality,
'!=': Unequality,
'<>': Unequality,
'ne': Unequality,
'>=': GreaterThan,
'ge': GreaterThan,
'<=': LessThan,
'le': LessThan,
'>': StrictGreaterThan,
'gt': StrictGreaterThan,
'<': StrictLessThan,
'lt': StrictLessThan,
}
|
792b28dc77276701fc6fb61e8ba30008f0c2237639fb784be976bf96bd180711
|
from __future__ import print_function, division
import decimal
import fractions
import math
import re as regex
from .containers import Tuple
from .sympify import converter, sympify, _sympify, SympifyError, _convert_numpy_types
from .singleton import S, Singleton
from .expr import Expr, AtomicExpr
from .decorators import _sympifyit
from .cache import cacheit, clear_cache
from .logic import fuzzy_not
from sympy.core.compatibility import (
as_int, integer_types, long, string_types, with_metaclass, HAS_GMPY,
SYMPY_INTS, int_info)
from sympy.core.cache import lru_cache
import mpmath
import mpmath.libmp as mlib
from mpmath.libmp.backend import MPZ
from mpmath.libmp import mpf_pow, mpf_pi, mpf_e, phi_fixed
from mpmath.ctx_mp import mpnumeric
from mpmath.libmp.libmpf import (
finf as _mpf_inf, fninf as _mpf_ninf,
fnan as _mpf_nan, fzero as _mpf_zero, _normalize as mpf_normalize,
prec_to_dps)
from sympy.utilities.misc import debug, filldedent
from .evaluate import global_evaluate
from sympy.utilities.exceptions import SymPyDeprecationWarning
rnd = mlib.round_nearest
_LOG2 = math.log(2)
def comp(z1, z2, tol=None):
"""Return a bool indicating whether the error between z1 and z2 is <= tol.
If ``tol`` is None then True will be returned if there is a significant
difference between the numbers: ``abs(z1 - z2)*10**p <= 1/2`` where ``p``
is the lower of the precisions of the values. A comparison of strings will
be made if ``z1`` is a Number and a) ``z2`` is a string or b) ``tol`` is ''
and ``z2`` is a Number.
When ``tol`` is a nonzero value, if z2 is non-zero and ``|z1| > 1``
the error is normalized by ``|z1|``, so if you want to see if the
absolute error between ``z1`` and ``z2`` is <= ``tol`` then call this
as ``comp(z1 - z2, 0, tol)``.
"""
if type(z2) is str:
if not isinstance(z1, Number):
raise ValueError('when z2 is a str z1 must be a Number')
return str(z1) == z2
if not z1:
z1, z2 = z2, z1
if not z1:
return True
if not tol:
if tol is None:
if type(z2) is str and getattr(z1, 'is_Number', False):
return str(z1) == z2
a, b = Float(z1), Float(z2)
return int(abs(a - b)*10**prec_to_dps(
min(a._prec, b._prec)))*2 <= 1
elif all(getattr(i, 'is_Number', False) for i in (z1, z2)):
return z1._prec == z2._prec and str(z1) == str(z2)
raise ValueError('exact comparison requires two Numbers')
diff = abs(z1 - z2)
az1 = abs(z1)
if z2 and az1 > 1:
return diff/az1 <= tol
else:
return diff <= tol
def mpf_norm(mpf, prec):
"""Return the mpf tuple normalized appropriately for the indicated
precision after doing a check to see if zero should be returned or
not when the mantissa is 0. ``mpf_normlize`` always assumes that this
is zero, but it may not be since the mantissa for mpf's values "+inf",
"-inf" and "nan" have a mantissa of zero, too.
Note: this is not intended to validate a given mpf tuple, so sending
mpf tuples that were not created by mpmath may produce bad results. This
is only a wrapper to ``mpf_normalize`` which provides the check for non-
zero mpfs that have a 0 for the mantissa.
"""
sign, man, expt, bc = mpf
if not man:
# hack for mpf_normalize which does not do this;
# it assumes that if man is zero the result is 0
# (see issue 6639)
if not bc:
return _mpf_zero
else:
# don't change anything; this should already
# be a well formed mpf tuple
return mpf
# Necessary if mpmath is using the gmpy backend
from mpmath.libmp.backend import MPZ
rv = mpf_normalize(sign, MPZ(man), expt, bc, prec, rnd)
return rv
# TODO: we should use the warnings module
_errdict = {"divide": False}
def seterr(divide=False):
"""
Should sympy raise an exception on 0/0 or return a nan?
divide == True .... raise an exception
divide == False ... return nan
"""
if _errdict["divide"] != divide:
clear_cache()
_errdict["divide"] = divide
def _as_integer_ratio(p):
neg_pow, man, expt, bc = getattr(p, '_mpf_', mpmath.mpf(p)._mpf_)
p = [1, -1][neg_pow % 2]*man
if expt < 0:
q = 2**-expt
else:
q = 1
p *= 2**expt
return int(p), int(q)
def _decimal_to_Rational_prec(dec):
"""Convert an ordinary decimal instance to a Rational."""
if not dec.is_finite():
raise TypeError("dec must be finite, got %s." % dec)
s, d, e = dec.as_tuple()
prec = len(d)
if e >= 0: # it's an integer
rv = Integer(int(dec))
else:
s = (-1)**s
d = sum([di*10**i for i, di in enumerate(reversed(d))])
rv = Rational(s*d, 10**-e)
return rv, prec
_floatpat = regex.compile(r"[-+]?((\d*\.\d+)|(\d+\.?))")
def _literal_float(f):
"""Return True if n starts like a floating point number."""
return bool(_floatpat.match(f))
# (a,b) -> gcd(a,b)
# TODO caching with decorator, but not to degrade performance
@lru_cache(1024)
def igcd(*args):
"""Computes nonnegative integer greatest common divisor.
The algorithm is based on the well known Euclid's algorithm. To
improve speed, igcd() has its own caching mechanism implemented.
Examples
========
>>> from sympy.core.numbers import igcd
>>> igcd(2, 4)
2
>>> igcd(5, 10, 15)
5
"""
if len(args) < 2:
raise TypeError(
'igcd() takes at least 2 arguments (%s given)' % len(args))
args_temp = [abs(as_int(i)) for i in args]
if 1 in args_temp:
return 1
a = args_temp.pop()
for b in args_temp:
a = igcd2(a, b) if b else a
return a
try:
from math import gcd as igcd2
except ImportError:
def igcd2(a, b):
"""Compute gcd of two Python integers a and b."""
if (a.bit_length() > BIGBITS and
b.bit_length() > BIGBITS):
return igcd_lehmer(a, b)
a, b = abs(a), abs(b)
while b:
a, b = b, a % b
return a
# Use Lehmer's algorithm only for very large numbers.
# The limit could be different on Python 2.7 and 3.x.
# If so, then this could be defined in compatibility.py.
BIGBITS = 5000
def igcd_lehmer(a, b):
"""Computes greatest common divisor of two integers.
Euclid's algorithm for the computation of the greatest
common divisor gcd(a, b) of two (positive) integers
a and b is based on the division identity
a = q*b + r,
where the quotient q and the remainder r are integers
and 0 <= r < b. Then each common divisor of a and b
divides r, and it follows that gcd(a, b) == gcd(b, r).
The algorithm works by constructing the sequence
r0, r1, r2, ..., where r0 = a, r1 = b, and each rn
is the remainder from the division of the two preceding
elements.
In Python, q = a // b and r = a % b are obtained by the
floor division and the remainder operations, respectively.
These are the most expensive arithmetic operations, especially
for large a and b.
Lehmer's algorithm is based on the observation that the quotients
qn = r(n-1) // rn are in general small integers even
when a and b are very large. Hence the quotients can be
usually determined from a relatively small number of most
significant bits.
The efficiency of the algorithm is further enhanced by not
computing each long remainder in Euclid's sequence. The remainders
are linear combinations of a and b with integer coefficients
derived from the quotients. The coefficients can be computed
as far as the quotients can be determined from the chosen
most significant parts of a and b. Only then a new pair of
consecutive remainders is computed and the algorithm starts
anew with this pair.
References
==========
.. [1] https://en.wikipedia.org/wiki/Lehmer%27s_GCD_algorithm
"""
a, b = abs(as_int(a)), abs(as_int(b))
if a < b:
a, b = b, a
# The algorithm works by using one or two digit division
# whenever possible. The outer loop will replace the
# pair (a, b) with a pair of shorter consecutive elements
# of the Euclidean gcd sequence until a and b
# fit into two Python (long) int digits.
nbits = 2*int_info.bits_per_digit
while a.bit_length() > nbits and b != 0:
# Quotients are mostly small integers that can
# be determined from most significant bits.
n = a.bit_length() - nbits
x, y = int(a >> n), int(b >> n) # most significant bits
# Elements of the Euclidean gcd sequence are linear
# combinations of a and b with integer coefficients.
# Compute the coefficients of consecutive pairs
# a' = A*a + B*b, b' = C*a + D*b
# using small integer arithmetic as far as possible.
A, B, C, D = 1, 0, 0, 1 # initial values
while True:
# The coefficients alternate in sign while looping.
# The inner loop combines two steps to keep track
# of the signs.
# At this point we have
# A > 0, B <= 0, C <= 0, D > 0,
# x' = x + B <= x < x" = x + A,
# y' = y + C <= y < y" = y + D,
# and
# x'*N <= a' < x"*N, y'*N <= b' < y"*N,
# where N = 2**n.
# Now, if y' > 0, and x"//y' and x'//y" agree,
# then their common value is equal to q = a'//b'.
# In addition,
# x'%y" = x' - q*y" < x" - q*y' = x"%y',
# and
# (x'%y")*N < a'%b' < (x"%y')*N.
# On the other hand, we also have x//y == q,
# and therefore
# x'%y" = x + B - q*(y + D) = x%y + B',
# x"%y' = x + A - q*(y + C) = x%y + A',
# where
# B' = B - q*D < 0, A' = A - q*C > 0.
if y + C <= 0:
break
q = (x + A) // (y + C)
# Now x'//y" <= q, and equality holds if
# x' - q*y" = (x - q*y) + (B - q*D) >= 0.
# This is a minor optimization to avoid division.
x_qy, B_qD = x - q*y, B - q*D
if x_qy + B_qD < 0:
break
# Next step in the Euclidean sequence.
x, y = y, x_qy
A, B, C, D = C, D, A - q*C, B_qD
# At this point the signs of the coefficients
# change and their roles are interchanged.
# A <= 0, B > 0, C > 0, D < 0,
# x' = x + A <= x < x" = x + B,
# y' = y + D < y < y" = y + C.
if y + D <= 0:
break
q = (x + B) // (y + D)
x_qy, A_qC = x - q*y, A - q*C
if x_qy + A_qC < 0:
break
x, y = y, x_qy
A, B, C, D = C, D, A_qC, B - q*D
# Now the conditions on top of the loop
# are again satisfied.
# A > 0, B < 0, C < 0, D > 0.
if B == 0:
# This can only happen when y == 0 in the beginning
# and the inner loop does nothing.
# Long division is forced.
a, b = b, a % b
continue
# Compute new long arguments using the coefficients.
a, b = A*a + B*b, C*a + D*b
# Small divisors. Finish with the standard algorithm.
while b:
a, b = b, a % b
return a
def ilcm(*args):
"""Computes integer least common multiple.
Examples
========
>>> from sympy.core.numbers import ilcm
>>> ilcm(5, 10)
10
>>> ilcm(7, 3)
21
>>> ilcm(5, 10, 15)
30
"""
if len(args) < 2:
raise TypeError(
'ilcm() takes at least 2 arguments (%s given)' % len(args))
if 0 in args:
return 0
a = args[0]
for b in args[1:]:
a = a // igcd(a, b) * b # since gcd(a,b) | a
return a
def igcdex(a, b):
"""Returns x, y, g such that g = x*a + y*b = gcd(a, b).
>>> from sympy.core.numbers import igcdex
>>> igcdex(2, 3)
(-1, 1, 1)
>>> igcdex(10, 12)
(-1, 1, 2)
>>> x, y, g = igcdex(100, 2004)
>>> x, y, g
(-20, 1, 4)
>>> x*100 + y*2004
4
"""
if (not a) and (not b):
return (0, 1, 0)
if not a:
return (0, b//abs(b), abs(b))
if not b:
return (a//abs(a), 0, abs(a))
if a < 0:
a, x_sign = -a, -1
else:
x_sign = 1
if b < 0:
b, y_sign = -b, -1
else:
y_sign = 1
x, y, r, s = 1, 0, 0, 1
while b:
(c, q) = (a % b, a // b)
(a, b, r, s, x, y) = (b, c, x - q*r, y - q*s, r, s)
return (x*x_sign, y*y_sign, a)
def mod_inverse(a, m):
"""
Return the number c such that, (a * c) = 1 (mod m)
where c has the same sign as m. If no such value exists,
a ValueError is raised.
Examples
========
>>> from sympy import S
>>> from sympy.core.numbers import mod_inverse
Suppose we wish to find multiplicative inverse x of
3 modulo 11. This is the same as finding x such
that 3 * x = 1 (mod 11). One value of x that satisfies
this congruence is 4. Because 3 * 4 = 12 and 12 = 1 (mod 11).
This is the value return by mod_inverse:
>>> mod_inverse(3, 11)
4
>>> mod_inverse(-3, 11)
7
When there is a common factor between the numerators of
``a`` and ``m`` the inverse does not exist:
>>> mod_inverse(2, 4)
Traceback (most recent call last):
...
ValueError: inverse of 2 mod 4 does not exist
>>> mod_inverse(S(2)/7, S(5)/2)
7/2
References
==========
- https://en.wikipedia.org/wiki/Modular_multiplicative_inverse
- https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
"""
c = None
try:
a, m = as_int(a), as_int(m)
if m != 1 and m != -1:
x, y, g = igcdex(a, m)
if g == 1:
c = x % m
except ValueError:
a, m = sympify(a), sympify(m)
if not (a.is_number and m.is_number):
raise TypeError(filldedent('''
Expected numbers for arguments; symbolic `mod_inverse`
is not implemented
but symbolic expressions can be handled with the
similar function,
sympy.polys.polytools.invert'''))
big = (m > 1)
if not (big is S.true or big is S.false):
raise ValueError('m > 1 did not evaluate; try to simplify %s' % m)
elif big:
c = 1/a
if c is None:
raise ValueError('inverse of %s (mod %s) does not exist' % (a, m))
return c
class Number(AtomicExpr):
"""Represents atomic numbers in SymPy.
Floating point numbers are represented by the Float class.
Rational numbers (of any size) are represented by the Rational class.
Integer numbers (of any size) are represented by the Integer class.
Float and Rational are subclasses of Number; Integer is a subclass
of Rational.
For example, ``2/3`` is represented as ``Rational(2, 3)`` which is
a different object from the floating point number obtained with
Python division ``2/3``. Even for numbers that are exactly
represented in binary, there is a difference between how two forms,
such as ``Rational(1, 2)`` and ``Float(0.5)``, are used in SymPy.
The rational form is to be preferred in symbolic computations.
Other kinds of numbers, such as algebraic numbers ``sqrt(2)`` or
complex numbers ``3 + 4*I``, are not instances of Number class as
they are not atomic.
See Also
========
Float, Integer, Rational
"""
is_commutative = True
is_number = True
is_Number = True
__slots__ = []
# Used to make max(x._prec, y._prec) return x._prec when only x is a float
_prec = -1
def __new__(cls, *obj):
if len(obj) == 1:
obj = obj[0]
if isinstance(obj, Number):
return obj
if isinstance(obj, SYMPY_INTS):
return Integer(obj)
if isinstance(obj, tuple) and len(obj) == 2:
return Rational(*obj)
if isinstance(obj, (float, mpmath.mpf, decimal.Decimal)):
return Float(obj)
if isinstance(obj, string_types):
val = sympify(obj)
if isinstance(val, Number):
return val
else:
raise ValueError('String "%s" does not denote a Number' % obj)
msg = "expected str|int|long|float|Decimal|Number object but got %r"
raise TypeError(msg % type(obj).__name__)
def invert(self, other, *gens, **args):
from sympy.polys.polytools import invert
if getattr(other, 'is_number', True):
return mod_inverse(self, other)
return invert(self, other, *gens, **args)
def __divmod__(self, other):
from .containers import Tuple
try:
other = Number(other)
except TypeError:
msg = "unsupported operand type(s) for divmod(): '%s' and '%s'"
raise TypeError(msg % (type(self).__name__, type(other).__name__))
if not other:
raise ZeroDivisionError('modulo by zero')
if self.is_Integer and other.is_Integer:
return Tuple(*divmod(self.p, other.p))
else:
rat = self/other
w = int(rat) if rat > 0 else int(rat) - 1
r = self - other*w
return Tuple(w, r)
def __rdivmod__(self, other):
try:
other = Number(other)
except TypeError:
msg = "unsupported operand type(s) for divmod(): '%s' and '%s'"
raise TypeError(msg % (type(other).__name__, type(self).__name__))
return divmod(other, self)
def __round__(self, *args):
return round(float(self), *args)
def _as_mpf_val(self, prec):
"""Evaluation of mpf tuple accurate to at least prec bits."""
raise NotImplementedError('%s needs ._as_mpf_val() method' %
(self.__class__.__name__))
def _eval_evalf(self, prec):
return Float._new(self._as_mpf_val(prec), prec)
def _as_mpf_op(self, prec):
prec = max(prec, self._prec)
return self._as_mpf_val(prec), prec
def __float__(self):
return mlib.to_float(self._as_mpf_val(53))
def floor(self):
raise NotImplementedError('%s needs .floor() method' %
(self.__class__.__name__))
def ceiling(self):
raise NotImplementedError('%s needs .ceiling() method' %
(self.__class__.__name__))
def _eval_conjugate(self):
return self
def _eval_order(self, *symbols):
from sympy import Order
# Order(5, x, y) -> Order(1,x,y)
return Order(S.One, *symbols)
def _eval_subs(self, old, new):
if old == -self:
return -new
return self # there is no other possibility
def _eval_is_finite(self):
return True
@classmethod
def class_key(cls):
return 1, 0, 'Number'
@cacheit
def sort_key(self, order=None):
return self.class_key(), (0, ()), (), self
@_sympifyit('other', NotImplemented)
def __add__(self, other):
if isinstance(other, Number) and global_evaluate[0]:
if other is S.NaN:
return S.NaN
elif other is S.Infinity:
return S.Infinity
elif other is S.NegativeInfinity:
return S.NegativeInfinity
return AtomicExpr.__add__(self, other)
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
if isinstance(other, Number) and global_evaluate[0]:
if other is S.NaN:
return S.NaN
elif other is S.Infinity:
return S.NegativeInfinity
elif other is S.NegativeInfinity:
return S.Infinity
return AtomicExpr.__sub__(self, other)
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
if isinstance(other, Number) and global_evaluate[0]:
if other is S.NaN:
return S.NaN
elif other is S.Infinity:
if self.is_zero:
return S.NaN
elif self.is_positive:
return S.Infinity
else:
return S.NegativeInfinity
elif other is S.NegativeInfinity:
if self.is_zero:
return S.NaN
elif self.is_positive:
return S.NegativeInfinity
else:
return S.Infinity
elif isinstance(other, Tuple):
return NotImplemented
return AtomicExpr.__mul__(self, other)
@_sympifyit('other', NotImplemented)
def __div__(self, other):
if isinstance(other, Number) and global_evaluate[0]:
if other is S.NaN:
return S.NaN
elif other is S.Infinity or other is S.NegativeInfinity:
return S.Zero
return AtomicExpr.__div__(self, other)
__truediv__ = __div__
def __eq__(self, other):
raise NotImplementedError('%s needs .__eq__() method' %
(self.__class__.__name__))
def __ne__(self, other):
raise NotImplementedError('%s needs .__ne__() method' %
(self.__class__.__name__))
def __lt__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s < %s" % (self, other))
raise NotImplementedError('%s needs .__lt__() method' %
(self.__class__.__name__))
def __le__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s <= %s" % (self, other))
raise NotImplementedError('%s needs .__le__() method' %
(self.__class__.__name__))
def __gt__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s > %s" % (self, other))
return _sympify(other).__lt__(self)
def __ge__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s >= %s" % (self, other))
return _sympify(other).__le__(self)
def __hash__(self):
return super(Number, self).__hash__()
def is_constant(self, *wrt, **flags):
return True
def as_coeff_mul(self, *deps, **kwargs):
# a -> c*t
if self.is_Rational or not kwargs.pop('rational', True):
return self, tuple()
elif self.is_negative:
return S.NegativeOne, (-self,)
return S.One, (self,)
def as_coeff_add(self, *deps):
# a -> c + t
if self.is_Rational:
return self, tuple()
return S.Zero, (self,)
def as_coeff_Mul(self, rational=False):
"""Efficiently extract the coefficient of a product. """
if rational and not self.is_Rational:
return S.One, self
return (self, S.One) if self else (S.One, self)
def as_coeff_Add(self, rational=False):
"""Efficiently extract the coefficient of a summation. """
if not rational:
return self, S.Zero
return S.Zero, self
def gcd(self, other):
"""Compute GCD of `self` and `other`. """
from sympy.polys import gcd
return gcd(self, other)
def lcm(self, other):
"""Compute LCM of `self` and `other`. """
from sympy.polys import lcm
return lcm(self, other)
def cofactors(self, other):
"""Compute GCD and cofactors of `self` and `other`. """
from sympy.polys import cofactors
return cofactors(self, other)
class Float(Number):
"""Represent a floating-point number of arbitrary precision.
Examples
========
>>> from sympy import Float
>>> Float(3.5)
3.50000000000000
>>> Float(3)
3.00000000000000
Creating Floats from strings (and Python ``int`` and ``long``
types) will give a minimum precision of 15 digits, but the
precision will automatically increase to capture all digits
entered.
>>> Float(1)
1.00000000000000
>>> Float(10**20)
100000000000000000000.
>>> Float('1e20')
100000000000000000000.
However, *floating-point* numbers (Python ``float`` types) retain
only 15 digits of precision:
>>> Float(1e20)
1.00000000000000e+20
>>> Float(1.23456789123456789)
1.23456789123457
It may be preferable to enter high-precision decimal numbers
as strings:
Float('1.23456789123456789')
1.23456789123456789
The desired number of digits can also be specified:
>>> Float('1e-3', 3)
0.00100
>>> Float(100, 4)
100.0
Float can automatically count significant figures if a null string
is sent for the precision; space are also allowed in the string. (Auto-
counting is only allowed for strings, ints and longs).
>>> Float('123 456 789 . 123 456', '')
123456789.123456
>>> Float('12e-3', '')
0.012
>>> Float(3, '')
3.
If a number is written in scientific notation, only the digits before the
exponent are considered significant if a decimal appears, otherwise the
"e" signifies only how to move the decimal:
>>> Float('60.e2', '') # 2 digits significant
6.0e+3
>>> Float('60e2', '') # 4 digits significant
6000.
>>> Float('600e-2', '') # 3 digits significant
6.00
Notes
=====
Floats are inexact by their nature unless their value is a binary-exact
value.
>>> approx, exact = Float(.1, 1), Float(.125, 1)
For calculation purposes, evalf needs to be able to change the precision
but this will not increase the accuracy of the inexact value. The
following is the most accurate 5-digit approximation of a value of 0.1
that had only 1 digit of precision:
>>> approx.evalf(5)
0.099609
By contrast, 0.125 is exact in binary (as it is in base 10) and so it
can be passed to Float or evalf to obtain an arbitrary precision with
matching accuracy:
>>> Float(exact, 5)
0.12500
>>> exact.evalf(20)
0.12500000000000000000
Trying to make a high-precision Float from a float is not disallowed,
but one must keep in mind that the *underlying float* (not the apparent
decimal value) is being obtained with high precision. For example, 0.3
does not have a finite binary representation. The closest rational is
the fraction 5404319552844595/2**54. So if you try to obtain a Float of
0.3 to 20 digits of precision you will not see the same thing as 0.3
followed by 19 zeros:
>>> Float(0.3, 20)
0.29999999999999998890
If you want a 20-digit value of the decimal 0.3 (not the floating point
approximation of 0.3) you should send the 0.3 as a string. The underlying
representation is still binary but a higher precision than Python's float
is used:
>>> Float('0.3', 20)
0.30000000000000000000
Although you can increase the precision of an existing Float using Float
it will not increase the accuracy -- the underlying value is not changed:
>>> def show(f): # binary rep of Float
... from sympy import Mul, Pow
... s, m, e, b = f._mpf_
... v = Mul(int(m), Pow(2, int(e), evaluate=False), evaluate=False)
... print('%s at prec=%s' % (v, f._prec))
...
>>> t = Float('0.3', 3)
>>> show(t)
4915/2**14 at prec=13
>>> show(Float(t, 20)) # higher prec, not higher accuracy
4915/2**14 at prec=70
>>> show(Float(t, 2)) # lower prec
307/2**10 at prec=10
The same thing happens when evalf is used on a Float:
>>> show(t.evalf(20))
4915/2**14 at prec=70
>>> show(t.evalf(2))
307/2**10 at prec=10
Finally, Floats can be instantiated with an mpf tuple (n, c, p) to
produce the number (-1)**n*c*2**p:
>>> n, c, p = 1, 5, 0
>>> (-1)**n*c*2**p
-5
>>> Float((1, 5, 0))
-5.00000000000000
An actual mpf tuple also contains the number of bits in c as the last
element of the tuple:
>>> _._mpf_
(1, 5, 0, 3)
This is not needed for instantiation and is not the same thing as the
precision. The mpf tuple and the precision are two separate quantities
that Float tracks.
"""
__slots__ = ['_mpf_', '_prec']
# A Float represents many real numbers,
# both rational and irrational.
is_rational = None
is_irrational = None
is_number = True
is_real = True
is_Float = True
def __new__(cls, num, dps=None, prec=None, precision=None):
if prec is not None:
SymPyDeprecationWarning(
feature="Using 'prec=XX' to denote decimal precision",
useinstead="'dps=XX' for decimal precision and 'precision=XX' "\
"for binary precision",
issue=12820,
deprecated_since_version="1.1").warn()
dps = prec
del prec # avoid using this deprecated kwarg
if dps is not None and precision is not None:
raise ValueError('Both decimal and binary precision supplied. '
'Supply only one. ')
if isinstance(num, string_types):
num = num.replace(' ', '')
if num.startswith('.') and len(num) > 1:
num = '0' + num
elif num.startswith('-.') and len(num) > 2:
num = '-0.' + num[2:]
elif isinstance(num, float) and num == 0:
num = '0'
elif isinstance(num, (SYMPY_INTS, Integer)):
num = str(num) # faster than mlib.from_int
elif num is S.Infinity:
num = '+inf'
elif num is S.NegativeInfinity:
num = '-inf'
elif type(num).__module__ == 'numpy': # support for numpy datatypes
num = _convert_numpy_types(num)
elif isinstance(num, mpmath.mpf):
if precision is None:
if dps is None:
precision = num.context.prec
num = num._mpf_
if dps is None and precision is None:
dps = 15
if isinstance(num, Float):
return num
if isinstance(num, string_types) and _literal_float(num):
try:
Num = decimal.Decimal(num)
except decimal.InvalidOperation:
pass
else:
isint = '.' not in num
num, dps = _decimal_to_Rational_prec(Num)
if num.is_Integer and isint:
dps = max(dps, len(str(num).lstrip('-')))
dps = max(15, dps)
precision = mlib.libmpf.dps_to_prec(dps)
elif precision == '' and dps is None or precision is None and dps == '':
if not isinstance(num, string_types):
raise ValueError('The null string can only be used when '
'the number to Float is passed as a string or an integer.')
ok = None
if _literal_float(num):
try:
Num = decimal.Decimal(num)
except decimal.InvalidOperation:
pass
else:
isint = '.' not in num
num, dps = _decimal_to_Rational_prec(Num)
if num.is_Integer and isint:
dps = max(dps, len(str(num).lstrip('-')))
precision = mlib.libmpf.dps_to_prec(dps)
ok = True
if ok is None:
raise ValueError('string-float not recognized: %s' % num)
# decimal precision(dps) is set and maybe binary precision(precision)
# as well.From here on binary precision is used to compute the Float.
# Hence, if supplied use binary precision else translate from decimal
# precision.
if precision is None or precision == '':
precision = mlib.libmpf.dps_to_prec(dps)
precision = int(precision)
if isinstance(num, float):
_mpf_ = mlib.from_float(num, precision, rnd)
elif isinstance(num, string_types):
_mpf_ = mlib.from_str(num, precision, rnd)
elif isinstance(num, decimal.Decimal):
if num.is_finite():
_mpf_ = mlib.from_str(str(num), precision, rnd)
elif num.is_nan():
_mpf_ = _mpf_nan
elif num.is_infinite():
if num > 0:
_mpf_ = _mpf_inf
else:
_mpf_ = _mpf_ninf
else:
raise ValueError("unexpected decimal value %s" % str(num))
elif isinstance(num, tuple) and len(num) in (3, 4):
if type(num[1]) is str:
# it's a hexadecimal (coming from a pickled object)
# assume that it is in standard form
num = list(num)
# If we're loading an object pickled in Python 2 into
# Python 3, we may need to strip a tailing 'L' because
# of a shim for int on Python 3, see issue #13470.
if num[1].endswith('L'):
num[1] = num[1][:-1]
num[1] = MPZ(num[1], 16)
_mpf_ = tuple(num)
else:
if len(num) == 4:
# handle normalization hack
return Float._new(num, precision)
else:
return (S.NegativeOne**num[0]*num[1]*S(2)**num[2]).evalf(precision)
else:
try:
_mpf_ = num._as_mpf_val(precision)
except (NotImplementedError, AttributeError):
_mpf_ = mpmath.mpf(num, prec=precision)._mpf_
# special cases
if _mpf_ == _mpf_zero:
pass # we want a Float
elif _mpf_ == _mpf_nan:
return S.NaN
obj = Expr.__new__(cls)
obj._mpf_ = _mpf_
obj._prec = precision
return obj
@classmethod
def _new(cls, _mpf_, _prec):
# special cases
if _mpf_ == _mpf_zero:
return S.Zero # XXX this is different from Float which gives 0.0
elif _mpf_ == _mpf_nan:
return S.NaN
obj = Expr.__new__(cls)
obj._mpf_ = mpf_norm(_mpf_, _prec)
# XXX: Should this be obj._prec = obj._mpf_[3]?
obj._prec = _prec
return obj
# mpz can't be pickled
def __getnewargs__(self):
return (mlib.to_pickable(self._mpf_),)
def __getstate__(self):
return {'_prec': self._prec}
def _hashable_content(self):
return (self._mpf_, self._prec)
def floor(self):
return Integer(int(mlib.to_int(
mlib.mpf_floor(self._mpf_, self._prec))))
def ceiling(self):
return Integer(int(mlib.to_int(
mlib.mpf_ceil(self._mpf_, self._prec))))
@property
def num(self):
return mpmath.mpf(self._mpf_)
def _as_mpf_val(self, prec):
rv = mpf_norm(self._mpf_, prec)
if rv != self._mpf_ and self._prec == prec:
debug(self._mpf_, rv)
return rv
def _as_mpf_op(self, prec):
return self._mpf_, max(prec, self._prec)
def _eval_is_finite(self):
if self._mpf_ in (_mpf_inf, _mpf_ninf):
return False
return True
def _eval_is_infinite(self):
if self._mpf_ in (_mpf_inf, _mpf_ninf):
return True
return False
def _eval_is_integer(self):
return self._mpf_ == _mpf_zero
def _eval_is_negative(self):
if self._mpf_ == _mpf_ninf:
return True
if self._mpf_ == _mpf_inf:
return False
return self.num < 0
def _eval_is_positive(self):
if self._mpf_ == _mpf_inf:
return True
if self._mpf_ == _mpf_ninf:
return False
return self.num > 0
def _eval_is_zero(self):
return self._mpf_ == _mpf_zero
def __nonzero__(self):
return self._mpf_ != _mpf_zero
__bool__ = __nonzero__
def __neg__(self):
return Float._new(mlib.mpf_neg(self._mpf_), self._prec)
@_sympifyit('other', NotImplemented)
def __add__(self, other):
if isinstance(other, Number) and global_evaluate[0]:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_add(self._mpf_, rhs, prec, rnd), prec)
return Number.__add__(self, other)
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
if isinstance(other, Number) and global_evaluate[0]:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_sub(self._mpf_, rhs, prec, rnd), prec)
return Number.__sub__(self, other)
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
if isinstance(other, Number) and global_evaluate[0]:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_mul(self._mpf_, rhs, prec, rnd), prec)
return Number.__mul__(self, other)
@_sympifyit('other', NotImplemented)
def __div__(self, other):
if isinstance(other, Number) and other != 0 and global_evaluate[0]:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_div(self._mpf_, rhs, prec, rnd), prec)
return Number.__div__(self, other)
__truediv__ = __div__
@_sympifyit('other', NotImplemented)
def __mod__(self, other):
if isinstance(other, Rational) and other.q != 1 and global_evaluate[0]:
# calculate mod with Rationals, *then* round the result
return Float(Rational.__mod__(Rational(self), other),
precision=self._prec)
if isinstance(other, Float) and global_evaluate[0]:
r = self/other
if r == int(r):
return Float(0, precision=max(self._prec, other._prec))
if isinstance(other, Number) and global_evaluate[0]:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_mod(self._mpf_, rhs, prec, rnd), prec)
return Number.__mod__(self, other)
@_sympifyit('other', NotImplemented)
def __rmod__(self, other):
if isinstance(other, Float) and global_evaluate[0]:
return other.__mod__(self)
if isinstance(other, Number) and global_evaluate[0]:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_mod(rhs, self._mpf_, prec, rnd), prec)
return Number.__rmod__(self, other)
def _eval_power(self, expt):
"""
expt is symbolic object but not equal to 0, 1
(-p)**r -> exp(r*log(-p)) -> exp(r*(log(p) + I*Pi)) ->
-> p**r*(sin(Pi*r) + cos(Pi*r)*I)
"""
if self == 0:
if expt.is_positive:
return S.Zero
if expt.is_negative:
return Float('inf')
if isinstance(expt, Number):
if isinstance(expt, Integer):
prec = self._prec
return Float._new(
mlib.mpf_pow_int(self._mpf_, expt.p, prec, rnd), prec)
elif isinstance(expt, Rational) and \
expt.p == 1 and expt.q % 2 and self.is_negative:
return Pow(S.NegativeOne, expt, evaluate=False)*(
-self)._eval_power(expt)
expt, prec = expt._as_mpf_op(self._prec)
mpfself = self._mpf_
try:
y = mpf_pow(mpfself, expt, prec, rnd)
return Float._new(y, prec)
except mlib.ComplexResult:
re, im = mlib.mpc_pow(
(mpfself, _mpf_zero), (expt, _mpf_zero), prec, rnd)
return Float._new(re, prec) + \
Float._new(im, prec)*S.ImaginaryUnit
def __abs__(self):
return Float._new(mlib.mpf_abs(self._mpf_), self._prec)
def __int__(self):
if self._mpf_ == _mpf_zero:
return 0
return int(mlib.to_int(self._mpf_)) # uses round_fast = round_down
__long__ = __int__
def __eq__(self, other):
if isinstance(other, float):
# coerce to Float at same precision
o = Float(other)
try:
ompf = o._as_mpf_val(self._prec)
except ValueError:
return False
return bool(mlib.mpf_eq(self._mpf_, ompf))
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if other.is_NumberSymbol:
if other.is_irrational:
return False
return other.__eq__(self)
if other.is_Float:
return bool(mlib.mpf_eq(self._mpf_, other._mpf_))
if other.is_Number:
# numbers should compare at the same precision;
# all _as_mpf_val routines should be sure to abide
# by the request to change the prec if necessary; if
# they don't, the equality test will fail since it compares
# the mpf tuples
ompf = other._as_mpf_val(self._prec)
return bool(mlib.mpf_eq(self._mpf_, ompf))
return False # Float != non-Number
def __ne__(self, other):
return not self == other
def __gt__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s > %s" % (self, other))
if other.is_NumberSymbol:
return other.__lt__(self)
if other.is_Rational and not other.is_Integer:
self *= other.q
other = _sympify(other.p)
elif other.is_comparable:
other = other.evalf()
if other.is_Number and other is not S.NaN:
return _sympify(bool(
mlib.mpf_gt(self._mpf_, other._as_mpf_val(self._prec))))
return Expr.__gt__(self, other)
def __ge__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s >= %s" % (self, other))
if other.is_NumberSymbol:
return other.__le__(self)
if other.is_Rational and not other.is_Integer:
self *= other.q
other = _sympify(other.p)
elif other.is_comparable:
other = other.evalf()
if other.is_Number and other is not S.NaN:
return _sympify(bool(
mlib.mpf_ge(self._mpf_, other._as_mpf_val(self._prec))))
return Expr.__ge__(self, other)
def __lt__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s < %s" % (self, other))
if other.is_NumberSymbol:
return other.__gt__(self)
if other.is_Rational and not other.is_Integer:
self *= other.q
other = _sympify(other.p)
elif other.is_comparable:
other = other.evalf()
if other.is_Number and other is not S.NaN:
return _sympify(bool(
mlib.mpf_lt(self._mpf_, other._as_mpf_val(self._prec))))
return Expr.__lt__(self, other)
def __le__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s <= %s" % (self, other))
if other.is_NumberSymbol:
return other.__ge__(self)
if other.is_Rational and not other.is_Integer:
self *= other.q
other = _sympify(other.p)
elif other.is_comparable:
other = other.evalf()
if other.is_Number and other is not S.NaN:
return _sympify(bool(
mlib.mpf_le(self._mpf_, other._as_mpf_val(self._prec))))
return Expr.__le__(self, other)
def __hash__(self):
return super(Float, self).__hash__()
def epsilon_eq(self, other, epsilon="1e-15"):
return abs(self - other) < Float(epsilon)
def _sage_(self):
import sage.all as sage
return sage.RealNumber(str(self))
def __format__(self, format_spec):
return format(decimal.Decimal(str(self)), format_spec)
# Add sympify converters
converter[float] = converter[decimal.Decimal] = Float
# this is here to work nicely in Sage
RealNumber = Float
class Rational(Number):
"""Represents rational numbers (p/q) of any size.
Examples
========
>>> from sympy import Rational, nsimplify, S, pi
>>> Rational(1, 2)
1/2
Rational is unprejudiced in accepting input. If a float is passed, the
underlying value of the binary representation will be returned:
>>> Rational(.5)
1/2
>>> Rational(.2)
3602879701896397/18014398509481984
If the simpler representation of the float is desired then consider
limiting the denominator to the desired value or convert the float to
a string (which is roughly equivalent to limiting the denominator to
10**12):
>>> Rational(str(.2))
1/5
>>> Rational(.2).limit_denominator(10**12)
1/5
An arbitrarily precise Rational is obtained when a string literal is
passed:
>>> Rational("1.23")
123/100
>>> Rational('1e-2')
1/100
>>> Rational(".1")
1/10
>>> Rational('1e-2/3.2')
1/320
The conversion of other types of strings can be handled by
the sympify() function, and conversion of floats to expressions
or simple fractions can be handled with nsimplify:
>>> S('.[3]') # repeating digits in brackets
1/3
>>> S('3**2/10') # general expressions
9/10
>>> nsimplify(.3) # numbers that have a simple form
3/10
But if the input does not reduce to a literal Rational, an error will
be raised:
>>> Rational(pi)
Traceback (most recent call last):
...
TypeError: invalid input: pi
Low-level
---------
Access numerator and denominator as .p and .q:
>>> r = Rational(3, 4)
>>> r
3/4
>>> r.p
3
>>> r.q
4
Note that p and q return integers (not SymPy Integers) so some care
is needed when using them in expressions:
>>> r.p/r.q
0.75
See Also
========
sympify, sympy.simplify.simplify.nsimplify
"""
is_real = True
is_integer = False
is_rational = True
is_number = True
__slots__ = ['p', 'q']
is_Rational = True
@cacheit
def __new__(cls, p, q=None, gcd=None):
if q is None:
if isinstance(p, Rational):
return p
if isinstance(p, SYMPY_INTS):
pass
else:
if isinstance(p, (float, Float)):
return Rational(*_as_integer_ratio(p))
if not isinstance(p, string_types):
try:
p = sympify(p)
except (SympifyError, SyntaxError):
pass # error will raise below
else:
if p.count('/') > 1:
raise TypeError('invalid input: %s' % p)
p = p.replace(' ', '')
pq = p.rsplit('/', 1)
if len(pq) == 2:
p, q = pq
fp = fractions.Fraction(p)
fq = fractions.Fraction(q)
p = fp/fq
try:
p = fractions.Fraction(p)
except ValueError:
pass # error will raise below
else:
return Rational(p.numerator, p.denominator, 1)
if not isinstance(p, Rational):
raise TypeError('invalid input: %s' % p)
q = 1
gcd = 1
else:
p = Rational(p)
q = Rational(q)
if isinstance(q, Rational):
p *= q.q
q = q.p
if isinstance(p, Rational):
q *= p.q
p = p.p
# p and q are now integers
if q == 0:
if p == 0:
if _errdict["divide"]:
raise ValueError("Indeterminate 0/0")
else:
return S.NaN
return S.ComplexInfinity
if q < 0:
q = -q
p = -p
if not gcd:
gcd = igcd(abs(p), q)
if gcd > 1:
p //= gcd
q //= gcd
if q == 1:
return Integer(p)
if p == 1 and q == 2:
return S.Half
obj = Expr.__new__(cls)
obj.p = p
obj.q = q
return obj
def limit_denominator(self, max_denominator=1000000):
"""Closest Rational to self with denominator at most max_denominator.
>>> from sympy import Rational
>>> Rational('3.141592653589793').limit_denominator(10)
22/7
>>> Rational('3.141592653589793').limit_denominator(100)
311/99
"""
f = fractions.Fraction(self.p, self.q)
return Rational(f.limit_denominator(fractions.Fraction(int(max_denominator))))
def __getnewargs__(self):
return (self.p, self.q)
def _hashable_content(self):
return (self.p, self.q)
def _eval_is_positive(self):
return self.p > 0
def _eval_is_zero(self):
return self.p == 0
def __neg__(self):
return Rational(-self.p, self.q)
@_sympifyit('other', NotImplemented)
def __add__(self, other):
if global_evaluate[0]:
if isinstance(other, Integer):
return Rational(self.p + self.q*other.p, self.q, 1)
elif isinstance(other, Rational):
#TODO: this can probably be optimized more
return Rational(self.p*other.q + self.q*other.p, self.q*other.q)
elif isinstance(other, Float):
return other + self
else:
return Number.__add__(self, other)
return Number.__add__(self, other)
__radd__ = __add__
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
if global_evaluate[0]:
if isinstance(other, Integer):
return Rational(self.p - self.q*other.p, self.q, 1)
elif isinstance(other, Rational):
return Rational(self.p*other.q - self.q*other.p, self.q*other.q)
elif isinstance(other, Float):
return -other + self
else:
return Number.__sub__(self, other)
return Number.__sub__(self, other)
@_sympifyit('other', NotImplemented)
def __rsub__(self, other):
if global_evaluate[0]:
if isinstance(other, Integer):
return Rational(self.q*other.p - self.p, self.q, 1)
elif isinstance(other, Rational):
return Rational(self.q*other.p - self.p*other.q, self.q*other.q)
elif isinstance(other, Float):
return -self + other
else:
return Number.__rsub__(self, other)
return Number.__rsub__(self, other)
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
if global_evaluate[0]:
if isinstance(other, Integer):
return Rational(self.p*other.p, self.q, igcd(other.p, self.q))
elif isinstance(other, Rational):
return Rational(self.p*other.p, self.q*other.q, igcd(self.p, other.q)*igcd(self.q, other.p))
elif isinstance(other, Float):
return other*self
else:
return Number.__mul__(self, other)
return Number.__mul__(self, other)
__rmul__ = __mul__
@_sympifyit('other', NotImplemented)
def __div__(self, other):
if global_evaluate[0]:
if isinstance(other, Integer):
if self.p and other.p == S.Zero:
return S.ComplexInfinity
else:
return Rational(self.p, self.q*other.p, igcd(self.p, other.p))
elif isinstance(other, Rational):
return Rational(self.p*other.q, self.q*other.p, igcd(self.p, other.p)*igcd(self.q, other.q))
elif isinstance(other, Float):
return self*(1/other)
else:
return Number.__div__(self, other)
return Number.__div__(self, other)
@_sympifyit('other', NotImplemented)
def __rdiv__(self, other):
if global_evaluate[0]:
if isinstance(other, Integer):
return Rational(other.p*self.q, self.p, igcd(self.p, other.p))
elif isinstance(other, Rational):
return Rational(other.p*self.q, other.q*self.p, igcd(self.p, other.p)*igcd(self.q, other.q))
elif isinstance(other, Float):
return other*(1/self)
else:
return Number.__rdiv__(self, other)
return Number.__rdiv__(self, other)
__truediv__ = __div__
@_sympifyit('other', NotImplemented)
def __mod__(self, other):
if global_evaluate[0]:
if isinstance(other, Rational):
n = (self.p*other.q) // (other.p*self.q)
return Rational(self.p*other.q - n*other.p*self.q, self.q*other.q)
if isinstance(other, Float):
# calculate mod with Rationals, *then* round the answer
return Float(self.__mod__(Rational(other)),
precision=other._prec)
return Number.__mod__(self, other)
return Number.__mod__(self, other)
@_sympifyit('other', NotImplemented)
def __rmod__(self, other):
if isinstance(other, Rational):
return Rational.__mod__(other, self)
return Number.__rmod__(self, other)
def _eval_power(self, expt):
if isinstance(expt, Number):
if isinstance(expt, Float):
return self._eval_evalf(expt._prec)**expt
if expt.is_negative:
# (3/4)**-2 -> (4/3)**2
ne = -expt
if (ne is S.One):
return Rational(self.q, self.p)
if self.is_negative:
return S.NegativeOne**expt*Rational(self.q, -self.p)**ne
else:
return Rational(self.q, self.p)**ne
if expt is S.Infinity: # -oo already caught by test for negative
if self.p > self.q:
# (3/2)**oo -> oo
return S.Infinity
if self.p < -self.q:
# (-3/2)**oo -> oo + I*oo
return S.Infinity + S.Infinity*S.ImaginaryUnit
return S.Zero
if isinstance(expt, Integer):
# (4/3)**2 -> 4**2 / 3**2
return Rational(self.p**expt.p, self.q**expt.p, 1)
if isinstance(expt, Rational):
if self.p != 1:
# (4/3)**(5/6) -> 4**(5/6)*3**(-5/6)
return Integer(self.p)**expt*Integer(self.q)**(-expt)
# as the above caught negative self.p, now self is positive
return Integer(self.q)**Rational(
expt.p*(expt.q - 1), expt.q) / \
Integer(self.q)**Integer(expt.p)
if self.is_negative and expt.is_even:
return (-self)**expt
return
def _as_mpf_val(self, prec):
return mlib.from_rational(self.p, self.q, prec, rnd)
def _mpmath_(self, prec, rnd):
return mpmath.make_mpf(mlib.from_rational(self.p, self.q, prec, rnd))
def __abs__(self):
return Rational(abs(self.p), self.q)
def __int__(self):
p, q = self.p, self.q
if p < 0:
return -int(-p//q)
return int(p//q)
__long__ = __int__
def floor(self):
return Integer(self.p // self.q)
def ceiling(self):
return -Integer(-self.p // self.q)
def __eq__(self, other):
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if other.is_NumberSymbol:
if other.is_irrational:
return False
return other.__eq__(self)
if other.is_Number:
if other.is_Rational:
# a Rational is always in reduced form so will never be 2/4
# so we can just check equivalence of args
return self.p == other.p and self.q == other.q
if other.is_Float:
return mlib.mpf_eq(self._as_mpf_val(other._prec), other._mpf_)
return False
def __ne__(self, other):
return not self == other
def __gt__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s > %s" % (self, other))
if other.is_NumberSymbol:
return other.__lt__(self)
expr = self
if other.is_Number:
if other.is_Rational:
return _sympify(bool(self.p*other.q > self.q*other.p))
if other.is_Float:
return _sympify(bool(mlib.mpf_gt(
self._as_mpf_val(other._prec), other._mpf_)))
elif other.is_number and other.is_real:
expr, other = Integer(self.p), self.q*other
return Expr.__gt__(expr, other)
def __ge__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s >= %s" % (self, other))
if other.is_NumberSymbol:
return other.__le__(self)
expr = self
if other.is_Number:
if other.is_Rational:
return _sympify(bool(self.p*other.q >= self.q*other.p))
if other.is_Float:
return _sympify(bool(mlib.mpf_ge(
self._as_mpf_val(other._prec), other._mpf_)))
elif other.is_number and other.is_real:
expr, other = Integer(self.p), self.q*other
return Expr.__ge__(expr, other)
def __lt__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s < %s" % (self, other))
if other.is_NumberSymbol:
return other.__gt__(self)
expr = self
if other.is_Number:
if other.is_Rational:
return _sympify(bool(self.p*other.q < self.q*other.p))
if other.is_Float:
return _sympify(bool(mlib.mpf_lt(
self._as_mpf_val(other._prec), other._mpf_)))
elif other.is_number and other.is_real:
expr, other = Integer(self.p), self.q*other
return Expr.__lt__(expr, other)
def __le__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s <= %s" % (self, other))
expr = self
if other.is_NumberSymbol:
return other.__ge__(self)
elif other.is_Number:
if other.is_Rational:
return _sympify(bool(self.p*other.q <= self.q*other.p))
if other.is_Float:
return _sympify(bool(mlib.mpf_le(
self._as_mpf_val(other._prec), other._mpf_)))
elif other.is_number and other.is_real:
expr, other = Integer(self.p), self.q*other
return Expr.__le__(expr, other)
def __hash__(self):
return super(Rational, self).__hash__()
def factors(self, limit=None, use_trial=True, use_rho=False,
use_pm1=False, verbose=False, visual=False):
"""A wrapper to factorint which return factors of self that are
smaller than limit (or cheap to compute). Special methods of
factoring are disabled by default so that only trial division is used.
"""
from sympy.ntheory import factorrat
return factorrat(self, limit=limit, use_trial=use_trial,
use_rho=use_rho, use_pm1=use_pm1,
verbose=verbose).copy()
@_sympifyit('other', NotImplemented)
def gcd(self, other):
if isinstance(other, Rational):
if other is S.Zero:
return other
return Rational(
Integer(igcd(self.p, other.p)),
Integer(ilcm(self.q, other.q)))
return Number.gcd(self, other)
@_sympifyit('other', NotImplemented)
def lcm(self, other):
if isinstance(other, Rational):
return Rational(
self.p // igcd(self.p, other.p) * other.p,
igcd(self.q, other.q))
return Number.lcm(self, other)
def as_numer_denom(self):
return Integer(self.p), Integer(self.q)
def _sage_(self):
import sage.all as sage
return sage.Integer(self.p)/sage.Integer(self.q)
def as_content_primitive(self, radical=False, clear=True):
"""Return the tuple (R, self/R) where R is the positive Rational
extracted from self.
Examples
========
>>> from sympy import S
>>> (S(-3)/2).as_content_primitive()
(3/2, -1)
See docstring of Expr.as_content_primitive for more examples.
"""
if self:
if self.is_positive:
return self, S.One
return -self, S.NegativeOne
return S.One, self
def as_coeff_Mul(self, rational=False):
"""Efficiently extract the coefficient of a product. """
return self, S.One
def as_coeff_Add(self, rational=False):
"""Efficiently extract the coefficient of a summation. """
return self, S.Zero
class Integer(Rational):
"""Represents integer numbers of any size.
Examples
========
>>> from sympy import Integer
>>> Integer(3)
3
If a float or a rational is passed to Integer, the fractional part
will be discarded; the effect is of rounding toward zero.
>>> Integer(3.8)
3
>>> Integer(-3.8)
-3
A string is acceptable input if it can be parsed as an integer:
>>> Integer("9" * 20)
99999999999999999999
It is rarely needed to explicitly instantiate an Integer, because
Python integers are automatically converted to Integer when they
are used in SymPy expressions.
"""
q = 1
is_integer = True
is_number = True
is_Integer = True
__slots__ = ['p']
def _as_mpf_val(self, prec):
return mlib.from_int(self.p, prec, rnd)
def _mpmath_(self, prec, rnd):
return mpmath.make_mpf(self._as_mpf_val(prec))
@cacheit
def __new__(cls, i):
if isinstance(i, string_types):
i = i.replace(' ', '')
# whereas we cannot, in general, make a Rational from an
# arbitrary expression, we can make an Integer unambiguously
# (except when a non-integer expression happens to round to
# an integer). So we proceed by taking int() of the input and
# let the int routines determine whether the expression can
# be made into an int or whether an error should be raised.
try:
ival = int(i)
except TypeError:
raise TypeError(
"Argument of Integer should be of numeric type, got %s." % i)
# We only work with well-behaved integer types. This converts, for
# example, numpy.int32 instances.
if ival == 1:
return S.One
if ival == -1:
return S.NegativeOne
if ival == 0:
return S.Zero
obj = Expr.__new__(cls)
obj.p = ival
return obj
def __getnewargs__(self):
return (self.p,)
# Arithmetic operations are here for efficiency
def __int__(self):
return self.p
__long__ = __int__
def floor(self):
return Integer(self.p)
def ceiling(self):
return Integer(self.p)
def __neg__(self):
return Integer(-self.p)
def __abs__(self):
if self.p >= 0:
return self
else:
return Integer(-self.p)
def __divmod__(self, other):
from .containers import Tuple
if isinstance(other, Integer) and global_evaluate[0]:
return Tuple(*(divmod(self.p, other.p)))
else:
return Number.__divmod__(self, other)
def __rdivmod__(self, other):
from .containers import Tuple
if isinstance(other, integer_types) and global_evaluate[0]:
return Tuple(*(divmod(other, self.p)))
else:
try:
other = Number(other)
except TypeError:
msg = "unsupported operand type(s) for divmod(): '%s' and '%s'"
oname = type(other).__name__
sname = type(self).__name__
raise TypeError(msg % (oname, sname))
return Number.__divmod__(other, self)
# TODO make it decorator + bytecodehacks?
def __add__(self, other):
if global_evaluate[0]:
if isinstance(other, integer_types):
return Integer(self.p + other)
elif isinstance(other, Integer):
return Integer(self.p + other.p)
elif isinstance(other, Rational):
return Rational(self.p*other.q + other.p, other.q, 1)
return Rational.__add__(self, other)
else:
return Add(self, other)
def __radd__(self, other):
if global_evaluate[0]:
if isinstance(other, integer_types):
return Integer(other + self.p)
elif isinstance(other, Rational):
return Rational(other.p + self.p*other.q, other.q, 1)
return Rational.__radd__(self, other)
return Rational.__radd__(self, other)
def __sub__(self, other):
if global_evaluate[0]:
if isinstance(other, integer_types):
return Integer(self.p - other)
elif isinstance(other, Integer):
return Integer(self.p - other.p)
elif isinstance(other, Rational):
return Rational(self.p*other.q - other.p, other.q, 1)
return Rational.__sub__(self, other)
return Rational.__sub__(self, other)
def __rsub__(self, other):
if global_evaluate[0]:
if isinstance(other, integer_types):
return Integer(other - self.p)
elif isinstance(other, Rational):
return Rational(other.p - self.p*other.q, other.q, 1)
return Rational.__rsub__(self, other)
return Rational.__rsub__(self, other)
def __mul__(self, other):
if global_evaluate[0]:
if isinstance(other, integer_types):
return Integer(self.p*other)
elif isinstance(other, Integer):
return Integer(self.p*other.p)
elif isinstance(other, Rational):
return Rational(self.p*other.p, other.q, igcd(self.p, other.q))
return Rational.__mul__(self, other)
return Rational.__mul__(self, other)
def __rmul__(self, other):
if global_evaluate[0]:
if isinstance(other, integer_types):
return Integer(other*self.p)
elif isinstance(other, Rational):
return Rational(other.p*self.p, other.q, igcd(self.p, other.q))
return Rational.__rmul__(self, other)
return Rational.__rmul__(self, other)
def __mod__(self, other):
if global_evaluate[0]:
if isinstance(other, integer_types):
return Integer(self.p % other)
elif isinstance(other, Integer):
return Integer(self.p % other.p)
return Rational.__mod__(self, other)
return Rational.__mod__(self, other)
def __rmod__(self, other):
if global_evaluate[0]:
if isinstance(other, integer_types):
return Integer(other % self.p)
elif isinstance(other, Integer):
return Integer(other.p % self.p)
return Rational.__rmod__(self, other)
return Rational.__rmod__(self, other)
def __eq__(self, other):
if isinstance(other, integer_types):
return (self.p == other)
elif isinstance(other, Integer):
return (self.p == other.p)
return Rational.__eq__(self, other)
def __ne__(self, other):
return not self == other
def __gt__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s > %s" % (self, other))
if other.is_Integer:
return _sympify(self.p > other.p)
return Rational.__gt__(self, other)
def __lt__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s < %s" % (self, other))
if other.is_Integer:
return _sympify(self.p < other.p)
return Rational.__lt__(self, other)
def __ge__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s >= %s" % (self, other))
if other.is_Integer:
return _sympify(self.p >= other.p)
return Rational.__ge__(self, other)
def __le__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s <= %s" % (self, other))
if other.is_Integer:
return _sympify(self.p <= other.p)
return Rational.__le__(self, other)
def __hash__(self):
return hash(self.p)
def __index__(self):
return self.p
########################################
def _eval_is_odd(self):
return bool(self.p % 2)
def _eval_power(self, expt):
"""
Tries to do some simplifications on self**expt
Returns None if no further simplifications can be done
When exponent is a fraction (so we have for example a square root),
we try to find a simpler representation by factoring the argument
up to factors of 2**15, e.g.
- sqrt(4) becomes 2
- sqrt(-4) becomes 2*I
- (2**(3+7)*3**(6+7))**Rational(1,7) becomes 6*18**(3/7)
Further simplification would require a special call to factorint on
the argument which is not done here for sake of speed.
"""
from sympy import perfect_power
if expt is S.Infinity:
if self.p > S.One:
return S.Infinity
# cases -1, 0, 1 are done in their respective classes
return S.Infinity + S.ImaginaryUnit*S.Infinity
if expt is S.NegativeInfinity:
return Rational(1, self)**S.Infinity
if not isinstance(expt, Number):
# simplify when expt is even
# (-2)**k --> 2**k
if self.is_negative and expt.is_even:
return (-self)**expt
if isinstance(expt, Float):
# Rational knows how to exponentiate by a Float
return super(Integer, self)._eval_power(expt)
if not isinstance(expt, Rational):
return
if expt is S.Half and self.is_negative:
# we extract I for this special case since everyone is doing so
return S.ImaginaryUnit*Pow(-self, expt)
if expt.is_negative:
# invert base and change sign on exponent
ne = -expt
if self.is_negative:
return S.NegativeOne**expt*Rational(1, -self)**ne
else:
return Rational(1, self.p)**ne
# see if base is a perfect root, sqrt(4) --> 2
x, xexact = integer_nthroot(abs(self.p), expt.q)
if xexact:
# if it's a perfect root we've finished
result = Integer(x**abs(expt.p))
if self.is_negative:
result *= S.NegativeOne**expt
return result
# The following is an algorithm where we collect perfect roots
# from the factors of base.
# if it's not an nth root, it still might be a perfect power
b_pos = int(abs(self.p))
p = perfect_power(b_pos)
if p is not False:
dict = {p[0]: p[1]}
else:
dict = Integer(b_pos).factors(limit=2**15)
# now process the dict of factors
out_int = 1 # integer part
out_rad = 1 # extracted radicals
sqr_int = 1
sqr_gcd = 0
sqr_dict = {}
for prime, exponent in dict.items():
exponent *= expt.p
# remove multiples of expt.q: (2**12)**(1/10) -> 2*(2**2)**(1/10)
div_e, div_m = divmod(exponent, expt.q)
if div_e > 0:
out_int *= prime**div_e
if div_m > 0:
# see if the reduced exponent shares a gcd with e.q
# (2**2)**(1/10) -> 2**(1/5)
g = igcd(div_m, expt.q)
if g != 1:
out_rad *= Pow(prime, Rational(div_m//g, expt.q//g))
else:
sqr_dict[prime] = div_m
# identify gcd of remaining powers
for p, ex in sqr_dict.items():
if sqr_gcd == 0:
sqr_gcd = ex
else:
sqr_gcd = igcd(sqr_gcd, ex)
if sqr_gcd == 1:
break
for k, v in sqr_dict.items():
sqr_int *= k**(v//sqr_gcd)
if sqr_int == b_pos and out_int == 1 and out_rad == 1:
result = None
else:
result = out_int*out_rad*Pow(sqr_int, Rational(sqr_gcd, expt.q))
if self.is_negative:
result *= Pow(S.NegativeOne, expt)
return result
def _eval_is_prime(self):
from sympy.ntheory import isprime
return isprime(self)
def _eval_is_composite(self):
if self > 1:
return fuzzy_not(self.is_prime)
else:
return False
def as_numer_denom(self):
return self, S.One
def __floordiv__(self, other):
return Integer(self.p // Integer(other).p)
def __rfloordiv__(self, other):
return Integer(Integer(other).p // self.p)
# Add sympify converters
for i_type in integer_types:
converter[i_type] = Integer
class AlgebraicNumber(Expr):
"""Class for representing algebraic numbers in SymPy. """
__slots__ = ['rep', 'root', 'alias', 'minpoly']
is_AlgebraicNumber = True
is_algebraic = True
is_number = True
def __new__(cls, expr, coeffs=None, alias=None, **args):
"""Construct a new algebraic number. """
from sympy import Poly
from sympy.polys.polyclasses import ANP, DMP
from sympy.polys.numberfields import minimal_polynomial
from sympy.core.symbol import Symbol
expr = sympify(expr)
if isinstance(expr, (tuple, Tuple)):
minpoly, root = expr
if not minpoly.is_Poly:
minpoly = Poly(minpoly)
elif expr.is_AlgebraicNumber:
minpoly, root = expr.minpoly, expr.root
else:
minpoly, root = minimal_polynomial(
expr, args.get('gen'), polys=True), expr
dom = minpoly.get_domain()
if coeffs is not None:
if not isinstance(coeffs, ANP):
rep = DMP.from_sympy_list(sympify(coeffs), 0, dom)
scoeffs = Tuple(*coeffs)
else:
rep = DMP.from_list(coeffs.to_list(), 0, dom)
scoeffs = Tuple(*coeffs.to_list())
if rep.degree() >= minpoly.degree():
rep = rep.rem(minpoly.rep)
else:
rep = DMP.from_list([1, 0], 0, dom)
scoeffs = Tuple(1, 0)
sargs = (root, scoeffs)
if alias is not None:
if not isinstance(alias, Symbol):
alias = Symbol(alias)
sargs = sargs + (alias,)
obj = Expr.__new__(cls, *sargs)
obj.rep = rep
obj.root = root
obj.alias = alias
obj.minpoly = minpoly
return obj
def __hash__(self):
return super(AlgebraicNumber, self).__hash__()
def _eval_evalf(self, prec):
return self.as_expr()._evalf(prec)
@property
def is_aliased(self):
"""Returns ``True`` if ``alias`` was set. """
return self.alias is not None
def as_poly(self, x=None):
"""Create a Poly instance from ``self``. """
from sympy import Dummy, Poly, PurePoly
if x is not None:
return Poly.new(self.rep, x)
else:
if self.alias is not None:
return Poly.new(self.rep, self.alias)
else:
return PurePoly.new(self.rep, Dummy('x'))
def as_expr(self, x=None):
"""Create a Basic expression from ``self``. """
return self.as_poly(x or self.root).as_expr().expand()
def coeffs(self):
"""Returns all SymPy coefficients of an algebraic number. """
return [ self.rep.dom.to_sympy(c) for c in self.rep.all_coeffs() ]
def native_coeffs(self):
"""Returns all native coefficients of an algebraic number. """
return self.rep.all_coeffs()
def to_algebraic_integer(self):
"""Convert ``self`` to an algebraic integer. """
from sympy import Poly
f = self.minpoly
if f.LC() == 1:
return self
coeff = f.LC()**(f.degree() - 1)
poly = f.compose(Poly(f.gen/f.LC()))
minpoly = poly*coeff
root = f.LC()*self.root
return AlgebraicNumber((minpoly, root), self.coeffs())
def _eval_simplify(self, ratio, measure, rational, inverse):
from sympy.polys import CRootOf, minpoly
for r in [r for r in self.minpoly.all_roots() if r.func != CRootOf]:
if minpoly(self.root - r).is_Symbol:
# use the matching root if it's simpler
if measure(r) < ratio*measure(self.root):
return AlgebraicNumber(r)
return self
class RationalConstant(Rational):
"""
Abstract base class for rationals with specific behaviors
Derived classes must define class attributes p and q and should probably all
be singletons.
"""
__slots__ = []
def __new__(cls):
return AtomicExpr.__new__(cls)
class IntegerConstant(Integer):
__slots__ = []
def __new__(cls):
return AtomicExpr.__new__(cls)
class Zero(with_metaclass(Singleton, IntegerConstant)):
"""The number zero.
Zero is a singleton, and can be accessed by ``S.Zero``
Examples
========
>>> from sympy import S, Integer, zoo
>>> Integer(0) is S.Zero
True
>>> 1/S.Zero
zoo
References
==========
.. [1] https://en.wikipedia.org/wiki/Zero
"""
p = 0
q = 1
is_positive = False
is_negative = False
is_zero = True
is_number = True
__slots__ = []
@staticmethod
def __abs__():
return S.Zero
@staticmethod
def __neg__():
return S.Zero
def _eval_power(self, expt):
if expt.is_positive:
return self
if expt.is_negative:
return S.ComplexInfinity
if expt.is_real is False:
return S.NaN
# infinities are already handled with pos and neg
# tests above; now throw away leading numbers on Mul
# exponent
coeff, terms = expt.as_coeff_Mul()
if coeff.is_negative:
return S.ComplexInfinity**terms
if coeff is not S.One: # there is a Number to discard
return self**terms
def _eval_order(self, *symbols):
# Order(0,x) -> 0
return self
def __nonzero__(self):
return False
__bool__ = __nonzero__
def as_coeff_Mul(self, rational=False): # XXX this routine should be deleted
"""Efficiently extract the coefficient of a summation. """
return S.One, self
class One(with_metaclass(Singleton, IntegerConstant)):
"""The number one.
One is a singleton, and can be accessed by ``S.One``.
Examples
========
>>> from sympy import S, Integer
>>> Integer(1) is S.One
True
References
==========
.. [1] https://en.wikipedia.org/wiki/1_%28number%29
"""
is_number = True
p = 1
q = 1
__slots__ = []
@staticmethod
def __abs__():
return S.One
@staticmethod
def __neg__():
return S.NegativeOne
def _eval_power(self, expt):
return self
def _eval_order(self, *symbols):
return
@staticmethod
def factors(limit=None, use_trial=True, use_rho=False, use_pm1=False,
verbose=False, visual=False):
if visual:
return S.One
else:
return {}
class NegativeOne(with_metaclass(Singleton, IntegerConstant)):
"""The number negative one.
NegativeOne is a singleton, and can be accessed by ``S.NegativeOne``.
Examples
========
>>> from sympy import S, Integer
>>> Integer(-1) is S.NegativeOne
True
See Also
========
One
References
==========
.. [1] https://en.wikipedia.org/wiki/%E2%88%921_%28number%29
"""
is_number = True
p = -1
q = 1
__slots__ = []
@staticmethod
def __abs__():
return S.One
@staticmethod
def __neg__():
return S.One
def _eval_power(self, expt):
if expt.is_odd:
return S.NegativeOne
if expt.is_even:
return S.One
if isinstance(expt, Number):
if isinstance(expt, Float):
return Float(-1.0)**expt
if expt is S.NaN:
return S.NaN
if expt is S.Infinity or expt is S.NegativeInfinity:
return S.NaN
if expt is S.Half:
return S.ImaginaryUnit
if isinstance(expt, Rational):
if expt.q == 2:
return S.ImaginaryUnit**Integer(expt.p)
i, r = divmod(expt.p, expt.q)
if i:
return self**i*self**Rational(r, expt.q)
return
class Half(with_metaclass(Singleton, RationalConstant)):
"""The rational number 1/2.
Half is a singleton, and can be accessed by ``S.Half``.
Examples
========
>>> from sympy import S, Rational
>>> Rational(1, 2) is S.Half
True
References
==========
.. [1] https://en.wikipedia.org/wiki/One_half
"""
is_number = True
p = 1
q = 2
__slots__ = []
@staticmethod
def __abs__():
return S.Half
class Infinity(with_metaclass(Singleton, Number)):
r"""Positive infinite quantity.
In real analysis the symbol `\infty` denotes an unbounded
limit: `x\to\infty` means that `x` grows without bound.
Infinity is often used not only to define a limit but as a value
in the affinely extended real number system. Points labeled `+\infty`
and `-\infty` can be added to the topological space of the real numbers,
producing the two-point compactification of the real numbers. Adding
algebraic properties to this gives us the extended real numbers.
Infinity is a singleton, and can be accessed by ``S.Infinity``,
or can be imported as ``oo``.
Examples
========
>>> from sympy import oo, exp, limit, Symbol
>>> 1 + oo
oo
>>> 42/oo
0
>>> x = Symbol('x')
>>> limit(exp(x), x, oo)
oo
See Also
========
NegativeInfinity, NaN
References
==========
.. [1] https://en.wikipedia.org/wiki/Infinity
"""
is_commutative = True
is_positive = True
is_infinite = True
is_number = True
is_prime = False
__slots__ = []
def __new__(cls):
return AtomicExpr.__new__(cls)
def _latex(self, printer):
return r"\infty"
def _eval_subs(self, old, new):
if self == old:
return new
@_sympifyit('other', NotImplemented)
def __add__(self, other):
if isinstance(other, Number):
if other is S.NegativeInfinity or other is S.NaN:
return S.NaN
elif other.is_Float:
if other == Float('-inf'):
return S.NaN
else:
return Float('inf')
else:
return S.Infinity
return NotImplemented
__radd__ = __add__
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
if isinstance(other, Number):
if other is S.Infinity or other is S.NaN:
return S.NaN
elif other.is_Float:
if other == Float('inf'):
return S.NaN
else:
return Float('inf')
else:
return S.Infinity
return NotImplemented
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
if isinstance(other, Number):
if other is S.Zero or other is S.NaN:
return S.NaN
elif other.is_Float:
if other == 0:
return S.NaN
if other > 0:
return Float('inf')
else:
return Float('-inf')
else:
if other > 0:
return S.Infinity
else:
return S.NegativeInfinity
return NotImplemented
__rmul__ = __mul__
@_sympifyit('other', NotImplemented)
def __div__(self, other):
if isinstance(other, Number):
if other is S.Infinity or \
other is S.NegativeInfinity or \
other is S.NaN:
return S.NaN
elif other.is_Float:
if other == Float('-inf') or \
other == Float('inf'):
return S.NaN
elif other.is_nonnegative:
return Float('inf')
else:
return Float('-inf')
else:
if other >= 0:
return S.Infinity
else:
return S.NegativeInfinity
return NotImplemented
__truediv__ = __div__
def __abs__(self):
return S.Infinity
def __neg__(self):
return S.NegativeInfinity
def _eval_power(self, expt):
"""
``expt`` is symbolic object but not equal to 0 or 1.
================ ======= ==============================
Expression Result Notes
================ ======= ==============================
``oo ** nan`` ``nan``
``oo ** -p`` ``0`` ``p`` is number, ``oo``
================ ======= ==============================
See Also
========
Pow
NaN
NegativeInfinity
"""
from sympy.functions import re
if expt.is_positive:
return S.Infinity
if expt.is_negative:
return S.Zero
if expt is S.NaN:
return S.NaN
if expt is S.ComplexInfinity:
return S.NaN
if expt.is_real is False and expt.is_number:
expt_real = re(expt)
if expt_real.is_positive:
return S.ComplexInfinity
if expt_real.is_negative:
return S.Zero
if expt_real.is_zero:
return S.NaN
return self**expt.evalf()
def _as_mpf_val(self, prec):
return mlib.finf
def _sage_(self):
import sage.all as sage
return sage.oo
def __hash__(self):
return super(Infinity, self).__hash__()
def __eq__(self, other):
return other is S.Infinity
def __ne__(self, other):
return other is not S.Infinity
def __lt__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s < %s" % (self, other))
if other.is_real:
return S.false
return Expr.__lt__(self, other)
def __le__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s <= %s" % (self, other))
if other.is_real:
if other.is_finite or other is S.NegativeInfinity:
return S.false
elif other.is_nonpositive:
return S.false
elif other.is_infinite and other.is_positive:
return S.true
return Expr.__le__(self, other)
def __gt__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s > %s" % (self, other))
if other.is_real:
if other.is_finite or other is S.NegativeInfinity:
return S.true
elif other.is_nonpositive:
return S.true
elif other.is_infinite and other.is_positive:
return S.false
return Expr.__gt__(self, other)
def __ge__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s >= %s" % (self, other))
if other.is_real:
return S.true
return Expr.__ge__(self, other)
def __mod__(self, other):
return S.NaN
__rmod__ = __mod__
def floor(self):
return self
def ceiling(self):
return self
oo = S.Infinity
class NegativeInfinity(with_metaclass(Singleton, Number)):
"""Negative infinite quantity.
NegativeInfinity is a singleton, and can be accessed
by ``S.NegativeInfinity``.
See Also
========
Infinity
"""
is_commutative = True
is_negative = True
is_infinite = True
is_number = True
__slots__ = []
def __new__(cls):
return AtomicExpr.__new__(cls)
def _latex(self, printer):
return r"-\infty"
def _eval_subs(self, old, new):
if self == old:
return new
@_sympifyit('other', NotImplemented)
def __add__(self, other):
if isinstance(other, Number):
if other is S.Infinity or other is S.NaN:
return S.NaN
elif other.is_Float:
if other == Float('inf'):
return Float('nan')
else:
return Float('-inf')
else:
return S.NegativeInfinity
return NotImplemented
__radd__ = __add__
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
if isinstance(other, Number):
if other is S.NegativeInfinity or other is S.NaN:
return S.NaN
elif other.is_Float:
if other == Float('-inf'):
return Float('nan')
else:
return Float('-inf')
else:
return S.NegativeInfinity
return NotImplemented
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
if isinstance(other, Number):
if other is S.Zero or other is S.NaN:
return S.NaN
elif other.is_Float:
if other is S.NaN or other.is_zero:
return S.NaN
elif other.is_positive:
return Float('-inf')
else:
return Float('inf')
else:
if other.is_positive:
return S.NegativeInfinity
else:
return S.Infinity
return NotImplemented
__rmul__ = __mul__
@_sympifyit('other', NotImplemented)
def __div__(self, other):
if isinstance(other, Number):
if other is S.Infinity or \
other is S.NegativeInfinity or \
other is S.NaN:
return S.NaN
elif other.is_Float:
if other == Float('-inf') or \
other == Float('inf') or \
other is S.NaN:
return S.NaN
elif other.is_nonnegative:
return Float('-inf')
else:
return Float('inf')
else:
if other >= 0:
return S.NegativeInfinity
else:
return S.Infinity
return NotImplemented
__truediv__ = __div__
def __abs__(self):
return S.Infinity
def __neg__(self):
return S.Infinity
def _eval_power(self, expt):
"""
``expt`` is symbolic object but not equal to 0 or 1.
================ ======= ==============================
Expression Result Notes
================ ======= ==============================
``(-oo) ** nan`` ``nan``
``(-oo) ** oo`` ``nan``
``(-oo) ** -oo`` ``nan``
``(-oo) ** e`` ``oo`` ``e`` is positive even integer
``(-oo) ** o`` ``-oo`` ``o`` is positive odd integer
================ ======= ==============================
See Also
========
Infinity
Pow
NaN
"""
if expt.is_number:
if expt is S.NaN or \
expt is S.Infinity or \
expt is S.NegativeInfinity:
return S.NaN
if isinstance(expt, Integer) and expt.is_positive:
if expt.is_odd:
return S.NegativeInfinity
else:
return S.Infinity
return S.NegativeOne**expt*S.Infinity**expt
def _as_mpf_val(self, prec):
return mlib.fninf
def _sage_(self):
import sage.all as sage
return -(sage.oo)
def __hash__(self):
return super(NegativeInfinity, self).__hash__()
def __eq__(self, other):
return other is S.NegativeInfinity
def __ne__(self, other):
return other is not S.NegativeInfinity
def __lt__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s < %s" % (self, other))
if other.is_real:
if other.is_finite or other is S.Infinity:
return S.true
elif other.is_nonnegative:
return S.true
elif other.is_infinite and other.is_negative:
return S.false
return Expr.__lt__(self, other)
def __le__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s <= %s" % (self, other))
if other.is_real:
return S.true
return Expr.__le__(self, other)
def __gt__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s > %s" % (self, other))
if other.is_real:
return S.false
return Expr.__gt__(self, other)
def __ge__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s >= %s" % (self, other))
if other.is_real:
if other.is_finite or other is S.Infinity:
return S.false
elif other.is_nonnegative:
return S.false
elif other.is_infinite and other.is_negative:
return S.true
return Expr.__ge__(self, other)
def __mod__(self, other):
return S.NaN
__rmod__ = __mod__
def floor(self):
return self
def ceiling(self):
return self
class NaN(with_metaclass(Singleton, Number)):
"""
Not a Number.
This serves as a place holder for numeric values that are indeterminate.
Most operations on NaN, produce another NaN. Most indeterminate forms,
such as ``0/0`` or ``oo - oo` produce NaN. Two exceptions are ``0**0``
and ``oo**0``, which all produce ``1`` (this is consistent with Python's
float).
NaN is loosely related to floating point nan, which is defined in the
IEEE 754 floating point standard, and corresponds to the Python
``float('nan')``. Differences are noted below.
NaN is mathematically not equal to anything else, even NaN itself. This
explains the initially counter-intuitive results with ``Eq`` and ``==`` in
the examples below.
NaN is not comparable so inequalities raise a TypeError. This is in
constrast with floating point nan where all inequalities are false.
NaN is a singleton, and can be accessed by ``S.NaN``, or can be imported
as ``nan``.
Examples
========
>>> from sympy import nan, S, oo, Eq
>>> nan is S.NaN
True
>>> oo - oo
nan
>>> nan + 1
nan
>>> Eq(nan, nan) # mathematical equality
False
>>> nan == nan # structural equality
True
References
==========
.. [1] https://en.wikipedia.org/wiki/NaN
"""
is_commutative = True
is_real = None
is_rational = None
is_algebraic = None
is_transcendental = None
is_integer = None
is_comparable = False
is_finite = None
is_zero = None
is_prime = None
is_positive = None
is_negative = None
is_number = True
__slots__ = []
def __new__(cls):
return AtomicExpr.__new__(cls)
def _latex(self, printer):
return r"\text{NaN}"
@_sympifyit('other', NotImplemented)
def __add__(self, other):
return self
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
return self
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
return self
@_sympifyit('other', NotImplemented)
def __div__(self, other):
return self
__truediv__ = __div__
def floor(self):
return self
def ceiling(self):
return self
def _as_mpf_val(self, prec):
return _mpf_nan
def _sage_(self):
import sage.all as sage
return sage.NaN
def __hash__(self):
return super(NaN, self).__hash__()
def __eq__(self, other):
# NaN is structurally equal to another NaN
return other is S.NaN
def __ne__(self, other):
return other is not S.NaN
def _eval_Eq(self, other):
# NaN is not mathematically equal to anything, even NaN
return S.false
# Expr will _sympify and raise TypeError
__gt__ = Expr.__gt__
__ge__ = Expr.__ge__
__lt__ = Expr.__lt__
__le__ = Expr.__le__
nan = S.NaN
class ComplexInfinity(with_metaclass(Singleton, AtomicExpr)):
r"""Complex infinity.
In complex analysis the symbol `\tilde\infty`, called "complex
infinity", represents a quantity with infinite magnitude, but
undetermined complex phase.
ComplexInfinity is a singleton, and can be accessed by
``S.ComplexInfinity``, or can be imported as ``zoo``.
Examples
========
>>> from sympy import zoo, oo
>>> zoo + 42
zoo
>>> 42/zoo
0
>>> zoo + zoo
nan
>>> zoo*zoo
zoo
See Also
========
Infinity
"""
is_commutative = True
is_infinite = True
is_number = True
is_prime = False
is_complex = True
is_real = False
__slots__ = []
def __new__(cls):
return AtomicExpr.__new__(cls)
def _latex(self, printer):
return r"\tilde{\infty}"
@staticmethod
def __abs__():
return S.Infinity
def floor(self):
return self
def ceiling(self):
return self
@staticmethod
def __neg__():
return S.ComplexInfinity
def _eval_power(self, expt):
if expt is S.ComplexInfinity:
return S.NaN
if isinstance(expt, Number):
if expt is S.Zero:
return S.NaN
else:
if expt.is_positive:
return S.ComplexInfinity
else:
return S.Zero
def _sage_(self):
import sage.all as sage
return sage.UnsignedInfinityRing.gen()
zoo = S.ComplexInfinity
class NumberSymbol(AtomicExpr):
is_commutative = True
is_finite = True
is_number = True
__slots__ = []
is_NumberSymbol = True
def __new__(cls):
return AtomicExpr.__new__(cls)
def approximation(self, number_cls):
""" Return an interval with number_cls endpoints
that contains the value of NumberSymbol.
If not implemented, then return None.
"""
def _eval_evalf(self, prec):
return Float._new(self._as_mpf_val(prec), prec)
def __eq__(self, other):
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if self is other:
return True
if other.is_Number and self.is_irrational:
return False
return False # NumberSymbol != non-(Number|self)
def __ne__(self, other):
return not self == other
def __le__(self, other):
if self is other:
return S.true
return Expr.__le__(self, other)
def __ge__(self, other):
if self is other:
return S.true
return Expr.__ge__(self, other)
def __int__(self):
# subclass with appropriate return value
raise NotImplementedError
def __long__(self):
return self.__int__()
def __hash__(self):
return super(NumberSymbol, self).__hash__()
class Exp1(with_metaclass(Singleton, NumberSymbol)):
r"""The `e` constant.
The transcendental number `e = 2.718281828\ldots` is the base of the
natural logarithm and of the exponential function, `e = \exp(1)`.
Sometimes called Euler's number or Napier's constant.
Exp1 is a singleton, and can be accessed by ``S.Exp1``,
or can be imported as ``E``.
Examples
========
>>> from sympy import exp, log, E
>>> E is exp(1)
True
>>> log(E)
1
References
==========
.. [1] https://en.wikipedia.org/wiki/E_%28mathematical_constant%29
"""
is_real = True
is_positive = True
is_negative = False # XXX Forces is_negative/is_nonnegative
is_irrational = True
is_number = True
is_algebraic = False
is_transcendental = True
__slots__ = []
def _latex(self, printer):
return r"e"
@staticmethod
def __abs__():
return S.Exp1
def __int__(self):
return 2
def _as_mpf_val(self, prec):
return mpf_e(prec)
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (Integer(2), Integer(3))
elif issubclass(number_cls, Rational):
pass
def _eval_power(self, expt):
from sympy import exp
return exp(expt)
def _eval_rewrite_as_sin(self, **kwargs):
from sympy import sin
I = S.ImaginaryUnit
return sin(I + S.Pi/2) - I*sin(I)
def _eval_rewrite_as_cos(self, **kwargs):
from sympy import cos
I = S.ImaginaryUnit
return cos(I) + I*cos(I + S.Pi/2)
def _sage_(self):
import sage.all as sage
return sage.e
E = S.Exp1
class Pi(with_metaclass(Singleton, NumberSymbol)):
r"""The `\pi` constant.
The transcendental number `\pi = 3.141592654\ldots` represents the ratio
of a circle's circumference to its diameter, the area of the unit circle,
the half-period of trigonometric functions, and many other things
in mathematics.
Pi is a singleton, and can be accessed by ``S.Pi``, or can
be imported as ``pi``.
Examples
========
>>> from sympy import S, pi, oo, sin, exp, integrate, Symbol
>>> S.Pi
pi
>>> pi > 3
True
>>> pi.is_irrational
True
>>> x = Symbol('x')
>>> sin(x + 2*pi)
sin(x)
>>> integrate(exp(-x**2), (x, -oo, oo))
sqrt(pi)
References
==========
.. [1] https://en.wikipedia.org/wiki/Pi
"""
is_real = True
is_positive = True
is_negative = False
is_irrational = True
is_number = True
is_algebraic = False
is_transcendental = True
__slots__ = []
def _latex(self, printer):
return r"\pi"
@staticmethod
def __abs__():
return S.Pi
def __int__(self):
return 3
def _as_mpf_val(self, prec):
return mpf_pi(prec)
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (Integer(3), Integer(4))
elif issubclass(number_cls, Rational):
return (Rational(223, 71), Rational(22, 7))
def _sage_(self):
import sage.all as sage
return sage.pi
pi = S.Pi
class GoldenRatio(with_metaclass(Singleton, NumberSymbol)):
r"""The golden ratio, `\phi`.
`\phi = \frac{1 + \sqrt{5}}{2}` is algebraic number. Two quantities
are in the golden ratio if their ratio is the same as the ratio of
their sum to the larger of the two quantities, i.e. their maximum.
GoldenRatio is a singleton, and can be accessed by ``S.GoldenRatio``.
Examples
========
>>> from sympy import S
>>> S.GoldenRatio > 1
True
>>> S.GoldenRatio.expand(func=True)
1/2 + sqrt(5)/2
>>> S.GoldenRatio.is_irrational
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Golden_ratio
"""
is_real = True
is_positive = True
is_negative = False
is_irrational = True
is_number = True
is_algebraic = True
is_transcendental = False
__slots__ = []
def _latex(self, printer):
return r"\phi"
def __int__(self):
return 1
def _as_mpf_val(self, prec):
# XXX track down why this has to be increased
rv = mlib.from_man_exp(phi_fixed(prec + 10), -prec - 10)
return mpf_norm(rv, prec)
def _eval_expand_func(self, **hints):
from sympy import sqrt
return S.Half + S.Half*sqrt(5)
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (S.One, Rational(2))
elif issubclass(number_cls, Rational):
pass
def _sage_(self):
import sage.all as sage
return sage.golden_ratio
_eval_rewrite_as_sqrt = _eval_expand_func
class TribonacciConstant(with_metaclass(Singleton, NumberSymbol)):
r"""The tribonacci constant.
The tribonacci numbers are like the Fibonacci numbers, but instead
of starting with two predetermined terms, the sequence starts with
three predetermined terms and each term afterwards is the sum of the
preceding three terms.
The tribonacci constant is the ratio toward which adjacent tribonacci
numbers tend. It is a root of the polynomial `x^3 - x^2 - x - 1 = 0`,
and also satisfies the equation `x + x^{-3} = 2`.
TribonacciConstant is a singleton, and can be accessed
by ``S.TribonacciConstant``.
Examples
========
>>> from sympy import S
>>> S.TribonacciConstant > 1
True
>>> S.TribonacciConstant.expand(func=True)
1/3 + (19 - 3*sqrt(33))**(1/3)/3 + (3*sqrt(33) + 19)**(1/3)/3
>>> S.TribonacciConstant.is_irrational
True
>>> S.TribonacciConstant.n(20)
1.8392867552141611326
References
==========
.. [1] https://en.wikipedia.org/wiki/Generalizations_of_Fibonacci_numbers#Tribonacci_numbers
"""
is_real = True
is_positive = True
is_negative = False
is_irrational = True
is_number = True
is_algebraic = True
is_transcendental = False
__slots__ = []
def _latex(self, printer):
return r"\text{TribonacciConstant}"
def __int__(self):
return 2
def _eval_evalf(self, prec):
rv = self._eval_expand_func(function=True)._eval_evalf(prec + 4)
return Float(rv, precision=prec)
def _eval_expand_func(self, **hints):
from sympy import sqrt, cbrt
return (1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (S.One, Rational(2))
elif issubclass(number_cls, Rational):
pass
_eval_rewrite_as_sqrt = _eval_expand_func
class EulerGamma(with_metaclass(Singleton, NumberSymbol)):
r"""The Euler-Mascheroni constant.
`\gamma = 0.5772157\ldots` (also called Euler's constant) is a mathematical
constant recurring in analysis and number theory. It is defined as the
limiting difference between the harmonic series and the
natural logarithm:
.. math:: \gamma = \lim\limits_{n\to\infty}
\left(\sum\limits_{k=1}^n\frac{1}{k} - \ln n\right)
EulerGamma is a singleton, and can be accessed by ``S.EulerGamma``.
Examples
========
>>> from sympy import S
>>> S.EulerGamma.is_irrational
>>> S.EulerGamma > 0
True
>>> S.EulerGamma > 1
False
References
==========
.. [1] https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant
"""
is_real = True
is_positive = True
is_negative = False
is_irrational = None
is_number = True
__slots__ = []
def _latex(self, printer):
return r"\gamma"
def __int__(self):
return 0
def _as_mpf_val(self, prec):
# XXX track down why this has to be increased
v = mlib.libhyper.euler_fixed(prec + 10)
rv = mlib.from_man_exp(v, -prec - 10)
return mpf_norm(rv, prec)
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (S.Zero, S.One)
elif issubclass(number_cls, Rational):
return (S.Half, Rational(3, 5))
def _sage_(self):
import sage.all as sage
return sage.euler_gamma
class Catalan(with_metaclass(Singleton, NumberSymbol)):
r"""Catalan's constant.
`K = 0.91596559\ldots` is given by the infinite series
.. math:: K = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^2}
Catalan is a singleton, and can be accessed by ``S.Catalan``.
Examples
========
>>> from sympy import S
>>> S.Catalan.is_irrational
>>> S.Catalan > 0
True
>>> S.Catalan > 1
False
References
==========
.. [1] https://en.wikipedia.org/wiki/Catalan%27s_constant
"""
is_real = True
is_positive = True
is_negative = False
is_irrational = None
is_number = True
__slots__ = []
def __int__(self):
return 0
def _as_mpf_val(self, prec):
# XXX track down why this has to be increased
v = mlib.catalan_fixed(prec + 10)
rv = mlib.from_man_exp(v, -prec - 10)
return mpf_norm(rv, prec)
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (S.Zero, S.One)
elif issubclass(number_cls, Rational):
return (Rational(9, 10), S.One)
def _sage_(self):
import sage.all as sage
return sage.catalan
class ImaginaryUnit(with_metaclass(Singleton, AtomicExpr)):
r"""The imaginary unit, `i = \sqrt{-1}`.
I is a singleton, and can be accessed by ``S.I``, or can be
imported as ``I``.
Examples
========
>>> from sympy import I, sqrt
>>> sqrt(-1)
I
>>> I*I
-1
>>> 1/I
-I
References
==========
.. [1] https://en.wikipedia.org/wiki/Imaginary_unit
"""
is_commutative = True
is_imaginary = True
is_finite = True
is_number = True
is_algebraic = True
is_transcendental = False
__slots__ = []
def _latex(self, printer):
return printer._settings['imaginary_unit_latex']
@staticmethod
def __abs__():
return S.One
def _eval_evalf(self, prec):
return self
def _eval_conjugate(self):
return -S.ImaginaryUnit
def _eval_power(self, expt):
"""
b is I = sqrt(-1)
e is symbolic object but not equal to 0, 1
I**r -> (-1)**(r/2) -> exp(r/2*Pi*I) -> sin(Pi*r/2) + cos(Pi*r/2)*I, r is decimal
I**0 mod 4 -> 1
I**1 mod 4 -> I
I**2 mod 4 -> -1
I**3 mod 4 -> -I
"""
if isinstance(expt, Number):
if isinstance(expt, Integer):
expt = expt.p % 4
if expt == 0:
return S.One
if expt == 1:
return S.ImaginaryUnit
if expt == 2:
return -S.One
return -S.ImaginaryUnit
return
def as_base_exp(self):
return S.NegativeOne, S.Half
def _sage_(self):
import sage.all as sage
return sage.I
@property
def _mpc_(self):
return (Float(0)._mpf_, Float(1)._mpf_)
I = S.ImaginaryUnit
def sympify_fractions(f):
return Rational(f.numerator, f.denominator, 1)
converter[fractions.Fraction] = sympify_fractions
try:
if HAS_GMPY == 2:
import gmpy2 as gmpy
elif HAS_GMPY == 1:
import gmpy
else:
raise ImportError
def sympify_mpz(x):
return Integer(long(x))
def sympify_mpq(x):
return Rational(long(x.numerator), long(x.denominator))
converter[type(gmpy.mpz(1))] = sympify_mpz
converter[type(gmpy.mpq(1, 2))] = sympify_mpq
except ImportError:
pass
def sympify_mpmath(x):
return Expr._from_mpmath(x, x.context.prec)
converter[mpnumeric] = sympify_mpmath
def sympify_mpq(x):
p, q = x._mpq_
return Rational(p, q, 1)
converter[type(mpmath.rational.mpq(1, 2))] = sympify_mpq
def sympify_complex(a):
real, imag = list(map(sympify, (a.real, a.imag)))
return real + S.ImaginaryUnit*imag
converter[complex] = sympify_complex
from .power import Pow, integer_nthroot
from .mul import Mul
Mul.identity = One()
from .add import Add
Add.identity = Zero()
|
02edebd02dc59b74c4233213144007dd28c5120baf3fdad7cda98eee032058c8
|
from __future__ import print_function, division
from sympy.core.sympify import _sympify, sympify
from sympy.core.basic import Basic
from sympy.core.cache import cacheit
from sympy.core.compatibility import ordered, range
from sympy.core.logic import fuzzy_and
from sympy.core.evaluate import global_evaluate
from sympy.utilities.iterables import sift
class AssocOp(Basic):
""" Associative operations, can separate noncommutative and
commutative parts.
(a op b) op c == a op (b op c) == a op b op c.
Base class for Add and Mul.
This is an abstract base class, concrete derived classes must define
the attribute `identity`.
"""
# for performance reason, we don't let is_commutative go to assumptions,
# and keep it right here
__slots__ = ['is_commutative']
@cacheit
def __new__(cls, *args, **options):
from sympy import Order
args = list(map(_sympify, args))
args = [a for a in args if a is not cls.identity]
evaluate = options.get('evaluate')
if evaluate is None:
evaluate = global_evaluate[0]
if not evaluate:
obj = cls._from_args(args)
obj = cls._exec_constructor_postprocessors(obj)
return obj
if len(args) == 0:
return cls.identity
if len(args) == 1:
return args[0]
c_part, nc_part, order_symbols = cls.flatten(args)
is_commutative = not nc_part
obj = cls._from_args(c_part + nc_part, is_commutative)
obj = cls._exec_constructor_postprocessors(obj)
if order_symbols is not None:
return Order(obj, *order_symbols)
return obj
@classmethod
def _from_args(cls, args, is_commutative=None):
"""Create new instance with already-processed args"""
if len(args) == 0:
return cls.identity
elif len(args) == 1:
return args[0]
obj = super(AssocOp, cls).__new__(cls, *args)
if is_commutative is None:
is_commutative = fuzzy_and(a.is_commutative for a in args)
obj.is_commutative = is_commutative
return obj
def _new_rawargs(self, *args, **kwargs):
"""Create new instance of own class with args exactly as provided by
caller but returning the self class identity if args is empty.
This is handy when we want to optimize things, e.g.
>>> from sympy import Mul, S
>>> from sympy.abc import x, y
>>> e = Mul(3, x, y)
>>> e.args
(3, x, y)
>>> Mul(*e.args[1:])
x*y
>>> e._new_rawargs(*e.args[1:]) # the same as above, but faster
x*y
Note: use this with caution. There is no checking of arguments at
all. This is best used when you are rebuilding an Add or Mul after
simply removing one or more args. If, for example, modifications,
result in extra 1s being inserted (as when collecting an
expression's numerators and denominators) they will not show up in
the result but a Mul will be returned nonetheless:
>>> m = (x*y)._new_rawargs(S.One, x); m
x
>>> m == x
False
>>> m.is_Mul
True
Another issue to be aware of is that the commutativity of the result
is based on the commutativity of self. If you are rebuilding the
terms that came from a commutative object then there will be no
problem, but if self was non-commutative then what you are
rebuilding may now be commutative.
Although this routine tries to do as little as possible with the
input, getting the commutativity right is important, so this level
of safety is enforced: commutativity will always be recomputed if
self is non-commutative and kwarg `reeval=False` has not been
passed.
"""
if kwargs.pop('reeval', True) and self.is_commutative is False:
is_commutative = None
else:
is_commutative = self.is_commutative
return self._from_args(args, is_commutative)
@classmethod
def flatten(cls, seq):
"""Return seq so that none of the elements are of type `cls`. This is
the vanilla routine that will be used if a class derived from AssocOp
does not define its own flatten routine."""
# apply associativity, no commutativity property is used
new_seq = []
while seq:
o = seq.pop()
if o.__class__ is cls: # classes must match exactly
seq.extend(o.args)
else:
new_seq.append(o)
# c_part, nc_part, order_symbols
return [], new_seq, None
def _matches_commutative(self, expr, repl_dict={}, old=False):
"""
Matches Add/Mul "pattern" to an expression "expr".
repl_dict ... a dictionary of (wild: expression) pairs, that get
returned with the results
This function is the main workhorse for Add/Mul.
For instance:
>>> from sympy import symbols, Wild, sin
>>> a = Wild("a")
>>> b = Wild("b")
>>> c = Wild("c")
>>> x, y, z = symbols("x y z")
>>> (a+sin(b)*c)._matches_commutative(x+sin(y)*z)
{a_: x, b_: y, c_: z}
In the example above, "a+sin(b)*c" is the pattern, and "x+sin(y)*z" is
the expression.
The repl_dict contains parts that were already matched. For example
here:
>>> (x+sin(b)*c)._matches_commutative(x+sin(y)*z, repl_dict={a: x})
{a_: x, b_: y, c_: z}
the only function of the repl_dict is to return it in the
result, e.g. if you omit it:
>>> (x+sin(b)*c)._matches_commutative(x+sin(y)*z)
{b_: y, c_: z}
the "a: x" is not returned in the result, but otherwise it is
equivalent.
"""
# make sure expr is Expr if pattern is Expr
from .expr import Add, Expr
from sympy import Mul
if isinstance(self, Expr) and not isinstance(expr, Expr):
return None
# handle simple patterns
if self == expr:
return repl_dict
d = self._matches_simple(expr, repl_dict)
if d is not None:
return d
# eliminate exact part from pattern: (2+a+w1+w2).matches(expr) -> (w1+w2).matches(expr-a-2)
from .function import WildFunction
from .symbol import Wild
wild_part, exact_part = sift(self.args, lambda p:
p.has(Wild, WildFunction) and not expr.has(p),
binary=True)
if not exact_part:
wild_part = list(ordered(wild_part))
else:
exact = self._new_rawargs(*exact_part)
free = expr.free_symbols
if free and (exact.free_symbols - free):
# there are symbols in the exact part that are not
# in the expr; but if there are no free symbols, let
# the matching continue
return None
newexpr = self._combine_inverse(expr, exact)
if not old and (expr.is_Add or expr.is_Mul):
if newexpr.count_ops() > expr.count_ops():
return None
newpattern = self._new_rawargs(*wild_part)
return newpattern.matches(newexpr, repl_dict)
# now to real work ;)
i = 0
saw = set()
while expr not in saw:
saw.add(expr)
expr_list = (self.identity,) + tuple(ordered(self.make_args(expr)))
for last_op in reversed(expr_list):
for w in reversed(wild_part):
d1 = w.matches(last_op, repl_dict)
if d1 is not None:
d2 = self.xreplace(d1).matches(expr, d1)
if d2 is not None:
return d2
if i == 0:
if self.is_Mul:
# make e**i look like Mul
if expr.is_Pow and expr.exp.is_Integer:
if expr.exp > 0:
expr = Mul(*[expr.base, expr.base**(expr.exp - 1)], evaluate=False)
else:
expr = Mul(*[1/expr.base, expr.base**(expr.exp + 1)], evaluate=False)
i += 1
continue
elif self.is_Add:
# make i*e look like Add
c, e = expr.as_coeff_Mul()
if abs(c) > 1:
if c > 0:
expr = Add(*[e, (c - 1)*e], evaluate=False)
else:
expr = Add(*[-e, (c + 1)*e], evaluate=False)
i += 1
continue
# try collection on non-Wild symbols
from sympy.simplify.radsimp import collect
was = expr
did = set()
for w in reversed(wild_part):
c, w = w.as_coeff_mul(Wild)
free = c.free_symbols - did
if free:
did.update(free)
expr = collect(expr, free)
if expr != was:
i += 0
continue
break # if we didn't continue, there is nothing more to do
return
def _has_matcher(self):
"""Helper for .has()"""
def _ncsplit(expr):
# this is not the same as args_cnc because here
# we don't assume expr is a Mul -- hence deal with args --
# and always return a set.
cpart, ncpart = sift(expr.args,
lambda arg: arg.is_commutative is True, binary=True)
return set(cpart), ncpart
c, nc = _ncsplit(self)
cls = self.__class__
def is_in(expr):
if expr == self:
return True
elif not isinstance(expr, Basic):
return False
elif isinstance(expr, cls):
_c, _nc = _ncsplit(expr)
if (c & _c) == c:
if not nc:
return True
elif len(nc) <= len(_nc):
for i in range(len(_nc) - len(nc) + 1):
if _nc[i:i + len(nc)] == nc:
return True
return False
return is_in
def _eval_evalf(self, prec):
"""
Evaluate the parts of self that are numbers; if the whole thing
was a number with no functions it would have been evaluated, but
it wasn't so we must judiciously extract the numbers and reconstruct
the object. This is *not* simply replacing numbers with evaluated
numbers. Nunmbers should be handled in the largest pure-number
expression as possible. So the code below separates ``self`` into
number and non-number parts and evaluates the number parts and
walks the args of the non-number part recursively (doing the same
thing).
"""
from .add import Add
from .mul import Mul
from .symbol import Symbol
from .function import AppliedUndef
if isinstance(self, (Mul, Add)):
x, tail = self.as_independent(Symbol, AppliedUndef)
# if x is an AssocOp Function then the _evalf below will
# call _eval_evalf (here) so we must break the recursion
if not (tail is self.identity or
isinstance(x, AssocOp) and x.is_Function or
x is self.identity and isinstance(tail, AssocOp)):
# here, we have a number so we just call to _evalf with prec;
# prec is not the same as n, it is the binary precision so
# that's why we don't call to evalf.
x = x._evalf(prec) if x is not self.identity else self.identity
args = []
tail_args = tuple(self.func.make_args(tail))
for a in tail_args:
# here we call to _eval_evalf since we don't know what we
# are dealing with and all other _eval_evalf routines should
# be doing the same thing (i.e. taking binary prec and
# finding the evalf-able args)
newa = a._eval_evalf(prec)
if newa is None:
args.append(a)
else:
args.append(newa)
return self.func(x, *args)
# this is the same as above, but there were no pure-number args to
# deal with
args = []
for a in self.args:
newa = a._eval_evalf(prec)
if newa is None:
args.append(a)
else:
args.append(newa)
return self.func(*args)
@classmethod
def make_args(cls, expr):
"""
Return a sequence of elements `args` such that cls(*args) == expr
>>> from sympy import Symbol, Mul, Add
>>> x, y = map(Symbol, 'xy')
>>> Mul.make_args(x*y)
(x, y)
>>> Add.make_args(x*y)
(x*y,)
>>> set(Add.make_args(x*y + y)) == set([y, x*y])
True
"""
if isinstance(expr, cls):
return expr.args
else:
return (sympify(expr),)
class ShortCircuit(Exception):
pass
class LatticeOp(AssocOp):
"""
Join/meet operations of an algebraic lattice[1].
These binary operations are associative (op(op(a, b), c) = op(a, op(b, c))),
commutative (op(a, b) = op(b, a)) and idempotent (op(a, a) = op(a) = a).
Common examples are AND, OR, Union, Intersection, max or min. They have an
identity element (op(identity, a) = a) and an absorbing element
conventionally called zero (op(zero, a) = zero).
This is an abstract base class, concrete derived classes must declare
attributes zero and identity. All defining properties are then respected.
>>> from sympy import Integer
>>> from sympy.core.operations import LatticeOp
>>> class my_join(LatticeOp):
... zero = Integer(0)
... identity = Integer(1)
>>> my_join(2, 3) == my_join(3, 2)
True
>>> my_join(2, my_join(3, 4)) == my_join(2, 3, 4)
True
>>> my_join(0, 1, 4, 2, 3, 4)
0
>>> my_join(1, 2)
2
References:
[1] - https://en.wikipedia.org/wiki/Lattice_%28order%29
"""
is_commutative = True
def __new__(cls, *args, **options):
args = (_sympify(arg) for arg in args)
try:
# /!\ args is a generator and _new_args_filter
# must be careful to handle as such; this
# is done so short-circuiting can be done
# without having to sympify all values
_args = frozenset(cls._new_args_filter(args))
except ShortCircuit:
return sympify(cls.zero)
if not _args:
return sympify(cls.identity)
elif len(_args) == 1:
return set(_args).pop()
else:
# XXX in almost every other case for __new__, *_args is
# passed along, but the expectation here is for _args
obj = super(AssocOp, cls).__new__(cls, _args)
obj._argset = _args
return obj
@classmethod
def _new_args_filter(cls, arg_sequence, call_cls=None):
"""Generator filtering args"""
ncls = call_cls or cls
for arg in arg_sequence:
if arg == ncls.zero:
raise ShortCircuit(arg)
elif arg == ncls.identity:
continue
elif arg.func == ncls:
for x in arg.args:
yield x
else:
yield arg
@classmethod
def make_args(cls, expr):
"""
Return a set of args such that cls(*arg_set) == expr.
"""
if isinstance(expr, cls):
return expr._argset
else:
return frozenset([sympify(expr)])
@property
@cacheit
def args(self):
return tuple(ordered(self._argset))
@staticmethod
def _compare_pretty(a, b):
return (str(a) > str(b)) - (str(a) < str(b))
|
910a41b0a1318252a3c5d0efc52e52dae57f48848e1ce7944237101b454a0c0c
|
"""
Reimplementations of constructs introduced in later versions of Python than
we support. Also some functions that are needed SymPy-wide and are located
here for easy import.
"""
from __future__ import print_function, division
import operator
from collections import defaultdict
from sympy.external import import_module
"""
Python 2 and Python 3 compatible imports
String and Unicode compatible changes:
* `unicode()` removed in Python 3, import `unicode` for Python 2/3
compatible function
* `unichr()` removed in Python 3, import `unichr` for Python 2/3 compatible
function
* Use `u()` for escaped unicode sequences (e.g. u'\u2020' -> u('\u2020'))
* Use `u_decode()` to decode utf-8 formatted unicode strings
* `string_types` gives str in Python 3, unicode and str in Python 2,
equivalent to basestring
Integer related changes:
* `long()` removed in Python 3, import `long` for Python 2/3 compatible
function
* `integer_types` gives int in Python 3, int and long in Python 2
Types related changes:
* `class_types` gives type in Python 3, type and ClassType in Python 2
Renamed function attributes:
* Python 2 `.func_code`, Python 3 `.__func__`, access with
`get_function_code()`
* Python 2 `.func_globals`, Python 3 `.__globals__`, access with
`get_function_globals()`
* Python 2 `.func_name`, Python 3 `.__name__`, access with
`get_function_name()`
Moved modules:
* `reduce()`
* `StringIO()`
* `cStringIO()` (same as `StingIO()` in Python 3)
* Python 2 `__builtins__`, access with Python 3 name, `builtins`
Iterator/list changes:
* `xrange` renamed as `range` in Python 3, import `range` for Python 2/3
compatible iterator version of range.
exec:
* Use `exec_()`, with parameters `exec_(code, globs=None, locs=None)`
Metaclasses:
* Use `with_metaclass()`, examples below
* Define class `Foo` with metaclass `Meta`, and no parent:
class Foo(with_metaclass(Meta)):
pass
* Define class `Foo` with metaclass `Meta` and parent class `Bar`:
class Foo(with_metaclass(Meta, Bar)):
pass
"""
import sys
PY3 = sys.version_info[0] > 2
if PY3:
class_types = type,
integer_types = (int,)
string_types = (str,)
long = int
int_info = sys.int_info
# String / unicode compatibility
unicode = str
unichr = chr
def u_decode(x):
return x
Iterator = object
# Moved definitions
get_function_code = operator.attrgetter("__code__")
get_function_globals = operator.attrgetter("__globals__")
get_function_name = operator.attrgetter("__name__")
import builtins
from functools import reduce
from io import StringIO
cStringIO = StringIO
exec_=getattr(builtins, "exec")
range=range
from collections.abc import (Mapping, Callable, MutableMapping,
MutableSet, Iterable, Hashable)
from inspect import unwrap
from itertools import accumulate
else:
import codecs
import types
class_types = (type, types.ClassType)
integer_types = (int, long)
string_types = (str, unicode)
long = long
int_info = sys.long_info
# String / unicode compatibility
unicode = unicode
unichr = unichr
def u_decode(x):
return x.decode('utf-8')
class Iterator(object):
def next(self):
return type(self).__next__(self)
# Moved definitions
get_function_code = operator.attrgetter("func_code")
get_function_globals = operator.attrgetter("func_globals")
get_function_name = operator.attrgetter("func_name")
import __builtin__ as builtins
reduce = reduce
from StringIO import StringIO
from cStringIO import StringIO as cStringIO
def exec_(_code_, _globs_=None, _locs_=None):
"""Execute code in a namespace."""
if _globs_ is None:
frame = sys._getframe(1)
_globs_ = frame.f_globals
if _locs_ is None:
_locs_ = frame.f_locals
del frame
elif _locs_ is None:
_locs_ = _globs_
exec("exec _code_ in _globs_, _locs_")
range=xrange
from collections import (Mapping, Callable, MutableMapping,
MutableSet, Iterable, Hashable)
def unwrap(func, stop=None):
"""Get the object wrapped by *func*.
Follows the chain of :attr:`__wrapped__` attributes returning the last
object in the chain.
*stop* is an optional callback accepting an object in the wrapper chain
as its sole argument that allows the unwrapping to be terminated early if
the callback returns a true value. If the callback never returns a true
value, the last object in the chain is returned as usual. For example,
:func:`signature` uses this to stop unwrapping if any object in the
chain has a ``__signature__`` attribute defined.
:exc:`ValueError` is raised if a cycle is encountered.
"""
if stop is None:
def _is_wrapper(f):
return hasattr(f, '__wrapped__')
else:
def _is_wrapper(f):
return hasattr(f, '__wrapped__') and not stop(f)
f = func # remember the original func for error reporting
memo = {id(f)} # Memoise by id to tolerate non-hashable objects
while _is_wrapper(func):
func = func.__wrapped__
id_func = id(func)
if id_func in memo:
raise ValueError('wrapper loop when unwrapping {!r}'.format(f))
memo.add(id_func)
return func
def accumulate(iterable, func=operator.add):
state = iterable[0]
yield state
for i in iterable[1:]:
state = func(state, i)
yield state
def with_metaclass(meta, *bases):
"""
Create a base class with a metaclass.
For example, if you have the metaclass
>>> class Meta(type):
... pass
Use this as the metaclass by doing
>>> from sympy.core.compatibility import with_metaclass
>>> class MyClass(with_metaclass(Meta, object)):
... pass
This is equivalent to the Python 2::
class MyClass(object):
__metaclass__ = Meta
or Python 3::
class MyClass(object, metaclass=Meta):
pass
That is, the first argument is the metaclass, and the remaining arguments
are the base classes. Note that if the base class is just ``object``, you
may omit it.
>>> MyClass.__mro__
(<class '...MyClass'>, <... 'object'>)
>>> type(MyClass)
<class '...Meta'>
"""
# This requires a bit of explanation: the basic idea is to make a dummy
# metaclass for one level of class instantiation that replaces itself with
# the actual metaclass.
# Code copied from the 'six' library.
class metaclass(meta):
def __new__(cls, name, this_bases, d):
return meta(name, bases, d)
return type.__new__(metaclass, "NewBase", (), {})
# These are in here because telling if something is an iterable just by calling
# hasattr(obj, "__iter__") behaves differently in Python 2 and Python 3. In
# particular, hasattr(str, "__iter__") is False in Python 2 and True in Python 3.
# I think putting them here also makes it easier to use them in the core.
class NotIterable:
"""
Use this as mixin when creating a class which is not supposed to return
true when iterable() is called on its instances. I.e. avoid infinite loop
when calling e.g. list() on the instance
"""
pass
def iterable(i, exclude=(string_types, dict, NotIterable)):
"""
Return a boolean indicating whether ``i`` is SymPy iterable.
True also indicates that the iterator is finite, i.e. you e.g.
call list(...) on the instance.
When SymPy is working with iterables, it is almost always assuming
that the iterable is not a string or a mapping, so those are excluded
by default. If you want a pure Python definition, make exclude=None. To
exclude multiple items, pass them as a tuple.
You can also set the _iterable attribute to True or False on your class,
which will override the checks here, including the exclude test.
As a rule of thumb, some SymPy functions use this to check if they should
recursively map over an object. If an object is technically iterable in
the Python sense but does not desire this behavior (e.g., because its
iteration is not finite, or because iteration might induce an unwanted
computation), it should disable it by setting the _iterable attribute to False.
See also: is_sequence
Examples
========
>>> from sympy.utilities.iterables import iterable
>>> from sympy import Tuple
>>> things = [[1], (1,), set([1]), Tuple(1), (j for j in [1, 2]), {1:2}, '1', 1]
>>> for i in things:
... print('%s %s' % (iterable(i), type(i)))
True <... 'list'>
True <... 'tuple'>
True <... 'set'>
True <class 'sympy.core.containers.Tuple'>
True <... 'generator'>
False <... 'dict'>
False <... 'str'>
False <... 'int'>
>>> iterable({}, exclude=None)
True
>>> iterable({}, exclude=str)
True
>>> iterable("no", exclude=str)
False
"""
if hasattr(i, '_iterable'):
return i._iterable
try:
iter(i)
except TypeError:
return False
if exclude:
return not isinstance(i, exclude)
return True
def is_sequence(i, include=None):
"""
Return a boolean indicating whether ``i`` is a sequence in the SymPy
sense. If anything that fails the test below should be included as
being a sequence for your application, set 'include' to that object's
type; multiple types should be passed as a tuple of types.
Note: although generators can generate a sequence, they often need special
handling to make sure their elements are captured before the generator is
exhausted, so these are not included by default in the definition of a
sequence.
See also: iterable
Examples
========
>>> from sympy.utilities.iterables import is_sequence
>>> from types import GeneratorType
>>> is_sequence([])
True
>>> is_sequence(set())
False
>>> is_sequence('abc')
False
>>> is_sequence('abc', include=str)
True
>>> generator = (c for c in 'abc')
>>> is_sequence(generator)
False
>>> is_sequence(generator, include=(str, GeneratorType))
True
"""
return (hasattr(i, '__getitem__') and
iterable(i) or
bool(include) and
isinstance(i, include))
try:
from itertools import zip_longest
except ImportError: # Python 2.7
from itertools import izip_longest as zip_longest
try:
# Python 2.7
from string import maketrans
except ImportError:
maketrans = str.maketrans
def as_int(n, strict=True):
"""
Convert the argument to a builtin integer.
The return value is guaranteed to be equal to the input. ValueError
is raised if the input has a non-integral value. When ``strict`` is
False, non-integer input that compares equal to the integer value
will not raise an error.
Examples
========
>>> from sympy.core.compatibility import as_int
>>> from sympy import sqrt, S
The function is primarily concerned with sanitizing input for
functions that need to work with builtin integers, so anything that
is unambiguously an integer should be returned as an int:
>>> as_int(S(3))
3
Floats, being of limited precision, are not assumed to be exact and
will raise an error unless the ``strict`` flag is False. This
precision issue becomes apparent for large floating point numbers:
>>> big = 1e23
>>> type(big) is float
True
>>> big == int(big)
True
>>> as_int(big)
Traceback (most recent call last):
...
ValueError: ... is not an integer
>>> as_int(big, strict=False)
99999999999999991611392
Input that might be a complex representation of an integer value is
also rejected by default:
>>> one = sqrt(3 + 2*sqrt(2)) - sqrt(2)
>>> int(one) == 1
True
>>> as_int(one)
Traceback (most recent call last):
...
ValueError: ... is not an integer
"""
from sympy.core.numbers import Integer
try:
if strict and not isinstance(n, SYMPY_INTS + (Integer,)):
raise TypeError
result = int(n)
if result != n:
raise TypeError
return result
except TypeError:
raise ValueError('%s is not an integer' % (n,))
def default_sort_key(item, order=None):
"""Return a key that can be used for sorting.
The key has the structure:
(class_key, (len(args), args), exponent.sort_key(), coefficient)
This key is supplied by the sort_key routine of Basic objects when
``item`` is a Basic object or an object (other than a string) that
sympifies to a Basic object. Otherwise, this function produces the
key.
The ``order`` argument is passed along to the sort_key routine and is
used to determine how the terms *within* an expression are ordered.
(See examples below) ``order`` options are: 'lex', 'grlex', 'grevlex',
and reversed values of the same (e.g. 'rev-lex'). The default order
value is None (which translates to 'lex').
Examples
========
>>> from sympy import S, I, default_sort_key, sin, cos, sqrt
>>> from sympy.core.function import UndefinedFunction
>>> from sympy.abc import x
The following are equivalent ways of getting the key for an object:
>>> x.sort_key() == default_sort_key(x)
True
Here are some examples of the key that is produced:
>>> default_sort_key(UndefinedFunction('f'))
((0, 0, 'UndefinedFunction'), (1, ('f',)), ((1, 0, 'Number'),
(0, ()), (), 1), 1)
>>> default_sort_key('1')
((0, 0, 'str'), (1, ('1',)), ((1, 0, 'Number'), (0, ()), (), 1), 1)
>>> default_sort_key(S.One)
((1, 0, 'Number'), (0, ()), (), 1)
>>> default_sort_key(2)
((1, 0, 'Number'), (0, ()), (), 2)
While sort_key is a method only defined for SymPy objects,
default_sort_key will accept anything as an argument so it is
more robust as a sorting key. For the following, using key=
lambda i: i.sort_key() would fail because 2 doesn't have a sort_key
method; that's why default_sort_key is used. Note, that it also
handles sympification of non-string items likes ints:
>>> a = [2, I, -I]
>>> sorted(a, key=default_sort_key)
[2, -I, I]
The returned key can be used anywhere that a key can be specified for
a function, e.g. sort, min, max, etc...:
>>> a.sort(key=default_sort_key); a[0]
2
>>> min(a, key=default_sort_key)
2
Note
----
The key returned is useful for getting items into a canonical order
that will be the same across platforms. It is not directly useful for
sorting lists of expressions:
>>> a, b = x, 1/x
Since ``a`` has only 1 term, its value of sort_key is unaffected by
``order``:
>>> a.sort_key() == a.sort_key('rev-lex')
True
If ``a`` and ``b`` are combined then the key will differ because there
are terms that can be ordered:
>>> eq = a + b
>>> eq.sort_key() == eq.sort_key('rev-lex')
False
>>> eq.as_ordered_terms()
[x, 1/x]
>>> eq.as_ordered_terms('rev-lex')
[1/x, x]
But since the keys for each of these terms are independent of ``order``'s
value, they don't sort differently when they appear separately in a list:
>>> sorted(eq.args, key=default_sort_key)
[1/x, x]
>>> sorted(eq.args, key=lambda i: default_sort_key(i, order='rev-lex'))
[1/x, x]
The order of terms obtained when using these keys is the order that would
be obtained if those terms were *factors* in a product.
Although it is useful for quickly putting expressions in canonical order,
it does not sort expressions based on their complexity defined by the
number of operations, power of variables and others:
>>> sorted([sin(x)*cos(x), sin(x)], key=default_sort_key)
[sin(x)*cos(x), sin(x)]
>>> sorted([x, x**2, sqrt(x), x**3], key=default_sort_key)
[sqrt(x), x, x**2, x**3]
See Also
========
ordered, sympy.core.expr.as_ordered_factors, sympy.core.expr.as_ordered_terms
"""
from .singleton import S
from .basic import Basic
from .sympify import sympify, SympifyError
from .compatibility import iterable
if isinstance(item, Basic):
return item.sort_key(order=order)
if iterable(item, exclude=string_types):
if isinstance(item, dict):
args = item.items()
unordered = True
elif isinstance(item, set):
args = item
unordered = True
else:
# e.g. tuple, list
args = list(item)
unordered = False
args = [default_sort_key(arg, order=order) for arg in args]
if unordered:
# e.g. dict, set
args = sorted(args)
cls_index, args = 10, (len(args), tuple(args))
else:
if not isinstance(item, string_types):
try:
item = sympify(item)
except SympifyError:
# e.g. lambda x: x
pass
else:
if isinstance(item, Basic):
# e.g int -> Integer
return default_sort_key(item)
# e.g. UndefinedFunction
# e.g. str
cls_index, args = 0, (1, (str(item),))
return (cls_index, 0, item.__class__.__name__
), args, S.One.sort_key(), S.One
def _nodes(e):
"""
A helper for ordered() which returns the node count of ``e`` which
for Basic objects is the number of Basic nodes in the expression tree
but for other objects is 1 (unless the object is an iterable or dict
for which the sum of nodes is returned).
"""
from .basic import Basic
if isinstance(e, Basic):
return e.count(Basic)
elif iterable(e):
return 1 + sum(_nodes(ei) for ei in e)
elif isinstance(e, dict):
return 1 + sum(_nodes(k) + _nodes(v) for k, v in e.items())
else:
return 1
def ordered(seq, keys=None, default=True, warn=False):
"""Return an iterator of the seq where keys are used to break ties in
a conservative fashion: if, after applying a key, there are no ties
then no other keys will be computed.
Two default keys will be applied if 1) keys are not provided or 2) the
given keys don't resolve all ties (but only if `default` is True). The
two keys are `_nodes` (which places smaller expressions before large) and
`default_sort_key` which (if the `sort_key` for an object is defined
properly) should resolve any ties.
If ``warn`` is True then an error will be raised if there were no
keys remaining to break ties. This can be used if it was expected that
there should be no ties between items that are not identical.
Examples
========
>>> from sympy.utilities.iterables import ordered
>>> from sympy import count_ops
>>> from sympy.abc import x, y
The count_ops is not sufficient to break ties in this list and the first
two items appear in their original order (i.e. the sorting is stable):
>>> list(ordered([y + 2, x + 2, x**2 + y + 3],
... count_ops, default=False, warn=False))
...
[y + 2, x + 2, x**2 + y + 3]
The default_sort_key allows the tie to be broken:
>>> list(ordered([y + 2, x + 2, x**2 + y + 3]))
...
[x + 2, y + 2, x**2 + y + 3]
Here, sequences are sorted by length, then sum:
>>> seq, keys = [[[1, 2, 1], [0, 3, 1], [1, 1, 3], [2], [1]], [
... lambda x: len(x),
... lambda x: sum(x)]]
...
>>> list(ordered(seq, keys, default=False, warn=False))
[[1], [2], [1, 2, 1], [0, 3, 1], [1, 1, 3]]
If ``warn`` is True, an error will be raised if there were not
enough keys to break ties:
>>> list(ordered(seq, keys, default=False, warn=True))
Traceback (most recent call last):
...
ValueError: not enough keys to break ties
Notes
=====
The decorated sort is one of the fastest ways to sort a sequence for
which special item comparison is desired: the sequence is decorated,
sorted on the basis of the decoration (e.g. making all letters lower
case) and then undecorated. If one wants to break ties for items that
have the same decorated value, a second key can be used. But if the
second key is expensive to compute then it is inefficient to decorate
all items with both keys: only those items having identical first key
values need to be decorated. This function applies keys successively
only when needed to break ties. By yielding an iterator, use of the
tie-breaker is delayed as long as possible.
This function is best used in cases when use of the first key is
expected to be a good hashing function; if there are no unique hashes
from application of a key then that key should not have been used. The
exception, however, is that even if there are many collisions, if the
first group is small and one does not need to process all items in the
list then time will not be wasted sorting what one was not interested
in. For example, if one were looking for the minimum in a list and
there were several criteria used to define the sort order, then this
function would be good at returning that quickly if the first group
of candidates is small relative to the number of items being processed.
"""
d = defaultdict(list)
if keys:
if not isinstance(keys, (list, tuple)):
keys = [keys]
keys = list(keys)
f = keys.pop(0)
for a in seq:
d[f(a)].append(a)
else:
if not default:
raise ValueError('if default=False then keys must be provided')
d[None].extend(seq)
for k in sorted(d.keys()):
if len(d[k]) > 1:
if keys:
d[k] = ordered(d[k], keys, default, warn)
elif default:
d[k] = ordered(d[k], (_nodes, default_sort_key,),
default=False, warn=warn)
elif warn:
from sympy.utilities.iterables import uniq
u = list(uniq(d[k]))
if len(u) > 1:
raise ValueError(
'not enough keys to break ties: %s' % u)
for v in d[k]:
yield v
d.pop(k)
# If HAS_GMPY is 0, no supported version of gmpy is available. Otherwise,
# HAS_GMPY contains the major version number of gmpy; i.e. 1 for gmpy, and
# 2 for gmpy2.
# Versions of gmpy prior to 1.03 do not work correctly with int(largempz)
# For example, int(gmpy.mpz(2**256)) would raise OverflowError.
# See issue 4980.
# Minimum version of gmpy changed to 1.13 to allow a single code base to also
# work with gmpy2.
def _getenv(key, default=None):
from os import getenv
return getenv(key, default)
GROUND_TYPES = _getenv('SYMPY_GROUND_TYPES', 'auto').lower()
HAS_GMPY = 0
if GROUND_TYPES != 'python':
# Don't try to import gmpy2 if ground types is set to gmpy1. This is
# primarily intended for testing.
if GROUND_TYPES != 'gmpy1':
gmpy = import_module('gmpy2', min_module_version='2.0.0',
module_version_attr='version', module_version_attr_call_args=())
if gmpy:
HAS_GMPY = 2
else:
GROUND_TYPES = 'gmpy'
if not HAS_GMPY:
gmpy = import_module('gmpy', min_module_version='1.13',
module_version_attr='version', module_version_attr_call_args=())
if gmpy:
HAS_GMPY = 1
if GROUND_TYPES == 'auto':
if HAS_GMPY:
GROUND_TYPES = 'gmpy'
else:
GROUND_TYPES = 'python'
if GROUND_TYPES == 'gmpy' and not HAS_GMPY:
from warnings import warn
warn("gmpy library is not installed, switching to 'python' ground types")
GROUND_TYPES = 'python'
# SYMPY_INTS is a tuple containing the base types for valid integer types.
SYMPY_INTS = integer_types
if GROUND_TYPES == 'gmpy':
SYMPY_INTS += (type(gmpy.mpz(0)),)
# lru_cache compatible with py2.7 copied directly from
# https://code.activestate.com/
# recipes/578078-py26-and-py30-backport-of-python-33s-lru-cache/
from collections import namedtuple
from functools import update_wrapper
from threading import RLock
_CacheInfo = namedtuple("CacheInfo", ["hits", "misses", "maxsize", "currsize"])
class _HashedSeq(list):
__slots__ = 'hashvalue'
def __init__(self, tup, hash=hash):
self[:] = tup
self.hashvalue = hash(tup)
def __hash__(self):
return self.hashvalue
def _make_key(args, kwds, typed,
kwd_mark = (object(),),
fasttypes = set((int, str, frozenset, type(None))),
sorted=sorted, tuple=tuple, type=type, len=len):
'Make a cache key from optionally typed positional and keyword arguments'
key = args
if kwds:
sorted_items = sorted(kwds.items())
key += kwd_mark
for item in sorted_items:
key += item
if typed:
key += tuple(type(v) for v in args)
if kwds:
key += tuple(type(v) for k, v in sorted_items)
elif len(key) == 1 and type(key[0]) in fasttypes:
return key[0]
return _HashedSeq(key)
def lru_cache(maxsize=100, typed=False):
"""Least-recently-used cache decorator.
If *maxsize* is set to None, the LRU features are disabled and the cache
can grow without bound.
If *typed* is True, arguments of different types will be cached separately.
For example, f(3.0) and f(3) will be treated as distinct calls with
distinct results.
Arguments to the cached function must be hashable.
View the cache statistics named tuple (hits, misses, maxsize, currsize) with
f.cache_info(). Clear the cache and statistics with f.cache_clear().
Access the underlying function with f.__wrapped__.
See: https://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used
"""
# Users should only access the lru_cache through its public API:
# cache_info, cache_clear, and f.__wrapped__
# The internals of the lru_cache are encapsulated for thread safety and
# to allow the implementation to change (including a possible C version).
def decorating_function(user_function):
cache = dict()
stats = [0, 0] # make statistics updateable non-locally
HITS, MISSES = 0, 1 # names for the stats fields
make_key = _make_key
cache_get = cache.get # bound method to lookup key or return None
_len = len # localize the global len() function
lock = RLock() # because linkedlist updates aren't threadsafe
root = [] # root of the circular doubly linked list
root[:] = [root, root, None, None] # initialize by pointing to self
nonlocal_root = [root] # make updateable non-locally
PREV, NEXT, KEY, RESULT = 0, 1, 2, 3 # names for the link fields
if maxsize == 0:
def wrapper(*args, **kwds):
# no caching, just do a statistics update after a successful call
result = user_function(*args, **kwds)
stats[MISSES] += 1
return result
elif maxsize is None:
def wrapper(*args, **kwds):
# simple caching without ordering or size limit
key = make_key(args, kwds, typed)
result = cache_get(key, root) # root used here as a unique not-found sentinel
if result is not root:
stats[HITS] += 1
return result
result = user_function(*args, **kwds)
cache[key] = result
stats[MISSES] += 1
return result
else:
def wrapper(*args, **kwds):
# size limited caching that tracks accesses by recency
try:
key = make_key(args, kwds, typed) if kwds or typed else args
except TypeError:
stats[MISSES] += 1
return user_function(*args, **kwds)
with lock:
link = cache_get(key)
if link is not None:
# record recent use of the key by moving it to the front of the list
root, = nonlocal_root
link_prev, link_next, key, result = link
link_prev[NEXT] = link_next
link_next[PREV] = link_prev
last = root[PREV]
last[NEXT] = root[PREV] = link
link[PREV] = last
link[NEXT] = root
stats[HITS] += 1
return result
result = user_function(*args, **kwds)
with lock:
root, = nonlocal_root
if key in cache:
# getting here means that this same key was added to the
# cache while the lock was released. since the link
# update is already done, we need only return the
# computed result and update the count of misses.
pass
elif _len(cache) >= maxsize:
# use the old root to store the new key and result
oldroot = root
oldroot[KEY] = key
oldroot[RESULT] = result
# empty the oldest link and make it the new root
root = nonlocal_root[0] = oldroot[NEXT]
oldkey = root[KEY]
oldvalue = root[RESULT]
root[KEY] = root[RESULT] = None
# now update the cache dictionary for the new links
del cache[oldkey]
cache[key] = oldroot
else:
# put result in a new link at the front of the list
last = root[PREV]
link = [last, root, key, result]
last[NEXT] = root[PREV] = cache[key] = link
stats[MISSES] += 1
return result
def cache_info():
"""Report cache statistics"""
with lock:
return _CacheInfo(stats[HITS], stats[MISSES], maxsize, len(cache))
def cache_clear():
"""Clear the cache and cache statistics"""
with lock:
cache.clear()
root = nonlocal_root[0]
root[:] = [root, root, None, None]
stats[:] = [0, 0]
wrapper.__wrapped__ = user_function
wrapper.cache_info = cache_info
wrapper.cache_clear = cache_clear
return update_wrapper(wrapper, user_function)
return decorating_function
### End of backported lru_cache
if sys.version_info[:2] >= (3, 3):
# 3.2 has an lru_cache with an incompatible API
from functools import lru_cache
try:
from itertools import filterfalse
except ImportError: # Python 2.7
def filterfalse(pred, itr):
return filter(lambda x: not pred(x), itr)
|
a164f7c9ea6ec34b76f6b3d9977e731a90fed71344cd91a636b13b89d2113714
|
"""sympify -- convert objects SymPy internal format"""
from __future__ import print_function, division
from inspect import getmro
from .core import all_classes as sympy_classes
from .compatibility import iterable, string_types, range
from .evaluate import global_evaluate
class SympifyError(ValueError):
def __init__(self, expr, base_exc=None):
self.expr = expr
self.base_exc = base_exc
def __str__(self):
if self.base_exc is None:
return "SympifyError: %r" % (self.expr,)
return ("Sympify of expression '%s' failed, because of exception being "
"raised:\n%s: %s" % (self.expr, self.base_exc.__class__.__name__,
str(self.base_exc)))
converter = {} # See sympify docstring.
class CantSympify(object):
"""
Mix in this trait to a class to disallow sympification of its instances.
Examples
========
>>> from sympy.core.sympify import sympify, CantSympify
>>> class Something(dict):
... pass
...
>>> sympify(Something())
{}
>>> class Something(dict, CantSympify):
... pass
...
>>> sympify(Something())
Traceback (most recent call last):
...
SympifyError: SympifyError: {}
"""
pass
def _convert_numpy_types(a, **sympify_args):
"""
Converts a numpy datatype input to an appropriate sympy type.
"""
import numpy as np
if not isinstance(a, np.floating):
if np.iscomplex(a):
return converter[complex](a.item())
else:
return sympify(a.item(), **sympify_args)
else:
try:
from sympy.core.numbers import Float
prec = np.finfo(a).nmant + 1
# E.g. double precision means prec=53 but nmant=52
# Leading bit of mantissa is always 1, so is not stored
a = str(list(np.reshape(np.asarray(a),
(1, np.size(a)))[0]))[1:-1]
return Float(a, precision=prec)
except NotImplementedError:
raise SympifyError('Translation for numpy float : %s '
'is not implemented' % a)
def sympify(a, locals=None, convert_xor=True, strict=False, rational=False,
evaluate=None):
"""Converts an arbitrary expression to a type that can be used inside SymPy.
For example, it will convert Python ints into instances of sympy.Integer,
floats into instances of sympy.Float, etc. It is also able to coerce symbolic
expressions which inherit from Basic. This can be useful in cooperation
with SAGE.
It currently accepts as arguments:
- any object defined in sympy
- standard numeric python types: int, long, float, Decimal
- strings (like "0.09" or "2e-19")
- booleans, including ``None`` (will leave ``None`` unchanged)
- lists, sets or tuples containing any of the above
.. warning::
Note that this function uses ``eval``, and thus shouldn't be used on
unsanitized input.
If the argument is already a type that SymPy understands, it will do
nothing but return that value. This can be used at the beginning of a
function to ensure you are working with the correct type.
>>> from sympy import sympify
>>> sympify(2).is_integer
True
>>> sympify(2).is_real
True
>>> sympify(2.0).is_real
True
>>> sympify("2.0").is_real
True
>>> sympify("2e-45").is_real
True
If the expression could not be converted, a SympifyError is raised.
>>> sympify("x***2")
Traceback (most recent call last):
...
SympifyError: SympifyError: "could not parse u'x***2'"
Locals
------
The sympification happens with access to everything that is loaded
by ``from sympy import *``; anything used in a string that is not
defined by that import will be converted to a symbol. In the following,
the ``bitcount`` function is treated as a symbol and the ``O`` is
interpreted as the Order object (used with series) and it raises
an error when used improperly:
>>> s = 'bitcount(42)'
>>> sympify(s)
bitcount(42)
>>> sympify("O(x)")
O(x)
>>> sympify("O + 1")
Traceback (most recent call last):
...
TypeError: unbound method...
In order to have ``bitcount`` be recognized it can be imported into a
namespace dictionary and passed as locals:
>>> from sympy.core.compatibility import exec_
>>> ns = {}
>>> exec_('from sympy.core.evalf import bitcount', ns)
>>> sympify(s, locals=ns)
6
In order to have the ``O`` interpreted as a Symbol, identify it as such
in the namespace dictionary. This can be done in a variety of ways; all
three of the following are possibilities:
>>> from sympy import Symbol
>>> ns["O"] = Symbol("O") # method 1
>>> exec_('from sympy.abc import O', ns) # method 2
>>> ns.update(dict(O=Symbol("O"))) # method 3
>>> sympify("O + 1", locals=ns)
O + 1
If you want *all* single-letter and Greek-letter variables to be symbols
then you can use the clashing-symbols dictionaries that have been defined
there as private variables: _clash1 (single-letter variables), _clash2
(the multi-letter Greek names) or _clash (both single and multi-letter
names that are defined in abc).
>>> from sympy.abc import _clash1
>>> _clash1
{'C': C, 'E': E, 'I': I, 'N': N, 'O': O, 'Q': Q, 'S': S}
>>> sympify('I & Q', _clash1)
I & Q
Strict
------
If the option ``strict`` is set to ``True``, only the types for which an
explicit conversion has been defined are converted. In the other
cases, a SympifyError is raised.
>>> print(sympify(None))
None
>>> sympify(None, strict=True)
Traceback (most recent call last):
...
SympifyError: SympifyError: None
Evaluation
----------
If the option ``evaluate`` is set to ``False``, then arithmetic and
operators will be converted into their SymPy equivalents and the
``evaluate=False`` option will be added. Nested ``Add`` or ``Mul`` will
be denested first. This is done via an AST transformation that replaces
operators with their SymPy equivalents, so if an operand redefines any
of those operations, the redefined operators will not be used.
>>> sympify('2**2 / 3 + 5')
19/3
>>> sympify('2**2 / 3 + 5', evaluate=False)
2**2/3 + 5
Extending
---------
To extend ``sympify`` to convert custom objects (not derived from ``Basic``),
just define a ``_sympy_`` method to your class. You can do that even to
classes that you do not own by subclassing or adding the method at runtime.
>>> from sympy import Matrix
>>> class MyList1(object):
... def __iter__(self):
... yield 1
... yield 2
... return
... def __getitem__(self, i): return list(self)[i]
... def _sympy_(self): return Matrix(self)
>>> sympify(MyList1())
Matrix([
[1],
[2]])
If you do not have control over the class definition you could also use the
``converter`` global dictionary. The key is the class and the value is a
function that takes a single argument and returns the desired SymPy
object, e.g. ``converter[MyList] = lambda x: Matrix(x)``.
>>> class MyList2(object): # XXX Do not do this if you control the class!
... def __iter__(self): # Use _sympy_!
... yield 1
... yield 2
... return
... def __getitem__(self, i): return list(self)[i]
>>> from sympy.core.sympify import converter
>>> converter[MyList2] = lambda x: Matrix(x)
>>> sympify(MyList2())
Matrix([
[1],
[2]])
Notes
=====
Sometimes autosimplification during sympification results in expressions
that are very different in structure than what was entered. Until such
autosimplification is no longer done, the ``kernS`` function might be of
some use. In the example below you can see how an expression reduces to
-1 by autosimplification, but does not do so when ``kernS`` is used.
>>> from sympy.core.sympify import kernS
>>> from sympy.abc import x
>>> -2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1
-1
>>> s = '-2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1'
>>> sympify(s)
-1
>>> kernS(s)
-2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1
"""
if evaluate is None:
if global_evaluate[0] is False:
evaluate = global_evaluate[0]
else:
evaluate = True
try:
if a in sympy_classes:
return a
except TypeError: # Type of a is unhashable
pass
cls = getattr(a, "__class__", None)
if cls is None:
cls = type(a) # Probably an old-style class
if cls in sympy_classes:
return a
if cls is type(None):
if strict:
raise SympifyError(a)
else:
return a
# Support for basic numpy datatypes
# Note that this check exists to avoid importing NumPy when not necessary
if type(a).__module__ == 'numpy':
import numpy as np
if np.isscalar(a):
return _convert_numpy_types(a, locals=locals,
convert_xor=convert_xor, strict=strict, rational=rational,
evaluate=evaluate)
try:
return converter[cls](a)
except KeyError:
for superclass in getmro(cls):
try:
return converter[superclass](a)
except KeyError:
continue
if isinstance(a, CantSympify):
raise SympifyError(a)
_sympy_ = getattr(a, "_sympy_", None)
if _sympy_ is not None:
try:
return a._sympy_()
# XXX: Catches AttributeError: 'SympyConverter' object has no
# attribute 'tuple'
# This is probably a bug somewhere but for now we catch it here.
except AttributeError:
pass
if not strict:
# Put numpy array conversion _before_ float/int, see
# <https://github.com/sympy/sympy/issues/13924>.
flat = getattr(a, "flat", None)
if flat is not None:
shape = getattr(a, "shape", None)
if shape is not None:
from ..tensor.array import Array
return Array(a.flat, a.shape) # works with e.g. NumPy arrays
if not isinstance(a, string_types):
for coerce in (float, int):
try:
coerced = coerce(a)
except (TypeError, ValueError):
continue
# XXX: AttributeError only needed here for Py2
except AttributeError:
continue
try:
return sympify(coerced)
except SympifyError:
continue
if strict:
raise SympifyError(a)
if iterable(a):
try:
return type(a)([sympify(x, locals=locals, convert_xor=convert_xor,
rational=rational) for x in a])
except TypeError:
# Not all iterables are rebuildable with their type.
pass
if isinstance(a, dict):
try:
return type(a)([sympify(x, locals=locals, convert_xor=convert_xor,
rational=rational) for x in a.items()])
except TypeError:
# Not all iterables are rebuildable with their type.
pass
# At this point we were given an arbitrary expression
# which does not inherit from Basic and doesn't implement
# _sympy_ (which is a canonical and robust way to convert
# anything to SymPy expression).
#
# As a last chance, we try to take "a"'s normal form via unicode()
# and try to parse it. If it fails, then we have no luck and
# return an exception
try:
from .compatibility import unicode
a = unicode(a)
except Exception as exc:
raise SympifyError(a, exc)
from sympy.parsing.sympy_parser import (parse_expr, TokenError,
standard_transformations)
from sympy.parsing.sympy_parser import convert_xor as t_convert_xor
from sympy.parsing.sympy_parser import rationalize as t_rationalize
transformations = standard_transformations
if rational:
transformations += (t_rationalize,)
if convert_xor:
transformations += (t_convert_xor,)
try:
a = a.replace('\n', '')
expr = parse_expr(a, local_dict=locals, transformations=transformations, evaluate=evaluate)
except (TokenError, SyntaxError) as exc:
raise SympifyError('could not parse %r' % a, exc)
return expr
def _sympify(a):
"""
Short version of sympify for internal usage for __add__ and __eq__ methods
where it is ok to allow some things (like Python integers and floats) in
the expression. This excludes things (like strings) that are unwise to
allow into such an expression.
>>> from sympy import Integer
>>> Integer(1) == 1
True
>>> Integer(1) == '1'
False
>>> from sympy.abc import x
>>> x + 1
x + 1
>>> x + '1'
Traceback (most recent call last):
...
TypeError: unsupported operand type(s) for +: 'Symbol' and 'str'
see: sympify
"""
return sympify(a, strict=True)
def kernS(s):
"""Use a hack to try keep autosimplification from distributing a
a number into an Add; this modification doesn't
prevent the 2-arg Mul from becoming an Add, however.
Examples
========
>>> from sympy.core.sympify import kernS
>>> from sympy.abc import x, y, z
The 2-arg Mul distributes a number (or minus sign) across the terms
of an expression, but kernS will prevent that:
>>> 2*(x + y), -(x + 1)
(2*x + 2*y, -x - 1)
>>> kernS('2*(x + y)')
2*(x + y)
>>> kernS('-(x + 1)')
-(x + 1)
If use of the hack fails, the un-hacked string will be passed to sympify...
and you get what you get.
XXX This hack should not be necessary once issue 4596 has been resolved.
"""
import string
from random import choice
from sympy.core.symbol import Symbol
hit = False
quoted = '"' in s or "'" in s
if '(' in s and not quoted:
if s.count('(') != s.count(")"):
raise SympifyError('unmatched left parenthesis')
# strip all space from s
s = ''.join(s.split())
olds = s
# now use space to represent a symbol that
# will
# step 1. turn potential 2-arg Muls into 3-arg versions
# 1a. *( -> * *(
s = s.replace('*(', '* *(')
# 1b. close up exponentials
s = s.replace('** *', '**')
# 2. handle the implied multiplication of a negated
# parenthesized expression in two steps
# 2a: -(...) --> -( *(...)
target = '-( *('
s = s.replace('-(', target)
# 2b: double the matching closing parenthesis
# -( *(...) --> -( *(...))
i = nest = 0
assert target.endswith('(') # assumption below
while True:
j = s.find(target, i)
if j == -1:
break
j += len(target) - 1
for j in range(j, len(s)):
if s[j] == "(":
nest += 1
elif s[j] == ")":
nest -= 1
if nest == 0:
break
s = s[:j] + ")" + s[j:]
i = j + 2 # the first char after 2nd )
if ' ' in s:
# get a unique kern
kern = '_'
while kern in s:
kern += choice(string.ascii_letters + string.digits)
s = s.replace(' ', kern)
hit = kern in s
for i in range(2):
try:
expr = sympify(s)
break
except: # the kern might cause unknown errors, so use bare except
if hit:
s = olds # maybe it didn't like the kern; use un-kerned s
hit = False
continue
expr = sympify(s) # let original error raise
if not hit:
return expr
rep = {Symbol(kern): 1}
def _clear(expr):
if isinstance(expr, (list, tuple, set)):
return type(expr)([_clear(e) for e in expr])
if hasattr(expr, 'subs'):
return expr.subs(rep, hack2=True)
return expr
expr = _clear(expr)
# hope that kern is not there anymore
return expr
|
4f801ab5ff7f9ad0a2065d145cbcb7d31874b16f99230dd5c8036d36c1d4df14
|
"""
Adaptive numerical evaluation of SymPy expressions, using mpmath
for mathematical functions.
"""
from __future__ import print_function, division
import math
import mpmath.libmp as libmp
from mpmath import (
make_mpc, make_mpf, mp, mpc, mpf, nsum, quadts, quadosc, workprec)
from mpmath import inf as mpmath_inf
from mpmath.libmp import (from_int, from_man_exp, from_rational, fhalf,
fnan, fnone, fone, fzero, mpf_abs, mpf_add,
mpf_atan, mpf_atan2, mpf_cmp, mpf_cos, mpf_e, mpf_exp, mpf_log, mpf_lt,
mpf_mul, mpf_neg, mpf_pi, mpf_pow, mpf_pow_int, mpf_shift, mpf_sin,
mpf_sqrt, normalize, round_nearest, to_int, to_str)
from mpmath.libmp import bitcount as mpmath_bitcount
from mpmath.libmp.backend import MPZ
from mpmath.libmp.libmpc import _infs_nan
from mpmath.libmp.libmpf import dps_to_prec, prec_to_dps
from mpmath.libmp.gammazeta import mpf_bernoulli
from .compatibility import SYMPY_INTS, range
from .sympify import sympify
from .singleton import S
from sympy.utilities.iterables import is_sequence
LG10 = math.log(10, 2)
rnd = round_nearest
def bitcount(n):
"""Return smallest integer, b, such that |n|/2**b < 1.
"""
return mpmath_bitcount(abs(int(n)))
# Used in a few places as placeholder values to denote exponents and
# precision levels, e.g. of exact numbers. Must be careful to avoid
# passing these to mpmath functions or returning them in final results.
INF = float(mpmath_inf)
MINUS_INF = float(-mpmath_inf)
# ~= 100 digits. Real men set this to INF.
DEFAULT_MAXPREC = 333
class PrecisionExhausted(ArithmeticError):
pass
#----------------------------------------------------------------------------#
# #
# Helper functions for arithmetic and complex parts #
# #
#----------------------------------------------------------------------------#
"""
An mpf value tuple is a tuple of integers (sign, man, exp, bc)
representing a floating-point number: [1, -1][sign]*man*2**exp where
sign is 0 or 1 and bc should correspond to the number of bits used to
represent the mantissa (man) in binary notation, e.g.
>>> from sympy.core.evalf import bitcount
>>> sign, man, exp, bc = 0, 5, 1, 3
>>> n = [1, -1][sign]*man*2**exp
>>> n, bitcount(man)
(10, 3)
A temporary result is a tuple (re, im, re_acc, im_acc) where
re and im are nonzero mpf value tuples representing approximate
numbers, or None to denote exact zeros.
re_acc, im_acc are integers denoting log2(e) where e is the estimated
relative accuracy of the respective complex part, but may be anything
if the corresponding complex part is None.
"""
def fastlog(x):
"""Fast approximation of log2(x) for an mpf value tuple x.
Notes: Calculated as exponent + width of mantissa. This is an
approximation for two reasons: 1) it gives the ceil(log2(abs(x)))
value and 2) it is too high by 1 in the case that x is an exact
power of 2. Although this is easy to remedy by testing to see if
the odd mpf mantissa is 1 (indicating that one was dealing with
an exact power of 2) that would decrease the speed and is not
necessary as this is only being used as an approximation for the
number of bits in x. The correct return value could be written as
"x[2] + (x[3] if x[1] != 1 else 0)".
Since mpf tuples always have an odd mantissa, no check is done
to see if the mantissa is a multiple of 2 (in which case the
result would be too large by 1).
Examples
========
>>> from sympy import log
>>> from sympy.core.evalf import fastlog, bitcount
>>> s, m, e = 0, 5, 1
>>> bc = bitcount(m)
>>> n = [1, -1][s]*m*2**e
>>> n, (log(n)/log(2)).evalf(2), fastlog((s, m, e, bc))
(10, 3.3, 4)
"""
if not x or x == fzero:
return MINUS_INF
return x[2] + x[3]
def pure_complex(v, or_real=False):
"""Return a and b if v matches a + I*b where b is not zero and
a and b are Numbers, else None. If `or_real` is True then 0 will
be returned for `b` if `v` is a real number.
>>> from sympy.core.evalf import pure_complex
>>> from sympy import sqrt, I, S
>>> a, b, surd = S(2), S(3), sqrt(2)
>>> pure_complex(a)
>>> pure_complex(a, or_real=True)
(2, 0)
>>> pure_complex(surd)
>>> pure_complex(a + b*I)
(2, 3)
>>> pure_complex(I)
(0, 1)
"""
h, t = v.as_coeff_Add()
if not t:
if or_real:
return h, t
return
c, i = t.as_coeff_Mul()
if i is S.ImaginaryUnit:
return h, c
def scaled_zero(mag, sign=1):
"""Return an mpf representing a power of two with magnitude ``mag``
and -1 for precision. Or, if ``mag`` is a scaled_zero tuple, then just
remove the sign from within the list that it was initially wrapped
in.
Examples
========
>>> from sympy.core.evalf import scaled_zero
>>> from sympy import Float
>>> z, p = scaled_zero(100)
>>> z, p
(([0], 1, 100, 1), -1)
>>> ok = scaled_zero(z)
>>> ok
(0, 1, 100, 1)
>>> Float(ok)
1.26765060022823e+30
>>> Float(ok, p)
0.e+30
>>> ok, p = scaled_zero(100, -1)
>>> Float(scaled_zero(ok), p)
-0.e+30
"""
if type(mag) is tuple and len(mag) == 4 and iszero(mag, scaled=True):
return (mag[0][0],) + mag[1:]
elif isinstance(mag, SYMPY_INTS):
if sign not in [-1, 1]:
raise ValueError('sign must be +/-1')
rv, p = mpf_shift(fone, mag), -1
s = 0 if sign == 1 else 1
rv = ([s],) + rv[1:]
return rv, p
else:
raise ValueError('scaled zero expects int or scaled_zero tuple.')
def iszero(mpf, scaled=False):
if not scaled:
return not mpf or not mpf[1] and not mpf[-1]
return mpf and type(mpf[0]) is list and mpf[1] == mpf[-1] == 1
def complex_accuracy(result):
"""
Returns relative accuracy of a complex number with given accuracies
for the real and imaginary parts. The relative accuracy is defined
in the complex norm sense as ||z|+|error|| / |z| where error
is equal to (real absolute error) + (imag absolute error)*i.
The full expression for the (logarithmic) error can be approximated
easily by using the max norm to approximate the complex norm.
In the worst case (re and im equal), this is wrong by a factor
sqrt(2), or by log2(sqrt(2)) = 0.5 bit.
"""
re, im, re_acc, im_acc = result
if not im:
if not re:
return INF
return re_acc
if not re:
return im_acc
re_size = fastlog(re)
im_size = fastlog(im)
absolute_error = max(re_size - re_acc, im_size - im_acc)
relative_error = absolute_error - max(re_size, im_size)
return -relative_error
def get_abs(expr, prec, options):
re, im, re_acc, im_acc = evalf(expr, prec + 2, options)
if not re:
re, re_acc, im, im_acc = im, im_acc, re, re_acc
if im:
if expr.is_number:
abs_expr, _, acc, _ = evalf(abs(N(expr, prec + 2)),
prec + 2, options)
return abs_expr, None, acc, None
else:
if 'subs' in options:
return libmp.mpc_abs((re, im), prec), None, re_acc, None
return abs(expr), None, prec, None
elif re:
return mpf_abs(re), None, re_acc, None
else:
return None, None, None, None
def get_complex_part(expr, no, prec, options):
"""no = 0 for real part, no = 1 for imaginary part"""
workprec = prec
i = 0
while 1:
res = evalf(expr, workprec, options)
value, accuracy = res[no::2]
# XXX is the last one correct? Consider re((1+I)**2).n()
if (not value) or accuracy >= prec or -value[2] > prec:
return value, None, accuracy, None
workprec += max(30, 2**i)
i += 1
def evalf_abs(expr, prec, options):
return get_abs(expr.args[0], prec, options)
def evalf_re(expr, prec, options):
return get_complex_part(expr.args[0], 0, prec, options)
def evalf_im(expr, prec, options):
return get_complex_part(expr.args[0], 1, prec, options)
def finalize_complex(re, im, prec):
if re == fzero and im == fzero:
raise ValueError("got complex zero with unknown accuracy")
elif re == fzero:
return None, im, None, prec
elif im == fzero:
return re, None, prec, None
size_re = fastlog(re)
size_im = fastlog(im)
if size_re > size_im:
re_acc = prec
im_acc = prec + min(-(size_re - size_im), 0)
else:
im_acc = prec
re_acc = prec + min(-(size_im - size_re), 0)
return re, im, re_acc, im_acc
def chop_parts(value, prec):
"""
Chop off tiny real or complex parts.
"""
re, im, re_acc, im_acc = value
# Method 1: chop based on absolute value
if re and re not in _infs_nan and (fastlog(re) < -prec + 4):
re, re_acc = None, None
if im and im not in _infs_nan and (fastlog(im) < -prec + 4):
im, im_acc = None, None
# Method 2: chop if inaccurate and relatively small
if re and im:
delta = fastlog(re) - fastlog(im)
if re_acc < 2 and (delta - re_acc <= -prec + 4):
re, re_acc = None, None
if im_acc < 2 and (delta - im_acc >= prec - 4):
im, im_acc = None, None
return re, im, re_acc, im_acc
def check_target(expr, result, prec):
a = complex_accuracy(result)
if a < prec:
raise PrecisionExhausted("Failed to distinguish the expression: \n\n%s\n\n"
"from zero. Try simplifying the input, using chop=True, or providing "
"a higher maxn for evalf" % (expr))
def get_integer_part(expr, no, options, return_ints=False):
"""
With no = 1, computes ceiling(expr)
With no = -1, computes floor(expr)
Note: this function either gives the exact result or signals failure.
"""
from sympy.functions.elementary.complexes import re, im
# The expression is likely less than 2^30 or so
assumed_size = 30
ire, iim, ire_acc, iim_acc = evalf(expr, assumed_size, options)
# We now know the size, so we can calculate how much extra precision
# (if any) is needed to get within the nearest integer
if ire and iim:
gap = max(fastlog(ire) - ire_acc, fastlog(iim) - iim_acc)
elif ire:
gap = fastlog(ire) - ire_acc
elif iim:
gap = fastlog(iim) - iim_acc
else:
# ... or maybe the expression was exactly zero
return None, None, None, None
margin = 10
if gap >= -margin:
prec = margin + assumed_size + gap
ire, iim, ire_acc, iim_acc = evalf(
expr, prec, options)
else:
prec = assumed_size
# We can now easily find the nearest integer, but to find floor/ceil, we
# must also calculate whether the difference to the nearest integer is
# positive or negative (which may fail if very close).
def calc_part(re_im, nexpr):
from sympy.core.add import Add
n, c, p, b = nexpr
is_int = (p == 0)
nint = int(to_int(nexpr, rnd))
if is_int:
# make sure that we had enough precision to distinguish
# between nint and the re or im part (re_im) of expr that
# was passed to calc_part
ire, iim, ire_acc, iim_acc = evalf(
re_im - nint, 10, options) # don't need much precision
assert not iim
size = -fastlog(ire) + 2 # -ve b/c ire is less than 1
if size > prec:
ire, iim, ire_acc, iim_acc = evalf(
re_im, size, options)
assert not iim
nexpr = ire
n, c, p, b = nexpr
is_int = (p == 0)
nint = int(to_int(nexpr, rnd))
if not is_int:
# if there are subs and they all contain integer re/im parts
# then we can (hopefully) safely substitute them into the
# expression
s = options.get('subs', False)
if s:
doit = True
from sympy.core.compatibility import as_int
# use strict=False with as_int because we take
# 2.0 == 2
for v in s.values():
try:
as_int(v, strict=False)
except ValueError:
try:
[as_int(i, strict=False) for i in v.as_real_imag()]
continue
except (ValueError, AttributeError):
doit = False
break
if doit:
re_im = re_im.subs(s)
re_im = Add(re_im, -nint, evaluate=False)
x, _, x_acc, _ = evalf(re_im, 10, options)
try:
check_target(re_im, (x, None, x_acc, None), 3)
except PrecisionExhausted:
if not re_im.equals(0):
raise PrecisionExhausted
x = fzero
nint += int(no*(mpf_cmp(x or fzero, fzero) == no))
nint = from_int(nint)
return nint, INF
re_, im_, re_acc, im_acc = None, None, None, None
if ire:
re_, re_acc = calc_part(re(expr, evaluate=False), ire)
if iim:
im_, im_acc = calc_part(im(expr, evaluate=False), iim)
if return_ints:
return int(to_int(re_ or fzero)), int(to_int(im_ or fzero))
return re_, im_, re_acc, im_acc
def evalf_ceiling(expr, prec, options):
return get_integer_part(expr.args[0], 1, options)
def evalf_floor(expr, prec, options):
return get_integer_part(expr.args[0], -1, options)
#----------------------------------------------------------------------------#
# #
# Arithmetic operations #
# #
#----------------------------------------------------------------------------#
def add_terms(terms, prec, target_prec):
"""
Helper for evalf_add. Adds a list of (mpfval, accuracy) terms.
Returns
-------
- None, None if there are no non-zero terms;
- terms[0] if there is only 1 term;
- scaled_zero if the sum of the terms produces a zero by cancellation
e.g. mpfs representing 1 and -1 would produce a scaled zero which need
special handling since they are not actually zero and they are purposely
malformed to ensure that they can't be used in anything but accuracy
calculations;
- a tuple that is scaled to target_prec that corresponds to the
sum of the terms.
The returned mpf tuple will be normalized to target_prec; the input
prec is used to define the working precision.
XXX explain why this is needed and why one can't just loop using mpf_add
"""
terms = [t for t in terms if not iszero(t[0])]
if not terms:
return None, None
elif len(terms) == 1:
return terms[0]
# see if any argument is NaN or oo and thus warrants a special return
special = []
from sympy.core.numbers import Float
for t in terms:
arg = Float._new(t[0], 1)
if arg is S.NaN or arg.is_infinite:
special.append(arg)
if special:
from sympy.core.add import Add
rv = evalf(Add(*special), prec + 4, {})
return rv[0], rv[2]
working_prec = 2*prec
sum_man, sum_exp, absolute_error = 0, 0, MINUS_INF
for x, accuracy in terms:
sign, man, exp, bc = x
if sign:
man = -man
absolute_error = max(absolute_error, bc + exp - accuracy)
delta = exp - sum_exp
if exp >= sum_exp:
# x much larger than existing sum?
# first: quick test
if ((delta > working_prec) and
((not sum_man) or
delta - bitcount(abs(sum_man)) > working_prec)):
sum_man = man
sum_exp = exp
else:
sum_man += (man << delta)
else:
delta = -delta
# x much smaller than existing sum?
if delta - bc > working_prec:
if not sum_man:
sum_man, sum_exp = man, exp
else:
sum_man = (sum_man << delta) + man
sum_exp = exp
if not sum_man:
return scaled_zero(absolute_error)
if sum_man < 0:
sum_sign = 1
sum_man = -sum_man
else:
sum_sign = 0
sum_bc = bitcount(sum_man)
sum_accuracy = sum_exp + sum_bc - absolute_error
r = normalize(sum_sign, sum_man, sum_exp, sum_bc, target_prec,
rnd), sum_accuracy
return r
def evalf_add(v, prec, options):
res = pure_complex(v)
if res:
h, c = res
re, _, re_acc, _ = evalf(h, prec, options)
im, _, im_acc, _ = evalf(c, prec, options)
return re, im, re_acc, im_acc
oldmaxprec = options.get('maxprec', DEFAULT_MAXPREC)
i = 0
target_prec = prec
while 1:
options['maxprec'] = min(oldmaxprec, 2*prec)
terms = [evalf(arg, prec + 10, options) for arg in v.args]
re, re_acc = add_terms(
[a[0::2] for a in terms if a[0]], prec, target_prec)
im, im_acc = add_terms(
[a[1::2] for a in terms if a[1]], prec, target_prec)
acc = complex_accuracy((re, im, re_acc, im_acc))
if acc >= target_prec:
if options.get('verbose'):
print("ADD: wanted", target_prec, "accurate bits, got", re_acc, im_acc)
break
else:
if (prec - target_prec) > options['maxprec']:
break
prec = prec + max(10 + 2**i, target_prec - acc)
i += 1
if options.get('verbose'):
print("ADD: restarting with prec", prec)
options['maxprec'] = oldmaxprec
if iszero(re, scaled=True):
re = scaled_zero(re)
if iszero(im, scaled=True):
im = scaled_zero(im)
return re, im, re_acc, im_acc
def evalf_mul(v, prec, options):
res = pure_complex(v)
if res:
# the only pure complex that is a mul is h*I
_, h = res
im, _, im_acc, _ = evalf(h, prec, options)
return None, im, None, im_acc
args = list(v.args)
# see if any argument is NaN or oo and thus warrants a special return
special = []
from sympy.core.numbers import Float
for arg in args:
arg = evalf(arg, prec, options)
if arg[0] is None:
continue
arg = Float._new(arg[0], 1)
if arg is S.NaN or arg.is_infinite:
special.append(arg)
if special:
from sympy.core.mul import Mul
special = Mul(*special)
return evalf(special, prec + 4, {})
# With guard digits, multiplication in the real case does not destroy
# accuracy. This is also true in the complex case when considering the
# total accuracy; however accuracy for the real or imaginary parts
# separately may be lower.
acc = prec
# XXX: big overestimate
working_prec = prec + len(args) + 5
# Empty product is 1
start = man, exp, bc = MPZ(1), 0, 1
# First, we multiply all pure real or pure imaginary numbers.
# direction tells us that the result should be multiplied by
# I**direction; all other numbers get put into complex_factors
# to be multiplied out after the first phase.
last = len(args)
direction = 0
args.append(S.One)
complex_factors = []
for i, arg in enumerate(args):
if i != last and pure_complex(arg):
args[-1] = (args[-1]*arg).expand()
continue
elif i == last and arg is S.One:
continue
re, im, re_acc, im_acc = evalf(arg, working_prec, options)
if re and im:
complex_factors.append((re, im, re_acc, im_acc))
continue
elif re:
(s, m, e, b), w_acc = re, re_acc
elif im:
(s, m, e, b), w_acc = im, im_acc
direction += 1
else:
return None, None, None, None
direction += 2*s
man *= m
exp += e
bc += b
if bc > 3*working_prec:
man >>= working_prec
exp += working_prec
acc = min(acc, w_acc)
sign = (direction & 2) >> 1
if not complex_factors:
v = normalize(sign, man, exp, bitcount(man), prec, rnd)
# multiply by i
if direction & 1:
return None, v, None, acc
else:
return v, None, acc, None
else:
# initialize with the first term
if (man, exp, bc) != start:
# there was a real part; give it an imaginary part
re, im = (sign, man, exp, bitcount(man)), (0, MPZ(0), 0, 0)
i0 = 0
else:
# there is no real part to start (other than the starting 1)
wre, wim, wre_acc, wim_acc = complex_factors[0]
acc = min(acc,
complex_accuracy((wre, wim, wre_acc, wim_acc)))
re = wre
im = wim
i0 = 1
for wre, wim, wre_acc, wim_acc in complex_factors[i0:]:
# acc is the overall accuracy of the product; we aren't
# computing exact accuracies of the product.
acc = min(acc,
complex_accuracy((wre, wim, wre_acc, wim_acc)))
use_prec = working_prec
A = mpf_mul(re, wre, use_prec)
B = mpf_mul(mpf_neg(im), wim, use_prec)
C = mpf_mul(re, wim, use_prec)
D = mpf_mul(im, wre, use_prec)
re = mpf_add(A, B, use_prec)
im = mpf_add(C, D, use_prec)
if options.get('verbose'):
print("MUL: wanted", prec, "accurate bits, got", acc)
# multiply by I
if direction & 1:
re, im = mpf_neg(im), re
return re, im, acc, acc
def evalf_pow(v, prec, options):
target_prec = prec
base, exp = v.args
# We handle x**n separately. This has two purposes: 1) it is much
# faster, because we avoid calling evalf on the exponent, and 2) it
# allows better handling of real/imaginary parts that are exactly zero
if exp.is_Integer:
p = exp.p
# Exact
if not p:
return fone, None, prec, None
# Exponentiation by p magnifies relative error by |p|, so the
# base must be evaluated with increased precision if p is large
prec += int(math.log(abs(p), 2))
re, im, re_acc, im_acc = evalf(base, prec + 5, options)
# Real to integer power
if re and not im:
return mpf_pow_int(re, p, target_prec), None, target_prec, None
# (x*I)**n = I**n * x**n
if im and not re:
z = mpf_pow_int(im, p, target_prec)
case = p % 4
if case == 0:
return z, None, target_prec, None
if case == 1:
return None, z, None, target_prec
if case == 2:
return mpf_neg(z), None, target_prec, None
if case == 3:
return None, mpf_neg(z), None, target_prec
# Zero raised to an integer power
if not re:
return None, None, None, None
# General complex number to arbitrary integer power
re, im = libmp.mpc_pow_int((re, im), p, prec)
# Assumes full accuracy in input
return finalize_complex(re, im, target_prec)
# Pure square root
if exp is S.Half:
xre, xim, _, _ = evalf(base, prec + 5, options)
# General complex square root
if xim:
re, im = libmp.mpc_sqrt((xre or fzero, xim), prec)
return finalize_complex(re, im, prec)
if not xre:
return None, None, None, None
# Square root of a negative real number
if mpf_lt(xre, fzero):
return None, mpf_sqrt(mpf_neg(xre), prec), None, prec
# Positive square root
return mpf_sqrt(xre, prec), None, prec, None
# We first evaluate the exponent to find its magnitude
# This determines the working precision that must be used
prec += 10
yre, yim, _, _ = evalf(exp, prec, options)
# Special cases: x**0
if not (yre or yim):
return fone, None, prec, None
ysize = fastlog(yre)
# Restart if too big
# XXX: prec + ysize might exceed maxprec
if ysize > 5:
prec += ysize
yre, yim, _, _ = evalf(exp, prec, options)
# Pure exponential function; no need to evalf the base
if base is S.Exp1:
if yim:
re, im = libmp.mpc_exp((yre or fzero, yim), prec)
return finalize_complex(re, im, target_prec)
return mpf_exp(yre, target_prec), None, target_prec, None
xre, xim, _, _ = evalf(base, prec + 5, options)
# 0**y
if not (xre or xim):
return None, None, None, None
# (real ** complex) or (complex ** complex)
if yim:
re, im = libmp.mpc_pow(
(xre or fzero, xim or fzero), (yre or fzero, yim),
target_prec)
return finalize_complex(re, im, target_prec)
# complex ** real
if xim:
re, im = libmp.mpc_pow_mpf((xre or fzero, xim), yre, target_prec)
return finalize_complex(re, im, target_prec)
# negative ** real
elif mpf_lt(xre, fzero):
re, im = libmp.mpc_pow_mpf((xre, fzero), yre, target_prec)
return finalize_complex(re, im, target_prec)
# positive ** real
else:
return mpf_pow(xre, yre, target_prec), None, target_prec, None
#----------------------------------------------------------------------------#
# #
# Special functions #
# #
#----------------------------------------------------------------------------#
def evalf_trig(v, prec, options):
"""
This function handles sin and cos of complex arguments.
TODO: should also handle tan of complex arguments.
"""
from sympy import cos, sin
if isinstance(v, cos):
func = mpf_cos
elif isinstance(v, sin):
func = mpf_sin
else:
raise NotImplementedError
arg = v.args[0]
# 20 extra bits is possibly overkill. It does make the need
# to restart very unlikely
xprec = prec + 20
re, im, re_acc, im_acc = evalf(arg, xprec, options)
if im:
if 'subs' in options:
v = v.subs(options['subs'])
return evalf(v._eval_evalf(prec), prec, options)
if not re:
if isinstance(v, cos):
return fone, None, prec, None
elif isinstance(v, sin):
return None, None, None, None
else:
raise NotImplementedError
# For trigonometric functions, we are interested in the
# fixed-point (absolute) accuracy of the argument.
xsize = fastlog(re)
# Magnitude <= 1.0. OK to compute directly, because there is no
# danger of hitting the first root of cos (with sin, magnitude
# <= 2.0 would actually be ok)
if xsize < 1:
return func(re, prec, rnd), None, prec, None
# Very large
if xsize >= 10:
xprec = prec + xsize
re, im, re_acc, im_acc = evalf(arg, xprec, options)
# Need to repeat in case the argument is very close to a
# multiple of pi (or pi/2), hitting close to a root
while 1:
y = func(re, prec, rnd)
ysize = fastlog(y)
gap = -ysize
accuracy = (xprec - xsize) - gap
if accuracy < prec:
if options.get('verbose'):
print("SIN/COS", accuracy, "wanted", prec, "gap", gap)
print(to_str(y, 10))
if xprec > options.get('maxprec', DEFAULT_MAXPREC):
return y, None, accuracy, None
xprec += gap
re, im, re_acc, im_acc = evalf(arg, xprec, options)
continue
else:
return y, None, prec, None
def evalf_log(expr, prec, options):
from sympy import Abs, Add, log
if len(expr.args)>1:
expr = expr.doit()
return evalf(expr, prec, options)
arg = expr.args[0]
workprec = prec + 10
xre, xim, xacc, _ = evalf(arg, workprec, options)
if xim:
# XXX: use get_abs etc instead
re = evalf_log(
log(Abs(arg, evaluate=False), evaluate=False), prec, options)
im = mpf_atan2(xim, xre or fzero, prec)
return re[0], im, re[2], prec
imaginary_term = (mpf_cmp(xre, fzero) < 0)
re = mpf_log(mpf_abs(xre), prec, rnd)
size = fastlog(re)
if prec - size > workprec and re != fzero:
# We actually need to compute 1+x accurately, not x
arg = Add(S.NegativeOne, arg, evaluate=False)
xre, xim, _, _ = evalf_add(arg, prec, options)
prec2 = workprec - fastlog(xre)
# xre is now x - 1 so we add 1 back here to calculate x
re = mpf_log(mpf_abs(mpf_add(xre, fone, prec2)), prec, rnd)
re_acc = prec
if imaginary_term:
return re, mpf_pi(prec), re_acc, prec
else:
return re, None, re_acc, None
def evalf_atan(v, prec, options):
arg = v.args[0]
xre, xim, reacc, imacc = evalf(arg, prec + 5, options)
if xre is xim is None:
return (None,)*4
if xim:
raise NotImplementedError
return mpf_atan(xre, prec, rnd), None, prec, None
def evalf_subs(prec, subs):
""" Change all Float entries in `subs` to have precision prec. """
newsubs = {}
for a, b in subs.items():
b = S(b)
if b.is_Float:
b = b._eval_evalf(prec)
newsubs[a] = b
return newsubs
def evalf_piecewise(expr, prec, options):
from sympy import Float, Integer
if 'subs' in options:
expr = expr.subs(evalf_subs(prec, options['subs']))
newopts = options.copy()
del newopts['subs']
if hasattr(expr, 'func'):
return evalf(expr, prec, newopts)
if type(expr) == float:
return evalf(Float(expr), prec, newopts)
if type(expr) == int:
return evalf(Integer(expr), prec, newopts)
# We still have undefined symbols
raise NotImplementedError
def evalf_bernoulli(expr, prec, options):
arg = expr.args[0]
if not arg.is_Integer:
raise ValueError("Bernoulli number index must be an integer")
n = int(arg)
b = mpf_bernoulli(n, prec, rnd)
if b == fzero:
return None, None, None, None
return b, None, prec, None
#----------------------------------------------------------------------------#
# #
# High-level operations #
# #
#----------------------------------------------------------------------------#
def as_mpmath(x, prec, options):
from sympy.core.numbers import Infinity, NegativeInfinity, Zero
x = sympify(x)
if isinstance(x, Zero) or x == 0:
return mpf(0)
if isinstance(x, Infinity):
return mpf('inf')
if isinstance(x, NegativeInfinity):
return mpf('-inf')
# XXX
re, im, _, _ = evalf(x, prec, options)
if im:
return mpc(re or fzero, im)
return mpf(re)
def do_integral(expr, prec, options):
func = expr.args[0]
x, xlow, xhigh = expr.args[1]
if xlow == xhigh:
xlow = xhigh = 0
elif x not in func.free_symbols:
# only the difference in limits matters in this case
# so if there is a symbol in common that will cancel
# out when taking the difference, then use that
# difference
if xhigh.free_symbols & xlow.free_symbols:
diff = xhigh - xlow
if diff.is_number:
xlow, xhigh = 0, diff
oldmaxprec = options.get('maxprec', DEFAULT_MAXPREC)
options['maxprec'] = min(oldmaxprec, 2*prec)
with workprec(prec + 5):
xlow = as_mpmath(xlow, prec + 15, options)
xhigh = as_mpmath(xhigh, prec + 15, options)
# Integration is like summation, and we can phone home from
# the integrand function to update accuracy summation style
# Note that this accuracy is inaccurate, since it fails
# to account for the variable quadrature weights,
# but it is better than nothing
from sympy import cos, sin, Wild
have_part = [False, False]
max_real_term = [MINUS_INF]
max_imag_term = [MINUS_INF]
def f(t):
re, im, re_acc, im_acc = evalf(func, mp.prec, {'subs': {x: t}})
have_part[0] = re or have_part[0]
have_part[1] = im or have_part[1]
max_real_term[0] = max(max_real_term[0], fastlog(re))
max_imag_term[0] = max(max_imag_term[0], fastlog(im))
if im:
return mpc(re or fzero, im)
return mpf(re or fzero)
if options.get('quad') == 'osc':
A = Wild('A', exclude=[x])
B = Wild('B', exclude=[x])
D = Wild('D')
m = func.match(cos(A*x + B)*D)
if not m:
m = func.match(sin(A*x + B)*D)
if not m:
raise ValueError("An integrand of the form sin(A*x+B)*f(x) "
"or cos(A*x+B)*f(x) is required for oscillatory quadrature")
period = as_mpmath(2*S.Pi/m[A], prec + 15, options)
result = quadosc(f, [xlow, xhigh], period=period)
# XXX: quadosc does not do error detection yet
quadrature_error = MINUS_INF
else:
result, quadrature_error = quadts(f, [xlow, xhigh], error=1)
quadrature_error = fastlog(quadrature_error._mpf_)
options['maxprec'] = oldmaxprec
if have_part[0]:
re = result.real._mpf_
if re == fzero:
re, re_acc = scaled_zero(
min(-prec, -max_real_term[0], -quadrature_error))
re = scaled_zero(re) # handled ok in evalf_integral
else:
re_acc = -max(max_real_term[0] - fastlog(re) -
prec, quadrature_error)
else:
re, re_acc = None, None
if have_part[1]:
im = result.imag._mpf_
if im == fzero:
im, im_acc = scaled_zero(
min(-prec, -max_imag_term[0], -quadrature_error))
im = scaled_zero(im) # handled ok in evalf_integral
else:
im_acc = -max(max_imag_term[0] - fastlog(im) -
prec, quadrature_error)
else:
im, im_acc = None, None
result = re, im, re_acc, im_acc
return result
def evalf_integral(expr, prec, options):
limits = expr.limits
if len(limits) != 1 or len(limits[0]) != 3:
raise NotImplementedError
workprec = prec
i = 0
maxprec = options.get('maxprec', INF)
while 1:
result = do_integral(expr, workprec, options)
accuracy = complex_accuracy(result)
if accuracy >= prec: # achieved desired precision
break
if workprec >= maxprec: # can't increase accuracy any more
break
if accuracy == -1:
# maybe the answer really is zero and maybe we just haven't increased
# the precision enough. So increase by doubling to not take too long
# to get to maxprec.
workprec *= 2
else:
workprec += max(prec, 2**i)
workprec = min(workprec, maxprec)
i += 1
return result
def check_convergence(numer, denom, n):
"""
Returns (h, g, p) where
-- h is:
> 0 for convergence of rate 1/factorial(n)**h
< 0 for divergence of rate factorial(n)**(-h)
= 0 for geometric or polynomial convergence or divergence
-- abs(g) is:
> 1 for geometric convergence of rate 1/h**n
< 1 for geometric divergence of rate h**n
= 1 for polynomial convergence or divergence
(g < 0 indicates an alternating series)
-- p is:
> 1 for polynomial convergence of rate 1/n**h
<= 1 for polynomial divergence of rate n**(-h)
"""
from sympy import Poly
npol = Poly(numer, n)
dpol = Poly(denom, n)
p = npol.degree()
q = dpol.degree()
rate = q - p
if rate:
return rate, None, None
constant = dpol.LC() / npol.LC()
if abs(constant) != 1:
return rate, constant, None
if npol.degree() == dpol.degree() == 0:
return rate, constant, 0
pc = npol.all_coeffs()[1]
qc = dpol.all_coeffs()[1]
return rate, constant, (qc - pc)/dpol.LC()
def hypsum(expr, n, start, prec):
"""
Sum a rapidly convergent infinite hypergeometric series with
given general term, e.g. e = hypsum(1/factorial(n), n). The
quotient between successive terms must be a quotient of integer
polynomials.
"""
from sympy import Float, hypersimp, lambdify
if prec == float('inf'):
raise NotImplementedError('does not support inf prec')
if start:
expr = expr.subs(n, n + start)
hs = hypersimp(expr, n)
if hs is None:
raise NotImplementedError("a hypergeometric series is required")
num, den = hs.as_numer_denom()
func1 = lambdify(n, num)
func2 = lambdify(n, den)
h, g, p = check_convergence(num, den, n)
if h < 0:
raise ValueError("Sum diverges like (n!)^%i" % (-h))
term = expr.subs(n, 0)
if not term.is_Rational:
raise NotImplementedError("Non rational term functionality is not implemented.")
# Direct summation if geometric or faster
if h > 0 or (h == 0 and abs(g) > 1):
term = (MPZ(term.p) << prec) // term.q
s = term
k = 1
while abs(term) > 5:
term *= MPZ(func1(k - 1))
term //= MPZ(func2(k - 1))
s += term
k += 1
return from_man_exp(s, -prec)
else:
alt = g < 0
if abs(g) < 1:
raise ValueError("Sum diverges like (%i)^n" % abs(1/g))
if p < 1 or (p == 1 and not alt):
raise ValueError("Sum diverges like n^%i" % (-p))
# We have polynomial convergence: use Richardson extrapolation
vold = None
ndig = prec_to_dps(prec)
while True:
# Need to use at least quad precision because a lot of cancellation
# might occur in the extrapolation process; we check the answer to
# make sure that the desired precision has been reached, too.
prec2 = 4*prec
term0 = (MPZ(term.p) << prec2) // term.q
def summand(k, _term=[term0]):
if k:
k = int(k)
_term[0] *= MPZ(func1(k - 1))
_term[0] //= MPZ(func2(k - 1))
return make_mpf(from_man_exp(_term[0], -prec2))
with workprec(prec):
v = nsum(summand, [0, mpmath_inf], method='richardson')
vf = Float(v, ndig)
if vold is not None and vold == vf:
break
prec += prec # double precision each time
vold = vf
return v._mpf_
def evalf_prod(expr, prec, options):
from sympy import Sum
if all((l[1] - l[2]).is_Integer for l in expr.limits):
re, im, re_acc, im_acc = evalf(expr.doit(), prec=prec, options=options)
else:
re, im, re_acc, im_acc = evalf(expr.rewrite(Sum), prec=prec, options=options)
return re, im, re_acc, im_acc
def evalf_sum(expr, prec, options):
from sympy import Float
if 'subs' in options:
expr = expr.subs(options['subs'])
func = expr.function
limits = expr.limits
if len(limits) != 1 or len(limits[0]) != 3:
raise NotImplementedError
if func is S.Zero:
return None, None, prec, None
prec2 = prec + 10
try:
n, a, b = limits[0]
if b != S.Infinity or a != int(a):
raise NotImplementedError
# Use fast hypergeometric summation if possible
v = hypsum(func, n, int(a), prec2)
delta = prec - fastlog(v)
if fastlog(v) < -10:
v = hypsum(func, n, int(a), delta)
return v, None, min(prec, delta), None
except NotImplementedError:
# Euler-Maclaurin summation for general series
eps = Float(2.0)**(-prec)
for i in range(1, 5):
m = n = 2**i * prec
s, err = expr.euler_maclaurin(m=m, n=n, eps=eps,
eval_integral=False)
err = err.evalf()
if err <= eps:
break
err = fastlog(evalf(abs(err), 20, options)[0])
re, im, re_acc, im_acc = evalf(s, prec2, options)
if re_acc is None:
re_acc = -err
if im_acc is None:
im_acc = -err
return re, im, re_acc, im_acc
#----------------------------------------------------------------------------#
# #
# Symbolic interface #
# #
#----------------------------------------------------------------------------#
def evalf_symbol(x, prec, options):
val = options['subs'][x]
if isinstance(val, mpf):
if not val:
return None, None, None, None
return val._mpf_, None, prec, None
else:
if not '_cache' in options:
options['_cache'] = {}
cache = options['_cache']
cached, cached_prec = cache.get(x, (None, MINUS_INF))
if cached_prec >= prec:
return cached
v = evalf(sympify(val), prec, options)
cache[x] = (v, prec)
return v
evalf_table = None
def _create_evalf_table():
global evalf_table
from sympy.functions.combinatorial.numbers import bernoulli
from sympy.concrete.products import Product
from sympy.concrete.summations import Sum
from sympy.core.add import Add
from sympy.core.mul import Mul
from sympy.core.numbers import Exp1, Float, Half, ImaginaryUnit, Integer, NaN, NegativeOne, One, Pi, Rational, Zero
from sympy.core.power import Pow
from sympy.core.symbol import Dummy, Symbol
from sympy.functions.elementary.complexes import Abs, im, re
from sympy.functions.elementary.exponential import exp, log
from sympy.functions.elementary.integers import ceiling, floor
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import atan, cos, sin
from sympy.integrals.integrals import Integral
evalf_table = {
Symbol: evalf_symbol,
Dummy: evalf_symbol,
Float: lambda x, prec, options: (x._mpf_, None, prec, None),
Rational: lambda x, prec, options: (from_rational(x.p, x.q, prec), None, prec, None),
Integer: lambda x, prec, options: (from_int(x.p, prec), None, prec, None),
Zero: lambda x, prec, options: (None, None, prec, None),
One: lambda x, prec, options: (fone, None, prec, None),
Half: lambda x, prec, options: (fhalf, None, prec, None),
Pi: lambda x, prec, options: (mpf_pi(prec), None, prec, None),
Exp1: lambda x, prec, options: (mpf_e(prec), None, prec, None),
ImaginaryUnit: lambda x, prec, options: (None, fone, None, prec),
NegativeOne: lambda x, prec, options: (fnone, None, prec, None),
NaN: lambda x, prec, options: (fnan, None, prec, None),
exp: lambda x, prec, options: evalf_pow(
Pow(S.Exp1, x.args[0], evaluate=False), prec, options),
cos: evalf_trig,
sin: evalf_trig,
Add: evalf_add,
Mul: evalf_mul,
Pow: evalf_pow,
log: evalf_log,
atan: evalf_atan,
Abs: evalf_abs,
re: evalf_re,
im: evalf_im,
floor: evalf_floor,
ceiling: evalf_ceiling,
Integral: evalf_integral,
Sum: evalf_sum,
Product: evalf_prod,
Piecewise: evalf_piecewise,
bernoulli: evalf_bernoulli,
}
def evalf(x, prec, options):
from sympy import re as re_, im as im_
try:
rf = evalf_table[x.func]
r = rf(x, prec, options)
except KeyError:
# Fall back to ordinary evalf if possible
if 'subs' in options:
x = x.subs(evalf_subs(prec, options['subs']))
xe = x._eval_evalf(prec)
if xe is None:
raise NotImplementedError
as_real_imag = getattr(xe, "as_real_imag", None)
if as_real_imag is None:
raise NotImplementedError # e.g. FiniteSet(-1.0, 1.0).evalf()
re, im = as_real_imag()
if re.has(re_) or im.has(im_):
raise NotImplementedError
if re == 0:
re = None
reprec = None
elif re.is_number:
re = re._to_mpmath(prec, allow_ints=False)._mpf_
reprec = prec
else:
raise NotImplementedError
if im == 0:
im = None
imprec = None
elif im.is_number:
im = im._to_mpmath(prec, allow_ints=False)._mpf_
imprec = prec
else:
raise NotImplementedError
r = re, im, reprec, imprec
if options.get("verbose"):
print("### input", x)
print("### output", to_str(r[0] or fzero, 50))
print("### raw", r) # r[0], r[2]
print()
chop = options.get('chop', False)
if chop:
if chop is True:
chop_prec = prec
else:
# convert (approximately) from given tolerance;
# the formula here will will make 1e-i rounds to 0 for
# i in the range +/-27 while 2e-i will not be chopped
chop_prec = int(round(-3.321*math.log10(chop) + 2.5))
if chop_prec == 3:
chop_prec -= 1
r = chop_parts(r, chop_prec)
if options.get("strict"):
check_target(x, r, prec)
return r
class EvalfMixin(object):
"""Mixin class adding evalf capabililty."""
__slots__ = []
def evalf(self, n=15, subs=None, maxn=100, chop=False, strict=False, quad=None, verbose=False):
"""
Evaluate the given formula to an accuracy of n digits.
Optional keyword arguments:
subs=<dict>
Substitute numerical values for symbols, e.g.
subs={x:3, y:1+pi}. The substitutions must be given as a
dictionary.
maxn=<integer>
Allow a maximum temporary working precision of maxn digits
(default=100)
chop=<bool>
Replace tiny real or imaginary parts in subresults
by exact zeros (default=False)
strict=<bool>
Raise PrecisionExhausted if any subresult fails to evaluate
to full accuracy, given the available maxprec
(default=False)
quad=<str>
Choose algorithm for numerical quadrature. By default,
tanh-sinh quadrature is used. For oscillatory
integrals on an infinite interval, try quad='osc'.
verbose=<bool>
Print debug information (default=False)
Notes
=====
When Floats are naively substituted into an expression, precision errors
may adversely affect the result. For example, adding 1e16 (a Float) to 1
will truncate to 1e16; if 1e16 is then subtracted, the result will be 0.
That is exactly what happens in the following:
>>> from sympy.abc import x, y, z
>>> values = {x: 1e16, y: 1, z: 1e16}
>>> (x + y - z).subs(values)
0
Using the subs argument for evalf is the accurate way to evaluate such an
expression:
>>> (x + y - z).evalf(subs=values)
1.00000000000000
"""
from sympy import Float, Number
n = n if n is not None else 15
if subs and is_sequence(subs):
raise TypeError('subs must be given as a dictionary')
# for sake of sage that doesn't like evalf(1)
if n == 1 and isinstance(self, Number):
from sympy.core.expr import _mag
rv = self.evalf(2, subs, maxn, chop, strict, quad, verbose)
m = _mag(rv)
rv = rv.round(1 - m)
return rv
if not evalf_table:
_create_evalf_table()
prec = dps_to_prec(n)
options = {'maxprec': max(prec, int(maxn*LG10)), 'chop': chop,
'strict': strict, 'verbose': verbose}
if subs is not None:
options['subs'] = subs
if quad is not None:
options['quad'] = quad
try:
result = evalf(self, prec + 4, options)
except NotImplementedError:
# Fall back to the ordinary evalf
v = self._eval_evalf(prec)
if v is None:
return self
try:
# If the result is numerical, normalize it
result = evalf(v, prec, options)
except NotImplementedError:
# Probably contains symbols or unknown functions
return v
re, im, re_acc, im_acc = result
if re:
p = max(min(prec, re_acc), 1)
re = Float._new(re, p)
else:
re = S.Zero
if im:
p = max(min(prec, im_acc), 1)
im = Float._new(im, p)
return re + im*S.ImaginaryUnit
else:
return re
n = evalf
def _evalf(self, prec):
"""Helper for evalf. Does the same thing but takes binary precision"""
r = self._eval_evalf(prec)
if r is None:
r = self
return r
def _eval_evalf(self, prec):
return
def _to_mpmath(self, prec, allow_ints=True):
# mpmath functions accept ints as input
errmsg = "cannot convert to mpmath number"
if allow_ints and self.is_Integer:
return self.p
if hasattr(self, '_as_mpf_val'):
return make_mpf(self._as_mpf_val(prec))
try:
re, im, _, _ = evalf(self, prec, {})
if im:
if not re:
re = fzero
return make_mpc((re, im))
elif re:
return make_mpf(re)
else:
return make_mpf(fzero)
except NotImplementedError:
v = self._eval_evalf(prec)
if v is None:
raise ValueError(errmsg)
if v.is_Float:
return make_mpf(v._mpf_)
# Number + Number*I is also fine
re, im = v.as_real_imag()
if allow_ints and re.is_Integer:
re = from_int(re.p)
elif re.is_Float:
re = re._mpf_
else:
raise ValueError(errmsg)
if allow_ints and im.is_Integer:
im = from_int(im.p)
elif im.is_Float:
im = im._mpf_
else:
raise ValueError(errmsg)
return make_mpc((re, im))
def N(x, n=15, **options):
r"""
Calls x.evalf(n, \*\*options).
Both .n() and N() are equivalent to .evalf(); use the one that you like better.
See also the docstring of .evalf() for information on the options.
Examples
========
>>> from sympy import Sum, oo, N
>>> from sympy.abc import k
>>> Sum(1/k**k, (k, 1, oo))
Sum(k**(-k), (k, 1, oo))
>>> N(_, 4)
1.291
"""
return sympify(x).evalf(n, **options)
|
5c7c5ea989a6654126634cd217fdff8356f8e4077d8582309cc0d8fe0d004e21
|
r"""This is rule-based deduction system for SymPy
The whole thing is split into two parts
- rules compilation and preparation of tables
- runtime inference
For rule-based inference engines, the classical work is RETE algorithm [1],
[2] Although we are not implementing it in full (or even significantly)
it's still still worth a read to understand the underlying ideas.
In short, every rule in a system of rules is one of two forms:
- atom -> ... (alpha rule)
- And(atom1, atom2, ...) -> ... (beta rule)
The major complexity is in efficient beta-rules processing and usually for an
expert system a lot of effort goes into code that operates on beta-rules.
Here we take minimalistic approach to get something usable first.
- (preparation) of alpha- and beta- networks, everything except
- (runtime) FactRules.deduce_all_facts
_____________________________________
( Kirr: I've never thought that doing )
( logic stuff is that difficult... )
-------------------------------------
o ^__^
o (oo)\_______
(__)\ )\/\
||----w |
|| ||
Some references on the topic
----------------------------
[1] https://en.wikipedia.org/wiki/Rete_algorithm
[2] http://reports-archive.adm.cs.cmu.edu/anon/1995/CMU-CS-95-113.pdf
https://en.wikipedia.org/wiki/Propositional_formula
https://en.wikipedia.org/wiki/Inference_rule
https://en.wikipedia.org/wiki/List_of_rules_of_inference
"""
from __future__ import print_function, division
from collections import defaultdict
from .logic import Logic, And, Or, Not
from sympy.core.compatibility import string_types, range
def _base_fact(atom):
"""Return the literal fact of an atom.
Effectively, this merely strips the Not around a fact.
"""
if isinstance(atom, Not):
return atom.arg
else:
return atom
def _as_pair(atom):
if isinstance(atom, Not):
return (atom.arg, False)
else:
return (atom, True)
# XXX this prepares forward-chaining rules for alpha-network
def transitive_closure(implications):
"""
Computes the transitive closure of a list of implications
Uses Warshall's algorithm, as described at
http://www.cs.hope.edu/~cusack/Notes/Notes/DiscreteMath/Warshall.pdf.
"""
full_implications = set(implications)
literals = set().union(*map(set, full_implications))
for k in literals:
for i in literals:
if (i, k) in full_implications:
for j in literals:
if (k, j) in full_implications:
full_implications.add((i, j))
return full_implications
def deduce_alpha_implications(implications):
"""deduce all implications
Description by example
----------------------
given set of logic rules:
a -> b
b -> c
we deduce all possible rules:
a -> b, c
b -> c
implications: [] of (a,b)
return: {} of a -> set([b, c, ...])
"""
implications = implications + [(Not(j), Not(i)) for (i, j) in implications]
res = defaultdict(set)
full_implications = transitive_closure(implications)
for a, b in full_implications:
if a == b:
continue # skip a->a cyclic input
res[a].add(b)
# Clean up tautologies and check consistency
for a, impl in res.items():
impl.discard(a)
na = Not(a)
if na in impl:
raise ValueError(
'implications are inconsistent: %s -> %s %s' % (a, na, impl))
return res
def apply_beta_to_alpha_route(alpha_implications, beta_rules):
"""apply additional beta-rules (And conditions) to already-built
alpha implication tables
TODO: write about
- static extension of alpha-chains
- attaching refs to beta-nodes to alpha chains
e.g.
alpha_implications:
a -> [b, !c, d]
b -> [d]
...
beta_rules:
&(b,d) -> e
then we'll extend a's rule to the following
a -> [b, !c, d, e]
"""
x_impl = {}
for x in alpha_implications.keys():
x_impl[x] = (set(alpha_implications[x]), [])
for bcond, bimpl in beta_rules:
for bk in bcond.args:
if bk in x_impl:
continue
x_impl[bk] = (set(), [])
# static extensions to alpha rules:
# A: x -> a,b B: &(a,b) -> c ==> A: x -> a,b,c
seen_static_extension = True
while seen_static_extension:
seen_static_extension = False
for bcond, bimpl in beta_rules:
if not isinstance(bcond, And):
raise TypeError("Cond is not And")
bargs = set(bcond.args)
for x, (ximpls, bb) in x_impl.items():
x_all = ximpls | {x}
# A: ... -> a B: &(...) -> a is non-informative
if bimpl not in x_all and bargs.issubset(x_all):
ximpls.add(bimpl)
# we introduced new implication - now we have to restore
# completeness of the whole set.
bimpl_impl = x_impl.get(bimpl)
if bimpl_impl is not None:
ximpls |= bimpl_impl[0]
seen_static_extension = True
# attach beta-nodes which can be possibly triggered by an alpha-chain
for bidx, (bcond, bimpl) in enumerate(beta_rules):
bargs = set(bcond.args)
for x, (ximpls, bb) in x_impl.items():
x_all = ximpls | {x}
# A: ... -> a B: &(...) -> a (non-informative)
if bimpl in x_all:
continue
# A: x -> a... B: &(!a,...) -> ... (will never trigger)
# A: x -> a... B: &(...) -> !a (will never trigger)
if any(Not(xi) in bargs or Not(xi) == bimpl for xi in x_all):
continue
if bargs & x_all:
bb.append(bidx)
return x_impl
def rules_2prereq(rules):
"""build prerequisites table from rules
Description by example
----------------------
given set of logic rules:
a -> b, c
b -> c
we build prerequisites (from what points something can be deduced):
b <- a
c <- a, b
rules: {} of a -> [b, c, ...]
return: {} of c <- [a, b, ...]
Note however, that this prerequisites may be *not* enough to prove a
fact. An example is 'a -> b' rule, where prereq(a) is b, and prereq(b)
is a. That's because a=T -> b=T, and b=F -> a=F, but a=F -> b=?
"""
prereq = defaultdict(set)
for (a, _), impl in rules.items():
if isinstance(a, Not):
a = a.args[0]
for (i, _) in impl:
if isinstance(i, Not):
i = i.args[0]
prereq[i].add(a)
return prereq
################
# RULES PROVER #
################
class TautologyDetected(Exception):
"""(internal) Prover uses it for reporting detected tautology"""
pass
class Prover(object):
"""ai - prover of logic rules
given a set of initial rules, Prover tries to prove all possible rules
which follow from given premises.
As a result proved_rules are always either in one of two forms: alpha or
beta:
Alpha rules
-----------
This are rules of the form::
a -> b & c & d & ...
Beta rules
----------
This are rules of the form::
&(a,b,...) -> c & d & ...
i.e. beta rules are join conditions that say that something follows when
*several* facts are true at the same time.
"""
def __init__(self):
self.proved_rules = []
self._rules_seen = set()
def split_alpha_beta(self):
"""split proved rules into alpha and beta chains"""
rules_alpha = [] # a -> b
rules_beta = [] # &(...) -> b
for a, b in self.proved_rules:
if isinstance(a, And):
rules_beta.append((a, b))
else:
rules_alpha.append((a, b))
return rules_alpha, rules_beta
@property
def rules_alpha(self):
return self.split_alpha_beta()[0]
@property
def rules_beta(self):
return self.split_alpha_beta()[1]
def process_rule(self, a, b):
"""process a -> b rule""" # TODO write more?
if (not a) or isinstance(b, bool):
return
if isinstance(a, bool):
return
if (a, b) in self._rules_seen:
return
else:
self._rules_seen.add((a, b))
# this is the core of processing
try:
self._process_rule(a, b)
except TautologyDetected:
pass
def _process_rule(self, a, b):
# right part first
# a -> b & c --> a -> b ; a -> c
# (?) FIXME this is only correct when b & c != null !
if isinstance(b, And):
for barg in b.args:
self.process_rule(a, barg)
# a -> b | c --> !b & !c -> !a
# --> a & !b -> c
# --> a & !c -> b
elif isinstance(b, Or):
# detect tautology first
if not isinstance(a, Logic): # Atom
# tautology: a -> a|c|...
if a in b.args:
raise TautologyDetected(a, b, 'a -> a|c|...')
self.process_rule(And(*[Not(barg) for barg in b.args]), Not(a))
for bidx in range(len(b.args)):
barg = b.args[bidx]
brest = b.args[:bidx] + b.args[bidx + 1:]
self.process_rule(And(a, Not(barg)), Or(*brest))
# left part
# a & b -> c --> IRREDUCIBLE CASE -- WE STORE IT AS IS
# (this will be the basis of beta-network)
elif isinstance(a, And):
if b in a.args:
raise TautologyDetected(a, b, 'a & b -> a')
self.proved_rules.append((a, b))
# XXX NOTE at present we ignore !c -> !a | !b
elif isinstance(a, Or):
if b in a.args:
raise TautologyDetected(a, b, 'a | b -> a')
for aarg in a.args:
self.process_rule(aarg, b)
else:
# both `a` and `b` are atoms
self.proved_rules.append((a, b)) # a -> b
self.proved_rules.append((Not(b), Not(a))) # !b -> !a
########################################
class FactRules(object):
"""Rules that describe how to deduce facts in logic space
When defined, these rules allow implications to quickly be determined
for a set of facts. For this precomputed deduction tables are used.
see `deduce_all_facts` (forward-chaining)
Also it is possible to gather prerequisites for a fact, which is tried
to be proven. (backward-chaining)
Definition Syntax
-----------------
a -> b -- a=T -> b=T (and automatically b=F -> a=F)
a -> !b -- a=T -> b=F
a == b -- a -> b & b -> a
a -> b & c -- a=T -> b=T & c=T
# TODO b | c
Internals
---------
.full_implications[k, v]: all the implications of fact k=v
.beta_triggers[k, v]: beta rules that might be triggered when k=v
.prereq -- {} k <- [] of k's prerequisites
.defined_facts -- set of defined fact names
"""
def __init__(self, rules):
"""Compile rules into internal lookup tables"""
if isinstance(rules, string_types):
rules = rules.splitlines()
# --- parse and process rules ---
P = Prover()
for rule in rules:
# XXX `a` is hardcoded to be always atom
a, op, b = rule.split(None, 2)
a = Logic.fromstring(a)
b = Logic.fromstring(b)
if op == '->':
P.process_rule(a, b)
elif op == '==':
P.process_rule(a, b)
P.process_rule(b, a)
else:
raise ValueError('unknown op %r' % op)
# --- build deduction networks ---
self.beta_rules = []
for bcond, bimpl in P.rules_beta:
self.beta_rules.append(
(set(_as_pair(a) for a in bcond.args), _as_pair(bimpl)))
# deduce alpha implications
impl_a = deduce_alpha_implications(P.rules_alpha)
# now:
# - apply beta rules to alpha chains (static extension), and
# - further associate beta rules to alpha chain (for inference
# at runtime)
impl_ab = apply_beta_to_alpha_route(impl_a, P.rules_beta)
# extract defined fact names
self.defined_facts = set(_base_fact(k) for k in impl_ab.keys())
# build rels (forward chains)
full_implications = defaultdict(set)
beta_triggers = defaultdict(set)
for k, (impl, betaidxs) in impl_ab.items():
full_implications[_as_pair(k)] = set(_as_pair(i) for i in impl)
beta_triggers[_as_pair(k)] = betaidxs
self.full_implications = full_implications
self.beta_triggers = beta_triggers
# build prereq (backward chains)
prereq = defaultdict(set)
rel_prereq = rules_2prereq(full_implications)
for k, pitems in rel_prereq.items():
prereq[k] |= pitems
self.prereq = prereq
class InconsistentAssumptions(ValueError):
def __str__(self):
kb, fact, value = self.args
return "%s, %s=%s" % (kb, fact, value)
class FactKB(dict):
"""
A simple propositional knowledge base relying on compiled inference rules.
"""
def __str__(self):
return '{\n%s}' % ',\n'.join(
["\t%s: %s" % i for i in sorted(self.items())])
def __init__(self, rules):
self.rules = rules
def _tell(self, k, v):
"""Add fact k=v to the knowledge base.
Returns True if the KB has actually been updated, False otherwise.
"""
if k in self and self[k] is not None:
if self[k] == v:
return False
else:
raise InconsistentAssumptions(self, k, v)
else:
self[k] = v
return True
# *********************************************
# * This is the workhorse, so keep it *fast*. *
# *********************************************
def deduce_all_facts(self, facts):
"""
Update the KB with all the implications of a list of facts.
Facts can be specified as a dictionary or as a list of (key, value)
pairs.
"""
# keep frequently used attributes locally, so we'll avoid extra
# attribute access overhead
full_implications = self.rules.full_implications
beta_triggers = self.rules.beta_triggers
beta_rules = self.rules.beta_rules
if isinstance(facts, dict):
facts = facts.items()
while facts:
beta_maytrigger = set()
# --- alpha chains ---
for k, v in facts:
if not self._tell(k, v) or v is None:
continue
# lookup routing tables
for key, value in full_implications[k, v]:
self._tell(key, value)
beta_maytrigger.update(beta_triggers[k, v])
# --- beta chains ---
facts = []
for bidx in beta_maytrigger:
bcond, bimpl = beta_rules[bidx]
if all(self.get(k) is v for k, v in bcond):
facts.append(bimpl)
|
3bc293b06a8d809c1d27b31f88744f634f361704400442186d40d697351c06a2
|
"""Logic expressions handling
NOTE
----
at present this is mainly needed for facts.py , feel free however to improve
this stuff for general purpose.
"""
from __future__ import print_function, division
from sympy.core.compatibility import range, string_types
def _torf(args):
"""Return True if all args are True, False if they
are all False, else None.
>>> from sympy.core.logic import _torf
>>> _torf((True, True))
True
>>> _torf((False, False))
False
>>> _torf((True, False))
"""
sawT = sawF = False
for a in args:
if a is True:
if sawF:
return
sawT = True
elif a is False:
if sawT:
return
sawF = True
else:
return
return sawT
def _fuzzy_group(args, quick_exit=False):
"""Return True if all args are True, None if there is any None else False
unless ``quick_exit`` is True (then return None as soon as a second False
is seen.
``_fuzzy_group`` is like ``fuzzy_and`` except that it is more
conservative in returning a False, waiting to make sure that all
arguments are True or False and returning None if any arguments are
None. It also has the capability of permiting only a single False and
returning None if more than one is seen. For example, the presence of a
single transcendental amongst rationals would indicate that the group is
no longer rational; but a second transcendental in the group would make the
determination impossible.
Examples
========
>>> from sympy.core.logic import _fuzzy_group
By default, multiple Falses mean the group is broken:
>>> _fuzzy_group([False, False, True])
False
If multiple Falses mean the group status is unknown then set
`quick_exit` to True so None can be returned when the 2nd False is seen:
>>> _fuzzy_group([False, False, True], quick_exit=True)
But if only a single False is seen then the group is known to
be broken:
>>> _fuzzy_group([False, True, True], quick_exit=True)
False
"""
saw_other = False
for a in args:
if a is True:
continue
if a is None:
return
if quick_exit and saw_other:
return
saw_other = True
return not saw_other
def fuzzy_bool(x):
"""Return True, False or None according to x.
Whereas bool(x) returns True or False, fuzzy_bool allows
for the None value and non-false values (which become None), too.
Examples
========
>>> from sympy.core.logic import fuzzy_bool
>>> from sympy.abc import x
>>> fuzzy_bool(x), fuzzy_bool(None)
(None, None)
>>> bool(x), bool(None)
(True, False)
"""
if x is None:
return None
if x in (True, False):
return bool(x)
def fuzzy_and(args):
"""Return True (all True), False (any False) or None.
Examples
========
>>> from sympy.core.logic import fuzzy_and
>>> from sympy import Dummy
If you had a list of objects to test the commutivity of
and you want the fuzzy_and logic applied, passing an
iterator will allow the commutativity to only be computed
as many times as necessary. With this list, False can be
returned after analyzing the first symbol:
>>> syms = [Dummy(commutative=False), Dummy()]
>>> fuzzy_and(s.is_commutative for s in syms)
False
That False would require less work than if a list of pre-computed
items was sent:
>>> fuzzy_and([s.is_commutative for s in syms])
False
"""
rv = True
for ai in args:
ai = fuzzy_bool(ai)
if ai is False:
return False
if rv: # this will stop updating if a None is ever trapped
rv = ai
return rv
def fuzzy_not(v):
"""
Not in fuzzy logic
Return None if `v` is None else `not v`.
Examples
========
>>> from sympy.core.logic import fuzzy_not
>>> fuzzy_not(True)
False
>>> fuzzy_not(None)
>>> fuzzy_not(False)
True
"""
if v is None:
return v
else:
return not v
def fuzzy_or(args):
"""
Or in fuzzy logic. Returns True (any True), False (all False), or None
See the docstrings of fuzzy_and and fuzzy_not for more info. fuzzy_or is
related to the two by the standard De Morgan's law.
>>> from sympy.core.logic import fuzzy_or
>>> fuzzy_or([True, False])
True
>>> fuzzy_or([True, None])
True
>>> fuzzy_or([False, False])
False
>>> print(fuzzy_or([False, None]))
None
"""
return fuzzy_not(fuzzy_and(fuzzy_not(i) for i in args))
class Logic(object):
"""Logical expression"""
# {} 'op' -> LogicClass
op_2class = {}
def __new__(cls, *args):
obj = object.__new__(cls)
obj.args = args
return obj
def __getnewargs__(self):
return self.args
def __hash__(self):
return hash((type(self).__name__,) + tuple(self.args))
def __eq__(a, b):
if not isinstance(b, type(a)):
return False
else:
return a.args == b.args
def __ne__(a, b):
if not isinstance(b, type(a)):
return True
else:
return a.args != b.args
def __lt__(self, other):
if self.__cmp__(other) == -1:
return True
return False
def __cmp__(self, other):
if type(self) is not type(other):
a = str(type(self))
b = str(type(other))
else:
a = self.args
b = other.args
return (a > b) - (a < b)
def __str__(self):
return '%s(%s)' % (self.__class__.__name__,
', '.join(str(a) for a in self.args))
__repr__ = __str__
@staticmethod
def fromstring(text):
"""Logic from string with space around & and | but none after !.
e.g.
!a & b | c
"""
lexpr = None # current logical expression
schedop = None # scheduled operation
for term in text.split():
# operation symbol
if term in '&|':
if schedop is not None:
raise ValueError(
'double op forbidden: "%s %s"' % (term, schedop))
if lexpr is None:
raise ValueError(
'%s cannot be in the beginning of expression' % term)
schedop = term
continue
if '&' in term or '|' in term:
raise ValueError('& and | must have space around them')
if term[0] == '!':
if len(term) == 1:
raise ValueError('do not include space after "!"')
term = Not(term[1:])
# already scheduled operation, e.g. '&'
if schedop:
lexpr = Logic.op_2class[schedop](lexpr, term)
schedop = None
continue
# this should be atom
if lexpr is not None:
raise ValueError(
'missing op between "%s" and "%s"' % (lexpr, term))
lexpr = term
# let's check that we ended up in correct state
if schedop is not None:
raise ValueError('premature end-of-expression in "%s"' % text)
if lexpr is None:
raise ValueError('"%s" is empty' % text)
# everything looks good now
return lexpr
class AndOr_Base(Logic):
def __new__(cls, *args):
bargs = []
for a in args:
if a == cls.op_x_notx:
return a
elif a == (not cls.op_x_notx):
continue # skip this argument
bargs.append(a)
args = sorted(set(cls.flatten(bargs)), key=hash)
for a in args:
if Not(a) in args:
return cls.op_x_notx
if len(args) == 1:
return args.pop()
elif len(args) == 0:
return not cls.op_x_notx
return Logic.__new__(cls, *args)
@classmethod
def flatten(cls, args):
# quick-n-dirty flattening for And and Or
args_queue = list(args)
res = []
while True:
try:
arg = args_queue.pop(0)
except IndexError:
break
if isinstance(arg, Logic):
if isinstance(arg, cls):
args_queue.extend(arg.args)
continue
res.append(arg)
args = tuple(res)
return args
class And(AndOr_Base):
op_x_notx = False
def _eval_propagate_not(self):
# !(a&b&c ...) == !a | !b | !c ...
return Or(*[Not(a) for a in self.args])
# (a|b|...) & c == (a&c) | (b&c) | ...
def expand(self):
# first locate Or
for i in range(len(self.args)):
arg = self.args[i]
if isinstance(arg, Or):
arest = self.args[:i] + self.args[i + 1:]
orterms = [And(*(arest + (a,))) for a in arg.args]
for j in range(len(orterms)):
if isinstance(orterms[j], Logic):
orterms[j] = orterms[j].expand()
res = Or(*orterms)
return res
else:
return self
class Or(AndOr_Base):
op_x_notx = True
def _eval_propagate_not(self):
# !(a|b|c ...) == !a & !b & !c ...
return And(*[Not(a) for a in self.args])
class Not(Logic):
def __new__(cls, arg):
if isinstance(arg, string_types):
return Logic.__new__(cls, arg)
elif isinstance(arg, bool):
return not arg
elif isinstance(arg, Not):
return arg.args[0]
elif isinstance(arg, Logic):
# XXX this is a hack to expand right from the beginning
arg = arg._eval_propagate_not()
return arg
else:
raise ValueError('Not: unknown argument %r' % (arg,))
@property
def arg(self):
return self.args[0]
Logic.op_2class['&'] = And
Logic.op_2class['|'] = Or
Logic.op_2class['!'] = Not
|
e078a65551aa38168bf6b8428a82834e51b21b02edad94e4d9140d3aca56df12
|
from __future__ import print_function, division
from collections import defaultdict
from functools import cmp_to_key
import operator
from .sympify import sympify
from .basic import Basic
from .singleton import S
from .operations import AssocOp
from .cache import cacheit
from .logic import fuzzy_not, _fuzzy_group
from .compatibility import reduce, range
from .expr import Expr
from .evaluate import global_distribute
# internal marker to indicate:
# "there are still non-commutative objects -- don't forget to process them"
class NC_Marker:
is_Order = False
is_Mul = False
is_Number = False
is_Poly = False
is_commutative = False
# Key for sorting commutative args in canonical order
_args_sortkey = cmp_to_key(Basic.compare)
def _mulsort(args):
# in-place sorting of args
args.sort(key=_args_sortkey)
def _unevaluated_Mul(*args):
"""Return a well-formed unevaluated Mul: Numbers are collected and
put in slot 0, any arguments that are Muls will be flattened, and args
are sorted. Use this when args have changed but you still want to return
an unevaluated Mul.
Examples
========
>>> from sympy.core.mul import _unevaluated_Mul as uMul
>>> from sympy import S, sqrt, Mul
>>> from sympy.abc import x
>>> a = uMul(*[S(3.0), x, S(2)])
>>> a.args[0]
6.00000000000000
>>> a.args[1]
x
Two unevaluated Muls with the same arguments will
always compare as equal during testing:
>>> m = uMul(sqrt(2), sqrt(3))
>>> m == uMul(sqrt(3), sqrt(2))
True
>>> u = Mul(sqrt(3), sqrt(2), evaluate=False)
>>> m == uMul(u)
True
>>> m == Mul(*m.args)
False
"""
args = list(args)
newargs = []
ncargs = []
co = S.One
while args:
a = args.pop()
if a.is_Mul:
c, nc = a.args_cnc()
args.extend(c)
if nc:
ncargs.append(Mul._from_args(nc))
elif a.is_Number:
co *= a
else:
newargs.append(a)
_mulsort(newargs)
if co is not S.One:
newargs.insert(0, co)
if ncargs:
newargs.append(Mul._from_args(ncargs))
return Mul._from_args(newargs)
class Mul(Expr, AssocOp):
__slots__ = []
is_Mul = True
@classmethod
def flatten(cls, seq):
"""Return commutative, noncommutative and order arguments by
combining related terms.
Notes
=====
* In an expression like ``a*b*c``, python process this through sympy
as ``Mul(Mul(a, b), c)``. This can have undesirable consequences.
- Sometimes terms are not combined as one would like:
{c.f. https://github.com/sympy/sympy/issues/4596}
>>> from sympy import Mul, sqrt
>>> from sympy.abc import x, y, z
>>> 2*(x + 1) # this is the 2-arg Mul behavior
2*x + 2
>>> y*(x + 1)*2
2*y*(x + 1)
>>> 2*(x + 1)*y # 2-arg result will be obtained first
y*(2*x + 2)
>>> Mul(2, x + 1, y) # all 3 args simultaneously processed
2*y*(x + 1)
>>> 2*((x + 1)*y) # parentheses can control this behavior
2*y*(x + 1)
Powers with compound bases may not find a single base to
combine with unless all arguments are processed at once.
Post-processing may be necessary in such cases.
{c.f. https://github.com/sympy/sympy/issues/5728}
>>> a = sqrt(x*sqrt(y))
>>> a**3
(x*sqrt(y))**(3/2)
>>> Mul(a,a,a)
(x*sqrt(y))**(3/2)
>>> a*a*a
x*sqrt(y)*sqrt(x*sqrt(y))
>>> _.subs(a.base, z).subs(z, a.base)
(x*sqrt(y))**(3/2)
- If more than two terms are being multiplied then all the
previous terms will be re-processed for each new argument.
So if each of ``a``, ``b`` and ``c`` were :class:`Mul`
expression, then ``a*b*c`` (or building up the product
with ``*=``) will process all the arguments of ``a`` and
``b`` twice: once when ``a*b`` is computed and again when
``c`` is multiplied.
Using ``Mul(a, b, c)`` will process all arguments once.
* The results of Mul are cached according to arguments, so flatten
will only be called once for ``Mul(a, b, c)``. If you can
structure a calculation so the arguments are most likely to be
repeats then this can save time in computing the answer. For
example, say you had a Mul, M, that you wished to divide by ``d[i]``
and multiply by ``n[i]`` and you suspect there are many repeats
in ``n``. It would be better to compute ``M*n[i]/d[i]`` rather
than ``M/d[i]*n[i]`` since every time n[i] is a repeat, the
product, ``M*n[i]`` will be returned without flattening -- the
cached value will be returned. If you divide by the ``d[i]``
first (and those are more unique than the ``n[i]``) then that will
create a new Mul, ``M/d[i]`` the args of which will be traversed
again when it is multiplied by ``n[i]``.
{c.f. https://github.com/sympy/sympy/issues/5706}
This consideration is moot if the cache is turned off.
NB
--
The validity of the above notes depends on the implementation
details of Mul and flatten which may change at any time. Therefore,
you should only consider them when your code is highly performance
sensitive.
Removal of 1 from the sequence is already handled by AssocOp.__new__.
