hash
stringlengths
64
64
content
stringlengths
0
1.51M
697b1d975ae4466343a4f95319141c85278e74c9fd56d2ecdf57bdbc7266a18e
# Licensed under a 3-clause BSD style license - see LICENSE.rst from astropy import units as u from astropy.coordinates.attributes import ( CartesianRepresentationAttribute, TimeAttribute, ) from astropy.coordinates.baseframe import base_doc from astropy.utils.decorators import format_doc from .baseradec import BaseRADecFrame, doc_components from .utils import DEFAULT_OBSTIME, EQUINOX_J2000 __all__ = ["GCRS", "PrecessedGeocentric"] doc_footer_gcrs = """ Other parameters ---------------- obstime : `~astropy.time.Time` The time at which the observation is taken. Used for determining the position of the Earth. obsgeoloc : `~astropy.coordinates.CartesianRepresentation`, `~astropy.units.Quantity` The position of the observer relative to the center-of-mass of the Earth, oriented the same as BCRS/ICRS. Either [0, 0, 0], `~astropy.coordinates.CartesianRepresentation`, or proper input for one, i.e., a `~astropy.units.Quantity` with shape (3, ...) and length units. Defaults to [0, 0, 0], meaning "true" GCRS. obsgeovel : `~astropy.coordinates.CartesianRepresentation`, `~astropy.units.Quantity` The velocity of the observer relative to the center-of-mass of the Earth, oriented the same as BCRS/ICRS. Either [0, 0, 0], `~astropy.coordinates.CartesianRepresentation`, or proper input for one, i.e., a `~astropy.units.Quantity` with shape (3, ...) and velocity units. Defaults to [0, 0, 0], meaning "true" GCRS. """ @format_doc(base_doc, components=doc_components, footer=doc_footer_gcrs) class GCRS(BaseRADecFrame): """ A coordinate or frame in the Geocentric Celestial Reference System (GCRS). GCRS is distinct form ICRS mainly in that it is relative to the Earth's center-of-mass rather than the solar system Barycenter. That means this frame includes the effects of aberration (unlike ICRS). For more background on the GCRS, see the references provided in the :ref:`astropy:astropy-coordinates-seealso` section of the documentation. (Of particular note is Section 1.2 of `USNO Circular 179 <https://arxiv.org/abs/astro-ph/0602086>`_) This frame also includes frames that are defined *relative* to the Earth, but that are offset (in both position and velocity) from the Earth. The frame attributes are listed under **Other Parameters**. """ obstime = TimeAttribute(default=DEFAULT_OBSTIME) obsgeoloc = CartesianRepresentationAttribute(default=[0, 0, 0], unit=u.m) obsgeovel = CartesianRepresentationAttribute(default=[0, 0, 0], unit=u.m / u.s) # The "self-transform" is defined in icrs_cirs_transformations.py, because in # the current implementation it goes through ICRS (like CIRS) doc_footer_prec_geo = """ Other parameters ---------------- equinox : `~astropy.time.Time` The (mean) equinox to precess the coordinates to. obstime : `~astropy.time.Time` The time at which the observation is taken. Used for determining the position of the Earth. obsgeoloc : `~astropy.coordinates.CartesianRepresentation`, `~astropy.units.Quantity` The position of the observer relative to the center-of-mass of the Earth, oriented the same as BCRS/ICRS. Either [0, 0, 0], `~astropy.coordinates.CartesianRepresentation`, or proper input for one, i.e., a `~astropy.units.Quantity` with shape (3, ...) and length units. Defaults to [0, 0, 0], meaning "true" Geocentric. obsgeovel : `~astropy.coordinates.CartesianRepresentation`, `~astropy.units.Quantity` The velocity of the observer relative to the center-of-mass of the Earth, oriented the same as BCRS/ICRS. Either 0, `~astropy.coordinates.CartesianRepresentation`, or proper input for one, i.e., a `~astropy.units.Quantity` with shape (3, ...) and velocity units. Defaults to [0, 0, 0], meaning "true" Geocentric. """ @format_doc(base_doc, components=doc_components, footer=doc_footer_prec_geo) class PrecessedGeocentric(BaseRADecFrame): """ A coordinate frame defined in a similar manner as GCRS, but precessed to a requested (mean) equinox. Note that this does *not* end up the same as regular GCRS even for J2000 equinox, because the GCRS orientation is fixed to that of ICRS, which is not quite the same as the dynamical J2000 orientation. The frame attributes are listed under **Other Parameters** """ equinox = TimeAttribute(default=EQUINOX_J2000) obstime = TimeAttribute(default=DEFAULT_OBSTIME) obsgeoloc = CartesianRepresentationAttribute(default=[0, 0, 0], unit=u.m) obsgeovel = CartesianRepresentationAttribute(default=[0, 0, 0], unit=u.m / u.s)
03a5b2490a1e3dd18a261a48f25720e0cd50ffc5bc26fb4d1c04610a4bf7e8dc
# Licensed under a 3-clause BSD style license - see LICENSE.rst from astropy import units as u from astropy.coordinates import representation as r from astropy.coordinates.attributes import QuantityAttribute, TimeAttribute from astropy.coordinates.baseframe import BaseCoordinateFrame, base_doc from astropy.utils.decorators import format_doc from .utils import DEFAULT_OBSTIME, EQUINOX_J2000 __all__ = [ "GeocentricMeanEcliptic", "BarycentricMeanEcliptic", "HeliocentricMeanEcliptic", "BaseEclipticFrame", "GeocentricTrueEcliptic", "BarycentricTrueEcliptic", "HeliocentricTrueEcliptic", "HeliocentricEclipticIAU76", "CustomBarycentricEcliptic", ] doc_components_ecl = """ lon : `~astropy.coordinates.Angle`, optional, keyword-only The ecliptic longitude for this object (``lat`` must also be given and ``representation`` must be None). lat : `~astropy.coordinates.Angle`, optional, keyword-only The ecliptic latitude for this object (``lon`` must also be given and ``representation`` must be None). distance : `~astropy.units.Quantity` ['length'], optional, keyword-only The distance for this object from the {0}. (``representation`` must be None). pm_lon_coslat : `~astropy.units.Quantity` ['angualar speed'], optional, keyword-only The proper motion in the ecliptic longitude (including the ``cos(lat)`` factor) for this object (``pm_lat`` must also be given). pm_lat : `~astropy.units.Quantity` ['angular speed'], optional, keyword-only The proper motion in the ecliptic latitude for this object (``pm_lon_coslat`` must also be given). radial_velocity : `~astropy.units.Quantity` ['speed'], optional, keyword-only The radial velocity of this object. """ @format_doc( base_doc, components=doc_components_ecl.format("specified location"), footer="" ) class BaseEclipticFrame(BaseCoordinateFrame): """ A base class for frames that have names and conventions like that of ecliptic frames. .. warning:: In the current version of astropy, the ecliptic frames do not yet have stringent accuracy tests. We recommend you test to "known-good" cases to ensure this frames are what you are looking for. (and then ideally you would contribute these tests to Astropy!) """ default_representation = r.SphericalRepresentation default_differential = r.SphericalCosLatDifferential doc_footer_geo = """ Other parameters ---------------- equinox : `~astropy.time.Time`, optional The date to assume for this frame. Determines the location of the x-axis and the location of the Earth (necessary for transformation to non-geocentric systems). Defaults to the 'J2000' equinox. obstime : `~astropy.time.Time`, optional The time at which the observation is taken. Used for determining the position of the Earth. Defaults to J2000. """ @format_doc( base_doc, components=doc_components_ecl.format("geocenter"), footer=doc_footer_geo ) class GeocentricMeanEcliptic(BaseEclipticFrame): """ Geocentric mean ecliptic coordinates. These origin of the coordinates are the geocenter (Earth), with the x axis pointing to the *mean* (not true) equinox at the time specified by the ``equinox`` attribute, and the xy-plane in the plane of the ecliptic for that date. Be aware that the definition of "geocentric" here means that this frame *includes* light deflection from the sun, aberration, etc when transforming to/from e.g. ICRS. The frame attributes are listed under **Other Parameters**. """ equinox = TimeAttribute(default=EQUINOX_J2000) obstime = TimeAttribute(default=DEFAULT_OBSTIME) @format_doc( base_doc, components=doc_components_ecl.format("geocenter"), footer=doc_footer_geo ) class GeocentricTrueEcliptic(BaseEclipticFrame): """ Geocentric true ecliptic coordinates. These origin of the coordinates are the geocenter (Earth), with the x axis pointing to the *true* (not mean) equinox at the time specified by the ``equinox`` attribute, and the xy-plane in the plane of the ecliptic for that date. Be aware that the definition of "geocentric" here means that this frame *includes* light deflection from the sun, aberration, etc when transforming to/from e.g. ICRS. The frame attributes are listed under **Other Parameters**. """ equinox = TimeAttribute(default=EQUINOX_J2000) obstime = TimeAttribute(default=DEFAULT_OBSTIME) doc_footer_bary = """ Other parameters ---------------- equinox : `~astropy.time.Time`, optional The date to assume for this frame. Determines the location of the x-axis and the location of the Earth and Sun. Defaults to the 'J2000' equinox. """ @format_doc( base_doc, components=doc_components_ecl.format("barycenter"), footer=doc_footer_bary ) class BarycentricMeanEcliptic(BaseEclipticFrame): """ Barycentric mean ecliptic coordinates. These origin of the coordinates are the barycenter of the solar system, with the x axis pointing in the direction of the *mean* (not true) equinox as at the time specified by the ``equinox`` attribute (as seen from Earth), and the xy-plane in the plane of the ecliptic for that date. The frame attributes are listed under **Other Parameters**. """ equinox = TimeAttribute(default=EQUINOX_J2000) @format_doc( base_doc, components=doc_components_ecl.format("barycenter"), footer=doc_footer_bary ) class BarycentricTrueEcliptic(BaseEclipticFrame): """ Barycentric true ecliptic coordinates. These origin of the coordinates are the barycenter of the solar system, with the x axis pointing in the direction of the *true* (not mean) equinox as at the time specified by the ``equinox`` attribute (as seen from Earth), and the xy-plane in the plane of the ecliptic for that date. The frame attributes are listed under **Other Parameters**. """ equinox = TimeAttribute(default=EQUINOX_J2000) doc_footer_helio = """ Other parameters ---------------- equinox : `~astropy.time.Time`, optional The date to assume for this frame. Determines the location of the x-axis and the location of the Earth and Sun. Defaults to the 'J2000' equinox. obstime : `~astropy.time.Time`, optional The time at which the observation is taken. Used for determining the position of the Sun. Defaults to J2000. """ @format_doc( base_doc, components=doc_components_ecl.format("sun's center"), footer=doc_footer_helio, ) class HeliocentricMeanEcliptic(BaseEclipticFrame): """ Heliocentric mean ecliptic coordinates. These origin of the coordinates are the center of the sun, with the x axis pointing in the direction of the *mean* (not true) equinox as at the time specified by the ``equinox`` attribute (as seen from Earth), and the xy-plane in the plane of the ecliptic for that date. The frame attributes are listed under **Other Parameters**. {params} """ equinox = TimeAttribute(default=EQUINOX_J2000) obstime = TimeAttribute(default=DEFAULT_OBSTIME) @format_doc( base_doc, components=doc_components_ecl.format("sun's center"), footer=doc_footer_helio, ) class HeliocentricTrueEcliptic(BaseEclipticFrame): """ Heliocentric true ecliptic coordinates. These origin of the coordinates are the center of the sun, with the x axis pointing in the direction of the *true* (not mean) equinox as at the time specified by the ``equinox`` attribute (as seen from Earth), and the xy-plane in the plane of the ecliptic for that date. The frame attributes are listed under **Other Parameters**. {params} """ equinox = TimeAttribute(default=EQUINOX_J2000) obstime = TimeAttribute(default=DEFAULT_OBSTIME) @format_doc(base_doc, components=doc_components_ecl.format("sun's center"), footer="") class HeliocentricEclipticIAU76(BaseEclipticFrame): """ Heliocentric mean (IAU 1976) ecliptic coordinates. These origin of the coordinates are the center of the sun, with the x axis pointing in the direction of the *mean* (not true) equinox of J2000, and the xy-plane in the plane of the ecliptic of J2000 (according to the IAU 1976/1980 obliquity model). It has, therefore, a fixed equinox and an older obliquity value than the rest of the frames. The frame attributes are listed under **Other Parameters**. {params} """ obstime = TimeAttribute(default=DEFAULT_OBSTIME) @format_doc(base_doc, components=doc_components_ecl.format("barycenter"), footer="") class CustomBarycentricEcliptic(BaseEclipticFrame): """ Barycentric ecliptic coordinates with custom obliquity. These origin of the coordinates are the barycenter of the solar system, with the x axis pointing in the direction of the *mean* (not true) equinox of J2000, and the xy-plane in the plane of the ecliptic tilted a custom obliquity angle. The frame attributes are listed under **Other Parameters**. """ obliquity = QuantityAttribute(default=84381.448 * u.arcsec, unit=u.arcsec)
62615be3f34fd435515b67513f0cf8a43c460360d75697ece0a9ccfeb7b78061
# Licensed under a 3-clause BSD style license - see LICENSE.rst from astropy.coordinates.attributes import EarthLocationAttribute, TimeAttribute from astropy.coordinates.baseframe import BaseCoordinateFrame, base_doc from astropy.coordinates.representation import ( CartesianDifferential, CartesianRepresentation, ) from astropy.utils.decorators import format_doc from .utils import DEFAULT_OBSTIME, EARTH_CENTER __all__ = ["ITRS"] doc_footer = """ Other parameters ---------------- obstime : `~astropy.time.Time` The time at which the observation is taken. Used for determining the position of the Earth and its precession. location : `~astropy.coordinates.EarthLocation` The location on the Earth. This can be specified either as an `~astropy.coordinates.EarthLocation` object or as anything that can be transformed to an `~astropy.coordinates.ITRS` frame. The default is the centre of the Earth. """ @format_doc(base_doc, components="", footer=doc_footer) class ITRS(BaseCoordinateFrame): """ A coordinate or frame in the International Terrestrial Reference System (ITRS). This is approximately a geocentric system, although strictly it is defined by a series of reference locations near the surface of the Earth (the ITRF). For more background on the ITRS, see the references provided in the :ref:`astropy:astropy-coordinates-seealso` section of the documentation. This frame also includes frames that are defined *relative* to the center of the Earth, but that are offset (in both position and velocity) from the center of the Earth. You may see such non-geocentric coordinates referred to as "topocentric". Topocentric ITRS frames are convenient for observations of near Earth objects where stellar aberration is not included. One can merely subtract the observing site's EarthLocation geocentric ITRS coordinates from the object's geocentric ITRS coordinates, put the resulting vector into a topocentric ITRS frame and then transform to `~astropy.coordinates.AltAz` or `~astropy.coordinates.HADec`. The other way around is to transform an observed `~astropy.coordinates.AltAz` or `~astropy.coordinates.HADec` position to a topocentric ITRS frame and add the observing site's EarthLocation geocentric ITRS coordinates to yield the object's geocentric ITRS coordinates. On the other hand, using ``transform_to`` to transform geocentric ITRS coordinates to topocentric ITRS, observed `~astropy.coordinates.AltAz`, or observed `~astropy.coordinates.HADec` coordinates includes the difference between stellar aberration from the point of view of an observer at the geocenter and stellar aberration from the point of view of an observer on the surface of the Earth. If the geocentric ITRS coordinates of the object include stellar aberration at the geocenter (e.g. certain ILRS ephemerides), then this is the way to go. Note to ILRS ephemeris users: Astropy does not currently consider relativistic effects of the Earth's gravatational field. Nor do the `~astropy.coordinates.AltAz` or `~astropy.coordinates.HADec` refraction corrections compute the change in the range due to the curved path of light through the atmosphere, so Astropy is no substitute for the ILRS software in these respects. """ default_representation = CartesianRepresentation default_differential = CartesianDifferential obstime = TimeAttribute(default=DEFAULT_OBSTIME) location = EarthLocationAttribute(default=EARTH_CENTER) @property def earth_location(self): """ The data in this frame as an `~astropy.coordinates.EarthLocation` class. """ from astropy.coordinates.earth import EarthLocation cart = self.represent_as(CartesianRepresentation) return EarthLocation(x=cart.x, y=cart.y, z=cart.z) # Self-transform is in intermediate_rotation_transforms.py with all the other # ITRS transforms
8d86ab58e2089972c121e8615733e688c264d5c5b190ecfeaedadc4b9e3c0a48
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Contains the transformation functions for getting to "observed" systems from ICRS. """ import erfa from astropy import units as u from astropy.coordinates.baseframe import frame_transform_graph from astropy.coordinates.builtin_frames.utils import atciqz, aticq from astropy.coordinates.erfa_astrom import erfa_astrom from astropy.coordinates.representation import ( CartesianRepresentation, SphericalRepresentation, UnitSphericalRepresentation, ) from astropy.coordinates.transformations import FunctionTransformWithFiniteDifference from .altaz import AltAz from .hadec import HADec from .icrs import ICRS from .utils import PIOVER2 @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, ICRS, AltAz) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, ICRS, HADec) def icrs_to_observed(icrs_coo, observed_frame): # if the data are UnitSphericalRepresentation, we can skip the distance calculations is_unitspherical = ( isinstance(icrs_coo.data, UnitSphericalRepresentation) or icrs_coo.cartesian.x.unit == u.one ) # first set up the astrometry context for ICRS<->observed astrom = erfa_astrom.get().apco(observed_frame) # correct for parallax to find BCRS direction from observer (as in erfa.pmpx) if is_unitspherical: srepr = icrs_coo.spherical else: observer_icrs = CartesianRepresentation( astrom["eb"], unit=u.au, xyz_axis=-1, copy=False ) srepr = (icrs_coo.cartesian - observer_icrs).represent_as( SphericalRepresentation ) # convert to topocentric CIRS cirs_ra, cirs_dec = atciqz(srepr, astrom) # now perform observed conversion if isinstance(observed_frame, AltAz): lon, zen, _, _, _ = erfa.atioq(cirs_ra, cirs_dec, astrom) lat = PIOVER2 - zen else: _, _, lon, lat, _ = erfa.atioq(cirs_ra, cirs_dec, astrom) if is_unitspherical: obs_srepr = UnitSphericalRepresentation( lon << u.radian, lat << u.radian, copy=False ) else: obs_srepr = SphericalRepresentation( lon << u.radian, lat << u.radian, srepr.distance, copy=False ) return observed_frame.realize_frame(obs_srepr) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, AltAz, ICRS) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, HADec, ICRS) def observed_to_icrs(observed_coo, icrs_frame): # if the data are UnitSphericalRepresentation, we can skip the distance calculations is_unitspherical = ( isinstance(observed_coo.data, UnitSphericalRepresentation) or observed_coo.cartesian.x.unit == u.one ) usrepr = observed_coo.represent_as(UnitSphericalRepresentation) lon = usrepr.lon.to_value(u.radian) lat = usrepr.lat.to_value(u.radian) if isinstance(observed_coo, AltAz): # the 'A' indicates zen/az inputs coord_type = "A" lat = PIOVER2 - lat else: coord_type = "H" # first set up the astrometry context for ICRS<->CIRS at the observed_coo time astrom = erfa_astrom.get().apco(observed_coo) # Topocentric CIRS cirs_ra, cirs_dec = erfa.atoiq(coord_type, lon, lat, astrom) << u.radian if is_unitspherical: srepr = SphericalRepresentation(cirs_ra, cirs_dec, 1, copy=False) else: srepr = SphericalRepresentation( lon=cirs_ra, lat=cirs_dec, distance=observed_coo.distance, copy=False ) # BCRS (Astrometric) direction to source bcrs_ra, bcrs_dec = aticq(srepr, astrom) << u.radian # Correct for parallax to get ICRS representation if is_unitspherical: icrs_srepr = UnitSphericalRepresentation(bcrs_ra, bcrs_dec, copy=False) else: icrs_srepr = SphericalRepresentation( lon=bcrs_ra, lat=bcrs_dec, distance=observed_coo.distance, copy=False ) observer_icrs = CartesianRepresentation( astrom["eb"], unit=u.au, xyz_axis=-1, copy=False ) newrepr = icrs_srepr.to_cartesian() + observer_icrs icrs_srepr = newrepr.represent_as(SphericalRepresentation) return icrs_frame.realize_frame(icrs_srepr) # Create loopback transformations frame_transform_graph._add_merged_transform(AltAz, ICRS, AltAz) frame_transform_graph._add_merged_transform(HADec, ICRS, HADec) # for now we just implement this through ICRS to make sure we get everything # covered # Before, this was using CIRS as intermediate frame, however this is much # slower than the direct observed<->ICRS transform added in 4.3 # due to how the frame attribute broadcasting works, see # https://github.com/astropy/astropy/pull/10994#issuecomment-722617041
ef331c9b66a17819e996637d0567dd2e8b59c134b6bc37f9447bfb2e89faed69
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This module contains functions/values used repeatedly in different modules of the ``builtin_frames`` package. """ import warnings import erfa import numpy as np from astropy import units as u from astropy.coordinates.earth import EarthLocation from astropy.coordinates.representation import CartesianDifferential from astropy.time import Time from astropy.utils import iers from astropy.utils.exceptions import AstropyWarning # We use tt as the time scale for this equinoxes, primarily because it is the # convention for J2000 (it is unclear if there is any "right answer" for B1950) # while #8600 makes this the default behavior, we show it here to ensure it's # clear which is used here EQUINOX_J2000 = Time("J2000", scale="tt") EQUINOX_B1950 = Time("B1950", scale="tt") # This is a time object that is the default "obstime" when such an attribute is # necessary. Currently, we use J2000. DEFAULT_OBSTIME = Time("J2000", scale="tt") # This is an EarthLocation that is the default "location" when such an attribute is # necessary. It is the centre of the Earth. EARTH_CENTER = EarthLocation(0 * u.km, 0 * u.km, 0 * u.km) PIOVER2 = np.pi / 2.0 # comes from the mean of the 1962-2014 IERS B data _DEFAULT_PM = (0.035, 0.29) * u.arcsec def get_polar_motion(time): """ gets the two polar motion components in radians for use with apio """ # Get the polar motion from the IERS table iers_table = iers.earth_orientation_table.get() xp, yp, status = iers_table.pm_xy(time, return_status=True) wmsg = ( "Tried to get polar motions for times {} IERS data is " "valid. Defaulting to polar motion from the 50-yr mean for those. " "This may affect precision at the arcsec level. Please check your " "astropy.utils.iers.conf.iers_auto_url and point it to a newer " "version if necessary." ) if np.any(status == iers.TIME_BEFORE_IERS_RANGE): xp[status == iers.TIME_BEFORE_IERS_RANGE] = _DEFAULT_PM[0] yp[status == iers.TIME_BEFORE_IERS_RANGE] = _DEFAULT_PM[1] warnings.warn(wmsg.format("before"), AstropyWarning) if np.any(status == iers.TIME_BEYOND_IERS_RANGE): xp[status == iers.TIME_BEYOND_IERS_RANGE] = _DEFAULT_PM[0] yp[status == iers.TIME_BEYOND_IERS_RANGE] = _DEFAULT_PM[1] warnings.warn(wmsg.format("after"), AstropyWarning) return xp.to_value(u.radian), yp.to_value(u.radian) def _warn_iers(ierserr): """ Generate a warning for an IERSRangeerror Parameters ---------- ierserr : An `~astropy.utils.iers.IERSRangeError` """ msg = "{0} Assuming UT1-UTC=0 for coordinate transformations." warnings.warn(msg.format(ierserr.args[0]), AstropyWarning) def get_dut1utc(time): """ This function is used to get UT1-UTC in coordinates because normally it gives an error outside the IERS range, but in coordinates we want to allow it to go through but with a warning. """ try: return time.delta_ut1_utc except iers.IERSRangeError as e: _warn_iers(e) return np.zeros(time.shape) def get_jd12(time, scale): """ Gets ``jd1`` and ``jd2`` from a time object in a particular scale. Parameters ---------- time : `~astropy.time.Time` The time to get the jds for scale : str The time scale to get the jds for Returns ------- jd1 : float jd2 : float """ if time.scale == scale: newtime = time else: try: newtime = getattr(time, scale) except iers.IERSRangeError as e: _warn_iers(e) newtime = time return newtime.jd1, newtime.jd2 def norm(p): """ Normalise a p-vector. """ return p / np.sqrt(np.einsum("...i,...i", p, p))[..., np.newaxis] def pav2pv(p, v): """ Combine p- and v- vectors into a pv-vector. """ pv = np.empty(np.broadcast(p, v).shape[:-1], erfa.dt_pv) pv["p"] = p pv["v"] = v return pv def get_cip(jd1, jd2): """ Find the X, Y coordinates of the CIP and the CIO locator, s. Parameters ---------- jd1 : float or `np.ndarray` First part of two part Julian date (TDB) jd2 : float or `np.ndarray` Second part of two part Julian date (TDB) Returns ------- x : float or `np.ndarray` x coordinate of the CIP y : float or `np.ndarray` y coordinate of the CIP s : float or `np.ndarray` CIO locator, s """ # classical NPB matrix, IAU 2006/2000A rpnb = erfa.pnm06a(jd1, jd2) # CIP X, Y coordinates from array x, y = erfa.bpn2xy(rpnb) # CIO locator, s s = erfa.s06(jd1, jd2, x, y) return x, y, s def aticq(srepr, astrom): """ A slightly modified version of the ERFA function ``eraAticq``. ``eraAticq`` performs the transformations between two coordinate systems, with the details of the transformation being encoded into the ``astrom`` array. There are two issues with the version of aticq in ERFA. Both are associated with the handling of light deflection. The companion function ``eraAtciqz`` is meant to be its inverse. However, this is not true for directions close to the Solar centre, since the light deflection calculations are numerically unstable and therefore not reversible. This version sidesteps that problem by artificially reducing the light deflection for directions which are within 90 arcseconds of the Sun's position. This is the same approach used by the ERFA functions above, except that they use a threshold of 9 arcseconds. In addition, ERFA's aticq assumes a distant source, so there is no difference between the object-Sun vector and the observer-Sun vector. This can lead to errors of up to a few arcseconds in the worst case (e.g a Venus transit). Parameters ---------- srepr : `~astropy.coordinates.SphericalRepresentation` Astrometric GCRS or CIRS position of object from observer astrom : eraASTROM array ERFA astrometry context, as produced by, e.g. ``eraApci13`` or ``eraApcs13`` Returns ------- rc : float or `~numpy.ndarray` Right Ascension in radians dc : float or `~numpy.ndarray` Declination in radians """ # ignore parallax effects if no distance, or far away srepr_distance = srepr.distance ignore_distance = srepr_distance.unit == u.one # RA, Dec to cartesian unit vectors pos = erfa.s2c(srepr.lon.radian, srepr.lat.radian) # Bias-precession-nutation, giving GCRS proper direction. ppr = erfa.trxp(astrom["bpn"], pos) # Aberration, giving GCRS natural direction d = np.zeros_like(ppr) for j in range(2): before = norm(ppr - d) after = erfa.ab(before, astrom["v"], astrom["em"], astrom["bm1"]) d = after - before pnat = norm(ppr - d) # Light deflection by the Sun, giving BCRS coordinate direction d = np.zeros_like(pnat) for j in range(5): before = norm(pnat - d) if ignore_distance: # No distance to object, assume a long way away q = before else: # Find BCRS direction of Sun to object. # astrom['eh'] and astrom['em'] contain Sun to observer unit vector, # and distance, respectively. eh = astrom["em"][..., np.newaxis] * astrom["eh"] # unit vector from Sun to object q = eh + srepr_distance[..., np.newaxis].to_value(u.au) * before sundist, q = erfa.pn(q) sundist = sundist[..., np.newaxis] # calculation above is extremely unstable very close to the sun # in these situations, default back to ldsun-style behaviour, # since this is reversible and drops to zero within stellar limb q = np.where(sundist > 1.0e-10, q, before) after = erfa.ld(1.0, before, q, astrom["eh"], astrom["em"], 1e-6) d = after - before pco = norm(pnat - d) # ICRS astrometric RA, Dec rc, dc = erfa.c2s(pco) return erfa.anp(rc), dc def atciqz(srepr, astrom): """ A slightly modified version of the ERFA function ``eraAtciqz``. ``eraAtciqz`` performs the transformations between two coordinate systems, with the details of the transformation being encoded into the ``astrom`` array. There are two issues with the version of atciqz in ERFA. Both are associated with the handling of light deflection. The companion function ``eraAticq`` is meant to be its inverse. However, this is not true for directions close to the Solar centre, since the light deflection calculations are numerically unstable and therefore not reversible. This version sidesteps that problem by artificially reducing the light deflection for directions which are within 90 arcseconds of the Sun's position. This is the same approach used by the ERFA functions above, except that they use a threshold of 9 arcseconds. In addition, ERFA's atciqz assumes a distant source, so there is no difference between the object-Sun vector and the observer-Sun vector. This can lead to errors of up to a few arcseconds in the worst case (e.g a Venus transit). Parameters ---------- srepr : `~astropy.coordinates.SphericalRepresentation` Astrometric ICRS position of object from observer astrom : eraASTROM array ERFA astrometry context, as produced by, e.g. ``eraApci13`` or ``eraApcs13`` Returns ------- ri : float or `~numpy.ndarray` Right Ascension in radians di : float or `~numpy.ndarray` Declination in radians """ # ignore parallax effects if no distance, or far away srepr_distance = srepr.distance ignore_distance = srepr_distance.unit == u.one # BCRS coordinate direction (unit vector). pco = erfa.s2c(srepr.lon.radian, srepr.lat.radian) # Find BCRS direction of Sun to object if ignore_distance: # No distance to object, assume a long way away q = pco else: # Find BCRS direction of Sun to object. # astrom['eh'] and astrom['em'] contain Sun to observer unit vector, # and distance, respectively. eh = astrom["em"][..., np.newaxis] * astrom["eh"] # unit vector from Sun to object q = eh + srepr_distance[..., np.newaxis].to_value(u.au) * pco sundist, q = erfa.pn(q) sundist = sundist[..., np.newaxis] # calculation above is extremely unstable very close to the sun # in these situations, default back to ldsun-style behaviour, # since this is reversible and drops to zero within stellar limb q = np.where(sundist > 1.0e-10, q, pco) # Light deflection by the Sun, giving BCRS natural direction. pnat = erfa.ld(1.0, pco, q, astrom["eh"], astrom["em"], 1e-6) # Aberration, giving GCRS proper direction. ppr = erfa.ab(pnat, astrom["v"], astrom["em"], astrom["bm1"]) # Bias-precession-nutation, giving CIRS proper direction. # Has no effect if matrix is identity matrix, in which case gives GCRS ppr. pi = erfa.rxp(astrom["bpn"], ppr) # CIRS (GCRS) RA, Dec ri, di = erfa.c2s(pi) return erfa.anp(ri), di def prepare_earth_position_vel(time): """ Get barycentric position and velocity, and heliocentric position of Earth Parameters ---------- time : `~astropy.time.Time` time at which to calculate position and velocity of Earth Returns ------- earth_pv : `np.ndarray` Barycentric position and velocity of Earth, in au and au/day earth_helio : `np.ndarray` Heliocentric position of Earth in au """ # this goes here to avoid circular import errors from astropy.coordinates.solar_system import ( get_body_barycentric, get_body_barycentric_posvel, solar_system_ephemeris, ) # get barycentric position and velocity of earth ephemeris = solar_system_ephemeris.get() # if we are using the builtin erfa based ephemeris, # we can use the fact that epv00 already provides all we need. # This avoids calling epv00 twice, once # in get_body_barycentric_posvel('earth') and once in # get_body_barycentric('sun') if ephemeris == "builtin": jd1, jd2 = get_jd12(time, "tdb") earth_pv_heliocentric, earth_pv = erfa.epv00(jd1, jd2) earth_heliocentric = earth_pv_heliocentric["p"] # all other ephemeris providers probably don't have a shortcut like this else: earth_p, earth_v = get_body_barycentric_posvel("earth", time) # get heliocentric position of earth, preparing it for passing to erfa. sun = get_body_barycentric("sun", time) earth_heliocentric = (earth_p - sun).get_xyz(xyz_axis=-1).to_value(u.au) # Also prepare earth_pv for passing to erfa, which wants it as # a structured dtype. earth_pv = pav2pv( earth_p.get_xyz(xyz_axis=-1).to_value(u.au), earth_v.get_xyz(xyz_axis=-1).to_value(u.au / u.d), ) return earth_pv, earth_heliocentric def get_offset_sun_from_barycenter(time, include_velocity=False, reverse=False): """ Returns the offset of the Sun center from the solar-system barycenter (SSB). Parameters ---------- time : `~astropy.time.Time` Time at which to calculate the offset include_velocity : `bool` If ``True``, attach the velocity as a differential. Defaults to ``False``. reverse : `bool` If ``True``, return the offset of the barycenter from the Sun. Defaults to ``False``. Returns ------- `~astropy.coordinates.CartesianRepresentation` The offset """ if include_velocity: # Import here to avoid a circular import from astropy.coordinates.solar_system import get_body_barycentric_posvel offset_pos, offset_vel = get_body_barycentric_posvel("sun", time) if reverse: offset_pos, offset_vel = -offset_pos, -offset_vel offset_vel = offset_vel.represent_as(CartesianDifferential) offset_pos = offset_pos.with_differentials(offset_vel) else: # Import here to avoid a circular import from astropy.coordinates.solar_system import get_body_barycentric offset_pos = get_body_barycentric("sun", time) if reverse: offset_pos = -offset_pos return offset_pos
9a4833042f25f9b5030a3205960920e69c76c1d79338f4302416b388440a7959
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Contains the transformation functions for getting to/from ecliptic systems. """ import erfa from astropy import units as u from astropy.coordinates.baseframe import frame_transform_graph from astropy.coordinates.errors import UnitsError from astropy.coordinates.matrix_utilities import matrix_transpose, rotation_matrix from astropy.coordinates.transformations import ( AffineTransform, DynamicMatrixTransform, FunctionTransformWithFiniteDifference, ) from .ecliptic import ( BarycentricMeanEcliptic, BarycentricTrueEcliptic, CustomBarycentricEcliptic, GeocentricMeanEcliptic, GeocentricTrueEcliptic, HeliocentricEclipticIAU76, HeliocentricMeanEcliptic, HeliocentricTrueEcliptic, ) from .gcrs import GCRS from .icrs import ICRS from .utils import EQUINOX_J2000, get_jd12, get_offset_sun_from_barycenter def _mean_ecliptic_rotation_matrix(equinox): # This code just calls ecm06, which uses the precession matrix according to the # IAU 2006 model, but leaves out nutation. This brings the results closer to what # other libraries give (see https://github.com/astropy/astropy/pull/6508). return erfa.ecm06(*get_jd12(equinox, "tt")) def _true_ecliptic_rotation_matrix(equinox): # This code calls the same routines as done in pnm06a from ERFA, which # retrieves the precession matrix (including frame bias) according to # the IAU 2006 model, and including the nutation. # This family of systems is less popular # (see https://github.com/astropy/astropy/pull/6508). jd1, jd2 = get_jd12(equinox, "tt") # Here, we call the three routines from erfa.pnm06a separately, # so that we can keep the nutation for calculating the true obliquity # (which is a fairly expensive operation); see gh-11000. # pnm06a: Fukushima-Williams angles for frame bias and precession. # (ERFA names short for F-W's gamma_bar, phi_bar, psi_bar and epsilon_A). gamb, phib, psib, epsa = erfa.pfw06(jd1, jd2) # pnm06a: Nutation components (in longitude and obliquity). dpsi, deps = erfa.nut06a(jd1, jd2) # pnm06a: Equinox based nutation x precession x bias matrix. rnpb = erfa.fw2m(gamb, phib, psib + dpsi, epsa + deps) # calculate the true obliquity of the ecliptic obl = erfa.obl06(jd1, jd2) + deps return rotation_matrix(obl << u.radian, "x") @ rnpb def _obliquity_only_rotation_matrix( obl=erfa.obl80(EQUINOX_J2000.jd1, EQUINOX_J2000.jd2) * u.radian ): # This code only accounts for the obliquity, # which can be passed explicitly. # The default value is the IAU 1980 value for J2000, # which is computed using obl80 from ERFA: # # obl = erfa.obl80(EQUINOX_J2000.jd1, EQUINOX_J2000.jd2) * u.radian return rotation_matrix(obl, "x") # MeanEcliptic frames @frame_transform_graph.transform( FunctionTransformWithFiniteDifference, GCRS, GeocentricMeanEcliptic, finite_difference_frameattr_name="equinox", ) def gcrs_to_geoecliptic(gcrs_coo, to_frame): # first get us to a 0 pos/vel GCRS at the target equinox gcrs_coo2 = gcrs_coo.transform_to(GCRS(obstime=to_frame.obstime)) rmat = _mean_ecliptic_rotation_matrix(to_frame.equinox) newrepr = gcrs_coo2.cartesian.transform(rmat) return to_frame.realize_frame(newrepr) @frame_transform_graph.transform( FunctionTransformWithFiniteDifference, GeocentricMeanEcliptic, GCRS ) def geoecliptic_to_gcrs(from_coo, gcrs_frame): rmat = _mean_ecliptic_rotation_matrix(from_coo.equinox) newrepr = from_coo.cartesian.transform(matrix_transpose(rmat)) gcrs = GCRS(newrepr, obstime=from_coo.obstime) # now do any needed offsets (no-op if same obstime and 0 pos/vel) return gcrs.transform_to(gcrs_frame) @frame_transform_graph.transform(DynamicMatrixTransform, ICRS, BarycentricMeanEcliptic) def icrs_to_baryecliptic(from_coo, to_frame): return _mean_ecliptic_rotation_matrix(to_frame.equinox) @frame_transform_graph.transform(DynamicMatrixTransform, BarycentricMeanEcliptic, ICRS) def baryecliptic_to_icrs(from_coo, to_frame): return matrix_transpose(icrs_to_baryecliptic(to_frame, from_coo)) _NEED_ORIGIN_HINT = ( "The input {0} coordinates do not have length units. This probably means you" " created coordinates with lat/lon but no distance. Heliocentric<->ICRS transforms" " cannot function in this case because there is an origin shift." ) @frame_transform_graph.transform(AffineTransform, ICRS, HeliocentricMeanEcliptic) def icrs_to_helioecliptic(from_coo, to_frame): if not u.m.is_equivalent(from_coo.cartesian.x.unit): raise UnitsError(_NEED_ORIGIN_HINT.format(from_coo.__class__.__name__)) # get the offset of the barycenter from the Sun ssb_from_sun = get_offset_sun_from_barycenter( to_frame.obstime, reverse=True, include_velocity=bool(from_coo.data.differentials), ) # now compute the matrix to precess to the right orientation rmat = _mean_ecliptic_rotation_matrix(to_frame.equinox) return rmat, ssb_from_sun.transform(rmat) @frame_transform_graph.transform(AffineTransform, HeliocentricMeanEcliptic, ICRS) def helioecliptic_to_icrs(from_coo, to_frame): if not u.m.is_equivalent(from_coo.cartesian.x.unit): raise UnitsError(_NEED_ORIGIN_HINT.format(from_coo.__class__.__name__)) # first un-precess from ecliptic to ICRS orientation rmat = _mean_ecliptic_rotation_matrix(from_coo.equinox) # now offset back to barycentric, which is the correct center for ICRS sun_from_ssb = get_offset_sun_from_barycenter( from_coo.obstime, include_velocity=bool(from_coo.data.differentials) ) return matrix_transpose(rmat), sun_from_ssb # TrueEcliptic frames @frame_transform_graph.transform( FunctionTransformWithFiniteDifference, GCRS, GeocentricTrueEcliptic, finite_difference_frameattr_name="equinox", ) def gcrs_to_true_geoecliptic(gcrs_coo, to_frame): # first get us to a 0 pos/vel GCRS at the target equinox gcrs_coo2 = gcrs_coo.transform_to(GCRS(obstime=to_frame.obstime)) rmat = _true_ecliptic_rotation_matrix(to_frame.equinox) newrepr = gcrs_coo2.cartesian.transform(rmat) return to_frame.realize_frame(newrepr) @frame_transform_graph.transform( FunctionTransformWithFiniteDifference, GeocentricTrueEcliptic, GCRS ) def true_geoecliptic_to_gcrs(from_coo, gcrs_frame): rmat = _true_ecliptic_rotation_matrix(from_coo.equinox) newrepr = from_coo.cartesian.transform(matrix_transpose(rmat)) gcrs = GCRS(newrepr, obstime=from_coo.obstime) # now do any needed offsets (no-op if same obstime and 0 pos/vel) return gcrs.transform_to(gcrs_frame) @frame_transform_graph.transform(DynamicMatrixTransform, ICRS, BarycentricTrueEcliptic) def icrs_to_true_baryecliptic(from_coo, to_frame): return _true_ecliptic_rotation_matrix(to_frame.equinox) @frame_transform_graph.transform(DynamicMatrixTransform, BarycentricTrueEcliptic, ICRS) def true_baryecliptic_to_icrs(from_coo, to_frame): return matrix_transpose(icrs_to_true_baryecliptic(to_frame, from_coo)) @frame_transform_graph.transform(AffineTransform, ICRS, HeliocentricTrueEcliptic) def icrs_to_true_helioecliptic(from_coo, to_frame): if not u.m.is_equivalent(from_coo.cartesian.x.unit): raise UnitsError(_NEED_ORIGIN_HINT.format(from_coo.__class__.__name__)) # get the offset of the barycenter from the Sun ssb_from_sun = get_offset_sun_from_barycenter( to_frame.obstime, reverse=True, include_velocity=bool(from_coo.data.differentials), ) # now compute the matrix to precess to the right orientation rmat = _true_ecliptic_rotation_matrix(to_frame.equinox) return rmat, ssb_from_sun.transform(rmat) @frame_transform_graph.transform(AffineTransform, HeliocentricTrueEcliptic, ICRS) def true_helioecliptic_to_icrs(from_coo, to_frame): if not u.m.is_equivalent(from_coo.cartesian.x.unit): raise UnitsError(_NEED_ORIGIN_HINT.format(from_coo.__class__.__name__)) # first un-precess from ecliptic to ICRS orientation rmat = _true_ecliptic_rotation_matrix(from_coo.equinox) # now offset back to barycentric, which is the correct center for ICRS sun_from_ssb = get_offset_sun_from_barycenter( from_coo.obstime, include_velocity=bool(from_coo.data.differentials) ) return matrix_transpose(rmat), sun_from_ssb # Other ecliptic frames @frame_transform_graph.transform(AffineTransform, HeliocentricEclipticIAU76, ICRS) def ecliptic_to_iau76_icrs(from_coo, to_frame): # first un-precess from ecliptic to ICRS orientation rmat = _obliquity_only_rotation_matrix() # now offset back to barycentric, which is the correct center for ICRS sun_from_ssb = get_offset_sun_from_barycenter( from_coo.obstime, include_velocity=bool(from_coo.data.differentials) ) return matrix_transpose(rmat), sun_from_ssb @frame_transform_graph.transform(AffineTransform, ICRS, HeliocentricEclipticIAU76) def icrs_to_iau76_ecliptic(from_coo, to_frame): # get the offset of the barycenter from the Sun ssb_from_sun = get_offset_sun_from_barycenter( to_frame.obstime, reverse=True, include_velocity=bool(from_coo.data.differentials), ) # now compute the matrix to precess to the right orientation rmat = _obliquity_only_rotation_matrix() return rmat, ssb_from_sun.transform(rmat) @frame_transform_graph.transform( DynamicMatrixTransform, ICRS, CustomBarycentricEcliptic ) def icrs_to_custombaryecliptic(from_coo, to_frame): return _obliquity_only_rotation_matrix(to_frame.obliquity) @frame_transform_graph.transform( DynamicMatrixTransform, CustomBarycentricEcliptic, ICRS ) def custombaryecliptic_to_icrs(from_coo, to_frame): return icrs_to_custombaryecliptic(to_frame, from_coo).T # Create loopback transformations frame_transform_graph._add_merged_transform( GeocentricMeanEcliptic, ICRS, GeocentricMeanEcliptic ) frame_transform_graph._add_merged_transform( GeocentricTrueEcliptic, ICRS, GeocentricTrueEcliptic ) frame_transform_graph._add_merged_transform( HeliocentricMeanEcliptic, ICRS, HeliocentricMeanEcliptic ) frame_transform_graph._add_merged_transform( HeliocentricTrueEcliptic, ICRS, HeliocentricTrueEcliptic ) frame_transform_graph._add_merged_transform( HeliocentricEclipticIAU76, ICRS, HeliocentricEclipticIAU76 ) frame_transform_graph._add_merged_transform( BarycentricMeanEcliptic, ICRS, BarycentricMeanEcliptic ) frame_transform_graph._add_merged_transform( BarycentricTrueEcliptic, ICRS, BarycentricTrueEcliptic ) frame_transform_graph._add_merged_transform( CustomBarycentricEcliptic, ICRS, CustomBarycentricEcliptic )
e32dcb9f3bace4766e0164e42495df2bcc1d1feddec3426dc878f733152e634f
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Contains the transformation functions for getting from ICRS/HCRS to CIRS and anything in between (currently that means GCRS) """ import numpy as np from astropy import units as u from astropy.coordinates.baseframe import frame_transform_graph from astropy.coordinates.erfa_astrom import erfa_astrom from astropy.coordinates.representation import ( CartesianRepresentation, SphericalRepresentation, UnitSphericalRepresentation, ) from astropy.coordinates.transformations import ( AffineTransform, FunctionTransformWithFiniteDifference, ) from .cirs import CIRS from .gcrs import GCRS from .hcrs import HCRS from .icrs import ICRS from .utils import atciqz, aticq, get_offset_sun_from_barycenter # First the ICRS/CIRS related transforms @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, ICRS, CIRS) def icrs_to_cirs(icrs_coo, cirs_frame): # first set up the astrometry context for ICRS<->CIRS astrom = erfa_astrom.get().apco(cirs_frame) if ( icrs_coo.data.get_name() == "unitspherical" or icrs_coo.data.to_cartesian().x.unit == u.one ): # if no distance, just do the infinite-distance/no parallax calculation srepr = icrs_coo.spherical cirs_ra, cirs_dec = atciqz(srepr.without_differentials(), astrom) newrep = UnitSphericalRepresentation( lat=u.Quantity(cirs_dec, u.radian, copy=False), lon=u.Quantity(cirs_ra, u.radian, copy=False), copy=False, ) else: # When there is a distance, we first offset for parallax to get the # astrometric coordinate direction and *then* run the ERFA transform for # no parallax/PM. This ensures reversibility and is more sensible for # inside solar system objects astrom_eb = CartesianRepresentation( astrom["eb"], unit=u.au, xyz_axis=-1, copy=False ) newcart = icrs_coo.cartesian - astrom_eb srepr = newcart.represent_as(SphericalRepresentation) cirs_ra, cirs_dec = atciqz(srepr.without_differentials(), astrom) newrep = SphericalRepresentation( lat=u.Quantity(cirs_dec, u.radian, copy=False), lon=u.Quantity(cirs_ra, u.radian, copy=False), distance=srepr.distance, copy=False, ) return cirs_frame.realize_frame(newrep) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, CIRS, ICRS) def cirs_to_icrs(cirs_coo, icrs_frame): # set up the astrometry context for ICRS<->cirs and then convert to # astrometric coordinate direction astrom = erfa_astrom.get().apco(cirs_coo) srepr = cirs_coo.represent_as(SphericalRepresentation) i_ra, i_dec = aticq(srepr.without_differentials(), astrom) if ( cirs_coo.data.get_name() == "unitspherical" or cirs_coo.data.to_cartesian().x.unit == u.one ): # if no distance, just use the coordinate direction to yield the # infinite-distance/no parallax answer newrep = UnitSphericalRepresentation( lat=u.Quantity(i_dec, u.radian, copy=False), lon=u.Quantity(i_ra, u.radian, copy=False), copy=False, ) else: # When there is a distance, apply the parallax/offset to the SSB as the # last step - ensures round-tripping with the icrs_to_cirs transform # the distance in intermedrep is *not* a real distance as it does not # include the offset back to the SSB intermedrep = SphericalRepresentation( lat=u.Quantity(i_dec, u.radian, copy=False), lon=u.Quantity(i_ra, u.radian, copy=False), distance=srepr.distance, copy=False, ) astrom_eb = CartesianRepresentation( astrom["eb"], unit=u.au, xyz_axis=-1, copy=False ) newrep = intermedrep + astrom_eb return icrs_frame.realize_frame(newrep) # Now the GCRS-related transforms to/from ICRS @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, ICRS, GCRS) def icrs_to_gcrs(icrs_coo, gcrs_frame): # first set up the astrometry context for ICRS<->GCRS. astrom = erfa_astrom.get().apcs(gcrs_frame) if ( icrs_coo.data.get_name() == "unitspherical" or icrs_coo.data.to_cartesian().x.unit == u.one ): # if no distance, just do the infinite-distance/no parallax calculation srepr = icrs_coo.represent_as(SphericalRepresentation) gcrs_ra, gcrs_dec = atciqz(srepr.without_differentials(), astrom) newrep = UnitSphericalRepresentation( lat=u.Quantity(gcrs_dec, u.radian, copy=False), lon=u.Quantity(gcrs_ra, u.radian, copy=False), copy=False, ) else: # When there is a distance, we first offset for parallax to get the # BCRS coordinate direction and *then* run the ERFA transform for no # parallax/PM. This ensures reversibility and is more sensible for # inside solar system objects astrom_eb = CartesianRepresentation( astrom["eb"], unit=u.au, xyz_axis=-1, copy=False ) newcart = icrs_coo.cartesian - astrom_eb srepr = newcart.represent_as(SphericalRepresentation) gcrs_ra, gcrs_dec = atciqz(srepr.without_differentials(), astrom) newrep = SphericalRepresentation( lat=u.Quantity(gcrs_dec, u.radian, copy=False), lon=u.Quantity(gcrs_ra, u.radian, copy=False), distance=srepr.distance, copy=False, ) return gcrs_frame.realize_frame(newrep) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, GCRS, ICRS) def gcrs_to_icrs(gcrs_coo, icrs_frame): # set up the astrometry context for ICRS<->GCRS and then convert to BCRS # coordinate direction astrom = erfa_astrom.get().apcs(gcrs_coo) srepr = gcrs_coo.represent_as(SphericalRepresentation) i_ra, i_dec = aticq(srepr.without_differentials(), astrom) if ( gcrs_coo.data.get_name() == "unitspherical" or gcrs_coo.data.to_cartesian().x.unit == u.one ): # if no distance, just use the coordinate direction to yield the # infinite-distance/no parallax answer newrep = UnitSphericalRepresentation( lat=u.Quantity(i_dec, u.radian, copy=False), lon=u.Quantity(i_ra, u.radian, copy=False), copy=False, ) else: # When there is a distance, apply the parallax/offset to the SSB as the # last step - ensures round-tripping with the icrs_to_gcrs transform # the distance in intermedrep is *not* a real distance as it does not # include the offset back to the SSB intermedrep = SphericalRepresentation( lat=u.Quantity(i_dec, u.radian, copy=False), lon=u.Quantity(i_ra, u.radian, copy=False), distance=srepr.distance, copy=False, ) astrom_eb = CartesianRepresentation( astrom["eb"], unit=u.au, xyz_axis=-1, copy=False ) newrep = intermedrep + astrom_eb return icrs_frame.realize_frame(newrep) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, GCRS, HCRS) def gcrs_to_hcrs(gcrs_coo, hcrs_frame): if np.any(gcrs_coo.obstime != hcrs_frame.obstime): # if they GCRS obstime and HCRS obstime are not the same, we first # have to move to a GCRS where they are. frameattrs = gcrs_coo.get_frame_attr_defaults() frameattrs["obstime"] = hcrs_frame.obstime gcrs_coo = gcrs_coo.transform_to(GCRS(**frameattrs)) # set up the astrometry context for ICRS<->GCRS and then convert to ICRS # coordinate direction astrom = erfa_astrom.get().apcs(gcrs_coo) srepr = gcrs_coo.represent_as(SphericalRepresentation) i_ra, i_dec = aticq(srepr.without_differentials(), astrom) # convert to Quantity objects i_ra = u.Quantity(i_ra, u.radian, copy=False) i_dec = u.Quantity(i_dec, u.radian, copy=False) if ( gcrs_coo.data.get_name() == "unitspherical" or gcrs_coo.data.to_cartesian().x.unit == u.one ): # if no distance, just use the coordinate direction to yield the # infinite-distance/no parallax answer newrep = UnitSphericalRepresentation(lat=i_dec, lon=i_ra, copy=False) else: # When there is a distance, apply the parallax/offset to the # Heliocentre as the last step to ensure round-tripping with the # hcrs_to_gcrs transform # Note that the distance in intermedrep is *not* a real distance as it # does not include the offset back to the Heliocentre intermedrep = SphericalRepresentation( lat=i_dec, lon=i_ra, distance=srepr.distance, copy=False ) # astrom['eh'] and astrom['em'] contain Sun to observer unit vector, # and distance, respectively. Shapes are (X) and (X,3), where (X) is the # shape resulting from broadcasting the shape of the times object # against the shape of the pv array. # broadcast em to eh and scale eh eh = astrom["eh"] * astrom["em"][..., np.newaxis] eh = CartesianRepresentation(eh, unit=u.au, xyz_axis=-1, copy=False) newrep = intermedrep.to_cartesian() + eh return hcrs_frame.realize_frame(newrep) _NEED_ORIGIN_HINT = ( "The input {0} coordinates do not have length units. This probably means you" " created coordinates with lat/lon but no distance. Heliocentric<->ICRS transforms" " cannot function in this case because there is an origin shift." ) @frame_transform_graph.transform(AffineTransform, HCRS, ICRS) def hcrs_to_icrs(hcrs_coo, icrs_frame): # this is just an origin translation so without a distance it cannot go ahead if isinstance(hcrs_coo.data, UnitSphericalRepresentation): raise u.UnitsError(_NEED_ORIGIN_HINT.format(hcrs_coo.__class__.__name__)) return None, get_offset_sun_from_barycenter( hcrs_coo.obstime, include_velocity=bool(hcrs_coo.data.differentials) ) @frame_transform_graph.transform(AffineTransform, ICRS, HCRS) def icrs_to_hcrs(icrs_coo, hcrs_frame): # this is just an origin translation so without a distance it cannot go ahead if isinstance(icrs_coo.data, UnitSphericalRepresentation): raise u.UnitsError(_NEED_ORIGIN_HINT.format(icrs_coo.__class__.__name__)) return None, get_offset_sun_from_barycenter( hcrs_frame.obstime, reverse=True, include_velocity=bool(icrs_coo.data.differentials), ) # Create loopback transformations frame_transform_graph._add_merged_transform(CIRS, ICRS, CIRS) # The CIRS<-> CIRS transform going through ICRS has a # subtle implication that a point in CIRS is uniquely determined # by the corresponding astrometric ICRS coordinate *at its # current time*. This has some subtle implications in terms of GR, but # is sort of glossed over in the current scheme because we are dropping # distances anyway. frame_transform_graph._add_merged_transform(GCRS, ICRS, GCRS) frame_transform_graph._add_merged_transform(HCRS, ICRS, HCRS)
907cc03a7d3a0b3f31cc352f6567d45d76345b037f8d2ee44664555b9fab467b
# Licensed under a 3-clause BSD style license - see LICENSE.rst from astropy import units as u from astropy.coordinates.attributes import CoordinateAttribute, QuantityAttribute from astropy.coordinates.baseframe import BaseCoordinateFrame, frame_transform_graph from astropy.coordinates.matrix_utilities import matrix_transpose, rotation_matrix from astropy.coordinates.transformations import ( DynamicMatrixTransform, FunctionTransform, ) _skyoffset_cache = {} def make_skyoffset_cls(framecls): """ Create a new class that is the sky offset frame for a specific class of origin frame. If such a class has already been created for this frame, the same class will be returned. The new class will always have component names for spherical coordinates of ``lon``/``lat``. Parameters ---------- framecls : `~astropy.coordinates.BaseCoordinateFrame` subclass The class to create the SkyOffsetFrame of. Returns ------- skyoffsetframecls : class The class for the new skyoffset frame. Notes ----- This function is necessary because Astropy's frame transformations depend on connection between specific frame *classes*. So each type of frame needs its own distinct skyoffset frame class. This function generates just that class, as well as ensuring that only one example of such a class actually gets created in any given python session. """ if framecls in _skyoffset_cache: return _skyoffset_cache[framecls] # Create a new SkyOffsetFrame subclass for this frame class. name = "SkyOffset" + framecls.__name__ _SkyOffsetFramecls = type( name, (SkyOffsetFrame, framecls), { "origin": CoordinateAttribute(frame=framecls, default=None), # The following two have to be done because otherwise we use the # defaults of SkyOffsetFrame set by BaseCoordinateFrame. "_default_representation": framecls._default_representation, "_default_differential": framecls._default_differential, "__doc__": SkyOffsetFrame.__doc__, }, ) @frame_transform_graph.transform( FunctionTransform, _SkyOffsetFramecls, _SkyOffsetFramecls ) def skyoffset_to_skyoffset(from_skyoffset_coord, to_skyoffset_frame): """Transform between two skyoffset frames.""" # This transform goes through the parent frames on each side. # from_frame -> from_frame.origin -> to_frame.origin -> to_frame tmp_from = from_skyoffset_coord.transform_to(from_skyoffset_coord.origin) tmp_to = tmp_from.transform_to(to_skyoffset_frame.origin) return tmp_to.transform_to(to_skyoffset_frame) @frame_transform_graph.transform( DynamicMatrixTransform, framecls, _SkyOffsetFramecls ) def reference_to_skyoffset(reference_frame, skyoffset_frame): """Convert a reference coordinate to an sky offset frame.""" # Define rotation matrices along the position angle vector, and # relative to the origin. origin = skyoffset_frame.origin.spherical return ( rotation_matrix(-skyoffset_frame.rotation, "x") @ rotation_matrix(-origin.lat, "y") @ rotation_matrix(origin.lon, "z") ) @frame_transform_graph.transform( DynamicMatrixTransform, _SkyOffsetFramecls, framecls ) def skyoffset_to_reference(skyoffset_coord, reference_frame): """Convert an sky offset frame coordinate to the reference frame""" # use the forward transform, but just invert it R = reference_to_skyoffset(reference_frame, skyoffset_coord) # transpose is the inverse because R is a rotation matrix return matrix_transpose(R) _skyoffset_cache[framecls] = _SkyOffsetFramecls return _SkyOffsetFramecls class SkyOffsetFrame(BaseCoordinateFrame): """ A frame which is relative to some specific position and oriented to match its frame. SkyOffsetFrames always have component names for spherical coordinates of ``lon``/``lat``, *not* the component names for the frame of ``origin``. This is useful for calculating offsets and dithers in the frame of the sky relative to an arbitrary position. Coordinates in this frame are both centered on the position specified by the ``origin`` coordinate, *and* they are oriented in the same manner as the ``origin`` frame. E.g., if ``origin`` is `~astropy.coordinates.ICRS`, this object's ``lat`` will be pointed in the direction of Dec, while ``lon`` will point in the direction of RA. For more on skyoffset frames, see :ref:`astropy:astropy-skyoffset-frames`. Parameters ---------- representation : `~astropy.coordinates.BaseRepresentation` or None A representation object or None to have no data (or use the other keywords) origin : coordinate-like The coordinate which specifies the origin of this frame. Note that this origin is used purely for on-sky location/rotation. It can have a ``distance`` but it will not be used by this ``SkyOffsetFrame``. rotation : angle-like The final rotation of the frame about the ``origin``. The sign of the rotation is the left-hand rule. That is, an object at a particular position angle in the un-rotated system will be sent to the positive latitude (z) direction in the final frame. Notes ----- ``SkyOffsetFrame`` is a factory class. That is, the objects that it yields are *not* actually objects of class ``SkyOffsetFrame``. Instead, distinct classes are created on-the-fly for whatever the frame class is of ``origin``. """ rotation = QuantityAttribute(default=0, unit=u.deg) origin = CoordinateAttribute(default=None, frame=None) def __new__(cls, *args, **kwargs): # We don't want to call this method if we've already set up # an skyoffset frame for this class. if not (issubclass(cls, SkyOffsetFrame) and cls is not SkyOffsetFrame): # We get the origin argument, and handle it here. try: origin_frame = kwargs["origin"] except KeyError: raise TypeError( "Can't initialize a SkyOffsetFrame without origin= keyword." ) if hasattr(origin_frame, "frame"): origin_frame = origin_frame.frame newcls = make_skyoffset_cls(origin_frame.__class__) return newcls.__new__(newcls, *args, **kwargs) # http://stackoverflow.com/questions/19277399/why-does-object-new-work-differently-in-these-three-cases # See above for why this is necessary. Basically, because some child # may override __new__, we must override it here to never pass # arguments to the object.__new__ method. if super().__new__ is object.__new__: return super().__new__(cls) return super().__new__(cls, *args, **kwargs) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if self.origin is not None and not self.origin.has_data: raise ValueError("The origin supplied to SkyOffsetFrame has no data.") if self.has_data: self._set_skyoffset_data_lon_wrap_angle(self.data) @staticmethod def _set_skyoffset_data_lon_wrap_angle(data): if hasattr(data, "lon"): data.lon.wrap_angle = 180.0 * u.deg return data def represent_as(self, base, s="base", in_frame_units=False): """ Ensure the wrap angle for any spherical representations. """ data = super().represent_as(base, s, in_frame_units=in_frame_units) self._set_skyoffset_data_lon_wrap_angle(data) return data def __reduce__(self): return (_skyoffset_reducer, (self.origin,), self.__dict__) def _skyoffset_reducer(origin): return SkyOffsetFrame.__new__(SkyOffsetFrame, origin=origin)
fb58675fac7b6c7ff14d29ed1ec678ec172090c3dae0809b3e0630702e33632b
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Contains the transformation functions for getting to "observed" systems from CIRS. """ import erfa import numpy as np from astropy import units as u from astropy.coordinates.baseframe import frame_transform_graph from astropy.coordinates.erfa_astrom import erfa_astrom from astropy.coordinates.representation import ( SphericalRepresentation, UnitSphericalRepresentation, ) from astropy.coordinates.transformations import FunctionTransformWithFiniteDifference from .altaz import AltAz from .cirs import CIRS from .hadec import HADec from .utils import PIOVER2 @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, CIRS, AltAz) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, CIRS, HADec) def cirs_to_observed(cirs_coo, observed_frame): if np.any(observed_frame.location != cirs_coo.location) or np.any( cirs_coo.obstime != observed_frame.obstime ): cirs_coo = cirs_coo.transform_to( CIRS(obstime=observed_frame.obstime, location=observed_frame.location) ) # if the data are UnitSphericalRepresentation, we can skip the distance calculations is_unitspherical = ( isinstance(cirs_coo.data, UnitSphericalRepresentation) or cirs_coo.cartesian.x.unit == u.one ) # We used to do "astrometric" corrections here, but these are no longer necesssary # CIRS has proper topocentric behaviour usrepr = cirs_coo.represent_as(UnitSphericalRepresentation) cirs_ra = usrepr.lon.to_value(u.radian) cirs_dec = usrepr.lat.to_value(u.radian) # first set up the astrometry context for CIRS<->observed astrom = erfa_astrom.get().apio(observed_frame) if isinstance(observed_frame, AltAz): lon, zen, _, _, _ = erfa.atioq(cirs_ra, cirs_dec, astrom) lat = PIOVER2 - zen else: _, _, lon, lat, _ = erfa.atioq(cirs_ra, cirs_dec, astrom) if is_unitspherical: rep = UnitSphericalRepresentation( lat=u.Quantity(lat, u.radian, copy=False), lon=u.Quantity(lon, u.radian, copy=False), copy=False, ) else: # since we've transformed to CIRS at the observatory location, just use CIRS distance rep = SphericalRepresentation( lat=u.Quantity(lat, u.radian, copy=False), lon=u.Quantity(lon, u.radian, copy=False), distance=cirs_coo.distance, copy=False, ) return observed_frame.realize_frame(rep) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, AltAz, CIRS) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, HADec, CIRS) def observed_to_cirs(observed_coo, cirs_frame): usrepr = observed_coo.represent_as(UnitSphericalRepresentation) lon = usrepr.lon.to_value(u.radian) lat = usrepr.lat.to_value(u.radian) if isinstance(observed_coo, AltAz): # the 'A' indicates zen/az inputs coord_type = "A" lat = PIOVER2 - lat else: coord_type = "H" # first set up the astrometry context for ICRS<->CIRS at the observed_coo time astrom = erfa_astrom.get().apio(observed_coo) cirs_ra, cirs_dec = erfa.atoiq(coord_type, lon, lat, astrom) << u.radian if ( isinstance(observed_coo.data, UnitSphericalRepresentation) or observed_coo.cartesian.x.unit == u.one ): distance = None else: distance = observed_coo.distance cirs_at_aa_time = CIRS( ra=cirs_ra, dec=cirs_dec, distance=distance, obstime=observed_coo.obstime, location=observed_coo.location, ) # this final transform may be a no-op if the obstimes and locations are the same return cirs_at_aa_time.transform_to(cirs_frame)
dab01bf5f07cc6f7413f397863315572c47c49f15d7736579aff4b0445c080ed
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np from astropy import units as u from astropy.coordinates import representation as r from astropy.coordinates.attributes import ( EarthLocationAttribute, QuantityAttribute, TimeAttribute, ) from astropy.coordinates.baseframe import ( BaseCoordinateFrame, RepresentationMapping, base_doc, ) from astropy.utils.decorators import format_doc __all__ = ["AltAz"] _90DEG = 90 * u.deg doc_components = """ az : `~astropy.coordinates.Angle`, optional, keyword-only The Azimuth for this object (``alt`` must also be given and ``representation`` must be None). alt : `~astropy.coordinates.Angle`, optional, keyword-only The Altitude for this object (``az`` must also be given and ``representation`` must be None). distance : `~astropy.units.Quantity` ['length'], optional, keyword-only The Distance for this object along the line-of-sight. pm_az_cosalt : `~astropy.units.Quantity` ['angular speed'], optional, keyword-only The proper motion in azimuth (including the ``cos(alt)`` factor) for this object (``pm_alt`` must also be given). pm_alt : `~astropy.units.Quantity` ['angular speed'], optional, keyword-only The proper motion in altitude for this object (``pm_az_cosalt`` must also be given). radial_velocity : `~astropy.units.Quantity` ['speed'], optional, keyword-only The radial velocity of this object.""" doc_footer = """ Other parameters ---------------- obstime : `~astropy.time.Time` The time at which the observation is taken. Used for determining the position and orientation of the Earth. location : `~astropy.coordinates.EarthLocation` The location on the Earth. This can be specified either as an `~astropy.coordinates.EarthLocation` object or as anything that can be transformed to an `~astropy.coordinates.ITRS` frame. pressure : `~astropy.units.Quantity` ['pressure'] The atmospheric pressure as an `~astropy.units.Quantity` with pressure units. This is necessary for performing refraction corrections. Setting this to 0 (the default) will disable refraction calculations when transforming to/from this frame. temperature : `~astropy.units.Quantity` ['temperature'] The ground-level temperature as an `~astropy.units.Quantity` in deg C. This is necessary for performing refraction corrections. relative_humidity : `~astropy.units.Quantity` ['dimensionless'] or number The relative humidity as a dimensionless quantity between 0 to 1. This is necessary for performing refraction corrections. obswl : `~astropy.units.Quantity` ['length'] The average wavelength of observations as an `~astropy.units.Quantity` with length units. This is necessary for performing refraction corrections. Notes ----- The refraction model is based on that implemented in ERFA, which is fast but becomes inaccurate for altitudes below about 5 degrees. Near and below altitudes of 0, it can even give meaningless answers, and in this case transforming to AltAz and back to another frame can give highly discrepant results. For much better numerical stability, leave the ``pressure`` at ``0`` (the default), thereby disabling the refraction correction and yielding "topocentric" horizontal coordinates. """ @format_doc(base_doc, components=doc_components, footer=doc_footer) class AltAz(BaseCoordinateFrame): """ A coordinate or frame in the Altitude-Azimuth system (Horizontal coordinates) with respect to the WGS84 ellipsoid. Azimuth is oriented East of North (i.e., N=0, E=90 degrees). Altitude is also known as elevation angle, so this frame is also in the Azimuth-Elevation system. This frame is assumed to *include* refraction effects if the ``pressure`` frame attribute is non-zero. The frame attributes are listed under **Other Parameters**, which are necessary for transforming from AltAz to some other system. """ frame_specific_representation_info = { r.SphericalRepresentation: [ RepresentationMapping("lon", "az"), RepresentationMapping("lat", "alt"), ] } default_representation = r.SphericalRepresentation default_differential = r.SphericalCosLatDifferential obstime = TimeAttribute(default=None) location = EarthLocationAttribute(default=None) pressure = QuantityAttribute(default=0, unit=u.hPa) temperature = QuantityAttribute(default=0, unit=u.deg_C) relative_humidity = QuantityAttribute(default=0, unit=u.dimensionless_unscaled) obswl = QuantityAttribute(default=1 * u.micron, unit=u.micron) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) @property def secz(self): """ Secant of the zenith angle for this coordinate, a common estimate of the airmass. """ return 1 / np.sin(self.alt) @property def zen(self): """ The zenith angle (or zenith distance / co-altitude) for this coordinate. """ return _90DEG.to(self.alt.unit) - self.alt # self-transform defined in icrs_observed_transforms.py
6255ca9b34b18cdaaf85017757b0945a669fc77261828401f83a073bde045ccf
# Licensed under a 3-clause BSD style license - see LICENSE.rst from astropy import units as u from astropy.coordinates import representation as r from astropy.coordinates.attributes import ( EarthLocationAttribute, QuantityAttribute, TimeAttribute, ) from astropy.coordinates.baseframe import ( BaseCoordinateFrame, RepresentationMapping, base_doc, ) from astropy.utils.decorators import format_doc __all__ = ["HADec"] doc_components = """ ha : `~astropy.coordinates.Angle`, optional, keyword-only The Hour Angle for this object (``dec`` must also be given and ``representation`` must be None). dec : `~astropy.coordinates.Angle`, optional, keyword-only The Declination for this object (``ha`` must also be given and ``representation`` must be None). distance : `~astropy.units.Quantity` ['length'], optional, keyword-only The Distance for this object along the line-of-sight. pm_ha_cosdec : `~astropy.units.Quantity` ['angular speed'], optional, keyword-only The proper motion in hour angle (including the ``cos(dec)`` factor) for this object (``pm_dec`` must also be given). pm_dec : `~astropy.units.Quantity` ['angular speed'], optional, keyword-only The proper motion in declination for this object (``pm_ha_cosdec`` must also be given). radial_velocity : `~astropy.units.Quantity` ['speed'], optional, keyword-only The radial velocity of this object.""" doc_footer = """ Other parameters ---------------- obstime : `~astropy.time.Time` The time at which the observation is taken. Used for determining the position and orientation of the Earth. location : `~astropy.coordinates.EarthLocation` The location on the Earth. This can be specified either as an `~astropy.coordinates.EarthLocation` object or as anything that can be transformed to an `~astropy.coordinates.ITRS` frame. pressure : `~astropy.units.Quantity` ['pressure'] The atmospheric pressure as an `~astropy.units.Quantity` with pressure units. This is necessary for performing refraction corrections. Setting this to 0 (the default) will disable refraction calculations when transforming to/from this frame. temperature : `~astropy.units.Quantity` ['temperature'] The ground-level temperature as an `~astropy.units.Quantity` in deg C. This is necessary for performing refraction corrections. relative_humidity : `~astropy.units.Quantity` ['dimensionless'] or number. The relative humidity as a dimensionless quantity between 0 to 1. This is necessary for performing refraction corrections. obswl : `~astropy.units.Quantity` ['length'] The average wavelength of observations as an `~astropy.units.Quantity` with length units. This is necessary for performing refraction corrections. Notes ----- The refraction model is based on that implemented in ERFA, which is fast but becomes inaccurate for altitudes below about 5 degrees. Near and below altitudes of 0, it can even give meaningless answers, and in this case transforming to HADec and back to another frame can give highly discrepant results. For much better numerical stability, leave the ``pressure`` at ``0`` (the default), thereby disabling the refraction correction and yielding "topocentric" equatorial coordinates. """ @format_doc(base_doc, components=doc_components, footer=doc_footer) class HADec(BaseCoordinateFrame): """ A coordinate or frame in the Hour Angle-Declination system (Equatorial coordinates) with respect to the WGS84 ellipsoid. Hour Angle is oriented with respect to upper culmination such that the hour angle is negative to the East and positive to the West. This frame is assumed to *include* refraction effects if the ``pressure`` frame attribute is non-zero. The frame attributes are listed under **Other Parameters**, which are necessary for transforming from HADec to some other system. """ frame_specific_representation_info = { r.SphericalRepresentation: [ RepresentationMapping("lon", "ha", u.hourangle), RepresentationMapping("lat", "dec"), ] } default_representation = r.SphericalRepresentation default_differential = r.SphericalCosLatDifferential obstime = TimeAttribute(default=None) location = EarthLocationAttribute(default=None) pressure = QuantityAttribute(default=0, unit=u.hPa) temperature = QuantityAttribute(default=0, unit=u.deg_C) relative_humidity = QuantityAttribute(default=0, unit=u.dimensionless_unscaled) obswl = QuantityAttribute(default=1 * u.micron, unit=u.micron) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if self.has_data: self._set_data_lon_wrap_angle(self.data) @staticmethod def _set_data_lon_wrap_angle(data): if hasattr(data, "lon"): data.lon.wrap_angle = 180.0 * u.deg return data def represent_as(self, base, s="base", in_frame_units=False): """ Ensure the wrap angle for any spherical representations. """ data = super().represent_as(base, s, in_frame_units=in_frame_units) self._set_data_lon_wrap_angle(data) return data # self-transform defined in icrs_observed_transforms.py
5910a3549f59b757ff860c961f7bb82ce89b8c9be188c76b9d18a19db369de60
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np from astropy.coordinates.baseframe import frame_transform_graph from astropy.coordinates.matrix_utilities import matrix_transpose from astropy.coordinates.transformations import DynamicMatrixTransform from .fk4 import FK4NoETerms from .fk5 import FK5 from .utils import EQUINOX_B1950, EQUINOX_J2000 # FK5 to/from FK4 -------------------> # B1950->J2000 matrix from Murray 1989 A&A 218,325 eqn 28 _B1950_TO_J2000_M = np.array( [ [0.9999256794956877, -0.0111814832204662, -0.0048590038153592], [0.0111814832391717, +0.9999374848933135, -0.0000271625947142], [0.0048590037723143, -0.0000271702937440, +0.9999881946023742], ] ) _FK4_CORR = ( np.array( [ [-0.0026455262, -1.1539918689, +2.1111346190], [+1.1540628161, -0.0129042997, +0.0236021478], [-2.1112979048, -0.0056024448, +0.0102587734], ] ) * 1.0e-6 ) def _fk4_B_matrix(obstime): """ This is a correction term in the FK4 transformations because FK4 is a rotating system - see Murray 89 eqn 29 """ # Note this is *julian century*, not besselian T = (obstime.jyear - 1950.0) / 100.0 if getattr(T, "shape", ()): # Ensure we broadcast possibly arrays of times properly. T.shape += (1, 1) return _B1950_TO_J2000_M + _FK4_CORR * T # This transformation can't be static because the observation date is needed. @frame_transform_graph.transform(DynamicMatrixTransform, FK4NoETerms, FK5) def fk4_no_e_to_fk5(fk4noecoord, fk5frame): # Correction terms for FK4 being a rotating system B = _fk4_B_matrix(fk4noecoord.obstime) # construct both precession matricies - if the equinoxes are B1950 and # J2000, these are just identity matricies pmat1 = fk4noecoord._precession_matrix(fk4noecoord.equinox, EQUINOX_B1950) pmat2 = fk5frame._precession_matrix(EQUINOX_J2000, fk5frame.equinox) return pmat2 @ B @ pmat1 # This transformation can't be static because the observation date is needed. @frame_transform_graph.transform(DynamicMatrixTransform, FK5, FK4NoETerms) def fk5_to_fk4_no_e(fk5coord, fk4noeframe): # Get transposed version of the rotating correction terms... so with the # transpose this takes us from FK5/J200 to FK4/B1950 B = matrix_transpose(_fk4_B_matrix(fk4noeframe.obstime)) # construct both precession matricies - if the equinoxes are B1950 and # J2000, these are just identity matricies pmat1 = fk5coord._precession_matrix(fk5coord.equinox, EQUINOX_J2000) pmat2 = fk4noeframe._precession_matrix(EQUINOX_B1950, fk4noeframe.equinox) return pmat2 @ B @ pmat1
ba17a1341ba3f1c2113e65a7acf14ee1fee9ef362fd8e9c2dc3b23ad12247477
# Licensed under a 3-clause BSD style license - see LICENSE.rst from astropy import units as u from astropy.coordinates import representation as r from astropy.coordinates.attributes import DifferentialAttribute from astropy.coordinates.baseframe import ( BaseCoordinateFrame, RepresentationMapping, base_doc, frame_transform_graph, ) from astropy.coordinates.transformations import AffineTransform from astropy.time import Time from astropy.utils.decorators import format_doc from .baseradec import BaseRADecFrame from .baseradec import doc_components as doc_components_radec from .galactic import Galactic from .icrs import ICRS # For speed J2000 = Time("J2000") v_bary_Schoenrich2010 = r.CartesianDifferential([11.1, 12.24, 7.25] * u.km / u.s) __all__ = ["LSR", "GalacticLSR", "LSRK", "LSRD"] doc_footer_lsr = """ Other parameters ---------------- v_bary : `~astropy.coordinates.CartesianDifferential` The velocity of the solar system barycenter with respect to the LSR, in Galactic cartesian velocity components. """ @format_doc(base_doc, components=doc_components_radec, footer=doc_footer_lsr) class LSR(BaseRADecFrame): r"""A coordinate or frame in the Local Standard of Rest (LSR). This coordinate frame is axis-aligned and co-spatial with `~astropy.coordinates.ICRS`, but has a velocity offset relative to the solar system barycenter to remove the peculiar motion of the sun relative to the LSR. Roughly, the LSR is the mean velocity of the stars in the solar neighborhood, but the precise definition of which depends on the study. As defined in Schönrich et al. (2010): "The LSR is the rest frame at the location of the Sun of a star that would be on a circular orbit in the gravitational potential one would obtain by azimuthally averaging away non-axisymmetric features in the actual Galactic potential." No such orbit truly exists, but it is still a commonly used velocity frame. We use default values from Schönrich et al. (2010) for the barycentric velocity relative to the LSR, which is defined in Galactic (right-handed) cartesian velocity components :math:`(U, V, W) = (11.1, 12.24, 7.25)~{{\rm km}}~{{\rm s}}^{{-1}}`. These values are customizable via the ``v_bary`` argument which specifies the velocity of the solar system barycenter with respect to the LSR. The frame attributes are listed under **Other Parameters**. """ # frame attributes: v_bary = DifferentialAttribute( default=v_bary_Schoenrich2010, allowed_classes=[r.CartesianDifferential] ) @frame_transform_graph.transform(AffineTransform, ICRS, LSR) def icrs_to_lsr(icrs_coord, lsr_frame): v_bary_gal = Galactic(lsr_frame.v_bary.to_cartesian()) v_bary_icrs = v_bary_gal.transform_to(icrs_coord) v_offset = v_bary_icrs.data.represent_as(r.CartesianDifferential) offset = r.CartesianRepresentation([0, 0, 0] * u.au, differentials=v_offset) return None, offset @frame_transform_graph.transform(AffineTransform, LSR, ICRS) def lsr_to_icrs(lsr_coord, icrs_frame): v_bary_gal = Galactic(lsr_coord.v_bary.to_cartesian()) v_bary_icrs = v_bary_gal.transform_to(icrs_frame) v_offset = v_bary_icrs.data.represent_as(r.CartesianDifferential) offset = r.CartesianRepresentation([0, 0, 0] * u.au, differentials=-v_offset) return None, offset # ------------------------------------------------------------------------------ doc_components_gal = """ l : `~astropy.coordinates.Angle`, optional, keyword-only The Galactic longitude for this object (``b`` must also be given and ``representation`` must be None). b : `~astropy.coordinates.Angle`, optional, keyword-only The Galactic latitude for this object (``l`` must also be given and ``representation`` must be None). distance : `~astropy.units.Quantity` ['length'], optional, keyword-only The Distance for this object along the line-of-sight. (``representation`` must be None). pm_l_cosb : `~astropy.units.Quantity` ['angular speed'], optional, keyword-only The proper motion in Galactic longitude (including the ``cos(b)`` term) for this object (``pm_b`` must also be given). pm_b : `~astropy.units.Quantity` ['angular speed'], optional, keyword-only The proper motion in Galactic latitude for this object (``pm_l_cosb`` must also be given). radial_velocity : `~astropy.units.Quantity` ['speed'], optional, keyword-only The radial velocity of this object. """ @format_doc(base_doc, components=doc_components_gal, footer=doc_footer_lsr) class GalacticLSR(BaseCoordinateFrame): r"""A coordinate or frame in the Local Standard of Rest (LSR), axis-aligned to the Galactic frame. This coordinate frame is axis-aligned and co-spatial with `~astropy.coordinates.ICRS`, but has a velocity offset relative to the solar system barycenter to remove the peculiar motion of the sun relative to the LSR. Roughly, the LSR is the mean velocity of the stars in the solar neighborhood, but the precise definition of which depends on the study. As defined in Schönrich et al. (2010): "The LSR is the rest frame at the location of the Sun of a star that would be on a circular orbit in the gravitational potential one would obtain by azimuthally averaging away non-axisymmetric features in the actual Galactic potential." No such orbit truly exists, but it is still a commonly used velocity frame. We use default values from Schönrich et al. (2010) for the barycentric velocity relative to the LSR, which is defined in Galactic (right-handed) cartesian velocity components :math:`(U, V, W) = (11.1, 12.24, 7.25)~{{\rm km}}~{{\rm s}}^{{-1}}`. These values are customizable via the ``v_bary`` argument which specifies the velocity of the solar system barycenter with respect to the LSR. The frame attributes are listed under **Other Parameters**. """ frame_specific_representation_info = { r.SphericalRepresentation: [ RepresentationMapping("lon", "l"), RepresentationMapping("lat", "b"), ] } default_representation = r.SphericalRepresentation default_differential = r.SphericalCosLatDifferential # frame attributes: v_bary = DifferentialAttribute(default=v_bary_Schoenrich2010) @frame_transform_graph.transform(AffineTransform, Galactic, GalacticLSR) def galactic_to_galacticlsr(galactic_coord, lsr_frame): v_bary_gal = Galactic(lsr_frame.v_bary.to_cartesian()) v_offset = v_bary_gal.data.represent_as(r.CartesianDifferential) offset = r.CartesianRepresentation([0, 0, 0] * u.au, differentials=v_offset) return None, offset @frame_transform_graph.transform(AffineTransform, GalacticLSR, Galactic) def galacticlsr_to_galactic(lsr_coord, galactic_frame): v_bary_gal = Galactic(lsr_coord.v_bary.to_cartesian()) v_offset = v_bary_gal.data.represent_as(r.CartesianDifferential) offset = r.CartesianRepresentation([0, 0, 0] * u.au, differentials=-v_offset) return None, offset # ------------------------------------------------------------------------------ # The LSRK velocity frame, defined as having a velocity of 20 km/s towards # RA=270 Dec=30 (B1900) relative to the solar system Barycenter. This is defined # in: # # Gordon 1975, Methods of Experimental Physics: Volume 12: # Astrophysics, Part C: Radio Observations - Section 6.1.5. class LSRK(BaseRADecFrame): r"""A coordinate or frame in the Kinematic Local Standard of Rest (LSR). This frame is defined as having a velocity of 20 km/s towards RA=270 Dec=30 (B1900) relative to the solar system Barycenter. This is defined in: Gordon 1975, Methods of Experimental Physics: Volume 12: Astrophysics, Part C: Radio Observations - Section 6.1.5. This coordinate frame is axis-aligned and co-spatial with `~astropy.coordinates.ICRS`, but has a velocity offset relative to the solar system barycenter to remove the peculiar motion of the sun relative to the LSRK. """ # NOTE: To avoid a performance penalty at import time, we hard-code the ICRS # offsets here. The code to generate the offsets is provided for reproducibility. # GORDON1975_V_BARY = 20*u.km/u.s # GORDON1975_DIRECTION = FK4(ra=270*u.deg, dec=30*u.deg, equinox='B1900') # V_OFFSET_LSRK = ((GORDON1975_V_BARY * GORDON1975_DIRECTION.transform_to(ICRS()).data) # .represent_as(r.CartesianDifferential)) V_OFFSET_LSRK = r.CartesianDifferential( [0.28999706839034606, -17.317264789717928, 10.00141199546947] * u.km / u.s ) ICRS_LSRK_OFFSET = r.CartesianRepresentation( [0, 0, 0] * u.au, differentials=V_OFFSET_LSRK ) LSRK_ICRS_OFFSET = r.CartesianRepresentation( [0, 0, 0] * u.au, differentials=-V_OFFSET_LSRK ) @frame_transform_graph.transform(AffineTransform, ICRS, LSRK) def icrs_to_lsrk(icrs_coord, lsr_frame): return None, ICRS_LSRK_OFFSET @frame_transform_graph.transform(AffineTransform, LSRK, ICRS) def lsrk_to_icrs(lsr_coord, icrs_frame): return None, LSRK_ICRS_OFFSET # ------------------------------------------------------------------------------ # The LSRD velocity frame, defined as a velocity of U=9 km/s, V=12 km/s, # and W=7 km/s in Galactic coordinates or 16.552945 km/s # towards l=53.13 b=25.02. This is defined in: # # Delhaye 1965, Solar Motion and Velocity Distribution of # Common Stars. class LSRD(BaseRADecFrame): r"""A coordinate or frame in the Dynamical Local Standard of Rest (LSRD) This frame is defined as a velocity of U=9 km/s, V=12 km/s, and W=7 km/s in Galactic coordinates or 16.552945 km/s towards l=53.13 b=25.02. This is defined in: Delhaye 1965, Solar Motion and Velocity Distribution of Common Stars. This coordinate frame is axis-aligned and co-spatial with `~astropy.coordinates.ICRS`, but has a velocity offset relative to the solar system barycenter to remove the peculiar motion of the sun relative to the LSRD. """ # NOTE: To avoid a performance penalty at import time, we hard-code the ICRS # offsets here. The code to generate the offsets is provided for reproducibility. # V_BARY_DELHAYE1965 = r.CartesianDifferential([9, 12, 7] * u.km/u.s) # V_OFFSET_LSRD = (Galactic(V_BARY_DELHAYE1965.to_cartesian()).transform_to(ICRS()).data # .represent_as(r.CartesianDifferential)) V_OFFSET_LSRD = r.CartesianDifferential( [-0.6382306360182073, -14.585424483191094, 7.8011572411006815] * u.km / u.s ) ICRS_LSRD_OFFSET = r.CartesianRepresentation( [0, 0, 0] * u.au, differentials=V_OFFSET_LSRD ) LSRD_ICRS_OFFSET = r.CartesianRepresentation( [0, 0, 0] * u.au, differentials=-V_OFFSET_LSRD ) @frame_transform_graph.transform(AffineTransform, ICRS, LSRD) def icrs_to_lsrd(icrs_coord, lsr_frame): return None, ICRS_LSRD_OFFSET @frame_transform_graph.transform(AffineTransform, LSRD, ICRS) def lsrd_to_icrs(lsr_coord, icrs_frame): return None, LSRD_ICRS_OFFSET # ------------------------------------------------------------------------------ # Create loopback transformations frame_transform_graph._add_merged_transform(LSR, ICRS, LSR) frame_transform_graph._add_merged_transform(GalacticLSR, Galactic, GalacticLSR)
1589940eb8e2b7964b6af5d666dde599b17192fb15e964b37a61e81211fed3b5
# Licensed under a 3-clause BSD style license - see LICENSE.rst from astropy.coordinates.baseframe import frame_transform_graph from astropy.coordinates.matrix_utilities import matrix_transpose, rotation_matrix from astropy.coordinates.transformations import DynamicMatrixTransform from .fk4 import FK4NoETerms from .fk5 import FK5 from .galactic import Galactic from .utils import EQUINOX_B1950, EQUINOX_J2000 # Galactic to/from FK4/FK5 -----------------------> # can't be static because the equinox is needed @frame_transform_graph.transform(DynamicMatrixTransform, FK5, Galactic) def fk5_to_gal(fk5coord, galframe): # need precess to J2000 first return ( rotation_matrix(180 - Galactic._lon0_J2000.degree, "z") @ rotation_matrix(90 - Galactic._ngp_J2000.dec.degree, "y") @ rotation_matrix(Galactic._ngp_J2000.ra.degree, "z") @ fk5coord._precession_matrix(fk5coord.equinox, EQUINOX_J2000) ) @frame_transform_graph.transform(DynamicMatrixTransform, Galactic, FK5) def _gal_to_fk5(galcoord, fk5frame): return matrix_transpose(fk5_to_gal(fk5frame, galcoord)) @frame_transform_graph.transform(DynamicMatrixTransform, FK4NoETerms, Galactic) def fk4_to_gal(fk4coords, galframe): return ( rotation_matrix(180 - Galactic._lon0_B1950.degree, "z") @ rotation_matrix(90 - Galactic._ngp_B1950.dec.degree, "y") @ rotation_matrix(Galactic._ngp_B1950.ra.degree, "z") @ fk4coords._precession_matrix(fk4coords.equinox, EQUINOX_B1950) ) @frame_transform_graph.transform(DynamicMatrixTransform, Galactic, FK4NoETerms) def gal_to_fk4(galcoords, fk4frame): return matrix_transpose(fk4_to_gal(fk4frame, galcoords))
2d15495c9df319d401e1e43de90f6ac7ccb458d6ea21bed2d659f5ad7a20a26d
# Licensed under a 3-clause BSD style license - see LICENSE.rst from astropy import units as u from astropy.coordinates import representation as r from astropy.coordinates.angles import Angle from astropy.coordinates.baseframe import ( BaseCoordinateFrame, RepresentationMapping, base_doc, ) from astropy.utils.decorators import format_doc from .fk4 import FK4NoETerms # these are needed for defining the NGP from .fk5 import FK5 __all__ = ["Galactic"] doc_components = """ l : `~astropy.coordinates.Angle`, optional, keyword-only The Galactic longitude for this object (``b`` must also be given and ``representation`` must be None). b : `~astropy.coordinates.Angle`, optional, keyword-only The Galactic latitude for this object (``l`` must also be given and ``representation`` must be None). distance : `~astropy.units.Quantity` ['length'], optional, keyword-only The Distance for this object along the line-of-sight. pm_l_cosb : `~astropy.units.Quantity` ['angular speed'], optional, keyword-only The proper motion in Galactic longitude (including the ``cos(b)`` term) for this object (``pm_b`` must also be given). pm_b : `~astropy.units.Quantity` ['angular speed'], optional, keyword-only The proper motion in Galactic latitude for this object (``pm_l_cosb`` must also be given). radial_velocity : `~astropy.units.Quantity` ['speed'], optional, keyword-only The radial velocity of this object. """ doc_footer = """ Notes ----- .. [1] Blaauw, A.; Gum, C. S.; Pawsey, J. L.; Westerhout, G. (1960), "The new I.A.U. system of galactic coordinates (1958 revision)," `MNRAS, Vol 121, pp.123 <https://ui.adsabs.harvard.edu/abs/1960MNRAS.121..123B>`_. """ @format_doc(base_doc, components=doc_components, footer=doc_footer) class Galactic(BaseCoordinateFrame): """ A coordinate or frame in the Galactic coordinate system. This frame is used in a variety of Galactic contexts because it has as its x-y plane the plane of the Milky Way. The positive x direction (i.e., the l=0, b=0 direction) points to the center of the Milky Way and the z-axis points toward the North Galactic Pole (following the IAU's 1958 definition [1]_). However, unlike the `~astropy.coordinates.Galactocentric` frame, the *origin* of this frame in 3D space is the solar system barycenter, not the center of the Milky Way. """ frame_specific_representation_info = { r.SphericalRepresentation: [ RepresentationMapping("lon", "l"), RepresentationMapping("lat", "b"), ], r.CartesianRepresentation: [ RepresentationMapping("x", "u"), RepresentationMapping("y", "v"), RepresentationMapping("z", "w"), ], r.CartesianDifferential: [ RepresentationMapping("d_x", "U", u.km / u.s), RepresentationMapping("d_y", "V", u.km / u.s), RepresentationMapping("d_z", "W", u.km / u.s), ], } default_representation = r.SphericalRepresentation default_differential = r.SphericalCosLatDifferential # North galactic pole and zeropoint of l in FK4/FK5 coordinates. Needed for # transformations to/from FK4/5 # These are from the IAU's definition of galactic coordinates _ngp_B1950 = FK4NoETerms(ra=192.25 * u.degree, dec=27.4 * u.degree) _lon0_B1950 = Angle(123, u.degree) # These are *not* from Reid & Brunthaler 2004 - instead, they were # derived by doing: # # >>> FK4NoETerms(ra=192.25*u.degree, dec=27.4*u.degree).transform_to(FK5()) # # This gives better consistency with other codes than using the values # from Reid & Brunthaler 2004 and the best self-consistency between FK5 # -> Galactic and FK5 -> FK4 -> Galactic. The lon0 angle was found by # optimizing the self-consistency. _ngp_J2000 = FK5(ra=192.8594812065348 * u.degree, dec=27.12825118085622 * u.degree) _lon0_J2000 = Angle(122.9319185680026, u.degree)
dcfeb3e4699ebdab29f6f3ee7a1f6ae92cdbd8a98f1bf264f8536e57c0146dd1
import erfa import numpy as np from astropy import units as u from astropy.coordinates.baseframe import frame_transform_graph from astropy.coordinates.matrix_utilities import matrix_transpose, rotation_matrix from astropy.coordinates.representation import CartesianRepresentation from astropy.coordinates.transformations import FunctionTransformWithFiniteDifference from .altaz import AltAz from .hadec import HADec from .itrs import ITRS # Minimum cos(alt) and sin(alt) for refraction purposes CELMIN = 1e-6 SELMIN = 0.05 # Latitude of the north pole. NORTH_POLE = 90.0 * u.deg def itrs_to_altaz_mat(lon, lat): # form ITRS to AltAz matrix # AltAz frame is left handed minus_x = np.eye(3) minus_x[0][0] = -1.0 mat = minus_x @ rotation_matrix(NORTH_POLE - lat, "y") @ rotation_matrix(lon, "z") return mat def itrs_to_hadec_mat(lon): # form ITRS to HADec matrix # HADec frame is left handed minus_y = np.eye(3) minus_y[1][1] = -1.0 mat = minus_y @ rotation_matrix(lon, "z") return mat def altaz_to_hadec_mat(lat): # form AltAz to HADec matrix z180 = np.eye(3) z180[0][0] = -1.0 z180[1][1] = -1.0 mat = z180 @ rotation_matrix(NORTH_POLE - lat, "y") return mat def add_refraction(aa_crepr, observed_frame): # add refraction to AltAz cartesian representation refa, refb = erfa.refco( observed_frame.pressure.to_value(u.hPa), observed_frame.temperature.to_value(u.deg_C), observed_frame.relative_humidity.value, observed_frame.obswl.to_value(u.micron), ) # reference: erfa.atioq() norm, uv = erfa.pn(aa_crepr.get_xyz(xyz_axis=-1).to_value()) # Cosine and sine of altitude, with precautions. sel = np.maximum(uv[..., 2], SELMIN) cel = np.maximum(np.sqrt(uv[..., 0] ** 2 + uv[..., 1] ** 2), CELMIN) # A*tan(z)+B*tan^3(z) model, with Newton-Raphson correction. tan_z = cel / sel w = refb * tan_z**2 delta_el = (refa + w) * tan_z / (1.0 + (refa + 3.0 * w) / (sel**2)) # Apply the change, giving observed vector cosdel = 1.0 - 0.5 * delta_el**2 f = cosdel - delta_el * sel / cel uv[..., 0] *= f uv[..., 1] *= f uv[..., 2] = cosdel * uv[..., 2] + delta_el * cel # Need to renormalize to get agreement with CIRS->Observed on distance norm2, uv = erfa.pn(uv) uv = erfa.sxp(norm, uv) return CartesianRepresentation(uv, xyz_axis=-1, unit=aa_crepr.x.unit, copy=False) def remove_refraction(aa_crepr, observed_frame): # remove refraction from AltAz cartesian representation refa, refb = erfa.refco( observed_frame.pressure.to_value(u.hPa), observed_frame.temperature.to_value(u.deg_C), observed_frame.relative_humidity.value, observed_frame.obswl.to_value(u.micron), ) # reference: erfa.atoiq() norm, uv = erfa.pn(aa_crepr.get_xyz(xyz_axis=-1).to_value()) # Cosine and sine of altitude, with precautions. sel = np.maximum(uv[..., 2], SELMIN) cel = np.sqrt(uv[..., 0] ** 2 + uv[..., 1] ** 2) # A*tan(z)+B*tan^3(z) model tan_z = cel / sel delta_el = (refa + refb * tan_z**2) * tan_z # Apply the change, giving observed vector. az, el = erfa.c2s(uv) el -= delta_el uv = erfa.s2c(az, el) uv = erfa.sxp(norm, uv) return CartesianRepresentation(uv, xyz_axis=-1, unit=aa_crepr.x.unit, copy=False) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, ITRS, AltAz) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, ITRS, HADec) def itrs_to_observed(itrs_coo, observed_frame): if np.any(itrs_coo.location != observed_frame.location) or np.any( itrs_coo.obstime != observed_frame.obstime ): # This transform will go through the CIRS and alter stellar aberration. itrs_coo = itrs_coo.transform_to( ITRS(obstime=observed_frame.obstime, location=observed_frame.location) ) lon, lat, height = observed_frame.location.to_geodetic("WGS84") if isinstance(observed_frame, AltAz) or (observed_frame.pressure > 0.0): crepr = itrs_coo.cartesian.transform(itrs_to_altaz_mat(lon, lat)) if observed_frame.pressure > 0.0: crepr = add_refraction(crepr, observed_frame) if isinstance(observed_frame, HADec): crepr = crepr.transform(altaz_to_hadec_mat(lat)) else: crepr = itrs_coo.cartesian.transform(itrs_to_hadec_mat(lon)) return observed_frame.realize_frame(crepr) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, AltAz, ITRS) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, HADec, ITRS) def observed_to_itrs(observed_coo, itrs_frame): lon, lat, height = observed_coo.location.to_geodetic("WGS84") if isinstance(observed_coo, AltAz) or (observed_coo.pressure > 0.0): crepr = observed_coo.cartesian if observed_coo.pressure > 0.0: if isinstance(observed_coo, HADec): crepr = crepr.transform(matrix_transpose(altaz_to_hadec_mat(lat))) crepr = remove_refraction(crepr, observed_coo) crepr = crepr.transform(matrix_transpose(itrs_to_altaz_mat(lon, lat))) else: crepr = observed_coo.cartesian.transform( matrix_transpose(itrs_to_hadec_mat(lon)) ) itrs_at_obs_time = ITRS( crepr, obstime=observed_coo.obstime, location=observed_coo.location ) # This final transform may be a no-op if the obstimes and locations are the same. # Otherwise, this transform will go through the CIRS and alter stellar aberration. return itrs_at_obs_time.transform_to(itrs_frame)
8fde57333439d643f911edc005a2794ce931a91c5f63f836d2f21f2e8d2ead43
# Licensed under a 3-clause BSD style license - see LICENSE.rst from astropy.coordinates.baseframe import frame_transform_graph from astropy.coordinates.matrix_utilities import matrix_transpose, rotation_matrix from astropy.coordinates.transformations import DynamicMatrixTransform from .fk5 import FK5 from .icrs import ICRS from .utils import EQUINOX_J2000 def _icrs_to_fk5_matrix(): """ B-matrix from USNO circular 179. Used by the ICRS->FK5 transformation functions. """ eta0 = -19.9 / 3600000.0 xi0 = 9.1 / 3600000.0 da0 = -22.9 / 3600000.0 return ( rotation_matrix(-eta0, "x") @ rotation_matrix(xi0, "y") @ rotation_matrix(da0, "z") ) # define this here because it only needs to be computed once _ICRS_TO_FK5_J2000_MAT = _icrs_to_fk5_matrix() @frame_transform_graph.transform(DynamicMatrixTransform, ICRS, FK5) def icrs_to_fk5(icrscoord, fk5frame): # ICRS is by design very close to J2000 equinox pmat = fk5frame._precession_matrix(EQUINOX_J2000, fk5frame.equinox) return pmat @ _ICRS_TO_FK5_J2000_MAT # can't be static because the equinox is needed @frame_transform_graph.transform(DynamicMatrixTransform, FK5, ICRS) def fk5_to_icrs(fk5coord, icrsframe): # ICRS is by design very close to J2000 equinox pmat = fk5coord._precession_matrix(fk5coord.equinox, EQUINOX_J2000) return matrix_transpose(_ICRS_TO_FK5_J2000_MAT) @ pmat
834d4161ee63d72c4117d0b595f930f4f67b924f625e45345fdd2d13f0791619
# Licensed under a 3-clause BSD style license - see LICENSE.rst from astropy.coordinates.attributes import EarthLocationAttribute, TimeAttribute from astropy.coordinates.baseframe import base_doc from astropy.utils.decorators import format_doc from .baseradec import BaseRADecFrame, doc_components from .utils import DEFAULT_OBSTIME, EARTH_CENTER __all__ = ["CIRS"] doc_footer = """ Other parameters ---------------- obstime : `~astropy.time.Time` The time at which the observation is taken. Used for determining the position of the Earth and its precession. location : `~astropy.coordinates.EarthLocation` The location on the Earth. This can be specified either as an `~astropy.coordinates.EarthLocation` object or as anything that can be transformed to an `~astropy.coordinates.ITRS` frame. The default is the centre of the Earth. """ @format_doc(base_doc, components=doc_components, footer=doc_footer) class CIRS(BaseRADecFrame): """ A coordinate or frame in the Celestial Intermediate Reference System (CIRS). The frame attributes are listed under **Other Parameters**. """ obstime = TimeAttribute(default=DEFAULT_OBSTIME) location = EarthLocationAttribute(default=EARTH_CENTER) # The "self-transform" is defined in icrs_cirs_transformations.py, because in # the current implementation it goes through ICRS (like GCRS)
5e6efdaf2602b90cf9f21ac139e63e5e3b4666296e64c8a1ad5651995f7f6fa7
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Coordinate frames tied to the Equator and Equinox of Earth. TEME is a True equator, Mean Equinox coordinate frame used in NORAD TLE satellite files. TETE is a True equator, True Equinox coordinate frame often called the "apparent" coordinates. It is the same frame as used by JPL Horizons and can be combined with Local Apparent Sidereal Time to calculate the hour angle. """ from astropy.coordinates.attributes import EarthLocationAttribute, TimeAttribute from astropy.coordinates.baseframe import BaseCoordinateFrame, base_doc from astropy.coordinates.builtin_frames.baseradec import BaseRADecFrame, doc_components from astropy.coordinates.representation import ( CartesianDifferential, CartesianRepresentation, ) from astropy.utils.decorators import format_doc from .utils import DEFAULT_OBSTIME, EARTH_CENTER __all__ = ["TEME", "TETE"] doc_footer_teme = """ Other parameters ---------------- obstime : `~astropy.time.Time` The time at which the frame is defined. Used for determining the position of the Earth. """ doc_footer_tete = """ Other parameters ---------------- obstime : `~astropy.time.Time` The time at which the observation is taken. Used for determining the position of the Earth. location : `~astropy.coordinates.EarthLocation` The location on the Earth. This can be specified either as an `~astropy.coordinates.EarthLocation` object or as anything that can be transformed to an `~astropy.coordinates.ITRS` frame. The default is the centre of the Earth. """ @format_doc(base_doc, components=doc_components, footer=doc_footer_tete) class TETE(BaseRADecFrame): """ An equatorial coordinate or frame using the True Equator and True Equinox (TETE). Equatorial coordinate frames measure RA with respect to the equinox and declination with with respect to the equator. The location of the equinox and equator vary due the gravitational torques on the oblate Earth. This variation is split into precession and nutation, although really they are two aspects of a single phenomena. The smooth, long term variation is known as precession, whilst smaller, periodic components are called nutation. Calculation of the true equator and equinox involves the application of both precession and nutation, whilst only applying precession gives a mean equator and equinox. TETE coordinates are often referred to as "apparent" coordinates, or "apparent place". TETE is the apparent coordinate system used by JPL Horizons and is the correct coordinate system to use when combining the right ascension with local apparent sidereal time to calculate the apparent (TIRS) hour angle. For more background on TETE, see the references provided in the :ref:`astropy:astropy-coordinates-seealso` section of the documentation. Of particular note are Sections 5 and 6 of `USNO Circular 179 <https://arxiv.org/abs/astro-ph/0602086>`_) and especially the diagram at the top of page 57. This frame also includes frames that are defined *relative* to the center of the Earth, but that are offset (in both position and velocity) from the center of the Earth. You may see such non-geocentric coordinates referred to as "topocentric". The frame attributes are listed under **Other Parameters**. """ obstime = TimeAttribute(default=DEFAULT_OBSTIME) location = EarthLocationAttribute(default=EARTH_CENTER) # Self transform goes through ICRS and is defined in icrs_cirs_transforms.py @format_doc(base_doc, components="", footer=doc_footer_teme) class TEME(BaseCoordinateFrame): """ A coordinate or frame in the True Equator Mean Equinox frame (TEME). This frame is a geocentric system similar to CIRS or geocentric apparent place, except that the mean sidereal time is used to rotate from TIRS. TEME coordinates are most often used in combination with orbital data for satellites in the two-line-ephemeris format. Different implementations of the TEME frame exist. For clarity, this frame follows the conventions and relations to other frames that are set out in Vallado et al (2006). For more background on TEME, see the references provided in the :ref:`astropy:astropy-coordinates-seealso` section of the documentation. """ default_representation = CartesianRepresentation default_differential = CartesianDifferential obstime = TimeAttribute() # Transformation functions for getting to/from TEME and ITRS are in # intermediate rotation transforms.py
ec13f3de1d92cfd13840cd73b08dbbf60a0e61356769e716ff6f987d77f89029
# Licensed under a 3-clause BSD style license - see LICENSE.rst import re from copy import deepcopy import numpy as np import pytest from astropy import units as u from astropy.coordinates import EarthLocation, SkyCoord, galactocentric_frame_defaults from astropy.coordinates import representation as r from astropy.coordinates.attributes import ( Attribute, CoordinateAttribute, DifferentialAttribute, EarthLocationAttribute, QuantityAttribute, TimeAttribute, ) from astropy.coordinates.baseframe import BaseCoordinateFrame, RepresentationMapping from astropy.coordinates.builtin_frames import ( FK4, FK5, GCRS, HCRS, ICRS, ITRS, AltAz, Galactic, Galactocentric, HADec, ) from astropy.coordinates.representation import ( REPRESENTATION_CLASSES, CartesianDifferential, ) from astropy.tests.helper import assert_quantity_allclose as assert_allclose from astropy.time import Time from astropy.units import allclose from astropy.utils.exceptions import AstropyDeprecationWarning, AstropyWarning from .test_representation import unitphysics # this fixture is used below # noqa: F401 def setup_function(func): """Copy original 'REPRESENTATIONCLASSES' as attribute in function.""" func.REPRESENTATION_CLASSES_ORIG = deepcopy(REPRESENTATION_CLASSES) def teardown_function(func): """Reset REPRESENTATION_CLASSES to original value.""" REPRESENTATION_CLASSES.clear() REPRESENTATION_CLASSES.update(func.REPRESENTATION_CLASSES_ORIG) def test_frame_attribute_descriptor(): """Unit tests of the Attribute descriptor.""" class TestAttributes: attr_none = Attribute() attr_2 = Attribute(default=2) attr_3_attr2 = Attribute(default=3, secondary_attribute="attr_2") attr_none_attr2 = Attribute(default=None, secondary_attribute="attr_2") attr_none_nonexist = Attribute(default=None, secondary_attribute="nonexist") t = TestAttributes() # Defaults assert t.attr_none is None assert t.attr_2 == 2 assert t.attr_3_attr2 == 3 assert t.attr_none_attr2 == t.attr_2 assert t.attr_none_nonexist is None # No default and non-existent secondary attr # Setting values via '_'-prefixed internal vars # (as would normally done in __init__) t._attr_none = 10 assert t.attr_none == 10 t._attr_2 = 20 assert t.attr_2 == 20 assert t.attr_3_attr2 == 3 assert t.attr_none_attr2 == t.attr_2 t._attr_none_attr2 = 40 assert t.attr_none_attr2 == 40 # Make sure setting values via public attribute fails with pytest.raises(AttributeError) as err: t.attr_none = 5 assert "Cannot set frame attribute" in str(err.value) def test_frame_subclass_attribute_descriptor(): """Unit test of the attribute descriptors in subclasses.""" _EQUINOX_B1980 = Time("B1980", scale="tai") class MyFK4(FK4): # equinox inherited from FK4, obstime overridden, and newattr is new obstime = TimeAttribute(default=_EQUINOX_B1980) newattr = Attribute(default="newattr") mfk4 = MyFK4() assert mfk4.equinox.value == "B1950.000" assert mfk4.obstime.value == "B1980.000" assert mfk4.newattr == "newattr" with pytest.warns(AstropyDeprecationWarning): assert set(mfk4.get_frame_attr_names()) == {"equinox", "obstime", "newattr"} mfk4 = MyFK4(equinox="J1980.0", obstime="J1990.0", newattr="world") assert mfk4.equinox.value == "J1980.000" assert mfk4.obstime.value == "J1990.000" assert mfk4.newattr == "world" def test_frame_multiple_inheritance_attribute_descriptor(): """ Ensure that all attributes are accumulated in case of inheritance from multiple BaseCoordinateFrames. See https://github.com/astropy/astropy/pull/11099#issuecomment-735829157 """ class Frame1(BaseCoordinateFrame): attr1 = Attribute() class Frame2(BaseCoordinateFrame): attr2 = Attribute() class Frame3(Frame1, Frame2): pass assert len(Frame3.frame_attributes) == 2 assert "attr1" in Frame3.frame_attributes assert "attr2" in Frame3.frame_attributes # In case the same attribute exists in both frames, the one from the # left-most class in the MRO should take precedence class Frame4(BaseCoordinateFrame): attr1 = Attribute() attr2 = Attribute() class Frame5(Frame1, Frame4): pass assert Frame5.frame_attributes["attr1"] is Frame1.frame_attributes["attr1"] assert Frame5.frame_attributes["attr2"] is Frame4.frame_attributes["attr2"] def test_differentialattribute(): # Test logic of passing input through to allowed class vel = [1, 2, 3] * u.km / u.s dif = r.CartesianDifferential(vel) class TestFrame(BaseCoordinateFrame): attrtest = DifferentialAttribute( default=dif, allowed_classes=[r.CartesianDifferential] ) frame1 = TestFrame() frame2 = TestFrame(attrtest=dif) frame3 = TestFrame(attrtest=vel) assert np.all(frame1.attrtest.d_xyz == frame2.attrtest.d_xyz) assert np.all(frame1.attrtest.d_xyz == frame3.attrtest.d_xyz) # This shouldn't work if there is more than one allowed class: class TestFrame2(BaseCoordinateFrame): attrtest = DifferentialAttribute( default=dif, allowed_classes=[r.CartesianDifferential, r.CylindricalDifferential], ) frame1 = TestFrame2() frame2 = TestFrame2(attrtest=dif) with pytest.raises(TypeError): TestFrame2(attrtest=vel) def test_create_data_frames(): # from repr i1 = ICRS(r.SphericalRepresentation(1 * u.deg, 2 * u.deg, 3 * u.kpc)) i2 = ICRS(r.UnitSphericalRepresentation(lon=1 * u.deg, lat=2 * u.deg)) # from preferred name i3 = ICRS(ra=1 * u.deg, dec=2 * u.deg, distance=3 * u.kpc) i4 = ICRS(ra=1 * u.deg, dec=2 * u.deg) assert i1.data.lat == i3.data.lat assert i1.data.lon == i3.data.lon assert i1.data.distance == i3.data.distance assert i2.data.lat == i4.data.lat assert i2.data.lon == i4.data.lon # now make sure the preferred names work as properties assert_allclose(i1.ra, i3.ra) assert_allclose(i2.ra, i4.ra) assert_allclose(i1.distance, i3.distance) with pytest.raises(AttributeError): i1.ra = [11.0] * u.deg def test_create_orderered_data(): TOL = 1e-10 * u.deg i = ICRS(1 * u.deg, 2 * u.deg) assert (i.ra - 1 * u.deg) < TOL assert (i.dec - 2 * u.deg) < TOL g = Galactic(1 * u.deg, 2 * u.deg) assert (g.l - 1 * u.deg) < TOL assert (g.b - 2 * u.deg) < TOL a = AltAz(1 * u.deg, 2 * u.deg) assert (a.az - 1 * u.deg) < TOL assert (a.alt - 2 * u.deg) < TOL with pytest.raises(TypeError): ICRS(1 * u.deg, 2 * u.deg, 1 * u.deg, 2 * u.deg) with pytest.raises(TypeError): sph = r.SphericalRepresentation(1 * u.deg, 2 * u.deg, 3 * u.kpc) ICRS(sph, 1 * u.deg, 2 * u.deg) def test_create_nodata_frames(): i = ICRS() assert len(i.frame_attributes) == 0 f5 = FK5() assert f5.equinox == FK5.get_frame_attr_defaults()["equinox"] f4 = FK4() assert f4.equinox == FK4.get_frame_attr_defaults()["equinox"] # obstime is special because it's a property that uses equinox if obstime is not set assert f4.obstime in ( FK4.get_frame_attr_defaults()["obstime"], FK4.get_frame_attr_defaults()["equinox"], ) def test_no_data_nonscalar_frames(): a1 = AltAz( obstime=Time("2012-01-01") + np.arange(10.0) * u.day, temperature=np.ones((3, 1)) * u.deg_C, ) assert a1.obstime.shape == (3, 10) assert a1.temperature.shape == (3, 10) assert a1.shape == (3, 10) with pytest.raises(ValueError) as exc: AltAz( obstime=Time("2012-01-01") + np.arange(10.0) * u.day, temperature=np.ones((3,)) * u.deg_C, ) assert "inconsistent shapes" in str(exc.value) def test_frame_repr(): i = ICRS() assert repr(i) == "<ICRS Frame>" f5 = FK5() assert repr(f5).startswith("<FK5 Frame (equinox=") i2 = ICRS(ra=1 * u.deg, dec=2 * u.deg) i3 = ICRS(ra=1 * u.deg, dec=2 * u.deg, distance=3 * u.kpc) assert repr(i2) == "<ICRS Coordinate: (ra, dec) in deg\n (1., 2.)>" assert ( repr(i3) == "<ICRS Coordinate: (ra, dec, distance) in (deg, deg, kpc)\n (1., 2., 3.)>" ) # try with arrays i2 = ICRS(ra=[1.1, 2.1] * u.deg, dec=[2.1, 3.1] * u.deg) i3 = ICRS( ra=[1.1, 2.1] * u.deg, dec=[-15.6, 17.1] * u.deg, distance=[11.0, 21.0] * u.kpc ) assert ( repr(i2) == "<ICRS Coordinate: (ra, dec) in deg\n [(1.1, 2.1), (2.1, 3.1)]>" ) assert ( repr(i3) == "<ICRS Coordinate: (ra, dec, distance) in (deg, deg, kpc)\n" " [(1.1, -15.6, 11.), (2.1, 17.1, 21.)]>" ) def test_frame_repr_vels(): i = ICRS( ra=1 * u.deg, dec=2 * u.deg, pm_ra_cosdec=1 * u.marcsec / u.yr, pm_dec=2 * u.marcsec / u.yr, ) # unit comes out as mas/yr because of the preferred units defined in the # frame RepresentationMapping assert ( repr(i) == "<ICRS Coordinate: (ra, dec) in deg\n" " (1., 2.)\n" " (pm_ra_cosdec, pm_dec) in mas / yr\n" " (1., 2.)>" ) def test_converting_units(): # this is a regular expression that with split (see below) removes what's # the decimal point to fix rounding problems rexrepr = re.compile(r"(.*?=\d\.).*?( .*?=\d\.).*?( .*)") # Use values that aren't subject to rounding down to X.9999... i2 = ICRS(ra=2.0 * u.deg, dec=2.0 * u.deg) i2_many = ICRS(ra=[2.0, 4.0] * u.deg, dec=[2.0, -8.1] * u.deg) # converting from FK5 to ICRS and back changes the *internal* representation, # but it should still come out in the preferred form i4 = i2.transform_to(FK5()).transform_to(ICRS()) i4_many = i2_many.transform_to(FK5()).transform_to(ICRS()) ri2 = "".join(rexrepr.split(repr(i2))) ri4 = "".join(rexrepr.split(repr(i4))) assert ri2 == ri4 assert i2.data.lon.unit != i4.data.lon.unit # Internal repr changed ri2_many = "".join(rexrepr.split(repr(i2_many))) ri4_many = "".join(rexrepr.split(repr(i4_many))) assert ri2_many == ri4_many assert i2_many.data.lon.unit != i4_many.data.lon.unit # Internal repr changed # but that *shouldn't* hold if we turn off units for the representation class FakeICRS(ICRS): frame_specific_representation_info = { "spherical": [ RepresentationMapping("lon", "ra", u.hourangle), RepresentationMapping("lat", "dec", None), RepresentationMapping("distance", "distance"), ] # should fall back to default of None unit } fi = FakeICRS(i4.data) ri2 = "".join(rexrepr.split(repr(i2))) rfi = "".join(rexrepr.split(repr(fi))) rfi = re.sub("FakeICRS", "ICRS", rfi) # Force frame name to match assert ri2 != rfi # the attributes should also get the right units assert i2.dec.unit == i4.dec.unit # unless no/explicitly given units assert i2.dec.unit != fi.dec.unit assert i2.ra.unit != fi.ra.unit assert fi.ra.unit == u.hourangle def test_representation_info(): class NewICRS1(ICRS): frame_specific_representation_info = { r.SphericalRepresentation: [ RepresentationMapping("lon", "rara", u.hourangle), RepresentationMapping("lat", "decdec", u.degree), RepresentationMapping("distance", "distance", u.kpc), ] } i1 = NewICRS1( rara=10 * u.degree, decdec=-12 * u.deg, distance=1000 * u.pc, pm_rara_cosdecdec=100 * u.mas / u.yr, pm_decdec=17 * u.mas / u.yr, radial_velocity=10 * u.km / u.s, ) assert allclose(i1.rara, 10 * u.deg) assert i1.rara.unit == u.hourangle assert allclose(i1.decdec, -12 * u.deg) assert allclose(i1.distance, 1000 * u.pc) assert i1.distance.unit == u.kpc assert allclose(i1.pm_rara_cosdecdec, 100 * u.mas / u.yr) assert allclose(i1.pm_decdec, 17 * u.mas / u.yr) # this should auto-set the names of UnitSpherical: i1.set_representation_cls( r.UnitSphericalRepresentation, s=r.UnitSphericalCosLatDifferential ) assert allclose(i1.rara, 10 * u.deg) assert allclose(i1.decdec, -12 * u.deg) assert allclose(i1.pm_rara_cosdecdec, 100 * u.mas / u.yr) assert allclose(i1.pm_decdec, 17 * u.mas / u.yr) # For backwards compatibility, we also support the string name in the # representation info dictionary: class NewICRS2(ICRS): frame_specific_representation_info = { "spherical": [ RepresentationMapping("lon", "ang1", u.hourangle), RepresentationMapping("lat", "ang2", u.degree), RepresentationMapping("distance", "howfar", u.kpc), ] } i2 = NewICRS2(ang1=10 * u.degree, ang2=-12 * u.deg, howfar=1000 * u.pc) assert allclose(i2.ang1, 10 * u.deg) assert i2.ang1.unit == u.hourangle assert allclose(i2.ang2, -12 * u.deg) assert allclose(i2.howfar, 1000 * u.pc) assert i2.howfar.unit == u.kpc # Test that the differential kwargs get overridden class NewICRS3(ICRS): frame_specific_representation_info = { r.SphericalCosLatDifferential: [ RepresentationMapping("d_lon_coslat", "pm_ang1", u.hourangle / u.year), RepresentationMapping("d_lat", "pm_ang2"), RepresentationMapping("d_distance", "vlos", u.kpc / u.Myr), ] } i3 = NewICRS3( lon=10 * u.degree, lat=-12 * u.deg, distance=1000 * u.pc, pm_ang1=1 * u.mas / u.yr, pm_ang2=2 * u.mas / u.yr, vlos=100 * u.km / u.s, ) assert allclose(i3.pm_ang1, 1 * u.mas / u.yr) assert i3.pm_ang1.unit == u.hourangle / u.year assert allclose(i3.pm_ang2, 2 * u.mas / u.yr) assert allclose(i3.vlos, 100 * u.km / u.s) assert i3.vlos.unit == u.kpc / u.Myr def test_realizing(): rep = r.SphericalRepresentation(1 * u.deg, 2 * u.deg, 3 * u.kpc) i = ICRS() i2 = i.realize_frame(rep) assert not i.has_data assert i2.has_data f = FK5(equinox=Time("J2001")) f2 = f.realize_frame(rep) assert not f.has_data assert f2.has_data assert f2.equinox == f.equinox assert f2.equinox != FK5.get_frame_attr_defaults()["equinox"] # Check that a nicer error message is returned: with pytest.raises( TypeError, match="Class passed as data instead of a representation" ): f.realize_frame(f.representation_type) def test_replicating(): i = ICRS(ra=[1] * u.deg, dec=[2] * u.deg) icopy = i.replicate(copy=True) irepl = i.replicate(copy=False) i.data._lat[:] = 0 * u.deg assert np.all(i.data.lat == irepl.data.lat) assert np.all(i.data.lat != icopy.data.lat) iclone = i.replicate_without_data() assert i.has_data assert not iclone.has_data aa = AltAz(alt=1 * u.deg, az=2 * u.deg, obstime=Time("J2000")) aaclone = aa.replicate_without_data(obstime=Time("J2001")) assert not aaclone.has_data assert aa.obstime != aaclone.obstime assert aa.pressure == aaclone.pressure assert aa.obswl == aaclone.obswl def test_getitem(): rep = r.SphericalRepresentation( [1, 2, 3] * u.deg, [4, 5, 6] * u.deg, [7, 8, 9] * u.kpc ) i = ICRS(rep) assert len(i.ra) == 3 iidx = i[1:] assert len(iidx.ra) == 2 iidx2 = i[0] assert iidx2.ra.isscalar def test_transform(): """ This test just makes sure the transform architecture works, but does *not* actually test all the builtin transforms themselves are accurate. """ i = ICRS(ra=[1, 2] * u.deg, dec=[3, 4] * u.deg) f = i.transform_to(FK5()) i2 = f.transform_to(ICRS()) assert i2.data.__class__ == r.UnitSphericalRepresentation assert_allclose(i.ra, i2.ra) assert_allclose(i.dec, i2.dec) i = ICRS(ra=[1, 2] * u.deg, dec=[3, 4] * u.deg, distance=[5, 6] * u.kpc) f = i.transform_to(FK5()) i2 = f.transform_to(ICRS()) assert i2.data.__class__ != r.UnitSphericalRepresentation f = FK5(ra=1 * u.deg, dec=2 * u.deg, equinox=Time("J2001")) f4 = f.transform_to(FK4()) f4_2 = f.transform_to(FK4(equinox=f.equinox)) # make sure attributes are copied over correctly assert f4.equinox == FK4().equinox assert f4_2.equinox == f.equinox # make sure self-transforms also work i = ICRS(ra=[1, 2] * u.deg, dec=[3, 4] * u.deg) i2 = i.transform_to(ICRS()) assert_allclose(i.ra, i2.ra) assert_allclose(i.dec, i2.dec) f = FK5(ra=1 * u.deg, dec=2 * u.deg, equinox=Time("J2001")) f2 = f.transform_to(FK5()) # default equinox, so should be *different* assert f2.equinox == FK5().equinox with pytest.raises(AssertionError): assert_allclose(f.ra, f2.ra) with pytest.raises(AssertionError): assert_allclose(f.dec, f2.dec) # finally, check Galactic round-tripping i1 = ICRS(ra=[1, 2] * u.deg, dec=[3, 4] * u.deg) i2 = i1.transform_to(Galactic()).transform_to(ICRS()) assert_allclose(i1.ra, i2.ra) assert_allclose(i1.dec, i2.dec) def test_transform_to_nonscalar_nodata_frame(): # https://github.com/astropy/astropy/pull/5254#issuecomment-241592353 times = Time("2016-08-23") + np.linspace(0, 10, 12) * u.day coo1 = ICRS( ra=[[0.0], [10.0], [20.0]] * u.deg, dec=[[-30.0], [30.0], [60.0]] * u.deg ) coo2 = coo1.transform_to(FK5(equinox=times)) assert coo2.shape == (3, 12) def test_setitem_no_velocity(): """Test different flavors of item setting for a Frame without a velocity.""" obstime = "B1955" sc0 = FK4([1, 2] * u.deg, [3, 4] * u.deg, obstime=obstime) sc2 = FK4([10, 20] * u.deg, [30, 40] * u.deg, obstime=obstime) sc1 = sc0.copy() sc1_repr = repr(sc1) assert "representation" in sc1.cache sc1[1] = sc2[0] assert sc1.cache == {} assert repr(sc2) != sc1_repr assert np.allclose(sc1.ra.to_value(u.deg), [1, 10]) assert np.allclose(sc1.dec.to_value(u.deg), [3, 30]) assert sc1.obstime == sc2.obstime assert sc1.name == "fk4" sc1 = sc0.copy() sc1[:] = sc2[0] assert np.allclose(sc1.ra.to_value(u.deg), [10, 10]) assert np.allclose(sc1.dec.to_value(u.deg), [30, 30]) sc1 = sc0.copy() sc1[:] = sc2[:] assert np.allclose(sc1.ra.to_value(u.deg), [10, 20]) assert np.allclose(sc1.dec.to_value(u.deg), [30, 40]) sc1 = sc0.copy() sc1[[1, 0]] = sc2[:] assert np.allclose(sc1.ra.to_value(u.deg), [20, 10]) assert np.allclose(sc1.dec.to_value(u.deg), [40, 30]) # Works for array-valued obstime so long as they are considered equivalent sc1 = FK4(sc0.ra, sc0.dec, obstime=[obstime, obstime]) sc1[0] = sc2[0] # Multidimensional coordinates sc1 = FK4([[1, 2], [3, 4]] * u.deg, [[5, 6], [7, 8]] * u.deg) sc2 = FK4([[10, 20], [30, 40]] * u.deg, [[50, 60], [70, 80]] * u.deg) sc1[0] = sc2[0] assert np.allclose(sc1.ra.to_value(u.deg), [[10, 20], [3, 4]]) assert np.allclose(sc1.dec.to_value(u.deg), [[50, 60], [7, 8]]) def test_setitem_velocities(): """Test different flavors of item setting for a Frame with a velocity.""" sc0 = FK4( [1, 2] * u.deg, [3, 4] * u.deg, radial_velocity=[1, 2] * u.km / u.s, obstime="B1950", ) sc2 = FK4( [10, 20] * u.deg, [30, 40] * u.deg, radial_velocity=[10, 20] * u.km / u.s, obstime="B1950", ) sc1 = sc0.copy() sc1[1] = sc2[0] assert np.allclose(sc1.ra.to_value(u.deg), [1, 10]) assert np.allclose(sc1.dec.to_value(u.deg), [3, 30]) assert np.allclose(sc1.radial_velocity.to_value(u.km / u.s), [1, 10]) assert sc1.obstime == sc2.obstime assert sc1.name == "fk4" sc1 = sc0.copy() sc1[:] = sc2[0] assert np.allclose(sc1.ra.to_value(u.deg), [10, 10]) assert np.allclose(sc1.dec.to_value(u.deg), [30, 30]) assert np.allclose(sc1.radial_velocity.to_value(u.km / u.s), [10, 10]) sc1 = sc0.copy() sc1[:] = sc2[:] assert np.allclose(sc1.ra.to_value(u.deg), [10, 20]) assert np.allclose(sc1.dec.to_value(u.deg), [30, 40]) assert np.allclose(sc1.radial_velocity.to_value(u.km / u.s), [10, 20]) sc1 = sc0.copy() sc1[[1, 0]] = sc2[:] assert np.allclose(sc1.ra.to_value(u.deg), [20, 10]) assert np.allclose(sc1.dec.to_value(u.deg), [40, 30]) assert np.allclose(sc1.radial_velocity.to_value(u.km / u.s), [20, 10]) def test_setitem_exceptions(): obstime = "B1950" sc0 = FK4([1, 2] * u.deg, [3, 4] * u.deg) sc2 = FK4([10, 20] * u.deg, [30, 40] * u.deg, obstime=obstime) sc1 = Galactic(sc0.ra, sc0.dec) with pytest.raises( TypeError, match="can only set from object of same class: Galactic vs. FK4" ): sc1[0] = sc2[0] sc1 = FK4(sc0.ra, sc0.dec, obstime="B2001") with pytest.raises( ValueError, match="can only set frame item from an equivalent frame" ): sc1[0] = sc2[0] sc1 = FK4(sc0.ra[0], sc0.dec[0], obstime=obstime) with pytest.raises( TypeError, match="scalar 'FK4' frame object does not support item assignment" ): sc1[0] = sc2[0] sc1 = FK4(obstime=obstime) with pytest.raises(ValueError, match="cannot set frame which has no data"): sc1[0] = sc2[0] sc1 = FK4(sc0.ra, sc0.dec, obstime=[obstime, "B1980"]) with pytest.raises( ValueError, match="can only set frame item from an equivalent frame" ): sc1[0] = sc2[0] # Wrong shape sc1 = FK4([sc0.ra], [sc0.dec], obstime=[obstime, "B1980"]) with pytest.raises( ValueError, match="can only set frame item from an equivalent frame" ): sc1[0] = sc2[0] def test_sep(): i1 = ICRS(ra=0 * u.deg, dec=1 * u.deg) i2 = ICRS(ra=0 * u.deg, dec=2 * u.deg) sep = i1.separation(i2) assert_allclose(sep.deg, 1.0) i3 = ICRS(ra=[1, 2] * u.deg, dec=[3, 4] * u.deg, distance=[5, 6] * u.kpc) i4 = ICRS(ra=[1, 2] * u.deg, dec=[3, 4] * u.deg, distance=[4, 5] * u.kpc) sep3d = i3.separation_3d(i4) assert_allclose(sep3d.to(u.kpc), np.array([1, 1]) * u.kpc) # check that it works even with velocities i5 = ICRS( ra=[1, 2] * u.deg, dec=[3, 4] * u.deg, distance=[5, 6] * u.kpc, pm_ra_cosdec=[1, 2] * u.mas / u.yr, pm_dec=[3, 4] * u.mas / u.yr, radial_velocity=[5, 6] * u.km / u.s, ) i6 = ICRS( ra=[1, 2] * u.deg, dec=[3, 4] * u.deg, distance=[7, 8] * u.kpc, pm_ra_cosdec=[1, 2] * u.mas / u.yr, pm_dec=[3, 4] * u.mas / u.yr, radial_velocity=[5, 6] * u.km / u.s, ) sep3d = i5.separation_3d(i6) assert_allclose(sep3d.to(u.kpc), np.array([2, 2]) * u.kpc) # 3d separations of dimensionless distances should still work i7 = ICRS(ra=1 * u.deg, dec=2 * u.deg, distance=3 * u.one) i8 = ICRS(ra=1 * u.deg, dec=2 * u.deg, distance=4 * u.one) sep3d = i7.separation_3d(i8) assert_allclose(sep3d, 1 * u.one) # but should fail with non-dimensionless with pytest.raises(ValueError): i7.separation_3d(i3) def test_time_inputs(): """ Test validation and conversion of inputs for equinox and obstime attributes. """ c = FK4(1 * u.deg, 2 * u.deg, equinox="J2001.5", obstime="2000-01-01 12:00:00") assert c.equinox == Time("J2001.5") assert c.obstime == Time("2000-01-01 12:00:00") with pytest.raises(ValueError) as err: c = FK4(1 * u.deg, 2 * u.deg, equinox=1.5) assert "Invalid time input" in str(err.value) with pytest.raises(ValueError) as err: c = FK4(1 * u.deg, 2 * u.deg, obstime="hello") assert "Invalid time input" in str(err.value) # A vector time should work if the shapes match, but we don't automatically # broadcast the basic data (just like time). FK4([1, 2] * u.deg, [2, 3] * u.deg, obstime=["J2000", "J2001"]) with pytest.raises(ValueError) as err: FK4(1 * u.deg, 2 * u.deg, obstime=["J2000", "J2001"]) assert "shape" in str(err.value) def test_is_frame_attr_default(): """ Check that the `is_frame_attr_default` machinery works as expected """ c1 = FK5(ra=1 * u.deg, dec=1 * u.deg) c2 = FK5( ra=1 * u.deg, dec=1 * u.deg, equinox=FK5.get_frame_attr_defaults()["equinox"] ) c3 = FK5(ra=1 * u.deg, dec=1 * u.deg, equinox=Time("J2001.5")) assert c1.equinox == c2.equinox assert c1.equinox != c3.equinox assert c1.is_frame_attr_default("equinox") assert not c2.is_frame_attr_default("equinox") assert not c3.is_frame_attr_default("equinox") c4 = c1.realize_frame(r.UnitSphericalRepresentation(3 * u.deg, 4 * u.deg)) c5 = c2.realize_frame(r.UnitSphericalRepresentation(3 * u.deg, 4 * u.deg)) assert c4.is_frame_attr_default("equinox") assert not c5.is_frame_attr_default("equinox") def test_altaz_attributes(): aa = AltAz(1 * u.deg, 2 * u.deg) assert aa.obstime is None assert aa.location is None aa2 = AltAz(1 * u.deg, 2 * u.deg, obstime="J2000") assert aa2.obstime == Time("J2000") aa3 = AltAz( 1 * u.deg, 2 * u.deg, location=EarthLocation(0 * u.deg, 0 * u.deg, 0 * u.m) ) assert isinstance(aa3.location, EarthLocation) def test_hadec_attributes(): hd = HADec(1 * u.hourangle, 2 * u.deg) assert hd.ha == 1.0 * u.hourangle assert hd.dec == 2 * u.deg assert hd.obstime is None assert hd.location is None hd2 = HADec( 23 * u.hourangle, -2 * u.deg, obstime="J2000", location=EarthLocation(0 * u.deg, 0 * u.deg, 0 * u.m), ) assert_allclose(hd2.ha, -1 * u.hourangle) assert hd2.dec == -2 * u.deg assert hd2.obstime == Time("J2000") assert isinstance(hd2.location, EarthLocation) sr = hd2.represent_as(r.SphericalRepresentation) assert_allclose(sr.lon, -1 * u.hourangle) def test_representation(): """ Test the getter and setter properties for `representation` """ # Create the frame object. icrs = ICRS(ra=1 * u.deg, dec=1 * u.deg) data = icrs.data # Create some representation objects. icrs_cart = icrs.cartesian icrs_spher = icrs.spherical icrs_cyl = icrs.cylindrical # Testing when `_representation` set to `CartesianRepresentation`. icrs.representation_type = r.CartesianRepresentation assert icrs.representation_type == r.CartesianRepresentation assert icrs_cart.x == icrs.x assert icrs_cart.y == icrs.y assert icrs_cart.z == icrs.z assert icrs.data == data # Testing that an ICRS object in CartesianRepresentation must not have spherical attributes. for attr in ("ra", "dec", "distance"): with pytest.raises(AttributeError) as err: getattr(icrs, attr) assert "object has no attribute" in str(err.value) # Testing when `_representation` set to `CylindricalRepresentation`. icrs.representation_type = r.CylindricalRepresentation assert icrs.representation_type == r.CylindricalRepresentation assert icrs.data == data # Testing setter input using text argument for spherical. icrs.representation_type = "spherical" assert icrs.representation_type is r.SphericalRepresentation assert icrs_spher.lat == icrs.dec assert icrs_spher.lon == icrs.ra assert icrs_spher.distance == icrs.distance assert icrs.data == data # Testing that an ICRS object in SphericalRepresentation must not have cartesian attributes. for attr in ("x", "y", "z"): with pytest.raises(AttributeError) as err: getattr(icrs, attr) assert "object has no attribute" in str(err.value) # Testing setter input using text argument for cylindrical. icrs.representation_type = "cylindrical" assert icrs.representation_type is r.CylindricalRepresentation assert icrs_cyl.rho == icrs.rho assert icrs_cyl.phi == icrs.phi assert icrs_cyl.z == icrs.z assert icrs.data == data # Testing that an ICRS object in CylindricalRepresentation must not have spherical attributes. for attr in ("ra", "dec", "distance"): with pytest.raises(AttributeError) as err: getattr(icrs, attr) assert "object has no attribute" in str(err.value) with pytest.raises(ValueError) as err: icrs.representation_type = "WRONG" assert "but must be a BaseRepresentation class" in str(err.value) with pytest.raises(ValueError) as err: icrs.representation_type = ICRS assert "but must be a BaseRepresentation class" in str(err.value) def test_represent_as(): icrs = ICRS(ra=1 * u.deg, dec=1 * u.deg) cart1 = icrs.represent_as("cartesian") cart2 = icrs.represent_as(r.CartesianRepresentation) cart1.x == cart2.x cart1.y == cart2.y cart1.z == cart2.z # now try with velocities icrs = ICRS( ra=0 * u.deg, dec=0 * u.deg, distance=10 * u.kpc, pm_ra_cosdec=0 * u.mas / u.yr, pm_dec=0 * u.mas / u.yr, radial_velocity=1 * u.km / u.s, ) # single string rep2 = icrs.represent_as("cylindrical") assert isinstance(rep2, r.CylindricalRepresentation) assert isinstance(rep2.differentials["s"], r.CylindricalDifferential) # single class with positional in_frame_units, verify that warning raised with pytest.warns(AstropyWarning, match="argument position") as w: icrs.represent_as(r.CylindricalRepresentation, False) assert len(w) == 1 # TODO: this should probably fail in the future once we figure out a better # workaround for dealing with UnitSphericalRepresentation's with # RadialDifferential's # two classes # rep2 = icrs.represent_as(r.CartesianRepresentation, # r.SphericalCosLatDifferential) # assert isinstance(rep2, r.CartesianRepresentation) # assert isinstance(rep2.differentials['s'], r.SphericalCosLatDifferential) with pytest.raises(ValueError): icrs.represent_as("odaigahara") def test_shorthand_representations(): rep = r.CartesianRepresentation([1, 2, 3] * u.pc) dif = r.CartesianDifferential([1, 2, 3] * u.km / u.s) rep = rep.with_differentials(dif) icrs = ICRS(rep) cyl = icrs.cylindrical assert isinstance(cyl, r.CylindricalRepresentation) assert isinstance(cyl.differentials["s"], r.CylindricalDifferential) sph = icrs.spherical assert isinstance(sph, r.SphericalRepresentation) assert isinstance(sph.differentials["s"], r.SphericalDifferential) sph = icrs.sphericalcoslat assert isinstance(sph, r.SphericalRepresentation) assert isinstance(sph.differentials["s"], r.SphericalCosLatDifferential) def test_equal(): obstime = "B1955" sc1 = FK4([1, 2] * u.deg, [3, 4] * u.deg, obstime=obstime) sc2 = FK4([1, 20] * u.deg, [3, 4] * u.deg, obstime=obstime) # Compare arrays and scalars eq = sc1 == sc2 ne = sc1 != sc2 assert np.all(eq == [True, False]) assert np.all(ne == [False, True]) assert isinstance(v := (sc1[0] == sc2[0]), (bool, np.bool_)) and v assert isinstance(v := (sc1[0] != sc2[0]), (bool, np.bool_)) and not v # Broadcasting eq = sc1[0] == sc2 ne = sc1[0] != sc2 assert np.all(eq == [True, False]) assert np.all(ne == [False, True]) # With diff only in velocity sc1 = FK4([1, 2] * u.deg, [3, 4] * u.deg, radial_velocity=[1, 2] * u.km / u.s) sc2 = FK4([1, 2] * u.deg, [3, 4] * u.deg, radial_velocity=[1, 20] * u.km / u.s) eq = sc1 == sc2 ne = sc1 != sc2 assert np.all(eq == [True, False]) assert np.all(ne == [False, True]) assert isinstance(v := (sc1[0] == sc2[0]), (bool, np.bool_)) and v assert isinstance(v := (sc1[0] != sc2[0]), (bool, np.bool_)) and not v assert (FK4() == ICRS()) is False assert (FK4() == FK4(obstime="J1999")) is False def test_equal_exceptions(): # Shape mismatch sc1 = FK4([1, 2, 3] * u.deg, [3, 4, 5] * u.deg) with pytest.raises(ValueError, match="cannot compare: shape mismatch"): sc1 == sc1[:2] # Different representation_type sc1 = FK4(1, 2, 3, representation_type="cartesian") sc2 = FK4(1 * u.deg, 2 * u.deg, 2, representation_type="spherical") with pytest.raises( TypeError, match=( "cannot compare: objects must have same " "class: CartesianRepresentation vs. SphericalRepresentation" ), ): sc1 == sc2 # Different differential type sc1 = FK4(1 * u.deg, 2 * u.deg, radial_velocity=1 * u.km / u.s) sc2 = FK4( 1 * u.deg, 2 * u.deg, pm_ra_cosdec=1 * u.mas / u.yr, pm_dec=1 * u.mas / u.yr ) with pytest.raises( TypeError, match=( "cannot compare: objects must have same " "class: RadialDifferential vs. UnitSphericalCosLatDifferential" ), ): sc1 == sc2 # Different frame attribute sc1 = FK5(1 * u.deg, 2 * u.deg) sc2 = FK5(1 * u.deg, 2 * u.deg, equinox="J1999") with pytest.raises( TypeError, match=r"cannot compare: objects must have equivalent " r"frames: <FK5 Frame \(equinox=J2000.000\)> " r"vs. <FK5 Frame \(equinox=J1999.000\)>", ): sc1 == sc2 # Different frame sc1 = FK4(1 * u.deg, 2 * u.deg) sc2 = FK5(1 * u.deg, 2 * u.deg, equinox="J2000") with pytest.raises( TypeError, match="cannot compare: objects must have equivalent " r"frames: <FK4 Frame \(equinox=B1950.000, obstime=B1950.000\)> " r"vs. <FK5 Frame \(equinox=J2000.000\)>", ): sc1 == sc2 sc1 = FK4(1 * u.deg, 2 * u.deg) sc2 = FK4() with pytest.raises( ValueError, match="cannot compare: one frame has data and the other does not" ): sc1 == sc2 with pytest.raises( ValueError, match="cannot compare: one frame has data and the other does not" ): sc2 == sc1 def test_dynamic_attrs(): c = ICRS(1 * u.deg, 2 * u.deg) assert "ra" in dir(c) assert "dec" in dir(c) with pytest.raises(AttributeError) as err: c.blahblah assert "object has no attribute 'blahblah'" in str(err.value) with pytest.raises(AttributeError) as err: c.ra = 1 assert "Cannot set any frame attribute" in str(err.value) c.blahblah = 1 assert c.blahblah == 1 def test_nodata_error(): i = ICRS() with pytest.raises(ValueError) as excinfo: i.data assert "does not have associated data" in str(excinfo.value) def test_len0_data(): i = ICRS([] * u.deg, [] * u.deg) assert i.has_data repr(i) def test_quantity_attributes(): # make sure we can create a GCRS frame with valid inputs GCRS(obstime="J2002", obsgeoloc=[1, 2, 3] * u.km, obsgeovel=[4, 5, 6] * u.km / u.s) # make sure it fails for invalid lovs or vels with pytest.raises(TypeError): GCRS(obsgeoloc=[1, 2, 3]) # no unit with pytest.raises(u.UnitsError): GCRS(obsgeoloc=[1, 2, 3] * u.km / u.s) # incorrect unit with pytest.raises(ValueError): GCRS(obsgeoloc=[1, 3] * u.km) # incorrect shape def test_quantity_attribute_default(): # The default default (yes) is None: class MyCoord(BaseCoordinateFrame): someval = QuantityAttribute(unit=u.deg) frame = MyCoord() assert frame.someval is None frame = MyCoord(someval=15 * u.deg) assert u.isclose(frame.someval, 15 * u.deg) # This should work if we don't explicitly pass in a unit, but we pass in a # default value with a unit class MyCoord2(BaseCoordinateFrame): someval = QuantityAttribute(15 * u.deg) frame = MyCoord2() assert u.isclose(frame.someval, 15 * u.deg) # Since here no shape was given, we can set to any shape we like. frame = MyCoord2(someval=np.ones(3) * u.deg) assert frame.someval.shape == (3,) assert np.all(frame.someval == 1 * u.deg) # We should also be able to insist on a given shape. class MyCoord3(BaseCoordinateFrame): someval = QuantityAttribute(unit=u.arcsec, shape=(3,)) frame = MyCoord3(someval=np.ones(3) * u.deg) assert frame.someval.shape == (3,) assert frame.someval.unit == u.arcsec assert u.allclose(frame.someval.value, 3600.0) # The wrong shape raises. with pytest.raises(ValueError, match="shape"): MyCoord3(someval=1.0 * u.deg) # As does the wrong unit. with pytest.raises(u.UnitsError): MyCoord3(someval=np.ones(3) * u.m) # We are allowed a short-cut for zero. frame0 = MyCoord3(someval=0) assert frame0.someval.shape == (3,) assert frame0.someval.unit == u.arcsec assert np.all(frame0.someval.value == 0.0) # But not if it has the wrong shape. with pytest.raises(ValueError, match="shape"): MyCoord3(someval=np.zeros(2)) # This should fail, if we don't pass in a default or a unit with pytest.raises(ValueError): class MyCoord(BaseCoordinateFrame): someval = QuantityAttribute() def test_eloc_attributes(): el = EarthLocation(lon=12.3 * u.deg, lat=45.6 * u.deg, height=1 * u.km) it = ITRS( r.SphericalRepresentation(lon=12.3 * u.deg, lat=45.6 * u.deg, distance=1 * u.km) ) gc = GCRS(ra=12.3 * u.deg, dec=45.6 * u.deg, distance=6375 * u.km) el1 = AltAz(location=el).location assert isinstance(el1, EarthLocation) # these should match *exactly* because the EarthLocation assert el1.lat == el.lat assert el1.lon == el.lon assert el1.height == el.height el2 = AltAz(location=it).location assert isinstance(el2, EarthLocation) # these should *not* match because giving something in Spherical ITRS is # *not* the same as giving it as an EarthLocation: EarthLocation is on an # elliptical geoid. So the longitude should match (because flattening is # only along the z-axis), but latitude should not. Also, height is relative # to the *surface* in EarthLocation, but the ITRS distance is relative to # the center of the Earth assert not allclose(el2.lat, it.spherical.lat) assert allclose(el2.lon, it.spherical.lon) assert el2.height < -6000 * u.km el3 = AltAz(location=gc).location # GCRS inputs implicitly get transformed to ITRS and then onto # EarthLocation's elliptical geoid. So both lat and lon shouldn't match assert isinstance(el3, EarthLocation) assert not allclose(el3.lat, gc.dec) assert not allclose(el3.lon, gc.ra) assert np.abs(el3.height) < 500 * u.km def test_equivalent_frames(): i = ICRS() i2 = ICRS(1 * u.deg, 2 * u.deg) assert i.is_equivalent_frame(i) assert i.is_equivalent_frame(i2) with pytest.raises(TypeError): assert i.is_equivalent_frame(10) with pytest.raises(TypeError): assert i2.is_equivalent_frame(SkyCoord(i2)) f0 = FK5() # this J2000 is TT f1 = FK5(equinox="J2000") f2 = FK5(1 * u.deg, 2 * u.deg, equinox="J2000") f3 = FK5(equinox="J2010") f4 = FK4(equinox="J2010") assert f1.is_equivalent_frame(f1) assert not i.is_equivalent_frame(f1) assert f0.is_equivalent_frame(f1) assert f1.is_equivalent_frame(f2) assert not f1.is_equivalent_frame(f3) assert not f3.is_equivalent_frame(f4) aa1 = AltAz() aa2 = AltAz(obstime="J2010") assert aa2.is_equivalent_frame(aa2) assert not aa1.is_equivalent_frame(i) assert not aa1.is_equivalent_frame(aa2) def test_equivalent_frame_coordinateattribute(): class FrameWithCoordinateAttribute(BaseCoordinateFrame): coord_attr = CoordinateAttribute(HCRS) # These frames should not be considered equivalent f0 = FrameWithCoordinateAttribute() f1 = FrameWithCoordinateAttribute( coord_attr=HCRS(1 * u.deg, 2 * u.deg, obstime="J2000") ) f2 = FrameWithCoordinateAttribute( coord_attr=HCRS(3 * u.deg, 4 * u.deg, obstime="J2000") ) f3 = FrameWithCoordinateAttribute( coord_attr=HCRS(1 * u.deg, 2 * u.deg, obstime="J2001") ) assert not f0.is_equivalent_frame(f1) assert not f1.is_equivalent_frame(f0) assert not f1.is_equivalent_frame(f2) assert not f1.is_equivalent_frame(f3) assert not f2.is_equivalent_frame(f3) # They each should still be equivalent to a deep copy of themselves assert f0.is_equivalent_frame(deepcopy(f0)) assert f1.is_equivalent_frame(deepcopy(f1)) assert f2.is_equivalent_frame(deepcopy(f2)) assert f3.is_equivalent_frame(deepcopy(f3)) def test_equivalent_frame_locationattribute(): class FrameWithLocationAttribute(BaseCoordinateFrame): loc_attr = EarthLocationAttribute() # These frames should not be considered equivalent f0 = FrameWithLocationAttribute() location = EarthLocation(lat=-34, lon=19, height=300) f1 = FrameWithLocationAttribute(loc_attr=location) assert not f0.is_equivalent_frame(f1) assert not f1.is_equivalent_frame(f0) # They each should still be equivalent to a deep copy of themselves assert f0.is_equivalent_frame(deepcopy(f0)) assert f1.is_equivalent_frame(deepcopy(f1)) def test_representation_subclass(): # Regression test for #3354 # Normally when instantiating a frame without a distance the frame will try # and use UnitSphericalRepresentation internally instead of # SphericalRepresentation. frame = FK5( representation_type=r.SphericalRepresentation, ra=32 * u.deg, dec=20 * u.deg ) assert type(frame._data) == r.UnitSphericalRepresentation assert frame.representation_type == r.SphericalRepresentation # If using a SphericalRepresentation class this used to not work, so we # test here that this is now fixed. class NewSphericalRepresentation(r.SphericalRepresentation): attr_classes = r.SphericalRepresentation.attr_classes frame = FK5( representation_type=NewSphericalRepresentation, lon=32 * u.deg, lat=20 * u.deg ) assert type(frame._data) == r.UnitSphericalRepresentation assert frame.representation_type == NewSphericalRepresentation # A similar issue then happened in __repr__ with subclasses of # SphericalRepresentation. assert ( repr(frame) == "<FK5 Coordinate (equinox=J2000.000): (lon, lat) in deg\n (32., 20.)>" ) # A more subtle issue is when specifying a custom # UnitSphericalRepresentation subclass for the data and # SphericalRepresentation or a subclass for the representation. class NewUnitSphericalRepresentation(r.UnitSphericalRepresentation): attr_classes = r.UnitSphericalRepresentation.attr_classes def __repr__(self): return "<NewUnitSphericalRepresentation: spam spam spam>" frame = FK5( NewUnitSphericalRepresentation(lon=32 * u.deg, lat=20 * u.deg), representation_type=NewSphericalRepresentation, ) assert repr(frame) == "<FK5 Coordinate (equinox=J2000.000): spam spam spam>" def test_getitem_representation(): """ Make sure current representation survives __getitem__ even if different from data representation. """ c = ICRS([1, 1] * u.deg, [2, 2] * u.deg) c.representation_type = "cartesian" assert c[0].representation_type is r.CartesianRepresentation def test_component_error_useful(): """ Check that a data-less frame gives useful error messages about not having data when the attributes asked for are possible coordinate components """ i = ICRS() with pytest.raises(ValueError) as excinfo: i.ra assert "does not have associated data" in str(excinfo.value) with pytest.raises(AttributeError) as excinfo1: i.foobar with pytest.raises(AttributeError) as excinfo2: i.lon # lon is *not* the component name despite being the underlying representation's name assert "object has no attribute 'foobar'" in str(excinfo1.value) assert "object has no attribute 'lon'" in str(excinfo2.value) def test_cache_clear(): i = ICRS(1 * u.deg, 2 * u.deg) # Add an in frame units version of the rep to the cache. repr(i) assert len(i.cache["representation"]) == 2 i.cache.clear() assert len(i.cache["representation"]) == 0 def test_inplace_array(): i = ICRS([[1, 2], [3, 4]] * u.deg, [[10, 20], [30, 40]] * u.deg) # Add an in frame units version of the rep to the cache. repr(i) # Check that repr() has added a rep to the cache assert len(i.cache["representation"]) == 2 # Modify the data i.data.lon[:, 0] = [100, 200] * u.deg # Clear the cache i.cache.clear() # This will use a second (potentially cached rep) assert_allclose(i.ra, [[100, 2], [200, 4]] * u.deg) assert_allclose(i.dec, [[10, 20], [30, 40]] * u.deg) def test_inplace_change(): i = ICRS(1 * u.deg, 2 * u.deg) # Add an in frame units version of the rep to the cache. repr(i) # Check that repr() has added a rep to the cache assert len(i.cache["representation"]) == 2 # Modify the data i.data.lon[()] = 10 * u.deg # Clear the cache i.cache.clear() # This will use a second (potentially cached rep) assert i.ra == 10 * u.deg assert i.dec == 2 * u.deg def test_representation_with_multiple_differentials(): dif1 = r.CartesianDifferential([1, 2, 3] * u.km / u.s) dif2 = r.CartesianDifferential([1, 2, 3] * u.km / u.s**2) rep = r.CartesianRepresentation( [1, 2, 3] * u.pc, differentials={"s": dif1, "s2": dif2} ) # check warning is raised for a scalar with pytest.raises(ValueError): ICRS(rep) def test_missing_component_error_names(): """ This test checks that the component names are frame component names, not representation or differential names, when referenced in an exception raised when not passing in enough data. For example: ICRS(ra=10*u.deg) should state: TypeError: __init__() missing 1 required positional argument: 'dec' """ with pytest.raises(TypeError) as e: ICRS(ra=150 * u.deg) assert "missing 1 required positional argument: 'dec'" in str(e.value) with pytest.raises(TypeError) as e: ICRS( ra=150 * u.deg, dec=-11 * u.deg, pm_ra=100 * u.mas / u.yr, pm_dec=10 * u.mas / u.yr, ) assert "pm_ra_cosdec" in str(e.value) def test_non_spherical_representation_unit_creation(unitphysics): # noqa: F811 class PhysicsICRS(ICRS): default_representation = r.PhysicsSphericalRepresentation pic = PhysicsICRS(phi=1 * u.deg, theta=25 * u.deg, r=1 * u.kpc) assert isinstance(pic.data, r.PhysicsSphericalRepresentation) picu = PhysicsICRS(phi=1 * u.deg, theta=25 * u.deg) assert isinstance(picu.data, unitphysics) def test_attribute_repr(): class Spam: def _astropy_repr_in_frame(self): return "TEST REPR" class TestFrame(BaseCoordinateFrame): attrtest = Attribute(default=Spam()) assert "TEST REPR" in repr(TestFrame()) def test_component_names_repr(): # Frame class with new component names that includes a name swap class NameChangeFrame(BaseCoordinateFrame): default_representation = r.PhysicsSphericalRepresentation frame_specific_representation_info = { r.PhysicsSphericalRepresentation: [ RepresentationMapping("phi", "theta", u.deg), RepresentationMapping("theta", "phi", u.arcsec), RepresentationMapping("r", "JUSTONCE", u.AU), ] } frame = NameChangeFrame(0 * u.deg, 0 * u.arcsec, 0 * u.AU) # Check for the new names in the Frame repr assert "(theta, phi, JUSTONCE)" in repr(frame) # Check that the letter "r" has not been replaced more than once in the Frame repr assert repr(frame).count("JUSTONCE") == 1 def test_galactocentric_defaults(): with galactocentric_frame_defaults.set("pre-v4.0"): galcen_pre40 = Galactocentric() with galactocentric_frame_defaults.set("v4.0"): galcen_40 = Galactocentric() with galactocentric_frame_defaults.set("latest"): galcen_latest = Galactocentric() # parameters that changed assert not u.allclose(galcen_pre40.galcen_distance, galcen_40.galcen_distance) assert not u.allclose(galcen_pre40.z_sun, galcen_40.z_sun) for k in galcen_40.frame_attributes: if isinstance(getattr(galcen_40, k), BaseCoordinateFrame): continue # skip coordinate comparison... elif isinstance(getattr(galcen_40, k), CartesianDifferential): assert u.allclose( getattr(galcen_40, k).d_xyz, getattr(galcen_latest, k).d_xyz ) else: assert getattr(galcen_40, k) == getattr(galcen_latest, k) # test validate Galactocentric with galactocentric_frame_defaults.set("latest"): params = galactocentric_frame_defaults.validate(galcen_latest) references = galcen_latest.frame_attribute_references state = dict(parameters=params, references=references) assert galactocentric_frame_defaults.parameters == params assert galactocentric_frame_defaults.references == references assert galactocentric_frame_defaults._state == state # Test not one of accepted parameter types with pytest.raises(ValueError): galactocentric_frame_defaults.validate(ValueError) # test parameters property assert ( galactocentric_frame_defaults.parameters == galactocentric_frame_defaults.parameters ) def test_galactocentric_references(): # references in the "scientific paper"-sense with galactocentric_frame_defaults.set("pre-v4.0"): galcen_pre40 = Galactocentric() for k in galcen_pre40.frame_attributes: if k == "roll": # no reference for this parameter continue assert k in galcen_pre40.frame_attribute_references with galactocentric_frame_defaults.set("v4.0"): galcen_40 = Galactocentric() for k in galcen_40.frame_attributes: if k == "roll": # no reference for this parameter continue assert k in galcen_40.frame_attribute_references with galactocentric_frame_defaults.set("v4.0"): galcen_custom = Galactocentric(z_sun=15 * u.pc) for k in galcen_custom.frame_attributes: if k == "roll": # no reference for this parameter continue if k == "z_sun": assert k not in galcen_custom.frame_attribute_references else: assert k in galcen_custom.frame_attribute_references def test_coordinateattribute_transformation(): class FrameWithCoordinateAttribute(BaseCoordinateFrame): coord_attr = CoordinateAttribute(HCRS) hcrs = HCRS(1 * u.deg, 2 * u.deg, 3 * u.AU, obstime="2001-02-03") f1_frame = FrameWithCoordinateAttribute(coord_attr=hcrs) f1_skycoord = FrameWithCoordinateAttribute(coord_attr=SkyCoord(hcrs)) # The input is already HCRS, so the frame attribute should not change it assert f1_frame.coord_attr == hcrs # The output should not be different if a SkyCoord is provided assert f1_skycoord.coord_attr == f1_frame.coord_attr gcrs = GCRS(4 * u.deg, 5 * u.deg, 6 * u.AU, obstime="2004-05-06") f2_frame = FrameWithCoordinateAttribute(coord_attr=gcrs) f2_skycoord = FrameWithCoordinateAttribute(coord_attr=SkyCoord(gcrs)) # The input needs to be converted from GCRS to HCRS assert isinstance(f2_frame.coord_attr, HCRS) # The `obstime` frame attribute should have been "merged" in a SkyCoord-style transformation assert f2_frame.coord_attr.obstime == gcrs.obstime # The output should not be different if a SkyCoord is provided assert f2_skycoord.coord_attr == f2_frame.coord_attr def test_realize_frame_accepts_kwargs(): c1 = ICRS( x=1 * u.pc, y=2 * u.pc, z=3 * u.pc, representation_type=r.CartesianRepresentation, ) new_data = r.CartesianRepresentation(x=11 * u.pc, y=12 * u.pc, z=13 * u.pc) c2 = c1.realize_frame(new_data, representation_type="cartesian") c3 = c1.realize_frame(new_data, representation_type="cylindrical") assert c2.representation_type == r.CartesianRepresentation assert c3.representation_type == r.CylindricalRepresentation def test_nameless_frame_subclass(): """Note: this is a regression test for #11096""" class Test: pass # Subclass from a frame class and a non-frame class. # This subclassing is the test! class NewFrame(ICRS, Test): pass def test_frame_coord_comparison(): """Test that frame can be compared to a SkyCoord""" frame = ICRS(0 * u.deg, 0 * u.deg) coord = SkyCoord(frame) other = SkyCoord(ICRS(0 * u.deg, 1 * u.deg)) assert frame == coord assert frame != other assert not (frame == other) error_msg = "objects must have equivalent frames" with pytest.raises(TypeError, match=error_msg): frame == SkyCoord(AltAz("0d", "1d")) coord = SkyCoord(ra=12 * u.hourangle, dec=5 * u.deg, frame=FK5(equinox="J1950")) frame = FK5(ra=12 * u.hourangle, dec=5 * u.deg, equinox="J2000") with pytest.raises(TypeError, match=error_msg): coord == frame frame = ICRS() coord = SkyCoord(0 * u.deg, 0 * u.deg, frame=frame) error_msg = "Can only compare SkyCoord to Frame with data" with pytest.raises(ValueError, match=error_msg): frame == coord
aa5af3d8c2d8816542b9aa7f357a2a2c92b95a037782f7e831f175da7db0eda6
""" This file tests the behavior of subclasses of Representation and Frames """ from copy import deepcopy import astropy.coordinates import astropy.units as u from astropy.coordinates import ICRS, Latitude, Longitude from astropy.coordinates.baseframe import RepresentationMapping, frame_transform_graph from astropy.coordinates.representation import ( REPRESENTATION_CLASSES, SphericalRepresentation, UnitSphericalRepresentation, _invalidate_reprdiff_cls_hash, ) from astropy.coordinates.transformations import FunctionTransform # Classes setup, borrowed from SunPy. # Here we define the classes *inside* the tests to make sure that we can wipe # the slate clean when the tests have finished running. def setup_function(func): func.REPRESENTATION_CLASSES_ORIG = deepcopy(REPRESENTATION_CLASSES) def teardown_function(func): REPRESENTATION_CLASSES.clear() REPRESENTATION_CLASSES.update(func.REPRESENTATION_CLASSES_ORIG) _invalidate_reprdiff_cls_hash() def test_unit_representation_subclass(): class Longitude180(Longitude): def __new__(cls, angle, unit=None, wrap_angle=180 * u.deg, **kwargs): self = super().__new__( cls, angle, unit=unit, wrap_angle=wrap_angle, **kwargs ) return self class UnitSphericalWrap180Representation(UnitSphericalRepresentation): attr_classes = {"lon": Longitude180, "lat": Latitude} class SphericalWrap180Representation(SphericalRepresentation): attr_classes = {"lon": Longitude180, "lat": Latitude, "distance": u.Quantity} _unit_representation = UnitSphericalWrap180Representation class MyFrame(ICRS): default_representation = SphericalWrap180Representation frame_specific_representation_info = { "spherical": [ RepresentationMapping("lon", "ra"), RepresentationMapping("lat", "dec"), ] } frame_specific_representation_info[ "unitsphericalwrap180" ] = frame_specific_representation_info[ "sphericalwrap180" ] = frame_specific_representation_info[ "spherical" ] @frame_transform_graph.transform( FunctionTransform, MyFrame, astropy.coordinates.ICRS ) def myframe_to_icrs(myframe_coo, icrs): return icrs.realize_frame(myframe_coo._data) f = MyFrame(10 * u.deg, 10 * u.deg) assert isinstance(f._data, UnitSphericalWrap180Representation) assert isinstance(f.ra, Longitude180) g = f.transform_to(astropy.coordinates.ICRS()) assert isinstance(g, astropy.coordinates.ICRS) assert isinstance(g._data, UnitSphericalWrap180Representation) frame_transform_graph.remove_transform(MyFrame, astropy.coordinates.ICRS, None)
89ef56ecad8c58859d4cf31609aef3bda9413eedbbdbd304597281f1b2d6d3b3
import os from urllib.error import HTTPError, URLError import numpy as np import pytest from astropy import units as u from astropy.constants import c from astropy.coordinates.builtin_frames import TETE from astropy.coordinates.earth import EarthLocation from astropy.coordinates.funcs import get_sun from astropy.coordinates.representation import ( CartesianRepresentation, UnitSphericalRepresentation, ) from astropy.coordinates.sky_coordinate import SkyCoord from astropy.coordinates.solar_system import ( BODY_NAME_TO_KERNEL_SPEC, _get_apparent_body_position, get_body, get_body_barycentric, get_body_barycentric_posvel, get_moon, solar_system_ephemeris, ) from astropy.tests.helper import assert_quantity_allclose from astropy.time import Time from astropy.units import allclose as quantity_allclose from astropy.utils.compat.optional_deps import HAS_JPLEPHEM, HAS_SKYFIELD from astropy.utils.data import download_file, get_pkg_data_filename if HAS_SKYFIELD: from skyfield.api import Loader, Topos de432s_separation_tolerance_planets = 5 * u.arcsec de432s_separation_tolerance_moon = 5 * u.arcsec de432s_distance_tolerance = 20 * u.km skyfield_angular_separation_tolerance = 1 * u.arcsec skyfield_separation_tolerance = 10 * u.km @pytest.mark.remote_data @pytest.mark.skipif(not HAS_SKYFIELD, reason="requires skyfield") def test_positions_skyfield(tmp_path): """ Test positions against those generated by skyfield. """ load = Loader(tmp_path) t = Time("1980-03-25 00:00") location = None # skyfield ephemeris try: planets = load("de421.bsp") ts = load.timescale() except OSError as e: if os.environ.get("CI", False) and "timed out" in str(e): pytest.xfail("Timed out in CI") else: raise mercury, jupiter, moon = ( planets["mercury"], planets["jupiter barycenter"], planets["moon"], ) earth = planets["earth"] skyfield_t = ts.from_astropy(t) if location is not None: earth = earth + Topos( latitude_degrees=location.lat.to_value(u.deg), longitude_degrees=location.lon.to_value(u.deg), elevation_m=location.height.to_value(u.m), ) skyfield_mercury = earth.at(skyfield_t).observe(mercury).apparent() skyfield_jupiter = earth.at(skyfield_t).observe(jupiter).apparent() skyfield_moon = earth.at(skyfield_t).observe(moon).apparent() if location is not None: frame = TETE(obstime=t, location=location) else: frame = TETE(obstime=t) ra, dec, dist = skyfield_mercury.radec(epoch="date") skyfield_mercury = SkyCoord( ra.to(u.deg), dec.to(u.deg), distance=dist.to(u.km), frame=frame ) ra, dec, dist = skyfield_jupiter.radec(epoch="date") skyfield_jupiter = SkyCoord( ra.to(u.deg), dec.to(u.deg), distance=dist.to(u.km), frame=frame ) ra, dec, dist = skyfield_moon.radec(epoch="date") skyfield_moon = SkyCoord( ra.to(u.deg), dec.to(u.deg), distance=dist.to(u.km), frame=frame ) # planet positions w.r.t true equator and equinox moon_astropy = get_moon(t, location, ephemeris="de430").transform_to(frame) mercury_astropy = get_body("mercury", t, location, ephemeris="de430").transform_to( frame ) jupiter_astropy = get_body("jupiter", t, location, ephemeris="de430").transform_to( frame ) assert ( moon_astropy.separation(skyfield_moon) < skyfield_angular_separation_tolerance ) assert moon_astropy.separation_3d(skyfield_moon) < skyfield_separation_tolerance assert ( jupiter_astropy.separation(skyfield_jupiter) < skyfield_angular_separation_tolerance ) assert ( jupiter_astropy.separation_3d(skyfield_jupiter) < skyfield_separation_tolerance ) assert ( mercury_astropy.separation(skyfield_mercury) < skyfield_angular_separation_tolerance ) assert ( mercury_astropy.separation_3d(skyfield_mercury) < skyfield_separation_tolerance ) planets.close() class TestPositionsGeocentric: """ Test positions against those generated by JPL Horizons accessed on 2016-03-28, with refraction turned on. """ def setup_method(self): self.t = Time("1980-03-25 00:00") self.apparent_frame = TETE(obstime=self.t) # Results returned by JPL Horizons web interface self.horizons = { "mercury": SkyCoord( ra="22h41m47.78s", dec="-08d29m32.0s", distance=c * 6.323037 * u.min, frame=self.apparent_frame, ), "moon": SkyCoord( ra="07h32m02.62s", dec="+18d34m05.0s", distance=c * 0.021921 * u.min, frame=self.apparent_frame, ), "jupiter": SkyCoord( ra="10h17m12.82s", dec="+12d02m57.0s", distance=c * 37.694557 * u.min, frame=self.apparent_frame, ), "sun": SkyCoord( ra="00h16m31.00s", dec="+01d47m16.9s", distance=c * 8.294858 * u.min, frame=self.apparent_frame, ), } @pytest.mark.parametrize( ("body", "sep_tol", "dist_tol"), ( ("mercury", 7.0 * u.arcsec, 1000 * u.km), ("jupiter", 78.0 * u.arcsec, 76000 * u.km), ("moon", 20.0 * u.arcsec, 80 * u.km), ("sun", 5.0 * u.arcsec, 11.0 * u.km), ), ) def test_erfa_planet(self, body, sep_tol, dist_tol): """Test predictions using erfa/plan94. Accuracies are maximum deviations listed in erfa/plan94.c, for Jupiter and Mercury, and that quoted in Meeus "Astronomical Algorithms" (1998) for the Moon. """ astropy = get_body(body, self.t, ephemeris="builtin") horizons = self.horizons[body] # convert to true equator and equinox astropy = astropy.transform_to(self.apparent_frame) # Assert sky coordinates are close. assert astropy.separation(horizons) < sep_tol # Assert distances are close. assert_quantity_allclose(astropy.distance, horizons.distance, atol=dist_tol) @pytest.mark.remote_data @pytest.mark.skipif(not HAS_JPLEPHEM, reason="requires jplephem") @pytest.mark.parametrize("body", ("mercury", "jupiter", "sun")) def test_de432s_planet(self, body): astropy = get_body(body, self.t, ephemeris="de432s") horizons = self.horizons[body] # convert to true equator and equinox astropy = astropy.transform_to(self.apparent_frame) # Assert sky coordinates are close. assert astropy.separation(horizons) < de432s_separation_tolerance_planets # Assert distances are close. assert_quantity_allclose( astropy.distance, horizons.distance, atol=de432s_distance_tolerance ) @pytest.mark.remote_data @pytest.mark.skipif(not HAS_JPLEPHEM, reason="requires jplephem") def test_de432s_moon(self): astropy = get_moon(self.t, ephemeris="de432s") horizons = self.horizons["moon"] # convert to true equator and equinox astropy = astropy.transform_to(self.apparent_frame) # Assert sky coordinates are close. assert astropy.separation(horizons) < de432s_separation_tolerance_moon # Assert distances are close. assert_quantity_allclose( astropy.distance, horizons.distance, atol=de432s_distance_tolerance ) class TestPositionKittPeak: """ Test positions against those generated by JPL Horizons accessed on 2016-03-28, with refraction turned on. """ def setup_method(self): kitt_peak = EarthLocation.from_geodetic( lon=-111.6 * u.deg, lat=31.963333333333342 * u.deg, height=2120 * u.m ) self.t = Time("2014-09-25T00:00", location=kitt_peak) self.apparent_frame = TETE(obstime=self.t, location=kitt_peak) # Results returned by JPL Horizons web interface self.horizons = { "mercury": SkyCoord( ra="13h38m58.50s", dec="-13d34m42.6s", distance=c * 7.699020 * u.min, frame=self.apparent_frame, ), "moon": SkyCoord( ra="12h33m12.85s", dec="-05d17m54.4s", distance=c * 0.022054 * u.min, frame=self.apparent_frame, ), "jupiter": SkyCoord( ra="09h09m55.55s", dec="+16d51m57.8s", distance=c * 49.244937 * u.min, frame=self.apparent_frame, ), } @pytest.mark.parametrize( ("body", "sep_tol", "dist_tol"), ( ("mercury", 7.0 * u.arcsec, 500 * u.km), ("jupiter", 78.0 * u.arcsec, 82000 * u.km), ), ) def test_erfa_planet(self, body, sep_tol, dist_tol): """Test predictions using erfa/plan94. Accuracies are maximum deviations listed in erfa/plan94.c. """ # Add uncertainty in position of Earth dist_tol = dist_tol + 1300 * u.km astropy = get_body(body, self.t, ephemeris="builtin") horizons = self.horizons[body] # convert to true equator and equinox astropy = astropy.transform_to(self.apparent_frame) # Assert sky coordinates are close. assert astropy.separation(horizons) < sep_tol # Assert distances are close. assert_quantity_allclose(astropy.distance, horizons.distance, atol=dist_tol) @pytest.mark.remote_data @pytest.mark.skipif(not HAS_JPLEPHEM, reason="requires jplephem") @pytest.mark.parametrize("body", ("mercury", "jupiter")) def test_de432s_planet(self, body): astropy = get_body(body, self.t, ephemeris="de432s") horizons = self.horizons[body] # convert to true equator and equinox astropy = astropy.transform_to(self.apparent_frame) # Assert sky coordinates are close. assert astropy.separation(horizons) < de432s_separation_tolerance_planets # Assert distances are close. assert_quantity_allclose( astropy.distance, horizons.distance, atol=de432s_distance_tolerance ) @pytest.mark.remote_data @pytest.mark.skipif(not HAS_JPLEPHEM, reason="requires jplephem") def test_de432s_moon(self): astropy = get_moon(self.t, ephemeris="de432s") horizons = self.horizons["moon"] # convert to true equator and equinox astropy = astropy.transform_to(self.apparent_frame) # Assert sky coordinates are close. assert astropy.separation(horizons) < de432s_separation_tolerance_moon # Assert distances are close. assert_quantity_allclose( astropy.distance, horizons.distance, atol=de432s_distance_tolerance ) @pytest.mark.remote_data @pytest.mark.skipif(not HAS_JPLEPHEM, reason="requires jplephem") @pytest.mark.parametrize("bodyname", ("mercury", "jupiter")) def test_custom_kernel_spec_body(self, bodyname): """ Checks that giving a kernel specifier instead of a body name works """ coord_by_name = get_body(bodyname, self.t, ephemeris="de432s") kspec = BODY_NAME_TO_KERNEL_SPEC[bodyname] coord_by_kspec = get_body(kspec, self.t, ephemeris="de432s") assert_quantity_allclose(coord_by_name.ra, coord_by_kspec.ra) assert_quantity_allclose(coord_by_name.dec, coord_by_kspec.dec) assert_quantity_allclose(coord_by_name.distance, coord_by_kspec.distance) @pytest.mark.remote_data @pytest.mark.skipif(not HAS_JPLEPHEM, reason="requires jplephem") def test_horizons_consistency_with_precision(): """ A test to compare at high precision against output of JPL horizons. Tests ephemerides, and conversions from ICRS to GCRS to TETE. We are aiming for better than 2 milli-arcsecond precision. We use the Moon since it is nearby, and moves fast in the sky so we are testing for parallax, proper handling of light deflection and aberration. """ # JPL Horizon values for 2020_04_06 00:00 to 23:00 in 1 hour steps # JPL Horizons has a known offset (frame bias) of 51.02 mas in RA. We correct that here ra_apparent_horizons = [ 170.167332531, 170.560688674, 170.923834838, 171.271663481, 171.620188972, 171.985340827, 172.381766539, 172.821772139, 173.314502650, 173.865422398, 174.476108551, 175.144332386, 175.864375310, 176.627519827, 177.422655853, 178.236955730, 179.056584831, 179.867427392, 180.655815385, 181.409252074, 182.117113814, 182.771311578, 183.366872837, 183.902395443, ] * u.deg + 51.02376467 * u.mas dec_apparent_horizons = [ 10.269112037, 10.058820647, 9.837152044, 9.603724551, 9.358956528, 9.104012390, 8.840674927, 8.571162442, 8.297917326, 8.023394488, 7.749873882, 7.479312991, 7.213246666, 6.952732614, 6.698336823, 6.450150213, 6.207828142, 5.970645962, 5.737565957, 5.507313851, 5.278462034, 5.049521497, 4.819038911, 4.585696512, ] * u.deg with solar_system_ephemeris.set("de430"): loc = EarthLocation.from_geodetic( -67.787260 * u.deg, -22.959748 * u.deg, 5186 * u.m ) times = Time("2020-04-06 00:00") + np.arange(0, 24, 1) * u.hour astropy = get_body("moon", times, loc) apparent_frame = TETE(obstime=times, location=loc) astropy = astropy.transform_to(apparent_frame) usrepr = UnitSphericalRepresentation( ra_apparent_horizons, dec_apparent_horizons ) horizons = apparent_frame.realize_frame(usrepr) assert_quantity_allclose(astropy.separation(horizons), 0 * u.mas, atol=1.5 * u.mas) @pytest.mark.remote_data @pytest.mark.skipif(not HAS_JPLEPHEM, reason="requires jplephem") @pytest.mark.parametrize( "time", (Time("1960-01-12 00:00"), Time("1980-03-25 00:00"), Time("2010-10-13 00:00")), ) def test_get_sun_consistency(time): """ Test that the sun from JPL and the builtin get_sun match """ sun_jpl_gcrs = get_body("sun", time, ephemeris="de432s") builtin_get_sun = get_sun(time) sep = builtin_get_sun.separation(sun_jpl_gcrs) assert sep < 0.1 * u.arcsec def test_get_moon_nonscalar_regression(): """ Test that the builtin ephemeris works with non-scalar times. See Issue #5069. """ times = Time(["2015-08-28 03:30", "2015-09-05 10:30"]) # the following line will raise an Exception if the bug recurs. get_moon(times, ephemeris="builtin") def test_barycentric_pos_posvel_same(): # Check that the two routines give identical results. ep1 = get_body_barycentric("earth", Time("2016-03-20T12:30:00")) ep2, _ = get_body_barycentric_posvel("earth", Time("2016-03-20T12:30:00")) assert np.all(ep1.xyz == ep2.xyz) def test_earth_barycentric_velocity_rough(): # Check that a time near the equinox gives roughly the right result. ep, ev = get_body_barycentric_posvel("earth", Time("2016-03-20T12:30:00")) assert_quantity_allclose(ep.xyz, [-1.0, 0.0, 0.0] * u.AU, atol=0.01 * u.AU) expected = ( u.Quantity([0.0 * u.one, np.cos(23.5 * u.deg), np.sin(23.5 * u.deg)]) * -30.0 * u.km / u.s ) assert_quantity_allclose(ev.xyz, expected, atol=1.0 * u.km / u.s) def test_earth_barycentric_velocity_multi_d(): # Might as well test it with a multidimensional array too. t = Time("2016-03-20T12:30:00") + np.arange(8.0).reshape(2, 2, 2) * u.yr / 2.0 ep, ev = get_body_barycentric_posvel("earth", t) # note: assert_quantity_allclose doesn't like the shape mismatch. # this is a problem with np.testing.assert_allclose. assert quantity_allclose( ep.get_xyz(xyz_axis=-1), [[-1.0, 0.0, 0.0], [+1.0, 0.0, 0.0]] * u.AU, atol=0.06 * u.AU, ) expected = u.Quantity([0.0 * u.one, np.cos(23.5 * u.deg), np.sin(23.5 * u.deg)]) * ( [[-30.0], [30.0]] * u.km / u.s ) assert quantity_allclose(ev.get_xyz(xyz_axis=-1), expected, atol=2.0 * u.km / u.s) @pytest.mark.remote_data @pytest.mark.skipif(not HAS_JPLEPHEM, reason="requires jplephem") @pytest.mark.parametrize( ("body", "pos_tol", "vel_tol"), ( ("mercury", 1000.0 * u.km, 1.0 * u.km / u.s), ("jupiter", 100000.0 * u.km, 2.0 * u.km / u.s), ("earth", 10 * u.km, 10 * u.mm / u.s), ("moon", 18 * u.km, 50 * u.mm / u.s), ), ) def test_barycentric_velocity_consistency(body, pos_tol, vel_tol): # Tolerances are about 1.5 times the rms listed for plan94 and epv00, # except for Mercury (which nominally is 334 km rms), and the Moon # (which nominally is 6 km rms). t = Time("2016-03-20T12:30:00") ep, ev = get_body_barycentric_posvel(body, t, ephemeris="builtin") dp, dv = get_body_barycentric_posvel(body, t, ephemeris="de432s") assert_quantity_allclose(ep.xyz, dp.xyz, atol=pos_tol) assert_quantity_allclose(ev.xyz, dv.xyz, atol=vel_tol) # Might as well test it with a multidimensional array too. t = Time("2016-03-20T12:30:00") + np.arange(8.0).reshape(2, 2, 2) * u.yr / 2.0 ep, ev = get_body_barycentric_posvel(body, t, ephemeris="builtin") dp, dv = get_body_barycentric_posvel(body, t, ephemeris="de432s") assert_quantity_allclose(ep.xyz, dp.xyz, atol=pos_tol) assert_quantity_allclose(ev.xyz, dv.xyz, atol=vel_tol) @pytest.mark.remote_data @pytest.mark.skipif(not HAS_JPLEPHEM, reason="requires jplephem") @pytest.mark.parametrize( "time", (Time("1960-01-12 00:00"), Time("1980-03-25 00:00"), Time("2010-10-13 00:00")), ) def test_url_or_file_ephemeris(time): # URL for ephemeris de432s used for testing: url = "http://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de432s.bsp" # Pass the ephemeris directly as a URL. coord_by_url = get_body("earth", time, ephemeris=url) # Translate the URL to the cached location on the filesystem. # Since we just used the url above, it should already have been downloaded. filepath = download_file(url, cache=True) # Get the coordinates using the file path directly: coord_by_filepath = get_body("earth", time, ephemeris=filepath) # Using the URL or filepath should give exactly the same results: assert_quantity_allclose(coord_by_url.ra, coord_by_filepath.ra) assert_quantity_allclose(coord_by_url.dec, coord_by_filepath.dec) assert_quantity_allclose(coord_by_url.distance, coord_by_filepath.distance) @pytest.mark.remote_data @pytest.mark.skipif(not HAS_JPLEPHEM, reason="requires jplephem") def test_url_ephemeris_wrong_input(): time = Time("1960-01-12 00:00") with pytest.raises((HTTPError, URLError)): # A non-existent URL get_body( "earth", time, ephemeris=get_pkg_data_filename("path/to/nonexisting/file.bsp"), ) with pytest.raises(HTTPError): # A non-existent version of the JPL ephemeris get_body("earth", time, ephemeris="de001") with pytest.raises(ValueError): # An invalid string get_body("earth", time, ephemeris="not_an_ephemeris") @pytest.mark.skipif(not HAS_JPLEPHEM, reason="requires jplephem") def test_file_ephemeris_wrong_input(): time = Time("1960-01-12 00:00") # Try loading a non-existing file: with pytest.raises(ValueError): get_body("earth", time, ephemeris="/path/to/nonexisting/file.bsp") # NOTE: This test currently leaves the file open (ResourceWarning). # To fix this issue, an upstream fix is required in jplephem # package. # Try loading a file that does exist, but is not an ephemeris file: with pytest.warns(ResourceWarning), pytest.raises(ValueError): get_body("earth", time, ephemeris=__file__) def test_regression_10271(): t = Time(58973.534052125986, format="mjd") # GCRS position of ALMA at this time obs_p = CartesianRepresentation( 5724535.74068625, -1311071.58985697, -2492738.93017009, u.m ) geocentre = CartesianRepresentation(0, 0, 0, u.m) icrs_sun_from_alma = _get_apparent_body_position("sun", t, "builtin", obs_p) icrs_sun_from_geocentre = _get_apparent_body_position( "sun", t, "builtin", geocentre ) difference = (icrs_sun_from_alma - icrs_sun_from_geocentre).norm() assert_quantity_allclose(difference, 0.13046941 * u.m, atol=1 * u.mm)
41695d2931eed557df1e4ffd8778e3a2ef6c2481088f8a593dc1d55412744851
