hash
stringlengths
64
64
content
stringlengths
0
1.51M
ed880b6c12358d97815ddc921ce5bdc9d43eb8aee307baab5ff6b4c72b6332c2
# Licensed under a 3-clause BSD style license - see LICENSE.rst import warnings from asdf import tagged from asdf.tests.helpers import assert_tree_match from astropy.io.misc.asdf.deprecation import create_asdf_deprecation_warning from astropy.io.misc.asdf.tags.transform.basic import TransformType from astropy.modeling.core import CompoundModel, Model from astropy.modeling.models import Const1D, Identity, Mapping __all__ = ["CompoundType", "RemapAxesType"] _operator_to_tag_mapping = { "+": "add", "-": "subtract", "*": "multiply", "/": "divide", "**": "power", "|": "compose", "&": "concatenate", "fix_inputs": "fix_inputs", } _tag_to_method_mapping = { "add": "__add__", "subtract": "__sub__", "multiply": "__mul__", "divide": "__truediv__", "power": "__pow__", "compose": "__or__", "concatenate": "__and__", "fix_inputs": "fix_inputs", } class CompoundType(TransformType): name = ["transform/" + x for x in _tag_to_method_mapping.keys()] types = [CompoundModel] version = "1.2.0" handle_dynamic_subclasses = True @classmethod def from_tree_tagged(cls, node, ctx): warnings.warn(create_asdf_deprecation_warning()) tag = node._tag[node._tag.rfind("/") + 1 :] tag = tag[: tag.rfind("-")] oper = _tag_to_method_mapping[tag] left = node["forward"][0] if not isinstance(left, Model): raise TypeError(f"Unknown model type '{node['forward'][0]._tag}'") right = node["forward"][1] if not isinstance(right, Model) and not ( oper == "fix_inputs" and isinstance(right, dict) ): raise TypeError(f"Unknown model type '{node['forward'][1]._tag}'") if oper == "fix_inputs": right = dict(zip(right["keys"], right["values"])) model = CompoundModel("fix_inputs", left, right) else: model = getattr(left, oper)(right) return cls._from_tree_base_transform_members(model, node, ctx) @classmethod def to_tree_tagged(cls, model, ctx): warnings.warn(create_asdf_deprecation_warning()) left = model.left if isinstance(model.right, dict): right = { "keys": list(model.right.keys()), "values": list(model.right.values()), } else: right = model.right node = {"forward": [left, right]} try: tag_name = "transform/" + _operator_to_tag_mapping[model.op] except KeyError: raise ValueError(f"Unknown operator '{model.op}'") node = tagged.tag_object(cls.make_yaml_tag(tag_name), node, ctx=ctx) return cls._to_tree_base_transform_members(model, node, ctx) @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert_tree_match(a.left, b.left) assert_tree_match(a.right, b.right) class RemapAxesType(TransformType): name = "transform/remap_axes" types = [Mapping] version = "1.3.0" @classmethod def from_tree_transform(cls, node, ctx): mapping = node["mapping"] n_inputs = node.get("n_inputs") if all([isinstance(x, int) for x in mapping]): return Mapping(tuple(mapping), n_inputs) if n_inputs is None: n_inputs = max(x for x in mapping if isinstance(x, int)) + 1 transform = Identity(n_inputs) new_mapping = [] i = n_inputs for entry in mapping: if isinstance(entry, int): new_mapping.append(entry) else: new_mapping.append(i) transform = transform & Const1D(entry.value) i += 1 return transform | Mapping(new_mapping) @classmethod def to_tree_transform(cls, model, ctx): node = {"mapping": list(model.mapping)} if model.n_inputs > max(model.mapping) + 1: node["n_inputs"] = model.n_inputs return node @classmethod def assert_equal(cls, a, b): TransformType.assert_equal(a, b) assert a.mapping == b.mapping assert a.n_inputs == b.n_inputs
33ccbb3fc468d79fda0c199e4510831bd95340826eb21a8607561eba4e58ac1a
# Licensed under a 3-clause BSD style license - see LICENSE.rst from numpy.testing import assert_array_equal from astropy.io.misc.asdf.tags.transform.basic import TransformType from astropy.modeling import powerlaws from . import _parameter_to_value __all__ = [ "PowerLaw1DType", "BrokenPowerLaw1DType", "SmoothlyBrokenPowerLaw1DType", "ExponentialCutoffPowerLaw1DType", "LogParabola1DType", ] class PowerLaw1DType(TransformType): name = "transform/power_law1d" version = "1.0.0" types = ["astropy.modeling.powerlaws.PowerLaw1D"] @classmethod def from_tree_transform(cls, node, ctx): return powerlaws.PowerLaw1D( amplitude=node["amplitude"], x_0=node["x_0"], alpha=node["alpha"] ) @classmethod def to_tree_transform(cls, model, ctx): node = { "amplitude": _parameter_to_value(model.amplitude), "x_0": _parameter_to_value(model.x_0), "alpha": _parameter_to_value(model.alpha), } return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert isinstance(a, powerlaws.PowerLaw1D) and isinstance( b, powerlaws.PowerLaw1D ) assert_array_equal(a.amplitude, b.amplitude) assert_array_equal(a.x_0, b.x_0) assert_array_equal(a.alpha, b.alpha) class BrokenPowerLaw1DType(TransformType): name = "transform/broken_power_law1d" version = "1.0.0" types = ["astropy.modeling.powerlaws.BrokenPowerLaw1D"] @classmethod def from_tree_transform(cls, node, ctx): return powerlaws.BrokenPowerLaw1D( amplitude=node["amplitude"], x_break=node["x_break"], alpha_1=node["alpha_1"], alpha_2=node["alpha_2"], ) @classmethod def to_tree_transform(cls, model, ctx): node = { "amplitude": _parameter_to_value(model.amplitude), "x_break": _parameter_to_value(model.x_break), "alpha_1": _parameter_to_value(model.alpha_1), "alpha_2": _parameter_to_value(model.alpha_2), } return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert isinstance(a, powerlaws.BrokenPowerLaw1D) and isinstance( b, powerlaws.BrokenPowerLaw1D ) assert_array_equal(a.amplitude, b.amplitude) assert_array_equal(a.x_break, b.x_break) assert_array_equal(a.alpha_1, b.alpha_1) assert_array_equal(a.alpha_2, b.alpha_2) class SmoothlyBrokenPowerLaw1DType(TransformType): name = "transform/smoothly_broken_power_law1d" version = "1.0.0" types = ["astropy.modeling.powerlaws.SmoothlyBrokenPowerLaw1D"] @classmethod def from_tree_transform(cls, node, ctx): return powerlaws.SmoothlyBrokenPowerLaw1D( amplitude=node["amplitude"], x_break=node["x_break"], alpha_1=node["alpha_1"], alpha_2=node["alpha_2"], delta=node["delta"], ) @classmethod def to_tree_transform(cls, model, ctx): node = { "amplitude": _parameter_to_value(model.amplitude), "x_break": _parameter_to_value(model.x_break), "alpha_1": _parameter_to_value(model.alpha_1), "alpha_2": _parameter_to_value(model.alpha_2), "delta": _parameter_to_value(model.delta), } return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert isinstance(a, powerlaws.SmoothlyBrokenPowerLaw1D) and isinstance( b, powerlaws.SmoothlyBrokenPowerLaw1D ) assert_array_equal(a.amplitude, b.amplitude) assert_array_equal(a.x_break, b.x_break) assert_array_equal(a.alpha_1, b.alpha_1) assert_array_equal(a.alpha_2, b.alpha_2) assert_array_equal(a.delta, b.delta) class ExponentialCutoffPowerLaw1DType(TransformType): name = "transform/exponential_cutoff_power_law1d" version = "1.0.0" types = ["astropy.modeling.powerlaws.ExponentialCutoffPowerLaw1D"] @classmethod def from_tree_transform(cls, node, ctx): return powerlaws.ExponentialCutoffPowerLaw1D( amplitude=node["amplitude"], x_0=node["x_0"], alpha=node["alpha"], x_cutoff=node["x_cutoff"], ) @classmethod def to_tree_transform(cls, model, ctx): node = { "amplitude": _parameter_to_value(model.amplitude), "x_0": _parameter_to_value(model.x_0), "alpha": _parameter_to_value(model.alpha), "x_cutoff": _parameter_to_value(model.x_cutoff), } return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert isinstance(a, powerlaws.ExponentialCutoffPowerLaw1D) and isinstance( b, powerlaws.ExponentialCutoffPowerLaw1D ) assert_array_equal(a.amplitude, b.amplitude) assert_array_equal(a.x_0, b.x_0) assert_array_equal(a.alpha, b.alpha) assert_array_equal(a.x_cutoff, b.x_cutoff) class LogParabola1DType(TransformType): name = "transform/log_parabola1d" version = "1.0.0" types = ["astropy.modeling.powerlaws.LogParabola1D"] @classmethod def from_tree_transform(cls, node, ctx): return powerlaws.LogParabola1D( amplitude=node["amplitude"], x_0=node["x_0"], alpha=node["alpha"], beta=node["beta"], ) @classmethod def to_tree_transform(cls, model, ctx): node = { "amplitude": _parameter_to_value(model.amplitude), "x_0": _parameter_to_value(model.x_0), "alpha": _parameter_to_value(model.alpha), "beta": _parameter_to_value(model.beta), } return node @classmethod def assert_equal(cls, a, b): # TODO: If models become comparable themselves, remove this. TransformType.assert_equal(a, b) assert isinstance(a, powerlaws.LogParabola1D) and isinstance( b, powerlaws.LogParabola1D ) assert_array_equal(a.amplitude, b.amplitude) assert_array_equal(a.x_0, b.x_0) assert_array_equal(a.alpha, b.alpha) assert_array_equal(a.beta, b.beta)
4d4d3764354431f7d24c1b0a5de33fd853081193b0edd95b74f514648a4c903d
# Licensed under a 3-clause BSD style license - see LICENSE.rst import functools import numpy as np from astropy.io.misc.asdf.types import AstropyType from astropy.time import TimeDelta __all__ = ["TimeDeltaType"] allclose_jd = functools.partial(np.allclose, rtol=2.0**-52, atol=0) allclose_jd2 = functools.partial( np.allclose, rtol=2.0**-52, atol=2.0**-52 ) # 20 ps atol allclose_sec = functools.partial( np.allclose, rtol=2.0**-52, atol=2.0**-52 * 24 * 3600 ) # 20 ps atol class TimeDeltaType(AstropyType): name = "time/timedelta" types = [TimeDelta] version = "1.0.0" @classmethod def to_tree(cls, obj, ctx): return obj.info._represent_as_dict() @classmethod def from_tree(cls, node, ctx): return TimeDelta.info._construct_from_dict(node) @classmethod def assert_equal(cls, old, new): assert allclose_jd(old.jd, new.jd) assert allclose_jd2(old.jd2, new.jd2) assert allclose_sec(old.sec, new.sec)
f97d67c9df228b2be77198934dfc8f0d6e4f90c54fc1893666493dc02689ca6c
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np from asdf.versioning import AsdfSpec from numpy.testing import assert_array_equal from astropy import time from astropy import units as u from astropy.coordinates import EarthLocation from astropy.io.misc.asdf.types import AstropyAsdfType from astropy.units import Quantity __all__ = ["TimeType"] _guessable_formats = {"iso", "byear", "jyear", "yday"} _astropy_format_to_asdf_format = { "isot": "iso", "byear_str": "byear", "jyear_str": "jyear", } def _assert_earthlocation_equal(a, b): assert_array_equal(a.x, b.x) assert_array_equal(a.y, b.y) assert_array_equal(a.z, b.z) assert_array_equal(a.lat, b.lat) assert_array_equal(a.lon, b.lon) class TimeType(AstropyAsdfType): name = "time/time" version = "1.1.0" supported_versions = ["1.0.0", AsdfSpec(">=1.1.0")] types = ["astropy.time.core.Time"] requires = ["astropy"] @classmethod def to_tree(cls, node, ctx): fmt = node.format if fmt == "byear": node = time.Time(node, format="byear_str") elif fmt == "jyear": node = time.Time(node, format="jyear_str") elif fmt in ("fits", "datetime", "plot_date"): node = time.Time(node, format="isot") fmt = node.format fmt = _astropy_format_to_asdf_format.get(fmt, fmt) guessable_format = fmt in _guessable_formats if node.scale == "utc" and guessable_format and node.isscalar: return node.value d = {"value": node.value} if not guessable_format: d["format"] = fmt if node.scale != "utc": d["scale"] = node.scale if node.location is not None: x, y, z = node.location.x, node.location.y, node.location.z # Preserve backwards compatibility for writing the old schema # This allows WCS to test backwards compatibility with old frames # This code does get tested in CI, but we don't run a coverage test if cls.version == "1.0.0": # pragma: no cover unit = node.location.unit d["location"] = {"x": x.value, "y": y.value, "z": z.value, "unit": unit} else: d["location"] = { # It seems like EarthLocations can be represented either in # terms of Cartesian coordinates or latitude and longitude, so # we rather arbitrarily choose the former for our representation "x": x, "y": y, "z": z, } return d @classmethod def from_tree(cls, node, ctx): if isinstance(node, (str, list, np.ndarray)): t = time.Time(node) fmt = _astropy_format_to_asdf_format.get(t.format, t.format) if fmt not in _guessable_formats: raise ValueError(f"Invalid time '{node}'") return t value = node["value"] fmt = node.get("format") scale = node.get("scale") location = node.get("location") if location is not None: unit = location.get("unit", u.m) # This ensures that we can read the v.1.0.0 schema and convert it # to the new EarthLocation object, which expects Quantity components for comp in ["x", "y", "z"]: if not isinstance(location[comp], Quantity): location[comp] = Quantity(location[comp], unit=unit) location = EarthLocation.from_geocentric( location["x"], location["y"], location["z"] ) return time.Time(value, format=fmt, scale=scale, location=location) @classmethod def assert_equal(cls, old, new): assert old.format == new.format assert old.scale == new.scale if isinstance(old.location, EarthLocation): assert isinstance(new.location, EarthLocation) _assert_earthlocation_equal(old.location, new.location) else: assert old.location == new.location assert_array_equal(old, new)
285574b30979203540c501784f9d983ec09ff98ebd5c78d0568c1b73b283a42f
# Licensed under a 3-clause BSD style license - see LICENSE.rst from asdf.tags.core import NDArrayType from astropy.coordinates.spectral_coordinate import SpectralCoord from astropy.io.misc.asdf.tags.unit.unit import UnitType from astropy.io.misc.asdf.types import AstropyType __all__ = ["SpectralCoordType"] class SpectralCoordType(AstropyType): """ ASDF tag implementation used to serialize/derialize SpectralCoord objects """ name = "coordinates/spectralcoord" types = [SpectralCoord] version = "1.0.0" @classmethod def to_tree(cls, spec_coord, ctx): node = {} if isinstance(spec_coord, SpectralCoord): node["value"] = spec_coord.value node["unit"] = spec_coord.unit if spec_coord.observer is not None: node["observer"] = spec_coord.observer if spec_coord.target is not None: node["target"] = spec_coord.target return node raise TypeError(f"'{spec_coord}' is not a valid SpectralCoord") @classmethod def from_tree(cls, node, ctx): if isinstance(node, SpectralCoord): return node unit = UnitType.from_tree(node["unit"], ctx) value = node["value"] observer = node["observer"] if "observer" in node else None target = node["target"] if "observer" in node else None if isinstance(value, NDArrayType): value = value._make_array() return SpectralCoord(value, unit=unit, observer=observer, target=target)
2ffba6e8c224d1464f6e1335e70752623aed16a6e9cefaf292495676476cbebf
# Licensed under a 3-clause BSD style license - see LICENSE.rst import glob import os import warnings from asdf import tagged import astropy.coordinates import astropy.units as u from astropy.coordinates import ICRS, Angle, Latitude, Longitude from astropy.coordinates.baseframe import frame_transform_graph from astropy.io.misc.asdf.deprecation import create_asdf_deprecation_warning from astropy.io.misc.asdf.types import AstropyType from astropy.units import Quantity __all__ = ["CoordType"] SCHEMA_PATH = os.path.abspath( os.path.join( os.path.dirname(__file__), "..", "..", "data", "schemas", "astropy.org", "astropy", ) ) def _get_frames(): """ By reading the schema files, get the list of all the frames we can save/load. """ search = os.path.join(SCHEMA_PATH, "coordinates", "frames", "*.yaml") files = glob.glob(search) names = [] for fpath in files: path, fname = os.path.split(fpath) frame, _ = fname.split("-") # Skip baseframe because we cannot directly save / load it. # Skip icrs because we have an explicit tag for it because there are # two versions. if frame not in ["baseframe", "icrs"]: names.append(frame) return names class BaseCoordType: """ This defines the base methods for coordinates, without defining anything related to asdf types. This allows subclasses with different types and schemas to use this without confusing the metaclass machinery. """ @staticmethod def _tag_to_frame(tag): """ Extract the frame name from the tag. """ tag = tag[tag.rfind("/") + 1 :] tag = tag[: tag.rfind("-")] return frame_transform_graph.lookup_name(tag) @classmethod def _frame_name_to_tag(cls, frame_name): return cls.make_yaml_tag(cls._tag_prefix + frame_name) @classmethod def from_tree_tagged(cls, node, ctx): warnings.warn(create_asdf_deprecation_warning()) frame = cls._tag_to_frame(node._tag) data = node.get("data", None) if data is not None: return frame(node["data"], **node["frame_attributes"]) return frame(**node["frame_attributes"]) @classmethod def to_tree_tagged(cls, frame, ctx): warnings.warn(create_asdf_deprecation_warning()) if type(frame) not in frame_transform_graph.frame_set: raise ValueError( "Can only save frames that are registered with the " "transformation graph." ) node = {} if frame.has_data: node["data"] = frame.data frame_attributes = {} for attr in frame.frame_attributes.keys(): value = getattr(frame, attr, None) if value is not None: frame_attributes[attr] = value node["frame_attributes"] = frame_attributes return tagged.tag_object(cls._frame_name_to_tag(frame.name), node, ctx=ctx) @classmethod def assert_equal(cls, old, new): assert isinstance(new, type(old)) if new.has_data: assert u.allclose(new.data.lon, old.data.lon) assert u.allclose(new.data.lat, old.data.lat) class CoordType(BaseCoordType, AstropyType): _tag_prefix = "coordinates/frames/" name = ["coordinates/frames/" + f for f in _get_frames()] types = [astropy.coordinates.BaseCoordinateFrame] handle_dynamic_subclasses = True requires = ["astropy"] version = "1.0.0" class ICRSType(CoordType): """ Define a special tag for ICRS so we can make it version 1.1.0. """ name = "coordinates/frames/icrs" types = ["astropy.coordinates.ICRS"] version = "1.1.0" class ICRSType10(AstropyType): name = "coordinates/frames/icrs" types = [astropy.coordinates.ICRS] requires = ["astropy"] version = "1.0.0" @classmethod def from_tree(cls, node, ctx): wrap_angle = Angle(node["ra"]["wrap_angle"]) ra = Longitude( node["ra"]["value"], unit=node["ra"]["unit"], wrap_angle=wrap_angle ) dec = Latitude(node["dec"]["value"], unit=node["dec"]["unit"]) return ICRS(ra=ra, dec=dec) @classmethod def to_tree(cls, frame, ctx): node = {} wrap_angle = Quantity(frame.ra.wrap_angle) node["ra"] = { "value": frame.ra.value, "unit": frame.ra.unit.to_string(), "wrap_angle": wrap_angle, } node["dec"] = {"value": frame.dec.value, "unit": frame.dec.unit.to_string()} return node @classmethod def assert_equal(cls, old, new): assert isinstance(old, ICRS) assert isinstance(new, ICRS) assert u.allclose(new.ra, old.ra) assert u.allclose(new.dec, old.dec)
9f26ae34b8c9be4b2d074b94e182b378227165aed2571ecb7f500ba14f60ef58
# Licensed under a 3-clause BSD style license - see LICENSE.rst from astropy.coordinates import SkyCoord from astropy.coordinates.tests.helper import skycoord_equal from astropy.io.misc.asdf.types import AstropyType class SkyCoordType(AstropyType): name = "coordinates/skycoord" types = [SkyCoord] version = "1.0.0" @classmethod def to_tree(cls, obj, ctx): return obj.info._represent_as_dict() @classmethod def from_tree(cls, tree, ctx): return SkyCoord.info._construct_from_dict(tree) @classmethod def assert_equal(cls, old, new): assert skycoord_equal(old, new)
46b8f3a1f6825c622f7690bfd23353e7ac397bde701201ba13caa66951de21cd
import astropy.coordinates.representation import astropy.units as u from astropy.coordinates.representation import BaseRepresentationOrDifferential from astropy.io.misc.asdf.types import AstropyType class RepresentationType(AstropyType): name = "coordinates/representation" types = [BaseRepresentationOrDifferential] version = "1.0.0" _representation_module = astropy.coordinates.representation @classmethod def to_tree(cls, representation, ctx): comps = representation.components components = {} for c in comps: value = getattr(representation, "_" + c, None) if value is not None: components[c] = value t = type(representation) node = {} node["type"] = t.__name__ node["components"] = components return node @classmethod def from_tree(cls, node, ctx): rep_type = getattr(cls._representation_module, node["type"]) return rep_type(**node["components"]) @classmethod def assert_equal(cls, old, new): assert isinstance(new, type(old)) assert new.components == old.components for comp in new.components: nc = getattr(new, comp) oc = getattr(old, comp) assert u.allclose(nc, oc)
51344132014bdd8b644c9b05268a5210a033eca85ba1fb49dcd3a2ae79f29823
# Licensed under a 3-clause BSD style license - see LICENSE.rst from astropy.coordinates import Angle, Latitude, Longitude from astropy.io.misc.asdf.tags.unit.quantity import QuantityType __all__ = ["AngleType", "LatitudeType", "LongitudeType"] class AngleType(QuantityType): name = "coordinates/angle" types = [Angle] requires = ["astropy"] version = "1.0.0" organization = "astropy.org" standard = "astropy" @classmethod def from_tree(cls, node, ctx): return Angle(super().from_tree(node, ctx)) class LatitudeType(AngleType): name = "coordinates/latitude" types = [Latitude] @classmethod def from_tree(cls, node, ctx): return Latitude(super().from_tree(node, ctx)) class LongitudeType(AngleType): name = "coordinates/longitude" types = [Longitude] @classmethod def from_tree(cls, node, ctx): wrap_angle = node["wrap_angle"] return Longitude(super().from_tree(node, ctx), wrap_angle=wrap_angle) @classmethod def to_tree(cls, longitude, ctx): tree = super().to_tree(longitude, ctx) tree["wrap_angle"] = longitude.wrap_angle return tree
7bb57eff27df98c4369c93896952f55383796b38e94b0cf135d04270ffb5c119
# Licensed under a 3-clause BSD style license - see LICENSE.rst from astropy.coordinates import EarthLocation from astropy.io.misc.asdf.types import AstropyType class EarthLocationType(AstropyType): name = "coordinates/earthlocation" types = [EarthLocation] version = "1.0.0" @classmethod def to_tree(cls, obj, ctx): return obj.info._represent_as_dict() @classmethod def from_tree(cls, node, ctx): return EarthLocation.info._construct_from_dict(node) @classmethod def assert_equal(cls, old, new): return (old == new).all()
47d9112ccaae947c535c802c523a61decfc0bac5cc784caa460e7cc240ed5ad8
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np def run_schema_example_test(organization, standard, name, version, check_func=None): import asdf from asdf.schema import load_schema from asdf.tests import helpers from asdf.types import format_tag tag = format_tag(organization, standard, version, name) uri = asdf.extension.default_extensions.extension_list.tag_mapping(tag) r = asdf.extension.get_default_resolver() examples = [] schema = load_schema(uri, resolver=r) for node in asdf.treeutil.iter_tree(schema): if ( isinstance(node, dict) and "examples" in node and isinstance(node["examples"], list) ): for _, example in node["examples"]: examples.append(example) for example in examples: buff = helpers.yaml_to_asdf("example: " + example.strip()) ff = asdf.AsdfFile(uri=uri) # Add some dummy blocks so that the ndarray examples work for i in range(3): b = asdf.block.Block(np.zeros((1024 * 1024 * 8), dtype=np.uint8)) b._used = True ff.blocks.add(b) ff._open_impl(ff, buff, mode="r") if check_func: check_func(ff)
2bd7b59c38ce1ff3ab4efaab2f4b9847fa3a8f6c717c8f174700ba2719eac6bc
# Licensed under a 3-clause BSD style license - see LICENSE.rst from astropy.io.misc.asdf.types import AstropyType from astropy.units import equivalencies from astropy.units.equivalencies import Equivalency class EquivalencyType(AstropyType): name = "units/equivalency" types = [Equivalency] version = "1.0.0" @classmethod def to_tree(cls, equiv, ctx): if not isinstance(equiv, Equivalency): raise TypeError(f"'{equiv}' is not a valid Equivalency") eqs = [] for e, kwargs in zip(equiv.name, equiv.kwargs): kwarg_names = list(kwargs.keys()) kwarg_values = list(kwargs.values()) eq = {"name": e, "kwargs_names": kwarg_names, "kwargs_values": kwarg_values} eqs.append(eq) return eqs @classmethod def from_tree(cls, node, ctx): eqs = [] for eq in node: equiv = getattr(equivalencies, eq["name"]) kwargs = dict(zip(eq["kwargs_names"], eq["kwargs_values"])) eqs.append(equiv(**kwargs)) return sum(eqs[1:], eqs[0]) @classmethod def assert_equal(cls, a, b): assert a == b
928cf10fc31fc9bf1bac0642da10b7679b93c2704fd0eef5f03f7aaede3825c1
# Licensed under a 3-clause BSD style license - see LICENSE.rst from astropy.io.misc.asdf.types import AstropyAsdfType from astropy.units import Unit, UnitBase class UnitType(AstropyAsdfType): name = "unit/unit" types = ["astropy.units.UnitBase"] requires = ["astropy"] @classmethod def to_tree(cls, node, ctx): if isinstance(node, str): node = Unit(node, format="vounit", parse_strict="warn") if isinstance(node, UnitBase): return node.to_string(format="vounit") raise TypeError(f"'{node}' is not a valid unit") @classmethod def from_tree(cls, node, ctx): return Unit(node, format="vounit", parse_strict="silent")
e71ae19de058c132d6b9fbbead09c9d42588cb6f6d26ac0a561051f33e54e613
# Licensed under a 3-clause BSD style license - see LICENSE.rst from asdf.tags.core import NDArrayType from astropy.io.misc.asdf.types import AstropyAsdfType from astropy.units import Quantity class QuantityType(AstropyAsdfType): name = "unit/quantity" types = ["astropy.units.Quantity"] requires = ["astropy"] version = "1.1.0" @classmethod def to_tree(cls, quantity, ctx): node = {} if isinstance(quantity, Quantity): node["value"] = quantity.value node["unit"] = quantity.unit return node raise TypeError(f"'{quantity}' is not a valid Quantity") @classmethod def from_tree(cls, node, ctx): if isinstance(node, Quantity): return node unit = node["unit"] value = node["value"] if isinstance(value, NDArrayType): value = value._make_array() return Quantity(value, unit=unit)
90f3f6bf1047be8d4cfa1fc9b03408f18ce8a035f8c389c05c8ea1107c15d3e3