"""
from sympy.calculus.util import AccumBounds
from sympy.matrices.expressions import MatrixExpr
rv = None
if len(seq) == 2:
a, b = seq
if b.is_Rational:
a, b = b, a
seq = [a, b]
assert not a is S.One
if not a.is_zero and a.is_Rational:
r, b = b.as_coeff_Mul()
if b.is_Add:
if r is not S.One: # 2-arg hack
# leave the Mul as a Mul
rv = [cls(a*r, b, evaluate=False)], [], None
elif global_distribute[0] and b.is_commutative:
r, b = b.as_coeff_Add()
bargs = [_keep_coeff(a, bi) for bi in Add.make_args(b)]
_addsort(bargs)
ar = a*r
if ar:
bargs.insert(0, ar)
bargs = [Add._from_args(bargs)]
rv = bargs, [], None
if rv:
return rv
# apply associativity, separate commutative part of seq
c_part = [] # out: commutative factors
nc_part = [] # out: non-commutative factors
nc_seq = []
coeff = S.One # standalone term
# e.g. 3 * ...
c_powers = [] # (base,exp) n
# e.g. (x,n) for x
num_exp = [] # (num-base, exp) y
# e.g. (3, y) for ... * 3 * ...
neg1e = S.Zero # exponent on -1 extracted from Number-based Pow and I
pnum_rat = {} # (num-base, Rat-exp) 1/2
# e.g. (3, 1/2) for ... * 3 * ...
order_symbols = None
# --- PART 1 ---
#
# "collect powers and coeff":
#
# o coeff
# o c_powers
# o num_exp
# o neg1e
# o pnum_rat
#
# NOTE: this is optimized for all-objects-are-commutative case
for o in seq:
# O(x)
if o.is_Order:
o, order_symbols = o.as_expr_variables(order_symbols)
# Mul([...])
if o.is_Mul:
if o.is_commutative:
seq.extend(o.args) # XXX zerocopy?
else:
# NCMul can have commutative parts as well
for q in o.args:
if q.is_commutative:
seq.append(q)
else:
nc_seq.append(q)
# append non-commutative marker, so we don't forget to
# process scheduled non-commutative objects
seq.append(NC_Marker)
continue
# 3
elif o.is_Number:
if o is S.NaN or coeff is S.ComplexInfinity and o is S.Zero:
# we know for sure the result will be nan
return [S.NaN], [], None
elif coeff.is_Number or isinstance(coeff, AccumBounds): # it could be zoo
coeff *= o
if coeff is S.NaN:
# we know for sure the result will be nan
return [S.NaN], [], None
continue
elif isinstance(o, AccumBounds):
coeff = o.__mul__(coeff)
continue
elif o is S.ComplexInfinity:
if not coeff:
# 0 * zoo = NaN
return [S.NaN], [], None
if coeff is S.ComplexInfinity:
# zoo * zoo = zoo
return [S.ComplexInfinity], [], None
coeff = S.ComplexInfinity
continue
elif o is S.ImaginaryUnit:
neg1e += S.Half
continue
elif o.is_commutative:
# e
# o = b
b, e = o.as_base_exp()
# y
# 3
if o.is_Pow:
if b.is_Number:
# get all the factors with numeric base so they can be
# combined below, but don't combine negatives unless
# the exponent is an integer
if e.is_Rational:
if e.is_Integer:
coeff *= Pow(b, e) # it is an unevaluated power
continue
elif e.is_negative: # also a sign of an unevaluated power
seq.append(Pow(b, e))
continue
elif b.is_negative:
neg1e += e
b = -b
if b is not S.One:
pnum_rat.setdefault(b, []).append(e)
continue
elif b.is_positive or e.is_integer:
num_exp.append((b, e))
continue
c_powers.append((b, e))
# NON-COMMUTATIVE
# TODO: Make non-commutative exponents not combine automatically
else:
if o is not NC_Marker:
nc_seq.append(o)
# process nc_seq (if any)
while nc_seq:
o = nc_seq.pop(0)
if not nc_part:
nc_part.append(o)
continue
# b c b+c
# try to combine last terms: a * a -> a
o1 = nc_part.pop()
b1, e1 = o1.as_base_exp()
b2, e2 = o.as_base_exp()
new_exp = e1 + e2
# Only allow powers to combine if the new exponent is
# not an Add. This allow things like a**2*b**3 == a**5
# if a.is_commutative == False, but prohibits
# a**x*a**y and x**a*x**b from combining (x,y commute).
if b1 == b2 and (not new_exp.is_Add):
o12 = b1 ** new_exp
# now o12 could be a commutative object
if o12.is_commutative:
seq.append(o12)
continue
else:
nc_seq.insert(0, o12)
else:
nc_part.append(o1)
nc_part.append(o)
# We do want a combined exponent if it would not be an Add, such as
# y 2y 3y
# x * x -> x
# We determine if two exponents have the same term by using
# as_coeff_Mul.
#
# Unfortunately, this isn't smart enough to consider combining into
# exponents that might already be adds, so things like:
# z - y y
# x * x will be left alone. This is because checking every possible
# combination can slow things down.
# gather exponents of common bases...
def _gather(c_powers):
common_b = {} # b:e
for b, e in c_powers:
co = e.as_coeff_Mul()
common_b.setdefault(b, {}).setdefault(
co[1], []).append(co[0])
for b, d in common_b.items():
for di, li in d.items():
d[di] = Add(*li)
new_c_powers = []
for b, e in common_b.items():
new_c_powers.extend([(b, c*t) for t, c in e.items()])
return new_c_powers
# in c_powers
c_powers = _gather(c_powers)
# and in num_exp
num_exp = _gather(num_exp)
# --- PART 2 ---
#
# o process collected powers (x**0 -> 1; x**1 -> x; otherwise Pow)
# o combine collected powers (2**x * 3**x -> 6**x)
# with numeric base
# ................................
# now we have:
# - coeff:
# - c_powers: (b, e)
# - num_exp: (2, e)
# - pnum_rat: {(1/3, [1/3, 2/3, 1/4])}
# 0 1
# x -> 1 x -> x
# this should only need to run twice; if it fails because
# it needs to be run more times, perhaps this should be
# changed to a "while True" loop -- the only reason it
# isn't such now is to allow a less-than-perfect result to
# be obtained rather than raising an error or entering an
# infinite loop
for i in range(2):
new_c_powers = []
changed = False
for b, e in c_powers:
if e.is_zero:
# canceling out infinities yields NaN
if (b.is_Add or b.is_Mul) and any(infty in b.args
for infty in (S.ComplexInfinity, S.Infinity,
S.NegativeInfinity)):
return [S.NaN], [], None
continue
if e is S.One:
if b.is_Number:
coeff *= b
continue
p = b
if e is not S.One:
p = Pow(b, e)
# check to make sure that the base doesn't change
# after exponentiation; to allow for unevaluated
# Pow, we only do so if b is not already a Pow
if p.is_Pow and not b.is_Pow:
bi = b
b, e = p.as_base_exp()
if b != bi:
changed = True
c_part.append(p)
new_c_powers.append((b, e))
# there might have been a change, but unless the base
# matches some other base, there is nothing to do
if changed and len(set(
b for b, e in new_c_powers)) != len(new_c_powers):
# start over again
c_part = []
c_powers = _gather(new_c_powers)
else:
break
# x x x
# 2 * 3 -> 6
inv_exp_dict = {} # exp:Mul(num-bases) x x
# e.g. x:6 for ... * 2 * 3 * ...
for b, e in num_exp:
inv_exp_dict.setdefault(e, []).append(b)
for e, b in inv_exp_dict.items():
inv_exp_dict[e] = cls(*b)
c_part.extend([Pow(b, e) for e, b in inv_exp_dict.items() if e])
# b, e -> e' = sum(e), b
# {(1/5, [1/3]), (1/2, [1/12, 1/4]} -> {(1/3, [1/5, 1/2])}
comb_e = {}
for b, e in pnum_rat.items():
comb_e.setdefault(Add(*e), []).append(b)
del pnum_rat
# process them, reducing exponents to values less than 1
# and updating coeff if necessary else adding them to
# num_rat for further processing
num_rat = []
for e, b in comb_e.items():
b = cls(*b)
if e.q == 1:
coeff *= Pow(b, e)
continue
if e.p > e.q:
e_i, ep = divmod(e.p, e.q)
coeff *= Pow(b, e_i)
e = Rational(ep, e.q)
num_rat.append((b, e))
del comb_e
# extract gcd of bases in num_rat
# 2**(1/3)*6**(1/4) -> 2**(1/3+1/4)*3**(1/4)
pnew = defaultdict(list)
i = 0 # steps through num_rat which may grow
while i < len(num_rat):
bi, ei = num_rat[i]
grow = []
for j in range(i + 1, len(num_rat)):
bj, ej = num_rat[j]
g = bi.gcd(bj)
if g is not S.One:
# 4**r1*6**r2 -> 2**(r1+r2) * 2**r1 * 3**r2
# this might have a gcd with something else
e = ei + ej
if e.q == 1:
coeff *= Pow(g, e)
else:
if e.p > e.q:
e_i, ep = divmod(e.p, e.q) # change e in place
coeff *= Pow(g, e_i)
e = Rational(ep, e.q)
grow.append((g, e))
# update the jth item
num_rat[j] = (bj/g, ej)
# update bi that we are checking with
bi = bi/g
if bi is S.One:
break
if bi is not S.One:
obj = Pow(bi, ei)
if obj.is_Number:
coeff *= obj
else:
# changes like sqrt(12) -> 2*sqrt(3)
for obj in Mul.make_args(obj):
if obj.is_Number:
coeff *= obj
else:
assert obj.is_Pow
bi, ei = obj.args
pnew[ei].append(bi)
num_rat.extend(grow)
i += 1
# combine bases of the new powers
for e, b in pnew.items():
pnew[e] = cls(*b)
# handle -1 and I
if neg1e:
# treat I as (-1)**(1/2) and compute -1's total exponent
p, q = neg1e.as_numer_denom()
# if the integer part is odd, extract -1
n, p = divmod(p, q)
if n % 2:
coeff = -coeff
# if it's a multiple of 1/2 extract I
if q == 2:
c_part.append(S.ImaginaryUnit)
elif p:
# see if there is any positive base this power of
# -1 can join
neg1e = Rational(p, q)
for e, b in pnew.items():
if e == neg1e and b.is_positive:
pnew[e] = -b
break
else:
# keep it separate; we've already evaluated it as
# much as possible so evaluate=False
c_part.append(Pow(S.NegativeOne, neg1e, evaluate=False))
# add all the pnew powers
c_part.extend([Pow(b, e) for e, b in pnew.items()])
# oo, -oo
if (coeff is S.Infinity) or (coeff is S.NegativeInfinity):
def _handle_for_oo(c_part, coeff_sign):
new_c_part = []
for t in c_part:
if t.is_positive:
continue
if t.is_negative:
coeff_sign *= -1
continue
new_c_part.append(t)
return new_c_part, coeff_sign
c_part, coeff_sign = _handle_for_oo(c_part, 1)
nc_part, coeff_sign = _handle_for_oo(nc_part, coeff_sign)
coeff *= coeff_sign
# zoo
if coeff is S.ComplexInfinity:
# zoo might be
# infinite_real + bounded_im
# bounded_real + infinite_im
# infinite_real + infinite_im
# and non-zero real or imaginary will not change that status.
c_part = [c for c in c_part if not (fuzzy_not(c.is_zero) and
c.is_real is not None)]
nc_part = [c for c in nc_part if not (fuzzy_not(c.is_zero) and
c.is_real is not None)]
# 0
elif coeff is S.Zero:
# we know for sure the result will be 0 except the multiplicand
# is infinity or a matrix
if any(isinstance(c, MatrixExpr) for c in nc_part):
return [coeff], nc_part, order_symbols
if any(c.is_finite == False for c in c_part):
return [S.NaN], [], order_symbols
return [coeff], [], order_symbols
# check for straggling Numbers that were produced
_new = []
for i in c_part:
if i.is_Number:
coeff *= i
else:
_new.append(i)
c_part = _new
# order commutative part canonically
_mulsort(c_part)
# current code expects coeff to be always in slot-0
if coeff is not S.One:
c_part.insert(0, coeff)
# we are done
if (global_distribute[0] and not nc_part and len(c_part) == 2 and
c_part[0].is_Number and c_part[0].is_finite and c_part[1].is_Add):
# 2*(1+a) -> 2 + 2 * a
coeff = c_part[0]
c_part = [Add(*[coeff*f for f in c_part[1].args])]
return c_part, nc_part, order_symbols
def _eval_power(b, e):
# don't break up NC terms: (A*B)**3 != A**3*B**3, it is A*B*A*B*A*B
cargs, nc = b.args_cnc(split_1=False)
if e.is_Integer:
return Mul(*[Pow(b, e, evaluate=False) for b in cargs]) * \
Pow(Mul._from_args(nc), e, evaluate=False)
if e.is_Rational and e.q == 2:
from sympy.core.power import integer_nthroot
from sympy.functions.elementary.complexes import sign
if b.is_imaginary:
a = b.as_real_imag()[1]
if a.is_Rational:
n, d = abs(a/2).as_numer_denom()
n, t = integer_nthroot(n, 2)
if t:
d, t = integer_nthroot(d, 2)
if t:
r = sympify(n)/d
return _unevaluated_Mul(r**e.p, (1 + sign(a)*S.ImaginaryUnit)**e.p)
p = Pow(b, e, evaluate=False)
if e.is_Rational or e.is_Float:
return p._eval_expand_power_base()
return p
@classmethod
def class_key(cls):
return 3, 0, cls.__name__
def _eval_evalf(self, prec):
c, m = self.as_coeff_Mul()
if c is S.NegativeOne:
if m.is_Mul:
rv = -AssocOp._eval_evalf(m, prec)
else:
mnew = m._eval_evalf(prec)
if mnew is not None:
m = mnew
rv = -m
else:
rv = AssocOp._eval_evalf(self, prec)
if rv.is_number:
return rv.expand()
return rv
@property
def _mpc_(self):
"""
Convert self to an mpmath mpc if possible
"""
from sympy.core.numbers import I, Float
im_part, imag_unit = self.as_coeff_Mul()
if not imag_unit == I:
# ValueError may seem more reasonable but since it's a @property,
# we need to use AttributeError to keep from confusing things like
# hasattr.
raise AttributeError("Cannot convert Mul to mpc. Must be of the form Number*I")
return (Float(0)._mpf_, Float(im_part)._mpf_)
@cacheit
def as_two_terms(self):
"""Return head and tail of self.
This is the most efficient way to get the head and tail of an
expression.
- if you want only the head, use self.args[0];
- if you want to process the arguments of the tail then use
self.as_coef_mul() which gives the head and a tuple containing
the arguments of the tail when treated as a Mul.
- if you want the coefficient when self is treated as an Add
then use self.as_coeff_add()[0]
>>> from sympy.abc import x, y
>>> (3*x*y).as_two_terms()
(3, x*y)
"""
args = self.args
if len(args) == 1:
return S.One, self
elif len(args) == 2:
return args
else:
return args[0], self._new_rawargs(*args[1:])
@cacheit
def as_coefficients_dict(self):
"""Return a dictionary mapping terms to their coefficient.
Since the dictionary is a defaultdict, inquiries about terms which
were not present will return a coefficient of 0. The dictionary
is considered to have a single term.
Examples
========
>>> from sympy.abc import a, x
>>> (3*a*x).as_coefficients_dict()
{a*x: 3}
>>> _[a]
0
"""
d = defaultdict(int)
args = self.args
if len(args) == 1 or not args[0].is_Number:
d[self] = S.One
else:
d[self._new_rawargs(*args[1:])] = args[0]
return d
@cacheit
def as_coeff_mul(self, *deps, **kwargs):
rational = kwargs.pop('rational', True)
if deps:
l1 = []
l2 = []
for f in self.args:
if f.has(*deps):
l2.append(f)
else:
l1.append(f)
return self._new_rawargs(*l1), tuple(l2)
args = self.args
if args[0].is_Number:
if not rational or args[0].is_Rational:
return args[0], args[1:]
elif args[0].is_negative:
return S.NegativeOne, (-args[0],) + args[1:]
return S.One, args
def as_coeff_Mul(self, rational=False):
"""Efficiently extract the coefficient of a product. """
coeff, args = self.args[0], self.args[1:]
if coeff.is_Number:
if not rational or coeff.is_Rational:
if len(args) == 1:
return coeff, args[0]
else:
return coeff, self._new_rawargs(*args)
elif coeff.is_negative:
return S.NegativeOne, self._new_rawargs(*((-coeff,) + args))
return S.One, self
def as_real_imag(self, deep=True, **hints):
from sympy import Abs, expand_mul, im, re
other = []
coeffr = []
coeffi = []
addterms = S.One
for a in self.args:
r, i = a.as_real_imag()
if i.is_zero:
coeffr.append(r)
elif r.is_zero:
coeffi.append(i*S.ImaginaryUnit)
elif a.is_commutative:
# search for complex conjugate pairs:
for i, x in enumerate(other):
if x == a.conjugate():
coeffr.append(Abs(x)**2)
del other[i]
break
else:
if a.is_Add:
addterms *= a
else:
other.append(a)
else:
other.append(a)
m = self.func(*other)
if hints.get('ignore') == m:
return
if len(coeffi) % 2:
imco = im(coeffi.pop(0))
# all other pairs make a real factor; they will be
# put into reco below
else:
imco = S.Zero
reco = self.func(*(coeffr + coeffi))
r, i = (reco*re(m), reco*im(m))
if addterms == 1:
if m == 1:
if imco is S.Zero:
return (reco, S.Zero)
else:
return (S.Zero, reco*imco)
if imco is S.Zero:
return (r, i)
return (-imco*i, imco*r)
addre, addim = expand_mul(addterms, deep=False).as_real_imag()
if imco is S.Zero:
return (r*addre - i*addim, i*addre + r*addim)
else:
r, i = -imco*i, imco*r
return (r*addre - i*addim, r*addim + i*addre)
@staticmethod
def _expandsums(sums):
"""
Helper function for _eval_expand_mul.
sums must be a list of instances of Basic.
"""
L = len(sums)
if L == 1:
return sums[0].args
terms = []
left = Mul._expandsums(sums[:L//2])
right = Mul._expandsums(sums[L//2:])
terms = [Mul(a, b) for a in left for b in right]
added = Add(*terms)
return Add.make_args(added) # it may have collapsed down to one term
def _eval_expand_mul(self, **hints):
from sympy import fraction
# Handle things like 1/(x*(x + 1)), which are automatically converted
# to 1/x*1/(x + 1)
expr = self
n, d = fraction(expr)
if d.is_Mul:
n, d = [i._eval_expand_mul(**hints) if i.is_Mul else i
for i in (n, d)]
expr = n/d
if not expr.is_Mul:
return expr
plain, sums, rewrite = [], [], False
for factor in expr.args:
if factor.is_Add:
sums.append(factor)
rewrite = True
else:
if factor.is_commutative:
plain.append(factor)
else:
sums.append(Basic(factor)) # Wrapper
if not rewrite:
return expr
else:
plain = self.func(*plain)
if sums:
deep = hints.get("deep", False)
terms = self.func._expandsums(sums)
args = []
for term in terms:
t = self.func(plain, term)
if t.is_Mul and any(a.is_Add for a in t.args) and deep:
t = t._eval_expand_mul()
args.append(t)
return Add(*args)
else:
return plain
@cacheit
def _eval_derivative(self, s):
args = list(self.args)
terms = []
for i in range(len(args)):
d = args[i].diff(s)
if d:
# Note: reduce is used in step of Mul as Mul is unable to
# handle subtypes and operation priority:
terms.append(reduce(lambda x, y: x*y, (args[:i] + [d] + args[i + 1:]), S.One))
return Add.fromiter(terms)
@cacheit
def _eval_derivative_n_times(self, s, n):
from sympy import Integer, factorial, prod, Sum, Max
from sympy.ntheory.multinomial import multinomial_coefficients_iterator
from .function import AppliedUndef
from .symbol import Symbol, symbols, Dummy
if not isinstance(s, AppliedUndef) and not isinstance(s, Symbol):
# other types of s may not be well behaved, e.g.
# (cos(x)*sin(y)).diff([[x, y, z]])
return super(Mul, self)._eval_derivative_n_times(s, n)
args = self.args
m = len(args)
if isinstance(n, (int, Integer)):
# https://en.wikipedia.org/wiki/General_Leibniz_rule#More_than_two_factors
terms = []
for kvals, c in multinomial_coefficients_iterator(m, n):
p = prod([arg.diff((s, k)) for k, arg in zip(kvals, args)])
terms.append(c * p)
return Add(*terms)
kvals = symbols("k1:%i" % m, cls=Dummy)
klast = n - sum(kvals)
nfact = factorial(n)
e, l = (# better to use the multinomial?
nfact/prod(map(factorial, kvals))/factorial(klast)*\
prod([args[t].diff((s, kvals[t])) for t in range(m-1)])*\
args[-1].diff((s, Max(0, klast))),
[(k, 0, n) for k in kvals])
return Sum(e, *l)
def _eval_difference_delta(self, n, step):
from sympy.series.limitseq import difference_delta as dd
arg0 = self.args[0]
rest = Mul(*self.args[1:])
return (arg0.subs(n, n + step) * dd(rest, n, step) + dd(arg0, n, step) *
rest)
def _matches_simple(self, expr, repl_dict):
# handle (w*3).matches('x*5') -> {w: x*5/3}
coeff, terms = self.as_coeff_Mul()
terms = Mul.make_args(terms)
if len(terms) == 1:
newexpr = self.__class__._combine_inverse(expr, coeff)
return terms[0].matches(newexpr, repl_dict)
return
def matches(self, expr, repl_dict={}, old=False):
expr = sympify(expr)
if self.is_commutative and expr.is_commutative:
return AssocOp._matches_commutative(self, expr, repl_dict, old)
elif self.is_commutative is not expr.is_commutative:
return None
c1, nc1 = self.args_cnc()
c2, nc2 = expr.args_cnc()
repl_dict = repl_dict.copy()
if c1:
if not c2:
c2 = [1]
a = self.func(*c1)
if isinstance(a, AssocOp):
repl_dict = a._matches_commutative(self.func(*c2), repl_dict, old)
else:
repl_dict = a.matches(self.func(*c2), repl_dict)
if repl_dict:
a = self.func(*nc1)
if isinstance(a, self.func):
repl_dict = a._matches(self.func(*nc2), repl_dict)
else:
repl_dict = a.matches(self.func(*nc2), repl_dict)
return repl_dict or None
def _matches(self, expr, repl_dict={}):
# weed out negative one prefixes#
from sympy import Wild
sign = 1
a, b = self.as_two_terms()
if a is S.NegativeOne:
if b.is_Mul:
sign = -sign
else:
# the remainder, b, is not a Mul anymore
return b.matches(-expr, repl_dict)
expr = sympify(expr)
if expr.is_Mul and expr.args[0] is S.NegativeOne:
expr = -expr
sign = -sign
if not expr.is_Mul:
# expr can only match if it matches b and a matches +/- 1
if len(self.args) == 2:
# quickly test for equality
if b == expr:
return a.matches(Rational(sign), repl_dict)
# do more expensive match
dd = b.matches(expr, repl_dict)
if dd is None:
return None
dd = a.matches(Rational(sign), dd)
return dd
return None
d = repl_dict.copy()
# weed out identical terms
pp = list(self.args)
ee = list(expr.args)
for p in self.args:
if p in expr.args:
ee.remove(p)
pp.remove(p)
# only one symbol left in pattern -> match the remaining expression
if len(pp) == 1 and isinstance(pp[0], Wild):
if len(ee) == 1:
d[pp[0]] = sign * ee[0]
else:
d[pp[0]] = sign * expr.func(*ee)
return d
if len(ee) != len(pp):
return None
for p, e in zip(pp, ee):
d = p.xreplace(d).matches(e, d)
if d is None:
return None
return d
@staticmethod
def _combine_inverse(lhs, rhs):
"""
Returns lhs/rhs, but treats arguments like symbols, so things like
oo/oo return 1, instead of a nan.
"""
if lhs == rhs:
return S.One
def check(l, r):
if l.is_Float and r.is_comparable:
# if both objects are added to 0 they will share the same "normalization"
# and are more likely to compare the same. Since Add(foo, 0) will not allow
# the 0 to pass, we use __add__ directly.
return l.__add__(0) == r.evalf().__add__(0)
return False
if check(lhs, rhs) or check(rhs, lhs):
return S.One
if lhs.is_Mul and rhs.is_Mul:
a = list(lhs.args)
b = [1]
for x in rhs.args:
if x in a:
a.remove(x)
elif -x in a:
a.remove(-x)
b.append(-1)
else:
b.append(x)
return lhs.func(*a)/rhs.func(*b)
return lhs/rhs
def as_powers_dict(self):
d = defaultdict(int)
for term in self.args:
b, e = term.as_base_exp()
d[b] += e
return d
def as_numer_denom(self):
# don't use _from_args to rebuild the numerators and denominators
# as the order is not guaranteed to be the same once they have
# been separated from each other
numers, denoms = list(zip(*[f.as_numer_denom() for f in self.args]))
return self.func(*numers), self.func(*denoms)
def as_base_exp(self):
e1 = None
bases = []
nc = 0
for m in self.args:
b, e = m.as_base_exp()
if not b.is_commutative:
nc += 1
if e1 is None:
e1 = e
elif e != e1 or nc > 1:
return self, S.One
bases.append(b)
return self.func(*bases), e1
def _eval_is_polynomial(self, syms):
return all(term._eval_is_polynomial(syms) for term in self.args)
def _eval_is_rational_function(self, syms):
return all(term._eval_is_rational_function(syms) for term in self.args)
def _eval_is_algebraic_expr(self, syms):
return all(term._eval_is_algebraic_expr(syms) for term in self.args)
_eval_is_finite = lambda self: _fuzzy_group(
a.is_finite for a in self.args)
_eval_is_commutative = lambda self: _fuzzy_group(
a.is_commutative for a in self.args)
_eval_is_complex = lambda self: _fuzzy_group(
(a.is_complex for a in self.args), quick_exit=True)
def _eval_is_infinite(self):
if any(a.is_infinite for a in self.args):
if any(a.is_zero for a in self.args):
return S.NaN.is_infinite
if any(a.is_zero is None for a in self.args):
return None
return True
def _eval_is_rational(self):
r = _fuzzy_group((a.is_rational for a in self.args), quick_exit=True)
if r:
return r
elif r is False:
return self.is_zero
def _eval_is_algebraic(self):
r = _fuzzy_group((a.is_algebraic for a in self.args), quick_exit=True)
if r:
return r
elif r is False:
return self.is_zero
def _eval_is_zero(self):
zero = infinite = False
for a in self.args:
z = a.is_zero
if z:
if infinite:
return # 0*oo is nan and nan.is_zero is None
zero = True
else:
if not a.is_finite:
if zero:
return # 0*oo is nan and nan.is_zero is None
infinite = True
if zero is False and z is None: # trap None
zero = None
return zero
def _eval_is_integer(self):
is_rational = self.is_rational
if is_rational:
n, d = self.as_numer_denom()
if d is S.One:
return True
elif d is S(2):
return n.is_even
elif is_rational is False:
return False
def _eval_is_polar(self):
has_polar = any(arg.is_polar for arg in self.args)
return has_polar and \
all(arg.is_polar or arg.is_positive for arg in self.args)
def _eval_is_real(self):
return self._eval_real_imag(True)
def _eval_real_imag(self, real):
zero = False
t_not_re_im = None
for t in self.args:
if t.is_complex is False:
return False
elif t.is_imaginary: # I
real = not real
elif t.is_real: # 2
if not zero:
z = t.is_zero
if not z and zero is False:
zero = z
elif z:
if all(a.is_finite for a in self.args):
return True
return
elif t.is_real is False:
# symbolic or literal like `2 + I` or symbolic imaginary
if t_not_re_im:
return # complex terms might cancel
t_not_re_im = t
elif t.is_imaginary is False: # symbolic like `2` or `2 + I`
if t_not_re_im:
return # complex terms might cancel
t_not_re_im = t
else:
return
if t_not_re_im:
if t_not_re_im.is_real is False:
if real: # like 3
return zero # 3*(smthng like 2 + I or i) is not real
if t_not_re_im.is_imaginary is False: # symbolic 2 or 2 + I
if not real: # like I
return zero # I*(smthng like 2 or 2 + I) is not real
elif zero is False:
return real # can't be trumped by 0
elif real:
return real # doesn't matter what zero is
def _eval_is_imaginary(self):
z = self.is_zero
if z:
return False
elif z is False:
return self._eval_real_imag(False)
def _eval_is_hermitian(self):
return self._eval_herm_antiherm(True)
def _eval_herm_antiherm(self, real):
one_nc = zero = one_neither = False
for t in self.args:
if not t.is_commutative:
if one_nc:
return
one_nc = True
if t.is_antihermitian:
real = not real
elif t.is_hermitian:
if not zero:
z = t.is_zero
if not z and zero is False:
zero = z
elif z:
if all(a.is_finite for a in self.args):
return True
return
elif t.is_hermitian is False:
if one_neither:
return
one_neither = True
else:
return
if one_neither:
if real:
return zero
elif zero is False or real:
return real
def _eval_is_antihermitian(self):
z = self.is_zero
if z:
return False
elif z is False:
return self._eval_herm_antiherm(False)
def _eval_is_irrational(self):
for t in self.args:
a = t.is_irrational
if a:
others = list(self.args)
others.remove(t)
if all((x.is_rational and fuzzy_not(x.is_zero)) is True for x in others):
return True
return
if a is None:
return
return False
def _eval_is_positive(self):
"""Return True if self is positive, False if not, and None if it
cannot be determined.
This algorithm is non-recursive and works by keeping track of the
sign which changes when a negative or nonpositive is encountered.
Whether a nonpositive or nonnegative is seen is also tracked since
the presence of these makes it impossible to return True, but
possible to return False if the end result is nonpositive. e.g.
pos * neg * nonpositive -> pos or zero -> None is returned
pos * neg * nonnegative -> neg or zero -> False is returned
"""
return self._eval_pos_neg(1)
def _eval_pos_neg(self, sign):
saw_NON = saw_NOT = False
for t in self.args:
if t.is_positive:
continue
elif t.is_negative:
sign = -sign
elif t.is_zero:
if all(a.is_finite for a in self.args):
return False
return
elif t.is_nonpositive:
sign = -sign
saw_NON = True
elif t.is_nonnegative:
saw_NON = True
elif t.is_positive is False:
sign = -sign
if saw_NOT:
return
saw_NOT = True
elif t.is_negative is False:
if saw_NOT:
return
saw_NOT = True
else:
return
if sign == 1 and saw_NON is False and saw_NOT is False:
return True
if sign < 0:
return False
def _eval_is_negative(self):
if self.args[0] == -1:
return (-self).is_positive # remove -1
return self._eval_pos_neg(-1)
def _eval_is_odd(self):
is_integer = self.is_integer
if is_integer:
r, acc = True, 1
for t in self.args:
if not t.is_integer:
return None
elif t.is_even:
r = False
elif t.is_integer:
if r is False:
pass
elif acc != 1 and (acc + t).is_odd:
r = False
elif t.is_odd is None:
r = None
acc = t
return r
# !integer -> !odd
elif is_integer is False:
return False
def _eval_is_even(self):
is_integer = self.is_integer
if is_integer:
return fuzzy_not(self.is_odd)
elif is_integer is False:
return False
def _eval_is_composite(self):
if self.is_integer and self.is_positive:
"""
Here we count the number of arguments that have a minimum value
greater than two.
If there are more than one of such a symbol then the result is composite.
Else, the result cannot be determined.
"""
number_of_args = 0 # count of symbols with minimum value greater than one
for arg in self.args:
if (arg-1).is_positive:
number_of_args += 1
if number_of_args > 1:
return True
def _eval_subs(self, old, new):
from sympy.functions.elementary.complexes import sign
from sympy.ntheory.factor_ import multiplicity
from sympy.simplify.powsimp import powdenest
from sympy.simplify.radsimp import fraction
if not old.is_Mul:
return None
# try keep replacement literal so -2*x doesn't replace 4*x
if old.args[0].is_Number and old.args[0] < 0:
if self.args[0].is_Number:
if self.args[0] < 0:
return self._subs(-old, -new)
return None
def base_exp(a):
# if I and -1 are in a Mul, they get both end up with
# a -1 base (see issue 6421); all we want here are the
# true Pow or exp separated into base and exponent
from sympy import exp
if a.is_Pow or isinstance(a, exp):
return a.as_base_exp()
return a, S.One
def breakup(eq):
"""break up powers of eq when treated as a Mul:
b**(Rational*e) -> b**e, Rational
commutatives come back as a dictionary {b**e: Rational}
noncommutatives come back as a list [(b**e, Rational)]
"""
(c, nc) = (defaultdict(int), list())
for a in Mul.make_args(eq):
a = powdenest(a)
(b, e) = base_exp(a)
if e is not S.One:
(co, _) = e.as_coeff_mul()
b = Pow(b, e/co)
e = co
if a.is_commutative:
c[b] += e
else:
nc.append([b, e])
return (c, nc)
def rejoin(b, co):
"""
Put rational back with exponent; in general this is not ok, but
since we took it from the exponent for analysis, it's ok to put
it back.
"""
(b, e) = base_exp(b)
return Pow(b, e*co)
def ndiv(a, b):
"""if b divides a in an extractive way (like 1/4 divides 1/2
but not vice versa, and 2/5 does not divide 1/3) then return
the integer number of times it divides, else return 0.
"""
if not b.q % a.q or not a.q % b.q:
return int(a/b)
return 0
# give Muls in the denominator a chance to be changed (see issue 5651)
# rv will be the default return value
rv = None
n, d = fraction(self)
self2 = self
if d is not S.One:
self2 = n._subs(old, new)/d._subs(old, new)
if not self2.is_Mul:
return self2._subs(old, new)
if self2 != self:
rv = self2
# Now continue with regular substitution.
# handle the leading coefficient and use it to decide if anything
# should even be started; we always know where to find the Rational
# so it's a quick test
co_self = self2.args[0]
co_old = old.args[0]
co_xmul = None
if co_old.is_Rational and co_self.is_Rational:
# if coeffs are the same there will be no updating to do
# below after breakup() step; so skip (and keep co_xmul=None)
if co_old != co_self:
co_xmul = co_self.extract_multiplicatively(co_old)
elif co_old.is_Rational:
return rv
# break self and old into factors
(c, nc) = breakup(self2)
(old_c, old_nc) = breakup(old)
# update the coefficients if we had an extraction
# e.g. if co_self were 2*(3/35*x)**2 and co_old = 3/5
# then co_self in c is replaced by (3/5)**2 and co_residual
# is 2*(1/7)**2
if co_xmul and co_xmul.is_Rational and abs(co_old) != 1:
mult = S(multiplicity(abs(co_old), co_self))
c.pop(co_self)
if co_old in c:
c[co_old] += mult
else:
c[co_old] = mult
co_residual = co_self/co_old**mult
else:
co_residual = 1
# do quick tests to see if we can't succeed
ok = True
if len(old_nc) > len(nc):
# more non-commutative terms
ok = False
elif len(old_c) > len(c):
# more commutative terms
ok = False
elif set(i[0] for i in old_nc).difference(set(i[0] for i in nc)):
# unmatched non-commutative bases
ok = False
elif set(old_c).difference(set(c)):
# unmatched commutative terms
ok = False
elif any(sign(c[b]) != sign(old_c[b]) for b in old_c):
# differences in sign
ok = False
if not ok:
return rv
if not old_c:
cdid = None
else:
rat = []
for (b, old_e) in old_c.items():
c_e = c[b]
rat.append(ndiv(c_e, old_e))
if not rat[-1]:
return rv
cdid = min(rat)
if not old_nc:
ncdid = None
for i in range(len(nc)):
nc[i] = rejoin(*nc[i])
else:
ncdid = 0 # number of nc replacements we did
take = len(old_nc) # how much to look at each time
limit = cdid or S.Infinity # max number that we can take
failed = [] # failed terms will need subs if other terms pass
i = 0
while limit and i + take <= len(nc):
hit = False
# the bases must be equivalent in succession, and
# the powers must be extractively compatible on the
# first and last factor but equal in between.
rat = []
for j in range(take):
if nc[i + j][0] != old_nc[j][0]:
break
elif j == 0:
rat.append(ndiv(nc[i + j][1], old_nc[j][1]))
elif j == take - 1:
rat.append(ndiv(nc[i + j][1], old_nc[j][1]))
elif nc[i + j][1] != old_nc[j][1]:
break
else:
rat.append(1)
j += 1
else:
ndo = min(rat)
if ndo:
if take == 1:
if cdid:
ndo = min(cdid, ndo)
nc[i] = Pow(new, ndo)*rejoin(nc[i][0],
nc[i][1] - ndo*old_nc[0][1])
else:
ndo = 1
# the left residual
l = rejoin(nc[i][0], nc[i][1] - ndo*
old_nc[0][1])
# eliminate all middle terms
mid = new
# the right residual (which may be the same as the middle if take == 2)
ir = i + take - 1
r = (nc[ir][0], nc[ir][1] - ndo*
old_nc[-1][1])
if r[1]:
if i + take < len(nc):
nc[i:i + take] = [l*mid, r]
else:
r = rejoin(*r)
nc[i:i + take] = [l*mid*r]
else:
# there was nothing left on the right
nc[i:i + take] = [l*mid]
limit -= ndo
ncdid += ndo
hit = True
if not hit:
# do the subs on this failing factor
failed.append(i)
i += 1
else:
if not ncdid:
return rv
# although we didn't fail, certain nc terms may have
# failed so we rebuild them after attempting a partial
# subs on them
failed.extend(range(i, len(nc)))
for i in failed:
nc[i] = rejoin(*nc[i]).subs(old, new)
# rebuild the expression
if cdid is None:
do = ncdid
elif ncdid is None:
do = cdid
else:
do = min(ncdid, cdid)
margs = []
for b in c:
if b in old_c:
# calculate the new exponent
e = c[b] - old_c[b]*do
margs.append(rejoin(b, e))
else:
margs.append(rejoin(b.subs(old, new), c[b]))
if cdid and not ncdid:
# in case we are replacing commutative with non-commutative,
# we want the new term to come at the front just like the
# rest of this routine
margs = [Pow(new, cdid)] + margs
return co_residual*self2.func(*margs)*self2.func(*nc)
def _eval_nseries(self, x, n, logx):
from sympy import Order, powsimp
terms = [t.nseries(x, n=n, logx=logx) for t in self.args]
res = powsimp(self.func(*terms).expand(), combine='exp', deep=True)
if res.has(Order):
res += Order(x**n, x)
return res
def _eval_as_leading_term(self, x):
return self.func(*[t.as_leading_term(x) for t in self.args])
def _eval_conjugate(self):
return self.func(*[t.conjugate() for t in self.args])
def _eval_transpose(self):
return self.func(*[t.transpose() for t in self.args[::-1]])
def _eval_adjoint(self):
return self.func(*[t.adjoint() for t in self.args[::-1]])
def _sage_(self):
s = 1
for x in self.args:
s *= x._sage_()
return s
def as_content_primitive(self, radical=False, clear=True):
"""Return the tuple (R, self/R) where R is the positive Rational
extracted from self.
Examples
========
>>> from sympy import sqrt
>>> (-3*sqrt(2)*(2 - 2*sqrt(2))).as_content_primitive()
(6, -sqrt(2)*(1 - sqrt(2)))
See docstring of Expr.as_content_primitive for more examples.
"""
coef = S.One
args = []
for i, a in enumerate(self.args):
c, p = a.as_content_primitive(radical=radical, clear=clear)
coef *= c
if p is not S.One:
args.append(p)
# don't use self._from_args here to reconstruct args
# since there may be identical args now that should be combined
# e.g. (2+2*x)*(3+3*x) should be (6, (1 + x)**2) not (6, (1+x)*(1+x))
return coef, self.func(*args)
def as_ordered_factors(self, order=None):
"""Transform an expression into an ordered list of factors.
Examples
========
>>> from sympy import sin, cos
>>> from sympy.abc import x, y
>>> (2*x*y*sin(x)*cos(x)).as_ordered_factors()
[2, x, y, sin(x), cos(x)]
"""
cpart, ncpart = self.args_cnc()
cpart.sort(key=lambda expr: expr.sort_key(order=order))
return cpart + ncpart
@property
def _sorted_args(self):
return tuple(self.as_ordered_factors())
def prod(a, start=1):
"""Return product of elements of a. Start with int 1 so if only
ints are included then an int result is returned.
Examples
========
>>> from sympy import prod, S
>>> prod(range(3))
0
>>> type(_) is int
True
>>> prod([S(2), 3])
6
>>> _.is_Integer
True
You can start the product at something other than 1:
>>> prod([1, 2], 3)
6
"""
return reduce(operator.mul, a, start)
def _keep_coeff(coeff, factors, clear=True, sign=False):
"""Return ``coeff*factors`` unevaluated if necessary.
If ``clear`` is False, do not keep the coefficient as a factor
if it can be distributed on a single factor such that one or
more terms will still have integer coefficients.
If ``sign`` is True, allow a coefficient of -1 to remain factored out.
Examples
========
>>> from sympy.core.mul import _keep_coeff
>>> from sympy.abc import x, y
>>> from sympy import S
>>> _keep_coeff(S.Half, x + 2)
(x + 2)/2
>>> _keep_coeff(S.Half, x + 2, clear=False)
x/2 + 1
>>> _keep_coeff(S.Half, (x + 2)*y, clear=False)
y*(x + 2)/2
>>> _keep_coeff(S(-1), x + y)
-x - y
>>> _keep_coeff(S(-1), x + y, sign=True)
-(x + y)
"""
if not coeff.is_Number:
if factors.is_Number:
factors, coeff = coeff, factors
else:
return coeff*factors
if coeff is S.One:
return factors
elif coeff is S.NegativeOne and not sign:
return -factors
elif factors.is_Add:
if not clear and coeff.is_Rational and coeff.q != 1:
q = S(coeff.q)
for i in factors.args:
c, t = i.as_coeff_Mul()
r = c/q
if r == int(r):
return coeff*factors
return Mul(coeff, factors, evaluate=False)
elif factors.is_Mul:
margs = list(factors.args)
if margs[0].is_Number:
margs[0] *= coeff
if margs[0] == 1:
margs.pop(0)
else:
margs.insert(0, coeff)
return Mul._from_args(margs)
else:
return coeff*factors
def expand_2arg(e):
from sympy.simplify.simplify import bottom_up
def do(e):
if e.is_Mul:
c, r = e.as_coeff_Mul()
if c.is_Number and r.is_Add:
return _unevaluated_Add(*[c*ri for ri in r.args])
return e
return bottom_up(e, do)
from .numbers import Rational
from .power import Pow
from .add import Add, _addsort, _unevaluated_Add
|
805f00cb6498cff88f0b64f89715f3f9b98ed675563edf65b1cb841ece105680
|
"""Power series evaluation and manipulation using sparse Polynomials
Implementing a new function
---------------------------
There are a few things to be kept in mind when adding a new function here::
- The implementation should work on all possible input domains/rings.
Special cases include the ``EX`` ring and a constant term in the series
to be expanded. There can be two types of constant terms in the series:
+ A constant value or symbol.
+ A term of a multivariate series not involving the generator, with
respect to which the series is to expanded.
Strictly speaking, a generator of a ring should not be considered a
constant. However, for series expansion both the cases need similar
treatment (as the user doesn't care about inner details), i.e, use an
addition formula to separate the constant part and the variable part (see
rs_sin for reference).
- All the algorithms used here are primarily designed to work for Taylor
series (number of iterations in the algo equals the required order).
Hence, it becomes tricky to get the series of the right order if a
Puiseux series is input. Use rs_puiseux? in your function if your
algorithm is not designed to handle fractional powers.
Extending rs_series
-------------------
To make a function work with rs_series you need to do two things::
- Many sure it works with a constant term (as explained above).
- If the series contains constant terms, you might need to extend its ring.
You do so by adding the new terms to the rings as generators.
``PolyRing.compose`` and ``PolyRing.add_gens`` are two functions that do
so and need to be called every time you expand a series containing a
constant term.
Look at rs_sin and rs_series for further reference.
"""
from sympy.polys.domains import QQ, EX
from sympy.polys.rings import PolyElement, ring, sring
from sympy.polys.polyerrors import DomainError
from sympy.polys.monomials import (monomial_min, monomial_mul, monomial_div,
monomial_ldiv)
from mpmath.libmp.libintmath import ifac
from sympy.core import PoleError, Function, Expr
from sympy.core.numbers import Rational, igcd
from sympy.core.compatibility import as_int, range, string_types
from sympy.functions import sin, cos, tan, atan, exp, atanh, tanh, log, ceiling
from mpmath.libmp.libintmath import giant_steps
import math
def _invert_monoms(p1):
"""
Compute ``x**n * p1(1/x)`` for a univariate polynomial ``p1`` in ``x``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import _invert_monoms
>>> R, x = ring('x', ZZ)
>>> p = x**2 + 2*x + 3
>>> _invert_monoms(p)
3*x**2 + 2*x + 1
See Also
========
sympy.polys.densebasic.dup_reverse
"""
terms = list(p1.items())
terms.sort()
deg = p1.degree()
R = p1.ring
p = R.zero
cv = p1.listcoeffs()
mv = p1.listmonoms()
for i in range(len(mv)):
p[(deg - mv[i][0],)] = cv[i]
return p
def _giant_steps(target):
"""Return a list of precision steps for the Newton's method"""
res = giant_steps(2, target)
if res[0] != 2:
res = [2] + res
return res
def rs_trunc(p1, x, prec):
"""
Truncate the series in the ``x`` variable with precision ``prec``,
that is, modulo ``O(x**prec)``
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_trunc
>>> R, x = ring('x', QQ)
>>> p = x**10 + x**5 + x + 1
>>> rs_trunc(p, x, 12)
x**10 + x**5 + x + 1
>>> rs_trunc(p, x, 10)
x**5 + x + 1
"""
R = p1.ring
p = R.zero
i = R.gens.index(x)
for exp1 in p1:
if exp1[i] >= prec:
continue
p[exp1] = p1[exp1]
return p
def rs_is_puiseux(p, x):
"""
Test if ``p`` is Puiseux series in ``x``.
Raise an exception if it has a negative power in ``x``.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_is_puiseux
>>> R, x = ring('x', QQ)
>>> p = x**QQ(2,5) + x**QQ(2,3) + x
>>> rs_is_puiseux(p, x)
True
"""
index = p.ring.gens.index(x)
for k in p:
if k[index] != int(k[index]):
return True
if k[index] < 0:
raise ValueError('The series is not regular in %s' % x)
return False
def rs_puiseux(f, p, x, prec):
"""
Return the puiseux series for `f(p, x, prec)`.
To be used when function ``f`` is implemented only for regular series.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_puiseux, rs_exp
>>> R, x = ring('x', QQ)
>>> p = x**QQ(2,5) + x**QQ(2,3) + x
>>> rs_puiseux(rs_exp,p, x, 1)
1/2*x**(4/5) + x**(2/3) + x**(2/5) + 1
"""
index = p.ring.gens.index(x)
n = 1
for k in p:
power = k[index]
if isinstance(power, Rational):
num, den = power.as_numer_denom()
n = int(n*den // igcd(n, den))
elif power != int(power):
den = power.denominator
n = int(n*den // igcd(n, den))
if n != 1:
p1 = pow_xin(p, index, n)
r = f(p1, x, prec*n)
n1 = QQ(1, n)
if isinstance(r, tuple):
r = tuple([pow_xin(rx, index, n1) for rx in r])
else:
r = pow_xin(r, index, n1)
else:
r = f(p, x, prec)
return r
def rs_puiseux2(f, p, q, x, prec):
"""
Return the puiseux series for `f(p, q, x, prec)`.
To be used when function ``f`` is implemented only for regular series.
"""
index = p.ring.gens.index(x)
n = 1
for k in p:
power = k[index]
if isinstance(power, Rational):
num, den = power.as_numer_denom()
n = n*den // igcd(n, den)
elif power != int(power):
den = power.denominator
n = n*den // igcd(n, den)
if n != 1:
p1 = pow_xin(p, index, n)
r = f(p1, q, x, prec*n)
n1 = QQ(1, n)
r = pow_xin(r, index, n1)
else:
r = f(p, q, x, prec)
return r
def rs_mul(p1, p2, x, prec):
"""
Return the product of the given two series, modulo ``O(x**prec)``.
``x`` is the series variable or its position in the generators.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_mul
>>> R, x = ring('x', QQ)
>>> p1 = x**2 + 2*x + 1
>>> p2 = x + 1
>>> rs_mul(p1, p2, x, 3)
3*x**2 + 3*x + 1
"""
R = p1.ring
p = R.zero
if R.__class__ != p2.ring.__class__ or R != p2.ring:
raise ValueError('p1 and p2 must have the same ring')
iv = R.gens.index(x)
if not isinstance(p2, PolyElement):
raise ValueError('p1 and p2 must have the same ring')
if R == p2.ring:
get = p.get
items2 = list(p2.items())
items2.sort(key=lambda e: e[0][iv])
if R.ngens == 1:
for exp1, v1 in p1.items():
for exp2, v2 in items2:
exp = exp1[0] + exp2[0]
if exp < prec:
exp = (exp, )
p[exp] = get(exp, 0) + v1*v2
else:
break
else:
monomial_mul = R.monomial_mul
for exp1, v1 in p1.items():
for exp2, v2 in items2:
if exp1[iv] + exp2[iv] < prec:
exp = monomial_mul(exp1, exp2)
p[exp] = get(exp, 0) + v1*v2
else:
break
p.strip_zero()
return p
def rs_square(p1, x, prec):
"""
Square the series modulo ``O(x**prec)``
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_square
>>> R, x = ring('x', QQ)
>>> p = x**2 + 2*x + 1
>>> rs_square(p, x, 3)
6*x**2 + 4*x + 1
"""
R = p1.ring
p = R.zero
iv = R.gens.index(x)
get = p.get
items = list(p1.items())
items.sort(key=lambda e: e[0][iv])
monomial_mul = R.monomial_mul
for i in range(len(items)):
exp1, v1 = items[i]
for j in range(i):
exp2, v2 = items[j]
if exp1[iv] + exp2[iv] < prec:
exp = monomial_mul(exp1, exp2)
p[exp] = get(exp, 0) + v1*v2
else:
break
p = p.imul_num(2)
get = p.get
for expv, v in p1.items():
if 2*expv[iv] < prec:
e2 = monomial_mul(expv, expv)
p[e2] = get(e2, 0) + v**2
p.strip_zero()
return p
def rs_pow(p1, n, x, prec):
"""
Return ``p1**n`` modulo ``O(x**prec)``
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_pow
>>> R, x = ring('x', QQ)
>>> p = x + 1
>>> rs_pow(p, 4, x, 3)
6*x**2 + 4*x + 1
"""
R = p1.ring
if isinstance(n, Rational):
np = int(n.p)
nq = int(n.q)
if nq != 1:
res = rs_nth_root(p1, nq, x, prec)
if np != 1:
res = rs_pow(res, np, x, prec)
else:
res = rs_pow(p1, np, x, prec)
return res
n = as_int(n)
if n == 0:
if p1:
return R(1)
else:
raise ValueError('0**0 is undefined')
if n < 0:
p1 = rs_pow(p1, -n, x, prec)
return rs_series_inversion(p1, x, prec)
if n == 1:
return rs_trunc(p1, x, prec)
if n == 2:
return rs_square(p1, x, prec)
if n == 3:
p2 = rs_square(p1, x, prec)
return rs_mul(p1, p2, x, prec)
p = R(1)
while 1:
if n & 1:
p = rs_mul(p1, p, x, prec)
n -= 1
if not n:
break
p1 = rs_square(p1, x, prec)
n = n // 2
return p
def rs_subs(p, rules, x, prec):
"""
Substitution with truncation according to the mapping in ``rules``.
Return a series with precision ``prec`` in the generator ``x``
Note that substitutions are not done one after the other
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_subs
>>> R, x, y = ring('x, y', QQ)
>>> p = x**2 + y**2
>>> rs_subs(p, {x: x+ y, y: x+ 2*y}, x, 3)
2*x**2 + 6*x*y + 5*y**2
>>> (x + y)**2 + (x + 2*y)**2
2*x**2 + 6*x*y + 5*y**2
which differs from
>>> rs_subs(rs_subs(p, {x: x+ y}, x, 3), {y: x+ 2*y}, x, 3)
5*x**2 + 12*x*y + 8*y**2
Parameters
----------
p : :class:`PolyElement` Input series.
rules : :class:`dict` with substitution mappings.
x : :class:`PolyElement` in which the series truncation is to be done.
prec : :class:`Integer` order of the series after truncation.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_subs
>>> R, x, y = ring('x, y', QQ)
>>> rs_subs(x**2+y**2, {y: (x+y)**2}, x, 3)
6*x**2*y**2 + x**2 + 4*x*y**3 + y**4
"""
R = p.ring
ngens = R.ngens
d = R(0)
for i in range(ngens):
d[(i, 1)] = R.gens[i]
for var in rules:
d[(R.index(var), 1)] = rules[var]
p1 = R(0)
p_keys = sorted(p.keys())
for expv in p_keys:
p2 = R(1)
for i in range(ngens):
power = expv[i]
if power == 0:
continue
if (i, power) not in d:
q, r = divmod(power, 2)
if r == 0 and (i, q) in d:
d[(i, power)] = rs_square(d[(i, q)], x, prec)
elif (i, power - 1) in d:
d[(i, power)] = rs_mul(d[(i, power - 1)], d[(i, 1)],
x, prec)
else:
d[(i, power)] = rs_pow(d[(i, 1)], power, x, prec)
p2 = rs_mul(p2, d[(i, power)], x, prec)
p1 += p2*p[expv]
return p1
def _has_constant_term(p, x):
"""
Check if ``p`` has a constant term in ``x``
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import _has_constant_term
>>> R, x = ring('x', QQ)
>>> p = x**2 + x + 1
>>> _has_constant_term(p, x)
True
"""
R = p.ring
iv = R.gens.index(x)
zm = R.zero_monom
a = [0]*R.ngens
a[iv] = 1
miv = tuple(a)
for expv in p:
if monomial_min(expv, miv) == zm:
return True
return False
def _get_constant_term(p, x):
"""Return constant term in p with respect to x
Note that it is not simply `p[R.zero_monom]` as there might be multiple
generators in the ring R. We want the `x`-free term which can contain other
generators.
"""
R = p.ring
zm = R.zero_monom
i = R.gens.index(x)
zm = R.zero_monom
a = [0]*R.ngens
a[i] = 1
miv = tuple(a)
c = 0
for expv in p:
if monomial_min(expv, miv) == zm:
c += R({expv: p[expv]})
return c
def _check_series_var(p, x, name):
index = p.ring.gens.index(x)
m = min(p, key=lambda k: k[index])[index]
if m < 0:
raise PoleError("Asymptotic expansion of %s around [oo] not "
"implemented." % name)
return index, m
def _series_inversion1(p, x, prec):
"""
Univariate series inversion ``1/p`` modulo ``O(x**prec)``.
The Newton method is used.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import _series_inversion1
>>> R, x = ring('x', QQ)
>>> p = x + 1
>>> _series_inversion1(p, x, 4)
-x**3 + x**2 - x + 1
"""
if rs_is_puiseux(p, x):
return rs_puiseux(_series_inversion1, p, x, prec)
R = p.ring
zm = R.zero_monom
c = p[zm]
# giant_steps does not seem to work with PythonRational numbers with 1 as
# denominator. This makes sure such a number is converted to integer.
if prec == int(prec):
prec = int(prec)
if zm not in p:
raise ValueError("No constant term in series")
if _has_constant_term(p - c, x):
raise ValueError("p cannot contain a constant term depending on "
"parameters")
one = R(1)
if R.domain is EX:
one = 1
if c != one:
# TODO add check that it is a unit
p1 = R(1)/c
else:
p1 = R(1)
for precx in _giant_steps(prec):
t = 1 - rs_mul(p1, p, x, precx)
p1 = p1 + rs_mul(p1, t, x, precx)
return p1
def rs_series_inversion(p, x, prec):
"""
Multivariate series inversion ``1/p`` modulo ``O(x**prec)``.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_series_inversion
>>> R, x, y = ring('x, y', QQ)
>>> rs_series_inversion(1 + x*y**2, x, 4)
-x**3*y**6 + x**2*y**4 - x*y**2 + 1
>>> rs_series_inversion(1 + x*y**2, y, 4)
-x*y**2 + 1
>>> rs_series_inversion(x + x**2, x, 4)
x**3 - x**2 + x - 1 + x**(-1)
"""
R = p.ring
if p == R.zero:
raise ZeroDivisionError
zm = R.zero_monom
index = R.gens.index(x)
m = min(p, key=lambda k: k[index])[index]
if m:
p = mul_xin(p, index, -m)
prec = prec + m
if zm not in p:
raise NotImplementedError("No constant term in series")
if _has_constant_term(p - p[zm], x):
raise NotImplementedError("p - p[0] must not have a constant term in "
"the series variables")
r = _series_inversion1(p, x, prec)
if m != 0:
r = mul_xin(r, index, -m)
return r
def _coefficient_t(p, t):
r"""Coefficient of `x\_i**j` in p, where ``t`` = (i, j)"""
i, j = t
R = p.ring
expv1 = [0]*R.ngens
expv1[i] = j
expv1 = tuple(expv1)
p1 = R(0)
for expv in p:
if expv[i] == j:
p1[monomial_div(expv, expv1)] = p[expv]
return p1
def rs_series_reversion(p, x, n, y):
r"""
Reversion of a series.
``p`` is a series with ``O(x**n)`` of the form `p = a*x + f(x)`
where `a` is a number different from 0.
`f(x) = sum( a\_k*x\_k, k in range(2, n))`
a_k : Can depend polynomially on other variables, not indicated.
x : Variable with name x.
y : Variable with name y.
Solve `p = y`, that is, given `a*x + f(x) - y = 0`,
find the solution x = r(y) up to O(y**n)
Algorithm:
If `r\_i` is the solution at order i, then:
`a*r\_i + f(r\_i) - y = O(y**(i + 1))`
and if r_(i + 1) is the solution at order i + 1, then:
`a*r\_(i + 1) + f(r\_(i + 1)) - y = O(y**(i + 2))`
We have, r_(i + 1) = r_i + e, such that,
`a*e + f(r\_i) = O(y**(i + 2))`
or `e = -f(r\_i)/a`
So we use the recursion relation:
`r\_(i + 1) = r\_i - f(r\_i)/a`
with the boundary condition: `r\_1 = y`
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_series_reversion, rs_trunc
>>> R, x, y, a, b = ring('x, y, a, b', QQ)
>>> p = x - x**2 - 2*b*x**2 + 2*a*b*x**2
>>> p1 = rs_series_reversion(p, x, 3, y); p1
-2*y**2*a*b + 2*y**2*b + y**2 + y
>>> rs_trunc(p.compose(x, p1), y, 3)
y
"""
if rs_is_puiseux(p, x):
raise NotImplementedError
R = p.ring
nx = R.gens.index(x)
y = R(y)
ny = R.gens.index(y)
if _has_constant_term(p, x):
raise ValueError("p must not contain a constant term in the series "
"variable")
a = _coefficient_t(p, (nx, 1))
zm = R.zero_monom
assert zm in a and len(a) == 1
a = a[zm]
r = y/a
for i in range(2, n):
sp = rs_subs(p, {x: r}, y, i + 1)
sp = _coefficient_t(sp, (ny, i))*y**i
r -= sp/a
return r
def rs_series_from_list(p, c, x, prec, concur=1):
"""
Return a series `sum c[n]*p**n` modulo `O(x**prec)`.
It reduces the number of multiplications by summing concurrently.
`ax = [1, p, p**2, .., p**(J - 1)]`
`s = sum(c[i]*ax[i]` for i in `range(r, (r + 1)*J))*p**((K - 1)*J)`
with `K >= (n + 1)/J`
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_series_from_list, rs_trunc
>>> R, x = ring('x', QQ)
>>> p = x**2 + x + 1
>>> c = [1, 2, 3]
>>> rs_series_from_list(p, c, x, 4)
6*x**3 + 11*x**2 + 8*x + 6
>>> rs_trunc(1 + 2*p + 3*p**2, x, 4)
6*x**3 + 11*x**2 + 8*x + 6
>>> pc = R.from_list(list(reversed(c)))
>>> rs_trunc(pc.compose(x, p), x, 4)
6*x**3 + 11*x**2 + 8*x + 6
See Also
========
sympy.polys.ring.compose
"""
R = p.ring
n = len(c)
if not concur:
q = R(1)
s = c[0]*q
for i in range(1, n):
q = rs_mul(q, p, x, prec)
s += c[i]*q
return s
J = int(math.sqrt(n) + 1)
K, r = divmod(n, J)
if r:
K += 1
ax = [R(1)]
q = R(1)
if len(p) < 20:
for i in range(1, J):
q = rs_mul(q, p, x, prec)
ax.append(q)
else:
for i in range(1, J):
if i % 2 == 0:
q = rs_square(ax[i//2], x, prec)
else:
q = rs_mul(q, p, x, prec)
ax.append(q)
# optimize using rs_square
pj = rs_mul(ax[-1], p, x, prec)
b = R(1)
s = R(0)
for k in range(K - 1):
r = J*k
s1 = c[r]
for j in range(1, J):
s1 += c[r + j]*ax[j]
s1 = rs_mul(s1, b, x, prec)
s += s1
b = rs_mul(b, pj, x, prec)
if not b:
break
k = K - 1
r = J*k
if r < n:
s1 = c[r]*R(1)
for j in range(1, J):
if r + j >= n:
break
s1 += c[r + j]*ax[j]
s1 = rs_mul(s1, b, x, prec)
s += s1
return s
def rs_diff(p, x):
"""
Return partial derivative of ``p`` with respect to ``x``.
Parameters
==========
x : :class:`PolyElement` with respect to which ``p`` is differentiated.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_diff
>>> R, x, y = ring('x, y', QQ)
>>> p = x + x**2*y**3
>>> rs_diff(p, x)
2*x*y**3 + 1
"""
R = p.ring
n = R.gens.index(x)
p1 = R.zero
mn = [0]*R.ngens
mn[n] = 1
mn = tuple(mn)
for expv in p:
if expv[n]:
e = monomial_ldiv(expv, mn)
p1[e] = R.domain_new(p[expv]*expv[n])
return p1
def rs_integrate(p, x):
"""
Integrate ``p`` with respect to ``x``.
Parameters
==========
x : :class:`PolyElement` with respect to which ``p`` is integrated.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_integrate
>>> R, x, y = ring('x, y', QQ)
>>> p = x + x**2*y**3
>>> rs_integrate(p, x)
1/3*x**3*y**3 + 1/2*x**2
"""
R = p.ring
p1 = R.zero
n = R.gens.index(x)
mn = [0]*R.ngens
mn[n] = 1
mn = tuple(mn)
for expv in p:
e = monomial_mul(expv, mn)
p1[e] = R.domain_new(p[expv]/(expv[n] + 1))
return p1
def rs_fun(p, f, *args):
r"""
Function of a multivariate series computed by substitution.
The case with f method name is used to compute `rs\_tan` and `rs\_nth\_root`
of a multivariate series:
`rs\_fun(p, tan, iv, prec)`
tan series is first computed for a dummy variable _x,
i.e, `rs\_tan(\_x, iv, prec)`. Then we substitute _x with p to get the
desired series
Parameters
==========
p : :class:`PolyElement` The multivariate series to be expanded.
f : `ring\_series` function to be applied on `p`.
args[-2] : :class:`PolyElement` with respect to which, the series is to be expanded.
args[-1] : Required order of the expanded series.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_fun, _tan1
>>> R, x, y = ring('x, y', QQ)
>>> p = x + x*y + x**2*y + x**3*y**2
>>> rs_fun(p, _tan1, x, 4)
1/3*x**3*y**3 + 2*x**3*y**2 + x**3*y + 1/3*x**3 + x**2*y + x*y + x
"""
_R = p.ring
R1, _x = ring('_x', _R.domain)
h = int(args[-1])
args1 = args[:-2] + (_x, h)
zm = _R.zero_monom
# separate the constant term of the series
# compute the univariate series f(_x, .., 'x', sum(nv))
if zm in p:
x1 = _x + p[zm]
p1 = p - p[zm]
else:
x1 = _x
p1 = p
if isinstance(f, string_types):
q = getattr(x1, f)(*args1)
else:
q = f(x1, *args1)
a = sorted(q.items())
c = [0]*h
for x in a:
c[x[0][0]] = x[1]
p1 = rs_series_from_list(p1, c, args[-2], args[-1])
return p1
def mul_xin(p, i, n):
r"""
Return `p*x_i**n`.
`x\_i` is the ith variable in ``p``.
"""
R = p.ring
q = R(0)
for k, v in p.items():
k1 = list(k)
k1[i] += n
q[tuple(k1)] = v
return q
def pow_xin(p, i, n):
"""
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import pow_xin
>>> R, x, y = ring('x, y', QQ)
>>> p = x**QQ(2,5) + x + x**QQ(2,3)
>>> index = p.ring.gens.index(x)
>>> pow_xin(p, index, 15)
x**15 + x**10 + x**6
"""
R = p.ring
q = R(0)
for k, v in p.items():
k1 = list(k)
k1[i] *= n
q[tuple(k1)] = v
return q
def _nth_root1(p, n, x, prec):
"""
Univariate series expansion of the nth root of ``p``.
The Newton method is used.
"""
if rs_is_puiseux(p, x):
return rs_puiseux2(_nth_root1, p, n, x, prec)
R = p.ring
zm = R.zero_monom
if zm not in p:
raise NotImplementedError('No constant term in series')
n = as_int(n)
assert p[zm] == 1
p1 = R(1)
if p == 1:
return p
if n == 0:
return R(1)
if n == 1:
return p
if n < 0:
n = -n
sign = 1
else:
sign = 0
for precx in _giant_steps(prec):
tmp = rs_pow(p1, n + 1, x, precx)
tmp = rs_mul(tmp, p, x, precx)
p1 += p1/n - tmp/n
if sign:
return p1
else:
return _series_inversion1(p1, x, prec)
def rs_nth_root(p, n, x, prec):
"""
Multivariate series expansion of the nth root of ``p``.
Parameters
==========
p : Expr
The polynomial to computer the root of.
n : integer
The order of the root to be computed.
x : :class:`PolyElement`
prec : integer
Order of the expanded series.
Notes
=====
The result of this function is dependent on the ring over which the
polynomial has been defined. If the answer involves a root of a constant,
make sure that the polynomial is over a real field. It can not yet handle
roots of symbols.
Examples
========
>>> from sympy.polys.domains import QQ, RR
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_nth_root
>>> R, x, y = ring('x, y', QQ)
>>> rs_nth_root(1 + x + x*y, -3, x, 3)
2/9*x**2*y**2 + 4/9*x**2*y + 2/9*x**2 - 1/3*x*y - 1/3*x + 1
>>> R, x, y = ring('x, y', RR)
>>> rs_nth_root(3 + x + x*y, 3, x, 2)
0.160249952256379*x*y + 0.160249952256379*x + 1.44224957030741
"""
p0 = p
n0 = n
if n == 0:
if p == 0:
raise ValueError('0**0 expression')
else:
return p.ring(1)
if n == 1:
return rs_trunc(p, x, prec)
R = p.ring
zm = R.zero_monom
index = R.gens.index(x)
m = min(p, key=lambda k: k[index])[index]
p = mul_xin(p, index, -m)
prec -= m
if _has_constant_term(p - 1, x):
zm = R.zero_monom
c = p[zm]
if R.domain is EX:
c_expr = c.as_expr()
const = c_expr**QQ(1, n)
elif isinstance(c, PolyElement):
try:
c_expr = c.as_expr()
const = R(c_expr**(QQ(1, n)))
except ValueError:
raise DomainError("The given series can't be expanded in "
"this domain.")
else:
try: # RealElement doesn't support
const = R(c**Rational(1, n)) # exponentiation with mpq object
except ValueError: # as exponent
raise DomainError("The given series can't be expanded in "
"this domain.")
res = rs_nth_root(p/c, n, x, prec)*const
else:
res = _nth_root1(p, n, x, prec)
if m:
m = QQ(m, n)
res = mul_xin(res, index, m)
return res
def rs_log(p, x, prec):
"""
The Logarithm of ``p`` modulo ``O(x**prec)``.
Notes
=====
Truncation of ``integral dx p**-1*d p/dx`` is used.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_log
>>> R, x = ring('x', QQ)
>>> rs_log(1 + x, x, 8)
1/7*x**7 - 1/6*x**6 + 1/5*x**5 - 1/4*x**4 + 1/3*x**3 - 1/2*x**2 + x
>>> rs_log(x**QQ(3, 2) + 1, x, 5)
1/3*x**(9/2) - 1/2*x**3 + x**(3/2)
"""
if rs_is_puiseux(p, x):
return rs_puiseux(rs_log, p, x, prec)
R = p.ring
if p == 1:
return R.zero
c = _get_constant_term(p, x)
if c:
const = 0
if c == 1:
pass
else:
c_expr = c.as_expr()
if R.domain is EX:
const = log(c_expr)
elif isinstance(c, PolyElement):
try:
const = R(log(c_expr))
except ValueError:
R = R.add_gens([log(c_expr)])
p = p.set_ring(R)
x = x.set_ring(R)
c = c.set_ring(R)
const = R(log(c_expr))
else:
try:
const = R(log(c))
except ValueError:
raise DomainError("The given series can't be expanded in "
"this domain.")
dlog = p.diff(x)
dlog = rs_mul(dlog, _series_inversion1(p, x, prec), x, prec - 1)
return rs_integrate(dlog, x) + const
else:
raise NotImplementedError
def rs_LambertW(p, x, prec):
"""
Calculate the series expansion of the principal branch of the Lambert W
function.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_LambertW
>>> R, x, y = ring('x, y', QQ)
>>> rs_LambertW(x + x*y, x, 3)
-x**2*y**2 - 2*x**2*y - x**2 + x*y + x
See Also
========
LambertW
"""
if rs_is_puiseux(p, x):
return rs_puiseux(rs_LambertW, p, x, prec)
R = p.ring
p1 = R(0)
if _has_constant_term(p, x):
raise NotImplementedError("Polynomial must not have constant term in "
"the series variables")
if x in R.gens:
for precx in _giant_steps(prec):
e = rs_exp(p1, x, precx)
p2 = rs_mul(e, p1, x, precx) - p
p3 = rs_mul(e, p1 + 1, x, precx)
p3 = rs_series_inversion(p3, x, precx)
tmp = rs_mul(p2, p3, x, precx)
p1 -= tmp
return p1
else:
raise NotImplementedError
def _exp1(p, x, prec):
r"""Helper function for `rs\_exp`. """
R = p.ring
p1 = R(1)
for precx in _giant_steps(prec):
pt = p - rs_log(p1, x, precx)
tmp = rs_mul(pt, p1, x, precx)
p1 += tmp
return p1
def rs_exp(p, x, prec):
"""
Exponentiation of a series modulo ``O(x**prec)``
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_exp
>>> R, x = ring('x', QQ)
>>> rs_exp(x**2, x, 7)
1/6*x**6 + 1/2*x**4 + x**2 + 1
"""
if rs_is_puiseux(p, x):
return rs_puiseux(rs_exp, p, x, prec)
R = p.ring
c = _get_constant_term(p, x)
if c:
if R.domain is EX:
c_expr = c.as_expr()
const = exp(c_expr)
elif isinstance(c, PolyElement):
try:
c_expr = c.as_expr()
const = R(exp(c_expr))
except ValueError:
R = R.add_gens([exp(c_expr)])
p = p.set_ring(R)
x = x.set_ring(R)
c = c.set_ring(R)
const = R(exp(c_expr))
else:
try:
const = R(exp(c))
except ValueError:
raise DomainError("The given series can't be expanded in "
"this domain.")
p1 = p - c
# Makes use of sympy functions to evaluate the values of the cos/sin
# of the constant term.
return const*rs_exp(p1, x, prec)
if len(p) > 20:
return _exp1(p, x, prec)
one = R(1)
n = 1
c = []
for k in range(prec):
c.append(one/n)
k += 1
n *= k
r = rs_series_from_list(p, c, x, prec)
return r
def _atan(p, iv, prec):
"""
Expansion using formula.
Faster on very small and univariate series.
"""
R = p.ring
mo = R(-1)
c = [-mo]
p2 = rs_square(p, iv, prec)
for k in range(1, prec):
c.append(mo**k/(2*k + 1))
s = rs_series_from_list(p2, c, iv, prec)
s = rs_mul(s, p, iv, prec)
return s
def rs_atan(p, x, prec):
"""
The arctangent of a series
Return the series expansion of the atan of ``p``, about 0.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_atan
>>> R, x, y = ring('x, y', QQ)
>>> rs_atan(x + x*y, x, 4)
-1/3*x**3*y**3 - x**3*y**2 - x**3*y - 1/3*x**3 + x*y + x
See Also
========
atan
"""
if rs_is_puiseux(p, x):
return rs_puiseux(rs_atan, p, x, prec)
R = p.ring
const = 0
if _has_constant_term(p, x):
zm = R.zero_monom
c = p[zm]
if R.domain is EX:
c_expr = c.as_expr()
const = atan(c_expr)
elif isinstance(c, PolyElement):
try:
c_expr = c.as_expr()
const = R(atan(c_expr))
except ValueError:
raise DomainError("The given series can't be expanded in "
"this domain.")
else:
try:
const = R(atan(c))
except ValueError:
raise DomainError("The given series can't be expanded in "
"this domain.")
# Instead of using a closed form formula, we differentiate atan(p) to get
# `1/(1+p**2) * dp`, whose series expansion is much easier to calculate.
# Finally we integrate to get back atan
dp = p.diff(x)
p1 = rs_square(p, x, prec) + R(1)
p1 = rs_series_inversion(p1, x, prec - 1)
p1 = rs_mul(dp, p1, x, prec - 1)
return rs_integrate(p1, x) + const
def rs_asin(p, x, prec):
"""
Arcsine of a series
Return the series expansion of the asin of ``p``, about 0.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_asin
>>> R, x, y = ring('x, y', QQ)
>>> rs_asin(x, x, 8)
5/112*x**7 + 3/40*x**5 + 1/6*x**3 + x
See Also
========
asin
"""
if rs_is_puiseux(p, x):
return rs_puiseux(rs_asin, p, x, prec)
if _has_constant_term(p, x):
raise NotImplementedError("Polynomial must not have constant term in "
"series variables")
R = p.ring
if x in R.gens:
# get a good value
if len(p) > 20:
dp = rs_diff(p, x)
p1 = 1 - rs_square(p, x, prec - 1)
p1 = rs_nth_root(p1, -2, x, prec - 1)
p1 = rs_mul(dp, p1, x, prec - 1)
return rs_integrate(p1, x)
one = R(1)
c = [0, one, 0]
for k in range(3, prec, 2):
c.append((k - 2)**2*c[-2]/(k*(k - 1)))
c.append(0)
return rs_series_from_list(p, c, x, prec)
else:
raise NotImplementedError
def _tan1(p, x, prec):
r"""
Helper function of `rs\_tan`.
Return the series expansion of tan of a univariate series using Newton's
method. It takes advantage of the fact that series expansion of atan is
easier than that of tan.
Consider `f(x) = y - atan(x)`
Let r be a root of f(x) found using Newton's method.
Then `f(r) = 0`
Or `y = atan(x)` where `x = tan(y)` as required.
"""
R = p.ring
p1 = R(0)
for precx in _giant_steps(prec):
tmp = p - rs_atan(p1, x, precx)
tmp = rs_mul(tmp, 1 + rs_square(p1, x, precx), x, precx)
p1 += tmp
return p1
def rs_tan(p, x, prec):
"""
Tangent of a series.
Return the series expansion of the tan of ``p``, about 0.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_tan
>>> R, x, y = ring('x, y', QQ)
>>> rs_tan(x + x*y, x, 4)
1/3*x**3*y**3 + x**3*y**2 + x**3*y + 1/3*x**3 + x*y + x
See Also
========
_tan1, tan
"""
if rs_is_puiseux(p, x):
r = rs_puiseux(rs_tan, p, x, prec)
return r
R = p.ring
const = 0
c = _get_constant_term(p, x)
if c:
if R.domain is EX:
c_expr = c.as_expr()
const = tan(c_expr)
elif isinstance(c, PolyElement):
try:
c_expr = c.as_expr()
const = R(tan(c_expr))
except ValueError:
R = R.add_gens([tan(c_expr, )])
p = p.set_ring(R)
x = x.set_ring(R)
c = c.set_ring(R)
const = R(tan(c_expr))
else:
try:
const = R(tan(c))
except ValueError:
raise DomainError("The given series can't be expanded in "
"this domain.")
p1 = p - c
# Makes use of sympy functions to evaluate the values of the cos/sin
# of the constant term.
t2 = rs_tan(p1, x, prec)
t = rs_series_inversion(1 - const*t2, x, prec)
return rs_mul(const + t2, t, x, prec)
if R.ngens == 1:
return _tan1(p, x, prec)
else:
return rs_fun(p, rs_tan, x, prec)
def rs_cot(p, x, prec):
"""
Cotangent of a series
Return the series expansion of the cot of ``p``, about 0.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_cot
>>> R, x, y = ring('x, y', QQ)
>>> rs_cot(x, x, 6)
-2/945*x**5 - 1/45*x**3 - 1/3*x + x**(-1)
See Also
========
cot
"""
# It can not handle series like `p = x + x*y` where the coefficient of the
# linear term in the series variable is symbolic.
if rs_is_puiseux(p, x):
r = rs_puiseux(rs_cot, p, x, prec)
return r
i, m = _check_series_var(p, x, 'cot')
prec1 = prec + 2*m
c, s = rs_cos_sin(p, x, prec1)
s = mul_xin(s, i, -m)
s = rs_series_inversion(s, x, prec1)
res = rs_mul(c, s, x, prec1)
res = mul_xin(res, i, -m)
res = rs_trunc(res, x, prec)
return res
def rs_sin(p, x, prec):
"""
Sine of a series
Return the series expansion of the sin of ``p``, about 0.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_sin
>>> R, x, y = ring('x, y', QQ)
>>> rs_sin(x + x*y, x, 4)
-1/6*x**3*y**3 - 1/2*x**3*y**2 - 1/2*x**3*y - 1/6*x**3 + x*y + x
>>> rs_sin(x**QQ(3, 2) + x*y**QQ(7, 5), x, 4)
-1/2*x**(7/2)*y**(14/5) - 1/6*x**3*y**(21/5) + x**(3/2) + x*y**(7/5)
See Also
========
sin
"""
if rs_is_puiseux(p, x):
return rs_puiseux(rs_sin, p, x, prec)
R = x.ring
if not p:
return R(0)
c = _get_constant_term(p, x)
if c:
if R.domain is EX:
c_expr = c.as_expr()
t1, t2 = sin(c_expr), cos(c_expr)
elif isinstance(c, PolyElement):
try:
c_expr = c.as_expr()
t1, t2 = R(sin(c_expr)), R(cos(c_expr))
except ValueError:
R = R.add_gens([sin(c_expr), cos(c_expr)])
p = p.set_ring(R)
x = x.set_ring(R)
c = c.set_ring(R)
t1, t2 = R(sin(c_expr)), R(cos(c_expr))
else:
try:
t1, t2 = R(sin(c)), R(cos(c))
except ValueError:
raise DomainError("The given series can't be expanded in "
"this domain.")
p1 = p - c
# Makes use of sympy cos, sin functions to evaluate the values of the
# cos/sin of the constant term.
return rs_sin(p1, x, prec)*t2 + rs_cos(p1, x, prec)*t1
# Series is calculated in terms of tan as its evaluation is fast.
if len(p) > 20 and R.ngens == 1:
t = rs_tan(p/2, x, prec)
t2 = rs_square(t, x, prec)
p1 = rs_series_inversion(1 + t2, x, prec)
return rs_mul(p1, 2*t, x, prec)
one = R(1)
n = 1
c = [0]
for k in range(2, prec + 2, 2):
c.append(one/n)
c.append(0)
n *= -k*(k + 1)
return rs_series_from_list(p, c, x, prec)
def rs_cos(p, x, prec):
"""
Cosine of a series
Return the series expansion of the cos of ``p``, about 0.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_cos
>>> R, x, y = ring('x, y', QQ)
>>> rs_cos(x + x*y, x, 4)
-1/2*x**2*y**2 - x**2*y - 1/2*x**2 + 1
>>> rs_cos(x + x*y, x, 4)/x**QQ(7, 5)
-1/2*x**(3/5)*y**2 - x**(3/5)*y - 1/2*x**(3/5) + x**(-7/5)
See Also
========
cos
"""
if rs_is_puiseux(p, x):
return rs_puiseux(rs_cos, p, x, prec)
R = p.ring
c = _get_constant_term(p, x)
if c:
if R.domain is EX:
c_expr = c.as_expr()
t1, t2 = sin(c_expr), cos(c_expr)
elif isinstance(c, PolyElement):
try:
c_expr = c.as_expr()
t1, t2 = R(sin(c_expr)), R(cos(c_expr))
except ValueError:
R = R.add_gens([sin(c_expr), cos(c_expr)])
p = p.set_ring(R)
x = x.set_ring(R)
c = c.set_ring(R)
else:
try:
t1, t2 = R(sin(c)), R(cos(c))
except ValueError:
raise DomainError("The given series can't be expanded in "
"this domain.")
p1 = p - c
# Makes use of sympy cos, sin functions to evaluate the values of the
# cos/sin of the constant term.
p_cos = rs_cos(p1, x, prec)
p_sin = rs_sin(p1, x, prec)
R = R.compose(p_cos.ring).compose(p_sin.ring)
p_cos.set_ring(R)
p_sin.set_ring(R)
t1, t2 = R(sin(c_expr)), R(cos(c_expr))
return p_cos*t2 - p_sin*t1
# Series is calculated in terms of tan as its evaluation is fast.
if len(p) > 20 and R.ngens == 1:
t = rs_tan(p/2, x, prec)
t2 = rs_square(t, x, prec)
p1 = rs_series_inversion(1+t2, x, prec)
return rs_mul(p1, 1 - t2, x, prec)
one = R(1)
n = 1
c = []
for k in range(2, prec + 2, 2):
c.append(one/n)
c.append(0)
n *= -k*(k - 1)
return rs_series_from_list(p, c, x, prec)
def rs_cos_sin(p, x, prec):
r"""
Return the tuple `(rs\_cos(p, x, prec)`, `rs\_sin(p, x, prec))`.
Is faster than calling rs_cos and rs_sin separately
"""
if rs_is_puiseux(p, x):
return rs_puiseux(rs_cos_sin, p, x, prec)
t = rs_tan(p/2, x, prec)
t2 = rs_square(t, x, prec)
p1 = rs_series_inversion(1 + t2, x, prec)
return (rs_mul(p1, 1 - t2, x, prec), rs_mul(p1, 2*t, x, prec))
def _atanh(p, x, prec):
"""
Expansion using formula
Faster for very small and univariate series
"""
R = p.ring
one = R(1)
c = [one]
p2 = rs_square(p, x, prec)
for k in range(1, prec):
c.append(one/(2*k + 1))
s = rs_series_from_list(p2, c, x, prec)
s = rs_mul(s, p, x, prec)
return s
def rs_atanh(p, x, prec):
"""
Hyperbolic arctangent of a series
Return the series expansion of the atanh of ``p``, about 0.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_atanh
>>> R, x, y = ring('x, y', QQ)
>>> rs_atanh(x + x*y, x, 4)
1/3*x**3*y**3 + x**3*y**2 + x**3*y + 1/3*x**3 + x*y + x
See Also
========
atanh
"""
if rs_is_puiseux(p, x):
return rs_puiseux(rs_atanh, p, x, prec)
R = p.ring
const = 0
if _has_constant_term(p, x):
zm = R.zero_monom
c = p[zm]
if R.domain is EX:
c_expr = c.as_expr()
const = atanh(c_expr)
elif isinstance(c, PolyElement):
try:
c_expr = c.as_expr()
const = R(atanh(c_expr))
except ValueError:
raise DomainError("The given series can't be expanded in "
"this domain.")
else:
try:
const = R(atanh(c))
except ValueError:
raise DomainError("The given series can't be expanded in "
"this domain.")
# Instead of using a closed form formula, we differentiate atanh(p) to get
# `1/(1-p**2) * dp`, whose series expansion is much easier to calculate.
# Finally we integrate to get back atanh
dp = rs_diff(p, x)
p1 = - rs_square(p, x, prec) + 1
p1 = rs_series_inversion(p1, x, prec - 1)
p1 = rs_mul(dp, p1, x, prec - 1)
return rs_integrate(p1, x) + const
def rs_sinh(p, x, prec):
"""
Hyperbolic sine of a series
Return the series expansion of the sinh of ``p``, about 0.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_sinh
>>> R, x, y = ring('x, y', QQ)
>>> rs_sinh(x + x*y, x, 4)
1/6*x**3*y**3 + 1/2*x**3*y**2 + 1/2*x**3*y + 1/6*x**3 + x*y + x
See Also
========
sinh
"""
if rs_is_puiseux(p, x):
return rs_puiseux(rs_sinh, p, x, prec)
t = rs_exp(p, x, prec)
t1 = rs_series_inversion(t, x, prec)
return (t - t1)/2
def rs_cosh(p, x, prec):
"""
Hyperbolic cosine of a series
Return the series expansion of the cosh of ``p``, about 0.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_cosh
>>> R, x, y = ring('x, y', QQ)
>>> rs_cosh(x + x*y, x, 4)
1/2*x**2*y**2 + x**2*y + 1/2*x**2 + 1
See Also
========
cosh
"""
if rs_is_puiseux(p, x):
return rs_puiseux(rs_cosh, p, x, prec)
t = rs_exp(p, x, prec)
t1 = rs_series_inversion(t, x, prec)
return (t + t1)/2
def _tanh(p, x, prec):
r"""
Helper function of `rs\_tanh`
Return the series expansion of tanh of a univariate series using Newton's
method. It takes advantage of the fact that series expansion of atanh is
easier than that of tanh.
See Also
========
_tanh
"""
R = p.ring
p1 = R(0)
for precx in _giant_steps(prec):
tmp = p - rs_atanh(p1, x, precx)
tmp = rs_mul(tmp, 1 - rs_square(p1, x, prec), x, precx)
p1 += tmp
return p1
def rs_tanh(p, x, prec):
"""
Hyperbolic tangent of a series
Return the series expansion of the tanh of ``p``, about 0.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_tanh
>>> R, x, y = ring('x, y', QQ)
>>> rs_tanh(x + x*y, x, 4)
-1/3*x**3*y**3 - x**3*y**2 - x**3*y - 1/3*x**3 + x*y + x
See Also
========
tanh
"""
if rs_is_puiseux(p, x):
return rs_puiseux(rs_tanh, p, x, prec)
R = p.ring
const = 0
if _has_constant_term(p, x):
zm = R.zero_monom
c = p[zm]
if R.domain is EX:
c_expr = c.as_expr()
const = tanh(c_expr)
elif isinstance(c, PolyElement):
try:
c_expr = c.as_expr()
const = R(tanh(c_expr))
except ValueError:
raise DomainError("The given series can't be expanded in "
"this domain.")
else:
try:
const = R(tanh(c))
except ValueError:
raise DomainError("The given series can't be expanded in "
"this domain.")
p1 = p - c
t1 = rs_tanh(p1, x, prec)
t = rs_series_inversion(1 + const*t1, x, prec)
return rs_mul(const + t1, t, x, prec)
if R.ngens == 1:
return _tanh(p, x, prec)
else:
return rs_fun(p, _tanh, x, prec)
def rs_newton(p, x, prec):
"""
Compute the truncated Newton sum of the polynomial ``p``
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_newton
>>> R, x = ring('x', QQ)
>>> p = x**2 - 2
>>> rs_newton(p, x, 5)
8*x**4 + 4*x**2 + 2
"""
deg = p.degree()
p1 = _invert_monoms(p)
p2 = rs_series_inversion(p1, x, prec)
p3 = rs_mul(p1.diff(x), p2, x, prec)
res = deg - p3*x
return res
def rs_hadamard_exp(p1, inverse=False):
"""
Return ``sum f_i/i!*x**i`` from ``sum f_i*x**i``,
where ``x`` is the first variable.
If ``invers=True`` return ``sum f_i*i!*x**i``
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_hadamard_exp
>>> R, x = ring('x', QQ)
>>> p = 1 + x + x**2 + x**3
>>> rs_hadamard_exp(p)
1/6*x**3 + 1/2*x**2 + x + 1
"""
R = p1.ring
if R.domain != QQ:
raise NotImplementedError
p = R.zero
if not inverse:
for exp1, v1 in p1.items():
p[exp1] = v1/int(ifac(exp1[0]))
else:
for exp1, v1 in p1.items():
p[exp1] = v1*int(ifac(exp1[0]))
return p
def rs_compose_add(p1, p2):
"""
compute the composed sum ``prod(p2(x - beta) for beta root of p1)``
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_compose_add
>>> R, x = ring('x', QQ)
>>> f = x**2 - 2
>>> g = x**2 - 3
>>> rs_compose_add(f, g)
x**4 - 10*x**2 + 1
References
==========
.. [1] A. Bostan, P. Flajolet, B. Salvy and E. Schost
"Fast Computation with Two Algebraic Numbers",
(2002) Research Report 4579, Institut
National de Recherche en Informatique et en Automatique
"""
R = p1.ring
x = R.gens[0]
prec = p1.degree() * p2.degree() + 1
np1 = rs_newton(p1, x, prec)
np1e = rs_hadamard_exp(np1)
np2 = rs_newton(p2, x, prec)
np2e = rs_hadamard_exp(np2)
np3e = rs_mul(np1e, np2e, x, prec)
np3 = rs_hadamard_exp(np3e, True)
np3a = (np3[(0,)] - np3)/x
q = rs_integrate(np3a, x)
q = rs_exp(q, x, prec)
q = _invert_monoms(q)
q = q.primitive()[1]
dp = p1.degree() * p2.degree() - q.degree()
# `dp` is the multiplicity of the zeroes of the resultant;
# these zeroes are missed in this computation so they are put here.
# if p1 and p2 are monic irreducible polynomials,
# there are zeroes in the resultant
# if and only if p1 = p2 ; in fact in that case p1 and p2 have a
# root in common, so gcd(p1, p2) != 1; being p1 and p2 irreducible
# this means p1 = p2
if dp:
q = q*x**dp
return q
_convert_func = {
'sin': 'rs_sin',
'cos': 'rs_cos',
'exp': 'rs_exp',
'tan': 'rs_tan',
'log': 'rs_log'
}
def rs_min_pow(expr, series_rs, a):
"""Find the minimum power of `a` in the series expansion of expr"""
series = 0
n = 2
while series == 0:
series = _rs_series(expr, series_rs, a, n)
n *= 2
R = series.ring
a = R(a)
i = R.gens.index(a)
return min(series, key=lambda t: t[i])[i]
def _rs_series(expr, series_rs, a, prec):
# TODO Use _parallel_dict_from_expr instead of sring as sring is
# inefficient. For details, read the todo in sring.
args = expr.args
R = series_rs.ring
# expr does not contain any function to be expanded
if not any(arg.has(Function) for arg in args) and not expr.is_Function:
return series_rs
if not expr.has(a):
return series_rs
elif expr.is_Function:
arg = args[0]
if len(args) > 1:
raise NotImplementedError
R1, series = sring(arg, domain=QQ, expand=False, series=True)
series_inner = _rs_series(arg, series, a, prec)
# Why do we need to compose these three rings?
#
# We want to use a simple domain (like ``QQ`` or ``RR``) but they don't
# support symbolic coefficients. We need a ring that for example lets
# us have `sin(1)` and `cos(1)` as coefficients if we are expanding
# `sin(x + 1)`. The ``EX`` domain allows all symbolic coefficients, but
# that makes it very complex and hence slow.
#
# To solve this problem, we add only those symbolic elements as
# generators to our ring, that we need. Here, series_inner might
# involve terms like `sin(4)`, `exp(a)`, etc, which are not there in
# R1 or R. Hence, we compose these three rings to create one that has
# the generators of all three.
R = R.compose(R1).compose(series_inner.ring)
series_inner = series_inner.set_ring(R)
series = eval(_convert_func[str(expr.func)])(series_inner,
R(a), prec)
return series
elif expr.is_Mul:
n = len(args)
for arg in args: # XXX Looks redundant
if not arg.is_Number:
R1, _ = sring(arg, expand=False, series=True)
R = R.compose(R1)
min_pows = list(map(rs_min_pow, args, [R(arg) for arg in args],
[a]*len(args)))
sum_pows = sum(min_pows)
series = R(1)
for i in range(n):
_series = _rs_series(args[i], R(args[i]), a, prec - sum_pows +
min_pows[i])
R = R.compose(_series.ring)
_series = _series.set_ring(R)
series = series.set_ring(R)
series *= _series
series = rs_trunc(series, R(a), prec)
return series
elif expr.is_Add:
n = len(args)
series = R(0)
for i in range(n):
_series = _rs_series(args[i], R(args[i]), a, prec)
R = R.compose(_series.ring)
_series = _series.set_ring(R)
series = series.set_ring(R)
series += _series
return series
elif expr.is_Pow:
R1, _ = sring(expr.base, domain=QQ, expand=False, series=True)
R = R.compose(R1)
series_inner = _rs_series(expr.base, R(expr.base), a, prec)
return rs_pow(series_inner, expr.exp, series_inner.ring(a), prec)
# The `is_constant` method is buggy hence we check it at the end.
# See issue #9786 for details.
elif isinstance(expr, Expr) and expr.is_constant():
return sring(expr, domain=QQ, expand=False, series=True)[1]
else:
raise NotImplementedError
def rs_series(expr, a, prec):
"""Return the series expansion of an expression about 0.
Parameters
==========
expr : :class:`Expr`
a : :class:`Symbol` with respect to which expr is to be expanded
prec : order of the series expansion
Currently supports multivariate Taylor series expansion. This is much
faster that Sympy's series method as it uses sparse polynomial operations.
It automatically creates the simplest ring required to represent the series
expansion through repeated calls to sring.
Examples
========
>>> from sympy.polys.ring_series import rs_series
>>> from sympy.functions import sin, cos, exp, tan
>>> from sympy.core import symbols
>>> from sympy.polys.domains import QQ
>>> a, b, c = symbols('a, b, c')
>>> rs_series(sin(a) + exp(a), a, 5)
1/24*a**4 + 1/2*a**2 + 2*a + 1
>>> series = rs_series(tan(a + b)*cos(a + c), a, 2)
>>> series.as_expr()
-a*sin(c)*tan(b) + a*cos(c)*tan(b)**2 + a*cos(c) + cos(c)*tan(b)
>>> series = rs_series(exp(a**QQ(1,3) + a**QQ(2, 5)), a, 1)
>>> series.as_expr()
a**(11/15) + a**(4/5)/2 + a**(2/5) + a**(2/3)/2 + a**(1/3) + 1
"""
R, series = sring(expr, domain=QQ, expand=False, series=True)
if a not in R.symbols:
R = R.add_gens([a, ])
series = series.set_ring(R)
series = _rs_series(expr, series, a, prec)
R = series.ring
gen = R(a)
prec_got = series.degree(gen) + 1
if prec_got >= prec:
return rs_trunc(series, gen, prec)
else:
# increase the requested number of terms to get the desired
# number keep increasing (up to 9) until the received order
# is different than the original order and then predict how
# many additional terms are needed
for more in range(1, 9):
p1 = _rs_series(expr, series, a, prec=prec + more)
gen = gen.set_ring(p1.ring)
new_prec = p1.degree(gen) + 1
if new_prec != prec_got:
prec_do = ceiling(prec + (prec - prec_got)*more/(new_prec -
prec_got))
p1 = _rs_series(expr, series, a, prec=prec_do)
while p1.degree(gen) + 1 < prec:
p1 = _rs_series(expr, series, a, prec=prec_do)
gen = gen.set_ring(p1.ring)
prec_do *= 2
break
else:
break
else:
raise ValueError('Could not calculate %s terms for %s'
% (str(prec), expr))
return rs_trunc(p1, gen, prec)
|
aa7eb0fba0ad6a455fdb18165f4d336d6742cc96b1c2d301ca1ad6c5a7bb07e7
|
"""Implementation of RootOf class and related tools. """
from __future__ import print_function, division
from sympy.core import (S, Expr, Integer, Float, I, oo, Add, Lambda,
symbols, sympify, Rational, Dummy)
from sympy.core.cache import cacheit
from sympy.core.compatibility import range, ordered
from sympy.core.function import AppliedUndef
from sympy.polys.domains import QQ
from sympy.polys.polyerrors import (
MultivariatePolynomialError,
GeneratorsNeeded,
PolynomialError,
DomainError)
from sympy.polys.polyfuncs import symmetrize, viete
from sympy.polys.polyroots import (
roots_linear, roots_quadratic, roots_binomial,
preprocess_roots, roots)
from sympy.polys.polytools import Poly, PurePoly, factor
from sympy.polys.rationaltools import together
from sympy.polys.rootisolation import (
dup_isolate_complex_roots_sqf,
dup_isolate_real_roots_sqf)
from sympy.utilities import lambdify, public, sift
from mpmath import mpf, mpc, findroot, workprec
from mpmath.libmp.libmpf import dps_to_prec, prec_to_dps
__all__ = ['CRootOf']
class _pure_key_dict(object):
"""A minimal dictionary that makes sure that the key is a
univariate PurePoly instance.
Examples
========
Only the following actions are guaranteed:
>>> from sympy.polys.rootoftools import _pure_key_dict
>>> from sympy import S, PurePoly
>>> from sympy.abc import x, y
1) creation
>>> P = _pure_key_dict()
2) assignment for a PurePoly or univariate polynomial
>>> P[x] = 1
>>> P[PurePoly(x - y, x)] = 2
3) retrieval based on PurePoly key comparison (use this
instead of the get method)
>>> P[y]
1
4) KeyError when trying to retrieve a nonexisting key
>>> P[y + 1]
Traceback (most recent call last):
...
KeyError: PurePoly(y + 1, y, domain='ZZ')
5) ability to query with ``in``
>>> x + 1 in P
False
NOTE: this is a *not* a dictionary. It is a very basic object
for internal use that makes sure to always address its cache
via PurePoly instances. It does not, for example, implement
``get`` or ``setdefault``.
"""
def __init__(self):
self._dict = {}
def __getitem__(self, k):
if not isinstance(k, PurePoly):
if not (isinstance(k, Expr) and len(k.free_symbols) == 1):
raise KeyError
k = PurePoly(k, expand=False)
return self._dict[k]
def __setitem__(self, k, v):
if not isinstance(k, PurePoly):
if not (isinstance(k, Expr) and len(k.free_symbols) == 1):
raise ValueError('expecting univariate expression')
k = PurePoly(k, expand=False)
self._dict[k] = v
def __contains__(self, k):
try:
self[k]
return True
except KeyError:
return False
_reals_cache = _pure_key_dict()
_complexes_cache = _pure_key_dict()
def _pure_factors(poly):
_, factors = poly.factor_list()
return [(PurePoly(f, expand=False), m) for f, m in factors]
def _imag_count_of_factor(f):
"""Return the number of imaginary roots for irreducible
univariate polynomial ``f``.
"""
terms = [(i, j) for (i,), j in f.terms()]
if any(i % 2 for i, j in terms):
return 0
# update signs
even = [(i, I**i*j) for i, j in terms]
even = Poly.from_dict(dict(even), Dummy('x'))
return int(even.count_roots(-oo, oo))
@public
def rootof(f, x, index=None, radicals=True, expand=True):
"""An indexed root of a univariate polynomial.
Returns either a ``ComplexRootOf`` object or an explicit
expression involving radicals.
Parameters
==========
f : Expr
Univariate polynomial.
x : Symbol, optional
Generator for ``f``.
index : int or Integer
radicals : bool
Return a radical expression if possible.
expand : bool
Expand ``f``.
"""
return CRootOf(f, x, index=index, radicals=radicals, expand=expand)
@public
class RootOf(Expr):
"""Represents a root of a univariate polynomial.
Base class for roots of different kinds of polynomials.
Only complex roots are currently supported.
"""
__slots__ = ['poly']
def __new__(cls, f, x, index=None, radicals=True, expand=True):
"""Construct a new ``CRootOf`` object for ``k``-th root of ``f``."""
return rootof(f, x, index=index, radicals=radicals, expand=expand)
@public
class ComplexRootOf(RootOf):
"""Represents an indexed complex root of a polynomial.
Roots of a univariate polynomial separated into disjoint
real or complex intervals and indexed in a fixed order.
Currently only rational coefficients are allowed.
Can be imported as ``CRootOf``. To avoid confusion, the
generator must be a Symbol.
Examples
========
>>> from sympy import CRootOf, rootof
>>> from sympy.abc import x
CRootOf is a way to reference a particular root of a
polynomial. If there is a rational root, it will be returned:
>>> CRootOf.clear_cache() # for doctest reproducibility
>>> CRootOf(x**2 - 4, 0)
-2
Whether roots involving radicals are returned or not
depends on whether the ``radicals`` flag is true (which is
set to True with rootof):
>>> CRootOf(x**2 - 3, 0)
CRootOf(x**2 - 3, 0)
>>> CRootOf(x**2 - 3, 0, radicals=True)
-sqrt(3)
>>> rootof(x**2 - 3, 0)
-sqrt(3)
The following cannot be expressed in terms of radicals:
>>> r = rootof(4*x**5 + 16*x**3 + 12*x**2 + 7, 0); r
CRootOf(4*x**5 + 16*x**3 + 12*x**2 + 7, 0)
The root bounds can be seen, however, and they are used by the
evaluation methods to get numerical approximations for the root.
>>> interval = r._get_interval(); interval
(-1, 0)
>>> r.evalf(2)
-0.98
The evalf method refines the width of the root bounds until it
guarantees that any decimal approximation within those bounds
will satisfy the desired precision. It then stores the refined
interval so subsequent requests at or below the requested
precision will not have to recompute the root bounds and will
return very quickly.
Before evaluation above, the interval was
>>> interval
(-1, 0)
After evaluation it is now
>>. r._get_interval()
(-165/169, -206/211)
To reset all intervals for a given polynomial, the `_reset` method
can be called from any CRootOf instance of the polynomial:
>>> r._reset()
>>> r._get_interval()
(-1, 0)
The `eval_approx` method will also find the root to a given
precision but the interval is not modified unless the search
for the root fails to converge within the root bounds. And
the secant method is used to find the root. (The ``evalf``
method uses bisection and will always update the interval.)
>>> r.eval_approx(2)
-0.98
The interval needed to be slightly updated to find that root:
>>> r._get_interval()
(-1, -1/2)
The ``evalf_rational`` will compute a rational approximation
of the root to the desired accuracy or precision.
>>> r.eval_rational(n=2)
-69629/71318
>>> t = CRootOf(x**3 + 10*x + 1, 1)
>>> t.eval_rational(1e-1)
15/256 - 805*I/256
>>> t.eval_rational(1e-1, 1e-4)
3275/65536 - 414645*I/131072
>>> t.eval_rational(1e-4, 1e-4)
6545/131072 - 414645*I/131072
>>> t.eval_rational(n=2)
104755/2097152 - 6634255*I/2097152
Notes
=====
Although a PurePoly can be constructed from a non-symbol generator
RootOf instances of non-symbols are disallowed to avoid confusion
over what root is being represented.
>>> from sympy import exp, PurePoly
>>> PurePoly(x) == PurePoly(exp(x))
True
>>> CRootOf(x - 1, 0)
1
>>> CRootOf(exp(x) - 1, 0) # would correspond to x == 0
Traceback (most recent call last):
...
sympy.polys.polyerrors.PolynomialError: generator must be a Symbol
See Also
========
eval_approx
eval_rational
_eval_evalf
"""
__slots__ = ['index']
is_complex = True
is_number = True
def __new__(cls, f, x, index=None, radicals=False, expand=True):
""" Construct an indexed complex root of a polynomial.
See ``rootof`` for the parameters.
The default value of ``radicals`` is ``False`` to satisfy
``eval(srepr(expr) == expr``.
"""
x = sympify(x)
if index is None and x.is_Integer:
x, index = None, x
else:
index = sympify(index)
if index is not None and index.is_Integer:
index = int(index)
else:
raise ValueError("expected an integer root index, got %s" % index)
poly = PurePoly(f, x, greedy=False, expand=expand)
if not poly.is_univariate:
raise PolynomialError("only univariate polynomials are allowed")
if not poly.gen.is_Symbol:
# PurePoly(sin(x) + 1) == PurePoly(x + 1) but the roots of
# x for each are not the same: issue 8617
raise PolynomialError("generator must be a Symbol")
degree = poly.degree()
if degree <= 0:
raise PolynomialError("can't construct CRootOf object for %s" % f)
if index < -degree or index >= degree:
raise IndexError("root index out of [%d, %d] range, got %d" %
(-degree, degree - 1, index))
elif index < 0:
index += degree
dom = poly.get_domain()
if not dom.is_Exact:
poly = poly.to_exact()
roots = cls._roots_trivial(poly, radicals)
if roots is not None:
return roots[index]
coeff, poly = preprocess_roots(poly)
dom = poly.get_domain()
if not dom.is_ZZ:
raise NotImplementedError("CRootOf is not supported over %s" % dom)
root = cls._indexed_root(poly, index)
return coeff * cls._postprocess_root(root, radicals)
@classmethod
def _new(cls, poly, index):
"""Construct new ``CRootOf`` object from raw data. """
obj = Expr.__new__(cls)
obj.poly = PurePoly(poly)
obj.index = index
try:
_reals_cache[obj.poly] = _reals_cache[poly]
_complexes_cache[obj.poly] = _complexes_cache[poly]
except KeyError:
pass
return obj
def _hashable_content(self):
return (self.poly, self.index)
@property
def expr(self):
return self.poly.as_expr()
@property
def args(self):
return (self.expr, Integer(self.index))
@property
def free_symbols(self):
# CRootOf currently only works with univariate expressions
# whose poly attribute should be a PurePoly with no free
# symbols
return set()
def _eval_is_real(self):
"""Return ``True`` if the root is real. """
return self.index < len(_reals_cache[self.poly])
def _eval_is_imaginary(self):
"""Return ``True`` if the root is imaginary. """
if self.index >= len(_reals_cache[self.poly]):
ivl = self._get_interval()
return ivl.ax*ivl.bx <= 0 # all others are on one side or the other
return False # XXX is this necessary?
@classmethod
def real_roots(cls, poly, radicals=True):
"""Get real roots of a polynomial. """
return cls._get_roots("_real_roots", poly, radicals)
@classmethod
def all_roots(cls, poly, radicals=True):
"""Get real and complex roots of a polynomial. """
return cls._get_roots("_all_roots", poly, radicals)
@classmethod
def _get_reals_sqf(cls, currentfactor, use_cache=True):
"""Get real root isolating intervals for a square-free factor."""
if use_cache and currentfactor in _reals_cache:
real_part = _reals_cache[currentfactor]
else:
_reals_cache[currentfactor] = real_part = \
dup_isolate_real_roots_sqf(
currentfactor.rep.rep, currentfactor.rep.dom, blackbox=True)
return real_part
@classmethod
def _get_complexes_sqf(cls, currentfactor, use_cache=True):
"""Get complex root isolating intervals for a square-free factor."""
if use_cache and currentfactor in _complexes_cache:
complex_part = _complexes_cache[currentfactor]
else:
_complexes_cache[currentfactor] = complex_part = \
dup_isolate_complex_roots_sqf(
currentfactor.rep.rep, currentfactor.rep.dom, blackbox=True)
return complex_part
@classmethod
def _get_reals(cls, factors, use_cache=True):
"""Compute real root isolating intervals for a list of factors. """
reals = []
for currentfactor, k in factors:
try:
if not use_cache:
raise KeyError
r = _reals_cache[currentfactor]
reals.extend([(i, currentfactor, k) for i in r])
except KeyError:
real_part = cls._get_reals_sqf(currentfactor, use_cache)
new = [(root, currentfactor, k) for root in real_part]
reals.extend(new)
reals = cls._reals_sorted(reals)
return reals
@classmethod
def _get_complexes(cls, factors, use_cache=True):
"""Compute complex root isolating intervals for a list of factors. """
complexes = []
for currentfactor, k in ordered(factors):
try:
if not use_cache:
raise KeyError
c = _complexes_cache[currentfactor]
complexes.extend([(i, currentfactor, k) for i in c])
except KeyError:
complex_part = cls._get_complexes_sqf(currentfactor, use_cache)
new = [(root, currentfactor, k) for root in complex_part]
complexes.extend(new)
complexes = cls._complexes_sorted(complexes)
return complexes
@classmethod
def _reals_sorted(cls, reals):
"""Make real isolating intervals disjoint and sort roots. """
cache = {}
for i, (u, f, k) in enumerate(reals):
for j, (v, g, m) in enumerate(reals[i + 1:]):
u, v = u.refine_disjoint(v)
reals[i + j + 1] = (v, g, m)
reals[i] = (u, f, k)
reals = sorted(reals, key=lambda r: r[0].a)
for root, currentfactor, _ in reals:
if currentfactor in cache:
cache[currentfactor].append(root)
else:
cache[currentfactor] = [root]
for currentfactor, root in cache.items():
_reals_cache[currentfactor] = root
return reals
@classmethod
def _refine_imaginary(cls, complexes):
sifted = sift(complexes, lambda c: c[1])
complexes = []
for f in ordered(sifted):
nimag = _imag_count_of_factor(f)
if nimag == 0:
# refine until xbounds are neg or pos
for u, f, k in sifted[f]:
while u.ax*u.bx <= 0:
u = u._inner_refine()
complexes.append((u, f, k))
else:
# refine until all but nimag xbounds are neg or pos
potential_imag = list(range(len(sifted[f])))
while True:
assert len(potential_imag) > 1
for i in list(potential_imag):
u, f, k = sifted[f][i]
if u.ax*u.bx > 0:
potential_imag.remove(i)
elif u.ax != u.bx:
u = u._inner_refine()
sifted[f][i] = u, f, k
if len(potential_imag) == nimag:
break
complexes.extend(sifted[f])
return complexes
@classmethod
def _refine_complexes(cls, complexes):
"""return complexes such that no bounding rectangles of non-conjugate
roots would intersect. In addition, assure that neither ay nor by is
0 to guarantee that non-real roots are distinct from real roots in
terms of the y-bounds.
"""
# get the intervals pairwise-disjoint.
# If rectangles were drawn around the coordinates of the bounding
# rectangles, no rectangles would intersect after this procedure.
for i, (u, f, k) in enumerate(complexes):
for j, (v, g, m) in enumerate(complexes[i + 1:]):
u, v = u.refine_disjoint(v)
complexes[i + j + 1] = (v, g, m)
complexes[i] = (u, f, k)
# refine until the x-bounds are unambiguously positive or negative
# for non-imaginary roots
complexes = cls._refine_imaginary(complexes)
# make sure that all y bounds are off the real axis
# and on the same side of the axis
for i, (u, f, k) in enumerate(complexes):
while u.ay*u.by <= 0:
u = u.refine()
complexes[i] = u, f, k
return complexes
@classmethod
def _complexes_sorted(cls, complexes):
"""Make complex isolating intervals disjoint and sort roots. """
complexes = cls._refine_complexes(complexes)
# XXX don't sort until you are sure that it is compatible
# with the indexing method but assert that the desired state
# is not broken
C, F = 0, 1 # location of ComplexInterval and factor
fs = set([i[F] for i in complexes])
for i in range(1, len(complexes)):
if complexes[i][F] != complexes[i - 1][F]:
# if this fails the factors of a root were not
# contiguous because a discontinuity should only
# happen once
fs.remove(complexes[i - 1][F])
for i in range(len(complexes)):
# negative im part (conj=True) comes before
# positive im part (conj=False)
assert complexes[i][C].conj is (i % 2 == 0)
# update cache
cache = {}
# -- collate
for root, currentfactor, _ in complexes:
cache.setdefault(currentfactor, []).append(root)
# -- store
for currentfactor, root in cache.items():
_complexes_cache[currentfactor] = root
return complexes
@classmethod
def _reals_index(cls, reals, index):
"""
Map initial real root index to an index in a factor where
the root belongs.
"""
i = 0
for j, (_, currentfactor, k) in enumerate(reals):
if index < i + k:
poly, index = currentfactor, 0
for _, currentfactor, _ in reals[:j]:
if currentfactor == poly:
index += 1
return poly, index
else:
i += k
@classmethod
def _complexes_index(cls, complexes, index):
"""
Map initial complex root index to an index in a factor where
the root belongs.
"""
i = 0
for j, (_, currentfactor, k) in enumerate(complexes):
if index < i + k:
poly, index = currentfactor, 0
for _, currentfactor, _ in complexes[:j]:
if currentfactor == poly:
index += 1
index += len(_reals_cache[poly])
return poly, index
else:
i += k
@classmethod
def _count_roots(cls, roots):
"""Count the number of real or complex roots with multiplicities."""
return sum([k for _, _, k in roots])
@classmethod
def _indexed_root(cls, poly, index):
"""Get a root of a composite polynomial by index. """
factors = _pure_factors(poly)
reals = cls._get_reals(factors)
reals_count = cls._count_roots(reals)
if index < reals_count:
return cls._reals_index(reals, index)
else:
complexes = cls._get_complexes(factors)
return cls._complexes_index(complexes, index - reals_count)
@classmethod
def _real_roots(cls, poly):
"""Get real roots of a composite polynomial. """
factors = _pure_factors(poly)
reals = cls._get_reals(factors)
reals_count = cls._count_roots(reals)
roots = []
for index in range(0, reals_count):
roots.append(cls._reals_index(reals, index))
return roots
def _reset(self):
self._all_roots(self.poly, use_cache=False)
@classmethod
def _all_roots(cls, poly, use_cache=True):
"""Get real and complex roots of a composite polynomial. """
factors = _pure_factors(poly)
reals = cls._get_reals(factors, use_cache=use_cache)
reals_count = cls._count_roots(reals)
roots = []
for index in range(0, reals_count):
roots.append(cls._reals_index(reals, index))
complexes = cls._get_complexes(factors, use_cache=use_cache)
complexes_count = cls._count_roots(complexes)
for index in range(0, complexes_count):
roots.append(cls._complexes_index(complexes, index))
return roots
@classmethod
@cacheit
def _roots_trivial(cls, poly, radicals):
"""Compute roots in linear, quadratic and binomial cases. """
if poly.degree() == 1:
return roots_linear(poly)
if not radicals:
return None
if poly.degree() == 2:
return roots_quadratic(poly)
elif poly.length() == 2 and poly.TC():
return roots_binomial(poly)
else:
return None
@classmethod
def _preprocess_roots(cls, poly):
"""Take heroic measures to make ``poly`` compatible with ``CRootOf``."""
dom = poly.get_domain()
if not dom.is_Exact:
poly = poly.to_exact()
coeff, poly = preprocess_roots(poly)
dom = poly.get_domain()
if not dom.is_ZZ:
raise NotImplementedError(
"sorted roots not supported over %s" % dom)
return coeff, poly
@classmethod
def _postprocess_root(cls, root, radicals):
"""Return the root if it is trivial or a ``CRootOf`` object. """
poly, index = root
roots = cls._roots_trivial(poly, radicals)
if roots is not None:
return roots[index]
else:
return cls._new(poly, index)
@classmethod
def _get_roots(cls, method, poly, radicals):
"""Return postprocessed roots of specified kind. """
if not poly.is_univariate:
raise PolynomialError("only univariate polynomials are allowed")
coeff, poly = cls._preprocess_roots(poly)
roots = []
for root in getattr(cls, method)(poly):
roots.append(coeff*cls._postprocess_root(root, radicals))
return roots
@classmethod
def clear_cache(cls):
"""Reset cache for reals and complexes.
The intervals used to approximate a root instance are updated
as needed. When a request is made to see the intervals, the
most current values are shown. `clear_cache` will reset all
CRootOf instances back to their original state.
See Also
========
_reset
"""
global _reals_cache, _complexes_cache
_reals_cache = _pure_key_dict()
_complexes_cache = _pure_key_dict()
def _get_interval(self):
"""Internal function for retrieving isolation interval from cache. """
if self.is_real:
return _reals_cache[self.poly][self.index]
else:
reals_count = len(_reals_cache[self.poly])
return _complexes_cache[self.poly][self.index - reals_count]
def _set_interval(self, interval):
"""Internal function for updating isolation interval in cache. """
if self.is_real:
_reals_cache[self.poly][self.index] = interval
else:
reals_count = len(_reals_cache[self.poly])
_complexes_cache[self.poly][self.index - reals_count] = interval
def _eval_subs(self, old, new):
# don't allow subs to change anything
return self
def _eval_conjugate(self):
if self.is_real:
return self
expr, i = self.args
return self.func(expr, i + (1 if self._get_interval().conj else -1))
def eval_approx(self, n):
"""Evaluate this complex root to the given precision.
This uses secant method and root bounds are used to both
generate an initial guess and to check that the root
returned is valid. If ever the method converges outside the
root bounds, the bounds will be made smaller and updated.
"""
prec = dps_to_prec(n)
with workprec(prec):
g = self.poly.gen
if not g.is_Symbol:
d = Dummy('x')
if self.is_imaginary:
d *= I
func = lambdify(d, self.expr.subs(g, d))
else:
expr = self.expr
if self.is_imaginary:
expr = self.expr.subs(g, I*g)
func = lambdify(g, expr)
interval = self._get_interval()
while True:
if self.is_real:
a = mpf(str(interval.a))
b = mpf(str(interval.b))
if a == b:
root = a
break
x0 = mpf(str(interval.center))
x1 = x0 + mpf(str(interval.dx))/4
elif self.is_imaginary:
a = mpf(str(interval.ay))
b = mpf(str(interval.by))
if a == b:
root = mpc(mpf('0'), a)
break
x0 = mpf(str(interval.center[1]))
x1 = x0 + mpf(str(interval.dy))/4
else:
ax = mpf(str(interval.ax))
bx = mpf(str(interval.bx))
ay = mpf(str(interval.ay))
by = mpf(str(interval.by))
if ax == bx and ay == by:
root = mpc(ax, ay)
break
x0 = mpc(*map(str, interval.center))
x1 = x0 + mpc(*map(str, (interval.dx, interval.dy)))/4
try:
# without a tolerance, this will return when (to within
# the given precision) x_i == x_{i-1}
root = findroot(func, (x0, x1))
# If the (real or complex) root is not in the 'interval',
# then keep refining the interval. This happens if findroot
# accidentally finds a different root outside of this
# interval because our initial estimate 'x0' was not close
# enough. It is also possible that the secant method will
# get trapped by a max/min in the interval; the root
# verification by findroot will raise a ValueError in this
# case and the interval will then be tightened -- and
# eventually the root will be found.
#
# It is also possible that findroot will not have any
# successful iterations to process (in which case it
# will fail to initialize a variable that is tested
# after the iterations and raise an UnboundLocalError).
if self.is_real or self.is_imaginary:
if not bool(root.imag) == self.is_real and (
a <= root <= b):
if self.is_imaginary:
root = mpc(mpf('0'), root.real)
break
elif (ax <= root.real <= bx and ay <= root.imag <= by):
break
except (UnboundLocalError, ValueError):
pass
interval = interval.refine()
# update the interval so we at least (for this precision or
# less) don't have much work to do to recompute the root
self._set_interval(interval)
return (Float._new(root.real._mpf_, prec) +
I*Float._new(root.imag._mpf_, prec))
def _eval_evalf(self, prec, **kwargs):
"""Evaluate this complex root to the given precision."""
# all kwargs are ignored
return self.eval_rational(n=prec_to_dps(prec))._evalf(prec)
def eval_rational(self, dx=None, dy=None, n=15):
"""
Return a Rational approximation of ``self`` that has real
and imaginary component approximations that are within ``dx``
and ``dy`` of the true values, respectively. Alternatively,
``n`` digits of precision can be specified.
The interval is refined with bisection and is sure to
converge. The root bounds are updated when the refinement
is complete so recalculation at the same or lesser precision
will not have to repeat the refinement and should be much
faster.
The following example first obtains Rational approximation to
1e-8 accuracy for all roots of the 4-th order Legendre
polynomial. Since the roots are all less than 1, this will
ensure the decimal representation of the approximation will be
correct (including rounding) to 6 digits:
>>> from sympy import S, legendre_poly, Symbol
>>> x = Symbol("x")
>>> p = legendre_poly(4, x, polys=True)
>>> r = p.real_roots()[-1]
>>> r.eval_rational(10**-8).n(6)
0.861136
It is not necessary to a two-step calculation, however: the
decimal representation can be computed directly:
>>> r.evalf(17)
0.86113631159405258
"""
dy = dy or dx
if dx:
rtol = None
dx = dx if isinstance(dx, Rational) else Rational(str(dx))
dy = dy if isinstance(dy, Rational) else Rational(str(dy))
else:
# 5 binary (or 2 decimal) digits are needed to ensure that
# a given digit is correctly rounded
# prec_to_dps(dps_to_prec(n) + 5) - n <= 2 (tested for
# n in range(1000000)
rtol = S(10)**-(n + 2) # +2 for guard digits
interval = self._get_interval()
while True:
if self.is_real:
if rtol:
dx = abs(interval.center*rtol)
interval = interval.refine_size(dx=dx)
c = interval.center
real = Rational(c)
imag = S.Zero
if not rtol or interval.dx < abs(c*rtol):
break
elif self.is_imaginary:
if rtol:
dy = abs(interval.center[1]*rtol)
dx = 1
interval = interval.refine_size(dx=dx, dy=dy)
c = interval.center[1]
imag = Rational(c)
real = S.Zero
if not rtol or interval.dy < abs(c*rtol):
break
else:
if rtol:
dx = abs(interval.center[0]*rtol)
dy = abs(interval.center[1]*rtol)
interval = interval.refine_size(dx, dy)
c = interval.center
real, imag = map(Rational, c)
if not rtol or (
interval.dx < abs(c[0]*rtol) and
interval.dy < abs(c[1]*rtol)):
break
# update the interval so we at least (for this precision or
# less) don't have much work to do to recompute the root
self._set_interval(interval)
return real + I*imag
def _eval_Eq(self, other):
# CRootOf represents a Root, so if other is that root, it should set
# the expression to zero *and* it should be in the interval of the
# CRootOf instance. It must also be a number that agrees with the
# is_real value of the CRootOf instance.
if type(self) == type(other):
return sympify(self == other)
if not other.is_number:
return None
if not other.is_finite:
return S.false
z = self.expr.subs(self.expr.free_symbols.pop(), other).is_zero
if z is False: # all roots will make z True but we don't know
# whether this is the right root if z is True
return S.false
o = other.is_real, other.is_imaginary
s = self.is_real, self.is_imaginary
assert None not in s # this is part of initial refinement
if o != s and None not in o:
return S.false
re, im = other.as_real_imag()
if self.is_real:
if im:
return S.false
i = self._get_interval()
a, b = [Rational(str(_)) for _ in (i.a, i.b)]
return sympify(a <= other and other <= b)
i = self._get_interval()
r1, r2, i1, i2 = [Rational(str(j)) for j in (
i.ax, i.bx, i.ay, i.by)]
return sympify((
r1 <= re and re <= r2) and (
i1 <= im and im <= i2))
CRootOf = ComplexRootOf
@public
class RootSum(Expr):
"""Represents a sum of all roots of a univariate polynomial. """
__slots__ = ['poly', 'fun', 'auto']
def __new__(cls, expr, func=None, x=None, auto=True, quadratic=False):
"""Construct a new ``RootSum`` instance of roots of a polynomial."""
coeff, poly = cls._transform(expr, x)
if not poly.is_univariate:
raise MultivariatePolynomialError(
"only univariate polynomials are allowed")
if func is None:
func = Lambda(poly.gen, poly.gen)
else:
is_func = getattr(func, 'is_Function', False)
if is_func and 1 in func.nargs:
if not isinstance(func, Lambda):
func = Lambda(poly.gen, func(poly.gen))
else:
raise ValueError(
"expected a univariate function, got %s" % func)
var, expr = func.variables[0], func.expr
if coeff is not S.One:
expr = expr.subs(var, coeff*var)
deg = poly.degree()
if not expr.has(var):
return deg*expr
if expr.is_Add:
add_const, expr = expr.as_independent(var)
else:
add_const = S.Zero
if expr.is_Mul:
mul_const, expr = expr.as_independent(var)
else:
mul_const = S.One
func = Lambda(var, expr)
rational = cls._is_func_rational(poly, func)
factors, terms = _pure_factors(poly), []
for poly, k in factors:
if poly.is_linear:
term = func(roots_linear(poly)[0])
elif quadratic and poly.is_quadratic:
term = sum(map(func, roots_quadratic(poly)))
else:
if not rational or not auto:
term = cls._new(poly, func, auto)
else:
term = cls._rational_case(poly, func)
terms.append(k*term)
return mul_const*Add(*terms) + deg*add_const
@classmethod
def _new(cls, poly, func, auto=True):
"""Construct new raw ``RootSum`` instance. """
obj = Expr.__new__(cls)
obj.poly = poly
obj.fun = func
obj.auto = auto
return obj
@classmethod
def new(cls, poly, func, auto=True):
"""Construct new ``RootSum`` instance. """
if not func.expr.has(*func.variables):
return func.expr
rational = cls._is_func_rational(poly, func)
if not rational or not auto:
return cls._new(poly, func, auto)
else:
return cls._rational_case(poly, func)
@classmethod
def _transform(cls, expr, x):
"""Transform an expression to a polynomial. """
poly = PurePoly(expr, x, greedy=False)
return preprocess_roots(poly)
@classmethod
def _is_func_rational(cls, poly, func):
"""Check if a lambda is a rational function. """
var, expr = func.variables[0], func.expr
return expr.is_rational_function(var)
@classmethod
def _rational_case(cls, poly, func):
"""Handle the rational function case. """
roots = symbols('r:%d' % poly.degree())
var, expr = func.variables[0], func.expr
f = sum(expr.subs(var, r) for r in roots)
p, q = together(f).as_numer_denom()
domain = QQ[roots]
p = p.expand()
q = q.expand()
try:
p = Poly(p, domain=domain, expand=False)
except GeneratorsNeeded:
p, p_coeff = None, (p,)
else:
p_monom, p_coeff = zip(*p.terms())
try:
q = Poly(q, domain=domain, expand=False)
except GeneratorsNeeded:
q, q_coeff = None, (q,)
else:
q_monom, q_coeff = zip(*q.terms())
coeffs, mapping = symmetrize(p_coeff + q_coeff, formal=True)
formulas, values = viete(poly, roots), []
for (sym, _), (_, val) in zip(mapping, formulas):
values.append((sym, val))
for i, (coeff, _) in enumerate(coeffs):
coeffs[i] = coeff.subs(values)
n = len(p_coeff)
p_coeff = coeffs[:n]
q_coeff = coeffs[n:]
if p is not None:
p = Poly(dict(zip(p_monom, p_coeff)), *p.gens).as_expr()
else:
(p,) = p_coeff
if q is not None:
q = Poly(dict(zip(q_monom, q_coeff)), *q.gens).as_expr()
else:
(q,) = q_coeff
return factor(p/q)
def _hashable_content(self):
return (self.poly, self.fun)
@property
def expr(self):
return self.poly.as_expr()
@property
def args(self):
return (self.expr, self.fun, self.poly.gen)
@property
def free_symbols(self):
return self.poly.free_symbols | self.fun.free_symbols
@property
def is_commutative(self):
return True
def doit(self, **hints):
if not hints.get('roots', True):
return self
_roots = roots(self.poly, multiple=True)
if len(_roots) < self.poly.degree():
return self
else:
return Add(*[self.fun(r) for r in _roots])
def _eval_evalf(self, prec):
try:
_roots = self.poly.nroots(n=prec_to_dps(prec))
except (DomainError, PolynomialError):
return self
else:
return Add(*[self.fun(r) for r in _roots])
def _eval_derivative(self, x):
var, expr = self.fun.args
func = Lambda(var, expr.diff(x))
return self.new(self.poly, func, self.auto)
|
2f2768ac04d1017f76093520f71447202ed1df9278851887a3f441e23877d6a5
|
"""Square-free decomposition algorithms and related tools. """
from __future__ import print_function, division
from sympy.polys.densearith import (
dup_neg, dmp_neg,
dup_sub, dmp_sub,
dup_mul,
dup_quo, dmp_quo,
dup_mul_ground, dmp_mul_ground)
from sympy.polys.densebasic import (
dup_strip,
dup_LC, dmp_ground_LC,
dmp_zero_p,
dmp_ground,
dup_degree, dmp_degree,
dmp_raise, dmp_inject,
dup_convert)
from sympy.polys.densetools import (
dup_diff, dmp_diff,
dup_shift, dmp_compose,
dup_monic, dmp_ground_monic,
dup_primitive, dmp_ground_primitive)
from sympy.polys.euclidtools import (
dup_inner_gcd, dmp_inner_gcd,
dup_gcd, dmp_gcd,
dmp_resultant)
from sympy.polys.galoistools import (
gf_sqf_list, gf_sqf_part)
from sympy.polys.polyerrors import (
MultivariatePolynomialError,
DomainError)
def dup_sqf_p(f, K):
"""
Return ``True`` if ``f`` is a square-free polynomial in ``K[x]``.
Examples
========
>>> from sympy.polys import ring, ZZ
>>> R, x = ring("x", ZZ)
>>> R.dup_sqf_p(x**2 - 2*x + 1)
False
>>> R.dup_sqf_p(x**2 - 1)
True
"""
if not f:
return True
else:
return not dup_degree(dup_gcd(f, dup_diff(f, 1, K), K))
def dmp_sqf_p(f, u, K):
"""
Return ``True`` if ``f`` is a square-free polynomial in ``K[X]``.
Examples
========
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)
>>> R.dmp_sqf_p(x**2 + 2*x*y + y**2)
False
>>> R.dmp_sqf_p(x**2 + y**2)
True
"""
if dmp_zero_p(f, u):
return True
else:
return not dmp_degree(dmp_gcd(f, dmp_diff(f, 1, u, K), u, K), u)
def dup_sqf_norm(f, K):
"""
Square-free norm of ``f`` in ``K[x]``, useful over algebraic domains.
Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and ``r(x) = Norm(g(x))``
is a square-free polynomial over K, where ``a`` is the algebraic extension of ``K``.
Examples
========
>>> from sympy.polys import ring, QQ
>>> from sympy import sqrt
>>> K = QQ.algebraic_field(sqrt(3))
>>> R, x = ring("x", K)
>>> _, X = ring("x", QQ)
>>> s, f, r = R.dup_sqf_norm(x**2 - 2)
>>> s == 1
True
>>> f == x**2 + K([QQ(-2), QQ(0)])*x + 1
True
>>> r == X**4 - 10*X**2 + 1
True
"""
if not K.is_Algebraic:
raise DomainError("ground domain must be algebraic")
s, g = 0, dmp_raise(K.mod.rep, 1, 0, K.dom)
while True:
h, _ = dmp_inject(f, 0, K, front=True)
r = dmp_resultant(g, h, 1, K.dom)
if dup_sqf_p(r, K.dom):
break
else:
f, s = dup_shift(f, -K.unit, K), s + 1
return s, f, r
def dmp_sqf_norm(f, u, K):
"""
Square-free norm of ``f`` in ``K[X]``, useful over algebraic domains.
Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and ``r(x) = Norm(g(x))``
is a square-free polynomial over K, where ``a`` is the algebraic extension of ``K``.
Examples
========
>>> from sympy.polys import ring, QQ
>>> from sympy import I
>>> K = QQ.algebraic_field(I)
>>> R, x, y = ring("x,y", K)
>>> _, X, Y = ring("x,y", QQ)
>>> s, f, r = R.dmp_sqf_norm(x*y + y**2)
>>> s == 1
True
>>> f == x*y + y**2 + K([QQ(-1), QQ(0)])*y
True
>>> r == X**2*Y**2 + 2*X*Y**3 + Y**4 + Y**2
True
"""
if not u:
return dup_sqf_norm(f, K)
if not K.is_Algebraic:
raise DomainError("ground domain must be algebraic")
g = dmp_raise(K.mod.rep, u + 1, 0, K.dom)
F = dmp_raise([K.one, -K.unit], u, 0, K)
s = 0
while True:
h, _ = dmp_inject(f, u, K, front=True)
r = dmp_resultant(g, h, u + 1, K.dom)
if dmp_sqf_p(r, u, K.dom):
break
else:
f, s = dmp_compose(f, F, u, K), s + 1
return s, f, r
def dmp_norm(f, u, K):
"""
Norm of ``f`` in ``K[X1, ..., Xn]``, often not square-free.
"""
if not K.is_Algebraic:
raise DomainError("ground domain must be algebraic")
g = dmp_raise(K.mod.rep, u + 1, 0, K.dom)
h, _ = dmp_inject(f, u, K, front=True)
return dmp_resultant(g, h, u + 1, K.dom)
def dup_gf_sqf_part(f, K):
"""Compute square-free part of ``f`` in ``GF(p)[x]``. """
f = dup_convert(f, K, K.dom)
g = gf_sqf_part(f, K.mod, K.dom)
return dup_convert(g, K.dom, K)
def dmp_gf_sqf_part(f, u, K):
"""Compute square-free part of ``f`` in ``GF(p)[X]``. """
raise NotImplementedError('multivariate polynomials over finite fields')
def dup_sqf_part(f, K):
"""
Returns square-free part of a polynomial in ``K[x]``.
Examples
========
>>> from sympy.polys import ring, ZZ
>>> R, x = ring("x", ZZ)
>>> R.dup_sqf_part(x**3 - 3*x - 2)
x**2 - x - 2
"""
if K.is_FiniteField:
return dup_gf_sqf_part(f, K)
if not f:
return f
if K.is_negative(dup_LC(f, K)):
f = dup_neg(f, K)
gcd = dup_gcd(f, dup_diff(f, 1, K), K)
sqf = dup_quo(f, gcd, K)
if K.is_Field:
return dup_monic(sqf, K)
else:
return dup_primitive(sqf, K)[1]
def dmp_sqf_part(f, u, K):
"""
Returns square-free part of a polynomial in ``K[X]``.
Examples
========
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)
>>> R.dmp_sqf_part(x**3 + 2*x**2*y + x*y**2)
x**2 + x*y
"""
if not u:
return dup_sqf_part(f, K)
if K.is_FiniteField:
return dmp_gf_sqf_part(f, u, K)
if dmp_zero_p(f, u):
return f
if K.is_negative(dmp_ground_LC(f, u, K)):
f = dmp_neg(f, u, K)
gcd = dmp_gcd(f, dmp_diff(f, 1, u, K), u, K)
sqf = dmp_quo(f, gcd, u, K)
if K.is_Field:
return dmp_ground_monic(sqf, u, K)
else:
return dmp_ground_primitive(sqf, u, K)[1]
def dup_gf_sqf_list(f, K, all=False):
"""Compute square-free decomposition of ``f`` in ``GF(p)[x]``. """
f = dup_convert(f, K, K.dom)
coeff, factors = gf_sqf_list(f, K.mod, K.dom, all=all)
for i, (f, k) in enumerate(factors):
factors[i] = (dup_convert(f, K.dom, K), k)
return K.convert(coeff, K.dom), factors
def dmp_gf_sqf_list(f, u, K, all=False):
"""Compute square-free decomposition of ``f`` in ``GF(p)[X]``. """
raise NotImplementedError('multivariate polynomials over finite fields')
def dup_sqf_list(f, K, all=False):
"""
Return square-free decomposition of a polynomial in ``K[x]``.
Examples
========
>>> from sympy.polys import ring, ZZ
>>> R, x = ring("x", ZZ)
>>> f = 2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16
>>> R.dup_sqf_list(f)
(2, [(x + 1, 2), (x + 2, 3)])
>>> R.dup_sqf_list(f, all=True)
(2, [(1, 1), (x + 1, 2), (x + 2, 3)])
"""
if K.is_FiniteField:
return dup_gf_sqf_list(f, K, all=all)
if K.is_Field:
coeff = dup_LC(f, K)
f = dup_monic(f, K)
else:
coeff, f = dup_primitive(f, K)
if K.is_negative(dup_LC(f, K)):
f = dup_neg(f, K)
coeff = -coeff
if dup_degree(f) <= 0:
return coeff, []
result, i = [], 1
h = dup_diff(f, 1, K)
g, p, q = dup_inner_gcd(f, h, K)
while True:
d = dup_diff(p, 1, K)
h = dup_sub(q, d, K)
if not h:
result.append((p, i))
break
g, p, q = dup_inner_gcd(p, h, K)
if all or dup_degree(g) > 0:
result.append((g, i))
i += 1
return coeff, result
def dup_sqf_list_include(f, K, all=False):
"""
Return square-free decomposition of a polynomial in ``K[x]``.
Examples
========
>>> from sympy.polys import ring, ZZ
>>> R, x = ring("x", ZZ)
>>> f = 2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16
>>> R.dup_sqf_list_include(f)
[(2, 1), (x + 1, 2), (x + 2, 3)]
>>> R.dup_sqf_list_include(f, all=True)
[(2, 1), (x + 1, 2), (x + 2, 3)]
"""
coeff, factors = dup_sqf_list(f, K, all=all)
if factors and factors[0][1] == 1:
g = dup_mul_ground(factors[0][0], coeff, K)
return [(g, 1)] + factors[1:]
else:
g = dup_strip([coeff])
return [(g, 1)] + factors
def dmp_sqf_list(f, u, K, all=False):
"""
Return square-free decomposition of a polynomial in ``K[X]``.
Examples
========
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)
>>> f = x**5 + 2*x**4*y + x**3*y**2
>>> R.dmp_sqf_list(f)
(1, [(x + y, 2), (x, 3)])
>>> R.dmp_sqf_list(f, all=True)
(1, [(1, 1), (x + y, 2), (x, 3)])
"""
if not u:
return dup_sqf_list(f, K, all=all)
if K.is_FiniteField:
return dmp_gf_sqf_list(f, u, K, all=all)
if K.is_Field:
coeff = dmp_ground_LC(f, u, K)
f = dmp_ground_monic(f, u, K)
else:
coeff, f = dmp_ground_primitive(f, u, K)
if K.is_negative(dmp_ground_LC(f, u, K)):
f = dmp_neg(f, u, K)
coeff = -coeff
if dmp_degree(f, u) <= 0:
return coeff, []
result, i = [], 1
h = dmp_diff(f, 1, u, K)
g, p, q = dmp_inner_gcd(f, h, u, K)
while True:
d = dmp_diff(p, 1, u, K)
h = dmp_sub(q, d, u, K)
if dmp_zero_p(h, u):
result.append((p, i))
break
g, p, q = dmp_inner_gcd(p, h, u, K)
if all or dmp_degree(g, u) > 0:
result.append((g, i))
i += 1
return coeff, result
def dmp_sqf_list_include(f, u, K, all=False):
"""
Return square-free decomposition of a polynomial in ``K[x]``.
Examples
========
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)
>>> f = x**5 + 2*x**4*y + x**3*y**2
>>> R.dmp_sqf_list_include(f)
[(1, 1), (x + y, 2), (x, 3)]
>>> R.dmp_sqf_list_include(f, all=True)
[(1, 1), (x + y, 2), (x, 3)]
"""
if not u:
return dup_sqf_list_include(f, K, all=all)
coeff, factors = dmp_sqf_list(f, u, K, all=all)
if factors and factors[0][1] == 1:
g = dmp_mul_ground(factors[0][0], coeff, u, K)
return [(g, 1)] + factors[1:]
else:
g = dmp_ground(coeff, u)
return [(g, 1)] + factors
def dup_gff_list(f, K):
"""
Compute greatest factorial factorization of ``f`` in ``K[x]``.
Examples
========
>>> from sympy.polys import ring, ZZ
>>> R, x = ring("x", ZZ)
>>> R.dup_gff_list(x**5 + 2*x**4 - x**3 - 2*x**2)
[(x, 1), (x + 2, 4)]
"""
if not f:
raise ValueError("greatest factorial factorization doesn't exist for a zero polynomial")
f = dup_monic(f, K)
if not dup_degree(f):
return []
else:
g = dup_gcd(f, dup_shift(f, K.one, K), K)
H = dup_gff_list(g, K)
for i, (h, k) in enumerate(H):
g = dup_mul(g, dup_shift(h, -K(k), K), K)
H[i] = (h, k + 1)
f = dup_quo(f, g, K)
if not dup_degree(f):
return H
else:
return [(f, 1)] + H
def dmp_gff_list(f, u, K):
"""
Compute greatest factorial factorization of ``f`` in ``K[X]``.
Examples
========
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)
"""
if not u:
return dup_gff_list(f, K)
else:
raise MultivariatePolynomialError(f)
|
e14bb713668df23138a0dd195303d5073b15177671278d55667947e8d1c467b0
|
"""User-friendly public interface to polynomial functions. """
from __future__ import print_function, division
from sympy.core import (
S, Basic, Expr, I, Integer, Add, Mul, Dummy, Tuple
)
from sympy.core.basic import preorder_traversal
from sympy.core.compatibility import iterable, range, ordered
from sympy.core.decorators import _sympifyit
from sympy.core.function import Derivative
from sympy.core.mul import _keep_coeff
from sympy.core.relational import Relational
from sympy.core.symbol import Symbol
from sympy.core.sympify import sympify
from sympy.logic.boolalg import BooleanAtom
from sympy.polys import polyoptions as options
from sympy.polys.constructor import construct_domain
from sympy.polys.domains import FF, QQ, ZZ
from sympy.polys.fglmtools import matrix_fglm
from sympy.polys.groebnertools import groebner as _groebner
from sympy.polys.monomials import Monomial
from sympy.polys.orderings import monomial_key
from sympy.polys.polyclasses import DMP
from sympy.polys.polyerrors import (
OperationNotSupported, DomainError,
CoercionFailed, UnificationFailed,
GeneratorsNeeded, PolynomialError,
MultivariatePolynomialError,
ExactQuotientFailed,
PolificationFailed,
ComputationFailed,
GeneratorsError,
)
from sympy.polys.polyutils import (
basic_from_dict,
_sort_gens,
_unify_gens,
_dict_reorder,
_dict_from_expr,
_parallel_dict_from_expr,
)
from sympy.polys.rationaltools import together
from sympy.polys.rootisolation import dup_isolate_real_roots_list
from sympy.utilities import group, sift, public, filldedent
# Required to avoid errors
import sympy.polys
import mpmath
from mpmath.libmp.libhyper import NoConvergence
@public
class Poly(Expr):
"""
Generic class for representing and operating on polynomial expressions.
Subclasses Expr class.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
Create a univariate polynomial:
>>> Poly(x*(x**2 + x - 1)**2)
Poly(x**5 + 2*x**4 - x**3 - 2*x**2 + x, x, domain='ZZ')
Create a univariate polynomial with specific domain:
>>> from sympy import sqrt
>>> Poly(x**2 + 2*x + sqrt(3), domain='R')
Poly(1.0*x**2 + 2.0*x + 1.73205080756888, x, domain='RR')
Create a multivariate polynomial:
>>> Poly(y*x**2 + x*y + 1)
Poly(x**2*y + x*y + 1, x, y, domain='ZZ')
Create a univariate polynomial, where y is a constant:
>>> Poly(y*x**2 + x*y + 1,x)
Poly(y*x**2 + y*x + 1, x, domain='ZZ[y]')
You can evaluate the above polynomial as a function of y:
>>> Poly(y*x**2 + x*y + 1,x).eval(2)
6*y + 1
See Also
========
sympy.core.expr.Expr
"""
__slots__ = ['rep', 'gens']
is_commutative = True
is_Poly = True
_op_priority = 10.001
def __new__(cls, rep, *gens, **args):
"""Create a new polynomial instance out of something useful. """
opt = options.build_options(gens, args)
if 'order' in opt:
raise NotImplementedError("'order' keyword is not implemented yet")
if iterable(rep, exclude=str):
if isinstance(rep, dict):
return cls._from_dict(rep, opt)
else:
return cls._from_list(list(rep), opt)
else:
rep = sympify(rep)
if rep.is_Poly:
return cls._from_poly(rep, opt)
else:
return cls._from_expr(rep, opt)
@classmethod
def new(cls, rep, *gens):
"""Construct :class:`Poly` instance from raw representation. """
if not isinstance(rep, DMP):
raise PolynomialError(
"invalid polynomial representation: %s" % rep)
elif rep.lev != len(gens) - 1:
raise PolynomialError("invalid arguments: %s, %s" % (rep, gens))
obj = Basic.__new__(cls)
obj.rep = rep
obj.gens = gens
return obj
@classmethod
def from_dict(cls, rep, *gens, **args):
"""Construct a polynomial from a ``dict``. """
opt = options.build_options(gens, args)
return cls._from_dict(rep, opt)
@classmethod
def from_list(cls, rep, *gens, **args):
"""Construct a polynomial from a ``list``. """
opt = options.build_options(gens, args)
return cls._from_list(rep, opt)
@classmethod
def from_poly(cls, rep, *gens, **args):
"""Construct a polynomial from a polynomial. """
opt = options.build_options(gens, args)
return cls._from_poly(rep, opt)
@classmethod
def from_expr(cls, rep, *gens, **args):
"""Construct a polynomial from an expression. """
opt = options.build_options(gens, args)
return cls._from_expr(rep, opt)
@classmethod
def _from_dict(cls, rep, opt):
"""Construct a polynomial from a ``dict``. """
gens = opt.gens
if not gens:
raise GeneratorsNeeded(
"can't initialize from 'dict' without generators")
level = len(gens) - 1
domain = opt.domain
if domain is None:
domain, rep = construct_domain(rep, opt=opt)
else:
for monom, coeff in rep.items():
rep[monom] = domain.convert(coeff)
return cls.new(DMP.from_dict(rep, level, domain), *gens)
@classmethod
def _from_list(cls, rep, opt):
"""Construct a polynomial from a ``list``. """
gens = opt.gens
if not gens:
raise GeneratorsNeeded(
"can't initialize from 'list' without generators")
elif len(gens) != 1:
raise MultivariatePolynomialError(
"'list' representation not supported")
level = len(gens) - 1
domain = opt.domain
if domain is None:
domain, rep = construct_domain(rep, opt=opt)
else:
rep = list(map(domain.convert, rep))
return cls.new(DMP.from_list(rep, level, domain), *gens)
@classmethod
def _from_poly(cls, rep, opt):
"""Construct a polynomial from a polynomial. """
if cls != rep.__class__:
rep = cls.new(rep.rep, *rep.gens)
gens = opt.gens
field = opt.field
domain = opt.domain
if gens and rep.gens != gens:
if set(rep.gens) != set(gens):
return cls._from_expr(rep.as_expr(), opt)
else:
rep = rep.reorder(*gens)
if 'domain' in opt and domain:
rep = rep.set_domain(domain)
elif field is True:
rep = rep.to_field()
return rep
@classmethod
def _from_expr(cls, rep, opt):
"""Construct a polynomial from an expression. """
rep, opt = _dict_from_expr(rep, opt)
return cls._from_dict(rep, opt)
def _hashable_content(self):
"""Allow SymPy to hash Poly instances. """
return (self.rep, self.gens)
def __hash__(self):
return super(Poly, self).__hash__()
@property
def free_symbols(self):
"""
Free symbols of a polynomial expression.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y, z
>>> Poly(x**2 + 1).free_symbols
{x}
>>> Poly(x**2 + y).free_symbols
{x, y}
>>> Poly(x**2 + y, x).free_symbols
{x, y}
>>> Poly(x**2 + y, x, z).free_symbols
{x, y}
"""
symbols = set()
gens = self.gens
for i in range(len(gens)):
for monom in self.monoms():
if monom[i]:
symbols |= gens[i].free_symbols
break
return symbols | self.free_symbols_in_domain
@property
def free_symbols_in_domain(self):
"""
Free symbols of the domain of ``self``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + 1).free_symbols_in_domain
set()
>>> Poly(x**2 + y).free_symbols_in_domain
set()
>>> Poly(x**2 + y, x).free_symbols_in_domain
{y}
"""
domain, symbols = self.rep.dom, set()
if domain.is_Composite:
for gen in domain.symbols:
symbols |= gen.free_symbols
elif domain.is_EX:
for coeff in self.coeffs():
symbols |= coeff.free_symbols
return symbols
@property
def args(self):
"""
Don't mess up with the core.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).args
(x**2 + 1,)
"""
return (self.as_expr(),)
@property
def gen(self):
"""
Return the principal generator.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).gen
x
"""
return self.gens[0]
@property
def domain(self):
"""Get the ground domain of ``self``. """
return self.get_domain()
@property
def zero(self):
"""Return zero polynomial with ``self``'s properties. """
return self.new(self.rep.zero(self.rep.lev, self.rep.dom), *self.gens)
@property
def one(self):
"""Return one polynomial with ``self``'s properties. """
return self.new(self.rep.one(self.rep.lev, self.rep.dom), *self.gens)
@property
def unit(self):
"""Return unit polynomial with ``self``'s properties. """
return self.new(self.rep.unit(self.rep.lev, self.rep.dom), *self.gens)
def unify(f, g):
"""
Make ``f`` and ``g`` belong to the same domain.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> f, g = Poly(x/2 + 1), Poly(2*x + 1)
>>> f
Poly(1/2*x + 1, x, domain='QQ')
>>> g
Poly(2*x + 1, x, domain='ZZ')
>>> F, G = f.unify(g)
>>> F
Poly(1/2*x + 1, x, domain='QQ')
>>> G
Poly(2*x + 1, x, domain='QQ')
"""
_, per, F, G = f._unify(g)
return per(F), per(G)
def _unify(f, g):
g = sympify(g)
if not g.is_Poly:
try:
return f.rep.dom, f.per, f.rep, f.rep.per(f.rep.dom.from_sympy(g))
except CoercionFailed:
raise UnificationFailed("can't unify %s with %s" % (f, g))
if isinstance(f.rep, DMP) and isinstance(g.rep, DMP):
gens = _unify_gens(f.gens, g.gens)
dom, lev = f.rep.dom.unify(g.rep.dom, gens), len(gens) - 1
if f.gens != gens:
f_monoms, f_coeffs = _dict_reorder(
f.rep.to_dict(), f.gens, gens)
if f.rep.dom != dom:
f_coeffs = [dom.convert(c, f.rep.dom) for c in f_coeffs]
F = DMP(dict(list(zip(f_monoms, f_coeffs))), dom, lev)
else:
F = f.rep.convert(dom)
if g.gens != gens:
g_monoms, g_coeffs = _dict_reorder(
g.rep.to_dict(), g.gens, gens)
if g.rep.dom != dom:
g_coeffs = [dom.convert(c, g.rep.dom) for c in g_coeffs]
G = DMP(dict(list(zip(g_monoms, g_coeffs))), dom, lev)
else:
G = g.rep.convert(dom)
else:
raise UnificationFailed("can't unify %s with %s" % (f, g))
cls = f.__class__
def per(rep, dom=dom, gens=gens, remove=None):
if remove is not None:
gens = gens[:remove] + gens[remove + 1:]
if not gens:
return dom.to_sympy(rep)
return cls.new(rep, *gens)
return dom, per, F, G
def per(f, rep, gens=None, remove=None):
"""
Create a Poly out of the given representation.
Examples
========
>>> from sympy import Poly, ZZ
>>> from sympy.abc import x, y
>>> from sympy.polys.polyclasses import DMP
>>> a = Poly(x**2 + 1)
>>> a.per(DMP([ZZ(1), ZZ(1)], ZZ), gens=[y])
Poly(y + 1, y, domain='ZZ')
"""
if gens is None:
gens = f.gens
if remove is not None:
gens = gens[:remove] + gens[remove + 1:]
if not gens:
return f.rep.dom.to_sympy(rep)
return f.__class__.new(rep, *gens)
def set_domain(f, domain):
"""Set the ground domain of ``f``. """
opt = options.build_options(f.gens, {'domain': domain})
return f.per(f.rep.convert(opt.domain))
def get_domain(f):
"""Get the ground domain of ``f``. """
return f.rep.dom
def set_modulus(f, modulus):
"""
Set the modulus of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(5*x**2 + 2*x - 1, x).set_modulus(2)
Poly(x**2 + 1, x, modulus=2)
"""
modulus = options.Modulus.preprocess(modulus)
return f.set_domain(FF(modulus))
def get_modulus(f):
"""
Get the modulus of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, modulus=2).get_modulus()
2
"""
domain = f.get_domain()
if domain.is_FiniteField:
return Integer(domain.characteristic())
else:
raise PolynomialError("not a polynomial over a Galois field")
def _eval_subs(f, old, new):
"""Internal implementation of :func:`subs`. """
if old in f.gens:
if new.is_number:
return f.eval(old, new)
else:
try:
return f.replace(old, new)
except PolynomialError:
pass
return f.as_expr().subs(old, new)
def exclude(f):
"""
Remove unnecessary generators from ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import a, b, c, d, x
>>> Poly(a + x, a, b, c, d, x).exclude()
Poly(a + x, a, x, domain='ZZ')
"""
J, new = f.rep.exclude()
gens = []
for j in range(len(f.gens)):
if j not in J:
gens.append(f.gens[j])
return f.per(new, gens=gens)
def replace(f, x, y=None, *_ignore):
# XXX this does not match Basic's signature
"""
Replace ``x`` with ``y`` in generators list.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + 1, x).replace(x, y)
Poly(y**2 + 1, y, domain='ZZ')
"""
if y is None:
if f.is_univariate:
x, y = f.gen, x
else:
raise PolynomialError(
"syntax supported only in univariate case")
if x == y or x not in f.gens:
return f
if x in f.gens and y not in f.gens:
dom = f.get_domain()
if not dom.is_Composite or y not in dom.symbols:
gens = list(f.gens)
gens[gens.index(x)] = y
return f.per(f.rep, gens=gens)
raise PolynomialError("can't replace %s with %s in %s" % (x, y, f))
def reorder(f, *gens, **args):
"""
Efficiently apply new order of generators.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + x*y**2, x, y).reorder(y, x)
Poly(y**2*x + x**2, y, x, domain='ZZ')
"""
opt = options.Options((), args)
if not gens:
gens = _sort_gens(f.gens, opt=opt)
elif set(f.gens) != set(gens):
raise PolynomialError(
"generators list can differ only up to order of elements")
rep = dict(list(zip(*_dict_reorder(f.rep.to_dict(), f.gens, gens))))
return f.per(DMP(rep, f.rep.dom, len(gens) - 1), gens=gens)
def ltrim(f, gen):
"""
Remove dummy generators from ``f`` that are to the left of
specified ``gen`` in the generators as ordered. When ``gen``
is an integer, it refers to the generator located at that
position within the tuple of generators of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y, z
>>> Poly(y**2 + y*z**2, x, y, z).ltrim(y)
Poly(y**2 + y*z**2, y, z, domain='ZZ')
>>> Poly(z, x, y, z).ltrim(-1)
Poly(z, z, domain='ZZ')
"""
rep = f.as_dict(native=True)
j = f._gen_to_level(gen)
terms = {}
for monom, coeff in rep.items():
if any(i for i in monom[:j]):
# some generator is used in the portion to be trimmed
raise PolynomialError("can't left trim %s" % f)
terms[monom[j:]] = coeff
gens = f.gens[j:]
return f.new(DMP.from_dict(terms, len(gens) - 1, f.rep.dom), *gens)
def has_only_gens(f, *gens):
"""
Return ``True`` if ``Poly(f, *gens)`` retains ground domain.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y, z
>>> Poly(x*y + 1, x, y, z).has_only_gens(x, y)
True
>>> Poly(x*y + z, x, y, z).has_only_gens(x, y)
False
"""
indices = set()
for gen in gens:
try:
index = f.gens.index(gen)
except ValueError:
raise GeneratorsError(
"%s doesn't have %s as generator" % (f, gen))
else:
indices.add(index)
for monom in f.monoms():
for i, elt in enumerate(monom):
if i not in indices and elt:
return False
return True
def to_ring(f):
"""
Make the ground domain a ring.
Examples
========
>>> from sympy import Poly, QQ
>>> from sympy.abc import x
>>> Poly(x**2 + 1, domain=QQ).to_ring()
Poly(x**2 + 1, x, domain='ZZ')
"""
if hasattr(f.rep, 'to_ring'):
result = f.rep.to_ring()
else: # pragma: no cover
raise OperationNotSupported(f, 'to_ring')
return f.per(result)
def to_field(f):
"""
Make the ground domain a field.
Examples
========
>>> from sympy import Poly, ZZ
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x, domain=ZZ).to_field()
Poly(x**2 + 1, x, domain='QQ')
"""
if hasattr(f.rep, 'to_field'):
result = f.rep.to_field()
else: # pragma: no cover
raise OperationNotSupported(f, 'to_field')
return f.per(result)
def to_exact(f):
"""
Make the ground domain exact.
Examples
========
>>> from sympy import Poly, RR
>>> from sympy.abc import x
>>> Poly(x**2 + 1.0, x, domain=RR).to_exact()
Poly(x**2 + 1, x, domain='QQ')
"""
if hasattr(f.rep, 'to_exact'):
result = f.rep.to_exact()
else: # pragma: no cover
raise OperationNotSupported(f, 'to_exact')
return f.per(result)
def retract(f, field=None):
"""
Recalculate the ground domain of a polynomial.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> f = Poly(x**2 + 1, x, domain='QQ[y]')
>>> f
Poly(x**2 + 1, x, domain='QQ[y]')
>>> f.retract()
Poly(x**2 + 1, x, domain='ZZ')
>>> f.retract(field=True)
Poly(x**2 + 1, x, domain='QQ')
"""
dom, rep = construct_domain(f.as_dict(zero=True),
field=field, composite=f.domain.is_Composite or None)
return f.from_dict(rep, f.gens, domain=dom)
def slice(f, x, m, n=None):
"""Take a continuous subsequence of terms of ``f``. """
if n is None:
j, m, n = 0, x, m
else:
j = f._gen_to_level(x)
m, n = int(m), int(n)
if hasattr(f.rep, 'slice'):
result = f.rep.slice(m, n, j)
else: # pragma: no cover
raise OperationNotSupported(f, 'slice')
return f.per(result)
def coeffs(f, order=None):
"""
Returns all non-zero coefficients from ``f`` in lex order.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**3 + 2*x + 3, x).coeffs()
[1, 2, 3]
See Also
========
all_coeffs
coeff_monomial
nth
"""
return [f.rep.dom.to_sympy(c) for c in f.rep.coeffs(order=order)]
def monoms(f, order=None):
"""
Returns all non-zero monomials from ``f`` in lex order.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + 2*x*y**2 + x*y + 3*y, x, y).monoms()
[(2, 0), (1, 2), (1, 1), (0, 1)]
See Also
========
all_monoms
"""
return f.rep.monoms(order=order)
def terms(f, order=None):
"""
Returns all non-zero terms from ``f`` in lex order.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + 2*x*y**2 + x*y + 3*y, x, y).terms()
[((2, 0), 1), ((1, 2), 2), ((1, 1), 1), ((0, 1), 3)]
See Also
========
all_terms
"""
return [(m, f.rep.dom.to_sympy(c)) for m, c in f.rep.terms(order=order)]
def all_coeffs(f):
"""
Returns all coefficients from a univariate polynomial ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**3 + 2*x - 1, x).all_coeffs()
[1, 0, 2, -1]
"""
return [f.rep.dom.to_sympy(c) for c in f.rep.all_coeffs()]
def all_monoms(f):
"""
Returns all monomials from a univariate polynomial ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**3 + 2*x - 1, x).all_monoms()
[(3,), (2,), (1,), (0,)]
See Also
========
all_terms
"""
return f.rep.all_monoms()
def all_terms(f):
"""
Returns all terms from a univariate polynomial ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**3 + 2*x - 1, x).all_terms()
[((3,), 1), ((2,), 0), ((1,), 2), ((0,), -1)]
"""
return [(m, f.rep.dom.to_sympy(c)) for m, c in f.rep.all_terms()]
def termwise(f, func, *gens, **args):
"""
Apply a function to all terms of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> def func(k, coeff):
... k = k[0]
... return coeff//10**(2-k)
>>> Poly(x**2 + 20*x + 400).termwise(func)
Poly(x**2 + 2*x + 4, x, domain='ZZ')
"""
terms = {}
for monom, coeff in f.terms():
result = func(monom, coeff)
if isinstance(result, tuple):
monom, coeff = result
else:
coeff = result
if coeff:
if monom not in terms:
terms[monom] = coeff
else:
raise PolynomialError(
"%s monomial was generated twice" % monom)
return f.from_dict(terms, *(gens or f.gens), **args)
def length(f):
"""
Returns the number of non-zero terms in ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 2*x - 1).length()
3
"""
return len(f.as_dict())
def as_dict(f, native=False, zero=False):
"""
Switch to a ``dict`` representation.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + 2*x*y**2 - y, x, y).as_dict()
{(0, 1): -1, (1, 2): 2, (2, 0): 1}
"""
if native:
return f.rep.to_dict(zero=zero)
else:
return f.rep.to_sympy_dict(zero=zero)
def as_list(f, native=False):
"""Switch to a ``list`` representation. """
if native:
return f.rep.to_list()
else:
return f.rep.to_sympy_list()
def as_expr(f, *gens):
"""
Convert a Poly instance to an Expr instance.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> f = Poly(x**2 + 2*x*y**2 - y, x, y)
>>> f.as_expr()
x**2 + 2*x*y**2 - y
>>> f.as_expr({x: 5})
10*y**2 - y + 25
>>> f.as_expr(5, 6)
379
"""
if not gens:
gens = f.gens
elif len(gens) == 1 and isinstance(gens[0], dict):
mapping = gens[0]
gens = list(f.gens)
for gen, value in mapping.items():
try:
index = gens.index(gen)
except ValueError:
raise GeneratorsError(
"%s doesn't have %s as generator" % (f, gen))
else:
gens[index] = value
return basic_from_dict(f.rep.to_sympy_dict(), *gens)
def lift(f):
"""
Convert algebraic coefficients to rationals.
Examples
========
>>> from sympy import Poly, I
>>> from sympy.abc import x
>>> Poly(x**2 + I*x + 1, x, extension=I).lift()
Poly(x**4 + 3*x**2 + 1, x, domain='QQ')
"""
if hasattr(f.rep, 'lift'):
result = f.rep.lift()
else: # pragma: no cover
raise OperationNotSupported(f, 'lift')
return f.per(result)
def deflate(f):
"""
Reduce degree of ``f`` by mapping ``x_i**m`` to ``y_i``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**6*y**2 + x**3 + 1, x, y).deflate()
((3, 2), Poly(x**2*y + x + 1, x, y, domain='ZZ'))
"""
if hasattr(f.rep, 'deflate'):
J, result = f.rep.deflate()
else: # pragma: no cover
raise OperationNotSupported(f, 'deflate')
return J, f.per(result)
def inject(f, front=False):
"""
Inject ground domain generators into ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> f = Poly(x**2*y + x*y**3 + x*y + 1, x)
>>> f.inject()
Poly(x**2*y + x*y**3 + x*y + 1, x, y, domain='ZZ')
>>> f.inject(front=True)
Poly(y**3*x + y*x**2 + y*x + 1, y, x, domain='ZZ')
"""
dom = f.rep.dom
if dom.is_Numerical:
return f
elif not dom.is_Poly:
raise DomainError("can't inject generators over %s" % dom)
if hasattr(f.rep, 'inject'):
result = f.rep.inject(front=front)
else: # pragma: no cover
raise OperationNotSupported(f, 'inject')
if front:
gens = dom.symbols + f.gens
else:
gens = f.gens + dom.symbols
return f.new(result, *gens)
def eject(f, *gens):
"""
Eject selected generators into the ground domain.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> f = Poly(x**2*y + x*y**3 + x*y + 1, x, y)
>>> f.eject(x)
Poly(x*y**3 + (x**2 + x)*y + 1, y, domain='ZZ[x]')
>>> f.eject(y)
Poly(y*x**2 + (y**3 + y)*x + 1, x, domain='ZZ[y]')
"""
dom = f.rep.dom
if not dom.is_Numerical:
raise DomainError("can't eject generators over %s" % dom)
k = len(gens)
if f.gens[:k] == gens:
_gens, front = f.gens[k:], True
elif f.gens[-k:] == gens:
_gens, front = f.gens[:-k], False
else:
raise NotImplementedError(
"can only eject front or back generators")
dom = dom.inject(*gens)
if hasattr(f.rep, 'eject'):
result = f.rep.eject(dom, front=front)
else: # pragma: no cover
raise OperationNotSupported(f, 'eject')
return f.new(result, *_gens)
def terms_gcd(f):
"""
Remove GCD of terms from the polynomial ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**6*y**2 + x**3*y, x, y).terms_gcd()
((3, 1), Poly(x**3*y + 1, x, y, domain='ZZ'))
"""
if hasattr(f.rep, 'terms_gcd'):
J, result = f.rep.terms_gcd()
else: # pragma: no cover
raise OperationNotSupported(f, 'terms_gcd')
return J, f.per(result)
def add_ground(f, coeff):
"""
Add an element of the ground domain to ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x + 1).add_ground(2)
Poly(x + 3, x, domain='ZZ')
"""
if hasattr(f.rep, 'add_ground'):
result = f.rep.add_ground(coeff)
else: # pragma: no cover
raise OperationNotSupported(f, 'add_ground')
return f.per(result)
def sub_ground(f, coeff):
"""
Subtract an element of the ground domain from ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x + 1).sub_ground(2)
Poly(x - 1, x, domain='ZZ')
"""
if hasattr(f.rep, 'sub_ground'):
result = f.rep.sub_ground(coeff)
else: # pragma: no cover
raise OperationNotSupported(f, 'sub_ground')
return f.per(result)
def mul_ground(f, coeff):
"""
Multiply ``f`` by a an element of the ground domain.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x + 1).mul_ground(2)
Poly(2*x + 2, x, domain='ZZ')
"""
if hasattr(f.rep, 'mul_ground'):
result = f.rep.mul_ground(coeff)
else: # pragma: no cover
raise OperationNotSupported(f, 'mul_ground')
return f.per(result)
def quo_ground(f, coeff):
"""
Quotient of ``f`` by a an element of the ground domain.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(2*x + 4).quo_ground(2)
Poly(x + 2, x, domain='ZZ')
>>> Poly(2*x + 3).quo_ground(2)
Poly(x + 1, x, domain='ZZ')
"""
if hasattr(f.rep, 'quo_ground'):
result = f.rep.quo_ground(coeff)
else: # pragma: no cover
raise OperationNotSupported(f, 'quo_ground')
return f.per(result)
def exquo_ground(f, coeff):
"""
Exact quotient of ``f`` by a an element of the ground domain.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(2*x + 4).exquo_ground(2)
Poly(x + 2, x, domain='ZZ')
>>> Poly(2*x + 3).exquo_ground(2)
Traceback (most recent call last):
...
ExactQuotientFailed: 2 does not divide 3 in ZZ
"""
if hasattr(f.rep, 'exquo_ground'):
result = f.rep.exquo_ground(coeff)
else: # pragma: no cover
raise OperationNotSupported(f, 'exquo_ground')
return f.per(result)
def abs(f):
"""
Make all coefficients in ``f`` positive.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 1, x).abs()
Poly(x**2 + 1, x, domain='ZZ')
"""
if hasattr(f.rep, 'abs'):
result = f.rep.abs()
else: # pragma: no cover
raise OperationNotSupported(f, 'abs')
return f.per(result)
def neg(f):
"""
Negate all coefficients in ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 1, x).neg()
Poly(-x**2 + 1, x, domain='ZZ')
>>> -Poly(x**2 - 1, x)
Poly(-x**2 + 1, x, domain='ZZ')
"""
if hasattr(f.rep, 'neg'):
result = f.rep.neg()
else: # pragma: no cover
raise OperationNotSupported(f, 'neg')
return f.per(result)
def add(f, g):
"""
Add two polynomials ``f`` and ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).add(Poly(x - 2, x))
Poly(x**2 + x - 1, x, domain='ZZ')
>>> Poly(x**2 + 1, x) + Poly(x - 2, x)
Poly(x**2 + x - 1, x, domain='ZZ')
"""
g = sympify(g)
if not g.is_Poly:
return f.add_ground(g)
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'add'):
result = F.add(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'add')
return per(result)
def sub(f, g):
"""
Subtract two polynomials ``f`` and ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).sub(Poly(x - 2, x))
Poly(x**2 - x + 3, x, domain='ZZ')
>>> Poly(x**2 + 1, x) - Poly(x - 2, x)
Poly(x**2 - x + 3, x, domain='ZZ')
"""
g = sympify(g)
if not g.is_Poly:
return f.sub_ground(g)
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'sub'):
result = F.sub(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'sub')
return per(result)
def mul(f, g):
"""
Multiply two polynomials ``f`` and ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).mul(Poly(x - 2, x))
Poly(x**3 - 2*x**2 + x - 2, x, domain='ZZ')
>>> Poly(x**2 + 1, x)*Poly(x - 2, x)
Poly(x**3 - 2*x**2 + x - 2, x, domain='ZZ')
"""
g = sympify(g)
if not g.is_Poly:
return f.mul_ground(g)
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'mul'):
result = F.mul(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'mul')
return per(result)
def sqr(f):
"""
Square a polynomial ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x - 2, x).sqr()
Poly(x**2 - 4*x + 4, x, domain='ZZ')
>>> Poly(x - 2, x)**2
Poly(x**2 - 4*x + 4, x, domain='ZZ')
"""
if hasattr(f.rep, 'sqr'):
result = f.rep.sqr()
else: # pragma: no cover
raise OperationNotSupported(f, 'sqr')
return f.per(result)
def pow(f, n):
"""
Raise ``f`` to a non-negative power ``n``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x - 2, x).pow(3)
Poly(x**3 - 6*x**2 + 12*x - 8, x, domain='ZZ')
>>> Poly(x - 2, x)**3
Poly(x**3 - 6*x**2 + 12*x - 8, x, domain='ZZ')
"""
n = int(n)
if hasattr(f.rep, 'pow'):
result = f.rep.pow(n)
else: # pragma: no cover
raise OperationNotSupported(f, 'pow')
return f.per(result)
def pdiv(f, g):
"""
Polynomial pseudo-division of ``f`` by ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).pdiv(Poly(2*x - 4, x))
(Poly(2*x + 4, x, domain='ZZ'), Poly(20, x, domain='ZZ'))
"""
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'pdiv'):
q, r = F.pdiv(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'pdiv')
return per(q), per(r)
def prem(f, g):
"""
Polynomial pseudo-remainder of ``f`` by ``g``.
Caveat: The function prem(f, g, x) can be safely used to compute
in Z[x] _only_ subresultant polynomial remainder sequences (prs's).
To safely compute Euclidean and Sturmian prs's in Z[x]
employ anyone of the corresponding functions found in
the module sympy.polys.subresultants_qq_zz. The functions
in the module with suffix _pg compute prs's in Z[x] employing
rem(f, g, x), whereas the functions with suffix _amv
compute prs's in Z[x] employing rem_z(f, g, x).
The function rem_z(f, g, x) differs from prem(f, g, x) in that
to compute the remainder polynomials in Z[x] it premultiplies
the divident times the absolute value of the leading coefficient
of the divisor raised to the power degree(f, x) - degree(g, x) + 1.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).prem(Poly(2*x - 4, x))
Poly(20, x, domain='ZZ')
"""
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'prem'):
result = F.prem(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'prem')
return per(result)
def pquo(f, g):
"""
Polynomial pseudo-quotient of ``f`` by ``g``.
See the Caveat note in the function prem(f, g).
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).pquo(Poly(2*x - 4, x))
Poly(2*x + 4, x, domain='ZZ')
>>> Poly(x**2 - 1, x).pquo(Poly(2*x - 2, x))
Poly(2*x + 2, x, domain='ZZ')
"""
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'pquo'):
result = F.pquo(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'pquo')
return per(result)
def pexquo(f, g):
"""
Polynomial exact pseudo-quotient of ``f`` by ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 1, x).pexquo(Poly(2*x - 2, x))
Poly(2*x + 2, x, domain='ZZ')
>>> Poly(x**2 + 1, x).pexquo(Poly(2*x - 4, x))
Traceback (most recent call last):
...
ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1
"""
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'pexquo'):
try:
result = F.pexquo(G)
except ExactQuotientFailed as exc:
raise exc.new(f.as_expr(), g.as_expr())
else: # pragma: no cover
raise OperationNotSupported(f, 'pexquo')
return per(result)
def div(f, g, auto=True):
"""
Polynomial division with remainder of ``f`` by ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).div(Poly(2*x - 4, x))
(Poly(1/2*x + 1, x, domain='QQ'), Poly(5, x, domain='QQ'))
>>> Poly(x**2 + 1, x).div(Poly(2*x - 4, x), auto=False)
(Poly(0, x, domain='ZZ'), Poly(x**2 + 1, x, domain='ZZ'))
"""
dom, per, F, G = f._unify(g)
retract = False
if auto and dom.is_Ring and not dom.is_Field:
F, G = F.to_field(), G.to_field()
retract = True
if hasattr(f.rep, 'div'):
q, r = F.div(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'div')
if retract:
try:
Q, R = q.to_ring(), r.to_ring()
except CoercionFailed:
pass
else:
q, r = Q, R
return per(q), per(r)
def rem(f, g, auto=True):
"""
Computes the polynomial remainder of ``f`` by ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).rem(Poly(2*x - 4, x))
Poly(5, x, domain='ZZ')
>>> Poly(x**2 + 1, x).rem(Poly(2*x - 4, x), auto=False)
Poly(x**2 + 1, x, domain='ZZ')
"""
dom, per, F, G = f._unify(g)
retract = False
if auto and dom.is_Ring and not dom.is_Field:
F, G = F.to_field(), G.to_field()
retract = True
if hasattr(f.rep, 'rem'):
r = F.rem(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'rem')
if retract:
try:
r = r.to_ring()
except CoercionFailed:
pass
return per(r)
def quo(f, g, auto=True):
"""
Computes polynomial quotient of ``f`` by ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).quo(Poly(2*x - 4, x))
Poly(1/2*x + 1, x, domain='QQ')
>>> Poly(x**2 - 1, x).quo(Poly(x - 1, x))
Poly(x + 1, x, domain='ZZ')
"""
dom, per, F, G = f._unify(g)
retract = False
if auto and dom.is_Ring and not dom.is_Field:
F, G = F.to_field(), G.to_field()
retract = True
if hasattr(f.rep, 'quo'):
q = F.quo(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'quo')
if retract:
try:
q = q.to_ring()
except CoercionFailed:
pass
return per(q)
def exquo(f, g, auto=True):
"""
Computes polynomial exact quotient of ``f`` by ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 1, x).exquo(Poly(x - 1, x))
Poly(x + 1, x, domain='ZZ')
>>> Poly(x**2 + 1, x).exquo(Poly(2*x - 4, x))
Traceback (most recent call last):
...
ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1
"""
dom, per, F, G = f._unify(g)
retract = False
if auto and dom.is_Ring and not dom.is_Field:
F, G = F.to_field(), G.to_field()
retract = True
if hasattr(f.rep, 'exquo'):
try:
q = F.exquo(G)
except ExactQuotientFailed as exc:
raise exc.new(f.as_expr(), g.as_expr())
else: # pragma: no cover
raise OperationNotSupported(f, 'exquo')
if retract:
try:
q = q.to_ring()
except CoercionFailed:
pass
return per(q)
def _gen_to_level(f, gen):
"""Returns level associated with the given generator. """
if isinstance(gen, int):
length = len(f.gens)
if -length <= gen < length:
if gen < 0:
return length + gen
else:
return gen
else:
raise PolynomialError("-%s <= gen < %s expected, got %s" %
(length, length, gen))
else:
try:
return f.gens.index(sympify(gen))
except ValueError:
raise PolynomialError(
"a valid generator expected, got %s" % gen)
def degree(f, gen=0):
"""
Returns degree of ``f`` in ``x_j``.
The degree of 0 is negative infinity.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + y*x + 1, x, y).degree()
2
>>> Poly(x**2 + y*x + y, x, y).degree(y)
1
>>> Poly(0, x).degree()
-oo
"""
j = f._gen_to_level(gen)
if hasattr(f.rep, 'degree'):
return f.rep.degree(j)
else: # pragma: no cover
raise OperationNotSupported(f, 'degree')
def degree_list(f):
"""
Returns a list of degrees of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + y*x + 1, x, y).degree_list()
(2, 1)
"""
if hasattr(f.rep, 'degree_list'):
return f.rep.degree_list()
else: # pragma: no cover
raise OperationNotSupported(f, 'degree_list')
def total_degree(f):
"""
Returns the total degree of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + y*x + 1, x, y).total_degree()
2
>>> Poly(x + y**5, x, y).total_degree()
5
"""
if hasattr(f.rep, 'total_degree'):
return f.rep.total_degree()
else: # pragma: no cover
raise OperationNotSupported(f, 'total_degree')
def homogenize(f, s):
"""
Returns the homogeneous polynomial of ``f``.
A homogeneous polynomial is a polynomial whose all monomials with
non-zero coefficients have the same total degree. If you only
want to check if a polynomial is homogeneous, then use
:func:`Poly.is_homogeneous`. If you want not only to check if a
polynomial is homogeneous but also compute its homogeneous order,
then use :func:`Poly.homogeneous_order`.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y, z
>>> f = Poly(x**5 + 2*x**2*y**2 + 9*x*y**3)
>>> f.homogenize(z)
Poly(x**5 + 2*x**2*y**2*z + 9*x*y**3*z, x, y, z, domain='ZZ')
"""
if not isinstance(s, Symbol):
raise TypeError("``Symbol`` expected, got %s" % type(s))
if s in f.gens:
i = f.gens.index(s)
gens = f.gens
else:
i = len(f.gens)
gens = f.gens + (s,)
if hasattr(f.rep, 'homogenize'):
return f.per(f.rep.homogenize(i), gens=gens)
raise OperationNotSupported(f, 'homogeneous_order')
def homogeneous_order(f):
"""
Returns the homogeneous order of ``f``.
A homogeneous polynomial is a polynomial whose all monomials with
non-zero coefficients have the same total degree. This degree is
the homogeneous order of ``f``. If you only want to check if a
polynomial is homogeneous, then use :func:`Poly.is_homogeneous`.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> f = Poly(x**5 + 2*x**3*y**2 + 9*x*y**4)
>>> f.homogeneous_order()
5
"""
if hasattr(f.rep, 'homogeneous_order'):
return f.rep.homogeneous_order()
else: # pragma: no cover
raise OperationNotSupported(f, 'homogeneous_order')
def LC(f, order=None):
"""
Returns the leading coefficient of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(4*x**3 + 2*x**2 + 3*x, x).LC()
4
"""
if order is not None:
return f.coeffs(order)[0]
if hasattr(f.rep, 'LC'):
result = f.rep.LC()
else: # pragma: no cover
raise OperationNotSupported(f, 'LC')
return f.rep.dom.to_sympy(result)
def TC(f):
"""
Returns the trailing coefficient of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**3 + 2*x**2 + 3*x, x).TC()
0
"""
if hasattr(f.rep, 'TC'):
result = f.rep.TC()
else: # pragma: no cover
raise OperationNotSupported(f, 'TC')
return f.rep.dom.to_sympy(result)
def EC(f, order=None):
"""
Returns the last non-zero coefficient of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**3 + 2*x**2 + 3*x, x).EC()
3
"""
if hasattr(f.rep, 'coeffs'):
return f.coeffs(order)[-1]
else: # pragma: no cover
raise OperationNotSupported(f, 'EC')
def coeff_monomial(f, monom):
"""
Returns the coefficient of ``monom`` in ``f`` if there, else None.
Examples
========
>>> from sympy import Poly, exp
>>> from sympy.abc import x, y
>>> p = Poly(24*x*y*exp(8) + 23*x, x, y)
>>> p.coeff_monomial(x)
23
>>> p.coeff_monomial(y)
0
>>> p.coeff_monomial(x*y)
24*exp(8)
Note that ``Expr.coeff()`` behaves differently, collecting terms
if possible; the Poly must be converted to an Expr to use that
method, however:
>>> p.as_expr().coeff(x)
24*y*exp(8) + 23
>>> p.as_expr().coeff(y)
24*x*exp(8)
>>> p.as_expr().coeff(x*y)
24*exp(8)
See Also
========
nth: more efficient query using exponents of the monomial's generators
"""
return f.nth(*Monomial(monom, f.gens).exponents)
def nth(f, *N):
"""
Returns the ``n``-th coefficient of ``f`` where ``N`` are the
exponents of the generators in the term of interest.
Examples
========
>>> from sympy import Poly, sqrt
>>> from sympy.abc import x, y
>>> Poly(x**3 + 2*x**2 + 3*x, x).nth(2)
2
>>> Poly(x**3 + 2*x*y**2 + y**2, x, y).nth(1, 2)
2
>>> Poly(4*sqrt(x)*y)
Poly(4*y*(sqrt(x)), y, sqrt(x), domain='ZZ')
>>> _.nth(1, 1)
4
See Also
========
coeff_monomial
"""
if hasattr(f.rep, 'nth'):
if len(N) != len(f.gens):
raise ValueError('exponent of each generator must be specified')
result = f.rep.nth(*list(map(int, N)))
else: # pragma: no cover
raise OperationNotSupported(f, 'nth')
return f.rep.dom.to_sympy(result)
def coeff(f, x, n=1, right=False):
# the semantics of coeff_monomial and Expr.coeff are different;
# if someone is working with a Poly, they should be aware of the
# differences and chose the method best suited for the query.
# Alternatively, a pure-polys method could be written here but
# at this time the ``right`` keyword would be ignored because Poly
# doesn't work with non-commutatives.
raise NotImplementedError(
'Either convert to Expr with `as_expr` method '
'to use Expr\'s coeff method or else use the '
'`coeff_monomial` method of Polys.')
def LM(f, order=None):
"""
Returns the leading monomial of ``f``.
The Leading monomial signifies the monomial having
the highest power of the principal generator in the
expression f.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).LM()
x**2*y**0
"""
return Monomial(f.monoms(order)[0], f.gens)
def EM(f, order=None):
"""
Returns the last non-zero monomial of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).EM()
x**0*y**1
"""
return Monomial(f.monoms(order)[-1], f.gens)
def LT(f, order=None):
"""
Returns the leading term of ``f``.
The Leading term signifies the term having
the highest power of the principal generator in the
expression f along with its coefficient.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).LT()
(x**2*y**0, 4)
"""
monom, coeff = f.terms(order)[0]
return Monomial(monom, f.gens), coeff
def ET(f, order=None):
"""
Returns the last non-zero term of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).ET()
(x**0*y**1, 3)
"""
monom, coeff = f.terms(order)[-1]
return Monomial(monom, f.gens), coeff
def max_norm(f):
"""
Returns maximum norm of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(-x**2 + 2*x - 3, x).max_norm()
3
"""
if hasattr(f.rep, 'max_norm'):
result = f.rep.max_norm()
else: # pragma: no cover
raise OperationNotSupported(f, 'max_norm')
return f.rep.dom.to_sympy(result)
def l1_norm(f):
"""
Returns l1 norm of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(-x**2 + 2*x - 3, x).l1_norm()
6
"""
if hasattr(f.rep, 'l1_norm'):
result = f.rep.l1_norm()
else: # pragma: no cover
raise OperationNotSupported(f, 'l1_norm')
return f.rep.dom.to_sympy(result)
def clear_denoms(self, convert=False):
"""
Clear denominators, but keep the ground domain.
Examples
========
>>> from sympy import Poly, S, QQ
>>> from sympy.abc import x
>>> f = Poly(x/2 + S(1)/3, x, domain=QQ)
>>> f.clear_denoms()
(6, Poly(3*x + 2, x, domain='QQ'))
>>> f.clear_denoms(convert=True)
(6, Poly(3*x + 2, x, domain='ZZ'))
"""
f = self
if not f.rep.dom.is_Field:
return S.One, f
dom = f.get_domain()
if dom.has_assoc_Ring:
dom = f.rep.dom.get_ring()
if hasattr(f.rep, 'clear_denoms'):
coeff, result = f.rep.clear_denoms()
else: # pragma: no cover
raise OperationNotSupported(f, 'clear_denoms')
coeff, f = dom.to_sympy(coeff), f.per(result)
if not convert or not dom.has_assoc_Ring:
return coeff, f
else:
return coeff, f.to_ring()
def rat_clear_denoms(self, g):
"""
Clear denominators in a rational function ``f/g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> f = Poly(x**2/y + 1, x)
>>> g = Poly(x**3 + y, x)
>>> p, q = f.rat_clear_denoms(g)
>>> p
Poly(x**2 + y, x, domain='ZZ[y]')
>>> q
Poly(y*x**3 + y**2, x, domain='ZZ[y]')
"""
f = self
dom, per, f, g = f._unify(g)
f = per(f)
g = per(g)
if not (dom.is_Field and dom.has_assoc_Ring):
return f, g
a, f = f.clear_denoms(convert=True)
b, g = g.clear_denoms(convert=True)
f = f.mul_ground(b)
g = g.mul_ground(a)
return f, g
def integrate(self, *specs, **args):
"""
Computes indefinite integral of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + 2*x + 1, x).integrate()
Poly(1/3*x**3 + x**2 + x, x, domain='QQ')
>>> Poly(x*y**2 + x, x, y).integrate((0, 1), (1, 0))
Poly(1/2*x**2*y**2 + 1/2*x**2, x, y, domain='QQ')
"""
f = self
if args.get('auto', True) and f.rep.dom.is_Ring:
f = f.to_field()
if hasattr(f.rep, 'integrate'):
if not specs:
return f.per(f.rep.integrate(m=1))
rep = f.rep
for spec in specs:
if type(spec) is tuple:
gen, m = spec
else:
gen, m = spec, 1
rep = rep.integrate(int(m), f._gen_to_level(gen))
return f.per(rep)
else: # pragma: no cover
raise OperationNotSupported(f, 'integrate')
def diff(f, *specs, **kwargs):
"""
Computes partial derivative of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + 2*x + 1, x).diff()
Poly(2*x + 2, x, domain='ZZ')
>>> Poly(x*y**2 + x, x, y).diff((0, 0), (1, 1))
Poly(2*x*y, x, y, domain='ZZ')
"""
if not kwargs.get('evaluate', True):
return Derivative(f, *specs, **kwargs)
if hasattr(f.rep, 'diff'):
if not specs:
return f.per(f.rep.diff(m=1))
rep = f.rep
for spec in specs:
if type(spec) is tuple:
gen, m = spec
else:
gen, m = spec, 1
rep = rep.diff(int(m), f._gen_to_level(gen))
return f.per(rep)
else: # pragma: no cover
raise OperationNotSupported(f, 'diff')
_eval_derivative = diff
def eval(self, x, a=None, auto=True):
"""
Evaluate ``f`` at ``a`` in the given variable.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y, z
>>> Poly(x**2 + 2*x + 3, x).eval(2)
11
>>> Poly(2*x*y + 3*x + y + 2, x, y).eval(x, 2)
Poly(5*y + 8, y, domain='ZZ')
>>> f = Poly(2*x*y + 3*x + y + 2*z, x, y, z)
>>> f.eval({x: 2})
Poly(5*y + 2*z + 6, y, z, domain='ZZ')
>>> f.eval({x: 2, y: 5})
Poly(2*z + 31, z, domain='ZZ')
>>> f.eval({x: 2, y: 5, z: 7})
45
>>> f.eval((2, 5))
Poly(2*z + 31, z, domain='ZZ')
>>> f(2, 5)
Poly(2*z + 31, z, domain='ZZ')
"""
f = self
if a is None:
if isinstance(x, dict):
mapping = x
for gen, value in mapping.items():
f = f.eval(gen, value)
return f
elif isinstance(x, (tuple, list)):
values = x
if len(values) > len(f.gens):
raise ValueError("too many values provided")
for gen, value in zip(f.gens, values):
f = f.eval(gen, value)
return f
else:
j, a = 0, x
else:
j = f._gen_to_level(x)
if not hasattr(f.rep, 'eval'): # pragma: no cover
raise OperationNotSupported(f, 'eval')
try:
result = f.rep.eval(a, j)
except CoercionFailed:
if not auto:
raise DomainError("can't evaluate at %s in %s" % (a, f.rep.dom))
else:
a_domain, [a] = construct_domain([a])
new_domain = f.get_domain().unify_with_symbols(a_domain, f.gens)
f = f.set_domain(new_domain)
a = new_domain.convert(a, a_domain)
result = f.rep.eval(a, j)
return f.per(result, remove=j)
def __call__(f, *values):
"""
Evaluate ``f`` at the give values.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y, z
>>> f = Poly(2*x*y + 3*x + y + 2*z, x, y, z)
>>> f(2)
Poly(5*y + 2*z + 6, y, z, domain='ZZ')
>>> f(2, 5)
Poly(2*z + 31, z, domain='ZZ')
>>> f(2, 5, 7)
45
"""
return f.eval(values)
def half_gcdex(f, g, auto=True):
"""
Half extended Euclidean algorithm of ``f`` and ``g``.
Returns ``(s, h)`` such that ``h = gcd(f, g)`` and ``s*f = h (mod g)``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15
>>> g = x**3 + x**2 - 4*x - 4
>>> Poly(f).half_gcdex(Poly(g))
(Poly(-1/5*x + 3/5, x, domain='QQ'), Poly(x + 1, x, domain='QQ'))
"""
dom, per, F, G = f._unify(g)
if auto and dom.is_Ring:
F, G = F.to_field(), G.to_field()
if hasattr(f.rep, 'half_gcdex'):
s, h = F.half_gcdex(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'half_gcdex')
return per(s), per(h)
def gcdex(f, g, auto=True):
"""
Extended Euclidean algorithm of ``f`` and ``g``.
Returns ``(s, t, h)`` such that ``h = gcd(f, g)`` and ``s*f + t*g = h``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15
>>> g = x**3 + x**2 - 4*x - 4
>>> Poly(f).gcdex(Poly(g))
(Poly(-1/5*x + 3/5, x, domain='QQ'),
Poly(1/5*x**2 - 6/5*x + 2, x, domain='QQ'),
Poly(x + 1, x, domain='QQ'))
"""
dom, per, F, G = f._unify(g)
if auto and dom.is_Ring:
F, G = F.to_field(), G.to_field()
if hasattr(f.rep, 'gcdex'):
s, t, h = F.gcdex(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'gcdex')
return per(s), per(t), per(h)
def invert(f, g, auto=True):
"""
Invert ``f`` modulo ``g`` when possible.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 1, x).invert(Poly(2*x - 1, x))
Poly(-4/3, x, domain='QQ')
>>> Poly(x**2 - 1, x).invert(Poly(x - 1, x))
Traceback (most recent call last):
...
NotInvertible: zero divisor
"""
dom, per, F, G = f._unify(g)
if auto and dom.is_Ring:
F, G = F.to_field(), G.to_field()
if hasattr(f.rep, 'invert'):
result = F.invert(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'invert')
return per(result)
def revert(f, n):
"""
Compute ``f**(-1)`` mod ``x**n``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(1, x).revert(2)
Poly(1, x, domain='ZZ')
>>> Poly(1 + x, x).revert(1)
Poly(1, x, domain='ZZ')
>>> Poly(x**2 - 1, x).revert(1)
Traceback (most recent call last):
...
NotReversible: only unity is reversible in a ring
>>> Poly(1/x, x).revert(1)
Traceback (most recent call last):
...
PolynomialError: 1/x contains an element of the generators set
"""
if hasattr(f.rep, 'revert'):
result = f.rep.revert(int(n))
else: # pragma: no cover
raise OperationNotSupported(f, 'revert')
return f.per(result)
def subresultants(f, g):
"""
Computes the subresultant PRS of ``f`` and ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).subresultants(Poly(x**2 - 1, x))
[Poly(x**2 + 1, x, domain='ZZ'),
Poly(x**2 - 1, x, domain='ZZ'),
Poly(-2, x, domain='ZZ')]
"""
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'subresultants'):
result = F.subresultants(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'subresultants')
return list(map(per, result))
def resultant(f, g, includePRS=False):
"""
Computes the resultant of ``f`` and ``g`` via PRS.
If includePRS=True, it includes the subresultant PRS in the result.
Because the PRS is used to calculate the resultant, this is more
efficient than calling :func:`subresultants` separately.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> f = Poly(x**2 + 1, x)
>>> f.resultant(Poly(x**2 - 1, x))
4
>>> f.resultant(Poly(x**2 - 1, x), includePRS=True)
(4, [Poly(x**2 + 1, x, domain='ZZ'), Poly(x**2 - 1, x, domain='ZZ'),
Poly(-2, x, domain='ZZ')])
"""
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'resultant'):
if includePRS:
result, R = F.resultant(G, includePRS=includePRS)
else:
result = F.resultant(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'resultant')
if includePRS:
return (per(result, remove=0), list(map(per, R)))
return per(result, remove=0)
def discriminant(f):
"""
Computes the discriminant of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 2*x + 3, x).discriminant()
-8
"""
if hasattr(f.rep, 'discriminant'):
result = f.rep.discriminant()
else: # pragma: no cover
raise OperationNotSupported(f, 'discriminant')
return f.per(result, remove=0)
def dispersionset(f, g=None):
r"""Compute the *dispersion set* of two polynomials.
For two polynomials `f(x)` and `g(x)` with `\deg f > 0`
and `\deg g > 0` the dispersion set `\operatorname{J}(f, g)` is defined as:
.. math::
\operatorname{J}(f, g)
& := \{a \in \mathbb{N}_0 | \gcd(f(x), g(x+a)) \neq 1\} \\
& = \{a \in \mathbb{N}_0 | \deg \gcd(f(x), g(x+a)) \geq 1\}
For a single polynomial one defines `\operatorname{J}(f) := \operatorname{J}(f, f)`.
Examples
========
>>> from sympy import poly
>>> from sympy.polys.dispersion import dispersion, dispersionset
>>> from sympy.abc import x
Dispersion set and dispersion of a simple polynomial:
>>> fp = poly((x - 3)*(x + 3), x)
>>> sorted(dispersionset(fp))
[0, 6]
>>> dispersion(fp)
6
Note that the definition of the dispersion is not symmetric:
>>> fp = poly(x**4 - 3*x**2 + 1, x)
>>> gp = fp.shift(-3)
>>> sorted(dispersionset(fp, gp))
[2, 3, 4]
>>> dispersion(fp, gp)
4
>>> sorted(dispersionset(gp, fp))
[]
>>> dispersion(gp, fp)
-oo
Computing the dispersion also works over field extensions:
>>> from sympy import sqrt
>>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>')
>>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>')
>>> sorted(dispersionset(fp, gp))
[2]
>>> sorted(dispersionset(gp, fp))
[1, 4]
We can even perform the computations for polynomials
having symbolic coefficients:
>>> from sympy.abc import a
>>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x)
>>> sorted(dispersionset(fp))
[0, 1]
See Also
========
dispersion
References
==========
1. [ManWright94]_
2. [Koepf98]_
3. [Abramov71]_
4. [Man93]_
"""
from sympy.polys.dispersion import dispersionset
return dispersionset(f, g)
def dispersion(f, g=None):
r"""Compute the *dispersion* of polynomials.
For two polynomials `f(x)` and `g(x)` with `\deg f > 0`
and `\deg g > 0` the dispersion `\operatorname{dis}(f, g)` is defined as:
.. math::
\operatorname{dis}(f, g)
& := \max\{ J(f,g) \cup \{0\} \} \\
& = \max\{ \{a \in \mathbb{N} | \gcd(f(x), g(x+a)) \neq 1\} \cup \{0\} \}
and for a single polynomial `\operatorname{dis}(f) := \operatorname{dis}(f, f)`.
Examples
========
>>> from sympy import poly
>>> from sympy.polys.dispersion import dispersion, dispersionset
>>> from sympy.abc import x
Dispersion set and dispersion of a simple polynomial:
>>> fp = poly((x - 3)*(x + 3), x)
>>> sorted(dispersionset(fp))
[0, 6]
>>> dispersion(fp)
6
Note that the definition of the dispersion is not symmetric:
>>> fp = poly(x**4 - 3*x**2 + 1, x)
>>> gp = fp.shift(-3)
>>> sorted(dispersionset(fp, gp))
[2, 3, 4]
>>> dispersion(fp, gp)
4
>>> sorted(dispersionset(gp, fp))
[]
>>> dispersion(gp, fp)
-oo
Computing the dispersion also works over field extensions:
>>> from sympy import sqrt
>>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>')
>>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>')
>>> sorted(dispersionset(fp, gp))
[2]
>>> sorted(dispersionset(gp, fp))
[1, 4]
We can even perform the computations for polynomials
having symbolic coefficients:
>>> from sympy.abc import a
>>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x)
>>> sorted(dispersionset(fp))
[0, 1]
See Also
========
dispersionset
References
==========
1. [ManWright94]_
2. [Koepf98]_
3. [Abramov71]_
4. [Man93]_
"""
from sympy.polys.dispersion import dispersion
return dispersion(f, g)
def cofactors(f, g):
"""
Returns the GCD of ``f`` and ``g`` and their cofactors.
Returns polynomials ``(h, cff, cfg)`` such that ``h = gcd(f, g)``, and
``cff = quo(f, h)`` and ``cfg = quo(g, h)`` are, so called, cofactors
of ``f`` and ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 1, x).cofactors(Poly(x**2 - 3*x + 2, x))
(Poly(x - 1, x, domain='ZZ'),
Poly(x + 1, x, domain='ZZ'),
Poly(x - 2, x, domain='ZZ'))
"""
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'cofactors'):
h, cff, cfg = F.cofactors(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'cofactors')
return per(h), per(cff), per(cfg)
def gcd(f, g):
"""
Returns the polynomial GCD of ``f`` and ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 1, x).gcd(Poly(x**2 - 3*x + 2, x))
Poly(x - 1, x, domain='ZZ')
"""
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'gcd'):
result = F.gcd(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'gcd')
return per(result)
def lcm(f, g):
"""
Returns polynomial LCM of ``f`` and ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 1, x).lcm(Poly(x**2 - 3*x + 2, x))
Poly(x**3 - 2*x**2 - x + 2, x, domain='ZZ')
"""
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'lcm'):
result = F.lcm(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'lcm')
return per(result)
def trunc(f, p):
"""
Reduce ``f`` modulo a constant ``p``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(2*x**3 + 3*x**2 + 5*x + 7, x).trunc(3)
Poly(-x**3 - x + 1, x, domain='ZZ')
"""
p = f.rep.dom.convert(p)
if hasattr(f.rep, 'trunc'):
result = f.rep.trunc(p)
else: # pragma: no cover
raise OperationNotSupported(f, 'trunc')
return f.per(result)
def monic(self, auto=True):
"""
Divides all coefficients by ``LC(f)``.
Examples
========
>>> from sympy import Poly, ZZ
>>> from sympy.abc import x
>>> Poly(3*x**2 + 6*x + 9, x, domain=ZZ).monic()
Poly(x**2 + 2*x + 3, x, domain='QQ')
>>> Poly(3*x**2 + 4*x + 2, x, domain=ZZ).monic()
Poly(x**2 + 4/3*x + 2/3, x, domain='QQ')
"""
f = self
if auto and f.rep.dom.is_Ring:
f = f.to_field()
if hasattr(f.rep, 'monic'):
result = f.rep.monic()
else: # pragma: no cover
raise OperationNotSupported(f, 'monic')
return f.per(result)
def content(f):
"""
Returns the GCD of polynomial coefficients.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(6*x**2 + 8*x + 12, x).content()
2
"""
if hasattr(f.rep, 'content'):
result = f.rep.content()
else: # pragma: no cover
raise OperationNotSupported(f, 'content')
return f.rep.dom.to_sympy(result)
def primitive(f):
"""
Returns the content and a primitive form of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(2*x**2 + 8*x + 12, x).primitive()
(2, Poly(x**2 + 4*x + 6, x, domain='ZZ'))
"""
if hasattr(f.rep, 'primitive'):
cont, result = f.rep.primitive()
else: # pragma: no cover
raise OperationNotSupported(f, 'primitive')
return f.rep.dom.to_sympy(cont), f.per(result)
def compose(f, g):
"""
Computes the functional composition of ``f`` and ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + x, x).compose(Poly(x - 1, x))
Poly(x**2 - x, x, domain='ZZ')
"""
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'compose'):
result = F.compose(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'compose')
return per(result)
def decompose(f):
"""
Computes a functional decomposition of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**4 + 2*x**3 - x - 1, x, domain='ZZ').decompose()
[Poly(x**2 - x - 1, x, domain='ZZ'), Poly(x**2 + x, x, domain='ZZ')]
"""
if hasattr(f.rep, 'decompose'):
result = f.rep.decompose()
else: # pragma: no cover
raise OperationNotSupported(f, 'decompose')
return list(map(f.per, result))
def shift(f, a):
"""
Efficiently compute Taylor shift ``f(x + a)``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 2*x + 1, x).shift(2)
Poly(x**2 + 2*x + 1, x, domain='ZZ')
"""
if hasattr(f.rep, 'shift'):
result = f.rep.shift(a)
else: # pragma: no cover
raise OperationNotSupported(f, 'shift')
return f.per(result)
def transform(f, p, q):
"""
Efficiently evaluate the functional transformation ``q**n * f(p/q)``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1, x), Poly(x - 1, x))
Poly(4, x, domain='ZZ')
"""
P, Q = p.unify(q)
F, P = f.unify(P)
F, Q = F.unify(Q)
if hasattr(F.rep, 'transform'):
result = F.rep.transform(P.rep, Q.rep)
else: # pragma: no cover
raise OperationNotSupported(F, 'transform')
return F.per(result)
def sturm(self, auto=True):
"""
Computes the Sturm sequence of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**3 - 2*x**2 + x - 3, x).sturm()
[Poly(x**3 - 2*x**2 + x - 3, x, domain='QQ'),
Poly(3*x**2 - 4*x + 1, x, domain='QQ'),
Poly(2/9*x + 25/9, x, domain='QQ'),
Poly(-2079/4, x, domain='QQ')]
"""
f = self
if auto and f.rep.dom.is_Ring:
f = f.to_field()
if hasattr(f.rep, 'sturm'):
result = f.rep.sturm()
else: # pragma: no cover
raise OperationNotSupported(f, 'sturm')
return list(map(f.per, result))
def gff_list(f):
"""
Computes greatest factorial factorization of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> f = x**5 + 2*x**4 - x**3 - 2*x**2
>>> Poly(f).gff_list()
[(Poly(x, x, domain='ZZ'), 1), (Poly(x + 2, x, domain='ZZ'), 4)]
"""
if hasattr(f.rep, 'gff_list'):
result = f.rep.gff_list()
else: # pragma: no cover
raise OperationNotSupported(f, 'gff_list')
return [(f.per(g), k) for g, k in result]
def norm(f):
"""
Computes the product, ``Norm(f)``, of the conjugates of
a polynomial ``f`` defined over a number field ``K``.
Examples
========
>>> from sympy import Poly, sqrt
>>> from sympy.abc import x
>>> a, b = sqrt(2), sqrt(3)
A polynomial over a quadratic extension.
Two conjugates x - a and x + a.
>>> f = Poly(x - a, x, extension=a)
>>> f.norm()
Poly(x**2 - 2, x, domain='QQ')
A polynomial over a quartic extension.
Four conjugates x - a, x - a, x + a and x + a.
>>> f = Poly(x - a, x, extension=(a, b))
>>> f.norm()
Poly(x**4 - 4*x**2 + 4, x, domain='QQ')
"""
if hasattr(f.rep, 'norm'):
r = f.rep.norm()
else: # pragma: no cover
raise OperationNotSupported(f, 'norm')
return f.per(r)
def sqf_norm(f):
"""
Computes square-free norm of ``f``.
Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and
``r(x) = Norm(g(x))`` is a square-free polynomial over ``K``,
where ``a`` is the algebraic extension of the ground domain.
Examples
========
>>> from sympy import Poly, sqrt
>>> from sympy.abc import x
>>> s, f, r = Poly(x**2 + 1, x, extension=[sqrt(3)]).sqf_norm()
>>> s
1
>>> f
Poly(x**2 - 2*sqrt(3)*x + 4, x, domain='QQ<sqrt(3)>')
>>> r
Poly(x**4 - 4*x**2 + 16, x, domain='QQ')
"""
if hasattr(f.rep, 'sqf_norm'):
s, g, r = f.rep.sqf_norm()
else: # pragma: no cover
raise OperationNotSupported(f, 'sqf_norm')
return s, f.per(g), f.per(r)
def sqf_part(f):
"""
Computes square-free part of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**3 - 3*x - 2, x).sqf_part()
Poly(x**2 - x - 2, x, domain='ZZ')
"""
if hasattr(f.rep, 'sqf_part'):
result = f.rep.sqf_part()
else: # pragma: no cover
raise OperationNotSupported(f, 'sqf_part')
return f.per(result)
def sqf_list(f, all=False):
"""
Returns a list of square-free factors of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> f = 2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16
>>> Poly(f).sqf_list()
(2, [(Poly(x + 1, x, domain='ZZ'), 2),
(Poly(x + 2, x, domain='ZZ'), 3)])
>>> Poly(f).sqf_list(all=True)
(2, [(Poly(1, x, domain='ZZ'), 1),
(Poly(x + 1, x, domain='ZZ'), 2),
(Poly(x + 2, x, domain='ZZ'), 3)])
"""
if hasattr(f.rep, 'sqf_list'):
coeff, factors = f.rep.sqf_list(all)
else: # pragma: no cover
raise OperationNotSupported(f, 'sqf_list')
return f.rep.dom.to_sympy(coeff), [(f.per(g), k) for g, k in factors]
def sqf_list_include(f, all=False):
"""
Returns a list of square-free factors of ``f``.
Examples
========
>>> from sympy import Poly, expand
>>> from sympy.abc import x
>>> f = expand(2*(x + 1)**3*x**4)
>>> f
2*x**7 + 6*x**6 + 6*x**5 + 2*x**4
>>> Poly(f).sqf_list_include()
[(Poly(2, x, domain='ZZ'), 1),
(Poly(x + 1, x, domain='ZZ'), 3),
(Poly(x, x, domain='ZZ'), 4)]
>>> Poly(f).sqf_list_include(all=True)
[(Poly(2, x, domain='ZZ'), 1),
(Poly(1, x, domain='ZZ'), 2),
(Poly(x + 1, x, domain='ZZ'), 3),
(Poly(x, x, domain='ZZ'), 4)]
"""
if hasattr(f.rep, 'sqf_list_include'):
factors = f.rep.sqf_list_include(all)
else: # pragma: no cover
raise OperationNotSupported(f, 'sqf_list_include')
return [(f.per(g), k) for g, k in factors]
def factor_list(f):
"""
Returns a list of irreducible factors of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> f = 2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y
>>> Poly(f).factor_list()
(2, [(Poly(x + y, x, y, domain='ZZ'), 1),
(Poly(x**2 + 1, x, y, domain='ZZ'), 2)])
"""
if hasattr(f.rep, 'factor_list'):
try:
coeff, factors = f.rep.factor_list()
except DomainError:
return S.One, [(f, 1)]
else: # pragma: no cover
raise OperationNotSupported(f, 'factor_list')
return f.rep.dom.to_sympy(coeff), [(f.per(g), k) for g, k in factors]
def factor_list_include(f):
"""
Returns a list of irreducible factors of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> f = 2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y
>>> Poly(f).factor_list_include()
[(Poly(2*x + 2*y, x, y, domain='ZZ'), 1),
(Poly(x**2 + 1, x, y, domain='ZZ'), 2)]
"""
if hasattr(f.rep, 'factor_list_include'):
try:
factors = f.rep.factor_list_include()
except DomainError:
return [(f, 1)]
else: # pragma: no cover
raise OperationNotSupported(f, 'factor_list_include')
return [(f.per(g), k) for g, k in factors]
def intervals(f, all=False, eps=None, inf=None, sup=None, fast=False, sqf=False):
"""
Compute isolating intervals for roots of ``f``.
For real roots the Vincent-Akritas-Strzebonski (VAS) continued fractions method is used.
References
==========
.. [#] Alkiviadis G. Akritas and Adam W. Strzebonski: A Comparative Study of Two Real Root
Isolation Methods . Nonlinear Analysis: Modelling and Control, Vol. 10, No. 4, 297-304, 2005.
.. [#] Alkiviadis G. Akritas, Adam W. Strzebonski and Panagiotis S. Vigklas: Improving the
Performance of the Continued Fractions Method Using new Bounds of Positive Roots. Nonlinear
Analysis: Modelling and Control, Vol. 13, No. 3, 265-279, 2008.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 3, x).intervals()
[((-2, -1), 1), ((1, 2), 1)]
>>> Poly(x**2 - 3, x).intervals(eps=1e-2)
[((-26/15, -19/11), 1), ((19/11, 26/15), 1)]
"""
if eps is not None:
eps = QQ.convert(eps)
if eps <= 0:
raise ValueError("'eps' must be a positive rational")
if inf is not None:
inf = QQ.convert(inf)
if sup is not None:
sup = QQ.convert(sup)
if hasattr(f.rep, 'intervals'):
result = f.rep.intervals(
all=all, eps=eps, inf=inf, sup=sup, fast=fast, sqf=sqf)
else: # pragma: no cover
raise OperationNotSupported(f, 'intervals')
if sqf:
def _real(interval):
s, t = interval
return (QQ.to_sympy(s), QQ.to_sympy(t))
if not all:
return list(map(_real, result))
def _complex(rectangle):
(u, v), (s, t) = rectangle
return (QQ.to_sympy(u) + I*QQ.to_sympy(v),
QQ.to_sympy(s) + I*QQ.to_sympy(t))
real_part, complex_part = result
return list(map(_real, real_part)), list(map(_complex, complex_part))
else:
def _real(interval):
(s, t), k = interval
return ((QQ.to_sympy(s), QQ.to_sympy(t)), k)
if not all:
return list(map(_real, result))
def _complex(rectangle):
((u, v), (s, t)), k = rectangle
return ((QQ.to_sympy(u) + I*QQ.to_sympy(v),
QQ.to_sympy(s) + I*QQ.to_sympy(t)), k)
real_part, complex_part = result
return list(map(_real, real_part)), list(map(_complex, complex_part))
def refine_root(f, s, t, eps=None, steps=None, fast=False, check_sqf=False):
"""
Refine an isolating interval of a root to the given precision.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 3, x).refine_root(1, 2, eps=1e-2)
(19/11, 26/15)
"""
if check_sqf and not f.is_sqf:
raise PolynomialError("only square-free polynomials supported")
s, t = QQ.convert(s), QQ.convert(t)
if eps is not None:
eps = QQ.convert(eps)
if eps <= 0:
raise ValueError("'eps' must be a positive rational")
if steps is not None:
steps = int(steps)
elif eps is None:
steps = 1
if hasattr(f.rep, 'refine_root'):
S, T = f.rep.refine_root(s, t, eps=eps, steps=steps, fast=fast)
else: # pragma: no cover
raise OperationNotSupported(f, 'refine_root')
return QQ.to_sympy(S), QQ.to_sympy(T)
def count_roots(f, inf=None, sup=None):
"""
Return the number of roots of ``f`` in ``[inf, sup]`` interval.
Examples
========
>>> from sympy import Poly, I
>>> from sympy.abc import x
>>> Poly(x**4 - 4, x).count_roots(-3, 3)
2
>>> Poly(x**4 - 4, x).count_roots(0, 1 + 3*I)
1
"""
inf_real, sup_real = True, True
if inf is not None:
inf = sympify(inf)
if inf is S.NegativeInfinity:
inf = None
else:
re, im = inf.as_real_imag()
if not im:
inf = QQ.convert(inf)
else:
inf, inf_real = list(map(QQ.convert, (re, im))), False
if sup is not None:
sup = sympify(sup)
if sup is S.Infinity:
sup = None
else:
re, im = sup.as_real_imag()
if not im:
sup = QQ.convert(sup)
else:
sup, sup_real = list(map(QQ.convert, (re, im))), False
if inf_real and sup_real:
if hasattr(f.rep, 'count_real_roots'):
count = f.rep.count_real_roots(inf=inf, sup=sup)
else: # pragma: no cover
raise OperationNotSupported(f, 'count_real_roots')
else:
if inf_real and inf is not None:
inf = (inf, QQ.zero)
if sup_real and sup is not None:
sup = (sup, QQ.zero)
if hasattr(f.rep, 'count_complex_roots'):
count = f.rep.count_complex_roots(inf=inf, sup=sup)
else: # pragma: no cover
raise OperationNotSupported(f, 'count_complex_roots')
return Integer(count)
def root(f, index, radicals=True):
"""
Get an indexed root of a polynomial.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> f = Poly(2*x**3 - 7*x**2 + 4*x + 4)
>>> f.root(0)
-1/2
>>> f.root(1)
2
>>> f.root(2)
2
>>> f.root(3)
Traceback (most recent call last):
...
IndexError: root index out of [-3, 2] range, got 3
>>> Poly(x**5 + x + 1).root(0)
CRootOf(x**3 - x**2 + 1, 0)
"""
return sympy.polys.rootoftools.rootof(f, index, radicals=radicals)
def real_roots(f, multiple=True, radicals=True):
"""
Return a list of real roots with multiplicities.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(2*x**3 - 7*x**2 + 4*x + 4).real_roots()
[-1/2, 2, 2]
>>> Poly(x**3 + x + 1).real_roots()
[CRootOf(x**3 + x + 1, 0)]
"""
reals = sympy.polys.rootoftools.CRootOf.real_roots(f, radicals=radicals)
if multiple:
return reals
else:
return group(reals, multiple=False)
def all_roots(f, multiple=True, radicals=True):
"""
Return a list of real and complex roots with multiplicities.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(2*x**3 - 7*x**2 + 4*x + 4).all_roots()
[-1/2, 2, 2]
>>> Poly(x**3 + x + 1).all_roots()
[CRootOf(x**3 + x + 1, 0),
CRootOf(x**3 + x + 1, 1),
CRootOf(x**3 + x + 1, 2)]
"""
roots = sympy.polys.rootoftools.CRootOf.all_roots(f, radicals=radicals)
if multiple:
return roots
else:
return group(roots, multiple=False)
def nroots(f, n=15, maxsteps=50, cleanup=True):
"""
Compute numerical approximations of roots of ``f``.
Parameters
==========
n ... the number of digits to calculate
maxsteps ... the maximum number of iterations to do
If the accuracy `n` cannot be reached in `maxsteps`, it will raise an
exception. You need to rerun with higher maxsteps.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 3).nroots(n=15)
[-1.73205080756888, 1.73205080756888]
>>> Poly(x**2 - 3).nroots(n=30)
[-1.73205080756887729352744634151, 1.73205080756887729352744634151]
"""
from sympy.functions.elementary.complexes import sign
if f.is_multivariate:
raise MultivariatePolynomialError(
"can't compute numerical roots of %s" % f)
if f.degree() <= 0:
return []
# For integer and rational coefficients, convert them to integers only
# (for accuracy). Otherwise just try to convert the coefficients to
# mpmath.mpc and raise an exception if the conversion fails.
if f.rep.dom is ZZ:
coeffs = [int(coeff) for coeff in f.all_coeffs()]
elif f.rep.dom is QQ:
denoms = [coeff.q for coeff in f.all_coeffs()]
from sympy.core.numbers import ilcm
fac = ilcm(*denoms)
coeffs = [int(coeff*fac) for coeff in f.all_coeffs()]
else:
coeffs = [coeff.evalf(n=n).as_real_imag()
for coeff in f.all_coeffs()]
try:
coeffs = [mpmath.mpc(*coeff) for coeff in coeffs]
except TypeError:
raise DomainError("Numerical domain expected, got %s" % \
f.rep.dom)
dps = mpmath.mp.dps
mpmath.mp.dps = n
try:
# We need to add extra precision to guard against losing accuracy.
# 10 times the degree of the polynomial seems to work well.
roots = mpmath.polyroots(coeffs, maxsteps=maxsteps,
cleanup=cleanup, error=False, extraprec=f.degree()*10)
# Mpmath puts real roots first, then complex ones (as does all_roots)
# so we make sure this convention holds here, too.
roots = list(map(sympify,
sorted(roots, key=lambda r: (1 if r.imag else 0, r.real, abs(r.imag), sign(r.imag)))))
except NoConvergence:
raise NoConvergence(
'convergence to root failed; try n < %s or maxsteps > %s' % (
n, maxsteps))
finally:
mpmath.mp.dps = dps
return roots
def ground_roots(f):
"""
Compute roots of ``f`` by factorization in the ground domain.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**6 - 4*x**4 + 4*x**3 - x**2).ground_roots()
{0: 2, 1: 2}
"""
if f.is_multivariate:
raise MultivariatePolynomialError(
"can't compute ground roots of %s" % f)
roots = {}
for factor, k in f.factor_list()[1]:
if factor.is_linear:
a, b = factor.all_coeffs()
roots[-b/a] = k
return roots
def nth_power_roots_poly(f, n):
"""
Construct a polynomial with n-th powers of roots of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> f = Poly(x**4 - x**2 + 1)
>>> f.nth_power_roots_poly(2)
Poly(x**4 - 2*x**3 + 3*x**2 - 2*x + 1, x, domain='ZZ')
>>> f.nth_power_roots_poly(3)
Poly(x**4 + 2*x**2 + 1, x, domain='ZZ')
>>> f.nth_power_roots_poly(4)
Poly(x**4 + 2*x**3 + 3*x**2 + 2*x + 1, x, domain='ZZ')
>>> f.nth_power_roots_poly(12)
Poly(x**4 - 4*x**3 + 6*x**2 - 4*x + 1, x, domain='ZZ')
"""
if f.is_multivariate:
raise MultivariatePolynomialError(
"must be a univariate polynomial")
N = sympify(n)
if N.is_Integer and N >= 1:
n = int(N)
else:
raise ValueError("'n' must an integer and n >= 1, got %s" % n)
x = f.gen
t = Dummy('t')
r = f.resultant(f.__class__.from_expr(x**n - t, x, t))
return r.replace(t, x)
def cancel(f, g, include=False):
"""
Cancel common factors in a rational function ``f/g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(2*x**2 - 2, x).cancel(Poly(x**2 - 2*x + 1, x))
(1, Poly(2*x + 2, x, domain='ZZ'), Poly(x - 1, x, domain='ZZ'))
>>> Poly(2*x**2 - 2, x).cancel(Poly(x**2 - 2*x + 1, x), include=True)
(Poly(2*x + 2, x, domain='ZZ'), Poly(x - 1, x, domain='ZZ'))
"""
dom, per, F, G = f._unify(g)
if hasattr(F, 'cancel'):
result = F.cancel(G, include=include)
else: # pragma: no cover
raise OperationNotSupported(f, 'cancel')
if not include:
if dom.has_assoc_Ring:
dom = dom.get_ring()
cp, cq, p, q = result
cp = dom.to_sympy(cp)
cq = dom.to_sympy(cq)
return cp/cq, per(p), per(q)
else:
return tuple(map(per, result))
@property
def is_zero(f):
"""
Returns ``True`` if ``f`` is a zero polynomial.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(0, x).is_zero
True
>>> Poly(1, x).is_zero
False
"""
return f.rep.is_zero
@property
def is_one(f):
"""
Returns ``True`` if ``f`` is a unit polynomial.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(0, x).is_one
False
>>> Poly(1, x).is_one
True
"""
return f.rep.is_one
@property
def is_sqf(f):
"""
Returns ``True`` if ``f`` is a square-free polynomial.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 2*x + 1, x).is_sqf
False
>>> Poly(x**2 - 1, x).is_sqf
True
"""
return f.rep.is_sqf
@property
def is_monic(f):
"""
Returns ``True`` if the leading coefficient of ``f`` is one.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x + 2, x).is_monic
True
>>> Poly(2*x + 2, x).is_monic
False
"""
return f.rep.is_monic
@property
def is_primitive(f):
"""
Returns ``True`` if GCD of the coefficients of ``f`` is one.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(2*x**2 + 6*x + 12, x).is_primitive
False
>>> Poly(x**2 + 3*x + 6, x).is_primitive
True
"""
return f.rep.is_primitive
@property
def is_ground(f):
"""
Returns ``True`` if ``f`` is an element of the ground domain.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x, x).is_ground
False
>>> Poly(2, x).is_ground
True
>>> Poly(y, x).is_ground
True
"""
return f.rep.is_ground
@property
def is_linear(f):
"""
Returns ``True`` if ``f`` is linear in all its variables.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x + y + 2, x, y).is_linear
True
>>> Poly(x*y + 2, x, y).is_linear
False
"""
return f.rep.is_linear
@property
def is_quadratic(f):
"""
Returns ``True`` if ``f`` is quadratic in all its variables.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x*y + 2, x, y).is_quadratic
True
>>> Poly(x*y**2 + 2, x, y).is_quadratic
False
"""
return f.rep.is_quadratic
@property
def is_monomial(f):
"""
Returns ``True`` if ``f`` is zero or has only one term.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(3*x**2, x).is_monomial
True
>>> Poly(3*x**2 + 1, x).is_monomial
False
"""
return f.rep.is_monomial
@property
def is_homogeneous(f):
"""
Returns ``True`` if ``f`` is a homogeneous polynomial.