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np import pytest from astropy import units as u from astropy.coordinates import representation as r from astropy.coordinates import transformations as t from astropy.coordinates.baseframe import frame_transform_graph from astropy.coordinates.builtin_frames import ( FK4, FK5, HCRS, ICRS, AltAz, FK4NoETerms, Galactic, ) from astropy.coordinates.matrix_utilities import rotation_matrix from astropy.tests.helper import assert_quantity_allclose as assert_allclose from astropy.time import Time from astropy.units import allclose as quantity_allclose from astropy.utils.exceptions import AstropyWarning # Coordinates just for these tests. class TCoo1(ICRS): pass class TCoo2(ICRS): pass class TCoo3(ICRS): pass def test_transform_classes(): """ Tests the class-based/OO syntax for creating transforms """ def tfun(c, f): return f.__class__(ra=c.ra, dec=c.dec) _ = t.FunctionTransform(tfun, TCoo1, TCoo2, register_graph=frame_transform_graph) c1 = TCoo1(ra=1 * u.radian, dec=0.5 * u.radian) c2 = c1.transform_to(TCoo2()) assert_allclose(c2.ra.radian, 1) assert_allclose(c2.dec.radian, 0.5) def matfunc(coo, fr): return [[1, 0, 0], [0, coo.ra.degree, 0], [0, 0, 1]] trans2 = t.DynamicMatrixTransform(matfunc, TCoo1, TCoo2) trans2.register(frame_transform_graph) c3 = TCoo1(ra=1 * u.deg, dec=2 * u.deg) c4 = c3.transform_to(TCoo2()) assert_allclose(c4.ra.degree, 1) assert_allclose(c4.ra.degree, 1) # be sure to unregister the second one - no need for trans1 because it # already got unregistered when trans2 was created. trans2.unregister(frame_transform_graph) def test_transform_decos(): """ Tests the decorator syntax for creating transforms """ c1 = TCoo1(ra=1 * u.deg, dec=2 * u.deg) @frame_transform_graph.transform(t.FunctionTransform, TCoo1, TCoo2) def trans(coo1, f): return TCoo2(ra=coo1.ra, dec=coo1.dec * 2) c2 = c1.transform_to(TCoo2()) assert_allclose(c2.ra.degree, 1) assert_allclose(c2.dec.degree, 4) c3 = TCoo1(r.CartesianRepresentation(x=1 * u.pc, y=1 * u.pc, z=2 * u.pc)) @frame_transform_graph.transform(t.StaticMatrixTransform, TCoo1, TCoo2) def matrix(): return [[2, 0, 0], [0, 1, 0], [0, 0, 1]] c4 = c3.transform_to(TCoo2()) assert_allclose(c4.cartesian.x, 2 * u.pc) assert_allclose(c4.cartesian.y, 1 * u.pc) assert_allclose(c4.cartesian.z, 2 * u.pc) def test_shortest_path(): class FakeTransform: def __init__(self, pri): self.priority = pri g = t.TransformGraph() # cheating by adding graph elements directly that are not classes - the # graphing algorithm still works fine with integers - it just isn't a valid # TransformGraph # the graph looks is a down-going diamond graph with the lower-right slightly # heavier and a cycle from the bottom to the top # also, a pair of nodes isolated from 1 g._graph[1][2] = FakeTransform(1) g._graph[1][3] = FakeTransform(1) g._graph[2][4] = FakeTransform(1) g._graph[3][4] = FakeTransform(2) g._graph[4][1] = FakeTransform(5) g._graph[5][6] = FakeTransform(1) path, d = g.find_shortest_path(1, 2) assert path == [1, 2] assert d == 1 path, d = g.find_shortest_path(1, 3) assert path == [1, 3] assert d == 1 path, d = g.find_shortest_path(1, 4) print("Cached paths:", g._shortestpaths) assert path == [1, 2, 4] assert d == 2 # unreachable path, d = g.find_shortest_path(1, 5) assert path is None assert d == float("inf") path, d = g.find_shortest_path(5, 6) assert path == [5, 6] assert d == 1 def test_sphere_cart(): """ Tests the spherical <-> cartesian transform functions """ from astropy.coordinates import cartesian_to_spherical, spherical_to_cartesian from astropy.utils import NumpyRNGContext x, y, z = spherical_to_cartesian(1, 0, 0) assert_allclose(x, 1) assert_allclose(y, 0) assert_allclose(z, 0) x, y, z = spherical_to_cartesian(0, 1, 1) assert_allclose(x, 0) assert_allclose(y, 0) assert_allclose(z, 0) x, y, z = spherical_to_cartesian(5, 0, np.arcsin(4.0 / 5.0)) assert_allclose(x, 3) assert_allclose(y, 4) assert_allclose(z, 0) r, lat, lon = cartesian_to_spherical(0, 1, 0) assert_allclose(r, 1) assert_allclose(lat, 0 * u.deg) assert_allclose(lon, np.pi / 2 * u.rad) # test round-tripping with NumpyRNGContext(13579): x, y, z = np.random.randn(3, 5) r, lat, lon = cartesian_to_spherical(x, y, z) x2, y2, z2 = spherical_to_cartesian(r, lat, lon) assert_allclose(x, x2) assert_allclose(y, y2) assert_allclose(z, z2) def test_transform_path_pri(): """ This checks that the transformation path prioritization works by making sure the ICRS -> Gal transformation always goes through FK5 and not FK4. """ frame_transform_graph.invalidate_cache() tpath, td = frame_transform_graph.find_shortest_path(ICRS, Galactic) assert tpath == [ICRS, FK5, Galactic] assert td == 2 # but direct from FK4 to Galactic should still be possible tpath, td = frame_transform_graph.find_shortest_path(FK4, Galactic) assert tpath == [FK4, FK4NoETerms, Galactic] assert td == 2 def test_obstime(): """ Checks to make sure observation time is accounted for at least in FK4 <-> ICRS transformations """ b1950 = Time("B1950") j1975 = Time("J1975") fk4_50 = FK4(ra=1 * u.deg, dec=2 * u.deg, obstime=b1950) fk4_75 = FK4(ra=1 * u.deg, dec=2 * u.deg, obstime=j1975) icrs_50 = fk4_50.transform_to(ICRS()) icrs_75 = fk4_75.transform_to(ICRS()) # now check that the resulting coordinates are *different* - they should be, # because the obstime is different assert icrs_50.ra.degree != icrs_75.ra.degree assert icrs_50.dec.degree != icrs_75.dec.degree # ------------------------------------------------------------------------------ # Affine transform tests and helpers: # just acting as a namespace class transfunc: rep = r.CartesianRepresentation(np.arange(3) * u.pc) dif = r.CartesianDifferential(*np.arange(3, 6) * u.pc / u.Myr) rep0 = r.CartesianRepresentation(np.zeros(3) * u.pc) @classmethod def both(cls, coo, fr): # exchange x <-> z and offset M = np.array([[0.0, 0.0, 1.0], [0.0, 1.0, 0.0], [1.0, 0.0, 0.0]]) return M, cls.rep.with_differentials(cls.dif) @classmethod def just_matrix(cls, coo, fr): # exchange x <-> z and offset M = np.array([[0.0, 0.0, 1.0], [0.0, 1.0, 0.0], [1.0, 0.0, 0.0]]) return M, None @classmethod def no_matrix(cls, coo, fr): return None, cls.rep.with_differentials(cls.dif) @classmethod def no_pos(cls, coo, fr): return None, cls.rep0.with_differentials(cls.dif) @classmethod def no_vel(cls, coo, fr): return None, cls.rep @pytest.mark.parametrize( "transfunc", [ transfunc.both, transfunc.no_matrix, transfunc.no_pos, transfunc.no_vel, transfunc.just_matrix, ], ) # fmt: off @pytest.mark.parametrize('rep', [ r.CartesianRepresentation(5, 6, 7, unit=u.pc), r.CartesianRepresentation(5, 6, 7, unit=u.pc, differentials=r.CartesianDifferential(8, 9, 10, unit=u.pc/u.Myr)), r.CartesianRepresentation(5, 6, 7, unit=u.pc, differentials=r.CartesianDifferential(8, 9, 10, unit=u.pc/u.Myr)) .represent_as(r.CylindricalRepresentation, r.CylindricalDifferential) ]) # fmt: on def test_affine_transform_succeed(transfunc, rep): c = TCoo1(rep) # compute expected output M, offset = transfunc(c, TCoo2) _rep = rep.to_cartesian() diffs = { k: diff.represent_as(r.CartesianDifferential, rep) for k, diff in rep.differentials.items() } expected_rep = _rep.with_differentials(diffs) if M is not None: expected_rep = expected_rep.transform(M) expected_pos = expected_rep.without_differentials() if offset is not None: expected_pos = expected_pos + offset.without_differentials() expected_vel = None if c.data.differentials: expected_vel = expected_rep.differentials["s"] if offset and offset.differentials: expected_vel = expected_vel + offset.differentials["s"] # register and do the transformation and check against expected trans = t.AffineTransform(transfunc, TCoo1, TCoo2) trans.register(frame_transform_graph) c2 = c.transform_to(TCoo2()) assert quantity_allclose( c2.data.to_cartesian().xyz, expected_pos.to_cartesian().xyz ) if expected_vel is not None: diff = c2.data.differentials["s"].to_cartesian(base=c2.data) assert quantity_allclose(diff.xyz, expected_vel.d_xyz) trans.unregister(frame_transform_graph) # these should fail def transfunc_invalid_matrix(coo, fr): return np.eye(4), None # Leaving this open in case we want to add more functions to check for failures @pytest.mark.parametrize("transfunc", [transfunc_invalid_matrix]) def test_affine_transform_fail(transfunc): diff = r.CartesianDifferential(8, 9, 10, unit=u.pc / u.Myr) rep = r.CartesianRepresentation(5, 6, 7, unit=u.pc, differentials=diff) c = TCoo1(rep) # register and do the transformation and check against expected trans = t.AffineTransform(transfunc, TCoo1, TCoo2) trans.register(frame_transform_graph) with pytest.raises(ValueError): c.transform_to(TCoo2()) trans.unregister(frame_transform_graph) def test_too_many_differentials(): dif1 = r.CartesianDifferential(*np.arange(3, 6) * u.pc / u.Myr) dif2 = r.CartesianDifferential(*np.arange(3, 6) * u.pc / u.Myr**2) rep = r.CartesianRepresentation( np.arange(3) * u.pc, differentials={"s": dif1, "s2": dif2} ) with pytest.raises(ValueError): c = TCoo1(rep) # register and do the transformation and check against expected trans = t.AffineTransform(transfunc.both, TCoo1, TCoo2) trans.register(frame_transform_graph) # Check that if frame somehow gets through to transformation, multiple # differentials are caught c = TCoo1(rep.without_differentials()) c._data = c._data.with_differentials({"s": dif1, "s2": dif2}) with pytest.raises(ValueError): c.transform_to(TCoo2()) trans.unregister(frame_transform_graph) # A matrix transform of a unit spherical with differentials should work # fmt: off @pytest.mark.parametrize('rep', [ r.UnitSphericalRepresentation(lon=15*u.degree, lat=-11*u.degree, differentials=r.SphericalDifferential(d_lon=15*u.mas/u.yr, d_lat=11*u.mas/u.yr, d_distance=-110*u.km/u.s)), r.UnitSphericalRepresentation(lon=15*u.degree, lat=-11*u.degree, differentials={'s': r.RadialDifferential(d_distance=-110*u.km/u.s)}), r.SphericalRepresentation(lon=15*u.degree, lat=-11*u.degree, distance=150*u.pc, differentials={'s': r.RadialDifferential(d_distance=-110*u.km/u.s)}) ]) # fmt: on def test_unit_spherical_with_differentials(rep): c = TCoo1(rep) # register and do the transformation and check against expected trans = t.AffineTransform(transfunc.just_matrix, TCoo1, TCoo2) trans.register(frame_transform_graph) c2 = c.transform_to(TCoo2()) assert "s" in rep.differentials assert isinstance(c2.data.differentials["s"], rep.differentials["s"].__class__) if isinstance(rep.differentials["s"], r.RadialDifferential): assert c2.data.differentials["s"] is rep.differentials["s"] trans.unregister(frame_transform_graph) # should fail if we have to do offsets trans = t.AffineTransform(transfunc.both, TCoo1, TCoo2) trans.register(frame_transform_graph) with pytest.raises(TypeError): c.transform_to(TCoo2()) trans.unregister(frame_transform_graph) def test_vel_transformation_obstime_err(): # TODO: replace after a final decision on PR #6280 from astropy.coordinates.sites import get_builtin_sites diff = r.CartesianDifferential([0.1, 0.2, 0.3] * u.km / u.s) rep = r.CartesianRepresentation([1, 2, 3] * u.au, differentials=diff) loc = get_builtin_sites()["example_site"] aaf = AltAz(obstime="J2010", location=loc) aaf2 = AltAz(obstime=aaf.obstime + 3 * u.day, location=loc) aaf3 = AltAz(obstime=aaf.obstime + np.arange(3) * u.day, location=loc) aaf4 = AltAz(obstime=aaf.obstime, location=loc) aa = aaf.realize_frame(rep) with pytest.raises(NotImplementedError) as exc: aa.transform_to(aaf2) assert "cannot transform" in exc.value.args[0] with pytest.raises(NotImplementedError) as exc: aa.transform_to(aaf3) assert "cannot transform" in exc.value.args[0] aa.transform_to(aaf4) aa.transform_to(ICRS()) def test_function_transform_with_differentials(): def tfun(c, f): return f.__class__(ra=c.ra, dec=c.dec) _ = t.FunctionTransform(tfun, TCoo3, TCoo2, register_graph=frame_transform_graph) t3 = TCoo3( ra=1 * u.deg, dec=2 * u.deg, pm_ra_cosdec=1 * u.marcsec / u.yr, pm_dec=1 * u.marcsec / u.yr, ) with pytest.warns(AstropyWarning, match=r".*they have been dropped.*") as w: t3.transform_to(TCoo2()) assert len(w) == 1 def test_frame_override_component_with_attribute(): """ It was previously possible to define a frame with an attribute with the same name as a component. We don't want to allow this! """ from astropy.coordinates.attributes import Attribute from astropy.coordinates.baseframe import BaseCoordinateFrame class BorkedFrame(BaseCoordinateFrame): ra = Attribute(default=150) dec = Attribute(default=150) def trans_func(coo1, f): pass trans = t.FunctionTransform(trans_func, BorkedFrame, ICRS) with pytest.raises(ValueError) as exc: trans.register(frame_transform_graph) assert ( "BorkedFrame" in exc.value.args[0] and "'ra'" in exc.value.args[0] and "'dec'" in exc.value.args[0] ) def test_static_matrix_combine_paths(): """ Check that combined staticmatrixtransform matrices provide the same transformation as using an intermediate transformation. This is somewhat of a regression test for #7706 """ from astropy.coordinates.baseframe import BaseCoordinateFrame from astropy.coordinates.matrix_utilities import rotation_matrix class AFrame(BaseCoordinateFrame): default_representation = r.SphericalRepresentation default_differential = r.SphericalCosLatDifferential t1 = t.StaticMatrixTransform(rotation_matrix(30.0 * u.deg, "z"), ICRS, AFrame) t1.register(frame_transform_graph) t2 = t.StaticMatrixTransform(rotation_matrix(30.0 * u.deg, "z").T, AFrame, ICRS) t2.register(frame_transform_graph) class BFrame(BaseCoordinateFrame): default_representation = r.SphericalRepresentation default_differential = r.SphericalCosLatDifferential t3 = t.StaticMatrixTransform(rotation_matrix(30.0 * u.deg, "x"), ICRS, BFrame) t3.register(frame_transform_graph) t4 = t.StaticMatrixTransform(rotation_matrix(30.0 * u.deg, "x").T, BFrame, ICRS) t4.register(frame_transform_graph) c = Galactic(123 * u.deg, 45 * u.deg) c1 = c.transform_to(BFrame()) # direct c2 = c.transform_to(AFrame()).transform_to(BFrame()) # thru A c3 = c.transform_to(ICRS()).transform_to(BFrame()) # thru ICRS assert quantity_allclose(c1.lon, c2.lon) assert quantity_allclose(c1.lat, c2.lat) assert quantity_allclose(c1.lon, c3.lon) assert quantity_allclose(c1.lat, c3.lat) for t_ in [t1, t2, t3, t4]: t_.unregister(frame_transform_graph) def test_multiple_aliases(): from astropy.coordinates.baseframe import BaseCoordinateFrame # Define a frame with multiple aliases class MultipleAliasesFrame(BaseCoordinateFrame): name = ["alias_1", "alias_2"] default_representation = r.SphericalRepresentation def tfun(c, f): return f.__class__(lon=c.lon, lat=c.lat) # Register a transform graph = t.TransformGraph() _ = t.FunctionTransform( tfun, MultipleAliasesFrame, MultipleAliasesFrame, register_graph=graph ) # Test that both aliases have been added to the transform graph assert graph.lookup_name("alias_1") == MultipleAliasesFrame assert graph.lookup_name("alias_2") == MultipleAliasesFrame # Test that both aliases appear in the graphviz DOT format output dotstr = graph.to_dot_graph() assert "`alias_1`\\n`alias_2`" in dotstr def test_remove_transform_and_unregister(): def tfun(c, f): f.__class__(ra=c.ra, dec=c.dec) # Register transforms graph = t.TransformGraph() ftrans1 = t.FunctionTransform(tfun, TCoo1, TCoo1, register_graph=graph) ftrans2 = t.FunctionTransform(tfun, TCoo2, TCoo2, register_graph=graph) _ = t.FunctionTransform(tfun, TCoo1, TCoo2, register_graph=graph) # Confirm that the frames are part of the graph assert TCoo1 in graph.frame_set assert TCoo2 in graph.frame_set # Use all three ways to remove a transform # Remove the only transform with TCoo2 as the "from" frame ftrans2.unregister(graph) # TCoo2 should still be part of the graph because it is the "to" frame of a transform assert TCoo2 in graph.frame_set # Remove the remaining transform that involves TCoo2 graph.remove_transform(TCoo1, TCoo2, None) # Now TCoo2 should not be part of the graph assert TCoo2 not in graph.frame_set # Remove the remaining transform that involves TCoo1 graph.remove_transform(None, None, ftrans1) # Now TCoo1 should not be part of the graph assert TCoo1 not in graph.frame_set def test_remove_transform_errors(): def tfun(c, f): return f.__class__(ra=c.ra, dec=c.dec) graph = t.TransformGraph() _ = t.FunctionTransform(tfun, TCoo1, TCoo1, register_graph=graph) # Test bad calls to remove_transform with pytest.raises(ValueError): graph.remove_transform(None, TCoo1, None) with pytest.raises(ValueError): graph.remove_transform(TCoo1, None, None) with pytest.raises(ValueError): graph.remove_transform(None, None, None) with pytest.raises(ValueError): graph.remove_transform(None, None, 1) with pytest.raises(ValueError): graph.remove_transform(TCoo1, TCoo1, 1) def test_impose_finite_difference_dt(): class H1(HCRS): pass class H2(HCRS): pass class H3(HCRS): pass graph = t.TransformGraph() tfun = lambda c, f: f.__class__(ra=c.ra, dec=c.dec) # Set up a number of transforms with different time steps old_dt = 1 * u.min transform1 = t.FunctionTransformWithFiniteDifference( tfun, H1, H1, register_graph=graph, finite_difference_dt=old_dt ) transform2 = t.FunctionTransformWithFiniteDifference( tfun, H2, H2, register_graph=graph, finite_difference_dt=old_dt * 2 ) transform3 = t.FunctionTransformWithFiniteDifference( tfun, H2, H3, register_graph=graph, finite_difference_dt=old_dt * 3 ) # Check that all of the transforms have the same new time step new_dt = 1 * u.yr with graph.impose_finite_difference_dt(new_dt): assert transform1.finite_difference_dt == new_dt assert transform2.finite_difference_dt == new_dt assert transform3.finite_difference_dt == new_dt # Check that all of the original time steps have been restored assert transform1.finite_difference_dt == old_dt assert transform2.finite_difference_dt == old_dt * 2 assert transform3.finite_difference_dt == old_dt * 3 # fmt: off @pytest.mark.parametrize("first, second, check", [((rotation_matrix(30*u.deg), None), (rotation_matrix(45*u.deg), None), (rotation_matrix(75*u.deg), None)), ((rotation_matrix(30*u.deg), r.CartesianRepresentation([1, 0, 0])), (rotation_matrix(45*u.deg), None), (rotation_matrix(75*u.deg), r.CartesianRepresentation([1/np.sqrt(2), -1/np.sqrt(2), 0]))), ((rotation_matrix(30*u.deg), None), (rotation_matrix(45*u.deg), r.CartesianRepresentation([0, 0, 1])), (rotation_matrix(75*u.deg), r.CartesianRepresentation([0, 0, 1]))), ((rotation_matrix(30*u.deg), r.CartesianRepresentation([1, 0, 0])), (rotation_matrix(45*u.deg), r.CartesianRepresentation([0, 0, 1])), (rotation_matrix(75*u.deg), r.CartesianRepresentation([1/np.sqrt(2), -1/np.sqrt(2), 1]))), ((rotation_matrix(30*u.deg), r.CartesianRepresentation([1, 2 ,3])), (None, r.CartesianRepresentation([4, 5, 6])), (rotation_matrix(30*u.deg), r.CartesianRepresentation([5, 7, 9]))), ((None, r.CartesianRepresentation([1, 2, 3])), (rotation_matrix(45*u.deg), r.CartesianRepresentation([4, 5, 6])), (rotation_matrix(45*u.deg), r.CartesianRepresentation([3/np.sqrt(2)+4, 1/np.sqrt(2)+5, 9]))), ((None, r.CartesianRepresentation([1, 2, 3])), (None, r.CartesianRepresentation([4, 5, 6])), (None, r.CartesianRepresentation([5, 7, 9]))), ((rotation_matrix(30*u.deg), r.CartesianRepresentation([1, 0, 0])), (None, None), (rotation_matrix(30*u.deg), r.CartesianRepresentation([1, 0, 0]))), ((None, None), (rotation_matrix(45*u.deg), r.CartesianRepresentation([0, 0, 1])), (rotation_matrix(45*u.deg), r.CartesianRepresentation([0, 0, 1]))), ((None, None), (None, None), (None, None))]) # fmt: on def test_combine_affine_params(first, second, check): result = t._combine_affine_params(first, second) if check[0] is None: assert result[0] is None else: assert_allclose(result[0], check[0]) if check[1] is None: assert result[1] is None else: assert_allclose(result[1].xyz, check[1].xyz)
944cc534cea56a01e287ec699e385f803dee3f0308f743c5e70c2f2939945e90
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Accuracy tests for ICRS transformations, primarily to/from AltAz. """ import numpy as np from astropy import units as u from astropy.coordinates import ( CIRS, ICRS, AltAz, EarthLocation, HADec, SkyCoord, frame_transform_graph, ) from astropy.coordinates.angle_utilities import golden_spiral_grid from astropy.tests.helper import assert_quantity_allclose as assert_allclose from astropy.time import Time def test_icrs_altaz_consistency(): """ Check ICRS<->AltAz for consistency with ICRS<->CIRS<->AltAz The latter is extensively tested in test_intermediate_transformations.py """ usph = golden_spiral_grid(200) dist = np.linspace(0.5, 1, len(usph)) * u.km * 1e5 icoo = SkyCoord(ra=usph.lon, dec=usph.lat, distance=dist) observer = EarthLocation(28 * u.deg, 23 * u.deg, height=2000.0 * u.km) obstime = Time("J2010") aa_frame = AltAz(obstime=obstime, location=observer) # check we are going direct! trans = frame_transform_graph.get_transform(ICRS, AltAz).transforms assert len(trans) == 1 # check that ICRS-AltAz and ICRS->CIRS->AltAz are consistent aa1 = icoo.transform_to(aa_frame) aa2 = icoo.transform_to(CIRS()).transform_to(aa_frame) assert_allclose(aa1.separation_3d(aa2), 0 * u.mm, atol=1 * u.mm) # check roundtrip roundtrip = icoo.transform_to(aa_frame).transform_to(icoo) assert_allclose(roundtrip.separation_3d(icoo), 0 * u.mm, atol=1 * u.mm) # check there and back via CIRS mish-mash roundtrip = icoo.transform_to(aa_frame).transform_to(CIRS()).transform_to(icoo) assert_allclose(roundtrip.separation_3d(icoo), 0 * u.mm, atol=1 * u.mm) def test_icrs_hadec_consistency(): """ Check ICRS<->HADec for consistency with ICRS<->CIRS<->HADec """ usph = golden_spiral_grid(200) dist = np.linspace(0.5, 1, len(usph)) * u.km * 1e5 icoo = SkyCoord(ra=usph.lon, dec=usph.lat, distance=dist) observer = EarthLocation(28 * u.deg, 23 * u.deg, height=2000.0 * u.km) obstime = Time("J2010") hd_frame = HADec(obstime=obstime, location=observer) # check we are going direct! trans = frame_transform_graph.get_transform(ICRS, HADec).transforms assert len(trans) == 1 # check that ICRS-HADec and ICRS->CIRS->HADec are consistent aa1 = icoo.transform_to(hd_frame) aa2 = icoo.transform_to(CIRS()).transform_to(hd_frame) assert_allclose(aa1.separation_3d(aa2), 0 * u.mm, atol=1 * u.mm) # check roundtrip roundtrip = icoo.transform_to(hd_frame).transform_to(icoo) assert_allclose(roundtrip.separation_3d(icoo), 0 * u.mm, atol=1 * u.mm) # check there and back via CIRS mish-mash roundtrip = icoo.transform_to(hd_frame).transform_to(CIRS()).transform_to(icoo) assert_allclose(roundtrip.separation_3d(icoo), 0 * u.mm, atol=1 * u.mm)
8043fa2683c996653a2e01279c329ac91edf04d86158e2000da30c33cbac1d0a
import pytest from astropy.coordinates.builtin_frames.utils import ( get_offset_sun_from_barycenter, get_polar_motion, ) from astropy.coordinates.solar_system import get_body_barycentric_posvel from astropy.tests.helper import assert_quantity_allclose from astropy.time import Time from astropy.utils.exceptions import AstropyWarning def test_polar_motion_unsupported_dates(): msg = r"Tried to get polar motions for times {} IERS.*" with pytest.warns(AstropyWarning, match=msg.format("before")): get_polar_motion(Time("1900-01-01")) with pytest.warns(AstropyWarning, match=msg.format("after")): get_polar_motion(Time("2100-01-01")) def test_sun_from_barycenter_offset(): time = Time("2020-01-01") pos, vel = get_body_barycentric_posvel("sun", time) offset = get_offset_sun_from_barycenter(time) assert_quantity_allclose(offset.xyz, pos.xyz) assert not bool(offset.differentials) offset_with_vel = get_offset_sun_from_barycenter(time, include_velocity=True) assert_quantity_allclose(offset_with_vel.xyz, pos.xyz) assert_quantity_allclose(offset_with_vel.differentials["s"].d_xyz, vel.xyz) reverse = get_offset_sun_from_barycenter(time, reverse=True) assert_quantity_allclose(reverse.xyz, -pos.xyz) assert not bool(reverse.differentials) reverse_with_vel = get_offset_sun_from_barycenter( time, reverse=True, include_velocity=True ) assert_quantity_allclose(reverse_with_vel.xyz, -pos.xyz) assert_quantity_allclose(reverse_with_vel.differentials["s"].d_xyz, -vel.xyz)
faaf4c8273b39c2e47379cbe42fbc1c0429a4c127689d22fe915cbeaf7601dd0
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Test geodetic representations""" import pytest from numpy.testing import assert_array_equal from astropy import units as u from astropy.coordinates.earth import ( GRS80GeodeticRepresentation, WGS72GeodeticRepresentation, WGS84GeodeticRepresentation, ) from astropy.coordinates.representation import CartesianRepresentation from astropy.units import allclose as quantity_allclose def test_cartesian_wgs84geodetic_roundtrip(): # Test array-valued input in the process. s1 = CartesianRepresentation( x=[1, 3000.0] * u.km, y=[7000.0, 4.0] * u.km, z=[5.0, 6000.0] * u.km ) s2 = WGS84GeodeticRepresentation.from_representation(s1) s3 = CartesianRepresentation.from_representation(s2) s4 = WGS84GeodeticRepresentation.from_representation(s3) assert quantity_allclose(s1.x, s3.x) assert quantity_allclose(s1.y, s3.y) assert quantity_allclose(s1.z, s3.z) assert quantity_allclose(s2.lon, s4.lon) assert quantity_allclose(s2.lat, s4.lat) assert quantity_allclose(s2.height, s4.height) # Test initializer just for the sake of it. s5 = WGS84GeodeticRepresentation(s2.lon, s2.lat, s2.height) assert_array_equal(s2.lon, s5.lon) assert_array_equal(s2.lat, s5.lat) assert_array_equal(s2.height, s5.height) def vvd(val, valok, dval, func, test, status): """Mimic routine of erfa/src/t_erfa_c.c (to help copy & paste)""" assert quantity_allclose(val, valok * val.unit, atol=dval * val.unit) def test_geocentric_to_geodetic(): """Test that we reproduce erfa/src/t_erfa_c.c t_gc2gd""" # Here, test the chain. Direct conversion from Cartesian to # various Geodetic representations is done indirectly in test_earth. x, y, z = (2e6, 3e6, 5.244e6) status = 0 # help for copy & paste of vvd gc = CartesianRepresentation(x, y, z, u.m) gd = WGS84GeodeticRepresentation.from_cartesian(gc) e, p, h = gd.lon.to(u.radian), gd.lat.to(u.radian), gd.height.to(u.m) vvd(e, 0.9827937232473290680, 1e-14, "eraGc2gd", "e1", status) vvd(p, 0.97160184819075459, 1e-14, "eraGc2gd", "p1", status) vvd(h, 331.4172461426059892, 1e-8, "eraGc2gd", "h1", status) gd = gd.represent_as(GRS80GeodeticRepresentation) e, p, h = gd.lon.to(u.radian), gd.lat.to(u.radian), gd.height.to(u.m) vvd(e, 0.98279372324732907, 1e-14, "eraGc2gd", "e2", status) vvd(p, 0.97160184820607853, 1e-14, "eraGc2gd", "p2", status) vvd(h, 331.41731754844348, 1e-8, "eraGc2gd", "h2", status) gd = gd.represent_as(WGS72GeodeticRepresentation) e, p, h = gd.lon.to(u.radian), gd.lat.to(u.radian), gd.height.to(u.m) vvd(e, 0.98279372324732907, 1e-14, "eraGc2gd", "e3", status) vvd(p, 0.97160181811015119, 1e-14, "eraGc2gd", "p3", status) vvd(h, 333.27707261303181, 1e-8, "eraGc2gd", "h3", status) def test_geodetic_to_geocentric(): """Test that we reproduce erfa/src/t_erfa_c.c t_gd2gc""" # These tests are also done implicitly in test_earth.py. e = 3.1 * u.rad p = -0.5 * u.rad h = 2500.0 * u.m status = 0 # help for copy & paste of vvd gd = WGS84GeodeticRepresentation(e, p, h) xyz = gd.to_cartesian().get_xyz() vvd(xyz[0], -5599000.5577049947, 1e-7, "eraGd2gc", "0/1", status) vvd(xyz[1], 233011.67223479203, 1e-7, "eraGd2gc", "1/1", status) vvd(xyz[2], -3040909.4706983363, 1e-7, "eraGd2gc", "2/1", status) gd = GRS80GeodeticRepresentation(e, p, h) xyz = gd.to_cartesian().get_xyz() vvd(xyz[0], -5599000.5577260984, 1e-7, "eraGd2gc", "0/2", status) vvd(xyz[1], 233011.6722356703, 1e-7, "eraGd2gc", "1/2", status) vvd(xyz[2], -3040909.4706095476, 1e-7, "eraGd2gc", "2/2", status) gd = WGS72GeodeticRepresentation(e, p, h) xyz = gd.to_cartesian().get_xyz() vvd(xyz[0], -5598998.7626301490, 1e-7, "eraGd2gc", "0/3", status) vvd(xyz[1], 233011.5975297822, 1e-7, "eraGd2gc", "1/3", status) vvd(xyz[2], -3040908.6861467111, 1e-7, "eraGd2gc", "2/3", status) def test_default_height_is_zero(): gd = WGS84GeodeticRepresentation(10 * u.deg, 20 * u.deg) assert gd.lon == 10 * u.deg assert gd.lat == 20 * u.deg assert gd.height == 0 * u.m def test_non_angle_error(): with pytest.raises(u.UnitTypeError): WGS84GeodeticRepresentation(20 * u.m, 20 * u.deg, 20 * u.m) def test_non_length_error(): with pytest.raises(u.UnitTypeError, match="units of length"): WGS84GeodeticRepresentation(10 * u.deg, 20 * u.deg, 30)
7c6117145c062023c5fdb7971fb9f82ad2a2f65446686613509a2b6c88cf1d6a
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np import pytest from astropy import units as u from astropy.coordinates import ( Latitude, Longitude, SphericalDifferential, SphericalRepresentation, ) from astropy.units.quantity_helper.function_helpers import ARRAY_FUNCTION_ENABLED from .test_representation import representation_equal @pytest.fixture(params=[True, False] if ARRAY_FUNCTION_ENABLED else [True]) def method(request): return request.param needs_array_function = pytest.mark.xfail( not ARRAY_FUNCTION_ENABLED, reason="Needs __array_function__ support" ) class ShapeSetup: """Manipulation of Representation shapes. Checking that attributes are manipulated correctly. Even more exhaustive tests are done in time.tests.test_methods """ def setup_class(cls): # We set up some representations with, on purpose, copy=False, # so we can check that broadcasting is handled correctly. lon = Longitude(np.arange(0, 24, 4), u.hourangle) lat = Latitude(np.arange(-90, 91, 30), u.deg) # With same-sized arrays cls.s0 = SphericalRepresentation( lon[:, np.newaxis] * np.ones(lat.shape), lat * np.ones(lon.shape)[:, np.newaxis], np.ones(lon.shape + lat.shape) * u.kpc, copy=False, ) cls.diff = SphericalDifferential( d_lon=np.ones(cls.s0.shape) * u.mas / u.yr, d_lat=np.ones(cls.s0.shape) * u.mas / u.yr, d_distance=np.ones(cls.s0.shape) * u.km / u.s, copy=False, ) cls.s0 = cls.s0.with_differentials(cls.diff) # With unequal arrays -> these will be broadcasted. cls.s1 = SphericalRepresentation( lon[:, np.newaxis], lat, 1.0 * u.kpc, differentials=cls.diff, copy=False ) # For completeness on some tests, also a cartesian one cls.c0 = cls.s0.to_cartesian() class TestManipulation(ShapeSetup): """Manipulation of Representation shapes. Checking that attributes are manipulated correctly. Even more exhaustive tests are done in time.tests.test_methods """ def test_ravel(self, method): if method: s0_ravel = self.s0.ravel() else: s0_ravel = np.ravel(self.s0) assert type(s0_ravel) is type(self.s0) assert s0_ravel.shape == (self.s0.size,) assert np.all(s0_ravel.lon == self.s0.lon.ravel()) assert np.may_share_memory(s0_ravel.lon, self.s0.lon) assert np.may_share_memory(s0_ravel.lat, self.s0.lat) assert np.may_share_memory(s0_ravel.distance, self.s0.distance) assert s0_ravel.differentials["s"].shape == (self.s0.size,) # Since s1 was broadcast, ravel needs to make a copy. if method: s1_ravel = self.s1.ravel() else: s1_ravel = np.ravel(self.s1) assert type(s1_ravel) is type(self.s1) assert s1_ravel.shape == (self.s1.size,) assert s1_ravel.differentials["s"].shape == (self.s1.size,) assert np.all(s1_ravel.lon == self.s1.lon.ravel()) assert not np.may_share_memory(s1_ravel.lat, self.s1.lat) def test_copy(self, method): if method: s0_copy = self.s0.copy() else: s0_copy = np.copy(self.s0) s0_copy_diff = s0_copy.differentials["s"] assert s0_copy.shape == self.s0.shape assert np.all(s0_copy.lon == self.s0.lon) assert np.all(s0_copy.lat == self.s0.lat) # Check copy was made of internal data. assert not np.may_share_memory(s0_copy.distance, self.s0.distance) assert not np.may_share_memory(s0_copy_diff.d_lon, self.diff.d_lon) def test_flatten(self): s0_flatten = self.s0.flatten() s0_diff = s0_flatten.differentials["s"] assert s0_flatten.shape == (self.s0.size,) assert s0_diff.shape == (self.s0.size,) assert np.all(s0_flatten.lon == self.s0.lon.flatten()) assert np.all(s0_diff.d_lon == self.diff.d_lon.flatten()) # Flatten always copies. assert not np.may_share_memory(s0_flatten.distance, self.s0.distance) assert not np.may_share_memory(s0_diff.d_lon, self.diff.d_lon) s1_flatten = self.s1.flatten() assert s1_flatten.shape == (self.s1.size,) assert np.all(s1_flatten.lon == self.s1.lon.flatten()) assert not np.may_share_memory(s1_flatten.lat, self.s1.lat) def test_transpose(self): s0_transpose = self.s0.transpose() s0_diff = s0_transpose.differentials["s"] assert s0_transpose.shape == (7, 6) assert s0_diff.shape == s0_transpose.shape assert np.all(s0_transpose.lon == self.s0.lon.transpose()) assert np.all(s0_diff.d_lon == self.diff.d_lon.transpose()) assert np.may_share_memory(s0_transpose.distance, self.s0.distance) assert np.may_share_memory(s0_diff.d_lon, self.diff.d_lon) s1_transpose = self.s1.transpose() s1_diff = s1_transpose.differentials["s"] assert s1_transpose.shape == (7, 6) assert s1_diff.shape == s1_transpose.shape assert np.all(s1_transpose.lat == self.s1.lat.transpose()) assert np.all(s1_diff.d_lon == self.diff.d_lon.transpose()) assert np.may_share_memory(s1_transpose.lat, self.s1.lat) assert np.may_share_memory(s1_diff.d_lon, self.diff.d_lon) # Only one check on T, since it just calls transpose anyway. # Doing it on the CartesianRepresentation just for variety's sake. c0_T = self.c0.T assert c0_T.shape == (7, 6) assert np.all(c0_T.x == self.c0.x.T) assert np.may_share_memory(c0_T.y, self.c0.y) def test_diagonal(self): s0_diagonal = self.s0.diagonal() s0_diff = s0_diagonal.differentials["s"] assert s0_diagonal.shape == (6,) assert s0_diff.shape == s0_diagonal.shape assert np.all(s0_diagonal.lat == self.s0.lat.diagonal()) assert np.all(s0_diff.d_lon == self.diff.d_lon.diagonal()) assert np.may_share_memory(s0_diagonal.lat, self.s0.lat) assert np.may_share_memory(s0_diff.d_lon, self.diff.d_lon) def test_swapaxes(self, method): if method: s1_swapaxes = self.s1.swapaxes(0, 1) else: s1_swapaxes = np.swapaxes(self.s1, 0, 1) s1_diff = s1_swapaxes.differentials["s"] assert s1_swapaxes.shape == (7, 6) assert s1_diff.shape == s1_swapaxes.shape assert np.all(s1_swapaxes.lat == self.s1.lat.swapaxes(0, 1)) assert np.all(s1_diff.d_lon == self.diff.d_lon.swapaxes(0, 1)) assert np.may_share_memory(s1_swapaxes.lat, self.s1.lat) assert np.may_share_memory(s1_diff.d_lon, self.diff.d_lon) def test_reshape(self): s0_reshape = self.s0.reshape(2, 3, 7) s0_diff = s0_reshape.differentials["s"] assert s0_reshape.shape == (2, 3, 7) assert s0_diff.shape == s0_reshape.shape assert np.all(s0_reshape.lon == self.s0.lon.reshape(2, 3, 7)) assert np.all(s0_reshape.lat == self.s0.lat.reshape(2, 3, 7)) assert np.all(s0_reshape.distance == self.s0.distance.reshape(2, 3, 7)) assert np.may_share_memory(s0_reshape.lon, self.s0.lon) assert np.may_share_memory(s0_reshape.lat, self.s0.lat) assert np.may_share_memory(s0_reshape.distance, self.s0.distance) s1_reshape = self.s1.reshape(3, 2, 7) s1_diff = s1_reshape.differentials["s"] assert s1_reshape.shape == (3, 2, 7) assert s1_diff.shape == s1_reshape.shape assert np.all(s1_reshape.lat == self.s1.lat.reshape(3, 2, 7)) assert np.all(s1_diff.d_lon == self.diff.d_lon.reshape(3, 2, 7)) assert np.may_share_memory(s1_reshape.lat, self.s1.lat) assert np.may_share_memory(s1_diff.d_lon, self.diff.d_lon) # For reshape(3, 14), copying is necessary for lon, lat, but not for d s1_reshape2 = self.s1.reshape(3, 14) assert s1_reshape2.shape == (3, 14) assert np.all(s1_reshape2.lon == self.s1.lon.reshape(3, 14)) assert not np.may_share_memory(s1_reshape2.lon, self.s1.lon) assert s1_reshape2.distance.shape == (3, 14) assert np.may_share_memory(s1_reshape2.distance, self.s1.distance) def test_squeeze(self): s0_squeeze = self.s0.reshape(3, 1, 2, 1, 7).squeeze() s0_diff = s0_squeeze.differentials["s"] assert s0_squeeze.shape == (3, 2, 7) assert s0_diff.shape == s0_squeeze.shape assert np.all(s0_squeeze.lat == self.s0.lat.reshape(3, 2, 7)) assert np.all(s0_diff.d_lon == self.diff.d_lon.reshape(3, 2, 7)) assert np.may_share_memory(s0_squeeze.lat, self.s0.lat) def test_add_dimension(self): s0_adddim = self.s0[:, np.newaxis, :] s0_diff = s0_adddim.differentials["s"] assert s0_adddim.shape == (6, 1, 7) assert s0_diff.shape == s0_adddim.shape assert np.all(s0_adddim.lon == self.s0.lon[:, np.newaxis, :]) assert np.all(s0_diff.d_lon == self.diff.d_lon[:, np.newaxis, :]) assert np.may_share_memory(s0_adddim.lat, self.s0.lat) def test_take(self, method): if method: s0_take = self.s0.take((5, 2)) else: s0_take = np.take(self.s0, (5, 2)) s0_diff = s0_take.differentials["s"] assert s0_take.shape == (2,) assert s0_diff.shape == s0_take.shape assert np.all(s0_take.lon == self.s0.lon.take((5, 2))) assert np.all(s0_diff.d_lon == self.diff.d_lon.take((5, 2))) def test_broadcast_to_via_apply(self): s0_broadcast = self.s0._apply(np.broadcast_to, (3, 6, 7), subok=True) s0_diff = s0_broadcast.differentials["s"] assert type(s0_broadcast) is type(self.s0) assert s0_broadcast.shape == (3, 6, 7) assert s0_diff.shape == s0_broadcast.shape assert np.all(s0_broadcast.lon == self.s0.lon) assert np.all(s0_broadcast.lat == self.s0.lat) assert np.all(s0_broadcast.distance == self.s0.distance) assert np.may_share_memory(s0_broadcast.lon, self.s0.lon) assert np.may_share_memory(s0_broadcast.lat, self.s0.lat) assert np.may_share_memory(s0_broadcast.distance, self.s0.distance) class TestSetShape(ShapeSetup): def test_shape_setting(self): # Shape-setting should be on the object itself, since copying removes # zero-strides due to broadcasting. Hence, this should be the only # test in this class. self.s0.shape = (2, 3, 7) assert self.s0.shape == (2, 3, 7) assert self.s0.lon.shape == (2, 3, 7) assert self.s0.lat.shape == (2, 3, 7) assert self.s0.distance.shape == (2, 3, 7) assert self.diff.shape == (2, 3, 7) assert self.diff.d_lon.shape == (2, 3, 7) assert self.diff.d_lat.shape == (2, 3, 7) assert self.diff.d_distance.shape == (2, 3, 7) # this works with the broadcasting. self.s1.shape = (2, 3, 7) assert self.s1.shape == (2, 3, 7) assert self.s1.lon.shape == (2, 3, 7) assert self.s1.lat.shape == (2, 3, 7) assert self.s1.distance.shape == (2, 3, 7) assert self.s1.distance.strides == (0, 0, 0) # but this one does not. oldshape = self.s1.shape with pytest.raises(ValueError): self.s1.shape = (1,) with pytest.raises(AttributeError): self.s1.shape = (42,) assert self.s1.shape == oldshape assert self.s1.lon.shape == oldshape assert self.s1.lat.shape == oldshape assert self.s1.distance.shape == oldshape # Finally, a more complicated one that checks that things get reset # properly if it is not the first component that fails. s2 = SphericalRepresentation( self.s1.lon.copy(), self.s1.lat, self.s1.distance, copy=False ) assert 0 not in s2.lon.strides assert 0 in s2.lat.strides with pytest.raises(AttributeError): s2.shape = (42,) assert s2.shape == oldshape assert s2.lon.shape == oldshape assert s2.lat.shape == oldshape assert s2.distance.shape == oldshape assert 0 not in s2.lon.strides assert 0 in s2.lat.strides class TestShapeFunctions(ShapeSetup): @needs_array_function def test_broadcast_to(self): s0_broadcast = np.broadcast_to(self.s0, (3, 6, 7)) s0_diff = s0_broadcast.differentials["s"] assert type(s0_broadcast) is type(self.s0) assert s0_broadcast.shape == (3, 6, 7) assert s0_diff.shape == s0_broadcast.shape assert np.all(s0_broadcast.lon == self.s0.lon) assert np.all(s0_broadcast.lat == self.s0.lat) assert np.all(s0_broadcast.distance == self.s0.distance) assert np.may_share_memory(s0_broadcast.lon, self.s0.lon) assert np.may_share_memory(s0_broadcast.lat, self.s0.lat) assert np.may_share_memory(s0_broadcast.distance, self.s0.distance) s1_broadcast = np.broadcast_to(self.s1, shape=(3, 6, 7)) s1_diff = s1_broadcast.differentials["s"] assert s1_broadcast.shape == (3, 6, 7) assert s1_diff.shape == s1_broadcast.shape assert np.all(s1_broadcast.lat == self.s1.lat) assert np.all(s1_broadcast.lon == self.s1.lon) assert np.all(s1_broadcast.distance == self.s1.distance) assert s1_broadcast.distance.shape == (3, 6, 7) assert np.may_share_memory(s1_broadcast.lat, self.s1.lat) assert np.may_share_memory(s1_broadcast.lon, self.s1.lon) assert np.may_share_memory(s1_broadcast.distance, self.s1.distance) # A final test that "may_share_memory" equals "does_share_memory" # Do this on a copy, to keep self.s0 unchanged. sc = self.s0.copy() assert not np.may_share_memory(sc.lon, self.s0.lon) assert not np.may_share_memory(sc.lat, self.s0.lat) sc_broadcast = np.broadcast_to(sc, (3, 6, 7)) assert np.may_share_memory(sc_broadcast.lon, sc.lon) # Can only write to copy, not to broadcast version. sc.lon[0, 0] = 22.0 * u.hourangle assert np.all(sc_broadcast.lon[:, 0, 0] == 22.0 * u.hourangle) @needs_array_function def test_atleast_1d(self): s00 = self.s0.ravel()[0] assert s00.ndim == 0 s00_1d = np.atleast_1d(s00) assert s00_1d.ndim == 1 assert np.all(representation_equal(s00[np.newaxis], s00_1d)) assert np.may_share_memory(s00_1d.lon, s00.lon) @needs_array_function def test_atleast_2d(self): s0r = self.s0.ravel() assert s0r.ndim == 1 s0r_2d = np.atleast_2d(s0r) assert s0r_2d.ndim == 2 assert np.all(representation_equal(s0r[np.newaxis], s0r_2d)) assert np.may_share_memory(s0r_2d.lon, s0r.lon) @needs_array_function def test_atleast_3d(self): assert self.s0.ndim == 2 s0_3d, s1_3d = np.atleast_3d(self.s0, self.s1) assert s0_3d.ndim == s1_3d.ndim == 3 assert np.all(representation_equal(self.s0[:, :, np.newaxis], s0_3d)) assert np.all(representation_equal(self.s1[:, :, np.newaxis], s1_3d)) assert np.may_share_memory(s0_3d.lon, self.s0.lon) def test_move_axis(self): # Goes via transpose so works without __array_function__ as well. s0_10 = np.moveaxis(self.s0, 0, 1) assert s0_10.shape == (self.s0.shape[1], self.s0.shape[0]) assert np.all(representation_equal(self.s0.T, s0_10)) assert np.may_share_memory(s0_10.lon, self.s0.lon) def test_roll_axis(self): # Goes via transpose so works without __array_function__ as well. s0_10 = np.rollaxis(self.s0, 1) assert s0_10.shape == (self.s0.shape[1], self.s0.shape[0]) assert np.all(representation_equal(self.s0.T, s0_10)) assert np.may_share_memory(s0_10.lon, self.s0.lon) @needs_array_function def test_fliplr(self): s0_lr = np.fliplr(self.s0) assert np.all(representation_equal(self.s0[:, ::-1], s0_lr)) assert np.may_share_memory(s0_lr.lon, self.s0.lon) @needs_array_function def test_rot90(self): s0_270 = np.rot90(self.s0, 3) assert np.all(representation_equal(self.s0.T[:, ::-1], s0_270)) assert np.may_share_memory(s0_270.lon, self.s0.lon) @needs_array_function def test_roll(self): s0r = np.roll(self.s0, 1, axis=0) assert np.all(representation_equal(s0r[1:], self.s0[:-1])) assert np.all(representation_equal(s0r[0], self.s0[-1])) @needs_array_function def test_delete(self): s0d = np.delete(self.s0, [2, 3], axis=0) assert np.all(representation_equal(s0d[:2], self.s0[:2])) assert np.all(representation_equal(s0d[2:], self.s0[4:])) @pytest.mark.parametrize("attribute", ["shape", "ndim", "size"]) def test_shape_attribute_functions(self, attribute): function = getattr(np, attribute) result = function(self.s0) assert result == getattr(self.s0, attribute)
a6bd4081862b6c865de93e992b869f444ed8cc5035618170f0827cd54203a127
import numpy as np import pytest from astropy import units as u from astropy.constants import c as speed_of_light from astropy.coordinates import Angle, Distance, EarthLocation, SkyCoord from astropy.coordinates.sites import get_builtin_sites from astropy.table import Table from astropy.tests.helper import assert_quantity_allclose from astropy.time import Time from astropy.utils.data import get_pkg_data_filename @pytest.mark.parametrize("kind", ["heliocentric", "barycentric"]) def test_basic(kind): t0 = Time("2015-1-1") loc = get_builtin_sites()["example_site"] sc = SkyCoord(0, 0, unit=u.deg, obstime=t0, location=loc) rvc0 = sc.radial_velocity_correction(kind) assert rvc0.shape == () assert rvc0.unit.is_equivalent(u.km / u.s) scs = SkyCoord(0, 0, unit=u.deg, obstime=t0 + np.arange(10) * u.day, location=loc) rvcs = scs.radial_velocity_correction(kind) assert rvcs.shape == (10,) assert rvcs.unit.is_equivalent(u.km / u.s) test_input_time = Time(2457244.5, format="jd") # test_input_loc = EarthLocation.of_site('Cerro Paranal') # to avoid the network hit we just copy here what that yields test_input_loc = EarthLocation.from_geodetic( lon=-70.403 * u.deg, lat=-24.6252 * u.deg, height=2635 * u.m ) def test_helio_iraf(): """ Compare the heliocentric correction to the IRAF rvcorrect. `generate_IRAF_input` function is provided to show how the comparison data was produced """ # this is based on running IRAF with the output of `generate_IRAF_input` below rvcorr_result = """ # RVCORRECT: Observatory parameters for European Southern Observatory: Paranal # latitude = -24:37.5 # longitude = 70:24.2 # altitude = 2635 ## HJD VOBS VHELIO VLSR VDIURNAL VLUNAR VANNUAL VSOLAR 2457244.50120 0.00 -10.36 -20.35 -0.034 -0.001 -10.325 -9.993 2457244.50025 0.00 -14.20 -23.86 -0.115 -0.004 -14.085 -9.656 2457244.50278 0.00 -2.29 -11.75 0.115 0.004 -2.413 -9.459 2457244.50025 0.00 -14.20 -23.86 -0.115 -0.004 -14.085 -9.656 2457244.49929 0.00 -17.41 -26.30 -0.192 -0.006 -17.214 -8.888 2457244.50317 0.00 -17.19 -17.44 0.078 0.001 -17.269 -0.253 2457244.50348 0.00 2.35 -6.21 0.192 0.006 2.156 -8.560 2457244.49959 0.00 2.13 -15.06 -0.078 -0.000 2.211 -17.194 2457244.49929 0.00 -17.41 -26.30 -0.192 -0.006 -17.214 -8.888 2457244.49835 0.00 -19.84 -27.56 -0.259 -0.008 -19.573 -7.721 2457244.50186 0.00 -24.47 -22.16 -0.038 -0.004 -24.433 2.313 2457244.50470 0.00 -11.11 -8.57 0.221 0.005 -11.332 2.534 2457244.50402 0.00 6.90 -0.38 0.259 0.008 6.629 -7.277 2457244.50051 0.00 11.53 -5.78 0.038 0.004 11.489 -17.311 2457244.49768 0.00 -1.84 -19.37 -0.221 -0.004 -1.612 -17.533 2457244.49835 0.00 -19.84 -27.56 -0.259 -0.008 -19.573 -7.721 2457244.49749 0.00 -21.38 -27.59 -0.315 -0.010 -21.056 -6.209 2457244.50109 0.00 -27.69 -22.90 -0.096 -0.006 -27.584 4.785 2457244.50457 0.00 -17.00 -9.30 0.196 0.003 -17.201 7.704 2457244.50532 0.00 2.62 2.97 0.340 0.009 2.276 0.349 2457244.50277 0.00 16.42 4.67 0.228 0.009 16.178 -11.741 2457244.49884 0.00 13.98 -5.48 -0.056 0.002 14.039 -19.463 2457244.49649 0.00 -2.84 -19.84 -0.297 -0.007 -2.533 -17.000 2457244.49749 0.00 -21.38 -27.59 -0.315 -0.010 -21.056 -6.209 2457244.49675 0.00 -21.97 -26.39 -0.357 -0.011 -21.598 -4.419 2457244.50025 0.00 -29.30 -22.47 -0.149 -0.008 -29.146 6.831 2457244.50398 0.00 -21.55 -9.88 0.146 0.001 -21.700 11.670 2457244.50577 0.00 -3.26 4.00 0.356 0.009 -3.623 7.263 2457244.50456 0.00 14.87 11.06 0.357 0.011 14.497 -3.808 2457244.50106 0.00 22.20 7.14 0.149 0.008 22.045 -15.058 2457244.49732 0.00 14.45 -5.44 -0.146 -0.001 14.600 -19.897 2457244.49554 0.00 -3.84 -19.33 -0.356 -0.008 -3.478 -15.491 2457244.49675 0.00 -21.97 -26.39 -0.357 -0.011 -21.598 -4.419 2457244.49615 0.00 -21.57 -24.00 -0.383 -0.012 -21.172 -2.432 2457244.49942 0.00 -29.36 -20.83 -0.193 -0.009 -29.157 8.527 2457244.50312 0.00 -24.26 -9.75 0.088 -0.001 -24.348 14.511 2457244.50552 0.00 -8.66 4.06 0.327 0.007 -8.996 12.721 2457244.50549 0.00 10.14 14.13 0.413 0.012 9.715 3.994 2457244.50305 0.00 23.35 15.76 0.306 0.011 23.031 -7.586 2457244.49933 0.00 24.78 8.18 0.056 0.006 24.721 -16.601 2457244.49609 0.00 13.77 -5.06 -0.221 -0.003 13.994 -18.832 2457244.49483 0.00 -4.53 -17.77 -0.394 -0.010 -4.131 -13.237 2457244.49615 0.00 -21.57 -24.00 -0.383 -0.012 -21.172 -2.432 2457244.49572 0.00 -20.20 -20.54 -0.392 -0.013 -19.799 -0.335 2457244.49907 0.00 -28.17 -17.30 -0.197 -0.009 -27.966 10.874 2457244.50285 0.00 -22.96 -5.96 0.090 -0.001 -23.048 16.995 2457244.50531 0.00 -7.00 8.16 0.335 0.007 -7.345 15.164 2457244.50528 0.00 12.23 18.47 0.423 0.012 11.795 6.238 2457244.50278 0.00 25.74 20.13 0.313 0.012 25.416 -5.607 2457244.49898 0.00 27.21 12.38 0.057 0.006 27.144 -14.829 2457244.49566 0.00 15.94 -1.17 -0.226 -0.003 16.172 -17.111 2457244.49437 0.00 -2.78 -14.17 -0.403 -0.010 -2.368 -11.387 2457244.49572 0.00 -20.20 -20.54 -0.392 -0.013 -19.799 -0.335 2457244.49548 0.00 -17.94 -16.16 -0.383 -0.012 -17.541 1.776 2457244.49875 0.00 -25.73 -12.99 -0.193 -0.009 -25.525 12.734 2457244.50246 0.00 -20.63 -1.91 0.088 -0.001 -20.716 18.719 2457244.50485 0.00 -5.03 11.90 0.327 0.007 -5.365 16.928 2457244.50482 0.00 13.77 21.97 0.413 0.012 13.347 8.202 2457244.50238 0.00 26.98 23.60 0.306 0.011 26.663 -3.378 2457244.49867 0.00 28.41 16.02 0.056 0.005 28.353 -12.393 2457244.49542 0.00 17.40 2.78 -0.221 -0.003 17.625 -14.625 2457244.49416 0.00 -0.90 -9.93 -0.394 -0.010 -0.499 -9.029 2457244.49548 0.00 -17.94 -16.16 -0.383 -0.012 -17.541 1.776 2457244.49544 0.00 -14.87 -11.06 -0.357 -0.011 -14.497 3.808 2457244.49894 0.00 -22.20 -7.14 -0.149 -0.008 -22.045 15.058 2457244.50268 0.00 -14.45 5.44 0.146 0.001 -14.600 19.897 2457244.50446 0.00 3.84 19.33 0.356 0.008 3.478 15.491 2457244.50325 0.00 21.97 26.39 0.357 0.011 21.598 4.419 2457244.49975 0.00 29.30 22.47 0.149 0.008 29.146 -6.831 2457244.49602 0.00 21.55 9.88 -0.146 -0.001 21.700 -11.670 2457244.49423 0.00 3.26 -4.00 -0.356 -0.009 3.623 -7.263 2457244.49544 0.00 -14.87 -11.06 -0.357 -0.011 -14.497 3.808 2457244.49561 0.00 -11.13 -5.46 -0.315 -0.010 -10.805 5.670 2457244.49921 0.00 -17.43 -0.77 -0.096 -0.006 -17.333 16.664 2457244.50269 0.00 -6.75 12.83 0.196 0.003 -6.949 19.583 2457244.50344 0.00 12.88 25.10 0.340 0.009 12.527 12.227 2457244.50089 0.00 26.67 26.80 0.228 0.009 26.430 0.137 2457244.49696 0.00 24.24 16.65 -0.056 0.002 24.290 -7.584 2457244.49461 0.00 7.42 2.29 -0.297 -0.007 7.719 -5.122 2457244.49561 0.00 -11.13 -5.46 -0.315 -0.010 -10.805 5.670 2457244.49598 0.00 -6.90 0.38 -0.259 -0.008 -6.629 7.277 2457244.49949 0.00 -11.53 5.78 -0.038 -0.004 -11.489 17.311 2457244.50232 0.00 1.84 19.37 0.221 0.004 1.612 17.533 2457244.50165 0.00 19.84 27.56 0.259 0.008 19.573 7.721 2457244.49814 0.00 24.47 22.16 0.038 0.004 24.433 -2.313 2457244.49530 0.00 11.11 8.57 -0.221 -0.005 11.332 -2.534 2457244.49598 0.00 -6.90 0.38 -0.259 -0.008 -6.629 7.277 2457244.49652 0.00 -2.35 6.21 -0.192 -0.006 -2.156 8.560 2457244.50041 0.00 -2.13 15.06 0.078 0.000 -2.211 17.194 2457244.50071 0.00 17.41 26.30 0.192 0.006 17.214 8.888 2457244.49683 0.00 17.19 17.44 -0.078 -0.001 17.269 0.253 2457244.49652 0.00 -2.35 6.21 -0.192 -0.006 -2.156 8.560 2457244.49722 0.00 2.29 11.75 -0.115 -0.004 2.413 9.459 2457244.49975 0.00 14.20 23.86 0.115 0.004 14.085 9.656 2457244.49722 0.00 2.29 11.75 -0.115 -0.004 2.413 9.459 2457244.49805 0.00 6.84 16.77 -0.034 -0.001 6.874 9.935 """ vhs_iraf = [] for line in rvcorr_result.strip().split("\n"): if not line.strip().startswith("#"): vhs_iraf.append(float(line.split()[2])) vhs_iraf = vhs_iraf * u.km / u.s targets = SkyCoord( _get_test_input_radecs(), obstime=test_input_time, location=test_input_loc ) vhs_astropy = targets.radial_velocity_correction("heliocentric") assert_quantity_allclose(vhs_astropy, vhs_iraf, atol=150 * u.m / u.s) def generate_IRAF_input(writefn=None): dt = test_input_time.utc.datetime coos = _get_test_input_radecs() lines = [] for ra, dec in zip(coos.ra, coos.dec): rastr = Angle(ra).to_string(u.hour, sep=":") decstr = Angle(dec).to_string(u.deg, sep=":") lines.append( f"{dt.year} {dt.month} {dt.day} {dt.hour}:{dt.minute} {rastr} {decstr}" ) if writefn: with open(writefn, "w") as f: for l in lines: f.write(l) else: for l in lines: print(l) print("Run IRAF as:\nastutil\nrvcorrect f=<filename> observatory=Paranal") def _get_test_input_radecs(): ras = [] decs = [] for dec in np.linspace(-85, 85, 15): nra = int(np.round(10 * np.cos(dec * u.deg)).value) ras1 = np.linspace(-180, 180 - 1e-6, nra) ras.extend(ras1) decs.extend([dec] * len(ras1)) return SkyCoord(ra=ras, dec=decs, unit=u.deg) def test_barycorr(): # this is the result of calling _get_barycorr_bvcs # fmt: off barycorr_bvcs = u.Quantity([ -10335.93326096, -14198.47605491, -2237.60012494, -14198.47595363, -17425.46512587, -17131.70901174, 2424.37095076, 2130.61519166, -17425.46495779, -19872.50026998, -24442.37091097, -11017.08975893, 6978.0622355, 11547.93333743, -1877.34772637, -19872.50004258, -21430.08240017, -27669.14280689, -16917.08506807, 2729.57222968, 16476.49569232, 13971.97171764, -2898.04250914, -21430.08212368, -22028.51337105, -29301.92349394, -21481.13036199, -3147.44828909, 14959.50065514, 22232.91155425, 14412.11903105, -3921.56359768, -22028.51305781, -21641.01479409, -29373.0512649, -24205.90521765, -8557.34138828, 10250.50350732, 23417.2299926, 24781.98057941, 13706.17339044, -4627.70005932, -21641.01445812, -20284.92627505, -28193.91696959, -22908.51624166, -6901.82132125, 12336.45758056, 25804.51614607, 27200.50029664, 15871.21385688, -2882.24738355, -20284.9259314, -18020.92947805, -25752.96564978, -20585.81957567, -4937.25573801, 13870.58916957, 27037.31568441, 28402.06636994, 17326.25977035, -1007.62209045, -18020.92914212, -14950.33284575, -22223.74260839, -14402.94943965, 3930.73265119, 22037.68163353, 29311.09265126, 21490.30070307, 3156.62229843, -14950.33253252, -11210.53846867, -17449.59867676, -6697.54090389, 12949.11642965, 26696.03999586, 24191.5164355, 7321.50355488, -11210.53819218, -6968.89359681, -11538.76423011, 1886.51695238, 19881.66902396, 24451.54039956, 11026.26000765, -6968.89336945, -2415.20201758, -2121.44599781, 17434.63406085, 17140.87871753, -2415.2018495, 2246.76923076, 14207.64513054, 2246.76933194, 6808.40787728], u.m/u.s) # fmt: on # this tries the *other* way of calling radial_velocity_correction relative # to the IRAF tests targets = _get_test_input_radecs() bvcs_astropy = targets.radial_velocity_correction( obstime=test_input_time, location=test_input_loc, kind="barycentric" ) assert_quantity_allclose(bvcs_astropy, barycorr_bvcs, atol=10 * u.mm / u.s) def _get_barycorr_bvcs(coos, loc, injupyter=False): """ Gets the barycentric correction of the test data from the http://astroutils.astronomy.ohio-state.edu/exofast/barycorr.html web site. Requires the https://github.com/tronsgaard/barycorr python interface to that site. Provided to reproduce the test data above, but not required to actually run the tests. """ import barycorr from astropy.utils.console import ProgressBar bvcs = [] for ra, dec in ProgressBar( list(zip(coos.ra.deg, coos.dec.deg)), ipython_widget=injupyter ): res = barycorr.bvc( test_input_time.utc.jd, ra, dec, lat=loc.geodetic[1].deg, lon=loc.geodetic[0].deg, elevation=loc.geodetic[2].to(u.m).value, ) bvcs.append(res) return bvcs * u.m / u.s def test_rvcorr_multiple_obstimes_onskycoord(): loc = EarthLocation(-2309223 * u.m, -3695529 * u.m, -4641767 * u.m) arrtime = Time("2005-03-21 00:00:00") + np.linspace(-1, 1, 10) * u.day sc = SkyCoord(1 * u.deg, 2 * u.deg, 100 * u.kpc, obstime=arrtime, location=loc) rvcbary_sc2 = sc.radial_velocity_correction(kind="barycentric") assert len(rvcbary_sc2) == 10 # check the multiple-obstime and multi- mode sc = SkyCoord( ([1] * 10) * u.deg, 2 * u.deg, 100 * u.kpc, obstime=arrtime, location=loc ) rvcbary_sc3 = sc.radial_velocity_correction(kind="barycentric") assert len(rvcbary_sc3) == 10 def test_invalid_argument_combos(): loc = EarthLocation(-2309223 * u.m, -3695529 * u.m, -4641767 * u.m) time = Time("2005-03-21 00:00:00") timel = Time("2005-03-21 00:00:00", location=loc) scwattrs = SkyCoord(1 * u.deg, 2 * u.deg, obstime=time, location=loc) scwoattrs = SkyCoord(1 * u.deg, 2 * u.deg) scwattrs.radial_velocity_correction() with pytest.raises(ValueError): scwattrs.radial_velocity_correction(obstime=time, location=loc) with pytest.raises(TypeError): scwoattrs.radial_velocity_correction(obstime=time) scwoattrs.radial_velocity_correction(obstime=time, location=loc) with pytest.raises(TypeError): scwoattrs.radial_velocity_correction() with pytest.raises(ValueError): scwattrs.radial_velocity_correction(timel) def test_regression_9645(): sc = SkyCoord( 10 * u.deg, 20 * u.deg, distance=5 * u.pc, obstime=test_input_time, pm_ra_cosdec=0 * u.mas / u.yr, pm_dec=0 * u.mas / u.yr, radial_velocity=0 * u.km / u.s, ) sc_novel = SkyCoord( 10 * u.deg, 20 * u.deg, distance=5 * u.pc, obstime=test_input_time ) corr = sc.radial_velocity_correction( obstime=test_input_time, location=test_input_loc ) corr_novel = sc_novel.radial_velocity_correction( obstime=test_input_time, location=test_input_loc ) assert_quantity_allclose(corr, corr_novel) def test_barycorr_withvels(): # this is the result of calling _get_barycorr_bvcs_withvels # fmt: off barycorr_bvcs = u.Quantity( [-10335.94926581, -14198.49117304, -2237.58656335, -14198.49078575, -17425.47883864, -17131.72711182, 2424.38466675, 2130.62819093, -17425.47834604, -19872.51254565, -24442.39064348, -11017.0964353, 6978.07515501, 11547.94831175, -1877.34560543, -19872.51188308, -21430.0931411, -27669.15919972, -16917.09482078, 2729.57757823, 16476.5087925, 13971.97955641, -2898.04451551, -21430.09220144, -22028.52224227, -29301.93613248, -21481.14015151, -3147.44852058, 14959.50849997, 22232.91906264, 14412.12044201, -3921.56783473, -22028.52088749, -21641.02117064, -29373.05982792, -24205.91319258, -8557.34473049, 10250.50560918, 23417.23357219, 24781.98113432, 13706.17025059, -4627.70468688, -21641.01928189, -20284.92926795, -28193.92117514, -22908.52127321, -6901.82512637, 12336.45557256, 25804.5137786, 27200.49576347, 15871.20847332, -2882.25080211, -20284.92696256, -18020.92824383, -25752.96528309, -20585.82211189, -4937.26088706, 13870.58217495, 27037.30698639, 28402.0571686, 17326.25314311, -1007.62313006, -18020.92552769, -14950.32653444, -22223.73793506, -14402.95155047, 3930.72325162, 22037.66749783, 29311.07826101, 21490.29193529, 3156.62360741, -14950.32373745, -11210.52665171, -17449.59068509, -6697.54579192, 12949.09948082, 26696.01956077, 24191.50403015, 7321.50684816, -11210.52389393, -6968.87610888, -11538.7547047, 1886.50525065, 19881.64366561, 24451.52197666, 11026.26396455, -6968.87351156, -2415.17899385, -2121.44598968, 17434.60465075, 17140.87204017, -2415.1771038, 2246.79688215, 14207.61339552, 2246.79790276, 6808.43888253], u.m/u.s) # fmt: on coos = _get_test_input_radecvels() bvcs_astropy = coos.radial_velocity_correction( obstime=test_input_time, location=test_input_loc ) assert_quantity_allclose(bvcs_astropy, barycorr_bvcs, atol=10 * u.mm / u.s) def _get_test_input_radecvels(): coos = _get_test_input_radecs() ras = coos.ra decs = coos.dec pmra = np.linspace(-1000, 1000, coos.size) * u.mas / u.yr pmdec = np.linspace(0, 1000, coos.size) * u.mas / u.yr rvs = np.linspace(0, 100, coos.size) * u.km / u.s distance = np.linspace(10, 100, coos.size) * u.pc return SkyCoord( ras, decs, pm_ra_cosdec=pmra, pm_dec=pmdec, radial_velocity=rvs, distance=distance, obstime=test_input_time, ) def _get_barycorr_bvcs_withvels(coos, loc, injupyter=False): """ Gets the barycentric correction of the test data from the http://astroutils.astronomy.ohio-state.edu/exofast/barycorr.html web site. Requires the https://github.com/tronsgaard/barycorr python interface to that site. Provided to reproduce the test data above, but not required to actually run the tests. """ import barycorr from astropy.utils.console import ProgressBar bvcs = [] for coo in ProgressBar(coos, ipython_widget=injupyter): res = barycorr.bvc( test_input_time.utc.jd, coo.ra.deg, coo.dec.deg, lat=loc.geodetic[1].deg, lon=loc.geodetic[0].deg, pmra=coo.pm_ra_cosdec.to_value(u.mas / u.yr), pmdec=coo.pm_dec.to_value(u.mas / u.yr), parallax=coo.distance.to_value(u.mas, equivalencies=u.parallax()), rv=coo.radial_velocity.to_value(u.m / u.s), epoch=test_input_time.utc.jd, elevation=loc.geodetic[2].to(u.m).value, ) bvcs.append(res) return bvcs * u.m / u.s def test_warning_no_obstime_on_skycoord(): c = SkyCoord( l=10 * u.degree, b=45 * u.degree, pm_l_cosb=34 * u.mas / u.yr, pm_b=-117 * u.mas / u.yr, distance=50 * u.pc, frame="galactic", ) with pytest.warns(Warning): c.radial_velocity_correction("barycentric", test_input_time, test_input_loc) @pytest.mark.remote_data def test_regression_10094(): """ Make sure that when we include the proper motion and radial velocity of a SkyCoord, our velocity corrections remain close to TEMPO2. We check that tau Ceti is within 5mm/s """ # Wright & Eastman (2014) Table2 # Corrections for tau Ceti wright_table = Table.read( get_pkg_data_filename("coordinates/wright_eastmann_2014_tau_ceti.fits") ) reduced_jds = wright_table["JD-2400000"] tempo2 = wright_table["TEMPO2"] barycorr = wright_table["BARYCORR"] # tau Ceti Hipparchos data tauCet = SkyCoord( "01 44 05.1275 -15 56 22.4006", unit=(u.hour, u.deg), pm_ra_cosdec=-1721.05 * u.mas / u.yr, pm_dec=854.16 * u.mas / u.yr, distance=Distance(parallax=273.96 * u.mas), radial_velocity=-16.597 * u.km / u.s, obstime=Time(48348.5625, format="mjd"), ) # CTIO location as used in Wright & Eastmann xyz = u.Quantity([1814985.3, -5213916.8, -3187738.1], u.m) obs = EarthLocation(*xyz) times = Time(2400000, reduced_jds, format="jd") tempo2 = tempo2 * speed_of_light barycorr = barycorr * speed_of_light astropy = tauCet.radial_velocity_correction(location=obs, obstime=times) assert_quantity_allclose(astropy, tempo2, atol=5 * u.mm / u.s) assert_quantity_allclose(astropy, barycorr, atol=5 * u.mm / u.s)
93877727095e16cc57126972bf118233a1c1b081e5f686b308ed8913c84799ef
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np import pytest from numpy.testing import assert_array_equal from astropy import units as u from astropy.coordinates import EarthLocation, Latitude, Longitude, SkyCoord # test on frame with most complicated frame attributes. from astropy.coordinates.builtin_frames import GCRS, ICRS, AltAz from astropy.time import Time from astropy.units.quantity_helper.function_helpers import ARRAY_FUNCTION_ENABLED @pytest.fixture(params=[True, False] if ARRAY_FUNCTION_ENABLED else [True]) def method(request): return request.param needs_array_function = pytest.mark.xfail( not ARRAY_FUNCTION_ENABLED, reason="Needs __array_function__ support" ) class TestManipulation: """Manipulation of Frame shapes. Checking that attributes are manipulated correctly. Even more exhaustive tests are done in time.tests.test_methods """ def setup_class(cls): # For these tests, we set up frames and coordinates using copy=False, # so we can check that broadcasting is handled correctly. lon = Longitude(np.arange(0, 24, 4), u.hourangle) lat = Latitude(np.arange(-90, 91, 30), u.deg) # With same-sized arrays, no attributes. cls.s0 = ICRS( lon[:, np.newaxis] * np.ones(lat.shape), lat * np.ones(lon.shape)[:, np.newaxis], copy=False, ) # Make an AltAz frame since that has many types of attributes. # Match one axis with times. cls.obstime = Time("2012-01-01") + np.arange(len(lon))[:, np.newaxis] * u.s # And another with location. cls.location = EarthLocation(20.0 * u.deg, lat, 100 * u.m) # Ensure we have a quantity scalar. cls.pressure = 1000 * u.hPa # As well as an array. cls.temperature = ( np.random.uniform(0.0, 20.0, size=(lon.size, lat.size)) * u.deg_C ) cls.s1 = AltAz( az=lon[:, np.newaxis], alt=lat, obstime=cls.obstime, location=cls.location, pressure=cls.pressure, temperature=cls.temperature, copy=False, ) # For some tests, also try a GCRS, since that has representation # attributes. We match the second dimension (via the location) cls.obsgeoloc, cls.obsgeovel = cls.location.get_gcrs_posvel(cls.obstime[0, 0]) cls.s2 = GCRS( ra=lon[:, np.newaxis], dec=lat, obstime=cls.obstime, obsgeoloc=cls.obsgeoloc, obsgeovel=cls.obsgeovel, copy=False, ) # For completeness, also some tests on an empty frame. cls.s3 = GCRS( obstime=cls.obstime, obsgeoloc=cls.obsgeoloc, obsgeovel=cls.obsgeovel, copy=False, ) # And make a SkyCoord cls.sc = SkyCoord(ra=lon[:, np.newaxis], dec=lat, frame=cls.s3, copy=False) def test_getitem0101(self): # We on purpose take a slice with only one element, as for the # general tests it doesn't matter, but it allows us to check # for a few cases that shapes correctly become scalar if we # index our size-1 array down to a scalar. See gh-10113. item = (slice(0, 1), slice(0, 1)) s0_0101 = self.s0[item] assert s0_0101.shape == (1, 1) assert_array_equal(s0_0101.data.lon, self.s0.data.lon[item]) assert np.may_share_memory(s0_0101.data.lon, self.s0.data.lon) assert np.may_share_memory(s0_0101.data.lat, self.s0.data.lat) s0_0101_00 = s0_0101[0, 0] assert s0_0101_00.shape == () assert s0_0101_00.data.lon.shape == () assert_array_equal(s0_0101_00.data.lon, self.s0.data.lon[0, 0]) s1_0101 = self.s1[item] assert s1_0101.shape == (1, 1) assert_array_equal(s1_0101.data.lon, self.s1.data.lon[item]) assert np.may_share_memory(s1_0101.data.lat, self.s1.data.lat) assert np.all(s1_0101.obstime == self.s1.obstime[item]) assert np.may_share_memory(s1_0101.obstime.jd1, self.s1.obstime.jd1) assert_array_equal(s1_0101.location, self.s1.location[0, 0]) assert np.may_share_memory(s1_0101.location, self.s1.location) assert_array_equal(s1_0101.temperature, self.s1.temperature[item]) assert np.may_share_memory(s1_0101.temperature, self.s1.temperature) # scalar should just be transferred. assert s1_0101.pressure is self.s1.pressure s1_0101_00 = s1_0101[0, 0] assert s1_0101_00.shape == () assert s1_0101_00.obstime.shape == () assert s1_0101_00.obstime == self.s1.obstime[0, 0] s2_0101 = self.s2[item] assert s2_0101.shape == (1, 1) assert np.all(s2_0101.data.lon == self.s2.data.lon[item]) assert np.may_share_memory(s2_0101.data.lat, self.s2.data.lat) assert np.all(s2_0101.obstime == self.s2.obstime[item]) assert np.may_share_memory(s2_0101.obstime.jd1, self.s2.obstime.jd1) assert_array_equal(s2_0101.obsgeoloc.xyz, self.s2.obsgeoloc[item].xyz) s3_0101 = self.s3[item] assert s3_0101.shape == (1, 1) assert s3_0101.obstime.shape == (1, 1) assert np.all(s3_0101.obstime == self.s3.obstime[item]) assert np.may_share_memory(s3_0101.obstime.jd1, self.s3.obstime.jd1) assert_array_equal(s3_0101.obsgeoloc.xyz, self.s3.obsgeoloc[item].xyz) sc_0101 = self.sc[item] assert sc_0101.shape == (1, 1) assert_array_equal(sc_0101.data.lon, self.sc.data.lon[item]) assert np.may_share_memory(sc_0101.data.lat, self.sc.data.lat) assert np.all(sc_0101.obstime == self.sc.obstime[item]) assert np.may_share_memory(sc_0101.obstime.jd1, self.sc.obstime.jd1) assert_array_equal(sc_0101.obsgeoloc.xyz, self.sc.obsgeoloc[item].xyz) def test_ravel(self): s0_ravel = self.s0.ravel() assert s0_ravel.shape == (self.s0.size,) assert np.all(s0_ravel.data.lon == self.s0.data.lon.ravel()) assert np.may_share_memory(s0_ravel.data.lon, self.s0.data.lon) assert np.may_share_memory(s0_ravel.data.lat, self.s0.data.lat) # Since s1 lon, lat were broadcast, ravel needs to make a copy. s1_ravel = self.s1.ravel() assert s1_ravel.shape == (self.s1.size,) assert np.all(s1_ravel.data.lon == self.s1.data.lon.ravel()) assert not np.may_share_memory(s1_ravel.data.lat, self.s1.data.lat) assert np.all(s1_ravel.obstime == self.s1.obstime.ravel()) assert not np.may_share_memory(s1_ravel.obstime.jd1, self.s1.obstime.jd1) assert np.all(s1_ravel.location == self.s1.location.ravel()) assert not np.may_share_memory(s1_ravel.location, self.s1.location) assert np.all(s1_ravel.temperature == self.s1.temperature.ravel()) assert np.may_share_memory(s1_ravel.temperature, self.s1.temperature) assert s1_ravel.pressure == self.s1.pressure s2_ravel = self.s2.ravel() assert s2_ravel.shape == (self.s2.size,) assert np.all(s2_ravel.data.lon == self.s2.data.lon.ravel()) assert not np.may_share_memory(s2_ravel.data.lat, self.s2.data.lat) assert np.all(s2_ravel.obstime == self.s2.obstime.ravel()) assert not np.may_share_memory(s2_ravel.obstime.jd1, self.s2.obstime.jd1) # CartesianRepresentation do not allow direct comparisons, as this is # too tricky to get right in the face of rounding issues. Here, though, # it cannot be an issue, so we compare the xyz quantities. assert np.all(s2_ravel.obsgeoloc.xyz == self.s2.obsgeoloc.ravel().xyz) assert not np.may_share_memory(s2_ravel.obsgeoloc.x, self.s2.obsgeoloc.x) s3_ravel = self.s3.ravel() assert s3_ravel.shape == (42,) # cannot use .size on frame w/o data. assert np.all(s3_ravel.obstime == self.s3.obstime.ravel()) assert not np.may_share_memory(s3_ravel.obstime.jd1, self.s3.obstime.jd1) assert np.all(s3_ravel.obsgeoloc.xyz == self.s3.obsgeoloc.ravel().xyz) assert not np.may_share_memory(s3_ravel.obsgeoloc.x, self.s3.obsgeoloc.x) sc_ravel = self.sc.ravel() assert sc_ravel.shape == (self.sc.size,) assert np.all(sc_ravel.data.lon == self.sc.data.lon.ravel()) assert not np.may_share_memory(sc_ravel.data.lat, self.sc.data.lat) assert np.all(sc_ravel.obstime == self.sc.obstime.ravel()) assert not np.may_share_memory(sc_ravel.obstime.jd1, self.sc.obstime.jd1) assert np.all(sc_ravel.obsgeoloc.xyz == self.sc.obsgeoloc.ravel().xyz) assert not np.may_share_memory(sc_ravel.obsgeoloc.x, self.sc.obsgeoloc.x) def test_flatten(self): s0_flatten = self.s0.flatten() assert s0_flatten.shape == (self.s0.size,) assert np.all(s0_flatten.data.lon == self.s0.data.lon.flatten()) # Flatten always copies. assert not np.may_share_memory(s0_flatten.data.lat, self.s0.data.lat) s1_flatten = self.s1.flatten() assert s1_flatten.shape == (self.s1.size,) assert np.all(s1_flatten.data.lat == self.s1.data.lat.flatten()) assert not np.may_share_memory(s1_flatten.data.lon, self.s1.data.lat) assert np.all(s1_flatten.obstime == self.s1.obstime.flatten()) assert not np.may_share_memory(s1_flatten.obstime.jd1, self.s1.obstime.jd1) assert np.all(s1_flatten.location == self.s1.location.flatten()) assert not np.may_share_memory(s1_flatten.location, self.s1.location) assert np.all(s1_flatten.temperature == self.s1.temperature.flatten()) assert not np.may_share_memory(s1_flatten.temperature, self.s1.temperature) assert s1_flatten.pressure == self.s1.pressure def test_transpose(self): s0_transpose = self.s0.transpose() assert s0_transpose.shape == (7, 6) assert np.all(s0_transpose.data.lon == self.s0.data.lon.transpose()) assert np.may_share_memory(s0_transpose.data.lat, self.s0.data.lat) s1_transpose = self.s1.transpose() assert s1_transpose.shape == (7, 6) assert np.all(s1_transpose.data.lat == self.s1.data.lat.transpose()) assert np.may_share_memory(s1_transpose.data.lon, self.s1.data.lon) assert np.all(s1_transpose.obstime == self.s1.obstime.transpose()) assert np.may_share_memory(s1_transpose.obstime.jd1, self.s1.obstime.jd1) assert np.all(s1_transpose.location == self.s1.location.transpose()) assert np.may_share_memory(s1_transpose.location, self.s1.location) assert np.all(s1_transpose.temperature == self.s1.temperature.transpose()) assert np.may_share_memory(s1_transpose.temperature, self.s1.temperature) assert s1_transpose.pressure == self.s1.pressure # Only one check on T, since it just calls transpose anyway. s1_T = self.s1.T assert s1_T.shape == (7, 6) assert np.all(s1_T.temperature == self.s1.temperature.T) assert np.may_share_memory(s1_T.location, self.s1.location) def test_diagonal(self): s0_diagonal = self.s0.diagonal() assert s0_diagonal.shape == (6,) assert np.all(s0_diagonal.data.lat == self.s0.data.lat.diagonal()) assert np.may_share_memory(s0_diagonal.data.lat, self.s0.data.lat) def test_swapaxes(self): s1_swapaxes = self.s1.swapaxes(0, 1) assert s1_swapaxes.shape == (7, 6) assert np.all(s1_swapaxes.data.lat == self.s1.data.lat.swapaxes(0, 1)) assert np.may_share_memory(s1_swapaxes.data.lat, self.s1.data.lat) assert np.all(s1_swapaxes.obstime == self.s1.obstime.swapaxes(0, 1)) assert np.may_share_memory(s1_swapaxes.obstime.jd1, self.s1.obstime.jd1) assert np.all(s1_swapaxes.location == self.s1.location.swapaxes(0, 1)) assert s1_swapaxes.location.shape == (7, 6) assert np.may_share_memory(s1_swapaxes.location, self.s1.location) assert np.all(s1_swapaxes.temperature == self.s1.temperature.swapaxes(0, 1)) assert np.may_share_memory(s1_swapaxes.temperature, self.s1.temperature) assert s1_swapaxes.pressure == self.s1.pressure def test_reshape(self): s0_reshape = self.s0.reshape(2, 3, 7) assert s0_reshape.shape == (2, 3, 7) assert np.all(s0_reshape.data.lon == self.s0.data.lon.reshape(2, 3, 7)) assert np.all(s0_reshape.data.lat == self.s0.data.lat.reshape(2, 3, 7)) assert np.may_share_memory(s0_reshape.data.lon, self.s0.data.lon) assert np.may_share_memory(s0_reshape.data.lat, self.s0.data.lat) s1_reshape = self.s1.reshape(3, 2, 7) assert s1_reshape.shape == (3, 2, 7) assert np.all(s1_reshape.data.lat == self.s1.data.lat.reshape(3, 2, 7)) assert np.may_share_memory(s1_reshape.data.lat, self.s1.data.lat) assert np.all(s1_reshape.obstime == self.s1.obstime.reshape(3, 2, 7)) assert np.may_share_memory(s1_reshape.obstime.jd1, self.s1.obstime.jd1) assert np.all(s1_reshape.location == self.s1.location.reshape(3, 2, 7)) assert np.may_share_memory(s1_reshape.location, self.s1.location) assert np.all(s1_reshape.temperature == self.s1.temperature.reshape(3, 2, 7)) assert np.may_share_memory(s1_reshape.temperature, self.s1.temperature) assert s1_reshape.pressure == self.s1.pressure # For reshape(3, 14), copying is necessary for lon, lat, location, time s1_reshape2 = self.s1.reshape(3, 14) assert s1_reshape2.shape == (3, 14) assert np.all(s1_reshape2.data.lon == self.s1.data.lon.reshape(3, 14)) assert not np.may_share_memory(s1_reshape2.data.lon, self.s1.data.lon) assert np.all(s1_reshape2.obstime == self.s1.obstime.reshape(3, 14)) assert not np.may_share_memory(s1_reshape2.obstime.jd1, self.s1.obstime.jd1) assert np.all(s1_reshape2.location == self.s1.location.reshape(3, 14)) assert not np.may_share_memory(s1_reshape2.location, self.s1.location) assert np.all(s1_reshape2.temperature == self.s1.temperature.reshape(3, 14)) assert np.may_share_memory(s1_reshape2.temperature, self.s1.temperature) assert s1_reshape2.pressure == self.s1.pressure s2_reshape = self.s2.reshape(3, 2, 7) assert s2_reshape.shape == (3, 2, 7) assert np.all(s2_reshape.data.lon == self.s2.data.lon.reshape(3, 2, 7)) assert np.may_share_memory(s2_reshape.data.lat, self.s2.data.lat) assert np.all(s2_reshape.obstime == self.s2.obstime.reshape(3, 2, 7)) assert np.may_share_memory(s2_reshape.obstime.jd1, self.s2.obstime.jd1) assert np.all( s2_reshape.obsgeoloc.xyz == self.s2.obsgeoloc.reshape(3, 2, 7).xyz ) assert np.may_share_memory(s2_reshape.obsgeoloc.x, self.s2.obsgeoloc.x) s3_reshape = self.s3.reshape(3, 2, 7) assert s3_reshape.shape == (3, 2, 7) assert np.all(s3_reshape.obstime == self.s3.obstime.reshape(3, 2, 7)) assert np.may_share_memory(s3_reshape.obstime.jd1, self.s3.obstime.jd1) assert np.all( s3_reshape.obsgeoloc.xyz == self.s3.obsgeoloc.reshape(3, 2, 7).xyz ) assert np.may_share_memory(s3_reshape.obsgeoloc.x, self.s3.obsgeoloc.x) sc_reshape = self.sc.reshape(3, 2, 7) assert sc_reshape.shape == (3, 2, 7) assert np.all(sc_reshape.data.lon == self.sc.data.lon.reshape(3, 2, 7)) assert np.may_share_memory(sc_reshape.data.lat, self.sc.data.lat) assert np.all(sc_reshape.obstime == self.sc.obstime.reshape(3, 2, 7)) assert np.may_share_memory(sc_reshape.obstime.jd1, self.sc.obstime.jd1) assert np.all( sc_reshape.obsgeoloc.xyz == self.sc.obsgeoloc.reshape(3, 2, 7).xyz ) assert np.may_share_memory(sc_reshape.obsgeoloc.x, self.sc.obsgeoloc.x) # For reshape(3, 14), the arrays all need to be copied. sc_reshape2 = self.sc.reshape(3, 14) assert sc_reshape2.shape == (3, 14) assert np.all(sc_reshape2.data.lon == self.sc.data.lon.reshape(3, 14)) assert not np.may_share_memory(sc_reshape2.data.lat, self.sc.data.lat) assert np.all(sc_reshape2.obstime == self.sc.obstime.reshape(3, 14)) assert not np.may_share_memory(sc_reshape2.obstime.jd1, self.sc.obstime.jd1) assert np.all(sc_reshape2.obsgeoloc.xyz == self.sc.obsgeoloc.reshape(3, 14).xyz) assert not np.may_share_memory(sc_reshape2.obsgeoloc.x, self.sc.obsgeoloc.x) def test_squeeze(self): s0_squeeze = self.s0.reshape(3, 1, 2, 1, 7).squeeze() assert s0_squeeze.shape == (3, 2, 7) assert np.all(s0_squeeze.data.lat == self.s0.data.lat.reshape(3, 2, 7)) assert np.may_share_memory(s0_squeeze.data.lat, self.s0.data.lat) def test_add_dimension(self, method): if method: s0_adddim = self.s0[:, np.newaxis, :] else: s0_adddim = np.expand_dims(self.s0, 1) assert s0_adddim.shape == (6, 1, 7) assert np.all(s0_adddim.data.lon == self.s0.data.lon[:, np.newaxis, :]) assert np.may_share_memory(s0_adddim.data.lat, self.s0.data.lat) def test_take(self): s0_take = self.s0.take((5, 2)) assert s0_take.shape == (2,) assert np.all(s0_take.data.lon == self.s0.data.lon.take((5, 2))) # Much more detailed tests of shape manipulation via numpy functions done # in test_representation_methods. @needs_array_function def test_broadcast_to(self): s1_broadcast = np.broadcast_to(self.s1, (20, 6, 7)) assert s1_broadcast.shape == (20, 6, 7) assert np.all(s1_broadcast.data.lon == self.s1.data.lon[np.newaxis]) assert np.may_share_memory(s1_broadcast.data.lat, self.s1.data.lat)
c5fa21f4577562677a9559e3584ab257ccdf8da044f8ffb5af4c9ab59a7817ca
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np import pytest from astropy import units as u from astropy.coordinates import builtin_frames as bf from astropy.coordinates import galactocentric_frame_defaults from astropy.coordinates import representation as r from astropy.coordinates.builtin_frames import CIRS, ICRS, Galactic, Galactocentric from astropy.coordinates.errors import ConvertError from astropy.units import allclose as quantity_allclose def test_api(): # transform observed Barycentric velocities to full-space Galactocentric with galactocentric_frame_defaults.set("latest"): gc_frame = Galactocentric() icrs = ICRS( ra=151.0 * u.deg, dec=-16 * u.deg, distance=101 * u.pc, pm_ra_cosdec=21 * u.mas / u.yr, pm_dec=-71 * u.mas / u.yr, radial_velocity=71 * u.km / u.s, ) icrs.transform_to(gc_frame) # transform a set of ICRS proper motions to Galactic icrs = ICRS( ra=151.0 * u.deg, dec=-16 * u.deg, pm_ra_cosdec=21 * u.mas / u.yr, pm_dec=-71 * u.mas / u.yr, ) icrs.transform_to(Galactic()) # transform a Barycentric RV to a GSR RV icrs = ICRS( ra=151.0 * u.deg, dec=-16 * u.deg, distance=1.0 * u.pc, pm_ra_cosdec=0 * u.mas / u.yr, pm_dec=0 * u.mas / u.yr, radial_velocity=71 * u.km / u.s, ) icrs.transform_to(Galactocentric()) # fmt: off all_kwargs = [ dict(ra=37.4*u.deg, dec=-55.8*u.deg), dict(ra=37.4*u.deg, dec=-55.8*u.deg, distance=150*u.pc), dict(ra=37.4*u.deg, dec=-55.8*u.deg, pm_ra_cosdec=-21.2*u.mas/u.yr, pm_dec=17.1*u.mas/u.yr), dict(ra=37.4*u.deg, dec=-55.8*u.deg, distance=150*u.pc, pm_ra_cosdec=-21.2*u.mas/u.yr, pm_dec=17.1*u.mas/u.yr), dict(ra=37.4*u.deg, dec=-55.8*u.deg, radial_velocity=105.7*u.km/u.s), dict(ra=37.4*u.deg, dec=-55.8*u.deg, distance=150*u.pc, radial_velocity=105.7*u.km/u.s), dict(ra=37.4*u.deg, dec=-55.8*u.deg, radial_velocity=105.7*u.km/u.s, pm_ra_cosdec=-21.2*u.mas/u.yr, pm_dec=17.1*u.mas/u.yr), dict(ra=37.4*u.deg, dec=-55.8*u.deg, distance=150*u.pc, pm_ra_cosdec=-21.2*u.mas/u.yr, pm_dec=17.1*u.mas/u.yr, radial_velocity=105.7*u.km/u.s), # Now test other representation/differential types: dict(x=100.*u.pc, y=200*u.pc, z=300*u.pc, representation_type='cartesian'), dict(x=100.*u.pc, y=200*u.pc, z=300*u.pc, representation_type=r.CartesianRepresentation), dict(x=100.*u.pc, y=200*u.pc, z=300*u.pc, v_x=100.*u.km/u.s, v_y=200*u.km/u.s, v_z=300*u.km/u.s, representation_type=r.CartesianRepresentation, differential_type=r.CartesianDifferential), dict(x=100.*u.pc, y=200*u.pc, z=300*u.pc, v_x=100.*u.km/u.s, v_y=200*u.km/u.s, v_z=300*u.km/u.s, representation_type=r.CartesianRepresentation, differential_type='cartesian'), ] # fmt: on @pytest.mark.parametrize("kwargs", all_kwargs) def test_all_arg_options(kwargs): # Above is a list of all possible valid combinations of arguments. # Here we do a simple thing and just verify that passing them in, we have # access to the relevant attributes from the resulting object icrs = ICRS(**kwargs) gal = icrs.transform_to(Galactic()) repr_gal = repr(gal) for k in kwargs: if k == "differential_type": continue getattr(icrs, k) if "pm_ra_cosdec" in kwargs: # should have both assert "pm_l_cosb" in repr_gal assert "pm_b" in repr_gal assert "mas / yr" in repr_gal if "radial_velocity" not in kwargs: assert "radial_velocity" not in repr_gal if "radial_velocity" in kwargs: assert "radial_velocity" in repr_gal assert "km / s" in repr_gal if "pm_ra_cosdec" not in kwargs: assert "pm_l_cosb" not in repr_gal assert "pm_b" not in repr_gal @pytest.mark.parametrize( "cls,lon,lat", [ [bf.ICRS, "ra", "dec"], [bf.FK4, "ra", "dec"], [bf.FK4NoETerms, "ra", "dec"], [bf.FK5, "ra", "dec"], [bf.GCRS, "ra", "dec"], [bf.HCRS, "ra", "dec"], [bf.LSR, "ra", "dec"], [bf.CIRS, "ra", "dec"], [bf.Galactic, "l", "b"], [bf.AltAz, "az", "alt"], [bf.Supergalactic, "sgl", "sgb"], [bf.GalacticLSR, "l", "b"], [bf.HeliocentricMeanEcliptic, "lon", "lat"], [bf.GeocentricMeanEcliptic, "lon", "lat"], [bf.BarycentricMeanEcliptic, "lon", "lat"], [bf.PrecessedGeocentric, "ra", "dec"], ], ) def test_expected_arg_names(cls, lon, lat): kwargs = { lon: 37.4 * u.deg, lat: -55.8 * u.deg, "distance": 150 * u.pc, f"pm_{lon}_cos{lat}": -21.2 * u.mas / u.yr, f"pm_{lat}": 17.1 * u.mas / u.yr, "radial_velocity": 105.7 * u.km / u.s, } frame = cls(**kwargs) # these data are extracted from the vizier copy of XHIP: # http://vizier.u-strasbg.fr/viz-bin/VizieR-3?-source=+V/137A/XHIP _xhip_head = """ ------ ------------ ------------ -------- -------- ------------ ------------ ------- -------- -------- ------- ------ ------ ------ R D pmRA pmDE Di pmGLon pmGLat RV U V W HIP AJ2000 (deg) EJ2000 (deg) (mas/yr) (mas/yr) GLon (deg) GLat (deg) st (pc) (mas/yr) (mas/yr) (km/s) (km/s) (km/s) (km/s) ------ ------------ ------------ -------- -------- ------------ ------------ ------- -------- -------- ------- ------ ------ ------ """[ 1:-1 ] _xhip_data = """ 19 000.05331690 +38.30408633 -3.17 -15.37 112.00026470 -23.47789171 247.12 -6.40 -14.33 6.30 7.3 2.0 -17.9 20 000.06295067 +23.52928427 36.11 -22.48 108.02779304 -37.85659811 95.90 29.35 -30.78 37.80 -19.3 16.1 -34.2 21 000.06623581 +08.00723430 61.48 -0.23 101.69697120 -52.74179515 183.68 58.06 -20.23 -11.72 -45.2 -30.9 -1.3 24917 080.09698238 -33.39874984 -4.30 13.40 236.92324669 -32.58047131 107.38 -14.03 -1.15 36.10 -22.4 -21.3 -19.9 59207 182.13915108 +65.34963517 18.17 5.49 130.04157185 51.18258601 56.00 -18.98 -0.49 5.70 1.5 6.1 4.4 87992 269.60730667 +36.87462906 -89.58 72.46 62.98053142 25.90148234 129.60 45.64 105.79 -4.00 -39.5 -15.8 56.7 115110 349.72322473 -28.74087144 48.86 -9.25 23.00447250 -69.52799804 116.87 -8.37 -49.02 15.00 -16.8 -12.2 -23.6 """[ 1:-1 ] # in principal we could parse the above as a table, but doing it "manually" # makes this test less tied to Table working correctly @pytest.mark.parametrize( "hip,ra,dec,pmra,pmdec,glon,glat,dist,pmglon,pmglat,rv,U,V,W", [[float(val) for val in row.split()] for row in _xhip_data.split("\n")], ) def test_xhip_galactic( hip, ra, dec, pmra, pmdec, glon, glat, dist, pmglon, pmglat, rv, U, V, W ): i = ICRS( ra * u.deg, dec * u.deg, dist * u.pc, pm_ra_cosdec=pmra * u.marcsec / u.yr, pm_dec=pmdec * u.marcsec / u.yr, radial_velocity=rv * u.km / u.s, ) g = i.transform_to(Galactic()) # precision is limited by 2-deciimal digit string representation of pms assert quantity_allclose( g.pm_l_cosb, pmglon * u.marcsec / u.yr, atol=0.01 * u.marcsec / u.yr ) assert quantity_allclose( g.pm_b, pmglat * u.marcsec / u.yr, atol=0.01 * u.marcsec / u.yr ) # make sure UVW also makes sense uvwg = g.cartesian.differentials["s"] # precision is limited by 1-decimal digit string representation of vels assert quantity_allclose(uvwg.d_x, U * u.km / u.s, atol=0.1 * u.km / u.s) assert quantity_allclose(uvwg.d_y, V * u.km / u.s, atol=0.1 * u.km / u.s) assert quantity_allclose(uvwg.d_z, W * u.km / u.s, atol=0.1 * u.km / u.s) # fmt: off @pytest.mark.parametrize('kwargs,expect_success', [ [dict(ra=37.4*u.deg, dec=-55.8*u.deg), False], [dict(ra=37.4*u.deg, dec=-55.8*u.deg, distance=150*u.pc), True], [dict(ra=37.4*u.deg, dec=-55.8*u.deg, pm_ra_cosdec=-21.2*u.mas/u.yr, pm_dec=17.1*u.mas/u.yr), False], [dict(ra=37.4*u.deg, dec=-55.8*u.deg, radial_velocity=105.7*u.km/u.s), False], [dict(ra=37.4*u.deg, dec=-55.8*u.deg, distance=150*u.pc, radial_velocity=105.7*u.km/u.s), False], [dict(ra=37.4*u.deg, dec=-55.8*u.deg, radial_velocity=105.7*u.km/u.s, pm_ra_cosdec=-21.2*u.mas/u.yr, pm_dec=17.1*u.mas/u.yr), False], [dict(ra=37.4*u.deg, dec=-55.8*u.deg, distance=150*u.pc, pm_ra_cosdec=-21.2*u.mas/u.yr, pm_dec=17.1*u.mas/u.yr, radial_velocity=105.7*u.km/u.s), True] ]) # fmt: on def test_frame_affinetransform(kwargs, expect_success): """There are already tests in test_transformations.py that check that an AffineTransform fails without full-space data, but this just checks that things work as expected at the frame level as well. """ with galactocentric_frame_defaults.set("latest"): icrs = ICRS(**kwargs) if expect_success: _ = icrs.transform_to(Galactocentric()) else: with pytest.raises(ConvertError): icrs.transform_to(Galactocentric()) def test_differential_type_arg(): """ Test passing in an explicit differential class to the initializer or changing the differential class via set_representation_cls """ from astropy.coordinates.builtin_frames import ICRS icrs = ICRS( ra=1 * u.deg, dec=60 * u.deg, pm_ra=10 * u.mas / u.yr, pm_dec=-11 * u.mas / u.yr, differential_type=r.UnitSphericalDifferential, ) assert icrs.pm_ra == 10 * u.mas / u.yr icrs = ICRS( ra=1 * u.deg, dec=60 * u.deg, pm_ra=10 * u.mas / u.yr, pm_dec=-11 * u.mas / u.yr, differential_type={"s": r.UnitSphericalDifferential}, ) assert icrs.pm_ra == 10 * u.mas / u.yr icrs = ICRS( ra=1 * u.deg, dec=60 * u.deg, pm_ra_cosdec=10 * u.mas / u.yr, pm_dec=-11 * u.mas / u.yr, ) icrs.set_representation_cls(s=r.UnitSphericalDifferential) assert quantity_allclose(icrs.pm_ra, 20 * u.mas / u.yr) # incompatible representation and differential with pytest.raises(TypeError): ICRS( ra=1 * u.deg, dec=60 * u.deg, v_x=1 * u.km / u.s, v_y=-2 * u.km / u.s, v_z=-2 * u.km / u.s, differential_type=r.CartesianDifferential, ) # specify both icrs = ICRS( x=1 * u.pc, y=2 * u.pc, z=3 * u.pc, v_x=1 * u.km / u.s, v_y=2 * u.km / u.s, v_z=3 * u.km / u.s, representation_type=r.CartesianRepresentation, differential_type=r.CartesianDifferential, ) assert icrs.x == 1 * u.pc assert icrs.y == 2 * u.pc assert icrs.z == 3 * u.pc assert icrs.v_x == 1 * u.km / u.s assert icrs.v_y == 2 * u.km / u.s assert icrs.v_z == 3 * u.km / u.s def test_slicing_preserves_differential(): icrs = ICRS( ra=37.4 * u.deg, dec=-55.8 * u.deg, distance=150 * u.pc, pm_ra_cosdec=-21.2 * u.mas / u.yr, pm_dec=17.1 * u.mas / u.yr, radial_velocity=105.7 * u.km / u.s, ) icrs2 = icrs.reshape(1, 1)[:1, 0] for name in icrs.representation_component_names.keys(): assert getattr(icrs, name) == getattr(icrs2, name)[0] for name in icrs.get_representation_component_names("s").keys(): assert getattr(icrs, name) == getattr(icrs2, name)[0] def test_shorthand_attributes(): # Check that attribute access works # for array data: n = 4 icrs1 = ICRS( ra=np.random.uniform(0, 360, n) * u.deg, dec=np.random.uniform(-90, 90, n) * u.deg, distance=100 * u.pc, pm_ra_cosdec=np.random.normal(0, 100, n) * u.mas / u.yr, pm_dec=np.random.normal(0, 100, n) * u.mas / u.yr, radial_velocity=np.random.normal(0, 100, n) * u.km / u.s, ) v = icrs1.velocity pm = icrs1.proper_motion assert quantity_allclose(pm[0], icrs1.pm_ra_cosdec) assert quantity_allclose(pm[1], icrs1.pm_dec) # for scalar data: icrs2 = ICRS( ra=37.4 * u.deg, dec=-55.8 * u.deg, distance=150 * u.pc, pm_ra_cosdec=-21.2 * u.mas / u.yr, pm_dec=17.1 * u.mas / u.yr, radial_velocity=105.7 * u.km / u.s, ) v = icrs2.velocity pm = icrs2.proper_motion assert quantity_allclose(pm[0], icrs2.pm_ra_cosdec) assert quantity_allclose(pm[1], icrs2.pm_dec) # check that it fails where we expect: # no distance rv = 105.7 * u.km / u.s icrs3 = ICRS( ra=37.4 * u.deg, dec=-55.8 * u.deg, pm_ra_cosdec=-21.2 * u.mas / u.yr, pm_dec=17.1 * u.mas / u.yr, radial_velocity=rv, ) with pytest.raises(ValueError): icrs3.velocity icrs3.set_representation_cls("cartesian") assert hasattr(icrs3, "radial_velocity") assert quantity_allclose(icrs3.radial_velocity, rv) icrs4 = ICRS( x=30 * u.pc, y=20 * u.pc, z=11 * u.pc, v_x=10 * u.km / u.s, v_y=10 * u.km / u.s, v_z=10 * u.km / u.s, representation_type=r.CartesianRepresentation, differential_type=r.CartesianDifferential, ) icrs4.radial_velocity def test_negative_distance(): """Regression test: #7408 Make sure that negative parallaxes turned into distances are handled right """ RA = 150 * u.deg DEC = -11 * u.deg c = ICRS( ra=RA, dec=DEC, distance=(-10 * u.mas).to(u.pc, u.parallax()), pm_ra_cosdec=10 * u.mas / u.yr, pm_dec=10 * u.mas / u.yr, ) assert quantity_allclose(c.ra, RA) assert quantity_allclose(c.dec, DEC) c = ICRS(ra=RA, dec=DEC, distance=(-10 * u.mas).to(u.pc, u.parallax())) assert quantity_allclose(c.ra, RA) assert quantity_allclose(c.dec, DEC) def test_velocity_units(): """Check that the differential data given has compatible units with the time-derivative of representation data""" msg = ( 'x has unit "" with physical type "dimensionless", but v_x has ' 'incompatible unit "" with physical type "dimensionless" instead ' r'of the expected "frequency"\.' ) with pytest.raises(ValueError, match=msg): c = ICRS( x=1, y=2, z=3, v_x=1, v_y=2, v_z=3, representation_type=r.CartesianRepresentation, differential_type=r.CartesianDifferential, ) def test_frame_with_velocity_without_distance_can_be_transformed(): frame = CIRS( 1 * u.deg, 2 * u.deg, pm_dec=1 * u.mas / u.yr, pm_ra_cosdec=2 * u.mas / u.yr ) rep = frame.transform_to(ICRS()) assert "<ICRS Coordinate: (ra, dec, distance) in" in repr(rep)
137956f2c73d0d8a5856c4576bf546dfaded3381126fa0e868cfdbdcdb11ae5f
""" Tests the Angle string formatting capabilities. SkyCoord formatting is in test_sky_coord """ import pytest from astropy import units as u from astropy.coordinates.angles import Angle def test_to_string_precision(): # There are already some tests in test_api.py, but this is a regression # test for the bug in issue #1319 which caused incorrect formatting of the # seconds for precision=0 angle = Angle(-1.23456789, unit=u.degree) assert angle.to_string(precision=3) == "-1d14m04.444s" assert angle.to_string(precision=1) == "-1d14m04.4s" assert angle.to_string(precision=0) == "-1d14m04s" angle2 = Angle(-1.23456789, unit=u.hourangle) assert angle2.to_string(precision=3, unit=u.hour) == "-1h14m04.444s" assert angle2.to_string(precision=1, unit=u.hour) == "-1h14m04.4s" assert angle2.to_string(precision=0, unit=u.hour) == "-1h14m04s" # Regression test for #7141 angle3 = Angle(-0.5, unit=u.degree) assert angle3.to_string(precision=0, fields=3) == "-0d30m00s" assert angle3.to_string(precision=0, fields=2) == "-0d30m" assert angle3.to_string(precision=0, fields=1) == "-1d" def test_to_string_decimal(): # There are already some tests in test_api.py, but this is a regression # test for the bug in issue #1323 which caused decimal formatting to not # work angle1 = Angle(2.0, unit=u.degree) assert angle1.to_string(decimal=True, precision=3) == "2.000" assert angle1.to_string(decimal=True, precision=1) == "2.0" assert angle1.to_string(decimal=True, precision=0) == "2" angle2 = Angle(3.0, unit=u.hourangle) assert angle2.to_string(decimal=True, precision=3) == "3.000" assert angle2.to_string(decimal=True, precision=1) == "3.0" assert angle2.to_string(decimal=True, precision=0) == "3" angle3 = Angle(4.0, unit=u.radian) assert angle3.to_string(decimal=True, precision=3) == "4.000" assert angle3.to_string(decimal=True, precision=1) == "4.0" assert angle3.to_string(decimal=True, precision=0) == "4" with pytest.raises(ValueError, match="sexagesimal notation"): angle3.to_string(decimal=True, sep="abc") def test_to_string_formats(): a = Angle(1.113355, unit=u.deg) latex_str = r"$1^\circ06{}^\prime48.078{}^{\prime\prime}$" assert a.to_string(format="latex") == latex_str assert a.to_string(format="latex_inline") == latex_str assert a.to_string(format="unicode") == "1°06′48.078″" a = Angle(1.113355, unit=u.hour) latex_str = r"$1^{\mathrm{h}}06^{\mathrm{m}}48.078^{\mathrm{s}}$" assert a.to_string(format="latex") == latex_str assert a.to_string(format="latex_inline") == latex_str assert a.to_string(format="unicode") == "1ʰ06ᵐ48.078ˢ" a = Angle(1.113355, unit=u.radian) assert a.to_string(format="latex") == r"$1.11336\mathrm{rad}$" assert a.to_string(format="latex_inline") == r"$1.11336\mathrm{rad}$" assert a.to_string(format="unicode") == "1.11336rad" def test_to_string_decimal_formats(): angle1 = Angle(2.0, unit=u.degree) assert angle1.to_string(decimal=True, format="generic") == "2deg" assert angle1.to_string(decimal=True, format="latex") == "$2\\mathrm{{}^{\\circ}}$" assert angle1.to_string(decimal=True, format="unicode") == "2°" angle2 = Angle(3.0, unit=u.hourangle) assert angle2.to_string(decimal=True, format="generic") == "3hourangle" assert angle2.to_string(decimal=True, format="latex") == "$3\\mathrm{{}^{h}}$" assert angle2.to_string(decimal=True, format="unicode") == "3ʰ" angle3 = Angle(4.0, unit=u.radian) assert angle3.to_string(decimal=True, format="generic") == "4rad" assert angle3.to_string(decimal=True, format="latex") == "$4\\mathrm{rad}$" assert angle3.to_string(decimal=True, format="unicode") == "4rad" with pytest.raises(ValueError, match="Unknown format"): angle3.to_string(decimal=True, format="myformat") def test_to_string_fields(): a = Angle(1.113355, unit=u.deg) assert a.to_string(fields=1) == r"1d" assert a.to_string(fields=2) == r"1d07m" assert a.to_string(fields=3) == r"1d06m48.078s" def test_to_string_padding(): a = Angle(0.5653, unit=u.deg) assert a.to_string(unit="deg", sep=":", pad=True) == r"00:33:55.08" # Test to make sure negative angles are padded correctly a = Angle(-0.5653, unit=u.deg) assert a.to_string(unit="deg", sep=":", pad=True) == r"-00:33:55.08" def test_sexagesimal_rounding_up(): a = Angle(359.999999999999, unit=u.deg) assert a.to_string(precision=None) == "360d00m00s" assert a.to_string(precision=4) == "360d00m00.0000s" assert a.to_string(precision=5) == "360d00m00.00000s" assert a.to_string(precision=6) == "360d00m00.000000s" assert a.to_string(precision=7) == "360d00m00.0000000s" assert a.to_string(precision=8) == "360d00m00.00000000s" assert a.to_string(precision=9) == "359d59m59.999999996s" a = Angle(3.999999, unit=u.deg) assert a.to_string(fields=2, precision=None) == "4d00m" assert a.to_string(fields=2, precision=1) == "4d00m" assert a.to_string(fields=2, precision=5) == "4d00m" assert a.to_string(fields=1, precision=1) == "4d" assert a.to_string(fields=1, precision=5) == "4d" def test_to_string_scalar(): a = Angle(1.113355, unit=u.deg) assert isinstance(a.to_string(), str) def test_to_string_radian_with_precision(): """ Regression test for a bug that caused ``to_string`` to crash for angles in radians when specifying the precision. """ # Check that specifying the precision works a = Angle(3.0, unit=u.rad) assert a.to_string(precision=3, sep="fromunit") == "3.000rad" def test_sexagesimal_round_down(): a1 = Angle(1, u.deg).to(u.hourangle) a2 = Angle(2, u.deg) assert a1.to_string() == "0h04m00s" assert a2.to_string() == "2d00m00s" def test_to_string_fields_colon(): a = Angle(1.113355, unit=u.deg) assert a.to_string(fields=2, sep=":") == "1:07" assert a.to_string(fields=3, sep=":") == "1:06:48.078" assert a.to_string(fields=1, sep=":") == "1"
4acb51d5cdbf34d8274816412c24b931864444090d48f14b98829bd0e9eabc58
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np import pytest from astropy import units as u from astropy.coordinates import EarthLocation, SkyCoord from astropy.coordinates.builtin_frames import ( FK5, ICRS, AltAz, Galactic, SkyOffsetFrame, ) from astropy.coordinates.distances import Distance from astropy.tests.helper import assert_quantity_allclose as assert_allclose from astropy.time import Time def test_altaz_attribute_transforms(): """Test transforms between AltAz frames with different attributes.""" el1 = EarthLocation(0 * u.deg, 0 * u.deg, 0 * u.m) origin1 = AltAz( 0 * u.deg, 0 * u.deg, obstime=Time("2000-01-01T12:00:00"), location=el1 ) frame1 = SkyOffsetFrame(origin=origin1) coo1 = SkyCoord(1 * u.deg, 1 * u.deg, frame=frame1) el2 = EarthLocation(0 * u.deg, 0 * u.deg, 0 * u.m) origin2 = AltAz( 0 * u.deg, 0 * u.deg, obstime=Time("2000-01-01T11:00:00"), location=el2 ) frame2 = SkyOffsetFrame(origin=origin2) coo2 = coo1.transform_to(frame2) coo2_expected = [1.22522446, 0.70624298] * u.deg assert_allclose( [coo2.lon.wrap_at(180 * u.deg), coo2.lat], coo2_expected, atol=convert_precision ) el3 = EarthLocation(0 * u.deg, 90 * u.deg, 0 * u.m) origin3 = AltAz( 0 * u.deg, 90 * u.deg, obstime=Time("2000-01-01T12:00:00"), location=el3 ) frame3 = SkyOffsetFrame(origin=origin3) coo3 = coo2.transform_to(frame3) assert_allclose( [coo3.lon.wrap_at(180 * u.deg), coo3.lat], [1 * u.deg, 1 * u.deg], atol=convert_precision, ) @pytest.mark.parametrize( "inradec,expectedlatlon, tolsep", [ ((45, 45) * u.deg, (0, 0) * u.deg, 0.001 * u.arcsec), ((45, 0) * u.deg, (0, -45) * u.deg, 0.001 * u.arcsec), ((45, 90) * u.deg, (0, 45) * u.deg, 0.001 * u.arcsec), ((46, 45) * u.deg, (1 * np.cos(45 * u.deg), 0) * u.deg, 16 * u.arcsec), ], ) def test_skyoffset(inradec, expectedlatlon, tolsep, originradec=(45, 45) * u.deg): origin = ICRS(*originradec) skyoffset_frame = SkyOffsetFrame(origin=origin) skycoord = SkyCoord(*inradec, frame=ICRS) skycoord_inaf = skycoord.transform_to(skyoffset_frame) assert hasattr(skycoord_inaf, "lon") assert hasattr(skycoord_inaf, "lat") expected = SkyCoord(*expectedlatlon, frame=skyoffset_frame) assert skycoord_inaf.separation(expected) < tolsep # Check we can also transform back (regression test for gh-11254). roundtrip = skycoord_inaf.transform_to(ICRS()) assert roundtrip.separation(skycoord) < 1 * u.uas def test_skyoffset_functional_ra(): # we do the 12)[1:-1] business because sometimes machine precision issues # lead to results that are either ~0 or ~360, which mucks up the final # comparison and leads to spurious failures. So this just avoids that by # staying away from the edges input_ra = np.linspace(0, 360, 12)[1:-1] input_dec = np.linspace(-90, 90, 12)[1:-1] icrs_coord = ICRS(ra=input_ra * u.deg, dec=input_dec * u.deg, distance=1.0 * u.kpc) for ra in np.linspace(0, 360, 24): # expected rotation expected = ICRS( ra=np.linspace(0 - ra, 360 - ra, 12)[1:-1] * u.deg, dec=np.linspace(-90, 90, 12)[1:-1] * u.deg, distance=1.0 * u.kpc, ) expected_xyz = expected.cartesian.xyz # actual transformation to the frame skyoffset_frame = SkyOffsetFrame(origin=ICRS(ra * u.deg, 0 * u.deg)) actual = icrs_coord.transform_to(skyoffset_frame) actual_xyz = actual.cartesian.xyz # back to ICRS roundtrip = actual.transform_to(ICRS()) roundtrip_xyz = roundtrip.cartesian.xyz # Verify assert_allclose(actual_xyz, expected_xyz, atol=1e-5 * u.kpc) assert_allclose(icrs_coord.ra, roundtrip.ra, atol=1e-5 * u.deg) assert_allclose(icrs_coord.dec, roundtrip.dec, atol=1e-5 * u.deg) assert_allclose(icrs_coord.distance, roundtrip.distance, atol=1e-5 * u.kpc) def test_skyoffset_functional_dec(): # we do the 12)[1:-1] business because sometimes machine precision issues # lead to results that are either ~0 or ~360, which mucks up the final # comparison and leads to spurious failures. So this just avoids that by # staying away from the edges input_ra = np.linspace(0, 360, 12)[1:-1] input_dec = np.linspace(-90, 90, 12)[1:-1] input_ra_rad = np.deg2rad(input_ra) input_dec_rad = np.deg2rad(input_dec) icrs_coord = ICRS(ra=input_ra * u.deg, dec=input_dec * u.deg, distance=1.0 * u.kpc) # Dec rotations # Done in xyz space because dec must be [-90,90] for dec in np.linspace(-90, 90, 13): # expected rotation dec_rad = -np.deg2rad(dec) # fmt: off expected_x = (-np.sin(input_dec_rad) * np.sin(dec_rad) + np.cos(input_ra_rad) * np.cos(input_dec_rad) * np.cos(dec_rad)) expected_y = (np.sin(input_ra_rad) * np.cos(input_dec_rad)) expected_z = (np.sin(input_dec_rad) * np.cos(dec_rad) + np.sin(dec_rad) * np.cos(input_ra_rad) * np.cos(input_dec_rad)) # fmt: on expected = SkyCoord( x=expected_x, y=expected_y, z=expected_z, unit="kpc", representation_type="cartesian", ) expected_xyz = expected.cartesian.xyz # actual transformation to the frame skyoffset_frame = SkyOffsetFrame(origin=ICRS(0 * u.deg, dec * u.deg)) actual = icrs_coord.transform_to(skyoffset_frame) actual_xyz = actual.cartesian.xyz # back to ICRS roundtrip = actual.transform_to(ICRS()) # Verify assert_allclose(actual_xyz, expected_xyz, atol=1e-5 * u.kpc) assert_allclose(icrs_coord.ra, roundtrip.ra, atol=1e-5 * u.deg) assert_allclose(icrs_coord.dec, roundtrip.dec, atol=1e-5 * u.deg) assert_allclose(icrs_coord.distance, roundtrip.distance, atol=1e-5 * u.kpc) def test_skyoffset_functional_ra_dec(): # we do the 12)[1:-1] business because sometimes machine precision issues # lead to results that are either ~0 or ~360, which mucks up the final # comparison and leads to spurious failures. So this just avoids that by # staying away from the edges input_ra = np.linspace(0, 360, 12)[1:-1] input_dec = np.linspace(-90, 90, 12)[1:-1] input_ra_rad = np.deg2rad(input_ra) input_dec_rad = np.deg2rad(input_dec) icrs_coord = ICRS(ra=input_ra * u.deg, dec=input_dec * u.deg, distance=1.0 * u.kpc) for ra in np.linspace(0, 360, 10): for dec in np.linspace(-90, 90, 5): # expected rotation dec_rad = -np.deg2rad(dec) ra_rad = np.deg2rad(ra) # fmt: off expected_x = (-np.sin(input_dec_rad) * np.sin(dec_rad) + np.cos(input_ra_rad) * np.cos(input_dec_rad) * np.cos(dec_rad) * np.cos(ra_rad) + np.sin(input_ra_rad) * np.cos(input_dec_rad) * np.cos(dec_rad) * np.sin(ra_rad)) expected_y = (np.sin(input_ra_rad) * np.cos(input_dec_rad) * np.cos(ra_rad) - np.cos(input_ra_rad) * np.cos(input_dec_rad) * np.sin(ra_rad)) expected_z = (np.sin(input_dec_rad) * np.cos(dec_rad) + np.sin(dec_rad) * np.cos(ra_rad) * np.cos(input_ra_rad) * np.cos(input_dec_rad) + np.sin(dec_rad) * np.sin(ra_rad) * np.sin(input_ra_rad) * np.cos(input_dec_rad)) # fmp: on expected = SkyCoord( x=expected_x, y=expected_y, z=expected_z, unit='kpc', representation_type='cartesian', ) expected_xyz = expected.cartesian.xyz # actual transformation to the frame skyoffset_frame = SkyOffsetFrame(origin=ICRS(ra * u.deg, dec * u.deg)) actual = icrs_coord.transform_to(skyoffset_frame) actual_xyz = actual.cartesian.xyz # back to ICRS roundtrip = actual.transform_to(ICRS()) # Verify assert_allclose(actual_xyz, expected_xyz, atol=1e-5 * u.kpc) assert_allclose(icrs_coord.ra, roundtrip.ra, atol=1e-4 * u.deg) assert_allclose(icrs_coord.dec, roundtrip.dec, atol=1e-5 * u.deg) assert_allclose(icrs_coord.distance, roundtrip.distance, atol=1e-5 * u.kpc) def test_skycoord_skyoffset_frame(): m31 = SkyCoord(10.6847083, 41.26875, frame="icrs", unit=u.deg) m33 = SkyCoord(23.4621, 30.6599417, frame="icrs", unit=u.deg) m31_astro = m31.skyoffset_frame() m31_in_m31 = m31.transform_to(m31_astro) m33_in_m31 = m33.transform_to(m31_astro) assert_allclose( [m31_in_m31.lon, m31_in_m31.lat], [0, 0] * u.deg, atol=1e-10 * u.deg ) assert_allclose( [m33_in_m31.lon, m33_in_m31.lat], [11.13135175, -9.79084759] * u.deg ) assert_allclose( m33.separation(m31), np.hypot(m33_in_m31.lon, m33_in_m31.lat), atol=0.1 * u.deg ) # used below in the next parametrized test m31_sys = [ICRS, FK5, Galactic] m31_coo = [ (10.6847929, 41.2690650), (10.6847929, 41.2690650), (121.1744050, -21.5729360), ] m31_dist = Distance(770, u.kpc) convert_precision = 1 * u.arcsec roundtrip_precision = 1e-4 * u.degree dist_precision = 1e-9 * u.kpc m31_params = [] for i in range(len(m31_sys)): for j in range(len(m31_sys)): if i < j: m31_params.append((m31_sys[i], m31_sys[j], m31_coo[i], m31_coo[j])) @pytest.mark.parametrize(("fromsys", "tosys", "fromcoo", "tocoo"), m31_params) def test_m31_coord_transforms(fromsys, tosys, fromcoo, tocoo): """ This tests a variety of coordinate conversions for the Chandra point-source catalog location of M31 from NED, via SkyOffsetFrames """ from_origin = fromsys(fromcoo[0] * u.deg, fromcoo[1] * u.deg, distance=m31_dist) from_pos = SkyOffsetFrame(1 * u.deg, 1 * u.deg, origin=from_origin) to_origin = tosys(tocoo[0] * u.deg, tocoo[1] * u.deg, distance=m31_dist) to_astroframe = SkyOffsetFrame(origin=to_origin) target_pos = from_pos.transform_to(to_astroframe) assert_allclose( to_origin.separation(target_pos), np.hypot(from_pos.lon, from_pos.lat), atol=convert_precision, ) roundtrip_pos = target_pos.transform_to(from_pos) assert_allclose( [roundtrip_pos.lon.wrap_at(180 * u.deg), roundtrip_pos.lat], [1.0 * u.deg, 1.0 * u.deg], atol=convert_precision, ) @pytest.mark.parametrize( "rotation, expectedlatlon", [ (0 * u.deg, [0, 1] * u.deg), (180 * u.deg, [0, -1] * u.deg), (90 * u.deg, [-1, 0] * u.deg), (-90 * u.deg, [1, 0] * u.deg), ], ) def test_rotation(rotation, expectedlatlon): origin = ICRS(45 * u.deg, 45 * u.deg) target = ICRS(45 * u.deg, 46 * u.deg) aframe = SkyOffsetFrame(origin=origin, rotation=rotation) trans = target.transform_to(aframe) assert_allclose( [trans.lon.wrap_at(180 * u.deg), trans.lat], expectedlatlon, atol=1e-10 * u.deg ) @pytest.mark.parametrize( "rotation, expectedlatlon", [ (0 * u.deg, [0, 1] * u.deg), (180 * u.deg, [0, -1] * u.deg), (90 * u.deg, [-1, 0] * u.deg), (-90 * u.deg, [1, 0] * u.deg), ], ) def test_skycoord_skyoffset_frame_rotation(rotation, expectedlatlon): """Test if passing a rotation argument via SkyCoord works""" origin = SkyCoord(45 * u.deg, 45 * u.deg) target = SkyCoord(45 * u.deg, 46 * u.deg) aframe = origin.skyoffset_frame(rotation=rotation) trans = target.transform_to(aframe) assert_allclose( [trans.lon.wrap_at(180 * u.deg), trans.lat], expectedlatlon, atol=1e-10 * u.deg ) def test_skyoffset_names(): origin1 = ICRS(45 * u.deg, 45 * u.deg) aframe1 = SkyOffsetFrame(origin=origin1) assert type(aframe1).__name__ == "SkyOffsetICRS" origin2 = Galactic(45 * u.deg, 45 * u.deg) aframe2 = SkyOffsetFrame(origin=origin2) assert type(aframe2).__name__ == "SkyOffsetGalactic" def test_skyoffset_origindata(): origin = ICRS() with pytest.raises(ValueError): SkyOffsetFrame(origin=origin) def test_skyoffset_lonwrap(): origin = ICRS(45 * u.deg, 45 * u.deg) sc = SkyCoord(190 * u.deg, -45 * u.deg, frame=SkyOffsetFrame(origin=origin)) assert sc.lon < 180 * u.deg sc2 = SkyCoord(-10 * u.deg, -45 * u.deg, frame=SkyOffsetFrame(origin=origin)) assert sc2.lon < 180 * u.deg sc3 = sc.realize_frame(sc.represent_as("cartesian")) assert sc3.lon < 180 * u.deg sc4 = sc2.realize_frame(sc2.represent_as("cartesian")) assert sc4.lon < 180 * u.deg def test_skyoffset_velocity(): c = ICRS( ra=170.9 * u.deg, dec=-78.4 * u.deg, pm_ra_cosdec=74.4134 * u.mas / u.yr, pm_dec=-93.2342 * u.mas / u.yr, ) skyoffset_frame = SkyOffsetFrame(origin=c) c_skyoffset = c.transform_to(skyoffset_frame) assert_allclose(c_skyoffset.pm_lon_coslat, c.pm_ra_cosdec) assert_allclose(c_skyoffset.pm_lat, c.pm_dec) @pytest.mark.parametrize( "rotation, expectedpmlonlat", [ (0 * u.deg, [1, 2] * u.mas / u.yr), (45 * u.deg, [-(2**-0.5), 3 * 2**-0.5] * u.mas / u.yr), (90 * u.deg, [-2, 1] * u.mas / u.yr), (180 * u.deg, [-1, -2] * u.mas / u.yr), (-90 * u.deg, [2, -1] * u.mas / u.yr), ], ) def test_skyoffset_velocity_rotation(rotation, expectedpmlonlat): sc = SkyCoord( ra=170.9 * u.deg, dec=-78.4 * u.deg, pm_ra_cosdec=1 * u.mas / u.yr, pm_dec=2 * u.mas / u.yr, ) c_skyoffset0 = sc.transform_to(sc.skyoffset_frame(rotation=rotation)) assert_allclose(c_skyoffset0.pm_lon_coslat, expectedpmlonlat[0]) assert_allclose(c_skyoffset0.pm_lat, expectedpmlonlat[1]) def test_skyoffset_two_frames_interfering(): """Regression test for gh-11277, where it turned out that the origin argument validation from one SkyOffsetFrame could interfere with that of another. Note that this example brought out a different bug than that at the top of gh-11277, viz., that an attempt was made to set origin on a SkyCoord when it should just be stay as part of the SkyOffsetFrame. """ # Example adapted from @bmerry's minimal example at # https://github.com/astropy/astropy/issues/11277#issuecomment-825492335 altaz_frame = AltAz( obstime=Time("2020-04-22T13:00:00Z"), location=EarthLocation(18, -30) ) target = SkyCoord(alt=70 * u.deg, az=150 * u.deg, frame=altaz_frame) dirs_altaz_offset = SkyCoord( lon=[-0.02, 0.01, 0.0, 0.0, 0.0] * u.rad, lat=[0.0, 0.2, 0.0, -0.3, 0.1] * u.rad, frame=target.skyoffset_frame(), ) dirs_altaz = dirs_altaz_offset.transform_to(altaz_frame) dirs_icrs = dirs_altaz.transform_to(ICRS()) target_icrs = target.transform_to(ICRS()) # The line below was almost guaranteed to fail. dirs_icrs.transform_to(target_icrs.skyoffset_frame())
1b52c7bde37a52c78c9b2da07a934b354862a8ac47faf1ff0464f740acf8eb37
import numpy as np import pytest from numpy.testing import assert_allclose from astropy import units as u from astropy.coordinates.spectral_quantity import SpectralQuantity from astropy.tests.helper import assert_quantity_allclose SPECTRAL_UNITS = (u.GHz, u.micron, u.keV, (1 / u.nm).unit, u.km / u.s) class TestSpectralQuantity: @pytest.mark.parametrize("unit", SPECTRAL_UNITS) def test_init_value(self, unit): SpectralQuantity(1, unit=unit) @pytest.mark.parametrize("unit", SPECTRAL_UNITS) def test_init_quantity(self, unit): SpectralQuantity(1 * unit) @pytest.mark.parametrize("unit", SPECTRAL_UNITS) def test_init_spectralquantity(self, unit): SpectralQuantity(SpectralQuantity(1, unit=unit)) @pytest.mark.parametrize("unit", (u.kg, u.byte)) def test_init_invalid(self, unit): with pytest.raises( u.UnitsError, match="SpectralQuantity instances require units" ): SpectralQuantity(1, unit=unit) with pytest.raises( u.UnitsError, match="SpectralQuantity instances require units" ): SpectralQuantity(1 * unit) @pytest.mark.parametrize(("unit1", "unit2"), zip(SPECTRAL_UNITS, SPECTRAL_UNITS)) def test_spectral_conversion(self, unit1, unit2): sq1 = SpectralQuantity(1 * unit1) sq2 = sq1.to(unit2) sq3 = sq2.to(str(unit1)) # check that string units work assert isinstance(sq2, SpectralQuantity) assert isinstance(sq3, SpectralQuantity) assert_quantity_allclose(sq1, sq3) def test_doppler_conversion(self): sq1 = SpectralQuantity( 1 * u.km / u.s, doppler_convention="optical", doppler_rest=500 * u.nm ) sq2 = sq1.to(u.m / u.s) assert_allclose(sq2.value, 1000) sq3 = sq1.to(u.m / u.s, doppler_convention="radio") assert_allclose(sq3.value, 999.996664) sq4 = sq1.to(u.m / u.s, doppler_convention="relativistic") assert_allclose(sq4.value, 999.998332) sq5 = sq1.to(u.m / u.s, doppler_rest=499.9 * u.nm) assert_allclose(sq5.value, 60970.685737) val5 = sq1.to_value(u.m / u.s, doppler_rest=499.9 * u.nm) assert_allclose(val5, 60970.685737) def test_doppler_conversion_validation(self): sq1 = SpectralQuantity(1 * u.GHz) sq2 = SpectralQuantity(1 * u.km / u.s) with pytest.raises( ValueError, match="doppler_convention not set, cannot convert to/from velocities", ): sq1.to(u.km / u.s) with pytest.raises( ValueError, match="doppler_convention not set, cannot convert to/from velocities", ): sq2.to(u.GHz) with pytest.raises( ValueError, match="doppler_rest not set, cannot convert to/from velocities" ): sq1.to(u.km / u.s, doppler_convention="radio") with pytest.raises( ValueError, match="doppler_rest not set, cannot convert to/from velocities" ): sq2.to(u.GHz, doppler_convention="radio") with pytest.raises( u.UnitsError, match="Argument 'doppler_rest' to function 'to' must be in units", ): sq1.to(u.km / u.s, doppler_convention="radio", doppler_rest=5 * u.kg) with pytest.raises( u.UnitsError, match="Argument 'doppler_rest' to function 'to' must be in units", ): sq2.to(u.GHz, doppler_convention="radio", doppler_rest=5 * u.kg) with pytest.raises( ValueError, match="doppler_convention should be one of optical/radio/relativistic", ): sq1.to(u.km / u.s, doppler_convention="banana", doppler_rest=5 * u.GHz) with pytest.raises( ValueError, match="doppler_convention should be one of optical/radio/relativistic", ): sq2.to(u.GHz, doppler_convention="banana", doppler_rest=5 * u.GHz) with pytest.raises(ValueError, match="Original doppler_convention not set"): sq2.to(u.km / u.s, doppler_convention="radio") with pytest.raises(ValueError, match="Original doppler_rest not set"): sq2.to(u.km / u.s, doppler_rest=5 * u.GHz) def test_doppler_set_parameters(self): sq1 = SpectralQuantity(1 * u.km / u.s) with pytest.raises( ValueError, match="doppler_convention should be one of optical/radio/relativistic", ): sq1.doppler_convention = "banana" assert sq1.doppler_convention is None sq1.doppler_convention = "radio" assert sq1.doppler_convention == "radio" with pytest.raises( AttributeError, match="doppler_convention has already been set, and cannot be changed", ): sq1.doppler_convention = "optical" assert sq1.doppler_convention == "radio" with pytest.raises( u.UnitsError, match="Argument 'value' to function 'doppler_rest' must be in units", ): sq1.doppler_rest = 5 * u.kg sq1.doppler_rest = 5 * u.GHz assert_quantity_allclose(sq1.doppler_rest, 5 * u.GHz) with pytest.raises( AttributeError, match="doppler_rest has already been set, and cannot be changed", ): sq1.doppler_rest = 4 * u.GHz assert_quantity_allclose(sq1.doppler_rest, 5 * u.GHz) def test_arithmetic(self): # Checks for arithmetic - some operations should return SpectralQuantity, # while some should just return plain Quantity # First, operations that should return SpectralQuantity sq1 = SpectralQuantity(10 * u.AA) sq2 = sq1 * 2 assert isinstance(sq2, SpectralQuantity) assert sq2.value == 20 assert sq2.unit == u.AA sq2 = sq1 / 2 assert isinstance(sq2, SpectralQuantity) assert sq2.value == 5 assert sq2.unit == u.AA sq3 = SpectralQuantity(10 * u.AA) sq3 *= 2 assert isinstance(sq3, SpectralQuantity) assert sq3.value == 20 assert sq3.unit == u.AA sq4 = SpectralQuantity(10 * u.AA) sq4 /= 2 assert isinstance(sq4, SpectralQuantity) assert sq4.value == 5 assert sq4.unit == u.AA sq5 = SpectralQuantity(10 * u.AA) with pytest.raises( TypeError, match="Cannot store the result of this operation in SpectralQuantity", ): sq5 += 10 * u.AA # Note different order to sq2 sq6 = SpectralQuantity(10 * u.AA) sq6 = 2 * sq1 assert isinstance(sq6, SpectralQuantity) assert sq6.value == 20 assert sq6.unit == u.AA # Next, operations that should return Quantity q1 = sq1 / u.s assert isinstance(q1, u.Quantity) and not isinstance(q1, SpectralQuantity) assert q1.value == 10 assert q1.unit.is_equivalent(u.AA / u.s) q2 = sq1 / u.kg assert isinstance(q2, u.Quantity) and not isinstance(q2, SpectralQuantity) assert q2.value == 10 assert q2.unit.is_equivalent(u.AA / u.kg) q3 = sq1 + 10 * u.AA assert isinstance(q3, u.Quantity) and not isinstance(q3, SpectralQuantity) assert q3.value == 20 assert q3.unit == u.AA q4 = sq1 / SpectralQuantity(5 * u.AA) assert isinstance(q4, u.Quantity) and not isinstance(q4, SpectralQuantity) assert q4.value == 2 assert q4.unit == u.one def test_ufuncs(self): # Checks for ufuncs - some operations should return SpectralQuantity, # while some should just return plain Quantity # First, operations that should return SpectralQuantity sq1 = SpectralQuantity([10, 20, 30] * u.AA) for ufunc in (np.min, np.max): sq2 = ufunc(sq1) assert isinstance(sq2, SpectralQuantity) assert sq2.value == ufunc(sq1.value) assert sq2.unit == u.AA def test_functions(self): # Checks for other functions - some operations should return SpectralQuantity, # while some should just return plain Quantity # First, operations that should return SpectralQuantity sq1 = SpectralQuantity([10, 20, 30] * u.AA) for func in (np.nanmin, np.nanmax): sq2 = func(sq1) assert isinstance(sq2, SpectralQuantity) assert sq2.value == func(sq1.value) assert sq2.unit == u.AA # Next, operations that should return Quantity for func in (np.sum,): q3 = func(sq1) assert isinstance(q3, u.Quantity) and not isinstance(q3, SpectralQuantity) assert q3.value == func(sq1.value) assert q3.unit == u.AA @pytest.mark.xfail def test_functions_std(self): # np.std should return a Quantity but it returns a SpectralQuantity. We # make this a separate xfailed test for now, but once this passes, # np.std could also just be added to the main test_functions test. # See https://github.com/astropy/astropy/issues/10245 for more details. # Checks for other functions - some operations should return SpectralQuantity, # while some should just return plain Quantity # First, operations that should return SpectralQuantity sq1 = SpectralQuantity([10, 20, 30] * u.AA) q1 = np.std(sq1) assert isinstance(q1, u.Quantity) and not isinstance(q1, SpectralQuantity) assert q1.value == np.sum(sq1.value) assert q1.unit == u.AA
0dc1cd44f1cf3737d098e698fc8585cfd1d24d93c835e034abf168bad75e2790
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This module contains tests for the name resolve convenience module. """ import time import urllib.request import numpy as np import pytest from pytest_remotedata.disable_internet import no_internet from astropy import units as u from astropy.config import paths from astropy.coordinates.name_resolve import ( NameResolveError, _parse_response, get_icrs_coordinates, sesame_database, sesame_url, ) from astropy.coordinates.sky_coordinate import SkyCoord _cached_ngc3642 = dict() _cached_ngc3642[ "simbad" ] = """# NGC 3642 #Q22523669 #=S=Simbad (via url): 1 %@ 503952 %I.0 NGC 3642 %C.0 LIN %C.N0 15.15.01.00 %J 170.5750583 +59.0742417 = 11:22:18.01 +59:04:27.2 %V z 1593 0.005327 [0.000060] D 2002LEDA.........0P %D 1.673 1.657 75 (32767) (I) C 2006AJ....131.1163S %T 5 =32800000 D 2011A&A...532A..74B %#B 140 #====Done (2013-Feb-12,16:37:11z)====""" _cached_ngc3642[ "vizier" ] = """# NGC 3642 #Q22523677 #=V=VizieR (local): 1 %J 170.56 +59.08 = 11:22.2 +59:05 %I.0 {NGC} 3642 #====Done (2013-Feb-12,16:37:42z)====""" _cached_ngc3642[ "all" ] = """# ngc3642 #Q22523722 #=S=Simbad (via url): 1 %@ 503952 %I.0 NGC 3642 %C.0 LIN %C.N0 15.15.01.00 %J 170.5750583 +59.0742417 = 11:22:18.01 +59:04:27.2 %V z 1593 0.005327 [0.000060] D 2002LEDA.........0P %D 1.673 1.657 75 (32767) (I) C 2006AJ....131.1163S %T 5 =32800000 D 2011A&A...532A..74B %#B 140 #=V=VizieR (local): 1 %J 170.56 +59.08 = 11:22.2 +59:05 %I.0 {NGC} 3642 #!N=NED : *** Could not access the server *** #====Done (2013-Feb-12,16:39:48z)====""" _cached_castor = dict() _cached_castor[ "all" ] = """# castor #Q22524249 #=S=Simbad (via url): 1 %@ 983633 %I.0 NAME CASTOR %C.0 ** %C.N0 12.13.00.00 %J 113.649471640 +31.888282216 = 07:34:35.87 +31:53:17.8 %J.E [34.72 25.95 0] A 2007A&A...474..653V %P -191.45 -145.19 [3.95 2.95 0] A 2007A&A...474..653V %X 64.12 [3.75] A 2007A&A...474..653V %S A1V+A2Vm =0.0000D200.0030.0110000000100000 C 2001AJ....122.3466M %#B 179 #!V=VizieR (local): No table found for: castor #!N=NED: ****object name not recognized by NED name interpreter #!N=NED: ***Not recognized by NED: castor #====Done (2013-Feb-12,16:52:02z)====""" _cached_castor[ "simbad" ] = """# castor #Q22524495 #=S=Simbad (via url): 1 %@ 983633 %I.0 NAME CASTOR %C.0 ** %C.N0 12.13.00.00 %J 113.649471640 +31.888282216 = 07:34:35.87 +31:53:17.8 %J.E [34.72 25.95 0] A 2007A&A...474..653V %P -191.45 -145.19 [3.95 2.95 0] A 2007A&A...474..653V %X 64.12 [3.75] A 2007A&A...474..653V %S A1V+A2Vm =0.0000D200.0030.0110000000100000 C 2001AJ....122.3466M %#B 179 #====Done (2013-Feb-12,17:00:39z)====""" @pytest.mark.remote_data def test_names(): # First check that sesame is up if ( urllib.request.urlopen( "http://cdsweb.u-strasbg.fr/cgi-bin/nph-sesame" ).getcode() != 200 ): pytest.skip( "SESAME appears to be down, skipping test_name_resolve.py:test_names()..." ) with pytest.raises(NameResolveError): get_icrs_coordinates("m87h34hhh") try: icrs = get_icrs_coordinates("NGC 3642") except NameResolveError: ra, dec = _parse_response(_cached_ngc3642["all"]) icrs = SkyCoord(ra=float(ra) * u.degree, dec=float(dec) * u.degree) icrs_true = SkyCoord(ra="11h 22m 18.014s", dec="59d 04m 27.27s") # use precision of only 1 decimal here and below because the result can # change due to Sesame server-side changes. np.testing.assert_almost_equal(icrs.ra.degree, icrs_true.ra.degree, 1) np.testing.assert_almost_equal(icrs.dec.degree, icrs_true.dec.degree, 1) try: icrs = get_icrs_coordinates("castor") except NameResolveError: ra, dec = _parse_response(_cached_castor["all"]) icrs = SkyCoord(ra=float(ra) * u.degree, dec=float(dec) * u.degree) icrs_true = SkyCoord(ra="07h 34m 35.87s", dec="+31d 53m 17.8s") np.testing.assert_almost_equal(icrs.ra.degree, icrs_true.ra.degree, 1) np.testing.assert_almost_equal(icrs.dec.degree, icrs_true.dec.degree, 1) @pytest.mark.remote_data def test_name_resolve_cache(tmp_path): from astropy.utils.data import get_cached_urls target_name = "castor" (temp_cache_dir := tmp_path / "cache").mkdir() with paths.set_temp_cache(temp_cache_dir, delete=True): assert len(get_cached_urls()) == 0 icrs1 = get_icrs_coordinates(target_name, cache=True) urls = get_cached_urls() assert len(urls) == 1 expected_urls = sesame_url.get() assert any( urls[0].startswith(x) for x in expected_urls ), f"{urls[0]} not in {expected_urls}" # Try reloading coordinates, now should just reload cached data: with no_internet(): icrs2 = get_icrs_coordinates(target_name, cache=True) assert len(get_cached_urls()) == 1 assert u.allclose(icrs1.ra, icrs2.ra) assert u.allclose(icrs1.dec, icrs2.dec) def test_names_parse(): # a few test cases for parsing embedded coordinates from object name test_names = [ "CRTS SSS100805 J194428-420209", "MASTER OT J061451.7-272535.5", "2MASS J06495091-0737408", "1RXS J042555.8-194534", "SDSS J132411.57+032050.5", "DENIS-P J203137.5-000511", "2QZ J142438.9-022739", "CXOU J141312.3-652013", ] for name in test_names: sc = get_icrs_coordinates(name, parse=True) @pytest.mark.remote_data @pytest.mark.parametrize( ("name", "db_dict"), [("NGC 3642", _cached_ngc3642), ("castor", _cached_castor)] ) def test_database_specify(name, db_dict): # First check that at least some sesame mirror is up for url in sesame_url.get(): if urllib.request.urlopen(url).getcode() == 200: break else: pytest.skip( "All SESAME mirrors appear to be down, skipping " "test_name_resolve.py:test_database_specify()..." ) for db in db_dict.keys(): with sesame_database.set(db): icrs = SkyCoord.from_name(name) time.sleep(1)
32c9baf662ae4072f2566757fad7cc7cbc565ef2242543d2b19ab64c9519a252
import pickle import numpy as np import pytest import astropy.units as u from astropy import coordinates as coord from astropy.coordinates import Longitude from astropy.tests.helper import check_pickling_recovery, pickle_protocol # noqa: F401 # Can't test distances without scipy due to cosmology deps from astropy.utils.compat.optional_deps import HAS_SCIPY def test_basic(): lon1 = Longitude(1.23, "radian", wrap_angle="180d") s = pickle.dumps(lon1) lon2 = pickle.loads(s) def test_pickle_longitude_wrap_angle(): a = Longitude(1.23, "radian", wrap_angle="180d") s = pickle.dumps(a) b = pickle.loads(s) assert a.rad == b.rad assert a.wrap_angle == b.wrap_angle _names = [ coord.Angle, coord.Distance, coord.DynamicMatrixTransform, coord.ICRS, coord.Latitude, coord.Longitude, coord.StaticMatrixTransform, ] _xfail = [False, not HAS_SCIPY, True, True, False, True, False] _args = [ [0.0], [], [lambda *args: np.identity(3), coord.ICRS, coord.ICRS], [0, 0], [0], [0], [np.identity(3), coord.ICRS, coord.ICRS], ] _kwargs = [ {"unit": "radian"}, {"z": 0.23}, {}, {"unit": ["radian", "radian"]}, {"unit": "radian"}, {"unit": "radian"}, {}, ] @pytest.mark.parametrize( ("name", "args", "kwargs", "xfail"), tuple(zip(_names, _args, _kwargs, _xfail)) ) def test_simple_object(pickle_protocol, name, args, kwargs, xfail): # noqa: F811 # Tests easily instantiated objects if xfail: pytest.xfail() original = name(*args, **kwargs) check_pickling_recovery(original, pickle_protocol) class _CustomICRS(coord.ICRS): default_representation = coord.PhysicsSphericalRepresentation @pytest.mark.parametrize( "frame", [ coord.SkyOffsetFrame(origin=coord.ICRS(0 * u.deg, 0 * u.deg)), coord.SkyOffsetFrame( 5 * u.deg, 10 * u.deg, origin=coord.Galactic(2 * u.deg, -3 * u.deg) ), coord.SkyOffsetFrame( 5 * u.deg, 10 * u.deg, 10 * u.pc, origin=coord.Galactic(2 * u.deg, -3 * u.deg), representation_type=coord.PhysicsSphericalRepresentation, ), coord.SkyOffsetFrame( 5 * u.deg, 10 * u.deg, 0 * u.pc, origin=_CustomICRS(2 * u.deg, 3 * u.deg, 1 * u.pc), ), ], ) def test_skyoffset_pickle(pickle_protocol, frame): # noqa: F811 """ This is a regression test for issue #9249: https://github.com/astropy/astropy/issues/9249 """ check_pickling_recovery(frame, pickle_protocol)
1fe6576416b3412c868572bd5945c36585b053420fa18772b24400fd3a7c61de
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np import pytest from astropy import units as u from astropy.coordinates import ( CartesianDifferential, CartesianRepresentation, EarthLocation, SkyCoord, galactocentric_frame_defaults, ) from astropy.coordinates.builtin_frames import ( CIRS, FK4, FK5, GCRS, HCRS, ICRS, LSR, FK4NoETerms, Galactic, GalacticLSR, Galactocentric, Supergalactic, ) from astropy.coordinates.distances import Distance from astropy.tests.helper import assert_quantity_allclose as assert_allclose from astropy.time import Time from astropy.units import allclose # used below in the next parametrized test m31_sys = [ICRS, FK5, FK4, Galactic] m31_coo = [ (10.6847929, 41.2690650), (10.6847929, 41.2690650), (10.0004738, 40.9952444), (121.1744050, -21.5729360), ] m31_dist = Distance(770, u.kpc) convert_precision = 1 * u.arcsec roundtrip_precision = 1e-4 * u.degree dist_precision = 1e-9 * u.kpc m31_params = [] for i in range(len(m31_sys)): for j in range(len(m31_sys)): if i < j: m31_params.append((m31_sys[i], m31_sys[j], m31_coo[i], m31_coo[j])) @pytest.mark.parametrize(("fromsys", "tosys", "fromcoo", "tocoo"), m31_params) def test_m31_coord_transforms(fromsys, tosys, fromcoo, tocoo): """ This tests a variety of coordinate conversions for the Chandra point-source catalog location of M31 from NED. """ coo1 = fromsys(ra=fromcoo[0] * u.deg, dec=fromcoo[1] * u.deg, distance=m31_dist) coo2 = coo1.transform_to(tosys()) if tosys is FK4: coo2_prec = coo2.transform_to(FK4(equinox=Time("B1950"))) # convert_precision <1 arcsec assert (coo2_prec.spherical.lon - tocoo[0] * u.deg) < convert_precision assert (coo2_prec.spherical.lat - tocoo[1] * u.deg) < convert_precision else: assert (coo2.spherical.lon - tocoo[0] * u.deg) < convert_precision # <1 arcsec assert (coo2.spherical.lat - tocoo[1] * u.deg) < convert_precision assert coo1.distance.unit == u.kpc assert coo2.distance.unit == u.kpc assert m31_dist.unit == u.kpc assert (coo2.distance - m31_dist) < dist_precision # check round-tripping coo1_2 = coo2.transform_to(fromsys()) assert (coo1_2.spherical.lon - fromcoo[0] * u.deg) < roundtrip_precision assert (coo1_2.spherical.lat - fromcoo[1] * u.deg) < roundtrip_precision assert (coo1_2.distance - m31_dist) < dist_precision def test_precession(): """ Ensures that FK4 and FK5 coordinates precess their equinoxes """ j2000 = Time("J2000") b1950 = Time("B1950") j1975 = Time("J1975") b1975 = Time("B1975") fk4 = FK4(ra=1 * u.radian, dec=0.5 * u.radian) assert fk4.equinox.byear == b1950.byear fk4_2 = fk4.transform_to(FK4(equinox=b1975)) assert fk4_2.equinox.byear == b1975.byear fk5 = FK5(ra=1 * u.radian, dec=0.5 * u.radian) assert fk5.equinox.jyear == j2000.jyear fk5_2 = fk5.transform_to(FK4(equinox=j1975)) assert fk5_2.equinox.jyear == j1975.jyear def test_fk5_galactic(): """ Check that FK5 -> Galactic gives the same as FK5 -> FK4 -> Galactic. """ fk5 = FK5(ra=1 * u.deg, dec=2 * u.deg) direct = fk5.transform_to(Galactic()) indirect = fk5.transform_to(FK4()).transform_to(Galactic()) assert direct.separation(indirect).degree < 1.0e-10 direct = fk5.transform_to(Galactic()) indirect = fk5.transform_to(FK4NoETerms()).transform_to(Galactic()) assert direct.separation(indirect).degree < 1.0e-10 def test_galactocentric(): # when z_sun=0, transformation should be very similar to Galactic icrs_coord = ICRS( ra=np.linspace(0, 360, 10) * u.deg, dec=np.linspace(-90, 90, 10) * u.deg, distance=1.0 * u.kpc, ) g_xyz = icrs_coord.transform_to(Galactic()).cartesian.xyz with galactocentric_frame_defaults.set("pre-v4.0"): gc_xyz = icrs_coord.transform_to(Galactocentric(z_sun=0 * u.kpc)).cartesian.xyz diff = np.abs(g_xyz - gc_xyz) assert allclose(diff[0], 8.3 * u.kpc, atol=1e-5 * u.kpc) assert allclose(diff[1:], 0 * u.kpc, atol=1e-5 * u.kpc) # generate some test coordinates g = Galactic( l=[0, 0, 45, 315] * u.deg, b=[-45, 45, 0, 0] * u.deg, distance=[np.sqrt(2)] * 4 * u.kpc, ) with galactocentric_frame_defaults.set("pre-v4.0"): xyz = g.transform_to( Galactocentric(galcen_distance=1.0 * u.kpc, z_sun=0.0 * u.pc) ).cartesian.xyz true_xyz = np.array([[0, 0, -1.0], [0, 0, 1], [0, 1, 0], [0, -1, 0]]).T * u.kpc assert allclose(xyz.to(u.kpc), true_xyz.to(u.kpc), atol=1e-5 * u.kpc) # check that ND arrays work # from Galactocentric to Galactic x = np.linspace(-10.0, 10.0, 100) * u.kpc y = np.linspace(-10.0, 10.0, 100) * u.kpc z = np.zeros_like(x) # from Galactic to Galactocentric l = np.linspace(15, 30.0, 100) * u.deg b = np.linspace(-10.0, 10.0, 100) * u.deg d = np.ones_like(l.value) * u.kpc with galactocentric_frame_defaults.set("latest"): g1 = Galactocentric(x=x, y=y, z=z) g2 = Galactocentric( x=x.reshape(100, 1, 1), y=y.reshape(100, 1, 1), z=z.reshape(100, 1, 1) ) g1t = g1.transform_to(Galactic()) g2t = g2.transform_to(Galactic()) assert_allclose(g1t.cartesian.xyz, g2t.cartesian.xyz[:, :, 0, 0]) g1 = Galactic(l=l, b=b, distance=d) g2 = Galactic( l=l.reshape(100, 1, 1), b=b.reshape(100, 1, 1), distance=d.reshape(100, 1, 1), ) g1t = g1.transform_to(Galactocentric()) g2t = g2.transform_to(Galactocentric()) np.testing.assert_almost_equal( g1t.cartesian.xyz.value, g2t.cartesian.xyz.value[:, :, 0, 0] ) def test_supergalactic(): """ Check Galactic<->Supergalactic and Galactic<->ICRS conversion. """ # Check supergalactic North pole. npole = Galactic(l=47.37 * u.degree, b=+6.32 * u.degree) assert allclose(npole.transform_to(Supergalactic()).sgb.deg, +90, atol=1e-9) # Check the origin of supergalactic longitude. lon0 = Supergalactic(sgl=0 * u.degree, sgb=0 * u.degree) lon0_gal = lon0.transform_to(Galactic()) assert allclose(lon0_gal.l.deg, 137.37, atol=1e-9) assert allclose(lon0_gal.b.deg, 0, atol=1e-9) # Test Galactic<->ICRS with some positions that appear in Foley et al. 2008 # (https://ui.adsabs.harvard.edu/abs/2008A%26A...484..143F) # GRB 021219 supergalactic = Supergalactic(sgl=29.91 * u.degree, sgb=+73.72 * u.degree) icrs = SkyCoord("18h50m27s +31d57m17s") assert supergalactic.separation(icrs) < 0.005 * u.degree # GRB 030320 supergalactic = Supergalactic(sgl=-174.44 * u.degree, sgb=+46.17 * u.degree) icrs = SkyCoord("17h51m36s -25d18m52s") assert supergalactic.separation(icrs) < 0.005 * u.degree class TestHCRS: """ Check HCRS<->ICRS coordinate conversions. Uses ICRS Solar positions predicted by get_body_barycentric; with `t1` and `tarr` as defined below, the ICRS Solar positions were predicted using, e.g. coord.ICRS(coord.get_body_barycentric(tarr, 'sun')). """ def setup_method(self): self.t1 = Time("2013-02-02T23:00") self.t2 = Time("2013-08-02T23:00") self.tarr = Time(["2013-02-02T23:00", "2013-08-02T23:00"]) self.sun_icrs_scalar = ICRS( ra=244.52984668 * u.deg, dec=-22.36943723 * u.deg, distance=406615.66347377 * u.km, ) # array of positions corresponds to times in `tarr` self.sun_icrs_arr = ICRS( ra=[244.52989062, 271.40976248] * u.deg, dec=[-22.36943605, -25.07431079] * u.deg, distance=[406615.66347377, 375484.13558956] * u.km, ) # corresponding HCRS positions self.sun_hcrs_t1 = HCRS( CartesianRepresentation([0.0, 0.0, 0.0] * u.km), obstime=self.t1 ) twod_rep = CartesianRepresentation([[0.0, 0.0], [0.0, 0.0], [0.0, 0.0]] * u.km) self.sun_hcrs_tarr = HCRS(twod_rep, obstime=self.tarr) self.tolerance = 5 * u.km def test_from_hcrs(self): # test scalar transform transformed = self.sun_hcrs_t1.transform_to(ICRS()) separation = transformed.separation_3d(self.sun_icrs_scalar) assert_allclose(separation, 0 * u.km, atol=self.tolerance) # test non-scalar positions and times transformed = self.sun_hcrs_tarr.transform_to(ICRS()) separation = transformed.separation_3d(self.sun_icrs_arr) assert_allclose(separation, 0 * u.km, atol=self.tolerance) def test_from_icrs(self): # scalar positions transformed = self.sun_icrs_scalar.transform_to(HCRS(obstime=self.t1)) separation = transformed.separation_3d(self.sun_hcrs_t1) assert_allclose(separation, 0 * u.km, atol=self.tolerance) # nonscalar positions transformed = self.sun_icrs_arr.transform_to(HCRS(obstime=self.tarr)) separation = transformed.separation_3d(self.sun_hcrs_tarr) assert_allclose(separation, 0 * u.km, atol=self.tolerance) class TestHelioBaryCentric: """ Check GCRS<->Heliocentric and Barycentric coordinate conversions. Uses the WHT observing site (information grabbed from data/sites.json). """ def setup_method(self): wht = EarthLocation(342.12 * u.deg, 28.758333333333333 * u.deg, 2327 * u.m) self.obstime = Time("2013-02-02T23:00") self.wht_itrs = wht.get_itrs(obstime=self.obstime) def test_heliocentric(self): gcrs = self.wht_itrs.transform_to(GCRS(obstime=self.obstime)) helio = gcrs.transform_to(HCRS(obstime=self.obstime)) # Check it doesn't change from previous times. previous = [-1.02597256e11, 9.71725820e10, 4.21268419e10] * u.m assert_allclose(helio.cartesian.xyz, previous) # And that it agrees with SLALIB to within 14km helio_slalib = [-0.685820296, 0.6495585893, 0.2816005464] * u.au assert np.sqrt(((helio.cartesian.xyz - helio_slalib) ** 2).sum()) < 14.0 * u.km def test_barycentric(self): gcrs = self.wht_itrs.transform_to(GCRS(obstime=self.obstime)) bary = gcrs.transform_to(ICRS()) previous = [-1.02758958e11, 9.68331109e10, 4.19720938e10] * u.m assert_allclose(bary.cartesian.xyz, previous) # And that it agrees with SLALIB answer to within 14km bary_slalib = [-0.6869012079, 0.6472893646, 0.2805661191] * u.au assert np.sqrt(((bary.cartesian.xyz - bary_slalib) ** 2).sum()) < 14.0 * u.km def test_lsr_sanity(): # random numbers, but zero velocity in ICRS frame icrs = ICRS( ra=15.1241 * u.deg, dec=17.5143 * u.deg, distance=150.12 * u.pc, pm_ra_cosdec=0 * u.mas / u.yr, pm_dec=0 * u.mas / u.yr, radial_velocity=0 * u.km / u.s, ) lsr = icrs.transform_to(LSR()) lsr_diff = lsr.data.differentials["s"] cart_lsr_vel = lsr_diff.represent_as(CartesianRepresentation, base=lsr.data) lsr_vel = ICRS(cart_lsr_vel) gal_lsr = lsr_vel.transform_to(Galactic()).cartesian.xyz assert allclose(gal_lsr.to(u.km / u.s, u.dimensionless_angles()), lsr.v_bary.d_xyz) # moving with LSR velocity lsr = LSR( ra=15.1241 * u.deg, dec=17.5143 * u.deg, distance=150.12 * u.pc, pm_ra_cosdec=0 * u.mas / u.yr, pm_dec=0 * u.mas / u.yr, radial_velocity=0 * u.km / u.s, ) icrs = lsr.transform_to(ICRS()) icrs_diff = icrs.data.differentials["s"] cart_vel = icrs_diff.represent_as(CartesianRepresentation, base=icrs.data) vel = ICRS(cart_vel) gal_icrs = vel.transform_to(Galactic()).cartesian.xyz assert allclose( gal_icrs.to(u.km / u.s, u.dimensionless_angles()), -lsr.v_bary.d_xyz ) def test_hcrs_icrs_differentials(): # Regression to ensure that we can transform velocities from HCRS to LSR. # Numbers taken from the original issue, gh-6835. hcrs = HCRS( ra=8.67 * u.deg, dec=53.09 * u.deg, distance=117 * u.pc, pm_ra_cosdec=4.8 * u.mas / u.yr, pm_dec=-15.16 * u.mas / u.yr, radial_velocity=23.42 * u.km / u.s, ) icrs = hcrs.transform_to(ICRS()) # The position and velocity should not change much assert allclose(hcrs.cartesian.xyz, icrs.cartesian.xyz, rtol=1e-8) assert allclose(hcrs.velocity.d_xyz, icrs.velocity.d_xyz, rtol=1e-2) hcrs2 = icrs.transform_to(HCRS()) # The values should round trip assert allclose(hcrs.cartesian.xyz, hcrs2.cartesian.xyz, rtol=1e-12) assert allclose(hcrs.velocity.d_xyz, hcrs2.velocity.d_xyz, rtol=1e-12) def test_cirs_icrs(): """ Test CIRS<->ICRS transformations, including self transform """ t = Time("J2010") MOONDIST = 385000 * u.km # approximate moon semi-major orbit axis of moon MOONDIST_CART = CartesianRepresentation( 3**-0.5 * MOONDIST, 3**-0.5 * MOONDIST, 3**-0.5 * MOONDIST ) loc = EarthLocation(lat=0 * u.deg, lon=0 * u.deg) cirs_geo_frame = CIRS(obstime=t) cirs_topo_frame = CIRS(obstime=t, location=loc) moon_geo = cirs_geo_frame.realize_frame(MOONDIST_CART) moon_topo = moon_geo.transform_to(cirs_topo_frame) # now check that the distance change is similar to earth radius assert ( 1000 * u.km < np.abs(moon_topo.distance - moon_geo.distance).to(u.au) < 7000 * u.km ) # now check that it round-trips moon2 = moon_topo.transform_to(moon_geo) assert_allclose(moon_geo.cartesian.xyz, moon2.cartesian.xyz) # now check ICRS transform gives a decent distance from Barycentre moon_icrs = moon_geo.transform_to(ICRS()) assert_allclose(moon_icrs.distance - 1 * u.au, 0.0 * u.R_sun, atol=3 * u.R_sun) @pytest.mark.parametrize("frame", [LSR, GalacticLSR]) def test_lsr_loopback(frame): xyz = CartesianRepresentation(1, 2, 3) * u.AU xyz = xyz.with_differentials(CartesianDifferential(4, 5, 6) * u.km / u.s) v_bary = CartesianDifferential(5, 10, 15) * u.km / u.s # Test that the loopback properly handles a change in v_bary from_coo = frame(xyz) # default v_bary to_frame = frame(v_bary=v_bary) explicit_coo = from_coo.transform_to(ICRS()).transform_to(to_frame) implicit_coo = from_coo.transform_to(to_frame) # Confirm that the explicit transformation changes the velocity but not the position assert allclose(explicit_coo.cartesian.xyz, from_coo.cartesian.xyz, rtol=1e-10) assert not allclose( explicit_coo.velocity.d_xyz, from_coo.velocity.d_xyz, rtol=1e-10 ) # Confirm that the loopback matches the explicit transformation assert allclose(explicit_coo.cartesian.xyz, implicit_coo.cartesian.xyz, rtol=1e-10) assert allclose( explicit_coo.velocity.d_xyz, implicit_coo.velocity.d_xyz, rtol=1e-10 ) @pytest.mark.parametrize( "to_frame", [ Galactocentric(galcen_coord=ICRS(300 * u.deg, -30 * u.deg)), Galactocentric(galcen_distance=10 * u.kpc), Galactocentric(z_sun=10 * u.pc), Galactocentric(roll=1 * u.deg), ], ) def test_galactocentric_loopback(to_frame): xyz = CartesianRepresentation(1, 2, 3) * u.pc from_coo = Galactocentric(xyz) explicit_coo = from_coo.transform_to(ICRS()).transform_to(to_frame) implicit_coo = from_coo.transform_to(to_frame) # Confirm that the explicit transformation changes the position assert not allclose(explicit_coo.cartesian.xyz, from_coo.cartesian.xyz, rtol=1e-10) # Confirm that the loopback matches the explicit transformation assert allclose(explicit_coo.cartesian.xyz, implicit_coo.cartesian.xyz, rtol=1e-10)
c2b9dc7d5e35b88e9f3dedf90dcfec0d721533a6403146a529cab2876b8799eb
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Test initialization and other aspects of Angle and subclasses""" import pickle import threading import numpy as np import pytest from numpy.testing import assert_allclose, assert_array_equal import astropy.units as u from astropy.coordinates.angles import Angle, Latitude, Longitude from astropy.coordinates.errors import ( IllegalHourError, IllegalMinuteError, IllegalMinuteWarning, IllegalSecondError, IllegalSecondWarning, ) from astropy.utils.exceptions import AstropyDeprecationWarning def test_create_angles(): """ Tests creating and accessing Angle objects """ """ The "angle" is a fundamental object. The internal representation is stored in radians, but this is transparent to the user. Units *must* be specified rather than a default value be assumed. This is as much for self-documenting code as anything else. Angle objects simply represent a single angular coordinate. More specific angular coordinates (e.g. Longitude, Latitude) are subclasses of Angle.""" a1 = Angle(54.12412, unit=u.degree) a2 = Angle("54.12412", unit=u.degree) a3 = Angle("54:07:26.832", unit=u.degree) a4 = Angle("54.12412 deg") a5 = Angle("54.12412 degrees") a6 = Angle("54.12412°") # because we like Unicode a8 = Angle("54°07'26.832\"") a9 = Angle([54, 7, 26.832], unit=u.degree) assert_allclose(a9.value, [54, 7, 26.832]) assert a9.unit is u.degree a10 = Angle(3.60827466667, unit=u.hour) a11 = Angle("3:36:29.7888000120", unit=u.hour) with pytest.warns(AstropyDeprecationWarning, match="hms_to_hour"): a12 = Angle((3, 36, 29.7888000120), unit=u.hour) # *must* be a tuple with pytest.warns(AstropyDeprecationWarning, match="hms_to_hour"): # Regression test for #5001 a13 = Angle((3, 36, 29.7888000120), unit="hour") Angle(0.944644098745, unit=u.radian) with pytest.raises(u.UnitsError): Angle(54.12412) # raises an exception because this is ambiguous with pytest.raises(u.UnitsError): Angle(54.12412, unit=u.m) with pytest.raises(ValueError): Angle(12.34, unit="not a unit") a14 = Angle("03h36m29.7888000120") # no trailing 's', but unambiguous a15 = Angle("5h4m3s") # single digits, no decimal assert a15.unit == u.hourangle a16 = Angle("1 d") a17 = Angle("1 degree") assert a16.degree == 1 assert a17.degree == 1 a18 = Angle("54 07.4472", unit=u.degree) a19 = Angle("54:07.4472", unit=u.degree) a20 = Angle("54d07.4472m", unit=u.degree) a21 = Angle("3h36m", unit=u.hour) a22 = Angle("3.6h", unit=u.hour) a23 = Angle("- 3h", unit=u.hour) a24 = Angle("+ 3h", unit=u.hour) a25 = Angle(3.0, unit=u.hour**1) # ensure the above angles that should match do assert a1 == a2 == a3 == a4 == a5 == a6 == a8 == a18 == a19 == a20 assert_allclose(a1.radian, a2.radian) assert_allclose(a2.degree, a3.degree) assert_allclose(a3.radian, a4.radian) assert_allclose(a4.radian, a5.radian) assert_allclose(a5.radian, a6.radian) assert_allclose(a10.degree, a11.degree) assert a11 == a12 == a13 == a14 assert a21 == a22 assert a23 == -a24 assert a24 == a25 # check for illegal ranges / values with pytest.raises(IllegalSecondError): a = Angle("12 32 99", unit=u.degree) with pytest.raises(IllegalMinuteError): a = Angle("12 99 23", unit=u.degree) with pytest.raises(IllegalSecondError): a = Angle("12 32 99", unit=u.hour) with pytest.raises(IllegalMinuteError): a = Angle("12 99 23", unit=u.hour) with pytest.raises(IllegalHourError): a = Angle("99 25 51.0", unit=u.hour) with pytest.raises(ValueError): a = Angle("12 25 51.0xxx", unit=u.hour) with pytest.raises(ValueError): a = Angle("12h34321m32.2s") assert a1 is not None def test_angle_from_view(): q = np.arange(3.0) * u.deg a = q.view(Angle) assert type(a) is Angle assert a.unit is q.unit assert np.all(a == q) q2 = np.arange(4) * u.m with pytest.raises(u.UnitTypeError): q2.view(Angle) def test_angle_ops(): """ Tests operations on Angle objects """ # Angles can be added and subtracted. Multiplication and division by a # scalar is also permitted. A negative operator is also valid. All of # these operate in a single dimension. Attempting to multiply or divide two # Angle objects will return a quantity. An exception will be raised if it # is attempted to store output with a non-angular unit in an Angle [#2718]. a1 = Angle(3.60827466667, unit=u.hour) a2 = Angle("54:07:26.832", unit=u.degree) a1 + a2 # creates new Angle object a1 - a2 -a1 assert_allclose((a1 * 2).hour, 2 * 3.6082746666700003) assert abs((a1 / 3.123456).hour - 3.60827466667 / 3.123456) < 1e-10 # commutativity assert (2 * a1).hour == (a1 * 2).hour a3 = Angle(a1) # makes a *copy* of the object, but identical content as a1 assert_allclose(a1.radian, a3.radian) assert a1 is not a3 a4 = abs(-a1) assert a4.radian == a1.radian a5 = Angle(5.0, unit=u.hour) assert a5 > a1 assert a5 >= a1 assert a1 < a5 assert a1 <= a5 # check operations with non-angular result give Quantity. a6 = Angle(45.0, u.degree) a7 = a6 * a5 assert type(a7) is u.Quantity # but those with angular result yield Angle. # (a9 is regression test for #5327) a8 = a1 + 1.0 * u.deg assert type(a8) is Angle a9 = 1.0 * u.deg + a1 assert type(a9) is Angle with pytest.raises(TypeError): a6 *= a5 with pytest.raises(TypeError): a6 *= u.m with pytest.raises(TypeError): np.sin(a6, out=a6) def test_angle_methods(): # Most methods tested as part of the Quantity tests. # A few tests here which caused problems before: #8368 a = Angle([0.0, 2.0], "deg") a_mean = a.mean() assert type(a_mean) is Angle assert a_mean == 1.0 * u.degree a_std = a.std() assert type(a_std) is Angle assert a_std == 1.0 * u.degree a_var = a.var() assert type(a_var) is u.Quantity assert a_var == 1.0 * u.degree**2 a_ptp = a.ptp() assert type(a_ptp) is Angle assert a_ptp == 2.0 * u.degree a_max = a.max() assert type(a_max) is Angle assert a_max == 2.0 * u.degree a_min = a.min() assert type(a_min) is Angle assert a_min == 0.0 * u.degree def test_angle_convert(): """ Test unit conversion of Angle objects """ angle = Angle("54.12412", unit=u.degree) assert_allclose(angle.hour, 3.60827466667) assert_allclose(angle.radian, 0.944644098745) assert_allclose(angle.degree, 54.12412) assert len(angle.hms) == 3 assert isinstance(angle.hms, tuple) assert angle.hms[0] == 3 assert angle.hms[1] == 36 assert_allclose(angle.hms[2], 29.78879999999947) # also check that the namedtuple attribute-style access works: assert angle.hms.h == 3 assert angle.hms.m == 36 assert_allclose(angle.hms.s, 29.78879999999947) assert len(angle.dms) == 3 assert isinstance(angle.dms, tuple) assert angle.dms[0] == 54 assert angle.dms[1] == 7 assert_allclose(angle.dms[2], 26.831999999992036) # also check that the namedtuple attribute-style access works: assert angle.dms.d == 54 assert angle.dms.m == 7 assert_allclose(angle.dms.s, 26.831999999992036) assert isinstance(angle.dms[0], float) assert isinstance(angle.hms[0], float) # now make sure dms and signed_dms work right for negative angles negangle = Angle("-54.12412", unit=u.degree) assert negangle.dms.d == -54 assert negangle.dms.m == -7 assert_allclose(negangle.dms.s, -26.831999999992036) assert negangle.signed_dms.sign == -1 assert negangle.signed_dms.d == 54 assert negangle.signed_dms.m == 7 assert_allclose(negangle.signed_dms.s, 26.831999999992036) def test_angle_formatting(): """ Tests string formatting for Angle objects """ """ The string method of Angle has this signature: def string(self, unit=DEGREE, decimal=False, sep=" ", precision=5, pad=False): The "decimal" parameter defaults to False since if you need to print the Angle as a decimal, there's no need to use the "format" method (see above). """ angle = Angle("54.12412", unit=u.degree) # __str__ is the default `format` assert str(angle) == angle.to_string() res = "Angle as HMS: 3h36m29.7888s" assert f"Angle as HMS: {angle.to_string(unit=u.hour)}" == res res = "Angle as HMS: 3:36:29.7888" assert f"Angle as HMS: {angle.to_string(unit=u.hour, sep=':')}" == res res = "Angle as HMS: 3:36:29.79" assert f"Angle as HMS: {angle.to_string(unit=u.hour, sep=':', precision=2)}" == res # Note that you can provide one, two, or three separators passed as a # tuple or list res = "Angle as HMS: 3h36m29.7888s" assert ( "Angle as HMS:" f" {angle.to_string(unit=u.hour, sep=('h', 'm', 's'), precision=4)}" == res ) res = "Angle as HMS: 3-36|29.7888" assert ( f"Angle as HMS: {angle.to_string(unit=u.hour, sep=['-', '|'], precision=4)}" == res ) res = "Angle as HMS: 3-36-29.7888" assert f"Angle as HMS: {angle.to_string(unit=u.hour, sep='-', precision=4)}" == res res = "Angle as HMS: 03h36m29.7888s" assert f"Angle as HMS: {angle.to_string(unit=u.hour, precision=4, pad=True)}" == res # Same as above, in degrees angle = Angle("3 36 29.78880", unit=u.degree) res = "Angle as DMS: 3d36m29.7888s" assert f"Angle as DMS: {angle.to_string(unit=u.degree)}" == res res = "Angle as DMS: 3:36:29.7888" assert f"Angle as DMS: {angle.to_string(unit=u.degree, sep=':')}" == res res = "Angle as DMS: 3:36:29.79" assert ( f"Angle as DMS: {angle.to_string(unit=u.degree, sep=':', precision=2)}" == res ) # Note that you can provide one, two, or three separators passed as a # tuple or list res = "Angle as DMS: 3d36m29.7888s" assert ( f"Angle as DMS: {angle.to_string(unit=u.deg, sep=('d', 'm', 's'), precision=4)}" == res ) res = "Angle as DMS: 3-36|29.7888" assert ( f"Angle as DMS: {angle.to_string(unit=u.degree, sep=['-', '|'], precision=4)}" == res ) res = "Angle as DMS: 3-36-29.7888" assert ( f"Angle as DMS: {angle.to_string(unit=u.degree, sep='-', precision=4)}" == res ) res = "Angle as DMS: 03d36m29.7888s" assert ( f"Angle as DMS: {angle.to_string(unit=u.degree, precision=4, pad=True)}" == res ) res = "Angle as rad: 0.0629763rad" assert f"Angle as rad: {angle.to_string(unit=u.radian)}" == res res = "Angle as rad decimal: 0.0629763" assert ( f"Angle as rad decimal: {angle.to_string(unit=u.radian, decimal=True)}" == res ) # check negative angles angle = Angle(-1.23456789, unit=u.degree) angle2 = Angle(-1.23456789, unit=u.hour) assert angle.to_string() == "-1d14m04.444404s" assert angle.to_string(pad=True) == "-01d14m04.444404s" assert angle.to_string(unit=u.hour) == "-0h04m56.2962936s" assert angle2.to_string(unit=u.hour, pad=True) == "-01h14m04.444404s" assert angle.to_string(unit=u.radian, decimal=True) == "-0.0215473" # We should recognize units that are equal but not identical assert angle.to_string(unit=u.hour**1) == "-0h04m56.2962936s" def test_to_string_vector(): # Regression test for the fact that vectorize doesn't work with Numpy 1.6 assert ( Angle([1.0 / 7.0, 1.0 / 7.0], unit="deg").to_string()[0] == "0d08m34.28571429s" ) assert Angle([1.0 / 7.0], unit="deg").to_string()[0] == "0d08m34.28571429s" assert Angle(1.0 / 7.0, unit="deg").to_string() == "0d08m34.28571429s" def test_angle_format_roundtripping(): """ Ensures that the string representation of an angle can be used to create a new valid Angle. """ a1 = Angle(0, unit=u.radian) a2 = Angle(10, unit=u.degree) a3 = Angle(0.543, unit=u.degree) a4 = Angle("1d2m3.4s") assert Angle(str(a1)).degree == a1.degree assert Angle(str(a2)).degree == a2.degree assert Angle(str(a3)).degree == a3.degree assert Angle(str(a4)).degree == a4.degree # also check Longitude/Latitude ra = Longitude("1h2m3.4s") dec = Latitude("1d2m3.4s") assert_allclose(Angle(str(ra)).degree, ra.degree) assert_allclose(Angle(str(dec)).degree, dec.degree) def test_radec(): """ Tests creation/operations of Longitude and Latitude objects """ """ Longitude and Latitude are objects that are subclassed from Angle. As with Angle, Longitude and Latitude can parse any unambiguous format (tuples, formatted strings, etc.). The intention is not to create an Angle subclass for every possible coordinate object (e.g. galactic l, galactic b). However, equatorial Longitude/Latitude are so prevalent in astronomy that it's worth creating ones for these units. They will be noted as "special" in the docs and use of the just the Angle class is to be used for other coordinate systems. """ with pytest.raises(u.UnitsError): ra = Longitude("4:08:15.162342") # error - hours or degrees? with pytest.raises(u.UnitsError): ra = Longitude("-4:08:15.162342") # the "smart" initializer allows >24 to automatically do degrees, but the # Angle-based one does not # TODO: adjust in 0.3 for whatever behavior is decided on # ra = Longitude("26:34:15.345634") # unambiguous b/c hours don't go past 24 # assert_allclose(ra.degree, 26.570929342) with pytest.raises(u.UnitsError): ra = Longitude("26:34:15.345634") # ra = Longitude(68) with pytest.raises(u.UnitsError): ra = Longitude(68) with pytest.raises(u.UnitsError): ra = Longitude(12) with pytest.raises(ValueError): ra = Longitude("garbage containing a d and no units") ra = Longitude("12h43m23s") assert_allclose(ra.hour, 12.7230555556) # TODO: again, fix based on >24 behavior # ra = Longitude((56,14,52.52)) with pytest.raises(u.UnitsError): ra = Longitude((56, 14, 52.52)) with pytest.raises(u.UnitsError): ra = Longitude((12, 14, 52)) # ambiguous w/o units with pytest.warns(AstropyDeprecationWarning, match="hms_to_hours"): ra = Longitude((12, 14, 52), unit=u.hour) # Units can be specified ra = Longitude("4:08:15.162342", unit=u.hour) # TODO: this was the "smart" initializer behavior - adjust in 0.3 appropriately # Where Longitude values are commonly found in hours or degrees, declination is # nearly always specified in degrees, so this is the default. # dec = Latitude("-41:08:15.162342") with pytest.raises(u.UnitsError): dec = Latitude("-41:08:15.162342") dec = Latitude("-41:08:15.162342", unit=u.degree) # same as above def test_negative_zero_dms(): # Test for DMS parser a = Angle("-00:00:10", u.deg) assert_allclose(a.degree, -10.0 / 3600.0) # Unicode minus a = Angle("−00:00:10", u.deg) assert_allclose(a.degree, -10.0 / 3600.0) def test_negative_zero_dm(): # Test for DM parser a = Angle("-00:10", u.deg) assert_allclose(a.degree, -10.0 / 60.0) def test_negative_zero_hms(): # Test for HMS parser a = Angle("-00:00:10", u.hour) assert_allclose(a.hour, -10.0 / 3600.0) def test_negative_zero_hm(): # Test for HM parser a = Angle("-00:10", u.hour) assert_allclose(a.hour, -10.0 / 60.0) def test_negative_sixty_hm(): # Test for HM parser with pytest.warns(IllegalMinuteWarning): a = Angle("-00:60", u.hour) assert_allclose(a.hour, -1.0) def test_plus_sixty_hm(): # Test for HM parser with pytest.warns(IllegalMinuteWarning): a = Angle("00:60", u.hour) assert_allclose(a.hour, 1.0) def test_negative_fifty_nine_sixty_dms(): # Test for DMS parser with pytest.warns(IllegalSecondWarning): a = Angle("-00:59:60", u.deg) assert_allclose(a.degree, -1.0) def test_plus_fifty_nine_sixty_dms(): # Test for DMS parser with pytest.warns(IllegalSecondWarning): a = Angle("+00:59:60", u.deg) assert_allclose(a.degree, 1.0) def test_negative_sixty_dms(): # Test for DMS parser with pytest.warns(IllegalSecondWarning): a = Angle("-00:00:60", u.deg) assert_allclose(a.degree, -1.0 / 60.0) def test_plus_sixty_dms(): # Test for DMS parser with pytest.warns(IllegalSecondWarning): a = Angle("+00:00:60", u.deg) assert_allclose(a.degree, 1.0 / 60.0) def test_angle_to_is_angle(): with pytest.warns(IllegalSecondWarning): a = Angle("00:00:60", u.deg) assert isinstance(a, Angle) assert isinstance(a.to(u.rad), Angle) def test_angle_to_quantity(): with pytest.warns(IllegalSecondWarning): a = Angle("00:00:60", u.deg) q = u.Quantity(a) assert isinstance(q, u.Quantity) assert q.unit is u.deg def test_quantity_to_angle(): a = Angle(1.0 * u.deg) assert isinstance(a, Angle) with pytest.raises(u.UnitsError): Angle(1.0 * u.meter) a = Angle(1.0 * u.hour) assert isinstance(a, Angle) assert a.unit is u.hourangle with pytest.raises(u.UnitsError): Angle(1.0 * u.min) def test_angle_string(): with pytest.warns(IllegalSecondWarning): a = Angle("00:00:60", u.deg) assert str(a) == "0d01m00s" a = Angle("00:00:59S", u.deg) assert str(a) == "-0d00m59s" a = Angle("00:00:59N", u.deg) assert str(a) == "0d00m59s" a = Angle("00:00:59E", u.deg) assert str(a) == "0d00m59s" a = Angle("00:00:59W", u.deg) assert str(a) == "-0d00m59s" a = Angle("-00:00:10", u.hour) assert str(a) == "-0h00m10s" a = Angle("00:00:59E", u.hour) assert str(a) == "0h00m59s" a = Angle("00:00:59W", u.hour) assert str(a) == "-0h00m59s" a = Angle(3.2, u.radian) assert str(a) == "3.2rad" a = Angle(4.2, u.microarcsecond) assert str(a) == "4.2uarcsec" a = Angle("1.0uarcsec") assert a.value == 1.0 assert a.unit == u.microarcsecond a = Angle("1.0uarcsecN") assert a.value == 1.0 assert a.unit == u.microarcsecond a = Angle("1.0uarcsecS") assert a.value == -1.0 assert a.unit == u.microarcsecond a = Angle("1.0uarcsecE") assert a.value == 1.0 assert a.unit == u.microarcsecond a = Angle("1.0uarcsecW") assert a.value == -1.0 assert a.unit == u.microarcsecond a = Angle("3d") assert_allclose(a.value, 3.0) assert a.unit == u.degree a = Angle("3dN") assert str(a) == "3d00m00s" assert a.unit == u.degree a = Angle("3dS") assert str(a) == "-3d00m00s" assert a.unit == u.degree a = Angle("3dE") assert str(a) == "3d00m00s" assert a.unit == u.degree a = Angle("3dW") assert str(a) == "-3d00m00s" assert a.unit == u.degree a = Angle('10"') assert_allclose(a.value, 10.0) assert a.unit == u.arcsecond a = Angle("10'N") assert_allclose(a.value, 10.0) assert a.unit == u.arcminute a = Angle("10'S") assert_allclose(a.value, -10.0) assert a.unit == u.arcminute a = Angle("10'E") assert_allclose(a.value, 10.0) assert a.unit == u.arcminute a = Angle("10'W") assert_allclose(a.value, -10.0) assert a.unit == u.arcminute a = Angle("45°55′12″N") assert str(a) == "45d55m12s" assert_allclose(a.value, 45.92) assert a.unit == u.deg a = Angle("45°55′12″S") assert str(a) == "-45d55m12s" assert_allclose(a.value, -45.92) assert a.unit == u.deg a = Angle("45°55′12″E") assert str(a) == "45d55m12s" assert_allclose(a.value, 45.92) assert a.unit == u.deg a = Angle("45°55′12″W") assert str(a) == "-45d55m12s" assert_allclose(a.value, -45.92) assert a.unit == u.deg with pytest.raises(ValueError): Angle("00h00m10sN") with pytest.raises(ValueError): Angle("45°55′12″NS") def test_angle_repr(): assert "Angle" in repr(Angle(0, u.deg)) assert "Longitude" in repr(Longitude(0, u.deg)) assert "Latitude" in repr(Latitude(0, u.deg)) a = Angle(0, u.deg) repr(a) def test_large_angle_representation(): """Test that angles above 360 degrees can be output as strings, in repr, str, and to_string. (regression test for #1413)""" a = Angle(350, u.deg) + Angle(350, u.deg) a.to_string() a.to_string(u.hourangle) repr(a) repr(a.to(u.hourangle)) str(a) str(a.to(u.hourangle)) def test_wrap_at_inplace(): a = Angle([-20, 150, 350, 360] * u.deg) out = a.wrap_at("180d", inplace=True) assert out is None assert np.all(a.degree == np.array([-20.0, 150.0, -10.0, 0.0])) def test_latitude(): with pytest.raises(ValueError): lat = Latitude(["91d", "89d"]) with pytest.raises(ValueError): lat = Latitude("-91d") lat = Latitude(["90d", "89d"]) # check that one can get items assert lat[0] == 90 * u.deg assert lat[1] == 89 * u.deg # and that comparison with angles works assert np.all(lat == Angle(["90d", "89d"])) # check setitem works lat[1] = 45.0 * u.deg assert np.all(lat == Angle(["90d", "45d"])) # but not with values out of range with pytest.raises(ValueError): lat[0] = 90.001 * u.deg with pytest.raises(ValueError): lat[0] = -90.001 * u.deg # these should also not destroy input (#1851) assert np.all(lat == Angle(["90d", "45d"])) # conserve type on unit change (closes #1423) angle = lat.to("radian") assert type(angle) is Latitude # but not on calculations angle = lat - 190 * u.deg assert type(angle) is Angle assert angle[0] == -100 * u.deg lat = Latitude("80d") angle = lat / 2.0 assert type(angle) is Angle assert angle == 40 * u.deg angle = lat * 2.0 assert type(angle) is Angle assert angle == 160 * u.deg angle = -lat assert type(angle) is Angle assert angle == -80 * u.deg # Test errors when trying to interoperate with longitudes. with pytest.raises( TypeError, match="A Latitude angle cannot be created from a Longitude angle" ): lon = Longitude(10, "deg") lat = Latitude(lon) with pytest.raises( TypeError, match="A Longitude angle cannot be assigned to a Latitude angle" ): lon = Longitude(10, "deg") lat = Latitude([20], "deg") lat[0] = lon # Check we can work around the Lat vs Long checks by casting explicitly to Angle. lon = Longitude(10, "deg") lat = Latitude(Angle(lon)) assert lat.value == 10.0 # Check setitem. lon = Longitude(10, "deg") lat = Latitude([20], "deg") lat[0] = Angle(lon) assert lat.value[0] == 10.0 def test_longitude(): # Default wrapping at 360d with an array input lon = Longitude(["370d", "88d"]) assert np.all(lon == Longitude(["10d", "88d"])) assert np.all(lon == Angle(["10d", "88d"])) # conserve type on unit change and keep wrap_angle (closes #1423) angle = lon.to("hourangle") assert type(angle) is Longitude assert angle.wrap_angle == lon.wrap_angle angle = lon[0] assert type(angle) is Longitude assert angle.wrap_angle == lon.wrap_angle angle = lon[1:] assert type(angle) is Longitude assert angle.wrap_angle == lon.wrap_angle # but not on calculations angle = lon / 2.0 assert np.all(angle == Angle(["5d", "44d"])) assert type(angle) is Angle assert not hasattr(angle, "wrap_angle") angle = lon * 2.0 + 400 * u.deg assert np.all(angle == Angle(["420d", "576d"])) assert type(angle) is Angle # Test setting a mutable value and having it wrap lon[1] = -10 * u.deg assert np.all(lon == Angle(["10d", "350d"])) # Test wrapping and try hitting some edge cases lon = Longitude(np.array([0, 0.5, 1.0, 1.5, 2.0]) * np.pi, unit=u.radian) assert np.all(lon.degree == np.array([0.0, 90, 180, 270, 0])) lon = Longitude( np.array([0, 0.5, 1.0, 1.5, 2.0]) * np.pi, unit=u.radian, wrap_angle="180d" ) assert np.all(lon.degree == np.array([0.0, 90, -180, -90, 0])) # Wrap on setting wrap_angle property (also test auto-conversion of wrap_angle to an Angle) lon = Longitude(np.array([0, 0.5, 1.0, 1.5, 2.0]) * np.pi, unit=u.radian) lon.wrap_angle = "180d" assert np.all(lon.degree == np.array([0.0, 90, -180, -90, 0])) lon = Longitude("460d") assert lon == Angle("100d") lon.wrap_angle = "90d" assert lon == Angle("-260d") # check that if we initialize a longitude with another longitude, # wrap_angle is kept by default lon2 = Longitude(lon) assert lon2.wrap_angle == lon.wrap_angle # but not if we explicitly set it lon3 = Longitude(lon, wrap_angle="180d") assert lon3.wrap_angle == 180 * u.deg # check that wrap_angle is always an Angle lon = Longitude(lon, wrap_angle=Longitude(180 * u.deg)) assert lon.wrap_angle == 180 * u.deg assert lon.wrap_angle.__class__ is Angle # check that wrap_angle is not copied wrap_angle = 180 * u.deg lon = Longitude(lon, wrap_angle=wrap_angle) assert lon.wrap_angle == 180 * u.deg assert np.may_share_memory(lon.wrap_angle, wrap_angle) # check for problem reported in #2037 about Longitude initializing to -0 lon = Longitude(0, u.deg) lonstr = lon.to_string() assert not lonstr.startswith("-") # also make sure dtype is correctly conserved assert Longitude(0, u.deg, dtype=float).dtype == np.dtype(float) assert Longitude(0, u.deg, dtype=int).dtype == np.dtype(int) # Test errors when trying to interoperate with latitudes. with pytest.raises( TypeError, match="A Longitude angle cannot be created from a Latitude angle" ): lat = Latitude(10, "deg") lon = Longitude(lat) with pytest.raises( TypeError, match="A Latitude angle cannot be assigned to a Longitude angle" ): lat = Latitude(10, "deg") lon = Longitude([20], "deg") lon[0] = lat # Check we can work around the Lat vs Long checks by casting explicitly to Angle. lat = Latitude(10, "deg") lon = Longitude(Angle(lat)) assert lon.value == 10.0 # Check setitem. lat = Latitude(10, "deg") lon = Longitude([20], "deg") lon[0] = Angle(lat) assert lon.value[0] == 10.0 def test_wrap_at(): a = Angle([-20, 150, 350, 360] * u.deg) assert np.all(a.wrap_at(360 * u.deg).degree == np.array([340.0, 150.0, 350.0, 0.0])) assert np.all( a.wrap_at(Angle(360, unit=u.deg)).degree == np.array([340.0, 150.0, 350.0, 0.0]) ) assert np.all(a.wrap_at("360d").degree == np.array([340.0, 150.0, 350.0, 0.0])) assert np.all(a.wrap_at("180d").degree == np.array([-20.0, 150.0, -10.0, 0.0])) assert np.all( a.wrap_at(np.pi * u.rad).degree == np.array([-20.0, 150.0, -10.0, 0.0]) ) # Test wrapping a scalar Angle a = Angle("190d") assert a.wrap_at("180d") == Angle("-170d") a = Angle(np.arange(-1000.0, 1000.0, 0.125), unit=u.deg) for wrap_angle in (270, 0.2, 0.0, 360.0, 500, -2000.125): aw = a.wrap_at(wrap_angle * u.deg) assert np.all(aw.degree >= wrap_angle - 360.0) assert np.all(aw.degree < wrap_angle) aw = a.to(u.rad).wrap_at(wrap_angle * u.deg) assert np.all(aw.degree >= wrap_angle - 360.0) assert np.all(aw.degree < wrap_angle) def test_is_within_bounds(): a = Angle([-20, 150, 350] * u.deg) assert a.is_within_bounds("0d", "360d") is False assert a.is_within_bounds(None, "360d") is True assert a.is_within_bounds(-30 * u.deg, None) is True a = Angle("-20d") assert a.is_within_bounds("0d", "360d") is False assert a.is_within_bounds(None, "360d") is True assert a.is_within_bounds(-30 * u.deg, None) is True def test_angle_mismatched_unit(): a = Angle("+6h7m8s", unit=u.degree) assert_allclose(a.value, 91.78333333333332) def test_regression_formatting_negative(): # Regression test for a bug that caused: # # >>> Angle(-1., unit='deg').to_string() # '-1d00m-0s' assert Angle(-0.0, unit="deg").to_string() == "-0d00m00s" assert Angle(-1.0, unit="deg").to_string() == "-1d00m00s" assert Angle(-0.0, unit="hour").to_string() == "-0h00m00s" assert Angle(-1.0, unit="hour").to_string() == "-1h00m00s" def test_regression_formatting_default_precision(): # Regression test for issue #11140 assert Angle("10:20:30.12345678d").to_string() == "10d20m30.12345678s" assert Angle("10d20m30.123456784564s").to_string() == "10d20m30.12345678s" assert Angle("10d20m30.123s").to_string() == "10d20m30.123s" def test_empty_sep(): a = Angle("05h04m31.93830s") assert a.to_string(sep="", precision=2, pad=True) == "050431.94" def test_create_tuple(): """ Tests creation of an angle with an (h,m,s) tuple (d, m, s) tuples are not tested because of sign ambiguity issues (#13162) """ with pytest.warns(AstropyDeprecationWarning, match="hms_to_hours"): a1 = Angle((1, 30, 0), unit=u.hourangle) assert a1.value == 1.5 def test_list_of_quantities(): a1 = Angle([1 * u.deg, 1 * u.hourangle]) assert a1.unit == u.deg assert_allclose(a1.value, [1, 15]) a2 = Angle([1 * u.hourangle, 1 * u.deg], u.deg) assert a2.unit == u.deg assert_allclose(a2.value, [15, 1]) def test_multiply_divide(): # Issue #2273 a1 = Angle([1, 2, 3], u.deg) a2 = Angle([4, 5, 6], u.deg) a3 = a1 * a2 assert_allclose(a3.value, [4, 10, 18]) assert a3.unit == (u.deg * u.deg) a3 = a1 / a2 assert_allclose(a3.value, [0.25, 0.4, 0.5]) assert a3.unit == u.dimensionless_unscaled def test_mixed_string_and_quantity(): a1 = Angle(["1d", 1.0 * u.deg]) assert_array_equal(a1.value, [1.0, 1.0]) assert a1.unit == u.deg a2 = Angle(["1d", 1 * u.rad * np.pi, "3d"]) assert_array_equal(a2.value, [1.0, 180.0, 3.0]) assert a2.unit == u.deg def test_array_angle_tostring(): aobj = Angle([1, 2], u.deg) assert aobj.to_string().dtype.kind == "U" assert np.all(aobj.to_string() == ["1d00m00s", "2d00m00s"]) def test_wrap_at_without_new(): """ Regression test for subtle bugs from situations where an Angle is created via numpy channels that don't do the standard __new__ but instead depend on array_finalize to set state. Longitude is used because the bug was in its _wrap_angle not getting initialized correctly """ l1 = Longitude([1] * u.deg) l2 = Longitude([2] * u.deg) l = np.concatenate([l1, l2]) assert l._wrap_angle is not None def test__str__(): """ Check the __str__ method used in printing the Angle """ # scalar angle scangle = Angle("10.2345d") strscangle = scangle.__str__() assert strscangle == "10d14m04.2s" # non-scalar array angles arrangle = Angle(["10.2345d", "-20d"]) strarrangle = arrangle.__str__() assert strarrangle == "[10d14m04.2s -20d00m00s]" # summarizing for large arrays, ... should appear bigarrangle = Angle(np.ones(10000), u.deg) assert "..." in bigarrangle.__str__() def test_repr_latex(): """ Check the _repr_latex_ method, used primarily by IPython notebooks """ # try with both scalar scangle = Angle(2.1, u.deg) rlscangle = scangle._repr_latex_() # and array angles arrangle = Angle([1, 2.1], u.deg) rlarrangle = arrangle._repr_latex_() assert rlscangle == r"$2^\circ06{}^\prime00{}^{\prime\prime}$" assert rlscangle.split("$")[1] in rlarrangle # make sure the ... appears for large arrays bigarrangle = Angle(np.ones(50000) / 50000.0, u.deg) assert "..." in bigarrangle._repr_latex_() def test_angle_with_cds_units_enabled(): """Regression test for #5350 Especially the example in https://github.com/astropy/astropy/issues/5350#issuecomment-248770151 """ # the problem is with the parser, so remove it temporarily from astropy.coordinates.angle_formats import _AngleParser from astropy.units import cds del _AngleParser._thread_local._parser with cds.enable(): Angle("5d") del _AngleParser._thread_local._parser Angle("5d") def test_longitude_nan(): # Check that passing a NaN to Longitude doesn't raise a warning Longitude([0, np.nan, 1] * u.deg) def test_latitude_nan(): # Check that passing a NaN to Latitude doesn't raise a warning Latitude([0, np.nan, 1] * u.deg) def test_angle_wrap_at_nan(): # Check that no attempt is made to wrap a NaN angle angle = Angle([0, np.nan, 1] * u.deg) angle.flags.writeable = False # to force an error if a write is attempted angle.wrap_at(180 * u.deg, inplace=True) def test_angle_multithreading(): """ Regression test for issue #7168 """ angles = ["00:00:00"] * 10000 def parse_test(i=0): Angle(angles, unit="hour") for i in range(10): threading.Thread(target=parse_test, args=(i,)).start() @pytest.mark.parametrize("cls", [Angle, Longitude, Latitude]) @pytest.mark.parametrize( "input, expstr, exprepr", [ (np.nan * u.deg, "nan", "nan deg"), ([np.nan, 5, 0] * u.deg, "[nan 5d00m00s 0d00m00s]", "[nan, 5., 0.] deg"), ([6, np.nan, 0] * u.deg, "[6d00m00s nan 0d00m00s]", "[6., nan, 0.] deg"), ([np.nan, np.nan, np.nan] * u.deg, "[nan nan nan]", "[nan, nan, nan] deg"), (np.nan * u.hour, "nan", "nan hourangle"), ([np.nan, 5, 0] * u.hour, "[nan 5h00m00s 0h00m00s]", "[nan, 5., 0.] hourangle"), ([6, np.nan, 0] * u.hour, "[6h00m00s nan 0h00m00s]", "[6., nan, 0.] hourangle"), ( [np.nan, np.nan, np.nan] * u.hour, "[nan nan nan]", "[nan, nan, nan] hourangle", ), (np.nan * u.rad, "nan", "nan rad"), ([np.nan, 1, 0] * u.rad, "[nan 1rad 0rad]", "[nan, 1., 0.] rad"), ([1.50, np.nan, 0] * u.rad, "[1.5rad nan 0rad]", "[1.5, nan, 0.] rad"), ([np.nan, np.nan, np.nan] * u.rad, "[nan nan nan]", "[nan, nan, nan] rad"), ], ) def test_str_repr_angles_nan(cls, input, expstr, exprepr): """ Regression test for issue #11473 """ q = cls(input) assert str(q) == expstr # Deleting whitespaces since repr appears to be adding them for some values # making the test fail. assert repr(q).replace(" ", "") == f"<{cls.__name__}{exprepr}>".replace(" ", "") @pytest.mark.parametrize("sign", (-1, 1)) @pytest.mark.parametrize( "value,expected_value,dtype,expected_dtype", [ (np.pi / 2, np.pi / 2, None, np.float64), (np.pi / 2, np.pi / 2, np.float64, np.float64), (np.float32(np.pi / 2), np.float32(np.pi / 2), None, np.float32), (np.float32(np.pi / 2), np.float32(np.pi / 2), np.float32, np.float32), # these cases would require coercing the float32 value to the float64 value # making validate have side effects, so it's not implemented for now # (np.float32(np.pi / 2), np.pi / 2, np.float64, np.float64), # (np.float32(-np.pi / 2), -np.pi / 2, np.float64, np.float64), ], ) def test_latitude_limits(value, expected_value, dtype, expected_dtype, sign): """ Test that the validation of the Latitude value range in radians works in both float32 and float64. As discussed in issue #13708, before, the float32 represenation of pi/2 was rejected as invalid because the comparison always used the float64 representation. """ # this prevents upcasting to float64 as sign * value would do if sign < 0: value = -value expected_value = -expected_value result = Latitude(value, u.rad, dtype=dtype) assert result.value == expected_value assert result.dtype == expected_dtype assert result.unit == u.rad @pytest.mark.parametrize( "value,dtype", [ (0.50001 * np.pi, np.float32), (np.float32(0.50001 * np.pi), np.float32), (0.50001 * np.pi, np.float64), ], ) def test_latitude_out_of_limits(value, dtype): """ Test that values slightly larger than pi/2 are rejected for different dtypes. Test cases for issue #13708 """ with pytest.raises(ValueError, match=r"Latitude angle\(s\) must be within.*"): Latitude(value, u.rad, dtype=dtype) def test_angle_pickle_to_string(): """ Ensure that after pickling we can still do to_string on hourangle. Regression test for gh-13923. """ angle = Angle(0.25 * u.hourangle) expected = angle.to_string() via_pickle = pickle.loads(pickle.dumps(angle)) via_pickle_string = via_pickle.to_string() # This used to fail. assert via_pickle_string == expected
ce35e0c92eb2e8bef7241047d72448dfafc45fe316dc9a73d2bf043171a5798f
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Tests for the projected separation stuff """ import numpy as np import pytest from astropy import units as u from astropy.coordinates import Angle, Distance from astropy.coordinates.builtin_frames import FK5, ICRS, Galactic from astropy.tests.helper import assert_quantity_allclose as assert_allclose # lon1, lat1, lon2, lat2 in degrees coords = [ (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (0, 0, 10, 0), (0, 0, 90, 0), (0, 0, 180, 0), (0, 45, 0, -45), (0, 60, 0, -30), (-135, -15, 45, 15), (100, -89, -80, 89), (0, 0, 0, 0), (0, 0, 1.0 / 60.0, 1.0 / 60.0), ] correct_seps = [1, 1, 1, 1, 10, 90, 180, 90, 90, 180, 180, 0, 0.023570225877234643] correctness_margin = 2e-10 def test_angsep(): """ Tests that the angular separation object also behaves correctly. """ from astropy.coordinates.angle_utilities import angular_separation # check it both works with floats in radians, Quantities, or Angles for conv in (np.deg2rad, lambda x: u.Quantity(x, "deg"), lambda x: Angle(x, "deg")): for (lon1, lat1, lon2, lat2), corrsep in zip(coords, correct_seps): angsep = angular_separation(conv(lon1), conv(lat1), conv(lon2), conv(lat2)) assert np.fabs(angsep - conv(corrsep)) < conv(correctness_margin) def test_fk5_seps(): """ This tests if `separation` works for FK5 objects. This is a regression test for github issue #891 """ a = FK5(1.0 * u.deg, 1.0 * u.deg) b = FK5(2.0 * u.deg, 2.0 * u.deg) a.separation(b) def test_proj_separations(): """ Test angular separation functionality """ c1 = ICRS(ra=0 * u.deg, dec=0 * u.deg) c2 = ICRS(ra=0 * u.deg, dec=1 * u.deg) sep = c2.separation(c1) # returns an Angle object assert isinstance(sep, Angle) assert_allclose(sep.degree, 1.0) assert_allclose(sep.arcminute, 60.0) # these operations have ambiguous interpretations for points on a sphere with pytest.raises(TypeError): c1 + c2 with pytest.raises(TypeError): c1 - c2 ngp = Galactic(l=0 * u.degree, b=90 * u.degree) ncp = ICRS(ra=0 * u.degree, dec=90 * u.degree) # if there is a defined conversion between the relevant coordinate systems, # it will be automatically performed to get the right angular separation assert_allclose( ncp.separation(ngp.transform_to(ICRS())).degree, ncp.separation(ngp).degree ) # distance from the north galactic pole to celestial pole assert_allclose(ncp.separation(ngp.transform_to(ICRS())).degree, 62.87174758503201) def test_3d_separations(): """ Test 3D separation functionality """ c1 = ICRS(ra=1 * u.deg, dec=1 * u.deg, distance=9 * u.kpc) c2 = ICRS(ra=1 * u.deg, dec=1 * u.deg, distance=10 * u.kpc) sep3d = c2.separation_3d(c1) assert isinstance(sep3d, Distance) assert_allclose(sep3d - 1 * u.kpc, 0 * u.kpc, atol=1e-12 * u.kpc)
438ed2fb23b4dfeb4284133c0e8d0e2caeb63287f48924871fe5ed8304ca3cf4