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest asdf = pytest.importorskip("asdf") import numpy as np from asdf.tags.core.ndarray import NDArrayType from asdf.tests import helpers from packaging.version import Version import astropy.units as u from astropy import table from astropy.coordinates import EarthLocation, SkyCoord from astropy.coordinates.tests.helper import skycoord_equal from astropy.io.misc.asdf.tags.tests.helpers import run_schema_example_test from astropy.time import Time, TimeDelta def test_table(tmpdir): data_rows = [(1, 2.0, "x"), (4, 5.0, "y"), (5, 8.2, "z")] t = table.Table(rows=data_rows, names=("a", "b", "c"), dtype=("i4", "f8", "S1")) t.columns["a"].description = "RA" t.columns["a"].unit = "degree" t.columns["a"].meta = {"foo": "bar"} t.columns["c"].description = "Some description of some sort" def check(ff): assert len(ff.blocks) == 3 helpers.assert_roundtrip_tree({"table": t}, tmpdir, asdf_check_func=check) def test_array_columns(tmpdir): a = np.array( [ ([[1, 2], [3, 4]], 2.0, "x"), ([[5, 6], [7, 8]], 5.0, "y"), ([[9, 10], [11, 12]], 8.2, "z"), ], dtype=[("a", "<i4", (2, 2)), ("b", "<f8"), ("c", "|S1")], ) t = table.Table(a, copy=False) assert t.columns["a"].shape == (3, 2, 2) def check(ff): assert len(ff.blocks) == 1 helpers.assert_roundtrip_tree({"table": t}, tmpdir, asdf_check_func=check) def test_structured_array_columns(tmpdir): a = np.array( [((1, "a"), 2.0, "x"), ((4, "b"), 5.0, "y"), ((5, "c"), 8.2, "z")], dtype=[("a", [("a0", "<i4"), ("a1", "|S1")]), ("b", "<f8"), ("c", "|S1")], ) t = table.Table(a, copy=False) def check(ff): assert len(ff.blocks) == 1 helpers.assert_roundtrip_tree({"table": t}, tmpdir, asdf_check_func=check) def test_table_row_order(tmpdir): a = np.array( [(1, 2.0, "x"), (4, 5.0, "y"), (5, 8.2, "z")], dtype=[("a", "<i4"), ("b", "<f8"), ("c", "|S1")], ) t = table.Table(a, copy=False) t.columns["a"].description = "RA" t.columns["a"].unit = "degree" t.columns["a"].meta = {"foo": "bar"} t.columns["c"].description = "Some description of some sort" def check(ff): assert len(ff.blocks) == 1 helpers.assert_roundtrip_tree({"table": t}, tmpdir, asdf_check_func=check) def test_table_inline(tmpdir): data_rows = [(1, 2.0, "x"), (4, 5.0, "y"), (5, 8.2, "z")] t = table.Table(rows=data_rows, names=("a", "b", "c"), dtype=("i4", "f8", "S1")) t.columns["a"].description = "RA" t.columns["a"].unit = "degree" t.columns["a"].meta = {"foo": "bar"} t.columns["c"].description = "Some description of some sort" def check(ff): assert len(list(ff.blocks.internal_blocks)) == 0 if Version(asdf.__version__) >= Version("2.8.0"): # The auto_inline argument is deprecated as of asdf 2.8.0. with asdf.config_context() as config: config.array_inline_threshold = 64 helpers.assert_roundtrip_tree({"table": t}, tmpdir, asdf_check_func=check) else: helpers.assert_roundtrip_tree( {"table": t}, tmpdir, asdf_check_func=check, write_options={"auto_inline": 64}, ) def test_mismatched_columns(): yaml = """ table: !<tag:astropy.org:astropy/table/table-1.0.0> columns: - !core/column-1.0.0 data: !core/ndarray-1.0.0 data: [0, 1, 2] name: a - !core/column-1.0.0 data: !core/ndarray-1.0.0 data: [0, 1, 2, 3] name: b colnames: [a, b] """ buff = helpers.yaml_to_asdf(yaml) with pytest.raises(ValueError) as err: with asdf.open(buff): pass assert "Inconsistent data column lengths" in str(err.value) def test_masked_table(tmpdir): data_rows = [(1, 2.0, "x"), (4, 5.0, "y"), (5, 8.2, "z")] t = table.Table( rows=data_rows, names=("a", "b", "c"), dtype=("i4", "f8", "S1"), masked=True ) t.columns["a"].description = "RA" t.columns["a"].unit = "degree" t.columns["a"].meta = {"foo": "bar"} t.columns["a"].mask = [True, False, True] t.columns["c"].description = "Some description of some sort" def check(ff): assert len(ff.blocks) == 4 helpers.assert_roundtrip_tree({"table": t}, tmpdir, asdf_check_func=check) def test_quantity_mixin(tmpdir): t = table.QTable() t["a"] = [1, 2, 3] t["b"] = ["x", "y", "z"] t["c"] = [2.0, 5.0, 8.2] * u.m def check(ff): assert isinstance(ff["table"]["c"], u.Quantity) helpers.assert_roundtrip_tree({"table": t}, tmpdir, asdf_check_func=check) def test_time_mixin(tmpdir): t = table.Table() t["a"] = [1, 2] t["b"] = ["x", "y"] t["c"] = Time(["2001-01-02T12:34:56", "2001-02-03T00:01:02"]) def check(ff): assert isinstance(ff["table"]["c"], Time) helpers.assert_roundtrip_tree({"table": t}, tmpdir, asdf_check_func=check) def test_timedelta_mixin(tmpdir): t = table.Table() t["a"] = [1, 2] t["b"] = ["x", "y"] t["c"] = TimeDelta([1, 2] * u.day) def check(ff): assert isinstance(ff["table"]["c"], TimeDelta) helpers.assert_roundtrip_tree({"table": t}, tmpdir, asdf_check_func=check) def test_skycoord_mixin(tmpdir): t = table.Table() t["a"] = [1, 2] t["b"] = ["x", "y"] t["c"] = SkyCoord([1, 2], [3, 4], unit="deg,deg", frame="fk4", obstime="J1990.5") def check(ff): assert isinstance(ff["table"]["c"], SkyCoord) def tree_match(old, new): NDArrayType.assert_equal(new["a"], old["a"]) NDArrayType.assert_equal(new["b"], old["b"]) assert skycoord_equal(new["c"], old["c"]) helpers.assert_roundtrip_tree( {"table": t}, tmpdir, asdf_check_func=check, tree_match_func=tree_match ) def test_earthlocation_mixin(tmpdir): t = table.Table() t["a"] = [1, 2] t["b"] = ["x", "y"] t["c"] = EarthLocation(x=[1, 2] * u.km, y=[3, 4] * u.km, z=[5, 6] * u.km) def check(ff): assert isinstance(ff["table"]["c"], EarthLocation) helpers.assert_roundtrip_tree({"table": t}, tmpdir, asdf_check_func=check) def test_ndarray_mixin(tmpdir): t = table.Table() t["a"] = [1, 2] t["b"] = ["x", "y"] t["c"] = table.NdarrayMixin([5, 6]) helpers.assert_roundtrip_tree({"table": t}, tmpdir) def test_backwards_compat(): """ Make sure that we can continue to read tables that use the schema from the ASDF Standard. This test uses the examples in the table schema from the ASDF Standard, since these make no reference to Astropy's own table definition. """ def check(asdffile): assert isinstance(asdffile["example"], table.Table) run_schema_example_test("stsci.edu", "asdf", "core/table", "1.0.0", check)
2d5aa455df1d26f3febbb84f95449201363b0901022aa823ddb1c3d0578b7d3d
import pytest from astropy.io.misc.asdf.tests import ASDF_ENTRY_INSTALLED if not ASDF_ENTRY_INSTALLED: pytest.skip( "The astropy asdf entry points are not installed", allow_module_level=True )
71405244703c9a767d87cc1b3c1a1ea5b4956d3cf295770774c94dd7dcc19c83
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest asdf = pytest.importorskip("asdf") import os import numpy as np from asdf.tests import helpers from astropy.io import fits from astropy.io.misc.asdf.tags.tests.helpers import run_schema_example_test def test_complex_structure(tmpdir): with fits.open( os.path.join(os.path.dirname(__file__), "data", "complex.fits"), memmap=False ) as hdulist: tree = {"fits": hdulist} helpers.assert_roundtrip_tree(tree, tmpdir) def test_fits_table(tmpdir): a = np.array([(0, 1), (2, 3)], dtype=[("A", int), ("B", int)]) h = fits.HDUList() h.append(fits.BinTableHDU.from_columns(a)) tree = {"fits": h} def check_yaml(content): assert b"!<tag:astropy.org:astropy/table/table-1.0.0>" in content helpers.assert_roundtrip_tree(tree, tmpdir, raw_yaml_check_func=check_yaml) def test_backwards_compat(): """ Make sure that we can continue to read FITS HDUs that use the schema from the ASDF Standard. This test uses the examples in the fits schema from the ASDF Standard, since these make no reference to Astropy's own fits definition. """ def check(asdffile): assert isinstance(asdffile["example"], fits.HDUList) run_schema_example_test("stsci.edu", "asdf", "fits/fits", "1.0.0", check)
6902bfecedb1a0097910cf3394c4d54ed98bbd7814bec75a248fc2d84867be16
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest asdf = pytest.importorskip("asdf") from asdf.tests.helpers import assert_roundtrip_tree from astropy import units as u from astropy.modeling.models import UnitsMapping def assert_model_roundtrip(model, tmpdir): tree = {"model": model} assert_roundtrip_tree(tree, tmpdir, tree_match_func=assert_models_equal) def assert_models_equal(a, b): assert a.name == b.name assert a.inputs == b.inputs assert a.input_units == b.input_units assert a.outputs == b.outputs assert a.mapping == b.mapping assert a.input_units_allow_dimensionless == b.input_units_allow_dimensionless for i in a.inputs: if a.input_units_equivalencies is None: a_equiv = None else: a_equiv = a.input_units_equivalencies.get(i) if b.input_units_equivalencies is None: b_equiv = None else: b_equiv = b.input_units_equivalencies.get(i, None) assert a_equiv == b_equiv def test_basic(tmpdir): m = UnitsMapping(((u.m, u.dimensionless_unscaled),)) assert_model_roundtrip(m, tmpdir) def test_remove_units(tmpdir): m = UnitsMapping(((u.m, None),)) assert_model_roundtrip(m, tmpdir) def test_accept_any_units(tmpdir): m = UnitsMapping(((None, u.m),)) assert_model_roundtrip(m, tmpdir) def test_with_equivalencies(tmpdir): m = UnitsMapping( ((u.m, u.dimensionless_unscaled),), input_units_equivalencies={"x": u.equivalencies.spectral()}, ) assert_model_roundtrip(m, tmpdir) def test_with_allow_dimensionless(tmpdir): m = UnitsMapping( ((u.m, u.dimensionless_unscaled), (u.s, u.Hz)), input_units_allow_dimensionless=True, ) assert_model_roundtrip(m, tmpdir) m = UnitsMapping( ((u.m, u.dimensionless_unscaled), (u.s, u.Hz)), input_units_allow_dimensionless={"x0": True, "x1": False}, ) assert_model_roundtrip(m, tmpdir)
49a13af678d6cf49ce6776f45573c1dc9e50f3ebec7228ca9f7ead5311dc7658
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest asdf = pytest.importorskip("asdf") import warnings import asdf import numpy as np from asdf import AsdfFile, util from asdf.tests import helpers from packaging.version import Version import astropy.units as u from astropy.modeling import models as astmodels from astropy.modeling.core import fix_inputs from astropy.utils.compat.optional_deps import HAS_SCIPY def custom_and_analytical_inverse(): p1 = astmodels.Polynomial1D(1) p2 = astmodels.Polynomial1D(1) p3 = astmodels.Polynomial1D(1) p4 = astmodels.Polynomial1D(1) m1 = p1 & p2 m2 = p3 & p4 m1.inverse = m2 return m1 def custom_inputs_outputs(): m = astmodels.Gaussian2D() m.inputs = ("a", "b") m.outputs = ("c",) return m test_models = [ astmodels.Identity(2), astmodels.Polynomial1D(2, c0=1, c1=2, c2=3), astmodels.Polynomial2D(1, c0_0=1, c0_1=2, c1_0=3), astmodels.Shift(2.0), astmodels.Hermite1D(2, c0=2, c1=3, c2=0.5), astmodels.Legendre1D(2, c0=2, c1=3, c2=0.5), astmodels.Chebyshev1D(2, c0=2, c1=3, c2=0.5), astmodels.Chebyshev2D(1, 1, c0_0=1, c0_1=2, c1_0=3), astmodels.Legendre2D(1, 1, c0_0=1, c0_1=2, c1_0=3), astmodels.Hermite2D(1, 1, c0_0=1, c0_1=2, c1_0=3), astmodels.Scale(3.4), astmodels.RotateNative2Celestial(5.63, -72.5, 180), astmodels.Multiply(3), astmodels.Multiply(10 * u.m), astmodels.RotateCelestial2Native(5.63, -72.5, 180), astmodels.EulerAngleRotation(23, 14, 2.3, axes_order="xzx"), astmodels.Mapping((0, 1), n_inputs=3), astmodels.Shift(2.0 * u.deg), astmodels.Scale(3.4 * u.deg), astmodels.RotateNative2Celestial(5.63 * u.deg, -72.5 * u.deg, 180 * u.deg), astmodels.RotateCelestial2Native(5.63 * u.deg, -72.5 * u.deg, 180 * u.deg), astmodels.RotationSequence3D([1.2, 2.3, 3.4, 0.3], "xyzx"), astmodels.SphericalRotationSequence([1.2, 2.3, 3.4, 0.3], "xyzy"), astmodels.AiryDisk2D(amplitude=10.0, x_0=0.5, y_0=1.5), astmodels.Box1D(amplitude=10.0, x_0=0.5, width=5.0), astmodels.Box2D(amplitude=10.0, x_0=0.5, x_width=5.0, y_0=1.5, y_width=7.0), astmodels.Const1D(amplitude=5.0), astmodels.Const2D(amplitude=5.0), astmodels.Disk2D(amplitude=10.0, x_0=0.5, y_0=1.5, R_0=5.0), astmodels.Ellipse2D(amplitude=10.0, x_0=0.5, y_0=1.5, a=2.0, b=4.0, theta=0.1), astmodels.Exponential1D(amplitude=10.0, tau=3.5), astmodels.Gaussian1D(amplitude=10.0, mean=5.0, stddev=3.0), astmodels.Gaussian2D( amplitude=10.0, x_mean=5.0, y_mean=5.0, x_stddev=3.0, y_stddev=3.0 ), astmodels.KingProjectedAnalytic1D(amplitude=10.0, r_core=5.0, r_tide=2.0), astmodels.Logarithmic1D(amplitude=10.0, tau=3.5), astmodels.Lorentz1D(amplitude=10.0, x_0=0.5, fwhm=2.5), astmodels.Moffat1D(amplitude=10.0, x_0=0.5, gamma=1.2, alpha=2.5), astmodels.Moffat2D(amplitude=10.0, x_0=0.5, y_0=1.5, gamma=1.2, alpha=2.5), astmodels.Planar2D(slope_x=0.5, slope_y=1.2, intercept=2.5), astmodels.RedshiftScaleFactor(z=2.5), astmodels.RickerWavelet1D(amplitude=10.0, x_0=0.5, sigma=1.2), astmodels.RickerWavelet2D(amplitude=10.0, x_0=0.5, y_0=1.5, sigma=1.2), astmodels.Ring2D(amplitude=10.0, x_0=0.5, y_0=1.5, r_in=5.0, width=10.0), astmodels.Sersic1D(amplitude=10.0, r_eff=1.0, n=4.0), astmodels.Sersic2D( amplitude=10.0, r_eff=1.0, n=4.0, x_0=0.5, y_0=1.5, ellip=0.0, theta=0.0 ), astmodels.Sine1D(amplitude=10.0, frequency=0.5, phase=1.0), astmodels.Cosine1D(amplitude=10.0, frequency=0.5, phase=1.0), astmodels.Tangent1D(amplitude=10.0, frequency=0.5, phase=1.0), astmodels.ArcSine1D(amplitude=10.0, frequency=0.5, phase=1.0), astmodels.ArcCosine1D(amplitude=10.0, frequency=0.5, phase=1.0), astmodels.ArcTangent1D(amplitude=10.0, frequency=0.5, phase=1.0), astmodels.Trapezoid1D(amplitude=10.0, x_0=0.5, width=5.0, slope=1.0), astmodels.TrapezoidDisk2D(amplitude=10.0, x_0=0.5, y_0=1.5, R_0=5.0, slope=1.0), astmodels.Voigt1D(x_0=0.55, amplitude_L=10.0, fwhm_L=0.5, fwhm_G=0.9), astmodels.BlackBody(scale=10.0, temperature=6000.0 * u.K), astmodels.Drude1D(amplitude=10.0, x_0=0.5, fwhm=2.5), astmodels.Plummer1D(mass=10.0, r_plum=5.0), astmodels.BrokenPowerLaw1D(amplitude=10, x_break=0.5, alpha_1=2.0, alpha_2=3.5), astmodels.ExponentialCutoffPowerLaw1D(10, 0.5, 2.0, 7.0), astmodels.LogParabola1D( amplitude=10, x_0=0.5, alpha=2.0, beta=3.0, ), astmodels.PowerLaw1D(amplitude=10.0, x_0=0.5, alpha=2.0), astmodels.SmoothlyBrokenPowerLaw1D( amplitude=10.0, x_break=5.0, alpha_1=2.0, alpha_2=3.0, delta=0.5 ), custom_and_analytical_inverse(), custom_inputs_outputs(), ] if HAS_SCIPY: test_models.append( astmodels.Spline1D( np.array([-3.0, -3.0, -3.0, -3.0, -1.0, 0.0, 1.0, 3.0, 3.0, 3.0, 3.0]), np.array( [ 0.10412331, 0.07013616, -0.18799552, 1.35953147, -0.15282581, 0.03923, -0.04297299, 0.0, 0.0, 0.0, 0.0, ] ), 3, ) ) math_models = [] for kl in astmodels.math.__all__: klass = getattr(astmodels.math, kl) math_models.append(klass()) test_models.extend(math_models) test_models_with_constraints = [ astmodels.Legendre2D( x_degree=1, y_degree=1, c0_0=1, c0_1=2, c1_0=3, fixed={"c1_0": True, "c0_1": True}, bounds={"c0_0": (-10, 10)}, ) ] test_models.extend(test_models_with_constraints) def test_transforms_compound(tmpdir): tree = { "compound": astmodels.Shift(1) & astmodels.Shift(2) | astmodels.Sky2Pix_TAN() | astmodels.Rotation2D() | astmodels.AffineTransformation2D([[2, 0], [0, 2]], [42, 32]) + astmodels.Rotation2D(32) } helpers.assert_roundtrip_tree(tree, tmpdir) def test_inverse_transforms(tmpdir): rotation = astmodels.Rotation2D(32) rotation.inverse = astmodels.Rotation2D(45) real_rotation = astmodels.Rotation2D(32) tree = {"rotation": rotation, "real_rotation": real_rotation} def check(ff): assert ff.tree["rotation"].inverse.angle == 45 helpers.assert_roundtrip_tree(tree, tmpdir, asdf_check_func=check) @pytest.mark.parametrize("model", test_models) def test_single_model(tmpdir, model): with warnings.catch_warnings(): # Some schema files are missing from asdf<=2.6.0 which causes warnings if Version(asdf.__version__) <= Version("2.6.0"): warnings.filterwarnings("ignore", "Unable to locate schema file") tree = {"single_model": model} helpers.assert_roundtrip_tree(tree, tmpdir) def test_name(tmpdir): def check(ff): assert ff.tree["rot"].name == "foo" tree = {"rot": astmodels.Rotation2D(23, name="foo")} helpers.assert_roundtrip_tree(tree, tmpdir, asdf_check_func=check) def test_zenithal_with_arguments(tmpdir): tree = {"azp": astmodels.Sky2Pix_AZP(0.5, 0.3)} helpers.assert_roundtrip_tree(tree, tmpdir) def test_naming_of_compound_model(tmpdir): """Issue #87""" def asdf_check(ff): assert ff.tree["model"].name == "compound_model" offx = astmodels.Shift(1) scl = astmodels.Scale(2) model = (offx | scl).rename("compound_model") tree = {"model": model} helpers.assert_roundtrip_tree(tree, tmpdir, asdf_check_func=asdf_check) @pytest.mark.slow def test_generic_projections(tmpdir): from astropy.io.misc.asdf.tags.transform import projections for tag_name, (name, params, version) in projections._generic_projections.items(): tree = { "forward": util.resolve_name( f"astropy.modeling.projections.Sky2Pix_{name}" )(), "backward": util.resolve_name( f"astropy.modeling.projections.Pix2Sky_{name}" )(), } with warnings.catch_warnings(): # Some schema files are missing from asdf<=2.4.2 which causes warnings if Version(asdf.__version__) <= Version("2.5.1"): warnings.filterwarnings("ignore", "Unable to locate schema file") helpers.assert_roundtrip_tree(tree, tmpdir) def test_tabular_model(tmpdir): points = np.arange(0, 5) values = [1.0, 10, 2, 45, -3] model = astmodels.Tabular1D(points=points, lookup_table=values) tree = {"model": model} helpers.assert_roundtrip_tree(tree, tmpdir) table = np.array([[3.0, 0.0, 0.0], [0.0, 2.0, 0.0], [0.0, 0.0, 0.0]]) points = ([1, 2, 3], [1, 2, 3]) model2 = astmodels.Tabular2D( points, lookup_table=table, bounds_error=False, fill_value=None, method="nearest", ) tree = {"model": model2} helpers.assert_roundtrip_tree(tree, tmpdir) def test_bounding_box(tmpdir): model = astmodels.Shift(1) & astmodels.Shift(2) model.bounding_box = ((1, 3), (2, 4)) tree = {"model": model} helpers.assert_roundtrip_tree(tree, tmpdir) @pytest.mark.parametrize("standard_version", asdf.versioning.supported_versions) def test_const1d(tmpdir, standard_version): helpers.assert_roundtrip_tree( {"model": astmodels.Const1D(amplitude=5.0)}, tmpdir, init_options={"version": standard_version}, ) @pytest.mark.parametrize("standard_version", asdf.versioning.supported_versions) @pytest.mark.parametrize( "model", [ astmodels.Polynomial1D(1, c0=5, c1=17), astmodels.Polynomial1D(1, c0=5, c1=17, domain=[-5, 4], window=[-2, 3]), astmodels.Polynomial2D(2, c0_0=3, c1_0=5, c0_1=7), astmodels.Polynomial2D( 2, c0_0=3, c1_0=5, c0_1=7, x_domain=[-2, 2], y_domain=[-4, 4], x_window=[-6, 6], y_window=[-8, 8], ), ], ) def test_polynomial(tmpdir, standard_version, model): helpers.assert_roundtrip_tree( {"model": model}, tmpdir, init_options={"version": standard_version} ) def test_domain_orthopoly(tmpdir): model1d = astmodels.Chebyshev1D(2, c0=2, c1=3, c2=0.5, domain=[-2, 2]) model2d = astmodels.Chebyshev2D( 1, 1, c0_0=1, c0_1=2, c1_0=3, x_domain=[-2, 2], y_domain=[-2, 2] ) fa = AsdfFile() fa.tree["model1d"] = model1d fa.tree["model2d"] = model2d file_path = str(tmpdir.join("orthopoly_domain.asdf")) fa.write_to(file_path) with asdf.open(file_path) as f: assert f.tree["model1d"](1.8) == model1d(1.8) assert f.tree["model2d"](1.8, -1.5) == model2d(1.8, -1.5) def test_window_orthopoly(tmpdir): model1d = astmodels.Chebyshev1D( 2, c0=2, c1=3, c2=0.5, domain=[-2, 2], window=[-0.5, 0.5] ) model2d = astmodels.Chebyshev2D( 1, 1, c0_0=1, c0_1=2, c1_0=3, x_domain=[-2, 2], y_domain=[-2, 2], x_window=[-0.5, 0.5], y_window=[-0.1, 0.5], ) fa = AsdfFile() fa.tree["model1d"] = model1d fa.tree["model2d"] = model2d file_path = str(tmpdir.join("orthopoly_window.asdf")) fa.write_to(file_path) with asdf.open(file_path) as f: assert f.tree["model1d"](1.8) == model1d(1.8) assert f.tree["model2d"](1.8, -1.5) == model2d(1.8, -1.5) def test_linear1d(tmpdir): model = astmodels.Linear1D() tree = {"model": model} helpers.assert_roundtrip_tree(tree, tmpdir) def test_linear1d_quantity(tmpdir): model = astmodels.Linear1D(1 * u.nm, 1 * (u.nm / u.pixel)) tree = {"model": model} helpers.assert_roundtrip_tree(tree, tmpdir) def test_tabular_model_units(tmpdir): points = np.arange(0, 5) * u.pix values = [1.0, 10, 2, 45, -3] * u.nm model = astmodels.Tabular1D(points=points, lookup_table=values) tree = {"model": model} helpers.assert_roundtrip_tree(tree, tmpdir) table = np.array([[3.0, 0.0, 0.0], [0.0, 2.0, 0.0], [0.0, 0.0, 0.0]]) * u.nm points = ([1, 2, 3], [1, 2, 3]) * u.pix model2 = astmodels.Tabular2D( points, lookup_table=table, bounds_error=False, fill_value=None, method="nearest", ) tree = {"model": model2} helpers.assert_roundtrip_tree(tree, tmpdir) def test_fix_inputs(tmpdir): with warnings.catch_warnings(): # Some schema files are missing from asdf<=2.4.2 which causes warnings if Version(asdf.__version__) <= Version("2.5.1"): warnings.filterwarnings("ignore", "Unable to locate schema file") model0 = astmodels.Pix2Sky_TAN() model0.input_units_equivalencies = { "x": u.dimensionless_angles(), "y": u.dimensionless_angles(), } model1 = astmodels.Rotation2D() model = model0 | model1 tree = { "compound": fix_inputs(model, {"x": 45}), "compound1": fix_inputs(model, {0: 45}), } helpers.assert_roundtrip_tree(tree, tmpdir) def test_fix_inputs_type(tmpdir): with pytest.raises(TypeError): tree = {"compound": fix_inputs(3, {"x": 45})} helpers.assert_roundtrip_tree(tree, tmpdir) with pytest.raises(AttributeError): tree = {"compound": astmodels.Pix2Sky_TAN() & {"x": 45}} helpers.assert_roundtrip_tree(tree, tmpdir) comp_model = custom_and_analytical_inverse() @pytest.mark.parametrize( "model", [ astmodels.Shift(1) & astmodels.Shift(2) | comp_model, comp_model | astmodels.Shift(1) & astmodels.Shift(2), astmodels.Shift(1) & comp_model, comp_model & astmodels.Shift(1), ], ) def test_custom_and_analytical(model, tmpdir): fa = AsdfFile() fa.tree["model"] = model file_path = str(tmpdir.join("custom_and_analytical_inverse.asdf")) fa.write_to(file_path) with asdf.open(file_path) as f: assert f.tree["model"].inverse is not None def test_deserialize_compound_user_inverse(tmpdir): """ Confirm that we are able to correctly reconstruct a compound model with a user inverse set on one of its component models. Due to code in TransformType that facilitates circular inverses, the user inverse of the component model is not available at the time that the CompoundModel is constructed. """ yaml = """ model: !transform/concatenate-1.2.0 forward: - !transform/shift-1.2.0 inverse: !transform/shift-1.2.0 {offset: 5.0} offset: -10.0 - !transform/shift-1.2.0 {offset: -20.0} """ buff = helpers.yaml_to_asdf(yaml) with asdf.open(buff) as af: model = af["model"] assert model.has_inverse() assert model.inverse(-5, -20) == (0, 0) # test some models and compound models with some input unit equivalencies def models_with_input_eq(): # 1D model m1 = astmodels.Shift(1 * u.kg) m1.input_units_equivalencies = {"x": u.mass_energy()} # 2D model m2 = astmodels.Const2D(10 * u.Hz) m2.input_units_equivalencies = { "x": u.dimensionless_angles(), "y": u.dimensionless_angles(), } # 2D model with only one input equivalencies m3 = astmodels.Const2D(10 * u.Hz) m3.input_units_equivalencies = {"x": u.dimensionless_angles()} # model using equivalency that has args using units m4 = astmodels.PowerLaw1D(amplitude=1 * u.m, x_0=10 * u.pix, alpha=7) m4.input_units_equivalencies = { "x": u.equivalencies.pixel_scale(0.5 * u.arcsec / u.pix) } return [m1, m2, m3, m4] def compound_models_with_input_eq(): m1 = astmodels.Gaussian1D(10 * u.K, 11 * u.arcsec, 12 * u.arcsec) m1.input_units_equivalencies = {"x": u.parallax()} m2 = astmodels.Gaussian1D(5 * u.s, 2 * u.K, 3 * u.K) m2.input_units_equivalencies = {"x": u.temperature()} return [m1 | m2, m1 & m2, m1 + m2] test_models.extend(models_with_input_eq()) test_models.extend(compound_models_with_input_eq())
94d0eea2ce55eddf1f7a72413afce94fea1e6ec4d204cf9f9cea3c7e41422e9e
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest asdf = pytest.importorskip("asdf") from asdf.tests.helpers import assert_roundtrip_tree from astropy import units as u from astropy.time import Time, TimeDelta @pytest.mark.parametrize("fmt", TimeDelta.FORMATS.keys()) def test_timedelta(fmt, tmpdir): t1 = Time(Time.now()) t2 = Time(Time.now()) td = TimeDelta(t2 - t1, format=fmt) tree = dict(timedelta=td) assert_roundtrip_tree(tree, tmpdir) @pytest.mark.parametrize("scale", list(TimeDelta.SCALES) + [None]) def test_timedelta_scales(scale, tmpdir): tree = dict(timedelta=TimeDelta(0.125, scale=scale, format="jd")) assert_roundtrip_tree(tree, tmpdir) def test_timedelta_vector(tmpdir): tree = dict(timedelta=TimeDelta([1, 2] * u.day)) assert_roundtrip_tree(tree, tmpdir)
2ef97d26cbad7e8db5e3dfa65aa78d6a21e387683f6557137fa4f0f9512fc1c2
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest asdf = pytest.importorskip("asdf") import datetime import asdf.schema as asdf_schema import numpy as np from asdf import AsdfFile, tagged, yamlutil from asdf.tests import helpers from astropy import time def _flatten_combiners(schema): newschema = dict() def add_entry(path, schema, combiner): # TODO: Simplify? cursor = newschema for i in range(len(path)): part = path[i] if isinstance(part, int): cursor = cursor.setdefault("items", []) while len(cursor) <= part: cursor.append({}) cursor = cursor[part] elif part == "items": cursor = cursor.setdefault("items", dict()) else: cursor = cursor.setdefault("properties", dict()) if i < len(path) - 1 and isinstance(path[i + 1], int): cursor = cursor.setdefault(part, []) else: cursor = cursor.setdefault(part, dict()) cursor.update(schema) def test_time(tmpdir): time_array = time.Time(np.arange(100), format="unix") tree = {"large_time_array": time_array} helpers.assert_roundtrip_tree(tree, tmpdir) def test_time_with_location(tmpdir): # See https://github.com/spacetelescope/asdf/issues/341 from astropy import units as u from astropy.coordinates.earth import EarthLocation location = EarthLocation(x=[1, 2] * u.m, y=[3, 4] * u.m, z=[5, 6] * u.m) t = time.Time([1, 2], location=location, format="cxcsec") tree = {"time": t} helpers.assert_roundtrip_tree(tree, tmpdir) def test_time_with_location_1_0_0(tmpdir): from astropy import units as u from astropy.coordinates.earth import EarthLocation location = EarthLocation(x=6378100 * u.m, y=0 * u.m, z=0 * u.m) t = time.Time("J2000.000", location=location, format="jyear_str") tree = {"time": t} # The version refers to ASDF Standard 1.0.0, which includes time-1.0.0 helpers.assert_roundtrip_tree(tree, tmpdir, init_options={"version": "1.0.0"}) def test_isot(tmpdir): isot = time.Time("2000-01-01T00:00:00.000") tree = {"time": isot} helpers.assert_roundtrip_tree(tree, tmpdir) ff = asdf.AsdfFile(tree) tree = yamlutil.custom_tree_to_tagged_tree(ff.tree, ff) if isinstance(tree["time"], str): assert str(tree["time"]) == isot.value elif isinstance(tree["time"], dict): assert str(tree["time"]["value"]) == isot.value assert str(tree["time"]["base_format"]) == "isot" else: assert False def test_isot_array(tmpdir): tree = {"time": time.Time(["2001-01-02T12:34:56", "2001-02-03T00:01:02"])} helpers.assert_roundtrip_tree(tree, tmpdir) def test_time_tag(): schema = asdf_schema.load_schema( "http://stsci.edu/schemas/asdf/time/time-1.1.0", resolve_references=True ) schema = _flatten_combiners(schema) date = time.Time(datetime.datetime.now()) tree = {"date": date} asdf = AsdfFile(tree=tree) instance = yamlutil.custom_tree_to_tagged_tree(tree["date"], asdf) asdf_schema.validate(instance, schema=schema) tag = "tag:stsci.edu:asdf/time/time-1.1.0" date = tagged.tag_object(tag, date) tree = {"date": date} asdf = AsdfFile(tree=tree) instance = yamlutil.custom_tree_to_tagged_tree(tree["date"], asdf) asdf_schema.validate(instance, schema=schema)
60cab1942f61d4204142b1f3ff11b826fbf46fdb0ae51763b2c15bcad8cf9f31
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest asdf = pytest.importorskip("asdf") from asdf.tests.helpers import assert_roundtrip_tree from astropy import units from astropy.coordinates import FK5, ICRS, Angle, Latitude, Longitude def test_hcrs_basic(tmpdir): ra = Longitude(25, unit=units.deg) dec = Latitude(45, unit=units.deg) tree = {"coord": ICRS(ra=ra, dec=dec)} assert_roundtrip_tree(tree, tmpdir) def test_icrs_basic(tmpdir): wrap_angle = Angle(1.5, unit=units.rad) ra = Longitude(25, unit=units.deg, wrap_angle=wrap_angle) dec = Latitude(45, unit=units.deg) tree = {"coord": ICRS(ra=ra, dec=dec)} assert_roundtrip_tree(tree, tmpdir) def test_icrs_nodata(tmpdir): tree = {"coord": ICRS()} assert_roundtrip_tree(tree, tmpdir) def test_icrs_compound(tmpdir): icrs = ICRS(ra=[0, 1, 2] * units.deg, dec=[3, 4, 5] * units.deg) tree = {"coord": icrs} assert_roundtrip_tree(tree, tmpdir) def test_fk5_time(tmpdir): tree = {"coord": FK5(equinox="2011-01-01T00:00:00")} assert_roundtrip_tree(tree, tmpdir)
4150e3f21e25320e28971c273bb569ab8c7fc4ed8a08d674a371bf571f50a827
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest asdf = pytest.importorskip("asdf") from asdf.tests.helpers import assert_roundtrip_tree from astropy import units as u from astropy.coordinates.angles import Latitude, Longitude from astropy.coordinates.earth import ELLIPSOIDS, EarthLocation @pytest.fixture def position(): lon = Longitude( [0.0, 45.0, 90.0, 135.0, 180.0, -180, -90, -45], u.deg, wrap_angle=180 * u.deg ) lat = Latitude([+0.0, 30.0, 60.0, +90.0, -90.0, -60.0, -30.0, 0.0], u.deg) h = u.Quantity([0.1, 0.5, 1.0, -0.5, -1.0, +4.2, -11.0, -0.1], u.m) return lon, lat, h def test_earthlocation_quantity(tmpdir): location = EarthLocation( lat=34.4900 * u.deg, lon=-104.221800 * u.deg, height=40 * u.km ) tree = dict(location=location) assert_roundtrip_tree(tree, tmpdir) def test_earthlocation(position, tmpdir): x, y, z = EarthLocation.from_geodetic(*position).to_geocentric() geocentric = EarthLocation(x, y, z) tree = dict(location=geocentric) assert_roundtrip_tree(tree, tmpdir) @pytest.mark.parametrize("ellipsoid", ELLIPSOIDS) def test_earthlocation_geodetic(position, ellipsoid, tmpdir): location = EarthLocation.from_geodetic(*position, ellipsoid=ellipsoid) tree = dict(location=location) assert_roundtrip_tree(tree, tmpdir) def test_earthlocation_site(tmpdir): orig_sites = getattr(EarthLocation, "_site_registry", None) try: EarthLocation._get_site_registry(force_builtin=True) rog = EarthLocation.of_site("greenwich") tree = dict(location=rog) assert_roundtrip_tree(tree, tmpdir) finally: EarthLocation._site_registry = orig_sites