A homogeneous polynomial is a polynomial whose all monomials with
non-zero coefficients have the same total degree. If you want not
only to check if a polynomial is homogeneous but also compute its
homogeneous order, then use :func:`Poly.homogeneous_order`.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + x*y, x, y).is_homogeneous
True
>>> Poly(x**3 + x*y, x, y).is_homogeneous
False
"""
return f.rep.is_homogeneous
@property
def is_irreducible(f):
"""
Returns ``True`` if ``f`` has no factors over its domain.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + x + 1, x, modulus=2).is_irreducible
True
>>> Poly(x**2 + 1, x, modulus=2).is_irreducible
False
"""
return f.rep.is_irreducible
@property
def is_univariate(f):
"""
Returns ``True`` if ``f`` is a univariate polynomial.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + x + 1, x).is_univariate
True
>>> Poly(x*y**2 + x*y + 1, x, y).is_univariate
False
>>> Poly(x*y**2 + x*y + 1, x).is_univariate
True
>>> Poly(x**2 + x + 1, x, y).is_univariate
False
"""
return len(f.gens) == 1
@property
def is_multivariate(f):
"""
Returns ``True`` if ``f`` is a multivariate polynomial.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + x + 1, x).is_multivariate
False
>>> Poly(x*y**2 + x*y + 1, x, y).is_multivariate
True
>>> Poly(x*y**2 + x*y + 1, x).is_multivariate
False
>>> Poly(x**2 + x + 1, x, y).is_multivariate
True
"""
return len(f.gens) != 1
@property
def is_cyclotomic(f):
"""
Returns ``True`` if ``f`` is a cyclotomic polnomial.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> f = x**16 + x**14 - x**10 + x**8 - x**6 + x**2 + 1
>>> Poly(f).is_cyclotomic
False
>>> g = x**16 + x**14 - x**10 - x**8 - x**6 + x**2 + 1
>>> Poly(g).is_cyclotomic
True
"""
return f.rep.is_cyclotomic
def __abs__(f):
return f.abs()
def __neg__(f):
return f.neg()
@_sympifyit('g', NotImplemented)
def __add__(f, g):
if not g.is_Poly:
try:
g = f.__class__(g, *f.gens)
except PolynomialError:
return f.as_expr() + g
return f.add(g)
@_sympifyit('g', NotImplemented)
def __radd__(f, g):
if not g.is_Poly:
try:
g = f.__class__(g, *f.gens)
except PolynomialError:
return g + f.as_expr()
return g.add(f)
@_sympifyit('g', NotImplemented)
def __sub__(f, g):
if not g.is_Poly:
try:
g = f.__class__(g, *f.gens)
except PolynomialError:
return f.as_expr() - g
return f.sub(g)
@_sympifyit('g', NotImplemented)
def __rsub__(f, g):
if not g.is_Poly:
try:
g = f.__class__(g, *f.gens)
except PolynomialError:
return g - f.as_expr()
return g.sub(f)
@_sympifyit('g', NotImplemented)
def __mul__(f, g):
if not g.is_Poly:
try:
g = f.__class__(g, *f.gens)
except PolynomialError:
return f.as_expr()*g
return f.mul(g)
@_sympifyit('g', NotImplemented)
def __rmul__(f, g):
if not g.is_Poly:
try:
g = f.__class__(g, *f.gens)
except PolynomialError:
return g*f.as_expr()
return g.mul(f)
@_sympifyit('n', NotImplemented)
def __pow__(f, n):
if n.is_Integer and n >= 0:
return f.pow(n)
else:
return f.as_expr()**n
@_sympifyit('g', NotImplemented)
def __divmod__(f, g):
if not g.is_Poly:
g = f.__class__(g, *f.gens)
return f.div(g)
@_sympifyit('g', NotImplemented)
def __rdivmod__(f, g):
if not g.is_Poly:
g = f.__class__(g, *f.gens)
return g.div(f)
@_sympifyit('g', NotImplemented)
def __mod__(f, g):
if not g.is_Poly:
g = f.__class__(g, *f.gens)
return f.rem(g)
@_sympifyit('g', NotImplemented)
def __rmod__(f, g):
if not g.is_Poly:
g = f.__class__(g, *f.gens)
return g.rem(f)
@_sympifyit('g', NotImplemented)
def __floordiv__(f, g):
if not g.is_Poly:
g = f.__class__(g, *f.gens)
return f.quo(g)
@_sympifyit('g', NotImplemented)
def __rfloordiv__(f, g):
if not g.is_Poly:
g = f.__class__(g, *f.gens)
return g.quo(f)
@_sympifyit('g', NotImplemented)
def __div__(f, g):
return f.as_expr()/g.as_expr()
@_sympifyit('g', NotImplemented)
def __rdiv__(f, g):
return g.as_expr()/f.as_expr()
__truediv__ = __div__
__rtruediv__ = __rdiv__
@_sympifyit('other', NotImplemented)
def __eq__(self, other):
f, g = self, other
if not g.is_Poly:
try:
g = f.__class__(g, f.gens, domain=f.get_domain())
except (PolynomialError, DomainError, CoercionFailed):
return False
if f.gens != g.gens:
return False
if f.rep.dom != g.rep.dom:
try:
dom = f.rep.dom.unify(g.rep.dom, f.gens)
except UnificationFailed:
return False
f = f.set_domain(dom)
g = g.set_domain(dom)
return f.rep == g.rep
@_sympifyit('g', NotImplemented)
def __ne__(f, g):
return not f == g
def __nonzero__(f):
return not f.is_zero
__bool__ = __nonzero__
def eq(f, g, strict=False):
if not strict:
return f == g
else:
return f._strict_eq(sympify(g))
def ne(f, g, strict=False):
return not f.eq(g, strict=strict)
def _strict_eq(f, g):
return isinstance(g, f.__class__) and f.gens == g.gens and f.rep.eq(g.rep, strict=True)
@public
class PurePoly(Poly):
"""Class for representing pure polynomials. """
def _hashable_content(self):
"""Allow SymPy to hash Poly instances. """
return (self.rep,)
def __hash__(self):
return super(PurePoly, self).__hash__()
@property
def free_symbols(self):
"""
Free symbols of a polynomial.
Examples
========
>>> from sympy import PurePoly
>>> from sympy.abc import x, y
>>> PurePoly(x**2 + 1).free_symbols
set()
>>> PurePoly(x**2 + y).free_symbols
set()
>>> PurePoly(x**2 + y, x).free_symbols
{y}
"""
return self.free_symbols_in_domain
@_sympifyit('other', NotImplemented)
def __eq__(self, other):
f, g = self, other
if not g.is_Poly:
try:
g = f.__class__(g, f.gens, domain=f.get_domain())
except (PolynomialError, DomainError, CoercionFailed):
return False
if len(f.gens) != len(g.gens):
return False
if f.rep.dom != g.rep.dom:
try:
dom = f.rep.dom.unify(g.rep.dom, f.gens)
except UnificationFailed:
return False
f = f.set_domain(dom)
g = g.set_domain(dom)
return f.rep == g.rep
def _strict_eq(f, g):
return isinstance(g, f.__class__) and f.rep.eq(g.rep, strict=True)
def _unify(f, g):
g = sympify(g)
if not g.is_Poly:
try:
return f.rep.dom, f.per, f.rep, f.rep.per(f.rep.dom.from_sympy(g))
except CoercionFailed:
raise UnificationFailed("can't unify %s with %s" % (f, g))
if len(f.gens) != len(g.gens):
raise UnificationFailed("can't unify %s with %s" % (f, g))
if not (isinstance(f.rep, DMP) and isinstance(g.rep, DMP)):
raise UnificationFailed("can't unify %s with %s" % (f, g))
cls = f.__class__
gens = f.gens
dom = f.rep.dom.unify(g.rep.dom, gens)
F = f.rep.convert(dom)
G = g.rep.convert(dom)
def per(rep, dom=dom, gens=gens, remove=None):
if remove is not None:
gens = gens[:remove] + gens[remove + 1:]
if not gens:
return dom.to_sympy(rep)
return cls.new(rep, *gens)
return dom, per, F, G
@public
def poly_from_expr(expr, *gens, **args):
"""Construct a polynomial from an expression. """
opt = options.build_options(gens, args)
return _poly_from_expr(expr, opt)
def _poly_from_expr(expr, opt):
"""Construct a polynomial from an expression. """
orig, expr = expr, sympify(expr)
if not isinstance(expr, Basic):
raise PolificationFailed(opt, orig, expr)
elif expr.is_Poly:
poly = expr.__class__._from_poly(expr, opt)
opt.gens = poly.gens
opt.domain = poly.domain
if opt.polys is None:
opt.polys = True
return poly, opt
elif opt.expand:
expr = expr.expand()
rep, opt = _dict_from_expr(expr, opt)
if not opt.gens:
raise PolificationFailed(opt, orig, expr)
monoms, coeffs = list(zip(*list(rep.items())))
domain = opt.domain
if domain is None:
opt.domain, coeffs = construct_domain(coeffs, opt=opt)
else:
coeffs = list(map(domain.from_sympy, coeffs))
rep = dict(list(zip(monoms, coeffs)))
poly = Poly._from_dict(rep, opt)
if opt.polys is None:
opt.polys = False
return poly, opt
@public
def parallel_poly_from_expr(exprs, *gens, **args):
"""Construct polynomials from expressions. """
opt = options.build_options(gens, args)
return _parallel_poly_from_expr(exprs, opt)
def _parallel_poly_from_expr(exprs, opt):
"""Construct polynomials from expressions. """
from sympy.functions.elementary.piecewise import Piecewise
if len(exprs) == 2:
f, g = exprs
if isinstance(f, Poly) and isinstance(g, Poly):
f = f.__class__._from_poly(f, opt)
g = g.__class__._from_poly(g, opt)
f, g = f.unify(g)
opt.gens = f.gens
opt.domain = f.domain
if opt.polys is None:
opt.polys = True
return [f, g], opt
origs, exprs = list(exprs), []
_exprs, _polys = [], []
failed = False
for i, expr in enumerate(origs):
expr = sympify(expr)
if isinstance(expr, Basic):
if expr.is_Poly:
_polys.append(i)
else:
_exprs.append(i)
if opt.expand:
expr = expr.expand()
else:
failed = True
exprs.append(expr)
if failed:
raise PolificationFailed(opt, origs, exprs, True)
if _polys:
# XXX: this is a temporary solution
for i in _polys:
exprs[i] = exprs[i].as_expr()
reps, opt = _parallel_dict_from_expr(exprs, opt)
if not opt.gens:
raise PolificationFailed(opt, origs, exprs, True)
for k in opt.gens:
if isinstance(k, Piecewise):
raise PolynomialError("Piecewise generators do not make sense")
coeffs_list, lengths = [], []
all_monoms = []
all_coeffs = []
for rep in reps:
monoms, coeffs = list(zip(*list(rep.items())))
coeffs_list.extend(coeffs)
all_monoms.append(monoms)
lengths.append(len(coeffs))
domain = opt.domain
if domain is None:
opt.domain, coeffs_list = construct_domain(coeffs_list, opt=opt)
else:
coeffs_list = list(map(domain.from_sympy, coeffs_list))
for k in lengths:
all_coeffs.append(coeffs_list[:k])
coeffs_list = coeffs_list[k:]
polys = []
for monoms, coeffs in zip(all_monoms, all_coeffs):
rep = dict(list(zip(monoms, coeffs)))
poly = Poly._from_dict(rep, opt)
polys.append(poly)
if opt.polys is None:
opt.polys = bool(_polys)
return polys, opt
def _update_args(args, key, value):
"""Add a new ``(key, value)`` pair to arguments ``dict``. """
args = dict(args)
if key not in args:
args[key] = value
return args
@public
def degree(f, gen=0):
"""
Return the degree of ``f`` in the given variable.
The degree of 0 is negative infinity.
Examples
========
>>> from sympy import degree
>>> from sympy.abc import x, y
>>> degree(x**2 + y*x + 1, gen=x)
2
>>> degree(x**2 + y*x + 1, gen=y)
1
>>> degree(0, x)
-oo
See also
========
total_degree
degree_list
"""
f = sympify(f, strict=True)
gen_is_Num = sympify(gen, strict=True).is_Number
if f.is_Poly:
p = f
isNum = p.as_expr().is_Number
else:
isNum = f.is_Number
if not isNum:
if gen_is_Num:
p, _ = poly_from_expr(f)
else:
p, _ = poly_from_expr(f, gen)
if isNum:
return S.Zero if f else S.NegativeInfinity
if not gen_is_Num:
if f.is_Poly and gen not in p.gens:
# try recast without explicit gens
p, _ = poly_from_expr(f.as_expr())
if gen not in p.gens:
return S.Zero
elif not f.is_Poly and len(f.free_symbols) > 1:
raise TypeError(filldedent('''
A symbolic generator of interest is required for a multivariate
expression like func = %s, e.g. degree(func, gen = %s) instead of
degree(func, gen = %s).
''' % (f, next(ordered(f.free_symbols)), gen)))
return Integer(p.degree(gen))
@public
def total_degree(f, *gens):
"""
Return the total_degree of ``f`` in the given variables.
Examples
========
>>> from sympy import total_degree, Poly
>>> from sympy.abc import x, y, z
>>> total_degree(1)
0
>>> total_degree(x + x*y)
2
>>> total_degree(x + x*y, x)
1
If the expression is a Poly and no variables are given
then the generators of the Poly will be used:
>>> p = Poly(x + x*y, y)
>>> total_degree(p)
1
To deal with the underlying expression of the Poly, convert
it to an Expr:
>>> total_degree(p.as_expr())
2
This is done automatically if any variables are given:
>>> total_degree(p, x)
1
See also
========
degree
"""
p = sympify(f)
if p.is_Poly:
p = p.as_expr()
if p.is_Number:
rv = 0
else:
if f.is_Poly:
gens = gens or f.gens
rv = Poly(p, gens).total_degree()
return Integer(rv)
@public
def degree_list(f, *gens, **args):
"""
Return a list of degrees of ``f`` in all variables.
Examples
========
>>> from sympy import degree_list
>>> from sympy.abc import x, y
>>> degree_list(x**2 + y*x + 1)
(2, 1)
"""
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('degree_list', 1, exc)
degrees = F.degree_list()
return tuple(map(Integer, degrees))
@public
def LC(f, *gens, **args):
"""
Return the leading coefficient of ``f``.
Examples
========
>>> from sympy import LC
>>> from sympy.abc import x, y
>>> LC(4*x**2 + 2*x*y**2 + x*y + 3*y)
4
"""
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('LC', 1, exc)
return F.LC(order=opt.order)
@public
def LM(f, *gens, **args):
"""
Return the leading monomial of ``f``.
Examples
========
>>> from sympy import LM
>>> from sympy.abc import x, y
>>> LM(4*x**2 + 2*x*y**2 + x*y + 3*y)
x**2
"""
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('LM', 1, exc)
monom = F.LM(order=opt.order)
return monom.as_expr()
@public
def LT(f, *gens, **args):
"""
Return the leading term of ``f``.
Examples
========
>>> from sympy import LT
>>> from sympy.abc import x, y
>>> LT(4*x**2 + 2*x*y**2 + x*y + 3*y)
4*x**2
"""
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('LT', 1, exc)
monom, coeff = F.LT(order=opt.order)
return coeff*monom.as_expr()
@public
def pdiv(f, g, *gens, **args):
"""
Compute polynomial pseudo-division of ``f`` and ``g``.
Examples
========
>>> from sympy import pdiv
>>> from sympy.abc import x
>>> pdiv(x**2 + 1, 2*x - 4)
(2*x + 4, 20)
"""
options.allowed_flags(args, ['polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('pdiv', 2, exc)
q, r = F.pdiv(G)
if not opt.polys:
return q.as_expr(), r.as_expr()
else:
return q, r
@public
def prem(f, g, *gens, **args):
"""
Compute polynomial pseudo-remainder of ``f`` and ``g``.
Examples
========
>>> from sympy import prem
>>> from sympy.abc import x
>>> prem(x**2 + 1, 2*x - 4)
20
"""
options.allowed_flags(args, ['polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('prem', 2, exc)
r = F.prem(G)
if not opt.polys:
return r.as_expr()
else:
return r
@public
def pquo(f, g, *gens, **args):
"""
Compute polynomial pseudo-quotient of ``f`` and ``g``.
Examples
========
>>> from sympy import pquo
>>> from sympy.abc import x
>>> pquo(x**2 + 1, 2*x - 4)
2*x + 4
>>> pquo(x**2 - 1, 2*x - 1)
2*x + 1
"""
options.allowed_flags(args, ['polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('pquo', 2, exc)
try:
q = F.pquo(G)
except ExactQuotientFailed:
raise ExactQuotientFailed(f, g)
if not opt.polys:
return q.as_expr()
else:
return q
@public
def pexquo(f, g, *gens, **args):
"""
Compute polynomial exact pseudo-quotient of ``f`` and ``g``.
Examples
========
>>> from sympy import pexquo
>>> from sympy.abc import x
>>> pexquo(x**2 - 1, 2*x - 2)
2*x + 2
>>> pexquo(x**2 + 1, 2*x - 4)
Traceback (most recent call last):
...
ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1
"""
options.allowed_flags(args, ['polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('pexquo', 2, exc)
q = F.pexquo(G)
if not opt.polys:
return q.as_expr()
else:
return q
@public
def div(f, g, *gens, **args):
"""
Compute polynomial division of ``f`` and ``g``.
Examples
========
>>> from sympy import div, ZZ, QQ
>>> from sympy.abc import x
>>> div(x**2 + 1, 2*x - 4, domain=ZZ)
(0, x**2 + 1)
>>> div(x**2 + 1, 2*x - 4, domain=QQ)
(x/2 + 1, 5)
"""
options.allowed_flags(args, ['auto', 'polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('div', 2, exc)
q, r = F.div(G, auto=opt.auto)
if not opt.polys:
return q.as_expr(), r.as_expr()
else:
return q, r
@public
def rem(f, g, *gens, **args):
"""
Compute polynomial remainder of ``f`` and ``g``.
Examples
========
>>> from sympy import rem, ZZ, QQ
>>> from sympy.abc import x
>>> rem(x**2 + 1, 2*x - 4, domain=ZZ)
x**2 + 1
>>> rem(x**2 + 1, 2*x - 4, domain=QQ)
5
"""
options.allowed_flags(args, ['auto', 'polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('rem', 2, exc)
r = F.rem(G, auto=opt.auto)
if not opt.polys:
return r.as_expr()
else:
return r
@public
def quo(f, g, *gens, **args):
"""
Compute polynomial quotient of ``f`` and ``g``.
Examples
========
>>> from sympy import quo
>>> from sympy.abc import x
>>> quo(x**2 + 1, 2*x - 4)
x/2 + 1
>>> quo(x**2 - 1, x - 1)
x + 1
"""
options.allowed_flags(args, ['auto', 'polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('quo', 2, exc)
q = F.quo(G, auto=opt.auto)
if not opt.polys:
return q.as_expr()
else:
return q
@public
def exquo(f, g, *gens, **args):
"""
Compute polynomial exact quotient of ``f`` and ``g``.
Examples
========
>>> from sympy import exquo
>>> from sympy.abc import x
>>> exquo(x**2 - 1, x - 1)
x + 1
>>> exquo(x**2 + 1, 2*x - 4)
Traceback (most recent call last):
...
ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1
"""
options.allowed_flags(args, ['auto', 'polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('exquo', 2, exc)
q = F.exquo(G, auto=opt.auto)
if not opt.polys:
return q.as_expr()
else:
return q
@public
def half_gcdex(f, g, *gens, **args):
"""
Half extended Euclidean algorithm of ``f`` and ``g``.
Returns ``(s, h)`` such that ``h = gcd(f, g)`` and ``s*f = h (mod g)``.
Examples
========
>>> from sympy import half_gcdex
>>> from sympy.abc import x
>>> half_gcdex(x**4 - 2*x**3 - 6*x**2 + 12*x + 15, x**3 + x**2 - 4*x - 4)
(3/5 - x/5, x + 1)
"""
options.allowed_flags(args, ['auto', 'polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
domain, (a, b) = construct_domain(exc.exprs)
try:
s, h = domain.half_gcdex(a, b)
except NotImplementedError:
raise ComputationFailed('half_gcdex', 2, exc)
else:
return domain.to_sympy(s), domain.to_sympy(h)
s, h = F.half_gcdex(G, auto=opt.auto)
if not opt.polys:
return s.as_expr(), h.as_expr()
else:
return s, h
@public
def gcdex(f, g, *gens, **args):
"""
Extended Euclidean algorithm of ``f`` and ``g``.
Returns ``(s, t, h)`` such that ``h = gcd(f, g)`` and ``s*f + t*g = h``.
Examples
========
>>> from sympy import gcdex
>>> from sympy.abc import x
>>> gcdex(x**4 - 2*x**3 - 6*x**2 + 12*x + 15, x**3 + x**2 - 4*x - 4)
(3/5 - x/5, x**2/5 - 6*x/5 + 2, x + 1)
"""
options.allowed_flags(args, ['auto', 'polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
domain, (a, b) = construct_domain(exc.exprs)
try:
s, t, h = domain.gcdex(a, b)
except NotImplementedError:
raise ComputationFailed('gcdex', 2, exc)
else:
return domain.to_sympy(s), domain.to_sympy(t), domain.to_sympy(h)
s, t, h = F.gcdex(G, auto=opt.auto)
if not opt.polys:
return s.as_expr(), t.as_expr(), h.as_expr()
else:
return s, t, h
@public
def invert(f, g, *gens, **args):
"""
Invert ``f`` modulo ``g`` when possible.
Examples
========
>>> from sympy import invert, S
>>> from sympy.core.numbers import mod_inverse
>>> from sympy.abc import x
>>> invert(x**2 - 1, 2*x - 1)
-4/3
>>> invert(x**2 - 1, x - 1)
Traceback (most recent call last):
...
NotInvertible: zero divisor
For more efficient inversion of Rationals,
use the ``mod_inverse`` function:
>>> mod_inverse(3, 5)
2
>>> (S(2)/5).invert(S(7)/3)
5/2
See Also
========
sympy.core.numbers.mod_inverse
"""
options.allowed_flags(args, ['auto', 'polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
domain, (a, b) = construct_domain(exc.exprs)
try:
return domain.to_sympy(domain.invert(a, b))
except NotImplementedError:
raise ComputationFailed('invert', 2, exc)
h = F.invert(G, auto=opt.auto)
if not opt.polys:
return h.as_expr()
else:
return h
@public
def subresultants(f, g, *gens, **args):
"""
Compute subresultant PRS of ``f`` and ``g``.
Examples
========
>>> from sympy import subresultants
>>> from sympy.abc import x
>>> subresultants(x**2 + 1, x**2 - 1)
[x**2 + 1, x**2 - 1, -2]
"""
options.allowed_flags(args, ['polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('subresultants', 2, exc)
result = F.subresultants(G)
if not opt.polys:
return [r.as_expr() for r in result]
else:
return result
@public
def resultant(f, g, *gens, **args):
"""
Compute resultant of ``f`` and ``g``.
Examples
========
>>> from sympy import resultant
>>> from sympy.abc import x
>>> resultant(x**2 + 1, x**2 - 1)
4
"""
includePRS = args.pop('includePRS', False)
options.allowed_flags(args, ['polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('resultant', 2, exc)
if includePRS:
result, R = F.resultant(G, includePRS=includePRS)
else:
result = F.resultant(G)
if not opt.polys:
if includePRS:
return result.as_expr(), [r.as_expr() for r in R]
return result.as_expr()
else:
if includePRS:
return result, R
return result
@public
def discriminant(f, *gens, **args):
"""
Compute discriminant of ``f``.
Examples
========
>>> from sympy import discriminant
>>> from sympy.abc import x
>>> discriminant(x**2 + 2*x + 3)
-8
"""
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('discriminant', 1, exc)
result = F.discriminant()
if not opt.polys:
return result.as_expr()
else:
return result
@public
def cofactors(f, g, *gens, **args):
"""
Compute GCD and cofactors of ``f`` and ``g``.
Returns polynomials ``(h, cff, cfg)`` such that ``h = gcd(f, g)``, and
``cff = quo(f, h)`` and ``cfg = quo(g, h)`` are, so called, cofactors
of ``f`` and ``g``.
Examples
========
>>> from sympy import cofactors
>>> from sympy.abc import x
>>> cofactors(x**2 - 1, x**2 - 3*x + 2)
(x - 1, x + 1, x - 2)
"""
options.allowed_flags(args, ['polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
domain, (a, b) = construct_domain(exc.exprs)
try:
h, cff, cfg = domain.cofactors(a, b)
except NotImplementedError:
raise ComputationFailed('cofactors', 2, exc)
else:
return domain.to_sympy(h), domain.to_sympy(cff), domain.to_sympy(cfg)
h, cff, cfg = F.cofactors(G)
if not opt.polys:
return h.as_expr(), cff.as_expr(), cfg.as_expr()
else:
return h, cff, cfg
@public
def gcd_list(seq, *gens, **args):
"""
Compute GCD of a list of polynomials.
Examples
========
>>> from sympy import gcd_list
>>> from sympy.abc import x
>>> gcd_list([x**3 - 1, x**2 - 1, x**2 - 3*x + 2])
x - 1
"""
seq = sympify(seq)
def try_non_polynomial_gcd(seq):
if not gens and not args:
domain, numbers = construct_domain(seq)
if not numbers:
return domain.zero
elif domain.is_Numerical:
result, numbers = numbers[0], numbers[1:]
for number in numbers:
result = domain.gcd(result, number)
if domain.is_one(result):
break
return domain.to_sympy(result)
return None
result = try_non_polynomial_gcd(seq)
if result is not None:
return result
options.allowed_flags(args, ['polys'])
try:
polys, opt = parallel_poly_from_expr(seq, *gens, **args)
# gcd for domain Q[irrational] (purely algebraic irrational)
if len(seq) > 1 and all(elt.is_algebraic and elt.is_irrational for elt in seq):
a = seq[-1]
lst = [ (a/elt).ratsimp() for elt in seq[:-1] ]
if all(frc.is_rational for frc in lst):
lc = 1
for frc in lst:
lc = lcm(lc, frc.as_numer_denom()[0])
return a/lc
except PolificationFailed as exc:
result = try_non_polynomial_gcd(exc.exprs)
if result is not None:
return result
else:
raise ComputationFailed('gcd_list', len(seq), exc)
if not polys:
if not opt.polys:
return S.Zero
else:
return Poly(0, opt=opt)
result, polys = polys[0], polys[1:]
for poly in polys:
result = result.gcd(poly)
if result.is_one:
break
if not opt.polys:
return result.as_expr()
else:
return result
@public
def gcd(f, g=None, *gens, **args):
"""
Compute GCD of ``f`` and ``g``.
Examples
========
>>> from sympy import gcd
>>> from sympy.abc import x
>>> gcd(x**2 - 1, x**2 - 3*x + 2)
x - 1
"""
if hasattr(f, '__iter__'):
if g is not None:
gens = (g,) + gens
return gcd_list(f, *gens, **args)
elif g is None:
raise TypeError("gcd() takes 2 arguments or a sequence of arguments")
options.allowed_flags(args, ['polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
# gcd for domain Q[irrational] (purely algebraic irrational)
a, b = map(sympify, (f, g))
if a.is_algebraic and a.is_irrational and b.is_algebraic and b.is_irrational:
frc = (a/b).ratsimp()
if frc.is_rational:
return a/frc.as_numer_denom()[0]
except PolificationFailed as exc:
domain, (a, b) = construct_domain(exc.exprs)
try:
return domain.to_sympy(domain.gcd(a, b))
except NotImplementedError:
raise ComputationFailed('gcd', 2, exc)
result = F.gcd(G)
if not opt.polys:
return result.as_expr()
else:
return result
@public
def lcm_list(seq, *gens, **args):
"""
Compute LCM of a list of polynomials.
Examples
========
>>> from sympy import lcm_list
>>> from sympy.abc import x
>>> lcm_list([x**3 - 1, x**2 - 1, x**2 - 3*x + 2])
x**5 - x**4 - 2*x**3 - x**2 + x + 2
"""
seq = sympify(seq)
def try_non_polynomial_lcm(seq):
if not gens and not args:
domain, numbers = construct_domain(seq)
if not numbers:
return domain.one
elif domain.is_Numerical:
result, numbers = numbers[0], numbers[1:]
for number in numbers:
result = domain.lcm(result, number)
return domain.to_sympy(result)
return None
result = try_non_polynomial_lcm(seq)
if result is not None:
return result
options.allowed_flags(args, ['polys'])
try:
polys, opt = parallel_poly_from_expr(seq, *gens, **args)
# lcm for domain Q[irrational] (purely algebraic irrational)
if len(seq) > 1 and all(elt.is_algebraic and elt.is_irrational for elt in seq):
a = seq[-1]
lst = [ (a/elt).ratsimp() for elt in seq[:-1] ]
if all(frc.is_rational for frc in lst):
lc = 1
for frc in lst:
lc = lcm(lc, frc.as_numer_denom()[1])
return a*lc
except PolificationFailed as exc:
result = try_non_polynomial_lcm(exc.exprs)
if result is not None:
return result
else:
raise ComputationFailed('lcm_list', len(seq), exc)
if not polys:
if not opt.polys:
return S.One
else:
return Poly(1, opt=opt)
result, polys = polys[0], polys[1:]
for poly in polys:
result = result.lcm(poly)
if not opt.polys:
return result.as_expr()
else:
return result
@public
def lcm(f, g=None, *gens, **args):
"""
Compute LCM of ``f`` and ``g``.
Examples
========
>>> from sympy import lcm
>>> from sympy.abc import x
>>> lcm(x**2 - 1, x**2 - 3*x + 2)
x**3 - 2*x**2 - x + 2
"""
if hasattr(f, '__iter__'):
if g is not None:
gens = (g,) + gens
return lcm_list(f, *gens, **args)
elif g is None:
raise TypeError("lcm() takes 2 arguments or a sequence of arguments")
options.allowed_flags(args, ['polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
# lcm for domain Q[irrational] (purely algebraic irrational)
a, b = map(sympify, (f, g))
if a.is_algebraic and a.is_irrational and b.is_algebraic and b.is_irrational:
frc = (a/b).ratsimp()
if frc.is_rational:
return a*frc.as_numer_denom()[1]
except PolificationFailed as exc:
domain, (a, b) = construct_domain(exc.exprs)
try:
return domain.to_sympy(domain.lcm(a, b))
except NotImplementedError:
raise ComputationFailed('lcm', 2, exc)
result = F.lcm(G)
if not opt.polys:
return result.as_expr()
else:
return result
@public
def terms_gcd(f, *gens, **args):
"""
Remove GCD of terms from ``f``.
If the ``deep`` flag is True, then the arguments of ``f`` will have
terms_gcd applied to them.
If a fraction is factored out of ``f`` and ``f`` is an Add, then
an unevaluated Mul will be returned so that automatic simplification
does not redistribute it. The hint ``clear``, when set to False, can be
used to prevent such factoring when all coefficients are not fractions.
Examples
========
>>> from sympy import terms_gcd, cos
>>> from sympy.abc import x, y
>>> terms_gcd(x**6*y**2 + x**3*y, x, y)
x**3*y*(x**3*y + 1)
The default action of polys routines is to expand the expression
given to them. terms_gcd follows this behavior:
>>> terms_gcd((3+3*x)*(x+x*y))
3*x*(x*y + x + y + 1)
If this is not desired then the hint ``expand`` can be set to False.
In this case the expression will be treated as though it were comprised
of one or more terms:
>>> terms_gcd((3+3*x)*(x+x*y), expand=False)
(3*x + 3)*(x*y + x)
In order to traverse factors of a Mul or the arguments of other
functions, the ``deep`` hint can be used:
>>> terms_gcd((3 + 3*x)*(x + x*y), expand=False, deep=True)
3*x*(x + 1)*(y + 1)
>>> terms_gcd(cos(x + x*y), deep=True)
cos(x*(y + 1))
Rationals are factored out by default:
>>> terms_gcd(x + y/2)
(2*x + y)/2
Only the y-term had a coefficient that was a fraction; if one
does not want to factor out the 1/2 in cases like this, the
flag ``clear`` can be set to False:
>>> terms_gcd(x + y/2, clear=False)
x + y/2
>>> terms_gcd(x*y/2 + y**2, clear=False)
y*(x/2 + y)
The ``clear`` flag is ignored if all coefficients are fractions:
>>> terms_gcd(x/3 + y/2, clear=False)
(2*x + 3*y)/6
See Also
========
sympy.core.exprtools.gcd_terms, sympy.core.exprtools.factor_terms
"""
from sympy.core.relational import Equality
orig = sympify(f)
if not isinstance(f, Expr) or f.is_Atom:
return orig
if args.get('deep', False):
new = f.func(*[terms_gcd(a, *gens, **args) for a in f.args])
args.pop('deep')
args['expand'] = False
return terms_gcd(new, *gens, **args)
if isinstance(f, Equality):
return f
clear = args.pop('clear', True)
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
return exc.expr
J, f = F.terms_gcd()
if opt.domain.is_Ring:
if opt.domain.is_Field:
denom, f = f.clear_denoms(convert=True)
coeff, f = f.primitive()
if opt.domain.is_Field:
coeff /= denom
else:
coeff = S.One
term = Mul(*[x**j for x, j in zip(f.gens, J)])
if coeff == 1:
coeff = S.One
if term == 1:
return orig
if clear:
return _keep_coeff(coeff, term*f.as_expr())
# base the clearing on the form of the original expression, not
# the (perhaps) Mul that we have now
coeff, f = _keep_coeff(coeff, f.as_expr(), clear=False).as_coeff_Mul()
return _keep_coeff(coeff, term*f, clear=False)
@public
def trunc(f, p, *gens, **args):
"""
Reduce ``f`` modulo a constant ``p``.
Examples
========
>>> from sympy import trunc
>>> from sympy.abc import x
>>> trunc(2*x**3 + 3*x**2 + 5*x + 7, 3)
-x**3 - x + 1
"""
options.allowed_flags(args, ['auto', 'polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('trunc', 1, exc)
result = F.trunc(sympify(p))
if not opt.polys:
return result.as_expr()
else:
return result
@public
def monic(f, *gens, **args):
"""
Divide all coefficients of ``f`` by ``LC(f)``.
Examples
========
>>> from sympy import monic
>>> from sympy.abc import x
>>> monic(3*x**2 + 4*x + 2)
x**2 + 4*x/3 + 2/3
"""
options.allowed_flags(args, ['auto', 'polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('monic', 1, exc)
result = F.monic(auto=opt.auto)
if not opt.polys:
return result.as_expr()
else:
return result
@public
def content(f, *gens, **args):
"""
Compute GCD of coefficients of ``f``.
Examples
========
>>> from sympy import content
>>> from sympy.abc import x
>>> content(6*x**2 + 8*x + 12)
2
"""
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('content', 1, exc)
return F.content()
@public
def primitive(f, *gens, **args):
"""
Compute content and the primitive form of ``f``.
Examples
========
>>> from sympy.polys.polytools import primitive
>>> from sympy.abc import x
>>> primitive(6*x**2 + 8*x + 12)
(2, 3*x**2 + 4*x + 6)
>>> eq = (2 + 2*x)*x + 2
Expansion is performed by default:
>>> primitive(eq)
(2, x**2 + x + 1)
Set ``expand`` to False to shut this off. Note that the
extraction will not be recursive; use the as_content_primitive method
for recursive, non-destructive Rational extraction.
>>> primitive(eq, expand=False)
(1, x*(2*x + 2) + 2)
>>> eq.as_content_primitive()
(2, x*(x + 1) + 1)
"""
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('primitive', 1, exc)
cont, result = F.primitive()
if not opt.polys:
return cont, result.as_expr()
else:
return cont, result
@public
def compose(f, g, *gens, **args):
"""
Compute functional composition ``f(g)``.
Examples
========
>>> from sympy import compose
>>> from sympy.abc import x
>>> compose(x**2 + x, x - 1)
x**2 - x
"""
options.allowed_flags(args, ['polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('compose', 2, exc)
result = F.compose(G)
if not opt.polys:
return result.as_expr()
else:
return result
@public
def decompose(f, *gens, **args):
"""
Compute functional decomposition of ``f``.
Examples
========
>>> from sympy import decompose
>>> from sympy.abc import x
>>> decompose(x**4 + 2*x**3 - x - 1)
[x**2 - x - 1, x**2 + x]
"""
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('decompose', 1, exc)
result = F.decompose()
if not opt.polys:
return [r.as_expr() for r in result]
else:
return result
@public
def sturm(f, *gens, **args):
"""
Compute Sturm sequence of ``f``.
Examples
========
>>> from sympy import sturm
>>> from sympy.abc import x
>>> sturm(x**3 - 2*x**2 + x - 3)
[x**3 - 2*x**2 + x - 3, 3*x**2 - 4*x + 1, 2*x/9 + 25/9, -2079/4]
"""
options.allowed_flags(args, ['auto', 'polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('sturm', 1, exc)
result = F.sturm(auto=opt.auto)
if not opt.polys:
return [r.as_expr() for r in result]
else:
return result
@public
def gff_list(f, *gens, **args):
"""
Compute a list of greatest factorial factors of ``f``.
Note that the input to ff() and rf() should be Poly instances to use the
definitions here.
Examples
========
>>> from sympy import gff_list, ff, Poly
>>> from sympy.abc import x
>>> f = Poly(x**5 + 2*x**4 - x**3 - 2*x**2, x)
>>> gff_list(f)
[(Poly(x, x, domain='ZZ'), 1), (Poly(x + 2, x, domain='ZZ'), 4)]
>>> (ff(Poly(x), 1)*ff(Poly(x + 2), 4)).expand() == f
True
>>> f = Poly(x**12 + 6*x**11 - 11*x**10 - 56*x**9 + 220*x**8 + 208*x**7 - \
1401*x**6 + 1090*x**5 + 2715*x**4 - 6720*x**3 - 1092*x**2 + 5040*x, x)
>>> gff_list(f)
[(Poly(x**3 + 7, x, domain='ZZ'), 2), (Poly(x**2 + 5*x, x, domain='ZZ'), 3)]
>>> ff(Poly(x**3 + 7, x), 2)*ff(Poly(x**2 + 5*x, x), 3) == f
True
"""
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('gff_list', 1, exc)
factors = F.gff_list()
if not opt.polys:
return [(g.as_expr(), k) for g, k in factors]
else:
return factors
@public
def gff(f, *gens, **args):
"""Compute greatest factorial factorization of ``f``. """
raise NotImplementedError('symbolic falling factorial')
@public
def sqf_norm(f, *gens, **args):
"""
Compute square-free norm of ``f``.
Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and
``r(x) = Norm(g(x))`` is a square-free polynomial over ``K``,
where ``a`` is the algebraic extension of the ground domain.
Examples
========
>>> from sympy import sqf_norm, sqrt
>>> from sympy.abc import x
>>> sqf_norm(x**2 + 1, extension=[sqrt(3)])
(1, x**2 - 2*sqrt(3)*x + 4, x**4 - 4*x**2 + 16)
"""
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('sqf_norm', 1, exc)
s, g, r = F.sqf_norm()
if not opt.polys:
return Integer(s), g.as_expr(), r.as_expr()
else:
return Integer(s), g, r
@public
def sqf_part(f, *gens, **args):
"""
Compute square-free part of ``f``.
Examples
========
>>> from sympy import sqf_part
>>> from sympy.abc import x
>>> sqf_part(x**3 - 3*x - 2)
x**2 - x - 2
"""
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('sqf_part', 1, exc)
result = F.sqf_part()
if not opt.polys:
return result.as_expr()
else:
return result
def _sorted_factors(factors, method):
"""Sort a list of ``(expr, exp)`` pairs. """
if method == 'sqf':
def key(obj):
poly, exp = obj
rep = poly.rep.rep
return (exp, len(rep), len(poly.gens), rep)
else:
def key(obj):
poly, exp = obj
rep = poly.rep.rep
return (len(rep), len(poly.gens), exp, rep)
return sorted(factors, key=key)
def _factors_product(factors):
"""Multiply a list of ``(expr, exp)`` pairs. """
return Mul(*[f.as_expr()**k for f, k in factors])
def _symbolic_factor_list(expr, opt, method):
"""Helper function for :func:`_symbolic_factor`. """
coeff, factors = S.One, []
args = [i._eval_factor() if hasattr(i, '_eval_factor') else i
for i in Mul.make_args(expr)]
for arg in args:
if arg.is_Number:
coeff *= arg
continue
if arg.is_Mul:
args.extend(arg.args)
continue
if arg.is_Pow:
base, exp = arg.args
if base.is_Number and exp.is_Number:
coeff *= arg
continue
if base.is_Number:
factors.append((base, exp))
continue
else:
base, exp = arg, S.One
try:
poly, _ = _poly_from_expr(base, opt)
except PolificationFailed as exc:
factors.append((exc.expr, exp))
else:
func = getattr(poly, method + '_list')
_coeff, _factors = func()
if _coeff is not S.One:
if exp.is_Integer:
coeff *= _coeff**exp
elif _coeff.is_positive:
factors.append((_coeff, exp))
else:
_factors.append((_coeff, S.One))
if exp is S.One:
factors.extend(_factors)
elif exp.is_integer:
factors.extend([(f, k*exp) for f, k in _factors])
else:
other = []
for f, k in _factors:
if f.as_expr().is_positive:
factors.append((f, k*exp))
else:
other.append((f, k))
factors.append((_factors_product(other), exp))
return coeff, factors
def _symbolic_factor(expr, opt, method):
"""Helper function for :func:`_factor`. """
if isinstance(expr, Expr) and not expr.is_Relational:
if hasattr(expr,'_eval_factor'):
return expr._eval_factor()
coeff, factors = _symbolic_factor_list(together(expr, fraction=opt['fraction']), opt, method)
return _keep_coeff(coeff, _factors_product(factors))
elif hasattr(expr, 'args'):
return expr.func(*[_symbolic_factor(arg, opt, method) for arg in expr.args])
elif hasattr(expr, '__iter__'):
return expr.__class__([_symbolic_factor(arg, opt, method) for arg in expr])
else:
return expr
def _generic_factor_list(expr, gens, args, method):
"""Helper function for :func:`sqf_list` and :func:`factor_list`. """
options.allowed_flags(args, ['frac', 'polys'])
opt = options.build_options(gens, args)
expr = sympify(expr)
if isinstance(expr, Expr) and not expr.is_Relational:
numer, denom = together(expr).as_numer_denom()
cp, fp = _symbolic_factor_list(numer, opt, method)
cq, fq = _symbolic_factor_list(denom, opt, method)
if fq and not opt.frac:
raise PolynomialError("a polynomial expected, got %s" % expr)
_opt = opt.clone(dict(expand=True))
for factors in (fp, fq):
for i, (f, k) in enumerate(factors):
if not f.is_Poly:
f, _ = _poly_from_expr(f, _opt)
factors[i] = (f, k)
fp = _sorted_factors(fp, method)
fq = _sorted_factors(fq, method)
if not opt.polys:
fp = [(f.as_expr(), k) for f, k in fp]
fq = [(f.as_expr(), k) for f, k in fq]
coeff = cp/cq
if not opt.frac:
return coeff, fp
else:
return coeff, fp, fq
else:
raise PolynomialError("a polynomial expected, got %s" % expr)
def _generic_factor(expr, gens, args, method):
"""Helper function for :func:`sqf` and :func:`factor`. """
fraction = args.pop('fraction', True)
options.allowed_flags(args, [])
opt = options.build_options(gens, args)
opt['fraction'] = fraction
return _symbolic_factor(sympify(expr), opt, method)
def to_rational_coeffs(f):
"""
try to transform a polynomial to have rational coefficients
try to find a transformation ``x = alpha*y``
``f(x) = lc*alpha**n * g(y)`` where ``g`` is a polynomial with
rational coefficients, ``lc`` the leading coefficient.
If this fails, try ``x = y + beta``
``f(x) = g(y)``
Returns ``None`` if ``g`` not found;
``(lc, alpha, None, g)`` in case of rescaling
``(None, None, beta, g)`` in case of translation
Notes
=====
Currently it transforms only polynomials without roots larger than 2.
Examples
========
>>> from sympy import sqrt, Poly, simplify
>>> from sympy.polys.polytools import to_rational_coeffs
>>> from sympy.abc import x
>>> p = Poly(((x**2-1)*(x-2)).subs({x:x*(1 + sqrt(2))}), x, domain='EX')
>>> lc, r, _, g = to_rational_coeffs(p)
>>> lc, r
(7 + 5*sqrt(2), 2 - 2*sqrt(2))
>>> g
Poly(x**3 + x**2 - 1/4*x - 1/4, x, domain='QQ')
>>> r1 = simplify(1/r)
>>> Poly(lc*r**3*(g.as_expr()).subs({x:x*r1}), x, domain='EX') == p
True
"""
from sympy.simplify.simplify import simplify
def _try_rescale(f, f1=None):
"""
try rescaling ``x -> alpha*x`` to convert f to a polynomial
with rational coefficients.
Returns ``alpha, f``; if the rescaling is successful,
``alpha`` is the rescaling factor, and ``f`` is the rescaled
polynomial; else ``alpha`` is ``None``.
"""
from sympy.core.add import Add
if not len(f.gens) == 1 or not (f.gens[0]).is_Atom:
return None, f
n = f.degree()
lc = f.LC()
f1 = f1 or f1.monic()
coeffs = f1.all_coeffs()[1:]
coeffs = [simplify(coeffx) for coeffx in coeffs]
if coeffs[-2]:
rescale1_x = simplify(coeffs[-2]/coeffs[-1])
coeffs1 = []
for i in range(len(coeffs)):
coeffx = simplify(coeffs[i]*rescale1_x**(i + 1))
if not coeffx.is_rational:
break
coeffs1.append(coeffx)
else:
rescale_x = simplify(1/rescale1_x)
x = f.gens[0]
v = [x**n]
for i in range(1, n + 1):
v.append(coeffs1[i - 1]*x**(n - i))
f = Add(*v)
f = Poly(f)
return lc, rescale_x, f
return None
def _try_translate(f, f1=None):
"""
try translating ``x -> x + alpha`` to convert f to a polynomial
with rational coefficients.
Returns ``alpha, f``; if the translating is successful,
``alpha`` is the translating factor, and ``f`` is the shifted
polynomial; else ``alpha`` is ``None``.
"""
from sympy.core.add import Add
if not len(f.gens) == 1 or not (f.gens[0]).is_Atom:
return None, f
n = f.degree()
f1 = f1 or f1.monic()
coeffs = f1.all_coeffs()[1:]
c = simplify(coeffs[0])
if c and not c.is_rational:
func = Add
if c.is_Add:
args = c.args
func = c.func
else:
args = [c]
c1, c2 = sift(args, lambda z: z.is_rational, binary=True)
alpha = -func(*c2)/n
f2 = f1.shift(alpha)
return alpha, f2
return None
def _has_square_roots(p):
"""
Return True if ``f`` is a sum with square roots but no other root
"""
from sympy.core.exprtools import Factors
coeffs = p.coeffs()
has_sq = False
for y in coeffs:
for x in Add.make_args(y):
f = Factors(x).factors
r = [wx.q for b, wx in f.items() if
b.is_number and wx.is_Rational and wx.q >= 2]
if not r:
continue
if min(r) == 2:
has_sq = True
if max(r) > 2:
return False
return has_sq
if f.get_domain().is_EX and _has_square_roots(f):
f1 = f.monic()
r = _try_rescale(f, f1)
if r:
return r[0], r[1], None, r[2]
else:
r = _try_translate(f, f1)
if r:
return None, None, r[0], r[1]
return None
def _torational_factor_list(p, x):
"""
helper function to factor polynomial using to_rational_coeffs
Examples
========
>>> from sympy.polys.polytools import _torational_factor_list
>>> from sympy.abc import x
>>> from sympy import sqrt, expand, Mul
>>> p = expand(((x**2-1)*(x-2)).subs({x:x*(1 + sqrt(2))}))
>>> factors = _torational_factor_list(p, x); factors
(-2, [(-x*(1 + sqrt(2))/2 + 1, 1), (-x*(1 + sqrt(2)) - 1, 1), (-x*(1 + sqrt(2)) + 1, 1)])
>>> expand(factors[0]*Mul(*[z[0] for z in factors[1]])) == p
True
>>> p = expand(((x**2-1)*(x-2)).subs({x:x + sqrt(2)}))
>>> factors = _torational_factor_list(p, x); factors
(1, [(x - 2 + sqrt(2), 1), (x - 1 + sqrt(2), 1), (x + 1 + sqrt(2), 1)])
>>> expand(factors[0]*Mul(*[z[0] for z in factors[1]])) == p
True
"""
from sympy.simplify.simplify import simplify
p1 = Poly(p, x, domain='EX')
n = p1.degree()
res = to_rational_coeffs(p1)
if not res:
return None
lc, r, t, g = res
factors = factor_list(g.as_expr())
if lc:
c = simplify(factors[0]*lc*r**n)
r1 = simplify(1/r)
a = []
for z in factors[1:][0]:
a.append((simplify(z[0].subs({x: x*r1})), z[1]))
else:
c = factors[0]
a = []
for z in factors[1:][0]:
a.append((z[0].subs({x: x - t}), z[1]))
return (c, a)
@public
def sqf_list(f, *gens, **args):
"""
Compute a list of square-free factors of ``f``.
Examples
========
>>> from sympy import sqf_list
>>> from sympy.abc import x
>>> sqf_list(2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16)
(2, [(x + 1, 2), (x + 2, 3)])
"""
return _generic_factor_list(f, gens, args, method='sqf')
@public
def sqf(f, *gens, **args):
"""
Compute square-free factorization of ``f``.
Examples
========
>>> from sympy import sqf
>>> from sympy.abc import x
>>> sqf(2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16)
2*(x + 1)**2*(x + 2)**3
"""
return _generic_factor(f, gens, args, method='sqf')
@public
def factor_list(f, *gens, **args):
"""
Compute a list of irreducible factors of ``f``.
Examples
========
>>> from sympy import factor_list
>>> from sympy.abc import x, y
>>> factor_list(2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y)
(2, [(x + y, 1), (x**2 + 1, 2)])
"""
return _generic_factor_list(f, gens, args, method='factor')
@public
def factor(f, *gens, **args):
"""
Compute the factorization of expression, ``f``, into irreducibles. (To
factor an integer into primes, use ``factorint``.)
There two modes implemented: symbolic and formal. If ``f`` is not an
instance of :class:`Poly` and generators are not specified, then the
former mode is used. Otherwise, the formal mode is used.
In symbolic mode, :func:`factor` will traverse the expression tree and
factor its components without any prior expansion, unless an instance
of :class:`Add` is encountered (in this case formal factorization is
used). This way :func:`factor` can handle large or symbolic exponents.
By default, the factorization is computed over the rationals. To factor
over other domain, e.g. an algebraic or finite field, use appropriate
options: ``extension``, ``modulus`` or ``domain``.
Examples
========
>>> from sympy import factor, sqrt, exp
>>> from sympy.abc import x, y
>>> factor(2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y)
2*(x + y)*(x**2 + 1)**2
>>> factor(x**2 + 1)
x**2 + 1
>>> factor(x**2 + 1, modulus=2)
(x + 1)**2
>>> factor(x**2 + 1, gaussian=True)
(x - I)*(x + I)
>>> factor(x**2 - 2, extension=sqrt(2))
(x - sqrt(2))*(x + sqrt(2))
>>> factor((x**2 - 1)/(x**2 + 4*x + 4))
(x - 1)*(x + 1)/(x + 2)**2
>>> factor((x**2 + 4*x + 4)**10000000*(x**2 + 1))
(x + 2)**20000000*(x**2 + 1)
By default, factor deals with an expression as a whole:
>>> eq = 2**(x**2 + 2*x + 1)
>>> factor(eq)
2**(x**2 + 2*x + 1)
If the ``deep`` flag is True then subexpressions will
be factored:
>>> factor(eq, deep=True)
2**((x + 1)**2)
If the ``fraction`` flag is False then rational expressions
won't be combined. By default it is True.
>>> factor(5*x + 3*exp(2 - 7*x), deep=True)
(5*x*exp(7*x) + 3*exp(2))*exp(-7*x)
>>> factor(5*x + 3*exp(2 - 7*x), deep=True, fraction=False)
5*x + 3*exp(2)*exp(-7*x)
See Also
========
sympy.ntheory.factor_.factorint
"""
f = sympify(f)
if args.pop('deep', False):
from sympy.simplify.simplify import bottom_up
def _try_factor(expr):
"""
Factor, but avoid changing the expression when unable to.
"""
fac = factor(expr, *gens, **args)
if fac.is_Mul or fac.is_Pow:
return fac
return expr
f = bottom_up(f, _try_factor)
# clean up any subexpressions that may have been expanded
# while factoring out a larger expression
partials = {}
muladd = f.atoms(Mul, Add)
for p in muladd:
fac = factor(p, *gens, **args)
if (fac.is_Mul or fac.is_Pow) and fac != p:
partials[p] = fac
return f.xreplace(partials)
try:
return _generic_factor(f, gens, args, method='factor')
except PolynomialError as msg:
if not f.is_commutative:
from sympy.core.exprtools import factor_nc
return factor_nc(f)
else:
raise PolynomialError(msg)
@public
def intervals(F, all=False, eps=None, inf=None, sup=None, strict=False, fast=False, sqf=False):
"""
Compute isolating intervals for roots of ``f``.
Examples
========
>>> from sympy import intervals
>>> from sympy.abc import x
>>> intervals(x**2 - 3)
[((-2, -1), 1), ((1, 2), 1)]
>>> intervals(x**2 - 3, eps=1e-2)
[((-26/15, -19/11), 1), ((19/11, 26/15), 1)]
"""
if not hasattr(F, '__iter__'):
try:
F = Poly(F)
except GeneratorsNeeded:
return []
return F.intervals(all=all, eps=eps, inf=inf, sup=sup, fast=fast, sqf=sqf)
else:
polys, opt = parallel_poly_from_expr(F, domain='QQ')
if len(opt.gens) > 1:
raise MultivariatePolynomialError
for i, poly in enumerate(polys):
polys[i] = poly.rep.rep
if eps is not None:
eps = opt.domain.convert(eps)
if eps <= 0:
raise ValueError("'eps' must be a positive rational")
if inf is not None:
inf = opt.domain.convert(inf)
if sup is not None:
sup = opt.domain.convert(sup)
intervals = dup_isolate_real_roots_list(polys, opt.domain,
eps=eps, inf=inf, sup=sup, strict=strict, fast=fast)
result = []
for (s, t), indices in intervals:
s, t = opt.domain.to_sympy(s), opt.domain.to_sympy(t)
result.append(((s, t), indices))
return result
@public
def refine_root(f, s, t, eps=None, steps=None, fast=False, check_sqf=False):
"""
Refine an isolating interval of a root to the given precision.
Examples
========
>>> from sympy import refine_root
>>> from sympy.abc import x
>>> refine_root(x**2 - 3, 1, 2, eps=1e-2)
(19/11, 26/15)
"""
try:
F = Poly(f)
except GeneratorsNeeded:
raise PolynomialError(
"can't refine a root of %s, not a polynomial" % f)
return F.refine_root(s, t, eps=eps, steps=steps, fast=fast, check_sqf=check_sqf)
@public
def count_roots(f, inf=None, sup=None):
"""
Return the number of roots of ``f`` in ``[inf, sup]`` interval.
If one of ``inf`` or ``sup`` is complex, it will return the number of roots
in the complex rectangle with corners at ``inf`` and ``sup``.
Examples
========
>>> from sympy import count_roots, I
>>> from sympy.abc import x
>>> count_roots(x**4 - 4, -3, 3)
2
>>> count_roots(x**4 - 4, 0, 1 + 3*I)
1
"""
try:
F = Poly(f, greedy=False)
except GeneratorsNeeded:
raise PolynomialError("can't count roots of %s, not a polynomial" % f)
return F.count_roots(inf=inf, sup=sup)
@public
def real_roots(f, multiple=True):
"""
Return a list of real roots with multiplicities of ``f``.
Examples
========
>>> from sympy import real_roots
>>> from sympy.abc import x
>>> real_roots(2*x**3 - 7*x**2 + 4*x + 4)
[-1/2, 2, 2]
"""
try:
F = Poly(f, greedy=False)
except GeneratorsNeeded:
raise PolynomialError(
"can't compute real roots of %s, not a polynomial" % f)
return F.real_roots(multiple=multiple)
@public
def nroots(f, n=15, maxsteps=50, cleanup=True):
"""
Compute numerical approximations of roots of ``f``.
Examples
========
>>> from sympy import nroots
>>> from sympy.abc import x
>>> nroots(x**2 - 3, n=15)
[-1.73205080756888, 1.73205080756888]
>>> nroots(x**2 - 3, n=30)
[-1.73205080756887729352744634151, 1.73205080756887729352744634151]
"""
try:
F = Poly(f, greedy=False)
except GeneratorsNeeded:
raise PolynomialError(
"can't compute numerical roots of %s, not a polynomial" % f)
return F.nroots(n=n, maxsteps=maxsteps, cleanup=cleanup)
@public
def ground_roots(f, *gens, **args):
"""
Compute roots of ``f`` by factorization in the ground domain.
Examples
========
>>> from sympy import ground_roots
>>> from sympy.abc import x
>>> ground_roots(x**6 - 4*x**4 + 4*x**3 - x**2)
{0: 2, 1: 2}
"""
options.allowed_flags(args, [])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('ground_roots', 1, exc)
return F.ground_roots()
@public
def nth_power_roots_poly(f, n, *gens, **args):
"""
Construct a polynomial with n-th powers of roots of ``f``.
Examples
========
>>> from sympy import nth_power_roots_poly, factor, roots
>>> from sympy.abc import x
>>> f = x**4 - x**2 + 1
>>> g = factor(nth_power_roots_poly(f, 2))
>>> g
(x**2 - x + 1)**2
>>> R_f = [ (r**2).expand() for r in roots(f) ]
>>> R_g = roots(g).keys()
>>> set(R_f) == set(R_g)
True
"""
options.allowed_flags(args, [])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('nth_power_roots_poly', 1, exc)
result = F.nth_power_roots_poly(n)
if not opt.polys:
return result.as_expr()
else:
return result
@public
def cancel(f, *gens, **args):
"""
Cancel common factors in a rational function ``f``.
Examples
========
>>> from sympy import cancel, sqrt, Symbol
>>> from sympy.abc import x
>>> A = Symbol('A', commutative=False)
>>> cancel((2*x**2 - 2)/(x**2 - 2*x + 1))
(2*x + 2)/(x - 1)
>>> cancel((sqrt(3) + sqrt(15)*A)/(sqrt(2) + sqrt(10)*A))
sqrt(6)/2
"""
from sympy.core.exprtools import factor_terms
from sympy.functions.elementary.piecewise import Piecewise
options.allowed_flags(args, ['polys'])
f = sympify(f)
if not isinstance(f, (tuple, Tuple)):
if f.is_Number or isinstance(f, Relational) or not isinstance(f, Expr):
return f
f = factor_terms(f, radical=True)
p, q = f.as_numer_denom()
elif len(f) == 2:
p, q = f
elif isinstance(f, Tuple):
return factor_terms(f)
else:
raise ValueError('unexpected argument: %s' % f)
try:
(F, G), opt = parallel_poly_from_expr((p, q), *gens, **args)
except PolificationFailed:
if not isinstance(f, (tuple, Tuple)):
return f
else:
return S.One, p, q
except PolynomialError as msg:
if f.is_commutative and not f.has(Piecewise):
raise PolynomialError(msg)
# Handling of noncommutative and/or piecewise expressions
if f.is_Add or f.is_Mul:
c, nc = sift(f.args, lambda x:
x.is_commutative is True and not x.has(Piecewise),
binary=True)
nc = [cancel(i) for i in nc]
return f.func(cancel(f.func._from_args(c)), *nc)
else:
reps = []
pot = preorder_traversal(f)
next(pot)
for e in pot:
# XXX: This should really skip anything that's not Expr.
if isinstance(e, (tuple, Tuple, BooleanAtom)):
continue
try:
reps.append((e, cancel(e)))
pot.skip() # this was handled successfully
except NotImplementedError:
pass
return f.xreplace(dict(reps))
c, P, Q = F.cancel(G)
if not isinstance(f, (tuple, Tuple)):
return c*(P.as_expr()/Q.as_expr())
else:
if not opt.polys:
return c, P.as_expr(), Q.as_expr()
else:
return c, P, Q
@public
def reduced(f, G, *gens, **args):
"""
Reduces a polynomial ``f`` modulo a set of polynomials ``G``.
Given a polynomial ``f`` and a set of polynomials ``G = (g_1, ..., g_n)``,
computes a set of quotients ``q = (q_1, ..., q_n)`` and the remainder ``r``
such that ``f = q_1*g_1 + ... + q_n*g_n + r``, where ``r`` vanishes or ``r``
is a completely reduced polynomial with respect to ``G``.
Examples
========
>>> from sympy import reduced
>>> from sympy.abc import x, y
>>> reduced(2*x**4 + y**2 - x**2 + y**3, [x**3 - x, y**3 - y])
([2*x, 1], x**2 + y**2 + y)
"""
options.allowed_flags(args, ['polys', 'auto'])
try:
polys, opt = parallel_poly_from_expr([f] + list(G), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('reduced', 0, exc)
domain = opt.domain
retract = False
if opt.auto and domain.is_Ring and not domain.is_Field:
opt = opt.clone(dict(domain=domain.get_field()))
retract = True
from sympy.polys.rings import xring
_ring, _ = xring(opt.gens, opt.domain, opt.order)
for i, poly in enumerate(polys):
poly = poly.set_domain(opt.domain).rep.to_dict()
polys[i] = _ring.from_dict(poly)
Q, r = polys[0].div(polys[1:])
Q = [Poly._from_dict(dict(q), opt) for q in Q]
r = Poly._from_dict(dict(r), opt)
if retract:
try:
_Q, _r = [q.to_ring() for q in Q], r.to_ring()
except CoercionFailed:
pass
else:
Q, r = _Q, _r
if not opt.polys:
return [q.as_expr() for q in Q], r.as_expr()
else:
return Q, r
@public
def groebner(F, *gens, **args):
"""
Computes the reduced Groebner basis for a set of polynomials.
Use the ``order`` argument to set the monomial ordering that will be
used to compute the basis. Allowed orders are ``lex``, ``grlex`` and
``grevlex``. If no order is specified, it defaults to ``lex``.
For more information on Groebner bases, see the references and the docstring
of `solve_poly_system()`.
Examples
========
Example taken from [1].
>>> from sympy import groebner
>>> from sympy.abc import x, y
>>> F = [x*y - 2*y, 2*y**2 - x**2]
>>> groebner(F, x, y, order='lex')
GroebnerBasis([x**2 - 2*y**2, x*y - 2*y, y**3 - 2*y], x, y,
domain='ZZ', order='lex')
>>> groebner(F, x, y, order='grlex')
GroebnerBasis([y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y], x, y,
domain='ZZ', order='grlex')
>>> groebner(F, x, y, order='grevlex')
GroebnerBasis([y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y], x, y,
domain='ZZ', order='grevlex')
By default, an improved implementation of the Buchberger algorithm is
used. Optionally, an implementation of the F5B algorithm can be used.
The algorithm can be set using ``method`` flag or with the :func:`setup`
function from :mod:`sympy.polys.polyconfig`:
>>> F = [x**2 - x - 1, (2*x - 1) * y - (x**10 - (1 - x)**10)]
>>> groebner(F, x, y, method='buchberger')
GroebnerBasis([x**2 - x - 1, y - 55], x, y, domain='ZZ', order='lex')
>>> groebner(F, x, y, method='f5b')
GroebnerBasis([x**2 - x - 1, y - 55], x, y, domain='ZZ', order='lex')
References
==========
1. [Buchberger01]_
2. [Cox97]_
"""
return GroebnerBasis(F, *gens, **args)
@public
def is_zero_dimensional(F, *gens, **args):
"""
Checks if the ideal generated by a Groebner basis is zero-dimensional.
The algorithm checks if the set of monomials not divisible by the
leading monomial of any element of ``F`` is bounded.
References
==========
David A. Cox, John B. Little, Donal O'Shea. Ideals, Varieties and
Algorithms, 3rd edition, p. 230
"""
return GroebnerBasis(F, *gens, **args).is_zero_dimensional
@public
class GroebnerBasis(Basic):
"""Represents a reduced Groebner basis. """
def __new__(cls, F, *gens, **args):
"""Compute a reduced Groebner basis for a system of polynomials. """
options.allowed_flags(args, ['polys', 'method'])
try:
polys, opt = parallel_poly_from_expr(F, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('groebner', len(F), exc)
from sympy.polys.rings import PolyRing
ring = PolyRing(opt.gens, opt.domain, opt.order)
polys = [ring.from_dict(poly.rep.to_dict()) for poly in polys if poly]
G = _groebner(polys, ring, method=opt.method)
G = [Poly._from_dict(g, opt) for g in G]
return cls._new(G, opt)
@classmethod
def _new(cls, basis, options):
obj = Basic.__new__(cls)
obj._basis = tuple(basis)
obj._options = options
return obj
@property
def args(self):
return (Tuple(*self._basis), Tuple(*self._options.gens))
@property
def exprs(self):
return [poly.as_expr() for poly in self._basis]
@property
def polys(self):
return list(self._basis)
@property
def gens(self):
return self._options.gens
@property
def domain(self):
return self._options.domain
@property
def order(self):
return self._options.order
def __len__(self):
return len(self._basis)
def __iter__(self):
if self._options.polys:
return iter(self.polys)
else:
return iter(self.exprs)
def __getitem__(self, item):
if self._options.polys:
basis = self.polys
else:
basis = self.exprs
return basis[item]
def __hash__(self):
return hash((self._basis, tuple(self._options.items())))
def __eq__(self, other):
if isinstance(other, self.__class__):
return self._basis == other._basis and self._options == other._options
elif iterable(other):
return self.polys == list(other) or self.exprs == list(other)
else:
return False
def __ne__(self, other):
return not self == other
@property
def is_zero_dimensional(self):
"""
Checks if the ideal generated by a Groebner basis is zero-dimensional.
The algorithm checks if the set of monomials not divisible by the
leading monomial of any element of ``F`` is bounded.
References
==========
David A. Cox, John B. Little, Donal O'Shea. Ideals, Varieties and
Algorithms, 3rd edition, p. 230
"""
def single_var(monomial):
return sum(map(bool, monomial)) == 1
exponents = Monomial([0]*len(self.gens))
order = self._options.order
for poly in self.polys:
monomial = poly.LM(order=order)
if single_var(monomial):
exponents *= monomial
# If any element of the exponents vector is zero, then there's
# a variable for which there's no degree bound and the ideal
# generated by this Groebner basis isn't zero-dimensional.
return all(exponents)
def fglm(self, order):
"""
Convert a Groebner basis from one ordering to another.
The FGLM algorithm converts reduced Groebner bases of zero-dimensional
ideals from one ordering to another. This method is often used when it
is infeasible to compute a Groebner basis with respect to a particular
ordering directly.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy import groebner
>>> F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1]
>>> G = groebner(F, x, y, order='grlex')
>>> list(G.fglm('lex'))
[2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7]
>>> list(groebner(F, x, y, order='lex'))
[2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7]
References
==========
.. [1] J.C. Faugere, P. Gianni, D. Lazard, T. Mora (1994). Efficient
Computation of Zero-dimensional Groebner Bases by Change of
Ordering
"""
opt = self._options
src_order = opt.order
dst_order = monomial_key(order)
if src_order == dst_order:
return self
if not self.is_zero_dimensional:
raise NotImplementedError("can't convert Groebner bases of ideals with positive dimension")
polys = list(self._basis)
domain = opt.domain
opt = opt.clone(dict(
domain=domain.get_field(),
order=dst_order,
))
from sympy.polys.rings import xring
_ring, _ = xring(opt.gens, opt.domain, src_order)
for i, poly in enumerate(polys):
poly = poly.set_domain(opt.domain).rep.to_dict()
polys[i] = _ring.from_dict(poly)
G = matrix_fglm(polys, _ring, dst_order)
G = [Poly._from_dict(dict(g), opt) for g in G]
if not domain.is_Field:
G = [g.clear_denoms(convert=True)[1] for g in G]
opt.domain = domain
return self._new(G, opt)
def reduce(self, expr, auto=True):
"""
Reduces a polynomial modulo a Groebner basis.
Given a polynomial ``f`` and a set of polynomials ``G = (g_1, ..., g_n)``,
computes a set of quotients ``q = (q_1, ..., q_n)`` and the remainder ``r``
such that ``f = q_1*f_1 + ... + q_n*f_n + r``, where ``r`` vanishes or ``r``
is a completely reduced polynomial with respect to ``G``.
Examples
========
>>> from sympy import groebner, expand
>>> from sympy.abc import x, y
>>> f = 2*x**4 - x**2 + y**3 + y**2
>>> G = groebner([x**3 - x, y**3 - y])
>>> G.reduce(f)
([2*x, 1], x**2 + y**2 + y)
>>> Q, r = _
>>> expand(sum(q*g for q, g in zip(Q, G)) + r)
2*x**4 - x**2 + y**3 + y**2
>>> _ == f
True
"""
poly = Poly._from_expr(expr, self._options)
polys = [poly] + list(self._basis)
opt = self._options
domain = opt.domain
retract = False
if auto and domain.is_Ring and not domain.is_Field:
opt = opt.clone(dict(domain=domain.get_field()))
retract = True
from sympy.polys.rings import xring
_ring, _ = xring(opt.gens, opt.domain, opt.order)
for i, poly in enumerate(polys):
poly = poly.set_domain(opt.domain).rep.to_dict()
polys[i] = _ring.from_dict(poly)
Q, r = polys[0].div(polys[1:])
Q = [Poly._from_dict(dict(q), opt) for q in Q]
r = Poly._from_dict(dict(r), opt)
if retract:
try:
_Q, _r = [q.to_ring() for q in Q], r.to_ring()
except CoercionFailed:
pass
else:
Q, r = _Q, _r
if not opt.polys:
return [q.as_expr() for q in Q], r.as_expr()
else:
return Q, r
def contains(self, poly):
"""
Check if ``poly`` belongs the ideal generated by ``self``.
Examples
========
>>> from sympy import groebner
>>> from sympy.abc import x, y
>>> f = 2*x**3 + y**3 + 3*y
>>> G = groebner([x**2 + y**2 - 1, x*y - 2])
>>> G.contains(f)
True
>>> G.contains(f + 1)
False
"""
return self.reduce(poly)[1] == 0
@public
def poly(expr, *gens, **args):
"""
Efficiently transform an expression into a polynomial.
Examples
========
>>> from sympy import poly
>>> from sympy.abc import x
>>> poly(x*(x**2 + x - 1)**2)
Poly(x**5 + 2*x**4 - x**3 - 2*x**2 + x, x, domain='ZZ')
"""
options.allowed_flags(args, [])
def _poly(expr, opt):
terms, poly_terms = [], []
for term in Add.make_args(expr):
factors, poly_factors = [], []
for factor in Mul.make_args(term):
if factor.is_Add:
poly_factors.append(_poly(factor, opt))
elif factor.is_Pow and factor.base.is_Add and \
factor.exp.is_Integer and factor.exp >= 0:
poly_factors.append(
_poly(factor.base, opt).pow(factor.exp))
else:
factors.append(factor)
if not poly_factors:
terms.append(term)
else:
product = poly_factors[0]
for factor in poly_factors[1:]:
product = product.mul(factor)
if factors:
factor = Mul(*factors)
if factor.is_Number:
product = product.mul(factor)
else:
product = product.mul(Poly._from_expr(factor, opt))
poly_terms.append(product)
if not poly_terms:
result = Poly._from_expr(expr, opt)
else:
result = poly_terms[0]
for term in poly_terms[1:]:
result = result.add(term)
if terms:
term = Add(*terms)
if term.is_Number:
result = result.add(term)
else:
result = result.add(Poly._from_expr(term, opt))
return result.reorder(*opt.get('gens', ()), **args)
expr = sympify(expr)
if expr.is_Poly:
return Poly(expr, *gens, **args)
if 'expand' not in args:
args['expand'] = False
opt = options.build_options(gens, args)
return _poly(expr, opt)
|
ec476415e4beb2cc79a305a803745dfbd460b326c0b4c35abff7ab194f72091a
|
"""Functions for generating interesting polynomials, e.g. for benchmarking. """
from __future__ import print_function, division
from sympy.core import Add, Mul, Symbol, sympify, Dummy, symbols
from sympy.core.compatibility import range, string_types
from sympy.core.singleton import S
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.ntheory import nextprime
from sympy.polys.densearith import (
dmp_add_term, dmp_neg, dmp_mul, dmp_sqr
)
from sympy.polys.densebasic import (
dmp_zero, dmp_one, dmp_ground,
dup_from_raw_dict, dmp_raise, dup_random
)
from sympy.polys.domains import ZZ
from sympy.polys.factortools import dup_zz_cyclotomic_poly
from sympy.polys.polyclasses import DMP
from sympy.polys.polytools import Poly, PurePoly
from sympy.polys.polyutils import _analyze_gens
from sympy.utilities import subsets, public
@public
def swinnerton_dyer_poly(n, x=None, polys=False):
"""Generates n-th Swinnerton-Dyer polynomial in `x`.
Parameters
----------
n : int
`n` decides the order of polynomial
x : optional
polys : bool, optional
``polys=True`` returns an expression, otherwise
(default) returns an expression.
"""
from .numberfields import minimal_polynomial
if n <= 0:
raise ValueError(
"can't generate Swinnerton-Dyer polynomial of order %s" % n)
if x is not None:
sympify(x)
else:
x = Dummy('x')
if n > 3:
p = 2
a = [sqrt(2)]
for i in range(2, n + 1):
p = nextprime(p)
a.append(sqrt(p))
return minimal_polynomial(Add(*a), x, polys=polys)
if n == 1:
ex = x**2 - 2
elif n == 2:
ex = x**4 - 10*x**2 + 1
elif n == 3:
ex = x**8 - 40*x**6 + 352*x**4 - 960*x**2 + 576
return PurePoly(ex, x) if polys else ex
@public
def cyclotomic_poly(n, x=None, polys=False):
"""Generates cyclotomic polynomial of order `n` in `x`.
Parameters
----------
n : int
`n` decides the order of polynomial
x : optional
polys : bool, optional
``polys=True`` returns an expression, otherwise
(default) returns an expression.
"""
if n <= 0:
raise ValueError(
"can't generate cyclotomic polynomial of order %s" % n)
poly = DMP(dup_zz_cyclotomic_poly(int(n), ZZ), ZZ)
if x is not None:
poly = Poly.new(poly, x)
else:
poly = PurePoly.new(poly, Dummy('x'))
return poly if polys else poly.as_expr()
@public
def symmetric_poly(n, *gens, **args):
"""Generates symmetric polynomial of order `n`.
Returns a Poly object when ``polys=True``, otherwise
(default) returns an expression.
"""
# TODO: use an explicit keyword argument when Python 2 support is dropped
gens = _analyze_gens(gens)
if n < 0 or n > len(gens) or not gens:
raise ValueError("can't generate symmetric polynomial of order %s for %s" % (n, gens))
elif not n:
poly = S.One
else:
poly = Add(*[Mul(*s) for s in subsets(gens, int(n))])
if not args.get('polys', False):
return poly
else:
return Poly(poly, *gens)
@public
def random_poly(x, n, inf, sup, domain=ZZ, polys=False):
"""Generates a polynomial of degree ``n`` with coefficients in
``[inf, sup]``.
Parameters
----------
x
`x` is the independent term of polynomial
n : int
`n` decides the order of polynomial
inf
Lower limit of range in which coefficients lie
sup
Upper limit of range in which coefficients lie
domain : optional
Decides what ring the coefficients are supposed
to belong. Default is set to Integers.
polys : bool, optional
``polys=True`` returns an expression, otherwise
(default) returns an expression.
"""
poly = Poly(dup_random(n, inf, sup, domain), x, domain=domain)
return poly if polys else poly.as_expr()
@public
def interpolating_poly(n, x, X='x', Y='y'):
"""Construct Lagrange interpolating polynomial for ``n`` data points. """
if isinstance(X, string_types):
X = symbols("%s:%s" % (X, n))
if isinstance(Y, string_types):
Y = symbols("%s:%s" % (Y, n))
coeffs = []
numert = Mul(*[(x - u) for u in X])
for i in range(n):
numer = numert/(x - X[i])
denom = Mul(*[(X[i] - X[j]) for j in range(n) if i != j])
coeffs.append(numer/denom)
return Add(*[coeff*y for coeff, y in zip(coeffs, Y)])
def fateman_poly_F_1(n):
"""Fateman's GCD benchmark: trivial GCD """
Y = [Symbol('y_' + str(i)) for i in range(n + 1)]
y_0, y_1 = Y[0], Y[1]
u = y_0 + Add(*[y for y in Y[1:]])
v = y_0**2 + Add(*[y**2 for y in Y[1:]])
F = ((u + 1)*(u + 2)).as_poly(*Y)
G = ((v + 1)*(-3*y_1*y_0**2 + y_1**2 - 1)).as_poly(*Y)
H = Poly(1, *Y)
return F, G, H
def dmp_fateman_poly_F_1(n, K):
"""Fateman's GCD benchmark: trivial GCD """
u = [K(1), K(0)]
for i in range(n):
u = [dmp_one(i, K), u]
v = [K(1), K(0), K(0)]
for i in range(0, n):
v = [dmp_one(i, K), dmp_zero(i), v]
m = n - 1
U = dmp_add_term(u, dmp_ground(K(1), m), 0, n, K)
V = dmp_add_term(u, dmp_ground(K(2), m), 0, n, K)
f = [[-K(3), K(0)], [], [K(1), K(0), -K(1)]]
W = dmp_add_term(v, dmp_ground(K(1), m), 0, n, K)
Y = dmp_raise(f, m, 1, K)
F = dmp_mul(U, V, n, K)
G = dmp_mul(W, Y, n, K)
H = dmp_one(n, K)
return F, G, H
def fateman_poly_F_2(n):
"""Fateman's GCD benchmark: linearly dense quartic inputs """
Y = [Symbol('y_' + str(i)) for i in range(n + 1)]
y_0 = Y[0]
u = Add(*[y for y in Y[1:]])
H = Poly((y_0 + u + 1)**2, *Y)
F = Poly((y_0 - u - 2)**2, *Y)
G = Poly((y_0 + u + 2)**2, *Y)
return H*F, H*G, H
def dmp_fateman_poly_F_2(n, K):
"""Fateman's GCD benchmark: linearly dense quartic inputs """
u = [K(1), K(0)]
for i in range(n - 1):
u = [dmp_one(i, K), u]
m = n - 1
v = dmp_add_term(u, dmp_ground(K(2), m - 1), 0, n, K)
f = dmp_sqr([dmp_one(m, K), dmp_neg(v, m, K)], n, K)
g = dmp_sqr([dmp_one(m, K), v], n, K)
v = dmp_add_term(u, dmp_one(m - 1, K), 0, n, K)
h = dmp_sqr([dmp_one(m, K), v], n, K)
return dmp_mul(f, h, n, K), dmp_mul(g, h, n, K), h
def fateman_poly_F_3(n):
"""Fateman's GCD benchmark: sparse inputs (deg f ~ vars f) """
Y = [Symbol('y_' + str(i)) for i in range(n + 1)]
y_0 = Y[0]
u = Add(*[y**(n + 1) for y in Y[1:]])
H = Poly((y_0**(n + 1) + u + 1)**2, *Y)
F = Poly((y_0**(n + 1) - u - 2)**2, *Y)
G = Poly((y_0**(n + 1) + u + 2)**2, *Y)
return H*F, H*G, H
def dmp_fateman_poly_F_3(n, K):
"""Fateman's GCD benchmark: sparse inputs (deg f ~ vars f) """
u = dup_from_raw_dict({n + 1: K.one}, K)
for i in range(0, n - 1):
u = dmp_add_term([u], dmp_one(i, K), n + 1, i + 1, K)
v = dmp_add_term(u, dmp_ground(K(2), n - 2), 0, n, K)
f = dmp_sqr(
dmp_add_term([dmp_neg(v, n - 1, K)], dmp_one(n - 1, K), n + 1, n, K), n, K)
g = dmp_sqr(dmp_add_term([v], dmp_one(n - 1, K), n + 1, n, K), n, K)
v = dmp_add_term(u, dmp_one(n - 2, K), 0, n - 1, K)
h = dmp_sqr(dmp_add_term([v], dmp_one(n - 1, K), n + 1, n, K), n, K)
return dmp_mul(f, h, n, K), dmp_mul(g, h, n, K), h
# A few useful polynomials from Wang's paper ('78).
from sympy.polys.rings import ring
def _f_0():
R, x, y, z = ring("x,y,z", ZZ)
return x**2*y*z**2 + 2*x**2*y*z + 3*x**2*y + 2*x**2 + 3*x + 4*y**2*z**2 + 5*y**2*z + 6*y**2 + y*z**2 + 2*y*z + y + 1
def _f_1():
R, x, y, z = ring("x,y,z", ZZ)
return x**3*y*z + x**2*y**2*z**2 + x**2*y**2 + 20*x**2*y*z + 30*x**2*y + x**2*z**2 + 10*x**2*z + x*y**3*z + 30*x*y**2*z + 20*x*y**2 + x*y*z**3 + 10*x*y*z**2 + x*y*z + 610*x*y + 20*x*z**2 + 230*x*z + 300*x + y**2*z**2 + 10*y**2*z + 30*y*z**2 + 320*y*z + 200*y + 600*z + 6000
def _f_2():
R, x, y, z = ring("x,y,z", ZZ)
return x**5*y**3 + x**5*y**2*z + x**5*y*z**2 + x**5*z**3 + x**3*y**2 + x**3*y*z + 90*x**3*y + 90*x**3*z + x**2*y**2*z - 11*x**2*y**2 + x**2*z**3 - 11*x**2*z**2 + y*z - 11*y + 90*z - 990
def _f_3():
R, x, y, z = ring("x,y,z", ZZ)
return x**5*y**2 + x**4*z**4 + x**4 + x**3*y**3*z + x**3*z + x**2*y**4 + x**2*y**3*z**3 + x**2*y*z**5 + x**2*y*z + x*y**2*z**4 + x*y**2 + x*y*z**7 + x*y*z**3 + x*y*z**2 + y**2*z + y*z**4
def _f_4():
R, x, y, z = ring("x,y,z", ZZ)
return -x**9*y**8*z - x**8*y**5*z**3 - x**7*y**12*z**2 - 5*x**7*y**8 - x**6*y**9*z**4 + x**6*y**7*z**3 + 3*x**6*y**7*z - 5*x**6*y**5*z**2 - x**6*y**4*z**3 + x**5*y**4*z**5 + 3*x**5*y**4*z**3 - x**5*y*z**5 + x**4*y**11*z**4 + 3*x**4*y**11*z**2 - x**4*y**8*z**4 + 5*x**4*y**7*z**2 + 15*x**4*y**7 - 5*x**4*y**4*z**2 + x**3*y**8*z**6 + 3*x**3*y**8*z**4 - x**3*y**5*z**6 + 5*x**3*y**4*z**4 + 15*x**3*y**4*z**2 + x**3*y**3*z**5 + 3*x**3*y**3*z**3 - 5*x**3*y*z**4 + x**2*z**7 + 3*x**2*z**5 + x*y**7*z**6 + 3*x*y**7*z**4 + 5*x*y**3*z**4 + 15*x*y**3*z**2 + y**4*z**8 + 3*y**4*z**6 + 5*z**6 + 15*z**4
def _f_5():
R, x, y, z = ring("x,y,z", ZZ)
return -x**3 - 3*x**2*y + 3*x**2*z - 3*x*y**2 + 6*x*y*z - 3*x*z**2 - y**3 + 3*y**2*z - 3*y*z**2 + z**3
def _f_6():
R, x, y, z, t = ring("x,y,z,t", ZZ)
return 2115*x**4*y + 45*x**3*z**3*t**2 - 45*x**3*t**2 - 423*x*y**4 - 47*x*y**3 + 141*x*y*z**3 + 94*x*y*z*t - 9*y**3*z**3*t**2 + 9*y**3*t**2 - y**2*z**3*t**2 + y**2*t**2 + 3*z**6*t**2 + 2*z**4*t**3 - 3*z**3*t**2 - 2*z*t**3
def _w_1():
R, x, y, z = ring("x,y,z", ZZ)
return 4*x**6*y**4*z**2 + 4*x**6*y**3*z**3 - 4*x**6*y**2*z**4 - 4*x**6*y*z**5 + x**5*y**4*z**3 + 12*x**5*y**3*z - x**5*y**2*z**5 + 12*x**5*y**2*z**2 - 12*x**5*y*z**3 - 12*x**5*z**4 + 8*x**4*y**4 + 6*x**4*y**3*z**2 + 8*x**4*y**3*z - 4*x**4*y**2*z**4 + 4*x**4*y**2*z**3 - 8*x**4*y**2*z**2 - 4*x**4*y*z**5 - 2*x**4*y*z**4 - 8*x**4*y*z**3 + 2*x**3*y**4*z + x**3*y**3*z**3 - x**3*y**2*z**5 - 2*x**3*y**2*z**3 + 9*x**3*y**2*z - 12*x**3*y*z**3 + 12*x**3*y*z**2 - 12*x**3*z**4 + 3*x**3*z**3 + 6*x**2*y**3 - 6*x**2*y**2*z**2 + 8*x**2*y**2*z - 2*x**2*y*z**4 - 8*x**2*y*z**3 + 2*x**2*y*z**2 + 2*x*y**3*z - 2*x*y**2*z**3 - 3*x*y*z + 3*x*z**3 - 2*y**2 + 2*y*z**2
def _w_2():
R, x, y = ring("x,y", ZZ)
return 24*x**8*y**3 + 48*x**8*y**2 + 24*x**7*y**5 - 72*x**7*y**2 + 25*x**6*y**4 + 2*x**6*y**3 + 4*x**6*y + 8*x**6 + x**5*y**6 + x**5*y**3 - 12*x**5 + x**4*y**5 - x**4*y**4 - 2*x**4*y**3 + 292*x**4*y**2 - x**3*y**6 + 3*x**3*y**3 - x**2*y**5 + 12*x**2*y**3 + 48*x**2 - 12*y**3
def f_polys():
return _f_0(), _f_1(), _f_2(), _f_3(), _f_4(), _f_5(), _f_6()
def w_polys():
return _w_1(), _w_2()
|
3a5f4f7b884e4f02b5a3ae94d1c99ffa5d7d181e71ef1170c63c371cdc82cc2f
|
"""Algorithms for computing symbolic roots of polynomials. """
from __future__ import print_function, division
import math
from sympy.core import S, I, pi
from sympy.core.compatibility import ordered, range, reduce
from sympy.core.exprtools import factor_terms
from sympy.core.function import _mexpand
from sympy.core.logic import fuzzy_not
from sympy.core.mul import expand_2arg, Mul
from sympy.core.numbers import Rational, igcd, comp
from sympy.core.power import Pow
from sympy.core.relational import Eq
from sympy.core.symbol import Dummy, Symbol, symbols
from sympy.core.sympify import sympify
from sympy.functions import exp, sqrt, im, cos, acos, Piecewise
from sympy.functions.elementary.miscellaneous import root
from sympy.ntheory import divisors, isprime, nextprime
from sympy.polys.polyerrors import (PolynomialError, GeneratorsNeeded,
DomainError)
from sympy.polys.polyquinticconst import PolyQuintic
from sympy.polys.polytools import Poly, cancel, factor, gcd_list, discriminant
from sympy.polys.rationaltools import together
from sympy.polys.specialpolys import cyclotomic_poly
from sympy.simplify import simplify, powsimp
from sympy.utilities import public
def roots_linear(f):
"""Returns a list of roots of a linear polynomial."""
r = -f.nth(0)/f.nth(1)
dom = f.get_domain()
if not dom.is_Numerical:
if dom.is_Composite:
r = factor(r)
else:
r = simplify(r)
return [r]
def roots_quadratic(f):
"""Returns a list of roots of a quadratic polynomial. If the domain is ZZ
then the roots will be sorted with negatives coming before positives.
The ordering will be the same for any numerical coefficients as long as
the assumptions tested are correct, otherwise the ordering will not be
sorted (but will be canonical).
"""
a, b, c = f.all_coeffs()
dom = f.get_domain()
def _sqrt(d):
# remove squares from square root since both will be represented
# in the results; a similar thing is happening in roots() but
# must be duplicated here because not all quadratics are binomials
co = []
other = []
for di in Mul.make_args(d):
if di.is_Pow and di.exp.is_Integer and di.exp % 2 == 0:
co.append(Pow(di.base, di.exp//2))
else:
other.append(di)
if co:
d = Mul(*other)
co = Mul(*co)
return co*sqrt(d)
return sqrt(d)
def _simplify(expr):
if dom.is_Composite:
return factor(expr)
else:
return simplify(expr)
if c is S.Zero:
r0, r1 = S.Zero, -b/a
if not dom.is_Numerical:
r1 = _simplify(r1)
elif r1.is_negative:
r0, r1 = r1, r0
elif b is S.Zero:
r = -c/a
if not dom.is_Numerical:
r = _simplify(r)
R = _sqrt(r)
r0 = -R
r1 = R
else:
d = b**2 - 4*a*c
A = 2*a
B = -b/A
if not dom.is_Numerical:
d = _simplify(d)
B = _simplify(B)
D = factor_terms(_sqrt(d)/A)
r0 = B - D
r1 = B + D
if a.is_negative:
r0, r1 = r1, r0
elif not dom.is_Numerical:
r0, r1 = [expand_2arg(i) for i in (r0, r1)]
return [r0, r1]
def roots_cubic(f, trig=False):
"""Returns a list of roots of a cubic polynomial.
References
==========
[1] https://en.wikipedia.org/wiki/Cubic_function, General formula for roots,
(accessed November 17, 2014).
"""
if trig:
a, b, c, d = f.all_coeffs()
p = (3*a*c - b**2)/3/a**2
q = (2*b**3 - 9*a*b*c + 27*a**2*d)/(27*a**3)
D = 18*a*b*c*d - 4*b**3*d + b**2*c**2 - 4*a*c**3 - 27*a**2*d**2
if (D > 0) == True:
rv = []
for k in range(3):
rv.append(2*sqrt(-p/3)*cos(acos(3*q/2/p*sqrt(-3/p))/3 - k*2*pi/3))
return [i - b/3/a for i in rv]
_, a, b, c = f.monic().all_coeffs()
if c is S.Zero:
x1, x2 = roots([1, a, b], multiple=True)
return [x1, S.Zero, x2]
p = b - a**2/3
q = c - a*b/3 + 2*a**3/27
pon3 = p/3
aon3 = a/3
u1 = None
if p is S.Zero:
if q is S.Zero:
return [-aon3]*3
if q.is_real:
if q.is_positive:
u1 = -root(q, 3)
elif q.is_negative:
u1 = root(-q, 3)
elif q is S.Zero:
y1, y2 = roots([1, 0, p], multiple=True)
return [tmp - aon3 for tmp in [y1, S.Zero, y2]]
elif q.is_real and q.is_negative:
u1 = -root(-q/2 + sqrt(q**2/4 + pon3**3), 3)
coeff = I*sqrt(3)/2
if u1 is None:
u1 = S(1)
u2 = -S.Half + coeff
u3 = -S.Half - coeff
a, b, c, d = S(1), a, b, c
D0 = b**2 - 3*a*c
D1 = 2*b**3 - 9*a*b*c + 27*a**2*d
C = root((D1 + sqrt(D1**2 - 4*D0**3))/2, 3)
return [-(b + uk*C + D0/C/uk)/3/a for uk in [u1, u2, u3]]
u2 = u1*(-S.Half + coeff)
u3 = u1*(-S.Half - coeff)
if p is S.Zero:
return [u1 - aon3, u2 - aon3, u3 - aon3]
soln = [
-u1 + pon3/u1 - aon3,
-u2 + pon3/u2 - aon3,
-u3 + pon3/u3 - aon3
]
return soln
def _roots_quartic_euler(p, q, r, a):
"""
Descartes-Euler solution of the quartic equation
Parameters
==========
p, q, r: coefficients of ``x**4 + p*x**2 + q*x + r``
a: shift of the roots
Notes
=====
This is a helper function for ``roots_quartic``.
Look for solutions of the form ::
``x1 = sqrt(R) - sqrt(A + B*sqrt(R))``
``x2 = -sqrt(R) - sqrt(A - B*sqrt(R))``
``x3 = -sqrt(R) + sqrt(A - B*sqrt(R))``
``x4 = sqrt(R) + sqrt(A + B*sqrt(R))``
To satisfy the quartic equation one must have
``p = -2*(R + A); q = -4*B*R; r = (R - A)**2 - B**2*R``
so that ``R`` must satisfy the Descartes-Euler resolvent equation
``64*R**3 + 32*p*R**2 + (4*p**2 - 16*r)*R - q**2 = 0``
If the resolvent does not have a rational solution, return None;
in that case it is likely that the Ferrari method gives a simpler
solution.
Examples
========
>>> from sympy import S
>>> from sympy.polys.polyroots import _roots_quartic_euler
>>> p, q, r = -S(64)/5, -S(512)/125, -S(1024)/3125
>>> _roots_quartic_euler(p, q, r, S(0))[0]
-sqrt(32*sqrt(5)/125 + 16/5) + 4*sqrt(5)/5
"""
# solve the resolvent equation
x = Dummy('x')
eq = 64*x**3 + 32*p*x**2 + (4*p**2 - 16*r)*x - q**2
xsols = list(roots(Poly(eq, x), cubics=False).keys())
xsols = [sol for sol in xsols if sol.is_rational and sol.is_nonzero]
if not xsols:
return None
R = max(xsols)
c1 = sqrt(R)
B = -q*c1/(4*R)
A = -R - p/2
c2 = sqrt(A + B)
c3 = sqrt(A - B)
return [c1 - c2 - a, -c1 - c3 - a, -c1 + c3 - a, c1 + c2 - a]
def roots_quartic(f):
r"""
Returns a list of roots of a quartic polynomial.
There are many references for solving quartic expressions available [1-5].
This reviewer has found that many of them require one to select from among
2 or more possible sets of solutions and that some solutions work when one
is searching for real roots but don't work when searching for complex roots
(though this is not always stated clearly). The following routine has been
tested and found to be correct for 0, 2 or 4 complex roots.
The quasisymmetric case solution [6] looks for quartics that have the form
`x**4 + A*x**3 + B*x**2 + C*x + D = 0` where `(C/A)**2 = D`.
Although no general solution that is always applicable for all
coefficients is known to this reviewer, certain conditions are tested
to determine the simplest 4 expressions that can be returned:
1) `f = c + a*(a**2/8 - b/2) == 0`
2) `g = d - a*(a*(3*a**2/256 - b/16) + c/4) = 0`
3) if `f != 0` and `g != 0` and `p = -d + a*c/4 - b**2/12` then
a) `p == 0`
b) `p != 0`
Examples
========
>>> from sympy import Poly, symbols, I
>>> from sympy.polys.polyroots import roots_quartic
>>> r = roots_quartic(Poly('x**4-6*x**3+17*x**2-26*x+20'))
>>> # 4 complex roots: 1+-I*sqrt(3), 2+-I
>>> sorted(str(tmp.evalf(n=2)) for tmp in r)
['1.0 + 1.7*I', '1.0 - 1.7*I', '2.0 + 1.0*I', '2.0 - 1.0*I']
References
==========
1. http://mathforum.org/dr.math/faq/faq.cubic.equations.html
2. https://en.wikipedia.org/wiki/Quartic_function#Summary_of_Ferrari.27s_method
3. http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html
4. http://staff.bath.ac.uk/masjhd/JHD-CA.pdf
5. http://www.albmath.org/files/Math_5713.pdf
6. http://www.statemaster.com/encyclopedia/Quartic-equation
7. eqworld.ipmnet.ru/en/solutions/ae/ae0108.pdf
"""
_, a, b, c, d = f.monic().all_coeffs()
if not d:
return [S.Zero] + roots([1, a, b, c], multiple=True)
elif (c/a)**2 == d:
x, m = f.gen, c/a
g = Poly(x**2 + a*x + b - 2*m, x)
z1, z2 = roots_quadratic(g)
h1 = Poly(x**2 - z1*x + m, x)
h2 = Poly(x**2 - z2*x + m, x)
r1 = roots_quadratic(h1)
r2 = roots_quadratic(h2)
return r1 + r2
else:
a2 = a**2
e = b - 3*a2/8
f = _mexpand(c + a*(a2/8 - b/2))
g = _mexpand(d - a*(a*(3*a2/256 - b/16) + c/4))
aon4 = a/4
if f is S.Zero:
y1, y2 = [sqrt(tmp) for tmp in
roots([1, e, g], multiple=True)]
return [tmp - aon4 for tmp in [-y1, -y2, y1, y2]]
if g is S.Zero:
y = [S.Zero] + roots([1, 0, e, f], multiple=True)
return [tmp - aon4 for tmp in y]
else:
# Descartes-Euler method, see [7]
sols = _roots_quartic_euler(e, f, g, aon4)
if sols:
return sols
# Ferrari method, see [1, 2]
a2 = a**2
e = b - 3*a2/8
f = c + a*(a2/8 - b/2)
g = d - a*(a*(3*a2/256 - b/16) + c/4)
p = -e**2/12 - g
q = -e**3/108 + e*g/3 - f**2/8
TH = Rational(1, 3)
def _ans(y):
w = sqrt(e + 2*y)
arg1 = 3*e + 2*y
arg2 = 2*f/w
ans = []
for s in [-1, 1]:
root = sqrt(-(arg1 + s*arg2))
for t in [-1, 1]:
ans.append((s*w - t*root)/2 - aon4)
return ans
# p == 0 case
y1 = -5*e/6 - q**TH
if p.is_zero:
return _ans(y1)
# if p != 0 then u below is not 0
root = sqrt(q**2/4 + p**3/27)
r = -q/2 + root # or -q/2 - root
u = r**TH # primary root of solve(x**3 - r, x)
y2 = -5*e/6 + u - p/u/3
if fuzzy_not(p.is_zero):
return _ans(y2)
# sort it out once they know the values of the coefficients
return [Piecewise((a1, Eq(p, 0)), (a2, True))
for a1, a2 in zip(_ans(y1), _ans(y2))]
def roots_binomial(f):
"""Returns a list of roots of a binomial polynomial. If the domain is ZZ
then the roots will be sorted with negatives coming before positives.
The ordering will be the same for any numerical coefficients as long as
the assumptions tested are correct, otherwise the ordering will not be
sorted (but will be canonical).
"""
n = f.degree()
a, b = f.nth(n), f.nth(0)
base = -cancel(b/a)
alpha = root(base, n)
if alpha.is_number:
alpha = alpha.expand(complex=True)
# define some parameters that will allow us to order the roots.
# If the domain is ZZ this is guaranteed to return roots sorted
# with reals before non-real roots and non-real sorted according
# to real part and imaginary part, e.g. -1, 1, -1 + I, 2 - I
neg = base.is_negative
even = n % 2 == 0
if neg:
if even == True and (base + 1).is_positive:
big = True
else:
big = False
# get the indices in the right order so the computed
# roots will be sorted when the domain is ZZ
ks = []
imax = n//2
if even:
ks.append(imax)
imax -= 1
if not neg:
ks.append(0)
for i in range(imax, 0, -1):
if neg:
ks.extend([i, -i])
else:
ks.extend([-i, i])
if neg:
ks.append(0)
if big:
for i in range(0, len(ks), 2):
pair = ks[i: i + 2]
pair = list(reversed(pair))
# compute the roots
roots, d = [], 2*I*pi/n
for k in ks:
zeta = exp(k*d).expand(complex=True)
roots.append((alpha*zeta).expand(power_base=False))
return roots
def _inv_totient_estimate(m):
"""
Find ``(L, U)`` such that ``L <= phi^-1(m) <= U``.
Examples
========
>>> from sympy.polys.polyroots import _inv_totient_estimate
>>> _inv_totient_estimate(192)
(192, 840)
>>> _inv_totient_estimate(400)
(400, 1750)
"""
primes = [ d + 1 for d in divisors(m) if isprime(d + 1) ]
a, b = 1, 1
for p in primes:
a *= p
b *= p - 1
L = m
U = int(math.ceil(m*(float(a)/b)))
P = p = 2
primes = []
while P <= U:
p = nextprime(p)
primes.append(p)
P *= p
P //= p
b = 1
for p in primes[:-1]:
b *= p - 1
U = int(math.ceil(m*(float(P)/b)))
return L, U
def roots_cyclotomic(f, factor=False):
"""Compute roots of cyclotomic polynomials. """
L, U = _inv_totient_estimate(f.degree())
for n in range(L, U + 1):
g = cyclotomic_poly(n, f.gen, polys=True)
if f == g:
break
else: # pragma: no cover
raise RuntimeError("failed to find index of a cyclotomic polynomial")
roots = []
if not factor:
# get the indices in the right order so the computed
# roots will be sorted
h = n//2
ks = [i for i in range(1, n + 1) if igcd(i, n) == 1]
ks.sort(key=lambda x: (x, -1) if x <= h else (abs(x - n), 1))
d = 2*I*pi/n
for k in reversed(ks):
roots.append(exp(k*d).expand(complex=True))
else:
g = Poly(f, extension=root(-1, n))
for h, _ in ordered(g.factor_list()[1]):
roots.append(-h.TC())
return roots
def roots_quintic(f):
"""
Calculate exact roots of a solvable quintic
"""
result = []
coeff_5, coeff_4, p, q, r, s = f.all_coeffs()
# Eqn must be of the form x^5 + px^3 + qx^2 + rx + s
if coeff_4:
return result
if coeff_5 != 1:
l = [p/coeff_5, q/coeff_5, r/coeff_5, s/coeff_5]
if not all(coeff.is_Rational for coeff in l):
return result
f = Poly(f/coeff_5)
quintic = PolyQuintic(f)
# Eqn standardized. Algo for solving starts here
if not f.is_irreducible:
return result
f20 = quintic.f20
# Check if f20 has linear factors over domain Z
if f20.is_irreducible:
return result
# Now, we know that f is solvable
for _factor in f20.factor_list()[1]:
if _factor[0].is_linear:
theta = _factor[0].root(0)
break
d = discriminant(f)
delta = sqrt(d)
# zeta = a fifth root of unity
zeta1, zeta2, zeta3, zeta4 = quintic.zeta
T = quintic.T(theta, d)
tol = S(1e-10)
alpha = T[1] + T[2]*delta
alpha_bar = T[1] - T[2]*delta
beta = T[3] + T[4]*delta
beta_bar = T[3] - T[4]*delta
disc = alpha**2 - 4*beta
disc_bar = alpha_bar**2 - 4*beta_bar
l0 = quintic.l0(theta)
l1 = _quintic_simplify((-alpha + sqrt(disc)) / S(2))
l4 = _quintic_simplify((-alpha - sqrt(disc)) / S(2))
l2 = _quintic_simplify((-alpha_bar + sqrt(disc_bar)) / S(2))
l3 = _quintic_simplify((-alpha_bar - sqrt(disc_bar)) / S(2))
order = quintic.order(theta, d)
test = (order*delta.n()) - ( (l1.n() - l4.n())*(l2.n() - l3.n()) )
# Comparing floats
if not comp(test, 0, tol):
l2, l3 = l3, l2
# Now we have correct order of l's
R1 = l0 + l1*zeta1 + l2*zeta2 + l3*zeta3 + l4*zeta4
R2 = l0 + l3*zeta1 + l1*zeta2 + l4*zeta3 + l2*zeta4
R3 = l0 + l2*zeta1 + l4*zeta2 + l1*zeta3 + l3*zeta4
R4 = l0 + l4*zeta1 + l3*zeta2 + l2*zeta3 + l1*zeta4
Res = [None, [None]*5, [None]*5, [None]*5, [None]*5]
Res_n = [None, [None]*5, [None]*5, [None]*5, [None]*5]
sol = Symbol('sol')
# Simplifying improves performance a lot for exact expressions
R1 = _quintic_simplify(R1)
R2 = _quintic_simplify(R2)
R3 = _quintic_simplify(R3)
R4 = _quintic_simplify(R4)
# Solve imported here. Causing problems if imported as 'solve'
# and hence the changed name
from sympy.solvers.solvers import solve as _solve
a, b = symbols('a b', cls=Dummy)
_sol = _solve( sol**5 - a - I*b, sol)
for i in range(5):
_sol[i] = factor(_sol[i])
R1 = R1.as_real_imag()
R2 = R2.as_real_imag()
R3 = R3.as_real_imag()
R4 = R4.as_real_imag()
for i, currentroot in enumerate(_sol):
Res[1][i] = _quintic_simplify(currentroot.subs({ a: R1[0], b: R1[1] }))
Res[2][i] = _quintic_simplify(currentroot.subs({ a: R2[0], b: R2[1] }))
Res[3][i] = _quintic_simplify(currentroot.subs({ a: R3[0], b: R3[1] }))
Res[4][i] = _quintic_simplify(currentroot.subs({ a: R4[0], b: R4[1] }))
for i in range(1, 5):
for j in range(5):
Res_n[i][j] = Res[i][j].n()
Res[i][j] = _quintic_simplify(Res[i][j])
r1 = Res[1][0]
r1_n = Res_n[1][0]
for i in range(5):
if comp(im(r1_n*Res_n[4][i]), 0, tol):
r4 = Res[4][i]
break
# Now we have various Res values. Each will be a list of five
# values. We have to pick one r value from those five for each Res
u, v = quintic.uv(theta, d)
testplus = (u + v*delta*sqrt(5)).n()
testminus = (u - v*delta*sqrt(5)).n()
# Evaluated numbers suffixed with _n
# We will use evaluated numbers for calculation. Much faster.
r4_n = r4.n()
r2 = r3 = None
for i in range(5):
r2temp_n = Res_n[2][i]
for j in range(5):
# Again storing away the exact number and using
# evaluated numbers in computations
r3temp_n = Res_n[3][j]
if (comp((r1_n*r2temp_n**2 + r4_n*r3temp_n**2 - testplus).n(), 0, tol) and
comp((r3temp_n*r1_n**2 + r2temp_n*r4_n**2 - testminus).n(), 0, tol)):
r2 = Res[2][i]
r3 = Res[3][j]
break
if r2:
break
# Now, we have r's so we can get roots
x1 = (r1 + r2 + r3 + r4)/5
x2 = (r1*zeta4 + r2*zeta3 + r3*zeta2 + r4*zeta1)/5
x3 = (r1*zeta3 + r2*zeta1 + r3*zeta4 + r4*zeta2)/5
x4 = (r1*zeta2 + r2*zeta4 + r3*zeta1 + r4*zeta3)/5
x5 = (r1*zeta1 + r2*zeta2 + r3*zeta3 + r4*zeta4)/5
result = [x1, x2, x3, x4, x5]
# Now check if solutions are distinct
saw = set()
for r in result:
r = r.n(2)
if r in saw:
# Roots were identical. Abort, return []
# and fall back to usual solve
return []
saw.add(r)
return result
def _quintic_simplify(expr):
expr = powsimp(expr)
expr = cancel(expr)
return together(expr)
def _integer_basis(poly):
"""Compute coefficient basis for a polynomial over integers.
Returns the integer ``div`` such that substituting ``x = div*y``
``p(x) = m*q(y)`` where the coefficients of ``q`` are smaller
than those of ``p``.
For example ``x**5 + 512*x + 1024 = 0``
with ``div = 4`` becomes ``y**5 + 2*y + 1 = 0``
Returns the integer ``div`` or ``None`` if there is no possible scaling.
Examples
========
>>> from sympy.polys import Poly
>>> from sympy.abc import x
>>> from sympy.polys.polyroots import _integer_basis
>>> p = Poly(x**5 + 512*x + 1024, x, domain='ZZ')
>>> _integer_basis(p)
4
"""
monoms, coeffs = list(zip(*poly.terms()))
monoms, = list(zip(*monoms))
coeffs = list(map(abs, coeffs))
if coeffs[0] < coeffs[-1]:
coeffs = list(reversed(coeffs))
n = monoms[0]
monoms = [n - i for i in reversed(monoms)]
else:
return None
monoms = monoms[:-1]
coeffs = coeffs[:-1]
divs = reversed(divisors(gcd_list(coeffs))[1:])
try:
div = next(divs)
except StopIteration:
return None
while True:
for monom, coeff in zip(monoms, coeffs):
if coeff % div**monom != 0:
try:
div = next(divs)
except StopIteration:
return None
else:
break
else:
return div
def preprocess_roots(poly):
"""Try to get rid of symbolic coefficients from ``poly``. """
coeff = S.One
poly_func = poly.func
try:
_, poly = poly.clear_denoms(convert=True)
except DomainError:
return coeff, poly
poly = poly.primitive()[1]
poly = poly.retract()
# TODO: This is fragile. Figure out how to make this independent of construct_domain().
if poly.get_domain().is_Poly and all(c.is_term for c in poly.rep.coeffs()):
poly = poly.inject()
strips = list(zip(*poly.monoms()))
gens = list(poly.gens[1:])
base, strips = strips[0], strips[1:]
for gen, strip in zip(list(gens), strips):
reverse = False
if strip[0] < strip[-1]:
strip = reversed(strip)
reverse = True
ratio = None
for a, b in zip(base, strip):
if not a and not b:
continue
elif not a or not b:
break
elif b % a != 0:
break
else:
_ratio = b // a
if ratio is None:
ratio = _ratio
elif ratio != _ratio:
break
else:
if reverse:
ratio = -ratio
poly = poly.eval(gen, 1)
coeff *= gen**(-ratio)
gens.remove(gen)
if gens:
poly = poly.eject(*gens)
if poly.is_univariate and poly.get_domain().is_ZZ:
basis = _integer_basis(poly)
if basis is not None:
n = poly.degree()
def func(k, coeff):
return coeff//basis**(n - k[0])
poly = poly.termwise(func)
coeff *= basis
if not isinstance(poly, poly_func):
poly = poly_func(poly)
return coeff, poly
@public
def roots(f, *gens, **flags):
"""
Computes symbolic roots of a univariate polynomial.
Given a univariate polynomial f with symbolic coefficients (or
a list of the polynomial's coefficients), returns a dictionary
with its roots and their multiplicities.
Only roots expressible via radicals will be returned. To get
a complete set of roots use RootOf class or numerical methods
instead. By default cubic and quartic formulas are used in
the algorithm. To disable them because of unreadable output
set ``cubics=False`` or ``quartics=False`` respectively. If cubic
roots are real but are expressed in terms of complex numbers
(casus irreducibilis [1]) the ``trig`` flag can be set to True to
have the solutions returned in terms of cosine and inverse cosine
functions.
To get roots from a specific domain set the ``filter`` flag with
one of the following specifiers: Z, Q, R, I, C. By default all
roots are returned (this is equivalent to setting ``filter='C'``).
By default a dictionary is returned giving a compact result in
case of multiple roots. However to get a list containing all
those roots set the ``multiple`` flag to True; the list will
have identical roots appearing next to each other in the result.
(For a given Poly, the all_roots method will give the roots in
sorted numerical order.)
Examples
========
>>> from sympy import Poly, roots
>>> from sympy.abc import x, y
>>> roots(x**2 - 1, x)
{-1: 1, 1: 1}
>>> p = Poly(x**2-1, x)
>>> roots(p)
{-1: 1, 1: 1}
>>> p = Poly(x**2-y, x, y)
>>> roots(Poly(p, x))
{-sqrt(y): 1, sqrt(y): 1}
>>> roots(x**2 - y, x)
{-sqrt(y): 1, sqrt(y): 1}
>>> roots([1, 0, -1])
{-1: 1, 1: 1}
References
==========
.. [1] https://en.wikipedia.org/wiki/Cubic_function#Trigonometric_.28and_hyperbolic.29_method
"""
from sympy.polys.polytools import to_rational_coeffs
flags = dict(flags)
auto = flags.pop('auto', True)
cubics = flags.pop('cubics', True)
trig = flags.pop('trig', False)
quartics = flags.pop('quartics', True)
quintics = flags.pop('quintics', False)
multiple = flags.pop('multiple', False)
filter = flags.pop('filter', None)
predicate = flags.pop('predicate', None)
if isinstance(f, list):
if gens:
raise ValueError('redundant generators given')
x = Dummy('x')
poly, i = {}, len(f) - 1
for coeff in f:
poly[i], i = sympify(coeff), i - 1
f = Poly(poly, x, field=True)
else:
try:
f = Poly(f, *gens, **flags)
if f.length == 2 and f.degree() != 1:
# check for foo**n factors in the constant
n = f.degree()
npow_bases = []
others = []
expr = f.as_expr()
con = expr.as_independent(*gens)[0]
for p in Mul.make_args(con):
if p.is_Pow and not p.exp % n:
npow_bases.append(p.base**(p.exp/n))
else:
others.append(p)
if npow_bases:
b = Mul(*npow_bases)
B = Dummy()
d = roots(Poly(expr - con + B**n*Mul(*others), *gens,
**flags), *gens, **flags)
rv = {}
for k, v in d.items():
rv[k.subs(B, b)] = v
return rv
except GeneratorsNeeded:
if multiple:
return []
else:
return {}
if f.is_multivariate:
raise PolynomialError('multivariate polynomials are not supported')
def _update_dict(result, currentroot, k):
if currentroot in result:
result[currentroot] += k
else:
result[currentroot] = k
def _try_decompose(f):
"""Find roots using functional decomposition. """
factors, roots = f.decompose(), []
for currentroot in _try_heuristics(factors[0]):
roots.append(currentroot)
for currentfactor in factors[1:]:
previous, roots = list(roots), []
for currentroot in previous:
g = currentfactor - Poly(currentroot, f.gen)
for currentroot in _try_heuristics(g):
roots.append(currentroot)
return roots
def _try_heuristics(f):
"""Find roots using formulas and some tricks. """
if f.is_ground:
return []
if f.is_monomial:
return [S(0)]*f.degree()
if f.length() == 2:
if f.degree() == 1:
return list(map(cancel, roots_linear(f)))
else:
return roots_binomial(f)
result = []
for i in [-1, 1]:
if not f.eval(i):
f = f.quo(Poly(f.gen - i, f.gen))
result.append(i)
break
n = f.degree()
if n == 1:
result += list(map(cancel, roots_linear(f)))
elif n == 2:
result += list(map(cancel, roots_quadratic(f)))
elif f.is_cyclotomic:
result += roots_cyclotomic(f)
elif n == 3 and cubics:
result += roots_cubic(f, trig=trig)
elif n == 4 and quartics:
result += roots_quartic(f)
elif n == 5 and quintics:
result += roots_quintic(f)
return result
(k,), f = f.terms_gcd()
if not k:
zeros = {}
else:
zeros = {S(0): k}
coeff, f = preprocess_roots(f)
if auto and f.get_domain().is_Ring:
f = f.to_field()
rescale_x = None
translate_x = None
result = {}
if not f.is_ground:
if not f.get_domain().is_Exact:
for r in f.nroots():
_update_dict(result, r, 1)
elif f.degree() == 1:
result[roots_linear(f)[0]] = 1
elif f.length() == 2:
roots_fun = roots_quadratic if f.degree() == 2 else roots_binomial
for r in roots_fun(f):
_update_dict(result, r, 1)
else:
_, factors = Poly(f.as_expr()).factor_list()
if len(factors) == 1 and f.degree() == 2:
for r in roots_quadratic(f):
_update_dict(result, r, 1)
else:
if len(factors) == 1 and factors[0][1] == 1:
if f.get_domain().is_EX:
res = to_rational_coeffs(f)
if res:
if res[0] is None:
translate_x, f = res[2:]
else:
rescale_x, f = res[1], res[-1]
result = roots(f)
if not result:
for currentroot in _try_decompose(f):
_update_dict(result, currentroot, 1)
else:
for r in _try_heuristics(f):
_update_dict(result, r, 1)
else:
for currentroot in _try_decompose(f):
_update_dict(result, currentroot, 1)
else:
for currentfactor, k in factors:
for r in _try_heuristics(Poly(currentfactor, f.gen, field=True)):
_update_dict(result, r, k)
if coeff is not S.One:
_result, result, = result, {}
for currentroot, k in _result.items():
result[coeff*currentroot] = k
result.update(zeros)
if filter not in [None, 'C']:
handlers = {
'Z': lambda r: r.is_Integer,
'Q': lambda r: r.is_Rational,
'R': lambda r: r.is_real,
'I': lambda r: r.is_imaginary,
}
try:
query = handlers[filter]
except KeyError:
raise ValueError("Invalid filter: %s" % filter)
for zero in dict(result).keys():
if not query(zero):
del result[zero]
if predicate is not None:
for zero in dict(result).keys():
if not predicate(zero):
del result[zero]
if rescale_x:
result1 = {}
for k, v in result.items():
result1[k*rescale_x] = v
result = result1
if translate_x:
result1 = {}
for k, v in result.items():
result1[k + translate_x] = v
result = result1
if not multiple:
return result
else:
zeros = []
for zero in ordered(result):
zeros.extend([zero]*result[zero])
return zeros
def root_factors(f, *gens, **args):
"""
Returns all factors of a univariate polynomial.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.polys.polyroots import root_factors
>>> root_factors(x**2 - y, x)
[x - sqrt(y), x + sqrt(y)]
"""
args = dict(args)
filter = args.pop('filter', None)
F = Poly(f, *gens, **args)
if not F.is_Poly:
return [f]
if F.is_multivariate:
raise ValueError('multivariate polynomials are not supported')
x = F.gens[0]
zeros = roots(F, filter=filter)
if not zeros:
factors = [F]
else:
factors, N = [], 0
for r, n in ordered(zeros.items()):
factors, N = factors + [Poly(x - r, x)]*n, N + n
if N < F.degree():
G = reduce(lambda p, q: p*q, factors)
factors.append(F.quo(G))
if not isinstance(f, Poly):
factors = [ f.as_expr() for f in factors ]
return factors
|
6e55705b47cfd009168a8e6fb26ef0a8c412cab4b493303b5b4b6a09a596a051
|
# -*- coding: utf-8 -*-
"""
This module contains functions for the computation
of Euclidean, (generalized) Sturmian, (modified) subresultant
polynomial remainder sequences (prs's) of two polynomials;
included are also three functions for the computation of the
resultant of two polynomials.
Except for the function res_z(), which computes the resultant
of two polynomials, the pseudo-remainder function prem()
of sympy is _not_ used by any of the functions in the module.
Instead of prem() we use the function
rem_z().
Included is also the function quo_z().
An explanation of why we avoid prem() can be found in the
references stated in the docstring of rem_z().
1. Theoretical background:
==========================
Consider the polynomials f, g ∈ Z[x] of degrees deg(f) = n and
deg(g) = m with n ≥ m.
Definition 1:
=============
The sign sequence of a polynomial remainder sequence (prs) is the
sequence of signs of the leading coefficients of its polynomials.
Sign sequences can be computed with the function:
sign_seq(poly_seq, x)
Definition 2:
=============
A polynomial remainder sequence (prs) is called complete if the
degree difference between any two consecutive polynomials is 1;
otherwise, it called incomplete.
It is understood that f, g belong to the sequences mentioned in
the two definitions above.
1A. Euclidean and subresultant prs's:
=====================================
The subresultant prs of f, g is a sequence of polynomials in Z[x]
analogous to the Euclidean prs, the sequence obtained by applying
on f, g Euclid’s algorithm for polynomial greatest common divisors
(gcd) in Q[x].
The subresultant prs differs from the Euclidean prs in that the
coefficients of each polynomial in the former sequence are determinants
--- also referred to as subresultants --- of appropriately selected
sub-matrices of sylvester1(f, g, x), Sylvester’s matrix of 1840 of
dimensions (n + m) × (n + m).
Recall that the determinant of sylvester1(f, g, x) itself is
called the resultant of f, g and serves as a criterion of whether
the two polynomials have common roots or not.
In sympy the resultant is computed with the function
resultant(f, g, x). This function does _not_ evaluate the
determinant of sylvester(f, g, x, 1); instead, it returns
the last member of the subresultant prs of f, g, multiplied
(if needed) by an appropriate power of -1; see the caveat below.
In this module we use three functions to compute the
resultant of f, g:
a) res(f, g, x) computes the resultant by evaluating
the determinant of sylvester(f, g, x, 1);
b) res_q(f, g, x) computes the resultant recursively, by
performing polynomial divisions in Q[x] with the function rem();
c) res_z(f, g, x) computes the resultant recursively, by
performing polynomial divisions in Z[x] with the function prem().
Caveat: If Df = degree(f, x) and Dg = degree(g, x), then:
resultant(f, g, x) = (-1)**(Df*Dg) * resultant(g, f, x).
For complete prs’s the sign sequence of the Euclidean prs of f, g
is identical to the sign sequence of the subresultant prs of f, g
and the coefficients of one sequence are easily computed from the
coefficients of the other.
For incomplete prs’s the polynomials in the subresultant prs, generally
differ in sign from those of the Euclidean prs, and --- unlike the
case of complete prs’s --- it is not at all obvious how to compute
the coefficients of one sequence from the coefficients of the other.
1B. Sturmian and modified subresultant prs's:
=============================================
For the same polynomials f, g ∈ Z[x] mentioned above, their ``modified''
subresultant prs is a sequence of polynomials similar to the Sturmian
prs, the sequence obtained by applying in Q[x] Sturm’s algorithm on f, g.
The two sequences differ in that the coefficients of each polynomial
in the modified subresultant prs are the determinants --- also referred
to as modified subresultants --- of appropriately selected sub-matrices
of sylvester2(f, g, x), Sylvester’s matrix of 1853 of dimensions 2n × 2n.
The determinant of sylvester2 itself is called the modified resultant
of f, g and it also can serve as a criterion of whether the two
polynomials have common roots or not.
For complete prs’s the sign sequence of the Sturmian prs of f, g is
identical to the sign sequence of the modified subresultant prs of
f, g and the coefficients of one sequence are easily computed from
the coefficients of the other.
For incomplete prs’s the polynomials in the modified subresultant prs,
generally differ in sign from those of the Sturmian prs, and --- unlike
the case of complete prs’s --- it is not at all obvious how to compute
the coefficients of one sequence from the coefficients of the other.
As Sylvester pointed out, the coefficients of the polynomial remainders
obtained as (modified) subresultants are the smallest possible without
introducing rationals and without computing (integer) greatest common
divisors.
1C. On terminology:
===================
Whence the terminology? Well generalized Sturmian prs's are
``modifications'' of Euclidean prs's; the hint came from the title
of the Pell-Gordon paper of 1917.
In the literature one also encounters the name ``non signed'' and
``signed'' prs for Euclidean and Sturmian prs respectively.
Likewise ``non signed'' and ``signed'' subresultant prs for
subresultant and modified subresultant prs respectively.
2. Functions in the module:
===========================
No function utilizes sympy's function prem().
2A. Matrices:
=============
The functions sylvester(f, g, x, method=1) and
sylvester(f, g, x, method=2) compute either Sylvester matrix.
They can be used to compute (modified) subresultant prs's by
direct determinant evaluation.
The function bezout(f, g, x, method='prs') provides a matrix of
smaller dimensions than either Sylvester matrix. It is the function
of choice for computing (modified) subresultant prs's by direct
determinant evaluation.
sylvester(f, g, x, method=1)
sylvester(f, g, x, method=2)
bezout(f, g, x, method='prs')
The following identity holds:
bezout(f, g, x, method='prs') =
backward_eye(deg(f))*bezout(f, g, x, method='bz')*backward_eye(deg(f))
2B. Subresultant and modified subresultant prs's by
===================================================
determinant evaluations:
=======================
We use the Sylvester matrices of 1840 and 1853 to
compute, respectively, subresultant and modified
subresultant polynomial remainder sequences. However,
for large matrices this approach takes a lot of time.
Instead of utilizing the Sylvester matrices, we can
employ the Bezout matrix which is of smaller dimensions.
subresultants_sylv(f, g, x)
modified_subresultants_sylv(f, g, x)
subresultants_bezout(f, g, x)
modified_subresultants_bezout(f, g, x)
2C. Subresultant prs's by ONE determinant evaluation:
=====================================================
All three functions in this section evaluate one determinant
per remainder polynomial; this is the determinant of an
appropriately selected sub-matrix of sylvester1(f, g, x),
Sylvester’s matrix of 1840.
To compute the remainder polynomials the function
subresultants_rem(f, g, x) employs rem(f, g, x).
By contrast, the other two functions implement Van Vleck’s ideas
of 1900 and compute the remainder polynomials by trinagularizing
sylvester2(f, g, x), Sylvester’s matrix of 1853.
subresultants_rem(f, g, x)
subresultants_vv(f, g, x)
subresultants_vv_2(f, g, x).
2E. Euclidean, Sturmian prs's in Q[x]:
======================================
euclid_q(f, g, x)
sturm_q(f, g, x)
2F. Euclidean, Sturmian and (modified) subresultant prs's P-G:
==============================================================
All functions in this section are based on the Pell-Gordon (P-G)
theorem of 1917.
Computations are done in Q[x], employing the function rem(f, g, x)
for the computation of the remainder polynomials.
euclid_pg(f, g, x)
sturm pg(f, g, x)
subresultants_pg(f, g, x)
modified_subresultants_pg(f, g, x)
2G. Euclidean, Sturmian and (modified) subresultant prs's A-M-V:
================================================================
All functions in this section are based on the Akritas-Malaschonok-
Vigklas (A-M-V) theorem of 2015.
Computations are done in Z[x], employing the function rem_z(f, g, x)
for the computation of the remainder polynomials.
euclid_amv(f, g, x)
sturm_amv(f, g, x)
subresultants_amv(f, g, x)
modified_subresultants_amv(f, g, x)
2Ga. Exception:
===============
subresultants_amv_q(f, g, x)
This function employs rem(f, g, x) for the computation of
the remainder polynomials, despite the fact that it implements
the A-M-V Theorem.
It is included in our module in order to show that theorems P-G
and A-M-V can be implemented utilizing either the function
rem(f, g, x) or the function rem_z(f, g, x).
For clearly historical reasons --- since the Collins-Brown-Traub
coefficients-reduction factor β_i was not available in 1917 ---
we have implemented the Pell-Gordon theorem with the function
rem(f, g, x) and the A-M-V Theorem with the function rem_z(f, g, x).
2H. Resultants:
===============
res(f, g, x)
res_q(f, g, x)
res_z(f, g, x)
"""
from __future__ import print_function, division
from sympy import (Abs, degree, expand, eye, floor, LC, Matrix, nan, Poly, pprint)
from sympy import (QQ, pquo, quo, prem, rem, S, sign, simplify, summation, var, zeros)
from sympy.polys.polyerrors import PolynomialError
def sylvester(f, g, x, method = 1):
'''
The input polynomials f, g are in Z[x] or in Q[x]. Let m = degree(f, x),
n = degree(g, x) and mx = max( m , n ).
a. If method = 1 (default), computes sylvester1, Sylvester's matrix of 1840
of dimension (m + n) x (m + n). The determinants of properly chosen
submatrices of this matrix (a.k.a. subresultants) can be
used to compute the coefficients of the Euclidean PRS of f, g.
b. If method = 2, computes sylvester2, Sylvester's matrix of 1853
of dimension (2*mx) x (2*mx). The determinants of properly chosen
submatrices of this matrix (a.k.a. ``modified'' subresultants) can be
used to compute the coefficients of the Sturmian PRS of f, g.
Applications of these Matrices can be found in the references below.
Especially, for applications of sylvester2, see the first reference!!
References
==========
1. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``On a Theorem
by Van Vleck Regarding Sturm Sequences. Serdica Journal of Computing,
Vol. 7, No 4, 101–134, 2013.
2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Sturm Sequences
and Modified Subresultant Polynomial Remainder Sequences.''
Serdica Journal of Computing, Vol. 8, No 1, 29–46, 2014.
'''
# obtain degrees of polys
m, n = degree( Poly(f, x), x), degree( Poly(g, x), x)
# Special cases:
# A:: case m = n < 0 (i.e. both polys are 0)
if m == n and n < 0:
return Matrix([])
# B:: case m = n = 0 (i.e. both polys are constants)
if m == n and n == 0:
return Matrix([])
# C:: m == 0 and n < 0 or m < 0 and n == 0
# (i.e. one poly is constant and the other is 0)
if m == 0 and n < 0:
return Matrix([])
elif m < 0 and n == 0:
return Matrix([])
# D:: m >= 1 and n < 0 or m < 0 and n >=1
# (i.e. one poly is of degree >=1 and the other is 0)
if m >= 1 and n < 0:
return Matrix([0])
elif m < 0 and n >= 1:
return Matrix([0])
fp = Poly(f, x).all_coeffs()
gp = Poly(g, x).all_coeffs()
# Sylvester's matrix of 1840 (default; a.k.a. sylvester1)
if method <= 1:
M = zeros(m + n)
k = 0
for i in range(n):
j = k
for coeff in fp:
M[i, j] = coeff
j = j + 1
k = k + 1
k = 0
for i in range(n, m + n):
j = k
for coeff in gp:
M[i, j] = coeff
j = j + 1
k = k + 1
return M
# Sylvester's matrix of 1853 (a.k.a sylvester2)
if method >= 2:
if len(fp) < len(gp):
h = []
for i in range(len(gp) - len(fp)):
h.append(0)
fp[ : 0] = h
else:
h = []
for i in range(len(fp) - len(gp)):
h.append(0)
gp[ : 0] = h
mx = max(m, n)
dim = 2*mx
M = zeros( dim )
k = 0
for i in range( mx ):
j = k
for coeff in fp:
M[2*i, j] = coeff
j = j + 1
j = k
for coeff in gp:
M[2*i + 1, j] = coeff
j = j + 1
k = k + 1
return M
def process_matrix_output(poly_seq, x):
"""
poly_seq is a polynomial remainder sequence computed either by
(modified_)subresultants_bezout or by (modified_)subresultants_sylv.
This function removes from poly_seq all zero polynomials as well
as all those whose degree is equal to the degree of a preceding
polynomial in poly_seq, as we scan it from left to right.
"""
L = poly_seq[:] # get a copy of the input sequence
d = degree(L[1], x)
i = 2
while i < len(L):
d_i = degree(L[i], x)
if d_i < 0: # zero poly
L.remove(L[i])
i = i - 1
if d == d_i: # poly degree equals degree of previous poly
L.remove(L[i])
i = i - 1
if d_i >= 0:
d = d_i
i = i + 1
return L
def subresultants_sylv(f, g, x):
"""
The input polynomials f, g are in Z[x] or in Q[x]. It is assumed
that deg(f) >= deg(g).
Computes the subresultant polynomial remainder sequence (prs)
of f, g by evaluating determinants of appropriately selected
submatrices of sylvester(f, g, x, 1). The dimensions of the
latter are (deg(f) + deg(g)) x (deg(f) + deg(g)).
Each coefficient is computed by evaluating the determinant of the
corresponding submatrix of sylvester(f, g, x, 1).
If the subresultant prs is complete, then the output coincides
with the Euclidean sequence of the polynomials f, g.
References:
===========
1. G.M.Diaz-Toca,L.Gonzalez-Vega: Various New Expressions for Subresultants
and Their Applications. Appl. Algebra in Engin., Communic. and Comp.,
Vol. 15, 233–266, 2004.
"""
# make sure neither f nor g is 0
if f == 0 or g == 0:
return [f, g]
n = degF = degree(f, x)
m = degG = degree(g, x)
# make sure proper degrees
if n == 0 and m == 0:
return [f, g]
if n < m:
n, m, degF, degG, f, g = m, n, degG, degF, g, f
if n > 0 and m == 0:
return [f, g]
SR_L = [f, g] # subresultant list
# form matrix sylvester(f, g, x, 1)
S = sylvester(f, g, x, 1)
# pick appropriate submatrices of S
# and form subresultant polys
j = m - 1
while j > 0:
Sp = S[:, :] # copy of S
# delete last j rows of coeffs of g
for ind in range(m + n - j, m + n):
Sp.row_del(m + n - j)
# delete last j rows of coeffs of f
for ind in range(m - j, m):
Sp.row_del(m - j)
# evaluate determinants and form coefficients list
coeff_L, k, l = [], Sp.rows, 0
while l <= j:
coeff_L.append(Sp[ : , 0 : k].det())
Sp.col_swap(k - 1, k + l)
l += 1
# form poly and append to SP_L
SR_L.append(Poly(coeff_L, x).as_expr())
j -= 1
# j = 0
SR_L.append(S.det())
return process_matrix_output(SR_L, x)
def modified_subresultants_sylv(f, g, x):
"""
The input polynomials f, g are in Z[x] or in Q[x]. It is assumed
that deg(f) >= deg(g).
Computes the modified subresultant polynomial remainder sequence (prs)
of f, g by evaluating determinants of appropriately selected
submatrices of sylvester(f, g, x, 2). The dimensions of the
latter are (2*deg(f)) x (2*deg(f)).
Each coefficient is computed by evaluating the determinant of the
corresponding submatrix of sylvester(f, g, x, 2).
If the modified subresultant prs is complete, then the output coincides
with the Sturmian sequence of the polynomials f, g.
References:
===========
1. A. G. Akritas,G.I. Malaschonok and P.S. Vigklas:
Sturm Sequences and Modified Subresultant Polynomial Remainder
Sequences. Serdica Journal of Computing, Vol. 8, No 1, 29--46, 2014.
"""
# make sure neither f nor g is 0
if f == 0 or g == 0:
return [f, g]
n = degF = degree(f, x)
m = degG = degree(g, x)
# make sure proper degrees
if n == 0 and m == 0:
return [f, g]
if n < m:
n, m, degF, degG, f, g = m, n, degG, degF, g, f
if n > 0 and m == 0:
return [f, g]
SR_L = [f, g] # modified subresultant list
# form matrix sylvester(f, g, x, 2)
S = sylvester(f, g, x, 2)
# pick appropriate submatrices of S
# and form modified subresultant polys
j = m - 1
while j > 0:
# delete last 2*j rows of pairs of coeffs of f, g
Sp = S[0:2*n - 2*j, :] # copy of first 2*n - 2*j rows of S
# evaluate determinants and form coefficients list
coeff_L, k, l = [], Sp.rows, 0
while l <= j:
coeff_L.append(Sp[ : , 0 : k].det())
Sp.col_swap(k - 1, k + l)
l += 1
# form poly and append to SP_L
SR_L.append(Poly(coeff_L, x).as_expr())
j -= 1
# j = 0
SR_L.append(S.det())
return process_matrix_output(SR_L, x)
def res(f, g, x):
"""
The input polynomials f, g are in Z[x] or in Q[x].
The output is the resultant of f, g computed by evaluating
the determinant of the matrix sylvester(f, g, x, 1).
References:
===========
1. J. S. Cohen: Computer Algebra and Symbolic Computation
- Mathematical Methods. A. K. Peters, 2003.
"""
if f == 0 or g == 0:
raise PolynomialError("The resultant of %s and %s is not defined" % (f, g))
else:
return sylvester(f, g, x, 1).det()
def res_q(f, g, x):
"""
The input polynomials f, g are in Z[x] or in Q[x].
The output is the resultant of f, g computed recursively
by polynomial divisions in Q[x], using the function rem.
See Cohen's book p. 281.
References:
===========
1. J. S. Cohen: Computer Algebra and Symbolic Computation
- Mathematical Methods. A. K. Peters, 2003.
"""
m = degree(f, x)
n = degree(g, x)
if m < n:
return (-1)**(m*n) * res_q(g, f, x)
elif n == 0: # g is a constant
return g**m
else:
r = rem(f, g, x)
if r == 0:
return 0
else:
s = degree(r, x)
l = LC(g, x)
return (-1)**(m*n) * l**(m-s)*res_q(g, r, x)
def res_z(f, g, x):
"""
The input polynomials f, g are in Z[x] or in Q[x].
The output is the resultant of f, g computed recursively
by polynomial divisions in Z[x], using the function prem().
See Cohen's book p. 283.
References:
===========
1. J. S. Cohen: Computer Algebra and Symbolic Computation
- Mathematical Methods. A. K. Peters, 2003.
"""
m = degree(f, x)
n = degree(g, x)
if m < n:
return (-1)**(m*n) * res_z(g, f, x)
elif n == 0: # g is a constant
return g**m
else:
r = prem(f, g, x)
if r == 0:
return 0
else:
delta = m - n + 1
w = (-1)**(m*n) * res_z(g, r, x)
s = degree(r, x)
l = LC(g, x)
k = delta * n - m + s
return quo(w, l**k, x)
def sign_seq(poly_seq, x):
"""
Given a sequence of polynomials poly_seq, it returns
the sequence of signs of the leading coefficients of
the polynomials in poly_seq.
"""
return [sign(LC(poly_seq[i], x)) for i in range(len(poly_seq))]
def bezout(p, q, x, method='bz'):
"""
The input polynomials p, q are in Z[x] or in Q[x]. Let
mx = max( degree(p, x) , degree(q, x) ).
The default option bezout(p, q, x, method='bz') returns Bezout's
symmetric matrix of p and q, of dimensions (mx) x (mx). The
determinant of this matrix is equal to the determinant of sylvester2,
Sylvester's matrix of 1853, whose dimensions are (2*mx) x (2*mx);
however the subresultants of these two matrices may differ.
The other option, bezout(p, q, x, 'prs'), is of interest to us
in this module because it returns a matrix equivalent to sylvester2.
In this case all subresultants of the two matrices are identical.
Both the subresultant polynomial remainder sequence (prs) and
the modified subresultant prs of p and q can be computed by
evaluating determinants of appropriately selected submatrices of
bezout(p, q, x, 'prs') --- one determinant per coefficient of the
remainder polynomials.
The matrices bezout(p, q, x, 'bz') and bezout(p, q, x, 'prs')
are related by the formula
bezout(p, q, x, 'prs') =
backward_eye(deg(p)) * bezout(p, q, x, 'bz') * backward_eye(deg(p)),
where backward_eye() is the backward identity function.
References
==========
1. G.M.Diaz-Toca,L.Gonzalez-Vega: Various New Expressions for Subresultants
and Their Applications. Appl. Algebra in Engin., Communic. and Comp.,
Vol. 15, 233–266, 2004.
"""
# obtain degrees of polys
m, n = degree( Poly(p, x), x), degree( Poly(q, x), x)
# Special cases:
# A:: case m = n < 0 (i.e. both polys are 0)
if m == n and n < 0:
return Matrix([])
# B:: case m = n = 0 (i.e. both polys are constants)
if m == n and n == 0:
return Matrix([])
# C:: m == 0 and n < 0 or m < 0 and n == 0
# (i.e. one poly is constant and the other is 0)
if m == 0 and n < 0:
return Matrix([])
elif m < 0 and n == 0:
return Matrix([])
# D:: m >= 1 and n < 0 or m < 0 and n >=1
# (i.e. one poly is of degree >=1 and the other is 0)
if m >= 1 and n < 0:
return Matrix([0])
elif m < 0 and n >= 1:
return Matrix([0])
y = var('y')
# expr is 0 when x = y
expr = p * q.subs({x:y}) - p.subs({x:y}) * q
# hence expr is exactly divisible by x - y
poly = Poly( quo(expr, x-y), x, y)
# form Bezout matrix and store them in B as indicated to get
# the LC coefficient of each poly either in the first position
# of each row (method='prs') or in the last (method='bz').
mx = max(m, n)
B = zeros(mx)
for i in range(mx):
for j in range(mx):
if method == 'prs':
B[mx - 1 - i, mx - 1 - j] = poly.nth(i, j)
else:
B[i, j] = poly.nth(i, j)
return B
def backward_eye(n):
'''
Returns the backward identity matrix of dimensions n x n.
Needed to "turn" the Bezout matrices
so that the leading coefficients are first.
See docstring of the function bezout(p, q, x, method='bz').
'''
M = eye(n) # identity matrix of order n
for i in range(int(M.rows / 2)):
M.row_swap(0 + i, M.rows - 1 - i)
return M
def subresultants_bezout(p, q, x):
"""
The input polynomials p, q are in Z[x] or in Q[x]. It is assumed
that degree(p, x) >= degree(q, x).
Computes the subresultant polynomial remainder sequence
of p, q by evaluating determinants of appropriately selected
submatrices of bezout(p, q, x, 'prs'). The dimensions of the
latter are deg(p) x deg(p).
Each coefficient is computed by evaluating the determinant of the
corresponding submatrix of bezout(p, q, x, 'prs').
bezout(p, q, x, 'prs) is used instead of sylvester(p, q, x, 1),
Sylvester's matrix of 1840, because the dimensions of the latter
are (deg(p) + deg(q)) x (deg(p) + deg(q)).
If the subresultant prs is complete, then the output coincides
with the Euclidean sequence of the polynomials p, q.
References
==========
1. G.M.Diaz-Toca,L.Gonzalez-Vega: Various New Expressions for Subresultants
and Their Applications. Appl. Algebra in Engin., Communic. and Comp.,
Vol. 15, 233–266, 2004.
"""
# make sure neither p nor q is 0
if p == 0 or q == 0:
return [p, q]
f, g = p, q
n = degF = degree(f, x)
m = degG = degree(g, x)
# make sure proper degrees
if n == 0 and m == 0:
return [f, g]
if n < m:
n, m, degF, degG, f, g = m, n, degG, degF, g, f
if n > 0 and m == 0:
return [f, g]
SR_L = [f, g] # subresultant list
F = LC(f, x)**(degF - degG)
# form the bezout matrix
B = bezout(f, g, x, 'prs')
# pick appropriate submatrices of B
# and form subresultant polys
if degF > degG:
j = 2
if degF == degG:
j = 1
while j <= degF:
M = B[0:j, :]
k, coeff_L = j - 1, []
while k <= degF - 1:
coeff_L.append(M[: ,0 : j].det())
if k < degF - 1:
M.col_swap(j - 1, k + 1)
k = k + 1
# apply Theorem 2.1 in the paper by Toca & Vega 2004
# to get correct signs
SR_L.append((int((-1)**(j*(j-1)/2)) * Poly(coeff_L, x) / F).as_expr())
j = j + 1
return process_matrix_output(SR_L, x)
def modified_subresultants_bezout(p, q, x):
"""
The input polynomials p, q are in Z[x] or in Q[x]. It is assumed
that degree(p, x) >= degree(q, x).
Computes the modified subresultant polynomial remainder sequence
of p, q by evaluating determinants of appropriately selected
submatrices of bezout(p, q, x, 'prs'). The dimensions of the
latter are deg(p) x deg(p).
Each coefficient is computed by evaluating the determinant of the
corresponding submatrix of bezout(p, q, x, 'prs').
bezout(p, q, x, 'prs') is used instead of sylvester(p, q, x, 2),
Sylvester's matrix of 1853, because the dimensions of the latter
are 2*deg(p) x 2*deg(p).
If the modified subresultant prs is complete, and LC( p ) > 0, the output
coincides with the (generalized) Sturm's sequence of the polynomials p, q.
References
==========
1. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Sturm Sequences
and Modified Subresultant Polynomial Remainder Sequences.''
Serdica Journal of Computing, Vol. 8, No 1, 29–46, 2014.
2. G.M.Diaz-Toca,L.Gonzalez-Vega: Various New Expressions for Subresultants
and Their Applications. Appl. Algebra in Engin., Communic. and Comp.,
Vol. 15, 233–266, 2004.
"""
# make sure neither p nor q is 0
if p == 0 or q == 0:
return [p, q]
f, g = p, q
n = degF = degree(f, x)
m = degG = degree(g, x)
# make sure proper degrees
if n == 0 and m == 0:
return [f, g]
if n < m:
n, m, degF, degG, f, g = m, n, degG, degF, g, f
if n > 0 and m == 0:
return [f, g]
SR_L = [f, g] # subresultant list
# form the bezout matrix
B = bezout(f, g, x, 'prs')
# pick appropriate submatrices of B
# and form subresultant polys
if degF > degG:
j = 2
if degF == degG:
j = 1
while j <= degF:
M = B[0:j, :]
k, coeff_L = j - 1, []
while k <= degF - 1:
coeff_L.append(M[: ,0 : j].det())
if k < degF - 1:
M.col_swap(j - 1, k + 1)
k = k + 1
## Theorem 2.1 in the paper by Toca & Vega 2004 is _not needed_
## in this case since
## the bezout matrix is equivalent to sylvester2
SR_L.append(( Poly(coeff_L, x)).as_expr())
j = j + 1
return process_matrix_output(SR_L, x)
def sturm_pg(p, q, x, method=0):
"""
p, q are polynomials in Z[x] or Q[x]. It is assumed
that degree(p, x) >= degree(q, x).
Computes the (generalized) Sturm sequence of p and q in Z[x] or Q[x].
If q = diff(p, x, 1) it is the usual Sturm sequence.
A. If method == 0, default, the remainder coefficients of the sequence
are (in absolute value) ``modified'' subresultants, which for non-monic
polynomials are greater than the coefficients of the corresponding
subresultants by the factor Abs(LC(p)**( deg(p)- deg(q))).
B. If method == 1, the remainder coefficients of the sequence are (in
absolute value) subresultants, which for non-monic polynomials are
smaller than the coefficients of the corresponding ``modified''
subresultants by the factor Abs(LC(p)**( deg(p)- deg(q))).
If the Sturm sequence is complete, method=0 and LC( p ) > 0, the coefficients
of the polynomials in the sequence are ``modified'' subresultants.
That is, they are determinants of appropriately selected submatrices of
sylvester2, Sylvester's matrix of 1853. In this case the Sturm sequence
coincides with the ``modified'' subresultant prs, of the polynomials
p, q.
If the Sturm sequence is incomplete and method=0 then the signs of the
coefficients of the polynomials in the sequence may differ from the signs
of the coefficients of the corresponding polynomials in the ``modified''
subresultant prs; however, the absolute values are the same.
To compute the coefficients, no determinant evaluation takes place. Instead,
polynomial divisions in Q[x] are performed, using the function rem(p, q, x);
the coefficients of the remainders computed this way become (``modified'')
subresultants with the help of the Pell-Gordon Theorem of 1917.
See also the function euclid_pg(p, q, x).
References
==========
1. Pell A. J., R. L. Gordon. The Modified Remainders Obtained in Finding
the Highest Common Factor of Two Polynomials. Annals of MatheMatics,
Second Series, 18 (1917), No. 4, 188–193.
2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Sturm Sequences
and Modified Subresultant Polynomial Remainder Sequences.''
Serdica Journal of Computing, Vol. 8, No 1, 29–46, 2014.
"""
# make sure neither p nor q is 0
if p == 0 or q == 0:
return [p, q]
# make sure proper degrees
d0 = degree(p, x)
d1 = degree(q, x)
if d0 == 0 and d1 == 0:
return [p, q]
if d1 > d0:
d0, d1 = d1, d0
p, q = q, p
if d0 > 0 and d1 == 0:
return [p,q]
# make sure LC(p) > 0
flag = 0
if LC(p,x) < 0:
flag = 1
p = -p
q = -q
# initialize
lcf = LC(p, x)**(d0 - d1) # lcf * subr = modified subr
a0, a1 = p, q # the input polys
sturm_seq = [a0, a1] # the output list
del0 = d0 - d1 # degree difference
rho1 = LC(a1, x) # leading coeff of a1
exp_deg = d1 - 1 # expected degree of a2
a2 = - rem(a0, a1, domain=QQ) # first remainder
rho2 = LC(a2,x) # leading coeff of a2
d2 = degree(a2, x) # actual degree of a2
deg_diff_new = exp_deg - d2 # expected - actual degree
del1 = d1 - d2 # degree difference
# mul_fac is the factor by which a2 is multiplied to
# get integer coefficients
mul_fac_old = rho1**(del0 + del1 - deg_diff_new)
# append accordingly
if method == 0:
sturm_seq.append( simplify(lcf * a2 * Abs(mul_fac_old)))
else:
sturm_seq.append( simplify( a2 * Abs(mul_fac_old)))
# main loop
deg_diff_old = deg_diff_new
while d2 > 0:
a0, a1, d0, d1 = a1, a2, d1, d2 # update polys and degrees
del0 = del1 # update degree difference
exp_deg = d1 - 1 # new expected degree
a2 = - rem(a0, a1, domain=QQ) # new remainder
rho3 = LC(a2, x) # leading coeff of a2
d2 = degree(a2, x) # actual degree of a2
deg_diff_new = exp_deg - d2 # expected - actual degree
del1 = d1 - d2 # degree difference
# take into consideration the power
# rho1**deg_diff_old that was "left out"
expo_old = deg_diff_old # rho1 raised to this power
expo_new = del0 + del1 - deg_diff_new # rho2 raised to this power
# update variables and append
mul_fac_new = rho2**(expo_new) * rho1**(expo_old) * mul_fac_old
deg_diff_old, mul_fac_old = deg_diff_new, mul_fac_new
rho1, rho2 = rho2, rho3
if method == 0:
sturm_seq.append( simplify(lcf * a2 * Abs(mul_fac_old)))
else:
sturm_seq.append( simplify( a2 * Abs(mul_fac_old)))
if flag: # change the sign of the sequence
sturm_seq = [-i for i in sturm_seq]
# gcd is of degree > 0 ?
m = len(sturm_seq)
if sturm_seq[m - 1] == nan or sturm_seq[m - 1] == 0:
sturm_seq.pop(m - 1)
return sturm_seq
def sturm_q(p, q, x):
"""
p, q are polynomials in Z[x] or Q[x]. It is assumed
that degree(p, x) >= degree(q, x).
Computes the (generalized) Sturm sequence of p and q in Q[x].
Polynomial divisions in Q[x] are performed, using the function rem(p, q, x).
The coefficients of the polynomials in the Sturm sequence can be uniquely
determined from the corresponding coefficients of the polynomials found
either in:
(a) the ``modified'' subresultant prs, (references 1, 2)
or in
(b) the subresultant prs (reference 3).
References
==========
1. Pell A. J., R. L. Gordon. The Modified Remainders Obtained in Finding
the Highest Common Factor of Two Polynomials. Annals of MatheMatics,
Second Series, 18 (1917), No. 4, 188–193.
2 Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Sturm Sequences
and Modified Subresultant Polynomial Remainder Sequences.''
Serdica Journal of Computing, Vol. 8, No 1, 29–46, 2014.
3. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``A Basic Result
on the Theory of Subresultants.'' Serdica Journal of Computing 10 (2016), Νο.1, 31-48.
"""
# make sure neither p nor q is 0
if p == 0 or q == 0:
return [p, q]
# make sure proper degrees
d0 = degree(p, x)
d1 = degree(q, x)
if d0 == 0 and d1 == 0:
return [p, q]
if d1 > d0:
d0, d1 = d1, d0
p, q = q, p
if d0 > 0 and d1 == 0:
return [p,q]
# make sure LC(p) > 0
flag = 0
if LC(p,x) < 0:
flag = 1
p = -p
q = -q
# initialize
a0, a1 = p, q # the input polys
sturm_seq = [a0, a1] # the output list
a2 = -rem(a0, a1, domain=QQ) # first remainder
d2 = degree(a2, x) # degree of a2
sturm_seq.append( a2 )
# main loop
while d2 > 0:
a0, a1, d0, d1 = a1, a2, d1, d2 # update polys and degrees
a2 = -rem(a0, a1, domain=QQ) # new remainder
d2 = degree(a2, x) # actual degree of a2
sturm_seq.append( a2 )
if flag: # change the sign of the sequence
sturm_seq = [-i for i in sturm_seq]
# gcd is of degree > 0 ?
m = len(sturm_seq)
if sturm_seq[m - 1] == nan or sturm_seq[m - 1] == 0:
sturm_seq.pop(m - 1)
return sturm_seq
def sturm_amv(p, q, x, method=0):
"""
p, q are polynomials in Z[x] or Q[x]. It is assumed
that degree(p, x) >= degree(q, x).
Computes the (generalized) Sturm sequence of p and q in Z[x] or Q[x].
If q = diff(p, x, 1) it is the usual Sturm sequence.
A. If method == 0, default, the remainder coefficients of the
sequence are (in absolute value) ``modified'' subresultants, which
for non-monic polynomials are greater than the coefficients of the
corresponding subresultants by the factor Abs(LC(p)**( deg(p)- deg(q))).
B. If method == 1, the remainder coefficients of the sequence are (in
absolute value) subresultants, which for non-monic polynomials are
smaller than the coefficients of the corresponding ``modified''
subresultants by the factor Abs( LC(p)**( deg(p)- deg(q)) ).
If the Sturm sequence is complete, method=0 and LC( p ) > 0, then the
coefficients of the polynomials in the sequence are ``modified'' subresultants.
That is, they are determinants of appropriately selected submatrices of
sylvester2, Sylvester's matrix of 1853. In this case the Sturm sequence
coincides with the ``modified'' subresultant prs, of the polynomials
p, q.
If the Sturm sequence is incomplete and method=0 then the signs of the
coefficients of the polynomials in the sequence may differ from the signs
of the coefficients of the corresponding polynomials in the ``modified''
subresultant prs; however, the absolute values are the same.
To compute the coefficients, no determinant evaluation takes place.
Instead, we first compute the euclidean sequence of p and q using
euclid_amv(p, q, x) and then: (a) change the signs of the remainders in the
Euclidean sequence according to the pattern "-, -, +, +, -, -, +, +,..."
(see Lemma 1 in the 1st reference or Theorem 3 in the 2nd reference)
and (b) if method=0, assuming deg(p) > deg(q), we multiply the remainder
coefficients of the Euclidean sequence times the factor
Abs( LC(p)**( deg(p)- deg(q)) ) to make them modified subresultants.
See also the function sturm_pg(p, q, x).
References
==========
1. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``A Basic Result
on the Theory of Subresultants.'' Serdica Journal of Computing 10 (2016), Νο.1, 31-48.
2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``On the Remainders
Obtained in Finding the Greatest Common Divisor of Two Polynomials.'' Serdica
Journal of Computing 9(2) (2015), 123-138.
3. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Subresultant Polynomial
Remainder Sequences Obtained by Polynomial Divisions in Q[x] or in Z[x].''
Serdica Journal of Computing 10 (2016), Νο.3-4, 197-217.
"""
# compute the euclidean sequence
prs = euclid_amv(p, q, x)
# defensive
if prs == [] or len(prs) == 2:
return prs
# the coefficients in prs are subresultants and hence are smaller
# than the corresponding subresultants by the factor
# Abs( LC(prs[0])**( deg(prs[0]) - deg(prs[1])) ); Theorem 2, 2nd reference.
lcf = Abs( LC(prs[0])**( degree(prs[0], x) - degree(prs[1], x) ) )
# the signs of the first two polys in the sequence stay the same
sturm_seq = [prs[0], prs[1]]
# change the signs according to "-, -, +, +, -, -, +, +,..."
# and multiply times lcf if needed
flag = 0
m = len(prs)
i = 2
while i <= m-1:
if flag == 0:
sturm_seq.append( - prs[i] )
i = i + 1
if i == m:
break
sturm_seq.append( - prs[i] )
i = i + 1
flag = 1
elif flag == 1:
sturm_seq.append( prs[i] )
i = i + 1
if i == m:
break
sturm_seq.append( prs[i] )
i = i + 1
flag = 0
# subresultants or modified subresultants?
if method == 0 and lcf > 1:
aux_seq = [sturm_seq[0], sturm_seq[1]]
for i in range(2, m):
aux_seq.append(simplify(sturm_seq[i] * lcf ))
sturm_seq = aux_seq
return sturm_seq
def euclid_pg(p, q, x):
"""
p, q are polynomials in Z[x] or Q[x]. It is assumed
that degree(p, x) >= degree(q, x).
Computes the Euclidean sequence of p and q in Z[x] or Q[x].
If the Euclidean sequence is complete the coefficients of the polynomials
in the sequence are subresultants. That is, they are determinants of
appropriately selected submatrices of sylvester1, Sylvester's matrix of 1840.
In this case the Euclidean sequence coincides with the subresultant prs
of the polynomials p, q.
If the Euclidean sequence is incomplete the signs of the coefficients of the
polynomials in the sequence may differ from the signs of the coefficients of
the corresponding polynomials in the subresultant prs; however, the absolute
values are the same.
To compute the Euclidean sequence, no determinant evaluation takes place.
We first compute the (generalized) Sturm sequence of p and q using
sturm_pg(p, q, x, 1), in which case the coefficients are (in absolute value)
equal to subresultants. Then we change the signs of the remainders in the
Sturm sequence according to the pattern "-, -, +, +, -, -, +, +,..." ;
see Lemma 1 in the 1st reference or Theorem 3 in the 2nd reference as well as
the function sturm_pg(p, q, x).
References
==========
1. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``A Basic Result
on the Theory of Subresultants.'' Serdica Journal of Computing 10 (2016), Νο.1, 31-48.
2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``On the Remainders
Obtained in Finding the Greatest Common Divisor of Two Polynomials.'' Serdica
Journal of Computing 9(2) (2015), 123-138.
3. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Subresultant Polynomial
Remainder Sequences Obtained by Polynomial Divisions in Q[x] or in Z[x].''
Serdica Journal of Computing 10 (2016), Νο.3-4, 197-217.
"""
# compute the sturmian sequence using the Pell-Gordon (or AMV) theorem
# with the coefficients in the prs being (in absolute value) subresultants
prs = sturm_pg(p, q, x, 1) ## any other method would do
# defensive
if prs == [] or len(prs) == 2:
return prs
# the signs of the first two polys in the sequence stay the same
euclid_seq = [prs[0], prs[1]]
# change the signs according to "-, -, +, +, -, -, +, +,..."
flag = 0
m = len(prs)
i = 2
while i <= m-1:
if flag == 0:
euclid_seq.append(- prs[i] )
i = i + 1
if i == m:
break
euclid_seq.append(- prs[i] )
i = i + 1
flag = 1
elif flag == 1:
euclid_seq.append(prs[i] )
i = i + 1
if i == m:
break
euclid_seq.append(prs[i] )
i = i + 1
flag = 0
return euclid_seq
def euclid_q(p, q, x):
"""
p, q are polynomials in Z[x] or Q[x]. It is assumed
that degree(p, x) >= degree(q, x).
Computes the Euclidean sequence of p and q in Q[x].
Polynomial divisions in Q[x] are performed, using the function rem(p, q, x).
The coefficients of the polynomials in the Euclidean sequence can be uniquely
determined from the corresponding coefficients of the polynomials found
either in:
(a) the ``modified'' subresultant polynomial remainder sequence,
(references 1, 2)
or in
(b) the subresultant polynomial remainder sequence (references 3).
References
==========
1. Pell A. J., R. L. Gordon. The Modified Remainders Obtained in Finding
the Highest Common Factor of Two Polynomials. Annals of MatheMatics,
Second Series, 18 (1917), No. 4, 188–193.
2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Sturm Sequences
and Modified Subresultant Polynomial Remainder Sequences.''
Serdica Journal of Computing, Vol. 8, No 1, 29–46, 2014.
3. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``A Basic Result
on the Theory of Subresultants.'' Serdica Journal of Computing 10 (2016), Νο.1, 31-48.
"""
# make sure neither p nor q is 0
if p == 0 or q == 0:
return [p, q]
# make sure proper degrees
d0 = degree(p, x)
d1 = degree(q, x)
if d0 == 0 and d1 == 0:
return [p, q]
if d1 > d0:
d0, d1 = d1, d0
p, q = q, p
if d0 > 0 and d1 == 0:
return [p,q]
# make sure LC(p) > 0
flag = 0
if LC(p,x) < 0:
flag = 1
p = -p
q = -q
# initialize
a0, a1 = p, q # the input polys
euclid_seq = [a0, a1] # the output list
a2 = rem(a0, a1, domain=QQ) # first remainder
d2 = degree(a2, x) # degree of a2
euclid_seq.append( a2 )
# main loop
while d2 > 0:
a0, a1, d0, d1 = a1, a2, d1, d2 # update polys and degrees
a2 = rem(a0, a1, domain=QQ) # new remainder
d2 = degree(a2, x) # actual degree of a2
euclid_seq.append( a2 )
if flag: # change the sign of the sequence
euclid_seq = [-i for i in euclid_seq]
# gcd is of degree > 0 ?
m = len(euclid_seq)
if euclid_seq[m - 1] == nan or euclid_seq[m - 1] == 0:
euclid_seq.pop(m - 1)
return euclid_seq
def euclid_amv(f, g, x):
"""
f, g are polynomials in Z[x] or Q[x]. It is assumed
that degree(f, x) >= degree(g, x).
Computes the Euclidean sequence of p and q in Z[x] or Q[x].
If the Euclidean sequence is complete the coefficients of the polynomials
in the sequence are subresultants. That is, they are determinants of
appropriately selected submatrices of sylvester1, Sylvester's matrix of 1840.
In this case the Euclidean sequence coincides with the subresultant prs,
of the polynomials p, q.
If the Euclidean sequence is incomplete the signs of the coefficients of the
polynomials in the sequence may differ from the signs of the coefficients of
the corresponding polynomials in the subresultant prs; however, the absolute
values are the same.
To compute the coefficients, no determinant evaluation takes place.
Instead, polynomial divisions in Z[x] or Q[x] are performed, using
the function rem_z(f, g, x); the coefficients of the remainders
computed this way become subresultants with the help of the
Collins-Brown-Traub formula for coefficient reduction.
References
==========
1. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``A Basic Result
on the Theory of Subresultants.'' Serdica Journal of Computing 10 (2016), Νο.1, 31-48.
2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Subresultant Polynomial
remainder Sequences Obtained by Polynomial Divisions in Q[x] or in Z[x].''
Serdica Journal of Computing 10 (2016), Νο.3-4, 197-217.
"""
# make sure neither f nor g is 0
if f == 0 or g == 0:
return [f, g]
# make sure proper degrees
d0 = degree(f, x)
d1 = degree(g, x)
if d0 == 0 and d1 == 0:
return [f, g]
if d1 > d0:
d0, d1 = d1, d0
f, g = g, f
if d0 > 0 and d1 == 0:
return [f, g]
# initialize
a0 = f
a1 = g
euclid_seq = [a0, a1]
deg_dif_p1, c = degree(a0, x) - degree(a1, x) + 1, -1
# compute the first polynomial of the prs
i = 1
a2 = rem_z(a0, a1, x) / Abs( (-1)**deg_dif_p1 ) # first remainder
euclid_seq.append( a2 )
d2 = degree(a2, x) # actual degree of a2
# main loop
while d2 >= 1:
a0, a1, d0, d1 = a1, a2, d1, d2 # update polys and degrees
i += 1
sigma0 = -LC(a0)
c = (sigma0**(deg_dif_p1 - 1)) / (c**(deg_dif_p1 - 2))
deg_dif_p1 = degree(a0, x) - d2 + 1
a2 = rem_z(a0, a1, x) / Abs( ((c**(deg_dif_p1 - 1)) * sigma0) )
euclid_seq.append( a2 )
d2 = degree(a2, x) # actual degree of a2
# gcd is of degree > 0 ?
m = len(euclid_seq)
if euclid_seq[m - 1] == nan or euclid_seq[m - 1] == 0:
euclid_seq.pop(m - 1)
return euclid_seq
def modified_subresultants_pg(p, q, x):
"""
p, q are polynomials in Z[x] or Q[x]. It is assumed
that degree(p, x) >= degree(q, x).
Computes the ``modified'' subresultant prs of p and q in Z[x] or Q[x];
the coefficients of the polynomials in the sequence are
``modified'' subresultants. That is, they are determinants of appropriately
selected submatrices of sylvester2, Sylvester's matrix of 1853.
To compute the coefficients, no determinant evaluation takes place. Instead,
polynomial divisions in Q[x] are performed, using the function rem(p, q, x);
the coefficients of the remainders computed this way become ``modified''
subresultants with the help of the Pell-Gordon Theorem of 1917.
If the ``modified'' subresultant prs is complete, and LC( p ) > 0, it coincides
with the (generalized) Sturm sequence of the polynomials p, q.
References
==========
1. Pell A. J., R. L. Gordon. The Modified Remainders Obtained in Finding
the Highest Common Factor of Two Polynomials. Annals of MatheMatics,
Second Series, 18 (1917), No. 4, 188–193.
2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Sturm Sequences
and Modified Subresultant Polynomial Remainder Sequences.''
Serdica Journal of Computing, Vol. 8, No 1, 29–46, 2014.
"""
# make sure neither p nor q is 0
if p == 0 or q == 0:
return [p, q]
# make sure proper degrees
d0 = degree(p,x)
d1 = degree(q,x)
if d0 == 0 and d1 == 0:
return [p, q]
if d1 > d0:
d0, d1 = d1, d0
p, q = q, p
if d0 > 0 and d1 == 0:
return [p,q]
# initialize
k = var('k') # index in summation formula
u_list = [] # of elements (-1)**u_i
subres_l = [p, q] # mod. subr. prs output list
a0, a1 = p, q # the input polys
del0 = d0 - d1 # degree difference
degdif = del0 # save it
rho_1 = LC(a0) # lead. coeff (a0)
# Initialize Pell-Gordon variables
rho_list_minus_1 = sign( LC(a0, x)) # sign of LC(a0)
rho1 = LC(a1, x) # leading coeff of a1
rho_list = [ sign(rho1)] # of signs
p_list = [del0] # of degree differences
u = summation(k, (k, 1, p_list[0])) # value of u
u_list.append(u) # of u values
v = sum(p_list) # v value
# first remainder
exp_deg = d1 - 1 # expected degree of a2
a2 = - rem(a0, a1, domain=QQ) # first remainder
rho2 = LC(a2, x) # leading coeff of a2
d2 = degree(a2, x) # actual degree of a2
deg_diff_new = exp_deg - d2 # expected - actual degree
del1 = d1 - d2 # degree difference
# mul_fac is the factor by which a2 is multiplied to
# get integer coefficients
mul_fac_old = rho1**(del0 + del1 - deg_diff_new)
# update Pell-Gordon variables
p_list.append(1 + deg_diff_new) # deg_diff_new is 0 for complete seq
# apply Pell-Gordon formula (7) in second reference
num = 1 # numerator of fraction
for k in range(len(u_list)):
num *= (-1)**u_list[k]
num = num * (-1)**v
# denominator depends on complete / incomplete seq
if deg_diff_new == 0: # complete seq
den = 1
for k in range(len(rho_list)):
den *= rho_list[k]**(p_list[k] + p_list[k + 1])
den = den * rho_list_minus_1
else: # incomplete seq
den = 1
for k in range(len(rho_list)-1):
den *= rho_list[k]**(p_list[k] + p_list[k + 1])
den = den * rho_list_minus_1
expo = (p_list[len(rho_list) - 1] + p_list[len(rho_list)] - deg_diff_new)
den = den * rho_list[len(rho_list) - 1]**expo
# the sign of the determinant depends on sg(num / den)
if sign(num / den) > 0:
subres_l.append( simplify(rho_1**degdif*a2* Abs(mul_fac_old) ) )
else:
subres_l.append(- simplify(rho_1**degdif*a2* Abs(mul_fac_old) ) )
# update Pell-Gordon variables
k = var('k')
rho_list.append( sign(rho2))
u = summation(k, (k, 1, p_list[len(p_list) - 1]))
u_list.append(u)
v = sum(p_list)
deg_diff_old=deg_diff_new
# main loop
while d2 > 0:
a0, a1, d0, d1 = a1, a2, d1, d2 # update polys and degrees
del0 = del1 # update degree difference
exp_deg = d1 - 1 # new expected degree
a2 = - rem(a0, a1, domain=QQ) # new remainder
rho3 = LC(a2, x) # leading coeff of a2
d2 = degree(a2, x) # actual degree of a2
deg_diff_new = exp_deg - d2 # expected - actual degree
del1 = d1 - d2 # degree difference
# take into consideration the power
# rho1**deg_diff_old that was "left out"
expo_old = deg_diff_old # rho1 raised to this power
expo_new = del0 + del1 - deg_diff_new # rho2 raised to this power
mul_fac_new = rho2**(expo_new) * rho1**(expo_old) * mul_fac_old
# update variables
deg_diff_old, mul_fac_old = deg_diff_new, mul_fac_new
rho1, rho2 = rho2, rho3
# update Pell-Gordon variables
p_list.append(1 + deg_diff_new) # deg_diff_new is 0 for complete seq
# apply Pell-Gordon formula (7) in second reference
num = 1 # numerator
for k in range(len(u_list)):
num *= (-1)**u_list[k]
num = num * (-1)**v
# denominator depends on complete / incomplete seq
if deg_diff_new == 0: # complete seq
den = 1
for k in range(len(rho_list)):
den *= rho_list[k]**(p_list[k] + p_list[k + 1])
den = den * rho_list_minus_1
else: # incomplete seq
den = 1
for k in range(len(rho_list)-1):
den *= rho_list[k]**(p_list[k] + p_list[k + 1])
den = den * rho_list_minus_1
expo = (p_list[len(rho_list) - 1] + p_list[len(rho_list)] - deg_diff_new)
den = den * rho_list[len(rho_list) - 1]**expo
# the sign of the determinant depends on sg(num / den)
if sign(num / den) > 0:
subres_l.append( simplify(rho_1**degdif*a2* Abs(mul_fac_old) ) )
else:
subres_l.append(- simplify(rho_1**degdif*a2* Abs(mul_fac_old) ) )
# update Pell-Gordon variables
k = var('k')
rho_list.append( sign(rho2))
u = summation(k, (k, 1, p_list[len(p_list) - 1]))
u_list.append(u)
v = sum(p_list)
# gcd is of degree > 0 ?
m = len(subres_l)
if subres_l[m - 1] == nan or subres_l[m - 1] == 0:
subres_l.pop(m - 1)
# LC( p ) < 0
m = len(subres_l) # list may be shorter now due to deg(gcd ) > 0
if LC( p ) < 0:
aux_seq = [subres_l[0], subres_l[1]]
for i in range(2, m):
aux_seq.append(simplify(subres_l[i] * (-1) ))
subres_l = aux_seq
return subres_l
def subresultants_pg(p, q, x):
"""
p, q are polynomials in Z[x] or Q[x]. It is assumed
that degree(p, x) >= degree(q, x).
Computes the subresultant prs of p and q in Z[x] or Q[x], from
the modified subresultant prs of p and q.
The coefficients of the polynomials in these two sequences differ only
in sign and the factor LC(p)**( deg(p)- deg(q)) as stated in
Theorem 2 of the reference.
The coefficients of the polynomials in the output sequence are
subresultants. That is, they are determinants of appropriately
selected submatrices of sylvester1, Sylvester's matrix of 1840.
If the subresultant prs is complete, then it coincides with the
Euclidean sequence of the polynomials p, q.
References
==========
1. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ‘‘On the Remainders
Obtained in Finding the Greatest Common Divisor of Two Polynomials.''
Serdica Journal of Computing 9(2) (2015), 123-138.
"""
# compute the modified subresultant prs
lst = modified_subresultants_pg(p,q,x) ## any other method would do
# defensive
if lst == [] or len(lst) == 2:
return lst
# the coefficients in lst are modified subresultants and, hence, are
# greater than those of the corresponding subresultants by the factor
# LC(lst[0])**( deg(lst[0]) - deg(lst[1])); see Theorem 2 in reference.
lcf = LC(lst[0])**( degree(lst[0], x) - degree(lst[1], x) )
# Initialize the subresultant prs list
subr_seq = [lst[0], lst[1]]
# compute the degree sequences m_i and j_i of Theorem 2 in reference.
deg_seq = [degree(Poly(poly, x), x) for poly in lst]
deg = deg_seq[0]
deg_seq_s = deg_seq[1:-1]
m_seq = [m-1 for m in deg_seq_s]
j_seq = [deg - m for m in m_seq]
# compute the AMV factors of Theorem 2 in reference.
fact = [(-1)**( j*(j-1)/S(2) ) for j in j_seq]
# shortened list without the first two polys
lst_s = lst[2:]
# poly lst_s[k] is multiplied times fact[k], divided by lcf
# and appended to the subresultant prs list
m = len(fact)
for k in range(m):
if sign(fact[k]) == -1:
subr_seq.append(-lst_s[k] / lcf)
else:
subr_seq.append(lst_s[k] / lcf)
return subr_seq
def subresultants_amv_q(p, q, x):
"""
p, q are polynomials in Z[x] or Q[x]. It is assumed
that degree(p, x) >= degree(q, x).
Computes the subresultant prs of p and q in Q[x];
the coefficients of the polynomials in the sequence are
subresultants. That is, they are determinants of appropriately
selected submatrices of sylvester1, Sylvester's matrix of 1840.
To compute the coefficients, no determinant evaluation takes place.
Instead, polynomial divisions in Q[x] are performed, using the
function rem(p, q, x); the coefficients of the remainders
computed this way become subresultants with the help of the
Akritas-Malaschonok-Vigklas Theorem of 2015.
If the subresultant prs is complete, then it coincides with the
Euclidean sequence of the polynomials p, q.
References
==========
1. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``A Basic Result
on the Theory of Subresultants.'' Serdica Journal of Computing 10 (2016), Νο.1, 31-48.
2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Subresultant Polynomial
remainder Sequences Obtained by Polynomial Divisions in Q[x] or in Z[x].''
Serdica Journal of Computing 10 (2016), Νο.3-4, 197-217.
"""
# make sure neither p nor q is 0
if p == 0 or q == 0:
return [p, q]
# make sure proper degrees
d0 = degree(p, x)
d1 = degree(q, x)
if d0 == 0 and d1 == 0:
return [p, q]
if d1 > d0:
d0, d1 = d1, d0
p, q = q, p
if d0 > 0 and d1 == 0:
return [p, q]
# initialize
i, s = 0, 0 # counters for remainders & odd elements
p_odd_index_sum = 0 # contains the sum of p_1, p_3, etc
subres_l = [p, q] # subresultant prs output list
a0, a1 = p, q # the input polys
sigma1 = LC(a1, x) # leading coeff of a1
p0 = d0 - d1 # degree difference
if p0 % 2 == 1:
s += 1
phi = floor( (s + 1) / 2 )
mul_fac = 1
d2 = d1
# main loop
while d2 > 0:
i += 1
a2 = rem(a0, a1, domain= QQ) # new remainder
if i == 1:
sigma2 = LC(a2, x)
else:
sigma3 = LC(a2, x)
sigma1, sigma2 = sigma2, sigma3
d2 = degree(a2, x)
p1 = d1 - d2
psi = i + phi + p_odd_index_sum
# new mul_fac
mul_fac = sigma1**(p0 + 1) * mul_fac
## compute the sign of the first fraction in formula (9) of the paper
# numerator
num = (-1)**psi
# denominator
den = sign(mul_fac)
# the sign of the determinant depends on sign( num / den ) != 0
if sign(num / den) > 0:
subres_l.append( simplify(expand(a2* Abs(mul_fac))))
else:
subres_l.append(- simplify(expand(a2* Abs(mul_fac))))
## bring into mul_fac the missing power of sigma if there was a degree gap
if p1 - 1 > 0:
mul_fac = mul_fac * sigma1**(p1 - 1)
# update AMV variables
a0, a1, d0, d1 = a1, a2, d1, d2
p0 = p1
if p0 % 2 ==1:
s += 1
phi = floor( (s + 1) / 2 )
if i%2 == 1:
p_odd_index_sum += p0 # p_i has odd index
# gcd is of degree > 0 ?
m = len(subres_l)
if subres_l[m - 1] == nan or subres_l[m - 1] == 0:
subres_l.pop(m - 1)
return subres_l
def compute_sign(base, expo):
'''
base != 0 and expo >= 0 are integers;
returns the sign of base**expo without
evaluating the power itself!
'''
sb = sign(base)
if sb == 1:
return 1
pe = expo % 2
if pe == 0:
return -sb
else:
return sb
def rem_z(p, q, x):
'''
Intended mainly for p, q polynomials in Z[x] so that,
on dividing p by q, the remainder will also be in Z[x]. (However,
it also works fine for polynomials in Q[x].) It is assumed
that degree(p, x) >= degree(q, x).
It premultiplies p by the _absolute_ value of the leading coefficient
of q, raised to the power deg(p) - deg(q) + 1 and then performs
polynomial division in Q[x], using the function rem(p, q, x).
By contrast the function prem(p, q, x) does _not_ use the absolute
value of the leading coefficient of q.
This results not only in ``messing up the signs'' of the Euclidean and
Sturmian prs's as mentioned in the second reference,
but also in violation of the main results of the first and third
references --- Theorem 4 and Theorem 1 respectively. Theorems 4 and 1
establish a one-to-one correspondence between the Euclidean and the
Sturmian prs of p, q, on one hand, and the subresultant prs of p, q,
on the other.
References
==========
1. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``On the Remainders
Obtained in Finding the Greatest Common Divisor of Two Polynomials.''
Serdica Journal of Computing, 9(2) (2015), 123-138.
2. http://planetMath.org/sturmstheorem
3. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``A Basic Result on
the Theory of Subresultants.'' Serdica Journal of Computing 10 (2016), Νο.1, 31-48.
'''
if (p.as_poly().is_univariate and q.as_poly().is_univariate and
p.as_poly().gens == q.as_poly().gens):
delta = (degree(p, x) - degree(q, x) + 1)
return rem(Abs(LC(q, x))**delta * p, q, x)
else:
return prem(p, q, x)
def quo_z(p, q, x):
"""
Intended mainly for p, q polynomials in Z[x] so that,
on dividing p by q, the quotient will also be in Z[x]. (However,
it also works fine for polynomials in Q[x].) It is assumed
that degree(p, x) >= degree(q, x).
It premultiplies p by the _absolute_ value of the leading coefficient
of q, raised to the power deg(p) - deg(q) + 1 and then performs
polynomial division in Q[x], using the function quo(p, q, x).
By contrast the function pquo(p, q, x) does _not_ use the absolute
value of the leading coefficient of q.
See also function rem_z(p, q, x) for additional comments and references.
"""
if (p.as_poly().is_univariate and q.as_poly().is_univariate and
p.as_poly().gens == q.as_poly().gens):
delta = (degree(p, x) - degree(q, x) + 1)
return quo(Abs(LC(q, x))**delta * p, q, x)
else:
return pquo(p, q, x)
def subresultants_amv(f, g, x):
"""
p, q are polynomials in Z[x] or Q[x]. It is assumed
that degree(f, x) >= degree(g, x).
Computes the subresultant prs of p and q in Z[x] or Q[x];
the coefficients of the polynomials in the sequence are
subresultants. That is, they are determinants of appropriately
selected submatrices of sylvester1, Sylvester's matrix of 1840.
To compute the coefficients, no determinant evaluation takes place.
Instead, polynomial divisions in Z[x] or Q[x] are performed, using
the function rem_z(p, q, x); the coefficients of the remainders
computed this way become subresultants with the help of the
Akritas-Malaschonok-Vigklas Theorem of 2015 and the Collins-Brown-
Traub formula for coefficient reduction.
If the subresultant prs is complete, then it coincides with the
Euclidean sequence of the polynomials p, q.
References
==========
1. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``A Basic Result
on the Theory of Subresultants.'' Serdica Journal of Computing 10 (2016), Νο.1, 31-48.
2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Subresultant Polynomial
remainder Sequences Obtained by Polynomial Divisions in Q[x] or in Z[x].''
Serdica Journal of Computing 10 (2016), Νο.3-4, 197-217.
"""
# make sure neither f nor g is 0
if f == 0 or g == 0:
return [f, g]
# make sure proper degrees
d0 = degree(f, x)
d1 = degree(g, x)
if d0 == 0 and d1 == 0:
return [f, g]
if d1 > d0:
d0, d1 = d1, d0
f, g = g, f
if d0 > 0 and d1 == 0:
return [f, g]
# initialize
a0 = f
a1 = g
subres_l = [a0, a1]
deg_dif_p1, c = degree(a0, x) - degree(a1, x) + 1, -1
# initialize AMV variables
sigma1 = LC(a1, x) # leading coeff of a1
i, s = 0, 0 # counters for remainders & odd elements
p_odd_index_sum = 0 # contains the sum of p_1, p_3, etc
p0 = deg_dif_p1 - 1
if p0 % 2 == 1:
s += 1
phi = floor( (s + 1) / 2 )
# compute the first polynomial of the prs
i += 1
a2 = rem_z(a0, a1, x) / Abs( (-1)**deg_dif_p1 ) # first remainder
sigma2 = LC(a2, x) # leading coeff of a2
d2 = degree(a2, x) # actual degree of a2
p1 = d1 - d2 # degree difference
# sgn_den is the factor, the denominator 1st fraction of (9),
# by which a2 is multiplied to get integer coefficients
sgn_den = compute_sign( sigma1, p0 + 1 )
## compute sign of the 1st fraction in formula (9) of the paper
# numerator
psi = i + phi + p_odd_index_sum
num = (-1)**psi
# denominator
den = sgn_den
# the sign of the determinant depends on sign(num / den) != 0
if sign(num / den) > 0:
subres_l.append( a2 )
else:
subres_l.append( -a2 )
# update AMV variable
if p1 % 2 == 1:
s += 1
# bring in the missing power of sigma if there was gap
if p1 - 1 > 0:
sgn_den = sgn_den * compute_sign( sigma1, p1 - 1 )
# main loop
while d2 >= 1:
phi = floor( (s + 1) / 2 )
if i%2 == 1:
p_odd_index_sum += p1 # p_i has odd index
a0, a1, d0, d1 = a1, a2, d1, d2 # update polys and degrees
p0 = p1 # update degree difference
i += 1
sigma0 = -LC(a0)
c = (sigma0**(deg_dif_p1 - 1)) / (c**(deg_dif_p1 - 2))
deg_dif_p1 = degree(a0, x) - d2 + 1
a2 = rem_z(a0, a1, x) / Abs( ((c**(deg_dif_p1 - 1)) * sigma0) )
sigma3 = LC(a2, x) # leading coeff of a2
d2 = degree(a2, x) # actual degree of a2
p1 = d1 - d2 # degree difference
psi = i + phi + p_odd_index_sum
# update variables
sigma1, sigma2 = sigma2, sigma3
# new sgn_den
sgn_den = compute_sign( sigma1, p0 + 1 ) * sgn_den
# compute the sign of the first fraction in formula (9) of the paper
# numerator
num = (-1)**psi
# denominator
den = sgn_den
# the sign of the determinant depends on sign( num / den ) != 0
if sign(num / den) > 0:
subres_l.append( a2 )
else:
subres_l.append( -a2 )
# update AMV variable
if p1 % 2 ==1:
s += 1
# bring in the missing power of sigma if there was gap
if p1 - 1 > 0:
sgn_den = sgn_den * compute_sign( sigma1, p1 - 1 )
# gcd is of degree > 0 ?
m = len(subres_l)
if subres_l[m - 1] == nan or subres_l[m - 1] == 0:
subres_l.pop(m - 1)
return subres_l
def modified_subresultants_amv(p, q, x):
"""
p, q are polynomials in Z[x] or Q[x]. It is assumed
that degree(p, x) >= degree(q, x).
Computes the modified subresultant prs of p and q in Z[x] or Q[x],
from the subresultant prs of p and q.
The coefficients of the polynomials in the two sequences differ only
in sign and the factor LC(p)**( deg(p)- deg(q)) as stated in
Theorem 2 of the reference.
The coefficients of the polynomials in the output sequence are
modified subresultants. That is, they are determinants of appropriately
selected submatrices of sylvester2, Sylvester's matrix of 1853.
If the modified subresultant prs is complete, and LC( p ) > 0, it coincides
with the (generalized) Sturm's sequence of the polynomials p, q.
References
==========
1. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ‘‘On the Remainders
Obtained in Finding the Greatest Common Divisor of Two Polynomials.''
Serdica Journal of Computing, Serdica Journal of Computing, 9(2) (2015), 123-138.
"""
# compute the subresultant prs
lst = subresultants_amv(p,q,x) ## any other method would do
# defensive
if lst == [] or len(lst) == 2:
return lst
# the coefficients in lst are subresultants and, hence, smaller than those
# of the corresponding modified subresultants by the factor
# LC(lst[0])**( deg(lst[0]) - deg(lst[1])); see Theorem 2.
lcf = LC(lst[0])**( degree(lst[0], x) - degree(lst[1], x) )
# Initialize the modified subresultant prs list
subr_seq = [lst[0], lst[1]]
# compute the degree sequences m_i and j_i of Theorem 2
deg_seq = [degree(Poly(poly, x), x) for poly in lst]
deg = deg_seq[0]
deg_seq_s = deg_seq[1:-1]
m_seq = [m-1 for m in deg_seq_s]
j_seq = [deg - m for m in m_seq]
# compute the AMV factors of Theorem 2
fact = [(-1)**( j*(j-1)/S(2) ) for j in j_seq]
# shortened list without the first two polys
lst_s = lst[2:]
# poly lst_s[k] is multiplied times fact[k] and times lcf
# and appended to the subresultant prs list
m = len(fact)
for k in range(m):
if sign(fact[k]) == -1:
subr_seq.append( simplify(-lst_s[k] * lcf) )
else:
subr_seq.append( simplify(lst_s[k] * lcf) )
return subr_seq
def correct_sign(deg_f, deg_g, s1, rdel, cdel):
"""
Used in various subresultant prs algorithms.
Evaluates the determinant, (a.k.a. subresultant) of a properly selected
submatrix of s1, Sylvester's matrix of 1840, to get the correct sign
and value of the leading coefficient of a given polynomial remainder.
deg_f, deg_g are the degrees of the original polynomials p, q for which the
matrix s1 = sylvester(p, q, x, 1) was constructed.
rdel denotes the expected degree of the remainder; it is the number of
rows to be deleted from each group of rows in s1 as described in the
reference below.
cdel denotes the expected degree minus the actual degree of the remainder;
it is the number of columns to be deleted --- starting with the last column
forming the square matrix --- from the matrix resulting after the row deletions.
References
==========
Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Sturm Sequences
and Modified Subresultant Polynomial Remainder Sequences.''
Serdica Journal of Computing, Vol. 8, No 1, 29–46, 2014.
"""
M = s1[:, :] # copy of matrix s1
# eliminate rdel rows from the first deg_g rows
for i in range(M.rows - deg_f - 1, M.rows - deg_f - rdel - 1, -1):
M.row_del(i)
# eliminate rdel rows from the last deg_f rows
for i in range(M.rows - 1, M.rows - rdel - 1, -1):
M.row_del(i)
# eliminate cdel columns
for i in range(cdel):
M.col_del(M.rows - 1)
# define submatrix
Md = M[:, 0: M.rows]
return Md.det()
def subresultants_rem(p, q, x):
"""
p, q are polynomials in Z[x] or Q[x]. It is assumed
that degree(p, x) >= degree(q, x).
Computes the subresultant prs of p and q in Z[x] or Q[x];
the coefficients of the polynomials in the sequence are
subresultants. That is, they are determinants of appropriately
selected submatrices of sylvester1, Sylvester's matrix of 1840.
To compute the coefficients polynomial divisions in Q[x] are
performed, using the function rem(p, q, x). The coefficients
of the remainders computed this way become subresultants by evaluating
one subresultant per remainder --- that of the leading coefficient.
This way we obtain the correct sign and value of the leading coefficient
of the remainder and we easily ``force'' the rest of the coefficients
to become subresultants.
If the subresultant prs is complete, then it coincides with the
Euclidean sequence of the polynomials p, q.
References
==========
1. Akritas, A. G.:``Three New Methods for Computing Subresultant
Polynomial Remainder Sequences (PRS’s).'' Serdica Journal of Computing 9(1) (2015), 1-26.
"""
# make sure neither p nor q is 0
if p == 0 or q == 0:
return [p, q]
# make sure proper degrees
f, g = p, q
n = deg_f = degree(f, x)
m = deg_g = degree(g, x)
if n == 0 and m == 0:
return [f, g]
if n < m:
n, m, deg_f, deg_g, f, g = m, n, deg_g, deg_f, g, f
if n > 0 and m == 0:
return [f, g]
# initialize
s1 = sylvester(f, g, x, 1)
sr_list = [f, g] # subresultant list
# main loop
while deg_g > 0:
r = rem(p, q, x)
d = degree(r, x)
if d < 0:
return sr_list
# make coefficients subresultants evaluating ONE determinant
exp_deg = deg_g - 1 # expected degree
sign_value = correct_sign(n, m, s1, exp_deg, exp_deg - d)
r = simplify((r / LC(r, x)) * sign_value)
# append poly with subresultant coeffs
sr_list.append(r)
# update degrees and polys
deg_f, deg_g = deg_g, d
p, q = q, r
# gcd is of degree > 0 ?
m = len(sr_list)
if sr_list[m - 1] == nan or sr_list[m - 1] == 0:
sr_list.pop(m - 1)
return sr_list
def pivot(M, i, j):
'''
M is a matrix, and M[i, j] specifies the pivot element.
All elements below M[i, j], in the j-th column, will
be zeroed, if they are not already 0, according to
Dodgson-Bareiss' integer preserving transformations.
References
==========
1. Akritas, A. G.: ``A new method for computing polynomial greatest
common divisors and polynomial remainder sequences.''
Numerische MatheMatik 52, 119-127, 1988.
2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``On a Theorem
by Van Vleck Regarding Sturm Sequences.''
Serdica Journal of Computing, 7, No 4, 101–134, 2013.
'''
ma = M[:, :] # copy of matrix M
rs = ma.rows # No. of rows
cs = ma.cols # No. of cols
for r in range(i+1, rs):
if ma[r, j] != 0:
for c in range(j + 1, cs):
ma[r, c] = ma[i, j] * ma[r, c] - ma[i, c] * ma[r, j]
ma[r, j] = 0
return ma
def rotate_r(L, k):
'''
Rotates right by k. L is a row of a matrix or a list.
'''
ll = list(L)
if ll == []:
return []
for i in range(k):
el = ll.pop(len(ll) - 1)
ll.insert(0, el)
return ll if type(L) is list else Matrix([ll])
def rotate_l(L, k):
'''
Rotates left by k. L is a row of a matrix or a list.
'''
ll = list(L)
if ll == []:
return []
for i in range(k):
el = ll.pop(0)
ll.insert(len(ll) - 1, el)
return ll if type(L) is list else Matrix([ll])
def row2poly(row, deg, x):
'''
Converts the row of a matrix to a poly of degree deg and variable x.
Some entries at the beginning and/or at the end of the row may be zero.
'''
k = 0
poly = []
leng = len(row)
# find the beginning of the poly ; i.e. the first
# non-zero element of the row
while row[k] == 0:
k = k + 1
# append the next deg + 1 elements to poly
for j in range( deg + 1):
if k + j <= leng:
poly.append(row[k + j])
return Poly(poly, x)
def create_ma(deg_f, deg_g, row1, row2, col_num):
'''
Creates a ``small'' matrix M to be triangularized.
deg_f, deg_g are the degrees of the divident and of the
divisor polynomials respectively, deg_g > deg_f.
The coefficients of the divident poly are the elements
in row2 and those of the divisor poly are the elements
in row1.
col_num defines the number of columns of the matrix M.
'''
if deg_g - deg_f >= 1:
print('Reverse degrees')
return
m = zeros(deg_f - deg_g + 2, col_num)
for i in range(deg_f - deg_g + 1):
m[i, :] = rotate_r(row1, i)
m[deg_f - deg_g + 1, :] = row2
return m
def find_degree(M, deg_f):
'''
Finds the degree of the poly corresponding (after triangularization)
to the _last_ row of the ``small'' matrix M, created by create_ma().
deg_f is the degree of the divident poly.
If _last_ row is all 0's returns None.
'''
j = deg_f
for i in range(0, M.cols):
if M[M.rows - 1, i] == 0:
j = j - 1
else:
return j if j >= 0 else 0
def final_touches(s2, r, deg_g):
"""
s2 is sylvester2, r is the row pointer in s2,
deg_g is the degree of the poly last inserted in s2.
After a gcd of degree > 0 has been found with Van Vleck's
method, and was inserted into s2, if its last term is not
in the last column of s2, then it is inserted as many
times as needed, rotated right by one each time, until
the condition is met.
"""
R = s2.row(r-1)
# find the first non zero term
for i in range(s2.cols):
if R[0,i] == 0:
continue
else:
break
# missing rows until last term is in last column
mr = s2.cols - (i + deg_g + 1)
# insert them by replacing the existing entries in the row
i = 0
while mr != 0 and r + i < s2.rows :
s2[r + i, : ] = rotate_r(R, i + 1)
i += 1
mr -= 1
return s2
def subresultants_vv(p, q, x, method = 0):
"""
p, q are polynomials in Z[x] (intended) or Q[x]. It is assumed
that degree(p, x) >= degree(q, x).
Computes the subresultant prs of p, q by triangularizing,
in Z[x] or in Q[x], all the smaller matrices encountered in the
process of triangularizing sylvester2, Sylvester's matrix of 1853;
see references 1 and 2 for Van Vleck's method. With each remainder,
sylvester2 gets updated and is prepared to be printed if requested.
If sylvester2 has small dimensions and you want to see the final,
triangularized matrix use this version with method=1; otherwise,
use either this version with method=0 (default) or the faster version,
subresultants_vv_2(p, q, x), where sylvester2 is used implicitly.
Sylvester's matrix sylvester1 is also used to compute one
subresultant per remainder; namely, that of the leading
coefficient, in order to obtain the correct sign and to
force the remainder coefficients to become subresultants.
If the subresultant prs is complete, then it coincides with the
Euclidean sequence of the polynomials p, q.
If the final, triangularized matrix s2 is printed, then:
(a) if deg(p) - deg(q) > 1 or deg( gcd(p, q) ) > 0, several
of the last rows in s2 will remain unprocessed;
(b) if deg(p) - deg(q) == 0, p will not appear in the final matrix.
References
==========
1. Akritas, A. G.: ``A new method for computing polynomial greatest
common divisors and polynomial remainder sequences.''
Numerische MatheMatik 52, 119-127, 1988.
2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``On a Theorem
by Van Vleck Regarding Sturm Sequences.''
Serdica Journal of Computing, 7, No 4, 101–134, 2013.
3. Akritas, A. G.:``Three New Methods for Computing Subresultant
Polynomial Remainder Sequences (PRS’s).'' Serdica Journal of Computing 9(1) (2015), 1-26.
"""
# make sure neither p nor q is 0
if p == 0 or q == 0:
return [p, q]
# make sure proper degrees
f, g = p, q
n = deg_f = degree(f, x)
m = deg_g = degree(g, x)
if n == 0 and m == 0:
return [f, g]
if n < m:
n, m, deg_f, deg_g, f, g = m, n, deg_g, deg_f, g, f
if n > 0 and m == 0:
return [f, g]
# initialize
s1 = sylvester(f, g, x, 1)
s2 = sylvester(f, g, x, 2)
sr_list = [f, g]
col_num = 2 * n # columns in s2
# make two rows (row0, row1) of poly coefficients
row0 = Poly(f, x, domain = QQ).all_coeffs()
leng0 = len(row0)
for i in range(col_num - leng0):
row0.append(0)
row0 = Matrix([row0])
row1 = Poly(g,x, domain = QQ).all_coeffs()
leng1 = len(row1)
for i in range(col_num - leng1):
row1.append(0)
row1 = Matrix([row1])
# row pointer for deg_f - deg_g == 1; may be reset below
r = 2
# modify first rows of s2 matrix depending on poly degrees
if deg_f - deg_g > 1:
r = 1
# replacing the existing entries in the rows of s2,
# insert row0 (deg_f - deg_g - 1) times, rotated each time
for i in range(deg_f - deg_g - 1):
s2[r + i, : ] = rotate_r(row0, i + 1)
r = r + deg_f - deg_g - 1
# insert row1 (deg_f - deg_g) times, rotated each time
for i in range(deg_f - deg_g):
s2[r + i, : ] = rotate_r(row1, r + i)
r = r + deg_f - deg_g
if deg_f - deg_g == 0:
r = 0
# main loop
while deg_g > 0:
# create a small matrix M, and triangularize it;
M = create_ma(deg_f, deg_g, row1, row0, col_num)
# will need only the first and last rows of M
for i in range(deg_f - deg_g + 1):
M1 = pivot(M, i, i)
M = M1[:, :]
# treat last row of M as poly; find its degree
d = find_degree(M, deg_f)
if d is None:
break
exp_deg = deg_g - 1
# evaluate one determinant & make coefficients subresultants
sign_value = correct_sign(n, m, s1, exp_deg, exp_deg - d)
poly = row2poly(M[M.rows - 1, :], d, x)
temp2 = LC(poly, x)
poly = simplify((poly / temp2) * sign_value)
# update s2 by inserting first row of M as needed
row0 = M[0, :]
for i in range(deg_g - d):
s2[r + i, :] = rotate_r(row0, r + i)
r = r + deg_g - d
# update s2 by inserting last row of M as needed
row1 = rotate_l(M[M.rows - 1, :], deg_f - d)
row1 = (row1 / temp2) * sign_value
for i in range(deg_g - d):
s2[r + i, :] = rotate_r(row1, r + i)
r = r + deg_g - d
# update degrees
deg_f, deg_g = deg_g, d
# append poly with subresultant coeffs
sr_list.append(poly)
# final touches to print the s2 matrix
if method != 0 and s2.rows > 2:
s2 = final_touches(s2, r, deg_g)
pprint(s2)
elif method != 0 and s2.rows == 2:
s2[1, :] = rotate_r(s2.row(1), 1)
pprint(s2)
return sr_list
def subresultants_vv_2(p, q, x):
"""
p, q are polynomials in Z[x] (intended) or Q[x]. It is assumed
that degree(p, x) >= degree(q, x).
Computes the subresultant prs of p, q by triangularizing,
in Z[x] or in Q[x], all the smaller matrices encountered in the
process of triangularizing sylvester2, Sylvester's matrix of 1853;
see references 1 and 2 for Van Vleck's method.
If the sylvester2 matrix has big dimensions use this version,
where sylvester2 is used implicitly. If you want to see the final,
triangularized matrix sylvester2, then use the first version,
subresultants_vv(p, q, x, 1).
sylvester1, Sylvester's matrix of 1840, is also used to compute
one subresultant per remainder; namely, that of the leading
coefficient, in order to obtain the correct sign and to
``force'' the remainder coefficients to become subresultants.
If the subresultant prs is complete, then it coincides with the
Euclidean sequence of the polynomials p, q.
References
==========
1. Akritas, A. G.: ``A new method for computing polynomial greatest
common divisors and polynomial remainder sequences.''
Numerische MatheMatik 52, 119-127, 1988.
2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``On a Theorem
by Van Vleck Regarding Sturm Sequences.''
Serdica Journal of Computing, 7, No 4, 101–134, 2013.
3. Akritas, A. G.:``Three New Methods for Computing Subresultant
Polynomial Remainder Sequences (PRS’s).'' Serdica Journal of Computing 9(1) (2015), 1-26.
"""
# make sure neither p nor q is 0
if p == 0 or q == 0:
return [p, q]
# make sure proper degrees
f, g = p, q
n = deg_f = degree(f, x)
m = deg_g = degree(g, x)
if n == 0 and m == 0:
return [f, g]
if n < m:
n, m, deg_f, deg_g, f, g = m, n, deg_g, deg_f, g, f
if n > 0 and m == 0:
return [f, g]
# initialize
s1 = sylvester(f, g, x, 1)
sr_list = [f, g] # subresultant list
col_num = 2 * n # columns in sylvester2
# make two rows (row0, row1) of poly coefficients
row0 = Poly(f, x, domain = QQ).all_coeffs()
leng0 = len(row0)
for i in range(col_num - leng0):
row0.append(0)
row0 = Matrix([row0])
row1 = Poly(g,x, domain = QQ).all_coeffs()
leng1 = len(row1)
for i in range(col_num - leng1):
row1.append(0)
row1 = Matrix([row1])
# main loop
while deg_g > 0:
# create a small matrix M, and triangularize it
M = create_ma(deg_f, deg_g, row1, row0, col_num)
for i in range(deg_f - deg_g + 1):
M1 = pivot(M, i, i)
M = M1[:, :]
# treat last row of M as poly; find its degree
d = find_degree(M, deg_f)
if d is None:
return sr_list
exp_deg = deg_g - 1
# evaluate one determinant & make coefficients subresultants
sign_value = correct_sign(n, m, s1, exp_deg, exp_deg - d)
poly = row2poly(M[M.rows - 1, :], d, x)
poly = simplify((poly / LC(poly, x)) * sign_value)
# append poly with subresultant coeffs
sr_list.append(poly)
# update degrees and rows
deg_f, deg_g = deg_g, d
row0 = row1
row1 = Poly(poly, x, domain = QQ).all_coeffs()
leng1 = len(row1)
for i in range(col_num - leng1):
row1.append(0)
row1 = Matrix([row1])
return sr_list
|
49827bca8c3fb249054d8b211eca48b018f3896b073204a7fa38a2a1f06057ec
|
"""
This module contains functions for two multivariate resultants. These
are:
- Dixon's resultant.
- Macaulay's resultant.
Multivariate resultants are used to identify whether a multivariate
system has common roots. That is when the resultant is equal to zero.
"""
from sympy import IndexedBase, Matrix, Mul, Poly
from sympy import rem, prod, degree_list, diag
from sympy.core.compatibility import range
from sympy.polys.monomials import monomial_deg, itermonomials
from sympy.polys.orderings import monomial_key
from sympy.polys.polytools import poly_from_expr, total_degree
from sympy.functions.combinatorial.factorials import binomial
from itertools import combinations_with_replacement
class DixonResultant():
"""
A class for retrieving the Dixon's resultant of a multivariate
system.
Examples
========
>>> from sympy.core import symbols
>>> from sympy.polys.multivariate_resultants import DixonResultant
>>> x, y = symbols('x, y')
>>> p = x + y
>>> q = x ** 2 + y ** 3
>>> h = x ** 2 + y
>>> dixon = DixonResultant(variables=[x, y], polynomials=[p, q, h])
>>> poly = dixon.get_dixon_polynomial()
>>> matrix = dixon.get_dixon_matrix(polynomial=poly)
>>> matrix
Matrix([
[ 0, 0, -1, 0, -1],
[ 0, -1, 0, -1, 0],
[-1, 0, 1, 0, 0],
[ 0, -1, 0, 0, 1],
[-1, 0, 0, 1, 0]])
>>> matrix.det()
0
See Also
========
Notebook in examples: sympy/example/notebooks.
References
==========
.. [1] [Kapur1994]_
.. [2] [Palancz08]_
"""
def __init__(self, polynomials, variables):
"""
A class that takes two lists, a list of polynomials and list of
variables. Returns the Dixon matrix of the multivariate system.
Parameters
----------
polynomials : list of polynomials
A list of m n-degree polynomials
variables: list
A list of all n variables
"""
self.polynomials = polynomials
self.variables = variables
self.n = len(self.variables)
self.m = len(self.polynomials)
a = IndexedBase("alpha")
# A list of n alpha variables (the replacing variables)
self.dummy_variables = [a[i] for i in range(self.n)]
# A list of the d_max of each variable.
self.max_degrees = [
max(degree_list(poly)[i] for poly in self.polynomials)
for i in range(self.n)]
def get_dixon_polynomial(self):
r"""
Returns
=======
dixon_polynomial: polynomial
Dixon's polynomial is calculated as:
delta = Delta(A) / ((x_1 - a_1) ... (x_n - a_n)) where,
A = |p_1(x_1,... x_n), ..., p_n(x_1,... x_n)|
|p_1(a_1,... x_n), ..., p_n(a_1,... x_n)|
|... , ..., ...|
|p_1(a_1,... a_n), ..., p_n(a_1,... a_n)|
"""
if self.m != (self.n + 1):
raise ValueError('Method invalid for given combination.')
# First row
rows = [self.polynomials]
temp = list(self.variables)
for idx in range(self.n):
temp[idx] = self.dummy_variables[idx]
substitution = {var: t for var, t in zip(self.variables, temp)}
rows.append([f.subs(substitution) for f in self.polynomials])
A = Matrix(rows)
terms = zip(self.variables, self.dummy_variables)
product_of_differences = Mul(*[a - b for a, b in terms])
dixon_polynomial = (A.det() / product_of_differences).factor()
return poly_from_expr(dixon_polynomial, self.dummy_variables)[0]
def get_upper_degree(self):
list_of_products = [self.variables[i] ** self.max_degrees[i]
for i in range(self.n)]
product = prod(list_of_products)
product = Poly(product).monoms()
return monomial_deg(*product)
def get_dixon_matrix(self, polynomial):
r"""
Construct the Dixon matrix from the coefficients of polynomial
\alpha. Each coefficient is viewed as a polynomial of x_1, ...,
x_n.
"""
# A list of coefficients (in x_i, ..., x_n terms) of the power
# products a_1, ..., a_n in Dixon's polynomial.
coefficients = polynomial.coeffs()
monomials = list(itermonomials(self.variables,
self.get_upper_degree()))
monomials = sorted(monomials, reverse=True,
key=monomial_key('lex', self.variables))
dixon_matrix = Matrix([[Poly(c, *self.variables).coeff_monomial(m)
for m in monomials]
for c in coefficients])
keep = [column for column in range(dixon_matrix.shape[-1])
if any([element != 0 for element
in dixon_matrix[:, column]])]
return dixon_matrix[:, keep]
class MacaulayResultant():
"""
A class for calculating the Macaulay resultant. Note that the
polynomials must be homogenized and their coefficients must be
given as symbols.
Examples
========
>>> from sympy.core import symbols
>>> from sympy.polys.multivariate_resultants import MacaulayResultant
>>> x, y, z = symbols('x, y, z')
>>> a_0, a_1, a_2 = symbols('a_0, a_1, a_2')
>>> b_0, b_1, b_2 = symbols('b_0, b_1, b_2')
>>> c_0, c_1, c_2,c_3, c_4 = symbols('c_0, c_1, c_2, c_3, c_4')
>>> f = a_0 * y - a_1 * x + a_2 * z
>>> g = b_1 * x ** 2 + b_0 * y ** 2 - b_2 * z ** 2
>>> h = c_0 * y * z ** 2 - c_1 * x ** 3 + c_2 * x ** 2 * z - c_3 * x * z ** 2 + c_4 * z ** 3
>>> mac = MacaulayResultant(polynomials=[f, g, h], variables=[x, y, z])
>>> mac.monomial_set
[x**4, x**3*y, x**3*z, x**2*y**2, x**2*y*z, x**2*z**2, x*y**3,
x*y**2*z, x*y*z**2, x*z**3, y**4, y**3*z, y**2*z**2, y*z**3, z**4]
>>> matrix = mac.get_matrix()
>>> submatrix = mac.get_submatrix(matrix)
>>> submatrix
Matrix([
[-a_1, a_0, a_2, 0],
[ 0, -a_1, 0, 0],
[ 0, 0, -a_1, 0],
[ 0, 0, 0, -a_1]])
See Also
========
Notebook in examples: sympy/example/notebooks.
References
==========
.. [1] [Bruce97]_
.. [2] [Stiller96]_
"""
def __init__(self, polynomials, variables):
"""
Parameters
==========
variables: list
A list of all n variables
polynomials : list of sympy polynomials
A list of m n-degree polynomials
"""
self.polynomials = polynomials
self.variables = variables
self.n = len(variables)
# A list of the d_max of each polynomial.
self.degrees = [total_degree(poly, *self.variables) for poly
in self.polynomials]
self.degree_m = self._get_degree_m()
self.monomials_size = self.get_size()
# The set T of all possible monomials of degree degree_m
self.monomial_set = self.get_monomials_of_certain_degree(self.degree_m)
def _get_degree_m(self):
r"""
Returns
=======
degree_m: int
The degree_m is calculated as 1 + \sum_1 ^ n (d_i - 1),
where d_i is the degree of the i polynomial
"""
return 1 + sum(d - 1 for d in self.degrees)
def get_size(self):
r"""
Returns
=======
size: int
The size of set T. Set T is the set of all possible
monomials of the n variables for degree equal to the
degree_m
"""
return binomial(self.degree_m + self.n - 1, self.n - 1)
def get_monomials_of_certain_degree(self, degree):
"""
Returns
=======
monomials: list
A list of monomials of a certain degree.
"""
monomials = [Mul(*monomial) for monomial
in combinations_with_replacement(self.variables,
degree)]
return sorted(monomials, reverse=True,
key=monomial_key('lex', self.variables))
def get_row_coefficients(self):
"""
Returns
=======
row_coefficients: list
The row coefficients of Macaulay's matrix
"""
row_coefficients = []
divisible = []
for i in range(self.n):
if i == 0:
degree = self.degree_m - self.degrees[i]
monomial = self.get_monomials_of_certain_degree(degree)
row_coefficients.append(monomial)
else:
divisible.append(self.variables[i - 1] **
self.degrees[i - 1])
degree = self.degree_m - self.degrees[i]
poss_rows = self.get_monomials_of_certain_degree(degree)
for div in divisible:
for p in poss_rows:
if rem(p, div) == 0:
poss_rows = [item for item in poss_rows
if item != p]
row_coefficients.append(poss_rows)
return row_coefficients
def get_matrix(self):
"""
Returns
=======
macaulay_matrix: Matrix
The Macaulay numerator matrix
"""
rows = []
row_coefficients = self.get_row_coefficients()
for i in range(self.n):
for multiplier in row_coefficients[i]:
coefficients = []
poly = Poly(self.polynomials[i] * multiplier,
*self.variables)
for mono in self.monomial_set:
coefficients.append(poly.coeff_monomial(mono))
rows.append(coefficients)
macaulay_matrix = Matrix(rows)
return macaulay_matrix
def get_reduced_nonreduced(self):
r"""
Returns
=======
reduced: list
A list of the reduced monomials
non_reduced: list
A list of the monomials that are not reduced
Definition
==========
A polynomial is said to be reduced in x_i, if its degree (the
maximum degree of its monomials) in x_i is less than d_i. A
polynomial that is reduced in all variables but one is said
simply to be reduced.
"""
divisible = []
for m in self.monomial_set:
temp = []
for i, v in enumerate(self.variables):
temp.append(bool(total_degree(m, v) >= self.degrees[i]))
divisible.append(temp)
reduced = [i for i, r in enumerate(divisible)
if sum(r) < self.n - 1]
non_reduced = [i for i, r in enumerate(divisible)
if sum(r) >= self.n -1]
return reduced, non_reduced
def get_submatrix(self, matrix):
r"""
Returns
=======
macaulay_submatrix: Matrix
The Macaulay denominator matrix. Columns that are non reduced are kept.
The row which contains one of the a_{i}s is dropped. a_{i}s
are the coefficients of x_i ^ {d_i}.
"""
reduced, non_reduced = self.get_reduced_nonreduced()
# if reduced == [], then det(matrix) should be 1
if reduced == []:
return diag([1])
# reduced != []
reduction_set = [v ** self.degrees[i] for i, v
in enumerate(self.variables)]
ais = list([self.polynomials[i].coeff(reduction_set[i])
for i in range(self.n)])
reduced_matrix = matrix[:, reduced]
keep = []
for row in range(reduced_matrix.rows):
check = [ai in reduced_matrix[row, :] for ai in ais]
if True not in check:
keep.append(row)
return matrix[keep, non_reduced]
|
8938404068dc73eafd49930242ce4187a5f822ede21afdc520a640bdea760932
|
"""Tools for manipulation of rational expressions. """
from __future__ import print_function, division
from sympy.core import Basic, Add, sympify
from sympy.core.compatibility import iterable
from sympy.core.exprtools import gcd_terms
from sympy.utilities import public
@public
def together(expr, deep=False, fraction=True):
"""
Denest and combine rational expressions using symbolic methods.
This function takes an expression or a container of expressions
and puts it (them) together by denesting and combining rational
subexpressions. No heroic measures are taken to minimize degree
of the resulting numerator and denominator. To obtain completely
reduced expression use :func:`cancel`. However, :func:`together`
can preserve as much as possible of the structure of the input
expression in the output (no expansion is performed).
A wide variety of objects can be put together including lists,
tuples, sets, relational objects, integrals and others. It is
also possible to transform interior of function applications,
by setting ``deep`` flag to ``True``.
By definition, :func:`together` is a complement to :func:`apart`,
so ``apart(together(expr))`` should return expr unchanged. Note
however, that :func:`together` uses only symbolic methods, so
it might be necessary to use :func:`cancel` to perform algebraic
simplification and minimize degree of the numerator and denominator.
Examples
========
>>> from sympy import together, exp
>>> from sympy.abc import x, y, z
>>> together(1/x + 1/y)
(x + y)/(x*y)
>>> together(1/x + 1/y + 1/z)
(x*y + x*z + y*z)/(x*y*z)
>>> together(1/(x*y) + 1/y**2)
(x + y)/(x*y**2)
>>> together(1/(1 + 1/x) + 1/(1 + 1/y))
(x*(y + 1) + y*(x + 1))/((x + 1)*(y + 1))
>>> together(exp(1/x + 1/y))
exp(1/y + 1/x)
>>> together(exp(1/x + 1/y), deep=True)
exp((x + y)/(x*y))
>>> together(1/exp(x) + 1/(x*exp(x)))
(x + 1)*exp(-x)/x
>>> together(1/exp(2*x) + 1/(x*exp(3*x)))
(x*exp(x) + 1)*exp(-3*x)/x
"""
def _together(expr):
if isinstance(expr, Basic):
if expr.is_Atom or (expr.is_Function and not deep):
return expr
elif expr.is_Add:
return gcd_terms(list(map(_together, Add.make_args(expr))), fraction=fraction)
elif expr.is_Pow:
base = _together(expr.base)
if deep:
exp = _together(expr.exp)
else:
exp = expr.exp
return expr.__class__(base, exp)
else:
return expr.__class__(*[ _together(arg) for arg in expr.args ])
elif iterable(expr):
return expr.__class__([ _together(ex) for ex in expr ])
return expr
return _together(sympify(expr))
|
440a2371980b2d4895f08929255887378db80c99065dd629738a4737f1ffb598
|
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.core.basic import Basic
from sympy.core.compatibility import string_types, range, Callable
from sympy.core.cache import cacheit
from sympy.core import S, Dummy, Lambda
from sympy import symbols, MatrixBase, ImmutableDenseMatrix
from sympy.solvers import solve
from sympy.vector.scalar import BaseScalar
from sympy import eye, trigsimp, ImmutableMatrix as Matrix, Symbol, sin, cos,\
sqrt, diff, Tuple, acos, atan2, simplify
import sympy.vector
from sympy.vector.orienters import (Orienter, AxisOrienter, BodyOrienter,
SpaceOrienter, QuaternionOrienter)
def CoordSysCartesian(*args, **kwargs):
SymPyDeprecationWarning(
feature="CoordSysCartesian",
useinstead="CoordSys3D",
issue=12865,
deprecated_since_version="1.1"
).warn()
return CoordSys3D(*args, **kwargs)
class CoordSys3D(Basic):
"""
Represents a coordinate system in 3-D space.
"""
def __new__(cls, name, transformation=None, parent=None, location=None,
rotation_matrix=None, vector_names=None, variable_names=None):
"""
The orientation/location parameters are necessary if this system
is being defined at a certain orientation or location wrt another.
Parameters
==========
name : str
The name of the new CoordSys3D instance.
transformation : Lambda, Tuple, str
Transformation defined by transformation equations or chosen
from predefined ones.
location : Vector
The position vector of the new system's origin wrt the parent
instance.
rotation_matrix : SymPy ImmutableMatrix
The rotation matrix of the new coordinate system with respect
to the parent. In other words, the output of
new_system.rotation_matrix(parent).
parent : CoordSys3D
The coordinate system wrt which the orientation/location
(or both) is being defined.
vector_names, variable_names : iterable(optional)
Iterables of 3 strings each, with custom names for base
vectors and base scalars of the new system respectively.
Used for simple str printing.
"""
name = str(name)
Vector = sympy.vector.Vector
BaseVector = sympy.vector.BaseVector
Point = sympy.vector.Point
if not isinstance(name, string_types):
raise TypeError("name should be a string")
if transformation is not None:
if (location is not None) or (rotation_matrix is not None):
raise ValueError("specify either `transformation` or "
"`location`/`rotation_matrix`")
if isinstance(transformation, (Tuple, tuple, list)):
if isinstance(transformation[0], MatrixBase):
rotation_matrix = transformation[0]
location = transformation[1]
else:
transformation = Lambda(transformation[0],
transformation[1])
elif isinstance(transformation, Callable):
x1, x2, x3 = symbols('x1 x2 x3', cls=Dummy)
transformation = Lambda((x1, x2, x3),
transformation(x1, x2, x3))
elif isinstance(transformation, string_types):
transformation = Symbol(transformation)
elif isinstance(transformation, (Symbol, Lambda)):
pass
else:
raise TypeError("transformation: "
"wrong type {0}".format(type(transformation)))
# If orientation information has been provided, store
# the rotation matrix accordingly
if rotation_matrix is None:
rotation_matrix = ImmutableDenseMatrix(eye(3))
else:
if not isinstance(rotation_matrix, MatrixBase):
raise TypeError("rotation_matrix should be an Immutable" +
"Matrix instance")
rotation_matrix = rotation_matrix.as_immutable()
# If location information is not given, adjust the default
# location as Vector.zero
if parent is not None:
if not isinstance(parent, CoordSys3D):
raise TypeError("parent should be a " +
"CoordSys3D/None")
if location is None:
location = Vector.zero
else:
if not isinstance(location, Vector):
raise TypeError("location should be a Vector")
# Check that location does not contain base
# scalars
for x in location.free_symbols:
if isinstance(x, BaseScalar):
raise ValueError("location should not contain" +
" BaseScalars")
origin = parent.origin.locate_new(name + '.origin',
location)
else:
location = Vector.zero
origin = Point(name + '.origin')
if transformation is None:
transformation = Tuple(rotation_matrix, location)
if isinstance(transformation, Tuple):
lambda_transformation = CoordSys3D._compose_rotation_and_translation(
transformation[0],
transformation[1],
parent
)
r, l = transformation
l = l._projections
lambda_lame = CoordSys3D._get_lame_coeff('cartesian')
lambda_inverse = lambda x, y, z: r.inv()*Matrix(
[x-l[0], y-l[1], z-l[2]])
elif isinstance(transformation, Symbol):
trname = transformation.name
lambda_transformation = CoordSys3D._get_transformation_lambdas(trname)
if parent is not None:
if parent.lame_coefficients() != (S(1), S(1), S(1)):
raise ValueError('Parent for pre-defined coordinate '
'system should be Cartesian.')
lambda_lame = CoordSys3D._get_lame_coeff(trname)
lambda_inverse = CoordSys3D._set_inv_trans_equations(trname)
elif isinstance(transformation, Lambda):
if not CoordSys3D._check_orthogonality(transformation):
raise ValueError("The transformation equation does not "
"create orthogonal coordinate system")
lambda_transformation = transformation
lambda_lame = CoordSys3D._calculate_lame_coeff(lambda_transformation)
lambda_inverse = None
else:
lambda_transformation = lambda x, y, z: transformation(x, y, z)
lambda_lame = CoordSys3D._get_lame_coeff(transformation)
lambda_inverse = None
if variable_names is None:
if isinstance(transformation, Lambda):
variable_names = ["x1", "x2", "x3"]
elif isinstance(transformation, Symbol):
if transformation.name is 'spherical':
variable_names = ["r", "theta", "phi"]
elif transformation.name is 'cylindrical':
variable_names = ["r", "theta", "z"]
else:
variable_names = ["x", "y", "z"]
else:
variable_names = ["x", "y", "z"]
if vector_names is None:
vector_names = ["i", "j", "k"]
# All systems that are defined as 'roots' are unequal, unless
# they have the same name.
# Systems defined at same orientation/position wrt the same
# 'parent' are equal, irrespective of the name.
# This is true even if the same orientation is provided via
# different methods like Axis/Body/Space/Quaternion.
# However, coincident systems may be seen as unequal if
# positioned/oriented wrt different parents, even though
# they may actually be 'coincident' wrt the root system.
if parent is not None:
obj = super(CoordSys3D, cls).__new__(
cls, Symbol(name), transformation, parent)
else:
obj = super(CoordSys3D, cls).__new__(
cls, Symbol(name), transformation)
obj._name = name
# Initialize the base vectors
_check_strings('vector_names', vector_names)
vector_names = list(vector_names)
latex_vects = [(r'\mathbf{\hat{%s}_{%s}}' % (x, name)) for
x in vector_names]
pretty_vects = ['%s_%s' % (x, name) for x in vector_names]
obj._vector_names = vector_names
v1 = BaseVector(0, obj, pretty_vects[0], latex_vects[0])
v2 = BaseVector(1, obj, pretty_vects[1], latex_vects[1])
v3 = BaseVector(2, obj, pretty_vects[2], latex_vects[2])
obj._base_vectors = (v1, v2, v3)
# Initialize the base scalars
_check_strings('variable_names', vector_names)
variable_names = list(variable_names)
latex_scalars = [(r"\mathbf{{%s}_{%s}}" % (x, name)) for
x in variable_names]
pretty_scalars = ['%s_%s' % (x, name) for x in variable_names]
obj._variable_names = variable_names
obj._vector_names = vector_names
x1 = BaseScalar(0, obj, pretty_scalars[0], latex_scalars[0])
x2 = BaseScalar(1, obj, pretty_scalars[1], latex_scalars[1])
x3 = BaseScalar(2, obj, pretty_scalars[2], latex_scalars[2])
obj._base_scalars = (x1, x2, x3)
obj._transformation = transformation
obj._transformation_lambda = lambda_transformation
obj._lame_coefficients = lambda_lame(x1, x2, x3)
obj._transformation_from_parent_lambda = lambda_inverse
setattr(obj, variable_names[0], x1)
setattr(obj, variable_names[1], x2)
setattr(obj, variable_names[2], x3)
setattr(obj, vector_names[0], v1)
setattr(obj, vector_names[1], v2)
setattr(obj, vector_names[2], v3)
# Assign params
obj._parent = parent
if obj._parent is not None:
obj._root = obj._parent._root
else:
obj._root = obj
obj._parent_rotation_matrix = rotation_matrix
obj._origin = origin
# Return the instance
return obj
def __str__(self, printer=None):
return self._name
__repr__ = __str__
_sympystr = __str__
def __iter__(self):
return iter(self.base_vectors())
@staticmethod
def _check_orthogonality(equations):
"""
Helper method for _connect_to_cartesian. It checks if
set of transformation equations create orthogonal curvilinear
coordinate system
Parameters
==========
equations : Lambda
Lambda of transformation equations
"""
x1, x2, x3 = symbols("x1, x2, x3", cls=Dummy)
equations = equations(x1, x2, x3)
v1 = Matrix([diff(equations[0], x1),
diff(equations[1], x1), diff(equations[2], x1)])
v2 = Matrix([diff(equations[0], x2),
diff(equations[1], x2), diff(equations[2], x2)])
v3 = Matrix([diff(equations[0], x3),
diff(equations[1], x3), diff(equations[2], x3)])
if any(simplify(i[0] + i[1] + i[2]) == 0 for i in (v1, v2, v3)):
return False
else:
if simplify(v1.dot(v2)) == 0 and simplify(v2.dot(v3)) == 0 \
and simplify(v3.dot(v1)) == 0:
return True
else:
return False
@staticmethod
def _set_inv_trans_equations(curv_coord_name):
"""
Store information about inverse transformation equations for
pre-defined coordinate systems.