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This is the APE5 coordinates API document re-written to work as a series of test functions. Note that new tests for coordinates functionality should generally *not* be added to this file - instead, add them to other appropriate test modules in this package, like ``test_sky_coord.py``, ``test_frames.py``, or ``test_representation.py``. This file is instead meant mainly to keep track of deviations from the original APE5 plan. """ import numpy as np import pytest from numpy import testing as npt from astropy import coordinates as coords from astropy import time from astropy import units as u from astropy.tests.helper import assert_quantity_allclose as assert_allclose from astropy.units import allclose from astropy.utils.compat.optional_deps import HAS_SCIPY def test_representations_api(): from astropy.coordinates import Angle, Distance, Latitude, Longitude from astropy.coordinates.representation import ( CartesianRepresentation, PhysicsSphericalRepresentation, SphericalRepresentation, UnitSphericalRepresentation, ) # <-----------------Classes for representation of coordinate data--------------> # These classes inherit from a common base class and internally contain Quantity # objects, which are arrays (although they may act as scalars, like numpy's # length-0 "arrays") # They can be initialized with a variety of ways that make intuitive sense. # Distance is optional. UnitSphericalRepresentation(lon=8 * u.hour, lat=5 * u.deg) UnitSphericalRepresentation(lon=8 * u.hourangle, lat=5 * u.deg) SphericalRepresentation(lon=8 * u.hourangle, lat=5 * u.deg, distance=10 * u.kpc) # In the initial implementation, the lat/lon/distance arguments to the # initializer must be in order. A *possible* future change will be to allow # smarter guessing of the order. E.g. `Latitude` and `Longitude` objects can be # given in any order. UnitSphericalRepresentation(Longitude(8, u.hour), Latitude(5, u.deg)) SphericalRepresentation( Longitude(8, u.hour), Latitude(5, u.deg), Distance(10, u.kpc) ) # Arrays of any of the inputs are fine UnitSphericalRepresentation(lon=[8, 9] * u.hourangle, lat=[5, 6] * u.deg) # Default is to copy arrays, but optionally, it can be a reference UnitSphericalRepresentation( lon=[8, 9] * u.hourangle, lat=[5, 6] * u.deg, copy=False ) # strings are parsed by `Latitude` and `Longitude` constructors, so no need to # implement parsing in the Representation classes UnitSphericalRepresentation(lon=Angle("2h6m3.3s"), lat=Angle("0.1rad")) # Or, you can give `Quantity`s with keywords, and they will be internally # converted to Angle/Distance c1 = SphericalRepresentation( lon=8 * u.hourangle, lat=5 * u.deg, distance=10 * u.kpc ) # Can also give another representation object with the `reprobj` keyword. c2 = SphericalRepresentation.from_representation(c1) # distance, lat, and lon typically will just match in shape SphericalRepresentation( lon=[8, 9] * u.hourangle, lat=[5, 6] * u.deg, distance=[10, 11] * u.kpc ) # if the inputs are not the same, if possible they will be broadcast following # numpy's standard broadcasting rules. c2 = SphericalRepresentation( lon=[8, 9] * u.hourangle, lat=[5, 6] * u.deg, distance=10 * u.kpc ) assert len(c2.distance) == 2 # when they can't be broadcast, it is a ValueError (same as Numpy) with pytest.raises(ValueError): c2 = UnitSphericalRepresentation( lon=[8, 9, 10] * u.hourangle, lat=[5, 6] * u.deg ) # It's also possible to pass in scalar quantity lists with mixed units. These # are converted to array quantities following the same rule as `Quantity`: all # elements are converted to match the first element's units. c2 = UnitSphericalRepresentation( lon=Angle([8 * u.hourangle, 135 * u.deg]), lat=Angle([5 * u.deg, (6 * np.pi / 180) * u.rad]), ) assert c2.lat.unit == u.deg and c2.lon.unit == u.hourangle npt.assert_almost_equal(c2.lon[1].value, 9) # The Quantity initializer itself can also be used to force the unit even if the # first element doesn't have the right unit lon = u.Quantity([120 * u.deg, 135 * u.deg], u.hourangle) lat = u.Quantity([(5 * np.pi / 180) * u.rad, 0.4 * u.hourangle], u.deg) c2 = UnitSphericalRepresentation(lon, lat) # regardless of how input, the `lat` and `lon` come out as angle/distance assert isinstance(c1.lat, Angle) assert isinstance( c1.lat, Latitude ) # `Latitude` is an `~astropy.coordinates.Angle` subclass assert isinstance(c1.distance, Distance) # but they are read-only, as representations are immutable once created with pytest.raises(AttributeError): c1.lat = Latitude(5, u.deg) # Note that it is still possible to modify the array in-place, but this is not # sanctioned by the API, as this would prevent things like caching. c2.lat[:] = [0] * u.deg # possible, but NOT SUPPORTED # To address the fact that there are various other conventions for how spherical # coordinates are defined, other conventions can be included as new classes. # Later there may be other conventions that we implement - for now just the # physics convention, as it is one of the most common cases. _ = PhysicsSphericalRepresentation(phi=120 * u.deg, theta=85 * u.deg, r=3 * u.kpc) # first dimension must be length-3 if a lone `Quantity` is passed in. c1 = CartesianRepresentation(np.random.randn(3, 100) * u.kpc) assert c1.xyz.shape[0] == 3 assert c1.xyz.unit == u.kpc assert c1.x.shape[0] == 100 assert c1.y.shape[0] == 100 assert c1.z.shape[0] == 100 # can also give each as separate keywords CartesianRepresentation( x=np.random.randn(100) * u.kpc, y=np.random.randn(100) * u.kpc, z=np.random.randn(100) * u.kpc, ) # if the units don't match but are all distances, they will automatically be # converted to match `x` xarr, yarr, zarr = np.random.randn(3, 100) c1 = CartesianRepresentation(x=xarr * u.kpc, y=yarr * u.kpc, z=zarr * u.kpc) c2 = CartesianRepresentation(x=xarr * u.kpc, y=yarr * u.kpc, z=zarr * u.pc) assert c1.xyz.unit == c2.xyz.unit == u.kpc assert_allclose((c1.z / 1000) - c2.z, 0 * u.kpc, atol=1e-10 * u.kpc) # representations convert into other representations via `represent_as` srep = SphericalRepresentation(lon=90 * u.deg, lat=0 * u.deg, distance=1 * u.pc) crep = srep.represent_as(CartesianRepresentation) assert_allclose(crep.x, 0 * u.pc, atol=1e-10 * u.pc) assert_allclose(crep.y, 1 * u.pc, atol=1e-10 * u.pc) assert_allclose(crep.z, 0 * u.pc, atol=1e-10 * u.pc) # The functions that actually do the conversion are defined via methods on the # representation classes. This may later be expanded into a full registerable # transform graph like the coordinate frames, but initially it will be a simpler # method system def test_frame_api(): from astropy.coordinates.builtin_frames import FK5, ICRS from astropy.coordinates.representation import ( SphericalRepresentation, UnitSphericalRepresentation, ) # <--------------------Reference Frame/"Low-level" classes---------------------> # The low-level classes have a dual role: they act as specifiers of coordinate # frames and they *may* also contain data as one of the representation objects, # in which case they are the actual coordinate objects themselves. # They can always accept a representation as a first argument icrs = ICRS(UnitSphericalRepresentation(lon=8 * u.hour, lat=5 * u.deg)) # which is stored as the `data` attribute assert icrs.data.lat == 5 * u.deg assert icrs.data.lon == 8 * u.hourangle # Frames that require additional information like equinoxs or obstimes get them # as keyword parameters to the frame constructor. Where sensible, defaults are # used. E.g., FK5 is almost always J2000 equinox fk5 = FK5(UnitSphericalRepresentation(lon=8 * u.hour, lat=5 * u.deg)) J2000 = time.Time("J2000") fk5_2000 = FK5( UnitSphericalRepresentation(lon=8 * u.hour, lat=5 * u.deg), equinox=J2000 ) assert fk5.equinox == fk5_2000.equinox # the information required to specify the frame is immutable J2001 = time.Time("J2001") with pytest.raises(AttributeError): fk5.equinox = J2001 # Similar for the representation data. with pytest.raises(AttributeError): fk5.data = UnitSphericalRepresentation(lon=8 * u.hour, lat=5 * u.deg) # There is also a class-level attribute that lists the attributes needed to # identify the frame. These include attributes like `equinox` shown above. assert all(nm in ("equinox", "obstime") for nm in fk5.frame_attributes) # the `frame_attributes` are called for particularly in the # high-level class (discussed below) to allow round-tripping between various # frames. It is also part of the public API for other similar developer / # advanced users' use. # The actual position information is accessed via the representation objects assert_allclose(icrs.represent_as(SphericalRepresentation).lat, 5 * u.deg) # shorthand for the above assert_allclose(icrs.spherical.lat, 5 * u.deg) assert icrs.cartesian.z.value > 0 # Many frames have a "default" representation, the one in which they are # conventionally described, often with a special name for some of the # coordinates. E.g., most equatorial coordinate systems are spherical with RA and # Dec. This works simply as a shorthand for the longer form above assert_allclose(icrs.dec, 5 * u.deg) assert_allclose(fk5.ra, 8 * u.hourangle) assert icrs.representation_type == SphericalRepresentation # low-level classes can also be initialized with names valid for that representation # and frame: icrs_2 = ICRS(ra=8 * u.hour, dec=5 * u.deg, distance=1 * u.kpc) assert_allclose(icrs.ra, icrs_2.ra) # and these are taken as the default if keywords are not given: # icrs_nokwarg = ICRS(8*u.hour, 5*u.deg, distance=1*u.kpc) # assert icrs_nokwarg.ra == icrs_2.ra and icrs_nokwarg.dec == icrs_2.dec # they also are capable of computing on-sky or 3d separations from each other, # which will be a direct port of the existing methods: coo1 = ICRS(ra=0 * u.hour, dec=0 * u.deg) coo2 = ICRS(ra=0 * u.hour, dec=1 * u.deg) # `separation` is the on-sky separation assert_allclose(coo1.separation(coo2).degree, 1.0) # while `separation_3d` includes the 3D distance information coo3 = ICRS(ra=0 * u.hour, dec=0 * u.deg, distance=1 * u.kpc) coo4 = ICRS(ra=0 * u.hour, dec=0 * u.deg, distance=2 * u.kpc) assert coo3.separation_3d(coo4).kpc == 1.0 # The next example fails because `coo1` and `coo2` don't have distances with pytest.raises(ValueError): assert coo1.separation_3d(coo2).kpc == 1.0 # repr/str also shows info, with frame and data # assert repr(fk5) == '' def test_transform_api(): from astropy.coordinates.baseframe import BaseCoordinateFrame, frame_transform_graph from astropy.coordinates.builtin_frames import FK5, ICRS from astropy.coordinates.representation import UnitSphericalRepresentation from astropy.coordinates.transformations import DynamicMatrixTransform # <------------------------Transformations-------------------------------------> # Transformation functionality is the key to the whole scheme: they transform # low-level classes from one frame to another. # (used below but defined above in the API) fk5 = FK5(ra=8 * u.hour, dec=5 * u.deg) # If no data (or `None`) is given, the class acts as a specifier of a frame, but # without any stored data. J2001 = time.Time("J2001") fk5_J2001_frame = FK5(equinox=J2001) # if they do not have data, the string instead is the frame specification assert repr(fk5_J2001_frame) == "<FK5 Frame (equinox=J2001.000)>" # Note that, although a frame object is immutable and can't have data added, it # can be used to create a new object that does have data by giving the # `realize_frame` method a representation: srep = UnitSphericalRepresentation(lon=8 * u.hour, lat=5 * u.deg) fk5_j2001_with_data = fk5_J2001_frame.realize_frame(srep) assert fk5_j2001_with_data.data is not None # Now `fk5_j2001_with_data` is in the same frame as `fk5_J2001_frame`, but it # is an actual low-level coordinate, rather than a frame without data. # These frames are primarily useful for specifying what a coordinate should be # transformed *into*, as they are used by the `transform_to` method # E.g., this snippet precesses the point to the new equinox newfk5 = fk5.transform_to(fk5_J2001_frame) assert newfk5.equinox == J2001 # transforming to a new frame necessarily loses framespec information if that # information is not applicable to the new frame. This means transforms are not # always round-trippable: fk5_2 = FK5(ra=8 * u.hour, dec=5 * u.deg, equinox=J2001) ic_trans = fk5_2.transform_to(ICRS()) # `ic_trans` does not have an `equinox`, so now when we transform back to FK5, # it's a *different* RA and Dec fk5_trans = ic_trans.transform_to(FK5()) assert not allclose(fk5_2.ra, fk5_trans.ra, rtol=0, atol=1e-10 * u.deg) # But if you explicitly give the right equinox, all is fine fk5_trans_2 = fk5_2.transform_to(FK5(equinox=J2001)) assert_allclose(fk5_2.ra, fk5_trans_2.ra, rtol=0, atol=1e-10 * u.deg) # Trying to transforming a frame with no data is of course an error: with pytest.raises(ValueError): FK5(equinox=J2001).transform_to(ICRS()) # To actually define a new transformation, the same scheme as in the # 0.2/0.3 coordinates framework can be re-used - a graph of transform functions # connecting various coordinate classes together. The main changes are: # 1) The transform functions now get the frame object they are transforming the # current data into. # 2) Frames with additional information need to have a way to transform between # objects of the same class, but with different framespecinfo values # An example transform function: class SomeNewSystem(BaseCoordinateFrame): pass @frame_transform_graph.transform(DynamicMatrixTransform, SomeNewSystem, FK5) def new_to_fk5(newobj, fk5frame): _ = newobj.obstime _ = fk5frame.equinox # ... build a *cartesian* transform matrix using `eq` that transforms from # the `newobj` frame as observed at `ot` to FK5 an equinox `eq` matrix = np.eye(3) return matrix # Other options for transform functions include one that simply returns the new # coordinate object, and one that returns a cartesian matrix but does *not* # require `newobj` or `fk5frame` - this allows optimization of the transform. def test_highlevel_api(): J2001 = time.Time("J2001") # <--------------------------"High-level" class--------------------------------> # The "high-level" class is intended to wrap the lower-level classes in such a # way that they can be round-tripped, as well as providing a variety of # convenience functionality. This document is not intended to show *all* of the # possible high-level functionality, rather how the high-level classes are # initialized and interact with the low-level classes # this creates an object that contains an `ICRS` low-level class, initialized # identically to the first ICRS example further up. sc = coords.SkyCoord( coords.SphericalRepresentation( lon=8 * u.hour, lat=5 * u.deg, distance=1 * u.kpc ), frame="icrs", ) # Other representations and `system` keywords delegate to the appropriate # low-level class. The already-existing registry for user-defined coordinates # will be used by `SkyCoordinate` to figure out what various the `system` # keyword actually means. sc = coords.SkyCoord(ra=8 * u.hour, dec=5 * u.deg, frame="icrs") sc = coords.SkyCoord(l=120 * u.deg, b=5 * u.deg, frame="galactic") # High-level classes can also be initialized directly from low-level objects sc = coords.SkyCoord(coords.ICRS(ra=8 * u.hour, dec=5 * u.deg)) # The next example raises an error because the high-level class must always # have position data. with pytest.raises(ValueError): sc = coords.SkyCoord(coords.FK5(equinox=J2001)) # raises ValueError # similarly, the low-level object can always be accessed # this is how it's supposed to look, but sometimes the numbers get rounded in # funny ways # assert repr(sc.frame) == '<ICRS Coordinate: ra=120.0 deg, dec=5.0 deg>' rscf = repr(sc.frame) assert rscf.startswith("<ICRS Coordinate: (ra, dec) in deg") # and the string representation will be inherited from the low-level class. # same deal, should loook like this, but different archituectures/ python # versions may round the numbers differently # assert repr(sc) == '<SkyCoord (ICRS): ra=120.0 deg, dec=5.0 deg>' rsc = repr(sc) assert rsc.startswith("<SkyCoord (ICRS): (ra, dec) in deg") # Supports a variety of possible complex string formats sc = coords.SkyCoord("8h00m00s +5d00m00.0s", frame="icrs") # In the next example, the unit is only needed b/c units are ambiguous. In # general, we *never* accept ambiguity sc = coords.SkyCoord("8:00:00 +5:00:00.0", unit=(u.hour, u.deg), frame="icrs") # The next one would yield length-2 array coordinates, because of the comma sc = coords.SkyCoord(["8h 5d", "2°2′3″ 0.3rad"], frame="icrs") # It should also interpret common designation styles as a coordinate # NOT YET # sc = coords.SkyCoord('SDSS J123456.89-012345.6', frame='icrs') # but it should also be possible to provide formats for outputting to strings, # similar to `Time`. This can be added right away or at a later date. # transformation is done the same as for low-level classes, which it delegates to sc_fk5_j2001 = sc.transform_to(coords.FK5(equinox=J2001)) assert sc_fk5_j2001.equinox == J2001 # The key difference is that the high-level class remembers frame information # necessary for round-tripping, unlike the low-level classes: sc1 = coords.SkyCoord(ra=8 * u.hour, dec=5 * u.deg, equinox=J2001, frame="fk5") sc2 = sc1.transform_to("icrs") # The next assertion succeeds, but it doesn't mean anything for ICRS, as ICRS # isn't defined in terms of an equinox assert sc2.equinox == J2001 # But it *is* necessary once we transform to FK5 sc3 = sc2.transform_to("fk5") assert sc3.equinox == J2001 assert_allclose(sc1.ra, sc3.ra) # `SkyCoord` will also include the attribute-style access that is in the # v0.2/0.3 coordinate objects. This will *not* be in the low-level classes sc = coords.SkyCoord(ra=8 * u.hour, dec=5 * u.deg, frame="icrs") scgal = sc.galactic assert str(scgal).startswith("<SkyCoord (Galactic): (l, b)") # the existing `from_name` and `match_to_catalog_*` methods will be moved to the # high-level class as convenience functionality. # in remote-data test below! # m31icrs = coords.SkyCoord.from_name('M31', frame='icrs') # assert str(m31icrs) == '<SkyCoord (ICRS) RA=10.68471 deg, Dec=41.26875 deg>' if HAS_SCIPY: cat1 = coords.SkyCoord( ra=[1, 2] * u.hr, dec=[3, 4.01] * u.deg, distance=[5, 6] * u.kpc, frame="icrs", ) cat2 = coords.SkyCoord( ra=[1, 2, 2.01] * u.hr, dec=[3, 4, 5] * u.deg, distance=[5, 200, 6] * u.kpc, frame="icrs", ) idx1, sep2d1, dist3d1 = cat1.match_to_catalog_sky(cat2) idx2, sep2d2, dist3d2 = cat1.match_to_catalog_3d(cat2) assert np.any(idx1 != idx2) # additional convenience functionality for the future should be added as methods # on `SkyCoord`, *not* the low-level classes. @pytest.mark.remote_data def test_highlevel_api_remote(): m31icrs = coords.SkyCoord.from_name("M31", frame="icrs") m31str = str(m31icrs) assert m31str.startswith("<SkyCoord (ICRS): (ra, dec) in deg\n (") assert m31str.endswith(")>") assert "10.68" in m31str assert "41.26" in m31str # The above is essentially a replacement of the below, but tweaked so that # small/moderate changes in what `from_name` returns don't cause the tests # to fail # assert str(m31icrs) == '<SkyCoord (ICRS): (ra, dec) in deg\n (10.6847083, 41.26875)>' m31fk4 = coords.SkyCoord.from_name("M31", frame="fk4") assert not m31icrs.is_equivalent_frame(m31fk4) assert np.abs(m31icrs.ra - m31fk4.ra) > 0.5 * u.deg
337cc6906596c541c65d6f83b2d067ed767c8881cda6cbf08880002e63ac97fe
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Tests for putting velocity differentials into SkyCoord objects. Note: the skyoffset velocity tests are in a different file, in test_skyoffset_transformations.py """ import numpy as np import pytest from astropy import units as u from astropy.coordinates import ( ICRS, CartesianDifferential, CartesianRepresentation, Galactic, PrecessedGeocentric, RadialDifferential, SkyCoord, SphericalCosLatDifferential, SphericalDifferential, SphericalRepresentation, UnitSphericalCosLatDifferential, UnitSphericalDifferential, UnitSphericalRepresentation, ) from astropy.tests.helper import assert_quantity_allclose from astropy.utils.compat.optional_deps import HAS_SCIPY def test_creation_frameobjs(): i = ICRS( 1 * u.deg, 2 * u.deg, pm_ra_cosdec=0.2 * u.mas / u.yr, pm_dec=0.1 * u.mas / u.yr ) sc = SkyCoord(i) for attrnm in ["ra", "dec", "pm_ra_cosdec", "pm_dec"]: assert_quantity_allclose(getattr(i, attrnm), getattr(sc, attrnm)) sc_nod = SkyCoord(ICRS(1 * u.deg, 2 * u.deg)) for attrnm in ["ra", "dec"]: assert_quantity_allclose(getattr(sc, attrnm), getattr(sc_nod, attrnm)) def test_creation_attrs(): sc1 = SkyCoord( 1 * u.deg, 2 * u.deg, pm_ra_cosdec=0.2 * u.mas / u.yr, pm_dec=0.1 * u.mas / u.yr, frame="fk5", ) assert_quantity_allclose(sc1.ra, 1 * u.deg) assert_quantity_allclose(sc1.dec, 2 * u.deg) assert_quantity_allclose(sc1.pm_ra_cosdec, 0.2 * u.arcsec / u.kyr) assert_quantity_allclose(sc1.pm_dec, 0.1 * u.arcsec / u.kyr) sc2 = SkyCoord( 1 * u.deg, 2 * u.deg, pm_ra=0.2 * u.mas / u.yr, pm_dec=0.1 * u.mas / u.yr, differential_type=SphericalDifferential, ) assert_quantity_allclose(sc2.ra, 1 * u.deg) assert_quantity_allclose(sc2.dec, 2 * u.deg) assert_quantity_allclose(sc2.pm_ra, 0.2 * u.arcsec / u.kyr) assert_quantity_allclose(sc2.pm_dec, 0.1 * u.arcsec / u.kyr) sc3 = SkyCoord( "1:2:3 4:5:6", pm_ra_cosdec=0.2 * u.mas / u.yr, pm_dec=0.1 * u.mas / u.yr, unit=(u.hour, u.deg), ) assert_quantity_allclose( sc3.ra, 1 * u.hourangle + 2 * u.arcmin * 15 + 3 * u.arcsec * 15 ) assert_quantity_allclose(sc3.dec, 4 * u.deg + 5 * u.arcmin + 6 * u.arcsec) # might as well check with sillier units? assert_quantity_allclose( sc3.pm_ra_cosdec, 1.2776637006616473e-07 * u.arcmin / u.fortnight ) assert_quantity_allclose(sc3.pm_dec, 6.388318503308237e-08 * u.arcmin / u.fortnight) def test_creation_copy_basic(): i = ICRS( 1 * u.deg, 2 * u.deg, pm_ra_cosdec=0.2 * u.mas / u.yr, pm_dec=0.1 * u.mas / u.yr ) sc = SkyCoord(i) sc_cpy = SkyCoord(sc) for attrnm in ["ra", "dec", "pm_ra_cosdec", "pm_dec"]: assert_quantity_allclose(getattr(sc, attrnm), getattr(sc_cpy, attrnm)) def test_creation_copy_rediff(): sc = SkyCoord( 1 * u.deg, 2 * u.deg, pm_ra=0.2 * u.mas / u.yr, pm_dec=0.1 * u.mas / u.yr, differential_type=SphericalDifferential, ) sc_cpy = SkyCoord(sc) for attrnm in ["ra", "dec", "pm_ra", "pm_dec"]: assert_quantity_allclose(getattr(sc, attrnm), getattr(sc_cpy, attrnm)) sc_newdiff = SkyCoord(sc, differential_type=SphericalCosLatDifferential) reprepr = sc.represent_as(SphericalRepresentation, SphericalCosLatDifferential) assert_quantity_allclose( sc_newdiff.pm_ra_cosdec, reprepr.differentials["s"].d_lon_coslat ) def test_creation_cartesian(): rep = CartesianRepresentation([10, 0.0, 0.0] * u.pc) dif = CartesianDifferential([0, 100, 0.0] * u.pc / u.Myr) rep = rep.with_differentials(dif) c = SkyCoord(rep) sdif = dif.represent_as(SphericalCosLatDifferential, rep) assert_quantity_allclose(c.pm_ra_cosdec, sdif.d_lon_coslat) def test_useful_error_missing(): sc_nod = SkyCoord(ICRS(1 * u.deg, 2 * u.deg)) try: sc_nod.l except AttributeError as e: # this is double-checking the *normal* behavior msg_l = e.args[0] try: sc_nod.pm_dec except Exception as e: msg_pm_dec = e.args[0] assert "has no attribute" in msg_l assert "has no associated differentials" in msg_pm_dec # ----------------------Operations on SkyCoords w/ velocities------------------- # define some fixtures to get baseline coordinates to try operations with @pytest.fixture( scope="module", params=[(False, False), (True, False), (False, True), (True, True)] ) def sc(request): incldist, inclrv = request.param args = [1 * u.deg, 2 * u.deg] kwargs = dict(pm_dec=1 * u.mas / u.yr, pm_ra_cosdec=2 * u.mas / u.yr) if incldist: kwargs["distance"] = 213.4 * u.pc if inclrv: kwargs["radial_velocity"] = 61 * u.km / u.s return SkyCoord(*args, **kwargs) @pytest.fixture(scope="module") def scmany(): return SkyCoord( ICRS( ra=[1] * 100 * u.deg, dec=[2] * 100 * u.deg, pm_ra_cosdec=np.random.randn(100) * u.mas / u.yr, pm_dec=np.random.randn(100) * u.mas / u.yr, ) ) @pytest.fixture(scope="module") def sc_for_sep(): return SkyCoord( 1 * u.deg, 2 * u.deg, pm_dec=1 * u.mas / u.yr, pm_ra_cosdec=2 * u.mas / u.yr ) def test_separation(sc, sc_for_sep): sc.separation(sc_for_sep) def test_accessors(sc, scmany): sc.data.differentials["s"] sph = sc.spherical gal = sc.galactic if sc.data.get_name().startswith("unit") and not sc.data.differentials[ "s" ].get_name().startswith("unit"): # this xfail can be eliminated when issue #7028 is resolved pytest.xfail(".velocity fails if there is an RV but not distance") sc.velocity assert isinstance(sph, SphericalRepresentation) assert gal.data.differentials is not None scmany[0] sph = scmany.spherical gal = scmany.galactic assert isinstance(sph, SphericalRepresentation) assert gal.data.differentials is not None def test_transforms(sc): trans = sc.transform_to("galactic") assert isinstance(trans.frame, Galactic) def test_transforms_diff(sc): # note that arguably this *should* fail for the no-distance cases: 3D # information is necessary to truly solve this, hence the xfail if not sc.distance.unit.is_equivalent(u.m): pytest.xfail("Should fail for no-distance cases") else: trans = sc.transform_to(PrecessedGeocentric(equinox="B1975")) assert isinstance(trans.frame, PrecessedGeocentric) @pytest.mark.skipif(not HAS_SCIPY, reason="Requires scipy") def test_matching(sc, scmany): # just check that it works and yields something idx, d2d, d3d = sc.match_to_catalog_sky(scmany) def test_position_angle(sc, sc_for_sep): sc.position_angle(sc_for_sep) def test_constellations(sc): const = sc.get_constellation() assert const == "Pisces" def test_separation_3d_with_differentials(): c1 = SkyCoord( ra=138 * u.deg, dec=-17 * u.deg, distance=100 * u.pc, pm_ra_cosdec=5 * u.mas / u.yr, pm_dec=-7 * u.mas / u.yr, radial_velocity=160 * u.km / u.s, ) c2 = SkyCoord( ra=138 * u.deg, dec=-17 * u.deg, distance=105 * u.pc, pm_ra_cosdec=15 * u.mas / u.yr, pm_dec=-74 * u.mas / u.yr, radial_velocity=-60 * u.km / u.s, ) sep = c1.separation_3d(c2) assert_quantity_allclose(sep, 5 * u.pc) @pytest.mark.parametrize("sph_type", ["spherical", "unitspherical"]) def test_cartesian_to_spherical(sph_type): """Conversion to unitspherical should work, even if we lose distance.""" c = SkyCoord( x=1 * u.kpc, y=0 * u.kpc, z=0 * u.kpc, v_x=10 * u.km / u.s, v_y=0 * u.km / u.s, v_z=4.74 * u.km / u.s, representation_type="cartesian", ) c.representation_type = sph_type assert c.ra == 0 assert c.dec == 0 assert c.pm_ra == 0 assert u.allclose(c.pm_dec, 1 * u.mas / u.yr, rtol=1e-3) assert c.radial_velocity == 10 * u.km / u.s if sph_type == "spherical": assert c.distance == 1 * u.kpc else: assert not hasattr(c, "distance") @pytest.mark.parametrize( "diff_info, diff_cls", [ (dict(radial_velocity=[20, 30] * u.km / u.s), RadialDifferential), ( dict( pm_ra=[2, 3] * u.mas / u.yr, pm_dec=[-3, -4] * u.mas / u.yr, differential_type="unitspherical", ), UnitSphericalDifferential, ), ( dict(pm_ra_cosdec=[2, 3] * u.mas / u.yr, pm_dec=[-3, -4] * u.mas / u.yr), UnitSphericalCosLatDifferential, ), ], scope="class", ) class TestDifferentialClassPropagation: """Test that going in between spherical and unit-spherical, we do not change differential type (since both can handle the same types). """ def test_sc_unit_spherical_with_pm_or_rv_only(self, diff_info, diff_cls): sc = SkyCoord(ra=[10, 20] * u.deg, dec=[-10, 10] * u.deg, **diff_info) assert isinstance(sc.data, UnitSphericalRepresentation) assert isinstance(sc.data.differentials["s"], diff_cls) sr = sc.represent_as("spherical") assert isinstance(sr, SphericalRepresentation) assert isinstance(sr.differentials["s"], diff_cls) def test_sc_spherical_with_pm_or_rv_only(self, diff_info, diff_cls): sc = SkyCoord( ra=[10, 20] * u.deg, dec=[-10, 10] * u.deg, distance=1.0 * u.kpc, **diff_info ) assert isinstance(sc.data, SphericalRepresentation) assert isinstance(sc.data.differentials["s"], diff_cls) sr = sc.represent_as("unitspherical") assert isinstance(sr, UnitSphericalRepresentation) assert isinstance(sr.differentials["s"], diff_cls)
778091d349da1677da52eed814ee22574c97ad8cd55cfe8583993cef0a666eff
from contextlib import nullcontext import numpy as np import pytest from numpy.testing import assert_allclose import astropy.units as u from astropy import time from astropy.constants import c from astropy.coordinates import ( FK5, GCRS, ICRS, CartesianDifferential, CartesianRepresentation, EarthLocation, Galactic, SkyCoord, SpectralQuantity, get_body_barycentric_posvel, ) from astropy.coordinates.spectral_coordinate import ( SpectralCoord, _apply_relativistic_doppler_shift, ) from astropy.table import Table from astropy.tests.helper import assert_quantity_allclose, quantity_allclose from astropy.utils import iers from astropy.utils.data import get_pkg_data_filename from astropy.utils.exceptions import AstropyUserWarning, AstropyWarning from astropy.wcs.wcsapi.fitswcs import VELOCITY_FRAMES as FITSWCS_VELOCITY_FRAMES def assert_frame_allclose( frame1, frame2, pos_rtol=1e-7, pos_atol=1 * u.m, vel_rtol=1e-7, vel_atol=1 * u.mm / u.s, ): # checks that: # - the positions are equal to within some tolerance (the relative tolerance # should be dimensionless, the absolute tolerance should be a distance). # note that these are the tolerances *in 3d* # - either both or nether frame has velocities, or if one has no velocities # the other one can have zero velocities # - if velocities are present, they are equal to some tolerance # Ideally this should accept both frames and SkyCoords if hasattr(frame1, "frame"): # SkyCoord-like frame1 = frame1.frame if hasattr(frame2, "frame"): # SkyCoord-like frame2 = frame2.frame # assert (frame1.data.differentials and frame2.data.differentials or # (not frame1.data.differentials and not frame2.data.differentials)) assert frame1.is_equivalent_frame(frame2) frame2_in_1 = frame2.transform_to(frame1) assert_quantity_allclose( 0 * u.m, frame1.separation_3d(frame2_in_1), rtol=pos_rtol, atol=pos_atol ) if frame1.data.differentials: d1 = frame1.data.represent_as( CartesianRepresentation, CartesianDifferential ).differentials["s"] d2 = frame2_in_1.data.represent_as( CartesianRepresentation, CartesianDifferential ).differentials["s"] assert_quantity_allclose(d1.norm(d1), d1.norm(d2), rtol=vel_rtol, atol=vel_atol) @pytest.fixture(scope="module") def greenwich_earthlocation(request): if ( not hasattr(EarthLocation, "_site_registry") and request.config.getoption("remote_data") == "none" ): EarthLocation._get_site_registry(force_builtin=True) return EarthLocation.of_site("Greenwich") # GENERAL TESTS # We first run through a series of cases to test different ways of initializing # the observer and target for SpectralCoord, including for example frames, # SkyCoords, and making sure that SpectralCoord is not sensitive to the actual # frame or representation class. # Local Standard of Rest LSRD = Galactic( u=0.1 * u.km, v=0.1 * u.km, w=0.1 * u.km, U=9 * u.km / u.s, V=12 * u.km / u.s, W=7 * u.km / u.s, representation_type="cartesian", differential_type="cartesian", ) LSRD_EQUIV = [ LSRD, SkyCoord(LSRD), # as a SkyCoord LSRD.transform_to(ICRS()), # different frame LSRD.transform_to(ICRS()).transform_to(Galactic()), # different representation ] @pytest.fixture(params=[None] + LSRD_EQUIV) def observer(request): return request.param # Target located in direction of motion of LSRD with no velocities LSRD_DIR_STATIONARY = Galactic( u=9 * u.km, v=12 * u.km, w=7 * u.km, representation_type="cartesian" ) LSRD_DIR_STATIONARY_EQUIV = [ LSRD_DIR_STATIONARY, SkyCoord(LSRD_DIR_STATIONARY), # as a SkyCoord LSRD_DIR_STATIONARY.transform_to(FK5()), # different frame # different representation LSRD_DIR_STATIONARY.transform_to(ICRS()).transform_to(Galactic()), ] @pytest.fixture(params=[None] + LSRD_DIR_STATIONARY_EQUIV) def target(request): return request.param def test_create_spectral_coord_observer_target(observer, target): with nullcontext() if target is None else pytest.warns( AstropyUserWarning, match="No velocity defined on frame" ): coord = SpectralCoord([100, 200, 300] * u.nm, observer=observer, target=target) if observer is None: assert coord.observer is None else: assert_frame_allclose(observer, coord.observer) if target is None: assert coord.target is None else: assert_frame_allclose(target, coord.target) assert coord.doppler_rest is None assert coord.doppler_convention is None if observer is None or target is None: assert quantity_allclose(coord.redshift, 0) assert quantity_allclose(coord.radial_velocity, 0 * u.km / u.s) elif any(observer is lsrd for lsrd in LSRD_EQUIV) and any( target is lsrd for lsrd in LSRD_DIR_STATIONARY_EQUIV ): assert_quantity_allclose( coord.radial_velocity, -(274**0.5) * u.km / u.s, atol=1e-4 * u.km / u.s ) assert_quantity_allclose(coord.redshift, -5.5213158163147646e-05, atol=1e-9) else: raise NotImplementedError() def test_create_from_spectral_coord(observer, target): """ Checks that parameters are correctly copied to the new SpectralCoord object """ with nullcontext() if target is None else pytest.warns( AstropyUserWarning, match="No velocity defined on frame" ): spec_coord1 = SpectralCoord( [100, 200, 300] * u.nm, observer=observer, target=target, doppler_convention="optical", doppler_rest=6000 * u.AA, ) spec_coord2 = SpectralCoord(spec_coord1) assert spec_coord1.observer == spec_coord2.observer assert spec_coord1.target == spec_coord2.target assert spec_coord1.radial_velocity == spec_coord2.radial_velocity assert spec_coord1.doppler_convention == spec_coord2.doppler_convention assert spec_coord1.doppler_rest == spec_coord2.doppler_rest # INTERNAL FUNCTIONS TESTS def test_apply_relativistic_doppler_shift(): # Frequency sq1 = SpectralQuantity(1 * u.GHz) sq2 = _apply_relativistic_doppler_shift(sq1, 0.5 * c) assert_quantity_allclose(sq2, np.sqrt(1.0 / 3.0) * u.GHz) # Wavelength sq3 = SpectralQuantity(500 * u.nm) sq4 = _apply_relativistic_doppler_shift(sq3, 0.5 * c) assert_quantity_allclose(sq4, np.sqrt(3) * 500 * u.nm) # Energy sq5 = SpectralQuantity(300 * u.eV) sq6 = _apply_relativistic_doppler_shift(sq5, 0.5 * c) assert_quantity_allclose(sq6, np.sqrt(1.0 / 3.0) * 300 * u.eV) # Wavenumber sq7 = SpectralQuantity(0.01 / u.micron) sq8 = _apply_relativistic_doppler_shift(sq7, 0.5 * c) assert_quantity_allclose(sq8, np.sqrt(1.0 / 3.0) * 0.01 / u.micron) # Velocity (doppler_convention='relativistic') sq9 = SpectralQuantity( 200 * u.km / u.s, doppler_convention="relativistic", doppler_rest=1 * u.GHz ) sq10 = _apply_relativistic_doppler_shift(sq9, 300 * u.km / u.s) assert_quantity_allclose(sq10, 499.999666 * u.km / u.s) assert sq10.doppler_convention == "relativistic" # Velocity (doppler_convention='optical') sq11 = SpectralQuantity( 200 * u.km / u.s, doppler_convention="radio", doppler_rest=1 * u.GHz ) sq12 = _apply_relativistic_doppler_shift(sq11, 300 * u.km / u.s) assert_quantity_allclose(sq12, 499.650008 * u.km / u.s) assert sq12.doppler_convention == "radio" # Velocity (doppler_convention='radio') sq13 = SpectralQuantity( 200 * u.km / u.s, doppler_convention="optical", doppler_rest=1 * u.GHz ) sq14 = _apply_relativistic_doppler_shift(sq13, 300 * u.km / u.s) assert_quantity_allclose(sq14, 500.350493 * u.km / u.s) assert sq14.doppler_convention == "optical" # Velocity - check relativistic velocity addition sq13 = SpectralQuantity( 0 * u.km / u.s, doppler_convention="relativistic", doppler_rest=1 * u.GHz ) sq14 = _apply_relativistic_doppler_shift(sq13, 0.999 * c) assert_quantity_allclose(sq14, 0.999 * c) sq14 = _apply_relativistic_doppler_shift(sq14, 0.999 * c) assert_quantity_allclose(sq14, (0.999 * 2) / (1 + 0.999**2) * c) assert sq14.doppler_convention == "relativistic" # Cases that should raise errors sq15 = SpectralQuantity(200 * u.km / u.s) with pytest.raises(ValueError, match="doppler_convention not set"): _apply_relativistic_doppler_shift(sq15, 300 * u.km / u.s) sq16 = SpectralQuantity(200 * u.km / u.s, doppler_rest=10 * u.GHz) with pytest.raises(ValueError, match="doppler_convention not set"): _apply_relativistic_doppler_shift(sq16, 300 * u.km / u.s) sq17 = SpectralQuantity(200 * u.km / u.s, doppler_convention="optical") with pytest.raises(ValueError, match="doppler_rest not set"): _apply_relativistic_doppler_shift(sq17, 300 * u.km / u.s) # BASIC TESTS def test_init_quantity(): sc = SpectralCoord(10 * u.GHz) assert sc.value == 10.0 assert sc.unit is u.GHz assert sc.doppler_convention is None assert sc.doppler_rest is None assert sc.observer is None assert sc.target is None def test_init_spectral_quantity(): sc = SpectralCoord(SpectralQuantity(10 * u.GHz, doppler_convention="optical")) assert sc.value == 10.0 assert sc.unit is u.GHz assert sc.doppler_convention == "optical" assert sc.doppler_rest is None assert sc.observer is None assert sc.target is None def test_init_too_many_args(): with pytest.raises( ValueError, match="Cannot specify radial velocity or redshift if both" ): SpectralCoord( 10 * u.GHz, observer=LSRD, target=SkyCoord(10, 20, unit="deg"), radial_velocity=1 * u.km / u.s, ) with pytest.raises( ValueError, match="Cannot specify radial velocity or redshift if both" ): SpectralCoord( 10 * u.GHz, observer=LSRD, target=SkyCoord(10, 20, unit="deg"), redshift=1 ) with pytest.raises( ValueError, match="Cannot set both a radial velocity and redshift" ): SpectralCoord(10 * u.GHz, radial_velocity=1 * u.km / u.s, redshift=1) def test_init_wrong_type(): with pytest.raises( TypeError, match="observer must be a SkyCoord or coordinate frame instance" ): SpectralCoord(10 * u.GHz, observer=3.4) with pytest.raises( TypeError, match="target must be a SkyCoord or coordinate frame instance" ): SpectralCoord(10 * u.GHz, target=3.4) with pytest.raises( u.UnitsError, match=( "Argument 'radial_velocity' to function " "'__new__' must be in units convertible to 'km / s'" ), ): SpectralCoord(10 * u.GHz, radial_velocity=1 * u.kg) with pytest.raises( TypeError, match=( "Argument 'radial_velocity' to function '__new__' has no 'unit' attribute." " You should pass in an astropy Quantity instead." ), ): SpectralCoord(10 * u.GHz, radial_velocity="banana") with pytest.raises(u.UnitsError, match="redshift should be dimensionless"): SpectralCoord(10 * u.GHz, redshift=1 * u.m) with pytest.raises( TypeError, match='Cannot parse "banana" as a Quantity. It does not start with a number.', ): SpectralCoord(10 * u.GHz, redshift="banana") def test_observer_init_rv_behavior(): """ Test basic initialization behavior or observer/target and redshift/rv """ # Start off by specifying the radial velocity only sc_init = SpectralCoord([4000, 5000] * u.AA, radial_velocity=100 * u.km / u.s) assert sc_init.observer is None assert sc_init.target is None assert_quantity_allclose(sc_init.radial_velocity, 100 * u.km / u.s) # Next, set the observer, and check that the radial velocity hasn't changed with pytest.warns(AstropyUserWarning, match="No velocity defined on frame"): sc_init.observer = ICRS(CartesianRepresentation([0 * u.km, 0 * u.km, 0 * u.km])) assert sc_init.observer is not None assert_quantity_allclose(sc_init.radial_velocity, 100 * u.km / u.s) # Setting the target should now cause the original radial velocity to be # dropped in favor of the automatically computed one sc_init.target = SkyCoord( CartesianRepresentation([1 * u.km, 0 * u.km, 0 * u.km]), frame="icrs", radial_velocity=30 * u.km / u.s, ) assert sc_init.target is not None assert_quantity_allclose(sc_init.radial_velocity, 30 * u.km / u.s) # The observer can only be set if originally None - now that it isn't # setting it again should fail with pytest.raises(ValueError, match="observer has already been set"): sc_init.observer = GCRS(CartesianRepresentation([0 * u.km, 1 * u.km, 0 * u.km])) # And similarly, changing the target should not be possible with pytest.raises(ValueError, match="target has already been set"): sc_init.target = GCRS(CartesianRepresentation([0 * u.km, 1 * u.km, 0 * u.km])) def test_rv_redshift_initialization(): # Check that setting the redshift sets the radial velocity appropriately, # and that the redshift can be recovered sc_init = SpectralCoord([4000, 5000] * u.AA, redshift=1) assert isinstance(sc_init.redshift, u.Quantity) assert_quantity_allclose(sc_init.redshift, 1 * u.dimensionless_unscaled) assert_quantity_allclose(sc_init.radial_velocity, 0.6 * c) # Check that setting the same radial velocity produces the same redshift # and that the radial velocity can be recovered sc_init2 = SpectralCoord([4000, 5000] * u.AA, radial_velocity=0.6 * c) assert_quantity_allclose(sc_init2.redshift, 1 * u.dimensionless_unscaled) assert_quantity_allclose(sc_init2.radial_velocity, 0.6 * c) # Check that specifying redshift as a quantity works sc_init3 = SpectralCoord([4000, 5000] * u.AA, redshift=1 * u.one) assert sc_init.redshift == sc_init3.redshift # Make sure that both redshift and radial velocity can't be specified at # the same time. with pytest.raises( ValueError, match="Cannot set both a radial velocity and redshift" ): SpectralCoord([4000, 5000] * u.AA, radial_velocity=10 * u.km / u.s, redshift=2) def test_replicate(): # The replicate method makes a new object with attributes updated, but doesn't # do any conversion sc_init = SpectralCoord([4000, 5000] * u.AA, redshift=2) sc_set_rv = sc_init.replicate(redshift=1) assert_quantity_allclose(sc_set_rv.radial_velocity, 0.6 * c) assert_quantity_allclose(sc_init, [4000, 5000] * u.AA) sc_set_rv = sc_init.replicate(radial_velocity=c / 2) assert_quantity_allclose(sc_set_rv.redshift, np.sqrt(3) - 1) assert_quantity_allclose(sc_init, [4000, 5000] * u.AA) gcrs_origin = GCRS(CartesianRepresentation([0 * u.km, 0 * u.km, 0 * u.km])) with pytest.warns(AstropyUserWarning, match="No velocity defined on frame"): sc_init2 = SpectralCoord([4000, 5000] * u.AA, redshift=1, observer=gcrs_origin) with np.errstate(all="ignore"): sc_init2.replicate(redshift=0.5) assert_quantity_allclose(sc_init2, [4000, 5000] * u.AA) with pytest.warns(AstropyUserWarning, match="No velocity defined on frame"): sc_init3 = SpectralCoord([4000, 5000] * u.AA, redshift=1, target=gcrs_origin) with np.errstate(all="ignore"): sc_init3.replicate(redshift=0.5) assert_quantity_allclose(sc_init2, [4000, 5000] * u.AA) with pytest.warns(AstropyUserWarning, match="No velocity defined on frame"): sc_init4 = SpectralCoord( [4000, 5000] * u.AA, observer=gcrs_origin, target=gcrs_origin ) with pytest.raises( ValueError, match=( "Cannot specify radial velocity or redshift if both target and observer are" " specified" ), ): sc_init4.replicate(redshift=0.5) sc_init = SpectralCoord([4000, 5000] * u.AA, redshift=2) sc_init_copy = sc_init.replicate(copy=True) sc_init[0] = 6000 * u.AA assert_quantity_allclose(sc_init_copy, [4000, 5000] * u.AA) sc_init = SpectralCoord([4000, 5000] * u.AA, redshift=2) sc_init_ref = sc_init.replicate() sc_init[0] = 6000 * u.AA assert_quantity_allclose(sc_init_ref, [6000, 5000] * u.AA) def test_with_observer_stationary_relative_to(): # Simple tests of with_observer_stationary_relative_to to cover different # ways of calling it # The replicate method makes a new object with attributes updated, but doesn't # do any conversion sc1 = SpectralCoord([4000, 5000] * u.AA) with pytest.raises( ValueError, match=( "This method can only be used if both observer and target are defined on" " the SpectralCoord" ), ): sc1.with_observer_stationary_relative_to("icrs") sc2 = SpectralCoord( [4000, 5000] * u.AA, observer=ICRS( 0 * u.km, 0 * u.km, 0 * u.km, -1 * u.km / u.s, 0 * u.km / u.s, -1 * u.km / u.s, representation_type="cartesian", differential_type="cartesian", ), target=ICRS( 0 * u.deg, 45 * u.deg, distance=1 * u.kpc, radial_velocity=2 * u.km / u.s ), ) # Motion of observer is in opposite direction to target assert_quantity_allclose(sc2.radial_velocity, (2 + 2**0.5) * u.km / u.s) # Change to observer that is stationary in ICRS sc3 = sc2.with_observer_stationary_relative_to("icrs") # Velocity difference is now pure radial velocity of target assert_quantity_allclose(sc3.radial_velocity, 2 * u.km / u.s) # Check setting the velocity in with_observer_stationary_relative_to sc4 = sc2.with_observer_stationary_relative_to( "icrs", velocity=[-(2**0.5), 0, -(2**0.5)] * u.km / u.s ) # Observer once again moving away from target but faster assert_quantity_allclose(sc4.radial_velocity, 4 * u.km / u.s) # Check that we can also pass frame classes instead of names sc5 = sc2.with_observer_stationary_relative_to( ICRS, velocity=[-(2**0.5), 0, -(2**0.5)] * u.km / u.s ) assert_quantity_allclose(sc5.radial_velocity, 4 * u.km / u.s) # And make sure we can also pass instances of classes without data sc6 = sc2.with_observer_stationary_relative_to( ICRS(), velocity=[-(2**0.5), 0, -(2**0.5)] * u.km / u.s ) assert_quantity_allclose(sc6.radial_velocity, 4 * u.km / u.s) # And with data provided no velocities are present sc7 = sc2.with_observer_stationary_relative_to( ICRS(0 * u.km, 0 * u.km, 0 * u.km, representation_type="cartesian"), velocity=[-(2**0.5), 0, -(2**0.5)] * u.km / u.s, ) assert_quantity_allclose(sc7.radial_velocity, 4 * u.km / u.s) # And also have the ability to pass frames with velocities already defined sc8 = sc2.with_observer_stationary_relative_to( ICRS( 0 * u.km, 0 * u.km, 0 * u.km, 2**0.5 * u.km / u.s, 0 * u.km / u.s, 2**0.5 * u.km / u.s, representation_type="cartesian", differential_type="cartesian", ) ) assert_quantity_allclose( sc8.radial_velocity, 0 * u.km / u.s, atol=1e-10 * u.km / u.s ) # Make sure that things work properly if passing a SkyCoord sc9 = sc2.with_observer_stationary_relative_to( SkyCoord(ICRS(0 * u.km, 0 * u.km, 0 * u.km, representation_type="cartesian")), velocity=[-(2**0.5), 0, -(2**0.5)] * u.km / u.s, ) assert_quantity_allclose(sc9.radial_velocity, 4 * u.km / u.s) sc10 = sc2.with_observer_stationary_relative_to( SkyCoord( ICRS( 0 * u.km, 0 * u.km, 0 * u.km, 2**0.5 * u.km / u.s, 0 * u.km / u.s, 2**0.5 * u.km / u.s, representation_type="cartesian", differential_type="cartesian", ) ) ) assert_quantity_allclose( sc10.radial_velocity, 0 * u.km / u.s, atol=1e-10 * u.km / u.s ) # But we shouldn't be able to pass both a frame with velocities, and explicit velocities with pytest.raises( ValueError, match="frame already has differentials, cannot also specify velocity", ): sc2.with_observer_stationary_relative_to( ICRS( 0 * u.km, 0 * u.km, 0 * u.km, 2**0.5 * u.km / u.s, 0 * u.km / u.s, 2**0.5 * u.km / u.s, representation_type="cartesian", differential_type="cartesian", ), velocity=[-(2**0.5), 0, -(2**0.5)] * u.km / u.s, ) # And velocities should have three elements with pytest.raises( ValueError, match="velocity should be a Quantity vector with 3 elements" ): sc2.with_observer_stationary_relative_to( ICRS, velocity=[-(2**0.5), 0, -(2**0.5), -3] * u.km / u.s ) # Make sure things don't change depending on what frame class is used for reference sc11 = sc2.with_observer_stationary_relative_to( SkyCoord( ICRS( 0 * u.km, 0 * u.km, 0 * u.km, 2**0.5 * u.km / u.s, 0 * u.km / u.s, 2**0.5 * u.km / u.s, representation_type="cartesian", differential_type="cartesian", ) ).transform_to(Galactic) ) assert_quantity_allclose( sc11.radial_velocity, 0 * u.km / u.s, atol=1e-10 * u.km / u.s ) # Check that it is possible to preserve the observer frame sc12 = sc2.with_observer_stationary_relative_to(LSRD) sc13 = sc2.with_observer_stationary_relative_to(LSRD, preserve_observer_frame=True) assert isinstance(sc12.observer, Galactic) assert isinstance(sc13.observer, ICRS) def test_los_shift_radial_velocity(): # Tests to make sure that with_radial_velocity_shift correctly calculates # the new radial velocity # First check case where observer and/or target aren't specified sc1 = SpectralCoord(500 * u.nm, radial_velocity=1 * u.km / u.s) sc2 = sc1.with_radial_velocity_shift(1 * u.km / u.s) assert_quantity_allclose(sc2.radial_velocity, 2 * u.km / u.s) sc3 = sc1.with_radial_velocity_shift(-3 * u.km / u.s) assert_quantity_allclose(sc3.radial_velocity, -2 * u.km / u.s) with pytest.warns(AstropyUserWarning, match="No velocity defined on frame"): sc4 = SpectralCoord( 500 * u.nm, radial_velocity=1 * u.km / u.s, observer=gcrs_not_origin ) sc5 = sc4.with_radial_velocity_shift(1 * u.km / u.s) assert_quantity_allclose(sc5.radial_velocity, 2 * u.km / u.s) sc6 = sc4.with_radial_velocity_shift(-3 * u.km / u.s) assert_quantity_allclose(sc6.radial_velocity, -2 * u.km / u.s) with pytest.warns(AstropyUserWarning, match="No velocity defined on frame"): sc7 = SpectralCoord( 500 * u.nm, radial_velocity=1 * u.km / u.s, target=ICRS(10 * u.deg, 20 * u.deg), ) sc8 = sc7.with_radial_velocity_shift(1 * u.km / u.s) assert_quantity_allclose(sc8.radial_velocity, 2 * u.km / u.s) sc9 = sc7.with_radial_velocity_shift(-3 * u.km / u.s) assert_quantity_allclose(sc9.radial_velocity, -2 * u.km / u.s) # Check that things still work when both observer and target are specified with pytest.warns(AstropyUserWarning, match="No velocity defined on frame"): sc10 = SpectralCoord( 500 * u.nm, observer=ICRS(0 * u.deg, 0 * u.deg, distance=1 * u.m), target=ICRS( 10 * u.deg, 20 * u.deg, radial_velocity=1 * u.km / u.s, distance=10 * u.kpc, ), ) sc11 = sc10.with_radial_velocity_shift(1 * u.km / u.s) assert_quantity_allclose(sc11.radial_velocity, 2 * u.km / u.s) sc12 = sc10.with_radial_velocity_shift(-3 * u.km / u.s) assert_quantity_allclose(sc12.radial_velocity, -2 * u.km / u.s) # Check that things work if radial_velocity wasn't specified at all sc13 = SpectralCoord(500 * u.nm) sc14 = sc13.with_radial_velocity_shift(1 * u.km / u.s) assert_quantity_allclose(sc14.radial_velocity, 1 * u.km / u.s) sc15 = sc1.with_radial_velocity_shift() assert_quantity_allclose(sc15.radial_velocity, 1 * u.km / u.s) # Check that units are verified with pytest.raises( u.UnitsError, match=( "Argument must have unit physical type 'speed' for radial velocty or " "'dimensionless' for redshift." ), ): sc1.with_radial_velocity_shift(target_shift=1 * u.kg) @pytest.mark.xfail def test_relativistic_radial_velocity(): # Test for when both observer and target have relativistic velocities. # This is not yet supported, so the test is xfailed for now. sc = SpectralCoord( 500 * u.nm, observer=ICRS( 0 * u.km, 0 * u.km, 0 * u.km, -0.5 * c, -0.5 * c, -0.5 * c, representation_type="cartesian", differential_type="cartesian", ), target=ICRS( 1 * u.kpc, 1 * u.kpc, 1 * u.kpc, 0.5 * c, 0.5 * c, 0.5 * c, representation_type="cartesian", differential_type="cartesian", ), ) assert_quantity_allclose(sc.radial_velocity, 0.989743318610787 * u.km / u.s) # SCIENCE USE CASE TESTS def test_spectral_coord_jupiter(greenwich_earthlocation): """ Checks radial velocity between Earth and Jupiter """ obstime = time.Time("2018-12-13 9:00") obs = greenwich_earthlocation.get_gcrs(obstime) pos, vel = get_body_barycentric_posvel("jupiter", obstime) jupiter = SkyCoord( pos.with_differentials(CartesianDifferential(vel.xyz)), obstime=obstime ) spc = SpectralCoord([100, 200, 300] * u.nm, observer=obs, target=jupiter) # The velocity should be less than ~43 + a bit extra, which is the # maximum possible earth-jupiter relative velocity. We check the exact # value here (determined from SpectralCoord, so this serves as a test to # check that this value doesn't change - the value is not a ground truth) assert_quantity_allclose(spc.radial_velocity, -7.35219854 * u.km / u.s) def test_spectral_coord_alphacen(greenwich_earthlocation): """ Checks radial velocity between Earth and Alpha Centauri """ obstime = time.Time("2018-12-13 9:00") obs = greenwich_earthlocation.get_gcrs(obstime) # Coordinates were obtained from the following then hard-coded to avoid download # acen = SkyCoord.from_name('alpha cen') acen = SkyCoord( ra=219.90085 * u.deg, dec=-60.83562 * u.deg, frame="icrs", distance=4.37 * u.lightyear, radial_velocity=-18.0 * u.km / u.s, ) spc = SpectralCoord([100, 200, 300] * u.nm, observer=obs, target=acen) # The velocity should be less than ~18 + 30 + a bit extra, which is the # maximum possible relative velocity. We check the exact value here # (determined from SpectralCoord, so this serves as a test to check that # this value doesn't change - the value is not a ground truth) assert_quantity_allclose(spc.radial_velocity, -26.328301 * u.km / u.s) def test_spectral_coord_m31(greenwich_earthlocation): """ Checks radial velocity between Earth and M31 """ obstime = time.Time("2018-12-13 9:00") obs = greenwich_earthlocation.get_gcrs(obstime) # Coordinates were obtained from the following then hard-coded to avoid download # m31 = SkyCoord.from_name('M31') m31 = SkyCoord( ra=10.6847 * u.deg, dec=41.269 * u.deg, distance=710 * u.kpc, radial_velocity=-300 * u.km / u.s, ) spc = SpectralCoord([100, 200, 300] * u.nm, observer=obs, target=m31) # The velocity should be less than ~300 + 30 + a bit extra in km/s, which # is the maximum possible relative velocity. We check the exact values # here (determined from SpectralCoord, so this serves as a test to check # that this value doesn't change - the value is not a ground truth) assert_quantity_allclose(spc.radial_velocity, -279.755128 * u.km / u.s) assert_allclose(spc.redshift, -0.0009327276702120191) def test_shift_to_rest_galaxy(): """ This tests storing a spectral coordinate with a specific redshift, and then doing basic rest-to-observed-and-back transformations """ z = 5 rest_line_wls = [5007, 6563] * u.AA observed_spc = SpectralCoord(rest_line_wls * (z + 1), redshift=z) rest_spc = observed_spc.to_rest() # alternatively: # rest_spc = observed_spc.with_observer(observed_spec.target) # although then it would have to be clearly documented, or the `to_rest` # implemented in Spectrum1D? assert_quantity_allclose(rest_spc, rest_line_wls) # No frames are explicitly defined, so to the user, the observer and # target are not set. with pytest.raises(AttributeError): assert_frame_allclose(rest_spc.observer, rest_spc.target) def test_shift_to_rest_star_withobserver(greenwich_earthlocation): rv = -8.3283011 * u.km / u.s rest_line_wls = [5007, 6563] * u.AA obstime = time.Time("2018-12-13 9:00") eloc = greenwich_earthlocation obs = eloc.get_gcrs(obstime) acen = SkyCoord( ra=219.90085 * u.deg, dec=-60.83562 * u.deg, frame="icrs", distance=4.37 * u.lightyear, ) # Note that above the rv is missing from the SkyCoord. # That's intended, as it will instead be set in the `SpectralCoord`. But # the SpectralCoord machinery should yield something comparable to test_ # spectral_coord_alphacen with pytest.warns(AstropyUserWarning, match="No velocity defined on frame"): observed_spc = SpectralCoord( rest_line_wls * (rv / c + 1), observer=obs, target=acen ) rest_spc = observed_spc.to_rest() assert_quantity_allclose(rest_spc, rest_line_wls) barycentric_spc = observed_spc.with_observer_stationary_relative_to("icrs") baryrest_spc = barycentric_spc.to_rest() assert quantity_allclose(baryrest_spc, rest_line_wls) # now make sure the change the barycentric shift did is comparable to the # offset rv_correction produces # barytarg = SkyCoord(barycentric_spc.target.frame) # should be this but that doesn't work for unclear reasons barytarg = SkyCoord( barycentric_spc.target.data.without_differentials(), frame=barycentric_spc.target.realize_frame(None), ) vcorr = barytarg.radial_velocity_correction( kind="barycentric", obstime=obstime, location=eloc ) drv = baryrest_spc.radial_velocity - observed_spc.radial_velocity # note this probably will not work on the first try, but it's ok if this is # "good enough", where good enough is estimated below. But that could be # adjusted if we think that's too aggressive of a precision target for what # the machinery can handle # with pytest.raises(AssertionError): assert_quantity_allclose(vcorr, drv, atol=10 * u.m / u.s) gcrs_origin = GCRS(CartesianRepresentation([0 * u.km, 0 * u.km, 0 * u.km])) gcrs_not_origin = GCRS(CartesianRepresentation([1 * u.km, 0 * u.km, 0 * u.km])) @pytest.mark.parametrize( "sc_kwargs", [ dict(radial_velocity=0 * u.km / u.s), dict(observer=gcrs_origin, radial_velocity=0 * u.km / u.s), dict(target=gcrs_origin, radial_velocity=0 * u.km / u.s), dict(observer=gcrs_origin, target=gcrs_not_origin), ], ) def test_los_shift(sc_kwargs): wl = [4000, 5000] * u.AA with nullcontext() if "observer" not in sc_kwargs and "target" not in sc_kwargs else pytest.warns( AstropyUserWarning, match="No velocity defined on frame" ): sc_init = SpectralCoord(wl, **sc_kwargs) # these should always work in *all* cases because it's unambiguous that # a target shift should behave this way new_sc1 = sc_init.with_radial_velocity_shift(0.1) assert_quantity_allclose(new_sc1, wl * 1.1) # interpret at redshift new_sc2 = sc_init.with_radial_velocity_shift(0.1 * u.dimensionless_unscaled) assert_quantity_allclose(new_sc1, new_sc2) new_sc3 = sc_init.with_radial_velocity_shift(-100 * u.km / u.s) assert_quantity_allclose(new_sc3, wl * (1 + (-100 * u.km / u.s / c))) # now try the cases where observer is specified as well/instead if sc_init.observer is None or sc_init.target is None: with pytest.raises(ValueError): # both must be specified if you're going to mess with observer sc_init.with_radial_velocity_shift(observer_shift=0.1) if sc_init.observer is not None and sc_init.target is not None: # redshifting the observer should *blushift* the LOS velocity since # its the observer-to-target vector that matters new_sc4 = sc_init.with_radial_velocity_shift(observer_shift=0.1) assert_quantity_allclose(new_sc4, wl / 1.1) # an equal shift in both should produce no offset at all new_sc5 = sc_init.with_radial_velocity_shift( target_shift=0.1, observer_shift=0.1 ) assert_quantity_allclose(new_sc5, wl) def test_asteroid_velocity_frame_shifts(): """ This test mocks up the use case of observing a spectrum of an asteroid at different times and from different observer locations. """ time1 = time.Time("2018-12-13 9:00") dt = 12 * u.hour time2 = time1 + dt # make the silly but simplifying assumption that the astroid is moving along # the x-axis of GCRS, and makes a 10 earth-radius closest approach v_ast = [5, 0, 0] * u.km / u.s x1 = -v_ast[0] * dt / 2 x2 = v_ast[0] * dt / 2 z = 10 * u.Rearth cdiff = CartesianDifferential(v_ast) asteroid_loc1 = GCRS( CartesianRepresentation(x1.to(u.km), 0 * u.km, z.to(u.km), differentials=cdiff), obstime=time1, ) asteroid_loc2 = GCRS( CartesianRepresentation(x2.to(u.km), 0 * u.km, z.to(u.km), differentials=cdiff), obstime=time2, ) # assume satellites that are essentially fixed in geostationary orbit on # opposite sides of the earth observer1 = GCRS( CartesianRepresentation([0 * u.km, 35000 * u.km, 0 * u.km]), obstime=time1 ) observer2 = GCRS( CartesianRepresentation([0 * u.km, -35000 * u.km, 0 * u.km]), obstime=time2 ) wls = np.linspace(4000, 7000, 100) * u.AA with pytest.warns(AstropyUserWarning, match="No velocity defined on frame"): spec_coord1 = SpectralCoord(wls, observer=observer1, target=asteroid_loc1) assert spec_coord1.radial_velocity < 0 * u.km / u.s assert spec_coord1.radial_velocity > -5 * u.km / u.s with pytest.warns(AstropyUserWarning, match="No velocity defined on frame"): spec_coord2 = SpectralCoord(wls, observer=observer2, target=asteroid_loc2) assert spec_coord2.radial_velocity > 0 * u.km / u.s assert spec_coord2.radial_velocity < 5 * u.km / u.s # now check the behavior of with_observer_stationary_relative_to: we shift each coord # into the velocity frame of its *own* target. That would then be a # spectralcoord that would allow direct physical comparison of the two # different spec_corrds. There's no way to test that, without # actual data, though. # spec_coord2 is redshifted, so we test that it behaves the way "shifting # to rest frame" should - the as-observed spectral coordinate should become # the rest frame, so something that starts out red should become bluer target_sc2 = spec_coord2.with_observer_stationary_relative_to(spec_coord2.target) assert np.all(target_sc2 < spec_coord2) # rv/redshift should be 0 since the observer and target velocities should # be the same assert_quantity_allclose( target_sc2.radial_velocity, 0 * u.km / u.s, atol=1e-7 * u.km / u.s ) # check that the same holds for spec_coord1, but be more specific: it # should follow the standard redshift formula (which in this case yields # a blueshift, although the formula is the same as 1+z) target_sc1 = spec_coord1.with_observer_stationary_relative_to(spec_coord1.target) assert_quantity_allclose(target_sc1, spec_coord1 / (1 + spec_coord1.redshift)) # TODO: Figure out what is meant by the below use case # ensure the "target-rest" use gives the same answer # target_sc1_alt = spec_coord1.with_observer_stationary_relative_to('target-rest') # assert_quantity_allclose(target_sc1, target_sc1_alt) def test_spectral_coord_from_sky_coord_without_distance(): # see https://github.com/astropy/specutils/issues/658 for issue context obs = SkyCoord(0 * u.m, 0 * u.m, 0 * u.m, representation_type="cartesian") with pytest.warns(AstropyUserWarning, match="No velocity defined on frame"): coord = SpectralCoord([1, 2, 3] * u.micron, observer=obs) # coord.target = SkyCoord.from_name('m31') # <- original issue, but below is the same but requires no remote data access with pytest.warns( AstropyUserWarning, match="Distance on coordinate object is dimensionless" ): coord.target = SkyCoord(ra=10.68470833 * u.deg, dec=41.26875 * u.deg) EXPECTED_VELOCITY_FRAMES = { "geocent": "gcrs", "heliocent": "hcrs", "lsrk": "lsrk", "lsrd": "lsrd", "galactoc": FITSWCS_VELOCITY_FRAMES["GALACTOC"], "localgrp": FITSWCS_VELOCITY_FRAMES["LOCALGRP"], } @pytest.mark.parametrize("specsys", list(EXPECTED_VELOCITY_FRAMES)) @pytest.mark.slow def test_spectralcoord_accuracy(specsys): # This is a test to check the numerical results of transformations between # different velocity frames in SpectralCoord. This compares the velocity # shifts determined with SpectralCoord to those determined from the rv # package in Starlink. velocity_frame = EXPECTED_VELOCITY_FRAMES[specsys] reference_filename = get_pkg_data_filename("accuracy/data/rv.ecsv") reference_table = Table.read(reference_filename, format="ascii.ecsv") rest = 550 * u.nm with iers.conf.set_temp("auto_download", False): for row in reference_table: observer = EarthLocation.from_geodetic( -row["obslon"], row["obslat"] ).get_itrs(obstime=row["obstime"]) with pytest.warns(AstropyUserWarning, match="No velocity defined on frame"): sc_topo = SpectralCoord( 545 * u.nm, observer=observer, target=row["target"] ) # FIXME: A warning is emitted for dates after MJD=57754.0 even # though the leap second table should be valid until the end of # 2020. with nullcontext() if row["obstime"].mjd < 57754 else pytest.warns( AstropyWarning, match="Tried to get polar motions" ): sc_final = sc_topo.with_observer_stationary_relative_to(velocity_frame) delta_vel = sc_topo.to( u.km / u.s, doppler_convention="relativistic", doppler_rest=rest ) - sc_final.to( u.km / u.s, doppler_convention="relativistic", doppler_rest=rest ) if specsys == "galactoc": assert_allclose( delta_vel.to_value(u.km / u.s), row[specsys.lower()], atol=30 ) else: assert_allclose( delta_vel.to_value(u.km / u.s), row[specsys.lower()], atol=0.02, rtol=0.002, ) # TODO: add test when target is not ICRS # TODO: add test when SpectralCoord is in velocity to start with
0b269b41e1bfe0307f90c12b73621bec5798ee5506111d8174b9cb4f21019c43
# Licensed under a 3-clause BSD style license - see LICENSE.rst import operator import numpy as np import pytest from astropy import units as u from astropy.coordinates import ( CartesianDifferential, CartesianRepresentation, CylindricalDifferential, CylindricalRepresentation, Latitude, Longitude, PhysicsSphericalDifferential, PhysicsSphericalRepresentation, RadialDifferential, RadialRepresentation, SphericalCosLatDifferential, SphericalDifferential, SphericalRepresentation, UnitSphericalCosLatDifferential, UnitSphericalDifferential, UnitSphericalRepresentation, ) from astropy.coordinates.angle_utilities import angular_separation from astropy.coordinates.representation import DIFFERENTIAL_CLASSES from astropy.tests.helper import assert_quantity_allclose, quantity_allclose def assert_representation_allclose(actual, desired, rtol=1.0e-7, atol=None, **kwargs): actual_xyz = actual.to_cartesian().get_xyz(xyz_axis=-1) desired_xyz = desired.to_cartesian().get_xyz(xyz_axis=-1) actual_xyz, desired_xyz = np.broadcast_arrays(actual_xyz, desired_xyz, subok=True) assert_quantity_allclose(actual_xyz, desired_xyz, rtol, atol, **kwargs) def assert_differential_allclose(actual, desired, rtol=1.0e-7, **kwargs): assert actual.components == desired.components for component in actual.components: actual_c = getattr(actual, component) atol = 1.0e-10 * actual_c.unit assert_quantity_allclose( actual_c, getattr(desired, component), rtol, atol, **kwargs ) def representation_equal(first, second): return np.all( getattr(first, comp) == getattr(second, comp) for comp in first.components ) class TestArithmetic: def setup_method(self): # Choose some specific coordinates, for which ``sum`` and ``dot`` # works out nicely. self.lon = Longitude(np.arange(0, 12.1, 2), u.hourangle) self.lat = Latitude(np.arange(-90, 91, 30), u.deg) self.distance = [5.0, 12.0, 4.0, 2.0, 4.0, 12.0, 5.0] * u.kpc self.spherical = SphericalRepresentation(self.lon, self.lat, self.distance) self.unit_spherical = self.spherical.represent_as(UnitSphericalRepresentation) self.cartesian = self.spherical.to_cartesian() def test_norm_spherical(self): norm_s = self.spherical.norm() assert isinstance(norm_s, u.Quantity) # Just to be sure, test against getting object arrays. assert norm_s.dtype.kind == "f" assert np.all(norm_s == self.distance) @pytest.mark.parametrize( "representation", ( PhysicsSphericalRepresentation, CartesianRepresentation, CylindricalRepresentation, ), ) def test_norm(self, representation): in_rep = self.spherical.represent_as(representation) norm_rep = in_rep.norm() assert isinstance(norm_rep, u.Quantity) assert_quantity_allclose(norm_rep, self.distance) def test_norm_unitspherical(self): norm_rep = self.unit_spherical.norm() assert norm_rep.unit == u.dimensionless_unscaled assert np.all(norm_rep == 1.0 * u.dimensionless_unscaled) @pytest.mark.parametrize( "representation", ( SphericalRepresentation, PhysicsSphericalRepresentation, CartesianRepresentation, CylindricalRepresentation, UnitSphericalRepresentation, ), ) def test_neg_pos(self, representation): in_rep = self.cartesian.represent_as(representation) pos_rep = +in_rep assert type(pos_rep) is type(in_rep) assert pos_rep is not in_rep assert np.all(representation_equal(pos_rep, in_rep)) neg_rep = -in_rep assert type(neg_rep) is type(in_rep) assert np.all(neg_rep.norm() == in_rep.norm()) in_rep_xyz = in_rep.to_cartesian().xyz assert_quantity_allclose( neg_rep.to_cartesian().xyz, -in_rep_xyz, atol=1.0e-10 * in_rep_xyz.unit ) def test_mul_div_spherical(self): s0 = self.spherical / (1.0 * u.Myr) assert isinstance(s0, SphericalRepresentation) assert s0.distance.dtype.kind == "f" assert np.all(s0.lon == self.spherical.lon) assert np.all(s0.lat == self.spherical.lat) assert np.all(s0.distance == self.distance / (1.0 * u.Myr)) s1 = (1.0 / u.Myr) * self.spherical assert isinstance(s1, SphericalRepresentation) assert np.all(representation_equal(s1, s0)) s2 = self.spherical * np.array([[1.0], [2.0]]) assert isinstance(s2, SphericalRepresentation) assert s2.shape == (2, self.spherical.shape[0]) assert np.all(s2.lon == self.spherical.lon) assert np.all(s2.lat == self.spherical.lat) assert np.all(s2.distance == self.spherical.distance * np.array([[1.0], [2.0]])) s3 = np.array([[1.0], [2.0]]) * self.spherical assert isinstance(s3, SphericalRepresentation) assert np.all(representation_equal(s3, s2)) s4 = -self.spherical assert isinstance(s4, SphericalRepresentation) assert quantity_allclose( s4.to_cartesian().xyz, -self.spherical.to_cartesian().xyz, atol=1e-15 * self.spherical.distance.unit, ) assert np.all(s4.distance == self.spherical.distance) s5 = +self.spherical assert s5 is not self.spherical assert np.all(representation_equal(s5, self.spherical)) @pytest.mark.parametrize( "representation", ( PhysicsSphericalRepresentation, CartesianRepresentation, CylindricalRepresentation, ), ) def test_mul_div(self, representation): in_rep = self.spherical.represent_as(representation) r1 = in_rep / (1.0 * u.Myr) assert isinstance(r1, representation) for component in in_rep.components: in_rep_comp = getattr(in_rep, component) r1_comp = getattr(r1, component) if in_rep_comp.unit == self.distance.unit: assert np.all(r1_comp == in_rep_comp / (1.0 * u.Myr)) else: assert np.all(r1_comp == in_rep_comp) r2 = np.array([[1.0], [2.0]]) * in_rep assert isinstance(r2, representation) assert r2.shape == (2, in_rep.shape[0]) assert_quantity_allclose(r2.norm(), self.distance * np.array([[1.0], [2.0]])) r3 = -in_rep assert_representation_allclose( r3.to_cartesian(), (in_rep * -1.0).to_cartesian(), atol=1e-5 * u.pc ) with pytest.raises(TypeError): in_rep * in_rep with pytest.raises(TypeError): dict() * in_rep def test_mul_div_unit_spherical(self): s1 = self.unit_spherical * self.distance assert isinstance(s1, SphericalRepresentation) assert np.all(s1.lon == self.unit_spherical.lon) assert np.all(s1.lat == self.unit_spherical.lat) assert np.all(s1.distance == self.spherical.distance) s2 = self.unit_spherical / u.s assert isinstance(s2, SphericalRepresentation) assert np.all(s2.lon == self.unit_spherical.lon) assert np.all(s2.lat == self.unit_spherical.lat) assert np.all(s2.distance == 1.0 / u.s) u3 = -self.unit_spherical assert isinstance(u3, UnitSphericalRepresentation) assert_quantity_allclose(u3.lon, self.unit_spherical.lon + 180.0 * u.deg) assert np.all(u3.lat == -self.unit_spherical.lat) assert_quantity_allclose( u3.to_cartesian().xyz, -self.unit_spherical.to_cartesian().xyz, atol=1.0e-10 * u.dimensionless_unscaled, ) u4 = +self.unit_spherical assert isinstance(u4, UnitSphericalRepresentation) assert u4 is not self.unit_spherical assert np.all(representation_equal(u4, self.unit_spherical)) def test_add_sub_cartesian(self): c1 = self.cartesian + self.cartesian assert isinstance(c1, CartesianRepresentation) assert c1.x.dtype.kind == "f" assert np.all(representation_equal(c1, 2.0 * self.cartesian)) with pytest.raises(TypeError): self.cartesian + 10.0 * u.m with pytest.raises(u.UnitsError): self.cartesian + (self.cartesian / u.s) c2 = self.cartesian - self.cartesian assert isinstance(c2, CartesianRepresentation) assert np.all( representation_equal( c2, CartesianRepresentation(0.0 * u.m, 0.0 * u.m, 0.0 * u.m) ) ) c3 = self.cartesian - self.cartesian / 2.0 assert isinstance(c3, CartesianRepresentation) assert np.all(representation_equal(c3, self.cartesian / 2.0)) @pytest.mark.parametrize( "representation", ( PhysicsSphericalRepresentation, SphericalRepresentation, CylindricalRepresentation, ), ) def test_add_sub(self, representation): in_rep = self.cartesian.represent_as(representation) r1 = in_rep + in_rep assert isinstance(r1, representation) expected = 2.0 * in_rep for component in in_rep.components: assert_quantity_allclose( getattr(r1, component), getattr(expected, component) ) with pytest.raises(TypeError): 10.0 * u.m + in_rep with pytest.raises(u.UnitsError): in_rep + (in_rep / u.s) r2 = in_rep - in_rep assert isinstance(r2, representation) assert_representation_allclose( r2.to_cartesian(), CartesianRepresentation(0.0 * u.m, 0.0 * u.m, 0.0 * u.m), atol=1e-15 * u.kpc, ) r3 = in_rep - in_rep / 2.0 assert isinstance(r3, representation) expected = in_rep / 2.0 assert_representation_allclose(r3, expected) def test_add_sub_unit_spherical(self): s1 = self.unit_spherical + self.unit_spherical assert isinstance(s1, SphericalRepresentation) expected = 2.0 * self.unit_spherical for component in s1.components: assert_quantity_allclose( getattr(s1, component), getattr(expected, component) ) with pytest.raises(TypeError): 10.0 * u.m - self.unit_spherical with pytest.raises(u.UnitsError): self.unit_spherical + (self.unit_spherical / u.s) s2 = self.unit_spherical - self.unit_spherical / 2.0 assert isinstance(s2, SphericalRepresentation) expected = self.unit_spherical / 2.0 for component in s2.components: assert_quantity_allclose( getattr(s2, component), getattr(expected, component) ) @pytest.mark.parametrize( "representation", ( CartesianRepresentation, PhysicsSphericalRepresentation, SphericalRepresentation, CylindricalRepresentation, ), ) def test_sum_mean(self, representation): in_rep = self.spherical.represent_as(representation) r_sum = in_rep.sum() assert isinstance(r_sum, representation) expected = SphericalRepresentation( 90.0 * u.deg, 0.0 * u.deg, 14.0 * u.kpc ).represent_as(representation) for component in expected.components: exp_component = getattr(expected, component) assert_quantity_allclose( getattr(r_sum, component), exp_component, atol=1e-10 * exp_component.unit, ) r_mean = in_rep.mean() assert isinstance(r_mean, representation) expected = expected / len(in_rep) for component in expected.components: exp_component = getattr(expected, component) assert_quantity_allclose( getattr(r_mean, component), exp_component, atol=1e-10 * exp_component.unit, ) def test_sum_mean_unit_spherical(self): s_sum = self.unit_spherical.sum() assert isinstance(s_sum, SphericalRepresentation) expected = SphericalRepresentation( 90.0 * u.deg, 0.0 * u.deg, 3.0 * u.dimensionless_unscaled ) for component in expected.components: exp_component = getattr(expected, component) assert_quantity_allclose( getattr(s_sum, component), exp_component, atol=1e-10 * exp_component.unit, ) s_mean = self.unit_spherical.mean() assert isinstance(s_mean, SphericalRepresentation) expected = expected / len(self.unit_spherical) for component in expected.components: exp_component = getattr(expected, component) assert_quantity_allclose( getattr(s_mean, component), exp_component, atol=1e-10 * exp_component.unit, ) @pytest.mark.parametrize( "representation", ( CartesianRepresentation, PhysicsSphericalRepresentation, SphericalRepresentation, CylindricalRepresentation, ), ) def test_dot(self, representation): in_rep = self.cartesian.represent_as(representation) r_dot_r = in_rep.dot(in_rep) assert isinstance(r_dot_r, u.Quantity) assert r_dot_r.shape == in_rep.shape assert_quantity_allclose(np.sqrt(r_dot_r), self.distance) r_dot_r_rev = in_rep.dot(in_rep[::-1]) assert isinstance(r_dot_r_rev, u.Quantity) assert r_dot_r_rev.shape == in_rep.shape expected = [-25.0, -126.0, 2.0, 4.0, 2.0, -126.0, -25.0] * u.kpc**2 assert_quantity_allclose(r_dot_r_rev, expected) for axis in "xyz": project = CartesianRepresentation( *( (1.0 if axis == _axis else 0.0) * u.dimensionless_unscaled for _axis in "xyz" ) ) assert_quantity_allclose( in_rep.dot(project), getattr(self.cartesian, axis), atol=1.0 * u.upc ) with pytest.raises(TypeError): in_rep.dot(self.cartesian.xyz) def test_dot_unit_spherical(self): u_dot_u = self.unit_spherical.dot(self.unit_spherical) assert isinstance(u_dot_u, u.Quantity) assert u_dot_u.shape == self.unit_spherical.shape assert_quantity_allclose(u_dot_u, 1.0 * u.dimensionless_unscaled) cartesian = self.unit_spherical.to_cartesian() for axis in "xyz": project = CartesianRepresentation( *( (1.0 if axis == _axis else 0.0) * u.dimensionless_unscaled for _axis in "xyz" ) ) assert_quantity_allclose( self.unit_spherical.dot(project), getattr(cartesian, axis), atol=1.0e-10 ) @pytest.mark.parametrize( "representation", ( CartesianRepresentation, PhysicsSphericalRepresentation, SphericalRepresentation, CylindricalRepresentation, ), ) def test_cross(self, representation): in_rep = self.cartesian.represent_as(representation) r_cross_r = in_rep.cross(in_rep) assert isinstance(r_cross_r, representation) assert_quantity_allclose( r_cross_r.norm(), 0.0 * u.kpc**2, atol=1.0 * u.mpc**2 ) r_cross_r_rev = in_rep.cross(in_rep[::-1]) sep = angular_separation(self.lon, self.lat, self.lon[::-1], self.lat[::-1]) expected = self.distance * self.distance[::-1] * np.sin(sep) assert_quantity_allclose(r_cross_r_rev.norm(), expected, atol=1.0 * u.mpc**2) unit_vectors = CartesianRepresentation( [1.0, 0.0, 0.0] * u.one, [0.0, 1.0, 0.0] * u.one, [0.0, 0.0, 1.0] * u.one )[:, np.newaxis] r_cross_uv = in_rep.cross(unit_vectors) assert r_cross_uv.shape == (3, 7) assert_quantity_allclose( r_cross_uv.dot(unit_vectors), 0.0 * u.kpc, atol=1.0 * u.upc ) assert_quantity_allclose( r_cross_uv.dot(in_rep), 0.0 * u.kpc**2, atol=1.0 * u.mpc**2 ) zeros = np.zeros(len(in_rep)) * u.kpc expected = CartesianRepresentation( u.Quantity((zeros, -self.cartesian.z, self.cartesian.y)), u.Quantity((self.cartesian.z, zeros, -self.cartesian.x)), u.Quantity((-self.cartesian.y, self.cartesian.x, zeros)), ) # Comparison with spherical is hard since some distances are zero, # implying the angles are undefined. r_cross_uv_cartesian = r_cross_uv.to_cartesian() assert_representation_allclose(r_cross_uv_cartesian, expected, atol=1.0 * u.upc) # A final check, with the side benefit of ensuring __truediv__ and norm # work on multi-D representations. r_cross_uv_by_distance = r_cross_uv / self.distance uv_sph = unit_vectors.represent_as(UnitSphericalRepresentation) sep = angular_separation(self.lon, self.lat, uv_sph.lon, uv_sph.lat) assert_quantity_allclose(r_cross_uv_by_distance.norm(), np.sin(sep), atol=1e-9) with pytest.raises(TypeError): in_rep.cross(self.cartesian.xyz) def test_cross_unit_spherical(self): u_cross_u = self.unit_spherical.cross(self.unit_spherical) assert isinstance(u_cross_u, SphericalRepresentation) assert_quantity_allclose(u_cross_u.norm(), 0.0 * u.one, atol=1.0e-10 * u.one) u_cross_u_rev = self.unit_spherical.cross(self.unit_spherical[::-1]) assert isinstance(u_cross_u_rev, SphericalRepresentation) sep = angular_separation(self.lon, self.lat, self.lon[::-1], self.lat[::-1]) expected = np.sin(sep) assert_quantity_allclose(u_cross_u_rev.norm(), expected, atol=1.0e-10 * u.one) class TestUnitVectorsAndScales: @staticmethod def check_unit_vectors(e): for v in e.values(): assert type(v) is CartesianRepresentation assert_quantity_allclose(v.norm(), 1.0 * u.one) return e @staticmethod def check_scale_factors(sf, rep): unit = rep.norm().unit for c, f in sf.items(): assert type(f) is u.Quantity assert (f.unit * getattr(rep, c).unit).is_equivalent(unit) def test_spherical(self): s = SphericalRepresentation( lon=[0.0, 6.0, 21.0] * u.hourangle, lat=[0.0, -30.0, 85.0] * u.deg, distance=[1, 2, 3] * u.kpc, ) e = s.unit_vectors() self.check_unit_vectors(e) sf = s.scale_factors() self.check_scale_factors(sf, s) s_lon = s + s.distance * 1e-5 * np.cos(s.lat) * e["lon"] assert_quantity_allclose(s_lon.lon, s.lon + 1e-5 * u.rad, atol=1e-10 * u.rad) assert_quantity_allclose(s_lon.lat, s.lat, atol=1e-10 * u.rad) assert_quantity_allclose(s_lon.distance, s.distance) s_lon2 = s + 1e-5 * u.radian * sf["lon"] * e["lon"] assert_representation_allclose(s_lon2, s_lon) s_lat = s + s.distance * 1e-5 * e["lat"] assert_quantity_allclose(s_lat.lon, s.lon) assert_quantity_allclose(s_lat.lat, s.lat + 1e-5 * u.rad, atol=1e-10 * u.rad) assert_quantity_allclose(s_lon.distance, s.distance) s_lat2 = s + 1.0e-5 * u.radian * sf["lat"] * e["lat"] assert_representation_allclose(s_lat2, s_lat) s_distance = s + 1.0 * u.pc * e["distance"] assert_quantity_allclose(s_distance.lon, s.lon, atol=1e-10 * u.rad) assert_quantity_allclose(s_distance.lat, s.lat, atol=1e-10 * u.rad) assert_quantity_allclose(s_distance.distance, s.distance + 1.0 * u.pc) s_distance2 = s + 1.0 * u.pc * sf["distance"] * e["distance"] assert_representation_allclose(s_distance2, s_distance) def test_unit_spherical(self): s = UnitSphericalRepresentation( lon=[0.0, 6.0, 21.0] * u.hourangle, lat=[0.0, -30.0, 85.0] * u.deg ) e = s.unit_vectors() self.check_unit_vectors(e) sf = s.scale_factors() self.check_scale_factors(sf, s) s_lon = s + 1e-5 * np.cos(s.lat) * e["lon"] assert_quantity_allclose(s_lon.lon, s.lon + 1e-5 * u.rad, atol=1e-10 * u.rad) assert_quantity_allclose(s_lon.lat, s.lat, atol=1e-10 * u.rad) s_lon2 = s + 1e-5 * u.radian * sf["lon"] * e["lon"] assert_representation_allclose(s_lon2, s_lon) s_lat = s + 1e-5 * e["lat"] assert_quantity_allclose(s_lat.lon, s.lon) assert_quantity_allclose(s_lat.lat, s.lat + 1e-5 * u.rad, atol=1e-10 * u.rad) s_lat2 = s + 1.0e-5 * u.radian * sf["lat"] * e["lat"] assert_representation_allclose(s_lat2, s_lat) def test_radial(self): r = RadialRepresentation(10.0 * u.kpc) with pytest.raises(NotImplementedError): r.unit_vectors() sf = r.scale_factors() assert np.all(sf["distance"] == 1.0 * u.one) assert np.all(r.norm() == r.distance) with pytest.raises(TypeError): r + r def test_physical_spherical(self): s = PhysicsSphericalRepresentation( phi=[0.0, 6.0, 21.0] * u.hourangle, theta=[90.0, 120.0, 5.0] * u.deg, r=[1, 2, 3] * u.kpc, ) e = s.unit_vectors() self.check_unit_vectors(e) sf = s.scale_factors() self.check_scale_factors(sf, s) s_phi = s + s.r * 1e-5 * np.sin(s.theta) * e["phi"] assert_quantity_allclose(s_phi.phi, s.phi + 1e-5 * u.rad, atol=1e-10 * u.rad) assert_quantity_allclose(s_phi.theta, s.theta, atol=1e-10 * u.rad) assert_quantity_allclose(s_phi.r, s.r) s_phi2 = s + 1e-5 * u.radian * sf["phi"] * e["phi"] assert_representation_allclose(s_phi2, s_phi) s_theta = s + s.r * 1e-5 * e["theta"] assert_quantity_allclose(s_theta.phi, s.phi) assert_quantity_allclose( s_theta.theta, s.theta + 1e-5 * u.rad, atol=1e-10 * u.rad ) assert_quantity_allclose(s_theta.r, s.r) s_theta2 = s + 1.0e-5 * u.radian * sf["theta"] * e["theta"] assert_representation_allclose(s_theta2, s_theta) s_r = s + 1.0 * u.pc * e["r"] assert_quantity_allclose(s_r.phi, s.phi, atol=1e-10 * u.rad) assert_quantity_allclose(s_r.theta, s.theta, atol=1e-10 * u.rad) assert_quantity_allclose(s_r.r, s.r + 1.0 * u.pc) s_r2 = s + 1.0 * u.pc * sf["r"] * e["r"] assert_representation_allclose(s_r2, s_r) def test_cartesian(self): s = CartesianRepresentation( x=[1, 2, 3] * u.pc, y=[2, 3, 4] * u.Mpc, z=[3, 4, 5] * u.kpc ) e = s.unit_vectors() sf = s.scale_factors() for v, expected in zip( e.values(), ([1.0, 0.0, 0.0] * u.one, [0.0, 1.0, 0.0] * u.one, [0.0, 0.0, 1.0] * u.one), ): assert np.all(v.get_xyz(xyz_axis=-1) == expected) for f in sf.values(): assert np.all(f == 1.0 * u.one) def test_cylindrical(self): s = CylindricalRepresentation( rho=[1, 2, 3] * u.pc, phi=[0.0, 90.0, -45.0] * u.deg, z=[3, 4, 5] * u.kpc ) e = s.unit_vectors() self.check_unit_vectors(e) sf = s.scale_factors() self.check_scale_factors(sf, s) s_rho = s + 1.0 * u.pc * e["rho"] assert_quantity_allclose(s_rho.rho, s.rho + 1.0 * u.pc) assert_quantity_allclose(s_rho.phi, s.phi) assert_quantity_allclose(s_rho.z, s.z) s_rho2 = s + 1.0 * u.pc * sf["rho"] * e["rho"] assert_representation_allclose(s_rho2, s_rho) s_phi = s + s.rho * 1e-5 * e["phi"] assert_quantity_allclose(s_phi.rho, s.rho) assert_quantity_allclose(s_phi.phi, s.phi + 1e-5 * u.rad) assert_quantity_allclose(s_phi.z, s.z) s_phi2 = s + 1e-5 * u.radian * sf["phi"] * e["phi"] assert_representation_allclose(s_phi2, s_phi) s_z = s + 1.0 * u.pc * e["z"] assert_quantity_allclose(s_z.rho, s.rho) assert_quantity_allclose(s_z.phi, s.phi, atol=1e-10 * u.rad) assert_quantity_allclose(s_z.z, s.z + 1.0 * u.pc) s_z2 = s + 1.0 * u.pc * sf["z"] * e["z"] assert_representation_allclose(s_z2, s_z) @pytest.mark.parametrize("omit_coslat", [False, True], scope="class") class TestSphericalDifferential: # these test cases are subclassed for SphericalCosLatDifferential, # hence some tests depend on omit_coslat. def _setup(self, omit_coslat): if omit_coslat: self.SD_cls = SphericalCosLatDifferential else: self.SD_cls = SphericalDifferential s = SphericalRepresentation( lon=[0.0, 6.0, 21.0] * u.hourangle, lat=[0.0, -30.0, 85.0] * u.deg, distance=[1, 2, 3] * u.kpc, ) self.s = s self.e = s.unit_vectors() self.sf = s.scale_factors(omit_coslat=omit_coslat) def test_name_coslat(self, omit_coslat): self._setup(omit_coslat) if omit_coslat: assert self.SD_cls is SphericalCosLatDifferential assert self.SD_cls.get_name() == "sphericalcoslat" else: assert self.SD_cls is SphericalDifferential assert self.SD_cls.get_name() == "spherical" assert self.SD_cls.get_name() in DIFFERENTIAL_CLASSES def test_simple_differentials(self, omit_coslat): self._setup(omit_coslat) s, e, sf = self.s, self.e, self.sf o_lon = self.SD_cls(1.0 * u.arcsec, 0.0 * u.arcsec, 0.0 * u.kpc) o_lonc = o_lon.to_cartesian(base=s) o_lon2 = self.SD_cls.from_cartesian(o_lonc, base=s) assert_differential_allclose(o_lon, o_lon2) # simple check by hand for first element. # lat[0] is 0, so cos(lat) term doesn't matter. assert_quantity_allclose( o_lonc[0].xyz, [0.0, np.pi / 180.0 / 3600.0, 0.0] * u.kpc ) # check all using unit vectors and scale factors. s_lon = s + 1.0 * u.arcsec * sf["lon"] * e["lon"] assert_representation_allclose(o_lonc, s_lon - s, atol=1 * u.npc) s_lon2 = s + o_lon assert_representation_allclose(s_lon2, s_lon, atol=1 * u.npc) o_lat = self.SD_cls(0.0 * u.arcsec, 1.0 * u.arcsec, 0.0 * u.kpc) o_latc = o_lat.to_cartesian(base=s) assert_quantity_allclose( o_latc[0].xyz, [0.0, 0.0, np.pi / 180.0 / 3600.0] * u.kpc, atol=1.0 * u.npc ) s_lat = s + 1.0 * u.arcsec * sf["lat"] * e["lat"] assert_representation_allclose(o_latc, s_lat - s, atol=1 * u.npc) s_lat2 = s + o_lat assert_representation_allclose(s_lat2, s_lat, atol=1 * u.npc) o_distance = self.SD_cls(0.0 * u.arcsec, 0.0 * u.arcsec, 1.0 * u.mpc) o_distancec = o_distance.to_cartesian(base=s) assert_quantity_allclose( o_distancec[0].xyz, [1e-6, 0.0, 0.0] * u.kpc, atol=1.0 * u.npc ) s_distance = s + 1.0 * u.mpc * sf["distance"] * e["distance"] assert_representation_allclose(o_distancec, s_distance - s, atol=1 * u.npc) s_distance2 = s + o_distance assert_representation_allclose(s_distance2, s_distance) def test_differential_arithmetic(self, omit_coslat): self._setup(omit_coslat) s = self.s o_lon = self.SD_cls(1.0 * u.arcsec, 0.0 * u.arcsec, 0.0 * u.kpc) o_lon_by_2 = o_lon / 2.0 assert_representation_allclose( o_lon_by_2.to_cartesian(s) * 2.0, o_lon.to_cartesian(s), atol=1e-10 * u.kpc ) assert_representation_allclose( s + o_lon, s + 2 * o_lon_by_2, atol=1e-10 * u.kpc ) o_lon_rec = o_lon_by_2 + o_lon_by_2 assert_representation_allclose(s + o_lon, s + o_lon_rec, atol=1e-10 * u.kpc) o_lon_0 = o_lon - o_lon for c in o_lon_0.components: assert np.all(getattr(o_lon_0, c) == 0.0) o_lon2 = self.SD_cls(1 * u.mas / u.yr, 0 * u.mas / u.yr, 0 * u.km / u.s) assert_quantity_allclose( o_lon2.norm(s)[0], 4.74 * u.km / u.s, atol=0.01 * u.km / u.s ) assert_representation_allclose( o_lon2.to_cartesian(s) * 1000.0 * u.yr, o_lon.to_cartesian(s), atol=1e-10 * u.kpc, ) s_off = s + o_lon s_off2 = s + o_lon2 * 1000.0 * u.yr assert_representation_allclose(s_off, s_off2, atol=1e-10 * u.kpc) factor = 1e5 * u.radian / u.arcsec if not omit_coslat: factor = factor / np.cos(s.lat) s_off_big = s + o_lon * factor assert_representation_allclose( s_off_big, SphericalRepresentation( s.lon + 90.0 * u.deg, 0.0 * u.deg, 1e5 * s.distance ), atol=5.0 * u.kpc, ) o_lon3c = CartesianRepresentation(0.0, 4.74047, 0.0, unit=u.km / u.s) o_lon3 = self.SD_cls.from_cartesian(o_lon3c, base=s) expected0 = self.SD_cls( 1.0 * u.mas / u.yr, 0.0 * u.mas / u.yr, 0.0 * u.km / u.s ) assert_differential_allclose(o_lon3[0], expected0) s_off_big2 = s + o_lon3 * 1e5 * u.yr * u.radian / u.mas assert_representation_allclose( s_off_big2, SphericalRepresentation(90.0 * u.deg, 0.0 * u.deg, 1e5 * u.kpc), atol=5.0 * u.kpc, ) with pytest.raises(TypeError): o_lon - s with pytest.raises(TypeError): s.to_cartesian() + o_lon def test_differential_init_errors(self, omit_coslat): self._setup(omit_coslat) s = self.s with pytest.raises(u.UnitsError): self.SD_cls(1.0 * u.arcsec, 0.0, 0.0) with pytest.raises(TypeError): self.SD_cls(1.0 * u.arcsec, 0.0 * u.arcsec, 0.0 * u.kpc, False, False) with pytest.raises(TypeError): self.SD_cls( 1.0 * u.arcsec, 0.0 * u.arcsec, 0.0 * u.kpc, copy=False, d_lat=0.0 * u.arcsec, ) with pytest.raises(TypeError): self.SD_cls( 1.0 * u.arcsec, 0.0 * u.arcsec, 0.0 * u.kpc, copy=False, flying="circus" ) with pytest.raises(ValueError): self.SD_cls( np.ones(2) * u.arcsec, np.zeros(3) * u.arcsec, np.zeros(2) * u.kpc ) with pytest.raises(u.UnitsError): self.SD_cls(1.0 * u.arcsec, 1.0 * u.s, 0.0 * u.kpc) with pytest.raises(u.UnitsError): self.SD_cls(1.0 * u.kpc, 1.0 * u.arcsec, 0.0 * u.kpc) o = self.SD_cls(1.0 * u.arcsec, 1.0 * u.arcsec, 0.0 * u.km / u.s) with pytest.raises(u.UnitsError): o.to_cartesian(s) with pytest.raises(AttributeError): o.d_lat = 0.0 * u.arcsec with pytest.raises(AttributeError): del o.d_lat o = self.SD_cls(1.0 * u.arcsec, 1.0 * u.arcsec, 0.0 * u.km) with pytest.raises(TypeError): o.to_cartesian() c = CartesianRepresentation(10.0, 0.0, 0.0, unit=u.km) with pytest.raises(TypeError): self.SD_cls.to_cartesian(c) with pytest.raises(TypeError): self.SD_cls.from_cartesian(c) with pytest.raises(TypeError): self.SD_cls.from_cartesian(c, SphericalRepresentation) @pytest.mark.parametrize("omit_coslat", [False, True], scope="class") class TestUnitSphericalDifferential: def _setup(self, omit_coslat): if omit_coslat: self.USD_cls = UnitSphericalCosLatDifferential else: self.USD_cls = UnitSphericalDifferential s = UnitSphericalRepresentation( lon=[0.0, 6.0, 21.0] * u.hourangle, lat=[0.0, -30.0, 85.0] * u.deg ) self.s = s self.e = s.unit_vectors() self.sf = s.scale_factors(omit_coslat=omit_coslat) def test_name_coslat(self, omit_coslat): self._setup(omit_coslat) if omit_coslat: assert self.USD_cls is UnitSphericalCosLatDifferential assert self.USD_cls.get_name() == "unitsphericalcoslat" else: assert self.USD_cls is UnitSphericalDifferential assert self.USD_cls.get_name() == "unitspherical" assert self.USD_cls.get_name() in DIFFERENTIAL_CLASSES def test_simple_differentials(self, omit_coslat): self._setup(omit_coslat) s, e, sf = self.s, self.e, self.sf o_lon = self.USD_cls(1.0 * u.arcsec, 0.0 * u.arcsec) o_lonc = o_lon.to_cartesian(base=s) o_lon2 = self.USD_cls.from_cartesian(o_lonc, base=s) assert_differential_allclose(o_lon, o_lon2) # simple check by hand for first element # (lat[0]=0, so works for both normal and CosLat differential) assert_quantity_allclose( o_lonc[0].xyz, [0.0, np.pi / 180.0 / 3600.0, 0.0] * u.one ) # check all using unit vectors and scale factors. s_lon = s + 1.0 * u.arcsec * sf["lon"] * e["lon"] assert type(s_lon) is SphericalRepresentation assert_representation_allclose(o_lonc, s_lon - s, atol=1e-10 * u.one) s_lon2 = s + o_lon assert_representation_allclose(s_lon2, s_lon, atol=1e-10 * u.one) o_lat = self.USD_cls(0.0 * u.arcsec, 1.0 * u.arcsec) o_latc = o_lat.to_cartesian(base=s) assert_quantity_allclose( o_latc[0].xyz, [0.0, 0.0, np.pi / 180.0 / 3600.0] * u.one, atol=1e-10 * u.one, ) s_lat = s + 1.0 * u.arcsec * sf["lat"] * e["lat"] assert type(s_lat) is SphericalRepresentation assert_representation_allclose(o_latc, s_lat - s, atol=1e-10 * u.one) s_lat2 = s + o_lat assert_representation_allclose(s_lat2, s_lat, atol=1e-10 * u.one) def test_differential_arithmetic(self, omit_coslat): self._setup(omit_coslat) s = self.s o_lon = self.USD_cls(1.0 * u.arcsec, 0.0 * u.arcsec) o_lon_by_2 = o_lon / 2.0 assert type(o_lon_by_2) is self.USD_cls assert_representation_allclose( o_lon_by_2.to_cartesian(s) * 2.0, o_lon.to_cartesian(s), atol=1e-10 * u.one ) s_lon = s + o_lon s_lon2 = s + 2 * o_lon_by_2 assert type(s_lon) is SphericalRepresentation assert_representation_allclose(s_lon, s_lon2, atol=1e-10 * u.one) o_lon_rec = o_lon_by_2 + o_lon_by_2 assert type(o_lon_rec) is self.USD_cls assert representation_equal(o_lon, o_lon_rec) assert_representation_allclose(s + o_lon, s + o_lon_rec, atol=1e-10 * u.one) o_lon_0 = o_lon - o_lon assert type(o_lon_0) is self.USD_cls for c in o_lon_0.components: assert np.all(getattr(o_lon_0, c) == 0.0) o_lon2 = self.USD_cls(1.0 * u.mas / u.yr, 0.0 * u.mas / u.yr) kks = u.km / u.kpc / u.s assert_quantity_allclose(o_lon2.norm(s)[0], 4.74047 * kks, atol=1e-4 * kks) assert_representation_allclose( o_lon2.to_cartesian(s) * 1000.0 * u.yr, o_lon.to_cartesian(s), atol=1e-10 * u.one, ) s_off = s + o_lon s_off2 = s + o_lon2 * 1000.0 * u.yr assert_representation_allclose(s_off, s_off2, atol=1e-10 * u.one) factor = 1e5 * u.radian / u.arcsec if not omit_coslat: factor = factor / np.cos(s.lat) s_off_big = s + o_lon * factor assert_representation_allclose( s_off_big, SphericalRepresentation(s.lon + 90.0 * u.deg, 0.0 * u.deg, 1e5), atol=5.0 * u.one, ) o_lon3c = CartesianRepresentation(0.0, 4.74047, 0.0, unit=kks) # This looses information!! o_lon3 = self.USD_cls.from_cartesian(o_lon3c, base=s) expected0 = self.USD_cls(1.0 * u.mas / u.yr, 0.0 * u.mas / u.yr) assert_differential_allclose(o_lon3[0], expected0) # Part of motion kept. part_kept = s.cross(CartesianRepresentation(0, 1, 0, unit=u.one)).norm() assert_quantity_allclose( o_lon3.norm(s), 4.74047 * part_kept * kks, atol=1e-10 * kks ) # (lat[0]=0, so works for both normal and CosLat differential) s_off_big2 = s + o_lon3 * 1e5 * u.yr * u.radian / u.mas expected0 = SphericalRepresentation(90.0 * u.deg, 0.0 * u.deg, 1e5 * u.one) assert_representation_allclose(s_off_big2[0], expected0, atol=5.0 * u.one) def test_differential_init_errors(self, omit_coslat): self._setup(omit_coslat) with pytest.raises(u.UnitsError): self.USD_cls(0.0 * u.deg, 10.0 * u.deg / u.yr) class TestRadialDifferential: def setup_method(self): s = SphericalRepresentation( lon=[0.0, 6.0, 21.0] * u.hourangle, lat=[0.0, -30.0, 85.0] * u.deg, distance=[1, 2, 3] * u.kpc, ) self.s = s self.r = s.represent_as(RadialRepresentation) self.e = s.unit_vectors() self.sf = s.scale_factors() def test_name(self): assert RadialDifferential.get_name() == "radial" assert RadialDifferential.get_name() in DIFFERENTIAL_CLASSES def test_simple_differentials(self): r, s, e, sf = self.r, self.s, self.e, self.sf o_distance = RadialDifferential(1.0 * u.mpc) # Can be applied to RadialRepresentation, though not most useful. r_distance = r + o_distance assert_quantity_allclose( r_distance.distance, r.distance + o_distance.d_distance ) r_distance2 = o_distance + r assert_quantity_allclose( r_distance2.distance, r.distance + o_distance.d_distance ) # More sense to apply it relative to spherical representation. o_distancec = o_distance.to_cartesian(base=s) assert_quantity_allclose( o_distancec[0].xyz, [1e-6, 0.0, 0.0] * u.kpc, atol=1.0 * u.npc ) o_recover = RadialDifferential.from_cartesian(o_distancec, base=s) assert_quantity_allclose(o_recover.d_distance, o_distance.d_distance) s_distance = s + 1.0 * u.mpc * sf["distance"] * e["distance"] assert_representation_allclose(o_distancec, s_distance - s, atol=1 * u.npc) s_distance2 = s + o_distance assert_representation_allclose(s_distance2, s_distance) class TestPhysicsSphericalDifferential: """Test copied from SphericalDifferential, so less extensive.""" def setup_method(self): s = PhysicsSphericalRepresentation( phi=[0.0, 90.0, 315.0] * u.deg, theta=[90.0, 120.0, 5.0] * u.deg, r=[1, 2, 3] * u.kpc, ) self.s = s self.e = s.unit_vectors() self.sf = s.scale_factors() def test_name(self): assert PhysicsSphericalDifferential.get_name() == "physicsspherical" assert PhysicsSphericalDifferential.get_name() in DIFFERENTIAL_CLASSES def test_simple_differentials(self): s, e, sf = self.s, self.e, self.sf o_phi = PhysicsSphericalDifferential(1 * u.arcsec, 0 * u.arcsec, 0 * u.kpc) o_phic = o_phi.to_cartesian(base=s) o_phi2 = PhysicsSphericalDifferential.from_cartesian(o_phic, base=s) assert_quantity_allclose(o_phi.d_phi, o_phi2.d_phi, atol=1.0 * u.narcsec) assert_quantity_allclose(o_phi.d_theta, o_phi2.d_theta, atol=1.0 * u.narcsec) assert_quantity_allclose(o_phi.d_r, o_phi2.d_r, atol=1.0 * u.npc) # simple check by hand for first element. assert_quantity_allclose( o_phic[0].xyz, [0.0, np.pi / 180.0 / 3600.0, 0.0] * u.kpc, atol=1.0 * u.npc ) # check all using unit vectors and scale factors. s_phi = s + 1.0 * u.arcsec * sf["phi"] * e["phi"] assert_representation_allclose(o_phic, s_phi - s, atol=1e-10 * u.kpc) o_theta = PhysicsSphericalDifferential(0 * u.arcsec, 1 * u.arcsec, 0 * u.kpc) o_thetac = o_theta.to_cartesian(base=s) assert_quantity_allclose( o_thetac[0].xyz, [0.0, 0.0, -np.pi / 180.0 / 3600.0] * u.kpc, atol=1.0 * u.npc, ) s_theta = s + 1.0 * u.arcsec * sf["theta"] * e["theta"] assert_representation_allclose(o_thetac, s_theta - s, atol=1e-10 * u.kpc) s_theta2 = s + o_theta assert_representation_allclose(s_theta2, s_theta, atol=1e-10 * u.kpc) o_r = PhysicsSphericalDifferential(0 * u.arcsec, 0 * u.arcsec, 1 * u.mpc) o_rc = o_r.to_cartesian(base=s) assert_quantity_allclose( o_rc[0].xyz, [1e-6, 0.0, 0.0] * u.kpc, atol=1.0 * u.npc ) s_r = s + 1.0 * u.mpc * sf["r"] * e["r"] assert_representation_allclose(o_rc, s_r - s, atol=1e-10 * u.kpc) s_r2 = s + o_r assert_representation_allclose(s_r2, s_r) def test_differential_init_errors(self): with pytest.raises(u.UnitsError): PhysicsSphericalDifferential(1.0 * u.arcsec, 0.0, 0.0) class TestCylindricalDifferential: """Test copied from SphericalDifferential, so less extensive.""" def setup_method(self): s = CylindricalRepresentation( rho=[1, 2, 3] * u.kpc, phi=[0.0, 90.0, 315.0] * u.deg, z=[3, 2, 1] * u.kpc ) self.s = s self.e = s.unit_vectors() self.sf = s.scale_factors() def test_name(self): assert CylindricalDifferential.get_name() == "cylindrical" assert CylindricalDifferential.get_name() in DIFFERENTIAL_CLASSES def test_simple_differentials(self): s, e, sf = self.s, self.e, self.sf o_rho = CylindricalDifferential(1.0 * u.mpc, 0.0 * u.arcsec, 0.0 * u.kpc) o_rhoc = o_rho.to_cartesian(base=s) assert_quantity_allclose(o_rhoc[0].xyz, [1.0e-6, 0.0, 0.0] * u.kpc) s_rho = s + 1.0 * u.mpc * sf["rho"] * e["rho"] assert_representation_allclose(o_rhoc, s_rho - s, atol=1e-10 * u.kpc) s_rho2 = s + o_rho assert_representation_allclose(s_rho2, s_rho) o_phi = CylindricalDifferential(0.0 * u.kpc, 1.0 * u.arcsec, 0.0 * u.kpc) o_phic = o_phi.to_cartesian(base=s) o_phi2 = CylindricalDifferential.from_cartesian(o_phic, base=s) assert_quantity_allclose(o_phi.d_rho, o_phi2.d_rho, atol=1.0 * u.npc) assert_quantity_allclose(o_phi.d_phi, o_phi2.d_phi, atol=1.0 * u.narcsec) assert_quantity_allclose(o_phi.d_z, o_phi2.d_z, atol=1.0 * u.npc) # simple check by hand for first element. assert_quantity_allclose( o_phic[0].xyz, [0.0, np.pi / 180.0 / 3600.0, 0.0] * u.kpc ) # check all using unit vectors and scale factors. s_phi = s + 1.0 * u.arcsec * sf["phi"] * e["phi"] assert_representation_allclose(o_phic, s_phi - s, atol=1e-10 * u.kpc) o_z = CylindricalDifferential(0.0 * u.kpc, 0.0 * u.arcsec, 1.0 * u.mpc) o_zc = o_z.to_cartesian(base=s) assert_quantity_allclose(o_zc[0].xyz, [0.0, 0.0, 1.0e-6] * u.kpc) s_z = s + 1.0 * u.mpc * sf["z"] * e["z"] assert_representation_allclose(o_zc, s_z - s, atol=1e-10 * u.kpc) s_z2 = s + o_z assert_representation_allclose(s_z2, s_z) def test_differential_init_errors(self): with pytest.raises(u.UnitsError): CylindricalDifferential(1.0 * u.pc, 1.0 * u.arcsec, 3.0 * u.km / u.s) class TestCartesianDifferential: """Test copied from SphericalDifferential, so less extensive.""" def setup_method(self): s = CartesianRepresentation( x=[1, 2, 3] * u.kpc, y=[2, 3, 1] * u.kpc, z=[3, 1, 2] * u.kpc ) self.s = s self.e = s.unit_vectors() self.sf = s.scale_factors() def test_name(self): assert CartesianDifferential.get_name() == "cartesian" assert CartesianDifferential.get_name() in DIFFERENTIAL_CLASSES def test_simple_differentials(self): s, e, sf = self.s, self.e, self.sf for d, differential in ( # test different inits while we're at it. ("x", CartesianDifferential(1.0 * u.pc, 0.0 * u.pc, 0.0 * u.pc)), ("y", CartesianDifferential([0.0, 1.0, 0.0], unit=u.pc)), ( "z", CartesianDifferential(np.array([[0.0, 0.0, 1.0]]) * u.pc, xyz_axis=1), ), ): o_c = differential.to_cartesian(base=s) o_c2 = differential.to_cartesian() assert np.all(representation_equal(o_c, o_c2)) assert all( np.all(getattr(differential, "d_" + c) == getattr(o_c, c)) for c in ("x", "y", "z") ) differential2 = CartesianDifferential.from_cartesian(o_c) assert np.all(representation_equal(differential2, differential)) differential3 = CartesianDifferential.from_cartesian(o_c, base=o_c) assert np.all(representation_equal(differential3, differential)) s_off = s + 1.0 * u.pc * sf[d] * e[d] assert_representation_allclose(o_c, s_off - s, atol=1e-10 * u.kpc) s_off2 = s + differential assert_representation_allclose(s_off2, s_off) def test_init_failures(self): with pytest.raises(ValueError): CartesianDifferential(1.0 * u.kpc / u.s, 2.0 * u.kpc) with pytest.raises(u.UnitsError): CartesianDifferential(1.0 * u.kpc / u.s, 2.0 * u.kpc, 3.0 * u.kpc) with pytest.raises(ValueError): CartesianDifferential(1.0 * u.kpc, 2.0 * u.kpc, 3.0 * u.kpc, xyz_axis=1) class TestDifferentialConversion: def setup_method(self): self.s = SphericalRepresentation( lon=[0.0, 6.0, 21.0] * u.hourangle, lat=[0.0, -30.0, 85.0] * u.deg, distance=[1, 2, 3] * u.kpc, ) @pytest.mark.parametrize( "sd_cls", [SphericalDifferential, SphericalCosLatDifferential] ) def test_represent_as_own_class(self, sd_cls): so = sd_cls(1.0 * u.deg, 2.0 * u.deg, 0.1 * u.kpc) so2 = so.represent_as(sd_cls) assert so2 is so def test_represent_other_coslat(self): s = self.s coslat = np.cos(s.lat) so = SphericalDifferential(1.0 * u.deg, 2.0 * u.deg, 0.1 * u.kpc) so_coslat = so.represent_as(SphericalCosLatDifferential, base=s) assert_quantity_allclose(so.d_lon * coslat, so_coslat.d_lon_coslat) so2 = so_coslat.represent_as(SphericalDifferential, base=s) assert np.all(representation_equal(so2, so)) so3 = SphericalDifferential.from_representation(so_coslat, base=s) assert np.all(representation_equal(so3, so)) so_coslat2 = SphericalCosLatDifferential.from_representation(so, base=s) assert np.all(representation_equal(so_coslat2, so_coslat)) # Also test UnitSpherical us = s.represent_as(UnitSphericalRepresentation) uo = so.represent_as(UnitSphericalDifferential) uo_coslat = so.represent_as(UnitSphericalCosLatDifferential, base=s) assert_quantity_allclose(uo.d_lon * coslat, uo_coslat.d_lon_coslat) uo2 = uo_coslat.represent_as(UnitSphericalDifferential, base=us) assert np.all(representation_equal(uo2, uo)) uo3 = UnitSphericalDifferential.from_representation(uo_coslat, base=us) assert np.all(representation_equal(uo3, uo)) uo_coslat2 = UnitSphericalCosLatDifferential.from_representation(uo, base=us) assert np.all(representation_equal(uo_coslat2, uo_coslat)) uo_coslat3 = uo.represent_as(UnitSphericalCosLatDifferential, base=us) assert np.all(representation_equal(uo_coslat3, uo_coslat)) @pytest.mark.parametrize( "sd_cls", [SphericalDifferential, SphericalCosLatDifferential] ) @pytest.mark.parametrize( "r_cls", ( SphericalRepresentation, UnitSphericalRepresentation, PhysicsSphericalRepresentation, CylindricalRepresentation, ), ) def test_represent_regular_class(self, sd_cls, r_cls): so = sd_cls(1.0 * u.deg, 2.0 * u.deg, 0.1 * u.kpc) r = so.represent_as(r_cls, base=self.s) c = so.to_cartesian(self.s) r_check = c.represent_as(r_cls) assert np.all(representation_equal(r, r_check)) so2 = sd_cls.from_representation(r, base=self.s) so3 = sd_cls.from_cartesian(r.to_cartesian(), self.s) assert np.all(representation_equal(so2, so3)) @pytest.mark.parametrize( "sd_cls", [SphericalDifferential, SphericalCosLatDifferential] ) def test_convert_physics(self, sd_cls): # Conversion needs no base for SphericalDifferential, but does # need one (to get the latitude) for SphericalCosLatDifferential. if sd_cls is SphericalDifferential: usd_cls = UnitSphericalDifferential base_s = base_u = base_p = None else: usd_cls = UnitSphericalCosLatDifferential base_s = self.s[1] base_u = base_s.represent_as(UnitSphericalRepresentation) base_p = base_s.represent_as(PhysicsSphericalRepresentation) so = sd_cls(1.0 * u.deg, 2.0 * u.deg, 0.1 * u.kpc) po = so.represent_as(PhysicsSphericalDifferential, base=base_s) so2 = sd_cls.from_representation(po, base=base_s) assert_differential_allclose(so, so2) po2 = PhysicsSphericalDifferential.from_representation(so, base=base_p) assert_differential_allclose(po, po2) so3 = po.represent_as(sd_cls, base=base_p) assert_differential_allclose(so, so3) s = self.s p = s.represent_as(PhysicsSphericalRepresentation) cso = so.to_cartesian(s[1]) cpo = po.to_cartesian(p[1]) assert_representation_allclose(cso, cpo) assert_representation_allclose(s[1] + so, p[1] + po) po2 = so.represent_as( PhysicsSphericalDifferential, base=None if base_s is None else s ) assert_representation_allclose(s + so, p + po2) suo = usd_cls.from_representation(so) puo = usd_cls.from_representation(po, base=base_u) assert_differential_allclose(suo, puo) suo2 = so.represent_as(usd_cls) puo2 = po.represent_as(usd_cls, base=base_p) assert_differential_allclose(suo2, puo2) assert_differential_allclose(puo, puo2) sro = RadialDifferential.from_representation(so) pro = RadialDifferential.from_representation(po) assert representation_equal(sro, pro) sro2 = so.represent_as(RadialDifferential) pro2 = po.represent_as(RadialDifferential) assert representation_equal(sro2, pro2) assert representation_equal(pro, pro2) @pytest.mark.parametrize( ("sd_cls", "usd_cls"), [ (SphericalDifferential, UnitSphericalDifferential), (SphericalCosLatDifferential, UnitSphericalCosLatDifferential), ], ) def test_convert_unit_spherical_radial(self, sd_cls, usd_cls): s = self.s us = s.represent_as(UnitSphericalRepresentation) rs = s.represent_as(RadialRepresentation) assert_representation_allclose(rs * us, s) uo = usd_cls(2.0 * u.deg, 1.0 * u.deg) so = uo.represent_as(sd_cls, base=s) assert_quantity_allclose(so.d_distance, 0.0 * u.kpc, atol=1.0 * u.npc) uo2 = so.represent_as(usd_cls) assert_representation_allclose(uo.to_cartesian(us), uo2.to_cartesian(us)) so1 = sd_cls(2.0 * u.deg, 1.0 * u.deg, 5.0 * u.pc) uo_r = so1.represent_as(usd_cls) ro_r = so1.represent_as(RadialDifferential) assert np.all(representation_equal(uo_r, uo)) assert np.all(representation_equal(ro_r, RadialDifferential(5.0 * u.pc))) @pytest.mark.parametrize( "sd_cls", [SphericalDifferential, SphericalCosLatDifferential] ) def test_convert_cylindrial(self, sd_cls): s = self.s so = sd_cls(1.0 * u.deg, 2.0 * u.deg, 0.1 * u.kpc) cyo = so.represent_as(CylindricalDifferential, base=s) cy = s.represent_as(CylindricalRepresentation) so1 = cyo.represent_as(sd_cls, base=cy) assert_representation_allclose(so.to_cartesian(s), so1.to_cartesian(s)) cyo2 = CylindricalDifferential.from_representation(so, base=cy) assert_representation_allclose( cyo2.to_cartesian(base=cy), cyo.to_cartesian(base=cy) ) so2 = sd_cls.from_representation(cyo2, base=s) assert_representation_allclose(so.to_cartesian(s), so2.to_cartesian(s)) @pytest.mark.parametrize( "sd_cls", [SphericalDifferential, SphericalCosLatDifferential] ) def test_combinations(self, sd_cls): if sd_cls is SphericalDifferential: uo = UnitSphericalDifferential(2.0 * u.deg, 1.0 * u.deg) uo_d_lon = uo.d_lon else: uo = UnitSphericalCosLatDifferential(2.0 * u.deg, 1.0 * u.deg) uo_d_lon = uo.d_lon_coslat ro = RadialDifferential(1.0 * u.mpc) so1 = uo + ro so1c = sd_cls(uo_d_lon, uo.d_lat, ro.d_distance) assert np.all(representation_equal(so1, so1c)) so2 = uo - ro so2c = sd_cls(uo_d_lon, uo.d_lat, -ro.d_distance) assert np.all(representation_equal(so2, so2c)) so3 = so2 + ro so3c = sd_cls(uo_d_lon, uo.d_lat, 0.0 * u.kpc) assert np.all(representation_equal(so3, so3c)) so4 = so1 + ro so4c = sd_cls(uo_d_lon, uo.d_lat, 2 * ro.d_distance) assert np.all(representation_equal(so4, so4c)) so5 = so1 - uo so5c = sd_cls(0 * u.deg, 0.0 * u.deg, ro.d_distance) assert np.all(representation_equal(so5, so5c)) assert_representation_allclose(self.s + (uo + ro), self.s + so1) @pytest.mark.parametrize( "op,args", [ (operator.neg, ()), (operator.pos, ()), (operator.mul, (-8.0,)), (operator.truediv, ([4.0, 8.0] * u.s,)), ], scope="class", ) class TestArithmeticWithDifferentials: def setup_class(self): self.cr = CartesianRepresentation([1, 2, 3] * u.kpc) self.cd = CartesianDifferential([0.1, -0.2, 0.3] * u.km / u.s) self.c = self.cr.with_differentials(self.cd) def test_operation_cartesian(self, op, args): ncr = op(self.c, *args) expected = (op(self.cr, *args)).with_differentials(op(self.cd, *args)) assert np.all(ncr == expected) def test_operation_radial(self, op, args): rep = self.c.represent_as(RadialRepresentation, {"s": RadialDifferential}) result = op(rep, *args) expected_distance = op(self.cr.norm(), *args) expected_rv = op((self.cr / self.cr.norm()).dot(self.cd), *args) assert u.allclose(result.distance, expected_distance) assert u.allclose(result.differentials["s"].d_distance, expected_rv) @pytest.mark.parametrize( "diff_cls", [ SphericalDifferential, SphericalCosLatDifferential, PhysicsSphericalDifferential, CylindricalDifferential, ], ) def test_operation_other(self, diff_cls, op, args): rep_cls = diff_cls.base_representation rep = self.c.represent_as(rep_cls, {"s": diff_cls}) result = op(rep, *args) expected_c = op(self.c, *args) expected = expected_c.represent_as(rep_cls, {"s": diff_cls}) # Check that we match in the representation itself. assert_representation_allclose(result, expected) assert_differential_allclose( result.differentials["s"], expected.differentials["s"] ) # Check that we compare correctly in cartesian as well, just to be sure. result_c = result.represent_as( CartesianRepresentation, {"s": CartesianDifferential} ) assert_representation_allclose(result_c, expected_c) assert_differential_allclose( result_c.differentials["s"], expected_c.differentials["s"] ) @pytest.mark.parametrize( "rep_cls", [ SphericalRepresentation, PhysicsSphericalRepresentation, CylindricalRepresentation, ], ) def test_operation_cartesian_differential(self, rep_cls, op, args): rep = self.c.represent_as(rep_cls, {"s": CartesianDifferential}) result = op(rep, *args) expected_c = op(self.c, *args) expected = expected_c.represent_as(rep_cls, {"s": CartesianDifferential}) # Check that we match in the representation itself. assert_representation_allclose(result, expected) assert_differential_allclose( result.differentials["s"], expected.differentials["s"] ) @pytest.mark.parametrize( "diff_cls", [UnitSphericalDifferential, UnitSphericalCosLatDifferential] ) def test_operation_unit_spherical(self, diff_cls, op, args): rep_cls = diff_cls.base_representation rep = self.c.represent_as(rep_cls, {"s": diff_cls}) result = op(rep, *args) if op not in (operator.neg, operator.pos): expected_cls = rep._dimensional_representation else: expected_cls = rep_cls assert type(result) is expected_cls assert type(result.differentials["s"]) is diff_cls # Have lost information, so unlike above we convert our initial # unit-spherical back to Cartesian, and check that applying # the operation on that cartesian representation gives the same result. # We do not compare the output directly, since for multiplication # and division there will be sign flips in the spherical distance. expected_c = op( rep.represent_as(CartesianRepresentation, {"s": CartesianDifferential}), *args ) result_c = result.represent_as( CartesianRepresentation, {"s": CartesianDifferential} ) assert_representation_allclose(result_c, expected_c) assert_differential_allclose( result_c.differentials["s"], expected_c.differentials["s"] ) @pytest.mark.parametrize( "diff_cls", [ RadialDifferential, UnitSphericalDifferential, UnitSphericalCosLatDifferential, ], ) def test_operation_spherical_with_rv_or_pm(self, diff_cls, op, args): rep = self.c.represent_as(SphericalRepresentation, {"s": diff_cls}) result = op(rep, *args) assert type(result) is SphericalRepresentation assert type(result.differentials["s"]) is diff_cls expected_c = op( rep.represent_as(CartesianRepresentation, {"s": CartesianDifferential}), *args ) result_c = result.represent_as( CartesianRepresentation, {"s": CartesianDifferential} ) assert_representation_allclose(result_c, expected_c) assert_differential_allclose( result_c.differentials["s"], expected_c.differentials["s"] ) @pytest.mark.parametrize("op,args", [(operator.neg, ()), (operator.mul, (10.0,))]) def test_operation_unitspherical_with_rv_fails(op, args): rep = UnitSphericalRepresentation( 0 * u.deg, 0 * u.deg, differentials={"s": RadialDifferential(10 * u.km / u.s)} ) with pytest.raises(ValueError, match="unit key"): op(rep, *args) @pytest.mark.parametrize( "rep,dif", [ [ CartesianRepresentation([1, 2, 3] * u.kpc), CartesianDifferential([0.1, 0.2, 0.3] * u.km / u.s), ], [ SphericalRepresentation(90 * u.deg, 0.0 * u.deg, 14.0 * u.kpc), SphericalDifferential(1.0 * u.deg, 2.0 * u.deg, 0.1 * u.kpc), ], ], ) def test_arithmetic_with_differentials_fail(rep, dif): rep = rep.with_differentials(dif) with pytest.raises(TypeError): rep + rep with pytest.raises(TypeError): rep - rep with pytest.raises(TypeError): rep * rep with pytest.raises(TypeError): rep / rep
8409dd79cb804c1678c3fd09d464195e367cc07926b0ab6b03d35dc5ca859337
# Licensed under a 3-clause BSD style license - see LICENSE.rst import warnings import erfa import numpy as np import pytest from numpy import testing as npt from astropy import units as u from astropy.coordinates import EarthLocation, SkyCoord from astropy.coordinates.angle_utilities import golden_spiral_grid from astropy.coordinates.builtin_frames import ICRS, AltAz from astropy.coordinates.builtin_frames.utils import get_jd12 from astropy.time import Time from astropy.utils import iers # These fixtures are used in test_iau_fullstack @pytest.fixture(scope="function") def fullstack_icrs(): rep = golden_spiral_grid(size=1000) return ICRS(rep) @pytest.fixture(scope="function") def fullstack_fiducial_altaz(fullstack_icrs): altazframe = AltAz( location=EarthLocation(lat=0 * u.deg, lon=0 * u.deg, height=0 * u.m), obstime=Time("J2000"), ) with warnings.catch_warnings(): # Ignore remote_data warning warnings.simplefilter("ignore") result = fullstack_icrs.transform_to(altazframe) return result @pytest.fixture(scope="function", params=["J2000.1", "J2010"]) def fullstack_times(request): return Time(request.param) @pytest.fixture( scope="function", params=[(0, 0, 0), (23, 0, 0), (-70, 0, 0), (0, 100, 0), (23, 0, 3000)], ) def fullstack_locations(request): value = request.param[0] return EarthLocation(lat=value * u.deg, lon=value * u.deg, height=value * u.m) @pytest.fixture( scope="function", params=[ (0 * u.bar, 0 * u.deg_C, 0, 1 * u.micron), (1 * u.bar, 0 * u.deg_C, 0 * u.one, 1 * u.micron), (1 * u.bar, 10 * u.deg_C, 0, 1 * u.micron), (1 * u.bar, 0 * u.deg_C, 50 * u.percent, 1 * u.micron), (1 * u.bar, 0 * u.deg_C, 0, 21 * u.cm), ], ) def fullstack_obsconditions(request): return request.param def _erfa_check(ira, idec, astrom): """ This function does the same thing the astropy layer is supposed to do, but all in erfa """ cra, cdec = erfa.atciq(ira, idec, 0, 0, 0, 0, astrom) az, zen, ha, odec, ora = erfa.atioq(cra, cdec, astrom) alt = np.pi / 2 - zen cra2, cdec2 = erfa.atoiq("A", az, zen, astrom) ira2, idec2 = erfa.aticq(cra2, cdec2, astrom) dct = locals() del dct["astrom"] return dct def test_iau_fullstack( fullstack_icrs, fullstack_fiducial_altaz, fullstack_times, fullstack_locations, fullstack_obsconditions, ): """ Test the full transform from ICRS <-> AltAz """ # create the altaz frame altazframe = AltAz( obstime=fullstack_times, location=fullstack_locations, pressure=fullstack_obsconditions[0], temperature=fullstack_obsconditions[1], relative_humidity=fullstack_obsconditions[2], obswl=fullstack_obsconditions[3], ) aacoo = fullstack_icrs.transform_to(altazframe) # compare aacoo to the fiducial AltAz - should always be different assert np.all( np.abs(aacoo.alt - fullstack_fiducial_altaz.alt) > 50 * u.milliarcsecond ) assert np.all( np.abs(aacoo.az - fullstack_fiducial_altaz.az) > 50 * u.milliarcsecond ) # if the refraction correction is included, we *only* do the comparisons # where altitude >5 degrees. The SOFA guides imply that below 5 is where # where accuracy gets more problematic, and testing reveals that alt<~0 # gives garbage round-tripping, and <10 can give ~1 arcsec uncertainty if fullstack_obsconditions[0].value == 0: # but if there is no refraction correction, check everything msk = slice(None) tol = 5 * u.microarcsecond else: msk = aacoo.alt > 5 * u.deg # most of them aren't this bad, but some of those at low alt are offset # this much. For alt > 10, this is always better than 100 masec tol = 750 * u.milliarcsecond # now make sure the full stack round-tripping works icrs2 = aacoo.transform_to(ICRS()) adras = np.abs(fullstack_icrs.ra - icrs2.ra)[msk] addecs = np.abs(fullstack_icrs.dec - icrs2.dec)[msk] assert np.all( adras < tol ), f"largest RA change is {np.max(adras.arcsec * 1000)} mas, > {tol}" assert np.all( addecs < tol ), f"largest Dec change is {np.max(addecs.arcsec * 1000)} mas, > {tol}" # check that we're consistent with the ERFA alt/az result iers_tab = iers.earth_orientation_table.get() xp, yp = u.Quantity(iers_tab.pm_xy(fullstack_times)).to_value(u.radian) lon = fullstack_locations.geodetic[0].to_value(u.radian) lat = fullstack_locations.geodetic[1].to_value(u.radian) height = fullstack_locations.geodetic[2].to_value(u.m) jd1, jd2 = get_jd12(fullstack_times, "utc") pressure = fullstack_obsconditions[0].to_value(u.hPa) temperature = fullstack_obsconditions[1].to_value(u.deg_C) # Relative humidity can be a quantity or a number. relative_humidity = u.Quantity(fullstack_obsconditions[2], u.one).value obswl = fullstack_obsconditions[3].to_value(u.micron) astrom, eo = erfa.apco13( jd1, jd2, fullstack_times.delta_ut1_utc, lon, lat, height, xp, yp, pressure, temperature, relative_humidity, obswl, ) erfadct = _erfa_check(fullstack_icrs.ra.rad, fullstack_icrs.dec.rad, astrom) npt.assert_allclose(erfadct["alt"], aacoo.alt.radian, atol=1e-7) npt.assert_allclose(erfadct["az"], aacoo.az.radian, atol=1e-7) def test_fiducial_roudtrip(fullstack_icrs, fullstack_fiducial_altaz): """ Test the full transform from ICRS <-> AltAz """ aacoo = fullstack_icrs.transform_to(fullstack_fiducial_altaz) # make sure the round-tripping works icrs2 = aacoo.transform_to(ICRS()) npt.assert_allclose(fullstack_icrs.ra.deg, icrs2.ra.deg) npt.assert_allclose(fullstack_icrs.dec.deg, icrs2.dec.deg) def test_future_altaz(): """ While this does test the full stack, it is mostly meant to check that a warning is raised when attempting to get to AltAz in the future (beyond IERS tables) """ # this is an ugly hack to get the warning to show up even if it has already # appeared from astropy.coordinates.builtin_frames import utils from astropy.utils.exceptions import AstropyWarning if hasattr(utils, "__warningregistry__"): utils.__warningregistry__.clear() location = EarthLocation(lat=0 * u.deg, lon=0 * u.deg) t = Time("J2161") # check that these message(s) appear among any other warnings. If tests are run with # --remote-data then the IERS table will be an instance of IERS_Auto which is # assured of being "fresh". In this case getting times outside the range of the # table does not raise an exception. Only if using IERS_B (which happens without # --remote-data, i.e. for all CI testing) do we expect another warning. with pytest.warns( AstropyWarning, match=r"Tried to get polar motions for " "times after IERS data is valid.*", ) as found_warnings: SkyCoord(1 * u.deg, 2 * u.deg).transform_to(AltAz(location=location, obstime=t)) if isinstance(iers.earth_orientation_table.get(), iers.IERS_B): assert any( "(some) times are outside of range covered by IERS table." in str(w.message) for w in found_warnings )
1653ea77c2df794a378f2acaa26112fdb4ca9b39f58d6f8882e8fcf2a5fad441
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Test replacements for ERFA functions atciqz and aticq.""" import erfa import pytest import astropy.units as u from astropy.coordinates import SphericalRepresentation from astropy.coordinates.builtin_frames.utils import atciqz, aticq, get_jd12 from astropy.tests.helper import assert_quantity_allclose as assert_allclose from astropy.time import Time # Hard-coded random values sph = SphericalRepresentation( lon=[15.0, 214.0] * u.deg, lat=[-12.0, 64.0] * u.deg, distance=[1, 1.0] ) @pytest.mark.parametrize( "t", [Time("2014-06-25T00:00"), Time(["2014-06-25T00:00", "2014-09-24"])] ) @pytest.mark.parametrize("pos", [sph[0], sph]) def test_atciqz_aticq(t, pos): """Check replacements against erfa versions for consistency.""" jd1, jd2 = get_jd12(t, "tdb") astrom, _ = erfa.apci13(jd1, jd2) ra = pos.lon.to_value(u.rad) dec = pos.lat.to_value(u.rad) assert_allclose(erfa.atciqz(ra, dec, astrom), atciqz(pos, astrom)) assert_allclose(erfa.aticq(ra, dec, astrom), aticq(pos, astrom))
88bd9c97707dad3060027827573eaa285b8c01412e0bc74d35de3671206b9e13
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np import pytest from numpy.testing import assert_allclose, assert_array_equal from astropy import units as u from astropy.coordinates.matrix_utilities import ( angle_axis, is_O3, is_rotation, matrix_product, rotation_matrix, ) from astropy.utils.exceptions import AstropyDeprecationWarning def test_rotation_matrix(): assert_array_equal(rotation_matrix(0 * u.deg, "x"), np.eye(3)) assert_allclose( rotation_matrix(90 * u.deg, "y"), [[0, 0, -1], [0, 1, 0], [1, 0, 0]], atol=1e-12 ) assert_allclose( rotation_matrix(-90 * u.deg, "z"), [[0, -1, 0], [1, 0, 0], [0, 0, 1]], atol=1e-12, ) assert_allclose( rotation_matrix(45 * u.deg, "x"), rotation_matrix(45 * u.deg, [1, 0, 0]) ) assert_allclose( rotation_matrix(125 * u.deg, "y"), rotation_matrix(125 * u.deg, [0, 1, 0]) ) assert_allclose( rotation_matrix(-30 * u.deg, "z"), rotation_matrix(-30 * u.deg, [0, 0, 1]) ) assert_allclose( np.dot(rotation_matrix(180 * u.deg, [1, 1, 0]), [1, 0, 0]), [0, 1, 0], atol=1e-12, ) # make sure it also works for very small angles assert_allclose( rotation_matrix(0.000001 * u.deg, "x"), rotation_matrix(0.000001 * u.deg, [1, 0, 0]), ) def test_angle_axis(): m1 = rotation_matrix(35 * u.deg, "x") an1, ax1 = angle_axis(m1) assert an1 - 35 * u.deg < 1e-10 * u.deg assert_allclose(ax1, [1, 0, 0]) m2 = rotation_matrix(-89 * u.deg, [1, 1, 0]) an2, ax2 = angle_axis(m2) assert an2 - 89 * u.deg < 1e-10 * u.deg assert_allclose(ax2, [-(2**-0.5), -(2**-0.5), 0]) def test_is_O3(): """Test the matrix checker ``is_O3``.""" # Normal rotation matrix m1 = rotation_matrix(35 * u.deg, "x") assert is_O3(m1) # and (M, 3, 3) n1 = np.tile(m1, (2, 1, 1)) assert tuple(is_O3(n1)) == (True, True) # (show the broadcasting) # reflection m2 = m1.copy() m2[0, 0] *= -1 assert is_O3(m2) # and (M, 3, 3) n2 = np.stack((m1, m2)) assert tuple(is_O3(n2)) == (True, True) # (show the broadcasting) # Not any sort of O(3) m3 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) assert not is_O3(m3) # and (M, 3, 3) n3 = np.stack((m1, m3)) assert tuple(is_O3(n3)) == (True, False) # (show the broadcasting) def test_is_rotation(): """Test the rotation matrix checker ``is_rotation``.""" # Normal rotation matrix m1 = rotation_matrix(35 * u.deg, "x") assert is_rotation(m1) assert is_rotation(m1, allow_improper=True) # (a less restrictive test) # and (M, 3, 3) n1 = np.tile(m1, (2, 1, 1)) assert tuple(is_rotation(n1)) == (True, True) # (show the broadcasting) # Improper rotation (unit rotation + reflection) m2 = np.identity(3) m2[0, 0] = -1 assert not is_rotation(m2) assert is_rotation(m2, allow_improper=True) # and (M, 3, 3) n2 = np.stack((m1, m2)) assert tuple(is_rotation(n2)) == (True, False) # (show the broadcasting) # Not any sort of rotation m3 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) assert not is_rotation(m3) assert not is_rotation(m3, allow_improper=True) # and (M, 3, 3) n3 = np.stack((m1, m3)) assert tuple(is_rotation(n3)) == (True, False) # (show the broadcasting) def test_matrix_product_deprecation(): with pytest.warns(AstropyDeprecationWarning, match=r"Use @ instead\.$"): matrix_product(np.eye(2))
67cb212b6434d7876d6e99ad4aeac5df10aea6f7295848460c1a3cc5c1ce8bc9
import numpy as np import pytest import astropy.units as u from astropy.coordinates import CIRS, GCRS, AltAz, EarthLocation, SkyCoord from astropy.coordinates.erfa_astrom import ( ErfaAstrom, ErfaAstromInterpolator, erfa_astrom, ) from astropy.time import Time from astropy.utils.exceptions import AstropyWarning def test_science_state(): assert erfa_astrom.get().__class__ is ErfaAstrom res = 300 * u.s with erfa_astrom.set(ErfaAstromInterpolator(res)): assert isinstance(erfa_astrom.get(), ErfaAstromInterpolator) erfa_astrom.get().mjd_resolution == res.to_value(u.day) # context manager should have switched it back assert erfa_astrom.get().__class__ is ErfaAstrom # must be a subclass of BaseErfaAstrom with pytest.raises(TypeError): erfa_astrom.set("foo") def test_warnings(): with pytest.warns(AstropyWarning): with erfa_astrom.set(ErfaAstromInterpolator(9 * u.us)): pass def test_erfa_astrom(): # I was having a pretty hard time in coming # up with a unit test only testing the astrom provider # that would not just test its implementation with its implementation # so we test a coordinate conversion using it location = EarthLocation( lon=-17.891105 * u.deg, lat=28.761584 * u.deg, height=2200 * u.m, ) obstime = Time("2020-01-01T18:00") + np.linspace(0, 1, 100) * u.hour altaz = AltAz(location=location, obstime=obstime) coord = SkyCoord(ra=83.63308333, dec=22.0145, unit=u.deg) # do the reference transformation, no interpolation ref = coord.transform_to(altaz) with erfa_astrom.set(ErfaAstromInterpolator(300 * u.s)): interp_300s = coord.transform_to(altaz) # make sure they are actually different assert np.any(ref.separation(interp_300s) > 0.005 * u.microarcsecond) # make sure the resolution is as good as we expect assert np.all(ref.separation(interp_300s) < 1 * u.microarcsecond) def test_interpolation_nd(): """ Test that the interpolation also works for nd-arrays """ fact = EarthLocation( lon=-17.891105 * u.deg, lat=28.761584 * u.deg, height=2200 * u.m, ) interp_provider = ErfaAstromInterpolator(300 * u.s) provider = ErfaAstrom() for shape in [tuple(), (1,), (10,), (3, 2), (2, 10, 5), (4, 5, 3, 2)]: # create obstimes of the desired shapes delta_t = np.linspace(0, 12, np.prod(shape, dtype=int)) * u.hour obstime = (Time("2020-01-01T18:00") + delta_t).reshape(shape) altaz = AltAz(location=fact, obstime=obstime) gcrs = GCRS(obstime=obstime) cirs = CIRS(obstime=obstime) for frame, tcode in zip([altaz, cirs, gcrs], ["apio", "apco", "apcs"]): without_interp = getattr(provider, tcode)(frame) assert without_interp.shape == shape with_interp = getattr(interp_provider, tcode)(frame) assert with_interp.shape == shape def test_interpolation_broadcasting(): import astropy.units as u from astropy.coordinates import AltAz, EarthLocation, SkyCoord from astropy.coordinates.angle_utilities import golden_spiral_grid from astropy.coordinates.erfa_astrom import ErfaAstromInterpolator, erfa_astrom from astropy.time import Time # 1000 gridded locations on the sky rep = golden_spiral_grid(100) coord = SkyCoord(rep) # 30 times over the space of 1 hours times = Time("2020-01-01T20:00") + np.linspace(-0.5, 0.5, 30) * u.hour lst1 = EarthLocation( lon=-17.891498 * u.deg, lat=28.761443 * u.deg, height=2200 * u.m, ) # note the use of broadcasting so that 300 times are broadcast against 1000 positions aa_frame = AltAz(obstime=times[:, np.newaxis], location=lst1) aa_coord = coord.transform_to(aa_frame) with erfa_astrom.set(ErfaAstromInterpolator(300 * u.s)): aa_coord_interp = coord.transform_to(aa_frame) assert aa_coord.shape == aa_coord_interp.shape assert np.all(aa_coord.separation(aa_coord_interp) < 1 * u.microarcsecond)
1db9f58acabf206959f199e5145f720beb1300b1d74fb8b88dcf18d9eaa0df1b
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Regression tests for coordinates-related bugs that don't have an obvious other place to live """ import copy import io from contextlib import nullcontext import numpy as np import pytest from erfa import ErfaWarning from astropy import units as u from astropy.coordinates import ( CIRS, FK4, GCRS, HCRS, ICRS, ITRS, AltAz, BaseCoordinateFrame, CartesianDifferential, CartesianRepresentation, CylindricalDifferential, CylindricalRepresentation, EarthLocation, FK4NoETerms, FunctionTransform, GeocentricMeanEcliptic, Latitude, Longitude, QuantityAttribute, SkyCoord, SphericalRepresentation, UnitSphericalRepresentation, get_body, get_moon, get_sun, ) from astropy.coordinates.sites import get_builtin_sites from astropy.table import Table from astropy.tests.helper import assert_quantity_allclose from astropy.time import Time from astropy.units import allclose as quantity_allclose from astropy.utils import iers from astropy.utils.compat.optional_deps import HAS_SCIPY def test_regression_5085(): """ PR #5085 was put in place to fix the following issue. Issue: https://github.com/astropy/astropy/issues/5069 At root was the transformation of Ecliptic coordinates with non-scalar times. """ # Note: for regression test, we need to be sure that we use UTC for the # epoch, even though more properly that should be TT; but the "expected" # values were calculated using that. j2000 = Time("J2000", scale="utc") times = Time(["2015-08-28 03:30", "2015-09-05 10:30", "2015-09-15 18:35"]) latitudes = Latitude([3.9807075, -5.00733806, 1.69539491] * u.deg) longitudes = Longitude([311.79678613, 72.86626741, 199.58698226] * u.deg) distances = u.Quantity([0.00243266, 0.0025424, 0.00271296] * u.au) coo = GeocentricMeanEcliptic( lat=latitudes, lon=longitudes, distance=distances, obstime=times, equinox=times ) # expected result ras = Longitude([310.50095400, 314.67109920, 319.56507428] * u.deg) decs = Latitude([-18.25190443, -17.1556676, -15.71616522] * u.deg) distances = u.Quantity([1.78309901, 1.710874, 1.61326649] * u.au) expected_result = GCRS( ra=ras, dec=decs, distance=distances, obstime=j2000 ).cartesian.xyz actual_result = coo.transform_to(GCRS(obstime=j2000)).cartesian.xyz assert_quantity_allclose(expected_result, actual_result) def test_regression_3920(): """ Issue: https://github.com/astropy/astropy/issues/3920 """ loc = EarthLocation.from_geodetic(0 * u.deg, 0 * u.deg, 0) time = Time("2010-1-1") aa = AltAz(location=loc, obstime=time) sc = SkyCoord(10 * u.deg, 3 * u.deg) assert sc.transform_to(aa).shape == tuple() # That part makes sense: the input is a scalar so the output is too sc2 = SkyCoord(10 * u.deg, 3 * u.deg, 1 * u.AU) assert sc2.transform_to(aa).shape == tuple() # in 3920 that assert fails, because the shape is (1,) # check that the same behavior occurs even if transform is from low-level classes icoo = ICRS(sc.data) icoo2 = ICRS(sc2.data) assert icoo.transform_to(aa).shape == tuple() assert icoo2.transform_to(aa).shape == tuple() def test_regression_3938(): """ Issue: https://github.com/astropy/astropy/issues/3938 """ # Set up list of targets - we don't use `from_name` here to avoid # remote_data requirements, but it does the same thing # vega = SkyCoord.from_name('Vega') vega = SkyCoord(279.23473479 * u.deg, 38.78368896 * u.deg) # capella = SkyCoord.from_name('Capella') capella = SkyCoord(79.17232794 * u.deg, 45.99799147 * u.deg) # sirius = SkyCoord.from_name('Sirius') sirius = SkyCoord(101.28715533 * u.deg, -16.71611586 * u.deg) targets = [vega, capella, sirius] # Feed list of targets into SkyCoord combined_coords = SkyCoord(targets) # Set up AltAz frame time = Time("2012-01-01 00:00:00") location = EarthLocation("10d", "45d", 0) aa = AltAz(location=location, obstime=time) combined_coords.transform_to(aa) # in 3938 the above yields ``UnitConversionError: '' (dimensionless) and 'pc' (length) are not convertible`` def test_regression_3998(): """ Issue: https://github.com/astropy/astropy/issues/3998 """ time = Time("2012-01-01 00:00:00") assert time.isscalar sun = get_sun(time) assert sun.isscalar # in 3998, the above yields False - `sun` is a length-1 vector assert sun.obstime is time def test_regression_4033(): """ Issue: https://github.com/astropy/astropy/issues/4033 """ # alb = SkyCoord.from_name('Albireo') alb = SkyCoord(292.68033548 * u.deg, 27.95968007 * u.deg) alb_wdist = SkyCoord(alb, distance=133 * u.pc) # de = SkyCoord.from_name('Deneb') de = SkyCoord(310.35797975 * u.deg, 45.28033881 * u.deg) de_wdist = SkyCoord(de, distance=802 * u.pc) aa = AltAz( location=EarthLocation(lat=45 * u.deg, lon=0 * u.deg), obstime="2010-1-1" ) deaa = de.transform_to(aa) albaa = alb.transform_to(aa) alb_wdistaa = alb_wdist.transform_to(aa) de_wdistaa = de_wdist.transform_to(aa) # these work fine sepnod = deaa.separation(albaa) sepwd = deaa.separation(alb_wdistaa) assert_quantity_allclose(sepnod, 22.2862 * u.deg, rtol=1e-6) assert_quantity_allclose(sepwd, 22.2862 * u.deg, rtol=1e-6) # parallax should be present when distance added assert np.abs(sepnod - sepwd) > 1 * u.marcsec # in 4033, the following fail with a recursion error assert_quantity_allclose( de_wdistaa.separation(alb_wdistaa), 22.2862 * u.deg, rtol=1e-3 ) assert_quantity_allclose(alb_wdistaa.separation(deaa), 22.2862 * u.deg, rtol=1e-3) @pytest.mark.skipif(not HAS_SCIPY, reason="No Scipy") def test_regression_4082(): """ Issue: https://github.com/astropy/astropy/issues/4082 """ from astropy.coordinates import search_around_3d, search_around_sky cat = SkyCoord([10.076, 10.00455], [18.54746, 18.54896], unit="deg") search_around_sky(cat[0:1], cat, seplimit=u.arcsec * 60, storekdtree=False) # in the issue, this raises a TypeError # also check 3d for good measure, although it's not really affected by this bug directly cat3d = SkyCoord( [10.076, 10.00455] * u.deg, [18.54746, 18.54896] * u.deg, distance=[0.1, 1.5] * u.kpc, ) search_around_3d(cat3d[0:1], cat3d, 1 * u.kpc, storekdtree=False) def test_regression_4210(): """ Issue: https://github.com/astropy/astropy/issues/4210 Related PR with actual change: https://github.com/astropy/astropy/pull/4211 """ crd = SkyCoord(0 * u.deg, 0 * u.deg, distance=1 * u.AU) ecl = crd.geocentricmeanecliptic # bug was that "lambda", which at the time was the name of the geocentric # ecliptic longitude, is a reserved keyword. So this just makes sure the # new name is are all valid ecl.lon # and for good measure, check the other ecliptic systems are all the same # names for their attributes from astropy.coordinates.builtin_frames import ecliptic for frame_name in ecliptic.__all__: eclcls = getattr(ecliptic, frame_name) eclobj = eclcls(1 * u.deg, 2 * u.deg, 3 * u.AU) eclobj.lat eclobj.lon eclobj.distance def test_regression_futuretimes_4302(): """ Checks that an error is not raised for future times not covered by IERS tables (at least in a simple transform like CIRS->ITRS that simply requires the UTC<->UT1 conversion). Relevant comment: https://github.com/astropy/astropy/pull/4302#discussion_r44836531 """ # this is an ugly hack to get the warning to show up even if it has already # appeared from astropy.coordinates.builtin_frames import utils from astropy.utils.exceptions import AstropyWarning if hasattr(utils, "__warningregistry__"): utils.__warningregistry__.clear() # check that out-of-range warning appears among any other warnings. If # tests are run with --remote-data then the IERS table will be an instance # of IERS_Auto which is assured of being "fresh". In this case getting # times outside the range of the table does not raise an exception. Only # if using IERS_B (which happens without --remote-data, i.e. for all CI # testing) do we expect another warning. if isinstance(iers.earth_orientation_table.get(), iers.IERS_B): ctx = pytest.warns( AstropyWarning, match=r"\(some\) times are outside of range covered by IERS table.*", ) else: ctx = nullcontext() with ctx: future_time = Time("2511-5-1") c = CIRS(1 * u.deg, 2 * u.deg, obstime=future_time) c.transform_to(ITRS(obstime=future_time)) def test_regression_4996(): # this part is the actual regression test deltat = np.linspace(-12, 12, 1000) * u.hour times = Time("2012-7-13 00:00:00") + deltat suncoo = get_sun(times) assert suncoo.shape == (len(times),) # and this is an additional test to make sure more complex arrays work times2 = Time("2012-7-13 00:00:00") + deltat.reshape(10, 20, 5) suncoo2 = get_sun(times2) assert suncoo2.shape == times2.shape # this is intentionally not allclose - they should be *exactly* the same assert np.all(suncoo.ra.ravel() == suncoo2.ra.ravel()) def test_regression_4293(): """Really just an extra test on FK4 no e, after finding that the units were not always taken correctly. This test is against explicitly doing the transformations on pp170 of Explanatory Supplement to the Astronomical Almanac (Seidelmann, 2005). See https://github.com/astropy/astropy/pull/4293#issuecomment-234973086 """ # Check all over sky, but avoiding poles (note that FK4 did not ignore # e terms within 10∘ of the poles... see p170 of explan.supp.). ra, dec = np.meshgrid(np.arange(0, 359, 45), np.arange(-80, 81, 40)) fk4 = FK4(ra.ravel() * u.deg, dec.ravel() * u.deg) Dc = -0.065838 * u.arcsec Dd = +0.335299 * u.arcsec # Dc * tan(obliquity), as given on p.170 Dctano = -0.028553 * u.arcsec fk4noe_dec = ( fk4.dec - (Dd * np.cos(fk4.ra) - Dc * np.sin(fk4.ra)) * np.sin(fk4.dec) - Dctano * np.cos(fk4.dec) ) fk4noe_ra = fk4.ra - (Dc * np.cos(fk4.ra) + Dd * np.sin(fk4.ra)) / np.cos(fk4.dec) fk4noe = fk4.transform_to(FK4NoETerms()) # Tolerance here just set to how well the coordinates match, which is much # better than the claimed accuracy of <1 mas for this first-order in # v_earth/c approximation. # Interestingly, if one divides by np.cos(fk4noe_dec) in the ra correction, # the match becomes good to 2 μas. assert_quantity_allclose(fk4noe.ra, fk4noe_ra, atol=11.0 * u.uas, rtol=0) assert_quantity_allclose(fk4noe.dec, fk4noe_dec, atol=3.0 * u.uas, rtol=0) def test_regression_4926(): times = Time("2010-01-1") + np.arange(20) * u.day green = get_builtin_sites()["greenwich"] # this is the regression test moon = get_moon(times, green) # this is an additional test to make sure the GCRS->ICRS transform works for complex shapes moon.transform_to(ICRS()) # and some others to increase coverage of transforms moon.transform_to(HCRS(obstime="J2000")) moon.transform_to(HCRS(obstime=times)) def test_regression_5209(): "check that distances are not lost on SkyCoord init" time = Time("2015-01-01") moon = get_moon(time) new_coord = SkyCoord([moon]) assert_quantity_allclose(new_coord[0].distance, moon.distance) def test_regression_5133(): N = 1000 np.random.seed(12345) lon = np.random.uniform(-10, 10, N) * u.deg lat = np.random.uniform(50, 52, N) * u.deg alt = np.random.uniform(0, 10.0, N) * u.km time = Time("2010-1-1") objects = EarthLocation.from_geodetic(lon, lat, height=alt) itrs_coo = objects.get_itrs(time) homes = [ EarthLocation.from_geodetic(lon=-1 * u.deg, lat=52 * u.deg, height=h) for h in (0, 1000, 10000) * u.km ] altaz_frames = [AltAz(obstime=time, location=h) for h in homes] altaz_coos = [itrs_coo.transform_to(f) for f in altaz_frames] # they should all be different for coo in altaz_coos[1:]: assert not quantity_allclose(coo.az, coo.az[0]) assert not quantity_allclose(coo.alt, coo.alt[0]) def test_itrs_vals_5133(): """ Test to check if alt-az calculations respect height of observer Because ITRS is geocentric and includes aberration, an object that appears 'straight up' to a geocentric observer (ITRS) won't be straight up to a topocentric observer - see https://github.com/astropy/astropy/issues/10983 This is worse for small height above the Earth, which is why this test uses large distances. """ time = Time("2010-1-1") height = 500000.0 * u.km el = EarthLocation.from_geodetic(lon=20 * u.deg, lat=45 * u.deg, height=height) lons = [20, 30, 20] * u.deg lats = [44, 45, 45] * u.deg alts = u.Quantity([height, height, 10 * height]) coos = [ EarthLocation.from_geodetic(lon, lat, height=alt).get_itrs(time) for lon, lat, alt in zip(lons, lats, alts) ] aaf = AltAz(obstime=time, location=el) aacs = [coo.transform_to(aaf) for coo in coos] assert all([coo.isscalar for coo in aacs]) # the ~1 degree tolerance is b/c aberration makes it not exact assert_quantity_allclose(aacs[0].az, 180 * u.deg, atol=1 * u.deg) assert aacs[0].alt < 0 * u.deg assert aacs[0].distance > 5000 * u.km # it should *not* actually be 90 degrees, b/c constant latitude is not # straight east anywhere except the equator... but should be close-ish assert_quantity_allclose(aacs[1].az, 90 * u.deg, atol=5 * u.deg) assert aacs[1].alt < 0 * u.deg assert aacs[1].distance > 5000 * u.km assert_quantity_allclose(aacs[2].alt, 90 * u.deg, atol=1 * u.arcminute) assert_quantity_allclose(aacs[2].distance, 9 * height) def test_regression_simple_5133(): """ Simple test to check if alt-az calculations respect height of observer Because ITRS is geocentric and includes aberration, an object that appears 'straight up' to a geocentric observer (ITRS) won't be straight up to a topocentric observer - see https://github.com/astropy/astropy/issues/10983 This is why we construct a topocentric GCRS SkyCoord before calculating AltAz """ t = Time("J2010") obj = EarthLocation(-1 * u.deg, 52 * u.deg, height=[10.0, 0.0] * u.km) home = EarthLocation(-1 * u.deg, 52 * u.deg, height=5.0 * u.km) obsloc_gcrs, obsvel_gcrs = home.get_gcrs_posvel(t) gcrs_geo = obj.get_itrs(t).transform_to(GCRS(obstime=t)) obsrepr = home.get_itrs(t).transform_to(GCRS(obstime=t)).cartesian topo_gcrs_repr = gcrs_geo.cartesian - obsrepr topocentric_gcrs_frame = GCRS( obstime=t, obsgeoloc=obsloc_gcrs, obsgeovel=obsvel_gcrs ) gcrs_topo = topocentric_gcrs_frame.realize_frame(topo_gcrs_repr) aa = gcrs_topo.transform_to(AltAz(obstime=t, location=home)) # az is more-or-less undefined for straight up or down assert_quantity_allclose(aa.alt, [90, -90] * u.deg, rtol=1e-7) assert_quantity_allclose(aa.distance, 5 * u.km) def test_regression_5743(): sc = SkyCoord( [5, 10], [20, 30], unit=u.deg, obstime=["2017-01-01T00:00", "2017-01-01T00:10"] ) assert sc[0].obstime.shape == tuple() def test_regression_5889_5890(): # ensure we can represent all Representations and transform to ND frames greenwich = EarthLocation( *u.Quantity([3980608.90246817, -102.47522911, 4966861.27310067], unit=u.m) ) times = Time("2017-03-20T12:00:00") + np.linspace(-2, 2, 3) * u.hour moon = get_moon(times, location=greenwich) targets = SkyCoord([350.7 * u.deg, 260.7 * u.deg], [18.4 * u.deg, 22.4 * u.deg]) targs2d = targets[:, np.newaxis] targs2d.transform_to(moon) def test_regression_6236(): # sunpy changes its representation upon initialisation of a frame, # including via `realize_frame`. Ensure this works. class MyFrame(BaseCoordinateFrame): default_representation = CartesianRepresentation my_attr = QuantityAttribute(default=0, unit=u.m) class MySpecialFrame(MyFrame): def __init__(self, *args, **kwargs): _rep_kwarg = kwargs.get("representation_type", None) super().__init__(*args, **kwargs) if not _rep_kwarg: self.representation_type = self.default_representation self._data = self.data.represent_as(self.representation_type) rep1 = UnitSphericalRepresentation([0.0, 1] * u.deg, [2.0, 3.0] * u.deg) rep2 = SphericalRepresentation( [10.0, 11] * u.deg, [12.0, 13.0] * u.deg, [14.0, 15.0] * u.kpc ) mf1 = MyFrame(rep1, my_attr=1.0 * u.km) mf2 = mf1.realize_frame(rep2) # Normally, data is stored as is, but the representation gets set to a # default, even if a different representation instance was passed in. # realize_frame should do the same. Just in case, check attrs are passed. assert mf1.data is rep1 assert mf2.data is rep2 assert mf1.representation_type is CartesianRepresentation assert mf2.representation_type is CartesianRepresentation assert mf2.my_attr == mf1.my_attr # It should be independent of whether I set the representation explicitly mf3 = MyFrame(rep1, my_attr=1.0 * u.km, representation_type="unitspherical") mf4 = mf3.realize_frame(rep2) assert mf3.data is rep1 assert mf4.data is rep2 assert mf3.representation_type is UnitSphericalRepresentation assert mf4.representation_type is CartesianRepresentation assert mf4.my_attr == mf3.my_attr # This should be enough to help sunpy, but just to be sure, a test # even closer to what is done there, i.e., transform the representation. msf1 = MySpecialFrame(rep1, my_attr=1.0 * u.km) msf2 = msf1.realize_frame(rep2) assert msf1.data is not rep1 # Gets transformed to Cartesian. assert msf2.data is not rep2 assert type(msf1.data) is CartesianRepresentation assert type(msf2.data) is CartesianRepresentation assert msf1.representation_type is CartesianRepresentation assert msf2.representation_type is CartesianRepresentation assert msf2.my_attr == msf1.my_attr # And finally a test where the input is not transformed. msf3 = MySpecialFrame(rep1, my_attr=1.0 * u.km, representation_type="unitspherical") msf4 = msf3.realize_frame(rep2) assert msf3.data is rep1 assert msf4.data is not rep2 assert msf3.representation_type is UnitSphericalRepresentation assert msf4.representation_type is CartesianRepresentation assert msf4.my_attr == msf3.my_attr @pytest.mark.skipif(not HAS_SCIPY, reason="No Scipy") def test_regression_6347(): sc1 = SkyCoord([1, 2] * u.deg, [3, 4] * u.deg) sc2 = SkyCoord([1.1, 2.1] * u.deg, [3.1, 4.1] * u.deg) sc0 = sc1[:0] idx1_10, idx2_10, d2d_10, d3d_10 = sc1.search_around_sky(sc2, 10 * u.arcmin) idx1_1, idx2_1, d2d_1, d3d_1 = sc1.search_around_sky(sc2, 1 * u.arcmin) idx1_0, idx2_0, d2d_0, d3d_0 = sc0.search_around_sky(sc2, 10 * u.arcmin) assert len(d2d_10) == 2 assert len(d2d_0) == 0 assert type(d2d_0) is type(d2d_10) assert len(d2d_1) == 0 assert type(d2d_1) is type(d2d_10) @pytest.mark.skipif(not HAS_SCIPY, reason="No Scipy") def test_regression_6347_3d(): sc1 = SkyCoord([1, 2] * u.deg, [3, 4] * u.deg, [5, 6] * u.kpc) sc2 = SkyCoord([1, 2] * u.deg, [3, 4] * u.deg, [5.1, 6.1] * u.kpc) sc0 = sc1[:0] idx1_10, idx2_10, d2d_10, d3d_10 = sc1.search_around_3d(sc2, 500 * u.pc) idx1_1, idx2_1, d2d_1, d3d_1 = sc1.search_around_3d(sc2, 50 * u.pc) idx1_0, idx2_0, d2d_0, d3d_0 = sc0.search_around_3d(sc2, 500 * u.pc) assert len(d2d_10) > 0 assert len(d2d_0) == 0 assert type(d2d_0) is type(d2d_10) assert len(d2d_1) == 0 assert type(d2d_1) is type(d2d_10) def test_gcrs_itrs_cartesian_repr(): # issue 6436: transformation failed if coordinate representation was # Cartesian gcrs = GCRS( CartesianRepresentation((859.07256, -4137.20368, 5295.56871), unit="km"), representation_type="cartesian", ) gcrs.transform_to(ITRS()) def test_regression_6446(): # this succeeds even before 6446: sc1 = SkyCoord([1, 2], [3, 4], unit="deg") t1 = Table([sc1]) sio1 = io.StringIO() t1.write(sio1, format="ascii.ecsv") # but this fails due to the 6446 bug c1 = SkyCoord(1, 3, unit="deg") c2 = SkyCoord(2, 4, unit="deg") sc2 = SkyCoord([c1, c2]) t2 = Table([sc2]) sio2 = io.StringIO() t2.write(sio2, format="ascii.ecsv") assert sio1.getvalue() == sio2.getvalue() def test_regression_6597(): frame_name = "galactic" c1 = SkyCoord(1, 3, unit="deg", frame=frame_name) c2 = SkyCoord(2, 4, unit="deg", frame=frame_name) sc1 = SkyCoord([c1, c2]) assert sc1.frame.name == frame_name def test_regression_6597_2(): """ This tests the more subtle flaw that #6597 indirectly uncovered: that even in the case that the frames are ra/dec, they still might be the wrong *kind* """ frame = FK4(equinox="J1949") c1 = SkyCoord(1, 3, unit="deg", frame=frame) c2 = SkyCoord(2, 4, unit="deg", frame=frame) sc1 = SkyCoord([c1, c2]) assert sc1.frame.name == frame.name def test_regression_6697(): """ Test for regression of a bug in get_gcrs_posvel that introduced errors at the 1m/s level. Comparison data is derived from calculation in PINT https://github.com/nanograv/PINT/blob/master/pint/erfautils.py """ pint_vels = CartesianRepresentation( 348.63632871, -212.31704928, -0.60154936, unit=u.m / u.s ) location = EarthLocation( 5327448.9957829, -1718665.73869569, 3051566.90295403, unit=u.m ) t = Time(2458036.161966612, format="jd") obsgeopos, obsgeovel = location.get_gcrs_posvel(t) delta = (obsgeovel - pint_vels).norm() assert delta < 1 * u.cm / u.s def test_regression_8138(): sc = SkyCoord(1 * u.deg, 2 * u.deg) newframe = GCRS() sc2 = sc.transform_to(newframe) assert newframe.is_equivalent_frame(sc2.frame) def test_regression_8276(): from astropy.coordinates import baseframe class MyFrame(BaseCoordinateFrame): a = QuantityAttribute(unit=u.m) # we save the transform graph so that it doesn't acidentally mess with other tests old_transform_graph = baseframe.frame_transform_graph try: baseframe.frame_transform_graph = copy.copy(baseframe.frame_transform_graph) # as reported in 8276, this previously failed right here because # registering the transform tries to create a frame attribute @baseframe.frame_transform_graph.transform(FunctionTransform, MyFrame, AltAz) def trans(my_frame_coord, altaz_frame): pass # should also be able to *create* the Frame at this point MyFrame() finally: baseframe.frame_transform_graph = old_transform_graph def test_regression_8615(): # note this is a "higher-level" symptom of the problem that a test now moved # to pyerfa (erfa/tests/test_erfa:test_float32_input) is testing for, but we keep # it here as well due to being a more practical version of the issue. crf = CartesianRepresentation(np.array([3, 0, 4], dtype=float) * u.pc) srf = SphericalRepresentation.from_cartesian(crf) # does not error in 8615 cr = CartesianRepresentation(np.array([3, 0, 4], dtype="f4") * u.pc) sr = SphericalRepresentation.from_cartesian(cr) # errors in 8615 assert_quantity_allclose(sr.distance, 5 * u.pc) assert_quantity_allclose(srf.distance, 5 * u.pc) def test_regression_8924(): """This checks that the ValueError in BaseRepresentation._re_represent_differentials is raised properly """ # A case where the representation has a 's' differential, but we try to # re-represent only with an 's2' differential rep = CartesianRepresentation(1, 2, 3, unit=u.kpc) dif = CartesianDifferential(4, 5, 6, u.km / u.s) rep = rep.with_differentials(dif) with pytest.raises(ValueError): rep._re_represent_differentials( CylindricalRepresentation, {"s2": CylindricalDifferential} ) def test_regression_10092(): """ Check that we still get a proper motion even for SkyCoords without distance """ c = SkyCoord( l=10 * u.degree, b=45 * u.degree, pm_l_cosb=34 * u.mas / u.yr, pm_b=-117 * u.mas / u.yr, frame="galactic", obstime=Time("1988-12-18 05:11:23.5"), ) with pytest.warns(ErfaWarning, match='ERFA function "pmsafe" yielded .*'): newc = c.apply_space_motion(dt=10 * u.year) assert_quantity_allclose( newc.pm_l_cosb, 33.99980714 * u.mas / u.yr, atol=1.0e-5 * u.mas / u.yr ) def test_regression_10226(): # Dictionary representation of SkyCoord should contain differentials. sc = SkyCoord( [270, 280] * u.deg, [30, 35] * u.deg, [10, 11] * u.pc, radial_velocity=[20, -20] * u.km / u.s, ) sc_as_dict = sc.info._represent_as_dict() assert "radial_velocity" in sc_as_dict # But only the components that have been specified. assert "pm_dec" not in sc_as_dict @pytest.mark.parametrize( "mjd", (52000, [52000], [[52000]], [52001, 52002], [[52001], [52002]]) ) def test_regression_10422(mjd): """ Check that we can get a GCRS for a scalar EarthLocation and a size=1 non-scalar Time. """ # Avoid trying to download new IERS data. with iers.earth_orientation_table.set(iers.IERS_B.open(iers.IERS_B_FILE)): t = Time(mjd, format="mjd", scale="tai") loc = EarthLocation(88258.0 * u.m, -4924882.2 * u.m, 3943729.0 * u.m) p, v = loc.get_gcrs_posvel(obstime=t) assert p.shape == v.shape == t.shape @pytest.mark.remote_data def test_regression_10291(): """ According to https://eclipse.gsfc.nasa.gov/OH/transit12.html, the minimum separation between Venus and the Sun during the 2012 transit is 554 arcseconds for an observer at the Geocenter. If light deflection from the Sun is incorrectly applied, this increases to 557 arcseconds. """ t = Time("2012-06-06 01:29:36") sun = get_body("sun", t) venus = get_body("venus", t) assert_quantity_allclose( venus.separation(sun), 554.427 * u.arcsecond, atol=0.001 * u.arcsecond )
2e9ba76755aea0be2d20fffe84e4ea4431dfe3fe62bed9d45678f46f3300e9ae
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np import pytest from numpy import testing as npt from astropy import units as u from astropy.coordinates import matching from astropy.tests.helper import assert_quantity_allclose as assert_allclose from astropy.utils.compat.optional_deps import HAS_SCIPY """ These are the tests for coordinate matching. Note that this requires scipy. """ @pytest.mark.skipif(not HAS_SCIPY, reason="Requires scipy.") def test_matching_function(): from astropy.coordinates import ICRS from astropy.coordinates.matching import match_coordinates_3d # this only uses match_coordinates_3d because that's the actual implementation cmatch = ICRS([4, 2.1] * u.degree, [0, 0] * u.degree) ccatalog = ICRS([1, 2, 3, 4] * u.degree, [0, 0, 0, 0] * u.degree) idx, d2d, d3d = match_coordinates_3d(cmatch, ccatalog) npt.assert_array_equal(idx, [3, 1]) npt.assert_array_almost_equal(d2d.degree, [0, 0.1]) assert d3d.value[0] == 0 idx, d2d, d3d = match_coordinates_3d(cmatch, ccatalog, nthneighbor=2) assert np.all(idx == 2) npt.assert_array_almost_equal(d2d.degree, [1, 0.9]) npt.assert_array_less(d3d.value, 0.02) @pytest.mark.skipif(not HAS_SCIPY, reason="Requires scipy.") def test_matching_function_3d_and_sky(): from astropy.coordinates import ICRS from astropy.coordinates.matching import match_coordinates_3d, match_coordinates_sky cmatch = ICRS([4, 2.1] * u.degree, [0, 0] * u.degree, distance=[1, 5] * u.kpc) ccatalog = ICRS( [1, 2, 3, 4] * u.degree, [0, 0, 0, 0] * u.degree, distance=[1, 1, 1, 5] * u.kpc ) idx, d2d, d3d = match_coordinates_3d(cmatch, ccatalog) npt.assert_array_equal(idx, [2, 3]) assert_allclose(d2d, [1, 1.9] * u.deg) assert np.abs(d3d[0].to_value(u.kpc) - np.radians(1)) < 1e-6 assert np.abs(d3d[1].to_value(u.kpc) - 5 * np.radians(1.9)) < 1e-5 idx, d2d, d3d = match_coordinates_sky(cmatch, ccatalog) npt.assert_array_equal(idx, [3, 1]) assert_allclose(d2d, [0, 0.1] * u.deg) assert_allclose(d3d, [4, 4.0000019] * u.kpc) @pytest.mark.parametrize( "functocheck, args, defaultkdtname, bothsaved", [ (matching.match_coordinates_3d, [], "kdtree_3d", False), (matching.match_coordinates_sky, [], "kdtree_sky", False), (matching.search_around_3d, [1 * u.kpc], "kdtree_3d", True), (matching.search_around_sky, [1 * u.deg], "kdtree_sky", False), ], ) @pytest.mark.skipif(not HAS_SCIPY, reason="Requires scipy.") def test_kdtree_storage(functocheck, args, defaultkdtname, bothsaved): from astropy.coordinates import ICRS def make_scs(): cmatch = ICRS([4, 2.1] * u.degree, [0, 0] * u.degree, distance=[1, 2] * u.kpc) ccatalog = ICRS( [1, 2, 3, 4] * u.degree, [0, 0, 0, 0] * u.degree, distance=[1, 2, 3, 4] * u.kpc, ) return cmatch, ccatalog cmatch, ccatalog = make_scs() functocheck(cmatch, ccatalog, *args, storekdtree=False) assert "kdtree" not in ccatalog.cache assert defaultkdtname not in ccatalog.cache cmatch, ccatalog = make_scs() functocheck(cmatch, ccatalog, *args) assert defaultkdtname in ccatalog.cache assert "kdtree" not in ccatalog.cache cmatch, ccatalog = make_scs() functocheck(cmatch, ccatalog, *args, storekdtree=True) assert "kdtree" in ccatalog.cache assert defaultkdtname not in ccatalog.cache cmatch, ccatalog = make_scs() assert "tislit_cheese" not in ccatalog.cache functocheck(cmatch, ccatalog, *args, storekdtree="tislit_cheese") assert "tislit_cheese" in ccatalog.cache assert defaultkdtname not in ccatalog.cache assert "kdtree" not in ccatalog.cache if bothsaved: assert "tislit_cheese" in cmatch.cache assert defaultkdtname not in cmatch.cache assert "kdtree" not in cmatch.cache else: assert "tislit_cheese" not in cmatch.cache # now a bit of a hacky trick to make sure it at least tries to *use* it ccatalog.cache["tislit_cheese"] = 1 cmatch.cache["tislit_cheese"] = 1 with pytest.raises(TypeError) as e: functocheck(cmatch, ccatalog, *args, storekdtree="tislit_cheese") assert "KD" in e.value.args[0] @pytest.mark.skipif(not HAS_SCIPY, reason="Requires scipy.") def test_python_kdtree(monkeypatch): from astropy.coordinates import ICRS cmatch = ICRS([4, 2.1] * u.degree, [0, 0] * u.degree, distance=[1, 2] * u.kpc) ccatalog = ICRS( [1, 2, 3, 4] * u.degree, [0, 0, 0, 0] * u.degree, distance=[1, 2, 3, 4] * u.kpc ) monkeypatch.delattr("scipy.spatial.cKDTree") with pytest.warns(UserWarning, match=r"C-based KD tree not found"): matching.match_coordinates_sky(cmatch, ccatalog) @pytest.mark.skipif(not HAS_SCIPY, reason="Requires scipy.") def test_matching_method(): from astropy.coordinates import ICRS, SkyCoord from astropy.coordinates.matching import match_coordinates_3d, match_coordinates_sky from astropy.utils import NumpyRNGContext with NumpyRNGContext(987654321): cmatch = ICRS( np.random.rand(20) * 360.0 * u.degree, (np.random.rand(20) * 180.0 - 90.0) * u.degree, ) ccatalog = ICRS( np.random.rand(100) * 360.0 * u.degree, (np.random.rand(100) * 180.0 - 90.0) * u.degree, ) idx1, d2d1, d3d1 = SkyCoord(cmatch).match_to_catalog_3d(ccatalog) idx2, d2d2, d3d2 = match_coordinates_3d(cmatch, ccatalog) npt.assert_array_equal(idx1, idx2) assert_allclose(d2d1, d2d2) assert_allclose(d3d1, d3d2) # should be the same as above because there's no distance, but just make sure this method works idx1, d2d1, d3d1 = SkyCoord(cmatch).match_to_catalog_sky(ccatalog) idx2, d2d2, d3d2 = match_coordinates_sky(cmatch, ccatalog) npt.assert_array_equal(idx1, idx2) assert_allclose(d2d1, d2d2) assert_allclose(d3d1, d3d2) assert len(idx1) == len(d2d1) == len(d3d1) == 20 @pytest.mark.skipif(not HAS_SCIPY, reason="Requires scipy") def test_search_around(): from astropy.coordinates import ICRS, SkyCoord from astropy.coordinates.matching import search_around_3d, search_around_sky coo1 = ICRS([4, 2.1] * u.degree, [0, 0] * u.degree, distance=[1, 5] * u.kpc) coo2 = ICRS( [1, 2, 3, 4] * u.degree, [0, 0, 0, 0] * u.degree, distance=[1, 1, 1, 5] * u.kpc ) idx1_1deg, idx2_1deg, d2d_1deg, d3d_1deg = search_around_sky( coo1, coo2, 1.01 * u.deg ) idx1_0p05deg, idx2_0p05deg, d2d_0p05deg, d3d_0p05deg = search_around_sky( coo1, coo2, 0.05 * u.deg ) assert list(zip(idx1_1deg, idx2_1deg)) == [(0, 2), (0, 3), (1, 1), (1, 2)] assert_allclose(d2d_1deg[0], 1.0 * u.deg, atol=1e-14 * u.deg, rtol=0) assert_allclose(d2d_1deg, [1, 0, 0.1, 0.9] * u.deg) assert list(zip(idx1_0p05deg, idx2_0p05deg)) == [(0, 3)] idx1_1kpc, idx2_1kpc, d2d_1kpc, d3d_1kpc = search_around_3d(coo1, coo2, 1 * u.kpc) idx1_sm, idx2_sm, d2d_sm, d3d_sm = search_around_3d(coo1, coo2, 0.05 * u.kpc) assert list(zip(idx1_1kpc, idx2_1kpc)) == [(0, 0), (0, 1), (0, 2), (1, 3)] assert list(zip(idx1_sm, idx2_sm)) == [(0, 1), (0, 2)] assert_allclose(d2d_sm, [2, 1] * u.deg) # Test for the non-matches, #4877 coo1 = ICRS([4.1, 2.1] * u.degree, [0, 0] * u.degree, distance=[1, 5] * u.kpc) idx1, idx2, d2d, d3d = search_around_sky(coo1, coo2, 1 * u.arcsec) assert idx1.size == idx2.size == d2d.size == d3d.size == 0 assert idx1.dtype == idx2.dtype == int assert d2d.unit == u.deg assert d3d.unit == u.kpc idx1, idx2, d2d, d3d = search_around_3d(coo1, coo2, 1 * u.m) assert idx1.size == idx2.size == d2d.size == d3d.size == 0 assert idx1.dtype == idx2.dtype == int assert d2d.unit == u.deg assert d3d.unit == u.kpc # Test when one or both of the coordinate arrays is empty, #4875 empty = ICRS(ra=[] * u.degree, dec=[] * u.degree, distance=[] * u.kpc) idx1, idx2, d2d, d3d = search_around_sky(empty, coo2, 1 * u.arcsec) assert idx1.size == idx2.size == d2d.size == d3d.size == 0 assert idx1.dtype == idx2.dtype == int assert d2d.unit == u.deg assert d3d.unit == u.kpc idx1, idx2, d2d, d3d = search_around_sky(coo1, empty, 1 * u.arcsec) assert idx1.size == idx2.size == d2d.size == d3d.size == 0 assert idx1.dtype == idx2.dtype == int assert d2d.unit == u.deg assert d3d.unit == u.kpc empty = ICRS(ra=[] * u.degree, dec=[] * u.degree, distance=[] * u.kpc) idx1, idx2, d2d, d3d = search_around_sky(empty, empty[:], 1 * u.arcsec) assert idx1.size == idx2.size == d2d.size == d3d.size == 0 assert idx1.dtype == idx2.dtype == int assert d2d.unit == u.deg assert d3d.unit == u.kpc idx1, idx2, d2d, d3d = search_around_3d(empty, coo2, 1 * u.m) assert idx1.size == idx2.size == d2d.size == d3d.size == 0 assert idx1.dtype == idx2.dtype == int assert d2d.unit == u.deg assert d3d.unit == u.kpc idx1, idx2, d2d, d3d = search_around_3d(coo1, empty, 1 * u.m) assert idx1.size == idx2.size == d2d.size == d3d.size == 0 assert idx1.dtype == idx2.dtype == int assert d2d.unit == u.deg assert d3d.unit == u.kpc idx1, idx2, d2d, d3d = search_around_3d(empty, empty[:], 1 * u.m) assert idx1.size == idx2.size == d2d.size == d3d.size == 0 assert idx1.dtype == idx2.dtype == int assert d2d.unit == u.deg assert d3d.unit == u.kpc # Test that input without distance units results in a # 'dimensionless_unscaled' unit cempty = SkyCoord(ra=[], dec=[], unit=u.deg) idx1, idx2, d2d, d3d = search_around_3d(cempty, cempty[:], 1 * u.m) assert d2d.unit == u.deg assert d3d.unit == u.dimensionless_unscaled idx1, idx2, d2d, d3d = search_around_sky(cempty, cempty[:], 1 * u.m) assert d2d.unit == u.deg assert d3d.unit == u.dimensionless_unscaled @pytest.mark.skipif(not HAS_SCIPY, reason="Requires scipy") def test_search_around_scalar(): from astropy.coordinates import Angle, SkyCoord cat = SkyCoord([1, 2, 3], [-30, 45, 8], unit="deg") target = SkyCoord("1.1 -30.1", unit="deg") with pytest.raises(ValueError) as excinfo: cat.search_around_sky(target, Angle("2d")) # make sure the error message is *specific* to search_around_sky rather than # generic as reported in #3359 assert "search_around_sky" in str(excinfo.value) with pytest.raises(ValueError) as excinfo: cat.search_around_3d(target, Angle("2d")) assert "search_around_3d" in str(excinfo.value) @pytest.mark.skipif(not HAS_SCIPY, reason="Requires scipy") def test_match_catalog_empty(): from astropy.coordinates import SkyCoord sc1 = SkyCoord(1, 2, unit="deg") cat0 = SkyCoord([], [], unit="deg") cat1 = SkyCoord([1.1], [2.1], unit="deg") cat2 = SkyCoord([1.1, 3], [2.1, 5], unit="deg") sc1.match_to_catalog_sky(cat2) sc1.match_to_catalog_3d(cat2) sc1.match_to_catalog_sky(cat1) sc1.match_to_catalog_3d(cat1) with pytest.raises(ValueError) as excinfo: sc1.match_to_catalog_sky(cat1[0]) assert "catalog" in str(excinfo.value) with pytest.raises(ValueError) as excinfo: sc1.match_to_catalog_3d(cat1[0]) assert "catalog" in str(excinfo.value) with pytest.raises(ValueError) as excinfo: sc1.match_to_catalog_sky(cat0) assert "catalog" in str(excinfo.value) with pytest.raises(ValueError) as excinfo: sc1.match_to_catalog_3d(cat0) assert "catalog" in str(excinfo.value) @pytest.mark.skipif(not HAS_SCIPY, reason="Requires scipy") @pytest.mark.filterwarnings(r"ignore:invalid value encountered in.*:RuntimeWarning") def test_match_catalog_nan(): from astropy.coordinates import Galactic, SkyCoord sc1 = SkyCoord(1, 2, unit="deg") sc_with_nans = SkyCoord(1, np.nan, unit="deg") cat = SkyCoord([1.1, 3], [2.1, 5], unit="deg") cat_with_nans = SkyCoord([1.1, np.nan], [2.1, 5], unit="deg") galcat_with_nans = Galactic([1.2, np.nan] * u.deg, [5.6, 7.8] * u.deg) with pytest.raises(ValueError) as excinfo: sc1.match_to_catalog_sky(cat_with_nans) assert "Catalog coordinates cannot contain" in str(excinfo.value) with pytest.raises(ValueError) as excinfo: sc1.match_to_catalog_3d(cat_with_nans) assert "Catalog coordinates cannot contain" in str(excinfo.value) with pytest.raises(ValueError) as excinfo: sc1.match_to_catalog_sky(galcat_with_nans) assert "Catalog coordinates cannot contain" in str(excinfo.value) with pytest.raises(ValueError) as excinfo: sc1.match_to_catalog_3d(galcat_with_nans) assert "Catalog coordinates cannot contain" in str(excinfo.value) with pytest.raises(ValueError) as excinfo: sc_with_nans.match_to_catalog_sky(cat) assert "Matching coordinates cannot contain" in str(excinfo.value) with pytest.raises(ValueError) as excinfo: sc_with_nans.match_to_catalog_3d(cat) assert "Matching coordinates cannot contain" in str(excinfo.value) @pytest.mark.skipif(not HAS_SCIPY, reason="Requires scipy") def test_match_catalog_nounit(): from astropy.coordinates import ICRS, CartesianRepresentation from astropy.coordinates.matching import match_coordinates_sky i1 = ICRS([[1], [2], [3]], representation_type=CartesianRepresentation) i2 = ICRS([[1], [2], [4, 5]], representation_type=CartesianRepresentation) i, sep, sep3d = match_coordinates_sky(i1, i2) assert_allclose(sep3d, [1] * u.dimensionless_unscaled)
c4b7b45f098a3b0dcf0a5fa9ca7ed03674db8ec121e4dd874babd3704b9aae67
"""Test helper functions for coordinates.""" import numpy as np def skycoord_equal(sc1, sc2): """SkyCoord equality useful for testing""" if not sc1.is_equivalent_frame(sc2): return False if sc1.representation_type is not sc2.representation_type: return False if sc1.shape != sc2.shape: return False # Maybe raise ValueError corresponding to future numpy behavior eq = np.ones(shape=sc1.shape, dtype=bool) for comp in sc1.data.components: eq &= getattr(sc1.data, comp) == getattr(sc2.data, comp) return np.all(eq)
bfe18fa4e59787bf063b0d585c84da7a91add263e4dbe12f5c02f26f9b2711f9
# Licensed under a 3-clause BSD style license - see LICENSE.rst from contextlib import ExitStack import numpy as np import pytest from numpy import testing as npt from astropy import units as u from astropy.coordinates import ( FK4, FK5, ICRS, Angle, CartesianRepresentation, Galactic, SkyCoord, ) from astropy.tests.helper import assert_quantity_allclose as assert_allclose from astropy.time import Time from astropy.utils.compat import NUMPY_LT_1_24 from astropy.utils.exceptions import AstropyDeprecationWarning def test_angle_arrays(): """ Test arrays values with Angle objects. """ # Tests incomplete a1 = Angle([0, 45, 90, 180, 270, 360, 720.0], unit=u.degree) npt.assert_almost_equal([0.0, 45.0, 90.0, 180.0, 270.0, 360.0, 720.0], a1.value) a2 = Angle(np.array([-90, -45, 0, 45, 90, 180, 270, 360]), unit=u.degree) npt.assert_almost_equal([-90, -45, 0, 45, 90, 180, 270, 360], a2.value) a3 = Angle(["12 degrees", "3 hours", "5 deg", "4rad"]) npt.assert_almost_equal([12.0, 45.0, 5.0, 229.18311805], a3.value) assert a3.unit == u.degree a4 = Angle(["12 degrees", "3 hours", "5 deg", "4rad"], u.radian) npt.assert_almost_equal(a4.degree, a3.value) assert a4.unit == u.radian a5 = Angle([0, 45, 90, 180, 270, 360], unit=u.degree) a6 = a5.sum() npt.assert_almost_equal(a6.value, 945.0) assert a6.unit is u.degree with ExitStack() as stack: if NUMPY_LT_1_24: stack.enter_context(pytest.raises(TypeError)) stack.enter_context( pytest.warns( DeprecationWarning, match="automatic object dtype is deprecated" ) ) else: stack.enter_context(pytest.raises(ValueError)) a7 = Angle([a1, a2, a3], unit=u.degree) a8 = Angle(["04:02:02", "03:02:01", "06:02:01"], unit=u.degree) npt.assert_almost_equal(a8.value, [4.03388889, 3.03361111, 6.03361111]) a9 = Angle(np.array(["04:02:02", "03:02:01", "06:02:01"]), unit=u.degree) npt.assert_almost_equal(a9.value, a8.value) with pytest.raises(u.UnitsError): a10 = Angle(["04:02:02", "03:02:01", "06:02:01"]) def test_dms(): a1 = Angle([0, 45.5, -45.5], unit=u.degree) d, m, s = a1.dms npt.assert_almost_equal(d, [0, 45, -45]) npt.assert_almost_equal(m, [0, 30, -30]) npt.assert_almost_equal(s, [0, 0, -0]) def test_hms(): a1 = Angle([0, 11.5, -11.5], unit=u.hour) h, m, s = a1.hms npt.assert_almost_equal(h, [0, 11, -11]) npt.assert_almost_equal(m, [0, 30, -30]) npt.assert_almost_equal(s, [0, 0, -0]) hms = a1.hms hours = hms[0] + hms[1] / 60.0 + hms[2] / 3600.0 npt.assert_almost_equal(a1.hour, hours) with pytest.warns(AstropyDeprecationWarning, match="hms_to_hours"): a2 = Angle(hms, unit=u.hour) npt.assert_almost_equal(a2.radian, a1.radian) def test_array_coordinates_creation(): """ Test creating coordinates from arrays. """ c = ICRS(np.array([1, 2]) * u.deg, np.array([3, 4]) * u.deg) assert not c.ra.isscalar with pytest.raises(ValueError): c = ICRS(np.array([1, 2]) * u.deg, np.array([3, 4, 5]) * u.deg) with pytest.raises(ValueError): c = ICRS(np.array([1, 2, 4, 5]) * u.deg, np.array([[3, 4], [5, 6]]) * u.deg) # make sure cartesian initialization also works cart = CartesianRepresentation( x=[1.0, 2.0] * u.kpc, y=[3.0, 4.0] * u.kpc, z=[5.0, 6.0] * u.kpc ) c = ICRS(cart) # also ensure strings can be arrays c = SkyCoord(["1d0m0s", "2h02m00.3s"], ["3d", "4d"]) # but invalid strings cannot with pytest.raises(ValueError): c = SkyCoord(Angle(["10m0s", "2h02m00.3s"]), Angle(["3d", "4d"])) with pytest.raises(ValueError): c = SkyCoord(Angle(["1d0m0s", "2h02m00.3s"]), Angle(["3x", "4d"])) def test_array_coordinates_distances(): """ Test creating coordinates from arrays and distances. """ # correct way ICRS( ra=np.array([1, 2]) * u.deg, dec=np.array([3, 4]) * u.deg, distance=[0.1, 0.2] * u.kpc, ) with pytest.raises(ValueError): # scalar distance and mismatched array coordinates ICRS( ra=np.array([1, 2, 3]) * u.deg, dec=np.array([[3, 4], [5, 6]]) * u.deg, distance=2.0 * u.kpc, ) with pytest.raises(ValueError): # more distance values than coordinates ICRS( ra=np.array([1, 2]) * u.deg, dec=np.array([3, 4]) * u.deg, distance=[0.1, 0.2, 3.0] * u.kpc, ) @pytest.mark.parametrize( ("arrshape", "distance"), [((2,), None), ((4, 2, 5), None), ((4, 2, 5), 2 * u.kpc)] ) def test_array_coordinates_transformations(arrshape, distance): """ Test transformation on coordinates with array content (first length-2 1D, then a 3D array) """ # M31 coordinates from test_transformations raarr = np.ones(arrshape) * 10.6847929 decarr = np.ones(arrshape) * 41.2690650 if distance is not None: distance = np.ones(arrshape) * distance print(raarr, decarr, distance) c = ICRS(ra=raarr * u.deg, dec=decarr * u.deg, distance=distance) g = c.transform_to(Galactic()) assert g.l.shape == arrshape npt.assert_array_almost_equal(g.l.degree, 121.17440967) npt.assert_array_almost_equal(g.b.degree, -21.57299631) if distance is not None: assert g.distance.unit == c.distance.unit # now make sure round-tripping works through FK5 c2 = c.transform_to(FK5()).transform_to(ICRS()) npt.assert_array_almost_equal(c.ra.radian, c2.ra.radian) npt.assert_array_almost_equal(c.dec.radian, c2.dec.radian) assert c2.ra.shape == arrshape if distance is not None: assert c2.distance.unit == c.distance.unit # also make sure it's possible to get to FK4, which uses a direct transform function. fk4 = c.transform_to(FK4()) npt.assert_array_almost_equal(fk4.ra.degree, 10.0004, decimal=4) npt.assert_array_almost_equal(fk4.dec.degree, 40.9953, decimal=4) assert fk4.ra.shape == arrshape if distance is not None: assert fk4.distance.unit == c.distance.unit # now check the reverse transforms run cfk4 = fk4.transform_to(ICRS()) assert cfk4.ra.shape == arrshape def test_array_precession(): """ Ensures that FK5 coordinates as arrays precess their equinoxes """ j2000 = Time("J2000") j1975 = Time("J1975") fk5 = FK5([1, 1.1] * u.radian, [0.5, 0.6] * u.radian) assert fk5.equinox.jyear == j2000.jyear fk5_2 = fk5.transform_to(FK5(equinox=j1975)) assert fk5_2.equinox.jyear == j1975.jyear npt.assert_array_less(0.05, np.abs(fk5.ra.degree - fk5_2.ra.degree)) npt.assert_array_less(0.05, np.abs(fk5.dec.degree - fk5_2.dec.degree)) def test_array_separation(): c1 = ICRS([0, 0] * u.deg, [0, 0] * u.deg) c2 = ICRS([1, 2] * u.deg, [0, 0] * u.deg) npt.assert_array_almost_equal(c1.separation(c2).degree, [1, 2]) c3 = ICRS([0, 3.0] * u.deg, [0.0, 0] * u.deg, distance=[1, 1.0] * u.kpc) c4 = ICRS([1, 1.0] * u.deg, [0.0, 0] * u.deg, distance=[1, 1.0] * u.kpc) # the 3-1 separation should be twice the 0-1 separation, but not *exactly* the same sep = c3.separation_3d(c4) sepdiff = sep[1] - (2 * sep[0]) assert abs(sepdiff.value) < 1e-5 assert sepdiff != 0 def test_array_indexing(): ra = np.linspace(0, 360, 10) dec = np.linspace(-90, 90, 10) j1975 = Time(1975, format="jyear") c1 = FK5(ra * u.deg, dec * u.deg, equinox=j1975) c2 = c1[4] assert c2.ra.degree == 160 assert c2.dec.degree == -10 c3 = c1[2:5] assert_allclose(c3.ra, [80, 120, 160] * u.deg) assert_allclose(c3.dec, [-50, -30, -10] * u.deg) c4 = c1[np.array([2, 5, 8])] assert_allclose(c4.ra, [80, 200, 320] * u.deg) assert_allclose(c4.dec, [-50, 10, 70] * u.deg) # now make sure the equinox is preserved assert c2.equinox == c1.equinox assert c3.equinox == c1.equinox assert c4.equinox == c1.equinox def test_array_len(): input_length = [1, 5] for length in input_length: ra = np.linspace(0, 360, length) dec = np.linspace(0, 90, length) c = ICRS(ra * u.deg, dec * u.deg) assert len(c) == length assert c.shape == (length,) with pytest.raises(TypeError): c = ICRS(0 * u.deg, 0 * u.deg) len(c) assert c.shape == tuple() def test_array_eq(): c1 = ICRS([1, 2] * u.deg, [3, 4] * u.deg) c2 = ICRS([1, 2] * u.deg, [3, 5] * u.deg) c3 = ICRS([1, 3] * u.deg, [3, 4] * u.deg) c4 = ICRS([1, 2] * u.deg, [3, 4.2] * u.deg) assert np.all(c1 == c1) assert np.any(c1 != c2) assert np.any(c1 != c3) assert np.any(c1 != c4)
0ac2c23ee06a4fa13fc6fe1603da5a89653ed2c16262c599b777915cd0f7f8be
# These are no-regression tests for PR #13572 import numpy as np import pytest from numpy.testing import assert_allclose import astropy.units as u from astropy.coordinates import earth_orientation from astropy.time import Time @pytest.fixture def tt_to_test(): return Time("2022-08-25", scale="tt") @pytest.mark.parametrize( "algorithm, result", [(2006, 23.43633313804873), (2000, 23.43634457995851), (1980, 23.436346167704045)], ) def test_obliquity(tt_to_test, algorithm, result): assert_allclose( earth_orientation.obliquity(tt_to_test.jd, algorithm=algorithm), result, rtol=1e-13, ) def test_precession_matrix_Capitaine(tt_to_test): assert_allclose( earth_orientation.precession_matrix_Capitaine( tt_to_test, tt_to_test + 12.345 * u.yr ), np.array( [ [9.99995470e-01, -2.76086535e-03, -1.19936388e-03], [2.76086537e-03, +9.99996189e-01, -1.64025847e-06], [1.19936384e-03, -1.67103117e-06, +9.99999281e-01], ] ), rtol=1e-6, ) def test_nutation_components2000B(tt_to_test): assert_allclose( earth_orientation.nutation_components2000B(tt_to_test.jd), (0.4090413775522035, -5.4418953539440996e-05, 3.176996651841667e-05), rtol=1e-13, ) def test_nutation_matrix(tt_to_test): assert_allclose( earth_orientation.nutation_matrix(tt_to_test), np.array( [ [+9.99999999e-01, +4.99295268e-05, +2.16440489e-05], [-4.99288392e-05, +9.99999998e-01, -3.17705068e-05], [-2.16456351e-05, +3.17694261e-05, +9.99999999e-01], ] ), rtol=1e-6, )
347948aab4f52eabb0a48f2d6efb4ae1134945bb0a13bcfc033f92fd3177a9bf