83499191bc02598a88e35882038fd00482b5a0e959a7e8cb186b9b17f8490109
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np import pytest from astropy import units as u from astropy.coordinates import FK4, ICRS, Galactic, Longitude, SkyCoord asdf = pytest.importorskip("asdf") from asdf.tests.helpers import assert_roundtrip_tree # These tests are cribbed directly from the Examples section of # https://docs.astropy.org/en/stable/api/astropy.coordinates.SkyCoord.html def test_scalar_skycoord(tmpdir): c = SkyCoord(10, 20, unit="deg") # defaults to ICRS frame tree = dict(coord=c) assert_roundtrip_tree(tree, tmpdir) def test_vector_skycoord(tmpdir): c = SkyCoord([1, 2, 3], [-30, 45, 8], frame="icrs", unit="deg") # 3 coords tree = dict(coord=c) assert_roundtrip_tree(tree, tmpdir) def test_skycoord_fk4(tmpdir): coords = ["1:12:43.2 +1:12:43", "1 12 43.2 +1 12 43"] c = SkyCoord(coords, frame=FK4, unit=(u.deg, u.hourangle), obstime="J1992.21") tree = dict(coord=c) assert_roundtrip_tree(tree, tmpdir) @pytest.mark.parametrize( "coord", [ SkyCoord("1h12m43.2s +1d12m43s", frame=Galactic), # Units from string SkyCoord(frame="galactic", l="1h12m43.2s", b="+1d12m43s"), ], ) def test_skycoord_galactic(coord, tmpdir): tree = dict(coord=coord) assert_roundtrip_tree(tree, tmpdir) def test_skycoord_ra_dec(tmpdir): ra = Longitude([1, 2, 3], unit=u.deg) # Could also use Angle dec = np.array([4.5, 5.2, 6.3]) * u.deg # Astropy Quantity c = SkyCoord(ra, dec, frame="icrs") tree = dict(coord=c) assert_roundtrip_tree(tree, tmpdir) c = SkyCoord(frame=ICRS, ra=ra, dec=dec, obstime="2001-01-02T12:34:56") tree = dict(coord=c) assert_roundtrip_tree(tree, tmpdir) def test_skycoord_override_defaults(tmpdir): c = FK4(1 * u.deg, 2 * u.deg) # Uses defaults for obstime, equinox c = SkyCoord(c, obstime="J2010.11", equinox="B1965") # Override defaults tree = dict(coord=c) assert_roundtrip_tree(tree, tmpdir) def test_skycoord_cartesian(tmpdir): c = SkyCoord( w=0, u=1, v=2, unit="kpc", frame="galactic", representation_type="cartesian" ) tree = dict(coord=c) assert_roundtrip_tree(tree, tmpdir) def test_skycoord_vector_frames(tmpdir): c = SkyCoord([ICRS(ra=1 * u.deg, dec=2 * u.deg), ICRS(ra=3 * u.deg, dec=4 * u.deg)]) tree = dict(coord=c) assert_roundtrip_tree(tree, tmpdir) @pytest.mark.xfail(reason="Velocities are not properly serialized yet") def test_skycoord_radial_velocity(tmpdir): c = SkyCoord(ra=1 * u.deg, dec=2 * u.deg, radial_velocity=10 * u.km / u.s) tree = dict(coord=c) assert_roundtrip_tree(tree, tmpdir) @pytest.mark.xfail(reason="Velocities are not properly serialized yet") def test_skycoord_proper_motion(tmpdir): c = SkyCoord( ra=1 * u.deg, dec=2 * u.deg, pm_ra_cosdec=2 * u.mas / u.yr, pm_dec=1 * u.mas / u.yr, ) tree = dict(coord=c) assert_roundtrip_tree(tree, tmpdir) @pytest.mark.skip(reason="Apparent loss of precision during serialization") def test_skycoord_extra_attribute(tmpdir): sc = SkyCoord(10 * u.deg, 20 * u.deg, equinox="2011-01-01T00:00", frame="fk4") tree = dict(coord=sc.transform_to("icrs")) def check_asdf(asdffile): assert hasattr(asdffile["coord"], "equinox") assert_roundtrip_tree(tree, tmpdir, asdf_check_func=check_asdf) def test_skycoord_2d_obstime(tmpdir): sc = ( SkyCoord( [1, 2], [3, 4], [5, 6], unit="deg,deg,m", frame="fk4", obstime=["J1990.5", "J1991.5"], ), ) tree = dict(coord=sc) assert_roundtrip_tree(tree, tmpdir)
b0a7da3e10aa18e06d9f09a3c15d29321aef32a65ba594e59fa920f0d9f271c3
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest asdf = pytest.importorskip("asdf") from asdf.tests.helpers import assert_roundtrip_tree import astropy.units as u from astropy.coordinates import Angle, Latitude, Longitude def test_angle(tmpdir): tree = {"angle": Angle(100, u.deg)} assert_roundtrip_tree(tree, tmpdir) def test_latitude(tmpdir): tree = {"angle": Latitude(10, u.deg)} assert_roundtrip_tree(tree, tmpdir) def test_longitude(tmpdir): tree = {"angle": Longitude(-100, u.deg, wrap_angle=180 * u.deg)} assert_roundtrip_tree(tree, tmpdir)
5a1dd1dabd0c051701f83c8df28cd64d840b647984cc3d92e94972091f0e75e9
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest asdf = pytest.importorskip("asdf") from asdf.tests.helpers import assert_roundtrip_tree from numpy.random import randint, random import astropy.coordinates.representation as r import astropy.units as u from astropy.coordinates import Angle @pytest.fixture(params=filter(lambda x: "Base" not in x, r.__all__)) def representation(request): rep = getattr(r, request.param) angle_unit = u.deg other_unit = u.km kwargs = {} arr_len = randint(1, 100) for aname, atype in rep.attr_classes.items(): if issubclass(atype, Angle): value = ([random()] * arr_len) * angle_unit else: value = ([random()] * arr_len) * other_unit kwargs[aname] = value return rep(**kwargs) def test_representations(tmpdir, representation): tree = {"representation": representation} assert_roundtrip_tree(tree, tmpdir)
643301497829583fa9c3cecf978c746a96eee714f56694e0d83241564fe8eb7b
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest from astropy import units as u from astropy.coordinates import ICRS, Galactic, SpectralCoord from astropy.tests.helper import assert_quantity_allclose asdf = pytest.importorskip("asdf") from asdf.tests.helpers import assert_roundtrip_tree def test_scalar_spectralcoord(tmpdir): sc = SpectralCoord(565 * u.nm) tree = dict(spectralcoord=sc) def check(asdffile): assert isinstance(asdffile["spectralcoord"], SpectralCoord) assert_quantity_allclose(asdffile["spectralcoord"].quantity, 565 * u.nm) assert_roundtrip_tree(tree, tmpdir, asdf_check_func=check) def test_vector_spectralcoord(tmpdir): sc = SpectralCoord([100, 200, 300] * u.GHz) tree = dict(spectralcoord=sc) def check(asdffile): assert isinstance(asdffile["spectralcoord"], SpectralCoord) assert_quantity_allclose( asdffile["spectralcoord"].quantity, [100, 200, 300] * u.GHz ) assert_roundtrip_tree( tree, tmpdir, asdf_check_func=check, tree_match_func=assert_quantity_allclose ) @pytest.mark.filterwarnings("ignore:No velocity") def test_spectralcoord_with_obstarget(tmpdir): sc = SpectralCoord( 10 * u.GHz, observer=ICRS(1 * u.km, 2 * u.km, 3 * u.km, representation_type="cartesian"), target=Galactic(10 * u.deg, 20 * u.deg, distance=30 * u.pc), ) tree = dict(spectralcoord=sc) def check(asdffile): assert isinstance(asdffile["spectralcoord"], SpectralCoord) assert_quantity_allclose(asdffile["spectralcoord"].quantity, 10 * u.GHz) assert isinstance(asdffile["spectralcoord"].observer, ICRS) assert isinstance(asdffile["spectralcoord"].target, Galactic) assert_roundtrip_tree(tree, tmpdir, asdf_check_func=check)
6620b071c7f4aa5ca087e15c51c8e63a36123c05d3d51362bd09ff79ee8b35ba
# Licensed under a 3-clause BSD style license - see LICENSE.rst import io import pytest asdf = pytest.importorskip("asdf") from asdf.tests import helpers from astropy import units as u # TODO: Implement defunit def test_unit(): yaml = """ unit: !unit/unit-1.0.0 "2.1798721 10-18kg m2 s-2" """ buff = helpers.yaml_to_asdf(yaml) with asdf.open(buff) as ff: assert ff.tree["unit"].is_equivalent(u.Ry) buff2 = io.BytesIO() ff.write_to(buff2) buff2.seek(0) with asdf.open(buff2) as ff: assert ff.tree["unit"].is_equivalent(u.Ry)
5f519be11723ce07716387f1a17436491c77fa6191cccdd8ee72cdb4f5908209
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest asdf = pytest.importorskip("asdf") import io from asdf.tests import helpers from astropy import units def roundtrip_quantity(yaml, quantity): buff = helpers.yaml_to_asdf(yaml) with asdf.open(buff) as ff: assert (ff.tree["quantity"] == quantity).all() buff2 = io.BytesIO() ff.write_to(buff2) buff2.seek(0) with asdf.open(buff2) as ff: assert (ff.tree["quantity"] == quantity).all() def test_value_scalar(tmpdir): testval = 2.71828 testunit = units.kpc yaml = f""" quantity: !unit/quantity-1.1.0 value: {testval} unit: {testunit} """ quantity = units.Quantity(testval, unit=testunit) roundtrip_quantity(yaml, quantity) def test_value_array(tmpdir): testval = [3.14159] testunit = units.kg yaml = f""" quantity: !unit/quantity-1.1.0 value: !core/ndarray-1.0.0 {testval} unit: {testunit} """ quantity = units.Quantity(testval, unit=testunit) roundtrip_quantity(yaml, quantity) def test_value_multiarray(tmpdir): testval = [x * 2.3081 for x in range(10)] testunit = units.ampere yaml = f""" quantity: !unit/quantity-1.1.0 value: !core/ndarray-1.0.0 {testval} unit: {testunit} """ quantity = units.Quantity(testval, unit=testunit) roundtrip_quantity(yaml, quantity) def test_value_ndarray(tmpdir): from numpy import array, float64 testval = [[1, 2, 3], [4, 5, 6]] testunit = units.km yaml = f""" quantity: !unit/quantity-1.1.0 value: !core/ndarray-1.0.0 datatype: float64 data: {testval} unit: {testunit} """ data = array(testval, float64) quantity = units.Quantity(data, unit=testunit) roundtrip_quantity(yaml, quantity)
341aff3019476a3f035bce88f26f27e8ef8c19e76e1cb6a5686566d37c1542c8
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest from astropy import units as u from astropy.cosmology import Planck15 from astropy.cosmology.units import with_H0 from astropy.units import equivalencies as eq asdf = pytest.importorskip("asdf", minversion="2.3.0.dev0") from asdf.tests import helpers def get_equivalencies(): """ Return a list of example equivalencies for testing serialization. """ return [ eq.plate_scale(0.3 * u.deg / u.mm), eq.pixel_scale(0.5 * u.deg / u.pix), eq.pixel_scale(100.0 * u.pix / u.cm), eq.spectral_density(350 * u.nm, factor=2), eq.spectral_density(350 * u.nm), eq.spectral(), eq.brightness_temperature(500 * u.GHz), eq.brightness_temperature(500 * u.GHz, beam_area=23 * u.sr), eq.temperature_energy(), eq.temperature(), eq.thermodynamic_temperature(300 * u.Hz), eq.thermodynamic_temperature(140 * u.GHz, Planck15.Tcmb0), eq.beam_angular_area(3 * u.sr), eq.mass_energy(), eq.molar_mass_amu(), eq.doppler_relativistic(2 * u.m), eq.doppler_optical(2 * u.nm), eq.doppler_radio(2 * u.Hz), eq.parallax(), eq.logarithmic(), eq.dimensionless_angles(), eq.spectral() + eq.temperature(), ( eq.spectral_density(35 * u.nm) + eq.brightness_temperature(5 * u.Hz, beam_area=2 * u.sr) ), ( eq.spectral() + eq.spectral_density(35 * u.nm) + eq.brightness_temperature(5 * u.Hz, beam_area=2 * u.sr) ), with_H0(), ] @pytest.mark.parametrize("equiv", get_equivalencies()) @pytest.mark.filterwarnings( "ignore:`with_H0` is deprecated from `astropy.units.equivalencies` " "since astropy 5.0 and may be removed in a future version. " "Use `astropy.cosmology.units.with_H0` instead." ) def test_equivalencies(tmpdir, equiv): tree = {"equiv": equiv} helpers.assert_roundtrip_tree(tree, tmpdir)
7dc1449fc36a5fb3873f47a8dc3eaf13ccdbb251449df52cd03ab83e2de723a3
# Licensed under a 3-clause BSD style license - see LICENSE.rst from io import StringIO from astropy.nddata import CCDData from astropy.table import Table def test_table_read_help_fits(): """ Test dynamically created documentation help via the I/O registry for 'fits'. """ out = StringIO() Table.read.help("fits", out) doc = out.getvalue() # Check a smattering of expected content assert "Table.read general documentation" not in doc assert "The available built-in formats" not in doc assert "Table.read(format='fits') documentation" in doc assert "hdu : int or str, optional" in doc def test_table_read_help_ascii(): """ Test dynamically created documentation help via the I/O registry for 'ascii'. """ out = StringIO() Table.read.help("ascii", out) doc = out.getvalue() # Check a smattering of expected content assert "Table.read general documentation" not in doc assert "The available built-in formats" not in doc assert "Table.read(format='ascii') documentation" in doc assert "delimiter : str" in doc assert "ASCII reader 'ascii' details" in doc assert "Character-delimited table with a single header line" in doc def test_table_write_help_hdf5(): """ Test dynamically created documentation help via the I/O registry for 'hdf5'. """ out = StringIO() Table.write.help("hdf5", out) doc = out.getvalue() # Check a smattering of expected content assert "Table.write general documentation" not in doc assert "The available built-in formats" not in doc assert "Table.write(format='hdf5') documentation" in doc assert "Write a Table object to an HDF5 file" in doc assert "compression : bool or str or int" in doc def test_list_formats(): """ Test getting list of available formats """ out = StringIO() CCDData.write.list_formats(out) output = out.getvalue() assert ( output == """\ Format Read Write Auto-identify ------ ---- ----- ------------- fits Yes Yes Yes""" ) def test_table_write_help_fits(): """ Test dynamically created documentation help via the I/O registry for 'fits'. """ out = StringIO() Table.write.help("fits", out) doc = out.getvalue() # Check a smattering of expected content assert "Table.write general documentation" not in doc assert "The available built-in formats" not in doc assert "Table.write(format='fits') documentation" in doc assert "Write a Table object to a FITS file" in doc def test_table_write_help_no_format(): """ Test dynamically created documentation help via the I/O registry for no format provided. """ out = StringIO() Table.write.help(out=out) doc = out.getvalue() # Check a smattering of expected content assert "Table.write general documentation" in doc assert "The available built-in formats" in doc def test_table_read_help_no_format(): """ Test dynamically created documentation help via the I/O registry for not format provided. """ out = StringIO() Table.read.help(out=out) doc = out.getvalue() # Check a smattering of expected content assert "Table.read general documentation" in doc assert "The available built-in formats" in doc def test_ccddata_write_help_fits(): """ Test dynamically created documentation help via the I/O registry for 'fits'. """ out = StringIO() CCDData.write.help("fits", out) doc = out.getvalue() # Check a smattering of expected content assert "CCDData.write(format='fits') documentation" in doc assert "Write CCDData object to FITS file" in doc assert "key_uncertainty_type : str, optional" in doc def test_ccddata_read_help_fits(): """Test dynamically created documentation help via the I/O registry for CCDData 'fits'. """ out = StringIO() CCDData.read.help("fits", out) doc = out.getvalue() # Check a smattering of expected content assert "CCDData.read(format='fits') documentation" in doc assert "Generate a CCDData object from a FITS file" in doc assert "hdu_uncertainty : str or None, optional" in doc def test_table_write_help_jsviewer(): """ Test dynamically created documentation help via the I/O registry for 'jsviewer'. """ out = StringIO() Table.write.help("jsviewer", out) doc = out.getvalue() # Check a smattering of expected content assert "Table.write general documentation" not in doc assert "The available built-in formats" not in doc assert "Table.write(format='jsviewer') documentation" in doc
d0c64ca2c1bc548585b63fc7fd93f30df002a727b4be9d32c5ee132fd888d17b
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Test :mod:`astropy.io.registry`. .. todo:: Don't rely on Table for tests """ import os from collections import Counter from copy import deepcopy from io import StringIO import numpy as np import pytest import astropy.units as u from astropy.io import registry as io_registry from astropy.io.registry import ( IORegistryError, UnifiedInputRegistry, UnifiedIORegistry, UnifiedOutputRegistry, compat, ) from astropy.io.registry.base import _UnifiedIORegistryBase from astropy.io.registry.compat import default_registry from astropy.table import Table ############################################################################### # pytest setup and fixtures class UnifiedIORegistryBaseSubClass(_UnifiedIORegistryBase): """Non-abstract subclass of UnifiedIORegistryBase for testing.""" def get_formats(self, data_class=None): return None class EmptyData: """ Thing that can read and write. Note that the read/write are the compatibility methods, which allow for the kwarg ``registry``. This allows us to not subclass ``EmptyData`` for each of the types of registry (read-only, ...) and use this class everywhere. """ read = classmethod(io_registry.read) write = io_registry.write class OtherEmptyData: """A different class with different I/O""" read = classmethod(io_registry.read) write = io_registry.write def empty_reader(*args, **kwargs): return EmptyData() def empty_writer(table, *args, **kwargs): return "status: success" def empty_identifier(*args, **kwargs): return True @pytest.fixture def fmtcls1(): return ("test1", EmptyData) @pytest.fixture def fmtcls2(): return ("test2", EmptyData) @pytest.fixture(params=["test1", "test2"]) def fmtcls(request): yield (request.param, EmptyData) @pytest.fixture def original(): ORIGINAL = {} ORIGINAL["readers"] = deepcopy(default_registry._readers) ORIGINAL["writers"] = deepcopy(default_registry._writers) ORIGINAL["identifiers"] = deepcopy(default_registry._identifiers) return ORIGINAL ############################################################################### def test_fmcls1_fmtcls2(fmtcls1, fmtcls2): """Just check a fact that we rely on in other tests.""" assert fmtcls1[1] is fmtcls2[1] def test_IORegistryError(): with pytest.raises(IORegistryError, match="just checking"): raise IORegistryError("just checking") class TestUnifiedIORegistryBase: """Test :class:`astropy.io.registry.UnifiedIORegistryBase`.""" def setup_class(self): """Setup class. This is called 1st by pytest.""" self._cls = UnifiedIORegistryBaseSubClass @pytest.fixture def registry(self): """I/O registry. Cleaned before and after each function.""" registry = self._cls() HAS_READERS = hasattr(registry, "_readers") HAS_WRITERS = hasattr(registry, "_writers") # copy and clear original registry ORIGINAL = {} ORIGINAL["identifiers"] = deepcopy(registry._identifiers) registry._identifiers.clear() if HAS_READERS: ORIGINAL["readers"] = deepcopy(registry._readers) registry._readers.clear() if HAS_WRITERS: ORIGINAL["writers"] = deepcopy(registry._writers) registry._writers.clear() yield registry registry._identifiers.clear() registry._identifiers.update(ORIGINAL["identifiers"]) if HAS_READERS: registry._readers.clear() registry._readers.update(ORIGINAL["readers"]) if HAS_WRITERS: registry._writers.clear() registry._writers.update(ORIGINAL["writers"]) # =========================================== def test_get_formats(self, registry): """Test ``registry.get_formats()``.""" # defaults assert registry.get_formats() is None # (kw)args don't matter assert registry.get_formats(data_class=24) is None def test_delay_doc_updates(self, registry, fmtcls1): """Test ``registry.delay_doc_updates()``.""" # TODO! figure out what can be tested with registry.delay_doc_updates(EmptyData): registry.register_identifier(*fmtcls1, empty_identifier) def test_register_identifier(self, registry, fmtcls1, fmtcls2): """Test ``registry.register_identifier()``.""" # initial check it's not registered assert fmtcls1 not in registry._identifiers assert fmtcls2 not in registry._identifiers # register registry.register_identifier(*fmtcls1, empty_identifier) registry.register_identifier(*fmtcls2, empty_identifier) assert fmtcls1 in registry._identifiers assert fmtcls2 in registry._identifiers def test_register_identifier_invalid(self, registry, fmtcls): """Test calling ``registry.register_identifier()`` twice.""" fmt, cls = fmtcls registry.register_identifier(fmt, cls, empty_identifier) with pytest.raises(IORegistryError) as exc: registry.register_identifier(fmt, cls, empty_identifier) assert ( str(exc.value) == f"Identifier for format '{fmt}' and class " f"'{cls.__name__}' is already defined" ) def test_register_identifier_force(self, registry, fmtcls1): registry.register_identifier(*fmtcls1, empty_identifier) registry.register_identifier(*fmtcls1, empty_identifier, force=True) assert fmtcls1 in registry._identifiers # ----------------------- def test_unregister_identifier(self, registry, fmtcls1): """Test ``registry.unregister_identifier()``.""" registry.register_identifier(*fmtcls1, empty_identifier) assert fmtcls1 in registry._identifiers registry.unregister_identifier(*fmtcls1) assert fmtcls1 not in registry._identifiers def test_unregister_identifier_invalid(self, registry, fmtcls): """Test ``registry.unregister_identifier()``.""" fmt, cls = fmtcls with pytest.raises(IORegistryError) as exc: registry.unregister_identifier(fmt, cls) assert ( str(exc.value) == f"No identifier defined for format '{fmt}' and class '{cls.__name__}'" ) def test_identify_format(self, registry, fmtcls1): """Test ``registry.identify_format()``.""" fmt, cls = fmtcls1 args = (None, cls, None, None, (None,), {}) # test no formats to identify formats = registry.identify_format(*args) assert formats == [] # test there is a format to identify registry.register_identifier(fmt, cls, empty_identifier) formats = registry.identify_format(*args) assert fmt in formats # =========================================== # Compat tests def test_compat_register_identifier(self, registry, fmtcls1): # with registry specified assert fmtcls1 not in registry._identifiers compat.register_identifier(*fmtcls1, empty_identifier, registry=registry) assert fmtcls1 in registry._identifiers # without registry specified it becomes default_registry if registry is not default_registry: assert fmtcls1 not in default_registry._identifiers try: compat.register_identifier(*fmtcls1, empty_identifier) except Exception: pass else: assert fmtcls1 in default_registry._identifiers finally: default_registry._identifiers.pop(fmtcls1) def test_compat_unregister_identifier(self, registry, fmtcls1): # with registry specified registry.register_identifier(*fmtcls1, empty_identifier) assert fmtcls1 in registry._identifiers compat.unregister_identifier(*fmtcls1, registry=registry) assert fmtcls1 not in registry._identifiers # without registry specified it becomes default_registry if registry is not default_registry: assert fmtcls1 not in default_registry._identifiers default_registry.register_identifier(*fmtcls1, empty_identifier) assert fmtcls1 in default_registry._identifiers compat.unregister_identifier(*fmtcls1) assert fmtcls1 not in registry._identifiers def test_compat_identify_format(self, registry, fmtcls1): fmt, cls = fmtcls1 args = (None, cls, None, None, (None,), dict()) # with registry specified registry.register_identifier(*fmtcls1, empty_identifier) formats = compat.identify_format(*args, registry=registry) assert fmt in formats # without registry specified it becomes default_registry if registry is not default_registry: try: default_registry.register_identifier(*fmtcls1, empty_identifier) except Exception: pass else: formats = compat.identify_format(*args) assert fmt in formats finally: default_registry.unregister_identifier(*fmtcls1) @pytest.mark.skip("TODO!") def test_compat_get_formats(self, registry, fmtcls1): assert False @pytest.mark.skip("TODO!") def test_compat_delay_doc_updates(self, registry, fmtcls1): assert False class TestUnifiedInputRegistry(TestUnifiedIORegistryBase): """Test :class:`astropy.io.registry.UnifiedInputRegistry`.""" def setup_class(self): """Setup class. This is called 1st by pytest.""" self._cls = UnifiedInputRegistry # =========================================== def test_inherited_read_registration(self, registry): # check that multi-generation inheritance works properly, # meaning that a child inherits from parents before # grandparents, see astropy/astropy#7156 class Child1(EmptyData): pass class Child2(Child1): pass def _read(): return EmptyData() def _read1(): return Child1() # check that reader gets inherited registry.register_reader("test", EmptyData, _read) assert registry.get_reader("test", Child2) is _read # check that nearest ancestor is identified # (i.e. that the reader for Child2 is the registered method # for Child1, and not Table) registry.register_reader("test", Child1, _read1) assert registry.get_reader("test", Child2) is _read1 # =========================================== @pytest.mark.skip("TODO!") def test_get_formats(self, registry): """Test ``registry.get_formats()``.""" assert False def test_delay_doc_updates(self, registry, fmtcls1): """Test ``registry.delay_doc_updates()``.""" super().test_delay_doc_updates(registry, fmtcls1) with registry.delay_doc_updates(EmptyData): registry.register_reader("test", EmptyData, empty_reader) # test that the doc has not yet been updated. # if a the format was registered in a different way, then # test that this method is not present. if "Format" in EmptyData.read.__doc__: docs = EmptyData.read.__doc__.split("\n") ihd = [i for i, s in enumerate(docs) if ("Format" in s)][0] ifmt = docs[ihd].index("Format") + 1 iread = docs[ihd].index("Read") + 1 # there might not actually be anything here, which is also good if docs[-2] != docs[-1]: assert docs[-1][ifmt : ifmt + 5] == "test" assert docs[-1][iread : iread + 3] != "Yes" # now test it's updated docs = EmptyData.read.__doc__.split("\n") ifmt = docs[ihd].index("Format") + 2 iread = docs[ihd].index("Read") + 1 assert docs[-2][ifmt : ifmt + 4] == "test" assert docs[-2][iread : iread + 3] == "Yes" def test_identify_read_format(self, registry): """Test ``registry.identify_format()``.""" args = ("read", EmptyData, None, None, (None,), dict()) # test there is no format to identify formats = registry.identify_format(*args) assert formats == [] # test there is a format to identify # doesn't actually matter if register a reader, it returns True for all registry.register_identifier("test", EmptyData, empty_identifier) formats = registry.identify_format(*args) assert "test" in formats # ----------------------- def test_register_reader(self, registry, fmtcls1, fmtcls2): """Test ``registry.register_reader()``.""" # initial check it's not registered assert fmtcls1 not in registry._readers assert fmtcls2 not in registry._readers # register registry.register_reader(*fmtcls1, empty_reader) registry.register_reader(*fmtcls2, empty_reader) assert fmtcls1 in registry._readers assert fmtcls2 in registry._readers assert registry._readers[fmtcls1] == (empty_reader, 0) # (f, priority) assert registry._readers[fmtcls2] == (empty_reader, 0) # (f, priority) def test_register_reader_invalid(self, registry, fmtcls1): fmt, cls = fmtcls1 registry.register_reader(fmt, cls, empty_reader) with pytest.raises(IORegistryError) as exc: registry.register_reader(fmt, cls, empty_reader) assert ( str(exc.value) == f"Reader for format '{fmt}' and class " f"'{cls.