Parameters
==========
curv_coord_name : str
Name of coordinate system
"""
if curv_coord_name == 'cartesian':
return lambda x, y, z: (x, y, z)
if curv_coord_name == 'spherical':
return lambda x, y, z: (
sqrt(x**2 + y**2 + z**2),
acos(z/sqrt(x**2 + y**2 + z**2)),
atan2(y, x)
)
if curv_coord_name == 'cylindrical':
return lambda x, y, z: (
sqrt(x**2 + y**2),
atan2(y, x),
z
)
raise ValueError('Wrong set of parameters.'
'Type of coordinate system is defined')
def _calculate_inv_trans_equations(self):
"""
Helper method for set_coordinate_type. It calculates inverse
transformation equations for given transformations equations.
"""
x1, x2, x3 = symbols("x1, x2, x3", cls=Dummy, reals=True)
x, y, z = symbols("x, y, z", cls=Dummy)
equations = self._transformation(x1, x2, x3)
try:
solved = solve([equations[0] - x,
equations[1] - y,
equations[2] - z], (x1, x2, x3), dict=True)[0]
solved = solved[x1], solved[x2], solved[x3]
self._transformation_from_parent_lambda = \
lambda x1, x2, x3: tuple(i.subs(list(zip((x, y, z), (x1, x2, x3)))) for i in solved)
except:
raise ValueError('Wrong set of parameters.')
@staticmethod
def _get_lame_coeff(curv_coord_name):
"""
Store information about Lame coefficients for pre-defined
coordinate systems.
Parameters
==========
curv_coord_name : str
Name of coordinate system
"""
if isinstance(curv_coord_name, string_types):
if curv_coord_name == 'cartesian':
return lambda x, y, z: (S.One, S.One, S.One)
if curv_coord_name == 'spherical':
return lambda r, theta, phi: (S.One, r, r*sin(theta))
if curv_coord_name == 'cylindrical':
return lambda r, theta, h: (S.One, r, S.One)
raise ValueError('Wrong set of parameters.'
' Type of coordinate system is not defined')
return CoordSys3D._calculate_lame_coefficients(curv_coord_name)
@staticmethod
def _calculate_lame_coeff(equations):
"""
It calculates Lame coefficients
for given transformations equations.
Parameters
==========
equations : Lambda
Lambda of transformation equations.
"""
return lambda x1, x2, x3: (
sqrt(diff(equations(x1, x2, x3)[0], x1)**2 +
diff(equations(x1, x2, x3)[1], x1)**2 +
diff(equations(x1, x2, x3)[2], x1)**2),
sqrt(diff(equations(x1, x2, x3)[0], x2)**2 +
diff(equations(x1, x2, x3)[1], x2)**2 +
diff(equations(x1, x2, x3)[2], x2)**2),
sqrt(diff(equations(x1, x2, x3)[0], x3)**2 +
diff(equations(x1, x2, x3)[1], x3)**2 +
diff(equations(x1, x2, x3)[2], x3)**2)
)
def _inverse_rotation_matrix(self):
"""
Returns inverse rotation matrix.
"""
return simplify(self._parent_rotation_matrix**-1)
@staticmethod
def _get_transformation_lambdas(curv_coord_name):
"""
Store information about transformation equations for pre-defined
coordinate systems.
Parameters
==========
curv_coord_name : str
Name of coordinate system
"""
if isinstance(curv_coord_name, string_types):
if curv_coord_name == 'cartesian':
return lambda x, y, z: (x, y, z)
if curv_coord_name == 'spherical':
return lambda r, theta, phi: (
r*sin(theta)*cos(phi),
r*sin(theta)*sin(phi),
r*cos(theta)
)
if curv_coord_name == 'cylindrical':
return lambda r, theta, h: (
r*cos(theta),
r*sin(theta),
h
)
raise ValueError('Wrong set of parameters.'
'Type of coordinate system is defined')
@classmethod
def _rotation_trans_equations(cls, matrix, equations):
"""
Returns the transformation equations obtained from rotation matrix.
Parameters
==========
matrix : Matrix
Rotation matrix
equations : tuple
Transformation equations
"""
return tuple(matrix * Matrix(equations))
@property
def origin(self):
return self._origin
@property
def delop(self):
SymPyDeprecationWarning(
feature="coord_system.delop has been replaced.",
useinstead="Use the Del() class",
deprecated_since_version="1.1",
issue=12866,
).warn()
from sympy.vector.deloperator import Del
return Del()
def base_vectors(self):
return self._base_vectors
def base_scalars(self):
return self._base_scalars
def lame_coefficients(self):
return self._lame_coefficients
def transformation_to_parent(self):
return self._transformation_lambda(*self.base_scalars())
def transformation_from_parent(self):
if self._parent is None:
raise ValueError("no parent coordinate system, use "
"`transformation_from_parent_function()`")
return self._transformation_from_parent_lambda(
*self._parent.base_scalars())
def transformation_from_parent_function(self):
return self._transformation_from_parent_lambda
def rotation_matrix(self, other):
"""
Returns the direction cosine matrix(DCM), also known as the
'rotation matrix' of this coordinate system with respect to
another system.
If v_a is a vector defined in system 'A' (in matrix format)
and v_b is the same vector defined in system 'B', then
v_a = A.rotation_matrix(B) * v_b.
A SymPy Matrix is returned.
Parameters
==========
other : CoordSys3D
The system which the DCM is generated to.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy import symbols
>>> q1 = symbols('q1')
>>> N = CoordSys3D('N')
>>> A = N.orient_new_axis('A', q1, N.i)
>>> N.rotation_matrix(A)
Matrix([
[1, 0, 0],
[0, cos(q1), -sin(q1)],
[0, sin(q1), cos(q1)]])
"""
from sympy.vector.functions import _path
if not isinstance(other, CoordSys3D):
raise TypeError(str(other) +
" is not a CoordSys3D")
# Handle special cases
if other == self:
return eye(3)
elif other == self._parent:
return self._parent_rotation_matrix
elif other._parent == self:
return other._parent_rotation_matrix.T
# Else, use tree to calculate position
rootindex, path = _path(self, other)
result = eye(3)
i = -1
for i in range(rootindex):
result *= path[i]._parent_rotation_matrix
i += 2
while i < len(path):
result *= path[i]._parent_rotation_matrix.T
i += 1
return result
@cacheit
def position_wrt(self, other):
"""
Returns the position vector of the origin of this coordinate
system with respect to another Point/CoordSys3D.
Parameters
==========
other : Point/CoordSys3D
If other is a Point, the position of this system's origin
wrt it is returned. If its an instance of CoordSyRect,
the position wrt its origin is returned.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> N = CoordSys3D('N')
>>> N1 = N.locate_new('N1', 10 * N.i)
>>> N.position_wrt(N1)
(-10)*N.i
"""
return self.origin.position_wrt(other)
def scalar_map(self, other):
"""
Returns a dictionary which expresses the coordinate variables
(base scalars) of this frame in terms of the variables of
otherframe.
Parameters
==========
otherframe : CoordSys3D
The other system to map the variables to.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy import Symbol
>>> A = CoordSys3D('A')
>>> q = Symbol('q')
>>> B = A.orient_new_axis('B', q, A.k)
>>> A.scalar_map(B)
{A.x: B.x*cos(q) - B.y*sin(q), A.y: B.x*sin(q) + B.y*cos(q), A.z: B.z}
"""
relocated_scalars = []
origin_coords = tuple(self.position_wrt(other).to_matrix(other))
for i, x in enumerate(other.base_scalars()):
relocated_scalars.append(x - origin_coords[i])
vars_matrix = (self.rotation_matrix(other) *
Matrix(relocated_scalars))
mapping = {}
for i, x in enumerate(self.base_scalars()):
mapping[x] = trigsimp(vars_matrix[i])
return mapping
def locate_new(self, name, position, vector_names=None,
variable_names=None):
"""
Returns a CoordSys3D with its origin located at the given
position wrt this coordinate system's origin.
Parameters
==========
name : str
The name of the new CoordSys3D instance.
position : Vector
The position vector of the new system's origin wrt this
one.
vector_names, variable_names : iterable(optional)
Iterables of 3 strings each, with custom names for base
vectors and base scalars of the new system respectively.
Used for simple str printing.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> A = CoordSys3D('A')
>>> B = A.locate_new('B', 10 * A.i)
>>> B.origin.position_wrt(A.origin)
10*A.i
"""
if variable_names is None:
variable_names = self._variable_names
if vector_names is None:
vector_names = self._vector_names
return CoordSys3D(name, location=position,
vector_names=vector_names,
variable_names=variable_names,
parent=self)
def orient_new(self, name, orienters, location=None,
vector_names=None, variable_names=None):
"""
Creates a new CoordSys3D oriented in the user-specified way
with respect to this system.
Please refer to the documentation of the orienter classes
for more information about the orientation procedure.
Parameters
==========
name : str
The name of the new CoordSys3D instance.
orienters : iterable/Orienter
An Orienter or an iterable of Orienters for orienting the
new coordinate system.
If an Orienter is provided, it is applied to get the new
system.
If an iterable is provided, the orienters will be applied
in the order in which they appear in the iterable.
location : Vector(optional)
The location of the new coordinate system's origin wrt this
system's origin. If not specified, the origins are taken to
be coincident.
vector_names, variable_names : iterable(optional)
Iterables of 3 strings each, with custom names for base
vectors and base scalars of the new system respectively.
Used for simple str printing.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy import symbols
>>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3')
>>> N = CoordSys3D('N')
Using an AxisOrienter
>>> from sympy.vector import AxisOrienter
>>> axis_orienter = AxisOrienter(q1, N.i + 2 * N.j)
>>> A = N.orient_new('A', (axis_orienter, ))
Using a BodyOrienter
>>> from sympy.vector import BodyOrienter
>>> body_orienter = BodyOrienter(q1, q2, q3, '123')
>>> B = N.orient_new('B', (body_orienter, ))
Using a SpaceOrienter
>>> from sympy.vector import SpaceOrienter
>>> space_orienter = SpaceOrienter(q1, q2, q3, '312')
>>> C = N.orient_new('C', (space_orienter, ))
Using a QuaternionOrienter
>>> from sympy.vector import QuaternionOrienter
>>> q_orienter = QuaternionOrienter(q0, q1, q2, q3)
>>> D = N.orient_new('D', (q_orienter, ))
"""
if variable_names is None:
variable_names = self._variable_names
if vector_names is None:
vector_names = self._vector_names
if isinstance(orienters, Orienter):
if isinstance(orienters, AxisOrienter):
final_matrix = orienters.rotation_matrix(self)
else:
final_matrix = orienters.rotation_matrix()
# TODO: trigsimp is needed here so that the matrix becomes
# canonical (scalar_map also calls trigsimp; without this, you can
# end up with the same CoordinateSystem that compares differently
# due to a differently formatted matrix). However, this is
# probably not so good for performance.
final_matrix = trigsimp(final_matrix)
else:
final_matrix = Matrix(eye(3))
for orienter in orienters:
if isinstance(orienter, AxisOrienter):
final_matrix *= orienter.rotation_matrix(self)
else:
final_matrix *= orienter.rotation_matrix()
return CoordSys3D(name, rotation_matrix=final_matrix,
vector_names=vector_names,
variable_names=variable_names,
location=location,
parent=self)
def orient_new_axis(self, name, angle, axis, location=None,
vector_names=None, variable_names=None):
"""
Axis rotation is a rotation about an arbitrary axis by
some angle. The angle is supplied as a SymPy expr scalar, and
the axis is supplied as a Vector.
Parameters
==========
name : string
The name of the new coordinate system
angle : Expr
The angle by which the new system is to be rotated
axis : Vector
The axis around which the rotation has to be performed
location : Vector(optional)
The location of the new coordinate system's origin wrt this
system's origin. If not specified, the origins are taken to
be coincident.
vector_names, variable_names : iterable(optional)
Iterables of 3 strings each, with custom names for base
vectors and base scalars of the new system respectively.
Used for simple str printing.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy import symbols
>>> q1 = symbols('q1')
>>> N = CoordSys3D('N')
>>> B = N.orient_new_axis('B', q1, N.i + 2 * N.j)
"""
if variable_names is None:
variable_names = self._variable_names
if vector_names is None:
vector_names = self._vector_names
orienter = AxisOrienter(angle, axis)
return self.orient_new(name, orienter,
location=location,
vector_names=vector_names,
variable_names=variable_names)
def orient_new_body(self, name, angle1, angle2, angle3,
rotation_order, location=None,
vector_names=None, variable_names=None):
"""
Body orientation takes this coordinate system through three
successive simple rotations.
Body fixed rotations include both Euler Angles and
Tait-Bryan Angles, see https://en.wikipedia.org/wiki/Euler_angles.
Parameters
==========
name : string
The name of the new coordinate system
angle1, angle2, angle3 : Expr
Three successive angles to rotate the coordinate system by
rotation_order : string
String defining the order of axes for rotation
location : Vector(optional)
The location of the new coordinate system's origin wrt this
system's origin. If not specified, the origins are taken to
be coincident.
vector_names, variable_names : iterable(optional)
Iterables of 3 strings each, with custom names for base
vectors and base scalars of the new system respectively.
Used for simple str printing.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy import symbols
>>> q1, q2, q3 = symbols('q1 q2 q3')
>>> N = CoordSys3D('N')
A 'Body' fixed rotation is described by three angles and
three body-fixed rotation axes. To orient a coordinate system D
with respect to N, each sequential rotation is always about
the orthogonal unit vectors fixed to D. For example, a '123'
rotation will specify rotations about N.i, then D.j, then
D.k. (Initially, D.i is same as N.i)
Therefore,
>>> D = N.orient_new_body('D', q1, q2, q3, '123')
is same as
>>> D = N.orient_new_axis('D', q1, N.i)
>>> D = D.orient_new_axis('D', q2, D.j)
>>> D = D.orient_new_axis('D', q3, D.k)
Acceptable rotation orders are of length 3, expressed in XYZ or
123, and cannot have a rotation about about an axis twice in a row.
>>> B = N.orient_new_body('B', q1, q2, q3, '123')
>>> B = N.orient_new_body('B', q1, q2, 0, 'ZXZ')
>>> B = N.orient_new_body('B', 0, 0, 0, 'XYX')
"""
orienter = BodyOrienter(angle1, angle2, angle3, rotation_order)
return self.orient_new(name, orienter,
location=location,
vector_names=vector_names,
variable_names=variable_names)
def orient_new_space(self, name, angle1, angle2, angle3,
rotation_order, location=None,
vector_names=None, variable_names=None):
"""
Space rotation is similar to Body rotation, but the rotations
are applied in the opposite order.
Parameters
==========
name : string
The name of the new coordinate system
angle1, angle2, angle3 : Expr
Three successive angles to rotate the coordinate system by
rotation_order : string
String defining the order of axes for rotation
location : Vector(optional)
The location of the new coordinate system's origin wrt this
system's origin. If not specified, the origins are taken to
be coincident.
vector_names, variable_names : iterable(optional)
Iterables of 3 strings each, with custom names for base
vectors and base scalars of the new system respectively.
Used for simple str printing.
See Also
========
CoordSys3D.orient_new_body : method to orient via Euler
angles
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy import symbols
>>> q1, q2, q3 = symbols('q1 q2 q3')
>>> N = CoordSys3D('N')
To orient a coordinate system D with respect to N, each
sequential rotation is always about N's orthogonal unit vectors.
For example, a '123' rotation will specify rotations about
N.i, then N.j, then N.k.
Therefore,
>>> D = N.orient_new_space('D', q1, q2, q3, '312')
is same as
>>> B = N.orient_new_axis('B', q1, N.i)
>>> C = B.orient_new_axis('C', q2, N.j)
>>> D = C.orient_new_axis('D', q3, N.k)
"""
orienter = SpaceOrienter(angle1, angle2, angle3, rotation_order)
return self.orient_new(name, orienter,
location=location,
vector_names=vector_names,
variable_names=variable_names)
def orient_new_quaternion(self, name, q0, q1, q2, q3, location=None,
vector_names=None, variable_names=None):
"""
Quaternion orientation orients the new CoordSys3D with
Quaternions, defined as a finite rotation about lambda, a unit
vector, by some amount theta.
This orientation is described by four parameters:
q0 = cos(theta/2)
q1 = lambda_x sin(theta/2)
q2 = lambda_y sin(theta/2)
q3 = lambda_z sin(theta/2)
Quaternion does not take in a rotation order.
Parameters
==========
name : string
The name of the new coordinate system
q0, q1, q2, q3 : Expr
The quaternions to rotate the coordinate system by
location : Vector(optional)
The location of the new coordinate system's origin wrt this
system's origin. If not specified, the origins are taken to
be coincident.
vector_names, variable_names : iterable(optional)
Iterables of 3 strings each, with custom names for base
vectors and base scalars of the new system respectively.
Used for simple str printing.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy import symbols
>>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3')
>>> N = CoordSys3D('N')
>>> B = N.orient_new_quaternion('B', q0, q1, q2, q3)
"""
orienter = QuaternionOrienter(q0, q1, q2, q3)
return self.orient_new(name, orienter,
location=location,
vector_names=vector_names,
variable_names=variable_names)
def create_new(self, name, transformation, variable_names=None, vector_names=None):
"""
Returns a CoordSys3D which is connected to self by transformation.
Parameters
==========
name : str
The name of the new CoordSys3D instance.
transformation : Lambda, Tuple, str
Transformation defined by transformation equations or chosen
from predefined ones.
vector_names, variable_names : iterable(optional)
Iterables of 3 strings each, with custom names for base
vectors and base scalars of the new system respectively.
Used for simple str printing.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> a = CoordSys3D('a')
>>> b = a.create_new('b', transformation='spherical')
>>> b.transformation_to_parent()
(b.r*sin(b.theta)*cos(b.phi), b.r*sin(b.phi)*sin(b.theta), b.r*cos(b.theta))
>>> b.transformation_from_parent()
(sqrt(a.x**2 + a.y**2 + a.z**2), acos(a.z/sqrt(a.x**2 + a.y**2 + a.z**2)), atan2(a.y, a.x))
"""
return CoordSys3D(name, parent=self, transformation=transformation,
variable_names=variable_names, vector_names=vector_names)
def __init__(self, name, location=None, rotation_matrix=None,
parent=None, vector_names=None, variable_names=None,
latex_vects=None, pretty_vects=None, latex_scalars=None,
pretty_scalars=None, transformation=None):
# Dummy initializer for setting docstring
pass
__init__.__doc__ = __new__.__doc__
@staticmethod
def _compose_rotation_and_translation(rot, translation, parent):
r = lambda x, y, z: CoordSys3D._rotation_trans_equations(rot, (x, y, z))
if parent is None:
return r
dx, dy, dz = [translation.dot(i) for i in parent.base_vectors()]
t = lambda x, y, z: (
x + dx,
y + dy,
z + dz,
)
return lambda x, y, z: t(*r(x, y, z))
def _check_strings(arg_name, arg):
errorstr = arg_name + " must be an iterable of 3 string-types"
if len(arg) != 3:
raise ValueError(errorstr)
for s in arg:
if not isinstance(s, string_types):
raise TypeError(errorstr)
|
6457fc2b7e941914a897ab196ff95e609b2c6ae15575a982701b729313f98558
|
from sympy.vector.vector import (Vector, VectorAdd, VectorMul,
BaseVector, VectorZero, Cross, Dot, cross, dot)
from sympy.vector.dyadic import (Dyadic, DyadicAdd, DyadicMul,
BaseDyadic, DyadicZero)
from sympy.vector.scalar import BaseScalar
from sympy.vector.deloperator import Del
from sympy.vector.coordsysrect import CoordSys3D, CoordSysCartesian
from sympy.vector.functions import (express, matrix_to_vector,
laplacian, is_conservative,
is_solenoidal, scalar_potential,
directional_derivative,
scalar_potential_difference)
from sympy.vector.point import Point
from sympy.vector.orienters import (AxisOrienter, BodyOrienter,
SpaceOrienter, QuaternionOrienter)
from sympy.vector.operators import Gradient, Divergence, Curl, Laplacian, gradient, curl, divergence
|
10109552db863420622a250a4ab1551aada15ff01d321bc3f863e7880303edd9
|
from sympy.simplify import simplify as simp, trigsimp as tsimp
from sympy.core.decorators import call_highest_priority, _sympifyit
from sympy.core.assumptions import StdFactKB
from sympy import factor as fctr, diff as df, Integral
from sympy.core import S, Add, Mul, count_ops
from sympy.core.expr import Expr
class BasisDependent(Expr):
"""
Super class containing functionality common to vectors and
dyadics.
Named so because the representation of these quantities in
sympy.vector is dependent on the basis they are expressed in.
"""
@call_highest_priority('__radd__')
def __add__(self, other):
return self._add_func(self, other)
@call_highest_priority('__add__')
def __radd__(self, other):
return self._add_func(other, self)
@call_highest_priority('__rsub__')
def __sub__(self, other):
return self._add_func(self, -other)
@call_highest_priority('__sub__')
def __rsub__(self, other):
return self._add_func(other, -self)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rmul__')
def __mul__(self, other):
return self._mul_func(self, other)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__mul__')
def __rmul__(self, other):
return self._mul_func(other, self)
def __neg__(self):
return self._mul_func(S(-1), self)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rdiv__')
def __div__(self, other):
return self._div_helper(other)
@call_highest_priority('__div__')
def __rdiv__(self, other):
return TypeError("Invalid divisor for division")
__truediv__ = __div__
__rtruediv__ = __rdiv__
def evalf(self, prec=None, **options):
"""
Implements the SymPy evalf routine for this quantity.
evalf's documentation
=====================
"""
vec = self.zero
for k, v in self.components.items():
vec += v.evalf(prec, **options) * k
return vec
evalf.__doc__ += Expr.evalf.__doc__
n = evalf
def simplify(self, ratio=1.7, measure=count_ops, rational=False, inverse=False):
"""
Implements the SymPy simplify routine for this quantity.
simplify's documentation
========================
"""
simp_components = [simp(v, ratio=ratio, measure=measure,
rational=rational, inverse=inverse) * k for
k, v in self.components.items()]
return self._add_func(*simp_components)
simplify.__doc__ += simp.__doc__
def trigsimp(self, **opts):
"""
Implements the SymPy trigsimp routine, for this quantity.
trigsimp's documentation
========================
"""
trig_components = [tsimp(v, **opts) * k for
k, v in self.components.items()]
return self._add_func(*trig_components)
trigsimp.__doc__ += tsimp.__doc__
def _eval_simplify(self, ratio, measure, rational, inverse):
return self.simplify(ratio=ratio, measure=measure, rational=rational, inverse=inverse)
def _eval_trigsimp(self, **opts):
return self.trigsimp(**opts)
def _eval_derivative(self, wrt):
return self.diff(wrt)
def _eval_Integral(self, *symbols, **assumptions):
integral_components = [Integral(v, *symbols, **assumptions) * k
for k, v in self.components.items()]
return self._add_func(*integral_components)
def as_numer_denom(self):
"""
Returns the expression as a tuple wrt the following
transformation -
expression -> a/b -> a, b
"""
return self, S.One
def factor(self, *args, **kwargs):
"""
Implements the SymPy factor routine, on the scalar parts
of a basis-dependent expression.
factor's documentation
========================
"""
fctr_components = [fctr(v, *args, **kwargs) * k for
k, v in self.components.items()]
return self._add_func(*fctr_components)
factor.__doc__ += fctr.__doc__
def as_coeff_Mul(self, rational=False):
"""Efficiently extract the coefficient of a product. """
return (S(1), self)
def as_coeff_add(self, *deps):
"""Efficiently extract the coefficient of a summation. """
l = [x * self.components[x] for x in self.components]
return 0, tuple(l)
def diff(self, *args, **kwargs):
"""
Implements the SymPy diff routine, for vectors.
diff's documentation
========================
"""
for x in args:
if isinstance(x, BasisDependent):
raise TypeError("Invalid arg for differentiation")
diff_components = [df(v, *args, **kwargs) * k for
k, v in self.components.items()]
return self._add_func(*diff_components)
diff.__doc__ += df.__doc__
def doit(self, **hints):
"""Calls .doit() on each term in the Dyadic"""
doit_components = [self.components[x].doit(**hints) * x
for x in self.components]
return self._add_func(*doit_components)
class BasisDependentAdd(BasisDependent, Add):
"""
Denotes sum of basis dependent quantities such that they cannot
be expressed as base or Mul instances.
"""
def __new__(cls, *args, **options):
components = {}
# Check each arg and simultaneously learn the components
for i, arg in enumerate(args):
if not isinstance(arg, cls._expr_type):
if isinstance(arg, Mul):
arg = cls._mul_func(*(arg.args))
elif isinstance(arg, Add):
arg = cls._add_func(*(arg.args))
else:
raise TypeError(str(arg) +
" cannot be interpreted correctly")
# If argument is zero, ignore
if arg == cls.zero:
continue
# Else, update components accordingly
if hasattr(arg, "components"):
for x in arg.components:
components[x] = components.get(x, 0) + arg.components[x]
temp = list(components.keys())
for x in temp:
if components[x] == 0:
del components[x]
# Handle case of zero vector
if len(components) == 0:
return cls.zero
# Build object
newargs = [x * components[x] for x in components]
obj = super(BasisDependentAdd, cls).__new__(cls,
*newargs, **options)
if isinstance(obj, Mul):
return cls._mul_func(*obj.args)
assumptions = {'commutative': True}
obj._assumptions = StdFactKB(assumptions)
obj._components = components
obj._sys = (list(components.keys()))[0]._sys
return obj
__init__ = Add.__init__
class BasisDependentMul(BasisDependent, Mul):
"""
Denotes product of base- basis dependent quantity with a scalar.
"""
def __new__(cls, *args, **options):
from sympy.vector import Cross, Dot, Curl, Gradient
count = 0
measure_number = S(1)
zeroflag = False
extra_args = []
# Determine the component and check arguments
# Also keep a count to ensure two vectors aren't
# being multiplied
for arg in args:
if isinstance(arg, cls._zero_func):
count += 1
zeroflag = True
elif arg == S(0):
zeroflag = True
elif isinstance(arg, (cls._base_func, cls._mul_func)):
count += 1
expr = arg._base_instance
measure_number *= arg._measure_number
elif isinstance(arg, cls._add_func):
count += 1
expr = arg
elif isinstance(arg, (Cross, Dot, Curl, Gradient)):
extra_args.append(arg)
else:
measure_number *= arg
# Make sure incompatible types weren't multiplied
if count > 1:
raise ValueError("Invalid multiplication")
elif count == 0:
return Mul(*args, **options)
# Handle zero vector case
if zeroflag:
return cls.zero
# If one of the args was a VectorAdd, return an
# appropriate VectorAdd instance
if isinstance(expr, cls._add_func):
newargs = [cls._mul_func(measure_number, x) for
x in expr.args]
return cls._add_func(*newargs)
obj = super(BasisDependentMul, cls).__new__(cls, measure_number,
expr._base_instance,
*extra_args,
**options)
if isinstance(obj, Add):
return cls._add_func(*obj.args)
obj._base_instance = expr._base_instance
obj._measure_number = measure_number
assumptions = {'commutative': True}
obj._assumptions = StdFactKB(assumptions)
obj._components = {expr._base_instance: measure_number}
obj._sys = expr._base_instance._sys
return obj
__init__ = Mul.__init__
def __str__(self, printer=None):
measure_str = self._measure_number.__str__()
if ('(' in measure_str or '-' in measure_str or
'+' in measure_str):
measure_str = '(' + measure_str + ')'
return measure_str + '*' + self._base_instance.__str__(printer)
__repr__ = __str__
_sympystr = __str__
class BasisDependentZero(BasisDependent):
"""
Class to denote a zero basis dependent instance.
"""
components = {}
def __new__(cls):
obj = super(BasisDependentZero, cls).__new__(cls)
# Pre-compute a specific hash value for the zero vector
# Use the same one always
obj._hash = tuple([S(0), cls]).__hash__()
return obj
def __hash__(self):
return self._hash
@call_highest_priority('__req__')
def __eq__(self, other):
return isinstance(other, self._zero_func)
__req__ = __eq__
@call_highest_priority('__radd__')
def __add__(self, other):
if isinstance(other, self._expr_type):
return other
else:
raise TypeError("Invalid argument types for addition")
@call_highest_priority('__add__')
def __radd__(self, other):
if isinstance(other, self._expr_type):
return other
else:
raise TypeError("Invalid argument types for addition")
@call_highest_priority('__rsub__')
def __sub__(self, other):
if isinstance(other, self._expr_type):
return -other
else:
raise TypeError("Invalid argument types for subtraction")
@call_highest_priority('__sub__')
def __rsub__(self, other):
if isinstance(other, self._expr_type):
return other
else:
raise TypeError("Invalid argument types for subtraction")
def __neg__(self):
return self
def normalize(self):
"""
Returns the normalized version of this vector.
"""
return self
def __str__(self, printer=None):
return '0'
__repr__ = __str__
_sympystr = __str__
|
330b4937d23ec17e4125f379c9f35c394b29bd6d8bd0e805cf66b665c8184222
|
from sympy.core.assumptions import StdFactKB
from sympy.core import S, Pow, sympify
from sympy.core.expr import AtomicExpr, Expr
from sympy.core.compatibility import range, default_sort_key
from sympy import sqrt, ImmutableMatrix as Matrix, Add
from sympy.vector.coordsysrect import CoordSys3D
from sympy.vector.basisdependent import (BasisDependent, BasisDependentAdd,
BasisDependentMul, BasisDependentZero)
from sympy.vector.dyadic import BaseDyadic, Dyadic, DyadicAdd
class Vector(BasisDependent):
"""
Super class for all Vector classes.
Ideally, neither this class nor any of its subclasses should be
instantiated by the user.
"""
is_Vector = True
_op_priority = 12.0
@property
def components(self):
"""
Returns the components of this vector in the form of a
Python dictionary mapping BaseVector instances to the
corresponding measure numbers.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> C = CoordSys3D('C')
>>> v = 3*C.i + 4*C.j + 5*C.k
>>> v.components
{C.i: 3, C.j: 4, C.k: 5}
"""
# The '_components' attribute is defined according to the
# subclass of Vector the instance belongs to.
return self._components
def magnitude(self):
"""
Returns the magnitude of this vector.
"""
return sqrt(self & self)
def normalize(self):
"""
Returns the normalized version of this vector.
"""
return self / self.magnitude()
def dot(self, other):
"""
Returns the dot product of this Vector, either with another
Vector, or a Dyadic, or a Del operator.
If 'other' is a Vector, returns the dot product scalar (Sympy
expression).
If 'other' is a Dyadic, the dot product is returned as a Vector.
If 'other' is an instance of Del, returns the directional
derivative operator as a Python function. If this function is
applied to a scalar expression, it returns the directional
derivative of the scalar field wrt this Vector.
Parameters
==========
other: Vector/Dyadic/Del
The Vector or Dyadic we are dotting with, or a Del operator .
Examples
========
>>> from sympy.vector import CoordSys3D, Del
>>> C = CoordSys3D('C')
>>> delop = Del()
>>> C.i.dot(C.j)
0
>>> C.i & C.i
1
>>> v = 3*C.i + 4*C.j + 5*C.k
>>> v.dot(C.k)
5
>>> (C.i & delop)(C.x*C.y*C.z)
C.y*C.z
>>> d = C.i.outer(C.i)
>>> C.i.dot(d)
C.i
"""
# Check special cases
if isinstance(other, Dyadic):
if isinstance(self, VectorZero):
return Vector.zero
outvec = Vector.zero
for k, v in other.components.items():
vect_dot = k.args[0].dot(self)
outvec += vect_dot * v * k.args[1]
return outvec
from sympy.vector.deloperator import Del
if not isinstance(other, Vector) and not isinstance(other, Del):
raise TypeError(str(other) + " is not a vector, dyadic or " +
"del operator")
# Check if the other is a del operator
if isinstance(other, Del):
def directional_derivative(field):
from sympy.vector.functions import directional_derivative
return directional_derivative(field, self)
return directional_derivative
return dot(self, other)
def __and__(self, other):
return self.dot(other)
__and__.__doc__ = dot.__doc__
def cross(self, other):
"""
Returns the cross product of this Vector with another Vector or
Dyadic instance.
The cross product is a Vector, if 'other' is a Vector. If 'other'
is a Dyadic, this returns a Dyadic instance.
Parameters
==========
other: Vector/Dyadic
The Vector or Dyadic we are crossing with.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> C = CoordSys3D('C')
>>> C.i.cross(C.j)
C.k
>>> C.i ^ C.i
0
>>> v = 3*C.i + 4*C.j + 5*C.k
>>> v ^ C.i
5*C.j + (-4)*C.k
>>> d = C.i.outer(C.i)
>>> C.j.cross(d)
(-1)*(C.k|C.i)
"""
# Check special cases
if isinstance(other, Dyadic):
if isinstance(self, VectorZero):
return Dyadic.zero
outdyad = Dyadic.zero
for k, v in other.components.items():
cross_product = self.cross(k.args[0])
outer = cross_product.outer(k.args[1])
outdyad += v * outer
return outdyad
return cross(self, other)
def __xor__(self, other):
return self.cross(other)
__xor__.__doc__ = cross.__doc__
def outer(self, other):
"""
Returns the outer product of this vector with another, in the
form of a Dyadic instance.
Parameters
==========
other : Vector
The Vector with respect to which the outer product is to
be computed.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> N = CoordSys3D('N')
>>> N.i.outer(N.j)
(N.i|N.j)
"""
# Handle the special cases
if not isinstance(other, Vector):
raise TypeError("Invalid operand for outer product")
elif (isinstance(self, VectorZero) or
isinstance(other, VectorZero)):
return Dyadic.zero
# Iterate over components of both the vectors to generate
# the required Dyadic instance
args = []
for k1, v1 in self.components.items():
for k2, v2 in other.components.items():
args.append((v1 * v2) * BaseDyadic(k1, k2))
return DyadicAdd(*args)
def projection(self, other, scalar=False):
"""
Returns the vector or scalar projection of the 'other' on 'self'.
Examples
========
>>> from sympy.vector.coordsysrect import CoordSys3D
>>> from sympy.vector.vector import Vector, BaseVector
>>> C = CoordSys3D('C')
>>> i, j, k = C.base_vectors()
>>> v1 = i + j + k
>>> v2 = 3*i + 4*j
>>> v1.projection(v2)
7/3*C.i + 7/3*C.j + 7/3*C.k
>>> v1.projection(v2, scalar=True)
7/3
"""
if self.equals(Vector.zero):
return S.zero if scalar else Vector.zero
if scalar:
return self.dot(other) / self.dot(self)
else:
return self.dot(other) / self.dot(self) * self
@property
def _projections(self):
"""
Returns the components of this vector but the output includes
also zero values components.
Examples
========
>>> from sympy.vector import CoordSys3D, Vector
>>> C = CoordSys3D('C')
>>> v1 = 3*C.i + 4*C.j + 5*C.k
>>> v1._projections
(3, 4, 5)
>>> v2 = C.x*C.y*C.z*C.i
>>> v2._projections
(C.x*C.y*C.z, 0, 0)
>>> v3 = Vector.zero
>>> v3._projections
(0, 0, 0)
"""
from sympy.vector.operators import _get_coord_sys_from_expr
if isinstance(self, VectorZero):
return (S(0), S(0), S(0))
base_vec = next(iter(_get_coord_sys_from_expr(self))).base_vectors()
return tuple([self.dot(i) for i in base_vec])
def __or__(self, other):
return self.outer(other)
__or__.__doc__ = outer.__doc__
def to_matrix(self, system):
"""
Returns the matrix form of this vector with respect to the
specified coordinate system.
Parameters
==========
system : CoordSys3D
The system wrt which the matrix form is to be computed
Examples
========
>>> from sympy.vector import CoordSys3D
>>> C = CoordSys3D('C')
>>> from sympy.abc import a, b, c
>>> v = a*C.i + b*C.j + c*C.k
>>> v.to_matrix(C)
Matrix([
[a],
[b],
[c]])
"""
return Matrix([self.dot(unit_vec) for unit_vec in
system.base_vectors()])
def separate(self):
"""
The constituents of this vector in different coordinate systems,
as per its definition.
Returns a dict mapping each CoordSys3D to the corresponding
constituent Vector.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> R1 = CoordSys3D('R1')
>>> R2 = CoordSys3D('R2')
>>> v = R1.i + R2.i
>>> v.separate() == {R1: R1.i, R2: R2.i}
True
"""
parts = {}
for vect, measure in self.components.items():
parts[vect.system] = (parts.get(vect.system, Vector.zero) +
vect * measure)
return parts
class BaseVector(Vector, AtomicExpr):
"""
Class to denote a base vector.
Unicode pretty forms in Python 2 should use the prefix ``u``.
"""
def __new__(cls, index, system, pretty_str=None, latex_str=None):
if pretty_str is None:
pretty_str = "x{0}".format(index)
if latex_str is None:
latex_str = "x_{0}".format(index)
pretty_str = str(pretty_str)
latex_str = str(latex_str)
# Verify arguments
if index not in range(0, 3):
raise ValueError("index must be 0, 1 or 2")
if not isinstance(system, CoordSys3D):
raise TypeError("system should be a CoordSys3D")
name = system._vector_names[index]
# Initialize an object
obj = super(BaseVector, cls).__new__(cls, S(index), system)
# Assign important attributes
obj._base_instance = obj
obj._components = {obj: S(1)}
obj._measure_number = S(1)
obj._name = system._name + '.' + name
obj._pretty_form = u'' + pretty_str
obj._latex_form = latex_str
obj._system = system
# The _id is used for printing purposes
obj._id = (index, system)
assumptions = {'commutative': True}
obj._assumptions = StdFactKB(assumptions)
# This attr is used for re-expression to one of the systems
# involved in the definition of the Vector. Applies to
# VectorMul and VectorAdd too.
obj._sys = system
return obj
@property
def system(self):
return self._system
def __str__(self, printer=None):
return self._name
@property
def free_symbols(self):
return {self}
__repr__ = __str__
_sympystr = __str__
class VectorAdd(BasisDependentAdd, Vector):
"""
Class to denote sum of Vector instances.
"""
def __new__(cls, *args, **options):
obj = BasisDependentAdd.__new__(cls, *args, **options)
return obj
def __str__(self, printer=None):
ret_str = ''
items = list(self.separate().items())
items.sort(key=lambda x: x[0].__str__())
for system, vect in items:
base_vects = system.base_vectors()
for x in base_vects:
if x in vect.components:
temp_vect = self.components[x] * x
ret_str += temp_vect.__str__(printer) + " + "
return ret_str[:-3]
__repr__ = __str__
_sympystr = __str__
class VectorMul(BasisDependentMul, Vector):
"""
Class to denote products of scalars and BaseVectors.
"""
def __new__(cls, *args, **options):
obj = BasisDependentMul.__new__(cls, *args, **options)
return obj
@property
def base_vector(self):
""" The BaseVector involved in the product. """
return self._base_instance
@property
def measure_number(self):
""" The scalar expression involved in the definition of
this VectorMul.
"""
return self._measure_number
class VectorZero(BasisDependentZero, Vector):
"""
Class to denote a zero vector
"""
_op_priority = 12.1
_pretty_form = u'0'
_latex_form = r'\mathbf{\hat{0}}'
def __new__(cls):
obj = BasisDependentZero.__new__(cls)
return obj
class Cross(Vector):
"""
Represents unevaluated Cross product.
Examples
========
>>> from sympy.vector import CoordSys3D, Cross
>>> R = CoordSys3D('R')
>>> v1 = R.i + R.j + R.k
>>> v2 = R.x * R.i + R.y * R.j + R.z * R.k
>>> Cross(v1, v2)
Cross(R.i + R.j + R.k, R.x*R.i + R.y*R.j + R.z*R.k)
>>> Cross(v1, v2).doit()
(-R.y + R.z)*R.i + (R.x - R.z)*R.j + (-R.x + R.y)*R.k
"""
def __new__(cls, expr1, expr2):
expr1 = sympify(expr1)
expr2 = sympify(expr2)
if default_sort_key(expr1) > default_sort_key(expr2):
return -Cross(expr2, expr1)
obj = Expr.__new__(cls, expr1, expr2)
obj._expr1 = expr1
obj._expr2 = expr2
return obj
def doit(self, **kwargs):
return cross(self._expr1, self._expr2)
class Dot(Expr):
"""
Represents unevaluated Dot product.
Examples
========
>>> from sympy.vector import CoordSys3D, Dot
>>> from sympy import symbols
>>> R = CoordSys3D('R')
>>> a, b, c = symbols('a b c')
>>> v1 = R.i + R.j + R.k
>>> v2 = a * R.i + b * R.j + c * R.k
>>> Dot(v1, v2)
Dot(R.i + R.j + R.k, a*R.i + b*R.j + c*R.k)
>>> Dot(v1, v2).doit()
a + b + c
"""
def __new__(cls, expr1, expr2):
expr1 = sympify(expr1)
expr2 = sympify(expr2)
expr1, expr2 = sorted([expr1, expr2], key=default_sort_key)
obj = Expr.__new__(cls, expr1, expr2)
obj._expr1 = expr1
obj._expr2 = expr2
return obj
def doit(self, **kwargs):
return dot(self._expr1, self._expr2)
def cross(vect1, vect2):
"""
Returns cross product of two vectors.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy.vector.vector import cross
>>> R = CoordSys3D('R')
>>> v1 = R.i + R.j + R.k
>>> v2 = R.x * R.i + R.y * R.j + R.z * R.k
>>> cross(v1, v2)
(-R.y + R.z)*R.i + (R.x - R.z)*R.j + (-R.x + R.y)*R.k
"""
if isinstance(vect1, Add):
return VectorAdd.fromiter(cross(i, vect2) for i in vect1.args)
if isinstance(vect2, Add):
return VectorAdd.fromiter(cross(vect1, i) for i in vect2.args)
if isinstance(vect1, BaseVector) and isinstance(vect2, BaseVector):
if vect1._sys == vect2._sys:
n1 = vect1.args[0]
n2 = vect2.args[0]
if n1 == n2:
return Vector.zero
n3 = ({0,1,2}.difference({n1, n2})).pop()
sign = 1 if ((n1 + 1) % 3 == n2) else -1
return sign*vect1._sys.base_vectors()[n3]
try:
from .functions import express
return cross(express(vect1, vect2._sys), vect2)
except:
return Cross(vect1, vect2)
if isinstance(vect1, VectorZero) or isinstance(vect2, VectorZero):
return Vector.zero
if isinstance(vect1, VectorMul):
v1, m1 = next(iter(vect1.components.items()))
return m1*cross(v1, vect2)
if isinstance(vect2, VectorMul):
v2, m2 = next(iter(vect2.components.items()))
return m2*cross(vect1, v2)
return Cross(vect1, vect2)
def dot(vect1, vect2):
"""
Returns dot product of two vectors.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy.vector.vector import dot
>>> R = CoordSys3D('R')
>>> v1 = R.i + R.j + R.k
>>> v2 = R.x * R.i + R.y * R.j + R.z * R.k
>>> dot(v1, v2)
R.x + R.y + R.z
"""
if isinstance(vect1, Add):
return Add.fromiter(dot(i, vect2) for i in vect1.args)
if isinstance(vect2, Add):
return Add.fromiter(dot(vect1, i) for i in vect2.args)
if isinstance(vect1, BaseVector) and isinstance(vect2, BaseVector):
if vect1._sys == vect2._sys:
return S.One if vect1 == vect2 else S.Zero
try:
from .functions import express
return dot(vect1, express(vect2, vect1._sys))
except:
return Dot(vect1, vect2)
if isinstance(vect1, VectorZero) or isinstance(vect2, VectorZero):
return S.Zero
if isinstance(vect1, VectorMul):
v1, m1 = next(iter(vect1.components.items()))
return m1*dot(v1, vect2)
if isinstance(vect2, VectorMul):
v2, m2 = next(iter(vect2.components.items()))
return m2*dot(vect1, v2)
return Dot(vect1, vect2)
def _vect_div(one, other):
""" Helper for division involving vectors. """
if isinstance(one, Vector) and isinstance(other, Vector):
raise TypeError("Cannot divide two vectors")
elif isinstance(one, Vector):
if other == S.Zero:
raise ValueError("Cannot divide a vector by zero")
return VectorMul(one, Pow(other, S.NegativeOne))
else:
raise TypeError("Invalid division involving a vector")
Vector._expr_type = Vector
Vector._mul_func = VectorMul
Vector._add_func = VectorAdd
Vector._zero_func = VectorZero
Vector._base_func = BaseVector
Vector._div_helper = _vect_div
Vector.zero = VectorZero()
|
9eafc8a4c98a2978e539a545ea9ac25b08e6828159e32821874fc69a3c465349
|
import collections
from sympy.core.expr import Expr
from sympy.core import sympify, S, preorder_traversal
from sympy.vector.coordsysrect import CoordSys3D
from sympy.vector.vector import Vector, VectorMul, VectorAdd, Cross, Dot, dot
from sympy.vector.scalar import BaseScalar
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.core.function import Derivative
from sympy import Add, Mul
def _get_coord_systems(expr):
g = preorder_traversal(expr)
ret = set([])
for i in g:
if isinstance(i, CoordSys3D):
ret.add(i)
g.skip()
return frozenset(ret)
def _get_coord_sys_from_expr(expr, coord_sys=None):
"""
expr : expression
The coordinate system is extracted from this parameter.
"""
# TODO: Remove this line when warning from issue #12884 will be removed
if coord_sys is not None:
SymPyDeprecationWarning(
feature="coord_sys parameter",
useinstead="do not use it",
deprecated_since_version="1.1",
issue=12884,
).warn()
return _get_coord_systems(expr)
def _split_mul_args_wrt_coordsys(expr):
d = collections.defaultdict(lambda: S.One)
for i in expr.args:
d[_get_coord_systems(i)] *= i
return list(d.values())
class Gradient(Expr):
"""
Represents unevaluated Gradient.
Examples
========
>>> from sympy.vector import CoordSys3D, Gradient
>>> R = CoordSys3D('R')
>>> s = R.x*R.y*R.z
>>> Gradient(s)
Gradient(R.x*R.y*R.z)
"""
def __new__(cls, expr):
expr = sympify(expr)
obj = Expr.__new__(cls, expr)
obj._expr = expr
return obj
def doit(self, **kwargs):
return gradient(self._expr, doit=True)
class Divergence(Expr):
"""
Represents unevaluated Divergence.
Examples
========
>>> from sympy.vector import CoordSys3D, Divergence
>>> R = CoordSys3D('R')
>>> v = R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k
>>> Divergence(v)
Divergence(R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k)
"""
def __new__(cls, expr):
expr = sympify(expr)
obj = Expr.__new__(cls, expr)
obj._expr = expr
return obj
def doit(self, **kwargs):
return divergence(self._expr, doit=True)
class Curl(Expr):
"""
Represents unevaluated Curl.
Examples
========
>>> from sympy.vector import CoordSys3D, Curl
>>> R = CoordSys3D('R')
>>> v = R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k
>>> Curl(v)
Curl(R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k)
"""
def __new__(cls, expr):
expr = sympify(expr)
obj = Expr.__new__(cls, expr)
obj._expr = expr
return obj
def doit(self, **kwargs):
return curl(self._expr, doit=True)
def curl(vect, coord_sys=None, doit=True):
"""
Returns the curl of a vector field computed wrt the base scalars
of the given coordinate system.
Parameters
==========
vect : Vector
The vector operand
coord_sys : CoordSys3D
The coordinate system to calculate the gradient in.
Deprecated since version 1.1
doit : bool
If True, the result is returned after calling .doit() on
each component. Else, the returned expression contains
Derivative instances
Examples
========
>>> from sympy.vector import CoordSys3D, curl
>>> R = CoordSys3D('R')
>>> v1 = R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k
>>> curl(v1)
0
>>> v2 = R.x*R.y*R.z*R.i
>>> curl(v2)
R.x*R.y*R.j + (-R.x*R.z)*R.k
"""
coord_sys = _get_coord_sys_from_expr(vect, coord_sys)
if len(coord_sys) == 0:
return Vector.zero
elif len(coord_sys) == 1:
coord_sys = next(iter(coord_sys))
i, j, k = coord_sys.base_vectors()
x, y, z = coord_sys.base_scalars()
h1, h2, h3 = coord_sys.lame_coefficients()
vectx = vect.dot(i)
vecty = vect.dot(j)
vectz = vect.dot(k)
outvec = Vector.zero
outvec += (Derivative(vectz * h3, y) -
Derivative(vecty * h2, z)) * i / (h2 * h3)
outvec += (Derivative(vectx * h1, z) -
Derivative(vectz * h3, x)) * j / (h1 * h3)
outvec += (Derivative(vecty * h2, x) -
Derivative(vectx * h1, y)) * k / (h2 * h1)
if doit:
return outvec.doit()
return outvec
else:
if isinstance(vect, (Add, VectorAdd)):
from sympy.vector import express
try:
cs = next(iter(coord_sys))
args = [express(i, cs, variables=True) for i in vect.args]
except ValueError:
args = vect.args
return VectorAdd.fromiter(curl(i, doit=doit) for i in args)
elif isinstance(vect, (Mul, VectorMul)):
vector = [i for i in vect.args if isinstance(i, (Vector, Cross, Gradient))][0]
scalar = Mul.fromiter(i for i in vect.args if not isinstance(i, (Vector, Cross, Gradient)))
res = Cross(gradient(scalar), vector).doit() + scalar*curl(vector, doit=doit)
if doit:
return res.doit()
return res
elif isinstance(vect, (Cross, Curl, Gradient)):
return Curl(vect)
else:
raise Curl(vect)
def divergence(vect, coord_sys=None, doit=True):
"""
Returns the divergence of a vector field computed wrt the base
scalars of the given coordinate system.
Parameters
==========
vector : Vector
The vector operand
coord_sys : CoordSys3D
The coordinate system to calculate the gradient in
Deprecated since version 1.1
doit : bool
If True, the result is returned after calling .doit() on
each component. Else, the returned expression contains
Derivative instances
Examples
========
>>> from sympy.vector import CoordSys3D, divergence
>>> R = CoordSys3D('R')
>>> v1 = R.x*R.y*R.z * (R.i+R.j+R.k)
>>> divergence(v1)
R.x*R.y + R.x*R.z + R.y*R.z
>>> v2 = 2*R.y*R.z*R.j
>>> divergence(v2)
2*R.z
"""
coord_sys = _get_coord_sys_from_expr(vect, coord_sys)
if len(coord_sys) == 0:
return S.Zero
elif len(coord_sys) == 1:
if isinstance(vect, (Cross, Curl, Gradient)):
return Divergence(vect)
# TODO: is case of many coord systems, this gets a random one:
coord_sys = next(iter(coord_sys))
i, j, k = coord_sys.base_vectors()
x, y, z = coord_sys.base_scalars()
h1, h2, h3 = coord_sys.lame_coefficients()
vx = _diff_conditional(vect.dot(i), x, h2, h3) \
/ (h1 * h2 * h3)
vy = _diff_conditional(vect.dot(j), y, h3, h1) \
/ (h1 * h2 * h3)
vz = _diff_conditional(vect.dot(k), z, h1, h2) \
/ (h1 * h2 * h3)
res = vx + vy + vz
if doit:
return res.doit()
return res
else:
if isinstance(vect, (Add, VectorAdd)):
return Add.fromiter(divergence(i, doit=doit) for i in vect.args)
elif isinstance(vect, (Mul, VectorMul)):
vector = [i for i in vect.args if isinstance(i, (Vector, Cross, Gradient))][0]
scalar = Mul.fromiter(i for i in vect.args if not isinstance(i, (Vector, Cross, Gradient)))
res = Dot(vector, gradient(scalar)) + scalar*divergence(vector, doit=doit)
if doit:
return res.doit()
return res
elif isinstance(vect, (Cross, Curl, Gradient)):
return Divergence(vect)
else:
raise Divergence(vect)
def gradient(scalar_field, coord_sys=None, doit=True):
"""
Returns the vector gradient of a scalar field computed wrt the
base scalars of the given coordinate system.
Parameters
==========
scalar_field : SymPy Expr
The scalar field to compute the gradient of
coord_sys : CoordSys3D
The coordinate system to calculate the gradient in
Deprecated since version 1.1
doit : bool
If True, the result is returned after calling .doit() on
each component. Else, the returned expression contains
Derivative instances
Examples
========
>>> from sympy.vector import CoordSys3D, gradient
>>> R = CoordSys3D('R')
>>> s1 = R.x*R.y*R.z
>>> gradient(s1)
R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k
>>> s2 = 5*R.x**2*R.z
>>> gradient(s2)
10*R.x*R.z*R.i + 5*R.x**2*R.k
"""
coord_sys = _get_coord_sys_from_expr(scalar_field, coord_sys)
if len(coord_sys) == 0:
return Vector.zero
elif len(coord_sys) == 1:
coord_sys = next(iter(coord_sys))
h1, h2, h3 = coord_sys.lame_coefficients()
i, j, k = coord_sys.base_vectors()
x, y, z = coord_sys.base_scalars()
vx = Derivative(scalar_field, x) / h1
vy = Derivative(scalar_field, y) / h2
vz = Derivative(scalar_field, z) / h3
if doit:
return (vx * i + vy * j + vz * k).doit()
return vx * i + vy * j + vz * k
else:
if isinstance(scalar_field, (Add, VectorAdd)):
return VectorAdd.fromiter(gradient(i) for i in scalar_field.args)
if isinstance(scalar_field, (Mul, VectorMul)):
s = _split_mul_args_wrt_coordsys(scalar_field)
return VectorAdd.fromiter(scalar_field / i * gradient(i) for i in s)
return Gradient(scalar_field)
class Laplacian(Expr):
"""
Represents unevaluated Laplacian.
Examples
========
>>> from sympy.vector import CoordSys3D, Laplacian
>>> R = CoordSys3D('R')
>>> v = 3*R.x**3*R.y**2*R.z**3
>>> Laplacian(v)
Laplacian(3*R.x**3*R.y**2*R.z**3)
"""
def __new__(cls, expr):
expr = sympify(expr)
obj = Expr.__new__(cls, expr)
obj._expr = expr
return obj
def doit(self, **kwargs):
from sympy.vector.functions import laplacian
return laplacian(self._expr)
def _diff_conditional(expr, base_scalar, coeff_1, coeff_2):
"""
First re-expresses expr in the system that base_scalar belongs to.
If base_scalar appears in the re-expressed form, differentiates
it wrt base_scalar.
Else, returns S(0)
"""
from sympy.vector.functions import express
new_expr = express(expr, base_scalar.system, variables=True)
if base_scalar in new_expr.atoms(BaseScalar):
return Derivative(coeff_1 * coeff_2 * new_expr, base_scalar)
return S(0)
|
c45a6bacd2f33dc5ffeda47a6f0a7f4893c891bc8fe4d6c431a972a18e88109d
|
from sympy.core import AtomicExpr, Symbol, S
from sympy.core.sympify import _sympify
from sympy.core.compatibility import range
from sympy.printing.pretty.stringpict import prettyForm
from sympy.printing.precedence import PRECEDENCE
class BaseScalar(AtomicExpr):
"""
A coordinate symbol/base scalar.
Ideally, users should not instantiate this class.
Unicode pretty forms in Python 2 should use the `u` prefix.
"""
def __new__(cls, index, system, pretty_str=None, latex_str=None):
from sympy.vector.coordsysrect import CoordSys3D
if pretty_str is None:
pretty_str = "x{0}".format(index)
elif isinstance(pretty_str, Symbol):
pretty_str = pretty_str.name
if latex_str is None:
latex_str = "x_{0}".format(index)
elif isinstance(latex_str, Symbol):
latex_str = latex_str.name
index = _sympify(index)
system = _sympify(system)
obj = super(BaseScalar, cls).__new__(cls, index, system)
if not isinstance(system, CoordSys3D):
raise TypeError("system should be a CoordSys3D")
if index not in range(0, 3):
raise ValueError("Invalid index specified.")
# The _id is used for equating purposes, and for hashing
obj._id = (index, system)
obj._name = obj.name = system._name + '.' + system._variable_names[index]
obj._pretty_form = u'' + pretty_str
obj._latex_form = latex_str
obj._system = system
return obj
is_commutative = True
is_symbol = True
@property
def free_symbols(self):
return {self}
_diff_wrt = True
def _eval_derivative(self, s):
if self == s:
return S.One
return S.Zero
def _latex(self, printer=None):
return self._latex_form
def _pretty(self, printer=None):
return prettyForm(self._pretty_form)
precedence = PRECEDENCE['Atom']
@property
def system(self):
return self._system
def __str__(self, printer=None):
return self._name
__repr__ = __str__
_sympystr = __str__
|
00eb02354ec67440e6c9503e7087b1c2acbde7cd5958595f74d4f1f0764f1559
|
from sympy.vector.coordsysrect import CoordSys3D
from sympy.vector.deloperator import Del
from sympy.vector.scalar import BaseScalar
from sympy.vector.vector import Vector, BaseVector
from sympy.vector.operators import gradient, curl, divergence
from sympy import diff, integrate, S, simplify
from sympy.core import sympify
from sympy.vector.dyadic import Dyadic
def express(expr, system, system2=None, variables=False):
"""
Global function for 'express' functionality.
Re-expresses a Vector, Dyadic or scalar(sympyfiable) in the given
coordinate system.
If 'variables' is True, then the coordinate variables (base scalars)
of other coordinate systems present in the vector/scalar field or
dyadic are also substituted in terms of the base scalars of the
given system.
Parameters
==========
expr : Vector/Dyadic/scalar(sympyfiable)
The expression to re-express in CoordSys3D 'system'
system: CoordSys3D
The coordinate system the expr is to be expressed in
system2: CoordSys3D
The other coordinate system required for re-expression
(only for a Dyadic Expr)
variables : boolean
Specifies whether to substitute the coordinate variables present
in expr, in terms of those of parameter system
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy import Symbol, cos, sin
>>> N = CoordSys3D('N')
>>> q = Symbol('q')
>>> B = N.orient_new_axis('B', q, N.k)
>>> from sympy.vector import express
>>> express(B.i, N)
(cos(q))*N.i + (sin(q))*N.j
>>> express(N.x, B, variables=True)
B.x*cos(q) - B.y*sin(q)
>>> d = N.i.outer(N.i)
>>> express(d, B, N) == (cos(q))*(B.i|N.i) + (-sin(q))*(B.j|N.i)
True
"""
if expr == 0 or expr == Vector.zero:
return expr
if not isinstance(system, CoordSys3D):
raise TypeError("system should be a CoordSys3D \
instance")
if isinstance(expr, Vector):
if system2 is not None:
raise ValueError("system2 should not be provided for \
Vectors")
# Given expr is a Vector
if variables:
# If variables attribute is True, substitute
# the coordinate variables in the Vector
system_list = []
for x in expr.atoms(BaseScalar, BaseVector):
if x.system != system:
system_list.append(x.system)
system_list = set(system_list)
subs_dict = {}
for f in system_list:
subs_dict.update(f.scalar_map(system))
expr = expr.subs(subs_dict)
# Re-express in this coordinate system
outvec = Vector.zero
parts = expr.separate()
for x in parts:
if x != system:
temp = system.rotation_matrix(x) * parts[x].to_matrix(x)
outvec += matrix_to_vector(temp, system)
else:
outvec += parts[x]
return outvec
elif isinstance(expr, Dyadic):
if system2 is None:
system2 = system
if not isinstance(system2, CoordSys3D):
raise TypeError("system2 should be a CoordSys3D \
instance")
outdyad = Dyadic.zero
var = variables
for k, v in expr.components.items():
outdyad += (express(v, system, variables=var) *
(express(k.args[0], system, variables=var) |
express(k.args[1], system2, variables=var)))
return outdyad
else:
if system2 is not None:
raise ValueError("system2 should not be provided for \
Vectors")
if variables:
# Given expr is a scalar field
system_set = set([])
expr = sympify(expr)
# Subsitute all the coordinate variables
for x in expr.atoms(BaseScalar):
if x.system != system:
system_set.add(x.system)
subs_dict = {}
for f in system_set:
subs_dict.update(f.scalar_map(system))
return expr.subs(subs_dict)
return expr
def directional_derivative(field, direction_vector):
"""
Returns the directional derivative of a scalar or vector field computed
along a given vector in coordinate system which parameters are expressed.
Parameters
==========
field : Vector or Scalar
The scalar or vector field to compute the directional derivative of
direction_vector : Vector
The vector to calculated directional derivative along them.
Examples
========
>>> from sympy.vector import CoordSys3D, directional_derivative
>>> R = CoordSys3D('R')
>>> f1 = R.x*R.y*R.z
>>> v1 = 3*R.i + 4*R.j + R.k
>>> directional_derivative(f1, v1)
R.x*R.y + 4*R.x*R.z + 3*R.y*R.z
>>> f2 = 5*R.x**2*R.z
>>> directional_derivative(f2, v1)
5*R.x**2 + 30*R.x*R.z
"""
from sympy.vector.operators import _get_coord_sys_from_expr
coord_sys = _get_coord_sys_from_expr(field)
if len(coord_sys) > 0:
# TODO: This gets a random coordinate system in case of multiple ones:
coord_sys = next(iter(coord_sys))
field = express(field, coord_sys, variables=True)
i, j, k = coord_sys.base_vectors()
x, y, z = coord_sys.base_scalars()
out = Vector.dot(direction_vector, i) * diff(field, x)
out += Vector.dot(direction_vector, j) * diff(field, y)
out += Vector.dot(direction_vector, k) * diff(field, z)
if out == 0 and isinstance(field, Vector):
out = Vector.zero
return out
elif isinstance(field, Vector):
return Vector.zero
else:
return S(0)
def laplacian(expr):
"""
Return the laplacian of the given field computed in terms of
the base scalars of the given coordinate system.
Parameters
==========
expr : SymPy Expr or Vector
expr denotes a scalar or vector field.
Examples
========
>>> from sympy.vector import CoordSys3D, laplacian
>>> R = CoordSys3D('R')
>>> f = R.x**2*R.y**5*R.z
>>> laplacian(f)
20*R.x**2*R.y**3*R.z + 2*R.y**5*R.z
>>> f = R.x**2*R.i + R.y**3*R.j + R.z**4*R.k
>>> laplacian(f)
2*R.i + 6*R.y*R.j + 12*R.z**2*R.k
"""
delop = Del()
if expr.is_Vector:
return (gradient(divergence(expr)) - curl(curl(expr))).doit()
return delop.dot(delop(expr)).doit()
def is_conservative(field):
"""
Checks if a field is conservative.
Parameters
==========
field : Vector
The field to check for conservative property
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy.vector import is_conservative
>>> R = CoordSys3D('R')
>>> is_conservative(R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k)
True
>>> is_conservative(R.z*R.j)
False
"""
# Field is conservative irrespective of system
# Take the first coordinate system in the result of the
# separate method of Vector
if not isinstance(field, Vector):
raise TypeError("field should be a Vector")
if field == Vector.zero:
return True
return curl(field).simplify() == Vector.zero
def is_solenoidal(field):
"""
Checks if a field is solenoidal.
Parameters
==========
field : Vector
The field to check for solenoidal property
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy.vector import is_solenoidal
>>> R = CoordSys3D('R')
>>> is_solenoidal(R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k)
True
>>> is_solenoidal(R.y * R.j)
False
"""
# Field is solenoidal irrespective of system
# Take the first coordinate system in the result of the
# separate method in Vector
if not isinstance(field, Vector):
raise TypeError("field should be a Vector")
if field == Vector.zero:
return True
return divergence(field).simplify() == S(0)
def scalar_potential(field, coord_sys):
"""
Returns the scalar potential function of a field in a given
coordinate system (without the added integration constant).
Parameters
==========
field : Vector
The vector field whose scalar potential function is to be
calculated
coord_sys : CoordSys3D
The coordinate system to do the calculation in
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy.vector import scalar_potential, gradient
>>> R = CoordSys3D('R')
>>> scalar_potential(R.k, R) == R.z
True
>>> scalar_field = 2*R.x**2*R.y*R.z
>>> grad_field = gradient(scalar_field)
>>> scalar_potential(grad_field, R)
2*R.x**2*R.y*R.z
"""
# Check whether field is conservative
if not is_conservative(field):
raise ValueError("Field is not conservative")
if field == Vector.zero:
return S(0)
# Express the field exntirely in coord_sys
# Subsitute coordinate variables also
if not isinstance(coord_sys, CoordSys3D):
raise TypeError("coord_sys must be a CoordSys3D")
field = express(field, coord_sys, variables=True)
dimensions = coord_sys.base_vectors()
scalars = coord_sys.base_scalars()
# Calculate scalar potential function
temp_function = integrate(field.dot(dimensions[0]), scalars[0])
for i, dim in enumerate(dimensions[1:]):
partial_diff = diff(temp_function, scalars[i + 1])
partial_diff = field.dot(dim) - partial_diff
temp_function += integrate(partial_diff, scalars[i + 1])
return temp_function
def scalar_potential_difference(field, coord_sys, point1, point2):
"""
Returns the scalar potential difference between two points in a
certain coordinate system, wrt a given field.
If a scalar field is provided, its values at the two points are
considered. If a conservative vector field is provided, the values
of its scalar potential function at the two points are used.
Returns (potential at point2) - (potential at point1)
The position vectors of the two Points are calculated wrt the
origin of the coordinate system provided.
Parameters
==========
field : Vector/Expr
The field to calculate wrt
coord_sys : CoordSys3D
The coordinate system to do the calculations in
point1 : Point
The initial Point in given coordinate system
position2 : Point
The second Point in the given coordinate system
Examples
========
>>> from sympy.vector import CoordSys3D, Point
>>> from sympy.vector import scalar_potential_difference
>>> R = CoordSys3D('R')
>>> P = R.origin.locate_new('P', R.x*R.i + R.y*R.j + R.z*R.k)
>>> vectfield = 4*R.x*R.y*R.i + 2*R.x**2*R.j
>>> scalar_potential_difference(vectfield, R, R.origin, P)
2*R.x**2*R.y
>>> Q = R.origin.locate_new('O', 3*R.i + R.j + 2*R.k)
>>> scalar_potential_difference(vectfield, R, P, Q)
-2*R.x**2*R.y + 18
"""
if not isinstance(coord_sys, CoordSys3D):
raise TypeError("coord_sys must be a CoordSys3D")
if isinstance(field, Vector):
# Get the scalar potential function
scalar_fn = scalar_potential(field, coord_sys)
else:
# Field is a scalar
scalar_fn = field
# Express positions in required coordinate system
origin = coord_sys.origin
position1 = express(point1.position_wrt(origin), coord_sys,
variables=True)
position2 = express(point2.position_wrt(origin), coord_sys,
variables=True)
# Get the two positions as substitution dicts for coordinate variables
subs_dict1 = {}
subs_dict2 = {}
scalars = coord_sys.base_scalars()
for i, x in enumerate(coord_sys.base_vectors()):
subs_dict1[scalars[i]] = x.dot(position1)
subs_dict2[scalars[i]] = x.dot(position2)
return scalar_fn.subs(subs_dict2) - scalar_fn.subs(subs_dict1)
def matrix_to_vector(matrix, system):
"""
Converts a vector in matrix form to a Vector instance.
It is assumed that the elements of the Matrix represent the
measure numbers of the components of the vector along basis
vectors of 'system'.
Parameters
==========
matrix : SymPy Matrix, Dimensions: (3, 1)
The matrix to be converted to a vector
system : CoordSys3D
The coordinate system the vector is to be defined in
Examples
========
>>> from sympy import ImmutableMatrix as Matrix
>>> m = Matrix([1, 2, 3])
>>> from sympy.vector import CoordSys3D, matrix_to_vector
>>> C = CoordSys3D('C')
>>> v = matrix_to_vector(m, C)
>>> v
C.i + 2*C.j + 3*C.k
>>> v.to_matrix(C) == m
True
"""
outvec = Vector.zero
vects = system.base_vectors()
for i, x in enumerate(matrix):
outvec += x * vects[i]
return outvec
def _path(from_object, to_object):
"""
Calculates the 'path' of objects starting from 'from_object'
to 'to_object', along with the index of the first common
ancestor in the tree.
Returns (index, list) tuple.
"""
if from_object._root != to_object._root:
raise ValueError("No connecting path found between " +
str(from_object) + " and " + str(to_object))
other_path = []
obj = to_object
while obj._parent is not None:
other_path.append(obj)
obj = obj._parent
other_path.append(obj)
object_set = set(other_path)
from_path = []
obj = from_object
while obj not in object_set:
from_path.append(obj)
obj = obj._parent
index = len(from_path)
i = other_path.index(obj)
while i >= 0:
from_path.append(other_path[i])
i -= 1
return index, from_path
def orthogonalize(*vlist, **kwargs):
"""
Takes a sequence of independent vectors and orthogonalizes them
using the Gram - Schmidt process. Returns a list of
orthogonal or orthonormal vectors.
Parameters
==========
vlist : sequence of independent vectors to be made orthogonal.
orthonormal : Optional parameter
Set to True if the vectors returned should be
orthonormal.
Default: False
Examples
========
>>> from sympy.vector.coordsysrect import CoordSys3D
>>> from sympy.vector.vector import Vector, BaseVector
>>> from sympy.vector.functions import orthogonalize
>>> C = CoordSys3D('C')
>>> i, j, k = C.base_vectors()
>>> v1 = i + 2*j
>>> v2 = 2*i + 3*j
>>> orthogonalize(v1, v2)
[C.i + 2*C.j, 2/5*C.i + (-1/5)*C.j]
References
==========
.. [1] https://en.wikipedia.org/wiki/Gram-Schmidt_process
"""
orthonormal = kwargs.get('orthonormal', False)
if not all(isinstance(vec, Vector) for vec in vlist):
raise TypeError('Each element must be of Type Vector')
ortho_vlist = []
for i, term in enumerate(vlist):
for j in range(i):
term -= ortho_vlist[j].projection(vlist[i])
# TODO : The following line introduces a performance issue
# and needs to be changed once a good solution for issue #10279 is
# found.
if simplify(term).equals(Vector.zero):
raise ValueError("Vector set not linearly independent")
ortho_vlist.append(term)
if orthonormal:
ortho_vlist = [vec.normalize() for vec in ortho_vlist]
return ortho_vlist
|
400472bbeba4ba5d11ef3c24cf6625abd9c9fe5bc7bca09aaeee53ce6b19173f
|
"""Geometrical Points.
Contains
========
Point
Point2D
Point3D
When methods of Point require 1 or more points as arguments, they
can be passed as a sequence of coordinates or Points:
>>> from sympy.geometry.point import Point
>>> Point(1, 1).is_collinear((2, 2), (3, 4))
False
>>> Point(1, 1).is_collinear(Point(2, 2), Point(3, 4))
False
"""
from __future__ import division, print_function
import warnings
from sympy.core import S, sympify, Expr
from sympy.core.numbers import Number
from sympy.core.compatibility import iterable, is_sequence, as_int
from sympy.core.containers import Tuple
from sympy.simplify import nsimplify, simplify
from sympy.geometry.exceptions import GeometryError
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.complexes import im
from sympy.matrices import Matrix
from sympy.core.relational import Eq
from sympy.core.numbers import Float
from sympy.core.evaluate import global_evaluate
from sympy.core.add import Add
from sympy.sets import FiniteSet
from sympy.utilities.iterables import uniq
from sympy.utilities.misc import filldedent, func_name, Undecidable
from .entity import GeometryEntity
class Point(GeometryEntity):
"""A point in a n-dimensional Euclidean space.
Parameters
==========
coords : sequence of n-coordinate values. In the special
case where n=2 or 3, a Point2D or Point3D will be created
as appropriate.
evaluate : if `True` (default), all floats are turn into
exact types.
dim : number of coordinates the point should have. If coordinates
are unspecified, they are padded with zeros.
on_morph : indicates what should happen when the number of
coordinates of a point need to be changed by adding or
removing zeros. Possible values are `'warn'`, `'error'`, or
`ignore` (default). No warning or error is given when `*args`
is empty and `dim` is given. An error is always raised when
trying to remove nonzero coordinates.
Attributes
==========
length
origin: A `Point` representing the origin of the
appropriately-dimensioned space.
Raises
======
TypeError : When instantiating with anything but a Point or sequence
ValueError : when instantiating with a sequence with length < 2 or
when trying to reduce dimensions if keyword `on_morph='error'` is
set.
See Also
========
sympy.geometry.line.Segment : Connects two Points
Examples
========
>>> from sympy.geometry import Point
>>> from sympy.abc import x
>>> Point(1, 2, 3)
Point3D(1, 2, 3)
>>> Point([1, 2])
Point2D(1, 2)
>>> Point(0, x)
Point2D(0, x)
>>> Point(dim=4)
Point(0, 0, 0, 0)
Floats are automatically converted to Rational unless the
evaluate flag is False:
>>> Point(0.5, 0.25)
Point2D(1/2, 1/4)
>>> Point(0.5, 0.25, evaluate=False)
Point2D(0.5, 0.25)
"""
is_Point = True
def __new__(cls, *args, **kwargs):
evaluate = kwargs.get('evaluate', global_evaluate[0])
on_morph = kwargs.get('on_morph', 'ignore')
# unpack into coords
coords = args[0] if len(args) == 1 else args
# check args and handle quickly handle Point instances
if isinstance(coords, Point):
# even if we're mutating the dimension of a point, we
# don't reevaluate its coordinates
evaluate = False
if len(coords) == kwargs.get('dim', len(coords)):
return coords
if not is_sequence(coords):
raise TypeError(filldedent('''
Expecting sequence of coordinates, not `{}`'''
.format(func_name(coords))))
# A point where only `dim` is specified is initialized
# to zeros.
if len(coords) == 0 and kwargs.get('dim', None):
coords = (S.Zero,)*kwargs.get('dim')
coords = Tuple(*coords)
dim = kwargs.get('dim', len(coords))
if len(coords) < 2:
raise ValueError(filldedent('''
Point requires 2 or more coordinates or
keyword `dim` > 1.'''))
if len(coords) != dim:
message = ("Dimension of {} needs to be changed"
"from {} to {}.").format(coords, len(coords), dim)
if on_morph == 'ignore':
pass
elif on_morph == "error":
raise ValueError(message)
elif on_morph == 'warn':
warnings.warn(message)
else:
raise ValueError(filldedent('''
on_morph value should be 'error',
'warn' or 'ignore'.'''))
if any(i for i in coords[dim:]):
raise ValueError('Nonzero coordinates cannot be removed.')
if any(a.is_number and im(a) for a in coords):
raise ValueError('Imaginary coordinates are not permitted.')
if not all(isinstance(a, Expr) for a in coords):
raise TypeError('Coordinates must be valid SymPy expressions.')
# pad with zeros appropriately
coords = coords[:dim] + (S.Zero,)*(dim - len(coords))
# Turn any Floats into rationals and simplify
# any expressions before we instantiate
if evaluate:
coords = coords.xreplace(dict(
[(f, simplify(nsimplify(f, rational=True)))
for f in coords.atoms(Float)]))
# return 2D or 3D instances
if len(coords) == 2:
kwargs['_nocheck'] = True
return Point2D(*coords, **kwargs)
elif len(coords) == 3:
kwargs['_nocheck'] = True
return Point3D(*coords, **kwargs)
# the general Point
return GeometryEntity.__new__(cls, *coords)
def __abs__(self):
"""Returns the distance between this point and the origin."""
origin = Point([0]*len(self))
return Point.distance(origin, self)
def __add__(self, other):
"""Add other to self by incrementing self's coordinates by
those of other.
Notes
=====
>>> from sympy.geometry.point import Point
When sequences of coordinates are passed to Point methods, they
are converted to a Point internally. This __add__ method does
not do that so if floating point values are used, a floating
point result (in terms of SymPy Floats) will be returned.
>>> Point(1, 2) + (.1, .2)
Point2D(1.1, 2.2)
If this is not desired, the `translate` method can be used or
another Point can be added:
>>> Point(1, 2).translate(.1, .2)
Point2D(11/10, 11/5)
>>> Point(1, 2) + Point(.1, .2)
Point2D(11/10, 11/5)
See Also
========
sympy.geometry.point.Point.translate
"""
try:
s, o = Point._normalize_dimension(self, Point(other, evaluate=False))
except TypeError:
raise GeometryError("Don't know how to add {} and a Point object".format(other))
coords = [simplify(a + b) for a, b in zip(s, o)]
return Point(coords, evaluate=False)
def __contains__(self, item):
return item in self.args
def __div__(self, divisor):
"""Divide point's coordinates by a factor."""
divisor = sympify(divisor)
coords = [simplify(x/divisor) for x in self.args]
return Point(coords, evaluate=False)
def __eq__(self, other):
if not isinstance(other, Point) or len(self.args) != len(other.args):
return False
return self.args == other.args
def __getitem__(self, key):
return self.args[key]
def __hash__(self):
return hash(self.args)
def __iter__(self):
return self.args.__iter__()
def __len__(self):
return len(self.args)
def __mul__(self, factor):
"""Multiply point's coordinates by a factor.
Notes
=====
>>> from sympy.geometry.point import Point
When multiplying a Point by a floating point number,
the coordinates of the Point will be changed to Floats:
>>> Point(1, 2)*0.1
Point2D(0.1, 0.2)
If this is not desired, the `scale` method can be used or
else only multiply or divide by integers:
>>> Point(1, 2).scale(1.1, 1.1)
Point2D(11/10, 11/5)
>>> Point(1, 2)*11/10
Point2D(11/10, 11/5)
See Also
========
sympy.geometry.point.Point.scale
"""
factor = sympify(factor)
coords = [simplify(x*factor) for x in self.args]
return Point(coords, evaluate=False)
def __neg__(self):
"""Negate the point."""
coords = [-x for x in self.args]
return Point(coords, evaluate=False)
def __sub__(self, other):
"""Subtract two points, or subtract a factor from this point's
coordinates."""
return self + [-x for x in other]
@classmethod
def _normalize_dimension(cls, *points, **kwargs):
"""Ensure that points have the same dimension.
By default `on_morph='warn'` is passed to the
`Point` constructor."""
# if we have a built-in ambient dimension, use it
dim = getattr(cls, '_ambient_dimension', None)
# override if we specified it
dim = kwargs.get('dim', dim)
# if no dim was given, use the highest dimensional point
if dim is None:
dim = max(i.ambient_dimension for i in points)
if all(i.ambient_dimension == dim for i in points):
return list(points)
kwargs['dim'] = dim
kwargs['on_morph'] = kwargs.get('on_morph', 'warn')
return [Point(i, **kwargs) for i in points]
@staticmethod
def affine_rank(*args):
"""The affine rank of a set of points is the dimension
of the smallest affine space containing all the points.
For example, if the points lie on a line (and are not all
the same) their affine rank is 1. If the points lie on a plane
but not a line, their affine rank is 2. By convention, the empty
set has affine rank -1."""
if len(args) == 0:
return -1
# make sure we're genuinely points
# and translate every point to the origin
points = Point._normalize_dimension(*[Point(i) for i in args])
origin = points[0]
points = [i - origin for i in points[1:]]
m = Matrix([i.args for i in points])
return m.rank()
@property
def ambient_dimension(self):
"""Number of components this point has."""
return getattr(self, '_ambient_dimension', len(self))
@classmethod
def are_coplanar(cls, *points):
"""Return True if there exists a plane in which all the points
lie. A trivial True value is returned if `len(points) < 3` or
all Points are 2-dimensional.
Parameters
==========
A set of points
Raises
======
ValueError : if less than 3 unique points are given
Returns
=======
boolean
Examples
========
>>> from sympy import Point3D
>>> p1 = Point3D(1, 2, 2)
>>> p2 = Point3D(2, 7, 2)
>>> p3 = Point3D(0, 0, 2)
>>> p4 = Point3D(1, 1, 2)
>>> Point3D.are_coplanar(p1, p2, p3, p4)
True
>>> p5 = Point3D(0, 1, 3)
>>> Point3D.are_coplanar(p1, p2, p3, p5)
False
"""
if len(points) <= 1:
return True
points = cls._normalize_dimension(*[Point(i) for i in points])
# quick exit if we are in 2D
if points[0].ambient_dimension == 2:
return True
points = list(uniq(points))
return Point.affine_rank(*points) <= 2
def distance(self, other):
"""The Euclidean distance between self and another GeometricEntity.
Returns
=======
distance : number or symbolic expression.
Raises
======
TypeError : if other is not recognized as a GeometricEntity or is a
GeometricEntity for which distance is not defined.
See Also
========
sympy.geometry.line.Segment.length
sympy.geometry.point.Point.taxicab_distance
Examples
========
>>> from sympy.geometry import Point, Line
>>> p1, p2 = Point(1, 1), Point(4, 5)
>>> l = Line((3, 1), (2, 2))
>>> p1.distance(p2)
5
>>> p1.distance(l)
sqrt(2)
The computed distance may be symbolic, too:
>>> from sympy.abc import x, y
>>> p3 = Point(x, y)
>>> p3.distance((0, 0))
sqrt(x**2 + y**2)
"""
if not isinstance(other , GeometryEntity) :
try :
other = Point(other, dim=self.ambient_dimension)
except TypeError :
raise TypeError("not recognized as a GeometricEntity: %s" % type(other))
if isinstance(other , Point) :
s, p = Point._normalize_dimension(self, Point(other))
return sqrt(Add(*((a - b)**2 for a, b in zip(s, p))))
distance = getattr(other, 'distance', None)
if distance is None:
raise TypeError("distance between Point and %s is not defined" % type(other))
return distance(self)
def dot(self, p):
"""Return dot product of self with another Point."""
if not is_sequence(p):
p = Point(p) # raise the error via Point
return Add(*(a*b for a, b in zip(self, p)))
def equals(self, other):
"""Returns whether the coordinates of self and other agree."""
# a point is equal to another point if all its components are equal
if not isinstance(other, Point) or len(self) != len(other):
return False
return all(a.equals(b) for a,b in zip(self, other))
def evalf(self, prec=None, **options):
"""Evaluate the coordinates of the point.
This method will, where possible, create and return a new Point
where the coordinates are evaluated as floating point numbers to
the precision indicated (default=15).
Parameters
==========
prec : int
Returns
=======
point : Point
Examples
========
>>> from sympy import Point, Rational
>>> p1 = Point(Rational(1, 2), Rational(3, 2))
>>> p1
Point2D(1/2, 3/2)
>>> p1.evalf()
Point2D(0.5, 1.5)
"""
coords = [x.evalf(prec, **options) for x in self.args]
return Point(*coords, evaluate=False)
def intersection(self, other):
"""The intersection between this point and another GeometryEntity.
Parameters
==========
other : Point
Returns
=======
intersection : list of Points
Notes
=====
The return value will either be an empty list if there is no
intersection, otherwise it will contain this point.
Examples
========
>>> from sympy import Point
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, 0)
>>> p1.intersection(p2)
[]
>>> p1.intersection(p3)
[Point2D(0, 0)]
"""
if not isinstance(other, GeometryEntity):
other = Point(other)
if isinstance(other, Point):
if self == other:
return [self]
p1, p2 = Point._normalize_dimension(self, other)
if p1 == self and p1 == p2:
return [self]
return []
return other.intersection(self)
def is_collinear(self, *args):
"""Returns `True` if there exists a line
that contains `self` and `points`. Returns `False` otherwise.
A trivially True value is returned if no points are given.
Parameters
==========
args : sequence of Points
Returns
=======
is_collinear : boolean
See Also
========
sympy.geometry.line.Line
Examples
========
>>> from sympy import Point
>>> from sympy.abc import x
>>> p1, p2 = Point(0, 0), Point(1, 1)
>>> p3, p4, p5 = Point(2, 2), Point(x, x), Point(1, 2)
>>> Point.is_collinear(p1, p2, p3, p4)
True
>>> Point.is_collinear(p1, p2, p3, p5)
False
"""
points = (self,) + args
points = Point._normalize_dimension(*[Point(i) for i in points])
points = list(uniq(points))
return Point.affine_rank(*points) <= 1
def is_concyclic(self, *args):
"""Do `self` and the given sequence of points lie in a circle?
Returns True if the set of points are concyclic and
False otherwise. A trivial value of True is returned
if there are fewer than 2 other points.
Parameters
==========
args : sequence of Points
Returns
=======
is_concyclic : boolean
Examples
========
>>> from sympy import Point
Define 4 points that are on the unit circle:
>>> p1, p2, p3, p4 = Point(1, 0), (0, 1), (-1, 0), (0, -1)
>>> p1.is_concyclic() == p1.is_concyclic(p2, p3, p4) == True
True
Define a point not on that circle:
>>> p = Point(1, 1)
>>> p.is_concyclic(p1, p2, p3)
False
"""
points = (self,) + args
points = Point._normalize_dimension(*[Point(i) for i in points])
points = list(uniq(points))
if not Point.affine_rank(*points) <= 2:
return False
origin = points[0]
points = [p - origin for p in points]
# points are concyclic if they are coplanar and
# there is a point c so that ||p_i-c|| == ||p_j-c|| for all
# i and j. Rearranging this equation gives us the following
# condition: the matrix `mat` must not a pivot in the last
# column.
mat = Matrix([list(i) + [i.dot(i)] for i in points])
rref, pivots = mat.rref()
if len(origin) not in pivots:
return True
return False
@property
def is_nonzero(self):
"""True if any coordinate is nonzero, False if every coordinate is zero,
and None if it cannot be determined."""
is_zero = self.is_zero
if is_zero is None:
return None
return not is_zero
def is_scalar_multiple(self, p):
"""Returns whether each coordinate of `self` is a scalar
multiple of the corresponding coordinate in point p.
"""
s, o = Point._normalize_dimension(self, Point(p))
# 2d points happen a lot, so optimize this function call
if s.ambient_dimension == 2:
(x1, y1), (x2, y2) = s.args, o.args
rv = (x1*y2 - x2*y1).equals(0)
if rv is None:
raise Undecidable(filldedent(
'''can't determine if %s is a scalar multiple of
%s''' % (s, o)))
# if the vectors p1 and p2 are linearly dependent, then they must
# be scalar multiples of each other
m = Matrix([s.args, o.args])
return m.rank() < 2
@property
def is_zero(self):
"""True if every coordinate is zero, False if any coordinate is not zero,
and None if it cannot be determined."""
nonzero = [x.is_nonzero for x in self.args]
if any(nonzero):
return False
if any(x is None for x in nonzero):
return None
return True
@property
def length(self):
"""
Treating a Point as a Line, this returns 0 for the length of a Point.
Examples
========
>>> from sympy import Point
>>> p = Point(0, 1)
>>> p.length
0
"""
return S.Zero
def midpoint(self, p):
"""The midpoint between self and point p.
Parameters
==========
p : Point
Returns
=======
midpoint : Point
See Also
========
sympy.geometry.line.Segment.midpoint
Examples
========
>>> from sympy.geometry import Point
>>> p1, p2 = Point(1, 1), Point(13, 5)
>>> p1.midpoint(p2)
Point2D(7, 3)
"""
s, p = Point._normalize_dimension(self, Point(p))
return Point([simplify((a + b)*S.Half) for a, b in zip(s, p)])
@property
def origin(self):
"""A point of all zeros of the same ambient dimension
as the current point"""
return Point([0]*len(self), evaluate=False)
@property
def orthogonal_direction(self):
"""Returns a non-zero point that is orthogonal to the
line containing `self` and the origin.
Examples
========
>>> from sympy.geometry import Line, Point
>>> a = Point(1, 2, 3)
>>> a.orthogonal_direction
Point3D(-2, 1, 0)
>>> b = _
>>> Line(b, b.origin).is_perpendicular(Line(a, a.origin))
True
"""
dim = self.ambient_dimension
# if a coordinate is zero, we can put a 1 there and zeros elsewhere
if self[0] == S.Zero:
return Point([1] + (dim - 1)*[0])
if self[1] == S.Zero:
return Point([0,1] + (dim - 2)*[0])
# if the first two coordinates aren't zero, we can create a non-zero
# orthogonal vector by swapping them, negating one, and padding with zeros
return Point([-self[1], self[0]] + (dim - 2)*[0])
@staticmethod
def project(a, b):
"""Project the point `a` onto the line between the origin
and point `b` along the normal direction.
Parameters
==========
a : Point
b : Point
Returns
=======
p : Point
See Also
========
sympy.geometry.line.LinearEntity.projection
Examples
========
>>> from sympy.geometry import Line, Point
>>> a = Point(1, 2)
>>> b = Point(2, 5)
>>> z = a.origin
>>> p = Point.project(a, b)
>>> Line(p, a).is_perpendicular(Line(p, b))
True
>>> Point.is_collinear(z, p, b)
True
"""
a, b = Point._normalize_dimension(Point(a), Point(b))
if b.is_zero:
raise ValueError("Cannot project to the zero vector.")
return b*(a.dot(b) / b.dot(b))
def taxicab_distance(self, p):
"""The Taxicab Distance from self to point p.
Returns the sum of the horizontal and vertical distances to point p.
Parameters
==========
p : Point
Returns
=======
taxicab_distance : The sum of the horizontal
and vertical distances to point p.
See Also
========
sympy.geometry.point.Point.distance
Examples
========
>>> from sympy.geometry import Point
>>> p1, p2 = Point(1, 1), Point(4, 5)
>>> p1.taxicab_distance(p2)
7
"""
s, p = Point._normalize_dimension(self, Point(p))
return Add(*(abs(a - b) for a, b in zip(s, p)))
def canberra_distance(self, p):
"""The Canberra Distance from self to point p.
Returns the weighted sum of horizontal and vertical distances to
point p.
Parameters
==========
p : Point
Returns
=======
canberra_distance : The weighted sum of horizontal and vertical
distances to point p. The weight used is the sum of absolute values
of the coordinates.
See Also
========
sympy.geometry.point.Point.distance
Examples
========
>>> from sympy.geometry import Point
>>> p1, p2 = Point(1, 1), Point(3, 3)
>>> p1.canberra_distance(p2)
1
>>> p1, p2 = Point(0, 0), Point(3, 3)
>>> p1.canberra_distance(p2)
2
Raises
======
ValueError when both vectors are zero.
See Also
========
sympy.geometry.point.Point.distance
"""
s, p = Point._normalize_dimension(self, Point(p))
if self.is_zero and p.is_zero:
raise ValueError("Cannot project to the zero vector.")
return Add(*((abs(a - b)/(abs(a) + abs(b))) for a, b in zip(s, p)))
@property
def unit(self):
"""Return the Point that is in the same direction as `self`
and a distance of 1 from the origin"""
return self / abs(self)
n = evalf
__truediv__ = __div__
class Point2D(Point):
"""A point in a 2-dimensional Euclidean space.
Parameters
==========
coords : sequence of 2 coordinate values.
Attributes
==========
x
y
length
Raises
======
TypeError
When trying to add or subtract points with different dimensions.
When trying to create a point with more than two dimensions.
When `intersection` is called with object other than a Point.
See Also
========
sympy.geometry.line.Segment : Connects two Points
Examples
========
>>> from sympy.geometry import Point2D
>>> from sympy.abc import x
>>> Point2D(1, 2)
Point2D(1, 2)
>>> Point2D([1, 2])
Point2D(1, 2)
>>> Point2D(0, x)
Point2D(0, x)
Floats are automatically converted to Rational unless the
evaluate flag is False:
>>> Point2D(0.5, 0.25)
Point2D(1/2, 1/4)
>>> Point2D(0.5, 0.25, evaluate=False)
Point2D(0.5, 0.25)
"""
_ambient_dimension = 2
def __new__(cls, *args, **kwargs):
if not kwargs.pop('_nocheck', False):
kwargs['dim'] = 2
args = Point(*args, **kwargs)
return GeometryEntity.__new__(cls, *args)
def __contains__(self, item):
return item == self
@property
def bounds(self):
"""Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
rectangle for the geometric figure.
"""
return (self.x, self.y, self.x, self.y)
def rotate(self, angle, pt=None):
"""Rotate ``angle`` radians counterclockwise about Point ``pt``.
See Also
========
rotate, scale
Examples
========
>>> from sympy import Point2D, pi
>>> t = Point2D(1, 0)
>>> t.rotate(pi/2)
Point2D(0, 1)
>>> t.rotate(pi/2, (2, 0))
Point2D(2, -1)
"""
from sympy import cos, sin, Point
c = cos(angle)
s = sin(angle)
rv = self
if pt is not None:
pt = Point(pt, dim=2)
rv -= pt
x, y = rv.args
rv = Point(c*x - s*y, s*x + c*y)
if pt is not None:
rv += pt
return rv
def scale(self, x=1, y=1, pt=None):
"""Scale the coordinates of the Point by multiplying by
``x`` and ``y`` after subtracting ``pt`` -- default is (0, 0) --
and then adding ``pt`` back again (i.e. ``pt`` is the point of
reference for the scaling).
See Also
========
rotate, translate
Examples
========
>>> from sympy import Point2D
>>> t = Point2D(1, 1)
>>> t.scale(2)
Point2D(2, 1)
>>> t.scale(2, 2)
Point2D(2, 2)
"""
if pt:
pt = Point(pt, dim=2)
return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
return Point(self.x*x, self.y*y)
def transform(self, matrix):
"""Return the point after applying the transformation described
by the 3x3 Matrix, ``matrix``.
See Also
========
geometry.entity.rotate
geometry.entity.scale
geometry.entity.translate
"""
if not (matrix.is_Matrix and matrix.shape == (3, 3)):
raise ValueError("matrix must be a 3x3 matrix")
col, row = matrix.shape
valid_matrix = matrix.is_square and col == 3
x, y = self.args
return Point(*(Matrix(1, 3, [x, y, 1])*matrix).tolist()[0][:2])
def translate(self, x=0, y=0):
"""Shift the Point by adding x and y to the coordinates of the Point.
See Also
========
rotate, scale
Examples
========
>>> from sympy import Point2D
>>> t = Point2D(0, 1)
>>> t.translate(2)
Point2D(2, 1)
>>> t.translate(2, 2)
Point2D(2, 3)
>>> t + Point2D(2, 2)
Point2D(2, 3)
"""
return Point(self.x + x, self.y + y)
@property
def x(self):
"""
Returns the X coordinate of the Point.
Examples
========
>>> from sympy import Point2D
>>> p = Point2D(0, 1)
>>> p.x
0
"""
return self.args[0]
@property
def y(self):
"""
Returns the Y coordinate of the Point.
Examples
========
>>> from sympy import Point2D
>>> p = Point2D(0, 1)
>>> p.y
1
"""
return self.args[1]
class Point3D(Point):
"""A point in a 3-dimensional Euclidean space.
Parameters
==========
coords : sequence of 3 coordinate values.
Attributes
==========
x
y
z
length
Raises
======
TypeError
When trying to add or subtract points with different dimensions.
When `intersection` is called with object other than a Point.
Examples
========
>>> from sympy import Point3D
>>> from sympy.abc import x
>>> Point3D(1, 2, 3)
Point3D(1, 2, 3)
>>> Point3D([1, 2, 3])
Point3D(1, 2, 3)
>>> Point3D(0, x, 3)
Point3D(0, x, 3)
Floats are automatically converted to Rational unless the
evaluate flag is False:
>>> Point3D(0.5, 0.25, 2)
Point3D(1/2, 1/4, 2)
>>> Point3D(0.5, 0.25, 3, evaluate=False)
Point3D(0.5, 0.25, 3)
"""
_ambient_dimension = 3
def __new__(cls, *args, **kwargs):
if not kwargs.pop('_nocheck', False):
kwargs['dim'] = 3
args = Point(*args, **kwargs)
return GeometryEntity.__new__(cls, *args)
def __contains__(self, item):
return item == self
@staticmethod
def are_collinear(*points):
"""Is a sequence of points collinear?
Test whether or not a set of points are collinear. Returns True if
the set of points are collinear, or False otherwise.
Parameters
==========
points : sequence of Point
Returns
=======
are_collinear : boolean
See Also
========
sympy.geometry.line.Line3D
Examples
========
>>> from sympy import Point3D, Matrix
>>> from sympy.abc import x
>>> p1, p2 = Point3D(0, 0, 0), Point3D(1, 1, 1)
>>> p3, p4, p5 = Point3D(2, 2, 2), Point3D(x, x, x), Point3D(1, 2, 6)
>>> Point3D.are_collinear(p1, p2, p3, p4)
True
>>> Point3D.are_collinear(p1, p2, p3, p5)
False
"""
return Point.is_collinear(*points)
def direction_cosine(self, point):
"""
Gives the direction cosine between 2 points
Parameters
==========
p : Point3D
Returns
=======
list
Examples
========
>>> from sympy import Point3D
>>> p1 = Point3D(1, 2, 3)
>>> p1.direction_cosine(Point3D(2, 3, 5))
[sqrt(6)/6, sqrt(6)/6, sqrt(6)/3]
"""
a = self.direction_ratio(point)
b = sqrt(Add(*(i**2 for i in a)))
return [(point.x - self.x) / b,(point.y - self.y) / b,
(point.z - self.z) / b]
def direction_ratio(self, point):
"""
Gives the direction ratio between 2 points
Parameters
==========
p : Point3D
Returns
=======
list
Examples
========
>>> from sympy import Point3D
>>> p1 = Point3D(1, 2, 3)
>>> p1.direction_ratio(Point3D(2, 3, 5))
[1, 1, 2]
"""
return [(point.x - self.x),(point.y - self.y),(point.z - self.z)]
def intersection(self, other):
"""The intersection between this point and another point.
Parameters
==========
other : Point
Returns
=======
intersection : list of Points
Notes
=====
The return value will either be an empty list if there is no
intersection, otherwise it will contain this point.
Examples
========
>>> from sympy import Point3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, 0, 0)
>>> p1.intersection(p2)
[]
>>> p1.intersection(p3)
[Point3D(0, 0, 0)]
"""
if not isinstance(other, GeometryEntity):
other = Point(other, dim=3)
if isinstance(other, Point3D):
if self == other:
return [self]
return []
return other.intersection(self)
def scale(self, x=1, y=1, z=1, pt=None):
"""Scale the coordinates of the Point by multiplying by
``x`` and ``y`` after subtracting ``pt`` -- default is (0, 0) --
and then adding ``pt`` back again (i.e. ``pt`` is the point of
reference for the scaling).
See Also
========
translate
Examples
========
>>> from sympy import Point3D
>>> t = Point3D(1, 1, 1)
>>> t.scale(2)
Point3D(2, 1, 1)
>>> t.scale(2, 2)
Point3D(2, 2, 1)
"""
if pt:
pt = Point3D(pt)
return self.translate(*(-pt).args).scale(x, y, z).translate(*pt.args)
return Point3D(self.x*x, self.y*y, self.z*z)
def transform(self, matrix):
"""Return the point after applying the transformation described
by the 4x4 Matrix, ``matrix``.
See Also
========
geometry.entity.rotate
geometry.entity.scale
geometry.entity.translate
"""
if not (matrix.is_Matrix and matrix.shape == (4, 4)):
raise ValueError("matrix must be a 4x4 matrix")
col, row = matrix.shape
valid_matrix = matrix.is_square and col == 4
from sympy.matrices.expressions import Transpose
x, y, z = self.args
m = Transpose(matrix)
return Point3D(*(Matrix(1, 4, [x, y, z, 1])*m).tolist()[0][:3])
def translate(self, x=0, y=0, z=0):
"""Shift the Point by adding x and y to the coordinates of the Point.
See Also
========
rotate, scale
Examples
========
>>> from sympy import Point3D
>>> t = Point3D(0, 1, 1)
>>> t.translate(2)
Point3D(2, 1, 1)
>>> t.translate(2, 2)
Point3D(2, 3, 1)
>>> t + Point3D(2, 2, 2)
Point3D(2, 3, 3)
"""
return Point3D(self.x + x, self.y + y, self.z + z)
@property
def x(self):
"""
Returns the X coordinate of the Point.
Examples
========
>>> from sympy import Point3D
>>> p = Point3D(0, 1, 3)
>>> p.x
0
"""
return self.args[0]
@property
def y(self):
"""
Returns the Y coordinate of the Point.
Examples
========
>>> from sympy import Point3D
>>> p = Point3D(0, 1, 2)
>>> p.y
1
"""
return self.args[1]
@property
def z(self):
"""
Returns the Z coordinate of the Point.
Examples
========
>>> from sympy import Point3D
>>> p = Point3D(0, 1, 1)
>>> p.z
1
"""
return self.args[2]
|
d5dfe406deb36d7f223dde96c04aaeb13f42761e8b86a9f42c0cb5e9397fd54e
|
"""Geometrical Planes.
Contains
========
Plane
"""
from __future__ import division, print_function
from sympy import simplify
from sympy.core import Dummy, Rational, S, Symbol
from sympy.core.symbol import _symbol
from sympy.core.compatibility import is_sequence
from sympy.functions.elementary.trigonometric import cos, sin, acos, asin, sqrt
from sympy.matrices import Matrix
from sympy.polys.polytools import cancel
from sympy.solvers import solve, linsolve
from sympy.utilities.iterables import uniq
from sympy.utilities.misc import filldedent, func_name
from .entity import GeometryEntity
from .point import Point, Point3D
from .line import Line, Ray, Segment, Line3D, LinearEntity3D, Ray3D, Segment3D
class Plane(GeometryEntity):
"""
A plane is a flat, two-dimensional surface. A plane is the two-dimensional
analogue of a point (zero-dimensions), a line (one-dimension) and a solid
(three-dimensions). A plane can generally be constructed by two types of
inputs. They are three non-collinear points and a point and the plane's
normal vector.
Attributes
==========
p1
normal_vector
Examples
========
>>> from sympy import Plane, Point3D
>>> from sympy.abc import x
>>> Plane(Point3D(1, 1, 1), Point3D(2, 3, 4), Point3D(2, 2, 2))
Plane(Point3D(1, 1, 1), (-1, 2, -1))
>>> Plane((1, 1, 1), (2, 3, 4), (2, 2, 2))
Plane(Point3D(1, 1, 1), (-1, 2, -1))
>>> Plane(Point3D(1, 1, 1), normal_vector=(1,4,7))
Plane(Point3D(1, 1, 1), (1, 4, 7))
"""
def __new__(cls, p1, a=None, b=None, **kwargs):
p1 = Point3D(p1, dim=3)
if a and b:
p2 = Point(a, dim=3)
p3 = Point(b, dim=3)
if Point3D.are_collinear(p1, p2, p3):
raise ValueError('Enter three non-collinear points')
a = p1.direction_ratio(p2)
b = p1.direction_ratio(p3)
normal_vector = tuple(Matrix(a).cross(Matrix(b)))
else:
a = kwargs.pop('normal_vector', a)
if is_sequence(a) and len(a) == 3:
normal_vector = Point3D(a).args
else:
raise ValueError(filldedent('''
Either provide 3 3D points or a point with a
normal vector expressed as a sequence of length 3'''))
if all(coord.is_zero for coord in normal_vector):
raise ValueError('Normal vector cannot be zero vector')
return GeometryEntity.__new__(cls, p1, normal_vector, **kwargs)
def __contains__(self, o):
from sympy.geometry.line import LinearEntity, LinearEntity3D
x, y, z = map(Dummy, 'xyz')
k = self.equation(x, y, z)
if isinstance(o, (LinearEntity, LinearEntity3D)):
t = Dummy()
d = Point3D(o.arbitrary_point(t))
e = k.subs([(x, d.x), (y, d.y), (z, d.z)])
return e.equals(0)
try:
o = Point(o, dim=3, strict=True)
d = k.xreplace(dict(zip((x, y, z), o.args)))
return d.equals(0)
except TypeError:
return False
def angle_between(self, o):
"""Angle between the plane and other geometric entity.
Parameters
==========
LinearEntity3D, Plane.
Returns
=======
angle : angle in radians
Notes
=====
This method accepts only 3D entities as it's parameter, but if you want
to calculate the angle between a 2D entity and a plane you should
first convert to a 3D entity by projecting onto a desired plane and
then proceed to calculate the angle.
Examples
========
>>> from sympy import Point3D, Line3D, Plane
>>> a = Plane(Point3D(1, 2, 2), normal_vector=(1, 2, 3))
>>> b = Line3D(Point3D(1, 3, 4), Point3D(2, 2, 2))
>>> a.angle_between(b)
-asin(sqrt(21)/6)
"""
from sympy.geometry.line import LinearEntity3D
if isinstance(o, LinearEntity3D):
a = Matrix(self.normal_vector)
b = Matrix(o.direction_ratio)
c = a.dot(b)
d = sqrt(sum([i**2 for i in self.normal_vector]))
e = sqrt(sum([i**2 for i in o.direction_ratio]))
return asin(c/(d*e))
if isinstance(o, Plane):
a = Matrix(self.normal_vector)
b = Matrix(o.normal_vector)
c = a.dot(b)
d = sqrt(sum([i**2 for i in self.normal_vector]))
e = sqrt(sum([i**2 for i in o.normal_vector]))
return acos(c/(d*e))
def arbitrary_point(self, u=None, v=None):
""" Returns an arbitrary point on the Plane. If given two
parameters, the point ranges over the entire plane. If given 1
or no parameters, returns a point with one parameter which,
when varying from 0 to 2*pi, moves the point in a circle of
radius 1 about p1 of the Plane.
Examples
========
>>> from sympy.geometry import Plane, Ray
>>> from sympy.abc import u, v, t, r
>>> p = Plane((1, 1, 1), normal_vector=(1, 0, 0))
>>> p.arbitrary_point(u, v)
Point3D(1, u + 1, v + 1)
>>> p.arbitrary_point(t)
Point3D(1, cos(t) + 1, sin(t) + 1)
While arbitrary values of u and v can move the point anywhere in
the plane, the single-parameter point can be used to construct a
ray whose arbitrary point can be located at angle t and radius
r from p.p1:
>>> Ray(p.p1, _).arbitrary_point(r)
Point3D(1, r*cos(t) + 1, r*sin(t) + 1)
Returns
=======
Point3D
"""
circle = v is None
if circle:
u = _symbol(u or 't', real=True)
else:
u = _symbol(u or 'u', real=True)
v = _symbol(v or 'v', real=True)
x, y, z = self.normal_vector
a, b, c = self.p1.args
# x1, y1, z1 is a nonzero vector parallel to the plane
if x.is_zero and y.is_zero:
x1, y1, z1 = S.One, S.Zero, S.Zero
else:
x1, y1, z1 = -y, x, S.Zero
# x2, y2, z2 is also parallel to the plane, and orthogonal to x1, y1, z1
x2, y2, z2 = tuple(Matrix((x, y, z)).cross(Matrix((x1, y1, z1))))
if circle:
x1, y1, z1 = (w/sqrt(x1**2 + y1**2 + z1**2) for w in (x1, y1, z1))
x2, y2, z2 = (w/sqrt(x2**2 + y2**2 + z2**2) for w in (x2, y2, z2))
p = Point3D(a + x1*cos(u) + x2*sin(u), \
b + y1*cos(u) + y2*sin(u), \
c + z1*cos(u) + z2*sin(u))
else:
p = Point3D(a + x1*u + x2*v, b + y1*u + y2*v, c + z1*u + z2*v)
return p
@staticmethod
def are_concurrent(*planes):
"""Is a sequence of Planes concurrent?
Two or more Planes are concurrent if their intersections
are a common line.
Parameters
==========
planes: list
Returns
=======
Boolean
Examples
========
>>> from sympy import Plane, Point3D
>>> a = Plane(Point3D(5, 0, 0), normal_vector=(1, -1, 1))
>>> b = Plane(Point3D(0, -2, 0), normal_vector=(3, 1, 1))
>>> c = Plane(Point3D(0, -1, 0), normal_vector=(5, -1, 9))
>>> Plane.are_concurrent(a, b)
True
>>> Plane.are_concurrent(a, b, c)
False
"""
planes = list(uniq(planes))
for i in planes:
if not isinstance(i, Plane):
raise ValueError('All objects should be Planes but got %s' % i.func)
if len(planes) < 2:
return False
planes = list(planes)
first = planes.pop(0)
sol = first.intersection(planes[0])
if sol == []:
return False
else:
line = sol[0]
for i in planes[1:]:
l = first.intersection(i)
if not l or not l[0] in line:
return False
return True
def distance(self, o):
"""Distance between the plane and another geometric entity.
Parameters
==========
Point3D, LinearEntity3D, Plane.
Returns
=======
distance
Notes
=====
This method accepts only 3D entities as it's parameter, but if you want
to calculate the distance between a 2D entity and a plane you should
first convert to a 3D entity by projecting onto a desired plane and
then proceed to calculate the distance.
Examples
========
>>> from sympy import Point, Point3D, Line, Line3D, Plane
>>> a = Plane(Point3D(1, 1, 1), normal_vector=(1, 1, 1))
>>> b = Point3D(1, 2, 3)
>>> a.distance(b)
sqrt(3)
>>> c = Line3D(Point3D(2, 3, 1), Point3D(1, 2, 2))
>>> a.distance(c)
0
"""
from sympy.geometry.line import LinearEntity3D
if self.intersection(o) != []:
return S.Zero
if isinstance(o, Point3D):
x, y, z = map(Dummy, 'xyz')
k = self.equation(x, y, z)
a, b, c = [k.coeff(i) for i in (x, y, z)]
d = k.xreplace({x: o.args[0], y: o.args[1], z: o.args[2]})
t = abs(d/sqrt(a**2 + b**2 + c**2))
return t
if isinstance(o, LinearEntity3D):
a, b = o.p1, self.p1
c = Matrix(a.direction_ratio(b))
d = Matrix(self.normal_vector)
e = c.dot(d)
f = sqrt(sum([i**2 for i in self.normal_vector]))
return abs(e / f)
if isinstance(o, Plane):
a, b = o.p1, self.p1
c = Matrix(a.direction_ratio(b))
d = Matrix(self.normal_vector)
e = c.dot(d)
f = sqrt(sum([i**2 for i in self.normal_vector]))
return abs(e / f)
def equals(self, o):
"""
Returns True if self and o are the same mathematical entities.
Examples
========
>>> from sympy import Plane, Point3D
>>> a = Plane(Point3D(1, 2, 3), normal_vector=(1, 1, 1))
>>> b = Plane(Point3D(1, 2, 3), normal_vector=(2, 2, 2))
>>> c = Plane(Point3D(1, 2, 3), normal_vector=(-1, 4, 6))
>>> a.equals(a)
True
>>> a.equals(b)
True
>>> a.equals(c)
False
"""
if isinstance(o, Plane):
a = self.equation()
b = o.equation()
return simplify(a / b).is_constant()
else:
return False
def equation(self, x=None, y=None, z=None):
"""The equation of the Plane.
Examples
========
>>> from sympy import Point3D, Plane
>>> a = Plane(Point3D(1, 1, 2), Point3D(2, 4, 7), Point3D(3, 5, 1))
>>> a.equation()
-23*x + 11*y - 2*z + 16
>>> a = Plane(Point3D(1, 4, 2), normal_vector=(6, 6, 6))
>>> a.equation()
6*x + 6*y + 6*z - 42
"""
x, y, z = [i if i else Symbol(j, real=True) for i, j in zip((x, y, z), 'xyz')]
a = Point3D(x, y, z)
b = self.p1.direction_ratio(a)
c = self.normal_vector
return (sum(i*j for i, j in zip(b, c)))
def intersection(self, o):
""" The intersection with other geometrical entity.
Parameters
==========
Point, Point3D, LinearEntity, LinearEntity3D, Plane
Returns
=======
List
Examples
========
>>> from sympy import Point, Point3D, Line, Line3D, Plane
>>> a = Plane(Point3D(1, 2, 3), normal_vector=(1, 1, 1))
>>> b = Point3D(1, 2, 3)
>>> a.intersection(b)
[Point3D(1, 2, 3)]
>>> c = Line3D(Point3D(1, 4, 7), Point3D(2, 2, 2))
>>> a.intersection(c)
[Point3D(2, 2, 2)]
>>> d = Plane(Point3D(6, 0, 0), normal_vector=(2, -5, 3))
>>> e = Plane(Point3D(2, 0, 0), normal_vector=(3, 4, -3))
>>> d.intersection(e)
[Line3D(Point3D(78/23, -24/23, 0), Point3D(147/23, 321/23, 23))]
"""
from sympy.geometry.line import LinearEntity, LinearEntity3D
if not isinstance(o, GeometryEntity):
o = Point(o, dim=3)
if isinstance(o, Point):
if o in self:
return [o]
else:
return []
if isinstance(o, (LinearEntity, LinearEntity3D)):
if o in self:
p1, p2 = o.p1, o.p2
if isinstance(o, Segment):
o = Segment3D(p1, p2)
elif isinstance(o, Ray):
o = Ray3D(p1, p2)
elif isinstance(o, Line):
o = Line3D(p1, p2)
else:
raise ValueError('unhandled linear entity: %s' % o.func)
return [o]
else:
x, y, z = map(Dummy, 'xyz')
t = Dummy() # unnamed else it may clash with a symbol in o
a = Point3D(o.arbitrary_point(t))
b = self.equation(x, y, z)
# TODO: Replace solve with solveset, when this line is tested
c = solve(b.subs(list(zip((x, y, z), a.args))), t)
if not c:
return []
else:
p = a.subs(t, c[0])
if p not in self:
return [] # e.g. a segment might not intersect a plane
return [p]
if isinstance(o, Plane):
if self.equals(o):
return [self]
if self.is_parallel(o):
return []
else:
x, y, z = map(Dummy, 'xyz')
a, b = Matrix([self.normal_vector]), Matrix([o.normal_vector])
c = list(a.cross(b))
d = self.equation(x, y, z)
e = o.equation(x, y, z)
result = list(linsolve([d, e], x, y, z))[0]
for i in (x, y, z): result = result.subs(i, 0)
return [Line3D(Point3D(result), direction_ratio=c)]
def is_coplanar(self, o):
""" Returns True if `o` is coplanar with self, else False.
Examples
========
>>> from sympy import Plane, Point3D
>>> o = (0, 0, 0)
>>> p = Plane(o, (1, 1, 1))
>>> p2 = Plane(o, (2, 2, 2))
>>> p == p2
False
>>> p.is_coplanar(p2)
True
"""
if isinstance(o, Plane):
x, y, z = map(Dummy, 'xyz')
return not cancel(self.equation(x, y, z)/o.equation(x, y, z)).has(x, y, z)
if isinstance(o, Point3D):
return o in self
elif isinstance(o, LinearEntity3D):
return all(i in self for i in self)
elif isinstance(o, GeometryEntity): # XXX should only be handling 2D objects now
return all(i == 0 for i in self.normal_vector[:2])
def is_parallel(self, l):
"""Is the given geometric entity parallel to the plane?
Parameters
==========
LinearEntity3D or Plane
Returns
=======
Boolean
Examples
========
>>> from sympy import Plane, Point3D
>>> a = Plane(Point3D(1,4,6), normal_vector=(2, 4, 6))
>>> b = Plane(Point3D(3,1,3), normal_vector=(4, 8, 12))
>>> a.is_parallel(b)
True
"""
from sympy.geometry.line import LinearEntity3D
if isinstance(l, LinearEntity3D):
a = l.direction_ratio
b = self.normal_vector
c = sum([i*j for i, j in zip(a, b)])
if c == 0:
return True
else:
return False
elif isinstance(l, Plane):
a = Matrix(l.normal_vector)
b = Matrix(self.normal_vector)
if a.cross(b).is_zero:
return True
else:
return False
def is_perpendicular(self, l):
"""is the given geometric entity perpendicualar to the given plane?
Parameters
==========
LinearEntity3D or Plane
Returns
=======
Boolean
Examples
========
>>> from sympy import Plane, Point3D
>>> a = Plane(Point3D(1,4,6), normal_vector=(2, 4, 6))
>>> b = Plane(Point3D(2, 2, 2), normal_vector=(-1, 2, -1))
>>> a.is_perpendicular(b)
True
"""
from sympy.geometry.line import LinearEntity3D
if isinstance(l, LinearEntity3D):
a = Matrix(l.direction_ratio)
b = Matrix(self.normal_vector)
if a.cross(b).is_zero:
return True
else:
return False
elif isinstance(l, Plane):
a = Matrix(l.normal_vector)
b = Matrix(self.normal_vector)
if a.dot(b) == 0:
return True
else:
return False
else:
return False
@property
def normal_vector(self):
"""Normal vector of the given plane.
Examples
========
>>> from sympy import Point3D, Plane
>>> a = Plane(Point3D(1, 1, 1), Point3D(2, 3, 4), Point3D(2, 2, 2))
>>> a.normal_vector
(-1, 2, -1)
>>> a = Plane(Point3D(1, 1, 1), normal_vector=(1, 4, 7))
>>> a.normal_vector
(1, 4, 7)
"""
return self.args[1]
@property
def p1(self):
"""The only defining point of the plane. Others can be obtained from the
arbitrary_point method.
See Also
========
sympy.geometry.point.Point3D
Examples
========
>>> from sympy import Point3D, Plane
>>> a = Plane(Point3D(1, 1, 1), Point3D(2, 3, 4), Point3D(2, 2, 2))
>>> a.p1
Point3D(1, 1, 1)
"""
return self.args[0]
def parallel_plane(self, pt):
"""
Plane parallel to the given plane and passing through the point pt.
Parameters
==========
pt: Point3D
Returns
=======
Plane
Examples
========
>>> from sympy import Plane, Point3D
>>> a = Plane(Point3D(1, 4, 6), normal_vector=(2, 4, 6))
>>> a.parallel_plane(Point3D(2, 3, 5))
Plane(Point3D(2, 3, 5), (2, 4, 6))
"""
a = self.normal_vector
return Plane(pt, normal_vector=a)
def perpendicular_line(self, pt):
"""A line perpendicular to the given plane.
Parameters
==========
pt: Point3D
Returns
=======
Line3D
Examples
========
>>> from sympy import Plane, Point3D, Line3D
>>> a = Plane(Point3D(1,4,6), normal_vector=(2, 4, 6))
>>> a.perpendicular_line(Point3D(9, 8, 7))
Line3D(Point3D(9, 8, 7), Point3D(11, 12, 13))
"""
a = self.normal_vector
return Line3D(pt, direction_ratio=a)
def perpendicular_plane(self, *pts):
"""
Return a perpendicular passing through the given points. If the
direction ratio between the points is the same as the Plane's normal
vector then, to select from the infinite number of possible planes,
a third point will be chosen on the z-axis (or the y-axis
if the normal vector is already parallel to the z-axis). If less than
two points are given they will be supplied as follows: if no point is
given then pt1 will be self.p1; if a second point is not given it will
be a point through pt1 on a line parallel to the z-axis (if the normal
is not already the z-axis, otherwise on the line parallel to the
y-axis).
Parameters
==========
pts: 0, 1 or 2 Point3D
Returns
=======
Plane
Examples
========
>>> from sympy import Plane, Point3D, Line3D
>>> a, b = Point3D(0, 0, 0), Point3D(0, 1, 0)
>>> Z = (0, 0, 1)
>>> p = Plane(a, normal_vector=Z)
>>> p.perpendicular_plane(a, b)
Plane(Point3D(0, 0, 0), (1, 0, 0))
"""
if len(pts) > 2:
raise ValueError('No more than 2 pts should be provided.')
pts = list(pts)
if len(pts) == 0:
pts.append(self.p1)
if len(pts) == 1:
x, y, z = self.normal_vector
if x == y == 0:
dir = (0, 1, 0)
else:
dir = (0, 0, 1)
pts.append(pts[0] + Point3D(*dir))
p1, p2 = [Point(i, dim=3) for i in pts]
l = Line3D(p1, p2)
n = Line3D(p1, direction_ratio=self.normal_vector)
if l in n: # XXX should an error be raised instead?
# there are infinitely many perpendicular planes;
x, y, z = self.normal_vector
if x == y == 0:
# the z axis is the normal so pick a pt on the y-axis
p3 = Point3D(0, 1, 0) # case 1
else:
# else pick a pt on the z axis
p3 = Point3D(0, 0, 1) # case 2
# in case that point is already given, move it a bit
if p3 in l:
p3 *= 2 # case 3
else:
p3 = p1 + Point3D(*self.normal_vector) # case 4
return Plane(p1, p2, p3)
def projection_line(self, line):
"""Project the given line onto the plane through the normal plane
containing the line.
Parameters
==========
LinearEntity or LinearEntity3D
Returns
=======
Point3D, Line3D, Ray3D or Segment3D
Notes
=====
For the interaction between 2D and 3D lines(segments, rays), you should
convert the line to 3D by using this method. For example for finding the
intersection between a 2D and a 3D line, convert the 2D line to a 3D line
by projecting it on a required plane and then proceed to find the
intersection between those lines.
Examples
========
>>> from sympy import Plane, Line, Line3D, Point, Point3D
>>> a = Plane(Point3D(1, 1, 1), normal_vector=(1, 1, 1))
>>> b = Line(Point3D(1, 1), Point3D(2, 2))
>>> a.projection_line(b)
Line3D(Point3D(4/3, 4/3, 1/3), Point3D(5/3, 5/3, -1/3))
>>> c = Line3D(Point3D(1, 1, 1), Point3D(2, 2, 2))
>>> a.projection_line(c)
Point3D(1, 1, 1)
"""
from sympy.geometry.line import LinearEntity, LinearEntity3D
if not isinstance(line, (LinearEntity, LinearEntity3D)):
raise NotImplementedError('Enter a linear entity only')
a, b = self.projection(line.p1), self.projection(line.p2)
if a == b:
# projection does not imply intersection so for
# this case (line parallel to plane's normal) we
# return the projection point
return a
if isinstance(line, (Line, Line3D)):
return Line3D(a, b)
if isinstance(line, (Ray, Ray3D)):
return Ray3D(a, b)
if isinstance(line, (Segment, Segment3D)):
return Segment3D(a, b)
def projection(self, pt):
"""Project the given point onto the plane along the plane normal.
Parameters
==========
Point or Point3D
Returns
=======
Point3D
Examples
========
>>> from sympy import Plane, Point, Point3D
>>> A = Plane(Point3D(1, 1, 2), normal_vector=(1, 1, 1))
The projection is along the normal vector direction, not the z
axis, so (1, 1) does not project to (1, 1, 2) on the plane A:
>>> b = Point3D(1, 1)
>>> A.projection(b)
Point3D(5/3, 5/3, 2/3)
>>> _ in A
True
But the point (1, 1, 2) projects to (1, 1) on the XY-plane:
>>> XY = Plane((0, 0, 0), (0, 0, 1))
>>> XY.projection((1, 1, 2))
Point3D(1, 1, 0)
"""
rv = Point(pt, dim=3)
if rv in self:
return rv
return self.intersection(Line3D(rv, rv + Point3D(self.normal_vector)))[0]
def random_point(self, seed=None):
""" Returns a random point on the Plane.
Returns
=======
Point3D
Examples
========
>>> from sympy import Plane
>>> p = Plane((1, 0, 0), normal_vector=(0, 1, 0))
>>> r = p.random_point(seed=42) # seed value is optional
>>> r.n(3)
Point3D(2.29, 0, -1.35)
The random point can be moved to lie on the circle of radius
1 centered on p1:
>>> c = p.p1 + (r - p.p1).unit
>>> c.distance(p.p1).equals(1)
True
"""
import random
if seed is not None:
rng = random.Random(seed)
else:
rng = random
u, v = Dummy('u'), Dummy('v')
params = {
u: 2*Rational(rng.gauss(0, 1)) - 1,
v: 2*Rational(rng.gauss(0, 1)) - 1}
return self.arbitrary_point(u, v).subs(params)
def parameter_value(self, other, u, v=None):
"""Return the parameter(s) corresponding to the given point.
Examples
========
>>> from sympy import Plane, Point, pi
>>> from sympy.abc import t, u, v
>>> p = Plane((2, 0, 0), (0, 0, 1), (0, 1, 0))
By default, the parameter value returned defines a point
that is a distance of 1 from the Plane's p1 value and
in line with the given point:
>>> on_circle = p.arbitrary_point(t).subs(t, pi/4)
>>> on_circle.distance(p.p1)
1
>>> p.parameter_value(on_circle, t)
{t: pi/4}
Moving the point twice as far from p1 does not change
the parameter value:
>>> off_circle = p.p1 + (on_circle - p.p1)*2
>>> off_circle.distance(p.p1)
2
>>> p.parameter_value(off_circle, t)
{t: pi/4}
If the 2-value parameter is desired, supply the two
parameter symbols and a replacement dictionary will
be returned:
>>> p.parameter_value(on_circle, u, v)
{u: sqrt(10)/10, v: sqrt(10)/30}
>>> p.parameter_value(off_circle, u, v)
{u: sqrt(10)/5, v: sqrt(10)/15}
"""
from sympy.geometry.point import Point
from sympy.core.symbol import Dummy
from sympy.solvers.solvers import solve
if not isinstance(other, GeometryEntity):
other = Point(other, dim=self.ambient_dimension)
if not isinstance(other, Point):
raise ValueError("other must be a point")
if other == self.p1:
return other
if isinstance(u, Symbol) and v is None:
delta = self.arbitrary_point(u) - self.p1
eq = delta - (other - self.p1).unit
sol = solve(eq, u, dict=True)
elif isinstance(u, Symbol) and isinstance(v, Symbol):
pt = self.arbitrary_point(u, v)
sol = solve(pt - other, (u, v), dict=True)
else:
raise ValueError('expecting 1 or 2 symbols')
if not sol:
raise ValueError("Given point is not on %s" % func_name(self))
return sol[0] # {t: tval} or {u: uval, v: vval}
@property
def ambient_dimension(self):
return self.p1.ambient_dimension
|
6ca2ea1feec9d95f24390cdbde40f9585d637f8a852be3ee285f94330f811430
|
"""Elliptical geometrical entities.
Contains
* Ellipse
* Circle
"""
from __future__ import division, print_function
from sympy import Expr, Eq
from sympy.core import S, pi, sympify
from sympy.core.evaluate import global_evaluate
from sympy.core.logic import fuzzy_bool
from sympy.core.numbers import Rational, oo
from sympy.core.compatibility import ordered
from sympy.core.symbol import Dummy, _uniquely_named_symbol, _symbol
from sympy.simplify import simplify, trigsimp, nsimplify
from sympy.functions.elementary.miscellaneous import sqrt, Max
from sympy.functions.elementary.trigonometric import cos, sin
from sympy.functions.special.elliptic_integrals import elliptic_e
from sympy.geometry.exceptions import GeometryError
from sympy.geometry.line import Ray2D, Segment2D, Line2D, LinearEntity3D
from sympy.polys import DomainError, Poly, PolynomialError
from sympy.polys.polyutils import _not_a_coeff, _nsort
from sympy.solvers import solve
from sympy.solvers.solveset import linear_coeffs
from sympy.utilities.misc import filldedent, func_name
from .entity import GeometryEntity, GeometrySet
from .point import Point, Point2D, Point3D
from .line import Line, LinearEntity, Segment
from .util import idiff
import random
class Ellipse(GeometrySet):
"""An elliptical GeometryEntity.
Parameters
==========
center : Point, optional
Default value is Point(0, 0)
hradius : number or SymPy expression, optional
vradius : number or SymPy expression, optional
eccentricity : number or SymPy expression, optional
Two of `hradius`, `vradius` and `eccentricity` must be supplied to
create an Ellipse. The third is derived from the two supplied.
Attributes
==========
center
hradius
vradius
area
circumference
eccentricity
periapsis
apoapsis
focus_distance
foci
Raises
======
GeometryError
When `hradius`, `vradius` and `eccentricity` are incorrectly supplied
as parameters.
TypeError
When `center` is not a Point.
See Also
========
Circle
Notes
-----
Constructed from a center and two radii, the first being the horizontal
radius (along the x-axis) and the second being the vertical radius (along
the y-axis).
When symbolic value for hradius and vradius are used, any calculation that
refers to the foci or the major or minor axis will assume that the ellipse
has its major radius on the x-axis. If this is not true then a manual
rotation is necessary.
Examples
========
>>> from sympy import Ellipse, Point, Rational
>>> e1 = Ellipse(Point(0, 0), 5, 1)
>>> e1.hradius, e1.vradius
(5, 1)
>>> e2 = Ellipse(Point(3, 1), hradius=3, eccentricity=Rational(4, 5))
>>> e2
Ellipse(Point2D(3, 1), 3, 9/5)
"""
def __contains__(self, o):
if isinstance(o, Point):
x = Dummy('x', real=True)
y = Dummy('y', real=True)
res = self.equation(x, y).subs({x: o.x, y: o.y})
return trigsimp(simplify(res)) is S.Zero
elif isinstance(o, Ellipse):
return self == o
return False
def __eq__(self, o):
"""Is the other GeometryEntity the same as this ellipse?"""
return isinstance(o, Ellipse) and (self.center == o.center and
self.hradius == o.hradius and
self.vradius == o.vradius)
def __hash__(self):
return super(Ellipse, self).__hash__()
def __new__(
cls, center=None, hradius=None, vradius=None, eccentricity=None, **kwargs):
hradius = sympify(hradius)
vradius = sympify(vradius)
eccentricity = sympify(eccentricity)
if center is None:
center = Point(0, 0)
else:
center = Point(center, dim=2)
if len(center) != 2:
raise ValueError('The center of "{0}" must be a two dimensional point'.format(cls))
if len(list(filter(lambda x: x is not None, (hradius, vradius, eccentricity)))) != 2:
raise ValueError(filldedent('''
Exactly two arguments of "hradius", "vradius", and
"eccentricity" must not be None.'''))
if eccentricity is not None:
if hradius is None:
hradius = vradius / sqrt(1 - eccentricity**2)
elif vradius is None:
vradius = hradius * sqrt(1 - eccentricity**2)
if hradius == vradius:
return Circle(center, hradius, **kwargs)
if hradius == 0 or vradius == 0:
return Segment(Point(center[0] - hradius, center[1] - vradius), Point(center[0] + hradius, center[1] + vradius))
return GeometryEntity.__new__(cls, center, hradius, vradius, **kwargs)
def _svg(self, scale_factor=1., fill_color="#66cc99"):
"""Returns SVG ellipse element for the Ellipse.
Parameters
==========
scale_factor : float
Multiplication factor for the SVG stroke-width. Default is 1.
fill_color : str, optional
Hex string for fill color. Default is "#66cc99".
"""
from sympy.core.evalf import N
c = N(self.center)
h, v = N(self.hradius), N(self.vradius)
return (
'<ellipse fill="{1}" stroke="#555555" '
'stroke-width="{0}" opacity="0.6" cx="{2}" cy="{3}" rx="{4}" ry="{5}"/>'
).format(2. * scale_factor, fill_color, c.x, c.y, h, v)
@property
def ambient_dimension(self):
return 2
@property
def apoapsis(self):
"""The apoapsis of the ellipse.
The greatest distance between the focus and the contour.
Returns
=======
apoapsis : number
See Also
========
periapsis : Returns shortest distance between foci and contour
Examples
========
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.apoapsis
2*sqrt(2) + 3
"""
return self.major * (1 + self.eccentricity)
def arbitrary_point(self, parameter='t'):
"""A parameterized point on the ellipse.
Parameters
==========
parameter : str, optional
Default value is 't'.
Returns
=======
arbitrary_point : Point
Raises
======
ValueError
When `parameter` already appears in the functions.
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Point, Ellipse
>>> e1 = Ellipse(Point(0, 0), 3, 2)
>>> e1.arbitrary_point()
Point2D(3*cos(t), 2*sin(t))
"""
t = _symbol(parameter, real=True)
if t.name in (f.name for f in self.free_symbols):
raise ValueError(filldedent('Symbol %s already appears in object '
'and cannot be used as a parameter.' % t.name))
return Point(self.center.x + self.hradius*cos(t),
self.center.y + self.vradius*sin(t))
@property
def area(self):
"""The area of the ellipse.
Returns
=======
area : number
Examples
========
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.area
3*pi
"""
return simplify(S.Pi * self.hradius * self.vradius)
@property
def bounds(self):
"""Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
rectangle for the geometric figure.
"""
h, v = self.hradius, self.vradius
return (self.center.x - h, self.center.y - v, self.center.x + h, self.center.y + v)
@property
def center(self):
"""The center of the ellipse.
Returns
=======
center : number
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.center
Point2D(0, 0)
"""
return self.args[0]
@property
def circumference(self):
"""The circumference of the ellipse.
Examples
========
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.circumference
12*elliptic_e(8/9)
"""
if self.eccentricity == 1:
# degenerate
return 4*self.major
elif self.eccentricity == 0:
# circle
return 2*pi*self.hradius
else:
return 4*self.major*elliptic_e(self.eccentricity**2)
@property
def eccentricity(self):
"""The eccentricity of the ellipse.
Returns
=======
eccentricity : number
Examples
========
>>> from sympy import Point, Ellipse, sqrt
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, sqrt(2))
>>> e1.eccentricity
sqrt(7)/3
"""
return self.focus_distance / self.major
def encloses_point(self, p):
"""
Return True if p is enclosed by (is inside of) self.
Notes
-----
Being on the border of self is considered False.
Parameters
==========
p : Point
Returns
=======
encloses_point : True, False or None
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Ellipse, S
>>> from sympy.abc import t
>>> e = Ellipse((0, 0), 3, 2)
>>> e.encloses_point((0, 0))
True
>>> e.encloses_point(e.arbitrary_point(t).subs(t, S.Half))
False
>>> e.encloses_point((4, 0))
False
"""
p = Point(p, dim=2)
if p in self:
return False
if len(self.foci) == 2:
# if the combined distance from the foci to p (h1 + h2) is less
# than the combined distance from the foci to the minor axis
# (which is the same as the major axis length) then p is inside
# the ellipse
h1, h2 = [f.distance(p) for f in self.foci]
test = 2*self.major - (h1 + h2)
else:
test = self.radius - self.center.distance(p)
return fuzzy_bool(test.is_positive)
def equation(self, x='x', y='y', _slope=None):
"""
Returns the equation of an ellipse aligned with the x and y axes;
when slope is given, the equation returned corresponds to an ellipse
with a major axis having that slope.
Parameters
==========
x : str, optional
Label for the x-axis. Default value is 'x'.
y : str, optional
Label for the y-axis. Default value is 'y'.
_slope : Expr, optional
The slope of the major axis. Ignored when 'None'.
Returns
=======
equation : sympy expression
See Also
========
arbitrary_point : Returns parameterized point on ellipse
Examples
========
>>> from sympy import Point, Ellipse, pi
>>> from sympy.abc import x, y
>>> e1 = Ellipse(Point(1, 0), 3, 2)
>>> eq1 = e1.equation(x, y); eq1
y**2/4 + (x/3 - 1/3)**2 - 1
>>> eq2 = e1.equation(x, y, _slope=1); eq2
(-x + y + 1)**2/8 + (x + y - 1)**2/18 - 1
A point on e1 satisfies eq1. Let's use one on the x-axis:
>>> p1 = e1.center + Point(e1.major, 0)
>>> assert eq1.subs(x, p1.x).subs(y, p1.y) == 0
When rotated the same as the rotated ellipse, about the center
point of the ellipse, it will satisfy the rotated ellipse's
equation, too:
>>> r1 = p1.rotate(pi/4, e1.center)
>>> assert eq2.subs(x, r1.x).subs(y, r1.y) == 0
References
==========
.. [1] https://math.stackexchange.com/questions/108270/what-is-the-equation-of-an-ellipse-that-is-not-aligned-with-the-axis
.. [2] https://en.wikipedia.org/wiki/Ellipse#Equation_of_a_shifted_ellipse
"""
x = _symbol(x, real=True)
y = _symbol(y, real=True)
dx = x - self.center.x
dy = y - self.center.y
if _slope is not None:
L = (dy - _slope*dx)**2
l = (_slope*dy + dx)**2
h = 1 + _slope**2
b = h*self.major**2
a = h*self.minor**2
return l/b + L/a - 1
else:
t1 = (dx/self.hradius)**2
t2 = (dy/self.vradius)**2
return t1 + t2 - 1
def evolute(self, x='x', y='y'):
"""The equation of evolute of the ellipse.
Parameters
==========
x : str, optional
Label for the x-axis. Default value is 'x'.
y : str, optional
Label for the y-axis. Default value is 'y'.
Returns
=======
equation : sympy expression
Examples
========
>>> from sympy import Point, Ellipse
>>> e1 = Ellipse(Point(1, 0), 3, 2)
>>> e1.evolute()
2**(2/3)*y**(2/3) + (3*x - 3)**(2/3) - 5**(2/3)
"""
if len(self.args) != 3:
raise NotImplementedError('Evolute of arbitrary Ellipse is not supported.')
x = _symbol(x, real=True)
y = _symbol(y, real=True)
t1 = (self.hradius*(x - self.center.x))**Rational(2, 3)
t2 = (self.vradius*(y - self.center.y))**Rational(2, 3)
return t1 + t2 - (self.hradius**2 - self.vradius**2)**Rational(2, 3)
@property
def foci(self):
"""The foci of the ellipse.
Notes
-----
The foci can only be calculated if the major/minor axes are known.
Raises
======
ValueError
When the major and minor axis cannot be determined.
See Also
========
sympy.geometry.point.Point
focus_distance : Returns the distance between focus and center
Examples
========
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.foci
(Point2D(-2*sqrt(2), 0), Point2D(2*sqrt(2), 0))
"""
c = self.center
hr, vr = self.hradius, self.vradius
if hr == vr:
return (c, c)
# calculate focus distance manually, since focus_distance calls this
# routine
fd = sqrt(self.major**2 - self.minor**2)
if hr == self.minor:
# foci on the y-axis
return (c + Point(0, -fd), c + Point(0, fd))
elif hr == self.major:
# foci on the x-axis
return (c + Point(-fd, 0), c + Point(fd, 0))
@property
def focus_distance(self):
"""The focal distance of the ellipse.
The distance between the center and one focus.
Returns
=======
focus_distance : number
See Also
========
foci
Examples
========
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.focus_distance
2*sqrt(2)
"""
return Point.distance(self.center, self.foci[0])
@property
def hradius(self):
"""The horizontal radius of the ellipse.
Returns
=======
hradius : number
See Also
========
vradius, major, minor
Examples
========
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.hradius
3
"""
return self.args[1]
def intersection(self, o):
"""The intersection of this ellipse and another geometrical entity
`o`.
Parameters
==========
o : GeometryEntity
Returns
=======
intersection : list of GeometryEntity objects
Notes
-----
Currently supports intersections with Point, Line, Segment, Ray,
Circle and Ellipse types.
See Also
========
sympy.geometry.entity.GeometryEntity
Examples
========
>>> from sympy import Ellipse, Point, Line, sqrt
>>> e = Ellipse(Point(0, 0), 5, 7)
>>> e.intersection(Point(0, 0))
[]
>>> e.intersection(Point(5, 0))
[Point2D(5, 0)]
>>> e.intersection(Line(Point(0,0), Point(0, 1)))
[Point2D(0, -7), Point2D(0, 7)]
>>> e.intersection(Line(Point(5,0), Point(5, 1)))
[Point2D(5, 0)]
>>> e.intersection(Line(Point(6,0), Point(6, 1)))
[]
>>> e = Ellipse(Point(-1, 0), 4, 3)
>>> e.intersection(Ellipse(Point(1, 0), 4, 3))
[Point2D(0, -3*sqrt(15)/4), Point2D(0, 3*sqrt(15)/4)]
>>> e.intersection(Ellipse(Point(5, 0), 4, 3))
[Point2D(2, -3*sqrt(7)/4), Point2D(2, 3*sqrt(7)/4)]
>>> e.intersection(Ellipse(Point(100500, 0), 4, 3))
[]
>>> e.intersection(Ellipse(Point(0, 0), 3, 4))
[Point2D(3, 0), Point2D(-363/175, -48*sqrt(111)/175), Point2D(-363/175, 48*sqrt(111)/175)]
>>> e.intersection(Ellipse(Point(-1, 0), 3, 4))
[Point2D(-17/5, -12/5), Point2D(-17/5, 12/5), Point2D(7/5, -12/5), Point2D(7/5, 12/5)]
"""
# TODO: Replace solve with nonlinsolve, when nonlinsolve will be able to solve in real domain
x = Dummy('x', real=True)
y = Dummy('y', real=True)
if isinstance(o, Point):
if o in self:
return [o]
else:
return []
elif isinstance(o, (Segment2D, Ray2D)):
ellipse_equation = self.equation(x, y)
result = solve([ellipse_equation, Line(o.points[0], o.points[1]).equation(x, y)], [x, y])
return list(ordered([Point(i) for i in result if i in o]))
elif isinstance(o, Polygon):
return o.intersection(self)
elif isinstance(o, (Ellipse, Line2D)):
if o == self:
return self
else:
ellipse_equation = self.equation(x, y)
return list(ordered([Point(i) for i in solve([ellipse_equation, o.equation(x, y)], [x, y])]))
elif isinstance(o, LinearEntity3D):
raise TypeError('Entity must be two dimensional, not three dimensional')
else:
raise TypeError('Intersection not handled for %s' % func_name(o))
def is_tangent(self, o):
"""Is `o` tangent to the ellipse?
Parameters
==========
o : GeometryEntity
An Ellipse, LinearEntity or Polygon
Raises
======
NotImplementedError
When the wrong type of argument is supplied.
Returns
=======
is_tangent: boolean
True if o is tangent to the ellipse, False otherwise.
See Also
========
tangent_lines
Examples
========
>>> from sympy import Point, Ellipse, Line
>>> p0, p1, p2 = Point(0, 0), Point(3, 0), Point(3, 3)
>>> e1 = Ellipse(p0, 3, 2)
>>> l1 = Line(p1, p2)
>>> e1.is_tangent(l1)
True
"""
if isinstance(o, Point2D):
return False
elif isinstance(o, Ellipse):
intersect = self.intersection(o)
if isinstance(intersect, Ellipse):
return True
elif intersect:
return all((self.tangent_lines(i)[0]).equals((o.tangent_lines(i)[0])) for i in intersect)
else:
return False
elif isinstance(o, Line2D):
return len(self.intersection(o)) == 1
elif isinstance(o, Ray2D):
intersect = self.intersection(o)
if len(intersect) == 1:
return intersect[0] != o.source and not self.encloses_point(o.source)
else:
return False
elif isinstance(o, (Segment2D, Polygon)):
all_tangents = False
segments = o.sides if isinstance(o, Polygon) else [o]
for segment in segments:
intersect = self.intersection(segment)
if len(intersect) == 1:
if not any(intersect[0] in i for i in segment.points) \
and all(not self.encloses_point(i) for i in segment.points):
all_tangents = True
continue
else:
return False
else:
return all_tangents
return all_tangents
elif isinstance(o, (LinearEntity3D, Point3D)):
raise TypeError('Entity must be two dimensional, not three dimensional')
else:
raise TypeError('Is_tangent not handled for %s' % func_name(o))
@property
def major(self):
"""Longer axis of the ellipse (if it can be determined) else hradius.
Returns
=======
major : number or expression
See Also
========
hradius, vradius, minor
Examples
========
>>> from sympy import Point, Ellipse, Symbol
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.major
3
>>> a = Symbol('a')
>>> b = Symbol('b')
>>> Ellipse(p1, a, b).major
a
>>> Ellipse(p1, b, a).major
b
>>> m = Symbol('m')
>>> M = m + 1
>>> Ellipse(p1, m, M).major
m + 1
"""
ab = self.args[1:3]
if len(ab) == 1:
return ab[0]
a, b = ab
o = b - a < 0
if o == True:
return a
elif o == False:
return b
return self.hradius
@property
def minor(self):
"""Shorter axis of the ellipse (if it can be determined) else vradius.
Returns
=======
minor : number or expression
See Also
========
hradius, vradius, major
Examples
========
>>> from sympy import Point, Ellipse, Symbol
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.minor
1
>>> a = Symbol('a')
>>> b = Symbol('b')
>>> Ellipse(p1, a, b).minor
b
>>> Ellipse(p1, b, a).minor
a
>>> m = Symbol('m')
>>> M = m + 1
>>> Ellipse(p1, m, M).minor
m
"""
ab = self.args[1:3]
if len(ab) == 1:
return ab[0]
a, b = ab
o = a - b < 0
if o == True:
return a
elif o == False:
return b
return self.vradius
def normal_lines(self, p, prec=None):
"""Normal lines between `p` and the ellipse.
Parameters
==========
p : Point
Returns
=======
normal_lines : list with 1, 2 or 4 Lines
Examples
========
>>> from sympy import Line, Point, Ellipse
>>> e = Ellipse((0, 0), 2, 3)
>>> c = e.center
>>> e.normal_lines(c + Point(1, 0))
[Line2D(Point2D(0, 0), Point2D(1, 0))]
>>> e.normal_lines(c)
[Line2D(Point2D(0, 0), Point2D(0, 1)), Line2D(Point2D(0, 0), Point2D(1, 0))]
Off-axis points require the solution of a quartic equation. This
often leads to very large expressions that may be of little practical
use. An approximate solution of `prec` digits can be obtained by
passing in the desired value:
>>> e.normal_lines((3, 3), prec=2)
[Line2D(Point2D(-0.81, -2.7), Point2D(0.19, -1.2)),
Line2D(Point2D(1.5, -2.0), Point2D(2.5, -2.7))]
Whereas the above solution has an operation count of 12, the exact
solution has an operation count of 2020.
"""
p = Point(p, dim=2)
# XXX change True to something like self.angle == 0 if the arbitrarily
# rotated ellipse is introduced.
# https://github.com/sympy/sympy/issues/2815)
if True:
rv = []
if p.x == self.center.x:
rv.append(Line(self.center, slope=oo))
if p.y == self.center.y:
rv.append(Line(self.center, slope=0))
if rv:
# at these special orientations of p either 1 or 2 normals
# exist and we are done
return rv
# find the 4 normal points and construct lines through them with
# the corresponding slope
x, y = Dummy('x', real=True), Dummy('y', real=True)
eq = self.equation(x, y)
dydx = idiff(eq, y, x)
norm = -1/dydx
slope = Line(p, (x, y)).slope
seq = slope - norm
# TODO: Replace solve with solveset, when this line is tested
yis = solve(seq, y)[0]
xeq = eq.subs(y, yis).as_numer_denom()[0].expand()
if len(xeq.free_symbols) == 1:
try:
# this is so much faster, it's worth a try
xsol = Poly(xeq, x).real_roots()
except (DomainError, PolynomialError, NotImplementedError):
# TODO: Replace solve with solveset, when these lines are tested
xsol = _nsort(solve(xeq, x), separated=True)[0]
points = [Point(i, solve(eq.subs(x, i), y)[0]) for i in xsol]
else:
raise NotImplementedError(
'intersections for the general ellipse are not supported')
slopes = [norm.subs(zip((x, y), pt.args)) for pt in points]
if prec is not None:
points = [pt.n(prec) for pt in points]
slopes = [i if _not_a_coeff(i) else i.n(prec) for i in slopes]
return [Line(pt, slope=s) for pt, s in zip(points, slopes)]
@property
def periapsis(self):
"""The periapsis of the ellipse.
The shortest distance between the focus and the contour.
Returns
=======
periapsis : number
See Also
========
apoapsis : Returns greatest distance between focus and contour
Examples
========
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.periapsis
3 - 2*sqrt(2)
"""
return self.major * (1 - self.eccentricity)
@property
def semilatus_rectum(self):
"""
Calculates the semi-latus rectum of the Ellipse.
Semi-latus rectum is defined as one half of the the chord through a
focus parallel to the conic section directrix of a conic section.
Returns
=======
semilatus_rectum : number
See Also
========
apoapsis : Returns greatest distance between focus and contour
periapsis : The shortest distance between the focus and the contour
Examples
========
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.semilatus_rectum
1/3
References
==========
[1] http://mathworld.wolfram.com/SemilatusRectum.html
[2] https://en.wikipedia.org/wiki/Ellipse#Semi-latus_rectum
"""
return self.major * (1 - self.eccentricity ** 2)
def auxiliary_circle(self):
"""Returns a Circle whose diameter is the major axis of the ellipse.
Examples
========
>>> from sympy import Circle, Ellipse, Point, symbols
>>> c = Point(1, 2)
>>> Ellipse(c, 8, 7).auxiliary_circle()
Circle(Point2D(1, 2), 8)
>>> a, b = symbols('a b')
>>> Ellipse(c, a, b).auxiliary_circle()
Circle(Point2D(1, 2), Max(a, b))
"""
return Circle(self.center, Max(self.hradius, self.vradius))
def plot_interval(self, parameter='t'):
"""The plot interval for the default geometric plot of the Ellipse.
Parameters
==========
parameter : str, optional
Default value is 't'.
Returns
=======
plot_interval : list
[parameter, lower_bound, upper_bound]
Examples
========
>>> from sympy import Point, Ellipse
>>> e1 = Ellipse(Point(0, 0), 3, 2)
>>> e1.plot_interval()
[t, -pi, pi]
"""
t = _symbol(parameter, real=True)
return [t, -S.Pi, S.Pi]
def random_point(self, seed=None):
"""A random point on the ellipse.
Returns
=======
point : Point
Examples
========
>>> from sympy import Point, Ellipse, Segment
>>> e1 = Ellipse(Point(0, 0), 3, 2)
>>> e1.random_point() # gives some random point
Point2D(...)
>>> p1 = e1.random_point(seed=0); p1.n(2)
Point2D(2.1, 1.4)
Notes
=====
When creating a random point, one may simply replace the
parameter with a random number. When doing so, however, the
random number should be made a Rational or else the point
may not test as being in the ellipse:
>>> from sympy.abc import t
>>> from sympy import Rational
>>> arb = e1.arbitrary_point(t); arb
Point2D(3*cos(t), 2*sin(t))
>>> arb.subs(t, .1) in e1
False
>>> arb.subs(t, Rational(.1)) in e1
True
>>> arb.subs(t, Rational('.1')) in e1
True
See Also
========
sympy.geometry.point.Point
arbitrary_point : Returns parameterized point on ellipse
"""
from sympy import sin, cos, Rational
t = _symbol('t', real=True)
x, y = self.arbitrary_point(t).args
# get a random value in [-1, 1) corresponding to cos(t)
# and confirm that it will test as being in the ellipse
if seed is not None:
rng = random.Random(seed)
else:
rng = random
# simplify this now or else the Float will turn s into a Float
r = Rational(rng.random())
c = 2*r - 1
s = sqrt(1 - c**2)
return Point(x.subs(cos(t), c), y.subs(sin(t), s))
def reflect(self, line):
"""Override GeometryEntity.reflect since the radius
is not a GeometryEntity.
Examples
========
>>> from sympy import Circle, Line
>>> Circle((0, 1), 1).reflect(Line((0, 0), (1, 1)))
Circle(Point2D(1, 0), -1)
>>> from sympy import Ellipse, Line, Point
>>> Ellipse(Point(3, 4), 1, 3).reflect(Line(Point(0, -4), Point(5, 0)))
Traceback (most recent call last):
...
NotImplementedError:
General Ellipse is not supported but the equation of the reflected
Ellipse is given by the zeros of: f(x, y) = (9*x/41 + 40*y/41 +
37/41)**2 + (40*x/123 - 3*y/41 - 364/123)**2 - 1
Notes
=====
Until the general ellipse (with no axis parallel to the x-axis) is
supported a NotImplemented error is raised and the equation whose
zeros define the rotated ellipse is given.
"""
if line.slope in (0, oo):
c = self.center
c = c.reflect(line)
return self.func(c, -self.hradius, self.vradius)
else:
x, y = [_uniquely_named_symbol(
name, (self, line), real=True) for name in 'xy']
expr = self.equation(x, y)
p = Point(x, y).reflect(line)
result = expr.subs(zip((x, y), p.args
), simultaneous=True)
raise NotImplementedError(filldedent(
'General Ellipse is not supported but the equation '
'of the reflected Ellipse is given by the zeros of: ' +
"f(%s, %s) = %s" % (str(x), str(y), str(result))))
def rotate(self, angle=0, pt=None):
"""Rotate ``angle`` radians counterclockwise about Point ``pt``.
Note: since the general ellipse is not supported, only rotations that
are integer multiples of pi/2 are allowed.
Examples
========
>>> from sympy import Ellipse, pi
>>> Ellipse((1, 0), 2, 1).rotate(pi/2)
Ellipse(Point2D(0, 1), 1, 2)
>>> Ellipse((1, 0), 2, 1).rotate(pi)
Ellipse(Point2D(-1, 0), 2, 1)
"""
if self.hradius == self.vradius:
return self.func(self.center.rotate(angle, pt), self.hradius)
if (angle/S.Pi).is_integer:
return super(Ellipse, self).rotate(angle, pt)
if (2*angle/S.Pi).is_integer:
return self.func(self.center.rotate(angle, pt), self.vradius, self.hradius)
# XXX see https://github.com/sympy/sympy/issues/2815 for general ellipes
raise NotImplementedError('Only rotations of pi/2 are currently supported for Ellipse.')
def scale(self, x=1, y=1, pt=None):
"""Override GeometryEntity.scale since it is the major and minor
axes which must be scaled and they are not GeometryEntities.
Examples
========
>>> from sympy import Ellipse
>>> Ellipse((0, 0), 2, 1).scale(2, 4)
Circle(Point2D(0, 0), 4)
>>> Ellipse((0, 0), 2, 1).scale(2)
Ellipse(Point2D(0, 0), 4, 1)
"""
c = self.center
if pt:
pt = Point(pt, dim=2)
return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
h = self.hradius
v = self.vradius
return self.func(c.scale(x, y), hradius=h*x, vradius=v*y)
def tangent_lines(self, p):
"""Tangent lines between `p` and the ellipse.
If `p` is on the ellipse, returns the tangent line through point `p`.
Otherwise, returns the tangent line(s) from `p` to the ellipse, or
None if no tangent line is possible (e.g., `p` inside ellipse).
Parameters
==========
p : Point
Returns
=======
tangent_lines : list with 1 or 2 Lines
Raises
======
NotImplementedError
Can only find tangent lines for a point, `p`, on the ellipse.
See Also
========
sympy.geometry.point.Point, sympy.geometry.line.Line
Examples
========
>>> from sympy import Point, Ellipse
>>> e1 = Ellipse(Point(0, 0), 3, 2)
>>> e1.tangent_lines(Point(3, 0))
[Line2D(Point2D(3, 0), Point2D(3, -12))]
"""
p = Point(p, dim=2)
if self.encloses_point(p):
return []
if p in self:
delta = self.center - p
rise = (self.vradius**2)*delta.x
run = -(self.hradius**2)*delta.y
p2 = Point(simplify(p.x + run),
simplify(p.y + rise))
return [Line(p, p2)]
else:
if len(self.foci) == 2:
f1, f2 = self.foci
maj = self.hradius
test = (2*maj -
Point.distance(f1, p) -
Point.distance(f2, p))
else:
test = self.radius - Point.distance(self.center, p)
if test.is_number and test.is_positive:
return []
# else p is outside the ellipse or we can't tell. In case of the
# latter, the solutions returned will only be valid if
# the point is not inside the ellipse; if it is, nan will result.
x, y = Dummy('x'), Dummy('y')
eq = self.equation(x, y)
dydx = idiff(eq, y, x)
slope = Line(p, Point(x, y)).slope
# TODO: Replace solve with solveset, when this line is tested
tangent_points = solve([slope - dydx, eq], [x, y])
# handle horizontal and vertical tangent lines
if len(tangent_points) == 1:
assert tangent_points[0][
0] == p.x or tangent_points[0][1] == p.y
return [Line(p, p + Point(1, 0)), Line(p, p + Point(0, 1))]
# others
return [Line(p, tangent_points[0]), Line(p, tangent_points[1])]
@property
def vradius(self):
"""The vertical radius of the ellipse.
Returns
=======
vradius : number
See Also
========
hradius, major, minor
Examples
========
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.vradius
1
"""
return self.args[2]
def second_moment_of_area(self, point=None):
"""Returns the second moment and product moment area of an ellipse.
Parameters
==========
point : Point, two-tuple of sympifiable objects, or None(default=None)
point is the point about which second moment of area is to be found.
If "point=None" it will be calculated about the axis passing through the
centroid of the ellipse.
Returns
=======
I_xx, I_yy, I_xy : number or sympy expression
I_xx, I_yy are second moment of area of an ellise.
I_xy is product moment of area of an ellipse.
Examples
========
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.second_moment_of_area()
(3*pi/4, 27*pi/4, 0)
References
==========
https://en.wikipedia.org/wiki/List_of_second_moments_of_area
"""
I_xx = (S.Pi*(self.hradius)*(self.vradius**3))/4
I_yy = (S.Pi*(self.hradius**3)*(self.vradius))/4
I_xy = 0
if point is None:
return I_xx, I_yy, I_xy
# parallel axis theorem
I_xx = I_xx + self.area*((point[1] - self.center.y)**2)
I_yy = I_yy + self.area*((point[0] - self.center.x)**2)
I_xy = I_xy + self.area*(point[0] - self.center.x)*(point[1] - self.center.y)
return I_xx, I_yy, I_xy
class Circle(Ellipse):
"""A circle in space.
Constructed simply from a center and a radius, from three
non-collinear points, or the equation of a circle.
Parameters
==========
center : Point
radius : number or sympy expression
points : sequence of three Points
equation : equation of a circle
Attributes
==========
radius (synonymous with hradius, vradius, major and minor)
circumference
equation
Raises
======
GeometryError
When the given equation is not that of a circle.
When trying to construct circle from incorrect parameters.
See Also
========
Ellipse, sympy.geometry.point.Point
Examples
========
>>> from sympy import Eq
>>> from sympy.geometry import Point, Circle
>>> from sympy.abc import x, y, a, b
A circle constructed from a center and radius:
>>> c1 = Circle(Point(0, 0), 5)
>>> c1.hradius, c1.vradius, c1.radius
(5, 5, 5)
A circle constructed from three points:
>>> c2 = Circle(Point(0, 0), Point(1, 1), Point(1, 0))
>>> c2.hradius, c2.vradius, c2.radius, c2.center
(sqrt(2)/2, sqrt(2)/2, sqrt(2)/2, Point2D(1/2, 1/2))
A circle can be constructed from an equation in the form
`a*x**2 + by**2 + gx + hy + c = 0`, too:
>>> Circle(x**2 + y**2 - 25)
Circle(Point2D(0, 0), 5)
If the variables corresponding to x and y are named something
else, their name or symbol can be supplied:
>>> Circle(Eq(a**2 + b**2, 25), x='a', y=b)
Circle(Point2D(0, 0), 5)
"""
def __new__(cls, *args, **kwargs):
from sympy.geometry.util import find
from .polygon import Triangle
evaluate = kwargs.get('evaluate', global_evaluate[0])
if len(args) == 1 and isinstance(args[0], Expr):
x = kwargs.get('x', 'x')
y = kwargs.get('y', 'y')
equation = args[0]
if isinstance(equation, Eq):
equation = equation.lhs - equation.rhs
x = find(x, equation)
y = find(y, equation)
try:
a, b, c, d, e = linear_coeffs(equation, x**2, y**2, x, y)
except ValueError:
raise GeometryError("The given equation is not that of a circle.")
if a == 0 or b == 0 or a != b:
raise GeometryError("The given equation is not that of a circle.")
center_x = -c/a/2
center_y = -d/b/2
r2 = (center_x**2) + (center_y**2) - e
return Circle((center_x, center_y), sqrt(r2), evaluate=evaluate)
else:
c, r = None, None
if len(args) == 3:
args = [Point(a, dim=2, evaluate=evaluate) for a in args]
t = Triangle(*args)
if not isinstance(t, Triangle):
return t
c = t.circumcenter
r = t.circumradius
elif len(args) == 2:
# Assume (center, radius) pair
c = Point(args[0], dim=2, evaluate=evaluate)
r = args[1]
# this will prohibit imaginary radius
try:
r = Point(r, 0, evaluate=evaluate).x
except:
raise GeometryError("Circle with imaginary radius is not permitted")
if not (c is None or r is None):
if r == 0:
return c
return GeometryEntity.__new__(cls, c, r, **kwargs)
raise GeometryError("Circle.__new__ received unknown arguments")
@property
def circumference(self):
"""The circumference of the circle.
Returns
=======
circumference : number or SymPy expression
Examples
========
>>> from sympy import Point, Circle
>>> c1 = Circle(Point(3, 4), 6)
>>> c1.circumference
12*pi
"""
return 2 * S.Pi * self.radius
def equation(self, x='x', y='y'):
"""The equation of the circle.
Parameters
==========
x : str or Symbol, optional
Default value is 'x'.
y : str or Symbol, optional
Default value is 'y'.
Returns
=======
equation : SymPy expression
Examples
========
>>> from sympy import Point, Circle
>>> c1 = Circle(Point(0, 0), 5)
>>> c1.equation()
x**2 + y**2 - 25
"""
x = _symbol(x, real=True)
y = _symbol(y, real=True)
t1 = (x - self.center.x)**2
t2 = (y - self.center.y)**2
return t1 + t2 - self.major**2
def intersection(self, o):
"""The intersection of this circle with another geometrical entity.
Parameters
==========
o : GeometryEntity
Returns
=======
intersection : list of GeometryEntities
Examples
========
>>> from sympy import Point, Circle, Line, Ray
>>> p1, p2, p3 = Point(0, 0), Point(5, 5), Point(6, 0)
>>> p4 = Point(5, 0)
>>> c1 = Circle(p1, 5)
>>> c1.intersection(p2)
[]
>>> c1.intersection(p4)
[Point2D(5, 0)]
>>> c1.intersection(Ray(p1, p2))
[Point2D(5*sqrt(2)/2, 5*sqrt(2)/2)]
>>> c1.intersection(Line(p2, p3))
[]
"""
return Ellipse.intersection(self, o)
@property
def radius(self):
"""The radius of the circle.
Returns
=======
radius : number or sympy expression
See Also
========
Ellipse.major, Ellipse.minor, Ellipse.hradius, Ellipse.vradius
Examples
========
>>> from sympy import Point, Circle
>>> c1 = Circle(Point(3, 4), 6)
>>> c1.radius
6
"""
return self.args[1]
def reflect(self, line):
"""Override GeometryEntity.reflect since the radius
is not a GeometryEntity.
Examples
========
>>> from sympy import Circle, Line
>>> Circle((0, 1), 1).reflect(Line((0, 0), (1, 1)))
Circle(Point2D(1, 0), -1)
"""
c = self.center
c = c.reflect(line)
return self.func(c, -self.radius)
def scale(self, x=1, y=1, pt=None):
"""Override GeometryEntity.scale since the radius
is not a GeometryEntity.
Examples
========
>>> from sympy import Circle
>>> Circle((0, 0), 1).scale(2, 2)
Circle(Point2D(0, 0), 2)
>>> Circle((0, 0), 1).scale(2, 4)
Ellipse(Point2D(0, 0), 2, 4)
"""
c = self.center
if pt:
pt = Point(pt, dim=2)
return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
c = c.scale(x, y)
x, y = [abs(i) for i in (x, y)]
if x == y:
return self.func(c, x*self.radius)
h = v = self.radius
return Ellipse(c, hradius=h*x, vradius=v*y)
@property
def vradius(self):
"""
This Ellipse property is an alias for the Circle's radius.
Whereas hradius, major and minor can use Ellipse's conventions,
the vradius does not exist for a circle. It is always a positive
value in order that the Circle, like Polygons, will have an
area that can be positive or negative as determined by the sign
of the hradius.
Examples
========
>>> from sympy import Point, Circle
>>> c1 = Circle(Point(3, 4), 6)
>>> c1.vradius
6
"""
return abs(self.radius)
from .polygon import Polygon
|
25d458ebd3563e2c47703d8d222e112d7b687bc0ee4de61028980684e9e0ddc5
|
"""The definition of the base geometrical entity with attributes common to
all derived geometrical entities.
Contains
========
GeometryEntity
GeometricSet
Notes
=====
A GeometryEntity is any object that has special geometric properties.
A GeometrySet is a superclass of any GeometryEntity that can also
be viewed as a sympy.sets.Set. In particular, points are the only
GeometryEntity not considered a Set.
Rn is a GeometrySet representing n-dimensional Euclidean space. R2 and
R3 are currently the only ambient spaces implemented.
"""
from __future__ import division, print_function
from sympy.core.compatibility import is_sequence
from sympy.core.containers import Tuple
from sympy.core.basic import Basic
from sympy.core.symbol import _symbol
from sympy.core.sympify import sympify
from sympy.functions import cos, sin
from sympy.matrices import eye
from sympy.sets import Set
from sympy.utilities.misc import func_name
from sympy.multipledispatch import dispatch
from sympy.sets.handlers.union import union_sets
from sympy.sets.handlers.intersection import intersection_sets
# How entities are ordered; used by __cmp__ in GeometryEntity
ordering_of_classes = [
"Point2D",
"Point3D",
"Point",
"Segment2D",
"Ray2D",
"Line2D",
"Segment3D",
"Line3D",
"Ray3D",
"Segment",
"Ray",
"Line",
"Plane",
"Triangle",
"RegularPolygon",
"Polygon",
"Circle",
"Ellipse",
"Curve",
"Parabola"
]
class GeometryEntity(Basic):
"""The base class for all geometrical entities.
This class doesn't represent any particular geometric entity, it only
provides the implementation of some methods common to all subclasses.
"""
def __cmp__(self, other):
"""Comparison of two GeometryEntities."""
n1 = self.__class__.__name__
n2 = other.__class__.__name__
c = (n1 > n2) - (n1 < n2)
if not c:
return 0
i1 = -1
for cls in self.__class__.__mro__:
try:
i1 = ordering_of_classes.index(cls.__name__)
break
except ValueError:
i1 = -1
if i1 == -1:
return c
i2 = -1
for cls in other.__class__.__mro__:
try:
i2 = ordering_of_classes.index(cls.__name__)
break
except ValueError:
i2 = -1
if i2 == -1:
return c
return (i1 > i2) - (i1 < i2)
def __contains__(self, other):
"""Subclasses should implement this method for anything more complex than equality."""
if type(self) == type(other):
return self == other
raise NotImplementedError()
def __getnewargs__(self):
"""Returns a tuple that will be passed to __new__ on unpickling."""
return tuple(self.args)
def __ne__(self, o):
"""Test inequality of two geometrical entities."""
return not self == o
def __new__(cls, *args, **kwargs):
# Points are sequences, but they should not
# be converted to Tuples, so use this detection function instead.
def is_seq_and_not_point(a):
# we cannot use isinstance(a, Point) since we cannot import Point
if hasattr(a, 'is_Point') and a.is_Point:
return False
return is_sequence(a)
args = [Tuple(*a) if is_seq_and_not_point(a) else sympify(a) for a in args]
return Basic.__new__(cls, *args)
def __radd__(self, a):
"""Implementation of reverse add method."""
return a.__add__(self)
def __rdiv__(self, a):
"""Implementation of reverse division method."""
return a.__div__(self)
def __repr__(self):
"""String representation of a GeometryEntity that can be evaluated
by sympy."""
return type(self).__name__ + repr(self.args)
def __rmul__(self, a):
"""Implementation of reverse multiplication method."""
return a.__mul__(self)
def __rsub__(self, a):
"""Implementation of reverse substraction method."""
return a.__sub__(self)
def __str__(self):
"""String representation of a GeometryEntity."""
from sympy.printing import sstr
return type(self).__name__ + sstr(self.args)
def _eval_subs(self, old, new):
from sympy.geometry.point import Point, Point3D
if is_sequence(old) or is_sequence(new):
if isinstance(self, Point3D):
old = Point3D(old)
new = Point3D(new)
else:
old = Point(old)
new = Point(new)
return self._subs(old, new)
def _repr_svg_(self):
"""SVG representation of a GeometryEntity suitable for IPython"""
from sympy.core.evalf import N
try:
bounds = self.bounds
except (NotImplementedError, TypeError):
# if we have no SVG representation, return None so IPython
# will fall back to the next representation
return None
svg_top = '''<svg xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink"
width="{1}" height="{2}" viewBox="{0}"
preserveAspectRatio="xMinYMin meet">
<defs>
<marker id="markerCircle" markerWidth="8" markerHeight="8"
refx="5" refy="5" markerUnits="strokeWidth">
<circle cx="5" cy="5" r="1.5" style="stroke: none; fill:#000000;"/>
</marker>
<marker id="markerArrow" markerWidth="13" markerHeight="13" refx="2" refy="4"
orient="auto" markerUnits="strokeWidth">
<path d="M2,2 L2,6 L6,4" style="fill: #000000;" />
</marker>
<marker id="markerReverseArrow" markerWidth="13" markerHeight="13" refx="6" refy="4"
orient="auto" markerUnits="strokeWidth">
<path d="M6,2 L6,6 L2,4" style="fill: #000000;" />
</marker>
</defs>'''
# Establish SVG canvas that will fit all the data + small space
xmin, ymin, xmax, ymax = map(N, bounds)
if xmin == xmax and ymin == ymax:
# This is a point; buffer using an arbitrary size
xmin, ymin, xmax, ymax = xmin - .5, ymin -.5, xmax + .5, ymax + .5
else:
# Expand bounds by a fraction of the data ranges
expand = 0.1 # or 10%; this keeps arrowheads in view (R plots use 4%)
widest_part = max([xmax - xmin, ymax - ymin])
expand_amount = widest_part * expand
xmin -= expand_amount
ymin -= expand_amount
xmax += expand_amount
ymax += expand_amount
dx = xmax - xmin
dy = ymax - ymin
width = min([max([100., dx]), 300])
height = min([max([100., dy]), 300])
scale_factor = 1. if max(width, height) == 0 else max(dx, dy) / max(width, height)
try:
svg = self._svg(scale_factor)
except (NotImplementedError, TypeError):
# if we have no SVG representation, return None so IPython
# will fall back to the next representation
return None
view_box = "{0} {1} {2} {3}".format(xmin, ymin, dx, dy)
transform = "matrix(1,0,0,-1,0,{0})".format(ymax + ymin)
svg_top = svg_top.format(view_box, width, height)
return svg_top + (
'<g transform="{0}">{1}</g></svg>'
).format(transform, svg)
def _svg(self, scale_factor=1., fill_color="#66cc99"):
"""Returns SVG path element for the GeometryEntity.
Parameters
==========
scale_factor : float
Multiplication factor for the SVG stroke-width. Default is 1.
fill_color : str, optional
Hex string for fill color. Default is "#66cc99".
"""
raise NotImplementedError()
def _sympy_(self):
return self
@property
def ambient_dimension(self):
"""What is the dimension of the space that the object is contained in?"""
raise NotImplementedError()
@property
def bounds(self):
"""Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
rectangle for the geometric figure.
"""
raise NotImplementedError()
def encloses(self, o):
"""
Return True if o is inside (not on or outside) the boundaries of self.
The object will be decomposed into Points and individual Entities need
only define an encloses_point method for their class.
See Also
========
sympy.geometry.ellipse.Ellipse.encloses_point
sympy.geometry.polygon.Polygon.encloses_point
Examples
========
>>> from sympy import RegularPolygon, Point, Polygon
>>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
>>> t2 = Polygon(*RegularPolygon(Point(0, 0), 2, 3).vertices)
>>> t2.encloses(t)
True
>>> t.encloses(t2)
False
"""
from sympy.geometry.point import Point
from sympy.geometry.line import Segment, Ray, Line
from sympy.geometry.ellipse import Ellipse
from sympy.geometry.polygon import Polygon, RegularPolygon
if isinstance(o, Point):
return self.encloses_point(o)
elif isinstance(o, Segment):
return all(self.encloses_point(x) for x in o.points)
elif isinstance(o, Ray) or isinstance(o, Line):
return False
elif isinstance(o, Ellipse):
return self.encloses_point(o.center) and \
self.encloses_point(
Point(o.center.x + o.hradius, o.center.y)) and \
not self.intersection(o)
elif isinstance(o, Polygon):
if isinstance(o, RegularPolygon):
if not self.encloses_point(o.center):
return False
return all(self.encloses_point(v) for v in o.vertices)
raise NotImplementedError()
def equals(self, o):
return self == o
def intersection(self, o):
"""
Returns a list of all of the intersections of self with o.
Notes
=====
An entity is not required to implement this method.
If two different types of entities can intersect, the item with
higher index in ordering_of_classes should implement
intersections with anything having a lower index.
See Also
========
sympy.geometry.util.intersection
"""
raise NotImplementedError()
def is_similar(self, other):
"""Is this geometrical entity similar to another geometrical entity?
Two entities are similar if a uniform scaling (enlarging or
shrinking) of one of the entities will allow one to obtain the other.
Notes
=====
This method is not intended to be used directly but rather
through the `are_similar` function found in util.py.
An entity is not required to implement this method.
If two different types of entities can be similar, it is only
required that one of them be able to determine this.
See Also
========
scale
"""
raise NotImplementedError()
def reflect(self, line):
"""
Reflects an object across a line.
Parameters
==========
line: Line
Examples
========
>>> from sympy import pi, sqrt, Line, RegularPolygon
>>> l = Line((0, pi), slope=sqrt(2))
>>> pent = RegularPolygon((1, 2), 1, 5)
>>> rpent = pent.reflect(l)
>>> rpent
RegularPolygon(Point2D(-2*sqrt(2)*pi/3 - 1/3 + 4*sqrt(2)/3, 2/3 + 2*sqrt(2)/3 + 2*pi/3), -1, 5, -atan(2*sqrt(2)) + 3*pi/5)
>>> from sympy import pi, Line, Circle, Point
>>> l = Line((0, pi), slope=1)
>>> circ = Circle(Point(0, 0), 5)
>>> rcirc = circ.reflect(l)
>>> rcirc
Circle(Point2D(-pi, pi), -5)
"""
from sympy import atan, Point, Dummy, oo
g = self
l = line
o = Point(0, 0)
if l.slope == 0:
y = l.args[0].y
if not y: # x-axis
return g.scale(y=-1)
reps = [(p, p.translate(y=2*(y - p.y))) for p in g.atoms(Point)]
elif l.slope == oo:
x = l.args[0].x
if not x: # y-axis
return g.scale(x=-1)
reps = [(p, p.translate(x=2*(x - p.x))) for p in g.atoms(Point)]
else:
if not hasattr(g, 'reflect') and not all(
isinstance(arg, Point) for arg in g.args):
raise NotImplementedError(
'reflect undefined or non-Point args in %s' % g)
a = atan(l.slope)
c = l.coefficients
d = -c[-1]/c[1] # y-intercept
# apply the transform to a single point
x, y = Dummy(), Dummy()
xf = Point(x, y)
xf = xf.translate(y=-d).rotate(-a, o).scale(y=-1
).rotate(a, o).translate(y=d)
# replace every point using that transform
reps = [(p, xf.xreplace({x: p.x, y: p.y})) for p in g.atoms(Point)]
return g.xreplace(dict(reps))
def rotate(self, angle, pt=None):
"""Rotate ``angle`` radians counterclockwise about Point ``pt``.
The default pt is the origin, Point(0, 0)
See Also
========
scale, translate
Examples
========
>>> from sympy import Point, RegularPolygon, Polygon, pi
>>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
>>> t # vertex on x axis
Triangle(Point2D(1, 0), Point2D(-1/2, sqrt(3)/2), Point2D(-1/2, -sqrt(3)/2))
>>> t.rotate(pi/2) # vertex on y axis now
Triangle(Point2D(0, 1), Point2D(-sqrt(3)/2, -1/2), Point2D(sqrt(3)/2, -1/2))
"""
newargs = []
for a in self.args:
if isinstance(a, GeometryEntity):
newargs.append(a.rotate(angle, pt))
else:
newargs.append(a)
return type(self)(*newargs)
def scale(self, x=1, y=1, pt=None):
"""Scale the object by multiplying the x,y-coordinates by x and y.
If pt is given, the scaling is done relative to that point; the
object is shifted by -pt, scaled, and shifted by pt.
See Also
========
rotate, translate
Examples
========
>>> from sympy import RegularPolygon, Point, Polygon
>>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
>>> t
Triangle(Point2D(1, 0), Point2D(-1/2, sqrt(3)/2), Point2D(-1/2, -sqrt(3)/2))
>>> t.scale(2)
Triangle(Point2D(2, 0), Point2D(-1, sqrt(3)/2), Point2D(-1, -sqrt(3)/2))
>>> t.scale(2, 2)
Triangle(Point2D(2, 0), Point2D(-1, sqrt(3)), Point2D(-1, -sqrt(3)))
"""
from sympy.geometry.point import Point
if pt:
pt = Point(pt, dim=2)
return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
return type(self)(*[a.scale(x, y) for a in self.args]) # if this fails, override this class
def translate(self, x=0, y=0):
"""Shift the object by adding to the x,y-coordinates the values x and y.
See Also
========
rotate, scale
Examples
========
>>> from sympy import RegularPolygon, Point, Polygon
>>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
>>> t
Triangle(Point2D(1, 0), Point2D(-1/2, sqrt(3)/2), Point2D(-1/2, -sqrt(3)/2))
>>> t.translate(2)
Triangle(Point2D(3, 0), Point2D(3/2, sqrt(3)/2), Point2D(3/2, -sqrt(3)/2))
>>> t.translate(2, 2)
Triangle(Point2D(3, 2), Point2D(3/2, sqrt(3)/2 + 2), Point2D(3/2, 2 - sqrt(3)/2))
"""
newargs = []
for a in self.args:
if isinstance(a, GeometryEntity):
newargs.append(a.translate(x, y))
else:
newargs.append(a)
return self.func(*newargs)
def parameter_value(self, other, t):
"""Return the parameter corresponding to the given point.
Evaluating an arbitrary point of the entity at this parameter
value will return the given point.
Examples
========
>>> from sympy import Line, Point
>>> from sympy.abc import t
>>> a = Point(0, 0)
>>> b = Point(2, 2)
>>> Line(a, b).parameter_value((1, 1), t)
{t: 1/2}
>>> Line(a, b).arbitrary_point(t).subs(_)
Point2D(1, 1)
"""
from sympy.geometry.point import Point
from sympy.core.symbol import Dummy
from sympy.solvers.solvers import solve
if not isinstance(other, GeometryEntity):
other = Point(other, dim=self.ambient_dimension)
if not isinstance(other, Point):
raise ValueError("other must be a point")
T = Dummy('t', real=True)
sol = solve(self.arbitrary_point(T) - other, T, dict=True)
if not sol:
raise ValueError("Given point is not on %s" % func_name(self))
return {t: sol[0][T]}
class GeometrySet(GeometryEntity, Set):
"""Parent class of all GeometryEntity that are also Sets
(compatible with sympy.sets)
"""
def _contains(self, other):
"""sympy.sets uses the _contains method, so include it for compatibility."""
if isinstance(other, Set) and other.is_FiniteSet:
return all(self.__contains__(i) for i in other)
return self.__contains__(other)
@dispatch(GeometrySet, Set)
def union_sets(self, o):
""" Returns the union of self and o
for use with sympy.sets.Set, if possible. """
from sympy.sets import Union, FiniteSet
# if its a FiniteSet, merge any points
# we contain and return a union with the rest
if o.is_FiniteSet:
other_points = [p for p in o if not self._contains(p)]
if len(other_points) == len(o):
return None
return Union(self, FiniteSet(*other_points))
if self._contains(o):
return self
return None
@dispatch(GeometrySet, Set)
def intersection_sets(self, o):
""" Returns a sympy.sets.Set of intersection objects,
if possible. """
from sympy.sets import Set, FiniteSet, Union
from sympy.geometry import Point
try:
# if o is a FiniteSet, find the intersection directly
# to avoid infinite recursion
if o.is_FiniteSet:
inter = FiniteSet(*(p for p in o if self.contains(p)))
else:
inter = self.intersection(o)
except NotImplementedError:
# sympy.sets.Set.reduce expects None if an object
# doesn't know how to simplify
return None
# put the points in a FiniteSet
points = FiniteSet(*[p for p in inter if isinstance(p, Point)])
non_points = [p for p in inter if not isinstance(p, Point)]
return Union(*(non_points + [points]))
def translate(x, y):
"""Return the matrix to translate a 2-D point by x and y."""
rv = eye(3)
rv[2, 0] = x
rv[2, 1] = y
return rv
def scale(x, y, pt=None):
"""Return the matrix to multiply a 2-D point's coordinates by x and y.
If pt is given, the scaling is done relative to that point."""
rv = eye(3)
rv[0, 0] = x
rv[1, 1] = y
if pt:
from sympy.geometry.point import Point
pt = Point(pt, dim=2)
tr1 = translate(*(-pt).args)
tr2 = translate(*pt.args)
return tr1*rv*tr2
return rv
def rotate(th):
"""Return the matrix to rotate a 2-D point about the origin by ``angle``.
The angle is measured in radians. To Point a point about a point other
then the origin, translate the Point, do the rotation, and
translate it back:
>>> from sympy.geometry.entity import rotate, translate
>>> from sympy import Point, pi
>>> rot_about_11 = translate(-1, -1)*rotate(pi/2)*translate(1, 1)
>>> Point(1, 1).transform(rot_about_11)
Point2D(1, 1)
>>> Point(0, 0).transform(rot_about_11)
Point2D(2, 0)
"""
s = sin(th)
rv = eye(3)*cos(th)
rv[0, 1] = s
rv[1, 0] = -s
rv[2, 2] = 1
return rv
|
f23df30f7d223d98d81311d9951ad9f17251fb577aef5fcca6ecb5d86cc51b6a
|
"""Utility functions for geometrical entities.
Contains
========
intersection
convex_hull
closest_points
farthest_points
are_coplanar
are_similar
"""
from __future__ import division, print_function
from sympy import Function, Symbol, solve
from sympy.core.compatibility import (
is_sequence, range, string_types, ordered)
from sympy.core.containers import OrderedSet
from .point import Point, Point2D
def find(x, equation):
"""
Checks whether the parameter 'x' is present in 'equation' or not.
If it is present then it returns the passed parameter 'x' as a free
symbol, else, it returns a ValueError.
"""
free = equation.free_symbols
xs = [i for i in free if (i.name if isinstance(x, string_types) else i) == x]
if not xs:
raise ValueError('could not find %s' % x)
if len(xs) != 1:
raise ValueError('ambiguous %s' % x)
return xs[0]
def _ordered_points(p):
"""Return the tuple of points sorted numerically according to args"""
return tuple(sorted(p, key=lambda x: x.args))
def are_coplanar(*e):
""" Returns True if the given entities are coplanar otherwise False
Parameters
==========
e: entities to be checked for being coplanar
Returns
=======
Boolean
Examples
========
>>> from sympy import Point3D, Line3D
>>> from sympy.geometry.util import are_coplanar
>>> a = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1))
>>> b = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1))
>>> c = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9))
>>> are_coplanar(a, b, c)
False
"""
from sympy.geometry.line import LinearEntity3D
from sympy.geometry.point import Point3D
from sympy.geometry.plane import Plane
# XXX update tests for coverage
e = set(e)
# first work with a Plane if present
for i in list(e):
if isinstance(i, Plane):
e.remove(i)
return all(p.is_coplanar(i) for p in e)
if all(isinstance(i, Point3D) for i in e):
if len(e) < 3:
return False
# remove pts that are collinear with 2 pts
a, b = e.pop(), e.pop()
for i in list(e):
if Point3D.are_collinear(a, b, i):
e.remove(i)
if not e:
return False
else:
# define a plane
p = Plane(a, b, e.pop())
for i in e:
if i not in p:
return False
return True
else:
pt3d = []
for i in e:
if isinstance(i, Point3D):
pt3d.append(i)
elif isinstance(i, LinearEntity3D):
pt3d.extend(i.args)
elif isinstance(i, GeometryEntity): # XXX we should have a GeometryEntity3D class so we can tell the difference between 2D and 3D -- here we just want to deal with 2D objects; if new 3D objects are encountered that we didn't hanlde above, an error should be raised
# all 2D objects have some Point that defines them; so convert those points to 3D pts by making z=0
for p in i.args:
if isinstance(p, Point):
pt3d.append(Point3D(*(p.args + (0,))))
return are_coplanar(*pt3d)
def are_similar(e1, e2):
"""Are two geometrical entities similar.
Can one geometrical entity be uniformly scaled to the other?
Parameters
==========
e1 : GeometryEntity
e2 : GeometryEntity
Returns
=======
are_similar : boolean
Raises
======
GeometryError
When `e1` and `e2` cannot be compared.
Notes
=====
If the two objects are equal then they are similar.
See Also
========
sympy.geometry.entity.GeometryEntity.is_similar
Examples
========
>>> from sympy import Point, Circle, Triangle, are_similar
>>> c1, c2 = Circle(Point(0, 0), 4), Circle(Point(1, 4), 3)
>>> t1 = Triangle(Point(0, 0), Point(1, 0), Point(0, 1))
>>> t2 = Triangle(Point(0, 0), Point(2, 0), Point(0, 2))
>>> t3 = Triangle(Point(0, 0), Point(3, 0), Point(0, 1))
>>> are_similar(t1, t2)
True
>>> are_similar(t1, t3)
False
"""
from .exceptions import GeometryError
if e1 == e2:
return True
is_similar1 = getattr(e1, 'is_similar', None)
if is_similar1:
return is_similar1(e2)
is_similar2 = getattr(e2, 'is_similar', None)
if is_similar2:
return is_similar2(e1)
n1 = e1.__class__.__name__
n2 = e2.__class__.__name__
raise GeometryError(
"Cannot test similarity between %s and %s" % (n1, n2))
def centroid(*args):
"""Find the centroid (center of mass) of the collection containing only Points,
Segments or Polygons. The centroid is the weighted average of the individual centroid
where the weights are the lengths (of segments) or areas (of polygons).
Overlapping regions will add to the weight of that region.
If there are no objects (or a mixture of objects) then None is returned.
See Also
========
sympy.geometry.point.Point, sympy.geometry.line.Segment,
sympy.geometry.polygon.Polygon
Examples
========
>>> from sympy import Point, Segment, Polygon
>>> from sympy.geometry.util import centroid
>>> p = Polygon((0, 0), (10, 0), (10, 10))
>>> q = p.translate(0, 20)
>>> p.centroid, q.centroid
(Point2D(20/3, 10/3), Point2D(20/3, 70/3))
>>> centroid(p, q)
Point2D(20/3, 40/3)
>>> p, q = Segment((0, 0), (2, 0)), Segment((0, 0), (2, 2))
>>> centroid(p, q)
Point2D(1, 2 - sqrt(2))
>>> centroid(Point(0, 0), Point(2, 0))
Point2D(1, 0)
Stacking 3 polygons on top of each other effectively triples the
weight of that polygon:
>>> p = Polygon((0, 0), (1, 0), (1, 1), (0, 1))
>>> q = Polygon((1, 0), (3, 0), (3, 1), (1, 1))
>>> centroid(p, q)
Point2D(3/2, 1/2)
>>> centroid(p, p, p, q) # centroid x-coord shifts left
Point2D(11/10, 1/2)
Stacking the squares vertically above and below p has the same
effect:
>>> centroid(p, p.translate(0, 1), p.translate(0, -1), q)
Point2D(11/10, 1/2)
"""
from sympy.geometry import Polygon, Segment, Point
if args:
if all(isinstance(g, Point) for g in args):
c = Point(0, 0)
for g in args:
c += g
den = len(args)
elif all(isinstance(g, Segment) for g in args):
c = Point(0, 0)
L = 0
for g in args:
l = g.length
c += g.midpoint*l
L += l
den = L
elif all(isinstance(g, Polygon) for g in args):
c = Point(0, 0)
A = 0
for g in args:
a = g.area
c += g.centroid*a
A += a
den = A
c /= den
return c.func(*[i.simplify() for i in c.args])
def closest_points(*args):
"""Return the subset of points from a set of points that were
the closest to each other in the 2D plane.
Parameters
==========
args : a collection of Points on 2D plane.
Notes
=====
This can only be performed on a set of points whose coordinates can
be ordered on the number line. If there are no ties then a single
pair of Points will be in the set.
References
==========
[1] http://www.cs.mcgill.ca/~cs251/ClosestPair/ClosestPairPS.html
[2] Sweep line algorithm
https://en.wikipedia.org/wiki/Sweep_line_algorithm
Examples
========
>>> from sympy.geometry import closest_points, Point2D, Triangle
>>> Triangle(sss=(3, 4, 5)).args
(Point2D(0, 0), Point2D(3, 0), Point2D(3, 4))
>>> closest_points(*_)
{(Point2D(0, 0), Point2D(3, 0))}
"""
from collections import deque
from math import hypot, sqrt as _sqrt
from sympy.functions.elementary.miscellaneous import sqrt
p = [Point2D(i) for i in set(args)]
if len(p) < 2:
raise ValueError('At least 2 distinct points must be given.')
try:
p.sort(key=lambda x: x.args)
except TypeError:
raise ValueError("The points could not be sorted.")
if any(not i.is_Rational for j in p for i in j.args):
def hypot(x, y):
arg = x*x + y*y
if arg.is_Rational:
return _sqrt(arg)
return sqrt(arg)
rv = [(0, 1)]
best_dist = hypot(p[1].x - p[0].x, p[1].y - p[0].y)
i = 2
left = 0
box = deque([0, 1])
while i < len(p):
while left < i and p[i][0] - p[left][0] > best_dist:
box.popleft()
left += 1
for j in box:
d = hypot(p[i].x - p[j].x, p[i].y - p[j].y)
if d < best_dist:
rv = [(j, i)]
elif d == best_dist:
rv.append((j, i))
else:
continue
best_dist = d
box.append(i)
i += 1
return {tuple([p[i] for i in pair]) for pair in rv}
def convex_hull(*args, **kwargs):
"""The convex hull surrounding the Points contained in the list of entities.
Parameters
==========
args : a collection of Points, Segments and/or Polygons
Returns
=======
convex_hull : Polygon if ``polygon`` is True else as a tuple `(U, L)` where ``L`` and ``U`` are the lower and upper hulls, respectively.
Notes
=====
This can only be performed on a set of points whose coordinates can
be ordered on the number line.
References
==========
[1] https://en.wikipedia.org/wiki/Graham_scan
[2] Andrew's Monotone Chain Algorithm
(A.M. Andrew,
"Another Efficient Algorithm for Convex Hulls in Two Dimensions", 1979)
http://geomalgorithms.com/a10-_hull-1.html
See Also
========
sympy.geometry.point.Point, sympy.geometry.polygon.Polygon
Examples
========
>>> from sympy.geometry import Point, convex_hull
>>> points = [(1, 1), (1, 2), (3, 1), (-5, 2), (15, 4)]
>>> convex_hull(*points)
Polygon(Point2D(-5, 2), Point2D(1, 1), Point2D(3, 1), Point2D(15, 4))
>>> convex_hull(*points, **dict(polygon=False))
([Point2D(-5, 2), Point2D(15, 4)],
[Point2D(-5, 2), Point2D(1, 1), Point2D(3, 1), Point2D(15, 4)])
"""
from .entity import GeometryEntity
from .point import Point
from .line import Segment
from .polygon import Polygon
polygon = kwargs.get('polygon', True)
p = OrderedSet()
for e in args:
if not isinstance(e, GeometryEntity):
try:
e = Point(e)
except NotImplementedError:
raise ValueError('%s is not a GeometryEntity and cannot be made into Point' % str(e))
if isinstance(e, Point):
p.add(e)
elif isinstance(e, Segment):
p.update(e.points)
elif isinstance(e, Polygon):
p.update(e.vertices)
else:
raise NotImplementedError(
'Convex hull for %s not implemented.' % type(e))
# make sure all our points are of the same dimension
if any(len(x) != 2 for x in p):
raise ValueError('Can only compute the convex hull in two dimensions')
p = list(p)
if len(p) == 1:
return p[0] if polygon else (p[0], None)
elif len(p) == 2:
s = Segment(p[0], p[1])
return s if polygon else (s, None)
def _orientation(p, q, r):
'''Return positive if p-q-r are clockwise, neg if ccw, zero if
collinear.'''
return (q.y - p.y)*(r.x - p.x) - (q.x - p.x)*(r.y - p.y)
# scan to find upper and lower convex hulls of a set of 2d points.
U = []
L = []
try:
p.sort(key=lambda x: x.args)
except TypeError:
raise ValueError("The points could not be sorted.")
for p_i in p:
while len(U) > 1 and _orientation(U[-2], U[-1], p_i) <= 0:
U.pop()
while len(L) > 1 and _orientation(L[-2], L[-1], p_i) >= 0:
L.pop()
U.append(p_i)
L.append(p_i)
U.reverse()
convexHull = tuple(L + U[1:-1])
if len(convexHull) == 2:
s = Segment(convexHull[0], convexHull[1])
return s if polygon else (s, None)
if polygon:
return Polygon(*convexHull)
else:
U.reverse()
return (U, L)
def farthest_points(*args):
"""Return the subset of points from a set of points that were
the furthest apart from each other in the 2D plane.
Parameters
==========
args : a collection of Points on 2D plane.
Notes
=====
This can only be performed on a set of points whose coordinates can
be ordered on the number line. If there are no ties then a single
pair of Points will be in the set.
References
==========
[1] http://code.activestate.com/recipes/117225-convex-hull-and-diameter-of-2d-point-sets/
[2] Rotating Callipers Technique
https://en.wikipedia.org/wiki/Rotating_calipers
Examples
========
>>> from sympy.geometry import farthest_points, Point2D, Triangle
>>> Triangle(sss=(3, 4, 5)).args
(Point2D(0, 0), Point2D(3, 0), Point2D(3, 4))
>>> farthest_points(*_)
{(Point2D(0, 0), Point2D(3, 4))}
"""
from math import hypot, sqrt as _sqrt
def rotatingCalipers(Points):
U, L = convex_hull(*Points, **dict(polygon=False))
if L is None:
if isinstance(U, Point):
raise ValueError('At least two distinct points must be given.')
yield U.args
else:
i = 0
j = len(L) - 1
while i < len(U) - 1 or j > 0:
yield U[i], L[j]
# if all the way through one side of hull, advance the other side
if i == len(U) - 1:
j -= 1
elif j == 0:
i += 1
# still points left on both lists, compare slopes of next hull edges
# being careful to avoid divide-by-zero in slope calculation
elif (U[i+1].y - U[i].y) * (L[j].x - L[j-1].x) > \
(L[j].y - L[j-1].y) * (U[i+1].x - U[i].x):
i += 1
else:
j -= 1
p = [Point2D(i) for i in set(args)]
if any(not i.is_Rational for j in p for i in j.args):
def hypot(x, y):
arg = x*x + y*y
if arg.is_Rational:
return _sqrt(arg)
return sqrt(arg)
rv = []
diam = 0
for pair in rotatingCalipers(args):
h, q = _ordered_points(pair)
d = hypot(h.x - q.x, h.y - q.y)
if d > diam:
rv = [(h, q)]
elif d == diam:
rv.append((h, q))
else:
continue
diam = d
return set(rv)
def idiff(eq, y, x, n=1):
"""Return ``dy/dx`` assuming that ``eq == 0``.
Parameters
==========
y : the dependent variable or a list of dependent variables (with y first)
x : the variable that the derivative is being taken with respect to
n : the order of the derivative (default is 1)
Examples
========
>>> from sympy.abc import x, y, a
>>> from sympy.geometry.util import idiff
>>> circ = x**2 + y**2 - 4
>>> idiff(circ, y, x)
-x/y
>>> idiff(circ, y, x, 2).simplify()
-(x**2 + y**2)/y**3
Here, ``a`` is assumed to be independent of ``x``:
>>> idiff(x + a + y, y, x)
-1
Now the x-dependence of ``a`` is made explicit by listing ``a`` after
``y`` in a list.
>>> idiff(x + a + y, [y, a], x)
-Derivative(a, x) - 1
See Also
========
sympy.core.function.Derivative: represents unevaluated derivatives
sympy.core.function.diff: explicitly differentiates wrt symbols
"""
if is_sequence(y):
dep = set(y)
y = y[0]
elif isinstance(y, Symbol):
dep = {y}
elif isinstance(y, Function):
pass
else:
raise ValueError("expecting x-dependent symbol(s) or function(s) but got: %s" % y)
f = {s: Function(s.name)(x) for s in eq.free_symbols
if s != x and s in dep}
if isinstance(y, Symbol):
dydx = Function(y.name)(x).diff(x)
else:
dydx = y.diff(x)
eq = eq.subs(f)
derivs = {}
for i in range(n):
yp = solve(eq.diff(x), dydx)[0].subs(derivs)
if i == n - 1:
return yp.subs([(v, k) for k, v in f.items()])
derivs[dydx] = yp
eq = dydx - yp
dydx = dydx.diff(x)
def intersection(*entities, **kwargs):
"""The intersection of a collection of GeometryEntity instances.
Parameters
==========
entities : sequence of GeometryEntity
pairwise (keyword argument) : Can be either True or False
Returns
=======
intersection : list of GeometryEntity
Raises
======
NotImplementedError
When unable to calculate intersection.
Notes
=====
The intersection of any geometrical entity with itself should return
a list with one item: the entity in question.
An intersection requires two or more entities. If only a single
entity is given then the function will return an empty list.
It is possible for `intersection` to miss intersections that one
knows exists because the required quantities were not fully
simplified internally.
Reals should be converted to Rationals, e.g. Rational(str(real_num))
or else failures due to floating point issues may result.
Case 1: When the keyword argument 'pairwise' is False (default value):
In this case, the function returns a list of intersections common to
all entities.
Case 2: When the keyword argument 'pairwise' is True:
In this case, the functions returns a list intersections that occur
between any pair of entities.
See Also
========
sympy.geometry.entity.GeometryEntity.intersection
Examples
========
>>> from sympy.geometry import Ray, Circle, intersection
>>> c = Circle((0, 1), 1)
>>> intersection(c, c.center)
[]
>>> right = Ray((0, 0), (1, 0))
>>> up = Ray((0, 0), (0, 1))
>>> intersection(c, right, up)
[Point2D(0, 0)]
>>> intersection(c, right, up, pairwise=True)
[Point2D(0, 0), Point2D(0, 2)]
>>> left = Ray((1, 0), (0, 0))
>>> intersection(right, left)
[Segment2D(Point2D(0, 0), Point2D(1, 0))]
"""
from .entity import GeometryEntity
from .point import Point
pairwise = kwargs.pop('pairwise', False)
if len(entities) <= 1:
return []
# entities may be an immutable tuple
entities = list(entities)
for i, e in enumerate(entities):
if not isinstance(e, GeometryEntity):
entities[i] = Point(e)
if not pairwise:
# find the intersection common to all objects
res = entities[0].intersection(entities[1])
for entity in entities[2:]:
newres = []
for x in res:
newres.extend(x.intersection(entity))
res = newres
return res
# find all pairwise intersections
ans = []
for j in range(0, len(entities)):
for k in range(j + 1, len(entities)):
ans.extend(intersection(entities[j], entities[k]))
return list(ordered(set(ans)))
|
441abb4367863d2198ec47c52faef1a192199b9fdf7056bffc7e0e40fde20936
|
from __future__ import division, print_function
from sympy.core import Expr, S, Symbol, oo, pi, sympify
from sympy.core.compatibility import as_int, range, ordered
from sympy.core.symbol import _symbol, Dummy
from sympy.functions.elementary.complexes import sign
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import cos, sin, tan
from sympy.geometry.exceptions import GeometryError
from sympy.logic import And
from sympy.matrices import Matrix
from sympy.simplify import simplify
from sympy.utilities import default_sort_key
from sympy.utilities.iterables import has_dups, has_variety, uniq, rotate_left, least_rotation
from sympy.utilities.misc import func_name
from .entity import GeometryEntity, GeometrySet
from .point import Point
from .ellipse import Circle
from .line import Line, Segment, Ray
from sympy import sqrt
import warnings
class Polygon(GeometrySet):
"""A two-dimensional polygon.
A simple polygon in space. Can be constructed from a sequence of points
or from a center, radius, number of sides and rotation angle.
Parameters
==========
vertices : sequence of Points
Attributes
==========
area
angles
perimeter
vertices
centroid
sides
Raises
======
GeometryError
If all parameters are not Points.
See Also
========
sympy.geometry.point.Point, sympy.geometry.line.Segment, Triangle
Notes
=====
Polygons are treated as closed paths rather than 2D areas so
some calculations can be be negative or positive (e.g., area)
based on the orientation of the points.
Any consecutive identical points are reduced to a single point
and any points collinear and between two points will be removed
unless they are needed to define an explicit intersection (see examples).
A Triangle, Segment or Point will be returned when there are 3 or
fewer points provided.
Examples
========
>>> from sympy import Point, Polygon, pi
>>> p1, p2, p3, p4, p5 = [(0, 0), (1, 0), (5, 1), (0, 1), (3, 0)]
>>> Polygon(p1, p2, p3, p4)
Polygon(Point2D(0, 0), Point2D(1, 0), Point2D(5, 1), Point2D(0, 1))
>>> Polygon(p1, p2)
Segment2D(Point2D(0, 0), Point2D(1, 0))
>>> Polygon(p1, p2, p5)
Segment2D(Point2D(0, 0), Point2D(3, 0))
The area of a polygon is calculated as positive when vertices are
traversed in a ccw direction. When the sides of a polygon cross the
area will have positive and negative contributions. The following
defines a Z shape where the bottom right connects back to the top
left.
>>> Polygon((0, 2), (2, 2), (0, 0), (2, 0)).area
0
When the the keyword `n` is used to define the number of sides of the
Polygon then a RegularPolygon is created and the other arguments are
interpreted as center, radius and rotation. The unrotated RegularPolygon
will always have a vertex at Point(r, 0) where `r` is the radius of the
circle that circumscribes the RegularPolygon. Its method `spin` can be
used to increment that angle.
>>> p = Polygon((0,0), 1, n=3)
>>> p
RegularPolygon(Point2D(0, 0), 1, 3, 0)
>>> p.vertices[0]
Point2D(1, 0)
>>> p.args[0]
Point2D(0, 0)
>>> p.spin(pi/2)
>>> p.vertices[0]
Point2D(0, 1)
"""
def __new__(cls, *args, **kwargs):
if kwargs.get('n', 0):
n = kwargs.pop('n')
args = list(args)
# return a virtual polygon with n sides
if len(args) == 2: # center, radius
args.append(n)
elif len(args) == 3: # center, radius, rotation
args.insert(2, n)
return RegularPolygon(*args, **kwargs)
vertices = [Point(a, dim=2, **kwargs) for a in args]
# remove consecutive duplicates
nodup = []
for p in vertices:
if nodup and p == nodup[-1]:
continue
nodup.append(p)
if len(nodup) > 1 and nodup[-1] == nodup[0]:
nodup.pop() # last point was same as first
# remove collinear points
i = -3
while i < len(nodup) - 3 and len(nodup) > 2:
a, b, c = nodup[i], nodup[i + 1], nodup[i + 2]
if Point.is_collinear(a, b, c):
nodup.pop(i + 1)
if a == c:
nodup.pop(i)
else:
i += 1
vertices = list(nodup)
if len(vertices) > 3:
return GeometryEntity.__new__(cls, *vertices, **kwargs)
elif len(vertices) == 3:
return Triangle(*vertices, **kwargs)
elif len(vertices) == 2:
return Segment(*vertices, **kwargs)
else:
return Point(*vertices, **kwargs)
@property
def area(self):
"""
The area of the polygon.
Notes
=====
The area calculation can be positive or negative based on the
orientation of the points. If any side of the polygon crosses
any other side, there will be areas having opposite signs.
See Also
========
sympy.geometry.ellipse.Ellipse.area
Examples
========
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.area
3
In the Z shaped polygon (with the lower right connecting back
to the upper left) the areas cancel out:
>>> Z = Polygon((0, 1), (1, 1), (0, 0), (1, 0))
>>> Z.area
0
In the M shaped polygon, areas do not cancel because no side
crosses any other (though there is a point of contact).
>>> M = Polygon((0, 0), (0, 1), (2, 0), (3, 1), (3, 0))
>>> M.area
-3/2
"""
area = 0
args = self.args
for i in range(len(args)):
x1, y1 = args[i - 1].args
x2, y2 = args[i].args
area += x1*y2 - x2*y1
return simplify(area) / 2
@staticmethod
def _isright(a, b, c):
"""Return True/False for cw/ccw orientation.
Examples
========
>>> from sympy import Point, Polygon
>>> a, b, c = [Point(i) for i in [(0, 0), (1, 1), (1, 0)]]
>>> Polygon._isright(a, b, c)
True
>>> Polygon._isright(a, c, b)
False
"""
ba = b - a
ca = c - a
t_area = simplify(ba.x*ca.y - ca.x*ba.y)
res = t_area.is_nonpositive
if res is None:
raise ValueError("Can't determine orientation")
return res
@property
def angles(self):
"""The internal angle at each vertex.
Returns
=======
angles : dict
A dictionary where each key is a vertex and each value is the
internal angle at that vertex. The vertices are represented as
Points.
See Also
========
sympy.geometry.point.Point, sympy.geometry.line.LinearEntity.angle_between
Examples
========
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.angles[p1]
pi/2
>>> poly.angles[p2]
acos(-4*sqrt(17)/17)
"""
# Determine orientation of points
args = self.vertices
cw = self._isright(args[-1], args[0], args[1])
ret = {}
for i in range(len(args)):
a, b, c = args[i - 2], args[i - 1], args[i]
ang = Ray(b, a).angle_between(Ray(b, c))
if cw ^ self._isright(a, b, c):
ret[b] = 2*S.Pi - ang
else:
ret[b] = ang
return ret
@property
def ambient_dimension(self):
return self.vertices[0].ambient_dimension
@property
def perimeter(self):
"""The perimeter of the polygon.
Returns
=======
perimeter : number or Basic instance
See Also
========
sympy.geometry.line.Segment.length
Examples
========
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.perimeter
sqrt(17) + 7
"""
p = 0
args = self.vertices
for i in range(len(args)):
p += args[i - 1].distance(args[i])
return simplify(p)
@property
def vertices(self):
"""The vertices of the polygon.
Returns
=======
vertices : list of Points
Notes
=====
When iterating over the vertices, it is more efficient to index self
rather than to request the vertices and index them. Only use the
vertices when you want to process all of them at once. This is even
more important with RegularPolygons that calculate each vertex.
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.vertices
[Point2D(0, 0), Point2D(1, 0), Point2D(5, 1), Point2D(0, 1)]
>>> poly.vertices[0]
Point2D(0, 0)
"""
return list(self.args)
@property
def centroid(self):
"""The centroid of the polygon.
Returns
=======
centroid : Point
See Also
========
sympy.geometry.point.Point, sympy.geometry.util.centroid
Examples
========
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.centroid
Point2D(31/18, 11/18)
"""
A = 1/(6*self.area)
cx, cy = 0, 0
args = self.args
for i in range(len(args)):
x1, y1 = args[i - 1].args
x2, y2 = args[i].args
v = x1*y2 - x2*y1
cx += v*(x1 + x2)
cy += v*(y1 + y2)
return Point(simplify(A*cx), simplify(A*cy))
def second_moment_of_area(self, point=None):
"""Returns the second moment and product moment of area of a two dimensional polygon.
Parameters
==========
point : Point, two-tuple of sympifiable objects, or None(default=None)
point is the point about which second moment of area is to be found.
If "point=None" it will be calculated about the axis passing through the
centroid of the polygon.
Returns
=======
I_xx, I_yy, I_xy : number or sympy expression
I_xx, I_yy are second moment of area of a two dimensional polygon.
I_xy is product moment of area of a two dimensional polygon.
Examples
========
>>> from sympy import Point, Polygon, symbols
>>> a, b = symbols('a, b')
>>> p1, p2, p3, p4, p5 = [(0, 0), (a, 0), (a, b), (0, b), (a/3, b/3)]
>>> rectangle = Polygon(p1, p2, p3, p4)
>>> rectangle.second_moment_of_area()
(a*b**3/12, a**3*b/12, 0)
>>> rectangle.second_moment_of_area(p5)
(a*b**3/9, a**3*b/9, a**2*b**2/36)
References
==========
https://en.wikipedia.org/wiki/Second_moment_of_area
"""
I_xx, I_yy, I_xy = 0, 0, 0
args = self.args
for i in range(len(args)):
x1, y1 = args[i-1].args
x2, y2 = args[i].args
v = x1*y2 - x2*y1
I_xx += (y1**2 + y1*y2 + y2**2)*v
I_yy += (x1**2 + x1*x2 + x2**2)*v
I_xy += (x1*y2 + 2*x1*y1 + 2*x2*y2 + x2*y1)*v
A = self.area
c_x = self.centroid[0]
c_y = self.centroid[1]
# parallel axis theorem
I_xx_c = (I_xx/12) - (A*(c_y**2))
I_yy_c = (I_yy/12) - (A*(c_x**2))
I_xy_c = (I_xy/24) - (A*(c_x*c_y))
if point is None:
return I_xx_c, I_yy_c, I_xy_c
I_xx = (I_xx_c + A*((point[1]-c_y)**2))
I_yy = (I_yy_c + A*((point[0]-c_x)**2))
I_xy = (I_xy_c + A*((point[0]-c_x)*(point[1]-c_y)))
return I_xx, I_yy, I_xy
@property
def sides(self):
"""The directed line segments that form the sides of the polygon.
Returns
=======
sides : list of sides
Each side is a directed Segment.
See Also
========
sympy.geometry.point.Point, sympy.geometry.line.Segment
Examples
========
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.sides
[Segment2D(Point2D(0, 0), Point2D(1, 0)),
Segment2D(Point2D(1, 0), Point2D(5, 1)),
Segment2D(Point2D(5, 1), Point2D(0, 1)), Segment2D(Point2D(0, 1), Point2D(0, 0))]
"""
res = []
args = self.vertices
for i in range(-len(args), 0):
res.append(Segment(args[i], args[i + 1]))
return res
@property
def bounds(self):
"""Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
rectangle for the geometric figure.
"""
verts = self.vertices
xs = [p.x for p in verts]
ys = [p.y for p in verts]
return (min(xs), min(ys), max(xs), max(ys))
def is_convex(self):
"""Is the polygon convex?
A polygon is convex if all its interior angles are less than 180
degrees and there are no intersections between sides.
Returns
=======
is_convex : boolean
True if this polygon is convex, False otherwise.
See Also
========
sympy.geometry.util.convex_hull
Examples
========
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.is_convex()
True
"""
# Determine orientation of points
args = self.vertices
cw = self._isright(args[-2], args[-1], args[0])
for i in range(1, len(args)):
if cw ^ self._isright(args[i - 2], args[i - 1], args[i]):
return False
# check for intersecting sides
sides = self.sides
for i, si in enumerate(sides):
pts = si.args
# exclude the sides connected to si
for j in range(1 if i == len(sides) - 1 else 0, i - 1):
sj = sides[j]
if sj.p1 not in pts and sj.p2 not in pts:
hit = si.intersection(sj)
if hit:
return False
return True
def encloses_point(self, p):
"""
Return True if p is enclosed by (is inside of) self.
Notes
=====
Being on the border of self is considered False.
Parameters
==========
p : Point
Returns
=======
encloses_point : True, False or None
See Also
========
sympy.geometry.point.Point, sympy.geometry.ellipse.Ellipse.encloses_point
Examples
========
>>> from sympy import Polygon, Point
>>> from sympy.abc import t
>>> p = Polygon((0, 0), (4, 0), (4, 4))
>>> p.encloses_point(Point(2, 1))
True
>>> p.encloses_point(Point(2, 2))
False
>>> p.encloses_point(Point(5, 5))
False
References
==========
[1] http://paulbourke.net/geometry/polygonmesh/#insidepoly
"""
p = Point(p, dim=2)
if p in self.vertices or any(p in s for s in self.sides):
return False
# move to p, checking that the result is numeric
lit = []
for v in self.vertices:
lit.append(v - p) # the difference is simplified
if lit[-1].free_symbols:
return None
poly = Polygon(*lit)
# polygon closure is assumed in the following test but Polygon removes duplicate pts so
# the last point has to be added so all sides are computed. Using Polygon.sides is
# not good since Segments are unordered.
args = poly.args
indices = list(range(-len(args), 1))
if poly.is_convex():
orientation = None
for i in indices:
a = args[i]
b = args[i + 1]
test = ((-a.y)*(b.x - a.x) - (-a.x)*(b.y - a.y)).is_negative
if orientation is None:
orientation = test
elif test is not orientation:
return False
return True
hit_odd = False
p1x, p1y = args[0].args
for i in indices[1:]:
p2x, p2y = args[i].args
if 0 > min(p1y, p2y):
if 0 <= max(p1y, p2y):
if 0 <= max(p1x, p2x):
if p1y != p2y:
xinters = (-p1y)*(p2x - p1x)/(p2y - p1y) + p1x
if p1x == p2x or 0 <= xinters:
hit_odd = not hit_odd
p1x, p1y = p2x, p2y
return hit_odd
def arbitrary_point(self, parameter='t'):
"""A parameterized point on the polygon.
The parameter, varying from 0 to 1, assigns points to the position on
the perimeter that is that fraction of the total perimeter. So the
point evaluated at t=1/2 would return the point from the first vertex
that is 1/2 way around the polygon.
Parameters
==========
parameter : str, optional
Default value is 't'.
Returns
=======
arbitrary_point : Point
Raises
======
ValueError
When `parameter` already appears in the Polygon's definition.
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Polygon, S, Symbol
>>> t = Symbol('t', real=True)
>>> tri = Polygon((0, 0), (1, 0), (1, 1))
>>> p = tri.arbitrary_point('t')
>>> perimeter = tri.perimeter
>>> s1, s2 = [s.length for s in tri.sides[:2]]
>>> p.subs(t, (s1 + s2/2)/perimeter)
Point2D(1, 1/2)
"""
t = _symbol(parameter, real=True)
if t.name in (f.name for f in self.free_symbols):
raise ValueError('Symbol %s already appears in object and cannot be used as a parameter.' % t.name)
sides = []
perimeter = self.perimeter
perim_fraction_start = 0
for s in self.sides:
side_perim_fraction = s.length/perimeter
perim_fraction_end = perim_fraction_start + side_perim_fraction
pt = s.arbitrary_point(parameter).subs(
t, (t - perim_fraction_start)/side_perim_fraction)
sides.append(
(pt, (And(perim_fraction_start <= t, t < perim_fraction_end))))
perim_fraction_start = perim_fraction_end
return Piecewise(*sides)
def parameter_value(self, other, t):
from sympy.solvers.solvers import solve
if not isinstance(other,GeometryEntity):
other = Point(other, dim=self.ambient_dimension)
if not isinstance(other,Point):
raise ValueError("other must be a point")
if other.free_symbols:
raise NotImplementedError('non-numeric coordinates')
unknown = False
T = Dummy('t', real=True)
p = self.arbitrary_point(T)
for pt, cond in p.args:
sol = solve(pt - other, T, dict=True)
if not sol:
continue
value = sol[0][T]
if simplify(cond.subs(T, value)) == True:
return {t: value}
unknown = True
if unknown:
raise ValueError("Given point may not be on %s" % func_name(self))
raise ValueError("Given point is not on %s" % func_name(self))
def plot_interval(self, parameter='t'):
"""The plot interval for the default geometric plot of the polygon.
Parameters
==========
parameter : str, optional
Default value is 't'.
Returns
=======
plot_interval : list (plot interval)
[parameter, lower_bound, upper_bound]
Examples
========
>>> from sympy import Polygon
>>> p = Polygon((0, 0), (1, 0), (1, 1))
>>> p.plot_interval()
[t, 0, 1]
"""
t = Symbol(parameter, real=True)
return [t, 0, 1]
def intersection(self, o):
"""The intersection of polygon and geometry entity.
The intersection may be empty and can contain individual Points and
complete Line Segments.
Parameters
==========
other: GeometryEntity
Returns
=======
intersection : list
The list of Segments and Points
See Also
========
sympy.geometry.point.Point, sympy.geometry.line.Segment
Examples
========
>>> from sympy import Point, Polygon, Line
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly1 = Polygon(p1, p2, p3, p4)
>>> p5, p6, p7 = map(Point, [(3, 2), (1, -1), (0, 2)])
>>> poly2 = Polygon(p5, p6, p7)
>>> poly1.intersection(poly2)
[Point2D(1/3, 1), Point2D(2/3, 0), Point2D(9/5, 1/5), Point2D(7/3, 1)]
>>> poly1.intersection(Line(p1, p2))
[Segment2D(Point2D(0, 0), Point2D(1, 0))]
>>> poly1.intersection(p1)
[Point2D(0, 0)]
"""
intersection_result = []
k = o.sides if isinstance(o, Polygon) else [o]
for side in self.sides:
for side1 in k:
intersection_result.extend(side.intersection(side1))
intersection_result = list(uniq(intersection_result))
points = [entity for entity in intersection_result if isinstance(entity, Point)]
segments = [entity for entity in intersection_result if isinstance(entity, Segment)]
if points and segments:
points_in_segments = list(uniq([point for point in points for segment in segments if point in segment]))
if points_in_segments:
for i in points_in_segments:
points.remove(i)
return list(ordered(segments + points))
else:
return list(ordered(intersection_result))
def distance(self, o):
"""
Returns the shortest distance between self and o.
If o is a point, then self does not need to be convex.
If o is another polygon self and o must be convex.
Examples
========
>>> from sympy import Point, Polygon, RegularPolygon
>>> p1, p2 = map(Point, [(0, 0), (7, 5)])
>>> poly = Polygon(*RegularPolygon(p1, 1, 3).vertices)
>>> poly.distance(p2)
sqrt(61)
"""
if isinstance(o, Point):
dist = oo
for side in self.sides:
current = side.distance(o)
if current == 0:
return S.Zero
elif current < dist:
dist = current
return dist
elif isinstance(o, Polygon) and self.is_convex() and o.is_convex():
return self._do_poly_distance(o)
raise NotImplementedError()
def _do_poly_distance(self, e2):
"""
Calculates the least distance between the exteriors of two
convex polygons e1 and e2. Does not check for the convexity
of the polygons as this is checked by Polygon.distance.
Notes
=====
- Prints a warning if the two polygons possibly intersect as the return
value will not be valid in such a case. For a more through test of
intersection use intersection().