# Licensed under a 3-clause BSD style license - see LICENSE.rst from copy import deepcopy import numpy as np import pytest from numpy.testing import assert_allclose, assert_array_equal from astropy import units as u from astropy.coordinates.angles import Angle, Latitude, Longitude from astropy.coordinates.distances import Distance from astropy.coordinates.matrix_utilities import rotation_matrix from astropy.coordinates.representation import ( DIFFERENTIAL_CLASSES, DUPLICATE_REPRESENTATIONS, REPRESENTATION_CLASSES, BaseRepresentation, CartesianDifferential, CartesianRepresentation, CylindricalDifferential, CylindricalRepresentation, PhysicsSphericalDifferential, PhysicsSphericalRepresentation, RadialDifferential, RadialRepresentation, SphericalCosLatDifferential, SphericalDifferential, SphericalRepresentation, UnitSphericalCosLatDifferential, UnitSphericalDifferential, UnitSphericalRepresentation, ) from astropy.tests.helper import assert_quantity_allclose as assert_allclose_quantity from astropy.utils import isiterable from astropy.utils.exceptions import DuplicateRepresentationWarning # create matrices for use in testing ``.transform()`` methods matrices = { "rotation": rotation_matrix(-10, "z", u.deg), "general": np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), } # Preserve the original REPRESENTATION_CLASSES dict so that importing # the test file doesn't add a persistent test subclass (LogDRepresentation) def setup_function(func): func.REPRESENTATION_CLASSES_ORIG = deepcopy(REPRESENTATION_CLASSES) func.DUPLICATE_REPRESENTATIONS_ORIG = deepcopy(DUPLICATE_REPRESENTATIONS) def teardown_function(func): REPRESENTATION_CLASSES.clear() REPRESENTATION_CLASSES.update(func.REPRESENTATION_CLASSES_ORIG) DUPLICATE_REPRESENTATIONS.clear() DUPLICATE_REPRESENTATIONS.update(func.DUPLICATE_REPRESENTATIONS_ORIG) def components_equal(rep1, rep2): result = True if type(rep1) is not type(rep2): return False for component in rep1.components: result &= getattr(rep1, component) == getattr(rep2, component) return result def components_allclose(rep1, rep2): result = True if type(rep1) is not type(rep2): return False for component in rep1.components: result &= u.allclose(getattr(rep1, component), getattr(rep2, component)) return result def representation_equal(rep1, rep2): result = True if type(rep1) is not type(rep2): return False if getattr(rep1, "_differentials", False): if rep1._differentials.keys() != rep2._differentials.keys(): return False for key, diff1 in rep1._differentials.items(): result &= components_equal(diff1, rep2._differentials[key]) elif getattr(rep2, "_differentials", False): return False return result & components_equal(rep1, rep2) def representation_equal_up_to_angular_type(rep1, rep2): result = True if type(rep1) is not type(rep2): return False if getattr(rep1, "_differentials", False): if rep1._differentials.keys() != rep2._differentials.keys(): return False for key, diff1 in rep1._differentials.items(): result &= components_allclose(diff1, rep2._differentials[key]) elif getattr(rep2, "_differentials", False): return False return result & components_allclose(rep1, rep2) class TestRadialRepresentation: def test_transform(self): """Test the ``transform`` method. Only multiplication matrices pass.""" rep = RadialRepresentation(distance=10 * u.kpc) # a rotation matrix does not work matrix = rotation_matrix(10 * u.deg) with pytest.raises(ValueError, match="scaled identity matrix"): rep.transform(matrix) # only a scaled identity matrix matrix = 3 * np.identity(3) newrep = rep.transform(matrix) assert newrep.distance == 30 * u.kpc # let's also check with differentials dif = RadialDifferential(d_distance=-3 * u.km / u.s) rep = rep.with_differentials(dict(s=dif)) newrep = rep.transform(matrix) assert newrep.distance == 30 * u.kpc assert newrep.differentials["s"].d_distance == -9 * u.km / u.s class TestSphericalRepresentation: def test_name(self): assert SphericalRepresentation.get_name() == "spherical" assert SphericalRepresentation.get_name() in REPRESENTATION_CLASSES def test_empty_init(self): with pytest.raises(TypeError) as exc: s = SphericalRepresentation() def test_init_quantity(self): s3 = SphericalRepresentation( lon=8 * u.hourangle, lat=5 * u.deg, distance=10 * u.kpc ) assert s3.lon == 8.0 * u.hourangle assert s3.lat == 5.0 * u.deg assert s3.distance == 10 * u.kpc assert isinstance(s3.lon, Longitude) assert isinstance(s3.lat, Latitude) assert isinstance(s3.distance, Distance) def test_init_no_mutate_input(self): lon = -1 * u.hourangle s = SphericalRepresentation( lon=lon, lat=-1 * u.deg, distance=1 * u.kpc, copy=True ) # The longitude component should be wrapped at 24 hours assert_allclose_quantity(s.lon, 23 * u.hourangle) # The input should not have been mutated by the constructor assert_allclose_quantity(lon, -1 * u.hourangle) def test_init_lonlat(self): s2 = SphericalRepresentation( Longitude(8, u.hour), Latitude(5, u.deg), Distance(10, u.kpc) ) assert s2.lon == 8.0 * u.hourangle assert s2.lat == 5.0 * u.deg assert s2.distance == 10.0 * u.kpc assert isinstance(s2.lon, Longitude) assert isinstance(s2.lat, Latitude) assert isinstance(s2.distance, Distance) # also test that wrap_angle is preserved s3 = SphericalRepresentation( Longitude(-90, u.degree, wrap_angle=180 * u.degree), Latitude(-45, u.degree), Distance(1.0, u.Rsun), ) assert s3.lon == -90.0 * u.degree assert s3.lon.wrap_angle == 180 * u.degree def test_init_subclass(self): class Longitude180(Longitude): _default_wrap_angle = 180 * u.degree s = SphericalRepresentation( Longitude180(-90, u.degree), Latitude(-45, u.degree), Distance(1.0, u.Rsun) ) assert isinstance(s.lon, Longitude180) assert s.lon == -90.0 * u.degree assert s.lon.wrap_angle == 180 * u.degree def test_init_array(self): s1 = SphericalRepresentation( lon=[8, 9] * u.hourangle, lat=[5, 6] * u.deg, distance=[1, 2] * u.kpc ) assert_allclose(s1.lon.degree, [120, 135]) assert_allclose(s1.lat.degree, [5, 6]) assert_allclose(s1.distance.kpc, [1, 2]) assert isinstance(s1.lon, Longitude) assert isinstance(s1.lat, Latitude) assert isinstance(s1.distance, Distance) def test_init_array_nocopy(self): lon = Longitude([8, 9] * u.hourangle) lat = Latitude([5, 6] * u.deg) distance = Distance([1, 2] * u.kpc) s1 = SphericalRepresentation(lon=lon, lat=lat, distance=distance, copy=False) lon[:] = [1, 2] * u.rad lat[:] = [3, 4] * u.arcmin distance[:] = [8, 9] * u.Mpc assert_allclose_quantity(lon, s1.lon) assert_allclose_quantity(lat, s1.lat) assert_allclose_quantity(distance, s1.distance) def test_init_float32_array(self): """Regression test against #2983""" lon = Longitude(np.float32([1.0, 2.0]), u.degree) lat = Latitude(np.float32([3.0, 4.0]), u.degree) s1 = UnitSphericalRepresentation(lon=lon, lat=lat, copy=False) assert s1.lon.dtype == np.float32 assert s1.lat.dtype == np.float32 assert s1._values["lon"].dtype == np.float32 assert s1._values["lat"].dtype == np.float32 def test_reprobj(self): s1 = SphericalRepresentation( lon=8 * u.hourangle, lat=5 * u.deg, distance=10 * u.kpc ) s2 = SphericalRepresentation.from_representation(s1) assert_allclose_quantity(s2.lon, 8.0 * u.hourangle) assert_allclose_quantity(s2.lat, 5.0 * u.deg) assert_allclose_quantity(s2.distance, 10 * u.kpc) s3 = SphericalRepresentation(s1) assert representation_equal(s1, s3) def test_broadcasting(self): s1 = SphericalRepresentation( lon=[8, 9] * u.hourangle, lat=[5, 6] * u.deg, distance=10 * u.kpc ) assert_allclose_quantity(s1.lon, [120, 135] * u.degree) assert_allclose_quantity(s1.lat, [5, 6] * u.degree) assert_allclose_quantity(s1.distance, [10, 10] * u.kpc) def test_broadcasting_mismatch(self): with pytest.raises(ValueError) as exc: s1 = SphericalRepresentation( lon=[8, 9, 10] * u.hourangle, lat=[5, 6] * u.deg, distance=[1, 2] * u.kpc, ) assert ( exc.value.args[0] == "Input parameters lon, lat, and distance cannot be broadcast" ) def test_broadcasting_and_nocopy(self): s1 = SphericalRepresentation( lon=[200] * u.deg, lat=[0] * u.deg, distance=[0] * u.kpc, copy=False ) # With no copying, we should be able to modify the wrap angle of the longitude component s1.lon.wrap_angle = 180 * u.deg s2 = SphericalRepresentation( lon=[200] * u.deg, lat=0 * u.deg, distance=0 * u.kpc, copy=False ) # We should be able to modify the wrap angle of the longitude component even if other # components need to be broadcasted s2.lon.wrap_angle = 180 * u.deg def test_readonly(self): s1 = SphericalRepresentation( lon=8 * u.hourangle, lat=5 * u.deg, distance=1.0 * u.kpc ) with pytest.raises(AttributeError): s1.lon = 1.0 * u.deg with pytest.raises(AttributeError): s1.lat = 1.0 * u.deg with pytest.raises(AttributeError): s1.distance = 1.0 * u.kpc def test_getitem_len_iterable(self): s = SphericalRepresentation( lon=np.arange(10) * u.deg, lat=-np.arange(10) * u.deg, distance=1 * u.kpc ) s_slc = s[2:8:2] assert_allclose_quantity(s_slc.lon, [2, 4, 6] * u.deg) assert_allclose_quantity(s_slc.lat, [-2, -4, -6] * u.deg) assert_allclose_quantity(s_slc.distance, [1, 1, 1] * u.kpc) assert len(s) == 10 assert isiterable(s) def test_getitem_len_iterable_scalar(self): s = SphericalRepresentation(lon=1 * u.deg, lat=-2 * u.deg, distance=3 * u.kpc) with pytest.raises(TypeError): s_slc = s[0] with pytest.raises(TypeError): len(s) assert not isiterable(s) def test_setitem(self): s = SphericalRepresentation( lon=np.arange(5) * u.deg, lat=-np.arange(5) * u.deg, distance=1 * u.kpc ) s[:2] = SphericalRepresentation( lon=10.0 * u.deg, lat=2.0 * u.deg, distance=5.0 * u.kpc ) assert_allclose_quantity(s.lon, [10, 10, 2, 3, 4] * u.deg) assert_allclose_quantity(s.lat, [2, 2, -2, -3, -4] * u.deg) assert_allclose_quantity(s.distance, [5, 5, 1, 1, 1] * u.kpc) def test_negative_distance(self): """Only allowed if explicitly passed on.""" with pytest.raises(ValueError, match="allow_negative"): SphericalRepresentation(10 * u.deg, 20 * u.deg, -10 * u.m) s1 = SphericalRepresentation( 10 * u.deg, 20 * u.deg, Distance(-10 * u.m, allow_negative=True) ) assert s1.distance == -10.0 * u.m def test_nan_distance(self): """This is a regression test: calling represent_as() and passing in the same class as the object shouldn't round-trip through cartesian. """ sph = SphericalRepresentation(1 * u.deg, 2 * u.deg, np.nan * u.kpc) new_sph = sph.represent_as(SphericalRepresentation) assert_allclose_quantity(new_sph.lon, sph.lon) assert_allclose_quantity(new_sph.lat, sph.lat) dif = SphericalCosLatDifferential( 1 * u.mas / u.yr, 2 * u.mas / u.yr, 3 * u.km / u.s ) sph = sph.with_differentials(dif) new_sph = sph.represent_as(SphericalRepresentation) assert_allclose_quantity(new_sph.lon, sph.lon) assert_allclose_quantity(new_sph.lat, sph.lat) def test_raise_on_extra_arguments(self): with pytest.raises(TypeError, match="got multiple values"): SphericalRepresentation(1 * u.deg, 2 * u.deg, 1.0 * u.kpc, lat=10) with pytest.raises(TypeError, match="unexpected keyword.*parrot"): SphericalRepresentation(1 * u.deg, 2 * u.deg, 1.0 * u.kpc, parrot=10) def test_representation_shortcuts(self): """Test that shortcuts in ``represent_as`` don't fail.""" difs = SphericalCosLatDifferential( 4 * u.mas / u.yr, 5 * u.mas / u.yr, 6 * u.km / u.s ) sph = SphericalRepresentation( 1 * u.deg, 2 * u.deg, 3 * u.kpc, differentials={"s": difs} ) got = sph.represent_as( PhysicsSphericalRepresentation, PhysicsSphericalDifferential ) assert np.may_share_memory(sph.lon, got.phi) assert np.may_share_memory(sph.distance, got.r) expected = BaseRepresentation.represent_as( sph, PhysicsSphericalRepresentation, PhysicsSphericalDifferential ) # equal up to angular type assert representation_equal_up_to_angular_type(got, expected) got = sph.represent_as(UnitSphericalRepresentation, UnitSphericalDifferential) assert np.may_share_memory(sph.lon, got.lon) assert np.may_share_memory(sph.lat, got.lat) expected = BaseRepresentation.represent_as( sph, UnitSphericalRepresentation, UnitSphericalDifferential ) assert representation_equal_up_to_angular_type(got, expected) def test_transform(self): """Test ``.transform()`` on rotation and general matrices.""" # set up representation ds1 = SphericalDifferential( d_lon=[1, 2] * u.mas / u.yr, d_lat=[3, 4] * u.mas / u.yr, d_distance=[-5, 6] * u.km / u.s, ) s1 = SphericalRepresentation( lon=[1, 2] * u.deg, lat=[3, 4] * u.deg, distance=[5, 6] * u.kpc, differentials=ds1, ) # transform representation & get comparison (thru CartesianRep) s2 = s1.transform(matrices["rotation"]) ds2 = s2.differentials["s"] dexpected = SphericalDifferential.from_cartesian( ds1.to_cartesian(base=s1).transform(matrices["rotation"]), base=s2 ) assert_allclose_quantity(s2.lon, s1.lon + 10 * u.deg) assert_allclose_quantity(s2.lat, s1.lat) assert_allclose_quantity(s2.distance, s1.distance) # check differentials. they shouldn't have changed. assert_allclose_quantity(ds2.d_lon, ds1.d_lon) assert_allclose_quantity(ds2.d_lat, ds1.d_lat) assert_allclose_quantity(ds2.d_distance, ds1.d_distance) assert_allclose_quantity(ds2.d_lon, dexpected.d_lon) assert_allclose_quantity(ds2.d_lat, dexpected.d_lat) assert_allclose_quantity(ds2.d_distance, dexpected.d_distance) # now with a non rotation matrix # transform representation & get comparison (thru CartesianRep) s3 = s1.transform(matrices["general"]) ds3 = s3.differentials["s"] expected = ( s1.represent_as(CartesianRepresentation, CartesianDifferential) .transform(matrices["general"]) .represent_as(SphericalRepresentation, SphericalDifferential) ) dexpected = expected.differentials["s"] assert_allclose_quantity(s3.lon, expected.lon) assert_allclose_quantity(s3.lat, expected.lat) assert_allclose_quantity(s3.distance, expected.distance) assert_allclose_quantity(ds3.d_lon, dexpected.d_lon) assert_allclose_quantity(ds3.d_lat, dexpected.d_lat) assert_allclose_quantity(ds3.d_distance, dexpected.d_distance) def test_transform_with_NaN(self): # all over again, but with a NaN in the distance ds1 = SphericalDifferential( d_lon=[1, 2] * u.mas / u.yr, d_lat=[3, 4] * u.mas / u.yr, d_distance=[-5, 6] * u.km / u.s, ) s1 = SphericalRepresentation( lon=[1, 2] * u.deg, lat=[3, 4] * u.deg, distance=[5, np.nan] * u.kpc, differentials=ds1, ) # transform representation & get comparison (thru CartesianRep) s2 = s1.transform(matrices["rotation"]) ds2 = s2.differentials["s"] dexpected = SphericalDifferential.from_cartesian( ds1.to_cartesian(base=s1).transform(matrices["rotation"]), base=s2 ) assert_allclose_quantity(s2.lon, s1.lon + 10 * u.deg) assert_allclose_quantity(s2.lat, s1.lat) assert_allclose_quantity(s2.distance, s1.distance) assert_allclose_quantity(ds2.d_lon, dexpected.d_lon) assert_allclose_quantity(ds2.d_lat, dexpected.d_lat) assert_allclose_quantity(ds2.d_distance, dexpected.d_distance) # the 2nd component is NaN since the 2nd distance is NaN # TODO! this will change when ``.transform`` skips Cartesian assert_array_equal(np.isnan(ds2.d_lon), (False, True)) assert_array_equal(np.isnan(ds2.d_lat), (False, True)) assert_array_equal(np.isnan(ds2.d_distance), (False, True)) # now with a non rotation matrix s3 = s1.transform(matrices["general"]) ds3 = s3.differentials["s"] thruC = ( s1.represent_as(CartesianRepresentation, CartesianDifferential) .transform(matrices["general"]) .represent_as( SphericalRepresentation, differential_class=SphericalDifferential ) ) dthruC = thruC.differentials["s"] # s3 should not propagate Nan. assert_array_equal(np.isnan(s3.lon), (False, False)) assert_array_equal(np.isnan(s3.lat), (False, False)) assert_array_equal(np.isnan(s3.distance), (False, True)) # ds3 does b/c currently aren't any shortcuts on the transform assert_array_equal(np.isnan(ds3.d_lon), (False, True)) assert_array_equal(np.isnan(ds3.d_lat), (False, True)) assert_array_equal(np.isnan(ds3.d_distance), (False, True)) # through Cartesian should assert_array_equal(np.isnan(thruC.lon), (False, True)) assert_array_equal(np.isnan(thruC.lat), (False, True)) assert_array_equal(np.isnan(thruC.distance), (False, True)) assert_array_equal(np.isnan(dthruC.d_lon), (False, True)) assert_array_equal(np.isnan(dthruC.d_lat), (False, True)) assert_array_equal(np.isnan(dthruC.d_distance), (False, True)) # test that they are close on the first value assert_allclose_quantity(s3.lon[0], thruC.lon[0]) assert_allclose_quantity(s3.lat[0], thruC.lat[0]) assert_allclose_quantity(ds3.d_lon[0], dthruC.d_lon[0]) assert_allclose_quantity(ds3.d_lat[0], dthruC.d_lat[0]) class TestUnitSphericalRepresentation: def test_name(self): assert UnitSphericalRepresentation.get_name() == "unitspherical" assert UnitSphericalRepresentation.get_name() in REPRESENTATION_CLASSES def test_empty_init(self): with pytest.raises(TypeError) as exc: s = UnitSphericalRepresentation() def test_init_quantity(self): s3 = UnitSphericalRepresentation(lon=8 * u.hourangle, lat=5 * u.deg) assert s3.lon == 8.0 * u.hourangle assert s3.lat == 5.0 * u.deg assert isinstance(s3.lon, Longitude) assert isinstance(s3.lat, Latitude) def test_init_lonlat(self): s2 = UnitSphericalRepresentation(Longitude(8, u.hour), Latitude(5, u.deg)) assert s2.lon == 8.0 * u.hourangle assert s2.lat == 5.0 * u.deg assert isinstance(s2.lon, Longitude) assert isinstance(s2.lat, Latitude) def test_init_array(self): s1 = UnitSphericalRepresentation(lon=[8, 9] * u.hourangle, lat=[5, 6] * u.deg) assert_allclose(s1.lon.degree, [120, 135]) assert_allclose(s1.lat.degree, [5, 6]) assert isinstance(s1.lon, Longitude) assert isinstance(s1.lat, Latitude) def test_init_array_nocopy(self): lon = Longitude([8, 9] * u.hourangle) lat = Latitude([5, 6] * u.deg) s1 = UnitSphericalRepresentation(lon=lon, lat=lat, copy=False) lon[:] = [1, 2] * u.rad lat[:] = [3, 4] * u.arcmin assert_allclose_quantity(lon, s1.lon) assert_allclose_quantity(lat, s1.lat) def test_reprobj(self): s1 = UnitSphericalRepresentation(lon=8 * u.hourangle, lat=5 * u.deg) s2 = UnitSphericalRepresentation.from_representation(s1) assert_allclose_quantity(s2.lon, 8.0 * u.hourangle) assert_allclose_quantity(s2.lat, 5.0 * u.deg) s3 = UnitSphericalRepresentation(s1) assert representation_equal(s3, s1) def test_broadcasting(self): s1 = UnitSphericalRepresentation(lon=[8, 9] * u.hourangle, lat=[5, 6] * u.deg) assert_allclose_quantity(s1.lon, [120, 135] * u.degree) assert_allclose_quantity(s1.lat, [5, 6] * u.degree) def test_broadcasting_mismatch(self): with pytest.raises(ValueError) as exc: s1 = UnitSphericalRepresentation( lon=[8, 9, 10] * u.hourangle, lat=[5, 6] * u.deg ) assert exc.value.args[0] == "Input parameters lon and lat cannot be broadcast" def test_readonly(self): s1 = UnitSphericalRepresentation(lon=8 * u.hourangle, lat=5 * u.deg) with pytest.raises(AttributeError): s1.lon = 1.0 * u.deg with pytest.raises(AttributeError): s1.lat = 1.0 * u.deg def test_getitem(self): s = UnitSphericalRepresentation( lon=np.arange(10) * u.deg, lat=-np.arange(10) * u.deg ) s_slc = s[2:8:2] assert_allclose_quantity(s_slc.lon, [2, 4, 6] * u.deg) assert_allclose_quantity(s_slc.lat, [-2, -4, -6] * u.deg) def test_getitem_scalar(self): s = UnitSphericalRepresentation(lon=1 * u.deg, lat=-2 * u.deg) with pytest.raises(TypeError): s_slc = s[0] def test_representation_shortcuts(self): """Test that shortcuts in ``represent_as`` don't fail.""" # TODO! representation transformations with differentials cannot # (currently) be implemented due to a mismatch between the UnitSpherical # expected keys (e.g. "s") and that expected in the other class # (here "s / m"). For more info, see PR #11467 # We leave the test code commented out for future use. # diffs = UnitSphericalCosLatDifferential(4*u.mas/u.yr, 5*u.mas/u.yr, # 6*u.km/u.s) sph = UnitSphericalRepresentation(1 * u.deg, 2 * u.deg) # , differentials={'s': diffs} got = sph.represent_as(PhysicsSphericalRepresentation) # , PhysicsSphericalDifferential) assert np.may_share_memory(sph.lon, got.phi) expected = BaseRepresentation.represent_as( sph, PhysicsSphericalRepresentation ) # PhysicsSphericalDifferential assert representation_equal_up_to_angular_type(got, expected) got = sph.represent_as(SphericalRepresentation) # , SphericalDifferential) assert np.may_share_memory(sph.lon, got.lon) assert np.may_share_memory(sph.lat, got.lat) expected = BaseRepresentation.represent_as( sph, SphericalRepresentation ) # , SphericalDifferential) assert representation_equal_up_to_angular_type(got, expected) def test_transform(self): """Test ``.transform()`` on rotation and general matrices.""" # set up representation ds1 = UnitSphericalDifferential( d_lon=[1, 2] * u.mas / u.yr, d_lat=[3, 4] * u.mas / u.yr, ) s1 = UnitSphericalRepresentation( lon=[1, 2] * u.deg, lat=[3, 4] * u.deg, differentials=ds1 ) # transform representation & get comparison (thru CartesianRep) s2 = s1.transform(matrices["rotation"]) ds2 = s2.differentials["s"] dexpected = UnitSphericalDifferential.from_cartesian( ds1.to_cartesian(base=s1).transform(matrices["rotation"]), base=s2 ) assert_allclose_quantity(s2.lon, s1.lon + 10 * u.deg) assert_allclose_quantity(s2.lat, s1.lat) # compare differentials. they should be unchanged (ds1). assert_allclose_quantity(ds2.d_lon, ds1.d_lon) assert_allclose_quantity(ds2.d_lat, ds1.d_lat) assert_allclose_quantity(ds2.d_lon, dexpected.d_lon) assert_allclose_quantity(ds2.d_lat, dexpected.d_lat) assert not hasattr(ds2, "d_distance") # now with a non rotation matrix # note that the result will be a Spherical, not UnitSpherical s3 = s1.transform(matrices["general"]) ds3 = s3.differentials["s"] expected = ( s1.represent_as(CartesianRepresentation, CartesianDifferential) .transform(matrices["general"]) .represent_as( SphericalRepresentation, differential_class=SphericalDifferential ) ) dexpected = expected.differentials["s"] assert_allclose_quantity(s3.lon, expected.lon) assert_allclose_quantity(s3.lat, expected.lat) assert_allclose_quantity(s3.distance, expected.distance) assert_allclose_quantity(ds3.d_lon, dexpected.d_lon) assert_allclose_quantity(ds3.d_lat, dexpected.d_lat) assert_allclose_quantity(ds3.d_distance, dexpected.d_distance) class TestPhysicsSphericalRepresentation: def test_name(self): assert PhysicsSphericalRepresentation.get_name() == "physicsspherical" assert PhysicsSphericalRepresentation.get_name() in REPRESENTATION_CLASSES def test_empty_init(self): with pytest.raises(TypeError) as exc: s = PhysicsSphericalRepresentation() def test_init_quantity(self): s3 = PhysicsSphericalRepresentation( phi=8 * u.hourangle, theta=5 * u.deg, r=10 * u.kpc ) assert s3.phi == 8.0 * u.hourangle assert s3.theta == 5.0 * u.deg assert s3.r == 10 * u.kpc assert isinstance(s3.phi, Angle) assert isinstance(s3.theta, Angle) assert isinstance(s3.r, Distance) def test_init_phitheta(self): s2 = PhysicsSphericalRepresentation( Angle(8, u.hour), Angle(5, u.deg), Distance(10, u.kpc) ) assert s2.phi == 8.0 * u.hourangle assert s2.theta == 5.0 * u.deg assert s2.r == 10.0 * u.kpc assert isinstance(s2.phi, Angle) assert isinstance(s2.theta, Angle) assert isinstance(s2.r, Distance) def test_init_array(self): s1 = PhysicsSphericalRepresentation( phi=[8, 9] * u.hourangle, theta=[5, 6] * u.deg, r=[1, 2] * u.kpc ) assert_allclose(s1.phi.degree, [120, 135]) assert_allclose(s1.theta.degree, [5, 6]) assert_allclose(s1.r.kpc, [1, 2]) assert isinstance(s1.phi, Angle) assert isinstance(s1.theta, Angle) assert isinstance(s1.r, Distance) def test_init_array_nocopy(self): phi = Angle([8, 9] * u.hourangle) theta = Angle([5, 6] * u.deg) r = Distance([1, 2] * u.kpc) s1 = PhysicsSphericalRepresentation(phi=phi, theta=theta, r=r, copy=False) phi[:] = [1, 2] * u.rad theta[:] = [3, 4] * u.arcmin r[:] = [8, 9] * u.Mpc assert_allclose_quantity(phi, s1.phi) assert_allclose_quantity(theta, s1.theta) assert_allclose_quantity(r, s1.r) def test_reprobj(self): s1 = PhysicsSphericalRepresentation( phi=8 * u.hourangle, theta=5 * u.deg, r=10 * u.kpc ) s2 = PhysicsSphericalRepresentation.from_representation(s1) assert_allclose_quantity(s2.phi, 8.0 * u.hourangle) assert_allclose_quantity(s2.theta, 5.0 * u.deg) assert_allclose_quantity(s2.r, 10 * u.kpc) s3 = PhysicsSphericalRepresentation(s1) assert representation_equal(s3, s1) def test_broadcasting(self): s1 = PhysicsSphericalRepresentation( phi=[8, 9] * u.hourangle, theta=[5, 6] * u.deg, r=10 * u.kpc ) assert_allclose_quantity(s1.phi, [120, 135] * u.degree) assert_allclose_quantity(s1.theta, [5, 6] * u.degree) assert_allclose_quantity(s1.r, [10, 10] * u.kpc) def test_broadcasting_mismatch(self): with pytest.raises( ValueError, match="Input parameters phi, theta, and r cannot be broadcast" ): s1 = PhysicsSphericalRepresentation( phi=[8, 9, 10] * u.hourangle, theta=[5, 6] * u.deg, r=[1, 2] * u.kpc ) def test_readonly(self): s1 = PhysicsSphericalRepresentation( phi=[8, 9] * u.hourangle, theta=[5, 6] * u.deg, r=[10, 20] * u.kpc ) with pytest.raises(AttributeError): s1.phi = 1.0 * u.deg with pytest.raises(AttributeError): s1.theta = 1.0 * u.deg with pytest.raises(AttributeError): s1.r = 1.0 * u.kpc def test_getitem(self): s = PhysicsSphericalRepresentation( phi=np.arange(10) * u.deg, theta=np.arange(5, 15) * u.deg, r=1 * u.kpc ) s_slc = s[2:8:2] assert_allclose_quantity(s_slc.phi, [2, 4, 6] * u.deg) assert_allclose_quantity(s_slc.theta, [7, 9, 11] * u.deg) assert_allclose_quantity(s_slc.r, [1, 1, 1] * u.kpc) def test_getitem_scalar(self): s = PhysicsSphericalRepresentation(phi=1 * u.deg, theta=2 * u.deg, r=3 * u.kpc) with pytest.raises(TypeError): s_slc = s[0] def test_representation_shortcuts(self): """Test that shortcuts in ``represent_as`` don't fail.""" difs = PhysicsSphericalDifferential( 4 * u.mas / u.yr, 5 * u.mas / u.yr, 6 * u.km / u.s ) sph = PhysicsSphericalRepresentation( 1 * u.deg, 2 * u.deg, 3 * u.kpc, differentials={"s": difs} ) got = sph.represent_as(SphericalRepresentation, SphericalDifferential) assert np.may_share_memory(sph.phi, got.lon) assert np.may_share_memory(sph.r, got.distance) expected = BaseRepresentation.represent_as( sph, SphericalRepresentation, SphericalDifferential ) assert representation_equal_up_to_angular_type(got, expected) got = sph.represent_as(UnitSphericalRepresentation, UnitSphericalDifferential) assert np.may_share_memory(sph.phi, got.lon) expected = BaseRepresentation.represent_as( sph, UnitSphericalRepresentation, UnitSphericalDifferential ) assert representation_equal_up_to_angular_type(got, expected) def test_initialize_with_nan(self): # Regression test for gh-11558: initialization used to fail. psr = PhysicsSphericalRepresentation( [1.0, np.nan] * u.deg, [np.nan, 2.0] * u.deg, [3.0, np.nan] * u.m ) assert_array_equal(np.isnan(psr.phi), [False, True]) assert_array_equal(np.isnan(psr.theta), [True, False]) assert_array_equal(np.isnan(psr.r), [False, True]) def test_transform(self): """Test ``.transform()`` on rotation and general transform matrices.""" # set up representation ds1 = PhysicsSphericalDifferential( d_phi=[1, 2] * u.mas / u.yr, d_theta=[3, 4] * u.mas / u.yr, d_r=[-5, 6] * u.km / u.s, ) s1 = PhysicsSphericalRepresentation( phi=[1, 2] * u.deg, theta=[3, 4] * u.deg, r=[5, 6] * u.kpc, differentials=ds1, ) # transform representation & get comparison (thru CartesianRep) s2 = s1.transform(matrices["rotation"]) ds2 = s2.differentials["s"] dexpected = PhysicsSphericalDifferential.from_cartesian( ds1.to_cartesian(base=s1).transform(matrices["rotation"]), base=s2 ) assert_allclose_quantity(s2.phi, s1.phi + 10 * u.deg) assert_allclose_quantity(s2.theta, s1.theta) assert_allclose_quantity(s2.r, s1.r) # compare differentials. should be unchanged (ds1). assert_allclose_quantity(ds2.d_phi, ds1.d_phi) assert_allclose_quantity(ds2.d_theta, ds1.d_theta) assert_allclose_quantity(ds2.d_r, ds1.d_r) assert_allclose_quantity(ds2.d_phi, dexpected.d_phi) assert_allclose_quantity(ds2.d_theta, dexpected.d_theta) assert_allclose_quantity(ds2.d_r, dexpected.d_r) # now with a non rotation matrix # transform representation & get comparison (thru CartesianRep) s3 = s1.transform(matrices["general"]) ds3 = s3.differentials["s"] expected = ( s1.represent_as(CartesianRepresentation, CartesianDifferential) .transform(matrices["general"]) .represent_as(PhysicsSphericalRepresentation, PhysicsSphericalDifferential) ) dexpected = expected.differentials["s"] assert_allclose_quantity(s3.phi, expected.phi) assert_allclose_quantity(s3.theta, expected.theta) assert_allclose_quantity(s3.r, expected.r) assert_allclose_quantity(ds3.d_phi, dexpected.d_phi) assert_allclose_quantity(ds3.d_theta, dexpected.d_theta) assert_allclose_quantity(ds3.d_r, dexpected.d_r) def test_transform_with_NaN(self): # all over again, but with a NaN in the distance ds1 = PhysicsSphericalDifferential( d_phi=[1, 2] * u.mas / u.yr, d_theta=[3, 4] * u.mas / u.yr, d_r=[-5, 6] * u.km / u.s, ) s1 = PhysicsSphericalRepresentation( phi=[1, 2] * u.deg, theta=[3, 4] * u.deg, r=[5, np.nan] * u.kpc, differentials=ds1, ) # transform representation & get comparison (thru CartesianRep) s2 = s1.transform(matrices["rotation"]) ds2 = s2.differentials["s"] dexpected = PhysicsSphericalDifferential.from_cartesian( ds1.to_cartesian(base=s1).transform(matrices["rotation"]), base=s2 ) assert_allclose_quantity(s2.phi, s1.phi + 10 * u.deg) assert_allclose_quantity(s2.theta, s1.theta) assert_allclose_quantity(s2.r, s1.r) assert_allclose_quantity(ds2.d_phi, dexpected.d_phi) assert_allclose_quantity(ds2.d_theta, dexpected.d_theta) assert_allclose_quantity(ds2.d_r, dexpected.d_r) # now with a non rotation matrix s3 = s1.transform(matrices["general"]) ds3 = s3.differentials["s"] thruC = ( s1.represent_as(CartesianRepresentation, CartesianDifferential) .transform(matrices["general"]) .represent_as(PhysicsSphericalRepresentation, PhysicsSphericalDifferential) ) dthruC = thruC.differentials["s"] # s3 should not propagate Nan. assert_array_equal(np.isnan(s3.phi), (False, False)) assert_array_equal(np.isnan(s3.theta), (False, False)) assert_array_equal(np.isnan(s3.r), (False, True)) # ds3 does b/c currently aren't any shortcuts on the transform assert_array_equal(np.isnan(ds3.d_phi), (False, True)) assert_array_equal(np.isnan(ds3.d_theta), (False, True)) assert_array_equal(np.isnan(ds3.d_r), (False, True)) # through Cartesian does assert_array_equal(np.isnan(thruC.phi), (False, True)) assert_array_equal(np.isnan(thruC.theta), (False, True)) assert_array_equal(np.isnan(thruC.r), (False, True)) # so only test on the first value assert_allclose_quantity(s3.phi[0], thruC.phi[0]) assert_allclose_quantity(s3.theta[0], thruC.theta[0]) assert_allclose_quantity(ds3.d_phi[0], dthruC.d_phi[0]) assert_allclose_quantity(ds3.d_theta[0], dthruC.d_theta[0]) class TestCartesianRepresentation: def test_name(self): assert CartesianRepresentation.get_name() == "cartesian" assert CartesianRepresentation.get_name() in REPRESENTATION_CLASSES def test_empty_init(self): with pytest.raises(TypeError) as exc: s = CartesianRepresentation() def test_init_quantity(self): s1 = CartesianRepresentation(x=1 * u.kpc, y=2 * u.kpc, z=3 * u.kpc) assert s1.x.unit is u.kpc assert s1.y.unit is u.kpc assert s1.z.unit is u.kpc assert_allclose(s1.x.value, 1) assert_allclose(s1.y.value, 2) assert_allclose(s1.z.value, 3) def test_init_singleunit(self): s1 = CartesianRepresentation(x=1, y=2, z=3, unit=u.kpc) assert s1.x.unit is u.kpc assert s1.y.unit is u.kpc assert s1.z.unit is u.kpc assert_allclose(s1.x.value, 1) assert_allclose(s1.y.value, 2) assert_allclose(s1.z.value, 3) def test_init_array(self): s1 = CartesianRepresentation( x=[1, 2, 3] * u.pc, y=[2, 3, 4] * u.Mpc, z=[3, 4, 5] * u.kpc ) assert s1.x.unit is u.pc assert s1.y.unit is u.Mpc assert s1.z.unit is u.kpc assert_allclose(s1.x.value, [1, 2, 3]) assert_allclose(s1.y.value, [2, 3, 4]) assert_allclose(s1.z.value, [3, 4, 5]) def test_init_one_array(self): s1 = CartesianRepresentation(x=[1, 2, 3] * u.pc) assert s1.x.unit is u.pc assert s1.y.unit is u.pc assert s1.z.unit is u.pc assert_allclose(s1.x.value, 1) assert_allclose(s1.y.value, 2) assert_allclose(s1.z.value, 3) r = np.arange(27.0).reshape(3, 3, 3) * u.kpc s2 = CartesianRepresentation(r, xyz_axis=0) assert s2.shape == (3, 3) assert s2.x.unit == u.kpc assert np.all(s2.x == r[0]) assert np.all(s2.xyz == r) assert np.all(s2.get_xyz(xyz_axis=0) == r) s3 = CartesianRepresentation(r, xyz_axis=1) assert s3.shape == (3, 3) assert np.all(s3.x == r[:, 0]) assert np.all(s3.y == r[:, 1]) assert np.all(s3.z == r[:, 2]) assert np.all(s3.get_xyz(xyz_axis=1) == r) s4 = CartesianRepresentation(r, xyz_axis=2) assert s4.shape == (3, 3) assert np.all(s4.x == r[:, :, 0]) assert np.all(s4.get_xyz(xyz_axis=2) == r) s5 = CartesianRepresentation(r, unit=u.pc) assert s5.x.unit == u.pc assert np.all(s5.xyz == r) s6 = CartesianRepresentation(r.value, unit=u.pc, xyz_axis=2) assert s6.x.unit == u.pc assert np.all(s6.get_xyz(xyz_axis=2).value == r.value) def test_init_one_array_size_fail(self): with pytest.raises(ValueError) as exc: CartesianRepresentation(x=[1, 2, 3, 4] * u.pc) assert exc.value.args[0].startswith("too many values to unpack") def test_init_xyz_but_more_than_one_array_fail(self): with pytest.raises(ValueError) as exc: CartesianRepresentation( x=[1, 2, 3] * u.pc, y=[2, 3, 4] * u.pc, z=[3, 4, 5] * u.pc, xyz_axis=0 ) assert "xyz_axis should only be set" in str(exc.value) def test_init_one_array_yz_fail(self): with pytest.raises( ValueError, match="x, y, and z are required to instantiate CartesianRepresentation", ): CartesianRepresentation(x=[1, 2, 3, 4] * u.pc, y=[1, 2] * u.pc) def test_init_array_nocopy(self): x = [8, 9, 10] * u.pc y = [5, 6, 7] * u.Mpc z = [2, 3, 4] * u.kpc s1 = CartesianRepresentation(x=x, y=y, z=z, copy=False) x[:] = [1, 2, 3] * u.kpc y[:] = [9, 9, 8] * u.kpc z[:] = [1, 2, 1] * u.kpc assert_allclose_quantity(x, s1.x) assert_allclose_quantity(y, s1.y) assert_allclose_quantity(z, s1.z) def test_xyz_is_view_if_possible(self): xyz = np.arange(1.0, 10.0).reshape(3, 3) s1 = CartesianRepresentation(xyz, unit=u.kpc, copy=False) s1_xyz = s1.xyz assert s1_xyz.value[0, 0] == 1.0 xyz[0, 0] = 0.0 assert s1.x[0] == 0.0 assert s1_xyz.value[0, 0] == 0.0 # Not possible: we don't check that tuples are from the same array xyz = np.arange(1.0, 10.0).reshape(3, 3) s2 = CartesianRepresentation(*xyz, unit=u.kpc, copy=False) s2_xyz = s2.xyz assert s2_xyz.value[0, 0] == 1.0 xyz[0, 0] = 0.0 assert s2.x[0] == 0.0 assert s2_xyz.value[0, 0] == 1.0 def test_reprobj(self): s1 = CartesianRepresentation(x=1 * u.kpc, y=2 * u.kpc, z=3 * u.kpc) s2 = CartesianRepresentation.from_representation(s1) assert s2.x == 1 * u.kpc assert s2.y == 2 * u.kpc assert s2.z == 3 * u.kpc s3 = CartesianRepresentation(s1) assert representation_equal(s3, s1) def test_broadcasting(self): s1 = CartesianRepresentation(x=[1, 2] * u.kpc, y=[3, 4] * u.kpc, z=5 * u.kpc) assert s1.x.unit == u.kpc assert s1.y.unit == u.kpc assert s1.z.unit == u.kpc assert_allclose(s1.x.value, [1, 2]) assert_allclose(s1.y.value, [3, 4]) assert_allclose(s1.z.value, [5, 5]) def test_broadcasting_mismatch(self): with pytest.raises(ValueError) as exc: s1 = CartesianRepresentation( x=[1, 2] * u.kpc, y=[3, 4] * u.kpc, z=[5, 6, 7] * u.kpc ) assert exc.value.args[0] == "Input parameters x, y, and z cannot be broadcast" def test_readonly(self): s1 = CartesianRepresentation(x=1 * u.kpc, y=2 * u.kpc, z=3 * u.kpc) with pytest.raises(AttributeError): s1.x = 1.0 * u.kpc with pytest.raises(AttributeError): s1.y = 1.0 * u.kpc with pytest.raises(AttributeError): s1.z = 1.0 * u.kpc def test_xyz(self): s1 = CartesianRepresentation(x=1 * u.kpc, y=2 * u.kpc, z=3 * u.kpc) assert isinstance(s1.xyz, u.Quantity) assert s1.xyz.unit is u.kpc assert_allclose(s1.xyz.value, [1, 2, 3]) def test_unit_mismatch(self): q_len = u.Quantity([1], u.km) q_nonlen = u.Quantity([1], u.kg) with pytest.raises(u.UnitsError) as exc: s1 = CartesianRepresentation(x=q_nonlen, y=q_len, z=q_len) assert exc.value.args[0] == "x, y, and z should have matching physical types" with pytest.raises(u.UnitsError) as exc: s1 = CartesianRepresentation(x=q_len, y=q_nonlen, z=q_len) assert exc.value.args[0] == "x, y, and z should have matching physical types" with pytest.raises(u.UnitsError) as exc: s1 = CartesianRepresentation(x=q_len, y=q_len, z=q_nonlen) assert exc.value.args[0] == "x, y, and z should have matching physical types" def test_unit_non_length(self): s1 = CartesianRepresentation(x=1 * u.kg, y=2 * u.kg, z=3 * u.kg) s2 = CartesianRepresentation( x=1 * u.km / u.s, y=2 * u.km / u.s, z=3 * u.km / u.s ) banana = u.def_unit("banana") s3 = CartesianRepresentation(x=1 * banana, y=2 * banana, z=3 * banana) def test_getitem(self): s = CartesianRepresentation( x=np.arange(10) * u.m, y=-np.arange(10) * u.m, z=3 * u.km ) s_slc = s[2:8:2] assert_allclose_quantity(s_slc.x, [2, 4, 6] * u.m) assert_allclose_quantity(s_slc.y, [-2, -4, -6] * u.m) assert_allclose_quantity(s_slc.z, [3, 3, 3] * u.km) def test_getitem_scalar(self): s = CartesianRepresentation(x=1 * u.m, y=-2 * u.m, z=3 * u.km) with pytest.raises(TypeError): s_slc = s[0] def test_transform(self): ds1 = CartesianDifferential( d_x=[1, 2] * u.km / u.s, d_y=[3, 4] * u.km / u.s, d_z=[5, 6] * u.km / u.s ) s1 = CartesianRepresentation( x=[1, 2] * u.kpc, y=[3, 4] * u.kpc, z=[5, 6] * u.kpc, differentials=ds1 ) # transform representation & get comparison (thru CartesianRep) s2 = s1.transform(matrices["general"]) ds2 = s2.differentials["s"] dexpected = CartesianDifferential.from_cartesian( ds1.to_cartesian(base=s1).transform(matrices["general"]), base=s2 ) assert_allclose_quantity(ds2.d_x, dexpected.d_x) assert_allclose_quantity(ds2.d_y, dexpected.d_y) assert_allclose_quantity(ds2.d_z, dexpected.d_z) # also explicitly calculate, since we can assert_allclose(s2.x.value, [1 * 1 + 2 * 3 + 3 * 5, 1 * 2 + 2 * 4 + 3 * 6]) assert_allclose(s2.y.value, [4 * 1 + 5 * 3 + 6 * 5, 4 * 2 + 5 * 4 + 6 * 6]) assert_allclose(s2.z.value, [7 * 1 + 8 * 3 + 9 * 5, 7 * 2 + 8 * 4 + 9 * 6]) assert_allclose(ds2.d_x.value, [1 * 1 + 2 * 3 + 3 * 5, 1 * 2 + 2 * 4 + 3 * 6]) assert_allclose(ds2.d_y.value, [4 * 1 + 5 * 3 + 6 * 5, 4 * 2 + 5 * 4 + 6 * 6]) assert_allclose(ds2.d_z.value, [7 * 1 + 8 * 3 + 9 * 5, 7 * 2 + 8 * 4 + 9 * 6]) assert s2.x.unit is u.kpc assert s2.y.unit is u.kpc assert s2.z.unit is u.kpc assert ds2.d_x.unit == u.km / u.s assert ds2.d_y.unit == u.km / u.s assert ds2.d_z.unit == u.km / u.s class TestCylindricalRepresentation: def test_name(self): assert CylindricalRepresentation.get_name() == "cylindrical" assert CylindricalRepresentation.get_name() in REPRESENTATION_CLASSES def test_empty_init(self): with pytest.raises(TypeError) as exc: s = CylindricalRepresentation() def test_init_quantity(self): s1 = CylindricalRepresentation(rho=1 * u.kpc, phi=2 * u.deg, z=3 * u.kpc) assert s1.rho.unit is u.kpc assert s1.phi.unit is u.deg assert s1.z.unit is u.kpc assert_allclose(s1.rho.value, 1) assert_allclose(s1.phi.value, 2) assert_allclose(s1.z.value, 3) def test_init_array(self): s1 = CylindricalRepresentation( rho=[1, 2, 3] * u.pc, phi=[2, 3, 4] * u.deg, z=[3, 4, 5] * u.kpc ) assert s1.rho.unit is u.pc assert s1.phi.unit is u.deg assert s1.z.unit is u.kpc assert_allclose(s1.rho.value, [1, 2, 3]) assert_allclose(s1.phi.value, [2, 3, 4]) assert_allclose(s1.z.value, [3, 4, 5]) def test_init_array_nocopy(self): rho = [8, 9, 10] * u.pc phi = [5, 6, 7] * u.deg z = [2, 3, 4] * u.kpc s1 = CylindricalRepresentation(rho=rho, phi=phi, z=z, copy=False) rho[:] = [9, 2, 3] * u.kpc phi[:] = [1, 2, 3] * u.arcmin z[:] = [-2, 3, 8] * u.kpc assert_allclose_quantity(rho, s1.rho) assert_allclose_quantity(phi, s1.phi) assert_allclose_quantity(z, s1.z) def test_reprobj(self): s1 = CylindricalRepresentation(rho=1 * u.kpc, phi=2 * u.deg, z=3 * u.kpc) s2 = CylindricalRepresentation.from_representation(s1) assert s2.rho == 1 * u.kpc assert s2.phi == 2 * u.deg assert s2.z == 3 * u.kpc s3 = CylindricalRepresentation(s1) assert representation_equal(s3, s1) def test_broadcasting(self): s1 = CylindricalRepresentation( rho=[1, 2] * u.kpc, phi=[3, 4] * u.deg, z=5 * u.kpc ) assert s1.rho.unit == u.kpc assert s1.phi.unit == u.deg assert s1.z.unit == u.kpc assert_allclose(s1.rho.value, [1, 2]) assert_allclose(s1.phi.value, [3, 4]) assert_allclose(s1.z.value, [5, 5]) def test_broadcasting_mismatch(self): with pytest.raises( ValueError, match="Input parameters rho, phi, and z cannot be broadcast" ): s1 = CylindricalRepresentation( rho=[1, 2] * u.kpc, phi=[3, 4] * u.deg, z=[5, 6, 7] * u.kpc ) def test_readonly(self): s1 = CylindricalRepresentation(rho=1 * u.kpc, phi=20 * u.deg, z=3 * u.kpc) with pytest.raises(AttributeError): s1.rho = 1.0 * u.kpc with pytest.raises(AttributeError): s1.phi = 20 * u.deg with pytest.raises(AttributeError): s1.z = 1.0 * u.kpc def unit_mismatch(self): q_len = u.Quantity([1], u.kpc) q_nonlen = u.Quantity([1], u.kg) with pytest.raises(u.UnitsError) as exc: s1 = CylindricalRepresentation(rho=q_nonlen, phi=10 * u.deg, z=q_len) assert exc.value.args[0] == "rho and z should have matching physical types" with pytest.raises(u.UnitsError) as exc: s1 = CylindricalRepresentation(rho=q_len, phi=10 * u.deg, z=q_nonlen) assert exc.value.args[0] == "rho and z should have matching physical types" def test_getitem(self): s = CylindricalRepresentation( rho=np.arange(10) * u.pc, phi=-np.arange(10) * u.deg, z=1 * u.kpc ) s_slc = s[2:8:2] assert_allclose_quantity(s_slc.rho, [2, 4, 6] * u.pc) assert_allclose_quantity(s_slc.phi, [-2, -4, -6] * u.deg) assert_allclose_quantity(s_slc.z, [1, 1, 1] * u.kpc) def test_getitem_scalar(self): s = CylindricalRepresentation(rho=1 * u.pc, phi=-2 * u.deg, z=3 * u.kpc) with pytest.raises(TypeError): s_slc = s[0] def test_transform(self): s1 = CylindricalRepresentation( phi=[1, 2] * u.deg, z=[3, 4] * u.pc, rho=[5, 6] * u.kpc ) s2 = s1.transform(matrices["rotation"]) assert_allclose_quantity(s2.phi, s1.phi + 10 * u.deg) assert_allclose_quantity(s2.z, s1.z) assert_allclose_quantity(s2.rho, s1.rho) assert s2.phi.unit is u.rad assert s2.z.unit is u.kpc assert s2.rho.unit is u.kpc # now with a non rotation matrix s3 = s1.transform(matrices["general"]) expected = (s1.to_cartesian().transform(matrices["general"])).represent_as( CylindricalRepresentation ) assert_allclose_quantity(s3.phi, expected.phi) assert_allclose_quantity(s3.z, expected.z) assert_allclose_quantity(s3.rho, expected.rho) class TestUnitSphericalCosLatDifferential: @pytest.mark.parametrize("matrix", list(matrices.values())) def test_transform(self, matrix): """Test ``.transform()`` on rotation and general matrices.""" # set up representation ds1 = UnitSphericalCosLatDifferential( d_lon_coslat=[1, 2] * u.mas / u.yr, d_lat=[3, 4] * u.mas / u.yr, ) s1 = UnitSphericalRepresentation(lon=[1, 2] * u.deg, lat=[3, 4] * u.deg) # transform representation & get comparison (thru CartesianRep) s2 = s1.transform(matrix) ds2 = ds1.transform(matrix, s1, s2) dexpected = UnitSphericalCosLatDifferential.from_cartesian( ds1.to_cartesian(base=s1).transform(matrix), base=s2 ) assert_allclose_quantity(ds2.d_lon_coslat, dexpected.d_lon_coslat) assert_allclose_quantity(ds2.d_lat, dexpected.d_lat) def test_cartesian_spherical_roundtrip(): s1 = CartesianRepresentation( x=[1, 2000.0] * u.kpc, y=[3000.0, 4.0] * u.pc, z=[5.0, 6000.0] * u.pc ) s2 = SphericalRepresentation.from_representation(s1) s3 = CartesianRepresentation.from_representation(s2) s4 = SphericalRepresentation.from_representation(s3) assert_allclose_quantity(s1.x, s3.x) assert_allclose_quantity(s1.y, s3.y) assert_allclose_quantity(s1.z, s3.z) assert_allclose_quantity(s2.lon, s4.lon) assert_allclose_quantity(s2.lat, s4.lat) assert_allclose_quantity(s2.distance, s4.distance) def test_cartesian_setting_with_other(): s1 = CartesianRepresentation( x=[1, 2000.0] * u.kpc, y=[3000.0, 4.0] * u.pc, z=[5.0, 6000.0] * u.pc ) s1[0] = SphericalRepresentation(0.0 * u.deg, 0.0 * u.deg, 1 * u.kpc) assert_allclose_quantity(s1.x, [1.0, 2000.0] * u.kpc) assert_allclose_quantity(s1.y, [0.0, 4.0] * u.pc) assert_allclose_quantity(s1.z, [0.0, 6000.0] * u.pc) with pytest.raises(ValueError, match="loss of information"): s1[1] = UnitSphericalRepresentation(0.0 * u.deg, 10.0 * u.deg) def test_cartesian_physics_spherical_roundtrip(): s1 = CartesianRepresentation( x=[1, 2000.0] * u.kpc, y=[3000.0, 4.0] * u.pc, z=[5.0, 6000.0] * u.pc ) s2 = PhysicsSphericalRepresentation.from_representation(s1) s3 = CartesianRepresentation.from_representation(s2) s4 = PhysicsSphericalRepresentation.from_representation(s3) assert_allclose_quantity(s1.x, s3.x) assert_allclose_quantity(s1.y, s3.y) assert_allclose_quantity(s1.z, s3.z) assert_allclose_quantity(s2.phi, s4.phi) assert_allclose_quantity(s2.theta, s4.theta) assert_allclose_quantity(s2.r, s4.r) def test_spherical_physics_spherical_roundtrip(): s1 = SphericalRepresentation(lon=3 * u.deg, lat=4 * u.deg, distance=3 * u.kpc) s2 = PhysicsSphericalRepresentation.from_representation(s1) s3 = SphericalRepresentation.from_representation(s2) s4 = PhysicsSphericalRepresentation.from_representation(s3) assert_allclose_quantity(s1.lon, s3.lon) assert_allclose_quantity(s1.lat, s3.lat) assert_allclose_quantity(s1.distance, s3.distance) assert_allclose_quantity(s2.phi, s4.phi) assert_allclose_quantity(s2.theta, s4.theta) assert_allclose_quantity(s2.r, s4.r) assert_allclose_quantity(s1.lon, s4.phi) assert_allclose_quantity(s1.lat, 90.0 * u.deg - s4.theta) assert_allclose_quantity(s1.distance, s4.r) def test_cartesian_cylindrical_roundtrip(): s1 = CartesianRepresentation( x=np.array([1.0, 2000.0]) * u.kpc, y=np.array([3000.0, 4.0]) * u.pc, z=np.array([5.0, 600.0]) * u.cm, ) s2 = CylindricalRepresentation.from_representation(s1) s3 = CartesianRepresentation.from_representation(s2) s4 = CylindricalRepresentation.from_representation(s3) assert_allclose_quantity(s1.x, s3.x) assert_allclose_quantity(s1.y, s3.y) assert_allclose_quantity(s1.z, s3.z) assert_allclose_quantity(s2.rho, s4.rho) assert_allclose_quantity(s2.phi, s4.phi) assert_allclose_quantity(s2.z, s4.z) def test_unit_spherical_roundtrip(): s1 = UnitSphericalRepresentation( lon=[10.0, 30.0] * u.deg, lat=[5.0, 6.0] * u.arcmin ) s2 = CartesianRepresentation.from_representation(s1) s3 = SphericalRepresentation.from_representation(s2) s4 = UnitSphericalRepresentation.from_representation(s3) assert_allclose_quantity(s1.lon, s4.lon) assert_allclose_quantity(s1.lat, s4.lat) def test_no_unnecessary_copies(): s1 = UnitSphericalRepresentation( lon=[10.0, 30.0] * u.deg, lat=[5.0, 6.0] * u.arcmin ) s2 = s1.represent_as(UnitSphericalRepresentation) assert s2 is s1 assert np.may_share_memory(s1.lon, s2.lon) assert np.may_share_memory(s1.lat, s2.lat) s3 = s1.represent_as(SphericalRepresentation) assert np.may_share_memory(s1.lon, s3.lon) assert np.may_share_memory(s1.lat, s3.lat) s4 = s1.represent_as(CartesianRepresentation) s5 = s4.represent_as(CylindricalRepresentation) assert np.may_share_memory(s5.z, s4.z) def test_representation_repr(): r1 = SphericalRepresentation(lon=1 * u.deg, lat=2.5 * u.deg, distance=1 * u.kpc) assert ( repr(r1) == "<SphericalRepresentation (lon, lat, distance) in (deg, deg, kpc)\n" " (1., 2.5, 1.)>" ) r2 = CartesianRepresentation(x=1 * u.kpc, y=2 * u.kpc, z=3 * u.kpc) assert repr(r2) == "<CartesianRepresentation (x, y, z) in kpc\n (1., 2., 3.)>" r3 = CartesianRepresentation( x=[1, 2, 3] * u.kpc, y=4 * u.kpc, z=[9, 10, 11] * u.kpc ) assert ( repr(r3) == "<CartesianRepresentation (x, y, z) in kpc\n" " [(1., 4., 9.), (2., 4., 10.), (3., 4., 11.)]>" ) def test_representation_repr_multi_d(): """Regression test for #5889.""" cr = CartesianRepresentation(np.arange(27).reshape(3, 3, 3), unit="m") assert ( repr(cr) == "<CartesianRepresentation (x, y, z) in m\n" " [[(0., 9., 18.), (1., 10., 19.), (2., 11., 20.)],\n" " [(3., 12., 21.), (4., 13., 22.), (5., 14., 23.)],\n" " [(6., 15., 24.), (7., 16., 25.), (8., 17., 26.)]]>" ) # This was broken before. assert ( repr(cr.T) == "<CartesianRepresentation (x, y, z) in m\n" " [[(0., 9., 18.), (3., 12., 21.), (6., 15., 24.)],\n" " [(1., 10., 19.), (4., 13., 22.), (7., 16., 25.)],\n" " [(2., 11., 20.), (5., 14., 23.), (8., 17., 26.)]]>" ) def test_representation_str(): r1 = SphericalRepresentation(lon=1 * u.deg, lat=2.5 * u.deg, distance=1 * u.kpc) assert str(r1) == "(1., 2.5, 1.) (deg, deg, kpc)" r2 = CartesianRepresentation(x=1 * u.kpc, y=2 * u.kpc, z=3 * u.kpc) assert str(r2) == "(1., 2., 3.) kpc" r3 = CartesianRepresentation( x=[1, 2, 3] * u.kpc, y=4 * u.kpc, z=[9, 10, 11] * u.kpc ) assert str(r3) == "[(1., 4., 9.), (2., 4., 10.), (3., 4., 11.)] kpc" def test_representation_str_multi_d(): """Regression test for #5889.""" cr = CartesianRepresentation(np.arange(27).reshape(3, 3, 3), unit="m") assert ( str(cr) == "[[(0., 9., 18.), (1., 10., 19.), (2., 11., 20.)],\n" " [(3., 12., 21.), (4., 13., 22.), (5., 14., 23.)],\n" " [(6., 15., 24.), (7., 16., 25.), (8., 17., 26.)]] m" ) # This was broken before. assert ( str(cr.T) == "[[(0., 9., 18.), (3., 12., 21.), (6., 15., 24.)],\n" " [(1., 10., 19.), (4., 13., 22.), (7., 16., 25.)],\n" " [(2., 11., 20.), (5., 14., 23.), (8., 17., 26.)]] m" ) def test_subclass_representation(): from astropy.coordinates.builtin_frames import ICRS class Longitude180(Longitude): def __new__(cls, angle, unit=None, wrap_angle=180 * u.deg, **kwargs): self = super().__new__( cls, angle, unit=unit, wrap_angle=wrap_angle, **kwargs ) return self class SphericalWrap180Representation(SphericalRepresentation): attr_classes = {"lon": Longitude180, "lat": Latitude, "distance": u.Quantity} class ICRSWrap180(ICRS): frame_specific_representation_info = ( ICRS._frame_specific_representation_info.copy() ) frame_specific_representation_info[ SphericalWrap180Representation ] = frame_specific_representation_info[SphericalRepresentation] default_representation = SphericalWrap180Representation c = ICRSWrap180(ra=-1 * u.deg, dec=-2 * u.deg, distance=1 * u.m) assert c.ra.value == -1 assert c.ra.unit is u.deg assert c.dec.value == -2 assert c.dec.unit is u.deg def test_minimal_subclass(): # Basically to check what we document works; # see doc/coordinates/representations.rst class LogDRepresentation(BaseRepresentation): attr_classes = {"lon": Longitude, "lat": Latitude, "logd": u.Dex} def to_cartesian(self): d = self.logd.physical x = d * np.cos(self.lat) * np.cos(self.lon) y = d * np.cos(self.lat) * np.sin(self.lon) z = d * np.sin(self.lat) return CartesianRepresentation(x=x, y=y, z=z, copy=False) @classmethod def from_cartesian(cls, cart): s = np.hypot(cart.x, cart.y) r = np.hypot(s, cart.z) lon = np.arctan2(cart.y, cart.x) lat = np.arctan2(cart.z, s) return cls(lon=lon, lat=lat, logd=u.Dex(r), copy=False) ld1 = LogDRepresentation(90.0 * u.deg, 0.0 * u.deg, 1.0 * u.dex(u.kpc)) ld2 = LogDRepresentation(lon=90.0 * u.deg, lat=0.0 * u.deg, logd=1.0 * u.dex(u.kpc)) assert np.all(ld1.lon == ld2.lon) assert np.all(ld1.lat == ld2.lat) assert np.all(ld1.logd == ld2.logd) c = ld1.to_cartesian() assert_allclose_quantity(c.xyz, [0.0, 10.0, 0.0] * u.kpc, atol=1.0 * u.npc) ld3 = LogDRepresentation.from_cartesian(c) assert np.all(ld3.lon == ld2.lon) assert np.all(ld3.lat == ld2.lat) assert np.all(ld3.logd == ld2.logd) s = ld1.represent_as(SphericalRepresentation) assert_allclose_quantity(s.lon, ld1.lon) assert_allclose_quantity(s.distance, 10.0 * u.kpc) assert_allclose_quantity(s.lat, ld1.lat) with pytest.raises(TypeError): LogDRepresentation(0.0 * u.deg, 1.0 * u.deg) with pytest.raises(TypeError): LogDRepresentation( 0.0 * u.deg, 1.0 * u.deg, 1.0 * u.dex(u.kpc), lon=1.0 * u.deg ) with pytest.raises(TypeError): LogDRepresentation(0.0 * u.deg, 1.0 * u.deg, 1.0 * u.dex(u.kpc), True, False) with pytest.raises(TypeError): LogDRepresentation(0.0 * u.deg, 1.0 * u.deg, 1.0 * u.dex(u.kpc), foo="bar") # if we define it a second time, even the qualnames are the same, # so we raise with pytest.raises(ValueError): class LogDRepresentation(BaseRepresentation): attr_classes = {"lon": Longitude, "lat": Latitude, "logr": u.Dex} def test_duplicate_warning(): from astropy.coordinates.representation import ( DUPLICATE_REPRESENTATIONS, REPRESENTATION_CLASSES, ) with pytest.warns(DuplicateRepresentationWarning): class UnitSphericalRepresentation(BaseRepresentation): attr_classes = {"lon": Longitude, "lat": Latitude} assert "unitspherical" in DUPLICATE_REPRESENTATIONS assert "unitspherical" not in REPRESENTATION_CLASSES assert ( "astropy.coordinates.representation.UnitSphericalRepresentation" in REPRESENTATION_CLASSES ) assert ( __name__ + ".test_duplicate_warning.<locals>.UnitSphericalRepresentation" in REPRESENTATION_CLASSES ) class TestCartesianRepresentationWithDifferential: def test_init_differential(self): diff = CartesianDifferential( d_x=1 * u.km / u.s, d_y=2 * u.km / u.s, d_z=3 * u.km / u.s ) # Check that a single differential gets turned into a 1-item dict. s1 = CartesianRepresentation( x=1 * u.kpc, y=2 * u.kpc, z=3 * u.kpc, differentials=diff ) assert s1.x.unit is u.kpc assert s1.y.unit is u.kpc assert s1.z.unit is u.kpc assert len(s1.differentials) == 1 assert s1.differentials["s"] is diff # can also pass in an explicit dictionary s1 = CartesianRepresentation( x=1 * u.kpc, y=2 * u.kpc, z=3 * u.kpc, differentials={"s": diff} ) assert len(s1.differentials) == 1 assert s1.differentials["s"] is diff # using the wrong key will cause it to fail with pytest.raises(ValueError): s1 = CartesianRepresentation( x=1 * u.kpc, y=2 * u.kpc, z=3 * u.kpc, differentials={"1 / s2": diff} ) # make sure other kwargs are handled properly s1 = CartesianRepresentation( x=1, y=2, z=3, differentials=diff, copy=False, unit=u.kpc ) assert len(s1.differentials) == 1 assert s1.differentials["s"] is diff with pytest.raises(TypeError): # invalid type passed to differentials CartesianRepresentation( x=1 * u.kpc, y=2 * u.kpc, z=3 * u.kpc, differentials="garmonbozia" ) # And that one can add it to another representation. s1 = CartesianRepresentation( CartesianRepresentation(x=1 * u.kpc, y=2 * u.kpc, z=3 * u.kpc), differentials=diff, ) assert len(s1.differentials) == 1 assert s1.differentials["s"] is diff # make sure differentials can't accept differentials with pytest.raises(TypeError): CartesianDifferential( d_x=1 * u.km / u.s, d_y=2 * u.km / u.s, d_z=3 * u.km / u.s, differentials=diff, ) def test_init_differential_compatible(self): # TODO: more extensive checking of this # should fail - representation and differential not compatible diff = SphericalDifferential( d_lon=1 * u.mas / u.yr, d_lat=2 * u.mas / u.yr, d_distance=3 * u.km / u.s ) with pytest.raises(TypeError): CartesianRepresentation( x=1 * u.kpc, y=2 * u.kpc, z=3 * u.kpc, differentials=diff ) # should succeed - representation and differential are compatible diff = SphericalCosLatDifferential( d_lon_coslat=1 * u.mas / u.yr, d_lat=2 * u.mas / u.yr, d_distance=3 * u.km / u.s, ) r1 = SphericalRepresentation( lon=15 * u.deg, lat=21 * u.deg, distance=1 * u.pc, differentials=diff ) def test_init_differential_multiple_equivalent_keys(self): d1 = CartesianDifferential(*[1, 2, 3] * u.km / u.s) d2 = CartesianDifferential(*[4, 5, 6] * u.km / u.s) # verify that the check against expected_unit validates against passing # in two different but equivalent keys with pytest.raises(ValueError): r1 = CartesianRepresentation( x=1 * u.kpc, y=2 * u.kpc, z=3 * u.kpc, differentials={"s": d1, "yr": d2} ) def test_init_array_broadcasting(self): arr1 = np.arange(8).reshape(4, 2) * u.km / u.s diff = CartesianDifferential(d_x=arr1, d_y=arr1, d_z=arr1) # shapes aren't compatible arr2 = np.arange(27).reshape(3, 9) * u.kpc with pytest.raises(ValueError): rep = CartesianRepresentation(x=arr2, y=arr2, z=arr2, differentials=diff) arr2 = np.arange(8).reshape(4, 2) * u.kpc rep = CartesianRepresentation(x=arr2, y=arr2, z=arr2, differentials=diff) assert rep.x.unit is u.kpc assert rep.y.unit is u.kpc assert rep.z.unit is u.kpc assert len(rep.differentials) == 1 assert rep.differentials["s"] is diff assert rep.xyz.shape == rep.differentials["s"].d_xyz.shape def test_reprobj(self): # should succeed - representation and differential are compatible diff = SphericalCosLatDifferential( d_lon_coslat=1 * u.mas / u.yr, d_lat=2 * u.mas / u.yr, d_distance=3 * u.km / u.s, ) r1 = SphericalRepresentation( lon=15 * u.deg, lat=21 * u.deg, distance=1 * u.pc, differentials=diff ) r2 = CartesianRepresentation.from_representation(r1) assert r2.get_name() == "cartesian" assert not r2.differentials r3 = SphericalRepresentation(r1) assert r3.differentials assert representation_equal(r3, r1) def test_readonly(self): s1 = CartesianRepresentation(x=1 * u.kpc, y=2 * u.kpc, z=3 * u.kpc) with pytest.raises(AttributeError): # attribute is not settable s1.differentials = "thing" def test_represent_as(self): diff = CartesianDifferential( d_x=1 * u.km / u.s, d_y=2 * u.km / u.s, d_z=3 * u.km / u.s ) rep1 = CartesianRepresentation( x=1 * u.kpc, y=2 * u.kpc, z=3 * u.kpc, differentials=diff ) # Only change the representation, drop the differential new_rep = rep1.represent_as(SphericalRepresentation) assert new_rep.get_name() == "spherical" assert not new_rep.differentials # dropped # Pass in separate classes for representation, differential new_rep = rep1.represent_as( SphericalRepresentation, SphericalCosLatDifferential ) assert new_rep.get_name() == "spherical" assert new_rep.differentials["s"].get_name() == "sphericalcoslat" # Pass in a dictionary for the differential classes new_rep = rep1.represent_as( SphericalRepresentation, {"s": SphericalCosLatDifferential} ) assert new_rep.get_name() == "spherical" assert new_rep.differentials["s"].get_name() == "sphericalcoslat" # make sure represent_as() passes through the differentials for name in REPRESENTATION_CLASSES: if name == "radial": # TODO: Converting a CartesianDifferential to a # RadialDifferential fails, even on `main` continue elif name.endswith("geodetic"): # TODO: Geodetic representations do not have differentials yet continue new_rep = rep1.represent_as( REPRESENTATION_CLASSES[name], DIFFERENTIAL_CLASSES[name] ) assert new_rep.get_name() == name assert len(new_rep.differentials) == 1 assert new_rep.differentials["s"].get_name() == name with pytest.raises(ValueError) as excinfo: rep1.represent_as("name") assert "use frame object" in str(excinfo.value) @pytest.mark.parametrize( "sph_diff,usph_diff", [ (SphericalDifferential, UnitSphericalDifferential), (SphericalCosLatDifferential, UnitSphericalCosLatDifferential), ], ) def test_represent_as_unit_spherical_with_diff(self, sph_diff, usph_diff): """Test that differential angles are correctly reduced.""" diff = CartesianDifferential( d_x=1 * u.km / u.s, d_y=2 * u.km / u.s, d_z=3 * u.km / u.s ) rep = CartesianRepresentation( x=1 * u.kpc, y=2 * u.kpc, z=3 * u.kpc, differentials=diff ) sph = rep.represent_as(SphericalRepresentation, sph_diff) usph = rep.represent_as(UnitSphericalRepresentation, usph_diff) assert components_equal(usph, sph.represent_as(UnitSphericalRepresentation)) assert components_equal( usph.differentials["s"], sph.differentials["s"].represent_as(usph_diff) ) # Just to be sure components_equal and the represent_as work as advertised, # a sanity check: d_lat is always defined and should be the same. assert_array_equal(sph.differentials["s"].d_lat, usph.differentials["s"].d_lat) def test_getitem(self): d = CartesianDifferential( d_x=np.arange(10) * u.m / u.s, d_y=-np.arange(10) * u.m / u.s, d_z=1.0 * u.m / u.s, ) s = CartesianRepresentation( x=np.arange(10) * u.m, y=-np.arange(10) * u.m, z=3 * u.km, differentials=d ) s_slc = s[2:8:2] s_dif = s_slc.differentials["s"] assert_allclose_quantity(s_slc.x, [2, 4, 6] * u.m) assert_allclose_quantity(s_slc.y, [-2, -4, -6] * u.m) assert_allclose_quantity(s_slc.z, [3, 3, 3] * u.km) assert_allclose_quantity(s_dif.d_x, [2, 4, 6] * u.m / u.s) assert_allclose_quantity(s_dif.d_y, [-2, -4, -6] * u.m / u.s) assert_allclose_quantity(s_dif.d_z, [1, 1, 1] * u.m / u.s) def test_setitem(self): d = CartesianDifferential( d_x=np.arange(5) * u.m / u.s, d_y=-np.arange(5) * u.m / u.s, d_z=1.0 * u.m / u.s, ) s = CartesianRepresentation( x=np.arange(5) * u.m, y=-np.arange(5) * u.m, z=3 * u.km, differentials=d ) s[:2] = s[2] assert_array_equal(s.x, [2, 2, 2, 3, 4] * u.m) assert_array_equal(s.y, [-2, -2, -2, -3, -4] * u.m) assert_array_equal(s.z, [3, 3, 3, 3, 3] * u.km) assert_array_equal(s.differentials["s"].d_x, [2, 2, 2, 3, 4] * u.m / u.s) assert_array_equal(s.differentials["s"].d_y, [-2, -2, -2, -3, -4] * u.m / u.s) assert_array_equal(s.differentials["s"].d_z, [1, 1, 1, 1, 1] * u.m / u.s) s2 = s.represent_as(SphericalRepresentation, SphericalDifferential) s[0] = s2[3] assert_allclose_quantity(s.x, [3, 2, 2, 3, 4] * u.m) assert_allclose_quantity(s.y, [-3, -2, -2, -3, -4] * u.m) assert_allclose_quantity(s.z, [3, 3, 3, 3, 3] * u.km) assert_allclose_quantity(s.differentials["s"].d_x, [3, 2, 2, 3, 4] * u.m / u.s) assert_allclose_quantity( s.differentials["s"].d_y, [-3, -2, -2, -3, -4] * u.m / u.s ) assert_allclose_quantity(s.differentials["s"].d_z, [1, 1, 1, 1, 1] * u.m / u.s) s3 = CartesianRepresentation( s.xyz, differentials={ "s": d, "s2": CartesianDifferential(np.ones((3, 5)) * u.m / u.s**2), }, ) with pytest.raises(ValueError, match="same differentials"): s[0] = s3[2] s4 = SphericalRepresentation( 0.0 * u.deg, 0.0 * u.deg, 1.0 * u.kpc, differentials=RadialDifferential(10 * u.km / u.s), ) with pytest.raises(ValueError, match="loss of information"): s[0] = s4 def test_transform(self): d1 = CartesianDifferential( d_x=[1, 2] * u.km / u.s, d_y=[3, 4] * u.km / u.s, d_z=[5, 6] * u.km / u.s ) r1 = CartesianRepresentation( x=[1, 2] * u.kpc, y=[3, 4] * u.kpc, z=[5, 6] * u.kpc, differentials=d1 ) r2 = r1.transform(matrices["general"]) d2 = r2.differentials["s"] assert_allclose_quantity(d2.d_x, [22.0, 28] * u.km / u.s) assert_allclose_quantity(d2.d_y, [49, 64] * u.km / u.s) assert_allclose_quantity(d2.d_z, [76, 100.0] * u.km / u.s) def test_with_differentials(self): # make sure with_differential correctly creates a new copy with the same # differential cr = CartesianRepresentation([1, 2, 3] * u.kpc) diff = CartesianDifferential([0.1, 0.2, 0.3] * u.km / u.s) cr2 = cr.with_differentials(diff) assert cr.differentials != cr2.differentials assert cr2.differentials["s"] is diff # make sure it works even if a differential is present already diff2 = CartesianDifferential([0.1, 0.2, 0.3] * u.m / u.s) cr3 = CartesianRepresentation([1, 2, 3] * u.kpc, differentials=diff) cr4 = cr3.with_differentials(diff2) assert cr4.differentials["s"] != cr3.differentials["s"] assert cr4.differentials["s"] == diff2 # also ensure a *scalar* differential will works cr5 = cr.with_differentials(diff) assert len(cr5.differentials) == 1 assert cr5.differentials["s"] == diff # make sure we don't update the original representation's dict d1 = CartesianDifferential(*np.random.random((3, 5)), unit=u.km / u.s) d2 = CartesianDifferential(*np.random.random((3, 5)), unit=u.km / u.s**2) r1 = CartesianRepresentation( *np.random.random((3, 5)), unit=u.pc, differentials=d1 ) r2 = r1.with_differentials(d2) assert r1.differentials["s"] is r2.differentials["s"] assert "s2" not in r1.differentials assert "s2" in r2.differentials def test_repr_with_differentials(): diff = CartesianDifferential([0.1, 0.2, 0.3] * u.km / u.s) cr = CartesianRepresentation([1, 2, 3] * u.kpc, differentials=diff) assert "has differentials w.r.t.: 's'" in repr(cr) def test_to_cartesian(): """ Test that to_cartesian drops the differential. """ sd = SphericalDifferential(d_lat=1 * u.deg, d_lon=2 * u.deg, d_distance=10 * u.m) sr = SphericalRepresentation( lat=1 * u.deg, lon=2 * u.deg, distance=10 * u.m, differentials=sd ) cart = sr.to_cartesian() assert cart.get_name() == "cartesian" assert not cart.differentials @pytest.fixture def unitphysics(): """ This fixture is used """ had_unit = False if hasattr(PhysicsSphericalRepresentation, "_unit_representation"): orig = PhysicsSphericalRepresentation._unit_representation had_unit = True class UnitPhysicsSphericalRepresentation(BaseRepresentation): attr_classes = {"phi": Angle, "theta": Angle} def __init__(self, *args, copy=True, **kwargs): super().__init__(*args, copy=copy, **kwargs) # Wrap/validate phi/theta if copy: self._phi = self._phi.wrap_at(360 * u.deg) else: # necessary because the above version of `wrap_at` has to be a copy self._phi.wrap_at(360 * u.deg, inplace=True) if np.any(self._theta < 0.0 * u.deg) or np.any(self._theta > 180.0 * u.deg): raise ValueError( "Inclination angle(s) must be within 0 deg <= angle <= 180 deg, " f"got {self._theta.to(u.degree)}" ) @property def phi(self): return self._phi @property def theta(self): return self._theta def unit_vectors(self): sinphi, cosphi = np.sin(self.phi), np.cos(self.phi) sintheta, costheta = np.sin(self.theta), np.cos(self.theta) return { "phi": CartesianRepresentation(-sinphi, cosphi, 0.0, copy=False), "theta": CartesianRepresentation( costheta * cosphi, costheta * sinphi, -sintheta, copy=False ), } def scale_factors(self): sintheta = np.sin(self.theta) l = np.broadcast_to(1.0 * u.one, self.shape, subok=True) return {"phi", sintheta, "theta", l} def to_cartesian(self): x = np.sin(self.theta) * np.cos(self.phi) y = np.sin(self.theta) * np.sin(self.phi) z = np.cos(self.theta) return CartesianRepresentation(x=x, y=y, z=z, copy=False) @classmethod def from_cartesian(cls, cart): """ Converts 3D rectangular cartesian coordinates to spherical polar coordinates. """ s = np.hypot(cart.x, cart.y) phi = np.arctan2(cart.y, cart.x) theta = np.arctan2(s, cart.z) return cls(phi=phi, theta=theta, copy=False) def norm(self): return u.Quantity(np.ones(self.shape), u.dimensionless_unscaled, copy=False) PhysicsSphericalRepresentation._unit_representation = ( UnitPhysicsSphericalRepresentation ) yield UnitPhysicsSphericalRepresentation if had_unit: PhysicsSphericalRepresentation._unit_representation = orig else: del PhysicsSphericalRepresentation._unit_representation # remove from the module-level representations, if present REPRESENTATION_CLASSES.pop(UnitPhysicsSphericalRepresentation.get_name(), None) def test_unitphysics(unitphysics): obj = unitphysics(phi=0 * u.deg, theta=10 * u.deg) objkw = unitphysics(phi=0 * u.deg, theta=10 * u.deg) assert objkw.phi == obj.phi assert objkw.theta == obj.theta asphys = obj.represent_as(PhysicsSphericalRepresentation) assert asphys.phi == obj.phi assert_allclose(asphys.theta, obj.theta) assert_allclose_quantity(asphys.r, 1 * u.dimensionless_unscaled) assph = obj.represent_as(SphericalRepresentation) assert assph.lon == obj.phi assert_allclose_quantity(assph.lat, 80 * u.deg) assert_allclose_quantity(assph.distance, 1 * u.dimensionless_unscaled) with pytest.raises(TypeError, match="got multiple values"): unitphysics(1 * u.deg, 2 * u.deg, theta=10) with pytest.raises(TypeError, match="unexpected keyword.*parrot"): unitphysics(1 * u.deg, 2 * u.deg, parrot=10) def test_distance_warning(recwarn): SphericalRepresentation(1 * u.deg, 2 * u.deg, 1 * u.kpc) with pytest.raises(ValueError) as excinfo: SphericalRepresentation(1 * u.deg, 2 * u.deg, -1 * u.kpc) assert "Distance must be >= 0" in str(excinfo.value) # second check is because the "originating" ValueError says the above, # while the representation one includes the below assert "you must explicitly pass" in str(excinfo.value) def test_dtype_preservation_in_indexing(): # Regression test for issue #8614 (fixed in #8876) xyz = np.array([[1, 0, 0], [0.9, 0.1, 0]], dtype="f4") cr = CartesianRepresentation(xyz, xyz_axis=-1, unit="km") assert cr.xyz.dtype == xyz.dtype cr0 = cr[0] # This used to fail. assert cr0.xyz.dtype == xyz.dtype class TestInfo: def setup_class(cls): cls.rep = SphericalRepresentation([0, 1] * u.deg, [2, 3] * u.deg, 10 * u.pc) cls.diff = SphericalDifferential( [10, 20] * u.mas / u.yr, [30, 40] * u.mas / u.yr, [50, 60] * u.km / u.s ) cls.rep_w_diff = SphericalRepresentation(cls.rep, differentials=cls.diff) def test_info_unit(self): assert self.rep.info.unit == "deg, deg, pc" assert self.diff.info.unit == "mas / yr, mas / yr, km / s" assert self.rep_w_diff.info.unit == "deg, deg, pc" @pytest.mark.parametrize("item", ["rep", "diff", "rep_w_diff"]) def test_roundtrip(self, item): rep_or_diff = getattr(self, item) as_dict = rep_or_diff.info._represent_as_dict() new = rep_or_diff.__class__.info._construct_from_dict(as_dict) assert np.all(representation_equal(new, rep_or_diff)) @pytest.mark.parametrize( "cls", [ SphericalDifferential, SphericalCosLatDifferential, CylindricalDifferential, PhysicsSphericalDifferential, UnitSphericalDifferential, UnitSphericalCosLatDifferential, ], ) def test_differential_norm_noncartesian(cls): # The norm of a non-Cartesian differential without specifying `base` should error rep = cls(0, 0, 0) with pytest.raises(ValueError, match=r"`base` must be provided .* " + cls.__name__): rep.norm() def test_differential_norm_radial(): # Unlike most non-Cartesian differentials, the norm of a radial differential does not require `base` rep = RadialDifferential(1 * u.km / u.s) assert_allclose_quantity(rep.norm(), 1 * u.km / u.s)
31805c1b0ec0779fde8f426ecead3502ec305fc916b2b1b2980a84d933e2293b
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Accuracy tests for GCRS coordinate transformations, primarily to/from AltAz. """ import os import warnings from importlib import metadata import erfa import numpy as np import pytest from astropy import units as u from astropy.coordinates import ( CIRS, GCRS, HCRS, ICRS, ITRS, TEME, TETE, AltAz, CartesianDifferential, CartesianRepresentation, EarthLocation, HADec, HeliocentricMeanEcliptic, PrecessedGeocentric, SkyCoord, SphericalRepresentation, UnitSphericalRepresentation, get_sun, solar_system_ephemeris, ) from astropy.coordinates.angle_utilities import golden_spiral_grid from astropy.coordinates.builtin_frames.intermediate_rotation_transforms import ( cirs_to_itrs_mat, gcrs_to_cirs_mat, get_location_gcrs, tete_to_itrs_mat, ) from astropy.coordinates.builtin_frames.utils import get_jd12 from astropy.coordinates.solar_system import ( _apparent_position_in_true_coordinates, get_body, ) from astropy.tests.helper import assert_quantity_allclose as assert_allclose from astropy.time import Time from astropy.units import allclose from astropy.utils import iers from astropy.utils.compat.optional_deps import HAS_JPLEPHEM from astropy.utils.exceptions import AstropyDeprecationWarning, AstropyWarning CI = os.environ.get("CI", False) == "true" def test_icrs_cirs(): """ Check a few cases of ICRS<->CIRS for consistency. Also includes the CIRS<->CIRS transforms at different times, as those go through ICRS """ usph = golden_spiral_grid(200) dist = np.linspace(0.0, 1, len(usph)) * u.pc inod = ICRS(usph) iwd = ICRS(ra=usph.lon, dec=usph.lat, distance=dist) cframe1 = CIRS() cirsnod = inod.transform_to(cframe1) # uses the default time # first do a round-tripping test inod2 = cirsnod.transform_to(ICRS()) assert_allclose(inod.ra, inod2.ra) assert_allclose(inod.dec, inod2.dec) # now check that a different time yields different answers cframe2 = CIRS(obstime=Time("J2005")) cirsnod2 = inod.transform_to(cframe2) assert not allclose(cirsnod.ra, cirsnod2.ra, rtol=1e-8) assert not allclose(cirsnod.dec, cirsnod2.dec, rtol=1e-8) # parallax effects should be included, so with and w/o distance should be different cirswd = iwd.transform_to(cframe1) assert not allclose(cirswd.ra, cirsnod.ra, rtol=1e-8) assert not allclose(cirswd.dec, cirsnod.dec, rtol=1e-8) # and the distance should transform at least somehow assert not allclose(cirswd.distance, iwd.distance, rtol=1e-8) # now check that the cirs self-transform works as expected cirsnod3 = cirsnod.transform_to(cframe1) # should be a no-op assert_allclose(cirsnod.ra, cirsnod3.ra) assert_allclose(cirsnod.dec, cirsnod3.dec) cirsnod4 = cirsnod.transform_to(cframe2) # should be different assert not allclose(cirsnod4.ra, cirsnod.ra, rtol=1e-8) assert not allclose(cirsnod4.dec, cirsnod.dec, rtol=1e-8) cirsnod5 = cirsnod4.transform_to(cframe1) # should be back to the same assert_allclose(cirsnod.ra, cirsnod5.ra) assert_allclose(cirsnod.dec, cirsnod5.dec) usph = golden_spiral_grid(200) dist = np.linspace(0.5, 1, len(usph)) * u.pc icrs_coords = [ICRS(usph), ICRS(usph.lon, usph.lat, distance=dist)] gcrs_frames = [GCRS(), GCRS(obstime=Time("J2005"))] @pytest.mark.parametrize("icoo", icrs_coords) def test_icrs_gcrs(icoo): """ Check ICRS<->GCRS for consistency """ gcrscoo = icoo.transform_to(gcrs_frames[0]) # uses the default time # first do a round-tripping test icoo2 = gcrscoo.transform_to(ICRS()) assert_allclose(icoo.distance, icoo2.distance) assert_allclose(icoo.ra, icoo2.ra) assert_allclose(icoo.dec, icoo2.dec) assert isinstance(icoo2.data, icoo.data.__class__) # now check that a different time yields different answers gcrscoo2 = icoo.transform_to(gcrs_frames[1]) assert not allclose(gcrscoo.ra, gcrscoo2.ra, rtol=1e-8, atol=1e-10 * u.deg) assert not allclose(gcrscoo.dec, gcrscoo2.dec, rtol=1e-8, atol=1e-10 * u.deg) # now check that the cirs self-transform works as expected gcrscoo3 = gcrscoo.transform_to(gcrs_frames[0]) # should be a no-op assert_allclose(gcrscoo.ra, gcrscoo3.ra) assert_allclose(gcrscoo.dec, gcrscoo3.dec) gcrscoo4 = gcrscoo.transform_to(gcrs_frames[1]) # should be different assert not allclose(gcrscoo4.ra, gcrscoo.ra, rtol=1e-8, atol=1e-10 * u.deg) assert not allclose(gcrscoo4.dec, gcrscoo.dec, rtol=1e-8, atol=1e-10 * u.deg) gcrscoo5 = gcrscoo4.transform_to(gcrs_frames[0]) # should be back to the same assert_allclose(gcrscoo.ra, gcrscoo5.ra, rtol=1e-8, atol=1e-10 * u.deg) assert_allclose(gcrscoo.dec, gcrscoo5.dec, rtol=1e-8, atol=1e-10 * u.deg) # also make sure that a GCRS with a different geoloc/geovel gets a different answer # roughly a moon-like frame gframe3 = GCRS(obsgeoloc=[385000.0, 0, 0] * u.km, obsgeovel=[1, 0, 0] * u.km / u.s) gcrscoo6 = icoo.transform_to(gframe3) # should be different assert not allclose(gcrscoo.ra, gcrscoo6.ra, rtol=1e-8, atol=1e-10 * u.deg) assert not allclose(gcrscoo.dec, gcrscoo6.dec, rtol=1e-8, atol=1e-10 * u.deg) icooviag3 = gcrscoo6.transform_to(ICRS()) # and now back to the original assert_allclose(icoo.ra, icooviag3.ra) assert_allclose(icoo.dec, icooviag3.dec) @pytest.mark.parametrize("gframe", gcrs_frames) def test_icrs_gcrs_dist_diff(gframe): """ Check that with and without distance give different ICRS<->GCRS answers """ gcrsnod = icrs_coords[0].transform_to(gframe) gcrswd = icrs_coords[1].transform_to(gframe) # parallax effects should be included, so with and w/o distance should be different assert not allclose(gcrswd.ra, gcrsnod.ra, rtol=1e-8, atol=1e-10 * u.deg) assert not allclose(gcrswd.dec, gcrsnod.dec, rtol=1e-8, atol=1e-10 * u.deg) # and the distance should transform at least somehow assert not allclose( gcrswd.distance, icrs_coords[1].distance, rtol=1e-8, atol=1e-10 * u.pc ) def test_cirs_to_altaz(): """ Check the basic CIRS<->AltAz transforms. More thorough checks implicitly happen in `test_iau_fullstack` """ from astropy.coordinates import EarthLocation usph = golden_spiral_grid(200) dist = np.linspace(0.5, 1, len(usph)) * u.pc cirs = CIRS(usph, obstime="J2000") crepr = SphericalRepresentation(lon=usph.lon, lat=usph.lat, distance=dist) cirscart = CIRS( crepr, obstime=cirs.obstime, representation_type=CartesianRepresentation ) loc = EarthLocation(lat=0 * u.deg, lon=0 * u.deg, height=0 * u.m) altazframe = AltAz(location=loc, obstime=Time("J2005")) cirs2 = cirs.transform_to(altazframe).transform_to(cirs) cirs3 = cirscart.transform_to(altazframe).transform_to(cirs) # check round-tripping assert_allclose(cirs.ra, cirs2.ra) assert_allclose(cirs.dec, cirs2.dec) assert_allclose(cirs.ra, cirs3.ra) assert_allclose(cirs.dec, cirs3.dec) def test_cirs_to_hadec(): """ Check the basic CIRS<->HADec transforms. """ from astropy.coordinates import EarthLocation usph = golden_spiral_grid(200) dist = np.linspace(0.5, 1, len(usph)) * u.pc cirs = CIRS(usph, obstime="J2000") crepr = SphericalRepresentation(lon=usph.lon, lat=usph.lat, distance=dist) cirscart = CIRS( crepr, obstime=cirs.obstime, representation_type=CartesianRepresentation ) loc = EarthLocation(lat=0 * u.deg, lon=0 * u.deg, height=0 * u.m) hadecframe = HADec(location=loc, obstime=Time("J2005")) cirs2 = cirs.transform_to(hadecframe).transform_to(cirs) cirs3 = cirscart.transform_to(hadecframe).transform_to(cirs) # check round-tripping assert_allclose(cirs.ra, cirs2.ra) assert_allclose(cirs.dec, cirs2.dec) assert_allclose(cirs.ra, cirs3.ra) assert_allclose(cirs.dec, cirs3.dec) def test_itrs_topo_to_altaz_with_refraction(): loc = EarthLocation(lat=0 * u.deg, lon=0 * u.deg, height=0 * u.m) usph = golden_spiral_grid(200) dist = np.linspace(1.0, 1000.0, len(usph)) * u.au icrs = ICRS(ra=usph.lon, dec=usph.lat, distance=dist) altaz_frame1 = AltAz(obstime="J2000", location=loc) altaz_frame2 = AltAz( obstime="J2000", location=loc, pressure=1000.0 * u.hPa, relative_humidity=0.5 ) cirs_frame = CIRS(obstime="J2000", location=loc) itrs_frame = ITRS(location=loc) # Normal route # No Refraction altaz1 = icrs.transform_to(altaz_frame1) # Refraction added altaz2 = icrs.transform_to(altaz_frame2) # Refraction removed cirs = altaz2.transform_to(cirs_frame) altaz3 = cirs.transform_to(altaz_frame1) # Through ITRS # No Refraction itrs = icrs.transform_to(itrs_frame) altaz11 = itrs.transform_to(altaz_frame1) assert_allclose(altaz11.az - altaz1.az, 0 * u.mas, atol=0.1 * u.mas) assert_allclose(altaz11.alt - altaz1.alt, 0 * u.mas, atol=0.1 * u.mas) assert_allclose(altaz11.distance - altaz1.distance, 0 * u.cm, atol=10.0 * u.cm) # Round trip itrs11 = altaz11.transform_to(itrs_frame) assert_allclose(itrs11.x, itrs.x) assert_allclose(itrs11.y, itrs.y) assert_allclose(itrs11.z, itrs.z) # Refraction added altaz22 = itrs.transform_to(altaz_frame2) assert_allclose(altaz22.az - altaz2.az, 0 * u.mas, atol=0.1 * u.mas) assert_allclose(altaz22.alt - altaz2.alt, 0 * u.mas, atol=0.1 * u.mas) assert_allclose(altaz22.distance - altaz2.distance, 0 * u.cm, atol=10.0 * u.cm) # Refraction removed itrs = altaz22.transform_to(itrs_frame) altaz33 = itrs.transform_to(altaz_frame1) assert_allclose(altaz33.az - altaz3.az, 0 * u.mas, atol=0.1 * u.mas) assert_allclose(altaz33.alt - altaz3.alt, 0 * u.mas, atol=0.1 * u.mas) assert_allclose(altaz33.distance - altaz3.distance, 0 * u.cm, atol=10.0 * u.cm) def test_itrs_topo_to_hadec_with_refraction(): loc = EarthLocation(lat=0 * u.deg, lon=0 * u.deg, height=0 * u.m) usph = golden_spiral_grid(200) dist = np.linspace(1.0, 1000.0, len(usph)) * u.au icrs = ICRS(ra=usph.lon, dec=usph.lat, distance=dist) hadec_frame1 = HADec(obstime="J2000", location=loc) hadec_frame2 = HADec( obstime="J2000", location=loc, pressure=1000.0 * u.hPa, relative_humidity=0.5 ) cirs_frame = CIRS(obstime="J2000", location=loc) itrs_frame = ITRS(location=loc) # Normal route # No Refraction hadec1 = icrs.transform_to(hadec_frame1) # Refraction added hadec2 = icrs.transform_to(hadec_frame2) # Refraction removed cirs = hadec2.transform_to(cirs_frame) hadec3 = cirs.transform_to(hadec_frame1) # Through ITRS # No Refraction itrs = icrs.transform_to(itrs_frame) hadec11 = itrs.transform_to(hadec_frame1) assert_allclose(hadec11.ha - hadec1.ha, 0 * u.mas, atol=0.1 * u.mas) assert_allclose(hadec11.dec - hadec1.dec, 0 * u.mas, atol=0.1 * u.mas) assert_allclose(hadec11.distance - hadec1.distance, 0 * u.cm, atol=10.0 * u.cm) # Round trip itrs11 = hadec11.transform_to(itrs_frame) assert_allclose(itrs11.x, itrs.x) assert_allclose(itrs11.y, itrs.y) assert_allclose(itrs11.z, itrs.z) # Refraction added hadec22 = itrs.transform_to(hadec_frame2) assert_allclose(hadec22.ha - hadec2.ha, 0 * u.mas, atol=0.1 * u.mas) assert_allclose(hadec22.dec - hadec2.dec, 0 * u.mas, atol=0.1 * u.mas) assert_allclose(hadec22.distance - hadec2.distance, 0 * u.cm, atol=10.0 * u.cm) # Refraction removed itrs = hadec22.transform_to(itrs_frame) hadec33 = itrs.transform_to(hadec_frame1) assert_allclose(hadec33.ha - hadec3.ha, 0 * u.mas, atol=0.1 * u.mas) assert_allclose(hadec33.dec - hadec3.dec, 0 * u.mas, atol=0.1 * u.mas) assert_allclose(hadec33.distance - hadec3.distance, 0 * u.cm, atol=10.0 * u.cm) def test_gcrs_itrs(): """ Check basic GCRS<->ITRS transforms for round-tripping. """ usph = golden_spiral_grid(200) gcrs = GCRS(usph, obstime="J2000") gcrs6 = GCRS(usph, obstime="J2006") gcrs2 = gcrs.transform_to(ITRS()).transform_to(gcrs) gcrs6_2 = gcrs6.transform_to(ITRS()).transform_to(gcrs) assert_allclose(gcrs.ra, gcrs2.ra) assert_allclose(gcrs.dec, gcrs2.dec) # these should be different: assert not allclose(gcrs.ra, gcrs6_2.ra, rtol=1e-8) assert not allclose(gcrs.dec, gcrs6_2.dec, rtol=1e-8) # also try with the cartesian representation gcrsc = gcrs.realize_frame(gcrs.data) gcrsc.representation_type = CartesianRepresentation gcrsc2 = gcrsc.transform_to(ITRS()).transform_to(gcrsc) assert_allclose(gcrsc.spherical.lon, gcrsc2.ra) assert_allclose(gcrsc.spherical.lat, gcrsc2.dec) def test_cirs_itrs(): """ Check basic CIRS<->ITRS geocentric transforms for round-tripping. """ usph = golden_spiral_grid(200) cirs = CIRS(usph, obstime="J2000") cirs6 = CIRS(usph, obstime="J2006") cirs2 = cirs.transform_to(ITRS()).transform_to(cirs) cirs6_2 = cirs6.transform_to(ITRS()).transform_to(cirs) # different obstime # just check round-tripping assert_allclose(cirs.ra, cirs2.ra) assert_allclose(cirs.dec, cirs2.dec) assert not allclose(cirs.ra, cirs6_2.ra) assert not allclose(cirs.dec, cirs6_2.dec) def test_cirs_itrs_topo(): """ Check basic CIRS<->ITRS topocentric transforms for round-tripping. """ loc = EarthLocation(lat=0 * u.deg, lon=0 * u.deg, height=0 * u.m) usph = golden_spiral_grid(200) cirs = CIRS(usph, obstime="J2000", location=loc) cirs6 = CIRS(usph, obstime="J2006", location=loc) cirs2 = cirs.transform_to(ITRS(location=loc)).transform_to(cirs) # different obstime cirs6_2 = cirs6.transform_to(ITRS(location=loc)).transform_to(cirs) # just check round-tripping assert_allclose(cirs.ra, cirs2.ra) assert_allclose(cirs.dec, cirs2.dec) assert not allclose(cirs.ra, cirs6_2.ra) assert not allclose(cirs.dec, cirs6_2.dec) def test_gcrs_cirs(): """ Check GCRS<->CIRS transforms for round-tripping. More complicated than the above two because it's multi-hop """ usph = golden_spiral_grid(200) gcrs = GCRS(usph, obstime="J2000") gcrs6 = GCRS(usph, obstime="J2006") gcrs2 = gcrs.transform_to(CIRS()).transform_to(gcrs) gcrs6_2 = gcrs6.transform_to(CIRS()).transform_to(gcrs) assert_allclose(gcrs.ra, gcrs2.ra) assert_allclose(gcrs.dec, gcrs2.dec) # these should be different: assert not allclose(gcrs.ra, gcrs6_2.ra, rtol=1e-8) assert not allclose(gcrs.dec, gcrs6_2.dec, rtol=1e-8) # now try explicit intermediate pathways and ensure they're all consistent gcrs3 = ( gcrs.transform_to(ITRS()) .transform_to(CIRS()) .transform_to(ITRS()) .transform_to(gcrs) ) assert_allclose(gcrs.ra, gcrs3.ra) assert_allclose(gcrs.dec, gcrs3.dec) gcrs4 = ( gcrs.transform_to(ICRS()) .transform_to(CIRS()) .transform_to(ICRS()) .transform_to(gcrs) ) assert_allclose(gcrs.ra, gcrs4.ra) assert_allclose(gcrs.dec, gcrs4.dec) def test_gcrs_altaz(): """ Check GCRS<->AltAz transforms for round-tripping. Has multiple paths """ from astropy.coordinates import EarthLocation usph = golden_spiral_grid(128) gcrs = GCRS(usph, obstime="J2000")[None] # broadcast with times below # check array times sure N-d arrays work times = Time(np.linspace(2456293.25, 2456657.25, 51) * u.day, format="jd")[:, None] loc = EarthLocation(lon=10 * u.deg, lat=80.0 * u.deg) aaframe = AltAz(obstime=times, location=loc) aa1 = gcrs.transform_to(aaframe) aa2 = gcrs.transform_to(ICRS()).transform_to(CIRS()).transform_to(aaframe) aa3 = gcrs.transform_to(ITRS()).transform_to(CIRS()).transform_to(aaframe) # make sure they're all consistent assert_allclose(aa1.alt, aa2.alt) assert_allclose(aa1.az, aa2.az) assert_allclose(aa1.alt, aa3.alt) assert_allclose(aa1.az, aa3.az) def test_gcrs_hadec(): """ Check GCRS<->HADec transforms for round-tripping. Has multiple paths """ from astropy.coordinates import EarthLocation usph = golden_spiral_grid(128) gcrs = GCRS(usph, obstime="J2000") # broadcast with times below # check array times sure N-d arrays work times = Time(np.linspace(2456293.25, 2456657.25, 51) * u.day, format="jd")[:, None] loc = EarthLocation(lon=10 * u.deg, lat=80.0 * u.deg) hdframe = HADec(obstime=times, location=loc) hd1 = gcrs.transform_to(hdframe) hd2 = gcrs.transform_to(ICRS()).transform_to(CIRS()).transform_to(hdframe) hd3 = gcrs.transform_to(ITRS()).transform_to(CIRS()).transform_to(hdframe) # make sure they're all consistent assert_allclose(hd1.dec, hd2.dec) assert_allclose(hd1.ha, hd2.ha) assert_allclose(hd1.dec, hd3.dec) assert_allclose(hd1.ha, hd3.ha) def test_precessed_geocentric(): assert PrecessedGeocentric().equinox.jd == Time("J2000").jd gcrs_coo = GCRS(180 * u.deg, 2 * u.deg, distance=10000 * u.km) pgeo_coo = gcrs_coo.transform_to(PrecessedGeocentric()) assert np.abs(gcrs_coo.ra - pgeo_coo.ra) > 10 * u.marcsec assert np.abs(gcrs_coo.dec - pgeo_coo.dec) > 10 * u.marcsec assert_allclose(gcrs_coo.distance, pgeo_coo.distance) gcrs_roundtrip = pgeo_coo.transform_to(GCRS()) assert_allclose(gcrs_coo.ra, gcrs_roundtrip.ra) assert_allclose(gcrs_coo.dec, gcrs_roundtrip.dec) assert_allclose(gcrs_coo.distance, gcrs_roundtrip.distance) pgeo_coo2 = gcrs_coo.transform_to(PrecessedGeocentric(equinox="B1850")) assert np.abs(gcrs_coo.ra - pgeo_coo2.ra) > 1.5 * u.deg assert np.abs(gcrs_coo.dec - pgeo_coo2.dec) > 0.5 * u.deg assert_allclose(gcrs_coo.distance, pgeo_coo2.distance) gcrs2_roundtrip = pgeo_coo2.transform_to(GCRS()) assert_allclose(gcrs_coo.ra, gcrs2_roundtrip.ra) assert_allclose(gcrs_coo.dec, gcrs2_roundtrip.dec) assert_allclose(gcrs_coo.distance, gcrs2_roundtrip.distance) def test_precessed_geocentric_different_obstime(): # Create two PrecessedGeocentric frames with different obstime precessedgeo1 = PrecessedGeocentric(obstime="2021-09-07") precessedgeo2 = PrecessedGeocentric(obstime="2021-06-07") # GCRS->PrecessedGeocentric should give different results for the two frames gcrs_coord = GCRS(10 * u.deg, 20 * u.deg, 3 * u.AU, obstime=precessedgeo1.obstime) pg_coord1 = gcrs_coord.transform_to(precessedgeo1) pg_coord2 = gcrs_coord.transform_to(precessedgeo2) assert not pg_coord1.is_equivalent_frame(pg_coord2) assert not allclose(pg_coord1.cartesian.xyz, pg_coord2.cartesian.xyz) # Looping back to GCRS should return the original coordinate loopback1 = pg_coord1.transform_to(gcrs_coord) loopback2 = pg_coord2.transform_to(gcrs_coord) assert loopback1.is_equivalent_frame(gcrs_coord) assert loopback2.is_equivalent_frame(gcrs_coord) assert_allclose(loopback1.cartesian.xyz, gcrs_coord.cartesian.xyz) assert_allclose(loopback2.cartesian.xyz, gcrs_coord.cartesian.xyz) # shared by parametrized tests below. Some use the whole AltAz, others use just obstime totest_frames = [ # J2000 is often a default so this might work when others don't AltAz(location=EarthLocation(-90 * u.deg, 65 * u.deg), obstime=Time("J2000")), AltAz(location=EarthLocation(120 * u.deg, -35 * u.deg), obstime=Time("J2000")), AltAz( location=EarthLocation(-90 * u.deg, 65 * u.deg), obstime=Time("2014-01-01 00:00:00"), ), AltAz( location=EarthLocation(-90 * u.deg, 65 * u.deg), obstime=Time("2014-08-01 08:00:00"), ), AltAz( location=EarthLocation(120 * u.deg, -35 * u.deg), obstime=Time("2014-01-01 00:00:00"), ), ] MOONDIST = 385000 * u.km # approximate moon semi-major orbit axis of moon MOONDIST_CART = CartesianRepresentation( 3**-0.5 * MOONDIST, 3**-0.5 * MOONDIST, 3**-0.5 * MOONDIST ) # roughly earth orbital eccentricity, but with an added tolerance EARTHECC = 0.017 + 0.005 @pytest.mark.parametrize("testframe", totest_frames) def test_gcrs_altaz_sunish(testframe): """ Sanity-check that the sun is at a reasonable distance from any altaz """ sun = get_sun(testframe.obstime) assert sun.frame.name == "gcrs" # the .to(u.au) is not necessary, it just makes the asserts on failure more readable assert (EARTHECC - 1) * u.au < sun.distance.to(u.au) < (EARTHECC + 1) * u.au sunaa = sun.transform_to(testframe) assert (EARTHECC - 1) * u.au < sunaa.distance.to(u.au) < (EARTHECC + 1) * u.au @pytest.mark.parametrize("testframe", totest_frames) def test_gcrs_altaz_moonish(testframe): """ Sanity-check that an object resembling the moon goes to the right place with a GCRS->AltAz transformation """ moon = GCRS(MOONDIST_CART, obstime=testframe.obstime) moonaa = moon.transform_to(testframe) # now check that the distance change is similar to earth radius assert 1000 * u.km < np.abs(moonaa.distance - moon.distance).to(u.au) < 7000 * u.km # now check that it round-trips moon2 = moonaa.transform_to(moon) assert_allclose(moon.cartesian.xyz, moon2.cartesian.xyz) # also should add checks that the alt/az are different for different earth locations @pytest.mark.parametrize("testframe", totest_frames) def test_gcrs_altaz_bothroutes(testframe): """ Repeat of both the moonish and sunish tests above to make sure the two routes through the coordinate graph are consistent with each other """ sun = get_sun(testframe.obstime) sunaa_viaicrs = sun.transform_to(ICRS()).transform_to(testframe) sunaa_viaitrs = sun.transform_to(ITRS(obstime=testframe.obstime)).transform_to( testframe ) moon = GCRS(MOONDIST_CART, obstime=testframe.obstime) moonaa_viaicrs = moon.transform_to(ICRS()).transform_to(testframe) moonaa_viaitrs = moon.transform_to(ITRS(obstime=testframe.obstime)).transform_to( testframe ) assert_allclose(sunaa_viaicrs.cartesian.xyz, sunaa_viaitrs.cartesian.xyz) assert_allclose(moonaa_viaicrs.cartesian.xyz, moonaa_viaitrs.cartesian.xyz) @pytest.mark.parametrize("testframe", totest_frames) def test_cirs_altaz_moonish(testframe): """ Sanity-check that an object resembling the moon goes to the right place with a CIRS<->AltAz transformation """ moon = CIRS(MOONDIST_CART, obstime=testframe.obstime) moonaa = moon.transform_to(testframe) assert 1000 * u.km < np.abs(moonaa.distance - moon.distance).to(u.km) < 7000 * u.km # now check that it round-trips moon2 = moonaa.transform_to(moon) assert_allclose(moon.cartesian.xyz, moon2.cartesian.xyz) @pytest.mark.parametrize("testframe", totest_frames) def test_cirs_altaz_nodist(testframe): """ Check that a UnitSphericalRepresentation coordinate round-trips for the CIRS<->AltAz transformation. """ coo0 = CIRS( UnitSphericalRepresentation(10 * u.deg, 20 * u.deg), obstime=testframe.obstime ) # check that it round-trips coo1 = coo0.transform_to(testframe).transform_to(coo0) assert_allclose(coo0.cartesian.xyz, coo1.cartesian.xyz) @pytest.mark.parametrize("testframe", totest_frames) def test_cirs_icrs_moonish(testframe): """ check that something like the moon goes to about the right distance from the ICRS origin when starting from CIRS """ moonish = CIRS(MOONDIST_CART, obstime=testframe.obstime) moonicrs = moonish.transform_to(ICRS()) assert 0.97 * u.au < moonicrs.distance < 1.03 * u.au @pytest.mark.parametrize("testframe", totest_frames) def test_gcrs_icrs_moonish(testframe): """ check that something like the moon goes to about the right distance from the ICRS origin when starting from GCRS """ moonish = GCRS(MOONDIST_CART, obstime=testframe.obstime) moonicrs = moonish.transform_to(ICRS()) assert 0.97 * u.au < moonicrs.distance < 1.03 * u.au @pytest.mark.parametrize("testframe", totest_frames) def test_icrs_gcrscirs_sunish(testframe): """ check that the ICRS barycenter goes to about the right distance from various ~geocentric frames (other than testframe) """ # slight offset to avoid divide-by-zero errors icrs = ICRS(0 * u.deg, 0 * u.deg, distance=10 * u.km) gcrs = icrs.transform_to(GCRS(obstime=testframe.obstime)) assert (EARTHECC - 1) * u.au < gcrs.distance.to(u.au) < (EARTHECC + 1) * u.au cirs = icrs.transform_to(CIRS(obstime=testframe.obstime)) assert (EARTHECC - 1) * u.au < cirs.distance.to(u.au) < (EARTHECC + 1) * u.au itrs = icrs.transform_to(ITRS(obstime=testframe.obstime)) assert ( (EARTHECC - 1) * u.au < itrs.spherical.distance.to(u.au) < (EARTHECC + 1) * u.au ) @pytest.mark.parametrize("testframe", totest_frames) def test_icrs_altaz_moonish(testframe): """ Check that something expressed in *ICRS* as being moon-like goes to the right AltAz distance """ # we use epv00 instead of get_sun because get_sun includes aberration earth_pv_helio, earth_pv_bary = erfa.epv00(*get_jd12(testframe.obstime, "tdb")) earth_icrs_xyz = earth_pv_bary[0] * u.au moonoffset = [0, 0, MOONDIST.value] * MOONDIST.unit moonish_icrs = ICRS(CartesianRepresentation(earth_icrs_xyz + moonoffset)) moonaa = moonish_icrs.transform_to(testframe) # now check that the distance change is similar to earth radius assert 1000 * u.km < np.abs(moonaa.distance - MOONDIST).to(u.au) < 7000 * u.km def test_gcrs_self_transform_closeby(): """ Tests GCRS self transform for objects which are nearby and thus have reasonable parallax. Moon positions were originally created using JPL DE432s ephemeris. The two lunar positions (one geocentric, one at a defined location) are created via a transformation from ICRS to two different GCRS frames. We test that the GCRS-GCRS self transform can correctly map one GCRS frame onto the other. """ t = Time("2014-12-25T07:00") moon_geocentric = SkyCoord( GCRS( 318.10579159 * u.deg, -11.65281165 * u.deg, 365042.64880308 * u.km, obstime=t, ) ) # this is the location of the Moon as seen from La Palma obsgeoloc = [-5592982.59658935, -63054.1948592, 3059763.90102216] * u.m obsgeovel = [4.59798494, -407.84677071, 0.0] * u.m / u.s moon_lapalma = SkyCoord( GCRS( 318.7048445 * u.deg, -11.98761996 * u.deg, 369722.8231031 * u.km, obstime=t, obsgeoloc=obsgeoloc, obsgeovel=obsgeovel, ) ) transformed = moon_geocentric.transform_to(moon_lapalma.frame) delta = transformed.separation_3d(moon_lapalma) assert_allclose(delta, 0.0 * u.m, atol=1 * u.m) def test_teme_itrf(): """ Test case transform from TEME to ITRF. Test case derives from example on appendix C of Vallado, Crawford, Hujsak & Kelso (2006). See https://celestrak.com/publications/AIAA/2006-6753/AIAA-2006-6753-Rev2.pdf """ v_itrf = CartesianDifferential( -3.225636520, -2.872451450, 5.531924446, unit=u.km / u.s ) p_itrf = CartesianRepresentation( -1033.479383, 7901.2952740, 6380.35659580, unit=u.km, differentials={"s": v_itrf}, ) t = Time("2004-04-06T07:51:28.386") teme = ITRS(p_itrf, obstime=t).transform_to(TEME(obstime=t)) v_teme = CartesianDifferential( -4.746131487, 0.785818041, 5.531931288, unit=u.km / u.s ) p_teme = CartesianRepresentation( 5094.18016210, 6127.64465050, 6380.34453270, unit=u.km, differentials={"s": v_teme}, ) assert_allclose( teme.cartesian.without_differentials().xyz, p_teme.without_differentials().xyz, atol=30 * u.cm, ) assert_allclose( teme.cartesian.differentials["s"].d_xyz, p_teme.differentials["s"].d_xyz, atol=1.0 * u.cm / u.s, ) # test round trip itrf = teme.transform_to(ITRS(obstime=t)) assert_allclose( itrf.cartesian.without_differentials().xyz, p_itrf.without_differentials().xyz, atol=100 * u.cm, ) assert_allclose( itrf.cartesian.differentials["s"].d_xyz, p_itrf.differentials["s"].d_xyz, atol=1 * u.cm / u.s, ) def test_precessedgeocentric_loopback(): from_coo = PrecessedGeocentric( 1 * u.deg, 2 * u.deg, 3 * u.AU, obstime="2001-01-01", equinox="2001-01-01" ) # Change just the obstime to_frame = PrecessedGeocentric(obstime="2001-06-30", equinox="2001-01-01") explicit_coo = from_coo.transform_to(ICRS()).transform_to(to_frame) implicit_coo = from_coo.transform_to(to_frame) # Confirm that the explicit transformation changes the coordinate assert not allclose(explicit_coo.ra, from_coo.ra, rtol=1e-10) assert not allclose(explicit_coo.dec, from_coo.dec, rtol=1e-10) assert not allclose(explicit_coo.distance, from_coo.distance, rtol=1e-10) # Confirm that the loopback matches the explicit transformation assert_allclose(explicit_coo.ra, implicit_coo.ra, rtol=1e-10) assert_allclose(explicit_coo.dec, implicit_coo.dec, rtol=1e-10) assert_allclose(explicit_coo.distance, implicit_coo.distance, rtol=1e-10) # Change just the equinox to_frame = PrecessedGeocentric(obstime="2001-01-01", equinox="2001-06-30") explicit_coo = from_coo.transform_to(ICRS()).transform_to(to_frame) implicit_coo = from_coo.transform_to(to_frame) # Confirm that the explicit transformation changes the direction but not the distance assert not allclose(explicit_coo.ra, from_coo.ra, rtol=1e-10) assert not allclose(explicit_coo.dec, from_coo.dec, rtol=1e-10) assert allclose(explicit_coo.distance, from_coo.distance, rtol=1e-10) # Confirm that the loopback matches the explicit transformation assert_allclose(explicit_coo.ra, implicit_coo.ra, rtol=1e-10) assert_allclose(explicit_coo.dec, implicit_coo.dec, rtol=1e-10) assert_allclose(explicit_coo.distance, implicit_coo.distance, rtol=1e-10) def test_teme_loopback(): from_coo = TEME(1 * u.AU, 2 * u.AU, 3 * u.AU, obstime="2001-01-01") to_frame = TEME(obstime="2001-06-30") explicit_coo = from_coo.transform_to(ICRS()).transform_to(to_frame) implicit_coo = from_coo.transform_to(to_frame) # Confirm that the explicit transformation changes the coordinate assert not allclose(explicit_coo.cartesian.xyz, from_coo.cartesian.xyz, rtol=1e-10) # Confirm that the loopback matches the explicit transformation assert_allclose(explicit_coo.cartesian.xyz, implicit_coo.cartesian.xyz, rtol=1e-10) @pytest.mark.remote_data def test_earth_orientation_table(monkeypatch): """Check that we can set the IERS table used as Earth Reference. Use the here and now to be sure we get a difference. """ monkeypatch.setattr("astropy.utils.iers.conf.auto_download", True) t = Time.now() location = EarthLocation(lat=0 * u.deg, lon=0 * u.deg) altaz = AltAz(location=location, obstime=t) sc = SkyCoord(1 * u.deg, 2 * u.deg) # Default: uses IERS_Auto, which will give a prediction. # Note: tests run with warnings turned into errors, so it is # meaningful if this passes. if CI: with warnings.catch_warnings(): # Server occasionally blocks IERS download in CI. warnings.filterwarnings("ignore", message=r".*using local IERS-B.*") # This also captures unclosed socket warning that is ignored in setup.cfg warnings.filterwarnings("ignore", message=r".*unclosed.*") altaz_auto = sc.transform_to(altaz) else: altaz_auto = sc.transform_to(altaz) # No warnings with iers.earth_orientation_table.set(iers.IERS_B.open()): with pytest.warns(AstropyWarning, match="after IERS data"): altaz_b = sc.transform_to(altaz) sep_b_auto = altaz_b.separation(altaz_auto) assert_allclose(sep_b_auto, 0.0 * u.deg, atol=1 * u.arcsec) assert sep_b_auto > 10 * u.microarcsecond # Check we returned to regular IERS system. altaz_auto2 = sc.transform_to(altaz) assert altaz_auto2.separation(altaz_auto) == 0.0 @pytest.mark.remote_data @pytest.mark.skipif(not HAS_JPLEPHEM, reason="requires jplephem") def test_ephemerides(): """ We test that using different ephemerides gives very similar results for transformations """ t = Time("2014-12-25T07:00") moon = SkyCoord( GCRS( 318.10579159 * u.deg, -11.65281165 * u.deg, 365042.64880308 * u.km, obstime=t, ) ) icrs_frame = ICRS() hcrs_frame = HCRS(obstime=t) ecl_frame = HeliocentricMeanEcliptic(equinox=t) cirs_frame = CIRS(obstime=t) moon_icrs_builtin = moon.transform_to(icrs_frame) moon_hcrs_builtin = moon.transform_to(hcrs_frame) moon_helioecl_builtin = moon.transform_to(ecl_frame) moon_cirs_builtin = moon.transform_to(cirs_frame) with solar_system_ephemeris.set("jpl"): moon_icrs_jpl = moon.transform_to(icrs_frame) moon_hcrs_jpl = moon.transform_to(hcrs_frame) moon_helioecl_jpl = moon.transform_to(ecl_frame) moon_cirs_jpl = moon.transform_to(cirs_frame) # most transformations should differ by an amount which is # non-zero but of order milliarcsecs sep_icrs = moon_icrs_builtin.separation(moon_icrs_jpl) sep_hcrs = moon_hcrs_builtin.separation(moon_hcrs_jpl) sep_helioecl = moon_helioecl_builtin.separation(moon_helioecl_jpl) sep_cirs = moon_cirs_builtin.separation(moon_cirs_jpl) assert_allclose([sep_icrs, sep_hcrs, sep_helioecl], 0.0 * u.deg, atol=10 * u.mas) assert all( sep > 10 * u.microarcsecond for sep in (sep_icrs, sep_hcrs, sep_helioecl) ) # CIRS should be the same assert_allclose(sep_cirs, 0.0 * u.deg, atol=1 * u.microarcsecond) def test_tete_transforms(): """ We test the TETE transforms for proper behaviour here. The TETE transforms are tested for accuracy against JPL Horizons in test_solar_system.py. Here we are looking to check for consistency and errors in the self transform. """ loc = EarthLocation.from_geodetic("-22°57'35.1", "-67°47'14.1", 5186 * u.m) time = Time("2020-04-06T00:00") p, v = loc.get_gcrs_posvel(time) gcrs_frame = GCRS(obstime=time, obsgeoloc=p, obsgeovel=v) moon = SkyCoord( 169.24113968 * u.deg, 10.86086666 * u.deg, 358549.25381755 * u.km, frame=gcrs_frame, ) tete_frame = TETE(obstime=time, location=loc) # need to set obsgeoloc/vel explicitly or skycoord behaviour over-writes tete_geo = TETE(obstime=time, location=EarthLocation(*([0, 0, 0] * u.km))) # test self-transform by comparing to GCRS-TETE-ITRS-TETE route tete_coo1 = moon.transform_to(tete_frame) tete_coo2 = moon.transform_to(tete_geo) assert_allclose(tete_coo1.separation_3d(tete_coo2), 0 * u.mm, atol=1 * u.mm) # test TETE-ITRS transform by comparing GCRS-CIRS-ITRS to GCRS-TETE-ITRS itrs1 = moon.transform_to(CIRS()).transform_to(ITRS()) itrs2 = moon.transform_to(TETE()).transform_to(ITRS()) assert_allclose(itrs1.separation_3d(itrs2), 0 * u.mm, atol=1 * u.mm) # test round trip GCRS->TETE->GCRS new_moon = moon.transform_to(TETE()).transform_to(moon) assert_allclose(new_moon.separation_3d(moon), 0 * u.mm, atol=1 * u.mm) # test round trip via ITRS tete_rt = tete_coo1.transform_to(ITRS(obstime=time)).transform_to(tete_coo1) assert_allclose(tete_rt.separation_3d(tete_coo1), 0 * u.mm, atol=1 * u.mm) # ensure deprecated routine remains consistent # make sure test raises warning! with pytest.warns(AstropyDeprecationWarning, match="The use of"): tete_alt = _apparent_position_in_true_coordinates(moon) assert_allclose(tete_coo1.separation_3d(tete_alt), 0 * u.mm, atol=100 * u.mm) def test_straight_overhead(): """ With a precise CIRS<->Observed transformation this should give Alt=90 exactly If the CIRS self-transform breaks it won't, due to improper treatment of aberration """ t = Time("J2010") obj = EarthLocation(-1 * u.deg, 52 * u.deg, height=10.0 * u.km) home = EarthLocation(-1 * u.deg, 52 * u.deg, height=0.0 * u.km) # An object that appears straight overhead - FOR A GEOCENTRIC OBSERVER. # Note, this won't be overhead for a topocentric observer because of # aberration. cirs_geo = obj.get_itrs(t).transform_to(CIRS(obstime=t)) # now get the Geocentric CIRS position of observatory obsrepr = home.get_itrs(t).transform_to(CIRS(obstime=t)).cartesian # topocentric CIRS position of a straight overhead object cirs_repr = cirs_geo.cartesian - obsrepr # create a CIRS object that appears straight overhead for a TOPOCENTRIC OBSERVER topocentric_cirs_frame = CIRS(obstime=t, location=home) cirs_topo = topocentric_cirs_frame.realize_frame(cirs_repr) # Check AltAz (though Azimuth can be anything so is not tested). aa = cirs_topo.transform_to(AltAz(obstime=t, location=home)) assert_allclose(aa.alt, 90 * u.deg, atol=1 * u.uas, rtol=0) # Check HADec. hd = cirs_topo.transform_to(HADec(obstime=t, location=home)) assert_allclose(hd.ha, 0 * u.hourangle, atol=1 * u.uas, rtol=0) assert_allclose(hd.dec, 52 * u.deg, atol=1 * u.uas, rtol=0) def test_itrs_straight_overhead(): """ With a precise ITRS<->Observed transformation this should give Alt=90 exactly """ t = Time("J2010") obj = EarthLocation(-1 * u.deg, 52 * u.deg, height=10.0 * u.km) home = EarthLocation(-1 * u.deg, 52 * u.deg, height=0.0 * u.km) # An object that appears straight overhead - FOR A GEOCENTRIC OBSERVER. itrs_geo = obj.get_itrs(t).cartesian # now get the Geocentric ITRS position of observatory obsrepr = home.get_itrs(t).cartesian # topocentric ITRS position of a straight overhead object itrs_repr = itrs_geo - obsrepr # create a ITRS object that appears straight overhead for a TOPOCENTRIC OBSERVER itrs_topo = ITRS(itrs_repr, obstime=t, location=home) # Check AltAz (though Azimuth can be anything so is not tested). aa = itrs_topo.transform_to(AltAz(obstime=t, location=home)) assert_allclose(aa.alt, 90 * u.deg, atol=1 * u.uas, rtol=0) # Check HADec. hd = itrs_topo.transform_to(HADec(obstime=t, location=home)) assert_allclose(hd.ha, 0 * u.hourangle, atol=1 * u.uas, rtol=0) assert_allclose(hd.dec, 52 * u.deg, atol=1 * u.uas, rtol=0) def jplephem_ge(minversion): """Check if jplephem is installed and has version >= minversion.""" # This is a separate routine since somehow with pyinstaller the stanza # not HAS_JPLEPHEM or metadata.version('jplephem') < '2.15' # leads to a module not found error. try: return HAS_JPLEPHEM and metadata.version("jplephem") >= minversion except Exception: return False @pytest.mark.remote_data @pytest.mark.skipif(not jplephem_ge("2.15"), reason="requires jplephem >= 2.15") def test_aa_hd_high_precision(): """These tests are provided by @mkbrewer - see issue #10356. The code that produces them agrees very well (<0.5 mas) with SkyField once Polar motion is turned off, but SkyField does not include polar motion, so a comparison to Skyfield or JPL Horizons will be ~1" off. The absence of polar motion within Skyfield and the disagreement between Skyfield and Horizons make high precision comparisons to those codes difficult. Updated 2020-11-29, after the comparison between codes became even better, down to 100 nas. NOTE: the agreement reflects consistency in approach between two codes, not necessarily absolute precision. If this test starts failing, the tolerance can and should be weakened *if* it is clear that the change is due to an improvement (e.g., a new IAU precession model). """ lat = -22.959748 * u.deg lon = -67.787260 * u.deg elev = 5186 * u.m loc = EarthLocation.from_geodetic(lon, lat, elev) # Note: at this level of precision for the comparison, we have to include # the location in the time, as it influences the transformation to TDB. t = Time("2017-04-06T00:00:00.0", location=loc) with solar_system_ephemeris.set("de430"): moon = get_body("moon", t, loc) moon_aa = moon.transform_to(AltAz(obstime=t, location=loc)) moon_hd = moon.transform_to(HADec(obstime=t, location=loc)) # Numbers from # https://github.com/astropy/astropy/pull/11073#issuecomment-735486271 # updated in https://github.com/astropy/astropy/issues/11683 TARGET_AZ, TARGET_EL = 15.032673509956 * u.deg, 50.303110133923 * u.deg TARGET_DISTANCE = 376252883.247239 * u.m assert_allclose(moon_aa.az, TARGET_AZ, atol=0.1 * u.uas, rtol=0) assert_allclose(moon_aa.alt, TARGET_EL, atol=0.1 * u.uas, rtol=0) assert_allclose(moon_aa.distance, TARGET_DISTANCE, atol=0.1 * u.mm, rtol=0) ha, dec = erfa.ae2hd( moon_aa.az.to_value(u.radian), moon_aa.alt.to_value(u.radian), lat.to_value(u.radian), ) ha = u.Quantity(ha, u.radian, copy=False) dec = u.Quantity(dec, u.radian, copy=False) assert_allclose(moon_hd.ha, ha, atol=0.1 * u.uas, rtol=0) assert_allclose(moon_hd.dec, dec, atol=0.1 * u.uas, rtol=0) def test_aa_high_precision_nodata(): """ These tests are designed to ensure high precision alt-az transforms. They are a slight fudge since the target values come from astropy itself. They are generated with a version of the code that passes the tests above, but for the internal solar system ephemerides to avoid the use of remote data. """ # Last updated when switching to erfa 2.0.0 and its moon98 function. TARGET_AZ, TARGET_EL = 15.03231495 * u.deg, 50.3027193 * u.deg lat = -22.959748 * u.deg lon = -67.787260 * u.deg elev = 5186 * u.m loc = EarthLocation.from_geodetic(lon, lat, elev) t = Time("2017-04-06T00:00:00.0") moon = get_body("moon", t, loc) moon_aa = moon.transform_to(AltAz(obstime=t, location=loc)) assert_allclose(moon_aa.az - TARGET_AZ, 0 * u.mas, atol=0.5 * u.mas) assert_allclose(moon_aa.alt - TARGET_EL, 0 * u.mas, atol=0.5 * u.mas) class TestGetLocationGCRS: # TETE and CIRS use get_location_gcrs to get obsgeoloc and obsgeovel # with knowledge of some of the matrices. Check that this is consistent # with a direct transformation. def setup_class(cls): cls.loc = loc = EarthLocation.from_geodetic( np.linspace(0, 360, 6) * u.deg, np.linspace(-90, 90, 6) * u.deg, 100 * u.m ) cls.obstime = obstime = Time(np.linspace(2000, 2010, 6), format="jyear") # Get comparison via a full transformation. We do not use any methods # of EarthLocation, since those depend on the fast transform. loc_itrs = ITRS(loc.x, loc.y, loc.z, obstime=obstime) zeros = np.broadcast_to(0.0 * (u.km / u.s), (3,) + loc_itrs.shape, subok=True) loc_itrs.data.differentials["s"] = CartesianDifferential(zeros) loc_gcrs_cart = loc_itrs.transform_to(GCRS(obstime=obstime)).cartesian cls.obsgeoloc = loc_gcrs_cart.without_differentials() cls.obsgeovel = loc_gcrs_cart.differentials["s"].to_cartesian() def check_obsgeo(self, obsgeoloc, obsgeovel): assert_allclose(obsgeoloc.xyz, self.obsgeoloc.xyz, atol=0.1 * u.um, rtol=0.0) assert_allclose( obsgeovel.xyz, self.obsgeovel.xyz, atol=0.1 * u.mm / u.s, rtol=0.0 ) def test_get_gcrs_posvel(self): # Really just a sanity check self.check_obsgeo(*self.loc.get_gcrs_posvel(self.obstime)) def test_tete_quick(self): # Following copied from intermediate_rotation_transforms.gcrs_to_tete rbpn = erfa.pnm06a(*get_jd12(self.obstime, "tt")) loc_gcrs_frame = get_location_gcrs( self.loc, self.obstime, tete_to_itrs_mat(self.obstime, rbpn=rbpn), rbpn ) self.check_obsgeo(loc_gcrs_frame.obsgeoloc, loc_gcrs_frame.obsgeovel) def test_cirs_quick(self): cirs_frame = CIRS(location=self.loc, obstime=self.obstime) # Following copied from intermediate_rotation_transforms.gcrs_to_cirs pmat = gcrs_to_cirs_mat(cirs_frame.obstime) loc_gcrs_frame = get_location_gcrs( self.loc, self.obstime, cirs_to_itrs_mat(cirs_frame.obstime), pmat ) self.check_obsgeo(loc_gcrs_frame.obsgeoloc, loc_gcrs_frame.obsgeovel)
6ee0ebb449efa672bbffc295166c860e846d1d9e347cd5894fdb3d8f513428a7
import pytest from astropy import units as u from astropy.coordinates import EarthLocation, Latitude, Longitude from astropy.coordinates.sites import ( SiteRegistry, get_builtin_sites, get_downloaded_sites, ) from astropy.tests.helper import assert_quantity_allclose from astropy.units import allclose as quantity_allclose def test_builtin_sites(): reg = get_builtin_sites() greenwich = reg["greenwich"] lon, lat, el = greenwich.to_geodetic() assert_quantity_allclose(lon, Longitude("0:0:0", unit=u.deg), atol=10 * u.arcsec) assert_quantity_allclose(lat, Latitude("51:28:40", unit=u.deg), atol=1 * u.arcsec) assert_quantity_allclose(el, 46 * u.m, atol=1 * u.m) names = reg.names assert "greenwich" in names assert "example_site" in names with pytest.raises( KeyError, match="Site 'nonexistent' not in database. Use the 'names' attribute to see", ): reg["nonexistent"] @pytest.mark.remote_data(source="astropy") def test_online_sites(): reg = get_downloaded_sites() keck = reg["keck"] lon, lat, el = keck.to_geodetic() assert_quantity_allclose( lon, -Longitude("155:28.7", unit=u.deg), atol=0.001 * u.deg ) assert_quantity_allclose(lat, Latitude("19:49.7", unit=u.deg), atol=0.001 * u.deg) assert_quantity_allclose(el, 4160 * u.m, atol=1 * u.m) names = reg.names assert "keck" in names assert "ctio" in names # The JSON file contains `name` and `aliases` for each site, and astropy # should use names from both, but not empty strings [#12721]. assert "" not in names assert "Royal Observatory Greenwich" in names with pytest.raises( KeyError, match="Site 'nonexistent' not in database. Use the 'names' attribute to see", ): reg["nonexistent"] with pytest.raises( KeyError, match="Site 'kec' not in database. Use the 'names' attribute to see available", ): reg["kec"] @pytest.mark.remote_data(source="astropy") # this will *try* the online so we have to make it remote_data, even though it # could fall back on the non-remote version def test_EarthLocation_basic(): greenwichel = EarthLocation.of_site("greenwich") lon, lat, el = greenwichel.to_geodetic() assert_quantity_allclose(lon, Longitude("0:0:0", unit=u.deg), atol=10 * u.arcsec) assert_quantity_allclose(lat, Latitude("51:28:40", unit=u.deg), atol=1 * u.arcsec) assert_quantity_allclose(el, 46 * u.m, atol=1 * u.m) names = EarthLocation.get_site_names() assert "greenwich" in names assert "example_site" in names with pytest.raises( KeyError, match="Site 'nonexistent' not in database. Use EarthLocation.get_site_names", ): EarthLocation.of_site("nonexistent") def test_EarthLocation_state_offline(): EarthLocation._site_registry = None EarthLocation._get_site_registry(force_builtin=True) assert EarthLocation._site_registry is not None oldreg = EarthLocation._site_registry newreg = EarthLocation._get_site_registry() assert oldreg is newreg newreg = EarthLocation._get_site_registry(force_builtin=True) assert oldreg is not newreg @pytest.mark.remote_data(source="astropy") def test_EarthLocation_state_online(): EarthLocation._site_registry = None EarthLocation._get_site_registry(force_download=True) assert EarthLocation._site_registry is not None oldreg = EarthLocation._site_registry newreg = EarthLocation._get_site_registry() assert oldreg is newreg newreg = EarthLocation._get_site_registry(force_download=True) assert oldreg is not newreg def test_registry(): reg = SiteRegistry() assert len(reg.names) == 0 names = ["sitea", "site A"] loc = EarthLocation.from_geodetic(lat=1 * u.deg, lon=2 * u.deg, height=3 * u.km) reg.add_site(names, loc) assert len(reg.names) == 2 loc1 = reg["SIteA"] assert loc1 is loc loc2 = reg["sIte a"] assert loc2 is loc def test_non_EarthLocation(): """ A regression test for a typo bug pointed out at the bottom of https://github.com/astropy/astropy/pull/4042 """ class EarthLocation2(EarthLocation): pass # This lets keeps us from needing to do remote_data # note that this does *not* mess up the registry for EarthLocation because # registry is cached on a per-class basis EarthLocation2._get_site_registry(force_builtin=True) el2 = EarthLocation2.of_site("greenwich") assert type(el2) is EarthLocation2 assert el2.info.name == "Royal Observatory Greenwich" def check_builtin_matches_remote(download_url=True): """ This function checks that the builtin sites registry is consistent with the remote registry (or a registry at some other location). Note that current this is *not* run by the testing suite (because it doesn't start with "test", and is instead meant to be used as a check before merging changes in astropy-data) """ builtin_registry = EarthLocation._get_site_registry(force_builtin=True) dl_registry = EarthLocation._get_site_registry(force_download=download_url) in_dl = {} matches = {} for name in builtin_registry.names: in_dl[name] = name in dl_registry if in_dl[name]: matches[name] = quantity_allclose( builtin_registry[name].geocentric, dl_registry[name].geocentric ) else: matches[name] = False if not all(matches.values()): # this makes sure we actually see which don't match print("In builtin registry but not in download:") for name in in_dl: if not in_dl[name]: print(" ", name) print("In both but not the same value:") for name in matches: if not matches[name] and in_dl[name]: print( " ", name, "builtin:", builtin_registry[name], "download:", dl_registry[name], ) assert False, ( "Builtin and download registry aren't consistent - failures printed to" " stdout" ) def test_meta_present(): reg = get_builtin_sites() greenwich = reg["greenwich"] assert ( greenwich.info.meta["source"] == "Ordnance Survey via http://gpsinformation.net/main/greenwich.htm and UNESCO" )
3a51b5fe2b4a6f238fcf30fe1d37c0bfbb0e879ec681c152424dd1d36e6642cd
"""Unit tests for the astropy.coordinates.angle_utilities module""" import pytest import astropy.units as u from astropy.coordinates.angle_utilities import ( golden_spiral_grid, uniform_spherical_random_surface, uniform_spherical_random_volume, ) from astropy.utils import NumpyRNGContext def test_golden_spiral_grid_input(): usph = golden_spiral_grid(size=100) assert len(usph) == 100 @pytest.mark.parametrize( "func", [uniform_spherical_random_surface, uniform_spherical_random_volume] ) def test_uniform_spherical_random_input(func): with NumpyRNGContext(42): sph = func(size=100) assert len(sph) == 100 def test_uniform_spherical_random_volume_input(): with NumpyRNGContext(42): sph = uniform_spherical_random_volume(size=100, max_radius=1) assert len(sph) == 100 assert sph.distance.unit == u.dimensionless_unscaled assert sph.distance.max() <= 1.0 sph = uniform_spherical_random_volume(size=100, max_radius=4 * u.pc) assert len(sph) == 100 assert sph.distance.max() <= 4 * u.pc
f84adee47e51ddebacac5f366db63eb0f57c91efc34617929db033eeb1d06433
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Tests for miscellaneous functionality in the `funcs` module """ import numpy as np import pytest from numpy import testing as npt from astropy import units as u from astropy.time import Time def test_sun(): """ Test that `get_sun` works and it behaves roughly as it should (in GCRS) """ from astropy.coordinates.funcs import get_sun northern_summer_solstice = Time("2010-6-21") northern_winter_solstice = Time("2010-12-21") equinox_1 = Time("2010-3-21") equinox_2 = Time("2010-9-21") gcrs1 = get_sun(equinox_1) assert np.abs(gcrs1.dec.deg) < 1 gcrs2 = get_sun( Time([northern_summer_solstice, equinox_2, northern_winter_solstice]) ) assert np.all(np.abs(gcrs2.dec - [23.5, 0, -23.5] * u.deg) < 1 * u.deg) def test_constellations(recwarn): from astropy.coordinates import FK5, ICRS, SkyCoord from astropy.coordinates.funcs import get_constellation inuma = ICRS(9 * u.hour, 65 * u.deg) n_prewarn = len(recwarn) res = get_constellation(inuma) res_short = get_constellation(inuma, short_name=True) assert len(recwarn) == n_prewarn # neither version should not make warnings assert res == "Ursa Major" assert res_short == "UMa" assert isinstance(res, str) or getattr(res, "shape", None) == tuple() # these are taken from the ReadMe for Roman 1987 ras = [9, 23.5, 5.12, 9.4555, 12.8888, 15.6687, 19, 6.2222] decs = [65, -20, 9.12, -19.9, 22, -12.1234, -40, -81.1234] shortnames = ["UMa", "Aqr", "Ori", "Hya", "Com", "Lib", "CrA", "Men"] testcoos = FK5(ras * u.hour, decs * u.deg, equinox="B1950") npt.assert_equal(get_constellation(testcoos, short_name=True), shortnames) # test on a SkyCoord, *and* test Boötes, which is special in that it has a # non-ASCII character bootest = SkyCoord(15 * u.hour, 30 * u.deg, frame="icrs") boores = get_constellation(bootest) assert boores == "Boötes" assert isinstance(boores, str) or getattr(boores, "shape", None) == tuple() @pytest.mark.xfail def test_constellation_edge_cases(): from astropy.coordinates import FK5 from astropy.coordinates.funcs import get_constellation # Test edge cases close to borders, using B1875.0 coordinates # Look for HMS / DMS roundoff-to-decimal issues from Roman (1987) data, # and misuse of PrecessedGeocentric, as documented in # https://github.com/astropy/astropy/issues/9855 # Define eight test points. # The first four cross the boundary at 06h14m30 == 6.2416666666666... hours # with Monoceros on the west side of Orion at Dec +3.0. ras = [6.24100, 6.24160, 6.24166, 6.24171] # aka ['6h14m27.6s' '6h14m29.76s' '6h14m29.976s' '6h14m30.156s'] decs = [3.0, 3.0, 3.0, 3.0] # Correct constellations for given RA/Dec coordinates shortnames = ["Ori", "Ori", "Ori", "Mon"] # The second four sample northward along RA 22 hours, crossing the boundary # at 86° 10' == 86.1666... degrees between Cepheus and Ursa Minor decs += [86.16, 86.1666, 86.16668, 86.1668] ras += [22.0, 22.0, 22.0, 22.0] shortnames += ["Cep", "Cep", "Umi", "Umi"] testcoos = FK5(ras * u.hour, decs * u.deg, equinox="B1875") npt.assert_equal( get_constellation(testcoos, short_name=True), shortnames, "get_constellation() error: misusing Roman approximations, vs IAU boundaries" " from Delporte?", ) # TODO: When that's fixed, add other tests with coords that are in different constellations # depending on equinox def test_concatenate(): from astropy.coordinates import FK5, ICRS, SkyCoord from astropy.coordinates.funcs import concatenate # Just positions fk5 = FK5(1 * u.deg, 2 * u.deg) sc = SkyCoord(3 * u.deg, 4 * u.deg, frame="fk5") res = concatenate([fk5, sc]) np.testing.assert_allclose(res.ra, [1, 3] * u.deg) np.testing.assert_allclose(res.dec, [2, 4] * u.deg) with pytest.raises(TypeError): concatenate(fk5) with pytest.raises(TypeError): concatenate(1 * u.deg) # positions and velocities fr = ICRS( ra=10 * u.deg, dec=11.0 * u.deg, pm_ra_cosdec=12 * u.mas / u.yr, pm_dec=13 * u.mas / u.yr, ) sc = SkyCoord( ra=20 * u.deg, dec=21.0 * u.deg, pm_ra_cosdec=22 * u.mas / u.yr, pm_dec=23 * u.mas / u.yr, ) res = concatenate([fr, sc]) with pytest.raises(ValueError): concatenate([fr, fk5]) fr2 = ICRS(ra=10 * u.deg, dec=11.0 * u.deg) with pytest.raises(ValueError): concatenate([fr, fr2]) def test_concatenate_representations(): from astropy.coordinates import representation as r from astropy.coordinates.funcs import concatenate_representations # fmt: off reps = [r.CartesianRepresentation([1, 2, 3.]*u.kpc), r.SphericalRepresentation(lon=1*u.deg, lat=2.*u.deg, distance=10*u.pc), r.UnitSphericalRepresentation(lon=1*u.deg, lat=2.*u.deg), r.CartesianRepresentation(np.ones((3, 100)) * u.kpc), r.CartesianRepresentation(np.ones((3, 16, 8)) * u.kpc)] reps.append(reps[0].with_differentials( r.CartesianDifferential([1, 2, 3.] * u.km/u.s))) reps.append(reps[1].with_differentials( r.SphericalCosLatDifferential(1*u.mas/u.yr, 2*u.mas/u.yr, 3*u.km/u.s))) reps.append(reps[2].with_differentials( r.SphericalCosLatDifferential(1*u.mas/u.yr, 2*u.mas/u.yr, 3*u.km/u.s))) reps.append(reps[2].with_differentials( r.UnitSphericalCosLatDifferential(1*u.mas/u.yr, 2*u.mas/u.yr))) reps.append(reps[2].with_differentials( {'s': r.RadialDifferential(1*u.km/u.s)})) reps.append(reps[3].with_differentials( r.CartesianDifferential(*np.ones((3, 100)) * u.km/u.s))) reps.append(reps[4].with_differentials( r.CartesianDifferential(*np.ones((3, 16, 8)) * u.km/u.s))) # fmt: on # Test that combining all of the above with itself succeeds for rep in reps: if not rep.shape: expected_shape = (2,) else: expected_shape = (2 * rep.shape[0],) + rep.shape[1:] tmp = concatenate_representations((rep, rep)) assert tmp.shape == expected_shape if "s" in rep.differentials: assert tmp.differentials["s"].shape == expected_shape # Try combining 4, just for something different for rep in reps: if not rep.shape: expected_shape = (4,) else: expected_shape = (4 * rep.shape[0],) + rep.shape[1:] tmp = concatenate_representations((rep, rep, rep, rep)) assert tmp.shape == expected_shape if "s" in rep.differentials: assert tmp.differentials["s"].shape == expected_shape # Test that combining pairs fails with pytest.raises(TypeError): concatenate_representations((reps[0], reps[1])) with pytest.raises(ValueError): concatenate_representations((reps[0], reps[5])) # Check that passing in a single object fails with pytest.raises(TypeError): concatenate_representations(reps[0]) def test_concatenate_representations_different_units(): from astropy.coordinates import representation as r from astropy.coordinates.funcs import concatenate_representations reps = [ r.CartesianRepresentation([1, 2, 3.0] * u.pc), r.CartesianRepresentation([1, 2, 3.0] * u.kpc), ] concat = concatenate_representations(reps) assert concat.shape == (2,) assert np.all(concat.xyz == ([[1.0, 2.0, 3.0], [1000.0, 2000.0, 3000.0]] * u.pc).T)
0e1c456ddcd2238684df9bd55b32b8276911a0c1e2ff56f00e886b15097a7639
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Tests for the SkyCoord class. Note that there are also SkyCoord tests in test_api_ape5.py """ import copy from copy import deepcopy import numpy as np import numpy.testing as npt import pytest from erfa import ErfaWarning from astropy import units as u from astropy.coordinates import ( FK4, FK5, GCRS, ICRS, AltAz, Angle, Attribute, BaseCoordinateFrame, CartesianRepresentation, EarthLocation, Galactic, Latitude, RepresentationMapping, SkyCoord, SphericalRepresentation, UnitSphericalRepresentation, frame_transform_graph, ) from astropy.coordinates.representation import ( DUPLICATE_REPRESENTATIONS, REPRESENTATION_CLASSES, ) from astropy.coordinates.tests.helper import skycoord_equal from astropy.coordinates.transformations import FunctionTransform from astropy.io import fits from astropy.tests.helper import assert_quantity_allclose as assert_allclose from astropy.time import Time from astropy.units import allclose as quantity_allclose from astropy.utils import isiterable from astropy.utils.compat.optional_deps import HAS_SCIPY from astropy.wcs import WCS RA = 1.0 * u.deg DEC = 2.0 * u.deg C_ICRS = ICRS(RA, DEC) C_FK5 = C_ICRS.transform_to(FK5()) J2001 = Time("J2001") def allclose(a, b, rtol=0.0, atol=None): if atol is None: atol = 1.0e-8 * getattr(a, "unit", 1.0) return quantity_allclose(a, b, rtol, atol) def setup_function(func): func.REPRESENTATION_CLASSES_ORIG = deepcopy(REPRESENTATION_CLASSES) func.DUPLICATE_REPRESENTATIONS_ORIG = deepcopy(DUPLICATE_REPRESENTATIONS) def teardown_function(func): REPRESENTATION_CLASSES.clear() REPRESENTATION_CLASSES.update(func.REPRESENTATION_CLASSES_ORIG) DUPLICATE_REPRESENTATIONS.clear() DUPLICATE_REPRESENTATIONS.update(func.DUPLICATE_REPRESENTATIONS_ORIG) def test_is_transformable_to_str_input(): """Test method ``is_transformable_to`` with string input. The only difference from the frame method of the same name is that strings are allowed. As the frame tests cover ``is_transform_to``, here we only test the added string option. """ # make example SkyCoord c = SkyCoord(90 * u.deg, -11 * u.deg) # iterate through some frames, checking consistency names = frame_transform_graph.get_names() for name in names: frame = frame_transform_graph.lookup_name(name)() assert c.is_transformable_to(name) == c.is_transformable_to(frame) def test_transform_to(): for frame in ( FK5(), FK5(equinox=Time("J1975.0")), FK4(), FK4(equinox=Time("J1975.0")), SkyCoord(RA, DEC, frame="fk4", equinox="J1980"), ): c_frame = C_ICRS.transform_to(frame) s_icrs = SkyCoord(RA, DEC, frame="icrs") s_frame = s_icrs.transform_to(frame) assert allclose(c_frame.ra, s_frame.ra) assert allclose(c_frame.dec, s_frame.dec) assert allclose(c_frame.distance, s_frame.distance) # set up for parametrized test rt_sets = [] rt_frames = [ICRS, FK4, FK5, Galactic] for rt_frame0 in rt_frames: for rt_frame1 in rt_frames: for equinox0 in (None, "J1975.0"): for obstime0 in (None, "J1980.0"): for equinox1 in (None, "J1975.0"): for obstime1 in (None, "J1980.0"): rt_sets.append( ( rt_frame0, rt_frame1, equinox0, equinox1, obstime0, obstime1, ) ) rt_args = ("frame0", "frame1", "equinox0", "equinox1", "obstime0", "obstime1") @pytest.mark.parametrize(rt_args, rt_sets) def test_round_tripping(frame0, frame1, equinox0, equinox1, obstime0, obstime1): """ Test round tripping out and back using transform_to in every combination. """ attrs0 = {"equinox": equinox0, "obstime": obstime0} attrs1 = {"equinox": equinox1, "obstime": obstime1} # Remove None values attrs0 = {k: v for k, v in attrs0.items() if v is not None} attrs1 = {k: v for k, v in attrs1.items() if v is not None} # Go out and back sc = SkyCoord(RA, DEC, frame=frame0, **attrs0) # Keep only frame attributes for frame1 attrs1 = { attr: val for attr, val in attrs1.items() if attr in frame1.frame_attributes } sc2 = sc.transform_to(frame1(**attrs1)) # When coming back only keep frame0 attributes for transform_to attrs0 = { attr: val for attr, val in attrs0.items() if attr in frame0.frame_attributes } # also, if any are None, fill in with defaults for attrnm in frame0.frame_attributes: if attrs0.get(attrnm, None) is None: if attrnm == "obstime" and frame0.get_frame_attr_defaults()[attrnm] is None: if "equinox" in attrs0: attrs0[attrnm] = attrs0["equinox"] else: attrs0[attrnm] = frame0.get_frame_attr_defaults()[attrnm] sc_rt = sc2.transform_to(frame0(**attrs0)) if frame0 is Galactic: assert allclose(sc.l, sc_rt.l) assert allclose(sc.b, sc_rt.b) else: assert allclose(sc.ra, sc_rt.ra) assert allclose(sc.dec, sc_rt.dec) if equinox0: assert type(sc.equinox) is Time and sc.equinox == sc_rt.equinox if obstime0: assert type(sc.obstime) is Time and sc.obstime == sc_rt.obstime def test_coord_init_string(): """ Spherical or Cartesian representation input coordinates. """ sc = SkyCoord("1d 2d") assert allclose(sc.ra, 1 * u.deg) assert allclose(sc.dec, 2 * u.deg) sc = SkyCoord("1d", "2d") assert allclose(sc.ra, 1 * u.deg) assert allclose(sc.dec, 2 * u.deg) sc = SkyCoord("1°2′3″", "2°3′4″") assert allclose(sc.ra, Angle("1°2′3″")) assert allclose(sc.dec, Angle("2°3′4″")) sc = SkyCoord("1°2′3″ 2°3′4″") assert allclose(sc.ra, Angle("1°2′3″")) assert allclose(sc.dec, Angle("2°3′4″")) with pytest.raises(ValueError) as err: SkyCoord("1d 2d 3d") assert "Cannot parse first argument data" in str(err.value) sc1 = SkyCoord("8 00 00 +5 00 00.0", unit=(u.hour, u.deg), frame="icrs") assert isinstance(sc1, SkyCoord) assert allclose(sc1.ra, Angle(120 * u.deg)) assert allclose(sc1.dec, Angle(5 * u.deg)) sc11 = SkyCoord("8h00m00s+5d00m00.0s", unit=(u.hour, u.deg), frame="icrs") assert isinstance(sc11, SkyCoord) assert allclose(sc1.ra, Angle(120 * u.deg)) assert allclose(sc1.dec, Angle(5 * u.deg)) sc2 = SkyCoord("8 00 -5 00 00.0", unit=(u.hour, u.deg), frame="icrs") assert isinstance(sc2, SkyCoord) assert allclose(sc2.ra, Angle(120 * u.deg)) assert allclose(sc2.dec, Angle(-5 * u.deg)) sc3 = SkyCoord("8 00 -5 00.6", unit=(u.hour, u.deg), frame="icrs") assert isinstance(sc3, SkyCoord) assert allclose(sc3.ra, Angle(120 * u.deg)) assert allclose(sc3.dec, Angle(-5.01 * u.deg)) sc4 = SkyCoord("J080000.00-050036.00", unit=(u.hour, u.deg), frame="icrs") assert isinstance(sc4, SkyCoord) assert allclose(sc4.ra, Angle(120 * u.deg)) assert allclose(sc4.dec, Angle(-5.01 * u.deg)) sc41 = SkyCoord("J080000+050036", unit=(u.hour, u.deg), frame="icrs") assert isinstance(sc41, SkyCoord) assert allclose(sc41.ra, Angle(120 * u.deg)) assert allclose(sc41.dec, Angle(+5.01 * u.deg)) sc5 = SkyCoord("8h00.6m -5d00.6m", unit=(u.hour, u.deg), frame="icrs") assert isinstance(sc5, SkyCoord) assert allclose(sc5.ra, Angle(120.15 * u.deg)) assert allclose(sc5.dec, Angle(-5.01 * u.deg)) sc6 = SkyCoord("8h00.6m -5d00.6m", unit=(u.hour, u.deg), frame="fk4") assert isinstance(sc6, SkyCoord) assert allclose(sc6.ra, Angle(120.15 * u.deg)) assert allclose(sc6.dec, Angle(-5.01 * u.deg)) sc61 = SkyCoord("8h00.6m-5d00.6m", unit=(u.hour, u.deg), frame="fk4") assert isinstance(sc61, SkyCoord) assert allclose(sc6.ra, Angle(120.15 * u.deg)) assert allclose(sc6.dec, Angle(-5.01 * u.deg)) sc61 = SkyCoord("8h00.6-5d00.6", unit=(u.hour, u.deg), frame="fk4") assert isinstance(sc61, SkyCoord) assert allclose(sc6.ra, Angle(120.15 * u.deg)) assert allclose(sc6.dec, Angle(-5.01 * u.deg)) sc7 = SkyCoord("J1874221.60+122421.6", unit=u.deg) assert isinstance(sc7, SkyCoord) assert allclose(sc7.ra, Angle(187.706 * u.deg)) assert allclose(sc7.dec, Angle(12.406 * u.deg)) with pytest.raises(ValueError): SkyCoord("8 00 -5 00.6", unit=(u.deg, u.deg), frame="galactic") def test_coord_init_unit(): """ Test variations of the unit keyword. """ for unit in ( "deg", "deg,deg", " deg , deg ", u.deg, (u.deg, u.deg), np.array(["deg", "deg"]), ): sc = SkyCoord(1, 2, unit=unit) assert allclose(sc.ra, Angle(1 * u.deg)) assert allclose(sc.dec, Angle(2 * u.deg)) for unit in ( "hourangle", "hourangle,hourangle", " hourangle , hourangle ", u.hourangle, [u.hourangle, u.hourangle], ): sc = SkyCoord(1, 2, unit=unit) assert allclose(sc.ra, Angle(15 * u.deg)) assert allclose(sc.dec, Angle(30 * u.deg)) for unit in ("hourangle,deg", (u.hourangle, u.deg)): sc = SkyCoord(1, 2, unit=unit) assert allclose(sc.ra, Angle(15 * u.deg)) assert allclose(sc.dec, Angle(2 * u.deg)) for unit in ("deg,deg,deg,deg", [u.deg, u.deg, u.deg, u.deg], None): with pytest.raises(ValueError) as err: SkyCoord(1, 2, unit=unit) assert "Unit keyword must have one to three unit values" in str(err.value) for unit in ("m", (u.m, u.deg), ""): with pytest.raises(u.UnitsError) as err: SkyCoord(1, 2, unit=unit) def test_coord_init_list(): """ Spherical or Cartesian representation input coordinates. """ sc = SkyCoord( [("1d", "2d"), (1 * u.deg, 2 * u.deg), "1d 2d", ("1°", "2°"), "1° 2°"], unit="deg", ) assert allclose(sc.ra, Angle("1d")) assert allclose(sc.dec, Angle("2d")) with pytest.raises(ValueError) as err: SkyCoord(["1d 2d 3d"]) assert "Cannot parse first argument data" in str(err.value) with pytest.raises(ValueError) as err: SkyCoord([("1d", "2d", "3d")]) assert "Cannot parse first argument data" in str(err.value) sc = SkyCoord([1 * u.deg, 1 * u.deg], [2 * u.deg, 2 * u.deg]) assert allclose(sc.ra, Angle("1d")) assert allclose(sc.dec, Angle("2d")) with pytest.raises( ValueError, match="One or more elements of input sequence does not have a length", ): SkyCoord([1 * u.deg, 2 * u.deg]) # this list is taken as RA w/ missing dec def test_coord_init_array(): """ Input in the form of a list array or numpy array """ for a in (["1 2", "3 4"], [["1", "2"], ["3", "4"]], [[1, 2], [3, 4]]): sc = SkyCoord(a, unit="deg") assert allclose(sc.ra - [1, 3] * u.deg, 0 * u.deg) assert allclose(sc.dec - [2, 4] * u.deg, 0 * u.deg) sc = SkyCoord(np.array(a), unit="deg") assert allclose(sc.ra - [1, 3] * u.deg, 0 * u.deg) assert allclose(sc.dec - [2, 4] * u.deg, 0 * u.deg) def test_coord_init_representation(): """ Spherical or Cartesian representation input coordinates. """ coord = SphericalRepresentation(lon=8 * u.deg, lat=5 * u.deg, distance=1 * u.kpc) sc = SkyCoord(coord, frame="icrs") assert allclose(sc.ra, coord.lon) assert allclose(sc.dec, coord.lat) assert allclose(sc.distance, coord.distance) with pytest.raises(ValueError) as err: SkyCoord(coord, frame="icrs", ra="1d") assert "conflicts with keyword argument 'ra'" in str(err.value) coord = CartesianRepresentation(1 * u.one, 2 * u.one, 3 * u.one) sc = SkyCoord(coord, frame="icrs") sc_cart = sc.represent_as(CartesianRepresentation) assert allclose(sc_cart.x, 1.0) assert allclose(sc_cart.y, 2.0) assert allclose(sc_cart.z, 3.0) def test_frame_init(): """ Different ways of providing the frame. """ sc = SkyCoord(RA, DEC, frame="icrs") assert sc.frame.name == "icrs" sc = SkyCoord(RA, DEC, frame=ICRS) assert sc.frame.name == "icrs" sc = SkyCoord(sc) assert sc.frame.name == "icrs" sc = SkyCoord(C_ICRS) assert sc.frame.name == "icrs" SkyCoord(C_ICRS, frame="icrs") assert sc.frame.name == "icrs" with pytest.raises(ValueError) as err: SkyCoord(C_ICRS, frame="galactic") assert "Cannot override frame=" in str(err.value) def test_equal(): obstime = "B1955" sc1 = SkyCoord([1, 2] * u.deg, [3, 4] * u.deg, obstime=obstime) sc2 = SkyCoord([1, 20] * u.deg, [3, 4] * u.deg, obstime=obstime) # Compare arrays and scalars eq = sc1 == sc2 ne = sc1 != sc2 assert np.all(eq == [True, False]) assert np.all(ne == [False, True]) assert isinstance(v := (sc1[0] == sc2[0]), (bool, np.bool_)) and v assert isinstance(v := (sc1[0] != sc2[0]), (bool, np.bool_)) and not v # Broadcasting eq = sc1[0] == sc2 ne = sc1[0] != sc2 assert np.all(eq == [True, False]) assert np.all(ne == [False, True]) # With diff only in velocity sc1 = SkyCoord([1, 2] * u.deg, [3, 4] * u.deg, radial_velocity=[1, 2] * u.km / u.s) sc2 = SkyCoord([1, 2] * u.deg, [3, 4] * u.deg, radial_velocity=[1, 20] * u.km / u.s) eq = sc1 == sc2 ne = sc1 != sc2 assert np.all(eq == [True, False]) assert np.all(ne == [False, True]) assert isinstance(v := (sc1[0] == sc2[0]), (bool, np.bool_)) and v assert isinstance(v := (sc1[0] != sc2[0]), (bool, np.bool_)) and not v def test_equal_different_type(): sc1 = SkyCoord([1, 2] * u.deg, [3, 4] * u.deg, obstime="B1955") # Test equals and not equals operators against different types assert sc1 != "a string" assert not (sc1 == "a string") def test_equal_exceptions(): sc1 = SkyCoord(1 * u.deg, 2 * u.deg, obstime="B1955") sc2 = SkyCoord(1 * u.deg, 2 * u.deg) with pytest.raises( ValueError, match=( "cannot compare: extra frame attribute 'obstime' is not equivalent" r" \(perhaps compare the frames directly to avoid this exception\)" ), ): sc1 == sc2 # Note that this exception is the only one raised directly in SkyCoord. # All others come from lower-level classes and are tested in test_frames.py. def test_attr_inheritance(): """ When initializing from an existing coord the representation attrs like equinox should be inherited to the SkyCoord. If there is a conflict then raise an exception. """ sc = SkyCoord(1, 2, frame="icrs", unit="deg", equinox="J1999", obstime="J2001") sc2 = SkyCoord(sc) assert sc2.equinox == sc.equinox assert sc2.obstime == sc.obstime assert allclose(sc2.ra, sc.ra) assert allclose(sc2.dec, sc.dec) assert allclose(sc2.distance, sc.distance) sc2 = SkyCoord(sc.frame) # Doesn't have equinox there so we get FK4 defaults assert sc2.equinox != sc.equinox assert sc2.obstime != sc.obstime assert allclose(sc2.ra, sc.ra) assert allclose(sc2.dec, sc.dec) assert allclose(sc2.distance, sc.distance) sc = SkyCoord(1, 2, frame="fk4", unit="deg", equinox="J1999", obstime="J2001") sc2 = SkyCoord(sc) assert sc2.equinox == sc.equinox assert sc2.obstime == sc.obstime assert allclose(sc2.ra, sc.ra) assert allclose(sc2.dec, sc.dec) assert allclose(sc2.distance, sc.distance) sc2 = SkyCoord(sc.frame) # sc.frame has equinox, obstime assert sc2.equinox == sc.equinox assert sc2.obstime == sc.obstime assert allclose(sc2.ra, sc.ra) assert allclose(sc2.dec, sc.dec) assert allclose(sc2.distance, sc.distance) @pytest.mark.parametrize("frame", ["fk4", "fk5", "icrs"]) def test_setitem_no_velocity(frame): """Test different flavors of item setting for a SkyCoord without a velocity for different frames. Include a frame attribute that is sometimes an actual frame attribute and sometimes an extra frame attribute. """ sc0 = SkyCoord([1, 2] * u.deg, [3, 4] * u.deg, obstime="B1955", frame=frame) sc2 = SkyCoord([10, 20] * u.deg, [30, 40] * u.deg, obstime="B1955", frame=frame) sc1 = sc0.copy() sc1[1] = sc2[0] assert np.allclose(sc1.ra.to_value(u.deg), [1, 10]) assert np.allclose(sc1.dec.to_value(u.deg), [3, 30]) assert sc1.obstime == Time("B1955") assert sc1.frame.name == frame sc1 = sc0.copy() sc1[:] = sc2[0] assert np.allclose(sc1.ra.to_value(u.deg), [10, 10]) assert np.allclose(sc1.dec.to_value(u.deg), [30, 30]) sc1 = sc0.copy() sc1[:] = sc2[:] assert np.allclose(sc1.ra.to_value(u.deg), [10, 20]) assert np.allclose(sc1.dec.to_value(u.deg), [30, 40]) sc1 = sc0.copy() sc1[[1, 0]] = sc2[:] assert np.allclose(sc1.ra.to_value(u.deg), [20, 10]) assert np.allclose(sc1.dec.to_value(u.deg), [40, 30]) def test_setitem_initially_broadcast(): sc = SkyCoord(np.ones((2, 1)) * u.deg, np.ones((1, 3)) * u.deg) sc[1, 1] = SkyCoord(0 * u.deg, 0 * u.deg) expected = np.ones((2, 3)) * u.deg expected[1, 1] = 0.0 assert np.all(sc.ra == expected) assert np.all(sc.dec == expected) def test_setitem_velocities(): """Test different flavors of item setting for a SkyCoord with a velocity.""" sc0 = SkyCoord( [1, 2] * u.deg, [3, 4] * u.deg, radial_velocity=[1, 2] * u.km / u.s, obstime="B1950", frame="fk4", ) sc2 = SkyCoord( [10, 20] * u.deg, [30, 40] * u.deg, radial_velocity=[10, 20] * u.km / u.s, obstime="B1950", frame="fk4", ) sc1 = sc0.copy() sc1[1] = sc2[0] assert np.allclose(sc1.ra.to_value(u.deg), [1, 10]) assert np.allclose(sc1.dec.to_value(u.deg), [3, 30]) assert np.allclose(sc1.radial_velocity.to_value(u.km / u.s), [1, 10]) assert sc1.obstime == Time("B1950") assert sc1.frame.name == "fk4" sc1 = sc0.copy() sc1[:] = sc2[0] assert np.allclose(sc1.ra.to_value(u.deg), [10, 10]) assert np.allclose(sc1.dec.to_value(u.deg), [30, 30]) assert np.allclose(sc1.radial_velocity.to_value(u.km / u.s), [10, 10]) sc1 = sc0.copy() sc1[:] = sc2[:] assert np.allclose(sc1.ra.to_value(u.deg), [10, 20]) assert np.allclose(sc1.dec.to_value(u.deg), [30, 40]) assert np.allclose(sc1.radial_velocity.to_value(u.km / u.s), [10, 20]) sc1 = sc0.copy() sc1[[1, 0]] = sc2[:] assert np.allclose(sc1.ra.to_value(u.deg), [20, 10]) assert np.allclose(sc1.dec.to_value(u.deg), [40, 30]) assert np.allclose(sc1.radial_velocity.to_value(u.km / u.s), [20, 10]) def test_setitem_exceptions(): class SkyCoordSub(SkyCoord): pass obstime = "B1955" sc0 = SkyCoord([1, 2] * u.deg, [3, 4] * u.deg, frame="fk4") sc2 = SkyCoord([10, 20] * u.deg, [30, 40] * u.deg, frame="fk4", obstime=obstime) sc1 = SkyCoordSub(sc0) with pytest.raises( TypeError, match="an only set from object of same class: SkyCoordSub vs. SkyCoord", ): sc1[0] = sc2[0] sc1 = SkyCoord(sc0.ra, sc0.dec, frame="fk4", obstime="B2001") with pytest.raises( ValueError, match="can only set frame item from an equivalent frame" ): sc1.frame[0] = sc2.frame[0] sc1 = SkyCoord(sc0.ra[0], sc0.dec[0], frame="fk4", obstime=obstime) with pytest.raises( TypeError, match="scalar 'FK4' frame object does not support item assignment" ): sc1[0] = sc2[0] # Different differentials sc1 = SkyCoord( [1, 2] * u.deg, [3, 4] * u.deg, pm_ra_cosdec=[1, 2] * u.mas / u.yr, pm_dec=[3, 4] * u.mas / u.yr, ) sc2 = SkyCoord( [10, 20] * u.deg, [30, 40] * u.deg, radial_velocity=[10, 20] * u.km / u.s ) with pytest.raises( TypeError, match=( "can only set from object of same class: " "UnitSphericalCosLatDifferential vs. RadialDifferential" ), ): sc1[0] = sc2[0] def test_insert(): sc0 = SkyCoord([1, 2] * u.deg, [3, 4] * u.deg) sc1 = SkyCoord(5 * u.deg, 6 * u.deg) sc3 = SkyCoord([10, 20] * u.deg, [30, 40] * u.deg) sc4 = SkyCoord([[1, 2], [3, 4]] * u.deg, [[5, 6], [7, 8]] * u.deg) sc5 = SkyCoord([[10, 2], [30, 4]] * u.deg, [[50, 6], [70, 8]] * u.deg) # Insert a scalar sc = sc0.insert(1, sc1) assert skycoord_equal(sc, SkyCoord([1, 5, 2] * u.deg, [3, 6, 4] * u.deg)) # Insert length=2 array at start of array sc = sc0.insert(0, sc3) assert skycoord_equal(sc, SkyCoord([10, 20, 1, 2] * u.deg, [30, 40, 3, 4] * u.deg)) # Insert length=2 array at end of array sc = sc0.insert(2, sc3) assert skycoord_equal(sc, SkyCoord([1, 2, 10, 20] * u.deg, [3, 4, 30, 40] * u.deg)) # Multidimensional sc = sc4.insert(1, sc5) assert skycoord_equal( sc, SkyCoord( [[1, 2], [10, 2], [30, 4], [3, 4]] * u.deg, [[5, 6], [50, 6], [70, 8], [7, 8]] * u.deg, ), ) def test_insert_exceptions(): sc0 = SkyCoord([1, 2] * u.deg, [3, 4] * u.deg) sc1 = SkyCoord(5 * u.deg, 6 * u.deg) # sc3 = SkyCoord([10, 20]*u.deg, [30, 40]*u.deg) sc4 = SkyCoord([[1, 2], [3, 4]] * u.deg, [[5, 6], [7, 8]] * u.deg) with pytest.raises(TypeError, match="cannot insert into scalar"): sc1.insert(0, sc0) with pytest.raises(ValueError, match="axis must be 0"): sc0.insert(0, sc1, axis=1) with pytest.raises(TypeError, match="obj arg must be an integer"): sc0.insert(slice(None), sc0) with pytest.raises( IndexError, match="index -100 is out of bounds for axis 0 with size 2" ): sc0.insert(-100, sc0) # Bad shape with pytest.raises( ValueError, match=r"could not broadcast input array from shape \(2,2\) into shape \(2,?\)", ): sc0.insert(0, sc4) def test_attr_conflicts(): """ Check conflicts resolution between coordinate attributes and init kwargs. """ sc = SkyCoord(1, 2, frame="icrs", unit="deg", equinox="J1999", obstime="J2001") # OK if attrs both specified but with identical values SkyCoord(sc, equinox="J1999", obstime="J2001") # OK because sc.frame doesn't have obstime SkyCoord(sc.frame, equinox="J1999", obstime="J2100") # Not OK if attrs don't match with pytest.raises(ValueError) as err: SkyCoord(sc, equinox="J1999", obstime="J2002") assert "Coordinate attribute 'obstime'=" in str(err.value) # Same game but with fk4 which has equinox and obstime frame attrs sc = SkyCoord(1, 2, frame="fk4", unit="deg", equinox="J1999", obstime="J2001") # OK if attrs both specified but with identical values SkyCoord(sc, equinox="J1999", obstime="J2001") # Not OK if SkyCoord attrs don't match with pytest.raises(ValueError) as err: SkyCoord(sc, equinox="J1999", obstime="J2002") assert "Frame attribute 'obstime' has conflicting" in str(err.value) # Not OK because sc.frame has different attrs with pytest.raises(ValueError) as err: SkyCoord(sc.frame, equinox="J1999", obstime="J2002") assert "Frame attribute 'obstime' has conflicting" in str(err.value) def test_frame_attr_getattr(): """ When accessing frame attributes like equinox, the value should come from self.frame when that object has the relevant attribute, otherwise from self. """ sc = SkyCoord(1, 2, frame="icrs", unit="deg", equinox="J1999", obstime="J2001") assert sc.equinox == "J1999" # Just the raw value (not validated) assert sc.obstime == "J2001" sc = SkyCoord(1, 2, frame="fk4", unit="deg", equinox="J1999", obstime="J2001") assert sc.equinox == Time("J1999") # Coming from the self.frame object assert sc.obstime == Time("J2001") sc = SkyCoord(1, 2, frame="fk4", unit="deg", equinox="J1999") assert sc.equinox == Time("J1999") assert sc.obstime == Time("J1999") def test_to_string(): """ Basic testing of converting SkyCoord to strings. This just tests for a single input coordinate and and 1-element list. It does not test the underlying `Angle.to_string` method itself. """ coord = "1h2m3s 1d2m3s" for wrap in (lambda x: x, lambda x: [x]): sc = SkyCoord(wrap(coord)) assert sc.to_string() == wrap("15.5125 1.03417") assert sc.to_string("dms") == wrap("15d30m45s 1d02m03s") assert sc.to_string("hmsdms") == wrap("01h02m03s +01d02m03s") with_kwargs = sc.to_string("hmsdms", precision=3, pad=True, alwayssign=True) assert with_kwargs == wrap("+01h02m03.000s +01d02m03.000s") @pytest.mark.parametrize("cls_other", [SkyCoord, ICRS]) def test_seps(cls_other): sc1 = SkyCoord(0 * u.deg, 1 * u.deg) sc2 = cls_other(0 * u.deg, 2 * u.deg) sep = sc1.separation(sc2) assert (sep - 1 * u.deg) / u.deg < 1e-10 with pytest.raises(ValueError): sc1.separation_3d(sc2) sc3 = SkyCoord(1 * u.deg, 1 * u.deg, distance=1 * u.kpc) sc4 = cls_other(1 * u.deg, 1 * u.deg, distance=2 * u.kpc) sep3d = sc3.separation_3d(sc4) assert sep3d == 1 * u.kpc def test_repr(): sc1 = SkyCoord(0 * u.deg, 1 * u.deg, frame="icrs") sc2 = SkyCoord(1 * u.deg, 1 * u.deg, frame="icrs", distance=1 * u.kpc) assert repr(sc1) == "<SkyCoord (ICRS): (ra, dec) in deg\n (0., 1.)>" assert ( repr(sc2) == "<SkyCoord (ICRS): (ra, dec, distance) in (deg, deg, kpc)\n (1., 1., 1.)>" ) sc3 = SkyCoord(0.25 * u.deg, [1, 2.5] * u.deg, frame="icrs") assert repr(sc3).startswith("<SkyCoord (ICRS): (ra, dec) in deg\n") sc_default = SkyCoord(0 * u.deg, 1 * u.deg) assert repr(sc_default) == "<SkyCoord (ICRS): (ra, dec) in deg\n (0., 1.)>" def test_repr_altaz(): sc2 = SkyCoord(1 * u.deg, 1 * u.deg, frame="icrs", distance=1 * u.kpc) loc = EarthLocation(-2309223 * u.m, -3695529 * u.m, -4641767 * u.m) time = Time("2005-03-21 00:00:00") sc4 = sc2.transform_to(AltAz(location=loc, obstime=time)) assert repr(sc4).startswith( "<SkyCoord (AltAz: obstime=2005-03-21 00:00:00.000, " "location=(-2309223., -3695529., -4641767.) m, pressure=0.0 hPa, " "temperature=0.0 deg_C, relative_humidity=0.0, obswl=1.0 micron):" " (az, alt, distance) in (deg, deg, kpc)\n" ) def test_ops(): """ Tests miscellaneous operations like `len` """ sc = SkyCoord(0 * u.deg, 1 * u.deg, frame="icrs") sc_arr = SkyCoord(0 * u.deg, [1, 2] * u.deg, frame="icrs") sc_empty = SkyCoord([] * u.deg, [] * u.deg, frame="icrs") assert sc.isscalar assert not sc_arr.isscalar assert not sc_empty.isscalar with pytest.raises(TypeError): len(sc) assert len(sc_arr) == 2 assert len(sc_empty) == 0 assert bool(sc) assert bool(sc_arr) assert not bool(sc_empty) assert sc_arr[0].isscalar assert len(sc_arr[:1]) == 1 # A scalar shouldn't be indexable with pytest.raises(TypeError): sc[0:] # but it should be possible to just get an item sc_item = sc[()] assert sc_item.shape == () # and to turn it into an array sc_1d = sc[np.newaxis] assert sc_1d.shape == (1,) with pytest.raises(TypeError): iter(sc) assert not isiterable(sc) assert isiterable(sc_arr) assert isiterable(sc_empty) it = iter(sc_arr) assert next(it).dec == sc_arr[0].dec assert next(it).dec == sc_arr[1].dec with pytest.raises(StopIteration): next(it) def test_none_transform(): """ Ensure that transforming from a SkyCoord with no frame provided works like ICRS """ sc = SkyCoord(0 * u.deg, 1 * u.deg) sc_arr = SkyCoord(0 * u.deg, [1, 2] * u.deg) sc2 = sc.transform_to(ICRS) assert sc.ra == sc2.ra and sc.dec == sc2.dec sc5 = sc.transform_to("fk5") assert sc5.ra == sc2.transform_to("fk5").ra sc_arr2 = sc_arr.transform_to(ICRS) sc_arr5 = sc_arr.transform_to("fk5") npt.assert_array_equal(sc_arr5.ra, sc_arr2.transform_to("fk5").ra) def test_position_angle(): c1 = SkyCoord(0 * u.deg, 0 * u.deg) c2 = SkyCoord(1 * u.deg, 0 * u.deg) assert_allclose(c1.position_angle(c2) - 90.0 * u.deg, 0 * u.deg) c3 = SkyCoord(1 * u.deg, 0.1 * u.deg) assert c1.position_angle(c3) < 90 * u.deg c4 = SkyCoord(0 * u.deg, 1 * u.deg) assert_allclose(c1.position_angle(c4), 0 * u.deg) carr1 = SkyCoord(0 * u.deg, [0, 1, 2] * u.deg) carr2 = SkyCoord([-1, -2, -3] * u.deg, [0.1, 1.1, 2.1] * u.deg) res = carr1.position_angle(carr2) assert res.shape == (3,) assert np.all(res < 360 * u.degree) assert np.all(res > 270 * u.degree) cicrs = SkyCoord(0 * u.deg, 0 * u.deg, frame="icrs") cfk5 = SkyCoord(1 * u.deg, 0 * u.deg, frame="fk5") # because of the frame transform, it's just a *bit* more than 90 degrees assert cicrs.position_angle(cfk5) > 90.0 * u.deg assert cicrs.position_angle(cfk5) < 91.0 * u.deg def test_position_angle_directly(): """Regression check for #3800: position_angle should accept floats.""" from astropy.coordinates.angle_utilities import position_angle result = position_angle(10.0, 20.0, 10.0, 20.0) assert result.unit is u.radian assert result.value == 0.0 def test_sep_pa_equivalence(): """Regression check for bug in #5702. PA and separation from object 1 to 2 should be consistent with those from 2 to 1 """ cfk5 = SkyCoord(1 * u.deg, 0 * u.deg, frame="fk5") cfk5B1950 = SkyCoord(1 * u.deg, 0 * u.deg, frame="fk5", equinox="B1950") # test with both default and explicit equinox #5722 and #3106 sep_forward = cfk5.separation(cfk5B1950) sep_backward = cfk5B1950.separation(cfk5) assert sep_forward != 0 and sep_backward != 0 assert_allclose(sep_forward, sep_backward) posang_forward = cfk5.position_angle(cfk5B1950) posang_backward = cfk5B1950.position_angle(cfk5) assert posang_forward != 0 and posang_backward != 0 assert 179 < (posang_forward - posang_backward).wrap_at(360 * u.deg).degree < 181 dcfk5 = SkyCoord(1 * u.deg, 0 * u.deg, frame="fk5", distance=1 * u.pc) dcfk5B1950 = SkyCoord( 1 * u.deg, 0 * u.deg, frame="fk5", equinox="B1950", distance=1.0 * u.pc ) sep3d_forward = dcfk5.separation_3d(dcfk5B1950) sep3d_backward = dcfk5B1950.separation_3d(dcfk5) assert sep3d_forward != 0 and sep3d_backward != 0 assert_allclose(sep3d_forward, sep3d_backward) def test_directional_offset_by(): # Round-trip tests: where is sc2 from sc1? # Use those offsets from sc1 and verify you get to sc2. npoints = 7 # How many points when doing vectors of SkyCoords for sc1 in [ SkyCoord(0 * u.deg, -90 * u.deg), # South pole SkyCoord(0 * u.deg, 90 * u.deg), # North pole SkyCoord(1 * u.deg, 2 * u.deg), SkyCoord( np.linspace(0, 359, npoints), np.linspace(-90, 90, npoints), unit=u.deg, frame="fk4", ), SkyCoord( np.linspace(359, 0, npoints), np.linspace(-90, 90, npoints), unit=u.deg, frame="icrs", ), SkyCoord( np.linspace(-3, 3, npoints), np.linspace(-90, 90, npoints), unit=(u.rad, u.deg), frame="barycentricmeanecliptic", ), ]: for sc2 in [ SkyCoord(5 * u.deg, 10 * u.deg), SkyCoord( np.linspace(0, 359, npoints), np.linspace(-90, 90, npoints), unit=u.deg, frame="galactic", ), ]: # Find the displacement from sc1 to sc2, posang = sc1.position_angle(sc2) sep = sc1.separation(sc2) # then do the offset from sc1 and verify that you are at sc2 sc2a = sc1.directional_offset_by(position_angle=posang, separation=sep) assert np.max(np.abs(sc2.separation(sc2a).arcsec)) < 1e-3 # Specific test cases # Go over the North pole a little way, and # over the South pole a long way, to get to same spot sc1 = SkyCoord(0 * u.deg, 89 * u.deg) for posang, sep in [(0 * u.deg, 2 * u.deg), (180 * u.deg, 358 * u.deg)]: sc2 = sc1.directional_offset_by(posang, sep) assert allclose([sc2.ra.degree, sc2.dec.degree], [180, 89]) # Go twice as far to ensure that dec is actually changing # and that >360deg is supported sc2 = sc1.directional_offset_by(posang, 2 * sep) assert allclose([sc2.ra.degree, sc2.dec.degree], [180, 87]) # Verify that a separation of 180 deg in any direction gets to the antipode # and 360 deg returns to start sc1 = SkyCoord(10 * u.deg, 47 * u.deg) for posang in np.linspace(0, 377, npoints): sc2 = sc1.directional_offset_by(posang, 180 * u.deg) assert allclose([sc2.ra.degree, sc2.dec.degree], [190, -47]) sc2 = sc1.directional_offset_by(posang, 360 * u.deg) assert allclose([sc2.ra.degree, sc2.dec.degree], [10, 47]) # Verify that a 90 degree posang, which means East # corresponds to an increase in RA, by ~separation/cos(dec) and # a slight convergence to equator sc1 = SkyCoord(10 * u.deg, 60 * u.deg) sc2 = sc1.directional_offset_by(90 * u.deg, 1.0 * u.deg) assert 11.9 < sc2.ra.degree < 12.0 assert 59.9 < sc2.dec.degree < 60.0 def test_table_to_coord(): """ Checks "end-to-end" use of `Table` with `SkyCoord` - the `Quantity` initializer is the intermediary that translate the table columns into something coordinates understands. (Regression test for #1762 ) """ from astropy.table import Column, Table t = Table() t.add_column(Column(data=[1, 2, 3], name="ra", unit=u.deg)) t.add_column(Column(data=[4, 5, 6], name="dec", unit=u.deg)) c = SkyCoord(t["ra"], t["dec"]) assert allclose(c.ra.to(u.deg), [1, 2, 3] * u.deg) assert allclose(c.dec.to(u.deg), [4, 5, 6] * u.deg) def assert_quantities_allclose(coord, q1s, attrs): """ Compare two tuples of quantities. This assumes that the values in q1 are of order(1) and uses atol=1e-13, rtol=0. It also asserts that the units of the two quantities are the *same*, in order to check that the representation output has the expected units. """ q2s = [getattr(coord, attr) for attr in attrs] assert len(q1s) == len(q2s) for q1, q2 in zip(q1s, q2s): assert q1.shape == q2.shape assert allclose(q1, q2, rtol=0, atol=1e-13 * q1.unit) # Sets of inputs corresponding to Galactic frame base_unit_attr_sets = [ ("spherical", u.karcsec, u.karcsec, u.kpc, Latitude, "l", "b", "distance"), ("unitspherical", u.karcsec, u.karcsec, None, Latitude, "l", "b", None), ("physicsspherical", u.karcsec, u.karcsec, u.kpc, Angle, "phi", "theta", "r"), ("cartesian", u.km, u.km, u.km, u.Quantity, "u", "v", "w"), ("cylindrical", u.km, u.karcsec, u.km, Angle, "rho", "phi", "z"), ] units_attr_sets = [] for base_unit_attr_set in base_unit_attr_sets: repr_name = base_unit_attr_set[0] for representation in (repr_name, REPRESENTATION_CLASSES[repr_name]): for c1, c2, c3 in ((1, 2, 3), ([1], [2], [3])): for arrayify in True, False: if arrayify: c1 = np.array(c1) c2 = np.array(c2) c3 = np.array(c3) units_attr_sets.append( base_unit_attr_set + (representation, c1, c2, c3) ) units_attr_args = ( "repr_name", "unit1", "unit2", "unit3", "cls2", "attr1", "attr2", "attr3", "representation", "c1", "c2", "c3", ) @pytest.mark.parametrize( units_attr_args, [x for x in units_attr_sets if x[0] != "unitspherical"] ) def test_skycoord_three_components( repr_name, unit1, unit2, unit3, cls2, attr1, attr2, attr3, representation, c1, c2, c3, ): """ Tests positional inputs using components (COMP1, COMP2, COMP3) and various representations. Use weird units and Galactic frame. """ sc = SkyCoord( c1, c2, c3, unit=(unit1, unit2, unit3), representation_type=representation, frame=Galactic, ) assert_quantities_allclose( sc, (c1 * unit1, c2 * unit2, c3 * unit3), (attr1, attr2, attr3) ) sc = SkyCoord( 1000 * c1 * u.Unit(unit1 / 1000), cls2(c2, unit=unit2), 1000 * c3 * u.Unit(unit3 / 1000), frame=Galactic, unit=(unit1, unit2, unit3), representation_type=representation, ) assert_quantities_allclose( sc, (c1 * unit1, c2 * unit2, c3 * unit3), (attr1, attr2, attr3) ) kwargs = {attr3: c3} sc = SkyCoord( c1, c2, unit=(unit1, unit2, unit3), frame=Galactic, representation_type=representation, **kwargs, ) assert_quantities_allclose( sc, (c1 * unit1, c2 * unit2, c3 * unit3), (attr1, attr2, attr3) ) kwargs = {attr1: c1, attr2: c2, attr3: c3} sc = SkyCoord( frame=Galactic, unit=(unit1, unit2, unit3), representation_type=representation, **kwargs, ) assert_quantities_allclose( sc, (c1 * unit1, c2 * unit2, c3 * unit3), (attr1, attr2, attr3) ) @pytest.mark.parametrize( units_attr_args, [x for x in units_attr_sets if x[0] in ("spherical", "unitspherical")], ) def test_skycoord_spherical_two_components( repr_name, unit1, unit2, unit3, cls2, attr1, attr2, attr3, representation, c1, c2, c3, ): """ Tests positional inputs using components (COMP1, COMP2) for spherical representations. Use weird units and Galactic frame. """ sc = SkyCoord( c1, c2, unit=(unit1, unit2), frame=Galactic, representation_type=representation ) assert_quantities_allclose(sc, (c1 * unit1, c2 * unit2), (attr1, attr2)) sc = SkyCoord( 1000 * c1 * u.Unit(unit1 / 1000), cls2(c2, unit=unit2), frame=Galactic, unit=(unit1, unit2, unit3), representation_type=representation, ) assert_quantities_allclose(sc, (c1 * unit1, c2 * unit2), (attr1, attr2)) kwargs = {attr1: c1, attr2: c2} sc = SkyCoord( frame=Galactic, unit=(unit1, unit2), representation_type=representation, **kwargs, ) assert_quantities_allclose(sc, (c1 * unit1, c2 * unit2), (attr1, attr2)) @pytest.mark.parametrize( units_attr_args, [x for x in units_attr_sets if x[0] != "unitspherical"] ) def test_galactic_three_components( repr_name, unit1, unit2, unit3, cls2, attr1, attr2, attr3, representation, c1, c2, c3, ): """ Tests positional inputs using components (COMP1, COMP2, COMP3) and various representations. Use weird units and Galactic frame. """ sc = Galactic( 1000 * c1 * u.Unit(unit1 / 1000), cls2(c2, unit=unit2), 1000 * c3 * u.Unit(unit3 / 1000), representation_type=representation, ) assert_quantities_allclose( sc, (c1 * unit1, c2 * unit2, c3 * unit3), (attr1, attr2, attr3) ) kwargs = {attr3: c3 * unit3} sc = Galactic(c1 * unit1, c2 * unit2, representation_type=representation, **kwargs) assert_quantities_allclose( sc, (c1 * unit1, c2 * unit2, c3 * unit3), (attr1, attr2, attr3) ) kwargs = {attr1: c1 * unit1, attr2: c2 * unit2, attr3: c3 * unit3} sc = Galactic(representation_type=representation, **kwargs) assert_quantities_allclose( sc, (c1 * unit1, c2 * unit2, c3 * unit3), (attr1, attr2, attr3) ) @pytest.mark.parametrize( units_attr_args, [x for x in units_attr_sets if x[0] in ("spherical", "unitspherical")], ) def test_galactic_spherical_two_components( repr_name, unit1, unit2, unit3, cls2, attr1, attr2, attr3, representation, c1, c2, c3, ): """ Tests positional inputs using components (COMP1, COMP2) for spherical representations. Use weird units and Galactic frame. """ sc = Galactic( 1000 * c1 * u.Unit(unit1 / 1000), cls2(c2, unit=unit2), representation_type=representation, ) assert_quantities_allclose(sc, (c1 * unit1, c2 * unit2), (attr1, attr2)) sc = Galactic(c1 * unit1, c2 * unit2, representation_type=representation) assert_quantities_allclose(sc, (c1 * unit1, c2 * unit2), (attr1, attr2)) kwargs = {attr1: c1 * unit1, attr2: c2 * unit2} sc = Galactic(representation_type=representation, **kwargs) assert_quantities_allclose(sc, (c1 * unit1, c2 * unit2), (attr1, attr2)) @pytest.mark.parametrize( ("repr_name", "unit1", "unit2", "unit3", "cls2", "attr1", "attr2", "attr3"), [x for x in base_unit_attr_sets if x[0] != "unitspherical"], ) def test_skycoord_coordinate_input( repr_name, unit1, unit2, unit3, cls2, attr1, attr2, attr3 ): c1, c2, c3 = 1, 2, 3 sc = SkyCoord( [(c1, c2, c3)], unit=(unit1, unit2, unit3), representation_type=repr_name, frame="galactic", ) assert_quantities_allclose( sc, ([c1] * unit1, [c2] * unit2, [c3] * unit3), (attr1, attr2, attr3) ) c1, c2, c3 = 1 * unit1, 2 * unit2, 3 * unit3 sc = SkyCoord([(c1, c2, c3)], representation_type=repr_name, frame="galactic") assert_quantities_allclose( sc, ([1] * unit1, [2] * unit2, [3] * unit3), (attr1, attr2, attr3) ) def test_skycoord_string_coordinate_input(): sc = SkyCoord("01 02 03 +02 03 04", unit="deg", representation_type="unitspherical") assert_quantities_allclose( sc, (Angle("01:02:03", unit="deg"), Angle("02:03:04", unit="deg")), ("ra", "dec"), ) sc = SkyCoord( ["01 02 03 +02 03 04"], unit="deg", representation_type="unitspherical" ) assert_quantities_allclose( sc, (Angle(["01:02:03"], unit="deg"), Angle(["02:03:04"], unit="deg")), ("ra", "dec"), ) def test_units(): sc = SkyCoord(1, 2, 3, unit="m", representation_type="cartesian") # All get meters assert sc.x.unit is u.m assert sc.y.unit is u.m assert sc.z.unit is u.m # All get u.m sc = SkyCoord(1, 2 * u.km, 3, unit="m", representation_type="cartesian") assert sc.x.unit is u.m assert sc.y.unit is u.m assert sc.z.unit is u.m sc = SkyCoord(1, 2, 3, unit=u.m, representation_type="cartesian") # All get u.m assert sc.x.unit is u.m assert sc.y.unit is u.m assert sc.z.unit is u.m sc = SkyCoord(1, 2, 3, unit="m, km, pc", representation_type="cartesian") assert_quantities_allclose(sc, (1 * u.m, 2 * u.km, 3 * u.pc), ("x", "y", "z")) with pytest.raises(u.UnitsError) as err: SkyCoord(1, 2, 3, unit=(u.m, u.m), representation_type="cartesian") assert "should have matching physical types" in str(err.value) SkyCoord(1, 2, 3, unit=(u.m, u.km, u.pc), representation_type="cartesian") assert_quantities_allclose(sc, (1 * u.m, 2 * u.km, 3 * u.pc), ("x", "y", "z")) @pytest.mark.xfail def test_units_known_fail(): # should fail but doesn't => corner case oddity with pytest.raises(u.UnitsError): SkyCoord(1, 2, 3, unit=u.deg, representation_type="spherical") def test_nodata_failure(): with pytest.raises(ValueError): SkyCoord() @pytest.mark.parametrize(("mode", "origin"), [("wcs", 0), ("all", 0), ("all", 1)]) def test_wcs_methods(mode, origin): from astropy.utils.data import get_pkg_data_contents from astropy.wcs import WCS from astropy.wcs.utils import pixel_to_skycoord header = get_pkg_data_contents( "../../wcs/tests/data/maps/1904-66_TAN.hdr", encoding="binary" ) wcs = WCS(header) ref = SkyCoord(0.1 * u.deg, -89.0 * u.deg, frame="icrs") xp, yp = ref.to_pixel(wcs, mode=mode, origin=origin) # WCS is in FK5 so we need to transform back to ICRS new = pixel_to_skycoord(xp, yp, wcs, mode=mode, origin=origin).transform_to("icrs") assert_allclose(new.ra.degree, ref.ra.degree) assert_allclose(new.dec.degree, ref.dec.degree) # also try to round-trip with `from_pixel` scnew = SkyCoord.from_pixel(xp, yp, wcs, mode=mode, origin=origin).transform_to( "icrs" ) assert_allclose(scnew.ra.degree, ref.ra.degree) assert_allclose(scnew.dec.degree, ref.dec.degree) # Also make sure the right type comes out class SkyCoord2(SkyCoord): pass scnew2 = SkyCoord2.from_pixel(xp, yp, wcs, mode=mode, origin=origin) assert scnew.__class__ is SkyCoord assert scnew2.__class__ is SkyCoord2 def test_frame_attr_transform_inherit(): """ Test that frame attributes get inherited as expected during transform. Driven by #3106. """ c = SkyCoord(1 * u.deg, 2 * u.deg, frame=FK5) c2 = c.transform_to(FK4) assert c2.equinox.value == "B1950.000" assert c2.obstime.value == "B1950.000" c2 = c.transform_to(FK4(equinox="J1975", obstime="J1980")) assert c2.equinox.value == "J1975.000" assert c2.obstime.value == "J1980.000" c = SkyCoord(1 * u.deg, 2 * u.deg, frame=FK4) c2 = c.transform_to(FK5) assert c2.equinox.value == "J2000.000" assert c2.obstime is None c = SkyCoord(1 * u.deg, 2 * u.deg, frame=FK4, obstime="J1980") c2 = c.transform_to(FK5) assert c2.equinox.value == "J2000.000" assert c2.obstime.value == "J1980.000" c = SkyCoord(1 * u.deg, 2 * u.deg, frame=FK4, equinox="J1975", obstime="J1980") c2 = c.transform_to(FK5) assert c2.equinox.value == "J1975.000" assert c2.obstime.value == "J1980.000" c2 = c.transform_to(FK5(equinox="J1990")) assert c2.equinox.value == "J1990.000" assert c2.obstime.value == "J1980.000" # The work-around for #5722 c = SkyCoord(1 * u.deg, 2 * u.deg, frame="fk5") c1 = SkyCoord(1 * u.deg, 2 * u.deg, frame="fk5", equinox="B1950.000") c2 = c1.transform_to(c) assert not c2.is_equivalent_frame(c) # counterintuitive, but documented assert c2.equinox.value == "B1950.000" c3 = c1.transform_to(c, merge_attributes=False) assert c3.equinox.value == "J2000.000" assert c3.is_equivalent_frame(c) def test_deepcopy(): c1 = SkyCoord(1 * u.deg, 2 * u.deg) c2 = copy.copy(c1) c3 = copy.deepcopy(c1) c4 = SkyCoord( [1, 2] * u.m, [2, 3] * u.m, [3, 4] * u.m, representation_type="cartesian", frame="fk5", obstime="J1999.9", equinox="J1988.8", ) c5 = copy.deepcopy(c4) assert np.all(c5.x == c4.x) # and y and z assert c5.frame.name == c4.frame.name assert c5.obstime == c4.obstime assert c5.equinox == c4.equinox assert c5.representation_type == c4.representation_type def test_no_copy(): c1 = SkyCoord(np.arange(10.0) * u.hourangle, np.arange(20.0, 30.0) * u.deg) c2 = SkyCoord(c1, copy=False) # Note: c1.ra and c2.ra will *not* share memory, as these are recalculated # to be in "preferred" units. See discussion in #4883. assert np.may_share_memory(c1.data.lon, c2.data.lon) c3 = SkyCoord(c1, copy=True) assert not np.may_share_memory(c1.data.lon, c3.data.lon) def test_immutable(): c1 = SkyCoord(1 * u.deg, 2 * u.deg) with pytest.raises(AttributeError): c1.ra = 3.0 c1.foo = 42 assert c1.foo == 42 @pytest.mark.skipif(not HAS_SCIPY, reason="Requires scipy") def test_search_around(): """ Test the search_around_* methods Here we don't actually test the values are right, just that the methods of SkyCoord work. The accuracy tests are in ``test_matching.py`` """ from astropy.utils import NumpyRNGContext with NumpyRNGContext(987654321): sc1 = SkyCoord( np.random.rand(20) * 360.0 * u.degree, (np.random.rand(20) * 180.0 - 90.0) * u.degree, ) sc2 = SkyCoord( np.random.rand(100) * 360.0 * u.degree, (np.random.rand(100) * 180.0 - 90.0) * u.degree, ) sc1ds = SkyCoord(ra=sc1.ra, dec=sc1.dec, distance=np.random.rand(20) * u.kpc) sc2ds = SkyCoord(ra=sc2.ra, dec=sc2.dec, distance=np.random.rand(100) * u.kpc) idx1_sky, idx2_sky, d2d_sky, d3d_sky = sc1.search_around_sky(sc2, 10 * u.deg) idx1_3d, idx2_3d, d2d_3d, d3d_3d = sc1ds.search_around_3d(sc2ds, 250 * u.pc) def test_init_with_frame_instance_keyword(): # Frame instance c1 = SkyCoord(3 * u.deg, 4 * u.deg, frame=FK5(equinox="J2010")) assert c1.equinox == Time("J2010") # Frame instance with data (data gets ignored) c2 = SkyCoord( 3 * u.deg, 4 * u.deg, frame=FK5(1.0 * u.deg, 2 * u.deg, equinox="J2010") ) assert c2.equinox == Time("J2010") assert allclose(c2.ra.degree, 3) assert allclose(c2.dec.degree, 4) # SkyCoord instance c3 = SkyCoord(3 * u.deg, 4 * u.deg, frame=c1) assert c3.equinox == Time("J2010") # Check duplicate arguments with pytest.raises(ValueError) as err: c = SkyCoord(3 * u.deg, 4 * u.deg, frame=FK5(equinox="J2010"), equinox="J2001") assert "Cannot specify frame attribute 'equinox'" in str(err.value) def test_guess_from_table(): from astropy.table import Column, Table from astropy.utils import NumpyRNGContext tab = Table() with NumpyRNGContext(987654321): tab.add_column(Column(data=np.random.rand(10), unit="deg", name="RA[J2000]")) tab.add_column(Column(data=np.random.rand(10), unit="deg", name="DEC[J2000]")) sc = SkyCoord.guess_from_table(tab) npt.assert_array_equal(sc.ra.deg, tab["RA[J2000]"]) npt.assert_array_equal(sc.dec.deg, tab["DEC[J2000]"]) # try without units in the table tab["RA[J2000]"].unit = None tab["DEC[J2000]"].unit = None # should fail if not given explicitly with pytest.raises(u.UnitsError): sc2 = SkyCoord.guess_from_table(tab) # but should work if provided sc2 = SkyCoord.guess_from_table(tab, unit=u.deg) npt.assert_array_equal(sc2.ra.deg, tab["RA[J2000]"]) npt.assert_array_equal(sc2.dec.deg, tab["DEC[J2000]"]) # should fail if two options are available - ambiguity bad! tab.add_column(Column(data=np.random.rand(10), name="RA_J1900")) with pytest.raises(ValueError) as excinfo: SkyCoord.guess_from_table(tab, unit=u.deg) assert "J1900" in excinfo.value.args[0] and "J2000" in excinfo.value.args[0] tab.remove_column("RA_J1900") tab["RA[J2000]"].unit = u.deg tab["DEC[J2000]"].unit = u.deg # but should succeed if the ambiguity can be broken b/c one of the matches # is the name of a different component tab.add_column(Column(data=np.random.rand(10) * u.mas / u.yr, name="pm_ra_cosdec")) tab.add_column(Column(data=np.random.rand(10) * u.mas / u.yr, name="pm_dec")) sc3 = SkyCoord.guess_from_table(tab) assert u.allclose(sc3.ra, tab["RA[J2000]"]) assert u.allclose(sc3.dec, tab["DEC[J2000]"]) assert u.allclose(sc3.pm_ra_cosdec, tab["pm_ra_cosdec"]) assert u.allclose(sc3.pm_dec, tab["pm_dec"]) # should fail if stuff doesn't have proper units tab["RA[J2000]"].unit = None tab["DEC[J2000]"].unit = None with pytest.raises(u.UnitTypeError, match="no unit was given."): SkyCoord.guess_from_table(tab) tab.remove_column("pm_ra_cosdec") tab.remove_column("pm_dec") # should also fail if user specifies something already in the table, but # should succeed even if the user has to give one of the components with pytest.raises(ValueError): SkyCoord.guess_from_table(tab, ra=tab["RA[J2000]"], unit=u.deg) oldra = tab["RA[J2000]"] tab.remove_column("RA[J2000]") sc3 = SkyCoord.guess_from_table(tab, ra=oldra, unit=u.deg) npt.assert_array_equal(sc3.ra.deg, oldra) npt.assert_array_equal(sc3.dec.deg, tab["DEC[J2000]"]) # check a few non-ICRS/spherical systems x, y, z = np.arange(3).reshape(3, 1) * u.pc l, b = np.arange(2).reshape(2, 1) * u.deg tabcart = Table([x, y, z], names=("x", "y", "z")) tabgal = Table([b, l], names=("b", "l")) sc_cart = SkyCoord.guess_from_table(tabcart, representation_type="cartesian") npt.assert_array_equal(sc_cart.x, x) npt.assert_array_equal(sc_cart.y, y) npt.assert_array_equal(sc_cart.z, z) sc_gal = SkyCoord.guess_from_table(tabgal, frame="galactic") npt.assert_array_equal(sc_gal.l, l) npt.assert_array_equal(sc_gal.b, b) # also try some column names that *end* with the attribute name tabgal["b"].name = "gal_b" tabgal["l"].name = "gal_l" SkyCoord.guess_from_table(tabgal, frame="galactic") tabgal["gal_b"].name = "blob" tabgal["gal_l"].name = "central" with pytest.raises(ValueError): SkyCoord.guess_from_table(tabgal, frame="galactic") def test_skycoord_list_creation(): """ Test that SkyCoord can be created in a reasonable way with lists of SkyCoords (regression for #2702) """ sc = SkyCoord(ra=[1, 2, 3] * u.deg, dec=[4, 5, 6] * u.deg) sc0 = sc[0] sc2 = sc[2] scnew = SkyCoord([sc0, sc2]) assert np.all(scnew.ra == [1, 3] * u.deg) assert np.all(scnew.dec == [4, 6] * u.deg) # also check ranges sc01 = sc[:2] scnew2 = SkyCoord([sc01, sc2]) assert np.all(scnew2.ra == sc.ra) assert np.all(scnew2.dec == sc.dec) # now try with a mix of skycoord, frame, and repr objects frobj = ICRS(2 * u.deg, 5 * u.deg) reprobj = UnitSphericalRepresentation(3 * u.deg, 6 * u.deg) scnew3 = SkyCoord([sc0, frobj, reprobj]) assert np.all(scnew3.ra == sc.ra) assert np.all(scnew3.dec == sc.dec) # should *fail* if different frame attributes or types are passed in scfk5_j2000 = SkyCoord(1 * u.deg, 4 * u.deg, frame="fk5") with pytest.raises(ValueError): SkyCoord([sc0, scfk5_j2000]) scfk5_j2010 = SkyCoord(1 * u.deg, 4 * u.deg, frame="fk5", equinox="J2010") with pytest.raises(ValueError): SkyCoord([scfk5_j2000, scfk5_j2010]) # but they should inherit if they're all consistent scfk5_2_j2010 = SkyCoord(2 * u.deg, 5 * u.deg, frame="fk5", equinox="J2010") scfk5_3_j2010 = SkyCoord(3 * u.deg, 6 * u.deg, frame="fk5", equinox="J2010") scnew4 = SkyCoord([scfk5_j2010, scfk5_2_j2010, scfk5_3_j2010]) assert np.all(scnew4.ra == sc.ra) assert np.all(scnew4.dec == sc.dec) assert scnew4.equinox == Time("J2010") def test_nd_skycoord_to_string(): c = SkyCoord(np.ones((2, 2)), 1, unit=("deg", "deg")) ts = c.to_string() assert np.all(ts.shape == c.shape) assert np.all(ts == "1 1") def test_equiv_skycoord(): sci1 = SkyCoord(1 * u.deg, 2 * u.deg, frame="icrs") sci2 = SkyCoord(1 * u.deg, 3 * u.deg, frame="icrs") assert sci1.is_equivalent_frame(sci1) assert sci1.is_equivalent_frame(sci2) assert sci1.is_equivalent_frame(ICRS()) assert not sci1.is_equivalent_frame(FK5()) with pytest.raises(TypeError): sci1.is_equivalent_frame(10) scf1 = SkyCoord(1 * u.deg, 2 * u.deg, frame="fk5") scf2 = SkyCoord(1 * u.deg, 2 * u.deg, frame="fk5", equinox="J2005") # obstime is *not* an FK5 attribute, but we still want scf1 and scf3 to come # to come out different because they're part of SkyCoord scf3 = SkyCoord(1 * u.deg, 2 * u.deg, frame="fk5", obstime="J2005") assert scf1.is_equivalent_frame(scf1) assert not scf1.is_equivalent_frame(sci1) assert scf1.is_equivalent_frame(FK5()) assert not scf1.is_equivalent_frame(scf2) assert scf2.is_equivalent_frame(FK5(equinox="J2005")) assert not scf3.is_equivalent_frame(scf1) assert not scf3.is_equivalent_frame(FK5(equinox="J2005")) def test_equiv_skycoord_with_extra_attrs(): """Regression test for #10658.""" # GCRS has a CartesianRepresentationAttribute called obsgeoloc gcrs = GCRS( 1 * u.deg, 2 * u.deg, obsgeoloc=CartesianRepresentation([1, 2, 3], unit=u.m) ) # Create a SkyCoord where obsgeoloc tags along as an extra attribute sc1 = SkyCoord(gcrs).transform_to(ICRS) # Now create a SkyCoord with an equivalent frame but without the extra attribute sc2 = SkyCoord(sc1.frame) # The SkyCoords are therefore not equivalent, but check both directions assert not sc1.is_equivalent_frame(sc2) # This way around raised a TypeError which is fixed by #10658 assert not sc2.is_equivalent_frame(sc1) def test_constellations(): # the actual test for accuracy is in test_funcs - this is just meant to make # sure we get sensible answers sc = SkyCoord(135 * u.deg, 65 * u.deg) assert sc.get_constellation() == "Ursa Major" assert sc.get_constellation(short_name=True) == "UMa" scs = SkyCoord([135] * 2 * u.deg, [65] * 2 * u.deg) npt.assert_equal(scs.get_constellation(), ["Ursa Major"] * 2) npt.assert_equal(scs.get_constellation(short_name=True), ["UMa"] * 2) @pytest.mark.remote_data def test_constellations_with_nameresolve(): assert SkyCoord.from_name("And I").get_constellation(short_name=True) == "And" # you'd think "And ..." should be in Andromeda. But you'd be wrong. assert SkyCoord.from_name("And VI").get_constellation() == "Pegasus" # maybe it's because And VI isn't really a galaxy? assert SkyCoord.from_name("And XXII").get_constellation() == "Pisces" assert SkyCoord.from_name("And XXX").get_constellation() == "Cassiopeia" # ok maybe not # ok, but at least some of the others do make sense... assert ( SkyCoord.from_name("Coma Cluster").get_constellation(short_name=True) == "Com" ) assert SkyCoord.from_name("Orion Nebula").get_constellation() == "Orion" assert SkyCoord.from_name("Triangulum Galaxy").get_constellation() == "Triangulum" def test_getitem_representation(): """ Make sure current representation survives __getitem__ even if different from data representation. """ sc = SkyCoord([1, 1] * u.deg, [2, 2] * u.deg) sc.representation_type = "cartesian" assert sc[0].representation_type is CartesianRepresentation def test_spherical_offsets_to_api(): i00 = SkyCoord(0 * u.arcmin, 0 * u.arcmin, frame="icrs") fk5 = SkyCoord(0 * u.arcmin, 0 * u.arcmin, frame="fk5") with pytest.raises(ValueError): # different frames should fail i00.spherical_offsets_to(fk5) i1deg = ICRS(1 * u.deg, 1 * u.deg) dra, ddec = i00.spherical_offsets_to(i1deg) assert_allclose(dra, 1 * u.deg) assert_allclose(ddec, 1 * u.deg) # make sure an abbreviated array-based version of the above also works i00s = SkyCoord([0] * 4 * u.arcmin, [0] * 4 * u.arcmin, frame="icrs") i01s = SkyCoord([0] * 4 * u.arcmin, np.arange(4) * u.arcmin, frame="icrs") dra, ddec = i00s.spherical_offsets_to(i01s) assert_allclose(dra, 0 * u.arcmin) assert_allclose(ddec, np.arange(4) * u.arcmin) @pytest.mark.parametrize("frame", ["icrs", "galactic"]) @pytest.mark.parametrize( "comparison_data", [ (0 * u.arcmin, 1 * u.arcmin), (1 * u.arcmin, 0 * u.arcmin), (1 * u.arcmin, 1 * u.arcmin), ], ) def test_spherical_offsets_roundtrip(frame, comparison_data): i00 = SkyCoord(0 * u.arcmin, 0 * u.arcmin, frame=frame) comparison = SkyCoord(*comparison_data, frame=frame) dlon, dlat = i00.spherical_offsets_to(comparison) assert_allclose(dlon, comparison.data.lon) assert_allclose(dlat, comparison.data.lat) i00_back = comparison.spherical_offsets_by(-dlon, -dlat) # This reaches machine precision when only one component is changed, but for # the third parametrized case (both lon and lat change), the transformation # will have finite accuracy: assert_allclose(i00_back.data.lon, i00.data.lon, atol=1e-10 * u.rad) assert_allclose(i00_back.data.lat, i00.data.lat, atol=1e-10 * u.rad) # Test roundtripping the other direction: init_c = SkyCoord(40.0 * u.deg, 40.0 * u.deg, frame=frame) new_c = init_c.spherical_offsets_by(3.534 * u.deg, 2.2134 * u.deg) dlon, dlat = new_c.spherical_offsets_to(init_c) back_c = new_c.spherical_offsets_by(dlon, dlat) assert init_c.separation(back_c) < 1e-10 * u.deg def test_frame_attr_changes(): """ This tests the case where a frame is added with a new frame attribute after a SkyCoord has been created. This is necessary because SkyCoords get the attributes set at creation time, but the set of attributes can change as frames are added or removed from the transform graph. This makes sure that everything continues to work consistently. """ sc_before = SkyCoord(1 * u.deg, 2 * u.deg, frame="icrs") assert "fakeattr" not in dir(sc_before) class FakeFrame(BaseCoordinateFrame): fakeattr = Attribute() # doesn't matter what this does as long as it just puts the frame in the # transform graph transset = (ICRS, FakeFrame, lambda c, f: c) frame_transform_graph.add_transform(*transset) try: assert "fakeattr" in dir(sc_before) assert sc_before.fakeattr is None sc_after1 = SkyCoord(1 * u.deg, 2 * u.deg, frame="icrs") assert "fakeattr" in dir(sc_after1) assert sc_after1.fakeattr is None sc_after2 = SkyCoord(1 * u.deg, 2 * u.deg, frame="icrs", fakeattr=1) assert sc_after2.fakeattr == 1 finally: frame_transform_graph.remove_transform(*transset) assert "fakeattr" not in dir(sc_before) assert "fakeattr" not in dir(sc_after1) assert "fakeattr" not in dir(sc_after2) def test_cache_clear_sc(): from astropy.coordinates import SkyCoord i = SkyCoord(1 * u.deg, 2 * u.deg) # Add an in frame units version of the rep to the cache. repr(i) assert len(i.cache["representation"]) == 2 i.cache.clear() assert len(i.cache["representation"]) == 0 def test_set_attribute_exceptions(): """Ensure no attrbute for any frame can be set directly. Though it is fine if the current frame does not have it.""" sc = SkyCoord(1.0 * u.deg, 2.0 * u.deg, frame="fk5") assert hasattr(sc.frame, "equinox") with pytest.raises(AttributeError): sc.equinox = "B1950" assert sc.relative_humidity is None sc.relative_humidity = 0.5 assert sc.relative_humidity == 0.5 assert not hasattr(sc.frame, "relative_humidity") def test_extra_attributes(): """Ensure any extra attributes are dealt with correctly. Regression test against #5743. """ obstime_string = ["2017-01-01T00:00", "2017-01-01T00:10"] obstime = Time(obstime_string) sc = SkyCoord([5, 10], [20, 30], unit=u.deg, obstime=obstime_string) assert not hasattr(sc.frame, "obstime") assert type(sc.obstime) is Time assert sc.obstime.shape == (2,) assert np.all(sc.obstime == obstime) # ensure equivalency still works for more than one obstime. assert sc.is_equivalent_frame(sc) sc_1 = sc[1] assert sc_1.obstime == obstime[1] # Transforming to FK4 should use sc.obstime. sc_fk4 = sc.transform_to("fk4") assert np.all(sc_fk4.frame.obstime == obstime) # And transforming back should not loose it. sc2 = sc_fk4.transform_to("icrs") assert not hasattr(sc2.frame, "obstime") assert np.all(sc2.obstime == obstime) # Ensure obstime get taken from the SkyCoord if passed in directly. # (regression test for #5749). sc3 = SkyCoord([0.0, 1.0], [2.0, 3.0], unit="deg", frame=sc) assert np.all(sc3.obstime == obstime) # Finally, check that we can delete such attributes. del sc3.obstime assert sc3.obstime is None def test_apply_space_motion(): # use this 12 year period because it's a multiple of 4 to avoid the quirks # of leap years while having 2 leap seconds in it t1 = Time("2000-01-01T00:00") t2 = Time("2012-01-01T00:00") # Check a very simple case first: frame = ICRS( ra=10.0 * u.deg, dec=0 * u.deg, distance=10.0 * u.pc, pm_ra_cosdec=0.1 * u.deg / u.yr, pm_dec=0 * u.mas / u.yr, radial_velocity=0 * u.km / u.s, ) # Cases that should work (just testing input for now): c1 = SkyCoord(frame, obstime=t1, pressure=101 * u.kPa) with pytest.warns(ErfaWarning, match='ERFA function "pmsafe" yielded .*'): # warning raised due to high PM chosen above applied1 = c1.apply_space_motion(new_obstime=t2) applied2 = c1.apply_space_motion(dt=12 * u.year) assert isinstance(applied1.frame, c1.frame.__class__) assert isinstance(applied2.frame, c1.frame.__class__) assert_allclose(applied1.ra, applied2.ra) assert_allclose(applied1.pm_ra_cosdec, applied2.pm_ra_cosdec) assert_allclose(applied1.dec, applied2.dec) assert_allclose(applied1.distance, applied2.distance) # ensure any frame attributes that were there before get passed through assert applied1.pressure == c1.pressure # there were 2 leap seconds between 2000 and 2010, so the difference in # the two forms of time evolution should be ~2 sec adt = np.abs(applied2.obstime - applied1.obstime) assert 1.9 * u.second < adt.to(u.second) < 2.1 * u.second c2 = SkyCoord(frame) with pytest.warns(ErfaWarning, match='ERFA function "pmsafe" yielded .*'): # warning raised due to high PM chosen above applied3 = c2.apply_space_motion(dt=6 * u.year) assert isinstance(applied3.frame, c1.frame.__class__) assert applied3.obstime is None # this should *not* be .6 deg due to space-motion on a sphere, but it # should be fairly close assert 0.5 * u.deg < applied3.ra - c1.ra < 0.7 * u.deg # the two cases should only match somewhat due to it being space motion, but # they should be at least this close assert quantity_allclose( applied1.ra - c1.ra, (applied3.ra - c1.ra) * 2, atol=1e-3 * u.deg ) # but *not* this close assert not quantity_allclose( applied1.ra - c1.ra, (applied3.ra - c1.ra) * 2, atol=1e-4 * u.deg ) with pytest.raises(ValueError): c2.apply_space_motion(new_obstime=t2) def test_custom_frame_skycoord(): # also regression check for the case from #7069 class BlahBleeBlopFrame(BaseCoordinateFrame): default_representation = SphericalRepresentation # without a differential, SkyCoord creation fails # default_differential = SphericalDifferential _frame_specific_representation_info = { "spherical": [ RepresentationMapping("lon", "lon", "recommended"), RepresentationMapping("lat", "lat", "recommended"), RepresentationMapping("distance", "radius", "recommended"), ] } SkyCoord(lat=1 * u.deg, lon=2 * u.deg, frame=BlahBleeBlopFrame) def test_user_friendly_pm_error(): """ This checks that a more user-friendly error message is raised for the user if they pass, e.g., pm_ra instead of pm_ra_cosdec """ with pytest.raises(ValueError) as e: SkyCoord( ra=150 * u.deg, dec=-11 * u.deg, pm_ra=100 * u.mas / u.yr, pm_dec=10 * u.mas / u.yr, ) assert "pm_ra_cosdec" in str(e.value) with pytest.raises(ValueError) as e: SkyCoord( l=150 * u.deg, b=-11 * u.deg, pm_l=100 * u.mas / u.yr, pm_b=10 * u.mas / u.yr, frame="galactic", ) assert "pm_l_cosb" in str(e.value) # The special error should not turn on here: with pytest.raises(ValueError) as e: SkyCoord( x=1 * u.pc, y=2 * u.pc, z=3 * u.pc, pm_ra=100 * u.mas / u.yr, pm_dec=10 * u.mas / u.yr, representation_type="cartesian", ) assert "pm_ra_cosdec" not in str(e.value) def test_contained_by(): """ Test Skycoord.contained(wcs,image) """ header = """ WCSAXES = 2 / Number of coordinate axes CRPIX1 = 1045.0 / Pixel coordinate of reference point CRPIX2 = 1001.0 / Pixel coordinate of reference point PC1_1 = -0.00556448550786 / Coordinate transformation matrix element PC1_2 = -0.001042120133257 / Coordinate transformation matrix element PC2_1 = 0.001181477028705 / Coordinate transformation matrix element PC2_2 = -0.005590809742987 / Coordinate transformation matrix element CDELT1 = 1.0 / [deg] Coordinate increment at reference point CDELT2 = 1.0 / [deg] Coordinate increment at reference point CUNIT1 = 'deg' / Units of coordinate increment and value CUNIT2 = 'deg' / Units of coordinate increment and value CTYPE1 = 'RA---TAN' / TAN (gnomonic) projection + SIP distortions CTYPE2 = 'DEC--TAN' / TAN (gnomonic) projection + SIP distortions CRVAL1 = 250.34971683647 / [deg] Coordinate value at reference point CRVAL2 = 2.2808772582495 / [deg] Coordinate value at reference point LONPOLE = 180.0 / [deg] Native longitude of celestial pole LATPOLE = 2.2808772582495 / [deg] Native latitude of celestial pole RADESYS = 'ICRS' / Equatorial coordinate system MJD-OBS = 58612.339199259 / [d] MJD of observation matching DATE-OBS DATE-OBS= '2019-05-09T08:08:26.816Z' / ISO-8601 observation date matching MJD-OB NAXIS = 2 / NAXIS NAXIS1 = 2136 / length of first array dimension NAXIS2 = 2078 / length of second array dimension """ test_wcs = WCS(fits.Header.fromstring(header.strip(), "\n")) assert SkyCoord(254, 2, unit="deg").contained_by(test_wcs) assert not SkyCoord(240, 2, unit="deg").contained_by(test_wcs) img = np.zeros((2136, 2078)) assert SkyCoord(250, 2, unit="deg").contained_by(test_wcs, img) assert not SkyCoord(240, 2, unit="deg").contained_by(test_wcs, img) ra = np.array([254.2, 254.1]) dec = np.array([2, 12.1]) coords = SkyCoord(ra, dec, unit="deg") assert np.all(test_wcs.footprint_contains(coords) == np.array([True, False])) def test_none_differential_type(): """ This is a regression test for #8021 """ from astropy.coordinates import BaseCoordinateFrame class MockHeliographicStonyhurst(BaseCoordinateFrame): default_representation = SphericalRepresentation frame_specific_representation_info = { SphericalRepresentation: [ RepresentationMapping( reprname="lon", framename="lon", defaultunit=u.deg ), RepresentationMapping( reprname="lat", framename="lat", defaultunit=u.deg ), RepresentationMapping( reprname="distance", framename="radius", defaultunit=None ), ] } fr = MockHeliographicStonyhurst(lon=1 * u.deg, lat=2 * u.deg, radius=10 * u.au) SkyCoord(0 * u.deg, fr.lat, fr.radius, frame=fr) # this was the failure def test_multiple_aliases(): # Define a frame with multiple aliases class MultipleAliasesFrame(BaseCoordinateFrame): name = ["alias_1", "alias_2"] default_representation = SphericalRepresentation # Register a transform, which adds the aliases to the transform graph tfun = lambda c, f: f.__class__(lon=c.lon, lat=c.lat) ftrans = FunctionTransform( tfun, MultipleAliasesFrame, MultipleAliasesFrame, register_graph=frame_transform_graph, ) coord = SkyCoord(lon=1 * u.deg, lat=2 * u.deg, frame=MultipleAliasesFrame) # Test attribute-style access returns self (not a copy) assert coord.alias_1 is coord assert coord.alias_2 is coord # Test for aliases in __dir__() assert "alias_1" in coord.__dir__() assert "alias_2" in coord.__dir__() # Test transform_to() calls assert isinstance(coord.transform_to("alias_1").frame, MultipleAliasesFrame) assert isinstance(coord.transform_to("alias_2").frame, MultipleAliasesFrame) ftrans.unregister(frame_transform_graph) @pytest.mark.parametrize( "kwargs, error_message", [ ( {"ra": 1, "dec": 1, "distance": 1 * u.pc, "unit": "deg"}, r"Unit 'deg' \(angle\) could not be applied to 'distance'. ", ), ( { "rho": 1 * u.m, "phi": 1, "z": 1 * u.m, "unit": "deg", "representation_type": "cylindrical", }, r"Unit 'deg' \(angle\) could not be applied to 'rho'. ", ), ], ) def test_passing_inconsistent_coordinates_and_units_raises_helpful_error( kwargs, error_message ): # https://github.com/astropy/astropy/issues/10725 with pytest.raises(ValueError, match=error_message): SkyCoord(**kwargs) @pytest.mark.skipif(not HAS_SCIPY, reason="Requires scipy.") def test_match_to_catalog_3d_and_sky(): # Test for issue #5857. See PR #11449 cfk5_default = SkyCoord( [1, 2, 3, 4] * u.degree, [0, 0, 0, 0] * u.degree, distance=[1, 1, 1.5, 1] * u.kpc, frame="fk5", ) cfk5_J1950 = cfk5_default.transform_to(FK5(equinox="J1950")) idx, angle, quantity = cfk5_J1950.match_to_catalog_3d(cfk5_default) npt.assert_array_equal(idx, [0, 1, 2, 3]) assert_allclose(angle, 0 * u.deg, atol=1e-14 * u.deg, rtol=0) assert_allclose(quantity, 0 * u.kpc, atol=1e-14 * u.kpc, rtol=0) idx, angle, distance = cfk5_J1950.match_to_catalog_sky(cfk5_default) npt.assert_array_equal(idx, [0, 1, 2, 3]) assert_allclose(angle, 0 * u.deg, atol=1e-14 * u.deg, rtol=0) assert_allclose(distance, 0 * u.kpc, atol=1e-14 * u.kpc, rtol=0) def test_subclass_property_exception_error(): """Regression test for gh-8340. Non-existing attribute access inside a property should give attribute error for the attribute, not for the property. """ class custom_coord(SkyCoord): @property def prop(self): return self.random_attr c = custom_coord("00h42m30s", "+41d12m00s", frame="icrs") with pytest.raises(AttributeError, match="random_attr"): # Before this matched "prop" rather than "random_attr" c.prop