__name__}' is already defined" ) def test_register_reader_force(self, registry, fmtcls1): registry.register_reader(*fmtcls1, empty_reader) registry.register_reader(*fmtcls1, empty_reader, force=True) assert fmtcls1 in registry._readers def test_register_readers_with_same_name_on_different_classes(self, registry): # No errors should be generated if the same name is registered for # different objects...but this failed under python3 registry.register_reader("test", EmptyData, lambda: EmptyData()) registry.register_reader("test", OtherEmptyData, lambda: OtherEmptyData()) t = EmptyData.read(format="test", registry=registry) assert isinstance(t, EmptyData) tbl = OtherEmptyData.read(format="test", registry=registry) assert isinstance(tbl, OtherEmptyData) # ----------------------- def test_unregister_reader(self, registry, fmtcls1): """Test ``registry.unregister_reader()``.""" registry.register_reader(*fmtcls1, empty_reader) assert fmtcls1 in registry._readers registry.unregister_reader(*fmtcls1) assert fmtcls1 not in registry._readers def test_unregister_reader_invalid(self, registry, fmtcls1): fmt, cls = fmtcls1 with pytest.raises(IORegistryError) as exc: registry.unregister_reader(*fmtcls1) assert ( str(exc.value) == f"No reader defined for format '{fmt}' and class '{cls.__name__}'" ) # ----------------------- def test_get_reader(self, registry, fmtcls): """Test ``registry.get_reader()``.""" fmt, cls = fmtcls with pytest.raises(IORegistryError): registry.get_reader(fmt, cls) registry.register_reader(fmt, cls, empty_reader) reader = registry.get_reader(fmt, cls) assert reader is empty_reader def test_get_reader_invalid(self, registry, fmtcls): fmt, cls = fmtcls with pytest.raises(IORegistryError) as exc: registry.get_reader(fmt, cls) assert str(exc.value).startswith( f"No reader defined for format '{fmt}' and class '{cls.__name__}'" ) # ----------------------- def test_read_noformat(self, registry, fmtcls1): """Test ``registry.read()`` when there isn't a reader.""" with pytest.raises(IORegistryError) as exc: fmtcls1[1].read(registry=registry) assert str(exc.value).startswith( "Format could not be identified based" " on the file name or contents, " "please provide a 'format' argument." ) def test_read_noformat_arbitrary(self, registry, original, fmtcls1): """Test that all identifier functions can accept arbitrary input""" registry._identifiers.update(original["identifiers"]) with pytest.raises(IORegistryError) as exc: fmtcls1[1].read(object(), registry=registry) assert str(exc.value).startswith( "Format could not be identified based" " on the file name or contents, " "please provide a 'format' argument." ) def test_read_noformat_arbitrary_file(self, tmp_path, registry, original): """Tests that all identifier functions can accept arbitrary files""" registry._readers.update(original["readers"]) testfile = tmp_path / "foo.example" with open(testfile, "w") as f: f.write("Hello world") with pytest.raises(IORegistryError) as exc: Table.read(testfile) assert str(exc.value).startswith( "Format could not be identified based" " on the file name or contents, " "please provide a 'format' argument." ) def test_read_toomanyformats(self, registry, fmtcls1, fmtcls2): fmt1, cls = fmtcls1 fmt2, _ = fmtcls2 registry.register_identifier(fmt1, cls, lambda o, *x, **y: True) registry.register_identifier(fmt2, cls, lambda o, *x, **y: True) with pytest.raises(IORegistryError) as exc: cls.read(registry=registry) assert str(exc.value) == f"Format is ambiguous - options are: {fmt1}, {fmt2}" def test_read_uses_priority(self, registry, fmtcls1, fmtcls2): fmt1, cls = fmtcls1 fmt2, _ = fmtcls2 counter = Counter() def counting_reader1(*args, **kwargs): counter[fmt1] += 1 return cls() def counting_reader2(*args, **kwargs): counter[fmt2] += 1 return cls() registry.register_reader(fmt1, cls, counting_reader1, priority=1) registry.register_reader(fmt2, cls, counting_reader2, priority=2) registry.register_identifier(fmt1, cls, lambda o, *x, **y: True) registry.register_identifier(fmt2, cls, lambda o, *x, **y: True) cls.read(registry=registry) assert counter[fmt2] == 1 assert counter[fmt1] == 0 def test_read_format_noreader(self, registry, fmtcls1): fmt, cls = fmtcls1 with pytest.raises(IORegistryError) as exc: cls.read(format=fmt, registry=registry) assert str(exc.value).startswith( f"No reader defined for format '{fmt}' and class '{cls.__name__}'" ) def test_read_identifier(self, tmp_path, registry, fmtcls1, fmtcls2): fmt1, cls = fmtcls1 fmt2, _ = fmtcls2 registry.register_identifier( fmt1, cls, lambda o, path, fileobj, *x, **y: path.endswith("a") ) registry.register_identifier( fmt2, cls, lambda o, path, fileobj, *x, **y: path.endswith("b") ) # Now check that we got past the identifier and are trying to get # the reader. The registry.get_reader will fail but the error message # will tell us if the identifier worked. filename = tmp_path / "testfile.a" open(filename, "w").close() with pytest.raises(IORegistryError) as exc: cls.read(filename, registry=registry) assert str(exc.value).startswith( f"No reader defined for format '{fmt1}' and class '{cls.__name__}'" ) filename = tmp_path / "testfile.b" open(filename, "w").close() with pytest.raises(IORegistryError) as exc: cls.read(filename, registry=registry) assert str(exc.value).startswith( f"No reader defined for format '{fmt2}' and class '{cls.__name__}'" ) def test_read_valid_return(self, registry, fmtcls): fmt, cls = fmtcls registry.register_reader(fmt, cls, empty_reader) t = cls.read(format=fmt, registry=registry) assert isinstance(t, cls) def test_read_non_existing_unknown_ext(self, fmtcls1): """Raise the correct error when attempting to read a non-existing file with an unknown extension.""" with pytest.raises(OSError): data = fmtcls1[1].read("non-existing-file-with-unknown.ext") def test_read_directory(self, tmp_path, registry, fmtcls1): """ Regression test for a bug that caused the I/O registry infrastructure to not work correctly for datasets that are represented by folders as opposed to files, when using the descriptors to add read/write methods. """ _, cls = fmtcls1 registry.register_identifier( "test_folder_format", cls, lambda o, *x, **y: o == "read" ) registry.register_reader("test_folder_format", cls, empty_reader) filename = tmp_path / "folder_dataset" filename.mkdir() # With the format explicitly specified dataset = cls.read(filename, format="test_folder_format", registry=registry) assert isinstance(dataset, cls) # With the auto-format identification dataset = cls.read(filename, registry=registry) assert isinstance(dataset, cls) # =========================================== # Compat tests def test_compat_register_reader(self, registry, fmtcls1): # with registry specified assert fmtcls1 not in registry._readers compat.register_reader(*fmtcls1, empty_reader, registry=registry) assert fmtcls1 in registry._readers # without registry specified it becomes default_registry if registry is not default_registry: assert fmtcls1 not in default_registry._readers try: compat.register_reader(*fmtcls1, empty_identifier) except Exception: pass else: assert fmtcls1 in default_registry._readers finally: default_registry._readers.pop(fmtcls1) def test_compat_unregister_reader(self, registry, fmtcls1): # with registry specified registry.register_reader(*fmtcls1, empty_reader) assert fmtcls1 in registry._readers compat.unregister_reader(*fmtcls1, registry=registry) assert fmtcls1 not in registry._readers # without registry specified it becomes default_registry if registry is not default_registry: assert fmtcls1 not in default_registry._readers default_registry.register_reader(*fmtcls1, empty_reader) assert fmtcls1 in default_registry._readers compat.unregister_reader(*fmtcls1) assert fmtcls1 not in registry._readers def test_compat_get_reader(self, registry, fmtcls1): # with registry specified registry.register_reader(*fmtcls1, empty_reader) reader = compat.get_reader(*fmtcls1, registry=registry) assert reader is empty_reader registry.unregister_reader(*fmtcls1) # without registry specified it becomes default_registry if registry is not default_registry: default_registry.register_reader(*fmtcls1, empty_reader) reader = compat.get_reader(*fmtcls1) assert reader is empty_reader default_registry.unregister_reader(*fmtcls1) def test_compat_read(self, registry, fmtcls1): fmt, cls = fmtcls1 # with registry specified registry.register_reader(*fmtcls1, empty_reader) t = compat.read(cls, format=fmt, registry=registry) assert isinstance(t, cls) registry.unregister_reader(*fmtcls1) # without registry specified it becomes default_registry if registry is not default_registry: default_registry.register_reader(*fmtcls1, empty_reader) t = compat.read(cls, format=fmt) assert isinstance(t, cls) default_registry.unregister_reader(*fmtcls1) class TestUnifiedOutputRegistry(TestUnifiedIORegistryBase): """Test :class:`astropy.io.registry.UnifiedOutputRegistry`.""" def setup_class(self): """Setup class. This is called 1st by pytest.""" self._cls = UnifiedOutputRegistry # =========================================== def test_inherited_write_registration(self, registry): # check that multi-generation inheritance works properly, # meaning that a child inherits from parents before # grandparents, see astropy/astropy#7156 class Child1(EmptyData): pass class Child2(Child1): pass def _write(): return EmptyData() def _write1(): return Child1() # check that writer gets inherited registry.register_writer("test", EmptyData, _write) assert registry.get_writer("test", Child2) is _write # check that nearest ancestor is identified # (i.e. that the writer for Child2 is the registered method # for Child1, and not Table) registry.register_writer("test", Child1, _write1) assert registry.get_writer("test", Child2) is _write1 # =========================================== def test_delay_doc_updates(self, registry, fmtcls1): """Test ``registry.delay_doc_updates()``.""" super().test_delay_doc_updates(registry, fmtcls1) fmt, cls = fmtcls1 with registry.delay_doc_updates(EmptyData): registry.register_writer(*fmtcls1, empty_writer) # test that the doc has not yet been updated. # if a the format was registered in a different way, then # test that this method is not present. if "Format" in EmptyData.read.__doc__: docs = EmptyData.write.__doc__.split("\n") ihd = [i for i, s in enumerate(docs) if ("Format" in s)][0] ifmt = docs[ihd].index("Format") iwrite = docs[ihd].index("Write") + 1 # there might not actually be anything here, which is also good if docs[-2] != docs[-1]: assert fmt in docs[-1][ifmt : ifmt + len(fmt) + 1] assert docs[-1][iwrite : iwrite + 3] != "Yes" # now test it's updated docs = EmptyData.write.__doc__.split("\n") ifmt = docs[ihd].index("Format") + 1 iwrite = docs[ihd].index("Write") + 2 assert fmt in docs[-2][ifmt : ifmt + len(fmt) + 1] assert docs[-2][iwrite : iwrite + 3] == "Yes" @pytest.mark.skip("TODO!") def test_get_formats(self, registry): """Test ``registry.get_formats()``.""" assert False def test_identify_write_format(self, registry, fmtcls1): """Test ``registry.identify_format()``.""" fmt, cls = fmtcls1 args = ("write", cls, None, None, (None,), {}) # test there is no format to identify formats = registry.identify_format(*args) assert formats == [] # test there is a format to identify # doesn't actually matter if register a writer, it returns True for all registry.register_identifier(fmt, cls, empty_identifier) formats = registry.identify_format(*args) assert fmt in formats # ----------------------- def test_register_writer(self, registry, fmtcls1, fmtcls2): """Test ``registry.register_writer()``.""" # initial check it's not registered assert fmtcls1 not in registry._writers assert fmtcls2 not in registry._writers # register registry.register_writer(*fmtcls1, empty_writer) registry.register_writer(*fmtcls2, empty_writer) assert fmtcls1 in registry._writers assert fmtcls2 in registry._writers def test_register_writer_invalid(self, registry, fmtcls): """Test calling ``registry.register_writer()`` twice.""" fmt, cls = fmtcls registry.register_writer(fmt, cls, empty_writer) with pytest.raises(IORegistryError) as exc: registry.register_writer(fmt, cls, empty_writer) assert ( str(exc.value) == f"Writer for format '{fmt}' and class " f"'{cls.__name__}' is already defined" ) def test_register_writer_force(self, registry, fmtcls1): registry.register_writer(*fmtcls1, empty_writer) registry.register_writer(*fmtcls1, empty_writer, force=True) assert fmtcls1 in registry._writers # ----------------------- def test_unregister_writer(self, registry, fmtcls1): """Test ``registry.unregister_writer()``.""" registry.register_writer(*fmtcls1, empty_writer) assert fmtcls1 in registry._writers registry.unregister_writer(*fmtcls1) assert fmtcls1 not in registry._writers def test_unregister_writer_invalid(self, registry, fmtcls): """Test ``registry.unregister_writer()``.""" fmt, cls = fmtcls with pytest.raises(IORegistryError) as exc: registry.unregister_writer(fmt, cls) assert ( str(exc.value) == f"No writer defined for format '{fmt}' and class '{cls.__name__}'" ) # ----------------------- def test_get_writer(self, registry, fmtcls1): """Test ``registry.get_writer()``.""" with pytest.raises(IORegistryError): registry.get_writer(*fmtcls1) registry.register_writer(*fmtcls1, empty_writer) writer = registry.get_writer(*fmtcls1) assert writer is empty_writer def test_get_writer_invalid(self, registry, fmtcls1): """Test invalid ``registry.get_writer()``.""" fmt, cls = fmtcls1 with pytest.raises(IORegistryError) as exc: registry.get_writer(fmt, cls) assert str(exc.value).startswith( f"No writer defined for format '{fmt}' and class '{cls.__name__}'" ) # ----------------------- def test_write_noformat(self, registry, fmtcls1): """Test ``registry.write()`` when there isn't a writer.""" with pytest.raises(IORegistryError) as exc: fmtcls1[1]().write(registry=registry) assert str(exc.value).startswith( "Format could not be identified based" " on the file name or contents, " "please provide a 'format' argument." ) def test_write_noformat_arbitrary(self, registry, original, fmtcls1): """Test that all identifier functions can accept arbitrary input""" registry._identifiers.update(original["identifiers"]) with pytest.raises(IORegistryError) as exc: fmtcls1[1]().write(object(), registry=registry) assert str(exc.value).startswith( "Format could not be identified based" " on the file name or contents, " "please provide a 'format' argument." ) def test_write_noformat_arbitrary_file(self, tmp_path, registry, original): """Tests that all identifier functions can accept arbitrary files""" registry._writers.update(original["writers"]) testfile = tmp_path / "foo.example" with pytest.raises(IORegistryError) as exc: Table().write(testfile, registry=registry) assert str(exc.value).startswith( "Format could not be identified based" " on the file name or contents, " "please provide a 'format' argument." ) def test_write_toomanyformats(self, registry, fmtcls1, fmtcls2): registry.register_identifier(*fmtcls1, lambda o, *x, **y: True) registry.register_identifier(*fmtcls2, lambda o, *x, **y: True) with pytest.raises(IORegistryError) as exc: fmtcls1[1]().write(registry=registry) assert ( str(exc.value) == f"Format is ambiguous - options are: {fmtcls1[0]}, {fmtcls2[0]}" ) def test_write_uses_priority(self, registry, fmtcls1, fmtcls2): fmt1, cls1 = fmtcls1 fmt2, cls2 = fmtcls2 counter = Counter() def counting_writer1(*args, **kwargs): counter[fmt1] += 1 def counting_writer2(*args, **kwargs): counter[fmt2] += 1 registry.register_writer(fmt1, cls1, counting_writer1, priority=1) registry.register_writer(fmt2, cls2, counting_writer2, priority=2) registry.register_identifier(fmt1, cls1, lambda o, *x, **y: True) registry.register_identifier(fmt2, cls2, lambda o, *x, **y: True) cls1().write(registry=registry) assert counter[fmt2] == 1 assert counter[fmt1] == 0 def test_write_format_nowriter(self, registry, fmtcls1): fmt, cls = fmtcls1 with pytest.raises(IORegistryError) as exc: cls().write(format=fmt, registry=registry) assert str(exc.value).startswith( f"No writer defined for format '{fmt}' and class '{cls.__name__}'" ) def test_write_identifier(self, registry, fmtcls1, fmtcls2): fmt1, cls = fmtcls1 fmt2, _ = fmtcls2 registry.register_identifier(fmt1, cls, lambda o, *x, **y: x[0].startswith("a")) registry.register_identifier(fmt2, cls, lambda o, *x, **y: x[0].startswith("b")) # Now check that we got past the identifier and are trying to get # the reader. The registry.get_writer will fail but the error message # will tell us if the identifier worked. with pytest.raises(IORegistryError) as exc: cls().write("abc", registry=registry) assert str(exc.value).startswith( f"No writer defined for format '{fmt1}' and class '{cls.__name__}'" ) with pytest.raises(IORegistryError) as exc: cls().write("bac", registry=registry) assert str(exc.value).startswith( f"No writer defined for format '{fmt2}' and class '{cls.__name__}'" ) def test_write_return(self, registry, fmtcls1): """Most writers will return None, but other values are not forbidden.""" fmt, cls = fmtcls1 registry.register_writer(fmt, cls, empty_writer) res = cls.write(cls(), format=fmt, registry=registry) assert res == "status: success" # =========================================== # Compat tests def test_compat_register_writer(self, registry, fmtcls1): # with registry specified assert fmtcls1 not in registry._writers compat.register_writer(*fmtcls1, empty_writer, registry=registry) assert fmtcls1 in registry._writers registry.unregister_writer(*fmtcls1) # without registry specified it becomes default_registry if registry is not default_registry: assert fmtcls1 not in default_registry._writers try: compat.register_writer(*fmtcls1, empty_writer) except Exception: pass else: assert fmtcls1 in default_registry._writers finally: default_registry._writers.pop(fmtcls1) def test_compat_unregister_writer(self, registry, fmtcls1): # with registry specified registry.register_writer(*fmtcls1, empty_writer) assert fmtcls1 in registry._writers compat.unregister_writer(*fmtcls1, registry=registry) assert fmtcls1 not in registry._writers # without registry specified it becomes default_registry if registry is not default_registry: assert fmtcls1 not in default_registry._writers default_registry.register_writer(*fmtcls1, empty_writer) assert fmtcls1 in default_registry._writers compat.unregister_writer(*fmtcls1) assert fmtcls1 not in default_registry._writers def test_compat_get_writer(self, registry, fmtcls1): # with registry specified registry.register_writer(*fmtcls1, empty_writer) writer = compat.get_writer(*fmtcls1, registry=registry) assert writer is empty_writer # without registry specified it becomes default_registry if registry is not default_registry: assert fmtcls1 not in default_registry._writers default_registry.register_writer(*fmtcls1, empty_writer) assert fmtcls1 in default_registry._writers writer = compat.get_writer(*fmtcls1) assert writer is empty_writer default_registry.unregister_writer(*fmtcls1) assert fmtcls1 not in default_registry._writers def test_compat_write(self, registry, fmtcls1): fmt, cls = fmtcls1 # with registry specified registry.register_writer(*fmtcls1, empty_writer) res = compat.write(cls(), format=fmt, registry=registry) assert res == "status: success" # without registry specified it becomes default_registry if registry is not default_registry: assert fmtcls1 not in default_registry._writers default_registry.register_writer(*fmtcls1, empty_writer) assert fmtcls1 in default_registry._writers res = compat.write(cls(), format=fmt) assert res == "status: success" default_registry.unregister_writer(*fmtcls1) assert fmtcls1 not in default_registry._writers class TestUnifiedIORegistry(TestUnifiedInputRegistry, TestUnifiedOutputRegistry): def setup_class(self): """Setup class. This is called 1st by pytest.""" self._cls = UnifiedIORegistry # =========================================== @pytest.mark.skip("TODO!") def test_get_formats(self, registry): """Test ``registry.get_formats()``.""" assert False def test_delay_doc_updates(self, registry, fmtcls1): """Test ``registry.delay_doc_updates()``.""" super().test_delay_doc_updates(registry, fmtcls1) # ----------------------- def test_identifier_origin(self, registry, fmtcls1, fmtcls2): fmt1, cls = fmtcls1 fmt2, _ = fmtcls2 registry.register_identifier(fmt1, cls, lambda o, *x, **y: o == "read") registry.register_identifier(fmt2, cls, lambda o, *x, **y: o == "write") registry.register_reader(fmt1, cls, empty_reader) registry.register_writer(fmt2, cls, empty_writer) # There should not be too many formats defined cls.read(registry=registry) cls().write(registry=registry) with pytest.raises(IORegistryError) as exc: cls.read(format=fmt2, registry=registry) assert str(exc.value).startswith( f"No reader defined for format '{fmt2}' and class '{cls.__name__}'" ) with pytest.raises(IORegistryError) as exc: cls().write(format=fmt1, registry=registry) assert str(exc.value).startswith( f"No writer defined for format '{fmt1}' and class '{cls.__name__}'" ) class TestDefaultRegistry(TestUnifiedIORegistry): def setup_class(self): """Setup class. This is called 1st by pytest.""" self._cls = lambda *args: default_registry # ============================================================================= # Test compat # much of this is already tested above since EmptyData uses io_registry.X(), # which are the compat methods. def test_dir(): """Test all the compat methods are in the directory""" dc = dir(compat) for n in compat.__all__: assert n in dc def test_getattr(): for n in compat.__all__: assert hasattr(compat, n) with pytest.raises(AttributeError, match="module 'astropy.io.registry.compat'"): compat.this_is_definitely_not_in_this_module # ============================================================================= # Table tests def test_read_basic_table(): registry = Table.read._registry data = np.array( list(zip([1, 2, 3], ["a", "b", "c"])), dtype=[("A", int), ("B", "|U1")] ) try: registry.register_reader("test", Table, lambda x: Table(x)) except Exception: pass else: t = Table.read(data, format="test") assert t.keys() == ["A", "B"] for i in range(3): assert t["A"][i] == data["A"][i] assert t["B"][i] == data["B"][i] finally: registry._readers.pop("test", None) class TestSubclass: """ Test using registry with a Table sub-class """ @pytest.fixture(autouse=True) def registry(self): """I/O registry. Not cleaned.""" yield def test_read_table_subclass(self): class MyTable(Table): pass data = ["a b", "1 2"] mt = MyTable.read(data, format="ascii") t = Table.read(data, format="ascii") assert np.all(mt == t) assert mt.colnames == t.colnames assert type(mt) is MyTable def test_write_table_subclass(self): buffer = StringIO() class MyTable(Table): pass mt = MyTable([[1], [2]], names=["a", "b"]) mt.write(buffer, format="ascii") assert buffer.getvalue() == os.linesep.join(["a b", "1 2", ""]) def test_read_table_subclass_with_columns_attributes(self, tmp_path): """Regression test for https://github.com/astropy/astropy/issues/7181""" class MTable(Table): pass mt = MTable([[1, 2.5]], names=["a"]) mt["a"].unit = u.m mt["a"].format = ".4f" mt["a"].description = "hello" testfile = tmp_path / "junk.fits" mt.write(testfile, overwrite=True) t = MTable.read(testfile) assert np.all(mt == t) assert mt.colnames == t.colnames assert type(t) is MTable assert t["a"].unit == u.m assert t["a"].format == "{:13.4f}" assert t["a"].description == "hello"
1f9ab14f8b4e8092692004c06613b5e8caada0cdc7f2d2fbc66718f7758eb6e7
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest # LOCAL from astropy.io.votable import converters, exceptions, tree def test_reraise(): def fail(): raise RuntimeError("This failed") try: try: fail() except RuntimeError as e: exceptions.vo_reraise(e, additional="From here") except RuntimeError as e: assert "From here" in str(e) else: assert False def test_parse_vowarning(): config = {"verify": "exception", "filename": "foo.xml"} pos = (42, 64) with pytest.warns(exceptions.W47) as w: field = tree.Field(None, name="c", datatype="char", config=config, pos=pos) converters.get_converter(field, config=config, pos=pos) parts = exceptions.parse_vowarning(str(w[0].message)) match = { "number": 47, "is_exception": False, "nchar": 64, "warning": "W47", "is_something": True, "message": "Missing arraysize indicates length 1", "doc_url": "io/votable/api_exceptions.html#w47", "nline": 42, "is_warning": True, } assert parts == match def test_suppress_warnings(): cfg = {} warn = exceptions.W01("foo") with exceptions.conf.set_temp("max_warnings", 2): with pytest.warns(exceptions.W01) as record: exceptions._suppressed_warning(warn, cfg) assert len(record) == 1 assert "suppressing" not in str(record[0].message) with pytest.warns(exceptions.W01, match="suppressing"): exceptions._suppressed_warning(warn, cfg) exceptions._suppressed_warning(warn, cfg) assert cfg["_warning_counts"][exceptions.W01] == 3 assert exceptions.conf.max_warnings == 10
985f26049d2348bf90536d666c584f01dbc2492cc4f7ea5e8df3e1cedbb031fa
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ A set of tests for the util.py module """ import pytest from astropy.io.votable import util def test_range_list(): assert util.coerce_range_list_param((5,)) == ("5.0", 1) def test_range_list2(): assert util.coerce_range_list_param((5e-7, 8e-7)) == ("5e-07,8e-07", 2) def test_range_list3(): assert util.coerce_range_list_param((5e-7, 8e-7, "FOO")) == ("5e-07,8e-07;FOO", 3) def test_range_list4a(): with pytest.raises(ValueError): util.coerce_range_list_param( (5e-7, (None, 8e-7), (4, None), (4, 5), "J", "FOO") ) def test_range_list4(): assert util.coerce_range_list_param( (5e-7, (None, 8e-7), (4, None), (4, 5), "J", "FOO"), numeric=False ) == ("5e-07,/8e-07,4/,4/5,J;FOO", 6) def test_range_list5(): with pytest.raises(ValueError): util.coerce_range_list_param(("FOO",)) def test_range_list6(): with pytest.raises(ValueError): print(util.coerce_range_list_param((5, "FOO"), util.stc_reference_frames)) def test_range_list7(): assert util.coerce_range_list_param(("J",), numeric=False) == ("J", 1) def test_range_list8(): for s in [ "5.0", "5e-07,8e-07", "5e-07,8e-07;FOO", "5e-07,/8e-07,4.0/,4.0/5.0;FOO", "J", ]: assert util.coerce_range_list_param(s, numeric=False)[0] == s def test_range_list9a(): with pytest.raises(ValueError): util.coerce_range_list_param("52,-27.8;FOO", util.stc_reference_frames) def test_range_list9(): assert util.coerce_range_list_param("52,-27.8;GALACTIC", util.stc_reference_frames)
333b4f6588c53142594a3ae9798396833d714ef39f836e851917f50e00faf068
# Licensed under a 3-clause BSD style license - see LICENSE.rst # LOCAL from astropy.io.votable import parse from astropy.utils.data import get_pkg_data_filename def test_resource_groups(): # Read the VOTABLE votable = parse(get_pkg_data_filename("data/resource_groups.xml")) resource = votable.resources[0] groups = resource.groups params = resource.params # Test that params inside groups are not outside assert len(groups[0].entries) == 1 assert groups[0].entries[0].name == "ID" assert len(params) == 2 assert params[0].name == "standardID" assert params[1].name == "accessURL"
e97291eb46555b7866d932807e2ab3313f44b1936c4f27993bee13150d650099