See Also
========
sympy.geometry.point.Point.distance
Examples
========
>>> from sympy.geometry import Point, Polygon
>>> square = Polygon(Point(0, 0), Point(0, 1), Point(1, 1), Point(1, 0))
>>> triangle = Polygon(Point(1, 2), Point(2, 2), Point(2, 1))
>>> square._do_poly_distance(triangle)
sqrt(2)/2
Description of method used
==========================
Method:
[1] http://cgm.cs.mcgill.ca/~orm/mind2p.html
Uses rotating calipers:
[2] https://en.wikipedia.org/wiki/Rotating_calipers
and antipodal points:
[3] https://en.wikipedia.org/wiki/Antipodal_point
"""
e1 = self
'''Tests for a possible intersection between the polygons and outputs a warning'''
e1_center = e1.centroid
e2_center = e2.centroid
e1_max_radius = S.Zero
e2_max_radius = S.Zero
for vertex in e1.vertices:
r = Point.distance(e1_center, vertex)
if e1_max_radius < r:
e1_max_radius = r
for vertex in e2.vertices:
r = Point.distance(e2_center, vertex)
if e2_max_radius < r:
e2_max_radius = r
center_dist = Point.distance(e1_center, e2_center)
if center_dist <= e1_max_radius + e2_max_radius:
warnings.warn("Polygons may intersect producing erroneous output")
'''
Find the upper rightmost vertex of e1 and the lowest leftmost vertex of e2
'''
e1_ymax = Point(0, -oo)
e2_ymin = Point(0, oo)
for vertex in e1.vertices:
if vertex.y > e1_ymax.y or (vertex.y == e1_ymax.y and vertex.x > e1_ymax.x):
e1_ymax = vertex
for vertex in e2.vertices:
if vertex.y < e2_ymin.y or (vertex.y == e2_ymin.y and vertex.x < e2_ymin.x):
e2_ymin = vertex
min_dist = Point.distance(e1_ymax, e2_ymin)
'''
Produce a dictionary with vertices of e1 as the keys and, for each vertex, the points
to which the vertex is connected as its value. The same is then done for e2.
'''
e1_connections = {}
e2_connections = {}
for side in e1.sides:
if side.p1 in e1_connections:
e1_connections[side.p1].append(side.p2)
else:
e1_connections[side.p1] = [side.p2]
if side.p2 in e1_connections:
e1_connections[side.p2].append(side.p1)
else:
e1_connections[side.p2] = [side.p1]
for side in e2.sides:
if side.p1 in e2_connections:
e2_connections[side.p1].append(side.p2)
else:
e2_connections[side.p1] = [side.p2]
if side.p2 in e2_connections:
e2_connections[side.p2].append(side.p1)
else:
e2_connections[side.p2] = [side.p1]
e1_current = e1_ymax
e2_current = e2_ymin
support_line = Line(Point(S.Zero, S.Zero), Point(S.One, S.Zero))
'''
Determine which point in e1 and e2 will be selected after e2_ymin and e1_ymax,
this information combined with the above produced dictionaries determines the
path that will be taken around the polygons
'''
point1 = e1_connections[e1_ymax][0]
point2 = e1_connections[e1_ymax][1]
angle1 = support_line.angle_between(Line(e1_ymax, point1))
angle2 = support_line.angle_between(Line(e1_ymax, point2))
if angle1 < angle2:
e1_next = point1
elif angle2 < angle1:
e1_next = point2
elif Point.distance(e1_ymax, point1) > Point.distance(e1_ymax, point2):
e1_next = point2
else:
e1_next = point1
point1 = e2_connections[e2_ymin][0]
point2 = e2_connections[e2_ymin][1]
angle1 = support_line.angle_between(Line(e2_ymin, point1))
angle2 = support_line.angle_between(Line(e2_ymin, point2))
if angle1 > angle2:
e2_next = point1
elif angle2 > angle1:
e2_next = point2
elif Point.distance(e2_ymin, point1) > Point.distance(e2_ymin, point2):
e2_next = point2
else:
e2_next = point1
'''
Loop which determines the distance between anti-podal pairs and updates the
minimum distance accordingly. It repeats until it reaches the starting position.
'''
while True:
e1_angle = support_line.angle_between(Line(e1_current, e1_next))
e2_angle = pi - support_line.angle_between(Line(
e2_current, e2_next))
if (e1_angle < e2_angle) is True:
support_line = Line(e1_current, e1_next)
e1_segment = Segment(e1_current, e1_next)
min_dist_current = e1_segment.distance(e2_current)
if min_dist_current.evalf() < min_dist.evalf():
min_dist = min_dist_current
if e1_connections[e1_next][0] != e1_current:
e1_current = e1_next
e1_next = e1_connections[e1_next][0]
else:
e1_current = e1_next
e1_next = e1_connections[e1_next][1]
elif (e1_angle > e2_angle) is True:
support_line = Line(e2_next, e2_current)
e2_segment = Segment(e2_current, e2_next)
min_dist_current = e2_segment.distance(e1_current)
if min_dist_current.evalf() < min_dist.evalf():
min_dist = min_dist_current
if e2_connections[e2_next][0] != e2_current:
e2_current = e2_next
e2_next = e2_connections[e2_next][0]
else:
e2_current = e2_next
e2_next = e2_connections[e2_next][1]
else:
support_line = Line(e1_current, e1_next)
e1_segment = Segment(e1_current, e1_next)
e2_segment = Segment(e2_current, e2_next)
min1 = e1_segment.distance(e2_next)
min2 = e2_segment.distance(e1_next)
min_dist_current = min(min1, min2)
if min_dist_current.evalf() < min_dist.evalf():
min_dist = min_dist_current
if e1_connections[e1_next][0] != e1_current:
e1_current = e1_next
e1_next = e1_connections[e1_next][0]
else:
e1_current = e1_next
e1_next = e1_connections[e1_next][1]
if e2_connections[e2_next][0] != e2_current:
e2_current = e2_next
e2_next = e2_connections[e2_next][0]
else:
e2_current = e2_next
e2_next = e2_connections[e2_next][1]
if e1_current == e1_ymax and e2_current == e2_ymin:
break
return min_dist
def _svg(self, scale_factor=1., fill_color="#66cc99"):
"""Returns SVG path element for the Polygon.
Parameters
==========
scale_factor : float
Multiplication factor for the SVG stroke-width. Default is 1.
fill_color : str, optional
Hex string for fill color. Default is "#66cc99".
"""
from sympy.core.evalf import N
verts = map(N, self.vertices)
coords = ["{0},{1}".format(p.x, p.y) for p in verts]
path = "M {0} L {1} z".format(coords[0], " L ".join(coords[1:]))
return (
'<path fill-rule="evenodd" fill="{2}" stroke="#555555" '
'stroke-width="{0}" opacity="0.6" d="{1}" />'
).format(2. * scale_factor, path, fill_color)
def _hashable_content(self):
D = {}
def ref_list(point_list):
kee = {}
for i, p in enumerate(ordered(set(point_list))):
kee[p] = i
D[i] = p
return [kee[p] for p in point_list]
S1 = ref_list(self.args)
r_nor = rotate_left(S1, least_rotation(S1))
S2 = ref_list(list(reversed(self.args)))
r_rev = rotate_left(S2, least_rotation(S2))
if r_nor < r_rev:
r = r_nor
else:
r = r_rev
canonical_args = [ D[order] for order in r ]
return tuple(canonical_args)
def __contains__(self, o):
"""
Return True if o is contained within the boundary lines of self.altitudes
Parameters
==========
other : GeometryEntity
Returns
=======
contained in : bool
The points (and sides, if applicable) are contained in self.
See Also
========
sympy.geometry.entity.GeometryEntity.encloses
Examples
========
>>> from sympy import Line, Segment, Point
>>> p = Point(0, 0)
>>> q = Point(1, 1)
>>> s = Segment(p, q*2)
>>> l = Line(p, q)
>>> p in q
False
>>> p in s
True
>>> q*3 in s
False
>>> s in l
True
"""
if isinstance(o, Polygon):
return self == o
elif isinstance(o, Segment):
return any(o in s for s in self.sides)
elif isinstance(o, Point):
if o in self.vertices:
return True
for side in self.sides:
if o in side:
return True
return False
class RegularPolygon(Polygon):
"""
A regular polygon.
Such a polygon has all internal angles equal and all sides the same length.
Parameters
==========
center : Point
radius : number or Basic instance
The distance from the center to a vertex
n : int
The number of sides
Attributes
==========
vertices
center
radius
rotation
apothem
interior_angle
exterior_angle
circumcircle
incircle
angles
Raises
======
GeometryError
If the `center` is not a Point, or the `radius` is not a number or Basic
instance, or the number of sides, `n`, is less than three.
Notes
=====
A RegularPolygon can be instantiated with Polygon with the kwarg n.
Regular polygons are instantiated with a center, radius, number of sides
and a rotation angle. Whereas the arguments of a Polygon are vertices, the
vertices of the RegularPolygon must be obtained with the vertices method.
See Also
========
sympy.geometry.point.Point, Polygon
Examples
========
>>> from sympy.geometry import RegularPolygon, Point
>>> r = RegularPolygon(Point(0, 0), 5, 3)
>>> r
RegularPolygon(Point2D(0, 0), 5, 3, 0)
>>> r.vertices[0]
Point2D(5, 0)
"""
__slots__ = ['_n', '_center', '_radius', '_rot']
def __new__(self, c, r, n, rot=0, **kwargs):
r, n, rot = map(sympify, (r, n, rot))
c = Point(c, dim=2, **kwargs)
if not isinstance(r, Expr):
raise GeometryError("r must be an Expr object, not %s" % r)
if n.is_Number:
as_int(n) # let an error raise if necessary
if n < 3:
raise GeometryError("n must be a >= 3, not %s" % n)
obj = GeometryEntity.__new__(self, c, r, n, **kwargs)
obj._n = n
obj._center = c
obj._radius = r
obj._rot = rot % (2*S.Pi/n) if rot.is_number else rot
return obj
@property
def args(self):
"""
Returns the center point, the radius,
the number of sides, and the orientation angle.
Examples
========
>>> from sympy import RegularPolygon, Point
>>> r = RegularPolygon(Point(0, 0), 5, 3)
>>> r.args
(Point2D(0, 0), 5, 3, 0)
"""
return self._center, self._radius, self._n, self._rot
def __str__(self):
return 'RegularPolygon(%s, %s, %s, %s)' % tuple(self.args)
def __repr__(self):
return 'RegularPolygon(%s, %s, %s, %s)' % tuple(self.args)
@property
def area(self):
"""Returns the area.
Examples
========
>>> from sympy.geometry import RegularPolygon
>>> square = RegularPolygon((0, 0), 1, 4)
>>> square.area
2
>>> _ == square.length**2
True
"""
c, r, n, rot = self.args
return sign(r)*n*self.length**2/(4*tan(pi/n))
@property
def length(self):
"""Returns the length of the sides.
The half-length of the side and the apothem form two legs
of a right triangle whose hypotenuse is the radius of the
regular polygon.
Examples
========
>>> from sympy.geometry import RegularPolygon
>>> from sympy import sqrt
>>> s = square_in_unit_circle = RegularPolygon((0, 0), 1, 4)
>>> s.length
sqrt(2)
>>> sqrt((_/2)**2 + s.apothem**2) == s.radius
True
"""
return self.radius*2*sin(pi/self._n)
@property
def center(self):
"""The center of the RegularPolygon
This is also the center of the circumscribing circle.
Returns
=======
center : Point
See Also
========
sympy.geometry.point.Point, sympy.geometry.ellipse.Ellipse.center
Examples
========
>>> from sympy.geometry import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 5, 4)
>>> rp.center
Point2D(0, 0)
"""
return self._center
centroid = center
@property
def circumcenter(self):
"""
Alias for center.
Examples
========
>>> from sympy.geometry import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 5, 4)
>>> rp.circumcenter
Point2D(0, 0)
"""
return self.center
@property
def radius(self):
"""Radius of the RegularPolygon
This is also the radius of the circumscribing circle.
Returns
=======
radius : number or instance of Basic
See Also
========
sympy.geometry.line.Segment.length, sympy.geometry.ellipse.Circle.radius
Examples
========
>>> from sympy import Symbol
>>> from sympy.geometry import RegularPolygon, Point
>>> radius = Symbol('r')
>>> rp = RegularPolygon(Point(0, 0), radius, 4)
>>> rp.radius
r
"""
return self._radius
@property
def circumradius(self):
"""
Alias for radius.
Examples
========
>>> from sympy import Symbol
>>> from sympy.geometry import RegularPolygon, Point
>>> radius = Symbol('r')
>>> rp = RegularPolygon(Point(0, 0), radius, 4)
>>> rp.circumradius
r
"""
return self.radius
@property
def rotation(self):
"""CCW angle by which the RegularPolygon is rotated
Returns
=======
rotation : number or instance of Basic
Examples
========
>>> from sympy import pi
>>> from sympy.abc import a
>>> from sympy.geometry import RegularPolygon, Point
>>> RegularPolygon(Point(0, 0), 3, 4, pi/4).rotation
pi/4
Numerical rotation angles are made canonical:
>>> RegularPolygon(Point(0, 0), 3, 4, a).rotation
a
>>> RegularPolygon(Point(0, 0), 3, 4, pi).rotation
0
"""
return self._rot
@property
def apothem(self):
"""The inradius of the RegularPolygon.
The apothem/inradius is the radius of the inscribed circle.
Returns
=======
apothem : number or instance of Basic
See Also
========
sympy.geometry.line.Segment.length, sympy.geometry.ellipse.Circle.radius
Examples
========
>>> from sympy import Symbol
>>> from sympy.geometry import RegularPolygon, Point
>>> radius = Symbol('r')
>>> rp = RegularPolygon(Point(0, 0), radius, 4)
>>> rp.apothem
sqrt(2)*r/2
"""
return self.radius * cos(S.Pi/self._n)
@property
def inradius(self):
"""
Alias for apothem.
Examples
========
>>> from sympy import Symbol
>>> from sympy.geometry import RegularPolygon, Point
>>> radius = Symbol('r')
>>> rp = RegularPolygon(Point(0, 0), radius, 4)
>>> rp.inradius
sqrt(2)*r/2
"""
return self.apothem
@property
def interior_angle(self):
"""Measure of the interior angles.
Returns
=======
interior_angle : number
See Also
========
sympy.geometry.line.LinearEntity.angle_between
Examples
========
>>> from sympy.geometry import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 4, 8)
>>> rp.interior_angle
3*pi/4
"""
return (self._n - 2)*S.Pi/self._n
@property
def exterior_angle(self):
"""Measure of the exterior angles.
Returns
=======
exterior_angle : number
See Also
========
sympy.geometry.line.LinearEntity.angle_between
Examples
========
>>> from sympy.geometry import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 4, 8)
>>> rp.exterior_angle
pi/4
"""
return 2*S.Pi/self._n
@property
def circumcircle(self):
"""The circumcircle of the RegularPolygon.
Returns
=======
circumcircle : Circle
See Also
========
circumcenter, sympy.geometry.ellipse.Circle
Examples
========
>>> from sympy.geometry import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 4, 8)
>>> rp.circumcircle
Circle(Point2D(0, 0), 4)
"""
return Circle(self.center, self.radius)
@property
def incircle(self):
"""The incircle of the RegularPolygon.
Returns
=======
incircle : Circle
See Also
========
inradius, sympy.geometry.ellipse.Circle
Examples
========
>>> from sympy.geometry import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 4, 7)
>>> rp.incircle
Circle(Point2D(0, 0), 4*cos(pi/7))
"""
return Circle(self.center, self.apothem)
@property
def angles(self):
"""
Returns a dictionary with keys, the vertices of the Polygon,
and values, the interior angle at each vertex.
Examples
========
>>> from sympy import RegularPolygon, Point
>>> r = RegularPolygon(Point(0, 0), 5, 3)
>>> r.angles
{Point2D(-5/2, -5*sqrt(3)/2): pi/3,
Point2D(-5/2, 5*sqrt(3)/2): pi/3,
Point2D(5, 0): pi/3}
"""
ret = {}
ang = self.interior_angle
for v in self.vertices:
ret[v] = ang
return ret
def encloses_point(self, p):
"""
Return True if p is enclosed by (is inside of) self.
Notes
=====
Being on the border of self is considered False.
The general Polygon.encloses_point method is called only if
a point is not within or beyond the incircle or circumcircle,
respectively.
Parameters
==========
p : Point
Returns
=======
encloses_point : True, False or None
See Also
========
sympy.geometry.ellipse.Ellipse.encloses_point
Examples
========
>>> from sympy import RegularPolygon, S, Point, Symbol
>>> p = RegularPolygon((0, 0), 3, 4)
>>> p.encloses_point(Point(0, 0))
True
>>> r, R = p.inradius, p.circumradius
>>> p.encloses_point(Point((r + R)/2, 0))
True
>>> p.encloses_point(Point(R/2, R/2 + (R - r)/10))
False
>>> t = Symbol('t', real=True)
>>> p.encloses_point(p.arbitrary_point().subs(t, S.Half))
False
>>> p.encloses_point(Point(5, 5))
False
"""
c = self.center
d = Segment(c, p).length
if d >= self.radius:
return False
elif d < self.inradius:
return True
else:
# now enumerate the RegularPolygon like a general polygon.
return Polygon.encloses_point(self, p)
def spin(self, angle):
"""Increment *in place* the virtual Polygon's rotation by ccw angle.
See also: rotate method which moves the center.
>>> from sympy import Polygon, Point, pi
>>> r = Polygon(Point(0,0), 1, n=3)
>>> r.vertices[0]
Point2D(1, 0)
>>> r.spin(pi/6)
>>> r.vertices[0]
Point2D(sqrt(3)/2, 1/2)
See Also
========
rotation
rotate : Creates a copy of the RegularPolygon rotated about a Point
"""
self._rot += angle
def rotate(self, angle, pt=None):
"""Override GeometryEntity.rotate to first rotate the RegularPolygon
about its center.
>>> from sympy import Point, RegularPolygon, Polygon, pi
>>> t = RegularPolygon(Point(1, 0), 1, 3)
>>> t.vertices[0] # vertex on x-axis
Point2D(2, 0)
>>> t.rotate(pi/2).vertices[0] # vertex on y axis now
Point2D(0, 2)
See Also
========
rotation
spin : Rotates a RegularPolygon in place
"""
r = type(self)(*self.args) # need a copy or else changes are in-place
r._rot += angle
return GeometryEntity.rotate(r, angle, pt)
def scale(self, x=1, y=1, pt=None):
"""Override GeometryEntity.scale since it is the radius that must be
scaled (if x == y) or else a new Polygon must be returned.
>>> from sympy import RegularPolygon
Symmetric scaling returns a RegularPolygon:
>>> RegularPolygon((0, 0), 1, 4).scale(2, 2)
RegularPolygon(Point2D(0, 0), 2, 4, 0)
Asymmetric scaling returns a kite as a Polygon:
>>> RegularPolygon((0, 0), 1, 4).scale(2, 1)
Polygon(Point2D(2, 0), Point2D(0, 1), Point2D(-2, 0), Point2D(0, -1))
"""
if pt:
pt = Point(pt, dim=2)
return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
if x != y:
return Polygon(*self.vertices).scale(x, y)
c, r, n, rot = self.args
r *= x
return self.func(c, r, n, rot)
def reflect(self, line):
"""Override GeometryEntity.reflect since this is not made of only
points.
Examples
========
>>> from sympy import RegularPolygon, Line
>>> RegularPolygon((0, 0), 1, 4).reflect(Line((0, 1), slope=-2))
RegularPolygon(Point2D(4/5, 2/5), -1, 4, atan(4/3))
"""
c, r, n, rot = self.args
v = self.vertices[0]
d = v - c
cc = c.reflect(line)
vv = v.reflect(line)
dd = vv - cc
# calculate rotation about the new center
# which will align the vertices
l1 = Ray((0, 0), dd)
l2 = Ray((0, 0), d)
ang = l1.closing_angle(l2)
rot += ang
# change sign of radius as point traversal is reversed
return self.func(cc, -r, n, rot)
@property
def vertices(self):
"""The vertices of the RegularPolygon.
Returns
=======
vertices : list
Each vertex is a Point.
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy.geometry import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 5, 4)
>>> rp.vertices
[Point2D(5, 0), Point2D(0, 5), Point2D(-5, 0), Point2D(0, -5)]
"""
c = self._center
r = abs(self._radius)
rot = self._rot
v = 2*S.Pi/self._n
return [Point(c.x + r*cos(k*v + rot), c.y + r*sin(k*v + rot))
for k in range(self._n)]
def __eq__(self, o):
if not isinstance(o, Polygon):
return False
elif not isinstance(o, RegularPolygon):
return Polygon.__eq__(o, self)
return self.args == o.args
def __hash__(self):
return super(RegularPolygon, self).__hash__()
class Triangle(Polygon):
"""
A polygon with three vertices and three sides.
Parameters
==========
points : sequence of Points
keyword: asa, sas, or sss to specify sides/angles of the triangle
Attributes
==========
vertices
altitudes
orthocenter
circumcenter
circumradius
circumcircle
inradius
incircle
exradii
medians
medial
nine_point_circle
Raises
======
GeometryError
If the number of vertices is not equal to three, or one of the vertices
is not a Point, or a valid keyword is not given.
See Also
========
sympy.geometry.point.Point, Polygon
Examples
========
>>> from sympy.geometry import Triangle, Point
>>> Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
Triangle(Point2D(0, 0), Point2D(4, 0), Point2D(4, 3))
Keywords sss, sas, or asa can be used to give the desired
side lengths (in order) and interior angles (in degrees) that
define the triangle:
>>> Triangle(sss=(3, 4, 5))
Triangle(Point2D(0, 0), Point2D(3, 0), Point2D(3, 4))
>>> Triangle(asa=(30, 1, 30))
Triangle(Point2D(0, 0), Point2D(1, 0), Point2D(1/2, sqrt(3)/6))
>>> Triangle(sas=(1, 45, 2))
Triangle(Point2D(0, 0), Point2D(2, 0), Point2D(sqrt(2)/2, sqrt(2)/2))
"""
def __new__(cls, *args, **kwargs):
if len(args) != 3:
if 'sss' in kwargs:
return _sss(*[simplify(a) for a in kwargs['sss']])
if 'asa' in kwargs:
return _asa(*[simplify(a) for a in kwargs['asa']])
if 'sas' in kwargs:
return _sas(*[simplify(a) for a in kwargs['sas']])
msg = "Triangle instantiates with three points or a valid keyword."
raise GeometryError(msg)
vertices = [Point(a, dim=2, **kwargs) for a in args]
# remove consecutive duplicates
nodup = []
for p in vertices:
if nodup and p == nodup[-1]:
continue
nodup.append(p)
if len(nodup) > 1 and nodup[-1] == nodup[0]:
nodup.pop() # last point was same as first
# remove collinear points
i = -3
while i < len(nodup) - 3 and len(nodup) > 2:
a, b, c = sorted(
[nodup[i], nodup[i + 1], nodup[i + 2]], key=default_sort_key)
if Point.is_collinear(a, b, c):
nodup[i] = a
nodup[i + 1] = None
nodup.pop(i + 1)
i += 1
vertices = list(filter(lambda x: x is not None, nodup))
if len(vertices) == 3:
return GeometryEntity.__new__(cls, *vertices, **kwargs)
elif len(vertices) == 2:
return Segment(*vertices, **kwargs)
else:
return Point(*vertices, **kwargs)
@property
def vertices(self):
"""The triangle's vertices
Returns
=======
vertices : tuple
Each element in the tuple is a Point
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy.geometry import Triangle, Point
>>> t = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
>>> t.vertices
(Point2D(0, 0), Point2D(4, 0), Point2D(4, 3))
"""
return self.args
def is_similar(t1, t2):
"""Is another triangle similar to this one.
Two triangles are similar if one can be uniformly scaled to the other.
Parameters
==========
other: Triangle
Returns
=======
is_similar : boolean
See Also
========
sympy.geometry.entity.GeometryEntity.is_similar
Examples
========
>>> from sympy.geometry import Triangle, Point
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
>>> t2 = Triangle(Point(0, 0), Point(-4, 0), Point(-4, -3))
>>> t1.is_similar(t2)
True
>>> t2 = Triangle(Point(0, 0), Point(-4, 0), Point(-4, -4))
>>> t1.is_similar(t2)
False
"""
if not isinstance(t2, Polygon):
return False
s1_1, s1_2, s1_3 = [side.length for side in t1.sides]
s2 = [side.length for side in t2.sides]
def _are_similar(u1, u2, u3, v1, v2, v3):
e1 = simplify(u1/v1)
e2 = simplify(u2/v2)
e3 = simplify(u3/v3)
return bool(e1 == e2) and bool(e2 == e3)
# There's only 6 permutations, so write them out
return _are_similar(s1_1, s1_2, s1_3, *s2) or \
_are_similar(s1_1, s1_3, s1_2, *s2) or \
_are_similar(s1_2, s1_1, s1_3, *s2) or \
_are_similar(s1_2, s1_3, s1_1, *s2) or \
_are_similar(s1_3, s1_1, s1_2, *s2) or \
_are_similar(s1_3, s1_2, s1_1, *s2)
def is_equilateral(self):
"""Are all the sides the same length?
Returns
=======
is_equilateral : boolean
See Also
========
sympy.geometry.entity.GeometryEntity.is_similar, RegularPolygon
is_isosceles, is_right, is_scalene
Examples
========
>>> from sympy.geometry import Triangle, Point
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
>>> t1.is_equilateral()
False
>>> from sympy import sqrt
>>> t2 = Triangle(Point(0, 0), Point(10, 0), Point(5, 5*sqrt(3)))
>>> t2.is_equilateral()
True
"""
return not has_variety(s.length for s in self.sides)
def is_isosceles(self):
"""Are two or more of the sides the same length?
Returns
=======
is_isosceles : boolean
See Also
========
is_equilateral, is_right, is_scalene
Examples
========
>>> from sympy.geometry import Triangle, Point
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(2, 4))
>>> t1.is_isosceles()
True
"""
return has_dups(s.length for s in self.sides)
def is_scalene(self):
"""Are all the sides of the triangle of different lengths?
Returns
=======
is_scalene : boolean
See Also
========
is_equilateral, is_isosceles, is_right
Examples
========
>>> from sympy.geometry import Triangle, Point
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(1, 4))
>>> t1.is_scalene()
True
"""
return not has_dups(s.length for s in self.sides)
def is_right(self):
"""Is the triangle right-angled.
Returns
=======
is_right : boolean
See Also
========
sympy.geometry.line.LinearEntity.is_perpendicular
is_equilateral, is_isosceles, is_scalene
Examples
========
>>> from sympy.geometry import Triangle, Point
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
>>> t1.is_right()
True
"""
s = self.sides
return Segment.is_perpendicular(s[0], s[1]) or \
Segment.is_perpendicular(s[1], s[2]) or \
Segment.is_perpendicular(s[0], s[2])
@property
def altitudes(self):
"""The altitudes of the triangle.
An altitude of a triangle is a segment through a vertex,
perpendicular to the opposite side, with length being the
height of the vertex measured from the line containing the side.
Returns
=======
altitudes : dict
The dictionary consists of keys which are vertices and values
which are Segments.
See Also
========
sympy.geometry.point.Point, sympy.geometry.line.Segment.length
Examples
========
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.altitudes[p1]
Segment2D(Point2D(0, 0), Point2D(1/2, 1/2))
"""
s = self.sides
v = self.vertices
return {v[0]: s[1].perpendicular_segment(v[0]),
v[1]: s[2].perpendicular_segment(v[1]),
v[2]: s[0].perpendicular_segment(v[2])}
@property
def orthocenter(self):
"""The orthocenter of the triangle.
The orthocenter is the intersection of the altitudes of a triangle.
It may lie inside, outside or on the triangle.
Returns
=======
orthocenter : Point
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.orthocenter
Point2D(0, 0)
"""
a = self.altitudes
v = self.vertices
return Line(a[v[0]]).intersection(Line(a[v[1]]))[0]
@property
def circumcenter(self):
"""The circumcenter of the triangle
The circumcenter is the center of the circumcircle.
Returns
=======
circumcenter : Point
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.circumcenter
Point2D(1/2, 1/2)
"""
a, b, c = [x.perpendicular_bisector() for x in self.sides]
if not a.intersection(b):
print(a,b,a.intersection(b))
return a.intersection(b)[0]
@property
def circumradius(self):
"""The radius of the circumcircle of the triangle.
Returns
=======
circumradius : number of Basic instance
See Also
========
sympy.geometry.ellipse.Circle.radius
Examples
========
>>> from sympy import Symbol
>>> from sympy.geometry import Point, Triangle
>>> a = Symbol('a')
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, a)
>>> t = Triangle(p1, p2, p3)
>>> t.circumradius
sqrt(a**2/4 + 1/4)
"""
return Point.distance(self.circumcenter, self.vertices[0])
@property
def circumcircle(self):
"""The circle which passes through the three vertices of the triangle.
Returns
=======
circumcircle : Circle
See Also
========
sympy.geometry.ellipse.Circle
Examples
========
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.circumcircle
Circle(Point2D(1/2, 1/2), sqrt(2)/2)
"""
return Circle(self.circumcenter, self.circumradius)
def bisectors(self):
"""The angle bisectors of the triangle.
An angle bisector of a triangle is a straight line through a vertex
which cuts the corresponding angle in half.
Returns
=======
bisectors : dict
Each key is a vertex (Point) and each value is the corresponding
bisector (Segment).
See Also
========
sympy.geometry.point.Point, sympy.geometry.line.Segment
Examples
========
>>> from sympy.geometry import Point, Triangle, Segment
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> from sympy import sqrt
>>> t.bisectors()[p2] == Segment(Point(1, 0), Point(0, sqrt(2) - 1))
True
"""
s = self.sides
v = self.vertices
c = self.incenter
l1 = Segment(v[0], Line(v[0], c).intersection(s[1])[0])
l2 = Segment(v[1], Line(v[1], c).intersection(s[2])[0])
l3 = Segment(v[2], Line(v[2], c).intersection(s[0])[0])
return {v[0]: l1, v[1]: l2, v[2]: l3}
@property
def incenter(self):
"""The center of the incircle.
The incircle is the circle which lies inside the triangle and touches
all three sides.
Returns
=======
incenter : Point
See Also
========
incircle, sympy.geometry.point.Point
Examples
========
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.incenter
Point2D(1 - sqrt(2)/2, 1 - sqrt(2)/2)
"""
s = self.sides
l = Matrix([s[i].length for i in [1, 2, 0]])
p = sum(l)
v = self.vertices
x = simplify(l.dot(Matrix([vi.x for vi in v]))/p)
y = simplify(l.dot(Matrix([vi.y for vi in v]))/p)
return Point(x, y)
@property
def inradius(self):
"""The radius of the incircle.
Returns
=======
inradius : number of Basic instance
See Also
========
incircle, sympy.geometry.ellipse.Circle.radius
Examples
========
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(4, 0), Point(0, 3)
>>> t = Triangle(p1, p2, p3)
>>> t.inradius
1
"""
return simplify(2 * self.area / self.perimeter)
@property
def incircle(self):
"""The incircle of the triangle.
The incircle is the circle which lies inside the triangle and touches
all three sides.
Returns
=======
incircle : Circle
See Also
========
sympy.geometry.ellipse.Circle
Examples
========
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(2, 0), Point(0, 2)
>>> t = Triangle(p1, p2, p3)
>>> t.incircle
Circle(Point2D(2 - sqrt(2), 2 - sqrt(2)), 2 - sqrt(2))
"""
return Circle(self.incenter, self.inradius)
@property
def exradii(self):
"""The radius of excircles of a triangle.
An excircle of the triangle is a circle lying outside the triangle,
tangent to one of its sides and tangent to the extensions of the
other two.
Returns
=======
exradii : dict
See Also
========
sympy.geometry.polygon.Triangle.inradius
Examples
========
The exradius touches the side of the triangle to which it is keyed, e.g.
the exradius touching side 2 is:
>>> from sympy.geometry import Point, Triangle, Segment2D, Point2D
>>> p1, p2, p3 = Point(0, 0), Point(6, 0), Point(0, 2)
>>> t = Triangle(p1, p2, p3)
>>> t.exradii[t.sides[2]]
-2 + sqrt(10)
References
==========
[1] http://mathworld.wolfram.com/Exradius.html
[2] http://mathworld.wolfram.com/Excircles.html
"""
side = self.sides
a = side[0].length
b = side[1].length
c = side[2].length
s = (a+b+c)/2
area = self.area
exradii = {self.sides[0]: simplify(area/(s-a)),
self.sides[1]: simplify(area/(s-b)),
self.sides[2]: simplify(area/(s-c))}
return exradii
@property
def medians(self):
"""The medians of the triangle.
A median of a triangle is a straight line through a vertex and the
midpoint of the opposite side, and divides the triangle into two
equal areas.
Returns
=======
medians : dict
Each key is a vertex (Point) and each value is the median (Segment)
at that point.
See Also
========
sympy.geometry.point.Point.midpoint, sympy.geometry.line.Segment.midpoint
Examples
========
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.medians[p1]
Segment2D(Point2D(0, 0), Point2D(1/2, 1/2))
"""
s = self.sides
v = self.vertices
return {v[0]: Segment(v[0], s[1].midpoint),
v[1]: Segment(v[1], s[2].midpoint),
v[2]: Segment(v[2], s[0].midpoint)}
@property
def medial(self):
"""The medial triangle of the triangle.
The triangle which is formed from the midpoints of the three sides.
Returns
=======
medial : Triangle
See Also
========
sympy.geometry.line.Segment.midpoint
Examples
========
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.medial
Triangle(Point2D(1/2, 0), Point2D(1/2, 1/2), Point2D(0, 1/2))
"""
s = self.sides
return Triangle(s[0].midpoint, s[1].midpoint, s[2].midpoint)
@property
def nine_point_circle(self):
"""The nine-point circle of the triangle.
Nine-point circle is the circumcircle of the medial triangle, which
passes through the feet of altitudes and the middle points of segments
connecting the vertices and the orthocenter.
Returns
=======
nine_point_circle : Circle
See also
========
sympy.geometry.line.Segment.midpoint
sympy.geometry.polygon.Triangle.medial
sympy.geometry.polygon.Triangle.orthocenter
Examples
========
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.nine_point_circle
Circle(Point2D(1/4, 1/4), sqrt(2)/4)
"""
return Circle(*self.medial.vertices)
@property
def eulerline(self):
"""The Euler line of the triangle.
The line which passes through circumcenter, centroid and orthocenter.
Returns
=======
eulerline : Line (or Point for equilateral triangles in which case all
centers coincide)
Examples
========
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.eulerline
Line2D(Point2D(0, 0), Point2D(1/2, 1/2))
"""
if self.is_equilateral():
return self.orthocenter
return Line(self.orthocenter, self.circumcenter)
def rad(d):
"""Return the radian value for the given degrees (pi = 180 degrees)."""
return d*pi/180
def deg(r):
"""Return the degree value for the given radians (pi = 180 degrees)."""
return r/pi*180
def _slope(d):
rv = tan(rad(d))
return rv
def _asa(d1, l, d2):
"""Return triangle having side with length l on the x-axis."""
xy = Line((0, 0), slope=_slope(d1)).intersection(
Line((l, 0), slope=_slope(180 - d2)))[0]
return Triangle((0, 0), (l, 0), xy)
def _sss(l1, l2, l3):
"""Return triangle having side of length l1 on the x-axis."""
c1 = Circle((0, 0), l3)
c2 = Circle((l1, 0), l2)
inter = [a for a in c1.intersection(c2) if a.y.is_nonnegative]
if not inter:
return None
pt = inter[0]
return Triangle((0, 0), (l1, 0), pt)
def _sas(l1, d, l2):
"""Return triangle having side with length l2 on the x-axis."""
p1 = Point(0, 0)
p2 = Point(l2, 0)
p3 = Point(cos(rad(d))*l1, sin(rad(d))*l1)
return Triangle(p1, p2, p3)
|
5ada109d0f9c37c0d59e45dcd8de4e7bff4cb6a2ffd14717f919ad5207a382a9
|
"""Recurrence Operators"""
from __future__ import print_function, division
from sympy import symbols, Symbol, S
from sympy.printing import sstr
from sympy.core.compatibility import range, string_types
from sympy.core.sympify import sympify
def RecurrenceOperators(base, generator):
"""
Returns an Algebra of Recurrence Operators and the operator for
shifting i.e. the `Sn` operator.
The first argument needs to be the base polynomial ring for the algebra
and the second argument must be a generator which can be either a
noncommutative Symbol or a string.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy import symbols
>>> from sympy.holonomic.recurrence import RecurrenceOperators
>>> n = symbols('n', integer=True)
>>> R, Sn = RecurrenceOperators(ZZ.old_poly_ring(n), 'Sn')
"""
ring = RecurrenceOperatorAlgebra(base, generator)
return (ring, ring.shift_operator)
class RecurrenceOperatorAlgebra(object):
"""
A Recurrence Operator Algebra is a set of noncommutative polynomials
in intermediate `Sn` and coefficients in a base ring A. It follows the
commutation rule:
Sn * a(n) = a(n + 1) * Sn
This class represents a Recurrence Operator Algebra and serves as the parent ring
for Recurrence Operators.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy import symbols
>>> from sympy.holonomic.recurrence import RecurrenceOperators
>>> n = symbols('n', integer=True)
>>> R, Sn = RecurrenceOperators(ZZ.old_poly_ring(n), 'Sn')
>>> R
Univariate Recurrence Operator Algebra in intermediate Sn over the base ring
ZZ[n]
See Also
========
RecurrenceOperator
"""
def __init__(self, base, generator):
# the base ring for the algebra
self.base = base
# the operator representing shift i.e. `Sn`
self.shift_operator = RecurrenceOperator(
[base.zero, base.one], self)
if generator is None:
self.gen_symbol = symbols('Sn', commutative=False)
else:
if isinstance(generator, string_types):
self.gen_symbol = symbols(generator, commutative=False)
elif isinstance(generator, Symbol):
self.gen_symbol = generator
def __str__(self):
string = 'Univariate Recurrence Operator Algebra in intermediate '\
+ sstr(self.gen_symbol) + ' over the base ring ' + \
(self.base).__str__()
return string
__repr__ = __str__
def __eq__(self, other):
if self.base == other.base and self.gen_symbol == other.gen_symbol:
return True
else:
return False
def _add_lists(list1, list2):
if len(list1) <= len(list2):
sol = [a + b for a, b in zip(list1, list2)] + list2[len(list1):]
else:
sol = [a + b for a, b in zip(list1, list2)] + list1[len(list2):]
return sol
class RecurrenceOperator(object):
"""
The Recurrence Operators are defined by a list of polynomials
in the base ring and the parent ring of the Operator.
Takes a list of polynomials for each power of Sn and the
parent ring which must be an instance of RecurrenceOperatorAlgebra.
A Recurrence Operator can be created easily using
the operator `Sn`. See examples below.
Examples
========
>>> from sympy.holonomic.recurrence import RecurrenceOperator, RecurrenceOperators
>>> from sympy.polys.domains import ZZ, QQ
>>> from sympy import symbols
>>> n = symbols('n', integer=True)
>>> R, Sn = RecurrenceOperators(ZZ.old_poly_ring(n),'Sn')
>>> RecurrenceOperator([0, 1, n**2], R)
(1)Sn + (n**2)Sn**2
>>> Sn*n
(n + 1)Sn
>>> n*Sn*n + 1 - Sn**2*n
(1) + (n**2 + n)Sn + (-n - 2)Sn**2
See Also
========
DifferentialOperatorAlgebra
"""
_op_priority = 20
def __init__(self, list_of_poly, parent):
# the parent ring for this operator
# must be an RecurrenceOperatorAlgebra object
self.parent = parent
# sequence of polynomials in n for each power of Sn
# represents the operator
# convert the expressions into ring elements using from_sympy
if isinstance(list_of_poly, list):
for i, j in enumerate(list_of_poly):
if isinstance(j, int):
list_of_poly[i] = self.parent.base.from_sympy(S(j))
elif not isinstance(j, self.parent.base.dtype):
list_of_poly[i] = self.parent.base.from_sympy(j)
self.listofpoly = list_of_poly
self.order = len(self.listofpoly) - 1
def __mul__(self, other):
"""
Multiplies two Operators and returns another
RecurrenceOperator instance using the commutation rule
Sn * a(n) = a(n + 1) * Sn
"""
listofself = self.listofpoly
base = self.parent.base
if not isinstance(other, RecurrenceOperator):
if not isinstance(other, self.parent.base.dtype):
listofother = [self.parent.base.from_sympy(sympify(other))]
else:
listofother = [other]
else:
listofother = other.listofpoly
# multiply a polynomial `b` with a list of polynomials
def _mul_dmp_diffop(b, listofother):
if isinstance(listofother, list):
sol = []
for i in listofother:
sol.append(i * b)
return sol
else:
return [b * listofother]
sol = _mul_dmp_diffop(listofself[0], listofother)
# compute Sn^i * b
def _mul_Sni_b(b):
sol = [base.zero]
if isinstance(b, list):
for i in b:
j = base.to_sympy(i).subs(base.gens[0], base.gens[0] + S(1))
sol.append(base.from_sympy(j))
else:
j = b.subs(base.gens[0], base.gens[0] + S(1))
sol.append(base.from_sympy(j))
return sol
for i in range(1, len(listofself)):
# find Sn^i * b in ith iteration
listofother = _mul_Sni_b(listofother)
# solution = solution + listofself[i] * (Sn^i * b)
sol = _add_lists(sol, _mul_dmp_diffop(listofself[i], listofother))
return RecurrenceOperator(sol, self.parent)
def __rmul__(self, other):
if not isinstance(other, RecurrenceOperator):
if isinstance(other, int):
other = S(other)
if not isinstance(other, self.parent.base.dtype):
other = (self.parent.base).from_sympy(other)
sol = []
for j in self.listofpoly:
sol.append(other * j)
return RecurrenceOperator(sol, self.parent)
def __add__(self, other):
if isinstance(other, RecurrenceOperator):
sol = _add_lists(self.listofpoly, other.listofpoly)
return RecurrenceOperator(sol, self.parent)
else:
if isinstance(other, int):
other = S(other)
list_self = self.listofpoly
if not isinstance(other, self.parent.base.dtype):
list_other = [((self.parent).base).from_sympy(other)]
else:
list_other = [other]
sol = []
sol.append(list_self[0] + list_other[0])
sol += list_self[1:]
return RecurrenceOperator(sol, self.parent)
__radd__ = __add__
def __sub__(self, other):
return self + (-1) * other
def __rsub__(self, other):
return (-1) * self + other
def __pow__(self, n):
if n == 1:
return self
if n == 0:
return RecurrenceOperator([self.parent.base.one], self.parent)
# if self is `Sn`
if self.listofpoly == self.parent.shift_operator.listofpoly:
sol = []
for i in range(0, n):
sol.append(self.parent.base.zero)
sol.append(self.parent.base.one)
return RecurrenceOperator(sol, self.parent)
else:
if n % 2 == 1:
powreduce = self**(n - 1)
return powreduce * self
elif n % 2 == 0:
powreduce = self**(n / 2)
return powreduce * powreduce
def __str__(self):
listofpoly = self.listofpoly
print_str = ''
for i, j in enumerate(listofpoly):
if j == self.parent.base.zero:
continue
if i == 0:
print_str += '(' + sstr(j) + ')'
continue
if print_str:
print_str += ' + '
if i == 1:
print_str += '(' + sstr(j) + ')Sn'
continue
print_str += '(' + sstr(j) + ')' + 'Sn**' + sstr(i)
return print_str
__repr__ = __str__
def __eq__(self, other):
if isinstance(other, RecurrenceOperator):
if self.listofpoly == other.listofpoly and self.parent == other.parent:
return True
else:
return False
else:
if self.listofpoly[0] == other:
for i in self.listofpoly[1:]:
if i is not self.parent.base.zero:
return False
return True
else:
return False
class HolonomicSequence(object):
"""
A Holonomic Sequence is a type of sequence satisfying a linear homogeneous
recurrence relation with Polynomial coefficients. Alternatively, A sequence
is Holonomic if and only if its generating function is a Holonomic Function.
"""
def __init__(self, recurrence, u0=[]):
self.recurrence = recurrence
if not isinstance(u0, list):
self.u0 = [u0]
else:
self.u0 = u0
if len(self.u0) == 0:
self._have_init_cond = False
else:
self._have_init_cond = True
self.n = recurrence.parent.base.gens[0]
def __repr__(self):
str_sol = 'HolonomicSequence(%s, %s)' % ((self.recurrence).__repr__(), sstr(self.n))
if not self._have_init_cond:
return str_sol
else:
cond_str = ''
seq_str = 0
for i in self.u0:
cond_str += ', u(%s) = %s' % (sstr(seq_str), sstr(i))
seq_str += 1
sol = str_sol + cond_str
return sol
__str__ = __repr__
def __eq__(self, other):
if self.recurrence == other.recurrence:
if self.n == other.n:
if self._have_init_cond and other._have_init_cond:
if self.u0 == other.u0:
return True
else:
return False
else:
return True
else:
return False
else:
return False
|
2d7b6bcd85e772f7d6cdfe618f266a157a316ce45147f96a7067496e469bfe8a
|
"""
This module implements Holonomic Functions and
various operations on them.
"""
from __future__ import print_function, division
from sympy import (Symbol, S, Dummy, Order, rf, meijerint, I,
solve, limit, Float, nsimplify, gamma)
from sympy.core.compatibility import range, ordered, string_types
from sympy.core.numbers import NaN, Infinity, NegativeInfinity
from sympy.core.sympify import sympify
from sympy.functions.combinatorial.factorials import binomial, factorial
from sympy.functions.elementary.exponential import exp_polar, exp
from sympy.functions.special.hyper import hyper, meijerg
from sympy.matrices import Matrix
from sympy.polys.rings import PolyElement
from sympy.polys.fields import FracElement
from sympy.polys.domains import QQ, RR
from sympy.polys.polyclasses import DMF
from sympy.polys.polyroots import roots
from sympy.polys.polytools import Poly
from sympy.printing import sstr
from sympy.simplify.hyperexpand import hyperexpand
from .linearsolver import NewMatrix
from .recurrence import HolonomicSequence, RecurrenceOperator, RecurrenceOperators
from .holonomicerrors import (NotPowerSeriesError, NotHyperSeriesError,
SingularityError, NotHolonomicError)
def DifferentialOperators(base, generator):
r"""
This function is used to create annihilators using ``Dx``.
Returns an Algebra of Differential Operators also called Weyl Algebra
and the operator for differentiation i.e. the ``Dx`` operator.
Parameters
==========
base:
Base polynomial ring for the algebra.
The base polynomial ring is the ring of polynomials in :math:`x` that
will appear as coefficients in the operators.
generator:
Generator of the algebra which can
be either a noncommutative ``Symbol`` or a string. e.g. "Dx" or "D".
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.abc import x
>>> from sympy.holonomic.holonomic import DifferentialOperators
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
>>> R
Univariate Differential Operator Algebra in intermediate Dx over the base ring ZZ[x]
>>> Dx*x
(1) + (x)*Dx
"""
ring = DifferentialOperatorAlgebra(base, generator)
return (ring, ring.derivative_operator)
class DifferentialOperatorAlgebra(object):
r"""
An Ore Algebra is a set of noncommutative polynomials in the
intermediate ``Dx`` and coefficients in a base polynomial ring :math:`A`.
It follows the commutation rule:
.. math ::
Dxa = \sigma(a)Dx + \delta(a)
for :math:`a \subset A`.
Where :math:`\sigma: A --> A` is an endomorphism and :math:`\delta: A --> A`
is a skew-derivation i.e. :math:`\delta(ab) = \delta(a) * b + \sigma(a) * \delta(b)`.
If one takes the sigma as identity map and delta as the standard derivation
then it becomes the algebra of Differential Operators also called
a Weyl Algebra i.e. an algebra whose elements are Differential Operators.
This class represents a Weyl Algebra and serves as the parent ring for
Differential Operators.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy import symbols
>>> from sympy.holonomic.holonomic import DifferentialOperators
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
>>> R
Univariate Differential Operator Algebra in intermediate Dx over the base ring
ZZ[x]
See Also
========
DifferentialOperator
"""
def __init__(self, base, generator):
# the base polynomial ring for the algebra
self.base = base
# the operator representing differentiation i.e. `Dx`
self.derivative_operator = DifferentialOperator(
[base.zero, base.one], self)
if generator is None:
self.gen_symbol = Symbol('Dx', commutative=False)
else:
if isinstance(generator, string_types):
self.gen_symbol = Symbol(generator, commutative=False)
elif isinstance(generator, Symbol):
self.gen_symbol = generator
def __str__(self):
string = 'Univariate Differential Operator Algebra in intermediate '\
+ sstr(self.gen_symbol) + ' over the base ring ' + \
(self.base).__str__()
return string
__repr__ = __str__
def __eq__(self, other):
if self.base == other.base and self.gen_symbol == other.gen_symbol:
return True
else:
return False
class DifferentialOperator(object):
"""
Differential Operators are elements of Weyl Algebra. The Operators
are defined by a list of polynomials in the base ring and the
parent ring of the Operator i.e. the algebra it belongs to.
Takes a list of polynomials for each power of ``Dx`` and the
parent ring which must be an instance of DifferentialOperatorAlgebra.
A Differential Operator can be created easily using
the operator ``Dx``. See examples below.
Examples
========
>>> from sympy.holonomic.holonomic import DifferentialOperator, DifferentialOperators
>>> from sympy.polys.domains import ZZ, QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
>>> DifferentialOperator([0, 1, x**2], R)
(1)*Dx + (x**2)*Dx**2
>>> (x*Dx*x + 1 - Dx**2)**2
(2*x**2 + 2*x + 1) + (4*x**3 + 2*x**2 - 4)*Dx + (x**4 - 6*x - 2)*Dx**2 + (-2*x**2)*Dx**3 + (1)*Dx**4
See Also
========
DifferentialOperatorAlgebra
"""
_op_priority = 20
def __init__(self, list_of_poly, parent):
"""
Parameters
==========
list_of_poly:
List of polynomials belonging to the base ring of the algebra.
parent:
Parent algebra of the operator.
"""
# the parent ring for this operator
# must be an DifferentialOperatorAlgebra object
self.parent = parent
base = self.parent.base
self.x = base.gens[0] if isinstance(base.gens[0], Symbol) else base.gens[0][0]
# sequence of polynomials in x for each power of Dx
# the list should not have trailing zeroes
# represents the operator
# convert the expressions into ring elements using from_sympy
for i, j in enumerate(list_of_poly):
if not isinstance(j, base.dtype):
list_of_poly[i] = base.from_sympy(sympify(j))
else:
list_of_poly[i] = base.from_sympy(base.to_sympy(j))
self.listofpoly = list_of_poly
# highest power of `Dx`
self.order = len(self.listofpoly) - 1
def __mul__(self, other):
"""
Multiplies two DifferentialOperator and returns another
DifferentialOperator instance using the commutation rule
Dx*a = a*Dx + a'
"""
listofself = self.listofpoly
if not isinstance(other, DifferentialOperator):
if not isinstance(other, self.parent.base.dtype):
listofother = [self.parent.base.from_sympy(sympify(other))]
else:
listofother = [other]
else:
listofother = other.listofpoly
# multiplies a polynomial `b` with a list of polynomials
def _mul_dmp_diffop(b, listofother):
if isinstance(listofother, list):
sol = []
for i in listofother:
sol.append(i * b)
return sol
else:
return [b * listofother]
sol = _mul_dmp_diffop(listofself[0], listofother)
# compute Dx^i * b
def _mul_Dxi_b(b):
sol1 = [self.parent.base.zero]
sol2 = []
if isinstance(b, list):
for i in b:
sol1.append(i)
sol2.append(i.diff())
else:
sol1.append(self.parent.base.from_sympy(b))
sol2.append(self.parent.base.from_sympy(b).diff())
return _add_lists(sol1, sol2)
for i in range(1, len(listofself)):
# find Dx^i * b in ith iteration
listofother = _mul_Dxi_b(listofother)
# solution = solution + listofself[i] * (Dx^i * b)
sol = _add_lists(sol, _mul_dmp_diffop(listofself[i], listofother))
return DifferentialOperator(sol, self.parent)
def __rmul__(self, other):
if not isinstance(other, DifferentialOperator):
if not isinstance(other, self.parent.base.dtype):
other = (self.parent.base).from_sympy(sympify(other))
sol = []
for j in self.listofpoly:
sol.append(other * j)
return DifferentialOperator(sol, self.parent)
def __add__(self, other):
if isinstance(other, DifferentialOperator):
sol = _add_lists(self.listofpoly, other.listofpoly)
return DifferentialOperator(sol, self.parent)
else:
list_self = self.listofpoly
if not isinstance(other, self.parent.base.dtype):
list_other = [((self.parent).base).from_sympy(sympify(other))]
else:
list_other = [other]
sol = []
sol.append(list_self[0] + list_other[0])
sol += list_self[1:]
return DifferentialOperator(sol, self.parent)
__radd__ = __add__
def __sub__(self, other):
return self + (-1) * other
def __rsub__(self, other):
return (-1) * self + other
def __neg__(self):
return -1 * self
def __div__(self, other):
return self * (S.One / other)
def __truediv__(self, other):
return self.__div__(other)
def __pow__(self, n):
if n == 1:
return self
if n == 0:
return DifferentialOperator([self.parent.base.one], self.parent)
# if self is `Dx`
if self.listofpoly == self.parent.derivative_operator.listofpoly:
sol = []
for i in range(0, n):
sol.append(self.parent.base.zero)
sol.append(self.parent.base.one)
return DifferentialOperator(sol, self.parent)
# the general case
else:
if n % 2 == 1:
powreduce = self**(n - 1)
return powreduce * self
elif n % 2 == 0:
powreduce = self**(n / 2)
return powreduce * powreduce
def __str__(self):
listofpoly = self.listofpoly
print_str = ''
for i, j in enumerate(listofpoly):
if j == self.parent.base.zero:
continue
if i == 0:
print_str += '(' + sstr(j) + ')'
continue
if print_str:
print_str += ' + '
if i == 1:
print_str += '(' + sstr(j) + ')*%s' %(self.parent.gen_symbol)
continue
print_str += '(' + sstr(j) + ')' + '*%s**' %(self.parent.gen_symbol) + sstr(i)
return print_str
__repr__ = __str__
def __eq__(self, other):
if isinstance(other, DifferentialOperator):
if self.listofpoly == other.listofpoly and self.parent == other.parent:
return True
else:
return False
else:
if self.listofpoly[0] == other:
for i in self.listofpoly[1:]:
if i is not self.parent.base.zero:
return False
return True
else:
return False
def is_singular(self, x0):
"""
Checks if the differential equation is singular at x0.
"""
base = self.parent.base
return x0 in roots(base.to_sympy(self.listofpoly[-1]), self.x)
class HolonomicFunction(object):
r"""
A Holonomic Function is a solution to a linear homogeneous ordinary
differential equation with polynomial coefficients. This differential
equation can also be represented by an annihilator i.e. a Differential
Operator ``L`` such that :math:`L.f = 0`. For uniqueness of these functions,
initial conditions can also be provided along with the annihilator.
Holonomic functions have closure properties and thus forms a ring.
Given two Holonomic Functions f and g, their sum, product,
integral and derivative is also a Holonomic Function.
For ordinary points initial condition should be a vector of values of
the derivatives i.e. :math:`[y(x_0), y'(x_0), y''(x_0) ... ]`.
For regular singular points initial conditions can also be provided in this
format:
:math:`{s0: [C_0, C_1, ...], s1: [C^1_0, C^1_1, ...], ...}`
where s0, s1, ... are the roots of indicial equation and vectors
:math:`[C_0, C_1, ...], [C^0_0, C^0_1, ...], ...` are the corresponding initial
terms of the associated power series. See Examples below.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import ZZ, QQ
>>> from sympy import symbols, S
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> p = HolonomicFunction(Dx - 1, x, 0, [1]) # e^x
>>> q = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]) # sin(x)
>>> p + q # annihilator of e^x + sin(x)
HolonomicFunction((-1) + (1)*Dx + (-1)*Dx**2 + (1)*Dx**3, x, 0, [1, 2, 1])
>>> p * q # annihilator of e^x * sin(x)
HolonomicFunction((2) + (-2)*Dx + (1)*Dx**2, x, 0, [0, 1])
An example of initial conditions for regular singular points,
the indicial equation has only one root `1/2`.
>>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]})
HolonomicFunction((-1/2) + (x)*Dx, x, 0, {1/2: [1]})
>>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}).to_expr()
sqrt(x)
To plot a Holonomic Function, one can use `.evalf()` for numerical
computation. Here's an example on `sin(x)**2/x` using numpy and matplotlib.
>>> import sympy.holonomic # doctest: +SKIP
>>> from sympy import var, sin # doctest: +SKIP
>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> import numpy as np # doctest: +SKIP
>>> var("x") # doctest: +SKIP
>>> r = np.linspace(1, 5, 100) # doctest: +SKIP
>>> y = sympy.holonomic.expr_to_holonomic(sin(x)**2/x, x0=1).evalf(r) # doctest: +SKIP
>>> plt.plot(r, y, label="holonomic function") # doctest: +SKIP
>>> plt.show() # doctest: +SKIP
"""
_op_priority = 20
def __init__(self, annihilator, x, x0=0, y0=None):
"""
Parameters
==========
annihilator:
Annihilator of the Holonomic Function, represented by a
`DifferentialOperator` object.
x:
Variable of the function.
x0:
The point at which initial conditions are stored.
Generally an integer.
y0:
The initial condition. The proper format for the initial condition
is described in class docstring. To make the function unique,
length of the vector `y0` should be equal to or greater than the
order of differential equation.
"""
# initial condition
self.y0 = y0
# the point for initial conditions, default is zero.
self.x0 = x0
# differential operator L such that L.f = 0
self.annihilator = annihilator
self.x = x
def __str__(self):
if self._have_init_cond():
str_sol = 'HolonomicFunction(%s, %s, %s, %s)' % (str(self.annihilator),\
sstr(self.x), sstr(self.x0), sstr(self.y0))
else:
str_sol = 'HolonomicFunction(%s, %s)' % (str(self.annihilator),\
sstr(self.x))
return str_sol
__repr__ = __str__
def unify(self, other):
"""
Unifies the base polynomial ring of a given two Holonomic
Functions.
"""
R1 = self.annihilator.parent.base
R2 = other.annihilator.parent.base
dom1 = R1.dom
dom2 = R2.dom
if R1 == R2:
return (self, other)
R = (dom1.unify(dom2)).old_poly_ring(self.x)
newparent, _ = DifferentialOperators(R, str(self.annihilator.parent.gen_symbol))
sol1 = [R1.to_sympy(i) for i in self.annihilator.listofpoly]
sol2 = [R2.to_sympy(i) for i in other.annihilator.listofpoly]
sol1 = DifferentialOperator(sol1, newparent)
sol2 = DifferentialOperator(sol2, newparent)
sol1 = HolonomicFunction(sol1, self.x, self.x0, self.y0)
sol2 = HolonomicFunction(sol2, other.x, other.x0, other.y0)
return (sol1, sol2)
def is_singularics(self):
"""
Returns True if the function have singular initial condition
in the dictionary format.
Returns False if the function have ordinary initial condition
in the list format.
Returns None for all other cases.
"""
if isinstance(self.y0, dict):
return True
elif isinstance(self.y0, list):
return False
def _have_init_cond(self):
"""
Checks if the function have initial condition.
"""
return bool(self.y0)
def _singularics_to_ord(self):
"""
Converts a singular initial condition to ordinary if possible.
"""
a = list(self.y0)[0]
b = self.y0[a]
if len(self.y0) == 1 and a == int(a) and a > 0:
y0 = []
a = int(a)
for i in range(a):
y0.append(S(0))
y0 += [j * factorial(a + i) for i, j in enumerate(b)]
return HolonomicFunction(self.annihilator, self.x, self.x0, y0)
def __add__(self, other):
# if the ground domains are different
if self.annihilator.parent.base != other.annihilator.parent.base:
a, b = self.unify(other)
return a + b
deg1 = self.annihilator.order
deg2 = other.annihilator.order
dim = max(deg1, deg2)
R = self.annihilator.parent.base
K = R.get_field()
rowsself = [self.annihilator]
rowsother = [other.annihilator]
gen = self.annihilator.parent.derivative_operator
# constructing annihilators up to order dim
for i in range(dim - deg1):
diff1 = (gen * rowsself[-1])
rowsself.append(diff1)
for i in range(dim - deg2):
diff2 = (gen * rowsother[-1])
rowsother.append(diff2)
row = rowsself + rowsother
# constructing the matrix of the ansatz
r = []
for expr in row:
p = []
for i in range(dim + 1):
if i >= len(expr.listofpoly):
p.append(0)
else:
p.append(K.new(expr.listofpoly[i].rep))
r.append(p)
r = NewMatrix(r).transpose()
homosys = [[S(0) for q in range(dim + 1)]]
homosys = NewMatrix(homosys).transpose()
# solving the linear system using gauss jordan solver
solcomp = r.gauss_jordan_solve(homosys)
sol = solcomp[0]
# if a solution is not obtained then increasing the order by 1 in each
# iteration
while sol.is_zero:
dim += 1
diff1 = (gen * rowsself[-1])
rowsself.append(diff1)
diff2 = (gen * rowsother[-1])
rowsother.append(diff2)
row = rowsself + rowsother
r = []
for expr in row:
p = []
for i in range(dim + 1):
if i >= len(expr.listofpoly):
p.append(S(0))
else:
p.append(K.new(expr.listofpoly[i].rep))
r.append(p)
r = NewMatrix(r).transpose()
homosys = [[S(0) for q in range(dim + 1)]]
homosys = NewMatrix(homosys).transpose()
solcomp = r.gauss_jordan_solve(homosys)
sol = solcomp[0]
# taking only the coefficients needed to multiply with `self`
# can be also be done the other way by taking R.H.S and multiplying with
# `other`
sol = sol[:dim + 1 - deg1]
sol1 = _normalize(sol, self.annihilator.parent)
# annihilator of the solution
sol = sol1 * (self.annihilator)
sol = _normalize(sol.listofpoly, self.annihilator.parent, negative=False)
if not (self._have_init_cond() and other._have_init_cond()):
return HolonomicFunction(sol, self.x)
# both the functions have ordinary initial conditions
if self.is_singularics() == False and other.is_singularics() == False:
# directly add the corresponding value
if self.x0 == other.x0:
# try to extended the initial conditions
# using the annihilator
y1 = _extend_y0(self, sol.order)
y2 = _extend_y0(other, sol.order)
y0 = [a + b for a, b in zip(y1, y2)]
return HolonomicFunction(sol, self.x, self.x0, y0)
else:
# change the intiial conditions to a same point
selfat0 = self.annihilator.is_singular(0)
otherat0 = other.annihilator.is_singular(0)
if self.x0 == 0 and not selfat0 and not otherat0:
return self + other.change_ics(0)
elif other.x0 == 0 and not selfat0 and not otherat0:
return self.change_ics(0) + other
else:
selfatx0 = self.annihilator.is_singular(self.x0)
otheratx0 = other.annihilator.is_singular(self.x0)
if not selfatx0 and not otheratx0:
return self + other.change_ics(self.x0)
else:
return self.change_ics(other.x0) + other
if self.x0 != other.x0:
return HolonomicFunction(sol, self.x)
# if the functions have singular_ics
y1 = None
y2 = None
if self.is_singularics() == False and other.is_singularics() == True:
# convert the ordinary initial condition to singular.
_y0 = [j / factorial(i) for i, j in enumerate(self.y0)]
y1 = {S(0): _y0}
y2 = other.y0
elif self.is_singularics() == True and other.is_singularics() == False:
_y0 = [j / factorial(i) for i, j in enumerate(other.y0)]
y1 = self.y0
y2 = {S(0): _y0}
elif self.is_singularics() == True and other.is_singularics() == True:
y1 = self.y0
y2 = other.y0
# computing singular initial condition for the result
# taking union of the series terms of both functions
y0 = {}
for i in y1:
# add corresponding initial terms if the power
# on `x` is same
if i in y2:
y0[i] = [a + b for a, b in zip(y1[i], y2[i])]
else:
y0[i] = y1[i]
for i in y2:
if not i in y1:
y0[i] = y2[i]
return HolonomicFunction(sol, self.x, self.x0, y0)
def integrate(self, limits, initcond=False):
"""
Integrates the given holonomic function.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import ZZ, QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx - 1, x, 0, [1]).integrate((x, 0, x)) # e^x - 1
HolonomicFunction((-1)*Dx + (1)*Dx**2, x, 0, [0, 1])
>>> HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]).integrate((x, 0, x))
HolonomicFunction((1)*Dx + (1)*Dx**3, x, 0, [0, 1, 0])
"""
# to get the annihilator, just multiply by Dx from right
D = self.annihilator.parent.derivative_operator
# if the function have initial conditions of the series format
if self.is_singularics() == True:
r = self._singularics_to_ord()
if r:
return r.integrate(limits, initcond=initcond)
# computing singular initial condition for the function
# produced after integration.
y0 = {}
for i in self.y0:
c = self.y0[i]
c2 = []
for j in range(len(c)):
if c[j] == 0:
c2.append(S(0))
# if power on `x` is -1, the integration becomes log(x)
# TODO: Implement this case
elif i + j + 1 == 0:
raise NotImplementedError("logarithmic terms in the series are not supported")
else:
c2.append(c[j] / S(i + j + 1))
y0[i + 1] = c2
if hasattr(limits, "__iter__"):
raise NotImplementedError("Definite integration for singular initial conditions")
return HolonomicFunction(self.annihilator * D, self.x, self.x0, y0)
# if no initial conditions are available for the function
if not self._have_init_cond():
if initcond:
return HolonomicFunction(self.annihilator * D, self.x, self.x0, [S(0)])
return HolonomicFunction(self.annihilator * D, self.x)
# definite integral
# initial conditions for the answer will be stored at point `a`,
# where `a` is the lower limit of the integrand
if hasattr(limits, "__iter__"):
if len(limits) == 3 and limits[0] == self.x:
x0 = self.x0
a = limits[1]
b = limits[2]
definite = True
else:
definite = False
y0 = [S(0)]
y0 += self.y0
indefinite_integral = HolonomicFunction(self.annihilator * D, self.x, self.x0, y0)
if not definite:
return indefinite_integral
# use evalf to get the values at `a`
if x0 != a:
try:
indefinite_expr = indefinite_integral.to_expr()
except (NotHyperSeriesError, NotPowerSeriesError):
indefinite_expr = None
if indefinite_expr:
lower = indefinite_expr.subs(self.x, a)
if isinstance(lower, NaN):
lower = indefinite_expr.limit(self.x, a)
else:
lower = indefinite_integral.evalf(a)
if b == self.x:
y0[0] = y0[0] - lower
return HolonomicFunction(self.annihilator * D, self.x, x0, y0)
elif S(b).is_Number:
if indefinite_expr:
upper = indefinite_expr.subs(self.x, b)
if isinstance(upper, NaN):
upper = indefinite_expr.limit(self.x, b)
else:
upper = indefinite_integral.evalf(b)
return upper - lower
# if the upper limit is `x`, the answer will be a function
if b == self.x:
return HolonomicFunction(self.annihilator * D, self.x, a, y0)
# if the upper limits is a Number, a numerical value will be returned
elif S(b).is_Number:
try:
s = HolonomicFunction(self.annihilator * D, self.x, a,\
y0).to_expr()
indefinite = s.subs(self.x, b)
if not isinstance(indefinite, NaN):
return indefinite
else:
return s.limit(self.x, b)
except (NotHyperSeriesError, NotPowerSeriesError):
return HolonomicFunction(self.annihilator * D, self.x, a, y0).evalf(b)
return HolonomicFunction(self.annihilator * D, self.x)
def diff(self, *args, **kwargs):
r"""
Differentiation of the given Holonomic function.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import ZZ, QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).diff().to_expr()
cos(x)
>>> HolonomicFunction(Dx - 2, x, 0, [1]).diff().to_expr()
2*exp(2*x)
See Also
========
.integrate()
"""
kwargs.setdefault('evaluate', True)
if args:
if args[0] != self.x:
return S(0)
elif len(args) == 2:
sol = self
for i in range(args[1]):
sol = sol.diff(args[0])
return sol
ann = self.annihilator
# if the function is constant.
if ann.listofpoly[0] == ann.parent.base.zero and ann.order == 1:
return S(0)
# if the coefficient of y in the differential equation is zero.
# a shifting is done to compute the answer in this case.
elif ann.listofpoly[0] == ann.parent.base.zero:
sol = DifferentialOperator(ann.listofpoly[1:], ann.parent)
if self._have_init_cond():
# if ordinary initial condition
if self.is_singularics() == False:
return HolonomicFunction(sol, self.x, self.x0, self.y0[1:])
# TODO: support for singular initial condition
return HolonomicFunction(sol, self.x)
else:
return HolonomicFunction(sol, self.x)
# the general algorithm
R = ann.parent.base
K = R.get_field()
seq_dmf = [K.new(i.rep) for i in ann.listofpoly]
# -y = a1*y'/a0 + a2*y''/a0 ... + an*y^n/a0
rhs = [i / seq_dmf[0] for i in seq_dmf[1:]]
rhs.insert(0, K.zero)
# differentiate both lhs and rhs
sol = _derivate_diff_eq(rhs)
# add the term y' in lhs to rhs
sol = _add_lists(sol, [K.zero, K.one])
sol = _normalize(sol[1:], self.annihilator.parent, negative=False)
if not self._have_init_cond() or self.is_singularics() == True:
return HolonomicFunction(sol, self.x)
y0 = _extend_y0(self, sol.order + 1)[1:]
return HolonomicFunction(sol, self.x, self.x0, y0)
def __eq__(self, other):
if self.annihilator == other.annihilator:
if self.x == other.x:
if self._have_init_cond() and other._have_init_cond():
if self.x0 == other.x0 and self.y0 == other.y0:
return True
else:
return False
else:
return True
else:
return False
else:
return False
def __mul__(self, other):
ann_self = self.annihilator
if not isinstance(other, HolonomicFunction):
other = sympify(other)
if other.has(self.x):
raise NotImplementedError(" Can't multiply a HolonomicFunction and expressions/functions.")
if not self._have_init_cond():
return self
else:
y0 = _extend_y0(self, ann_self.order)
y1 = []
for j in y0:
y1.append((Poly.new(j, self.x) * other).rep)
return HolonomicFunction(ann_self, self.x, self.x0, y1)
if self.annihilator.parent.base != other.annihilator.parent.base:
a, b = self.unify(other)
return a * b
ann_other = other.annihilator
list_self = []
list_other = []
a = ann_self.order
b = ann_other.order
R = ann_self.parent.base
K = R.get_field()
for j in ann_self.listofpoly:
list_self.append(K.new(j.rep))
for j in ann_other.listofpoly:
list_other.append(K.new(j.rep))
# will be used to reduce the degree
self_red = [-list_self[i] / list_self[a] for i in range(a)]
other_red = [-list_other[i] / list_other[b] for i in range(b)]
# coeff_mull[i][j] is the coefficient of Dx^i(f).Dx^j(g)
coeff_mul = [[S(0) for i in range(b + 1)] for j in range(a + 1)]
coeff_mul[0][0] = S(1)
# making the ansatz
lin_sys = [[coeff_mul[i][j] for i in range(a) for j in range(b)]]
homo_sys = [[S(0) for q in range(a * b)]]
homo_sys = NewMatrix(homo_sys).transpose()
sol = (NewMatrix(lin_sys).transpose()).gauss_jordan_solve(homo_sys)
# until a non trivial solution is found
while sol[0].is_zero:
# updating the coefficients Dx^i(f).Dx^j(g) for next degree
for i in range(a - 1, -1, -1):
for j in range(b - 1, -1, -1):
coeff_mul[i][j + 1] += coeff_mul[i][j]
coeff_mul[i + 1][j] += coeff_mul[i][j]
if isinstance(coeff_mul[i][j], K.dtype):
coeff_mul[i][j] = DMFdiff(coeff_mul[i][j])
else:
coeff_mul[i][j] = coeff_mul[i][j].diff(self.x)
# reduce the terms to lower power using annihilators of f, g
for i in range(a + 1):
if not coeff_mul[i][b] == S(0):
for j in range(b):
coeff_mul[i][j] += other_red[j] * \
coeff_mul[i][b]
coeff_mul[i][b] = S(0)
# not d2 + 1, as that is already covered in previous loop
for j in range(b):
if not coeff_mul[a][j] == 0:
for i in range(a):
coeff_mul[i][j] += self_red[i] * \
coeff_mul[a][j]
coeff_mul[a][j] = S(0)
lin_sys.append([coeff_mul[i][j] for i in range(a)
for j in range(b)])
sol = (NewMatrix(lin_sys).transpose()).gauss_jordan_solve(homo_sys)
sol_ann = _normalize(sol[0][0:], self.annihilator.parent, negative=False)
if not (self._have_init_cond() and other._have_init_cond()):
return HolonomicFunction(sol_ann, self.x)
if self.is_singularics() == False and other.is_singularics() == False:
# if both the conditions are at same point
if self.x0 == other.x0:
# try to find more initial conditions
y0_self = _extend_y0(self, sol_ann.order)
y0_other = _extend_y0(other, sol_ann.order)
# h(x0) = f(x0) * g(x0)
y0 = [y0_self[0] * y0_other[0]]
# coefficient of Dx^j(f)*Dx^i(g) in Dx^i(fg)
for i in range(1, min(len(y0_self), len(y0_other))):
coeff = [[0 for i in range(i + 1)] for j in range(i + 1)]
for j in range(i + 1):
for k in range(i + 1):
if j + k == i:
coeff[j][k] = binomial(i, j)
sol = 0
for j in range(i + 1):
for k in range(i + 1):
sol += coeff[j][k]* y0_self[j] * y0_other[k]
y0.append(sol)
return HolonomicFunction(sol_ann, self.x, self.x0, y0)
# if the points are different, consider one
else:
selfat0 = self.annihilator.is_singular(0)
otherat0 = other.annihilator.is_singular(0)
if self.x0 == 0 and not selfat0 and not otherat0:
return self * other.change_ics(0)
elif other.x0 == 0 and not selfat0 and not otherat0:
return self.change_ics(0) * other
else:
selfatx0 = self.annihilator.is_singular(self.x0)
otheratx0 = other.annihilator.is_singular(self.x0)
if not selfatx0 and not otheratx0:
return self * other.change_ics(self.x0)
else:
return self.change_ics(other.x0) * other
if self.x0 != other.x0:
return HolonomicFunction(sol_ann, self.x)
# if the functions have singular_ics
y1 = None
y2 = None
if self.is_singularics() == False and other.is_singularics() == True:
_y0 = [j / factorial(i) for i, j in enumerate(self.y0)]
y1 = {S(0): _y0}
y2 = other.y0
elif self.is_singularics() == True and other.is_singularics() == False:
_y0 = [j / factorial(i) for i, j in enumerate(other.y0)]
y1 = self.y0
y2 = {S(0): _y0}
elif self.is_singularics() == True and other.is_singularics() == True:
y1 = self.y0
y2 = other.y0
y0 = {}
# multiply every possible pair of the series terms
for i in y1:
for j in y2:
k = min(len(y1[i]), len(y2[j]))
c = []
for a in range(k):
s = S(0)
for b in range(a + 1):
s += y1[i][b] * y2[j][a - b]
c.append(s)
if not i + j in y0:
y0[i + j] = c
else:
y0[i + j] = [a + b for a, b in zip(c, y0[i + j])]
return HolonomicFunction(sol_ann, self.x, self.x0, y0)
__rmul__ = __mul__
def __sub__(self, other):
return self + other * -1
def __rsub__(self, other):
return self * -1 + other
def __neg__(self):
return -1 * self
def __div__(self, other):
return self * (S.One / other)
def __truediv__(self, other):
return self.__div__(other)
def __pow__(self, n):
if self.annihilator.order <= 1:
ann = self.annihilator
parent = ann.parent
if self.y0 is None:
y0 = None
else:
y0 = [list(self.y0)[0] ** n]
p0 = ann.listofpoly[0]
p1 = ann.listofpoly[1]
p0 = (Poly.new(p0, self.x) * n).rep
sol = [parent.base.to_sympy(i) for i in [p0, p1]]
dd = DifferentialOperator(sol, parent)
return HolonomicFunction(dd, self.x, self.x0, y0)
if n < 0:
raise NotHolonomicError("Negative Power on a Holonomic Function")
if n == 0:
Dx = self.annihilator.parent.derivative_operator
return HolonomicFunction(Dx, self.x, S(0), [S(1)])
if n == 1:
return self
else:
if n % 2 == 1:
powreduce = self**(n - 1)
return powreduce * self
elif n % 2 == 0:
powreduce = self**(n / 2)
return powreduce * powreduce
def degree(self):
"""
Returns the highest power of `x` in the annihilator.
"""
sol = [i.degree() for i in self.annihilator.listofpoly]
return max(sol)
def composition(self, expr, *args, **kwargs):
"""
Returns function after composition of a holonomic
function with an algebraic function. The method can't compute
initial conditions for the result by itself, so they can be also be
provided.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import ZZ, QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx - 1, x).composition(x**2, 0, [1]) # e^(x**2)
HolonomicFunction((-2*x) + (1)*Dx, x, 0, [1])
>>> HolonomicFunction(Dx**2 + 1, x).composition(x**2 - 1, 1, [1, 0])
HolonomicFunction((4*x**3) + (-1)*Dx + (x)*Dx**2, x, 1, [1, 0])
See Also
========
from_hyper()
"""
R = self.annihilator.parent
a = self.annihilator.order
diff = expr.diff(self.x)
listofpoly = self.annihilator.listofpoly
for i, j in enumerate(listofpoly):
if isinstance(j, self.annihilator.parent.base.dtype):
listofpoly[i] = self.annihilator.parent.base.to_sympy(j)
r = listofpoly[a].subs({self.x:expr})
subs = [-listofpoly[i].subs({self.x:expr}) / r for i in range (a)]
coeffs = [S(0) for i in range(a)] # coeffs[i] == coeff of (D^i f)(a) in D^k (f(a))
coeffs[0] = S(1)
system = [coeffs]
homogeneous = Matrix([[S(0) for i in range(a)]]).transpose()
sol = S(0)
while sol.is_zero:
coeffs_next = [p.diff(self.x) for p in coeffs]
for i in range(a - 1):
coeffs_next[i + 1] += (coeffs[i] * diff)
for i in range(a):
coeffs_next[i] += (coeffs[-1] * subs[i] * diff)
coeffs = coeffs_next
# check for linear relations
system.append(coeffs)
sol, taus = (Matrix(system).transpose()
).gauss_jordan_solve(homogeneous)
tau = list(taus)[0]
sol = sol.subs(tau, 1)
sol = _normalize(sol[0:], R, negative=False)
# if initial conditions are given for the resulting function
if args:
return HolonomicFunction(sol, self.x, args[0], args[1])
return HolonomicFunction(sol, self.x)
def to_sequence(self, lb=True):
r"""
Finds recurrence relation for the coefficients in the series expansion
of the function about :math:`x_0`, where :math:`x_0` is the point at
which the initial condition is stored.
If the point :math:`x_0` is ordinary, solution of the form :math:`[(R, n_0)]`
is returned. Where :math:`R` is the recurrence relation and :math:`n_0` is the
smallest ``n`` for which the recurrence holds true.
If the point :math:`x_0` is regular singular, a list of solutions in
the format :math:`(R, p, n_0)` is returned, i.e. `[(R, p, n_0), ... ]`.
Each tuple in this vector represents a recurrence relation :math:`R`
associated with a root of the indicial equation ``p``. Conditions of
a different format can also be provided in this case, see the
docstring of HolonomicFunction class.
If it's not possible to numerically compute a initial condition,
it is returned as a symbol :math:`C_j`, denoting the coefficient of
:math:`(x - x_0)^j` in the power series about :math:`x_0`.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import ZZ, QQ
>>> from sympy import symbols, S
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx - 1, x, 0, [1]).to_sequence()
[(HolonomicSequence((-1) + (n + 1)Sn, n), u(0) = 1, 0)]
>>> HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1]).to_sequence()
[(HolonomicSequence((n**2) + (n**2 + n)Sn, n), u(0) = 0, u(1) = 1, u(2) = -1/2, 2)]
>>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}).to_sequence()
[(HolonomicSequence((n), n), u(0) = 1, 1/2, 1)]
See Also
========
HolonomicFunction.series()
References
==========
.. [1] https://hal.inria.fr/inria-00070025/document
.. [2] http://www.risc.jku.at/publications/download/risc_2244/DIPLFORM.pdf
"""
if self.x0 != 0:
return self.shift_x(self.x0).to_sequence()
# check whether a power series exists if the point is singular
if self.annihilator.is_singular(self.x0):
return self._frobenius(lb=lb)
dict1 = {}
n = Symbol('n', integer=True)
dom = self.annihilator.parent.base.dom
R, _ = RecurrenceOperators(dom.old_poly_ring(n), 'Sn')
# substituting each term of the form `x^k Dx^j` in the
# annihilator, according to the formula below:
# x^k Dx^j = Sum(rf(n + 1 - k, j) * a(n + j - k) * x^n, (n, k, oo))
# for explanation see [2].
for i, j in enumerate(self.annihilator.listofpoly):
listofdmp = j.all_coeffs()
degree = len(listofdmp) - 1
for k in range(degree + 1):
coeff = listofdmp[degree - k]
if coeff == 0:
continue
if (i - k, k) in dict1:
dict1[(i - k, k)] += (dom.to_sympy(coeff) * rf(n - k + 1, i))
else:
dict1[(i - k, k)] = (dom.to_sympy(coeff) * rf(n - k + 1, i))
sol = []
keylist = [i[0] for i in dict1]
lower = min(keylist)
upper = max(keylist)
degree = self.degree()
# the recurrence relation holds for all values of
# n greater than smallest_n, i.e. n >= smallest_n
smallest_n = lower + degree
dummys = {}
eqs = []
unknowns = []
# an appropriate shift of the recurrence
for j in range(lower, upper + 1):
if j in keylist:
temp = S(0)
for k in dict1.keys():
if k[0] == j:
temp += dict1[k].subs(n, n - lower)
sol.append(temp)
else:
sol.append(S(0))
# the recurrence relation
sol = RecurrenceOperator(sol, R)
# computing the initial conditions for recurrence
order = sol.order
all_roots = roots(R.base.to_sympy(sol.listofpoly[-1]), n, filter='Z')
all_roots = all_roots.keys()
if all_roots:
max_root = max(all_roots) + 1
smallest_n = max(max_root, smallest_n)
order += smallest_n
y0 = _extend_y0(self, order)
u0 = []
# u(n) = y^n(0)/factorial(n)
for i, j in enumerate(y0):
u0.append(j / factorial(i))
# if sufficient conditions can't be computed then
# try to use the series method i.e.
# equate the coefficients of x^k in the equation formed by
# substituting the series in differential equation, to zero.
if len(u0) < order:
for i in range(degree):
eq = S(0)
for j in dict1:
if i + j[0] < 0:
dummys[i + j[0]] = S(0)
elif i + j[0] < len(u0):
dummys[i + j[0]] = u0[i + j[0]]
elif not i + j[0] in dummys:
dummys[i + j[0]] = Symbol('C_%s' %(i + j[0]))
unknowns.append(dummys[i + j[0]])
if j[1] <= i:
eq += dict1[j].subs(n, i) * dummys[i + j[0]]
eqs.append(eq)
# solve the system of equations formed
soleqs = solve(eqs, *unknowns)
if isinstance(soleqs, dict):
for i in range(len(u0), order):
if i not in dummys:
dummys[i] = Symbol('C_%s' %i)
if dummys[i] in soleqs:
u0.append(soleqs[dummys[i]])
else:
u0.append(dummys[i])
if lb:
return [(HolonomicSequence(sol, u0), smallest_n)]
return [HolonomicSequence(sol, u0)]
for i in range(len(u0), order):
if i not in dummys:
dummys[i] = Symbol('C_%s' %i)
s = False
for j in soleqs:
if dummys[i] in j:
u0.append(j[dummys[i]])
s = True
if not s:
u0.append(dummys[i])
if lb:
return [(HolonomicSequence(sol, u0), smallest_n)]
return [HolonomicSequence(sol, u0)]
def _frobenius(self, lb=True):
# compute the roots of indicial equation
indicialroots = self._indicial()
reals = []
compl = []
for i in ordered(indicialroots.keys()):
if i.is_real:
reals.extend([i] * indicialroots[i])
else:
a, b = i.as_real_imag()
compl.extend([(i, a, b)] * indicialroots[i])
# sort the roots for a fixed ordering of solution
compl.sort(key=lambda x : x[1])
compl.sort(key=lambda x : x[2])
reals.sort()
# grouping the roots, roots differ by an integer are put in the same group.
grp = []
for i in reals:
intdiff = False
if len(grp) == 0:
grp.append([i])
continue
for j in grp:
if int(j[0] - i) == j[0] - i:
j.append(i)
intdiff = True
break
if not intdiff:
grp.append([i])
# True if none of the roots differ by an integer i.e.
# each element in group have only one member
independent = True if all(len(i) == 1 for i in grp) else False
allpos = all(i >= 0 for i in reals)
allint = all(int(i) == i for i in reals)
# if initial conditions are provided
# then use them.
if self.is_singularics() == True:
rootstoconsider = []
for i in ordered(self.y0.keys()):
for j in ordered(indicialroots.keys()):
if j == i:
rootstoconsider.append(i)
elif allpos and allint:
rootstoconsider = [min(reals)]
elif independent:
rootstoconsider = [i[0] for i in grp] + [j[0] for j in compl]
elif not allint:
rootstoconsider = []
for i in reals:
if not int(i) == i:
rootstoconsider.append(i)
elif not allpos:
if not self._have_init_cond() or S(self.y0[0]).is_finite == False:
rootstoconsider = [min(reals)]
else:
posroots = []
for i in reals:
if i >= 0:
posroots.append(i)
rootstoconsider = [min(posroots)]
n = Symbol('n', integer=True)
dom = self.annihilator.parent.base.dom
R, _ = RecurrenceOperators(dom.old_poly_ring(n), 'Sn')
finalsol = []
char = ord('C')
for p in rootstoconsider:
dict1 = {}
for i, j in enumerate(self.annihilator.listofpoly):
listofdmp = j.all_coeffs()
degree = len(listofdmp) - 1
for k in range(degree + 1):
coeff = listofdmp[degree - k]
if coeff == 0:
continue
if (i - k, k - i) in dict1:
dict1[(i - k, k - i)] += (dom.to_sympy(coeff) * rf(n - k + 1 + p, i))
else:
dict1[(i - k, k - i)] = (dom.to_sympy(coeff) * rf(n - k + 1 + p, i))
sol = []
keylist = [i[0] for i in dict1]
lower = min(keylist)
upper = max(keylist)
degree = max([i[1] for i in dict1])
degree2 = min([i[1] for i in dict1])
smallest_n = lower + degree
dummys = {}
eqs = []
unknowns = []
for j in range(lower, upper + 1):
if j in keylist:
temp = S(0)
for k in dict1.keys():
if k[0] == j:
temp += dict1[k].subs(n, n - lower)
sol.append(temp)
else:
sol.append(S(0))
# the recurrence relation
sol = RecurrenceOperator(sol, R)
# computing the initial conditions for recurrence
order = sol.order
all_roots = roots(R.base.to_sympy(sol.listofpoly[-1]), n, filter='Z')
all_roots = all_roots.keys()
if all_roots:
max_root = max(all_roots) + 1
smallest_n = max(max_root, smallest_n)
order += smallest_n
u0 = []
if self.is_singularics() == True:
u0 = self.y0[p]
elif self.is_singularics() == False and p >= 0 and int(p) == p and len(rootstoconsider) == 1:
y0 = _extend_y0(self, order + int(p))
# u(n) = y^n(0)/factorial(n)
if len(y0) > int(p):
for i in range(int(p), len(y0)):
u0.append(y0[i] / factorial(i))
if len(u0) < order:
for i in range(degree2, degree):
eq = S(0)
for j in dict1:
if i + j[0] < 0:
dummys[i + j[0]] = S(0)
elif i + j[0] < len(u0):
dummys[i + j[0]] = u0[i + j[0]]
elif not i + j[0] in dummys:
letter = chr(char) + '_%s' %(i + j[0])
dummys[i + j[0]] = Symbol(letter)
unknowns.append(dummys[i + j[0]])
if j[1] <= i:
eq += dict1[j].subs(n, i) * dummys[i + j[0]]
eqs.append(eq)
# solve the system of equations formed
soleqs = solve(eqs, *unknowns)
if isinstance(soleqs, dict):
for i in range(len(u0), order):
if i not in dummys:
letter = chr(char) + '_%s' %i
dummys[i] = Symbol(letter)
if dummys[i] in soleqs:
u0.append(soleqs[dummys[i]])
else:
u0.append(dummys[i])
if lb:
finalsol.append((HolonomicSequence(sol, u0), p, smallest_n))
continue
else:
finalsol.append((HolonomicSequence(sol, u0), p))
continue
for i in range(len(u0), order):
if i not in dummys:
letter = chr(char) + '_%s' %i
dummys[i] = Symbol(letter)
s = False
for j in soleqs:
if dummys[i] in j:
u0.append(j[dummys[i]])
s = True
if not s:
u0.append(dummys[i])
if lb:
finalsol.append((HolonomicSequence(sol, u0), p, smallest_n))
else:
finalsol.append((HolonomicSequence(sol, u0), p))
char += 1
return finalsol
def series(self, n=6, coefficient=False, order=True, _recur=None):
r"""
Finds the power series expansion of given holonomic function about :math:`x_0`.
A list of series might be returned if :math:`x_0` is a regular point with
multiple roots of the indicial equation.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import ZZ, QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx - 1, x, 0, [1]).series() # e^x
1 + x + x**2/2 + x**3/6 + x**4/24 + x**5/120 + O(x**6)
>>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).series(n=8) # sin(x)
x - x**3/6 + x**5/120 - x**7/5040 + O(x**8)
See Also
========
HolonomicFunction.to_sequence()
"""
if _recur is None:
recurrence = self.to_sequence()
else:
recurrence = _recur
if isinstance(recurrence, tuple) and len(recurrence) == 2:
recurrence = recurrence[0]
constantpower = 0
elif isinstance(recurrence, tuple) and len(recurrence) == 3:
constantpower = recurrence[1]
recurrence = recurrence[0]
elif len(recurrence) == 1 and len(recurrence[0]) == 2:
recurrence = recurrence[0][0]
constantpower = 0
elif len(recurrence) == 1 and len(recurrence[0]) == 3:
constantpower = recurrence[0][1]
recurrence = recurrence[0][0]
else:
sol = []
for i in recurrence:
sol.append(self.series(_recur=i))
return sol
n = n - int(constantpower)
l = len(recurrence.u0) - 1
k = recurrence.recurrence.order
x = self.x
x0 = self.x0
seq_dmp = recurrence.recurrence.listofpoly
R = recurrence.recurrence.parent.base
K = R.get_field()
seq = []
for i, j in enumerate(seq_dmp):
seq.append(K.new(j.rep))
sub = [-seq[i] / seq[k] for i in range(k)]
sol = [i for i in recurrence.u0]
if l + 1 >= n:
pass
else:
# use the initial conditions to find the next term
for i in range(l + 1 - k, n - k):
coeff = S(0)
for j in range(k):
if i + j >= 0:
coeff += DMFsubs(sub[j], i) * sol[i + j]
sol.append(coeff)
if coefficient:
return sol
ser = S(0)
for i, j in enumerate(sol):
ser += x**(i + constantpower) * j
if order:
ser += Order(x**(n + int(constantpower)), x)
if x0 != 0:
return ser.subs(x, x - x0)
return ser
def _indicial(self):
"""
Computes roots of the Indicial equation.
"""
if self.x0 != 0:
return self.shift_x(self.x0)._indicial()
list_coeff = self.annihilator.listofpoly
R = self.annihilator.parent.base
x = self.x
s = R.zero
y = R.one
def _pole_degree(poly):
root_all = roots(R.to_sympy(poly), x, filter='Z')
if 0 in root_all.keys():
return root_all[0]
else:
return 0
degree = [j.degree() for j in list_coeff]
degree = max(degree)
inf = 10 * (max(1, degree) + max(1, self.annihilator.order))
deg = lambda q: inf if q.is_zero else _pole_degree(q)
b = deg(list_coeff[0])
for j in range(1, len(list_coeff)):
b = min(b, deg(list_coeff[j]) - j)
for i, j in enumerate(list_coeff):
listofdmp = j.all_coeffs()
degree = len(listofdmp) - 1
if - i - b <= 0 and degree - i - b >= 0:
s = s + listofdmp[degree - i - b] * y
y *= x - i
return roots(R.to_sympy(s), x)
def evalf(self, points, method='RK4', h=0.05, derivatives=False):
r"""
Finds numerical value of a holonomic function using numerical methods.
(RK4 by default). A set of points (real or complex) must be provided
which will be the path for the numerical integration.
The path should be given as a list :math:`[x_1, x_2, ... x_n]`. The numerical
values will be computed at each point in this order
:math:`x_1 --> x_2 --> x_3 ... --> x_n`.
Returns values of the function at :math:`x_1, x_2, ... x_n` in a list.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import ZZ, QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
A straight line on the real axis from (0 to 1)
>>> r = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
Runge-Kutta 4th order on e^x from 0.1 to 1.
Exact solution at 1 is 2.71828182845905
>>> HolonomicFunction(Dx - 1, x, 0, [1]).evalf(r)
[1.10517083333333, 1.22140257085069, 1.34985849706254, 1.49182424008069,
1.64872063859684, 1.82211796209193, 2.01375162659678, 2.22553956329232,
2.45960141378007, 2.71827974413517]
Euler's method for the same
>>> HolonomicFunction(Dx - 1, x, 0, [1]).evalf(r, method='Euler')
[1.1, 1.21, 1.331, 1.4641, 1.61051, 1.771561, 1.9487171, 2.14358881,
2.357947691, 2.5937424601]
One can also observe that the value obtained using Runge-Kutta 4th order
is much more accurate than Euler's method.
"""
from sympy.holonomic.numerical import _evalf
lp = False
# if a point `b` is given instead of a mesh
if not hasattr(points, "__iter__"):
lp = True
b = S(points)
if self.x0 == b:
return _evalf(self, [b], method=method, derivatives=derivatives)[-1]
if not b.is_Number:
raise NotImplementedError
a = self.x0
if a > b:
h = -h
n = int((b - a) / h)
points = [a + h]
for i in range(n - 1):
points.append(points[-1] + h)
for i in roots(self.annihilator.parent.base.to_sympy(self.annihilator.listofpoly[-1]), self.x):
if i == self.x0 or i in points:
raise SingularityError(self, i)
if lp:
return _evalf(self, points, method=method, derivatives=derivatives)[-1]
return _evalf(self, points, method=method, derivatives=derivatives)
def change_x(self, z):
"""
Changes only the variable of Holonomic Function, for internal
purposes. For composition use HolonomicFunction.composition()
"""
dom = self.annihilator.parent.base.dom
R = dom.old_poly_ring(z)
parent, _ = DifferentialOperators(R, 'Dx')
sol = []
for j in self.annihilator.listofpoly:
sol.append(R(j.rep))
sol = DifferentialOperator(sol, parent)
return HolonomicFunction(sol, z, self.x0, self.y0)
def shift_x(self, a):
"""
Substitute `x + a` for `x`.
"""
x = self.x
listaftershift = self.annihilator.listofpoly
base = self.annihilator.parent.base
sol = [base.from_sympy(base.to_sympy(i).subs(x, x + a)) for i in listaftershift]
sol = DifferentialOperator(sol, self.annihilator.parent)
x0 = self.x0 - a
if not self._have_init_cond():
return HolonomicFunction(sol, x)
return HolonomicFunction(sol, x, x0, self.y0)
def to_hyper(self, as_list=False, _recur=None):
r"""
Returns a hypergeometric function (or linear combination of them)
representing the given holonomic function.
Returns an answer of the form:
`a_1 \cdot x^{b_1} \cdot{hyper()} + a_2 \cdot x^{b_2} \cdot{hyper()} ...`
This is very useful as one can now use ``hyperexpand`` to find the
symbolic expressions/functions.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import ZZ, QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
>>> # sin(x)
>>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).to_hyper()
x*hyper((), (3/2,), -x**2/4)
>>> # exp(x)
>>> HolonomicFunction(Dx - 1, x, 0, [1]).to_hyper()
hyper((), (), x)
See Also
========
from_hyper, from_meijerg
"""
if _recur is None:
recurrence = self.to_sequence()
else:
recurrence = _recur
if isinstance(recurrence, tuple) and len(recurrence) == 2:
smallest_n = recurrence[1]
recurrence = recurrence[0]
constantpower = 0
elif isinstance(recurrence, tuple) and len(recurrence) == 3:
smallest_n = recurrence[2]
constantpower = recurrence[1]
recurrence = recurrence[0]
elif len(recurrence) == 1 and len(recurrence[0]) == 2:
smallest_n = recurrence[0][1]
recurrence = recurrence[0][0]
constantpower = 0
elif len(recurrence) == 1 and len(recurrence[0]) == 3:
smallest_n = recurrence[0][2]
constantpower = recurrence[0][1]
recurrence = recurrence[0][0]
else:
sol = self.to_hyper(as_list=as_list, _recur=recurrence[0])
for i in recurrence[1:]:
sol += self.to_hyper(as_list=as_list, _recur=i)
return sol
u0 = recurrence.u0
r = recurrence.recurrence
x = self.x
x0 = self.x0
# order of the recurrence relation
m = r.order
# when no recurrence exists, and the power series have finite terms
if m == 0:
nonzeroterms = roots(r.parent.base.to_sympy(r.listofpoly[0]), recurrence.n, filter='R')
sol = S(0)
for j, i in enumerate(nonzeroterms):
if i < 0 or int(i) != i:
continue
i = int(i)
if i < len(u0):
if isinstance(u0[i], (PolyElement, FracElement)):
u0[i] = u0[i].as_expr()
sol += u0[i] * x**i
else:
sol += Symbol('C_%s' %j) * x**i
if isinstance(sol, (PolyElement, FracElement)):
sol = sol.as_expr() * x**constantpower
else:
sol = sol * x**constantpower
if as_list:
if x0 != 0:
return [(sol.subs(x, x - x0), )]
return [(sol, )]
if x0 != 0:
return sol.subs(x, x - x0)
return sol
if smallest_n + m > len(u0):
raise NotImplementedError("Can't compute sufficient Initial Conditions")
# check if the recurrence represents a hypergeometric series
is_hyper = True
for i in range(1, len(r.listofpoly)-1):
if r.listofpoly[i] != r.parent.base.zero:
is_hyper = False
break
if not is_hyper:
raise NotHyperSeriesError(self, self.x0)
a = r.listofpoly[0]
b = r.listofpoly[-1]
# the constant multiple of argument of hypergeometric function
if isinstance(a.rep[0], (PolyElement, FracElement)):
c = - (S(a.rep[0].as_expr()) * m**(a.degree())) / (S(b.rep[0].as_expr()) * m**(b.degree()))
else:
c = - (S(a.rep[0]) * m**(a.degree())) / (S(b.rep[0]) * m**(b.degree()))
sol = 0
arg1 = roots(r.parent.base.to_sympy(a), recurrence.n)
arg2 = roots(r.parent.base.to_sympy(b), recurrence.n)
# iterate thorugh the initial conditions to find
# the hypergeometric representation of the given
# function.
# The answer will be a linear combination
# of different hypergeometric series which satisfies
# the recurrence.
if as_list:
listofsol = []
for i in range(smallest_n + m):
# if the recurrence relation doesn't hold for `n = i`,
# then a Hypergeometric representation doesn't exist.
# add the algebraic term a * x**i to the solution,
# where a is u0[i]
if i < smallest_n:
if as_list:
listofsol.append(((S(u0[i]) * x**(i+constantpower)).subs(x, x-x0), ))
else:
sol += S(u0[i]) * x**i
continue
# if the coefficient u0[i] is zero, then the
# independent hypergeomtric series starting with
# x**i is not a part of the answer.
if S(u0[i]) == 0:
continue
ap = []
bq = []
# substitute m * n + i for n
for k in ordered(arg1.keys()):
ap.extend([nsimplify((i - k) / m)] * arg1[k])
for k in ordered(arg2.keys()):
bq.extend([nsimplify((i - k) / m)] * arg2[k])
# convention of (k + 1) in the denominator
if 1 in bq:
bq.remove(1)
else:
ap.append(1)
if as_list:
listofsol.append(((S(u0[i])*x**(i+constantpower)).subs(x, x-x0), (hyper(ap, bq, c*x**m)).subs(x, x-x0)))
else:
sol += S(u0[i]) * hyper(ap, bq, c * x**m) * x**i
if as_list:
return listofsol
sol = sol * x**constantpower
if x0 != 0:
return sol.subs(x, x - x0)
return sol
def to_expr(self):
"""
Converts a Holonomic Function back to elementary functions.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import ZZ, QQ
>>> from sympy import symbols, S
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(x**2*Dx**2 + x*Dx + (x**2 - 1), x, 0, [0, S(1)/2]).to_expr()
besselj(1, x)
>>> HolonomicFunction((1 + x)*Dx**3 + Dx**2, x, 0, [1, 1, 1]).to_expr()
x*log(x + 1) + log(x + 1) + 1
"""
return hyperexpand(self.to_hyper()).simplify()
def change_ics(self, b, lenics=None):
"""
Changes the point `x0` to `b` for initial conditions.
Examples
========
>>> from sympy.holonomic import expr_to_holonomic
>>> from sympy import symbols, sin, cos, exp
>>> x = symbols('x')
>>> expr_to_holonomic(sin(x)).change_ics(1)
HolonomicFunction((1) + (1)*Dx**2, x, 1, [sin(1), cos(1)])
>>> expr_to_holonomic(exp(x)).change_ics(2)
HolonomicFunction((-1) + (1)*Dx, x, 2, [exp(2)])
"""
symbolic = True
if lenics is None and len(self.y0) > self.annihilator.order:
lenics = len(self.y0)
dom = self.annihilator.parent.base.domain
try:
sol = expr_to_holonomic(self.to_expr(), x=self.x, x0=b, lenics=lenics, domain=dom)
except (NotPowerSeriesError, NotHyperSeriesError):
symbolic = False
if symbolic and sol.x0 == b:
return sol
y0 = self.evalf(b, derivatives=True)
return HolonomicFunction(self.annihilator, self.x, b, y0)
def to_meijerg(self):
"""
Returns a linear combination of Meijer G-functions.
Examples
========
>>> from sympy.holonomic import expr_to_holonomic
>>> from sympy import sin, cos, hyperexpand, log, symbols
>>> x = symbols('x')
>>> hyperexpand(expr_to_holonomic(cos(x) + sin(x)).to_meijerg())
sin(x) + cos(x)
>>> hyperexpand(expr_to_holonomic(log(x)).to_meijerg()).simplify()
log(x)
See Also
========
to_hyper()
"""
# convert to hypergeometric first
rep = self.to_hyper(as_list=True)
sol = S(0)
for i in rep:
if len(i) == 1:
sol += i[0]
elif len(i) == 2:
sol += i[0] * _hyper_to_meijerg(i[1])
return sol
def from_hyper(func, x0=0, evalf=False):
r"""
Converts a hypergeometric function to holonomic.
``func`` is the Hypergeometric Function and ``x0`` is the point at
which initial conditions are required.
Examples
========
>>> from sympy.holonomic.holonomic import from_hyper, DifferentialOperators
>>> from sympy import symbols, hyper, S
>>> x = symbols('x')
>>> from_hyper(hyper([], [S(3)/2], x**2/4))
HolonomicFunction((-x) + (2)*Dx + (x)*Dx**2, x, 1, [sinh(1), -sinh(1) + cosh(1)])
"""
a = func.ap
b = func.bq
z = func.args[2]
x = z.atoms(Symbol).pop()
R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
# generalized hypergeometric differential equation
r1 = 1
for i in range(len(a)):
r1 = r1 * (x * Dx + a[i])
r2 = Dx
for i in range(len(b)):
r2 = r2 * (x * Dx + b[i] - 1)
sol = r1 - r2
simp = hyperexpand(func)
if isinstance(simp, Infinity) or isinstance(simp, NegativeInfinity):
return HolonomicFunction(sol, x).composition(z)
def _find_conditions(simp, x, x0, order, evalf=False):
y0 = []
for i in range(order):
if evalf:
val = simp.subs(x, x0).evalf()
else:
val = simp.subs(x, x0)
# return None if it is Infinite or NaN
if val.is_finite is False or isinstance(val, NaN):
return None
y0.append(val)
simp = simp.diff(x)
return y0
# if the function is known symbolically
if not isinstance(simp, hyper):
y0 = _find_conditions(simp, x, x0, sol.order)
while not y0:
# if values don't exist at 0, then try to find initial
# conditions at 1. If it doesn't exist at 1 too then
# try 2 and so on.
x0 += 1
y0 = _find_conditions(simp, x, x0, sol.order)
return HolonomicFunction(sol, x).composition(z, x0, y0)
if isinstance(simp, hyper):
x0 = 1
# use evalf if the function can't be simpified
y0 = _find_conditions(simp, x, x0, sol.order, evalf)
while not y0:
x0 += 1
y0 = _find_conditions(simp, x, x0, sol.order, evalf)
return HolonomicFunction(sol, x).composition(z, x0, y0)
return HolonomicFunction(sol, x).composition(z)
def from_meijerg(func, x0=0, evalf=False, initcond=True, domain=QQ):
"""
Converts a Meijer G-function to Holonomic.
``func`` is the G-Function and ``x0`` is the point at
which initial conditions are required.
Examples
========
>>> from sympy.holonomic.holonomic import from_meijerg, DifferentialOperators
>>> from sympy import symbols, meijerg, S
>>> x = symbols('x')
>>> from_meijerg(meijerg(([], []), ([S(1)/2], [0]), x**2/4))
HolonomicFunction((1) + (1)*Dx**2, x, 0, [0, 1/sqrt(pi)])
"""
a = func.ap
b = func.bq
n = len(func.an)
m = len(func.bm)
p = len(a)
z = func.args[2]
x = z.atoms(Symbol).pop()
R, Dx = DifferentialOperators(domain.old_poly_ring(x), 'Dx')
# compute the differential equation satisfied by the
# Meijer G-function.
mnp = (-1)**(m + n - p)
r1 = x * mnp
for i in range(len(a)):
r1 *= x * Dx + 1 - a[i]
r2 = 1
for i in range(len(b)):
r2 *= x * Dx - b[i]
sol = r1 - r2
if not initcond:
return HolonomicFunction(sol, x).composition(z)
simp = hyperexpand(func)
if isinstance(simp, Infinity) or isinstance(simp, NegativeInfinity):
return HolonomicFunction(sol, x).composition(z)
def _find_conditions(simp, x, x0, order, evalf=False):
y0 = []
for i in range(order):
if evalf:
val = simp.subs(x, x0).evalf()
else:
val = simp.subs(x, x0)
if val.is_finite is False or isinstance(val, NaN):
return None
y0.append(val)
simp = simp.diff(x)
return y0
# computing initial conditions
if not isinstance(simp, meijerg):
y0 = _find_conditions(simp, x, x0, sol.order)
while not y0:
x0 += 1
y0 = _find_conditions(simp, x, x0, sol.order)
return HolonomicFunction(sol, x).composition(z, x0, y0)
if isinstance(simp, meijerg):
x0 = 1
y0 = _find_conditions(simp, x, x0, sol.order, evalf)
while not y0:
x0 += 1
y0 = _find_conditions(simp, x, x0, sol.order, evalf)
return HolonomicFunction(sol, x).composition(z, x0, y0)
return HolonomicFunction(sol, x).composition(z)
x_1 = Dummy('x_1')
_lookup_table = None
domain_for_table = None
from sympy.integrals.meijerint import _mytype
def expr_to_holonomic(func, x=None, x0=0, y0=None, lenics=None, domain=None, initcond=True):
"""
Converts a function or an expression to a holonomic function.
Parameters
==========
func:
The expression to be converted.
x:
variable for the function.
x0:
point at which initial condition must be computed.
y0:
One can optionally provide initial condition if the method
isn't able to do it automatically.
lenics:
Number of terms in the initial condition. By default it is
equal to the order of the annihilator.
domain:
Ground domain for the polynomials in `x` appearing as coefficients
in the annihilator.
initcond:
Set it false if you don't want the initial conditions to be computed.
Examples
========
>>> from sympy.holonomic.holonomic import expr_to_holonomic
>>> from sympy import sin, exp, symbols
>>> x = symbols('x')
>>> expr_to_holonomic(sin(x))
HolonomicFunction((1) + (1)*Dx**2, x, 0, [0, 1])
>>> expr_to_holonomic(exp(x))
HolonomicFunction((-1) + (1)*Dx, x, 0, [1])
See Also
========
meijerint._rewrite1, _convert_poly_rat_alg, _create_table
"""
func = sympify(func)
syms = func.free_symbols
if not x:
if len(syms) == 1:
x= syms.pop()
else:
raise ValueError("Specify the variable for the function")
elif x in syms:
syms.remove(x)
extra_syms = list(syms)
if domain is None:
if func.has(Float):
domain = RR
else:
domain = QQ
if len(extra_syms) != 0:
domain = domain[extra_syms].get_field()
# try to convert if the function is polynomial or rational
solpoly = _convert_poly_rat_alg(func, x, x0=x0, y0=y0, lenics=lenics, domain=domain, initcond=initcond)
if solpoly:
return solpoly
# create the lookup table
global _lookup_table, domain_for_table
if not _lookup_table:
domain_for_table = domain
_lookup_table = {}
_create_table(_lookup_table, domain=domain)
elif domain != domain_for_table:
domain_for_table = domain
_lookup_table = {}
_create_table(_lookup_table, domain=domain)
# use the table directly to convert to Holonomic
if func.is_Function:
f = func.subs(x, x_1)
t = _mytype(f, x_1)
if t in _lookup_table:
l = _lookup_table[t]
sol = l[0][1].change_x(x)
else:
sol = _convert_meijerint(func, x, initcond=False, domain=domain)
if not sol:
raise NotImplementedError
if y0:
sol.y0 = y0
if y0 or not initcond:
sol.x0 = x0
return sol
if not lenics:
lenics = sol.annihilator.order
_y0 = _find_conditions(func, x, x0, lenics)
while not _y0:
x0 += 1
_y0 = _find_conditions(func, x, x0, lenics)
return HolonomicFunction(sol.annihilator, x, x0, _y0)
if y0 or not initcond:
sol = sol.composition(func.args[0])
if y0:
sol.y0 = y0
sol.x0 = x0
return sol
if not lenics:
lenics = sol.annihilator.order
_y0 = _find_conditions(func, x, x0, lenics)
while not _y0:
x0 += 1
_y0 = _find_conditions(func, x, x0, lenics)
return sol.composition(func.args[0], x0, _y0)
# iterate through the expression recursively
args = func.args
f = func.func
from sympy.core import Add, Mul, Pow
sol = expr_to_holonomic(args[0], x=x, initcond=False, domain=domain)
if f is Add:
for i in range(1, len(args)):
sol += expr_to_holonomic(args[i], x=x, initcond=False, domain=domain)
elif f is Mul:
for i in range(1, len(args)):
sol *= expr_to_holonomic(args[i], x=x, initcond=False, domain=domain)
elif f is Pow:
sol = sol**args[1]
sol.x0 = x0
if not sol:
raise NotImplementedError
if y0:
sol.y0 = y0
if y0 or not initcond:
return sol
if sol.y0:
return sol
if not lenics:
lenics = sol.annihilator.order
if sol.annihilator.is_singular(x0):
r = sol._indicial()
l = list(r)
if len(r) == 1 and r[l[0]] == S(1):
r = l[0]
g = func / (x - x0)**r
singular_ics = _find_conditions(g, x, x0, lenics)
singular_ics = [j / factorial(i) for i, j in enumerate(singular_ics)]
y0 = {r:singular_ics}
return HolonomicFunction(sol.annihilator, x, x0, y0)
_y0 = _find_conditions(func, x, x0, lenics)
while not _y0:
x0 += 1
_y0 = _find_conditions(func, x, x0, lenics)
return HolonomicFunction(sol.annihilator, x, x0, _y0)
## Some helper functions ##
def _normalize(list_of, parent, negative=True):
"""
Normalize a given annihilator
"""
num = []
denom = []
base = parent.base
K = base.get_field()
lcm_denom = base.from_sympy(S(1))
list_of_coeff = []
# convert polynomials to the elements of associated
# fraction field
for i, j in enumerate(list_of):
if isinstance(j, base.dtype):
list_of_coeff.append(K.new(j.rep))
elif not isinstance(j, K.dtype):
list_of_coeff.append(K.from_sympy(sympify(j)))
else:
list_of_coeff.append(j)
# corresponding numerators of the sequence of polynomials
num.append(list_of_coeff[i].numer())
# corresponding denominators
denom.append(list_of_coeff[i].denom())
# lcm of denominators in the coefficients
for i in denom:
lcm_denom = i.lcm(lcm_denom)
if negative:
lcm_denom = -lcm_denom
lcm_denom = K.new(lcm_denom.rep)
# multiply the coefficients with lcm
for i, j in enumerate(list_of_coeff):
list_of_coeff[i] = j * lcm_denom
gcd_numer = base((list_of_coeff[-1].numer() / list_of_coeff[-1].denom()).rep)
# gcd of numerators in the coefficients
for i in num:
gcd_numer = i.gcd(gcd_numer)
gcd_numer = K.new(gcd_numer.rep)
# divide all the coefficients by the gcd
for i, j in enumerate(list_of_coeff):
frac_ans = j / gcd_numer
list_of_coeff[i] = base((frac_ans.numer() / frac_ans.denom()).rep)
return DifferentialOperator(list_of_coeff, parent)
def _derivate_diff_eq(listofpoly):
"""
Let a differential equation a0(x)y(x) + a1(x)y'(x) + ... = 0
where a0, a1,... are polynomials or rational functions. The function
returns b0, b1, b2... such that the differential equation
b0(x)y(x) + b1(x)y'(x) +... = 0 is formed after differentiating the
former equation.
"""
sol = []
a = len(listofpoly) - 1
sol.append(DMFdiff(listofpoly[0]))
for i, j in enumerate(listofpoly[1:]):
sol.append(DMFdiff(j) + listofpoly[i])
sol.append(listofpoly[a])
return sol
def _hyper_to_meijerg(func):
"""
Converts a `hyper` to meijerg.
"""
ap = func.ap
bq = func.bq
ispoly = any(i <= 0 and int(i) == i for i in ap)
if ispoly:
return hyperexpand(func)
z = func.args[2]
# parameters of the `meijerg` function.
an = (1 - i for i in ap)
anp = ()
bm = (S(0), )
bmq = (1 - i for i in bq)
k = S(1)
for i in bq:
k = k * gamma(i)
for i in ap:
k = k / gamma(i)
return k * meijerg(an, anp, bm, bmq, -z)
def _add_lists(list1, list2):
"""Takes polynomial sequences of two annihilators a and b and returns
the list of polynomials of sum of a and b.
"""
if len(list1) <= len(list2):
sol = [a + b for a, b in zip(list1, list2)] + list2[len(list1):]
else:
sol = [a + b for a, b in zip(list1, list2)] + list1[len(list2):]
return sol
def _extend_y0(Holonomic, n):
"""
Tries to find more initial conditions by substituting the initial
value point in the differential equation.
"""
if Holonomic.annihilator.is_singular(Holonomic.x0) or Holonomic.is_singularics() == True:
return Holonomic.y0
annihilator = Holonomic.annihilator
a = annihilator.order
listofpoly = []
y0 = Holonomic.y0
R = annihilator.parent.base
K = R.get_field()
for i, j in enumerate(annihilator.listofpoly):
if isinstance(j, annihilator.parent.base.dtype):
listofpoly.append(K.new(j.rep))
if len(y0) < a or n <= len(y0):
return y0
else:
list_red = [-listofpoly[i] / listofpoly[a]
for i in range(a)]
if len(y0) > a:
y1 = [y0[i] for i in range(a)]
else:
y1 = [i for i in y0]
for i in range(n - a):
sol = 0
for a, b in zip(y1, list_red):
r = DMFsubs(b, Holonomic.x0)
if not getattr(r, 'is_finite', True):
return y0
if isinstance(r, (PolyElement, FracElement)):
r = r.as_expr()
sol += a * r
y1.append(sol)
list_red = _derivate_diff_eq(list_red)
return y0 + y1[len(y0):]
def DMFdiff(frac):
# differentiate a DMF object represented as p/q
if not isinstance(frac, DMF):
return frac.diff()
K = frac.ring
p = K.numer(frac)
q = K.denom(frac)
sol_num = - p * q.diff() + q * p.diff()
sol_denom = q**2
return K((sol_num.rep, sol_denom.rep))
def DMFsubs(frac, x0, mpm=False):
# substitute the point x0 in DMF object of the form p/q
if not isinstance(frac, DMF):
return frac
p = frac.num
q = frac.den
sol_p = S(0)
sol_q = S(0)
if mpm:
from mpmath import mp
for i, j in enumerate(reversed(p)):
if mpm:
j = sympify(j)._to_mpmath(mp.prec)
sol_p += j * x0**i
for i, j in enumerate(reversed(q)):
if mpm:
j = sympify(j)._to_mpmath(mp.prec)
sol_q += j * x0**i
if isinstance(sol_p, (PolyElement, FracElement)):
sol_p = sol_p.as_expr()
if isinstance(sol_q, (PolyElement, FracElement)):
sol_q = sol_q.as_expr()
return sol_p / sol_q
def _convert_poly_rat_alg(func, x, x0=0, y0=None, lenics=None, domain=QQ, initcond=True):
"""
Converts polynomials, rationals and algebraic functions to holonomic.
"""
ispoly = func.is_polynomial()
if not ispoly:
israt = func.is_rational_function()
else:
israt = True
if not (ispoly or israt):
basepoly, ratexp = func.as_base_exp()
if basepoly.is_polynomial() and ratexp.is_Number:
if isinstance(ratexp, Float):
ratexp = nsimplify(ratexp)
m, n = ratexp.p, ratexp.q
is_alg = True
else:
is_alg = False
else:
is_alg = True
if not (ispoly or israt or is_alg):
return None
R = domain.old_poly_ring(x)
_, Dx = DifferentialOperators(R, 'Dx')
# if the function is constant
if not func.has(x):
return HolonomicFunction(Dx, x, 0, [func])
if ispoly:
# differential equation satisfied by polynomial
sol = func * Dx - func.diff(x)
sol = _normalize(sol.listofpoly, sol.parent, negative=False)
is_singular = sol.is_singular(x0)
# try to compute the conditions for singular points
if y0 is None and x0 == 0 and is_singular:
rep = R.from_sympy(func).rep
for i, j in enumerate(reversed(rep)):
if j == 0:
continue
else:
coeff = list(reversed(rep))[i:]
indicial = i
break
for i, j in enumerate(coeff):
if isinstance(j, (PolyElement, FracElement)):
coeff[i] = j.as_expr()
y0 = {indicial: S(coeff)}
elif israt:
p, q = func.as_numer_denom()
# differential equation satisfied by rational
sol = p * q * Dx + p * q.diff(x) - q * p.diff(x)
sol = _normalize(sol.listofpoly, sol.parent, negative=False)
elif is_alg:
sol = n * (x / m) * Dx - 1
sol = HolonomicFunction(sol, x).composition(basepoly).annihilator
is_singular = sol.is_singular(x0)
# try to compute the conditions for singular points
if y0 is None and x0 == 0 and is_singular and \
(lenics is None or lenics <= 1):
rep = R.from_sympy(basepoly).rep
for i, j in enumerate(reversed(rep)):
if j == 0:
continue
if isinstance(j, (PolyElement, FracElement)):
j = j.as_expr()
coeff = S(j)**ratexp
indicial = S(i) * ratexp
break
if isinstance(coeff, (PolyElement, FracElement)):
coeff = coeff.as_expr()
y0 = {indicial: S([coeff])}
if y0 or not initcond:
return HolonomicFunction(sol, x, x0, y0)
if not lenics:
lenics = sol.order
if sol.is_singular(x0):
r = HolonomicFunction(sol, x, x0)._indicial()
l = list(r)
if len(r) == 1 and r[l[0]] == S(1):
r = l[0]
g = func / (x - x0)**r
singular_ics = _find_conditions(g, x, x0, lenics)
singular_ics = [j / factorial(i) for i, j in enumerate(singular_ics)]
y0 = {r:singular_ics}
return HolonomicFunction(sol, x, x0, y0)
y0 = _find_conditions(func, x, x0, lenics)
while not y0:
x0 += 1
y0 = _find_conditions(func, x, x0, lenics)
return HolonomicFunction(sol, x, x0, y0)
def _convert_meijerint(func, x, initcond=True, domain=QQ):
args = meijerint._rewrite1(func, x)
if args:
fac, po, g, _ = args
else:
return None
# lists for sum of meijerg functions
fac_list = [fac * i[0] for i in g]
t = po.as_base_exp()
s = t[1] if t[0] is x else S(0)
po_list = [s + i[1] for i in g]
G_list = [i[2] for i in g]
# finds meijerg representation of x**s * meijerg(a1 ... ap, b1 ... bq, z)
def _shift(func, s):
z = func.args[-1]
if z.has(I):
z = z.subs(exp_polar, exp)
d = z.collect(x, evaluate=False)
b = list(d)[0]
a = d[b]
t = b.as_base_exp()
b = t[1] if t[0] is x else S(0)
r = s / b
an = (i + r for i in func.args[0][0])
ap = (i + r for i in func.args[0][1])
bm = (i + r for i in func.args[1][0])
bq = (i + r for i in func.args[1][1])
return a**-r, meijerg((an, ap), (bm, bq), z)
coeff, m = _shift(G_list[0], po_list[0])
sol = fac_list[0] * coeff * from_meijerg(m, initcond=initcond, domain=domain)
# add all the meijerg functions after converting to holonomic
for i in range(1, len(G_list)):
coeff, m = _shift(G_list[i], po_list[i])
sol += fac_list[i] * coeff * from_meijerg(m, initcond=initcond, domain=domain)
return sol
def _create_table(table, domain=QQ):
"""
Creates the look-up table. For a similar implementation
see meijerint._create_lookup_table.
"""
def add(formula, annihilator, arg, x0=0, y0=[]):
"""
Adds a formula in the dictionary
"""
table.setdefault(_mytype(formula, x_1), []).append((formula,
HolonomicFunction(annihilator, arg, x0, y0)))
R = domain.old_poly_ring(x_1)
_, Dx = DifferentialOperators(R, 'Dx')
from sympy import (sin, cos, exp, log, erf, sqrt, pi,
sinh, cosh, sinc, erfc, Si, Ci, Shi, erfi)
# add some basic functions
add(sin(x_1), Dx**2 + 1, x_1, 0, [0, 1])
add(cos(x_1), Dx**2 + 1, x_1, 0, [1, 0])
add(exp(x_1), Dx - 1, x_1, 0, 1)
add(log(x_1), Dx + x_1*Dx**2, x_1, 1, [0, 1])
add(erf(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)])
add(erfc(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [1, -2/sqrt(pi)])
add(erfi(x_1), -2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)])
add(sinh(x_1), Dx**2 - 1, x_1, 0, [0, 1])
add(cosh(x_1), Dx**2 - 1, x_1, 0, [1, 0])
add(sinc(x_1), x_1 + 2*Dx + x_1*Dx**2, x_1)
add(Si(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1)
add(Ci(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1)
add(Shi(x_1), -x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1)
def _find_conditions(func, x, x0, order):
y0 = []
for i in range(order):
val = func.subs(x, x0)
if isinstance(val, NaN):
val = limit(func, x, x0)
if val.is_finite is False or isinstance(val, NaN):
return None
y0.append(val)
func = func.diff(x)
return y0
|
dc977cd440c1f4364a357835f45c5c59bf6c862f208683d3605325d55f3e57e7
|
from __future__ import print_function, division
from sympy.core import S, pi, Rational
from sympy.functions import assoc_laguerre, sqrt, exp, factorial, factorial2
def R_nl(n, l, nu, r):
"""
Returns the radial wavefunction R_{nl} for a 3d isotropic harmonic
oscillator.
``n``
the "nodal" quantum number. Corresponds to the number of nodes in
the wavefunction. n >= 0
``l``
the quantum number for orbital angular momentum
``nu``
mass-scaled frequency: nu = m*omega/(2*hbar) where `m` is the mass
and `omega` the frequency of the oscillator.
(in atomic units nu == omega/2)
``r``
Radial coordinate
Examples
========
>>> from sympy.physics.sho import R_nl
>>> from sympy import var
>>> var("r nu l")
(r, nu, l)
>>> R_nl(0, 0, 1, r)
2*2**(3/4)*exp(-r**2)/pi**(1/4)
>>> R_nl(1, 0, 1, r)
4*2**(1/4)*sqrt(3)*(3/2 - 2*r**2)*exp(-r**2)/(3*pi**(1/4))
l, nu and r may be symbolic:
>>> R_nl(0, 0, nu, r)
2*2**(3/4)*sqrt(nu**(3/2))*exp(-nu*r**2)/pi**(1/4)
>>> R_nl(0, l, 1, r)
r**l*sqrt(2**(l + 3/2)*2**(l + 2)/factorial2(2*l + 1))*exp(-r**2)/pi**(1/4)
The normalization of the radial wavefunction is:
>>> from sympy import Integral, oo
>>> Integral(R_nl(0, 0, 1, r)**2 * r**2, (r, 0, oo)).n()
1.00000000000000
>>> Integral(R_nl(1, 0, 1, r)**2 * r**2, (r, 0, oo)).n()
1.00000000000000
>>> Integral(R_nl(1, 1, 1, r)**2 * r**2, (r, 0, oo)).n()
1.00000000000000
"""
n, l, nu, r = map(S, [n, l, nu, r])
# formula uses n >= 1 (instead of nodal n >= 0)
n = n + 1
C = sqrt(
((2*nu)**(l + Rational(3, 2))*2**(n + l + 1)*factorial(n - 1))/
(sqrt(pi)*(factorial2(2*n + 2*l - 1)))
)
return C*r**(l)*exp(-nu*r**2)*assoc_laguerre(n - 1, l + S(1)/2, 2*nu*r**2)
def E_nl(n, l, hw):
"""
Returns the Energy of an isotropic harmonic oscillator
``n``
the "nodal" quantum number
``l``
the orbital angular momentum
``hw``
the harmonic oscillator parameter.
The unit of the returned value matches the unit of hw, since the energy is
calculated as:
E_nl = (2*n + l + 3/2)*hw
Examples
========
>>> from sympy.physics.sho import E_nl
>>> from sympy import symbols
>>> x, y, z = symbols('x, y, z')
>>> E_nl(x, y, z)
z*(2*x + y + 3/2)
"""
return (2*n + l + Rational(3, 2))*hw
|
ecaccdbf63a228df01659742727766f63956de8ee7af97abe65acd6783019c1f
|
from __future__ import print_function, division
from sympy import factorial, sqrt, exp, S, assoc_laguerre, Float
from sympy.functions.special.spherical_harmonics import Ynm
def R_nl(n, l, r, Z=1):
"""
Returns the Hydrogen radial wavefunction R_{nl}.
n, l
quantum numbers 'n' and 'l'
r
radial coordinate
Z
atomic number (1 for Hydrogen, 2 for Helium, ...)
Everything is in Hartree atomic units.
Examples
========
>>> from sympy.physics.hydrogen import R_nl
>>> from sympy import var
>>> var("r Z")
(r, Z)
>>> R_nl(1, 0, r, Z)
2*sqrt(Z**3)*exp(-Z*r)
>>> R_nl(2, 0, r, Z)
sqrt(2)*(-Z*r + 2)*sqrt(Z**3)*exp(-Z*r/2)/4
>>> R_nl(2, 1, r, Z)
sqrt(6)*Z*r*sqrt(Z**3)*exp(-Z*r/2)/12
For Hydrogen atom, you can just use the default value of Z=1:
>>> R_nl(1, 0, r)
2*exp(-r)
>>> R_nl(2, 0, r)
sqrt(2)*(2 - r)*exp(-r/2)/4
>>> R_nl(3, 0, r)
2*sqrt(3)*(2*r**2/9 - 2*r + 3)*exp(-r/3)/27
For Silver atom, you would use Z=47:
>>> R_nl(1, 0, r, Z=47)
94*sqrt(47)*exp(-47*r)
>>> R_nl(2, 0, r, Z=47)
47*sqrt(94)*(2 - 47*r)*exp(-47*r/2)/4
>>> R_nl(3, 0, r, Z=47)
94*sqrt(141)*(4418*r**2/9 - 94*r + 3)*exp(-47*r/3)/27
The normalization of the radial wavefunction is:
>>> from sympy import integrate, oo
>>> integrate(R_nl(1, 0, r)**2 * r**2, (r, 0, oo))
1
>>> integrate(R_nl(2, 0, r)**2 * r**2, (r, 0, oo))
1
>>> integrate(R_nl(2, 1, r)**2 * r**2, (r, 0, oo))
1
It holds for any atomic number:
>>> integrate(R_nl(1, 0, r, Z=2)**2 * r**2, (r, 0, oo))
1
>>> integrate(R_nl(2, 0, r, Z=3)**2 * r**2, (r, 0, oo))
1
>>> integrate(R_nl(2, 1, r, Z=4)**2 * r**2, (r, 0, oo))
1
"""
# sympify arguments
n, l, r, Z = S(n), S(l), S(r), S(Z)
# radial quantum number
n_r = n - l - 1
# rescaled "r"
a = 1/Z # Bohr radius
r0 = 2 * r / (n * a)
# normalization coefficient
C = sqrt((S(2)/(n*a))**3 * factorial(n_r) / (2*n*factorial(n + l)))
# This is an equivalent normalization coefficient, that can be found in
# some books. Both coefficients seem to be the same fast:
# C = S(2)/n**2 * sqrt(1/a**3 * factorial(n_r) / (factorial(n+l)))
return C * r0**l * assoc_laguerre(n_r, 2*l + 1, r0).expand() * exp(-r0/2)
def Psi_nlm(n, l, m, r, phi, theta, Z=1):
"""
Returns the Hydrogen wave function psi_{nlm}. It's the product of
the radial wavefunction R_{nl} and the spherical harmonic Y_{l}^{m}.
n, l, m
quantum numbers 'n', 'l' and 'm'
r
radial coordinate
phi
azimuthal angle
theta
polar angle
Z
atomic number (1 for Hydrogen, 2 for Helium, ...)
Everything is in Hartree atomic units.
Examples
========
>>> from sympy.physics.hydrogen import Psi_nlm
>>> from sympy import Symbol
>>> r=Symbol("r", real=True, positive=True)
>>> phi=Symbol("phi", real=True)
>>> theta=Symbol("theta", real=True)
>>> Z=Symbol("Z", positive=True, integer=True, nonzero=True)
>>> Psi_nlm(1,0,0,r,phi,theta,Z)
Z**(3/2)*exp(-Z*r)/sqrt(pi)
>>> Psi_nlm(2,1,1,r,phi,theta,Z)
-Z**(5/2)*r*exp(I*phi)*exp(-Z*r/2)*sin(theta)/(8*sqrt(pi))
Integrating the absolute square of a hydrogen wavefunction psi_{nlm}
over the whole space leads 1.
The normalization of the hydrogen wavefunctions Psi_nlm is:
>>> from sympy import integrate, conjugate, pi, oo, sin
>>> wf=Psi_nlm(2,1,1,r,phi,theta,Z)
>>> abs_sqrd=wf*conjugate(wf)
>>> jacobi=r**2*sin(theta)
>>> integrate(abs_sqrd*jacobi, (r,0,oo), (phi,0,2*pi), (theta,0,pi))
1
"""
# sympify arguments
n, l, m, r, phi, theta, Z = S(n), S(l), S(m), S(r), S(phi), S(theta), S(Z)
# check if values for n,l,m make physically sense
if n.is_integer and n<1:
raise ValueError("'n' must be positive integer")
if l.is_integer and not (n > l):
raise ValueError("'n' must be greater than 'l'")
if m.is_integer and not (abs(m)<=l):
raise ValueError("|'m'| must be less or equal 'l'")
# return the hydrogen wave function
return R_nl(n, l, r, Z)*Ynm(l,m,theta,phi).expand(func=True)
def E_nl(n, Z=1):
"""
Returns the energy of the state (n, l) in Hartree atomic units.
The energy doesn't depend on "l".
Examples
========
>>> from sympy import var
>>> from sympy.physics.hydrogen import E_nl
>>> var("n Z")
(n, Z)
>>> E_nl(n, Z)
-Z**2/(2*n**2)
>>> E_nl(1)
-1/2
>>> E_nl(2)
-1/8
>>> E_nl(3)
-1/18
>>> E_nl(3, 47)
-2209/18
"""
n, Z = S(n), S(Z)
if n.is_integer and (n < 1):
raise ValueError("'n' must be positive integer")
return -Z**2/(2*n**2)
def E_nl_dirac(n, l, spin_up=True, Z=1, c=Float("137.035999037")):
"""
Returns the relativistic energy of the state (n, l, spin) in Hartree atomic
units.
The energy is calculated from the Dirac equation. The rest mass energy is
*not* included.
n, l
quantum numbers 'n' and 'l'
spin_up
True if the electron spin is up (default), otherwise down
Z
atomic number (1 for Hydrogen, 2 for Helium, ...)
c
speed of light in atomic units. Default value is 137.035999037,
taken from: http://arxiv.org/abs/1012.3627
Examples
========
>>> from sympy.physics.hydrogen import E_nl_dirac
>>> E_nl_dirac(1, 0)
-0.500006656595360
>>> E_nl_dirac(2, 0)
-0.125002080189006
>>> E_nl_dirac(2, 1)
-0.125000416028342
>>> E_nl_dirac(2, 1, False)
-0.125002080189006
>>> E_nl_dirac(3, 0)
-0.0555562951740285
>>> E_nl_dirac(3, 1)
-0.0555558020932949
>>> E_nl_dirac(3, 1, False)
-0.0555562951740285
>>> E_nl_dirac(3, 2)
-0.0555556377366884
>>> E_nl_dirac(3, 2, False)
-0.0555558020932949
"""
if not (l >= 0):
raise ValueError("'l' must be positive or zero")
if not (n > l):
raise ValueError("'n' must be greater than 'l'")
if (l == 0 and spin_up is False):
raise ValueError("Spin must be up for l==0.")
# skappa is sign*kappa, where sign contains the correct sign
if spin_up:
skappa = -l - 1
else:
skappa = -l
c = S(c)
beta = sqrt(skappa**2 - Z**2/c**2)
return c**2/sqrt(1 + Z**2/(n + skappa + beta)**2/c**2) - c**2
|
b28b56661e8700c1d6cd90f97f51f18b36a8175f6d11cadba940a6af985d4258
|
"""
Second quantization operators and states for bosons.
This follow the formulation of Fetter and Welecka, "Quantum Theory
of Many-Particle Systems."
"""
from __future__ import print_function, division
from collections import defaultdict
from sympy import (Add, Basic, cacheit, Dummy, Expr, Function, I,
KroneckerDelta, Mul, Pow, S, sqrt, Symbol, sympify, Tuple,
zeros)
from sympy.printing.str import StrPrinter
from sympy.core.compatibility import range
from sympy.utilities.iterables import has_dups
from sympy.utilities import default_sort_key
__all__ = [
'Dagger',
'KroneckerDelta',
'BosonicOperator',
'AnnihilateBoson',
'CreateBoson',
'AnnihilateFermion',
'CreateFermion',
'FockState',
'FockStateBra',
'FockStateKet',
'FockStateBosonKet',
'FockStateBosonBra',
'BBra',
'BKet',
'FBra',
'FKet',
'F',
'Fd',
'B',
'Bd',
'apply_operators',
'InnerProduct',
'BosonicBasis',
'VarBosonicBasis',
'FixedBosonicBasis',
'Commutator',
'matrix_rep',
'contraction',
'wicks',
'NO',
'evaluate_deltas',
'AntiSymmetricTensor',
'substitute_dummies',
'PermutationOperator',
'simplify_index_permutations',
]
class SecondQuantizationError(Exception):
pass
class AppliesOnlyToSymbolicIndex(SecondQuantizationError):
pass
class ContractionAppliesOnlyToFermions(SecondQuantizationError):
pass
class ViolationOfPauliPrinciple(SecondQuantizationError):
pass
class SubstitutionOfAmbigousOperatorFailed(SecondQuantizationError):
pass
class WicksTheoremDoesNotApply(SecondQuantizationError):
pass
class Dagger(Expr):
"""
Hermitian conjugate of creation/annihilation operators.
Examples
========
>>> from sympy import I
>>> from sympy.physics.secondquant import Dagger, B, Bd
>>> Dagger(2*I)
-2*I
>>> Dagger(B(0))
CreateBoson(0)
>>> Dagger(Bd(0))
AnnihilateBoson(0)
"""
def __new__(cls, arg):
arg = sympify(arg)
r = cls.eval(arg)
if isinstance(r, Basic):
return r
obj = Basic.__new__(cls, arg)
return obj
@classmethod
def eval(cls, arg):
"""
Evaluates the Dagger instance.
Examples
========
>>> from sympy import I
>>> from sympy.physics.secondquant import Dagger, B, Bd
>>> Dagger(2*I)
-2*I
>>> Dagger(B(0))
CreateBoson(0)
>>> Dagger(Bd(0))
AnnihilateBoson(0)
The eval() method is called automatically.
"""
dagger = getattr(arg, '_dagger_', None)
if dagger is not None:
return dagger()
if isinstance(arg, Basic):
if arg.is_Add:
return Add(*tuple(map(Dagger, arg.args)))
if arg.is_Mul:
return Mul(*tuple(map(Dagger, reversed(arg.args))))
if arg.is_Number:
return arg
if arg.is_Pow:
return Pow(Dagger(arg.args[0]), arg.args[1])
if arg == I:
return -arg
else:
return None
def _dagger_(self):
return self.args[0]
class TensorSymbol(Expr):
is_commutative = True
class AntiSymmetricTensor(TensorSymbol):
"""Stores upper and lower indices in separate Tuple's.
Each group of indices is assumed to be antisymmetric.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import AntiSymmetricTensor
>>> i, j = symbols('i j', below_fermi=True)
>>> a, b = symbols('a b', above_fermi=True)
>>> AntiSymmetricTensor('v', (a, i), (b, j))
AntiSymmetricTensor(v, (a, i), (b, j))
>>> AntiSymmetricTensor('v', (i, a), (b, j))
-AntiSymmetricTensor(v, (a, i), (b, j))
As you can see, the indices are automatically sorted to a canonical form.
"""
def __new__(cls, symbol, upper, lower):
try:
upper, signu = _sort_anticommuting_fermions(
upper, key=cls._sortkey)
lower, signl = _sort_anticommuting_fermions(
lower, key=cls._sortkey)
except ViolationOfPauliPrinciple:
return S.Zero
symbol = sympify(symbol)
upper = Tuple(*upper)
lower = Tuple(*lower)
if (signu + signl) % 2:
return -TensorSymbol.__new__(cls, symbol, upper, lower)
else:
return TensorSymbol.__new__(cls, symbol, upper, lower)
@classmethod
def _sortkey(cls, index):
"""Key for sorting of indices.
particle < hole < general
FIXME: This is a bottle-neck, can we do it faster?
"""
h = hash(index)
label = str(index)
if isinstance(index, Dummy):
if index.assumptions0.get('above_fermi'):
return (20, label, h)
elif index.assumptions0.get('below_fermi'):
return (21, label, h)
else:
return (22, label, h)
if index.assumptions0.get('above_fermi'):
return (10, label, h)
elif index.assumptions0.get('below_fermi'):
return (11, label, h)
else:
return (12, label, h)
def _latex(self, printer):
return "%s^{%s}_{%s}" % (
self.symbol,
"".join([ i.name for i in self.args[1]]),
"".join([ i.name for i in self.args[2]])
)
@property
def symbol(self):
"""
Returns the symbol of the tensor.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import AntiSymmetricTensor
>>> i, j = symbols('i,j', below_fermi=True)
>>> a, b = symbols('a,b', above_fermi=True)
>>> AntiSymmetricTensor('v', (a, i), (b, j))
AntiSymmetricTensor(v, (a, i), (b, j))
>>> AntiSymmetricTensor('v', (a, i), (b, j)).symbol
v
"""
return self.args[0]
@property
def upper(self):
"""
Returns the upper indices.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import AntiSymmetricTensor
>>> i, j = symbols('i,j', below_fermi=True)
>>> a, b = symbols('a,b', above_fermi=True)
>>> AntiSymmetricTensor('v', (a, i), (b, j))
AntiSymmetricTensor(v, (a, i), (b, j))
>>> AntiSymmetricTensor('v', (a, i), (b, j)).upper
(a, i)
"""
return self.args[1]
@property
def lower(self):
"""
Returns the lower indices.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import AntiSymmetricTensor
>>> i, j = symbols('i,j', below_fermi=True)
>>> a, b = symbols('a,b', above_fermi=True)
>>> AntiSymmetricTensor('v', (a, i), (b, j))
AntiSymmetricTensor(v, (a, i), (b, j))
>>> AntiSymmetricTensor('v', (a, i), (b, j)).lower
(b, j)
"""
return self.args[2]
def __str__(self):
return "%s(%s,%s)" % self.args
def doit(self, **kw_args):
"""
Returns self.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import AntiSymmetricTensor
>>> i, j = symbols('i,j', below_fermi=True)
>>> a, b = symbols('a,b', above_fermi=True)
>>> AntiSymmetricTensor('v', (a, i), (b, j)).doit()
AntiSymmetricTensor(v, (a, i), (b, j))
"""
return self
class SqOperator(Expr):
"""
Base class for Second Quantization operators.
"""
op_symbol = 'sq'
is_commutative = False
def __new__(cls, k):
obj = Basic.__new__(cls, sympify(k))
return obj
@property
def state(self):
"""
Returns the state index related to this operator.
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F, Fd, B, Bd
>>> p = Symbol('p')
>>> F(p).state
p
>>> Fd(p).state
p
>>> B(p).state
p
>>> Bd(p).state
p
"""
return self.args[0]
@property
def is_symbolic(self):
"""
Returns True if the state is a symbol (as opposed to a number).
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> p = Symbol('p')
>>> F(p).is_symbolic
True
>>> F(1).is_symbolic
False
"""
if self.state.is_Integer:
return False
else:
return True
def doit(self, **kw_args):
"""
FIXME: hack to prevent crash further up...
"""
return self
def __repr__(self):
return NotImplemented
def __str__(self):
return "%s(%r)" % (self.op_symbol, self.state)
def apply_operator(self, state):
"""
Applies an operator to itself.
"""
raise NotImplementedError('implement apply_operator in a subclass')
class BosonicOperator(SqOperator):
pass
class Annihilator(SqOperator):
pass
class Creator(SqOperator):
pass
class AnnihilateBoson(BosonicOperator, Annihilator):
"""
Bosonic annihilation operator.
Examples
========
>>> from sympy.physics.secondquant import B
>>> from sympy.abc import x
>>> B(x)
AnnihilateBoson(x)
"""
op_symbol = 'b'
def _dagger_(self):
return CreateBoson(self.state)
def apply_operator(self, state):
"""
Apply state to self if self is not symbolic and state is a FockStateKet, else
multiply self by state.
Examples
========
>>> from sympy.physics.secondquant import B, BKet
>>> from sympy.abc import x, y, n
>>> B(x).apply_operator(y)
y*AnnihilateBoson(x)
>>> B(0).apply_operator(BKet((n,)))
sqrt(n)*FockStateBosonKet((n - 1,))
"""
if not self.is_symbolic and isinstance(state, FockStateKet):
element = self.state
amp = sqrt(state[element])
return amp*state.down(element)
else:
return Mul(self, state)
def __repr__(self):
return "AnnihilateBoson(%s)" % self.state
def _latex(self, printer):
return "b_{%s}" % self.state.name
class CreateBoson(BosonicOperator, Creator):
"""
Bosonic creation operator.
"""
op_symbol = 'b+'
def _dagger_(self):
return AnnihilateBoson(self.state)
def apply_operator(self, state):
"""
Apply state to self if self is not symbolic and state is a FockStateKet, else
multiply self by state.
Examples
========
>>> from sympy.physics.secondquant import B, Dagger, BKet
>>> from sympy.abc import x, y, n
>>> Dagger(B(x)).apply_operator(y)
y*CreateBoson(x)
>>> B(0).apply_operator(BKet((n,)))
sqrt(n)*FockStateBosonKet((n - 1,))
"""
if not self.is_symbolic and isinstance(state, FockStateKet):
element = self.state
amp = sqrt(state[element] + 1)
return amp*state.up(element)
else:
return Mul(self, state)
def __repr__(self):
return "CreateBoson(%s)" % self.state
def _latex(self, printer):
return "b^\\dagger_{%s}" % self.state.name
B = AnnihilateBoson
Bd = CreateBoson
class FermionicOperator(SqOperator):
@property
def is_restricted(self):
"""
Is this FermionicOperator restricted with respect to fermi level?
Return values:
1 : restricted to orbits above fermi
0 : no restriction
-1 : restricted to orbits below fermi
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F, Fd
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> F(a).is_restricted
1
>>> Fd(a).is_restricted
1
>>> F(i).is_restricted
-1
>>> Fd(i).is_restricted
-1
>>> F(p).is_restricted
0
>>> Fd(p).is_restricted
0
"""
ass = self.args[0].assumptions0
if ass.get("below_fermi"):
return -1
if ass.get("above_fermi"):
return 1
return 0
@property
def is_above_fermi(self):
"""
Does the index of this FermionicOperator allow values above fermi?
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> F(a).is_above_fermi
True
>>> F(i).is_above_fermi
False
>>> F(p).is_above_fermi
True
The same applies to creation operators Fd
"""
return not self.args[0].assumptions0.get("below_fermi")
@property
def is_below_fermi(self):
"""
Does the index of this FermionicOperator allow values below fermi?
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> F(a).is_below_fermi
False
>>> F(i).is_below_fermi
True
>>> F(p).is_below_fermi
True
The same applies to creation operators Fd
"""
return not self.args[0].assumptions0.get("above_fermi")
@property
def is_only_below_fermi(self):
"""
Is the index of this FermionicOperator restricted to values below fermi?
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> F(a).is_only_below_fermi
False
>>> F(i).is_only_below_fermi
True
>>> F(p).is_only_below_fermi
False
The same applies to creation operators Fd
"""
return self.is_below_fermi and not self.is_above_fermi
@property
def is_only_above_fermi(self):
"""
Is the index of this FermionicOperator restricted to values above fermi?
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> F(a).is_only_above_fermi
True
>>> F(i).is_only_above_fermi
False
>>> F(p).is_only_above_fermi
False
The same applies to creation operators Fd
"""
return self.is_above_fermi and not self.is_below_fermi
def _sortkey(self):
h = hash(self)
label = str(self.args[0])
if self.is_only_q_creator:
return 1, label, h
if self.is_only_q_annihilator:
return 4, label, h
if isinstance(self, Annihilator):
return 3, label, h
if isinstance(self, Creator):
return 2, label, h
class AnnihilateFermion(FermionicOperator, Annihilator):
"""
Fermionic annihilation operator.
"""
op_symbol = 'f'
def _dagger_(self):
return CreateFermion(self.state)
def apply_operator(self, state):
"""
Apply state to self if self is not symbolic and state is a FockStateKet, else
multiply self by state.
Examples
========
>>> from sympy.physics.secondquant import B, Dagger, BKet
>>> from sympy.abc import x, y, n
>>> Dagger(B(x)).apply_operator(y)
y*CreateBoson(x)
>>> B(0).apply_operator(BKet((n,)))
sqrt(n)*FockStateBosonKet((n - 1,))
"""
if isinstance(state, FockStateFermionKet):
element = self.state
return state.down(element)
elif isinstance(state, Mul):
c_part, nc_part = state.args_cnc()
if isinstance(nc_part[0], FockStateFermionKet):
element = self.state
return Mul(*(c_part + [nc_part[0].down(element)] + nc_part[1:]))
else:
return Mul(self, state)
else:
return Mul(self, state)
@property
def is_q_creator(self):
"""
Can we create a quasi-particle? (create hole or create particle)
If so, would that be above or below the fermi surface?
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> F(a).is_q_creator
0
>>> F(i).is_q_creator
-1
>>> F(p).is_q_creator
-1
"""
if self.is_below_fermi:
return -1
return 0
@property
def is_q_annihilator(self):
"""
Can we destroy a quasi-particle? (annihilate hole or annihilate particle)
If so, would that be above or below the fermi surface?
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=1)
>>> i = Symbol('i', below_fermi=1)
>>> p = Symbol('p')
>>> F(a).is_q_annihilator
1
>>> F(i).is_q_annihilator
0
>>> F(p).is_q_annihilator
1
"""
if self.is_above_fermi:
return 1
return 0
@property
def is_only_q_creator(self):
"""
Always create a quasi-particle? (create hole or create particle)
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> F(a).is_only_q_creator
False
>>> F(i).is_only_q_creator
True
>>> F(p).is_only_q_creator
False
"""
return self.is_only_below_fermi
@property
def is_only_q_annihilator(self):
"""
Always destroy a quasi-particle? (annihilate hole or annihilate particle)
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> F(a).is_only_q_annihilator
True
>>> F(i).is_only_q_annihilator
False
>>> F(p).is_only_q_annihilator
False
"""
return self.is_only_above_fermi
def __repr__(self):
return "AnnihilateFermion(%s)" % self.state
def _latex(self, printer):
return "a_{%s}" % self.state.name
class CreateFermion(FermionicOperator, Creator):
"""
Fermionic creation operator.
"""
op_symbol = 'f+'
def _dagger_(self):
return AnnihilateFermion(self.state)
def apply_operator(self, state):
"""
Apply state to self if self is not symbolic and state is a FockStateKet, else
multiply self by state.
Examples
========
>>> from sympy.physics.secondquant import B, Dagger, BKet
>>> from sympy.abc import x, y, n
>>> Dagger(B(x)).apply_operator(y)
y*CreateBoson(x)
>>> B(0).apply_operator(BKet((n,)))
sqrt(n)*FockStateBosonKet((n - 1,))
"""
if isinstance(state, FockStateFermionKet):
element = self.state
return state.up(element)
elif isinstance(state, Mul):
c_part, nc_part = state.args_cnc()
if isinstance(nc_part[0], FockStateFermionKet):
element = self.state
return Mul(*(c_part + [nc_part[0].up(element)] + nc_part[1:]))
return Mul(self, state)
@property
def is_q_creator(self):
"""
Can we create a quasi-particle? (create hole or create particle)
If so, would that be above or below the fermi surface?
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import Fd
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> Fd(a).is_q_creator
1
>>> Fd(i).is_q_creator
0
>>> Fd(p).is_q_creator
1
"""
if self.is_above_fermi:
return 1
return 0
@property
def is_q_annihilator(self):
"""
Can we destroy a quasi-particle? (annihilate hole or annihilate particle)
If so, would that be above or below the fermi surface?
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import Fd
>>> a = Symbol('a', above_fermi=1)
>>> i = Symbol('i', below_fermi=1)
>>> p = Symbol('p')
>>> Fd(a).is_q_annihilator
0
>>> Fd(i).is_q_annihilator
-1
>>> Fd(p).is_q_annihilator
-1
"""
if self.is_below_fermi:
return -1
return 0
@property
def is_only_q_creator(self):
"""
Always create a quasi-particle? (create hole or create particle)
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import Fd
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> Fd(a).is_only_q_creator
True
>>> Fd(i).is_only_q_creator
False
>>> Fd(p).is_only_q_creator
False
"""
return self.is_only_above_fermi
@property
def is_only_q_annihilator(self):
"""
Always destroy a quasi-particle? (annihilate hole or annihilate particle)
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import Fd
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> Fd(a).is_only_q_annihilator
False
>>> Fd(i).is_only_q_annihilator
True
>>> Fd(p).is_only_q_annihilator
False
"""
return self.is_only_below_fermi
def __repr__(self):
return "CreateFermion(%s)" % self.state
def _latex(self, printer):
return "a^\\dagger_{%s}" % self.state.name
Fd = CreateFermion
F = AnnihilateFermion
class FockState(Expr):
"""
Many particle Fock state with a sequence of occupation numbers.
Anywhere you can have a FockState, you can also have S.Zero.
All code must check for this!
Base class to represent FockStates.
"""
is_commutative = False
def __new__(cls, occupations):
"""
occupations is a list with two possible meanings:
- For bosons it is a list of occupation numbers.
Element i is the number of particles in state i.
- For fermions it is a list of occupied orbits.
Element 0 is the state that was occupied first, element i
is the i'th occupied state.
"""
occupations = list(map(sympify, occupations))
obj = Basic.__new__(cls, Tuple(*occupations))
return obj
def __getitem__(self, i):
i = int(i)
return self.args[0][i]
def __repr__(self):
return ("FockState(%r)") % (self.args)
def __str__(self):
return "%s%r%s" % (self.lbracket, self._labels(), self.rbracket)
def _labels(self):
return self.args[0]
def __len__(self):
return len(self.args[0])
class BosonState(FockState):
"""
Base class for FockStateBoson(Ket/Bra).
"""
def up(self, i):
"""
Performs the action of a creation operator.
Examples
========
>>> from sympy.physics.secondquant import BBra
>>> b = BBra([1, 2])
>>> b
FockStateBosonBra((1, 2))
>>> b.up(1)
FockStateBosonBra((1, 3))
"""
i = int(i)
new_occs = list(self.args[0])
new_occs[i] = new_occs[i] + S.One
return self.__class__(new_occs)
def down(self, i):
"""
Performs the action of an annihilation operator.
Examples
========
>>> from sympy.physics.secondquant import BBra
>>> b = BBra([1, 2])
>>> b
FockStateBosonBra((1, 2))
>>> b.down(1)
FockStateBosonBra((1, 1))
"""
i = int(i)
new_occs = list(self.args[0])
if new_occs[i] == S.Zero:
return S.Zero
else:
new_occs[i] = new_occs[i] - S.One
return self.__class__(new_occs)
class FermionState(FockState):
"""
Base class for FockStateFermion(Ket/Bra).
"""
fermi_level = 0
def __new__(cls, occupations, fermi_level=0):
occupations = list(map(sympify, occupations))
if len(occupations) > 1:
try:
(occupations, sign) = _sort_anticommuting_fermions(
occupations, key=hash)
except ViolationOfPauliPrinciple:
return S.Zero
else:
sign = 0
cls.fermi_level = fermi_level
if cls._count_holes(occupations) > fermi_level:
return S.Zero
if sign % 2:
return S.NegativeOne*FockState.__new__(cls, occupations)
else:
return FockState.__new__(cls, occupations)
def up(self, i):
"""
Performs the action of a creation operator.
If below fermi we try to remove a hole,
if above fermi we try to create a particle.
if general index p we return Kronecker(p,i)*self
where i is a new symbol with restriction above or below.
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import FKet
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> FKet([]).up(a)
FockStateFermionKet((a,))
A creator acting on vacuum below fermi vanishes
>>> FKet([]).up(i)
0
"""
present = i in self.args[0]
if self._only_above_fermi(i):
if present:
return S.Zero
else:
return self._add_orbit(i)
elif self._only_below_fermi(i):
if present:
return self._remove_orbit(i)
else:
return S.Zero
else:
if present:
hole = Dummy("i", below_fermi=True)
return KroneckerDelta(i, hole)*self._remove_orbit(i)
else:
particle = Dummy("a", above_fermi=True)
return KroneckerDelta(i, particle)*self._add_orbit(i)
def down(self, i):
"""
Performs the action of an annihilation operator.
If below fermi we try to create a hole,
if above fermi we try to remove a particle.
if general index p we return Kronecker(p,i)*self
where i is a new symbol with restriction above or below.
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import FKet
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
An annihilator acting on vacuum above fermi vanishes
>>> FKet([]).down(a)
0
Also below fermi, it vanishes, unless we specify a fermi level > 0
>>> FKet([]).down(i)
0
>>> FKet([],4).down(i)
FockStateFermionKet((i,))
"""
present = i in self.args[0]
if self._only_above_fermi(i):
if present:
return self._remove_orbit(i)
else:
return S.Zero
elif self._only_below_fermi(i):
if present:
return S.Zero
else:
return self._add_orbit(i)
else:
if present:
hole = Dummy("i", below_fermi=True)
return KroneckerDelta(i, hole)*self._add_orbit(i)
else:
particle = Dummy("a", above_fermi=True)
return KroneckerDelta(i, particle)*self._remove_orbit(i)
@classmethod
def _only_below_fermi(cls, i):
"""
Tests if given orbit is only below fermi surface.
If nothing can be concluded we return a conservative False.
"""
if i.is_number:
return i <= cls.fermi_level
if i.assumptions0.get('below_fermi'):
return True
return False
@classmethod
def _only_above_fermi(cls, i):
"""
Tests if given orbit is only above fermi surface.
If fermi level has not been set we return True.
If nothing can be concluded we return a conservative False.
"""
if i.is_number:
return i > cls.fermi_level
if i.assumptions0.get('above_fermi'):
return True
return not cls.fermi_level
def _remove_orbit(self, i):
"""
Removes particle/fills hole in orbit i. No input tests performed here.
"""
new_occs = list(self.args[0])
pos = new_occs.index(i)
del new_occs[pos]
if (pos) % 2:
return S.NegativeOne*self.__class__(new_occs, self.fermi_level)
else:
return self.__class__(new_occs, self.fermi_level)
def _add_orbit(self, i):
"""
Adds particle/creates hole in orbit i. No input tests performed here.
"""
return self.__class__((i,) + self.args[0], self.fermi_level)
@classmethod
def _count_holes(cls, list):
"""
returns number of identified hole states in list.
"""
return len([i for i in list if cls._only_below_fermi(i)])
def _negate_holes(self, list):
return tuple([-i if i <= self.fermi_level else i for i in list])
def __repr__(self):
if self.fermi_level:
return "FockStateKet(%r, fermi_level=%s)" % (self.args[0], self.fermi_level)
else:
return "FockStateKet(%r)" % (self.args[0],)
def _labels(self):
return self._negate_holes(self.args[0])
class FockStateKet(FockState):
"""
Representation of a ket.
"""
lbracket = '|'
rbracket = '>'
class FockStateBra(FockState):
"""
Representation of a bra.
"""
lbracket = '<'
rbracket = '|'
def __mul__(self, other):
if isinstance(other, FockStateKet):
return InnerProduct(self, other)
else:
return Expr.__mul__(self, other)
class FockStateBosonKet(BosonState, FockStateKet):
"""
Many particle Fock state with a sequence of occupation numbers.
Occupation numbers can be any integer >= 0.
Examples
========
>>> from sympy.physics.secondquant import BKet
>>> BKet([1, 2])
FockStateBosonKet((1, 2))
"""
def _dagger_(self):
return FockStateBosonBra(*self.args)
class FockStateBosonBra(BosonState, FockStateBra):
"""
Describes a collection of BosonBra particles.
Examples
========
>>> from sympy.physics.secondquant import BBra
>>> BBra([1, 2])
FockStateBosonBra((1, 2))
"""
def _dagger_(self):
return FockStateBosonKet(*self.args)
class FockStateFermionKet(FermionState, FockStateKet):
"""
Many-particle Fock state with a sequence of occupied orbits.
Each state can only have one particle, so we choose to store a list of
occupied orbits rather than a tuple with occupation numbers (zeros and ones).
states below fermi level are holes, and are represented by negative labels
in the occupation list.
For symbolic state labels, the fermi_level caps the number of allowed hole-
states.
Examples
========
>>> from sympy.physics.secondquant import FKet
>>> FKet([1, 2]) #doctest: +SKIP
FockStateFermionKet((1, 2))
"""
def _dagger_(self):
return FockStateFermionBra(*self.args)
class FockStateFermionBra(FermionState, FockStateBra):
"""
See Also
========
FockStateFermionKet
Examples
========
>>> from sympy.physics.secondquant import FBra
>>> FBra([1, 2]) #doctest: +SKIP
FockStateFermionBra((1, 2))
"""
def _dagger_(self):
return FockStateFermionKet(*self.args)
BBra = FockStateBosonBra
BKet = FockStateBosonKet
FBra = FockStateFermionBra
FKet = FockStateFermionKet
def _apply_Mul(m):
"""
Take a Mul instance with operators and apply them to states.
This method applies all operators with integer state labels
to the actual states. For symbolic state labels, nothing is done.
When inner products of FockStates are encountered (like <a|b>),
they are converted to instances of InnerProduct.
This does not currently work on double inner products like,
<a|b><c|d>.
If the argument is not a Mul, it is simply returned as is.
"""
if not isinstance(m, Mul):
return m
c_part, nc_part = m.args_cnc()
n_nc = len(nc_part)
if n_nc == 0 or n_nc == 1:
return m
else:
last = nc_part[-1]
next_to_last = nc_part[-2]
if isinstance(last, FockStateKet):
if isinstance(next_to_last, SqOperator):
if next_to_last.is_symbolic:
return m
else:
result = next_to_last.apply_operator(last)
if result == 0:
return S.Zero
else:
return _apply_Mul(Mul(*(c_part + nc_part[:-2] + [result])))
elif isinstance(next_to_last, Pow):
if isinstance(next_to_last.base, SqOperator) and \
next_to_last.exp.is_Integer:
if next_to_last.base.is_symbolic:
return m
else:
result = last
for i in range(next_to_last.exp):
result = next_to_last.base.apply_operator(result)
if result == 0:
break
if result == 0:
return S.Zero
else:
return _apply_Mul(Mul(*(c_part + nc_part[:-2] + [result])))
else:
return m
elif isinstance(next_to_last, FockStateBra):
result = InnerProduct(next_to_last, last)
if result == 0:
return S.Zero
else:
return _apply_Mul(Mul(*(c_part + nc_part[:-2] + [result])))
else:
return m
else:
return m
def apply_operators(e):
"""
Take a sympy expression with operators and states and apply the operators.
Examples
========
>>> from sympy.physics.secondquant import apply_operators
>>> from sympy import sympify
>>> apply_operators(sympify(3)+4)
7
"""
e = e.expand()
muls = e.atoms(Mul)
subs_list = [(m, _apply_Mul(m)) for m in iter(muls)]
return e.subs(subs_list)
class InnerProduct(Basic):
"""
An unevaluated inner product between a bra and ket.
Currently this class just reduces things to a product of
Kronecker Deltas. In the future, we could introduce abstract
states like ``|a>`` and ``|b>``, and leave the inner product unevaluated as
``<a|b>``.
"""
is_commutative = True
def __new__(cls, bra, ket):
if not isinstance(bra, FockStateBra):
raise TypeError("must be a bra")
if not isinstance(ket, FockStateKet):
raise TypeError("must be a key")
return cls.eval(bra, ket)
@classmethod
def eval(cls, bra, ket):
result = S.One
for i, j in zip(bra.args[0], ket.args[0]):
result *= KroneckerDelta(i, j)
if result == 0:
break
return result
@property
def bra(self):
"""Returns the bra part of the state"""
return self.args[0]
@property
def ket(self):
"""Returns the ket part of the state"""
return self.args[1]
def __repr__(self):
sbra = repr(self.bra)
sket = repr(self.ket)
return "%s|%s" % (sbra[:-1], sket[1:])
def __str__(self):
return self.__repr__()
def matrix_rep(op, basis):
"""
Find the representation of an operator in a basis.
Examples
========
>>> from sympy.physics.secondquant import VarBosonicBasis, B, matrix_rep
>>> b = VarBosonicBasis(5)
>>> o = B(0)
>>> matrix_rep(o, b)
Matrix([
[0, 1, 0, 0, 0],
[0, 0, sqrt(2), 0, 0],
[0, 0, 0, sqrt(3), 0],
[0, 0, 0, 0, 2],
[0, 0, 0, 0, 0]])
"""
a = zeros(len(basis))
for i in range(len(basis)):
for j in range(len(basis)):
a[i, j] = apply_operators(Dagger(basis[i])*op*basis[j])
return a
class BosonicBasis(object):
"""
Base class for a basis set of bosonic Fock states.
"""
pass
class VarBosonicBasis(object):
"""
A single state, variable particle number basis set.
Examples
========
>>> from sympy.physics.secondquant import VarBosonicBasis
>>> b = VarBosonicBasis(5)
>>> b
[FockState((0,)), FockState((1,)), FockState((2,)),
FockState((3,)), FockState((4,))]
"""
def __init__(self, n_max):
self.n_max = n_max
self._build_states()
def _build_states(self):
self.basis = []
for i in range(self.n_max):
self.basis.append(FockStateBosonKet([i]))
self.n_basis = len(self.basis)
def index(self, state):
"""
Returns the index of state in basis.
Examples
========
>>> from sympy.physics.secondquant import VarBosonicBasis
>>> b = VarBosonicBasis(3)
>>> state = b.state(1)
>>> b
[FockState((0,)), FockState((1,)), FockState((2,))]
>>> state
FockStateBosonKet((1,))
>>> b.index(state)
1
"""
return self.basis.index(state)
def state(self, i):
"""
The state of a single basis.
Examples
========
>>> from sympy.physics.secondquant import VarBosonicBasis
>>> b = VarBosonicBasis(5)
>>> b.state(3)
FockStateBosonKet((3,))
"""
return self.basis[i]
def __getitem__(self, i):
return self.state(i)
def __len__(self):
return len(self.basis)
def __repr__(self):
return repr(self.basis)
class FixedBosonicBasis(BosonicBasis):
"""
Fixed particle number basis set.
Examples
========
>>> from sympy.physics.secondquant import FixedBosonicBasis
>>> b = FixedBosonicBasis(2, 2)
>>> state = b.state(1)
>>> b
[FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]
>>> state
FockStateBosonKet((1, 1))
>>> b.index(state)
1
"""
def __init__(self, n_particles, n_levels):
self.n_particles = n_particles
self.n_levels = n_levels
self._build_particle_locations()
self._build_states()
def _build_particle_locations(self):
tup = ["i%i" % i for i in range(self.n_particles)]
first_loop = "for i0 in range(%i)" % self.n_levels
other_loops = ''
for cur, prev in zip(tup[1:], tup):
temp = "for %s in range(%s + 1) " % (cur, prev)
other_loops = other_loops + temp
tup_string = "(%s)" % ", ".join(tup)
list_comp = "[%s %s %s]" % (tup_string, first_loop, other_loops)
result = eval(list_comp)
if self.n_particles == 1:
result = [(item,) for item in result]
self.particle_locations = result
def _build_states(self):
self.basis = []
for tuple_of_indices in self.particle_locations:
occ_numbers = self.n_levels*[0]
for level in tuple_of_indices:
occ_numbers[level] += 1
self.basis.append(FockStateBosonKet(occ_numbers))
self.n_basis = len(self.basis)
def index(self, state):
"""Returns the index of state in basis.
Examples
========
>>> from sympy.physics.secondquant import FixedBosonicBasis
>>> b = FixedBosonicBasis(2, 3)
>>> b.index(b.state(3))
3
"""
return self.basis.index(state)
def state(self, i):
"""Returns the state that lies at index i of the basis
Examples
========
>>> from sympy.physics.secondquant import FixedBosonicBasis
>>> b = FixedBosonicBasis(2, 3)
>>> b.state(3)
FockStateBosonKet((1, 0, 1))
"""
return self.basis[i]
def __getitem__(self, i):
return self.state(i)
def __len__(self):
return len(self.basis)
def __repr__(self):
return repr(self.basis)
class Commutator(Function):
"""
The Commutator: [A, B] = A*B - B*A
The arguments are ordered according to .__cmp__()
>>> from sympy import symbols
>>> from sympy.physics.secondquant import Commutator
>>> A, B = symbols('A,B', commutative=False)
>>> Commutator(B, A)
-Commutator(A, B)
Evaluate the commutator with .doit()
>>> comm = Commutator(A,B); comm
Commutator(A, B)
>>> comm.doit()
A*B - B*A
For two second quantization operators the commutator is evaluated
immediately:
>>> from sympy.physics.secondquant import Fd, F
>>> a = symbols('a', above_fermi=True)
>>> i = symbols('i', below_fermi=True)
>>> p,q = symbols('p,q')
>>> Commutator(Fd(a),Fd(i))
2*NO(CreateFermion(a)*CreateFermion(i))
But for more complicated expressions, the evaluation is triggered by
a call to .doit()
>>> comm = Commutator(Fd(p)*Fd(q),F(i)); comm
Commutator(CreateFermion(p)*CreateFermion(q), AnnihilateFermion(i))
>>> comm.doit(wicks=True)
-KroneckerDelta(i, p)*CreateFermion(q) +
KroneckerDelta(i, q)*CreateFermion(p)
"""
is_commutative = False
@classmethod
def eval(cls, a, b):
"""
The Commutator [A,B] is on canonical form if A < B.
Examples
========
>>> from sympy.physics.secondquant import Commutator, F, Fd
>>> from sympy.abc import x
>>> c1 = Commutator(F(x), Fd(x))
>>> c2 = Commutator(Fd(x), F(x))
>>> Commutator.eval(c1, c2)
0
"""
if not (a and b):
return S.Zero
if a == b:
return S.Zero
if a.is_commutative or b.is_commutative:
return S.Zero
#
# [A+B,C] -> [A,C] + [B,C]
#
a = a.expand()
if isinstance(a, Add):
return Add(*[cls(term, b) for term in a.args])
b = b.expand()
if isinstance(b, Add):
return Add(*[cls(a, term) for term in b.args])
#
# [xA,yB] -> xy*[A,B]
#
ca, nca = a.args_cnc()
cb, ncb = b.args_cnc()
c_part = list(ca) + list(cb)
if c_part:
return Mul(Mul(*c_part), cls(Mul._from_args(nca), Mul._from_args(ncb)))
#
# single second quantization operators
#
if isinstance(a, BosonicOperator) and isinstance(b, BosonicOperator):
if isinstance(b, CreateBoson) and isinstance(a, AnnihilateBoson):
return KroneckerDelta(a.state, b.state)
if isinstance(a, CreateBoson) and isinstance(b, AnnihilateBoson):
return S.NegativeOne*KroneckerDelta(a.state, b.state)
else:
return S.Zero
if isinstance(a, FermionicOperator) and isinstance(b, FermionicOperator):
return wicks(a*b) - wicks(b*a)
#
# Canonical ordering of arguments
#
if a.sort_key() > b.sort_key():
return S.NegativeOne*cls(b, a)
def doit(self, **hints):
"""
Enables the computation of complex expressions.
Examples
========
>>> from sympy.physics.secondquant import Commutator, F, Fd
>>> from sympy import symbols
>>> i, j = symbols('i,j', below_fermi=True)
>>> a, b = symbols('a,b', above_fermi=True)
>>> c = Commutator(Fd(a)*F(i),Fd(b)*F(j))
>>> c.doit(wicks=True)
0
"""
a = self.args[0]
b = self.args[1]
if hints.get("wicks"):
a = a.doit(**hints)
b = b.doit(**hints)
try:
return wicks(a*b) - wicks(b*a)
except ContractionAppliesOnlyToFermions:
pass
except WicksTheoremDoesNotApply:
pass
return (a*b - b*a).doit(**hints)
def __repr__(self):
return "Commutator(%s,%s)" % (self.args[0], self.args[1])
def __str__(self):
return "[%s,%s]" % (self.args[0], self.args[1])
def _latex(self, printer):
return "\\left[%s,%s\\right]" % tuple([
printer._print(arg) for arg in self.args])
class NO(Expr):
"""
This Object is used to represent normal ordering brackets.
i.e. {abcd} sometimes written :abcd:
Applying the function NO(arg) to an argument means that all operators in
the argument will be assumed to anticommute, and have vanishing
contractions. This allows an immediate reordering to canonical form
upon object creation.
>>> from sympy import symbols
>>> from sympy.physics.secondquant import NO, F, Fd
>>> p,q = symbols('p,q')
>>> NO(Fd(p)*F(q))
NO(CreateFermion(p)*AnnihilateFermion(q))
>>> NO(F(q)*Fd(p))
-NO(CreateFermion(p)*AnnihilateFermion(q))
Note:
If you want to generate a normal ordered equivalent of an expression, you
should use the function wicks(). This class only indicates that all
operators inside the brackets anticommute, and have vanishing contractions.
Nothing more, nothing less.
"""
is_commutative = False
def __new__(cls, arg):
"""
Use anticommutation to get canonical form of operators.
Employ associativity of normal ordered product: {ab{cd}} = {abcd}
but note that {ab}{cd} /= {abcd}.
We also employ distributivity: {ab + cd} = {ab} + {cd}.
Canonical form also implies expand() {ab(c+d)} = {abc} + {abd}.
"""
# {ab + cd} = {ab} + {cd}
arg = sympify(arg)
arg = arg.expand()
if arg.is_Add:
return Add(*[ cls(term) for term in arg.args])
if arg.is_Mul:
# take coefficient outside of normal ordering brackets
c_part, seq = arg.args_cnc()
if c_part:
coeff = Mul(*c_part)
if not seq:
return coeff
else:
coeff = S.One
# {ab{cd}} = {abcd}
newseq = []
foundit = False
for fac in seq:
if isinstance(fac, NO):
newseq.extend(fac.args)
foundit = True
else:
newseq.append(fac)
if foundit:
return coeff*cls(Mul(*newseq))
# We assume that the user don't mix B and F operators
if isinstance(seq[0], BosonicOperator):
raise NotImplementedError
try:
newseq, sign = _sort_anticommuting_fermions(seq)
except ViolationOfPauliPrinciple:
return S.Zero
if sign % 2:
return (S.NegativeOne*coeff)*cls(Mul(*newseq))
elif sign:
return coeff*cls(Mul(*newseq))
else:
pass # since sign==0, no permutations was necessary
# if we couldn't do anything with Mul object, we just
# mark it as normal ordered
if coeff != S.One:
return coeff*cls(Mul(*newseq))
return Expr.__new__(cls, Mul(*newseq))
if isinstance(arg, NO):
return arg
# if object was not Mul or Add, normal ordering does not apply
return arg
@property
def has_q_creators(self):
"""
Return 0 if the leftmost argument of the first argument is a not a
q_creator, else 1 if it is above fermi or -1 if it is below fermi.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import NO, F, Fd
>>> a = symbols('a', above_fermi=True)
>>> i = symbols('i', below_fermi=True)
>>> NO(Fd(a)*Fd(i)).has_q_creators
1
>>> NO(F(i)*F(a)).has_q_creators
-1
>>> NO(Fd(i)*F(a)).has_q_creators #doctest: +SKIP
0
"""
return self.args[0].args[0].is_q_creator
@property
def has_q_annihilators(self):
"""
Return 0 if the rightmost argument of the first argument is a not a
q_annihilator, else 1 if it is above fermi or -1 if it is below fermi.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import NO, F, Fd
>>> a = symbols('a', above_fermi=True)
>>> i = symbols('i', below_fermi=True)
>>> NO(Fd(a)*Fd(i)).has_q_annihilators
-1
>>> NO(F(i)*F(a)).has_q_annihilators
1
>>> NO(Fd(a)*F(i)).has_q_annihilators
0
"""
return self.args[0].args[-1].is_q_annihilator
def doit(self, **kw_args):
"""
Either removes the brackets or enables complex computations
in its arguments.
Examples
========
>>> from sympy.physics.secondquant import NO, Fd, F
>>> from textwrap import fill
>>> from sympy import symbols, Dummy
>>> p,q = symbols('p,q', cls=Dummy)
>>> print(fill(str(NO(Fd(p)*F(q)).doit())))
KroneckerDelta(_a, _p)*KroneckerDelta(_a,
_q)*CreateFermion(_a)*AnnihilateFermion(_a) + KroneckerDelta(_a,
_p)*KroneckerDelta(_i, _q)*CreateFermion(_a)*AnnihilateFermion(_i) -
KroneckerDelta(_a, _q)*KroneckerDelta(_i,
_p)*AnnihilateFermion(_a)*CreateFermion(_i) - KroneckerDelta(_i,
_p)*KroneckerDelta(_i, _q)*AnnihilateFermion(_i)*CreateFermion(_i)
"""
if kw_args.get("remove_brackets", True):
return self._remove_brackets()
else:
return self.__new__(type(self), self.args[0].doit(**kw_args))
def _remove_brackets(self):
"""
Returns the sorted string without normal order brackets.
The returned string have the property that no nonzero
contractions exist.
"""
# check if any creator is also an annihilator
subslist = []
for i in self.iter_q_creators():
if self[i].is_q_annihilator:
assume = self[i].state.assumptions0
# only operators with a dummy index can be split in two terms
if isinstance(self[i].state, Dummy):
# create indices with fermi restriction
assume.pop("above_fermi", None)
assume["below_fermi"] = True
below = Dummy('i', **assume)
assume.pop("below_fermi", None)
assume["above_fermi"] = True
above = Dummy('a', **assume)
cls = type(self[i])
split = (
self[i].__new__(cls, below)
* KroneckerDelta(below, self[i].state)
+ self[i].__new__(cls, above)
* KroneckerDelta(above, self[i].state)
)
subslist.append((self[i], split))
else:
raise SubstitutionOfAmbigousOperatorFailed(self[i])
if subslist:
result = NO(self.subs(subslist))
if isinstance(result, Add):
return Add(*[term.doit() for term in result.args])
else:
return self.args[0]
def _expand_operators(self):
"""
Returns a sum of NO objects that contain no ambiguous q-operators.
If an index q has range both above and below fermi, the operator F(q)
is ambiguous in the sense that it can be both a q-creator and a q-annihilator.
If q is dummy, it is assumed to be a summation variable and this method
rewrites it into a sum of NO terms with unambiguous operators:
{Fd(p)*F(q)} = {Fd(a)*F(b)} + {Fd(a)*F(i)} + {Fd(j)*F(b)} -{F(i)*Fd(j)}
where a,b are above and i,j are below fermi level.
"""
return NO(self._remove_brackets)
def __getitem__(self, i):
if isinstance(i, slice):
indices = i.indices(len(self))
return [self.args[0].args[i] for i in range(*indices)]
else:
return self.args[0].args[i]
def __len__(self):
return len(self.args[0].args)
def iter_q_annihilators(self):
"""
Iterates over the annihilation operators.
Examples
========
>>> from sympy import symbols
>>> i, j = symbols('i j', below_fermi=True)
>>> a, b = symbols('a b', above_fermi=True)
>>> from sympy.physics.secondquant import NO, F, Fd
>>> no = NO(Fd(a)*F(i)*F(b)*Fd(j))
>>> no.iter_q_creators()
<generator object... at 0x...>
>>> list(no.iter_q_creators())
[0, 1]
>>> list(no.iter_q_annihilators())
[3, 2]
"""
ops = self.args[0].args
iter = range(len(ops) - 1, -1, -1)
for i in iter:
if ops[i].is_q_annihilator:
yield i
else:
break
def iter_q_creators(self):
"""
Iterates over the creation operators.
Examples
========
>>> from sympy import symbols
>>> i, j = symbols('i j', below_fermi=True)
>>> a, b = symbols('a b', above_fermi=True)
>>> from sympy.physics.secondquant import NO, F, Fd
>>> no = NO(Fd(a)*F(i)*F(b)*Fd(j))
>>> no.iter_q_creators()
<generator object... at 0x...>
>>> list(no.iter_q_creators())
[0, 1]
>>> list(no.iter_q_annihilators())
[3, 2]
"""
ops = self.args[0].args
iter = range(0, len(ops))
for i in iter:
if ops[i].is_q_creator:
yield i
else:
break
def get_subNO(self, i):
"""
Returns a NO() without FermionicOperator at index i.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import F, NO
>>> p,q,r = symbols('p,q,r')
>>> NO(F(p)*F(q)*F(r)).get_subNO(1) # doctest: +SKIP
NO(AnnihilateFermion(p)*AnnihilateFermion(r))
"""
arg0 = self.args[0] # it's a Mul by definition of how it's created
mul = arg0._new_rawargs(arg0.args[:i] + arg0.args[i + 1:])
return NO(mul)
def _latex(self, printer):
return "\\left\\{%s\\right\\}" % printer._print(self.args[0])
def __repr__(self):
return "NO(%s)" % self.args[0]
def __str__(self):
return ":%s:" % self.args[0]
def contraction(a, b):
"""
Calculates contraction of Fermionic operators a and b.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import F, Fd, contraction
>>> p, q = symbols('p,q')
>>> a, b = symbols('a,b', above_fermi=True)
>>> i, j = symbols('i,j', below_fermi=True)
A contraction is non-zero only if a quasi-creator is to the right of a
quasi-annihilator:
>>> contraction(F(a),Fd(b))
KroneckerDelta(a, b)
>>> contraction(Fd(i),F(j))
KroneckerDelta(i, j)
For general indices a non-zero result restricts the indices to below/above
the fermi surface:
>>> contraction(Fd(p),F(q))
KroneckerDelta(_i, q)*KroneckerDelta(p, q)
>>> contraction(F(p),Fd(q))
KroneckerDelta(_a, q)*KroneckerDelta(p, q)
Two creators or two annihilators always vanishes:
>>> contraction(F(p),F(q))
0
>>> contraction(Fd(p),Fd(q))
0
"""
if isinstance(b, FermionicOperator) and isinstance(a, FermionicOperator):
if isinstance(a, AnnihilateFermion) and isinstance(b, CreateFermion):
if b.state.assumptions0.get("below_fermi"):
return S.Zero
if a.state.assumptions0.get("below_fermi"):
return S.Zero
if b.state.assumptions0.get("above_fermi"):
return KroneckerDelta(a.state, b.state)
if a.state.assumptions0.get("above_fermi"):
return KroneckerDelta(a.state, b.state)
return (KroneckerDelta(a.state, b.state)*
KroneckerDelta(b.state, Dummy('a', above_fermi=True)))
if isinstance(b, AnnihilateFermion) and isinstance(a, CreateFermion):
if b.state.assumptions0.get("above_fermi"):
return S.Zero
if a.state.assumptions0.get("above_fermi"):
return S.Zero
if b.state.assumptions0.get("below_fermi"):
return KroneckerDelta(a.state, b.state)
if a.state.assumptions0.get("below_fermi"):
return KroneckerDelta(a.state, b.state)
return (KroneckerDelta(a.state, b.state)*
KroneckerDelta(b.state, Dummy('i', below_fermi=True)))
# vanish if 2xAnnihilator or 2xCreator
return S.Zero
else:
#not fermion operators
t = ( isinstance(i, FermionicOperator) for i in (a, b) )
raise ContractionAppliesOnlyToFermions(*t)
def _sqkey(sq_operator):
"""Generates key for canonical sorting of SQ operators."""
return sq_operator._sortkey()
def _sort_anticommuting_fermions(string1, key=_sqkey):
"""Sort fermionic operators to canonical order, assuming all pairs anticommute.
Uses a bidirectional bubble sort. Items in string1 are not referenced
so in principle they may be any comparable objects. The sorting depends on the
operators '>' and '=='.
If the Pauli principle is violated, an exception is raised.
Returns
=======
tuple (sorted_str, sign)
sorted_str: list containing the sorted operators
sign: int telling how many times the sign should be changed
(if sign==0 the string was already sorted)
"""
verified = False
sign = 0
rng = list(range(len(string1) - 1))
rev = list(range(len(string1) - 3, -1, -1))
keys = list(map(key, string1))
key_val = dict(list(zip(keys, string1)))
while not verified:
verified = True
for i in rng:
left = keys[i]
right = keys[i + 1]
if left == right:
raise ViolationOfPauliPrinciple([left, right])
if left > right:
verified = False
keys[i:i + 2] = [right, left]
sign = sign + 1
if verified:
break
for i in rev:
left = keys[i]
right = keys[i + 1]
if left == right:
raise ViolationOfPauliPrinciple([left, right])
if left > right:
verified = False
keys[i:i + 2] = [right, left]
sign = sign + 1
string1 = [ key_val[k] for k in keys ]
return (string1, sign)
def evaluate_deltas(e):
"""
We evaluate KroneckerDelta symbols in the expression assuming Einstein summation.
If one index is repeated it is summed over and in effect substituted with
the other one. If both indices are repeated we substitute according to what
is the preferred index. this is determined by
KroneckerDelta.preferred_index and KroneckerDelta.killable_index.
In case there are no possible substitutions or if a substitution would
imply a loss of information, nothing is done.
In case an index appears in more than one KroneckerDelta, the resulting
substitution depends on the order of the factors. Since the ordering is platform
dependent, the literal expression resulting from this function may be hard to
predict.
Examples
========
We assume the following:
>>> from sympy import symbols, Function, Dummy, KroneckerDelta
>>> from sympy.physics.secondquant import evaluate_deltas
>>> i,j = symbols('i j', below_fermi=True, cls=Dummy)
>>> a,b = symbols('a b', above_fermi=True, cls=Dummy)
>>> p,q = symbols('p q', cls=Dummy)
>>> f = Function('f')
>>> t = Function('t')
The order of preference for these indices according to KroneckerDelta is
(a, b, i, j, p, q).
Trivial cases:
>>> evaluate_deltas(KroneckerDelta(i,j)*f(i)) # d_ij f(i) -> f(j)
f(_j)
>>> evaluate_deltas(KroneckerDelta(i,j)*f(j)) # d_ij f(j) -> f(i)
f(_i)
>>> evaluate_deltas(KroneckerDelta(i,p)*f(p)) # d_ip f(p) -> f(i)
f(_i)
>>> evaluate_deltas(KroneckerDelta(q,p)*f(p)) # d_qp f(p) -> f(q)
f(_q)
>>> evaluate_deltas(KroneckerDelta(q,p)*f(q)) # d_qp f(q) -> f(p)
f(_p)
More interesting cases:
>>> evaluate_deltas(KroneckerDelta(i,p)*t(a,i)*f(p,q))
f(_i, _q)*t(_a, _i)
>>> evaluate_deltas(KroneckerDelta(a,p)*t(a,i)*f(p,q))
f(_a, _q)*t(_a, _i)
>>> evaluate_deltas(KroneckerDelta(p,q)*f(p,q))
f(_p, _p)
Finally, here are some cases where nothing is done, because that would
imply a loss of information:
>>> evaluate_deltas(KroneckerDelta(i,p)*f(q))
f(_q)*KroneckerDelta(_i, _p)
>>> evaluate_deltas(KroneckerDelta(i,p)*f(i))
f(_i)*KroneckerDelta(_i, _p)
"""
# We treat Deltas only in mul objects
# for general function objects we don't evaluate KroneckerDeltas in arguments,
# but here we hard code exceptions to this rule
accepted_functions = (
Add,
)
if isinstance(e, accepted_functions):
return e.func(*[evaluate_deltas(arg) for arg in e.args])
elif isinstance(e, Mul):
# find all occurrences of delta function and count each index present in
# expression.
deltas = []
indices = {}
for i in e.args:
for s in i.free_symbols:
if s in indices:
indices[s] += 1
else:
indices[s] = 0 # geek counting simplifies logic below
if isinstance(i, KroneckerDelta):
deltas.append(i)
for d in deltas:
# If we do something, and there are more deltas, we should recurse
# to treat the resulting expression properly
if d.killable_index.is_Symbol and indices[d.killable_index]:
e = e.subs(d.killable_index, d.preferred_index)
if len(deltas) > 1:
return evaluate_deltas(e)
elif (d.preferred_index.is_Symbol and indices[d.preferred_index]
and d.indices_contain_equal_information):
e = e.subs(d.preferred_index, d.killable_index)
if len(deltas) > 1:
return evaluate_deltas(e)
else:
pass
return e
# nothing to do, maybe we hit a Symbol or a number
else:
return e
def substitute_dummies(expr, new_indices=False, pretty_indices={}):
"""
Collect terms by substitution of dummy variables.
This routine allows simplification of Add expressions containing terms
which differ only due to dummy variables.
The idea is to substitute all dummy variables consistently depending on
the structure of the term. For each term, we obtain a sequence of all
dummy variables, where the order is determined by the index range, what
factors the index belongs to and its position in each factor. See
_get_ordered_dummies() for more inforation about the sorting of dummies.
The index sequence is then substituted consistently in each term.
Examples
========
>>> from sympy import symbols, Function, Dummy
>>> from sympy.physics.secondquant import substitute_dummies
>>> a,b,c,d = symbols('a b c d', above_fermi=True, cls=Dummy)
>>> i,j = symbols('i j', below_fermi=True, cls=Dummy)
>>> f = Function('f')
>>> expr = f(a,b) + f(c,d); expr
f(_a, _b) + f(_c, _d)
Since a, b, c and d are equivalent summation indices, the expression can be
simplified to a single term (for which the dummy indices are still summed over)
>>> substitute_dummies(expr)
2*f(_a, _b)
Controlling output:
By default the dummy symbols that are already present in the expression
will be reused in a different permutation. However, if new_indices=True,
new dummies will be generated and inserted. The keyword 'pretty_indices'
can be used to control this generation of new symbols.
By default the new dummies will be generated on the form i_1, i_2, a_1,
etc. If you supply a dictionary with key:value pairs in the form:
{ index_group: string_of_letters }
The letters will be used as labels for the new dummy symbols. The
index_groups must be one of 'above', 'below' or 'general'.
>>> expr = f(a,b,i,j)
>>> my_dummies = { 'above':'st', 'below':'uv' }
>>> substitute_dummies(expr, new_indices=True, pretty_indices=my_dummies)
f(_s, _t, _u, _v)
If we run out of letters, or if there is no keyword for some index_group
the default dummy generator will be used as a fallback:
>>> p,q = symbols('p q', cls=Dummy) # general indices
>>> expr = f(p,q)
>>> substitute_dummies(expr, new_indices=True, pretty_indices=my_dummies)
f(_p_0, _p_1)
"""
# setup the replacing dummies
if new_indices:
letters_above = pretty_indices.get('above', "")
letters_below = pretty_indices.get('below', "")
letters_general = pretty_indices.get('general', "")
len_above = len(letters_above)
len_below = len(letters_below)
len_general = len(letters_general)
def _i(number):
try:
return letters_below[number]
except IndexError:
return 'i_' + str(number - len_below)
def _a(number):
try:
return letters_above[number]
except IndexError:
return 'a_' + str(number - len_above)
def _p(number):
try:
return letters_general[number]
except IndexError:
return 'p_' + str(number - len_general)
aboves = []
belows = []
generals = []
dummies = expr.atoms(Dummy)
if not new_indices:
dummies = sorted(dummies, key=default_sort_key)
# generate lists with the dummies we will insert
a = i = p = 0
for d in dummies:
assum = d.assumptions0
if assum.get("above_fermi"):
if new_indices:
sym = _a(a)
a += 1
l1 = aboves
elif assum.get("below_fermi"):
if new_indices:
sym = _i(i)
i += 1
l1 = belows
else:
if new_indices:
sym = _p(p)
p += 1
l1 = generals
if new_indices:
l1.append(Dummy(sym, **assum))
else:
l1.append(d)
expr = expr.expand()
terms = Add.make_args(expr)
new_terms = []
for term in terms:
i = iter(belows)
a = iter(aboves)
p = iter(generals)
ordered = _get_ordered_dummies(term)
subsdict = {}
for d in ordered:
if d.assumptions0.get('below_fermi'):
subsdict[d] = next(i)
elif d.assumptions0.get('above_fermi'):
subsdict[d] = next(a)
else:
subsdict[d] = next(p)
subslist = []
final_subs = []
for k, v in subsdict.items():
if k == v:
continue
if v in subsdict:
# We check if the sequence of substitutions end quickly. In
# that case, we can avoid temporary symbols if we ensure the
# correct substitution order.
if subsdict[v] in subsdict:
# (x, y) -> (y, x), we need a temporary variable
x = Dummy('x')
subslist.append((k, x))
final_subs.append((x, v))
else:
# (x, y) -> (y, a), x->y must be done last
# but before temporary variables are resolved
final_subs.insert(0, (k, v))
else:
subslist.append((k, v))
subslist.extend(final_subs)
new_terms.append(term.subs(subslist))
return Add(*new_terms)
class KeyPrinter(StrPrinter):
"""Printer for which only equal objects are equal in print"""
def _print_Dummy(self, expr):
return "(%s_%i)" % (expr.name, expr.dummy_index)
def __kprint(expr):
p = KeyPrinter()
return p.doprint(expr)
def _get_ordered_dummies(mul, verbose=False):
"""Returns all dummies in the mul sorted in canonical order
The purpose of the canonical ordering is that dummies can be substituted
consistently across terms with the result that equivalent terms can be
simplified.
It is not possible to determine if two terms are equivalent based solely on
the dummy order. However, a consistent substitution guided by the ordered
dummies should lead to trivially (non-)equivalent terms, thereby revealing
the equivalence. This also means that if two terms have identical sequences of
dummies, the (non-)equivalence should already be apparent.
Strategy
--------
The canoncial order is given by an arbitrary sorting rule. A sort key
is determined for each dummy as a tuple that depends on all factors where
the index is present. The dummies are thereby sorted according to the
contraction structure of the term, instead of sorting based solely on the
dummy symbol itself.
After all dummies in the term has been assigned a key, we check for identical
keys, i.e. unorderable dummies. If any are found, we call a specialized
method, _determine_ambiguous(), that will determine a unique order based
on recursive calls to _get_ordered_dummies().
Key description
---------------
A high level description of the sort key:
1. Range of the dummy index
2. Relation to external (non-dummy) indices
3. Position of the index in the first factor
4. Position of the index in the second factor
The sort key is a tuple with the following components:
1. A single character indicating the range of the dummy (above, below
or general.)
2. A list of strings with fully masked string representations of all
factors where the dummy is present. By masked, we mean that dummies
are represented by a symbol to indicate either below fermi, above or
general. No other information is displayed about the dummies at
this point. The list is sorted stringwise.
3. An integer number indicating the position of the index, in the first
factor as sorted in 2.
4. An integer number indicating the position of the index, in the second
factor as sorted in 2.
If a factor is either of type AntiSymmetricTensor or SqOperator, the index
position in items 3 and 4 is indicated as 'upper' or 'lower' only.
(Creation operators are considered upper and annihilation operators lower.)
If the masked factors are identical, the two factors cannot be ordered
unambiguously in item 2. In this case, items 3, 4 are left out. If several
indices are contracted between the unorderable factors, it will be handled by
_determine_ambiguous()
"""
# setup dicts to avoid repeated calculations in key()
args = Mul.make_args(mul)
fac_dum = dict([ (fac, fac.atoms(Dummy)) for fac in args] )
fac_repr = dict([ (fac, __kprint(fac)) for fac in args] )
all_dums = set().union(*fac_dum.values())
mask = {}
for d in all_dums:
if d.assumptions0.get('below_fermi'):
mask[d] = '0'
elif d.assumptions0.get('above_fermi'):
mask[d] = '1'
else:
mask[d] = '2'
dum_repr = {d: __kprint(d) for d in all_dums}
def _key(d):
dumstruct = [ fac for fac in fac_dum if d in fac_dum[fac] ]
other_dums = set().union(*[fac_dum[fac] for fac in dumstruct])
fac = dumstruct[-1]
if other_dums is fac_dum[fac]:
other_dums = fac_dum[fac].copy()
other_dums.remove(d)
masked_facs = [ fac_repr[fac] for fac in dumstruct ]
for d2 in other_dums:
masked_facs = [ fac.replace(dum_repr[d2], mask[d2])
for fac in masked_facs ]
all_masked = [ fac.replace(dum_repr[d], mask[d])
for fac in masked_facs ]
masked_facs = dict(list(zip(dumstruct, masked_facs)))
# dummies for which the ordering cannot be determined
if has_dups(all_masked):
all_masked.sort()
return mask[d], tuple(all_masked) # positions are ambiguous
# sort factors according to fully masked strings
keydict = dict(list(zip(dumstruct, all_masked)))
dumstruct.sort(key=lambda x: keydict[x])
all_masked.sort()
pos_val = []
for fac in dumstruct:
if isinstance(fac, AntiSymmetricTensor):
if d in fac.upper:
pos_val.append('u')
if d in fac.lower:
pos_val.append('l')
elif isinstance(fac, Creator):
pos_val.append('u')
elif isinstance(fac, Annihilator):
pos_val.append('l')
elif isinstance(fac, NO):
ops = [ op for op in fac if op.has(d) ]
for op in ops:
if isinstance(op, Creator):
pos_val.append('u')
else:
pos_val.append('l')
else:
# fallback to position in string representation
facpos = -1
while 1:
facpos = masked_facs[fac].find(dum_repr[d], facpos + 1)
if facpos == -1:
break
pos_val.append(facpos)
return (mask[d], tuple(all_masked), pos_val[0], pos_val[-1])
dumkey = dict(list(zip(all_dums, list(map(_key, all_dums)))))
result = sorted(all_dums, key=lambda x: dumkey[x])
if has_dups(iter(dumkey.values())):
# We have ambiguities
unordered = defaultdict(set)
for d, k in dumkey.items():
unordered[k].add(d)
for k in [ k for k in unordered if len(unordered[k]) < 2 ]:
del unordered[k]
unordered = [ unordered[k] for k in sorted(unordered) ]
result = _determine_ambiguous(mul, result, unordered)
return result
def _determine_ambiguous(term, ordered, ambiguous_groups):
# We encountered a term for which the dummy substitution is ambiguous.
# This happens for terms with 2 or more contractions between factors that
# cannot be uniquely ordered independent of summation indices. For
# example:
#
# Sum(p, q) v^{p, .}_{q, .}v^{q, .}_{p, .}
#
# Assuming that the indices represented by . are dummies with the
# same range, the factors cannot be ordered, and there is no
# way to determine a consistent ordering of p and q.
#
# The strategy employed here, is to relabel all unambiguous dummies with
# non-dummy symbols and call _get_ordered_dummies again. This procedure is
# applied to the entire term so there is a possibility that
# _determine_ambiguous() is called again from a deeper recursion level.
# break recursion if there are no ordered dummies
all_ambiguous = set()
for dummies in ambiguous_groups:
all_ambiguous |= dummies
all_ordered = set(ordered) - all_ambiguous
if not all_ordered:
# FIXME: If we arrive here, there are no ordered dummies. A method to
# handle this needs to be implemented. In order to return something
# useful nevertheless, we choose arbitrarily the first dummy and
# determine the rest from this one. This method is dependent on the
# actual dummy labels which violates an assumption for the
# canonicalization procedure. A better implementation is needed.
group = [ d for d in ordered if d in ambiguous_groups[0] ]
d = group[0]
all_ordered.add(d)
ambiguous_groups[0].remove(d)
stored_counter = _symbol_factory._counter
subslist = []
for d in [ d for d in ordered if d in all_ordered ]:
nondum = _symbol_factory._next()
subslist.append((d, nondum))
newterm = term.subs(subslist)
neworder = _get_ordered_dummies(newterm)
_symbol_factory._set_counter(stored_counter)
# update ordered list with new information
for group in ambiguous_groups:
ordered_group = [ d for d in neworder if d in group ]
ordered_group.reverse()
result = []
for d in ordered:
if d in group:
result.append(ordered_group.pop())
else:
result.append(d)
ordered = result
return ordered
class _SymbolFactory(object):
def __init__(self, label):
self._counterVar = 0
self._label = label
def _set_counter(self, value):
"""
Sets counter to value.
"""
self._counterVar = value
@property
def _counter(self):
"""
What counter is currently at.
"""
return self._counterVar
def _next(self):
"""
Generates the next symbols and increments counter by 1.
"""
s = Symbol("%s%i" % (self._label, self._counterVar))
self._counterVar += 1
return s
_symbol_factory = _SymbolFactory('_]"]_') # most certainly a unique label
@cacheit
def _get_contractions(string1, keep_only_fully_contracted=False):
"""
Returns Add-object with contracted terms.
Uses recursion to find all contractions. -- Internal helper function --
Will find nonzero contractions in string1 between indices given in
leftrange and rightrange.
"""
# Should we store current level of contraction?
if keep_only_fully_contracted and string1:
result = []
else:
result = [NO(Mul(*string1))]
for i in range(len(string1) - 1):
for j in range(i + 1, len(string1)):
c = contraction(string1[i], string1[j])
if c:
sign = (j - i + 1) % 2
if sign:
coeff = S.NegativeOne*c
else:
coeff = c
#
# Call next level of recursion
# ============================
#
# We now need to find more contractions among operators
#
# oplist = string1[:i]+ string1[i+1:j] + string1[j+1:]
#
# To prevent overcounting, we don't allow contractions
# we have already encountered. i.e. contractions between
# string1[:i] <---> string1[i+1:j]
# and string1[:i] <---> string1[j+1:].
#
# This leaves the case:
oplist = string1[i + 1:j] + string1[j + 1:]
if oplist:
result.append(coeff*NO(
Mul(*string1[:i])*_get_contractions( oplist,
keep_only_fully_contracted=keep_only_fully_contracted)))
else:
result.append(coeff*NO( Mul(*string1[:i])))
if keep_only_fully_contracted:
break # next iteration over i leaves leftmost operator string1[0] uncontracted
return Add(*result)
def wicks(e, **kw_args):
"""
Returns the normal ordered equivalent of an expression using Wicks Theorem.
Examples
========
>>> from sympy import symbols, Function, Dummy
>>> from sympy.physics.secondquant import wicks, F, Fd, NO
>>> p,q,r = symbols('p,q,r')
>>> wicks(Fd(p)*F(q)) # doctest: +SKIP
d(p, q)*d(q, _i) + NO(CreateFermion(p)*AnnihilateFermion(q))
By default, the expression is expanded:
>>> wicks(F(p)*(F(q)+F(r))) # doctest: +SKIP
NO(AnnihilateFermion(p)*AnnihilateFermion(q)) + NO(
AnnihilateFermion(p)*AnnihilateFermion(r))
With the keyword 'keep_only_fully_contracted=True', only fully contracted
terms are returned.
By request, the result can be simplified in the following order:
-- KroneckerDelta functions are evaluated
-- Dummy variables are substituted consistently across terms
>>> p, q, r = symbols('p q r', cls=Dummy)
>>> wicks(Fd(p)*(F(q)+F(r)), keep_only_fully_contracted=True) # doctest: +SKIP
KroneckerDelta(_i, _q)*KroneckerDelta(
_p, _q) + KroneckerDelta(_i, _r)*KroneckerDelta(_p, _r)
"""
if not e:
return S.Zero
opts = {
'simplify_kronecker_deltas': False,
'expand': True,
'simplify_dummies': False,
'keep_only_fully_contracted': False
}
opts.update(kw_args)
# check if we are already normally ordered
if isinstance(e, NO):
if opts['keep_only_fully_contracted']:
return S.Zero
else:
return e
elif isinstance(e, FermionicOperator):
if opts['keep_only_fully_contracted']:
return S.Zero
else:
return e
# break up any NO-objects, and evaluate commutators
e = e.doit(wicks=True)
# make sure we have only one term to consider
e = e.expand()
if isinstance(e, Add):
if opts['simplify_dummies']:
return substitute_dummies(Add(*[ wicks(term, **kw_args) for term in e.args]))
else:
return Add(*[ wicks(term, **kw_args) for term in e.args])
# For Mul-objects we can actually do something
if isinstance(e, Mul):
# we don't want to mess around with commuting part of Mul
# so we factorize it out before starting recursion
c_part = []
string1 = []
for factor in e.args:
if factor.is_commutative:
c_part.append(factor)
else:
string1.append(factor)
n = len(string1)
# catch trivial cases
if n == 0:
result = e
elif n == 1:
if opts['keep_only_fully_contracted']:
return S.Zero
else:
result = e
else: # non-trivial
if isinstance(string1[0], BosonicOperator):
raise NotImplementedError
string1 = tuple(string1)
# recursion over higher order contractions
result = _get_contractions(string1,
keep_only_fully_contracted=opts['keep_only_fully_contracted'] )
result = Mul(*c_part)*result
if opts['expand']:
result = result.expand()
if opts['simplify_kronecker_deltas']:
result = evaluate_deltas(result)
return result
# there was nothing to do
return e
class PermutationOperator(Expr):
"""
Represents the index permutation operator P(ij).
P(ij)*f(i)*g(j) = f(i)*g(j) - f(j)*g(i)
"""
is_commutative = True
def __new__(cls, i, j):
i, j = sorted(map(sympify, (i, j)), key=default_sort_key)
obj = Basic.__new__(cls, i, j)
return obj
def get_permuted(self, expr):
"""
Returns -expr with permuted indices.
>>> from sympy import symbols, Function
>>> from sympy.physics.secondquant import PermutationOperator
>>> p,q = symbols('p,q')
>>> f = Function('f')
>>> PermutationOperator(p,q).get_permuted(f(p,q))
-f(q, p)
"""
i = self.args[0]
j = self.args[1]
if expr.has(i) and expr.has(j):
tmp = Dummy()
expr = expr.subs(i, tmp)
expr = expr.subs(j, i)
expr = expr.subs(tmp, j)
return S.NegativeOne*expr
else:
return expr
def _latex(self, printer):
return "P(%s%s)" % self.args
def simplify_index_permutations(expr, permutation_operators):
"""
Performs simplification by introducing PermutationOperators where appropriate.
Schematically:
[abij] - [abji] - [baij] + [baji] -> P(ab)*P(ij)*[abij]
permutation_operators is a list of PermutationOperators to consider.
If permutation_operators=[P(ab),P(ij)] we will try to introduce the
permutation operators P(ij) and P(ab) in the expression. If there are other
possible simplifications, we ignore them.
>>> from sympy import symbols, Function
>>> from sympy.physics.secondquant import simplify_index_permutations
>>> from sympy.physics.secondquant import PermutationOperator
>>> p,q,r,s = symbols('p,q,r,s')
>>> f = Function('f')
>>> g = Function('g')
>>> expr = f(p)*g(q) - f(q)*g(p); expr
f(p)*g(q) - f(q)*g(p)
>>> simplify_index_permutations(expr,[PermutationOperator(p,q)])
f(p)*g(q)*PermutationOperator(p, q)
>>> PermutList = [PermutationOperator(p,q),PermutationOperator(r,s)]
>>> expr = f(p,r)*g(q,s) - f(q,r)*g(p,s) + f(q,s)*g(p,r) - f(p,s)*g(q,r)
>>> simplify_index_permutations(expr,PermutList)
f(p, r)*g(q, s)*PermutationOperator(p, q)*PermutationOperator(r, s)
"""
def _get_indices(expr, ind):
"""
Collects indices recursively in predictable order.
"""
result = []
for arg in expr.args:
if arg in ind:
result.append(arg)
else:
if arg.args:
result.extend(_get_indices(arg, ind))
return result
def _choose_one_to_keep(a, b, ind):
# we keep the one where indices in ind are in order ind[0] < ind[1]
return min(a, b, key=lambda x: default_sort_key(_get_indices(x, ind)))
expr = expr.expand()
if isinstance(expr, Add):
terms = set(expr.args)
for P in permutation_operators:
new_terms = set([])
on_hold = set([])
while terms:
term = terms.pop()
permuted = P.get_permuted(term)
if permuted in terms | on_hold:
try:
terms.remove(permuted)
except KeyError:
on_hold.remove(permuted)
keep = _choose_one_to_keep(term, permuted, P.args)
new_terms.add(P*keep)
else:
# Some terms must get a second chance because the permuted
# term may already have canonical dummy ordering. Then
# substitute_dummies() does nothing. However, the other
# term, if it exists, will be able to match with us.
permuted1 = permuted
permuted = substitute_dummies(permuted)
if permuted1 == permuted:
on_hold.add(term)
elif permuted in terms | on_hold:
try:
terms.remove(permuted)
except KeyError:
on_hold.remove(permuted)
keep = _choose_one_to_keep(term, permuted, P.args)
new_terms.add(P*keep)
else:
new_terms.add(term)
terms = new_terms | on_hold
return Add(*terms)
return expr
|
ec443a776ca2c92f8a11ba94ef4e0afdad84d4aaaade09660ea5db743cc4ba91
|
"""
This module defines tensors with abstract index notation.
The abstract index notation has been first formalized by Penrose.
Tensor indices are formal objects, with a tensor type; there is no
notion of index range, it is only possible to assign the dimension,
used to trace the Kronecker delta; the dimension can be a Symbol.
The Einstein summation convention is used.
The covariant indices are indicated with a minus sign in front of the index.
For instance the tensor ``t = p(a)*A(b,c)*q(-c)`` has the index ``c``
contracted.
A tensor expression ``t`` can be called; called with its
indices in sorted order it is equal to itself:
in the above example ``t(a, b) == t``;
one can call ``t`` with different indices; ``t(c, d) == p(c)*A(d,a)*q(-a)``.
The contracted indices are dummy indices, internally they have no name,
the indices being represented by a graph-like structure.
Tensors are put in canonical form using ``canon_bp``, which uses
the Butler-Portugal algorithm for canonicalization using the monoterm
symmetries of the tensors.
If there is a (anti)symmetric metric, the indices can be raised and
lowered when the tensor is put in canonical form.
"""
from __future__ import print_function, division
from collections import defaultdict
import operator
import itertools
from sympy import Rational, prod, Integer
from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, \
bsgs_direct_product, canonicalize, riemann_bsgs
from sympy.core import Basic, Expr, sympify, Add, Mul, S
from sympy.core.compatibility import string_types, reduce, range, SYMPY_INTS
from sympy.core.containers import Tuple, Dict
from sympy.core.decorators import deprecated
from sympy.core.symbol import Symbol, symbols
from sympy.core.sympify import CantSympify, _sympify
from sympy.core.operations import AssocOp
from sympy.matrices import eye
from sympy.utilities.exceptions import SymPyDeprecationWarning
import warnings
@deprecated(useinstead=".replace_with_arrays", issue=15276, deprecated_since_version="1.4")
def deprecate_data():
pass
class _IndexStructure(CantSympify):
"""
This class handles the indices (free and dummy ones). It contains the
algorithms to manage the dummy indices replacements and contractions of
free indices under multiplications of tensor expressions, as well as stuff
related to canonicalization sorting, getting the permutation of the
expression and so on. It also includes tools to get the ``TensorIndex``
objects corresponding to the given index structure.
"""
def __init__(self, free, dum, index_types, indices, canon_bp=False):
self.free = free
self.dum = dum
self.index_types = index_types
self.indices = indices
self._ext_rank = len(self.free) + 2*len(self.dum)
self.dum.sort(key=lambda x: x[0])
@staticmethod
def from_indices(*indices):
"""
Create a new ``_IndexStructure`` object from a list of ``indices``
``indices`` ``TensorIndex`` objects, the indices. Contractions are
detected upon construction.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, _IndexStructure
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz)
>>> _IndexStructure.from_indices(m0, m1, -m1, m3)
_IndexStructure([(m0, 0), (m3, 3)], [(1, 2)], [Lorentz, Lorentz, Lorentz, Lorentz])
In case of many components the same indices have slightly different
indexes:
>>> _IndexStructure.from_indices(m0, m1, -m1, m3)
_IndexStructure([(m0, 0), (m3, 3)], [(1, 2)], [Lorentz, Lorentz, Lorentz, Lorentz])
"""
free, dum = _IndexStructure._free_dum_from_indices(*indices)
index_types = [i.tensor_index_type for i in indices]
indices = _IndexStructure._replace_dummy_names(indices, free, dum)
return _IndexStructure(free, dum, index_types, indices)
@staticmethod
def from_components_free_dum(components, free, dum):
index_types = []
for component in components:
index_types.extend(component.index_types)
indices = _IndexStructure.generate_indices_from_free_dum_index_types(free, dum, index_types)
return _IndexStructure(free, dum, index_types, indices)
@staticmethod
def _free_dum_from_indices(*indices):
"""
Convert ``indices`` into ``free``, ``dum`` for single component tensor
``free`` list of tuples ``(index, pos, 0)``,
where ``pos`` is the position of index in
the list of indices formed by the component tensors
``dum`` list of tuples ``(pos_contr, pos_cov, 0, 0)``
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, \
_IndexStructure
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz)
>>> _IndexStructure._free_dum_from_indices(m0, m1, -m1, m3)
([(m0, 0), (m3, 3)], [(1, 2)])
"""
n = len(indices)
if n == 1:
return [(indices[0], 0)], []
# find the positions of the free indices and of the dummy indices
free = [True]*len(indices)
index_dict = {}
dum = []
for i, index in enumerate(indices):
name = index._name
typ = index.tensor_index_type
contr = index._is_up
if (name, typ) in index_dict:
# found a pair of dummy indices
is_contr, pos = index_dict[(name, typ)]
# check consistency and update free
if is_contr:
if contr:
raise ValueError('two equal contravariant indices in slots %d and %d' %(pos, i))
else:
free[pos] = False
free[i] = False
else:
if contr:
free[pos] = False
free[i] = False
else:
raise ValueError('two equal covariant indices in slots %d and %d' %(pos, i))
if contr:
dum.append((i, pos))
else:
dum.append((pos, i))
else:
index_dict[(name, typ)] = index._is_up, i
free = [(index, i) for i, index in enumerate(indices) if free[i]]
free.sort()
return free, dum
def get_indices(self):
"""
Get a list of indices, creating new tensor indices to complete dummy indices.
"""
return self.indices[:]
@staticmethod
def generate_indices_from_free_dum_index_types(free, dum, index_types):
indices = [None]*(len(free)+2*len(dum))
for idx, pos in free:
indices[pos] = idx
generate_dummy_name = _IndexStructure._get_generator_for_dummy_indices(free)
for pos1, pos2 in dum:
typ1 = index_types[pos1]
indname = generate_dummy_name(typ1)
indices[pos1] = TensorIndex(indname, typ1, True)
indices[pos2] = TensorIndex(indname, typ1, False)
return _IndexStructure._replace_dummy_names(indices, free, dum)
@staticmethod
def _get_generator_for_dummy_indices(free):
cdt = defaultdict(int)
# if the free indices have names with dummy_fmt, start with an
# index higher than those for the dummy indices
# to avoid name collisions
for indx, ipos in free:
if indx._name.split('_')[0] == indx.tensor_index_type.dummy_fmt[:-3]:
cdt[indx.tensor_index_type] = max(cdt[indx.tensor_index_type], int(indx._name.split('_')[1]) + 1)
def dummy_fmt_gen(tensor_index_type):
fmt = tensor_index_type.dummy_fmt
nd = cdt[tensor_index_type]
cdt[tensor_index_type] += 1
return fmt % nd
return dummy_fmt_gen
@staticmethod
def _replace_dummy_names(indices, free, dum):
dum.sort(key=lambda x: x[0])
new_indices = [ind for ind in indices]
assert len(indices) == len(free) + 2*len(dum)
generate_dummy_name = _IndexStructure._get_generator_for_dummy_indices(free)
for ipos1, ipos2 in dum:
typ1 = new_indices[ipos1].tensor_index_type
indname = generate_dummy_name(typ1)
new_indices[ipos1] = TensorIndex(indname, typ1, True)
new_indices[ipos2] = TensorIndex(indname, typ1, False)
return new_indices
def get_free_indices(self):
"""
Get a list of free indices.
"""
# get sorted indices according to their position:
free = sorted(self.free, key=lambda x: x[1])
return [i[0] for i in free]
def __str__(self):
return "_IndexStructure({0}, {1}, {2})".format(self.free, self.dum, self.index_types)
def __repr__(self):
return self.__str__()
def _get_sorted_free_indices_for_canon(self):
sorted_free = self.free[:]
sorted_free.sort(key=lambda x: x[0])
return sorted_free
def _get_sorted_dum_indices_for_canon(self):
return sorted(self.dum, key=lambda x: x[0])
def _get_lexicographically_sorted_index_types(self):
permutation = self.indices_canon_args()[0]
index_types = [None]*self._ext_rank
for i, it in enumerate(self.index_types):
index_types[permutation(i)] = it
return index_types
def _get_lexicographically_sorted_indices(self):
permutation = self.indices_canon_args()[0]
indices = [None]*self._ext_rank
for i, it in enumerate(self.indices):
indices[permutation(i)] = it
return indices
def perm2tensor(self, g, is_canon_bp=False):
"""
Returns a ``_IndexStructure`` instance corresponding to the permutation ``g``
``g`` permutation corresponding to the tensor in the representation
used in canonicalization
``is_canon_bp`` if True, then ``g`` is the permutation
corresponding to the canonical form of the tensor
"""
sorted_free = [i[0] for i in self._get_sorted_free_indices_for_canon()]
lex_index_types = self._get_lexicographically_sorted_index_types()
lex_indices = self._get_lexicographically_sorted_indices()
nfree = len(sorted_free)
rank = self._ext_rank
dum = [[None]*2 for i in range((rank - nfree)//2)]
free = []
index_types = [None]*rank
indices = [None]*rank
for i in range(rank):
gi = g[i]
index_types[i] = lex_index_types[gi]
indices[i] = lex_indices[gi]
if gi < nfree:
ind = sorted_free[gi]
assert index_types[i] == sorted_free[gi].tensor_index_type
free.append((ind, i))
else:
j = gi - nfree
idum, cov = divmod(j, 2)
if cov:
dum[idum][1] = i
else:
dum[idum][0] = i
dum = [tuple(x) for x in dum]
return _IndexStructure(free, dum, index_types, indices)
def indices_canon_args(self):
"""
Returns ``(g, dummies, msym, v)``, the entries of ``canonicalize``
see ``canonicalize`` in ``tensor_can.py``
"""
# to be called after sorted_components
from sympy.combinatorics.permutations import _af_new
n = self._ext_rank
g = [None]*n + [n, n+1]
# ordered indices: first the free indices, ordered by types
# then the dummy indices, ordered by types and contravariant before
# covariant
# g[position in tensor] = position in ordered indices
for i, (indx, ipos) in enumerate(self._get_sorted_free_indices_for_canon()):
g[ipos] = i
pos = len(self.free)
j = len(self.free)
dummies = []
prev = None
a = []
msym = []
for ipos1, ipos2 in self._get_sorted_dum_indices_for_canon():
g[ipos1] = j
g[ipos2] = j + 1
j += 2
typ = self.index_types[ipos1]
if typ != prev:
if a:
dummies.append(a)
a = [pos, pos + 1]
prev = typ
msym.append(typ.metric_antisym)
else:
a.extend([pos, pos + 1])
pos += 2
if a:
dummies.append(a)
return _af_new(g), dummies, msym
def components_canon_args(components):
numtyp = []
prev = None
for t in components:
if t == prev:
numtyp[-1][1] += 1
else:
prev = t
numtyp.append([prev, 1])
v = []
for h, n in numtyp:
if h._comm == 0 or h._comm == 1:
comm = h._comm
else:
comm = TensorManager.get_comm(h._comm, h._comm)
v.append((h._symmetry.base, h._symmetry.generators, n, comm))
return v
class _TensorDataLazyEvaluator(CantSympify):
"""
EXPERIMENTAL: do not rely on this class, it may change without deprecation
warnings in future versions of SymPy.
This object contains the logic to associate components data to a tensor
expression. Components data are set via the ``.data`` property of tensor
expressions, is stored inside this class as a mapping between the tensor
expression and the ``ndarray``.
Computations are executed lazily: whereas the tensor expressions can have
contractions, tensor products, and additions, components data are not
computed until they are accessed by reading the ``.data`` property
associated to the tensor expression.
"""
_substitutions_dict = dict()
_substitutions_dict_tensmul = dict()
def __getitem__(self, key):
dat = self._get(key)
if dat is None:
return None
from .array import NDimArray
if not isinstance(dat, NDimArray):
return dat
if dat.rank() == 0:
return dat[()]
elif dat.rank() == 1 and len(dat) == 1:
return dat[0]
return dat
def _get(self, key):
"""
Retrieve ``data`` associated with ``key``.
This algorithm looks into ``self._substitutions_dict`` for all
``TensorHead`` in the ``TensExpr`` (or just ``TensorHead`` if key is a
TensorHead instance). It reconstructs the components data that the
tensor expression should have by performing on components data the
operations that correspond to the abstract tensor operations applied.