8a83c5d9d9c6615c7109b13ead211424713fb2d442026a9f881aecc4e65b71ad
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This includes tests for the Distance class and related calculations """ import numpy as np import pytest from numpy import testing as npt from astropy import units as u from astropy.coordinates import CartesianRepresentation, Distance, Latitude, Longitude from astropy.coordinates.builtin_frames import ICRS, Galactic from astropy.units import allclose as quantity_allclose from astropy.utils.compat.optional_deps import HAS_SCIPY from astropy.utils.exceptions import AstropyWarning MULTIPLE_INPUTS_ERROR_MSG = "^more than one of `.*` were given to Distance constructor$" def test_distances(): """ Tests functionality for Coordinate class distances and cartesian transformations. """ """ Distances can also be specified, and allow for a full 3D definition of a coordinate. """ # try all the different ways to initialize a Distance distance = Distance(12, u.parsec) Distance(40, unit=u.au) Distance(value=5, unit=u.kpc) # need to provide a unit with pytest.raises(u.UnitsError): Distance(12) with pytest.raises(ValueError, match="none of `value`, `z`, `distmod`,"): Distance(unit=u.km) # standard units are pre-defined npt.assert_allclose(distance.lyr, 39.138765325702551) npt.assert_allclose(distance.km, 370281309776063.0) # Coordinate objects can be assigned a distance object, giving them a full # 3D position c = Galactic( l=158.558650 * u.degree, b=-43.350066 * u.degree, distance=Distance(12, u.parsec), ) assert quantity_allclose(c.distance, 12 * u.pc) # or initialize distances via redshifts - this is actually tested in the # function below that checks for scipy. This is kept here as an example # c.distance = Distance(z=0.2) # uses current cosmology # with whatever your preferred cosmology may be # c.distance = Distance(z=0.2, cosmology=WMAP5) # Coordinate objects can be initialized with a distance using special # syntax c1 = Galactic(l=158.558650 * u.deg, b=-43.350066 * u.deg, distance=12 * u.kpc) # Coordinate objects can be instantiated with cartesian coordinates # Internally they will immediately be converted to two angles + a distance cart = CartesianRepresentation(x=2 * u.pc, y=4 * u.pc, z=8 * u.pc) c2 = Galactic(cart) sep12 = c1.separation_3d(c2) # returns a *3d* distance between the c1 and c2 coordinates # not that this does *not* assert isinstance(sep12, Distance) npt.assert_allclose(sep12.pc, 12005.784163916317, 10) """ All spherical coordinate systems with distances can be converted to cartesian coordinates. """ cartrep2 = c2.cartesian assert isinstance(cartrep2.x, u.Quantity) npt.assert_allclose(cartrep2.x.value, 2) npt.assert_allclose(cartrep2.y.value, 4) npt.assert_allclose(cartrep2.z.value, 8) # with no distance, the unit sphere is assumed when converting to cartesian c3 = Galactic(l=158.558650 * u.degree, b=-43.350066 * u.degree, distance=None) unitcart = c3.cartesian npt.assert_allclose( ((unitcart.x**2 + unitcart.y**2 + unitcart.z**2) ** 0.5).value, 1.0 ) # TODO: choose between these when CartesianRepresentation gets a definite # decision on whether or not it gets __add__ # # CartesianRepresentation objects can be added and subtracted, which are # vector/elementwise they can also be given as arguments to a coordinate # system # csum = ICRS(c1.cartesian + c2.cartesian) csumrep = CartesianRepresentation(c1.cartesian.xyz + c2.cartesian.xyz) csum = ICRS(csumrep) npt.assert_allclose(csumrep.x.value, -8.12016610185) npt.assert_allclose(csumrep.y.value, 3.19380597435) npt.assert_allclose(csumrep.z.value, -8.2294483707) npt.assert_allclose(csum.ra.degree, 158.529401774) npt.assert_allclose(csum.dec.degree, -43.3235825777) npt.assert_allclose(csum.distance.kpc, 11.9942200501) @pytest.mark.skipif(not HAS_SCIPY, reason="Requires scipy") def test_distances_scipy(): """ The distance-related tests that require scipy due to the cosmology module needing scipy integration routines """ from astropy.cosmology import WMAP5 # try different ways to initialize a Distance d4 = Distance(z=0.23) # uses default cosmology - as of writing, WMAP7 npt.assert_allclose(d4.z, 0.23, rtol=1e-8) d5 = Distance(z=0.23, cosmology=WMAP5) npt.assert_allclose(d5.compute_z(WMAP5), 0.23, rtol=1e-8) d6 = Distance(z=0.23, cosmology=WMAP5, unit=u.km) npt.assert_allclose(d6.value, 3.5417046898762366e22) with pytest.raises(ValueError, match="a `cosmology` was given but `z`"): Distance(parallax=1 * u.mas, cosmology=WMAP5) # Regression test for #12531 with pytest.raises(ValueError, match=MULTIPLE_INPUTS_ERROR_MSG): Distance(z=0.23, parallax=1 * u.mas) # vectors! regression test for #11949 d4 = Distance(z=[0.23, 0.45]) # as of writing, Planck18 npt.assert_allclose(d4.z, [0.23, 0.45], rtol=1e-8) def test_distance_change(): ra = Longitude("4:08:15.162342", unit=u.hour) dec = Latitude("-41:08:15.162342", unit=u.degree) c1 = ICRS(ra, dec, Distance(1, unit=u.kpc)) oldx = c1.cartesian.x.value assert (oldx - 0.35284083171901953) < 1e-10 # first make sure distances are immutable with pytest.raises(AttributeError): c1.distance = Distance(2, unit=u.kpc) # now x should increase with a bigger distance increases c2 = ICRS(ra, dec, Distance(2, unit=u.kpc)) assert c2.cartesian.x.value == oldx * 2 def test_distance_is_quantity(): """ test that distance behaves like a proper quantity """ Distance(2 * u.kpc) d = Distance([2, 3.1], u.kpc) assert d.shape == (2,) a = d.view(np.ndarray) q = d.view(u.Quantity) a[0] = 1.2 q.value[1] = 5.4 assert d[0].value == 1.2 assert d[1].value == 5.4 q = u.Quantity(d, copy=True) q.value[1] = 0 assert q.value[1] == 0 assert d.value[1] != 0 # regression test against #2261 d = Distance([2 * u.kpc, 250.0 * u.pc]) assert d.unit is u.kpc assert np.all(d.value == np.array([2.0, 0.25])) def test_distmod(): d = Distance(10, u.pc) assert d.distmod.value == 0 d = Distance(distmod=20) assert d.distmod.value == 20 assert d.kpc == 100 d = Distance(distmod=-1.0, unit=u.au) npt.assert_allclose(d.value, 1301442.9440836983) with pytest.raises(ValueError, match=MULTIPLE_INPUTS_ERROR_MSG): d = Distance(value=d, distmod=20) with pytest.raises(ValueError, match=MULTIPLE_INPUTS_ERROR_MSG): d = Distance(z=0.23, distmod=20) # check the Mpc/kpc/pc behavior assert Distance(distmod=1).unit == u.pc assert Distance(distmod=11).unit == u.kpc assert Distance(distmod=26).unit == u.Mpc assert Distance(distmod=-21).unit == u.AU # if an array, uses the mean of the log of the distances assert Distance(distmod=[1, 11, 26]).unit == u.kpc def test_parallax(): d = Distance(parallax=1 * u.arcsecond) assert d.pc == 1.0 with pytest.raises(ValueError, match=MULTIPLE_INPUTS_ERROR_MSG): d = Distance(15 * u.pc, parallax=20 * u.milliarcsecond) with pytest.raises(ValueError, match=MULTIPLE_INPUTS_ERROR_MSG): d = Distance(parallax=20 * u.milliarcsecond, distmod=20) # array plx = [1, 10, 100.0] * u.mas d = Distance(parallax=plx) assert quantity_allclose(d.pc, [1000.0, 100.0, 10.0]) assert quantity_allclose(plx, d.parallax) error_message = ( r"^some parallaxes are negative, which are not interpretable as distances\. " ) with pytest.raises(ValueError, match=error_message): Distance(parallax=-1 * u.mas) with pytest.raises(ValueError, match=error_message): Distance(parallax=[10, 1, -1] * u.mas) warning_message = "^negative parallaxes are converted to NaN distances even when" with pytest.warns(AstropyWarning, match=warning_message): Distance(parallax=-1 * u.mas, allow_negative=True) with pytest.warns(AstropyWarning, match=warning_message): Distance(parallax=[10, 1, -1] * u.mas, allow_negative=True) # Regression test for #12569; `unit` was ignored if `parallax` was given. d = Distance(parallax=1 * u.mas, unit=u.kpc) assert d.value == 1.0 assert d.unit is u.kpc def test_distance_in_coordinates(): """ test that distances can be created from quantities and that cartesian representations come out right """ ra = Longitude("4:08:15.162342", unit=u.hour) dec = Latitude("-41:08:15.162342", unit=u.degree) coo = ICRS(ra, dec, distance=2 * u.kpc) cart = coo.cartesian assert isinstance(cart.xyz, u.Quantity) def test_negative_distance(): """Test optional kwarg allow_negative""" error_message = ( r"^distance must be >= 0\. Use the argument `allow_negative=True` to allow " r"negative values\.$" ) with pytest.raises(ValueError, match=error_message): Distance([-2, 3.1], u.kpc) with pytest.raises(ValueError, match=error_message): Distance([-2, -3.1], u.kpc) with pytest.raises(ValueError, match=error_message): Distance(-2, u.kpc) d = Distance(-2, u.kpc, allow_negative=True) assert d.value == -2 def test_distance_comparison(): """Ensure comparisons of distances work (#2206, #2250)""" a = Distance(15 * u.kpc) b = Distance(15 * u.kpc) assert a == b c = Distance(1.0 * u.Mpc) assert a < c def test_distance_to_quantity_when_not_units_of_length(): """Any operation that leaves units other than those of length should turn a distance into a quantity (#2206, #2250)""" d = Distance(15 * u.kpc) twice = 2.0 * d assert isinstance(twice, Distance) area = 4.0 * np.pi * d**2 assert area.unit.is_equivalent(u.m**2) assert not isinstance(area, Distance) assert type(area) is u.Quantity def test_distance_nan(): # Check that giving NaNs to Distance doesn't emit a warning Distance([0, np.nan, 1] * u.m)
f3f1a93d5b6a0091e8daab92dd8a0c5db5b077c2ee0f6602b67dd956eb93caa1
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Test initialization of angles not already covered by the API tests""" import pickle import numpy as np import pytest from astropy import constants from astropy import units as u from astropy.coordinates.angles import Latitude, Longitude from astropy.coordinates.earth import ELLIPSOIDS, EarthLocation from astropy.coordinates.name_resolve import NameResolveError from astropy.time import Time from astropy.units import allclose as quantity_allclose def allclose_m14(a, b, rtol=1.0e-14, atol=None): if atol is None: atol = 1.0e-14 * getattr(a, "unit", 1) return quantity_allclose(a, b, rtol, atol) def allclose_m8(a, b, rtol=1.0e-8, atol=None): if atol is None: atol = 1.0e-8 * getattr(a, "unit", 1) return quantity_allclose(a, b, rtol, atol) def isclose_m14(val, ref): return np.array([allclose_m14(v, r) for (v, r) in zip(val, ref)]) def isclose_m8(val, ref): return np.array([allclose_m8(v, r) for (v, r) in zip(val, ref)]) def vvd(val, valok, dval, func, test, status): """Mimic routine of erfa/src/t_erfa_c.c (to help copy & paste)""" assert quantity_allclose(val, valok * val.unit, atol=dval * val.unit) def test_gc2gd(): """Test that we reproduce erfa/src/t_erfa_c.c t_gc2gd""" x, y, z = (2e6, 3e6, 5.244e6) status = 0 # help for copy & paste of vvd location = EarthLocation.from_geocentric(x, y, z, u.m) e, p, h = location.to_geodetic("WGS84") e, p, h = e.to(u.radian), p.to(u.radian), h.to(u.m) vvd(e, 0.98279372324732907, 1e-14, "eraGc2gd", "e2", status) vvd(p, 0.97160184820607853, 1e-14, "eraGc2gd", "p2", status) vvd(h, 331.41731754844348, 1e-8, "eraGc2gd", "h2", status) e, p, h = location.to_geodetic("GRS80") e, p, h = e.to(u.radian), p.to(u.radian), h.to(u.m) vvd(e, 0.98279372324732907, 1e-14, "eraGc2gd", "e2", status) vvd(p, 0.97160184820607853, 1e-14, "eraGc2gd", "p2", status) vvd(h, 331.41731754844348, 1e-8, "eraGc2gd", "h2", status) e, p, h = location.to_geodetic("WGS72") e, p, h = e.to(u.radian), p.to(u.radian), h.to(u.m) vvd(e, 0.98279372324732907, 1e-14, "eraGc2gd", "e3", status) vvd(p, 0.97160181811015119, 1e-14, "eraGc2gd", "p3", status) vvd(h, 333.27707261303181, 1e-8, "eraGc2gd", "h3", status) def test_gd2gc(): """Test that we reproduce erfa/src/t_erfa_c.c t_gd2gc""" e = 3.1 * u.rad p = -0.5 * u.rad h = 2500.0 * u.m status = 0 # help for copy & paste of vvd location = EarthLocation.from_geodetic(e, p, h, ellipsoid="WGS84") xyz = tuple(v.to(u.m) for v in location.to_geocentric()) vvd(xyz[0], -5599000.5577049947, 1e-7, "eraGd2gc", "0/1", status) vvd(xyz[1], 233011.67223479203, 1e-7, "eraGd2gc", "1/1", status) vvd(xyz[2], -3040909.4706983363, 1e-7, "eraGd2gc", "2/1", status) location = EarthLocation.from_geodetic(e, p, h, ellipsoid="GRS80") xyz = tuple(v.to(u.m) for v in location.to_geocentric()) vvd(xyz[0], -5599000.5577260984, 1e-7, "eraGd2gc", "0/2", status) vvd(xyz[1], 233011.6722356703, 1e-7, "eraGd2gc", "1/2", status) vvd(xyz[2], -3040909.4706095476, 1e-7, "eraGd2gc", "2/2", status) location = EarthLocation.from_geodetic(e, p, h, ellipsoid="WGS72") xyz = tuple(v.to(u.m) for v in location.to_geocentric()) vvd(xyz[0], -5598998.7626301490, 1e-7, "eraGd2gc", "0/3", status) vvd(xyz[1], 233011.5975297822, 1e-7, "eraGd2gc", "1/3", status) vvd(xyz[2], -3040908.6861467111, 1e-7, "eraGd2gc", "2/3", status) class TestInput: def setup_method(self): self.lon = Longitude( [0.0, 45.0, 90.0, 135.0, 180.0, -180, -90, -45], u.deg, wrap_angle=180 * u.deg, ) self.lat = Latitude([+0.0, 30.0, 60.0, +90.0, -90.0, -60.0, -30.0, 0.0], u.deg) self.h = u.Quantity([0.1, 0.5, 1.0, -0.5, -1.0, +4.2, -11.0, -0.1], u.m) self.location = EarthLocation.from_geodetic(self.lon, self.lat, self.h) self.x, self.y, self.z = self.location.to_geocentric() def test_default_ellipsoid(self): assert self.location.ellipsoid == EarthLocation._ellipsoid def test_geo_attributes(self): assert all( np.all(_1 == _2) for _1, _2 in zip(self.location.geodetic, self.location.to_geodetic()) ) assert all( np.all(_1 == _2) for _1, _2 in zip(self.location.geocentric, self.location.to_geocentric()) ) def test_attribute_classes(self): """Test that attribute classes are correct (and not EarthLocation)""" assert type(self.location.x) is u.Quantity assert type(self.location.y) is u.Quantity assert type(self.location.z) is u.Quantity assert type(self.location.lon) is Longitude assert type(self.location.lat) is Latitude assert type(self.location.height) is u.Quantity def test_input(self): """Check input is parsed correctly""" # units of length should be assumed geocentric geocentric = EarthLocation(self.x, self.y, self.z) assert np.all(geocentric == self.location) geocentric2 = EarthLocation( self.x.value, self.y.value, self.z.value, self.x.unit ) assert np.all(geocentric2 == self.location) geodetic = EarthLocation(self.lon, self.lat, self.h) assert np.all(geodetic == self.location) geodetic2 = EarthLocation( self.lon.to_value(u.degree), self.lat.to_value(u.degree), self.h.to_value(u.m), ) assert np.all(geodetic2 == self.location) geodetic3 = EarthLocation(self.lon, self.lat) assert allclose_m14(geodetic3.lon.value, self.location.lon.value) assert allclose_m14(geodetic3.lat.value, self.location.lat.value) assert not np.any( isclose_m14(geodetic3.height.value, self.location.height.value) ) geodetic4 = EarthLocation(self.lon, self.lat, self.h[-1]) assert allclose_m14(geodetic4.lon.value, self.location.lon.value) assert allclose_m14(geodetic4.lat.value, self.location.lat.value) assert allclose_m14(geodetic4.height[-1].value, self.location.height[-1].value) assert not np.any( isclose_m14(geodetic4.height[:-1].value, self.location.height[:-1].value) ) # check length unit preservation geocentric5 = EarthLocation(self.x, self.y, self.z, u.pc) assert geocentric5.unit is u.pc assert geocentric5.x.unit is u.pc assert geocentric5.height.unit is u.pc assert allclose_m14(geocentric5.x.to_value(self.x.unit), self.x.value) geodetic5 = EarthLocation(self.lon, self.lat, self.h.to(u.pc)) assert geodetic5.unit is u.pc assert geodetic5.x.unit is u.pc assert geodetic5.height.unit is u.pc assert allclose_m14(geodetic5.x.to_value(self.x.unit), self.x.value) def test_invalid_input(self): """Check invalid input raises exception""" # incomprehensible by either raises TypeError with pytest.raises(TypeError): EarthLocation(self.lon, self.y, self.z) # wrong units with pytest.raises(u.UnitsError): EarthLocation.from_geocentric(self.lon, self.lat, self.lat) # inconsistent units with pytest.raises(u.UnitsError): EarthLocation.from_geocentric(self.h, self.lon, self.lat) # floats without a unit with pytest.raises(TypeError): EarthLocation.from_geocentric(self.x.value, self.y.value, self.z.value) # inconsistent shape with pytest.raises(ValueError): EarthLocation.from_geocentric(self.x, self.y, self.z[:5]) # inconsistent units with pytest.raises(u.UnitsError): EarthLocation.from_geodetic(self.x, self.y, self.z) # inconsistent shape with pytest.raises(ValueError): EarthLocation.from_geodetic(self.lon, self.lat, self.h[:5]) def test_slicing(self): # test on WGS72 location, so we can check the ellipsoid is passed on locwgs72 = EarthLocation.from_geodetic( self.lon, self.lat, self.h, ellipsoid="WGS72" ) loc_slice1 = locwgs72[4] assert isinstance(loc_slice1, EarthLocation) assert loc_slice1.unit is locwgs72.unit assert loc_slice1.ellipsoid == locwgs72.ellipsoid == "WGS72" assert not loc_slice1.shape with pytest.raises(TypeError): loc_slice1[0] with pytest.raises(IndexError): len(loc_slice1) loc_slice2 = locwgs72[4:6] assert isinstance(loc_slice2, EarthLocation) assert len(loc_slice2) == 2 assert loc_slice2.unit is locwgs72.unit assert loc_slice2.ellipsoid == locwgs72.ellipsoid assert loc_slice2.shape == (2,) loc_x = locwgs72["x"] assert type(loc_x) is u.Quantity assert loc_x.shape == locwgs72.shape assert loc_x.unit is locwgs72.unit def test_invalid_ellipsoid(self): # unknown ellipsoid with pytest.raises(ValueError): EarthLocation.from_geodetic(self.lon, self.lat, self.h, ellipsoid="foo") with pytest.raises(TypeError): EarthLocation(self.lon, self.lat, self.h, ellipsoid="foo") with pytest.raises(ValueError): self.location.ellipsoid = "foo" with pytest.raises(ValueError): self.location.to_geodetic("foo") @pytest.mark.parametrize("ellipsoid", ELLIPSOIDS) def test_ellipsoid(self, ellipsoid): """Test that different ellipsoids are understood, and differ""" # check that heights differ for different ellipsoids # need different tolerance, since heights are relative to ~6000 km lon, lat, h = self.location.to_geodetic(ellipsoid) if ellipsoid == self.location.ellipsoid: assert allclose_m8(h.value, self.h.value) else: # Some heights are very similar for some; some lon, lat identical. assert not np.all(isclose_m8(h.value, self.h.value)) # given lon, lat, height, check that x,y,z differ location = EarthLocation.from_geodetic( self.lon, self.lat, self.h, ellipsoid=ellipsoid ) if ellipsoid == self.location.ellipsoid: assert allclose_m14(location.z.value, self.z.value) else: assert not np.all(isclose_m14(location.z.value, self.z.value)) def test_to_value(self): loc = self.location loc_ndarray = loc.view(np.ndarray) assert np.all(loc.value == loc_ndarray) loc2 = self.location.to(u.km) loc2_ndarray = np.empty_like(loc_ndarray) for coo in "x", "y", "z": loc2_ndarray[coo] = loc_ndarray[coo] / 1000.0 assert np.all(loc2.value == loc2_ndarray) loc2_value = self.location.to_value(u.km) assert np.all(loc2_value == loc2_ndarray) def test_pickling(): """Regression test against #4304.""" el = EarthLocation(0.0 * u.m, 6000 * u.km, 6000 * u.km) s = pickle.dumps(el) el2 = pickle.loads(s) assert el == el2 def test_repr_latex(): """ Regression test for issue #4542 """ somelocation = EarthLocation(lon="149:3:57.9", lat="-31:16:37.3") somelocation._repr_latex_() somelocation2 = EarthLocation(lon=[1.0, 2.0] * u.deg, lat=[-1.0, 9.0] * u.deg) somelocation2._repr_latex_() @pytest.mark.remote_data # TODO: this parametrize should include a second option with a valid Google API # key. For example, we should make an API key for Astropy, and add it to GitHub Actions # as an environment variable (for security). @pytest.mark.parametrize("google_api_key", [None]) def test_of_address(google_api_key): NYC_lon = -74.0 * u.deg NYC_lat = 40.7 * u.deg # ~10 km tolerance to address difference between OpenStreetMap and Google # for "New York, NY". This doesn't matter in practice because this test is # only used to verify that the query succeeded, not that the returned # position is precise. NYC_tol = 0.1 * u.deg # just a location try: loc = EarthLocation.of_address("New York, NY") except NameResolveError as e: # API limit might surface even here in CI. if "unknown failure with" not in str(e): pytest.xfail(str(e)) else: assert quantity_allclose(loc.lat, NYC_lat, atol=NYC_tol) assert quantity_allclose(loc.lon, NYC_lon, atol=NYC_tol) assert np.allclose(loc.height.value, 0.0) # Put this one here as buffer to get around Google map API limit per sec. # no match: This always raises NameResolveError with pytest.raises(NameResolveError): EarthLocation.of_address("lkjasdflkja") if google_api_key is not None: # a location and height try: loc = EarthLocation.of_address("New York, NY", get_height=True) except NameResolveError as e: # Buffer above sometimes insufficient to get around API limit but # we also do not want to drag things out with time.sleep(0.195), # where 0.195 was empirically determined on some physical machine. pytest.xfail(str(e.value)) else: assert quantity_allclose(loc.lat, NYC_lat, atol=NYC_tol) assert quantity_allclose(loc.lon, NYC_lon, atol=NYC_tol) assert quantity_allclose(loc.height, 10.438 * u.meter, atol=1.0 * u.cm) def test_geodetic_tuple(): lat = 2 * u.deg lon = 10 * u.deg height = 100 * u.m el = EarthLocation.from_geodetic(lat=lat, lon=lon, height=height) res1 = el.to_geodetic() res2 = el.geodetic assert res1.lat == res2.lat and quantity_allclose(res1.lat, lat) assert res1.lon == res2.lon and quantity_allclose(res1.lon, lon) assert res1.height == res2.height and quantity_allclose(res1.height, height) def test_gravitational_redshift(): someloc = EarthLocation(lon=-87.7 * u.deg, lat=37 * u.deg) sometime = Time("2017-8-21 18:26:40") zg0 = someloc.gravitational_redshift(sometime) # should be of order ~few mm/s change per week zg_week = someloc.gravitational_redshift(sometime + 7 * u.day) assert 1.0 * u.mm / u.s < abs(zg_week - zg0) < 1 * u.cm / u.s # ~cm/s over a half-year zg_halfyear = someloc.gravitational_redshift(sometime + 0.5 * u.yr) assert 1 * u.cm / u.s < abs(zg_halfyear - zg0) < 1 * u.dm / u.s # but when back to the same time in a year, should be tenths of mm # even over decades zg_year = someloc.gravitational_redshift(sometime - 20 * u.year) assert 0.1 * u.mm / u.s < abs(zg_year - zg0) < 1 * u.mm / u.s # Check mass adjustments. # If Jupiter and the moon are ignored, effect should be off by ~ .5 mm/s masses = { "sun": constants.G * constants.M_sun, "jupiter": 0 * constants.G * u.kg, "moon": 0 * constants.G * u.kg, } zg_moonjup = someloc.gravitational_redshift(sometime, masses=masses) assert 0.1 * u.mm / u.s < abs(zg_moonjup - zg0) < 1 * u.mm / u.s # Check that simply not including the bodies gives the same result. assert zg_moonjup == someloc.gravitational_redshift(sometime, bodies=("sun",)) # And that earth can be given, even not as last argument assert zg_moonjup == someloc.gravitational_redshift( sometime, bodies=("earth", "sun") ) # If the earth is also ignored, effect should be off by ~ 20 cm/s # This also tests the conversion of kg to gravitational units. masses["earth"] = 0 * u.kg zg_moonjupearth = someloc.gravitational_redshift(sometime, masses=masses) assert 1 * u.dm / u.s < abs(zg_moonjupearth - zg0) < 1 * u.m / u.s # If all masses are zero, redshift should be 0 as well. masses["sun"] = 0 * u.kg assert someloc.gravitational_redshift(sometime, masses=masses) == 0 with pytest.raises(KeyError): someloc.gravitational_redshift(sometime, bodies=("saturn",)) with pytest.raises(u.UnitsError): masses = { "sun": constants.G * constants.M_sun, "jupiter": constants.G * constants.M_jup, "moon": 1 * u.km, # wrong units! "earth": constants.G * constants.M_earth, } someloc.gravitational_redshift(sometime, masses=masses) def test_read_only_input(): lon = np.array([80.0, 440.0]) * u.deg lat = np.array([45.0]) * u.deg lon.flags.writeable = lat.flags.writeable = False loc = EarthLocation.from_geodetic(lon=lon, lat=lat) assert quantity_allclose(loc[1].x, loc[0].x) def test_info(): EarthLocation._get_site_registry(force_builtin=True) greenwich = EarthLocation.of_site("greenwich") assert str(greenwich.info).startswith("name = Royal Observatory Greenwich")
8b49de5c61f29fd578415bdc7832158fcae878710832a4c1a3dac68c9aa974e2
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np import pytest from astropy import constants from astropy import units as u from astropy.coordinates import ( CartesianDifferential, CartesianRepresentation, DynamicMatrixTransform, FunctionTransformWithFiniteDifference, SphericalDifferential, SphericalRepresentation, TimeAttribute, get_sun, ) from astropy.coordinates.baseframe import frame_transform_graph from astropy.coordinates.builtin_frames import FK5, GCRS, ICRS, LSR, AltAz, Galactic from astropy.coordinates.sites import get_builtin_sites from astropy.time import Time from astropy.units import allclose as quantity_allclose J2000 = Time("J2000") @pytest.mark.parametrize( "dt, symmetric", [ (1 * u.second, True), (1 * u.year, True), (1 * u.second, False), (1 * u.year, False), ], ) def test_faux_lsr(dt, symmetric): class LSR2(LSR): obstime = TimeAttribute(default=J2000) @frame_transform_graph.transform( FunctionTransformWithFiniteDifference, ICRS, LSR2, finite_difference_dt=dt, symmetric_finite_difference=symmetric, ) def icrs_to_lsr(icrs_coo, lsr_frame): dt = lsr_frame.obstime - J2000 offset = lsr_frame.v_bary * dt.to(u.second) return lsr_frame.realize_frame(icrs_coo.data.without_differentials() + offset) @frame_transform_graph.transform( FunctionTransformWithFiniteDifference, LSR2, ICRS, finite_difference_dt=dt, symmetric_finite_difference=symmetric, ) def lsr_to_icrs(lsr_coo, icrs_frame): dt = lsr_coo.obstime - J2000 offset = lsr_coo.v_bary * dt.to(u.second) return icrs_frame.realize_frame(lsr_coo.data - offset) ic = ICRS( ra=12.3 * u.deg, dec=45.6 * u.deg, distance=7.8 * u.au, pm_ra_cosdec=0 * u.marcsec / u.yr, pm_dec=0 * u.marcsec / u.yr, radial_velocity=0 * u.km / u.s, ) lsrc = ic.transform_to(LSR2()) assert quantity_allclose(ic.cartesian.xyz, lsrc.cartesian.xyz) idiff = ic.cartesian.differentials["s"] ldiff = lsrc.cartesian.differentials["s"] change = (ldiff.d_xyz - idiff.d_xyz).to(u.km / u.s) totchange = np.sum(change**2) ** 0.5 assert quantity_allclose(totchange, np.sum(lsrc.v_bary.d_xyz**2) ** 0.5) ic2 = ICRS( ra=120.3 * u.deg, dec=45.6 * u.deg, distance=7.8 * u.au, pm_ra_cosdec=0 * u.marcsec / u.yr, pm_dec=10 * u.marcsec / u.yr, radial_velocity=1000 * u.km / u.s, ) lsrc2 = ic2.transform_to(LSR2()) ic2_roundtrip = lsrc2.transform_to(ICRS()) tot = np.sum(lsrc2.cartesian.differentials["s"].d_xyz ** 2) ** 0.5 assert np.abs(tot.to("km/s") - 1000 * u.km / u.s) < 20 * u.km / u.s assert quantity_allclose(ic2.cartesian.xyz, ic2_roundtrip.cartesian.xyz) def test_faux_fk5_galactic(): from astropy.coordinates.builtin_frames.galactic_transforms import ( _gal_to_fk5, fk5_to_gal, ) class Galactic2(Galactic): pass dt = 1000 * u.s @frame_transform_graph.transform( FunctionTransformWithFiniteDifference, FK5, Galactic2, finite_difference_dt=dt, symmetric_finite_difference=True, finite_difference_frameattr_name=None, ) def fk5_to_gal2(fk5_coo, gal_frame): trans = DynamicMatrixTransform(fk5_to_gal, FK5, Galactic2) return trans(fk5_coo, gal_frame) @frame_transform_graph.transform( FunctionTransformWithFiniteDifference, Galactic2, ICRS, finite_difference_dt=dt, symmetric_finite_difference=True, finite_difference_frameattr_name=None, ) def gal2_to_fk5(gal_coo, fk5_frame): trans = DynamicMatrixTransform(_gal_to_fk5, Galactic2, FK5) return trans(gal_coo, fk5_frame) c1 = FK5( ra=150 * u.deg, dec=-17 * u.deg, radial_velocity=83 * u.km / u.s, pm_ra_cosdec=-41 * u.mas / u.yr, pm_dec=16 * u.mas / u.yr, distance=150 * u.pc, ) c2 = c1.transform_to(Galactic2()) c3 = c1.transform_to(Galactic()) # compare the matrix and finite-difference calculations assert quantity_allclose(c2.pm_l_cosb, c3.pm_l_cosb, rtol=1e-4) assert quantity_allclose(c2.pm_b, c3.pm_b, rtol=1e-4) def test_gcrs_diffs(): time = Time("2017-01-01") gf = GCRS(obstime=time) sung = get_sun(time) # should have very little vhelio # qtr-year off sun location should be the direction of ~ maximal vhelio qtrsung = get_sun(time - 0.25 * u.year) # now we use those essentially as directions where the velocities should # be either maximal or minimal - with or perpendiculat to Earh's orbit msungr = CartesianRepresentation(-sung.cartesian.xyz).represent_as( SphericalRepresentation ) suni = ICRS( ra=msungr.lon, dec=msungr.lat, distance=100 * u.au, pm_ra_cosdec=0 * u.marcsec / u.yr, pm_dec=0 * u.marcsec / u.yr, radial_velocity=0 * u.km / u.s, ) qtrsuni = ICRS( ra=qtrsung.ra, dec=qtrsung.dec, distance=100 * u.au, pm_ra_cosdec=0 * u.marcsec / u.yr, pm_dec=0 * u.marcsec / u.yr, radial_velocity=0 * u.km / u.s, ) # Now we transform those parallel- and perpendicular-to Earth's orbit # directions to GCRS, which should shift the velocity to either include # the Earth's velocity vector, or not (for parallel and perpendicular, # respectively). sung = suni.transform_to(gf) qtrsung = qtrsuni.transform_to(gf) # should be high along the ecliptic-not-sun sun axis and # low along the sun axis assert np.abs(qtrsung.radial_velocity) > 30 * u.km / u.s assert np.abs(qtrsung.radial_velocity) < 40 * u.km / u.s assert np.abs(sung.radial_velocity) < 1 * u.km / u.s suni2 = sung.transform_to(ICRS()) assert np.all(np.abs(suni2.data.differentials["s"].d_xyz) < 3e-5 * u.km / u.s) qtrisun2 = qtrsung.transform_to(ICRS()) assert np.all(np.abs(qtrisun2.data.differentials["s"].d_xyz) < 3e-5 * u.km / u.s) def test_altaz_diffs(): time = Time("J2015") + np.linspace(-1, 1, 1000) * u.day loc = get_builtin_sites()["greenwich"] aa = AltAz(obstime=time, location=loc) icoo = ICRS( np.zeros(time.shape) * u.deg, 10 * u.deg, 100 * u.au, pm_ra_cosdec=np.zeros(time.shape) * u.marcsec / u.yr, pm_dec=0 * u.marcsec / u.yr, radial_velocity=0 * u.km / u.s, ) acoo = icoo.transform_to(aa) # Make sure the change in radial velocity over ~2 days isn't too much # more than the rotation speed of the Earth - some excess is expected # because the orbit also shifts the RV, but it should be pretty small # over this short a time. assert ( np.ptp(acoo.radial_velocity) / 2 < (2 * np.pi * constants.R_earth / u.day) * 1.2 ) # MAGIC NUMBER cdiff = acoo.data.differentials["s"].represent_as(CartesianDifferential, acoo.data) # The "total" velocity should be > c, because the *tangential* velocity # isn't a True velocity, but rather an induced velocity due to the Earth's # rotation at a distance of 100 AU assert np.all(np.sum(cdiff.d_xyz**2, axis=0) ** 0.5 > constants.c) _xfail = pytest.mark.xfail @pytest.mark.parametrize( "distance", [ 1000 * u.au, 10 * u.pc, pytest.param(10 * u.kpc, marks=_xfail), pytest.param(100 * u.kpc, marks=_xfail), ], ) # TODO: make these not fail when the # finite-difference numerical stability # is improved def test_numerical_limits(distance): """ Tests the numerical stability of the default settings for the finite difference transformation calculation. This is *known* to fail for at >~1kpc, but this may be improved in future versions. """ time = Time("J2017") + np.linspace(-0.5, 0.5, 100) * u.year icoo = ICRS( ra=0 * u.deg, dec=10 * u.deg, distance=distance, pm_ra_cosdec=0 * u.marcsec / u.yr, pm_dec=0 * u.marcsec / u.yr, radial_velocity=0 * u.km / u.s, ) gcoo = icoo.transform_to(GCRS(obstime=time)) rv = gcoo.radial_velocity.to("km/s") # if its a lot bigger than this - ~the maximal velocity shift along # the direction above with a small allowance for noise - finite-difference # rounding errors have ruined the calculation assert np.ptp(rv) < 65 * u.km / u.s def diff_info_plot(frame, time): """ Useful for plotting a frame with multiple times. *Not* used in the testing suite per se, but extremely useful for interactive plotting of results from tests in this module. """ from matplotlib import pyplot as plt fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(20, 12)) ax1.plot_date( time.plot_date, frame.data.differentials["s"].d_xyz.to(u.km / u.s).T, fmt="-" ) ax1.legend(["x", "y", "z"]) ax2.plot_date( time.plot_date, np.sum(frame.data.differentials["s"].d_xyz.to(u.km / u.s) ** 2, axis=0) ** 0.5, fmt="-", ) ax2.set_title("total") sd = frame.data.differentials["s"].represent_as(SphericalDifferential, frame.data) ax3.plot_date(time.plot_date, sd.d_distance.to(u.km / u.s), fmt="-") ax3.set_title("radial") ax4.plot_date(time.plot_date, sd.d_lat.to(u.marcsec / u.yr), fmt="-", label="lat") ax4.plot_date(time.plot_date, sd.d_lon.to(u.marcsec / u.yr), fmt="-", label="lon") return fig
f181052344efd6cd99c9f5314b52d2aae1bd0479c85aa6f9be5ea851e915dee1
""" This series of functions are used to generate the reference CSV files used by the accuracy tests. Running this as a command-line script will generate them all. """ import os import numpy as np from astropy.table import Column, Table def ref_fk4_no_e_fk4(fnout="fk4_no_e_fk4.csv"): """ Accuracy tests for the FK4 (with no E-terms of aberration) to/from FK4 conversion, with arbitrary equinoxes and epoch of observation. """ import starlink.Ast as Ast np.random.seed(12345) N = 200 # Sample uniformly on the unit sphere. These will be either the FK4 # coordinates for the transformation to FK5, or the FK5 coordinates for the # transformation to FK4. ra = np.random.uniform(0.0, 360.0, N) dec = np.degrees(np.arcsin(np.random.uniform(-1.0, 1.0, N))) # Generate random observation epoch and equinoxes obstime = [f"B{x:7.2f}" for x in np.random.uniform(1950.0, 2000.0, N)] ra_fk4ne, dec_fk4ne = [], [] ra_fk4, dec_fk4 = [], [] for i in range(N): # Set up frames for AST frame_fk4ne = Ast.SkyFrame(f"System=FK4-NO-E,Epoch={obstime[i]},Equinox=B1950") frame_fk4 = Ast.SkyFrame(f"System=FK4,Epoch={obstime[i]},Equinox=B1950") # FK4 to FK4 (no E-terms) frameset = frame_fk4.convert(frame_fk4ne) coords = np.degrees(frameset.tran([[np.radians(ra[i])], [np.radians(dec[i])]])) ra_fk4ne.append(coords[0, 0]) dec_fk4ne.append(coords[1, 0]) # FK4 (no E-terms) to FK4 frameset = frame_fk4ne.convert(frame_fk4) coords = np.degrees(frameset.tran([[np.radians(ra[i])], [np.radians(dec[i])]])) ra_fk4.append(coords[0, 0]) dec_fk4.append(coords[1, 0]) # Write out table to a CSV file t = Table() t.add_column(Column(name="obstime", data=obstime)) t.add_column(Column(name="ra_in", data=ra)) t.add_column(Column(name="dec_in", data=dec)) t.add_column(Column(name="ra_fk4ne", data=ra_fk4ne)) t.add_column(Column(name="dec_fk4ne", data=dec_fk4ne)) t.add_column(Column(name="ra_fk4", data=ra_fk4)) t.add_column(Column(name="dec_fk4", data=dec_fk4)) f = open(os.path.join("data", fnout), "wb") f.write( f"# This file was generated with the {os.path.basename(__file__)} script, and" " the reference values were computed using AST\n" ) t.write(f, format="ascii", delimiter=",") def ref_fk4_no_e_fk5(fnout="fk4_no_e_fk5.csv"): """ Accuracy tests for the FK4 (with no E-terms of aberration) to/from FK5 conversion, with arbitrary equinoxes and epoch of observation. """ import starlink.Ast as Ast np.random.seed(12345) N = 200 # Sample uniformly on the unit sphere. These will be either the FK4 # coordinates for the transformation to FK5, or the FK5 coordinates for the # transformation to FK4. ra = np.random.uniform(0.0, 360.0, N) dec = np.degrees(np.arcsin(np.random.uniform(-1.0, 1.0, N))) # Generate random observation epoch and equinoxes obstime = [f"B{x:7.2f}" for x in np.random.uniform(1950.0, 2000.0, N)] equinox_fk4 = [f"B{x:7.2f}" for x in np.random.uniform(1925.0, 1975.0, N)] equinox_fk5 = [f"J{x:7.2f}" for x in np.random.uniform(1975.0, 2025.0, N)] ra_fk4, dec_fk4 = [], [] ra_fk5, dec_fk5 = [], [] for i in range(N): # Set up frames for AST frame_fk4 = Ast.SkyFrame( f"System=FK4-NO-E,Epoch={obstime[i]},Equinox={equinox_fk4[i]}" ) frame_fk5 = Ast.SkyFrame( f"System=FK5,Epoch={obstime[i]},Equinox={equinox_fk5[i]}" ) # FK4 to FK5 frameset = frame_fk4.convert(frame_fk5) coords = np.degrees(frameset.tran([[np.radians(ra[i])], [np.radians(dec[i])]])) ra_fk5.append(coords[0, 0]) dec_fk5.append(coords[1, 0]) # FK5 to FK4 frameset = frame_fk5.convert(frame_fk4) coords = np.degrees(frameset.tran([[np.radians(ra[i])], [np.radians(dec[i])]])) ra_fk4.append(coords[0, 0]) dec_fk4.append(coords[1, 0]) # Write out table to a CSV file t = Table() t.add_column(Column(name="equinox_fk4", data=equinox_fk4)) t.add_column(Column(name="equinox_fk5", data=equinox_fk5)) t.add_column(Column(name="obstime", data=obstime)) t.add_column(Column(name="ra_in", data=ra)) t.add_column(Column(name="dec_in", data=dec)) t.add_column(Column(name="ra_fk5", data=ra_fk5)) t.add_column(Column(name="dec_fk5", data=dec_fk5)) t.add_column(Column(name="ra_fk4", data=ra_fk4)) t.add_column(Column(name="dec_fk4", data=dec_fk4)) f = open(os.path.join("data", fnout), "wb") f.write( f"# This file was generated with the {os.path.basename(__file__)} script, and" " the reference values were computed using AST\n" ) t.write(f, format="ascii", delimiter=",") def ref_galactic_fk4(fnout="galactic_fk4.csv"): """ Accuracy tests for the ICRS (with no E-terms of aberration) to/from FK5 conversion, with arbitrary equinoxes and epoch of observation. """ import starlink.Ast as Ast np.random.seed(12345) N = 200 # Sample uniformly on the unit sphere. These will be either the ICRS # coordinates for the transformation to FK5, or the FK5 coordinates for the # transformation to ICRS. lon = np.random.uniform(0.0, 360.0, N) lat = np.degrees(np.arcsin(np.random.uniform(-1.0, 1.0, N))) # Generate random observation epoch and equinoxes obstime = [f"B{x:7.2f}" for x in np.random.uniform(1950.0, 2000.0, N)] equinox_fk4 = [f"J{x:7.2f}" for x in np.random.uniform(1975.0, 2025.0, N)] lon_gal, lat_gal = [], [] ra_fk4, dec_fk4 = [], [] for i in range(N): # Set up frames for AST frame_gal = Ast.SkyFrame(f"System=Galactic,Epoch={obstime[i]}") frame_fk4 = Ast.SkyFrame( f"System=FK4,Epoch={obstime[i]},Equinox={equinox_fk4[i]}" ) # ICRS to FK5 frameset = frame_gal.convert(frame_fk4) coords = np.degrees(frameset.tran([[np.radians(lon[i])], [np.radians(lat[i])]])) ra_fk4.append(coords[0, 0]) dec_fk4.append(coords[1, 0]) # FK5 to ICRS frameset = frame_fk4.convert(frame_gal) coords = np.degrees(frameset.tran([[np.radians(lon[i])], [np.radians(lat[i])]])) lon_gal.append(coords[0, 0]) lat_gal.append(coords[1, 0]) # Write out table to a CSV file t = Table() t.add_column(Column(name="equinox_fk4", data=equinox_fk4)) t.add_column(Column(name="obstime", data=obstime)) t.add_column(Column(name="lon_in", data=lon)) t.add_column(Column(name="lat_in", data=lat)) t.add_column(Column(name="ra_fk4", data=ra_fk4)) t.add_column(Column(name="dec_fk4", data=dec_fk4)) t.add_column(Column(name="lon_gal", data=lon_gal)) t.add_column(Column(name="lat_gal", data=lat_gal)) f = open(os.path.join("data", fnout), "wb") f.write( f"# This file was generated with the {os.path.basename(__file__)} script, and" " the reference values were computed using AST\n" ) t.write(f, format="ascii", delimiter=",") def ref_icrs_fk5(fnout="icrs_fk5.csv"): """ Accuracy tests for the ICRS (with no E-terms of aberration) to/from FK5 conversion, with arbitrary equinoxes and epoch of observation. """ import starlink.Ast as Ast np.random.seed(12345) N = 200 # Sample uniformly on the unit sphere. These will be either the ICRS # coordinates for the transformation to FK5, or the FK5 coordinates for the # transformation to ICRS. ra = np.random.uniform(0.0, 360.0, N) dec = np.degrees(np.arcsin(np.random.uniform(-1.0, 1.0, N))) # Generate random observation epoch and equinoxes obstime = [f"B{x:7.2f}" for x in np.random.uniform(1950.0, 2000.0, N)] equinox_fk5 = [f"J{x:7.2f}" for x in np.random.uniform(1975.0, 2025.0, N)] ra_icrs, dec_icrs = [], [] ra_fk5, dec_fk5 = [], [] for i in range(N): # Set up frames for AST frame_icrs = Ast.SkyFrame(f"System=ICRS,Epoch={obstime[i]}") frame_fk5 = Ast.SkyFrame( f"System=FK5,Epoch={obstime[i]},Equinox={equinox_fk5[i]}" ) # ICRS to FK5 frameset = frame_icrs.convert(frame_fk5) coords = np.degrees(frameset.tran([[np.radians(ra[i])], [np.radians(dec[i])]])) ra_fk5.append(coords[0, 0]) dec_fk5.append(coords[1, 0]) # FK5 to ICRS frameset = frame_fk5.convert(frame_icrs) coords = np.degrees(frameset.tran([[np.radians(ra[i])], [np.radians(dec[i])]])) ra_icrs.append(coords[0, 0]) dec_icrs.append(coords[1, 0]) # Write out table to a CSV file t = Table() t.add_column(Column(name="equinox_fk5", data=equinox_fk5)) t.add_column(Column(name="obstime", data=obstime)) t.add_column(Column(name="ra_in", data=ra)) t.add_column(Column(name="dec_in", data=dec)) t.add_column(Column(name="ra_fk5", data=ra_fk5)) t.add_column(Column(name="dec_fk5", data=dec_fk5)) t.add_column(Column(name="ra_icrs", data=ra_icrs)) t.add_column(Column(name="dec_icrs", data=dec_icrs)) f = open(os.path.join("data", fnout), "wb") f.write( f"# This file was generated with the {os.path.basename(__file__)} script, and" " the reference values were computed using AST\n" ) t.write(f, format="ascii", delimiter=",") if __name__ == "__main__": ref_fk4_no_e_fk4() ref_fk4_no_e_fk5() ref_galactic_fk4() ref_icrs_fk5()
8917bd049682941f30087a6c9240e19766db2c7f0d5524a87e74a134c8cb238c
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np from astropy import units as u from astropy.coordinates.angle_utilities import angular_separation from astropy.coordinates.builtin_frames import FK4, Galactic from astropy.table import Table from astropy.time import Time from astropy.utils.data import get_pkg_data_contents # the number of tests to run from . import N_ACCURACY_TESTS TOLERANCE = 0.3 # arcseconds def test_galactic_fk4(): lines = get_pkg_data_contents("data/galactic_fk4.csv").split("\n") t = Table.read(lines, format="ascii", delimiter=",", guess=False) if N_ACCURACY_TESTS >= len(t): idxs = range(len(t)) else: idxs = np.random.randint(len(t), size=N_ACCURACY_TESTS) diffarcsec1 = [] diffarcsec2 = [] for i in idxs: # Extract row r = t[int(i)] # int here is to get around a py 3.x astropy.table bug # Galactic to FK4 c1 = Galactic(l=r["lon_in"] * u.deg, b=r["lat_in"] * u.deg) c2 = c1.transform_to(FK4(equinox=Time(r["equinox_fk4"]))) # Find difference diff = angular_separation( c2.ra.radian, c2.dec.radian, np.radians(r["ra_fk4"]), np.radians(r["dec_fk4"]), ) diffarcsec1.append(np.degrees(diff) * 3600.0) # FK4 to Galactic c1 = FK4( ra=r["lon_in"] * u.deg, dec=r["lat_in"] * u.deg, obstime=Time(r["obstime"]), equinox=Time(r["equinox_fk4"]), ) c2 = c1.transform_to(Galactic()) # Find difference diff = angular_separation( c2.l.radian, c2.b.radian, np.radians(r["lon_gal"]), np.radians(r["lat_gal"]) ) diffarcsec2.append(np.degrees(diff) * 3600.0) np.testing.assert_array_less(diffarcsec1, TOLERANCE) np.testing.assert_array_less(diffarcsec2, TOLERANCE)
0523897b65dac53eeccaa37224f590966dc0f11298c0a73723990482e7234d48
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np from astropy import units as u from astropy.coordinates.angle_utilities import angular_separation from astropy.coordinates.builtin_frames import FK5, ICRS from astropy.table import Table from astropy.time import Time from astropy.utils.data import get_pkg_data_contents # the number of tests to run from . import N_ACCURACY_TESTS TOLERANCE = 0.03 # arcseconds def test_icrs_fk5(): lines = get_pkg_data_contents("data/icrs_fk5.csv").split("\n") t = Table.read(lines, format="ascii", delimiter=",", guess=False) if N_ACCURACY_TESTS >= len(t): idxs = range(len(t)) else: idxs = np.random.randint(len(t), size=N_ACCURACY_TESTS) diffarcsec1 = [] diffarcsec2 = [] for i in idxs: # Extract row r = t[int(i)] # int here is to get around a py 3.x astropy.table bug # ICRS to FK5 c1 = ICRS(ra=r["ra_in"] * u.deg, dec=r["dec_in"] * u.deg) c2 = c1.transform_to(FK5(equinox=Time(r["equinox_fk5"]))) # Find difference diff = angular_separation( c2.ra.radian, c2.dec.radian, np.radians(r["ra_fk5"]), np.radians(r["dec_fk5"]), ) diffarcsec1.append(np.degrees(diff) * 3600.0) # FK5 to ICRS c1 = FK5( ra=r["ra_in"] * u.deg, dec=r["dec_in"] * u.deg, equinox=Time(r["equinox_fk5"]), ) c2 = c1.transform_to(ICRS()) # Find difference diff = angular_separation( c2.ra.radian, c2.dec.radian, np.radians(r["ra_icrs"]), np.radians(r["dec_icrs"]), ) diffarcsec2.append(np.degrees(diff) * 3600.0) np.testing.assert_array_less(diffarcsec1, TOLERANCE) np.testing.assert_array_less(diffarcsec2, TOLERANCE)
5c31f60b85b896cb187916d89b7c15818c0b57a00ca1462b39a2773a1b7b01f0
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np from astropy import units as u from astropy.coordinates.angle_utilities import angular_separation from astropy.coordinates.builtin_frames import FK5, FK4NoETerms from astropy.table import Table from astropy.time import Time from astropy.utils.data import get_pkg_data_contents # the number of tests to run from . import N_ACCURACY_TESTS TOLERANCE = 0.03 # arcseconds def test_fk4_no_e_fk5(): lines = get_pkg_data_contents("data/fk4_no_e_fk5.csv").split("\n") t = Table.read(lines, format="ascii", delimiter=",", guess=False) if N_ACCURACY_TESTS >= len(t): idxs = range(len(t)) else: idxs = np.random.randint(len(t), size=N_ACCURACY_TESTS) diffarcsec1 = [] diffarcsec2 = [] for i in idxs: # Extract row r = t[int(i)] # int here is to get around a py 3.x astropy.table bug # FK4NoETerms to FK5 c1 = FK4NoETerms( ra=r["ra_in"] * u.deg, dec=r["dec_in"] * u.deg, obstime=Time(r["obstime"]), equinox=Time(r["equinox_fk4"]), ) c2 = c1.transform_to(FK5(equinox=Time(r["equinox_fk5"]))) # Find difference diff = angular_separation( c2.ra.radian, c2.dec.radian, np.radians(r["ra_fk5"]), np.radians(r["dec_fk5"]), ) diffarcsec1.append(np.degrees(diff) * 3600.0) # FK5 to FK4NoETerms c1 = FK5( ra=r["ra_in"] * u.deg, dec=r["dec_in"] * u.deg, equinox=Time(r["equinox_fk5"]), ) fk4neframe = FK4NoETerms( obstime=Time(r["obstime"]), equinox=Time(r["equinox_fk4"]) ) c2 = c1.transform_to(fk4neframe) # Find difference diff = angular_separation( c2.ra.radian, c2.dec.radian, np.radians(r["ra_fk4"]), np.radians(r["dec_fk4"]), ) diffarcsec2.append(np.degrees(diff) * 3600.0) np.testing.assert_array_less(diffarcsec1, TOLERANCE) np.testing.assert_array_less(diffarcsec2, TOLERANCE)
94fe2ea0eb14b0af755d4d0748c49242f4ba5889a418be5c9d6f8d09e2f2f95c
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np from astropy import units as u from astropy.coordinates.angle_utilities import angular_separation from astropy.coordinates.builtin_frames import FK4, FK4NoETerms from astropy.table import Table from astropy.time import Time from astropy.utils.data import get_pkg_data_contents # the number of tests to run from . import N_ACCURACY_TESTS # It looks as though SLALIB, which AST relies on, assumes a simplified version # of the e-terms correction, so we have to up the tolerance a bit to get things # to agree. TOLERANCE = 1.0e-5 # arcseconds def test_fk4_no_e_fk4(): lines = get_pkg_data_contents("data/fk4_no_e_fk4.csv").split("\n") t = Table.read(lines, format="ascii", delimiter=",", guess=False) if N_ACCURACY_TESTS >= len(t): idxs = range(len(t)) else: idxs = np.random.randint(len(t), size=N_ACCURACY_TESTS) diffarcsec1 = [] diffarcsec2 = [] for i in idxs: # Extract row r = t[int(i)] # int here is to get around a py 3.x astropy.table bug # FK4 to FK4NoETerms c1 = FK4( ra=r["ra_in"] * u.deg, dec=r["dec_in"] * u.deg, obstime=Time(r["obstime"]) ) c2 = c1.transform_to(FK4NoETerms()) # Find difference diff = angular_separation( c2.ra.radian, c2.dec.radian, np.radians(r["ra_fk4ne"]), np.radians(r["dec_fk4ne"]), ) diffarcsec1.append(np.degrees(diff) * 3600.0) # FK4NoETerms to FK4 c1 = FK4NoETerms( ra=r["ra_in"] * u.deg, dec=r["dec_in"] * u.deg, obstime=Time(r["obstime"]) ) c2 = c1.transform_to(FK4()) # Find difference diff = angular_separation( c2.ra.radian, c2.dec.radian, np.radians(r["ra_fk4"]), np.radians(r["dec_fk4"]), ) diffarcsec2.append(np.degrees(diff) * 3600.0) np.testing.assert_array_less(diffarcsec1, TOLERANCE) np.testing.assert_array_less(diffarcsec2, TOLERANCE)
09c038984679f0952d2d229ace292f5c72b3ca82e8b28d94f255d5128baa2969
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Accuracy tests for Ecliptic coordinate systems. """ import numpy as np import pytest from astropy import units as u from astropy.constants import R_earth, R_sun from astropy.coordinates import SkyCoord from astropy.coordinates.builtin_frames import ( FK5, GCRS, ICRS, BarycentricMeanEcliptic, BarycentricTrueEcliptic, CustomBarycentricEcliptic, GeocentricMeanEcliptic, GeocentricTrueEcliptic, HeliocentricEclipticIAU76, HeliocentricMeanEcliptic, HeliocentricTrueEcliptic, ) from astropy.coordinates.solar_system import get_body_barycentric_posvel from astropy.time import Time from astropy.units import allclose as quantity_allclose def test_against_pytpm_doc_example(): """ Check that Astropy's Ecliptic systems give answers consistent with pyTPM Currently this is only testing against the example given in the pytpm docs """ fk5_in = SkyCoord("12h22m54.899s", "15d49m20.57s", frame=FK5(equinox="J2000")) pytpm_out = BarycentricMeanEcliptic( lon=178.78256462 * u.deg, lat=16.7597002513 * u.deg, equinox="J2000" ) astropy_out = fk5_in.transform_to(pytpm_out) assert pytpm_out.separation(astropy_out) < (1 * u.arcsec) def test_ecliptic_heliobary(): """ Check that the ecliptic transformations for heliocentric and barycentric at least more or less make sense """ icrs = ICRS(1 * u.deg, 2 * u.deg, distance=1.5 * R_sun) bary = icrs.transform_to(BarycentricMeanEcliptic()) helio = icrs.transform_to(HeliocentricMeanEcliptic()) # make sure there's a sizable distance shift - in 3d hundreds of km, but # this is 1D so we allow it to be somewhat smaller assert np.abs(bary.distance - helio.distance) > 1 * u.km # now make something that's got the location of helio but in bary's frame. # this is a convenience to allow `separation` to work as expected helio_in_bary_frame = bary.realize_frame(helio.cartesian) assert bary.separation(helio_in_bary_frame) > 1 * u.arcmin @pytest.mark.parametrize( ("trueframe", "meanframe"), [ (BarycentricTrueEcliptic, BarycentricMeanEcliptic), (HeliocentricTrueEcliptic, HeliocentricMeanEcliptic), (GeocentricTrueEcliptic, GeocentricMeanEcliptic), (HeliocentricEclipticIAU76, HeliocentricMeanEcliptic), ], ) def test_ecliptic_roundtrips(trueframe, meanframe): """ Check that the various ecliptic transformations at least roundtrip """ icrs = ICRS(1 * u.deg, 2 * u.deg, distance=1.5 * R_sun) truecoo = icrs.transform_to(trueframe()) meancoo = truecoo.transform_to(meanframe()) truecoo2 = meancoo.transform_to(trueframe()) assert not quantity_allclose(truecoo.cartesian.xyz, meancoo.cartesian.xyz) assert quantity_allclose(truecoo.cartesian.xyz, truecoo2.cartesian.xyz) @pytest.mark.parametrize( ("trueframe", "meanframe"), [ (BarycentricTrueEcliptic, BarycentricMeanEcliptic), (HeliocentricTrueEcliptic, HeliocentricMeanEcliptic), (GeocentricTrueEcliptic, GeocentricMeanEcliptic), ], ) def test_ecliptic_true_mean_preserve_latitude(trueframe, meanframe): """ Check that the ecliptic true/mean transformations preserve latitude """ truecoo = trueframe(90 * u.deg, 0 * u.deg, distance=1 * u.AU) meancoo = truecoo.transform_to(meanframe()) assert not quantity_allclose(truecoo.lon, meancoo.lon) assert quantity_allclose(truecoo.lat, meancoo.lat, atol=1e-10 * u.arcsec) @pytest.mark.parametrize( "frame", [HeliocentricMeanEcliptic, HeliocentricTrueEcliptic, HeliocentricEclipticIAU76], ) def test_helioecliptic_induced_velocity(frame): # Create a coordinate with zero speed in ICRS time = Time("2021-01-01") icrs = ICRS( ra=1 * u.deg, dec=2 * u.deg, distance=3 * u.AU, pm_ra_cosdec=0 * u.deg / u.s, pm_dec=0 * u.deg / u.s, radial_velocity=0 * u.m / u.s, ) # Transforming to a helioecliptic frame should give an induced speed equal to the Sun's speed transformed = icrs.transform_to(frame(obstime=time)) _, vel = get_body_barycentric_posvel("sun", time) assert quantity_allclose(transformed.velocity.norm(), vel.norm()) # Transforming back to ICRS should get back to zero speed back = transformed.transform_to(ICRS()) assert quantity_allclose( back.velocity.norm(), 0 * u.m / u.s, atol=1e-10 * u.m / u.s ) def test_ecl_geo(): """ Check that the geocentric version at least gets well away from GCRS. For a true "accuracy" test we need a comparison dataset that is similar to the geocentric/GCRS comparison we want to do here. Contributions welcome! """ gcrs = GCRS(10 * u.deg, 20 * u.deg, distance=1.5 * R_earth) gecl = gcrs.transform_to(GeocentricMeanEcliptic()) assert quantity_allclose(gecl.distance, gcrs.distance) def test_arraytransforms(): """ Test that transforms to/from ecliptic coordinates work on array coordinates (not testing for accuracy.) """ ra = np.ones((4,), dtype=float) * u.deg dec = 2 * np.ones((4,), dtype=float) * u.deg distance = np.ones((4,), dtype=float) * u.au test_icrs = ICRS(ra=ra, dec=dec, distance=distance) test_gcrs = GCRS(test_icrs.data) bary_arr = test_icrs.transform_to(BarycentricMeanEcliptic()) assert bary_arr.shape == ra.shape helio_arr = test_icrs.transform_to(HeliocentricMeanEcliptic()) assert helio_arr.shape == ra.shape geo_arr = test_gcrs.transform_to(GeocentricMeanEcliptic()) assert geo_arr.shape == ra.shape # now check that we also can go back the other way without shape problems bary_icrs = bary_arr.transform_to(ICRS()) assert bary_icrs.shape == test_icrs.shape helio_icrs = helio_arr.transform_to(ICRS()) assert helio_icrs.shape == test_icrs.shape geo_gcrs = geo_arr.transform_to(GCRS()) assert geo_gcrs.shape == test_gcrs.shape def test_roundtrip_scalar(): icrs = ICRS(ra=1 * u.deg, dec=2 * u.deg, distance=3 * u.au) gcrs = GCRS(icrs.cartesian) bary = icrs.transform_to(BarycentricMeanEcliptic()) helio = icrs.transform_to(HeliocentricMeanEcliptic()) geo = gcrs.transform_to(GeocentricMeanEcliptic()) bary_icrs = bary.transform_to(ICRS()) helio_icrs = helio.transform_to(ICRS()) geo_gcrs = geo.transform_to(GCRS()) assert quantity_allclose(bary_icrs.cartesian.xyz, icrs.cartesian.xyz) assert quantity_allclose(helio_icrs.cartesian.xyz, icrs.cartesian.xyz) assert quantity_allclose(geo_gcrs.cartesian.xyz, gcrs.cartesian.xyz) @pytest.mark.parametrize( "frame", [ HeliocentricMeanEcliptic, HeliocentricTrueEcliptic, GeocentricMeanEcliptic, GeocentricTrueEcliptic, HeliocentricEclipticIAU76, ], ) def test_loopback_obstime(frame): # Test that the loopback properly handles a change in obstime from_coo = frame(1 * u.deg, 2 * u.deg, 3 * u.AU, obstime="2001-01-01") to_frame = frame(obstime="2001-06-30") explicit_coo = from_coo.transform_to(ICRS()).transform_to(to_frame) implicit_coo = from_coo.transform_to(to_frame) # Confirm that the explicit transformation changes the coordinate assert not quantity_allclose(explicit_coo.lon, from_coo.lon, rtol=1e-10) assert not quantity_allclose(explicit_coo.lat, from_coo.lat, rtol=1e-10) assert not quantity_allclose(explicit_coo.distance, from_coo.distance, rtol=1e-10) # Confirm that the loopback matches the explicit transformation assert quantity_allclose(explicit_coo.lon, implicit_coo.lon, rtol=1e-10) assert quantity_allclose(explicit_coo.lat, implicit_coo.lat, rtol=1e-10) assert quantity_allclose(explicit_coo.distance, implicit_coo.distance, rtol=1e-10) @pytest.mark.parametrize( "frame", [ BarycentricMeanEcliptic, BarycentricTrueEcliptic, HeliocentricMeanEcliptic, HeliocentricTrueEcliptic, GeocentricMeanEcliptic, GeocentricTrueEcliptic, ], ) def test_loopback_equinox(frame): # Test that the loopback properly handles a change in equinox from_coo = frame(1 * u.deg, 2 * u.deg, 3 * u.AU, equinox="2001-01-01") to_frame = frame(equinox="2001-06-30") explicit_coo = from_coo.transform_to(ICRS()).transform_to(to_frame) implicit_coo = from_coo.transform_to(to_frame) # Confirm that the explicit transformation changes the lon/lat but not the distance assert not quantity_allclose(explicit_coo.lon, from_coo.lon, rtol=1e-10) assert not quantity_allclose(explicit_coo.lat, from_coo.lat, rtol=1e-10) assert quantity_allclose(explicit_coo.distance, from_coo.distance, rtol=1e-10) # Confirm that the loopback matches the explicit transformation assert quantity_allclose(explicit_coo.lon, implicit_coo.lon, rtol=1e-10) assert quantity_allclose(explicit_coo.lat, implicit_coo.lat, rtol=1e-10) assert quantity_allclose(explicit_coo.distance, implicit_coo.distance, rtol=1e-10) def test_loopback_obliquity(): # Test that the loopback properly handles a change in obliquity from_coo = CustomBarycentricEcliptic( 1 * u.deg, 2 * u.deg, 3 * u.AU, obliquity=84000 * u.arcsec ) to_frame = CustomBarycentricEcliptic(obliquity=85000 * u.arcsec) explicit_coo = from_coo.transform_to(ICRS()).transform_to(to_frame) implicit_coo = from_coo.transform_to(to_frame) # Confirm that the explicit transformation changes the lon/lat but not the distance assert not quantity_allclose(explicit_coo.lon, from_coo.lon, rtol=1e-10) assert not quantity_allclose(explicit_coo.lat, from_coo.lat, rtol=1e-10) assert quantity_allclose(explicit_coo.distance, from_coo.distance, rtol=1e-10) # Confirm that the loopback matches the explicit transformation assert quantity_allclose(explicit_coo.lon, implicit_coo.lon, rtol=1e-10) assert quantity_allclose(explicit_coo.lat, implicit_coo.lat, rtol=1e-10) assert quantity_allclose(explicit_coo.distance, implicit_coo.distance, rtol=1e-10)
88a9fcee8908f4c8e78c63725a73b91112a8c0d7ea94192cc4daa7577da44346
# Script to generate random targets, observatory locations, and times, and # run these using the Starlink rv command to generate reference values for the # velocity frame corrections. This requires that Starlink is installed and that # the rv command is in your PATH. More information about Starlink can be found # at http://starlink.eao.hawaii.edu/starlink if __name__ == "__main__": from random import choice from subprocess import check_output import numpy as np from astropy import units as u from astropy.coordinates import Angle, SkyCoord from astropy.table import QTable from astropy.time import Time np.random.seed(12345) N = 100 tab = QTable() target_lon = np.random.uniform(0, 360, N) * u.deg target_lat = np.degrees(np.arcsin(np.random.uniform(-1, 1, N))) * u.deg tab["target"] = SkyCoord(target_lon, target_lat, frame="fk5") tab["obstime"] = Time( np.random.uniform(Time("1997-01-01").mjd, Time("2017-12-31").mjd, N), format="mjd", scale="utc", ) tab["obslon"] = Angle(np.random.uniform(-180, 180, N) * u.deg) tab["obslat"] = Angle(np.arcsin(np.random.uniform(-1, 1, N)) * u.deg) tab["geocent"] = 0.0 tab["heliocent"] = 0.0 tab["lsrk"] = 0.0 tab["lsrd"] = 0.0 tab["galactoc"] = 0.0 tab["localgrp"] = 0.0 for row in tab: # Produce input file for rv command with open("rv.input", "w") as f: f.write( f"{row['obslon'].to_string('deg', sep=' ')}" f" {row['obslat'].to_string('deg', sep=' ')}\n" ) f.write( f"{row['obstime'].datetime.year} {row['obstime'].datetime.month}" f" {row['obstime'].datetime.day} 1\n" ) f.write(row["target"].to_string("hmsdms", sep=" ") + " J2000\n") f.write("END\n") # Run Starlink rv command check_output(["rv", "rv.input"]) # Parse values from output file lis_lines = [] started = False for lis_line in open("rv.lis"): if started and lis_line.strip() != "": lis_lines.append(lis_line.strip()) elif "LOCAL GROUP" in lis_line: started = True # Some sources are not observable at the specified time and therefore don't # have entries in the rv output file if len(lis_lines) == 0: continue # If there are lines, we pick one at random. Note that we can't get rv to # run at the exact time we specified in the input, so we will re-parse the # actual date/time used and replace it in the table lis_line = choice(lis_lines) # The column for 'SUN' has an entry also for the light travel time, which # we want to ignore. It sometimes includes '(' followed by a space which # can cause issues with splitting, hence why we get rid of the space. lis_line = lis_line.replace("( ", "(").replace("( ", "(") ( year, month, day, time, zd, row["geocent"], row["heliocent"], _, row["lsrk"], row["lsrd"], row["galactoc"], row["localgrp"], ) = lis_line.split() row["obstime"] = Time( f"{year}-{month}-{day}T{time}:00", format="isot", scale="utc" ) # We sampled 100 coordinates above since some may not have results - we now # truncate to 50 sources since this is sufficient. tab[:50].write("reference_rv.ecsv", format="ascii.ecsv")
9f9ee24c1a02f5daf314614509fe616420840e0a5f4ff64c7fea05a557e44d18
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Accuracy tests for AltAz to ICRS coordinate transformations. We use "known good" examples computed with other coordinate libraries. """ import numpy as np import pytest from astropy import units as u from astropy.coordinates import Angle, EarthLocation, SkyCoord from astropy.coordinates.builtin_frames import AltAz from astropy.time import Time def test_against_hor2eq(): """Check that Astropy gives consistent results with an IDL hor2eq example. See : http://idlastro.gsfc.nasa.gov/ftp/pro/astro/hor2eq.pro Test is against these run outputs, run at 2000-01-01T12:00:00:: # NORMAL ATMOSPHERE CASE IDL> hor2eq, ten(37,54,41), ten(264,55,06), 2451545.0d, ra, dec, /verb, obs='kpno', pres=781.0, temp=273.0 Latitude = +31 57 48.0 Longitude = *** 36 00.0 Julian Date = 2451545.000000 Az, El = 17 39 40.4 +37 54 41 (Observer Coords) Az, El = 17 39 40.4 +37 53 40 (Apparent Coords) LMST = +11 15 26.5 LAST = +11 15 25.7 Hour Angle = +03 38 30.1 (hh:mm:ss) Ra, Dec: 07 36 55.6 +15 25 02 (Apparent Coords) Ra, Dec: 07 36 55.2 +15 25 08 (J2000.0000) Ra, Dec: 07 36 55.2 +15 25 08 (J2000) IDL> print, ra, dec 114.23004 15.418818 # NO PRESSURE CASE IDL> hor2eq, ten(37,54,41), ten(264,55,06), 2451545.0d, ra, dec, /verb, obs='kpno', pres=0.0, temp=273.0 Latitude = +31 57 48.0 Longitude = *** 36 00.0 Julian Date = 2451545.000000 Az, El = 17 39 40.4 +37 54 41 (Observer Coords) Az, El = 17 39 40.4 +37 54 41 (Apparent Coords) LMST = +11 15 26.5 LAST = +11 15 25.7 Hour Angle = +03 38 26.4 (hh:mm:ss) Ra, Dec: 07 36 59.3 +15 25 31 (Apparent Coords) Ra, Dec: 07 36 58.9 +15 25 37 (J2000.0000) Ra, Dec: 07 36 58.9 +15 25 37 (J2000) IDL> print, ra, dec 114.24554 15.427022 """ # Observatory position for `kpno` from here: # http://idlastro.gsfc.nasa.gov/ftp/pro/astro/observatory.pro location = EarthLocation( lon=Angle("-111d36.0m"), lat=Angle("31d57.8m"), height=2120.0 * u.m ) obstime = Time(2451545.0, format="jd", scale="ut1") altaz_frame = AltAz( obstime=obstime, location=location, temperature=0 * u.deg_C, pressure=0.781 * u.bar, ) altaz_frame_noatm = AltAz( obstime=obstime, location=location, temperature=0 * u.deg_C, pressure=0.0 * u.bar, ) altaz = SkyCoord("264d55m06s 37d54m41s", frame=altaz_frame) altaz_noatm = SkyCoord("264d55m06s 37d54m41s", frame=altaz_frame_noatm) radec_frame = "icrs" radec_actual = altaz.transform_to(radec_frame) radec_actual_noatm = altaz_noatm.transform_to(radec_frame) radec_expected = SkyCoord("07h36m55.2s +15d25m08s", frame=radec_frame) distance = radec_actual.separation(radec_expected).to("arcsec") # this comes from running the example hor2eq but with the pressure set to 0 radec_expected_noatm = SkyCoord("07h36m58.9s +15d25m37s", frame=radec_frame) distance_noatm = radec_actual_noatm.separation(radec_expected_noatm).to("arcsec") # The baseline difference is ~2.3 arcsec with one atm of pressure. The # difference is mainly due to the somewhat different atmospheric model that # hor2eq assumes. This is confirmed by the second test which has the # atmosphere "off" - the residual difference is small enough to be embedded # in the assumptions about "J2000" or rounding errors. assert distance < 5 * u.arcsec assert distance_noatm < 0.4 * u.arcsec def run_pyephem(): """Test run of pyephem, just in case the numbers below need to be reproduced.""" import ephem observer = ephem.Observer() observer.lon = -1 * np.radians(109 + 24 / 60.0 + 53.1 / 60**2) observer.lat = np.radians(33 + 41 / 60.0 + 46.0 / 60.0**2) observer.elevation = 300 observer.date = 2455822.868055556 - ephem.julian_date(0) ra, dec = observer.radec_of(np.radians(6.8927), np.radians(60.7665)) print(f"EPHEM: {observer.date}: {np.degrees(ra)}, {np.degrees(dec)}") # 2021-04-06: EPHEM: 2011/9/18 08:50:00: 27.107480889479397, 62.512687777362046 # NOTE: independent of elevation. def test_against_pyephem(): """Check that Astropy gives consistent results with one PyEphem example. PyEphem: https://rhodesmill.org/pyephem/ See example input and output here: https://gist.github.com/zonca/1672906 https://github.com/phn/pytpm/issues/2#issuecomment-3698679 """ obstime = Time("2011-09-18 08:50:00") location = EarthLocation( lon=Angle("-109d24m53.1s"), lat=Angle("33d41m46.0s"), height=300.0 * u.m ) # We are using the default pressure and temperature in PyEphem # relative_humidity = ? # obswl = ? altaz_frame = AltAz( obstime=obstime, location=location, temperature=15 * u.deg_C, pressure=1.010 * u.bar, ) altaz = SkyCoord("6.8927d +60.7665d", frame=altaz_frame) radec_actual = altaz.transform_to("icrs") radec_expected = SkyCoord("27.107480889479397d +62.512687777362046d", frame="icrs") distance_ephem = radec_actual.separation(radec_expected).to("arcsec") # 2021-04-06: 2.42 arcsec assert distance_ephem < 3 * u.arcsec # Add assert on current Astropy result so that we notice if something changes radec_expected = SkyCoord("27.10602683d +62.51275391d", frame="icrs") distance_astropy = radec_actual.separation(radec_expected).to("arcsec") # 2021-04-06: 5e-6 arcsec (erfa 1.7.2 vs erfa 1.7.1). assert distance_astropy < 0.1 * u.arcsec def test_against_jpl_horizons(): """Check that Astropy gives consistent results with the JPL Horizons example. The input parameters and reference results are taken from this page: (from the first row of the Results table at the bottom of that page) http://ssd.jpl.nasa.gov/?horizons_tutorial """ obstime = Time("1998-07-28 03:00") location = EarthLocation( lon=Angle("248.405300d"), lat=Angle("31.9585d"), height=2.06 * u.km ) # No atmosphere altaz_frame = AltAz(obstime=obstime, location=location) altaz = SkyCoord("143.2970d 2.6223d", frame=altaz_frame) radec_actual = altaz.transform_to("icrs") radec_expected = SkyCoord("19h24m55.01s -40d56m28.9s", frame="icrs") distance = radec_actual.separation(radec_expected).to("arcsec") # 2021-04-06: astropy 4.2.1, erfa 1.7.1: 0.23919259 arcsec # 2021-04-06: astropy 4.3dev, erfa 1.7.2: 0.2391959 arcsec assert distance < 1 * u.arcsec @pytest.mark.xfail(reason="Current output is completely incorrect") def test_fk5_equinox_and_epoch_j2000_0_to_topocentric_observed(): """ http://phn.github.io/pytpm/conversions.html#fk5-equinox-and-epoch-j2000-0-to-topocentric-observed """ # Observatory position for `kpno` from here: # http://idlastro.gsfc.nasa.gov/ftp/pro/astro/observatory.pro location = EarthLocation( lon=Angle("-111.598333d"), lat=Angle("31.956389d"), height=2093.093 * u.m ) # TODO: height correct? obstime = Time("2010-01-01 12:00:00") # relative_humidity = ? # obswl = ? altaz_frame = AltAz( obstime=obstime, location=location, temperature=0 * u.deg_C, pressure=0.781 * u.bar, ) radec = SkyCoord("12h22m54.899s 15d49m20.57s", frame="fk5") altaz_actual = radec.transform_to(altaz_frame) altaz_expected = SkyCoord("264d55m06s 37d54m41s", frame="altaz") # altaz_expected = SkyCoord('343.586827647d 15.7683070508d', frame='altaz') # altaz_expected = SkyCoord('133.498195532d 22.0162383595d', frame='altaz') distance = altaz_actual.separation(altaz_expected) # print(altaz_actual) # print(altaz_expected) # print(distance) """TODO: Current output is completely incorrect ... xfailing this test for now. <SkyCoord (AltAz: obstime=2010-01-01 12:00:00.000, location=(-1994497.7199061865, -5037954.447348028, 3357437.2294832403) m, pressure=781.0 hPa, temperature=0.0 deg_C, relative_humidity=0, obswl=1.0 micron):00:00.000, location=(-1994497.7199061865, -5037954.447348028, 3357437.2294832403) m, pressure=781.0 hPa, temperature=0.0 deg_C, relative_humidity=0, obswl=1.0 micron): az=133.4869896371561 deg, alt=67.97857990957701 deg> <SkyCoord (AltAz: obstime=None, location=None, pressure=0.0 hPa, temperature=0.0 deg_C, relative_humidity=0, obswl=1.0 micron): az=264.91833333333335 deg, alt=37.91138888888889 deg> 68d02m45.732s """ assert distance < 1 * u.arcsec
86953b50128903247995f23bc62fda1084f8d4d6649a7d5ae14c3a701435d43a
# Licensed under a 3-clause BSD style license - see PYFITS.rst import errno import gzip import http.client import io import mmap import operator import os import re import sys import tempfile import warnings import zipfile from functools import reduce import numpy as np # NOTE: Python can be built without bz2. from astropy.utils.compat.optional_deps import HAS_BZ2 from astropy.utils.data import ( _is_url, _requires_fsspec, download_file, get_readable_fileobj, ) from astropy.utils.decorators import classproperty from astropy.utils.exceptions import AstropyUserWarning from astropy.utils.misc import NOT_OVERWRITING_MSG from .util import ( _array_from_file, _array_to_file, _write_string, fileobj_closed, fileobj_mode, fileobj_name, isfile, isreadable, iswritable, path_like, ) if HAS_BZ2: import bz2 # Maps astropy.io.fits-specific file mode names to the appropriate file # modes to use for the underlying raw files. IO_FITS_MODES = { "readonly": "rb", "copyonwrite": "rb", "update": "rb+", "append": "ab+", "ostream": "wb", "denywrite": "rb", } # Maps OS-level file modes to the appropriate astropy.io.fits specific mode # to use when given file objects but no mode specified; obviously in # IO_FITS_MODES there are overlaps; for example 'readonly' and 'denywrite' # both require the file to be opened in 'rb' mode. But 'readonly' is the # default behavior for such files if not otherwise specified. # Note: 'ab' is only supported for 'ostream' which is output-only. FILE_MODES = { "rb": "readonly", "rb+": "update", "wb": "ostream", "wb+": "update", "ab": "ostream", "ab+": "append", } # A match indicates the file was opened in text mode, which is not allowed TEXT_RE = re.compile(r"^[rwa]((t?\+?)|(\+?t?))$") # readonly actually uses copyonwrite for mmap so that readonly without mmap and # with mmap still have to same behavior with regard to updating the array. To # get a truly readonly mmap use denywrite # the name 'denywrite' comes from a deprecated flag to mmap() on Linux--it # should be clarified that 'denywrite' mode is not directly analogous to the # use of that flag; it was just taken, for lack of anything better, as a name # that means something like "read only" but isn't readonly. MEMMAP_MODES = { "readonly": mmap.ACCESS_COPY, "copyonwrite": mmap.ACCESS_COPY, "update": mmap.ACCESS_WRITE, "append": mmap.ACCESS_COPY, "denywrite": mmap.ACCESS_READ, } # TODO: Eventually raise a warning, and maybe even later disable the use of # 'copyonwrite' and 'denywrite' modes unless memmap=True. For now, however, # that would generate too many warnings for too many users. If nothing else, # wait until the new logging system is in place. GZIP_MAGIC = b"\x1f\x8b\x08" PKZIP_MAGIC = b"\x50\x4b\x03\x04" BZIP2_MAGIC = b"\x42\x5a" def _is_bz2file(fileobj): if HAS_BZ2: return isinstance(fileobj, bz2.BZ2File) else: return False def _normalize_fits_mode(mode): if mode is not None and mode not in IO_FITS_MODES: if TEXT_RE.match(mode): raise ValueError( "Text mode '{}' not supported: " "files must be opened in binary mode".format(mode) ) new_mode = FILE_MODES.get(mode) if new_mode not in IO_FITS_MODES: raise ValueError(f"Mode '{mode}' not recognized") mode = new_mode return mode class _File: """ Represents a FITS file on disk (or in some other file-like object). """ def __init__( self, fileobj=None, mode=None, memmap=None, overwrite=False, cache=True, *, use_fsspec=None, fsspec_kwargs=None, ): self.strict_memmap = bool(memmap) memmap = True if memmap is None else memmap self._file = None self.closed = False self.binary = True self.mode = mode self.memmap = memmap self.compression = None self.readonly = False self.writeonly = False # Should the object be closed on error: see # https://github.com/astropy/astropy/issues/6168 self.close_on_error = False # Holds mmap instance for files that use mmap self._mmap = None if fileobj is None: self.simulateonly = True return else: self.simulateonly = False if isinstance(fileobj, os.PathLike): fileobj = os.fspath(fileobj) if mode is not None and mode not in IO_FITS_MODES: raise ValueError(f"Mode '{mode}' not recognized") if isfile(fileobj): objmode = _normalize_fits_mode(fileobj_mode(fileobj)) if mode is not None and mode != objmode: raise ValueError( "Requested FITS mode '{}' not compatible with open file " "handle mode '{}'".format(mode, objmode) ) mode = objmode if mode is None: mode = "readonly" # Handle cloud-hosted files using the optional ``fsspec`` dependency if (use_fsspec or _requires_fsspec(fileobj)) and mode != "ostream": # Note: we don't use `get_readable_fileobj` as a context manager # because io.fits takes care of closing files itself fileobj = get_readable_fileobj( fileobj, encoding="binary", use_fsspec=use_fsspec, fsspec_kwargs=fsspec_kwargs, close_files=False, ).__enter__() # Handle raw URLs if ( isinstance(fileobj, (str, bytes)) and mode not in ("ostream", "append", "update") and _is_url(fileobj) ): self.name = download_file(fileobj, cache=cache) # Handle responses from URL requests that have already been opened elif isinstance(fileobj, http.client.HTTPResponse): if mode in ("ostream", "append", "update"): raise ValueError(f"Mode {mode} not supported for HTTPResponse") fileobj = io.BytesIO(fileobj.read()) else: if isinstance(fileobj, path_like): fileobj = os.path.expanduser(fileobj) self.name = fileobj_name(fileobj) self.mode = mode # Underlying fileobj is a file-like object, but an actual file object self.file_like = False # Initialize the internal self._file object if isfile(fileobj): self._open_fileobj(fileobj, mode, overwrite) elif isinstance(fileobj, (str, bytes)): self._open_filename(fileobj, mode, overwrite) else: self._open_filelike(fileobj, mode, overwrite) self.fileobj_mode = fileobj_mode(self._file) if isinstance(fileobj, gzip.GzipFile): self.compression = "gzip" elif isinstance(fileobj, zipfile.ZipFile): # Reading from zip files is supported but not writing (yet) self.compression = "zip" elif _is_bz2file(fileobj): self.compression = "bzip2" if mode in ("readonly", "copyonwrite", "denywrite") or ( self.compression and mode == "update" ): self.readonly = True elif mode == "ostream" or (self.compression and mode == "append"): self.writeonly = True # For 'ab+' mode, the pointer is at the end after the open in # Linux, but is at the beginning in Solaris. if mode == "ostream" or self.compression or not hasattr(self._file, "seek"): # For output stream start with a truncated file. # For compressed files we can't really guess at the size self.size = 0 else: pos = self._file.tell() self._file.seek(0, 2) self.size = self._file.tell() self._file.seek(pos) if self.memmap: if not isfile(self._file): self.memmap = False elif not self.readonly and not self._mmap_available: # Test mmap.flush--see # https://github.com/astropy/astropy/issues/968 self.memmap = False def __repr__(self): return f"<{self.__module__}.{self.__class__.__name__} {self._file}>" # Support the 'with' statement def __enter__(self): return self def __exit__(self, type, value, traceback): self.close() def readable(self): if self.writeonly: return False return isreadable(self._file) def read(self, size=None): if not hasattr(self._file, "read"): raise EOFError try: return self._file.read(size) except OSError: # On some versions of Python, it appears, GzipFile will raise an # OSError if you try to read past its end (as opposed to just # returning '') if self.compression == "gzip": return "" raise def readarray(self, size=None, offset=0, dtype=np.uint8, shape=None): """ Similar to file.read(), but returns the contents of the underlying file as a numpy array (or mmap'd array if memmap=True) rather than a string. Usually it's best not to use the `size` argument with this method, but it's provided for compatibility. """ if not hasattr(self._file, "read"): raise EOFError if not isinstance(dtype, np.dtype): dtype = np.dtype(dtype) if size and size % dtype.itemsize != 0: raise ValueError(f"size {size} not a multiple of {dtype}") if isinstance(shape, int): shape = (shape,) if not (size or shape): warnings.warn( "No size or shape given to readarray(); assuming a shape of (1,)", AstropyUserWarning, ) shape = (1,) if size and not shape: shape = (size // dtype.itemsize,) if size and shape: actualsize = np.prod(shape) * dtype.itemsize if actualsize > size: raise ValueError( "size {} is too few bytes for a {} array of {}".format( size, shape, dtype ) ) elif actualsize < size: raise ValueError( "size {} is too many bytes for a {} array of {}".format( size, shape, dtype ) ) filepos = self._file.tell() try: if self.memmap: if self._mmap is None: # Instantiate Memmap array of the file offset at 0 (so we # can return slices of it to offset anywhere else into the # file) access_mode = MEMMAP_MODES[self.mode] # For reasons unknown the file needs to point to (near) # the beginning or end of the file. No idea how close to # the beginning or end. # If I had to guess there is some bug in the mmap module # of CPython or perhaps in microsoft's underlying code # for generating the mmap. self._file.seek(0, 0) # This would also work: # self._file.seek(0, 2) # moves to the end try: self._mmap = mmap.mmap( self._file.fileno(), 0, access=access_mode, offset=0 ) except OSError as exc: # NOTE: mode='readonly' results in the memory-mapping # using the ACCESS_COPY mode in mmap so that users can # modify arrays. However, on some systems, the OS raises # a '[Errno 12] Cannot allocate memory' OSError if the # address space is smaller than the file. The solution # is to open the file in mode='denywrite', which at # least allows the file to be opened even if the # resulting arrays will be truly read-only. if exc.errno == errno.ENOMEM and self.mode == "readonly": warnings.warn( "Could not memory map array with " "mode='readonly', falling back to " "mode='denywrite', which means that " "the array will be read-only", AstropyUserWarning, ) self._mmap = mmap.mmap( self._file.fileno(), 0, access=MEMMAP_MODES["denywrite"], offset=0, ) else: raise return np.ndarray( shape=shape, dtype=dtype, offset=offset, buffer=self._mmap ) else: count = reduce(operator.mul, shape) self._file.seek(offset) data = _array_from_file(self._file, dtype, count) data.shape = shape return data finally: # Make sure we leave the file in the position we found it; on # some platforms (e.g. Windows) mmaping a file handle can also # reset its file pointer. # Also for Windows when using mmap seek() may return weird # negative values, which is fixed by calling tell() before. self._file.tell() self._file.seek(filepos) def writable(self): if self.readonly: return False return iswritable(self._file) def write(self, string): if self.simulateonly: return if hasattr(self._file, "write"): _write_string(self._file, string) def writearray(self, array): """ Similar to file.write(), but writes a numpy array instead of a string. Also like file.write(), a flush() or close() may be needed before the file on disk reflects the data written. """ if self.simulateonly: return if hasattr(self._file, "write"): _array_to_file(array, self._file) def flush(self): if self.simulateonly: return if hasattr(self._file, "flush"): self._file.flush() def seek(self, offset, whence=0): if not hasattr(self._file, "seek"): return self._file.seek(offset, whence) pos = self._file.tell() if self.size and pos > self.size: warnings.warn( "File may have been truncated: actual file length " "({}) is smaller than the expected size ({})".format(self.size, pos), AstropyUserWarning, ) def tell(self): if self.simulateonly: raise OSError if not hasattr(self._file, "tell"): raise EOFError return self._file.tell() def truncate(self, size=None): if hasattr(self._file, "truncate"): self._file.truncate(size) def close(self): """ Close the 'physical' FITS file. """ if hasattr(self._file, "close"): self._file.close() self._maybe_close_mmap() # Set self._memmap to None anyways since no new .data attributes can be # loaded after the file is closed self._mmap = None self.closed = True self.close_on_error = False def _maybe_close_mmap(self, refcount_delta=0): """ When mmap is in use these objects hold a reference to the mmap of the file (so there is only one, shared by all HDUs that reference this file). This will close the mmap if there are no arrays referencing it. """ if self._mmap is not None and sys.getrefcount(self._mmap) == 2 + refcount_delta: self._mmap.close() self._mmap = None def _overwrite_existing(self, overwrite, fileobj, closed): """Overwrite an existing file if ``overwrite`` is ``True``, otherwise raise an OSError. The exact behavior of this method depends on the _File object state and is only meant for use within the ``_open_*`` internal methods. """ # The file will be overwritten... if (self.file_like and hasattr(fileobj, "len") and fileobj.len > 0) or ( os.path.exists(self.name) and os.path.getsize(self.name) != 0 ): if overwrite: if self.file_like and hasattr(fileobj, "truncate"): fileobj.truncate(0) else: if not closed: fileobj.close() os.remove(self.name) else: raise OSError(NOT_OVERWRITING_MSG.format(self.name)) def _try_read_compressed(self, obj_or_name, magic, mode, ext=""): """Attempt to determine if the given file is compressed""" is_ostream = mode == "ostream" if (is_ostream and ext == ".gz") or magic.startswith(GZIP_MAGIC): if mode == "append": raise OSError( "'append' mode is not supported with gzip files." "Use 'update' mode instead" ) # Handle gzip files kwargs = dict(mode=IO_FITS_MODES[mode]) if isinstance(obj_or_name, str): kwargs["filename"] = obj_or_name else: kwargs["fileobj"] = obj_or_name self._file = gzip.GzipFile(**kwargs) self.compression = "gzip" elif (is_ostream and ext == ".zip") or magic.startswith(PKZIP_MAGIC): # Handle zip files self._open_zipfile(self.name, mode) self.compression = "zip" elif (is_ostream and ext == ".bz2") or magic.startswith(BZIP2_MAGIC): # Handle bzip2 files if mode in ["update", "append"]: raise OSError( "update and append modes are not supported with bzip2 files" ) if not HAS_BZ2: raise ModuleNotFoundError( "This Python installation does not provide the bz2 module." ) # bzip2 only supports 'w' and 'r' modes bzip2_mode = "w" if is_ostream else "r" self._file = bz2.BZ2File(obj_or_name, mode=bzip2_mode) self.compression = "bzip2" return self.compression is not None def _open_fileobj(self, fileobj, mode, overwrite): """Open a FITS file from a file object (including compressed files).""" closed = fileobj_closed(fileobj) # FIXME: this variable was unused, check if it was useful # fmode = fileobj_mode(fileobj) or IO_FITS_MODES[mode] if mode == "ostream": self._overwrite_existing(overwrite, fileobj, closed) if not closed: self._file = fileobj elif isfile(fileobj): self._file = open(self.name, IO_FITS_MODES[mode]) # Attempt to determine if the file represented by the open file object # is compressed try: # We need to account for the possibility that the underlying file # handle may have been opened with either 'ab' or 'ab+', which # means that the current file position is at the end of the file. if mode in ["ostream", "append"]: self._file.seek(0) magic = self._file.read(4) # No matter whether the underlying file was opened with 'ab' or # 'ab+', we need to return to the beginning of the file in order # to properly process the FITS header (and handle the possibility # of a compressed file). self._file.seek(0) except OSError: return self._try_read_compressed(fileobj, magic, mode) def _open_filelike(self, fileobj, mode, overwrite): """Open a FITS file from a file-like object, i.e. one that has read and/or write methods. """ self.file_like = True self._file = fileobj if fileobj_closed(fileobj): raise OSError( "Cannot read from/write to a closed file-like object ({!r}).".format( fileobj ) ) if isinstance(fileobj, zipfile.ZipFile): self._open_zipfile(fileobj, mode) # We can bypass any additional checks at this point since now # self._file points to the temp file extracted from the zip return # If there is not seek or tell methods then set the mode to # output streaming. if not hasattr(self._file, "seek") or not hasattr(self._file, "tell"): self.mode = mode = "ostream" if mode == "ostream": self._overwrite_existing(overwrite, fileobj, False) # Any "writeable" mode requires a write() method on the file object if self.mode in ("update", "append", "ostream") and not hasattr( self._file, "write" ): raise OSError( "File-like object does not have a 'write' " "method, required for mode '{}'.".format(self.mode) ) # Any mode except for 'ostream' requires readability if self.mode != "ostream" and not hasattr(self._file, "read"): raise OSError( "File-like object does not have a 'read' " "method, required for mode {!r}.".format(self.mode) ) def _open_filename(self, filename, mode, overwrite): """Open a FITS file from a filename string.""" if mode == "ostream": self._overwrite_existing(overwrite, None, True) if os.path.exists(self.name): with open(self.name, "rb") as f: magic = f.read(4) else: magic = b"" ext = os.path.splitext(self.name)[1] if not self._try_read_compressed(self.name, magic, mode, ext=ext): self._file = open(self.name, IO_FITS_MODES[mode]) self.close_on_error = True # Make certain we're back at the beginning of the file # BZ2File does not support seek when the file is open for writing, but # when opening a file for write, bz2.BZ2File always truncates anyway. if not (_is_bz2file(self._file) and mode == "ostream"): self._file.seek(0) @classproperty(lazy=True) def _mmap_available(cls): """Tests that mmap, and specifically mmap.flush works. This may be the case on some uncommon platforms (see https://github.com/astropy/astropy/issues/968). If mmap.flush is found not to work, ``self.memmap = False`` is set and a warning is issued. """ tmpfd, tmpname = tempfile.mkstemp() try: # Windows does not allow mappings on empty files os.write(tmpfd, b" ") os.fsync(tmpfd) try: mm = mmap.mmap(tmpfd, 1, access=mmap.ACCESS_WRITE) except OSError as exc: warnings.warn( "Failed to create mmap: {}; mmap use will be disabled".format( str(exc) ), AstropyUserWarning, ) del exc return False try: mm.flush() except OSError: warnings.warn( "mmap.flush is unavailable on this platform; " "using mmap in writeable mode will be disabled", AstropyUserWarning, ) return False finally: mm.close() finally: os.close(tmpfd) os.remove(tmpname) return True def _open_zipfile(self, fileobj, mode): """Limited support for zipfile.ZipFile objects containing a single a file. Allows reading only for now by extracting the file to a tempfile. """ if mode in ("update", "append"): raise OSError("Writing to zipped fits files is not currently supported") if not isinstance(fileobj, zipfile.ZipFile): zfile = zipfile.ZipFile(fileobj) close = True else: zfile = fileobj close = False namelist = zfile.namelist() if len(namelist) != 1: raise OSError("Zip files with multiple members are not supported.") self._file = tempfile.NamedTemporaryFile(suffix=".fits") self._file.write(zfile.read(namelist[0])) if close: zfile.close() # We just wrote the contents of the first file in the archive to a new # temp file, which now serves as our underlying file object. So it's # necessary to reset the position back to the beginning self._file.seek(0)
5efd00ff03e84dd1e757fabd4c4a72bb13404ac3e93d2a5cc1ae80c9677e796c
# Licensed under a 3-clause BSD style license - see LICENSE.rst import os import re import warnings from copy import deepcopy import numpy as np from astropy import units as u from astropy.io import registry as io_registry from astropy.table import Column, MaskedColumn, Table, meta, serialize from astropy.time import Time from astropy.utils.data_info import serialize_context_as from astropy.utils.exceptions import AstropyDeprecationWarning, AstropyUserWarning from astropy.utils.misc import NOT_OVERWRITING_MSG from . import BinTableHDU, GroupsHDU, HDUList, TableHDU from . import append as fits_append from .column import KEYWORD_NAMES, _fortran_to_python_format from .convenience import table_to_hdu from .hdu.hdulist import FITS_SIGNATURE from .hdu.hdulist import fitsopen as fits_open from .util import first # Keywords to remove for all tables that are read in REMOVE_KEYWORDS = [ "XTENSION", "BITPIX", "NAXIS", "NAXIS1", "NAXIS2", "PCOUNT", "GCOUNT", "TFIELDS", "THEAP", ] # Column-specific keywords regex COLUMN_KEYWORD_REGEXP = "(" + "|".join(KEYWORD_NAMES) + ")[0-9]+" def is_column_keyword(keyword): return re.match(COLUMN_KEYWORD_REGEXP, keyword) is not None def is_fits(origin, filepath, fileobj, *args, **kwargs): """ Determine whether `origin` is a FITS file. Parameters ---------- origin : str or readable file-like Path or file object containing a potential FITS file. Returns ------- is_fits : bool Returns `True` if the given file is a FITS file. """ if fileobj is not None: pos = fileobj.tell() sig = fileobj.read(30) fileobj.seek(pos) return sig == FITS_SIGNATURE elif filepath is not None: if filepath.lower().endswith( (".fits", ".fits.gz", ".fit", ".fit.gz", ".fts", ".fts.gz") ): return True elif isinstance(args[0], (HDUList, TableHDU, BinTableHDU, GroupsHDU)): return True else: return False def _decode_mixins(tbl): """Decode a Table ``tbl`` that has astropy Columns + appropriate meta-data into the corresponding table with mixin columns (as appropriate). """ # If available read in __serialized_columns__ meta info which is stored # in FITS COMMENTS between two sentinels. try: i0 = tbl.meta["comments"].index("--BEGIN-ASTROPY-SERIALIZED-COLUMNS--") i1 = tbl.meta["comments"].index("--END-ASTROPY-SERIALIZED-COLUMNS--") except (ValueError, KeyError): return tbl # The YAML data are split into COMMENT cards, with lines longer than 70 # characters being split with a continuation character \ (backslash). # Strip the backslashes and join together. continuation_line = False lines = [] for line in tbl.meta["comments"][i0 + 1 : i1]: if continuation_line: lines[-1] = lines[-1] + line[:70] else: lines.append(line[:70]) continuation_line = len(line) == 71 del tbl.meta["comments"][i0 : i1 + 1] if not tbl.meta["comments"]: del tbl.meta["comments"] info = meta.get_header_from_yaml(lines) # Add serialized column information to table meta for use in constructing mixins tbl.meta["__serialized_columns__"] = info["meta"]["__serialized_columns__"] # Use the `datatype` attribute info to update column attributes that are # NOT already handled via standard FITS column keys (name, dtype, unit). for col in info["datatype"]: for attr in ["description", "meta"]: if attr in col: setattr(tbl[col["name"]].info, attr, col[attr]) # Construct new table with mixins, using tbl.meta['__serialized_columns__'] # as guidance. tbl = serialize._construct_mixins_from_columns(tbl) return tbl def read_table_fits( input, hdu=None, astropy_native=False, memmap=False, character_as_bytes=True, unit_parse_strict="warn", mask_invalid=True, ): """ Read a Table object from an FITS file If the ``astropy_native`` argument is ``True``, then input FITS columns which are representations of an astropy core object will be converted to that class and stored in the ``Table`` as "mixin columns". Currently this is limited to FITS columns which adhere to the FITS Time standard, in which case they will be converted to a `~astropy.time.Time` column in the output table. Parameters ---------- input : str or file-like or compatible `astropy.io.fits` HDU object If a string, the filename to read the table from. If a file object, or a compatible HDU object, the object to extract the table from. The following `astropy.io.fits` HDU objects can be used as input: - :class:`~astropy.io.fits.hdu.table.TableHDU` - :class:`~astropy.io.fits.hdu.table.BinTableHDU` - :class:`~astropy.io.fits.hdu.table.GroupsHDU` - :class:`~astropy.io.fits.hdu.hdulist.HDUList` hdu : int or str, optional The HDU to read the table from. astropy_native : bool, optional Read in FITS columns as native astropy objects where possible instead of standard Table Column objects. Default is False. memmap : bool, optional Whether to use memory mapping, which accesses data on disk as needed. If you are only accessing part of the data, this is often more efficient. If you want to access all the values in the table, and you are able to fit the table in memory, you may be better off leaving memory mapping off. However, if your table would not fit in memory, you should set this to `True`. When set to `True` then ``mask_invalid`` is set to `False` since the masking would cause loading the full data array. character_as_bytes : bool, optional If `True`, string columns are stored as Numpy byte arrays (dtype ``S``) and are converted on-the-fly to unicode strings when accessing individual elements. If you need to use Numpy unicode arrays (dtype ``U``) internally, you should set this to `False`, but note that this will use more memory. If set to `False`, string columns will not be memory-mapped even if ``memmap`` is `True`. unit_parse_strict : str, optional Behaviour when encountering invalid column units in the FITS header. Default is "warn", which will emit a ``UnitsWarning`` and create a :class:`~astropy.units.core.UnrecognizedUnit`. Values are the ones allowed by the ``parse_strict`` argument of :class:`~astropy.units.core.Unit`: ``raise``, ``warn`` and ``silent``. mask_invalid : bool, optional By default the code masks NaNs in float columns and empty strings in string columns. Set this parameter to `False` to avoid the performance penalty of doing this masking step. The masking is always deactivated when using ``memmap=True`` (see above). """ if isinstance(input, HDUList): # Parse all table objects tables = dict() for ihdu, hdu_item in enumerate(input): if isinstance(hdu_item, (TableHDU, BinTableHDU, GroupsHDU)): tables[ihdu] = hdu_item if len(tables) > 1: if hdu is None: warnings.warn( "hdu= was not specified but multiple tables" " are present, reading in first available" f" table (hdu={first(tables)})", AstropyUserWarning, ) hdu = first(tables) # hdu might not be an integer, so we first need to convert it # to the correct HDU index hdu = input.index_of(hdu) if hdu in tables: table = tables[hdu] else: raise ValueError(f"No table found in hdu={hdu}") elif len(tables) == 1: if hdu is not None: msg = None try: hdi = input.index_of(hdu) except KeyError: msg = f"Specified hdu={hdu} not found" else: if hdi >= len(input): msg = f"Specified hdu={hdu} not found" elif hdi not in tables: msg = f"No table found in specified hdu={hdu}" if msg is not None: warnings.warn( f"{msg}, reading in first available table " f"(hdu={first(tables)}) instead. This will" " result in an error in future versions!", AstropyDeprecationWarning, ) table = tables[first(tables)] else: raise ValueError("No table found") elif isinstance(input, (TableHDU, BinTableHDU, GroupsHDU)): table = input else: if memmap: # using memmap is not compatible with masking invalid value by # default so we deactivate the masking mask_invalid = False hdulist = fits_open(input, character_as_bytes=character_as_bytes, memmap=memmap) try: return read_table_fits( hdulist, hdu=hdu, astropy_native=astropy_native, unit_parse_strict=unit_parse_strict, mask_invalid=mask_invalid, ) finally: hdulist.close() # In the loop below we access the data using data[col.name] rather than # col.array to make sure that the data is scaled correctly if needed. data = table.data columns = [] for col in data.columns: # Check if column is masked. Here, we make a guess based on the # presence of FITS mask values. For integer columns, this is simply # the null header, for float and complex, the presence of NaN, and for # string, empty strings. # Since Multi-element columns with dtypes such as '2f8' have a subdtype, # we should look up the type of column on that. masked = mask = False coltype = col.dtype.subdtype[0].type if col.dtype.subdtype else col.dtype.type if col.null is not None: mask = data[col.name] == col.null # Return a MaskedColumn even if no elements are masked so # we roundtrip better. masked = True elif mask_invalid and issubclass(coltype, np.inexact): mask = np.isnan(data[col.name]) elif mask_invalid and issubclass(coltype, np.character): mask = col.array == b"" if masked or np.any(mask): column = MaskedColumn( data=data[col.name], name=col.name, mask=mask, copy=False ) else: column = Column(data=data[col.name], name=col.name, copy=False) # Copy over units if col.unit is not None: column.unit = u.Unit( col.unit, format="fits", parse_strict=unit_parse_strict ) # Copy over display format if col.disp is not None: column.format = _fortran_to_python_format(col.disp) columns.append(column) # Create Table object t = Table(columns, copy=False) # TODO: deal properly with unsigned integers hdr = table.header if astropy_native: # Avoid circular imports, and also only import if necessary. from .fitstime import fits_to_time hdr = fits_to_time(hdr, t) for key, value, comment in hdr.cards: if key in ["COMMENT", "HISTORY"]: # Convert to io.ascii format if key == "COMMENT": key = "comments" if key in t.meta: t.meta[key].append(value) else: t.meta[key] = [value] elif key in t.meta: # key is duplicate if isinstance(t.meta[key], list): t.meta[key].append(value) else: t.meta[key] = [t.meta[key], value] elif is_column_keyword(key) or key in REMOVE_KEYWORDS: pass else: t.meta[key] = value # TODO: implement masking # Decode any mixin columns that have been stored as standard Columns. t = _decode_mixins(t) return t def _encode_mixins(tbl): """Encode a Table ``tbl`` that may have mixin columns to a Table with only astropy Columns + appropriate meta-data to allow subsequent decoding. """ # Determine if information will be lost without serializing meta. This is hardcoded # to the set difference between column info attributes and what FITS can store # natively (name, dtype, unit). See _get_col_attributes() in table/meta.py for where # this comes from. info_lost = any( any( getattr(col.info, attr, None) not in (None, {}) for attr in ("description", "meta") ) for col in tbl.itercols() ) # Convert the table to one with no mixins, only Column objects. This adds # meta data which is extracted with meta.get_yaml_from_table. This ignores # Time-subclass columns and leave them in the table so that the downstream # FITS Time handling does the right thing. with serialize_context_as("fits"): encode_tbl = serialize.represent_mixins_as_columns(tbl, exclude_classes=(Time,)) # If the encoded table is unchanged then there were no mixins. But if there # is column metadata (format, description, meta) that would be lost, then # still go through the serialized columns machinery. if encode_tbl is tbl and not info_lost: return tbl # Copy the meta dict if it was not copied by represent_mixins_as_columns. # We will modify .meta['comments'] below and we do not want to see these # comments in the input table. if encode_tbl is tbl: meta_copy = deepcopy(tbl.meta) encode_tbl = Table(tbl.columns, meta=meta_copy, copy=False) # Get the YAML serialization of information describing the table columns. # This is re-using ECSV code that combined existing table.meta with with # the extra __serialized_columns__ key. For FITS the table.meta is handled # by the native FITS connect code, so don't include that in the YAML # output. ser_col = "__serialized_columns__" # encode_tbl might not have a __serialized_columns__ key if there were no mixins, # but machinery below expects it to be available, so just make an empty dict. encode_tbl.meta.setdefault(ser_col, {}) tbl_meta_copy = encode_tbl.meta.copy() try: encode_tbl.meta = {ser_col: encode_tbl.meta[ser_col]} meta_yaml_lines = meta.get_yaml_from_table(encode_tbl) finally: encode_tbl.meta = tbl_meta_copy del encode_tbl.meta[ser_col] if "comments" not in encode_tbl.meta: encode_tbl.meta["comments"] = [] encode_tbl.meta["comments"].append("--BEGIN-ASTROPY-SERIALIZED-COLUMNS--") for line in meta_yaml_lines: if len(line) == 0: lines = [""] else: # Split line into 70 character chunks for COMMENT cards idxs = list(range(0, len(line) + 70, 70)) lines = [line[i0:i1] + "\\" for i0, i1 in zip(idxs[:-1], idxs[1:])] lines[-1] = lines[-1][:-1] encode_tbl.meta["comments"].extend(lines) encode_tbl.meta["comments"].append("--END-ASTROPY-SERIALIZED-COLUMNS--") return encode_tbl def write_table_fits(input, output, overwrite=False, append=False): """ Write a Table object to a FITS file Parameters ---------- input : Table The table to write out. output : str The filename to write the table to. overwrite : bool Whether to overwrite any existing file without warning. append : bool Whether to append the table to an existing file """ # Encode any mixin columns into standard Columns. input = _encode_mixins(input) table_hdu = table_to_hdu(input, character_as_bytes=True) # Check if output file already exists if isinstance(output, str) and os.path.exists(output): if overwrite: os.remove(output) elif not append: raise OSError(NOT_OVERWRITING_MSG.format(output)) if append: # verify=False stops it reading and checking the existing file. fits_append(output, table_hdu.data, table_hdu.header, verify=False) else: table_hdu.writeto(output) io_registry.register_reader("fits", Table, read_table_fits) io_registry.register_writer("fits", Table, write_table_fits) io_registry.register_identifier("fits", Table, is_fits)
38a42a398128612b7af074e58e217d4df4e67fa24b0b0ed505547612fc6544dc
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Facilities for diffing two FITS files. Includes objects for diffing entire FITS files, individual HDUs, FITS headers, or just FITS data. Used to implement the fitsdiff program. """ import fnmatch import glob import io import operator import os import os.path import textwrap from collections import defaultdict from inspect import signature from itertools import islice import numpy as np from astropy import __version__ from astropy.utils.diff import ( diff_values, fixed_width_indent, report_diff_values, where_not_allclose, ) from astropy.utils.misc import NOT_OVERWRITING_MSG from .card import BLANK_CARD, Card # HDUList is used in one of the doctests from .hdu.hdulist import HDUList, fitsopen # pylint: disable=W0611 from .hdu.table import _TableLikeHDU from .header import Header from .util import path_like __all__ = [ "FITSDiff", "HDUDiff", "HeaderDiff", "ImageDataDiff", "RawDataDiff", "TableDataDiff", ] # Column attributes of interest for comparison _COL_ATTRS = [ ("unit", "units"), ("null", "null values"), ("bscale", "bscales"), ("bzero", "bzeros"), ("disp", "display formats"), ("dim", "dimensions"), ] class _BaseDiff: """ Base class for all FITS diff objects. When instantiating a FITS diff object, the first two arguments are always the two objects to diff (two FITS files, two FITS headers, etc.). Instantiating a ``_BaseDiff`` also causes the diff itself to be executed. The returned ``_BaseDiff`` instance has a number of attribute that describe the results of the diff operation. The most basic attribute, present on all ``_BaseDiff`` instances, is ``.identical`` which is `True` if the two objects being compared are identical according to the diff method for objects of that type. """ def __init__(self, a, b): """ The ``_BaseDiff`` class does not implement a ``_diff`` method and should not be instantiated directly. Instead instantiate the appropriate subclass of ``_BaseDiff`` for the objects being compared (for example, use `HeaderDiff` to compare two `Header` objects. """ self.a = a self.b = b # For internal use in report output self._fileobj = None self._indent = 0 self._diff() def __bool__(self): """ A ``_BaseDiff`` object acts as `True` in a boolean context if the two objects compared are different. Otherwise it acts as `False`. """ return not self.identical @classmethod def fromdiff(cls, other, a, b): """ Returns a new Diff object of a specific subclass from an existing diff object, passing on the values for any arguments they share in common (such as ignore_keywords). For example:: >>> from astropy.io import fits >>> hdul1, hdul2 = fits.HDUList(), fits.HDUList() >>> headera, headerb = fits.Header(), fits.Header() >>> fd = fits.FITSDiff(hdul1, hdul2, ignore_keywords=['*']) >>> hd = fits.HeaderDiff.fromdiff(fd, headera, headerb) >>> list(hd.ignore_keywords) ['*'] """ sig = signature(cls.__init__) # The first 3 arguments of any Diff initializer are self, a, and b. kwargs = {} for arg in list(sig.parameters.keys())[3:]: if hasattr(other, arg): kwargs[arg] = getattr(other, arg) return cls(a, b, **kwargs) @property def identical(self): """ `True` if all the ``.diff_*`` attributes on this diff instance are empty, implying that no differences were found. Any subclass of ``_BaseDiff`` must have at least one ``.diff_*`` attribute, which contains a non-empty value if and only if some difference was found between the two objects being compared. """ return not any( getattr(self, attr) for attr in self.__dict__ if attr.startswith("diff_") ) def report(self, fileobj=None, indent=0, overwrite=False): """ Generates a text report on the differences (if any) between two objects, and either returns it as a string or writes it to a file-like object. Parameters ---------- fileobj : file-like, string, or None, optional If `None`, this method returns the report as a string. Otherwise it returns `None` and writes the report to the given file-like object (which must have a ``.write()`` method at a minimum), or to a new file at the path specified. indent : int The number of 4 space tabs to indent the report. overwrite : bool, optional If ``True``, overwrite the output file if it exists. Raises an ``OSError`` if ``False`` and the output file exists. Default is ``False``. Returns ------- report : str or None """ return_string = False filepath = None if isinstance(fileobj, path_like): fileobj = os.path.expanduser(fileobj) if os.path.exists(fileobj) and not overwrite: raise OSError(NOT_OVERWRITING_MSG.format(fileobj)) else: filepath = fileobj fileobj = open(filepath, "w") elif fileobj is None: fileobj = io.StringIO() return_string = True self._fileobj = fileobj self._indent = indent # This is used internally by _writeln try: self._report() finally: if filepath: fileobj.close() if return_string: return fileobj.getvalue() def _writeln(self, text): self._fileobj.write(fixed_width_indent(text, self._indent) + "\n") def _diff(self): raise NotImplementedError def _report(self): raise NotImplementedError class FITSDiff(_BaseDiff): """Diff two FITS files by filename, or two `HDUList` objects. `FITSDiff` objects have the following diff attributes: - ``diff_hdu_count``: If the FITS files being compared have different numbers of HDUs, this contains a 2-tuple of the number of HDUs in each file. - ``diff_hdus``: If any HDUs with the same index are different, this contains a list of 2-tuples of the HDU index and the `HDUDiff` object representing the differences between the two HDUs. """ def __init__( self, a, b, ignore_hdus=[], ignore_keywords=[], ignore_comments=[], ignore_fields=[], numdiffs=10, rtol=0.0, atol=0.0, ignore_blanks=True, ignore_blank_cards=True, ): """ Parameters ---------- a : str or `HDUList` The filename of a FITS file on disk, or an `HDUList` object. b : str or `HDUList` The filename of a FITS file on disk, or an `HDUList` object to compare to the first file. ignore_hdus : sequence, optional HDU names to ignore when comparing two FITS files or HDU lists; the presence of these HDUs and their contents are ignored. Wildcard strings may also be included in the list. ignore_keywords : sequence, optional Header keywords to ignore when comparing two headers; the presence of these keywords and their values are ignored. Wildcard strings may also be included in the list. ignore_comments : sequence, optional A list of header keywords whose comments should be ignored in the comparison. May contain wildcard strings as with ignore_keywords. ignore_fields : sequence, optional The (case-insensitive) names of any table columns to ignore if any table data is to be compared. numdiffs : int, optional The number of pixel/table values to output when reporting HDU data differences. Though the count of differences is the same either way, this allows controlling the number of different values that are kept in memory or output. If a negative value is given, then numdiffs is treated as unlimited (default: 10). rtol : float, optional The relative difference to allow when comparing two float values either in header values, image arrays, or table columns (default: 0.0). Values which satisfy the expression .. math:: \\left| a - b \\right| > \\text{atol} + \\text{rtol} \\cdot \\left| b \\right| are considered to be different. The underlying function used for comparison is `numpy.allclose`. .. versionadded:: 2.0 atol : float, optional The allowed absolute difference. See also ``rtol`` parameter. .. versionadded:: 2.0 ignore_blanks : bool, optional Ignore extra whitespace at the end of string values either in headers or data. Extra leading whitespace is not ignored (default: True). ignore_blank_cards : bool, optional Ignore all cards that are blank, i.e. they only contain whitespace (default: True). """ if isinstance(a, (str, os.PathLike)): try: a = fitsopen(a) except Exception as exc: raise OSError( "error opening file a ({}): {}: {}".format( a, exc.__class__.__name__, exc.args[0] ) ) close_a = True else: close_a = False if isinstance(b, (str, os.PathLike)): try: b = fitsopen(b) except Exception as exc: raise OSError( "error opening file b ({}): {}: {}".format( b, exc.__class__.__name__, exc.args[0] ) ) close_b = True else: close_b = False # Normalize keywords/fields to ignore to upper case self.ignore_hdus = {k.upper() for k in ignore_hdus} self.ignore_keywords = {k.upper() for k in ignore_keywords} self.ignore_comments = {k.upper() for k in ignore_comments} self.ignore_fields = {k.upper() for k in ignore_fields} self.numdiffs = numdiffs self.rtol = rtol self.atol = atol self.ignore_blanks = ignore_blanks self.ignore_blank_cards = ignore_blank_cards # Some hdu names may be pattern wildcards. Find them. self.ignore_hdu_patterns = set() for name in list(self.ignore_hdus): if name != "*" and glob.has_magic(name): self.ignore_hdus.remove(name) self.ignore_hdu_patterns.add(name) self.diff_hdu_count = () self.diff_hdus = [] try: super().__init__(a, b) finally: if close_a: a.close() if close_b: b.close() def _diff(self): if len(self.a) != len(self.b): self.diff_hdu_count = (len(self.a), len(self.b)) # Record filenames for use later in _report self.filenamea = self.a.filename() if not self.filenamea: self.filenamea = f"<{self.a.__class__.__name__} object at {id(self.a):#x}>" self.filenameb = self.b.filename() if not self.filenameb: self.filenameb = f"<{self.b.__class__.__name__} object at {id(self.b):#x}>" if self.ignore_hdus: self.a = HDUList([h for h in self.a if h.name not in self.ignore_hdus]) self.b = HDUList([h for h in self.b if h.name not in self.ignore_hdus]) if self.ignore_hdu_patterns: a_names = [hdu.name for hdu in self.a] b_names = [hdu.name for hdu in self.b] for pattern in self.ignore_hdu_patterns: self.a = HDUList( [ h for h in self.a if h.name not in fnmatch.filter(a_names, pattern) ] ) self.b = HDUList( [ h for h in self.b if h.name not in fnmatch.filter(b_names, pattern) ] ) # For now, just compare the extensions one by one in order. # Might allow some more sophisticated types of diffing later. # TODO: Somehow or another simplify the passing around of diff # options--this will become important as the number of options grows for idx in range(min(len(self.a), len(self.b))): hdu_diff = HDUDiff.fromdiff(self, self.a[idx], self.b[idx]) if not hdu_diff.identical: if ( self.a[idx].name == self.b[idx].name and self.a[idx].ver == self.b[idx].ver ): self.diff_hdus.append( (idx, hdu_diff, self.a[idx].name, self.a[idx].ver) ) else: self.diff_hdus.append((idx, hdu_diff, "", self.a[idx].ver)) def _report(self): wrapper = textwrap.TextWrapper(initial_indent=" ", subsequent_indent=" ") self._fileobj.write("\n") self._writeln(f" fitsdiff: {__version__}") self._writeln(f" a: {self.filenamea}\n b: {self.filenameb}") if self.ignore_hdus: ignore_hdus = " ".join(sorted(self.ignore_hdus)) self._writeln(f" HDU(s) not to be compared:\n{wrapper.fill(ignore_hdus)}") if self.ignore_hdu_patterns: ignore_hdu_patterns = " ".join(sorted(self.ignore_hdu_patterns)) self._writeln( " HDU(s) not to be compared:\n{}".format( wrapper.fill(ignore_hdu_patterns) ) ) if self.ignore_keywords: ignore_keywords = " ".join(sorted(self.ignore_keywords)) self._writeln( " Keyword(s) not to be compared:\n{}".format( wrapper.fill(ignore_keywords) ) ) if self.ignore_comments: ignore_comments = " ".join(sorted(self.ignore_comments)) self._writeln( " Keyword(s) whose comments are not to be compared:\n{}".format( wrapper.fill(ignore_comments) ) ) if self.ignore_fields: ignore_fields = " ".join(sorted(self.ignore_fields)) self._writeln( " Table column(s) not to be compared:\n{}".format( wrapper.fill(ignore_fields) ) ) self._writeln( " Maximum number of different data values to be reported: {}".format( self.numdiffs ) ) self._writeln( " Relative tolerance: {}, Absolute tolerance: {}".format( self.rtol, self.atol ) ) if self.diff_hdu_count: self._fileobj.write("\n") self._writeln("Files contain different numbers of HDUs:") self._writeln(f" a: {self.diff_hdu_count[0]}") self._writeln(f" b: {self.diff_hdu_count[1]}") if not self.diff_hdus: self._writeln("No differences found between common HDUs.") return elif not self.diff_hdus: self._fileobj.write("\n") self._writeln("No differences found.") return for idx, hdu_diff, extname, extver in self.diff_hdus: # print out the extension heading if idx == 0: self._fileobj.write("\n") self._writeln("Primary HDU:") else: self._fileobj.write("\n") if extname: self._writeln(f"Extension HDU {idx} ({extname}, {extver}):") else: self._writeln(f"Extension HDU {idx}:") hdu_diff.report(self._fileobj, indent=self._indent + 1) class HDUDiff(_BaseDiff): """ Diff two HDU objects, including their headers and their data (but only if both HDUs contain the same type of data (image, table, or unknown). `HDUDiff` objects have the following diff attributes: - ``diff_extnames``: If the two HDUs have different EXTNAME values, this contains a 2-tuple of the different extension names. - ``diff_extvers``: If the two HDUS have different EXTVER values, this contains a 2-tuple of the different extension versions. - ``diff_extlevels``: If the two HDUs have different EXTLEVEL values, this contains a 2-tuple of the different extension levels. - ``diff_extension_types``: If the two HDUs have different XTENSION values, this contains a 2-tuple of the different extension types. - ``diff_headers``: Contains a `HeaderDiff` object for the headers of the two HDUs. This will always contain an object--it may be determined whether the headers are different through ``diff_headers.identical``. - ``diff_data``: Contains either a `ImageDataDiff`, `TableDataDiff`, or `RawDataDiff` as appropriate for the data in the HDUs, and only if the two HDUs have non-empty data of the same type (`RawDataDiff` is used for HDUs containing non-empty data of an indeterminate type). """ def __init__( self, a, b, ignore_keywords=[], ignore_comments=[], ignore_fields=[], numdiffs=10, rtol=0.0, atol=0.0, ignore_blanks=True, ignore_blank_cards=True, ): """ Parameters ---------- a : BaseHDU An HDU object. b : BaseHDU An HDU object to compare to the first HDU object. ignore_keywords : sequence, optional Header keywords to ignore when comparing two headers; the presence of these keywords and their values are ignored. Wildcard strings may also be included in the list. ignore_comments : sequence, optional A list of header keywords whose comments should be ignored in the comparison. May contain wildcard strings as with ignore_keywords. ignore_fields : sequence, optional The (case-insensitive) names of any table columns to ignore if any table data is to be compared. numdiffs : int, optional The number of pixel/table values to output when reporting HDU data differences. Though the count of differences is the same either way, this allows controlling the number of different values that are kept in memory or output. If a negative value is given, then numdiffs is treated as unlimited (default: 10). rtol : float, optional The relative difference to allow when comparing two float values either in header values, image arrays, or table columns (default: 0.0). Values which satisfy the expression .. math:: \\left| a - b \\right| > \\text{atol} + \\text{rtol} \\cdot \\left| b \\right| are considered to be different. The underlying function used for comparison is `numpy.allclose`. .. versionadded:: 2.0 atol : float, optional The allowed absolute difference. See also ``rtol`` parameter. .. versionadded:: 2.0 ignore_blanks : bool, optional Ignore extra whitespace at the end of string values either in headers or data. Extra leading whitespace is not ignored (default: True). ignore_blank_cards : bool, optional Ignore all cards that are blank, i.e. they only contain whitespace (default: True). """ self.ignore_keywords = {k.upper() for k in ignore_keywords} self.ignore_comments = {k.upper() for k in ignore_comments} self.ignore_fields = {k.upper() for k in ignore_fields} self.rtol = rtol self.atol = atol self.numdiffs = numdiffs self.ignore_blanks = ignore_blanks self.ignore_blank_cards = ignore_blank_cards self.diff_extnames = () self.diff_extvers = () self.diff_extlevels = () self.diff_extension_types = () self.diff_headers = None self.diff_data = None super().__init__(a, b) def _diff(self): if self.a.name != self.b.name: self.diff_extnames = (self.a.name, self.b.name) if self.a.ver != self.b.ver: self.diff_extvers = (self.a.ver, self.b.ver) if self.a.level != self.b.level: self.diff_extlevels = (self.a.level, self.b.level) if self.a.header.get("XTENSION") != self.b.header.get("XTENSION"): self.diff_extension_types = ( self.a.header.get("XTENSION"), self.b.header.get("XTENSION"), ) self.diff_headers = HeaderDiff.fromdiff( self, self.a.header.copy(), self.b.header.copy() ) if self.a.data is None or self.b.data is None: # TODO: Perhaps have some means of marking this case pass elif self.a.is_image and self.b.is_image: self.diff_data = ImageDataDiff.fromdiff(self, self.a.data, self.b.data) # Clean up references to (possibly) memmapped arrays so they can # be closed by .close() self.diff_data.a = None self.diff_data.b = None elif isinstance(self.a, _TableLikeHDU) and isinstance(self.b, _TableLikeHDU): # TODO: Replace this if/when _BaseHDU grows a .is_table property self.diff_data = TableDataDiff.fromdiff(self, self.a.data, self.b.data) # Clean up references to (possibly) memmapped arrays so they can # be closed by .close() self.diff_data.a = None self.diff_data.b = None elif not self.diff_extension_types: # Don't diff the data for unequal extension types that are not # recognized image or table types self.diff_data = RawDataDiff.fromdiff(self, self.a.data, self.b.data) # Clean up references to (possibly) memmapped arrays so they can # be closed by .close() self.diff_data.a = None self.diff_data.b = None def _report(self): if self.identical: self._writeln(" No differences found.") if self.diff_extension_types: self._writeln( " Extension types differ:\n a: {}\n b: {}".format( *self.diff_extension_types ) ) if self.diff_extnames: self._writeln( " Extension names differ:\n a: {}\n b: {}".format(*self.diff_extnames) ) if self.diff_extvers: self._writeln( " Extension versions differ:\n a: {}\n b: {}".format( *self.diff_extvers ) ) if self.diff_extlevels: self._writeln( " Extension levels differ:\n a: {}\n b: {}".format( *self.diff_extlevels ) ) if not self.diff_headers.identical: self._fileobj.write("\n") self._writeln(" Headers contain differences:") self.diff_headers.report(self._fileobj, indent=self._indent + 1) if self.diff_data is not None and not self.diff_data.identical: self._fileobj.write("\n") self._writeln(" Data contains differences:") self.diff_data.report(self._fileobj, indent=self._indent + 1) class HeaderDiff(_BaseDiff): """ Diff two `Header` objects. `HeaderDiff` objects have the following diff attributes: - ``diff_keyword_count``: If the two headers contain a different number of keywords, this contains a 2-tuple of the keyword count for each header. - ``diff_keywords``: If either header contains one or more keywords that don't appear at all in the other header, this contains a 2-tuple consisting of a list of the keywords only appearing in header a, and a list of the keywords only appearing in header b. - ``diff_duplicate_keywords``: If a keyword appears in both headers at least once, but contains a different number of duplicates (for example, a different number of HISTORY cards in each header), an item is added to this dict with the keyword as the key, and a 2-tuple of the different counts of that keyword as the value. For example:: {'HISTORY': (20, 19)} means that header a contains 20 HISTORY cards, while header b contains only 19 HISTORY cards. - ``diff_keyword_values``: If any of the common keyword between the two headers have different values, they appear in this dict. It has a structure similar to ``diff_duplicate_keywords``, with the keyword as the key, and a 2-tuple of the different values as the value. For example:: {'NAXIS': (2, 3)} means that the NAXIS keyword has a value of 2 in header a, and a value of 3 in header b. This excludes any keywords matched by the ``ignore_keywords`` list. - ``diff_keyword_comments``: Like ``diff_keyword_values``, but contains differences between keyword comments. `HeaderDiff` objects also have a ``common_keywords`` attribute that lists all keywords that appear in both headers. """ def __init__( self, a, b, ignore_keywords=[], ignore_comments=[], rtol=0.0, atol=0.0, ignore_blanks=True, ignore_blank_cards=True, ): """ Parameters ---------- a : `~astropy.io.fits.Header` or string or bytes A header. b : `~astropy.io.fits.Header` or string or bytes A header to compare to the first header. ignore_keywords : sequence, optional Header keywords to ignore when comparing two headers; the presence of these keywords and their values are ignored. Wildcard strings may also be included in the list. ignore_comments : sequence, optional A list of header keywords whose comments should be ignored in the comparison. May contain wildcard strings as with ignore_keywords. numdiffs : int, optional The number of pixel/table values to output when reporting HDU data differences. Though the count of differences is the same either way, this allows controlling the number of different values that are kept in memory or output. If a negative value is given, then numdiffs is treated as unlimited (default: 10). rtol : float, optional The relative difference to allow when comparing two float values either in header values, image arrays, or table columns (default: 0.0). Values which satisfy the expression .. math:: \\left| a - b \\right| > \\text{atol} + \\text{rtol} \\cdot \\left| b \\right| are considered to be different. The underlying function used for comparison is `numpy.allclose`. .. versionadded:: 2.0 atol : float, optional The allowed absolute difference. See also ``rtol`` parameter. .. versionadded:: 2.0 ignore_blanks : bool, optional Ignore extra whitespace at the end of string values either in headers or data. Extra leading whitespace is not ignored (default: True). ignore_blank_cards : bool, optional Ignore all cards that are blank, i.e. they only contain whitespace (default: True). """ self.ignore_keywords = {k.upper() for k in ignore_keywords} self.ignore_comments = {k.upper() for k in ignore_comments} self.rtol = rtol self.atol = atol self.ignore_blanks = ignore_blanks self.ignore_blank_cards = ignore_blank_cards self.ignore_keyword_patterns = set() self.ignore_comment_patterns = set() for keyword in list(self.ignore_keywords): keyword = keyword.upper() if keyword != "*" and glob.has_magic(keyword): self.ignore_keywords.remove(keyword) self.ignore_keyword_patterns.add(keyword) for keyword in list(self.ignore_comments): keyword = keyword.upper() if keyword != "*" and glob.has_magic(keyword): self.ignore_comments.remove(keyword) self.ignore_comment_patterns.add(keyword) # Keywords appearing in each header self.common_keywords = [] # Set to the number of keywords in each header if the counts differ self.diff_keyword_count = () # Set if the keywords common to each header (excluding ignore_keywords) # appear in different positions within the header # TODO: Implement this self.diff_keyword_positions = () # Keywords unique to each header (excluding keywords in # ignore_keywords) self.diff_keywords = () # Keywords that have different numbers of duplicates in each header # (excluding keywords in ignore_keywords) self.diff_duplicate_keywords = {} # Keywords common to each header but having different values (excluding # keywords in ignore_keywords) self.diff_keyword_values = defaultdict(list) # Keywords common to each header but having different comments # (excluding keywords in ignore_keywords or in ignore_comments) self.diff_keyword_comments = defaultdict(list) if isinstance(a, str): a = Header.fromstring(a) if isinstance(b, str): b = Header.fromstring(b) if not (isinstance(a, Header) and isinstance(b, Header)): raise TypeError( "HeaderDiff can only diff astropy.io.fits.Header " "objects or strings containing FITS headers." ) super().__init__(a, b) # TODO: This doesn't pay much attention to the *order* of the keywords, # except in the case of duplicate keywords. The order should be checked # too, or at least it should be an option. def _diff(self): if self.ignore_blank_cards: cardsa = [c for c in self.a.cards if str(c) != BLANK_CARD] cardsb = [c for c in self.b.cards if str(c) != BLANK_CARD] else: cardsa = list(self.a.cards) cardsb = list(self.b.cards) # build dictionaries of keyword values and comments def get_header_values_comments(cards): values = {} comments = {} for card in cards: value = card.value if self.ignore_blanks and isinstance(value, str): value = value.rstrip() values.setdefault(card.keyword, []).append(value) comments.setdefault(card.keyword, []).append(card.comment) return values, comments valuesa, commentsa = get_header_values_comments(cardsa) valuesb, commentsb = get_header_values_comments(cardsb) # Normalize all keyword to upper-case for comparison's sake; # TODO: HIERARCH keywords should be handled case-sensitively I think keywordsa = {k.upper() for k in valuesa} keywordsb = {k.upper() for k in valuesb} self.common_keywords = sorted(keywordsa.intersection(keywordsb)) if len(cardsa) != len(cardsb): self.diff_keyword_count = (len(cardsa), len(cardsb)) # Any other diff attributes should exclude ignored keywords keywordsa = keywordsa.difference(self.ignore_keywords) keywordsb = keywordsb.difference(self.ignore_keywords) if self.ignore_keyword_patterns: for pattern in self.ignore_keyword_patterns: keywordsa = keywordsa.difference(fnmatch.filter(keywordsa, pattern)) keywordsb = keywordsb.difference(fnmatch.filter(keywordsb, pattern)) if "*" in self.ignore_keywords: # Any other differences between keywords are to be ignored return left_only_keywords = sorted(keywordsa.difference(keywordsb)) right_only_keywords = sorted(keywordsb.difference(keywordsa)) if left_only_keywords or right_only_keywords: self.diff_keywords = (left_only_keywords, right_only_keywords) # Compare count of each common keyword for keyword in self.common_keywords: if keyword in self.ignore_keywords: continue if self.ignore_keyword_patterns: skip = False for pattern in self.ignore_keyword_patterns: if fnmatch.fnmatch(keyword, pattern): skip = True break if skip: continue counta = len(valuesa[keyword]) countb = len(valuesb[keyword]) if counta != countb: self.diff_duplicate_keywords[keyword] = (counta, countb) # Compare keywords' values and comments for a, b in zip(valuesa[keyword], valuesb[keyword]): if diff_values(a, b, rtol=self.rtol, atol=self.atol): self.diff_keyword_values[keyword].append((a, b)) else: # If there are duplicate keywords we need to be able to # index each duplicate; if the values of a duplicate # are identical use None here self.diff_keyword_values[keyword].append(None) if not any(self.diff_keyword_values[keyword]): # No differences found; delete the array of Nones del self.diff_keyword_values[keyword] if "*" in self.ignore_comments or keyword in self.ignore_comments: continue if self.ignore_comment_patterns: skip = False for pattern in self.ignore_comment_patterns: if fnmatch.fnmatch(keyword, pattern): skip = True break if skip: continue for a, b in zip(commentsa[keyword], commentsb[keyword]): if diff_values(a, b): self.diff_keyword_comments[keyword].append((a, b)) else: self.diff_keyword_comments[keyword].append(None) if not any(self.diff_keyword_comments[keyword]): del self.diff_keyword_comments[keyword] def _report(self): if self.diff_keyword_count: self._writeln(" Headers have different number of cards:") self._writeln(f" a: {self.diff_keyword_count[0]}") self._writeln(f" b: {self.diff_keyword_count[1]}") if self.diff_keywords: for keyword in self.diff_keywords[0]: if keyword in Card._commentary_keywords: val = self.a[keyword][0] else: val = self.a[keyword] self._writeln(f" Extra keyword {keyword!r:8} in a: {val!r}") for keyword in self.diff_keywords[1]: if keyword in Card._commentary_keywords: val = self.b[keyword][0] else: val = self.b[keyword] self._writeln(f" Extra keyword {keyword!r:8} in b: {val!r}") if self.diff_duplicate_keywords: for keyword, count in sorted(self.diff_duplicate_keywords.items()): self._writeln(f" Inconsistent duplicates of keyword {keyword!r:8}:") self._writeln( " Occurs {} time(s) in a, {} times in (b)".format(*count) ) if self.diff_keyword_values or self.diff_keyword_comments: for keyword in self.common_keywords: report_diff_keyword_attr( self._fileobj, "values", self.diff_keyword_values, keyword, ind=self._indent, ) report_diff_keyword_attr( self._fileobj, "comments", self.diff_keyword_comments, keyword, ind=self._indent, ) # TODO: It might be good if there was also a threshold option for percentage of # different pixels: For example ignore if only 1% of the pixels are different # within some threshold. There are lots of possibilities here, but hold off # for now until specific cases come up. class ImageDataDiff(_BaseDiff): """ Diff two image data arrays (really any array from a PRIMARY HDU or an IMAGE extension HDU, though the data unit is assumed to be "pixels"). `ImageDataDiff` objects have the following diff attributes: - ``diff_dimensions``: If the two arrays contain either a different number of dimensions or different sizes in any dimension, this contains a 2-tuple of the shapes of each array. Currently no further comparison is performed on images that don't have the exact same dimensions. - ``diff_pixels``: If the two images contain any different pixels, this contains a list of 2-tuples of the array index where the difference was found, and another 2-tuple containing the different values. For example, if the pixel at (0, 0) contains different values this would look like:: [(0, 0), (1.1, 2.2)] where 1.1 and 2.2 are the values of that pixel in each array. This array only contains up to ``self.numdiffs`` differences, for storage efficiency. - ``diff_total``: The total number of different pixels found between the arrays. Although ``diff_pixels`` does not necessarily contain all the different pixel values, this can be used to get a count of the total number of differences found. - ``diff_ratio``: Contains the ratio of ``diff_total`` to the total number of pixels in the arrays. """ def __init__(self, a, b, numdiffs=10, rtol=0.0, atol=0.0): """ Parameters ---------- a : BaseHDU An HDU object. b : BaseHDU An HDU object to compare to the first HDU object. numdiffs : int, optional The number of pixel/table values to output when reporting HDU data differences. Though the count of differences is the same either way, this allows controlling the number of different values that are kept in memory or output. If a negative value is given, then numdiffs is treated as unlimited (default: 10). rtol : float, optional The relative difference to allow when comparing two float values either in header values, image arrays, or table columns (default: 0.0). Values which satisfy the expression .. math:: \\left| a - b \\right| > \\text{atol} + \\text{rtol} \\cdot \\left| b \\right| are considered to be different. The underlying function used for comparison is `numpy.allclose`. .. versionadded:: 2.0 atol : float, optional The allowed absolute difference. See also ``rtol`` parameter. .. versionadded:: 2.0 """ self.numdiffs = numdiffs self.rtol = rtol self.atol = atol self.diff_dimensions = () self.diff_pixels = [] self.diff_ratio = 0 # self.diff_pixels only holds up to numdiffs differing pixels, but this # self.diff_total stores the total count of differences between # the images, but not the different values self.diff_total = 0 super().__init__(a, b) def _diff(self): if self.a.shape != self.b.shape: self.diff_dimensions = (self.a.shape, self.b.shape) # Don't do any further comparison if the dimensions differ # TODO: Perhaps we could, however, diff just the intersection # between the two images return # Find the indices where the values are not equal # If neither a nor b are floating point (or complex), ignore rtol and # atol if not ( np.issubdtype(self.a.dtype, np.inexact) or np.issubdtype(self.b.dtype, np.inexact) ): rtol = 0 atol = 0 else: rtol = self.rtol atol = self.atol diffs = where_not_allclose(self.a, self.b, atol=atol, rtol=rtol) self.diff_total = len(diffs[0]) if self.diff_total == 0: # Then we're done return if self.numdiffs < 0: numdiffs = self.diff_total else: numdiffs = self.numdiffs self.diff_pixels = [ (idx, (self.a[idx], self.b[idx])) for idx in islice(zip(*diffs), 0, numdiffs) ] self.diff_ratio = float(self.diff_total) / float(len(self.a.flat)) def _report(self): if self.diff_dimensions: dimsa = " x ".join(str(d) for d in reversed(self.diff_dimensions[0])) dimsb = " x ".join(str(d) for d in reversed(self.diff_dimensions[1])) self._writeln(" Data dimensions differ:") self._writeln(f" a: {dimsa}") self._writeln(f" b: {dimsb}") # For now we don't do any further comparison if the dimensions # differ; though in the future it might be nice to be able to # compare at least where the images intersect self._writeln(" No further data comparison performed.") return if not self.diff_pixels: return for index, values in self.diff_pixels: index = [x + 1 for x in reversed(index)] self._writeln(f" Data differs at {index}:") report_diff_values( values[0], values[1], fileobj=self._fileobj, indent_width=self._indent + 1, rtol=self.rtol, atol=self.atol, ) if self.diff_total > self.numdiffs: self._writeln(" ...") self._writeln( " {} different pixels found ({:.2%} different).".format( self.diff_total, self.diff_ratio ) ) class RawDataDiff(ImageDataDiff): """ `RawDataDiff` is just a special case of `ImageDataDiff` where the images are one-dimensional, and the data is treated as a 1-dimensional array of bytes instead of pixel values. This is used to compare the data of two non-standard extension HDUs that were not recognized as containing image or table data. `ImageDataDiff` objects have the following diff attributes: - ``diff_dimensions``: Same as the ``diff_dimensions`` attribute of `ImageDataDiff` objects. Though the "dimension" of each array is just an integer representing the number of bytes in the data. - ``diff_bytes``: Like the ``diff_pixels`` attribute of `ImageDataDiff` objects, but renamed to reflect the minor semantic difference that these are raw bytes and not pixel values. Also the indices are integers instead of tuples. - ``diff_total`` and ``diff_ratio``: Same as `ImageDataDiff`. """ def __init__(self, a, b, numdiffs=10): """ Parameters ---------- a : BaseHDU An HDU object. b : BaseHDU An HDU object to compare to the first HDU object. numdiffs : int, optional The number of pixel/table values to output when reporting HDU data differences. Though the count of differences is the same either way, this allows controlling the number of different values that are kept in memory or output. If a negative value is given, then numdiffs is treated as unlimited (default: 10). """ self.diff_dimensions = () self.diff_bytes = [] super().__init__(a, b, numdiffs=numdiffs) def _diff(self): super()._diff() if self.diff_dimensions: self.diff_dimensions = ( self.diff_dimensions[0][0], self.diff_dimensions[1][0], ) self.diff_bytes = [(x[0], y) for x, y in self.diff_pixels] del self.diff_pixels def _report(self): if self.diff_dimensions: self._writeln(" Data sizes differ:") self._writeln(f" a: {self.diff_dimensions[0]} bytes") self._writeln(f" b: {self.diff_dimensions[1]} bytes") # For now we don't do any further comparison if the dimensions # differ; though in the future it might be nice to be able to # compare at least where the images intersect self._writeln(" No further data comparison performed.") return if not self.diff_bytes: return for index, values in self.diff_bytes: self._writeln(f" Data differs at byte {index}:") report_diff_values( values[0], values[1], fileobj=self._fileobj, indent_width=self._indent + 1, rtol=self.rtol, atol=self.atol, ) self._writeln(" ...") self._writeln( " {} different bytes found ({:.2%} different).".format( self.diff_total, self.diff_ratio ) ) class TableDataDiff(_BaseDiff): """ Diff two table data arrays. It doesn't matter whether the data originally came from a binary or ASCII table--the data should be passed in as a recarray. `TableDataDiff` objects have the following diff attributes: - ``diff_column_count``: If the tables being compared have different numbers of columns, this contains a 2-tuple of the column count in each table. Even if the tables have different column counts, an attempt is still made to compare any columns they have in common. - ``diff_columns``: If either table contains columns unique to that table, either in name or format, this contains a 2-tuple of lists. The first element is a list of columns (these are full `Column` objects) that appear only in table a. The second element is a list of tables that appear only in table b. This only lists columns with different column definitions, and has nothing to do with the data in those columns. - ``diff_column_names``: This is like ``diff_columns``, but lists only the names of columns unique to either table, rather than the full `Column` objects. - ``diff_column_attributes``: Lists columns that are in both tables but have different secondary attributes, such as TUNIT or TDISP. The format is a list of 2-tuples: The first a tuple of the column name and the attribute, the second a tuple of the different values. - ``diff_values``: `TableDataDiff` compares the data in each table on a column-by-column basis. If any different data is found, it is added to this list. The format of this list is similar to the ``diff_pixels`` attribute on `ImageDataDiff` objects, though the "index" consists of a (column_name, row) tuple. For example:: [('TARGET', 0), ('NGC1001', 'NGC1002')] shows that the tables contain different values in the 0-th row of the 'TARGET' column. - ``diff_total`` and ``diff_ratio``: Same as `ImageDataDiff`. `TableDataDiff` objects also have a ``common_columns`` attribute that lists the `Column` objects for columns that are identical in both tables, and a ``common_column_names`` attribute which contains a set of the names of those columns. """ def __init__(self, a, b, ignore_fields=[], numdiffs=10, rtol=0.0, atol=0.0): """ Parameters ---------- a : BaseHDU An HDU object. b : BaseHDU An HDU object to compare to the first HDU object. ignore_fields : sequence, optional The (case-insensitive) names of any table columns to ignore if any table data is to be compared. numdiffs : int, optional The number of pixel/table values to output when reporting HDU data differences. Though the count of differences is the same either way, this allows controlling the number of different values that are kept in memory or output. If a negative value is given, then numdiffs is treated as unlimited (default: 10). rtol : float, optional The relative difference to allow when comparing two float values either in header values, image arrays, or table columns (default: 0.0). Values which satisfy the expression .. math:: \\left| a - b \\right| > \\text{atol} + \\text{rtol} \\cdot \\left| b \\right| are considered to be different. The underlying function used for comparison is `numpy.allclose`. .. versionadded:: 2.0 atol : float, optional The allowed absolute difference. See also ``rtol`` parameter. .. versionadded:: 2.0 """ self.ignore_fields = set(ignore_fields) self.numdiffs = numdiffs self.rtol = rtol self.atol = atol self.common_columns = [] self.common_column_names = set() # self.diff_columns contains columns with different column definitions, # but not different column data. Column data is only compared in # columns that have the same definitions self.diff_rows = () self.diff_column_count = () self.diff_columns = () # If two columns have the same name+format, but other attributes are # different (such as TUNIT or such) they are listed here self.diff_column_attributes = [] # Like self.diff_columns, but just contains a list of the column names # unique to each table, and in the order they appear in the tables self.diff_column_names = () self.diff_values = [] self.diff_ratio = 0 self.diff_total = 0 super().__init__(a, b) def _diff(self): # Much of the code for comparing columns is similar to the code for # comparing headers--consider refactoring colsa = self.a.columns colsb = self.b.columns if len(colsa) != len(colsb): self.diff_column_count = (len(colsa), len(colsb)) # Even if the number of columns are unequal, we still do comparison of # any common columns colsa = {c.name.lower(): c for c in colsa} colsb = {c.name.lower(): c for c in colsb} if "*" in self.ignore_fields: # If all columns are to be ignored, ignore any further differences # between the columns return # Keep the user's original ignore_fields list for reporting purposes, # but internally use a case-insensitive version ignore_fields = {f.lower() for f in self.ignore_fields} # It might be nice if there were a cleaner way to do this, but for now # it'll do for fieldname in ignore_fields: fieldname = fieldname.lower() if fieldname in colsa: del colsa[fieldname] if fieldname in colsb: del colsb[fieldname] colsa_set = set(colsa.values()) colsb_set = set(colsb.values()) self.common_columns = sorted( colsa_set.intersection(colsb_set), key=operator.attrgetter("name") ) self.common_column_names = {col.name.lower() for col in self.common_columns} left_only_columns = { col.name.lower(): col for col in colsa_set.difference(colsb_set) } right_only_columns = { col.name.lower(): col for col in colsb_set.difference(colsa_set) } if left_only_columns or right_only_columns: self.diff_columns = (left_only_columns, right_only_columns) self.diff_column_names = ([], []) if left_only_columns: for col in self.a.columns: if col.name.lower() in left_only_columns: self.diff_column_names[0].append(col.name) if right_only_columns: for col in self.b.columns: if col.name.lower() in right_only_columns: self.diff_column_names[1].append(col.name) # If the tables have a different number of rows, we don't compare the # columns right now. # TODO: It might be nice to optionally compare the first n rows where n # is the minimum of the row counts between the two tables. if len(self.a) != len(self.b): self.diff_rows = (len(self.a), len(self.b)) return # If the tables contain no rows there's no data to compare, so we're # done at this point. (See ticket #178) if len(self.a) == len(self.b) == 0: return # Like in the old fitsdiff, compare tables on a column by column basis # The difficulty here is that, while FITS column names are meant to be # case-insensitive, Astropy still allows, for the sake of flexibility, # two columns with the same name but different case. When columns are # accessed in FITS tables, a case-sensitive is tried first, and failing # that a case-insensitive match is made. # It's conceivable that the same column could appear in both tables # being compared, but with different case. # Though it *may* lead to inconsistencies in these rare cases, this # just assumes that there are no duplicated column names in either # table, and that the column names can be treated case-insensitively. for col in self.common_columns: name_lower = col.name.lower() if name_lower in ignore_fields: continue cola = colsa[name_lower] colb = colsb[name_lower] for attr, _ in _COL_ATTRS: vala = getattr(cola, attr, None) valb = getattr(colb, attr, None) if diff_values(vala, valb): self.diff_column_attributes.append( ((col.name.upper(), attr), (vala, valb)) ) arra = self.a[col.name] arrb = self.b[col.name] if np.issubdtype(arra.dtype, np.floating) and np.issubdtype( arrb.dtype, np.floating ): diffs = where_not_allclose(arra, arrb, rtol=self.rtol, atol=self.atol) elif "P" in col.format: diffs = ( [ idx for idx in range(len(arra)) if not np.allclose( arra[idx], arrb[idx], rtol=self.rtol, atol=self.atol ) ], ) else: diffs = np.where(arra != arrb) self.diff_total += len(set(diffs[0])) if self.numdiffs >= 0: if len(self.diff_values) >= self.numdiffs: # Don't save any more diff values continue # Add no more diff'd values than this max_diffs = self.numdiffs - len(self.diff_values) else: max_diffs = len(diffs[0]) last_seen_idx = None for idx in islice(diffs[0], 0, max_diffs): if idx == last_seen_idx: # Skip duplicate indices, which my occur when the column # data contains multi-dimensional values; we're only # interested in storing row-by-row differences continue last_seen_idx = idx self.diff_values.append(((col.name, idx), (arra[idx], arrb[idx]))) total_values = len(self.a) * len(self.a.dtype.fields) self.diff_ratio = float(self.diff_total) / float(total_values) def _report(self): if self.diff_column_count: self._writeln(" Tables have different number of columns:") self._writeln(f" a: {self.diff_column_count[0]}") self._writeln(f" b: {self.diff_column_count[1]}") if self.diff_column_names: # Show columns with names unique to either table for name in self.diff_column_names[0]: format = self.diff_columns[0][name.lower()].format self._writeln(f" Extra column {name} of format {format} in a") for name in self.diff_column_names[1]: format = self.diff_columns[1][name.lower()].format self._writeln(f" Extra column {name} of format {format} in b") col_attrs = dict(_COL_ATTRS) # Now go through each table again and show columns with common # names but other property differences... for col_attr, vals in self.diff_column_attributes: name, attr = col_attr self._writeln(f" Column {name} has different {col_attrs[attr]}:") report_diff_values( vals[0], vals[1], fileobj=self._fileobj, indent_width=self._indent + 1, rtol=self.rtol, atol=self.atol, ) if self.diff_rows: self._writeln(" Table rows differ:") self._writeln(f" a: {self.diff_rows[0]}") self._writeln(f" b: {self.diff_rows[1]}") self._writeln(" No further data comparison performed.") return if not self.diff_values: return # Finally, let's go through and report column data differences: for indx, values in self.diff_values: self._writeln(" Column {} data differs in row {}:".format(*indx)) report_diff_values( values[0], values[1], fileobj=self._fileobj, indent_width=self._indent + 1, rtol=self.rtol, atol=self.atol, ) if self.diff_values and self.numdiffs < self.diff_total: self._writeln( " ...{} additional difference(s) found.".format( self.diff_total - self.numdiffs ) ) if self.diff_total > self.numdiffs: self._writeln(" ...") self._writeln( " {} different table data element(s) found ({:.2%} different).".format( self.diff_total, self.diff_ratio ) ) def report_diff_keyword_attr(fileobj, attr, diffs, keyword, ind=0): """ Write a diff between two header keyword values or comments to the specified file-like object. """ if keyword in diffs: vals = diffs[keyword] for idx, val in enumerate(vals): if val is None: continue if idx == 0: dup = "" else: dup = f"[{idx + 1}]" fileobj.write( fixed_width_indent( f" Keyword {keyword:8}{dup} has different {attr}:\n", ind, ) ) report_diff_values(val[0], val[1], fileobj=fileobj, indent_width=ind + 1)
7df812a5f9bd2da831dd3e59859006a3c6a0f4deb38f726ba680dd9de9f92705
# Licensed under a 3-clause BSD style license - see PYFITS.rst """ A package for reading and writing FITS files and manipulating their contents. A module for reading and writing Flexible Image Transport System (FITS) files. This file format was endorsed by the International Astronomical Union in 1999 and mandated by NASA as the standard format for storing high energy astrophysics data. For details of the FITS standard, see the NASA/Science Office of Standards and Technology publication, NOST 100-2.0. """ from astropy import config as _config # Set module-global boolean variables # TODO: Make it possible to set these variables via environment variables # again, once support for that is added to Astropy class Conf(_config.ConfigNamespace): """ Configuration parameters for `astropy.io.fits`. """ enable_record_valued_keyword_cards = _config.ConfigItem( True, "If True, enable support for record-valued keywords as described by " "FITS WCS distortion paper. Otherwise they are treated as normal " "keywords.", aliases=["astropy.io.fits.enabled_record_valued_keyword_cards"], ) extension_name_case_sensitive = _config.ConfigItem( False, "If True, extension names (i.e. the ``EXTNAME`` keyword) should be " "treated as case-sensitive.", ) strip_header_whitespace = _config.ConfigItem( True, "If True, automatically remove trailing whitespace for string values in" " headers. Otherwise the values are returned verbatim, with all " "whitespace intact.", ) use_memmap = _config.ConfigItem( True, "If True, use memory-mapped file access to read/write the data in " "FITS files. This generally provides better performance, especially " "for large files, but may affect performance in I/O-heavy " "applications.", ) lazy_load_hdus = _config.ConfigItem( True, "If True, use lazy loading of HDUs when opening FITS files by " "default; that is fits.open() will only seek for and read HDUs on " "demand rather than reading all HDUs at once. See the documentation " "for fits.open() for more details.", ) enable_uint = _config.ConfigItem( True, "If True, default to recognizing the convention for representing " "unsigned integers in FITS--if an array has BITPIX > 0, BSCALE = 1, " "and BZERO = 2**BITPIX, represent the data as unsigned integers " "per this convention.", ) conf = Conf() # Public API compatibility imports # These need to come after the global config variables, as some of the # submodules use them from . import card, column, convenience, hdu from .card import * from .column import * from .convenience import * from .diff import * from .fitsrec import FITS_rec, FITS_record from .hdu import * from .hdu.groups import GroupData from .hdu.hdulist import fitsopen as open from .hdu.image import Section from .header import Header from .verify import VerifyError __all__ = ( ["Conf", "conf"] + card.__all__ + column.__all__ + convenience.__all__ + hdu.__all__ + [ "FITS_record", "FITS_rec", "GroupData", "open", "Section", "Header", "VerifyError", "conf", ] )
22bcc445ebd2e9d04a67c7c7feff42a26aec23176ddb6430a13987171f49be25