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This is a set of regression tests for vo. """ # STDLIB import difflib import gzip import io import pathlib import sys from unittest import mock import numpy as np # THIRD-PARTY import pytest from numpy.testing import assert_array_equal from astropy.io.votable import tree from astropy.io.votable.exceptions import W39, VOTableSpecError, VOWarning # LOCAL from astropy.io.votable.table import parse, parse_single_table, validate from astropy.io.votable.xmlutil import validate_schema from astropy.utils.data import get_pkg_data_filename, get_pkg_data_filenames # Determine the kind of float formatting in this build of Python if hasattr(sys, "float_repr_style"): legacy_float_repr = sys.float_repr_style == "legacy" else: legacy_float_repr = sys.platform.startswith("win") def assert_validate_schema(filename, version): if sys.platform.startswith("win"): return try: rc, stdout, stderr = validate_schema(filename, version) except OSError: # If xmllint is not installed, we want the test to pass anyway return assert rc == 0, "File did not validate against VOTable schema" def test_parse_single_table(): with np.errstate(over="ignore"): # https://github.com/astropy/astropy/issues/13341 table = parse_single_table(get_pkg_data_filename("data/regression.xml")) assert isinstance(table, tree.Table) assert len(table.array) == 5 def test_parse_single_table2(): with np.errstate(over="ignore"): # https://github.com/astropy/astropy/issues/13341 table2 = parse_single_table( get_pkg_data_filename("data/regression.xml"), table_number=1 ) assert isinstance(table2, tree.Table) assert len(table2.array) == 1 assert len(table2.array.dtype.names) == 28 def test_parse_single_table3(): with pytest.raises(IndexError): parse_single_table(get_pkg_data_filename("data/regression.xml"), table_number=3) def _test_regression(tmp_path, _python_based=False, binary_mode=1): # Read the VOTABLE votable = parse( get_pkg_data_filename("data/regression.xml"), _debug_python_based_parser=_python_based, ) table = votable.get_first_table() dtypes = [ (("string test", "string_test"), "|O8"), (("fixed string test", "string_test_2"), "<U10"), ("unicode_test", "|O8"), (("unicode test", "fixed_unicode_test"), "<U10"), (("string array test", "string_array_test"), "<U4"), ("unsignedByte", "|u1"), ("short", "<i2"), ("int", "<i4"), ("long", "<i8"), ("double", "<f8"), ("float", "<f4"), ("array", "|O8"), ("bit", "|b1"), ("bitarray", "|b1", (3, 2)), ("bitvararray", "|O8"), ("bitvararray2", "|O8"), ("floatComplex", "<c8"), ("doubleComplex", "<c16"), ("doubleComplexArray", "|O8"), ("doubleComplexArrayFixed", "<c16", (2,)), ("boolean", "|b1"), ("booleanArray", "|b1", (4,)), ("nulls", "<i4"), ("nulls_array", "<i4", (2, 2)), ("precision1", "<f8"), ("precision2", "<f8"), ("doublearray", "|O8"), ("bitarray2", "|b1", (16,)), ] if sys.byteorder == "big": new_dtypes = [] for dtype in dtypes: dtype = list(dtype) dtype[1] = dtype[1].replace("<", ">") new_dtypes.append(tuple(dtype)) dtypes = new_dtypes assert table.array.dtype == dtypes votable.to_xml( str(tmp_path / "regression.tabledata.xml"), _debug_python_based_parser=_python_based, ) assert_validate_schema(str(tmp_path / "regression.tabledata.xml"), votable.version) if binary_mode == 1: votable.get_first_table().format = "binary" votable.version = "1.1" elif binary_mode == 2: votable.get_first_table()._config["version_1_3_or_later"] = True votable.get_first_table().format = "binary2" votable.version = "1.3" # Also try passing a file handle with open(str(tmp_path / "regression.binary.xml"), "wb") as fd: votable.to_xml(fd, _debug_python_based_parser=_python_based) assert_validate_schema(str(tmp_path / "regression.binary.xml"), votable.version) # Also try passing a file handle with open(str(tmp_path / "regression.binary.xml"), "rb") as fd: votable2 = parse(fd, _debug_python_based_parser=_python_based) votable2.get_first_table().format = "tabledata" votable2.to_xml( str(tmp_path / "regression.bin.tabledata.xml"), _astropy_version="testing", _debug_python_based_parser=_python_based, ) assert_validate_schema( str(tmp_path / "regression.bin.tabledata.xml"), votable.version ) with open( get_pkg_data_filename( f"data/regression.bin.tabledata.truth.{votable.version}.xml" ), encoding="utf-8", ) as fd: truth = fd.readlines() with open(str(tmp_path / "regression.bin.tabledata.xml"), encoding="utf-8") as fd: output = fd.readlines() # If the lines happen to be different, print a diff # This is convenient for debugging sys.stdout.writelines( difflib.unified_diff(truth, output, fromfile="truth", tofile="output") ) assert truth == output # Test implicit gzip saving votable2.to_xml( str(tmp_path / "regression.bin.tabledata.xml.gz"), _astropy_version="testing", _debug_python_based_parser=_python_based, ) with gzip.GzipFile(str(tmp_path / "regression.bin.tabledata.xml.gz"), "rb") as gzfd: output = gzfd.readlines() output = [x.decode("utf-8").rstrip() for x in output] truth = [x.rstrip() for x in truth] assert truth == output @pytest.mark.xfail("legacy_float_repr") def test_regression(tmp_path): # W39: Bit values can not be masked with pytest.warns(W39): _test_regression(tmp_path, False) @pytest.mark.xfail("legacy_float_repr") def test_regression_python_based_parser(tmp_path): # W39: Bit values can not be masked with pytest.warns(W39): _test_regression(tmp_path, True) @pytest.mark.xfail("legacy_float_repr") def test_regression_binary2(tmp_path): # W39: Bit values can not be masked with pytest.warns(W39): _test_regression(tmp_path, False, 2) class TestFixups: def setup_class(self): with np.errstate(over="ignore"): # https://github.com/astropy/astropy/issues/13341 self.table = parse( get_pkg_data_filename("data/regression.xml") ).get_first_table() self.array = self.table.array self.mask = self.table.array.mask def test_implicit_id(self): assert_array_equal(self.array["string_test_2"], self.array["fixed string test"]) class TestReferences: def setup_class(self): with np.errstate(over="ignore"): # https://github.com/astropy/astropy/issues/13341 self.votable = parse(get_pkg_data_filename("data/regression.xml")) self.table = self.votable.get_first_table() self.array = self.table.array self.mask = self.table.array.mask def test_fieldref(self): fieldref = self.table.groups[1].entries[0] assert isinstance(fieldref, tree.FieldRef) assert fieldref.get_ref().name == "boolean" assert fieldref.get_ref().datatype == "boolean" def test_paramref(self): paramref = self.table.groups[0].entries[0] assert isinstance(paramref, tree.ParamRef) assert paramref.get_ref().name == "INPUT" assert paramref.get_ref().datatype == "float" def test_iter_fields_and_params_on_a_group(self): assert len(list(self.table.groups[1].iter_fields_and_params())) == 2 def test_iter_groups_on_a_group(self): assert len(list(self.table.groups[1].iter_groups())) == 1 def test_iter_groups(self): # Because of the ref'd table, there are more logical groups # than actually exist in the file assert len(list(self.votable.iter_groups())) == 9 def test_ref_table(self): tables = list(self.votable.iter_tables()) for x, y in zip(tables[0].array.data[0], tables[1].array.data[0]): assert_array_equal(x, y) def test_iter_coosys(self): assert len(list(self.votable.iter_coosys())) == 1 def test_select_columns_by_index(): columns = [0, 5, 13] table = parse( get_pkg_data_filename("data/regression.xml"), columns=columns ).get_first_table() array = table.array mask = table.array.mask assert array["string_test"][0] == "String & test" columns = ["string_test", "unsignedByte", "bitarray"] for c in columns: assert not np.all(mask[c]) assert np.all(mask["unicode_test"]) def test_select_columns_by_name(): columns = ["string_test", "unsignedByte", "bitarray"] table = parse( get_pkg_data_filename("data/regression.xml"), columns=columns ).get_first_table() array = table.array mask = table.array.mask assert array["string_test"][0] == "String & test" for c in columns: assert not np.all(mask[c]) assert np.all(mask["unicode_test"]) class TestParse: def setup_class(self): with np.errstate(over="ignore"): # https://github.com/astropy/astropy/issues/13341 self.votable = parse(get_pkg_data_filename("data/regression.xml")) self.table = self.votable.get_first_table() self.array = self.table.array self.mask = self.table.array.mask def test_string_test(self): assert issubclass(self.array["string_test"].dtype.type, np.object_) assert_array_equal( self.array["string_test"], ["String & test", "String &amp; test", "XXXX", "", ""], ) def test_fixed_string_test(self): assert issubclass(self.array["string_test_2"].dtype.type, np.unicode_) assert_array_equal( self.array["string_test_2"], ["Fixed stri", "0123456789", "XXXX", "", ""] ) def test_unicode_test(self): assert issubclass(self.array["unicode_test"].dtype.type, np.object_) assert_array_equal( self.array["unicode_test"], ["Ceçi n'est pas un pipe", "வணக்கம்", "XXXX", "", ""], ) def test_fixed_unicode_test(self): assert issubclass(self.array["fixed_unicode_test"].dtype.type, np.unicode_) assert_array_equal( self.array["fixed_unicode_test"], ["Ceçi n'est", "வணக்கம்", "0123456789", "", ""], ) def test_unsignedByte(self): assert issubclass(self.array["unsignedByte"].dtype.type, np.uint8) assert_array_equal(self.array["unsignedByte"], [128, 255, 0, 255, 255]) assert not np.any(self.mask["unsignedByte"]) def test_short(self): assert issubclass(self.array["short"].dtype.type, np.int16) assert_array_equal(self.array["short"], [4096, 32767, -4096, 32767, 32767]) assert not np.any(self.mask["short"]) def test_int(self): assert issubclass(self.array["int"].dtype.type, np.int32) assert_array_equal( self.array["int"], [268435456, 2147483647, -268435456, 268435455, 123456789] ) assert_array_equal(self.mask["int"], [False, False, False, False, True]) def test_long(self): assert issubclass(self.array["long"].dtype.type, np.int64) assert_array_equal( self.array["long"], [ 922337203685477, 123456789, -1152921504606846976, 1152921504606846975, 123456789, ], ) assert_array_equal(self.mask["long"], [False, True, False, False, True]) def test_double(self): assert issubclass(self.array["double"].dtype.type, np.float64) assert_array_equal( self.array["double"], [8.9990234375, 0.0, np.inf, np.nan, -np.inf] ) assert_array_equal(self.mask["double"], [False, False, False, True, False]) def test_float(self): assert issubclass(self.array["float"].dtype.type, np.float32) assert_array_equal(self.array["float"], [1.0, 0.0, np.inf, np.inf, np.nan]) assert_array_equal(self.mask["float"], [False, False, False, False, True]) def test_array(self): assert issubclass(self.array["array"].dtype.type, np.object_) match = [ [], [[42, 32], [12, 32]], [[12, 34], [56, 78], [87, 65], [43, 21]], [[-1, 23]], [[31, -1]], ] for a, b in zip(self.array["array"], match): # assert issubclass(a.dtype.type, np.int64) # assert a.shape[1] == 2 for a0, b0 in zip(a, b): assert issubclass(a0.dtype.type, np.int64) assert_array_equal(a0, b0) assert self.array.data["array"][3].mask[0][0] assert self.array.data["array"][4].mask[0][1] def test_bit(self): assert issubclass(self.array["bit"].dtype.type, np.bool_) assert_array_equal(self.array["bit"], [True, False, True, False, False]) def test_bit_mask(self): assert_array_equal(self.mask["bit"], [False, False, False, False, True]) def test_bitarray(self): assert issubclass(self.array["bitarray"].dtype.type, np.bool_) assert self.array["bitarray"].shape == (5, 3, 2) assert_array_equal( self.array["bitarray"], [ [[True, False], [True, True], [False, True]], [[False, True], [False, False], [True, True]], [[True, True], [True, False], [False, False]], [[False, False], [False, False], [False, False]], [[False, False], [False, False], [False, False]], ], ) def test_bitarray_mask(self): assert_array_equal( self.mask["bitarray"], [ [[False, False], [False, False], [False, False]], [[False, False], [False, False], [False, False]], [[False, False], [False, False], [False, False]], [[True, True], [True, True], [True, True]], [[True, True], [True, True], [True, True]], ], ) def test_bitvararray(self): assert issubclass(self.array["bitvararray"].dtype.type, np.object_) match = [ [True, True, True], [False, False, False, False, False], [True, False, True, False, True], [], [], ] for a, b in zip(self.array["bitvararray"], match): assert_array_equal(a, b) match_mask = [ [False, False, False], [False, False, False, False, False], [False, False, False, False, False], False, False, ] for a, b in zip(self.array["bitvararray"], match_mask): assert_array_equal(a.mask, b) def test_bitvararray2(self): assert issubclass(self.array["bitvararray2"].dtype.type, np.object_) match = [ [], [ [[False, True], [False, False], [True, False]], [[True, False], [True, False], [True, False]], ], [[[True, True], [True, True], [True, True]]], [], [], ] for a, b in zip(self.array["bitvararray2"], match): for a0, b0 in zip(a, b): assert a0.shape == (3, 2) assert issubclass(a0.dtype.type, np.bool_) assert_array_equal(a0, b0) def test_floatComplex(self): assert issubclass(self.array["floatComplex"].dtype.type, np.complex64) assert_array_equal( self.array["floatComplex"], [np.nan + 0j, 0 + 0j, 0 + -1j, np.nan + 0j, np.nan + 0j], ) assert_array_equal(self.mask["floatComplex"], [True, False, False, True, True]) def test_doubleComplex(self): assert issubclass(self.array["doubleComplex"].dtype.type, np.complex128) assert_array_equal( self.array["doubleComplex"], [np.nan + 0j, 0 + 0j, 0 + -1j, np.nan + (np.inf * 1j), np.nan + 0j], ) assert_array_equal(self.mask["doubleComplex"], [True, False, False, True, True]) def test_doubleComplexArray(self): assert issubclass(self.array["doubleComplexArray"].dtype.type, np.object_) assert [len(x) for x in self.array["doubleComplexArray"]] == [0, 2, 2, 0, 0] def test_boolean(self): assert issubclass(self.array["boolean"].dtype.type, np.bool_) assert_array_equal(self.array["boolean"], [True, False, True, False, False]) def test_boolean_mask(self): assert_array_equal(self.mask["boolean"], [False, False, False, False, True]) def test_boolean_array(self): assert issubclass(self.array["booleanArray"].dtype.type, np.bool_) assert_array_equal( self.array["booleanArray"], [ [True, True, True, True], [True, True, False, True], [True, True, False, True], [False, False, False, False], [False, False, False, False], ], ) def test_boolean_array_mask(self): assert_array_equal( self.mask["booleanArray"], [ [False, False, False, False], [False, False, False, False], [False, False, True, False], [True, True, True, True], [True, True, True, True], ], ) def test_nulls(self): assert_array_equal(self.array["nulls"], [0, -9, 2, -9, -9]) assert_array_equal(self.mask["nulls"], [False, True, False, True, True]) def test_nulls_array(self): assert_array_equal( self.array["nulls_array"], [ [[-9, -9], [-9, -9]], [[0, 1], [2, 3]], [[-9, 0], [-9, 1]], [[0, -9], [1, -9]], [[-9, -9], [-9, -9]], ], ) assert_array_equal( self.mask["nulls_array"], [ [[True, True], [True, True]], [[False, False], [False, False]], [[True, False], [True, False]], [[False, True], [False, True]], [[True, True], [True, True]], ], ) def test_double_array(self): assert issubclass(self.array["doublearray"].dtype.type, np.object_) assert len(self.array["doublearray"][0]) == 0 assert_array_equal( self.array["doublearray"][1], [0, 1, np.inf, -np.inf, np.nan, 0, -1] ) assert_array_equal( self.array.data["doublearray"][1].mask, [False, False, False, False, False, False, True], ) def test_bit_array2(self): assert_array_equal( self.array["bitarray2"][0], [ True, True, True, True, False, False, False, False, True, True, True, True, False, False, False, False, ], ) def test_bit_array2_mask(self): assert not np.any(self.mask["bitarray2"][0]) assert np.all(self.mask["bitarray2"][1:]) def test_get_coosys_by_id(self): coosys = self.votable.get_coosys_by_id("J2000") assert coosys.system == "eq_FK5" def test_get_field_by_utype(self): fields = list(self.votable.get_fields_by_utype("myint")) assert fields[0].name == "int" assert fields[0].values.min == -1000 def test_get_info_by_id(self): info = self.votable.get_info_by_id("QUERY_STATUS") assert info.value == "OK" if self.votable.version != "1.1": info = self.votable.get_info_by_id("ErrorInfo") assert info.value == "One might expect to find some INFO here, too..." def test_repr(self): assert "3 tables" in repr(self.votable) assert ( repr(list(self.votable.iter_fields_and_params())[0]) == '<PARAM ID="awesome" arraysize="*" datatype="float" ' 'name="INPUT" unit="deg" value="[0.0 0.0]"/>' ) # Smoke test repr(list(self.votable.iter_groups())) # Resource assert repr(self.votable.resources) == "[</>]" class TestThroughTableData(TestParse): def setup_class(self): with np.errstate(over="ignore"): # https://github.com/astropy/astropy/issues/13341 votable = parse(get_pkg_data_filename("data/regression.xml")) self.xmlout = bio = io.BytesIO() # W39: Bit values can not be masked with pytest.warns(W39): votable.to_xml(bio) bio.seek(0) self.votable = parse(bio) self.table = self.votable.get_first_table() self.array = self.table.array self.mask = self.table.array.mask def test_bit_mask(self): assert_array_equal(self.mask["bit"], [False, False, False, False, False]) def test_bitarray_mask(self): assert not np.any(self.mask["bitarray"]) def test_bit_array2_mask(self): assert not np.any(self.mask["bitarray2"]) def test_schema(self, tmp_path): # have to use an actual file because assert_validate_schema only works # on filenames, not file-like objects fn = tmp_path / "test_through_tabledata.xml" with open(fn, "wb") as f: f.write(self.xmlout.getvalue()) assert_validate_schema(fn, "1.1") class TestThroughBinary(TestParse): def setup_class(self): with np.errstate(over="ignore"): # https://github.com/astropy/astropy/issues/13341 votable = parse(get_pkg_data_filename("data/regression.xml")) votable.get_first_table().format = "binary" self.xmlout = bio = io.BytesIO() # W39: Bit values can not be masked with pytest.warns(W39): votable.to_xml(bio) bio.seek(0) self.votable = parse(bio) self.table = self.votable.get_first_table() self.array = self.table.array self.mask = self.table.array.mask # Masked values in bit fields don't roundtrip through the binary # representation -- that's not a bug, just a limitation, so # override the mask array checks here. def test_bit_mask(self): assert not np.any(self.mask["bit"]) def test_bitarray_mask(self): assert not np.any(self.mask["bitarray"]) def test_bit_array2_mask(self): assert not np.any(self.mask["bitarray2"]) class TestThroughBinary2(TestParse): def setup_class(self): with np.errstate(over="ignore"): # https://github.com/astropy/astropy/issues/13341 votable = parse(get_pkg_data_filename("data/regression.xml")) votable.version = "1.3" votable.get_first_table()._config["version_1_3_or_later"] = True votable.get_first_table().format = "binary2" self.xmlout = bio = io.BytesIO() # W39: Bit values can not be masked with pytest.warns(W39): votable.to_xml(bio) bio.seek(0) self.votable = parse(bio) self.table = self.votable.get_first_table() self.array = self.table.array self.mask = self.table.array.mask def test_get_coosys_by_id(self): # No COOSYS in VOTable 1.2 or later pass def table_from_scratch(): from astropy.io.votable.tree import Field, Resource, Table, VOTableFile # Create a new VOTable file... votable = VOTableFile() # ...with one resource... resource = Resource() votable.resources.append(resource) # ... with one table table = Table(votable) resource.tables.append(table) # Define some fields table.fields.extend( [ Field(votable, ID="filename", datatype="char"), Field(votable, ID="matrix", datatype="double", arraysize="2x2"), ] ) # Now, use those field definitions to create the numpy record arrays, with # the given number of rows table.create_arrays(2) # Now table.array can be filled with data table.array[0] = ("test1.xml", [[1, 0], [0, 1]]) table.array[1] = ("test2.xml", [[0.5, 0.3], [0.2, 0.1]]) # Now write the whole thing to a file. # Note, we have to use the top-level votable file object out = io.StringIO() votable.to_xml(out) # https://github.com/astropy/astropy/issues/13341 @np.errstate(over="ignore") def test_open_files(): for filename in get_pkg_data_filenames("data", pattern="*.xml"): if filename.endswith("custom_datatype.xml") or filename.endswith( "timesys_errors.xml" ): continue parse(filename) def test_too_many_columns(): with pytest.raises(VOTableSpecError): parse(get_pkg_data_filename("data/too_many_columns.xml.gz")) def test_build_from_scratch(tmp_path): # Create a new VOTable file... votable = tree.VOTableFile() # ...with one resource... resource = tree.Resource() votable.resources.append(resource) # ... with one table table = tree.Table(votable) resource.tables.append(table) # Define some fields table.fields.extend( [ tree.Field( votable, ID="filename", name="filename", datatype="char", arraysize="1" ), tree.Field( votable, ID="matrix", name="matrix", datatype="double", arraysize="2x2" ), ] ) # Now, use those field definitions to create the numpy record arrays, with # the given number of rows table.create_arrays(2) # Now table.array can be filled with data table.array[0] = ("test1.xml", [[1, 0], [0, 1]]) table.array[1] = ("test2.xml", [[0.5, 0.3], [0.2, 0.1]]) # Now write the whole thing to a file. # Note, we have to use the top-level votable file object votable.to_xml(str(tmp_path / "new_votable.xml")) votable = parse(str(tmp_path / "new_votable.xml")) table = votable.get_first_table() assert_array_equal( table.array.mask, np.array( [ (False, [[False, False], [False, False]]), (False, [[False, False], [False, False]]), ], dtype=[("filename", "?"), ("matrix", "?", (2, 2))], ), ) def test_validate(test_path_object=False): """ test_path_object is needed for test below ``test_validate_path_object`` so that file could be passed as pathlib.Path object. """ output = io.StringIO() fpath = get_pkg_data_filename("data/regression.xml") if test_path_object: fpath = pathlib.Path(fpath) # We can't test xmllint, because we can't rely on it being on the # user's machine. result = validate(fpath, output, xmllint=False) assert result is False output.seek(0) output = output.readlines() # Uncomment to generate new groundtruth # with open('validation.txt', 'wt', encoding='utf-8') as fd: # fd.write(u''.join(output)) with open(get_pkg_data_filename("data/validation.txt"), encoding="utf-8") as fd: truth = fd.readlines() truth = truth[1:] output = output[1:-1] sys.stdout.writelines( difflib.unified_diff(truth, output, fromfile="truth", tofile="output") ) assert truth == output @mock.patch("subprocess.Popen") def test_validate_xmllint_true(mock_subproc_popen): process_mock = mock.Mock() attrs = {"communicate.return_value": ("ok", "ko"), "returncode": 0} process_mock.configure_mock(**attrs) mock_subproc_popen.return_value = process_mock assert validate(get_pkg_data_filename("data/empty_table.xml"), xmllint=True) def test_validate_path_object(): """ Validating when source is passed as path object. (#4412) """ test_validate(test_path_object=True) def test_gzip_filehandles(tmp_path): with np.errstate(over="ignore"): # https://github.com/astropy/astropy/issues/13341 votable = parse(get_pkg_data_filename("data/regression.xml")) # W39: Bit values can not be masked with pytest.warns(W39): with open(tmp_path / "regression.compressed.xml", "wb") as fd: votable.to_xml(fd, compressed=True, _astropy_version="testing") with open(tmp_path / "regression.compressed.xml", "rb") as fd: votable = parse(fd) def test_from_scratch_example(): _run_test_from_scratch_example() def _run_test_from_scratch_example(): from astropy.io.votable.tree import Field, Resource, Table, VOTableFile # Create a new VOTable file... votable = VOTableFile() # ...with one resource... resource = Resource() votable.resources.append(resource) # ... with one table table = Table(votable) resource.tables.append(table) # Define some fields table.fields.extend( [ Field(votable, name="filename", datatype="char", arraysize="*"), Field(votable, name="matrix", datatype="double", arraysize="2x2"), ] ) # Now, use those field definitions to create the numpy record arrays, with # the given number of rows table.create_arrays(2) # Now table.array can be filled with data table.array[0] = ("test1.xml", [[1, 0], [0, 1]]) table.array[1] = ("test2.xml", [[0.5, 0.3], [0.2, 0.1]]) assert table.array[0][0] == "test1.xml" def test_fileobj(): # Assert that what we get back is a raw C file pointer # so it will be super fast in the C extension. from astropy.utils.xml import iterparser filename = get_pkg_data_filename("data/regression.xml") with iterparser._convert_to_fd_or_read_function(filename) as fd: if sys.platform == "win32": fd() else: assert isinstance(fd, io.FileIO) def test_nonstandard_units(): from astropy import units as u votable = parse(get_pkg_data_filename("data/nonstandard_units.xml")) assert isinstance(votable.get_first_table().fields[0].unit, u.UnrecognizedUnit) votable = parse( get_pkg_data_filename("data/nonstandard_units.xml"), unit_format="generic" ) assert not isinstance(votable.get_first_table().fields[0].unit, u.UnrecognizedUnit) def test_resource_structure(): # Based on issue #1223, as reported by @astro-friedel and @RayPlante from astropy.io.votable import tree as vot vtf = vot.VOTableFile() r1 = vot.Resource() vtf.resources.append(r1) t1 = vot.Table(vtf) t1.name = "t1" t2 = vot.Table(vtf) t2.name = "t2" r1.tables.append(t1) r1.tables.append(t2) r2 = vot.Resource() vtf.resources.append(r2) t3 = vot.Table(vtf) t3.name = "t3" t4 = vot.Table(vtf) t4.name = "t4" r2.tables.append(t3) r2.tables.append(t4) r3 = vot.Resource() vtf.resources.append(r3) t5 = vot.Table(vtf) t5.name = "t5" t6 = vot.Table(vtf) t6.name = "t6" r3.tables.append(t5) r3.tables.append(t6) buff = io.BytesIO() vtf.to_xml(buff) buff.seek(0) vtf2 = parse(buff) assert len(vtf2.resources) == 3 for r in range(len(vtf2.resources)): res = vtf2.resources[r] assert len(res.tables) == 2 assert len(res.resources) == 0 def test_no_resource_check(): output = io.StringIO() # We can't test xmllint, because we can't rely on it being on the # user's machine. result = validate( get_pkg_data_filename("data/no_resource.xml"), output, xmllint=False ) assert result is False output.seek(0) output = output.readlines() # Uncomment to generate new groundtruth # with open('no_resource.txt', 'wt', encoding='utf-8') as fd: # fd.write(u''.join(output)) with open(get_pkg_data_filename("data/no_resource.txt"), encoding="utf-8") as fd: truth = fd.readlines() truth = truth[1:] output = output[1:-1] sys.stdout.writelines( difflib.unified_diff(truth, output, fromfile="truth", tofile="output") ) assert truth == output def test_instantiate_vowarning(): # This used to raise a deprecation exception. # See https://github.com/astropy/astroquery/pull/276 VOWarning(()) def test_custom_datatype(): votable = parse( get_pkg_data_filename("data/custom_datatype.xml"), datatype_mapping={"bar": "int"}, ) table = votable.get_first_table() assert table.array.dtype["foo"] == np.int32 def _timesys_tests(votable): assert len(list(votable.iter_timesys())) == 4 timesys = votable.get_timesys_by_id("time_frame") assert timesys.timeorigin == 2455197.5 assert timesys.timescale == "TCB" assert timesys.refposition == "BARYCENTER" timesys = votable.get_timesys_by_id("mjd_origin") assert timesys.timeorigin == "MJD-origin" assert timesys.timescale == "TDB" assert timesys.refposition == "EMBARYCENTER" timesys = votable.get_timesys_by_id("jd_origin") assert timesys.timeorigin == "JD-origin" assert timesys.timescale == "TT" assert timesys.refposition == "HELIOCENTER" timesys = votable.get_timesys_by_id("no_origin") assert timesys.timeorigin is None assert timesys.timescale == "UTC" assert timesys.refposition == "TOPOCENTER" def test_timesys(): votable = parse(get_pkg_data_filename("data/timesys.xml")) _timesys_tests(votable) def test_timesys_roundtrip(): orig_votable = parse(get_pkg_data_filename("data/timesys.xml")) bio = io.BytesIO() orig_votable.to_xml(bio) bio.seek(0) votable = parse(bio) _timesys_tests(votable) def test_timesys_errors(): output = io.StringIO() validate(get_pkg_data_filename("data/timesys_errors.xml"), output, xmllint=False) outstr = output.getvalue() assert "E23: Invalid timeorigin attribute 'bad-origin'" in outstr assert "E22: ID attribute is required for all TIMESYS elements" in outstr assert "W48: Unknown attribute 'refposition_mispelled' on TIMESYS" in outstr