Metric tensor is handled in a different manner: it is pre-computed in
``self._substitutions_dict_tensmul``.
"""
if key in self._substitutions_dict:
return self._substitutions_dict[key]
if isinstance(key, TensorHead):
return None
if isinstance(key, Tensor):
# special case to handle metrics. Metric tensors cannot be
# constructed through contraction by the metric, their
# components show if they are a matrix or its inverse.
signature = tuple([i.is_up for i in key.get_indices()])
srch = (key.component,) + signature
if srch in self._substitutions_dict_tensmul:
return self._substitutions_dict_tensmul[srch]
array_list = [self.data_from_tensor(key)]
return self.data_contract_dum(array_list, key.dum, key.ext_rank)
if isinstance(key, TensMul):
tensmul_args = key.args
if len(tensmul_args) == 1 and len(tensmul_args[0].components) == 1:
# special case to handle metrics. Metric tensors cannot be
# constructed through contraction by the metric, their
# components show if they are a matrix or its inverse.
signature = tuple([i.is_up for i in tensmul_args[0].get_indices()])
srch = (tensmul_args[0].components[0],) + signature
if srch in self._substitutions_dict_tensmul:
return self._substitutions_dict_tensmul[srch]
#data_list = [self.data_from_tensor(i) for i in tensmul_args if isinstance(i, TensExpr)]
data_list = [self.data_from_tensor(i) if isinstance(i, Tensor) else i.data for i in tensmul_args if isinstance(i, TensExpr)]
coeff = prod([i for i in tensmul_args if not isinstance(i, TensExpr)])
if all([i is None for i in data_list]):
return None
if any([i is None for i in data_list]):
raise ValueError("Mixing tensors with associated components "\
"data with tensors without components data")
data_result = self.data_contract_dum(data_list, key.dum, key.ext_rank)
return coeff*data_result
if isinstance(key, TensAdd):
data_list = []
free_args_list = []
for arg in key.args:
if isinstance(arg, TensExpr):
data_list.append(arg.data)
free_args_list.append([x[0] for x in arg.free])
else:
data_list.append(arg)
free_args_list.append([])
if all([i is None for i in data_list]):
return None
if any([i is None for i in data_list]):
raise ValueError("Mixing tensors with associated components "\
"data with tensors without components data")
sum_list = []
from .array import permutedims
for data, free_args in zip(data_list, free_args_list):
if len(free_args) < 2:
sum_list.append(data)
else:
free_args_pos = {y: x for x, y in enumerate(free_args)}
axes = [free_args_pos[arg] for arg in key.free_args]
sum_list.append(permutedims(data, axes))
return reduce(lambda x, y: x+y, sum_list)
return None
@staticmethod
def data_contract_dum(ndarray_list, dum, ext_rank):
from .array import tensorproduct, tensorcontraction, MutableDenseNDimArray
arrays = list(map(MutableDenseNDimArray, ndarray_list))
prodarr = tensorproduct(*arrays)
return tensorcontraction(prodarr, *dum)
def data_tensorhead_from_tensmul(self, data, tensmul, tensorhead):
"""
This method is used when assigning components data to a ``TensMul``
object, it converts components data to a fully contravariant ndarray,
which is then stored according to the ``TensorHead`` key.
"""
if data is None:
return None
return self._correct_signature_from_indices(
data,
tensmul.get_indices(),
tensmul.free,
tensmul.dum,
True)
def data_from_tensor(self, tensor):
"""
This method corrects the components data to the right signature
(covariant/contravariant) using the metric associated with each
``TensorIndexType``.
"""
tensorhead = tensor.component
if tensorhead.data is None:
return None
return self._correct_signature_from_indices(
tensorhead.data,
tensor.get_indices(),
tensor.free,
tensor.dum)
def _assign_data_to_tensor_expr(self, key, data):
if isinstance(key, TensAdd):
raise ValueError('cannot assign data to TensAdd')
# here it is assumed that `key` is a `TensMul` instance.
if len(key.components) != 1:
raise ValueError('cannot assign data to TensMul with multiple components')
tensorhead = key.components[0]
newdata = self.data_tensorhead_from_tensmul(data, key, tensorhead)
return tensorhead, newdata
def _check_permutations_on_data(self, tens, data):
from .array import permutedims
if isinstance(tens, TensorHead):
rank = tens.rank
generators = tens.symmetry.generators
elif isinstance(tens, Tensor):
rank = tens.rank
generators = tens.components[0].symmetry.generators
elif isinstance(tens, TensorIndexType):
rank = tens.metric.rank
generators = tens.metric.symmetry.generators
# Every generator is a permutation, check that by permuting the array
# by that permutation, the array will be the same, except for a
# possible sign change if the permutation admits it.
for gener in generators:
sign_change = +1 if (gener(rank) == rank) else -1
data_swapped = data
last_data = data
permute_axes = list(map(gener, list(range(rank))))
# the order of a permutation is the number of times to get the
# identity by applying that permutation.
for i in range(gener.order()-1):
data_swapped = permutedims(data_swapped, permute_axes)
# if any value in the difference array is non-zero, raise an error:
if any(last_data - sign_change*data_swapped):
raise ValueError("Component data symmetry structure error")
last_data = data_swapped
def __setitem__(self, key, value):
"""
Set the components data of a tensor object/expression.
Components data are transformed to the all-contravariant form and stored
with the corresponding ``TensorHead`` object. If a ``TensorHead`` object
cannot be uniquely identified, it will raise an error.
"""
data = _TensorDataLazyEvaluator.parse_data(value)
self._check_permutations_on_data(key, data)
# TensorHead and TensorIndexType can be assigned data directly, while
# TensMul must first convert data to a fully contravariant form, and
# assign it to its corresponding TensorHead single component.
if not isinstance(key, (TensorHead, TensorIndexType)):
key, data = self._assign_data_to_tensor_expr(key, data)
if isinstance(key, TensorHead):
for dim, indextype in zip(data.shape, key.index_types):
if indextype.data is None:
raise ValueError("index type {} has no components data"\
" associated (needed to raise/lower index)".format(indextype))
if indextype.dim is None:
continue
if dim != indextype.dim:
raise ValueError("wrong dimension of ndarray")
self._substitutions_dict[key] = data
def __delitem__(self, key):
del self._substitutions_dict[key]
def __contains__(self, key):
return key in self._substitutions_dict
def add_metric_data(self, metric, data):
"""
Assign data to the ``metric`` tensor. The metric tensor behaves in an
anomalous way when raising and lowering indices.
A fully covariant metric is the inverse transpose of the fully
contravariant metric (it is meant matrix inverse). If the metric is
symmetric, the transpose is not necessary and mixed
covariant/contravariant metrics are Kronecker deltas.
"""
# hard assignment, data should not be added to `TensorHead` for metric:
# the problem with `TensorHead` is that the metric is anomalous, i.e.
# raising and lowering the index means considering the metric or its
# inverse, this is not the case for other tensors.
self._substitutions_dict_tensmul[metric, True, True] = data
inverse_transpose = self.inverse_transpose_matrix(data)
# in symmetric spaces, the traspose is the same as the original matrix,
# the full covariant metric tensor is the inverse transpose, so this
# code will be able to handle non-symmetric metrics.
self._substitutions_dict_tensmul[metric, False, False] = inverse_transpose
# now mixed cases, these are identical to the unit matrix if the metric
# is symmetric.
m = data.tomatrix()
invt = inverse_transpose.tomatrix()
self._substitutions_dict_tensmul[metric, True, False] = m * invt
self._substitutions_dict_tensmul[metric, False, True] = invt * m
@staticmethod
def _flip_index_by_metric(data, metric, pos):
from .array import tensorproduct, tensorcontraction
mdim = metric.rank()
ddim = data.rank()
if pos == 0:
data = tensorcontraction(
tensorproduct(
metric,
data
),
(1, mdim+pos)
)
else:
data = tensorcontraction(
tensorproduct(
data,
metric
),
(pos, ddim)
)
return data
@staticmethod
def inverse_matrix(ndarray):
m = ndarray.tomatrix().inv()
return _TensorDataLazyEvaluator.parse_data(m)
@staticmethod
def inverse_transpose_matrix(ndarray):
m = ndarray.tomatrix().inv().T
return _TensorDataLazyEvaluator.parse_data(m)
@staticmethod
def _correct_signature_from_indices(data, indices, free, dum, inverse=False):
"""
Utility function to correct the values inside the components data
ndarray according to whether indices are covariant or contravariant.
It uses the metric matrix to lower values of covariant indices.
"""
# change the ndarray values according covariantness/contravariantness of the indices
# use the metric
for i, indx in enumerate(indices):
if not indx.is_up and not inverse:
data = _TensorDataLazyEvaluator._flip_index_by_metric(data, indx.tensor_index_type.data, i)
elif not indx.is_up and inverse:
data = _TensorDataLazyEvaluator._flip_index_by_metric(
data,
_TensorDataLazyEvaluator.inverse_matrix(indx.tensor_index_type.data),
i
)
return data
@staticmethod
def _sort_data_axes(old, new):
from .array import permutedims
new_data = old.data.copy()
old_free = [i[0] for i in old.free]
new_free = [i[0] for i in new.free]
for i in range(len(new_free)):
for j in range(i, len(old_free)):
if old_free[j] == new_free[i]:
old_free[i], old_free[j] = old_free[j], old_free[i]
new_data = permutedims(new_data, (i, j))
break
return new_data
@staticmethod
def add_rearrange_tensmul_parts(new_tensmul, old_tensmul):
def sorted_compo():
return _TensorDataLazyEvaluator._sort_data_axes(old_tensmul, new_tensmul)
_TensorDataLazyEvaluator._substitutions_dict[new_tensmul] = sorted_compo()
@staticmethod
def parse_data(data):
"""
Transform ``data`` to array. The parameter ``data`` may
contain data in various formats, e.g. nested lists, sympy ``Matrix``,
and so on.
Examples
========
>>> from sympy.tensor.tensor import _TensorDataLazyEvaluator
>>> _TensorDataLazyEvaluator.parse_data([1, 3, -6, 12])
[1, 3, -6, 12]
>>> _TensorDataLazyEvaluator.parse_data([[1, 2], [4, 7]])
[[1, 2], [4, 7]]
"""
from .array import MutableDenseNDimArray
if not isinstance(data, MutableDenseNDimArray):
if len(data) == 2 and hasattr(data[0], '__call__'):
data = MutableDenseNDimArray(data[0], data[1])
else:
data = MutableDenseNDimArray(data)
return data
_tensor_data_substitution_dict = _TensorDataLazyEvaluator()
class _TensorManager(object):
"""
Class to manage tensor properties.
Notes
=====
Tensors belong to tensor commutation groups; each group has a label
``comm``; there are predefined labels:
``0`` tensors commuting with any other tensor
``1`` tensors anticommuting among themselves
``2`` tensors not commuting, apart with those with ``comm=0``
Other groups can be defined using ``set_comm``; tensors in those
groups commute with those with ``comm=0``; by default they
do not commute with any other group.
"""
def __init__(self):
self._comm_init()
def _comm_init(self):
self._comm = [{} for i in range(3)]
for i in range(3):
self._comm[0][i] = 0
self._comm[i][0] = 0
self._comm[1][1] = 1
self._comm[2][1] = None
self._comm[1][2] = None
self._comm_symbols2i = {0:0, 1:1, 2:2}
self._comm_i2symbol = {0:0, 1:1, 2:2}
@property
def comm(self):
return self._comm
def comm_symbols2i(self, i):
"""
get the commutation group number corresponding to ``i``
``i`` can be a symbol or a number or a string
If ``i`` is not already defined its commutation group number
is set.
"""
if i not in self._comm_symbols2i:
n = len(self._comm)
self._comm.append({})
self._comm[n][0] = 0
self._comm[0][n] = 0
self._comm_symbols2i[i] = n
self._comm_i2symbol[n] = i
return n
return self._comm_symbols2i[i]
def comm_i2symbol(self, i):
"""
Returns the symbol corresponding to the commutation group number.
"""
return self._comm_i2symbol[i]
def set_comm(self, i, j, c):
"""
set the commutation parameter ``c`` for commutation groups ``i, j``
Parameters
==========
i, j : symbols representing commutation groups
c : group commutation number
Notes
=====
``i, j`` can be symbols, strings or numbers,
apart from ``0, 1`` and ``2`` which are reserved respectively
for commuting, anticommuting tensors and tensors not commuting
with any other group apart with the commuting tensors.
For the remaining cases, use this method to set the commutation rules;
by default ``c=None``.
The group commutation number ``c`` is assigned in correspondence
to the group commutation symbols; it can be
0 commuting
1 anticommuting
None no commutation property
Examples
========
``G`` and ``GH`` do not commute with themselves and commute with
each other; A is commuting.
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead, TensorManager
>>> Lorentz = TensorIndexType('Lorentz')
>>> i0,i1,i2,i3,i4 = tensor_indices('i0:5', Lorentz)
>>> A = tensorhead('A', [Lorentz], [[1]])
>>> G = tensorhead('G', [Lorentz], [[1]], 'Gcomm')
>>> GH = tensorhead('GH', [Lorentz], [[1]], 'GHcomm')
>>> TensorManager.set_comm('Gcomm', 'GHcomm', 0)
>>> (GH(i1)*G(i0)).canon_bp()
G(i0)*GH(i1)
>>> (G(i1)*G(i0)).canon_bp()
G(i1)*G(i0)
>>> (G(i1)*A(i0)).canon_bp()
A(i0)*G(i1)
"""
if c not in (0, 1, None):
raise ValueError('`c` can assume only the values 0, 1 or None')
if i not in self._comm_symbols2i:
n = len(self._comm)
self._comm.append({})
self._comm[n][0] = 0
self._comm[0][n] = 0
self._comm_symbols2i[i] = n
self._comm_i2symbol[n] = i
if j not in self._comm_symbols2i:
n = len(self._comm)
self._comm.append({})
self._comm[0][n] = 0
self._comm[n][0] = 0
self._comm_symbols2i[j] = n
self._comm_i2symbol[n] = j
ni = self._comm_symbols2i[i]
nj = self._comm_symbols2i[j]
self._comm[ni][nj] = c
self._comm[nj][ni] = c
def set_comms(self, *args):
"""
set the commutation group numbers ``c`` for symbols ``i, j``
Parameters
==========
args : sequence of ``(i, j, c)``
"""
for i, j, c in args:
self.set_comm(i, j, c)
def get_comm(self, i, j):
"""
Return the commutation parameter for commutation group numbers ``i, j``
see ``_TensorManager.set_comm``
"""
return self._comm[i].get(j, 0 if i == 0 or j == 0 else None)
def clear(self):
"""
Clear the TensorManager.
"""
self._comm_init()
TensorManager = _TensorManager()
class TensorIndexType(Basic):
"""
A TensorIndexType is characterized by its name and its metric.
Parameters
==========
name : name of the tensor type
metric : metric symmetry or metric object or ``None``
dim : dimension, it can be a symbol or an integer or ``None``
eps_dim : dimension of the epsilon tensor
dummy_fmt : name of the head of dummy indices
Attributes
==========
``name``
``metric_name`` : it is 'metric' or metric.name
``metric_antisym``
``metric`` : the metric tensor
``delta`` : ``Kronecker delta``
``epsilon`` : the ``Levi-Civita epsilon`` tensor
``dim``
``eps_dim``
``dummy_fmt``
``data`` : a property to add ``ndarray`` values, to work in a specified basis.
Notes
=====
The ``metric`` parameter can be:
``metric = False`` symmetric metric (in Riemannian geometry)
``metric = True`` antisymmetric metric (for spinor calculus)
``metric = None`` there is no metric
``metric`` can be an object having ``name`` and ``antisym`` attributes.
If there is a metric the metric is used to raise and lower indices.
In the case of antisymmetric metric, the following raising and
lowering conventions will be adopted:
``psi(a) = g(a, b)*psi(-b); chi(-a) = chi(b)*g(-b, -a)``
``g(-a, b) = delta(-a, b); g(b, -a) = -delta(a, -b)``
where ``delta(-a, b) = delta(b, -a)`` is the ``Kronecker delta``
(see ``TensorIndex`` for the conventions on indices).
If there is no metric it is not possible to raise or lower indices;
e.g. the index of the defining representation of ``SU(N)``
is 'covariant' and the conjugate representation is
'contravariant'; for ``N > 2`` they are linearly independent.
``eps_dim`` is by default equal to ``dim``, if the latter is an integer;
else it can be assigned (for use in naive dimensional regularization);
if ``eps_dim`` is not an integer ``epsilon`` is ``None``.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> Lorentz.metric
metric(Lorentz,Lorentz)
"""
def __new__(cls, name, metric=False, dim=None, eps_dim=None,
dummy_fmt=None):
if isinstance(name, string_types):
name = Symbol(name)
obj = Basic.__new__(cls, name, S.One if metric else S.Zero)
obj._name = str(name)
if not dummy_fmt:
obj._dummy_fmt = '%s_%%d' % obj.name
else:
obj._dummy_fmt = '%s_%%d' % dummy_fmt
if metric is None:
obj.metric_antisym = None
obj.metric = None
else:
if metric in (True, False, 0, 1):
metric_name = 'metric'
obj.metric_antisym = metric
else:
metric_name = metric.name
obj.metric_antisym = metric.antisym
sym2 = TensorSymmetry(get_symmetric_group_sgs(2, obj.metric_antisym))
S2 = TensorType([obj]*2, sym2)
obj.metric = S2(metric_name)
obj._dim = dim
obj._delta = obj.get_kronecker_delta()
obj._eps_dim = eps_dim if eps_dim else dim
obj._epsilon = obj.get_epsilon()
obj._autogenerated = []
return obj
@property
@deprecated(useinstead="TensorIndex", issue=12857, deprecated_since_version="1.1")
def auto_right(self):
if not hasattr(self, '_auto_right'):
self._auto_right = TensorIndex("auto_right", self)
return self._auto_right
@property
@deprecated(useinstead="TensorIndex", issue=12857, deprecated_since_version="1.1")
def auto_left(self):
if not hasattr(self, '_auto_left'):
self._auto_left = TensorIndex("auto_left", self)
return self._auto_left
@property
@deprecated(useinstead="TensorIndex", issue=12857, deprecated_since_version="1.1")
def auto_index(self):
if not hasattr(self, '_auto_index'):
self._auto_index = TensorIndex("auto_index", self)
return self._auto_index
@property
def data(self):
deprecate_data()
return _tensor_data_substitution_dict[self]
@data.setter
def data(self, data):
deprecate_data()
# This assignment is a bit controversial, should metric components be assigned
# to the metric only or also to the TensorIndexType object? The advantage here
# is the ability to assign a 1D array and transform it to a 2D diagonal array.
from .array import MutableDenseNDimArray
data = _TensorDataLazyEvaluator.parse_data(data)
if data.rank() > 2:
raise ValueError("data have to be of rank 1 (diagonal metric) or 2.")
if data.rank() == 1:
if self.dim is not None:
nda_dim = data.shape[0]
if nda_dim != self.dim:
raise ValueError("Dimension mismatch")
dim = data.shape[0]
newndarray = MutableDenseNDimArray.zeros(dim, dim)
for i, val in enumerate(data):
newndarray[i, i] = val
data = newndarray
dim1, dim2 = data.shape
if dim1 != dim2:
raise ValueError("Non-square matrix tensor.")
if self.dim is not None:
if self.dim != dim1:
raise ValueError("Dimension mismatch")
_tensor_data_substitution_dict[self] = data
_tensor_data_substitution_dict.add_metric_data(self.metric, data)
delta = self.get_kronecker_delta()
i1 = TensorIndex('i1', self)
i2 = TensorIndex('i2', self)
delta(i1, -i2).data = _TensorDataLazyEvaluator.parse_data(eye(dim1))
@data.deleter
def data(self):
deprecate_data()
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
if self.metric in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self.metric]
def _get_matrix_fmt(self, number):
return ("m" + self.dummy_fmt) % (number)
@property
def name(self):
return self._name
@property
def dim(self):
return self._dim
@property
def delta(self):
return self._delta
@property
def eps_dim(self):
return self._eps_dim
@property
def epsilon(self):
return self._epsilon
@property
def dummy_fmt(self):
return self._dummy_fmt
def get_kronecker_delta(self):
sym2 = TensorSymmetry(get_symmetric_group_sgs(2))
S2 = TensorType([self]*2, sym2)
delta = S2('KD')
return delta
def get_epsilon(self):
if not isinstance(self._eps_dim, (SYMPY_INTS, Integer)):
return None
sym = TensorSymmetry(get_symmetric_group_sgs(self._eps_dim, 1))
Sdim = TensorType([self]*self._eps_dim, sym)
epsilon = Sdim('Eps')
return epsilon
def __lt__(self, other):
return self.name < other.name
def __str__(self):
return self.name
__repr__ = __str__
def _components_data_full_destroy(self):
"""
EXPERIMENTAL: do not rely on this API method.
This destroys components data associated to the ``TensorIndexType``, if
any, specifically:
* metric tensor data
* Kronecker tensor data
"""
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
def delete_tensmul_data(key):
if key in _tensor_data_substitution_dict._substitutions_dict_tensmul:
del _tensor_data_substitution_dict._substitutions_dict_tensmul[key]
# delete metric data:
delete_tensmul_data((self.metric, True, True))
delete_tensmul_data((self.metric, True, False))
delete_tensmul_data((self.metric, False, True))
delete_tensmul_data((self.metric, False, False))
# delete delta tensor data:
delta = self.get_kronecker_delta()
if delta in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[delta]
class TensorIndex(Basic):
"""
Represents an abstract tensor index.
Parameters
==========
name : name of the index, or ``True`` if you want it to be automatically assigned
tensortype : ``TensorIndexType`` of the index
is_up : flag for contravariant index
Attributes
==========
``name``
``tensortype``
``is_up``
Notes
=====
Tensor indices are contracted with the Einstein summation convention.
An index can be in contravariant or in covariant form; in the latter
case it is represented prepending a ``-`` to the index name.
Dummy indices have a name with head given by ``tensortype._dummy_fmt``
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, TensorIndex, TensorSymmetry, TensorType, get_symmetric_group_sgs
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> i = TensorIndex('i', Lorentz); i
i
>>> sym1 = TensorSymmetry(*get_symmetric_group_sgs(1))
>>> S1 = TensorType([Lorentz], sym1)
>>> A, B = S1('A,B')
>>> A(i)*B(-i)
A(L_0)*B(-L_0)
If you want the index name to be automatically assigned, just put ``True``
in the ``name`` field, it will be generated using the reserved character
``_`` in front of its name, in order to avoid conflicts with possible
existing indices:
>>> i0 = TensorIndex(True, Lorentz)
>>> i0
_i0
>>> i1 = TensorIndex(True, Lorentz)
>>> i1
_i1
>>> A(i0)*B(-i1)
A(_i0)*B(-_i1)
>>> A(i0)*B(-i0)
A(L_0)*B(-L_0)
"""
def __new__(cls, name, tensortype, is_up=True):
if isinstance(name, string_types):
name_symbol = Symbol(name)
elif isinstance(name, Symbol):
name_symbol = name
elif name is True:
name = "_i{0}".format(len(tensortype._autogenerated))
name_symbol = Symbol(name)
tensortype._autogenerated.append(name_symbol)
else:
raise ValueError("invalid name")
is_up = sympify(is_up)
obj = Basic.__new__(cls, name_symbol, tensortype, is_up)
obj._name = str(name)
obj._tensor_index_type = tensortype
obj._is_up = is_up
return obj
@property
def name(self):
return self._name
@property
@deprecated(useinstead="tensor_index_type", issue=12857, deprecated_since_version="1.1")
def tensortype(self):
return self.tensor_index_type
@property
def tensor_index_type(self):
return self._tensor_index_type
@property
def is_up(self):
return self._is_up
def _print(self):
s = self._name
if not self._is_up:
s = '-%s' % s
return s
def __lt__(self, other):
return (self.tensor_index_type, self._name) < (other.tensor_index_type, other._name)
def __neg__(self):
t1 = TensorIndex(self.name, self.tensor_index_type,
(not self.is_up))
return t1
def tensor_indices(s, typ):
"""
Returns list of tensor indices given their names and their types
Parameters
==========
s : string of comma separated names of indices
typ : ``TensorIndexType`` of the indices
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> a, b, c, d = tensor_indices('a,b,c,d', Lorentz)
"""
if isinstance(s, string_types):
a = [x.name for x in symbols(s, seq=True)]
else:
raise ValueError('expecting a string')
tilist = [TensorIndex(i, typ) for i in a]
if len(tilist) == 1:
return tilist[0]
return tilist
class TensorSymmetry(Basic):
"""
Monoterm symmetry of a tensor
Parameters
==========
bsgs : tuple ``(base, sgs)`` BSGS of the symmetry of the tensor
Attributes
==========
``base`` : base of the BSGS
``generators`` : generators of the BSGS
``rank`` : rank of the tensor
Notes
=====
A tensor can have an arbitrary monoterm symmetry provided by its BSGS.
Multiterm symmetries, like the cyclic symmetry of the Riemann tensor,
are not covered.
See Also
========
sympy.combinatorics.tensor_can.get_symmetric_group_sgs
Examples
========
Define a symmetric tensor
>>> from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, TensorType, get_symmetric_group_sgs
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> sym2 = TensorSymmetry(get_symmetric_group_sgs(2))
>>> S2 = TensorType([Lorentz]*2, sym2)
>>> V = S2('V')
"""
def __new__(cls, *args, **kw_args):
if len(args) == 1:
base, generators = args[0]
elif len(args) == 2:
base, generators = args
else:
raise TypeError("bsgs required, either two separate parameters or one tuple")
if not isinstance(base, Tuple):
base = Tuple(*base)
if not isinstance(generators, Tuple):
generators = Tuple(*generators)
obj = Basic.__new__(cls, base, generators, **kw_args)
return obj
@property
def base(self):
return self.args[0]
@property
def generators(self):
return self.args[1]
@property
def rank(self):
return self.args[1][0].size - 2
def tensorsymmetry(*args):
"""
Return a ``TensorSymmetry`` object.
One can represent a tensor with any monoterm slot symmetry group
using a BSGS.
``args`` can be a BSGS
``args[0]`` base
``args[1]`` sgs
Usually tensors are in (direct products of) representations
of the symmetric group;
``args`` can be a list of lists representing the shapes of Young tableaux
Notes
=====
For instance:
``[[1]]`` vector
``[[1]*n]`` symmetric tensor of rank ``n``
``[[n]]`` antisymmetric tensor of rank ``n``
``[[2, 2]]`` monoterm slot symmetry of the Riemann tensor
``[[1],[1]]`` vector*vector
``[[2],[1],[1]`` (antisymmetric tensor)*vector*vector
Notice that with the shape ``[2, 2]`` we associate only the monoterm
symmetries of the Riemann tensor; this is an abuse of notation,
since the shape ``[2, 2]`` corresponds usually to the irreducible
representation characterized by the monoterm symmetries and by the
cyclic symmetry.
Examples
========
Symmetric tensor using a Young tableau
>>> from sympy.tensor.tensor import TensorIndexType, TensorType, tensorsymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> sym2 = tensorsymmetry([1, 1])
>>> S2 = TensorType([Lorentz]*2, sym2)
>>> V = S2('V')
Symmetric tensor using a ``BSGS`` (base, strong generator set)
>>> from sympy.tensor.tensor import get_symmetric_group_sgs
>>> sym2 = tensorsymmetry(*get_symmetric_group_sgs(2))
>>> S2 = TensorType([Lorentz]*2, sym2)
>>> V = S2('V')
"""
from sympy.combinatorics import Permutation
def tableau2bsgs(a):
if len(a) == 1:
# antisymmetric vector
n = a[0]
bsgs = get_symmetric_group_sgs(n, 1)
else:
if all(x == 1 for x in a):
# symmetric vector
n = len(a)
bsgs = get_symmetric_group_sgs(n)
elif a == [2, 2]:
bsgs = riemann_bsgs
else:
raise NotImplementedError
return bsgs
if not args:
return TensorSymmetry(Tuple(), Tuple(Permutation(1)))
if len(args) == 2 and isinstance(args[1][0], Permutation):
return TensorSymmetry(args)
base, sgs = tableau2bsgs(args[0])
for a in args[1:]:
basex, sgsx = tableau2bsgs(a)
base, sgs = bsgs_direct_product(base, sgs, basex, sgsx)
return TensorSymmetry(Tuple(base, sgs))
class TensorType(Basic):
"""
Class of tensor types.
Parameters
==========
index_types : list of ``TensorIndexType`` of the tensor indices
symmetry : ``TensorSymmetry`` of the tensor
Attributes
==========
``index_types``
``symmetry``
``types`` : list of ``TensorIndexType`` without repetitions
Examples
========
Define a symmetric tensor
>>> from sympy.tensor.tensor import TensorIndexType, tensorsymmetry, TensorType
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> sym2 = tensorsymmetry([1, 1])
>>> S2 = TensorType([Lorentz]*2, sym2)
>>> V = S2('V')
"""
is_commutative = False
def __new__(cls, index_types, symmetry, **kw_args):
assert symmetry.rank == len(index_types)
obj = Basic.__new__(cls, Tuple(*index_types), symmetry, **kw_args)
return obj
@property
def index_types(self):
return self.args[0]
@property
def symmetry(self):
return self.args[1]
@property
def types(self):
return sorted(set(self.index_types), key=lambda x: x.name)
def __str__(self):
return 'TensorType(%s)' % ([str(x) for x in self.index_types])
def __call__(self, s, comm=0):
"""
Return a TensorHead object or a list of TensorHead objects.
``s`` name or string of names
``comm``: commutation group number
see ``_TensorManager.set_comm``
Examples
========
Define symmetric tensors ``V``, ``W`` and ``G``, respectively
commuting, anticommuting and with no commutation symmetry
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorsymmetry, TensorType, canon_bp
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> a, b = tensor_indices('a,b', Lorentz)
>>> sym2 = tensorsymmetry([1]*2)
>>> S2 = TensorType([Lorentz]*2, sym2)
>>> V = S2('V')
>>> W = S2('W', 1)
>>> G = S2('G', 2)
>>> canon_bp(V(a, b)*V(-b, -a))
V(L_0, L_1)*V(-L_0, -L_1)
>>> canon_bp(W(a, b)*W(-b, -a))
0
"""
if isinstance(s, string_types):
names = [x.name for x in symbols(s, seq=True)]
else:
raise ValueError('expecting a string')
if len(names) == 1:
return TensorHead(names[0], self, comm)
else:
return [TensorHead(name, self, comm) for name in names]
def tensorhead(name, typ, sym=None, comm=0):
"""
Function generating tensorhead(s).
Parameters
==========
name : name or sequence of names (as in ``symbol``)
typ : index types
sym : same as ``*args`` in ``tensorsymmetry``
comm : commutation group number
see ``_TensorManager.set_comm``
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> a, b = tensor_indices('a,b', Lorentz)
>>> A = tensorhead('A', [Lorentz]*2, [[1]*2])
>>> A(a, -b)
A(a, -b)
If no symmetry parameter is provided, assume there are not index
symmetries:
>>> B = tensorhead('B', [Lorentz, Lorentz])
>>> B(a, -b)
B(a, -b)
"""
if sym is None:
sym = [[1] for i in range(len(typ))]
sym = tensorsymmetry(*sym)
S = TensorType(typ, sym)
th = S(name, comm)
return th
class TensorHead(Basic):
r"""
Tensor head of the tensor
Parameters
==========
name : name of the tensor
typ : list of TensorIndexType
comm : commutation group number
Attributes
==========
``name``
``index_types``
``rank``
``types`` : equal to ``typ.types``
``symmetry`` : equal to ``typ.symmetry``
``comm`` : commutation group
Notes
=====
A ``TensorHead`` belongs to a commutation group, defined by a
symbol on number ``comm`` (see ``_TensorManager.set_comm``);
tensors in a commutation group have the same commutation properties;
by default ``comm`` is ``0``, the group of the commuting tensors.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensorhead, TensorType
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> A = tensorhead('A', [Lorentz, Lorentz], [[1],[1]])
Examples with ndarray values, the components data assigned to the
``TensorHead`` object are assumed to be in a fully-contravariant
representation. In case it is necessary to assign components data which
represents the values of a non-fully covariant tensor, see the other
examples.
>>> from sympy.tensor.tensor import tensor_indices, tensorhead
>>> from sympy import diag
>>> i0, i1 = tensor_indices('i0:2', Lorentz)
Specify a replacement dictionary to keep track of the arrays to use for
replacements in the tensorial expression. The ``TensorIndexType`` is
associated to the metric used for contractions (in fully covariant form):
>>> repl = {Lorentz: diag(1, -1, -1, -1)}
Let's see some examples of working with components with the electromagnetic
tensor:
>>> from sympy import symbols
>>> Ex, Ey, Ez, Bx, By, Bz = symbols('E_x E_y E_z B_x B_y B_z')
>>> c = symbols('c', positive=True)
Let's define `F`, an antisymmetric tensor, we have to assign an
antisymmetric matrix to it, because `[[2]]` stands for the Young tableau
representation of an antisymmetric set of two elements:
>>> F = tensorhead('F', [Lorentz, Lorentz], [[2]])
Let's update the dictionary to contain the matrix to use in the
replacements:
>>> repl.update({F(-i0, -i1): [
... [0, Ex/c, Ey/c, Ez/c],
... [-Ex/c, 0, -Bz, By],
... [-Ey/c, Bz, 0, -Bx],
... [-Ez/c, -By, Bx, 0]]})
Now it is possible to retrieve the contravariant form of the Electromagnetic
tensor:
>>> F(i0, i1).replace_with_arrays(repl, [i0, i1])
[[0, -E_x/c, -E_y/c, -E_z/c], [E_x/c, 0, -B_z, B_y], [E_y/c, B_z, 0, -B_x], [E_z/c, -B_y, B_x, 0]]
and the mixed contravariant-covariant form:
>>> F(i0, -i1).replace_with_arrays(repl, [i0, -i1])
[[0, E_x/c, E_y/c, E_z/c], [E_x/c, 0, B_z, -B_y], [E_y/c, -B_z, 0, B_x], [E_z/c, B_y, -B_x, 0]]
Energy-momentum of a particle may be represented as:
>>> from sympy import symbols
>>> P = tensorhead('P', [Lorentz], [[1]])
>>> E, px, py, pz = symbols('E p_x p_y p_z', positive=True)
>>> repl.update({P(i0): [E, px, py, pz]})
The contravariant and covariant components are, respectively:
>>> P(i0).replace_with_arrays(repl, [i0])
[E, p_x, p_y, p_z]
>>> P(-i0).replace_with_arrays(repl, [-i0])
[E, -p_x, -p_y, -p_z]
The contraction of a 1-index tensor by itself:
>>> expr = P(i0)*P(-i0)
>>> expr.replace_with_arrays(repl, [])
E**2 - p_x**2 - p_y**2 - p_z**2
"""
is_commutative = False
def __new__(cls, name, typ, comm=0, **kw_args):
if isinstance(name, string_types):
name_symbol = Symbol(name)
elif isinstance(name, Symbol):
name_symbol = name
else:
raise ValueError("invalid name")
comm2i = TensorManager.comm_symbols2i(comm)
obj = Basic.__new__(cls, name_symbol, typ, **kw_args)
obj._name = obj.args[0].name
obj._rank = len(obj.index_types)
obj._symmetry = typ.symmetry
obj._comm = comm2i
return obj
@property
def name(self):
return self._name
@property
def rank(self):
return self._rank
@property
def symmetry(self):
return self._symmetry
@property
def typ(self):
return self.args[1]
@property
def comm(self):
return self._comm
@property
def types(self):
return self.args[1].types[:]
@property
def index_types(self):
return self.args[1].index_types[:]
def __lt__(self, other):
return (self.name, self.index_types) < (other.name, other.index_types)
def commutes_with(self, other):
"""
Returns ``0`` if ``self`` and ``other`` commute, ``1`` if they anticommute.
Returns ``None`` if ``self`` and ``other`` neither commute nor anticommute.
"""
r = TensorManager.get_comm(self._comm, other._comm)
return r
def _print(self):
return '%s(%s)' %(self.name, ','.join([str(x) for x in self.index_types]))
def __call__(self, *indices, **kw_args):
"""
Returns a tensor with indices.
There is a special behavior in case of indices denoted by ``True``,
they are considered auto-matrix indices, their slots are automatically
filled, and confer to the tensor the behavior of a matrix or vector
upon multiplication with another tensor containing auto-matrix indices
of the same ``TensorIndexType``. This means indices get summed over the
same way as in matrix multiplication. For matrix behavior, define two
auto-matrix indices, for vector behavior define just one.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> a, b = tensor_indices('a,b', Lorentz)
>>> A = tensorhead('A', [Lorentz]*2, [[1]*2])
>>> t = A(a, -b)
>>> t
A(a, -b)
"""
tensor = Tensor(self, indices, **kw_args)
return tensor.doit()
def __pow__(self, other):
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
if self.data is None:
raise ValueError("No power on abstract tensors.")
deprecate_data()
from .array import tensorproduct, tensorcontraction
metrics = [_.data for _ in self.args[1].args[0]]
marray = self.data
marraydim = marray.rank()
for metric in metrics:
marray = tensorproduct(marray, metric, marray)
marray = tensorcontraction(marray, (0, marraydim), (marraydim+1, marraydim+2))
return marray ** (Rational(1, 2) * other)
@property
def data(self):
deprecate_data()
return _tensor_data_substitution_dict[self]
@data.setter
def data(self, data):
deprecate_data()
_tensor_data_substitution_dict[self] = data
@data.deleter
def data(self):
deprecate_data()
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
def __iter__(self):
deprecate_data()
return self.data.__iter__()
def _components_data_full_destroy(self):
"""
EXPERIMENTAL: do not rely on this API method.
Destroy components data associated to the ``TensorHead`` object, this
checks for attached components data, and destroys components data too.
"""
# do not garbage collect Kronecker tensor (it should be done by
# ``TensorIndexType`` garbage collection)
if self.name == "KD":
return
# the data attached to a tensor must be deleted only by the TensorHead
# destructor. If the TensorHead is deleted, it means that there are no
# more instances of that tensor anywhere.
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
def _get_argtree_pos(expr, pos):
for p in pos:
expr = expr.args[p]
return expr
class TensExpr(Expr):
"""
Abstract base class for tensor expressions
Notes
=====
A tensor expression is an expression formed by tensors;
currently the sums of tensors are distributed.
A ``TensExpr`` can be a ``TensAdd`` or a ``TensMul``.
``TensAdd`` objects are put in canonical form using the Butler-Portugal
algorithm for canonicalization under monoterm symmetries.
``TensMul`` objects are formed by products of component tensors,
and include a coefficient, which is a SymPy expression.
In the internal representation contracted indices are represented
by ``(ipos1, ipos2, icomp1, icomp2)``, where ``icomp1`` is the position
of the component tensor with contravariant index, ``ipos1`` is the
slot which the index occupies in that component tensor.
Contracted indices are therefore nameless in the internal representation.
"""
_op_priority = 12.0
is_commutative = False
def __neg__(self):
return self*S.NegativeOne
def __abs__(self):
raise NotImplementedError
def __add__(self, other):
return TensAdd(self, other).doit()
def __radd__(self, other):
return TensAdd(other, self).doit()
def __sub__(self, other):
return TensAdd(self, -other).doit()
def __rsub__(self, other):
return TensAdd(other, -self).doit()
def __mul__(self, other):
"""
Multiply two tensors using Einstein summation convention.
If the two tensors have an index in common, one contravariant
and the other covariant, in their product the indices are summed
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensorhead('p,q', [Lorentz], [[1]])
>>> t1 = p(m0)
>>> t2 = q(-m0)
>>> t1*t2
p(L_0)*q(-L_0)
"""
return TensMul(self, other).doit()
def __rmul__(self, other):
return TensMul(other, self).doit()
def __div__(self, other):
other = _sympify(other)
if isinstance(other, TensExpr):
raise ValueError('cannot divide by a tensor')
return TensMul(self, S.One/other).doit()
def __rdiv__(self, other):
raise ValueError('cannot divide by a tensor')
def __pow__(self, other):
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
if self.data is None:
raise ValueError("No power without ndarray data.")
deprecate_data()
from .array import tensorproduct, tensorcontraction
free = self.free
marray = self.data
mdim = marray.rank()
for metric in free:
marray = tensorcontraction(
tensorproduct(
marray,
metric[0].tensor_index_type.data,
marray),
(0, mdim), (mdim+1, mdim+2)
)
return marray ** (Rational(1, 2) * other)
def __rpow__(self, other):
raise NotImplementedError
__truediv__ = __div__
__rtruediv__ = __rdiv__
def fun_eval(self, *index_tuples):
"""
Return a tensor with free indices substituted according to ``index_tuples``
``index_types`` list of tuples ``(old_index, new_index)``
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz)
>>> A, B = tensorhead('A,B', [Lorentz]*2, [[1]*2])
>>> t = A(i, k)*B(-k, -j); t
A(i, L_0)*B(-L_0, -j)
>>> t.fun_eval((i, k),(-j, l))
A(k, L_0)*B(-L_0, l)
"""
expr = self.xreplace(dict(index_tuples))
expr = expr.replace(lambda x: isinstance(x, Tensor), lambda x: x.args[0](*x.args[1]))
# For some reason, `TensMul` gets replaced by `Mul`, correct it:
expr = expr.replace(lambda x: isinstance(x, (Mul, TensMul)), lambda x: TensMul(*x.args).doit())
return expr
def get_matrix(self):
"""
DEPRECATED: do not use.
Returns ndarray components data as a matrix, if components data are
available and ndarray dimension does not exceed 2.
"""
from sympy import Matrix
deprecate_data()
if 0 < self.rank <= 2:
rows = self.data.shape[0]
columns = self.data.shape[1] if self.rank == 2 else 1
if self.rank == 2:
mat_list = [] * rows
for i in range(rows):
mat_list.append([])
for j in range(columns):
mat_list[i].append(self[i, j])
else:
mat_list = [None] * rows
for i in range(rows):
mat_list[i] = self[i]
return Matrix(mat_list)
else:
raise NotImplementedError(
"missing multidimensional reduction to matrix.")
@staticmethod
def _get_indices_permutation(indices1, indices2):
return [indices1.index(i) for i in indices2]
def expand(self, **hints):
return _expand(self, **hints).doit()
def _expand(self, **kwargs):
return self
def _get_free_indices_set(self):
indset = set([])
for arg in self.args:
if isinstance(arg, TensExpr):
indset.update(arg._get_free_indices_set())
return indset
def _get_dummy_indices_set(self):
indset = set([])
for arg in self.args:
if isinstance(arg, TensExpr):
indset.update(arg._get_dummy_indices_set())
return indset
def _get_indices_set(self):
indset = set([])
for arg in self.args:
if isinstance(arg, TensExpr):
indset.update(arg._get_indices_set())
return indset
@property
def _iterate_dummy_indices(self):
dummy_set = self._get_dummy_indices_set()
def recursor(expr, pos):
if isinstance(expr, TensorIndex):
if expr in dummy_set:
yield (expr, pos)
elif isinstance(expr, (Tuple, TensExpr)):
for p, arg in enumerate(expr.args):
for i in recursor(arg, pos+(p,)):
yield i
return recursor(self, ())
@property
def _iterate_free_indices(self):
free_set = self._get_free_indices_set()
def recursor(expr, pos):
if isinstance(expr, TensorIndex):
if expr in free_set:
yield (expr, pos)
elif isinstance(expr, (Tuple, TensExpr)):
for p, arg in enumerate(expr.args):
for i in recursor(arg, pos+(p,)):
yield i
return recursor(self, ())
@property
def _iterate_indices(self):
def recursor(expr, pos):
if isinstance(expr, TensorIndex):
yield (expr, pos)
elif isinstance(expr, (Tuple, TensExpr)):
for p, arg in enumerate(expr.args):
for i in recursor(arg, pos+(p,)):
yield i
return recursor(self, ())
@staticmethod
def _match_indices_with_other_tensor(array, free_ind1, free_ind2, replacement_dict):
from .array import tensorcontraction, tensorproduct, permutedims
index_types1 = [i.tensor_index_type for i in free_ind1]
# Check if variance of indices needs to be fixed:
pos2up = []
pos2down = []
free2remaining = free_ind2[:]
for pos1, index1 in enumerate(free_ind1):
if index1 in free2remaining:
pos2 = free2remaining.index(index1)
free2remaining[pos2] = None
continue
if -index1 in free2remaining:
pos2 = free2remaining.index(-index1)
free2remaining[pos2] = None
free_ind2[pos2] = index1
if index1.is_up:
pos2up.append(pos2)
else:
pos2down.append(pos2)
else:
index2 = free2remaining[pos1]
if index2 is None:
raise ValueError("incompatible indices: %s and %s" % (free_ind1, free_ind2))
free2remaining[pos1] = None
free_ind2[pos1] = index1
if index1.is_up ^ index2.is_up:
if index1.is_up:
pos2up.append(pos1)
else:
pos2down.append(pos1)
if len(set(free_ind1) & set(free_ind2)) < len(free_ind1):
raise ValueError("incompatible indices: %s and %s" % (free_ind1, free_ind2))
# TODO: add possibility of metric after (spinors)
def contract_and_permute(metric, array, pos):
array = tensorcontraction(tensorproduct(metric, array), (1, 2+pos))
permu = list(range(len(free_ind1)))
permu[0], permu[pos] = permu[pos], permu[0]
return permutedims(array, permu)
# Raise indices:
for pos in pos2up:
metric = replacement_dict[index_types1[pos]]
metric_inverse = _TensorDataLazyEvaluator.inverse_matrix(metric)
array = contract_and_permute(metric_inverse, array, pos)
# Lower indices:
for pos in pos2down:
metric = replacement_dict[index_types1[pos]]
array = contract_and_permute(metric, array, pos)
if free_ind1:
permutation = TensExpr._get_indices_permutation(free_ind2, free_ind1)
array = permutedims(array, permutation)
if hasattr(array, "rank") and array.rank() == 0:
array = array[()]
return free_ind2, array
def replace_with_arrays(self, replacement_dict, indices):
"""
Replace the tensorial expressions with arrays. The final array will
correspond to the N-dimensional array with indices arranged according
to ``indices``.
Parameters
==========
replacement_dict
dictionary containing the replacement rules for tensors.
indices
the index order with respect to which the array is read.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices
>>> from sympy.tensor.tensor import tensorhead
>>> from sympy import symbols, diag
>>> L = TensorIndexType("L")
>>> i, j = tensor_indices("i j", L)
>>> A = tensorhead("A", [L], [[1]])
>>> A(i).replace_with_arrays({A(i): [1, 2]}, [i])
[1, 2]
>>> expr = A(i)*A(j)
>>> expr.replace_with_arrays({A(i): [1, 2]}, [i, j])
[[1, 2], [2, 4]]
For contractions, specify the metric of the ``TensorIndexType``, which
in this case is ``L``, in its covariant form:
>>> expr = A(i)*A(-i)
>>> expr.replace_with_arrays({A(i): [1, 2], L: diag(1, -1)}, [])
-3
Symmetrization of an array:
>>> H = tensorhead("H", [L, L], [[1], [1]])
>>> a, b, c, d = symbols("a b c d")
>>> expr = H(i, j)/2 + H(j, i)/2
>>> expr.replace_with_arrays({H(i, j): [[a, b], [c, d]]}, [i, j])
[[a, b/2 + c/2], [b/2 + c/2, d]]
Anti-symmetrization of an array:
>>> expr = H(i, j)/2 - H(j, i)/2
>>> repl = {H(i, j): [[a, b], [c, d]]}
>>> expr.replace_with_arrays(repl, [i, j])
[[0, b/2 - c/2], [-b/2 + c/2, 0]]
The same expression can be read as the transpose by inverting ``i`` and
``j``:
>>> expr.replace_with_arrays(repl, [j, i])
[[0, -b/2 + c/2], [b/2 - c/2, 0]]
"""
from .array import Array
replacement_dict = {tensor: Array(array) for tensor, array in replacement_dict.items()}
# Check dimensions of replaced arrays:
for tensor, array in replacement_dict.items():
if isinstance(tensor, TensorIndexType):
expected_shape = [tensor.dim for i in range(2)]
else:
expected_shape = [index_type.dim for index_type in tensor.index_types]
if len(expected_shape) != array.rank() or (not all([dim1 == dim2 if
dim1 is not None else True for dim1, dim2 in zip(expected_shape,
array.shape)])):
raise ValueError("shapes for tensor %s expected to be %s, "\
"replacement array shape is %s" % (tensor, expected_shape,
array.shape))
ret_indices, array = self._extract_data(replacement_dict)
last_indices, array = self._match_indices_with_other_tensor(array, indices, ret_indices, replacement_dict)
#permutation = self._get_indices_permutation(indices, ret_indices)
#if not hasattr(array, "rank"):
#return array
#if array.rank() == 0:
#array = array[()]
#return array
#array = permutedims(array, permutation)
return array
def _check_add_Sum(self, expr, index_symbols):
from sympy import Sum
indices = self.get_indices()
dum = self.dum
sum_indices = [ (index_symbols[i], 0,
indices[i].tensor_index_type.dim-1) for i, j in dum]
if sum_indices:
expr = Sum(expr, *sum_indices)
return expr
class TensAdd(TensExpr, AssocOp):
"""
Sum of tensors
Parameters
==========
free_args : list of the free indices
Attributes
==========
``args`` : tuple of addends
``rank`` : rank of the tensor
``free_args`` : list of the free indices in sorted order
Notes
=====
Sum of more than one tensor are put automatically in canonical form.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensorhead, tensor_indices
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> a, b = tensor_indices('a,b', Lorentz)
>>> p, q = tensorhead('p,q', [Lorentz], [[1]])
>>> t = p(a) + q(a); t
p(a) + q(a)
>>> t(b)
p(b) + q(b)
Examples with components data added to the tensor expression:
>>> from sympy import symbols, diag
>>> x, y, z, t = symbols("x y z t")
>>> repl = {}
>>> repl[Lorentz] = diag(1, -1, -1, -1)
>>> repl[p(a)] = [1, 2, 3, 4]
>>> repl[q(a)] = [x, y, z, t]
The following are: 2**2 - 3**2 - 2**2 - 7**2 ==> -58
>>> expr = p(a) + q(a)
>>> expr.replace_with_arrays(repl, [a])
[x + 1, y + 2, z + 3, t + 4]
"""
def __new__(cls, *args, **kw_args):
args = [_sympify(x) for x in args if x]
args = TensAdd._tensAdd_flatten(args)
obj = Basic.__new__(cls, *args, **kw_args)
return obj
def doit(self, **kwargs):
deep = kwargs.get('deep', True)
if deep:
args = [arg.doit(**kwargs) for arg in self.args]
else:
args = self.args
if not args:
return S.Zero
if len(args) == 1 and not isinstance(args[0], TensExpr):
return args[0]
# now check that all addends have the same indices:
TensAdd._tensAdd_check(args)
# if TensAdd has only 1 element in its `args`:
if len(args) == 1: # and isinstance(args[0], TensMul):
return args[0]
# Remove zeros:
args = [x for x in args if x]
# if there are no more args (i.e. have cancelled out),
# just return zero:
if not args:
return S.Zero
if len(args) == 1:
return args[0]
# Collect terms appearing more than once, differing by their coefficients:
args = TensAdd._tensAdd_collect_terms(args)
# collect canonicalized terms
def sort_key(t):
x = get_index_structure(t)
if not isinstance(t, TensExpr):
return ([], [], [])
return (t.components, x.free, x.dum)
args.sort(key=sort_key)
if not args:
return S.Zero
# it there is only a component tensor return it
if len(args) == 1:
return args[0]
obj = self.func(*args)
return obj
@staticmethod
def _tensAdd_flatten(args):
# flatten TensAdd, coerce terms which are not tensors to tensors
a = []
for x in args:
if isinstance(x, (Add, TensAdd)):
a.extend(list(x.args))
else:
a.append(x)
args = [x for x in a if x.coeff]
return args
@staticmethod
def _tensAdd_check(args):
# check that all addends have the same free indices
indices0 = set([x[0] for x in get_index_structure(args[0]).free])
list_indices = [set([y[0] for y in get_index_structure(x).free]) for x in args[1:]]
if not all(x == indices0 for x in list_indices):
raise ValueError('all tensors must have the same indices')
@staticmethod
def _tensAdd_collect_terms(args):
# collect TensMul terms differing at most by their coefficient
terms_dict = defaultdict(list)
scalars = S.Zero
if isinstance(args[0], TensExpr):
free_indices = set(args[0].get_free_indices())
else:
free_indices = set([])
for arg in args:
if not isinstance(arg, TensExpr):
if free_indices != set([]):
raise ValueError("wrong valence")
scalars += arg
continue
if free_indices != set(arg.get_free_indices()):
raise ValueError("wrong valence")
# TODO: what is the part which is not a coeff?
# needs an implementation similar to .as_coeff_Mul()
terms_dict[arg.nocoeff].append(arg.coeff)
new_args = [TensMul(Add(*coeff), t).doit() for t, coeff in terms_dict.items() if Add(*coeff) != 0]
if isinstance(scalars, Add):
new_args = list(scalars.args) + new_args
elif scalars != 0:
new_args = [scalars] + new_args
return new_args
def get_indices(self):
indices = []
for arg in self.args:
indices.extend([i for i in get_indices(arg) if i not in indices])
return indices
@property
def rank(self):
return self.args[0].rank
@property
def free_args(self):
return self.args[0].free_args
def _expand(self, **hints):
return TensAdd(*[_expand(i, **hints) for i in self.args])
def __call__(self, *indices):
"""Returns tensor with ordered free indices replaced by ``indices``
Parameters
==========
indices
Examples
========
>>> from sympy import Symbol
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> D = Symbol('D')
>>> Lorentz = TensorIndexType('Lorentz', dim=D, dummy_fmt='L')
>>> i0,i1,i2,i3,i4 = tensor_indices('i0:5', Lorentz)
>>> p, q = tensorhead('p,q', [Lorentz], [[1]])
>>> g = Lorentz.metric
>>> t = p(i0)*p(i1) + g(i0,i1)*q(i2)*q(-i2)
>>> t(i0,i2)
metric(i0, i2)*q(L_0)*q(-L_0) + p(i0)*p(i2)
>>> from sympy.tensor.tensor import canon_bp
>>> canon_bp(t(i0,i1) - t(i1,i0))
0
"""
free_args = self.free_args
indices = list(indices)
if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]:
raise ValueError('incompatible types')
if indices == free_args:
return self
index_tuples = list(zip(free_args, indices))
a = [x.func(*x.fun_eval(*index_tuples).args) for x in self.args]
res = TensAdd(*a).doit()
return res
def canon_bp(self):
"""
canonicalize using the Butler-Portugal algorithm for canonicalization
under monoterm symmetries.
"""
expr = self.expand()
args = [canon_bp(x) for x in expr.args]
res = TensAdd(*args).doit()
return res
def equals(self, other):
other = _sympify(other)
if isinstance(other, TensMul) and other._coeff == 0:
return all(x._coeff == 0 for x in self.args)
if isinstance(other, TensExpr):
if self.rank != other.rank:
return False
if isinstance(other, TensAdd):
if set(self.args) != set(other.args):
return False
else:
return True
t = self - other
if not isinstance(t, TensExpr):
return t == 0
else:
if isinstance(t, TensMul):
return t._coeff == 0
else:
return all(x._coeff == 0 for x in t.args)
def __getitem__(self, item):
deprecate_data()
return self.data[item]
def contract_delta(self, delta):
args = [x.contract_delta(delta) for x in self.args]
t = TensAdd(*args).doit()
return canon_bp(t)
def contract_metric(self, g):
"""
Raise or lower indices with the metric ``g``
Parameters
==========
g : metric
contract_all : if True, eliminate all ``g`` which are contracted
Notes
=====
see the ``TensorIndexType`` docstring for the contraction conventions
"""
args = [contract_metric(x, g) for x in self.args]
t = TensAdd(*args).doit()
return canon_bp(t)
def fun_eval(self, *index_tuples):
"""
Return a tensor with free indices substituted according to ``index_tuples``
Parameters
==========
index_types : list of tuples ``(old_index, new_index)``
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz)
>>> A, B = tensorhead('A,B', [Lorentz]*2, [[1]*2])
>>> t = A(i, k)*B(-k, -j) + A(i, -j)
>>> t.fun_eval((i, k),(-j, l))
A(k, L_0)*B(-L_0, l) + A(k, l)
"""
args = self.args
args1 = []
for x in args:
y = x.fun_eval(*index_tuples)
args1.append(y)
return TensAdd(*args1).doit()
def substitute_indices(self, *index_tuples):
"""
Return a tensor with free indices substituted according to ``index_tuples``
Parameters
==========
index_types : list of tuples ``(old_index, new_index)``
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz)
>>> A, B = tensorhead('A,B', [Lorentz]*2, [[1]*2])
>>> t = A(i, k)*B(-k, -j); t
A(i, L_0)*B(-L_0, -j)
>>> t.substitute_indices((i,j), (j, k))
A(j, L_0)*B(-L_0, -k)
"""
args = self.args
args1 = []
for x in args:
y = x.substitute_indices(*index_tuples)
args1.append(y)
return TensAdd(*args1).doit()
def _print(self):
a = []
args = self.args
for x in args:
a.append(str(x))
a.sort()
s = ' + '.join(a)
s = s.replace('+ -', '- ')
return s
def _extract_data(self, replacement_dict):
from sympy.tensor.array import Array, permutedims
args_indices, arrays = zip(*[
arg._extract_data(replacement_dict) if
isinstance(arg, TensExpr) else ([], arg) for arg in self.args
])
arrays = [Array(i) for i in arrays]
ref_indices = args_indices[0]
for i in range(1, len(args_indices)):
indices = args_indices[i]
array = arrays[i]
permutation = TensMul._get_indices_permutation(indices, ref_indices)
arrays[i] = permutedims(array, permutation)
return ref_indices, sum(arrays, Array.zeros(*array.shape))
@property
def data(self):
deprecate_data()
return _tensor_data_substitution_dict[self.expand()]
@data.setter
def data(self, data):
deprecate_data()
_tensor_data_substitution_dict[self] = data
@data.deleter
def data(self):
deprecate_data()
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
def __iter__(self):
deprecate_data()
if not self.data:
raise ValueError("No iteration on abstract tensors")
return self.data.flatten().__iter__()
def _eval_rewrite_as_Indexed(self, *args):
return Add.fromiter(args)
class Tensor(TensExpr):
"""
Base tensor class, i.e. this represents a tensor, the single unit to be
put into an expression.
This object is usually created from a ``TensorHead``, by attaching indices
to it. Indices preceded by a minus sign are considered contravariant,
otherwise covariant.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType("Lorentz", dummy_fmt="L")
>>> mu, nu = tensor_indices('mu nu', Lorentz)
>>> A = tensorhead("A", [Lorentz, Lorentz], [[1], [1]])
>>> A(mu, -nu)
A(mu, -nu)
>>> A(mu, -mu)
A(L_0, -L_0)
"""
is_commutative = False
def __new__(cls, tensor_head, indices, **kw_args):
is_canon_bp = kw_args.pop('is_canon_bp', False)
indices = cls._parse_indices(tensor_head, indices)
obj = Basic.__new__(cls, tensor_head, Tuple(*indices), **kw_args)
obj._index_structure = _IndexStructure.from_indices(*indices)
obj._free_indices_set = set(obj._index_structure.get_free_indices())
if tensor_head.rank != len(indices):
raise ValueError("wrong number of indices")
obj._indices = indices
obj._is_canon_bp = is_canon_bp
obj._index_map = Tensor._build_index_map(indices, obj._index_structure)
return obj
@staticmethod
def _build_index_map(indices, index_structure):
index_map = {}
for idx in indices:
index_map[idx] = (indices.index(idx),)
return index_map
def doit(self, **kwargs):
args, indices, free, dum = TensMul._tensMul_contract_indices([self])
return args[0]
@staticmethod
def _parse_indices(tensor_head, indices):
if not isinstance(indices, (tuple, list, Tuple)):
raise TypeError("indices should be an array, got %s" % type(indices))
indices = list(indices)
for i, index in enumerate(indices):
if isinstance(index, Symbol):
indices[i] = TensorIndex(index, tensor_head.index_types[i], True)
elif isinstance(index, Mul):
c, e = index.as_coeff_Mul()
if c == -1 and isinstance(e, Symbol):
indices[i] = TensorIndex(e, tensor_head.index_types[i], False)
else:
raise ValueError("index not understood: %s" % index)
elif not isinstance(index, TensorIndex):
raise TypeError("wrong type for index: %s is %s" % (index, type(index)))
return indices
def _set_new_index_structure(self, im, is_canon_bp=False):
indices = im.get_indices()
return self._set_indices(*indices, is_canon_bp=is_canon_bp)
def _set_indices(self, *indices, **kw_args):
if len(indices) != self.ext_rank:
raise ValueError("indices length mismatch")
return self.func(self.args[0], indices, is_canon_bp=kw_args.pop('is_canon_bp', False)).doit()
def _get_free_indices_set(self):
return set([i[0] for i in self._index_structure.free])
def _get_dummy_indices_set(self):
dummy_pos = set(itertools.chain(*self._index_structure.dum))
return set(idx for i, idx in enumerate(self.args[1]) if i in dummy_pos)
def _get_indices_set(self):
return set(self.args[1].args)
@property
def is_canon_bp(self):
return self._is_canon_bp
@property
def indices(self):
return self._indices
@property
def free(self):
return self._index_structure.free[:]
@property
def free_in_args(self):
return [(ind, pos, 0) for ind, pos in self.free]
@property
def dum(self):
return self._index_structure.dum[:]
@property
def dum_in_args(self):
return [(p1, p2, 0, 0) for p1, p2 in self.dum]
@property
def rank(self):
return len(self.free)
@property
def ext_rank(self):
return self._index_structure._ext_rank
@property
def free_args(self):
return sorted([x[0] for x in self.free])
def commutes_with(self, other):
"""
:param other:
:return:
0 commute
1 anticommute
None neither commute nor anticommute
"""
if not isinstance(other, TensExpr):
return 0
elif isinstance(other, Tensor):
return self.component.commutes_with(other.component)
return NotImplementedError
def perm2tensor(self, g, is_canon_bp=False):
"""
Returns the tensor corresponding to the permutation ``g``
For further details, see the method in ``TIDS`` with the same name.
"""
return perm2tensor(self, g, is_canon_bp)
def canon_bp(self):
if self._is_canon_bp:
return self
expr = self.expand()
g, dummies, msym = expr._index_structure.indices_canon_args()
v = components_canon_args([expr.component])
can = canonicalize(g, dummies, msym, *v)
if can == 0:
return S.Zero
tensor = self.perm2tensor(can, True)
return tensor
@property
def index_types(self):
return list(self.component.index_types)
@property
def coeff(self):
return S.One
@property
def nocoeff(self):
return self
@property
def component(self):
return self.args[0]
@property
def components(self):
return [self.args[0]]
def split(self):
return [self]
def _expand(self, **kwargs):
return self
def sorted_components(self):
return self
def get_indices(self):
"""
Get a list of indices, corresponding to those of the tensor.
"""
return list(self.args[1])
def get_free_indices(self):
"""
Get a list of free indices, corresponding to those of the tensor.
"""
return self._index_structure.get_free_indices()
def as_base_exp(self):
return self, S.One
def substitute_indices(self, *index_tuples):
return substitute_indices(self, *index_tuples)
def __call__(self, *indices):
"""Returns tensor with ordered free indices replaced by ``indices``
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> i0,i1,i2,i3,i4 = tensor_indices('i0:5', Lorentz)
>>> A = tensorhead('A', [Lorentz]*5, [[1]*5])
>>> t = A(i2, i1, -i2, -i3, i4)
>>> t
A(L_0, i1, -L_0, -i3, i4)
>>> t(i1, i2, i3)
A(L_0, i1, -L_0, i2, i3)
"""
free_args = self.free_args
indices = list(indices)
if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]:
raise ValueError('incompatible types')
if indices == free_args:
return self
t = self.fun_eval(*list(zip(free_args, indices)))
# object is rebuilt in order to make sure that all contracted indices
# get recognized as dummies, but only if there are contracted indices.
if len(set(i if i.is_up else -i for i in indices)) != len(indices):
return t.func(*t.args)
return t
# TODO: put this into TensExpr?
def __iter__(self):
deprecate_data()
return self.data.__iter__()
# TODO: put this into TensExpr?
def __getitem__(self, item):
deprecate_data()
return self.data[item]
def _extract_data(self, replacement_dict):
from .array import Array
for k, v in replacement_dict.items():
if isinstance(k, Tensor) and k.args[0] == self.args[0]:
other = k
array = v
break
else:
raise ValueError("%s not found in %s" % (self, replacement_dict))
# TODO: inefficient, this should be done at root level only:
replacement_dict = {k: Array(v) for k, v in replacement_dict.items()}
array = Array(array)
dum1 = self.dum
dum2 = other.dum
if len(dum2) > 0:
for pair in dum2:
# allow `dum2` if the contained values are also in `dum1`.
if pair not in dum1:
raise NotImplementedError("%s with contractions is not implemented" % other)
# Remove elements in `dum2` from `dum1`:
dum1 = [pair for pair in dum1 if pair not in dum2]
if len(dum1) > 0:
indices2 = other.get_indices()
repl = {}
for p1, p2 in dum1:
repl[indices2[p2]] = -indices2[p1]
other = other.xreplace(repl).doit()
array = _TensorDataLazyEvaluator.data_contract_dum([array], dum1, len(indices2))
free_ind1 = self.get_free_indices()
free_ind2 = other.get_free_indices()
return self._match_indices_with_other_tensor(array, free_ind1, free_ind2, replacement_dict)
@property
def data(self):
deprecate_data()
return _tensor_data_substitution_dict[self]
@data.setter
def data(self, data):
deprecate_data()
# TODO: check data compatibility with properties of tensor.
_tensor_data_substitution_dict[self] = data
@data.deleter
def data(self):
deprecate_data()
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
if self.metric in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self.metric]
def _print(self):
indices = [str(ind) for ind in self.indices]
component = self.component
if component.rank > 0:
return ('%s(%s)' % (component.name, ', '.join(indices)))
else:
return ('%s' % component.name)
def equals(self, other):
if other == 0:
return self.coeff == 0
other = _sympify(other)
if not isinstance(other, TensExpr):
assert not self.components
return S.One == other
def _get_compar_comp(self):
t = self.canon_bp()
r = (t.coeff, tuple(t.components), \
tuple(sorted(t.free)), tuple(sorted(t.dum)))
return r
return _get_compar_comp(self) == _get_compar_comp(other)
def contract_metric(self, g):
# if metric is not the same, ignore this step:
if self.component != g:
return self
# in case there are free components, do not perform anything:
if len(self.free) != 0:
return self
antisym = g.index_types[0].metric_antisym
sign = S.One
typ = g.index_types[0]
if not antisym:
# g(i, -i)
if typ._dim is None:
raise ValueError('dimension not assigned')
sign = sign*typ._dim
else:
# g(i, -i)
if typ._dim is None:
raise ValueError('dimension not assigned')
sign = sign*typ._dim
dp0, dp1 = self.dum[0]
if dp0 < dp1:
# g(i, -i) = -D with antisymmetric metric
sign = -sign
return sign
def contract_delta(self, metric):
return self.contract_metric(metric)
def _eval_rewrite_as_Indexed(self, tens, indices):
from sympy import Indexed
# TODO: replace .args[0] with .name:
index_symbols = [i.args[0] for i in self.get_indices()]
expr = Indexed(tens.args[0], *index_symbols)
return self._check_add_Sum(expr, index_symbols)
class TensMul(TensExpr, AssocOp):
"""
Product of tensors
Parameters
==========
coeff : SymPy coefficient of the tensor
args
Attributes
==========
``components`` : list of ``TensorHead`` of the component tensors
``types`` : list of nonrepeated ``TensorIndexType``
``free`` : list of ``(ind, ipos, icomp)``, see Notes
``dum`` : list of ``(ipos1, ipos2, icomp1, icomp2)``, see Notes
``ext_rank`` : rank of the tensor counting the dummy indices
``rank`` : rank of the tensor
``coeff`` : SymPy coefficient of the tensor
``free_args`` : list of the free indices in sorted order
``is_canon_bp`` : ``True`` if the tensor in in canonical form
Notes
=====
``args[0]`` list of ``TensorHead`` of the component tensors.
``args[1]`` list of ``(ind, ipos, icomp)``
where ``ind`` is a free index, ``ipos`` is the slot position
of ``ind`` in the ``icomp``-th component tensor.
``args[2]`` list of tuples representing dummy indices.
``(ipos1, ipos2, icomp1, icomp2)`` indicates that the contravariant
dummy index is the ``ipos1``-th slot position in the ``icomp1``-th
component tensor; the corresponding covariant index is
in the ``ipos2`` slot position in the ``icomp2``-th component tensor.
"""
identity = S.One
def __new__(cls, *args, **kw_args):
is_canon_bp = kw_args.get('is_canon_bp', False)
args = list(map(_sympify, args))
# Flatten:
args = [i for arg in args for i in (arg.args if isinstance(arg, (TensMul, Mul)) else [arg])]
args, indices, free, dum = TensMul._tensMul_contract_indices(args, replace_indices=False)
# Data for indices:
index_types = [i.tensor_index_type for i in indices]
index_structure = _IndexStructure(free, dum, index_types, indices, canon_bp=is_canon_bp)
obj = TensExpr.__new__(cls, *args)
obj._indices = indices
obj._index_types = index_types
obj._index_structure = index_structure
obj._ext_rank = len(obj._index_structure.free) + 2*len(obj._index_structure.dum)
obj._coeff = S.One
obj._is_canon_bp = is_canon_bp
return obj
@staticmethod
def _indices_to_free_dum(args_indices):
free2pos1 = {}
free2pos2 = {}
dummy_data = []
indices = []
# Notation for positions (to better understand the code):
# `pos1`: position in the `args`.
# `pos2`: position in the indices.
# Example:
# A(i, j)*B(k, m, n)*C(p)
# `pos1` of `n` is 1 because it's in `B` (second `args` of TensMul).
# `pos2` of `n` is 4 because it's the fifth overall index.
# Counter for the index position wrt the whole expression:
pos2 = 0
for pos1, arg_indices in enumerate(args_indices):
for index_pos, index in enumerate(arg_indices):
if not isinstance(index, TensorIndex):
raise TypeError("expected TensorIndex")
if -index in free2pos1:
# Dummy index detected:
other_pos1 = free2pos1.pop(-index)
other_pos2 = free2pos2.pop(-index)
if index.is_up:
dummy_data.append((index, pos1, other_pos1, pos2, other_pos2))
else:
dummy_data.append((-index, other_pos1, pos1, other_pos2, pos2))
indices.append(index)
elif index in free2pos1:
raise ValueError("Repeated index: %s" % index)
else:
free2pos1[index] = pos1
free2pos2[index] = pos2
indices.append(index)
pos2 += 1
free = [(i, p) for (i, p) in free2pos2.items()]
free_names = [i.name for i in free2pos2.keys()]
dummy_data.sort(key=lambda x: x[3])
return indices, free, free_names, dummy_data
@staticmethod
def _dummy_data_to_dum(dummy_data):
return [(p2a, p2b) for (i, p1a, p1b, p2a, p2b) in dummy_data]
@staticmethod
def _tensMul_contract_indices(args, replace_indices=True):
replacements = [{} for _ in args]
#_index_order = all([_has_index_order(arg) for arg in args])
args_indices = [get_indices(arg) for arg in args]
indices, free, free_names, dummy_data = TensMul._indices_to_free_dum(args_indices)
cdt = defaultdict(int)
def dummy_fmt_gen(tensor_index_type):
fmt = tensor_index_type.dummy_fmt
nd = cdt[tensor_index_type]
cdt[tensor_index_type] += 1
return fmt % nd
if replace_indices:
for old_index, pos1cov, pos1contra, pos2cov, pos2contra in dummy_data:
index_type = old_index.tensor_index_type
while True:
dummy_name = dummy_fmt_gen(index_type)
if dummy_name not in free_names:
break
dummy = TensorIndex(dummy_name, index_type, True)
replacements[pos1cov][old_index] = dummy
replacements[pos1contra][-old_index] = -dummy
indices[pos2cov] = dummy
indices[pos2contra] = -dummy
args = [arg.xreplace(repl) for arg, repl in zip(args, replacements)]
dum = TensMul._dummy_data_to_dum(dummy_data)
return args, indices, free, dum
@staticmethod
def _get_components_from_args(args):
"""
Get a list of ``Tensor`` objects having the same ``TIDS`` if multiplied
by one another.
"""
components = []
for arg in args:
if not isinstance(arg, TensExpr):
continue
if isinstance(arg, TensAdd):
continue
components.extend(arg.components)
return components
@staticmethod
def _rebuild_tensors_list(args, index_structure):
indices = index_structure.get_indices()
#tensors = [None for i in components] # pre-allocate list
ind_pos = 0
for i, arg in enumerate(args):
if not isinstance(arg, TensExpr):
continue
prev_pos = ind_pos
ind_pos += arg.ext_rank
args[i] = Tensor(arg.component, indices[prev_pos:ind_pos])
def doit(self, **kwargs):
is_canon_bp = self._is_canon_bp
deep = kwargs.get('deep', True)
if deep:
args = [arg.doit(**kwargs) for arg in self.args]
else:
args = self.args
args = [arg for arg in args if arg != self.identity]
# Extract non-tensor coefficients:
coeff = reduce(lambda a, b: a*b, [arg for arg in args if not isinstance(arg, TensExpr)], S.One)
args = [arg for arg in args if isinstance(arg, TensExpr)]
if len(args) == 0:
return coeff
if coeff != self.identity:
args = [coeff] + args
if coeff == 0:
return S.Zero
if len(args) == 1:
return args[0]
args, indices, free, dum = TensMul._tensMul_contract_indices(args)
# Data for indices:
index_types = [i.tensor_index_type for i in indices]
index_structure = _IndexStructure(free, dum, index_types, indices, canon_bp=is_canon_bp)
obj = self.func(*args)
obj._index_types = index_types
obj._index_structure = index_structure
obj._ext_rank = len(obj._index_structure.free) + 2*len(obj._index_structure.dum)
obj._coeff = coeff
obj._is_canon_bp = is_canon_bp
return obj
# TODO: this method should be private
# TODO: should this method be renamed _from_components_free_dum ?
@staticmethod
def from_data(coeff, components, free, dum, **kw_args):
return TensMul(coeff, *TensMul._get_tensors_from_components_free_dum(components, free, dum), **kw_args).doit()
@staticmethod
def _get_tensors_from_components_free_dum(components, free, dum):
"""
Get a list of ``Tensor`` objects by distributing ``free`` and ``dum`` indices on the ``components``.
"""
index_structure = _IndexStructure.from_components_free_dum(components, free, dum)
indices = index_structure.get_indices()
tensors = [None for i in components] # pre-allocate list
# distribute indices on components to build a list of tensors:
ind_pos = 0
for i, component in enumerate(components):
prev_pos = ind_pos
ind_pos += component.rank
tensors[i] = Tensor(component, indices[prev_pos:ind_pos])
return tensors
def _get_free_indices_set(self):
return set([i[0] for i in self.free])
def _get_dummy_indices_set(self):
dummy_pos = set(itertools.chain(*self.dum))
return set(idx for i, idx in enumerate(self._index_structure.get_indices()) if i in dummy_pos)
def _get_position_offset_for_indices(self):
arg_offset = [None for i in range(self.ext_rank)]
counter = 0
for i, arg in enumerate(self.args):
if not isinstance(arg, TensExpr):
continue
for j in range(arg.ext_rank):
arg_offset[j + counter] = counter
counter += arg.ext_rank
return arg_offset
@property
def free_args(self):
return sorted([x[0] for x in self.free])
@property
def components(self):
return self._get_components_from_args(self.args)
@property
def free(self):
return self._index_structure.free[:]
@property
def free_in_args(self):
arg_offset = self._get_position_offset_for_indices()
argpos = self._get_indices_to_args_pos()
return [(ind, pos-arg_offset[pos], argpos[pos]) for (ind, pos) in self.free]
@property
def coeff(self):
return self._coeff
@property
def nocoeff(self):
return self.func(*[t for t in self.args if isinstance(t, TensExpr)]).doit()
@property
def dum(self):
return self._index_structure.dum[:]
@property
def dum_in_args(self):
arg_offset = self._get_position_offset_for_indices()
argpos = self._get_indices_to_args_pos()
return [(p1-arg_offset[p1], p2-arg_offset[p2], argpos[p1], argpos[p2]) for p1, p2 in self.dum]
@property
def rank(self):
return len(self.free)
@property
def ext_rank(self):
return self._ext_rank
@property
def index_types(self):
return self._index_types[:]
def equals(self, other):
if other == 0:
return self.coeff == 0
other = _sympify(other)
if not isinstance(other, TensExpr):
assert not self.components
return self._coeff == other
return self.canon_bp() == other.canon_bp()
def get_indices(self):
"""
Returns the list of indices of the tensor
The indices are listed in the order in which they appear in the
component tensors.
The dummy indices are given a name which does not collide with
the names of the free indices.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensorhead('p,q', [Lorentz], [[1]])
>>> t = p(m1)*g(m0,m2)
>>> t.get_indices()
[m1, m0, m2]
>>> t2 = p(m1)*g(-m1, m2)
>>> t2.get_indices()
[L_0, -L_0, m2]
"""
return self._indices
def get_free_indices(self):
"""
Returns the list of free indices of the tensor
The indices are listed in the order in which they appear in the
component tensors.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensorhead('p,q', [Lorentz], [[1]])
>>> t = p(m1)*g(m0,m2)
>>> t.get_free_indices()
[m1, m0, m2]
>>> t2 = p(m1)*g(-m1, m2)
>>> t2.get_free_indices()
[m2]
"""
return self._index_structure.get_free_indices()
def split(self):
"""
Returns a list of tensors, whose product is ``self``
Dummy indices contracted among different tensor components
become free indices with the same name as the one used to
represent the dummy indices.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> a, b, c, d = tensor_indices('a,b,c,d', Lorentz)
>>> A, B = tensorhead('A,B', [Lorentz]*2, [[1]*2])
>>> t = A(a,b)*B(-b,c)
>>> t
A(a, L_0)*B(-L_0, c)
>>> t.split()
[A(a, L_0), B(-L_0, c)]
"""
if self.args == ():
return [self]
splitp = []
res = 1
for arg in self.args:
if isinstance(arg, Tensor):
splitp.append(res*arg)
res = 1
else:
res *= arg
return splitp
def _expand(self, **hints):
# TODO: temporary solution, in the future this should be linked to
# `Expr.expand`.
args = [_expand(arg, **hints) for arg in self.args]
args1 = [arg.args if isinstance(arg, (Add, TensAdd)) else (arg,) for arg in args]
return TensAdd(*[
TensMul(*i) for i in itertools.product(*args1)]
)
def __neg__(self):
return TensMul(S.NegativeOne, self, is_canon_bp=self._is_canon_bp).doit()
def __getitem__(self, item):
deprecate_data()
return self.data[item]
def _get_args_for_traditional_printer(self):
args = list(self.args)
if (self.coeff < 0) == True:
# expressions like "-A(a)"
sign = "-"
if self.coeff == S.NegativeOne:
args = args[1:]
else:
args[0] = -args[0]
else:
sign = ""
return sign, args
def _sort_args_for_sorted_components(self):
"""
Returns the ``args`` sorted according to the components commutation
properties.
The sorting is done taking into account the commutation group
of the component tensors.
"""
cv = [arg for arg in self.args if isinstance(arg, TensExpr)]
sign = 1
n = len(cv) - 1
for i in range(n):
for j in range(n, i, -1):
c = cv[j-1].commutes_with(cv[j])
# if `c` is `None`, it does neither commute nor anticommute, skip:
if c not in [0, 1]:
continue
if (cv[j-1].component.types, cv[j-1].component.name) > \
(cv[j].component.types, cv[j].component.name):
cv[j-1], cv[j] = cv[j], cv[j-1]
# if `c` is 1, the anticommute, so change sign:
if c:
sign = -sign
coeff = sign * self.coeff
if coeff != 1:
return [coeff] + cv
return cv
def sorted_components(self):
"""
Returns a tensor product with sorted components.
"""
return TensMul(*self._sort_args_for_sorted_components()).doit()
def perm2tensor(self, g, is_canon_bp=False):
"""
Returns the tensor corresponding to the permutation ``g``
For further details, see the method in ``TIDS`` with the same name.
"""
return perm2tensor(self, g, is_canon_bp=is_canon_bp)
def canon_bp(self):
"""
Canonicalize using the Butler-Portugal algorithm for canonicalization
under monoterm symmetries.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> A = tensorhead('A', [Lorentz]*2, [[2]])
>>> t = A(m0,-m1)*A(m1,-m0)
>>> t.canon_bp()
-A(L_0, L_1)*A(-L_0, -L_1)
>>> t = A(m0,-m1)*A(m1,-m2)*A(m2,-m0)
>>> t.canon_bp()
0
"""
if self._is_canon_bp:
return self
expr = self.expand()
if isinstance(expr, TensAdd):
return expr.canon_bp()
if not expr.components:
return expr
t = expr.sorted_components()
g, dummies, msym = t._index_structure.indices_canon_args()
v = components_canon_args(t.components)
can = canonicalize(g, dummies, msym, *v)
if can == 0:
return S.Zero
tmul = t.perm2tensor(can, True)
return tmul
def contract_delta(self, delta):
t = self.contract_metric(delta)
return t
def _get_indices_to_args_pos(self):
"""
Get a dict mapping the index position to TensMul's argument number.
"""
pos_map = dict()
pos_counter = 0
for arg_i, arg in enumerate(self.args):
if not isinstance(arg, TensExpr):
continue
assert isinstance(arg, Tensor)
for i in range(arg.ext_rank):
pos_map[pos_counter] = arg_i
pos_counter += 1
return pos_map
def contract_metric(self, g):
"""
Raise or lower indices with the metric ``g``
Parameters
==========
g : metric
Notes
=====
see the ``TensorIndexType`` docstring for the contraction conventions
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensorhead('p,q', [Lorentz], [[1]])
>>> t = p(m0)*q(m1)*g(-m0, -m1)
>>> t.canon_bp()
metric(L_0, L_1)*p(-L_0)*q(-L_1)
>>> t.contract_metric(g).canon_bp()
p(L_0)*q(-L_0)
"""
expr = self.expand()
if self != expr:
expr = expr.canon_bp()
return expr.contract_metric(g)
pos_map = self._get_indices_to_args_pos()
args = list(self.args)
antisym = g.index_types[0].metric_antisym
# list of positions of the metric ``g`` inside ``args``
gpos = [i for i, x in enumerate(self.args) if isinstance(x, Tensor) and x.component == g]
if not gpos:
return self
# Sign is either 1 or -1, to correct the sign after metric contraction
# (for spinor indices).
sign = 1
dum = self.dum[:]
free = self.free[:]
elim = set()
for gposx in gpos:
if gposx in elim:
continue
free1 = [x for x in free if pos_map[x[1]] == gposx]
dum1 = [x for x in dum if pos_map[x[0]] == gposx or pos_map[x[1]] == gposx]
if not dum1:
continue
elim.add(gposx)
# subs with the multiplication neutral element, that is, remove it:
args[gposx] = 1
if len(dum1) == 2:
if not antisym:
dum10, dum11 = dum1
if pos_map[dum10[1]] == gposx:
# the index with pos p0 contravariant
p0 = dum10[0]
else:
# the index with pos p0 is covariant
p0 = dum10[1]
if pos_map[dum11[1]] == gposx:
# the index with pos p1 is contravariant
p1 = dum11[0]
else:
# the index with pos p1 is covariant
p1 = dum11[1]
dum.append((p0, p1))
else:
dum10, dum11 = dum1
# change the sign to bring the indices of the metric to contravariant
# form; change the sign if dum10 has the metric index in position 0
if pos_map[dum10[1]] == gposx:
# the index with pos p0 is contravariant
p0 = dum10[0]
if dum10[1] == 1:
sign = -sign
else:
# the index with pos p0 is covariant
p0 = dum10[1]
if dum10[0] == 0:
sign = -sign
if pos_map[dum11[1]] == gposx:
# the index with pos p1 is contravariant
p1 = dum11[0]
sign = -sign
else:
# the index with pos p1 is covariant
p1 = dum11[1]
dum.append((p0, p1))
elif len(dum1) == 1:
if not antisym:
dp0, dp1 = dum1[0]
if pos_map[dp0] == pos_map[dp1]:
# g(i, -i)
typ = g.index_types[0]
if typ._dim is None:
raise ValueError('dimension not assigned')
sign = sign*typ._dim
else:
# g(i0, i1)*p(-i1)
if pos_map[dp0] == gposx:
p1 = dp1
else:
p1 = dp0
ind, p = free1[0]
free.append((ind, p1))
else:
dp0, dp1 = dum1[0]
if pos_map[dp0] == pos_map[dp1]:
# g(i, -i)
typ = g.index_types[0]
if typ._dim is None:
raise ValueError('dimension not assigned')
sign = sign*typ._dim
if dp0 < dp1:
# g(i, -i) = -D with antisymmetric metric
sign = -sign
else:
# g(i0, i1)*p(-i1)
if pos_map[dp0] == gposx:
p1 = dp1
if dp0 == 0:
sign = -sign
else:
p1 = dp0
ind, p = free1[0]
free.append((ind, p1))
dum = [x for x in dum if x not in dum1]
free = [x for x in free if x not in free1]
# shift positions:
shift = 0
shifts = [0]*len(args)
for i in range(len(args)):
if i in elim:
shift += 2
continue
shifts[i] = shift
free = [(ind, p - shifts[pos_map[p]]) for (ind, p) in free if pos_map[p] not in elim]
dum = [(p0 - shifts[pos_map[p0]], p1 - shifts[pos_map[p1]]) for i, (p0, p1) in enumerate(dum) if pos_map[p0] not in elim and pos_map[p1] not in elim]
res = sign*TensMul(*args).doit()
if not isinstance(res, TensExpr):
return res
im = _IndexStructure.from_components_free_dum(res.components, free, dum)
return res._set_new_index_structure(im)
def _set_new_index_structure(self, im, is_canon_bp=False):
indices = im.get_indices()
return self._set_indices(*indices, is_canon_bp=is_canon_bp)
def _set_indices(self, *indices, **kw_args):
if len(indices) != self.ext_rank:
raise ValueError("indices length mismatch")
args = list(self.args)[:]
pos = 0
is_canon_bp = kw_args.pop('is_canon_bp', False)
for i, arg in enumerate(args):
if not isinstance(arg, TensExpr):
continue
assert isinstance(arg, Tensor)
ext_rank = arg.ext_rank
args[i] = arg._set_indices(*indices[pos:pos+ext_rank])
pos += ext_rank
return TensMul(*args, is_canon_bp=is_canon_bp).doit()
@staticmethod
def _index_replacement_for_contract_metric(args, free, dum):
for arg in args:
if not isinstance(arg, TensExpr):
continue
assert isinstance(arg, Tensor)
def substitute_indices(self, *index_tuples):
return substitute_indices(self, *index_tuples)
def __call__(self, *indices):
"""Returns tensor product with ordered free indices replaced by ``indices``
Examples
========
>>> from sympy import Symbol
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> D = Symbol('D')
>>> Lorentz = TensorIndexType('Lorentz', dim=D, dummy_fmt='L')
>>> i0,i1,i2,i3,i4 = tensor_indices('i0:5', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensorhead('p,q', [Lorentz], [[1]])
>>> t = p(i0)*q(i1)*q(-i1)
>>> t(i1)
p(i1)*q(L_0)*q(-L_0)
"""
free_args = self.free_args
indices = list(indices)
if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]:
raise ValueError('incompatible types')
if indices == free_args:
return self
t = self.fun_eval(*list(zip(free_args, indices)))
# object is rebuilt in order to make sure that all contracted indices
# get recognized as dummies, but only if there are contracted indices.
if len(set(i if i.is_up else -i for i in indices)) != len(indices):
return t.func(*t.args)
return t
def _extract_data(self, replacement_dict):
args_indices, arrays = zip(*[arg._extract_data(replacement_dict) for arg in self.args if isinstance(arg, TensExpr)])
coeff = reduce(operator.mul, [a for a in self.args if not isinstance(a, TensExpr)], S.One)
indices, free, free_names, dummy_data = TensMul._indices_to_free_dum(args_indices)
dum = TensMul._dummy_data_to_dum(dummy_data)
ext_rank = self.ext_rank
free.sort(key=lambda x: x[1])
free_indices = [i[0] for i in free]
return free_indices, coeff*_TensorDataLazyEvaluator.data_contract_dum(arrays, dum, ext_rank)
@property
def data(self):
deprecate_data()
dat = _tensor_data_substitution_dict[self.expand()]
return dat
@data.setter
def data(self, data):
deprecate_data()
raise ValueError("Not possible to set component data to a tensor expression")
@data.deleter
def data(self):
deprecate_data()
raise ValueError("Not possible to delete component data to a tensor expression")
def __iter__(self):
deprecate_data()
if self.data is None:
raise ValueError("No iteration on abstract tensors")
return self.data.__iter__()
def _eval_rewrite_as_Indexed(self, *args):
from sympy import Sum
index_symbols = [i.args[0] for i in self.get_indices()]
args = [arg.args[0] if isinstance(arg, Sum) else arg for arg in args]
expr = Mul.fromiter(args)
return self._check_add_Sum(expr, index_symbols)
class TensorElement(TensExpr):
"""
Tensor with evaluated components.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensorhead
>>> from sympy import symbols
>>> L = TensorIndexType("L")
>>> i, j, k = symbols("i j k")
>>> A = tensorhead("A", [L, L], [[1], [1]])
>>> A(i, j).get_free_indices()
[i, j]
If we want to set component ``i`` to a specific value, use the
``TensorElement`` class:
>>> from sympy.tensor.tensor import TensorElement
>>> te = TensorElement(A(i, j), {i: 2})
As index ``i`` has been accessed (``{i: 2}`` is the evaluation of its 3rd
element), the free indices will only contain ``j``:
>>> te.get_free_indices()
[j]
"""
def __new__(cls, expr, index_map):
if not isinstance(expr, Tensor):
# remap
if not isinstance(expr, TensExpr):
raise TypeError("%s is not a tensor expression" % expr)
return expr.func(*[TensorElement(arg, index_map) for arg in expr.args])
expr_free_indices = expr.get_free_indices()
name_translation = {i.args[0]: i for i in expr_free_indices}
index_map = {name_translation.get(index, index): value for index, value in index_map.items()}
index_map = {index: value for index, value in index_map.items() if index in expr_free_indices}
if len(index_map) == 0:
return expr
free_indices = [i for i in expr_free_indices if i not in index_map.keys()]
index_map = Dict(index_map)
obj = TensExpr.__new__(cls, expr, index_map)
obj._free_indices = free_indices
return obj
@property
def free(self):
return [(index, i) for i, index in enumerate(self.get_free_indices())]
@property
def dum(self):
# TODO: inherit dummies from expr
return []
@property
def expr(self):
return self._args[0]
@property
def index_map(self):
return self._args[1]
def get_free_indices(self):
return self._free_indices
def get_indices(self):
return self.get_free_indices()
def _extract_data(self, replacement_dict):
ret_indices, array = self.expr._extract_data(replacement_dict)
index_map = self.index_map
slice_tuple = tuple(index_map.get(i, slice(None)) for i in ret_indices)
ret_indices = [i for i in ret_indices if i not in index_map]
array = array.__getitem__(slice_tuple)
return ret_indices, array
def canon_bp(p):
"""
Butler-Portugal canonicalization
"""
if isinstance(p, TensExpr):
return p.canon_bp()
return p
def tensor_mul(*a):
"""
product of tensors
"""
if not a:
return TensMul.from_data(S.One, [], [], [])
t = a[0]
for tx in a[1:]:
t = t*tx
return t
def riemann_cyclic_replace(t_r):
"""
replace Riemann tensor with an equivalent expression
``R(m,n,p,q) -> 2/3*R(m,n,p,q) - 1/3*R(m,q,n,p) + 1/3*R(m,p,n,q)``
"""
free = sorted(t_r.free, key=lambda x: x[1])
m, n, p, q = [x[0] for x in free]
t0 = S(2)/3*t_r
t1 = - S(1)/3*t_r.substitute_indices((m,m),(n,q),(p,n),(q,p))
t2 = S(1)/3*t_r.substitute_indices((m,m),(n,p),(p,n),(q,q))
t3 = t0 + t1 + t2
return t3
def riemann_cyclic(t2):
"""
replace each Riemann tensor with an equivalent expression
satisfying the cyclic identity.
This trick is discussed in the reference guide to Cadabra.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead, riemann_cyclic
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz)
>>> R = tensorhead('R', [Lorentz]*4, [[2, 2]])
>>> t = R(i,j,k,l)*(R(-i,-j,-k,-l) - 2*R(-i,-k,-j,-l))
>>> riemann_cyclic(t)
0
"""
t2 = t2.expand()
if isinstance(t2, (TensMul, Tensor)):
args = [t2]
else:
args = t2.args
a1 = [x.split() for x in args]
a2 = [[riemann_cyclic_replace(tx) for tx in y] for y in a1]
a3 = [tensor_mul(*v) for v in a2]
t3 = TensAdd(*a3).doit()
if not t3:
return t3
else:
return canon_bp(t3)
def get_lines(ex, index_type):
"""
returns ``(lines, traces, rest)`` for an index type,
where ``lines`` is the list of list of positions of a matrix line,
``traces`` is the list of list of traced matrix lines,
``rest`` is the rest of the elements ot the tensor.
"""
def _join_lines(a):
i = 0
while i < len(a):
x = a[i]
xend = x[-1]
xstart = x[0]
hit = True
while hit:
hit = False
for j in range(i + 1, len(a)):
if j >= len(a):
break
if a[j][0] == xend:
hit = True
x.extend(a[j][1:])
xend = x[-1]
a.pop(j)
continue
if a[j][0] == xstart:
hit = True
a[i] = reversed(a[j][1:]) + x
x = a[i]
xstart = a[i][0]
a.pop(j)
continue
if a[j][-1] == xend:
hit = True
x.extend(reversed(a[j][:-1]))
xend = x[-1]
a.pop(j)
continue
if a[j][-1] == xstart:
hit = True
a[i] = a[j][:-1] + x
x = a[i]
xstart = x[0]
a.pop(j)
continue
i += 1
return a
arguments = ex.args
dt = {}
for c in ex.args:
if not isinstance(c, TensExpr):
continue
if c in dt:
continue
index_types = c.index_types
a = []
for i in range(len(index_types)):
if index_types[i] is index_type:
a.append(i)
if len(a) > 2:
raise ValueError('at most two indices of type %s allowed' % index_type)
if len(a) == 2:
dt[c] = a
#dum = ex.dum
lines = []
traces = []
traces1 = []
#indices_to_args_pos = ex._get_indices_to_args_pos()
# TODO: add a dum_to_components_map ?
for p0, p1, c0, c1 in ex.dum_in_args:
if arguments[c0] not in dt:
continue
if c0 == c1:
traces.append([c0])
continue
ta0 = dt[arguments[c0]]
ta1 = dt[arguments[c1]]
if p0 not in ta0:
continue
if ta0.index(p0) == ta1.index(p1):
# case gamma(i,s0,-s1) in c0, gamma(j,-s0,s2) in c1;
# to deal with this case one could add to the position
# a flag for transposition;
# one could write [(c0, False), (c1, True)]
raise NotImplementedError
# if p0 == ta0[1] then G in pos c0 is mult on the right by G in c1
# if p0 == ta0[0] then G in pos c1 is mult on the right by G in c0
ta0 = dt[arguments[c0]]
b0, b1 = (c0, c1) if p0 == ta0[1] else (c1, c0)
lines1 = lines[:]
for line in lines:
if line[-1] == b0:
if line[0] == b1:
n = line.index(min(line))
traces1.append(line)
traces.append(line[n:] + line[:n])
else:
line.append(b1)
break
elif line[0] == b1:
line.insert(0, b0)
break
else:
lines1.append([b0, b1])
lines = [x for x in lines1 if x not in traces1]
lines = _join_lines(lines)
rest = []
for line in lines:
for y in line:
rest.append(y)
for line in traces:
for y in line:
rest.append(y)
rest = [x for x in range(len(arguments)) if x not in rest]
return lines, traces, rest
def get_free_indices(t):
if not isinstance(t, TensExpr):
return ()
return t.get_free_indices()
def get_indices(t):
if not isinstance(t, TensExpr):
return ()
return t.get_indices()
def get_index_structure(t):
if isinstance(t, TensExpr):
return t._index_structure
return _IndexStructure([], [], [], [])
def get_coeff(t):
if isinstance(t, Tensor):
return S.One
if isinstance(t, TensMul):
return t.coeff
if isinstance(t, TensExpr):
raise ValueError("no coefficient associated to this tensor expression")
return t
def contract_metric(t, g):
if isinstance(t, TensExpr):
return t.contract_metric(g)
return t
def perm2tensor(t, g, is_canon_bp=False):
"""
Returns the tensor corresponding to the permutation ``g``
For further details, see the method in ``TIDS`` with the same name.
"""
if not isinstance(t, TensExpr):
return t
elif isinstance(t, (Tensor, TensMul)):
nim = get_index_structure(t).perm2tensor(g, is_canon_bp=is_canon_bp)
res = t._set_new_index_structure(nim, is_canon_bp=is_canon_bp)
if g[-1] != len(g) - 1:
return -res
return res
raise NotImplementedError()
def substitute_indices(t, *index_tuples):
"""
Return a tensor with free indices substituted according to ``index_tuples``
``index_types`` list of tuples ``(old_index, new_index)``
Note: this method will neither raise or lower the indices, it will just replace their symbol.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz)
>>> A, B = tensorhead('A,B', [Lorentz]*2, [[1]*2])
>>> t = A(i, k)*B(-k, -j); t
A(i, L_0)*B(-L_0, -j)
>>> t.substitute_indices((i,j), (j, k))
A(j, L_0)*B(-L_0, -k)
"""
if not isinstance(t, TensExpr):
return t
free = t.free
free1 = []
for j, ipos in free:
for i, v in index_tuples:
if i._name == j._name and i.tensor_index_type == j.tensor_index_type:
if i._is_up == j._is_up:
free1.append((v, ipos))
else:
free1.append((-v, ipos))
break
else:
free1.append((j, ipos))
t = TensMul.from_data(t.coeff, t.components, free1, t.dum)
return t
def _expand(expr, **kwargs):
if isinstance(expr, TensExpr):
return expr._expand(**kwargs)
else:
return expr.expand(**kwargs)
|
4c85a4a751a41241d57c8a4b6be296236d1f82927011f3b019ad4ffa0c71fd0a
|
r"""Module that defines indexed objects
The classes ``IndexedBase``, ``Indexed``, and ``Idx`` represent a
matrix element ``M[i, j]`` as in the following diagram::
1) The Indexed class represents the entire indexed object.
|
___|___
' '
M[i, j]
/ \__\______
| |
| |
| 2) The Idx class represents indices; each Idx can
| optionally contain information about its range.
|
3) IndexedBase represents the 'stem' of an indexed object, here `M`.
The stem used by itself is usually taken to represent the entire
array.
There can be any number of indices on an Indexed object. No
transformation properties are implemented in these Base objects, but
implicit contraction of repeated indices is supported.
Note that the support for complicated (i.e. non-atomic) integer
expressions as indices is limited. (This should be improved in
future releases.)
Examples
========
To express the above matrix element example you would write:
>>> from sympy import symbols, IndexedBase, Idx
>>> M = IndexedBase('M')
>>> i, j = symbols('i j', cls=Idx)
>>> M[i, j]
M[i, j]
Repeated indices in a product implies a summation, so to express a
matrix-vector product in terms of Indexed objects:
>>> x = IndexedBase('x')
>>> M[i, j]*x[j]
M[i, j]*x[j]
If the indexed objects will be converted to component based arrays, e.g.
with the code printers or the autowrap framework, you also need to provide
(symbolic or numerical) dimensions. This can be done by passing an
optional shape parameter to IndexedBase upon construction:
>>> dim1, dim2 = symbols('dim1 dim2', integer=True)
>>> A = IndexedBase('A', shape=(dim1, 2*dim1, dim2))
>>> A.shape
(dim1, 2*dim1, dim2)
>>> A[i, j, 3].shape
(dim1, 2*dim1, dim2)
If an IndexedBase object has no shape information, it is assumed that the
array is as large as the ranges of its indices:
>>> n, m = symbols('n m', integer=True)
>>> i = Idx('i', m)
>>> j = Idx('j', n)
>>> M[i, j].shape
(m, n)
>>> M[i, j].ranges
[(0, m - 1), (0, n - 1)]
The above can be compared with the following:
>>> A[i, 2, j].shape
(dim1, 2*dim1, dim2)
>>> A[i, 2, j].ranges
[(0, m - 1), None, (0, n - 1)]
To analyze the structure of indexed expressions, you can use the methods
get_indices() and get_contraction_structure():
>>> from sympy.tensor import get_indices, get_contraction_structure
>>> get_indices(A[i, j, j])
({i}, {})
>>> get_contraction_structure(A[i, j, j])
{(j,): {A[i, j, j]}}
See the appropriate docstrings for a detailed explanation of the output.
"""
# TODO: (some ideas for improvement)
#
# o test and guarantee numpy compatibility
# - implement full support for broadcasting
# - strided arrays
#
# o more functions to analyze indexed expressions
# - identify standard constructs, e.g matrix-vector product in a subexpression
#
# o functions to generate component based arrays (numpy and sympy.Matrix)
# - generate a single array directly from Indexed
# - convert simple sub-expressions
#
# o sophisticated indexing (possibly in subclasses to preserve simplicity)
# - Idx with range smaller than dimension of Indexed
# - Idx with stepsize != 1
# - Idx with step determined by function call
from __future__ import print_function, division
from sympy.core import Expr, Tuple, Symbol, sympify, S
from sympy.core.compatibility import (is_sequence, string_types, NotIterable,
Iterable)
from sympy.core.sympify import _sympify
from sympy.functions.special.tensor_functions import KroneckerDelta
class IndexException(Exception):
pass
class Indexed(Expr):
"""Represents a mathematical object with indices.
>>> from sympy import Indexed, IndexedBase, Idx, symbols
>>> i, j = symbols('i j', cls=Idx)
>>> Indexed('A', i, j)
A[i, j]
It is recommended that ``Indexed`` objects be created via ``IndexedBase``:
>>> A = IndexedBase('A')
>>> Indexed('A', i, j) == A[i, j]
True
"""
is_commutative = True
is_Indexed = True
is_symbol = True
is_Atom = True
def __new__(cls, base, *args, **kw_args):
from sympy.utilities.misc import filldedent
from sympy.tensor.array.ndim_array import NDimArray
from sympy.matrices.matrices import MatrixBase
if not args:
raise IndexException("Indexed needs at least one index.")
if isinstance(base, (string_types, Symbol)):
base = IndexedBase(base)
elif not hasattr(base, '__getitem__') and not isinstance(base, IndexedBase):
raise TypeError(filldedent("""
Indexed expects string, Symbol, or IndexedBase as base."""))
args = list(map(sympify, args))
if isinstance(base, (NDimArray, Iterable, Tuple, MatrixBase)) and all([i.is_number for i in args]):
if len(args) == 1:
return base[args[0]]
else:
return base[args]
return Expr.__new__(cls, base, *args, **kw_args)
@property
def name(self):
return str(self)
@property
def _diff_wrt(self):
"""Allow derivatives with respect to an ``Indexed`` object."""
return True
def _eval_derivative(self, wrt):
from sympy.tensor.array.ndim_array import NDimArray
if isinstance(wrt, Indexed) and wrt.base == self.base:
if len(self.indices) != len(wrt.indices):
msg = "Different # of indices: d({!s})/d({!s})".format(self,
wrt)
raise IndexException(msg)
result = S.One
for index1, index2 in zip(self.indices, wrt.indices):
result *= KroneckerDelta(index1, index2)
return result
elif isinstance(self.base, NDimArray):
from sympy.tensor.array import derive_by_array
return Indexed(derive_by_array(self.base, wrt), *self.args[1:])
else:
if Tuple(self.indices).has(wrt):
return S.NaN
return S.Zero
@property
def base(self):
"""Returns the ``IndexedBase`` of the ``Indexed`` object.
Examples
========
>>> from sympy import Indexed, IndexedBase, Idx, symbols
>>> i, j = symbols('i j', cls=Idx)
>>> Indexed('A', i, j).base
A
>>> B = IndexedBase('B')
>>> B == B[i, j].base
True
"""
return self.args[0]
@property
def indices(self):
"""
Returns the indices of the ``Indexed`` object.
Examples
========
>>> from sympy import Indexed, Idx, symbols
>>> i, j = symbols('i j', cls=Idx)
>>> Indexed('A', i, j).indices
(i, j)
"""
return self.args[1:]
@property
def rank(self):
"""
Returns the rank of the ``Indexed`` object.
Examples
========
>>> from sympy import Indexed, Idx, symbols
>>> i, j, k, l, m = symbols('i:m', cls=Idx)
>>> Indexed('A', i, j).rank
2
>>> q = Indexed('A', i, j, k, l, m)
>>> q.rank
5
>>> q.rank == len(q.indices)
True
"""
return len(self.args) - 1
@property
def shape(self):
"""Returns a list with dimensions of each index.
Dimensions is a property of the array, not of the indices. Still, if
the ``IndexedBase`` does not define a shape attribute, it is assumed
that the ranges of the indices correspond to the shape of the array.
>>> from sympy import IndexedBase, Idx, symbols
>>> n, m = symbols('n m', integer=True)
>>> i = Idx('i', m)
>>> j = Idx('j', m)
>>> A = IndexedBase('A', shape=(n, n))
>>> B = IndexedBase('B')
>>> A[i, j].shape
(n, n)
>>> B[i, j].shape
(m, m)
"""
from sympy.utilities.misc import filldedent
if self.base.shape:
return self.base.shape
sizes = []
for i in self.indices:
upper = getattr(i, 'upper', None)
lower = getattr(i, 'lower', None)
if None in (upper, lower):
raise IndexException(filldedent("""
Range is not defined for all indices in: %s""" % self))
try:
size = upper - lower + 1
except TypeError:
raise IndexException(filldedent("""
Shape cannot be inferred from Idx with
undefined range: %s""" % self))
sizes.append(size)
return Tuple(*sizes)
@property
def ranges(self):
"""Returns a list of tuples with lower and upper range of each index.
If an index does not define the data members upper and lower, the
corresponding slot in the list contains ``None`` instead of a tuple.
Examples
========
>>> from sympy import Indexed,Idx, symbols
>>> Indexed('A', Idx('i', 2), Idx('j', 4), Idx('k', 8)).ranges
[(0, 1), (0, 3), (0, 7)]
>>> Indexed('A', Idx('i', 3), Idx('j', 3), Idx('k', 3)).ranges
[(0, 2), (0, 2), (0, 2)]
>>> x, y, z = symbols('x y z', integer=True)
>>> Indexed('A', x, y, z).ranges
[None, None, None]
"""
ranges = []
for i in self.indices:
sentinel = object()
upper = getattr(i, 'upper', sentinel)
lower = getattr(i, 'lower', sentinel)
if sentinel not in (upper, lower):
ranges.append(Tuple(lower, upper))
else:
ranges.append(None)
return ranges
def _sympystr(self, p):
indices = list(map(p.doprint, self.indices))
return "%s[%s]" % (p.doprint(self.base), ", ".join(indices))
@property
def free_symbols(self):
base_free_symbols = self.base.free_symbols
indices_free_symbols = {
fs for i in self.indices for fs in i.free_symbols}
if base_free_symbols:
return {self} | base_free_symbols | indices_free_symbols
else:
return indices_free_symbols
@property
def expr_free_symbols(self):
return {self}
class IndexedBase(Expr, NotIterable):
"""Represent the base or stem of an indexed object
The IndexedBase class represent an array that contains elements. The main purpose
of this class is to allow the convenient creation of objects of the Indexed
class. The __getitem__ method of IndexedBase returns an instance of
Indexed. Alone, without indices, the IndexedBase class can be used as a
notation for e.g. matrix equations, resembling what you could do with the
Symbol class. But, the IndexedBase class adds functionality that is not
available for Symbol instances:
- An IndexedBase object can optionally store shape information. This can
be used in to check array conformance and conditions for numpy
broadcasting. (TODO)
- An IndexedBase object implements syntactic sugar that allows easy symbolic
representation of array operations, using implicit summation of
repeated indices.
- The IndexedBase object symbolizes a mathematical structure equivalent
to arrays, and is recognized as such for code generation and automatic
compilation and wrapping.
>>> from sympy.tensor import IndexedBase, Idx
>>> from sympy import symbols
>>> A = IndexedBase('A'); A
A
>>> type(A)
<class 'sympy.tensor.indexed.IndexedBase'>
When an IndexedBase object receives indices, it returns an array with named
axes, represented by an Indexed object:
>>> i, j = symbols('i j', integer=True)
>>> A[i, j, 2]
A[i, j, 2]
>>> type(A[i, j, 2])
<class 'sympy.tensor.indexed.Indexed'>
The IndexedBase constructor takes an optional shape argument. If given,
it overrides any shape information in the indices. (But not the index
ranges!)
>>> m, n, o, p = symbols('m n o p', integer=True)
>>> i = Idx('i', m)
>>> j = Idx('j', n)
>>> A[i, j].shape
(m, n)
>>> B = IndexedBase('B', shape=(o, p))
>>> B[i, j].shape
(o, p)
"""
is_commutative = True
is_symbol = True
is_Atom = True
def __new__(cls, label, shape=None, **kw_args):
from sympy import MatrixBase, NDimArray
if isinstance(label, string_types):
label = Symbol(label)
elif isinstance(label, Symbol):
pass
elif isinstance(label, (MatrixBase, NDimArray)):
return label
elif isinstance(label, Iterable):
return _sympify(label)
else:
label = _sympify(label)
if is_sequence(shape):
shape = Tuple(*shape)
elif shape is not None:
shape = Tuple(shape)
offset = kw_args.pop('offset', S.Zero)
strides = kw_args.pop('strides', None)
if shape is not None:
obj = Expr.__new__(cls, label, shape)
else:
obj = Expr.__new__(cls, label)
obj._shape = shape
obj._offset = offset
obj._strides = strides
obj._name = str(label)
return obj
@property
def name(self):
return self._name
def __getitem__(self, indices, **kw_args):
if is_sequence(indices):
# Special case needed because M[*my_tuple] is a syntax error.
if self.shape and len(self.shape) != len(indices):
raise IndexException("Rank mismatch.")
return Indexed(self, *indices, **kw_args)
else:
if self.shape and len(self.shape) != 1:
raise IndexException("Rank mismatch.")
return Indexed(self, indices, **kw_args)
@property
def shape(self):
"""Returns the shape of the ``IndexedBase`` object.
Examples
========
>>> from sympy import IndexedBase, Idx, Symbol
>>> from sympy.abc import x, y
>>> IndexedBase('A', shape=(x, y)).shape
(x, y)
Note: If the shape of the ``IndexedBase`` is specified, it will override
any shape information given by the indices.
>>> A = IndexedBase('A', shape=(x, y))
>>> B = IndexedBase('B')
>>> i = Idx('i', 2)
>>> j = Idx('j', 1)
>>> A[i, j].shape
(x, y)
>>> B[i, j].shape
(2, 1)
"""
return self._shape
@property
def strides(self):
"""Returns the strided scheme for the ``IndexedBase`` object.
Normally this is a tuple denoting the number of
steps to take in the respective dimension when traversing
an array. For code generation purposes strides='C' and
strides='F' can also be used.
strides='C' would mean that code printer would unroll
in row-major order and 'F' means unroll in column major
order.
"""
return self._strides
@property
def offset(self):
"""Returns the offset for the ``IndexedBase`` object.
This is the value added to the resulting index when the
2D Indexed object is unrolled to a 1D form. Used in code
generation.
Examples
==========
>>> from sympy.printing import ccode
>>> from sympy.tensor import IndexedBase, Idx
>>> from sympy import symbols
>>> l, m, n, o = symbols('l m n o', integer=True)
>>> A = IndexedBase('A', strides=(l, m, n), offset=o)
>>> i, j, k = map(Idx, 'ijk')
>>> ccode(A[i, j, k])
'A[l*i + m*j + n*k + o]'
"""
return self._offset
@property
def label(self):
"""Returns the label of the ``IndexedBase`` object.
Examples
========
>>> from sympy import IndexedBase
>>> from sympy.abc import x, y
>>> IndexedBase('A', shape=(x, y)).label
A
"""
return self.args[0]
def _sympystr(self, p):
return p.doprint(self.label)
class Idx(Expr):
"""Represents an integer index as an ``Integer`` or integer expression.
There are a number of ways to create an ``Idx`` object. The constructor
takes two arguments:
``label``
An integer or a symbol that labels the index.
``range``
Optionally you can specify a range as either
* ``Symbol`` or integer: This is interpreted as a dimension. Lower and
upper bounds are set to ``0`` and ``range - 1``, respectively.
* ``tuple``: The two elements are interpreted as the lower and upper
bounds of the range, respectively.
Note: bounds of the range are assumed to be either integer or infinite (oo
and -oo are allowed to specify an unbounded range). If ``n`` is given as a
bound, then ``n.is_integer`` must not return false.
For convenience, if the label is given as a string it is automatically
converted to an integer symbol. (Note: this conversion is not done for
range or dimension arguments.)
Examples
========
>>> from sympy import IndexedBase, Idx, symbols, oo
>>> n, i, L, U = symbols('n i L U', integer=True)
If a string is given for the label an integer ``Symbol`` is created and the
bounds are both ``None``:
>>> idx = Idx('qwerty'); idx
qwerty
>>> idx.lower, idx.upper
(None, None)
Both upper and lower bounds can be specified:
>>> idx = Idx(i, (L, U)); idx
i
>>> idx.lower, idx.upper
(L, U)
When only a single bound is given it is interpreted as the dimension
and the lower bound defaults to 0:
>>> idx = Idx(i, n); idx.lower, idx.upper
(0, n - 1)
>>> idx = Idx(i, 4); idx.lower, idx.upper
(0, 3)
>>> idx = Idx(i, oo); idx.lower, idx.upper
(0, oo)
"""
is_integer = True
is_finite = True
is_real = True
is_symbol = True
is_Atom = True
_diff_wrt = True
def __new__(cls, label, range=None, **kw_args):
from sympy.utilities.misc import filldedent
if isinstance(label, string_types):
label = Symbol(label, integer=True)
label, range = list(map(sympify, (label, range)))
if label.is_Number:
if not label.is_integer:
raise TypeError("Index is not an integer number.")
return label
if not label.is_integer:
raise TypeError("Idx object requires an integer label.")
elif is_sequence(range):
if len(range) != 2:
raise ValueError(filldedent("""
Idx range tuple must have length 2, but got %s""" % len(range)))
for bound in range:
if bound.is_integer is False:
raise TypeError("Idx object requires integer bounds.")
args = label, Tuple(*range)
elif isinstance(range, Expr):
if not (range.is_integer or range is S.Infinity):
raise TypeError("Idx object requires an integer dimension.")
args = label, Tuple(0, range - 1)
elif range:
raise TypeError(filldedent("""
The range must be an ordered iterable or
integer SymPy expression."""))
else:
args = label,
obj = Expr.__new__(cls, *args, **kw_args)
obj._assumptions["finite"] = True
obj._assumptions["real"] = True
return obj
@property
def label(self):
"""Returns the label (Integer or integer expression) of the Idx object.
Examples
========
>>> from sympy import Idx, Symbol
>>> x = Symbol('x', integer=True)
>>> Idx(x).label
x
>>> j = Symbol('j', integer=True)
>>> Idx(j).label
j
>>> Idx(j + 1).label
j + 1
"""
return self.args[0]
@property
def lower(self):
"""Returns the lower bound of the ``Idx``.
Examples
========
>>> from sympy import Idx
>>> Idx('j', 2).lower
0
>>> Idx('j', 5).lower
0
>>> Idx('j').lower is None
True
"""
try:
return self.args[1][0]
except IndexError:
return
@property
def upper(self):
"""Returns the upper bound of the ``Idx``.
Examples
========
>>> from sympy import Idx
>>> Idx('j', 2).upper
1
>>> Idx('j', 5).upper
4
>>> Idx('j').upper is None
True
"""
try:
return self.args[1][1]
except IndexError:
return
def _sympystr(self, p):
return p.doprint(self.label)
@property
def name(self):
return self.label.name if self.label.is_Symbol else str(self.label)
@property
def free_symbols(self):
return {self}
def __le__(self, other):
if isinstance(other, Idx):
other_upper = other if other.upper is None else other.upper
other_lower = other if other.lower is None else other.lower
else:
other_upper = other
other_lower = other
if self.upper is not None and (self.upper <= other_lower) == True:
return True
if self.lower is not None and (self.lower > other_upper) == True:
return False
return super(Idx, self).__le__(other)
def __ge__(self, other):
if isinstance(other, Idx):
other_upper = other if other.upper is None else other.upper
other_lower = other if other.lower is None else other.lower
else:
other_upper = other
other_lower = other
if self.lower is not None and (self.lower >= other_upper) == True:
return True
if self.upper is not None and (self.upper < other_lower) == True:
return False
return super(Idx, self).__ge__(other)
def __lt__(self, other):
if isinstance(other, Idx):
other_upper = other if other.upper is None else other.upper
other_lower = other if other.lower is None else other.lower
else:
other_upper = other
other_lower = other
if self.upper is not None and (self.upper < other_lower) == True:
return True
if self.lower is not None and (self.lower >= other_upper) == True:
return False
return super(Idx, self).__lt__(other)
def __gt__(self, other):
if isinstance(other, Idx):
other_upper = other if other.upper is None else other.upper
other_lower = other if other.lower is None else other.lower
else:
other_upper = other
other_lower = other
if self.lower is not None and (self.lower > other_upper) == True:
return True
if self.upper is not None and (self.upper <= other_lower) == True:
return False
return super(Idx, self).__gt__(other)
|
36beb1f7a47d26e542b2734cee204e9470b0e9f5a8ade311f40f8f9c6cf3e8fe
|
import inspect
from .dispatcher import Dispatcher, MethodDispatcher, ambiguity_warn
global_namespace = dict()
def dispatch(*types, **kwargs):
""" Dispatch function on the types of the inputs
Supports dispatch on all non-keyword arguments.
Collects implementations based on the function name. Ignores namespaces.
If ambiguous type signatures occur a warning is raised when the function is
defined suggesting the additional method to break the ambiguity.
Examples
--------
>>> from sympy.multipledispatch import dispatch
>>> @dispatch(int)
... def f(x):
... return x + 1
>>> @dispatch(float)
... def f(x):
... return x - 1
>>> f(3)
4
>>> f(3.0)
2.0
Specify an isolated namespace with the namespace keyword argument
>>> my_namespace = dict()
>>> @dispatch(int, namespace=my_namespace)
... def foo(x):
... return x + 1
Dispatch on instance methods within classes
>>> class MyClass(object):
... @dispatch(list)
... def __init__(self, data):
... self.data = data
... @dispatch(int)
... def __init__(self, datum):
... self.data = [datum]
"""
namespace = kwargs.get('namespace', global_namespace)
on_ambiguity = kwargs.get('on_ambiguity', ambiguity_warn)
types = tuple(types)
def _(func):
name = func.__name__
if ismethod(func):
dispatcher = inspect.currentframe().f_back.f_locals.get(
name,
MethodDispatcher(name))
else:
if name not in namespace:
namespace[name] = Dispatcher(name)
dispatcher = namespace[name]
dispatcher.add(types, func, on_ambiguity=on_ambiguity)
return dispatcher
return _
def ismethod(func):
""" Is func a method?
Note that this has to work as the method is defined but before the class is
defined. At this stage methods look like functions.
"""
if hasattr(inspect, "signature"):
signature = inspect.signature(func)
return signature.parameters.get('self', None) is not None
else:
spec = inspect.getargspec(func)
return spec and spec.args and spec.args[0] == 'self'
|
521cee06417dfc3a16b52b2bb4b41a815f107538506ef5d901ed8940a73448ff
|
"""
Boolean algebra module for SymPy
"""
from __future__ import print_function, division
from collections import defaultdict
from itertools import combinations, product
from sympy.core.add import Add
from sympy.core.basic import Basic
from sympy.core.cache import cacheit
from sympy.core.compatibility import (ordered, range, with_metaclass,
as_int)
from sympy.core.function import Application, Derivative, count_ops
from sympy.core.numbers import Number
from sympy.core.operations import LatticeOp
from sympy.core.singleton import Singleton, S
from sympy.core.sympify import converter, _sympify, sympify
from sympy.utilities.iterables import sift, ibin
from sympy.utilities.misc import filldedent
def as_Boolean(e):
"""Like bool, return the Boolean value of an expression, e,
which can be any instance of Boolean or bool.
Examples
========
>>> from sympy import true, false, nan
>>> from sympy.logic.boolalg import as_Boolean
>>> from sympy.abc import x
>>> as_Boolean(1) is true
True
>>> as_Boolean(x)
x
>>> as_Boolean(2)
Traceback (most recent call last):
...
TypeError: expecting bool or Boolean, not `2`.
"""
from sympy.core.symbol import Symbol
if e == True:
return S.true
if e == False:
return S.false
if isinstance(e, Symbol):
z = e.is_zero
if z is None:
return e
return S.false if z else S.true
if isinstance(e, Boolean):
return e
raise TypeError('expecting bool or Boolean, not `%s`.' % e)
class Boolean(Basic):
"""A boolean object is an object for which logic operations make sense."""
__slots__ = []
def __and__(self, other):
"""Overloading for & operator"""
return And(self, other)
__rand__ = __and__
def __or__(self, other):
"""Overloading for |"""
return Or(self, other)
__ror__ = __or__
def __invert__(self):
"""Overloading for ~"""
return Not(self)
def __rshift__(self, other):
"""Overloading for >>"""
return Implies(self, other)
def __lshift__(self, other):
"""Overloading for <<"""
return Implies(other, self)
__rrshift__ = __lshift__
__rlshift__ = __rshift__
def __xor__(self, other):
return Xor(self, other)
__rxor__ = __xor__
def equals(self, other):
"""
Returns True if the given formulas have the same truth table.
For two formulas to be equal they must have the same literals.
Examples
========
>>> from sympy.abc import A, B, C
>>> from sympy.logic.boolalg import And, Or, Not
>>> (A >> B).equals(~B >> ~A)
True
>>> Not(And(A, B, C)).equals(And(Not(A), Not(B), Not(C)))
False
>>> Not(And(A, Not(A))).equals(Or(B, Not(B)))
False
"""
from sympy.logic.inference import satisfiable
from sympy.core.relational import Relational
if self.has(Relational) or other.has(Relational):
raise NotImplementedError('handling of relationals')
return self.atoms() == other.atoms() and \
not satisfiable(Not(Equivalent(self, other)))
def to_nnf(self, simplify=True):
# override where necessary
return self
def as_set(self):
"""
Rewrites Boolean expression in terms of real sets.
Examples
========
>>> from sympy import Symbol, Eq, Or, And
>>> x = Symbol('x', real=True)
>>> Eq(x, 0).as_set()
{0}
>>> (x > 0).as_set()
Interval.open(0, oo)
>>> And(-2 < x, x < 2).as_set()
Interval.open(-2, 2)
>>> Or(x < -2, 2 < x).as_set()
Union(Interval.open(-oo, -2), Interval.open(2, oo))
"""
from sympy.calculus.util import periodicity
from sympy.core.relational import Relational
free = self.free_symbols
if len(free) == 1:
x = free.pop()
reps = {}
for r in self.atoms(Relational):
if periodicity(r, x) not in (0, None):
s = r._eval_as_set()
if s in (S.EmptySet, S.UniversalSet, S.Reals):
reps[r] = s.as_relational(x)
continue
raise NotImplementedError(filldedent('''
as_set is not implemented for relationals
with periodic solutions
'''))
return self.subs(reps)._eval_as_set()
else:
raise NotImplementedError("Sorry, as_set has not yet been"
" implemented for multivariate"
" expressions")
@property
def binary_symbols(self):
from sympy.core.relational import Eq, Ne
return set().union(*[i.binary_symbols for i in self.args
if i.is_Boolean or i.is_Symbol
or isinstance(i, (Eq, Ne))])
class BooleanAtom(Boolean):
"""
Base class of BooleanTrue and BooleanFalse.
"""
is_Boolean = True
is_Atom = True
_op_priority = 11 # higher than Expr
def simplify(self, *a, **kw):
return self
def expand(self, *a, **kw):
return self
@property
def canonical(self):
return self
def _noop(self, other=None):
raise TypeError('BooleanAtom not allowed in this context.')
__add__ = _noop
__radd__ = _noop
__sub__ = _noop
__rsub__ = _noop
__mul__ = _noop
__rmul__ = _noop
__pow__ = _noop
__rpow__ = _noop
__rdiv__ = _noop
__truediv__ = _noop
__div__ = _noop
__rtruediv__ = _noop
__mod__ = _noop
__rmod__ = _noop
_eval_power = _noop
# /// drop when Py2 is no longer supported
def __lt__(self, other):
from sympy.utilities.misc import filldedent
raise TypeError(filldedent('''
A Boolean argument can only be used in
Eq and Ne; all other relationals expect
real expressions.
'''))
__le__ = __lt__
__gt__ = __lt__
__ge__ = __lt__
# \\\
class BooleanTrue(with_metaclass(Singleton, BooleanAtom)):
"""
SymPy version of True, a singleton that can be accessed via S.true.
This is the SymPy version of True, for use in the logic module. The
primary advantage of using true instead of True is that shorthand boolean
operations like ~ and >> will work as expected on this class, whereas with
True they act bitwise on 1. Functions in the logic module will return this
class when they evaluate to true.
Notes
=====
There is liable to be some confusion as to when ``True`` should
be used and when ``S.true`` should be used in various contexts
throughout SymPy. An important thing to remember is that
``sympify(True)`` returns ``S.true``. This means that for the most
part, you can just use ``True`` and it will automatically be converted
to ``S.true`` when necessary, similar to how you can generally use 1
instead of ``S.One``.
The rule of thumb is:
"If the boolean in question can be replaced by an arbitrary symbolic
``Boolean``, like ``Or(x, y)`` or ``x > 1``, use ``S.true``.
Otherwise, use ``True``"
In other words, use ``S.true`` only on those contexts where the
boolean is being used as a symbolic representation of truth.
For example, if the object ends up in the ``.args`` of any expression,
then it must necessarily be ``S.true`` instead of ``True``, as
elements of ``.args`` must be ``Basic``. On the other hand,
``==`` is not a symbolic operation in SymPy, since it always returns
``True`` or ``False``, and does so in terms of structural equality
rather than mathematical, so it should return ``True``. The assumptions
system should use ``True`` and ``False``. Aside from not satisfying
the above rule of thumb, the assumptions system uses a three-valued logic
(``True``, ``False``, ``None``), whereas ``S.true`` and ``S.false``
represent a two-valued logic. When in doubt, use ``True``.
"``S.true == True is True``."
While "``S.true is True``" is ``False``, "``S.true == True``"
is ``True``, so if there is any doubt over whether a function or
expression will return ``S.true`` or ``True``, just use ``==``
instead of ``is`` to do the comparison, and it will work in either
case. Finally, for boolean flags, it's better to just use ``if x``
instead of ``if x is True``. To quote PEP 8:
Don't compare boolean values to ``True`` or ``False``
using ``==``.
* Yes: ``if greeting:``
* No: ``if greeting == True:``
* Worse: ``if greeting is True:``
Examples
========
>>> from sympy import sympify, true, false, Or
>>> sympify(True)
True
>>> _ is True, _ is true
(False, True)
>>> Or(true, false)
True
>>> _ is true
True
Python operators give a boolean result for true but a
bitwise result for True
>>> ~true, ~True
(False, -2)
>>> true >> true, True >> True
(True, 0)
Python operators give a boolean result for true but a
bitwise result for True
>>> ~true, ~True
(False, -2)
>>> true >> true, True >> True
(True, 0)
See Also
========
sympy.logic.boolalg.BooleanFalse
"""
def __nonzero__(self):
return True
__bool__ = __nonzero__
def __hash__(self):
return hash(True)
@property
def negated(self):
return S.false
def as_set(self):
"""
Rewrite logic operators and relationals in terms of real sets.
Examples
========
>>> from sympy import true
>>> true.as_set()
UniversalSet()
"""
return S.UniversalSet
class BooleanFalse(with_metaclass(Singleton, BooleanAtom)):
"""
SymPy version of False, a singleton that can be accessed via S.false.
This is the SymPy version of False, for use in the logic module. The
primary advantage of using false instead of False is that shorthand boolean
operations like ~ and >> will work as expected on this class, whereas with
False they act bitwise on 0. Functions in the logic module will return this
class when they evaluate to false.
Notes
======
See note in :py:class`sympy.logic.boolalg.BooleanTrue`
Examples
========
>>> from sympy import sympify, true, false, Or
>>> sympify(False)
False
>>> _ is False, _ is false
(False, True)
>>> Or(true, false)
True
>>> _ is true
True
Python operators give a boolean result for false but a
bitwise result for False
>>> ~false, ~False
(True, -1)
>>> false >> false, False >> False
(True, 0)
See Also
========
sympy.logic.boolalg.BooleanTrue
"""
def __nonzero__(self):
return False
__bool__ = __nonzero__
def __hash__(self):
return hash(False)
@property
def negated(self):
return S.true
def as_set(self):
"""
Rewrite logic operators and relationals in terms of real sets.
Examples
========
>>> from sympy import false
>>> false.as_set()
EmptySet()
"""
return S.EmptySet
true = BooleanTrue()
false = BooleanFalse()
# We want S.true and S.false to work, rather than S.BooleanTrue and
# S.BooleanFalse, but making the class and instance names the same causes some
# major issues (like the inability to import the class directly from this
# file).
S.true = true
S.false = false
converter[bool] = lambda x: S.true if x else S.false
class BooleanFunction(Application, Boolean):
"""Boolean function is a function that lives in a boolean space
It is used as base class for And, Or, Not, etc.
"""
is_Boolean = True
def _eval_simplify(self, ratio, measure, rational, inverse):
rv = self.func(*[a._eval_simplify(ratio=ratio, measure=measure,
rational=rational, inverse=inverse)
for a in self.args])
return simplify_logic(rv)
def simplify(self, ratio=1.7, measure=count_ops, rational=False,
inverse=False):
return self._eval_simplify(ratio, measure, rational, inverse)
# /// drop when Py2 is no longer supported
def __lt__(self, other):
from sympy.utilities.misc import filldedent
raise TypeError(filldedent('''
A Boolean argument can only be used in
Eq and Ne; all other relationals expect
real expressions.
'''))
__le__ = __lt__
__ge__ = __lt__
__gt__ = __lt__
# \\\
@classmethod
def binary_check_and_simplify(self, *args):
from sympy.core.relational import Relational, Eq, Ne
args = [as_Boolean(i) for i in args]
bin = set().union(*[i.binary_symbols for i in args])
rel = set().union(*[i.atoms(Relational) for i in args])
reps = {}
for x in bin:
for r in rel:
if x in bin and x in r.free_symbols:
if isinstance(r, (Eq, Ne)):
if not (
S.true in r.args or
S.false in r.args):
reps[r] = S.false
else:
raise TypeError(filldedent('''
Incompatible use of binary symbol `%s` as a
real variable in `%s`
''' % (x, r)))
return [i.subs(reps) for i in args]
def to_nnf(self, simplify=True):
return self._to_nnf(*self.args, simplify=simplify)
@classmethod
def _to_nnf(cls, *args, **kwargs):
simplify = kwargs.get('simplify', True)
argset = set([])
for arg in args:
if not is_literal(arg):
arg = arg.to_nnf(simplify)
if simplify:
if isinstance(arg, cls):
arg = arg.args
else:
arg = (arg,)
for a in arg:
if Not(a) in argset:
return cls.zero
argset.add(a)
else:
argset.add(arg)
return cls(*argset)
# the diff method below is copied from Expr class
def diff(self, *symbols, **assumptions):
assumptions.setdefault("evaluate", True)
return Derivative(self, *symbols, **assumptions)
def _eval_derivative(self, x):
from sympy.core.relational import Eq
from sympy.functions.elementary.piecewise import Piecewise
if x in self.binary_symbols:
return Piecewise(
(0, Eq(self.subs(x, 0), self.subs(x, 1))),
(1, True))
elif x in self.free_symbols:
# not implemented, see https://www.encyclopediaofmath.org/
# index.php/Boolean_differential_calculus
pass
else:
return S.Zero
def _apply_patternbased_simplification(self, rv, patterns, measure,
dominatingvalue,
replacementvalue=None):
"""
Replace patterns of Relational
Parameters
==========
rv : Expr
Boolean expression
patterns : tuple
Tuple of tuples, with (pattern to simplify, simplified pattern)
measure : function
Simplification measure
dominatingvalue : boolean or None
The dominating value for the function of consideration.
For example, for And S.false is dominating. As soon as one
expression is S.false in And, the whole expression is S.false.
replacementvalue : boolean or None, optional
The resulting value for the whole expression if one argument
evaluates to dominatingvalue.
For example, for Nand S.false is dominating, but in this case
the resulting value is S.true. Default is None. If replacementvalue
is None and dominatingvalue is not None,
replacementvalue = dominatingvalue
"""
from sympy.core.relational import Relational, _canonical
if replacementvalue is None and dominatingvalue is not None:
replacementvalue = dominatingvalue
# Use replacement patterns for Relationals
changed = True
Rel, nonRel = sift(rv.args, lambda i: isinstance(i, Relational),
binary=True)
if len(Rel) <= 1:
return rv
Rel, nonRealRel = sift(rv.args, lambda i: all(s.is_real is not False
for s in i.free_symbols),
binary=True)
Rel = [i.canonical for i in Rel]
while changed and len(Rel) >= 2:
changed = False
# Sort based on ordered
Rel = list(ordered(Rel))
# Create a list of possible replacements
results = []
# Try all combinations
for ((i, pi), (j, pj)) in combinations(enumerate(Rel), 2):
for k, (pattern, simp) in enumerate(patterns):
res = []
# use SymPy matching
oldexpr = rv.func(pi, pj)
tmpres = oldexpr.match(pattern)
if tmpres:
res.append((tmpres, oldexpr))
# Try reversing first relational
# This and the rest should not be required with a better
# canonical
oldexpr = rv.func(pi.reversed, pj)
tmpres = oldexpr.match(pattern)
if tmpres:
res.append((tmpres, oldexpr))
# Try reversing second relational
oldexpr = rv.func(pi, pj.reversed)
tmpres = oldexpr.match(pattern)
if tmpres:
res.append((tmpres, oldexpr))
# Try reversing both relationals
oldexpr = rv.func(pi.reversed, pj.reversed)
tmpres = oldexpr.match(pattern)
if tmpres:
res.append((tmpres, oldexpr))
if res:
for tmpres, oldexpr in res:
# we have a matching, compute replacement
np = simp.subs(tmpres)
if np == dominatingvalue:
# if dominatingvalue, the whole expression
# will be replacementvalue
return replacementvalue
# add replacement
if not isinstance(np, ITE):
# We only want to use ITE replacements if
# they simplify to a relational
costsaving = measure(oldexpr) - measure(np)
if costsaving > 0:
results.append((costsaving, (i, j, np)))
if results:
# Sort results based on complexity
results = list(reversed(sorted(results,
key=lambda pair: pair[0])))
# Replace the one providing most simplification
cost, replacement = results[0]
i, j, newrel = replacement
# Remove the old relationals
del Rel[j]
del Rel[i]
if dominatingvalue is None or newrel != ~dominatingvalue:
# Insert the new one (no need to insert a value that will
# not affect the result)
Rel.append(newrel)
# We did change something so try again
changed = True
rv = rv.func(*([_canonical(i) for i in ordered(Rel)]
+ nonRel + nonRealRel))
return rv
class And(LatticeOp, BooleanFunction):
"""
Logical AND function.
It evaluates its arguments in order, giving False immediately
if any of them are False, and True if they are all True.
Examples
========
>>> from sympy.core import symbols
>>> from sympy.abc import x, y
>>> from sympy.logic.boolalg import And
>>> x & y
x & y
Notes
=====
The ``&`` operator is provided as a convenience, but note that its use
here is different from its normal use in Python, which is bitwise
and. Hence, ``And(a, b)`` and ``a & b`` will return different things if
``a`` and ``b`` are integers.
>>> And(x, y).subs(x, 1)
y
"""
zero = false
identity = true
nargs = None
@classmethod
def _new_args_filter(cls, args):
newargs = []
rel = []
args = BooleanFunction.binary_check_and_simplify(*args)
for x in reversed(args):
if x.is_Relational:
c = x.canonical
if c in rel:
continue
nc = c.negated.canonical
if any(r == nc for r in rel):
return [S.false]
rel.append(c)
newargs.append(x)
return LatticeOp._new_args_filter(newargs, And)
def _eval_simplify(self, ratio, measure, rational, inverse):
from sympy.core.relational import Equality, Relational
from sympy.solvers.solveset import linear_coeffs
# standard simplify
rv = super(And, self)._eval_simplify(
ratio, measure, rational, inverse)
if not isinstance(rv, And):
return rv
# simplify args that are equalities involving
# symbols so x == 0 & x == y -> x==0 & y == 0
Rel, nonRel = sift(rv.args, lambda i: isinstance(i, Relational),
binary=True)
if not Rel:
return rv
eqs, other = sift(Rel, lambda i: isinstance(i, Equality), binary=True)
if not eqs:
return rv
reps = {}
sifted = {}
if eqs:
# group by length of free symbols
sifted = sift(ordered([
(i.free_symbols, i) for i in eqs]),
lambda x: len(x[0]))
eqs = []
while 1 in sifted:
for free, e in sifted.pop(1):
x = free.pop()
if e.lhs != x or x in e.rhs.free_symbols:
try:
m, b = linear_coeffs(
e.rewrite(Add, evaluate=False), x)
enew = e.func(x, -b/m)
if measure(enew) <= ratio*measure(e):
e = enew
else:
eqs.append(e)
continue
except ValueError:
pass
if x in reps:
eqs.append(e.func(e.rhs, reps[x]))
else:
reps[x] = e.rhs
eqs.append(e)
resifted = defaultdict(list)
for k in sifted:
for f, e in sifted[k]:
e = e.subs(reps)
f = e.free_symbols
resifted[len(f)].append((f, e))
sifted = resifted
for k in sifted:
eqs.extend([e for f, e in sifted[k]])
other = [ei.subs(reps) for ei in other]
rv = rv.func(*([i.canonical for i in (eqs + other)] + nonRel))
patterns = simplify_patterns_and()
return self._apply_patternbased_simplification(rv, patterns,
measure, False)
def _eval_as_set(self):
from sympy.sets.sets import Intersection
return Intersection(*[arg.as_set() for arg in self.args])
class Or(LatticeOp, BooleanFunction):
"""
Logical OR function
It evaluates its arguments in order, giving True immediately
if any of them are True, and False if they are all False.
Examples
========
>>> from sympy.core import symbols
>>> from sympy.abc import x, y
>>> from sympy.logic.boolalg import Or
>>> x | y
x | y
Notes
=====
The ``|`` operator is provided as a convenience, but note that its use
here is different from its normal use in Python, which is bitwise
or. Hence, ``Or(a, b)`` and ``a | b`` will return different things if
``a`` and ``b`` are integers.
>>> Or(x, y).subs(x, 0)
y
"""
zero = true
identity = false
@classmethod
def _new_args_filter(cls, args):
newargs = []
rel = []
args = BooleanFunction.binary_check_and_simplify(*args)
for x in args:
if x.is_Relational:
c = x.canonical
if c in rel:
continue
nc = c.negated.canonical
if any(r == nc for r in rel):
return [S.true]
rel.append(c)
newargs.append(x)
return LatticeOp._new_args_filter(newargs, Or)
def _eval_as_set(self):
from sympy.sets.sets import Union
return Union(*[arg.as_set() for arg in self.args])
def _eval_simplify(self, ratio, measure, rational, inverse):
# standard simplify
rv = super(Or, self)._eval_simplify(
ratio, measure, rational, inverse)
if not isinstance(rv, Or):
return rv
patterns = simplify_patterns_or()
return self._apply_patternbased_simplification(rv, patterns,
measure, S.true)
class Not(BooleanFunction):
"""
Logical Not function (negation)
Returns True if the statement is False
Returns False if the statement is True
Examples
========
>>> from sympy.logic.boolalg import Not, And, Or
>>> from sympy.abc import x, A, B
>>> Not(True)
False
>>> Not(False)
True
>>> Not(And(True, False))
True
>>> Not(Or(True, False))
False
>>> Not(And(And(True, x), Or(x, False)))
~x
>>> ~x
~x
>>> Not(And(Or(A, B), Or(~A, ~B)))
~((A | B) & (~A | ~B))
Notes
=====
- The ``~`` operator is provided as a convenience, but note that its use
here is different from its normal use in Python, which is bitwise
not. In particular, ``~a`` and ``Not(a)`` will be different if ``a`` is
an integer. Furthermore, since bools in Python subclass from ``int``,
``~True`` is the same as ``~1`` which is ``-2``, which has a boolean
value of True. To avoid this issue, use the SymPy boolean types
``true`` and ``false``.
>>> from sympy import true
>>> ~True
-2
>>> ~true
False
"""
is_Not = True
@classmethod
def eval(cls, arg):
from sympy import (
Equality, GreaterThan, LessThan,
StrictGreaterThan, StrictLessThan, Unequality)
if isinstance(arg, Number) or arg in (True, False):
return false if arg else true
if arg.is_Not:
return arg.args[0]
# Simplify Relational objects.
if isinstance(arg, Equality):
return Unequality(*arg.args)
if isinstance(arg, Unequality):
return Equality(*arg.args)
if isinstance(arg, StrictLessThan):
return GreaterThan(*arg.args)
if isinstance(arg, StrictGreaterThan):
return LessThan(*arg.args)
if isinstance(arg, LessThan):
return StrictGreaterThan(*arg.args)
if isinstance(arg, GreaterThan):
return StrictLessThan(*arg.args)
def _eval_as_set(self):
"""
Rewrite logic operators and relationals in terms of real sets.
Examples
========
>>> from sympy import Not, Symbol
>>> x = Symbol('x')
>>> Not(x > 0).as_set()
Interval(-oo, 0)
"""
return self.args[0].as_set().complement(S.Reals)
def to_nnf(self, simplify=True):
if is_literal(self):
return self
expr = self.args[0]
func, args = expr.func, expr.args
if func == And:
return Or._to_nnf(*[~arg for arg in args], simplify=simplify)
if func == Or:
return And._to_nnf(*[~arg for arg in args], simplify=simplify)
if func == Implies:
a, b = args
return And._to_nnf(a, ~b, simplify=simplify)
if func == Equivalent:
return And._to_nnf(Or(*args), Or(*[~arg for arg in args]),
simplify=simplify)
if func == Xor:
result = []
for i in range(1, len(args)+1, 2):
for neg in combinations(args, i):
clause = [~s if s in neg else s for s in args]
result.append(Or(*clause))
return And._to_nnf(*result, simplify=simplify)
if func == ITE:
a, b, c = args
return And._to_nnf(Or(a, ~c), Or(~a, ~b), simplify=simplify)
raise ValueError("Illegal operator %s in expression" % func)
class Xor(BooleanFunction):
"""
Logical XOR (exclusive OR) function.
Returns True if an odd number of the arguments are True and the rest are
False.
Returns False if an even number of the arguments are True and the rest are
False.
Examples
========
>>> from sympy.logic.boolalg import Xor
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> Xor(True, False)
True
>>> Xor(True, True)
False
>>> Xor(True, False, True, True, False)
True
>>> Xor(True, False, True, False)
False
>>> x ^ y
Xor(x, y)
Notes
=====
The ``^`` operator is provided as a convenience, but note that its use
here is different from its normal use in Python, which is bitwise xor. In
particular, ``a ^ b`` and ``Xor(a, b)`` will be different if ``a`` and
``b`` are integers.
>>> Xor(x, y).subs(y, 0)
x
"""
def __new__(cls, *args, **kwargs):
argset = set([])
obj = super(Xor, cls).__new__(cls, *args, **kwargs)
for arg in obj._args:
if isinstance(arg, Number) or arg in (True, False):
if arg:
arg = true
else:
continue
if isinstance(arg, Xor):
for a in arg.args:
argset.remove(a) if a in argset else argset.add(a)
elif arg in argset:
argset.remove(arg)
else:
argset.add(arg)
rel = [(r, r.canonical, r.negated.canonical)
for r in argset if r.is_Relational]
odd = False # is number of complimentary pairs odd? start 0 -> False
remove = []
for i, (r, c, nc) in enumerate(rel):
for j in range(i + 1, len(rel)):
rj, cj = rel[j][:2]
if cj == nc:
odd = ~odd
break
elif cj == c:
break
else:
continue
remove.append((r, rj))
if odd:
argset.remove(true) if true in argset else argset.add(true)
for a, b in remove:
argset.remove(a)
argset.remove(b)
if len(argset) == 0:
return false
elif len(argset) == 1:
return argset.pop()
elif True in argset:
argset.remove(True)
return Not(Xor(*argset))
else:
obj._args = tuple(ordered(argset))
obj._argset = frozenset(argset)
return obj
@property
@cacheit
def args(self):
return tuple(ordered(self._argset))
def to_nnf(self, simplify=True):
args = []
for i in range(0, len(self.args)+1, 2):
for neg in combinations(self.args, i):
clause = [~s if s in neg else s for s in self.args]
args.append(Or(*clause))
return And._to_nnf(*args, simplify=simplify)
def _eval_simplify(self, ratio, measure, rational, inverse):
# as standard simplify uses simplify_logic which writes things as
# And and Or, we only simplify the partial expressions before using
# patterns
rv = self.func(*[a._eval_simplify(ratio=ratio, measure=measure,
rational=rational, inverse=inverse)
for a in self.args])
if not isinstance(rv, Xor): # This shouldn't really happen here
return rv
patterns = simplify_patterns_xor()
return self._apply_patternbased_simplification(rv, patterns,
measure, None)
class Nand(BooleanFunction):
"""
Logical NAND function.
It evaluates its arguments in order, giving True immediately if any
of them are False, and False if they are all True.
Returns True if any of the arguments are False
Returns False if all arguments are True
Examples
========
>>> from sympy.logic.boolalg import Nand
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> Nand(False, True)
True
>>> Nand(True, True)
False
>>> Nand(x, y)
~(x & y)
"""
@classmethod
def eval(cls, *args):
return Not(And(*args))
class Nor(BooleanFunction):
"""
Logical NOR function.
It evaluates its arguments in order, giving False immediately if any
of them are True, and True if they are all False.
Returns False if any argument is True
Returns True if all arguments are False
Examples
========
>>> from sympy.logic.boolalg import Nor
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> Nor(True, False)
False
>>> Nor(True, True)
False
>>> Nor(False, True)
False
>>> Nor(False, False)
True
>>> Nor(x, y)
~(x | y)
"""
@classmethod
def eval(cls, *args):
return Not(Or(*args))
class Xnor(BooleanFunction):
"""
Logical XNOR function.
Returns False if an odd number of the arguments are True and the rest are
False.
Returns True if an even number of the arguments are True and the rest are
False.
Examples
========
>>> from sympy.logic.boolalg import Xnor
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> Xnor(True, False)
False
>>> Xnor(True, True)
True
>>> Xnor(True, False, True, True, False)
False
>>> Xnor(True, False, True, False)
True
"""
@classmethod
def eval(cls, *args):
return Not(Xor(*args))
class Implies(BooleanFunction):
"""
Logical implication.
A implies B is equivalent to !A v B
Accepts two Boolean arguments; A and B.
Returns False if A is True and B is False
Returns True otherwise.
Examples
========
>>> from sympy.logic.boolalg import Implies
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> Implies(True, False)
False
>>> Implies(False, False)
True
>>> Implies(True, True)
True
>>> Implies(False, True)
True
>>> x >> y
Implies(x, y)
>>> y << x
Implies(x, y)
Notes
=====
The ``>>`` and ``<<`` operators are provided as a convenience, but note
that their use here is different from their normal use in Python, which is
bit shifts. Hence, ``Implies(a, b)`` and ``a >> b`` will return different
things if ``a`` and ``b`` are integers. In particular, since Python
considers ``True`` and ``False`` to be integers, ``True >> True`` will be
the same as ``1 >> 1``, i.e., 0, which has a truth value of False. To
avoid this issue, use the SymPy objects ``true`` and ``false``.
>>> from sympy import true, false
>>> True >> False
1
>>> true >> false
False
"""
@classmethod
def eval(cls, *args):
try:
newargs = []
for x in args:
if isinstance(x, Number) or x in (0, 1):
newargs.append(True if x else False)
else:
newargs.append(x)
A, B = newargs
except ValueError:
raise ValueError(
"%d operand(s) used for an Implies "
"(pairs are required): %s" % (len(args), str(args)))
if A == True or A == False or B == True or B == False:
return Or(Not(A), B)
elif A == B:
return S.true
elif A.is_Relational and B.is_Relational:
if A.canonical == B.canonical:
return S.true
if A.negated.canonical == B.canonical:
return B
else:
return Basic.__new__(cls, *args)
def to_nnf(self, simplify=True):
a, b = self.args
return Or._to_nnf(~a, b, simplify=simplify)
class Equivalent(BooleanFunction):
"""
Equivalence relation.
Equivalent(A, B) is True iff A and B are both True or both False
Returns True if all of the arguments are logically equivalent.
Returns False otherwise.
Examples
========
>>> from sympy.logic.boolalg import Equivalent, And
>>> from sympy.abc import x, y
>>> Equivalent(False, False, False)
True
>>> Equivalent(True, False, False)
False
>>> Equivalent(x, And(x, True))
True
"""
def __new__(cls, *args, **options):
from sympy.core.relational import Relational
args = [_sympify(arg) for arg in args]
argset = set(args)
for x in args:
if isinstance(x, Number) or x in [True, False]: # Includes 0, 1
argset.discard(x)
argset.add(True if x else False)
rel = []
for r in argset:
if isinstance(r, Relational):
rel.append((r, r.canonical, r.negated.canonical))
remove = []
for i, (r, c, nc) in enumerate(rel):
for j in range(i + 1, len(rel)):
rj, cj = rel[j][:2]
if cj == nc:
return false
elif cj == c:
remove.append((r, rj))
break
for a, b in remove:
argset.remove(a)
argset.remove(b)
argset.add(True)
if len(argset) <= 1:
return true
if True in argset:
argset.discard(True)
return And(*argset)
if False in argset:
argset.discard(False)
return And(*[~arg for arg in argset])
_args = frozenset(argset)
obj = super(Equivalent, cls).__new__(cls, _args)
obj._argset = _args
return obj
@property
@cacheit
def args(self):
return tuple(ordered(self._argset))
def to_nnf(self, simplify=True):
args = []
for a, b in zip(self.args, self.args[1:]):
args.append(Or(~a, b))
args.append(Or(~self.args[-1], self.args[0]))
return And._to_nnf(*args, simplify=simplify)
class ITE(BooleanFunction):
"""
If then else clause.
ITE(A, B, C) evaluates and returns the result of B if A is true
else it returns the result of C. All args must be Booleans.
Examples
========
>>> from sympy.logic.boolalg import ITE, And, Xor, Or
>>> from sympy.abc import x, y, z
>>> ITE(True, False, True)
False
>>> ITE(Or(True, False), And(True, True), Xor(True, True))
True
>>> ITE(x, y, z)
ITE(x, y, z)
>>> ITE(True, x, y)
x
>>> ITE(False, x, y)
y
>>> ITE(x, y, y)
y
Trying to use non-Boolean args will generate a TypeError:
>>> ITE(True, [], ())
Traceback (most recent call last):
...
TypeError: expecting bool, Boolean or ITE, not `[]`
"""
def __new__(cls, *args, **kwargs):
from sympy.core.relational import Eq, Ne
if len(args) != 3:
raise ValueError('expecting exactly 3 args')
a, b, c = args
# check use of binary symbols
if isinstance(a, (Eq, Ne)):
# in this context, we can evaluate the Eq/Ne
# if one arg is a binary symbol and the other
# is true/false
b, c = map(as_Boolean, (b, c))
bin = set().union(*[i.binary_symbols for i in (b, c)])
if len(set(a.args) - bin) == 1:
# one arg is a binary_symbols
_a = a
if a.lhs is S.true:
a = a.rhs
elif a.rhs is S.true:
a = a.lhs
elif a.lhs is S.false:
a = ~a.rhs
elif a.rhs is S.false:
a = ~a.lhs
else:
# binary can only equal True or False
a = S.false
if isinstance(_a, Ne):
a = ~a
else:
a, b, c = BooleanFunction.binary_check_and_simplify(
a, b, c)
rv = None
if kwargs.get('evaluate', True):
rv = cls.eval(a, b, c)
if rv is None:
rv = BooleanFunction.__new__(cls, a, b, c, evaluate=False)
return rv
@classmethod
def eval(cls, *args):
from sympy.core.relational import Eq, Ne
# do the args give a singular result?
a, b, c = args
if isinstance(a, (Ne, Eq)):
_a = a
if S.true in a.args:
a = a.lhs if a.rhs is S.true else a.rhs
elif S.false in a.args:
a = ~a.lhs if a.rhs is S.false else ~a.rhs
else:
_a = None
if _a is not None and isinstance(_a, Ne):
a = ~a
if a is S.true:
return b
if a is S.false:
return c
if b == c:
return b
else:
# or maybe the results allow the answer to be expressed
# in terms of the condition
if b is S.true and c is S.false:
return a
if b is S.false and c is S.true:
return Not(a)
if [a, b, c] != args:
return cls(a, b, c, evaluate=False)
def to_nnf(self, simplify=True):
a, b, c = self.args
return And._to_nnf(Or(~a, b), Or(a, c), simplify=simplify)
def _eval_as_set(self):
return self.to_nnf().as_set()
def _eval_rewrite_as_Piecewise(self, *args, **kwargs):
from sympy.functions import Piecewise
return Piecewise((args[1], args[0]), (args[2], True))
# end class definitions. Some useful methods
def conjuncts(expr):
"""Return a list of the conjuncts in the expr s.
Examples
========
>>> from sympy.logic.boolalg import conjuncts
>>> from sympy.abc import A, B
>>> conjuncts(A & B)
frozenset({A, B})
>>> conjuncts(A | B)
frozenset({A | B})
"""
return And.make_args(expr)
def disjuncts(expr):
"""Return a list of the disjuncts in the sentence s.
Examples
========
>>> from sympy.logic.boolalg import disjuncts
>>> from sympy.abc import A, B
>>> disjuncts(A | B)
frozenset({A, B})
>>> disjuncts(A & B)
frozenset({A & B})
"""
return Or.make_args(expr)
def distribute_and_over_or(expr):
"""
Given a sentence s consisting of conjunctions and disjunctions
of literals, return an equivalent sentence in CNF.
Examples
========
>>> from sympy.logic.boolalg import distribute_and_over_or, And, Or, Not
>>> from sympy.abc import A, B, C
>>> distribute_and_over_or(Or(A, And(Not(B), Not(C))))
(A | ~B) & (A | ~C)
"""
return _distribute((expr, And, Or))
def distribute_or_over_and(expr):
"""
Given a sentence s consisting of conjunctions and disjunctions
of literals, return an equivalent sentence in DNF.
Note that the output is NOT simplified.
Examples
========
>>> from sympy.logic.boolalg import distribute_or_over_and, And, Or, Not
>>> from sympy.abc import A, B, C
>>> distribute_or_over_and(And(Or(Not(A), B), C))
(B & C) | (C & ~A)
"""
return _distribute((expr, Or, And))
def _distribute(info):
"""
Distributes info[1] over info[2] with respect to info[0].
"""
if isinstance(info[0], info[2]):
for arg in info[0].args:
if isinstance(arg, info[1]):
conj = arg
break
else:
return info[0]
rest = info[2](*[a for a in info[0].args if a is not conj])
return info[1](*list(map(_distribute,
[(info[2](c, rest), info[1], info[2])
for c in conj.args])))
elif isinstance(info[0], info[1]):
return info[1](*list(map(_distribute,
[(x, info[1], info[2])
for x in info[0].args])))
else:
return info[0]
def to_nnf(expr, simplify=True):
"""
Converts expr to Negation Normal Form.
A logical expression is in Negation Normal Form (NNF) if it
contains only And, Or and Not, and Not is applied only to literals.
If simplify is True, the result contains no redundant clauses.
Examples
========
>>> from sympy.abc import A, B, C, D
>>> from sympy.logic.boolalg import Not, Equivalent, to_nnf
>>> to_nnf(Not((~A & ~B) | (C & D)))
(A | B) & (~C | ~D)
>>> to_nnf(Equivalent(A >> B, B >> A))
(A | ~B | (A & ~B)) & (B | ~A | (B & ~A))
"""
if is_nnf(expr, simplify):
return expr
return expr.to_nnf(simplify)
def to_cnf(expr, simplify=False):
"""
Convert a propositional logical sentence s to conjunctive normal form.
That is, of the form ((A | ~B | ...) & (B | C | ...) & ...)
If simplify is True, the expr is evaluated to its simplest CNF form using
the Quine-McCluskey algorithm.
Examples
========
>>> from sympy.logic.boolalg import to_cnf
>>> from sympy.abc import A, B, D
>>> to_cnf(~(A | B) | D)
(D | ~A) & (D | ~B)
>>> to_cnf((A | B) & (A | ~A), True)
A | B
"""
expr = sympify(expr)
if not isinstance(expr, BooleanFunction):
return expr
if simplify:
return simplify_logic(expr, 'cnf', True)
# Don't convert unless we have to
if is_cnf(expr):
return expr
expr = eliminate_implications(expr)
return distribute_and_over_or(expr)
def to_dnf(expr, simplify=False):
"""
Convert a propositional logical sentence s to disjunctive normal form.
That is, of the form ((A & ~B & ...) | (B & C & ...) | ...)
If simplify is True, the expr is evaluated to its simplest DNF form using
the Quine-McCluskey algorithm.
Examples
========
>>> from sympy.logic.boolalg import to_dnf
>>> from sympy.abc import A, B, C
>>> to_dnf(B & (A | C))
(A & B) | (B & C)
>>> to_dnf((A & B) | (A & ~B) | (B & C) | (~B & C), True)
A | C
"""
expr = sympify(expr)
if not isinstance(expr, BooleanFunction):
return expr
if simplify:
return simplify_logic(expr, 'dnf', True)
# Don't convert unless we have to
if is_dnf(expr):
return expr
expr = eliminate_implications(expr)
return distribute_or_over_and(expr)
def is_nnf(expr, simplified=True):
"""
Checks if expr is in Negation Normal Form.
A logical expression is in Negation Normal Form (NNF) if it
contains only And, Or and Not, and Not is applied only to literals.
If simpified is True, checks if result contains no redundant clauses.
Examples
========
>>> from sympy.abc import A, B, C
>>> from sympy.logic.boolalg import Not, is_nnf
>>> is_nnf(A & B | ~C)
True
>>> is_nnf((A | ~A) & (B | C))
False
>>> is_nnf((A | ~A) & (B | C), False)
True
>>> is_nnf(Not(A & B) | C)
False
>>> is_nnf((A >> B) & (B >> A))
False
"""
expr = sympify(expr)
if is_literal(expr):
return True
stack = [expr]
while stack:
expr = stack.pop()
if expr.func in (And, Or):
if simplified:
args = expr.args
for arg in args:
if Not(arg) in args:
return False
stack.extend(expr.args)
elif not is_literal(expr):
return False
return True
def is_cnf(expr):
"""
Test whether or not an expression is in conjunctive normal form.
Examples
========
>>> from sympy.logic.boolalg import is_cnf
>>> from sympy.abc import A, B, C
>>> is_cnf(A | B | C)
True
>>> is_cnf(A & B & C)
True
>>> is_cnf((A & B) | C)
False
"""
return _is_form(expr, And, Or)
def is_dnf(expr):
"""
Test whether or not an expression is in disjunctive normal form.
Examples
========
>>> from sympy.logic.boolalg import is_dnf
>>> from sympy.abc import A, B, C
>>> is_dnf(A | B | C)
True
>>> is_dnf(A & B & C)
True
>>> is_dnf((A & B) | C)
True
>>> is_dnf(A & (B | C))
False
"""
return _is_form(expr, Or, And)
def _is_form(expr, function1, function2):
"""
Test whether or not an expression is of the required form.
"""
expr = sympify(expr)
# Special case of an Atom
if expr.is_Atom:
return True
# Special case of a single expression of function2
if isinstance(expr, function2):
for lit in expr.args:
if isinstance(lit, Not):
if not lit.args[0].is_Atom:
return False
else:
if not lit.is_Atom:
return False
return True
# Special case of a single negation
if isinstance(expr, Not):
if not expr.args[0].is_Atom:
return False
if not isinstance(expr, function1):
return False
for cls in expr.args:
if cls.is_Atom:
continue
if isinstance(cls, Not):
if not cls.args[0].is_Atom:
return False
elif not isinstance(cls, function2):
return False
for lit in cls.args:
if isinstance(lit, Not):
if not lit.args[0].is_Atom:
return False
else:
if not lit.is_Atom:
return False
return True
def eliminate_implications(expr):
"""
Change >>, <<, and Equivalent into &, |, and ~. That is, return an
expression that is equivalent to s, but has only &, |, and ~ as logical
operators.
Examples
========
>>> from sympy.logic.boolalg import Implies, Equivalent, \
eliminate_implications
>>> from sympy.abc import A, B, C
>>> eliminate_implications(Implies(A, B))
B | ~A
>>> eliminate_implications(Equivalent(A, B))
(A | ~B) & (B | ~A)
>>> eliminate_implications(Equivalent(A, B, C))
(A | ~C) & (B | ~A) & (C | ~B)
"""
return to_nnf(expr, simplify=False)
def is_literal(expr):
"""
Returns True if expr is a literal, else False.
Examples
========
>>> from sympy import Or, Q
>>> from sympy.abc import A, B
>>> from sympy.logic.boolalg import is_literal
>>> is_literal(A)
True
>>> is_literal(~A)
True
>>> is_literal(Q.zero(A))
True
>>> is_literal(A + B)
True
>>> is_literal(Or(A, B))
False
"""
if isinstance(expr, Not):
return not isinstance(expr.args[0], BooleanFunction)
else:
return not isinstance(expr, BooleanFunction)
def to_int_repr(clauses, symbols):
"""
Takes clauses in CNF format and puts them into an integer representation.
Examples
========
>>> from sympy.logic.boolalg import to_int_repr
>>> from sympy.abc import x, y
>>> to_int_repr([x | y, y], [x, y]) == [{1, 2}, {2}]
True
"""
# Convert the symbol list into a dict
symbols = dict(list(zip(symbols, list(range(1, len(symbols) + 1)))))
def append_symbol(arg, symbols):
if isinstance(arg, Not):
return -symbols[arg.args[0]]
else:
return symbols[arg]
return [set(append_symbol(arg, symbols) for arg in Or.make_args(c))
for c in clauses]
def term_to_integer(term):
"""
Return an integer corresponding to the base-2 digits given by ``term``.
Parameters
==========
term : a string or list of ones and zeros
Examples
========
>>> from sympy.logic.boolalg import term_to_integer
>>> term_to_integer([1, 0, 0])
4
>>> term_to_integer('100')
4
"""
return int(''.join(list(map(str, list(term)))), 2)
def integer_to_term(k, n_bits=None):
"""
Return a list of the base-2 digits in the integer, ``k``.
Parameters
==========
k : int
n_bits : int
If ``n_bits`` is given and the number of digits in the binary
representation of ``k`` is smaller than ``n_bits`` then left-pad the
list with 0s.
Examples
========
>>> from sympy.logic.boolalg import integer_to_term
>>> integer_to_term(4)
[1, 0, 0]
>>> integer_to_term(4, 6)
[0, 0, 0, 1, 0, 0]
"""
s = '{0:0{1}b}'.format(abs(as_int(k)), as_int(abs(n_bits or 0)))
return list(map(int, s))
def truth_table(expr, variables, input=True):
"""
Return a generator of all possible configurations of the input variables,
and the result of the boolean expression for those values.
Parameters
==========
expr : string or boolean expression
variables : list of variables
input : boolean (default True)
indicates whether to return the input combinations.
Examples
========
>>> from sympy.logic.boolalg import truth_table
>>> from sympy.abc import x,y
>>> table = truth_table(x >> y, [x, y])
>>> for t in table:
... print('{0} -> {1}'.format(*t))
[0, 0] -> True
[0, 1] -> True
[1, 0] -> False
[1, 1] -> True
>>> table = truth_table(x | y, [x, y])
>>> list(table)
[([0, 0], False), ([0, 1], True), ([1, 0], True), ([1, 1], True)]
If input is false, truth_table returns only a list of truth values.
In this case, the corresponding input values of variables can be
deduced from the index of a given output.
>>> from sympy.logic.boolalg import integer_to_term
>>> vars = [y, x]
>>> values = truth_table(x >> y, vars, input=False)
>>> values = list(values)
>>> values
[True, False, True, True]
>>> for i, value in enumerate(values):
... print('{0} -> {1}'.format(list(zip(
... vars, integer_to_term(i, len(vars)))), value))
[(y, 0), (x, 0)] -> True
[(y, 0), (x, 1)] -> False
[(y, 1), (x, 0)] -> True
[(y, 1), (x, 1)] -> True
"""
variables = [sympify(v) for v in variables]
expr = sympify(expr)
if not isinstance(expr, BooleanFunction) and not is_literal(expr):
return
table = product([0, 1], repeat=len(variables))
for term in table:
term = list(term)
value = expr.xreplace(dict(zip(variables, term)))
if input:
yield term, value
else:
yield value
def _check_pair(minterm1, minterm2):
"""
Checks if a pair of minterms differs by only one bit. If yes, returns
index, else returns -1.
"""
index = -1
for x, (i, j) in enumerate(zip(minterm1, minterm2)):
if i != j:
if index == -1:
index = x
else:
return -1
return index
def _convert_to_varsSOP(minterm, variables):
"""
Converts a term in the expansion of a function from binary to its
variable form (for SOP).
"""
temp = []
for i, m in enumerate(minterm):
if m == 0:
temp.append(Not(variables[i]))
elif m == 1:
temp.append(variables[i])
else:
pass # ignore the 3s
return And(*temp)
def _convert_to_varsPOS(maxterm, variables):
"""
Converts a term in the expansion of a function from binary to its
variable form (for POS).
"""
temp = []
for i, m in enumerate(maxterm):
if m == 1:
temp.append(Not(variables[i]))
elif m == 0:
temp.append(variables[i])
else:
pass # ignore the 3s
return Or(*temp)
def _simplified_pairs(terms):
"""
Reduces a set of minterms, if possible, to a simplified set of minterms
with one less variable in the terms using QM method.
"""
simplified_terms = []
todo = list(range(len(terms)))
for i, ti in enumerate(terms[:-1]):
for j_i, tj in enumerate(terms[(i + 1):]):
index = _check_pair(ti, tj)
if index != -1:
todo[i] = todo[j_i + i + 1] = None
newterm = ti[:]
newterm[index] = 3
if newterm not in simplified_terms:
simplified_terms.append(newterm)
simplified_terms.extend(
[terms[i] for i in [_ for _ in todo if _ is not None]])
return simplified_terms
def _compare_term(minterm, term):
"""
Return True if a binary term is satisfied by the given term. Used
for recognizing prime implicants.
"""
for i, x in enumerate(term):
if x != 3 and x != minterm[i]:
return False
return True
def _rem_redundancy(l1, terms):
"""
After the truth table has been sufficiently simplified, use the prime
implicant table method to recognize and eliminate redundant pairs,
and return the essential arguments.
"""
if len(terms):
# Create dominating matrix
dommatrix = [[0]*len(l1) for n in range(len(terms))]
for primei, prime in enumerate(l1):
for termi, term in enumerate(terms):
if _compare_term(term, prime):
dommatrix[termi][primei] = 1
# Non-dominated prime implicants, dominated set to None
ndprimeimplicants = list(range(len(l1)))
# Non-dominated terms, dominated set to None
ndterms = list(range(len(terms)))
# Mark dominated rows and columns
oldndterms = None
oldndprimeimplicants = None
while ndterms != oldndterms or \
ndprimeimplicants != oldndprimeimplicants:
oldndterms = ndterms[:]
oldndprimeimplicants = ndprimeimplicants[:]
for rowi, row in enumerate(dommatrix):
if ndterms[rowi] is not None:
row = [row[i] for i in
[_ for _ in ndprimeimplicants if _ is not None]]
for row2i, row2 in enumerate(dommatrix):
if rowi != row2i and ndterms[row2i] is not None:
row2 = [row2[i] for i in
[_ for _ in ndprimeimplicants
if _ is not None]]
if all(a >= b for (a, b) in zip(row2, row)):
# row2 dominating row, keep row
ndterms[row2i] = None
for coli in range(len(l1)):
if ndprimeimplicants[coli] is not None:
col = [dommatrix[a][coli] for a in range(len(terms))]
col = [col[i] for i in
[_ for _ in oldndterms if _ is not None]]
for col2i in range(len(l1)):
if coli != col2i and \
ndprimeimplicants[col2i] is not None:
col2 = [dommatrix[a][col2i]
for a in range(len(terms))]
col2 = [col2[i] for i in
[_ for _ in oldndterms if _ is not None]]
if all(a >= b for (a, b) in zip(col, col2)):
# col dominating col2, keep col
ndprimeimplicants[col2i] = None
l1 = [l1[i] for i in [_ for _ in ndprimeimplicants if _ is not None]]
return l1
else:
return []
def _input_to_binlist(inputlist, variables):
binlist = []
bits = len(variables)
for val in inputlist:
if isinstance(val, int):
binlist.append(ibin(val, bits))
elif isinstance(val, dict):
nonspecvars = list(variables)
for key in val.keys():
nonspecvars.remove(key)
for t in product([0, 1], repeat=len(nonspecvars)):
d = dict(zip(nonspecvars, t))
d.update(val)
binlist.append([d[v] for v in variables])
elif isinstance(val, (list, tuple)):
if len(val) != bits:
raise ValueError("Each term must contain {} bits as there are"
"\n{} variables (or be an integer)."
"".format(bits, bits))
binlist.append(list(val))
else:
raise TypeError("A term list can only contain lists,"
" ints or dicts.")
return binlist
def SOPform(variables, minterms, dontcares=None):
"""
The SOPform function uses simplified_pairs and a redundant group-
eliminating algorithm to convert the list of all input combos that
generate '1' (the minterms) into the smallest Sum of Products form.
The variables must be given as the first argument.
Return a logical Or function (i.e., the "sum of products" or "SOP"
form) that gives the desired outcome. If there are inputs that can
be ignored, pass them as a list, too.
The result will be one of the (perhaps many) functions that satisfy
the conditions.
Examples
========
>>> from sympy.logic import SOPform
>>> from sympy import symbols
>>> w, x, y, z = symbols('w x y z')
>>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1],
... [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]]
>>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]
>>> SOPform([w, x, y, z], minterms, dontcares)
(y & z) | (z & ~w)
The terms can also be represented as integers:
>>> minterms = [1, 3, 7, 11, 15]
>>> dontcares = [0, 2, 5]
>>> SOPform([w, x, y, z], minterms, dontcares)
(y & z) | (z & ~w)
They can also be specified using dicts, which does not have to be fully
specified:
>>> minterms = [{w: 0, x: 1}, {y: 1, z: 1, x: 0}]
>>> SOPform([w, x, y, z], minterms)
(x & ~w) | (y & z & ~x)
Or a combination:
>>> minterms = [4, 7, 11, [1, 1, 1, 1]]
>>> dontcares = [{w : 0, x : 0, y: 0}, 5]
>>> SOPform([w, x, y, z], minterms, dontcares)
(w & y & z) | (x & y & z) | (~w & ~y)
References
==========
.. [1] en.wikipedia.org/wiki/Quine-McCluskey_algorithm
"""
variables = [sympify(v) for v in variables]
if minterms == []:
return false
minterms = _input_to_binlist(minterms, variables)
dontcares = _input_to_binlist((dontcares or []), variables)
for d in dontcares:
if d in minterms:
raise ValueError('%s in minterms is also in dontcares' % d)
old = None
new = minterms + dontcares
while new != old:
old = new
new = _simplified_pairs(old)
essential = _rem_redundancy(new, minterms)
return Or(*[_convert_to_varsSOP(x, variables) for x in essential])
def POSform(variables, minterms, dontcares=None):
"""
The POSform function uses simplified_pairs and a redundant-group
eliminating algorithm to convert the list of all input combinations
that generate '1' (the minterms) into the smallest Product of Sums form.
The variables must be given as the first argument.
Return a logical And function (i.e., the "product of sums" or "POS"
form) that gives the desired outcome. If there are inputs that can
be ignored, pass them as a list, too.
The result will be one of the (perhaps many) functions that satisfy
the conditions.
Examples
========
>>> from sympy.logic import POSform
>>> from sympy import symbols
>>> w, x, y, z = symbols('w x y z')
>>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1],
... [1, 0, 1, 1], [1, 1, 1, 1]]
>>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]
>>> POSform([w, x, y, z], minterms, dontcares)
z & (y | ~w)
The terms can also be represented as integers:
>>> minterms = [1, 3, 7, 11, 15]
>>> dontcares = [0, 2, 5]
>>> POSform([w, x, y, z], minterms, dontcares)
z & (y | ~w)
They can also be specified using dicts, which does not have to be fully
specified:
>>> minterms = [{w: 0, x: 1}, {y: 1, z: 1, x: 0}]
>>> POSform([w, x, y, z], minterms)
(x | y) & (x | z) & (~w | ~x)
Or a combination:
>>> minterms = [4, 7, 11, [1, 1, 1, 1]]
>>> dontcares = [{w : 0, x : 0, y: 0}, 5]
>>> POSform([w, x, y, z], minterms, dontcares)
(w | x) & (y | ~w) & (z | ~y)
References
==========
.. [1] en.wikipedia.org/wiki/Quine-McCluskey_algorithm
"""
variables = [sympify(v) for v in variables]
if minterms == []:
return false
minterms = _input_to_binlist(minterms, variables)
dontcares = _input_to_binlist((dontcares or []), variables)
for d in dontcares:
if d in minterms:
raise ValueError('%s in minterms is also in dontcares' % d)
maxterms = []
for t in product([0, 1], repeat=len(variables)):
t = list(t)
if (t not in minterms) and (t not in dontcares):
maxterms.append(t)
old = None
new = maxterms + dontcares
while new != old:
old = new
new = _simplified_pairs(old)
essential = _rem_redundancy(new, maxterms)
return And(*[_convert_to_varsPOS(x, variables) for x in essential])
def _find_predicates(expr):
"""Helper to find logical predicates in BooleanFunctions.
A logical predicate is defined here as anything within a BooleanFunction
that is not a BooleanFunction itself.
"""
if not isinstance(expr, BooleanFunction):
return {expr}
return set().union(*(_find_predicates(i) for i in expr.args))
def simplify_logic(expr, form=None, deep=True, force=False):
"""
This function simplifies a boolean function to its simplified version
in SOP or POS form. The return type is an Or or And object in SymPy.
Parameters
==========
expr : string or boolean expression
form : string ('cnf' or 'dnf') or None (default).
If 'cnf' or 'dnf', the simplest expression in the corresponding
normal form is returned; if None, the answer is returned
according to the form with fewest args (in CNF by default).
deep : boolean (default True)
Indicates whether to recursively simplify any
non-boolean functions contained within the input.
force : boolean (default False)
As the simplifications require exponential time in the number of
variables, there is by default a limit on expressions with 8 variables.
When the expression has more than 8 variables only symbolical
simplification (controlled by ``deep``) is made. By setting force to ``True``, this limit
is removed. Be aware that this can lead to very long simplification times.
Examples
========
>>> from sympy.logic import simplify_logic
>>> from sympy.abc import x, y, z
>>> from sympy import S
>>> b = (~x & ~y & ~z) | ( ~x & ~y & z)
>>> simplify_logic(b)
~x & ~y
>>> S(b)
(z & ~x & ~y) | (~x & ~y & ~z)
>>> simplify_logic(_)
~x & ~y
"""
if form not in (None, 'cnf', 'dnf'):
raise ValueError("form can be cnf or dnf only")
expr = sympify(expr)
if deep:
variables = _find_predicates(expr)
from sympy.simplify.simplify import simplify
s = [simplify(v) for v in variables]
expr = expr.xreplace(dict(zip(variables, s)))
if not isinstance(expr, BooleanFunction):
return expr
# get variables in case not deep or after doing
# deep simplification since they may have changed
variables = _find_predicates(expr)
if not force and len(variables) > 8:
return expr
# group into constants and variable values
c, v = sift(variables, lambda x: x in (True, False), binary=True)
variables = c + v
truthtable = []
# standardize constants to be 1 or 0 in keeping with truthtable
c = [1 if i == True else 0 for i in c]
for t in product([0, 1], repeat=len(v)):
if expr.xreplace(dict(zip(v, t))) == True:
truthtable.append(c + list(t))
big = len(truthtable) >= (2 ** (len(variables) - 1))
if form == 'dnf' or form is None and big:
return SOPform(variables, truthtable)
return POSform(variables, truthtable)
def _finger(eq):
"""
Assign a 5-item fingerprint to each symbol in the equation:
[
# of times it appeared as a Symbol,
# of times it appeared as a Not(symbol),
# of times it appeared as a Symbol in an And or Or,
# of times it appeared as a Not(Symbol) in an And or Or,
sum of the number of arguments with which it appeared
as a Symbol, counting Symbol as 1 and Not(Symbol) as 2
and counting self as 1
]
>>> from sympy.logic.boolalg import _finger as finger
>>> from sympy import And, Or, Not
>>> from sympy.abc import a, b, x, y
>>> eq = Or(And(Not(y), a), And(Not(y), b), And(x, y))
>>> dict(finger(eq))
{(0, 0, 1, 0, 2): [x], (0, 0, 1, 0, 3): [a, b], (0, 0, 1, 2, 2): [y]}
>>> dict(finger(x & ~y))
{(0, 1, 0, 0, 0): [y], (1, 0, 0, 0, 0): [x]}
The equation must not have more than one level of nesting:
>>> dict(finger(And(Or(x, y), y)))
{(0, 0, 1, 0, 2): [x], (1, 0, 1, 0, 2): [y]}
>>> dict(finger(And(Or(x, And(a, x)), y)))
Traceback (most recent call last):
...
NotImplementedError: unexpected level of nesting
So y and x have unique fingerprints, but a and b do not.
"""
f = eq.free_symbols
d = dict(list(zip(f, [[0] * 5 for fi in f])))
for a in eq.args:
if a.is_Symbol:
d[a][0] += 1
elif a.is_Not:
d[a.args[0]][1] += 1
else:
o = len(a.args) + sum(isinstance(ai, Not) for ai in a.args)
for ai in a.args:
if ai.is_Symbol:
d[ai][2] += 1
d[ai][-1] += o
elif ai.is_Not:
d[ai.args[0]][3] += 1
else:
raise NotImplementedError('unexpected level of nesting')
inv = defaultdict(list)
for k, v in ordered(iter(d.items())):
inv[tuple(v)].append(k)
return inv
def bool_map(bool1, bool2):
"""
Return the simplified version of bool1, and the mapping of variables
that makes the two expressions bool1 and bool2 represent the same
logical behaviour for some correspondence between the variables
of each.
If more than one mappings of this sort exist, one of them
is returned.
For example, And(x, y) is logically equivalent to And(a, b) for
the mapping {x: a, y:b} or {x: b, y:a}.
If no such mapping exists, return False.
Examples
========
>>> from sympy import SOPform, bool_map, Or, And, Not, Xor
>>> from sympy.abc import w, x, y, z, a, b, c, d
>>> function1 = SOPform([x, z, y],[[1, 0, 1], [0, 0, 1]])
>>> function2 = SOPform([a, b, c],[[1, 0, 1], [1, 0, 0]])
>>> bool_map(function1, function2)
(y & ~z, {y: a, z: b})
The results are not necessarily unique, but they are canonical. Here,
``(w, z)`` could be ``(a, d)`` or ``(d, a)``:
>>> eq = Or(And(Not(y), w), And(Not(y), z), And(x, y))
>>> eq2 = Or(And(Not(c), a), And(Not(c), d), And(b, c))
>>> bool_map(eq, eq2)
((x & y) | (w & ~y) | (z & ~y), {w: a, x: b, y: c, z: d})
>>> eq = And(Xor(a, b), c, And(c,d))
>>> bool_map(eq, eq.subs(c, x))
(c & d & (a | b) & (~a | ~b), {a: a, b: b, c: d, d: x})
"""
def match(function1, function2):
"""Return the mapping that equates variables between two
simplified boolean expressions if possible.
By "simplified" we mean that a function has been denested
and is either an And (or an Or) whose arguments are either
symbols (x), negated symbols (Not(x)), or Or (or an And) whose
arguments are only symbols or negated symbols. For example,
And(x, Not(y), Or(w, Not(z))).
Basic.match is not robust enough (see issue 4835) so this is
a workaround that is valid for simplified boolean expressions
"""
# do some quick checks
if function1.__class__ != function2.__class__:
return None # maybe simplification makes them the same?
if len(function1.args) != len(function2.args):
return None # maybe simplification makes them the same?
if function1.is_Symbol:
return {function1: function2}
# get the fingerprint dictionaries
f1 = _finger(function1)
f2 = _finger(function2)
# more quick checks
if len(f1) != len(f2):
return False
# assemble the match dictionary if possible
matchdict = {}
for k in f1.keys():
if k not in f2:
return False
if len(f1[k]) != len(f2[k]):
return False
for i, x in enumerate(f1[k]):
matchdict[x] = f2[k][i]
return matchdict
a = simplify_logic(bool1)
b = simplify_logic(bool2)
m = match(a, b)
if m:
return a, m
return m
def simplify_patterns_and():
from sympy.functions.elementary.miscellaneous import Min, Max
from sympy.core import Wild
from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt
a = Wild('a')
b = Wild('b')
c = Wild('c')
# With a better canonical fewer results are required
_matchers_and = ((And(Eq(a, b), Ge(a, b)), Eq(a, b)),
(And(Eq(a, b), Gt(a, b)), S.false),
(And(Eq(a, b), Le(a, b)), Eq(a, b)),
(And(Eq(a, b), Lt(a, b)), S.false),
(And(Ge(a, b), Gt(a, b)), Gt(a, b)),
(And(Ge(a, b), Le(a, b)), Eq(a, b)),
(And(Ge(a, b), Lt(a, b)), S.false),
(And(Ge(a, b), Ne(a, b)), Gt(a, b)),
(And(Gt(a, b), Le(a, b)), S.false),
(And(Gt(a, b), Lt(a, b)), S.false),
(And(Gt(a, b), Ne(a, b)), Gt(a, b)),
(And(Le(a, b), Lt(a, b)), Lt(a, b)),
(And(Le(a, b), Ne(a, b)), Lt(a, b)),
(And(Lt(a, b), Ne(a, b)), Lt(a, b)),
# Min/max
(And(Ge(a, b), Ge(a, c)), Ge(a, Max(b, c))),
(And(Ge(a, b), Gt(a, c)), ITE(b > c, Ge(a, b), Gt(a, c))),
(And(Gt(a, b), Gt(a, c)), Gt(a, Max(b, c))),
(And(Le(a, b), Le(a, c)), Le(a, Min(b, c))),
(And(Le(a, b), Lt(a, c)), ITE(b < c, Le(a, b), Lt(a, c))),
(And(Lt(a, b), Lt(a, c)), Lt(a, Min(b, c))),
# Sign
(And(Eq(a, b), Eq(a, -b)), And(Eq(a, S(0)), Eq(b, S(0)))),
)
return _matchers_and
def simplify_patterns_or():
from sympy.functions.elementary.miscellaneous import Min, Max
from sympy.core import Wild
from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt
a = Wild('a')
b = Wild('b')
c = Wild('c')
_matchers_or = ((Or(Eq(a, b), Ge(a, b)), Ge(a, b)),
(Or(Eq(a, b), Gt(a, b)), Ge(a, b)),
(Or(Eq(a, b), Le(a, b)), Le(a, b)),
(Or(Eq(a, b), Lt(a, b)), Le(a, b)),
(Or(Ge(a, b), Gt(a, b)), Ge(a, b)),
(Or(Ge(a, b), Le(a, b)), S.true),
(Or(Ge(a, b), Lt(a, b)), S.true),
(Or(Ge(a, b), Ne(a, b)), S.true),
(Or(Gt(a, b), Le(a, b)), S.true),
(Or(Gt(a, b), Lt(a, b)), Ne(a, b)),
(Or(Gt(a, b), Ne(a, b)), Ne(a, b)),
(Or(Le(a, b), Lt(a, b)), Le(a, b)),
(Or(Le(a, b), Ne(a, b)), S.true),
(Or(Lt(a, b), Ne(a, b)), Ne(a, b)),
# Min/max
(Or(Ge(a, b), Ge(a, c)), Ge(a, Min(b, c))),
(Or(Ge(a, b), Gt(a, c)), ITE(b > c, Gt(a, c), Ge(a, b))),
(Or(Gt(a, b), Gt(a, c)), Gt(a, Min(b, c))),
(Or(Le(a, b), Le(a, c)), Le(a, Max(b, c))),
(Or(Le(a, b), Lt(a, c)), ITE(b >= c, Le(a, b), Lt(a, c))),
(Or(Lt(a, b), Lt(a, c)), Lt(a, Max(b, c))),
)
return _matchers_or
def simplify_patterns_xor():
from sympy.functions.elementary.miscellaneous import Min, Max
from sympy.core import Wild
from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt
a = Wild('a')
b = Wild('b')
c = Wild('c')
_matchers_xor = ((Xor(Eq(a, b), Ge(a, b)), Gt(a, b)),
(Xor(Eq(a, b), Gt(a, b)), Ge(a, b)),
(Xor(Eq(a, b), Le(a, b)), Lt(a, b)),
(Xor(Eq(a, b), Lt(a, b)), Le(a, b)),
(Xor(Ge(a, b), Gt(a, b)), Eq(a, b)),
(Xor(Ge(a, b), Le(a, b)), Ne(a, b)),
(Xor(Ge(a, b), Lt(a, b)), S.true),
(Xor(Ge(a, b), Ne(a, b)), Le(a, b)),
(Xor(Gt(a, b), Le(a, b)), S.true),
(Xor(Gt(a, b), Lt(a, b)), Ne(a, b)),
(Xor(Gt(a, b), Ne(a, b)), Lt(a, b)),
(Xor(Le(a, b), Lt(a, b)), Eq(a, b)),
(Xor(Le(a, b), Ne(a, b)), Ge(a, b)),
(Xor(Lt(a, b), Ne(a, b)), Gt(a, b)),
# Min/max
(Xor(Ge(a, b), Ge(a, c)),
And(Ge(a, Min(b, c)), Lt(a, Max(b, c)))),
(Xor(Ge(a, b), Gt(a, c)),
ITE(b > c, And(Gt(a, c), Lt(a, b)),
And(Ge(a, b), Le(a, c)))),
(Xor(Gt(a, b), Gt(a, c)),
And(Gt(a, Min(b, c)), Le(a, Max(b, c)))),
(Xor(Le(a, b), Le(a, c)),
And(Le(a, Max(b, c)), Gt(a, Min(b, c)))),
(Xor(Le(a, b), Lt(a, c)),
ITE(b < c, And(Lt(a, c), Gt(a, b)),
And(Le(a, b), Ge(a, c)))),
(Xor(Lt(a, b), Lt(a, c)),
And(Lt(a, Max(b, c)), Ge(a, Min(b, c)))),
)
return _matchers_xor
|
e67d792bc8905995f3bf54a99e86bccb3ef38d0cb8738d69fb0c2e47d603f7fc
|
'''Functions returning normal forms of matrices'''
from __future__ import division, print_function
from sympy.matrices.dense import diag
def smith_normal_form(m, domain = None):
'''
Return the Smith Normal Form of a matrix `m` over the ring `domain`.
This will only work if the ring is a principal ideal domain.
Examples
========
>>> from sympy.polys.solvers import RawMatrix as Matrix
>>> from sympy.polys.domains import ZZ
>>> from sympy.matrices.normalforms import smith_normal_form
>>> m = Matrix([[12, 6, 4], [3, 9, 6], [2, 16, 14]])
>>> setattr(m, "ring", ZZ)
>>> print(smith_normal_form(m))
Matrix([[1, 0, 0], [0, 10, 0], [0, 0, -30]])
'''
invs = invariant_factors(m, domain=domain)
smf = diag(*invs)
n = len(invs)
if m.rows > n:
smf = smf.row_insert(m.rows, zeros(m.rows-n, m.cols))
elif m.cols > n:
smf = smf.col_insert(m.cols, zeros(m.rows, m.cols-n))
return smf
def invariant_factors(m, domain = None):
'''
Return the tuple of abelian invariants for a matrix `m`
(as in the Smith-Normal form)
References
==========
[1] https://en.wikipedia.org/wiki/Smith_normal_form#Algorithm
[2] http://sierra.nmsu.edu/morandi/notes/SmithNormalForm.pdf
'''
if not domain:
if not (hasattr(m, "ring") and m.ring.is_PID):
raise ValueError(
"The matrix entries must be over a principal ideal domain")
else:
domain = m.ring
if len(m) == 0:
return ()
m = m[:, :]
def add_rows(m, i, j, a, b, c, d):
# replace m[i, :] by a*m[i, :] + b*m[j, :]
# and m[j, :] by c*m[i, :] + d*m[j, :]
for k in range(m.cols):
e = m[i, k]
m[i, k] = a*e + b*m[j, k]
m[j, k] = c*e + d*m[j, k]
def add_columns(m, i, j, a, b, c, d):
# replace m[:, i] by a*m[:, i] + b*m[:, j]
# and m[:, j] by c*m[:, i] + d*m[:, j]
for k in range(m.rows):
e = m[k, i]
m[k, i] = a*e + b*m[k, j]
m[k, j] = c*e + d*m[k, j]
def clear_column(m):
# make m[1:, 0] zero by row and column operations
if m[0,0] == 0:
return m
pivot = m[0, 0]
for j in range(1, m.rows):
if m[j, 0] == 0:
continue
d, r = domain.div(m[j,0], pivot)
if r == 0:
add_rows(m, 0, j, 1, 0, -d, 1)
else:
a, b, g = domain.gcdex(pivot, m[j,0])
d_0 = domain.div(m[j, 0], g)[0]
d_j = domain.div(pivot, g)[0]
add_rows(m, 0, j, a, b, d_0, -d_j)
pivot = g
return m
def clear_row(m):
# make m[0, 1:] zero by row and column operations
if m[0] == 0:
return m
pivot = m[0, 0]
for j in range(1, m.cols):
if m[0, j] == 0:
continue
d, r = domain.div(m[0, j], pivot)
if r == 0:
add_columns(m, 0, j, 1, 0, -d, 1)
else:
a, b, g = domain.gcdex(pivot, m[0, j])
d_0 = domain.div(m[0, j], g)[0]
d_j = domain.div(pivot, g)[0]
add_columns(m, 0, j, a, b, d_0, -d_j)
pivot = g
return m
# permute the rows and columns until m[0,0] is non-zero if possible
ind = [i for i in range(m.rows) if m[i,0] != 0]
if ind:
m = m.permute_rows([[0, ind[0]]])
else:
ind = [j for j in range(m.cols) if m[0,j] != 0]
if ind:
m = m.permute_cols([[0, ind[0]]])
# make the first row and column except m[0,0] zero
while (any([m[0,i] != 0 for i in range(1,m.cols)]) or
any([m[i,0] != 0 for i in range(1,m.rows)])):
m = clear_column(m)
m = clear_row(m)
if 1 in m.shape:
invs = ()
else:
invs = invariant_factors(m[1:,1:], domain=domain)
if m[0,0]:
result = [m[0,0]]
result.extend(invs)
# in case m[0] doesn't divide the invariants of the rest of the matrix
for i in range(len(result)-1):
if result[i] and domain.div(result[i+1], result[i])[1] != 0:
g = domain.gcd(result[i+1], result[i])
result[i+1] = domain.div(result[i], g)[0]*result[i+1]
result[i] = g
else:
break
else:
result = invs + (m[0,0],)
return tuple(result)
|
9873f2719c5429e607c3de4b6573593b80cbfd1403da9441e06bda67c671351f
|
"""
Solution of equations using dense matrices.
The dense matrix is stored as a list of lists.
"""
import copy
from sympy.core.compatibility import range
from sympy.core.power import isqrt
from sympy.core.symbol import symbols
from sympy.matrices.densetools import (
augment, col, conjugate_transpose, eye, rowadd, rowmul)
from sympy.utilities.exceptions import SymPyDeprecationWarning
SymPyDeprecationWarning(
feature="densesolve",
issue=12695,
deprecated_since_version="1.1").warn()
def row_echelon(matlist, K):
"""
Returns the row echelon form of a matrix with diagonal elements
reduced to 1.
Examples
========
>>> from sympy.matrices.densesolve import row_echelon
>>> from sympy import QQ
>>> a = [
... [QQ(3), QQ(7), QQ(4)],
... [QQ(2), QQ(4), QQ(5)],
... [QQ(6), QQ(2), QQ(3)]]
>>> row_echelon(a, QQ)
[[1, 7/3, 4/3], [0, 1, -7/2], [0, 0, 1]]
See Also
========
rref
"""
result_matlist = copy.deepcopy(matlist)
nrow = len(result_matlist)
for i in range(nrow):
if (result_matlist[i][i] != 1 and result_matlist[i][i] != 0):
rowmul(result_matlist, i, 1/result_matlist[i][i], K)
for j in range(i + 1, nrow):
if (result_matlist[j][i] != 0):
rowadd(result_matlist, j, i, -result_matlist[j][i], K)
return result_matlist
def rref(matlist, K):
"""
Returns the reduced row echelon form of a Matrix.
Examples
========
>>> from sympy.matrices.densesolve import rref
>>> from sympy import QQ
>>> a = [
... [QQ(1), QQ(2), QQ(1)],
... [QQ(-2), QQ(-3), QQ(1)],
... [QQ(3), QQ(5), QQ(0)]]
>>> rref(a, QQ)
[[1, 0, -5], [0, 1, 3], [0, 0, 0]]
See Also
========
row_echelon
"""
result_matlist = copy.deepcopy(matlist)
result_matlist = row_echelon(result_matlist, K)
nrow = len(result_matlist)
for i in range(nrow):
if result_matlist[i][i] == 1:
for j in range(i):
rowadd(result_matlist, j, i, -result_matlist[j][i], K)
return result_matlist
def LU(matlist, K, reverse = 0):
"""
It computes the LU decomposition of a matrix and returns L and U
matrices.
Examples
========
>>> from sympy.matrices.densesolve import LU
>>> from sympy import QQ
>>> a = [
... [QQ(1), QQ(2), QQ(3)],
... [QQ(2), QQ(-4), QQ(6)],
... [QQ(3), QQ(-9), QQ(-3)]]
>>> LU(a, QQ)
([[1, 0, 0], [2, 1, 0], [3, 15/8, 1]], [[1, 2, 3], [0, -8, 0], [0, 0, -12]])
See Also
========
upper_triangle
lower_triangle
"""
nrow = len(matlist)
new_matlist1, new_matlist2 = eye(nrow, K), copy.deepcopy(matlist)
for i in range(nrow):
for j in range(i + 1, nrow):
if (new_matlist2[j][i] != 0):
new_matlist1[j][i] = new_matlist2[j][i]/new_matlist2[i][i]
rowadd(new_matlist2, j, i, -new_matlist2[j][i]/new_matlist2[i][i], K)
return new_matlist1, new_matlist2
def cholesky(matlist, K):
"""
Performs the cholesky decomposition of a Hermitian matrix and
returns L and it's conjugate transpose.
Examples
========
>>> from sympy.matrices.densesolve import cholesky
>>> from sympy import QQ
>>> cholesky([[QQ(25), QQ(15), QQ(-5)], [QQ(15), QQ(18), QQ(0)], [QQ(-5), QQ(0), QQ(11)]], QQ)
([[5, 0, 0], [3, 3, 0], [-1, 1, 3]], [[5, 3, -1], [0, 3, 1], [0, 0, 3]])
See Also
========
cholesky_solve
"""
new_matlist = copy.deepcopy(matlist)
nrow = len(new_matlist)
L = eye(nrow, K)
for i in range(nrow):
for j in range(i + 1):
a = K.zero
for k in range(j):
a += L[i][k]*L[j][k]
if i == j:
L[i][j] = isqrt(new_matlist[i][j] - a)
else:
L[i][j] = (new_matlist[i][j] - a)/L[j][j]
return L, conjugate_transpose(L, K)
def LDL(matlist, K):
"""
Performs the LDL decomposition of a hermitian matrix and returns L, D and
transpose of L. Only applicable to rational entries.
Examples
========
>>> from sympy.matrices.densesolve import LDL
>>> from sympy import QQ
>>> a = [
... [QQ(4), QQ(12), QQ(-16)],
... [QQ(12), QQ(37), QQ(-43)],
... [QQ(-16), QQ(-43), QQ(98)]]
>>> LDL(a, QQ)
([[1, 0, 0], [3, 1, 0], [-4, 5, 1]], [[4, 0, 0], [0, 1, 0], [0, 0, 9]], [[1, 3, -4], [0, 1, 5], [0, 0, 1]])
"""
new_matlist = copy.deepcopy(matlist)
nrow = len(new_matlist)
L, D = eye(nrow, K), eye(nrow, K)
for i in range(nrow):
for j in range(i + 1):
a = K.zero
for k in range(j):
a += L[i][k]*L[j][k]*D[k][k]
if i == j:
D[j][j] = new_matlist[j][j] - a
else:
L[i][j] = (new_matlist[i][j] - a)/D[j][j]
return L, D, conjugate_transpose(L, K)
def upper_triangle(matlist, K):
"""
Transforms a given matrix to an upper triangle matrix by performing
row operations on it.
Examples
========
>>> from sympy.matrices.densesolve import upper_triangle
>>> from sympy import QQ
>>> a = [
... [QQ(4,1), QQ(12,1), QQ(-16,1)],
... [QQ(12,1), QQ(37,1), QQ(-43,1)],
... [QQ(-16,1), QQ(-43,1), QQ(98,1)]]
>>> upper_triangle(a, QQ)
[[4, 12, -16], [0, 1, 5], [0, 0, 9]]
See Also
========
LU
"""
copy_matlist = copy.deepcopy(matlist)
lower_triangle, upper_triangle = LU(copy_matlist, K)
return upper_triangle
def lower_triangle(matlist, K):
"""
Transforms a given matrix to a lower triangle matrix by performing
row operations on it.
Examples
========
>>> from sympy.matrices.densesolve import lower_triangle
>>> from sympy import QQ
>>> a = [
... [QQ(4,1), QQ(12,1), QQ(-16)],
... [QQ(12,1), QQ(37,1), QQ(-43,1)],
... [QQ(-16,1), QQ(-43,1), QQ(98,1)]]
>>> lower_triangle(a, QQ)
[[1, 0, 0], [3, 1, 0], [-4, 5, 1]]
See Also
========
LU
"""
copy_matlist = copy.deepcopy(matlist)
lower_triangle, upper_triangle = LU(copy_matlist, K, reverse = 1)
return lower_triangle
def rref_solve(matlist, variable, constant, K):
"""
Solves a system of equations using reduced row echelon form given
a matrix of coefficients, a vector of variables and a vector of constants.
Examples
========
>>> from sympy.matrices.densesolve import rref_solve
>>> from sympy import QQ
>>> from sympy import Dummy
>>> x, y, z = Dummy('x'), Dummy('y'), Dummy('z')
>>> coefficients = [
... [QQ(25), QQ(15), QQ(-5)],
... [QQ(15), QQ(18), QQ(0)],
... [QQ(-5), QQ(0), QQ(11)]]
>>> constants = [
... [QQ(2)],
... [QQ(3)],
... [QQ(1)]]
>>> variables = [
... [x],
... [y],
... [z]]
>>> rref_solve(coefficients, variables, constants, QQ)
[[-1/225], [23/135], [4/45]]
See Also
========
row_echelon
augment
"""
new_matlist = copy.deepcopy(matlist)
augmented = augment(new_matlist, constant, K)
solution = rref(augmented, K)
return col(solution, -1)
def LU_solve(matlist, variable, constant, K):
"""
Solves a system of equations using LU decomposition given a matrix
of coefficients, a vector of variables and a vector of constants.
Examples
========
>>> from sympy.matrices.densesolve import LU_solve
>>> from sympy import QQ
>>> from sympy import Dummy
>>> x, y, z = Dummy('x'), Dummy('y'), Dummy('z')
>>> coefficients = [
... [QQ(2), QQ(-1), QQ(-2)],
... [QQ(-4), QQ(6), QQ(3)],
... [QQ(-4), QQ(-2), QQ(8)]]
>>> variables = [
... [x],
... [y],
... [z]]
>>> constants = [
... [QQ(-1)],
... [QQ(13)],
... [QQ(-6)]]
>>> LU_solve(coefficients, variables, constants, QQ)
[[2], [3], [1]]
See Also
========
LU
forward_substitution
backward_substitution
"""
new_matlist = copy.deepcopy(matlist)
nrow = len(new_matlist)
L, U = LU(new_matlist, K)
y = [[i] for i in symbols('y:%i' % nrow)]
forward_substitution(L, y, constant, K)
backward_substitution(U, variable, y, K)
return variable
def cholesky_solve(matlist, variable, constant, K):
"""
Solves a system of equations using Cholesky decomposition given
a matrix of coefficients, a vector of variables and a vector of constants.
Examples
========
>>> from sympy.matrices.densesolve import cholesky_solve
>>> from sympy import QQ
>>> from sympy import Dummy
>>> x, y, z = Dummy('x'), Dummy('y'), Dummy('z')
>>> coefficients = [
... [QQ(25), QQ(15), QQ(-5)],
... [QQ(15), QQ(18), QQ(0)],
... [QQ(-5), QQ(0), QQ(11)]]
>>> variables = [
... [x],
... [y],
... [z]]
>>> coefficients = [
... [QQ(2)],
... [QQ(3)],
... [QQ(1)]]
>>> cholesky_solve([[QQ(25), QQ(15), QQ(-5)], [QQ(15), QQ(18), QQ(0)], [QQ(-5), QQ(0), QQ(11)]], [[x], [y], [z]], [[QQ(2)], [QQ(3)], [QQ(1)]], QQ)
[[-1/225], [23/135], [4/45]]
See Also
========
cholesky
forward_substitution
backward_substitution
"""
new_matlist = copy.deepcopy(matlist)
nrow = len(new_matlist)
L, Lstar = cholesky(new_matlist, K)
y = [[i] for i in symbols('y:%i' % nrow)]
forward_substitution(L, y, constant, K)
backward_substitution(Lstar, variable, y, K)
return variable
def forward_substitution(lower_triangle, variable, constant, K):
"""
Performs forward substitution given a lower triangular matrix, a
vector of variables and a vector of constants.
Examples
========
>>> from sympy.matrices.densesolve import forward_substitution
>>> from sympy import QQ
>>> from sympy import Dummy
>>> x, y, z = Dummy('x'), Dummy('y'), Dummy('z')
>>> a = [
... [QQ(1), QQ(0), QQ(0)],
... [QQ(-2), QQ(1), QQ(0)],
... [QQ(-2), QQ(-1), QQ(1)]]
>>> variables = [
... [x],
... [y],
... [z]]
>>> constants = [
... [QQ(-1)],
... [QQ(13)],
... [QQ(-6)]]
>>> forward_substitution(a, variables, constants, QQ)
[[-1], [11], [3]]
See Also
========
LU_solve
cholesky_solve
"""
copy_lower_triangle = copy.deepcopy(lower_triangle)
nrow = len(copy_lower_triangle)
result = []
for i in range(nrow):
a = K.zero
for j in range(i):
a += copy_lower_triangle[i][j]*variable[j][0]
variable[i][0] = (constant[i][0] - a)/copy_lower_triangle[i][i]
return variable
def backward_substitution(upper_triangle, variable, constant, K):
"""
Performs forward substitution given a lower triangular matrix,
a vector of variables and a vector constants.
Examples
========
>>> from sympy.matrices.densesolve import backward_substitution
>>> from sympy import QQ
>>> from sympy import Dummy
>>> x, y, z = Dummy('x'), Dummy('y'), Dummy('z')
>>> a = [
... [QQ(2), QQ(-1), QQ(-2)],
... [QQ(0), QQ(4), QQ(-1)],
... [QQ(0), QQ(0), QQ(3)]]
>>> variables = [
... [x],
... [y],
... [z]]
>>> constants = [
... [QQ(-1)],
... [QQ(11)],
... [QQ(3)]]
>>> backward_substitution(a, variables, constants, QQ)
[[2], [3], [1]]
See Also
========
LU_solve
cholesky_solve
"""
copy_upper_triangle = copy.deepcopy(upper_triangle)
nrow = len(copy_upper_triangle)
result = []
for i in reversed(range(nrow)):
a = K.zero
for j in reversed(range(i + 1, nrow)):
a += copy_upper_triangle[i][j]*variable[j][0]
variable[i][0] = (constant[i][0] - a)/copy_upper_triangle[i][i]
return variable
|
d9b23850e9560032b4be4246b57eaabf9f79c82839a04ec2d017cf8f02bcd19e
|
"""
Fundamental operations of dense matrices.
The dense matrix is stored as a list of lists
"""
from sympy.core.compatibility import range
from sympy.utilities.exceptions import SymPyDeprecationWarning
SymPyDeprecationWarning(
feature="densetools",
issue=12695,
deprecated_since_version="1.1").warn()
def trace(matlist, K):
"""
Returns the trace of a matrix.
Examples
========
>>> from sympy.matrices.densetools import trace, eye
>>> from sympy import ZZ
>>> a = [
... [ZZ(3), ZZ(7), ZZ(4)],
... [ZZ(2), ZZ(4), ZZ(5)],
... [ZZ(6), ZZ(2), ZZ(3)]]
>>> b = eye(4, ZZ)
>>> trace(a, ZZ)
10
>>> trace(b, ZZ)
4
"""
result = K.zero
for i in range(len(matlist)):
result += matlist[i][i]
return result
def transpose(matlist, K):
"""
Returns the transpose of a matrix
Examples
========
>>> from sympy.matrices.densetools import transpose
>>> from sympy import ZZ
>>> a = [
... [ZZ(3), ZZ(7), ZZ(4)],
... [ZZ(2), ZZ(4), ZZ(5)],
... [ZZ(6), ZZ(2), ZZ(3)]]
>>> transpose(a, ZZ)
[[3, 2, 6], [7, 4, 2], [4, 5, 3]]
"""
return [list(a) for a in (zip(*matlist))]
def conjugate(matlist, K):
"""
Returns the conjugate of a matrix row-wise.
Examples
========
>>> from sympy.matrices.densetools import conjugate
>>> from sympy import ZZ
>>> a = [
... [ZZ(3), ZZ(2), ZZ(6)],
... [ZZ(7), ZZ(4), ZZ(2)],
... [ZZ(4), ZZ(5), ZZ(3)]]
>>> conjugate(a, ZZ)
[[3, 2, 6], [7, 4, 2], [4, 5, 3]]
See Also
========
conjugate_row
"""
return [conjugate_row(row, K) for row in matlist]
def conjugate_row(row, K):
"""
Returns the conjugate of a row element-wise
Examples
========
>>> from sympy.matrices.densetools import conjugate_row
>>> from sympy import ZZ
>>> a = [ZZ(3), ZZ(2), ZZ(6)]
>>> conjugate_row(a, ZZ)
[3, 2, 6]
"""
result = []
for r in row:
conj = getattr(r, 'conjugate', None)
if conj is not None:
conjrow = conj()
else:
conjrow = r
result.append(conjrow)
return result
def conjugate_transpose(matlist, K):
"""
Returns the conjugate-transpose of a matrix
Examples
========
>>> from sympy import ZZ
>>> from sympy.matrices.densetools import conjugate_transpose
>>> a = [
... [ZZ(3), ZZ(7), ZZ(4)],
... [ZZ(2), ZZ(4), ZZ(5)],
... [ZZ(6), ZZ(2), ZZ(3)]]
>>> conjugate_transpose(a, ZZ)
[[3, 2, 6], [7, 4, 2], [4, 5, 3]]
"""
return conjugate(transpose(matlist, K), K)
def augment(matlist, column, K):
"""
Augments a matrix and a column.
Examples
========
>>> from sympy.matrices.densetools import augment
>>> from sympy import ZZ
>>> a = [
... [ZZ(3), ZZ(7), ZZ(4)],
... [ZZ(2), ZZ(4), ZZ(5)],
... [ZZ(6), ZZ(2), ZZ(3)]]
>>> b = [
... [ZZ(4)],
... [ZZ(5)],
... [ZZ(6)]]
>>> augment(a, b, ZZ)
[[3, 7, 4, 4], [2, 4, 5, 5], [6, 2, 3, 6]]
"""
return [row + element for row, element in zip(matlist, column)]
def eye(n, K):
"""
Returns an identity matrix of size n.
Examples
========
>>> from sympy.matrices.densetools import eye
>>> from sympy import ZZ
>>> eye(3, ZZ)
[[1, 0, 0], [0, 1, 0], [0, 0, 1]]
"""
result = []
for i in range(n):
result.append([])
for j in range(n):
if (i == j):
result[i].append(K(1))
else:
result[i].append(K.zero)
return result
def row(matlist, i):
"""
Returns the ith row of a matrix
Examples
========
>>> from sympy.matrices.densetools import row
>>> from sympy import ZZ
>>> a = [
... [ZZ(3), ZZ(7), ZZ(4)],
... [ZZ(2), ZZ(4), ZZ(5)],
... [ZZ(6), ZZ(2), ZZ(3)]]
>>> row(a, 2)
[6, 2, 3]
"""
return matlist[i]
def col(matlist, i):
"""
Returns the ith column of a matrix
Note: Currently very expensive
Examples
========
>>> from sympy.matrices.densetools import col
>>> from sympy import ZZ
>>> a = [
... [ZZ(3), ZZ(7), ZZ(4)],
... [ZZ(2), ZZ(4), ZZ(5)],
... [ZZ(6), ZZ(2), ZZ(3)]]
>>> col(a, 1)
[[7], [4], [2]]
"""
matcol = [list(l) for l in zip(*matlist)]
return [[l] for l in matcol[i]]
def rowswap(matlist, index1, index2, K):
"""
Returns the matrix with index1 row and index2 row swapped
"""
matlist[index1], matlist[index2] = matlist[index2], matlist[index1]
return matlist
def rowmul(matlist, index, k, K):
"""
Multiplies index row with k
"""
for i in range(len(matlist[index])):
matlist[index][i] = k*matlist[index][i]
return matlist
def rowadd(matlist, index1, index2 , k, K):
"""
Adds the index1 row with index2 row which in turn is multiplied by k
"""
result = []
for i in range(len(matlist[index1])):
matlist[index1][i] = (matlist[index1][i] + k*matlist[index2][i])
return matlist
def isHermitian(matlist, K):
"""
Checks whether matrix is hermitian
Examples
========
>>> from sympy.matrices.densetools import isHermitian
>>> from sympy import QQ
>>> a = [
... [QQ(2,1), QQ(-1,1), QQ(-1,1)],
... [QQ(0,1), QQ(4,1), QQ(-1,1)],
... [QQ(0,1), QQ(0,1), QQ(3,1)]]
>>> isHermitian(a, QQ)
False
"""
return conjugate_transpose(matlist, K) == matlist
|
970fd86f001809f9a9e4cb54068c265b10a5dbf21efd4450491919e0ebbf7290
|
"""A module that handles matrices.
Includes functions for fast creating matrices like zero, one/eye, random
matrix, etc.
"""
from .common import ShapeError, NonSquareMatrixError
from .dense import (
GramSchmidt, casoratian, diag, eye, hessian, jordan_cell,
list2numpy, matrix2numpy, matrix_multiply_elementwise, ones,
randMatrix, rot_axis1, rot_axis2, rot_axis3, symarray, wronskian,
zeros)
from .dense import MutableDenseMatrix
from .matrices import DeferredVector, MatrixBase
Matrix = MutableMatrix = MutableDenseMatrix
from .sparse import MutableSparseMatrix
from .immutable import ImmutableDenseMatrix, ImmutableSparseMatrix
ImmutableMatrix = ImmutableDenseMatrix
SparseMatrix = MutableSparseMatrix
from .expressions import (
MatrixSlice, BlockDiagMatrix, BlockMatrix, FunctionMatrix, Identity,
Inverse, MatAdd, MatMul, MatPow, MatrixExpr, MatrixSymbol, Trace,
Transpose, ZeroMatrix, blockcut, block_collapse, matrix_symbols, Adjoint,
hadamard_product, HadamardProduct, Determinant, det, DiagonalMatrix,
DiagonalOf, trace, DotProduct, kronecker_product, KroneckerProduct)
|
05b6861cddbadba089c0dc145858393ea392bbc348e7311e71e584440b5ace31
|
from __future__ import division, print_function
from sympy.core import Basic, Dict, Integer, S, Tuple, sympify
from sympy.core.cache import cacheit
from sympy.core.sympify import converter as sympify_converter
from sympy.matrices.dense import DenseMatrix
from sympy.matrices.expressions import MatrixExpr
from sympy.matrices.matrices import MatrixBase
from sympy.matrices.sparse import MutableSparseMatrix, SparseMatrix
def sympify_matrix(arg):
return arg.as_immutable()
sympify_converter[MatrixBase] = sympify_matrix
class ImmutableDenseMatrix(DenseMatrix, MatrixExpr):
"""Create an immutable version of a matrix.
Examples
========
>>> from sympy import eye
>>> from sympy.matrices import ImmutableMatrix
>>> ImmutableMatrix(eye(3))
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> _[0, 0] = 42
Traceback (most recent call last):
...
TypeError: Cannot set values of ImmutableDenseMatrix
"""
# MatrixExpr is set as NotIterable, but we want explicit matrices to be
# iterable
_iterable = True
_class_priority = 8
_op_priority = 10.001
def __new__(cls, *args, **kwargs):
return cls._new(*args, **kwargs)
__hash__ = MatrixExpr.__hash__
@classmethod
def _new(cls, *args, **kwargs):
if len(args) == 1 and isinstance(args[0], ImmutableDenseMatrix):
return args[0]
if kwargs.get('copy', True) is False:
if len(args) != 3:
raise TypeError("'copy=False' requires a matrix be initialized as rows,cols,[list]")
rows, cols, flat_list = args
else:
rows, cols, flat_list = cls._handle_creation_inputs(*args, **kwargs)
flat_list = list(flat_list) # create a shallow copy
rows = Integer(rows)
cols = Integer(cols)
if not isinstance(flat_list, Tuple):
flat_list = Tuple(*flat_list)
return Basic.__new__(cls, rows, cols, flat_list)
@property
def _mat(self):
# self.args[2] is a Tuple. Access to the elements
# of a tuple are significantly faster than Tuple,
# so return the internal tuple.
return self.args[2].args
def _entry(self, i, j):
return DenseMatrix.__getitem__(self, (i, j))
def __setitem__(self, *args):
raise TypeError("Cannot set values of {}".format(self.__class__))
def _eval_Eq(self, other):
"""Helper method for Equality with matrices.
Relational automatically converts matrices to ImmutableDenseMatrix
instances, so this method only applies here. Returns True if the
matrices are definitively the same, False if they are definitively
different, and None if undetermined (e.g. if they contain Symbols).
Returning None triggers default handling of Equalities.
"""
if not hasattr(other, 'shape') or self.shape != other.shape:
return S.false
if isinstance(other, MatrixExpr) and not isinstance(
other, ImmutableDenseMatrix):
return None
diff = self - other
return sympify(diff.is_zero)
def _eval_extract(self, rowsList, colsList):
# self._mat is a Tuple. It is slightly faster to index a
# tuple over a Tuple, so grab the internal tuple directly
mat = self._mat
cols = self.cols
indices = (i * cols + j for i in rowsList for j in colsList)
return self._new(len(rowsList), len(colsList),
Tuple(*(mat[i] for i in indices), sympify=False), copy=False)
@property
def cols(self):
return int(self.args[1])
@property
def rows(self):
return int(self.args[0])
@property
def shape(self):
return tuple(int(i) for i in self.args[:2])
def is_diagonalizable(self, reals_only=False, **kwargs):
return super(ImmutableDenseMatrix, self).is_diagonalizable(
reals_only=reals_only, **kwargs)
is_diagonalizable.__doc__ = DenseMatrix.is_diagonalizable.__doc__
is_diagonalizable = cacheit(is_diagonalizable)
# This is included after the class definition as a workaround for issue 7213.
# See https://github.com/sympy/sympy/issues/7213
# the object is non-zero
# See https://github.com/sympy/sympy/issues/7213
ImmutableDenseMatrix.is_zero = DenseMatrix.is_zero
# make sure ImmutableDenseMatrix is aliased as ImmutableMatrix
ImmutableMatrix = ImmutableDenseMatrix
class ImmutableSparseMatrix(SparseMatrix, Basic):
"""Create an immutable version of a sparse matrix.
Examples
========
>>> from sympy import eye
>>> from sympy.matrices.immutable import ImmutableSparseMatrix
>>> ImmutableSparseMatrix(1, 1, {})
Matrix([[0]])
>>> ImmutableSparseMatrix(eye(3))
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> _[0, 0] = 42
Traceback (most recent call last):
...
TypeError: Cannot set values of ImmutableSparseMatrix
>>> _.shape
(3, 3)
"""
is_Matrix = True
_class_priority = 9
@classmethod
def _new(cls, *args, **kwargs):
s = MutableSparseMatrix(*args)
rows = Integer(s.rows)
cols = Integer(s.cols)
mat = Dict(s._smat)
obj = Basic.__new__(cls, rows, cols, mat)
obj.rows = s.rows
obj.cols = s.cols
obj._smat = s._smat
return obj
def __new__(cls, *args, **kwargs):
return cls._new(*args, **kwargs)
def __setitem__(self, *args):
raise TypeError("Cannot set values of ImmutableSparseMatrix")
def __hash__(self):
return hash((type(self).__name__,) + (self.shape, tuple(self._smat)))
_eval_Eq = ImmutableDenseMatrix._eval_Eq
def is_diagonalizable(self, reals_only=False, **kwargs):
return super(ImmutableSparseMatrix, self).is_diagonalizable(
reals_only=reals_only, **kwargs)
is_diagonalizable.__doc__ = SparseMatrix.is_diagonalizable.__doc__
is_diagonalizable = cacheit(is_diagonalizable)
|
75376f1bc6e1bcd84cc15fddd1cb12264a8bbafd548754e31db7b8b6ffe00d5a
|
"""
Basic methods common to all matrices to be used
when creating more advanced matrices (e.g., matrices over rings,
etc.).