# Licensed under a 3-clause BSD style license - see PYFITS.rst import copy import numbers import operator import re import sys import warnings import weakref from collections import OrderedDict from contextlib import suppress from functools import reduce import numpy as np from numpy import char as chararray from astropy.utils import indent, isiterable, lazyproperty from astropy.utils.exceptions import AstropyUserWarning from .card import CARD_LENGTH, Card from .util import NotifierMixin, _convert_array, _is_int, cmp, encode_ascii, pairwise from .verify import VerifyError, VerifyWarning __all__ = ["Column", "ColDefs", "Delayed"] # mapping from TFORM data type to numpy data type (code) # L: Logical (Boolean) # B: Unsigned Byte # I: 16-bit Integer # J: 32-bit Integer # K: 64-bit Integer # E: Single-precision Floating Point # D: Double-precision Floating Point # C: Single-precision Complex # M: Double-precision Complex # A: Character FITS2NUMPY = { "L": "i1", "B": "u1", "I": "i2", "J": "i4", "K": "i8", "E": "f4", "D": "f8", "C": "c8", "M": "c16", "A": "a", } # the inverse dictionary of the above NUMPY2FITS = {val: key for key, val in FITS2NUMPY.items()} # Normally booleans are represented as ints in Astropy, but if passed in a numpy # boolean array, that should be supported NUMPY2FITS["b1"] = "L" # Add unsigned types, which will be stored as signed ints with a TZERO card. NUMPY2FITS["u2"] = "I" NUMPY2FITS["u4"] = "J" NUMPY2FITS["u8"] = "K" # Add half precision floating point numbers which will be up-converted to # single precision. NUMPY2FITS["f2"] = "E" # This is the order in which values are converted to FITS types # Note that only double precision floating point/complex are supported FORMATORDER = ["L", "B", "I", "J", "K", "D", "M", "A"] # Convert single precision floating point/complex to double precision. FITSUPCONVERTERS = {"E": "D", "C": "M"} # mapping from ASCII table TFORM data type to numpy data type # A: Character # I: Integer (32-bit) # J: Integer (64-bit; non-standard) # F: Float (64-bit; fixed decimal notation) # E: Float (64-bit; exponential notation) # D: Float (64-bit; exponential notation, always 64-bit by convention) ASCII2NUMPY = {"A": "a", "I": "i4", "J": "i8", "F": "f8", "E": "f8", "D": "f8"} # Maps FITS ASCII column format codes to the appropriate Python string # formatting codes for that type. ASCII2STR = {"A": "", "I": "d", "J": "d", "F": "f", "E": "E", "D": "E"} # For each ASCII table format code, provides a default width (and decimal # precision) for when one isn't given explicitly in the column format ASCII_DEFAULT_WIDTHS = { "A": (1, 0), "I": (10, 0), "J": (15, 0), "E": (15, 7), "F": (16, 7), "D": (25, 17), } # TDISPn for both ASCII and Binary tables TDISP_RE_DICT = {} TDISP_RE_DICT["F"] = re.compile( r"(?:(?P<formatc>[F])(?:(?P<width>[0-9]+)\.{1}" r"(?P<precision>[0-9])+)+)|" ) TDISP_RE_DICT["A"] = TDISP_RE_DICT["L"] = re.compile( r"(?:(?P<formatc>[AL])(?P<width>[0-9]+)+)|" ) TDISP_RE_DICT["I"] = TDISP_RE_DICT["B"] = TDISP_RE_DICT["O"] = TDISP_RE_DICT[ "Z" ] = re.compile( r"(?:(?P<formatc>[IBOZ])(?:(?P<width>[0-9]+)" r"(?:\.{0,1}(?P<precision>[0-9]+))?))|" ) TDISP_RE_DICT["E"] = TDISP_RE_DICT["G"] = TDISP_RE_DICT["D"] = re.compile( r"(?:(?P<formatc>[EGD])(?:(?P<width>[0-9]+)\." r"(?P<precision>[0-9]+))+)" r"(?:E{0,1}(?P<exponential>[0-9]+)?)|" ) TDISP_RE_DICT["EN"] = TDISP_RE_DICT["ES"] = re.compile( r"(?:(?P<formatc>E[NS])(?:(?P<width>[0-9]+)\.{1}" r"(?P<precision>[0-9])+)+)" ) # mapping from TDISP format to python format # A: Character # L: Logical (Boolean) # I: 16-bit Integer # Can't predefine zero padding and space padding before hand without # knowing the value being formatted, so grabbing precision and using that # to zero pad, ignoring width. Same with B, O, and Z # B: Binary Integer # O: Octal Integer # Z: Hexadecimal Integer # F: Float (64-bit; fixed decimal notation) # EN: Float (engineering fortran format, exponential multiple of thee # ES: Float (scientific, same as EN but non-zero leading digit # E: Float, exponential notation # Can't get exponential restriction to work without knowing value # before hand, so just using width and precision, same with D, G, EN, and # ES formats # D: Double-precision Floating Point with exponential # (E but for double precision) # G: Double-precision Floating Point, may or may not show exponent TDISP_FMT_DICT = { "I": "{{:{width}d}}", "B": "{{:{width}b}}", "O": "{{:{width}o}}", "Z": "{{:{width}x}}", "F": "{{:{width}.{precision}f}}", "G": "{{:{width}.{precision}g}}", } TDISP_FMT_DICT["A"] = TDISP_FMT_DICT["L"] = "{{:>{width}}}" TDISP_FMT_DICT["E"] = TDISP_FMT_DICT["D"] = TDISP_FMT_DICT["EN"] = TDISP_FMT_DICT[ "ES" ] = "{{:{width}.{precision}e}}" # tuple of column/field definition common names and keyword names, make # sure to preserve the one-to-one correspondence when updating the list(s). # Use lists, instead of dictionaries so the names can be displayed in a # preferred order. KEYWORD_NAMES = ( "TTYPE", "TFORM", "TUNIT", "TNULL", "TSCAL", "TZERO", "TDISP", "TBCOL", "TDIM", "TCTYP", "TCUNI", "TCRPX", "TCRVL", "TCDLT", "TRPOS", ) KEYWORD_ATTRIBUTES = ( "name", "format", "unit", "null", "bscale", "bzero", "disp", "start", "dim", "coord_type", "coord_unit", "coord_ref_point", "coord_ref_value", "coord_inc", "time_ref_pos", ) """This is a list of the attributes that can be set on `Column` objects.""" KEYWORD_TO_ATTRIBUTE = OrderedDict(zip(KEYWORD_NAMES, KEYWORD_ATTRIBUTES)) ATTRIBUTE_TO_KEYWORD = OrderedDict(zip(KEYWORD_ATTRIBUTES, KEYWORD_NAMES)) # TODO: Define a list of default comments to associate with each table keyword # TFORMn regular expression TFORMAT_RE = re.compile( r"(?P<repeat>^[0-9]*)(?P<format>[LXBIJKAEDCMPQ])" r"(?P<option>[!-~]*)", re.I ) # TFORMn for ASCII tables; two different versions depending on whether # the format is floating-point or not; allows empty values for width # in which case defaults are used TFORMAT_ASCII_RE = re.compile( r"(?:(?P<format>[AIJ])(?P<width>[0-9]+)?)|" r"(?:(?P<formatf>[FED])" r"(?:(?P<widthf>[0-9]+)(?:\." r"(?P<precision>[0-9]+))?)?)" ) TTYPE_RE = re.compile(r"[0-9a-zA-Z_]+") """ Regular expression for valid table column names. See FITS Standard v3.0 section 7.2.2. """ # table definition keyword regular expression TDEF_RE = re.compile(r"(?P<label>^T[A-Z]*)(?P<num>[1-9][0-9 ]*$)") # table dimension keyword regular expression (fairly flexible with whitespace) TDIM_RE = re.compile(r"\(\s*(?P<dims>(?:\d+\s*)(?:,\s*\d+\s*)*\s*)\)\s*") # value for ASCII table cell with value = TNULL # this can be reset by user. ASCIITNULL = 0 # The default placeholder to use for NULL values in ASCII tables when # converting from binary to ASCII tables DEFAULT_ASCII_TNULL = "---" class Delayed: """Delayed file-reading data.""" def __init__(self, hdu=None, field=None): self.hdu = weakref.proxy(hdu) self.field = field def __getitem__(self, key): # This forces the data for the HDU to be read, which will replace # the corresponding Delayed objects in the Tables Columns to be # transformed into ndarrays. It will also return the value of the # requested data element. return self.hdu.data[key][self.field] class _BaseColumnFormat(str): """ Base class for binary table column formats (just called _ColumnFormat) and ASCII table column formats (_AsciiColumnFormat). """ def __eq__(self, other): if not other: return False if isinstance(other, str): if not isinstance(other, self.__class__): try: other = self.__class__(other) except ValueError: return False else: return False return self.canonical == other.canonical def __hash__(self): return hash(self.canonical) @lazyproperty def dtype(self): """ The Numpy dtype object created from the format's associated recformat. """ return np.dtype(self.recformat) @classmethod def from_column_format(cls, format): """Creates a column format object from another column format object regardless of their type. That is, this can convert a _ColumnFormat to an _AsciiColumnFormat or vice versa at least in cases where a direct translation is possible. """ return cls.from_recformat(format.recformat) class _ColumnFormat(_BaseColumnFormat): """ Represents a FITS binary table column format. This is an enhancement over using a normal string for the format, since the repeat count, format code, and option are available as separate attributes, and smart comparison is used. For example 1J == J. """ def __new__(cls, format): self = super().__new__(cls, format) self.repeat, self.format, self.option = _parse_tformat(format) self.format = self.format.upper() if self.format in ("P", "Q"): # TODO: There should be a generic factory that returns either # _FormatP or _FormatQ as appropriate for a given TFORMn if self.format == "P": recformat = _FormatP.from_tform(format) else: recformat = _FormatQ.from_tform(format) # Format of variable length arrays self.p_format = recformat.format else: self.p_format = None return self @classmethod def from_recformat(cls, recformat): """Creates a column format from a Numpy record dtype format.""" return cls(_convert_format(recformat, reverse=True)) @lazyproperty def recformat(self): """Returns the equivalent Numpy record format string.""" return _convert_format(self) @lazyproperty def canonical(self): """ Returns a 'canonical' string representation of this format. This is in the proper form of rTa where T is the single character data type code, a is the optional part, and r is the repeat. If repeat == 1 (the default) it is left out of this representation. """ if self.repeat == 1: repeat = "" else: repeat = str(self.repeat) return f"{repeat}{self.format}{self.option}" class _AsciiColumnFormat(_BaseColumnFormat): """Similar to _ColumnFormat but specifically for columns in ASCII tables. The formats of ASCII table columns and binary table columns are inherently incompatible in FITS. They don't support the same ranges and types of values, and even reuse format codes in subtly different ways. For example the format code 'Iw' in ASCII columns refers to any integer whose string representation is at most w characters wide, so 'I' can represent effectively any integer that will fit in a FITS columns. Whereas for binary tables 'I' very explicitly refers to a 16-bit signed integer. Conversions between the two column formats can be performed using the ``to/from_binary`` methods on this class, or the ``to/from_ascii`` methods on the `_ColumnFormat` class. But again, not all conversions are possible and may result in a `ValueError`. """ def __new__(cls, format, strict=False): self = super().__new__(cls, format) self.format, self.width, self.precision = _parse_ascii_tformat(format, strict) # If no width has been specified, set the dtype here to default as well if format == self.format: self.recformat = ASCII2NUMPY[format] # This is to support handling logical (boolean) data from binary tables # in an ASCII table self._pseudo_logical = False return self @classmethod def from_column_format(cls, format): inst = cls.from_recformat(format.recformat) # Hack if format.format == "L": inst._pseudo_logical = True return inst @classmethod def from_recformat(cls, recformat): """Creates a column format from a Numpy record dtype format.""" return cls(_convert_ascii_format(recformat, reverse=True)) @lazyproperty def recformat(self): """Returns the equivalent Numpy record format string.""" return _convert_ascii_format(self) @lazyproperty def canonical(self): """ Returns a 'canonical' string representation of this format. This is in the proper form of Tw.d where T is the single character data type code, w is the width in characters for this field, and d is the number of digits after the decimal place (for format codes 'E', 'F', and 'D' only). """ if self.format in ("E", "F", "D"): return f"{self.format}{self.width}.{self.precision}" return f"{self.format}{self.width}" class _FormatX(str): """For X format in binary tables.""" def __new__(cls, repeat=1): nbytes = ((repeat - 1) // 8) + 1 # use an array, even if it is only ONE u1 (i.e. use tuple always) obj = super().__new__(cls, repr((nbytes,)) + "u1") obj.repeat = repeat return obj def __getnewargs__(self): return (self.repeat,) @property def tform(self): return f"{self.repeat}X" # TODO: Table column formats need to be verified upon first reading the file; # as it is, an invalid P format will raise a VerifyError from some deep, # unexpected place class _FormatP(str): """For P format in variable length table.""" # As far as I can tell from my reading of the FITS standard, a type code is # *required* for P and Q formats; there is no default _format_re_template = ( r"(?P<repeat>\d+)?{}(?P<dtype>[LXBIJKAEDCM])" r"(?:\((?P<max>\d*)\))?" ) _format_code = "P" _format_re = re.compile(_format_re_template.format(_format_code)) _descriptor_format = "2i4" def __new__(cls, dtype, repeat=None, max=None): obj = super().__new__(cls, cls._descriptor_format) obj.format = NUMPY2FITS[dtype] obj.dtype = dtype obj.repeat = repeat obj.max = max return obj def __getnewargs__(self): return (self.dtype, self.repeat, self.max) @classmethod def from_tform(cls, format): m = cls._format_re.match(format) if not m or m.group("dtype") not in FITS2NUMPY: raise VerifyError(f"Invalid column format: {format}") repeat = m.group("repeat") array_dtype = m.group("dtype") max = m.group("max") if not max: max = None return cls(FITS2NUMPY[array_dtype], repeat=repeat, max=max) @property def tform(self): repeat = "" if self.repeat is None else self.repeat max = "" if self.max is None else self.max return f"{repeat}{self._format_code}{self.format}({max})" class _FormatQ(_FormatP): """Carries type description of the Q format for variable length arrays. The Q format is like the P format but uses 64-bit integers in the array descriptors, allowing for heaps stored beyond 2GB into a file. """ _format_code = "Q" _format_re = re.compile(_FormatP._format_re_template.format(_format_code)) _descriptor_format = "2i8" class ColumnAttribute: """ Descriptor for attributes of `Column` that are associated with keywords in the FITS header and describe properties of the column as specified in the FITS standard. Each `ColumnAttribute` may have a ``validator`` method defined on it. This validates values set on this attribute to ensure that they meet the FITS standard. Invalid values will raise a warning and will not be used in formatting the column. The validator should take two arguments--the `Column` it is being assigned to, and the new value for the attribute, and it must raise an `AssertionError` if the value is invalid. The `ColumnAttribute` itself is a decorator that can be used to define the ``validator`` for each column attribute. For example:: @ColumnAttribute('TTYPE') def name(col, name): if not isinstance(name, str): raise AssertionError The actual object returned by this decorator is the `ColumnAttribute` instance though, not the ``name`` function. As such ``name`` is not a method of the class it is defined in. The setter for `ColumnAttribute` also updates the header of any table HDU this column is attached to in order to reflect the change. The ``validator`` should ensure that the value is valid for inclusion in a FITS header. """ def __init__(self, keyword): self._keyword = keyword self._validator = None # The name of the attribute associated with this keyword is currently # determined from the KEYWORD_NAMES/ATTRIBUTES lists. This could be # make more flexible in the future, for example, to support custom # column attributes. self._attr = "_" + KEYWORD_TO_ATTRIBUTE[self._keyword] def __get__(self, obj, objtype=None): if obj is None: return self else: return getattr(obj, self._attr) def __set__(self, obj, value): if self._validator is not None: self._validator(obj, value) old_value = getattr(obj, self._attr, None) setattr(obj, self._attr, value) obj._notify("column_attribute_changed", obj, self._attr[1:], old_value, value) def __call__(self, func): """ Set the validator for this column attribute. Returns ``self`` so that this can be used as a decorator, as described in the docs for this class. """ self._validator = func return self def __repr__(self): return f"{self.__class__.__name__}('{self._keyword}')" class Column(NotifierMixin): """ Class which contains the definition of one column, e.g. ``ttype``, ``tform``, etc. and the array containing values for the column. """ def __init__( self, name=None, format=None, unit=None, null=None, bscale=None, bzero=None, disp=None, start=None, dim=None, array=None, ascii=None, coord_type=None, coord_unit=None, coord_ref_point=None, coord_ref_value=None, coord_inc=None, time_ref_pos=None, ): """ Construct a `Column` by specifying attributes. All attributes except ``format`` can be optional; see :ref:`astropy:column_creation` and :ref:`astropy:creating_ascii_table` for more information regarding ``TFORM`` keyword. Parameters ---------- name : str, optional column name, corresponding to ``TTYPE`` keyword format : str column format, corresponding to ``TFORM`` keyword unit : str, optional column unit, corresponding to ``TUNIT`` keyword null : str, optional null value, corresponding to ``TNULL`` keyword bscale : int-like, optional bscale value, corresponding to ``TSCAL`` keyword bzero : int-like, optional bzero value, corresponding to ``TZERO`` keyword disp : str, optional display format, corresponding to ``TDISP`` keyword start : int, optional column starting position (ASCII table only), corresponding to ``TBCOL`` keyword dim : str, optional column dimension corresponding to ``TDIM`` keyword array : iterable, optional a `list`, `numpy.ndarray` (or other iterable that can be used to initialize an ndarray) providing initial data for this column. The array will be automatically converted, if possible, to the data format of the column. In the case were non-trivial ``bscale`` and/or ``bzero`` arguments are given, the values in the array must be the *physical* values--that is, the values of column as if the scaling has already been applied (the array stored on the column object will then be converted back to its storage values). ascii : bool, optional set `True` if this describes a column for an ASCII table; this may be required to disambiguate the column format coord_type : str, optional coordinate/axis type corresponding to ``TCTYP`` keyword coord_unit : str, optional coordinate/axis unit corresponding to ``TCUNI`` keyword coord_ref_point : int-like, optional pixel coordinate of the reference point corresponding to ``TCRPX`` keyword coord_ref_value : int-like, optional coordinate value at reference point corresponding to ``TCRVL`` keyword coord_inc : int-like, optional coordinate increment at reference point corresponding to ``TCDLT`` keyword time_ref_pos : str, optional reference position for a time coordinate column corresponding to ``TRPOS`` keyword """ if format is None: raise ValueError("Must specify format to construct Column.") # any of the input argument (except array) can be a Card or just # a number/string kwargs = {"ascii": ascii} for attr in KEYWORD_ATTRIBUTES: value = locals()[attr] # get the argument's value if isinstance(value, Card): value = value.value kwargs[attr] = value valid_kwargs, invalid_kwargs = self._verify_keywords(**kwargs) if invalid_kwargs: msg = ["The following keyword arguments to Column were invalid:"] for val in invalid_kwargs.values(): msg.append(indent(val[1])) raise VerifyError("\n".join(msg)) for attr in KEYWORD_ATTRIBUTES: setattr(self, attr, valid_kwargs.get(attr)) # TODO: Try to eliminate the following two special cases # for recformat and dim: # This is not actually stored as an attribute on columns for some # reason recformat = valid_kwargs["recformat"] # The 'dim' keyword's original value is stored in self.dim, while # *only* the tuple form is stored in self._dims. self._dims = self.dim self.dim = dim # Awful hack to use for now to keep track of whether the column holds # pseudo-unsigned int data self._pseudo_unsigned_ints = False # if the column data is not ndarray, make it to be one, i.e. # input arrays can be just list or tuple, not required to be ndarray # does not include Object array because there is no guarantee # the elements in the object array are consistent. if not isinstance(array, (np.ndarray, chararray.chararray, Delayed)): try: # try to convert to a ndarray first if array is not None: array = np.array(array) except Exception: try: # then try to convert it to a strings array itemsize = int(recformat[1:]) array = chararray.array(array, itemsize=itemsize) except ValueError: # then try variable length array # Note: This includes _FormatQ by inheritance if isinstance(recformat, _FormatP): array = _VLF(array, dtype=recformat.dtype) else: raise ValueError( f"Data is inconsistent with the format `{format}`." ) array = self._convert_to_valid_data_type(array) # We have required (through documentation) that arrays passed in to # this constructor are already in their physical values, so we make # note of that here if isinstance(array, np.ndarray): self._physical_values = True else: self._physical_values = False self._parent_fits_rec = None self.array = array def __repr__(self): text = "" for attr in KEYWORD_ATTRIBUTES: value = getattr(self, attr) if value is not None: text += attr + " = " + repr(value) + "; " return text[:-2] def __eq__(self, other): """ Two columns are equal if their name and format are the same. Other attributes aren't taken into account at this time. """ # According to the FITS standard column names must be case-insensitive a = (self.name.lower(), self.format) b = (other.name.lower(), other.format) return a == b def __hash__(self): """ Like __eq__, the hash of a column should be based on the unique column name and format, and be case-insensitive with respect to the column name. """ return hash((self.name.lower(), self.format)) @property def array(self): """ The Numpy `~numpy.ndarray` associated with this `Column`. If the column was instantiated with an array passed to the ``array`` argument, this will return that array. However, if the column is later added to a table, such as via `BinTableHDU.from_columns` as is typically the case, this attribute will be updated to reference the associated field in the table, which may no longer be the same array. """ # Ideally the .array attribute never would have existed in the first # place, or would have been internal-only. This is a legacy of the # older design from Astropy that needs to have continued support, for # now. # One of the main problems with this design was that it created a # reference cycle. When the .array attribute was updated after # creating a FITS_rec from the column (as explained in the docstring) a # reference cycle was created. This is because the code in BinTableHDU # (and a few other places) does essentially the following: # # data._coldefs = columns # The ColDefs object holding this Column # for col in columns: # col.array = data.field(col.name) # # This way each columns .array attribute now points to the field in the # table data. It's actually a pretty confusing interface (since it # replaces the array originally pointed to by .array), but it's the way # things have been for a long, long time. # # However, this results, in *many* cases, in a reference cycle. # Because the array returned by data.field(col.name), while sometimes # an array that owns its own data, is usually like a slice of the # original data. It has the original FITS_rec as the array .base. # This results in the following reference cycle (for the n-th column): # # data -> data._coldefs -> data._coldefs[n] -> # data._coldefs[n].array -> data._coldefs[n].array.base -> data # # Because ndarray objects do not handled by Python's garbage collector # the reference cycle cannot be broken. Therefore the FITS_rec's # refcount never goes to zero, its __del__ is never called, and its # memory is never freed. This didn't occur in *all* cases, but it did # occur in many cases. # # To get around this, Column.array is no longer a simple attribute # like it was previously. Now each Column has a ._parent_fits_rec # attribute which is a weakref to a FITS_rec object. Code that # previously assigned each col.array to field in a FITS_rec (as in # the example a few paragraphs above) is still used, however now # array.setter checks if a reference cycle will be created. And if # so, instead of saving directly to the Column's __dict__, it creates # the ._prent_fits_rec weakref, and all lookups of the column's .array # go through that instead. # # This alone does not fully solve the problem. Because # _parent_fits_rec is a weakref, if the user ever holds a reference to # the Column, but deletes all references to the underlying FITS_rec, # the .array attribute would suddenly start returning None instead of # the array data. This problem is resolved on FITS_rec's end. See the # note in the FITS_rec._coldefs property for the rest of the story. # If the Columns's array is not a reference to an existing FITS_rec, # then it is just stored in self.__dict__; otherwise check the # _parent_fits_rec reference if it 's still available. if "array" in self.__dict__: return self.__dict__["array"] elif self._parent_fits_rec is not None: parent = self._parent_fits_rec() if parent is not None: return parent[self.name] else: return None @array.setter def array(self, array): # The following looks over the bases of the given array to check if it # has a ._coldefs attribute (i.e. is a FITS_rec) and that that _coldefs # contains this Column itself, and would create a reference cycle if we # stored the array directly in self.__dict__. # In this case it instead sets up the _parent_fits_rec weakref to the # underlying FITS_rec, so that array.getter can return arrays through # self._parent_fits_rec().field(self.name), rather than storing a # hard reference to the field like it used to. base = array while True: if hasattr(base, "_coldefs") and isinstance(base._coldefs, ColDefs): for col in base._coldefs: if col is self and self._parent_fits_rec is None: self._parent_fits_rec = weakref.ref(base) # Just in case the user already set .array to their own # array. if "array" in self.__dict__: del self.__dict__["array"] return if getattr(base, "base", None) is not None: base = base.base else: break self.__dict__["array"] = array @array.deleter def array(self): try: del self.__dict__["array"] except KeyError: pass self._parent_fits_rec = None @ColumnAttribute("TTYPE") def name(col, name): if name is None: # Allow None to indicate deleting the name, or to just indicate an # unspecified name (when creating a new Column). return # Check that the name meets the recommended standard--other column # names are *allowed*, but will be discouraged if isinstance(name, str) and not TTYPE_RE.match(name): warnings.warn( "It is strongly recommended that column names contain only " "upper and lower-case ASCII letters, digits, or underscores " "for maximum compatibility with other software " "(got {!r}).".format(name), VerifyWarning, ) # This ensures that the new name can fit into a single FITS card # without any special extension like CONTINUE cards or the like. if not isinstance(name, str) or len(str(Card("TTYPE", name))) != CARD_LENGTH: raise AssertionError( "Column name must be a string able to fit in a single " "FITS card--typically this means a maximum of 68 " "characters, though it may be fewer if the string " "contains special characters like quotes." ) @ColumnAttribute("TCTYP") def coord_type(col, coord_type): if coord_type is None: return if not isinstance(coord_type, str) or len(coord_type) > 8: raise AssertionError( "Coordinate/axis type must be a string of atmost 8 characters." ) @ColumnAttribute("TCUNI") def coord_unit(col, coord_unit): if coord_unit is not None and not isinstance(coord_unit, str): raise AssertionError("Coordinate/axis unit must be a string.") @ColumnAttribute("TCRPX") def coord_ref_point(col, coord_ref_point): if coord_ref_point is not None and not isinstance( coord_ref_point, numbers.Real ): raise AssertionError( "Pixel coordinate of the reference point must be real floating type." ) @ColumnAttribute("TCRVL") def coord_ref_value(col, coord_ref_value): if coord_ref_value is not None and not isinstance( coord_ref_value, numbers.Real ): raise AssertionError( "Coordinate value at reference point must be real floating type." ) @ColumnAttribute("TCDLT") def coord_inc(col, coord_inc): if coord_inc is not None and not isinstance(coord_inc, numbers.Real): raise AssertionError("Coordinate increment must be real floating type.") @ColumnAttribute("TRPOS") def time_ref_pos(col, time_ref_pos): if time_ref_pos is not None and not isinstance(time_ref_pos, str): raise AssertionError("Time reference position must be a string.") format = ColumnAttribute("TFORM") unit = ColumnAttribute("TUNIT") null = ColumnAttribute("TNULL") bscale = ColumnAttribute("TSCAL") bzero = ColumnAttribute("TZERO") disp = ColumnAttribute("TDISP") start = ColumnAttribute("TBCOL") dim = ColumnAttribute("TDIM") @lazyproperty def ascii(self): """Whether this `Column` represents a column in an ASCII table.""" return isinstance(self.format, _AsciiColumnFormat) @lazyproperty def dtype(self): return self.format.dtype def copy(self): """ Return a copy of this `Column`. """ tmp = Column(format="I") # just use a throw-away format tmp.__dict__ = self.__dict__.copy() return tmp @staticmethod def _convert_format(format, cls): """The format argument to this class's initializer may come in many forms. This uses the given column format class ``cls`` to convert to a format of that type. TODO: There should be an abc base class for column format classes """ # Short circuit in case we're already a _BaseColumnFormat--there is at # least one case in which this can happen if isinstance(format, _BaseColumnFormat): return format, format.recformat if format in NUMPY2FITS: with suppress(VerifyError): # legit recarray format? recformat = format format = cls.from_recformat(format) try: # legit FITS format? format = cls(format) recformat = format.recformat except VerifyError: raise VerifyError(f"Illegal format `{format}`.") return format, recformat @classmethod def _verify_keywords( cls, name=None, format=None, unit=None, null=None, bscale=None, bzero=None, disp=None, start=None, dim=None, ascii=None, coord_type=None, coord_unit=None, coord_ref_point=None, coord_ref_value=None, coord_inc=None, time_ref_pos=None, ): """ Given the keyword arguments used to initialize a Column, specifically those that typically read from a FITS header (so excluding array), verify that each keyword has a valid value. Returns a 2-tuple of dicts. The first maps valid keywords to their values. The second maps invalid keywords to a 2-tuple of their value, and a message explaining why they were found invalid. """ valid = {} invalid = {} try: format, recformat = cls._determine_formats(format, start, dim, ascii) valid.update(format=format, recformat=recformat) except (ValueError, VerifyError) as err: msg = ( f"Column format option (TFORMn) failed verification: {err!s} " "The invalid value will be ignored for the purpose of " "formatting the data in this column." ) invalid["format"] = (format, msg) except AttributeError as err: msg = ( "Column format option (TFORMn) must be a string with a valid " f"FITS table format (got {format!s}: {err!s}). " "The invalid value will be ignored for the purpose of " "formatting the data in this column." ) invalid["format"] = (format, msg) # Currently we don't have any validation for name, unit, bscale, or # bzero so include those by default # TODO: Add validation for these keywords, obviously for k, v in [ ("name", name), ("unit", unit), ("bscale", bscale), ("bzero", bzero), ]: if v is not None and v != "": valid[k] = v # Validate null option # Note: Enough code exists that thinks empty strings are sensible # inputs for these options that we need to treat '' as None if null is not None and null != "": msg = None if isinstance(format, _AsciiColumnFormat): null = str(null) if len(null) > format.width: msg = ( "ASCII table null option (TNULLn) is longer than " "the column's character width and will be truncated " "(got {!r}).".format(null) ) else: tnull_formats = ("B", "I", "J", "K") if not _is_int(null): # Make this an exception instead of a warning, since any # non-int value is meaningless msg = ( "Column null option (TNULLn) must be an integer for " "binary table columns (got {!r}). The invalid value " "will be ignored for the purpose of formatting " "the data in this column.".format(null) ) elif not ( format.format in tnull_formats or ( format.format in ("P", "Q") and format.p_format in tnull_formats ) ): # TODO: We should also check that TNULLn's integer value # is in the range allowed by the column's format msg = ( "Column null option (TNULLn) is invalid for binary " "table columns of type {!r} (got {!r}). The invalid " "value will be ignored for the purpose of formatting " "the data in this column.".format(format, null) ) if msg is None: valid["null"] = null else: invalid["null"] = (null, msg) # Validate the disp option # TODO: Add full parsing and validation of TDISPn keywords if disp is not None and disp != "": msg = None if not isinstance(disp, str): msg = ( "Column disp option (TDISPn) must be a string (got " f"{disp!r}). The invalid value will be ignored for the " "purpose of formatting the data in this column." ) elif isinstance(format, _AsciiColumnFormat) and disp[0].upper() == "L": # disp is at least one character long and has the 'L' format # which is not recognized for ASCII tables msg = ( "Column disp option (TDISPn) may not use the 'L' format " "with ASCII table columns. The invalid value will be " "ignored for the purpose of formatting the data in this " "column." ) if msg is None: try: _parse_tdisp_format(disp) valid["disp"] = disp except VerifyError as err: msg = ( "Column disp option (TDISPn) failed verification: " f"{err!s} The invalid value will be ignored for the " "purpose of formatting the data in this column." ) invalid["disp"] = (disp, msg) else: invalid["disp"] = (disp, msg) # Validate the start option if start is not None and start != "": msg = None if not isinstance(format, _AsciiColumnFormat): # The 'start' option only applies to ASCII columns msg = ( "Column start option (TBCOLn) is not allowed for binary " "table columns (got {!r}). The invalid keyword will be " "ignored for the purpose of formatting the data in this " "column.".format(start) ) else: try: start = int(start) except (TypeError, ValueError): pass if not _is_int(start) or start < 1: msg = ( "Column start option (TBCOLn) must be a positive integer " "(got {!r}). The invalid value will be ignored for the " "purpose of formatting the data in this column.".format(start) ) if msg is None: valid["start"] = start else: invalid["start"] = (start, msg) # Process TDIMn options # ASCII table columns can't have a TDIMn keyword associated with it; # for now we just issue a warning and ignore it. # TODO: This should be checked by the FITS verification code if dim is not None and dim != "": msg = None dims_tuple = tuple() # NOTE: If valid, the dim keyword's value in the the valid dict is # a tuple, not the original string; if invalid just the original # string is returned if isinstance(format, _AsciiColumnFormat): msg = ( "Column dim option (TDIMn) is not allowed for ASCII table " "columns (got {!r}). The invalid keyword will be ignored " "for the purpose of formatting this column.".format(dim) ) elif isinstance(dim, str): dims_tuple = _parse_tdim(dim) elif isinstance(dim, tuple): dims_tuple = dim else: msg = ( "`dim` argument must be a string containing a valid value " "for the TDIMn header keyword associated with this column, " "or a tuple containing the C-order dimensions for the " "column. The invalid value will be ignored for the purpose " "of formatting this column." ) if dims_tuple: if reduce(operator.mul, dims_tuple) > format.repeat: msg = ( "The repeat count of the column format {!r} for column {!r} " "is fewer than the number of elements per the TDIM " "argument {!r}. The invalid TDIMn value will be ignored " "for the purpose of formatting this column.".format( name, format, dim ) ) if msg is None: valid["dim"] = dims_tuple else: invalid["dim"] = (dim, msg) if coord_type is not None and coord_type != "": msg = None if not isinstance(coord_type, str): msg = ( "Coordinate/axis type option (TCTYPn) must be a string " "(got {!r}). The invalid keyword will be ignored for the " "purpose of formatting this column.".format(coord_type) ) elif len(coord_type) > 8: msg = ( "Coordinate/axis type option (TCTYPn) must be a string " "of atmost 8 characters (got {!r}). The invalid keyword " "will be ignored for the purpose of formatting this " "column.".format(coord_type) ) if msg is None: valid["coord_type"] = coord_type else: invalid["coord_type"] = (coord_type, msg) if coord_unit is not None and coord_unit != "": msg = None if not isinstance(coord_unit, str): msg = ( "Coordinate/axis unit option (TCUNIn) must be a string " "(got {!r}). The invalid keyword will be ignored for the " "purpose of formatting this column.".format(coord_unit) ) if msg is None: valid["coord_unit"] = coord_unit else: invalid["coord_unit"] = (coord_unit, msg) for k, v in [ ("coord_ref_point", coord_ref_point), ("coord_ref_value", coord_ref_value), ("coord_inc", coord_inc), ]: if v is not None and v != "": msg = None if not isinstance(v, numbers.Real): msg = ( "Column {} option ({}n) must be a real floating type (got" " {!r}). The invalid value will be ignored for the purpose of" " formatting the data in this column.".format( k, ATTRIBUTE_TO_KEYWORD[k], v ) ) if msg is None: valid[k] = v else: invalid[k] = (v, msg) if time_ref_pos is not None and time_ref_pos != "": msg = None if not isinstance(time_ref_pos, str): msg = ( "Time coordinate reference position option (TRPOSn) must be " "a string (got {!r}). The invalid keyword will be ignored for " "the purpose of formatting this column.".format(time_ref_pos) ) if msg is None: valid["time_ref_pos"] = time_ref_pos else: invalid["time_ref_pos"] = (time_ref_pos, msg) return valid, invalid @classmethod def _determine_formats(cls, format, start, dim, ascii): """ Given a format string and whether or not the Column is for an ASCII table (ascii=None means unspecified, but lean toward binary table where ambiguous) create an appropriate _BaseColumnFormat instance for the column's format, and determine the appropriate recarray format. The values of the start and dim keyword arguments are also useful, as the former is only valid for ASCII tables and the latter only for BINARY tables. """ # If the given format string is unambiguously a Numpy dtype or one of # the Numpy record format type specifiers supported by Astropy then that # should take priority--otherwise assume it is a FITS format if isinstance(format, np.dtype): format, _, _ = _dtype_to_recformat(format) # check format if ascii is None and not isinstance(format, _BaseColumnFormat): # We're just give a string which could be either a Numpy format # code, or a format for a binary column array *or* a format for an # ASCII column array--there may be many ambiguities here. Try our # best to guess what the user intended. format, recformat = cls._guess_format(format, start, dim) elif not ascii and not isinstance(format, _BaseColumnFormat): format, recformat = cls._convert_format(format, _ColumnFormat) elif ascii and not isinstance(format, _AsciiColumnFormat): format, recformat = cls._convert_format(format, _AsciiColumnFormat) else: # The format is already acceptable and unambiguous recformat = format.recformat return format, recformat @classmethod def _guess_format(cls, format, start, dim): if start and dim: # This is impossible; this can't be a valid FITS column raise ValueError( "Columns cannot have both a start (TCOLn) and dim " "(TDIMn) option, since the former is only applies to " "ASCII tables, and the latter is only valid for binary " "tables." ) elif start: # Only ASCII table columns can have a 'start' option guess_format = _AsciiColumnFormat elif dim: # Only binary tables can have a dim option guess_format = _ColumnFormat else: # If the format is *technically* a valid binary column format # (i.e. it has a valid format code followed by arbitrary # "optional" codes), but it is also strictly a valid ASCII # table format, then assume an ASCII table column was being # requested (the more likely case, after all). with suppress(VerifyError): format = _AsciiColumnFormat(format, strict=True) # A safe guess which reflects the existing behavior of previous # Astropy versions guess_format = _ColumnFormat try: format, recformat = cls._convert_format(format, guess_format) except VerifyError: # For whatever reason our guess was wrong (for example if we got # just 'F' that's not a valid binary format, but it an ASCII format # code albeit with the width/precision omitted guess_format = ( _AsciiColumnFormat if guess_format is _ColumnFormat else _ColumnFormat ) # If this fails too we're out of options--it is truly an invalid # format, or at least not supported format, recformat = cls._convert_format(format, guess_format) return format, recformat def _convert_to_valid_data_type(self, array): # Convert the format to a type we understand if isinstance(array, Delayed): return array elif array is None: return array else: format = self.format dims = self._dims if dims: shape = dims[:-1] if "A" in format else dims shape = (len(array),) + shape array = array.reshape(shape) if "P" in format or "Q" in format: return array elif "A" in format: if array.dtype.char in "SU": if dims: # The 'last' dimension (first in the order given # in the TDIMn keyword itself) is the number of # characters in each string fsize = dims[-1] else: fsize = np.dtype(format.recformat).itemsize return chararray.array(array, itemsize=fsize, copy=False) else: return _convert_array(array, np.dtype(format.recformat)) elif "L" in format: # boolean needs to be scaled back to storage values ('T', 'F') if array.dtype == np.dtype("bool"): return np.where(array == np.False_, ord("F"), ord("T")) else: return np.where(array == 0, ord("F"), ord("T")) elif "X" in format: return _convert_array(array, np.dtype("uint8")) else: # Preserve byte order of the original array for now; see #77 numpy_format = array.dtype.byteorder + format.recformat # Handle arrays passed in as unsigned ints as pseudo-unsigned # int arrays; blatantly tacked in here for now--we need columns # to have explicit knowledge of whether they treated as # pseudo-unsigned bzeros = { 2: np.uint16(2**15), 4: np.uint32(2**31), 8: np.uint64(2**63), } if ( array.dtype.kind == "u" and array.dtype.itemsize in bzeros and self.bscale in (1, None, "") and self.bzero == bzeros[array.dtype.itemsize] ): # Basically the array is uint, has scale == 1.0, and the # bzero is the appropriate value for a pseudo-unsigned # integer of the input dtype, then go ahead and assume that # uint is assumed numpy_format = numpy_format.replace("i", "u") self._pseudo_unsigned_ints = True # The .base here means we're dropping the shape information, # which is only used to format recarray fields, and is not # useful for converting input arrays to the correct data type dtype = np.dtype(numpy_format).base return _convert_array(array, dtype) class ColDefs(NotifierMixin): """ Column definitions class. It has attributes corresponding to the `Column` attributes (e.g. `ColDefs` has the attribute ``names`` while `Column` has ``name``). Each attribute in `ColDefs` is a list of corresponding attribute values from all `Column` objects. """ _padding_byte = "\x00" _col_format_cls = _ColumnFormat def __new__(cls, input, ascii=False): klass = cls if hasattr(input, "_columns_type") and issubclass(input._columns_type, ColDefs): klass = input._columns_type elif hasattr(input, "_col_format_cls") and issubclass( input._col_format_cls, _AsciiColumnFormat ): klass = _AsciiColDefs if ascii: # force ASCII if this has been explicitly requested klass = _AsciiColDefs return object.__new__(klass) def __getnewargs__(self): return (self._arrays,) def __init__(self, input, ascii=False): """ Parameters ---------- input : sequence of `Column` or `ColDefs` or ndarray or `~numpy.recarray` An existing table HDU, an existing `ColDefs`, or any multi-field Numpy array or `numpy.recarray`. ascii : bool Use True to ensure that ASCII table columns are used. """ from .fitsrec import FITS_rec from .hdu.table import _TableBaseHDU if isinstance(input, ColDefs): self._init_from_coldefs(input) elif ( isinstance(input, FITS_rec) and hasattr(input, "_coldefs") and input._coldefs ): # If given a FITS_rec object we can directly copy its columns, but # only if its columns have already been defined, otherwise this # will loop back in on itself and blow up self._init_from_coldefs(input._coldefs) elif isinstance(input, np.ndarray) and input.dtype.fields is not None: # Construct columns from the fields of a record array self._init_from_array(input) elif isiterable(input): # if the input is a list of Columns self._init_from_sequence(input) elif isinstance(input, _TableBaseHDU): # Construct columns from fields in an HDU header self._init_from_table(input) else: raise TypeError( "Input to ColDefs must be a table HDU, a list " "of Columns, or a record/field array." ) # Listen for changes on all columns for col in self.columns: col._add_listener(self) def _init_from_coldefs(self, coldefs): """Initialize from an existing ColDefs object (just copy the columns and convert their formats if necessary). """ self.columns = [self._copy_column(col) for col in coldefs] def _init_from_sequence(self, columns): for idx, col in enumerate(columns): if not isinstance(col, Column): raise TypeError(f"Element {idx} in the ColDefs input is not a Column.") self._init_from_coldefs(columns) def _init_from_array(self, array): self.columns = [] for idx in range(len(array.dtype)): cname = array.dtype.names[idx] ftype = array.dtype.fields[cname][0] format = self._col_format_cls.from_recformat(ftype) # Determine the appropriate dimensions for items in the column dim = array.dtype[idx].shape[::-1] if dim and (len(dim) > 0 or "A" in format): if "A" in format: # should take into account multidimensional items in the column dimel = int(re.findall("[0-9]+", str(ftype.subdtype[0]))[0]) # n x m string arrays must include the max string # length in their dimensions (e.g. l x n x m) dim = (dimel,) + dim dim = "(" + ",".join(str(d) for d in dim) + ")" else: dim = None # Check for unsigned ints. bzero = None if ftype.base.kind == "u": if "I" in format: bzero = np.uint16(2**15) elif "J" in format: bzero = np.uint32(2**31) elif "K" in format: bzero = np.uint64(2**63) c = Column( name=cname, format=format, array=array.view(np.ndarray)[cname], bzero=bzero, dim=dim, ) self.columns.append(c) def _init_from_table(self, table): hdr = table._header nfields = hdr["TFIELDS"] # go through header keywords to pick out column definition keywords # definition dictionaries for each field col_keywords = [{} for i in range(nfields)] for keyword in hdr: key = TDEF_RE.match(keyword) try: label = key.group("label") except Exception: continue # skip if there is no match if label in KEYWORD_NAMES: col = int(key.group("num")) if 0 < col <= nfields: attr = KEYWORD_TO_ATTRIBUTE[label] value = hdr[keyword] if attr == "format": # Go ahead and convert the format value to the # appropriate ColumnFormat container now value = self._col_format_cls(value) col_keywords[col - 1][attr] = value # Verify the column keywords and display any warnings if necessary; # we only want to pass on the valid keywords for idx, kwargs in enumerate(col_keywords): valid_kwargs, invalid_kwargs = Column._verify_keywords(**kwargs) for val in invalid_kwargs.values(): warnings.warn( f"Invalid keyword for column {idx + 1}: {val[1]}", VerifyWarning ) # Special cases for recformat and dim # TODO: Try to eliminate the need for these special cases del valid_kwargs["recformat"] if "dim" in valid_kwargs: valid_kwargs["dim"] = kwargs["dim"] col_keywords[idx] = valid_kwargs # data reading will be delayed for col in range(nfields): col_keywords[col]["array"] = Delayed(table, col) # now build the columns self.columns = [Column(**attrs) for attrs in col_keywords] # Add the table HDU is a listener to changes to the columns # (either changes to individual columns, or changes to the set of # columns (add/remove/etc.)) self._add_listener(table) def __copy__(self): return self.__class__(self) def __deepcopy__(self, memo): return self.__class__([copy.deepcopy(c, memo) for c in self.columns]) def _copy_column(self, column): """Utility function used currently only by _init_from_coldefs to help convert columns from binary format to ASCII format or vice versa if necessary (otherwise performs a straight copy). """ if isinstance(column.format, self._col_format_cls): # This column has a FITS format compatible with this column # definitions class (that is ascii or binary) return column.copy() new_column = column.copy() # Try to use the Numpy recformat as the equivalency between the # two formats; if that conversion can't be made then these # columns can't be transferred # TODO: Catch exceptions here and raise an explicit error about # column format conversion new_column.format = self._col_format_cls.from_column_format(column.format) # Handle a few special cases of column format options that are not # compatible between ASCII an binary tables # TODO: This is sort of hacked in right now; we really need # separate classes for ASCII and Binary table Columns, and they # should handle formatting issues like these if not isinstance(new_column.format, _AsciiColumnFormat): # the column is a binary table column... new_column.start = None if new_column.null is not None: # We can't just "guess" a value to represent null # values in the new column, so just disable this for # now; users may modify it later new_column.null = None else: # the column is an ASCII table column... if new_column.null is not None: new_column.null = DEFAULT_ASCII_TNULL if new_column.disp is not None and new_column.disp.upper().startswith("L"): # ASCII columns may not use the logical data display format; # for now just drop the TDISPn option for this column as we # don't have a systematic conversion of boolean data to ASCII # tables yet new_column.disp = None return new_column def __getattr__(self, name): """ Automatically returns the values for the given keyword attribute for all `Column`s in this list. Implements for example self.units, self.formats, etc. """ cname = name[:-1] if cname in KEYWORD_ATTRIBUTES and name[-1] == "s": attr = [] for col in self.columns: val = getattr(col, cname) attr.append(val if val is not None else "") return attr raise AttributeError(name) @lazyproperty def dtype(self): # Note: This previously returned a dtype that just used the raw field # widths based on the format's repeat count, and did not incorporate # field *shapes* as provided by TDIMn keywords. # Now this incorporates TDIMn from the start, which makes *this* method # a little more complicated, but simplifies code elsewhere (for example # fields will have the correct shapes even in the raw recarray). formats = [] offsets = [0] for format_, dim in zip(self.formats, self._dims): dt = format_.dtype if len(offsets) < len(self.formats): # Note: the size of the *original* format_ may be greater than # one would expect from the number of elements determined by # dim. The FITS format allows this--the rest of the field is # filled with undefined values. offsets.append(offsets[-1] + dt.itemsize) if dim: if format_.format == "A": dt = np.dtype((dt.char + str(dim[-1]), dim[:-1])) else: dt = np.dtype((dt.base, dim)) formats.append(dt) return np.dtype({"names": self.names, "formats": formats, "offsets": offsets}) @lazyproperty def names(self): return [col.name for col in self.columns] @lazyproperty def formats(self): return [col.format for col in self.columns] @lazyproperty def _arrays(self): return [col.array for col in self.columns] @lazyproperty def _recformats(self): return [fmt.recformat for fmt in self.formats] @lazyproperty def _dims(self): """Returns the values of the TDIMn keywords parsed into tuples.""" return [col._dims for col in self.columns] def __getitem__(self, key): if isinstance(key, str): key = _get_index(self.names, key) x = self.columns[key] if _is_int(key): return x else: return ColDefs(x) def __len__(self): return len(self.columns) def __repr__(self): rep = "ColDefs(" if hasattr(self, "columns") and self.columns: # The hasattr check is mostly just useful in debugging sessions # where self.columns may not be defined yet rep += "\n " rep += "\n ".join([repr(c) for c in self.columns]) rep += "\n" rep += ")" return rep def __add__(self, other, option="left"): if isinstance(other, Column): b = [other] elif isinstance(other, ColDefs): b = list(other.columns) else: raise TypeError("Wrong type of input.") if option == "left": tmp = list(self.columns) + b else: tmp = b + list(self.columns) return ColDefs(tmp) def __radd__(self, other): return self.__add__(other, "right") def __sub__(self, other): if not isinstance(other, (list, tuple)): other = [other] _other = [_get_index(self.names, key) for key in other] indx = list(range(len(self))) for x in _other: indx.remove(x) tmp = [self[i] for i in indx] return ColDefs(tmp) def _update_column_attribute_changed(self, column, attr, old_value, new_value): """ Handle column attribute changed notifications from columns that are members of this `ColDefs`. `ColDefs` itself does not currently do anything with this, and just bubbles the notification up to any listening table HDUs that may need to update their headers, etc. However, this also informs the table of the numerical index of the column that changed. """ idx = 0 for idx, col in enumerate(self.columns): if col is column: break if attr == "name": del self.names elif attr == "format": del self.formats self._notify( "column_attribute_changed", column, idx, attr, old_value, new_value ) def add_col(self, column): """ Append one `Column` to the column definition. """ if not isinstance(column, Column): raise AssertionError # Ask the HDU object to load the data before we modify our columns self._notify("load_data") self._arrays.append(column.array) # Obliterate caches of certain things del self.dtype del self._recformats del self._dims del self.names del self.formats self.columns.append(column) # Listen for changes on the new column column._add_listener(self) # If this ColDefs is being tracked by a Table, inform the # table that its data is now invalid. self._notify("column_added", self, column) return self def del_col(self, col_name): """ Delete (the definition of) one `Column`. col_name : str or int The column's name or index """ # Ask the HDU object to load the data before we modify our columns self._notify("load_data") indx = _get_index(self.names, col_name) col = self.columns[indx] del self._arrays[indx] # Obliterate caches of certain things del self.dtype del self._recformats del self._dims del self.names del self.formats del self.columns[indx] col._remove_listener(self) # If this ColDefs is being tracked by a table HDU, inform the HDU (or # any other listeners) that the column has been removed # Just send a reference to self, and the index of the column that was # removed self._notify("column_removed", self, indx) return self def change_attrib(self, col_name, attrib, new_value): """ Change an attribute (in the ``KEYWORD_ATTRIBUTES`` list) of a `Column`. Parameters ---------- col_name : str or int The column name or index to change attrib : str The attribute name new_value : object The new value for the attribute """ setattr(self[col_name], attrib, new_value) def change_name(self, col_name, new_name): """ Change a `Column`'s name. Parameters ---------- col_name : str The current name of the column new_name : str The new name of the column """ if new_name != col_name and new_name in self.names: raise ValueError(f"New name {new_name} already exists.") else: self.change_attrib(col_name, "name", new_name) def change_unit(self, col_name, new_unit): """ Change a `Column`'s unit. Parameters ---------- col_name : str or int The column name or index new_unit : str The new unit for the column """ self.change_attrib(col_name, "unit", new_unit) def info(self, attrib="all", output=None): """ Get attribute(s) information of the column definition. Parameters ---------- attrib : str Can be one or more of the attributes listed in ``astropy.io.fits.column.KEYWORD_ATTRIBUTES``. The default is ``"all"`` which will print out all attributes. It forgives plurals and blanks. If there are two or more attribute names, they must be separated by comma(s). output : file-like, optional File-like object to output to. Outputs to stdout by default. If `False`, returns the attributes as a `dict` instead. Notes ----- This function doesn't return anything by default; it just prints to stdout. """ if output is None: output = sys.stdout if attrib.strip().lower() in ["all", ""]: lst = KEYWORD_ATTRIBUTES else: lst = attrib.split(",") for idx in range(len(lst)): lst[idx] = lst[idx].strip().lower() if lst[idx][-1] == "s": lst[idx] = list[idx][:-1] ret = {} for attr in lst: if output: if attr not in KEYWORD_ATTRIBUTES: output.write( "'{}' is not an attribute of the column definitions.\n".format( attr ) ) continue output.write(f"{attr}:\n") output.write(f" {getattr(self, attr + 's')}\n") else: ret[attr] = getattr(self, attr + "s") if not output: return ret class _AsciiColDefs(ColDefs): """ColDefs implementation for ASCII tables.""" _padding_byte = " " _col_format_cls = _AsciiColumnFormat def __init__(self, input, ascii=True): super().__init__(input) # if the format of an ASCII column has no width, add one if not isinstance(input, _AsciiColDefs): self._update_field_metrics() else: for idx, s in enumerate(input.starts): self.columns[idx].start = s self._spans = input.spans self._width = input._width @lazyproperty def dtype(self): dtype = {} for j in range(len(self)): data_type = "S" + str(self.spans[j]) dtype[self.names[j]] = (data_type, self.starts[j] - 1) return np.dtype(dtype) @property def spans(self): """A list of the widths of each field in the table.""" return self._spans @lazyproperty def _recformats(self): if len(self) == 1: widths = [] else: widths = [y - x for x, y in pairwise(self.starts)] # Widths is the width of each field *including* any space between # fields; this is so that we can map the fields to string records in a # Numpy recarray widths.append(self._width - self.starts[-1] + 1) return ["a" + str(w) for w in widths] def add_col(self, column): super().add_col(column) self._update_field_metrics() def del_col(self, col_name): super().del_col(col_name) self._update_field_metrics() def _update_field_metrics(self): """ Updates the list of the start columns, the list of the widths of each field, and the total width of each record in the table. """ spans = [0] * len(self.columns) end_col = 0 # Refers to the ASCII text column, not the table col for idx, col in enumerate(self.columns): width = col.format.width # Update the start columns and column span widths taking into # account the case that the starting column of a field may not # be the column immediately after the previous field if not col.start: col.start = end_col + 1 end_col = col.start + width - 1 spans[idx] = width self._spans = spans self._width = end_col # Utilities class _VLF(np.ndarray): """Variable length field object.""" def __new__(cls, input, dtype="a"): """ Parameters ---------- input a sequence of variable-sized elements. """ if dtype == "a": try: # this handles ['abc'] and [['a','b','c']] # equally, beautiful! input = [chararray.array(x, itemsize=1) for x in input] except Exception: raise ValueError(f"Inconsistent input data array: {input}") a = np.array(input, dtype=object) self = np.ndarray.__new__(cls, shape=(len(input),), buffer=a, dtype=object) self.max = 0 self.element_dtype = dtype return self def __array_finalize__(self, obj): if obj is None: return self.max = obj.max self.element_dtype = obj.element_dtype def __setitem__(self, key, value): """ To make sure the new item has consistent data type to avoid misalignment. """ if isinstance(value, np.ndarray) and value.dtype == self.dtype: pass elif isinstance(value, chararray.chararray) and value.itemsize == 1: pass elif self.element_dtype == "a": value = chararray.array(value, itemsize=1) else: value = np.array(value, dtype=self.element_dtype) np.ndarray.__setitem__(self, key, value) self.max = max(self.max, len(value)) def tolist(self): return [list(item) for item in super().tolist()] def _get_index(names, key): """ Get the index of the ``key`` in the ``names`` list. The ``key`` can be an integer or string. If integer, it is the index in the list. If string, a. Field (column) names are case sensitive: you can have two different columns called 'abc' and 'ABC' respectively. b. When you *refer* to a field (presumably with the field method), it will try to match the exact name first, so in the example in (a), field('abc') will get the first field, and field('ABC') will get the second field. If there is no exact name matched, it will try to match the name with case insensitivity. So, in the last example, field('Abc') will cause an exception since there is no unique mapping. If there is a field named "XYZ" and no other field name is a case variant of "XYZ", then field('xyz'), field('Xyz'), etc. will get this field. """ if _is_int(key): indx = int(key) elif isinstance(key, str): # try to find exact match first try: indx = names.index(key.rstrip()) except ValueError: # try to match case-insentively, _key = key.lower().rstrip() names = [n.lower().rstrip() for n in names] count = names.count(_key) # occurrence of _key in names if count == 1: indx = names.index(_key) elif count == 0: raise KeyError(f"Key '{key}' does not exist.") else: # multiple match raise KeyError(f"Ambiguous key name '{key}'.") else: raise KeyError(f"Illegal key '{key!r}'.") return indx def _unwrapx(input, output, repeat): """ Unwrap the X format column into a Boolean array. Parameters ---------- input input ``Uint8`` array of shape (`s`, `nbytes`) output output Boolean array of shape (`s`, `repeat`) repeat number of bits """ pow2 = np.array([128, 64, 32, 16, 8, 4, 2, 1], dtype="uint8") nbytes = ((repeat - 1) // 8) + 1 for i in range(nbytes): _min = i * 8 _max = min((i + 1) * 8, repeat) for j in range(_min, _max): output[..., j] = np.bitwise_and(input[..., i], pow2[j - i * 8]) def _wrapx(input, output, repeat): """ Wrap the X format column Boolean array into an ``UInt8`` array. Parameters ---------- input input Boolean array of shape (`s`, `repeat`) output output ``Uint8`` array of shape (`s`, `nbytes`) repeat number of bits """ output[...] = 0 # reset the output nbytes = ((repeat - 1) // 8) + 1 unused = nbytes * 8 - repeat for i in range(nbytes): _min = i * 8 _max = min((i + 1) * 8, repeat) for j in range(_min, _max): if j != _min: np.left_shift(output[..., i], 1, output[..., i]) np.add(output[..., i], input[..., j], output[..., i]) # shift the unused bits np.left_shift(output[..., i], unused, output[..., i]) def _makep(array, descr_output, format, nrows=None): """ Construct the P (or Q) format column array, both the data descriptors and the data. It returns the output "data" array of data type `dtype`. The descriptor location will have a zero offset for all columns after this call. The final offset will be calculated when the file is written. Parameters ---------- array input object array descr_output output "descriptor" array of data type int32 (for P format arrays) or int64 (for Q format arrays)--must be nrows long in its first dimension format the _FormatP object representing the format of the variable array nrows : int, optional number of rows to create in the column; defaults to the number of rows in the input array """ # TODO: A great deal of this is redundant with FITS_rec._convert_p; see if # we can merge the two somehow. _offset = 0 if not nrows: nrows = len(array) data_output = _VLF([None] * nrows, dtype=format.dtype) if format.dtype == "a": _nbytes = 1 else: _nbytes = np.array([], dtype=format.dtype).itemsize for idx in range(nrows): if idx < len(array): rowval = array[idx] else: if format.dtype == "a": rowval = " " * data_output.max else: rowval = [0] * data_output.max if format.dtype == "a": data_output[idx] = chararray.array(encode_ascii(rowval), itemsize=1) else: data_output[idx] = np.array(rowval, dtype=format.dtype) descr_output[idx, 0] = len(data_output[idx]) descr_output[idx, 1] = _offset _offset += len(data_output[idx]) * _nbytes return data_output def _parse_tformat(tform): """Parse ``TFORMn`` keyword for a binary table into a ``(repeat, format, option)`` tuple. """ try: (repeat, format, option) = TFORMAT_RE.match(tform.strip()).groups() except Exception: # TODO: Maybe catch this error use a default type (bytes, maybe?) for # unrecognized column types. As long as we can determine the correct # byte width somehow.. raise VerifyError(f"Format {tform!r} is not recognized.") if repeat == "": repeat = 1 else: repeat = int(repeat) return (repeat, format.upper(), option) def _parse_ascii_tformat(tform, strict=False): """ Parse the ``TFORMn`` keywords for ASCII tables into a ``(format, width, precision)`` tuple (the latter is always zero unless format is one of 'E', 'F', or 'D'). """ match = TFORMAT_ASCII_RE.match(tform.strip()) if not match: raise VerifyError(f"Format {tform!r} is not recognized.") # Be flexible on case format = match.group("format") if format is None: # Floating point format format = match.group("formatf").upper() width = match.group("widthf") precision = match.group("precision") if width is None or precision is None: if strict: raise VerifyError( "Format {!r} is not unambiguously an ASCII table format." ) else: width = 0 if width is None else width precision = 1 if precision is None else precision else: format = format.upper() width = match.group("width") if width is None: if strict: raise VerifyError( "Format {!r} is not unambiguously an ASCII table format." ) else: # Just use a default width of 0 if unspecified width = 0 precision = 0 def convert_int(val): msg = ( "Format {!r} is not valid--field width and decimal precision " "must be integers." ) try: val = int(val) except (ValueError, TypeError): raise VerifyError(msg.format(tform)) return val if width and precision: # This should only be the case for floating-point formats width, precision = convert_int(width), convert_int(precision) elif width: # Just for integer/string formats; ignore precision width = convert_int(width) else: # For any format, if width was unspecified use the set defaults width, precision = ASCII_DEFAULT_WIDTHS[format] if width <= 0: raise VerifyError( "Format {!r} not valid--field width must be a positive integeter.".format( tform ) ) if precision >= width: raise VerifyError( "Format {!r} not valid--the number of decimal digits " "must be less than the format's total " "width {}.".format(tform, width) ) return format, width, precision def _parse_tdim(tdim): """Parse the ``TDIM`` value into a tuple (may return an empty tuple if the value ``TDIM`` value is empty or invalid). """ m = tdim and TDIM_RE.match(tdim) if m: dims = m.group("dims") return tuple(int(d.strip()) for d in dims.split(","))[::-1] # Ignore any dim values that don't specify a multidimensional column return tuple() def _scalar_to_format(value): """ Given a scalar value or string, returns the minimum FITS column format that can represent that value. 'minimum' is defined by the order given in FORMATORDER. """ # First, if value is a string, try to convert to the appropriate scalar # value for type_ in (int, float, complex): try: value = type_(value) break except ValueError: continue numpy_dtype_str = np.min_scalar_type(value).str numpy_dtype_str = numpy_dtype_str[1:] # Strip endianness try: fits_format = NUMPY2FITS[numpy_dtype_str] return FITSUPCONVERTERS.get(fits_format, fits_format) except KeyError: return "A" + str(len(value)) def _cmp_recformats(f1, f2): """ Compares two numpy recformats using the ordering given by FORMATORDER. """ if f1[0] == "a" and f2[0] == "a": return cmp(int(f1[1:]), int(f2[1:])) else: f1, f2 = NUMPY2FITS[f1], NUMPY2FITS[f2] return cmp(FORMATORDER.index(f1), FORMATORDER.index(f2)) def _convert_fits2record(format): """ Convert FITS format spec to record format spec. """ repeat, dtype, option = _parse_tformat(format) if dtype in FITS2NUMPY: if dtype == "A": output_format = FITS2NUMPY[dtype] + str(repeat) # to accommodate both the ASCII table and binary table column # format spec, i.e. A7 in ASCII table is the same as 7A in # binary table, so both will produce 'a7'. # Technically the FITS standard does not allow this but it's a very # common mistake if format.lstrip()[0] == "A" and option != "": # make sure option is integer output_format = FITS2NUMPY[dtype] + str(int(option)) else: repeat_str = "" if repeat != 1: repeat_str = str(repeat) output_format = repeat_str + FITS2NUMPY[dtype] elif dtype == "X": output_format = _FormatX(repeat) elif dtype == "P": output_format = _FormatP.from_tform(format) elif dtype == "Q": output_format = _FormatQ.from_tform(format) elif dtype == "F": output_format = "f8" else: raise ValueError(f"Illegal format `{format}`.") return output_format def _convert_record2fits(format): """ Convert record format spec to FITS format spec. """ recformat, kind, dtype = _dtype_to_recformat(format) shape = dtype.shape itemsize = dtype.base.itemsize if dtype.char == "U" or ( dtype.subdtype is not None and dtype.subdtype[0].char == "U" ): # Unicode dtype--itemsize is 4 times actual ASCII character length, # which what matters for FITS column formats # Use dtype.base and dtype.subdtype --dtype for multi-dimensional items itemsize = itemsize // 4 option = str(itemsize) ndims = len(shape) repeat = 1 if ndims > 0: nel = np.array(shape, dtype="i8").prod() if nel > 1: repeat = nel if kind == "a": # This is a kludge that will place string arrays into a # single field, so at least we won't lose data. Need to # use a TDIM keyword to fix this, declaring as (slength, # dim1, dim2, ...) as mwrfits does ntot = int(repeat) * int(option) output_format = str(ntot) + "A" elif recformat in NUMPY2FITS: # record format if repeat != 1: repeat = str(repeat) else: repeat = "" output_format = repeat + NUMPY2FITS[recformat] else: raise ValueError(f"Illegal format `{format}`.") return output_format def _dtype_to_recformat(dtype): """ Utility function for converting a dtype object or string that instantiates a dtype (e.g. 'float32') into one of the two character Numpy format codes that have been traditionally used by Astropy. In particular, use of 'a' to refer to character data is long since deprecated in Numpy, but Astropy remains heavily invested in its use (something to try to get away from sooner rather than later). """ if not isinstance(dtype, np.dtype): dtype = np.dtype(dtype) kind = dtype.base.kind if kind in ("U", "S"): recformat = kind = "a" else: itemsize = dtype.base.itemsize recformat = kind + str(itemsize) return recformat, kind, dtype def _convert_format(format, reverse=False): """ Convert FITS format spec to record format spec. Do the opposite if reverse=True. """ if reverse: return _convert_record2fits(format) else: return _convert_fits2record(format) def _convert_ascii_format(format, reverse=False): """Convert ASCII table format spec to record format spec.""" if reverse: recformat, kind, dtype = _dtype_to_recformat(format) itemsize = dtype.itemsize if kind == "a": return "A" + str(itemsize) elif NUMPY2FITS.get(recformat) == "L": # Special case for logical/boolean types--for ASCII tables we # represent these as single character columns containing 'T' or 'F' # (a la the storage format for Logical columns in binary tables) return "A1" elif kind == "i": # Use for the width the maximum required to represent integers # of that byte size plus 1 for signs, but use a minimum of the # default width (to keep with existing behavior) width = 1 + len(str(2 ** (itemsize * 8))) width = max(width, ASCII_DEFAULT_WIDTHS["I"][0]) return "I" + str(width) elif kind == "f": # This is tricky, but go ahead and use D if float-64, and E # if float-32 with their default widths if itemsize >= 8: format = "D" else: format = "E" width = ".".join(str(w) for w in ASCII_DEFAULT_WIDTHS[format]) return format + width # TODO: There may be reasonable ways to represent other Numpy types so # let's see what other possibilities there are besides just 'a', 'i', # and 'f'. If it doesn't have a reasonable ASCII representation then # raise an exception else: format, width, precision = _parse_ascii_tformat(format) # This gives a sensible "default" dtype for a given ASCII # format code recformat = ASCII2NUMPY[format] # The following logic is taken from CFITSIO: # For integers, if the width <= 4 we can safely use 16-bit ints for all # values, if width >= 10 we may need to accommodate 64-bit ints. # values [for the non-standard J format code just always force 64-bit] if format == "I": if width <= 4: recformat = "i2" elif width > 9: recformat = "i8" elif format == "A": recformat += str(width) return recformat def _parse_tdisp_format(tdisp): """ Parse the ``TDISPn`` keywords for ASCII and binary tables into a ``(format, width, precision, exponential)`` tuple (the TDISP values for ASCII and binary are identical except for 'Lw', which is only present in BINTABLE extensions Parameters ---------- tdisp : str TDISPn FITS Header keyword. Used to specify display formatting. Returns ------- formatc: str The format characters from TDISPn width: str The width int value from TDISPn precision: str The precision int value from TDISPn exponential: str The exponential int value from TDISPn """ # Use appropriate regex for format type tdisp = tdisp.strip() fmt_key = ( tdisp[0] if tdisp[0] != "E" or (len(tdisp) > 1 and tdisp[1] not in "NS") else tdisp[:2] ) try: tdisp_re = TDISP_RE_DICT[fmt_key] except KeyError: raise VerifyError(f"Format {tdisp} is not recognized.") match = tdisp_re.match(tdisp.strip()) if not match or match.group("formatc") is None: raise VerifyError(f"Format {tdisp} is not recognized.") formatc = match.group("formatc") width = match.group("width") precision = None exponential = None # Some formats have precision and exponential if tdisp[0] in ("I", "B", "O", "Z", "F", "E", "G", "D"): precision = match.group("precision") if precision is None: precision = 1 if tdisp[0] in ("E", "D", "G") and tdisp[1] not in ("N", "S"): exponential = match.group("exponential") if exponential is None: exponential = 1 # Once parsed, check format dict to do conversion to a formatting string return formatc, width, precision, exponential def _fortran_to_python_format(tdisp): """ Turn the TDISPn fortran format pieces into a final Python format string. See the format_type definitions above the TDISP_FMT_DICT. If codes is changed to take advantage of the exponential specification, will need to add it as another input parameter. Parameters ---------- tdisp : str TDISPn FITS Header keyword. Used to specify display formatting. Returns ------- format_string: str The TDISPn keyword string translated into a Python format string. """ format_type, width, precision, exponential = _parse_tdisp_format(tdisp) try: fmt = TDISP_FMT_DICT[format_type] return fmt.format(width=width, precision=precision) except KeyError: raise VerifyError(f"Format {format_type} is not recognized.") def python_to_tdisp(format_string, logical_dtype=False): """ Turn the Python format string to a TDISP FITS compliant format string. Not all formats convert. these will cause a Warning and return None. Parameters ---------- format_string : str TDISPn FITS Header keyword. Used to specify display formatting. logical_dtype : bool True is this format type should be a logical type, 'L'. Needs special handling. Returns ------- tdsip_string: str The TDISPn keyword string translated into a Python format string. """ fmt_to_tdisp = { "a": "A", "s": "A", "d": "I", "b": "B", "o": "O", "x": "Z", "X": "Z", "f": "F", "F": "F", "g": "G", "G": "G", "e": "E", "E": "E", } if format_string in [None, "", "{}"]: return None # Strip out extra format characters that aren't a type or a width/precision if format_string[0] == "{" and format_string != "{}": fmt_str = format_string.lstrip("{:").rstrip("}") elif format_string[0] == "%": fmt_str = format_string.lstrip("%") else: fmt_str = format_string precision, sep = "", "" # Character format, only translate right aligned, and don't take zero fills if fmt_str[-1].isdigit() and fmt_str[0] == ">" and fmt_str[1] != "0": ftype = fmt_to_tdisp["a"] width = fmt_str[1:] elif fmt_str[-1] == "s" and fmt_str != "s": ftype = fmt_to_tdisp["a"] width = fmt_str[:-1].lstrip("0") # Number formats, don't take zero fills elif fmt_str[-1].isalpha() and len(fmt_str) > 1 and fmt_str[0] != "0": ftype = fmt_to_tdisp[fmt_str[-1]] fmt_str = fmt_str[:-1] # If format has a "." split out the width and precision if "." in fmt_str: width, precision = fmt_str.split(".") sep = "." if width == "": ascii_key = ftype if ftype != "G" else "F" width = str( int(precision) + ( ASCII_DEFAULT_WIDTHS[ascii_key][0] - ASCII_DEFAULT_WIDTHS[ascii_key][1] ) ) # Otherwise we just have a width else: width = fmt_str else: warnings.warn( "Format {} cannot be mapped to the accepted " "TDISPn keyword values. Format will not be " "moved into TDISPn keyword.".format(format_string), AstropyUserWarning, ) return None # Catch logical data type, set the format type back to L in this case if logical_dtype: ftype = "L" return ftype + width + sep + precision
fd12ce03c5aac99c92a96726f864a339b224986b951fa4d3f3056a78a3921d66
# Licensed under a 3-clause BSD style license - see PYFITS.rst import collections import copy import itertools import numbers import os import re import warnings from astropy.utils import isiterable from astropy.utils.exceptions import AstropyUserWarning from ._utils import parse_header from .card import KEYWORD_LENGTH, UNDEFINED, Card, _pad from .file import _File from .util import ( decode_ascii, encode_ascii, fileobj_closed, fileobj_is_binary, path_like, ) BLOCK_SIZE = 2880 # the FITS block size # This regular expression can match a *valid* END card which just consists of # the string 'END' followed by all spaces, or an *invalid* end card which # consists of END, followed by any character that is *not* a valid character # for a valid FITS keyword (that is, this is not a keyword like 'ENDER' which # starts with 'END' but is not 'END'), followed by any arbitrary bytes. An # invalid end card may also consist of just 'END' with no trailing bytes. HEADER_END_RE = re.compile( encode_ascii(r"(?:(?P<valid>END {77}) *)|(?P<invalid>END$|END {0,76}[^A-Z0-9_-])") ) # According to the FITS standard the only characters that may appear in a # header record are the restricted ASCII chars from 0x20 through 0x7E. VALID_HEADER_CHARS = set(map(chr, range(0x20, 0x7F))) END_CARD = "END" + " " * 77 __doctest_skip__ = [ "Header", "Header.comments", "Header.fromtextfile", "Header.totextfile", "Header.set", "Header.update", ] class Header: """ FITS header class. This class exposes both a dict-like interface and a list-like interface to FITS headers. The header may be indexed by keyword and, like a dict, the associated value will be returned. When the header contains cards with duplicate keywords, only the value of the first card with the given keyword will be returned. It is also possible to use a 2-tuple as the index in the form (keyword, n)--this returns the n-th value with that keyword, in the case where there are duplicate keywords. For example:: >>> header['NAXIS'] 0 >>> header[('FOO', 1)] # Return the value of the second FOO keyword 'foo' The header may also be indexed by card number:: >>> header[0] # Return the value of the first card in the header 'T' Commentary keywords such as HISTORY and COMMENT are special cases: When indexing the Header object with either 'HISTORY' or 'COMMENT' a list of all the HISTORY/COMMENT values is returned:: >>> header['HISTORY'] This is the first history entry in this header. This is the second history entry in this header. ... See the Astropy documentation for more details on working with headers. Notes ----- Although FITS keywords must be exclusively upper case, retrieving an item in a `Header` object is case insensitive. """ def __init__(self, cards=[], copy=False): """ Construct a `Header` from an iterable and/or text file. Parameters ---------- cards : list of `Card`, optional The cards to initialize the header with. Also allowed are other `Header` (or `dict`-like) objects. .. versionchanged:: 1.2 Allowed ``cards`` to be a `dict`-like object. copy : bool, optional If ``True`` copies the ``cards`` if they were another `Header` instance. Default is ``False``. .. versionadded:: 1.3 """ self.clear() if isinstance(cards, Header): if copy: cards = cards.copy() cards = cards.cards elif isinstance(cards, dict): cards = cards.items() for card in cards: self.append(card, end=True) self._modified = False def __len__(self): return len(self._cards) def __iter__(self): for card in self._cards: yield card.keyword def __contains__(self, keyword): if keyword in self._keyword_indices or keyword in self._rvkc_indices: # For the most common case (single, standard form keyword lookup) # this will work and is an O(1) check. If it fails that doesn't # guarantee absence, just that we have to perform the full set of # checks in self._cardindex return True try: self._cardindex(keyword) except (KeyError, IndexError): return False return True def __getitem__(self, key): if isinstance(key, slice): return self.__class__([copy.copy(c) for c in self._cards[key]]) elif self._haswildcard(key): return self.__class__( [copy.copy(self._cards[idx]) for idx in self._wildcardmatch(key)] ) elif isinstance(key, str): key = key.strip() if key.upper() in Card._commentary_keywords: key = key.upper() # Special case for commentary cards return _HeaderCommentaryCards(self, key) if isinstance(key, tuple): keyword = key[0] else: keyword = key card = self._cards[self._cardindex(key)] if card.field_specifier is not None and keyword == card.rawkeyword: # This is RVKC; if only the top-level keyword was specified return # the raw value, not the parsed out float value return card.rawvalue value = card.value if value == UNDEFINED: return None return value def __setitem__(self, key, value): if self._set_slice(key, value, self): return if isinstance(value, tuple): if len(value) > 2: raise ValueError( "A Header item may be set with either a scalar value, " "a 1-tuple containing a scalar value, or a 2-tuple " "containing a scalar value and comment string." ) if len(value) == 1: value, comment = value[0], None if value is None: value = UNDEFINED elif len(value) == 2: value, comment = value if value is None: value = UNDEFINED if comment is None: comment = "" else: comment = None card = None if isinstance(key, numbers.Integral): card = self._cards[key] elif isinstance(key, tuple): card = self._cards[self._cardindex(key)] if value is None: value = UNDEFINED if card: card.value = value if comment is not None: card.comment = comment if card._modified: self._modified = True else: # If we get an IndexError that should be raised; we don't allow # assignment to non-existing indices self._update((key, value, comment)) def __delitem__(self, key): if isinstance(key, slice) or self._haswildcard(key): # This is very inefficient but it's not a commonly used feature. # If someone out there complains that they make heavy use of slice # deletions and it's too slow, well, we can worry about it then # [the solution is not too complicated--it would be wait 'til all # the cards are deleted before updating _keyword_indices rather # than updating it once for each card that gets deleted] if isinstance(key, slice): indices = range(*key.indices(len(self))) # If the slice step is backwards we want to reverse it, because # it will be reversed in a few lines... if key.step and key.step < 0: indices = reversed(indices) else: indices = self._wildcardmatch(key) for idx in reversed(indices): del self[idx] return elif isinstance(key, str): # delete ALL cards with the same keyword name key = Card.normalize_keyword(key) indices = self._keyword_indices if key not in self._keyword_indices: indices = self._rvkc_indices if key not in indices: # if keyword is not present raise KeyError. # To delete keyword without caring if they were present, # Header.remove(Keyword) can be used with optional argument ignore_missing as True raise KeyError(f"Keyword '{key}' not found.") for idx in reversed(indices[key]): # Have to copy the indices list since it will be modified below del self[idx] return idx = self._cardindex(key) card = self._cards[idx] keyword = card.keyword del self._cards[idx] keyword = Card.normalize_keyword(keyword) indices = self._keyword_indices[keyword] indices.remove(idx) if not indices: del self._keyword_indices[keyword] # Also update RVKC indices if necessary :/ if card.field_specifier is not None: indices = self._rvkc_indices[card.rawkeyword] indices.remove(idx) if not indices: del self._rvkc_indices[card.rawkeyword] # We also need to update all other indices self._updateindices(idx, increment=False) self._modified = True def __repr__(self): return self.tostring(sep="\n", endcard=False, padding=False) def __str__(self): return self.tostring() def __eq__(self, other): """ Two Headers are equal only if they have the exact same string representation. """ return str(self) == str(other) def __add__(self, other): temp = self.copy(strip=False) temp.extend(other) return temp def __iadd__(self, other): self.extend(other) return self def _ipython_key_completions_(self): return self.__iter__() @property def cards(self): """ The underlying physical cards that make up this Header; it can be looked at, but it should not be modified directly. """ return _CardAccessor(self) @property def comments(self): """ View the comments associated with each keyword, if any. For example, to see the comment on the NAXIS keyword: >>> header.comments['NAXIS'] number of data axes Comments can also be updated through this interface: >>> header.comments['NAXIS'] = 'Number of data axes' """ return _HeaderComments(self) @property def _modified(self): """ Whether or not the header has been modified; this is a property so that it can also check each card for modifications--cards may have been modified directly without the header containing it otherwise knowing. """ modified_cards = any(c._modified for c in self._cards) if modified_cards: # If any cards were modified then by definition the header was # modified self.__dict__["_modified"] = True return self.__dict__["_modified"] @_modified.setter def _modified(self, val): self.__dict__["_modified"] = val @classmethod def fromstring(cls, data, sep=""): """ Creates an HDU header from a byte string containing the entire header data. Parameters ---------- data : str or bytes String or bytes containing the entire header. In the case of bytes they will be decoded using latin-1 (only plain ASCII characters are allowed in FITS headers but latin-1 allows us to retain any invalid bytes that might appear in malformatted FITS files). sep : str, optional The string separating cards from each other, such as a newline. By default there is no card separator (as is the case in a raw FITS file). In general this is only used in cases where a header was printed as text (e.g. with newlines after each card) and you want to create a new `Header` from it by copy/pasting. Examples -------- >>> from astropy.io.fits import Header >>> hdr = Header({'SIMPLE': True}) >>> Header.fromstring(hdr.tostring()) == hdr True If you want to create a `Header` from printed text it's not necessary to have the exact binary structure as it would appear in a FITS file, with the full 80 byte card length. Rather, each "card" can end in a newline and does not have to be padded out to a full card length as long as it "looks like" a FITS header: >>> hdr = Header.fromstring(\"\"\"\\ ... SIMPLE = T / conforms to FITS standard ... BITPIX = 8 / array data type ... NAXIS = 0 / number of array dimensions ... EXTEND = T ... \"\"\", sep='\\n') >>> hdr['SIMPLE'] True >>> hdr['BITPIX'] 8 >>> len(hdr) 4 Returns ------- `Header` A new `Header` instance. """ cards = [] # If the card separator contains characters that may validly appear in # a card, the only way to unambiguously distinguish between cards is to # require that they be Card.length long. However, if the separator # contains non-valid characters (namely \n) the cards may be split # immediately at the separator require_full_cardlength = set(sep).issubset(VALID_HEADER_CHARS) if isinstance(data, bytes): # FITS supports only ASCII, but decode as latin1 and just take all # bytes for now; if it results in mojibake due to e.g. UTF-8 # encoded data in a FITS header that's OK because it shouldn't be # there in the first place--accepting it here still gives us the # opportunity to display warnings later during validation CONTINUE = b"CONTINUE" END = b"END" end_card = END_CARD.encode("ascii") sep = sep.encode("latin1") empty = b"" else: CONTINUE = "CONTINUE" END = "END" end_card = END_CARD empty = "" # Split the header into individual cards idx = 0 image = [] while idx < len(data): if require_full_cardlength: end_idx = idx + Card.length else: try: end_idx = data.index(sep, idx) except ValueError: end_idx = len(data) next_image = data[idx:end_idx] idx = end_idx + len(sep) if image: if next_image[:8] == CONTINUE: image.append(next_image) continue cards.append(Card.fromstring(empty.join(image))) if require_full_cardlength: if next_image == end_card: image = [] break else: if next_image.split(sep)[0].rstrip() == END: image = [] break image = [next_image] # Add the last image that was found before the end, if any if image: cards.append(Card.fromstring(empty.join(image))) return cls._fromcards(cards) @classmethod def fromfile(cls, fileobj, sep="", endcard=True, padding=True): """ Similar to :meth:`Header.fromstring`, but reads the header string from a given file-like object or filename. Parameters ---------- fileobj : str, file-like A filename or an open file-like object from which a FITS header is to be read. For open file handles the file pointer must be at the beginning of the header. sep : str, optional The string separating cards from each other, such as a newline. By default there is no card separator (as is the case in a raw FITS file). endcard : bool, optional If True (the default) the header must end with an END card in order to be considered valid. If an END card is not found an `OSError` is raised. padding : bool, optional If True (the default) the header will be required to be padded out to a multiple of 2880, the FITS header block size. Otherwise any padding, or lack thereof, is ignored. Returns ------- `Header` A new `Header` instance. """ close_file = False if isinstance(fileobj, path_like): # If sep is non-empty we are trying to read a header printed to a # text file, so open in text mode by default to support newline # handling; if a binary-mode file object is passed in, the user is # then on their own w.r.t. newline handling. # # Otherwise assume we are reading from an actual FITS file and open # in binary mode. fileobj = os.path.expanduser(fileobj) if sep: fileobj = open(fileobj, encoding="latin1") else: fileobj = open(fileobj, "rb") close_file = True try: is_binary = fileobj_is_binary(fileobj) def block_iter(nbytes): while True: data = fileobj.read(nbytes) if data: yield data else: break return cls._from_blocks(block_iter, is_binary, sep, endcard, padding)[1] finally: if close_file: fileobj.close() @classmethod def _fromcards(cls, cards): header = cls() for idx, card in enumerate(cards): header._cards.append(card) keyword = Card.normalize_keyword(card.keyword) header._keyword_indices[keyword].append(idx) if card.field_specifier is not None: header._rvkc_indices[card.rawkeyword].append(idx) header._modified = False return header @classmethod def _from_blocks(cls, block_iter, is_binary, sep, endcard, padding): """ The meat of `Header.fromfile`; in a separate method so that `Header.fromfile` itself is just responsible for wrapping file handling. Also used by `_BaseHDU.fromstring`. ``block_iter`` should be a callable which, given a block size n (typically 2880 bytes as used by the FITS standard) returns an iterator of byte strings of that block size. ``is_binary`` specifies whether the returned blocks are bytes or text Returns both the entire header *string*, and the `Header` object returned by Header.fromstring on that string. """ actual_block_size = _block_size(sep) clen = Card.length + len(sep) blocks = block_iter(actual_block_size) # Read the first header block. try: block = next(blocks) except StopIteration: raise EOFError() if not is_binary: # TODO: There needs to be error handling at *this* level for # non-ASCII characters; maybe at this stage decoding latin-1 might # be safer block = encode_ascii(block) read_blocks = [] is_eof = False end_found = False # continue reading header blocks until END card or EOF is reached while True: # find the END card end_found, block = cls._find_end_card(block, clen) read_blocks.append(decode_ascii(block)) if end_found: break try: block = next(blocks) except StopIteration: is_eof = True break if not block: is_eof = True break if not is_binary: block = encode_ascii(block) header_str = "".join(read_blocks) _check_padding(header_str, actual_block_size, is_eof, check_block_size=padding) if not end_found and is_eof and endcard: # TODO: Pass this error to validation framework as an ERROR, # rather than raising an exception raise OSError("Header missing END card.") return header_str, cls.fromstring(header_str, sep=sep) @classmethod def _find_end_card(cls, block, card_len): """ Utility method to search a header block for the END card and handle invalid END cards. This method can also returned a modified copy of the input header block in case an invalid end card needs to be sanitized. """ for mo in HEADER_END_RE.finditer(block): # Ensure the END card was found, and it started on the # boundary of a new card (see ticket #142) if mo.start() % card_len != 0: continue # This must be the last header block, otherwise the # file is malformatted if mo.group("invalid"): offset = mo.start() trailing = block[offset + 3 : offset + card_len - 3].rstrip() if trailing: trailing = repr(trailing).lstrip("ub") # TODO: Pass this warning up to the validation framework warnings.warn( "Unexpected bytes trailing END keyword: {}; these " "bytes will be replaced with spaces on write.".format(trailing), AstropyUserWarning, ) else: # TODO: Pass this warning up to the validation framework warnings.warn( "Missing padding to end of the FITS block after the " "END keyword; additional spaces will be appended to " "the file upon writing to pad out to {} " "bytes.".format(BLOCK_SIZE), AstropyUserWarning, ) # Sanitize out invalid END card now that the appropriate # warnings have been issued block = ( block[:offset] + encode_ascii(END_CARD) + block[offset + len(END_CARD) :] ) return True, block return False, block def tostring(self, sep="", endcard=True, padding=True): r""" Returns a string representation of the header. By default this uses no separator between cards, adds the END card, and pads the string with spaces to the next multiple of 2880 bytes. That is, it returns the header exactly as it would appear in a FITS file. Parameters ---------- sep : str, optional The character or string with which to separate cards. By default there is no separator, but one could use ``'\\n'``, for example, to separate each card with a new line endcard : bool, optional If True (default) adds the END card to the end of the header string padding : bool, optional If True (default) pads the string with spaces out to the next multiple of 2880 characters Returns ------- str A string representing a FITS header. """ lines = [] for card in self._cards: s = str(card) # Cards with CONTINUE cards may be longer than 80 chars; so break # them into multiple lines while s: lines.append(s[: Card.length]) s = s[Card.length :] s = sep.join(lines) if endcard: s += sep + _pad("END") if padding: s += " " * _pad_length(len(s)) return s def tofile(self, fileobj, sep="", endcard=True, padding=True, overwrite=False): r""" Writes the header to file or file-like object. By default this writes the header exactly as it would be written to a FITS file, with the END card included and padding to the next multiple of 2880 bytes. However, aspects of this may be controlled. Parameters ---------- fileobj : path-like or file-like, optional Either the pathname of a file, or an open file handle or file-like object. sep : str, optional The character or string with which to separate cards. By default there is no separator, but one could use ``'\\n'``, for example, to separate each card with a new line endcard : bool, optional If `True` (default) adds the END card to the end of the header string padding : bool, optional If `True` (default) pads the string with spaces out to the next multiple of 2880 characters overwrite : bool, optional If ``True``, overwrite the output file if it exists. Raises an ``OSError`` if ``False`` and the output file exists. Default is ``False``. """ close_file = fileobj_closed(fileobj) if not isinstance(fileobj, _File): fileobj = _File(fileobj, mode="ostream", overwrite=overwrite) try: blocks = self.tostring(sep=sep, endcard=endcard, padding=padding) actual_block_size = _block_size(sep) if padding and len(blocks) % actual_block_size != 0: raise OSError( "Header size ({}) is not a multiple of block size ({}).".format( len(blocks) - actual_block_size + BLOCK_SIZE, BLOCK_SIZE ) ) fileobj.flush() fileobj.write(blocks.encode("ascii")) fileobj.flush() finally: if close_file: fileobj.close() @classmethod def fromtextfile(cls, fileobj, endcard=False): """ Read a header from a simple text file or file-like object. Equivalent to:: >>> Header.fromfile(fileobj, sep='\\n', endcard=False, ... padding=False) See Also -------- fromfile """ return cls.fromfile(fileobj, sep="\n", endcard=endcard, padding=False) def totextfile(self, fileobj, endcard=False, overwrite=False): """ Write the header as text to a file or a file-like object. Equivalent to:: >>> Header.tofile(fileobj, sep='\\n', endcard=False, ... padding=False, overwrite=overwrite) See Also -------- tofile """ self.tofile( fileobj, sep="\n", endcard=endcard, padding=False, overwrite=overwrite ) def clear(self): """ Remove all cards from the header. """ self._cards = [] self._keyword_indices = collections.defaultdict(list) self._rvkc_indices = collections.defaultdict(list) def copy(self, strip=False): """ Make a copy of the :class:`Header`. .. versionchanged:: 1.3 `copy.copy` and `copy.deepcopy` on a `Header` will call this method. Parameters ---------- strip : bool, optional If `True`, strip any headers that are specific to one of the standard HDU types, so that this header can be used in a different HDU. Returns ------- `Header` A new :class:`Header` instance. """ tmp = self.__class__(copy.copy(card) for card in self._cards) if strip: tmp.strip() return tmp def __copy__(self): return self.copy() def __deepcopy__(self, *args, **kwargs): return self.copy() @classmethod def fromkeys(cls, iterable, value=None): """ Similar to :meth:`dict.fromkeys`--creates a new `Header` from an iterable of keywords and an optional default value. This method is not likely to be particularly useful for creating real world FITS headers, but it is useful for testing. Parameters ---------- iterable Any iterable that returns strings representing FITS keywords. value : optional A default value to assign to each keyword; must be a valid type for FITS keywords. Returns ------- `Header` A new `Header` instance. """ d = cls() if not isinstance(value, tuple): value = (value,) for key in iterable: d.append((key,) + value) return d def get(self, key, default=None): """ Similar to :meth:`dict.get`--returns the value associated with keyword in the header, or a default value if the keyword is not found. Parameters ---------- key : str A keyword that may or may not be in the header. default : optional A default value to return if the keyword is not found in the header. Returns ------- value: str, number, complex, bool, or ``astropy.io.fits.card.Undefined`` The value associated with the given keyword, or the default value if the keyword is not in the header. """ try: return self[key] except (KeyError, IndexError): return default def set(self, keyword, value=None, comment=None, before=None, after=None): """ Set the value and/or comment and/or position of a specified keyword. If the keyword does not already exist in the header, a new keyword is created in the specified position, or appended to the end of the header if no position is specified. This method is similar to :meth:`Header.update` prior to Astropy v0.1. .. note:: It should be noted that ``header.set(keyword, value)`` and ``header.set(keyword, value, comment)`` are equivalent to ``header[keyword] = value`` and ``header[keyword] = (value, comment)`` respectively. New keywords can also be inserted relative to existing keywords using, for example:: >>> header.insert('NAXIS1', ('NAXIS', 2, 'Number of axes')) to insert before an existing keyword, or:: >>> header.insert('NAXIS', ('NAXIS1', 4096), after=True) to insert after an existing keyword. The only advantage of using :meth:`Header.set` is that it easily replaces the old usage of :meth:`Header.update` both conceptually and in terms of function signature. Parameters ---------- keyword : str A header keyword value : str, optional The value to set for the given keyword; if None the existing value is kept, but '' may be used to set a blank value comment : str, optional The comment to set for the given keyword; if None the existing comment is kept, but ``''`` may be used to set a blank comment before : str, int, optional Name of the keyword, or index of the `Card` before which this card should be located in the header. The argument ``before`` takes precedence over ``after`` if both specified. after : str, int, optional Name of the keyword, or index of the `Card` after which this card should be located in the header. """ # Create a temporary card that looks like the one being set; if the # temporary card turns out to be a RVKC this will make it easier to # deal with the idiosyncrasies thereof # Don't try to make a temporary card though if they keyword looks like # it might be a HIERARCH card or is otherwise invalid--this step is # only for validating RVKCs. if ( len(keyword) <= KEYWORD_LENGTH and Card._keywd_FSC_RE.match(keyword) and keyword not in self._keyword_indices ): new_card = Card(keyword, value, comment) new_keyword = new_card.keyword else: new_keyword = keyword if new_keyword not in Card._commentary_keywords and new_keyword in self: if comment is None: comment = self.comments[keyword] if value is None: value = self[keyword] self[keyword] = (value, comment) if before is not None or after is not None: card = self._cards[self._cardindex(keyword)] self._relativeinsert(card, before=before, after=after, replace=True) elif before is not None or after is not None: self._relativeinsert((keyword, value, comment), before=before, after=after) else: self[keyword] = (value, comment) def items(self): """Like :meth:`dict.items`.""" for card in self._cards: yield card.keyword, None if card.value == UNDEFINED else card.value def keys(self): """ Like :meth:`dict.keys`--iterating directly over the `Header` instance has the same behavior. """ for card in self._cards: yield card.keyword def values(self): """Like :meth:`dict.values`.""" for card in self._cards: yield None if card.value == UNDEFINED else card.value def pop(self, *args): """ Works like :meth:`list.pop` if no arguments or an index argument are supplied; otherwise works like :meth:`dict.pop`. """ if len(args) > 2: raise TypeError(f"Header.pop expected at most 2 arguments, got {len(args)}") if len(args) == 0: key = -1 else: key = args[0] try: value = self[key] except (KeyError, IndexError): if len(args) == 2: return args[1] raise del self[key] return value def popitem(self): """Similar to :meth:`dict.popitem`.""" try: k, v = next(self.items()) except StopIteration: raise KeyError("Header is empty") del self[k] return k, v def setdefault(self, key, default=None): """Similar to :meth:`dict.setdefault`.""" try: return self[key] except (KeyError, IndexError): self[key] = default return default def update(self, *args, **kwargs): """ Update the Header with new keyword values, updating the values of existing keywords and appending new keywords otherwise; similar to `dict.update`. `update` accepts either a dict-like object or an iterable. In the former case the keys must be header keywords and the values may be either scalar values or (value, comment) tuples. In the case of an iterable the items must be (keyword, value) tuples or (keyword, value, comment) tuples. Arbitrary arguments are also accepted, in which case the update() is called again with the kwargs dict as its only argument. That is, :: >>> header.update(NAXIS1=100, NAXIS2=100) is equivalent to:: header.update({'NAXIS1': 100, 'NAXIS2': 100}) .. warning:: As this method works similarly to `dict.update` it is very different from the ``Header.update()`` method in Astropy v0.1. Use of the old API was **deprecated** for a long time and is now removed. Most uses of the old API can be replaced as follows: * Replace :: header.update(keyword, value) with :: header[keyword] = value * Replace :: header.update(keyword, value, comment=comment) with :: header[keyword] = (value, comment) * Replace :: header.update(keyword, value, before=before_keyword) with :: header.insert(before_keyword, (keyword, value)) * Replace :: header.update(keyword, value, after=after_keyword) with :: header.insert(after_keyword, (keyword, value), after=True) See also :meth:`Header.set` which is a new method that provides an interface similar to the old ``Header.update()`` and may help make transition a little easier. """ if args: other = args[0] else: other = None def update_from_dict(k, v): if not isinstance(v, tuple): card = Card(k, v) elif 0 < len(v) <= 2: card = Card(*((k,) + v)) else: raise ValueError( "Header update value for key %r is invalid; the " "value must be either a scalar, a 1-tuple " "containing the scalar value, or a 2-tuple " "containing the value and a comment string." % k ) self._update(card) if other is None: pass elif isinstance(other, Header): for card in other.cards: self._update(card) elif hasattr(other, "items"): for k, v in other.items(): update_from_dict(k, v) elif hasattr(other, "keys"): for k in other.keys(): update_from_dict(k, other[k]) else: for idx, card in enumerate(other): if isinstance(card, Card): self._update(card) elif isinstance(card, tuple) and (1 < len(card) <= 3): self._update(Card(*card)) else: raise ValueError( "Header update sequence item #{} is invalid; " "the item must either be a 2-tuple containing " "a keyword and value, or a 3-tuple containing " "a keyword, value, and comment string.".format(idx) ) if kwargs: self.update(kwargs) def append(self, card=None, useblanks=True, bottom=False, end=False): """ Appends a new keyword+value card to the end of the Header, similar to `list.append`. By default if the last cards in the Header have commentary keywords, this will append the new keyword before the commentary (unless the new keyword is also commentary). Also differs from `list.append` in that it can be called with no arguments: In this case a blank card is appended to the end of the Header. In the case all the keyword arguments are ignored. Parameters ---------- card : str, tuple A keyword or a (keyword, value, [comment]) tuple representing a single header card; the comment is optional in which case a 2-tuple may be used useblanks : bool, optional If there are blank cards at the end of the Header, replace the first blank card so that the total number of cards in the Header does not increase. Otherwise preserve the number of blank cards. bottom : bool, optional If True, instead of appending after the last non-commentary card, append after the last non-blank card. end : bool, optional If True, ignore the useblanks and bottom options, and append at the very end of the Header. """ if isinstance(card, str): card = Card(card) elif isinstance(card, tuple): card = Card(*card) elif card is None: card = Card() elif not isinstance(card, Card): raise ValueError( "The value appended to a Header must be either a keyword or " "(keyword, value, [comment]) tuple; got: {!r}".format(card) ) if not end and card.is_blank: # Blank cards should always just be appended to the end end = True if end: self._cards.append(card) idx = len(self._cards) - 1 else: idx = len(self._cards) - 1 while idx >= 0 and self._cards[idx].is_blank: idx -= 1 if not bottom and card.keyword not in Card._commentary_keywords: while ( idx >= 0 and self._cards[idx].keyword in Card._commentary_keywords ): idx -= 1 idx += 1 self._cards.insert(idx, card) self._updateindices(idx) keyword = Card.normalize_keyword(card.keyword) self._keyword_indices[keyword].append(idx) if card.field_specifier is not None: self._rvkc_indices[card.rawkeyword].append(idx) if not end: # If the appended card was a commentary card, and it was appended # before existing cards with the same keyword, the indices for # cards with that keyword may have changed if not bottom and card.keyword in Card._commentary_keywords: self._keyword_indices[keyword].sort() # Finally, if useblanks, delete a blank cards from the end if useblanks and self._countblanks(): # Don't do this unless there is at least one blanks at the end # of the header; we need to convert the card to its string # image to see how long it is. In the vast majority of cases # this will just be 80 (Card.length) but it may be longer for # CONTINUE cards self._useblanks(len(str(card)) // Card.length) self._modified = True def extend( self, cards, strip=True, unique=False, update=False, update_first=False, useblanks=True, bottom=False, end=False, ): """ Appends multiple keyword+value cards to the end of the header, similar to `list.extend`. Parameters ---------- cards : iterable An iterable of (keyword, value, [comment]) tuples; see `Header.append`. strip : bool, optional Remove any keywords that have meaning only to specific types of HDUs, so that only more general keywords are added from extension Header or Card list (default: `True`). unique : bool, optional If `True`, ensures that no duplicate keywords are appended; keywords already in this header are simply discarded. The exception is commentary keywords (COMMENT, HISTORY, etc.): they are only treated as duplicates if their values match. update : bool, optional If `True`, update the current header with the values and comments from duplicate keywords in the input header. This supersedes the ``unique`` argument. Commentary keywords are treated the same as if ``unique=True``. update_first : bool, optional If the first keyword in the header is 'SIMPLE', and the first keyword in the input header is 'XTENSION', the 'SIMPLE' keyword is replaced by the 'XTENSION' keyword. Likewise if the first keyword in the header is 'XTENSION' and the first keyword in the input header is 'SIMPLE', the 'XTENSION' keyword is replaced by the 'SIMPLE' keyword. This behavior is otherwise dumb as to whether or not the resulting header is a valid primary or extension header. This is mostly provided to support backwards compatibility with the old ``Header.fromTxtFile`` method, and only applies if ``update=True``. useblanks, bottom, end : bool, optional These arguments are passed to :meth:`Header.append` while appending new cards to the header. """ temp = self.__class__(cards) if strip: temp.strip() if len(self): first = self._cards[0].keyword else: first = None # We don't immediately modify the header, because first we need to sift # out any duplicates in the new header prior to adding them to the # existing header, but while *allowing* duplicates from the header # being extended from (see ticket #156) extend_cards = [] for idx, card in enumerate(temp.cards): keyword = card.keyword if keyword not in Card._commentary_keywords: if unique and not update and keyword in self: continue elif update: if idx == 0 and update_first: # Dumbly update the first keyword to either SIMPLE or # XTENSION as the case may be, as was in the case in # Header.fromTxtFile if (keyword == "SIMPLE" and first == "XTENSION") or ( keyword == "XTENSION" and first == "SIMPLE" ): del self[0] self.insert(0, card) else: self[keyword] = (card.value, card.comment) elif keyword in self: self[keyword] = (card.value, card.comment) else: extend_cards.append(card) else: extend_cards.append(card) else: if (unique or update) and keyword in self: if card.is_blank: extend_cards.append(card) continue for value in self[keyword]: if value == card.value: break else: extend_cards.append(card) else: extend_cards.append(card) for card in extend_cards: self.append(card, useblanks=useblanks, bottom=bottom, end=end) def count(self, keyword): """ Returns the count of the given keyword in the header, similar to `list.count` if the Header object is treated as a list of keywords. Parameters ---------- keyword : str The keyword to count instances of in the header """ keyword = Card.normalize_keyword(keyword) # We have to look before we leap, since otherwise _keyword_indices, # being a defaultdict, will create an entry for the nonexistent keyword if keyword not in self._keyword_indices: raise KeyError(f"Keyword {keyword!r} not found.") return len(self._keyword_indices[keyword]) def index(self, keyword, start=None, stop=None): """ Returns the index if the first instance of the given keyword in the header, similar to `list.index` if the Header object is treated as a list of keywords. Parameters ---------- keyword : str The keyword to look up in the list of all keywords in the header start : int, optional The lower bound for the index stop : int, optional The upper bound for the index """ if start is None: start = 0 if stop is None: stop = len(self._cards) if stop < start: step = -1 else: step = 1 norm_keyword = Card.normalize_keyword(keyword) for idx in range(start, stop, step): if self._cards[idx].keyword.upper() == norm_keyword: return idx else: raise ValueError(f"The keyword {keyword!r} is not in the header.") def insert(self, key, card, useblanks=True, after=False): """ Inserts a new keyword+value card into the Header at a given location, similar to `list.insert`. Parameters ---------- key : int, str, or tuple The index into the list of header keywords before which the new keyword should be inserted, or the name of a keyword before which the new keyword should be inserted. Can also accept a (keyword, index) tuple for inserting around duplicate keywords. card : str, tuple A keyword or a (keyword, value, [comment]) tuple; see `Header.append` useblanks : bool, optional If there are blank cards at the end of the Header, replace the first blank card so that the total number of cards in the Header does not increase. Otherwise preserve the number of blank cards. after : bool, optional If set to `True`, insert *after* the specified index or keyword, rather than before it. Defaults to `False`. """ if not isinstance(key, numbers.Integral): # Don't pass through ints to _cardindex because it will not take # kindly to indices outside the existing number of cards in the # header, which insert needs to be able to support (for example # when inserting into empty headers) idx = self._cardindex(key) else: idx = key if after: if idx == -1: idx = len(self._cards) else: idx += 1 if idx >= len(self._cards): # This is just an append (Though it must be an append absolutely to # the bottom, ignoring blanks, etc.--the point of the insert method # is that you get exactly what you asked for with no surprises) self.append(card, end=True) return if isinstance(card, str): card = Card(card) elif isinstance(card, tuple): card = Card(*card) elif not isinstance(card, Card): raise ValueError( "The value inserted into a Header must be either a keyword or " "(keyword, value, [comment]) tuple; got: {!r}".format(card) ) self._cards.insert(idx, card) keyword = card.keyword # If idx was < 0, determine the actual index according to the rules # used by list.insert() if idx < 0: idx += len(self._cards) - 1 if idx < 0: idx = 0 # All the keyword indices above the insertion point must be updated self._updateindices(idx) keyword = Card.normalize_keyword(keyword) self._keyword_indices[keyword].append(idx) count = len(self._keyword_indices[keyword]) if count > 1: # There were already keywords with this same name if keyword not in Card._commentary_keywords: warnings.warn( "A {!r} keyword already exists in this header. Inserting " "duplicate keyword.".format(keyword), AstropyUserWarning, ) self._keyword_indices[keyword].sort() if card.field_specifier is not None: # Update the index of RVKC as well rvkc_indices = self._rvkc_indices[card.rawkeyword] rvkc_indices.append(idx) rvkc_indices.sort() if useblanks: self._useblanks(len(str(card)) // Card.length) self._modified = True def remove(self, keyword, ignore_missing=False, remove_all=False): """ Removes the first instance of the given keyword from the header similar to `list.remove` if the Header object is treated as a list of keywords. Parameters ---------- keyword : str The keyword of which to remove the first instance in the header. ignore_missing : bool, optional When True, ignores missing keywords. Otherwise, if the keyword is not present in the header a KeyError is raised. remove_all : bool, optional When True, all instances of keyword will be removed. Otherwise only the first instance of the given keyword is removed. """ keyword = Card.normalize_keyword(keyword) if keyword in self._keyword_indices: del self[self._keyword_indices[keyword][0]] if remove_all: while keyword in self._keyword_indices: del self[self._keyword_indices[keyword][0]] elif not ignore_missing: raise KeyError(f"Keyword '{keyword}' not found.") def rename_keyword(self, oldkeyword, newkeyword, force=False): """ Rename a card's keyword in the header. Parameters ---------- oldkeyword : str or int Old keyword or card index newkeyword : str New keyword force : bool, optional When `True`, if the new keyword already exists in the header, force the creation of a duplicate keyword. Otherwise a `ValueError` is raised. """ oldkeyword = Card.normalize_keyword(oldkeyword) newkeyword = Card.normalize_keyword(newkeyword) if newkeyword == "CONTINUE": raise ValueError("Can not rename to CONTINUE") if ( newkeyword in Card._commentary_keywords or oldkeyword in Card._commentary_keywords ): if not ( newkeyword in Card._commentary_keywords and oldkeyword in Card._commentary_keywords ): raise ValueError( "Regular and commentary keys can not be renamed to each other." ) elif not force and newkeyword in self: raise ValueError(f"Intended keyword {newkeyword} already exists in header.") idx = self.index(oldkeyword) card = self._cards[idx] del self[idx] self.insert(idx, (newkeyword, card.value, card.comment)) def add_history(self, value, before=None, after=None): """ Add a ``HISTORY`` card. Parameters ---------- value : str History text to be added. before : str or int, optional Same as in `Header.update` after : str or int, optional Same as in `Header.update` """ self._add_commentary("HISTORY", value, before=before, after=after) def add_comment(self, value, before=None, after=None): """ Add a ``COMMENT`` card. Parameters ---------- value : str Text to be added. before : str or int, optional Same as in `Header.update` after : str or int, optional Same as in `Header.update` """ self._add_commentary("COMMENT", value, before=before, after=after) def add_blank(self, value="", before=None, after=None): """ Add a blank card. Parameters ---------- value : str, optional Text to be added. before : str or int, optional Same as in `Header.update` after : str or int, optional Same as in `Header.update` """ self._add_commentary("", value, before=before, after=after) def strip(self): """ Strip cards specific to a certain kind of header. Strip cards like ``SIMPLE``, ``BITPIX``, etc. so the rest of the header can be used to reconstruct another kind of header. """ # TODO: Previously this only deleted some cards specific to an HDU if # _hdutype matched that type. But it seemed simple enough to just # delete all desired cards anyways, and just ignore the KeyErrors if # they don't exist. # However, it might be desirable to make this extendable somehow--have # a way for HDU classes to specify some headers that are specific only # to that type, and should be removed otherwise. naxis = self.get("NAXIS", 0) tfields = self.get("TFIELDS", 0) for idx in range(naxis): self.remove("NAXIS" + str(idx + 1), ignore_missing=True) for name in ( "TFORM", "TSCAL", "TZERO", "TNULL", "TTYPE", "TUNIT", "TDISP", "TDIM", "THEAP", "TBCOL", ): for idx in range(tfields): self.remove(name + str(idx + 1), ignore_missing=True) for name in ( "SIMPLE", "XTENSION", "BITPIX", "NAXIS", "EXTEND", "PCOUNT", "GCOUNT", "GROUPS", "BSCALE", "BZERO", "TFIELDS", ): self.remove(name, ignore_missing=True) @property def data_size(self): """ Return the size (in bytes) of the data portion following the `Header`. """ return _hdr_data_size(self) @property def data_size_padded(self): """ Return the size (in bytes) of the data portion following the `Header` including padding. """ size = self.data_size return size + _pad_length(size) def _update(self, card): """ The real update code. If keyword already exists, its value and/or comment will be updated. Otherwise a new card will be appended. This will not create a duplicate keyword except in the case of commentary cards. The only other way to force creation of a duplicate is to use the insert(), append(), or extend() methods. """ keyword, value, comment = card # Lookups for existing/known keywords are case-insensitive keyword = keyword.strip().upper() if keyword.startswith("HIERARCH "): keyword = keyword[9:] if ( keyword not in Card._commentary_keywords and keyword in self._keyword_indices ): # Easy; just update the value/comment idx = self._keyword_indices[keyword][0] existing_card = self._cards[idx] existing_card.value = value if comment is not None: # '' should be used to explicitly blank a comment existing_card.comment = comment if existing_card._modified: self._modified = True elif keyword in Card._commentary_keywords: cards = self._splitcommentary(keyword, value) if keyword in self._keyword_indices: # Append after the last keyword of the same type idx = self.index(keyword, start=len(self) - 1, stop=-1) isblank = not (keyword or value or comment) for c in reversed(cards): self.insert(idx + 1, c, useblanks=(not isblank)) else: for c in cards: self.append(c, bottom=True) else: # A new keyword! self.append() will handle updating _modified self.append(card) def _cardindex(self, key): """Returns an index into the ._cards list given a valid lookup key.""" # This used to just set key = (key, 0) and then go on to act as if the # user passed in a tuple, but it's much more common to just be given a # string as the key, so optimize more for that case if isinstance(key, str): keyword = key n = 0 elif isinstance(key, numbers.Integral): # If < 0, determine the actual index if key < 0: key += len(self._cards) if key < 0 or key >= len(self._cards): raise IndexError("Header index out of range.") return key elif isinstance(key, slice): return key elif isinstance(key, tuple): if ( len(key) != 2 or not isinstance(key[0], str) or not isinstance(key[1], numbers.Integral) ): raise ValueError( "Tuple indices must be 2-tuples consisting of a " "keyword string and an integer index." ) keyword, n = key else: raise ValueError( "Header indices must be either a string, a 2-tuple, or an integer." ) keyword = Card.normalize_keyword(keyword) # Returns the index into _cards for the n-th card with the given # keyword (where n is 0-based) indices = self._keyword_indices.get(keyword, None) if keyword and not indices: if len(keyword) > KEYWORD_LENGTH or "." in keyword: raise KeyError(f"Keyword {keyword!r} not found.") else: # Maybe it's a RVKC? indices = self._rvkc_indices.get(keyword, None) if not indices: raise KeyError(f"Keyword {keyword!r} not found.") try: return indices[n] except IndexError: raise IndexError( "There are only {} {!r} cards in the header.".format( len(indices), keyword ) ) def _keyword_from_index(self, idx): """ Given an integer index, return the (keyword, repeat) tuple that index refers to. For most keywords the repeat will always be zero, but it may be greater than zero for keywords that are duplicated (especially commentary keywords). In a sense this is the inverse of self.index, except that it also supports duplicates. """ if idx < 0: idx += len(self._cards) keyword = self._cards[idx].keyword keyword = Card.normalize_keyword(keyword) repeat = self._keyword_indices[keyword].index(idx) return keyword, repeat def _relativeinsert(self, card, before=None, after=None, replace=False): """ Inserts a new card before or after an existing card; used to implement support for the legacy before/after keyword arguments to Header.update(). If replace=True, move an existing card with the same keyword. """ if before is None: insertionkey = after else: insertionkey = before def get_insertion_idx(): if not ( isinstance(insertionkey, numbers.Integral) and insertionkey >= len(self._cards) ): idx = self._cardindex(insertionkey) else: idx = insertionkey if before is None: idx += 1 return idx if replace: # The card presumably already exists somewhere in the header. # Check whether or not we actually have to move it; if it does need # to be moved we just delete it and then it will be reinserted # below old_idx = self._cardindex(card.keyword) insertion_idx = get_insertion_idx() if insertion_idx >= len(self._cards) and old_idx == len(self._cards) - 1: # The card would be appended to the end, but it's already at # the end return if before is not None: if old_idx == insertion_idx - 1: return elif after is not None and old_idx == insertion_idx: return del self[old_idx] # Even if replace=True, the insertion idx may have changed since the # old card was deleted idx = get_insertion_idx() if card[0] in Card._commentary_keywords: cards = reversed(self._splitcommentary(card[0], card[1])) else: cards = [card] for c in cards: self.insert(idx, c) def _updateindices(self, idx, increment=True): """ For all cards with index above idx, increment or decrement its index value in the keyword_indices dict. """ if idx > len(self._cards): # Save us some effort return increment = 1 if increment else -1 for index_sets in (self._keyword_indices, self._rvkc_indices): for indices in index_sets.values(): for jdx, keyword_index in enumerate(indices): if keyword_index >= idx: indices[jdx] += increment def _countblanks(self): """Returns the number of blank cards at the end of the Header.""" for idx in range(1, len(self._cards)): if not self._cards[-idx].is_blank: return idx - 1 return 0 def _useblanks(self, count): for _ in range(count): if self._cards[-1].is_blank: del self[-1] else: break def _haswildcard(self, keyword): """Return `True` if the input keyword contains a wildcard pattern.""" return isinstance(keyword, str) and ( keyword.endswith("...") or "*" in keyword or "?" in keyword ) def _wildcardmatch(self, pattern): """ Returns a list of indices of the cards matching the given wildcard pattern. * '*' matches 0 or more characters * '?' matches a single character * '...' matches 0 or more of any non-whitespace character """ pattern = pattern.replace("*", r".*").replace("?", r".") pattern = pattern.replace("...", r"\S*") + "$" pattern_re = re.compile(pattern, re.I) return [ idx for idx, card in enumerate(self._cards) if pattern_re.match(card.keyword) ] def _set_slice(self, key, value, target): """ Used to implement Header.__setitem__ and CardAccessor.__setitem__. """ if isinstance(key, slice) or self._haswildcard(key): if isinstance(key, slice): indices = range(*key.indices(len(target))) else: indices = self._wildcardmatch(key) if isinstance(value, str) or not isiterable(value): value = itertools.repeat(value, len(indices)) for idx, val in zip(indices, value): target[idx] = val return True return False def _splitcommentary(self, keyword, value): """ Given a commentary keyword and value, returns a list of the one or more cards needed to represent the full value. This is primarily used to create the multiple commentary cards needed to represent a long value that won't fit into a single commentary card. """ # The maximum value in each card can be the maximum card length minus # the maximum key length (which can include spaces if they key length # less than 8 maxlen = Card.length - KEYWORD_LENGTH valuestr = str(value) if len(valuestr) <= maxlen: # The value can fit in a single card cards = [Card(keyword, value)] else: # The value must be split across multiple consecutive commentary # cards idx = 0 cards = [] while idx < len(valuestr): cards.append(Card(keyword, valuestr[idx : idx + maxlen])) idx += maxlen return cards def _add_commentary(self, key, value, before=None, after=None): """ Add a commentary card. If ``before`` and ``after`` are `None`, add to the last occurrence of cards of the same name (except blank card). If there is no card (or blank card), append at the end. """ if before is not None or after is not None: self._relativeinsert((key, value), before=before, after=after) else: self[key] = value collections.abc.MutableSequence.register(Header) collections.abc.MutableMapping.register(Header) class _DelayedHeader: """ Descriptor used to create the Header object from the header string that was stored in HDU._header_str when parsing the file. """ def __get__(self, obj, owner=None): try: return obj.__dict__["_header"] except KeyError: if obj._header_str is not None: hdr = Header.fromstring(obj._header_str) obj._header_str = None else: raise AttributeError( "'{}' object has no attribute '_header'".format( obj.__class__.__name__ ) ) obj.__dict__["_header"] = hdr return hdr def __set__(self, obj, val): obj.__dict__["_header"] = val def __delete__(self, obj): del obj.__dict__["_header"] class _BasicHeaderCards: """ This class allows to access cards with the _BasicHeader.cards attribute. This is needed because during the HDU class detection, some HDUs uses the .cards interface. Cards cannot be modified here as the _BasicHeader object will be deleted once the HDU object is created. """ def __init__(self, header): self.header = header def __getitem__(self, key): # .cards is a list of cards, so key here is an integer. # get the keyword name from its index. key = self.header._keys[key] # then we get the card from the _BasicHeader._cards list, or parse it # if needed. try: return self.header._cards[key] except KeyError: cardstr = self.header._raw_cards[key] card = Card.fromstring(cardstr) self.header._cards[key] = card return card class _BasicHeader(collections.abc.Mapping): """This class provides a fast header parsing, without all the additional features of the Header class. Here only standard keywords are parsed, no support for CONTINUE, HIERARCH, COMMENT, HISTORY, or rvkc. The raw card images are stored and parsed only if needed. The idea is that to create the HDU objects, only a small subset of standard cards is needed. Once a card is parsed, which is deferred to the Card class, the Card object is kept in a cache. This is useful because a small subset of cards is used a lot in the HDU creation process (NAXIS, XTENSION, ...). """ def __init__(self, cards): # dict of (keywords, card images) self._raw_cards = cards self._keys = list(cards.keys()) # dict of (keyword, Card object) storing the parsed cards self._cards = {} # the _BasicHeaderCards object allows to access Card objects from # keyword indices self.cards = _BasicHeaderCards(self) self._modified = False def __getitem__(self, key): if isinstance(key, numbers.Integral): key = self._keys[key] try: return self._cards[key].value except KeyError: # parse the Card and store it cardstr = self._raw_cards[key] self._cards[key] = card = Card.fromstring(cardstr) return card.value def __len__(self): return len(self._raw_cards) def __iter__(self): return iter(self._raw_cards) def index(self, keyword): return self._keys.index(keyword) @property def data_size(self): """ Return the size (in bytes) of the data portion following the `Header`. """ return _hdr_data_size(self) @property def data_size_padded(self): """ Return the size (in bytes) of the data portion following the `Header` including padding. """ size = self.data_size return size + _pad_length(size) @classmethod def fromfile(cls, fileobj): """The main method to parse a FITS header from a file. The parsing is done with the parse_header function implemented in Cython.""" close_file = False if isinstance(fileobj, str): fileobj = open(fileobj, "rb") close_file = True try: header_str, cards = parse_header(fileobj) _check_padding(header_str, BLOCK_SIZE, False) return header_str, cls(cards) finally: if close_file: fileobj.close() class _CardAccessor: """ This is a generic class for wrapping a Header in such a way that you can use the header's slice/filtering capabilities to return a subset of cards and do something with them. This is sort of the opposite notion of the old CardList class--whereas Header used to use CardList to get lists of cards, this uses Header to get lists of cards. """ # TODO: Consider giving this dict/list methods like Header itself def __init__(self, header): self._header = header def __repr__(self): return "\n".join(repr(c) for c in self._header._cards) def __len__(self): return len(self._header._cards) def __iter__(self): return iter(self._header._cards) def __eq__(self, other): # If the `other` item is a scalar we will still treat it as equal if # this _CardAccessor only contains one item if not isiterable(other) or isinstance(other, str): if len(self) == 1: other = [other] else: return False for a, b in itertools.zip_longest(self, other): if a != b: return False else: return True def __ne__(self, other): return not (self == other) def __getitem__(self, item): if isinstance(item, slice) or self._header._haswildcard(item): return self.__class__(self._header[item]) idx = self._header._cardindex(item) return self._header._cards[idx] def _setslice(self, item, value): """ Helper for implementing __setitem__ on _CardAccessor subclasses; slices should always be handled in this same way. """ if isinstance(item, slice) or self._header._haswildcard(item): if isinstance(item, slice): indices = range(*item.indices(len(self))) else: indices = self._header._wildcardmatch(item) if isinstance(value, str) or not isiterable(value): value = itertools.repeat(value, len(indices)) for idx, val in zip(indices, value): self[idx] = val return True return False class _HeaderComments(_CardAccessor): """ A class used internally by the Header class for the Header.comments attribute access. This object can be used to display all the keyword comments in the Header, or look up the comments on specific keywords. It allows all the same forms of keyword lookup as the Header class itself, but returns comments instead of values. """ def __iter__(self): for card in self._header._cards: yield card.comment def __repr__(self): """Returns a simple list of all keywords and their comments.""" keyword_length = KEYWORD_LENGTH for card in self._header._cards: keyword_length = max(keyword_length, len(card.keyword)) return "\n".join( "{:>{len}} {}".format(c.keyword, c.comment, len=keyword_length) for c in self._header._cards ) def __getitem__(self, item): """ Slices and filter strings return a new _HeaderComments containing the returned cards. Otherwise the comment of a single card is returned. """ item = super().__getitem__(item) if isinstance(item, _HeaderComments): # The item key was a slice return item return item.comment def __setitem__(self, item, comment): """ Set/update the comment on specified card or cards. Slice/filter updates work similarly to how Header.__setitem__ works. """ if self._header._set_slice(item, comment, self): return # In this case, key/index errors should be raised; don't update # comments of nonexistent cards idx = self._header._cardindex(item) value = self._header[idx] self._header[idx] = (value, comment) class _HeaderCommentaryCards(_CardAccessor): """ This is used to return a list-like sequence over all the values in the header for a given commentary keyword, such as HISTORY. """ def __init__(self, header, keyword=""): super().__init__(header) self._keyword = keyword self._count = self._header.count(self._keyword) self._indices = slice(self._count).indices(self._count) # __len__ and __iter__ need to be overridden from the base class due to the # different approach this class has to take for slicing def __len__(self): return len(range(*self._indices)) def __iter__(self): for idx in range(*self._indices): yield self._header[(self._keyword, idx)] def __repr__(self): return "\n".join(str(x) for x in self) def __getitem__(self, idx): if isinstance(idx, slice): n = self.__class__(self._header, self._keyword) n._indices = idx.indices(self._count) return n elif not isinstance(idx, numbers.Integral): raise ValueError(f"{self._keyword} index must be an integer") idx = list(range(*self._indices))[idx] return self._header[(self._keyword, idx)] def __setitem__(self, item, value): """ Set the value of a specified commentary card or cards. Slice/filter updates work similarly to how Header.__setitem__ works. """ if self._header._set_slice(item, value, self): return # In this case, key/index errors should be raised; don't update # comments of nonexistent cards self._header[(self._keyword, item)] = value def _block_size(sep): """ Determine the size of a FITS header block if a non-blank separator is used between cards. """ return BLOCK_SIZE + (len(sep) * (BLOCK_SIZE // Card.length - 1)) def _pad_length(stringlen): """Bytes needed to pad the input stringlen to the next FITS block.""" return (BLOCK_SIZE - (stringlen % BLOCK_SIZE)) % BLOCK_SIZE def _check_padding(header_str, block_size, is_eof, check_block_size=True): # Strip any zero-padding (see ticket #106) if header_str and header_str[-1] == "\0": if is_eof and header_str.strip("\0") == "": # TODO: Pass this warning to validation framework warnings.warn( "Unexpected extra padding at the end of the file. This " "padding may not be preserved when saving changes.", AstropyUserWarning, ) raise EOFError() else: # Replace the illegal null bytes with spaces as required by # the FITS standard, and issue a nasty warning # TODO: Pass this warning to validation framework warnings.warn( "Header block contains null bytes instead of spaces for " "padding, and is not FITS-compliant. Nulls may be " "replaced with spaces upon writing.", AstropyUserWarning, ) header_str.replace("\0", " ") if check_block_size and (len(header_str) % block_size) != 0: # This error message ignores the length of the separator for # now, but maybe it shouldn't? actual_len = len(header_str) - block_size + BLOCK_SIZE # TODO: Pass this error to validation framework raise ValueError(f"Header size is not multiple of {BLOCK_SIZE}: {actual_len}") def _hdr_data_size(header): """Calculate the data size (in bytes) following the given `Header`""" size = 0 naxis = header.get("NAXIS", 0) if naxis > 0: size = 1 for idx in range(naxis): size = size * header["NAXIS" + str(idx + 1)] bitpix = header["BITPIX"] gcount = header.get("GCOUNT", 1) pcount = header.get("PCOUNT", 0) size = abs(bitpix) * gcount * (pcount + size) // 8 return size
b196a528c3287ad7505e95e7a58c68dbba2a7d46ded173723bf41f330ae02c1a
# Licensed under a 3-clause BSD style license - see PYFITS.rst import copy import operator import warnings import weakref from contextlib import suppress from functools import reduce import numpy as np from numpy import char as chararray from astropy.utils import lazyproperty from .column import ( _VLF, ASCII2NUMPY, ASCII2STR, ASCIITNULL, FITS2NUMPY, ColDefs, Delayed, _AsciiColDefs, _FormatP, _FormatX, _get_index, _makep, _unwrapx, _wrapx, ) from .util import _rstrip_inplace, decode_ascii, encode_ascii class FITS_record: """ FITS record class. `FITS_record` is used to access records of the `FITS_rec` object. This will allow us to deal with scaled columns. It also handles conversion/scaling of columns in ASCII tables. The `FITS_record` class expects a `FITS_rec` object as input. """ def __init__( self, input, row=0, start=None, end=None, step=None, base=None, **kwargs ): """ Parameters ---------- input : array The array to wrap. row : int, optional The starting logical row of the array. start : int, optional The starting column in the row associated with this object. Used for subsetting the columns of the `FITS_rec` object. end : int, optional The ending column in the row associated with this object. Used for subsetting the columns of the `FITS_rec` object. """ self.array = input self.row = row if base: width = len(base) else: width = self.array._nfields s = slice(start, end, step).indices(width) self.start, self.end, self.step = s self.base = base def __getitem__(self, key): if isinstance(key, str): indx = _get_index(self.array.names, key) if indx < self.start or indx > self.end - 1: raise KeyError(f"Key '{key}' does not exist.") elif isinstance(key, slice): return type(self)(self.array, self.row, key.start, key.stop, key.step, self) else: indx = self._get_index(key) if indx > self.array._nfields - 1: raise IndexError("Index out of bounds") return self.array.field(indx)[self.row] def __setitem__(self, key, value): if isinstance(key, str): indx = _get_index(self.array.names, key) if indx < self.start or indx > self.end - 1: raise KeyError(f"Key '{key}' does not exist.") elif isinstance(key, slice): for indx in range(slice.start, slice.stop, slice.step): indx = self._get_indx(indx) self.array.field(indx)[self.row] = value else: indx = self._get_index(key) if indx > self.array._nfields - 1: raise IndexError("Index out of bounds") self.array.field(indx)[self.row] = value def __len__(self): return len(range(self.start, self.end, self.step)) def __repr__(self): """ Display a single row. """ outlist = [] for idx in range(len(self)): outlist.append(repr(self[idx])) return f"({', '.join(outlist)})" def field(self, field): """ Get the field data of the record. """ return self.__getitem__(field) def setfield(self, field, value): """ Set the field data of the record. """ self.__setitem__(field, value) @lazyproperty def _bases(self): bases = [weakref.proxy(self)] base = self.base while base: bases.append(base) base = base.base return bases def _get_index(self, indx): indices = np.ogrid[: self.array._nfields] for base in reversed(self._bases): if base.step < 1: s = slice(base.start, None, base.step) else: s = slice(base.start, base.end, base.step) indices = indices[s] return indices[indx] class FITS_rec(np.recarray): """ FITS record array class. `FITS_rec` is the data part of a table HDU's data part. This is a layer over the `~numpy.recarray`, so we can deal with scaled columns. It inherits all of the standard methods from `numpy.ndarray`. """ _record_type = FITS_record _character_as_bytes = False def __new__(subtype, input): """ Construct a FITS record array from a recarray. """ # input should be a record array if input.dtype.subdtype is None: self = np.recarray.__new__( subtype, input.shape, input.dtype, buf=input.data ) else: self = np.recarray.__new__( subtype, input.shape, input.dtype, buf=input.data, strides=input.strides ) self._init() if self.dtype.fields: self._nfields = len(self.dtype.fields) return self def __setstate__(self, state): meta = state[-1] column_state = state[-2] state = state[:-2] super().__setstate__(state) self._col_weakrefs = weakref.WeakSet() for attr, value in zip(meta, column_state): setattr(self, attr, value) def __reduce__(self): """ Return a 3-tuple for pickling a FITS_rec. Use the super-class functionality but then add in a tuple of FITS_rec-specific values that get used in __setstate__. """ reconst_func, reconst_func_args, state = super().__reduce__() # Define FITS_rec-specific attrs that get added to state column_state = [] meta = [] for attrs in [ "_converted", "_heapoffset", "_heapsize", "_nfields", "_gap", "_uint", "parnames", "_coldefs", ]: with suppress(AttributeError): # _coldefs can be Delayed, and file objects cannot be # picked, it needs to be deepcopied first if attrs == "_coldefs": column_state.append(self._coldefs.__deepcopy__(None)) else: column_state.append(getattr(self, attrs)) meta.append(attrs) state = state + (column_state, meta) return reconst_func, reconst_func_args, state def __array_finalize__(self, obj): if obj is None: return if isinstance(obj, FITS_rec): self._character_as_bytes = obj._character_as_bytes if isinstance(obj, FITS_rec) and obj.dtype == self.dtype: self._converted = obj._converted self._heapoffset = obj._heapoffset self._heapsize = obj._heapsize self._col_weakrefs = obj._col_weakrefs self._coldefs = obj._coldefs self._nfields = obj._nfields self._gap = obj._gap self._uint = obj._uint elif self.dtype.fields is not None: # This will allow regular ndarrays with fields, rather than # just other FITS_rec objects self._nfields = len(self.dtype.fields) self._converted = {} self._heapoffset = getattr(obj, "_heapoffset", 0) self._heapsize = getattr(obj, "_heapsize", 0) self._gap = getattr(obj, "_gap", 0) self._uint = getattr(obj, "_uint", False) self._col_weakrefs = weakref.WeakSet() self._coldefs = ColDefs(self) # Work around chicken-egg problem. Column.array relies on the # _coldefs attribute to set up ref back to parent FITS_rec; however # in the above line the self._coldefs has not been assigned yet so # this fails. This patches that up... for col in self._coldefs: del col.array col._parent_fits_rec = weakref.ref(self) else: self._init() def _init(self): """Initializes internal attributes specific to FITS-isms.""" self._nfields = 0 self._converted = {} self._heapoffset = 0 self._heapsize = 0 self._col_weakrefs = weakref.WeakSet() self._coldefs = None self._gap = 0 self._uint = False @classmethod def from_columns(cls, columns, nrows=0, fill=False, character_as_bytes=False): """ Given a `ColDefs` object of unknown origin, initialize a new `FITS_rec` object. .. note:: This was originally part of the ``new_table`` function in the table module but was moved into a class method since most of its functionality always had more to do with initializing a `FITS_rec` object than anything else, and much of it also overlapped with ``FITS_rec._scale_back``. Parameters ---------- columns : sequence of `Column` or a `ColDefs` The columns from which to create the table data. If these columns have data arrays attached that data may be used in initializing the new table. Otherwise the input columns will be used as a template for a new table with the requested number of rows. nrows : int Number of rows in the new table. If the input columns have data associated with them, the size of the largest input column is used. Otherwise the default is 0. fill : bool If `True`, will fill all cells with zeros or blanks. If `False`, copy the data from input, undefined cells will still be filled with zeros/blanks. """ if not isinstance(columns, ColDefs): columns = ColDefs(columns) # read the delayed data for column in columns: arr = column.array if isinstance(arr, Delayed): if arr.hdu.data is None: column.array = None else: column.array = _get_recarray_field(arr.hdu.data, arr.field) # Reset columns._arrays (which we may want to just do away with # altogether del columns._arrays # use the largest column shape as the shape of the record if nrows == 0: for arr in columns._arrays: if arr is not None: dim = arr.shape[0] else: dim = 0 if dim > nrows: nrows = dim raw_data = np.empty(columns.dtype.itemsize * nrows, dtype=np.uint8) raw_data.fill(ord(columns._padding_byte)) data = np.recarray(nrows, dtype=columns.dtype, buf=raw_data).view(cls) data._character_as_bytes = character_as_bytes # Previously this assignment was made from hdu.columns, but that's a # bug since if a _TableBaseHDU has a FITS_rec in its .data attribute # the _TableBaseHDU.columns property is actually returned from # .data._coldefs, so this assignment was circular! Don't make that # mistake again. # All of this is an artifact of the fragility of the FITS_rec class, # and that it can't just be initialized by columns... data._coldefs = columns # If fill is True we don't copy anything from the column arrays. We're # just using them as a template, and returning a table filled with # zeros/blanks if fill: return data # Otherwise we have to fill the recarray with data from the input # columns for idx, column in enumerate(columns): # For each column in the ColDef object, determine the number of # rows in that column. This will be either the number of rows in # the ndarray associated with the column, or the number of rows # given in the call to this function, which ever is smaller. If # the input FILL argument is true, the number of rows is set to # zero so that no data is copied from the original input data. arr = column.array if arr is None: array_size = 0 else: array_size = len(arr) n = min(array_size, nrows) # TODO: At least *some* of this logic is mostly redundant with the # _convert_foo methods in this class; see if we can eliminate some # of that duplication. if not n: # The input column had an empty array, so just use the fill # value continue field = _get_recarray_field(data, idx) name = column.name fitsformat = column.format recformat = fitsformat.recformat outarr = field[:n] inarr = arr[:n] if isinstance(recformat, _FormatX): # Data is a bit array if inarr.shape[-1] == recformat.repeat: _wrapx(inarr, outarr, recformat.repeat) continue elif isinstance(recformat, _FormatP): data._cache_field(name, _makep(inarr, field, recformat, nrows=nrows)) continue # TODO: Find a better way of determining that the column is meant # to be FITS L formatted elif recformat[-2:] == FITS2NUMPY["L"] and inarr.dtype == bool: # column is boolean # The raw data field should be filled with either 'T' or 'F' # (not 0). Use 'F' as a default field[:] = ord("F") # Also save the original boolean array in data._converted so # that it doesn't have to be re-converted converted = np.zeros(field.shape, dtype=bool) converted[:n] = inarr data._cache_field(name, converted) # TODO: Maybe this step isn't necessary at all if _scale_back # will handle it? inarr = np.where(inarr == np.False_, ord("F"), ord("T")) elif columns[idx]._physical_values and columns[idx]._pseudo_unsigned_ints: # Temporary hack... bzero = column.bzero converted = np.zeros(field.shape, dtype=inarr.dtype) converted[:n] = inarr data._cache_field(name, converted) if n < nrows: # Pre-scale rows below the input data field[n:] = -bzero inarr = inarr - bzero elif isinstance(columns, _AsciiColDefs): # Regardless whether the format is character or numeric, if the # input array contains characters then it's already in the raw # format for ASCII tables if fitsformat._pseudo_logical: # Hack to support converting from 8-bit T/F characters # Normally the column array is a chararray of 1 character # strings, but we need to view it as a normal ndarray of # 8-bit ints to fill it with ASCII codes for 'T' and 'F' outarr = field.view(np.uint8, np.ndarray)[:n] elif arr.dtype.kind not in ("S", "U"): # Set up views of numeric columns with the appropriate # numeric dtype # Fill with the appropriate blanks for the column format data._cache_field(name, np.zeros(nrows, dtype=arr.dtype)) outarr = data._converted[name][:n] outarr[:] = inarr continue if inarr.shape != outarr.shape: if ( inarr.dtype.kind == outarr.dtype.kind and inarr.dtype.kind in ("U", "S") and inarr.dtype != outarr.dtype ): inarr_rowsize = inarr[0].size inarr = inarr.flatten().view(outarr.dtype) # This is a special case to handle input arrays with # non-trivial TDIMn. # By design each row of the outarray is 1-D, while each row of # the input array may be n-D if outarr.ndim > 1: # The normal case where the first dimension is the rows inarr_rowsize = inarr[0].size inarr = inarr.reshape(n, inarr_rowsize) outarr[:, :inarr_rowsize] = inarr else: # Special case for strings where the out array only has one # dimension (the second dimension is rolled up into the # strings outarr[:n] = inarr.ravel() else: outarr[:] = inarr # Now replace the original column array references with the new # fields # This is required to prevent the issue reported in # https://github.com/spacetelescope/PyFITS/issues/99 for idx in range(len(columns)): columns._arrays[idx] = data.field(idx) return data def __repr__(self): # Force use of the normal ndarray repr (rather than the new # one added for recarray in Numpy 1.10) for backwards compat return np.ndarray.__repr__(self) def __getattribute__(self, attr): # First, see if ndarray has this attr, and return it if so. Note that # this means a field with the same name as an ndarray attr cannot be # accessed by attribute, this is Numpy's default behavior. # We avoid using np.recarray.__getattribute__ here because after doing # this check it would access the columns without doing the conversions # that we need (with .field, see below). try: return object.__getattribute__(self, attr) except AttributeError: pass # attr might still be a fieldname. If we have column definitions, # we should access this via .field, as the data may have to be scaled. if self._coldefs is not None and attr in self.columns.names: return self.field(attr) # If not, just let the usual np.recarray override deal with it. return super().__getattribute__(attr) def __getitem__(self, key): if self._coldefs is None: return super().__getitem__(key) if isinstance(key, str): return self.field(key) # Have to view as a recarray then back as a FITS_rec, otherwise the # circular reference fix/hack in FITS_rec.field() won't preserve # the slice. out = self.view(np.recarray)[key] if type(out) is not np.recarray: # Oops, we got a single element rather than a view. In that case, # return a Record, which has no __getstate__ and is more efficient. return self._record_type(self, key) # We got a view; change it back to our class, and add stuff out = out.view(type(self)) out._uint = self._uint out._coldefs = ColDefs(self._coldefs) arrays = [] out._converted = {} for idx, name in enumerate(self._coldefs.names): # # Store the new arrays for the _coldefs object # arrays.append(self._coldefs._arrays[idx][key]) # Ensure that the sliced FITS_rec will view the same scaled # columns as the original; this is one of the few cases where # it is not necessary to use _cache_field() if name in self._converted: dummy = self._converted[name] field = np.ndarray.__getitem__(dummy, key) out._converted[name] = field out._coldefs._arrays = arrays return out def __setitem__(self, key, value): if self._coldefs is None: return super().__setitem__(key, value) if isinstance(key, str): self[key][:] = value return if isinstance(key, slice): end = min(len(self), key.stop or len(self)) end = max(0, end) start = max(0, key.start or 0) end = min(end, start + len(value)) for idx in range(start, end): self.__setitem__(idx, value[idx - start]) return if isinstance(value, FITS_record): for idx in range(self._nfields): self.field(self.names[idx])[key] = value.field(self.names[idx]) elif isinstance(value, (tuple, list, np.void)): if self._nfields == len(value): for idx in range(self._nfields): self.field(idx)[key] = value[idx] else: raise ValueError( "Input tuple or list required to have {} elements.".format( self._nfields ) ) else: raise TypeError( "Assignment requires a FITS_record, tuple, or list as input." ) def _ipython_key_completions_(self): return self.names def copy(self, order="C"): """ The Numpy documentation lies; `numpy.ndarray.copy` is not equivalent to `numpy.copy`. Differences include that it re-views the copied array as self's ndarray subclass, as though it were taking a slice; this means ``__array_finalize__`` is called and the copy shares all the array attributes (including ``._converted``!). So we need to make a deep copy of all those attributes so that the two arrays truly do not share any data. """ new = super().copy(order=order) new.__dict__ = copy.deepcopy(self.__dict__) return new @property def columns(self): """A user-visible accessor for the coldefs.""" return self._coldefs @property def _coldefs(self): # This used to be a normal internal attribute, but it was changed to a # property as a quick and transparent way to work around the reference # leak bug fixed in https://github.com/astropy/astropy/pull/4539 # # See the long comment in the Column.array property for more details # on this. But in short, FITS_rec now has a ._col_weakrefs attribute # which is a WeakSet of weakrefs to each Column in _coldefs. # # So whenever ._coldefs is set we also add each Column in the ColDefs # to the weakrefs set. This is an easy way to find out if a Column has # any references to it external to the FITS_rec (i.e. a user assigned a # column to a variable). If the column is still in _col_weakrefs then # there are other references to it external to this FITS_rec. We use # that information in __del__ to save off copies of the array data # for those columns to their Column.array property before our memory # is freed. return self.__dict__.get("_coldefs") @_coldefs.setter def _coldefs(self, cols): self.__dict__["_coldefs"] = cols if isinstance(cols, ColDefs): for col in cols.columns: self._col_weakrefs.add(col) @_coldefs.deleter def _coldefs(self): try: del self.__dict__["_coldefs"] except KeyError as exc: raise AttributeError(exc.args[0]) def __del__(self): try: del self._coldefs if self.dtype.fields is not None: for col in self._col_weakrefs: if col.array is not None: col.array = col.array.copy() # See issues #4690 and #4912 except (AttributeError, TypeError): # pragma: no cover pass @property def names(self): """List of column names.""" if self.dtype.fields: return list(self.dtype.names) elif getattr(self, "_coldefs", None) is not None: return self._coldefs.names else: return None @property def formats(self): """List of column FITS formats.""" if getattr(self, "_coldefs", None) is not None: return self._coldefs.formats return None @property def _raw_itemsize(self): """ Returns the size of row items that would be written to the raw FITS file, taking into account the possibility of unicode columns being compactified. Currently for internal use only. """ if _has_unicode_fields(self): total_itemsize = 0 for field in self.dtype.fields.values(): itemsize = field[0].itemsize if field[0].kind == "U": itemsize = itemsize // 4 total_itemsize += itemsize return total_itemsize else: # Just return the normal itemsize return self.itemsize def field(self, key): """ A view of a `Column`'s data as an array. """ # NOTE: The *column* index may not be the same as the field index in # the recarray, if the column is a phantom column column = self.columns[key] name = column.name format = column.format if format.dtype.itemsize == 0: warnings.warn( "Field {!r} has a repeat count of 0 in its format code, " "indicating an empty field.".format(key) ) return np.array([], dtype=format.dtype) # If field's base is a FITS_rec, we can run into trouble because it # contains a reference to the ._coldefs object of the original data; # this can lead to a circular reference; see ticket #49 base = self while isinstance(base, FITS_rec) and isinstance(base.base, np.recarray): base = base.base # base could still be a FITS_rec in some cases, so take care to # use rec.recarray.field to avoid a potential infinite # recursion field = _get_recarray_field(base, name) if name not in self._converted: recformat = format.recformat # TODO: If we're now passing the column to these subroutines, do we # really need to pass them the recformat? if isinstance(recformat, _FormatP): # for P format converted = self._convert_p(column, field, recformat) else: # Handle all other column data types which are fixed-width # fields converted = self._convert_other(column, field, recformat) # Note: Never assign values directly into the self._converted dict; # always go through self._cache_field; this way self._converted is # only used to store arrays that are not already direct views of # our own data. self._cache_field(name, converted) return converted return self._converted[name] def _cache_field(self, name, field): """ Do not store fields in _converted if one of its bases is self, or if it has a common base with self. This results in a reference cycle that cannot be broken since ndarrays do not participate in cyclic garbage collection. """ base = field while True: self_base = self while True: if self_base is base: return if getattr(self_base, "base", None) is not None: self_base = self_base.base else: break if getattr(base, "base", None) is not None: base = base.base else: break self._converted[name] = field def _update_column_attribute_changed(self, column, idx, attr, old_value, new_value): """ Update how the data is formatted depending on changes to column attributes initiated by the user through the `Column` interface. Dispatches column attribute change notifications to individual methods for each attribute ``_update_column_<attr>`` """ method_name = f"_update_column_{attr}" if hasattr(self, method_name): # Right now this is so we can be lazy and not implement updaters # for every attribute yet--some we may not need at all, TBD getattr(self, method_name)(column, idx, old_value, new_value) def _update_column_name(self, column, idx, old_name, name): """Update the dtype field names when a column name is changed.""" dtype = self.dtype # Updating the names on the dtype should suffice dtype.names = dtype.names[:idx] + (name,) + dtype.names[idx + 1 :] def _convert_x(self, field, recformat): """Convert a raw table column to a bit array as specified by the FITS X format. """ dummy = np.zeros(self.shape + (recformat.repeat,), dtype=np.bool_) _unwrapx(field, dummy, recformat.repeat) return dummy def _convert_p(self, column, field, recformat): """Convert a raw table column of FITS P or Q format descriptors to a VLA column with the array data returned from the heap. """ dummy = _VLF([None] * len(self), dtype=recformat.dtype) raw_data = self._get_raw_data() if raw_data is None: raise OSError( "Could not find heap data for the {!r} variable-length " "array column.".format(column.name) ) for idx in range(len(self)): offset = field[idx, 1] + self._heapoffset count = field[idx, 0] if recformat.dtype == "a": dt = np.dtype(recformat.dtype + str(1)) arr_len = count * dt.itemsize da = raw_data[offset : offset + arr_len].view(dt) da = np.char.array(da.view(dtype=dt), itemsize=count) dummy[idx] = decode_ascii(da) else: dt = np.dtype(recformat.dtype) arr_len = count * dt.itemsize dummy[idx] = raw_data[offset : offset + arr_len].view(dt) dummy[idx].dtype = dummy[idx].dtype.newbyteorder(">") # Each array in the field may now require additional # scaling depending on the other scaling parameters # TODO: The same scaling parameters apply to every # array in the column so this is currently very slow; we # really only need to check once whether any scaling will # be necessary and skip this step if not # TODO: Test that this works for X format; I don't think # that it does--the recformat variable only applies to the P # format not the X format dummy[idx] = self._convert_other(column, dummy[idx], recformat) return dummy def _convert_ascii(self, column, field): """ Special handling for ASCII table columns to convert columns containing numeric types to actual numeric arrays from the string representation. """ format = column.format recformat = getattr(format, "recformat", ASCII2NUMPY[format[0]]) # if the string = TNULL, return ASCIITNULL nullval = str(column.null).strip().encode("ascii") if len(nullval) > format.width: nullval = nullval[: format.width] # Before using .replace make sure that any trailing bytes in each # column are filled with spaces, and *not*, say, nulls; this causes # functions like replace to potentially leave gibberish bytes in the # array buffer. dummy = np.char.ljust(field, format.width) dummy = np.char.replace(dummy, encode_ascii("D"), encode_ascii("E")) null_fill = encode_ascii(str(ASCIITNULL).rjust(format.width)) # Convert all fields equal to the TNULL value (nullval) to empty fields. # TODO: These fields really should be converted to NaN or something else undefined. # Currently they are converted to empty fields, which are then set to zero. dummy = np.where(np.char.strip(dummy) == nullval, null_fill, dummy) # always replace empty fields, see https://github.com/astropy/astropy/pull/5394 if nullval != b"": dummy = np.where(np.char.strip(dummy) == b"", null_fill, dummy) try: dummy = np.array(dummy, dtype=recformat) except ValueError as exc: indx = self.names.index(column.name) raise ValueError( "{}; the header may be missing the necessary TNULL{} " "keyword or the table contains invalid data".format(exc, indx + 1) ) return dummy def _convert_other(self, column, field, recformat): """Perform conversions on any other fixed-width column data types. This may not perform any conversion at all if it's not necessary, in which case the original column array is returned. """ if isinstance(recformat, _FormatX): # special handling for the X format return self._convert_x(field, recformat) ( _str, _bool, _number, _scale, _zero, bscale, bzero, dim, ) = self._get_scale_factors(column) indx = self.names.index(column.name) # ASCII table, convert strings to numbers # TODO: # For now, check that these are ASCII columns by checking the coldefs # type; in the future all columns (for binary tables, ASCII tables, or # otherwise) should "know" what type they are already and how to handle # converting their data from FITS format to native format and vice # versa... if not _str and isinstance(self._coldefs, _AsciiColDefs): field = self._convert_ascii(column, field) # Test that the dimensions given in dim are sensible; otherwise # display a warning and ignore them if dim: # See if the dimensions already match, if not, make sure the # number items will fit in the specified dimensions if field.ndim > 1: actual_shape = field.shape[1:] if _str: actual_shape = actual_shape + (field.itemsize,) else: actual_shape = field.shape[0] if dim == actual_shape: # The array already has the correct dimensions, so we # ignore dim and don't convert dim = None else: nitems = reduce(operator.mul, dim) if _str: actual_nitems = field.itemsize elif ( len(field.shape) == 1 ): # No repeat count in TFORMn, equivalent to 1 actual_nitems = 1 else: actual_nitems = field.shape[1] if nitems > actual_nitems: warnings.warn( "TDIM{} value {:d} does not fit with the size of " "the array items ({:d}). TDIM{:d} will be ignored.".format( indx + 1, self._coldefs[indx].dims, actual_nitems, indx + 1 ) ) dim = None # further conversion for both ASCII and binary tables # For now we've made columns responsible for *knowing* whether their # data has been scaled, but we make the FITS_rec class responsible for # actually doing the scaling # TODO: This also needs to be fixed in the effort to make Columns # responsible for scaling their arrays to/from FITS native values if not column.ascii and column.format.p_format: format_code = column.format.p_format else: # TODO: Rather than having this if/else it might be nice if the # ColumnFormat class had an attribute guaranteed to give the format # of actual values in a column regardless of whether the true # format is something like P or Q format_code = column.format.format if _number and (_scale or _zero) and not column._physical_values: # This is to handle pseudo unsigned ints in table columns # TODO: For now this only really works correctly for binary tables # Should it work for ASCII tables as well? if self._uint: if bzero == 2**15 and format_code == "I": field = np.array(field, dtype=np.uint16) elif bzero == 2**31 and format_code == "J": field = np.array(field, dtype=np.uint32) elif bzero == 2**63 and format_code == "K": field = np.array(field, dtype=np.uint64) bzero64 = np.uint64(2**63) else: field = np.array(field, dtype=np.float64) else: field = np.array(field, dtype=np.float64) if _scale: np.multiply(field, bscale, field) if _zero: if self._uint and format_code == "K": # There is a chance of overflow, so be careful test_overflow = field.copy() try: test_overflow += bzero64 except OverflowError: warnings.warn( "Overflow detected while applying TZERO{:d}. " "Returning unscaled data.".format(indx + 1) ) else: field = test_overflow else: field += bzero # mark the column as scaled column._physical_values = True elif _bool and field.dtype != bool: field = np.equal(field, ord("T")) elif _str: if not self._character_as_bytes: with suppress(UnicodeDecodeError): field = decode_ascii(field) if dim: # Apply the new field item dimensions nitems = reduce(operator.mul, dim) if field.ndim > 1: field = field[:, :nitems] if _str: fmt = field.dtype.char dtype = (f"|{fmt}{dim[-1]}", dim[:-1]) field.dtype = dtype else: field.shape = (field.shape[0],) + dim return field def _get_heap_data(self): """ Returns a pointer into the table's raw data to its heap (if present). This is returned as a numpy byte array. """ if self._heapsize: raw_data = self._get_raw_data().view(np.ubyte) heap_end = self._heapoffset + self._heapsize return raw_data[self._heapoffset : heap_end] else: return np.array([], dtype=np.ubyte) def _get_raw_data(self): """ Returns the base array of self that "raw data array" that is the array in the format that it was first read from a file before it was sliced or viewed as a different type in any way. This is determined by walking through the bases until finding one that has at least the same number of bytes as self, plus the heapsize. This may be the immediate .base but is not always. This is used primarily for variable-length array support which needs to be able to find the heap (the raw data *may* be larger than nbytes + heapsize if it contains a gap or padding). May return ``None`` if no array resembling the "raw data" according to the stated criteria can be found. """ raw_data_bytes = self.nbytes + self._heapsize base = self while hasattr(base, "base") and base.base is not None: base = base.base # Variable-length-arrays: should take into account the case of # empty arrays if hasattr(base, "_heapoffset"): if hasattr(base, "nbytes") and base.nbytes > raw_data_bytes: return base # non variable-length-arrays else: if hasattr(base, "nbytes") and base.nbytes >= raw_data_bytes: return base def _get_scale_factors(self, column): """Get all the scaling flags and factors for one column.""" # TODO: Maybe this should be a method/property on Column? Or maybe # it's not really needed at all... _str = column.format.format == "A" _bool = column.format.format == "L" _number = not (_bool or _str) bscale = column.bscale bzero = column.bzero _scale = bscale not in ("", None, 1) _zero = bzero not in ("", None, 0) # ensure bscale/bzero are numbers if not _scale: bscale = 1 if not _zero: bzero = 0 # column._dims gives a tuple, rather than column.dim which returns the # original string format code from the FITS header... dim = column._dims return (_str, _bool, _number, _scale, _zero, bscale, bzero, dim) def _scale_back(self, update_heap_pointers=True): """ Update the parent array, using the (latest) scaled array. If ``update_heap_pointers`` is `False`, this will leave all the heap pointers in P/Q columns as they are verbatim--it only makes sense to do this if there is already data on the heap and it can be guaranteed that that data has not been modified, and there is not new data to add to the heap. Currently this is only used as an optimization for CompImageHDU that does its own handling of the heap. """ # Running total for the new heap size heapsize = 0 for indx, name in enumerate(self.dtype.names): column = self._coldefs[indx] recformat = column.format.recformat raw_field = _get_recarray_field(self, indx) # add the location offset of the heap area for each # variable length column if isinstance(recformat, _FormatP): # Irritatingly, this can return a different dtype than just # doing np.dtype(recformat.dtype); but this returns the results # that we want. For example if recformat.dtype is 'a' we want # an array of characters. dtype = np.array([], dtype=recformat.dtype).dtype if update_heap_pointers and name in self._converted: # The VLA has potentially been updated, so we need to # update the array descriptors raw_field[:] = 0 # reset npts = [len(arr) for arr in self._converted[name]] raw_field[: len(npts), 0] = npts raw_field[1:, 1] = ( np.add.accumulate(raw_field[:-1, 0]) * dtype.itemsize ) raw_field[:, 1][:] += heapsize heapsize += raw_field[:, 0].sum() * dtype.itemsize # Even if this VLA has not been read or updated, we need to # include the size of its constituent arrays in the heap size # total if heapsize >= 2**31: raise ValueError( "The heapsize limit for 'P' format " "has been reached. " "Please consider using the 'Q' format " "for your file." ) if isinstance(recformat, _FormatX) and name in self._converted: _wrapx(self._converted[name], raw_field, recformat.repeat) continue ( _str, _bool, _number, _scale, _zero, bscale, bzero, _, ) = self._get_scale_factors(column) field = self._converted.get(name, raw_field) # conversion for both ASCII and binary tables if _number or _str: if _number and (_scale or _zero) and column._physical_values: dummy = field.copy() if _zero: dummy -= bzero if _scale: dummy /= bscale # This will set the raw values in the recarray back to # their non-physical storage values, so the column should # be mark is not scaled column._physical_values = False elif _str or isinstance(self._coldefs, _AsciiColDefs): dummy = field else: continue # ASCII table, convert numbers to strings if isinstance(self._coldefs, _AsciiColDefs): self._scale_back_ascii(indx, dummy, raw_field) # binary table string column elif isinstance(raw_field, chararray.chararray): self._scale_back_strings(indx, dummy, raw_field) # all other binary table columns else: if len(raw_field) and isinstance(raw_field[0], np.integer): dummy = np.around(dummy) if raw_field.shape == dummy.shape: raw_field[:] = dummy else: # Reshaping the data is necessary in cases where the # TDIMn keyword was used to shape a column's entries # into arrays raw_field[:] = dummy.ravel().view(raw_field.dtype) del dummy # ASCII table does not have Boolean type elif _bool and name in self._converted: choices = ( np.array([ord("F")], dtype=np.int8)[0], np.array([ord("T")], dtype=np.int8)[0], ) raw_field[:] = np.choose(field, choices) # Store the updated heapsize self._heapsize = heapsize def _scale_back_strings(self, col_idx, input_field, output_field): # There are a few possibilities this has to be able to handle properly # The input_field, which comes from the _converted column is of dtype # 'Un' so that elements read out of the array are normal str # objects (i.e. unicode strings) # # At the other end the *output_field* may also be of type 'S' or of # type 'U'. It will *usually* be of type 'S' because when reading # an existing FITS table the raw data is just ASCII strings, and # represented in Numpy as an S array. However, when a user creates # a new table from scratch, they *might* pass in a column containing # unicode strings (dtype 'U'). Therefore the output_field of the # raw array is actually a unicode array. But we still want to make # sure the data is encodable as ASCII. Later when we write out the # array we use, in the dtype 'U' case, a different write routine # that writes row by row and encodes any 'U' columns to ASCII. # If the output_field is non-ASCII we will worry about ASCII encoding # later when writing; otherwise we can do it right here if input_field.dtype.kind == "U" and output_field.dtype.kind == "S": try: _ascii_encode(input_field, out=output_field) except _UnicodeArrayEncodeError as exc: raise ValueError( "Could not save column '{}': Contains characters that " "cannot be encoded as ASCII as required by FITS, starting " "at the index {!r} of the column, and the index {} of " "the string at that location.".format( self._coldefs[col_idx].name, exc.index[0] if len(exc.index) == 1 else exc.index, exc.start, ) ) else: # Otherwise go ahead and do a direct copy into--if both are type # 'U' we'll handle encoding later input_field = input_field.flatten().view(output_field.dtype) output_field.flat[:] = input_field # Ensure that blanks at the end of each string are # converted to nulls instead of spaces, see Trac #15 # and #111 _rstrip_inplace(output_field) def _scale_back_ascii(self, col_idx, input_field, output_field): """ Convert internal array values back to ASCII table representation. The ``input_field`` is the internal representation of the values, and the ``output_field`` is the character array representing the ASCII output that will be written. """ starts = self._coldefs.starts[:] spans = self._coldefs.spans format = self._coldefs[col_idx].format # The the index of the "end" column of the record, beyond # which we can't write end = super().field(-1).itemsize starts.append(end + starts[-1]) if col_idx > 0: lead = starts[col_idx] - starts[col_idx - 1] - spans[col_idx - 1] else: lead = 0 if lead < 0: warnings.warn( "Column {!r} starting point overlaps the previous column.".format( col_idx + 1 ) ) trail = starts[col_idx + 1] - starts[col_idx] - spans[col_idx] if trail < 0: warnings.warn( f"Column {col_idx + 1!r} ending point overlaps the next column." ) # TODO: It would be nice if these string column formatting # details were left to a specialized class, as is the case # with FormatX and FormatP if "A" in format: _pc = "{:" else: _pc = "{:>" fmt = "".join([_pc, format[1:], ASCII2STR[format[0]], "}", (" " * trail)]) # Even if the format precision is 0, we should output a decimal point # as long as there is space to do so--not including a decimal point in # a float value is discouraged by the FITS Standard trailing_decimal = format.precision == 0 and format.format in ("F", "E", "D") # not using numarray.strings's num2char because the # result is not allowed to expand (as C/Python does). for jdx, value in enumerate(input_field): value = fmt.format(value) if len(value) > starts[col_idx + 1] - starts[col_idx]: raise ValueError( "Value {!r} does not fit into the output's itemsize of {}.".format( value, spans[col_idx] ) ) if trailing_decimal and value[0] == " ": # We have some extra space in the field for the trailing # decimal point value = value[1:] + "." output_field[jdx] = value # Replace exponent separator in floating point numbers if "D" in format: output_field[:] = output_field.replace(b"E", b"D") def tolist(self): # Override .tolist to take care of special case of VLF column_lists = [self[name].tolist() for name in self.columns.names] return [list(row) for row in zip(*column_lists)] def _get_recarray_field(array, key): """ Compatibility function for using the recarray base class's field method. This incorporates the legacy functionality of returning string arrays as Numeric-style chararray objects. """ # Numpy >= 1.10.dev recarray no longer returns chararrays for strings # This is currently needed for backwards-compatibility and for # automatic truncation of trailing whitespace field = np.recarray.field(array, key) if field.dtype.char in ("S", "U") and not isinstance(field, chararray.chararray): field = field.view(chararray.chararray) return field class _UnicodeArrayEncodeError(UnicodeEncodeError): def __init__(self, encoding, object_, start, end, reason, index): super().__init__(encoding, object_, start, end, reason) self.index = index def _ascii_encode(inarray, out=None): """ Takes a unicode array and fills the output string array with the ASCII encodings (if possible) of the elements of the input array. The two arrays must be the same size (though not necessarily the same shape). This is like an inplace version of `np.char.encode` though simpler since it's only limited to ASCII, and hence the size of each character is guaranteed to be 1 byte. If any strings are non-ASCII an UnicodeArrayEncodeError is raised--this is just a `UnicodeEncodeError` with an additional attribute for the index of the item that couldn't be encoded. """ out_dtype = np.dtype((f"S{inarray.dtype.itemsize // 4}", inarray.dtype.shape)) if out is not None: out = out.view(out_dtype) op_dtypes = [inarray.dtype, out_dtype] op_flags = [["readonly"], ["writeonly", "allocate"]] it = np.nditer( [inarray, out], op_dtypes=op_dtypes, op_flags=op_flags, flags=["zerosize_ok"] ) try: for initem, outitem in it: outitem[...] = initem.item().encode("ascii") except UnicodeEncodeError as exc: index = np.unravel_index(it.iterindex, inarray.shape) raise _UnicodeArrayEncodeError(*(exc.args + (index,))) return it.operands[1] def _has_unicode_fields(array): """ Returns True if any fields in a structured array have Unicode dtype. """ dtypes = (d[0] for d in array.dtype.fields.values()) return any(d.kind == "U" for d in dtypes)
e790ca2dc158b7b9fac25a32f64e3fdfab43fa1029c23a2af030af0143cff576
# Licensed under a 3-clause BSD style license - see LICENSE.rst import re import warnings from collections import OrderedDict, defaultdict import numpy as np from astropy import units as u from astropy.coordinates import EarthLocation from astropy.table import Column, MaskedColumn from astropy.table.column import col_copy from astropy.time import Time, TimeDelta from astropy.time.core import BARYCENTRIC_SCALES from astropy.time.formats import FITS_DEPRECATED_SCALES from astropy.utils.exceptions import AstropyUserWarning from . import Card, Header # The following is based on the FITS WCS Paper IV, "Representations of time # coordinates in FITS". # https://ui.adsabs.harvard.edu/abs/2015A%26A...574A..36R # FITS WCS standard specified "4-3" form for non-linear coordinate types TCTYP_RE_TYPE = re.compile(r"(?P<type>[A-Z]+)[-]+") TCTYP_RE_ALGO = re.compile(r"(?P<algo>[A-Z]+)\s*") # FITS Time standard specified time units FITS_TIME_UNIT = ["s", "d", "a", "cy", "min", "h", "yr", "ta", "Ba"] # Global time reference coordinate keywords TIME_KEYWORDS = ( "TIMESYS", "MJDREF", "JDREF", "DATEREF", "TREFPOS", "TREFDIR", "TIMEUNIT", "TIMEOFFS", "OBSGEO-X", "OBSGEO-Y", "OBSGEO-Z", "OBSGEO-L", "OBSGEO-B", "OBSGEO-H", "DATE", "DATE-OBS", "DATE-AVG", "DATE-BEG", "DATE-END", "MJD-OBS", "MJD-AVG", "MJD-BEG", "MJD-END", ) # Column-specific time override keywords COLUMN_TIME_KEYWORDS = ("TCTYP", "TCUNI", "TRPOS") # Column-specific keywords regex COLUMN_TIME_KEYWORD_REGEXP = f"({'|'.join(COLUMN_TIME_KEYWORDS)})[0-9]+" def is_time_column_keyword(keyword): """ Check if the FITS header keyword is a time column-specific keyword. Parameters ---------- keyword : str FITS keyword. """ return re.match(COLUMN_TIME_KEYWORD_REGEXP, keyword) is not None # Set astropy time global information GLOBAL_TIME_INFO = { "TIMESYS": ("UTC", "Default time scale"), "JDREF": (0.0, "Time columns are jd = jd1 + jd2"), "TREFPOS": ("TOPOCENTER", "Time reference position"), } def _verify_global_info(global_info): """ Given the global time reference frame information, verify that each global time coordinate attribute will be given a valid value. Parameters ---------- global_info : dict Global time reference frame information. """ # Translate FITS deprecated scale into astropy scale, or else just convert # to lower case for further checks. global_info["scale"] = FITS_DEPRECATED_SCALES.get( global_info["TIMESYS"], global_info["TIMESYS"].lower() ) # Verify global time scale if global_info["scale"] not in Time.SCALES: # 'GPS' and 'LOCAL' are FITS recognized time scale values # but are not supported by astropy. if global_info["scale"] == "gps": warnings.warn( "Global time scale (TIMESYS) has a FITS recognized time scale " 'value "GPS". In Astropy, "GPS" is a time from epoch format ' "which runs synchronously with TAI; GPS is approximately 19 s " "ahead of TAI. Hence, this format will be used.", AstropyUserWarning, ) # Assume that the values are in GPS format global_info["scale"] = "tai" global_info["format"] = "gps" if global_info["scale"] == "local": warnings.warn( "Global time scale (TIMESYS) has a FITS recognized time scale " 'value "LOCAL". However, the standard states that "LOCAL" should be ' "tied to one of the existing scales because it is intrinsically " "unreliable and/or ill-defined. Astropy will thus use the default " 'global time scale "UTC" instead of "LOCAL".', AstropyUserWarning, ) # Default scale 'UTC' global_info["scale"] = "utc" global_info["format"] = None else: raise AssertionError( "Global time scale (TIMESYS) should have a FITS recognized " "time scale value (got {!r}). The FITS standard states that " "the use of local time scales should be restricted to alternate " "coordinates.".format(global_info["TIMESYS"]) ) else: # Scale is already set global_info["format"] = None # Check if geocentric global location is specified obs_geo = [ global_info[attr] for attr in ("OBSGEO-X", "OBSGEO-Y", "OBSGEO-Z") if attr in global_info ] # Location full specification is (X, Y, Z) if len(obs_geo) == 3: global_info["location"] = EarthLocation.from_geocentric(*obs_geo, unit=u.m) else: # Check if geodetic global location is specified (since geocentric failed) # First warn the user if geocentric location is partially specified if obs_geo: warnings.warn( "The geocentric observatory location {} is not completely " "specified (X, Y, Z) and will be ignored.".format(obs_geo), AstropyUserWarning, ) # Check geodetic location obs_geo = [ global_info[attr] for attr in ("OBSGEO-L", "OBSGEO-B", "OBSGEO-H") if attr in global_info ] if len(obs_geo) == 3: global_info["location"] = EarthLocation.from_geodetic(*obs_geo) else: # Since both geocentric and geodetic locations are not specified, # location will be None. # Warn the user if geodetic location is partially specified if obs_geo: warnings.warn( "The geodetic observatory location {} is not completely " "specified (lon, lat, alt) and will be ignored.".format(obs_geo), AstropyUserWarning, ) global_info["location"] = None # Get global time reference # Keywords are listed in order of precedence, as stated by the standard for key, format_ in (("MJDREF", "mjd"), ("JDREF", "jd"), ("DATEREF", "fits")): if key in global_info: global_info["ref_time"] = {"val": global_info[key], "format": format_} break else: # If none of the three keywords is present, MJDREF = 0.0 must be assumed global_info["ref_time"] = {"val": 0, "format": "mjd"} def _verify_column_info(column_info, global_info): """ Given the column-specific time reference frame information, verify that each column-specific time coordinate attribute has a valid value. Return True if the coordinate column is time, or else return False. Parameters ---------- global_info : dict Global time reference frame information. column_info : dict Column-specific time reference frame override information. """ scale = column_info.get("TCTYP", None) unit = column_info.get("TCUNI", None) location = column_info.get("TRPOS", None) if scale is not None: # Non-linear coordinate types have "4-3" form and are not time coordinates if TCTYP_RE_TYPE.match(scale[:5]) and TCTYP_RE_ALGO.match(scale[5:]): return False elif scale.lower() in Time.SCALES: column_info["scale"] = scale.lower() column_info["format"] = None elif scale in FITS_DEPRECATED_SCALES.keys(): column_info["scale"] = FITS_DEPRECATED_SCALES[scale] column_info["format"] = None # TCTYPn (scale) = 'TIME' indicates that the column scale is # controlled by the global scale. elif scale == "TIME": column_info["scale"] = global_info["scale"] column_info["format"] = global_info["format"] elif scale == "GPS": warnings.warn( 'Table column "{}" has a FITS recognized time scale value "GPS". ' 'In Astropy, "GPS" is a time from epoch format which runs ' "synchronously with TAI; GPS runs ahead of TAI approximately " "by 19 s. Hence, this format will be used.".format(column_info), AstropyUserWarning, ) column_info["scale"] = "tai" column_info["format"] = "gps" elif scale == "LOCAL": warnings.warn( 'Table column "{}" has a FITS recognized time scale value "LOCAL". ' 'However, the standard states that "LOCAL" should be tied to one ' "of the existing scales because it is intrinsically unreliable " "and/or ill-defined. Astropy will thus use the global time scale " "(TIMESYS) as the default.".format(column_info), AstropyUserWarning, ) column_info["scale"] = global_info["scale"] column_info["format"] = global_info["format"] else: # Coordinate type is either an unrecognized local time scale # or a linear coordinate type return False # If TCUNIn is a time unit or TRPOSn is specified, the column is a time # coordinate. This has to be tested since TCTYP (scale) is not specified. elif (unit is not None and unit in FITS_TIME_UNIT) or location is not None: column_info["scale"] = global_info["scale"] column_info["format"] = global_info["format"] # None of the conditions for time coordinate columns is satisfied else: return False # Check if column-specific reference position TRPOSn is specified if location is not None: # Observatory position (location) needs to be specified only # for 'TOPOCENTER'. if location == "TOPOCENTER": column_info["location"] = global_info["location"] if column_info["location"] is None: warnings.warn( 'Time column reference position "TRPOSn" value is "TOPOCENTER". ' "However, the observatory position is not properly specified. " "The FITS standard does not support this and hence reference " "position will be ignored.", AstropyUserWarning, ) else: column_info["location"] = None # Warn user about ignoring global reference position when TRPOSn is # not specified elif global_info["TREFPOS"] == "TOPOCENTER": if global_info["location"] is not None: warnings.warn( 'Time column reference position "TRPOSn" is not specified. The ' 'default value for it is "TOPOCENTER", and the observatory position ' "has been specified. However, for supporting column-specific location, " "reference position will be ignored for this column.", AstropyUserWarning, ) column_info["location"] = None else: column_info["location"] = None # Get reference time column_info["ref_time"] = global_info["ref_time"] return True def _get_info_if_time_column(col, global_info): """ Check if a column without corresponding time column keywords in the FITS header represents time or not. If yes, return the time column information needed for its conversion to Time. This is only applicable to the special-case where a column has the name 'TIME' and a time unit. """ # Column with TTYPEn = 'TIME' and lacking any TC*n or time # specific keywords will be controlled by the global keywords. if col.info.name.upper() == "TIME" and col.info.unit in FITS_TIME_UNIT: column_info = { "scale": global_info["scale"], "format": global_info["format"], "ref_time": global_info["ref_time"], "location": None, } if global_info["TREFPOS"] == "TOPOCENTER": column_info["location"] = global_info["location"] if column_info["location"] is None: warnings.warn( 'Time column "{}" reference position will be ignored ' "due to unspecified observatory position.".format(col.info.name), AstropyUserWarning, ) return column_info return None def _convert_global_time(table, global_info): """ Convert the table metadata for time informational keywords to astropy Time. Parameters ---------- table : `~astropy.table.Table` The table whose time metadata is to be converted. global_info : dict Global time reference frame information. """ # Read in Global Informational keywords as Time for key, value in global_info.items(): # FITS uses a subset of ISO-8601 for DATE-xxx if key not in table.meta: try: table.meta[key] = _convert_time_key(global_info, key) except ValueError: pass def _convert_time_key(global_info, key): """ Convert a time metadata key to a Time object. Parameters ---------- global_info : dict Global time reference frame information. key : str Time key. Returns ------- astropy.time.Time Raises ------ ValueError If key is not a valid global time keyword. """ value = global_info[key] if key.startswith("DATE"): scale = "utc" if key == "DATE" else global_info["scale"] precision = len(value.split(".")[-1]) if "." in value else 0 return Time(value, format="fits", scale=scale, precision=precision) # MJD-xxx in MJD according to TIMESYS elif key.startswith("MJD-"): return Time(value, format="mjd", scale=global_info["scale"]) else: raise ValueError("Key is not a valid global time keyword") def _convert_time_column(col, column_info): """ Convert time columns to astropy Time columns. Parameters ---------- col : `~astropy.table.Column` The time coordinate column to be converted to Time. column_info : dict Column-specific time reference frame override information. """ # The code might fail while attempting to read FITS files not written by astropy. try: # ISO-8601 is the only string representation of time in FITS if col.info.dtype.kind in ["S", "U"]: # [+/-C]CCYY-MM-DD[Thh:mm:ss[.s...]] where the number of characters # from index 20 to the end of string represents the precision precision = max(int(col.info.dtype.str[2:]) - 20, 0) return Time( col, format="fits", scale=column_info["scale"], precision=precision, location=column_info["location"], ) if column_info["format"] == "gps": return Time(col, format="gps", location=column_info["location"]) # If reference value is 0 for JD or MJD, the column values can be # directly converted to Time, as they are absolute (relative # to a globally accepted zero point). if column_info["ref_time"]["val"] == 0 and column_info["ref_time"][ "format" ] in ["jd", "mjd"]: # (jd1, jd2) where jd = jd1 + jd2 if col.shape[-1] == 2 and col.ndim > 1: return Time( col[..., 0], col[..., 1], scale=column_info["scale"], format=column_info["ref_time"]["format"], location=column_info["location"], ) else: return Time( col, scale=column_info["scale"], format=column_info["ref_time"]["format"], location=column_info["location"], ) # Reference time ref_time = Time( column_info["ref_time"]["val"], scale=column_info["scale"], format=column_info["ref_time"]["format"], location=column_info["location"], ) # Elapsed time since reference time if col.shape[-1] == 2 and col.ndim > 1: delta_time = TimeDelta(col[..., 0], col[..., 1]) else: delta_time = TimeDelta(col) return ref_time + delta_time except Exception as err: warnings.warn( 'The exception "{}" was encountered while trying to convert the time ' 'column "{}" to Astropy Time.'.format(err, col.info.name), AstropyUserWarning, ) return col def fits_to_time(hdr, table): """ Read FITS binary table time columns as `~astropy.time.Time`. This method reads the metadata associated with time coordinates, as stored in a FITS binary table header, converts time columns into `~astropy.time.Time` columns and reads global reference times as `~astropy.time.Time` instances. Parameters ---------- hdr : `~astropy.io.fits.header.Header` FITS Header table : `~astropy.table.Table` The table whose time columns are to be read as Time Returns ------- hdr : `~astropy.io.fits.header.Header` Modified FITS Header (time metadata removed) """ # Set defaults for global time scale, reference, etc. global_info = {"TIMESYS": "UTC", "TREFPOS": "TOPOCENTER"} # Set default dictionary for time columns time_columns = defaultdict(OrderedDict) # Make a "copy" (not just a view) of the input header, since it # may get modified. the data is still a "view" (for now) hcopy = hdr.copy(strip=True) # Scan the header for global and column-specific time keywords for key, value, comment in hdr.cards: if key in TIME_KEYWORDS: global_info[key] = value hcopy.remove(key) elif is_time_column_keyword(key): base, idx = re.match(r"([A-Z]+)([0-9]+)", key).groups() time_columns[int(idx)][base] = value hcopy.remove(key) elif value in ("OBSGEO-X", "OBSGEO-Y", "OBSGEO-Z") and re.match( "TTYPE[0-9]+", key ): global_info[value] = table[value] # Verify and get the global time reference frame information _verify_global_info(global_info) _convert_global_time(table, global_info) # Columns with column-specific time (coordinate) keywords if time_columns: for idx, column_info in time_columns.items(): # Check if the column is time coordinate (not spatial) if _verify_column_info(column_info, global_info): colname = table.colnames[idx - 1] # Convert to Time table[colname] = _convert_time_column(table[colname], column_info) # Check for special-cases of time coordinate columns for idx, colname in enumerate(table.colnames): if (idx + 1) not in time_columns: column_info = _get_info_if_time_column(table[colname], global_info) if column_info: table[colname] = _convert_time_column(table[colname], column_info) return hcopy def time_to_fits(table): """ Replace Time columns in a Table with non-mixin columns containing each element as a vector of two doubles (jd1, jd2) and return a FITS header with appropriate time coordinate keywords. jd = jd1 + jd2 represents time in the Julian Date format with high-precision. Parameters ---------- table : `~astropy.table.Table` The table whose Time columns are to be replaced. Returns ------- table : `~astropy.table.Table` The table with replaced Time columns hdr : `~astropy.io.fits.header.Header` Header containing global time reference frame FITS keywords """ # Make a light copy of table (to the extent possible) and clear any indices along # the way. Indices are not serialized and cause problems later, but they are not # needed here so just drop. For Column subclasses take advantage of copy() method, # but for others it is required to actually copy the data if there are attached # indices. See #8077 and #9009 for further discussion. new_cols = [] for col in table.itercols(): if isinstance(col, Column): new_col = col.copy(copy_data=False) # Also drops any indices else: new_col = col_copy(col, copy_indices=False) if col.info.indices else col new_cols.append(new_col) newtable = table.__class__(new_cols, copy=False) newtable.meta = table.meta # Global time coordinate frame keywords hdr = Header( [ Card(keyword=key, value=val[0], comment=val[1]) for key, val in GLOBAL_TIME_INFO.items() ] ) # Store coordinate column-specific metadata newtable.meta["__coordinate_columns__"] = defaultdict(OrderedDict) coord_meta = newtable.meta["__coordinate_columns__"] time_cols = table.columns.isinstance(Time) # Geocentric location location = None for col in time_cols: # By default, Time objects are written in full precision, i.e. we store both # jd1 and jd2 (serialize_method['fits'] = 'jd1_jd2'). Formatted values for # Time can be stored if the user explicitly chooses to do so. col_cls = MaskedColumn if col.masked else Column if col.info.serialize_method["fits"] == "formatted_value": newtable.replace_column(col.info.name, col_cls(col.value)) continue # The following is necessary to deal with multi-dimensional ``Time`` objects # (i.e. where Time.shape is non-trivial). jd12 = np.stack([col.jd1, col.jd2], axis=-1) # Roll the 0th (innermost) axis backwards, until it lies in the last position # (jd12.ndim) newtable.replace_column(col.info.name, col_cls(jd12, unit="d")) # Time column-specific override keywords coord_meta[col.info.name]["coord_type"] = col.scale.upper() coord_meta[col.info.name]["coord_unit"] = "d" # Time column reference position if getattr(col, "location") is None: coord_meta[col.info.name]["time_ref_pos"] = None if location is not None: warnings.warn( 'Time Column "{}" has no specified location, but global Time ' "Position is present, which will be the default for this column " "in FITS specification.".format(col.info.name), AstropyUserWarning, ) else: coord_meta[col.info.name]["time_ref_pos"] = "TOPOCENTER" # Compatibility of Time Scales and Reference Positions if col.scale in BARYCENTRIC_SCALES: warnings.warn( 'Earth Location "TOPOCENTER" for Time Column "{}" is incompatible ' 'with scale "{}".'.format(col.info.name, col.scale.upper()), AstropyUserWarning, ) if location is None: # Set global geocentric location location = col.location if location.size > 1: for dim in ("x", "y", "z"): newtable.add_column( Column(getattr(location, dim).to_value(u.m)), name=f"OBSGEO-{dim.upper()}", ) else: hdr.extend( [ Card( keyword=f"OBSGEO-{dim.upper()}", value=getattr(location, dim).to_value(u.m), ) for dim in ("x", "y", "z") ] ) elif np.any(location != col.location): raise ValueError( "Multiple Time Columns with different geocentric " "observatory locations ({}, {}) encountered." "This is not supported by the FITS standard.".format( location, col.location ) ) return newtable, hdr
0ac99c35538d0497c9f496c0954493fc74f3ded4566598c4a327878ac59f4767