75d5810622dea679def80c5caee240f102bc813b73bd59495220d5b9fb485b32
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest from astropy.io.votable import ucd def test_none(): assert ucd.check_ucd(None) examples = { "phys.temperature": [("ivoa", "phys.temperature")], "pos.eq.ra;meta.main": [("ivoa", "pos.eq.ra"), ("ivoa", "meta.main")], "meta.id;src": [("ivoa", "meta.id"), ("ivoa", "src")], "phot.flux;em.radio;arith.ratio": [ ("ivoa", "phot.flux"), ("ivoa", "em.radio"), ("ivoa", "arith.ratio"), ], "PHot.Flux;EM.Radio;ivoa:arith.Ratio": [ ("ivoa", "phot.flux"), ("ivoa", "em.radio"), ("ivoa", "arith.ratio"), ], "pos.galactic.lat": [("ivoa", "pos.galactic.lat")], "meta.code;phot.mag": [("ivoa", "meta.code"), ("ivoa", "phot.mag")], "stat.error;phot.mag": [("ivoa", "stat.error"), ("ivoa", "phot.mag")], "phys.temperature;instr;stat.max": [ ("ivoa", "phys.temperature"), ("ivoa", "instr"), ("ivoa", "stat.max"), ], "stat.error;phot.mag;em.opt.V": [ ("ivoa", "stat.error"), ("ivoa", "phot.mag"), ("ivoa", "em.opt.V"), ], "phot.color;em.opt.B;em.opt.V": [ ("ivoa", "phot.color"), ("ivoa", "em.opt.B"), ("ivoa", "em.opt.V"), ], "stat.error;phot.color;em.opt.B;em.opt.V": [ ("ivoa", "stat.error"), ("ivoa", "phot.color"), ("ivoa", "em.opt.B"), ("ivoa", "em.opt.V"), ], } def test_check(): for s, p in examples.items(): assert ucd.parse_ucd(s, True, True) == p assert ucd.check_ucd(s, True, True) def test_too_many_colons(): with pytest.raises(ValueError): ucd.parse_ucd("ivoa:stsci:phot", True, True) def test_invalid_namespace(): with pytest.raises(ValueError): ucd.parse_ucd("_ivoa:phot.mag", True, True) def test_invalid_word(): with pytest.raises(ValueError): ucd.parse_ucd("-pho")
6d7c705b86718b97f9a12e94e97c0a7abf32ae059c58caa93a173d818937a748
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Test the conversion to/from astropy.table """ import io import os import pathlib import numpy as np import pytest from astropy.config import reload_config, set_temp_config from astropy.io.votable import conf, from_table, is_votable, tree, validate from astropy.io.votable.exceptions import E25, W39, VOWarning from astropy.io.votable.table import parse, writeto from astropy.table import Column, Table from astropy.table.table_helpers import simple_table from astropy.units import Unit from astropy.utils.data import ( get_pkg_data_filename, get_pkg_data_fileobj, get_pkg_data_path, ) from astropy.utils.exceptions import AstropyDeprecationWarning from astropy.utils.misc import _NOT_OVERWRITING_MSG_MATCH @pytest.fixture def home_is_data(monkeypatch): """ Pytest fixture to run a test case with tilde-prefixed paths. In the tilde-path case, environment variables are temporarily modified so that '~' resolves to the data directory. """ path = get_pkg_data_path("data") # For Unix monkeypatch.setenv("HOME", path) # For Windows monkeypatch.setenv("USERPROFILE", path) @pytest.fixture def home_is_tmpdir(monkeypatch, tmp_path): """ Pytest fixture to run a test case with tilde-prefixed paths. In the tilde-path case, environment variables are temporarily modified so that '~' resolves to the temp directory. """ # For Unix monkeypatch.setenv("HOME", str(tmp_path)) # For Windows monkeypatch.setenv("USERPROFILE", str(tmp_path)) def test_table(tmp_path): # Read the VOTABLE with np.errstate(over="ignore"): # https://github.com/astropy/astropy/issues/13341 votable = parse(get_pkg_data_filename("data/regression.xml")) table = votable.get_first_table() astropy_table = table.to_table() for name in table.array.dtype.names: assert np.all(astropy_table.mask[name] == table.array.mask[name]) votable2 = tree.VOTableFile.from_table(astropy_table) t = votable2.get_first_table() field_types = [ ("string_test", {"datatype": "char", "arraysize": "*"}), ("string_test_2", {"datatype": "char", "arraysize": "10"}), ("unicode_test", {"datatype": "unicodeChar", "arraysize": "*"}), ("fixed_unicode_test", {"datatype": "unicodeChar", "arraysize": "10"}), ("string_array_test", {"datatype": "char", "arraysize": "4"}), ("unsignedByte", {"datatype": "unsignedByte"}), ("short", {"datatype": "short"}), ("int", {"datatype": "int"}), ("long", {"datatype": "long"}), ("double", {"datatype": "double"}), ("float", {"datatype": "float"}), ("array", {"datatype": "long", "arraysize": "2*"}), ("bit", {"datatype": "bit"}), ("bitarray", {"datatype": "bit", "arraysize": "3x2"}), ("bitvararray", {"datatype": "bit", "arraysize": "*"}), ("bitvararray2", {"datatype": "bit", "arraysize": "3x2*"}), ("floatComplex", {"datatype": "floatComplex"}), ("doubleComplex", {"datatype": "doubleComplex"}), ("doubleComplexArray", {"datatype": "doubleComplex", "arraysize": "*"}), ("doubleComplexArrayFixed", {"datatype": "doubleComplex", "arraysize": "2"}), ("boolean", {"datatype": "bit"}), ("booleanArray", {"datatype": "bit", "arraysize": "4"}), ("nulls", {"datatype": "int"}), ("nulls_array", {"datatype": "int", "arraysize": "2x2"}), ("precision1", {"datatype": "double"}), ("precision2", {"datatype": "double"}), ("doublearray", {"datatype": "double", "arraysize": "*"}), ("bitarray2", {"datatype": "bit", "arraysize": "16"}), ] for field, type in zip(t.fields, field_types): name, d = type assert field.ID == name assert ( field.datatype == d["datatype"] ), f'{name} expected {d["datatype"]} but get {field.datatype}' if "arraysize" in d: assert field.arraysize == d["arraysize"] # W39: Bit values can not be masked with pytest.warns(W39): writeto(votable2, str(tmp_path / "through_table.xml")) def test_read_from_tilde_path(home_is_data): # Just test that these run without error for tilde-paths path = os.path.join("~", "regression.xml") with np.errstate(over="ignore"): # https://github.com/astropy/astropy/issues/13341 votable = parse(path) Table.read(path, format="votable", table_id="main_table") def test_read_through_table_interface(tmp_path): with np.errstate(over="ignore"): # https://github.com/astropy/astropy/issues/13341 with get_pkg_data_fileobj("data/regression.xml", encoding="binary") as fd: t = Table.read(fd, format="votable", table_id="main_table") assert len(t) == 5 # Issue 8354 assert t["float"].format is None fn = tmp_path / "table_interface.xml" # W39: Bit values can not be masked with pytest.warns(W39): t.write(fn, table_id="FOO", format="votable") with open(fn, "rb") as fd: t2 = Table.read(fd, format="votable", table_id="FOO") assert len(t2) == 5 def test_read_through_table_interface2(): with np.errstate(over="ignore"): # https://github.com/astropy/astropy/issues/13341 with get_pkg_data_fileobj("data/regression.xml", encoding="binary") as fd: t = Table.read(fd, format="votable", table_id="last_table") assert len(t) == 0 def test_pass_kwargs_through_table_interface(): # Table.read() should pass on keyword arguments meant for parse() filename = get_pkg_data_filename("data/nonstandard_units.xml") t = Table.read(filename, format="votable", unit_format="generic") assert t["Flux1"].unit == Unit("erg / (Angstrom cm2 s)") def test_names_over_ids(): with get_pkg_data_fileobj("data/names.xml", encoding="binary") as fd: votable = parse(fd) table = votable.get_first_table().to_table(use_names_over_ids=True) assert table.colnames == [ "Name", "GLON", "GLAT", "RAdeg", "DEdeg", "Jmag", "Hmag", "Kmag", "G3.6mag", "G4.5mag", "G5.8mag", "G8.0mag", "4.5mag", "8.0mag", "Emag", "24mag", "f_Name", ] def test_explicit_ids(): with get_pkg_data_fileobj("data/names.xml", encoding="binary") as fd: votable = parse(fd) table = votable.get_first_table().to_table(use_names_over_ids=False) assert table.colnames == [ "col1", "col2", "col3", "col4", "col5", "col6", "col7", "col8", "col9", "col10", "col11", "col12", "col13", "col14", "col15", "col16", "col17", ] def test_table_read_with_unnamed_tables(): """ Issue #927 """ with get_pkg_data_fileobj("data/names.xml", encoding="binary") as fd: t = Table.read(fd, format="votable") assert len(t) == 1 def test_votable_path_object(): """ Testing when votable is passed as pathlib.Path object #4412. """ fpath = pathlib.Path(get_pkg_data_filename("data/names.xml")) table = parse(fpath).get_first_table().to_table() assert len(table) == 1 assert int(table[0][3]) == 266 def test_from_table_without_mask(): t = Table() c = Column(data=[1, 2, 3], name="a") t.add_column(c) output = io.BytesIO() t.write(output, format="votable") def test_write_with_format(): t = Table() c = Column(data=[1, 2, 3], name="a") t.add_column(c) output = io.BytesIO() t.write(output, format="votable", tabledata_format="binary") obuff = output.getvalue() assert b'VOTABLE version="1.4"' in obuff assert b"BINARY" in obuff assert b"TABLEDATA" not in obuff output = io.BytesIO() t.write(output, format="votable", tabledata_format="binary2") obuff = output.getvalue() assert b'VOTABLE version="1.4"' in obuff assert b"BINARY2" in obuff assert b"TABLEDATA" not in obuff def test_write_overwrite(tmp_path): t = simple_table(3, 3) filename = tmp_path / "overwrite_test.vot" t.write(filename, format="votable") with pytest.raises(OSError, match=_NOT_OVERWRITING_MSG_MATCH): t.write(filename, format="votable") t.write(filename, format="votable", overwrite=True) def test_write_tilde_path(home_is_tmpdir): fname = os.path.join("~", "output") t = Table() t["a"] = [1, 2, 3] t.write(fname, format="votable", tabledata_format="binary") # Ensure the tilde-prefixed path wasn't treated literally assert not os.path.exists(fname) with open(os.path.expanduser(fname)) as f: obuff = f.read() assert 'VOTABLE version="1.4"' in obuff assert "BINARY" in obuff assert "TABLEDATA" not in obuff @pytest.mark.parametrize("path_format", ["plain", "tilde"]) def test_writeto(path_format, tmp_path, home_is_tmpdir): if path_format == "plain": # pathlib.Path objects are not accepted by votable.writeto, so convert # to a string fname = str(tmp_path / "writeto_test.vot") else: fname = os.path.join("~", "writeto_test.vot") t = Table() t["a"] = [1, 2, 3] vt = from_table(t) writeto(vt, fname) if path_format == "tilde": # Ensure the tilde-prefixed path wasn't treated literally assert not os.path.exists(fname) with open(os.path.expanduser(fname)) as f: obuff = f.read() assert 'VOTABLE version="1.4"' in obuff assert "BINARY" not in obuff assert "TABLEDATA" in obuff def test_empty_table(): votable = parse(get_pkg_data_filename("data/empty_table.xml")) table = votable.get_first_table() table.to_table() def test_no_field_not_empty_table(): votable = parse(get_pkg_data_filename("data/no_field_not_empty_table.xml")) table = votable.get_first_table() assert len(table.fields) == 0 assert len(table.infos) == 1 def test_no_field_not_empty_table_exception(): with pytest.raises(E25): parse( get_pkg_data_filename("data/no_field_not_empty_table.xml"), verify="exception", ) def test_binary2_masked_strings(): """ Issue #8995 """ # Read a VOTable which sets the null mask bit for each empty string value. votable = parse(get_pkg_data_filename("data/binary2_masked_strings.xml")) table = votable.get_first_table() astropy_table = table.to_table() # Ensure string columns have no masked values and can be written out assert not np.any(table.array.mask["epoch_photometry_url"]) output = io.BytesIO() astropy_table.write(output, format="votable") def test_validate_output_invalid(): """ Issue #12603. Test that we get the correct output from votable.validate with an invalid votable. """ # A votable with errors invalid_votable_filepath = get_pkg_data_filename("data/regression.xml") # When output is None, check that validate returns validation output as a string validate_out = validate(invalid_votable_filepath, output=None) assert isinstance(validate_out, str) # Check for known error string assert "E02: Incorrect number of elements in array." in validate_out # When output is not set, check that validate returns a bool validate_out = validate(invalid_votable_filepath) assert isinstance(validate_out, bool) # Check that validation output is correct (votable is not valid) assert validate_out is False def test_validate_output_valid(): """ Issue #12603. Test that we get the correct output from votable.validate with a valid votable """ # A valid votable. (Example from the votable standard: # https://www.ivoa.net/documents/VOTable/20191021/REC-VOTable-1.4-20191021.html ) valid_votable_filepath = get_pkg_data_filename("data/valid_votable.xml") # When output is None, check that validate returns validation output as a string validate_out = validate(valid_votable_filepath, output=None) assert isinstance(validate_out, str) # Check for known good output string assert "astropy.io.votable found no violations" in validate_out # When output is not set, check that validate returns a bool validate_out = validate(valid_votable_filepath) assert isinstance(validate_out, bool) # Check that validation output is correct (votable is valid) assert validate_out is True def test_validate_tilde_path(home_is_data): validate(os.path.join("~", "valid_votable.xml")) def test_is_votable_tilde_path(home_is_data): assert is_votable(os.path.join("~", "valid_votable.xml")) class TestVerifyOptions: # Start off by checking the default (ignore) def test_default(self): parse(get_pkg_data_filename("data/gemini.xml")) # Then try the various explicit options def test_verify_ignore(self): parse(get_pkg_data_filename("data/gemini.xml"), verify="ignore") def test_verify_warn(self): with pytest.warns(VOWarning) as w: parse(get_pkg_data_filename("data/gemini.xml"), verify="warn") assert len(w) == 24 def test_verify_exception(self): with pytest.raises(VOWarning): parse(get_pkg_data_filename("data/gemini.xml"), verify="exception") # Make sure the deprecated pedantic option still works for now def test_pedantic_false(self): with pytest.warns(VOWarning) as w: parse(get_pkg_data_filename("data/gemini.xml"), pedantic=False) assert len(w) == 25 def test_pedantic_true(self): with pytest.warns(AstropyDeprecationWarning): with pytest.raises(VOWarning): parse(get_pkg_data_filename("data/gemini.xml"), pedantic=True) # Make sure that the default behavior can be set via configuration items def test_conf_verify_ignore(self): with conf.set_temp("verify", "ignore"): parse(get_pkg_data_filename("data/gemini.xml")) def test_conf_verify_warn(self): with conf.set_temp("verify", "warn"): with pytest.warns(VOWarning) as w: parse(get_pkg_data_filename("data/gemini.xml")) assert len(w) == 24 def test_conf_verify_exception(self): with conf.set_temp("verify", "exception"): with pytest.raises(VOWarning): parse(get_pkg_data_filename("data/gemini.xml")) # And make sure the old configuration item will keep working def test_conf_pedantic_false(self, tmp_path): with set_temp_config(tmp_path): with open(tmp_path / "astropy" / "astropy.cfg", "w") as f: f.write("[io.votable]\npedantic = False") reload_config("astropy.io.votable") with pytest.warns(VOWarning) as w: parse(get_pkg_data_filename("data/gemini.xml")) assert len(w) == 25 def test_conf_pedantic_true(self, tmp_path): with set_temp_config(tmp_path): with open(tmp_path / "astropy" / "astropy.cfg", "w") as f: f.write("[io.votable]\npedantic = True") reload_config("astropy.io.votable") with pytest.warns(AstropyDeprecationWarning): with pytest.raises(VOWarning): parse(get_pkg_data_filename("data/gemini.xml"))
63c142487419a1bd1e05e2c7c95970077072b19b6036b1690dbc215197d7e35d
# Licensed under a 3-clause BSD style license - see LICENSE.rst import io import pytest from astropy.io.votable import tree from astropy.io.votable.exceptions import W07, W08, W21, W41 from astropy.io.votable.table import parse from astropy.io.votable.tree import Resource, VOTableFile from astropy.utils.data import get_pkg_data_filename from astropy.utils.exceptions import AstropyDeprecationWarning def test_check_astroyear_fail(): config = {"verify": "exception"} field = tree.Field(None, name="astroyear", arraysize="1") with pytest.raises(W07): tree.check_astroyear("X2100", field, config) def test_string_fail(): config = {"verify": "exception"} with pytest.raises(W08): tree.check_string(42, "foo", config) def test_make_Fields(): votable = tree.VOTableFile() # ...with one resource... resource = tree.Resource() votable.resources.append(resource) # ... with one table table = tree.Table(votable) resource.tables.append(table) table.fields.extend( [tree.Field(votable, name="Test", datatype="float", unit="mag")] ) def test_unit_format(): data = parse(get_pkg_data_filename("data/irsa-nph-error.xml")) assert data._config["version"] == "1.0" assert tree._get_default_unit_format(data._config) == "cds" data = parse(get_pkg_data_filename("data/names.xml")) assert data._config["version"] == "1.1" assert tree._get_default_unit_format(data._config) == "cds" data = parse(get_pkg_data_filename("data/gemini.xml")) assert data._config["version"] == "1.2" assert tree._get_default_unit_format(data._config) == "cds" data = parse(get_pkg_data_filename("data/binary2_masked_strings.xml")) assert data._config["version"] == "1.3" assert tree._get_default_unit_format(data._config) == "cds" data = parse(get_pkg_data_filename("data/timesys.xml")) assert data._config["version"] == "1.4" assert tree._get_default_unit_format(data._config) == "vounit" def test_namespace_warning(): """ A version 1.4 VOTable must use the same namespace as 1.3. (see https://www.ivoa.net/documents/VOTable/20191021/REC-VOTable-1.4-20191021.html#ToC16) """ bad_namespace = b"""<?xml version="1.0" encoding="utf-8"?> <VOTABLE version="1.4" xmlns="http://www.ivoa.net/xml/VOTable/v1.4" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <RESOURCE/> </VOTABLE> """ with pytest.warns(W41): parse(io.BytesIO(bad_namespace), verify="exception") good_namespace_14 = b"""<?xml version="1.0" encoding="utf-8"?> <VOTABLE version="1.4" xmlns="http://www.ivoa.net/xml/VOTable/v1.3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <RESOURCE/> </VOTABLE> """ parse(io.BytesIO(good_namespace_14), verify="exception") good_namespace_13 = b"""<?xml version="1.0" encoding="utf-8"?> <VOTABLE version="1.3" xmlns="http://www.ivoa.net/xml/VOTable/v1.3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <RESOURCE/> </VOTABLE> """ parse(io.BytesIO(good_namespace_13), verify="exception") def test_version(): """ VOTableFile.__init__ allows versions of '1.0', '1.1', '1.2', '1.3' and '1.4'. The '1.0' is curious since other checks in parse() and the version setter do not allow '1.0'. This test confirms that behavior for now. A future change may remove the '1.0'. """ # Exercise the checks in __init__ with pytest.warns(AstropyDeprecationWarning): VOTableFile(version="1.0") for version in ("1.1", "1.2", "1.3", "1.4"): VOTableFile(version=version) for version in ("0.9", "2.0"): with pytest.raises( ValueError, match=r"should be in \('1.0', '1.1', '1.2', '1.3', '1.4'\)." ): VOTableFile(version=version) # Exercise the checks in the setter vot = VOTableFile() for version in ("1.1", "1.2", "1.3", "1.4"): vot.version = version for version in ("1.0", "2.0"): with pytest.raises( ValueError, match=r"supports VOTable versions '1.1', '1.2', '1.3', '1.4'$" ): vot.version = version # Exercise the checks in the parser. begin = b'<?xml version="1.0" encoding="utf-8"?><VOTABLE version="' middle = b'" xmlns="http://www.ivoa.net/xml/VOTable/v' end = ( b'" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"><RESOURCE/></VOTABLE>' ) # Valid versions for bversion in (b"1.1", b"1.2", b"1.3"): parse( io.BytesIO(begin + bversion + middle + bversion + end), verify="exception" ) parse(io.BytesIO(begin + b"1.4" + middle + b"1.3" + end), verify="exception") # Invalid versions for bversion in (b"1.0", b"2.0"): with pytest.warns(W21): parse( io.BytesIO(begin + bversion + middle + bversion + end), verify="exception", ) def votable_xml_string(version): votable_file = VOTableFile(version=version) votable_file.resources.append(Resource()) xml_bytes = io.BytesIO() votable_file.to_xml(xml_bytes) xml_bytes.seek(0) bstring = xml_bytes.read() s = bstring.decode("utf-8") return s def test_votable_tag(): xml = votable_xml_string("1.1") assert 'xmlns="http://www.ivoa.net/xml/VOTable/v1.1"' in xml assert 'xsi:noNamespaceSchemaLocation="http://www.ivoa.net/xml/VOTable/v1.1"' in xml xml = votable_xml_string("1.2") assert 'xmlns="http://www.ivoa.net/xml/VOTable/v1.2"' in xml assert 'xsi:noNamespaceSchemaLocation="http://www.ivoa.net/xml/VOTable/v1.2"' in xml xml = votable_xml_string("1.3") assert 'xmlns="http://www.ivoa.net/xml/VOTable/v1.3"' in xml assert 'xsi:schemaLocation="http://www.ivoa.net/xml/VOTable/v1.3 ' assert 'http://www.ivoa.net/xml/VOTable/VOTable-1.3.xsd"' in xml xml = votable_xml_string("1.4") assert 'xmlns="http://www.ivoa.net/xml/VOTable/v1.3"' in xml assert 'xsi:schemaLocation="http://www.ivoa.net/xml/VOTable/v1.3 ' assert 'http://www.ivoa.net/xml/VOTable/VOTable-1.4.xsd"' in xml
99bda357d9b7afff1ed44ef041c4b002fd3d6554cc2f71dc2922b728cd92fc3d
# Licensed under a 3-clause BSD style license - see LICENSE.rst import io # THIRD-PARTY import numpy as np import pytest from numpy.testing import assert_array_equal # LOCAL from astropy.io.votable import converters, exceptions, tree from astropy.io.votable.table import parse_single_table from astropy.utils.data import get_pkg_data_filename def test_invalid_arraysize(): with pytest.raises(exceptions.E13): field = tree.Field(None, name="broken", datatype="char", arraysize="foo") converters.get_converter(field) def test_oversize_char(): config = {"verify": "exception"} with pytest.warns(exceptions.W47) as w: field = tree.Field(None, name="c", datatype="char", config=config) c = converters.get_converter(field, config=config) assert len(w) == 1 with pytest.warns(exceptions.W46) as w: c.parse("XXX") assert len(w) == 1 def test_char_mask(): config = {"verify": "exception"} field = tree.Field(None, name="c", arraysize="1", datatype="char", config=config) c = converters.get_converter(field, config=config) assert c.output("Foo", True) == "" def test_oversize_unicode(): config = {"verify": "exception"} with pytest.warns(exceptions.W46) as w: field = tree.Field( None, name="c2", datatype="unicodeChar", arraysize="1", config=config ) c = converters.get_converter(field, config=config) c.parse("XXX") assert len(w) == 1 def test_unicode_mask(): config = {"verify": "exception"} field = tree.Field( None, name="c", arraysize="1", datatype="unicodeChar", config=config ) c = converters.get_converter(field, config=config) assert c.output("Foo", True) == "" def test_unicode_as_char(): config = {"verify": "exception"} field = tree.Field( None, name="unicode_in_char", datatype="char", arraysize="*", config=config ) c = converters.get_converter(field, config=config) # Test parsing. c.parse("XYZ") # ASCII succeeds with pytest.warns( exceptions.W55, match=( r'FIELD \(unicode_in_char\) has datatype="char" but contains non-ASCII' r" value" ), ): c.parse("zła") # non-ASCII # Test output. c.output("XYZ", False) # ASCII str succeeds c.output(b"XYZ", False) # ASCII bytes succeeds value = "zła" value_bytes = value.encode("utf-8") with pytest.warns(exceptions.E24, match=r"E24: Attempt to write non-ASCII value"): c.output(value, False) # non-ASCII str raises with pytest.warns(exceptions.E24, match=r"E24: Attempt to write non-ASCII value"): c.output(value_bytes, False) # non-ASCII bytes raises def test_unicode_as_char_binary(): config = {"verify": "exception"} field = tree.Field( None, name="unicode_in_char", datatype="char", arraysize="*", config=config ) c = converters.get_converter(field, config=config) c._binoutput_var("abc", False) # ASCII succeeds with pytest.raises(exceptions.E24, match=r"E24: Attempt to write non-ASCII value"): c._binoutput_var("zła", False) field = tree.Field( None, name="unicode_in_char", datatype="char", arraysize="3", config=config ) c = converters.get_converter(field, config=config) c._binoutput_fixed("xyz", False) with pytest.raises(exceptions.E24, match=r"E24: Attempt to write non-ASCII value"): c._binoutput_fixed("zła", False) def test_wrong_number_of_elements(): config = {"verify": "exception"} field = tree.Field(None, name="c", datatype="int", arraysize="2x3*", config=config) c = converters.get_converter(field, config=config) with pytest.raises(exceptions.E02): c.parse("2 3 4 5 6") def test_float_mask(): config = {"verify": "exception"} field = tree.Field(None, name="c", datatype="float", config=config) c = converters.get_converter(field, config=config) assert c.parse("") == (c.null, True) with pytest.raises(ValueError): c.parse("null") def test_float_mask_permissive(): config = {"verify": "ignore"} field = tree.Field(None, name="c", datatype="float", config=config) # config needs to be also passed into parse() to work. # https://github.com/astropy/astropy/issues/8775 c = converters.get_converter(field, config=config) assert c.parse("null", config=config) == (c.null, True) def test_double_array(): config = {"verify": "exception", "version_1_3_or_later": True} field = tree.Field(None, name="c", datatype="double", arraysize="3", config=config) data = (1.0, 2.0, 3.0) c = converters.get_converter(field, config=config) assert c.output(1.0, False) == "1" assert c.output(1.0, [False, False]) == "1" assert c.output(data, False) == "1 2 3" assert c.output(data, [False, False, False]) == "1 2 3" assert c.output(data, [False, False, True]) == "1 2 NaN" assert c.output(data, [False, False]) == "1 2" a = c.parse("1 2 3", config=config) assert_array_equal(a[0], data) assert_array_equal(a[1], False) with pytest.raises(exceptions.E02): c.parse("1", config=config) with pytest.raises(AttributeError), pytest.warns(exceptions.E02): c.parse("1") with pytest.raises(exceptions.E02): c.parse("2 3 4 5 6", config=config) with pytest.warns(exceptions.E02): a = c.parse("2 3 4 5 6") assert_array_equal(a[0], [2, 3, 4]) assert_array_equal(a[1], False) def test_complex_array_vararray(): config = {"verify": "exception"} field = tree.Field( None, name="c", datatype="floatComplex", arraysize="2x3*", config=config ) c = converters.get_converter(field, config=config) with pytest.raises(exceptions.E02): c.parse("2 3 4 5 6") def test_complex_array_vararray2(): config = {"verify": "exception"} field = tree.Field( None, name="c", datatype="floatComplex", arraysize="2x3*", config=config ) c = converters.get_converter(field, config=config) x = c.parse("") assert len(x[0]) == 0 def test_complex_array_vararray3(): config = {"verify": "exception"} field = tree.Field( None, name="c", datatype="doubleComplex", arraysize="2x3*", config=config ) c = converters.get_converter(field, config=config) x = c.parse("1 2 3 4 5 6 7 8 9 10 11 12") assert len(x) == 2 assert np.all(x[0][0][0] == complex(1, 2)) def test_complex_vararray(): config = {"verify": "exception"} field = tree.Field( None, name="c", datatype="doubleComplex", arraysize="*", config=config ) c = converters.get_converter(field, config=config) x = c.parse("1 2 3 4") assert len(x) == 2 assert x[0][0] == complex(1, 2) def test_complex(): config = {"verify": "exception"} field = tree.Field(None, name="c", datatype="doubleComplex", config=config) c = converters.get_converter(field, config=config) with pytest.raises(exceptions.E03): c.parse("1 2 3") def test_bit(): config = {"verify": "exception"} field = tree.Field(None, name="c", datatype="bit", config=config) c = converters.get_converter(field, config=config) with pytest.raises(exceptions.E04): c.parse("T") def test_bit_mask(): config = {"verify": "exception"} with pytest.warns(exceptions.W39) as w: field = tree.Field(None, name="c", datatype="bit", config=config) c = converters.get_converter(field, config=config) c.output(True, True) assert len(w) == 1 def test_boolean(): config = {"verify": "exception"} field = tree.Field(None, name="c", datatype="boolean", config=config) c = converters.get_converter(field, config=config) with pytest.raises(exceptions.E05): c.parse("YES") def test_boolean_array(): config = {"verify": "exception"} field = tree.Field(None, name="c", datatype="boolean", arraysize="*", config=config) c = converters.get_converter(field, config=config) r, mask = c.parse("TRUE FALSE T F 0 1") assert_array_equal(r, [True, False, True, False, False, True]) def test_invalid_type(): config = {"verify": "exception"} with pytest.raises(exceptions.E06): field = tree.Field(None, name="c", datatype="foobar", config=config) converters.get_converter(field, config=config) def test_precision(): config = {"verify": "exception"} field = tree.Field(None, name="c", datatype="float", precision="E4", config=config) c = converters.get_converter(field, config=config) assert c.output(266.248, False) == "266.2" field = tree.Field(None, name="c", datatype="float", precision="F4", config=config) c = converters.get_converter(field, config=config) assert c.output(266.248, False) == "266.2480" def test_integer_overflow(): config = {"verify": "exception"} field = tree.Field(None, name="c", datatype="int", config=config) c = converters.get_converter(field, config=config) with pytest.raises(exceptions.W51): c.parse("-2208988800", config=config) def test_float_default_precision(): config = {"verify": "exception"} field = tree.Field(None, name="c", datatype="float", arraysize="4", config=config) c = converters.get_converter(field, config=config) assert ( c.output([1, 2, 3, 8.9990234375], [False, False, False, False]) == "1 2 3 8.9990234375" ) def test_vararray(): votable = tree.VOTableFile() resource = tree.Resource() votable.resources.append(resource) table = tree.Table(votable) resource.tables.append(table) tabarr = [] heads = ["headA", "headB", "headC"] types = ["char", "double", "int"] vals = [["A", 1.0, 2], ["B", 2.0, 3], ["C", 3.0, 4]] for i in range(len(heads)): tabarr.append( tree.Field(votable, name=heads[i], datatype=types[i], arraysize="*") ) table.fields.extend(tabarr) table.create_arrays(len(vals)) for i in range(len(vals)): values = tuple(vals[i]) table.array[i] = values buff = io.BytesIO() votable.to_xml(buff) def test_gemini_v1_2(): """ see Pull Request 4782 or Issue 4781 for details """ table = parse_single_table(get_pkg_data_filename("data/gemini.xml")) assert table is not None tt = table.to_table() assert ( tt["access_url"][0] == "http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/data/pub/GEMINI/" "S20120515S0064?runid=bx9b1o8cvk1qesrt" )
3bc2c907d7d1927ea8d8c0f0976ee6869218f576f79443f55453001206cf4395