"""
from __future__ import division, print_function
from collections import defaultdict
from inspect import isfunction
from sympy.assumptions.refine import refine
from sympy.core.basic import Atom
from sympy.core.compatibility import (
Iterable, as_int, is_sequence, range, reduce)
from sympy.core.decorators import call_highest_priority
from sympy.core.expr import Expr
from sympy.core.function import count_ops
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.core.sympify import sympify
from sympy.functions import Abs
from sympy.simplify import simplify as _simplify
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.utilities.iterables import flatten
from sympy.utilities.misc import filldedent
class MatrixError(Exception):
pass
class ShapeError(ValueError, MatrixError):
"""Wrong matrix shape"""
pass
class NonSquareMatrixError(ShapeError):
pass
class MatrixRequired(object):
"""All subclasses of matrix objects must implement the
required matrix properties listed here."""
rows = None
cols = None
shape = None
_simplify = None
@classmethod
def _new(cls, *args, **kwargs):
"""`_new` must, at minimum, be callable as
`_new(rows, cols, mat) where mat is a flat list of the
elements of the matrix."""
raise NotImplementedError("Subclasses must implement this.")
def __eq__(self, other):
raise NotImplementedError("Subclasses must implement this.")
def __getitem__(self, key):
"""Implementations of __getitem__ should accept ints, in which
case the matrix is indexed as a flat list, tuples (i,j) in which
case the (i,j) entry is returned, slices, or mixed tuples (a,b)
where a and b are any combintion of slices and integers."""
raise NotImplementedError("Subclasses must implement this.")
def __len__(self):
"""The total number of entries in the matrix."""
raise NotImplementedError("Subclasses must implement this.")
class MatrixShaping(MatrixRequired):
"""Provides basic matrix shaping and extracting of submatrices"""
def _eval_col_del(self, col):
def entry(i, j):
return self[i, j] if j < col else self[i, j + 1]
return self._new(self.rows, self.cols - 1, entry)
def _eval_col_insert(self, pos, other):
cols = self.cols
def entry(i, j):
if j < pos:
return self[i, j]
elif pos <= j < pos + other.cols:
return other[i, j - pos]
return self[i, j - other.cols]
return self._new(self.rows, self.cols + other.cols,
lambda i, j: entry(i, j))
def _eval_col_join(self, other):
rows = self.rows
def entry(i, j):
if i < rows:
return self[i, j]
return other[i - rows, j]
return classof(self, other)._new(self.rows + other.rows, self.cols,
lambda i, j: entry(i, j))
def _eval_extract(self, rowsList, colsList):
mat = list(self)
cols = self.cols
indices = (i * cols + j for i in rowsList for j in colsList)
return self._new(len(rowsList), len(colsList),
list(mat[i] for i in indices))
def _eval_get_diag_blocks(self):
sub_blocks = []
def recurse_sub_blocks(M):
i = 1
while i <= M.shape[0]:
if i == 1:
to_the_right = M[0, i:]
to_the_bottom = M[i:, 0]
else:
to_the_right = M[:i, i:]
to_the_bottom = M[i:, :i]
if any(to_the_right) or any(to_the_bottom):
i += 1
continue
else:
sub_blocks.append(M[:i, :i])
if M.shape == M[:i, :i].shape:
return
else:
recurse_sub_blocks(M[i:, i:])
return
recurse_sub_blocks(self)
return sub_blocks
def _eval_row_del(self, row):
def entry(i, j):
return self[i, j] if i < row else self[i + 1, j]
return self._new(self.rows - 1, self.cols, entry)
def _eval_row_insert(self, pos, other):
entries = list(self)
insert_pos = pos * self.cols
entries[insert_pos:insert_pos] = list(other)
return self._new(self.rows + other.rows, self.cols, entries)
def _eval_row_join(self, other):
cols = self.cols
def entry(i, j):
if j < cols:
return self[i, j]
return other[i, j - cols]
return classof(self, other)._new(self.rows, self.cols + other.cols,
lambda i, j: entry(i, j))
def _eval_tolist(self):
return [list(self[i,:]) for i in range(self.rows)]
def _eval_vec(self):
rows = self.rows
def entry(n, _):
# we want to read off the columns first
j = n // rows
i = n - j * rows
return self[i, j]
return self._new(len(self), 1, entry)
def col_del(self, col):
"""Delete the specified column."""
if col < 0:
col += self.cols
if not 0 <= col < self.cols:
raise ValueError("Column {} out of range.".format(col))
return self._eval_col_del(col)
def col_insert(self, pos, other):
"""Insert one or more columns at the given column position.
Examples
========
>>> from sympy import zeros, ones
>>> M = zeros(3)
>>> V = ones(3, 1)
>>> M.col_insert(1, V)
Matrix([
[0, 1, 0, 0],
[0, 1, 0, 0],
[0, 1, 0, 0]])
See Also
========
col
row_insert
"""
# Allows you to build a matrix even if it is null matrix
if not self:
return type(self)(other)
pos = as_int(pos)
if pos < 0:
pos = self.cols + pos
if pos < 0:
pos = 0
elif pos > self.cols:
pos = self.cols
if self.rows != other.rows:
raise ShapeError(
"`self` and `other` must have the same number of rows.")
return self._eval_col_insert(pos, other)
def col_join(self, other):
"""Concatenates two matrices along self's last and other's first row.
Examples
========
>>> from sympy import zeros, ones
>>> M = zeros(3)
>>> V = ones(1, 3)
>>> M.col_join(V)
Matrix([
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[1, 1, 1]])
See Also
========
col
row_join
"""
# A null matrix can always be stacked (see #10770)
if self.rows == 0 and self.cols != other.cols:
return self._new(0, other.cols, []).col_join(other)
if self.cols != other.cols:
raise ShapeError(
"`self` and `other` must have the same number of columns.")
return self._eval_col_join(other)
def col(self, j):
"""Elementary column selector.
Examples
========
>>> from sympy import eye
>>> eye(2).col(0)
Matrix([
[1],
[0]])
See Also
========
row
col_op
col_swap
col_del
col_join
col_insert
"""
return self[:, j]
def extract(self, rowsList, colsList):
"""Return a submatrix by specifying a list of rows and columns.
Negative indices can be given. All indices must be in the range
-n <= i < n where n is the number of rows or columns.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(4, 3, range(12))
>>> m
Matrix([
[0, 1, 2],
[3, 4, 5],
[6, 7, 8],
[9, 10, 11]])
>>> m.extract([0, 1, 3], [0, 1])
Matrix([
[0, 1],
[3, 4],
[9, 10]])
Rows or columns can be repeated:
>>> m.extract([0, 0, 1], [-1])
Matrix([
[2],
[2],
[5]])
Every other row can be taken by using range to provide the indices:
>>> m.extract(range(0, m.rows, 2), [-1])
Matrix([
[2],
[8]])
RowsList or colsList can also be a list of booleans, in which case
the rows or columns corresponding to the True values will be selected:
>>> m.extract([0, 1, 2, 3], [True, False, True])
Matrix([
[0, 2],
[3, 5],
[6, 8],
[9, 11]])
"""
if not is_sequence(rowsList) or not is_sequence(colsList):
raise TypeError("rowsList and colsList must be iterable")
# ensure rowsList and colsList are lists of integers
if rowsList and all(isinstance(i, bool) for i in rowsList):
rowsList = [index for index, item in enumerate(rowsList) if item]
if colsList and all(isinstance(i, bool) for i in colsList):
colsList = [index for index, item in enumerate(colsList) if item]
# ensure everything is in range
rowsList = [a2idx(k, self.rows) for k in rowsList]
colsList = [a2idx(k, self.cols) for k in colsList]
return self._eval_extract(rowsList, colsList)
def get_diag_blocks(self):
"""Obtains the square sub-matrices on the main diagonal of a square matrix.
Useful for inverting symbolic matrices or solving systems of
linear equations which may be decoupled by having a block diagonal
structure.
Examples
========
>>> from sympy import Matrix
>>> from sympy.abc import x, y, z
>>> A = Matrix([[1, 3, 0, 0], [y, z*z, 0, 0], [0, 0, x, 0], [0, 0, 0, 0]])
>>> a1, a2, a3 = A.get_diag_blocks()
>>> a1
Matrix([
[1, 3],
[y, z**2]])
>>> a2
Matrix([[x]])
>>> a3
Matrix([[0]])
"""
return self._eval_get_diag_blocks()
@classmethod
def hstack(cls, *args):
"""Return a matrix formed by joining args horizontally (i.e.
by repeated application of row_join).
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> Matrix.hstack(eye(2), 2*eye(2))
Matrix([
[1, 0, 2, 0],
[0, 1, 0, 2]])
"""
if len(args) == 0:
return cls._new()
kls = type(args[0])
return reduce(kls.row_join, args)
def reshape(self, rows, cols):
"""Reshape the matrix. Total number of elements must remain the same.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(2, 3, lambda i, j: 1)
>>> m
Matrix([
[1, 1, 1],
[1, 1, 1]])
>>> m.reshape(1, 6)
Matrix([[1, 1, 1, 1, 1, 1]])
>>> m.reshape(3, 2)
Matrix([
[1, 1],
[1, 1],
[1, 1]])
"""
if self.rows * self.cols != rows * cols:
raise ValueError("Invalid reshape parameters %d %d" % (rows, cols))
return self._new(rows, cols, lambda i, j: self[i * cols + j])
def row_del(self, row):
"""Delete the specified row."""
if row < 0:
row += self.rows
if not 0 <= row < self.rows:
raise ValueError("Row {} out of range.".format(row))
return self._eval_row_del(row)
def row_insert(self, pos, other):
"""Insert one or more rows at the given row position.
Examples
========
>>> from sympy import zeros, ones
>>> M = zeros(3)
>>> V = ones(1, 3)
>>> M.row_insert(1, V)
Matrix([
[0, 0, 0],
[1, 1, 1],
[0, 0, 0],
[0, 0, 0]])
See Also
========
row
col_insert
"""
# Allows you to build a matrix even if it is null matrix
if not self:
return self._new(other)
pos = as_int(pos)
if pos < 0:
pos = self.rows + pos
if pos < 0:
pos = 0
elif pos > self.rows:
pos = self.rows
if self.cols != other.cols:
raise ShapeError(
"`self` and `other` must have the same number of columns.")
return self._eval_row_insert(pos, other)
def row_join(self, other):
"""Concatenates two matrices along self's last and rhs's first column
Examples
========
>>> from sympy import zeros, ones
>>> M = zeros(3)
>>> V = ones(3, 1)
>>> M.row_join(V)
Matrix([
[0, 0, 0, 1],
[0, 0, 0, 1],
[0, 0, 0, 1]])
See Also
========
row
col_join
"""
# A null matrix can always be stacked (see #10770)
if self.cols == 0 and self.rows != other.rows:
return self._new(other.rows, 0, []).row_join(other)
if self.rows != other.rows:
raise ShapeError(
"`self` and `rhs` must have the same number of rows.")
return self._eval_row_join(other)
def row(self, i):
"""Elementary row selector.
Examples
========
>>> from sympy import eye
>>> eye(2).row(0)
Matrix([[1, 0]])
See Also
========
col
row_op
row_swap
row_del
row_join
row_insert
"""
return self[i, :]
@property
def shape(self):
"""The shape (dimensions) of the matrix as the 2-tuple (rows, cols).
Examples
========
>>> from sympy.matrices import zeros
>>> M = zeros(2, 3)
>>> M.shape
(2, 3)
>>> M.rows
2
>>> M.cols
3
"""
return (self.rows, self.cols)
def tolist(self):
"""Return the Matrix as a nested Python list.
Examples
========
>>> from sympy import Matrix, ones
>>> m = Matrix(3, 3, range(9))
>>> m
Matrix([
[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
>>> m.tolist()
[[0, 1, 2], [3, 4, 5], [6, 7, 8]]
>>> ones(3, 0).tolist()
[[], [], []]
When there are no rows then it will not be possible to tell how
many columns were in the original matrix:
>>> ones(0, 3).tolist()
[]
"""
if not self.rows:
return []
if not self.cols:
return [[] for i in range(self.rows)]
return self._eval_tolist()
def vec(self):
"""Return the Matrix converted into a one column matrix by stacking columns
Examples
========
>>> from sympy import Matrix
>>> m=Matrix([[1, 3], [2, 4]])
>>> m
Matrix([
[1, 3],
[2, 4]])
>>> m.vec()
Matrix([
[1],
[2],
[3],
[4]])
See Also
========
vech
"""
return self._eval_vec()
@classmethod
def vstack(cls, *args):
"""Return a matrix formed by joining args vertically (i.e.
by repeated application of col_join).
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> Matrix.vstack(eye(2), 2*eye(2))
Matrix([
[1, 0],
[0, 1],
[2, 0],
[0, 2]])
"""
if len(args) == 0:
return cls._new()
kls = type(args[0])
return reduce(kls.col_join, args)
class MatrixSpecial(MatrixRequired):
"""Construction of special matrices"""
@classmethod
def _eval_diag(cls, rows, cols, diag_dict):
"""diag_dict is a defaultdict containing
all the entries of the diagonal matrix."""
def entry(i, j):
return diag_dict[(i, j)]
return cls._new(rows, cols, entry)
@classmethod
def _eval_eye(cls, rows, cols):
def entry(i, j):
return S.One if i == j else S.Zero
return cls._new(rows, cols, entry)
@classmethod
def _eval_jordan_block(cls, rows, cols, eigenvalue, band='upper'):
if band == 'lower':
def entry(i, j):
if i == j:
return eigenvalue
elif j + 1 == i:
return S.One
return S.Zero
else:
def entry(i, j):
if i == j:
return eigenvalue
elif i + 1 == j:
return S.One
return S.Zero
return cls._new(rows, cols, entry)
@classmethod
def _eval_ones(cls, rows, cols):
def entry(i, j):
return S.One
return cls._new(rows, cols, entry)
@classmethod
def _eval_zeros(cls, rows, cols):
def entry(i, j):
return S.Zero
return cls._new(rows, cols, entry)
@classmethod
def diag(kls, *args, **kwargs):
"""Returns a matrix with the specified diagonal.
If matrices are passed, a block-diagonal matrix
is created (i.e. the "direct sum" of the matrices).
kwargs
======
rows : rows of the resulting matrix; computed if
not given.
cols : columns of the resulting matrix; computed if
not given.
cls : class for the resulting matrix
unpack : bool which, when True (default), unpacks a single
sequence rather than interpreting it as a Matrix.
strict : bool which, when False (default), allows Matrices to
have variable-length rows.
Examples
========
>>> from sympy.matrices import Matrix
>>> Matrix.diag(1, 2, 3)
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
The current default is to unpack a single sequence. If this is
not desired, set `unpack=False` and it will be interpreted as
a matrix.
>>> Matrix.diag([1, 2, 3]) == Matrix.diag(1, 2, 3)
True
When more than one element is passed, each is interpreted as
something to put on the diagonal. Lists are converted to
matricecs. Filling of the diagonal always continues from
the bottom right hand corner of the previous item: this
will create a block-diagonal matrix whether the matrices
are square or not.
>>> col = [1, 2, 3]
>>> row = [[4, 5]]
>>> Matrix.diag(col, row)
Matrix([
[1, 0, 0],
[2, 0, 0],
[3, 0, 0],
[0, 4, 5]])
Elements within a list need not all be of the same length unless
`strict` is set to True:
>>> Matrix.diag([[1, 2, 3], [4, 5], [6]], unpack=False)
Matrix([
[1, 2, 3],
[4, 5, 0],
[6, 0, 0]])
The type of the returned matrix can be set with the ``cls``
keyword.
>>> from sympy.matrices import ImmutableMatrix
>>> from sympy.utilities.misc import func_name
>>> func_name(Matrix.diag(1, cls=ImmutableMatrix))
'ImmutableDenseMatrix'
A zero dimension matrix can be used to position the start of
the filling at the start of an arbitrary row or column:
>>> from sympy import ones
>>> r2 = ones(0, 2)
>>> Matrix.diag(r2, 1, 2)
Matrix([
[0, 0, 1, 0],
[0, 0, 0, 2]])
"""
from sympy.matrices.matrices import MatrixBase
from sympy.matrices.dense import Matrix
klass = kwargs.get('cls', kls)
strict = kwargs.get('strict', False) # lists -> Matrices
unpack = kwargs.get('unpack', True) # unpack single sequence
if unpack and len(args) == 1 and is_sequence(args[0]) and \
not isinstance(args[0], MatrixBase):
args = args[0]
# fill a default dict with the diagonal entries
diag_entries = defaultdict(int)
R = C = 0 # keep track of the biggest index seen
for m in args:
if hasattr(m, 'rows') or isinstance(m, list):
# in this case, we're a matrix or list
if hasattr(m, 'rows'):
# convert to list of lists
r, c = m.shape
m = m.tolist()
else:
# make sure all list elements are lists
r = len(m)
if strict:
# let Matrix raise the error
m = Matrix(m)
c = m.cols
m = m.tolist()
else:
m = [mi if isinstance(mi, list) else [mi]
for mi in m]
c = max(map(len, m))
# process list of lists
for i in range(len(m)):
for j, mij in enumerate(m[i]):
diag_entries[(i + R, j + C)] = mij
R += r
C += c
else:
# in this case, we're a single value
diag_entries[(R, C)] = m
R += 1
C += 1
rows = kwargs.get('rows', None)
cols = kwargs.get('cols', None)
if rows is None:
rows, cols = cols, rows
if rows is None:
rows, cols = R, C
else:
cols = rows if cols is None else cols
if rows < R or cols < C:
raise ValueError(filldedent('''
The constructed matrix is {} x {} but a size of {} x {}
was specified.'''.format(R, C, rows, cols)))
return klass._eval_diag(rows, cols, diag_entries)
@classmethod
def eye(kls, rows, cols=None, **kwargs):
"""Returns an identity matrix.
Args
====
rows : rows of the matrix
cols : cols of the matrix (if None, cols=rows)
kwargs
======
cls : class of the returned matrix
"""
if cols is None:
cols = rows
klass = kwargs.get('cls', kls)
rows, cols = as_int(rows), as_int(cols)
return klass._eval_eye(rows, cols)
@classmethod
def jordan_block(kls, size=None, eigenvalue=None, **kwargs):
"""Returns a Jordan block
Parameters
==========
size : Integer, optional
Specifies the shape of the Jordan block matrix.
eigenvalue : Number or Symbol
Specifies the value for the main diagonal of the matrix.
.. note::
The keyword ``eigenval`` is also specified as an alias
of this keyword, but it is not recommended to use.
We may deprecate the alias in later release.
band : 'upper' or 'lower', optional
Specifies the position of the off-diagonal to put `1` s on.
cls : Matrix, optional
Specifies the matrix class of the output form.
If it is not specified, the class type where the method is
being executed on will be returned.
rows, cols : Integer, optional
Specifies the shape of the Jordan block matrix. See Notes
section for the details of how these key works.
.. note::
This feature will be deprecated in the future.
Returns
=======
Matrix
A Jordan block matrix.
Raises
======
ValueError
If insufficient arguments are given for matrix size
specification, or no eigenvalue is given.
Examples
========
Creating a default Jordan block:
>>> from sympy import Matrix
>>> from sympy.abc import x
>>> Matrix.jordan_block(4, x)
Matrix([
[x, 1, 0, 0],
[0, x, 1, 0],
[0, 0, x, 1],
[0, 0, 0, x]])
Creating an alternative Jordan block matrix where `1` is on
lower off-diagonal:
>>> Matrix.jordan_block(4, x, band='lower')
Matrix([
[x, 0, 0, 0],
[1, x, 0, 0],
[0, 1, x, 0],
[0, 0, 1, x]])
Creating a Jordan block with keyword arguments
>>> Matrix.jordan_block(size=4, eigenvalue=x)
Matrix([
[x, 1, 0, 0],
[0, x, 1, 0],
[0, 0, x, 1],
[0, 0, 0, x]])
Notes
=====
.. note::
This feature will be deprecated in the future.
The keyword arguments ``size``, ``rows``, ``cols`` relates to
the Jordan block size specifications.
If you want to create a square Jordan block, specify either
one of the three arguments.
If you want to create a rectangular Jordan block, specify
``rows`` and ``cols`` individually.
+--------------------------------+---------------------+
| Arguments Given | Matrix Shape |
+----------+----------+----------+----------+----------+
| size | rows | cols | rows | cols |
+==========+==========+==========+==========+==========+
| size | Any | size | size |
+----------+----------+----------+----------+----------+
| | None | ValueError |
| +----------+----------+----------+----------+
| None | rows | None | rows | rows |
| +----------+----------+----------+----------+
| | None | cols | cols | cols |
+ +----------+----------+----------+----------+
| | rows | cols | rows | cols |
+----------+----------+----------+----------+----------+
References
==========
.. [1] https://en.wikipedia.org/wiki/Jordan_matrix
"""
if 'rows' in kwargs or 'cols' in kwargs:
SymPyDeprecationWarning(
feature="Keyword arguments 'rows' or 'cols'",
issue=16102,
useinstead="a more generic banded matrix constructor",
deprecated_since_version="1.4"
).warn()
klass = kwargs.pop('cls', kls)
band = kwargs.pop('band', 'upper')
rows = kwargs.pop('rows', None)
cols = kwargs.pop('cols', None)
eigenval = kwargs.get('eigenval', None)
if eigenvalue is None and eigenval is None:
raise ValueError("Must supply an eigenvalue")
elif eigenvalue != eigenval and None not in (eigenval, eigenvalue):
raise ValueError(
"Inconsistent values are given: 'eigenval'={}, "
"'eigenvalue'={}".format(eigenval, eigenvalue))
else:
if eigenval is not None:
eigenvalue = eigenval
if (size, rows, cols) == (None, None, None):
raise ValueError("Must supply a matrix size")
if size is not None:
rows, cols = size, size
elif rows is not None and cols is None:
cols = rows
elif cols is not None and rows is None:
rows = cols
rows, cols = as_int(rows), as_int(cols)
return klass._eval_jordan_block(rows, cols, eigenvalue, band)
@classmethod
def ones(kls, rows, cols=None, **kwargs):
"""Returns a matrix of ones.
Args
====
rows : rows of the matrix
cols : cols of the matrix (if None, cols=rows)
kwargs
======
cls : class of the returned matrix
"""
if cols is None:
cols = rows
klass = kwargs.get('cls', kls)
rows, cols = as_int(rows), as_int(cols)
return klass._eval_ones(rows, cols)
@classmethod
def zeros(kls, rows, cols=None, **kwargs):
"""Returns a matrix of zeros.
Args
====
rows : rows of the matrix
cols : cols of the matrix (if None, cols=rows)
kwargs
======
cls : class of the returned matrix
"""
if cols is None:
cols = rows
klass = kwargs.get('cls', kls)
rows, cols = as_int(rows), as_int(cols)
return klass._eval_zeros(rows, cols)
class MatrixProperties(MatrixRequired):
"""Provides basic properties of a matrix."""
def _eval_atoms(self, *types):
result = set()
for i in self:
result.update(i.atoms(*types))
return result
def _eval_free_symbols(self):
return set().union(*(i.free_symbols for i in self))
def _eval_has(self, *patterns):
return any(a.has(*patterns) for a in self)
def _eval_is_anti_symmetric(self, simpfunc):
if not all(simpfunc(self[i, j] + self[j, i]).is_zero for i in range(self.rows) for j in range(self.cols)):
return False
return True
def _eval_is_diagonal(self):
for i in range(self.rows):
for j in range(self.cols):
if i != j and self[i, j]:
return False
return True
# _eval_is_hermitian is called by some general sympy
# routines and has a different *args signature. Make
# sure the names don't clash by adding `_matrix_` in name.
def _eval_is_matrix_hermitian(self, simpfunc):
mat = self._new(self.rows, self.cols, lambda i, j: simpfunc(self[i, j] - self[j, i].conjugate()))
return mat.is_zero
def _eval_is_Identity(self):
def dirac(i, j):
if i == j:
return 1
return 0
return all(self[i, j] == dirac(i, j) for i in range(self.rows) for j in
range(self.cols))
def _eval_is_lower_hessenberg(self):
return all(self[i, j].is_zero
for i in range(self.rows)
for j in range(i + 2, self.cols))
def _eval_is_lower(self):
return all(self[i, j].is_zero
for i in range(self.rows)
for j in range(i + 1, self.cols))
def _eval_is_symbolic(self):
return self.has(Symbol)
def _eval_is_symmetric(self, simpfunc):
mat = self._new(self.rows, self.cols, lambda i, j: simpfunc(self[i, j] - self[j, i]))
return mat.is_zero
def _eval_is_zero(self):
if any(i.is_zero == False for i in self):
return False
if any(i.is_zero is None for i in self):
return None
return True
def _eval_is_upper_hessenberg(self):
return all(self[i, j].is_zero
for i in range(2, self.rows)
for j in range(min(self.cols, (i - 1))))
def _eval_values(self):
return [i for i in self if not i.is_zero]
def atoms(self, *types):
"""Returns the atoms that form the current object.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.matrices import Matrix
>>> Matrix([[x]])
Matrix([[x]])
>>> _.atoms()
{x}
"""
types = tuple(t if isinstance(t, type) else type(t) for t in types)
if not types:
types = (Atom,)
return self._eval_atoms(*types)
@property
def free_symbols(self):
"""Returns the free symbols within the matrix.
Examples
========
>>> from sympy.abc import x
>>> from sympy.matrices import Matrix
>>> Matrix([[x], [1]]).free_symbols
{x}
"""
return self._eval_free_symbols()
def has(self, *patterns):
"""Test whether any subexpression matches any of the patterns.
Examples
========
>>> from sympy import Matrix, SparseMatrix, Float
>>> from sympy.abc import x, y
>>> A = Matrix(((1, x), (0.2, 3)))
>>> B = SparseMatrix(((1, x), (0.2, 3)))
>>> A.has(x)
True
>>> A.has(y)
False
>>> A.has(Float)
True
>>> B.has(x)
True
>>> B.has(y)
False
>>> B.has(Float)
True
"""
return self._eval_has(*patterns)
def is_anti_symmetric(self, simplify=True):
"""Check if matrix M is an antisymmetric matrix,
that is, M is a square matrix with all M[i, j] == -M[j, i].
When ``simplify=True`` (default), the sum M[i, j] + M[j, i] is
simplified before testing to see if it is zero. By default,
the SymPy simplify function is used. To use a custom function
set simplify to a function that accepts a single argument which
returns a simplified expression. To skip simplification, set
simplify to False but note that although this will be faster,
it may induce false negatives.
Examples
========
>>> from sympy import Matrix, symbols
>>> m = Matrix(2, 2, [0, 1, -1, 0])
>>> m
Matrix([
[ 0, 1],
[-1, 0]])
>>> m.is_anti_symmetric()
True
>>> x, y = symbols('x y')
>>> m = Matrix(2, 3, [0, 0, x, -y, 0, 0])
>>> m
Matrix([
[ 0, 0, x],
[-y, 0, 0]])
>>> m.is_anti_symmetric()
False
>>> from sympy.abc import x, y
>>> m = Matrix(3, 3, [0, x**2 + 2*x + 1, y,
... -(x + 1)**2 , 0, x*y,
... -y, -x*y, 0])
Simplification of matrix elements is done by default so even
though two elements which should be equal and opposite wouldn't
pass an equality test, the matrix is still reported as
anti-symmetric:
>>> m[0, 1] == -m[1, 0]
False
>>> m.is_anti_symmetric()
True
If 'simplify=False' is used for the case when a Matrix is already
simplified, this will speed things up. Here, we see that without
simplification the matrix does not appear anti-symmetric:
>>> m.is_anti_symmetric(simplify=False)
False
But if the matrix were already expanded, then it would appear
anti-symmetric and simplification in the is_anti_symmetric routine
is not needed:
>>> m = m.expand()
>>> m.is_anti_symmetric(simplify=False)
True
"""
# accept custom simplification
simpfunc = simplify
if not isfunction(simplify):
simpfunc = _simplify if simplify else lambda x: x
if not self.is_square:
return False
return self._eval_is_anti_symmetric(simpfunc)
def is_diagonal(self):
"""Check if matrix is diagonal,
that is matrix in which the entries outside the main diagonal are all zero.
Examples
========
>>> from sympy import Matrix, diag
>>> m = Matrix(2, 2, [1, 0, 0, 2])
>>> m
Matrix([
[1, 0],
[0, 2]])
>>> m.is_diagonal()
True
>>> m = Matrix(2, 2, [1, 1, 0, 2])
>>> m
Matrix([
[1, 1],
[0, 2]])
>>> m.is_diagonal()
False
>>> m = diag(1, 2, 3)
>>> m
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
>>> m.is_diagonal()
True
See Also
========
is_lower
is_upper
is_diagonalizable
diagonalize
"""
return self._eval_is_diagonal()
@property
def is_hermitian(self, simplify=True):
"""Checks if the matrix is Hermitian.
In a Hermitian matrix element i,j is the complex conjugate of
element j,i.
Examples
========
>>> from sympy.matrices import Matrix
>>> from sympy import I
>>> from sympy.abc import x
>>> a = Matrix([[1, I], [-I, 1]])
>>> a
Matrix([
[ 1, I],
[-I, 1]])
>>> a.is_hermitian
True
>>> a[0, 0] = 2*I
>>> a.is_hermitian
False
>>> a[0, 0] = x
>>> a.is_hermitian
>>> a[0, 1] = a[1, 0]*I
>>> a.is_hermitian
False
"""
if not self.is_square:
return False
simpfunc = simplify
if not isfunction(simplify):
simpfunc = _simplify if simplify else lambda x: x
return self._eval_is_matrix_hermitian(simpfunc)
@property
def is_Identity(self):
if not self.is_square:
return False
return self._eval_is_Identity()
@property
def is_lower_hessenberg(self):
r"""Checks if the matrix is in the lower-Hessenberg form.
The lower hessenberg matrix has zero entries
above the first superdiagonal.
Examples
========
>>> from sympy.matrices import Matrix
>>> a = Matrix([[1, 2, 0, 0], [5, 2, 3, 0], [3, 4, 3, 7], [5, 6, 1, 1]])
>>> a
Matrix([
[1, 2, 0, 0],
[5, 2, 3, 0],
[3, 4, 3, 7],
[5, 6, 1, 1]])
>>> a.is_lower_hessenberg
True
See Also
========
is_upper_hessenberg
is_lower
"""
return self._eval_is_lower_hessenberg()
@property
def is_lower(self):
"""Check if matrix is a lower triangular matrix. True can be returned
even if the matrix is not square.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(2, 2, [1, 0, 0, 1])
>>> m
Matrix([
[1, 0],
[0, 1]])
>>> m.is_lower
True
>>> m = Matrix(4, 3, [0, 0, 0, 2, 0, 0, 1, 4 , 0, 6, 6, 5])
>>> m
Matrix([
[0, 0, 0],
[2, 0, 0],
[1, 4, 0],
[6, 6, 5]])
>>> m.is_lower
True
>>> from sympy.abc import x, y
>>> m = Matrix(2, 2, [x**2 + y, y**2 + x, 0, x + y])
>>> m
Matrix([
[x**2 + y, x + y**2],
[ 0, x + y]])
>>> m.is_lower
False
See Also
========
is_upper
is_diagonal
is_lower_hessenberg
"""
return self._eval_is_lower()
@property
def is_square(self):
"""Checks if a matrix is square.
A matrix is square if the number of rows equals the number of columns.
The empty matrix is square by definition, since the number of rows and
the number of columns are both zero.
Examples
========
>>> from sympy import Matrix
>>> a = Matrix([[1, 2, 3], [4, 5, 6]])
>>> b = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> c = Matrix([])
>>> a.is_square
False
>>> b.is_square
True
>>> c.is_square
True
"""
return self.rows == self.cols
def is_symbolic(self):
"""Checks if any elements contain Symbols.
Examples
========
>>> from sympy.matrices import Matrix
>>> from sympy.abc import x, y
>>> M = Matrix([[x, y], [1, 0]])
>>> M.is_symbolic()
True
"""
return self._eval_is_symbolic()
def is_symmetric(self, simplify=True):
"""Check if matrix is symmetric matrix,
that is square matrix and is equal to its transpose.
By default, simplifications occur before testing symmetry.
They can be skipped using 'simplify=False'; while speeding things a bit,
this may however induce false negatives.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(2, 2, [0, 1, 1, 2])
>>> m
Matrix([
[0, 1],
[1, 2]])
>>> m.is_symmetric()
True
>>> m = Matrix(2, 2, [0, 1, 2, 0])
>>> m
Matrix([
[0, 1],
[2, 0]])
>>> m.is_symmetric()
False
>>> m = Matrix(2, 3, [0, 0, 0, 0, 0, 0])
>>> m
Matrix([
[0, 0, 0],
[0, 0, 0]])
>>> m.is_symmetric()
False
>>> from sympy.abc import x, y
>>> m = Matrix(3, 3, [1, x**2 + 2*x + 1, y, (x + 1)**2 , 2, 0, y, 0, 3])
>>> m
Matrix([
[ 1, x**2 + 2*x + 1, y],
[(x + 1)**2, 2, 0],
[ y, 0, 3]])
>>> m.is_symmetric()
True
If the matrix is already simplified, you may speed-up is_symmetric()
test by using 'simplify=False'.
>>> bool(m.is_symmetric(simplify=False))
False
>>> m1 = m.expand()
>>> m1.is_symmetric(simplify=False)
True
"""
simpfunc = simplify
if not isfunction(simplify):
simpfunc = _simplify if simplify else lambda x: x
if not self.is_square:
return False
return self._eval_is_symmetric(simpfunc)
@property
def is_upper_hessenberg(self):
"""Checks if the matrix is the upper-Hessenberg form.
The upper hessenberg matrix has zero entries
below the first subdiagonal.
Examples
========
>>> from sympy.matrices import Matrix
>>> a = Matrix([[1, 4, 2, 3], [3, 4, 1, 7], [0, 2, 3, 4], [0, 0, 1, 3]])
>>> a
Matrix([
[1, 4, 2, 3],
[3, 4, 1, 7],
[0, 2, 3, 4],
[0, 0, 1, 3]])
>>> a.is_upper_hessenberg
True
See Also
========
is_lower_hessenberg
is_upper
"""
return self._eval_is_upper_hessenberg()
@property
def is_upper(self):
"""Check if matrix is an upper triangular matrix. True can be returned
even if the matrix is not square.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(2, 2, [1, 0, 0, 1])
>>> m
Matrix([
[1, 0],
[0, 1]])
>>> m.is_upper
True
>>> m = Matrix(4, 3, [5, 1, 9, 0, 4 , 6, 0, 0, 5, 0, 0, 0])
>>> m
Matrix([
[5, 1, 9],
[0, 4, 6],
[0, 0, 5],
[0, 0, 0]])
>>> m.is_upper
True
>>> m = Matrix(2, 3, [4, 2, 5, 6, 1, 1])
>>> m
Matrix([
[4, 2, 5],
[6, 1, 1]])
>>> m.is_upper
False
See Also
========
is_lower
is_diagonal
is_upper_hessenberg
"""
return all(self[i, j].is_zero
for i in range(1, self.rows)
for j in range(min(i, self.cols)))
@property
def is_zero(self):
"""Checks if a matrix is a zero matrix.
A matrix is zero if every element is zero. A matrix need not be square
to be considered zero. The empty matrix is zero by the principle of
vacuous truth. For a matrix that may or may not be zero (e.g.
contains a symbol), this will be None
Examples
========
>>> from sympy import Matrix, zeros
>>> from sympy.abc import x
>>> a = Matrix([[0, 0], [0, 0]])
>>> b = zeros(3, 4)
>>> c = Matrix([[0, 1], [0, 0]])
>>> d = Matrix([])
>>> e = Matrix([[x, 0], [0, 0]])
>>> a.is_zero
True
>>> b.is_zero
True
>>> c.is_zero
False
>>> d.is_zero
True
>>> e.is_zero
"""
return self._eval_is_zero()
def values(self):
"""Return non-zero values of self."""
return self._eval_values()
class MatrixOperations(MatrixRequired):
"""Provides basic matrix shape and elementwise
operations. Should not be instantiated directly."""
def _eval_adjoint(self):
return self.transpose().conjugate()
def _eval_applyfunc(self, f):
out = self._new(self.rows, self.cols, [f(x) for x in self])
return out
def _eval_as_real_imag(self):
from sympy.functions.elementary.complexes import re, im
return (self.applyfunc(re), self.applyfunc(im))
def _eval_conjugate(self):
return self.applyfunc(lambda x: x.conjugate())
def _eval_permute_cols(self, perm):
# apply the permutation to a list
mapping = list(perm)
def entry(i, j):
return self[i, mapping[j]]
return self._new(self.rows, self.cols, entry)
def _eval_permute_rows(self, perm):
# apply the permutation to a list
mapping = list(perm)
def entry(i, j):
return self[mapping[i], j]
return self._new(self.rows, self.cols, entry)
def _eval_trace(self):
return sum(self[i, i] for i in range(self.rows))
def _eval_transpose(self):
return self._new(self.cols, self.rows, lambda i, j: self[j, i])
def adjoint(self):
"""Conjugate transpose or Hermitian conjugation."""
return self._eval_adjoint()
def applyfunc(self, f):
"""Apply a function to each element of the matrix.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(2, 2, lambda i, j: i*2+j)
>>> m
Matrix([
[0, 1],
[2, 3]])
>>> m.applyfunc(lambda i: 2*i)
Matrix([
[0, 2],
[4, 6]])
"""
if not callable(f):
raise TypeError("`f` must be callable.")
return self._eval_applyfunc(f)
def as_real_imag(self):
"""Returns a tuple containing the (real, imaginary) part of matrix."""
return self._eval_as_real_imag()
def conjugate(self):
"""Return the by-element conjugation.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> from sympy import I
>>> a = SparseMatrix(((1, 2 + I), (3, 4), (I, -I)))
>>> a
Matrix([
[1, 2 + I],
[3, 4],
[I, -I]])
>>> a.C
Matrix([
[ 1, 2 - I],
[ 3, 4],
[-I, I]])
See Also
========
transpose: Matrix transposition
H: Hermite conjugation
D: Dirac conjugation
"""
return self._eval_conjugate()
def doit(self, **kwargs):
return self.applyfunc(lambda x: x.doit())
def evalf(self, prec=None, **options):
"""Apply evalf() to each element of self."""
return self.applyfunc(lambda i: i.evalf(prec, **options))
def expand(self, deep=True, modulus=None, power_base=True, power_exp=True,
mul=True, log=True, multinomial=True, basic=True, **hints):
"""Apply core.function.expand to each entry of the matrix.
Examples
========
>>> from sympy.abc import x
>>> from sympy.matrices import Matrix
>>> Matrix(1, 1, [x*(x+1)])
Matrix([[x*(x + 1)]])
>>> _.expand()
Matrix([[x**2 + x]])
"""
return self.applyfunc(lambda x: x.expand(
deep, modulus, power_base, power_exp, mul, log, multinomial, basic,
**hints))
@property
def H(self):
"""Return Hermite conjugate.
Examples
========
>>> from sympy import Matrix, I
>>> m = Matrix((0, 1 + I, 2, 3))
>>> m
Matrix([
[ 0],
[1 + I],
[ 2],
[ 3]])
>>> m.H
Matrix([[0, 1 - I, 2, 3]])
See Also
========
conjugate: By-element conjugation
D: Dirac conjugation
"""
return self.T.C
def permute(self, perm, orientation='rows', direction='forward'):
"""Permute the rows or columns of a matrix by the given list of swaps.
Parameters
==========
perm : a permutation. This may be a list swaps (e.g., `[[1, 2], [0, 3]]`),
or any valid input to the `Permutation` constructor, including a `Permutation()`
itself. If `perm` is given explicitly as a list of indices or a `Permutation`,
`direction` has no effect.
orientation : ('rows' or 'cols') whether to permute the rows or the columns
direction : ('forward', 'backward') whether to apply the permutations from
the start of the list first, or from the back of the list first
Examples
========
>>> from sympy.matrices import eye
>>> M = eye(3)
>>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='forward')
Matrix([
[0, 0, 1],
[1, 0, 0],
[0, 1, 0]])
>>> from sympy.matrices import eye
>>> M = eye(3)
>>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='backward')
Matrix([
[0, 1, 0],
[0, 0, 1],
[1, 0, 0]])
"""
# allow british variants and `columns`
if direction == 'forwards':
direction = 'forward'
if direction == 'backwards':
direction = 'backward'
if orientation == 'columns':
orientation = 'cols'
if direction not in ('forward', 'backward'):
raise TypeError("direction='{}' is an invalid kwarg. "
"Try 'forward' or 'backward'".format(direction))
if orientation not in ('rows', 'cols'):
raise TypeError("orientation='{}' is an invalid kwarg. "
"Try 'rows' or 'cols'".format(orientation))
# ensure all swaps are in range
max_index = self.rows if orientation == 'rows' else self.cols
if not all(0 <= t <= max_index for t in flatten(list(perm))):
raise IndexError("`swap` indices out of range.")
# see if we are a list of pairs
try:
assert len(perm[0]) == 2
# we are a list of swaps, so `direction` matters
if direction == 'backward':
perm = reversed(perm)
# since Permutation doesn't let us have non-disjoint cycles,
# we'll construct the explicit mapping ourselves XXX Bug #12479
mapping = list(range(max_index))
for (i, j) in perm:
mapping[i], mapping[j] = mapping[j], mapping[i]
perm = mapping
except (TypeError, AssertionError, IndexError):
pass
from sympy.combinatorics import Permutation
perm = Permutation(perm, size=max_index)
if orientation == 'rows':
return self._eval_permute_rows(perm)
if orientation == 'cols':
return self._eval_permute_cols(perm)
def permute_cols(self, swaps, direction='forward'):
"""Alias for `self.permute(swaps, orientation='cols', direction=direction)`
See Also
========
permute
"""
return self.permute(swaps, orientation='cols', direction=direction)
def permute_rows(self, swaps, direction='forward'):
"""Alias for `self.permute(swaps, orientation='rows', direction=direction)`
See Also
========
permute
"""
return self.permute(swaps, orientation='rows', direction=direction)
def refine(self, assumptions=True):
"""Apply refine to each element of the matrix.
Examples
========
>>> from sympy import Symbol, Matrix, Abs, sqrt, Q
>>> x = Symbol('x')
>>> Matrix([[Abs(x)**2, sqrt(x**2)],[sqrt(x**2), Abs(x)**2]])
Matrix([
[ Abs(x)**2, sqrt(x**2)],
[sqrt(x**2), Abs(x)**2]])
>>> _.refine(Q.real(x))
Matrix([
[ x**2, Abs(x)],
[Abs(x), x**2]])
"""
return self.applyfunc(lambda x: refine(x, assumptions))
def replace(self, F, G, map=False):
"""Replaces Function F in Matrix entries with Function G.
Examples
========
>>> from sympy import symbols, Function, Matrix
>>> F, G = symbols('F, G', cls=Function)
>>> M = Matrix(2, 2, lambda i, j: F(i+j)) ; M
Matrix([
[F(0), F(1)],
[F(1), F(2)]])
>>> N = M.replace(F,G)
>>> N
Matrix([
[G(0), G(1)],
[G(1), G(2)]])
"""
return self.applyfunc(lambda x: x.replace(F, G, map))
def simplify(self, ratio=1.7, measure=count_ops, rational=False, inverse=False):
"""Apply simplify to each element of the matrix.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy import sin, cos
>>> from sympy.matrices import SparseMatrix
>>> SparseMatrix(1, 1, [x*sin(y)**2 + x*cos(y)**2])
Matrix([[x*sin(y)**2 + x*cos(y)**2]])
>>> _.simplify()
Matrix([[x]])
"""
return self.applyfunc(lambda x: x.simplify(ratio=ratio, measure=measure,
rational=rational, inverse=inverse))
def subs(self, *args, **kwargs): # should mirror core.basic.subs
"""Return a new matrix with subs applied to each entry.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.matrices import SparseMatrix, Matrix
>>> SparseMatrix(1, 1, [x])
Matrix([[x]])
>>> _.subs(x, y)
Matrix([[y]])
>>> Matrix(_).subs(y, x)
Matrix([[x]])
"""
return self.applyfunc(lambda x: x.subs(*args, **kwargs))
def trace(self):
"""
Returns the trace of a square matrix i.e. the sum of the
diagonal elements.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix(2, 2, [1, 2, 3, 4])
>>> A.trace()
5
"""
if self.rows != self.cols:
raise NonSquareMatrixError()
return self._eval_trace()
def transpose(self):
"""
Returns the transpose of the matrix.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix(2, 2, [1, 2, 3, 4])
>>> A.transpose()
Matrix([
[1, 3],
[2, 4]])
>>> from sympy import Matrix, I
>>> m=Matrix(((1, 2+I), (3, 4)))
>>> m
Matrix([
[1, 2 + I],
[3, 4]])
>>> m.transpose()
Matrix([
[ 1, 3],
[2 + I, 4]])
>>> m.T == m.transpose()
True
See Also
========
conjugate: By-element conjugation
"""
return self._eval_transpose()
T = property(transpose, None, None, "Matrix transposition.")
C = property(conjugate, None, None, "By-element conjugation.")
n = evalf
def xreplace(self, rule): # should mirror core.basic.xreplace
"""Return a new matrix with xreplace applied to each entry.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.matrices import SparseMatrix, Matrix
>>> SparseMatrix(1, 1, [x])
Matrix([[x]])
>>> _.xreplace({x: y})
Matrix([[y]])
>>> Matrix(_).xreplace({y: x})
Matrix([[x]])
"""
return self.applyfunc(lambda x: x.xreplace(rule))
_eval_simplify = simplify
def _eval_trigsimp(self, **opts):
from sympy.simplify import trigsimp
return self.applyfunc(lambda x: trigsimp(x, **opts))
class MatrixArithmetic(MatrixRequired):
"""Provides basic matrix arithmetic operations.
Should not be instantiated directly."""
_op_priority = 10.01
def _eval_Abs(self):
return self._new(self.rows, self.cols, lambda i, j: Abs(self[i, j]))
def _eval_add(self, other):
return self._new(self.rows, self.cols,
lambda i, j: self[i, j] + other[i, j])
def _eval_matrix_mul(self, other):
def entry(i, j):
try:
return sum(self[i,k]*other[k,j] for k in range(self.cols))
except TypeError:
# Block matrices don't work with `sum` or `Add` (ISSUE #11599)
# They don't work with `sum` because `sum` tries to add `0`
# initially, and for a matrix, that is a mix of a scalar and
# a matrix, which raises a TypeError. Fall back to a
# block-matrix-safe way to multiply if the `sum` fails.
ret = self[i, 0]*other[0, j]
for k in range(1, self.cols):
ret += self[i, k]*other[k, j]
return ret
return self._new(self.rows, other.cols, entry)
def _eval_matrix_mul_elementwise(self, other):
return self._new(self.rows, self.cols, lambda i, j: self[i,j]*other[i,j])
def _eval_matrix_rmul(self, other):
def entry(i, j):
return sum(other[i,k]*self[k,j] for k in range(other.cols))
return self._new(other.rows, self.cols, entry)
def _eval_pow_by_recursion(self, num):
if num == 1:
return self
if num % 2 == 1:
return self * self._eval_pow_by_recursion(num - 1)
ret = self._eval_pow_by_recursion(num // 2)
return ret * ret
def _eval_scalar_mul(self, other):
return self._new(self.rows, self.cols, lambda i, j: self[i,j]*other)
def _eval_scalar_rmul(self, other):
return self._new(self.rows, self.cols, lambda i, j: other*self[i,j])
def _eval_Mod(self, other):
from sympy import Mod
return self._new(self.rows, self.cols, lambda i, j: Mod(self[i, j], other))
# python arithmetic functions
def __abs__(self):
"""Returns a new matrix with entry-wise absolute values."""
return self._eval_Abs()
@call_highest_priority('__radd__')
def __add__(self, other):
"""Return self + other, raising ShapeError if shapes don't match."""
other = _matrixify(other)
# matrix-like objects can have shapes. This is
# our first sanity check.
if hasattr(other, 'shape'):
if self.shape != other.shape:
raise ShapeError("Matrix size mismatch: %s + %s" % (
self.shape, other.shape))
# honest sympy matrices defer to their class's routine
if getattr(other, 'is_Matrix', False):
# call the highest-priority class's _eval_add
a, b = self, other
if a.__class__ != classof(a, b):
b, a = a, b
return a._eval_add(b)
# Matrix-like objects can be passed to CommonMatrix routines directly.
if getattr(other, 'is_MatrixLike', False):
return MatrixArithmetic._eval_add(self, other)
raise TypeError('cannot add %s and %s' % (type(self), type(other)))
@call_highest_priority('__rdiv__')
def __div__(self, other):
return self * (S.One / other)
@call_highest_priority('__rmatmul__')
def __matmul__(self, other):
other = _matrixify(other)
if not getattr(other, 'is_Matrix', False) and not getattr(other, 'is_MatrixLike', False):
return NotImplemented
return self.__mul__(other)
@call_highest_priority('__rmul__')
def __mul__(self, other):
"""Return self*other where other is either a scalar or a matrix
of compatible dimensions.
Examples
========
>>> from sympy.matrices import Matrix
>>> A = Matrix([[1, 2, 3], [4, 5, 6]])
>>> 2*A == A*2 == Matrix([[2, 4, 6], [8, 10, 12]])
True
>>> B = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> A*B
Matrix([
[30, 36, 42],
[66, 81, 96]])
>>> B*A
Traceback (most recent call last):
...
ShapeError: Matrices size mismatch.
>>>
See Also
========
matrix_multiply_elementwise
"""
other = _matrixify(other)
# matrix-like objects can have shapes. This is
# our first sanity check.
if hasattr(other, 'shape') and len(other.shape) == 2:
if self.shape[1] != other.shape[0]:
raise ShapeError("Matrix size mismatch: %s * %s." % (
self.shape, other.shape))
# honest sympy matrices defer to their class's routine
if getattr(other, 'is_Matrix', False):
return self._eval_matrix_mul(other)
# Matrix-like objects can be passed to CommonMatrix routines directly.
if getattr(other, 'is_MatrixLike', False):
return MatrixArithmetic._eval_matrix_mul(self, other)
# if 'other' is not iterable then scalar multiplication.
if not isinstance(other, Iterable):
try:
return self._eval_scalar_mul(other)
except TypeError:
pass
return NotImplemented
def __neg__(self):
return self._eval_scalar_mul(-1)
@call_highest_priority('__rpow__')
def __pow__(self, num):
if self.rows != self.cols:
raise NonSquareMatrixError()
a = self
jordan_pow = getattr(a, '_matrix_pow_by_jordan_blocks', None)
num = sympify(num)
if num.is_Number and num % 1 == 0:
if a.rows == 1:
return a._new([[a[0]**num]])
if num == 0:
return self._new(self.rows, self.cols, lambda i, j: int(i == j))
if num < 0:
num = -num
a = a.inv()
# When certain conditions are met,
# Jordan block algorithm is faster than
# computation by recursion.
elif a.rows == 2 and num > 100000 and jordan_pow is not None:
try:
return jordan_pow(num)
except MatrixError:
pass
return a._eval_pow_by_recursion(num)
elif not num.is_Number and num.is_negative is None and a.det() == 0:
from sympy.matrices.expressions import MatPow
return MatPow(a, num)
elif isinstance(num, (Expr, float)):
return jordan_pow(num)
else:
raise TypeError(
"Only SymPy expressions or integers are supported as exponent for matrices")
@call_highest_priority('__add__')
def __radd__(self, other):
return self + other
@call_highest_priority('__matmul__')
def __rmatmul__(self, other):
other = _matrixify(other)
if not getattr(other, 'is_Matrix', False) and not getattr(other, 'is_MatrixLike', False):
return NotImplemented
return self.__rmul__(other)
@call_highest_priority('__mul__')
def __rmul__(self, other):
other = _matrixify(other)
# matrix-like objects can have shapes. This is
# our first sanity check.
if hasattr(other, 'shape') and len(other.shape) == 2:
if self.shape[0] != other.shape[1]:
raise ShapeError("Matrix size mismatch.")
# honest sympy matrices defer to their class's routine
if getattr(other, 'is_Matrix', False):
return other._new(other.as_mutable() * self)
# Matrix-like objects can be passed to CommonMatrix routines directly.
if getattr(other, 'is_MatrixLike', False):
return MatrixArithmetic._eval_matrix_rmul(self, other)
# if 'other' is not iterable then scalar multiplication.
if not isinstance(other, Iterable):
try:
return self._eval_scalar_rmul(other)
except TypeError:
pass
return NotImplemented
@call_highest_priority('__sub__')
def __rsub__(self, a):
return (-self) + a
@call_highest_priority('__rsub__')
def __sub__(self, a):
return self + (-a)
@call_highest_priority('__rtruediv__')
def __truediv__(self, other):
return self.__div__(other)
def multiply_elementwise(self, other):
"""Return the Hadamard product (elementwise product) of A and B
Examples
========
>>> from sympy.matrices import Matrix
>>> A = Matrix([[0, 1, 2], [3, 4, 5]])
>>> B = Matrix([[1, 10, 100], [100, 10, 1]])
>>> A.multiply_elementwise(B)
Matrix([
[ 0, 10, 200],
[300, 40, 5]])
See Also
========
cross
dot
multiply
"""
if self.shape != other.shape:
raise ShapeError("Matrix shapes must agree {} != {}".format(self.shape, other.shape))
return self._eval_matrix_mul_elementwise(other)
class MatrixCommon(MatrixArithmetic, MatrixOperations, MatrixProperties,
MatrixSpecial, MatrixShaping):
"""All common matrix operations including basic arithmetic, shaping,
and special matrices like `zeros`, and `eye`."""
_diff_wrt = True
class _MinimalMatrix(object):
"""Class providing the minimum functionality
for a matrix-like object and implementing every method
required for a `MatrixRequired`. This class does not have everything
needed to become a full-fledged SymPy object, but it will satisfy the
requirements of anything inheriting from `MatrixRequired`. If you wish
to make a specialized matrix type, make sure to implement these
methods and properties with the exception of `__init__` and `__repr__`
which are included for convenience."""
is_MatrixLike = True
_sympify = staticmethod(sympify)
_class_priority = 3
is_Matrix = True
is_MatrixExpr = False
@classmethod
def _new(cls, *args, **kwargs):
return cls(*args, **kwargs)
def __init__(self, rows, cols=None, mat=None):
if isfunction(mat):
# if we passed in a function, use that to populate the indices
mat = list(mat(i, j) for i in range(rows) for j in range(cols))
if cols is None and mat is None:
mat = rows
rows, cols = getattr(mat, 'shape', (rows, cols))
try:
# if we passed in a list of lists, flatten it and set the size
if cols is None and mat is None:
mat = rows
cols = len(mat[0])
rows = len(mat)
mat = [x for l in mat for x in l]
except (IndexError, TypeError):
pass
self.mat = tuple(self._sympify(x) for x in mat)
self.rows, self.cols = rows, cols
if self.rows is None or self.cols is None:
raise NotImplementedError("Cannot initialize matrix with given parameters")
def __getitem__(self, key):
def _normalize_slices(row_slice, col_slice):
"""Ensure that row_slice and col_slice don't have
`None` in their arguments. Any integers are converted
to slices of length 1"""
if not isinstance(row_slice, slice):
row_slice = slice(row_slice, row_slice + 1, None)
row_slice = slice(*row_slice.indices(self.rows))
if not isinstance(col_slice, slice):
col_slice = slice(col_slice, col_slice + 1, None)
col_slice = slice(*col_slice.indices(self.cols))
return (row_slice, col_slice)
def _coord_to_index(i, j):
"""Return the index in _mat corresponding
to the (i,j) position in the matrix. """
return i * self.cols + j
if isinstance(key, tuple):
i, j = key
if isinstance(i, slice) or isinstance(j, slice):
# if the coordinates are not slices, make them so
# and expand the slices so they don't contain `None`
i, j = _normalize_slices(i, j)
rowsList, colsList = list(range(self.rows))[i], \
list(range(self.cols))[j]
indices = (i * self.cols + j for i in rowsList for j in
colsList)
return self._new(len(rowsList), len(colsList),
list(self.mat[i] for i in indices))
# if the key is a tuple of ints, change
# it to an array index
key = _coord_to_index(i, j)
return self.mat[key]
def __eq__(self, other):
try:
classof(self, other)
except TypeError:
return False
return (
self.shape == other.shape and list(self) == list(other))
def __len__(self):
return self.rows*self.cols
def __repr__(self):
return "_MinimalMatrix({}, {}, {})".format(self.rows, self.cols,
self.mat)
@property
def shape(self):
return (self.rows, self.cols)
class _MatrixWrapper(object):
"""Wrapper class providing the minimum functionality
for a matrix-like object: .rows, .cols, .shape, indexability,
and iterability. CommonMatrix math operations should work
on matrix-like objects. For example, wrapping a numpy
matrix in a MatrixWrapper allows it to be passed to CommonMatrix.
"""
is_MatrixLike = True
def __init__(self, mat, shape=None):
self.mat = mat
self.rows, self.cols = mat.shape if shape is None else shape
def __getattr__(self, attr):
"""Most attribute access is passed straight through
to the stored matrix"""
return getattr(self.mat, attr)
def __getitem__(self, key):
return self.mat.__getitem__(key)
def _matrixify(mat):
"""If `mat` is a Matrix or is matrix-like,
return a Matrix or MatrixWrapper object. Otherwise
`mat` is passed through without modification."""
if getattr(mat, 'is_Matrix', False):
return mat
if hasattr(mat, 'shape'):
if len(mat.shape) == 2:
return _MatrixWrapper(mat)
return mat
def a2idx(j, n=None):
"""Return integer after making positive and validating against n."""
if type(j) is not int:
jindex = getattr(j, '__index__', None)
if jindex is not None:
j = jindex()
else:
raise IndexError("Invalid index a[%r]" % (j,))
if n is not None:
if j < 0:
j += n
if not (j >= 0 and j < n):
raise IndexError("Index out of range: a[%s]" % (j,))
return int(j)
def classof(A, B):
"""
Get the type of the result when combining matrices of different types.
Currently the strategy is that immutability is contagious.
Examples
========
>>> from sympy import Matrix, ImmutableMatrix
>>> from sympy.matrices.common import classof
>>> M = Matrix([[1, 2], [3, 4]]) # a Mutable Matrix
>>> IM = ImmutableMatrix([[1, 2], [3, 4]])
>>> classof(M, IM)
<class 'sympy.matrices.immutable.ImmutableDenseMatrix'>
"""
priority_A = getattr(A, '_class_priority', None)
priority_B = getattr(B, '_class_priority', None)
if None not in (priority_A, priority_B):
if A._class_priority > B._class_priority:
return A.__class__
else:
return B.__class__
try:
import numpy
except ImportError:
pass
else:
if isinstance(A, numpy.ndarray):
return B.__class__
if isinstance(B, numpy.ndarray):
return A.__class__
raise TypeError("Incompatible classes %s, %s" % (A.__class__, B.__class__))
|
cc00a62499d47a45cee476840e1e95b508b9fd1e14db9a12623d15da96c9bf8b
|
from __future__ import division, print_function
import random
from sympy.core import SympifyError
from sympy.core.basic import Basic
from sympy.core.compatibility import is_sequence, range, reduce
from sympy.core.expr import Expr
from sympy.core.function import count_ops, expand_mul
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.core.sympify import sympify
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import cos, sin
from sympy.matrices.common import a2idx, classof
from sympy.matrices.matrices import MatrixBase, ShapeError
from sympy.simplify import simplify as _simplify
from sympy.utilities.decorator import doctest_depends_on
from sympy.utilities.misc import filldedent
def _iszero(x):
"""Returns True if x is zero."""
return x.is_zero
def _compare_sequence(a, b):
"""Compares the elements of a list/tuple `a`
and a list/tuple `b`. `_compare_sequence((1,2), [1, 2])`
is True, whereas `(1,2) == [1, 2]` is False"""
if type(a) is type(b):
# if they are the same type, compare directly
return a == b
# there is no overhead for calling `tuple` on a
# tuple
return tuple(a) == tuple(b)
class DenseMatrix(MatrixBase):
is_MatrixExpr = False
_op_priority = 10.01
_class_priority = 4
def __eq__(self, other):
other = sympify(other)
self_shape = getattr(self, 'shape', None)
other_shape = getattr(other, 'shape', None)
if None in (self_shape, other_shape):
return False
if self_shape != other_shape:
return False
if isinstance(other, Matrix):
return _compare_sequence(self._mat, other._mat)
elif isinstance(other, MatrixBase):
return _compare_sequence(self._mat, Matrix(other)._mat)
def __getitem__(self, key):
"""Return portion of self defined by key. If the key involves a slice
then a list will be returned (if key is a single slice) or a matrix
(if key was a tuple involving a slice).
Examples
========
>>> from sympy import Matrix, I
>>> m = Matrix([
... [1, 2 + I],
... [3, 4 ]])
If the key is a tuple that doesn't involve a slice then that element
is returned:
>>> m[1, 0]
3
When a tuple key involves a slice, a matrix is returned. Here, the
first column is selected (all rows, column 0):
>>> m[:, 0]
Matrix([
[1],
[3]])
If the slice is not a tuple then it selects from the underlying
list of elements that are arranged in row order and a list is
returned if a slice is involved:
>>> m[0]
1
>>> m[::2]
[1, 3]
"""
if isinstance(key, tuple):
i, j = key
try:
i, j = self.key2ij(key)
return self._mat[i*self.cols + j]
except (TypeError, IndexError):
if (isinstance(i, Expr) and not i.is_number) or (isinstance(j, Expr) and not j.is_number):
if ((j < 0) is True) or ((j >= self.shape[1]) is True) or\
((i < 0) is True) or ((i >= self.shape[0]) is True):
raise ValueError("index out of boundary")
from sympy.matrices.expressions.matexpr import MatrixElement
return MatrixElement(self, i, j)
if isinstance(i, slice):
# XXX remove list() when PY2 support is dropped
i = list(range(self.rows))[i]
elif is_sequence(i):
pass
else:
i = [i]
if isinstance(j, slice):
# XXX remove list() when PY2 support is dropped
j = list(range(self.cols))[j]
elif is_sequence(j):
pass
else:
j = [j]
return self.extract(i, j)
else:
# row-wise decomposition of matrix
if isinstance(key, slice):
return self._mat[key]
return self._mat[a2idx(key)]
def __setitem__(self, key, value):
raise NotImplementedError()
def _cholesky(self, hermitian=True):
"""Helper function of cholesky.
Without the error checks.
To be used privately.
Implements the Cholesky-Banachiewicz algorithm.
Returns L such that L*L.H == self if hermitian flag is True,
or L*L.T == self if hermitian is False.
"""
L = zeros(self.rows, self.rows)
if hermitian:
for i in range(self.rows):
for j in range(i):
L[i, j] = (1 / L[j, j])*expand_mul(self[i, j] -
sum(L[i, k]*L[j, k].conjugate() for k in range(j)))
Lii2 = expand_mul(self[i, i] -
sum(L[i, k]*L[i, k].conjugate() for k in range(i)))
if Lii2.is_positive is False:
raise ValueError("Matrix must be positive-definite")
L[i, i] = sqrt(Lii2)
else:
for i in range(self.rows):
for j in range(i):
L[i, j] = (1 / L[j, j])*(self[i, j] -
sum(L[i, k]*L[j, k] for k in range(j)))
L[i, i] = sqrt(self[i, i] -
sum(L[i, k]**2 for k in range(i)))
return self._new(L)
def _diagonal_solve(self, rhs):
"""Helper function of function diagonal_solve,
without the error checks, to be used privately.
"""
return self._new(rhs.rows, rhs.cols, lambda i, j: rhs[i, j] / self[i, i])
def _eval_add(self, other):
# we assume both arguments are dense matrices since
# sparse matrices have a higher priority
mat = [a + b for a,b in zip(self._mat, other._mat)]
return classof(self, other)._new(self.rows, self.cols, mat, copy=False)
def _eval_extract(self, rowsList, colsList):
mat = self._mat
cols = self.cols
indices = (i * cols + j for i in rowsList for j in colsList)
return self._new(len(rowsList), len(colsList),
list(mat[i] for i in indices), copy=False)
def _eval_matrix_mul(self, other):
from sympy import Add
# cache attributes for faster access
self_rows, self_cols = self.rows, self.cols
other_rows, other_cols = other.rows, other.cols
other_len = other_rows * other_cols
new_mat_rows = self.rows
new_mat_cols = other.cols
# preallocate the array
new_mat = [S.Zero]*new_mat_rows*new_mat_cols
# if we multiply an n x 0 with a 0 x m, the
# expected behavior is to produce an n x m matrix of zeros
if self.cols != 0 and other.rows != 0:
# cache self._mat and other._mat for performance
mat = self._mat
other_mat = other._mat
for i in range(len(new_mat)):
row, col = i // new_mat_cols, i % new_mat_cols
row_indices = range(self_cols*row, self_cols*(row+1))
col_indices = range(col, other_len, other_cols)
vec = (mat[a]*other_mat[b] for a,b in zip(row_indices, col_indices))
try:
new_mat[i] = Add(*vec)
except (TypeError, SympifyError):
# Block matrices don't work with `sum` or `Add` (ISSUE #11599)
# They don't work with `sum` because `sum` tries to add `0`
# initially, and for a matrix, that is a mix of a scalar and
# a matrix, which raises a TypeError. Fall back to a
# block-matrix-safe way to multiply if the `sum` fails.
vec = (mat[a]*other_mat[b] for a,b in zip(row_indices, col_indices))
new_mat[i] = reduce(lambda a,b: a + b, vec)
return classof(self, other)._new(new_mat_rows, new_mat_cols, new_mat, copy=False)
def _eval_matrix_mul_elementwise(self, other):
mat = [a*b for a,b in zip(self._mat, other._mat)]
return classof(self, other)._new(self.rows, self.cols, mat, copy=False)
def _eval_inverse(self, **kwargs):
"""Return the matrix inverse using the method indicated (default
is Gauss elimination).
kwargs
======
method : ('GE', 'LU', or 'ADJ')
iszerofunc
try_block_diag
Notes
=====
According to the ``method`` keyword, it calls the appropriate method:
GE .... inverse_GE(); default
LU .... inverse_LU()
ADJ ... inverse_ADJ()
According to the ``try_block_diag`` keyword, it will try to form block
diagonal matrices using the method get_diag_blocks(), invert these
individually, and then reconstruct the full inverse matrix.
Note, the GE and LU methods may require the matrix to be simplified
before it is inverted in order to properly detect zeros during
pivoting. In difficult cases a custom zero detection function can
be provided by setting the ``iszerosfunc`` argument to a function that
should return True if its argument is zero. The ADJ routine computes
the determinant and uses that to detect singular matrices in addition
to testing for zeros on the diagonal.
See Also
========
inverse_LU
inverse_GE
inverse_ADJ
"""
from sympy.matrices import diag
method = kwargs.get('method', 'GE')
iszerofunc = kwargs.get('iszerofunc', _iszero)
if kwargs.get('try_block_diag', False):
blocks = self.get_diag_blocks()
r = []
for block in blocks:
r.append(block.inv(method=method, iszerofunc=iszerofunc))
return diag(*r)
M = self.as_mutable()
if method == "GE":
rv = M.inverse_GE(iszerofunc=iszerofunc)
elif method == "LU":
rv = M.inverse_LU(iszerofunc=iszerofunc)
elif method == "ADJ":
rv = M.inverse_ADJ(iszerofunc=iszerofunc)
else:
# make sure to add an invertibility check (as in inverse_LU)
# if a new method is added.
raise ValueError("Inversion method unrecognized")
return self._new(rv)
def _eval_scalar_mul(self, other):
mat = [other*a for a in self._mat]
return self._new(self.rows, self.cols, mat, copy=False)
def _eval_scalar_rmul(self, other):
mat = [a*other for a in self._mat]
return self._new(self.rows, self.cols, mat, copy=False)
def _eval_tolist(self):
mat = list(self._mat)
cols = self.cols
return [mat[i*cols:(i + 1)*cols] for i in range(self.rows)]
def _LDLdecomposition(self, hermitian=True):
"""Helper function of LDLdecomposition.
Without the error checks.
To be used privately.
Returns L and D such that L*D*L.H == self if hermitian flag is True,
or L*D*L.T == self if hermitian is False.
"""
# https://en.wikipedia.org/wiki/Cholesky_decomposition#LDL_decomposition_2
D = zeros(self.rows, self.rows)
L = eye(self.rows)
if hermitian:
for i in range(self.rows):
for j in range(i):
L[i, j] = (1 / D[j, j])*expand_mul(self[i, j] - sum(
L[i, k]*L[j, k].conjugate()*D[k, k] for k in range(j)))
D[i, i] = expand_mul(self[i, i] -
sum(L[i, k]*L[i, k].conjugate()*D[k, k] for k in range(i)))
if D[i, i].is_positive is False:
raise ValueError("Matrix must be positive-definite")
else:
for i in range(self.rows):
for j in range(i):
L[i, j] = (1 / D[j, j])*(self[i, j] - sum(
L[i, k]*L[j, k]*D[k, k] for k in range(j)))
D[i, i] = self[i, i] - sum(L[i, k]**2*D[k, k] for k in range(i))
return self._new(L), self._new(D)
def _lower_triangular_solve(self, rhs):
"""Helper function of function lower_triangular_solve.
Without the error checks.
To be used privately.
"""
X = zeros(self.rows, rhs.cols)
for j in range(rhs.cols):
for i in range(self.rows):
if self[i, i] == 0:
raise TypeError("Matrix must be non-singular.")
X[i, j] = (rhs[i, j] - sum(self[i, k]*X[k, j]
for k in range(i))) / self[i, i]
return self._new(X)
def _upper_triangular_solve(self, rhs):
"""Helper function of function upper_triangular_solve.
Without the error checks, to be used privately. """
X = zeros(self.rows, rhs.cols)
for j in range(rhs.cols):
for i in reversed(range(self.rows)):
if self[i, i] == 0:
raise ValueError("Matrix must be non-singular.")
X[i, j] = (rhs[i, j] - sum(self[i, k]*X[k, j]
for k in range(i + 1, self.rows))) / self[i, i]
return self._new(X)
def as_immutable(self):
"""Returns an Immutable version of this Matrix
"""
from .immutable import ImmutableDenseMatrix as cls
if self.rows and self.cols:
return cls._new(self.tolist())
return cls._new(self.rows, self.cols, [])
def as_mutable(self):
"""Returns a mutable version of this matrix
Examples
========
>>> from sympy import ImmutableMatrix
>>> X = ImmutableMatrix([[1, 2], [3, 4]])
>>> Y = X.as_mutable()
>>> Y[1, 1] = 5 # Can set values in Y
>>> Y
Matrix([
[1, 2],
[3, 5]])
"""
return Matrix(self)
def equals(self, other, failing_expression=False):
"""Applies ``equals`` to corresponding elements of the matrices,
trying to prove that the elements are equivalent, returning True
if they are, False if any pair is not, and None (or the first
failing expression if failing_expression is True) if it cannot
be decided if the expressions are equivalent or not. This is, in
general, an expensive operation.
Examples
========
>>> from sympy.matrices import Matrix
>>> from sympy.abc import x
>>> from sympy import cos
>>> A = Matrix([x*(x - 1), 0])
>>> B = Matrix([x**2 - x, 0])
>>> A == B
False
>>> A.simplify() == B.simplify()
True
>>> A.equals(B)
True
>>> A.equals(2)
False
See Also
========
sympy.core.expr.equals
"""
self_shape = getattr(self, 'shape', None)
other_shape = getattr(other, 'shape', None)
if None in (self_shape, other_shape):
return False
if self_shape != other_shape:
return False
rv = True
for i in range(self.rows):
for j in range(self.cols):
ans = self[i, j].equals(other[i, j], failing_expression)
if ans is False:
return False
elif ans is not True and rv is True:
rv = ans
return rv
def _force_mutable(x):
"""Return a matrix as a Matrix, otherwise return x."""
if getattr(x, 'is_Matrix', False):
return x.as_mutable()
elif isinstance(x, Basic):
return x
elif hasattr(x, '__array__'):
a = x.__array__()
if len(a.shape) == 0:
return sympify(a)
return Matrix(x)
return x
class MutableDenseMatrix(DenseMatrix, MatrixBase):
def __new__(cls, *args, **kwargs):
return cls._new(*args, **kwargs)
@classmethod
def _new(cls, *args, **kwargs):
# if the `copy` flag is set to False, the input
# was rows, cols, [list]. It should be used directly
# without creating a copy.
if kwargs.get('copy', True) is False:
if len(args) != 3:
raise TypeError("'copy=False' requires a matrix be initialized as rows,cols,[list]")
rows, cols, flat_list = args
else:
rows, cols, flat_list = cls._handle_creation_inputs(*args, **kwargs)
flat_list = list(flat_list) # create a shallow copy
self = object.__new__(cls)
self.rows = rows
self.cols = cols
self._mat = flat_list
return self
def __setitem__(self, key, value):
"""
Examples
========
>>> from sympy import Matrix, I, zeros, ones
>>> m = Matrix(((1, 2+I), (3, 4)))
>>> m
Matrix([
[1, 2 + I],
[3, 4]])
>>> m[1, 0] = 9
>>> m
Matrix([
[1, 2 + I],
[9, 4]])
>>> m[1, 0] = [[0, 1]]
To replace row r you assign to position r*m where m
is the number of columns:
>>> M = zeros(4)
>>> m = M.cols
>>> M[3*m] = ones(1, m)*2; M
Matrix([
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[2, 2, 2, 2]])
And to replace column c you can assign to position c:
>>> M[2] = ones(m, 1)*4; M
Matrix([
[0, 0, 4, 0],
[0, 0, 4, 0],
[0, 0, 4, 0],
[2, 2, 4, 2]])
"""
rv = self._setitem(key, value)
if rv is not None:
i, j, value = rv
self._mat[i*self.cols + j] = value
def as_mutable(self):
return self.copy()
def col_del(self, i):
"""Delete the given column.
Examples
========
>>> from sympy.matrices import eye
>>> M = eye(3)
>>> M.col_del(1)
>>> M
Matrix([
[1, 0],
[0, 0],
[0, 1]])
See Also
========
col
row_del
"""
if i < -self.cols or i >= self.cols:
raise IndexError("Index out of range: 'i=%s', valid -%s <= i < %s"
% (i, self.cols, self.cols))
for j in range(self.rows - 1, -1, -1):
del self._mat[i + j*self.cols]
self.cols -= 1
def col_op(self, j, f):
"""In-place operation on col j using two-arg functor whose args are
interpreted as (self[i, j], i).
Examples
========
>>> from sympy.matrices import eye
>>> M = eye(3)
>>> M.col_op(1, lambda v, i: v + 2*M[i, 0]); M
Matrix([
[1, 2, 0],
[0, 1, 0],
[0, 0, 1]])
See Also
========
col
row_op
"""
self._mat[j::self.cols] = [f(*t) for t in list(zip(self._mat[j::self.cols], list(range(self.rows))))]
def col_swap(self, i, j):
"""Swap the two given columns of the matrix in-place.
Examples
========
>>> from sympy.matrices import Matrix
>>> M = Matrix([[1, 0], [1, 0]])
>>> M
Matrix([
[1, 0],
[1, 0]])
>>> M.col_swap(0, 1)
>>> M
Matrix([
[0, 1],
[0, 1]])
See Also
========
col
row_swap
"""
for k in range(0, self.rows):
self[k, i], self[k, j] = self[k, j], self[k, i]
def copyin_list(self, key, value):
"""Copy in elements from a list.
Parameters
==========
key : slice
The section of this matrix to replace.
value : iterable
The iterable to copy values from.
Examples
========
>>> from sympy.matrices import eye
>>> I = eye(3)
>>> I[:2, 0] = [1, 2] # col
>>> I
Matrix([
[1, 0, 0],
[2, 1, 0],
[0, 0, 1]])
>>> I[1, :2] = [[3, 4]]
>>> I
Matrix([
[1, 0, 0],
[3, 4, 0],
[0, 0, 1]])
See Also
========
copyin_matrix
"""
if not is_sequence(value):
raise TypeError("`value` must be an ordered iterable, not %s." % type(value))
return self.copyin_matrix(key, Matrix(value))
def copyin_matrix(self, key, value):
"""Copy in values from a matrix into the given bounds.
Parameters
==========
key : slice
The section of this matrix to replace.
value : Matrix
The matrix to copy values from.
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> M = Matrix([[0, 1], [2, 3], [4, 5]])
>>> I = eye(3)
>>> I[:3, :2] = M
>>> I
Matrix([
[0, 1, 0],
[2, 3, 0],
[4, 5, 1]])
>>> I[0, 1] = M
>>> I
Matrix([
[0, 0, 1],
[2, 2, 3],
[4, 4, 5]])
See Also
========
copyin_list
"""
rlo, rhi, clo, chi = self.key2bounds(key)
shape = value.shape
dr, dc = rhi - rlo, chi - clo
if shape != (dr, dc):
raise ShapeError(filldedent("The Matrix `value` doesn't have the "
"same dimensions "
"as the in sub-Matrix given by `key`."))
for i in range(value.rows):
for j in range(value.cols):
self[i + rlo, j + clo] = value[i, j]
def fill(self, value):
"""Fill the matrix with the scalar value.
See Also
========
zeros
ones
"""
self._mat = [value]*len(self)
def row_del(self, i):
"""Delete the given row.
Examples
========
>>> from sympy.matrices import eye
>>> M = eye(3)
>>> M.row_del(1)
>>> M
Matrix([
[1, 0, 0],
[0, 0, 1]])
See Also
========
row
col_del
"""
if i < -self.rows or i >= self.rows:
raise IndexError("Index out of range: 'i = %s', valid -%s <= i"
" < %s" % (i, self.rows, self.rows))
if i < 0:
i += self.rows
del self._mat[i*self.cols:(i+1)*self.cols]
self.rows -= 1
def row_op(self, i, f):
"""In-place operation on row ``i`` using two-arg functor whose args are
interpreted as ``(self[i, j], j)``.
Examples
========
>>> from sympy.matrices import eye
>>> M = eye(3)
>>> M.row_op(1, lambda v, j: v + 2*M[0, j]); M
Matrix([
[1, 0, 0],
[2, 1, 0],
[0, 0, 1]])
See Also
========
row
zip_row_op
col_op
"""
i0 = i*self.cols
ri = self._mat[i0: i0 + self.cols]
self._mat[i0: i0 + self.cols] = [f(x, j) for x, j in zip(ri, list(range(self.cols)))]
def row_swap(self, i, j):
"""Swap the two given rows of the matrix in-place.
Examples
========
>>> from sympy.matrices import Matrix
>>> M = Matrix([[0, 1], [1, 0]])
>>> M
Matrix([
[0, 1],
[1, 0]])
>>> M.row_swap(0, 1)
>>> M
Matrix([
[1, 0],
[0, 1]])
See Also
========
row
col_swap
"""
for k in range(0, self.cols):
self[i, k], self[j, k] = self[j, k], self[i, k]
def simplify(self, ratio=1.7, measure=count_ops, rational=False, inverse=False):
"""Applies simplify to the elements of a matrix in place.
This is a shortcut for M.applyfunc(lambda x: simplify(x, ratio, measure))
See Also
========
sympy.simplify.simplify.simplify
"""
for i in range(len(self._mat)):
self._mat[i] = _simplify(self._mat[i], ratio=ratio, measure=measure,
rational=rational, inverse=inverse)
def zip_row_op(self, i, k, f):
"""In-place operation on row ``i`` using two-arg functor whose args are
interpreted as ``(self[i, j], self[k, j])``.
Examples
========
>>> from sympy.matrices import eye
>>> M = eye(3)
>>> M.zip_row_op(1, 0, lambda v, u: v + 2*u); M
Matrix([
[1, 0, 0],
[2, 1, 0],
[0, 0, 1]])
See Also
========
row
row_op
col_op
"""
i0 = i*self.cols
k0 = k*self.cols
ri = self._mat[i0: i0 + self.cols]
rk = self._mat[k0: k0 + self.cols]
self._mat[i0: i0 + self.cols] = [f(x, y) for x, y in zip(ri, rk)]
# Utility functions
MutableMatrix = Matrix = MutableDenseMatrix
###########
# Numpy Utility Functions:
# list2numpy, matrix2numpy, symmarray, rot_axis[123]
###########
def list2numpy(l, dtype=object): # pragma: no cover
"""Converts python list of SymPy expressions to a NumPy array.
See Also
========
matrix2numpy
"""
from numpy import empty
a = empty(len(l), dtype)
for i, s in enumerate(l):
a[i] = s
return a
def matrix2numpy(m, dtype=object): # pragma: no cover
"""Converts SymPy's matrix to a NumPy array.
See Also
========
list2numpy
"""
from numpy import empty
a = empty(m.shape, dtype)
for i in range(m.rows):
for j in range(m.cols):
a[i, j] = m[i, j]
return a
def rot_axis3(theta):
"""Returns a rotation matrix for a rotation of theta (in radians) about
the 3-axis.
Examples
========
>>> from sympy import pi
>>> from sympy.matrices import rot_axis3
A rotation of pi/3 (60 degrees):
>>> theta = pi/3
>>> rot_axis3(theta)
Matrix([
[ 1/2, sqrt(3)/2, 0],
[-sqrt(3)/2, 1/2, 0],
[ 0, 0, 1]])
If we rotate by pi/2 (90 degrees):
>>> rot_axis3(pi/2)
Matrix([
[ 0, 1, 0],
[-1, 0, 0],
[ 0, 0, 1]])
See Also
========
rot_axis1: Returns a rotation matrix for a rotation of theta (in radians)
about the 1-axis
rot_axis2: Returns a rotation matrix for a rotation of theta (in radians)
about the 2-axis
"""
ct = cos(theta)
st = sin(theta)
lil = ((ct, st, 0),
(-st, ct, 0),
(0, 0, 1))
return Matrix(lil)
def rot_axis2(theta):
"""Returns a rotation matrix for a rotation of theta (in radians) about
the 2-axis.
Examples
========
>>> from sympy import pi
>>> from sympy.matrices import rot_axis2
A rotation of pi/3 (60 degrees):
>>> theta = pi/3
>>> rot_axis2(theta)
Matrix([
[ 1/2, 0, -sqrt(3)/2],
[ 0, 1, 0],
[sqrt(3)/2, 0, 1/2]])
If we rotate by pi/2 (90 degrees):
>>> rot_axis2(pi/2)
Matrix([
[0, 0, -1],
[0, 1, 0],
[1, 0, 0]])
See Also
========
rot_axis1: Returns a rotation matrix for a rotation of theta (in radians)
about the 1-axis
rot_axis3: Returns a rotation matrix for a rotation of theta (in radians)
about the 3-axis
"""
ct = cos(theta)
st = sin(theta)
lil = ((ct, 0, -st),
(0, 1, 0),
(st, 0, ct))
return Matrix(lil)
def rot_axis1(theta):
"""Returns a rotation matrix for a rotation of theta (in radians) about
the 1-axis.
Examples
========
>>> from sympy import pi
>>> from sympy.matrices import rot_axis1
A rotation of pi/3 (60 degrees):
>>> theta = pi/3
>>> rot_axis1(theta)
Matrix([
[1, 0, 0],
[0, 1/2, sqrt(3)/2],
[0, -sqrt(3)/2, 1/2]])
If we rotate by pi/2 (90 degrees):
>>> rot_axis1(pi/2)
Matrix([
[1, 0, 0],
[0, 0, 1],
[0, -1, 0]])
See Also
========
rot_axis2: Returns a rotation matrix for a rotation of theta (in radians)
about the 2-axis
rot_axis3: Returns a rotation matrix for a rotation of theta (in radians)
about the 3-axis
"""
ct = cos(theta)
st = sin(theta)
lil = ((1, 0, 0),
(0, ct, st),
(0, -st, ct))
return Matrix(lil)
@doctest_depends_on(modules=('numpy',))
def symarray(prefix, shape, **kwargs): # pragma: no cover
r"""Create a numpy ndarray of symbols (as an object array).
The created symbols are named ``prefix_i1_i2_``... You should thus provide a
non-empty prefix if you want your symbols to be unique for different output
arrays, as SymPy symbols with identical names are the same object.
Parameters
----------
prefix : string
A prefix prepended to the name of every symbol.
shape : int or tuple
Shape of the created array. If an int, the array is one-dimensional; for
more than one dimension the shape must be a tuple.
\*\*kwargs : dict
keyword arguments passed on to Symbol
Examples
========
These doctests require numpy.
>>> from sympy import symarray
>>> symarray('', 3)
[_0 _1 _2]
If you want multiple symarrays to contain distinct symbols, you *must*
provide unique prefixes:
>>> a = symarray('', 3)
>>> b = symarray('', 3)
>>> a[0] == b[0]
True
>>> a = symarray('a', 3)
>>> b = symarray('b', 3)
>>> a[0] == b[0]
False
Creating symarrays with a prefix:
>>> symarray('a', 3)
[a_0 a_1 a_2]
For more than one dimension, the shape must be given as a tuple:
>>> symarray('a', (2, 3))
[[a_0_0 a_0_1 a_0_2]
[a_1_0 a_1_1 a_1_2]]
>>> symarray('a', (2, 3, 2))
[[[a_0_0_0 a_0_0_1]
[a_0_1_0 a_0_1_1]
[a_0_2_0 a_0_2_1]]
<BLANKLINE>
[[a_1_0_0 a_1_0_1]
[a_1_1_0 a_1_1_1]
[a_1_2_0 a_1_2_1]]]
For setting assumptions of the underlying Symbols:
>>> [s.is_real for s in symarray('a', 2, real=True)]
[True, True]
"""
from numpy import empty, ndindex
arr = empty(shape, dtype=object)
for index in ndindex(shape):
arr[index] = Symbol('%s_%s' % (prefix, '_'.join(map(str, index))),
**kwargs)
return arr
###############
# Functions
###############
def casoratian(seqs, n, zero=True):
"""Given linear difference operator L of order 'k' and homogeneous
equation Ly = 0 we want to compute kernel of L, which is a set
of 'k' sequences: a(n), b(n), ... z(n).
Solutions of L are linearly independent iff their Casoratian,
denoted as C(a, b, ..., z), do not vanish for n = 0.
Casoratian is defined by k x k determinant::
+ a(n) b(n) . . . z(n) +
| a(n+1) b(n+1) . . . z(n+1) |
| . . . . |
| . . . . |
| . . . . |
+ a(n+k-1) b(n+k-1) . . . z(n+k-1) +
It proves very useful in rsolve_hyper() where it is applied
to a generating set of a recurrence to factor out linearly
dependent solutions and return a basis:
>>> from sympy import Symbol, casoratian, factorial
>>> n = Symbol('n', integer=True)
Exponential and factorial are linearly independent:
>>> casoratian([2**n, factorial(n)], n) != 0
True
"""
from .dense import Matrix
seqs = list(map(sympify, seqs))
if not zero:
f = lambda i, j: seqs[j].subs(n, n + i)
else:
f = lambda i, j: seqs[j].subs(n, i)
k = len(seqs)
return Matrix(k, k, f).det()
def eye(*args, **kwargs):
"""Create square identity matrix n x n
See Also
========
diag
zeros
ones
"""
from .dense import Matrix
return Matrix.eye(*args, **kwargs)
def diag(*values, **kwargs):
"""Returns a matrix with the provided values placed on the
diagonal. If non-square matrices are included, they will
produce a block-diagonal matrix.
Examples
========
This version of diag is a thin wrapper to Matrix.diag that differs
in that it treats all lists like matrices -- even when a single list
is given. If this is not desired, either put a `*` before the list or
set `unpack=True`.
>>> from sympy import diag
>>> diag([1, 2, 3], unpack=True) # = diag(1,2,3) or diag(*[1,2,3])
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
>>> diag([1, 2, 3]) # a column vector
Matrix([
[1],
[2],
[3]])
See Also
========
eye
sympy.matrices.common.diag
"""
from .dense import Matrix
# Extract any setting so we don't duplicate keywords sent
# as named parameters:
kw = kwargs.copy()
strict = kw.pop('strict', True) # lists will be converted to Matrices
unpack = kw.pop('unpack', False)
return Matrix.diag(*values, strict=strict, unpack=unpack, **kw)
def GramSchmidt(vlist, orthonormal=False):
"""
Apply the Gram-Schmidt process to a set of vectors.
see: https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process
"""
out = []
m = len(vlist)
for i in range(m):
tmp = vlist[i]
for j in range(i):
tmp -= vlist[i].project(out[j])
if not tmp.values():
raise ValueError(
"GramSchmidt: vector set not linearly independent")
out.append(tmp)
if orthonormal:
for i in range(len(out)):
out[i] = out[i].normalized()
return out
def hessian(f, varlist, constraints=[]):
"""Compute Hessian matrix for a function f wrt parameters in varlist
which may be given as a sequence or a row/column vector. A list of
constraints may optionally be given.
Examples
========
>>> from sympy import Function, hessian, pprint
>>> from sympy.abc import x, y
>>> f = Function('f')(x, y)
>>> g1 = Function('g')(x, y)
>>> g2 = x**2 + 3*y
>>> pprint(hessian(f, (x, y), [g1, g2]))
[ d d ]
[ 0 0 --(g(x, y)) --(g(x, y)) ]
[ dx dy ]
[ ]
[ 0 0 2*x 3 ]
[ ]
[ 2 2 ]
[d d d ]
[--(g(x, y)) 2*x ---(f(x, y)) -----(f(x, y))]
[dx 2 dy dx ]
[ dx ]
[ ]
[ 2 2 ]
[d d d ]
[--(g(x, y)) 3 -----(f(x, y)) ---(f(x, y)) ]
[dy dy dx 2 ]
[ dy ]
References
==========
https://en.wikipedia.org/wiki/Hessian_matrix
See Also
========
sympy.matrices.mutable.Matrix.jacobian
wronskian
"""
# f is the expression representing a function f, return regular matrix
if isinstance(varlist, MatrixBase):
if 1 not in varlist.shape:
raise ShapeError("`varlist` must be a column or row vector.")
if varlist.cols == 1:
varlist = varlist.T
varlist = varlist.tolist()[0]
if is_sequence(varlist):
n = len(varlist)
if not n:
raise ShapeError("`len(varlist)` must not be zero.")
else:
raise ValueError("Improper variable list in hessian function")
if not getattr(f, 'diff'):
# check differentiability
raise ValueError("Function `f` (%s) is not differentiable" % f)
m = len(constraints)
N = m + n
out = zeros(N)
for k, g in enumerate(constraints):
if not getattr(g, 'diff'):
# check differentiability
raise ValueError("Function `f` (%s) is not differentiable" % f)
for i in range(n):
out[k, i + m] = g.diff(varlist[i])
for i in range(n):
for j in range(i, n):
out[i + m, j + m] = f.diff(varlist[i]).diff(varlist[j])
for i in range(N):
for j in range(i + 1, N):
out[j, i] = out[i, j]
return out
def jordan_cell(eigenval, n):
"""
Create a Jordan block:
Examples
========
>>> from sympy.matrices import jordan_cell
>>> from sympy.abc import x
>>> jordan_cell(x, 4)
Matrix([
[x, 1, 0, 0],
[0, x, 1, 0],
[0, 0, x, 1],
[0, 0, 0, x]])
"""
from .dense import Matrix
return Matrix.jordan_block(size=n, eigenvalue=eigenval)
def matrix_multiply_elementwise(A, B):
"""Return the Hadamard product (elementwise product) of A and B
>>> from sympy.matrices import matrix_multiply_elementwise
>>> from sympy.matrices import Matrix
>>> A = Matrix([[0, 1, 2], [3, 4, 5]])
>>> B = Matrix([[1, 10, 100], [100, 10, 1]])
>>> matrix_multiply_elementwise(A, B)
Matrix([
[ 0, 10, 200],
[300, 40, 5]])
See Also
========
__mul__
"""
return A.multiply_elementwise(B)
def ones(*args, **kwargs):
"""Returns a matrix of ones with ``rows`` rows and ``cols`` columns;
if ``cols`` is omitted a square matrix will be returned.
See Also
========
zeros
eye
diag
"""
if 'c' in kwargs:
kwargs['cols'] = kwargs.pop('c')
from .dense import Matrix
return Matrix.ones(*args, **kwargs)
def randMatrix(r, c=None, min=0, max=99, seed=None, symmetric=False,
percent=100, prng=None):
"""Create random matrix with dimensions ``r`` x ``c``. If ``c`` is omitted
the matrix will be square. If ``symmetric`` is True the matrix must be
square. If ``percent`` is less than 100 then only approximately the given
percentage of elements will be non-zero.
The pseudo-random number generator used to generate matrix is chosen in the
following way.
* If ``prng`` is supplied, it will be used as random number generator.
It should be an instance of :class:`random.Random`, or at least have
``randint`` and ``shuffle`` methods with same signatures.
* if ``prng`` is not supplied but ``seed`` is supplied, then new
:class:`random.Random` with given ``seed`` will be created;
* otherwise, a new :class:`random.Random` with default seed will be used.
Examples
========
>>> from sympy.matrices import randMatrix
>>> randMatrix(3) # doctest:+SKIP
[25, 45, 27]
[44, 54, 9]
[23, 96, 46]
>>> randMatrix(3, 2) # doctest:+SKIP
[87, 29]
[23, 37]
[90, 26]
>>> randMatrix(3, 3, 0, 2) # doctest:+SKIP
[0, 2, 0]
[2, 0, 1]
[0, 0, 1]
>>> randMatrix(3, symmetric=True) # doctest:+SKIP
[85, 26, 29]
[26, 71, 43]
[29, 43, 57]
>>> A = randMatrix(3, seed=1)
>>> B = randMatrix(3, seed=2)
>>> A == B # doctest:+SKIP
False
>>> A == randMatrix(3, seed=1)
True
>>> randMatrix(3, symmetric=True, percent=50) # doctest:+SKIP
[77, 70, 0],
[70, 0, 0],
[ 0, 0, 88]
"""
if c is None:
c = r
# Note that ``Random()`` is equivalent to ``Random(None)``
prng = prng or random.Random(seed)
if not symmetric:
m = Matrix._new(r, c, lambda i, j: prng.randint(min, max))
if percent == 100:
return m
z = int(r*c*(100 - percent) // 100)
m._mat[:z] = [S.Zero]*z
prng.shuffle(m._mat)
return m
# Symmetric case
if r != c:
raise ValueError('For symmetric matrices, r must equal c, but %i != %i' % (r, c))
m = zeros(r)
ij = [(i, j) for i in range(r) for j in range(i, r)]
if percent != 100:
ij = prng.sample(ij, int(len(ij)*percent // 100))
for i, j in ij:
value = prng.randint(min, max)
m[i, j] = m[j, i] = value
return m
def wronskian(functions, var, method='bareiss'):
"""
Compute Wronskian for [] of functions
::
| f1 f2 ... fn |
| f1' f2' ... fn' |
| . . . . |
W(f1, ..., fn) = | . . . . |
| . . . . |
| (n) (n) (n) |
| D (f1) D (f2) ... D (fn) |
see: https://en.wikipedia.org/wiki/Wronskian
See Also
========
sympy.matrices.mutable.Matrix.jacobian
hessian
"""
from .dense import Matrix
for index in range(0, len(functions)):
functions[index] = sympify(functions[index])
n = len(functions)
if n == 0:
return 1
W = Matrix(n, n, lambda i, j: functions[i].diff(var, j))
return W.det(method)
def zeros(*args, **kwargs):
"""Returns a matrix of zeros with ``rows`` rows and ``cols`` columns;
if ``cols`` is omitted a square matrix will be returned.
See Also
========
ones
eye
diag
"""
if 'c' in kwargs:
kwargs['cols'] = kwargs.pop('c')
from .dense import Matrix
return Matrix.zeros(*args, **kwargs)
|
0ccb38a3f71cf982ef32cddcf5f69ecf6092c8867507abf9551323cbeb968011
|
from __future__ import division, print_function
import copy
from collections import defaultdict
from sympy.core.compatibility import Callable, as_int, is_sequence, range
from sympy.core.containers import Dict
from sympy.core.expr import Expr
from sympy.core.singleton import S
from sympy.functions import Abs
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.utilities.iterables import uniq
from sympy.utilities.misc import filldedent
from .common import a2idx
from .dense import Matrix
from .matrices import MatrixBase, ShapeError
class SparseMatrix(MatrixBase):
"""
A sparse matrix (a matrix with a large number of zero elements).
Examples
========
>>> from sympy.matrices import SparseMatrix, ones
>>> SparseMatrix(2, 2, range(4))
Matrix([
[0, 1],
[2, 3]])
>>> SparseMatrix(2, 2, {(1, 1): 2})
Matrix([
[0, 0],
[0, 2]])
A SparseMatrix can be instantiated from a ragged list of lists:
>>> SparseMatrix([[1, 2, 3], [1, 2], [1]])
Matrix([
[1, 2, 3],
[1, 2, 0],
[1, 0, 0]])
For safety, one may include the expected size and then an error
will be raised if the indices of any element are out of range or
(for a flat list) if the total number of elements does not match
the expected shape:
>>> SparseMatrix(2, 2, [1, 2])
Traceback (most recent call last):
...
ValueError: List length (2) != rows*columns (4)
Here, an error is not raised because the list is not flat and no
element is out of range:
>>> SparseMatrix(2, 2, [[1, 2]])
Matrix([
[1, 2],
[0, 0]])
But adding another element to the first (and only) row will cause
an error to be raised:
>>> SparseMatrix(2, 2, [[1, 2, 3]])
Traceback (most recent call last):
...
ValueError: The location (0, 2) is out of designated range: (1, 1)
To autosize the matrix, pass None for rows:
>>> SparseMatrix(None, [[1, 2, 3]])
Matrix([[1, 2, 3]])
>>> SparseMatrix(None, {(1, 1): 1, (3, 3): 3})
Matrix([
[0, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 3]])
Values that are themselves a Matrix are automatically expanded:
>>> SparseMatrix(4, 4, {(1, 1): ones(2)})
Matrix([
[0, 0, 0, 0],
[0, 1, 1, 0],
[0, 1, 1, 0],
[0, 0, 0, 0]])
A ValueError is raised if the expanding matrix tries to overwrite
a different element already present:
>>> SparseMatrix(3, 3, {(0, 0): ones(2), (1, 1): 2})
Traceback (most recent call last):
...
ValueError: collision at (1, 1)
See Also
========
sympy.matrices.common.diag
sympy.matrices.dense.Matrix
"""
def __new__(cls, *args, **kwargs):
self = object.__new__(cls)
if len(args) == 1 and isinstance(args[0], SparseMatrix):
self.rows = args[0].rows
self.cols = args[0].cols
self._smat = dict(args[0]._smat)
return self
self._smat = {}
# autosizing
if len(args) == 2 and args[0] is None:
args = (None,) + args
if len(args) == 3:
r, c = args[:2]
if r is c is None:
self.rows = self.cols = None
elif None in (r, c):
raise ValueError(
'Pass rows=None and no cols for autosizing.')
else:
self.rows, self.cols = map(as_int, args[:2])
if isinstance(args[2], Callable):
op = args[2]
for i in range(self.rows):
for j in range(self.cols):
value = self._sympify(
op(self._sympify(i), self._sympify(j)))
if value:
self._smat[(i, j)] = value
elif isinstance(args[2], (dict, Dict)):
def update(i, j, v):
# update self._smat and make sure there are
# no collisions
if v:
if (i, j) in self._smat and v != self._smat[i, j]:
raise ValueError('collision at %s' % ((i, j),))
self._smat[i, j] = v
# manual copy, copy.deepcopy() doesn't work
for key, v in args[2].items():
r, c = key
if isinstance(v, SparseMatrix):
for (i, j), vij in v._smat.items():
update(r + i, c + j, vij)
else:
if isinstance(v, (Matrix, list, tuple)):
v = SparseMatrix(v)
for i, j in v._smat:
update(r + i, c + j, v[i, j])
else:
v = self._sympify(v)
update(r, c, self._sympify(v))
elif is_sequence(args[2]):
flat = not any(is_sequence(i) for i in args[2])
if not flat:
s = SparseMatrix(args[2])
self._smat = s._smat
else:
if len(args[2]) != self.rows*self.cols:
raise ValueError(
'Flat list length (%s) != rows*columns (%s)' %
(len(args[2]), self.rows*self.cols))
flat_list = args[2]
for i in range(self.rows):
for j in range(self.cols):
value = self._sympify(flat_list[i*self.cols + j])
if value:
self._smat[i, j] = value
if self.rows is None: # autosizing
k = self._smat.keys()
self.rows = max([i[0] for i in k]) + 1 if k else 0
self.cols = max([i[1] for i in k]) + 1 if k else 0
else:
for i, j in self._smat.keys():
if i and i >= self.rows or j and j >= self.cols:
r, c = self.shape
raise ValueError(filldedent('''
The location %s is out of designated
range: %s''' % ((i, j), (r - 1, c - 1))))
else:
if (len(args) == 1 and isinstance(args[0], (list, tuple))):
# list of values or lists
v = args[0]
c = 0
for i, row in enumerate(v):
if not isinstance(row, (list, tuple)):
row = [row]
for j, vij in enumerate(row):
if vij:
self._smat[(i, j)] = self._sympify(vij)
c = max(c, len(row))
self.rows = len(v) if c else 0
self.cols = c
else:
# handle full matrix forms with _handle_creation_inputs
r, c, _list = Matrix._handle_creation_inputs(*args)
self.rows = r
self.cols = c
for i in range(self.rows):
for j in range(self.cols):
value = _list[self.cols*i + j]
if value:
self._smat[(i, j)] = value
return self
def __eq__(self, other):
self_shape = getattr(self, 'shape', None)
other_shape = getattr(other, 'shape', None)
if None in (self_shape, other_shape):
return False
if self_shape != other_shape:
return False
if isinstance(other, SparseMatrix):
return self._smat == other._smat
elif isinstance(other, MatrixBase):
return self._smat == MutableSparseMatrix(other)._smat
def __getitem__(self, key):
if isinstance(key, tuple):
i, j = key
try:
i, j = self.key2ij(key)
return self._smat.get((i, j), S.Zero)
except (TypeError, IndexError):
if isinstance(i, slice):
# XXX remove list() when PY2 support is dropped
i = list(range(self.rows))[i]
elif is_sequence(i):
pass
elif isinstance(i, Expr) and not i.is_number:
from sympy.matrices.expressions.matexpr import MatrixElement
return MatrixElement(self, i, j)
else:
if i >= self.rows:
raise IndexError('Row index out of bounds')
i = [i]
if isinstance(j, slice):
# XXX remove list() when PY2 support is dropped
j = list(range(self.cols))[j]
elif is_sequence(j):
pass
elif isinstance(j, Expr) and not j.is_number:
from sympy.matrices.expressions.matexpr import MatrixElement
return MatrixElement(self, i, j)
else:
if j >= self.cols:
raise IndexError('Col index out of bounds')
j = [j]
return self.extract(i, j)
# check for single arg, like M[:] or M[3]
if isinstance(key, slice):
lo, hi = key.indices(len(self))[:2]
L = []
for i in range(lo, hi):
m, n = divmod(i, self.cols)
L.append(self._smat.get((m, n), S.Zero))
return L
i, j = divmod(a2idx(key, len(self)), self.cols)
return self._smat.get((i, j), S.Zero)
def __setitem__(self, key, value):
raise NotImplementedError()
def _cholesky_solve(self, rhs):
# for speed reasons, this is not uncommented, but if you are
# having difficulties, try uncommenting to make sure that the
# input matrix is symmetric
#assert self.is_symmetric()
L = self._cholesky_sparse()
Y = L._lower_triangular_solve(rhs)
rv = L.T._upper_triangular_solve(Y)
return rv
def _cholesky_sparse(self):
"""Algorithm for numeric Cholesky factorization of a sparse matrix."""
Crowstruc = self.row_structure_symbolic_cholesky()
C = self.zeros(self.rows)
for i in range(len(Crowstruc)):
for j in Crowstruc[i]:
if i != j:
C[i, j] = self[i, j]
summ = 0
for p1 in Crowstruc[i]:
if p1 < j:
for p2 in Crowstruc[j]:
if p2 < j:
if p1 == p2:
summ += C[i, p1]*C[j, p1]
else:
break
else:
break
C[i, j] -= summ
C[i, j] /= C[j, j]
else:
C[j, j] = self[j, j]
summ = 0
for k in Crowstruc[j]:
if k < j:
summ += C[j, k]**2
else:
break
C[j, j] -= summ
C[j, j] = sqrt(C[j, j])
return C
def _diagonal_solve(self, rhs):
"Diagonal solve."
return self._new(self.rows, 1, lambda i, j: rhs[i, 0] / self[i, i])
def _eval_inverse(self, **kwargs):
"""Return the matrix inverse using Cholesky or LDL (default)
decomposition as selected with the ``method`` keyword: 'CH' or 'LDL',
respectively.
Examples
========
>>> from sympy import SparseMatrix, Matrix
>>> A = SparseMatrix([
... [ 2, -1, 0],
... [-1, 2, -1],
... [ 0, 0, 2]])
>>> A.inv('CH')
Matrix([
[2/3, 1/3, 1/6],
[1/3, 2/3, 1/3],
[ 0, 0, 1/2]])
>>> A.inv(method='LDL') # use of 'method=' is optional
Matrix([
[2/3, 1/3, 1/6],
[1/3, 2/3, 1/3],
[ 0, 0, 1/2]])
>>> A * _
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
"""
sym = self.is_symmetric()
M = self.as_mutable()
I = M.eye(M.rows)
if not sym:
t = M.T
r1 = M[0, :]
M = t*M
I = t*I
method = kwargs.get('method', 'LDL')
if method in "LDL":
solve = M._LDL_solve
elif method == "CH":
solve = M._cholesky_solve
else:
raise NotImplementedError(
'Method may be "CH" or "LDL", not %s.' % method)
rv = M.hstack(*[solve(I[:, i]) for i in range(I.cols)])
if not sym:
scale = (r1*rv[:, 0])[0, 0]
rv /= scale
return self._new(rv)
def _eval_Abs(self):
return self.applyfunc(lambda x: Abs(x))
def _eval_add(self, other):
"""If `other` is a SparseMatrix, add efficiently. Otherwise,
do standard addition."""
if not isinstance(other, SparseMatrix):
return self + self._new(other)
smat = {}
zero = self._sympify(0)
for key in set().union(self._smat.keys(), other._smat.keys()):
sum = self._smat.get(key, zero) + other._smat.get(key, zero)
if sum != 0:
smat[key] = sum
return self._new(self.rows, self.cols, smat)
def _eval_col_insert(self, icol, other):
if not isinstance(other, SparseMatrix):
other = SparseMatrix(other)
new_smat = {}
# make room for the new rows
for key, val in self._smat.items():
row, col = key
if col >= icol:
col += other.cols
new_smat[(row, col)] = val
# add other's keys
for key, val in other._smat.items():
row, col = key
new_smat[(row, col + icol)] = val
return self._new(self.rows, self.cols + other.cols, new_smat)
def _eval_conjugate(self):
smat = {key: val.conjugate() for key,val in self._smat.items()}
return self._new(self.rows, self.cols, smat)
def _eval_extract(self, rowsList, colsList):
urow = list(uniq(rowsList))
ucol = list(uniq(colsList))
smat = {}
if len(urow)*len(ucol) < len(self._smat):
# there are fewer elements requested than there are elements in the matrix
for i, r in enumerate(urow):
for j, c in enumerate(ucol):
smat[i, j] = self._smat.get((r, c), 0)
else:
# most of the request will be zeros so check all of self's entries,
# keeping only the ones that are desired
for rk, ck in self._smat:
if rk in urow and ck in ucol:
smat[(urow.index(rk), ucol.index(ck))] = self._smat[(rk, ck)]
rv = self._new(len(urow), len(ucol), smat)
# rv is nominally correct but there might be rows/cols
# which require duplication
if len(rowsList) != len(urow):
for i, r in enumerate(rowsList):
i_previous = rowsList.index(r)
if i_previous != i:
rv = rv.row_insert(i, rv.row(i_previous))
if len(colsList) != len(ucol):
for i, c in enumerate(colsList):
i_previous = colsList.index(c)
if i_previous != i:
rv = rv.col_insert(i, rv.col(i_previous))
return rv
@classmethod
def _eval_eye(cls, rows, cols):
entries = {(i,i): S.One for i in range(min(rows, cols))}
return cls._new(rows, cols, entries)
def _eval_has(self, *patterns):
# if the matrix has any zeros, see if S.Zero
# has the pattern. If _smat is full length,
# the matrix has no zeros.
zhas = S.Zero.has(*patterns)
if len(self._smat) == self.rows*self.cols:
zhas = False
return any(self[key].has(*patterns) for key in self._smat) or zhas
def _eval_is_Identity(self):
if not all(self[i, i] == 1 for i in range(self.rows)):
return False
return len(self._smat) == self.rows
def _eval_is_symmetric(self, simpfunc):
diff = (self - self.T).applyfunc(simpfunc)
return len(diff.values()) == 0
def _eval_matrix_mul(self, other):
"""Fast multiplication exploiting the sparsity of the matrix."""
if not isinstance(other, SparseMatrix):
return self*self._new(other)
# if we made it here, we're both sparse matrices
# create quick lookups for rows and cols
row_lookup = defaultdict(dict)
for (i,j), val in self._smat.items():
row_lookup[i][j] = val
col_lookup = defaultdict(dict)
for (i,j), val in other._smat.items():
col_lookup[j][i] = val
smat = {}
for row in row_lookup.keys():
for col in col_lookup.keys():
# find the common indices of non-zero entries.
# these are the only things that need to be multiplied.
indices = set(col_lookup[col].keys()) & set(row_lookup[row].keys())
if indices:
val = sum(row_lookup[row][k]*col_lookup[col][k] for k in indices)
smat[(row, col)] = val
return self._new(self.rows, other.cols, smat)
def _eval_row_insert(self, irow, other):
if not isinstance(other, SparseMatrix):
other = SparseMatrix(other)
new_smat = {}
# make room for the new rows
for key, val in self._smat.items():
row, col = key
if row >= irow:
row += other.rows
new_smat[(row, col)] = val
# add other's keys
for key, val in other._smat.items():
row, col = key
new_smat[(row + irow, col)] = val
return self._new(self.rows + other.rows, self.cols, new_smat)
def _eval_scalar_mul(self, other):
return self.applyfunc(lambda x: x*other)
def _eval_scalar_rmul(self, other):
return self.applyfunc(lambda x: other*x)
def _eval_transpose(self):
"""Returns the transposed SparseMatrix of this SparseMatrix.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> a = SparseMatrix(((1, 2), (3, 4)))
>>> a
Matrix([
[1, 2],
[3, 4]])
>>> a.T
Matrix([
[1, 3],
[2, 4]])
"""
smat = {(j,i): val for (i,j),val in self._smat.items()}
return self._new(self.cols, self.rows, smat)
def _eval_values(self):
return [v for k,v in self._smat.items() if not v.is_zero]
@classmethod
def _eval_zeros(cls, rows, cols):
return cls._new(rows, cols, {})
def _LDL_solve(self, rhs):
# for speed reasons, this is not uncommented, but if you are
# having difficulties, try uncommenting to make sure that the
# input matrix is symmetric
#assert self.is_symmetric()
L, D = self._LDL_sparse()
Z = L._lower_triangular_solve(rhs)
Y = D._diagonal_solve(Z)
return L.T._upper_triangular_solve(Y)
def _LDL_sparse(self):
"""Algorithm for numeric LDL factization, exploiting sparse structure.
"""
Lrowstruc = self.row_structure_symbolic_cholesky()
L = self.eye(self.rows)
D = self.zeros(self.rows, self.cols)
for i in range(len(Lrowstruc)):
for j in Lrowstruc[i]:
if i != j:
L[i, j] = self[i, j]
summ = 0
for p1 in Lrowstruc[i]:
if p1 < j:
for p2 in Lrowstruc[j]:
if p2 < j:
if p1 == p2:
summ += L[i, p1]*L[j, p1]*D[p1, p1]
else:
break
else:
break
L[i, j] -= summ
L[i, j] /= D[j, j]
elif i == j:
D[i, i] = self[i, i]
summ = 0
for k in Lrowstruc[i]:
if k < i:
summ += L[i, k]**2*D[k, k]
else:
break
D[i, i] -= summ
return L, D
def _lower_triangular_solve(self, rhs):
"""Fast algorithm for solving a lower-triangular system,
exploiting the sparsity of the given matrix.
"""
rows = [[] for i in range(self.rows)]
for i, j, v in self.row_list():
if i > j:
rows[i].append((j, v))
X = rhs.copy()
for i in range(self.rows):
for j, v in rows[i]:
X[i, 0] -= v*X[j, 0]
X[i, 0] /= self[i, i]
return self._new(X)
@property
def _mat(self):
"""Return a list of matrix elements. Some routines
in DenseMatrix use `_mat` directly to speed up operations."""
return list(self)
def _upper_triangular_solve(self, rhs):
"""Fast algorithm for solving an upper-triangular system,
exploiting the sparsity of the given matrix.
"""
rows = [[] for i in range(self.rows)]
for i, j, v in self.row_list():
if i < j:
rows[i].append((j, v))
X = rhs.copy()
for i in range(self.rows - 1, -1, -1):
rows[i].reverse()
for j, v in rows[i]:
X[i, 0] -= v*X[j, 0]
X[i, 0] /= self[i, i]
return self._new(X)
def applyfunc(self, f):
"""Apply a function to each element of the matrix.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> m = SparseMatrix(2, 2, lambda i, j: i*2+j)
>>> m
Matrix([
[0, 1],
[2, 3]])
>>> m.applyfunc(lambda i: 2*i)
Matrix([
[0, 2],
[4, 6]])
"""
if not callable(f):
raise TypeError("`f` must be callable.")
out = self.copy()
for k, v in self._smat.items():
fv = f(v)
if fv:
out._smat[k] = fv
else:
out._smat.pop(k, None)
return out
def as_immutable(self):
"""Returns an Immutable version of this Matrix."""
from .immutable import ImmutableSparseMatrix
return ImmutableSparseMatrix(self)
def as_mutable(self):
"""Returns a mutable version of this matrix.
Examples
========
>>> from sympy import ImmutableMatrix
>>> X = ImmutableMatrix([[1, 2], [3, 4]])
>>> Y = X.as_mutable()
>>> Y[1, 1] = 5 # Can set values in Y
>>> Y
Matrix([
[1, 2],
[3, 5]])
"""
return MutableSparseMatrix(self)
def cholesky(self):
"""
Returns the Cholesky decomposition L of a matrix A
such that L * L.T = A
A must be a square, symmetric, positive-definite
and non-singular matrix
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> A = SparseMatrix(((25,15,-5),(15,18,0),(-5,0,11)))
>>> A.cholesky()
Matrix([
[ 5, 0, 0],
[ 3, 3, 0],
[-1, 1, 3]])
>>> A.cholesky() * A.cholesky().T == A
True
"""
from sympy.core.numbers import nan, oo
if not self.is_symmetric():
raise ValueError('Cholesky decomposition applies only to '
'symmetric matrices.')
M = self.as_mutable()._cholesky_sparse()
if M.has(nan) or M.has(oo):
raise ValueError('Cholesky decomposition applies only to '
'positive-definite matrices')
return self._new(M)
def col_list(self):
"""Returns a column-sorted list of non-zero elements of the matrix.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> a=SparseMatrix(((1, 2), (3, 4)))
>>> a
Matrix([
[1, 2],
[3, 4]])
>>> a.CL
[(0, 0, 1), (1, 0, 3), (0, 1, 2), (1, 1, 4)]
See Also
========
col_op
row_list
"""
return [tuple(k + (self[k],)) for k in sorted(list(self._smat.keys()), key=lambda k: list(reversed(k)))]
def copy(self):
return self._new(self.rows, self.cols, self._smat)
def LDLdecomposition(self):
"""
Returns the LDL Decomposition (matrices ``L`` and ``D``) of matrix
``A``, such that ``L * D * L.T == A``. ``A`` must be a square,
symmetric, positive-definite and non-singular.
This method eliminates the use of square root and ensures that all
the diagonal entries of L are 1.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> A = SparseMatrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
>>> L, D = A.LDLdecomposition()
>>> L
Matrix([
[ 1, 0, 0],
[ 3/5, 1, 0],
[-1/5, 1/3, 1]])
>>> D
Matrix([
[25, 0, 0],
[ 0, 9, 0],
[ 0, 0, 9]])
>>> L * D * L.T == A
True
"""
from sympy.core.numbers import nan, oo
if not self.is_symmetric():
raise ValueError('LDL decomposition applies only to '
'symmetric matrices.')
L, D = self.as_mutable()._LDL_sparse()
if L.has(nan) or L.has(oo) or D.has(nan) or D.has(oo):
raise ValueError('LDL decomposition applies only to '
'positive-definite matrices')
return self._new(L), self._new(D)
def liupc(self):
"""Liu's algorithm, for pre-determination of the Elimination Tree of
the given matrix, used in row-based symbolic Cholesky factorization.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> S = SparseMatrix([
... [1, 0, 3, 2],
... [0, 0, 1, 0],
... [4, 0, 0, 5],
... [0, 6, 7, 0]])
>>> S.liupc()
([[0], [], [0], [1, 2]], [4, 3, 4, 4])
References
==========
Symbolic Sparse Cholesky Factorization using Elimination Trees,
Jeroen Van Grondelle (1999)
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.7582
"""
# Algorithm 2.4, p 17 of reference
# get the indices of the elements that are non-zero on or below diag
R = [[] for r in range(self.rows)]
for r, c, _ in self.row_list():
if c <= r:
R[r].append(c)
inf = len(R) # nothing will be this large
parent = [inf]*self.rows
virtual = [inf]*self.rows
for r in range(self.rows):
for c in R[r][:-1]:
while virtual[c] < r:
t = virtual[c]
virtual[c] = r
c = t
if virtual[c] == inf:
parent[c] = virtual[c] = r
return R, parent
def nnz(self):
"""Returns the number of non-zero elements in Matrix."""
return len(self._smat)
def row_list(self):
"""Returns a row-sorted list of non-zero elements of the matrix.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> a = SparseMatrix(((1, 2), (3, 4)))
>>> a
Matrix([
[1, 2],
[3, 4]])
>>> a.RL
[(0, 0, 1), (0, 1, 2), (1, 0, 3), (1, 1, 4)]
See Also
========
row_op
col_list
"""
return [tuple(k + (self[k],)) for k in
sorted(list(self._smat.keys()), key=lambda k: list(k))]
def row_structure_symbolic_cholesky(self):
"""Symbolic cholesky factorization, for pre-determination of the
non-zero structure of the Cholesky factororization.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> S = SparseMatrix([
... [1, 0, 3, 2],
... [0, 0, 1, 0],
... [4, 0, 0, 5],
... [0, 6, 7, 0]])
>>> S.row_structure_symbolic_cholesky()
[[0], [], [0], [1, 2]]
References
==========
Symbolic Sparse Cholesky Factorization using Elimination Trees,
Jeroen Van Grondelle (1999)
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.7582
"""
R, parent = self.liupc()
inf = len(R) # this acts as infinity
Lrow = copy.deepcopy(R)
for k in range(self.rows):
for j in R[k]:
while j != inf and j != k:
Lrow[k].append(j)
j = parent[j]
Lrow[k] = list(sorted(set(Lrow[k])))
return Lrow
def scalar_multiply(self, scalar):
"Scalar element-wise multiplication"
M = self.zeros(*self.shape)
if scalar:
for i in self._smat:
v = scalar*self._smat[i]
if v:
M._smat[i] = v
else:
M._smat.pop(i, None)
return M
def solve_least_squares(self, rhs, method='LDL'):
"""Return the least-square fit to the data.
By default the cholesky_solve routine is used (method='CH'); other
methods of matrix inversion can be used. To find out which are
available, see the docstring of the .inv() method.
Examples
========
>>> from sympy.matrices import SparseMatrix, Matrix, ones
>>> A = Matrix([1, 2, 3])
>>> B = Matrix([2, 3, 4])
>>> S = SparseMatrix(A.row_join(B))
>>> S
Matrix([
[1, 2],
[2, 3],
[3, 4]])
If each line of S represent coefficients of Ax + By
and x and y are [2, 3] then S*xy is:
>>> r = S*Matrix([2, 3]); r
Matrix([
[ 8],
[13],
[18]])
But let's add 1 to the middle value and then solve for the
least-squares value of xy:
>>> xy = S.solve_least_squares(Matrix([8, 14, 18])); xy
Matrix([
[ 5/3],
[10/3]])
The error is given by S*xy - r:
>>> S*xy - r
Matrix([
[1/3],
[1/3],
[1/3]])
>>> _.norm().n(2)
0.58
If a different xy is used, the norm will be higher:
>>> xy += ones(2, 1)/10
>>> (S*xy - r).norm().n(2)
1.5
"""
t = self.T
return (t*self).inv(method=method)*t*rhs
def solve(self, rhs, method='LDL'):
"""Return solution to self*soln = rhs using given inversion method.
For a list of possible inversion methods, see the .inv() docstring.
"""
if not self.is_square:
if self.rows < self.cols:
raise ValueError('Under-determined system.')
elif self.rows > self.cols:
raise ValueError('For over-determined system, M, having '
'more rows than columns, try M.solve_least_squares(rhs).')
else:
return self.inv(method=method)*rhs
RL = property(row_list, None, None, "Alternate faster representation")
CL = property(col_list, None, None, "Alternate faster representation")
class MutableSparseMatrix(SparseMatrix, MatrixBase):
@classmethod
def _new(cls, *args, **kwargs):
return cls(*args)
def __setitem__(self, key, value):
"""Assign value to position designated by key.
Examples
========
>>> from sympy.matrices import SparseMatrix, ones
>>> M = SparseMatrix(2, 2, {})
>>> M[1] = 1; M
Matrix([
[0, 1],
[0, 0]])
>>> M[1, 1] = 2; M
Matrix([
[0, 1],
[0, 2]])
>>> M = SparseMatrix(2, 2, {})
>>> M[:, 1] = [1, 1]; M
Matrix([
[0, 1],
[0, 1]])
>>> M = SparseMatrix(2, 2, {})
>>> M[1, :] = [[1, 1]]; M
Matrix([
[0, 0],
[1, 1]])
To replace row r you assign to position r*m where m
is the number of columns:
>>> M = SparseMatrix(4, 4, {})
>>> m = M.cols
>>> M[3*m] = ones(1, m)*2; M
Matrix([
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[2, 2, 2, 2]])
And to replace column c you can assign to position c:
>>> M[2] = ones(m, 1)*4; M
Matrix([
[0, 0, 4, 0],
[0, 0, 4, 0],
[0, 0, 4, 0],
[2, 2, 4, 2]])
"""
rv = self._setitem(key, value)
if rv is not None:
i, j, value = rv
if value:
self._smat[(i, j)] = value
elif (i, j) in self._smat:
del self._smat[(i, j)]
def as_mutable(self):
return self.copy()
__hash__ = None
def col_del(self, k):
"""Delete the given column of the matrix.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> M = SparseMatrix([[0, 0], [0, 1]])
>>> M
Matrix([
[0, 0],
[0, 1]])
>>> M.col_del(0)
>>> M
Matrix([
[0],
[1]])
See Also
========
row_del
"""
newD = {}
k = a2idx(k, self.cols)
for (i, j) in self._smat:
if j == k:
pass
elif j > k:
newD[i, j - 1] = self._smat[i, j]
else:
newD[i, j] = self._smat[i, j]
self._smat = newD
self.cols -= 1
def col_join(self, other):
"""Returns B augmented beneath A (row-wise joining)::
[A]
[B]
Examples
========
>>> from sympy import SparseMatrix, Matrix, ones
>>> A = SparseMatrix(ones(3))
>>> A
Matrix([
[1, 1, 1],
[1, 1, 1],
[1, 1, 1]])
>>> B = SparseMatrix.eye(3)
>>> B
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> C = A.col_join(B); C
Matrix([
[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> C == A.col_join(Matrix(B))
True
Joining along columns is the same as appending rows at the end
of the matrix:
>>> C == A.row_insert(A.rows, Matrix(B))
True
"""
# A null matrix can always be stacked (see #10770)
if self.rows == 0 and self.cols != other.cols:
return self._new(0, other.cols, []).col_join(other)
A, B = self, other
if not A.cols == B.cols:
raise ShapeError()
A = A.copy()
if not isinstance(B, SparseMatrix):
k = 0
b = B._mat
for i in range(B.rows):
for j in range(B.cols):
v = b[k]
if v:
A._smat[(i + A.rows, j)] = v
k += 1
else:
for (i, j), v in B._smat.items():
A._smat[i + A.rows, j] = v
A.rows += B.rows
return A
def col_op(self, j, f):
"""In-place operation on col j using two-arg functor whose args are
interpreted as (self[i, j], i) for i in range(self.rows).
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> M = SparseMatrix.eye(3)*2
>>> M[1, 0] = -1
>>> M.col_op(1, lambda v, i: v + 2*M[i, 0]); M
Matrix([
[ 2, 4, 0],
[-1, 0, 0],
[ 0, 0, 2]])
"""
for i in range(self.rows):
v = self._smat.get((i, j), S.Zero)
fv = f(v, i)
if fv:
self._smat[(i, j)] = fv
elif v:
self._smat.pop((i, j))
def col_swap(self, i, j):
"""Swap, in place, columns i and j.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> S = SparseMatrix.eye(3); S[2, 1] = 2
>>> S.col_swap(1, 0); S
Matrix([
[0, 1, 0],
[1, 0, 0],
[2, 0, 1]])
"""
if i > j:
i, j = j, i
rows = self.col_list()
temp = []
for ii, jj, v in rows:
if jj == i:
self._smat.pop((ii, jj))
temp.append((ii, v))
elif jj == j:
self._smat.pop((ii, jj))
self._smat[ii, i] = v
elif jj > j:
break
for k, v in temp:
self._smat[k, j] = v
def copyin_list(self, key, value):
if not is_sequence(value):
raise TypeError("`value` must be of type list or tuple.")
self.copyin_matrix(key, Matrix(value))
def copyin_matrix(self, key, value):
# include this here because it's not part of BaseMatrix
rlo, rhi, clo, chi = self.key2bounds(key)
shape = value.shape
dr, dc = rhi - rlo, chi - clo
if shape != (dr, dc):
raise ShapeError(
"The Matrix `value` doesn't have the same dimensions "
"as the in sub-Matrix given by `key`.")
if not isinstance(value, SparseMatrix):
for i in range(value.rows):
for j in range(value.cols):
self[i + rlo, j + clo] = value[i, j]
else:
if (rhi - rlo)*(chi - clo) < len(self):
for i in range(rlo, rhi):
for j in range(clo, chi):
self._smat.pop((i, j), None)
else:
for i, j, v in self.row_list():
if rlo <= i < rhi and clo <= j < chi:
self._smat.pop((i, j), None)
for k, v in value._smat.items():
i, j = k
self[i + rlo, j + clo] = value[i, j]
def fill(self, value):
"""Fill self with the given value.
Notes
=====
Unless many values are going to be deleted (i.e. set to zero)
this will create a matrix that is slower than a dense matrix in
operations.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> M = SparseMatrix.zeros(3); M
Matrix([
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]])
>>> M.fill(1); M
Matrix([
[1, 1, 1],
[1, 1, 1],
[1, 1, 1]])
"""
if not value:
self._smat = {}
else:
v = self._sympify(value)
self._smat = {(i, j): v
for i in range(self.rows) for j in range(self.cols)}
def row_del(self, k):
"""Delete the given row of the matrix.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> M = SparseMatrix([[0, 0], [0, 1]])
>>> M
Matrix([
[0, 0],
[0, 1]])
>>> M.row_del(0)
>>> M
Matrix([[0, 1]])
See Also
========
col_del
"""
newD = {}
k = a2idx(k, self.rows)
for (i, j) in self._smat:
if i == k:
pass
elif i > k:
newD[i - 1, j] = self._smat[i, j]
else:
newD[i, j] = self._smat[i, j]
self._smat = newD
self.rows -= 1
def row_join(self, other):
"""Returns B appended after A (column-wise augmenting)::
[A B]
Examples
========
>>> from sympy import SparseMatrix, Matrix
>>> A = SparseMatrix(((1, 0, 1), (0, 1, 0), (1, 1, 0)))
>>> A
Matrix([
[1, 0, 1],
[0, 1, 0],
[1, 1, 0]])
>>> B = SparseMatrix(((1, 0, 0), (0, 1, 0), (0, 0, 1)))
>>> B
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> C = A.row_join(B); C
Matrix([
[1, 0, 1, 1, 0, 0],
[0, 1, 0, 0, 1, 0],
[1, 1, 0, 0, 0, 1]])
>>> C == A.row_join(Matrix(B))
True
Joining at row ends is the same as appending columns at the end
of the matrix:
>>> C == A.col_insert(A.cols, B)
True
"""
# A null matrix can always be stacked (see #10770)
if self.cols == 0 and self.rows != other.rows:
return self._new(other.rows, 0, []).row_join(other)
A, B = self, other
if not A.rows == B.rows:
raise ShapeError()
A = A.copy()
if not isinstance(B, SparseMatrix):
k = 0
b = B._mat
for i in range(B.rows):
for j in range(B.cols):
v = b[k]
if v:
A._smat[(i, j + A.cols)] = v
k += 1
else:
for (i, j), v in B._smat.items():
A._smat[(i, j + A.cols)] = v
A.cols += B.cols
return A
def row_op(self, i, f):
"""In-place operation on row ``i`` using two-arg functor whose args are
interpreted as ``(self[i, j], j)``.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> M = SparseMatrix.eye(3)*2
>>> M[0, 1] = -1
>>> M.row_op(1, lambda v, j: v + 2*M[0, j]); M
Matrix([
[2, -1, 0],
[4, 0, 0],
[0, 0, 2]])
See Also
========
row
zip_row_op
col_op
"""
for j in range(self.cols):
v = self._smat.get((i, j), S.Zero)
fv = f(v, j)
if fv:
self._smat[(i, j)] = fv
elif v:
self._smat.pop((i, j))
def row_swap(self, i, j):
"""Swap, in place, columns i and j.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> S = SparseMatrix.eye(3); S[2, 1] = 2
>>> S.row_swap(1, 0); S
Matrix([
[0, 1, 0],
[1, 0, 0],
[0, 2, 1]])
"""
if i > j:
i, j = j, i
rows = self.row_list()
temp = []
for ii, jj, v in rows:
if ii == i:
self._smat.pop((ii, jj))
temp.append((jj, v))
elif ii == j:
self._smat.pop((ii, jj))
self._smat[i, jj] = v
elif ii > j:
break
for k, v in temp:
self._smat[j, k] = v
def zip_row_op(self, i, k, f):
"""In-place operation on row ``i`` using two-arg functor whose args are
interpreted as ``(self[i, j], self[k, j])``.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> M = SparseMatrix.eye(3)*2
>>> M[0, 1] = -1
>>> M.zip_row_op(1, 0, lambda v, u: v + 2*u); M
Matrix([
[2, -1, 0],
[4, 0, 0],
[0, 0, 2]])
See Also
========
row
row_op
col_op
"""
self.row_op(i, lambda v, j: f(v, self[k, j]))
|
115071bc6117610adbc9c3019d110503fcc3f0ff4506701a7c3927ae87e87919
|
from __future__ import division, print_function
from types import FunctionType
from mpmath.libmp.libmpf import prec_to_dps
from sympy.core.add import Add
from sympy.core.basic import Basic
from sympy.core.compatibility import (
Callable, NotIterable, as_int, default_sort_key, is_sequence, range,
reduce, string_types)
from sympy.core.decorators import deprecated
from sympy.core.expr import Expr
from sympy.core.function import expand_mul
from sympy.core.numbers import Float, Integer, mod_inverse
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import Dummy, Symbol, _uniquely_named_symbol, symbols
from sympy.core.sympify import sympify
from sympy.functions import exp, factorial
from sympy.functions.elementary.miscellaneous import Max, Min, sqrt
from sympy.polys import PurePoly, cancel, roots
from sympy.printing import sstr
from sympy.simplify import nsimplify
from sympy.simplify import simplify as _simplify
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.utilities.iterables import flatten, numbered_symbols
from sympy.utilities.misc import filldedent
from .common import (
MatrixCommon, MatrixError, NonSquareMatrixError, ShapeError)
def _iszero(x):
"""Returns True if x is zero."""
return getattr(x, 'is_zero', None)
def _is_zero_after_expand_mul(x):
"""Tests by expand_mul only, suitable for polynomials and rational
functions."""
return expand_mul(x) == 0
class DeferredVector(Symbol, NotIterable):
"""A vector whose components are deferred (e.g. for use with lambdify)
Examples
========
>>> from sympy import DeferredVector, lambdify
>>> X = DeferredVector( 'X' )
>>> X
X
>>> expr = (X[0] + 2, X[2] + 3)
>>> func = lambdify( X, expr)
>>> func( [1, 2, 3] )
(3, 6)
"""
def __getitem__(self, i):
if i == -0:
i = 0
if i < 0:
raise IndexError('DeferredVector index out of range')
component_name = '%s[%d]' % (self.name, i)
return Symbol(component_name)
def __str__(self):
return sstr(self)
def __repr__(self):
return "DeferredVector('%s')" % self.name
class MatrixDeterminant(MatrixCommon):
"""Provides basic matrix determinant operations.
Should not be instantiated directly."""
def _eval_berkowitz_toeplitz_matrix(self):
"""Return (A,T) where T the Toeplitz matrix used in the Berkowitz algorithm
corresponding to ``self`` and A is the first principal submatrix."""
# the 0 x 0 case is trivial
if self.rows == 0 and self.cols == 0:
return self._new(1,1, [S.One])
#
# Partition self = [ a_11 R ]
# [ C A ]
#
a, R = self[0,0], self[0, 1:]
C, A = self[1:, 0], self[1:,1:]
#
# The Toeplitz matrix looks like
#
# [ 1 ]
# [ -a 1 ]
# [ -RC -a 1 ]
# [ -RAC -RC -a 1 ]
# [ -RA**2C -RAC -RC -a 1 ]
# etc.
# Compute the diagonal entries.
# Because multiplying matrix times vector is so much
# more efficient than matrix times matrix, recursively
# compute -R * A**n * C.
diags = [C]
for i in range(self.rows - 2):
diags.append(A * diags[i])
diags = [(-R*d)[0, 0] for d in diags]
diags = [S.One, -a] + diags
def entry(i,j):
if j > i:
return S.Zero
return diags[i - j]
toeplitz = self._new(self.cols + 1, self.rows, entry)
return (A, toeplitz)
def _eval_berkowitz_vector(self):
""" Run the Berkowitz algorithm and return a vector whose entries
are the coefficients of the characteristic polynomial of ``self``.
Given N x N matrix, efficiently compute
coefficients of characteristic polynomials of ``self``
without division in the ground domain.
This method is particularly useful for computing determinant,
principal minors and characteristic polynomial when ``self``
has complicated coefficients e.g. polynomials. Semi-direct
usage of this algorithm is also important in computing
efficiently sub-resultant PRS.
Assuming that M is a square matrix of dimension N x N and
I is N x N identity matrix, then the Berkowitz vector is
an N x 1 vector whose entries are coefficients of the
polynomial
charpoly(M) = det(t*I - M)
As a consequence, all polynomials generated by Berkowitz
algorithm are monic.
For more information on the implemented algorithm refer to:
[1] S.J. Berkowitz, On computing the determinant in small
parallel time using a small number of processors, ACM,
Information Processing Letters 18, 1984, pp. 147-150
[2] M. Keber, Division-Free computation of sub-resultants
using Bezout matrices, Tech. Report MPI-I-2006-1-006,
Saarbrucken, 2006
"""
# handle the trivial cases
if self.rows == 0 and self.cols == 0:
return self._new(1, 1, [S.One])
elif self.rows == 1 and self.cols == 1:
return self._new(2, 1, [S.One, -self[0,0]])
submat, toeplitz = self._eval_berkowitz_toeplitz_matrix()
return toeplitz * submat._eval_berkowitz_vector()
def _eval_det_bareiss(self, iszerofunc=_is_zero_after_expand_mul):
"""Compute matrix determinant using Bareiss' fraction-free
algorithm which is an extension of the well known Gaussian
elimination method. This approach is best suited for dense
symbolic matrices and will result in a determinant with
minimal number of fractions. It means that less term
rewriting is needed on resulting formulae.
TODO: Implement algorithm for sparse matrices (SFF),
http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps.
"""
# Recursively implemented Bareiss' algorithm as per Deanna Richelle Leggett's
# thesis http://www.math.usm.edu/perry/Research/Thesis_DRL.pdf
def bareiss(mat, cumm=1):
if mat.rows == 0:
return S.One
elif mat.rows == 1:
return mat[0, 0]
# find a pivot and extract the remaining matrix
# With the default iszerofunc, _find_reasonable_pivot slows down
# the computation by the factor of 2.5 in one test.
# Relevant issues: #10279 and #13877.
pivot_pos, pivot_val, _, _ = _find_reasonable_pivot(mat[:, 0],
iszerofunc=iszerofunc)
if pivot_pos is None:
return S.Zero
# if we have a valid pivot, we'll do a "row swap", so keep the
# sign of the det
sign = (-1) ** (pivot_pos % 2)
# we want every row but the pivot row and every column
rows = list(i for i in range(mat.rows) if i != pivot_pos)
cols = list(range(mat.cols))
tmp_mat = mat.extract(rows, cols)
def entry(i, j):
ret = (pivot_val*tmp_mat[i, j + 1] - mat[pivot_pos, j + 1]*tmp_mat[i, 0]) / cumm
if not ret.is_Atom:
return cancel(ret)
return ret
return sign*bareiss(self._new(mat.rows - 1, mat.cols - 1, entry), pivot_val)
return cancel(bareiss(self))
def _eval_det_berkowitz(self):
""" Use the Berkowitz algorithm to compute the determinant."""
berk_vector = self._eval_berkowitz_vector()
return (-1)**(len(berk_vector) - 1) * berk_vector[-1]
def _eval_det_lu(self, iszerofunc=_iszero, simpfunc=None):
""" Computes the determinant of a matrix from its LU decomposition.
This function uses the LU decomposition computed by
LUDecomposition_Simple().
The keyword arguments iszerofunc and simpfunc are passed to
LUDecomposition_Simple().
iszerofunc is a callable that returns a boolean indicating if its
input is zero, or None if it cannot make the determination.
simpfunc is a callable that simplifies its input.
The default is simpfunc=None, which indicate that the pivot search
algorithm should not attempt to simplify any candidate pivots.
If simpfunc fails to simplify its input, then it must return its input
instead of a copy."""
if self.rows == 0:
return S.One
# sympy/matrices/tests/test_matrices.py contains a test that
# suggests that the determinant of a 0 x 0 matrix is one, by
# convention.
lu, row_swaps = self.LUdecomposition_Simple(iszerofunc=iszerofunc, simpfunc=None)
# P*A = L*U => det(A) = det(L)*det(U)/det(P) = det(P)*det(U).
# Lower triangular factor L encoded in lu has unit diagonal => det(L) = 1.
# P is a permutation matrix => det(P) in {-1, 1} => 1/det(P) = det(P).
# LUdecomposition_Simple() returns a list of row exchange index pairs, rather
# than a permutation matrix, but det(P) = (-1)**len(row_swaps).
# Avoid forming the potentially time consuming product of U's diagonal entries
# if the product is zero.
# Bottom right entry of U is 0 => det(A) = 0.
# It may be impossible to determine if this entry of U is zero when it is symbolic.
if iszerofunc(lu[lu.rows-1, lu.rows-1]):
return S.Zero
# Compute det(P)
det = -S.One if len(row_swaps)%2 else S.One
# Compute det(U) by calculating the product of U's diagonal entries.
# The upper triangular portion of lu is the upper triangular portion of the
# U factor in the LU decomposition.
for k in range(lu.rows):
det *= lu[k, k]
# return det(P)*det(U)
return det
def _eval_determinant(self):
"""Assumed to exist by matrix expressions; If we subclass
MatrixDeterminant, we can fully evaluate determinants."""
return self.det()
def adjugate(self, method="berkowitz"):
"""Returns the adjugate, or classical adjoint, of
a matrix. That is, the transpose of the matrix of cofactors.
https://en.wikipedia.org/wiki/Adjugate
See Also
========
cofactor_matrix
transpose
"""
return self.cofactor_matrix(method).transpose()
def charpoly(self, x='lambda', simplify=_simplify):
"""Computes characteristic polynomial det(x*I - self) where I is
the identity matrix.
A PurePoly is returned, so using different variables for ``x`` does
not affect the comparison or the polynomials:
Examples
========
>>> from sympy import Matrix
>>> from sympy.abc import x, y
>>> A = Matrix([[1, 3], [2, 0]])
>>> A.charpoly(x) == A.charpoly(y)
True
Specifying ``x`` is optional; a symbol named ``lambda`` is used by
default (which looks good when pretty-printed in unicode):
>>> A.charpoly().as_expr()
lambda**2 - lambda - 6
And if ``x`` clashes with an existing symbol, underscores will
be preppended to the name to make it unique:
>>> A = Matrix([[1, 2], [x, 0]])
>>> A.charpoly(x).as_expr()
_x**2 - _x - 2*x
Whether you pass a symbol or not, the generator can be obtained
with the gen attribute since it may not be the same as the symbol
that was passed:
>>> A.charpoly(x).gen
_x
>>> A.charpoly(x).gen == x
False
Notes
=====
The Samuelson-Berkowitz algorithm is used to compute
the characteristic polynomial efficiently and without any
division operations. Thus the characteristic polynomial over any
commutative ring without zero divisors can be computed.
See Also
========
det
"""
if not self.is_square:
raise NonSquareMatrixError()
berk_vector = self._eval_berkowitz_vector()
x = _uniquely_named_symbol(x, berk_vector)
return PurePoly([simplify(a) for a in berk_vector], x)
def cofactor(self, i, j, method="berkowitz"):
"""Calculate the cofactor of an element.
See Also
========
cofactor_matrix
minor
minor_submatrix
"""
if not self.is_square or self.rows < 1:
raise NonSquareMatrixError()
return (-1)**((i + j) % 2) * self.minor(i, j, method)
def cofactor_matrix(self, method="berkowitz"):
"""Return a matrix containing the cofactor of each element.
See Also
========
cofactor
minor
minor_submatrix
adjugate
"""
if not self.is_square or self.rows < 1:
raise NonSquareMatrixError()
return self._new(self.rows, self.cols,
lambda i, j: self.cofactor(i, j, method))
def det(self, method="bareiss", iszerofunc=None):
"""Computes the determinant of a matrix.
Parameters
==========
method : string, optional
Specifies the algorithm used for computing the matrix determinant.
If the matrix is at most 3x3, a hard-coded formula is used and the
specified method is ignored. Otherwise, it defaults to
``'bareiss'``.
If it is set to ``'bareiss'``, Bareiss' fraction-free algorithm will
be used.
If it is set to ``'berkowitz'``, Berkowitz' algorithm will be used.
Otherwise, if it is set to ``'lu'``, LU decomposition will be used.
.. note::
For backward compatibility, legacy keys like "bareis" and
"det_lu" can still be used to indicate the corresponding
methods.
And the keys are also case-insensitive for now. However, it is
suggested to use the precise keys for specifying the method.
iszerofunc : FunctionType or None, optional
If it is set to ``None``, it will be defaulted to ``_iszero`` if the
method is set to ``'bareiss'``, and ``_is_zero_after_expand_mul`` if
the method is set to ``'lu'``.
It can also accept any user-specified zero testing function, if it
is formatted as a function which accepts a single symbolic argument
and returns ``True`` if it is tested as zero and ``False`` if it
tested as non-zero, and also ``None`` if it is undecidable.
Returns
=======
det : Basic
Result of determinant.
Raises
======
ValueError
If unrecognized keys are given for ``method`` or ``iszerofunc``.
NonSquareMatrixError
If attempted to calculate determinant from a non-square matrix.
"""
# sanitize `method`
method = method.lower()
if method == "bareis":
method = "bareiss"
if method == "det_lu":
method = "lu"
if method not in ("bareiss", "berkowitz", "lu"):
raise ValueError("Determinant method '%s' unrecognized" % method)
if iszerofunc is None:
if method == "bareiss":
iszerofunc = _is_zero_after_expand_mul
elif method == "lu":
iszerofunc = _iszero
elif not isinstance(iszerofunc, FunctionType):
raise ValueError("Zero testing method '%s' unrecognized" % iszerofunc)
# if methods were made internal and all determinant calculations
# passed through here, then these lines could be factored out of
# the method routines
if not self.is_square:
raise NonSquareMatrixError()
n = self.rows
if n == 0:
return S.One
elif n == 1:
return self[0,0]
elif n == 2:
return self[0, 0] * self[1, 1] - self[0, 1] * self[1, 0]
elif n == 3:
return (self[0, 0] * self[1, 1] * self[2, 2]
+ self[0, 1] * self[1, 2] * self[2, 0]
+ self[0, 2] * self[1, 0] * self[2, 1]
- self[0, 2] * self[1, 1] * self[2, 0]
- self[0, 0] * self[1, 2] * self[2, 1]
- self[0, 1] * self[1, 0] * self[2, 2])
if method == "bareiss":
return self._eval_det_bareiss(iszerofunc=iszerofunc)
elif method == "berkowitz":
return self._eval_det_berkowitz()
elif method == "lu":
return self._eval_det_lu(iszerofunc=iszerofunc)
def minor(self, i, j, method="berkowitz"):
"""Return the (i,j) minor of ``self``. That is,
return the determinant of the matrix obtained by deleting
the `i`th row and `j`th column from ``self``.
See Also
========
minor_submatrix
cofactor
det
"""
if not self.is_square or self.rows < 1:
raise NonSquareMatrixError()
return self.minor_submatrix(i, j).det(method=method)
def minor_submatrix(self, i, j):
"""Return the submatrix obtained by removing the `i`th row
and `j`th column from ``self``.
See Also
========
minor
cofactor
"""
if i < 0:
i += self.rows
if j < 0:
j += self.cols
if not 0 <= i < self.rows or not 0 <= j < self.cols:
raise ValueError("`i` and `j` must satisfy 0 <= i < ``self.rows`` "
"(%d)" % self.rows + "and 0 <= j < ``self.cols`` (%d)." % self.cols)
rows = [a for a in range(self.rows) if a != i]
cols = [a for a in range(self.cols) if a != j]
return self.extract(rows, cols)
class MatrixReductions(MatrixDeterminant):
"""Provides basic matrix row/column operations.
Should not be instantiated directly."""
def _eval_col_op_swap(self, col1, col2):
def entry(i, j):
if j == col1:
return self[i, col2]
elif j == col2:
return self[i, col1]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def _eval_col_op_multiply_col_by_const(self, col, k):
def entry(i, j):
if j == col:
return k * self[i, j]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def _eval_col_op_add_multiple_to_other_col(self, col, k, col2):
def entry(i, j):
if j == col:
return self[i, j] + k * self[i, col2]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def _eval_row_op_swap(self, row1, row2):
def entry(i, j):
if i == row1:
return self[row2, j]
elif i == row2:
return self[row1, j]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def _eval_row_op_multiply_row_by_const(self, row, k):
def entry(i, j):
if i == row:
return k * self[i, j]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def _eval_row_op_add_multiple_to_other_row(self, row, k, row2):
def entry(i, j):
if i == row:
return self[i, j] + k * self[row2, j]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def _eval_echelon_form(self, iszerofunc, simpfunc):
"""Returns (mat, swaps) where ``mat`` is a row-equivalent matrix
in echelon form and ``swaps`` is a list of row-swaps performed."""
reduced, pivot_cols, swaps = self._row_reduce(iszerofunc, simpfunc,
normalize_last=True,
normalize=False,
zero_above=False)
return reduced, pivot_cols, swaps
def _eval_is_echelon(self, iszerofunc):
if self.rows <= 0 or self.cols <= 0:
return True
zeros_below = all(iszerofunc(t) for t in self[1:, 0])
if iszerofunc(self[0, 0]):
return zeros_below and self[:, 1:]._eval_is_echelon(iszerofunc)
return zeros_below and self[1:, 1:]._eval_is_echelon(iszerofunc)
def _eval_rref(self, iszerofunc, simpfunc, normalize_last=True):
reduced, pivot_cols, swaps = self._row_reduce(iszerofunc, simpfunc,
normalize_last, normalize=True,
zero_above=True)
return reduced, pivot_cols
def _normalize_op_args(self, op, col, k, col1, col2, error_str="col"):
"""Validate the arguments for a row/column operation. ``error_str``
can be one of "row" or "col" depending on the arguments being parsed."""
if op not in ["n->kn", "n<->m", "n->n+km"]:
raise ValueError("Unknown {} operation '{}'. Valid col operations "
"are 'n->kn', 'n<->m', 'n->n+km'".format(error_str, op))
# normalize and validate the arguments
if op == "n->kn":
col = col if col is not None else col1
if col is None or k is None:
raise ValueError("For a {0} operation 'n->kn' you must provide the "
"kwargs `{0}` and `k`".format(error_str))
if not 0 <= col <= self.cols:
raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col))
if op == "n<->m":
# we need two cols to swap. It doesn't matter
# how they were specified, so gather them together and
# remove `None`
cols = set((col, k, col1, col2)).difference([None])
if len(cols) > 2:
# maybe the user left `k` by mistake?
cols = set((col, col1, col2)).difference([None])
if len(cols) != 2:
raise ValueError("For a {0} operation 'n<->m' you must provide the "
"kwargs `{0}1` and `{0}2`".format(error_str))
col1, col2 = cols
if not 0 <= col1 <= self.cols:
raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col1))
if not 0 <= col2 <= self.cols:
raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col2))
if op == "n->n+km":
col = col1 if col is None else col
col2 = col1 if col2 is None else col2
if col is None or col2 is None or k is None:
raise ValueError("For a {0} operation 'n->n+km' you must provide the "
"kwargs `{0}`, `k`, and `{0}2`".format(error_str))
if col == col2:
raise ValueError("For a {0} operation 'n->n+km' `{0}` and `{0}2` must "
"be different.".format(error_str))
if not 0 <= col <= self.cols:
raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col))
if not 0 <= col2 <= self.cols:
raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col2))
return op, col, k, col1, col2
def _permute_complexity_right(self, iszerofunc):
"""Permute columns with complicated elements as
far right as they can go. Since the ``sympy`` row reduction
algorithms start on the left, having complexity right-shifted
speeds things up.
Returns a tuple (mat, perm) where perm is a permutation
of the columns to perform to shift the complex columns right, and mat
is the permuted matrix."""
def complexity(i):
# the complexity of a column will be judged by how many
# element's zero-ness cannot be determined
return sum(1 if iszerofunc(e) is None else 0 for e in self[:, i])
complex = [(complexity(i), i) for i in range(self.cols)]
perm = [j for (i, j) in sorted(complex)]
return (self.permute(perm, orientation='cols'), perm)
def _row_reduce(self, iszerofunc, simpfunc, normalize_last=True,
normalize=True, zero_above=True):
"""Row reduce ``self`` and return a tuple (rref_matrix,
pivot_cols, swaps) where pivot_cols are the pivot columns
and swaps are any row swaps that were used in the process
of row reduction.
Parameters
==========
iszerofunc : determines if an entry can be used as a pivot
simpfunc : used to simplify elements and test if they are
zero if ``iszerofunc`` returns `None`
normalize_last : indicates where all row reduction should
happen in a fraction-free manner and then the rows are
normalized (so that the pivots are 1), or whether
rows should be normalized along the way (like the naive
row reduction algorithm)
normalize : whether pivot rows should be normalized so that
the pivot value is 1
zero_above : whether entries above the pivot should be zeroed.
If ``zero_above=False``, an echelon matrix will be returned.
"""
rows, cols = self.rows, self.cols
mat = list(self)
def get_col(i):
return mat[i::cols]
def row_swap(i, j):
mat[i*cols:(i + 1)*cols], mat[j*cols:(j + 1)*cols] = \
mat[j*cols:(j + 1)*cols], mat[i*cols:(i + 1)*cols]
def cross_cancel(a, i, b, j):
"""Does the row op row[i] = a*row[i] - b*row[j]"""
q = (j - i)*cols
for p in range(i*cols, (i + 1)*cols):
mat[p] = a*mat[p] - b*mat[p + q]
piv_row, piv_col = 0, 0
pivot_cols = []
swaps = []
# use a fraction free method to zero above and below each pivot
while piv_col < cols and piv_row < rows:
pivot_offset, pivot_val, \
assumed_nonzero, newly_determined = _find_reasonable_pivot(
get_col(piv_col)[piv_row:], iszerofunc, simpfunc)
# _find_reasonable_pivot may have simplified some things
# in the process. Let's not let them go to waste
for (offset, val) in newly_determined:
offset += piv_row
mat[offset*cols + piv_col] = val
if pivot_offset is None:
piv_col += 1
continue
pivot_cols.append(piv_col)
if pivot_offset != 0:
row_swap(piv_row, pivot_offset + piv_row)
swaps.append((piv_row, pivot_offset + piv_row))
# if we aren't normalizing last, we normalize
# before we zero the other rows
if normalize_last is False:
i, j = piv_row, piv_col
mat[i*cols + j] = S.One
for p in range(i*cols + j + 1, (i + 1)*cols):
mat[p] = mat[p] / pivot_val
# after normalizing, the pivot value is 1
pivot_val = S.One
# zero above and below the pivot
for row in range(rows):
# don't zero our current row
if row == piv_row:
continue
# don't zero above the pivot unless we're told.
if zero_above is False and row < piv_row:
continue
# if we're already a zero, don't do anything
val = mat[row*cols + piv_col]
if iszerofunc(val):
continue
cross_cancel(pivot_val, row, val, piv_row)
piv_row += 1
# normalize each row
if normalize_last is True and normalize is True:
for piv_i, piv_j in enumerate(pivot_cols):
pivot_val = mat[piv_i*cols + piv_j]
mat[piv_i*cols + piv_j] = S.One
for p in range(piv_i*cols + piv_j + 1, (piv_i + 1)*cols):
mat[p] = mat[p] / pivot_val
return self._new(self.rows, self.cols, mat), tuple(pivot_cols), tuple(swaps)
def echelon_form(self, iszerofunc=_iszero, simplify=False, with_pivots=False):
"""Returns a matrix row-equivalent to ``self`` that is
in echelon form. Note that echelon form of a matrix
is *not* unique, however, properties like the row
space and the null space are preserved."""
simpfunc = simplify if isinstance(
simplify, FunctionType) else _simplify
mat, pivots, swaps = self._eval_echelon_form(iszerofunc, simpfunc)
if with_pivots:
return mat, pivots
return mat
def elementary_col_op(self, op="n->kn", col=None, k=None, col1=None, col2=None):
"""Performs the elementary column operation `op`.
`op` may be one of
* "n->kn" (column n goes to k*n)
* "n<->m" (swap column n and column m)
* "n->n+km" (column n goes to column n + k*column m)
Parameters
==========
op : string; the elementary row operation
col : the column to apply the column operation
k : the multiple to apply in the column operation
col1 : one column of a column swap
col2 : second column of a column swap or column "m" in the column operation
"n->n+km"
"""
op, col, k, col1, col2 = self._normalize_op_args(op, col, k, col1, col2, "col")
# now that we've validated, we're all good to dispatch
if op == "n->kn":
return self._eval_col_op_multiply_col_by_const(col, k)
if op == "n<->m":
return self._eval_col_op_swap(col1, col2)
if op == "n->n+km":
return self._eval_col_op_add_multiple_to_other_col(col, k, col2)
def elementary_row_op(self, op="n->kn", row=None, k=None, row1=None, row2=None):
"""Performs the elementary row operation `op`.
`op` may be one of
* "n->kn" (row n goes to k*n)
* "n<->m" (swap row n and row m)
* "n->n+km" (row n goes to row n + k*row m)
Parameters
==========
op : string; the elementary row operation
row : the row to apply the row operation
k : the multiple to apply in the row operation
row1 : one row of a row swap
row2 : second row of a row swap or row "m" in the row operation
"n->n+km"
"""
op, row, k, row1, row2 = self._normalize_op_args(op, row, k, row1, row2, "row")
# now that we've validated, we're all good to dispatch
if op == "n->kn":
return self._eval_row_op_multiply_row_by_const(row, k)
if op == "n<->m":
return self._eval_row_op_swap(row1, row2)
if op == "n->n+km":
return self._eval_row_op_add_multiple_to_other_row(row, k, row2)
@property
def is_echelon(self, iszerofunc=_iszero):
"""Returns `True` if the matrix is in echelon form.
That is, all rows of zeros are at the bottom, and below
each leading non-zero in a row are exclusively zeros."""
return self._eval_is_echelon(iszerofunc)
def rank(self, iszerofunc=_iszero, simplify=False):
"""
Returns the rank of a matrix
>>> from sympy import Matrix
>>> from sympy.abc import x
>>> m = Matrix([[1, 2], [x, 1 - 1/x]])
>>> m.rank()
2
>>> n = Matrix(3, 3, range(1, 10))
>>> n.rank()
2
"""
simpfunc = simplify if isinstance(
simplify, FunctionType) else _simplify
# for small matrices, we compute the rank explicitly
# if is_zero on elements doesn't answer the question
# for small matrices, we fall back to the full routine.
if self.rows <= 0 or self.cols <= 0:
return 0
if self.rows <= 1 or self.cols <= 1:
zeros = [iszerofunc(x) for x in self]
if False in zeros:
return 1
if self.rows == 2 and self.cols == 2:
zeros = [iszerofunc(x) for x in self]
if not False in zeros and not None in zeros:
return 0
det = self.det()
if iszerofunc(det) and False in zeros:
return 1
if iszerofunc(det) is False:
return 2
mat, _ = self._permute_complexity_right(iszerofunc=iszerofunc)
echelon_form, pivots, swaps = mat._eval_echelon_form(iszerofunc=iszerofunc, simpfunc=simpfunc)
return len(pivots)
def rref(self, iszerofunc=_iszero, simplify=False, pivots=True, normalize_last=True):
"""Return reduced row-echelon form of matrix and indices of pivot vars.
Parameters
==========
iszerofunc : Function
A function used for detecting whether an element can
act as a pivot. ``lambda x: x.is_zero`` is used by default.
simplify : Function
A function used to simplify elements when looking for a pivot.
By default SymPy's ``simplify`` is used.
pivots : True or False
If ``True``, a tuple containing the row-reduced matrix and a tuple
of pivot columns is returned. If ``False`` just the row-reduced
matrix is returned.
normalize_last : True or False
If ``True``, no pivots are normalized to `1` until after all
entries above and below each pivot are zeroed. This means the row
reduction algorithm is fraction free until the very last step.
If ``False``, the naive row reduction procedure is used where
each pivot is normalized to be `1` before row operations are
used to zero above and below the pivot.
Notes
=====
The default value of ``normalize_last=True`` can provide significant
speedup to row reduction, especially on matrices with symbols. However,
if you depend on the form row reduction algorithm leaves entries
of the matrix, set ``noramlize_last=False``
Examples
========
>>> from sympy import Matrix
>>> from sympy.abc import x
>>> m = Matrix([[1, 2], [x, 1 - 1/x]])
>>> m.rref()
(Matrix([
[1, 0],
[0, 1]]), (0, 1))
>>> rref_matrix, rref_pivots = m.rref()
>>> rref_matrix
Matrix([
[1, 0],
[0, 1]])
>>> rref_pivots
(0, 1)
"""
simpfunc = simplify if isinstance(
simplify, FunctionType) else _simplify
ret, pivot_cols = self._eval_rref(iszerofunc=iszerofunc,
simpfunc=simpfunc,
normalize_last=normalize_last)
if pivots:
ret = (ret, pivot_cols)
return ret
class MatrixSubspaces(MatrixReductions):
"""Provides methods relating to the fundamental subspaces
of a matrix. Should not be instantiated directly."""
def columnspace(self, simplify=False):
"""Returns a list of vectors (Matrix objects) that span columnspace of ``self``
Examples
========
>>> from sympy.matrices import Matrix
>>> m = Matrix(3, 3, [1, 3, 0, -2, -6, 0, 3, 9, 6])
>>> m
Matrix([
[ 1, 3, 0],
[-2, -6, 0],
[ 3, 9, 6]])
>>> m.columnspace()
[Matrix([
[ 1],
[-2],
[ 3]]), Matrix([
[0],
[0],
[6]])]
See Also
========
nullspace
rowspace
"""
reduced, pivots = self.echelon_form(simplify=simplify, with_pivots=True)
return [self.col(i) for i in pivots]
def nullspace(self, simplify=False, iszerofunc=_iszero):
"""Returns list of vectors (Matrix objects) that span nullspace of ``self``
Examples
========
>>> from sympy.matrices import Matrix
>>> m = Matrix(3, 3, [1, 3, 0, -2, -6, 0, 3, 9, 6])
>>> m
Matrix([
[ 1, 3, 0],
[-2, -6, 0],
[ 3, 9, 6]])
>>> m.nullspace()
[Matrix([
[-3],
[ 1],
[ 0]])]
See Also
========
columnspace
rowspace
"""
reduced, pivots = self.rref(iszerofunc=iszerofunc, simplify=simplify)
free_vars = [i for i in range(self.cols) if i not in pivots]
basis = []
for free_var in free_vars:
# for each free variable, we will set it to 1 and all others
# to 0. Then, we will use back substitution to solve the system
vec = [S.Zero]*self.cols
vec[free_var] = S.One
for piv_row, piv_col in enumerate(pivots):
vec[piv_col] -= reduced[piv_row, free_var]
basis.append(vec)
return [self._new(self.cols, 1, b) for b in basis]
def rowspace(self, simplify=False):
"""Returns a list of vectors that span the row space of ``self``."""
reduced, pivots = self.echelon_form(simplify=simplify, with_pivots=True)
return [reduced.row(i) for i in range(len(pivots))]
@classmethod
def orthogonalize(cls, *vecs, **kwargs):
"""Apply the Gram-Schmidt orthogonalization procedure
to vectors supplied in ``vecs``.
Parameters
==========
vecs
vectors to be made orthogonal
normalize : bool
If true, return an orthonormal basis.
"""
normalize = kwargs.get('normalize', False)
def project(a, b):
return b * (a.dot(b) / b.dot(b))
def perp_to_subspace(vec, basis):
"""projects vec onto the subspace given
by the orthogonal basis ``basis``"""
components = [project(vec, b) for b in basis]
if len(basis) == 0:
return vec
return vec - reduce(lambda a, b: a + b, components)
ret = []
# make sure we start with a non-zero vector
vecs = list(vecs)
while len(vecs) > 0 and vecs[0].is_zero:
del vecs[0]
for vec in vecs:
perp = perp_to_subspace(vec, ret)
if not perp.is_zero:
ret.append(perp)
if normalize:
ret = [vec / vec.norm() for vec in ret]
return ret
class MatrixEigen(MatrixSubspaces):
"""Provides basic matrix eigenvalue/vector operations.
Should not be instantiated directly."""
@property
def _cache_is_diagonalizable(self):
SymPyDeprecationWarning(
feature='_cache_is_diagonalizable',
deprecated_since_version="1.4",
issue=15887
).warn()
return None
@property
def _cache_eigenvects(self):
SymPyDeprecationWarning(
feature='_cache_eigenvects',
deprecated_since_version="1.4",
issue=15887
).warn()
return None
def diagonalize(self, reals_only=False, sort=False, normalize=False):
"""
Return (P, D), where D is diagonal and
D = P^-1 * M * P
where M is current matrix.
Parameters
==========
reals_only : bool. Whether to throw an error if complex numbers are need
to diagonalize. (Default: False)
sort : bool. Sort the eigenvalues along the diagonal. (Default: False)
normalize : bool. If True, normalize the columns of P. (Default: False)
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2])
>>> m
Matrix([
[1, 2, 0],
[0, 3, 0],
[2, -4, 2]])
>>> (P, D) = m.diagonalize()
>>> D
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
>>> P
Matrix([
[-1, 0, -1],
[ 0, 0, -1],
[ 2, 1, 2]])
>>> P.inv() * m * P
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
See Also
========
is_diagonal
is_diagonalizable
"""
if not self.is_square:
raise NonSquareMatrixError()
if not self.is_diagonalizable(reals_only=reals_only):
raise MatrixError("Matrix is not diagonalizable")
eigenvecs = self.eigenvects(simplify=True)
if sort:
eigenvecs = sorted(eigenvecs, key=default_sort_key)
p_cols, diag = [], []
for val, mult, basis in eigenvecs:
diag += [val] * mult
p_cols += basis
if normalize:
p_cols = [v / v.norm() for v in p_cols]
return self.hstack(*p_cols), self.diag(*diag)
def eigenvals(self, error_when_incomplete=True, **flags):
r"""Return eigenvalues using the Berkowitz agorithm to compute
the characteristic polynomial.
Parameters
==========
error_when_incomplete : bool, optional
If it is set to ``True``, it will raise an error if not all
eigenvalues are computed. This is caused by ``roots`` not returning
a full list of eigenvalues.
simplify : bool or function, optional
If it is set to ``True``, it attempts to return the most
simplified form of expressions returned by applying default
simplification method in every routine.
If it is set to ``False``, it will skip simplification in this
particular routine to save computation resources.
If a function is passed to, it will attempt to apply
the particular function as simplification method.
rational : bool, optional
If it is set to ``True``, every floating point numbers would be
replaced with rationals before computation. It can solve some
issues of ``roots`` routine not working well with floats.
multiple : bool, optional
If it is set to ``True``, the result will be in the form of a
list.
If it is set to ``False``, the result will be in the form of a
dictionary.
Returns
=======
eigs : list or dict
Eigenvalues of a matrix. The return format would be specified by
the key ``multiple``.
Raises
======
MatrixError
If not enough roots had got computed.
NonSquareMatrixError
If attempted to compute eigenvalues from a non-square matrix.
See Also
========
MatrixDeterminant.charpoly
eigenvects
Notes
=====
Eigenvalues of a matrix `A` can be computed by solving a matrix
equation `\det(A - \lambda I) = 0`
"""
simplify = flags.get('simplify', False) # Collect simplify flag before popped up, to reuse later in the routine.
multiple = flags.get('multiple', False) # Collect multiple flag to decide whether return as a dict or list.
rational = flags.pop('rational', True)
mat = self
if not mat:
return {}
if rational:
mat = mat.applyfunc(
lambda x: nsimplify(x, rational=True) if x.has(Float) else x)
if mat.is_upper or mat.is_lower:
if not self.is_square:
raise NonSquareMatrixError()
diagonal_entries = [mat[i, i] for i in range(mat.rows)]
if multiple:
eigs = diagonal_entries
else:
eigs = {}
for diagonal_entry in diagonal_entries:
if diagonal_entry not in eigs:
eigs[diagonal_entry] = 0
eigs[diagonal_entry] += 1
else:
flags.pop('simplify', None) # pop unsupported flag
if isinstance(simplify, FunctionType):
eigs = roots(mat.charpoly(x=Dummy('x'), simplify=simplify), **flags)
else:
eigs = roots(mat.charpoly(x=Dummy('x')), **flags)
# make sure the algebraic multiplicty sums to the
# size of the matrix
if error_when_incomplete and (sum(eigs.values()) if
isinstance(eigs, dict) else len(eigs)) != self.cols:
raise MatrixError("Could not compute eigenvalues for {}".format(self))
# Since 'simplify' flag is unsupported in roots()
# simplify() function will be applied once at the end of the routine.
if not simplify:
return eigs
if not isinstance(simplify, FunctionType):
simplify = _simplify
# With 'multiple' flag set true, simplify() will be mapped for the list
# Otherwise, simplify() will be mapped for the keys of the dictionary
if not multiple:
return {simplify(key): value for key, value in eigs.items()}
else:
return [simplify(value) for value in eigs]
def eigenvects(self, error_when_incomplete=True, iszerofunc=_iszero, **flags):
"""Return list of triples (eigenval, multiplicity, eigenspace).
Parameters
==========
error_when_incomplete : bool, optional
Raise an error when not all eigenvalues are computed. This is
caused by ``roots`` not returning a full list of eigenvalues.
iszerofunc : function, optional
Specifies a zero testing function to be used in ``rref``.
Default value is ``_iszero``, which uses SymPy's naive and fast
default assumption handler.
It can also accept any user-specified zero testing function, if it
is formatted as a function which accepts a single symbolic argument
and returns ``True`` if it is tested as zero and ``False`` if it
is tested as non-zero, and ``None`` if it is undecidable.
simplify : bool or function, optional
If ``True``, ``as_content_primitive()`` will be used to tidy up
normalization artifacts.
It will also be used by the ``nullspace`` routine.
chop : bool or positive number, optional
If the matrix contains any Floats, they will be changed to Rationals
for computation purposes, but the answers will be returned after
being evaluated with evalf. The ``chop`` flag is passed to ``evalf``.
When ``chop=True`` a default precision will be used; a number will
be interpreted as the desired level of precision.
Returns
=======
ret : [(eigenval, multiplicity, eigenspace), ...]
A ragged list containing tuples of data obtained by ``eigenvals``
and ``nullspace``.
``eigenspace`` is a list containing the ``eigenvector`` for each
eigenvalue.
``eigenvector`` is a vector in the form of a ``Matrix``. e.g.
a vector of length 3 is returned as ``Matrix([a_1, a_2, a_3])``.
Raises
======
NotImplementedError
If failed to compute nullspace.
See Also
========
eigenvals
MatrixSubspaces.nullspace
"""
from sympy.matrices import eye
simplify = flags.get('simplify', True)
if not isinstance(simplify, FunctionType):
simpfunc = _simplify if simplify else lambda x: x
primitive = flags.get('simplify', False)
chop = flags.pop('chop', False)
flags.pop('multiple', None) # remove this if it's there
mat = self
# roots doesn't like Floats, so replace them with Rationals
has_floats = self.has(Float)
if has_floats:
mat = mat.applyfunc(lambda x: nsimplify(x, rational=True))
def eigenspace(eigenval):
"""Get a basis for the eigenspace for a particular eigenvalue"""
m = mat - self.eye(mat.rows) * eigenval
ret = m.nullspace(iszerofunc=iszerofunc)
# the nullspace for a real eigenvalue should be
# non-trivial. If we didn't find an eigenvector, try once
# more a little harder
if len(ret) == 0 and simplify:
ret = m.nullspace(iszerofunc=iszerofunc, simplify=True)
if len(ret) == 0:
raise NotImplementedError(
"Can't evaluate eigenvector for eigenvalue %s" % eigenval)
return ret
eigenvals = mat.eigenvals(rational=False,
error_when_incomplete=error_when_incomplete,
**flags)
ret = [(val, mult, eigenspace(val)) for val, mult in
sorted(eigenvals.items(), key=default_sort_key)]
if primitive:
# if the primitive flag is set, get rid of any common
# integer denominators
def denom_clean(l):
from sympy import gcd
return [(v / gcd(list(v))).applyfunc(simpfunc) for v in l]
ret = [(val, mult, denom_clean(es)) for val, mult, es in ret]
if has_floats:
# if we had floats to start with, turn the eigenvectors to floats
ret = [(val.evalf(chop=chop), mult, [v.evalf(chop=chop) for v in es]) for val, mult, es in ret]
return ret
def is_diagonalizable(self, reals_only=False, **kwargs):
"""Returns true if a matrix is diagonalizable.
Parameters
==========
reals_only : bool. If reals_only=True, determine whether the matrix can be
diagonalized without complex numbers. (Default: False)
kwargs
======
clear_cache : bool. If True, clear the result of any computations when finished.
(Default: True)
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2])
>>> m
Matrix([
[1, 2, 0],
[0, 3, 0],
[2, -4, 2]])
>>> m.is_diagonalizable()
True
>>> m = Matrix(2, 2, [0, 1, 0, 0])
>>> m
Matrix([
[0, 1],
[0, 0]])
>>> m.is_diagonalizable()
False
>>> m = Matrix(2, 2, [0, 1, -1, 0])
>>> m
Matrix([
[ 0, 1],
[-1, 0]])
>>> m.is_diagonalizable()
True
>>> m.is_diagonalizable(reals_only=True)
False
See Also
========
is_diagonal
diagonalize
"""
if 'clear_cache' in kwargs:
SymPyDeprecationWarning(
feature='clear_cache',
deprecated_since_version=1.4,
issue=15887
).warn()
if 'clear_subproducts' in kwargs:
SymPyDeprecationWarning(
feature='clear_subproducts',
deprecated_since_version=1.4,
issue=15887
).warn()
if not self.is_square:
return False
if all(e.is_real for e in self) and self.is_symmetric():
# every real symmetric matrix is real diagonalizable
return True
eigenvecs = self.eigenvects(simplify=True)
ret = True
for val, mult, basis in eigenvecs:
# if we have a complex eigenvalue
if reals_only and not val.is_real:
ret = False
# if the geometric multiplicity doesn't equal the algebraic
if mult != len(basis):
ret = False
return ret
def jordan_form(self, calc_transform=True, **kwargs):
"""Return ``(P, J)`` where `J` is a Jordan block
matrix and `P` is a matrix such that
``self == P*J*P**-1``
Parameters
==========
calc_transform : bool
If ``False``, then only `J` is returned.
chop : bool
All matrices are convered to exact types when computing
eigenvalues and eigenvectors. As a result, there may be
approximation errors. If ``chop==True``, these errors
will be truncated.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix([[ 6, 5, -2, -3], [-3, -1, 3, 3], [ 2, 1, -2, -3], [-1, 1, 5, 5]])
>>> P, J = m.jordan_form()
>>> J
Matrix([
[2, 1, 0, 0],
[0, 2, 0, 0],
[0, 0, 2, 1],
[0, 0, 0, 2]])
See Also
========
jordan_block
"""
if not self.is_square:
raise NonSquareMatrixError("Only square matrices have Jordan forms")
chop = kwargs.pop('chop', False)
mat = self
has_floats = self.has(Float)
if has_floats:
try:
max_prec = max(term._prec for term in self._mat if isinstance(term, Float))
except ValueError:
# if no term in the matrix is explicitly a Float calling max()
# will throw a error so setting max_prec to default value of 53
max_prec = 53
# setting minimum max_dps to 15 to prevent loss of precision in
# matrix containing non evaluated expressions
max_dps = max(prec_to_dps(max_prec), 15)
def restore_floats(*args):
"""If ``has_floats`` is `True`, cast all ``args`` as
matrices of floats."""
if has_floats:
args = [m.evalf(prec=max_dps, chop=chop) for m in args]
if len(args) == 1:
return args[0]
return args
# cache calculations for some speedup
mat_cache = {}
def eig_mat(val, pow):
"""Cache computations of ``(self - val*I)**pow`` for quick
retrieval"""
if (val, pow) in mat_cache:
return mat_cache[(val, pow)]
if (val, pow - 1) in mat_cache:
mat_cache[(val, pow)] = mat_cache[(val, pow - 1)] * mat_cache[(val, 1)]
else:
mat_cache[(val, pow)] = (mat - val*self.eye(self.rows))**pow
return mat_cache[(val, pow)]
# helper functions
def nullity_chain(val, algebraic_multiplicity):
"""Calculate the sequence [0, nullity(E), nullity(E**2), ...]
until it is constant where ``E = self - val*I``"""
# mat.rank() is faster than computing the null space,
# so use the rank-nullity theorem
cols = self.cols
ret = [0]
nullity = cols - eig_mat(val, 1).rank()
i = 2
while nullity != ret[-1]:
ret.append(nullity)
if nullity == algebraic_multiplicity:
break
nullity = cols - eig_mat(val, i).rank()
i += 1
# Due to issues like #7146 and #15872, SymPy sometimes
# gives the wrong rank. In this case, raise an error
# instead of returning an incorrect matrix
if nullity < ret[-1] or nullity > algebraic_multiplicity:
raise MatrixError(
"SymPy had encountered an inconsistent "
"result while computing Jordan block: "
"{}".format(self))
return ret
def blocks_from_nullity_chain(d):
"""Return a list of the size of each Jordan block.
If d_n is the nullity of E**n, then the number
of Jordan blocks of size n is
2*d_n - d_(n-1) - d_(n+1)"""
# d[0] is always the number of columns, so skip past it
mid = [2*d[n] - d[n - 1] - d[n + 1] for n in range(1, len(d) - 1)]
# d is assumed to plateau with "d[ len(d) ] == d[-1]", so
# 2*d_n - d_(n-1) - d_(n+1) == d_n - d_(n-1)
end = [d[-1] - d[-2]] if len(d) > 1 else [d[0]]
return mid + end
def pick_vec(small_basis, big_basis):
"""Picks a vector from big_basis that isn't in
the subspace spanned by small_basis"""
if len(small_basis) == 0:
return big_basis[0]
for v in big_basis:
_, pivots = self.hstack(*(small_basis + [v])).echelon_form(with_pivots=True)
if pivots[-1] == len(small_basis):
return v
# roots doesn't like Floats, so replace them with Rationals
if has_floats:
mat = mat.applyfunc(lambda x: nsimplify(x, rational=True))
# first calculate the jordan block structure
eigs = mat.eigenvals()
# make sure that we found all the roots by counting
# the algebraic multiplicity
if sum(m for m in eigs.values()) != mat.cols:
raise MatrixError("Could not compute eigenvalues for {}".format(mat))
# most matrices have distinct eigenvalues
# and so are diagonalizable. In this case, don't
# do extra work!
if len(eigs.keys()) == mat.cols:
blocks = list(sorted(eigs.keys(), key=default_sort_key))
jordan_mat = mat.diag(*blocks)
if not calc_transform:
return restore_floats(jordan_mat)
jordan_basis = [eig_mat(eig, 1).nullspace()[0] for eig in blocks]
basis_mat = mat.hstack(*jordan_basis)
return restore_floats(basis_mat, jordan_mat)
block_structure = []
for eig in sorted(eigs.keys(), key=default_sort_key):
algebraic_multiplicity = eigs[eig]
chain = nullity_chain(eig, algebraic_multiplicity)
block_sizes = blocks_from_nullity_chain(chain)
# if block_sizes == [a, b, c, ...], then the number of
# Jordan blocks of size 1 is a, of size 2 is b, etc.
# create an array that has (eig, block_size) with one
# entry for each block
size_nums = [(i+1, num) for i, num in enumerate(block_sizes)]
# we expect larger Jordan blocks to come earlier
size_nums.reverse()
block_structure.extend(
(eig, size) for size, num in size_nums for _ in range(num))
jordan_form_size = sum(size for eig, size in block_structure)
if jordan_form_size != self.rows:
raise MatrixError(
"SymPy had encountered an inconsistent result while "
"computing Jordan block. : {}".format(self))
blocks = (mat.jordan_block(size=size, eigenvalue=eig) for eig, size in block_structure)
jordan_mat = mat.diag(*blocks)
if not calc_transform:
return restore_floats(jordan_mat)
# For each generalized eigenspace, calculate a basis.
# We start by looking for a vector in null( (A - eig*I)**n )
# which isn't in null( (A - eig*I)**(n-1) ) where n is
# the size of the Jordan block
#
# Ideally we'd just loop through block_structure and
# compute each generalized eigenspace. However, this
# causes a lot of unneeded computation. Instead, we
# go through the eigenvalues separately, since we know
# their generalized eigenspaces must have bases that
# are linearly independent.
jordan_basis = []
for eig in sorted(eigs.keys(), key=default_sort_key):
eig_basis = []
for block_eig, size in block_structure:
if block_eig != eig:
continue
null_big = (eig_mat(eig, size)).nullspace()
null_small = (eig_mat(eig, size - 1)).nullspace()
# we want to pick something that is in the big basis
# and not the small, but also something that is independent
# of any other generalized eigenvectors from a different
# generalized eigenspace sharing the same eigenvalue.
vec = pick_vec(null_small + eig_basis, null_big)
new_vecs = [(eig_mat(eig, i))*vec for i in range(size)]
eig_basis.extend(new_vecs)
jordan_basis.extend(reversed(new_vecs))
basis_mat = mat.hstack(*jordan_basis)
return restore_floats(basis_mat, jordan_mat)
def left_eigenvects(self, **flags):
"""Returns left eigenvectors and eigenvalues.
This function returns the list of triples (eigenval, multiplicity,
basis) for the left eigenvectors. Options are the same as for
eigenvects(), i.e. the ``**flags`` arguments gets passed directly to
eigenvects().
Examples
========
>>> from sympy import Matrix
>>> M = Matrix([[0, 1, 1], [1, 0, 0], [1, 1, 1]])
>>> M.eigenvects()
[(-1, 1, [Matrix([
[-1],
[ 1],
[ 0]])]), (0, 1, [Matrix([
[ 0],
[-1],
[ 1]])]), (2, 1, [Matrix([
[2/3],
[1/3],
[ 1]])])]
>>> M.left_eigenvects()
[(-1, 1, [Matrix([[-2, 1, 1]])]), (0, 1, [Matrix([[-1, -1, 1]])]), (2,
1, [Matrix([[1, 1, 1]])])]
"""
eigs = self.transpose().eigenvects(**flags)
return [(val, mult, [l.transpose() for l in basis]) for val, mult, basis in eigs]
def singular_values(self):
"""Compute the singular values of a Matrix
Examples
========
>>> from sympy import Matrix, Symbol
>>> x = Symbol('x', real=True)
>>> A = Matrix([[0, 1, 0], [0, x, 0], [-1, 0, 0]])
>>> A.singular_values()
[sqrt(x**2 + 1), 1, 0]
See Also
========
condition_number
"""
mat = self
if self.rows >= self.cols:
valmultpairs = (mat.H * mat).eigenvals()
else:
valmultpairs = (mat * mat.H).eigenvals()
# Expands result from eigenvals into a simple list
vals = []
for k, v in valmultpairs.items():
vals += [sqrt(k)] * v # dangerous! same k in several spots!
# Pad with zeros if singular values are computed in reverse way,
# to give consistent format.
if len(vals) < self.cols:
vals += [S.Zero] * (self.cols - len(vals))
# sort them in descending order
vals.sort(reverse=True, key=default_sort_key)
return vals
class MatrixCalculus(MatrixCommon):
"""Provides calculus-related matrix operations."""
def diff(self, *args, **kwargs):
"""Calculate the derivative of each element in the matrix.
``args`` will be passed to the ``integrate`` function.
Examples
========
>>> from sympy.matrices import Matrix
>>> from sympy.abc import x, y
>>> M = Matrix([[x, y], [1, 0]])
>>> M.diff(x)
Matrix([
[1, 0],
[0, 0]])
See Also
========
integrate
limit
"""
# XXX this should be handled here rather than in Derivative
from sympy import Derivative
kwargs.setdefault('evaluate', True)
deriv = Derivative(self, *args, evaluate=True)
if not isinstance(self, Basic):
return deriv.as_mutable()
else:
return deriv
def _eval_derivative(self, arg):
return self.applyfunc(lambda x: x.diff(arg))
def _accept_eval_derivative(self, s):
return s._visit_eval_derivative_array(self)
def _visit_eval_derivative_scalar(self, base):
# Types are (base: scalar, self: matrix)
return self.applyfunc(lambda x: base.diff(x))
def _visit_eval_derivative_array(self, base):
# Types are (base: array/matrix, self: matrix)
from sympy import derive_by_array
return derive_by_array(base, self)
def integrate(self, *args):
"""Integrate each element of the matrix. ``args`` will
be passed to the ``integrate`` function.
Examples
========
>>> from sympy.matrices import Matrix
>>> from sympy.abc import x, y
>>> M = Matrix([[x, y], [1, 0]])
>>> M.integrate((x, ))
Matrix([
[x**2/2, x*y],
[ x, 0]])
>>> M.integrate((x, 0, 2))
Matrix([
[2, 2*y],
[2, 0]])
See Also
========
limit
diff
"""
return self.applyfunc(lambda x: x.integrate(*args))
def jacobian(self, X):
"""Calculates the Jacobian matrix (derivative of a vector-valued function).
Parameters
==========
``self`` : vector of expressions representing functions f_i(x_1, ..., x_n).
X : set of x_i's in order, it can be a list or a Matrix
Both ``self`` and X can be a row or a column matrix in any order
(i.e., jacobian() should always work).
Examples
========
>>> from sympy import sin, cos, Matrix
>>> from sympy.abc import rho, phi
>>> X = Matrix([rho*cos(phi), rho*sin(phi), rho**2])
>>> Y = Matrix([rho, phi])
>>> X.jacobian(Y)
Matrix([
[cos(phi), -rho*sin(phi)],
[sin(phi), rho*cos(phi)],
[ 2*rho, 0]])
>>> X = Matrix([rho*cos(phi), rho*sin(phi)])
>>> X.jacobian(Y)
Matrix([
[cos(phi), -rho*sin(phi)],
[sin(phi), rho*cos(phi)]])
See Also
========
hessian
wronskian
"""
if not isinstance(X, MatrixBase):
X = self._new(X)
# Both X and ``self`` can be a row or a column matrix, so we need to make
# sure all valid combinations work, but everything else fails:
if self.shape[0] == 1:
m = self.shape[1]
elif self.shape[1] == 1:
m = self.shape[0]
else:
raise TypeError("``self`` must be a row or a column matrix")
if X.shape[0] == 1:
n = X.shape[1]
elif X.shape[1] == 1:
n = X.shape[0]
else:
raise TypeError("X must be a row or a column matrix")
# m is the number of functions and n is the number of variables
# computing the Jacobian is now easy:
return self._new(m, n, lambda j, i: self[j].diff(X[i]))
def limit(self, *args):
"""Calculate the limit of each element in the matrix.
``args`` will be passed to the ``limit`` function.
Examples
========
>>> from sympy.matrices import Matrix
>>> from sympy.abc import x, y
>>> M = Matrix([[x, y], [1, 0]])
>>> M.limit(x, 2)
Matrix([
[2, y],
[1, 0]])
See Also
========
integrate
diff
"""
return self.applyfunc(lambda x: x.limit(*args))
# https://github.com/sympy/sympy/pull/12854
class MatrixDeprecated(MatrixCommon):
"""A class to house deprecated matrix methods."""
def _legacy_array_dot(self, b):
"""Compatibility function for deprecated behavior of ``matrix.dot(vector)``
"""
from .dense import Matrix
if not isinstance(b, MatrixBase):
if is_sequence(b):
if len(b) != self.cols and len(b) != self.rows:
raise ShapeError(
"Dimensions incorrect for dot product: %s, %s" % (
self.shape, len(b)))
return self.dot(Matrix(b))
else:
raise TypeError(
"`b` must be an ordered iterable or Matrix, not %s." %
type(b))
mat = self
if mat.cols == b.rows:
if b.cols != 1:
mat = mat.T
b = b.T
prod = flatten((mat * b).tolist())
return prod
if mat.cols == b.cols:
return mat.dot(b.T)
elif mat.rows == b.rows:
return mat.T.dot(b)
else:
raise ShapeError("Dimensions incorrect for dot product: %s, %s" % (
self.shape, b.shape))
def berkowitz_charpoly(self, x=Dummy('lambda'), simplify=_simplify):
return self.charpoly(x=x)
def berkowitz_det(self):
"""Computes determinant using Berkowitz method.
See Also
========
det
berkowitz
"""
return self.det(method='berkowitz')
def berkowitz_eigenvals(self, **flags):
"""Computes eigenvalues of a Matrix using Berkowitz method.
See Also
========
berkowitz
"""
return self.eigenvals(**flags)
def berkowitz_minors(self):
"""Computes principal minors using Berkowitz method.
See Also
========
berkowitz
"""
sign, minors = S.One, []
for poly in self.berkowitz():
minors.append(sign * poly[-1])
sign = -sign
return tuple(minors)
def berkowitz(self):
from sympy.matrices import zeros
berk = ((1,),)
if not self:
return berk
if not self.is_square:
raise NonSquareMatrixError()
A, N = self, self.rows
transforms = [0] * (N - 1)
for n in range(N, 1, -1):
T, k = zeros(n + 1, n), n - 1
R, C = -A[k, :k], A[:k, k]
A, a = A[:k, :k], -A[k, k]
items = [C]
for i in range(0, n - 2):
items.append(A * items[i])
for i, B in enumerate(items):
items[i] = (R * B)[0, 0]
items = [S.One, a] + items
for i in range(n):
T[i:, i] = items[:n - i + 1]
transforms[k - 1] = T
polys = [self._new([S.One, -A[0, 0]])]
for i, T in enumerate(transforms):
polys.append(T * polys[i])
return berk + tuple(map(tuple, polys))
def cofactorMatrix(self, method="berkowitz"):
return self.cofactor_matrix(method=method)
def det_bareis(self):
return self.det(method='bareiss')
def det_bareiss(self):
"""Compute matrix determinant using Bareiss' fraction-free
algorithm which is an extension of the well known Gaussian
elimination method. This approach is best suited for dense
symbolic matrices and will result in a determinant with
minimal number of fractions. It means that less term
rewriting is needed on resulting formulae.
TODO: Implement algorithm for sparse matrices (SFF),
http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps.
See Also
========
det
berkowitz_det
"""
return self.det(method='bareiss')
def det_LU_decomposition(self):
"""Compute matrix determinant using LU decomposition
Note that this method fails if the LU decomposition itself
fails. In particular, if the matrix has no inverse this method
will fail.
TODO: Implement algorithm for sparse matrices (SFF),
http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps.
See Also
========
det
det_bareiss
berkowitz_det
"""
return self.det(method='lu')
def jordan_cell(self, eigenval, n):
return self.jordan_block(size=n, eigenvalue=eigenval)
def jordan_cells(self, calc_transformation=True):
P, J = self.jordan_form()
return P, J.get_diag_blocks()
def minorEntry(self, i, j, method="berkowitz"):
return self.minor(i, j, method=method)
def minorMatrix(self, i, j):
return self.minor_submatrix(i, j)
def permuteBkwd(self, perm):
"""Permute the rows of the matrix with the given permutation in reverse."""
return self.permute_rows(perm, direction='backward')
def permuteFwd(self, perm):
"""Permute the rows of the matrix with the given permutation."""
return self.permute_rows(perm, direction='forward')
class MatrixBase(MatrixDeprecated,
MatrixCalculus,
MatrixEigen,
MatrixCommon):
"""Base class for matrix objects."""
# Added just for numpy compatibility
__array_priority__ = 11
is_Matrix = True
_class_priority = 3
_sympify = staticmethod(sympify)
__hash__ = None # Mutable
# Defined here the same as on Basic.
# We don't define _repr_png_ here because it would add a large amount of
# data to any notebook containing SymPy expressions, without adding
# anything useful to the notebook. It can still enabled manually, e.g.,
# for the qtconsole, with init_printing().
def _repr_latex_(self):
"""
IPython/Jupyter LaTeX printing
To change the behavior of this (e.g., pass in some settings to LaTeX),
use init_printing(). init_printing() will also enable LaTeX printing
for built in numeric types like ints and container types that contain
SymPy objects, like lists and dictionaries of expressions.
"""
from sympy.printing.latex import latex
s = latex(self, mode='plain')
return "$\\displaystyle %s$" % s
_repr_latex_orig = _repr_latex_
def __array__(self, dtype=object):
from .dense import matrix2numpy
return matrix2numpy(self, dtype=dtype)
def __getattr__(self, attr):
if attr in ('diff', 'integrate', 'limit'):
def doit(*args):
item_doit = lambda item: getattr(item, attr)(*args)
return self.applyfunc(item_doit)
return doit
else:
raise AttributeError(
"%s has no attribute %s." % (self.__class__.__name__, attr))
def __len__(self):
"""Return the number of elements of ``self``.
Implemented mainly so bool(Matrix()) == False.
"""
return self.rows * self.cols
def __mathml__(self):
mml = ""
for i in range(self.rows):
mml += "<matrixrow>"
for j in range(self.cols):
mml += self[i, j].__mathml__()
mml += "</matrixrow>"
return "<matrix>" + mml + "</matrix>"
# needed for python 2 compatibility
def __ne__(self, other):
return not self == other
def _matrix_pow_by_jordan_blocks(self, num):
from sympy.matrices import diag, MutableMatrix
from sympy import binomial
def jordan_cell_power(jc, n):
N = jc.shape[0]
l = jc[0, 0]
if l == 0 and (n < N - 1) != False:
raise ValueError("Matrix det == 0; not invertible")
elif l == 0 and N > 1 and n % 1 != 0:
raise ValueError("Non-integer power cannot be evaluated")
for i in range(N):
for j in range(N-i):
bn = binomial(n, i)
if isinstance(bn, binomial):
bn = bn._eval_expand_func()
jc[j, i+j] = l**(n-i)*bn
P, J = self.jordan_form()
jordan_cells = J.get_diag_blocks()
# Make sure jordan_cells matrices are mutable:
jordan_cells = [MutableMatrix(j) for j in jordan_cells]
for j in jordan_cells:
jordan_cell_power(j, num)
return self._new(P*diag(*jordan_cells)*P.inv())
def __repr__(self):
return sstr(self)
def __str__(self):
if self.rows == 0 or self.cols == 0:
return 'Matrix(%s, %s, [])' % (self.rows, self.cols)
return "Matrix(%s)" % str(self.tolist())
def _diagonalize_clear_subproducts(self):
del self._is_symbolic
del self._is_symmetric
del self._eigenvects
def _format_str(self, printer=None):
if not printer:
from sympy.printing.str import StrPrinter
printer = StrPrinter()
# Handle zero dimensions:
if self.rows == 0 or self.cols == 0:
return 'Matrix(%s, %s, [])' % (self.rows, self.cols)
if self.rows == 1:
return "Matrix([%s])" % self.table(printer, rowsep=',\n')
return "Matrix([\n%s])" % self.table(printer, rowsep=',\n')
@classmethod
def _handle_creation_inputs(cls, *args, **kwargs):
"""Return the number of rows, cols and flat matrix elements.
Examples
========
>>> from sympy import Matrix, I
Matrix can be constructed as follows:
* from a nested list of iterables
>>> Matrix( ((1, 2+I), (3, 4)) )
Matrix([
[1, 2 + I],
[3, 4]])
* from un-nested iterable (interpreted as a column)
>>> Matrix( [1, 2] )
Matrix([
[1],
[2]])
* from un-nested iterable with dimensions
>>> Matrix(1, 2, [1, 2] )
Matrix([[1, 2]])
* from no arguments (a 0 x 0 matrix)
>>> Matrix()
Matrix(0, 0, [])
* from a rule
>>> Matrix(2, 2, lambda i, j: i/(j + 1) )
Matrix([
[0, 0],
[1, 1/2]])
"""
from sympy.matrices.sparse import SparseMatrix
flat_list = None
if len(args) == 1:
# Matrix(SparseMatrix(...))
if isinstance(args[0], SparseMatrix):
return args[0].rows, args[0].cols, flatten(args[0].tolist())
# Matrix(Matrix(...))
elif isinstance(args[0], MatrixBase):
return args[0].rows, args[0].cols, args[0]._mat
# Matrix(MatrixSymbol('X', 2, 2))
elif isinstance(args[0], Basic) and args[0].is_Matrix:
return args[0].rows, args[0].cols, args[0].as_explicit()._mat
# Matrix(numpy.ones((2, 2)))
elif hasattr(args[0], "__array__"):
# NumPy array or matrix or some other object that implements
# __array__. So let's first use this method to get a
# numpy.array() and then make a python list out of it.
arr = args[0].__array__()
if len(arr.shape) == 2:
rows, cols = arr.shape[0], arr.shape[1]
flat_list = [cls._sympify(i) for i in arr.ravel()]
return rows, cols, flat_list
elif len(arr.shape) == 1:
rows, cols = arr.shape[0], 1
flat_list = [S.Zero] * rows
for i in range(len(arr)):
flat_list[i] = cls._sympify(arr[i])
return rows, cols, flat_list
else:
raise NotImplementedError(
"SymPy supports just 1D and 2D matrices")
# Matrix([1, 2, 3]) or Matrix([[1, 2], [3, 4]])
elif is_sequence(args[0]) \
and not isinstance(args[0], DeferredVector):
in_mat = []
ncol = set()
for row in args[0]:
if isinstance(row, MatrixBase):
in_mat.extend(row.tolist())
if row.cols or row.rows: # only pay attention if it's not 0x0
ncol.add(row.cols)
else:
in_mat.append(row)
try:
ncol.add(len(row))
except TypeError:
ncol.add(-1)
if len(ncol) > 1:
nolen = False
if -1 in ncol:
ncol.remove(-1)
nolen = True
nums = ', '.join(sorted([str(i) for i in ncol]))
if nolen:
nums = 'none, ' + nums
raise ValueError(
"Got rows of variable lengths: %s" % nums)
if -1 in ncol:
ncol = [1]
cols = ncol.pop() if ncol else 0
rows = len(in_mat) if cols else 0
if not rows:
flat_list = []
else:
# how many of the rows are sequences? All or none are ok.
nseq = sum([is_sequence(i) for i in in_mat])
if not nseq:
cols = 1
flat_list = [cls._sympify(i) for i in in_mat]
elif nseq == rows:
flat_list = [cls._sympify(in_mat[j][i]) for
j in range(rows) for i in range(cols)]
else:
pass # flat_list is still None; error raised below
elif len(args) == 3:
rows = as_int(args[0])
cols = as_int(args[1])
if rows < 0 or cols < 0:
raise ValueError("Cannot create a {} x {} matrix. "
"Both dimensions must be positive".format(rows, cols))
# Matrix(2, 2, lambda i, j: i+j)
if len(args) == 3 and isinstance(args[2], Callable):
op = args[2]
flat_list = []
for i in range(rows):
flat_list.extend(
[cls._sympify(op(cls._sympify(i), cls._sympify(j)))
for j in range(cols)])
# Matrix(2, 2, [1, 2, 3, 4])
elif len(args) == 3 and is_sequence(args[2]):
flat_list = args[2]
if len(flat_list) != rows * cols:
raise ValueError(
'List length should be equal to rows*columns')
flat_list = [cls._sympify(i) for i in flat_list]
# Matrix()
elif len(args) == 0:
# Empty Matrix
rows = cols = 0
flat_list = []
if flat_list is None:
raise TypeError(filldedent('''
Data type not understood; expecting list of lists
or lists of values.'''))
return rows, cols, flat_list
def _setitem(self, key, value):
"""Helper to set value at location given by key.
Examples
========
>>> from sympy import Matrix, I, zeros, ones
>>> m = Matrix(((1, 2+I), (3, 4)))
>>> m
Matrix([
[1, 2 + I],
[3, 4]])
>>> m[1, 0] = 9
>>> m
Matrix([
[1, 2 + I],
[9, 4]])
>>> m[1, 0] = [[0, 1]]
To replace row r you assign to position r*m where m
is the number of columns:
>>> M = zeros(4)
>>> m = M.cols
>>> M[3*m] = ones(1, m)*2; M
Matrix([
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[2, 2, 2, 2]])
And to replace column c you can assign to position c:
>>> M[2] = ones(m, 1)*4; M
Matrix([
[0, 0, 4, 0],
[0, 0, 4, 0],
[0, 0, 4, 0],
[2, 2, 4, 2]])
"""
from .dense import Matrix
is_slice = isinstance(key, slice)
i, j = key = self.key2ij(key)
is_mat = isinstance(value, MatrixBase)
if type(i) is slice or type(j) is slice:
if is_mat:
self.copyin_matrix(key, value)
return
if not isinstance(value, Expr) and is_sequence(value):
self.copyin_list(key, value)
return
raise ValueError('unexpected value: %s' % value)
else:
if (not is_mat and
not isinstance(value, Basic) and is_sequence(value)):
value = Matrix(value)
is_mat = True
if is_mat:
if is_slice:
key = (slice(*divmod(i, self.cols)),
slice(*divmod(j, self.cols)))
else:
key = (slice(i, i + value.rows),
slice(j, j + value.cols))
self.copyin_matrix(key, value)
else:
return i, j, self._sympify(value)
return
def add(self, b):
"""Return self + b """
return self + b
def cholesky_solve(self, rhs):
"""Solves ``Ax = B`` using Cholesky decomposition,
for a general square non-singular matrix.
For a non-square matrix with rows > cols,
the least squares solution is returned.
See Also
========
lower_triangular_solve
upper_triangular_solve
gauss_jordan_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
"""
hermitian = True
if self.is_symmetric():
hermitian = False
L = self._cholesky(hermitian=hermitian)
elif self.is_hermitian:
L = self._cholesky(hermitian=hermitian)
elif self.rows >= self.cols:
L = (self.H * self)._cholesky(hermitian=hermitian)
rhs = self.H * rhs
else:
raise NotImplementedError('Under-determined System. '
'Try M.gauss_jordan_solve(rhs)')
Y = L._lower_triangular_solve(rhs)
if hermitian:
return (L.H)._upper_triangular_solve(Y)
else:
return (L.T)._upper_triangular_solve(Y)
def cholesky(self, hermitian=True):
"""Returns the Cholesky-type decomposition L of a matrix A
such that L * L.H == A if hermitian flag is True,
or L * L.T == A if hermitian is False.
A must be a Hermitian positive-definite matrix if hermitian is True,
or a symmetric matrix if it is False.
Examples
========
>>> from sympy.matrices import Matrix
>>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
>>> A.cholesky()
Matrix([
[ 5, 0, 0],
[ 3, 3, 0],
[-1, 1, 3]])
>>> A.cholesky() * A.cholesky().T
Matrix([
[25, 15, -5],
[15, 18, 0],
[-5, 0, 11]])
The matrix can have complex entries:
>>> from sympy import I
>>> A = Matrix(((9, 3*I), (-3*I, 5)))
>>> A.cholesky()
Matrix([
[ 3, 0],
[-I, 2]])
>>> A.cholesky() * A.cholesky().H
Matrix([
[ 9, 3*I],
[-3*I, 5]])
Non-hermitian Cholesky-type decomposition may be useful when the
matrix is not positive-definite.
>>> A = Matrix([[1, 2], [2, 1]])
>>> L = A.cholesky(hermitian=False)
>>> L
Matrix([
[1, 0],
[2, sqrt(3)*I]])
>>> L*L.T == A
True
See Also
========
LDLdecomposition
LUdecomposition
QRdecomposition
"""
if not self.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if hermitian and not self.is_hermitian:
raise ValueError("Matrix must be Hermitian.")
if not hermitian and not self.is_symmetric():
raise ValueError("Matrix must be symmetric.")
return self._cholesky(hermitian=hermitian)
def condition_number(self):
"""Returns the condition number of a matrix.
This is the maximum singular value divided by the minimum singular value
Examples
========
>>> from sympy import Matrix, S
>>> A = Matrix([[1, 0, 0], [0, 10, 0], [0, 0, S.One/10]])
>>> A.condition_number()
100
See Also
========
singular_values
"""
if not self:
return S.Zero
singularvalues = self.singular_values()
return Max(*singularvalues) / Min(*singularvalues)
def copy(self):
"""
Returns the copy of a matrix.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix(2, 2, [1, 2, 3, 4])
>>> A.copy()
Matrix([
[1, 2],
[3, 4]])
"""
return self._new(self.rows, self.cols, self._mat)
def cross(self, b):
r"""
Return the cross product of ``self`` and ``b`` relaxing the condition
of compatible dimensions: if each has 3 elements, a matrix of the
same type and shape as ``self`` will be returned. If ``b`` has the same
shape as ``self`` then common identities for the cross product (like
`a \times b = - b \times a`) will hold.
Parameters
==========
b : 3x1 or 1x3 Matrix
See Also
========
dot
multiply
multiply_elementwise
"""
if not is_sequence(b):
raise TypeError(
"`b` must be an ordered iterable or Matrix, not %s." %
type(b))
if not (self.rows * self.cols == b.rows * b.cols == 3):
raise ShapeError("Dimensions incorrect for cross product: %s x %s" %
((self.rows, self.cols), (b.rows, b.cols)))
else:
return self._new(self.rows, self.cols, (
(self[1] * b[2] - self[2] * b[1]),
(self[2] * b[0] - self[0] * b[2]),
(self[0] * b[1] - self[1] * b[0])))
@property
def D(self):
"""Return Dirac conjugate (if ``self.rows == 4``).
Examples
========
>>> from sympy import Matrix, I, eye
>>> m = Matrix((0, 1 + I, 2, 3))
>>> m.D
Matrix([[0, 1 - I, -2, -3]])
>>> m = (eye(4) + I*eye(4))
>>> m[0, 3] = 2
>>> m.D
Matrix([
[1 - I, 0, 0, 0],
[ 0, 1 - I, 0, 0],
[ 0, 0, -1 + I, 0],
[ 2, 0, 0, -1 + I]])
If the matrix does not have 4 rows an AttributeError will be raised
because this property is only defined for matrices with 4 rows.
>>> Matrix(eye(2)).D
Traceback (most recent call last):
...
AttributeError: Matrix has no attribute D.
See Also
========
conjugate: By-element conjugation
H: Hermite conjugation
"""
from sympy.physics.matrices import mgamma
if self.rows != 4:
# In Python 3.2, properties can only return an AttributeError
# so we can't raise a ShapeError -- see commit which added the
# first line of this inline comment. Also, there is no need
# for a message since MatrixBase will raise the AttributeError
raise AttributeError
return self.H * mgamma(0)
def diagonal_solve(self, rhs):
"""Solves ``Ax = B`` efficiently, where A is a diagonal Matrix,
with non-zero diagonal entries.
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> A = eye(2)*2
>>> B = Matrix([[1, 2], [3, 4]])
>>> A.diagonal_solve(B) == B/2
True
See Also
========
lower_triangular_solve
upper_triangular_solve
gauss_jordan_solve
cholesky_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
"""
if not self.is_diagonal():
raise TypeError("Matrix should be diagonal")
if rhs.rows != self.rows:
raise TypeError("Size mis-match")
return self._diagonal_solve(rhs)
def dot(self, b, hermitian=None, conjugate_convention=None):
"""Return the dot or inner product of two vectors of equal length.
Here ``self`` must be a ``Matrix`` of size 1 x n or n x 1, and ``b``
must be either a matrix of size 1 x n, n x 1, or a list/tuple of length n.
A scalar is returned.
By default, ``dot`` does not conjugate ``self`` or ``b``, even if there are
complex entries. Set ``hermitian=True`` (and optionally a ``conjugate_convention``)
to compute the hermitian inner product.
Possible kwargs are ``hermitian`` and ``conjugate_convention``.
If ``conjugate_convention`` is ``"left"``, ``"math"`` or ``"maths"``,
the conjugate of the first vector (``self``) is used. If ``"right"``
or ``"physics"`` is specified, the conjugate of the second vector ``b`` is used.
Examples
========
>>> from sympy import Matrix
>>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> v = Matrix([1, 1, 1])
>>> M.row(0).dot(v)
6
>>> M.col(0).dot(v)
12
>>> v = [3, 2, 1]
>>> M.row(0).dot(v)
10
>>> from sympy import I
>>> q = Matrix([1*I, 1*I, 1*I])
>>> q.dot(q, hermitian=False)
-3
>>> q.dot(q, hermitian=True)
3
>>> q1 = Matrix([1, 1, 1*I])
>>> q.dot(q1, hermitian=True, conjugate_convention="maths")
1 - 2*I
>>> q.dot(q1, hermitian=True, conjugate_convention="physics")
1 + 2*I
See Also
========
cross
multiply
multiply_elementwise
"""
from .dense import Matrix
if not isinstance(b, MatrixBase):
if is_sequence(b):
if len(b) != self.cols and len(b) != self.rows:
raise ShapeError(
"Dimensions incorrect for dot product: %s, %s" % (
self.shape, len(b)))
return self.dot(Matrix(b))
else:
raise TypeError(
"`b` must be an ordered iterable or Matrix, not %s." %
type(b))
mat = self
if (1 not in mat.shape) or (1 not in b.shape) :
SymPyDeprecationWarning(
feature="Dot product of non row/column vectors",
issue=13815,
deprecated_since_version="1.2",
useinstead="* to take matrix products").warn()
return mat._legacy_array_dot(b)
if len(mat) != len(b):
raise ShapeError("Dimensions incorrect for dot product: %s, %s" % (self.shape, b.shape))
n = len(mat)
if mat.shape != (1, n):
mat = mat.reshape(1, n)
if b.shape != (n, 1):
b = b.reshape(n, 1)
# Now ``mat`` is a row vector and ``b`` is a column vector.
# If it so happens that only conjugate_convention is passed
# then automatically set hermitian to True. If only hermitian
# is true but no conjugate_convention is not passed then
# automatically set it to ``"maths"``
if conjugate_convention is not None and hermitian is None:
hermitian = True
if hermitian and conjugate_convention is None:
conjugate_convention = "maths"
if hermitian == True:
if conjugate_convention in ("maths", "left", "math"):
mat = mat.conjugate()
elif conjugate_convention in ("physics", "right"):
b = b.conjugate()
else:
raise ValueError("Unknown conjugate_convention was entered."
" conjugate_convention must be one of the"
" following: math, maths, left, physics or right.")
return (mat * b)[0]
def dual(self):
"""Returns the dual of a matrix, which is:
``(1/2)*levicivita(i, j, k, l)*M(k, l)`` summed over indices `k` and `l`
Since the levicivita method is anti_symmetric for any pairwise
exchange of indices, the dual of a symmetric matrix is the zero
matrix. Strictly speaking the dual defined here assumes that the
'matrix' `M` is a contravariant anti_symmetric second rank tensor,
so that the dual is a covariant second rank tensor.
"""
from sympy import LeviCivita
from sympy.matrices import zeros
M, n = self[:, :], self.rows
work = zeros(n)
if self.is_symmetric():
return work
for i in range(1, n):
for j in range(1, n):
acum = 0
for k in range(1, n):
acum += LeviCivita(i, j, 0, k) * M[0, k]
work[i, j] = acum
work[j, i] = -acum
for l in range(1, n):
acum = 0
for a in range(1, n):
for b in range(1, n):
acum += LeviCivita(0, l, a, b) * M[a, b]
acum /= 2
work[0, l] = -acum
work[l, 0] = acum
return work
def exp(self):
"""Return the exponentiation of a square matrix."""
if not self.is_square:
raise NonSquareMatrixError(
"Exponentiation is valid only for square matrices")
try:
P, J = self.jordan_form()
cells = J.get_diag_blocks()
except MatrixError:
raise NotImplementedError(
"Exponentiation is implemented only for matrices for which the Jordan normal form can be computed")
def _jblock_exponential(b):
# This function computes the matrix exponential for one single Jordan block
nr = b.rows
l = b[0, 0]
if nr == 1:
res = exp(l)
else:
from sympy import eye
# extract the diagonal part
d = b[0, 0] * eye(nr)
# and the nilpotent part
n = b - d
# compute its exponential
nex = eye(nr)
for i in range(1, nr):
nex = nex + n ** i / factorial(i)
# combine the two parts
res = exp(b[0, 0]) * nex
return (res)
blocks = list(map(_jblock_exponential, cells))
from sympy.matrices import diag
from sympy import re
eJ = diag(*blocks)
# n = self.rows
ret = P * eJ * P.inv()
if all(value.is_real for value in self.values()):
return type(self)(re(ret))
else:
return type(self)(ret)
def gauss_jordan_solve(self, B, freevar=False):
"""
Solves ``Ax = B`` using Gauss Jordan elimination.
There may be zero, one, or infinite solutions. If one solution
exists, it will be returned. If infinite solutions exist, it will
be returned parametrically. If no solutions exist, It will throw
ValueError.
Parameters
==========
B : Matrix
The right hand side of the equation to be solved for. Must have
the same number of rows as matrix A.
freevar : List
If the system is underdetermined (e.g. A has more columns than
rows), infinite solutions are possible, in terms of arbitrary
values of free variables. Then the index of the free variables
in the solutions (column Matrix) will be returned by freevar, if
the flag `freevar` is set to `True`.
Returns
=======
x : Matrix
The matrix that will satisfy ``Ax = B``. Will have as many rows as
matrix A has columns, and as many columns as matrix B.
params : Matrix
If the system is underdetermined (e.g. A has more columns than
rows), infinite solutions are possible, in terms of arbitrary
parameters. These arbitrary parameters are returned as params
Matrix.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix([[1, 2, 1, 1], [1, 2, 2, -1], [2, 4, 0, 6]])
>>> B = Matrix([7, 12, 4])
>>> sol, params = A.gauss_jordan_solve(B)
>>> sol
Matrix([
[-2*tau0 - 3*tau1 + 2],
[ tau0],
[ 2*tau1 + 5],
[ tau1]])
>>> params
Matrix([
[tau0],
[tau1]])
>>> taus_zeroes = { tau:0 for tau in params }
>>> sol_unique = sol.xreplace(taus_zeroes)
>>> sol_unique
Matrix([
[2],
[0],
[5],
[0]])
>>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 10]])
>>> B = Matrix([3, 6, 9])
>>> sol, params = A.gauss_jordan_solve(B)
>>> sol
Matrix([
[-1],
[ 2],
[ 0]])
>>> params
Matrix(0, 1, [])
>>> A = Matrix([[2, -7], [-1, 4]])
>>> B = Matrix([[-21, 3], [12, -2]])
>>> sol, params = A.gauss_jordan_solve(B)
>>> sol
Matrix([
[0, -2],
[3, -1]])
>>> params
Matrix(0, 2, [])
See Also
========
lower_triangular_solve
upper_triangular_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv
References
==========
.. [1] https://en.wikipedia.org/wiki/Gaussian_elimination
"""
from sympy.matrices import Matrix, zeros
aug = self.hstack(self.copy(), B.copy())
B_cols = B.cols
row, col = aug[:, :-B_cols].shape
# solve by reduced row echelon form
A, pivots = aug.rref(simplify=True)
A, v = A[:, :-B_cols], A[:, -B_cols:]
pivots = list(filter(lambda p: p < col, pivots))
rank = len(pivots)
# Bring to block form
permutation = Matrix(range(col)).T
for i, c in enumerate(pivots):
permutation.col_swap(i, c)
# check for existence of solutions
# rank of aug Matrix should be equal to rank of coefficient matrix
if not v[rank:, :].is_zero:
raise ValueError("Linear system has no solution")
# Get index of free symbols (free parameters)
free_var_index = permutation[
len(pivots):] # non-pivots columns are free variables
# Free parameters
# what are current unnumbered free symbol names?
name = _uniquely_named_symbol('tau', aug,
compare=lambda i: str(i).rstrip('1234567890')).name
gen = numbered_symbols(name)
tau = Matrix([next(gen) for k in range((col - rank)*B_cols)]).reshape(
col - rank, B_cols)
# Full parametric solution
V = A[:rank,:]
for c in reversed(pivots):
V.col_del(c)
vt = v[:rank, :]
free_sol = tau.vstack(vt - V * tau, tau)
# Undo permutation
sol = zeros(col, B_cols)
for k in range(col):
sol[permutation[k], :] = free_sol[k,:]
if freevar:
return sol, tau, free_var_index
else:
return sol, tau
def inv_mod(self, m):
r"""
Returns the inverse of the matrix `K` (mod `m`), if it exists.
Method to find the matrix inverse of `K` (mod `m`) implemented in this function:
* Compute `\mathrm{adj}(K) = \mathrm{cof}(K)^t`, the adjoint matrix of `K`.
* Compute `r = 1/\mathrm{det}(K) \pmod m`.
* `K^{-1} = r\cdot \mathrm{adj}(K) \pmod m`.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix(2, 2, [1, 2, 3, 4])
>>> A.inv_mod(5)
Matrix([
[3, 1],
[4, 2]])
>>> A.inv_mod(3)
Matrix([
[1, 1],
[0, 1]])
"""
if not self.is_square:
raise NonSquareMatrixError()
N = self.cols
det_K = self.det()
det_inv = None
try:
det_inv = mod_inverse(det_K, m)
except ValueError:
raise ValueError('Matrix is not invertible (mod %d)' % m)
K_adj = self.adjugate()
K_inv = self.__class__(N, N,
[det_inv * K_adj[i, j] % m for i in range(N) for
j in range(N)])
return K_inv
def inverse_ADJ(self, iszerofunc=_iszero):
"""Calculates the inverse using the adjugate matrix and a determinant.
See Also
========
inv
inverse_LU
inverse_GE
"""
if not self.is_square:
raise NonSquareMatrixError("A Matrix must be square to invert.")
d = self.det(method='berkowitz')
zero = d.equals(0)
if zero is None:
# if equals() can't decide, will rref be able to?
ok = self.rref(simplify=True)[0]
zero = any(iszerofunc(ok[j, j]) for j in range(ok.rows))
if zero:
raise ValueError("Matrix det == 0; not invertible.")
return self.adjugate() / d
def inverse_GE(self, iszerofunc=_iszero):
"""Calculates the inverse using Gaussian elimination.
See Also
========
inv
inverse_LU
inverse_ADJ
"""
from .dense import Matrix
if not self.is_square:
raise NonSquareMatrixError("A Matrix must be square to invert.")
big = Matrix.hstack(self.as_mutable(), Matrix.eye(self.rows))
red = big.rref(iszerofunc=iszerofunc, simplify=True)[0]
if any(iszerofunc(red[j, j]) for j in range(red.rows)):
raise ValueError("Matrix det == 0; not invertible.")
return self._new(red[:, big.rows:])
def inverse_LU(self, iszerofunc=_iszero):
"""Calculates the inverse using LU decomposition.
See Also
========
inv
inverse_GE
inverse_ADJ
"""
if not self.is_square:
raise NonSquareMatrixError()
ok = self.rref(simplify=True)[0]
if any(iszerofunc(ok[j, j]) for j in range(ok.rows)):
raise ValueError("Matrix det == 0; not invertible.")
return self.LUsolve(self.eye(self.rows), iszerofunc=_iszero)
def inv(self, method=None, **kwargs):
"""
Return the inverse of a matrix.
CASE 1: If the matrix is a dense matrix.
Return the matrix inverse using the method indicated (default
is Gauss elimination).
Parameters
==========
method : ('GE', 'LU', or 'ADJ')
Notes
=====
According to the ``method`` keyword, it calls the appropriate method:
GE .... inverse_GE(); default
LU .... inverse_LU()
ADJ ... inverse_ADJ()
See Also
========
inverse_LU
inverse_GE
inverse_ADJ
Raises
------
ValueError
If the determinant of the matrix is zero.
CASE 2: If the matrix is a sparse matrix.
Return the matrix inverse using Cholesky or LDL (default).
kwargs
======
method : ('CH', 'LDL')
Notes
=====
According to the ``method`` keyword, it calls the appropriate method:
LDL ... inverse_LDL(); default
CH .... inverse_CH()
Raises
------
ValueError
If the determinant of the matrix is zero.
"""
if not self.is_square:
raise NonSquareMatrixError()
if method is not None:
kwargs['method'] = method
return self._eval_inverse(**kwargs)
def is_nilpotent(self):
"""Checks if a matrix is nilpotent.
A matrix B is nilpotent if for some integer k, B**k is
a zero matrix.
Examples
========
>>> from sympy import Matrix
>>> a = Matrix([[0, 0, 0], [1, 0, 0], [1, 1, 0]])
>>> a.is_nilpotent()
True
>>> a = Matrix([[1, 0, 1], [1, 0, 0], [1, 1, 0]])
>>> a.is_nilpotent()
False
"""
if not self:
return True
if not self.is_square:
raise NonSquareMatrixError(
"Nilpotency is valid only for square matrices")
x = _uniquely_named_symbol('x', self)
p = self.charpoly(x)
if p.args[0] == x ** self.rows:
return True
return False
def key2bounds(self, keys):
"""Converts a key with potentially mixed types of keys (integer and slice)
into a tuple of ranges and raises an error if any index is out of ``self``'s
range.
See Also
========
key2ij
"""
from sympy.matrices.common import a2idx as a2idx_ # Remove this line after deprecation of a2idx from matrices.py
islice, jslice = [isinstance(k, slice) for k in keys]
if islice:
if not self.rows:
rlo = rhi = 0
else:
rlo, rhi = keys[0].indices(self.rows)[:2]
else:
rlo = a2idx_(keys[0], self.rows)
rhi = rlo + 1
if jslice:
if not self.cols:
clo = chi = 0
else:
clo, chi = keys[1].indices(self.cols)[:2]
else:
clo = a2idx_(keys[1], self.cols)
chi = clo + 1
return rlo, rhi, clo, chi
def key2ij(self, key):
"""Converts key into canonical form, converting integers or indexable
items into valid integers for ``self``'s range or returning slices
unchanged.