# Licensed under a 3-clause BSD style license - see PYFITS.rst """ Convenience functions ===================== The functions in this module provide shortcuts for some of the most basic operations on FITS files, such as reading and updating the header. They are included directly in the 'astropy.io.fits' namespace so that they can be used like:: astropy.io.fits.getheader(...) These functions are primarily for convenience when working with FITS files in the command-line interpreter. If performing several operations on the same file, such as in a script, it is better to *not* use these functions, as each one must open and re-parse the file. In such cases it is better to use :func:`astropy.io.fits.open` and work directly with the :class:`astropy.io.fits.HDUList` object and underlying HDU objects. Several of the convenience functions, such as `getheader` and `getdata` support special arguments for selecting which HDU to use when working with a multi-extension FITS file. There are a few supported argument formats for selecting the HDU. See the documentation for `getdata` for an explanation of all the different formats. .. warning:: All arguments to convenience functions other than the filename that are *not* for selecting the HDU should be passed in as keyword arguments. This is to avoid ambiguity and conflicts with the HDU arguments. For example, to set NAXIS=1 on the Primary HDU: Wrong:: astropy.io.fits.setval('myimage.fits', 'NAXIS', 1) The above example will try to set the NAXIS value on the first extension HDU to blank. That is, the argument '1' is assumed to specify an HDU. Right:: astropy.io.fits.setval('myimage.fits', 'NAXIS', value=1) This will set the NAXIS keyword to 1 on the primary HDU (the default). To specify the first extension HDU use:: astropy.io.fits.setval('myimage.fits', 'NAXIS', value=1, ext=1) This complexity arises out of the attempt to simultaneously support multiple argument formats that were used in past versions of PyFITS. Unfortunately, it is not possible to support all formats without introducing some ambiguity. A future Astropy release may standardize around a single format and officially deprecate the other formats. """ import operator import os import warnings import numpy as np from astropy.utils.exceptions import AstropyUserWarning from .diff import FITSDiff, HDUDiff from .file import FILE_MODES, _File from .hdu.base import _BaseHDU, _ValidHDU from .hdu.hdulist import HDUList, fitsopen from .hdu.image import ImageHDU, PrimaryHDU from .hdu.table import BinTableHDU from .header import Header from .util import ( _is_dask_array, _is_int, fileobj_closed, fileobj_mode, fileobj_name, path_like, ) __all__ = [ "getheader", "getdata", "getval", "setval", "delval", "writeto", "append", "update", "info", "tabledump", "tableload", "table_to_hdu", "printdiff", ] def getheader(filename, *args, **kwargs): """ Get the header from an HDU of a FITS file. Parameters ---------- filename : path-like or file-like File to get header from. If an opened file object, its mode must be one of the following rb, rb+, or ab+). ext, extname, extver The rest of the arguments are for HDU specification. See the `getdata` documentation for explanations/examples. **kwargs Any additional keyword arguments to be passed to `astropy.io.fits.open`. Returns ------- header : `Header` object """ mode, closed = _get_file_mode(filename) hdulist, extidx = _getext(filename, mode, *args, **kwargs) try: hdu = hdulist[extidx] header = hdu.header finally: hdulist.close(closed=closed) return header def getdata(filename, *args, header=None, lower=None, upper=None, view=None, **kwargs): """ Get the data from an HDU of a FITS file (and optionally the header). Parameters ---------- filename : path-like or file-like File to get data from. If opened, mode must be one of the following rb, rb+, or ab+. ext The rest of the arguments are for HDU specification. They are flexible and are best illustrated by examples. No extra arguments implies the primary HDU:: getdata('in.fits') .. note:: Exclusive to ``getdata``: if ``ext`` is not specified and primary header contains no data, ``getdata`` attempts to retrieve data from first extension HDU. By HDU number:: getdata('in.fits', 0) # the primary HDU getdata('in.fits', 2) # the second extension HDU getdata('in.fits', ext=2) # the second extension HDU By name, i.e., ``EXTNAME`` value (if unique):: getdata('in.fits', 'sci') getdata('in.fits', extname='sci') # equivalent Note ``EXTNAME`` values are not case sensitive By combination of ``EXTNAME`` and EXTVER`` as separate arguments or as a tuple:: getdata('in.fits', 'sci', 2) # EXTNAME='SCI' & EXTVER=2 getdata('in.fits', extname='sci', extver=2) # equivalent getdata('in.fits', ('sci', 2)) # equivalent Ambiguous or conflicting specifications will raise an exception:: getdata('in.fits', ext=('sci',1), extname='err', extver=2) header : bool, optional If `True`, return the data and the header of the specified HDU as a tuple. lower, upper : bool, optional If ``lower`` or ``upper`` are `True`, the field names in the returned data object will be converted to lower or upper case, respectively. view : ndarray, optional When given, the data will be returned wrapped in the given ndarray subclass by calling:: data.view(view) **kwargs Any additional keyword arguments to be passed to `astropy.io.fits.open`. Returns ------- array : ndarray or `~numpy.recarray` or `~astropy.io.fits.Group` Type depends on the type of the extension being referenced. If the optional keyword ``header`` is set to `True`, this function will return a (``data``, ``header``) tuple. Raises ------ IndexError If no data is found in searched HDUs. """ mode, closed = _get_file_mode(filename) ext = kwargs.get("ext") extname = kwargs.get("extname") extver = kwargs.get("extver") ext_given = not ( len(args) == 0 and ext is None and extname is None and extver is None ) hdulist, extidx = _getext(filename, mode, *args, **kwargs) try: hdu = hdulist[extidx] data = hdu.data if data is None: if ext_given: raise IndexError(f"No data in HDU #{extidx}.") # fallback to the first extension HDU if len(hdulist) == 1: raise IndexError("No data in Primary HDU and no extension HDU found.") hdu = hdulist[1] data = hdu.data if data is None: raise IndexError("No data in either Primary or first extension HDUs.") if header: hdr = hdu.header finally: hdulist.close(closed=closed) # Change case of names if requested trans = None if lower: trans = operator.methodcaller("lower") elif upper: trans = operator.methodcaller("upper") if trans: if data.dtype.names is None: # this data does not have fields return if data.dtype.descr[0][0] == "": # this data does not have fields return data.dtype.names = [trans(n) for n in data.dtype.names] # allow different views into the underlying ndarray. Keep the original # view just in case there is a problem if isinstance(view, type) and issubclass(view, np.ndarray): data = data.view(view) if header: return data, hdr else: return data def getval(filename, keyword, *args, **kwargs): """ Get a keyword's value from a header in a FITS file. Parameters ---------- filename : path-like or file-like Name of the FITS file, or file object (if opened, mode must be one of the following rb, rb+, or ab+). keyword : str Keyword name ext, extname, extver The rest of the arguments are for HDU specification. See `getdata` for explanations/examples. **kwargs Any additional keyword arguments to be passed to `astropy.io.fits.open`. *Note:* This function automatically specifies ``do_not_scale_image_data = True`` when opening the file so that values can be retrieved from the unmodified header. Returns ------- keyword value : str, int, or float """ if "do_not_scale_image_data" not in kwargs: kwargs["do_not_scale_image_data"] = True hdr = getheader(filename, *args, **kwargs) return hdr[keyword] def setval( filename, keyword, *args, value=None, comment=None, before=None, after=None, savecomment=False, **kwargs, ): """ Set a keyword's value from a header in a FITS file. If the keyword already exists, it's value/comment will be updated. If it does not exist, a new card will be created and it will be placed before or after the specified location. If no ``before`` or ``after`` is specified, it will be appended at the end. When updating more than one keyword in a file, this convenience function is a much less efficient approach compared with opening the file for update, modifying the header, and closing the file. Parameters ---------- filename : path-like or file-like Name of the FITS file, or file object If opened, mode must be update (rb+). An opened file object or `~gzip.GzipFile` object will be closed upon return. keyword : str Keyword name value : str, int, float, optional Keyword value (default: `None`, meaning don't modify) comment : str, optional Keyword comment, (default: `None`, meaning don't modify) before : str, int, optional Name of the keyword, or index of the card before which the new card will be placed. The argument ``before`` takes precedence over ``after`` if both are specified (default: `None`). after : str, int, optional Name of the keyword, or index of the card after which the new card will be placed. (default: `None`). savecomment : bool, optional When `True`, preserve the current comment for an existing keyword. The argument ``savecomment`` takes precedence over ``comment`` if both specified. If ``comment`` is not specified then the current comment will automatically be preserved (default: `False`). ext, extname, extver The rest of the arguments are for HDU specification. See `getdata` for explanations/examples. **kwargs Any additional keyword arguments to be passed to `astropy.io.fits.open`. *Note:* This function automatically specifies ``do_not_scale_image_data = True`` when opening the file so that values can be retrieved from the unmodified header. """ if "do_not_scale_image_data" not in kwargs: kwargs["do_not_scale_image_data"] = True closed = fileobj_closed(filename) hdulist, extidx = _getext(filename, "update", *args, **kwargs) try: if keyword in hdulist[extidx].header and savecomment: comment = None hdulist[extidx].header.set(keyword, value, comment, before, after) finally: hdulist.close(closed=closed) def delval(filename, keyword, *args, **kwargs): """ Delete all instances of keyword from a header in a FITS file. Parameters ---------- filename : path-like or file-like Name of the FITS file, or file object If opened, mode must be update (rb+). An opened file object or `~gzip.GzipFile` object will be closed upon return. keyword : str, int Keyword name or index ext, extname, extver The rest of the arguments are for HDU specification. See `getdata` for explanations/examples. **kwargs Any additional keyword arguments to be passed to `astropy.io.fits.open`. *Note:* This function automatically specifies ``do_not_scale_image_data = True`` when opening the file so that values can be retrieved from the unmodified header. """ if "do_not_scale_image_data" not in kwargs: kwargs["do_not_scale_image_data"] = True closed = fileobj_closed(filename) hdulist, extidx = _getext(filename, "update", *args, **kwargs) try: del hdulist[extidx].header[keyword] finally: hdulist.close(closed=closed) def writeto( filename, data, header=None, output_verify="exception", overwrite=False, checksum=False, ): """ Create a new FITS file using the supplied data/header. Parameters ---------- filename : path-like or file-like File to write to. If opened, must be opened in a writable binary mode such as 'wb' or 'ab+'. data : array or `~numpy.recarray` or `~astropy.io.fits.Group` data to write to the new file header : `Header` object, optional the header associated with ``data``. If `None`, a header of the appropriate type is created for the supplied data. This argument is optional. output_verify : str Output verification option. Must be one of ``"fix"``, ``"silentfix"``, ``"ignore"``, ``"warn"``, or ``"exception"``. May also be any combination of ``"fix"`` or ``"silentfix"`` with ``"+ignore"``, ``+warn``, or ``+exception" (e.g. ``"fix+warn"``). See :ref:`astropy:verify` for more info. overwrite : bool, optional If ``True``, overwrite the output file if it exists. Raises an ``OSError`` if ``False`` and the output file exists. Default is ``False``. checksum : bool, optional If `True`, adds both ``DATASUM`` and ``CHECKSUM`` cards to the headers of all HDU's written to the file. """ hdu = _makehdu(data, header) if hdu.is_image and not isinstance(hdu, PrimaryHDU): hdu = PrimaryHDU(data, header=header) hdu.writeto( filename, overwrite=overwrite, output_verify=output_verify, checksum=checksum ) def table_to_hdu(table, character_as_bytes=False): """ Convert an `~astropy.table.Table` object to a FITS `~astropy.io.fits.BinTableHDU`. Parameters ---------- table : astropy.table.Table The table to convert. character_as_bytes : bool Whether to return bytes for string columns when accessed from the HDU. By default this is `False` and (unicode) strings are returned, but for large tables this may use up a lot of memory. Returns ------- table_hdu : `~astropy.io.fits.BinTableHDU` The FITS binary table HDU. """ # Avoid circular imports from .column import python_to_tdisp from .connect import REMOVE_KEYWORDS, is_column_keyword # Header to store Time related metadata hdr = None # Not all tables with mixin columns are supported if table.has_mixin_columns: # Import is done here, in order to avoid it at build time as erfa is not # yet available then. from astropy.table.column import BaseColumn from astropy.time import Time from astropy.units import Quantity from .fitstime import time_to_fits # Only those columns which are instances of BaseColumn, Quantity or Time can # be written unsupported_cols = table.columns.not_isinstance((BaseColumn, Quantity, Time)) if unsupported_cols: unsupported_names = [col.info.name for col in unsupported_cols] raise ValueError( f"cannot write table with mixin column(s) {unsupported_names}" ) time_cols = table.columns.isinstance(Time) if time_cols: table, hdr = time_to_fits(table) # Create a new HDU object tarray = table.as_array() if isinstance(tarray, np.ma.MaskedArray): # Fill masked values carefully: # float column's default mask value needs to be Nan and # string column's default mask should be an empty string. # Note: getting the fill value for the structured array is # more reliable than for individual columns for string entries. # (no 'N/A' for a single-element string, where it should be 'N'). default_fill_value = np.ma.default_fill_value(tarray.dtype) for colname, (coldtype, _) in tarray.dtype.fields.items(): if np.all(tarray.fill_value[colname] == default_fill_value[colname]): # Since multi-element columns with dtypes such as '2f8' have # a subdtype, we should look up the type of column on that. coltype = ( coldtype.subdtype[0].type if coldtype.subdtype else coldtype.type ) if issubclass(coltype, np.complexfloating): tarray.fill_value[colname] = complex(np.nan, np.nan) elif issubclass(coltype, np.inexact): tarray.fill_value[colname] = np.nan elif issubclass(coltype, np.character): tarray.fill_value[colname] = "" # TODO: it might be better to construct the FITS table directly from # the Table columns, rather than go via a structured array. table_hdu = BinTableHDU.from_columns( tarray.filled(), header=hdr, character_as_bytes=character_as_bytes ) for col in table_hdu.columns: # Binary FITS tables support TNULL *only* for integer data columns # TODO: Determine a schema for handling non-integer masked columns # with non-default fill values in FITS (if at all possible). int_formats = ("B", "I", "J", "K") if not (col.format in int_formats or col.format.p_format in int_formats): continue fill_value = tarray[col.name].fill_value col.null = fill_value.astype(int) else: table_hdu = BinTableHDU.from_columns( tarray, header=hdr, character_as_bytes=character_as_bytes ) # Set units and format display for output HDU for col in table_hdu.columns: if table[col.name].info.format is not None: # check for boolean types, special format case logical = table[col.name].info.dtype == bool tdisp_format = python_to_tdisp( table[col.name].info.format, logical_dtype=logical ) if tdisp_format is not None: col.disp = tdisp_format unit = table[col.name].unit if unit is not None: # Local imports to avoid importing units when it is not required, # e.g. for command-line scripts from astropy.units import Unit from astropy.units.format.fits import UnitScaleError try: col.unit = unit.to_string(format="fits") except UnitScaleError: scale = unit.scale raise UnitScaleError( f"The column '{col.name}' could not be stored in FITS " f"format because it has a scale '({str(scale)})' that " "is not recognized by the FITS standard. Either scale " "the data or change the units." ) except ValueError: # Warn that the unit is lost, but let the details depend on # whether the column was serialized (because it was a # quantity), since then the unit can be recovered by astropy. warning = ( f"The unit '{unit.to_string()}' could not be saved in " "native FITS format " ) if any( "SerializedColumn" in item and "name: " + col.name in item for item in table.meta.get("comments", []) ): warning += ( "and hence will be lost to non-astropy fits readers. " "Within astropy, the unit can roundtrip using QTable, " "though one has to enable the unit before reading." ) else: warning += ( "and cannot be recovered in reading. It can roundtrip " "within astropy by using QTable both to write and read " "back, though one has to enable the unit before reading." ) warnings.warn(warning, AstropyUserWarning) else: # Try creating a Unit to issue a warning if the unit is not # FITS compliant Unit(col.unit, format="fits", parse_strict="warn") # Column-specific override keywords for coordinate columns coord_meta = table.meta.pop("__coordinate_columns__", {}) for col_name, col_info in coord_meta.items(): col = table_hdu.columns[col_name] # Set the column coordinate attributes from data saved earlier. # Note: have to set these, even if we have no data. for attr in "coord_type", "coord_unit": setattr(col, attr, col_info.get(attr, None)) trpos = col_info.get("time_ref_pos", None) if trpos is not None: setattr(col, "time_ref_pos", trpos) for key, value in table.meta.items(): if is_column_keyword(key.upper()) or key.upper() in REMOVE_KEYWORDS: warnings.warn( f"Meta-data keyword {key} will be ignored since it conflicts " "with a FITS reserved keyword", AstropyUserWarning, ) continue # Convert to FITS format if key == "comments": key = "comment" if isinstance(value, list): for item in value: try: table_hdu.header.append((key, item)) except ValueError: warnings.warn( f"Attribute `{key}` of type {type(value)} cannot be " "added to FITS Header - skipping", AstropyUserWarning, ) else: try: table_hdu.header[key] = value except ValueError: warnings.warn( f"Attribute `{key}` of type {type(value)} cannot be " "added to FITS Header - skipping", AstropyUserWarning, ) return table_hdu def append(filename, data, header=None, checksum=False, verify=True, **kwargs): """ Append the header/data to FITS file if filename exists, create if not. If only ``data`` is supplied, a minimal header is created. Parameters ---------- filename : path-like or file-like File to write to. If opened, must be opened for update (rb+) unless it is a new file, then it must be opened for append (ab+). A file or `~gzip.GzipFile` object opened for update will be closed after return. data : array, :class:`~astropy.table.Table`, or `~astropy.io.fits.Group` The new data used for appending. header : `Header` object, optional The header associated with ``data``. If `None`, an appropriate header will be created for the data object supplied. checksum : bool, optional When `True` adds both ``DATASUM`` and ``CHECKSUM`` cards to the header of the HDU when written to the file. verify : bool, optional When `True`, the existing FITS file will be read in to verify it for correctness before appending. When `False`, content is simply appended to the end of the file. Setting ``verify`` to `False` can be much faster. **kwargs Additional arguments are passed to: - `~astropy.io.fits.writeto` if the file does not exist or is empty. In this case ``output_verify`` is the only possible argument. - `~astropy.io.fits.open` if ``verify`` is True or if ``filename`` is a file object. - Otherwise no additional arguments can be used. """ if isinstance(filename, path_like): filename = os.path.expanduser(filename) name, closed, noexist_or_empty = _stat_filename_or_fileobj(filename) if noexist_or_empty: # # The input file or file like object either doesn't exits or is # empty. Use the writeto convenience function to write the # output to the empty object. # writeto(filename, data, header, checksum=checksum, **kwargs) else: hdu = _makehdu(data, header) if isinstance(hdu, PrimaryHDU): hdu = ImageHDU(data, header) if verify or not closed: f = fitsopen(filename, mode="append", **kwargs) try: f.append(hdu) # Set a flag in the HDU so that only this HDU gets a checksum # when writing the file. hdu._output_checksum = checksum finally: f.close(closed=closed) else: f = _File(filename, mode="append") try: hdu._output_checksum = checksum hdu._writeto(f) finally: f.close() def update(filename, data, *args, **kwargs): """ Update the specified HDU with the input data/header. Parameters ---------- filename : path-like or file-like File to update. If opened, mode must be update (rb+). An opened file object or `~gzip.GzipFile` object will be closed upon return. data : array, `~astropy.table.Table`, or `~astropy.io.fits.Group` The new data used for updating. header : `Header` object, optional The header associated with ``data``. If `None`, an appropriate header will be created for the data object supplied. ext, extname, extver The rest of the arguments are flexible: the 3rd argument can be the header associated with the data. If the 3rd argument is not a `Header`, it (and other positional arguments) are assumed to be the HDU specification(s). Header and HDU specs can also be keyword arguments. For example:: update(file, dat, hdr, 'sci') # update the 'sci' extension update(file, dat, 3) # update the 3rd extension HDU update(file, dat, hdr, 3) # update the 3rd extension HDU update(file, dat, 'sci', 2) # update the 2nd extension HDU named 'sci' update(file, dat, 3, header=hdr) # update the 3rd extension HDU update(file, dat, header=hdr, ext=5) # update the 5th extension HDU **kwargs Any additional keyword arguments to be passed to `astropy.io.fits.open`. """ # The arguments to this function are a bit trickier to deal with than others # in this module, since the documentation has promised that the header # argument can be an optional positional argument. if args and isinstance(args[0], Header): header = args[0] args = args[1:] else: header = None # The header can also be a keyword argument--if both are provided the # keyword takes precedence header = kwargs.pop("header", header) new_hdu = _makehdu(data, header) closed = fileobj_closed(filename) hdulist, _ext = _getext(filename, "update", *args, **kwargs) try: hdulist[_ext] = new_hdu finally: hdulist.close(closed=closed) def info(filename, output=None, **kwargs): """ Print the summary information on a FITS file. This includes the name, type, length of header, data shape and type for each HDU. Parameters ---------- filename : path-like or file-like FITS file to obtain info from. If opened, mode must be one of the following: rb, rb+, or ab+ (i.e. the file must be readable). output : file, bool, optional A file-like object to write the output to. If ``False``, does not output to a file and instead returns a list of tuples representing the HDU info. Writes to ``sys.stdout`` by default. **kwargs Any additional keyword arguments to be passed to `astropy.io.fits.open`. *Note:* This function sets ``ignore_missing_end=True`` by default. """ mode, closed = _get_file_mode(filename, default="readonly") # Set the default value for the ignore_missing_end parameter if "ignore_missing_end" not in kwargs: kwargs["ignore_missing_end"] = True f = fitsopen(filename, mode=mode, **kwargs) try: ret = f.info(output=output) finally: if closed: f.close() return ret def printdiff(inputa, inputb, *args, **kwargs): """ Compare two parts of a FITS file, including entire FITS files, FITS `HDUList` objects and FITS ``HDU`` objects. Parameters ---------- inputa : str, `HDUList` object, or ``HDU`` object The filename of a FITS file, `HDUList`, or ``HDU`` object to compare to ``inputb``. inputb : str, `HDUList` object, or ``HDU`` object The filename of a FITS file, `HDUList`, or ``HDU`` object to compare to ``inputa``. ext, extname, extver Additional positional arguments are for HDU specification if your inputs are string filenames (will not work if ``inputa`` and ``inputb`` are ``HDU`` objects or `HDUList` objects). They are flexible and are best illustrated by examples. In addition to using these arguments positionally you can directly call the keyword parameters ``ext``, ``extname``. By HDU number:: printdiff('inA.fits', 'inB.fits', 0) # the primary HDU printdiff('inA.fits', 'inB.fits', 2) # the second extension HDU printdiff('inA.fits', 'inB.fits', ext=2) # the second extension HDU By name, i.e., ``EXTNAME`` value (if unique). ``EXTNAME`` values are not case sensitive: printdiff('inA.fits', 'inB.fits', 'sci') printdiff('inA.fits', 'inB.fits', extname='sci') # equivalent By combination of ``EXTNAME`` and ``EXTVER`` as separate arguments or as a tuple:: printdiff('inA.fits', 'inB.fits', 'sci', 2) # EXTNAME='SCI' # & EXTVER=2 printdiff('inA.fits', 'inB.fits', extname='sci', extver=2) # equivalent printdiff('inA.fits', 'inB.fits', ('sci', 2)) # equivalent Ambiguous or conflicting specifications will raise an exception:: printdiff('inA.fits', 'inB.fits', ext=('sci', 1), extname='err', extver=2) **kwargs Any additional keyword arguments to be passed to `~astropy.io.fits.FITSDiff`. Notes ----- The primary use for the `printdiff` function is to allow quick print out of a FITS difference report and will write to ``sys.stdout``. To save the diff report to a file please use `~astropy.io.fits.FITSDiff` directly. """ # Pop extension keywords extension = { key: kwargs.pop(key) for key in ["ext", "extname", "extver"] if key in kwargs } has_extensions = args or extension if isinstance(inputa, str) and has_extensions: # Use handy _getext to interpret any ext keywords, but # will need to close a if fails modea, closeda = _get_file_mode(inputa) modeb, closedb = _get_file_mode(inputb) hdulista, extidxa = _getext(inputa, modea, *args, **extension) # Have to close a if b doesn't make it try: hdulistb, extidxb = _getext(inputb, modeb, *args, **extension) except Exception: hdulista.close(closed=closeda) raise try: hdua = hdulista[extidxa] hdub = hdulistb[extidxb] # See below print for note print(HDUDiff(hdua, hdub, **kwargs).report()) finally: hdulista.close(closed=closeda) hdulistb.close(closed=closedb) # If input is not a string, can feed HDU objects or HDUList directly, # but can't currently handle extensions elif isinstance(inputa, _ValidHDU) and has_extensions: raise ValueError("Cannot use extension keywords when providing an HDU object.") elif isinstance(inputa, _ValidHDU) and not has_extensions: print(HDUDiff(inputa, inputb, **kwargs).report()) elif isinstance(inputa, HDUList) and has_extensions: raise NotImplementedError( "Extension specification with HDUList objects not implemented." ) # This function is EXCLUSIVELY for printing the diff report to screen # in a one-liner call, hence the use of print instead of logging else: print(FITSDiff(inputa, inputb, **kwargs).report()) def tabledump(filename, datafile=None, cdfile=None, hfile=None, ext=1, overwrite=False): """ Dump a table HDU to a file in ASCII format. The table may be dumped in three separate files, one containing column definitions, one containing header parameters, and one for table data. Parameters ---------- filename : path-like or file-like Input fits file. datafile : path-like or file-like, optional Output data file. The default is the root name of the input fits file appended with an underscore, followed by the extension number (ext), followed by the extension ``.txt``. cdfile : path-like or file-like, optional Output column definitions file. The default is `None`, no column definitions output is produced. hfile : path-like or file-like, optional Output header parameters file. The default is `None`, no header parameters output is produced. ext : int The number of the extension containing the table HDU to be dumped. overwrite : bool, optional If ``True``, overwrite the output file if it exists. Raises an ``OSError`` if ``False`` and the output file exists. Default is ``False``. Notes ----- The primary use for the `tabledump` function is to allow editing in a standard text editor of the table data and parameters. The `tableload` function can be used to reassemble the table from the three ASCII files. """ # allow file object to already be opened in any of the valid modes # and leave the file in the same state (opened or closed) as when # the function was called mode, closed = _get_file_mode(filename, default="readonly") f = fitsopen(filename, mode=mode) # Create the default data file name if one was not provided try: if not datafile: root, tail = os.path.splitext(f._file.name) datafile = root + "_" + repr(ext) + ".txt" # Dump the data from the HDU to the files f[ext].dump(datafile, cdfile, hfile, overwrite) finally: if closed: f.close() if isinstance(tabledump.__doc__, str): tabledump.__doc__ += BinTableHDU._tdump_file_format.replace("\n", "\n ") def tableload(datafile, cdfile, hfile=None): """ Create a table from the input ASCII files. The input is from up to three separate files, one containing column definitions, one containing header parameters, and one containing column data. The header parameters file is not required. When the header parameters file is absent a minimal header is constructed. Parameters ---------- datafile : path-like or file-like Input data file containing the table data in ASCII format. cdfile : path-like or file-like Input column definition file containing the names, formats, display formats, physical units, multidimensional array dimensions, undefined values, scale factors, and offsets associated with the columns in the table. hfile : path-like or file-like, optional Input parameter definition file containing the header parameter definitions to be associated with the table. If `None`, a minimal header is constructed. Notes ----- The primary use for the `tableload` function is to allow the input of ASCII data that was edited in a standard text editor of the table data and parameters. The tabledump function can be used to create the initial ASCII files. """ return BinTableHDU.load(datafile, cdfile, hfile, replace=True) if isinstance(tableload.__doc__, str): tableload.__doc__ += BinTableHDU._tdump_file_format.replace("\n", "\n ") def _getext(filename, mode, *args, ext=None, extname=None, extver=None, **kwargs): """ Open the input file, return the `HDUList` and the extension. This supports several different styles of extension selection. See the :func:`getdata()` documentation for the different possibilities. """ err_msg = "Redundant/conflicting extension arguments(s): {}".format( {"args": args, "ext": ext, "extname": extname, "extver": extver} ) # This code would be much simpler if just one way of specifying an # extension were picked. But now we need to support all possible ways for # the time being. if len(args) == 1: # Must be either an extension number, an extension name, or an # (extname, extver) tuple if _is_int(args[0]) or (isinstance(ext, tuple) and len(ext) == 2): if ext is not None or extname is not None or extver is not None: raise TypeError(err_msg) ext = args[0] elif isinstance(args[0], str): # The first arg is an extension name; it could still be valid # to provide an extver kwarg if ext is not None or extname is not None: raise TypeError(err_msg) extname = args[0] else: # Take whatever we have as the ext argument; we'll validate it # below ext = args[0] elif len(args) == 2: # Must be an extname and extver if ext is not None or extname is not None or extver is not None: raise TypeError(err_msg) extname = args[0] extver = args[1] elif len(args) > 2: raise TypeError("Too many positional arguments.") if ext is not None and not ( _is_int(ext) or ( isinstance(ext, tuple) and len(ext) == 2 and isinstance(ext[0], str) and _is_int(ext[1]) ) ): raise ValueError( "The ext keyword must be either an extension number " "(zero-indexed) or a (extname, extver) tuple." ) if extname is not None and not isinstance(extname, str): raise ValueError("The extname argument must be a string.") if extver is not None and not _is_int(extver): raise ValueError("The extver argument must be an integer.") if ext is None and extname is None and extver is None: ext = 0 elif ext is not None and (extname is not None or extver is not None): raise TypeError(err_msg) elif extname: if extver: ext = (extname, extver) else: ext = (extname, 1) elif extver and extname is None: raise TypeError("extver alone cannot specify an extension.") hdulist = fitsopen(filename, mode=mode, **kwargs) return hdulist, ext def _makehdu(data, header): if header is None: header = Header() hdu = _BaseHDU._from_data(data, header) if hdu.__class__ in (_BaseHDU, _ValidHDU): # The HDU type was unrecognized, possibly due to a # nonexistent/incomplete header if ( isinstance(data, np.ndarray) and data.dtype.fields is not None ) or isinstance(data, np.recarray): hdu = BinTableHDU(data, header=header) elif isinstance(data, np.ndarray) or _is_dask_array(data): hdu = ImageHDU(data, header=header) else: raise KeyError("Data must be a numpy array.") return hdu def _stat_filename_or_fileobj(filename): if isinstance(filename, os.PathLike): filename = os.fspath(filename) closed = fileobj_closed(filename) name = fileobj_name(filename) or "" try: loc = filename.tell() except AttributeError: loc = 0 noexist_or_empty = ( name and (not os.path.exists(name) or (os.path.getsize(name) == 0)) ) or (not name and loc == 0) return name, closed, noexist_or_empty def _get_file_mode(filename, default="readonly"): """ Allow file object to already be opened in any of the valid modes and and leave the file in the same state (opened or closed) as when the function was called. """ mode = default closed = fileobj_closed(filename) fmode = fileobj_mode(filename) if fmode is not None: mode = FILE_MODES.get(fmode) if mode is None: raise OSError( "File mode of the input file object ({!r}) cannot be used to " "read/write FITS files.".format(fmode) ) return mode, closed
61882c397fb08d3c980b92680075815376189d0acef188a29818638cc582f5ba
# Licensed under a 3-clause BSD style license - see PYFITS.rst import os import sys from collections import defaultdict from glob import glob import numpy from setuptools import Extension from extension_helpers import get_compiler, pkg_config def _get_compression_extension(): debug = "--debug" in sys.argv cfg = defaultdict(list) cfg["include_dirs"].append(numpy.get_include()) cfg["sources"].append( os.path.join(os.path.dirname(__file__), "src", "compressionmodule.c") ) if int(os.environ.get("ASTROPY_USE_SYSTEM_CFITSIO", 0)) or int( os.environ.get("ASTROPY_USE_SYSTEM_ALL", 0) ): for k, v in pkg_config(["cfitsio"], ["cfitsio"]).items(): cfg[k].extend(v) else: if get_compiler() == "msvc": # These come from the CFITSIO vcc makefile, except the last # which ensures on windows we do not include unistd.h (in regular # compilation of cfitsio, an empty file would be generated) cfg["extra_compile_args"].extend( [ "/D", "WIN32", "/D", "_WINDOWS", "/D", "_MBCS", "/D", "_USRDLL", "/D", "_CRT_SECURE_NO_DEPRECATE", "/D", "YY_NO_UNISTD_H", ] ) else: cfg["extra_compile_args"].extend(["-Wno-declaration-after-statement"]) cfg["define_macros"].append(("HAVE_UNISTD_H", None)) if not debug: # these switches are to silence warnings from compiling CFITSIO # For full silencing, some are added that only are used in # later versions of gcc (versions approximate; see #6474) cfg["extra_compile_args"].extend( [ "-Wno-strict-prototypes", "-Wno-unused", "-Wno-uninitialized", "-Wno-unused-result", # gcc >~4.8 "-Wno-misleading-indentation", # gcc >~7.2 "-Wno-format-overflow", # gcc >~7.2 ] ) cfitsio_lib_path = os.path.join("cextern", "cfitsio", "lib") cfitsio_zlib_path = os.path.join("cextern", "cfitsio", "zlib") cfitsio_files = glob(os.path.join(cfitsio_lib_path, "*.c")) cfitsio_zlib_files = glob(os.path.join(cfitsio_zlib_path, "*.c")) cfg["include_dirs"].append(cfitsio_lib_path) cfg["include_dirs"].append(cfitsio_zlib_path) cfg["sources"].extend(cfitsio_files) cfg["sources"].extend(cfitsio_zlib_files) return Extension("astropy.io.fits.compression", **cfg) def get_extensions(): return [_get_compression_extension()]
c6b4351e6749ba535f90b4f34eb20360cc8a698d45b688ed40f777d9649a6737
# Licensed under a 3-clause BSD style license - see PYFITS.rst import gzip import io import itertools import mmap import operator import os import platform import signal import sys import tempfile import textwrap import threading import warnings import weakref from contextlib import contextmanager, suppress from functools import wraps import numpy as np from packaging.version import Version from astropy.utils import data from astropy.utils.exceptions import AstropyUserWarning path_like = (str, bytes, os.PathLike) cmp = lambda a, b: (a > b) - (a < b) all_integer_types = (int, np.integer) class NotifierMixin: """ Mixin class that provides services by which objects can register listeners to changes on that object. All methods provided by this class are underscored, since this is intended for internal use to communicate between classes in a generic way, and is not machinery that should be exposed to users of the classes involved. Use the ``_add_listener`` method to register a listener on an instance of the notifier. This registers the listener with a weak reference, so if no other references to the listener exist it is automatically dropped from the list and does not need to be manually removed. Call the ``_notify`` method on the notifier to update all listeners upon changes. ``_notify('change_type', *args, **kwargs)`` results in calling ``listener._update_change_type(*args, **kwargs)`` on all listeners subscribed to that notifier. If a particular listener does not have the appropriate update method it is ignored. Examples -------- >>> class Widget(NotifierMixin): ... state = 1 ... def __init__(self, name): ... self.name = name ... def update_state(self): ... self.state += 1 ... self._notify('widget_state_changed', self) ... >>> class WidgetListener: ... def _update_widget_state_changed(self, widget): ... print('Widget {0} changed state to {1}'.format( ... widget.name, widget.state)) ... >>> widget = Widget('fred') >>> listener = WidgetListener() >>> widget._add_listener(listener) >>> widget.update_state() Widget fred changed state to 2 """ _listeners = None def _add_listener(self, listener): """ Add an object to the list of listeners to notify of changes to this object. This adds a weakref to the list of listeners that is removed from the listeners list when the listener has no other references to it. """ if self._listeners is None: self._listeners = weakref.WeakValueDictionary() self._listeners[id(listener)] = listener def _remove_listener(self, listener): """ Removes the specified listener from the listeners list. This relies on object identity (i.e. the ``is`` operator). """ if self._listeners is None: return with suppress(KeyError): del self._listeners[id(listener)] def _notify(self, notification, *args, **kwargs): """ Notify all listeners of some particular state change by calling their ``_update_<notification>`` method with the given ``*args`` and ``**kwargs``. The notification does not by default include the object that actually changed (``self``), but it certainly may if required. """ if self._listeners is None: return method_name = f"_update_{notification}" for listener in self._listeners.valuerefs(): # Use valuerefs instead of itervaluerefs; see # https://github.com/astropy/astropy/issues/4015 listener = listener() # dereference weakref if listener is None: continue if hasattr(listener, method_name): method = getattr(listener, method_name) if callable(method): method(*args, **kwargs) def __getstate__(self): """ Exclude listeners when saving the listener's state, since they may be ephemeral. """ # TODO: This hasn't come up often, but if anyone needs to pickle HDU # objects it will be necessary when HDU objects' states are restored to # re-register themselves as listeners on their new column instances. try: state = super().__getstate__() except AttributeError: # Chances are the super object doesn't have a getstate state = self.__dict__.copy() state["_listeners"] = None return state def first(iterable): """ Returns the first item returned by iterating over an iterable object. Example: >>> a = [1, 2, 3] >>> first(a) 1 """ return next(iter(iterable)) def itersubclasses(cls, _seen=None): """ Generator over all subclasses of a given class, in depth first order. >>> class A: pass >>> class B(A): pass >>> class C(A): pass >>> class D(B,C): pass >>> class E(D): pass >>> >>> for cls in itersubclasses(A): ... print(cls.__name__) B D E C >>> # get ALL classes currently defined >>> [cls.__name__ for cls in itersubclasses(object)] [...'tuple', ...'type', ...] From http://code.activestate.com/recipes/576949/ """ if _seen is None: _seen = set() try: subs = cls.__subclasses__() except TypeError: # fails only when cls is type subs = cls.__subclasses__(cls) for sub in sorted(subs, key=operator.attrgetter("__name__")): if sub not in _seen: _seen.add(sub) yield sub for sub in itersubclasses(sub, _seen): yield sub def ignore_sigint(func): """ This decorator registers a custom SIGINT handler to catch and ignore SIGINT until the wrapped function is completed. """ @wraps(func) def wrapped(*args, **kwargs): # Get the name of the current thread and determine if this is a single # threaded application curr_thread = threading.current_thread() single_thread = ( threading.active_count() == 1 and curr_thread.name == "MainThread" ) class SigintHandler: def __init__(self): self.sigint_received = False def __call__(self, signum, frame): warnings.warn( "KeyboardInterrupt ignored until {} is complete!".format( func.__name__ ), AstropyUserWarning, ) self.sigint_received = True sigint_handler = SigintHandler() # Define new signal interput handler if single_thread: # Install new handler old_handler = signal.signal(signal.SIGINT, sigint_handler) try: func(*args, **kwargs) finally: if single_thread: if old_handler is not None: signal.signal(signal.SIGINT, old_handler) else: signal.signal(signal.SIGINT, signal.SIG_DFL) if sigint_handler.sigint_received: raise KeyboardInterrupt return wrapped def pairwise(iterable): """Return the items of an iterable paired with its next item. Ex: s -> (s0,s1), (s1,s2), (s2,s3), .... """ a, b = itertools.tee(iterable) for _ in b: # Just a little trick to advance b without having to catch # StopIter if b happens to be empty break return zip(a, b) def encode_ascii(s): if isinstance(s, str): return s.encode("ascii") elif isinstance(s, np.ndarray) and issubclass(s.dtype.type, np.str_): ns = np.char.encode(s, "ascii").view(type(s)) if ns.dtype.itemsize != s.dtype.itemsize / 4: ns = ns.astype((np.bytes_, s.dtype.itemsize / 4)) return ns elif isinstance(s, np.ndarray) and not issubclass(s.dtype.type, np.bytes_): raise TypeError("string operation on non-string array") return s def decode_ascii(s): if isinstance(s, bytes): try: return s.decode("ascii") except UnicodeDecodeError: warnings.warn( "non-ASCII characters are present in the FITS " 'file header and have been replaced by "?" ' "characters", AstropyUserWarning, ) s = s.decode("ascii", errors="replace") return s.replace("\ufffd", "?") elif isinstance(s, np.ndarray) and issubclass(s.dtype.type, np.bytes_): # np.char.encode/decode annoyingly don't preserve the type of the # array, hence the view() call # It also doesn't necessarily preserve widths of the strings, # hence the astype() if s.size == 0: # Numpy apparently also has a bug that if a string array is # empty calling np.char.decode on it returns an empty float64 # array wth dt = s.dtype.str.replace("S", "U") ns = np.array([], dtype=dt).view(type(s)) else: ns = np.char.decode(s, "ascii").view(type(s)) if ns.dtype.itemsize / 4 != s.dtype.itemsize: ns = ns.astype((np.str_, s.dtype.itemsize)) return ns elif isinstance(s, np.ndarray) and not issubclass(s.dtype.type, np.str_): # Don't silently pass through on non-string arrays; we don't want # to hide errors where things that are not stringy are attempting # to be decoded raise TypeError("string operation on non-string array") return s def isreadable(f): """ Returns True if the file-like object can be read from. This is a common- sense approximation of io.IOBase.readable. """ if hasattr(f, "readable"): return f.readable() if hasattr(f, "closed") and f.closed: # This mimics the behavior of io.IOBase.readable raise ValueError("I/O operation on closed file") if not hasattr(f, "read"): return False if hasattr(f, "mode") and not any(c in f.mode for c in "r+"): return False # Not closed, has a 'read()' method, and either has no known mode or a # readable mode--should be good enough to assume 'readable' return True def iswritable(f): """ Returns True if the file-like object can be written to. This is a common- sense approximation of io.IOBase.writable. """ if hasattr(f, "writable"): return f.writable() if hasattr(f, "closed") and f.closed: # This mimics the behavior of io.IOBase.writable raise ValueError("I/O operation on closed file") if not hasattr(f, "write"): return False if hasattr(f, "mode") and not any(c in f.mode for c in "wa+"): return False # Note closed, has a 'write()' method, and either has no known mode or a # mode that supports writing--should be good enough to assume 'writable' return True def isfile(f): """ Returns True if the given object represents an OS-level file (that is, ``isinstance(f, file)``). On Python 3 this also returns True if the given object is higher level wrapper on top of a FileIO object, such as a TextIOWrapper. """ if isinstance(f, io.FileIO): return True elif hasattr(f, "buffer"): return isfile(f.buffer) elif hasattr(f, "raw"): return isfile(f.raw) return False def fileobj_name(f): """ Returns the 'name' of file-like object *f*, if it has anything that could be called its name. Otherwise f's class or type is returned. If f is a string f itself is returned. """ if isinstance(f, (str, bytes)): return f elif isinstance(f, gzip.GzipFile): # The .name attribute on GzipFiles does not always represent the name # of the file being read/written--it can also represent the original # name of the file being compressed # See the documentation at # https://docs.python.org/3/library/gzip.html#gzip.GzipFile # As such, for gzip files only return the name of the underlying # fileobj, if it exists return fileobj_name(f.fileobj) elif hasattr(f, "name"): return f.name elif hasattr(f, "filename"): return f.filename elif hasattr(f, "__class__"): return str(f.__class__) else: return str(type(f)) def fileobj_closed(f): """ Returns True if the given file-like object is closed or if *f* is a string (and assumed to be a pathname). Returns False for all other types of objects, under the assumption that they are file-like objects with no sense of a 'closed' state. """ if isinstance(f, path_like): return True if hasattr(f, "closed"): return f.closed elif hasattr(f, "fileobj") and hasattr(f.fileobj, "closed"): return f.fileobj.closed elif hasattr(f, "fp") and hasattr(f.fp, "closed"): return f.fp.closed else: return False def fileobj_mode(f): """ Returns the 'mode' string of a file-like object if such a thing exists. Otherwise returns None. """ # Go from most to least specific--for example gzip objects have a 'mode' # attribute, but it's not analogous to the file.mode attribute # gzip.GzipFile -like if hasattr(f, "fileobj") and hasattr(f.fileobj, "mode"): fileobj = f.fileobj # astropy.io.fits._File -like, doesn't need additional checks because it's # already validated elif hasattr(f, "fileobj_mode"): return f.fileobj_mode # PIL-Image -like investigate the fp (filebuffer) elif hasattr(f, "fp") and hasattr(f.fp, "mode"): fileobj = f.fp # FILEIO -like (normal open(...)), keep as is. elif hasattr(f, "mode"): fileobj = f # Doesn't look like a file-like object, for example strings, urls or paths. else: return None return _fileobj_normalize_mode(fileobj) def _fileobj_normalize_mode(f): """Takes care of some corner cases in Python where the mode string is either oddly formatted or does not truly represent the file mode. """ mode = f.mode # Special case: Gzip modes: if isinstance(f, gzip.GzipFile): # GzipFiles can be either readonly or writeonly if mode == gzip.READ: return "rb" elif mode == gzip.WRITE: return "wb" else: return None # This shouldn't happen? # Sometimes Python can produce modes like 'r+b' which will be normalized # here to 'rb+' if "+" in mode: mode = mode.replace("+", "") mode += "+" return mode def fileobj_is_binary(f): """ Returns True if the give file or file-like object has a file open in binary mode. When in doubt, returns True by default. """ # This is kind of a hack for this to work correctly with _File objects, # which, for the time being, are *always* binary if hasattr(f, "binary"): return f.binary if isinstance(f, io.TextIOBase): return False mode = fileobj_mode(f) if mode: return "b" in mode else: return True def translate(s, table, deletechars): if deletechars: table = table.copy() for c in deletechars: table[ord(c)] = None return s.translate(table) def fill(text, width, **kwargs): """ Like :func:`textwrap.wrap` but preserves existing paragraphs which :func:`textwrap.wrap` does not otherwise handle well. Also handles section headers. """ paragraphs = text.split("\n\n") def maybe_fill(t): if all(len(l) < width for l in t.splitlines()): return t else: return textwrap.fill(t, width, **kwargs) return "\n\n".join(maybe_fill(p) for p in paragraphs) # On MacOS X 10.8 and earlier, there is a bug that causes numpy.fromfile to # fail when reading over 2Gb of data. If we detect these versions of MacOS X, # we can instead read the data in chunks. To avoid performance penalties at # import time, we defer the setting of this global variable until the first # time it is needed. CHUNKED_FROMFILE = None def _array_from_file(infile, dtype, count): """Create a numpy array from a file or a file-like object.""" if isfile(infile): global CHUNKED_FROMFILE if CHUNKED_FROMFILE is None: if sys.platform == "darwin" and Version(platform.mac_ver()[0]) < Version( "10.9" ): CHUNKED_FROMFILE = True else: CHUNKED_FROMFILE = False if CHUNKED_FROMFILE: chunk_size = int(1024**3 / dtype.itemsize) # 1Gb to be safe if count < chunk_size: return np.fromfile(infile, dtype=dtype, count=count) else: array = np.empty(count, dtype=dtype) for beg in range(0, count, chunk_size): end = min(count, beg + chunk_size) array[beg:end] = np.fromfile(infile, dtype=dtype, count=end - beg) return array else: return np.fromfile(infile, dtype=dtype, count=count) else: # treat as file-like object with "read" method; this includes gzip file # objects, because numpy.fromfile just reads the compressed bytes from # their underlying file object, instead of the decompressed bytes read_size = np.dtype(dtype).itemsize * count s = infile.read(read_size) array = np.ndarray(buffer=s, dtype=dtype, shape=(count,)) # copy is needed because np.frombuffer returns a read-only view of the # underlying buffer array = array.copy() return array _OSX_WRITE_LIMIT = (2**32) - 1 _WIN_WRITE_LIMIT = (2**31) - 1 def _array_to_file(arr, outfile): """ Write a numpy array to a file or a file-like object. Parameters ---------- arr : ndarray The Numpy array to write. outfile : file-like A file-like object such as a Python file object, an `io.BytesIO`, or anything else with a ``write`` method. The file object must support the buffer interface in its ``write``. If writing directly to an on-disk file this delegates directly to `ndarray.tofile`. Otherwise a slower Python implementation is used. """ try: seekable = outfile.seekable() except AttributeError: seekable = False if isfile(outfile) and seekable: write = lambda a, f: a.tofile(f) else: write = _array_to_file_like # Implements a workaround for a bug deep in OSX's stdlib file writing # functions; on 64-bit OSX it is not possible to correctly write a number # of bytes greater than 2 ** 32 and divisible by 4096 (or possibly 8192-- # whatever the default blocksize for the filesystem is). # This issue should have a workaround in Numpy too, but hasn't been # implemented there yet: https://github.com/astropy/astropy/issues/839 # # Apparently Windows has its own fwrite bug: # https://github.com/numpy/numpy/issues/2256 if ( sys.platform == "darwin" and arr.nbytes >= _OSX_WRITE_LIMIT + 1 and arr.nbytes % 4096 == 0 ): # chunksize is a count of elements in the array, not bytes chunksize = _OSX_WRITE_LIMIT // arr.itemsize elif sys.platform.startswith("win"): chunksize = _WIN_WRITE_LIMIT // arr.itemsize else: # Just pass the whole array to the write routine return write(arr, outfile) # Write one chunk at a time for systems whose fwrite chokes on large # writes. idx = 0 arr = arr.view(np.ndarray).flatten() while idx < arr.nbytes: write(arr[idx : idx + chunksize], outfile) idx += chunksize def _array_to_file_like(arr, fileobj): """ Write a `~numpy.ndarray` to a file-like object (which is not supported by `numpy.ndarray.tofile`). """ # If the array is empty, we can simply take a shortcut and return since # there is nothing to write. if len(arr) == 0: return if arr.flags.contiguous: # It suffices to just pass the underlying buffer directly to the # fileobj's write (assuming it supports the buffer interface). If # it does not have the buffer interface, a TypeError should be returned # in which case we can fall back to the other methods. try: fileobj.write(arr.data) except TypeError: pass else: return if hasattr(np, "nditer"): # nditer version for non-contiguous arrays for item in np.nditer(arr, order="C"): fileobj.write(item.tobytes()) else: # Slower version for Numpy versions without nditer; # The problem with flatiter is it doesn't preserve the original # byteorder byteorder = arr.dtype.byteorder if (sys.byteorder == "little" and byteorder == ">") or ( sys.byteorder == "big" and byteorder == "<" ): for item in arr.flat: fileobj.write(item.byteswap().tobytes()) else: for item in arr.flat: fileobj.write(item.tobytes()) def _write_string(f, s): """ Write a string to a file, encoding to ASCII if the file is open in binary mode, or decoding if the file is open in text mode. """ # Assume if the file object doesn't have a specific mode, that the mode is # binary binmode = fileobj_is_binary(f) if binmode and isinstance(s, str): s = encode_ascii(s) elif not binmode and not isinstance(f, str): s = decode_ascii(s) f.write(s) def _convert_array(array, dtype): """ Converts an array to a new dtype--if the itemsize of the new dtype is the same as the old dtype and both types are not numeric, a view is returned. Otherwise a new array must be created. """ if array.dtype == dtype: return array elif array.dtype.itemsize == dtype.itemsize and not ( np.issubdtype(array.dtype, np.number) and np.issubdtype(dtype, np.number) ): # Includes a special case when both dtypes are at least numeric to # account for old Trac ticket 218 (now inaccessible). return array.view(dtype) else: return array.astype(dtype) def _pseudo_zero(dtype): """ Given a numpy dtype, finds its "zero" point, which is exactly in the middle of its range. """ # special case for int8 if dtype.kind == "i" and dtype.itemsize == 1: return -128 assert dtype.kind == "u" return 1 << (dtype.itemsize * 8 - 1) def _is_pseudo_integer(dtype): return (dtype.kind == "u" and dtype.itemsize >= 2) or ( dtype.kind == "i" and dtype.itemsize == 1 ) def _is_int(val): return isinstance(val, all_integer_types) def _str_to_num(val): """Converts a given string to either an int or a float if necessary.""" try: num = int(val) except ValueError: # If this fails then an exception should be raised anyways num = float(val) return num def _words_group(s, width): """ Split a long string into parts where each part is no longer than ``strlen`` and no word is cut into two pieces. But if there are any single words which are longer than ``strlen``, then they will be split in the middle of the word. """ words = [] slen = len(s) # appending one blank at the end always ensures that the "last" blank # is beyond the end of the string arr = np.frombuffer(s.encode("utf8") + b" ", dtype="S1") # locations of the blanks blank_loc = np.nonzero(arr == b" ")[0] offset = 0 xoffset = 0 while True: try: loc = np.nonzero(blank_loc >= width + offset)[0][0] except IndexError: loc = len(blank_loc) if loc > 0: offset = blank_loc[loc - 1] + 1 else: offset = -1 # check for one word longer than strlen, break in the middle if offset <= xoffset: offset = min(xoffset + width, slen) # collect the pieces in a list words.append(s[xoffset:offset]) if offset >= slen: break xoffset = offset return words def _tmp_name(input): """ Create a temporary file name which should not already exist. Use the directory of the input file as the base name of the mkstemp() output. """ if input is not None: input = os.path.dirname(input) f, fn = tempfile.mkstemp(dir=input) os.close(f) return fn def _get_array_mmap(array): """ If the array has an mmap.mmap at base of its base chain, return the mmap object; otherwise return None. """ if isinstance(array, mmap.mmap): return array base = array while hasattr(base, "base") and base.base is not None: if isinstance(base.base, mmap.mmap): return base.base base = base.base @contextmanager def _free_space_check(hdulist, dirname=None): try: yield except OSError as exc: error_message = "" if not isinstance(hdulist, list): hdulist = [ hdulist, ] if dirname is None: dirname = os.path.dirname(hdulist._file.name) if os.path.isdir(dirname): free_space = data.get_free_space_in_dir(dirname) hdulist_size = sum(hdu.size for hdu in hdulist) if free_space < hdulist_size: error_message = ( "Not enough space on disk: requested {}, available {}. ".format( hdulist_size, free_space ) ) for hdu in hdulist: hdu._close() raise OSError(error_message + str(exc)) def _extract_number(value, default): """ Attempts to extract an integer number from the given value. If the extraction fails, the value of the 'default' argument is returned. """ try: # The _str_to_num method converts the value to string/float # so we need to perform one additional conversion to int on top return int(_str_to_num(value)) except (TypeError, ValueError): return default def get_testdata_filepath(filename): """ Return a string representing the path to the file requested from the io.fits test data set. .. versionadded:: 2.0.3 Parameters ---------- filename : str The filename of the test data file. Returns ------- filepath : str The path to the requested file. """ return data.get_pkg_data_filename(f"io/fits/tests/data/{filename}", "astropy") def _rstrip_inplace(array): """ Performs an in-place rstrip operation on string arrays. This is necessary since the built-in `np.char.rstrip` in Numpy does not perform an in-place calculation. """ # The following implementation convert the string to unsigned integers of # the right length. Trailing spaces (which are represented as 32) are then # converted to null characters (represented as zeros). To avoid creating # large temporary mask arrays, we loop over chunks (attempting to do that # on a 1-D version of the array; large memory may still be needed in the # unlikely case that a string array has small first dimension and cannot # be represented as a contiguous 1-D array in memory). dt = array.dtype if dt.kind not in "SU": raise TypeError("This function can only be used on string arrays") # View the array as appropriate integers. The last dimension will # equal the number of characters in each string. bpc = 1 if dt.kind == "S" else 4 dt_int = f"({dt.itemsize // bpc},){dt.byteorder}u{bpc}" b = array.view(dt_int, np.ndarray) # For optimal speed, work in chunks of the internal ufunc buffer size. bufsize = np.getbufsize() # Attempt to have the strings as a 1-D array to give the chunk known size. # Note: the code will work if this fails; the chunks will just be larger. if b.ndim > 2: try: b.shape = -1, b.shape[-1] except AttributeError: # can occur for non-contiguous arrays pass for j in range(0, b.shape[0], bufsize): c = b[j : j + bufsize] # Mask which will tell whether we're in a sequence of trailing spaces. mask = np.ones(c.shape[:-1], dtype=bool) # Loop over the characters in the strings, in reverse order. We process # the i-th character of all strings in the chunk at the same time. If # the character is 32, this corresponds to a space, and we then change # this to 0. We then construct a new mask to find rows where the # i-th character is 0 (null) and the i-1-th is 32 (space) and repeat. for i in range(-1, -c.shape[-1], -1): mask &= c[..., i] == 32 c[..., i][mask] = 0 mask = c[..., i] == 0 return array def _is_dask_array(data): """Check whether data is a dask array. We avoid importing dask unless it is likely it is a dask array, so that non-dask code is not slowed down. """ if not hasattr(data, "compute"): return False try: from dask.array import Array except ImportError: # If we cannot import dask, surely this cannot be a # dask array! return False else: return isinstance(data, Array)
7d77010fc8f19bea4e1bdda4437338f14afbf39d18972375390d6881ceccd467
# Licensed under a 3-clause BSD style license - see PYFITS.rst import re import warnings import numpy as np from astropy.utils.exceptions import AstropyUserWarning from . import conf from .util import _is_int, _str_to_num, _words_group, translate from .verify import VerifyError, VerifyWarning, _ErrList, _Verify __all__ = ["Card", "Undefined"] FIX_FP_TABLE = str.maketrans("de", "DE") FIX_FP_TABLE2 = str.maketrans("dD", "eE") CARD_LENGTH = 80 BLANK_CARD = " " * CARD_LENGTH KEYWORD_LENGTH = 8 # The max length for FITS-standard keywords VALUE_INDICATOR = "= " # The standard FITS value indicator VALUE_INDICATOR_LEN = len(VALUE_INDICATOR) HIERARCH_VALUE_INDICATOR = "=" # HIERARCH cards may use a shortened indicator class Undefined: """Undefined value.""" def __init__(self): # This __init__ is required to be here for Sphinx documentation pass UNDEFINED = Undefined() class Card(_Verify): length = CARD_LENGTH """The length of a Card image; should always be 80 for valid FITS files.""" # String for a FITS standard compliant (FSC) keyword. _keywd_FSC_RE = re.compile(r"^[A-Z0-9_-]{0,%d}$" % KEYWORD_LENGTH) # This will match any printable ASCII character excluding '=' _keywd_hierarch_RE = re.compile(r"^(?:HIERARCH +)?(?:^[ -<>-~]+ ?)+$", re.I) # A number sub-string, either an integer or a float in fixed or # scientific notation. One for FSC and one for non-FSC (NFSC) format: # NFSC allows lower case of DE for exponent, allows space between sign, # digits, exponent sign, and exponents _digits_FSC = r"(\.\d+|\d+(\.\d*)?)([DE][+-]?\d+)?" _digits_NFSC = r"(\.\d+|\d+(\.\d*)?) *([deDE] *[+-]? *\d+)?" _numr_FSC = r"[+-]?" + _digits_FSC _numr_NFSC = r"[+-]? *" + _digits_NFSC # This regex helps delete leading zeros from numbers, otherwise # Python might evaluate them as octal values (this is not-greedy, however, # so it may not strip leading zeros from a float, which is fine) _number_FSC_RE = re.compile(rf"(?P<sign>[+-])?0*?(?P<digt>{_digits_FSC})") _number_NFSC_RE = re.compile(rf"(?P<sign>[+-])? *0*?(?P<digt>{_digits_NFSC})") # Used in cards using the CONTINUE convention which expect a string # followed by an optional comment _strg = r"\'(?P<strg>([ -~]+?|\'\'|) *?)\'(?=$|/| )" _comm_field = r"(?P<comm_field>(?P<sepr>/ *)(?P<comm>(.|\n)*))" _strg_comment_RE = re.compile(f"({_strg})? *{_comm_field}?") # FSC commentary card string which must contain printable ASCII characters. # Note: \Z matches the end of the string without allowing newlines _ascii_text_re = re.compile(r"[ -~]*\Z") # Checks for a valid value/comment string. It returns a match object # for a valid value/comment string. # The valu group will return a match if a FITS string, boolean, # number, or complex value is found, otherwise it will return # None, meaning the keyword is undefined. The comment field will # return a match if the comment separator is found, though the # comment maybe an empty string. # fmt: off _value_FSC_RE = re.compile( r'(?P<valu_field> *' r'(?P<valu>' # The <strg> regex is not correct for all cases, but # it comes pretty darn close. It appears to find the # end of a string rather well, but will accept # strings with an odd number of single quotes, # instead of issuing an error. The FITS standard # appears vague on this issue and only states that a # string should not end with two single quotes, # whereas it should not end with an even number of # quotes to be precise. # # Note that a non-greedy match is done for a string, # since a greedy match will find a single-quote after # the comment separator resulting in an incorrect # match. rf'{_strg}|' r'(?P<bool>[FT])|' r'(?P<numr>' + _numr_FSC + r')|' r'(?P<cplx>\( *' r'(?P<real>' + _numr_FSC + r') *, *' r'(?P<imag>' + _numr_FSC + r') *\))' r')? *)' r'(?P<comm_field>' r'(?P<sepr>/ *)' r'(?P<comm>[!-~][ -~]*)?' r')?$' ) # fmt: on # fmt: off _value_NFSC_RE = re.compile( r'(?P<valu_field> *' r'(?P<valu>' rf'{_strg}|' r'(?P<bool>[FT])|' r'(?P<numr>' + _numr_NFSC + r')|' r'(?P<cplx>\( *' r'(?P<real>' + _numr_NFSC + r') *, *' r'(?P<imag>' + _numr_NFSC + r') *\))' fr')? *){_comm_field}?$' ) # fmt: on _rvkc_identifier = r"[a-zA-Z_]\w*" _rvkc_field = _rvkc_identifier + r"(\.\d+)?" _rvkc_field_specifier_s = rf"{_rvkc_field}(\.{_rvkc_field})*" _rvkc_field_specifier_val = r"(?P<keyword>{}): +(?P<val>{})".format( _rvkc_field_specifier_s, _numr_FSC ) _rvkc_keyword_val = rf"\'(?P<rawval>{_rvkc_field_specifier_val})\'" _rvkc_keyword_val_comm = rf" *{_rvkc_keyword_val} *(/ *(?P<comm>[ -~]*))?$" _rvkc_field_specifier_val_RE = re.compile(_rvkc_field_specifier_val + "$") # regular expression to extract the key and the field specifier from a # string that is being used to index into a card list that contains # record value keyword cards (ex. 'DP1.AXIS.1') _rvkc_keyword_name_RE = re.compile( r"(?P<keyword>{})\.(?P<field_specifier>{})$".format( _rvkc_identifier, _rvkc_field_specifier_s ) ) # regular expression to extract the field specifier and value and comment # from the string value of a record value keyword card # (ex "'AXIS.1: 1' / a comment") _rvkc_keyword_val_comm_RE = re.compile(_rvkc_keyword_val_comm) _commentary_keywords = {"", "COMMENT", "HISTORY", "END"} _special_keywords = _commentary_keywords.union(["CONTINUE"]) # The default value indicator; may be changed if required by a convention # (namely HIERARCH cards) _value_indicator = VALUE_INDICATOR def __init__(self, keyword=None, value=None, comment=None, **kwargs): # For backwards compatibility, support the 'key' keyword argument: if keyword is None and "key" in kwargs: keyword = kwargs["key"] self._keyword = None self._value = None self._comment = None self._valuestring = None self._image = None # This attribute is set to False when creating the card from a card # image to ensure that the contents of the image get verified at some # point self._verified = True # A flag to conveniently mark whether or not this was a valid HIERARCH # card self._hierarch = False # If the card could not be parsed according the the FITS standard or # any recognized non-standard conventions, this will be True self._invalid = False self._field_specifier = None # These are used primarily only by RVKCs self._rawkeyword = None self._rawvalue = None if not ( keyword is not None and value is not None and self._check_if_rvkc(keyword, value) ): # If _check_if_rvkc passes, it will handle setting the keyword and # value if keyword is not None: self.keyword = keyword if value is not None: self.value = value if comment is not None: self.comment = comment self._modified = False self._valuemodified = False def __repr__(self): return repr((self.keyword, self.value, self.comment)) def __str__(self): return self.image def __len__(self): return 3 def __getitem__(self, index): return (self.keyword, self.value, self.comment)[index] @property def keyword(self): """Returns the keyword name parsed from the card image.""" if self._keyword is not None: return self._keyword elif self._image: self._keyword = self._parse_keyword() return self._keyword else: self.keyword = "" return "" @keyword.setter def keyword(self, keyword): """Set the key attribute; once set it cannot be modified.""" if self._keyword is not None: raise AttributeError("Once set, the Card keyword may not be modified") elif isinstance(keyword, str): # Be nice and remove trailing whitespace--some FITS code always # pads keywords out with spaces; leading whitespace, however, # should be strictly disallowed. keyword = keyword.rstrip() keyword_upper = keyword.upper() if len(keyword) <= KEYWORD_LENGTH and self._keywd_FSC_RE.match( keyword_upper ): # For keywords with length > 8 they will be HIERARCH cards, # and can have arbitrary case keywords if keyword_upper == "END": raise ValueError("Keyword 'END' not allowed.") keyword = keyword_upper elif self._keywd_hierarch_RE.match(keyword): # In prior versions of PyFITS (*) HIERARCH cards would only be # created if the user-supplied keyword explicitly started with # 'HIERARCH '. Now we will create them automatically for long # keywords, but we still want to support the old behavior too; # the old behavior makes it possible to create HIERARCH cards # that would otherwise be recognized as RVKCs # (*) This has never affected Astropy, because it was changed # before PyFITS was merged into Astropy! self._hierarch = True self._value_indicator = HIERARCH_VALUE_INDICATOR if keyword_upper[:9] == "HIERARCH ": # The user explicitly asked for a HIERARCH card, so don't # bug them about it... keyword = keyword[9:].strip() else: # We'll gladly create a HIERARCH card, but a warning is # also displayed warnings.warn( "Keyword name {!r} is greater than 8 characters or " "contains characters not allowed by the FITS " "standard; a HIERARCH card will be created.".format(keyword), VerifyWarning, ) else: raise ValueError(f"Illegal keyword name: {keyword!r}.") self._keyword = keyword self._modified = True else: raise ValueError(f"Keyword name {keyword!r} is not a string.") @property def value(self): """The value associated with the keyword stored in this card.""" if self.field_specifier: return float(self._value) if self._value is not None: value = self._value elif self._valuestring is not None or self._image: value = self._value = self._parse_value() else: if self._keyword == "": self._value = value = "" else: self._value = value = UNDEFINED if conf.strip_header_whitespace and isinstance(value, str): value = value.rstrip() return value @value.setter def value(self, value): if self._invalid: raise ValueError( "The value of invalid/unparsable cards cannot set. Either " "delete this card from the header or replace it." ) if value is None: value = UNDEFINED try: oldvalue = self.value except VerifyError: # probably a parsing error, falling back to the internal _value # which should be None. This may happen while calling _fix_value. oldvalue = self._value if oldvalue is None: oldvalue = UNDEFINED if not isinstance( value, ( str, int, float, complex, bool, Undefined, np.floating, np.integer, np.complexfloating, np.bool_, ), ): raise ValueError(f"Illegal value: {value!r}.") if isinstance(value, (float, np.float32)) and ( np.isnan(value) or np.isinf(value) ): # value is checked for both float and np.float32 instances # since np.float32 is not considered a Python float. raise ValueError( "Floating point {!r} values are not allowed in FITS headers.".format( value ) ) elif isinstance(value, str): m = self._ascii_text_re.match(value) if not m: raise ValueError( "FITS header values must contain standard printable ASCII " "characters; {!r} contains characters not representable in " "ASCII or non-printable characters.".format(value) ) elif isinstance(value, np.bool_): value = bool(value) if conf.strip_header_whitespace and ( isinstance(oldvalue, str) and isinstance(value, str) ): # Ignore extra whitespace when comparing the new value to the old different = oldvalue.rstrip() != value.rstrip() elif isinstance(oldvalue, bool) or isinstance(value, bool): different = oldvalue is not value else: different = oldvalue != value or not isinstance(value, type(oldvalue)) if different: self._value = value self._rawvalue = None self._modified = True self._valuestring = None self._valuemodified = True if self.field_specifier: try: self._value = _int_or_float(self._value) except ValueError: raise ValueError(f"value {self._value} is not a float") @value.deleter def value(self): if self._invalid: raise ValueError( "The value of invalid/unparsable cards cannot deleted. " "Either delete this card from the header or replace it." ) if not self.field_specifier: self.value = "" else: raise AttributeError( "Values cannot be deleted from record-valued keyword cards" ) @property def rawkeyword(self): """On record-valued keyword cards this is the name of the standard <= 8 character FITS keyword that this RVKC is stored in. Otherwise it is the card's normal keyword. """ if self._rawkeyword is not None: return self._rawkeyword elif self.field_specifier is not None: self._rawkeyword = self.keyword.split(".", 1)[0] return self._rawkeyword else: return self.keyword @property def rawvalue(self): """On record-valued keyword cards this is the raw string value in the ``<field-specifier>: <value>`` format stored in the card in order to represent a RVKC. Otherwise it is the card's normal value. """ if self._rawvalue is not None: return self._rawvalue elif self.field_specifier is not None: self._rawvalue = f"{self.field_specifier}: {self.value}" return self._rawvalue else: return self.value @property def comment(self): """Get the comment attribute from the card image if not already set.""" if self._comment is not None: return self._comment elif self._image: self._comment = self._parse_comment() return self._comment else: self._comment = "" return "" @comment.setter def comment(self, comment): if self._invalid: raise ValueError( "The comment of invalid/unparsable cards cannot set. Either " "delete this card from the header or replace it." ) if comment is None: comment = "" if isinstance(comment, str): m = self._ascii_text_re.match(comment) if not m: raise ValueError( "FITS header comments must contain standard printable " "ASCII characters; {!r} contains characters not " "representable in ASCII or non-printable characters.".format( comment ) ) try: oldcomment = self.comment except VerifyError: # probably a parsing error, falling back to the internal _comment # which should be None. oldcomment = self._comment if oldcomment is None: oldcomment = "" if comment != oldcomment: self._comment = comment self._modified = True @comment.deleter def comment(self): if self._invalid: raise ValueError( "The comment of invalid/unparsable cards cannot deleted. " "Either delete this card from the header or replace it." ) self.comment = "" @property def field_specifier(self): """ The field-specifier of record-valued keyword cards; always `None` on normal cards. """ # Ensure that the keyword exists and has been parsed--the will set the # internal _field_specifier attribute if this is a RVKC. if self.keyword: return self._field_specifier else: return None @field_specifier.setter def field_specifier(self, field_specifier): if not field_specifier: raise ValueError( "The field-specifier may not be blank in record-valued keyword cards." ) elif not self.field_specifier: raise AttributeError( "Cannot coerce cards to be record-valued " "keyword cards by setting the " "field_specifier attribute" ) elif field_specifier != self.field_specifier: self._field_specifier = field_specifier # The keyword need also be updated keyword = self._keyword.split(".", 1)[0] self._keyword = ".".join([keyword, field_specifier]) self._modified = True @field_specifier.deleter def field_specifier(self): raise AttributeError( "The field_specifier attribute may not be " "deleted from record-valued keyword cards." ) @property def image(self): """ The card "image", that is, the 80 byte character string that represents this card in an actual FITS header. """ if self._image and not self._verified: self.verify("fix+warn") if self._image is None or self._modified: self._image = self._format_image() return self._image @property def is_blank(self): """ `True` if the card is completely blank--that is, it has no keyword, value, or comment. It appears in the header as 80 spaces. Returns `False` otherwise. """ if not self._verified: # The card image has not been parsed yet; compare directly with the # string representation of a blank card return self._image == BLANK_CARD # If the keyword, value, and comment are all empty (for self.value # explicitly check that it is a string value, since a blank value is # returned as '') return ( not self.keyword and (isinstance(self.value, str) and not self.value) and not self.comment ) @classmethod def fromstring(cls, image): """ Construct a `Card` object from a (raw) string. It will pad the string if it is not the length of a card image (80 columns). If the card image is longer than 80 columns, assume it contains ``CONTINUE`` card(s). """ card = cls() if isinstance(image, bytes): # FITS supports only ASCII, but decode as latin1 and just take all # bytes for now; if it results in mojibake due to e.g. UTF-8 # encoded data in a FITS header that's OK because it shouldn't be # there in the first place image = image.decode("latin1") card._image = _pad(image) card._verified = False return card @classmethod def normalize_keyword(cls, keyword): """ `classmethod` to convert a keyword value that may contain a field-specifier to uppercase. The effect is to raise the key to uppercase and leave the field specifier in its original case. Parameters ---------- keyword : or str A keyword value or a ``keyword.field-specifier`` value """ # Test first for the most common case: a standard FITS keyword provided # in standard all-caps if len(keyword) <= KEYWORD_LENGTH and cls._keywd_FSC_RE.match(keyword): return keyword # Test if this is a record-valued keyword match = cls._rvkc_keyword_name_RE.match(keyword) if match: return ".".join( (match.group("keyword").strip().upper(), match.group("field_specifier")) ) elif len(keyword) > 9 and keyword[:9].upper() == "HIERARCH ": # Remove 'HIERARCH' from HIERARCH keywords; this could lead to # ambiguity if there is actually a keyword card containing # "HIERARCH HIERARCH", but shame on you if you do that. return keyword[9:].strip().upper() else: # A normal FITS keyword, but provided in non-standard case return keyword.strip().upper() def _check_if_rvkc(self, *args): """ Determine whether or not the card is a record-valued keyword card. If one argument is given, that argument is treated as a full card image and parsed as such. If two arguments are given, the first is treated as the card keyword (including the field-specifier if the card is intended as a RVKC), and the second as the card value OR the first value can be the base keyword, and the second value the 'field-specifier: value' string. If the check passes the ._keyword, ._value, and .field_specifier keywords are set. Examples -------- :: self._check_if_rvkc('DP1', 'AXIS.1: 2') self._check_if_rvkc('DP1.AXIS.1', 2) self._check_if_rvkc('DP1 = AXIS.1: 2') """ if not conf.enable_record_valued_keyword_cards: return False if len(args) == 1: return self._check_if_rvkc_image(*args) elif len(args) == 2: keyword, value = args if not isinstance(keyword, str): return False if keyword in self._commentary_keywords: return False match = self._rvkc_keyword_name_RE.match(keyword) if match and isinstance(value, (int, float)): self._init_rvkc( match.group("keyword"), match.group("field_specifier"), None, value ) return True # Testing for ': ' is a quick way to avoid running the full regular # expression, speeding this up for the majority of cases if isinstance(value, str) and value.find(": ") > 0: match = self._rvkc_field_specifier_val_RE.match(value) if match and self._keywd_FSC_RE.match(keyword): self._init_rvkc( keyword, match.group("keyword"), value, match.group("val") ) return True def _check_if_rvkc_image(self, *args): """ Implements `Card._check_if_rvkc` for the case of an unparsed card image. If given one argument this is the full intact image. If given two arguments the card has already been split between keyword and value+comment at the standard value indicator '= '. """ if len(args) == 1: image = args[0] eq_idx = image.find(VALUE_INDICATOR) if eq_idx < 0 or eq_idx > 9: return False keyword = image[:eq_idx] rest = image[eq_idx + VALUE_INDICATOR_LEN :] else: keyword, rest = args rest = rest.lstrip() # This test allows us to skip running the full regular expression for # the majority of cards that do not contain strings or that definitely # do not contain RVKC field-specifiers; it's very much a # micro-optimization but it does make a measurable difference if not rest or rest[0] != "'" or rest.find(": ") < 2: return False match = self._rvkc_keyword_val_comm_RE.match(rest) if match: self._init_rvkc( keyword, match.group("keyword"), match.group("rawval"), match.group("val"), ) return True def _init_rvkc(self, keyword, field_specifier, field, value): """ Sort of addendum to Card.__init__ to set the appropriate internal attributes if the card was determined to be a RVKC. """ keyword_upper = keyword.upper() self._keyword = ".".join((keyword_upper, field_specifier)) self._rawkeyword = keyword_upper self._field_specifier = field_specifier self._value = _int_or_float(value) self._rawvalue = field def _parse_keyword(self): keyword = self._image[:KEYWORD_LENGTH].strip() keyword_upper = keyword.upper() if keyword_upper in self._special_keywords: return keyword_upper elif ( keyword_upper == "HIERARCH" and self._image[8] == " " and HIERARCH_VALUE_INDICATOR in self._image ): # This is valid HIERARCH card as described by the HIERARCH keyword # convention: # http://fits.gsfc.nasa.gov/registry/hierarch_keyword.html self._hierarch = True self._value_indicator = HIERARCH_VALUE_INDICATOR keyword = self._image.split(HIERARCH_VALUE_INDICATOR, 1)[0][9:] return keyword.strip() else: val_ind_idx = self._image.find(VALUE_INDICATOR) if 0 <= val_ind_idx <= KEYWORD_LENGTH: # The value indicator should appear in byte 8, but we are # flexible and allow this to be fixed if val_ind_idx < KEYWORD_LENGTH: keyword = keyword[:val_ind_idx] keyword_upper = keyword_upper[:val_ind_idx] rest = self._image[val_ind_idx + VALUE_INDICATOR_LEN :] # So far this looks like a standard FITS keyword; check whether # the value represents a RVKC; if so then we pass things off to # the RVKC parser if self._check_if_rvkc_image(keyword, rest): return self._keyword return keyword_upper else: warnings.warn( "The following header keyword is invalid or follows an " "unrecognized non-standard convention:\n{}".format(self._image), AstropyUserWarning, ) self._invalid = True return keyword def _parse_value(self): """Extract the keyword value from the card image.""" # for commentary cards, no need to parse further # Likewise for invalid cards if self.keyword.upper() in self._commentary_keywords or self._invalid: return self._image[KEYWORD_LENGTH:].rstrip() if self._check_if_rvkc(self._image): return self._value m = self._value_NFSC_RE.match(self._split()[1]) if m is None: raise VerifyError( "Unparsable card ({}), fix it first with .verify('fix').".format( self.keyword ) ) if m.group("bool") is not None: value = m.group("bool") == "T" elif m.group("strg") is not None: value = re.sub("''", "'", m.group("strg")) elif m.group("numr") is not None: # Check for numbers with leading 0s. numr = self._number_NFSC_RE.match(m.group("numr")) digt = translate(numr.group("digt"), FIX_FP_TABLE2, " ") if numr.group("sign") is None: sign = "" else: sign = numr.group("sign") value = _str_to_num(sign + digt) elif m.group("cplx") is not None: # Check for numbers with leading 0s. real = self._number_NFSC_RE.match(m.group("real")) rdigt = translate(real.group("digt"), FIX_FP_TABLE2, " ") if real.group("sign") is None: rsign = "" else: rsign = real.group("sign") value = _str_to_num(rsign + rdigt) imag = self._number_NFSC_RE.match(m.group("imag")) idigt = translate(imag.group("digt"), FIX_FP_TABLE2, " ") if imag.group("sign") is None: isign = "" else: isign = imag.group("sign") value += _str_to_num(isign + idigt) * 1j else: value = UNDEFINED if not self._valuestring: self._valuestring = m.group("valu") return value def _parse_comment(self): """Extract the keyword value from the card image.""" # for commentary cards, no need to parse further # likewise for invalid/unparsable cards if self.keyword in Card._commentary_keywords or self._invalid: return "" valuecomment = self._split()[1] m = self._value_NFSC_RE.match(valuecomment) comment = "" if m is not None: # Don't combine this if statement with the one above, because # we only want the elif case to run if this was not a valid # card at all if m.group("comm"): comment = m.group("comm").rstrip() elif "/" in valuecomment: # The value in this FITS file was not in a valid/known format. In # this case the best we can do is guess that everything after the # first / was meant to be the comment comment = valuecomment.split("/", 1)[1].strip() return comment def _split(self): """ Split the card image between the keyword and the rest of the card. """ if self._image is not None: # If we already have a card image, don't try to rebuild a new card # image, which self.image would do image = self._image else: image = self.image # Split cards with CONTINUE cards or commentary keywords with long # values if len(self._image) > self.length: values = [] comments = [] keyword = None for card in self._itersubcards(): kw, vc = card._split() if keyword is None: keyword = kw if keyword in self._commentary_keywords: values.append(vc) continue # Should match a string followed by a comment; if not it # might be an invalid Card, so we just take it verbatim m = self._strg_comment_RE.match(vc) if not m: return kw, vc value = m.group("strg") or "" value = value.rstrip().replace("''", "'") if value and value[-1] == "&": value = value[:-1] values.append(value) comment = m.group("comm") if comment: comments.append(comment.rstrip()) if keyword in self._commentary_keywords: valuecomment = "".join(values) else: # CONTINUE card valuecomment = f"'{''.join(values)}' / {' '.join(comments)}" return keyword, valuecomment if self.keyword in self._special_keywords: keyword, valuecomment = image.split(" ", 1) else: try: delim_index = image.index(self._value_indicator) except ValueError: delim_index = None # The equal sign may not be any higher than column 10; anything # past that must be considered part of the card value if delim_index is None: keyword = image[:KEYWORD_LENGTH] valuecomment = image[KEYWORD_LENGTH:] elif delim_index > 10 and image[:9] != "HIERARCH ": keyword = image[:8] valuecomment = image[8:] else: keyword, valuecomment = image.split(self._value_indicator, 1) return keyword.strip(), valuecomment.strip() def _fix_keyword(self): if self.field_specifier: keyword, field_specifier = self._keyword.split(".", 1) self._keyword = ".".join([keyword.upper(), field_specifier]) else: self._keyword = self._keyword.upper() self._modified = True def _fix_value(self): """Fix the card image for fixable non-standard compliance.""" value = None keyword, valuecomment = self._split() m = self._value_NFSC_RE.match(valuecomment) # for the unparsable case if m is None: try: value, comment = valuecomment.split("/", 1) self.value = value.strip() self.comment = comment.strip() except (ValueError, IndexError): self.value = valuecomment self._valuestring = self._value return elif m.group("numr") is not None: numr = self._number_NFSC_RE.match(m.group("numr")) value = translate(numr.group("digt"), FIX_FP_TABLE, " ") if numr.group("sign") is not None: value = numr.group("sign") + value elif m.group("cplx") is not None: real = self._number_NFSC_RE.match(m.group("real")) rdigt = translate(real.group("digt"), FIX_FP_TABLE, " ") if real.group("sign") is not None: rdigt = real.group("sign") + rdigt imag = self._number_NFSC_RE.match(m.group("imag")) idigt = translate(imag.group("digt"), FIX_FP_TABLE, " ") if imag.group("sign") is not None: idigt = imag.group("sign") + idigt value = f"({rdigt}, {idigt})" self._valuestring = value # The value itself has not been modified, but its serialized # representation (as stored in self._valuestring) has been changed, so # still set this card as having been modified (see ticket #137) self._modified = True def _format_keyword(self): if self.keyword: if self.field_specifier: return "{:{len}}".format( self.keyword.split(".", 1)[0], len=KEYWORD_LENGTH ) elif self._hierarch: return f"HIERARCH {self.keyword} " else: return "{:{len}}".format(self.keyword, len=KEYWORD_LENGTH) else: return " " * KEYWORD_LENGTH def _format_value(self): # value string float_types = (float, np.floating, complex, np.complexfloating) # Force the value to be parsed out first value = self.value # But work with the underlying raw value instead (to preserve # whitespace, for now...) value = self._value if self.keyword in self._commentary_keywords: # The value of a commentary card must be just a raw unprocessed # string value = str(value) elif ( self._valuestring and not self._valuemodified and isinstance(self.value, float_types) ): # Keep the existing formatting for float/complex numbers value = f"{self._valuestring:>20}" elif self.field_specifier: value = _format_value(self._value).strip() value = f"'{self.field_specifier}: {value}'" else: value = _format_value(value) # For HIERARCH cards the value should be shortened to conserve space if not self.field_specifier and len(self.keyword) > KEYWORD_LENGTH: value = value.strip() return value def _format_comment(self): if not self.comment: return "" else: return f" / {self._comment}" def _format_image(self): keyword = self._format_keyword() value = self._format_value() is_commentary = keyword.strip() in self._commentary_keywords if is_commentary: comment = "" else: comment = self._format_comment() # equal sign string # by default use the standard value indicator even for HIERARCH cards; # later we may abbreviate it if necessary delimiter = VALUE_INDICATOR if is_commentary: delimiter = "" # put all parts together output = "".join([keyword, delimiter, value, comment]) # For HIERARCH cards we can save a bit of space if necessary by # removing the space between the keyword and the equals sign; I'm # guessing this is part of the HIEARCH card specification keywordvalue_length = len(keyword) + len(delimiter) + len(value) if keywordvalue_length > self.length and keyword.startswith("HIERARCH"): if keywordvalue_length == self.length + 1 and keyword[-1] == " ": output = "".join([keyword[:-1], delimiter, value, comment]) else: # I guess the HIERARCH card spec is incompatible with CONTINUE # cards raise ValueError( "The header keyword {!r} with its value is too long".format( self.keyword ) ) if len(output) <= self.length: output = f"{output:80}" else: # longstring case (CONTINUE card) # try not to use CONTINUE if the string value can fit in one line. # Instead, just truncate the comment if isinstance(self.value, str) and len(value) > (self.length - 10): output = self._format_long_image() else: warnings.warn( "Card is too long, comment will be truncated.", VerifyWarning ) output = output[: Card.length] return output def _format_long_image(self): """ Break up long string value/comment into ``CONTINUE`` cards. This is a primitive implementation: it will put the value string in one block and the comment string in another. Also, it does not break at the blank space between words. So it may not look pretty. """ if self.keyword in Card._commentary_keywords: return self._format_long_commentary_image() value_length = 67 comment_length = 64 output = [] # do the value string value = self._value.replace("'", "''") words = _words_group(value, value_length) for idx, word in enumerate(words): if idx == 0: headstr = "{:{len}}= ".format(self.keyword, len=KEYWORD_LENGTH) else: headstr = "CONTINUE " # If this is the final CONTINUE remove the '&' if not self.comment and idx == len(words) - 1: value_format = "'{}'" else: value_format = "'{}&'" value = value_format.format(word) output.append(f"{headstr + value:80}") # do the comment string comment_format = "{}" if self.comment: words = _words_group(self.comment, comment_length) for idx, word in enumerate(words): # If this is the final CONTINUE remove the '&' if idx == len(words) - 1: headstr = "CONTINUE '' / " else: headstr = "CONTINUE '&' / " comment = headstr + comment_format.format(word) output.append(f"{comment:80}") return "".join(output) def _format_long_commentary_image(self): """ If a commentary card's value is too long to fit on a single card, this will render the card as multiple consecutive commentary card of the same type. """ maxlen = Card.length - KEYWORD_LENGTH value = self._format_value() output = [] idx = 0 while idx < len(value): output.append(str(Card(self.keyword, value[idx : idx + maxlen]))) idx += maxlen return "".join(output) def _verify(self, option="warn"): errs = [] fix_text = f"Fixed {self.keyword!r} card to meet the FITS standard." # Don't try to verify cards that already don't meet any recognizable # standard if self._invalid: return _ErrList(errs) # verify the equal sign position if self.keyword not in self._commentary_keywords and ( self._image and self._image[:9].upper() != "HIERARCH " and self._image.find("=") != 8 ): errs.append( dict( err_text=( "Card {!r} is not FITS standard (equal sign not " "at column 8).".format(self.keyword) ), fix_text=fix_text, fix=self._fix_value, ) ) # verify the key, it is never fixable # always fix silently the case where "=" is before column 9, # since there is no way to communicate back to the _keys. if (self._image and self._image[:8].upper() == "HIERARCH") or self._hierarch: pass else: if self._image: # PyFITS will auto-uppercase any standard keyword, so lowercase # keywords can only occur if they came from the wild keyword = self._split()[0] if keyword != keyword.upper(): # Keyword should be uppercase unless it's a HIERARCH card errs.append( dict( err_text=f"Card keyword {keyword!r} is not upper case.", fix_text=fix_text, fix=self._fix_keyword, ) ) keyword = self.keyword if self.field_specifier: keyword = keyword.split(".", 1)[0] if not self._keywd_FSC_RE.match(keyword): errs.append( dict(err_text=f"Illegal keyword name {keyword!r}", fixable=False) ) # verify the value, it may be fixable keyword, valuecomment = self._split() if self.keyword in self._commentary_keywords: # For commentary keywords all that needs to be ensured is that it # contains only printable ASCII characters if not self._ascii_text_re.match(valuecomment): errs.append( dict( err_text=( "Unprintable string {!r}; commentary cards may " "only contain printable ASCII characters".format( valuecomment ) ), fixable=False, ) ) else: if not self._valuemodified: m = self._value_FSC_RE.match(valuecomment) # If the value of a card was replaced before the card was ever # even verified, the new value can be considered valid, so we # don't bother verifying the old value. See # https://github.com/astropy/astropy/issues/5408 if m is None: errs.append( dict( err_text=( f"Card {self.keyword!r} is not FITS standard " f"(invalid value string: {valuecomment!r})." ), fix_text=fix_text, fix=self._fix_value, ) ) # verify the comment (string), it is never fixable m = self._value_NFSC_RE.match(valuecomment) if m is not None: comment = m.group("comm") if comment is not None: if not self._ascii_text_re.match(comment): errs.append( dict( err_text=( f"Unprintable string {comment!r}; header " "comments may only contain printable " "ASCII characters" ), fixable=False, ) ) errs = _ErrList([self.run_option(option, **err) for err in errs]) self._verified = True return errs def _itersubcards(self): """ If the card image is greater than 80 characters, it should consist of a normal card followed by one or more CONTINUE card. This method returns the subcards that make up this logical card. This can also support the case where a HISTORY or COMMENT card has a long value that is stored internally as multiple concatenated card images. """ ncards = len(self._image) // Card.length for idx in range(0, Card.length * ncards, Card.length): card = Card.fromstring(self._image[idx : idx + Card.length]) if idx > 0 and card.keyword.upper() not in self._special_keywords: raise VerifyError( "Long card images must have CONTINUE cards after " "the first card or have commentary keywords like " "HISTORY or COMMENT." ) if not isinstance(card.value, str): raise VerifyError("CONTINUE cards must have string values.") yield card def _int_or_float(s): """ Converts an a string to an int if possible, or to a float. If the string is neither a string or a float a value error is raised. """ if isinstance(s, float): # Already a float so just pass through return s try: return int(s) except (ValueError, TypeError): try: return float(s) except (ValueError, TypeError) as e: raise ValueError(str(e)) def _format_value(value): """ Converts a card value to its appropriate string representation as defined by the FITS format. """ # string value should occupies at least 8 columns, unless it is # a null string if isinstance(value, str): if value == "": return "''" else: exp_val_str = value.replace("'", "''") val_str = f"'{exp_val_str:8}'" return f"{val_str:20}" # must be before int checking since bool is also int elif isinstance(value, (bool, np.bool_)): return f"{repr(value)[0]:>20}" # T or F elif _is_int(value): return f"{value:>20d}" elif isinstance(value, (float, np.floating)): return f"{_format_float(value):>20}" elif isinstance(value, (complex, np.complexfloating)): val_str = f"({_format_float(value.real)}, {_format_float(value.imag)})" return f"{val_str:>20}" elif isinstance(value, Undefined): return "" else: return "" def _format_float(value): """Format a floating number to make sure it gets the decimal point.""" value_str = f"{value:.16G}" if "." not in value_str and "E" not in value_str: value_str += ".0" elif "E" in value_str: # On some Windows builds of Python (and possibly other platforms?) the # exponent is zero-padded out to, it seems, three digits. Normalize # the format to pad only to two digits. significand, exponent = value_str.split("E") if exponent[0] in ("+", "-"): sign = exponent[0] exponent = exponent[1:] else: sign = "" value_str = f"{significand}E{sign}{int(exponent):02d}" # Limit the value string to at most 20 characters. str_len = len(value_str) if str_len > 20: idx = value_str.find("E") if idx < 0: value_str = value_str[:20] else: value_str = value_str[: 20 - (str_len - idx)] + value_str[idx:] return value_str def _pad(input): """Pad blank space to the input string to be multiple of 80.""" _len = len(input) if _len == Card.length: return input elif _len > Card.length: strlen = _len % Card.length if strlen == 0: return input else: return input + " " * (Card.length - strlen) # minimum length is 80 else: strlen = _len % Card.length return input + " " * (Card.length - strlen)
975bb92177daec43fee3424604551101d8f33099bf17d62aa5480d6e22001068
# Licensed under a 3-clause BSD style license - see PYFITS.rst import operator import warnings from astropy.utils import indent from astropy.utils.exceptions import AstropyUserWarning class VerifyError(Exception): """ Verify exception class. """ class VerifyWarning(AstropyUserWarning): """ Verify warning class. """ VERIFY_OPTIONS = [ "ignore", "warn", "exception", "fix", "silentfix", "fix+ignore", "fix+warn", "fix+exception", "silentfix+ignore", "silentfix+warn", "silentfix+exception", ] class _Verify: """ Shared methods for verification. """ def run_option( self, option="warn", err_text="", fix_text="Fixed.", fix=None, fixable=True ): """ Execute the verification with selected option. """ text = err_text if option in ["warn", "exception"]: fixable = False # fix the value elif not fixable: text = f"Unfixable error: {text}" else: if fix: fix() text += " " + fix_text return (fixable, text) def verify(self, option="warn"): """ Verify all values in the instance. Parameters ---------- option : str Output verification option. Must be one of ``"fix"``, ``"silentfix"``, ``"ignore"``, ``"warn"``, or ``"exception"``. May also be any combination of ``"fix"`` or ``"silentfix"`` with ``"+ignore"``, ``"+warn"``, or ``"+exception"`` (e.g. ``"fix+warn"``). See :ref:`astropy:verify` for more info. """ opt = option.lower() if opt not in VERIFY_OPTIONS: raise ValueError(f"Option {option!r} not recognized.") if opt == "ignore": return errs = self._verify(opt) # Break the verify option into separate options related to reporting of # errors, and fixing of fixable errors if "+" in opt: fix_opt, report_opt = opt.split("+") elif opt in ["fix", "silentfix"]: # The original default behavior for 'fix' and 'silentfix' was to # raise an exception for unfixable errors fix_opt, report_opt = opt, "exception" else: fix_opt, report_opt = None, opt if fix_opt == "silentfix" and report_opt == "ignore": # Fixable errors were fixed, but don't report anything return if fix_opt == "silentfix": # Don't print out fixable issues; the first element of each verify # item is a boolean indicating whether or not the issue was fixable line_filter = lambda x: not x[0] elif fix_opt == "fix" and report_opt == "ignore": # Don't print *unfixable* issues, but do print fixed issues; this # is probably not very useful but the option exists for # completeness line_filter = operator.itemgetter(0) else: line_filter = None unfixable = False messages = [] for fixable, message in errs.iter_lines(filter=line_filter): if fixable is not None: unfixable = not fixable messages.append(message) if messages: messages.insert(0, "Verification reported errors:") messages.append("Note: astropy.io.fits uses zero-based indexing.\n") if fix_opt == "silentfix" and not unfixable: return elif report_opt == "warn" or (fix_opt == "fix" and not unfixable): for line in messages: warnings.warn(line, VerifyWarning) else: raise VerifyError("\n" + "\n".join(messages)) class _ErrList(list): """ Verification errors list class. It has a nested list structure constructed by error messages generated by verifications at different class levels. """ def __init__(self, val=(), unit="Element"): super().__init__(val) self.unit = unit def __str__(self): return "\n".join(item[1] for item in self.iter_lines()) def iter_lines(self, filter=None, shift=0): """ Iterate the nested structure as a list of strings with appropriate indentations for each level of structure. """ element = 0 # go through the list twice, first time print out all top level # messages for item in self: if not isinstance(item, _ErrList): if filter is None or filter(item): yield item[0], indent(item[1], shift=shift) # second time go through the next level items, each of the next level # must present, even it has nothing. for item in self: if isinstance(item, _ErrList): next_lines = item.iter_lines(filter=filter, shift=shift + 1) try: first_line = next(next_lines) except StopIteration: first_line = None if first_line is not None: if self.unit: # This line is sort of a header for the next level in # the hierarchy yield None, indent(f"{self.unit} {element}:", shift=shift) yield first_line yield from next_lines element += 1
009321e017d760acb663ef6c0bc33eb658e95c74cba305abb3236a86988206bb
# Licensed under a 3-clause BSD style license - see LICENSE.rst """An extensible ASCII table reader and writer. cds.py: Classes to read CDS / Vizier table format :Copyright: Smithsonian Astrophysical Observatory (2011) :Author: Tom Aldcroft ([email protected]) """ import fnmatch import itertools import os import re from contextlib import suppress from astropy.units import Unit from . import core, fixedwidth __doctest_skip__ = ["*"] class CdsHeader(core.BaseHeader): _subfmt = "CDS" col_type_map = { "e": core.FloatType, "f": core.FloatType, "i": core.IntType, "a": core.StrType, } "The ReadMe file to construct header from." readme = None def get_type_map_key(self, col): match = re.match(r"\d*(\S)", col.raw_type.lower()) if not match: raise ValueError( f'Unrecognized {self._subfmt} format "{col.raw_type}" for column' f'"{col.name}"' ) return match.group(1) def get_cols(self, lines): """ Initialize the header Column objects from the table ``lines`` for a CDS/MRT header. Parameters ---------- lines : list List of table lines """ # Read header block for the table ``self.data.table_name`` from the read # me file ``self.readme``. if self.readme and self.data.table_name: in_header = False readme_inputter = core.BaseInputter() f = readme_inputter.get_lines(self.readme) # Header info is not in data lines but in a separate file. lines = [] comment_lines = 0 for line in f: line = line.strip() if in_header: lines.append(line) if line.startswith(("------", "=======")): comment_lines += 1 if comment_lines == 3: break else: match = re.match( r"Byte-by-byte Description of file: (?P<name>.+)$", line, re.IGNORECASE, ) if match: # Split 'name' in case in contains multiple files names = [s for s in re.split("[, ]+", match.group("name")) if s] # Iterate on names to find if one matches the tablename # including wildcards. for pattern in names: if fnmatch.fnmatch(self.data.table_name, pattern): in_header = True lines.append(line) break else: raise core.InconsistentTableError( f"Can't find table {self.data.table_name} in {self.readme}" ) found_line = False for i_col_def, line in enumerate(lines): if re.match(r"Byte-by-byte Description", line, re.IGNORECASE): found_line = True elif found_line: # First line after list of file descriptions i_col_def -= 1 # Set i_col_def to last description line break else: raise ValueError('no line with "Byte-by-byte Description" found') re_col_def = re.compile( r"""\s* (?P<start> \d+ \s* -)? \s* (?P<end> \d+) \s+ (?P<format> [\w.]+) \s+ (?P<units> \S+) \s+ (?P<name> \S+) (\s+ (?P<descr> \S.*))?""", re.VERBOSE, ) cols = [] for line in itertools.islice(lines, i_col_def + 4, None): if line.startswith(("------", "=======")): break match = re_col_def.match(line) if match: col = core.Column(name=match.group("name")) col.start = int( re.sub(r'[-\s]', '', match.group('start') or match.group('end'))) - 1 # fmt: skip col.end = int(match.group("end")) unit = match.group("units") if unit == "---": col.unit = None # "---" is the marker for no unit in CDS/MRT table else: col.unit = Unit(unit, format="cds", parse_strict="warn") col.description = (match.group("descr") or "").strip() col.raw_type = match.group("format") col.type = self.get_col_type(col) match = re.match( # Matches limits specifier (eg []) that may or may not be # present r"(?P<limits>[\[\]] \S* [\[\]])?" # Matches '?' directly r"\?" # Matches to nullval if and only if '=' is present r"((?P<equal>=)(?P<nullval> \S*))?" # Matches to order specifier: ('+', '-', '+=', '-=') r"(?P<order>[-+]?[=]?)" # Matches description text even even if no whitespace is # present after '?' r"(\s* (?P<descriptiontext> \S.*))?", col.description, re.VERBOSE, ) if match: col.description = (match.group("descriptiontext") or "").strip() if issubclass(col.type, core.FloatType): fillval = "nan" else: fillval = "0" if match.group("nullval") == "-": col.null = "---" # CDS/MRT tables can use -, --, ---, or ---- to mark missing values # see https://github.com/astropy/astropy/issues/1335 for i in [1, 2, 3, 4]: self.data.fill_values.append(("-" * i, fillval, col.name)) else: col.null = match.group("nullval") if col.null is None: col.null = "" self.data.fill_values.append((col.null, fillval, col.name)) cols.append(col) else: # could be a continuation of the previous col's description if cols: cols[-1].description += line.strip() else: raise ValueError(f'Line "{line}" not parsable as CDS header') self.names = [x.name for x in cols] self.cols = cols class CdsData(core.BaseData): """CDS table data reader""" _subfmt = "CDS" splitter_class = fixedwidth.FixedWidthSplitter def process_lines(self, lines): """Skip over CDS/MRT header by finding the last section delimiter""" # If the header has a ReadMe and data has a filename # then no need to skip, as the data lines do not have header # info. The ``read`` method adds the table_name to the ``data`` # attribute. if self.header.readme and self.table_name: return lines i_sections = [ i for i, x in enumerate(lines) if x.startswith(("------", "=======")) ] if not i_sections: raise core.InconsistentTableError( f"No {self._subfmt} section delimiter found" ) return lines[i_sections[-1] + 1 :] class Cds(core.BaseReader): """CDS format table. See: http://vizier.u-strasbg.fr/doc/catstd.htx Example:: Table: Table name here = ============================================================================== Catalog reference paper Bibliography info here ================================================================================ ADC_Keywords: Keyword ; Another keyword ; etc Description: Catalog description here. ================================================================================ Byte-by-byte Description of file: datafile3.txt -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 I3 --- Index Running identification number 5- 6 I2 h RAh Hour of Right Ascension (J2000) 8- 9 I2 min RAm Minute of Right Ascension (J2000) 11- 15 F5.2 s RAs Second of Right Ascension (J2000) -------------------------------------------------------------------------------- Note (1): A CDS file can contain sections with various metadata. Notes can be multiple lines. Note (2): Another note. -------------------------------------------------------------------------------- 1 03 28 39.09 2 04 18 24.11 **About parsing the CDS format** The CDS format consists of a table description and the table data. These can be in separate files as a ``ReadMe`` file plus data file(s), or combined in a single file. Different subsections within the description are separated by lines of dashes or equal signs ("------" or "======"). The table which specifies the column information must be preceded by a line starting with "Byte-by-byte Description of file:". In the case where the table description is combined with the data values, the data must be in the last section and must be preceded by a section delimiter line (dashes or equal signs only). **Basic usage** Use the ``ascii.read()`` function as normal, with an optional ``readme`` parameter indicating the CDS ReadMe file. If not supplied it is assumed that the header information is at the top of the given table. Examples:: >>> from astropy.io import ascii >>> table = ascii.read("data/cds.dat") >>> table = ascii.read("data/vizier/table1.dat", readme="data/vizier/ReadMe") >>> table = ascii.read("data/cds/multi/lhs2065.dat", readme="data/cds/multi/ReadMe") >>> table = ascii.read("data/cds/glob/lmxbrefs.dat", readme="data/cds/glob/ReadMe") The table name and the CDS ReadMe file can be entered as URLs. This can be used to directly load tables from the Internet. For example, Vizier tables from the CDS:: >>> table = ascii.read("ftp://cdsarc.u-strasbg.fr/pub/cats/VII/253/snrs.dat", ... readme="ftp://cdsarc.u-strasbg.fr/pub/cats/VII/253/ReadMe") If the header (ReadMe) and data are stored in a single file and there is content between the header and the data (for instance Notes), then the parsing process may fail. In this case you can instruct the reader to guess the actual start of the data by supplying ``data_start='guess'`` in the call to the ``ascii.read()`` function. You should verify that the output data table matches expectation based on the input CDS file. **Using a reader object** When ``Cds`` reader object is created with a ``readme`` parameter passed to it at initialization, then when the ``read`` method is executed with a table filename, the header information for the specified table is taken from the ``readme`` file. An ``InconsistentTableError`` is raised if the ``readme`` file does not have header information for the given table. >>> readme = "data/vizier/ReadMe" >>> r = ascii.get_reader(ascii.Cds, readme=readme) >>> table = r.read("data/vizier/table1.dat") >>> # table5.dat has the same ReadMe file >>> table = r.read("data/vizier/table5.dat") If no ``readme`` parameter is specified, then the header information is assumed to be at the top of the given table. >>> r = ascii.get_reader(ascii.Cds) >>> table = r.read("data/cds.dat") >>> #The following gives InconsistentTableError, since no >>> #readme file was given and table1.dat does not have a header. >>> table = r.read("data/vizier/table1.dat") Traceback (most recent call last): ... InconsistentTableError: No CDS section delimiter found Caveats: * The Units and Explanations are available in the column ``unit`` and ``description`` attributes, respectively. * The other metadata defined by this format is not available in the output table. """ _format_name = "cds" _io_registry_format_aliases = ["cds"] _io_registry_can_write = False _description = "CDS format table" data_class = CdsData header_class = CdsHeader def __init__(self, readme=None): super().__init__() self.header.readme = readme def write(self, table=None): """Not available for the CDS class (raises NotImplementedError)""" raise NotImplementedError def read(self, table): # If the read kwarg `data_start` is 'guess' then the table may have extraneous # lines between the end of the header and the beginning of data. if self.data.start_line == "guess": # Replicate the first part of BaseReader.read up to the point where # the table lines are initially read in. with suppress(TypeError): # For strings only if os.linesep not in table + "": self.data.table_name = os.path.basename(table) self.data.header = self.header self.header.data = self.data # Get a list of the lines (rows) in the table lines = self.inputter.get_lines(table) # Now try increasing data.start_line by one until the table reads successfully. # For efficiency use the in-memory list of lines instead of `table`, which # could be a file. for data_start in range(len(lines)): self.data.start_line = data_start with suppress(Exception): table = super().read(lines) return table else: return super().read(table)
66fead0239f39c4205ecc445ce6436d45d024b418b35d7dd5e5828e37ded555f
# Licensed under a 3-clause BSD style license - see LICENSE.rst """An extensible ASCII table reader and writer. basic.py: Basic table read / write functionality for simple character delimited files with various options for column header definition. :Copyright: Smithsonian Astrophysical Observatory (2011) :Author: Tom Aldcroft ([email protected]) """ import re from . import core class BasicHeader(core.BaseHeader): """ Basic table Header Reader Set a few defaults for common ascii table formats (start at line 0, comments begin with ``#`` and possibly white space) """ start_line = 0 comment = r"\s*#" write_comment = "# " class BasicData(core.BaseData): """ Basic table Data Reader Set a few defaults for common ascii table formats (start at line 1, comments begin with ``#`` and possibly white space) """ start_line = 1 comment = r"\s*#" write_comment = "# " class Basic(core.BaseReader): r"""Character-delimited table with a single header line at the top. Lines beginning with a comment character (default='#') as the first non-whitespace character are comments. Example table:: # Column definition is the first uncommented line # Default delimiter is the space character. apples oranges pears # Data starts after the header column definition, blank lines ignored 1 2 3 4 5 6 """ _format_name = "basic" _description = "Basic table with custom delimiters" _io_registry_format_aliases = ["ascii"] header_class = BasicHeader data_class = BasicData class NoHeaderHeader(BasicHeader): """ Reader for table header without a header Set the start of header line number to `None`, which tells the basic reader there is no header line. """ start_line = None class NoHeaderData(BasicData): """ Reader for table data without a header Data starts at first uncommented line since there is no header line. """ start_line = 0 class NoHeader(Basic): """Character-delimited table with no header line. When reading, columns are autonamed using header.auto_format which defaults to "col%d". Otherwise this reader the same as the :class:`Basic` class from which it is derived. Example:: # Table data 1 2 "hello there" 3 4 world """ _format_name = "no_header" _description = "Basic table with no headers" header_class = NoHeaderHeader data_class = NoHeaderData class CommentedHeaderHeader(BasicHeader): """ Header class for which the column definition line starts with the comment character. See the :class:`CommentedHeader` class for an example. """ def process_lines(self, lines): """ Return only lines that start with the comment regexp. For these lines strip out the matching characters. """ re_comment = re.compile(self.comment) for line in lines: match = re_comment.match(line) if match: yield line[match.end() :] def write(self, lines): lines.append(self.write_comment + self.splitter.join(self.colnames)) class CommentedHeader(Basic): """Character-delimited table with column names in a comment line. When reading, ``header_start`` can be used to specify the line index of column names, and it can be a negative index (for example -1 for the last commented line). The default delimiter is the <space> character. This matches the format produced by ``np.savetxt()``, with ``delimiter=','``, and ``header='<comma-delimited-column-names-list>'``. Example:: # col1 col2 col3 # Comment line 1 2 3 4 5 6 """ _format_name = "commented_header" _description = "Column names in a commented line" header_class = CommentedHeaderHeader data_class = NoHeaderData def read(self, table): """ Read input data (file-like object, filename, list of strings, or single string) into a Table and return the result. """ out = super().read(table) # Strip off the comment line set as the header line for # commented_header format (first by default). if "comments" in out.meta: idx = self.header.start_line if idx < 0: idx = len(out.meta["comments"]) + idx out.meta["comments"] = ( out.meta["comments"][:idx] + out.meta["comments"][idx + 1 :] ) if not out.meta["comments"]: del out.meta["comments"] return out def write_header(self, lines, meta): """ Write comment lines after, rather than before, the header. """ self.header.write(lines) self.header.write_comments(lines, meta) class TabHeaderSplitter(core.DefaultSplitter): """Split lines on tab and do not remove whitespace""" delimiter = "\t" def process_line(self, line): return line + "\n" class TabDataSplitter(TabHeaderSplitter): """ Don't strip data value whitespace since that is significant in TSV tables """ process_val = None skipinitialspace = False class TabHeader(BasicHeader): """ Reader for header of tables with tab separated header """ splitter_class = TabHeaderSplitter class TabData(BasicData): """ Reader for data of tables with tab separated data """ splitter_class = TabDataSplitter class Tab(Basic): """Tab-separated table. Unlike the :class:`Basic` reader, whitespace is not stripped from the beginning and end of either lines or individual column values. Example:: col1 <tab> col2 <tab> col3 # Comment line 1 <tab> 2 <tab> 5 """ _format_name = "tab" _description = "Basic table with tab-separated values" header_class = TabHeader data_class = TabData class CsvSplitter(core.DefaultSplitter): """ Split on comma for CSV (comma-separated-value) tables """ delimiter = "," class CsvHeader(BasicHeader): """ Header that uses the :class:`astropy.io.ascii.basic.CsvSplitter` """ splitter_class = CsvSplitter comment = None write_comment = None class CsvData(BasicData): """ Data that uses the :class:`astropy.io.ascii.basic.CsvSplitter` """ splitter_class = CsvSplitter fill_values = [(core.masked, "")] comment = None write_comment = None class Csv(Basic): """CSV (comma-separated-values) table. This file format may contain rows with fewer entries than the number of columns, a situation that occurs in output from some spreadsheet editors. The missing entries are marked as masked in the output table. Masked values (indicated by an empty '' field value when reading) are written out in the same way with an empty ('') field. This is different from the typical default for `astropy.io.ascii` in which missing values are indicated by ``--``. Since the `CSV format <https://tools.ietf.org/html/rfc4180>`_ does not formally support comments, any comments defined for the table via ``tbl.meta['comments']`` are ignored by default. If you would still like to write those comments then include a keyword ``comment='#'`` to the ``write()`` call. Example:: num,ra,dec,radius,mag 1,32.23222,10.1211 2,38.12321,-88.1321,2.2,17.0 """ _format_name = "csv" _io_registry_format_aliases = ["csv"] _io_registry_can_write = True _io_registry_suffix = ".csv" _description = "Comma-separated-values" header_class = CsvHeader data_class = CsvData def inconsistent_handler(self, str_vals, ncols): """ Adjust row if it is too short. If a data row is shorter than the header, add empty values to make it the right length. Note that this will *not* be called if the row already matches the header. Parameters ---------- str_vals : list A list of value strings from the current row of the table. ncols : int The expected number of entries from the table header. Returns ------- str_vals : list List of strings to be parsed into data entries in the output table. """ if len(str_vals) < ncols: str_vals.extend((ncols - len(str_vals)) * [""]) return str_vals class RdbHeader(TabHeader): """ Header for RDB tables """ col_type_map = {"n": core.NumType, "s": core.StrType} def get_type_map_key(self, col): return col.raw_type[-1] def get_cols(self, lines): """ Initialize the header Column objects from the table ``lines``. This is a specialized get_cols for the RDB type: Line 0: RDB col names Line 1: RDB col definitions Line 2+: RDB data rows Parameters ---------- lines : list List of table lines Returns ------- None """ header_lines = self.process_lines(lines) # this is a generator header_vals_list = [hl for _, hl in zip(range(2), self.splitter(header_lines))] if len(header_vals_list) != 2: raise ValueError("RDB header requires 2 lines") self.names, raw_types = header_vals_list if len(self.names) != len(raw_types): raise core.InconsistentTableError( "RDB header mismatch between number of column names and column types." ) if any(not re.match(r"\d*(N|S)$", x, re.IGNORECASE) for x in raw_types): raise core.InconsistentTableError( f"RDB types definitions do not all match [num](N|S): {raw_types}" ) self._set_cols_from_names() for col, raw_type in zip(self.cols, raw_types): col.raw_type = raw_type col.type = self.get_col_type(col) def write(self, lines): lines.append(self.splitter.join(self.colnames)) rdb_types = [] for col in self.cols: # Check if dtype.kind is string or unicode. See help(np.core.numerictypes) rdb_type = "S" if col.info.dtype.kind in ("S", "U") else "N" rdb_types.append(rdb_type) lines.append(self.splitter.join(rdb_types)) class RdbData(TabData): """ Data reader for RDB data. Starts reading at line 2. """ start_line = 2 class Rdb(Tab): """Tab-separated file with an extra line after the column definition line that specifies either numeric (N) or string (S) data. See: https://www.drdobbs.com/rdb-a-unix-command-line-database/199101326 Example:: col1 <tab> col2 <tab> col3 N <tab> S <tab> N 1 <tab> 2 <tab> 5 """ _format_name = "rdb" _io_registry_format_aliases = ["rdb"] _io_registry_suffix = ".rdb" _description = "Tab-separated with a type definition header line" header_class = RdbHeader data_class = RdbData
fbfe2816a4f49d218bda91bdff4ff6ea44ed245698972fa09af533f843d0f2e1
# Licensed under a 3-clause BSD style license - see LICENSE.rst # This file connects the readers/writers to the astropy.table.Table class import re from astropy.io import registry as io_registry # noqa: F401 from astropy.table import Table __all__ = [] def io_read(format, filename, **kwargs): from .ui import read if format != "ascii": format = re.sub(r"^ascii\.", "", format) kwargs["format"] = format return read(filename, **kwargs) def io_write(format, table, filename, **kwargs): from .ui import write if format != "ascii": format = re.sub(r"^ascii\.", "", format) kwargs["format"] = format return write(table, filename, **kwargs) def io_identify(suffix, origin, filepath, fileobj, *args, **kwargs): return filepath is not None and filepath.endswith(suffix) def _get_connectors_table(): from .core import FORMAT_CLASSES rows = [] rows.append( ("ascii", "", "Yes", "ASCII table in any supported format (uses guessing)") ) for format in sorted(FORMAT_CLASSES): cls = FORMAT_CLASSES[format] io_format = "ascii." + cls._format_name description = getattr(cls, "_description", "") class_link = f":class:`~{cls.__module__}.{cls.__name__}`" suffix = getattr(cls, "_io_registry_suffix", "") can_write = "Yes" if getattr(cls, "_io_registry_can_write", True) else "" rows.append((io_format, suffix, can_write, f"{class_link}: {description}")) out = Table(list(zip(*rows)), names=("Format", "Suffix", "Write", "Description")) for colname in ("Format", "Description"): width = max(len(x) for x in out[colname]) out[colname].format = f"%-{width}s" return out
4f91f825d8d1c45faec232998a71dcde13e53a9d8598444df028310dd380558f
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ An extensible ASCII table reader and writer. core.py: Core base classes and functions for reading and writing tables. :Copyright: Smithsonian Astrophysical Observatory (2010) :Author: Tom Aldcroft ([email protected]) """ import copy import csv import fnmatch import functools import inspect import itertools import operator import os import re import warnings from collections import OrderedDict from contextlib import suppress from io import StringIO import numpy from astropy.table import Table from astropy.utils.data import get_readable_fileobj from astropy.utils.exceptions import AstropyWarning from . import connect from .docs import READ_DOCSTRING, WRITE_DOCSTRING # Global dictionary mapping format arg to the corresponding Reader class FORMAT_CLASSES = {} # Similar dictionary for fast readers FAST_CLASSES = {} def _check_multidim_table(table, max_ndim): """Check that ``table`` has only columns with ndim <= ``max_ndim`` Currently ECSV is the only built-in format that supports output of arbitrary N-d columns, but HTML supports 2-d. """ # No limit? if max_ndim is None: return # Check for N-d columns nd_names = [col.info.name for col in table.itercols() if len(col.shape) > max_ndim] if nd_names: raise ValueError( f"column(s) with dimension > {max_ndim} " "cannot be be written with this format, try using 'ecsv' " "(Enhanced CSV) format" ) class CsvWriter: """ Internal class to replace the csv writer ``writerow`` and ``writerows`` functions so that in the case of ``delimiter=' '`` and ``quoting=csv.QUOTE_MINIMAL``, the output field value is quoted for empty fields (when value == ''). This changes the API slightly in that the writerow() and writerows() methods return the output written string instead of the length of that string. Examples -------- >>> from astropy.io.ascii.core import CsvWriter >>> writer = CsvWriter(delimiter=' ') >>> print(writer.writerow(['hello', '', 'world'])) hello "" world """ # Random 16-character string that gets injected instead of any # empty fields and is then replaced post-write with doubled-quotechar. # Created with: # ''.join(random.choice(string.printable[:90]) for _ in range(16)) replace_sentinel = "2b=48Av%0-V3p>bX" def __init__(self, csvfile=None, **kwargs): self.csvfile = csvfile # Temporary StringIO for catching the real csv.writer() object output self.temp_out = StringIO() self.writer = csv.writer(self.temp_out, **kwargs) dialect = self.writer.dialect self.quotechar2 = dialect.quotechar * 2 self.quote_empty = (dialect.quoting == csv.QUOTE_MINIMAL) and ( dialect.delimiter == " " ) def writerow(self, values): """ Similar to csv.writer.writerow but with the custom quoting behavior. Returns the written string instead of the length of that string. """ has_empty = False # If QUOTE_MINIMAL and space-delimited then replace empty fields with # the sentinel value. if self.quote_empty: for i, value in enumerate(values): if value == "": has_empty = True values[i] = self.replace_sentinel return self._writerow(self.writer.writerow, values, has_empty) def writerows(self, values_list): """ Similar to csv.writer.writerows but with the custom quoting behavior. Returns the written string instead of the length of that string. """ has_empty = False # If QUOTE_MINIMAL and space-delimited then replace empty fields with # the sentinel value. if self.quote_empty: for values in values_list: for i, value in enumerate(values): if value == "": has_empty = True values[i] = self.replace_sentinel return self._writerow(self.writer.writerows, values_list, has_empty) def _writerow(self, writerow_func, values, has_empty): """ Call ``writerow_func`` (either writerow or writerows) with ``values``. If it has empty fields that have been replaced then change those sentinel strings back to quoted empty strings, e.g. ``""``. """ # Clear the temporary StringIO buffer that self.writer writes into and # then call the real csv.writer().writerow or writerows with values. self.temp_out.seek(0) self.temp_out.truncate() writerow_func(values) row_string = self.temp_out.getvalue() if self.quote_empty and has_empty: row_string = re.sub(self.replace_sentinel, self.quotechar2, row_string) # self.csvfile is defined then write the output. In practice the pure # Python writer calls with csvfile=None, while the fast writer calls with # a file-like object. if self.csvfile: self.csvfile.write(row_string) return row_string class MaskedConstant(numpy.ma.core.MaskedConstant): """A trivial extension of numpy.ma.masked We want to be able to put the generic term ``masked`` into a dictionary. The constant ``numpy.ma.masked`` is not hashable (see https://github.com/numpy/numpy/issues/4660), so we need to extend it here with a hash value. See https://github.com/numpy/numpy/issues/11021 for rationale for __copy__ and __deepcopy__ methods. """ def __hash__(self): """All instances of this class shall have the same hash.""" # Any large number will do. return 1234567890 def __copy__(self): """This is a singleton so just return self.""" return self def __deepcopy__(self, memo): return self masked = MaskedConstant() class InconsistentTableError(ValueError): """ Indicates that an input table is inconsistent in some way. The default behavior of ``BaseReader`` is to throw an instance of this class if a data row doesn't match the header. """ class OptionalTableImportError(ImportError): """ Indicates that a dependency for table reading is not present. An instance of this class is raised whenever an optional reader with certain required dependencies cannot operate because of an ImportError. """ class ParameterError(NotImplementedError): """ Indicates that a reader cannot handle a passed parameter. The C-based fast readers in ``io.ascii`` raise an instance of this error class upon encountering a parameter that the C engine cannot handle. """ class FastOptionsError(NotImplementedError): """ Indicates that one of the specified options for fast reading is invalid. """ class NoType: """ Superclass for ``StrType`` and ``NumType`` classes. This class is the default type of ``Column`` and provides a base class for other data types. """ class StrType(NoType): """ Indicates that a column consists of text data. """ class NumType(NoType): """ Indicates that a column consists of numerical data. """ class FloatType(NumType): """ Describes floating-point data. """ class BoolType(NoType): """ Describes boolean data. """ class IntType(NumType): """ Describes integer data. """ class AllType(StrType, FloatType, IntType): """ Subclass of all other data types. This type is returned by ``convert_numpy`` if the given numpy type does not match ``StrType``, ``FloatType``, or ``IntType``. """ class Column: """Table column. The key attributes of a Column object are: * **name** : column name * **type** : column type (NoType, StrType, NumType, FloatType, IntType) * **dtype** : numpy dtype (optional, overrides **type** if set) * **str_vals** : list of column values as strings * **fill_values** : dict of fill values * **shape** : list of element shape (default [] => scalar) * **data** : list of converted column values * **subtype** : actual datatype for columns serialized with JSON """ def __init__(self, name): self.name = name self.type = NoType # Generic type (Int, Float, Str etc) self.dtype = None # Numpy dtype if available self.str_vals = [] self.fill_values = {} self.shape = [] self.subtype = None class BaseInputter: """ Get the lines from the table input and return a list of lines. """ encoding = None """Encoding used to read the file""" def get_lines(self, table, newline=None): """ Get the lines from the ``table`` input. The input table can be one of: * File name * String (newline separated) with all header and data lines (must have at least 2 lines) * File-like object with read() method * List of strings Parameters ---------- table : str, file-like, list Can be either a file name, string (newline separated) with all header and data lines (must have at least 2 lines), a file-like object with a ``read()`` method, or a list of strings. newline : Line separator. If `None` use OS default from ``splitlines()``. Returns ------- lines : list List of lines """ try: if hasattr(table, "read") or ( "\n" not in table + "" and "\r" not in table + "" ): with get_readable_fileobj(table, encoding=self.encoding) as fileobj: table = fileobj.read() if newline is None: lines = table.splitlines() else: lines = table.split(newline) except TypeError: try: # See if table supports indexing, slicing, and iteration table[0] table[0:1] iter(table) if len(table) > 1: lines = table else: # treat single entry as if string had been passed directly if newline is None: lines = table[0].splitlines() else: lines = table[0].split(newline) except TypeError: raise TypeError( 'Input "table" must be a string (filename or data) or an iterable' ) return self.process_lines(lines) def process_lines(self, lines): """Process lines for subsequent use. In the default case do nothing. This routine is not generally intended for removing comment lines or stripping whitespace. These are done (if needed) in the header and data line processing. Override this method if something more has to be done to convert raw input lines to the table rows. For example the ContinuationLinesInputter derived class accounts for continuation characters if a row is split into lines.""" return lines class BaseSplitter: """ Base splitter that uses python's split method to do the work. This does not handle quoted values. A key feature is the formulation of __call__ as a generator that returns a list of the split line values at each iteration. There are two methods that are intended to be overridden, first ``process_line()`` to do pre-processing on each input line before splitting and ``process_val()`` to do post-processing on each split string value. By default these apply the string ``strip()`` function. These can be set to another function via the instance attribute or be disabled entirely, for example:: reader.header.splitter.process_val = lambda x: x.lstrip() reader.data.splitter.process_val = None """ delimiter = None """ one-character string used to separate fields """ def process_line(self, line): """Remove whitespace at the beginning or end of line. This is especially useful for whitespace-delimited files to prevent spurious columns at the beginning or end. """ return line.strip() def process_val(self, val): """Remove whitespace at the beginning or end of value.""" return val.strip() def __call__(self, lines): if self.process_line: lines = (self.process_line(x) for x in lines) for line in lines: vals = line.split(self.delimiter) if self.process_val: yield [self.process_val(x) for x in vals] else: yield vals def join(self, vals): if self.delimiter is None: delimiter = " " else: delimiter = self.delimiter return delimiter.join(str(x) for x in vals) class DefaultSplitter(BaseSplitter): """Default class to split strings into columns using python csv. The class attributes are taken from the csv Dialect class. Typical usage:: # lines = .. splitter = ascii.DefaultSplitter() for col_vals in splitter(lines): for col_val in col_vals: ... """ delimiter = " " """ one-character string used to separate fields. """ quotechar = '"' """ control how instances of *quotechar* in a field are quoted """ doublequote = True """ character to remove special meaning from following character """ escapechar = None """ one-character stringto quote fields containing special characters """ quoting = csv.QUOTE_MINIMAL """ control when quotes are recognized by the reader """ skipinitialspace = True """ ignore whitespace immediately following the delimiter """ csv_writer = None csv_writer_out = StringIO() def process_line(self, line): """Remove whitespace at the beginning or end of line. This is especially useful for whitespace-delimited files to prevent spurious columns at the beginning or end. If splitting on whitespace then replace unquoted tabs with space first""" if self.delimiter == r"\s": line = _replace_tab_with_space(line, self.escapechar, self.quotechar) return line.strip() + "\n" def process_val(self, val): """Remove whitespace at the beginning or end of value.""" return val.strip(" \t") def __call__(self, lines): """Return an iterator over the table ``lines``, where each iterator output is a list of the split line values. Parameters ---------- lines : list List of table lines Yields ------ line : list of str Each line's split values. """ if self.process_line: lines = [self.process_line(x) for x in lines] delimiter = " " if self.delimiter == r"\s" else self.delimiter csv_reader = csv.reader( lines, delimiter=delimiter, doublequote=self.doublequote, escapechar=self.escapechar, quotechar=self.quotechar, quoting=self.quoting, skipinitialspace=self.skipinitialspace, ) for vals in csv_reader: if self.process_val: yield [self.process_val(x) for x in vals] else: yield vals def join(self, vals): delimiter = " " if self.delimiter is None else str(self.delimiter) if self.csv_writer is None: self.csv_writer = CsvWriter( delimiter=delimiter, doublequote=self.doublequote, escapechar=self.escapechar, quotechar=self.quotechar, quoting=self.quoting, ) if self.process_val: vals = [self.process_val(x) for x in vals] out = self.csv_writer.writerow(vals).rstrip("\r\n") return out def _replace_tab_with_space(line, escapechar, quotechar): """Replace tabs with spaces in given string, preserving quoted substrings Parameters ---------- line : str String containing tabs to be replaced with spaces. escapechar : str Character in ``line`` used to escape special characters. quotechar : str Character in ``line`` indicating the start/end of a substring. Returns ------- line : str A copy of ``line`` with tabs replaced by spaces, preserving quoted substrings. """ newline = [] in_quote = False lastchar = "NONE" for char in line: if char == quotechar and lastchar != escapechar: in_quote = not in_quote if char == "\t" and not in_quote: char = " " lastchar = char newline.append(char) return "".join(newline) def _get_line_index(line_or_func, lines): """Return the appropriate line index, depending on ``line_or_func`` which can be either a function, a positive or negative int, or None. """ if hasattr(line_or_func, "__call__"): return line_or_func(lines) elif line_or_func: if line_or_func >= 0: return line_or_func else: n_lines = sum(1 for line in lines) return n_lines + line_or_func else: return line_or_func class BaseHeader: """ Base table header reader """ auto_format = "col{}" """ format string for auto-generating column names """ start_line = None """ None, int, or a function of ``lines`` that returns None or int """ comment = None """ regular expression for comment lines """ splitter_class = DefaultSplitter """ Splitter class for splitting data lines into columns """ names = None """ list of names corresponding to each data column """ write_comment = False write_spacer_lines = ["ASCII_TABLE_WRITE_SPACER_LINE"] def __init__(self): self.splitter = self.splitter_class() def _set_cols_from_names(self): self.cols = [Column(name=x) for x in self.names] def update_meta(self, lines, meta): """ Extract any table-level metadata, e.g. keywords, comments, column metadata, from the table ``lines`` and update the OrderedDict ``meta`` in place. This base method extracts comment lines and stores them in ``meta`` for output. """ if self.comment: re_comment = re.compile(self.comment) comment_lines = [x for x in lines if re_comment.match(x)] else: comment_lines = [] comment_lines = [ re.sub("^" + self.comment, "", x).strip() for x in comment_lines ] if comment_lines: meta.setdefault("table", {})["comments"] = comment_lines def get_cols(self, lines): """Initialize the header Column objects from the table ``lines``. Based on the previously set Header attributes find or create the column names. Sets ``self.cols`` with the list of Columns. Parameters ---------- lines : list List of table lines """ start_line = _get_line_index(self.start_line, self.process_lines(lines)) if start_line is None: # No header line so auto-generate names from n_data_cols # Get the data values from the first line of table data to determine n_data_cols try: first_data_vals = next(self.data.get_str_vals()) except StopIteration: raise InconsistentTableError( "No data lines found so cannot autogenerate column names" ) n_data_cols = len(first_data_vals) self.names = [self.auto_format.format(i) for i in range(1, n_data_cols + 1)] else: for i, line in enumerate(self.process_lines(lines)): if i == start_line: break else: # No header line matching raise ValueError("No header line found in table") self.names = next(self.splitter([line])) self._set_cols_from_names() def process_lines(self, lines): """Generator to yield non-blank and non-comment lines""" re_comment = re.compile(self.comment) if self.comment else None # Yield non-comment lines for line in lines: if line.strip() and (not self.comment or not re_comment.match(line)): yield line def write_comments(self, lines, meta): if self.write_comment not in (False, None): for comment in meta.get("comments", []): lines.append(self.write_comment + comment) def write(self, lines): if self.start_line is not None: for i, spacer_line in zip( range(self.start_line), itertools.cycle(self.write_spacer_lines) ): lines.append(spacer_line) lines.append(self.splitter.join([x.info.name for x in self.cols])) @property def colnames(self): """Return the column names of the table""" return tuple( col.name if isinstance(col, Column) else col.info.name for col in self.cols ) def remove_columns(self, names): """ Remove several columns from the table. Parameters ---------- names : list A list containing the names of the columns to remove """ colnames = self.colnames for name in names: if name not in colnames: raise KeyError(f"Column {name} does not exist") self.cols = [col for col in self.cols if col.name not in names] def rename_column(self, name, new_name): """ Rename a column. Parameters ---------- name : str The current name of the column. new_name : str The new name for the column """ try: idx = self.colnames.index(name) except ValueError: raise KeyError(f"Column {name} does not exist") col = self.cols[idx] # For writing self.cols can contain cols that are not Column. Raise # exception in that case. if isinstance(col, Column): col.name = new_name else: raise TypeError(f"got column type {type(col)} instead of required {Column}") def get_type_map_key(self, col): return col.raw_type def get_col_type(self, col): try: type_map_key = self.get_type_map_key(col) return self.col_type_map[type_map_key.lower()] except KeyError: raise ValueError( 'Unknown data type ""{}"" for column "{}"'.format( col.raw_type, col.name ) ) def check_column_names(self, names, strict_names, guessing): """ Check column names. This must be done before applying the names transformation so that guessing will fail appropriately if ``names`` is supplied. For instance if the basic reader is given a table with no column header row. Parameters ---------- names : list User-supplied list of column names strict_names : bool Whether to impose extra requirements on names guessing : bool True if this method is being called while guessing the table format """ if strict_names: # Impose strict requirements on column names (normally used in guessing) bads = [" ", ",", "|", "\t", "'", '"'] for name in self.colnames: if ( _is_number(name) or len(name) == 0 or name[0] in bads or name[-1] in bads ): raise InconsistentTableError( f"Column name {name!r} does not meet strict name requirements" ) # When guessing require at least two columns, except for ECSV which can # reliably be guessed from the header requirements. if ( guessing and len(self.colnames) <= 1 and self.__class__.__name__ != "EcsvHeader" ): raise ValueError( "Table format guessing requires at least two columns, got {}".format( list(self.colnames) ) ) if names is not None and len(names) != len(self.colnames): raise InconsistentTableError( "Length of names argument ({}) does not match number" " of table columns ({})".format(len(names), len(self.colnames)) ) class BaseData: """ Base table data reader. """ start_line = None """ None, int, or a function of ``lines`` that returns None or int """ end_line = None """ None, int, or a function of ``lines`` that returns None or int """ comment = None """ Regular expression for comment lines """ splitter_class = DefaultSplitter """ Splitter class for splitting data lines into columns """ write_spacer_lines = ["ASCII_TABLE_WRITE_SPACER_LINE"] fill_include_names = None fill_exclude_names = None fill_values = [(masked, "")] formats = {} def __init__(self): # Need to make sure fill_values list is instance attribute, not class attribute. # On read, this will be overwritten by the default in the ui.read (thus, in # the current implementation there can be no different default for different # Readers). On write, ui.py does not specify a default, so this line here matters. self.fill_values = copy.copy(self.fill_values) self.formats = copy.copy(self.formats) self.splitter = self.splitter_class() def process_lines(self, lines): """ READ: Strip out comment lines and blank lines from list of ``lines`` Parameters ---------- lines : list All lines in table Returns ------- lines : list List of lines """ nonblank_lines = (x for x in lines if x.strip()) if self.comment: re_comment = re.compile(self.comment) return [x for x in nonblank_lines if not re_comment.match(x)] else: return [x for x in nonblank_lines] def get_data_lines(self, lines): """ READ: Set ``data_lines`` attribute to lines slice comprising table data values. """ data_lines = self.process_lines(lines) start_line = _get_line_index(self.start_line, data_lines) end_line = _get_line_index(self.end_line, data_lines) if start_line is not None or end_line is not None: self.data_lines = data_lines[slice(start_line, end_line)] else: # Don't copy entire data lines unless necessary self.data_lines = data_lines def get_str_vals(self): """Return a generator that returns a list of column values (as strings) for each data line.""" return self.splitter(self.data_lines) def masks(self, cols): """READ: Set fill value for each column and then apply that fill value In the first step it is evaluated with value from ``fill_values`` applies to which column using ``fill_include_names`` and ``fill_exclude_names``. In the second step all replacements are done for the appropriate columns. """ if self.fill_values: self._set_fill_values(cols) self._set_masks(cols) def _set_fill_values(self, cols): """READ, WRITE: Set fill values of individual cols based on fill_values of BaseData fill values has the following form: <fill_spec> = (<bad_value>, <fill_value>, <optional col_name>...) fill_values = <fill_spec> or list of <fill_spec>'s """ if self.fill_values: # when we write tables the columns may be astropy.table.Columns # which don't carry a fill_values by default for col in cols: if not hasattr(col, "fill_values"): col.fill_values = {} # if input is only one <fill_spec>, then make it a list with suppress(TypeError): self.fill_values[0] + "" self.fill_values = [self.fill_values] # Step 1: Set the default list of columns which are affected by # fill_values colnames = set(self.header.colnames) if self.fill_include_names is not None: colnames.intersection_update(self.fill_include_names) if self.fill_exclude_names is not None: colnames.difference_update(self.fill_exclude_names) # Step 2a: Find out which columns are affected by this tuple # iterate over reversed order, so last condition is set first and # overwritten by earlier conditions for replacement in reversed(self.fill_values): if len(replacement) < 2: raise ValueError( "Format of fill_values must be " "(<bad>, <fill>, <optional col1>, ...)" ) elif len(replacement) == 2: affect_cols = colnames else: affect_cols = replacement[2:] for i, key in ( (i, x) for i, x in enumerate(self.header.colnames) if x in affect_cols ): cols[i].fill_values[replacement[0]] = str(replacement[1]) def _set_masks(self, cols): """READ: Replace string values in col.str_vals and set masks""" if self.fill_values: for col in (col for col in cols if col.fill_values): col.mask = numpy.zeros(len(col.str_vals), dtype=bool) for i, str_val in ( (i, x) for i, x in enumerate(col.str_vals) if x in col.fill_values ): col.str_vals[i] = col.fill_values[str_val] col.mask[i] = True def _replace_vals(self, cols): """WRITE: replace string values in col.str_vals""" if self.fill_values: for col in (col for col in cols if col.fill_values): for i, str_val in ( (i, x) for i, x in enumerate(col.str_vals) if x in col.fill_values ): col.str_vals[i] = col.fill_values[str_val] if masked in col.fill_values and hasattr(col, "mask"): mask_val = col.fill_values[masked] for i in col.mask.nonzero()[0]: col.str_vals[i] = mask_val def str_vals(self): """WRITE: convert all values in table to a list of lists of strings This sets the fill values and possibly column formats from the input formats={} keyword, then ends up calling table.pprint._pformat_col_iter() by a circuitous path. That function does the real work of formatting. Finally replace anything matching the fill_values. Returns ------- values : list of list of str """ self._set_fill_values(self.cols) self._set_col_formats() for col in self.cols: col.str_vals = list(col.info.iter_str_vals()) self._replace_vals(self.cols) return [col.str_vals for col in self.cols] def write(self, lines): """Write ``self.cols`` in place to ``lines``. Parameters ---------- lines : list List for collecting output of writing self.cols. """ if hasattr(self.start_line, "__call__"): raise TypeError("Start_line attribute cannot be callable for write()") else: data_start_line = self.start_line or 0 while len(lines) < data_start_line: lines.append(itertools.cycle(self.write_spacer_lines)) col_str_iters = self.str_vals() for vals in zip(*col_str_iters): lines.append(self.splitter.join(vals)) def _set_col_formats(self): """WRITE: set column formats.""" for col in self.cols: if col.info.name in self.formats: col.info.format = self.formats[col.info.name] def convert_numpy(numpy_type): """Return a tuple containing a function which converts a list into a numpy array and the type produced by the converter function. Parameters ---------- numpy_type : numpy data-type The numpy type required of an array returned by ``converter``. Must be a valid `numpy type <https://numpy.org/doc/stable/user/basics.types.html>`_ (e.g., numpy.uint, numpy.int8, numpy.int64, numpy.float64) or a python type covered by a numpy type (e.g., int, float, str, bool). Returns ------- converter : callable ``converter`` is a function which accepts a list and converts it to a numpy array of type ``numpy_type``. converter_type : type ``converter_type`` tracks the generic data type produced by the converter function. Raises ------ ValueError Raised by ``converter`` if the list elements could not be converted to the required type. """ # Infer converter type from an instance of numpy_type. type_name = numpy.array([], dtype=numpy_type).dtype.name if "int" in type_name: converter_type = IntType elif "float" in type_name: converter_type = FloatType elif "bool" in type_name: converter_type = BoolType elif "str" in type_name: converter_type = StrType else: converter_type = AllType def bool_converter(vals): """ Convert values "False" and "True" to bools. Raise an exception for any other string values. """ if len(vals) == 0: return numpy.array([], dtype=bool) # Try a smaller subset first for a long array if len(vals) > 10000: svals = numpy.asarray(vals[:1000]) if not numpy.all( (svals == "False") | (svals == "True") | (svals == "0") | (svals == "1") ): raise ValueError('bool input strings must be False, True, 0, 1, or ""') vals = numpy.asarray(vals) trues = (vals == "True") | (vals == "1") falses = (vals == "False") | (vals == "0") if not numpy.all(trues | falses): raise ValueError('bool input strings must be only False, True, 0, 1, or ""') return trues def generic_converter(vals): return numpy.array(vals, numpy_type) converter = bool_converter if converter_type is BoolType else generic_converter return converter, converter_type class BaseOutputter: """Output table as a dict of column objects keyed on column name. The table data are stored as plain python lists within the column objects. """ # User-defined converters which gets set in ascii.ui if a `converter` kwarg # is supplied. converters = {} # Derived classes must define default_converters and __call__ @staticmethod def _validate_and_copy(col, converters): """Validate the format for the type converters and then copy those which are valid converters for this column (i.e. converter type is a subclass of col.type)""" # Allow specifying a single converter instead of a list of converters. # The input `converters` must be a ``type`` value that can init np.dtype. try: # Don't allow list-like things that dtype accepts assert type(converters) is type converters = [numpy.dtype(converters)] except (AssertionError, TypeError): pass converters_out = [] try: for converter in converters: try: converter_func, converter_type = converter except TypeError as err: if str(err).startswith("cannot unpack"): converter_func, converter_type = convert_numpy(converter) else: raise if not issubclass(converter_type, NoType): raise ValueError("converter_type must be a subclass of NoType") if issubclass(converter_type, col.type): converters_out.append((converter_func, converter_type)) except (ValueError, TypeError) as err: raise ValueError( "Error: invalid format for converters, see " f"documentation\n{converters}: {err}" ) return converters_out def _convert_vals(self, cols): for col in cols: for key, converters in self.converters.items(): if fnmatch.fnmatch(col.name, key): break else: if col.dtype is not None: converters = [convert_numpy(col.dtype)] else: converters = self.default_converters col.converters = self._validate_and_copy(col, converters) # Catch the last error in order to provide additional information # in case all attempts at column conversion fail. The initial # value of of last_error will apply if no converters are defined # and the first col.converters[0] access raises IndexError. last_err = "no converters defined" while not hasattr(col, "data"): # Try converters, popping the unsuccessful ones from the list. # If there are no converters left here then fail. if not col.converters: raise ValueError(f"Column {col.name} failed to convert: {last_err}") converter_func, converter_type = col.converters[0] if not issubclass(converter_type, col.type): raise TypeError("converter type does not match column type") try: col.data = converter_func(col.str_vals) col.type = converter_type except (OverflowError, TypeError, ValueError) as err: # Overflow during conversion (most likely an int that # doesn't fit in native C long). Put string at the top of # the converters list for the next while iteration. # With python/cpython#95778 this has been supplemented with a # "ValueError: Exceeds the limit (4300) for integer string conversion" # so need to catch that as well. if isinstance(err, OverflowError) or ( isinstance(err, ValueError) and str(err).startswith("Exceeds the limit") ): warnings.warn( f"OverflowError converting to {converter_type.__name__} in" f" column {col.name}, reverting to String.", AstropyWarning, ) col.converters.insert(0, convert_numpy(str)) else: col.converters.pop(0) last_err = err def _deduplicate_names(names): """Ensure there are no duplicates in ``names`` This is done by iteratively adding ``_<N>`` to the name for increasing N until the name is unique. """ new_names = [] existing_names = set() for name in names: base_name = name + "_" i = 1 while name in existing_names: # Iterate until a unique name is found name = base_name + str(i) i += 1 new_names.append(name) existing_names.add(name) return new_names class TableOutputter(BaseOutputter): """ Output the table as an astropy.table.Table object. """ default_converters = [convert_numpy(int), convert_numpy(float), convert_numpy(str)] def __call__(self, cols, meta): # Sets col.data to numpy array and col.type to io.ascii Type class (e.g. # FloatType) for each col. self._convert_vals(cols) t_cols = [ numpy.ma.MaskedArray(x.data, mask=x.mask) if hasattr(x, "mask") and numpy.any(x.mask) else x.data for x in cols ] out = Table(t_cols, names=[x.name for x in cols], meta=meta["table"]) for col, out_col in zip(cols, out.columns.values()): for attr in ("format", "unit", "description"): if hasattr(col, attr): setattr(out_col, attr, getattr(col, attr)) if hasattr(col, "meta"): out_col.meta.update(col.meta) return out class MetaBaseReader(type): def __init__(cls, name, bases, dct): super().__init__(name, bases, dct) format = dct.get("_format_name") if format is None: return fast = dct.get("_fast") if fast is not None: FAST_CLASSES[format] = cls FORMAT_CLASSES[format] = cls io_formats = ["ascii." + format] + dct.get("_io_registry_format_aliases", []) if dct.get("_io_registry_suffix"): func = functools.partial(connect.io_identify, dct["_io_registry_suffix"]) connect.io_registry.register_identifier(io_formats[0], Table, func) for io_format in io_formats: func = functools.partial(connect.io_read, io_format) header = f"ASCII reader '{io_format}' details\n" func.__doc__ = ( inspect.cleandoc(READ_DOCSTRING).strip() + "\n\n" + header + re.sub(".", "=", header) + "\n" ) func.__doc__ += inspect.cleandoc(cls.__doc__).strip() connect.io_registry.register_reader(io_format, Table, func) if dct.get("_io_registry_can_write", True): func = functools.partial(connect.io_write, io_format) header = f"ASCII writer '{io_format}' details\n" func.__doc__ = ( inspect.cleandoc(WRITE_DOCSTRING).strip() + "\n\n" + header + re.sub(".", "=", header) + "\n" ) func.__doc__ += inspect.cleandoc(cls.__doc__).strip() connect.io_registry.register_writer(io_format, Table, func) def _is_number(x): with suppress(ValueError): x = float(x) return True return False def _apply_include_exclude_names(table, names, include_names, exclude_names): """ Apply names, include_names and exclude_names to a table or BaseHeader. For the latter this relies on BaseHeader implementing ``colnames``, ``rename_column``, and ``remove_columns``. Parameters ---------- table : `~astropy.table.Table`, `~astropy.io.ascii.BaseHeader` Input table or BaseHeader subclass instance names : list List of names to override those in table (set to None to use existing names) include_names : list List of names to include in output exclude_names : list List of names to exclude from output (applied after ``include_names``) """ def rename_columns(table, names): # Rename table column names to those passed by user # Temporarily rename with names that are not in `names` or `table.colnames`. # This ensures that rename succeeds regardless of existing names. xxxs = "x" * max(len(name) for name in list(names) + list(table.colnames)) for ii, colname in enumerate(table.colnames): table.rename_column(colname, xxxs + str(ii)) for ii, name in enumerate(names): table.rename_column(xxxs + str(ii), name) if names is not None: rename_columns(table, names) else: colnames_uniq = _deduplicate_names(table.colnames) if colnames_uniq != list(table.colnames): rename_columns(table, colnames_uniq) names_set = set(table.colnames) if include_names is not None: names_set.intersection_update(include_names) if exclude_names is not None: names_set.difference_update(exclude_names) if names_set != set(table.colnames): remove_names = set(table.colnames) - names_set table.remove_columns(remove_names) class BaseReader(metaclass=MetaBaseReader): """Class providing methods to read and write an ASCII table using the specified header, data, inputter, and outputter instances. Typical usage is to instantiate a Reader() object and customize the ``header``, ``data``, ``inputter``, and ``outputter`` attributes. Each of these is an object of the corresponding class. There is one method ``inconsistent_handler`` that can be used to customize the behavior of ``read()`` in the event that a data row doesn't match the header. The default behavior is to raise an InconsistentTableError. """ names = None include_names = None exclude_names = None strict_names = False guessing = False encoding = None header_class = BaseHeader data_class = BaseData inputter_class = BaseInputter outputter_class = TableOutputter # Max column dimension that writer supports for this format. Exceptions # include ECSV (no limit) and HTML (max_ndim=2). max_ndim = 1 def __init__(self): self.header = self.header_class() self.data = self.data_class() self.inputter = self.inputter_class() self.outputter = self.outputter_class() # Data and Header instances benefit from a little cross-coupling. Header may need to # know about number of data columns for auto-column name generation and Data may # need to know about header (e.g. for fixed-width tables where widths are spec'd in header. self.data.header = self.header self.header.data = self.data # Metadata, consisting of table-level meta and column-level meta. The latter # could include information about column type, description, formatting, etc, # depending on the table meta format. self.meta = OrderedDict(table=OrderedDict(), cols=OrderedDict()) def _check_multidim_table(self, table): """Check that the dimensions of columns in ``table`` are acceptable. The reader class attribute ``max_ndim`` defines the maximum dimension of columns that can be written using this format. The base value is ``1``, corresponding to normal scalar columns with just a length. Parameters ---------- table : `~astropy.table.Table` Input table. Raises ------ ValueError If any column exceeds the number of allowed dimensions """ _check_multidim_table(table, self.max_ndim) def read(self, table): """Read the ``table`` and return the results in a format determined by the ``outputter`` attribute. The ``table`` parameter is any string or object that can be processed by the instance ``inputter``. For the base Inputter class ``table`` can be one of: * File name * File-like object * String (newline separated) with all header and data lines (must have at least 2 lines) * List of strings Parameters ---------- table : str, file-like, list Input table. Returns ------- table : `~astropy.table.Table` Output table """ # If ``table`` is a file then store the name in the ``data`` # attribute. The ``table`` is a "file" if it is a string # without the new line specific to the OS. with suppress(TypeError): # Strings only if os.linesep not in table + "": self.data.table_name = os.path.basename(table) # If one of the newline chars is set as field delimiter, only # accept the other one as line splitter if self.header.splitter.delimiter == "\n": newline = "\r" elif self.header.splitter.delimiter == "\r": newline = "\n" else: newline = None # Get a list of the lines (rows) in the table self.lines = self.inputter.get_lines(table, newline=newline) # Set self.data.data_lines to a slice of lines contain the data rows self.data.get_data_lines(self.lines) # Extract table meta values (e.g. keywords, comments, etc). Updates self.meta. self.header.update_meta(self.lines, self.meta) # Get the table column definitions self.header.get_cols(self.lines) # Make sure columns are valid self.header.check_column_names(self.names, self.strict_names, self.guessing) self.cols = cols = self.header.cols self.data.splitter.cols = cols n_cols = len(cols) for i, str_vals in enumerate(self.data.get_str_vals()): if len(str_vals) != n_cols: str_vals = self.inconsistent_handler(str_vals, n_cols) # if str_vals is None, we skip this row if str_vals is None: continue # otherwise, we raise an error only if it is still inconsistent if len(str_vals) != n_cols: errmsg = ( "Number of header columns ({}) inconsistent with" " data columns ({}) at data line {}\n" "Header values: {}\n" "Data values: {}".format( n_cols, len(str_vals), i, [x.name for x in cols], str_vals ) ) raise InconsistentTableError(errmsg) for j, col in enumerate(cols): col.str_vals.append(str_vals[j]) self.data.masks(cols) if hasattr(self.header, "table_meta"): self.meta["table"].update(self.header.table_meta) _apply_include_exclude_names( self.header, self.names, self.include_names, self.exclude_names ) table = self.outputter(self.header.cols, self.meta) self.cols = self.header.cols return table def inconsistent_handler(self, str_vals, ncols): """ Adjust or skip data entries if a row is inconsistent with the header. The default implementation does no adjustment, and hence will always trigger an exception in read() any time the number of data entries does not match the header. Note that this will *not* be called if the row already matches the header. Parameters ---------- str_vals : list A list of value strings from the current row of the table. ncols : int The expected number of entries from the table header. Returns ------- str_vals : list List of strings to be parsed into data entries in the output table. If the length of this list does not match ``ncols``, an exception will be raised in read(). Can also be None, in which case the row will be skipped. """ # an empty list will always trigger an InconsistentTableError in read() return str_vals @property def comment_lines(self): """Return lines in the table that match header.comment regexp""" if not hasattr(self, "lines"): raise ValueError( "Table must be read prior to accessing the header comment lines" ) if self.header.comment: re_comment = re.compile(self.header.comment) comment_lines = [x for x in self.lines if re_comment.match(x)] else: comment_lines = [] return comment_lines def update_table_data(self, table): """ Update table columns in place if needed. This is a hook to allow updating the table columns after name filtering but before setting up to write the data. This is currently only used by ECSV and is otherwise just a pass-through. Parameters ---------- table : `astropy.table.Table` Input table for writing Returns ------- table : `astropy.table.Table` Output table for writing """ return table def write_header(self, lines, meta): self.header.write_comments(lines, meta) self.header.write(lines) def write(self, table): """ Write ``table`` as list of strings. Parameters ---------- table : `~astropy.table.Table` Input table data. Returns ------- lines : list List of strings corresponding to ASCII table """ # Check column names before altering self.header.cols = list(table.columns.values()) self.header.check_column_names(self.names, self.strict_names, False) # In-place update of columns in input ``table`` to reflect column # filtering. Note that ``table`` is guaranteed to be a copy of the # original user-supplied table. _apply_include_exclude_names( table, self.names, self.include_names, self.exclude_names ) # This is a hook to allow updating the table columns after name # filtering but before setting up to write the data. This is currently # only used by ECSV and is otherwise just a pass-through. table = self.update_table_data(table) # Check that table column dimensions are supported by this format class. # Most formats support only 1-d columns, but some like ECSV support N-d. self._check_multidim_table(table) # Now use altered columns new_cols = list(table.columns.values()) # link information about the columns to the writer object (i.e. self) self.header.cols = new_cols self.data.cols = new_cols self.header.table_meta = table.meta # Write header and data to lines list lines = [] self.write_header(lines, table.meta) self.data.write(lines) return lines class ContinuationLinesInputter(BaseInputter): """Inputter where lines ending in ``continuation_char`` are joined with the subsequent line. Example:: col1 col2 col3 1 \ 2 3 4 5 \ 6 """ continuation_char = "\\" replace_char = " " # If no_continue is not None then lines matching this regex are not subject # to line continuation. The initial use case here is Daophot. In this # case the continuation character is just replaced with replace_char. no_continue = None def process_lines(self, lines): re_no_continue = re.compile(self.no_continue) if self.no_continue else None parts = [] outlines = [] for line in lines: if re_no_continue and re_no_continue.match(line): line = line.replace(self.continuation_char, self.replace_char) if line.endswith(self.continuation_char): parts.append(line.replace(self.continuation_char, self.replace_char)) else: parts.append(line) outlines.append("".join(parts)) parts = [] return outlines class WhitespaceSplitter(DefaultSplitter): def process_line(self, line): """Replace tab with space within ``line`` while respecting quoted substrings""" newline = [] in_quote = False lastchar = None for char in line: if char == self.quotechar and ( self.escapechar is None or lastchar != self.escapechar ): in_quote = not in_quote if char == "\t" and not in_quote: char = " " lastchar = char newline.append(char) return "".join(newline) extra_reader_pars = ( "Reader", "Inputter", "Outputter", "delimiter", "comment", "quotechar", "header_start", "data_start", "data_end", "converters", "encoding", "data_Splitter", "header_Splitter", "names", "include_names", "exclude_names", "strict_names", "fill_values", "fill_include_names", "fill_exclude_names", ) def _get_reader(Reader, Inputter=None, Outputter=None, **kwargs): """Initialize a table reader allowing for common customizations. See ui.get_reader() for param docs. This routine is for internal (package) use only and is useful because it depends only on the "core" module. """ from .fastbasic import FastBasic if issubclass(Reader, FastBasic): # Fast readers handle args separately if Inputter is not None: kwargs["Inputter"] = Inputter return Reader(**kwargs) # If user explicitly passed a fast reader with enable='force' # (e.g. by passing non-default options), raise an error for slow readers if "fast_reader" in kwargs: if kwargs["fast_reader"]["enable"] == "force": raise ParameterError( "fast_reader required with " "{}, but this is not a fast C reader: {}".format( kwargs["fast_reader"], Reader ) ) else: del kwargs["fast_reader"] # Otherwise ignore fast_reader parameter reader_kwargs = {k: v for k, v in kwargs.items() if k not in extra_reader_pars} reader = Reader(**reader_kwargs) if Inputter is not None: reader.inputter = Inputter() if Outputter is not None: reader.outputter = Outputter() # Issue #855 suggested to set data_start to header_start + default_header_length # Thus, we need to retrieve this from the class definition before resetting these numbers. try: default_header_length = reader.data.start_line - reader.header.start_line except TypeError: # Start line could be None or an instancemethod default_header_length = None # csv.reader is hard-coded to recognise either '\r' or '\n' as end-of-line, # therefore DefaultSplitter cannot handle these as delimiters. if "delimiter" in kwargs: if kwargs["delimiter"] in ("\n", "\r", "\r\n"): reader.header.splitter = BaseSplitter() reader.data.splitter = BaseSplitter() reader.header.splitter.delimiter = kwargs["delimiter"] reader.data.splitter.delimiter = kwargs["delimiter"] if "comment" in kwargs: reader.header.comment = kwargs["comment"] reader.data.comment = kwargs["comment"] if "quotechar" in kwargs: reader.header.splitter.quotechar = kwargs["quotechar"] reader.data.splitter.quotechar = kwargs["quotechar"] if "data_start" in kwargs: reader.data.start_line = kwargs["data_start"] if "data_end" in kwargs: reader.data.end_line = kwargs["data_end"] if "header_start" in kwargs: if reader.header.start_line is not None: reader.header.start_line = kwargs["header_start"] # For FixedWidthTwoLine the data_start is calculated relative to the position line. # However, position_line is given as absolute number and not relative to header_start. # So, ignore this Reader here. if ( ("data_start" not in kwargs) and (default_header_length is not None) and reader._format_name not in ["fixed_width_two_line", "commented_header"] ): reader.data.start_line = ( reader.header.start_line + default_header_length ) elif kwargs["header_start"] is not None: # User trying to set a None header start to some value other than None raise ValueError("header_start cannot be modified for this Reader") if "converters" in kwargs: reader.outputter.converters = kwargs["converters"] if "data_Splitter" in kwargs: reader.data.splitter = kwargs["data_Splitter"]() if "header_Splitter" in kwargs: reader.header.splitter = kwargs["header_Splitter"]() if "names" in kwargs: reader.names = kwargs["names"] if None in reader.names: raise TypeError("Cannot have None for column name") if len(set(reader.names)) != len(reader.names): raise ValueError("Duplicate column names") if "include_names" in kwargs: reader.include_names = kwargs["include_names"] if "exclude_names" in kwargs: reader.exclude_names = kwargs["exclude_names"] # Strict names is normally set only within the guessing process to # indicate that column names cannot be numeric or have certain # characters at the beginning or end. It gets used in # BaseHeader.check_column_names(). if "strict_names" in kwargs: reader.strict_names = kwargs["strict_names"] if "fill_values" in kwargs: reader.data.fill_values = kwargs["fill_values"] if "fill_include_names" in kwargs: reader.data.fill_include_names = kwargs["fill_include_names"] if "fill_exclude_names" in kwargs: reader.data.fill_exclude_names = kwargs["fill_exclude_names"] if "encoding" in kwargs: reader.encoding = kwargs["encoding"] reader.inputter.encoding = kwargs["encoding"] return reader extra_writer_pars = ( "delimiter", "comment", "quotechar", "formats", "strip_whitespace", "names", "include_names", "exclude_names", "fill_values", "fill_include_names", "fill_exclude_names", ) def _get_writer(Writer, fast_writer, **kwargs): """Initialize a table writer allowing for common customizations. This routine is for internal (package) use only and is useful because it depends only on the "core" module.""" from .fastbasic import FastBasic # A value of None for fill_values imply getting the default string # representation of masked values (depending on the writer class), but the # machinery expects a list. The easiest here is to just pop the value off, # i.e. fill_values=None is the same as not providing it at all. if "fill_values" in kwargs and kwargs["fill_values"] is None: del kwargs["fill_values"] if issubclass(Writer, FastBasic): # Fast writers handle args separately return Writer(**kwargs) elif fast_writer and f"fast_{Writer._format_name}" in FAST_CLASSES: # Switch to fast writer kwargs["fast_writer"] = fast_writer return FAST_CLASSES[f"fast_{Writer._format_name}"](**kwargs) writer_kwargs = {k: v for k, v in kwargs.items() if k not in extra_writer_pars} writer = Writer(**writer_kwargs) if "delimiter" in kwargs: writer.header.splitter.delimiter = kwargs["delimiter"] writer.data.splitter.delimiter = kwargs["delimiter"] if "comment" in kwargs: writer.header.write_comment = kwargs["comment"] writer.data.write_comment = kwargs["comment"] if "quotechar" in kwargs: writer.header.splitter.quotechar = kwargs["quotechar"] writer.data.splitter.quotechar = kwargs["quotechar"] if "formats" in kwargs: writer.data.formats = kwargs["formats"] if "strip_whitespace" in kwargs: if kwargs["strip_whitespace"]: # Restore the default SplitterClass process_val method which strips # whitespace. This may have been changed in the Writer # initialization (e.g. Rdb and Tab) writer.data.splitter.process_val = operator.methodcaller("strip", " \t") else: writer.data.splitter.process_val = None if "names" in kwargs: writer.header.names = kwargs["names"] if "include_names" in kwargs: writer.include_names = kwargs["include_names"] if "exclude_names" in kwargs: writer.exclude_names = kwargs["exclude_names"] if "fill_values" in kwargs: # Prepend user-specified values to the class default. with suppress(TypeError, IndexError): # Test if it looks like (match, replace_string, optional_colname), # in which case make it a list kwargs["fill_values"][1] + "" kwargs["fill_values"] = [kwargs["fill_values"]] writer.data.fill_values = kwargs["fill_values"] + writer.data.fill_values if "fill_include_names" in kwargs: writer.data.fill_include_names = kwargs["fill_include_names"] if "fill_exclude_names" in kwargs: writer.data.fill_exclude_names = kwargs["fill_exclude_names"] return writer