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Contains a class to handle a validation result for a single VOTable file. """ # STDLIB import hashlib import http.client import os import pickle import shutil import socket import subprocess import urllib.error import urllib.request import warnings from xml.parsers.expat import ExpatError # VO from astropy.io.votable import exceptions, table, xmlutil class Result: def __init__(self, url, root="results", timeout=10): self.url = url m = hashlib.md5() m.update(url) self._hash = m.hexdigest() self._root = root self._path = os.path.join(self._hash[0:2], self._hash[2:4], self._hash[4:]) if not os.path.exists(self.get_dirpath()): os.makedirs(self.get_dirpath()) self.timeout = timeout self.load_attributes() def __enter__(self): return self def __exit__(self, *args): self.save_attributes() def get_dirpath(self): return os.path.join(self._root, self._path) def get_htmlpath(self): return self._path def get_attribute_path(self): return os.path.join(self.get_dirpath(), "values.dat") def get_vo_xml_path(self): return os.path.join(self.get_dirpath(), "vo.xml") # ATTRIBUTES def load_attributes(self): path = self.get_attribute_path() if os.path.exists(path): try: with open(path, "rb") as fd: self._attributes = pickle.load(fd) except Exception: shutil.rmtree(self.get_dirpath()) os.makedirs(self.get_dirpath()) self._attributes = {} else: self._attributes = {} def save_attributes(self): path = self.get_attribute_path() with open(path, "wb") as fd: pickle.dump(self._attributes, fd) def __getitem__(self, key): return self._attributes[key] def __setitem__(self, key, val): self._attributes[key] = val def __contains__(self, key): return key in self._attributes # VO XML def download_xml_content(self): path = self.get_vo_xml_path() if "network_error" not in self._attributes: self["network_error"] = None if os.path.exists(path): return def fail(reason): reason = str(reason) with open(path, "wb") as fd: fd.write(f"FAILED: {reason}\n".encode()) self["network_error"] = reason r = None try: r = urllib.request.urlopen(self.url.decode("ascii"), timeout=self.timeout) except urllib.error.URLError as e: if hasattr(e, "reason"): reason = e.reason else: reason = e.code fail(reason) return except http.client.HTTPException as e: fail(f"HTTPException: {str(e)}") return except (socket.timeout, OSError) as e: fail("Timeout") return if r is None: fail("Invalid URL") return try: content = r.read() except socket.timeout as e: fail("Timeout") return else: r.close() with open(path, "wb") as fd: fd.write(content) def get_xml_content(self): path = self.get_vo_xml_path() if not os.path.exists(path): self.download_xml_content() with open(path, "rb") as fd: content = fd.read() return content def validate_vo(self): path = self.get_vo_xml_path() if not os.path.exists(path): self.download_xml_content() self["version"] = "" if "network_error" in self and self["network_error"] is not None: self["nwarnings"] = 0 self["nexceptions"] = 0 self["warnings"] = [] self["xmllint"] = None self["warning_types"] = set() return nexceptions = 0 nwarnings = 0 t = None lines = [] with open(path, "rb") as input: with warnings.catch_warnings(record=True) as warning_lines: try: t = table.parse(input, verify="warn", filename=path) except (ValueError, TypeError, ExpatError) as e: lines.append(str(e)) nexceptions += 1 lines = [str(x.message) for x in warning_lines] + lines if t is not None: self["version"] = version = t.version else: self["version"] = version = "1.0" if "xmllint" not in self: # Now check the VO schema based on the version in # the file. try: success, stdout, stderr = xmlutil.validate_schema(path, version) # OSError is raised when XML file eats all memory and # system sends kill signal. except OSError as e: self["xmllint"] = None self["xmllint_content"] = str(e) else: self["xmllint"] = success == 0 self["xmllint_content"] = stderr warning_types = set() for line in lines: w = exceptions.parse_vowarning(line) if w["is_warning"]: nwarnings += 1 if w["is_exception"]: nexceptions += 1 warning_types.add(w["warning"]) self["nwarnings"] = nwarnings self["nexceptions"] = nexceptions self["warnings"] = lines self["warning_types"] = warning_types def has_warning(self, warning_code): return warning_code in self["warning_types"] def match_expectations(self): if "network_error" not in self: self["network_error"] = None if self["expected"] == "good": return ( not self["network_error"] and self["nwarnings"] == 0 and self["nexceptions"] == 0 ) elif self["expected"] == "incorrect": return not self["network_error"] and ( self["nwarnings"] > 0 or self["nexceptions"] > 0 ) elif self["expected"] == "broken": return self["network_error"] is not None def validate_with_votlint(self, path_to_stilts_jar): filename = self.get_vo_xml_path() p = subprocess.Popen( ["java", "-jar", path_to_stilts_jar, "votlint", "validate=false", filename], stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) stdout, stderr = p.communicate() if len(stdout) or p.returncode: self["votlint"] = False else: self["votlint"] = True self["votlint_content"] = stdout def get_result_subsets(results, root, s=None): all_results = [] correct = [] not_expected = [] fail_schema = [] schema_mismatch = [] fail_votlint = [] votlint_mismatch = [] network_failures = [] version_10 = [] version_11 = [] version_12 = [] version_unknown = [] has_warnings = [] warning_set = {} has_exceptions = [] exception_set = {} for url in results: if s: next(s) if isinstance(url, Result): x = url else: x = Result(url, root=root) all_results.append(x) if x["nwarnings"] == 0 and x["nexceptions"] == 0 and x["xmllint"] is True: correct.append(x) if not x.match_expectations(): not_expected.append(x) if x["xmllint"] is False: fail_schema.append(x) if x["xmllint"] is False and x["nwarnings"] == 0 and x["nexceptions"] == 0: schema_mismatch.append(x) if "votlint" in x and x["votlint"] is False: fail_votlint.append(x) if "network_error" not in x: x["network_error"] = None if ( x["nwarnings"] == 0 and x["nexceptions"] == 0 and x["network_error"] is None ): votlint_mismatch.append(x) if "network_error" in x and x["network_error"] is not None: network_failures.append(x) version = x["version"] if version == "1.0": version_10.append(x) elif version == "1.1": version_11.append(x) elif version == "1.2": version_12.append(x) else: version_unknown.append(x) if x["nwarnings"] > 0: has_warnings.append(x) for warning in x["warning_types"]: if ( warning is not None and len(warning) == 3 and warning.startswith("W") ): warning_set.setdefault(warning, []) warning_set[warning].append(x) if x["nexceptions"] > 0: has_exceptions.append(x) for exc in x["warning_types"]: if exc is not None and len(exc) == 3 and exc.startswith("E"): exception_set.setdefault(exc, []) exception_set[exc].append(x) warning_set = list(warning_set.items()) warning_set.sort() exception_set = list(exception_set.items()) exception_set.sort() tables = [ ("all", "All tests", all_results), ("correct", "Correct", correct), ("unexpected", "Unexpected", not_expected), ("schema", "Invalid against schema", fail_schema), ( "schema_mismatch", "Invalid against schema/Passed vo.table", schema_mismatch, ["ul"], ), ("fail_votlint", "Failed votlint", fail_votlint), ( "votlint_mismatch", "Failed votlint/Passed vo.table", votlint_mismatch, ["ul"], ), ("network_failures", "Network failures", network_failures), ("version1.0", "Version 1.0", version_10), ("version1.1", "Version 1.1", version_11), ("version1.2", "Version 1.2", version_12), ("version_unknown", "Version unknown", version_unknown), ("warnings", "Warnings", has_warnings), ] for warning_code, warning in warning_set: if s: next(s) warning_class = getattr(exceptions, warning_code, None) if warning_class: warning_descr = warning_class.get_short_name() tables.append( ( warning_code, f"{warning_code}: {warning_descr}", warning, ["ul", "li"], ) ) tables.append(("exceptions", "Exceptions", has_exceptions)) for exception_code, exc in exception_set: if s: next(s) exception_class = getattr(exceptions, exception_code, None) if exception_class: exception_descr = exception_class.get_short_name() tables.append( ( exception_code, f"{exception_code}: {exception_descr}", exc, ["ul", "li"], ) ) return tables
167b29d73de63071a40fea0b3c4ef8dfae150d0f8d04e8f49351775611aacb58
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Validates a large collection of web-accessible VOTable files, and generates a report as a directory tree of HTML files. """ # STDLIB import os # LOCAL from astropy.utils.data import get_pkg_data_filename from . import html, result __all__ = ["make_validation_report"] def get_srcdir(): return os.path.dirname(__file__) def get_urls(destdir, s): import gzip types = ["good", "broken", "incorrect"] seen = set() urls = [] for type in types: filename = get_pkg_data_filename(f"data/urls/cone.{type}.dat.gz") with gzip.open(filename, "rb") as fd: for url in fd.readlines(): next(s) url = url.strip() if url not in seen: with result.Result(url, root=destdir) as r: r["expected"] = type urls.append(url) seen.add(url) return urls def download(args): url, destdir = args with result.Result(url, root=destdir) as r: r.download_xml_content() def validate_vo(args): url, destdir = args with result.Result(url, root=destdir) as r: r.validate_vo() def votlint_validate(args): path_to_stilts_jar, url, destdir = args with result.Result(url, root=destdir) as r: if r["network_error"] is None: r.validate_with_votlint(path_to_stilts_jar) def write_html_result(args): url, destdir = args with result.Result(url, root=destdir) as r: html.write_result(r) def write_subindex(args): subset, destdir, total = args html.write_index_table(destdir, *subset, total=total) def make_validation_report( urls=None, destdir="astropy.io.votable.validator.results", multiprocess=True, stilts=None, ): """ Validates a large collection of web-accessible VOTable files. Generates a report as a directory tree of HTML files. Parameters ---------- urls : list of str, optional If provided, is a list of HTTP urls to download VOTable files from. If not provided, a built-in set of ~22,000 urls compiled by HEASARC will be used. destdir : path-like, optional The directory to write the report to. By default, this is a directory called ``'results'`` in the current directory. If the directory does not exist, it will be created. multiprocess : bool, optional If `True` (default), perform validations in parallel using all of the cores on this machine. stilts : path-like, optional To perform validation with ``votlint`` from the the Java-based `STILTS <http://www.star.bris.ac.uk/~mbt/stilts/>`_ VOTable parser, in addition to `astropy.io.votable`, set this to the path of the ``'stilts.jar'`` file. ``java`` on the system shell path will be used to run it. Notes ----- Downloads of each given URL will be performed only once and cached locally in *destdir*. To refresh the cache, remove *destdir* first. """ from astropy.utils.console import ProgressBar, Spinner, color_print if stilts is not None: if not os.path.exists(stilts): raise ValueError(f"{stilts} does not exist.") destdir = os.path.expanduser(destdir) destdir = os.path.abspath(destdir) if urls is None: with Spinner("Loading URLs", "green") as s: urls = get_urls(destdir, s) else: urls = [url.encode() for url in urls if isinstance(url, str)] color_print("Marking URLs", "green") for url in ProgressBar(urls): with result.Result(url, root=destdir) as r: r["expected"] = type args = [(url, destdir) for url in urls] color_print("Downloading VO files", "green") ProgressBar.map(download, args, multiprocess=multiprocess) color_print("Validating VO files", "green") ProgressBar.map(validate_vo, args, multiprocess=multiprocess) if stilts is not None: color_print("Validating with votlint", "green") votlint_args = [(stilts, x, destdir) for x in urls] ProgressBar.map(votlint_validate, votlint_args, multiprocess=multiprocess) color_print("Generating HTML files", "green") ProgressBar.map(write_html_result, args, multiprocess=multiprocess) with Spinner("Grouping results", "green") as s: subsets = result.get_result_subsets(urls, destdir, s) color_print("Generating index", "green") html.write_index(subsets, urls, destdir) color_print("Generating subindices", "green") subindex_args = [(subset, destdir, len(urls)) for subset in subsets] ProgressBar.map(write_subindex, subindex_args, multiprocess=multiprocess)
b76cc9e6005c736c0029e5617032da38ac9c915fae56886b525dc9479484b9fc
# Licensed under a 3-clause BSD style license - see LICENSE.rst from . import main from .main import make_validation_report __doc__ = main.__doc__ del main
346519a3b878733dde72adb8ddc26259517b31c12cc11eac99b6626e62b36b36
# Licensed under a 3-clause BSD style license - see LICENSE.rst # STDLIB import contextlib import os import re from math import ceil from astropy import online_docs_root from astropy.io.votable import exceptions from astropy.utils.xml.writer import XMLWriter, xml_escape html_header = """<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN" "http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd"> """ default_style = """ body { font-family: sans-serif } a { text-decoration: none } .highlight { color: red; font-weight: bold; text-decoration: underline; } .green { background-color: #ddffdd } .red { background-color: #ffdddd } .yellow { background-color: #ffffdd } tr:hover { background-color: #dddddd } table { border-width: 1px; border-spacing: 0px; border-style: solid; border-color: gray; border-collapse: collapse; background-color: white; padding: 5px; } table th { border-width: 1px; padding: 5px; border-style: solid; border-color: gray; } table td { border-width: 1px; padding: 5px; border-style: solid; border-color: gray; } """ @contextlib.contextmanager def make_html_header(w): w.write(html_header) with w.tag("html", xmlns="http://www.w3.org/1999/xhtml", lang="en-US"): with w.tag("head"): w.element("title", "VO Validation results") w.element("style", default_style) with w.tag("body"): yield def write_source_line(w, line, nchar=0): part1 = xml_escape(line[:nchar].decode("utf-8")) char = xml_escape(line[nchar : nchar + 1].decode("utf-8")) part2 = xml_escape(line[nchar + 1 :].decode("utf-8")) w.write(" ") w.write(part1) w.write(f'<span class="highlight">{char}</span>') w.write(part2) w.write("\n\n") def write_warning(w, line, xml_lines): warning = exceptions.parse_vowarning(line) if not warning["is_something"]: w.data(line) else: w.write(f"Line {warning['nline']:d}: ") if warning["warning"]: w.write( '<a href="{}/{}">{}</a>: '.format( online_docs_root, warning["doc_url"], warning["warning"] ) ) msg = warning["message"] if not isinstance(warning["message"], str): msg = msg.decode("utf-8") w.write(xml_escape(msg)) w.write("\n") if 1 <= warning["nline"] < len(xml_lines): write_source_line(w, xml_lines[warning["nline"] - 1], warning["nchar"]) def write_votlint_warning(w, line, xml_lines): match = re.search( r"(WARNING|ERROR|INFO) \(l.(?P<line>[0-9]+), c.(?P<column>[0-9]+)\):" r" (?P<rest>.*)", line, ) if match: w.write( "Line {:d}: {}\n".format( int(match.group("line")), xml_escape(match.group("rest")) ) ) write_source_line( w, xml_lines[int(match.group("line")) - 1], int(match.group("column")) - 1 ) else: w.data(line) w.data("\n") def write_result(result): if "network_error" in result and result["network_error"] is not None: return xml = result.get_xml_content() xml_lines = xml.splitlines() path = os.path.join(result.get_dirpath(), "index.html") with open(path, "w", encoding="utf-8") as fd: w = XMLWriter(fd) with make_html_header(w): with w.tag("p"): with w.tag("a", href="vo.xml"): w.data(result.url.decode("ascii")) w.element("hr") with w.tag("pre"): w._flush() for line in result["warnings"]: write_warning(w, line, xml_lines) if result["xmllint"] is False: w.element("hr") w.element("p", "xmllint results:") content = result["xmllint_content"] if not isinstance(content, str): content = content.decode("ascii") content = content.replace(result.get_dirpath() + "/", "") with w.tag("pre"): w.data(content) if "votlint" in result: if result["votlint"] is False: w.element("hr") w.element("p", "votlint results:") content = result["votlint_content"] if not isinstance(content, str): content = content.decode("ascii") with w.tag("pre"): w._flush() for line in content.splitlines(): write_votlint_warning(w, line, xml_lines) def write_result_row(w, result): with w.tag("tr"): with w.tag("td"): if "network_error" in result and result["network_error"] is not None: w.data(result.url.decode("ascii")) else: w.element( "a", result.url.decode("ascii"), href=f"{result.get_htmlpath()}/index.html", ) if "network_error" in result and result["network_error"] is not None: w.element("td", str(result["network_error"]), attrib={"class": "red"}) w.element("td", "-") w.element("td", "-") w.element("td", "-") w.element("td", "-") else: w.element("td", "-", attrib={"class": "green"}) if result["nexceptions"]: cls = "red" msg = "Fatal" elif result["nwarnings"]: cls = "yellow" msg = str(result["nwarnings"]) else: cls = "green" msg = "-" w.element("td", msg, attrib={"class": cls}) msg = result["version"] if result["xmllint"] is None: cls = "" elif result["xmllint"] is False: cls = "red" else: cls = "green" w.element("td", msg, attrib={"class": cls}) if result["expected"] == "good": cls = "green" msg = "-" elif result["expected"] == "broken": cls = "red" msg = "net" elif result["expected"] == "incorrect": cls = "yellow" msg = "invalid" w.element("td", msg, attrib={"class": cls}) if "votlint" in result: if result["votlint"]: cls = "green" msg = "Passed" else: cls = "red" msg = "Failed" else: cls = "" msg = "?" w.element("td", msg, attrib={"class": cls}) def write_table(basename, name, results, root="results", chunk_size=500): def write_page_links(j): if npages <= 1: return with w.tag("center"): if j > 0: w.element("a", "<< ", href=f"{basename}_{j - 1:02d}.html") for i in range(npages): if i == j: w.data(str(i + 1)) else: w.element("a", str(i + 1), href=f"{basename}_{i:02d}.html") w.data(" ") if j < npages - 1: w.element("a", ">>", href=f"{basename}_{j + 1:02d}.html") npages = int(ceil(float(len(results)) / chunk_size)) for i, j in enumerate(range(0, max(len(results), 1), chunk_size)): subresults = results[j : j + chunk_size] path = os.path.join(root, f"{basename}_{i:02d}.html") with open(path, "w", encoding="utf-8") as fd: w = XMLWriter(fd) with make_html_header(w): write_page_links(i) w.element("h2", name) with w.tag("table"): with w.tag("tr"): w.element("th", "URL") w.element("th", "Network") w.element("th", "Warnings") w.element("th", "Schema") w.element("th", "Expected") w.element("th", "votlint") for result in subresults: write_result_row(w, result) write_page_links(i) def add_subset(w, basename, name, subresults, inside=["p"], total=None): with w.tag("tr"): subresults = list(subresults) if total is None: total = len(subresults) if total == 0: # pragma: no cover percentage = 0.0 else: percentage = float(len(subresults)) / total with w.tag("td"): for element in inside: w.start(element) w.element("a", name, href=f"{basename}_00.html") for element in reversed(inside): w.end(element) numbers = f"{len(subresults):d} ({percentage:.2%})" with w.tag("td"): w.data(numbers) def write_index(subsets, results, root="results"): path = os.path.join(root, "index.html") with open(path, "w", encoding="utf-8") as fd: w = XMLWriter(fd) with make_html_header(w): w.element("h1", "VO Validation results") with w.tag("table"): for subset in subsets: add_subset(w, *subset, total=len(results)) def write_index_table( root, basename, name, subresults, inside=None, total=None, chunk_size=500 ): if total is None: total = len(subresults) percentage = float(len(subresults)) / total numbers = f"{len(subresults):d} ({percentage:.2%})" write_table(basename, name + " " + numbers, subresults, root, chunk_size)
3c064907ccf1ba7b51d2bfd5fabbf1e4c8d13509c5ff0023a9596206d270fdb0
# Licensed under a 3-clause BSD style license - see LICENSE.rst from functools import wraps import pytest from astropy.utils.compat.optional_deps import HAS_PYTEST_MPL def figure_test(*args, **kwargs): """ A decorator that defines a figure test. This automatically decorates tests with mpl_image_compare with common options used by all figure tests in astropy, and also adds the decorator to allow remote data to be accessed. """ # NOTE: the savefig_kwargs option below is to avoid using PNG files with # the matplotlib version embedded since this changes for every developer # version. tolerance = kwargs.pop("tolerance", 0) style = kwargs.pop("style", {}) savefig_kwargs = kwargs.pop("savefig_kwargs", {}) savefig_kwargs["metadata"] = {"Software": None} def decorator(test_function): @pytest.mark.remote_data @pytest.mark.mpl_image_compare( tolerance=tolerance, style=style, savefig_kwargs=savefig_kwargs, **kwargs ) @pytest.mark.skipif( not HAS_PYTEST_MPL, reason="pytest-mpl is required for the figure tests" ) @wraps(test_function) def test_wrapper(*args, **kwargs): return test_function(*args, **kwargs) return test_wrapper # If the decorator was used without any arguments, the only positional # argument will be the test to decorate so we do the following: if len(args) == 1: return decorator(*args) return decorator
9e28bc34148da05fd99f2ba7099370f809642edf73b6344a86664429fccd6154
# Licensed under a 3-clause BSD style license - see LICENSE.rst from .helpers import figure_test
8dfaafdd079b2bed05817d16f9a4a43c45f250c7f96db3b14c5e94039a153db1
import pytest # Renamed these imports so that them being in the namespace will not # cause pytest 3 to discover them as tests and then complain that # they have __init__ defined. from astropy.tests.runner import TestRunner as _TestRunner from astropy.tests.runner import TestRunnerBase as _TestRunnerBase from astropy.tests.runner import keyword def test_disable_kwarg(): class no_remote_data(_TestRunner): @keyword() def remote_data(self, remote_data, kwargs): return NotImplemented r = no_remote_data(".") with pytest.raises(TypeError): r.run_tests(remote_data="bob") def test_wrong_kwarg(): r = _TestRunner(".") with pytest.raises(TypeError): r.run_tests(spam="eggs") def test_invalid_kwarg(): class bad_return(_TestRunnerBase): @keyword() def remote_data(self, remote_data, kwargs): return "bob" r = bad_return(".") with pytest.raises(TypeError): r.run_tests(remote_data="bob") def test_new_kwarg(): class Spam(_TestRunnerBase): @keyword() def spam(self, spam, kwargs): return [spam] r = Spam(".") args = r._generate_args(spam="spam") assert ["spam"] == args def test_priority(): class Spam(_TestRunnerBase): @keyword() def spam(self, spam, kwargs): return [spam] @keyword(priority=1) def eggs(self, eggs, kwargs): return [eggs] r = Spam(".") args = r._generate_args(spam="spam", eggs="eggs") assert ["eggs", "spam"] == args def test_docs(): class Spam(_TestRunnerBase): @keyword() def spam(self, spam, kwargs): """ Spam Spam Spam """ return [spam] @keyword() def eggs(self, eggs, kwargs): """ eggs asldjasljd """ return [eggs] r = Spam(".") assert "eggs" in r.run_tests.__doc__ assert "Spam Spam Spam" in r.run_tests.__doc__
40f8bfb3a178da0774af9bdefd38c550917bdc80ef4ffb13e3e07aa17974c6e1
import pytest from astropy import units as u from astropy.tests.helper import assert_quantity_allclose def test_assert_quantity_allclose(): assert_quantity_allclose([1, 2], [1, 2]) assert_quantity_allclose([1, 2] * u.m, [100, 200] * u.cm) assert_quantity_allclose([1, 2] * u.m, [101, 201] * u.cm, atol=2 * u.cm) with pytest.raises(AssertionError, match=r"\nNot equal to tolerance"): assert_quantity_allclose([1, 2] * u.m, [90, 200] * u.cm) with pytest.raises(AssertionError): assert_quantity_allclose([1, 2] * u.m, [101, 201] * u.cm, atol=0.5 * u.cm) with pytest.raises( u.UnitsError, match=r"Units for 'desired' \(\) and 'actual' \(m\) are not convertible", ): assert_quantity_allclose([1, 2] * u.m, [100, 200]) with pytest.raises( u.UnitsError, match=r"Units for 'desired' \(cm\) and 'actual' \(\) are not convertible", ): assert_quantity_allclose([1, 2], [100, 200] * u.cm) with pytest.raises( u.UnitsError, match=r"Units for 'atol' \(\) and 'actual' \(m\) are not convertible", ): assert_quantity_allclose([1, 2] * u.m, [100, 200] * u.cm, atol=0.3) with pytest.raises( u.UnitsError, match=r"Units for 'atol' \(m\) and 'actual' \(\) are not convertible", ): assert_quantity_allclose([1, 2], [1, 2], atol=0.3 * u.m) with pytest.raises(u.UnitsError, match=r"'rtol' should be dimensionless"): assert_quantity_allclose([1, 2], [1, 2], rtol=0.3 * u.m)