See Also
========
key2bounds
"""
from sympy.matrices.common import a2idx as a2idx_ # Remove this line after deprecation of a2idx from matrices.py
if is_sequence(key):
if not len(key) == 2:
raise TypeError('key must be a sequence of length 2')
return [a2idx_(i, n) if not isinstance(i, slice) else i
for i, n in zip(key, self.shape)]
elif isinstance(key, slice):
return key.indices(len(self))[:2]
else:
return divmod(a2idx_(key, len(self)), self.cols)
def LDLdecomposition(self, hermitian=True):
"""Returns the LDL Decomposition (L, D) of matrix A,
such that L * D * L.H == A if hermitian flag is True, or
L * D * L.T == A if hermitian is False.
This method eliminates the use of square root.
Further this ensures that all the diagonal entries of L are 1.
A must be a Hermitian positive-definite matrix if hermitian is True,
or a symmetric matrix otherwise.
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
>>> L, D = A.LDLdecomposition()
>>> L
Matrix([
[ 1, 0, 0],
[ 3/5, 1, 0],
[-1/5, 1/3, 1]])
>>> D
Matrix([
[25, 0, 0],
[ 0, 9, 0],
[ 0, 0, 9]])
>>> L * D * L.T * A.inv() == eye(A.rows)
True
The matrix can have complex entries:
>>> from sympy import I
>>> A = Matrix(((9, 3*I), (-3*I, 5)))
>>> L, D = A.LDLdecomposition()
>>> L
Matrix([
[ 1, 0],
[-I/3, 1]])
>>> D
Matrix([
[9, 0],
[0, 4]])
>>> L*D*L.H == A
True
See Also
========
cholesky
LUdecomposition
QRdecomposition
"""
if not self.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if hermitian and not self.is_hermitian:
raise ValueError("Matrix must be Hermitian.")
if not hermitian and not self.is_symmetric():
raise ValueError("Matrix must be symmetric.")
return self._LDLdecomposition(hermitian=hermitian)
def LDLsolve(self, rhs):
"""Solves ``Ax = B`` using LDL decomposition,
for a general square and non-singular matrix.
For a non-square matrix with rows > cols,
the least squares solution is returned.
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> A = eye(2)*2
>>> B = Matrix([[1, 2], [3, 4]])
>>> A.LDLsolve(B) == B/2
True
See Also
========
LDLdecomposition
lower_triangular_solve
upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LUsolve
QRsolve
pinv_solve
"""
hermitian = True
if self.is_symmetric():
hermitian = False
L, D = self.LDLdecomposition(hermitian=hermitian)
elif self.is_hermitian:
L, D = self.LDLdecomposition(hermitian=hermitian)
elif self.rows >= self.cols:
L, D = (self.H * self).LDLdecomposition(hermitian=hermitian)
rhs = self.H * rhs
else:
raise NotImplementedError('Under-determined System. '
'Try M.gauss_jordan_solve(rhs)')
Y = L._lower_triangular_solve(rhs)
Z = D._diagonal_solve(Y)
if hermitian:
return (L.H)._upper_triangular_solve(Z)
else:
return (L.T)._upper_triangular_solve(Z)
def lower_triangular_solve(self, rhs):
"""Solves ``Ax = B``, where A is a lower triangular matrix.
See Also
========
upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
"""
if not self.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if rhs.rows != self.rows:
raise ShapeError("Matrices size mismatch.")
if not self.is_lower:
raise ValueError("Matrix must be lower triangular.")
return self._lower_triangular_solve(rhs)
def LUdecomposition(self,
iszerofunc=_iszero,
simpfunc=None,
rankcheck=False):
"""Returns (L, U, perm) where L is a lower triangular matrix with unit
diagonal, U is an upper triangular matrix, and perm is a list of row
swap index pairs. If A is the original matrix, then
A = (L*U).permuteBkwd(perm), and the row permutation matrix P such
that P*A = L*U can be computed by P=eye(A.row).permuteFwd(perm).
See documentation for LUCombined for details about the keyword argument
rankcheck, iszerofunc, and simpfunc.
Examples
========
>>> from sympy import Matrix
>>> a = Matrix([[4, 3], [6, 3]])
>>> L, U, _ = a.LUdecomposition()
>>> L
Matrix([
[ 1, 0],
[3/2, 1]])
>>> U
Matrix([
[4, 3],
[0, -3/2]])
See Also
========
cholesky
LDLdecomposition
QRdecomposition
LUdecomposition_Simple
LUdecompositionFF
LUsolve
"""
combined, p = self.LUdecomposition_Simple(iszerofunc=iszerofunc,
simpfunc=simpfunc,
rankcheck=rankcheck)
# L is lower triangular ``self.rows x self.rows``
# U is upper triangular ``self.rows x self.cols``
# L has unit diagonal. For each column in combined, the subcolumn
# below the diagonal of combined is shared by L.
# If L has more columns than combined, then the remaining subcolumns
# below the diagonal of L are zero.
# The upper triangular portion of L and combined are equal.
def entry_L(i, j):
if i < j:
# Super diagonal entry
return S.Zero
elif i == j:
return S.One
elif j < combined.cols:
return combined[i, j]
# Subdiagonal entry of L with no corresponding
# entry in combined
return S.Zero
def entry_U(i, j):
return S.Zero if i > j else combined[i, j]
L = self._new(combined.rows, combined.rows, entry_L)
U = self._new(combined.rows, combined.cols, entry_U)
return L, U, p
def LUdecomposition_Simple(self,
iszerofunc=_iszero,
simpfunc=None,
rankcheck=False):
"""Compute an lu decomposition of m x n matrix A, where P*A = L*U
* L is m x m lower triangular with unit diagonal
* U is m x n upper triangular
* P is an m x m permutation matrix
Returns an m x n matrix lu, and an m element list perm where each
element of perm is a pair of row exchange indices.
The factors L and U are stored in lu as follows:
The subdiagonal elements of L are stored in the subdiagonal elements
of lu, that is lu[i, j] = L[i, j] whenever i > j.
The elements on the diagonal of L are all 1, and are not explicitly
stored.
U is stored in the upper triangular portion of lu, that is
lu[i ,j] = U[i, j] whenever i <= j.
The output matrix can be visualized as:
Matrix([
[u, u, u, u],
[l, u, u, u],
[l, l, u, u],
[l, l, l, u]])
where l represents a subdiagonal entry of the L factor, and u
represents an entry from the upper triangular entry of the U
factor.
perm is a list row swap index pairs such that if A is the original
matrix, then A = (L*U).permuteBkwd(perm), and the row permutation
matrix P such that ``P*A = L*U`` can be computed by
``P=eye(A.row).permuteFwd(perm)``.
The keyword argument rankcheck determines if this function raises a
ValueError when passed a matrix whose rank is strictly less than
min(num rows, num cols). The default behavior is to decompose a rank
deficient matrix. Pass rankcheck=True to raise a
ValueError instead. (This mimics the previous behavior of this function).
The keyword arguments iszerofunc and simpfunc are used by the pivot
search algorithm.
iszerofunc is a callable that returns a boolean indicating if its
input is zero, or None if it cannot make the determination.
simpfunc is a callable that simplifies its input.
The default is simpfunc=None, which indicate that the pivot search
algorithm should not attempt to simplify any candidate pivots.
If simpfunc fails to simplify its input, then it must return its input
instead of a copy.
When a matrix contains symbolic entries, the pivot search algorithm
differs from the case where every entry can be categorized as zero or
nonzero.
The algorithm searches column by column through the submatrix whose
top left entry coincides with the pivot position.
If it exists, the pivot is the first entry in the current search
column that iszerofunc guarantees is nonzero.
If no such candidate exists, then each candidate pivot is simplified
if simpfunc is not None.
The search is repeated, with the difference that a candidate may be
the pivot if ``iszerofunc()`` cannot guarantee that it is nonzero.
In the second search the pivot is the first candidate that
iszerofunc can guarantee is nonzero.
If no such candidate exists, then the pivot is the first candidate
for which iszerofunc returns None.
If no such candidate exists, then the search is repeated in the next
column to the right.
The pivot search algorithm differs from the one in ``rref()``, which
relies on ``_find_reasonable_pivot()``.
Future versions of ``LUdecomposition_simple()`` may use
``_find_reasonable_pivot()``.
See Also
========
LUdecomposition
LUdecompositionFF
LUsolve
"""
if rankcheck:
# https://github.com/sympy/sympy/issues/9796
pass
if self.rows == 0 or self.cols == 0:
# Define LU decomposition of a matrix with no entries as a matrix
# of the same dimensions with all zero entries.
return self.zeros(self.rows, self.cols), []
lu = self.as_mutable()
row_swaps = []
pivot_col = 0
for pivot_row in range(0, lu.rows - 1):
# Search for pivot. Prefer entry that iszeropivot determines
# is nonzero, over entry that iszeropivot cannot guarantee
# is zero.
# XXX ``_find_reasonable_pivot`` uses slow zero testing. Blocked by bug #10279
# Future versions of LUdecomposition_simple can pass iszerofunc and simpfunc
# to _find_reasonable_pivot().
# In pass 3 of _find_reasonable_pivot(), the predicate in ``if x.equals(S.Zero):``
# calls sympy.simplify(), and not the simplification function passed in via
# the keyword argument simpfunc.
iszeropivot = True
while pivot_col != self.cols and iszeropivot:
sub_col = (lu[r, pivot_col] for r in range(pivot_row, self.rows))
pivot_row_offset, pivot_value, is_assumed_non_zero, ind_simplified_pairs =\
_find_reasonable_pivot_naive(sub_col, iszerofunc, simpfunc)
iszeropivot = pivot_value is None
if iszeropivot:
# All candidate pivots in this column are zero.
# Proceed to next column.
pivot_col += 1
if rankcheck and pivot_col != pivot_row:
# All entries including and below the pivot position are
# zero, which indicates that the rank of the matrix is
# strictly less than min(num rows, num cols)
# Mimic behavior of previous implementation, by throwing a
# ValueError.
raise ValueError("Rank of matrix is strictly less than"
" number of rows or columns."
" Pass keyword argument"
" rankcheck=False to compute"
" the LU decomposition of this matrix.")
candidate_pivot_row = None if pivot_row_offset is None else pivot_row + pivot_row_offset
if candidate_pivot_row is None and iszeropivot:
# If candidate_pivot_row is None and iszeropivot is True
# after pivot search has completed, then the submatrix
# below and to the right of (pivot_row, pivot_col) is
# all zeros, indicating that Gaussian elimination is
# complete.
return lu, row_swaps
# Update entries simplified during pivot search.
for offset, val in ind_simplified_pairs:
lu[pivot_row + offset, pivot_col] = val
if pivot_row != candidate_pivot_row:
# Row swap book keeping:
# Record which rows were swapped.
# Update stored portion of L factor by multiplying L on the
# left and right with the current permutation.
# Swap rows of U.
row_swaps.append([pivot_row, candidate_pivot_row])
# Update L.
lu[pivot_row, 0:pivot_row], lu[candidate_pivot_row, 0:pivot_row] = \
lu[candidate_pivot_row, 0:pivot_row], lu[pivot_row, 0:pivot_row]
# Swap pivot row of U with candidate pivot row.
lu[pivot_row, pivot_col:lu.cols], lu[candidate_pivot_row, pivot_col:lu.cols] = \
lu[candidate_pivot_row, pivot_col:lu.cols], lu[pivot_row, pivot_col:lu.cols]
# Introduce zeros below the pivot by adding a multiple of the
# pivot row to a row under it, and store the result in the
# row under it.
# Only entries in the target row whose index is greater than
# start_col may be nonzero.
start_col = pivot_col + 1
for row in range(pivot_row + 1, lu.rows):
# Store factors of L in the subcolumn below
# (pivot_row, pivot_row).
lu[row, pivot_row] =\
lu[row, pivot_col]/lu[pivot_row, pivot_col]
# Form the linear combination of the pivot row and the current
# row below the pivot row that zeros the entries below the pivot.
# Employing slicing instead of a loop here raises
# NotImplementedError: Cannot add Zero to MutableSparseMatrix
# in sympy/matrices/tests/test_sparse.py.
# c = pivot_row + 1 if pivot_row == pivot_col else pivot_col
for c in range(start_col, lu.cols):
lu[row, c] = lu[row, c] - lu[row, pivot_row]*lu[pivot_row, c]
if pivot_row != pivot_col:
# matrix rank < min(num rows, num cols),
# so factors of L are not stored directly below the pivot.
# These entries are zero by construction, so don't bother
# computing them.
for row in range(pivot_row + 1, lu.rows):
lu[row, pivot_col] = S.Zero
pivot_col += 1
if pivot_col == lu.cols:
# All candidate pivots are zero implies that Gaussian
# elimination is complete.
return lu, row_swaps
if rankcheck:
if iszerofunc(
lu[Min(lu.rows, lu.cols) - 1, Min(lu.rows, lu.cols) - 1]):
raise ValueError("Rank of matrix is strictly less than"
" number of rows or columns."
" Pass keyword argument"
" rankcheck=False to compute"
" the LU decomposition of this matrix.")
return lu, row_swaps
def LUdecompositionFF(self):
"""Compute a fraction-free LU decomposition.
Returns 4 matrices P, L, D, U such that PA = L D**-1 U.
If the elements of the matrix belong to some integral domain I, then all
elements of L, D and U are guaranteed to belong to I.
**Reference**
- W. Zhou & D.J. Jeffrey, "Fraction-free matrix factors: new forms
for LU and QR factors". Frontiers in Computer Science in China,
Vol 2, no. 1, pp. 67-80, 2008.
See Also
========
LUdecomposition
LUdecomposition_Simple
LUsolve
"""
from sympy.matrices import SparseMatrix
zeros = SparseMatrix.zeros
eye = SparseMatrix.eye
n, m = self.rows, self.cols
U, L, P = self.as_mutable(), eye(n), eye(n)
DD = zeros(n, n)
oldpivot = 1
for k in range(n - 1):
if U[k, k] == 0:
for kpivot in range(k + 1, n):
if U[kpivot, k]:
break
else:
raise ValueError("Matrix is not full rank")
U[k, k:], U[kpivot, k:] = U[kpivot, k:], U[k, k:]
L[k, :k], L[kpivot, :k] = L[kpivot, :k], L[k, :k]
P[k, :], P[kpivot, :] = P[kpivot, :], P[k, :]
L[k, k] = Ukk = U[k, k]
DD[k, k] = oldpivot * Ukk
for i in range(k + 1, n):
L[i, k] = Uik = U[i, k]
for j in range(k + 1, m):
U[i, j] = (Ukk * U[i, j] - U[k, j] * Uik) / oldpivot
U[i, k] = 0
oldpivot = Ukk
DD[n - 1, n - 1] = oldpivot
return P, L, DD, U
def LUsolve(self, rhs, iszerofunc=_iszero):
"""Solve the linear system ``Ax = rhs`` for ``x`` where ``A = self``.
This is for symbolic matrices, for real or complex ones use
mpmath.lu_solve or mpmath.qr_solve.
See Also
========
lower_triangular_solve
upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
QRsolve
pinv_solve
LUdecomposition
"""
if rhs.rows != self.rows:
raise ShapeError(
"``self`` and ``rhs`` must have the same number of rows.")
m = self.rows
n = self.cols
if m < n:
raise NotImplementedError("Underdetermined systems not supported.")
try:
A, perm = self.LUdecomposition_Simple(
iszerofunc=_iszero, rankcheck=True)
except ValueError:
raise NotImplementedError("Underdetermined systems not supported.")
b = rhs.permute_rows(perm).as_mutable()
# forward substitution, all diag entries are scaled to 1
for i in range(m):
for j in range(min(i, n)):
scale = A[i, j]
b.zip_row_op(i, j, lambda x, y: x - y * scale)
# consistency check for overdetermined systems
if m > n:
for i in range(n, m):
for j in range(b.cols):
if not iszerofunc(b[i, j]):
raise ValueError("The system is inconsistent.")
b = b[0:n, :] # truncate zero rows if consistent
# backward substitution
for i in range(n - 1, -1, -1):
for j in range(i + 1, n):
scale = A[i, j]
b.zip_row_op(i, j, lambda x, y: x - y * scale)
scale = A[i, i]
b.row_op(i, lambda x, _: x / scale)
return rhs.__class__(b)
def multiply(self, b):
"""Returns ``self*b``
See Also
========
dot
cross
multiply_elementwise
"""
return self * b
def normalized(self, iszerofunc=_iszero):
"""Return the normalized version of ``self``.
Parameters
==========
iszerofunc : Function, optional
A function to determine whether ``self`` is a zero vector.
The default ``_iszero`` tests to see if each element is
exactly zero.
Returns
=======
Matrix
Normalized vector form of ``self``.
It has the same length as a unit vector. However, a zero vector
will be returned for a vector with norm 0.
Raises
======
ShapeError
If the matrix is not in a vector form.
See Also
========
norm
"""
if self.rows != 1 and self.cols != 1:
raise ShapeError("A Matrix must be a vector to normalize.")
norm = self.norm()
if iszerofunc(norm):
out = self.zeros(self.rows, self.cols)
else:
out = self.applyfunc(lambda i: i / norm)
return out
def norm(self, ord=None):
"""Return the Norm of a Matrix or Vector.
In the simplest case this is the geometric size of the vector
Other norms can be specified by the ord parameter
===== ============================ ==========================
ord norm for matrices norm for vectors
===== ============================ ==========================
None Frobenius norm 2-norm
'fro' Frobenius norm - does not exist
inf maximum row sum max(abs(x))
-inf -- min(abs(x))
1 maximum column sum as below
-1 -- as below
2 2-norm (largest sing. value) as below
-2 smallest singular value as below
other - does not exist sum(abs(x)**ord)**(1./ord)
===== ============================ ==========================
Examples
========
>>> from sympy import Matrix, Symbol, trigsimp, cos, sin, oo
>>> x = Symbol('x', real=True)
>>> v = Matrix([cos(x), sin(x)])
>>> trigsimp( v.norm() )
1
>>> v.norm(10)
(sin(x)**10 + cos(x)**10)**(1/10)
>>> A = Matrix([[1, 1], [1, 1]])
>>> A.norm(1) # maximum sum of absolute values of A is 2
2
>>> A.norm(2) # Spectral norm (max of |Ax|/|x| under 2-vector-norm)
2
>>> A.norm(-2) # Inverse spectral norm (smallest singular value)
0
>>> A.norm() # Frobenius Norm
2
>>> A.norm(oo) # Infinity Norm
2
>>> Matrix([1, -2]).norm(oo)
2
>>> Matrix([-1, 2]).norm(-oo)
1
See Also
========
normalized
"""
# Row or Column Vector Norms
vals = list(self.values()) or [0]
if self.rows == 1 or self.cols == 1:
if ord == 2 or ord is None: # Common case sqrt(<x, x>)
return sqrt(Add(*(abs(i) ** 2 for i in vals)))
elif ord == 1: # sum(abs(x))
return Add(*(abs(i) for i in vals))
elif ord == S.Infinity: # max(abs(x))
return Max(*[abs(i) for i in vals])
elif ord == S.NegativeInfinity: # min(abs(x))
return Min(*[abs(i) for i in vals])
# Otherwise generalize the 2-norm, Sum(x_i**ord)**(1/ord)
# Note that while useful this is not mathematically a norm
try:
return Pow(Add(*(abs(i) ** ord for i in vals)), S(1) / ord)
except (NotImplementedError, TypeError):
raise ValueError("Expected order to be Number, Symbol, oo")
# Matrix Norms
else:
if ord == 1: # Maximum column sum
m = self.applyfunc(abs)
return Max(*[sum(m.col(i)) for i in range(m.cols)])
elif ord == 2: # Spectral Norm
# Maximum singular value
return Max(*self.singular_values())
elif ord == -2:
# Minimum singular value
return Min(*self.singular_values())
elif ord == S.Infinity: # Infinity Norm - Maximum row sum
m = self.applyfunc(abs)
return Max(*[sum(m.row(i)) for i in range(m.rows)])
elif (ord is None or isinstance(ord,
string_types) and ord.lower() in
['f', 'fro', 'frobenius', 'vector']):
# Reshape as vector and send back to norm function
return self.vec().norm(ord=2)
else:
raise NotImplementedError("Matrix Norms under development")
def pinv_solve(self, B, arbitrary_matrix=None):
"""Solve ``Ax = B`` using the Moore-Penrose pseudoinverse.
There may be zero, one, or infinite solutions. If one solution
exists, it will be returned. If infinite solutions exist, one will
be returned based on the value of arbitrary_matrix. If no solutions
exist, the least-squares solution is returned.
Parameters
==========
B : Matrix
The right hand side of the equation to be solved for. Must have
the same number of rows as matrix A.
arbitrary_matrix : Matrix
If the system is underdetermined (e.g. A has more columns than
rows), infinite solutions are possible, in terms of an arbitrary
matrix. This parameter may be set to a specific matrix to use
for that purpose; if so, it must be the same shape as x, with as
many rows as matrix A has columns, and as many columns as matrix
B. If left as None, an appropriate matrix containing dummy
symbols in the form of ``wn_m`` will be used, with n and m being
row and column position of each symbol.
Returns
=======
x : Matrix
The matrix that will satisfy ``Ax = B``. Will have as many rows as
matrix A has columns, and as many columns as matrix B.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix([[1, 2, 3], [4, 5, 6]])
>>> B = Matrix([7, 8])
>>> A.pinv_solve(B)
Matrix([
[ _w0_0/6 - _w1_0/3 + _w2_0/6 - 55/18],
[-_w0_0/3 + 2*_w1_0/3 - _w2_0/3 + 1/9],
[ _w0_0/6 - _w1_0/3 + _w2_0/6 + 59/18]])
>>> A.pinv_solve(B, arbitrary_matrix=Matrix([0, 0, 0]))
Matrix([
[-55/18],
[ 1/9],
[ 59/18]])
See Also
========
lower_triangular_solve
upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv
Notes
=====
This may return either exact solutions or least squares solutions.
To determine which, check ``A * A.pinv() * B == B``. It will be
True if exact solutions exist, and False if only a least-squares
solution exists. Be aware that the left hand side of that equation
may need to be simplified to correctly compare to the right hand
side.
References
==========
.. [1] https://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse#Obtaining_all_solutions_of_a_linear_system
"""
from sympy.matrices import eye
A = self
A_pinv = self.pinv()
if arbitrary_matrix is None:
rows, cols = A.cols, B.cols
w = symbols('w:{0}_:{1}'.format(rows, cols), cls=Dummy)
arbitrary_matrix = self.__class__(cols, rows, w).T
return A_pinv * B + (eye(A.cols) - A_pinv * A) * arbitrary_matrix
def pinv(self):
"""Calculate the Moore-Penrose pseudoinverse of the matrix.
The Moore-Penrose pseudoinverse exists and is unique for any matrix.
If the matrix is invertible, the pseudoinverse is the same as the
inverse.
Examples
========
>>> from sympy import Matrix
>>> Matrix([[1, 2, 3], [4, 5, 6]]).pinv()
Matrix([
[-17/18, 4/9],
[ -1/9, 1/9],
[ 13/18, -2/9]])
See Also
========
inv
pinv_solve
References
==========
.. [1] https://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse
"""
A = self
AH = self.H
# Trivial case: pseudoinverse of all-zero matrix is its transpose.
if A.is_zero:
return AH
try:
if self.rows >= self.cols:
return (AH * A).inv() * AH
else:
return AH * (A * AH).inv()
except ValueError:
# Matrix is not full rank, so A*AH cannot be inverted.
pass
try:
# However, A*AH is Hermitian, so we can diagonalize it.
if self.rows >= self.cols:
P, D = (AH * A).diagonalize(normalize=True)
D_pinv = D.applyfunc(lambda x: 0 if _iszero(x) else 1 / x)
return P * D_pinv * P.H * AH
else:
P, D = (A * AH).diagonalize(normalize=True)
D_pinv = D.applyfunc(lambda x: 0 if _iszero(x) else 1 / x)
return AH * P * D_pinv * P.H
except MatrixError:
raise NotImplementedError('pinv for rank-deficient matrices where diagonalization '
'of A.H*A fails is not supported yet.')
def print_nonzero(self, symb="X"):
"""Shows location of non-zero entries for fast shape lookup.
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> m = Matrix(2, 3, lambda i, j: i*3+j)
>>> m
Matrix([
[0, 1, 2],
[3, 4, 5]])
>>> m.print_nonzero()
[ XX]
[XXX]
>>> m = eye(4)
>>> m.print_nonzero("x")
[x ]
[ x ]
[ x ]
[ x]
"""
s = []
for i in range(self.rows):
line = []
for j in range(self.cols):
if self[i, j] == 0:
line.append(" ")
else:
line.append(str(symb))
s.append("[%s]" % ''.join(line))
print('\n'.join(s))
def project(self, v):
"""Return the projection of ``self`` onto the line containing ``v``.
Examples
========
>>> from sympy import Matrix, S, sqrt
>>> V = Matrix([sqrt(3)/2, S.Half])
>>> x = Matrix([[1, 0]])
>>> V.project(x)
Matrix([[sqrt(3)/2, 0]])
>>> V.project(-x)
Matrix([[sqrt(3)/2, 0]])
"""
return v * (self.dot(v) / v.dot(v))
def QRdecomposition(self):
"""Return Q, R where A = Q*R, Q is orthogonal and R is upper triangular.
Examples
========
This is the example from wikipedia:
>>> from sympy import Matrix
>>> A = Matrix([[12, -51, 4], [6, 167, -68], [-4, 24, -41]])
>>> Q, R = A.QRdecomposition()
>>> Q
Matrix([
[ 6/7, -69/175, -58/175],
[ 3/7, 158/175, 6/175],
[-2/7, 6/35, -33/35]])
>>> R
Matrix([
[14, 21, -14],
[ 0, 175, -70],
[ 0, 0, 35]])
>>> A == Q*R
True
QR factorization of an identity matrix:
>>> A = Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
>>> Q, R = A.QRdecomposition()
>>> Q
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> R
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
See Also
========
cholesky
LDLdecomposition
LUdecomposition
QRsolve
"""
cls = self.__class__
mat = self.as_mutable()
n = mat.rows
m = mat.cols
ranked = list()
# Pad with additional rows to make wide matrices square
# nOrig keeps track of original size so zeros can be trimmed from Q
if n < m:
nOrig = n
n = m
mat = mat.col_join(mat.zeros(n - nOrig, m))
else:
nOrig = n
Q, R = mat.zeros(n, m), mat.zeros(m)
for j in range(m): # for each column vector
tmp = mat[:, j] # take original v
for i in range(j):
# subtract the project of mat on new vector
R[i, j] = Q[:, i].dot(mat[:, j])
tmp -= Q[:, i] * R[i, j]
tmp.expand()
# normalize it
R[j, j] = tmp.norm()
if not R[j, j].is_zero:
ranked.append(j)
Q[:, j] = tmp / R[j, j]
if len(ranked) != 0:
return (
cls(Q.extract(range(nOrig), ranked)),
cls(R.extract(ranked, range(R.cols)))
)
else:
# Trivial case handling for zero-rank matrix
# Force Q as matrix containing standard basis vectors
for i in range(Min(nOrig, m)):
Q[i, i] = 1
return (
cls(Q.extract(range(nOrig), range(Min(nOrig, m)))),
cls(R.extract(range(Min(nOrig, m)), range(R.cols)))
)
def QRsolve(self, b):
"""Solve the linear system ``Ax = b``.
``self`` is the matrix ``A``, the method argument is the vector
``b``. The method returns the solution vector ``x``. If ``b`` is a
matrix, the system is solved for each column of ``b`` and the
return value is a matrix of the same shape as ``b``.
This method is slower (approximately by a factor of 2) but
more stable for floating-point arithmetic than the LUsolve method.
However, LUsolve usually uses an exact arithmetic, so you don't need
to use QRsolve.
This is mainly for educational purposes and symbolic matrices, for real
(or complex) matrices use mpmath.qr_solve.
See Also
========
lower_triangular_solve
upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
pinv_solve
QRdecomposition
"""
Q, R = self.as_mutable().QRdecomposition()
y = Q.T * b
# back substitution to solve R*x = y:
# We build up the result "backwards" in the vector 'x' and reverse it
# only in the end.
x = []
n = R.rows
for j in range(n - 1, -1, -1):
tmp = y[j, :]
for k in range(j + 1, n):
tmp -= R[j, k] * x[n - 1 - k]
x.append(tmp / R[j, j])
return self._new([row._mat for row in reversed(x)])
def rank_decomposition(self, iszerofunc=_iszero, simplify=False):
r"""Returns a pair of matrices (`C`, `F`) with matching rank
such that `A = C F`.
Parameters
==========
iszerofunc : Function, optional
A function used for detecting whether an element can
act as a pivot. ``lambda x: x.is_zero`` is used by default.
simplify : Bool or Function, optional
A function used to simplify elements when looking for a
pivot. By default SymPy's ``simplify`` is used.
Returns
=======
(C, F) : Matrices
`C` and `F` are full-rank matrices with rank as same as `A`,
whose product gives `A`.
See Notes for additional mathematical details.
Examples
========
>>> from sympy.matrices import Matrix
>>> A = Matrix([
... [1, 3, 1, 4],
... [2, 7, 3, 9],
... [1, 5, 3, 1],
... [1, 2, 0, 8]
... ])
>>> C, F = A.rank_decomposition()
>>> C
Matrix([
[1, 3, 4],
[2, 7, 9],
[1, 5, 1],
[1, 2, 8]])
>>> F
Matrix([
[1, 0, -2, 0],
[0, 1, 1, 0],
[0, 0, 0, 1]])
>>> C * F == A
True
Notes
=====
Obtaining `F`, an RREF of `A`, is equivalent to creating a
product
.. math::
E_n E_{n-1} ... E_1 A = F
where `E_n, E_{n-1}, ... , E_1` are the elimination matrices or
permutation matrices equivalent to each row-reduction step.
The inverse of the same product of elimination matrices gives
`C`:
.. math::
C = (E_n E_{n-1} ... E_1)^{-1}
It is not necessary, however, to actually compute the inverse:
the columns of `C` are those from the original matrix with the
same column indices as the indices of the pivot columns of `F`.
References
==========
.. [1] https://en.wikipedia.org/wiki/Rank_factorization
.. [2] Piziak, R.; Odell, P. L. (1 June 1999).
"Full Rank Factorization of Matrices".
Mathematics Magazine. 72 (3): 193. doi:10.2307/2690882
See Also
========
rref
"""
(F, pivot_cols) = self.rref(
simplify=simplify, iszerofunc=iszerofunc, pivots=True)
rank = len(pivot_cols)
C = self.extract(range(self.rows), pivot_cols)
F = F[:rank, :]
return (C, F)
def solve_least_squares(self, rhs, method='CH'):
"""Return the least-square fit to the data.
Parameters
==========
rhs : Matrix
Vector representing the right hand side of the linear equation.
method : string or boolean, optional
If set to ``'CH'``, ``cholesky_solve`` routine will be used.
If set to ``'LDL'``, ``LDLsolve`` routine will be used.
If set to ``'QR'``, ``QRsolve`` routine will be used.
If set to ``'PINV'``, ``pinv_solve`` routine will be used.
Otherwise, the conjugate of ``self`` will be used to create a system
of equations that is passed to ``solve`` along with the hint
defined by ``method``.
Returns
=======
solutions : Matrix
Vector representing the solution.
Examples
========
>>> from sympy.matrices import Matrix, ones
>>> A = Matrix([1, 2, 3])
>>> B = Matrix([2, 3, 4])
>>> S = Matrix(A.row_join(B))
>>> S
Matrix([
[1, 2],
[2, 3],
[3, 4]])
If each line of S represent coefficients of Ax + By
and x and y are [2, 3] then S*xy is:
>>> r = S*Matrix([2, 3]); r
Matrix([
[ 8],
[13],
[18]])
But let's add 1 to the middle value and then solve for the
least-squares value of xy:
>>> xy = S.solve_least_squares(Matrix([8, 14, 18])); xy
Matrix([
[ 5/3],
[10/3]])
The error is given by S*xy - r:
>>> S*xy - r
Matrix([
[1/3],
[1/3],
[1/3]])
>>> _.norm().n(2)
0.58
If a different xy is used, the norm will be higher:
>>> xy += ones(2, 1)/10
>>> (S*xy - r).norm().n(2)
1.5
"""
if method == 'CH':
return self.cholesky_solve(rhs)
elif method == 'QR':
return self.QRsolve(rhs)
elif method == 'LDL':
return self.LDLsolve(rhs)
elif method == 'PINV':
return self.pinv_solve(rhs)
else:
t = self.H
return (t * self).solve(t * rhs, method=method)
def solve(self, rhs, method='GJ'):
"""Solves linear equation where the unique solution exists.
Parameters
==========
rhs : Matrix
Vector representing the right hand side of the linear equation.
method : string, optional
If set to ``'GJ'``, the Gauss-Jordan elimination will be used, which
is implemented in the routine ``gauss_jordan_solve``.
If set to ``'LU'``, ``LUsolve`` routine will be used.
If set to ``'QR'``, ``QRsolve`` routine will be used.
If set to ``'PINV'``, ``pinv_solve`` routine will be used.
It also supports the methods available for special linear systems
For positive definite systems:
If set to ``'CH'``, ``cholesky_solve`` routine will be used.
If set to ``'LDL'``, ``LDLsolve`` routine will be used.
To use a different method and to compute the solution via the
inverse, use a method defined in the .inv() docstring.
Returns
=======
solutions : Matrix
Vector representing the solution.
Raises
======
ValueError
If there is not a unique solution then a ``ValueError`` will be
raised.
If ``self`` is not square, a ``ValueError`` and a different routine
for solving the system will be suggested.
"""
if method == 'GJ':
try:
soln, param = self.gauss_jordan_solve(rhs)
if param:
raise ValueError("Matrix det == 0; not invertible. "
"Try ``self.gauss_jordan_solve(rhs)`` to obtain a parametric solution.")
except ValueError:
# raise same error as in inv:
self.zeros(1).inv()
return soln
elif method == 'LU':
return self.LUsolve(rhs)
elif method == 'CH':
return self.cholesky_solve(rhs)
elif method == 'QR':
return self.QRsolve(rhs)
elif method == 'LDL':
return self.LDLsolve(rhs)
elif method == 'PINV':
return self.pinv_solve(rhs)
else:
return self.inv(method=method)*rhs
def table(self, printer, rowstart='[', rowend=']', rowsep='\n',
colsep=', ', align='right'):
r"""
String form of Matrix as a table.
``printer`` is the printer to use for on the elements (generally
something like StrPrinter())
``rowstart`` is the string used to start each row (by default '[').
``rowend`` is the string used to end each row (by default ']').
``rowsep`` is the string used to separate rows (by default a newline).
``colsep`` is the string used to separate columns (by default ', ').
``align`` defines how the elements are aligned. Must be one of 'left',
'right', or 'center'. You can also use '<', '>', and '^' to mean the
same thing, respectively.
This is used by the string printer for Matrix.
Examples
========
>>> from sympy import Matrix
>>> from sympy.printing.str import StrPrinter
>>> M = Matrix([[1, 2], [-33, 4]])
>>> printer = StrPrinter()
>>> M.table(printer)
'[ 1, 2]\n[-33, 4]'
>>> print(M.table(printer))
[ 1, 2]
[-33, 4]
>>> print(M.table(printer, rowsep=',\n'))
[ 1, 2],
[-33, 4]
>>> print('[%s]' % M.table(printer, rowsep=',\n'))
[[ 1, 2],
[-33, 4]]
>>> print(M.table(printer, colsep=' '))
[ 1 2]
[-33 4]
>>> print(M.table(printer, align='center'))
[ 1 , 2]
[-33, 4]
>>> print(M.table(printer, rowstart='{', rowend='}'))
{ 1, 2}
{-33, 4}
"""
# Handle zero dimensions:
if self.rows == 0 or self.cols == 0:
return '[]'
# Build table of string representations of the elements
res = []
# Track per-column max lengths for pretty alignment
maxlen = [0] * self.cols
for i in range(self.rows):
res.append([])
for j in range(self.cols):
s = printer._print(self[i, j])
res[-1].append(s)
maxlen[j] = max(len(s), maxlen[j])
# Patch strings together
align = {
'left': 'ljust',
'right': 'rjust',
'center': 'center',
'<': 'ljust',
'>': 'rjust',
'^': 'center',
}[align]
for i, row in enumerate(res):
for j, elem in enumerate(row):
row[j] = getattr(elem, align)(maxlen[j])
res[i] = rowstart + colsep.join(row) + rowend
return rowsep.join(res)
def upper_triangular_solve(self, rhs):
"""Solves ``Ax = B``, where A is an upper triangular matrix.
See Also
========
lower_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
"""
if not self.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if rhs.rows != self.rows:
raise TypeError("Matrix size mismatch.")
if not self.is_upper:
raise TypeError("Matrix is not upper triangular.")
return self._upper_triangular_solve(rhs)
def vech(self, diagonal=True, check_symmetry=True):
"""Return the unique elements of a symmetric Matrix as a one column matrix
by stacking the elements in the lower triangle.
Arguments:
diagonal -- include the diagonal cells of ``self`` or not
check_symmetry -- checks symmetry of ``self`` but not completely reliably
Examples
========
>>> from sympy import Matrix
>>> m=Matrix([[1, 2], [2, 3]])
>>> m
Matrix([
[1, 2],
[2, 3]])
>>> m.vech()
Matrix([
[1],
[2],
[3]])
>>> m.vech(diagonal=False)
Matrix([[2]])
See Also
========
vec
"""
from sympy.matrices import zeros
c = self.cols
if c != self.rows:
raise ShapeError("Matrix must be square")
if check_symmetry:
self.simplify()
if self != self.transpose():
raise ValueError(
"Matrix appears to be asymmetric; consider check_symmetry=False")
count = 0
if diagonal:
v = zeros(c * (c + 1) // 2, 1)
for j in range(c):
for i in range(j, c):
v[count] = self[i, j]
count += 1
else:
v = zeros(c * (c - 1) // 2, 1)
for j in range(c):
for i in range(j + 1, c):
v[count] = self[i, j]
count += 1
return v
@deprecated(
issue=15109,
useinstead="from sympy.matrices.common import classof",
deprecated_since_version="1.3")
def classof(A, B):
from sympy.matrices.common import classof as classof_
return classof_(A, B)
@deprecated(
issue=15109,
deprecated_since_version="1.3",
useinstead="from sympy.matrices.common import a2idx")
def a2idx(j, n=None):
from sympy.matrices.common import a2idx as a2idx_
return a2idx_(j, n)
def _find_reasonable_pivot(col, iszerofunc=_iszero, simpfunc=_simplify):
""" Find the lowest index of an item in ``col`` that is
suitable for a pivot. If ``col`` consists only of
Floats, the pivot with the largest norm is returned.
Otherwise, the first element where ``iszerofunc`` returns
False is used. If ``iszerofunc`` doesn't return false,
items are simplified and retested until a suitable
pivot is found.
Returns a 4-tuple
(pivot_offset, pivot_val, assumed_nonzero, newly_determined)
where pivot_offset is the index of the pivot, pivot_val is
the (possibly simplified) value of the pivot, assumed_nonzero
is True if an assumption that the pivot was non-zero
was made without being proved, and newly_determined are
elements that were simplified during the process of pivot
finding."""
newly_determined = []
col = list(col)
# a column that contains a mix of floats and integers
# but at least one float is considered a numerical
# column, and so we do partial pivoting
if all(isinstance(x, (Float, Integer)) for x in col) and any(
isinstance(x, Float) for x in col):
col_abs = [abs(x) for x in col]
max_value = max(col_abs)
if iszerofunc(max_value):
# just because iszerofunc returned True, doesn't
# mean the value is numerically zero. Make sure
# to replace all entries with numerical zeros
if max_value != 0:
newly_determined = [(i, 0) for i, x in enumerate(col) if x != 0]
return (None, None, False, newly_determined)
index = col_abs.index(max_value)
return (index, col[index], False, newly_determined)
# PASS 1 (iszerofunc directly)
possible_zeros = []
for i, x in enumerate(col):
is_zero = iszerofunc(x)
# is someone wrote a custom iszerofunc, it may return
# BooleanFalse or BooleanTrue instead of True or False,
# so use == for comparison instead of `is`
if is_zero == False:
# we found something that is definitely not zero
return (i, x, False, newly_determined)
possible_zeros.append(is_zero)
# by this point, we've found no certain non-zeros
if all(possible_zeros):
# if everything is definitely zero, we have
# no pivot
return (None, None, False, newly_determined)
# PASS 2 (iszerofunc after simplify)
# we haven't found any for-sure non-zeros, so
# go through the elements iszerofunc couldn't
# make a determination about and opportunistically
# simplify to see if we find something
for i, x in enumerate(col):
if possible_zeros[i] is not None:
continue
simped = simpfunc(x)
is_zero = iszerofunc(simped)
if is_zero == True or is_zero == False:
newly_determined.append((i, simped))
if is_zero == False:
return (i, simped, False, newly_determined)
possible_zeros[i] = is_zero
# after simplifying, some things that were recognized
# as zeros might be zeros
if all(possible_zeros):
# if everything is definitely zero, we have
# no pivot
return (None, None, False, newly_determined)
# PASS 3 (.equals(0))
# some expressions fail to simplify to zero, but
# ``.equals(0)`` evaluates to True. As a last-ditch
# attempt, apply ``.equals`` to these expressions
for i, x in enumerate(col):
if possible_zeros[i] is not None:
continue
if x.equals(S.Zero):
# ``.iszero`` may return False with
# an implicit assumption (e.g., ``x.equals(0)``
# when ``x`` is a symbol), so only treat it
# as proved when ``.equals(0)`` returns True
possible_zeros[i] = True
newly_determined.append((i, S.Zero))
if all(possible_zeros):
return (None, None, False, newly_determined)
# at this point there is nothing that could definitely
# be a pivot. To maintain compatibility with existing
# behavior, we'll assume that an illdetermined thing is
# non-zero. We should probably raise a warning in this case
i = possible_zeros.index(None)
return (i, col[i], True, newly_determined)
def _find_reasonable_pivot_naive(col, iszerofunc=_iszero, simpfunc=None):
"""
Helper that computes the pivot value and location from a
sequence of contiguous matrix column elements. As a side effect
of the pivot search, this function may simplify some of the elements
of the input column. A list of these simplified entries and their
indices are also returned.
This function mimics the behavior of _find_reasonable_pivot(),
but does less work trying to determine if an indeterminate candidate
pivot simplifies to zero. This more naive approach can be much faster,
with the trade-off that it may erroneously return a pivot that is zero.
``col`` is a sequence of contiguous column entries to be searched for
a suitable pivot.
``iszerofunc`` is a callable that returns a Boolean that indicates
if its input is zero, or None if no such determination can be made.
``simpfunc`` is a callable that simplifies its input. It must return
its input if it does not simplify its input. Passing in
``simpfunc=None`` indicates that the pivot search should not attempt
to simplify any candidate pivots.
Returns a 4-tuple:
(pivot_offset, pivot_val, assumed_nonzero, newly_determined)
``pivot_offset`` is the sequence index of the pivot.
``pivot_val`` is the value of the pivot.
pivot_val and col[pivot_index] are equivalent, but will be different
when col[pivot_index] was simplified during the pivot search.
``assumed_nonzero`` is a boolean indicating if the pivot cannot be
guaranteed to be zero. If assumed_nonzero is true, then the pivot
may or may not be non-zero. If assumed_nonzero is false, then
the pivot is non-zero.
``newly_determined`` is a list of index-value pairs of pivot candidates
that were simplified during the pivot search.
"""
# indeterminates holds the index-value pairs of each pivot candidate
# that is neither zero or non-zero, as determined by iszerofunc().
# If iszerofunc() indicates that a candidate pivot is guaranteed
# non-zero, or that every candidate pivot is zero then the contents
# of indeterminates are unused.
# Otherwise, the only viable candidate pivots are symbolic.
# In this case, indeterminates will have at least one entry,
# and all but the first entry are ignored when simpfunc is None.
indeterminates = []
for i, col_val in enumerate(col):
col_val_is_zero = iszerofunc(col_val)
if col_val_is_zero == False:
# This pivot candidate is non-zero.
return i, col_val, False, []
elif col_val_is_zero is None:
# The candidate pivot's comparison with zero
# is indeterminate.
indeterminates.append((i, col_val))
if len(indeterminates) == 0:
# All candidate pivots are guaranteed to be zero, i.e. there is
# no pivot.
return None, None, False, []
if simpfunc is None:
# Caller did not pass in a simplification function that might
# determine if an indeterminate pivot candidate is guaranteed
# to be nonzero, so assume the first indeterminate candidate
# is non-zero.
return indeterminates[0][0], indeterminates[0][1], True, []
# newly_determined holds index-value pairs of candidate pivots
# that were simplified during the search for a non-zero pivot.
newly_determined = []
for i, col_val in indeterminates:
tmp_col_val = simpfunc(col_val)
if id(col_val) != id(tmp_col_val):
# simpfunc() simplified this candidate pivot.
newly_determined.append((i, tmp_col_val))
if iszerofunc(tmp_col_val) == False:
# Candidate pivot simplified to a guaranteed non-zero value.
return i, tmp_col_val, False, newly_determined
return indeterminates[0][0], indeterminates[0][1], True, newly_determined
|
f35b98162a598fc4ab6fa725c8400c1ae390fc9080d21380f780cfbd15065d5e
|
from __future__ import division, print_function
from sympy.core.compatibility import range
from .sparse import SparseMatrix
def _doktocsr(dok):
"""Converts a sparse matrix to Compressed Sparse Row (CSR) format.
Parameters
==========
A : contains non-zero elements sorted by key (row, column)
JA : JA[i] is the column corresponding to A[i]
IA : IA[i] contains the index in A for the first non-zero element
of row[i]. Thus IA[i+1] - IA[i] gives number of non-zero
elements row[i]. The length of IA is always 1 more than the
number of rows in the matrix.
"""
row, JA, A = [list(i) for i in zip(*dok.row_list())]
IA = [0]*((row[0] if row else 0) + 1)
for i, r in enumerate(row):
IA.extend([i]*(r - row[i - 1])) # if i = 0 nothing is extended
IA.extend([len(A)]*(dok.rows - len(IA) + 1))
shape = [dok.rows, dok.cols]
return [A, JA, IA, shape]
def _csrtodok(csr):
"""Converts a CSR representation to DOK representation"""
smat = {}
A, JA, IA, shape = csr
for i in range(len(IA) - 1):
indices = slice(IA[i], IA[i + 1])
for l, m in zip(A[indices], JA[indices]):
smat[i, m] = l
return SparseMatrix(*(shape + [smat]))
|
4b0efc57f995b2c67e903107acfbd3e6303498e89bed941479f403f9bfe68871
|
from sympy.core import Expr
from sympy.core.decorators import call_highest_priority, _sympifyit
from sympy.sets import ImageSet
from sympy.sets.sets import set_add, set_sub, set_mul, set_div, set_pow, set_function
class SetExpr(Expr):
"""An expression that can take on values of a set
>>> from sympy import Interval, FiniteSet
>>> from sympy.sets.setexpr import SetExpr
>>> a = SetExpr(Interval(0, 5))
>>> b = SetExpr(FiniteSet(1, 10))
>>> (a + b).set
Union(Interval(1, 6), Interval(10, 15))
>>> (2*a + b).set
Interval(1, 20)
"""
_op_priority = 11.0
def __new__(cls, setarg):
return Expr.__new__(cls, setarg)
set = property(lambda self: self.args[0])
def _latex(self, printer):
return r"SetExpr\left({0}\right)".format(printer._print(self.set))
@_sympifyit('other', NotImplemented)
@call_highest_priority('__radd__')
def __add__(self, other):
return _setexpr_apply_operation(set_add, self, other)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__add__')
def __radd__(self, other):
return _setexpr_apply_operation(set_add, other, self)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rmul__')
def __mul__(self, other):
return _setexpr_apply_operation(set_mul, self, other)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__mul__')
def __rmul__(self, other):
return _setexpr_apply_operation(set_mul, other, self)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rsub__')
def __sub__(self, other):
return _setexpr_apply_operation(set_sub, self, other)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__sub__')
def __rsub__(self, other):
return _setexpr_apply_operation(set_sub, other, self)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rpow__')
def __pow__(self, other):
return _setexpr_apply_operation(set_pow, self, other)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__pow__')
def __rpow__(self, other):
return _setexpr_apply_operation(set_pow, other, self)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rdiv__')
def __div__(self, other):
return _setexpr_apply_operation(set_div, self, other)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__div__')
def __rdiv__(self, other):
return _setexpr_apply_operation(set_div, other, self)
__truediv__ = __div__
__rtruediv__ = __rdiv__
def _eval_func(self, func):
# TODO: this could be implemented straight into `imageset`:
res = set_function(func, self.set)
if res is None:
return SetExpr(ImageSet(func, self.set))
return SetExpr(res)
def _setexpr_apply_operation(op, x, y):
if isinstance(x, SetExpr):
x = x.set
if isinstance(y, SetExpr):
y = y.set
out = op(x, y)
return SetExpr(out)
|
02d731a61709ef5151e9b652d993f534f5c1f58a5168e11527dbcf4e39724f1b
|
from __future__ import print_function, division
from sympy.core.basic import Basic
from sympy.core.compatibility import as_int, with_metaclass, range, PY3
from sympy.core.expr import Expr
from sympy.core.function import Lambda
from sympy.core.singleton import Singleton, S
from sympy.core.symbol import Dummy, symbols
from sympy.core.sympify import _sympify, sympify, converter
from sympy.logic.boolalg import And
from sympy.sets.sets import Set, Interval, Union, FiniteSet
from sympy.utilities.misc import filldedent
class Naturals(with_metaclass(Singleton, Set)):
"""
Represents the natural numbers (or counting numbers) which are all
positive integers starting from 1. This set is also available as
the Singleton, S.Naturals.
Examples
========
>>> from sympy import S, Interval, pprint
>>> 5 in S.Naturals
True
>>> iterable = iter(S.Naturals)
>>> next(iterable)
1
>>> next(iterable)
2
>>> next(iterable)
3
>>> pprint(S.Naturals.intersect(Interval(0, 10)))
{1, 2, ..., 10}
See Also
========
Naturals0 : non-negative integers (i.e. includes 0, too)
Integers : also includes negative integers
"""
is_iterable = True
_inf = S.One
_sup = S.Infinity
def _contains(self, other):
if not isinstance(other, Expr):
return S.false
elif other.is_positive and other.is_integer:
return S.true
elif other.is_integer is False or other.is_positive is False:
return S.false
def __iter__(self):
i = self._inf
while True:
yield i
i = i + 1
@property
def _boundary(self):
return self
class Naturals0(Naturals):
"""Represents the whole numbers which are all the non-negative integers,
inclusive of zero.
See Also
========
Naturals : positive integers; does not include 0
Integers : also includes the negative integers
"""
_inf = S.Zero
def _contains(self, other):
if not isinstance(other, Expr):
return S.false
elif other.is_integer and other.is_nonnegative:
return S.true
elif other.is_integer is False or other.is_nonnegative is False:
return S.false
class Integers(with_metaclass(Singleton, Set)):
"""
Represents all integers: positive, negative and zero. This set is also
available as the Singleton, S.Integers.
Examples
========
>>> from sympy import S, Interval, pprint
>>> 5 in S.Naturals
True
>>> iterable = iter(S.Integers)
>>> next(iterable)
0
>>> next(iterable)
1
>>> next(iterable)
-1
>>> next(iterable)
2
>>> pprint(S.Integers.intersect(Interval(-4, 4)))
{-4, -3, ..., 4}
See Also
========
Naturals0 : non-negative integers
Integers : positive and negative integers and zero
"""
is_iterable = True
def _contains(self, other):
if not isinstance(other, Expr):
return S.false
elif other.is_integer:
return S.true
elif other.is_integer is False:
return S.false
def __iter__(self):
yield S.Zero
i = S.One
while True:
yield i
yield -i
i = i + 1
@property
def _inf(self):
return -S.Infinity
@property
def _sup(self):
return S.Infinity
@property
def _boundary(self):
return self
class Reals(with_metaclass(Singleton, Interval)):
def __new__(cls):
return Interval.__new__(cls, -S.Infinity, S.Infinity)
def __eq__(self, other):
return other == Interval(-S.Infinity, S.Infinity)
def __hash__(self):
return hash(Interval(-S.Infinity, S.Infinity))
class ImageSet(Set):
"""
Image of a set under a mathematical function. The transformation
must be given as a Lambda function which has as many arguments
as the elements of the set upon which it operates, e.g. 1 argument
when acting on the set of integers or 2 arguments when acting on
a complex region.
This function is not normally called directly, but is called
from `imageset`.
Examples
========
>>> from sympy import Symbol, S, pi, Dummy, Lambda
>>> from sympy.sets.sets import FiniteSet, Interval
>>> from sympy.sets.fancysets import ImageSet
>>> x = Symbol('x')
>>> N = S.Naturals
>>> squares = ImageSet(Lambda(x, x**2), N) # {x**2 for x in N}
>>> 4 in squares
True
>>> 5 in squares
False
>>> FiniteSet(0, 1, 2, 3, 4, 5, 6, 7, 9, 10).intersect(squares)
{1, 4, 9}
>>> square_iterable = iter(squares)
>>> for i in range(4):
... next(square_iterable)
1
4
9
16
If you want to get value for `x` = 2, 1/2 etc. (Please check whether the
`x` value is in `base_set` or not before passing it as args)
>>> squares.lamda(2)
4
>>> squares.lamda(S(1)/2)
1/4
>>> n = Dummy('n')
>>> solutions = ImageSet(Lambda(n, n*pi), S.Integers) # solutions of sin(x) = 0
>>> dom = Interval(-1, 1)
>>> dom.intersect(solutions)
{0}
See Also
========
sympy.sets.sets.imageset
"""
def __new__(cls, flambda, *sets):
if not isinstance(flambda, Lambda):
raise ValueError('first argument must be a Lambda')
if flambda is S.IdentityFunction and len(sets) == 1:
return sets[0]
if not flambda.expr.free_symbols or not flambda.expr.args:
return FiniteSet(flambda.expr)
return Basic.__new__(cls, flambda, *sets)
lamda = property(lambda self: self.args[0])
base_set = property(lambda self: self.args[1])
def __iter__(self):
already_seen = set()
for i in self.base_set:
val = self.lamda(i)
if val in already_seen:
continue
else:
already_seen.add(val)
yield val
def _is_multivariate(self):
return len(self.lamda.variables) > 1
def _contains(self, other):
from sympy.matrices import Matrix
from sympy.solvers.solveset import solveset, linsolve
from sympy.utilities.iterables import is_sequence, iterable, cartes
L = self.lamda
if is_sequence(other):
if not is_sequence(L.expr):
return S.false
if len(L.expr) != len(other):
raise ValueError(filldedent('''
Dimensions of other and output of Lambda are different.'''))
elif iterable(other):
raise ValueError(filldedent('''
`other` should be an ordered object like a Tuple.'''))
solns = None
if self._is_multivariate():
if not is_sequence(L.expr):
# exprs -> (numer, denom) and check again
# XXX this is a bad idea -- make the user
# remap self to desired form
return other.as_numer_denom() in self.func(
Lambda(L.variables, L.expr.as_numer_denom()), self.base_set)
eqs = [expr - val for val, expr in zip(other, L.expr)]
variables = L.variables
free = set(variables)
if all(i.is_number for i in list(Matrix(eqs).jacobian(variables))):
solns = list(linsolve([e - val for e, val in
zip(L.expr, other)], variables))
else:
syms = [e.free_symbols & free for e in eqs]
solns = {}
for i, (e, s, v) in enumerate(zip(eqs, syms, other)):
if not s:
if e != v:
return S.false
solns[vars[i]] = [v]
continue
elif len(s) == 1:
sy = s.pop()
sol = solveset(e, sy)
if sol is S.EmptySet:
return S.false
elif isinstance(sol, FiniteSet):
solns[sy] = list(sol)
else:
raise NotImplementedError
else:
raise NotImplementedError
solns = cartes(*[solns[s] for s in variables])
else:
x = L.variables[0]
if isinstance(L.expr, Expr):
# scalar -> scalar mapping
solnsSet = solveset(L.expr - other, x)
if solnsSet.is_FiniteSet:
solns = list(solnsSet)
else:
msgset = solnsSet
else:
# scalar -> vector
for e, o in zip(L.expr, other):
solns = solveset(e - o, x)
if solns is S.EmptySet:
return S.false
for soln in solns:
try:
if soln in self.base_set:
break # check next pair
except TypeError:
if self.base_set.contains(soln.evalf()):
break
else:
return S.false # never broke so there was no True
return S.true
if solns is None:
raise NotImplementedError(filldedent('''
Determining whether %s contains %s has not
been implemented.''' % (msgset, other)))
for soln in solns:
try:
if soln in self.base_set:
return S.true
except TypeError:
return self.base_set.contains(soln.evalf())
return S.false
@property
def is_iterable(self):
return self.base_set.is_iterable
def doit(self, **kwargs):
from sympy.sets.setexpr import SetExpr
f = self.lamda
base_set = self.base_set
return SetExpr(base_set)._eval_func(f).set
class Range(Set):
"""
Represents a range of integers. Can be called as Range(stop),
Range(start, stop), or Range(start, stop, step); when stop is
not given it defaults to 1.
`Range(stop)` is the same as `Range(0, stop, 1)` and the stop value
(juse as for Python ranges) is not included in the Range values.
>>> from sympy import Range
>>> list(Range(3))
[0, 1, 2]
The step can also be negative:
>>> list(Range(10, 0, -2))
[10, 8, 6, 4, 2]
The stop value is made canonical so equivalent ranges always
have the same args:
>>> Range(0, 10, 3)
Range(0, 12, 3)
Infinite ranges are allowed. ``oo`` and ``-oo`` are never included in the
set (``Range`` is always a subset of ``Integers``). If the starting point
is infinite, then the final value is ``stop - step``. To iterate such a
range, it needs to be reversed:
>>> from sympy import oo
>>> r = Range(-oo, 1)
>>> r[-1]
0
>>> next(iter(r))
Traceback (most recent call last):
...
ValueError: Cannot iterate over Range with infinite start
>>> next(iter(r.reversed))
0
Although Range is a set (and supports the normal set
operations) it maintains the order of the elements and can
be used in contexts where `range` would be used.
>>> from sympy import Interval
>>> Range(0, 10, 2).intersect(Interval(3, 7))
Range(4, 8, 2)
>>> list(_)
[4, 6]
Although slicing of a Range will always return a Range -- possibly
empty -- an empty set will be returned from any intersection that
is empty:
>>> Range(3)[:0]
Range(0, 0, 1)
>>> Range(3).intersect(Interval(4, oo))
EmptySet()
>>> Range(3).intersect(Range(4, oo))
EmptySet()
"""
is_iterable = True
def __new__(cls, *args):
from sympy.functions.elementary.integers import ceiling
if len(args) == 1:
if isinstance(args[0], range if PY3 else xrange):
args = args[0].__reduce__()[1] # use pickle method
# expand range
slc = slice(*args)
if slc.step == 0:
raise ValueError("step cannot be 0")
start, stop, step = slc.start or 0, slc.stop, slc.step or 1
try:
start, stop, step = [
w if w in [S.NegativeInfinity, S.Infinity]
else sympify(as_int(w))
for w in (start, stop, step)]
except ValueError:
raise ValueError(filldedent('''
Finite arguments to Range must be integers; `imageset` can define
other cases, e.g. use `imageset(i, i/10, Range(3))` to give
[0, 1/10, 1/5].'''))
if not step.is_Integer:
raise ValueError(filldedent('''
Ranges must have a literal integer step.'''))
if all(i.is_infinite for i in (start, stop)):
if start == stop:
# canonical null handled below
start = stop = S.One
else:
raise ValueError(filldedent('''
Either the start or end value of the Range must be finite.'''))
if start.is_infinite:
end = stop
else:
ref = start if start.is_finite else stop
n = ceiling((stop - ref)/step)
if n <= 0:
# null Range
start = end = 0
step = 1
else:
end = ref + n*step
return Basic.__new__(cls, start, end, step)
start = property(lambda self: self.args[0])
stop = property(lambda self: self.args[1])
step = property(lambda self: self.args[2])
@property
def reversed(self):
"""Return an equivalent Range in the opposite order.
Examples
========
>>> from sympy import Range
>>> Range(10).reversed
Range(9, -1, -1)
"""
if not self:
return self
return self.func(
self.stop - self.step, self.start - self.step, -self.step)
def _contains(self, other):
if not self:
return S.false
if other.is_infinite:
return S.false
if not other.is_integer:
return other.is_integer
ref = self.start if self.start.is_finite else self.stop
if (ref - other) % self.step: # off sequence
return S.false
return _sympify(other >= self.inf and other <= self.sup)
def __iter__(self):
if self.start in [S.NegativeInfinity, S.Infinity]:
raise ValueError("Cannot iterate over Range with infinite start")
elif self:
i = self.start
step = self.step
while True:
if (step > 0 and not (self.start <= i < self.stop)) or \
(step < 0 and not (self.stop < i <= self.start)):
break
yield i
i += step
def __len__(self):
if not self:
return 0
dif = self.stop - self.start
if dif.is_infinite:
raise ValueError(
"Use .size to get the length of an infinite Range")
return abs(dif//self.step)
@property
def size(self):
try:
return _sympify(len(self))
except ValueError:
return S.Infinity
def __nonzero__(self):
return self.start != self.stop
__bool__ = __nonzero__
def __getitem__(self, i):
from sympy.functions.elementary.integers import ceiling
ooslice = "cannot slice from the end with an infinite value"
zerostep = "slice step cannot be zero"
# if we had to take every other element in the following
# oo, ..., 6, 4, 2, 0
# we might get oo, ..., 4, 0 or oo, ..., 6, 2
ambiguous = "cannot unambiguously re-stride from the end " + \
"with an infinite value"
if isinstance(i, slice):
if self.size.is_finite:
start, stop, step = i.indices(self.size)
n = ceiling((stop - start)/step)
if n <= 0:
return Range(0)
canonical_stop = start + n*step
end = canonical_stop - step
ss = step*self.step
return Range(self[start], self[end] + ss, ss)
else: # infinite Range
start = i.start
stop = i.stop
if i.step == 0:
raise ValueError(zerostep)
step = i.step or 1
ss = step*self.step
#---------------------
# handle infinite on right
# e.g. Range(0, oo) or Range(0, -oo, -1)
# --------------------
if self.stop.is_infinite:
# start and stop are not interdependent --
# they only depend on step --so we use the
# equivalent reversed values
return self.reversed[
stop if stop is None else -stop + 1:
start if start is None else -start:
step].reversed
#---------------------
# handle infinite on the left
# e.g. Range(oo, 0, -1) or Range(-oo, 0)
# --------------------
# consider combinations of
# start/stop {== None, < 0, == 0, > 0} and
# step {< 0, > 0}
if start is None:
if stop is None:
if step < 0:
return Range(self[-1], self.start, ss)
elif step > 1:
raise ValueError(ambiguous)
else: # == 1
return self
elif stop < 0:
if step < 0:
return Range(self[-1], self[stop], ss)
else: # > 0
return Range(self.start, self[stop], ss)
elif stop == 0:
if step > 0:
return Range(0)
else: # < 0
raise ValueError(ooslice)
elif stop == 1:
if step > 0:
raise ValueError(ooslice) # infinite singleton
else: # < 0
raise ValueError(ooslice)
else: # > 1
raise ValueError(ooslice)
elif start < 0:
if stop is None:
if step < 0:
return Range(self[start], self.start, ss)
else: # > 0
return Range(self[start], self.stop, ss)
elif stop < 0:
return Range(self[start], self[stop], ss)
elif stop == 0:
if step < 0:
raise ValueError(ooslice)
else: # > 0
return Range(0)
elif stop > 0:
raise ValueError(ooslice)
elif start == 0:
if stop is None:
if step < 0:
raise ValueError(ooslice) # infinite singleton
elif step > 1:
raise ValueError(ambiguous)
else: # == 1
return self
elif stop < 0:
if step > 1:
raise ValueError(ambiguous)
elif step == 1:
return Range(self.start, self[stop], ss)
else: # < 0
return Range(0)
else: # >= 0
raise ValueError(ooslice)
elif start > 0:
raise ValueError(ooslice)
else:
if not self:
raise IndexError('Range index out of range')
if i == 0:
return self.start
if i == -1 or i is S.Infinity:
return self.stop - self.step
rv = (self.stop if i < 0 else self.start) + i*self.step
if rv.is_infinite:
raise ValueError(ooslice)
if rv < self.inf or rv > self.sup:
raise IndexError("Range index out of range")
return rv
@property
def _inf(self):
if not self:
raise NotImplementedError
if self.step > 0:
return self.start
else:
return self.stop - self.step
@property
def _sup(self):
if not self:
raise NotImplementedError
if self.step > 0:
return self.stop - self.step
else:
return self.start
@property
def _boundary(self):
return self
if PY3:
converter[range] = Range
else:
converter[xrange] = Range
def normalize_theta_set(theta):
"""
Normalize a Real Set `theta` in the Interval [0, 2*pi). It returns
a normalized value of theta in the Set. For Interval, a maximum of
one cycle [0, 2*pi], is returned i.e. for theta equal to [0, 10*pi],
returned normalized value would be [0, 2*pi). As of now intervals
with end points as non-multiples of `pi` is not supported.
Raises
======
NotImplementedError
The algorithms for Normalizing theta Set are not yet
implemented.
ValueError
The input is not valid, i.e. the input is not a real set.
RuntimeError
It is a bug, please report to the github issue tracker.
Examples
========
>>> from sympy.sets.fancysets import normalize_theta_set
>>> from sympy import Interval, FiniteSet, pi
>>> normalize_theta_set(Interval(9*pi/2, 5*pi))
Interval(pi/2, pi)
>>> normalize_theta_set(Interval(-3*pi/2, pi/2))
Interval.Ropen(0, 2*pi)
>>> normalize_theta_set(Interval(-pi/2, pi/2))
Union(Interval(0, pi/2), Interval.Ropen(3*pi/2, 2*pi))
>>> normalize_theta_set(Interval(-4*pi, 3*pi))
Interval.Ropen(0, 2*pi)
>>> normalize_theta_set(Interval(-3*pi/2, -pi/2))
Interval(pi/2, 3*pi/2)
>>> normalize_theta_set(FiniteSet(0, pi, 3*pi))
{0, pi}
"""
from sympy.functions.elementary.trigonometric import _pi_coeff as coeff
if theta.is_Interval:
interval_len = theta.measure
# one complete circle
if interval_len >= 2*S.Pi:
if interval_len == 2*S.Pi and theta.left_open and theta.right_open:
k = coeff(theta.start)
return Union(Interval(0, k*S.Pi, False, True),
Interval(k*S.Pi, 2*S.Pi, True, True))
return Interval(0, 2*S.Pi, False, True)
k_start, k_end = coeff(theta.start), coeff(theta.end)
if k_start is None or k_end is None:
raise NotImplementedError("Normalizing theta without pi as coefficient is "
"not yet implemented")
new_start = k_start*S.Pi
new_end = k_end*S.Pi
if new_start > new_end:
return Union(Interval(S.Zero, new_end, False, theta.right_open),
Interval(new_start, 2*S.Pi, theta.left_open, True))
else:
return Interval(new_start, new_end, theta.left_open, theta.right_open)
elif theta.is_FiniteSet:
new_theta = []
for element in theta:
k = coeff(element)
if k is None:
raise NotImplementedError('Normalizing theta without pi as '
'coefficient, is not Implemented.')
else:
new_theta.append(k*S.Pi)
return FiniteSet(*new_theta)
elif theta.is_Union:
return Union(*[normalize_theta_set(interval) for interval in theta.args])
elif theta.is_subset(S.Reals):
raise NotImplementedError("Normalizing theta when, it is of type %s is not "
"implemented" % type(theta))
else:
raise ValueError(" %s is not a real set" % (theta))
class ComplexRegion(Set):
"""
Represents the Set of all Complex Numbers. It can represent a
region of Complex Plane in both the standard forms Polar and
Rectangular coordinates.
* Polar Form
Input is in the form of the ProductSet or Union of ProductSets
of the intervals of r and theta, & use the flag polar=True.
Z = {z in C | z = r*[cos(theta) + I*sin(theta)], r in [r], theta in [theta]}
* Rectangular Form
Input is in the form of the ProductSet or Union of ProductSets
of interval of x and y the of the Complex numbers in a Plane.
Default input type is in rectangular form.
Z = {z in C | z = x + I*y, x in [Re(z)], y in [Im(z)]}
Examples
========
>>> from sympy.sets.fancysets import ComplexRegion
>>> from sympy.sets import Interval
>>> from sympy import S, I, Union
>>> a = Interval(2, 3)
>>> b = Interval(4, 6)
>>> c = Interval(1, 8)
>>> c1 = ComplexRegion(a*b) # Rectangular Form
>>> c1
ComplexRegion(Interval(2, 3) x Interval(4, 6), False)
* c1 represents the rectangular region in complex plane
surrounded by the coordinates (2, 4), (3, 4), (3, 6) and
(2, 6), of the four vertices.
>>> c2 = ComplexRegion(Union(a*b, b*c))
>>> c2
ComplexRegion(Union(Interval(2, 3) x Interval(4, 6), Interval(4, 6) x Interval(1, 8)), False)
* c2 represents the Union of two rectangular regions in complex
plane. One of them surrounded by the coordinates of c1 and
other surrounded by the coordinates (4, 1), (6, 1), (6, 8) and
(4, 8).
>>> 2.5 + 4.5*I in c1
True
>>> 2.5 + 6.5*I in c1
False
>>> r = Interval(0, 1)
>>> theta = Interval(0, 2*S.Pi)
>>> c2 = ComplexRegion(r*theta, polar=True) # Polar Form
>>> c2 # unit Disk
ComplexRegion(Interval(0, 1) x Interval.Ropen(0, 2*pi), True)
* c2 represents the region in complex plane inside the
Unit Disk centered at the origin.
>>> 0.5 + 0.5*I in c2
True
>>> 1 + 2*I in c2
False
>>> unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, 2*S.Pi), polar=True)
>>> upper_half_unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, S.Pi), polar=True)
>>> intersection = unit_disk.intersect(upper_half_unit_disk)
>>> intersection
ComplexRegion(Interval(0, 1) x Interval(0, pi), True)
>>> intersection == upper_half_unit_disk
True
See Also
========
Reals
"""
is_ComplexRegion = True
def __new__(cls, sets, polar=False):
from sympy import sin, cos
x, y, r, theta = symbols('x, y, r, theta', cls=Dummy)
I = S.ImaginaryUnit
polar = sympify(polar)
# Rectangular Form
if polar == False:
if all(_a.is_FiniteSet for _a in sets.args) and (len(sets.args) == 2):
# ** ProductSet of FiniteSets in the Complex Plane. **
# For Cases like ComplexRegion({2, 4}*{3}), It
# would return {2 + 3*I, 4 + 3*I}
complex_num = []
for x in sets.args[0]:
for y in sets.args[1]:
complex_num.append(x + I*y)
obj = FiniteSet(*complex_num)
else:
obj = ImageSet.__new__(cls, Lambda((x, y), x + I*y), sets)
obj._variables = (x, y)
obj._expr = x + I*y
# Polar Form
elif polar == True:
new_sets = []
# sets is Union of ProductSets
if not sets.is_ProductSet:
for k in sets.args:
new_sets.append(k)
# sets is ProductSets
else:
new_sets.append(sets)
# Normalize input theta
for k, v in enumerate(new_sets):
from sympy.sets import ProductSet
new_sets[k] = ProductSet(v.args[0],
normalize_theta_set(v.args[1]))
sets = Union(*new_sets)
obj = ImageSet.__new__(cls, Lambda((r, theta),
r*(cos(theta) + I*sin(theta))),
sets)
obj._variables = (r, theta)
obj._expr = r*(cos(theta) + I*sin(theta))
else:
raise ValueError("polar should be either True or False")
obj._sets = sets
obj._polar = polar
return obj
@property
def sets(self):
"""
Return raw input sets to the self.
Examples
========
>>> from sympy import Interval, ComplexRegion, Union
>>> a = Interval(2, 3)
>>> b = Interval(4, 5)
>>> c = Interval(1, 7)
>>> C1 = ComplexRegion(a*b)
>>> C1.sets
Interval(2, 3) x Interval(4, 5)
>>> C2 = ComplexRegion(Union(a*b, b*c))
>>> C2.sets
Union(Interval(2, 3) x Interval(4, 5), Interval(4, 5) x Interval(1, 7))
"""
return self._sets
@property
def args(self):
return (self._sets, self._polar)
@property
def variables(self):
return self._variables
@property
def expr(self):
return self._expr
@property
def psets(self):
"""
Return a tuple of sets (ProductSets) input of the self.
Examples
========
>>> from sympy import Interval, ComplexRegion, Union
>>> a = Interval(2, 3)
>>> b = Interval(4, 5)
>>> c = Interval(1, 7)
>>> C1 = ComplexRegion(a*b)
>>> C1.psets
(Interval(2, 3) x Interval(4, 5),)
>>> C2 = ComplexRegion(Union(a*b, b*c))
>>> C2.psets
(Interval(2, 3) x Interval(4, 5), Interval(4, 5) x Interval(1, 7))
"""
if self.sets.is_ProductSet:
psets = ()
psets = psets + (self.sets, )
else:
psets = self.sets.args
return psets
@property
def a_interval(self):
"""
Return the union of intervals of `x` when, self is in
rectangular form, or the union of intervals of `r` when
self is in polar form.
Examples
========
>>> from sympy import Interval, ComplexRegion, Union
>>> a = Interval(2, 3)
>>> b = Interval(4, 5)
>>> c = Interval(1, 7)
>>> C1 = ComplexRegion(a*b)
>>> C1.a_interval
Interval(2, 3)
>>> C2 = ComplexRegion(Union(a*b, b*c))
>>> C2.a_interval
Union(Interval(2, 3), Interval(4, 5))
"""
a_interval = []
for element in self.psets:
a_interval.append(element.args[0])
a_interval = Union(*a_interval)
return a_interval
@property
def b_interval(self):
"""
Return the union of intervals of `y` when, self is in
rectangular form, or the union of intervals of `theta`
when self is in polar form.
Examples
========
>>> from sympy import Interval, ComplexRegion, Union
>>> a = Interval(2, 3)
>>> b = Interval(4, 5)
>>> c = Interval(1, 7)
>>> C1 = ComplexRegion(a*b)
>>> C1.b_interval
Interval(4, 5)
>>> C2 = ComplexRegion(Union(a*b, b*c))
>>> C2.b_interval
Interval(1, 7)
"""
b_interval = []
for element in self.psets:
b_interval.append(element.args[1])
b_interval = Union(*b_interval)
return b_interval
@property
def polar(self):
"""
Returns True if self is in polar form.
Examples
========
>>> from sympy import Interval, ComplexRegion, Union, S
>>> a = Interval(2, 3)
>>> b = Interval(4, 5)
>>> theta = Interval(0, 2*S.Pi)
>>> C1 = ComplexRegion(a*b)
>>> C1.polar
False
>>> C2 = ComplexRegion(a*theta, polar=True)
>>> C2.polar
True
"""
return self._polar
@property
def _measure(self):
"""
The measure of self.sets.
Examples
========
>>> from sympy import Interval, ComplexRegion, S
>>> a, b = Interval(2, 5), Interval(4, 8)
>>> c = Interval(0, 2*S.Pi)
>>> c1 = ComplexRegion(a*b)
>>> c1.measure
12
>>> c2 = ComplexRegion(a*c, polar=True)
>>> c2.measure
6*pi
"""
return self.sets._measure
@classmethod
def from_real(cls, sets):
"""
Converts given subset of real numbers to a complex region.
Examples
========
>>> from sympy import Interval, ComplexRegion
>>> unit = Interval(0,1)
>>> ComplexRegion.from_real(unit)
ComplexRegion(Interval(0, 1) x {0}, False)
"""
if not sets.is_subset(S.Reals):
raise ValueError("sets must be a subset of the real line")
return cls(sets * FiniteSet(0))
def _contains(self, other):
from sympy.functions import arg, Abs
from sympy.core.containers import Tuple
other = sympify(other)
isTuple = isinstance(other, Tuple)
if isTuple and len(other) != 2:
raise ValueError('expecting Tuple of length 2')
# If the other is not an Expression, and neither a Tuple
if not isinstance(other, Expr) and not isinstance(other, Tuple):
return S.false
# self in rectangular form
if not self.polar:
re, im = other if isTuple else other.as_real_imag()
for element in self.psets:
if And(element.args[0]._contains(re),
element.args[1]._contains(im)):
return True
return False
# self in polar form
elif self.polar:
if isTuple:
r, theta = other
elif other.is_zero:
r, theta = S.Zero, S.Zero
else:
r, theta = Abs(other), arg(other)
for element in self.psets:
if And(element.args[0]._contains(r),
element.args[1]._contains(theta)):
return True
return False
class Complexes(with_metaclass(Singleton, ComplexRegion)):
def __new__(cls):
return ComplexRegion.__new__(cls, S.Reals*S.Reals)
def __eq__(self, other):
return other == ComplexRegion(S.Reals*S.Reals)
def __hash__(self):
return hash(ComplexRegion(S.Reals*S.Reals))
def __str__(self):
return "S.Complexes"
def __repr__(self):
return "S.Complexes"
|
3609fdd2a0fbaee10695558ab1a0cc68b642e987585bb8d9b3cc9aa6792e92cd
|
from __future__ import print_function, division
from itertools import product
from sympy.core.basic import Basic
from sympy.core.compatibility import (iterable, with_metaclass,
ordered, range, PY3)
from sympy.core.cache import cacheit
from sympy.core.evalf import EvalfMixin
from sympy.core.evaluate import global_evaluate
from sympy.core.expr import Expr
from sympy.core.function import FunctionClass
from sympy.core.logic import fuzzy_bool
from sympy.core.mul import Mul
from sympy.core.numbers import Float
from sympy.core.operations import LatticeOp
from sympy.core.relational import Eq, Ne
from sympy.core.singleton import Singleton, S
from sympy.core.symbol import Symbol, Dummy, _uniquely_named_symbol
from sympy.core.sympify import _sympify, sympify, converter
from sympy.logic.boolalg import And, Or, Not, true, false
from sympy.sets.contains import Contains
from sympy.utilities import subsets
from sympy.utilities.iterables import sift
from sympy.utilities.misc import func_name, filldedent
from mpmath import mpi, mpf
class Set(Basic):
"""
The base class for any kind of set.
This is not meant to be used directly as a container of items. It does not
behave like the builtin ``set``; see :class:`FiniteSet` for that.
Real intervals are represented by the :class:`Interval` class and unions of
sets by the :class:`Union` class. The empty set is represented by the
:class:`EmptySet` class and available as a singleton as ``S.EmptySet``.
"""
is_number = False
is_iterable = False
is_interval = False
is_FiniteSet = False
is_Interval = False
is_ProductSet = False
is_Union = False
is_Intersection = None
is_EmptySet = None
is_UniversalSet = None
is_Complement = None
is_ComplexRegion = False
@staticmethod
def _infimum_key(expr):
"""
Return infimum (if possible) else S.Infinity.
"""
try:
infimum = expr.inf
assert infimum.is_comparable
except (NotImplementedError,
AttributeError, AssertionError, ValueError):
infimum = S.Infinity
return infimum
def union(self, other):
"""
Returns the union of 'self' and 'other'.
Examples
========
As a shortcut it is possible to use the '+' operator:
>>> from sympy import Interval, FiniteSet
>>> Interval(0, 1).union(Interval(2, 3))
Union(Interval(0, 1), Interval(2, 3))
>>> Interval(0, 1) + Interval(2, 3)
Union(Interval(0, 1), Interval(2, 3))
>>> Interval(1, 2, True, True) + FiniteSet(2, 3)
Union(Interval.Lopen(1, 2), {3})
Similarly it is possible to use the '-' operator for set differences:
>>> Interval(0, 2) - Interval(0, 1)
Interval.Lopen(1, 2)
>>> Interval(1, 3) - FiniteSet(2)
Union(Interval.Ropen(1, 2), Interval.Lopen(2, 3))
"""
return Union(self, other)
def intersect(self, other):
"""
Returns the intersection of 'self' and 'other'.
>>> from sympy import Interval
>>> Interval(1, 3).intersect(Interval(1, 2))
Interval(1, 2)
>>> from sympy import imageset, Lambda, symbols, S
>>> n, m = symbols('n m')
>>> a = imageset(Lambda(n, 2*n), S.Integers)
>>> a.intersect(imageset(Lambda(m, 2*m + 1), S.Integers))
EmptySet()
"""
return Intersection(self, other)
def intersection(self, other):
"""
Alias for :meth:`intersect()`
"""
return self.intersect(other)
def is_disjoint(self, other):
"""
Returns True if 'self' and 'other' are disjoint
Examples
========
>>> from sympy import Interval
>>> Interval(0, 2).is_disjoint(Interval(1, 2))
False
>>> Interval(0, 2).is_disjoint(Interval(3, 4))
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Disjoint_sets
"""
return self.intersect(other) == S.EmptySet
def isdisjoint(self, other):
"""
Alias for :meth:`is_disjoint()`
"""
return self.is_disjoint(other)
def complement(self, universe):
r"""
The complement of 'self' w.r.t the given universe.
Examples
========
>>> from sympy import Interval, S
>>> Interval(0, 1).complement(S.Reals)
Union(Interval.open(-oo, 0), Interval.open(1, oo))
>>> Interval(0, 1).complement(S.UniversalSet)
UniversalSet() \ Interval(0, 1)
"""
return Complement(universe, self)
def _complement(self, other):
# this behaves as other - self
if isinstance(other, ProductSet):
# For each set consider it or it's complement
# We need at least one of the sets to be complemented
# Consider all 2^n combinations.
# We can conveniently represent these options easily using a
# ProductSet
# XXX: this doesn't work if the dimensions of the sets isn't same.
# A - B is essentially same as A if B has a different
# dimensionality than A
switch_sets = ProductSet(FiniteSet(o, o - s) for s, o in
zip(self.sets, other.sets))
product_sets = (ProductSet(*set) for set in switch_sets)
# Union of all combinations but this one
return Union(*(p for p in product_sets if p != other))
elif isinstance(other, Interval):
if isinstance(self, Interval) or isinstance(self, FiniteSet):
return Intersection(other, self.complement(S.Reals))
elif isinstance(other, Union):
return Union(*(o - self for o in other.args))
elif isinstance(other, Complement):
return Complement(other.args[0], Union(other.args[1], self), evaluate=False)
elif isinstance(other, EmptySet):
return S.EmptySet
elif isinstance(other, FiniteSet):
from sympy.utilities.iterables import sift
sifted = sift(other, lambda x: fuzzy_bool(self.contains(x)))
# ignore those that are contained in self
return Union(FiniteSet(*(sifted[False])),
Complement(FiniteSet(*(sifted[None])), self, evaluate=False)
if sifted[None] else S.EmptySet)
def symmetric_difference(self, other):
"""
Returns symmetric difference of `self` and `other`.
Examples
========
>>> from sympy import Interval, S
>>> Interval(1, 3).symmetric_difference(S.Reals)
Union(Interval.open(-oo, 1), Interval.open(3, oo))
>>> Interval(1, 10).symmetric_difference(S.Reals)
Union(Interval.open(-oo, 1), Interval.open(10, oo))
>>> from sympy import S, EmptySet
>>> S.Reals.symmetric_difference(EmptySet())
Reals
References
==========
.. [1] https://en.wikipedia.org/wiki/Symmetric_difference
"""
return SymmetricDifference(self, other)
def _symmetric_difference(self, other):
return Union(Complement(self, other), Complement(other, self))
@property
def inf(self):
"""
The infimum of 'self'
Examples
========
>>> from sympy import Interval, Union
>>> Interval(0, 1).inf
0
>>> Union(Interval(0, 1), Interval(2, 3)).inf
0
"""
return self._inf
@property
def _inf(self):
raise NotImplementedError("(%s)._inf" % self)
@property
def sup(self):
"""
The supremum of 'self'
Examples
========
>>> from sympy import Interval, Union
>>> Interval(0, 1).sup
1
>>> Union(Interval(0, 1), Interval(2, 3)).sup
3
"""
return self._sup
@property
def _sup(self):
raise NotImplementedError("(%s)._sup" % self)
def contains(self, other):
"""
Returns True if 'other' is contained in 'self' as an element.
As a shortcut it is possible to use the 'in' operator:
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).contains(0.5)
True
>>> 0.5 in Interval(0, 1)
True
"""
other = sympify(other, strict=True)
ret = sympify(self._contains(other))
if ret is None:
ret = Contains(other, self, evaluate=False)
return ret
def _contains(self, other):
raise NotImplementedError("(%s)._contains(%s)" % (self, other))
def is_subset(self, other):
"""
Returns True if 'self' is a subset of 'other'.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 0.5).is_subset(Interval(0, 1))
True
>>> Interval(0, 1).is_subset(Interval(0, 1, left_open=True))
False
"""
if isinstance(other, Set):
return self.intersect(other) == self
else:
raise ValueError("Unknown argument '%s'" % other)
def issubset(self, other):
"""
Alias for :meth:`is_subset()`
"""
return self.is_subset(other)
def is_proper_subset(self, other):
"""
Returns True if 'self' is a proper subset of 'other'.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 0.5).is_proper_subset(Interval(0, 1))
True
>>> Interval(0, 1).is_proper_subset(Interval(0, 1))
False
"""
if isinstance(other, Set):
return self != other and self.is_subset(other)
else:
raise ValueError("Unknown argument '%s'" % other)
def is_superset(self, other):
"""
Returns True if 'self' is a superset of 'other'.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 0.5).is_superset(Interval(0, 1))
False
>>> Interval(0, 1).is_superset(Interval(0, 1, left_open=True))
True
"""
if isinstance(other, Set):
return other.is_subset(self)
else:
raise ValueError("Unknown argument '%s'" % other)
def issuperset(self, other):
"""
Alias for :meth:`is_superset()`
"""
return self.is_superset(other)
def is_proper_superset(self, other):
"""
Returns True if 'self' is a proper superset of 'other'.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).is_proper_superset(Interval(0, 0.5))
True
>>> Interval(0, 1).is_proper_superset(Interval(0, 1))
False
"""
if isinstance(other, Set):
return self != other and self.is_superset(other)
else:
raise ValueError("Unknown argument '%s'" % other)
def _eval_powerset(self):
raise NotImplementedError('Power set not defined for: %s' % self.func)
def powerset(self):
"""
Find the Power set of 'self'.
Examples
========
>>> from sympy import FiniteSet, EmptySet
>>> A = EmptySet()
>>> A.powerset()
{EmptySet()}
>>> A = FiniteSet(1, 2)
>>> a, b, c = FiniteSet(1), FiniteSet(2), FiniteSet(1, 2)
>>> A.powerset() == FiniteSet(a, b, c, EmptySet())
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Power_set
"""
return self._eval_powerset()
@property
def measure(self):
"""
The (Lebesgue) measure of 'self'
Examples
========
>>> from sympy import Interval, Union
>>> Interval(0, 1).measure
1
>>> Union(Interval(0, 1), Interval(2, 3)).measure
2
"""
return self._measure
@property
def boundary(self):
"""
The boundary or frontier of a set
A point x is on the boundary of a set S if
1. x is in the closure of S.
I.e. Every neighborhood of x contains a point in S.
2. x is not in the interior of S.
I.e. There does not exist an open set centered on x contained
entirely within S.
There are the points on the outer rim of S. If S is open then these
points need not actually be contained within S.
For example, the boundary of an interval is its start and end points.
This is true regardless of whether or not the interval is open.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).boundary
{0, 1}
>>> Interval(0, 1, True, False).boundary
{0, 1}
"""
return self._boundary
@property
def is_open(self):
"""
Property method to check whether a set is open.
A set is open if and only if it has an empty intersection with its
boundary.
Examples
========
>>> from sympy import S
>>> S.Reals.is_open
True
"""
if not Intersection(self, self.boundary):
return True
# We can't confidently claim that an intersection exists
return None
@property
def is_closed(self):
"""
A property method to check whether a set is closed. A set is closed
if it's complement is an open set.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).is_closed
True
"""
return self.boundary.is_subset(self)
@property
def closure(self):
"""
Property method which returns the closure of a set.
The closure is defined as the union of the set itself and its
boundary.
Examples
========
>>> from sympy import S, Interval
>>> S.Reals.closure
Reals
>>> Interval(0, 1).closure
Interval(0, 1)
"""
return self + self.boundary
@property
def interior(self):
"""
Property method which returns the interior of a set.
The interior of a set S consists all points of S that do not
belong to the boundary of S.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).interior
Interval.open(0, 1)
>>> Interval(0, 1).boundary.interior
EmptySet()
"""
return self - self.boundary
@property
def _boundary(self):
raise NotImplementedError()
@property
def _measure(self):
raise NotImplementedError("(%s)._measure" % self)
def __add__(self, other):
return self.union(other)
def __or__(self, other):
return self.union(other)
def __and__(self, other):
return self.intersect(other)
def __mul__(self, other):
return ProductSet(self, other)
def __xor__(self, other):
return SymmetricDifference(self, other)
def __pow__(self, exp):
if not sympify(exp).is_Integer and exp >= 0:
raise ValueError("%s: Exponent must be a positive Integer" % exp)
return ProductSet([self]*exp)
def __sub__(self, other):
return Complement(self, other)
def __contains__(self, other):
symb = sympify(self.contains(other))
if not (symb is S.true or symb is S.false):
raise TypeError('contains did not evaluate to a bool: %r' % symb)
return bool(symb)
class ProductSet(Set):
"""
Represents a Cartesian Product of Sets.
Returns a Cartesian product given several sets as either an iterable
or individual arguments.
Can use '*' operator on any sets for convenient shorthand.
Examples
========
>>> from sympy import Interval, FiniteSet, ProductSet
>>> I = Interval(0, 5); S = FiniteSet(1, 2, 3)
>>> ProductSet(I, S)
Interval(0, 5) x {1, 2, 3}
>>> (2, 2) in ProductSet(I, S)
True
>>> Interval(0, 1) * Interval(0, 1) # The unit square
Interval(0, 1) x Interval(0, 1)
>>> coin = FiniteSet('H', 'T')
>>> set(coin**2)
{(H, H), (H, T), (T, H), (T, T)}
Notes
=====
- Passes most operations down to the argument sets
- Flattens Products of ProductSets
References
==========
.. [1] https://en.wikipedia.org/wiki/Cartesian_product
"""
is_ProductSet = True
def __new__(cls, *sets, **assumptions):
def flatten(arg):
if isinstance(arg, Set):
if arg.is_ProductSet:
return sum(map(flatten, arg.args), [])
else:
return [arg]
elif iterable(arg):
return sum(map(flatten, arg), [])
raise TypeError("Input must be Sets or iterables of Sets")
sets = flatten(list(sets))
if EmptySet() in sets or len(sets) == 0:
return EmptySet()
if len(sets) == 1:
return sets[0]
return Basic.__new__(cls, *sets, **assumptions)
def _eval_Eq(self, other):
if not other.is_ProductSet:
return
if len(self.args) != len(other.args):
return false
return And(*(Eq(x, y) for x, y in zip(self.args, other.args)))
def _contains(self, element):
"""
'in' operator for ProductSets
Examples
========
>>> from sympy import Interval
>>> (2, 3) in Interval(0, 5) * Interval(0, 5)
True
>>> (10, 10) in Interval(0, 5) * Interval(0, 5)
False
Passes operation on to constituent sets
"""
try:
if len(element) != len(self.args):
return false
except TypeError: # maybe element isn't an iterable
return false
return And(*
[set.contains(item) for set, item in zip(self.sets, element)])
@property
def sets(self):
return self.args
@property
def _boundary(self):
return Union(*(ProductSet(b + b.boundary if i != j else b.boundary
for j, b in enumerate(self.sets))
for i, a in enumerate(self.sets)))
@property
def is_iterable(self):
"""
A property method which tests whether a set is iterable or not.
Returns True if set is iterable, otherwise returns False.
Examples
========
>>> from sympy import FiniteSet, Interval, ProductSet
>>> I = Interval(0, 1)
>>> A = FiniteSet(1, 2, 3, 4, 5)
>>> I.is_iterable
False
>>> A.is_iterable
True
"""
return all(set.is_iterable for set in self.sets)
def __iter__(self):
"""
A method which implements is_iterable property method.
If self.is_iterable returns True (both constituent sets are iterable),
then return the Cartesian Product. Otherwise, raise TypeError.
"""
if self.is_iterable:
return product(*self.sets)
else:
raise TypeError("Not all constituent sets are iterable")
@property
def _measure(self):
measure = 1
for set in self.sets:
measure *= set.measure
return measure
def __len__(self):
return Mul(*[len(s) for s in self.args])
def __bool__(self):
return all([bool(s) for s in self.args])
__nonzero__ = __bool__
class Interval(Set, EvalfMixin):
"""
Represents a real interval as a Set.
Usage:
Returns an interval with end points "start" and "end".
For left_open=True (default left_open is False) the interval
will be open on the left. Similarly, for right_open=True the interval
will be open on the right.
Examples
========
>>> from sympy import Symbol, Interval
>>> Interval(0, 1)
Interval(0, 1)
>>> Interval.Ropen(0, 1)
Interval.Ropen(0, 1)
>>> Interval.Ropen(0, 1)
Interval.Ropen(0, 1)
>>> Interval.Lopen(0, 1)
Interval.Lopen(0, 1)
>>> Interval.open(0, 1)
Interval.open(0, 1)
>>> a = Symbol('a', real=True)
>>> Interval(0, a)
Interval(0, a)
Notes
=====
- Only real end points are supported
- Interval(a, b) with a > b will return the empty set
- Use the evalf() method to turn an Interval into an mpmath
'mpi' interval instance
References
==========
.. [1] https://en.wikipedia.org/wiki/Interval_%28mathematics%29
"""
is_Interval = True
def __new__(cls, start, end, left_open=False, right_open=False):
start = _sympify(start)
end = _sympify(end)
left_open = _sympify(left_open)
right_open = _sympify(right_open)
if not all(isinstance(a, (type(true), type(false)))
for a in [left_open, right_open]):
raise NotImplementedError(
"left_open and right_open can have only true/false values, "
"got %s and %s" % (left_open, right_open))
inftys = [S.Infinity, S.NegativeInfinity]
# Only allow real intervals (use symbols with 'is_real=True').
if not all(i.is_real is not False or i in inftys for i in (start, end)):
raise ValueError("Non-real intervals are not supported")
# evaluate if possible
if (end < start) == True:
return S.EmptySet
elif (end - start).is_negative:
return S.EmptySet
if end == start and (left_open or right_open):
return S.EmptySet
if end == start and not (left_open or right_open):
if start == S.Infinity or start == S.NegativeInfinity:
return S.EmptySet
return FiniteSet(end)
# Make sure infinite interval end points are open.
if start == S.NegativeInfinity:
left_open = true
if end == S.Infinity:
right_open = true
return Basic.__new__(cls, start, end, left_open, right_open)
@property
def start(self):
"""
The left end point of 'self'.
This property takes the same value as the 'inf' property.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).start
0
"""
return self._args[0]
_inf = left = start
@classmethod
def open(cls, a, b):
"""Return an interval including neither boundary."""
return cls(a, b, True, True)
@classmethod
def Lopen(cls, a, b):
"""Return an interval not including the left boundary."""
return cls(a, b, True, False)
@classmethod
def Ropen(cls, a, b):
"""Return an interval not including the right boundary."""
return cls(a, b, False, True)
@property
def end(self):
"""
The right end point of 'self'.
This property takes the same value as the 'sup' property.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).end
1
"""
return self._args[1]
_sup = right = end
@property
def left_open(self):
"""
True if 'self' is left-open.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1, left_open=True).left_open
True
>>> Interval(0, 1, left_open=False).left_open
False
"""
return self._args[2]
@property
def right_open(self):
"""
True if 'self' is right-open.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1, right_open=True).right_open
True
>>> Interval(0, 1, right_open=False).right_open
False
"""
return self._args[3]
def _complement(self, other):
if other == S.Reals:
a = Interval(S.NegativeInfinity, self.start,
True, not self.left_open)
b = Interval(self.end, S.Infinity, not self.right_open, True)
return Union(a, b)
if isinstance(other, FiniteSet):
nums = [m for m in other.args if m.is_number]
if nums == []:
return None
return Set._complement(self, other)
@property
def _boundary(self):
finite_points = [p for p in (self.start, self.end)
if abs(p) != S.Infinity]
return FiniteSet(*finite_points)
def _contains(self, other):
if not isinstance(other, Expr) or (
other is S.Infinity or
other is S.NegativeInfinity or
other is S.NaN or
other is S.ComplexInfinity) or other.is_real is False:
return false
if self.start is S.NegativeInfinity and self.end is S.Infinity:
if not other.is_real is None:
return other.is_real
if self.left_open:
expr = other > self.start
else:
expr = other >= self.start
if self.right_open:
expr = And(expr, other < self.end)
else:
expr = And(expr, other <= self.end)
return _sympify(expr)
@property
def _measure(self):
return self.end - self.start
def to_mpi(self, prec=53):
return mpi(mpf(self.start._eval_evalf(prec)),
mpf(self.end._eval_evalf(prec)))
def _eval_evalf(self, prec):
return Interval(self.left._eval_evalf(prec),
self.right._eval_evalf(prec),
left_open=self.left_open, right_open=self.right_open)
def _is_comparable(self, other):
is_comparable = self.start.is_comparable
is_comparable &= self.end.is_comparable
is_comparable &= other.start.is_comparable
is_comparable &= other.end.is_comparable
return is_comparable
@property
def is_left_unbounded(self):
"""Return ``True`` if the left endpoint is negative infinity. """
return self.left is S.NegativeInfinity or self.left == Float("-inf")
@property
def is_right_unbounded(self):
"""Return ``True`` if the right endpoint is positive infinity. """
return self.right is S.Infinity or self.right == Float("+inf")
def as_relational(self, x):
"""Rewrite an interval in terms of inequalities and logic operators."""
x = sympify(x)
if self.right_open:
right = x < self.end
else:
right = x <= self.end
if self.left_open:
left = self.start < x
else:
left = self.start <= x
return And(left, right)
def _eval_Eq(self, other):
if not isinstance(other, Interval):
if isinstance(other, FiniteSet):
return false
elif isinstance(other, Set):
return None
return false
return And(Eq(self.left, other.left),
Eq(self.right, other.right),
self.left_open == other.left_open,
self.right_open == other.right_open)
class Union(Set, LatticeOp, EvalfMixin):
"""
Represents a union of sets as a :class:`Set`.
Examples
========
>>> from sympy import Union, Interval
>>> Union(Interval(1, 2), Interval(3, 4))
Union(Interval(1, 2), Interval(3, 4))
The Union constructor will always try to merge overlapping intervals,
if possible. For example:
>>> Union(Interval(1, 2), Interval(2, 3))
Interval(1, 3)
See Also
========
Intersection
References
==========
.. [1] https://en.wikipedia.org/wiki/Union_%28set_theory%29
"""
is_Union = True
@property
def identity(self):
return S.EmptySet
@property
def zero(self):
return S.UniversalSet
def __new__(cls, *args, **kwargs):
evaluate = kwargs.get('evaluate', global_evaluate[0])
# flatten inputs to merge intersections and iterables
args = _sympify(args)
# Reduce sets using known rules
if evaluate:
args = list(cls._new_args_filter(args))
return simplify_union(args)
args = list(ordered(args, Set._infimum_key))
obj = Basic.__new__(cls, *args)
obj._argset = frozenset(args)
return obj
@property
@cacheit
def args(self):
return self._args
def _complement(self, universe):
# DeMorgan's Law
return Intersection(s.complement(universe) for s in self.args)
@property
def _inf(self):
# We use Min so that sup is meaningful in combination with symbolic
# interval end points.
from sympy.functions.elementary.miscellaneous import Min
return Min(*[set.inf for set in self.args])
@property
def _sup(self):
# We use Max so that sup is meaningful in combination with symbolic
# end points.
from sympy.functions.elementary.miscellaneous import Max
return Max(*[set.sup for set in self.args])
def _contains(self, other):
return Or(*[set.contains(other) for set in self.args])
@property
def _measure(self):
# Measure of a union is the sum of the measures of the sets minus
# the sum of their pairwise intersections plus the sum of their
# triple-wise intersections minus ... etc...
# Sets is a collection of intersections and a set of elementary
# sets which made up those intersections (called "sos" for set of sets)
# An example element might of this list might be:
# ( {A,B,C}, A.intersect(B).intersect(C) )
# Start with just elementary sets ( ({A}, A), ({B}, B), ... )
# Then get and subtract ( ({A,B}, (A int B), ... ) while non-zero
sets = [(FiniteSet(s), s) for s in self.args]
measure = 0
parity = 1
while sets:
# Add up the measure of these sets and add or subtract it to total
measure += parity * sum(inter.measure for sos, inter in sets)
# For each intersection in sets, compute the intersection with every
# other set not already part of the intersection.
sets = ((sos + FiniteSet(newset), newset.intersect(intersection))
for sos, intersection in sets for newset in self.args
if newset not in sos)
# Clear out sets with no measure
sets = [(sos, inter) for sos, inter in sets if inter.measure != 0]
# Clear out duplicates
sos_list = []
sets_list = []
for set in sets:
if set[0] in sos_list:
continue
else:
sos_list.append(set[0])
sets_list.append(set)
sets = sets_list
# Flip Parity - next time subtract/add if we added/subtracted here
parity *= -1
return measure
@property
def _boundary(self):
def boundary_of_set(i):
""" The boundary of set i minus interior of all other sets """
b = self.args[i].boundary
for j, a in enumerate(self.args):
if j != i:
b = b - a.interior
return b
return Union(*map(boundary_of_set, range(len(self.args))))
def as_relational(self, symbol):
"""Rewrite a Union in terms of equalities and logic operators. """
if len(self.args) == 2:
a, b = self.args
if (a.sup == b.inf and a.inf is S.NegativeInfinity
and b.sup is S.Infinity):
return And(Ne(symbol, a.sup), symbol < b.sup, symbol > a.inf)
return Or(*[set.as_relational(symbol) for set in self.args])
@property
def is_iterable(self):
return all(arg.is_iterable for arg in self.args)
def _eval_evalf(self, prec):
try:
return Union(*(set._eval_evalf(prec) for set in self.args))
except (TypeError, ValueError, NotImplementedError):
import sys
raise (TypeError("Not all sets are evalf-able"),
None,
sys.exc_info()[2])
def __iter__(self):
import itertools
# roundrobin recipe taken from itertools documentation:
# https://docs.python.org/2/library/itertools.html#recipes
def roundrobin(*iterables):
"roundrobin('ABC', 'D', 'EF') --> A D E B F C"
# Recipe credited to George Sakkis
pending = len(iterables)
if PY3:
nexts = itertools.cycle(iter(it).__next__ for it in iterables)
else:
nexts = itertools.cycle(iter(it).next for it in iterables)
while pending:
try:
for next in nexts:
yield next()
except StopIteration:
pending -= 1
nexts = itertools.cycle(itertools.islice(nexts, pending))
if all(set.is_iterable for set in self.args):
return roundrobin(*(iter(arg) for arg in self.args))
else:
raise TypeError("Not all constituent sets are iterable")
class Intersection(Set, LatticeOp):
"""
Represents an intersection of sets as a :class:`Set`.
Examples
========
>>> from sympy import Intersection, Interval
>>> Intersection(Interval(1, 3), Interval(2, 4))
Interval(2, 3)
We often use the .intersect method
>>> Interval(1,3).intersect(Interval(2,4))
Interval(2, 3)
See Also
========
Union
References
==========
.. [1] https://en.wikipedia.org/wiki/Intersection_%28set_theory%29
"""
is_Intersection = True
@property
def identity(self):
return S.UniversalSet
@property
def zero(self):
return S.EmptySet
def __new__(cls, *args, **kwargs):
evaluate = kwargs.get('evaluate', global_evaluate[0])
# flatten inputs to merge intersections and iterables
args = _sympify(args)
# Reduce sets using known rules
if evaluate:
args = list(cls._new_args_filter(args))
return simplify_intersection(args)
args = list(ordered(args, Set._infimum_key))
obj = Basic.__new__(cls, *args)
obj._argset = frozenset(args)
return obj
@property
@cacheit
def args(self):
return self._args
@property
def is_iterable(self):
return any(arg.is_iterable for arg in self.args)
@property
def _inf(self):
raise NotImplementedError()
@property
def _sup(self):
raise NotImplementedError()
def _contains(self, other):
return And(*[set.contains(other) for set in self.args])
def __iter__(self):
no_iter = True
for s in self.args:
if s.is_iterable:
no_iter = False
other_sets = set(self.args) - set((s,))
other = Intersection(*other_sets, evaluate=False)
for x in s:
c = sympify(other.contains(x))
if c is S.true:
yield x
elif c is S.false:
pass
else:
yield c
if no_iter:
raise ValueError("None of the constituent sets are iterable")
@staticmethod
def _handle_finite_sets(args):
from sympy.core.logic import fuzzy_and, fuzzy_bool
from sympy.core.compatibility import zip_longest
fs_args, other = sift(args, lambda x: x.is_FiniteSet,
binary=True)
if not fs_args:
return
fs_args.sort(key=len)
s = fs_args[0]
fs_args = fs_args[1:]
res = []
unk = []
for x in s:
c = fuzzy_and(fuzzy_bool(o.contains(x))
for o in fs_args + other)
if c:
res.append(x)
elif c is None:
unk.append(x)
else:
pass # drop arg
res = FiniteSet(
*res, evaluate=False) if res else S.EmptySet
if unk:
symbolic_s_list = [x for x in s if x.has(Symbol)]
non_symbolic_s = s - FiniteSet(
*symbolic_s_list, evaluate=False)
while fs_args:
v = fs_args.pop()
if all(i == j for i, j in zip_longest(
symbolic_s_list,
(x for x in v if x.has(Symbol)))):
# all the symbolic elements of `v` are the same
# as in `s` so remove the non-symbol containing
# expressions from `unk`, since they cannot be
# contained
for x in non_symbolic_s:
if x in unk:
unk.remove(x)
else:
# if only a subset of elements in `s` are
# contained in `v` then remove them from `v`
# and add this as a new arg
contained = [x for x in symbolic_s_list
if sympify(v.contains(x)) is S.true]
if contained != symbolic_s_list:
other.append(
v - FiniteSet(
*contained, evaluate=False))
else:
pass # for coverage
other_sets = Intersection(*other)
if not other_sets:
return S.EmptySet # b/c we use evaluate=False below
elif other_sets == S.UniversalSet:
res += FiniteSet(*unk)
else:
res += Intersection(
FiniteSet(*unk),
other_sets, evaluate=False)
return res
def as_relational(self, symbol):
"""Rewrite an Intersection in terms of equalities and logic operators"""
return And(*[set.as_relational(symbol) for set in self.args])
class Complement(Set, EvalfMixin):
r"""Represents the set difference or relative complement of a set with
another set.
`A - B = \{x \in A| x \\notin B\}`
Examples
========
>>> from sympy import Complement, FiniteSet
>>> Complement(FiniteSet(0, 1, 2), FiniteSet(1))
{0, 2}
See Also
=========
Intersection, Union
References
==========
.. [1] http://mathworld.wolfram.com/ComplementSet.html
"""
is_Complement = True
def __new__(cls, a, b, evaluate=True):
if evaluate:
return Complement.reduce(a, b)
return Basic.__new__(cls, a, b)
@staticmethod
def reduce(A, B):
"""
Simplify a :class:`Complement`.
"""
if B == S.UniversalSet or A.is_subset(B):
return EmptySet()
if isinstance(B, Union):
return Intersection(*(s.complement(A) for s in B.args))
result = B._complement(A)
if result is not None:
return result
else:
return Complement(A, B, evaluate=False)
def _contains(self, other):
A = self.args[0]
B = self.args[1]
return And(A.contains(other), Not(B.contains(other)))
class EmptySet(with_metaclass(Singleton, Set)):
"""
Represents the empty set. The empty set is available as a singleton
as S.EmptySet.
Examples
========
>>> from sympy import S, Interval
>>> S.EmptySet
EmptySet()
>>> Interval(1, 2).intersect(S.EmptySet)
EmptySet()
See Also
========
UniversalSet
References
==========
.. [1] https://en.wikipedia.org/wiki/Empty_set
"""
is_EmptySet = True
is_FiniteSet = True
@property
def _measure(self):
return 0
def _contains(self, other):
return false
def as_relational(self, symbol):
return false
def __len__(self):
return 0
def __iter__(self):
return iter([])
def _eval_powerset(self):
return FiniteSet(self)
@property
def _boundary(self):
return self
def _complement(self, other):
return other
def _symmetric_difference(self, other):
return other
class UniversalSet(with_metaclass(Singleton, Set)):
"""
Represents the set of all things.
The universal set is available as a singleton as S.UniversalSet
Examples
========
>>> from sympy import S, Interval
>>> S.UniversalSet
UniversalSet()
>>> Interval(1, 2).intersect(S.UniversalSet)
Interval(1, 2)
See Also
========
EmptySet
References
==========
.. [1] https://en.wikipedia.org/wiki/Universal_set
"""
is_UniversalSet = True
def _complement(self, other):
return S.EmptySet
def _symmetric_difference(self, other):
return other
@property
def _measure(self):
return S.Infinity
def _contains(self, other):
return true
def as_relational(self, symbol):
return true
@property
def _boundary(self):
return EmptySet()
class FiniteSet(Set, EvalfMixin):
"""
Represents a finite set of discrete numbers
Examples
========
>>> from sympy import FiniteSet
>>> FiniteSet(1, 2, 3, 4)
{1, 2, 3, 4}
>>> 3 in FiniteSet(1, 2, 3, 4)
True
>>> members = [1, 2, 3, 4]
>>> f = FiniteSet(*members)
>>> f
{1, 2, 3, 4}
>>> f - FiniteSet(2)
{1, 3, 4}
>>> f + FiniteSet(2, 5)
{1, 2, 3, 4, 5}
References
==========
.. [1] https://en.wikipedia.org/wiki/Finite_set
"""
is_FiniteSet = True
is_iterable = True
def __new__(cls, *args, **kwargs):
evaluate = kwargs.get('evaluate', global_evaluate[0])
if evaluate:
args = list(map(sympify, args))
if len(args) == 0:
return EmptySet()
else:
args = list(map(sympify, args))
args = list(ordered(frozenset(tuple(args)), Set._infimum_key))
obj = Basic.__new__(cls, *args)
obj._elements = frozenset(args)
return obj
def _eval_Eq(self, other):
if not isinstance(other, FiniteSet):
if isinstance(other, Interval):
return false
elif isinstance(other, Set):
return None
return false
if len(self) != len(other):
return false
return And(*(Eq(x, y) for x, y in zip(self.args, other.args)))
def __iter__(self):
return iter(self.args)
def _complement(self, other):
if isinstance(other, Interval):
nums = sorted(m for m in self.args if m.is_number)
if other == S.Reals and nums != []:
syms = [m for m in self.args if m.is_Symbol]
# Reals cannot contain elements other than numbers and symbols.
intervals = [] # Build up a list of intervals between the elements
intervals += [Interval(S.NegativeInfinity, nums[0], True, True)]
for a, b in zip(nums[:-1], nums[1:]):
intervals.append(Interval(a, b, True, True)) # both open
intervals.append(Interval(nums[-1], S.Infinity, True, True))
if syms != []:
return Complement(Union(*intervals, evaluate=False),
FiniteSet(*syms), evaluate=False)
else:
return Union(*intervals, evaluate=False)
elif nums == []:
return None
elif isinstance(other, FiniteSet):
unk = []
for i in self:
c = sympify(other.contains(i))
if c is not S.true and c is not S.false:
unk.append(i)
unk = FiniteSet(*unk)
if unk == self:
return
not_true = []
for i in other:
c = sympify(self.contains(i))
if c is not S.true:
not_true.append(i)
return Complement(FiniteSet(*not_true), unk)
return Set._complement(self, other)
def _contains(self, other):
"""
Tests whether an element, other, is in the set.
Relies on Python's set class. This tests for object equality
All inputs are sympified
Examples
========
>>> from sympy import FiniteSet
>>> 1 in FiniteSet(1, 2)
True
>>> 5 in FiniteSet(1, 2)
False
"""
r = false
for e in self._elements:
# override global evaluation so we can use Eq to do
# do the evaluation
t = Eq(e, other, evaluate=True)
if t is true:
return t
elif t is not false:
r = None
return r
@property
def _boundary(self):
return self
@property
def _inf(self):
from sympy.functions.elementary.miscellaneous import Min
return Min(*self)
@property
def _sup(self):
from sympy.functions.elementary.miscellaneous import Max
return Max(*self)
@property
def measure(self):
return 0
def __len__(self):
return len(self.args)
def as_relational(self, symbol):
"""Rewrite a FiniteSet in terms of equalities and logic operators. """
from sympy.core.relational import Eq
return Or(*[Eq(symbol, elem) for elem in self])
def compare(self, other):
return (hash(self) - hash(other))
def _eval_evalf(self, prec):
return FiniteSet(*[elem._eval_evalf(prec) for elem in self])
def _hashable_content(self):
return (self._elements,)
@property
def _sorted_args(self):
return tuple(ordered(self.args, Set._infimum_key))
def _eval_powerset(self):
return self.func(*[self.func(*s) for s in subsets(self.args)])
def __ge__(self, other):
if not isinstance(other, Set):
raise TypeError("Invalid comparison of set with %s" % func_name(other))
return other.is_subset(self)
def __gt__(self, other):
if not isinstance(other, Set):
raise TypeError("Invalid comparison of set with %s" % func_name(other))
return self.is_proper_superset(other)
def __le__(self, other):
if not isinstance(other, Set):
raise TypeError("Invalid comparison of set with %s" % func_name(other))
return self.is_subset(other)
def __lt__(self, other):
if not isinstance(other, Set):
raise TypeError("Invalid comparison of set with %s" % func_name(other))
return self.is_proper_subset(other)
converter[set] = lambda x: FiniteSet(*x)
converter[frozenset] = lambda x: FiniteSet(*x)
class SymmetricDifference(Set):
"""Represents the set of elements which are in either of the
sets and not in their intersection.
Examples
========
>>> from sympy import SymmetricDifference, FiniteSet
>>> SymmetricDifference(FiniteSet(1, 2, 3), FiniteSet(3, 4, 5))
{1, 2, 4, 5}
See Also
========
Complement, Union
References
==========
.. [1] https://en.wikipedia.org/wiki/Symmetric_difference
"""
is_SymmetricDifference = True
def __new__(cls, a, b, evaluate=True):
if evaluate:
return SymmetricDifference.reduce(a, b)
return Basic.__new__(cls, a, b)
@staticmethod
def reduce(A, B):
result = B._symmetric_difference(A)
if result is not None:
return result
else:
return SymmetricDifference(A, B, evaluate=False)
def imageset(*args):
r"""
Return an image of the set under transformation ``f``.
If this function can't compute the image, it returns an
unevaluated ImageSet object.
.. math::
{ f(x) | x \in self }
Examples
========
>>> from sympy import S, Interval, Symbol, imageset, sin, Lambda
>>> from sympy.abc import x, y
>>> imageset(x, 2*x, Interval(0, 2))
Interval(0, 4)
>>> imageset(lambda x: 2*x, Interval(0, 2))
Interval(0, 4)
>>> imageset(Lambda(x, sin(x)), Interval(-2, 1))
ImageSet(Lambda(x, sin(x)), Interval(-2, 1))
>>> imageset(sin, Interval(-2, 1))
ImageSet(Lambda(x, sin(x)), Interval(-2, 1))
>>> imageset(lambda y: x + y, Interval(-2, 1))
ImageSet(Lambda(_x, _x + x), Interval(-2, 1))
Expressions applied to the set of Integers are simplified
to show as few negatives as possible and linear expressions
are converted to a canonical form. If this is not desirable
then the unevaluated ImageSet should be used.
>>> imageset(x, -2*x + 5, S.Integers)
ImageSet(Lambda(x, 2*x + 1), Integers)
See Also
========
sympy.sets.fancysets.ImageSet
"""
from sympy.core import Lambda
from sympy.sets.fancysets import ImageSet
from sympy.sets.setexpr import set_function
if len(args) < 2:
raise ValueError('imageset expects at least 2 args, got: %s' % len(args))
if isinstance(args[0], (Symbol, tuple)) and len(args) > 2:
f = Lambda(args[0], args[1])
set_list = args[2:]
else:
f = args[0]
set_list = args[1:]
if isinstance(f, Lambda):
pass
elif (
isinstance(f, FunctionClass) # like cos
or func_name(f) == '<lambda>'
):
# TODO: should we support a way to sympify `lambda`?
if len(set_list) == 1:
var = _uniquely_named_symbol(Symbol('x'), f(Dummy()))
expr = f(var)
else:
var = [Symbol('x%i' % (i+1)) for i in range(len(set_list))]
expr = f(*var)
f = Lambda(var, expr)
else:
raise TypeError(filldedent('''
expecting lambda, Lambda, or FunctionClass, not \'%s\'.''' %
func_name(f)))
if any(not isinstance(s, Set) for s in set_list):
name = [func_name(s) for s in set_list]
raise ValueError(
'arguments after mapping should be sets, not %s' % name)
if len(set_list) == 1:
set = set_list[0]
r = set_function(f, set)
if r is None:
r = ImageSet(f, set)
if isinstance(r, ImageSet):
f, set = r.args
if f.variables[0] == f.expr:
return set
if isinstance(set, ImageSet):
if len(set.lamda.variables) == 1 and len(f.variables) == 1:
return imageset(Lambda(set.lamda.variables[0],
f.expr.subs(f.variables[0], set.lamda.expr)),
set.base_set)
if r is not None:
return r
return ImageSet(f, *set_list)
def is_function_invertible_in_set(func, setv):
"""
Checks whether function ``func`` is invertible when the domain is
restricted to set ``setv``.
"""
from sympy import exp, log
# Functions known to always be invertible:
if func in (exp, log):
return True
u = Dummy("u")
fdiff = func(u).diff(u)
# monotonous functions:
# TODO: check subsets (`func` in `setv`)
if (fdiff > 0) == True or (fdiff < 0) == True:
return True
# TODO: support more
return None
def simplify_union(args):
"""
Simplify a :class:`Union` using known rules
We first start with global rules like 'Merge all FiniteSets'
Then we iterate through all pairs and ask the constituent sets if they
can simplify themselves with any other constituent. This process depends
on ``union_sets(a, b)`` functions.
"""
from sympy.sets.handlers.union import union_sets
# ===== Global Rules =====
if not args:
return S.EmptySet
for arg in args:
if not isinstance(arg, Set):
raise TypeError("Input args to Union must be Sets")
# Merge all finite sets
finite_sets = [x for x in args if x.is_FiniteSet]
if len(finite_sets) > 1:
a = (x for set in finite_sets for x in set)
finite_set = FiniteSet(*a)
args = [finite_set] + [x for x in args if not x.is_FiniteSet]
# ===== Pair-wise Rules =====
# Here we depend on rules built into the constituent sets
args = set(args)
new_args = True
while new_args:
for s in args:
new_args = False
for t in args - set((s,)):
new_set = union_sets(s, t)
# This returns None if s does not know how to intersect
# with t. Returns the newly intersected set otherwise
if new_set is not None:
if not isinstance(new_set, set):
new_set = set((new_set, ))
new_args = (args - set((s, t))).union(new_set)
break
if new_args:
args = new_args
break
if len(args) == 1:
return args.pop()
else:
return Union(*args, evaluate=False)
def simplify_intersection(args):
"""
Simplify an intersection using known rules
We first start with global rules like
'if any empty sets return empty set' and 'distribute any unions'
Then we iterate through all pairs and ask the constituent sets if they
can simplify themselves with any other constituent
"""
# ===== Global Rules =====
if not args:
return S.UniversalSet
for arg in args:
if not isinstance(arg, Set):
raise TypeError("Input args to Union must be Sets")
# If any EmptySets return EmptySet
if any(s.is_EmptySet for s in args):
return S.EmptySet
# Handle Finite sets
rv = Intersection._handle_finite_sets(args)
if rv is not None:
return rv
# If any of the sets are unions, return a Union of Intersections
for s in args:
if s.is_Union:
other_sets = set(args) - set((s,))
if len(other_sets) > 0:
other = Intersection(*other_sets)
return Union(*(Intersection(arg, other) for arg in s.args))
else:
return Union(*[arg for arg in s.args])
for s in args:
if s.is_Complement:
args.remove(s)
other_sets = args + [s.args[0]]
return Complement(Intersection(*other_sets), s.args[1])
from sympy.sets.handlers.intersection import intersection_sets
# At this stage we are guaranteed not to have any
# EmptySets, FiniteSets, or Unions in the intersection
# ===== Pair-wise Rules =====
# Here we depend on rules built into the constituent sets
args = set(args)
new_args = True
while new_args:
for s in args:
new_args = False
for t in args - set((s,)):
new_set = intersection_sets(s, t)
# This returns None if s does not know how to intersect
# with t. Returns the newly intersected set otherwise
if new_set is not None:
new_args = (args - set((s, t))).union(set((new_set, )))
break
if new_args:
args = new_args
break
if len(args) == 1:
return args.pop()
else:
return Intersection(*args, evaluate=False)
def _handle_finite_sets(op, x, y, commutative):
# Handle finite sets:
fs_args, other = sift([x, y], lambda x: isinstance(x, FiniteSet), binary=True)
if len(fs_args) == 2:
return FiniteSet(*[op(i, j) for i in fs_args[0] for j in fs_args[1]])
elif len(fs_args) == 1:
sets = [_apply_operation(op, other[0], i, commutative) for i in fs_args[0]]
return Union(*sets)
else:
return None
def _apply_operation(op, x, y, commutative):
from sympy.sets import ImageSet
from sympy import symbols,Lambda
d = Dummy('d')
out = _handle_finite_sets(op, x, y, commutative)
if out is None:
out = op(x, y)
if out is None and commutative:
out = op(y, x)
if out is None:
_x, _y = symbols("x y")
if isinstance(x, Set) and not isinstance(y, Set):
out = ImageSet(Lambda(d, op(d, y)), x).doit()
elif not isinstance(x, Set) and isinstance(y, Set):
out = ImageSet(Lambda(d, op(x, d)), y).doit()
else:
out = ImageSet(Lambda((_x, _y), op(_x, _y)), x, y)
return out
def set_add(x, y):
from sympy.sets.handlers.add import _set_add
return _apply_operation(_set_add, x, y, commutative=True)
def set_sub(x, y):
from sympy.sets.handlers.add import _set_sub
return _apply_operation(_set_sub, x, y, commutative=False)
def set_mul(x, y):
from sympy.sets.handlers.mul import _set_mul
return _apply_operation(_set_mul, x, y, commutative=True)
def set_div(x, y):
from sympy.sets.handlers.mul import _set_div
return _apply_operation(_set_div, x, y, commutative=False)
def set_pow(x, y):
from sympy.sets.handlers.power import _set_pow
return _apply_operation(_set_pow, x, y, commutative=False)
def set_function(f, x):
from sympy.sets.handlers.functions import _set_function
return _set_function(f, x)
|
d7425897fffae8865bee717b8f6b795478bc972c3d3681ca6aa3fe386683469f
|
from __future__ import print_function, division
from sympy import S
from sympy.core.basic import Basic
from sympy.core.containers import Tuple
from sympy.core.expr import Expr
from sympy.core.function import Lambda
from sympy.core.logic import fuzzy_bool
from sympy.core.symbol import Symbol, Dummy
from sympy.logic.boolalg import And, as_Boolean
from sympy.sets.contains import Contains
from sympy.sets.sets import Set, EmptySet, Union, FiniteSet
from sympy.utilities.iterables import sift
from sympy.utilities.misc import filldedent
class ConditionSet(Set):
"""
Set of elements which satisfies a given condition.
{x | condition(x) is True for x in S}
Examples
========
>>> from sympy import Symbol, S, ConditionSet, pi, Eq, sin, Interval
>>> from sympy.abc import x, y, z
>>> sin_sols = ConditionSet(x, Eq(sin(x), 0), Interval(0, 2*pi))
>>> 2*pi in sin_sols
True
>>> pi/2 in sin_sols
False
>>> 3*pi in sin_sols
False
>>> 5 in ConditionSet(x, x**2 > 4, S.Reals)
True
If the value is not in the base set, the result is false:
>>> 5 in ConditionSet(x, x**2 > 4, Interval(2, 4))
False
Notes
=====
Symbols with assumptions should be avoided or else the
condition may evaluate without consideration of the set:
>>> n = Symbol('n', negative=True)
>>> cond = (n > 0); cond
False
>>> ConditionSet(n, cond, S.Integers)
EmptySet()
In addition, substitution of a dummy symbol can only be
done with a generic symbol with matching commutativity
or else a symbol that has identical assumptions. If the
base set contains the dummy symbol it is logically distinct
and will be the target of substitution.
>>> c = ConditionSet(x, x < 1, {x, z})
>>> c.subs(x, y)
ConditionSet(x, x < 1, {y, z})
A second substitution is needed to change the dummy symbol, too:
>>> _.subs(x, y)
ConditionSet(y, y < 1, {y, z})
And trying to replace the dummy symbol with anything but a symbol
is ignored: the only change possible will be in the base set:
>>> ConditionSet(y, y < 1, {y, z}).subs(y, 1)
ConditionSet(y, y < 1, {z})
>>> _.subs(y, 1)
ConditionSet(y, y < 1, {z})
Notes
=====
If no base set is specified, the universal set is implied:
>>> ConditionSet(x, x < 1).base_set
UniversalSet()
Although expressions other than symbols may be used, this
is discouraged and will raise an error if the expression
is not found in the condition:
>>> ConditionSet(x + 1, x + 1 < 1, S.Integers)
ConditionSet(x + 1, x + 1 < 1, Integers)
>>> ConditionSet(x + 1, x < 1, S.Integers)
Traceback (most recent call last):
...
ValueError: non-symbol dummy not recognized in condition
Although the name is usually respected, it must be replaced if
the base set is another ConditionSet and the dummy symbol
and appears as a free symbol in the base set and the dummy symbol
of the base set appears as a free symbol in the condition:
>>> ConditionSet(x, x < y, ConditionSet(y, x + y < 2, S.Integers))
ConditionSet(lambda, (lambda < y) & (lambda + x < 2), Integers)
The best way to do anything with the dummy symbol is to access
it with the sym property.
>>> _.subs(_.sym, Symbol('_x'))
ConditionSet(_x, (_x < y) & (_x + x < 2), Integers)
"""
def __new__(cls, sym, condition, base_set=S.UniversalSet):
# nonlinsolve uses ConditionSet to return an unsolved system
# of equations (see _return_conditionset in solveset) so until
# that is changed we do minimal checking of the args
if isinstance(sym, (Tuple, tuple)): # unsolved eqns syntax
sym = Tuple(*sym)
condition = FiniteSet(*condition)
return Basic.__new__(cls, sym, condition, base_set)
condition = as_Boolean(condition)
if isinstance(base_set, set):
base_set = FiniteSet(*base_set)
elif not isinstance(base_set, Set):
raise TypeError('expecting set for base_set')
if condition is S.false:
return S.EmptySet
if condition is S.true:
return base_set
if isinstance(base_set, EmptySet):
return base_set
know = None
if isinstance(base_set, FiniteSet):
sifted = sift(
base_set, lambda _: fuzzy_bool(
condition.subs(sym, _)))
if sifted[None]:
know = FiniteSet(*sifted[True])
base_set = FiniteSet(*sifted[None])
else:
return FiniteSet(*sifted[True])
if isinstance(base_set, cls):
s, c, base_set = base_set.args
if sym == s:
condition = And(condition, c)
elif sym not in c.free_symbols:
condition = And(condition, c.xreplace({s: sym}))
elif s not in condition.free_symbols:
condition = And(condition.xreplace({sym: s}), c)
sym = s
else:
# user will have to use cls.sym to get symbol
dum = Symbol('lambda')
if dum in condition.free_symbols or \
dum in c.free_symbols:
dum = Dummy(str(dum))
condition = And(
condition.xreplace({sym: dum}),
c.xreplace({s: dum}))
sym = dum
if not isinstance(sym, Symbol):
s = Dummy('lambda')
if s not in condition.xreplace({sym: s}).free_symbols:
raise ValueError(
'non-symbol dummy not recognized in condition')
rv = Basic.__new__(cls, sym, condition, base_set)
return rv if know is None else Union(know, rv)
sym = property(lambda self: self.args[0])
condition = property(lambda self: self.args[1])
base_set = property(lambda self: self.args[2])
@property
def free_symbols(self):
s, c, b = self.args
return (c.free_symbols - s.free_symbols) | b.free_symbols
def contains(self, other):
return And(Lambda(self.sym, self.condition)(
other), self.base_set.contains(other))
def _eval_subs(self, old, new):
if not isinstance(self.sym, Expr):
# Don't do anything with the equation set syntax;
# that should go away, eventually.
return self
sym, cond, base = self.args
if old == sym:
# we try to be as lenient as possible to allow
# the dummy symbol to be changed
base = base.subs(old, new)
if isinstance(new, Symbol):
# if the assumptions don't match, the cond
# might evaluate or change
if (new.assumptions0 == old.assumptions0 or
len(new.assumptions0) == 1 and
old.is_commutative == new.is_commutative):
if base != self.base_set:
# it will be aggravating to have the dummy
# symbol change if you are trying to target
# the base set so if the base set is changed
# leave the dummy symbol alone -- a second
# subs will be needed to change the dummy
return self.func(sym, cond, base)
else:
return self.func(new, cond.subs(old, new), base)
raise ValueError(filldedent('''
A dummy symbol can only be
replaced with a symbol having the same
assumptions or one having a single assumption
having the same commutativity.
'''))
# don't target cond: it is there to tell how
# the base set should be filtered and if new is not in
# the base set then this substitution is ignored
return self.func(sym, cond, base)
cond = self.condition.subs(old, new)
base = self.base_set.subs(old, new)
if cond is S.true:
return ConditionSet(new, Contains(new, base), base)
return self.func(self.sym, cond, base)
def dummy_eq(self, other, symbol=None):
if not isinstance(other, self.func):
return False
if isinstance(self.sym, Symbol) != isinstance(other.sym, Symbol):
# this test won't be necessary when unsolved equations
# syntax is removed
return False
if symbol:
raise ValueError('symbol arg not supported for ConditionSet')
o = other
if isinstance(self.sym, Symbol) and isinstance(other.sym, Symbol):
# this code will not need to be in an if-block when
# the unsolved equations syntax is removed
o = other.func(self.sym,
other.condition.subs(other.sym, self.sym),
other.base_set)
return self == o
|
d978107a005dcf934df1a4dc886f483a61d98e8b0df4c96d049de71e1d707d88
|
"""Implicit plotting module for SymPy
The module implements a data series called ImplicitSeries which is used by
``Plot`` class to plot implicit plots for different backends. The module,
by default, implements plotting using interval arithmetic. It switches to a
fall back algorithm if the expression cannot be plotted using interval arithmetic.
It is also possible to specify to use the fall back algorithm for all plots.
Boolean combinations of expressions cannot be plotted by the fall back
algorithm.
See Also
========
sympy.plotting.plot
References
==========
- Jeffrey Allen Tupper. Reliable Two-Dimensional Graphing Methods for
Mathematical Formulae with Two Free Variables.
- Jeffrey Allen Tupper. Graphing Equations with Generalized Interval
Arithmetic. Master's thesis. University of Toronto, 1996
"""
from __future__ import print_function, division
from .plot import BaseSeries, Plot
from .experimental_lambdify import experimental_lambdify, vectorized_lambdify
from .intervalmath import interval
from sympy.core.relational import (Equality, GreaterThan, LessThan,
Relational, StrictLessThan, StrictGreaterThan)
from sympy import Eq, Tuple, sympify, Symbol, Dummy
from sympy.external import import_module
from sympy.logic.boolalg import BooleanFunction
from sympy.polys.polyutils import _sort_gens
from sympy.utilities.decorator import doctest_depends_on
from sympy.utilities.iterables import flatten
import warnings
class ImplicitSeries(BaseSeries):
""" Representation for Implicit plot """
is_implicit = True
def __init__(self, expr, var_start_end_x, var_start_end_y,
has_equality, use_interval_math, depth, nb_of_points,
line_color):
super(ImplicitSeries, self).__init__()
self.expr = sympify(expr)
self.var_x = sympify(var_start_end_x[0])
self.start_x = float(var_start_end_x[1])
self.end_x = float(var_start_end_x[2])
self.var_y = sympify(var_start_end_y[0])
self.start_y = float(var_start_end_y[1])
self.end_y = float(var_start_end_y[2])
self.get_points = self.get_raster
self.has_equality = has_equality # If the expression has equality, i.e.
#Eq, Greaterthan, LessThan.
self.nb_of_points = nb_of_points
self.use_interval_math = use_interval_math
self.depth = 4 + depth
self.line_color = line_color
def __str__(self):
return ('Implicit equation: %s for '
'%s over %s and %s over %s') % (
str(self.expr),
str(self.var_x),
str((self.start_x, self.end_x)),
str(self.var_y),
str((self.start_y, self.end_y)))
def get_raster(self):
func = experimental_lambdify((self.var_x, self.var_y), self.expr,
use_interval=True)
xinterval = interval(self.start_x, self.end_x)
yinterval = interval(self.start_y, self.end_y)
try:
temp = func(xinterval, yinterval)
except AttributeError:
# XXX: AttributeError("'list' object has no attribute 'is_real'")
# That needs fixing somehow - we shouldn't be catching
# AttributeError here.
if self.use_interval_math:
warnings.warn("Adaptive meshing could not be applied to the"
" expression. Using uniform meshing.")
self.use_interval_math = False
if self.use_interval_math:
return self._get_raster_interval(func)
else:
return self._get_meshes_grid()
def _get_raster_interval(self, func):
""" Uses interval math to adaptively mesh and obtain the plot"""
k = self.depth
interval_list = []
#Create initial 32 divisions
np = import_module('numpy')
xsample = np.linspace(self.start_x, self.end_x, 33)
ysample = np.linspace(self.start_y, self.end_y, 33)
#Add a small jitter so that there are no false positives for equality.
# Ex: y==x becomes True for x interval(1, 2) and y interval(1, 2)
#which will draw a rectangle.
jitterx = (np.random.rand(
len(xsample)) * 2 - 1) * (self.end_x - self.start_x) / 2**20
jittery = (np.random.rand(
len(ysample)) * 2 - 1) * (self.end_y - self.start_y) / 2**20
xsample += jitterx
ysample += jittery
xinter = [interval(x1, x2) for x1, x2 in zip(xsample[:-1],
xsample[1:])]
yinter = [interval(y1, y2) for y1, y2 in zip(ysample[:-1],
ysample[1:])]
interval_list = [[x, y] for x in xinter for y in yinter]
plot_list = []
#recursive call refinepixels which subdivides the intervals which are
#neither True nor False according to the expression.
def refine_pixels(interval_list):
""" Evaluates the intervals and subdivides the interval if the
expression is partially satisfied."""
temp_interval_list = []
plot_list = []
for intervals in interval_list:
#Convert the array indices to x and y values
intervalx = intervals[0]
intervaly = intervals[1]
func_eval = func(intervalx, intervaly)
#The expression is valid in the interval. Change the contour
#array values to 1.
if func_eval[1] is False or func_eval[0] is False:
pass
elif func_eval == (True, True):
plot_list.append([intervalx, intervaly])
elif func_eval[1] is None or func_eval[0] is None:
#Subdivide
avgx = intervalx.mid
avgy = intervaly.mid
a = interval(intervalx.start, avgx)
b = interval(avgx, intervalx.end)
c = interval(intervaly.start, avgy)
d = interval(avgy, intervaly.end)
temp_interval_list.append([a, c])
temp_interval_list.append([a, d])
temp_interval_list.append([b, c])
temp_interval_list.append([b, d])
return temp_interval_list, plot_list
while k >= 0 and len(interval_list):
interval_list, plot_list_temp = refine_pixels(interval_list)
plot_list.extend(plot_list_temp)
k = k - 1
#Check whether the expression represents an equality
#If it represents an equality, then none of the intervals
#would have satisfied the expression due to floating point
#differences. Add all the undecided values to the plot.
if self.has_equality:
for intervals in interval_list:
intervalx = intervals[0]
intervaly = intervals[1]
func_eval = func(intervalx, intervaly)
if func_eval[1] and func_eval[0] is not False:
plot_list.append([intervalx, intervaly])
return plot_list, 'fill'
def _get_meshes_grid(self):
"""Generates the mesh for generating a contour.
In the case of equality, ``contour`` function of matplotlib can
be used. In other cases, matplotlib's ``contourf`` is used.
"""
equal = False
if isinstance(self.expr, Equality):
expr = self.expr.lhs - self.expr.rhs
equal = True
elif isinstance(self.expr, (GreaterThan, StrictGreaterThan)):
expr = self.expr.lhs - self.expr.rhs
elif isinstance(self.expr, (LessThan, StrictLessThan)):
expr = self.expr.rhs - self.expr.lhs
else:
raise NotImplementedError("The expression is not supported for "
"plotting in uniform meshed plot.")
np = import_module('numpy')
xarray = np.linspace(self.start_x, self.end_x, self.nb_of_points)
yarray = np.linspace(self.start_y, self.end_y, self.nb_of_points)
x_grid, y_grid = np.meshgrid(xarray, yarray)
func = vectorized_lambdify((self.var_x, self.var_y), expr)
z_grid = func(x_grid, y_grid)
z_grid[np.ma.where(z_grid < 0)] = -1
z_grid[np.ma.where(z_grid > 0)] = 1
if equal:
return xarray, yarray, z_grid, 'contour'
else:
return xarray, yarray, z_grid, 'contourf'
@doctest_depends_on(modules=('matplotlib',))
def plot_implicit(expr, x_var=None, y_var=None, adaptive=True, depth=0,
points=300, line_color="blue", show=True, **kwargs):
"""A plot function to plot implicit equations / inequalities.
Arguments
=========
- ``expr`` : The equation / inequality that is to be plotted.
- ``x_var`` (optional) : symbol to plot on x-axis or tuple giving symbol
and range as ``(symbol, xmin, xmax)``
- ``y_var`` (optional) : symbol to plot on y-axis or tuple giving symbol
and range as ``(symbol, ymin, ymax)``
If neither ``x_var`` nor ``y_var`` are given then the free symbols in the
expression will be assigned in the order they are sorted.
The following keyword arguments can also be used:
- ``adaptive`` Boolean. The default value is set to True. It has to be
set to False if you want to use a mesh grid.
- ``depth`` integer. The depth of recursion for adaptive mesh grid.
Default value is 0. Takes value in the range (0, 4).
- ``points`` integer. The number of points if adaptive mesh grid is not
used. Default value is 300.
- ``show`` Boolean. Default value is True. If set to False, the plot will
not be shown. See ``Plot`` for further information.
- ``title`` string. The title for the plot.
- ``xlabel`` string. The label for the x-axis
- ``ylabel`` string. The label for the y-axis
Aesthetics options:
- ``line_color``: float or string. Specifies the color for the plot.
See ``Plot`` to see how to set color for the plots.
Default value is "Blue"
plot_implicit, by default, uses interval arithmetic to plot functions. If
the expression cannot be plotted using interval arithmetic, it defaults to
a generating a contour using a mesh grid of fixed number of points. By
setting adaptive to False, you can force plot_implicit to use the mesh
grid. The mesh grid method can be effective when adaptive plotting using
interval arithmetic, fails to plot with small line width.
Examples
========
Plot expressions:
>>> from sympy import plot_implicit, cos, sin, symbols, Eq, And
>>> x, y = symbols('x y')
Without any ranges for the symbols in the expression
>>> p1 = plot_implicit(Eq(x**2 + y**2, 5))
With the range for the symbols
>>> p2 = plot_implicit(Eq(x**2 + y**2, 3),
... (x, -3, 3), (y, -3, 3))
With depth of recursion as argument.
>>> p3 = plot_implicit(Eq(x**2 + y**2, 5),
... (x, -4, 4), (y, -4, 4), depth = 2)
Using mesh grid and not using adaptive meshing.
>>> p4 = plot_implicit(Eq(x**2 + y**2, 5),
... (x, -5, 5), (y, -2, 2), adaptive=False)
Using mesh grid with number of points as input.
>>> p5 = plot_implicit(Eq(x**2 + y**2, 5),
... (x, -5, 5), (y, -2, 2),
... adaptive=False, points=400)
Plotting regions.
>>> p6 = plot_implicit(y > x**2)
Plotting Using boolean conjunctions.
>>> p7 = plot_implicit(And(y > x, y > -x))
When plotting an expression with a single variable (y - 1, for example),
specify the x or the y variable explicitly:
>>> p8 = plot_implicit(y - 1, y_var=y)
>>> p9 = plot_implicit(x - 1, x_var=x)
"""
has_equality = False # Represents whether the expression contains an Equality,
#GreaterThan or LessThan
def arg_expand(bool_expr):
"""
Recursively expands the arguments of an Boolean Function
"""
for arg in bool_expr.args:
if isinstance(arg, BooleanFunction):
arg_expand(arg)
elif isinstance(arg, Relational):
arg_list.append(arg)
arg_list = []
if isinstance(expr, BooleanFunction):
arg_expand(expr)
#Check whether there is an equality in the expression provided.
if any(isinstance(e, (Equality, GreaterThan, LessThan))
for e in arg_list):
has_equality = True
elif not isinstance(expr, Relational):
expr = Eq(expr, 0)
has_equality = True
elif isinstance(expr, (Equality, GreaterThan, LessThan)):
has_equality = True
xyvar = [i for i in (x_var, y_var) if i is not None]
free_symbols = expr.free_symbols
range_symbols = Tuple(*flatten(xyvar)).free_symbols
undeclared = free_symbols - range_symbols
if len(free_symbols & range_symbols) > 2:
raise NotImplementedError("Implicit plotting is not implemented for "
"more than 2 variables")
#Create default ranges if the range is not provided.
default_range = Tuple(-5, 5)
def _range_tuple(s):
if isinstance(s, Symbol):
return Tuple(s) + default_range
if len(s) == 3:
return Tuple(*s)
raise ValueError('symbol or `(symbol, min, max)` expected but got %s' % s)
if len(xyvar) == 0:
xyvar = list(_sort_gens(free_symbols))
var_start_end_x = _range_tuple(xyvar[0])
x = var_start_end_x[0]
if len(xyvar) != 2:
if x in undeclared or not undeclared:
xyvar.append(Dummy('f(%s)' % x.name))
else:
xyvar.append(undeclared.pop())
var_start_end_y = _range_tuple(xyvar[1])
#Check whether the depth is greater than 4 or less than 0.
if depth > 4:
depth = 4
elif depth < 0:
depth = 0
series_argument = ImplicitSeries(expr, var_start_end_x, var_start_end_y,
has_equality, adaptive, depth,
points, line_color)
#set the x and y limits
kwargs['xlim'] = tuple(float(x) for x in var_start_end_x[1:])
kwargs['ylim'] = tuple(float(y) for y in var_start_end_y[1:])
# set the x and y labels
kwargs.setdefault('xlabel', var_start_end_x[0].name)
kwargs.setdefault('ylabel', var_start_end_y[0].name)
p = Plot(series_argument, **kwargs)
if show:
p.show()
return p
|
4d45088340bbb42281633fe79679db4e46a6e505be876d05f0474eda457c4551
|
"""Plotting module for Sympy.
A plot is represented by the ``Plot`` class that contains a reference to the
backend and a list of the data series to be plotted. The data series are
instances of classes meant to simplify getting points and meshes from sympy
expressions. ``plot_backends`` is a dictionary with all the backends.
This module gives only the essential. For all the fancy stuff use directly
the backend. You can get the backend wrapper for every plot from the
``_backend`` attribute. Moreover the data series classes have various useful
methods like ``get_points``, ``get_segments``, ``get_meshes``, etc, that may
be useful if you wish to use another plotting library.
Especially if you need publication ready graphs and this module is not enough
for you - just get the ``_backend`` attribute and add whatever you want
directly to it. In the case of matplotlib (the common way to graph data in
python) just copy ``_backend.fig`` which is the figure and ``_backend.ax``
which is the axis and work on them as you would on any other matplotlib object.
Simplicity of code takes much greater importance than performance. Don't use it
if you care at all about performance. A new backend instance is initialized
every time you call ``show()`` and the old one is left to the garbage collector.
"""
from __future__ import print_function, division
import warnings
from sympy import sympify, Expr, Tuple, Dummy, Symbol
from sympy.external import import_module
from sympy.core.function import arity
from sympy.core.compatibility import range, Callable
from sympy.utilities.iterables import is_sequence
from .experimental_lambdify import (vectorized_lambdify, lambdify)
# N.B.
# When changing the minimum module version for matplotlib, please change
# the same in the `SymPyDocTestFinder`` in `sympy/utilities/runtests.py`
# Backend specific imports - textplot
from sympy.plotting.textplot import textplot
# Global variable
# Set to False when running tests / doctests so that the plots don't show.
_show = True
def unset_show():
"""
Disable show(). For use in the tests.
"""
global _show
_show = False
##############################################################################
# The public interface
##############################################################################
class Plot(object):
"""The central class of the plotting module.
For interactive work the function ``plot`` is better suited.
This class permits the plotting of sympy expressions using numerous
backends (matplotlib, textplot, the old pyglet module for sympy, Google
charts api, etc).
The figure can contain an arbitrary number of plots of sympy expressions,
lists of coordinates of points, etc. Plot has a private attribute _series that
contains all data series to be plotted (expressions for lines or surfaces,
lists of points, etc (all subclasses of BaseSeries)). Those data series are
instances of classes not imported by ``from sympy import *``.
The customization of the figure is on two levels. Global options that
concern the figure as a whole (eg title, xlabel, scale, etc) and
per-data series options (eg name) and aesthetics (eg. color, point shape,
line type, etc.).
The difference between options and aesthetics is that an aesthetic can be
a function of the coordinates (or parameters in a parametric plot). The
supported values for an aesthetic are:
- None (the backend uses default values)
- a constant
- a function of one variable (the first coordinate or parameter)
- a function of two variables (the first and second coordinate or
parameters)
- a function of three variables (only in nonparametric 3D plots)
Their implementation depends on the backend so they may not work in some
backends.
If the plot is parametric and the arity of the aesthetic function permits
it the aesthetic is calculated over parameters and not over coordinates.
If the arity does not permit calculation over parameters the calculation is
done over coordinates.
Only cartesian coordinates are supported for the moment, but you can use
the parametric plots to plot in polar, spherical and cylindrical
coordinates.
The arguments for the constructor Plot must be subclasses of BaseSeries.
Any global option can be specified as a keyword argument.
The global options for a figure are:
- title : str
- xlabel : str
- ylabel : str
- legend : bool
- xscale : {'linear', 'log'}
- yscale : {'linear', 'log'}
- axis : bool
- axis_center : tuple of two floats or {'center', 'auto'}
- xlim : tuple of two floats
- ylim : tuple of two floats
- aspect_ratio : tuple of two floats or {'auto'}
- autoscale : bool
- margin : float in [0, 1]
The per data series options and aesthetics are:
There are none in the base series. See below for options for subclasses.
Some data series support additional aesthetics or options:
ListSeries, LineOver1DRangeSeries, Parametric2DLineSeries,
Parametric3DLineSeries support the following:
Aesthetics:
- line_color : function which returns a float.
options:
- label : str
- steps : bool
- integers_only : bool
SurfaceOver2DRangeSeries, ParametricSurfaceSeries support the following:
aesthetics:
- surface_color : function which returns a float.
"""
def __init__(self, *args, **kwargs):
super(Plot, self).__init__()
# Options for the graph as a whole.
# The possible values for each option are described in the docstring of
# Plot. They are based purely on convention, no checking is done.
self.title = None
self.xlabel = None
self.ylabel = None
self.aspect_ratio = 'auto'
self.xlim = None
self.ylim = None
self.axis_center = 'auto'
self.axis = True
self.xscale = 'linear'
self.yscale = 'linear'
self.legend = False
self.autoscale = True
self.margin = 0
# Contains the data objects to be plotted. The backend should be smart
# enough to iterate over this list.
self._series = []
self._series.extend(args)
# The backend type. On every show() a new backend instance is created
# in self._backend which is tightly coupled to the Plot instance
# (thanks to the parent attribute of the backend).
self.backend = DefaultBackend
# The keyword arguments should only contain options for the plot.
for key, val in kwargs.items():
if hasattr(self, key):
setattr(self, key, val)
def show(self):
# TODO move this to the backend (also for save)
if hasattr(self, '_backend'):
self._backend.close()
self._backend = self.backend(self)
self._backend.show()
def save(self, path):
if hasattr(self, '_backend'):
self._backend.close()
self._backend = self.backend(self)
self._backend.save(path)
def __str__(self):
series_strs = [('[%d]: ' % i) + str(s)
for i, s in enumerate(self._series)]
return 'Plot object containing:\n' + '\n'.join(series_strs)
def __getitem__(self, index):
return self._series[index]
def __setitem__(self, index, *args):
if len(args) == 1 and isinstance(args[0], BaseSeries):
self._series[index] = args
def __delitem__(self, index):
del self._series[index]
def append(self, arg):
"""Adds an element from a plot's series to an existing plot.
Examples
========
Consider two ``Plot`` objects, ``p1`` and ``p2``. To add the
second plot's first series object to the first, use the
``append`` method, like so:
.. plot::
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.plotting import plot
>>> x = symbols('x')
>>> p1 = plot(x*x, show=False)
>>> p2 = plot(x, show=False)
>>> p1.append(p2[0])
>>> p1
Plot object containing:
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
[1]: cartesian line: x for x over (-10.0, 10.0)
>>> p1.show()
See Also
========
extend
"""
if isinstance(arg, BaseSeries):
self._series.append(arg)
else:
raise TypeError('Must specify element of plot to append.')
def extend(self, arg):
"""Adds all series from another plot.
Examples
========
Consider two ``Plot`` objects, ``p1`` and ``p2``. To add the
second plot to the first, use the ``extend`` method, like so:
.. plot::
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.plotting import plot
>>> x = symbols('x')
>>> p1 = plot(x**2, show=False)
>>> p2 = plot(x, -x, show=False)
>>> p1.extend(p2)
>>> p1
Plot object containing:
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
[1]: cartesian line: x for x over (-10.0, 10.0)
[2]: cartesian line: -x for x over (-10.0, 10.0)
>>> p1.show()
"""
if isinstance(arg, Plot):
self._series.extend(arg._series)
elif is_sequence(arg):
self._series.extend(arg)
else:
raise TypeError('Expecting Plot or sequence of BaseSeries')
##############################################################################
# Data Series
##############################################################################
#TODO more general way to calculate aesthetics (see get_color_array)
### The base class for all series
class BaseSeries(object):
"""Base class for the data objects containing stuff to be plotted.
The backend should check if it supports the data series that it's given.
(eg TextBackend supports only LineOver1DRange).
It's the backend responsibility to know how to use the class of
data series that it's given.
Some data series classes are grouped (using a class attribute like is_2Dline)
according to the api they present (based only on convention). The backend is
not obliged to use that api (eg. The LineOver1DRange belongs to the
is_2Dline group and presents the get_points method, but the
TextBackend does not use the get_points method).
"""
# Some flags follow. The rationale for using flags instead of checking base
# classes is that setting multiple flags is simpler than multiple
# inheritance.
is_2Dline = False
# Some of the backends expect:
# - get_points returning 1D np.arrays list_x, list_y
# - get_segments returning np.array (done in Line2DBaseSeries)
# - get_color_array returning 1D np.array (done in Line2DBaseSeries)
# with the colors calculated at the points from get_points
is_3Dline = False
# Some of the backends expect:
# - get_points returning 1D np.arrays list_x, list_y, list_y
# - get_segments returning np.array (done in Line2DBaseSeries)
# - get_color_array returning 1D np.array (done in Line2DBaseSeries)
# with the colors calculated at the points from get_points
is_3Dsurface = False
# Some of the backends expect:
# - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays)
# - get_points an alias for get_meshes
is_contour = False
# Some of the backends expect:
# - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays)
# - get_points an alias for get_meshes
is_implicit = False
# Some of the backends expect:
# - get_meshes returning mesh_x (1D array), mesh_y(1D array,
# mesh_z (2D np.arrays)
# - get_points an alias for get_meshes
#Different from is_contour as the colormap in backend will be
#different
is_parametric = False
# The calculation of aesthetics expects:
# - get_parameter_points returning one or two np.arrays (1D or 2D)
# used for calculation aesthetics
def __init__(self):
super(BaseSeries, self).__init__()
@property
def is_3D(self):
flags3D = [
self.is_3Dline,
self.is_3Dsurface
]
return any(flags3D)
@property
def is_line(self):
flagslines = [
self.is_2Dline,
self.is_3Dline
]
return any(flagslines)
### 2D lines
class Line2DBaseSeries(BaseSeries):
"""A base class for 2D lines.
- adding the label, steps and only_integers options
- making is_2Dline true
- defining get_segments and get_color_array
"""
is_2Dline = True
_dim = 2
def __init__(self):
super(Line2DBaseSeries, self).__init__()
self.label = None
self.steps = False
self.only_integers = False
self.line_color = None
def get_segments(self):
np = import_module('numpy')
points = self.get_points()
if self.steps is True:
x = np.array((points[0], points[0])).T.flatten()[1:]
y = np.array((points[1], points[1])).T.flatten()[:-1]
points = (x, y)
points = np.ma.array(points).T.reshape(-1, 1, self._dim)
return np.ma.concatenate([points[:-1], points[1:]], axis=1)
def get_color_array(self):
np = import_module('numpy')
c = self.line_color
if hasattr(c, '__call__'):
f = np.vectorize(c)
nargs = arity(c)
if nargs == 1 and self.is_parametric:
x = self.get_parameter_points()
return f(centers_of_segments(x))
else:
variables = list(map(centers_of_segments, self.get_points()))
if nargs == 1:
return f(variables[0])
elif nargs == 2:
return f(*variables[:2])
else: # only if the line is 3D (otherwise raises an error)
return f(*variables)
else:
return c*np.ones(self.nb_of_points)
class List2DSeries(Line2DBaseSeries):
"""Representation for a line consisting of list of points."""
def __init__(self, list_x, list_y):
np = import_module('numpy')
super(List2DSeries, self).__init__()
self.list_x = np.array(list_x)
self.list_y = np.array(list_y)
self.label = 'list'
def __str__(self):
return 'list plot'
def get_points(self):
return (self.list_x, self.list_y)
class LineOver1DRangeSeries(Line2DBaseSeries):
"""Representation for a line consisting of a SymPy expression over a range."""
def __init__(self, expr, var_start_end, **kwargs):
super(LineOver1DRangeSeries, self).__init__()
self.expr = sympify(expr)
self.label = str(self.expr)
self.var = sympify(var_start_end[0])
self.start = float(var_start_end[1])
self.end = float(var_start_end[2])
self.nb_of_points = kwargs.get('nb_of_points', 300)
self.adaptive = kwargs.get('adaptive', True)
self.depth = kwargs.get('depth', 12)
self.line_color = kwargs.get('line_color', None)
self.xscale=kwargs.get('xscale','linear')
self.flag=0
def __str__(self):
return 'cartesian line: %s for %s over %s' % (
str(self.expr), str(self.var), str((self.start, self.end)))
def get_segments(self):
"""
Adaptively gets segments for plotting.
The adaptive sampling is done by recursively checking if three
points are almost collinear. If they are not collinear, then more
points are added between those points.
References
==========
[1] Adaptive polygonal approximation of parametric curves,
Luiz Henrique de Figueiredo.
"""
if self.only_integers or not self.adaptive:
return super(LineOver1DRangeSeries, self).get_segments()
else:
f = lambdify([self.var], self.expr)
list_segments = []
np=import_module('numpy')
def sample(p, q, depth):
""" Samples recursively if three points are almost collinear.
For depth < 6, points are added irrespective of whether they
satisfy the collinearity condition or not. The maximum depth
allowed is 12.
"""
np = import_module('numpy')
#Randomly sample to avoid aliasing.
random = 0.45 + np.random.rand() * 0.1
xnew = p[0] + random * (q[0] - p[0])
ynew = f(xnew)
new_point = np.array([xnew, ynew])
if self.flag==1:
return
#Maximum depth
if depth > self.depth:
if p[1] is None or q[1] is None:
self.flag=1
return
list_segments.append([p, q])
#Sample irrespective of whether the line is flat till the
#depth of 6. We are not using linspace to avoid aliasing.
elif depth < 6:
sample(p, new_point, depth + 1)
sample(new_point, q, depth + 1)
#Sample ten points if complex values are encountered
#at both ends. If there is a real value in between, then
#sample those points further.
elif p[1] is None and q[1] is None:
if self.xscale is 'log':
xarray = np.logspace(p[0],q[0], 10)
else:
xarray = np.linspace(p[0], q[0], 10)
yarray = list(map(f, xarray))
if any(y is not None for y in yarray):
for i in range(len(yarray) - 1):
if yarray[i] is not None or yarray[i + 1] is not None:
sample([xarray[i], yarray[i]],
[xarray[i + 1], yarray[i + 1]], depth + 1)
#Sample further if one of the end points in None( i.e. a complex
#value) or the three points are not almost collinear.
elif (p[1] is None or q[1] is None or new_point[1] is None
or not flat(p, new_point, q)):
sample(p, new_point, depth + 1)
sample(new_point, q, depth + 1)
else:
list_segments.append([p, q])
if self.xscale is 'log':
self.start=np.log10(self.start)
self.end=np.log10(self.end)
f_start = f(self.start)
f_end = f(self.end)
sample([self.start, f_start], [self.end, f_end], 0)
return list_segments
def get_points(self):
np = import_module('numpy')
if self.only_integers is True:
if self.xscale is 'log':
list_x = np.logspace(int(self.start), int(self.end),
num=int(self.end) - int(self.start) + 1)
else:
list_x = np.linspace(int(self.start), int(self.end),
num=int(self.end) - int(self.start) + 1)
else:
if self.xscale is 'log':
list_x = np.logspace(self.start, self.end, num=self.nb_of_points)
else:
list_x = np.linspace(self.start, self.end, num=self.nb_of_points)
f = vectorized_lambdify([self.var], self.expr)
list_y = f(list_x)
return (list_x, list_y)
class Parametric2DLineSeries(Line2DBaseSeries):
"""Representation for a line consisting of two parametric sympy expressions
over a range."""
is_parametric = True
def __init__(self, expr_x, expr_y, var_start_end, **kwargs):
super(Parametric2DLineSeries, self).__init__()
self.expr_x = sympify(expr_x)
self.expr_y = sympify(expr_y)
self.label = "(%s, %s)" % (str(self.expr_x), str(self.expr_y))
self.var = sympify(var_start_end[0])
self.start = float(var_start_end[1])
self.end = float(var_start_end[2])
self.nb_of_points = kwargs.get('nb_of_points', 300)
self.adaptive = kwargs.get('adaptive', True)
self.depth = kwargs.get('depth', 12)
self.line_color = kwargs.get('line_color', None)
def __str__(self):
return 'parametric cartesian line: (%s, %s) for %s over %s' % (
str(self.expr_x), str(self.expr_y), str(self.var),
str((self.start, self.end)))
def get_parameter_points(self):
np = import_module('numpy')
return np.linspace(self.start, self.end, num=self.nb_of_points)
def get_points(self):
param = self.get_parameter_points()
fx = vectorized_lambdify([self.var], self.expr_x)
fy = vectorized_lambdify([self.var], self.expr_y)
list_x = fx(param)
list_y = fy(param)
return (list_x, list_y)
def get_segments(self):
"""
Adaptively gets segments for plotting.
The adaptive sampling is done by recursively checking if three
points are almost collinear. If they are not collinear, then more
points are added between those points.
References
==========
[1] Adaptive polygonal approximation of parametric curves,
Luiz Henrique de Figueiredo.
"""
if not self.adaptive:
return super(Parametric2DLineSeries, self).get_segments()
f_x = lambdify([self.var], self.expr_x)
f_y = lambdify([self.var], self.expr_y)
list_segments = []
def sample(param_p, param_q, p, q, depth):
""" Samples recursively if three points are almost collinear.
For depth < 6, points are added irrespective of whether they
satisfy the collinearity condition or not. The maximum depth
allowed is 12.
"""
#Randomly sample to avoid aliasing.
np = import_module('numpy')
random = 0.45 + np.random.rand() * 0.1
param_new = param_p + random * (param_q - param_p)
xnew = f_x(param_new)
ynew = f_y(param_new)
new_point = np.array([xnew, ynew])
#Maximum depth
if depth > self.depth:
list_segments.append([p, q])
#Sample irrespective of whether the line is flat till the
#depth of 6. We are not using linspace to avoid aliasing.
elif depth < 6:
sample(param_p, param_new, p, new_point, depth + 1)
sample(param_new, param_q, new_point, q, depth + 1)
#Sample ten points if complex values are encountered
#at both ends. If there is a real value in between, then
#sample those points further.
elif ((p[0] is None and q[1] is None) or
(p[1] is None and q[1] is None)):
param_array = np.linspace(param_p, param_q, 10)
x_array = list(map(f_x, param_array))
y_array = list(map(f_y, param_array))
if any(x is not None and y is not None
for x, y in zip(x_array, y_array)):
for i in range(len(y_array) - 1):
if ((x_array[i] is not None and y_array[i] is not None) or
(x_array[i + 1] is not None and y_array[i + 1] is not None)):
point_a = [x_array[i], y_array[i]]
point_b = [x_array[i + 1], y_array[i + 1]]
sample(param_array[i], param_array[i], point_a,
point_b, depth + 1)
#Sample further if one of the end points in None( ie a complex
#value) or the three points are not almost collinear.
elif (p[0] is None or p[1] is None
or q[1] is None or q[0] is None
or not flat(p, new_point, q)):
sample(param_p, param_new, p, new_point, depth + 1)
sample(param_new, param_q, new_point, q, depth + 1)
else:
list_segments.append([p, q])
f_start_x = f_x(self.start)
f_start_y = f_y(self.start)
start = [f_start_x, f_start_y]
f_end_x = f_x(self.end)
f_end_y = f_y(self.end)
end = [f_end_x, f_end_y]
sample(self.start, self.end, start, end, 0)
return list_segments
### 3D lines
class Line3DBaseSeries(Line2DBaseSeries):
"""A base class for 3D lines.
Most of the stuff is derived from Line2DBaseSeries."""
is_2Dline = False
is_3Dline = True
_dim = 3
def __init__(self):
super(Line3DBaseSeries, self).__init__()
class Parametric3DLineSeries(Line3DBaseSeries):
"""Representation for a 3D line consisting of two parametric sympy
expressions and a range."""
def __init__(self, expr_x, expr_y, expr_z, var_start_end, **kwargs):
super(Parametric3DLineSeries, self).__init__()
self.expr_x = sympify(expr_x)
self.expr_y = sympify(expr_y)
self.expr_z = sympify(expr_z)
self.label = "(%s, %s)" % (str(self.expr_x), str(self.expr_y))
self.var = sympify(var_start_end[0])
self.start = float(var_start_end[1])
self.end = float(var_start_end[2])
self.nb_of_points = kwargs.get('nb_of_points', 300)
self.line_color = kwargs.get('line_color', None)
def __str__(self):
return '3D parametric cartesian line: (%s, %s, %s) for %s over %s' % (
str(self.expr_x), str(self.expr_y), str(self.expr_z),
str(self.var), str((self.start, self.end)))
def get_parameter_points(self):
np = import_module('numpy')
return np.linspace(self.start, self.end, num=self.nb_of_points)
def get_points(self):
param = self.get_parameter_points()
fx = vectorized_lambdify([self.var], self.expr_x)
fy = vectorized_lambdify([self.var], self.expr_y)
fz = vectorized_lambdify([self.var], self.expr_z)
list_x = fx(param)
list_y = fy(param)
list_z = fz(param)
return (list_x, list_y, list_z)
### Surfaces
class SurfaceBaseSeries(BaseSeries):
"""A base class for 3D surfaces."""
is_3Dsurface = True
def __init__(self):
super(SurfaceBaseSeries, self).__init__()
self.surface_color = None
def get_color_array(self):
np = import_module('numpy')
c = self.surface_color
if isinstance(c, Callable):
f = np.vectorize(c)
nargs = arity(c)
if self.is_parametric:
variables = list(map(centers_of_faces, self.get_parameter_meshes()))
if nargs == 1:
return f(variables[0])
elif nargs == 2:
return f(*variables)
variables = list(map(centers_of_faces, self.get_meshes()))
if nargs == 1:
return f(variables[0])
elif nargs == 2:
return f(*variables[:2])
else:
return f(*variables)
else:
return c*np.ones(self.nb_of_points)
class SurfaceOver2DRangeSeries(SurfaceBaseSeries):
"""Representation for a 3D surface consisting of a sympy expression and 2D
range."""
def __init__(self, expr, var_start_end_x, var_start_end_y, **kwargs):
super(SurfaceOver2DRangeSeries, self).__init__()
self.expr = sympify(expr)
self.var_x = sympify(var_start_end_x[0])
self.start_x = float(var_start_end_x[1])
self.end_x = float(var_start_end_x[2])
self.var_y = sympify(var_start_end_y[0])
self.start_y = float(var_start_end_y[1])
self.end_y = float(var_start_end_y[2])
self.nb_of_points_x = kwargs.get('nb_of_points_x', 50)
self.nb_of_points_y = kwargs.get('nb_of_points_y', 50)
self.surface_color = kwargs.get('surface_color', None)
def __str__(self):
return ('cartesian surface: %s for'
' %s over %s and %s over %s') % (
str(self.expr),
str(self.var_x),
str((self.start_x, self.end_x)),
str(self.var_y),
str((self.start_y, self.end_y)))
def get_meshes(self):
np = import_module('numpy')
mesh_x, mesh_y = np.meshgrid(np.linspace(self.start_x, self.end_x,
num=self.nb_of_points_x),
np.linspace(self.start_y, self.end_y,
num=self.nb_of_points_y))
f = vectorized_lambdify((self.var_x, self.var_y), self.expr)
return (mesh_x, mesh_y, f(mesh_x, mesh_y))
class ParametricSurfaceSeries(SurfaceBaseSeries):
"""Representation for a 3D surface consisting of three parametric sympy
expressions and a range."""
is_parametric = True
def __init__(
self, expr_x, expr_y, expr_z, var_start_end_u, var_start_end_v,
**kwargs):
super(ParametricSurfaceSeries, self).__init__()
self.expr_x = sympify(expr_x)
self.expr_y = sympify(expr_y)
self.expr_z = sympify(expr_z)
self.var_u = sympify(var_start_end_u[0])
self.start_u = float(var_start_end_u[1])
self.end_u = float(var_start_end_u[2])
self.var_v = sympify(var_start_end_v[0])
self.start_v = float(var_start_end_v[1])
self.end_v = float(var_start_end_v[2])
self.nb_of_points_u = kwargs.get('nb_of_points_u', 50)
self.nb_of_points_v = kwargs.get('nb_of_points_v', 50)
self.surface_color = kwargs.get('surface_color', None)
def __str__(self):
return ('parametric cartesian surface: (%s, %s, %s) for'
' %s over %s and %s over %s') % (
str(self.expr_x),
str(self.expr_y),
str(self.expr_z),
str(self.var_u),
str((self.start_u, self.end_u)),
str(self.var_v),
str((self.start_v, self.end_v)))
def get_parameter_meshes(self):
np = import_module('numpy')
return np.meshgrid(np.linspace(self.start_u, self.end_u,
num=self.nb_of_points_u),
np.linspace(self.start_v, self.end_v,
num=self.nb_of_points_v))
def get_meshes(self):
mesh_u, mesh_v = self.get_parameter_meshes()
fx = vectorized_lambdify((self.var_u, self.var_v), self.expr_x)
fy = vectorized_lambdify((self.var_u, self.var_v), self.expr_y)
fz = vectorized_lambdify((self.var_u, self.var_v), self.expr_z)
return (fx(mesh_u, mesh_v), fy(mesh_u, mesh_v), fz(mesh_u, mesh_v))
### Contours
class ContourSeries(BaseSeries):
"""Representation for a contour plot."""
# The code is mostly repetition of SurfaceOver2DRange.
# Presently used in contour_plot function
is_contour = True
def __init__(self, expr, var_start_end_x, var_start_end_y):
super(ContourSeries, self).__init__()
self.nb_of_points_x = 50
self.nb_of_points_y = 50
self.expr = sympify(expr)
self.var_x = sympify(var_start_end_x[0])
self.start_x = float(var_start_end_x[1])
self.end_x = float(var_start_end_x[2])
self.var_y = sympify(var_start_end_y[0])
self.start_y = float(var_start_end_y[1])
self.end_y = float(var_start_end_y[2])
self.get_points = self.get_meshes
def __str__(self):
return ('contour: %s for '
'%s over %s and %s over %s') % (
str(self.expr),
str(self.var_x),
str((self.start_x, self.end_x)),
str(self.var_y),
str((self.start_y, self.end_y)))
def get_meshes(self):
np = import_module('numpy')
mesh_x, mesh_y = np.meshgrid(np.linspace(self.start_x, self.end_x,
num=self.nb_of_points_x),
np.linspace(self.start_y, self.end_y,
num=self.nb_of_points_y))
f = vectorized_lambdify((self.var_x, self.var_y), self.expr)
return (mesh_x, mesh_y, f(mesh_x, mesh_y))
##############################################################################
# Backends
##############################################################################
class BaseBackend(object):
def __init__(self, parent):
super(BaseBackend, self).__init__()
self.parent = parent
## don't have to check for the success of importing matplotlib in each case;
## we will only be using this backend if we can successfully import matploblib
class MatplotlibBackend(BaseBackend):
def __init__(self, parent):
super(MatplotlibBackend, self).__init__(parent)
are_3D = [s.is_3D for s in self.parent._series]
self.matplotlib = import_module('matplotlib',
__import__kwargs={'fromlist': ['pyplot', 'cm', 'collections']},
min_module_version='1.1.0', catch=(RuntimeError,))
self.plt = self.matplotlib.pyplot
self.cm = self.matplotlib.cm
self.LineCollection = self.matplotlib.collections.LineCollection
if any(are_3D) and not all(are_3D):
raise ValueError('The matplotlib backend can not mix 2D and 3D.')
elif not any(are_3D):
self.fig = self.plt.figure()
self.ax = self.fig.add_subplot(111)
self.ax.spines['left'].set_position('zero')
self.ax.spines['right'].set_color('none')
self.ax.spines['bottom'].set_position('zero')
self.ax.spines['top'].set_color('none')
self.ax.spines['left'].set_smart_bounds(True)
self.ax.spines['bottom'].set_smart_bounds(False)
self.ax.xaxis.set_ticks_position('bottom')
self.ax.yaxis.set_ticks_position('left')
elif all(are_3D):
## mpl_toolkits.mplot3d is necessary for
## projection='3d'
mpl_toolkits = import_module('mpl_toolkits',
__import__kwargs={'fromlist': ['mplot3d']})
self.fig = self.plt.figure()
self.ax = self.fig.add_subplot(111, projection='3d')
def process_series(self):
parent = self.parent
for s in self.parent._series:
# Create the collections
if s.is_2Dline:
collection = self.LineCollection(s.get_segments())
self.ax.add_collection(collection)
elif s.is_contour:
self.ax.contour(*s.get_meshes())
elif s.is_3Dline:
# TODO too complicated, I blame matplotlib
mpl_toolkits = import_module('mpl_toolkits',
__import__kwargs={'fromlist': ['mplot3d']})
art3d = mpl_toolkits.mplot3d.art3d
collection = art3d.Line3DCollection(s.get_segments())
self.ax.add_collection(collection)
x, y, z = s.get_points()
self.ax.set_xlim((min(x), max(x)))
self.ax.set_ylim((min(y), max(y)))
self.ax.set_zlim((min(z), max(z)))
elif s.is_3Dsurface:
x, y, z = s.get_meshes()
collection = self.ax.plot_surface(x, y, z,
cmap=getattr(self.cm, 'viridis', self.cm.jet),
rstride=1, cstride=1, linewidth=0.1)
elif s.is_implicit:
#Smart bounds have to be set to False for implicit plots.
self.ax.spines['left'].set_smart_bounds(False)
self.ax.spines['bottom'].set_smart_bounds(False)
points = s.get_raster()
if len(points) == 2:
#interval math plotting
x, y = _matplotlib_list(points[0])
self.ax.fill(x, y, facecolor=s.line_color, edgecolor='None')
else:
# use contourf or contour depending on whether it is
# an inequality or equality.
#XXX: ``contour`` plots multiple lines. Should be fixed.
ListedColormap = self.matplotlib.colors.ListedColormap
colormap = ListedColormap(["white", s.line_color])
xarray, yarray, zarray, plot_type = points
if plot_type == 'contour':
self.ax.contour(xarray, yarray, zarray, cmap=colormap)
else:
self.ax.contourf(xarray, yarray, zarray, cmap=colormap)
else:
raise ValueError('The matplotlib backend supports only '
'is_2Dline, is_3Dline, is_3Dsurface and '
'is_contour objects.')
# Customise the collections with the corresponding per-series
# options.
if hasattr(s, 'label'):
collection.set_label(s.label)
if s.is_line and s.line_color:
if isinstance(s.line_color, (float, int)) or isinstance(s.line_color, Callable):
color_array = s.get_color_array()
collection.set_array(color_array)
else:
collection.set_color(s.line_color)
if s.is_3Dsurface and s.surface_color:
if self.matplotlib.__version__ < "1.2.0": # TODO in the distant future remove this check
warnings.warn('The version of matplotlib is too old to use surface coloring.')
elif isinstance(s.surface_color, (float, int)) or isinstance(s.surface_color, Callable):
color_array = s.get_color_array()
color_array = color_array.reshape(color_array.size)
collection.set_array(color_array)
else:
collection.set_color(s.surface_color)
# Set global options.
# TODO The 3D stuff
# XXX The order of those is important.
mpl_toolkits = import_module('mpl_toolkits',
__import__kwargs={'fromlist': ['mplot3d']})
Axes3D = mpl_toolkits.mplot3d.Axes3D
if parent.xscale and not isinstance(self.ax, Axes3D):
self.ax.set_xscale(parent.xscale)
if parent.yscale and not isinstance(self.ax, Axes3D):
self.ax.set_yscale(parent.yscale)
if parent.xlim:
from sympy.core.basic import Basic
xlim = parent.xlim
if any(isinstance(i,Basic) and not i.is_real for i in xlim):
raise ValueError(
"All numbers from xlim={} must be real".format(xlim))
if any(isinstance(i,Basic) and not i.is_finite for i in xlim):
raise ValueError(
"All numbers from xlim={} must be finite".format(xlim))
xlim = (float(i) for i in xlim)
self.ax.set_xlim(xlim)
else:
if all(isinstance(s, LineOver1DRangeSeries) for s in parent._series):
starts = [s.start for s in parent._series]
ends = [s.end for s in parent._series]
self.ax.set_xlim(min(starts), max(ends))
if parent.ylim:
from sympy.core.basic import Basic
ylim = parent.ylim
if any(isinstance(i,Basic) and not i.is_real for i in ylim):
raise ValueError(
"All numbers from ylim={} must be real".format(ylim))
if any(isinstance(i,Basic) and not i.is_finite for i in ylim):
raise ValueError(
"All numbers from ylim={} must be finite".format(ylim))
ylim = (float(i) for i in ylim)
self.ax.set_ylim(ylim)
if not isinstance(self.ax, Axes3D) or self.matplotlib.__version__ >= '1.2.0': # XXX in the distant future remove this check
self.ax.set_autoscale_on(parent.autoscale)
if parent.axis_center:
val = parent.axis_center
if isinstance(self.ax, Axes3D):
pass
elif val == 'center':
self.ax.spines['left'].set_position('center')
self.ax.spines['bottom'].set_position('center')
elif val == 'auto':
xl, xh = self.ax.get_xlim()
yl, yh = self.ax.get_ylim()
pos_left = ('data', 0) if xl*xh <= 0 else 'center'
pos_bottom = ('data', 0) if yl*yh <= 0 else 'center'
self.ax.spines['left'].set_position(pos_left)
self.ax.spines['bottom'].set_position(pos_bottom)
else:
self.ax.spines['left'].set_position(('data', val[0]))
self.ax.spines['bottom'].set_position(('data', val[1]))
if not parent.axis:
self.ax.set_axis_off()
if parent.legend:
if self.ax.legend():
self.ax.legend_.set_visible(parent.legend)
if parent.margin:
self.ax.set_xmargin(parent.margin)
self.ax.set_ymargin(parent.margin)
if parent.title:
self.ax.set_title(parent.title)
if parent.xlabel:
self.ax.set_xlabel(parent.xlabel, position=(1, 0))
if parent.ylabel:
self.ax.set_ylabel(parent.ylabel, position=(0, 1))
def show(self):
self.process_series()
#TODO after fixing https://github.com/ipython/ipython/issues/1255
# you can uncomment the next line and remove the pyplot.show() call
#self.fig.show()
if _show:
self.plt.show()
else:
self.close()
def save(self, path):
self.process_series()
self.fig.savefig(path)
def close(self):
self.plt.close(self.fig)
class TextBackend(BaseBackend):
def __init__(self, parent):
super(TextBackend, self).__init__(parent)
def show(self):
if not _show:
return
if len(self.parent._series) != 1:
raise ValueError(
'The TextBackend supports only one graph per Plot.')
elif not isinstance(self.parent._series[0], LineOver1DRangeSeries):
raise ValueError(
'The TextBackend supports only expressions over a 1D range')
else:
ser = self.parent._series[0]
textplot(ser.expr, ser.start, ser.end)
def close(self):
pass
class DefaultBackend(BaseBackend):
def __new__(cls, parent):
matplotlib = import_module('matplotlib', min_module_version='1.1.0', catch=(RuntimeError,))
if matplotlib:
return MatplotlibBackend(parent)
else:
return TextBackend(parent)
plot_backends = {
'matplotlib': MatplotlibBackend,
'text': TextBackend,
'default': DefaultBackend
}
##############################################################################
# Finding the centers of line segments or mesh faces
##############################################################################
def centers_of_segments(array):
np = import_module('numpy')
return np.mean(np.vstack((array[:-1], array[1:])), 0)
def centers_of_faces(array):
np = import_module('numpy')
return np.mean(np.dstack((array[:-1, :-1],
array[1:, :-1],
array[:-1, 1: ],
array[:-1, :-1],
)), 2)
def flat(x, y, z, eps=1e-3):
"""Checks whether three points are almost collinear"""
np = import_module('numpy')
# Workaround plotting piecewise (#8577):
# workaround for `lambdify` in `.experimental_lambdify` fails
# to return numerical values in some cases. Lower-level fix
# in `lambdify` is possible.
vector_a = (x - y).astype(np.float)
vector_b = (z - y).astype(np.float)
dot_product = np.dot(vector_a, vector_b)
vector_a_norm = np.linalg.norm(vector_a)
vector_b_norm = np.linalg.norm(vector_b)
cos_theta = dot_product / (vector_a_norm * vector_b_norm)
return abs(cos_theta + 1) < eps
def _matplotlib_list(interval_list):
"""
Returns lists for matplotlib ``fill`` command from a list of bounding
rectangular intervals
"""
xlist = []
ylist = []
if len(interval_list):
for intervals in interval_list:
intervalx = intervals[0]
intervaly = intervals[1]
xlist.extend([intervalx.start, intervalx.start,
intervalx.end, intervalx.end, None])
ylist.extend([intervaly.start, intervaly.end,
intervaly.end, intervaly.start, None])
else:
#XXX Ugly hack. Matplotlib does not accept empty lists for ``fill``
xlist.extend([None, None, None, None])
ylist.extend([None, None, None, None])
return xlist, ylist
####New API for plotting module ####
# TODO: Add color arrays for plots.
# TODO: Add more plotting options for 3d plots.
# TODO: Adaptive sampling for 3D plots.
def plot(*args, **kwargs):
"""
Plots a function of a single variable and returns an instance of
the ``Plot`` class (also, see the description of the
``show`` keyword argument below).
The plotting uses an adaptive algorithm which samples recursively to
accurately plot the plot. The adaptive algorithm uses a random point near
the midpoint of two points that has to be further sampled. Hence the same
plots can appear slightly different.
Usage
=====
Single Plot
``plot(expr, range, **kwargs)``
If the range is not specified, then a default range of (-10, 10) is used.
Multiple plots with same range.
``plot(expr1, expr2, ..., range, **kwargs)``
If the range is not specified, then a default range of (-10, 10) is used.
Multiple plots with different ranges.
``plot((expr1, range), (expr2, range), ..., **kwargs)``
Range has to be specified for every expression.
Default range may change in the future if a more advanced default range
detection algorithm is implemented.
Arguments
=========
``expr`` : Expression representing the function of single variable
``range``: (x, 0, 5), A 3-tuple denoting the range of the free variable.
Keyword Arguments
=================
Arguments for ``plot`` function:
``show``: Boolean. The default value is set to ``True``. Set show to
``False`` and the function will not display the plot. The returned
instance of the ``Plot`` class can then be used to save or display
the plot by calling the ``save()`` and ``show()`` methods
respectively.
Arguments for ``LineOver1DRangeSeries`` class:
``adaptive``: Boolean. The default value is set to True. Set adaptive to False and
specify ``nb_of_points`` if uniform sampling is required.
``depth``: int Recursion depth of the adaptive algorithm. A depth of value ``n``
samples a maximum of `2^{n}` points.
``nb_of_points``: int. Used when the ``adaptive`` is set to False. The function
is uniformly sampled at ``nb_of_points`` number of points.
Aesthetics options:
``line_color``: float. Specifies the color for the plot.
See ``Plot`` to see how to set color for the plots.
If there are multiple plots, then the same series series are applied to
all the plots. If you want to set these options separately, you can index
the ``Plot`` object returned and set it.
Arguments for ``Plot`` class:
``title`` : str. Title of the plot. It is set to the latex representation of
the expression, if the plot has only one expression.
``xlabel`` : str. Label for the x-axis.
``ylabel`` : str. Label for the y-axis.
``xscale``: {'linear', 'log'} Sets the scaling of the x-axis.
``yscale``: {'linear', 'log'} Sets the scaling if the y-axis.
``axis_center``: tuple of two floats denoting the coordinates of the center or
{'center', 'auto'}
``xlim`` : tuple of two floats, denoting the x-axis limits.
``ylim`` : tuple of two floats, denoting the y-axis limits.
Examples
========
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.plotting import plot
>>> x = symbols('x')
Single Plot
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot(x**2, (x, -5, 5))
Plot object containing:
[0]: cartesian line: x**2 for x over (-5.0, 5.0)
Multiple plots with single range.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot(x, x**2, x**3, (x, -5, 5))
Plot object containing:
[0]: cartesian line: x for x over (-5.0, 5.0)
[1]: cartesian line: x**2 for x over (-5.0, 5.0)
[2]: cartesian line: x**3 for x over (-5.0, 5.0)
Multiple plots with different ranges.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot((x**2, (x, -6, 6)), (x, (x, -5, 5)))
Plot object containing:
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
[1]: cartesian line: x for x over (-5.0, 5.0)
No adaptive sampling.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot(x**2, adaptive=False, nb_of_points=400)
Plot object containing:
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
See Also
========
Plot, LineOver1DRangeSeries.
"""
args = list(map(sympify, args))
free = set()
for a in args:
if isinstance(a, Expr):
free |= a.free_symbols
if len(free) > 1:
raise ValueError(
'The same variable should be used in all '
'univariate expressions being plotted.')
x = free.pop() if free else Symbol('x')
kwargs.setdefault('xlabel', x.name)
kwargs.setdefault('ylabel', 'f(%s)' % x.name)
show = kwargs.pop('show', True)
series = []
plot_expr = check_arguments(args, 1, 1)
series = [LineOver1DRangeSeries(*arg, **kwargs) for arg in plot_expr]
plots = Plot(*series, **kwargs)
if show:
plots.show()
return plots
def plot_parametric(*args, **kwargs):
"""
Plots a 2D parametric plot.
The plotting uses an adaptive algorithm which samples recursively to
accurately plot the plot. The adaptive algorithm uses a random point near
the midpoint of two points that has to be further sampled. Hence the same
plots can appear slightly different.
Usage
=====
Single plot.
``plot_parametric(expr_x, expr_y, range, **kwargs)``
If the range is not specified, then a default range of (-10, 10) is used.
Multiple plots with same range.
``plot_parametric((expr1_x, expr1_y), (expr2_x, expr2_y), range, **kwargs)``
If the range is not specified, then a default range of (-10, 10) is used.
Multiple plots with different ranges.
``plot_parametric((expr_x, expr_y, range), ..., **kwargs)``
Range has to be specified for every expression.
Default range may change in the future if a more advanced default range
detection algorithm is implemented.
Arguments
=========
``expr_x`` : Expression representing the function along x.
``expr_y`` : Expression representing the function along y.
``range``: (u, 0, 5), A 3-tuple denoting the range of the parameter
variable.
Keyword Arguments
=================
Arguments for ``Parametric2DLineSeries`` class:
``adaptive``: Boolean. The default value is set to True. Set adaptive to
False and specify ``nb_of_points`` if uniform sampling is required.
``depth``: int Recursion depth of the adaptive algorithm. A depth of
value ``n`` samples a maximum of `2^{n}` points.
``nb_of_points``: int. Used when the ``adaptive`` is set to False. The
function is uniformly sampled at ``nb_of_points`` number of points.
Aesthetics
----------
``line_color``: function which returns a float. Specifies the color for the
plot. See ``sympy.plotting.Plot`` for more details.
If there are multiple plots, then the same Series arguments are applied to
all the plots. If you want to set these options separately, you can index
the returned ``Plot`` object and set it.
Arguments for ``Plot`` class:
``xlabel`` : str. Label for the x-axis.
``ylabel`` : str. Label for the y-axis.
``xscale``: {'linear', 'log'} Sets the scaling of the x-axis.
``yscale``: {'linear', 'log'} Sets the scaling if the y-axis.
``axis_center``: tuple of two floats denoting the coordinates of the center
or {'center', 'auto'}
``xlim`` : tuple of two floats, denoting the x-axis limits.
``ylim`` : tuple of two floats, denoting the y-axis limits.
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import symbols, cos, sin
>>> from sympy.plotting import plot_parametric
>>> u = symbols('u')
Single Parametric plot
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot_parametric(cos(u), sin(u), (u, -5, 5))
Plot object containing:
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0)
Multiple parametric plot with single range.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot_parametric((cos(u), sin(u)), (u, cos(u)))
Plot object containing:
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-10.0, 10.0)
[1]: parametric cartesian line: (u, cos(u)) for u over (-10.0, 10.0)
Multiple parametric plots.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot_parametric((cos(u), sin(u), (u, -5, 5)),
... (cos(u), u, (u, -5, 5)))
Plot object containing:
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0)
[1]: parametric cartesian line: (cos(u), u) for u over (-5.0, 5.0)
See Also
========
Plot, Parametric2DLineSeries
"""
args = list(map(sympify, args))
show = kwargs.pop('show', True)
series = []
plot_expr = check_arguments(args, 2, 1)
series = [Parametric2DLineSeries(*arg, **kwargs) for arg in plot_expr]
plots = Plot(*series, **kwargs)
if show:
plots.show()
return plots
def plot3d_parametric_line(*args, **kwargs):
"""
Plots a 3D parametric line plot.
Usage
=====
Single plot:
``plot3d_parametric_line(expr_x, expr_y, expr_z, range, **kwargs)``
If the range is not specified, then a default range of (-10, 10) is used.
Multiple plots.
``plot3d_parametric_line((expr_x, expr_y, expr_z, range), ..., **kwargs)``
Ranges have to be specified for every expression.
Default range may change in the future if a more advanced default range
detection algorithm is implemented.
Arguments
=========
``expr_x`` : Expression representing the function along x.
``expr_y`` : Expression representing the function along y.
``expr_z`` : Expression representing the function along z.
``range``: ``(u, 0, 5)``, A 3-tuple denoting the range of the parameter
variable.
Keyword Arguments
=================
Arguments for ``Parametric3DLineSeries`` class.
``nb_of_points``: The range is uniformly sampled at ``nb_of_points``
number of points.
Aesthetics:
``line_color``: function which returns a float. Specifies the color for the
plot. See ``sympy.plotting.Plot`` for more details.
If there are multiple plots, then the same series arguments are applied to
all the plots. If you want to set these options separately, you can index
the returned ``Plot`` object and set it.
Arguments for ``Plot`` class.
``title`` : str. Title of the plot.
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import symbols, cos, sin
>>> from sympy.plotting import plot3d_parametric_line
>>> u = symbols('u')
Single plot.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d_parametric_line(cos(u), sin(u), u, (u, -5, 5))
Plot object containing:
[0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0)
Multiple plots.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d_parametric_line((cos(u), sin(u), u, (u, -5, 5)),
... (sin(u), u**2, u, (u, -5, 5)))
Plot object containing:
[0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0)
[1]: 3D parametric cartesian line: (sin(u), u**2, u) for u over (-5.0, 5.0)
See Also
========
Plot, Parametric3DLineSeries
"""
args = list(map(sympify, args))
show = kwargs.pop('show', True)
series = []
plot_expr = check_arguments(args, 3, 1)
series = [Parametric3DLineSeries(*arg, **kwargs) for arg in plot_expr]
plots = Plot(*series, **kwargs)
if show:
plots.show()
return plots
def plot3d(*args, **kwargs):
"""
Plots a 3D surface plot.
Usage
=====
Single plot
``plot3d(expr, range_x, range_y, **kwargs)``
If the ranges are not specified, then a default range of (-10, 10) is used.
Multiple plot with the same range.
``plot3d(expr1, expr2, range_x, range_y, **kwargs)``
If the ranges are not specified, then a default range of (-10, 10) is used.
Multiple plots with different ranges.
``plot3d((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)``
Ranges have to be specified for every expression.
Default range may change in the future if a more advanced default range
detection algorithm is implemented.
Arguments
=========
``expr`` : Expression representing the function along x.
``range_x``: (x, 0, 5), A 3-tuple denoting the range of the x
variable.
``range_y``: (y, 0, 5), A 3-tuple denoting the range of the y
variable.
Keyword Arguments
=================
Arguments for ``SurfaceOver2DRangeSeries`` class:
``nb_of_points_x``: int. The x range is sampled uniformly at
``nb_of_points_x`` of points.
``nb_of_points_y``: int. The y range is sampled uniformly at
``nb_of_points_y`` of points.
Aesthetics:
``surface_color``: Function which returns a float. Specifies the color for
the surface of the plot. See ``sympy.plotting.Plot`` for more details.
If there are multiple plots, then the same series arguments are applied to
all the plots. If you want to set these options separately, you can index
the returned ``Plot`` object and set it.
Arguments for ``Plot`` class:
``title`` : str. Title of the plot.
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.plotting import plot3d
>>> x, y = symbols('x y')
Single plot
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d(x*y, (x, -5, 5), (y, -5, 5))
Plot object containing:
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
Multiple plots with same range
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d(x*y, -x*y, (x, -5, 5), (y, -5, 5))
Plot object containing:
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
[1]: cartesian surface: -x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
Multiple plots with different ranges.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d((x**2 + y**2, (x, -5, 5), (y, -5, 5)),
... (x*y, (x, -3, 3), (y, -3, 3)))
Plot object containing:
[0]: cartesian surface: x**2 + y**2 for x over (-5.0, 5.0) and y over (-5.0, 5.0)
[1]: cartesian surface: x*y for x over (-3.0, 3.0) and y over (-3.0, 3.0)
See Also
========
Plot, SurfaceOver2DRangeSeries
"""
args = list(map(sympify, args))
show = kwargs.pop('show', True)
series = []
plot_expr = check_arguments(args, 1, 2)
series = [SurfaceOver2DRangeSeries(*arg, **kwargs) for arg in plot_expr]
plots = Plot(*series, **kwargs)
if show:
plots.show()
return plots
def plot3d_parametric_surface(*args, **kwargs):
"""
Plots a 3D parametric surface plot.
Usage
=====
Single plot.
``plot3d_parametric_surface(expr_x, expr_y, expr_z, range_u, range_v, **kwargs)``
If the ranges is not specified, then a default range of (-10, 10) is used.
Multiple plots.
``plot3d_parametric_surface((expr_x, expr_y, expr_z, range_u, range_v), ..., **kwargs)``
Ranges have to be specified for every expression.
Default range may change in the future if a more advanced default range
detection algorithm is implemented.
Arguments
=========
``expr_x``: Expression representing the function along ``x``.
``expr_y``: Expression representing the function along ``y``.
``expr_z``: Expression representing the function along ``z``.
``range_u``: ``(u, 0, 5)``, A 3-tuple denoting the range of the ``u``
variable.
``range_v``: ``(v, 0, 5)``, A 3-tuple denoting the range of the v
variable.
Keyword Arguments
=================
Arguments for ``ParametricSurfaceSeries`` class:
``nb_of_points_u``: int. The ``u`` range is sampled uniformly at
``nb_of_points_v`` of points
``nb_of_points_y``: int. The ``v`` range is sampled uniformly at
``nb_of_points_y`` of points
Aesthetics:
``surface_color``: Function which returns a float. Specifies the color for
the surface of the plot. See ``sympy.plotting.Plot`` for more details.
If there are multiple plots, then the same series arguments are applied for
all the plots. If you want to set these options separately, you can index
the returned ``Plot`` object and set it.
Arguments for ``Plot`` class:
``title`` : str. Title of the plot.
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import symbols, cos, sin
>>> from sympy.plotting import plot3d_parametric_surface
>>> u, v = symbols('u v')
Single plot.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d_parametric_surface(cos(u + v), sin(u - v), u - v,
... (u, -5, 5), (v, -5, 5))
Plot object containing:
[0]: parametric cartesian surface: (cos(u + v), sin(u - v), u - v) for u over (-5.0, 5.0) and v over (-5.0, 5.0)
See Also
========
Plot, ParametricSurfaceSeries
"""
args = list(map(sympify, args))
show = kwargs.pop('show', True)
series = []
plot_expr = check_arguments(args, 3, 2)
series = [ParametricSurfaceSeries(*arg, **kwargs) for arg in plot_expr]
plots = Plot(*series, **kwargs)
if show:
plots.show()
return plots
def plot_contour(*args, **kwargs):
"""
Draws contour plot of a function
Usage
=====
Single plot
``plot_contour(expr, range_x, range_y, **kwargs)``
If the ranges are not specified, then a default range of (-10, 10) is used.
Multiple plot with the same range.
``plot_contour(expr1, expr2, range_x, range_y, **kwargs)``
If the ranges are not specified, then a default range of (-10, 10) is used.
Multiple plots with different ranges.
``plot_contour((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)``
Ranges have to be specified for every expression.
Default range may change in the future if a more advanced default range
detection algorithm is implemented.
Arguments
=========
``expr`` : Expression representing the function along x.
``range_x``: (x, 0, 5), A 3-tuple denoting the range of the x
variable.
``range_y``: (y, 0, 5), A 3-tuple denoting the range of the y
variable.
Keyword Arguments
=================
Arguments for ``ContourSeries`` class:
``nb_of_points_x``: int. The x range is sampled uniformly at
``nb_of_points_x`` of points.
``nb_of_points_y``: int. The y range is sampled uniformly at
``nb_of_points_y`` of points.
Aesthetics:
``surface_color``: Function which returns a float. Specifies the color for
the surface of the plot. See ``sympy.plotting.Plot`` for more details.
If there are multiple plots, then the same series arguments are applied to
all the plots. If you want to set these options separately, you can index
the returned ``Plot`` object and set it.
Arguments for ``Plot`` class:
``title`` : str. Title of the plot.
See Also
========
Plot, ContourSeries
"""
args = list(map(sympify, args))
show = kwargs.pop('show', True)
plot_expr = check_arguments(args, 1, 2)
series = [ContourSeries(*arg) for arg in plot_expr]
plot_contours = Plot(*series, **kwargs)
if len(plot_expr[0].free_symbols) > 2:
raise ValueError('Contour Plot cannot Plot for more than two variables.')
if show:
plot_contours.show()
return plot_contours
def check_arguments(args, expr_len, nb_of_free_symbols):
"""
Checks the arguments and converts into tuples of the
form (exprs, ranges)
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import plot, cos, sin, symbols
>>> from sympy.plotting.plot import check_arguments
>>> x = symbols('x')
>>> check_arguments([cos(x), sin(x)], 2, 1)
[(cos(x), sin(x), (x, -10, 10))]
>>> check_arguments([x, x**2], 1, 1)
[(x, (x, -10, 10)), (x**2, (x, -10, 10))]
"""
if expr_len > 1 and isinstance(args[0], Expr):
# Multiple expressions same range.
# The arguments are tuples when the expression length is
# greater than 1.
if len(args) < expr_len:
raise ValueError("len(args) should not be less than expr_len")
for i in range(len(args)):
if isinstance(args[i], Tuple):
break
else:
i = len(args) + 1
exprs = Tuple(*args[:i])
free_symbols = list(set().union(*[e.free_symbols for e in exprs]))
if len(args) == expr_len + nb_of_free_symbols:
#Ranges given
plots = [exprs + Tuple(*args[expr_len:])]
else:
default_range = Tuple(-10, 10)
ranges = []
for symbol in free_symbols:
ranges.append(Tuple(symbol) + default_range)
for i in range(len(free_symbols) - nb_of_free_symbols):
ranges.append(Tuple(Dummy()) + default_range)
plots = [exprs + Tuple(*ranges)]
return plots
if isinstance(args[0], Expr) or (isinstance(args[0], Tuple) and
len(args[0]) == expr_len and
expr_len != 3):
# Cannot handle expressions with number of expression = 3. It is
# not possible to differentiate between expressions and ranges.
#Series of plots with same range
for i in range(len(args)):
if isinstance(args[i], Tuple) and len(args[i]) != expr_len:
break
if not isinstance(args[i], Tuple):
args[i] = Tuple(args[i])
else:
i = len(args) + 1
exprs = args[:i]
assert all(isinstance(e, Expr) for expr in exprs for e in expr)
free_symbols = list(set().union(*[e.free_symbols for expr in exprs
for e in expr]))
if len(free_symbols) > nb_of_free_symbols:
raise ValueError("The number of free_symbols in the expression "
"is greater than %d" % nb_of_free_symbols)
if len(args) == i + nb_of_free_symbols and isinstance(args[i], Tuple):
ranges = Tuple(*[range_expr for range_expr in args[
i:i + nb_of_free_symbols]])
plots = [expr + ranges for expr in exprs]
return plots
else:
#Use default ranges.
default_range = Tuple(-10, 10)
ranges = []
for symbol in free_symbols:
ranges.append(Tuple(symbol) + default_range)
for i in range(nb_of_free_symbols - len(free_symbols)):
ranges.append(Tuple(Dummy()) + default_range)
ranges = Tuple(*ranges)
plots = [expr + ranges for expr in exprs]
return plots
elif isinstance(args[0], Tuple) and len(args[0]) == expr_len + nb_of_free_symbols:
#Multiple plots with different ranges.
for arg in args:
for i in range(expr_len):
if not isinstance(arg[i], Expr):
raise ValueError("Expected an expression, given %s" %
str(arg[i]))
for i in range(nb_of_free_symbols):
if not len(arg[i + expr_len]) == 3:
raise ValueError("The ranges should be a tuple of "
"length 3, got %s" % str(arg[i + expr_len]))
return args
|
9886a836853981d42c3090f1fdd85d6dd4825ccaa1d4f25cc4e17f6be552ea77
|
""" rewrite of lambdify - This stuff is not stable at all.
It is for internal use in the new plotting module.
It may (will! see the Q'n'A in the source) be rewritten.
It's completely self contained. Especially it does not use lambdarepr.
It does not aim to replace the current lambdify. Most importantly it will never
ever support anything else than sympy expressions (no Matrices, dictionaries
and so on).
"""
from __future__ import print_function, division
import re
from sympy import Symbol, NumberSymbol, I, zoo, oo
from sympy.core.compatibility import exec_, string_types
from sympy.utilities.iterables import numbered_symbols
# We parse the expression string into a tree that identifies functions. Then
# we translate the names of the functions and we translate also some strings
# that are not names of functions (all this according to translation
# dictionaries).
# If the translation goes to another module (like numpy) the
# module is imported and 'func' is translated to 'module.func'.
# If a function can not be translated, the inner nodes of that part of the
# tree are not translated. So if we have Integral(sqrt(x)), sqrt is not
# translated to np.sqrt and the Integral does not crash.
# A namespace for all this is generated by crawling the (func, args) tree of
# the expression. The creation of this namespace involves many ugly
# workarounds.
# The namespace consists of all the names needed for the sympy expression and
# all the name of modules used for translation. Those modules are imported only
# as a name (import numpy as np) in order to keep the namespace small and
# manageable.
# Please, if there is a bug, do not try to fix it here! Rewrite this by using
# the method proposed in the last Q'n'A below. That way the new function will
# work just as well, be just as simple, but it wont need any new workarounds.
# If you insist on fixing it here, look at the workarounds in the function
# sympy_expression_namespace and in lambdify.
# Q: Why are you not using python abstract syntax tree?
# A: Because it is more complicated and not much more powerful in this case.
# Q: What if I have Symbol('sin') or g=Function('f')?
# A: You will break the algorithm. We should use srepr to defend against this?
# The problem with Symbol('sin') is that it will be printed as 'sin'. The
# parser will distinguish it from the function 'sin' because functions are
# detected thanks to the opening parenthesis, but the lambda expression won't
# understand the difference if we have also the sin function.
# The solution (complicated) is to use srepr and maybe ast.
# The problem with the g=Function('f') is that it will be printed as 'f' but in
# the global namespace we have only 'g'. But as the same printer is used in the
# constructor of the namespace there will be no problem.
# Q: What if some of the printers are not printing as expected?
# A: The algorithm wont work. You must use srepr for those cases. But even
# srepr may not print well. All problems with printers should be considered
# bugs.
# Q: What about _imp_ functions?
# A: Those are taken care for by evalf. A special case treatment will work
# faster but it's not worth the code complexity.
# Q: Will ast fix all possible problems?
# A: No. You will always have to use some printer. Even srepr may not work in
# some cases. But if the printer does not work, that should be considered a
# bug.
# Q: Is there same way to fix all possible problems?
# A: Probably by constructing our strings ourself by traversing the (func,
# args) tree and creating the namespace at the same time. That actually sounds
# good.
from sympy.external import import_module
import warnings
#TODO debugging output
class vectorized_lambdify(object):
""" Return a sufficiently smart, vectorized and lambdified function.
Returns only reals.
This function uses experimental_lambdify to created a lambdified
expression ready to be used with numpy. Many of the functions in sympy
are not implemented in numpy so in some cases we resort to python cmath or
even to evalf.
The following translations are tried:
only numpy complex
- on errors raised by sympy trying to work with ndarray:
only python cmath and then vectorize complex128
When using python cmath there is no need for evalf or float/complex
because python cmath calls those.
This function never tries to mix numpy directly with evalf because numpy
does not understand sympy Float. If this is needed one can use the
float_wrap_evalf/complex_wrap_evalf options of experimental_lambdify or
better one can be explicit about the dtypes that numpy works with.
Check numpy bug http://projects.scipy.org/numpy/ticket/1013 to know what
types of errors to expect.
"""
def __init__(self, args, expr):
self.args = args
self.expr = expr
self.lambda_func = experimental_lambdify(args, expr, use_np=True)
self.vector_func = self.lambda_func
self.failure = False
def __call__(self, *args):
np = import_module('numpy')
np_old_err = np.seterr(invalid='raise')
try:
temp_args = (np.array(a, dtype=np.complex) for a in args)
results = self.vector_func(*temp_args)
results = np.ma.masked_where(
np.abs(results.imag) > 1e-7 * np.abs(results),
results.real, copy=False)
except Exception as e:
#DEBUG: print 'Error', type(e), e
if ((isinstance(e, TypeError)
and 'unhashable type: \'numpy.ndarray\'' in str(e))
or
(isinstance(e, ValueError)
and ('Invalid limits given:' in str(e)
or 'negative dimensions are not allowed' in str(e) # XXX
or 'sequence too large; must be smaller than 32' in str(e)))): # XXX
# Almost all functions were translated to numpy, but some were
# left as sympy functions. They received an ndarray as an
# argument and failed.
# sin(ndarray(...)) raises "unhashable type"
# Integral(x, (x, 0, ndarray(...))) raises "Invalid limits"
# other ugly exceptions that are not well understood (marked with XXX)
# TODO: Cleanup the ugly special cases marked with xxx above.
# Solution: use cmath and vectorize the final lambda.
self.lambda_func = experimental_lambdify(
self.args, self.expr, use_python_cmath=True)
self.vector_func = np.vectorize(
self.lambda_func, otypes=[np.complex])
results = self.vector_func(*args)
results = np.ma.masked_where(
np.abs(results.imag) > 1e-7 * np.abs(results),
results.real, copy=False)
else:
# Complete failure. One last try with no translations, only
# wrapping in complex((...).evalf()) and returning the real
# part.
if self.failure:
raise e
else:
self.failure = True
self.lambda_func = experimental_lambdify(
self.args, self.expr, use_evalf=True,
complex_wrap_evalf=True)
self.vector_func = np.vectorize(
self.lambda_func, otypes=[np.complex])
results = self.vector_func(*args)
results = np.ma.masked_where(
np.abs(results.imag) > 1e-7 * np.abs(results),
results.real, copy=False)
warnings.warn('The evaluation of the expression is'
' problematic. We are trying a failback method'
' that may still work. Please report this as a bug.')
finally:
np.seterr(**np_old_err)
return results
class lambdify(object):
"""Returns the lambdified function.
This function uses experimental_lambdify to create a lambdified
expression. It uses cmath to lambdify the expression. If the function
is not implemented in python cmath, python cmath calls evalf on those
functions.
"""
def __init__(self, args, expr):
self.args = args
self.expr = expr
self.lambda_func = experimental_lambdify(args, expr, use_evalf=True,
use_python_cmath=True)
self.failure = False
def __call__(self, args, kwargs = {}):
if not self.lambda_func.use_python_math:
args = complex(args)
try:
#The result can be sympy.Float. Hence wrap it with complex type.
result = complex(self.lambda_func(args))
if abs(result.imag) > 1e-7 * abs(result):
return None
else:
return result.real
except Exception as e:
# The exceptions raised by sympy, cmath are not consistent and
# hence it is not possible to specify all the exceptions that
# are to be caught. Presently there are no cases for which the code
# reaches this block other than ZeroDivisionError and complex
# comparison. Also the exception is caught only once. If the
# exception repeats itself,
# then it is not caught and the corresponding error is raised.
# XXX: Remove catching all exceptions once the plotting module
# is heavily tested.
if isinstance(e, ZeroDivisionError):
return None
elif isinstance(e, TypeError) and ('no ordering relation is'
' defined for complex numbers'
in str(e) or 'unorderable '
'types' in str(e) or "not "
"supported between instances of"
in str(e)):
self.lambda_func = experimental_lambdify(self.args, self.expr,
use_evalf=True,
use_python_math=True)
result = self.lambda_func(args.real)
return result
else:
if self.failure:
raise e
#Failure
#Try wrapping it with complex(..).evalf()
self.failure = True
self.lambda_func = experimental_lambdify(self.args, self.expr,
use_evalf=True,
complex_wrap_evalf=True)
result = self.lambda_func(args)
warnings.warn('The evaluation of the expression is'
' problematic. We are trying a failback method'
' that may still work. Please report this as a bug.')
if abs(result.imag) > 1e-7 * abs(result):
return None
else:
return result.real
def experimental_lambdify(*args, **kwargs):
l = Lambdifier(*args, **kwargs)
return l
class Lambdifier(object):
def __init__(self, args, expr, print_lambda=False, use_evalf=False,
float_wrap_evalf=False, complex_wrap_evalf=False,
use_np=False, use_python_math=False, use_python_cmath=False,
use_interval=False):
self.print_lambda = print_lambda
self.use_evalf = use_evalf
self.float_wrap_evalf = float_wrap_evalf
self.complex_wrap_evalf = complex_wrap_evalf
self.use_np = use_np
self.use_python_math = use_python_math
self.use_python_cmath = use_python_cmath
self.use_interval = use_interval
# Constructing the argument string
# - check
if not all([isinstance(a, Symbol) for a in args]):
raise ValueError('The arguments must be Symbols.')
# - use numbered symbols
syms = numbered_symbols(exclude=expr.free_symbols)
newargs = [next(syms) for _ in args]
expr = expr.xreplace(dict(zip(args, newargs)))
argstr = ', '.join([str(a) for a in newargs])
del syms, newargs, args
# Constructing the translation dictionaries and making the translation
self.dict_str = self.get_dict_str()
self.dict_fun = self.get_dict_fun()
exprstr = str(expr)
# the & and | operators don't work on tuples, see discussion #12108
exprstr = exprstr.replace(" & "," and ").replace(" | "," or ")
newexpr = self.tree2str_translate(self.str2tree(exprstr))
# Constructing the namespaces
namespace = {}
namespace.update(self.sympy_atoms_namespace(expr))
namespace.update(self.sympy_expression_namespace(expr))
# XXX Workaround
# Ugly workaround because Pow(a,Half) prints as sqrt(a)
# and sympy_expression_namespace can not catch it.
from sympy import sqrt
namespace.update({'sqrt': sqrt})
namespace.update({'Eq': lambda x, y: x == y})
# End workaround.
if use_python_math:
namespace.update({'math': __import__('math')})
if use_python_cmath:
namespace.update({'cmath': __import__('cmath')})
if use_np:
try:
namespace.update({'np': __import__('numpy')})
except ImportError:
raise ImportError(
'experimental_lambdify failed to import numpy.')
if use_interval:
namespace.update({'imath': __import__(
'sympy.plotting.intervalmath', fromlist=['intervalmath'])})
namespace.update({'math': __import__('math')})
# Construct the lambda
if self.print_lambda:
print(newexpr)
eval_str = 'lambda %s : ( %s )' % (argstr, newexpr)
self.eval_str = eval_str
exec_("from __future__ import division; MYNEWLAMBDA = %s" % eval_str, namespace)
self.lambda_func = namespace['MYNEWLAMBDA']
def __call__(self, *args, **kwargs):
return self.lambda_func(*args, **kwargs)
##############################################################################
# Dicts for translating from sympy to other modules
##############################################################################
###
# builtins
###
# Functions with different names in builtins
builtin_functions_different = {
'Min': 'min',
'Max': 'max',
'Abs': 'abs',
}
# Strings that should be translated
builtin_not_functions = {
'I': '1j',
# 'oo': '1e400',
}
###
# numpy
###
# Functions that are the same in numpy
numpy_functions_same = [
'sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'exp', 'log',
'sqrt', 'floor', 'conjugate',
]
# Functions with different names in numpy
numpy_functions_different = {
"acos": "arccos",
"acosh": "arccosh",
"arg": "angle",
"asin": "arcsin",
"asinh": "arcsinh",
"atan": "arctan",
"atan2": "arctan2",
"atanh": "arctanh",
"ceiling": "ceil",
"im": "imag",
"ln": "log",
"Max": "amax",
"Min": "amin",
"re": "real",
"Abs": "abs",
}
# Strings that should be translated
numpy_not_functions = {
'pi': 'np.pi',
'oo': 'np.inf',
'E': 'np.e',
}
###
# python math
###
# Functions that are the same in math
math_functions_same = [
'sin', 'cos', 'tan', 'asin', 'acos', 'atan', 'atan2',
'sinh', 'cosh', 'tanh', 'asinh', 'acosh', 'atanh',
'exp', 'log', 'erf', 'sqrt', 'floor', 'factorial', 'gamma',
]
# Functions with different names in math
math_functions_different = {
'ceiling': 'ceil',
'ln': 'log',
'loggamma': 'lgamma'
}
# Strings that should be translated
math_not_functions = {
'pi': 'math.pi',
'E': 'math.e',
}
###
# python cmath
###
# Functions that are the same in cmath
cmath_functions_same = [
'sin', 'cos', 'tan', 'asin', 'acos', 'atan',
'sinh', 'cosh', 'tanh', 'asinh', 'acosh', 'atanh',
'exp', 'log', 'sqrt',
]
# Functions with different names in cmath
cmath_functions_different = {
'ln': 'log',
'arg': 'phase',
}
# Strings that should be translated
cmath_not_functions = {
'pi': 'cmath.pi',
'E': 'cmath.e',
}
###
# intervalmath
###
interval_not_functions = {
'pi': 'math.pi',
'E': 'math.e'
}
interval_functions_same = [
'sin', 'cos', 'exp', 'tan', 'atan', 'log',
'sqrt', 'cosh', 'sinh', 'tanh', 'floor',
'acos', 'asin', 'acosh', 'asinh', 'atanh',
'Abs', 'And', 'Or'
]
interval_functions_different = {
'Min': 'imin',
'Max': 'imax',
'ceiling': 'ceil',
}
###
# mpmath, etc
###
#TODO
###
# Create the final ordered tuples of dictionaries
###
# For strings
def get_dict_str(self):
dict_str = dict(self.builtin_not_functions)
if self.use_np:
dict_str.update(self.numpy_not_functions)
if self.use_python_math:
dict_str.update(self.math_not_functions)
if self.use_python_cmath:
dict_str.update(self.cmath_not_functions)
if self.use_interval:
dict_str.update(self.interval_not_functions)
return dict_str
# For functions
def get_dict_fun(self):
dict_fun = dict(self.builtin_functions_different)
if self.use_np:
for s in self.numpy_functions_same:
dict_fun[s] = 'np.' + s
for k, v in self.numpy_functions_different.items():
dict_fun[k] = 'np.' + v
if self.use_python_math:
for s in self.math_functions_same:
dict_fun[s] = 'math.' + s
for k, v in self.math_functions_different.items():
dict_fun[k] = 'math.' + v
if self.use_python_cmath:
for s in self.cmath_functions_same:
dict_fun[s] = 'cmath.' + s
for k, v in self.cmath_functions_different.items():
dict_fun[k] = 'cmath.' + v
if self.use_interval:
for s in self.interval_functions_same:
dict_fun[s] = 'imath.' + s
for k, v in self.interval_functions_different.items():
dict_fun[k] = 'imath.' + v
return dict_fun
##############################################################################
# The translator functions, tree parsers, etc.
##############################################################################
def str2tree(self, exprstr):
"""Converts an expression string to a tree.
Functions are represented by ('func_name(', tree_of_arguments).
Other expressions are (head_string, mid_tree, tail_str).
Expressions that do not contain functions are directly returned.
Examples
========
>>> from sympy.abc import x, y, z
>>> from sympy import Integral, sin
>>> from sympy.plotting.experimental_lambdify import Lambdifier
>>> str2tree = Lambdifier([x], x).str2tree
>>> str2tree(str(Integral(x, (x, 1, y))))
('', ('Integral(', 'x, (x, 1, y)'), ')')
>>> str2tree(str(x+y))
'x + y'
>>> str2tree(str(x+y*sin(z)+1))
('x + y*', ('sin(', 'z'), ') + 1')
>>> str2tree('sin(y*(y + 1.1) + (sin(y)))')
('', ('sin(', ('y*(y + 1.1) + (', ('sin(', 'y'), '))')), ')')
"""
#matches the first 'function_name('
first_par = re.search(r'(\w+\()', exprstr)
if first_par is None:
return exprstr
else:
start = first_par.start()
end = first_par.end()
head = exprstr[:start]
func = exprstr[start:end]
tail = exprstr[end:]
count = 0
for i, c in enumerate(tail):
if c == '(':
count += 1
elif c == ')':
count -= 1
if count == -1:
break
func_tail = self.str2tree(tail[:i])
tail = self.str2tree(tail[i:])
return (head, (func, func_tail), tail)
@classmethod
def tree2str(cls, tree):
"""Converts a tree to string without translations.
Examples
========
>>> from sympy.abc import x, y, z
>>> from sympy import Integral, sin
>>> from sympy.plotting.experimental_lambdify import Lambdifier
>>> str2tree = Lambdifier([x], x).str2tree
>>> tree2str = Lambdifier([x], x).tree2str
>>> tree2str(str2tree(str(x+y*sin(z)+1)))
'x + y*sin(z) + 1'
"""
if isinstance(tree, string_types):
return tree
else:
return ''.join(map(cls.tree2str, tree))
def tree2str_translate(self, tree):
"""Converts a tree to string with translations.
Function names are translated by translate_func.
Other strings are translated by translate_str.
"""
if isinstance(tree, string_types):
return self.translate_str(tree)
elif isinstance(tree, tuple) and len(tree) == 2:
return self.translate_func(tree[0][:-1], tree[1])
else:
return ''.join([self.tree2str_translate(t) for t in tree])
def translate_str(self, estr):
"""Translate substrings of estr using in order the dictionaries in
dict_tuple_str."""
for pattern, repl in self.dict_str.items():
estr = re.sub(pattern, repl, estr)
return estr
def translate_func(self, func_name, argtree):
"""Translate function names and the tree of arguments.
If the function name is not in the dictionaries of dict_tuple_fun then the
function is surrounded by a float((...).evalf()).
The use of float is necessary as np.<function>(sympy.Float(..)) raises an
error."""
if func_name in self.dict_fun:
new_name = self.dict_fun[func_name]
argstr = self.tree2str_translate(argtree)
return new_name + '(' + argstr
else:
template = '(%s(%s)).evalf(' if self.use_evalf else '%s(%s'
if self.float_wrap_evalf:
template = 'float(%s)' % template
elif self.complex_wrap_evalf:
template = 'complex(%s)' % template
# Wrapping should only happen on the outermost expression, which
# is the only thing we know will be a number.
float_wrap_evalf = self.float_wrap_evalf
complex_wrap_evalf = self.complex_wrap_evalf
self.float_wrap_evalf = False
self.complex_wrap_evalf = False
ret = template % (func_name, self.tree2str_translate(argtree))
self.float_wrap_evalf = float_wrap_evalf
self.complex_wrap_evalf = complex_wrap_evalf
return ret
##############################################################################
# The namespace constructors
##############################################################################
@classmethod
def sympy_expression_namespace(cls, expr):
"""Traverses the (func, args) tree of an expression and creates a sympy
namespace. All other modules are imported only as a module name. That way
the namespace is not polluted and rests quite small. It probably causes much
more variable lookups and so it takes more time, but there are no tests on
that for the moment."""
if expr is None:
return {}
else:
funcname = str(expr.func)
# XXX Workaround
# Here we add an ugly workaround because str(func(x))
# is not always the same as str(func). Eg
# >>> str(Integral(x))
# "Integral(x)"
# >>> str(Integral)
# "<class 'sympy.integrals.integrals.Integral'>"
# >>> str(sqrt(x))
# "sqrt(x)"
# >>> str(sqrt)
# "<function sqrt at 0x3d92de8>"
# >>> str(sin(x))
# "sin(x)"
# >>> str(sin)
# "sin"
# Either one of those can be used but not all at the same time.
# The code considers the sin example as the right one.
regexlist = [
r'<class \'sympy[\w.]*?.([\w]*)\'>$',
# the example Integral
r'<function ([\w]*) at 0x[\w]*>$', # the example sqrt
]
for r in regexlist:
m = re.match(r, funcname)
if m is not None:
funcname = m.groups()[0]
# End of the workaround
# XXX debug: print funcname
args_dict = {}
for a in expr.args:
if (isinstance(a, Symbol) or
isinstance(a, NumberSymbol) or
a in [I, zoo, oo]):
continue
else:
args_dict.update(cls.sympy_expression_namespace(a))
args_dict.update({funcname: expr.func})
return args_dict
@staticmethod
def sympy_atoms_namespace(expr):
"""For no real reason this function is separated from
sympy_expression_namespace. It can be moved to it."""
atoms = expr.atoms(Symbol, NumberSymbol, I, zoo, oo)
d = {}
for a in atoms:
# XXX debug: print 'atom:' + str(a)
d[str(a)] = a
return d
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.