127d8823fd96ddadf3fc9ff0c0404c40a2fbfe8c802e9eb05da0366751c491d7
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ An extensible ASCII table reader and writer. """ # flake8: noqa from . import connect from .basic import ( Basic, BasicData, BasicHeader, CommentedHeader, Csv, NoHeader, Rdb, Tab, ) from .cds import Cds from .core import ( AllType, BaseData, BaseHeader, BaseInputter, BaseOutputter, BaseReader, BaseSplitter, Column, ContinuationLinesInputter, DefaultSplitter, FloatType, InconsistentTableError, IntType, NoType, NumType, ParameterError, StrType, TableOutputter, WhitespaceSplitter, convert_numpy, masked, ) from .daophot import Daophot from .ecsv import Ecsv from .fastbasic import ( FastBasic, FastCommentedHeader, FastCsv, FastNoHeader, FastRdb, FastTab, ) from .fixedwidth import ( FixedWidth, FixedWidthData, FixedWidthHeader, FixedWidthNoHeader, FixedWidthSplitter, FixedWidthTwoLine, ) from .html import HTML from .ipac import Ipac from .latex import AASTex, Latex, latexdicts from .mrt import Mrt from .qdp import QDP from .rst import RST from .sextractor import SExtractor from .ui import get_read_trace, get_reader, get_writer, read, set_guess, write
0366009cdb3974b969ca04d8f385bae457bd0a2269bd2f430018b0476cfe9a65
# Licensed under a 3-clause BSD style license """ :Author: Simon Gibbons ([email protected]) """ from .core import DefaultSplitter from .fixedwidth import ( FixedWidth, FixedWidthData, FixedWidthHeader, FixedWidthTwoLineDataSplitter, ) class SimpleRSTHeader(FixedWidthHeader): position_line = 0 start_line = 1 splitter_class = DefaultSplitter position_char = "=" def get_fixedwidth_params(self, line): vals, starts, ends = super().get_fixedwidth_params(line) # The right hand column can be unbounded ends[-1] = None return vals, starts, ends class SimpleRSTData(FixedWidthData): start_line = 3 end_line = -1 splitter_class = FixedWidthTwoLineDataSplitter class RST(FixedWidth): """reStructuredText simple format table. See: https://docutils.sourceforge.io/docs/ref/rst/restructuredtext.html#simple-tables Example:: ==== ===== ====== Col1 Col2 Col3 ==== ===== ====== 1 2.3 Hello 2 4.5 Worlds ==== ===== ====== Currently there is no support for reading tables which utilize continuation lines, or for ones which define column spans through the use of an additional line of dashes in the header. """ _format_name = "rst" _description = "reStructuredText simple table" data_class = SimpleRSTData header_class = SimpleRSTHeader def __init__(self): super().__init__(delimiter_pad=None, bookend=False) def write(self, lines): lines = super().write(lines) lines = [lines[1]] + lines + [lines[1]] return lines
fc9cfb1437081c2a32ed520f4bb7dafa4a543195b9a5959e98fa0b267a3f4ec2
# Licensed under a 3-clause BSD style license - see LICENSE.rst """An extensible ASCII table reader and writer. fixedwidth.py: Read or write a table with fixed width columns. :Copyright: Smithsonian Astrophysical Observatory (2011) :Author: Tom Aldcroft ([email protected]) """ from . import basic, core from .core import DefaultSplitter, InconsistentTableError class FixedWidthSplitter(core.BaseSplitter): """ Split line based on fixed start and end positions for each ``col`` in ``self.cols``. This class requires that the Header class will have defined ``col.start`` and ``col.end`` for each column. The reference to the ``header.cols`` gets put in the splitter object by the base Reader.read() function just in time for splitting data lines by a ``data`` object. Note that the ``start`` and ``end`` positions are defined in the pythonic style so line[start:end] is the desired substring for a column. This splitter class does not have a hook for ``process_lines`` since that is generally not useful for fixed-width input. """ delimiter_pad = "" bookend = False delimiter = "|" def __call__(self, lines): for line in lines: vals = [line[x.start : x.end] for x in self.cols] if self.process_val: yield [self.process_val(x) for x in vals] else: yield vals def join(self, vals, widths): pad = self.delimiter_pad or "" delimiter = self.delimiter or "" padded_delim = pad + delimiter + pad if self.bookend: bookend_left = delimiter + pad bookend_right = pad + delimiter else: bookend_left = "" bookend_right = "" vals = [" " * (width - len(val)) + val for val, width in zip(vals, widths)] return bookend_left + padded_delim.join(vals) + bookend_right class FixedWidthHeaderSplitter(DefaultSplitter): """Splitter class that splits on ``|``.""" delimiter = "|" class FixedWidthHeader(basic.BasicHeader): """ Fixed width table header reader. """ splitter_class = FixedWidthHeaderSplitter """ Splitter class for splitting data lines into columns """ position_line = None # secondary header line position """ row index of line that specifies position (default = 1) """ set_of_position_line_characters = set(r'`~!#$%^&*-_+=\|":' + "'") def get_line(self, lines, index): for i, line in enumerate(self.process_lines(lines)): if i == index: break else: # No header line matching raise InconsistentTableError("No header line found in table") return line def get_cols(self, lines): """ Initialize the header Column objects from the table ``lines``. Based on the previously set Header attributes find or create the column names. Sets ``self.cols`` with the list of Columns. Parameters ---------- lines : list List of table lines """ header_rows = getattr(self, "header_rows", ["name"]) # See "else" clause below for explanation of start_line and position_line start_line = core._get_line_index(self.start_line, self.process_lines(lines)) position_line = core._get_line_index( self.position_line, self.process_lines(lines) ) # If start_line is none then there is no header line. Column positions are # determined from first data line and column names are either supplied by user # or auto-generated. if start_line is None: if position_line is not None: raise ValueError( "Cannot set position_line without also setting header_start" ) # data.data_lines attribute already set via self.data.get_data_lines(lines) # in BaseReader.read(). This includes slicing for data_start / data_end. data_lines = self.data.data_lines if not data_lines: raise InconsistentTableError( "No data lines found so cannot autogenerate column names" ) vals, starts, ends = self.get_fixedwidth_params(data_lines[0]) self.names = [self.auto_format.format(i) for i in range(1, len(vals) + 1)] else: # This bit of code handles two cases: # start_line = <index> and position_line = None # Single header line where that line is used to determine both the # column positions and names. # start_line = <index> and position_line = <index2> # Two header lines where the first line defines the column names and # the second line defines the column positions if position_line is not None: # Define self.col_starts and self.col_ends so that the call to # get_fixedwidth_params below will use those to find the header # column names. Note that get_fixedwidth_params returns Python # slice col_ends but expects inclusive col_ends on input (for # more intuitive user interface). line = self.get_line(lines, position_line) if len(set(line) - {self.splitter.delimiter, " "}) != 1: raise InconsistentTableError( "Position line should only contain delimiters and " 'one other character, e.g. "--- ------- ---".' ) # The line above lies. It accepts white space as well. # We don't want to encourage using three different # characters, because that can cause ambiguities, but white # spaces are so common everywhere that practicality beats # purity here. charset = self.set_of_position_line_characters.union( {self.splitter.delimiter, " "} ) if not set(line).issubset(charset): raise InconsistentTableError( f"Characters in position line must be part of {charset}" ) vals, self.col_starts, col_ends = self.get_fixedwidth_params(line) self.col_ends = [x - 1 if x is not None else None for x in col_ends] # Get the column names from the header line line = self.get_line(lines, start_line + header_rows.index("name")) self.names, starts, ends = self.get_fixedwidth_params(line) self._set_cols_from_names() for ii, attr in enumerate(header_rows): if attr != "name": line = self.get_line(lines, start_line + ii) vals = self.get_fixedwidth_params(line)[0] for col, val in zip(self.cols, vals): if val: setattr(col, attr, val) # Set column start and end positions. for i, col in enumerate(self.cols): col.start = starts[i] col.end = ends[i] def get_fixedwidth_params(self, line): """ Split ``line`` on the delimiter and determine column values and column start and end positions. This might include null columns with zero length (e.g. for ``header row = "| col1 || col2 | col3 |"`` or ``header2_row = "----- ------- -----"``). The null columns are stripped out. Returns the values between delimiters and the corresponding start and end positions. Parameters ---------- line : str Input line Returns ------- vals : list List of values. starts : list List of starting indices. ends : list List of ending indices. """ # If column positions are already specified then just use those. # If neither column starts or ends are given, figure out positions # between delimiters. Otherwise, either the starts or the ends have # been given, so figure out whichever wasn't given. if self.col_starts is not None and self.col_ends is not None: starts = list(self.col_starts) # could be any iterable, e.g. np.array # user supplies inclusive endpoint ends = [x + 1 if x is not None else None for x in self.col_ends] if len(starts) != len(ends): raise ValueError( "Fixed width col_starts and col_ends must have the same length" ) vals = [line[start:end].strip() for start, end in zip(starts, ends)] elif self.col_starts is None and self.col_ends is None: # There might be a cleaner way to do this but it works... vals = line.split(self.splitter.delimiter) starts = [0] ends = [] for val in vals: if val: ends.append(starts[-1] + len(val)) starts.append(ends[-1] + 1) else: starts[-1] += 1 starts = starts[:-1] vals = [x.strip() for x in vals if x] if len(vals) != len(starts) or len(vals) != len(ends): raise InconsistentTableError("Error parsing fixed width header") else: # exactly one of col_starts or col_ends is given... if self.col_starts is not None: starts = list(self.col_starts) ends = starts[1:] + [None] # Assume each col ends where the next starts else: # self.col_ends is not None ends = [x + 1 for x in self.col_ends] starts = [0] + ends[:-1] # Assume each col starts where the last ended vals = [line[start:end].strip() for start, end in zip(starts, ends)] return vals, starts, ends def write(self, lines): # Header line not written until data are formatted. Until then it is # not known how wide each column will be for fixed width. pass class FixedWidthData(basic.BasicData): """ Base table data reader. """ splitter_class = FixedWidthSplitter """ Splitter class for splitting data lines into columns """ start_line = None def write(self, lines): default_header_rows = [] if self.header.start_line is None else ["name"] header_rows = getattr(self, "header_rows", default_header_rows) # First part is getting the widths of each column. # List (rows) of list (column values) for data lines vals_list = [] col_str_iters = self.str_vals() for vals in zip(*col_str_iters): vals_list.append(vals) # List (rows) of list (columns values) for header lines. hdrs_list = [] for col_attr in header_rows: vals = [ "" if (val := getattr(col.info, col_attr)) is None else str(val) for col in self.cols ] hdrs_list.append(vals) # Widths for data columns widths = [ max(len(vals[i_col]) for vals in vals_list) for i_col in range(len(self.cols)) ] # Incorporate widths for header columns (if there are any) if hdrs_list: for i_col in range(len(self.cols)): widths[i_col] = max( widths[i_col], max(len(vals[i_col]) for vals in hdrs_list) ) # Now collect formatted header and data lines into the output lines for vals in hdrs_list: lines.append(self.splitter.join(vals, widths)) if self.header.position_line is not None: vals = [self.header.position_char * width for width in widths] lines.append(self.splitter.join(vals, widths)) for vals in vals_list: lines.append(self.splitter.join(vals, widths)) return lines class FixedWidth(basic.Basic): """Fixed width table with single header line defining column names and positions. Examples:: # Bar delimiter in header and data | Col1 | Col2 | Col3 | | 1.2 | hello there | 3 | | 2.4 | many words | 7 | # Bar delimiter in header only Col1 | Col2 | Col3 1.2 hello there 3 2.4 many words 7 # No delimiter with column positions specified as input Col1 Col2Col3 1.2hello there 3 2.4many words 7 See the :ref:`astropy:fixed_width_gallery` for specific usage examples. """ _format_name = "fixed_width" _description = "Fixed width" header_class = FixedWidthHeader data_class = FixedWidthData def __init__( self, col_starts=None, col_ends=None, delimiter_pad=" ", bookend=True, header_rows=None, ): if header_rows is None: header_rows = ["name"] super().__init__() self.data.splitter.delimiter_pad = delimiter_pad self.data.splitter.bookend = bookend self.header.col_starts = col_starts self.header.col_ends = col_ends self.header.header_rows = header_rows self.data.header_rows = header_rows if self.data.start_line is None: self.data.start_line = len(header_rows) class FixedWidthNoHeaderHeader(FixedWidthHeader): """Header reader for fixed with tables with no header line""" start_line = None class FixedWidthNoHeaderData(FixedWidthData): """Data reader for fixed width tables with no header line""" start_line = 0 class FixedWidthNoHeader(FixedWidth): """Fixed width table which has no header line. When reading, column names are either input (``names`` keyword) or auto-generated. Column positions are determined either by input (``col_starts`` and ``col_stops`` keywords) or by splitting the first data line. In the latter case a ``delimiter`` is required to split the data line. Examples:: # Bar delimiter in header and data | 1.2 | hello there | 3 | | 2.4 | many words | 7 | # Compact table having no delimiter and column positions specified as input 1.2hello there3 2.4many words 7 This class is just a convenience wrapper around the ``FixedWidth`` reader but with ``header_start=None`` and ``data_start=0``. See the :ref:`astropy:fixed_width_gallery` for specific usage examples. """ _format_name = "fixed_width_no_header" _description = "Fixed width with no header" header_class = FixedWidthNoHeaderHeader data_class = FixedWidthNoHeaderData def __init__(self, col_starts=None, col_ends=None, delimiter_pad=" ", bookend=True): super().__init__( col_starts, col_ends, delimiter_pad=delimiter_pad, bookend=bookend, header_rows=[], ) class FixedWidthTwoLineHeader(FixedWidthHeader): """Header reader for fixed width tables splitting on whitespace. For fixed width tables with several header lines, there is typically a white-space delimited format line, so splitting on white space is needed. """ splitter_class = DefaultSplitter class FixedWidthTwoLineDataSplitter(FixedWidthSplitter): """Splitter for fixed width tables splitting on ``' '``.""" delimiter = " " class FixedWidthTwoLineData(FixedWidthData): """Data reader for fixed with tables with two header lines.""" splitter_class = FixedWidthTwoLineDataSplitter class FixedWidthTwoLine(FixedWidth): """Fixed width table which has two header lines. The first header line defines the column names and the second implicitly defines the column positions. Examples:: # Typical case with column extent defined by ---- under column names. col1 col2 <== header_start = 0 ----- ------------ <== position_line = 1, position_char = "-" 1 bee flies <== data_start = 2 2 fish swims # Pretty-printed table +------+------------+ | Col1 | Col2 | +------+------------+ | 1.2 | "hello" | | 2.4 | there world| +------+------------+ See the :ref:`astropy:fixed_width_gallery` for specific usage examples. """ _format_name = "fixed_width_two_line" _description = "Fixed width with second header line" data_class = FixedWidthTwoLineData header_class = FixedWidthTwoLineHeader def __init__( self, position_line=None, position_char="-", delimiter_pad=None, bookend=False, header_rows=None, ): if len(position_char) != 1: raise ValueError( f'Position_char="{position_char}" must be a single character' ) super().__init__( delimiter_pad=delimiter_pad, bookend=bookend, header_rows=header_rows ) if position_line is None: position_line = len(self.header.header_rows) self.header.position_line = position_line self.header.position_char = position_char self.data.start_line = position_line + 1
ddde45dfd79b58687778bdaea1b8638044c9cd37efc2f67ffd81b2da8dc2db3a
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Classes to read AAS MRT table format Ref: https://journals.aas.org/mrt-standards :Copyright: Smithsonian Astrophysical Observatory (2021) :Author: Tom Aldcroft ([email protected]), \ Suyog Garg ([email protected]) """ import re import warnings from io import StringIO from math import ceil, floor from string import Template from textwrap import wrap import numpy as np from astropy import units as u from astropy.table import Column, MaskedColumn, Table from . import cds, core, fixedwidth MAX_SIZE_README_LINE = 80 MAX_COL_INTLIMIT = 100000 __doctest_skip__ = ["*"] BYTE_BY_BYTE_TEMPLATE = [ "Byte-by-byte Description of file: $file", "--------------------------------------------------------------------------------", " Bytes Format Units Label Explanations", "--------------------------------------------------------------------------------", "$bytebybyte", "--------------------------------------------------------------------------------", ] MRT_TEMPLATE = [ "Title:", "Authors:", "Table:", "================================================================================", "$bytebybyte", "Notes:", "--------------------------------------------------------------------------------", ] class MrtSplitter(fixedwidth.FixedWidthSplitter): """ Contains the join function to left align the MRT columns when writing to a file. """ def join(self, vals, widths): vals = [val + " " * (width - len(val)) for val, width in zip(vals, widths)] return self.delimiter.join(vals) class MrtHeader(cds.CdsHeader): _subfmt = "MRT" def _split_float_format(self, value): """ Splits a Float string into different parts to find number of digits after decimal and check if the value is in Scientific notation. Parameters ---------- value : str String containing the float value to split. Returns ------- fmt: (int, int, int, bool, bool) List of values describing the Float sting. (size, dec, ent, sign, exp) size, length of the given string. ent, number of digits before decimal point. dec, number of digits after decimal point. sign, whether or not given value signed. exp, is value in Scientific notation? """ regfloat = re.compile( r"""(?P<sign> [+-]*) (?P<ent> [^eE.]+) (?P<deciPt> [.]*) (?P<decimals> [0-9]*) (?P<exp> [eE]*-*)[0-9]*""", re.VERBOSE, ) mo = regfloat.match(value) if mo is None: raise Exception(f"{value} is not a float number") return ( len(value), len(mo.group("ent")), len(mo.group("decimals")), mo.group("sign") != "", mo.group("exp") != "", ) def _set_column_val_limits(self, col): """ Sets the ``col.min`` and ``col.max`` column attributes, taking into account columns with Null values. """ col.max = max(col) col.min = min(col) if col.max is np.ma.core.MaskedConstant: col.max = None if col.min is np.ma.core.MaskedConstant: col.min = None def column_float_formatter(self, col): """ String formatter function for a column containing Float values. Checks if the values in the given column are in Scientific notation, by spliting the value string. It is assumed that the column either has float values or Scientific notation. A ``col.formatted_width`` attribute is added to the column. It is not added if such an attribute is already present, say when the ``formats`` argument is passed to the writer. A properly formatted format string is also added as the ``col.format`` attribute. Parameters ---------- col : A ``Table.Column`` object. """ # maxsize: maximum length of string containing the float value. # maxent: maximum number of digits places before decimal point. # maxdec: maximum number of digits places after decimal point. # maxprec: maximum precision of the column values, sum of maxent and maxdec. maxsize, maxprec, maxent, maxdec = 1, 0, 1, 0 sign = False fformat = "F" # Find maximum sized value in the col for val in col.str_vals: # Skip null values if val is None or val == "": continue # Find format of the Float string fmt = self._split_float_format(val) # If value is in Scientific notation if fmt[4] is True: # if the previous column value was in normal Float format # set maxsize, maxprec and maxdec to default. if fformat == "F": maxsize, maxprec, maxdec = 1, 0, 0 # Designate the column to be in Scientific notation. fformat = "E" else: # Move to next column value if # current value is not in Scientific notation # but the column is designated as such because # one of the previous values was. if fformat == "E": continue if maxsize < fmt[0]: maxsize = fmt[0] if maxent < fmt[1]: maxent = fmt[1] if maxdec < fmt[2]: maxdec = fmt[2] if fmt[3]: sign = True if maxprec < fmt[1] + fmt[2]: maxprec = fmt[1] + fmt[2] if fformat == "E": # If ``formats`` not passed. if getattr(col, "formatted_width", None) is None: col.formatted_width = maxsize if sign: col.formatted_width += 1 # Number of digits after decimal is replaced by the precision # for values in Scientific notation, when writing that Format. col.fortran_format = fformat + str(col.formatted_width) + "." + str(maxprec) col.format = str(col.formatted_width) + "." + str(maxdec) + "e" else: lead = "" if ( getattr(col, "formatted_width", None) is None ): # If ``formats`` not passed. col.formatted_width = maxent + maxdec + 1 if sign: col.formatted_width += 1 elif col.format.startswith("0"): # Keep leading zero, if already set in format - primarily for `seconds` columns # in coordinates; may need extra case if this is to be also supported with `sign`. lead = "0" col.fortran_format = fformat + str(col.formatted_width) + "." + str(maxdec) col.format = lead + col.fortran_format[1:] + "f" def write_byte_by_byte(self): """ Writes the Byte-By-Byte description of the table. Columns that are `astropy.coordinates.SkyCoord` or `astropy.time.TimeSeries` objects or columns with values that are such objects are recognized as such, and some predefined labels and description is used for them. See the Vizier MRT Standard documentation in the link below for more details on these. An example Byte-By-Byte table is shown here. See: http://vizier.u-strasbg.fr/doc/catstd-3.1.htx Example:: -------------------------------------------------------------------------------- Byte-by-byte Description of file: table.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 A8 --- names Description of names 10-14 E5.1 --- e [-3160000.0/0.01] Description of e 16-23 F8.5 --- d [22.25/27.25] Description of d 25-31 E7.1 --- s [-9e+34/2.0] Description of s 33-35 I3 --- i [-30/67] Description of i 37-39 F3.1 --- sameF [5.0/5.0] Description of sameF 41-42 I2 --- sameI [20] Description of sameI 44-45 I2 h RAh Right Ascension (hour) 47-48 I2 min RAm Right Ascension (minute) 50-67 F18.15 s RAs Right Ascension (second) 69 A1 --- DE- Sign of Declination 70-71 I2 deg DEd Declination (degree) 73-74 I2 arcmin DEm Declination (arcmin) 76-91 F16.13 arcsec DEs Declination (arcsec) -------------------------------------------------------------------------------- """ # Get column widths vals_list = [] col_str_iters = self.data.str_vals() for vals in zip(*col_str_iters): vals_list.append(vals) for i, col in enumerate(self.cols): col.width = max(len(vals[i]) for vals in vals_list) if self.start_line is not None: col.width = max(col.width, len(col.info.name)) widths = [col.width for col in self.cols] startb = 1 # Byte count starts at 1. # Set default width of the Bytes count column of the Byte-By-Byte table. # This ``byte_count_width`` value helps align byte counts with respect # to the hyphen using a format string. byte_count_width = len(str(sum(widths) + len(self.cols) - 1)) # Format string for Start Byte and End Byte singlebfmt = "{:" + str(byte_count_width) + "d}" fmtb = singlebfmt + "-" + singlebfmt # Add trailing single whitespaces to Bytes column for better visibility. singlebfmt += " " fmtb += " " # Set default width of Label and Description Byte-By-Byte columns. max_label_width, max_descrip_size = 7, 16 bbb = Table( names=["Bytes", "Format", "Units", "Label", "Explanations"], dtype=[str] * 5 ) # Iterate over the columns to write Byte-By-Byte rows. for i, col in enumerate(self.cols): # Check if column is MaskedColumn col.has_null = isinstance(col, MaskedColumn) if col.format is not None: col.formatted_width = max(len(sval) for sval in col.str_vals) # Set MRTColumn type, size and format. if np.issubdtype(col.dtype, np.integer): # Integer formatter self._set_column_val_limits(col) # If ``formats`` not passed. if getattr(col, "formatted_width", None) is None: col.formatted_width = max(len(str(col.max)), len(str(col.min))) col.fortran_format = "I" + str(col.formatted_width) if col.format is None: col.format = ">" + col.fortran_format[1:] elif np.issubdtype(col.dtype, np.dtype(float).type): # Float formatter self._set_column_val_limits(col) self.column_float_formatter(col) else: # String formatter, ``np.issubdtype(col.dtype, str)`` is ``True``. dtype = col.dtype.str if col.has_null: mcol = col mcol.fill_value = "" coltmp = Column(mcol.filled(), dtype=str) dtype = coltmp.dtype.str # If ``formats`` not passed. if getattr(col, "formatted_width", None) is None: col.formatted_width = int(re.search(r"(\d+)$", dtype).group(1)) col.fortran_format = "A" + str(col.formatted_width) col.format = str(col.formatted_width) + "s" endb = col.formatted_width + startb - 1 # ``mixin`` columns converted to string valued columns will not have a name # attribute. In those cases, a ``Unknown`` column label is put, indicating that # such columns can be better formatted with some manipulation before calling # the MRT writer. if col.name is None: col.name = "Unknown" # Set column description. if col.description is not None: description = col.description else: description = "Description of " + col.name # Set null flag in column description nullflag = "" if col.has_null: nullflag = "?" # Set column unit if col.unit is not None: col_unit = col.unit.to_string("cds") elif col.name.lower().find("magnitude") > -1: # ``col.unit`` can still be ``None``, if the unit of column values # is ``Magnitude``, because ``astropy.units.Magnitude`` is actually a class. # Unlike other units which are instances of ``astropy.units.Unit``, # application of the ``Magnitude`` unit calculates the logarithm # of the values. Thus, the only way to check for if the column values # have ``Magnitude`` unit is to check the column name. col_unit = "mag" else: col_unit = "---" # Add col limit values to col description lim_vals = "" if ( col.min and col.max and not any( x in col.name for x in ["RA", "DE", "LON", "LAT", "PLN", "PLT"] ) ): # No col limit values for coordinate columns. if col.fortran_format[0] == "I": if ( abs(col.min) < MAX_COL_INTLIMIT and abs(col.max) < MAX_COL_INTLIMIT ): if col.min == col.max: lim_vals = f"[{col.min}]" else: lim_vals = f"[{col.min}/{col.max}]" elif col.fortran_format[0] in ("E", "F"): lim_vals = ( f"[{floor(col.min * 100) / 100.}/{ceil(col.max * 100) / 100.}]" ) if lim_vals != "" or nullflag != "": description = f"{lim_vals}{nullflag} {description}" # Find the maximum label and description column widths. if len(col.name) > max_label_width: max_label_width = len(col.name) if len(description) > max_descrip_size: max_descrip_size = len(description) # Add a row for the Sign of Declination in the bbb table if col.name == "DEd": bbb.add_row( [ singlebfmt.format(startb), "A1", "---", "DE-", "Sign of Declination", ] ) col.fortran_format = "I2" startb += 1 # Add Byte-By-Byte row to bbb table bbb.add_row( [ singlebfmt.format(startb) if startb == endb else fmtb.format(startb, endb), "" if col.fortran_format is None else col.fortran_format, col_unit, "" if col.name is None else col.name, description, ] ) startb = endb + 2 # Properly format bbb columns bbblines = StringIO() bbb.write( bbblines, format="ascii.fixed_width_no_header", delimiter=" ", bookend=False, delimiter_pad=None, formats={ "Format": "<6s", "Units": "<6s", "Label": "<" + str(max_label_width) + "s", "Explanations": "" + str(max_descrip_size) + "s", }, ) # Get formatted bbb lines bbblines = bbblines.getvalue().splitlines() # ``nsplit`` is the number of whitespaces to prefix to long description # lines in order to wrap them. It is the sum of the widths of the # previous 4 columns plus the number of single spacing between them. # The hyphen in the Bytes column is also counted. nsplit = byte_count_width * 2 + 1 + 12 + max_label_width + 4 # Wrap line if it is too long buff = "" for newline in bbblines: if len(newline) > MAX_SIZE_README_LINE: buff += ("\n").join( wrap( newline, subsequent_indent=" " * nsplit, width=MAX_SIZE_README_LINE, ) ) buff += "\n" else: buff += newline + "\n" # Last value of ``endb`` is the sum of column widths after formatting. self.linewidth = endb # Remove the last extra newline character from Byte-By-Byte. buff = buff[:-1] return buff def write(self, lines): """ Writes the Header of the MRT table, aka ReadMe, which also contains the Byte-By-Byte description of the table. """ from astropy.coordinates import SkyCoord # Recognised ``SkyCoord.name`` forms with their default column names (helio* require SunPy). coord_systems = { "galactic": ("GLAT", "GLON", "b", "l"), "ecliptic": ("ELAT", "ELON", "lat", "lon"), # 'geocentric*ecliptic' "heliographic": ("HLAT", "HLON", "lat", "lon"), # '_carrington|stonyhurst' "helioprojective": ("HPLT", "HPLN", "Ty", "Tx"), } eqtnames = ["RAh", "RAm", "RAs", "DEd", "DEm", "DEs"] # list to store indices of columns that are modified. to_pop = [] # For columns that are instances of ``SkyCoord`` and other ``mixin`` columns # or whose values are objects of these classes. for i, col in enumerate(self.cols): # If col is a ``Column`` object but its values are ``SkyCoord`` objects, # convert the whole column to ``SkyCoord`` object, which helps in applying # SkyCoord methods directly. if not isinstance(col, SkyCoord) and isinstance(col[0], SkyCoord): try: col = SkyCoord(col) except (ValueError, TypeError): # If only the first value of the column is a ``SkyCoord`` object, # the column cannot be converted to a ``SkyCoord`` object. # These columns are converted to ``Column`` object and then converted # to string valued column. if not isinstance(col, Column): col = Column(col) col = Column([str(val) for val in col]) self.cols[i] = col continue # Replace single ``SkyCoord`` column by its coordinate components if no coordinate # columns of the correspoding type exist yet. if isinstance(col, SkyCoord): # If coordinates are given in RA/DEC, divide each them into hour/deg, # minute/arcminute, second/arcsecond columns. if ( "ra" in col.representation_component_names.keys() and len(set(eqtnames) - set(self.colnames)) == 6 ): ra_c, dec_c = col.ra.hms, col.dec.dms coords = [ ra_c.h.round().astype("i1"), ra_c.m.round().astype("i1"), ra_c.s, dec_c.d.round().astype("i1"), dec_c.m.round().astype("i1"), dec_c.s, ] coord_units = [u.h, u.min, u.second, u.deg, u.arcmin, u.arcsec] coord_descrip = [ "Right Ascension (hour)", "Right Ascension (minute)", "Right Ascension (second)", "Declination (degree)", "Declination (arcmin)", "Declination (arcsec)", ] for coord, name, coord_unit, descrip in zip( coords, eqtnames, coord_units, coord_descrip ): # Have Sign of Declination only in the DEd column. if name in ["DEm", "DEs"]: coord_col = Column( list(np.abs(coord)), name=name, unit=coord_unit, description=descrip, ) else: coord_col = Column( list(coord), name=name, unit=coord_unit, description=descrip, ) # Set default number of digits after decimal point for the # second values, and deg-min to (signed) 2-digit zero-padded integer. if name == "RAs": coord_col.format = "013.10f" elif name == "DEs": coord_col.format = "012.9f" elif name == "RAh": coord_col.format = "2d" elif name == "DEd": coord_col.format = "+03d" elif name.startswith(("RA", "DE")): coord_col.format = "02d" self.cols.append(coord_col) to_pop.append(i) # Delete original ``SkyCoord`` column. # For all other coordinate types, simply divide into two columns # for latitude and longitude resp. with the unit used been as it is. else: frminfo = "" for frame, latlon in coord_systems.items(): if ( frame in col.name and len(set(latlon[:2]) - set(self.colnames)) == 2 ): if frame != col.name: frminfo = f" ({col.name})" lon_col = Column( getattr(col, latlon[3]), name=latlon[1], description=f"{frame.capitalize()} Longitude{frminfo}", unit=col.representation_component_units[latlon[3]], format=".12f", ) lat_col = Column( getattr(col, latlon[2]), name=latlon[0], description=f"{frame.capitalize()} Latitude{frminfo}", unit=col.representation_component_units[latlon[2]], format="+.12f", ) self.cols.append(lon_col) self.cols.append(lat_col) to_pop.append(i) # Delete original ``SkyCoord`` column. # Convert all other ``SkyCoord`` columns that are not in the above three # representations to string valued columns. Those could either be types not # supported yet (e.g. 'helioprojective'), or already present and converted. # If there were any extra ``SkyCoord`` columns of one kind after the first one, # then their decomposition into their component columns has been skipped. # This is done in order to not create duplicate component columns. # Explicit renaming of the extra coordinate component columns by appending some # suffix to their name, so as to distinguish them, is not yet implemented. if i not in to_pop: warnings.warn( f"Coordinate system of type '{col.name}' already stored in" " table as CDS/MRT-syle columns or of unrecognized type. So" f" column {i} is being skipped with designation of a string" f" valued column `{self.colnames[i]}`.", UserWarning, ) self.cols.append(Column(col.to_string(), name=self.colnames[i])) to_pop.append(i) # Delete original ``SkyCoord`` column. # Convert all other ``mixin`` columns to ``Column`` objects. # Parsing these may still lead to errors! elif not isinstance(col, Column): col = Column(col) # If column values are ``object`` types, convert them to string. if np.issubdtype(col.dtype, np.dtype(object).type): col = Column([str(val) for val in col]) self.cols[i] = col # Delete original ``SkyCoord`` columns, if there were any. for i in to_pop[::-1]: self.cols.pop(i) # Check for any left over extra coordinate columns. if any(x in self.colnames for x in ["RAh", "DEd", "ELON", "GLAT"]): # At this point any extra ``SkyCoord`` columns should have been converted to string # valued columns, together with issuance of a warning, by the coordinate parser above. # This test is just left here as a safeguard. for i, col in enumerate(self.cols): if isinstance(col, SkyCoord): self.cols[i] = Column(col.to_string(), name=self.colnames[i]) message = ( "Table already has coordinate system in CDS/MRT-syle columns. " f"So column {i} should have been replaced already with " f"a string valued column `{self.colnames[i]}`." ) raise core.InconsistentTableError(message) # Get Byte-By-Byte description and fill the template bbb_template = Template("\n".join(BYTE_BY_BYTE_TEMPLATE)) byte_by_byte = bbb_template.substitute( {"file": "table.dat", "bytebybyte": self.write_byte_by_byte()} ) # Fill up the full ReadMe rm_template = Template("\n".join(MRT_TEMPLATE)) readme_filled = rm_template.substitute({"bytebybyte": byte_by_byte}) lines.append(readme_filled) class MrtData(cds.CdsData): """MRT table data reader""" _subfmt = "MRT" splitter_class = MrtSplitter def write(self, lines): self.splitter.delimiter = " " fixedwidth.FixedWidthData.write(self, lines) class Mrt(core.BaseReader): """AAS MRT (Machine-Readable Table) format table. **Reading** :: >>> from astropy.io import ascii >>> table = ascii.read('data.mrt', format='mrt') **Writing** Use ``ascii.write(table, 'data.mrt', format='mrt')`` to write tables to Machine Readable Table (MRT) format. Note that the metadata of the table, apart from units, column names and description, will not be written. These have to be filled in by hand later. See also: :ref:`cds_mrt_format`. Caveats: * The Units and Explanations are available in the column ``unit`` and ``description`` attributes, respectively. * The other metadata defined by this format is not available in the output table. """ _format_name = "mrt" _io_registry_format_aliases = ["mrt"] _io_registry_can_write = True _description = "MRT format table" data_class = MrtData header_class = MrtHeader def write(self, table=None): # Construct for writing empty table is not yet done. if len(table) == 0: raise NotImplementedError self.data.header = self.header self.header.position_line = None self.header.start_line = None # Create a copy of the ``table``, so that it the copy gets modified and # written to the file, while the original table remains as it is. table = table.copy() return super().write(table)
a91e3abf645f61a6c8833726cfa26f7430f17fd1353542f8c917298f1eedf2b4
# Licensed under a 3-clause BSD style license - see LICENSE.rst """An extensible ASCII table reader and writer. latex.py: Classes to read and write LaTeX tables :Copyright: Smithsonian Astrophysical Observatory (2011) :Author: Tom Aldcroft ([email protected]) """ import re from . import core latexdicts = { "AA": { "tabletype": "table", "header_start": r"\hline \hline", "header_end": r"\hline", "data_end": r"\hline", }, "doublelines": { "tabletype": "table", "header_start": r"\hline \hline", "header_end": r"\hline\hline", "data_end": r"\hline\hline", }, "template": { "tabletype": "tabletype", "caption": "caption", "tablealign": "tablealign", "col_align": "col_align", "preamble": "preamble", "header_start": "header_start", "header_end": "header_end", "data_start": "data_start", "data_end": "data_end", "tablefoot": "tablefoot", "units": {"col1": "unit of col1", "col2": "unit of col2"}, }, } RE_COMMENT = re.compile(r"(?<!\\)%") # % character but not \% def add_dictval_to_list(adict, key, alist): """ Add a value from a dictionary to a list Parameters ---------- adict : dictionary key : hashable alist : list List where value should be added """ if key in adict: if isinstance(adict[key], str): alist.append(adict[key]) else: alist.extend(adict[key]) def find_latex_line(lines, latex): """ Find the first line which matches a patters Parameters ---------- lines : list List of strings latex : str Search pattern Returns ------- line_num : int, None Line number. Returns None, if no match was found """ re_string = re.compile(latex.replace("\\", "\\\\")) for i, line in enumerate(lines): if re_string.match(line): return i else: return None class LatexInputter(core.BaseInputter): def process_lines(self, lines): return [lin.strip() for lin in lines] class LatexSplitter(core.BaseSplitter): """Split LaTeX table data. Default delimiter is `&`.""" delimiter = "&" def __call__(self, lines): last_line = RE_COMMENT.split(lines[-1])[0].strip() if not last_line.endswith(r"\\"): lines[-1] = last_line + r"\\" return super().__call__(lines) def process_line(self, line): """Remove whitespace at the beginning or end of line. Also remove \\ at end of line""" line = RE_COMMENT.split(line)[0] line = line.strip() if line.endswith(r"\\"): line = line.rstrip(r"\\") else: raise core.InconsistentTableError( r"Lines in LaTeX table have to end with \\" ) return line def process_val(self, val): """Remove whitespace and {} at the beginning or end of value.""" val = val.strip() if val and (val[0] == "{") and (val[-1] == "}"): val = val[1:-1] return val def join(self, vals): """Join values together and add a few extra spaces for readability""" delimiter = " " + self.delimiter + " " return delimiter.join(x.strip() for x in vals) + r" \\" class LatexHeader(core.BaseHeader): """Class to read the header of Latex Tables""" header_start = r"\begin{tabular}" splitter_class = LatexSplitter def start_line(self, lines): line = find_latex_line(lines, self.header_start) if line is not None: return line + 1 else: return None def _get_units(self): units = {} col_units = [col.info.unit for col in self.cols] for name, unit in zip(self.colnames, col_units): if unit: try: units[name] = unit.to_string(format="latex_inline") except AttributeError: units[name] = unit return units def write(self, lines): if "col_align" not in self.latex: self.latex["col_align"] = len(self.cols) * "c" if "tablealign" in self.latex: align = "[" + self.latex["tablealign"] + "]" else: align = "" if self.latex["tabletype"] is not None: lines.append(r"\begin{" + self.latex["tabletype"] + r"}" + align) add_dictval_to_list(self.latex, "preamble", lines) if "caption" in self.latex: lines.append(r"\caption{" + self.latex["caption"] + "}") lines.append(self.header_start + r"{" + self.latex["col_align"] + r"}") add_dictval_to_list(self.latex, "header_start", lines) lines.append(self.splitter.join(self.colnames)) units = self._get_units() if "units" in self.latex: units.update(self.latex["units"]) if units: lines.append( self.splitter.join([units.get(name, " ") for name in self.colnames]) ) add_dictval_to_list(self.latex, "header_end", lines) class LatexData(core.BaseData): """Class to read the data in LaTeX tables""" data_start = None data_end = r"\end{tabular}" splitter_class = LatexSplitter def start_line(self, lines): if self.data_start: return find_latex_line(lines, self.data_start) else: start = self.header.start_line(lines) if start is None: raise core.InconsistentTableError(r"Could not find table start") return start + 1 def end_line(self, lines): if self.data_end: return find_latex_line(lines, self.data_end) else: return None def write(self, lines): add_dictval_to_list(self.latex, "data_start", lines) core.BaseData.write(self, lines) add_dictval_to_list(self.latex, "data_end", lines) lines.append(self.data_end) add_dictval_to_list(self.latex, "tablefoot", lines) if self.latex["tabletype"] is not None: lines.append(r"\end{" + self.latex["tabletype"] + "}") class Latex(core.BaseReader): r"""LaTeX format table. This class implements some LaTeX specific commands. Its main purpose is to write out a table in a form that LaTeX can compile. It is beyond the scope of this class to implement every possible LaTeX command, instead the focus is to generate a syntactically valid LaTeX tables. This class can also read simple LaTeX tables (one line per table row, no ``\multicolumn`` or similar constructs), specifically, it can read the tables that it writes. Reading a LaTeX table, the following keywords are accepted: **ignore_latex_commands** : Lines starting with these LaTeX commands will be treated as comments (i.e. ignored). When writing a LaTeX table, the some keywords can customize the format. Care has to be taken here, because python interprets ``\\`` in a string as an escape character. In order to pass this to the output either format your strings as raw strings with the ``r`` specifier or use a double ``\\\\``. Examples:: caption = r'My table \label{mytable}' caption = 'My table \\\\label{mytable}' **latexdict** : Dictionary of extra parameters for the LaTeX output * tabletype : used for first and last line of table. The default is ``\\begin{table}``. The following would generate a table, which spans the whole page in a two-column document:: ascii.write(data, sys.stdout, Writer = ascii.Latex, latexdict = {'tabletype': 'table*'}) If ``None``, the table environment will be dropped, keeping only the ``tabular`` environment. * tablealign : positioning of table in text. The default is not to specify a position preference in the text. If, e.g. the alignment is ``ht``, then the LaTeX will be ``\\begin{table}[ht]``. * col_align : Alignment of columns If not present all columns will be centered. * caption : Table caption (string or list of strings) This will appear above the table as it is the standard in many scientific publications. If you prefer a caption below the table, just write the full LaTeX command as ``latexdict['tablefoot'] = r'\caption{My table}'`` * preamble, header_start, header_end, data_start, data_end, tablefoot: Pure LaTeX Each one can be a string or a list of strings. These strings will be inserted into the table without any further processing. See the examples below. * units : dictionary of strings Keys in this dictionary should be names of columns. If present, a line in the LaTeX table directly below the column names is added, which contains the values of the dictionary. Example:: from astropy.io import ascii data = {'name': ['bike', 'car'], 'mass': [75,1200], 'speed': [10, 130]} ascii.write(data, Writer=ascii.Latex, latexdict = {'units': {'mass': 'kg', 'speed': 'km/h'}}) If the column has no entry in the ``units`` dictionary, it defaults to the **unit** attribute of the column. If this attribute is not specified (i.e. it is None), the unit will be written as ``' '``. Run the following code to see where each element of the dictionary is inserted in the LaTeX table:: from astropy.io import ascii data = {'cola': [1,2], 'colb': [3,4]} ascii.write(data, Writer=ascii.Latex, latexdict=ascii.latex.latexdicts['template']) Some table styles are predefined in the dictionary ``ascii.latex.latexdicts``. The following generates in table in style preferred by A&A and some other journals:: ascii.write(data, Writer=ascii.Latex, latexdict=ascii.latex.latexdicts['AA']) As an example, this generates a table, which spans all columns and is centered on the page:: ascii.write(data, Writer=ascii.Latex, col_align='|lr|', latexdict={'preamble': r'\begin{center}', 'tablefoot': r'\end{center}', 'tabletype': 'table*'}) **caption** : Set table caption Shorthand for:: latexdict['caption'] = caption **col_align** : Set the column alignment. If not present this will be auto-generated for centered columns. Shorthand for:: latexdict['col_align'] = col_align """ _format_name = "latex" _io_registry_format_aliases = ["latex"] _io_registry_suffix = ".tex" _description = "LaTeX table" header_class = LatexHeader data_class = LatexData inputter_class = LatexInputter # Strictly speaking latex only supports 1-d columns so this should inherit # the base max_ndim = 1. But as reported in #11695 this causes a strange # problem with Jupyter notebook, which displays a table by first calling # _repr_latex_. For a multidimensional table this issues a stack traceback # before moving on to _repr_html_. Here we prioritize fixing the issue with # Jupyter displaying a Table with multidimensional columns. max_ndim = None def __init__( self, ignore_latex_commands=[ "hline", "vspace", "tableline", "toprule", "midrule", "bottomrule", ], latexdict={}, caption="", col_align=None, ): super().__init__() self.latex = {} # The latex dict drives the format of the table and needs to be shared # with data and header self.header.latex = self.latex self.data.latex = self.latex self.latex["tabletype"] = "table" self.latex.update(latexdict) if caption: self.latex["caption"] = caption if col_align: self.latex["col_align"] = col_align self.ignore_latex_commands = ignore_latex_commands self.header.comment = "%|" + "|".join( [r"\\" + command for command in self.ignore_latex_commands] ) self.data.comment = self.header.comment def write(self, table=None): self.header.start_line = None self.data.start_line = None return core.BaseReader.write(self, table=table) class AASTexHeaderSplitter(LatexSplitter): r"""Extract column names from a `deluxetable`_. This splitter expects the following LaTeX code **in a single line**: \tablehead{\colhead{col1} & ... & \colhead{coln}} """ def __call__(self, lines): return super(LatexSplitter, self).__call__(lines) def process_line(self, line): """extract column names from tablehead""" line = line.split("%")[0] line = line.replace(r"\tablehead", "") line = line.strip() if (line[0] == "{") and (line[-1] == "}"): line = line[1:-1] else: raise core.InconsistentTableError(r"\tablehead is missing {}") return line.replace(r"\colhead", "") def join(self, vals): return " & ".join([r"\colhead{" + str(x) + "}" for x in vals]) class AASTexHeader(LatexHeader): r"""In a `deluxetable <http://fits.gsfc.nasa.gov/standard30/deluxetable.sty>`_ some header keywords differ from standard LaTeX. This header is modified to take that into account. """ header_start = r"\tablehead" splitter_class = AASTexHeaderSplitter def start_line(self, lines): return find_latex_line(lines, r"\tablehead") def write(self, lines): if "col_align" not in self.latex: self.latex["col_align"] = len(self.cols) * "c" if "tablealign" in self.latex: align = "[" + self.latex["tablealign"] + "]" else: align = "" lines.append( r"\begin{" + self.latex["tabletype"] + r"}{" + self.latex["col_align"] + r"}" + align ) add_dictval_to_list(self.latex, "preamble", lines) if "caption" in self.latex: lines.append(r"\tablecaption{" + self.latex["caption"] + "}") tablehead = " & ".join([r"\colhead{" + name + "}" for name in self.colnames]) units = self._get_units() if "units" in self.latex: units.update(self.latex["units"]) if units: tablehead += r"\\ " + self.splitter.join( [units.get(name, " ") for name in self.colnames] ) lines.append(r"\tablehead{" + tablehead + "}") class AASTexData(LatexData): r"""In a `deluxetable`_ the data is enclosed in `\startdata` and `\enddata`""" data_start = r"\startdata" data_end = r"\enddata" def start_line(self, lines): return find_latex_line(lines, self.data_start) + 1 def write(self, lines): lines.append(self.data_start) lines_length_initial = len(lines) core.BaseData.write(self, lines) # To remove extra space(s) and // appended which creates an extra new line # in the end. if len(lines) > lines_length_initial: lines[-1] = re.sub(r"\s* \\ \\ \s* $", "", lines[-1], flags=re.VERBOSE) lines.append(self.data_end) add_dictval_to_list(self.latex, "tablefoot", lines) lines.append(r"\end{" + self.latex["tabletype"] + r"}") class AASTex(Latex): """AASTeX format table. This class implements some AASTeX specific commands. AASTeX is used for the AAS (American Astronomical Society) publications like ApJ, ApJL and AJ. It derives from the ``Latex`` reader and accepts the same keywords. However, the keywords ``header_start``, ``header_end``, ``data_start`` and ``data_end`` in ``latexdict`` have no effect. """ _format_name = "aastex" _io_registry_format_aliases = ["aastex"] _io_registry_suffix = "" # AASTex inherits from Latex, so override this class attr _description = "AASTeX deluxetable used for AAS journals" header_class = AASTexHeader data_class = AASTexData def __init__(self, **kwargs): super().__init__(**kwargs) # check if tabletype was explicitly set by the user if not (("latexdict" in kwargs) and ("tabletype" in kwargs["latexdict"])): self.latex["tabletype"] = "deluxetable"
b40276d51d0676049837261c45129b0ee32b885eb3c3f02d1a2855a0393f904e
# Licensed under a 3-clause BSD style license - see LICENSE.rst """An extensible ASCII table reader and writer. ipac.py: Classes to read IPAC table format :Copyright: Smithsonian Astrophysical Observatory (2011) :Author: Tom Aldcroft ([email protected]) """ import re from collections import OrderedDict, defaultdict from textwrap import wrap from warnings import warn from astropy.table.pprint import get_auto_format_func from astropy.utils.exceptions import AstropyUserWarning from . import basic, core, fixedwidth class IpacFormatErrorDBMS(Exception): def __str__(self): return "{}\nSee {}".format( super().__str__(), "https://irsa.ipac.caltech.edu/applications/DDGEN/Doc/DBMSrestriction.html", ) class IpacFormatError(Exception): def __str__(self): return "{}\nSee {}".format( super().__str__(), "https://irsa.ipac.caltech.edu/applications/DDGEN/Doc/ipac_tbl.html", ) class IpacHeaderSplitter(core.BaseSplitter): """Splitter for Ipac Headers. This splitter is similar its parent when reading, but supports a fixed width format (as required for Ipac table headers) for writing. """ process_line = None process_val = None delimiter = "|" delimiter_pad = "" skipinitialspace = False comment = r"\s*\\" write_comment = r"\\" col_starts = None col_ends = None def join(self, vals, widths): pad = self.delimiter_pad or "" delimiter = self.delimiter or "" padded_delim = pad + delimiter + pad bookend_left = delimiter + pad bookend_right = pad + delimiter vals = [" " * (width - len(val)) + val for val, width in zip(vals, widths)] return bookend_left + padded_delim.join(vals) + bookend_right class IpacHeader(fixedwidth.FixedWidthHeader): """IPAC table header""" splitter_class = IpacHeaderSplitter # Defined ordered list of possible types. Ordering is needed to # distinguish between "d" (double) and "da" (date) as defined by # the IPAC standard for abbreviations. This gets used in get_col_type(). col_type_list = ( ("integer", core.IntType), ("long", core.IntType), ("double", core.FloatType), ("float", core.FloatType), ("real", core.FloatType), ("char", core.StrType), ("date", core.StrType), ) definition = "ignore" start_line = None def process_lines(self, lines): """Generator to yield IPAC header lines, i.e. those starting and ending with delimiter character (with trailing whitespace stripped)""" delim = self.splitter.delimiter for line in lines: line = line.rstrip() if line.startswith(delim) and line.endswith(delim): yield line.strip(delim) def update_meta(self, lines, meta): """ Extract table-level comments and keywords for IPAC table. See: https://irsa.ipac.caltech.edu/applications/DDGEN/Doc/ipac_tbl.html#kw """ def process_keyword_value(val): """ Take a string value and convert to float, int or str, and strip quotes as needed. """ val = val.strip() try: val = int(val) except Exception: try: val = float(val) except Exception: # Strip leading/trailing quote. The spec says that a matched pair # of quotes is required, but this code will allow a non-quoted value. for quote in ('"', "'"): if val.startswith(quote) and val.endswith(quote): val = val[1:-1] break return val table_meta = meta["table"] table_meta["comments"] = [] table_meta["keywords"] = OrderedDict() keywords = table_meta["keywords"] # fmt: off re_keyword = re.compile( r'\\' r'(?P<name> \w+)' r'\s* = (?P<value> .+) $', re.VERBOSE ) # fmt: on for line in lines: # Keywords and comments start with "\". Once the first non-slash # line is seen then bail out. if not line.startswith("\\"): break m = re_keyword.match(line) if m: name = m.group("name") val = process_keyword_value(m.group("value")) # IPAC allows for continuation keywords, e.g. # \SQL = 'WHERE ' # \SQL = 'SELECT (25 column names follow in next row.)' if name in keywords and isinstance(val, str): prev_val = keywords[name]["value"] if isinstance(prev_val, str): val = prev_val + val keywords[name] = {"value": val} else: # Comment is required to start with "\ " if line.startswith("\\ "): val = line[2:].strip() if val: table_meta["comments"].append(val) def get_col_type(self, col): for col_type_key, col_type in self.col_type_list: if col_type_key.startswith(col.raw_type.lower()): return col_type else: raise ValueError( f'Unknown data type ""{col.raw_type}"" for column "{col.name}"' ) def get_cols(self, lines): """ Initialize the header Column objects from the table ``lines``. Based on the previously set Header attributes find or create the column names. Sets ``self.cols`` with the list of Columns. Parameters ---------- lines : list List of table lines """ # generator returning valid header lines header_lines = self.process_lines(lines) header_vals = [vals for vals in self.splitter(header_lines)] if len(header_vals) == 0: raise ValueError( "At least one header line beginning and ending with delimiter required" ) elif len(header_vals) > 4: raise ValueError("More than four header lines were found") # Generate column definitions cols = [] start = 1 for i, name in enumerate(header_vals[0]): col = core.Column(name=name.strip(" -")) col.start = start col.end = start + len(name) if len(header_vals) > 1: col.raw_type = header_vals[1][i].strip(" -") col.type = self.get_col_type(col) if len(header_vals) > 2: col.unit = header_vals[2][i].strip() or None # Can't strip dashes here if len(header_vals) > 3: # The IPAC null value corresponds to the io.ascii bad_value. # In this case there isn't a fill_value defined, so just put # in the minimal entry that is sure to convert properly to the # required type. # # Strip spaces but not dashes (not allowed in NULL row per # https://github.com/astropy/astropy/issues/361) null = header_vals[3][i].strip() fillval = "" if issubclass(col.type, core.StrType) else "0" self.data.fill_values.append((null, fillval, col.name)) start = col.end + 1 cols.append(col) # Correct column start/end based on definition if self.ipac_definition == "right": col.start -= 1 elif self.ipac_definition == "left": col.end += 1 self.names = [x.name for x in cols] self.cols = cols def str_vals(self): if self.DBMS: IpacFormatE = IpacFormatErrorDBMS else: IpacFormatE = IpacFormatError namelist = self.colnames if self.DBMS: countnamelist = defaultdict(int) for name in self.colnames: countnamelist[name.lower()] += 1 doublenames = [x for x in countnamelist if countnamelist[x] > 1] if doublenames != []: raise IpacFormatE( "IPAC DBMS tables are not case sensitive. " f"This causes duplicate column names: {doublenames}" ) for name in namelist: m = re.match(r"\w+", name) if m.end() != len(name): raise IpacFormatE( f"{name} - Only alphanumeric characters and _ " "are allowed in column names." ) if self.DBMS and not (name[0].isalpha() or (name[0] == "_")): raise IpacFormatE(f"Column name cannot start with numbers: {name}") if self.DBMS: if name in ["x", "y", "z", "X", "Y", "Z"]: raise IpacFormatE( f"{name} - x, y, z, X, Y, Z are reserved names and " "cannot be used as column names." ) if len(name) > 16: raise IpacFormatE( f"{name} - Maximum length for column name is 16 characters" ) else: if len(name) > 40: raise IpacFormatE( f"{name} - Maximum length for column name is 40 characters." ) dtypelist = [] unitlist = [] nullist = [] for col in self.cols: col_dtype = col.info.dtype col_unit = col.info.unit col_format = col.info.format if col_dtype.kind in ["i", "u"]: if col_dtype.itemsize <= 2: dtypelist.append("int") else: dtypelist.append("long") elif col_dtype.kind == "f": if col_dtype.itemsize <= 4: dtypelist.append("float") else: dtypelist.append("double") else: dtypelist.append("char") if col_unit is None: unitlist.append("") else: unitlist.append(str(col.info.unit)) # This may be incompatible with mixin columns null = col.fill_values[core.masked] try: auto_format_func = get_auto_format_func(col) format_func = col.info._format_funcs.get(col_format, auto_format_func) nullist.append((format_func(col_format, null)).strip()) except Exception: # It is possible that null and the column values have different # data types (e.g. number and null = 'null' (i.e. a string). # This could cause all kinds of exceptions, so a catch all # block is needed here nullist.append(str(null).strip()) return [namelist, dtypelist, unitlist, nullist] def write(self, lines, widths): """Write header. The width of each column is determined in Ipac.write. Writing the header must be delayed until that time. This function is called from there, once the width information is available.""" for vals in self.str_vals(): lines.append(self.splitter.join(vals, widths)) return lines class IpacDataSplitter(fixedwidth.FixedWidthSplitter): delimiter = " " delimiter_pad = "" bookend = True class IpacData(fixedwidth.FixedWidthData): """IPAC table data reader""" comment = r"[|\\]" start_line = 0 splitter_class = IpacDataSplitter fill_values = [(core.masked, "null")] def write(self, lines, widths, vals_list): """IPAC writer, modified from FixedWidth writer""" for vals in vals_list: lines.append(self.splitter.join(vals, widths)) return lines class Ipac(basic.Basic): r"""IPAC format table. See: https://irsa.ipac.caltech.edu/applications/DDGEN/Doc/ipac_tbl.html Example:: \\name=value \\ Comment | column1 | column2 | column3 | column4 | column5 | | double | double | int | double | char | | unit | unit | unit | unit | unit | | null | null | null | null | null | 2.0978 29.09056 73765 2.06000 B8IVpMnHg Or:: |-----ra---|----dec---|---sao---|------v---|----sptype--------| 2.09708 29.09056 73765 2.06000 B8IVpMnHg The comments and keywords defined in the header are available via the output table ``meta`` attribute:: >>> import os >>> from astropy.io import ascii >>> filename = os.path.join(ascii.__path__[0], 'tests/data/ipac.dat') >>> data = ascii.read(filename) >>> print(data.meta['comments']) ['This is an example of a valid comment'] >>> for name, keyword in data.meta['keywords'].items(): ... print(name, keyword['value']) ... intval 1 floatval 2300.0 date Wed Sp 20 09:48:36 1995 key_continue IPAC keywords can continue across lines Note that there are different conventions for characters occurring below the position of the ``|`` symbol in IPAC tables. By default, any character below a ``|`` will be ignored (since this is the current standard), but if you need to read files that assume characters below the ``|`` symbols belong to the column before or after the ``|``, you can specify ``definition='left'`` or ``definition='right'`` respectively when reading the table (the default is ``definition='ignore'``). The following examples demonstrate the different conventions: * ``definition='ignore'``:: | ra | dec | | float | float | 1.2345 6.7890 * ``definition='left'``:: | ra | dec | | float | float | 1.2345 6.7890 * ``definition='right'``:: | ra | dec | | float | float | 1.2345 6.7890 IPAC tables can specify a null value in the header that is shown in place of missing or bad data. On writing, this value defaults to ``null``. To specify a different null value, use the ``fill_values`` option to replace masked values with a string or number of your choice as described in :ref:`astropy:io_ascii_write_parameters`:: >>> from astropy.io.ascii import masked >>> fill = [(masked, 'N/A', 'ra'), (masked, -999, 'sptype')] >>> ascii.write(data, format='ipac', fill_values=fill) \ This is an example of a valid comment ... | ra| dec| sai| v2| sptype| | double| double| long| double| char| | unit| unit| unit| unit| ergs| | N/A| null| null| null| -999| N/A 29.09056 null 2.06 -999 2345678901.0 3456789012.0 456789012 4567890123.0 567890123456789012 When writing a table with a column of integers, the data type is output as ``int`` when the column ``dtype.itemsize`` is less than or equal to 2; otherwise the data type is ``long``. For a column of floating-point values, the data type is ``float`` when ``dtype.itemsize`` is less than or equal to 4; otherwise the data type is ``double``. Parameters ---------- definition : str, optional Specify the convention for characters in the data table that occur directly below the pipe (``|``) symbol in the header column definition: * 'ignore' - Any character beneath a pipe symbol is ignored (default) * 'right' - Character is associated with the column to the right * 'left' - Character is associated with the column to the left DBMS : bool, optional If true, this verifies that written tables adhere (semantically) to the `IPAC/DBMS <https://irsa.ipac.caltech.edu/applications/DDGEN/Doc/DBMSrestriction.html>`_ definition of IPAC tables. If 'False' it only checks for the (less strict) `IPAC <https://irsa.ipac.caltech.edu/applications/DDGEN/Doc/ipac_tbl.html>`_ definition. """ _format_name = "ipac" _io_registry_format_aliases = ["ipac"] _io_registry_can_write = True _description = "IPAC format table" data_class = IpacData header_class = IpacHeader def __init__(self, definition="ignore", DBMS=False): super().__init__() # Usually the header is not defined in __init__, but here it need a keyword if definition in ["ignore", "left", "right"]: self.header.ipac_definition = definition else: raise ValueError("definition should be one of ignore/left/right") self.header.DBMS = DBMS def write(self, table): """ Write ``table`` as list of strings. Parameters ---------- table : `~astropy.table.Table` Input table data Returns ------- lines : list List of strings corresponding to ASCII table """ # Set a default null value for all columns by adding at the end, which # is the position with the lowest priority. # We have to do it this late, because the fill_value # defined in the class can be overwritten by ui.write self.data.fill_values.append((core.masked, "null")) # Check column names before altering self.header.cols = list(table.columns.values()) self.header.check_column_names(self.names, self.strict_names, self.guessing) core._apply_include_exclude_names( table, self.names, self.include_names, self.exclude_names ) # Check that table has only 1-d columns. self._check_multidim_table(table) # Now use altered columns new_cols = list(table.columns.values()) # link information about the columns to the writer object (i.e. self) self.header.cols = new_cols self.data.cols = new_cols # Write header and data to lines list lines = [] # Write meta information if "comments" in table.meta: for comment in table.meta["comments"]: if len(str(comment)) > 78: warn( "Comment string > 78 characters was automatically wrapped.", AstropyUserWarning, ) for line in wrap( str(comment), 80, initial_indent="\\ ", subsequent_indent="\\ " ): lines.append(line) if "keywords" in table.meta: keydict = table.meta["keywords"] for keyword in keydict: try: val = keydict[keyword]["value"] lines.append(f"\\{keyword.strip()}={val!r}") # meta is not standardized: Catch some common Errors. except TypeError: warn( f"Table metadata keyword {keyword} has been skipped. " "IPAC metadata must be in the form {{'keywords':" "{{'keyword': {{'value': value}} }}", AstropyUserWarning, ) ignored_keys = [ key for key in table.meta if key not in ("keywords", "comments") ] if any(ignored_keys): warn( f"Table metadata keyword(s) {ignored_keys} were not written. " "IPAC metadata must be in the form {{'keywords':" "{{'keyword': {{'value': value}} }}", AstropyUserWarning, ) # Usually, this is done in data.write, but since the header is written # first, we need that here. self.data._set_fill_values(self.data.cols) # get header and data as strings to find width of each column for i, col in enumerate(table.columns.values()): col.headwidth = max(len(vals[i]) for vals in self.header.str_vals()) # keep data_str_vals because they take some time to make data_str_vals = [] col_str_iters = self.data.str_vals() for vals in zip(*col_str_iters): data_str_vals.append(vals) for i, col in enumerate(table.columns.values()): # FIXME: In Python 3.4, use max([], default=0). # See: https://docs.python.org/3/library/functions.html#max if data_str_vals: col.width = max(len(vals[i]) for vals in data_str_vals) else: col.width = 0 widths = [max(col.width, col.headwidth) for col in table.columns.values()] # then write table self.header.write(lines, widths) self.data.write(lines, widths, data_str_vals) return lines
8b2334d83733c4b5009eae70678c0b1e993107310ab5f53e0385b1b4307fa766
# Licensed under a 3-clause BSD style license import os import numpy from setuptools import Extension ROOT = os.path.relpath(os.path.dirname(__file__)) def get_extensions(): sources = [ os.path.join(ROOT, "cparser.pyx"), os.path.join(ROOT, "src", "tokenizer.c"), ] ascii_ext = Extension( name="astropy.io.ascii.cparser", include_dirs=[numpy.get_include()], sources=sources, ) return [ascii_ext]
11bfb79f381822f685f6d0fe79bb399ac09a460fa0cc706925fc1835221fa8d8
# Licensed under a 3-clause BSD style license - see LICENSE.rst """An extensible HTML table reader and writer. html.py: Classes to read and write HTML tables `BeautifulSoup <http://www.crummy.com/software/BeautifulSoup/>`_ must be installed to read HTML tables. """ import warnings from copy import deepcopy from astropy.table import Column from astropy.utils.xml import writer from . import core class SoupString(str): """ Allows for strings to hold BeautifulSoup data. """ def __new__(cls, *args, **kwargs): return str.__new__(cls, *args, **kwargs) def __init__(self, val): self.soup = val class ListWriter: """ Allows for XMLWriter to write to a list instead of a file. """ def __init__(self, out): self.out = out def write(self, data): self.out.append(data) def identify_table(soup, htmldict, numtable): """ Checks whether the given BeautifulSoup tag is the table the user intends to process. """ if soup is None or soup.name != "table": return False # Tag is not a <table> elif "table_id" not in htmldict: return numtable == 1 table_id = htmldict["table_id"] if isinstance(table_id, str): return "id" in soup.attrs and soup["id"] == table_id elif isinstance(table_id, int): return table_id == numtable # Return False if an invalid parameter is given return False class HTMLInputter(core.BaseInputter): """ Input lines of HTML in a valid form. This requires `BeautifulSoup <http://www.crummy.com/software/BeautifulSoup/>`_ to be installed. """ def process_lines(self, lines): """ Convert the given input into a list of SoupString rows for further processing. """ try: from bs4 import BeautifulSoup except ImportError: raise core.OptionalTableImportError( "BeautifulSoup must be installed to read HTML tables" ) if "parser" not in self.html: with warnings.catch_warnings(): # Ignore bs4 parser warning #4550. warnings.filterwarnings( "ignore", ".*no parser was explicitly specified.*" ) soup = BeautifulSoup("\n".join(lines)) else: # use a custom backend parser soup = BeautifulSoup("\n".join(lines), self.html["parser"]) tables = soup.find_all("table") for i, possible_table in enumerate(tables): if identify_table(possible_table, self.html, i + 1): table = possible_table # Find the correct table break else: if isinstance(self.html["table_id"], int): err_descr = f"number {self.html['table_id']}" else: err_descr = f"id '{self.html['table_id']}'" raise core.InconsistentTableError( f"ERROR: HTML table {err_descr} not found" ) # Get all table rows soup_list = [SoupString(x) for x in table.find_all("tr")] return soup_list class HTMLSplitter(core.BaseSplitter): """ Split HTML table data. """ def __call__(self, lines): """ Return HTML data from lines as a generator. """ for line in lines: if not isinstance(line, SoupString): raise TypeError("HTML lines should be of type SoupString") soup = line.soup header_elements = soup.find_all("th") if header_elements: # Return multicolumns as tuples for HTMLHeader handling yield [ (el.text.strip(), el["colspan"]) if el.has_attr("colspan") else el.text.strip() for el in header_elements ] data_elements = soup.find_all("td") if data_elements: yield [el.text.strip() for el in data_elements] if len(lines) == 0: raise core.InconsistentTableError( "HTML tables must contain data in a <table> tag" ) class HTMLOutputter(core.TableOutputter): """ Output the HTML data as an ``astropy.table.Table`` object. This subclass allows for the final table to contain multidimensional columns (defined using the colspan attribute of <th>). """ default_converters = [ core.convert_numpy(int), core.convert_numpy(float), core.convert_numpy(str), ] def __call__(self, cols, meta): """ Process the data in multidimensional columns. """ new_cols = [] col_num = 0 while col_num < len(cols): col = cols[col_num] if hasattr(col, "colspan"): # Join elements of spanned columns together into list of tuples span_cols = cols[col_num : col_num + col.colspan] new_col = core.Column(col.name) new_col.str_vals = list(zip(*[x.str_vals for x in span_cols])) new_cols.append(new_col) col_num += col.colspan else: new_cols.append(col) col_num += 1 return super().__call__(new_cols, meta) class HTMLHeader(core.BaseHeader): splitter_class = HTMLSplitter def start_line(self, lines): """ Return the line number at which header data begins. """ for i, line in enumerate(lines): if not isinstance(line, SoupString): raise TypeError("HTML lines should be of type SoupString") soup = line.soup if soup.th is not None: return i return None def _set_cols_from_names(self): """ Set columns from header names, handling multicolumns appropriately. """ self.cols = [] new_names = [] for name in self.names: if isinstance(name, tuple): col = core.Column(name=name[0]) col.colspan = int(name[1]) self.cols.append(col) new_names.append(name[0]) for i in range(1, int(name[1])): # Add dummy columns self.cols.append(core.Column("")) new_names.append("") else: self.cols.append(core.Column(name=name)) new_names.append(name) self.names = new_names class HTMLData(core.BaseData): splitter_class = HTMLSplitter def start_line(self, lines): """ Return the line number at which table data begins. """ for i, line in enumerate(lines): if not isinstance(line, SoupString): raise TypeError("HTML lines should be of type SoupString") soup = line.soup if soup.td is not None: if soup.th is not None: raise core.InconsistentTableError( "HTML tables cannot have headings and data in the same row" ) return i raise core.InconsistentTableError("No start line found for HTML data") def end_line(self, lines): """ Return the line number at which table data ends. """ last_index = -1 for i, line in enumerate(lines): if not isinstance(line, SoupString): raise TypeError("HTML lines should be of type SoupString") soup = line.soup if soup.td is not None: last_index = i if last_index == -1: return None return last_index + 1 class HTML(core.BaseReader): """HTML format table. In order to customize input and output, a dict of parameters may be passed to this class holding specific customizations. **htmldict** : Dictionary of parameters for HTML input/output. * css : Customized styling If present, this parameter will be included in a <style> tag and will define stylistic attributes of the output. * table_id : ID for the input table If a string, this defines the HTML id of the table to be processed. If an integer, this specifies the index of the input table in the available tables. Unless this parameter is given, the reader will use the first table found in the input file. * multicol : Use multi-dimensional columns for output The writer will output tuples as elements of multi-dimensional columns if this parameter is true, and if not then it will use the syntax 1.36583e-13 .. 1.36583e-13 for output. If not present, this parameter will be true by default. * raw_html_cols : column name or list of names with raw HTML content This allows one to include raw HTML content in the column output, for instance to include link references in a table. This option requires that the bleach package be installed. Only whitelisted tags are allowed through for security reasons (see the raw_html_clean_kwargs arg). * raw_html_clean_kwargs : dict of keyword args controlling HTML cleaning Raw HTML will be cleaned to prevent unsafe HTML from ending up in the table output. This is done by calling ``bleach.clean(data, **raw_html_clean_kwargs)``. For details on the available options (e.g. tag whitelist) see: https://bleach.readthedocs.io/en/latest/clean.html * parser : Specific HTML parsing library to use If specified, this specifies which HTML parsing library BeautifulSoup should use as a backend. The options to choose from are 'html.parser' (the standard library parser), 'lxml' (the recommended parser), 'xml' (lxml's XML parser), and 'html5lib'. html5lib is a highly lenient parser and therefore might work correctly for unusual input if a different parser fails. * jsfiles : list of js files to include when writing table. * cssfiles : list of css files to include when writing table. * js : js script to include in the body when writing table. * table_class : css class for the table """ _format_name = "html" _io_registry_format_aliases = ["html"] _io_registry_suffix = ".html" _description = "HTML table" header_class = HTMLHeader data_class = HTMLData inputter_class = HTMLInputter max_ndim = 2 # HTML supports writing 2-d columns with shape (n, m) def __init__(self, htmldict={}): """ Initialize classes for HTML reading and writing. """ super().__init__() self.html = deepcopy(htmldict) if "multicol" not in htmldict: self.html["multicol"] = True if "table_id" not in htmldict: self.html["table_id"] = 1 self.inputter.html = self.html def read(self, table): """ Read the ``table`` in HTML format and return a resulting ``Table``. """ self.outputter = HTMLOutputter() return super().read(table) def write(self, table): """ Return data in ``table`` converted to HTML as a list of strings. """ # Check that table has only 1-d or 2-d columns. Above that fails. self._check_multidim_table(table) cols = list(table.columns.values()) self.data.header.cols = cols self.data.cols = cols if isinstance(self.data.fill_values, tuple): self.data.fill_values = [self.data.fill_values] self.data._set_fill_values(cols) self.data._set_col_formats() lines = [] # Set HTML escaping to False for any column in the raw_html_cols input raw_html_cols = self.html.get("raw_html_cols", []) if isinstance(raw_html_cols, str): raw_html_cols = [raw_html_cols] # Allow for a single string as input cols_escaped = [col.info.name not in raw_html_cols for col in cols] # Kwargs that get passed on to bleach.clean() if that is available. raw_html_clean_kwargs = self.html.get("raw_html_clean_kwargs", {}) # Use XMLWriter to output HTML to lines w = writer.XMLWriter(ListWriter(lines)) with w.tag("html"): with w.tag("head"): # Declare encoding and set CSS style for table with w.tag("meta", attrib={"charset": "utf-8"}): pass with w.tag( "meta", attrib={ "http-equiv": "Content-type", "content": "text/html;charset=UTF-8", }, ): pass if "css" in self.html: with w.tag("style"): w.data(self.html["css"]) if "cssfiles" in self.html: for filename in self.html["cssfiles"]: with w.tag( "link", rel="stylesheet", href=filename, type="text/css" ): pass if "jsfiles" in self.html: for filename in self.html["jsfiles"]: with w.tag("script", src=filename): # need this instead of pass to get <script></script> w.data("") with w.tag("body"): if "js" in self.html: with w.xml_cleaning_method("none"): with w.tag("script"): w.data(self.html["js"]) if isinstance(self.html["table_id"], str): html_table_id = self.html["table_id"] else: html_table_id = None if "table_class" in self.html: html_table_class = self.html["table_class"] attrib = {"class": html_table_class} else: attrib = {} with w.tag("table", id=html_table_id, attrib=attrib): with w.tag("thead"): with w.tag("tr"): for col in cols: if len(col.shape) > 1 and self.html["multicol"]: # Set colspan attribute for multicolumns w.start("th", colspan=col.shape[1]) else: w.start("th") w.data(col.info.name.strip()) w.end(indent=False) col_str_iters = [] new_cols_escaped = [] # Make a container to hold any new_col objects created # below for multicolumn elements. This is purely to # maintain a reference for these objects during # subsequent iteration to format column values. This # requires that the weakref info._parent be maintained. new_cols = [] for col, col_escaped in zip(cols, cols_escaped): if len(col.shape) > 1 and self.html["multicol"]: span = col.shape[1] for i in range(span): # Split up multicolumns into separate columns new_col = Column([el[i] for el in col]) new_col_iter_str_vals = self.fill_values( col, new_col.info.iter_str_vals() ) col_str_iters.append(new_col_iter_str_vals) new_cols_escaped.append(col_escaped) new_cols.append(new_col) else: col_iter_str_vals = self.fill_values( col, col.info.iter_str_vals() ) col_str_iters.append(col_iter_str_vals) new_cols_escaped.append(col_escaped) for row in zip(*col_str_iters): with w.tag("tr"): for el, col_escaped in zip(row, new_cols_escaped): # Potentially disable HTML escaping for column method = "escape_xml" if col_escaped else "bleach_clean" with w.xml_cleaning_method( method, **raw_html_clean_kwargs ): w.start("td") w.data(el.strip()) w.end(indent=False) # Fixes XMLWriter's insertion of unwanted line breaks return ["".join(lines)] def fill_values(self, col, col_str_iters): """ Return an iterator of the values with replacements based on fill_values """ # check if the col is a masked column and has fill values is_masked_column = hasattr(col, "mask") has_fill_values = hasattr(col, "fill_values") for idx, col_str in enumerate(col_str_iters): if is_masked_column and has_fill_values: if col.mask[idx]: yield col.fill_values[core.masked] continue if has_fill_values: if col_str in col.fill_values: yield col.fill_values[col_str] continue yield col_str
4424d701fe2d493795ee01655f33a076cda21b17f8baaca06ea6d96a77c3ecca
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ sextractor.py: Classes to read SExtractor table format Built on daophot.py: :Copyright: Smithsonian Astrophysical Observatory (2011) :Author: Tom Aldcroft ([email protected]) """ import re from . import core class SExtractorHeader(core.BaseHeader): """Read the header from a file produced by SExtractor.""" comment = r"^\s*#\s*\S\D.*" # Find lines that don't have "# digit" def get_cols(self, lines): """ Initialize the header Column objects from the table ``lines`` for a SExtractor header. The SExtractor header is specialized so that we just copy the entire BaseHeader get_cols routine and modify as needed. Parameters ---------- lines : list List of table lines """ # This assumes that the columns are listed in order, one per line with a # header comment string of the format: "# 1 ID short description [unit]" # However, some may be missing and must be inferred from skipped column numbers columns = {} # E.g. '# 1 ID identification number' (no units) or '# 2 MAGERR magnitude of error [mag]' # Updated along with issue #4603, for more robust parsing of unit re_name_def = re.compile( r"""^\s* \# \s* # possible whitespace around # (?P<colnumber> [0-9]+)\s+ # number of the column in table (?P<colname> [-\w]+) # name of the column # column description, match any character until... (?:\s+(?P<coldescr> \w .+) # ...until [non-space][space][unit] or [not-right-bracket][end] (?:(?<!(\]))$|(?=(?:(?<=\S)\s+\[.+\]))))? (?:\s*\[(?P<colunit>.+)\])?.* # match units in brackets """, re.VERBOSE, ) dataline = None for line in lines: if not line.startswith("#"): dataline = line # save for later to infer the actual number of columns break # End of header lines else: match = re_name_def.search(line) if match: colnumber = int(match.group("colnumber")) colname = match.group("colname") coldescr = match.group("coldescr") # If no units are given, colunit = None colunit = match.group("colunit") columns[colnumber] = (colname, coldescr, colunit) # Handle skipped column numbers colnumbers = sorted(columns) # Handle the case where the last column is array-like by append a pseudo column # If there are more data columns than the largest column number # then add a pseudo-column that will be dropped later. This allows # the array column logic below to work in all cases. if dataline is not None: n_data_cols = len(dataline.split()) else: # handles no data, where we have to rely on the last column number n_data_cols = colnumbers[-1] # sextractor column number start at 1. columns[n_data_cols + 1] = (None, None, None) colnumbers.append(n_data_cols + 1) if len(columns) > 1: # only fill in skipped columns when there is genuine column initially previous_column = 0 for n in colnumbers: if n != previous_column + 1: for c in range(previous_column + 1, n): column_name = ( columns[previous_column][0] + f"_{c - previous_column}" ) column_descr = columns[previous_column][1] column_unit = columns[previous_column][2] columns[c] = (column_name, column_descr, column_unit) previous_column = n # Add the columns in order to self.names colnumbers = sorted(columns)[:-1] # drop the pseudo column self.names = [] for n in colnumbers: self.names.append(columns[n][0]) if not self.names: raise core.InconsistentTableError( "No column names found in SExtractor header" ) self.cols = [] for n in colnumbers: col = core.Column(name=columns[n][0]) col.description = columns[n][1] col.unit = columns[n][2] self.cols.append(col) class SExtractorData(core.BaseData): start_line = 0 delimiter = " " comment = r"\s*#" class SExtractor(core.BaseReader): """SExtractor format table. SExtractor is a package for faint-galaxy photometry (Bertin & Arnouts 1996, A&A Supp. 317, 393.) See: https://sextractor.readthedocs.io/en/latest/ Example:: # 1 NUMBER # 2 ALPHA_J2000 # 3 DELTA_J2000 # 4 FLUX_RADIUS # 7 MAG_AUTO [mag] # 8 X2_IMAGE Variance along x [pixel**2] # 9 X_MAMA Barycenter position along MAMA x axis [m**(-6)] # 10 MU_MAX Peak surface brightness above background [mag * arcsec**(-2)] 1 32.23222 10.1211 0.8 1.2 1.4 18.1 1000.0 0.00304 -3.498 2 38.12321 -88.1321 2.2 2.4 3.1 17.0 1500.0 0.00908 1.401 Note the skipped numbers since flux_radius has 3 columns. The three FLUX_RADIUS columns will be named FLUX_RADIUS, FLUX_RADIUS_1, FLUX_RADIUS_2 Also note that a post-ID description (e.g. "Variance along x") is optional and that units may be specified at the end of a line in brackets. """ _format_name = "sextractor" _io_registry_can_write = False _description = "SExtractor format table" header_class = SExtractorHeader data_class = SExtractorData inputter_class = core.ContinuationLinesInputter def read(self, table): """ Read input data (file-like object, filename, list of strings, or single string) into a Table and return the result. """ out = super().read(table) # remove the comments if "comments" in out.meta: del out.meta["comments"] return out def write(self, table): raise NotImplementedError
4cfd9432fb3758d8aee48d71855116e5056207f97b67d6b44d30ea9e993525a4
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This package contains functions for reading and writing QDP tables that are not meant to be used directly, but instead are available as readers/writers in `astropy.table`. See :ref:`astropy:table_io` for more details. """ import copy import re import warnings from collections.abc import Iterable import numpy as np from astropy.table import Table from astropy.utils.exceptions import AstropyUserWarning from . import basic, core def _line_type(line, delimiter=None): """Interpret a QDP file line Parameters ---------- line : str a single line of the file Returns ------- type : str Line type: "comment", "command", or "data" Examples -------- >>> _line_type("READ SERR 3") 'command' >>> _line_type(" \\n !some gibberish") 'comment' >>> _line_type(" ") 'comment' >>> _line_type(" 21345.45") 'data,1' >>> _line_type(" 21345.45 1.53e-3 1e-3 .04 NO nan") 'data,6' >>> _line_type(" 21345.45,1.53e-3,1e-3,.04,NO,nan", delimiter=',') 'data,6' >>> _line_type(" 21345.45 ! a comment to disturb") 'data,1' >>> _line_type("NO NO NO NO NO") 'new' >>> _line_type("NO,NO,NO,NO,NO", delimiter=',') 'new' >>> _line_type("N O N NOON OON O") Traceback (most recent call last): ... ValueError: Unrecognized QDP line... >>> _line_type(" some non-comment gibberish") Traceback (most recent call last): ... ValueError: Unrecognized QDP line... """ _decimal_re = r"[+-]?(\d+(\.\d*)?|\.\d+)([eE][+-]?\d+)?" _command_re = r"READ [TS]ERR(\s+[0-9]+)+" sep = delimiter if delimiter is None: sep = r"\s+" _new_re = rf"NO({sep}NO)+" _data_re = rf"({_decimal_re}|NO|[-+]?nan)({sep}({_decimal_re}|NO|[-+]?nan))*)" _type_re = rf"^\s*((?P<command>{_command_re})|(?P<new>{_new_re})|(?P<data>{_data_re})?\s*(\!(?P<comment>.*))?\s*$" _line_type_re = re.compile(_type_re) line = line.strip() if not line: return "comment" match = _line_type_re.match(line) if match is None: raise ValueError(f"Unrecognized QDP line: {line}") for type_, val in match.groupdict().items(): if val is None: continue if type_ == "data": return f"data,{len(val.split(sep=delimiter))}" else: return type_ def _get_type_from_list_of_lines(lines, delimiter=None): """Read through the list of QDP file lines and label each line by type Parameters ---------- lines : list List containing one file line in each entry Returns ------- contents : list List containing the type for each line (see `line_type_and_data`) ncol : int The number of columns in the data lines. Must be the same throughout the file Examples -------- >>> line0 = "! A comment" >>> line1 = "543 12 456.0" >>> lines = [line0, line1] >>> types, ncol = _get_type_from_list_of_lines(lines) >>> types[0] 'comment' >>> types[1] 'data,3' >>> ncol 3 >>> lines.append("23") >>> _get_type_from_list_of_lines(lines) Traceback (most recent call last): ... ValueError: Inconsistent number of columns """ types = [_line_type(line, delimiter=delimiter) for line in lines] current_ncol = None for type_ in types: if type_.startswith("data,"): ncol = int(type_[5:]) if current_ncol is None: current_ncol = ncol elif ncol != current_ncol: raise ValueError("Inconsistent number of columns") return types, current_ncol def _get_lines_from_file(qdp_file): if "\n" in qdp_file: lines = qdp_file.split("\n") elif isinstance(qdp_file, str): with open(qdp_file) as fobj: lines = [line.strip() for line in fobj.readlines()] elif isinstance(qdp_file, Iterable): lines = qdp_file else: raise ValueError("invalid value of qdb_file") return lines def _interpret_err_lines(err_specs, ncols, names=None): """Give list of column names from the READ SERR and TERR commands Parameters ---------- err_specs : dict ``{'serr': [n0, n1, ...], 'terr': [n2, n3, ...]}`` Error specifications for symmetric and two-sided errors ncols : int Number of data columns Other Parameters ---------------- names : list of str Name of data columns (defaults to ['col1', 'col2', ...]), _not_ including error columns. Returns ------- colnames : list List containing the column names. Error columns will have the name of the main column plus ``_err`` for symmetric errors, and ``_perr`` and ``_nerr`` for positive and negative errors respectively Examples -------- >>> col_in = ['MJD', 'Rate'] >>> cols = _interpret_err_lines(None, 2, names=col_in) >>> cols[0] 'MJD' >>> err_specs = {'terr': [1], 'serr': [2]} >>> ncols = 5 >>> cols = _interpret_err_lines(err_specs, ncols, names=col_in) >>> cols[0] 'MJD' >>> cols[2] 'MJD_nerr' >>> cols[4] 'Rate_err' >>> _interpret_err_lines(err_specs, 6, names=col_in) Traceback (most recent call last): ... ValueError: Inconsistent number of input colnames """ colnames = ["" for i in range(ncols)] if err_specs is None: serr_cols = terr_cols = [] else: # I don't want to empty the original one when using `pop` below err_specs = copy.deepcopy(err_specs) serr_cols = err_specs.pop("serr", []) terr_cols = err_specs.pop("terr", []) if names is not None: all_error_cols = len(serr_cols) + len(terr_cols) * 2 if all_error_cols + len(names) != ncols: raise ValueError("Inconsistent number of input colnames") shift = 0 for i in range(ncols): col_num = i + 1 - shift if colnames[i] != "": continue colname_root = f"col{col_num}" if names is not None: colname_root = names[col_num - 1] colnames[i] = f"{colname_root}" if col_num in serr_cols: colnames[i + 1] = f"{colname_root}_err" shift += 1 continue if col_num in terr_cols: colnames[i + 1] = f"{colname_root}_perr" colnames[i + 2] = f"{colname_root}_nerr" shift += 2 continue assert not np.any([c == "" for c in colnames]) return colnames def _get_tables_from_qdp_file(qdp_file, input_colnames=None, delimiter=None): """Get all tables from a QDP file Parameters ---------- qdp_file : str Input QDP file name Other Parameters ---------------- input_colnames : list of str Name of data columns (defaults to ['col1', 'col2', ...]), _not_ including error columns. delimiter : str Delimiter for the values in the table. Returns ------- list of `~astropy.table.Table` List containing all the tables present inside the QDP file """ lines = _get_lines_from_file(qdp_file) contents, ncol = _get_type_from_list_of_lines(lines, delimiter=delimiter) table_list = [] err_specs = {} colnames = None comment_text = "" initial_comments = "" command_lines = "" current_rows = None for line, datatype in zip(lines, contents): line = line.strip().lstrip("!") # Is this a comment? if datatype == "comment": comment_text += line + "\n" continue if datatype == "command": # The first time I find commands, I save whatever comments into # The initial comments. if command_lines == "": initial_comments = comment_text comment_text = "" if err_specs != {}: warnings.warn( "This file contains multiple command blocks. Please verify", AstropyUserWarning, ) command_lines += line + "\n" continue if datatype.startswith("data"): # The first time I find data, I define err_specs if err_specs == {} and command_lines != "": for cline in command_lines.strip().split("\n"): command = cline.strip().split() # This should never happen, but just in case. if len(command) < 3: continue err_specs[command[1].lower()] = [int(c) for c in command[2:]] if colnames is None: colnames = _interpret_err_lines(err_specs, ncol, names=input_colnames) if current_rows is None: current_rows = [] values = [] for v in line.split(delimiter): if v == "NO": values.append(np.ma.masked) else: # Understand if number is int or float try: values.append(int(v)) except ValueError: values.append(float(v)) current_rows.append(values) continue if datatype == "new": # Save table to table_list and reset if current_rows is not None: new_table = Table(names=colnames, rows=current_rows) new_table.meta["initial_comments"] = initial_comments.strip().split( "\n" ) new_table.meta["comments"] = comment_text.strip().split("\n") # Reset comments comment_text = "" table_list.append(new_table) current_rows = None continue # At the very end, if there is still a table being written, let's save # it to the table_list if current_rows is not None: new_table = Table(names=colnames, rows=current_rows) new_table.meta["initial_comments"] = initial_comments.strip().split("\n") new_table.meta["comments"] = comment_text.strip().split("\n") table_list.append(new_table) return table_list def _understand_err_col(colnames): """Get which column names are error columns Examples -------- >>> colnames = ['a', 'a_err', 'b', 'b_perr', 'b_nerr'] >>> serr, terr = _understand_err_col(colnames) >>> np.allclose(serr, [1]) True >>> np.allclose(terr, [2]) True >>> serr, terr = _understand_err_col(['a', 'a_nerr']) Traceback (most recent call last): ... ValueError: Missing positive error... >>> serr, terr = _understand_err_col(['a', 'a_perr']) Traceback (most recent call last): ... ValueError: Missing negative error... """ shift = 0 serr = [] terr = [] for i, col in enumerate(colnames): if col.endswith("_err"): # The previous column, but they're numbered from 1! # Plus, take shift into account serr.append(i - shift) shift += 1 elif col.endswith("_perr"): terr.append(i - shift) if len(colnames) == i + 1 or not colnames[i + 1].endswith("_nerr"): raise ValueError("Missing negative error") shift += 2 elif col.endswith("_nerr") and not colnames[i - 1].endswith("_perr"): raise ValueError("Missing positive error") return serr, terr def _read_table_qdp(qdp_file, names=None, table_id=None, delimiter=None): """Read a table from a QDP file Parameters ---------- qdp_file : str Input QDP file name Other Parameters ---------------- names : list of str Name of data columns (defaults to ['col1', 'col2', ...]), _not_ including error columns. table_id : int, default 0 Number of the table to be read from the QDP file. This is useful when multiple tables present in the file. By default, the first is read. delimiter : str Any delimiter accepted by the `sep` argument of str.split() Returns ------- tables : list of `~astropy.table.Table` List containing all the tables present inside the QDP file """ if table_id is None: warnings.warn( "table_id not specified. Reading the first available table", AstropyUserWarning, ) table_id = 0 tables = _get_tables_from_qdp_file( qdp_file, input_colnames=names, delimiter=delimiter ) return tables[table_id] def _write_table_qdp(table, filename=None, err_specs=None): """Write a table to a QDP file Parameters ---------- table : :class:`~astropy.table.Table` Input table to be written filename : str Output QDP file name Other Parameters ---------------- err_specs : dict Dictionary of the format {'serr': [1], 'terr': [2, 3]}, specifying which columns have symmetric and two-sided errors (see QDP format specification) """ import io fobj = io.StringIO() if "initial_comments" in table.meta and table.meta["initial_comments"] != []: for line in table.meta["initial_comments"]: line = line.strip() if not line.startswith("!"): line = "!" + line print(line, file=fobj) if err_specs is None: serr_cols, terr_cols = _understand_err_col(table.colnames) else: serr_cols = err_specs.pop("serr", []) terr_cols = err_specs.pop("terr", []) if serr_cols != []: col_string = " ".join([str(val) for val in serr_cols]) print(f"READ SERR {col_string}", file=fobj) if terr_cols != []: col_string = " ".join([str(val) for val in terr_cols]) print(f"READ TERR {col_string}", file=fobj) if "comments" in table.meta and table.meta["comments"] != []: for line in table.meta["comments"]: line = line.strip() if not line.startswith("!"): line = "!" + line print(line, file=fobj) colnames = table.colnames print("!" + " ".join(colnames), file=fobj) for row in table: values = [] for val in row: if not np.ma.is_masked(val): rep = str(val) else: rep = "NO" values.append(rep) print(" ".join(values), file=fobj) full_string = fobj.getvalue() fobj.close() if filename is not None: with open(filename, "w") as fobj: print(full_string, file=fobj) return full_string.split("\n") class QDPSplitter(core.DefaultSplitter): """ Split on space for QDP tables """ delimiter = " " class QDPHeader(basic.CommentedHeaderHeader): """ Header that uses the :class:`astropy.io.ascii.basic.QDPSplitter` """ splitter_class = QDPSplitter comment = "!" write_comment = "!" class QDPData(basic.BasicData): """ Data that uses the :class:`astropy.io.ascii.basic.CsvSplitter` """ splitter_class = QDPSplitter fill_values = [(core.masked, "NO")] comment = "!" write_comment = None class QDP(basic.Basic): """Quick and Dandy Plot table. Example:: ! Initial comment line 1 ! Initial comment line 2 READ TERR 1 READ SERR 3 ! Table 0 comment !a a(pos) a(neg) b be c d 53000.5 0.25 -0.5 1 1.5 3.5 2 54000.5 1.25 -1.5 2 2.5 4.5 3 NO NO NO NO NO ! Table 1 comment !a a(pos) a(neg) b be c d 54000.5 2.25 -2.5 NO 3.5 5.5 5 55000.5 3.25 -3.5 4 4.5 6.5 nan The input table above contains some initial comments, the error commands, then two tables. This file format can contain multiple tables, separated by a line full of ``NO``s. Comments are exclamation marks, and missing values are single ``NO`` entries. The delimiter is usually whitespace, more rarely a comma. The QDP format differentiates between data and error columns. The table above has commands:: READ TERR 1 READ SERR 3 which mean that after data column 1 there will be two error columns containing its positive and engative error bars, then data column 2 without error bars, then column 3, then a column with the symmetric error of column 3, then the remaining data columns. As explained below, table headers are highly inconsistent. Possible comments containing column names will be ignored and columns will be called ``col1``, ``col2``, etc. unless the user specifies their names with the ``names=`` keyword argument, When passing column names, pass **only the names of the data columns, not the error columns.** Error information will be encoded in the names of the table columns. (e.g. ``a_perr`` and ``a_nerr`` for the positive and negative error of column ``a``, ``b_err`` the symmetric error of column ``b``.) When writing tables to this format, users can pass an ``err_specs`` keyword passing a dictionary ``{'serr': [3], 'terr': [1, 2]}``, meaning that data columns 1 and two will have two additional columns each with their positive and negative errors, and data column 3 will have an additional column with a symmetric error (just like the ``READ SERR`` and ``READ TERR`` commands above) Headers are just comments, and tables distributed by various missions can differ greatly in their use of conventions. For example, light curves distributed by the Swift-Gehrels mission have an extra space in one header entry that makes the number of labels inconsistent with the number of cols. For this reason, we ignore the comments that might encode the column names and leave the name specification to the user. Example:: > Extra space > | > v >! MJD Err (pos) Err(neg) Rate Error >53000.123456 2.378e-05 -2.378472e-05 NO 0.212439 These readers and writer classes will strive to understand which of the comments belong to all the tables, and which ones to each single table. General comments will be stored in the ``initial_comments`` meta of each table. The comments of each table will be stored in the ``comments`` meta. Example:: t = Table.read(example_qdp, format='ascii.qdp', table_id=1, names=['a', 'b', 'c', 'd']) reads the second table (``table_id=1``) in file ``example.qdp`` containing the table above. There are four column names but seven data columns, why? Because the ``READ SERR`` and ``READ TERR`` commands say that there are three error columns. ``t.meta['initial_comments']`` will contain the initial two comment lines in the file, while ``t.meta['comments']`` will contain ``Table 1 comment`` The table can be written to another file, preserving the same information, as:: t.write(test_file, err_specs={'terr': [1], 'serr': [3]}) Note how the ``terr`` and ``serr`` commands are passed to the writer. """ _format_name = "qdp" _io_registry_can_write = True _io_registry_suffix = ".qdp" _description = "Quick and Dandy Plotter" header_class = QDPHeader data_class = QDPData def __init__(self, table_id=None, names=None, err_specs=None, sep=None): super().__init__() self.table_id = table_id self.names = names self.err_specs = err_specs self.delimiter = sep def read(self, table): self.lines = self.inputter.get_lines(table, newline="\n") return _read_table_qdp( self.lines, table_id=self.table_id, names=self.names, delimiter=self.delimiter, ) def write(self, table): self._check_multidim_table(table) lines = _write_table_qdp(table, err_specs=self.err_specs) return lines
b826a3586ac3280a64cf12627d1d1ac8a0797fc1bf6ad9fa40805ccabfa6293d
READ_DOCSTRING = """ Read the input ``table`` and return the table. Most of the default behavior for various parameters is determined by the Reader class. See also: - https://docs.astropy.org/en/stable/io/ascii/ - https://docs.astropy.org/en/stable/io/ascii/read.html Parameters ---------- table : str, file-like, list, `pathlib.Path` object Input table as a file name, file-like object, list of string[s], single newline-separated string or `pathlib.Path` object. guess : bool Try to guess the table format. Defaults to None. format : str, `~astropy.io.ascii.BaseReader` Input table format Inputter : `~astropy.io.ascii.BaseInputter` Inputter class Outputter : `~astropy.io.ascii.BaseOutputter` Outputter class delimiter : str Column delimiter string comment : str Regular expression defining a comment line in table quotechar : str One-character string to quote fields containing special characters header_start : int Line index for the header line not counting comment or blank lines. A line with only whitespace is considered blank. data_start : int Line index for the start of data not counting comment or blank lines. A line with only whitespace is considered blank. data_end : int Line index for the end of data not counting comment or blank lines. This value can be negative to count from the end. converters : dict Dictionary of converters to specify output column dtypes. Each key in the dictionary is a column name or else a name matching pattern including wildcards. The value is either a data type such as ``int`` or ``np.float32``; a list of such types which is tried in order until a successful conversion is achieved; or a list of converter tuples (see the `~astropy.io.ascii.convert_numpy` function for details). data_Splitter : `~astropy.io.ascii.BaseSplitter` Splitter class to split data columns header_Splitter : `~astropy.io.ascii.BaseSplitter` Splitter class to split header columns names : list List of names corresponding to each data column include_names : list List of names to include in output. exclude_names : list List of names to exclude from output (applied after ``include_names``) fill_values : tuple, list of tuple specification of fill values for bad or missing table values fill_include_names : list List of names to include in fill_values. fill_exclude_names : list List of names to exclude from fill_values (applied after ``fill_include_names``) fast_reader : bool, str or dict Whether to use the C engine, can also be a dict with options which defaults to `False`; parameters for options dict: use_fast_converter: bool enable faster but slightly imprecise floating point conversion method parallel: bool or int multiprocessing conversion using ``cpu_count()`` or ``'number'`` processes exponent_style: str One-character string defining the exponent or ``'Fortran'`` to auto-detect Fortran-style scientific notation like ``'3.14159D+00'`` (``'E'``, ``'D'``, ``'Q'``), all case-insensitive; default ``'E'``, all other imply ``use_fast_converter`` chunk_size : int If supplied with a value > 0 then read the table in chunks of approximately ``chunk_size`` bytes. Default is reading table in one pass. chunk_generator : bool If True and ``chunk_size > 0`` then return an iterator that returns a table for each chunk. The default is to return a single stacked table for all the chunks. encoding : str Allow to specify encoding to read the file (default= ``None``). Returns ------- dat : `~astropy.table.Table` or <generator> Output table """ # Specify allowed types for core write() keyword arguments. Each entry # corresponds to the name of an argument and either a type (e.g. int) or a # list of types. These get used in io.ascii.ui._validate_read_write_kwargs(). # - The commented-out kwargs are too flexible for a useful check # - 'list-list' is a special case for an iterable that is not a string. READ_KWARG_TYPES = { # 'table' "guess": bool, # 'format' # 'Reader' # 'Inputter' # 'Outputter' "delimiter": str, "comment": str, "quotechar": str, "header_start": int, "data_start": (int, str), # CDS allows 'guess' "data_end": int, "converters": dict, # 'data_Splitter' # 'header_Splitter' "names": "list-like", "include_names": "list-like", "exclude_names": "list-like", "fill_values": "list-like", "fill_include_names": "list-like", "fill_exclude_names": "list-like", "fast_reader": (bool, str, dict), "encoding": str, } WRITE_DOCSTRING = """ Write the input ``table`` to ``filename``. Most of the default behavior for various parameters is determined by the Writer class. See also: - https://docs.astropy.org/en/stable/io/ascii/ - https://docs.astropy.org/en/stable/io/ascii/write.html Parameters ---------- table : `~astropy.io.ascii.BaseReader`, array-like, str, file-like, list Input table as a Reader object, Numpy struct array, file name, file-like object, list of strings, or single newline-separated string. output : str, file-like Output [filename, file-like object]. Defaults to``sys.stdout``. format : str Output table format. Defaults to 'basic'. delimiter : str Column delimiter string comment : str, bool String defining a comment line in table. If `False` then comments are not written out. quotechar : str One-character string to quote fields containing special characters formats : dict Dictionary of format specifiers or formatting functions strip_whitespace : bool Strip surrounding whitespace from column values. names : list List of names corresponding to each data column include_names : list List of names to include in output. exclude_names : list List of names to exclude from output (applied after ``include_names``) fast_writer : bool, str Whether to use the fast Cython writer. Can be `True` (use fast writer if available), `False` (do not use fast writer), or ``'force'`` (use fast writer and fail if not available, mostly for testing). overwrite : bool If ``overwrite=False`` (default) and the file exists, then an OSError is raised. This parameter is ignored when the ``output`` arg is not a string (e.g., a file object). """ # Specify allowed types for core write() keyword arguments. Each entry # corresponds to the name of an argument and either a type (e.g. int) or a # list of types. These get used in io.ascii.ui._validate_read_write_kwargs(). # - The commented-out kwargs are too flexible for a useful check # - 'list-list' is a special case for an iterable that is not a string. WRITE_KWARG_TYPES = { # 'table' # 'output' "format": str, "delimiter": str, "comment": (str, bool), "quotechar": str, "header_start": int, "formats": dict, "strip_whitespace": (bool), "names": "list-like", "include_names": "list-like", "exclude_names": "list-like", "fast_writer": (bool, str), "overwrite": (bool), }
e2e111439c0486e842708fea75d1a05bc126577cfad4cdce1c547b53adfb7d6e
# Licensed under a 3-clause BSD style license - see LICENSE.rst """An extensible ASCII table reader and writer. ui.py: Provides the main user functions for reading and writing tables. :Copyright: Smithsonian Astrophysical Observatory (2010) :Author: Tom Aldcroft ([email protected]) """ import collections import contextlib import copy import os import re import sys import time import warnings from io import StringIO import numpy as np from astropy.table import Table from astropy.utils.data import get_readable_fileobj from astropy.utils.exceptions import AstropyWarning from astropy.utils.misc import NOT_OVERWRITING_MSG from . import ( basic, cds, core, cparser, daophot, ecsv, fastbasic, fixedwidth, html, ipac, latex, mrt, rst, sextractor, ) from .docs import READ_KWARG_TYPES, WRITE_KWARG_TYPES _read_trace = [] # Default setting for guess parameter in read() _GUESS = True def _probably_html(table, maxchars=100000): """ Determine if ``table`` probably contains HTML content. See PR #3693 and issue #3691 for context. """ if not isinstance(table, str): try: # If table is an iterable (list of strings) then take the first # maxchars of these. Make sure this is something with random # access to exclude a file-like object table[0] table[:1] size = 0 for i, line in enumerate(table): size += len(line) if size > maxchars: table = table[: i + 1] break table = os.linesep.join(table) except Exception: pass if isinstance(table, str): # Look for signs of an HTML table in the first maxchars characters table = table[:maxchars] # URL ending in .htm or .html if re.match( r"( http[s]? | ftp | file ) :// .+ \.htm[l]?$", table, re.IGNORECASE | re.VERBOSE, ): return True # Filename ending in .htm or .html which exists if re.search(r"\.htm[l]?$", table[-5:], re.IGNORECASE) and os.path.exists( os.path.expanduser(table) ): return True # Table starts with HTML document type declaration if re.match(r"\s* <! \s* DOCTYPE \s* HTML", table, re.IGNORECASE | re.VERBOSE): return True # Look for <TABLE .. >, <TR .. >, <TD .. > tag openers. if all( re.search(rf"< \s* {element} [^>]* >", table, re.IGNORECASE | re.VERBOSE) for element in ("table", "tr", "td") ): return True return False def set_guess(guess): """ Set the default value of the ``guess`` parameter for read() Parameters ---------- guess : bool New default ``guess`` value (e.g., True or False) """ global _GUESS _GUESS = guess def get_reader(Reader=None, Inputter=None, Outputter=None, **kwargs): """ Initialize a table reader allowing for common customizations. Most of the default behavior for various parameters is determined by the Reader class. Parameters ---------- Reader : `~astropy.io.ascii.BaseReader` Reader class (DEPRECATED). Default is :class:`Basic`. Inputter : `~astropy.io.ascii.BaseInputter` Inputter class Outputter : `~astropy.io.ascii.BaseOutputter` Outputter class delimiter : str Column delimiter string comment : str Regular expression defining a comment line in table quotechar : str One-character string to quote fields containing special characters header_start : int Line index for the header line not counting comment or blank lines. A line with only whitespace is considered blank. data_start : int Line index for the start of data not counting comment or blank lines. A line with only whitespace is considered blank. data_end : int Line index for the end of data not counting comment or blank lines. This value can be negative to count from the end. converters : dict Dict of converters. data_Splitter : `~astropy.io.ascii.BaseSplitter` Splitter class to split data columns. header_Splitter : `~astropy.io.ascii.BaseSplitter` Splitter class to split header columns. names : list List of names corresponding to each data column. include_names : list, optional List of names to include in output. exclude_names : list List of names to exclude from output (applied after ``include_names``). fill_values : tuple, list of tuple Specification of fill values for bad or missing table values. fill_include_names : list List of names to include in fill_values. fill_exclude_names : list List of names to exclude from fill_values (applied after ``fill_include_names``). Returns ------- reader : `~astropy.io.ascii.BaseReader` subclass ASCII format reader instance """ # This function is a light wrapper around core._get_reader to provide a # public interface with a default Reader. if Reader is None: # Default reader is Basic unless fast reader is forced fast_reader = _get_fast_reader_dict(kwargs) if fast_reader["enable"] == "force": Reader = fastbasic.FastBasic else: Reader = basic.Basic reader = core._get_reader(Reader, Inputter=Inputter, Outputter=Outputter, **kwargs) return reader def _get_format_class(format, ReaderWriter, label): if format is not None and ReaderWriter is not None: raise ValueError(f"Cannot supply both format and {label} keywords") if format is not None: if format in core.FORMAT_CLASSES: ReaderWriter = core.FORMAT_CLASSES[format] else: raise ValueError( "ASCII format {!r} not in allowed list {}".format( format, sorted(core.FORMAT_CLASSES) ) ) return ReaderWriter def _get_fast_reader_dict(kwargs): """Convert 'fast_reader' key in kwargs into a dict if not already and make sure 'enable' key is available. """ fast_reader = copy.deepcopy(kwargs.get("fast_reader", True)) if isinstance(fast_reader, dict): fast_reader.setdefault("enable", "force") else: fast_reader = {"enable": fast_reader} return fast_reader def _validate_read_write_kwargs(read_write, **kwargs): """Validate types of keyword arg inputs to read() or write().""" def is_ducktype(val, cls): """Check if ``val`` is an instance of ``cls`` or "seems" like one: ``cls(val) == val`` does not raise and exception and is `True`. In this way you can pass in ``np.int16(2)`` and have that count as `int`. This has a special-case of ``cls`` being 'list-like', meaning it is an iterable but not a string. """ if cls == "list-like": ok = not isinstance(val, str) and isinstance(val, collections.abc.Iterable) else: ok = isinstance(val, cls) if not ok: # See if ``val`` walks and quacks like a ``cls```. try: new_val = cls(val) assert new_val == val except Exception: ok = False else: ok = True return ok kwarg_types = READ_KWARG_TYPES if read_write == "read" else WRITE_KWARG_TYPES for arg, val in kwargs.items(): # Kwarg type checking is opt-in, so kwargs not in the list are considered OK. # This reflects that some readers allow additional arguments that may not # be well-specified, e.g. ```__init__(self, **kwargs)`` is an option. if arg not in kwarg_types or val is None: continue # Single type or tuple of types for this arg (like isinstance()) types = kwarg_types[arg] err_msg = ( f"{read_write}() argument '{arg}' must be a " f"{types} object, got {type(val)} instead" ) # Force `types` to be a tuple for the any() check below if not isinstance(types, tuple): types = (types,) if not any(is_ducktype(val, cls) for cls in types): raise TypeError(err_msg) def _expand_user_if_path(argument): if isinstance(argument, (str, bytes, os.PathLike)): # For the `read()` method, a `str` input can be either a file path or # the table data itself. File names for io.ascii cannot have newlines # in them and io.ascii does not accept table data as `bytes`, so we can # attempt to detect data strings like this. is_str_data = isinstance(argument, str) and ( "\n" in argument or "\r" in argument ) if not is_str_data: # Remain conservative in expanding the presumed-path ex_user = os.path.expanduser(argument) if os.path.exists(ex_user): argument = ex_user return argument def read(table, guess=None, **kwargs): # This the final output from reading. Static analysis indicates the reading # logic (which is indeed complex) might not define `dat`, thus do so here. dat = None # Docstring defined below del _read_trace[:] # Downstream readers might munge kwargs kwargs = copy.deepcopy(kwargs) _validate_read_write_kwargs("read", **kwargs) # Convert 'fast_reader' key in kwargs into a dict if not already and make sure # 'enable' key is available. fast_reader = _get_fast_reader_dict(kwargs) kwargs["fast_reader"] = fast_reader if fast_reader["enable"] and fast_reader.get("chunk_size"): return _read_in_chunks(table, **kwargs) if "fill_values" not in kwargs: kwargs["fill_values"] = [("", "0")] # If an Outputter is supplied in kwargs that will take precedence. if ( "Outputter" in kwargs ): # user specified Outputter, not supported for fast reading fast_reader["enable"] = False format = kwargs.get("format") # Dictionary arguments are passed by reference per default and thus need # special protection: new_kwargs = copy.deepcopy(kwargs) kwargs["fast_reader"] = copy.deepcopy(fast_reader) # Get the Reader class based on possible format and Reader kwarg inputs. Reader = _get_format_class(format, kwargs.get("Reader"), "Reader") if Reader is not None: new_kwargs["Reader"] = Reader format = Reader._format_name # Remove format keyword if there, this is only allowed in read() not get_reader() if "format" in new_kwargs: del new_kwargs["format"] if guess is None: guess = _GUESS if guess: # If ``table`` is probably an HTML file then tell guess function to add # the HTML reader at the top of the guess list. This is in response to # issue #3691 (and others) where libxml can segfault on a long non-HTML # file, thus prompting removal of the HTML reader from the default # guess list. new_kwargs["guess_html"] = _probably_html(table) # If `table` is a filename or readable file object then read in the # file now. This prevents problems in Python 3 with the file object # getting closed or left at the file end. See #3132, #3013, #3109, # #2001. If a `readme` arg was passed that implies CDS format, in # which case the original `table` as the data filename must be left # intact. if "readme" not in new_kwargs: encoding = kwargs.get("encoding") try: table = _expand_user_if_path(table) with get_readable_fileobj(table, encoding=encoding) as fileobj: table = fileobj.read() except ValueError: # unreadable or invalid binary file raise except Exception: pass else: # Ensure that `table` has at least one \r or \n in it # so that the core.BaseInputter test of # ('\n' not in table and '\r' not in table) # will fail and so `table` cannot be interpreted there # as a filename. See #4160. if not re.search(r"[\r\n]", table): table = table + os.linesep # If the table got successfully read then look at the content # to see if is probably HTML, but only if it wasn't already # identified as HTML based on the filename. if not new_kwargs["guess_html"]: new_kwargs["guess_html"] = _probably_html(table) # Get the table from guess in ``dat``. If ``dat`` comes back as None # then there was just one set of kwargs in the guess list so fall # through below to the non-guess way so that any problems result in a # more useful traceback. dat = _guess(table, new_kwargs, format, fast_reader) if dat is None: guess = False if not guess: if format is None: reader = get_reader(**new_kwargs) format = reader._format_name table = _expand_user_if_path(table) # Try the fast reader version of `format` first if applicable. Note that # if user specified a fast format (e.g. format='fast_basic') this test # will fail and the else-clause below will be used. if fast_reader["enable"] and f"fast_{format}" in core.FAST_CLASSES: fast_kwargs = copy.deepcopy(new_kwargs) fast_kwargs["Reader"] = core.FAST_CLASSES[f"fast_{format}"] fast_reader_rdr = get_reader(**fast_kwargs) try: dat = fast_reader_rdr.read(table) _read_trace.append( { "kwargs": copy.deepcopy(fast_kwargs), "Reader": fast_reader_rdr.__class__, "status": "Success with fast reader (no guessing)", } ) except ( core.ParameterError, cparser.CParserError, UnicodeEncodeError, ) as err: # special testing value to avoid falling back on the slow reader if fast_reader["enable"] == "force": raise core.InconsistentTableError( f"fast reader {fast_reader_rdr.__class__} exception: {err}" ) # If the fast reader doesn't work, try the slow version reader = get_reader(**new_kwargs) dat = reader.read(table) _read_trace.append( { "kwargs": copy.deepcopy(new_kwargs), "Reader": reader.__class__, "status": ( "Success with slow reader after failing" " with fast (no guessing)" ), } ) else: reader = get_reader(**new_kwargs) dat = reader.read(table) _read_trace.append( { "kwargs": copy.deepcopy(new_kwargs), "Reader": reader.__class__, "status": "Success with specified Reader class (no guessing)", } ) # Static analysis (pyright) indicates `dat` might be left undefined, so just # to be sure define it at the beginning and check here. if dat is None: raise RuntimeError( "read() function failed due to code logic error, " "please report this bug on github" ) return dat read.__doc__ = core.READ_DOCSTRING def _guess(table, read_kwargs, format, fast_reader): """ Try to read the table using various sets of keyword args. Start with the standard guess list and filter to make it unique and consistent with user-supplied read keyword args. Finally, if none of those work then try the original user-supplied keyword args. Parameters ---------- table : str, file-like, list Input table as a file name, file-like object, list of strings, or single newline-separated string. read_kwargs : dict Keyword arguments from user to be supplied to reader format : str Table format fast_reader : dict Options for the C engine fast reader. See read() function for details. Returns ------- dat : `~astropy.table.Table` or None Output table or None if only one guess format was available """ # Keep a trace of all failed guesses kwarg failed_kwargs = [] # Get an ordered list of read() keyword arg dicts that will be cycled # through in order to guess the format. full_list_guess = _get_guess_kwargs_list(read_kwargs) # If a fast version of the reader is available, try that before the slow version if ( fast_reader["enable"] and format is not None and f"fast_{format}" in core.FAST_CLASSES ): fast_kwargs = copy.deepcopy(read_kwargs) fast_kwargs["Reader"] = core.FAST_CLASSES[f"fast_{format}"] full_list_guess = [fast_kwargs] + full_list_guess else: fast_kwargs = None # Filter the full guess list so that each entry is consistent with user kwarg inputs. # This also removes any duplicates from the list. filtered_guess_kwargs = [] fast_reader = read_kwargs.get("fast_reader") for guess_kwargs in full_list_guess: # If user specified slow reader then skip all fast readers if ( fast_reader["enable"] is False and guess_kwargs["Reader"] in core.FAST_CLASSES.values() ): _read_trace.append( { "kwargs": copy.deepcopy(guess_kwargs), "Reader": guess_kwargs["Reader"].__class__, "status": "Disabled: reader only available in fast version", "dt": f"{0.0:.3f} ms", } ) continue # If user required a fast reader then skip all non-fast readers if ( fast_reader["enable"] == "force" and guess_kwargs["Reader"] not in core.FAST_CLASSES.values() ): _read_trace.append( { "kwargs": copy.deepcopy(guess_kwargs), "Reader": guess_kwargs["Reader"].__class__, "status": "Disabled: no fast version of reader available", "dt": f"{0.0:.3f} ms", } ) continue guess_kwargs_ok = True # guess_kwargs are consistent with user_kwargs? for key, val in read_kwargs.items(): # Do guess_kwargs.update(read_kwargs) except that if guess_args has # a conflicting key/val pair then skip this guess entirely. if key not in guess_kwargs: guess_kwargs[key] = copy.deepcopy(val) elif val != guess_kwargs[key] and guess_kwargs != fast_kwargs: guess_kwargs_ok = False break if not guess_kwargs_ok: # User-supplied kwarg is inconsistent with the guess-supplied kwarg, e.g. # user supplies delimiter="|" but the guess wants to try delimiter=" ", # so skip the guess entirely. continue # Add the guess_kwargs to filtered list only if it is not already there. if guess_kwargs not in filtered_guess_kwargs: filtered_guess_kwargs.append(guess_kwargs) # If there are not at least two formats to guess then return no table # (None) to indicate that guessing did not occur. In that case the # non-guess read() will occur and any problems will result in a more useful # traceback. if len(filtered_guess_kwargs) <= 1: return None # Define whitelist of exceptions that are expected from readers when # processing invalid inputs. Note that OSError must fall through here # so one cannot simply catch any exception. guess_exception_classes = ( core.InconsistentTableError, ValueError, TypeError, AttributeError, core.OptionalTableImportError, core.ParameterError, cparser.CParserError, ) # Now cycle through each possible reader and associated keyword arguments. # Try to read the table using those args, and if an exception occurs then # keep track of the failed guess and move on. for guess_kwargs in filtered_guess_kwargs: t0 = time.time() try: # If guessing will try all Readers then use strict req'ts on column names if "Reader" not in read_kwargs: guess_kwargs["strict_names"] = True reader = get_reader(**guess_kwargs) reader.guessing = True dat = reader.read(table) _read_trace.append( { "kwargs": copy.deepcopy(guess_kwargs), "Reader": reader.__class__, "status": "Success (guessing)", "dt": f"{(time.time() - t0) * 1000:.3f} ms", } ) return dat except guess_exception_classes as err: _read_trace.append( { "kwargs": copy.deepcopy(guess_kwargs), "status": f"{err.__class__.__name__}: {str(err)}", "dt": f"{(time.time() - t0) * 1000:.3f} ms", } ) failed_kwargs.append(guess_kwargs) else: # Failed all guesses, try the original read_kwargs without column requirements try: reader = get_reader(**read_kwargs) dat = reader.read(table) _read_trace.append( { "kwargs": copy.deepcopy(read_kwargs), "Reader": reader.__class__, "status": ( "Success with original kwargs without strict_names (guessing)" ), } ) return dat except guess_exception_classes as err: _read_trace.append( { "kwargs": copy.deepcopy(read_kwargs), "status": f"{err.__class__.__name__}: {str(err)}", } ) failed_kwargs.append(read_kwargs) lines = [ "\nERROR: Unable to guess table format with the guesses listed below:" ] for kwargs in failed_kwargs: sorted_keys = sorted( x for x in sorted(kwargs) if x not in ("Reader", "Outputter") ) reader_repr = repr(kwargs.get("Reader", basic.Basic)) keys_vals = ["Reader:" + re.search(r"\.(\w+)'>", reader_repr).group(1)] kwargs_sorted = ((key, kwargs[key]) for key in sorted_keys) keys_vals.extend([f"{key}: {val!r}" for key, val in kwargs_sorted]) lines.append(" ".join(keys_vals)) msg = [ "", "************************************************************************", "** ERROR: Unable to guess table format with the guesses listed above. **", "** **", "** To figure out why the table did not read, use guess=False and **", "** fast_reader=False, along with any appropriate arguments to read(). **", "** In particular specify the format and any known attributes like the **", "** delimiter. **", "************************************************************************", ] lines.extend(msg) raise core.InconsistentTableError("\n".join(lines)) from None def _get_guess_kwargs_list(read_kwargs): """ Get the full list of reader keyword argument dicts that are the basis for the format guessing process. The returned full list will then be: - Filtered to be consistent with user-supplied kwargs - Cleaned to have only unique entries - Used one by one to try reading the input table Note that the order of the guess list has been tuned over years of usage. Maintainers need to be very careful about any adjustments as the reasoning may not be immediately evident in all cases. This list can (and usually does) include duplicates. This is a result of the order tuning, but these duplicates get removed later. Parameters ---------- read_kwargs : dict User-supplied read keyword args Returns ------- guess_kwargs_list : list List of read format keyword arg dicts """ guess_kwargs_list = [] # If the table is probably HTML based on some heuristics then start with the # HTML reader. if read_kwargs.pop("guess_html", None): guess_kwargs_list.append(dict(Reader=html.HTML)) # Start with ECSV because an ECSV file will be read by Basic. This format # has very specific header requirements and fails out quickly. guess_kwargs_list.append(dict(Reader=ecsv.Ecsv)) # Now try readers that accept the user-supplied keyword arguments # (actually include all here - check for compatibility of arguments later). # FixedWidthTwoLine would also be read by Basic, so it needs to come first; # same for RST. for reader in ( fixedwidth.FixedWidthTwoLine, rst.RST, fastbasic.FastBasic, basic.Basic, fastbasic.FastRdb, basic.Rdb, fastbasic.FastTab, basic.Tab, cds.Cds, mrt.Mrt, daophot.Daophot, sextractor.SExtractor, ipac.Ipac, latex.Latex, latex.AASTex, ): guess_kwargs_list.append(dict(Reader=reader)) # Cycle through the basic-style readers using all combinations of delimiter # and quotechar. for Reader in ( fastbasic.FastCommentedHeader, basic.CommentedHeader, fastbasic.FastBasic, basic.Basic, fastbasic.FastNoHeader, basic.NoHeader, ): for delimiter in ("|", ",", " ", r"\s"): for quotechar in ('"', "'"): guess_kwargs_list.append( dict(Reader=Reader, delimiter=delimiter, quotechar=quotechar) ) return guess_kwargs_list def _read_in_chunks(table, **kwargs): """ For fast_reader read the ``table`` in chunks and vstack to create a single table, OR return a generator of chunk tables. """ fast_reader = kwargs["fast_reader"] chunk_size = fast_reader.pop("chunk_size") chunk_generator = fast_reader.pop("chunk_generator", False) fast_reader["parallel"] = False # No parallel with chunks tbl_chunks = _read_in_chunks_generator(table, chunk_size, **kwargs) if chunk_generator: return tbl_chunks tbl0 = next(tbl_chunks) masked = tbl0.masked # Numpy won't allow resizing the original so make a copy here. out_cols = {col.name: col.data.copy() for col in tbl0.itercols()} str_kinds = ("S", "U") for tbl in tbl_chunks: masked |= tbl.masked for name, col in tbl.columns.items(): # Concatenate current column data and new column data # If one of the inputs is string-like and the other is not, then # convert the non-string to a string. In a perfect world this would # be handled by numpy, but as of numpy 1.13 this results in a string # dtype that is too long (https://github.com/numpy/numpy/issues/10062). col1, col2 = out_cols[name], col.data if col1.dtype.kind in str_kinds and col2.dtype.kind not in str_kinds: col2 = np.array(col2.tolist(), dtype=col1.dtype.kind) elif col2.dtype.kind in str_kinds and col1.dtype.kind not in str_kinds: col1 = np.array(col1.tolist(), dtype=col2.dtype.kind) # Choose either masked or normal concatenation concatenate = np.ma.concatenate if masked else np.concatenate out_cols[name] = concatenate([col1, col2]) # Make final table from numpy arrays, converting dict to list out_cols = [out_cols[name] for name in tbl0.colnames] out = tbl0.__class__(out_cols, names=tbl0.colnames, meta=tbl0.meta, copy=False) return out def _read_in_chunks_generator(table, chunk_size, **kwargs): """ For fast_reader read the ``table`` in chunks and return a generator of tables for each chunk. """ @contextlib.contextmanager def passthrough_fileobj(fileobj, encoding=None): """Stub for get_readable_fileobj, which does not seem to work in Py3 for input file-like object, see #6460""" yield fileobj # Set up to coerce `table` input into a readable file object by selecting # an appropriate function. # Convert table-as-string to a File object. Finding a newline implies # that the string is not a filename. if isinstance(table, str) and ("\n" in table or "\r" in table): table = StringIO(table) fileobj_context = passthrough_fileobj elif hasattr(table, "read") and hasattr(table, "seek"): fileobj_context = passthrough_fileobj else: # string filename or pathlib fileobj_context = get_readable_fileobj # Set up for iterating over chunks kwargs["fast_reader"]["return_header_chars"] = True header = "" # Table header (up to start of data) prev_chunk_chars = "" # Chars from previous chunk after last newline first_chunk = True # True for the first chunk, False afterward with fileobj_context(table, encoding=kwargs.get("encoding")) as fh: while True: chunk = fh.read(chunk_size) # Got fewer chars than requested, must be end of file final_chunk = len(chunk) < chunk_size # If this is the last chunk and there is only whitespace then break if final_chunk and not re.search(r"\S", chunk): break # Step backwards from last character in chunk and find first newline for idx in range(len(chunk) - 1, -1, -1): if final_chunk or chunk[idx] == "\n": break else: raise ValueError("no newline found in chunk (chunk_size too small?)") # Stick on the header to the chunk part up to (and including) the # last newline. Make sure the small strings are concatenated first. complete_chunk = (header + prev_chunk_chars) + chunk[: idx + 1] prev_chunk_chars = chunk[idx + 1 :] # Now read the chunk as a complete table tbl = read(complete_chunk, guess=False, **kwargs) # For the first chunk pop the meta key which contains the header # characters (everything up to the start of data) then fix kwargs # so it doesn't return that in meta any more. if first_chunk: header = tbl.meta.pop("__ascii_fast_reader_header_chars__") first_chunk = False yield tbl if final_chunk: break extra_writer_pars = ( "delimiter", "comment", "quotechar", "formats", "names", "include_names", "exclude_names", "strip_whitespace", ) def get_writer(Writer=None, fast_writer=True, **kwargs): """ Initialize a table writer allowing for common customizations. Most of the default behavior for various parameters is determined by the Writer class. Parameters ---------- Writer : ``Writer`` Writer class (DEPRECATED). Defaults to :class:`Basic`. delimiter : str Column delimiter string comment : str String defining a comment line in table quotechar : str One-character string to quote fields containing special characters formats : dict Dictionary of format specifiers or formatting functions strip_whitespace : bool Strip surrounding whitespace from column values. names : list List of names corresponding to each data column include_names : list List of names to include in output. exclude_names : list List of names to exclude from output (applied after ``include_names``) fast_writer : bool Whether to use the fast Cython writer. Returns ------- writer : `~astropy.io.ascii.BaseReader` subclass ASCII format writer instance """ if Writer is None: Writer = basic.Basic if "strip_whitespace" not in kwargs: kwargs["strip_whitespace"] = True writer = core._get_writer(Writer, fast_writer, **kwargs) # Handle the corner case of wanting to disable writing table comments for the # commented_header format. This format *requires* a string for `write_comment` # because that is used for the header column row, so it is not possible to # set the input `comment` to None. Without adding a new keyword or assuming # a default comment character, there is no other option but to tell user to # simply remove the meta['comments']. if isinstance( writer, (basic.CommentedHeader, fastbasic.FastCommentedHeader) ) and not isinstance(kwargs.get("comment", ""), str): raise ValueError( "for the commented_header writer you must supply a string\n" "value for the `comment` keyword. In order to disable writing\n" "table comments use `del t.meta['comments']` prior to writing." ) return writer def write( table, output=None, format=None, Writer=None, fast_writer=True, *, overwrite=False, **kwargs, ): # Docstring inserted below _validate_read_write_kwargs( "write", format=format, fast_writer=fast_writer, overwrite=overwrite, **kwargs ) if isinstance(output, (str, bytes, os.PathLike)): output = os.path.expanduser(output) if not overwrite and os.path.lexists(output): raise OSError(NOT_OVERWRITING_MSG.format(output)) if output is None: output = sys.stdout # Ensure that `table` is a Table subclass. names = kwargs.get("names") if isinstance(table, Table): # While we are only going to read data from columns, we may need to # to adjust info attributes such as format, so we make a shallow copy. table = table.__class__(table, names=names, copy=False) else: # Otherwise, create a table from the input. table = Table(table, names=names, copy=False) table0 = table[:0].copy() core._apply_include_exclude_names( table0, kwargs.get("names"), kwargs.get("include_names"), kwargs.get("exclude_names"), ) diff_format_with_names = set(kwargs.get("formats", [])) - set(table0.colnames) if diff_format_with_names: warnings.warn( "The key(s) {} specified in the formats argument do not match a column" " name.".format(diff_format_with_names), AstropyWarning, ) if table.has_mixin_columns: fast_writer = False Writer = _get_format_class(format, Writer, "Writer") writer = get_writer(Writer=Writer, fast_writer=fast_writer, **kwargs) if writer._format_name in core.FAST_CLASSES: writer.write(table, output) return lines = writer.write(table) # Write the lines to output outstr = os.linesep.join(lines) if not hasattr(output, "write"): # NOTE: we need to specify newline='', otherwise the default # behavior is for Python to translate \r\n (which we write because # of os.linesep) into \r\r\n. Specifying newline='' disables any # auto-translation. output = open(output, "w", newline="") output.write(outstr) output.write(os.linesep) output.close() else: output.write(outstr) output.write(os.linesep) write.__doc__ = core.WRITE_DOCSTRING def get_read_trace(): """ Return a traceback of the attempted read formats for the last call to `~astropy.io.ascii.read` where guessing was enabled. This is primarily for debugging. The return value is a list of dicts, where each dict includes the keyword args ``kwargs`` used in the read call and the returned ``status``. Returns ------- trace : list of dict Ordered list of format guesses and status """ return copy.deepcopy(_read_trace)
c5f60c1c49a39a8f6c1b42b31393677045270afa960802b24a25d4740938e83f
# Licensed under a 3-clause BSD style license - see LICENSE.rst import copy import re from collections import OrderedDict from astropy.table import Table from astropy.utils.misc import _set_locale from . import core, cparser class FastBasic(metaclass=core.MetaBaseReader): """ This class is intended to handle the same format addressed by the ordinary :class:`Basic` writer, but it acts as a wrapper for underlying C code and is therefore much faster. Unlike the other ASCII readers and writers, this class is not very extensible and is restricted by optimization requirements. """ _format_name = "fast_basic" _description = "Basic table with custom delimiter using the fast C engine" _fast = True fill_extra_cols = False guessing = False strict_names = False def __init__(self, default_kwargs={}, **user_kwargs): # Make sure user does not set header_start to None for a reader # that expects a non-None value (i.e. a number >= 0). This mimics # what happens in the Basic reader. if ( default_kwargs.get("header_start", 0) is not None and user_kwargs.get("header_start", 0) is None ): raise ValueError("header_start cannot be set to None for this Reader") # Set up kwargs and copy any user kwargs. Use deepcopy user kwargs # since they may contain a dict item which would end up as a ref to the # original and get munged later (e.g. in cparser.pyx validation of # fast_reader dict). kwargs = copy.deepcopy(default_kwargs) kwargs.update(copy.deepcopy(user_kwargs)) delimiter = kwargs.pop("delimiter", " ") self.delimiter = str(delimiter) if delimiter is not None else None self.write_comment = kwargs.get("comment", "# ") self.comment = kwargs.pop("comment", "#") if self.comment is not None: self.comment = str(self.comment) self.quotechar = str(kwargs.pop("quotechar", '"')) self.header_start = kwargs.pop("header_start", 0) # If data_start is not specified, start reading # data right after the header line data_start_default = user_kwargs.get( "data_start", self.header_start + 1 if self.header_start is not None else 1 ) self.data_start = kwargs.pop("data_start", data_start_default) self.kwargs = kwargs self.strip_whitespace_lines = True self.strip_whitespace_fields = True def _read_header(self): # Use the tokenizer by default -- this method # can be overridden for specialized headers self.engine.read_header() def read(self, table): """ Read input data (file-like object, filename, list of strings, or single string) into a Table and return the result. """ if self.comment is not None and len(self.comment) != 1: raise core.ParameterError("The C reader does not support a comment regex") elif self.data_start is None: raise core.ParameterError( "The C reader does not allow data_start to be None" ) elif ( self.header_start is not None and self.header_start < 0 and not isinstance(self, FastCommentedHeader) ): raise core.ParameterError( "The C reader does not allow header_start to be " "negative except for commented-header files" ) elif self.data_start < 0: raise core.ParameterError( "The C reader does not allow data_start to be negative" ) elif len(self.delimiter) != 1: raise core.ParameterError("The C reader only supports 1-char delimiters") elif len(self.quotechar) != 1: raise core.ParameterError( "The C reader only supports a length-1 quote character" ) elif "converters" in self.kwargs: raise core.ParameterError( "The C reader does not support passing specialized converters" ) elif "encoding" in self.kwargs: raise core.ParameterError( "The C reader does not use the encoding parameter" ) elif "Outputter" in self.kwargs: raise core.ParameterError( "The C reader does not use the Outputter parameter" ) elif "Inputter" in self.kwargs: raise core.ParameterError( "The C reader does not use the Inputter parameter" ) elif "data_Splitter" in self.kwargs or "header_Splitter" in self.kwargs: raise core.ParameterError("The C reader does not use a Splitter class") self.strict_names = self.kwargs.pop("strict_names", False) # Process fast_reader kwarg, which may or may not exist (though ui.py will always # pass this as a dict with at least 'enable' set). fast_reader = self.kwargs.get("fast_reader", True) if not isinstance(fast_reader, dict): fast_reader = {} fast_reader.pop("enable", None) self.return_header_chars = fast_reader.pop("return_header_chars", False) # Put fast_reader dict back into kwargs. self.kwargs["fast_reader"] = fast_reader self.engine = cparser.CParser( table, self.strip_whitespace_lines, self.strip_whitespace_fields, delimiter=self.delimiter, header_start=self.header_start, comment=self.comment, quotechar=self.quotechar, data_start=self.data_start, fill_extra_cols=self.fill_extra_cols, **self.kwargs, ) conversion_info = self._read_header() self.check_header() if conversion_info is not None: try_int, try_float, try_string = conversion_info else: try_int = {} try_float = {} try_string = {} with _set_locale("C"): data, comments = self.engine.read(try_int, try_float, try_string) out = self.make_table(data, comments) if self.return_header_chars: out.meta["__ascii_fast_reader_header_chars__"] = self.engine.header_chars return out def make_table(self, data, comments): """Actually make the output table give the data and comments.""" meta = OrderedDict() if comments: meta["comments"] = comments names = core._deduplicate_names(self.engine.get_names()) return Table(data, names=names, meta=meta) def check_header(self): names = self.engine.get_header_names() or self.engine.get_names() if self.strict_names: # Impose strict requirements on column names (normally used in guessing) bads = [" ", ",", "|", "\t", "'", '"'] for name in names: if ( core._is_number(name) or len(name) == 0 or name[0] in bads or name[-1] in bads ): raise ValueError( f"Column name {name!r} does not meet strict name requirements" ) # When guessing require at least two columns if self.guessing and len(names) <= 1: raise ValueError( f"Table format guessing requires at least two columns, got {names}" ) def write(self, table, output): """ Use a fast Cython method to write table data to output, where output is a filename or file-like object. """ self._write(table, output, {}) def _write( self, table, output, default_kwargs, header_output=True, output_types=False ): # Fast writer supports only 1-d columns core._check_multidim_table(table, max_ndim=1) write_kwargs = { "delimiter": self.delimiter, "quotechar": self.quotechar, "strip_whitespace": self.strip_whitespace_fields, "comment": self.write_comment, } write_kwargs.update(default_kwargs) # user kwargs take precedence over default kwargs write_kwargs.update(self.kwargs) writer = cparser.FastWriter(table, **write_kwargs) writer.write(output, header_output, output_types) class FastCsv(FastBasic): """ A faster version of the ordinary :class:`Csv` writer that uses the optimized C parsing engine. Note that this reader will append empty field values to the end of any row with not enough columns, while :class:`FastBasic` simply raises an error. """ _format_name = "fast_csv" _description = "Comma-separated values table using the fast C engine" _fast = True fill_extra_cols = True def __init__(self, **kwargs): super().__init__({"delimiter": ",", "comment": None}, **kwargs) def write(self, table, output): """ Override the default write method of `FastBasic` to output masked values as empty fields. """ self._write(table, output, {"fill_values": [(core.masked, "")]}) class FastTab(FastBasic): """ A faster version of the ordinary :class:`Tab` reader that uses the optimized C parsing engine. """ _format_name = "fast_tab" _description = "Tab-separated values table using the fast C engine" _fast = True def __init__(self, **kwargs): super().__init__({"delimiter": "\t"}, **kwargs) self.strip_whitespace_lines = False self.strip_whitespace_fields = False class FastNoHeader(FastBasic): """ This class uses the fast C engine to read tables with no header line. If the names parameter is unspecified, the columns will be autonamed with "col{}". """ _format_name = "fast_no_header" _description = "Basic table with no headers using the fast C engine" _fast = True def __init__(self, **kwargs): super().__init__({"header_start": None, "data_start": 0}, **kwargs) def write(self, table, output): """ Override the default writing behavior in `FastBasic` so that columns names are not included in output. """ self._write(table, output, {}, header_output=None) class FastCommentedHeader(FastBasic): """ A faster version of the :class:`CommentedHeader` reader, which looks for column names in a commented line. ``header_start`` denotes the index of the header line among all commented lines and is 0 by default. """ _format_name = "fast_commented_header" _description = "Columns name in a commented line using the fast C engine" _fast = True def __init__(self, **kwargs): super().__init__({}, **kwargs) # Mimic CommentedHeader's behavior in which data_start # is relative to header_start if unspecified; see #2692 if "data_start" not in kwargs: self.data_start = 0 def make_table(self, data, comments): """ Actually make the output table give the data and comments. This is slightly different from the base FastBasic method in the way comments are handled. """ meta = OrderedDict() if comments: idx = self.header_start if idx < 0: idx = len(comments) + idx meta["comments"] = comments[:idx] + comments[idx + 1 :] if not meta["comments"]: del meta["comments"] names = core._deduplicate_names(self.engine.get_names()) return Table(data, names=names, meta=meta) def _read_header(self): tmp = self.engine.source commented_lines = [] for line in tmp.splitlines(): line = line.lstrip() if line and line[0] == self.comment: # line begins with a comment commented_lines.append(line[1:]) if len(commented_lines) == self.header_start + 1: break if len(commented_lines) <= self.header_start: raise cparser.CParserError("not enough commented lines") self.engine.setup_tokenizer([commented_lines[self.header_start]]) self.engine.header_start = 0 self.engine.read_header() self.engine.setup_tokenizer(tmp) def write(self, table, output): """ Override the default writing behavior in `FastBasic` so that column names are commented. """ self._write(table, output, {}, header_output="comment") class FastRdb(FastBasic): """ A faster version of the :class:`Rdb` reader. This format is similar to tab-delimited, but it also contains a header line after the column name line denoting the type of each column (N for numeric, S for string). """ _format_name = "fast_rdb" _description = "Tab-separated with a type definition header line" _fast = True def __init__(self, **kwargs): super().__init__({"delimiter": "\t", "data_start": 2}, **kwargs) self.strip_whitespace_lines = False self.strip_whitespace_fields = False def _read_header(self): tmp = self.engine.source line1 = "" line2 = "" for line in tmp.splitlines(): # valid non-comment line if not line1 and line.strip() and line.lstrip()[0] != self.comment: line1 = line elif not line2 and line.strip() and line.lstrip()[0] != self.comment: line2 = line break else: # less than 2 lines in table raise ValueError("RDB header requires 2 lines") # Tokenize the two header lines separately. # Each call to self.engine.read_header by default # - calls _deduplicate_names to ensure unique header_names # - sets self.names from self.header_names if not provided as kwarg # - applies self.include_names/exclude_names to self.names. # For parsing the types disable 1+3, but self.names needs to be set. self.engine.setup_tokenizer([line2]) self.engine.header_start = 0 self.engine.read_header(deduplicate=False, filter_names=False) types = self.engine.get_header_names() # If no kwarg names have been passed, reset to have column names read from header line 1. if types == self.engine.get_names(): self.engine.set_names([]) self.engine.setup_tokenizer([line1]) # Get full list of column names prior to applying include/exclude_names, # which have to be applied to the unique name set after deduplicate. self.engine.read_header(deduplicate=True, filter_names=False) col_names = self.engine.get_names() self.engine.read_header(deduplicate=False) if len(col_names) != len(types): raise core.InconsistentTableError( "RDB header mismatch between number of column names and column types" ) # If columns have been removed via include/exclude_names, extract matching types. if len(self.engine.get_names()) != len(types): types = [types[col_names.index(n)] for n in self.engine.get_names()] if any(not re.match(r"\d*(N|S)$", x, re.IGNORECASE) for x in types): raise core.InconsistentTableError( f"RDB type definitions do not all match [num](N|S): {types}" ) try_int = {} try_float = {} try_string = {} for name, col_type in zip(self.engine.get_names(), types): if col_type[-1].lower() == "s": try_int[name] = 0 try_float[name] = 0 try_string[name] = 1 else: try_int[name] = 1 try_float[name] = 1 try_string[name] = 0 self.engine.setup_tokenizer(tmp) return (try_int, try_float, try_string) def write(self, table, output): """ Override the default writing behavior in `FastBasic` to output a line with column types after the column name line. """ self._write(table, output, {}, output_types=True)
0af387450af0f63a3b7df613877697466955f22cb9cfd221d090108aca5f9738
"""A Collection of useful miscellaneous functions. misc.py: Collection of useful miscellaneous functions. :Author: Hannes Breytenbach ([email protected]) """ import collections.abc import itertools import operator def first_true_index(iterable, pred=None, default=None): """find the first index position for the which the callable pred returns True""" if pred is None: func = operator.itemgetter(1) else: func = lambda x: pred(x[1]) # either index-item pair or default ii = next(filter(func, enumerate(iterable)), default) return ii[0] if ii else default def first_false_index(iterable, pred=None, default=None): """find the first index position for the which the callable pred returns False""" if pred is None: func = operator.not_ else: func = lambda x: not pred(x) return first_true_index(iterable, func, default) def sortmore(*args, **kw): """ Sorts any number of lists according to: optionally given item sorting key function(s) and/or a global sorting key function. Parameters ---------- One or more lists Keywords -------- globalkey : None revert to sorting by key function globalkey : callable Sort by evaluated value for all items in the lists (call signature of this function needs to be such that it accepts an argument tuple of items from each list. eg.: ``globalkey = lambda *l: sum(l)`` will order all the lists by the sum of the items from each list if key: None sorting done by value of first input list (in this case the objects in the first iterable need the comparison methods __lt__ etc...) if key: callable sorting done by value of key(item) for items in first iterable if key: tuple sorting done by value of (key(item_0), ..., key(item_n)) for items in the first n iterables (where n is the length of the key tuple) i.e. the first callable is the primary sorting criterion, and the rest act as tie-breakers. Returns ------- Sorted lists Examples -------- Capture sorting indices:: l = list('CharacterS') In [1]: sortmore( l, range(len(l)) ) Out[1]: (['C', 'S', 'a', 'a', 'c', 'e', 'h', 'r', 'r', 't'], [0, 9, 2, 4, 5, 7, 1, 3, 8, 6]) In [2]: sortmore( l, range(len(l)), key=str.lower ) Out[2]: (['a', 'a', 'C', 'c', 'e', 'h', 'r', 'r', 'S', 't'], [2, 4, 0, 5, 7, 1, 3, 8, 9, 6]) """ first = list(args[0]) if not len(first): return args globalkey = kw.get("globalkey") key = kw.get("key") if key is None: if globalkey: # if global sort function given and no local (secondary) key given, ==> no tiebreakers key = lambda x: 0 else: # if no global sort and no local sort keys given, sort by item values key = lambda x: x if globalkey is None: globalkey = lambda *x: 0 if not isinstance(globalkey, collections.abc.Callable): raise ValueError("globalkey needs to be callable") if isinstance(key, collections.abc.Callable): k = lambda x: (globalkey(*x), key(x[0])) elif isinstance(key, tuple): key = (k if k else lambda x: 0 for k in key) k = lambda x: (globalkey(*x),) + tuple(f(z) for (f, z) in zip(key, x)) else: raise KeyError( "kw arg 'key' should be None, callable, or a sequence of callables, not {}".format( type(key) ) ) res = sorted(list(zip(*args)), key=k) if "order" in kw: if kw["order"].startswith(("descend", "reverse")): res = reversed(res) return tuple(map(list, zip(*res))) def groupmore(func=None, *its): """Extends the itertools.groupby functionality to arbitrary number of iterators.""" if not func: func = lambda x: x its = sortmore(*its, key=func) nfunc = lambda x: func(x[0]) zipper = itertools.groupby(zip(*its), nfunc) unzipper = ((key, zip(*groups)) for key, groups in zipper) return unzipper
3c1f7bb52b18f939c25f063de25c70b4aa05c76d31fe7bfde8806676983be154
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ An extensible ASCII table reader and writer. Classes to read DAOphot table format :Copyright: Smithsonian Astrophysical Observatory (2011) :Author: Tom Aldcroft ([email protected]) """ import itertools as itt import re from collections import OrderedDict, defaultdict import numpy as np from . import core, fixedwidth from .misc import first_false_index, first_true_index, groupmore class DaophotHeader(core.BaseHeader): """ Read the header from a file produced by the IRAF DAOphot routine. """ comment = r"\s*#K" # Regex for extracting the format strings re_format = re.compile(r"%-?(\d+)\.?\d?[sdfg]") re_header_keyword = re.compile( r"[#]K" r"\s+ (?P<name> \w+)" r"\s* = (?P<stuff> .+) $", re.VERBOSE ) aperture_values = () def __init__(self): core.BaseHeader.__init__(self) def parse_col_defs(self, grouped_lines_dict): """ Parse a series of column definition lines like below. There may be several such blocks in a single file (where continuation characters have already been stripped). #N ID XCENTER YCENTER MAG MERR MSKY NITER #U ## pixels pixels magnitudes magnitudes counts ## #F %-9d %-10.3f %-10.3f %-12.3f %-14.3f %-15.7g %-6d """ line_ids = ("#N", "#U", "#F") coldef_dict = defaultdict(list) # Function to strip identifier lines stripper = lambda s: s[2:].strip(" \\") for defblock in zip(*map(grouped_lines_dict.get, line_ids)): for key, line in zip(line_ids, map(stripper, defblock)): coldef_dict[key].append(line.split()) # Save the original columns so we can use it later to reconstruct the # original header for writing if self.data.is_multiline: # Database contains multi-aperture data. # Autogen column names, units, formats from last row of column headers last_names, last_units, last_formats = list( zip(*map(coldef_dict.get, line_ids)) )[-1] N_multiline = len(self.data.first_block) for i in np.arange(1, N_multiline + 1).astype("U2"): # extra column names eg. RAPERT2, SUM2 etc... extended_names = list(map("".join, zip(last_names, itt.repeat(i)))) if i == "1": # Enumerate the names starting at 1 coldef_dict["#N"][-1] = extended_names else: coldef_dict["#N"].append(extended_names) coldef_dict["#U"].append(last_units) coldef_dict["#F"].append(last_formats) # Get column widths from column format specifiers get_col_width = lambda s: int(self.re_format.search(s).groups()[0]) col_widths = [ [get_col_width(f) for f in formats] for formats in coldef_dict["#F"] ] # original data format might be shorter than 80 characters and filled with spaces row_widths = np.fromiter(map(sum, col_widths), int) row_short = Daophot.table_width - row_widths # fix last column widths for w, r in zip(col_widths, row_short): w[-1] += r self.col_widths = col_widths # merge the multi-line header data into single line data coldef_dict = {k: sum(v, []) for (k, v) in coldef_dict.items()} return coldef_dict def update_meta(self, lines, meta): """ Extract table-level keywords for DAOphot table. These are indicated by a leading '#K ' prefix. """ table_meta = meta["table"] # self.lines = self.get_header_lines(lines) Nlines = len(self.lines) if Nlines > 0: # Group the header lines according to their line identifiers (#K, # #N, #U, #F or just # (spacer line)) function that grabs the line # identifier get_line_id = lambda s: s.split(None, 1)[0] # Group lines by the line identifier ('#N', '#U', '#F', '#K') and # capture line index gid, groups = zip(*groupmore(get_line_id, self.lines, range(Nlines))) # Groups of lines and their indices grouped_lines, gix = zip(*groups) # Dict of line groups keyed by line identifiers grouped_lines_dict = dict(zip(gid, grouped_lines)) # Update the table_meta keywords if necessary if "#K" in grouped_lines_dict: keywords = OrderedDict( map(self.extract_keyword_line, grouped_lines_dict["#K"]) ) table_meta["keywords"] = keywords coldef_dict = self.parse_col_defs(grouped_lines_dict) line_ids = ("#N", "#U", "#F") for name, unit, fmt in zip(*map(coldef_dict.get, line_ids)): meta["cols"][name] = {"unit": unit, "format": fmt} self.meta = meta self.names = coldef_dict["#N"] def extract_keyword_line(self, line): """ Extract info from a header keyword line (#K) """ m = self.re_header_keyword.match(line) if m: vals = m.group("stuff").strip().rsplit(None, 2) keyword_dict = { "units": vals[-2], "format": vals[-1], "value": (vals[0] if len(vals) > 2 else ""), } return m.group("name"), keyword_dict def get_cols(self, lines): """ Initialize the header Column objects from the table ``lines`` for a DAOphot header. The DAOphot header is specialized so that we just copy the entire BaseHeader get_cols routine and modify as needed. Parameters ---------- lines : list List of table lines Returns ------- col : list List of table Columns """ if not self.names: raise core.InconsistentTableError("No column names found in DAOphot header") # Create the list of io.ascii column objects self._set_cols_from_names() # Set unit and format as needed. coldefs = self.meta["cols"] for col in self.cols: unit, fmt = map(coldefs[col.name].get, ("unit", "format")) if unit != "##": col.unit = unit if fmt != "##": col.format = fmt # Set column start and end positions. col_width = sum(self.col_widths, []) ends = np.cumsum(col_width) starts = ends - col_width for i, col in enumerate(self.cols): col.start, col.end = starts[i], ends[i] col.span = col.end - col.start if hasattr(col, "format"): if any(x in col.format for x in "fg"): col.type = core.FloatType elif "d" in col.format: col.type = core.IntType elif "s" in col.format: col.type = core.StrType # INDEF is the missing value marker self.data.fill_values.append(("INDEF", "0")) class DaophotData(core.BaseData): splitter_class = fixedwidth.FixedWidthSplitter start_line = 0 comment = r"\s*#" def __init__(self): core.BaseData.__init__(self) self.is_multiline = False def get_data_lines(self, lines): # Special case for multiline daophot databases. Extract the aperture # values from the first multiline data block if self.is_multiline: # Grab the first column of the special block (aperture values) and # recreate the aperture description string aplist = next(zip(*map(str.split, self.first_block))) self.header.aperture_values = tuple(map(float, aplist)) # Set self.data.data_lines to a slice of lines contain the data rows core.BaseData.get_data_lines(self, lines) class DaophotInputter(core.ContinuationLinesInputter): continuation_char = "\\" multiline_char = "*" replace_char = " " re_multiline = re.compile(r"(#?)[^\\*#]*(\*?)(\\*) ?$") def search_multiline(self, lines, depth=150): """ Search lines for special continuation character to determine number of continued rows in a datablock. For efficiency, depth gives the upper limit of lines to search. """ # The list of apertures given in the #K APERTURES keyword may not be # complete!! This happens if the string description of the aperture # list is longer than the field width of the #K APERTURES field. In # this case we have to figure out how many apertures there are based on # the file structure. comment, special, cont = zip( *(self.re_multiline.search(line).groups() for line in lines[:depth]) ) # Find first non-comment line data_start = first_false_index(comment) # No data in lines[:depth]. This may be because there is no data in # the file, or because the header is really huge. If the latter, # increasing the search depth should help if data_start is None: return None, None, lines[:depth] header_lines = lines[:data_start] # Find first line ending on special row continuation character '*' # indexed relative to data_start first_special = first_true_index(special[data_start:depth]) if first_special is None: # no special lines return None, None, header_lines # last line ending on special '*', but not on line continue '/' last_special = first_false_index(special[data_start + first_special : depth]) # index relative to first_special # if first_special is None: #no end of special lines within search # depth! increase search depth return self.search_multiline( lines, # depth=2*depth ) # indexing now relative to line[0] markers = np.cumsum([data_start, first_special, last_special]) # multiline portion of first data block multiline_block = lines[markers[1] : markers[-1]] return markers, multiline_block, header_lines def process_lines(self, lines): markers, block, header = self.search_multiline(lines) self.data.is_multiline = markers is not None self.data.markers = markers self.data.first_block = block # set the header lines returned by the search as a attribute of the header self.data.header.lines = header if markers is not None: lines = lines[markers[0] :] continuation_char = self.continuation_char multiline_char = self.multiline_char replace_char = self.replace_char parts = [] outlines = [] for i, line in enumerate(lines): mo = self.re_multiline.search(line) if mo: comment, special, cont = mo.groups() if comment or cont: line = line.replace(continuation_char, replace_char) if special: line = line.replace(multiline_char, replace_char) if cont and not comment: parts.append(line) if not cont: parts.append(line) outlines.append("".join(parts)) parts = [] else: raise core.InconsistentTableError( f"multiline re could not match line {i}: {line}" ) return outlines class Daophot(core.BaseReader): """ DAOphot format table. Example:: #K MERGERAD = INDEF scaleunit %-23.7g #K IRAF = NOAO/IRAFV2.10EXPORT version %-23s #K USER = davis name %-23s #K HOST = tucana computer %-23s # #N ID XCENTER YCENTER MAG MERR MSKY NITER \\ #U ## pixels pixels magnitudes magnitudes counts ## \\ #F %-9d %-10.3f %-10.3f %-12.3f %-14.3f %-15.7g %-6d # #N SHARPNESS CHI PIER PERROR \\ #U ## ## ## perrors \\ #F %-23.3f %-12.3f %-6d %-13s # 14 138.538 INDEF 15.461 0.003 34.85955 4 \\ -0.032 0.802 0 No_error The keywords defined in the #K records are available via the output table ``meta`` attribute:: >>> import os >>> from astropy.io import ascii >>> filename = os.path.join(ascii.__path__[0], 'tests/data/daophot.dat') >>> data = ascii.read(filename) >>> for name, keyword in data.meta['keywords'].items(): ... print(name, keyword['value'], keyword['units'], keyword['format']) ... MERGERAD INDEF scaleunit %-23.7g IRAF NOAO/IRAFV2.10EXPORT version %-23s USER name %-23s ... The unit and formats are available in the output table columns:: >>> for colname in data.colnames: ... col = data[colname] ... print(colname, col.unit, col.format) ... ID None %-9d XCENTER pixels %-10.3f YCENTER pixels %-10.3f ... Any column values of INDEF are interpreted as a missing value and will be masked out in the resultant table. In case of multi-aperture daophot files containing repeated entries for the last row of fields, extra unique column names will be created by suffixing corresponding field names with numbers starting from 2 to N (where N is the total number of apertures). For example, first aperture radius will be RAPERT and corresponding magnitude will be MAG, second aperture radius will be RAPERT2 and corresponding magnitude will be MAG2, third aperture radius will be RAPERT3 and corresponding magnitude will be MAG3, and so on. """ _format_name = "daophot" _io_registry_format_aliases = ["daophot"] _io_registry_can_write = False _description = "IRAF DAOphot format table" header_class = DaophotHeader data_class = DaophotData inputter_class = DaophotInputter table_width = 80 def __init__(self): core.BaseReader.__init__(self) # The inputter needs to know about the data (see DaophotInputter.process_lines) self.inputter.data = self.data def write(self, table=None): raise NotImplementedError