8473d623b3d9de5c0c01067c726b3e11aaf5e879bc247c64ed12d4bc19cb6d58
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest # test helper.run_tests function from astropy import test as run_tests # run_tests should raise ValueError when asked to run on a module it can't find def test_module_not_found(): with pytest.raises(ValueError): run_tests(package="fake.module") # run_tests should raise ValueError when passed an invalid pastebin= option def test_pastebin_keyword(): with pytest.raises(ValueError): run_tests(pastebin="not_an_option") def test_unicode_literal_conversion(): assert isinstance("ångström", str)
32a42fde0d336b9e3ba8de59ed92d109ba9abca35e342058feba917408215559
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pkgutil def test_imports(): """ This just imports all modules in astropy, making sure they don't have any dependencies that sneak through """ def onerror(name): # We should raise any legitimate error that occurred, but not # any warnings which happen to be caught because of our pytest # settings (e.g., DeprecationWarning). try: raise except Warning: pass for imper, nm, ispkg in pkgutil.walk_packages( ["astropy"], "astropy.", onerror=onerror ): imper.find_spec(nm) def test_toplevel_namespace(): import astropy d = dir(astropy) assert "os" not in d assert "log" in d assert "test" in d assert "sys" not in d
1b8c12bdb6eb6e6ac9c5728423f22046b8e97c0e349d33e77b33ed85cd8d48fa
from astropy.timeseries.periodograms.base import * from astropy.timeseries.periodograms.bls import * from astropy.timeseries.periodograms.lombscargle import *
8be5d2516d8e6f16a154a265777b04d92ce06a34b3090ee286d4f1822df42d44
import abc import numpy as np from astropy.timeseries.binned import BinnedTimeSeries from astropy.timeseries.sampled import TimeSeries __all__ = ["BasePeriodogram"] class BasePeriodogram: @abc.abstractmethod def __init__(self, t, y, dy=None): pass @classmethod def from_timeseries( cls, timeseries, signal_column_name=None, uncertainty=None, **kwargs ): """ Initialize a periodogram from a time series object. If a binned time series is passed, the time at the center of the bins is used. Also note that this method automatically gets rid of NaN/undefined values when initializing the periodogram. Parameters ---------- signal_column_name : str The name of the column containing the signal values to use. uncertainty : str or float or `~astropy.units.Quantity`, optional The name of the column containing the errors on the signal, or the value to use for the error, if a scalar. **kwargs Additional keyword arguments are passed to the initializer for this periodogram class. """ if signal_column_name is None: raise ValueError("signal_column_name should be set to a valid column name") y = timeseries[signal_column_name] keep = ~np.isnan(y) if isinstance(uncertainty, str): dy = timeseries[uncertainty] keep &= ~np.isnan(dy) dy = dy[keep] else: dy = uncertainty if isinstance(timeseries, TimeSeries): time = timeseries.time elif isinstance(timeseries, BinnedTimeSeries): time = timeseries.time_bin_center else: raise TypeError( "Input time series should be an instance of " "TimeSeries or BinnedTimeSeries" ) return cls(time[keep], y[keep], dy=dy, **kwargs)
2ae93f74f8f3102a027828f44c8e7c44d119f8bfd0a8ecef34e2ae01daa4b6df
# Licensed under a 3-clause BSD style license - see LICENSE.rst import warnings import numpy as np from astropy.io import fits, registry from astropy.table import MaskedColumn, Table from astropy.time import Time, TimeDelta from astropy.timeseries.sampled import TimeSeries __all__ = ["kepler_fits_reader"] def kepler_fits_reader(filename): """ This serves as the FITS reader for KEPLER or TESS files within astropy-timeseries. This function should generally not be called directly, and instead this time series reader should be accessed with the :meth:`~astropy.timeseries.TimeSeries.read` method:: >>> from astropy.timeseries import TimeSeries >>> ts = TimeSeries.read('kplr33122.fits', format='kepler.fits') # doctest: +SKIP Parameters ---------- filename : `str` or `pathlib.Path` File to load. Returns ------- ts : `~astropy.timeseries.TimeSeries` Data converted into a TimeSeries. """ hdulist = fits.open(filename) # Get the lightcurve HDU telescope = hdulist[0].header["telescop"].lower() if telescope == "tess": hdu = hdulist["LIGHTCURVE"] elif telescope == "kepler": hdu = hdulist[1] else: raise NotImplementedError( f"{hdulist[0].header['telescop']} is not implemented, only KEPLER or TESS" " are supported through this reader" ) if hdu.header["EXTVER"] > 1: raise NotImplementedError( f"Support for {hdu.header['TELESCOP']} v{hdu.header['EXTVER']} files not" " yet implemented" ) # Check time scale if hdu.header["TIMESYS"] != "TDB": raise NotImplementedError( f"Support for {hdu.header['TIMESYS']} time scale not yet implemented in" f" {hdu.header['TELESCOP']} reader" ) tab = Table.read(hdu, format="fits") # Some KEPLER files have a T column instead of TIME. if "T" in tab.colnames: tab.rename_column("T", "TIME") for colname in tab.colnames: unit = tab[colname].unit # Make masks nan for any column which will turn into a Quantity # later. TODO: remove once we support Masked Quantities properly? if unit and isinstance(tab[colname], MaskedColumn): tab[colname] = tab[colname].filled(np.nan) # Fix units if unit == "e-/s": tab[colname].unit = "electron/s" if unit == "pixels": tab[colname].unit = "pixel" # Rename columns to lowercase tab.rename_column(colname, colname.lower()) # Filter out NaN rows nans = np.isnan(tab["time"].data) if np.any(nans): warnings.warn(f"Ignoring {np.sum(nans)} rows with NaN times") tab = tab[~nans] # Time column is dependent on source and we correct it here reference_date = Time( hdu.header["BJDREFI"], hdu.header["BJDREFF"], scale=hdu.header["TIMESYS"].lower(), format="jd", ) time = reference_date + TimeDelta(tab["time"].data) time.format = "isot" # Remove original time column tab.remove_column("time") hdulist.close() return TimeSeries(time=time, data=tab) registry.register_reader("kepler.fits", TimeSeries, kepler_fits_reader) registry.register_reader("tess.fits", TimeSeries, kepler_fits_reader)
76fa9c76f5b0bb600c45053c1c0d1aa401fa51d8788b57ed6b601cf7ff44981d
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest from numpy.testing import assert_equal from astropy import units as u from astropy.table import QTable, Table, join, vstack from astropy.time import Time from astropy.timeseries.binned import BinnedTimeSeries from astropy.timeseries.sampled import TimeSeries INPUT_TIME = Time(["2016-03-22T12:30:31", "2015-01-21T12:30:32", "2016-03-22T12:30:40"]) PLAIN_TABLE = Table( [[1.0, 2.0, 11.0], [3, 4, 1], ["x", "y", "z"]], names=["a", "b", "c"] ) class CommonTimeSeriesTests: def test_stacking(self): ts = vstack([self.series, self.series]) assert isinstance(ts, self.series.__class__) def test_row_slicing(self): ts = self.series[:2] assert isinstance(ts, self.series.__class__) def test_row_indexing(self): self.series[0][self.time_attr] == Time("2015-01-21T12:30:32") self.series[self.time_attr][0] == Time("2015-01-21T12:30:32") def test_column_indexing(self): assert_equal(self.series["a"], [1, 2, 11]) def test_column_slicing_notime(self): tab = self.series["a", "b"] assert not isinstance(tab, self.series.__class__) assert isinstance(tab, QTable) def test_add_column(self): self.series["d"] = [1, 2, 3] def test_add_row(self): self.series.add_row(self._row) def test_set_unit(self): self.series["d"] = [1, 2, 3] self.series["d"].unit = "s" def test_replace_column(self): self.series.replace_column("c", [1, 3, 4]) def test_required_after_stacking(self): # When stacking, we have to temporarily relax the checking of the # columns in the time series, but we need to make sure that the # checking works again afterwards ts = vstack([self.series, self.series]) with pytest.raises(ValueError, match=r"TimeSeries object is invalid"): ts.remove_columns(ts.colnames) def test_join(self): ts_other = self.series.copy() ts_other.add_row(self._row) ts_other["d"] = [11, 22, 33, 44] ts_other.remove_columns(["a", "b"]) ts = join(self.series, ts_other) assert len(ts) == len(self.series) ts = join(self.series, ts_other, join_type="outer") assert len(ts) == len(ts_other) class TestTimeSeries(CommonTimeSeriesTests): _row = {"time": "2016-03-23T12:30:40", "a": 1.0, "b": 2, "c": "a"} def setup_method(self, method): self.series = TimeSeries(time=INPUT_TIME, data=PLAIN_TABLE) self.time_attr = "time" def test_column_slicing(self): ts = self.series["time", "a"] assert isinstance(ts, TimeSeries) class TestBinnedTimeSeries(CommonTimeSeriesTests): _row = { "time_bin_start": "2016-03-23T12:30:40", "time_bin_size": 2 * u.s, "a": 1.0, "b": 2, "c": "a", } def setup_method(self, method): self.series = BinnedTimeSeries( time_bin_start=INPUT_TIME, time_bin_size=3 * u.s, data=PLAIN_TABLE ) self.time_attr = "time_bin_start" def test_column_slicing(self): ts = self.series["time_bin_start", "time_bin_size", "a"] assert isinstance(ts, BinnedTimeSeries)
dbb0b6dd7140e0fd948e313053ce3807f4f934d40c44dc58b07d8326547210a9
# Licensed under a 3-clause BSD style license - see LICENSE.rst import sys import numpy as np import pytest from numpy.testing import assert_equal from astropy import units as u from astropy.time import Time from astropy.timeseries.downsample import aggregate_downsample, reduceat from astropy.timeseries.sampled import TimeSeries from astropy.utils.exceptions import AstropyUserWarning INPUT_TIME = Time( [ "2016-03-22T12:30:31", "2016-03-22T12:30:32", "2016-03-22T12:30:33", "2016-03-22T12:30:34", "2016-03-22T12:30:35", ] ) def test_reduceat(): add_output = np.add.reduceat(np.arange(8), [0, 4, 1, 5, 2, 6, 3, 7]) # Similar to np.add for an array input. sum_output = reduceat(np.arange(8), [0, 4, 1, 5, 2, 6, 3, 7], np.sum) assert_equal(sum_output, add_output) mean_output = reduceat(np.arange(8), np.arange(8)[::2], np.mean) assert_equal(mean_output, np.array([0.5, 2.5, 4.5, 6.5])) nanmean_output = reduceat(np.arange(8), [0, 4, 1, 5, 2, 6, 3, 7], np.mean) assert_equal(nanmean_output, np.array([1.5, 4, 2.5, 5, 3.5, 6, 4.5, 7.0])) assert_equal( reduceat(np.arange(8), np.arange(8)[::2], np.mean), reduceat(np.arange(8), np.arange(8)[::2], np.nanmean), ) def test_timeseries_invalid(): with pytest.raises(TypeError, match="time_series should be a TimeSeries"): aggregate_downsample(None) def test_time_bin_invalid(): # Make sure to raise the right exception when time_bin_* is passed incorrectly. with pytest.raises( TypeError, match=r"'time_bin_size' should be a Quantity or a TimeDelta" ): aggregate_downsample(TimeSeries(), time_bin_size=1) def test_binning_arg_invalid(): ts = TimeSeries(time=INPUT_TIME, data=[[1, 2, 3, 4, 5]], names=["a"]) with pytest.raises( TypeError, match=r"With single 'time_bin_start' either 'n_bins', " "'time_bin_size' or time_bin_end' must be provided", ): aggregate_downsample(ts) def test_time_bin_conversion(): ts = TimeSeries(time=INPUT_TIME, data=[[1, 2, 3, 4, 5]], names=["a"]) # Make sure time_bin_start and time_bin_end are properly converted to Time down_start = aggregate_downsample( ts, time_bin_start=["2016-03-22T12:30:31"], time_bin_size=[1] * u.s ) assert_equal(down_start.time_bin_start.isot, ["2016-03-22T12:30:31.000"]) down_end = aggregate_downsample( ts, time_bin_start=["2016-03-22T12:30:31", "2016-03-22T12:30:33"], time_bin_end="2016-03-22T12:30:34", ) assert_equal( down_end.time_bin_end.isot, ["2016-03-22T12:30:33.000", "2016-03-22T12:30:34.000"], ) def test_time_bin_end_auto(): ts = TimeSeries(time=INPUT_TIME, data=[[1, 2, 3, 4, 5]], names=["a"]) # Interpret `time_bin_end` as the end of timeseries when `time_bin_start` is # an array and `time_bin_size` is not provided down_auto_end = aggregate_downsample( ts, time_bin_start=["2016-03-22T12:30:31", "2016-03-22T12:30:33"] ) assert_equal( down_auto_end.time_bin_end.isot, ["2016-03-22T12:30:33.000", "2016-03-22T12:30:35.000"], ) def test_time_bin_start_array(): ts = TimeSeries(time=INPUT_TIME, data=[[1, 2, 3, 4, 5]], names=["a"]) # When `time_bin_end` is an array and `time_bin_start` is not provided, `time_bin_start` is converted # to an array with its first element set to the start of the timeseries and rest populated using # `time_bin_end`. This case is separately tested since `BinnedTimeSeries` allows `time_bin_end` to # be an array only if `time_bin_start` is an array. down_start_array = aggregate_downsample( ts, time_bin_end=["2016-03-22T12:30:33", "2016-03-22T12:30:35"] ) assert_equal( down_start_array.time_bin_start.isot, ["2016-03-22T12:30:31.000", "2016-03-22T12:30:33.000"], ) def test_nbins(): ts = TimeSeries(time=INPUT_TIME, data=[[1, 2, 3, 4, 5]], names=["a"]) # n_bins should default to the number needed to fit all the original points down_nbins = aggregate_downsample(ts, n_bins=2) assert_equal( down_nbins.time_bin_start.isot, ["2016-03-22T12:30:31.000", "2016-03-22T12:30:33.000"], ) # Regression test for #12527: ignore `n_bins` if `time_bin_start` is an array n_times = len(INPUT_TIME) for n_bins in [0, n_times - 1, n_times, n_times + 1]: down_nbins = aggregate_downsample(ts, time_bin_start=INPUT_TIME, n_bins=n_bins) assert len(down_nbins) == n_times def test_downsample(): ts = TimeSeries(time=INPUT_TIME, data=[[1, 2, 3, 4, 5]], names=["a"]) ts_units = TimeSeries( time=INPUT_TIME, data=[[1, 2, 3, 4, 5] * u.count], names=["a"] ) # Avoid precision problems with floating-point comparisons on 32bit if sys.maxsize > 2**32: # 64 bit time_bin_incr = 1 * u.s time_bin_start = None else: # 32 bit time_bin_incr = (1 - 1e-6) * u.s time_bin_start = ts.time[0] - 1 * u.ns down_1 = aggregate_downsample( ts, time_bin_size=time_bin_incr, time_bin_start=time_bin_start ) u.isclose(down_1.time_bin_size, [1, 1, 1, 1, 1] * time_bin_incr) assert_equal( down_1.time_bin_start.isot, Time( [ "2016-03-22T12:30:31.000", "2016-03-22T12:30:32.000", "2016-03-22T12:30:33.000", "2016-03-22T12:30:34.000", "2016-03-22T12:30:35.000", ] ), ) assert_equal(down_1["a"].data.data, np.array([1, 2, 3, 4, 5])) down_2 = aggregate_downsample( ts, time_bin_size=2 * time_bin_incr, time_bin_start=time_bin_start ) u.isclose(down_2.time_bin_size, [2, 2, 2] * time_bin_incr) assert_equal( down_2.time_bin_start.isot, Time( [ "2016-03-22T12:30:31.000", "2016-03-22T12:30:33.000", "2016-03-22T12:30:35.000", ] ), ) assert_equal(down_2["a"].data.data, np.array([1, 3, 5])) down_3 = aggregate_downsample( ts, time_bin_size=3 * time_bin_incr, time_bin_start=time_bin_start ) u.isclose(down_3.time_bin_size, [3, 3] * time_bin_incr) assert_equal( down_3.time_bin_start.isot, Time(["2016-03-22T12:30:31.000", "2016-03-22T12:30:34.000"]), ) assert_equal(down_3["a"].data.data, np.array([2, 4])) down_4 = aggregate_downsample( ts, time_bin_size=4 * time_bin_incr, time_bin_start=time_bin_start ) u.isclose(down_4.time_bin_size, [4, 4] * time_bin_incr) assert_equal( down_4.time_bin_start.isot, Time(["2016-03-22T12:30:31.000", "2016-03-22T12:30:35.000"]), ) assert_equal(down_4["a"].data.data, np.array([2, 5])) down_units = aggregate_downsample( ts_units, time_bin_size=4 * time_bin_incr, time_bin_start=time_bin_start ) u.isclose(down_units.time_bin_size, [4, 4] * time_bin_incr) assert_equal( down_units.time_bin_start.isot, Time(["2016-03-22T12:30:31.000", "2016-03-22T12:30:35.000"]), ) assert down_units["a"].unit.name == "ct" assert_equal(down_units["a"].data, np.array([2.5, 5.0])) # Contiguous bins with uneven bin sizes: `time_bin_size` is an array down_uneven_bins = aggregate_downsample( ts, time_bin_size=[2, 1, 1] * time_bin_incr, time_bin_start=time_bin_start ) u.isclose(down_uneven_bins.time_bin_size, [2, 1, 1] * time_bin_incr) assert_equal( down_uneven_bins.time_bin_start.isot, Time( [ "2016-03-22T12:30:31.000", "2016-03-22T12:30:33.000", "2016-03-22T12:30:34.000", ] ), ) assert_equal(down_uneven_bins["a"].data.data, np.array([1, 3, 4])) # Uncontiguous bins with even bin sizes: `time_bin_start` and `time_bin_end` are both arrays down_time_array = aggregate_downsample( ts, time_bin_start=Time(["2016-03-22T12:30:31.000", "2016-03-22T12:30:34.000"]), time_bin_end=Time(["2016-03-22T12:30:32.000", "2016-03-22T12:30:35.000"]), ) u.isclose(down_time_array.time_bin_size, [1, 1] * u.second) assert_equal( down_time_array.time_bin_start.isot, Time(["2016-03-22T12:30:31.000", "2016-03-22T12:30:34.000"]), ) assert_equal(down_time_array["a"].data.data, np.array([1, 4])) # Overlapping bins with pytest.warns( AstropyUserWarning, match=( "Overlapping bins should be avoided since they " "can lead to double-counting of data during binning." ), ): down_overlap_bins = aggregate_downsample( ts, time_bin_start=Time(["2016-03-22T12:30:31.000", "2016-03-22T12:30:33.000"]), time_bin_end=Time(["2016-03-22T12:30:34", "2016-03-22T12:30:36.000"]), ) assert_equal(down_overlap_bins["a"].data, np.array([2, 5])) @pytest.mark.parametrize( "time, time_bin_start, time_bin_end", [ (INPUT_TIME[:2], INPUT_TIME[2:], None), (INPUT_TIME[3:], INPUT_TIME[:2], INPUT_TIME[1:3]), (INPUT_TIME[[0]], INPUT_TIME[:2], None), (INPUT_TIME[[0]], INPUT_TIME[::2], None), ], ) def test_downsample_edge_cases(time, time_bin_start, time_bin_end): """Regression test for #12527: allow downsampling even if all bins fall before or beyond the time span of the data.""" ts = TimeSeries(time=time, data=[np.ones(len(time))], names=["a"]) down = aggregate_downsample( ts, time_bin_start=time_bin_start, time_bin_end=time_bin_end ) assert len(down) == len(time_bin_start) assert all(down["time_bin_size"] >= 0) # bin lengths shall never be negative if ts.time.min() < time_bin_start[0] or time_bin_end is not None: assert down[ "a" ].mask.all() # all bins placed *beyond* the time span of the data elif ts.time.min() < time_bin_start[1]: assert ( down["a"][0] == ts["a"][0] ) # single-valued time series falls in *first* bin @pytest.mark.parametrize( "diff_from_base", [1 * u.year, 10 * u.year, 50 * u.year, 100 * u.year] ) def test_time_precision_limit(diff_from_base): """ A test on time precision limit supported by downsample(). It is related to an implementation details: that time comparison (and sorting indirectly) is done with relative time for computational efficiency. The relative time converted has a slight loss of precision, which worsens as the gap between a time and the base time increases, e.g., when downsampling a timeseries that combines current observation with archival data years back. This test is to document the acceptable precision limit. see also: https://github.com/astropy/astropy/pull/13069#issuecomment-1093069184 """ precision_limit = 500 * u.ns from astropy.timeseries.downsample import _to_relative_longdouble t_base = Time("1980-01-01T12:30:31.000", format="isot", scale="tdb") t2 = t_base + diff_from_base t3 = t2 + precision_limit r_t2 = _to_relative_longdouble(t2, t_base) r_t3 = _to_relative_longdouble(t3, t_base) # ensure in the converted relative time, # t2 and t3 can still be correctly compared assert r_t3 > r_t2
56699bafa0abd5c7f208174199ac7a347d2982c14e22b842b4416e5ad4a82d54
# Licensed under a 3-clause BSD style license - see LICENSE.rst from datetime import datetime import pytest from numpy.testing import assert_allclose, assert_equal from astropy import units as u from astropy.table import Column, Table from astropy.tests.helper import assert_quantity_allclose from astropy.time import Time, TimeDelta from astropy.timeseries.periodograms import BoxLeastSquares, LombScargle from astropy.timeseries.sampled import TimeSeries from astropy.units import Quantity from astropy.utils.data import get_pkg_data_filename INPUT_TIME = Time(["2016-03-22T12:30:31", "2015-01-21T12:30:32", "2016-03-22T12:30:40"]) PLAIN_TABLE = Table([[1, 2, 11], [3, 4, 1], [1, 1, 1]], names=["a", "b", "c"]) CSV_FILE = get_pkg_data_filename("data/sampled.csv") def test_empty_initialization(): ts = TimeSeries() ts["time"] = Time([50001, 50002, 50003], format="mjd") def test_empty_initialization_invalid(): # Make sure things crash when the first column added is not a time column ts = TimeSeries() with pytest.raises( ValueError, match=( r"TimeSeries object is invalid - expected 'time' as the first column but" r" found 'flux'" ), ): ts["flux"] = [1, 2, 3] def test_initialize_only_time(): ts = TimeSeries(time=INPUT_TIME) assert ts["time"] is ts.time # NOTE: the object in the table is a copy assert_equal(ts.time.isot, INPUT_TIME.isot) def test_initialization_with_data(): ts = TimeSeries(time=INPUT_TIME, data=[[10, 2, 3], [4, 5, 6]], names=["a", "b"]) assert_equal(ts.time.isot, INPUT_TIME.isot) assert_equal(ts["a"], [10, 2, 3]) assert_equal(ts["b"], [4, 5, 6]) def test_initialize_only_data(): with pytest.raises( TypeError, match=r"Either 'time' or 'time_start' should be specified" ): TimeSeries(data=[[10, 2, 3], [4, 5, 6]], names=["a", "b"]) def test_initialization_with_table(): ts = TimeSeries(time=INPUT_TIME, data=PLAIN_TABLE) assert ts.colnames == ["time", "a", "b", "c"] def test_initialization_with_time_delta(): ts = TimeSeries( time_start=datetime(2018, 7, 1, 10, 10, 10), time_delta=TimeDelta(3, format="sec"), data=[[10, 2, 3], [4, 5, 6]], names=["a", "b"], ) assert_equal( ts.time.isot, [ "2018-07-01T10:10:10.000", "2018-07-01T10:10:13.000", "2018-07-01T10:10:16.000", ], ) def test_initialization_missing_time_delta(): with pytest.raises( TypeError, match=r"'time' is scalar, so 'time_delta' is required" ): TimeSeries( time_start=datetime(2018, 7, 1, 10, 10, 10), data=[[10, 2, 3], [4, 5, 6]], names=["a", "b"], ) def test_initialization_invalid_time_and_time_start(): with pytest.raises(TypeError, match=r"Cannot specify both 'time' and 'time_start'"): TimeSeries( time=INPUT_TIME, time_start=datetime(2018, 7, 1, 10, 10, 10), data=[[10, 2, 3], [4, 5, 6]], names=["a", "b"], ) def test_initialization_invalid_time_delta(): with pytest.raises( TypeError, match=r"'time_delta' should be a Quantity or a TimeDelta" ): TimeSeries( time_start=datetime(2018, 7, 1, 10, 10, 10), time_delta=[1, 4, 3], data=[[10, 2, 3], [4, 5, 6]], names=["a", "b"], ) def test_initialization_with_time_in_data(): data = PLAIN_TABLE.copy() data["time"] = INPUT_TIME ts1 = TimeSeries(data=data) assert set(ts1.colnames) == {"time", "a", "b", "c"} assert all(ts1.time == INPUT_TIME) ts2 = TimeSeries(data=[[10, 2, 3], INPUT_TIME], names=["a", "time"]) assert set(ts2.colnames) == {"time", "a"} assert all(ts2.time == INPUT_TIME) MESSAGE = r"'time' has been given both in the table and as a keyword argument" with pytest.raises(TypeError, match=MESSAGE): # Don't allow ambiguous cases of passing multiple 'time' columns TimeSeries(data=data, time=INPUT_TIME) with pytest.raises(TypeError, match=MESSAGE): # 'time' is a protected name, don't allow ambiguous cases TimeSeries(time=INPUT_TIME, data=[[10, 2, 3], INPUT_TIME], names=["a", "time"]) def test_initialization_n_samples(): # Make sure things crash with incorrect n_samples with pytest.raises( TypeError, match=( r"'n_samples' has been given both and it is not the same length as the" r" input data." ), ): TimeSeries(time=INPUT_TIME, data=PLAIN_TABLE, n_samples=1000) def test_initialization_length_mismatch(): with pytest.raises( ValueError, match=r"Length of 'time' \(3\) should match data length \(2\)" ): TimeSeries(time=INPUT_TIME, data=[[10, 2], [4, 5]], names=["a", "b"]) def test_initialization_invalid_both_time_and_time_delta(): with pytest.raises( TypeError, match=r"'time_delta' should not be specified since 'time' is an array", ): TimeSeries(time=INPUT_TIME, time_delta=TimeDelta(3, format="sec")) def test_fold(): times = Time([1, 2, 3, 8, 9, 12], format="unix") ts = TimeSeries(time=times) ts["flux"] = [1, 4, 4, 3, 2, 3] # Try without epoch time, as it should default to the first time and # wrapping at half the period. tsf = ts.fold(period=3.2 * u.s) assert isinstance(tsf.time, TimeDelta) assert_allclose(tsf.time.sec, [0, 1, -1.2, 0.6, -1.6, 1.4], rtol=1e-6) # Try with epoch time tsf = ts.fold(period=3.2 * u.s, epoch_time=Time(1.6, format="unix")) assert isinstance(tsf.time, TimeDelta) assert_allclose(tsf.time.sec, [-0.6, 0.4, 1.4, 0.0, 1.0, 0.8], rtol=1e-6, atol=1e-6) # Now with wrap_phase set to the full period tsf = ts.fold(period=3.2 * u.s, wrap_phase=3.2 * u.s) assert isinstance(tsf.time, TimeDelta) assert_allclose(tsf.time.sec, [0, 1, 2, 0.6, 1.6, 1.4], rtol=1e-6) # Now set epoch_phase to be 1/4 of the way through the phase tsf = ts.fold(period=3.2 * u.s, epoch_phase=0.8 * u.s) assert isinstance(tsf.time, TimeDelta) assert_allclose(tsf.time.sec, [0.8, -1.4, -0.4, 1.4, -0.8, -1.0], rtol=1e-6) # And combining epoch_phase and wrap_phase tsf = ts.fold(period=3.2 * u.s, epoch_phase=0.8 * u.s, wrap_phase=3.2 * u.s) assert isinstance(tsf.time, TimeDelta) assert_allclose(tsf.time.sec, [0.8, 1.8, 2.8, 1.4, 2.4, 2.2], rtol=1e-6) # Now repeat the above tests but with normalization applied # Try without epoch time, as it should default to the first time and # wrapping at half the period. tsf = ts.fold(period=3.2 * u.s, normalize_phase=True) assert isinstance(tsf.time, Quantity) assert_allclose( tsf.time.to_value(u.one), [0, 1 / 3.2, -1.2 / 3.2, 0.6 / 3.2, -1.6 / 3.2, 1.4 / 3.2], rtol=1e-6, ) # Try with epoch time tsf = ts.fold( period=3.2 * u.s, epoch_time=Time(1.6, format="unix"), normalize_phase=True ) assert isinstance(tsf.time, Quantity) assert_allclose( tsf.time.to_value(u.one), [-0.6 / 3.2, 0.4 / 3.2, 1.4 / 3.2, 0.0 / 3.2, 1.0 / 3.2, 0.8 / 3.2], rtol=1e-6, atol=1e-6, ) # Now with wrap_phase set to the full period tsf = ts.fold(period=3.2 * u.s, wrap_phase=1, normalize_phase=True) assert isinstance(tsf.time, Quantity) assert_allclose( tsf.time.to_value(u.one), [0, 1 / 3.2, 2 / 3.2, 0.6 / 3.2, 1.6 / 3.2, 1.4 / 3.2], rtol=1e-6, ) # Now set epoch_phase to be 1/4 of the way through the phase tsf = ts.fold(period=3.2 * u.s, epoch_phase=0.25, normalize_phase=True) assert isinstance(tsf.time, Quantity) assert_allclose( tsf.time.to_value(u.one), [0.8 / 3.2, -1.4 / 3.2, -0.4 / 3.2, 1.4 / 3.2, -0.8 / 3.2, -1.0 / 3.2], rtol=1e-6, ) # And combining epoch_phase and wrap_phase tsf = ts.fold( period=3.2 * u.s, epoch_phase=0.25, wrap_phase=1, normalize_phase=True ) assert isinstance(tsf.time, Quantity) assert_allclose( tsf.time.to_value(u.one), [0.8 / 3.2, 1.8 / 3.2, 2.8 / 3.2, 1.4 / 3.2, 2.4 / 3.2, 2.2 / 3.2], rtol=1e-6, ) def test_fold_invalid_options(): times = Time([1, 2, 3, 8, 9, 12], format="unix") ts = TimeSeries(time=times) ts["flux"] = [1, 4, 4, 3, 2, 3] with pytest.raises( u.UnitsError, match="period should be a Quantity in units of time" ): ts.fold(period=3.2) with pytest.raises( u.UnitsError, match="period should be a Quantity in units of time" ): ts.fold(period=3.2 * u.m) with pytest.raises( u.UnitsError, match=( "epoch_phase should be a Quantity in units of " "time when normalize_phase=False" ), ): ts.fold(period=3.2 * u.s, epoch_phase=0.2) with pytest.raises( u.UnitsError, match=( "epoch_phase should be a dimensionless Quantity " "or a float when normalize_phase=True" ), ): ts.fold(period=3.2 * u.s, epoch_phase=0.2 * u.s, normalize_phase=True) with pytest.raises( u.UnitsError, match=( "wrap_phase should be a Quantity in units of " "time when normalize_phase=False" ), ): ts.fold(period=3.2 * u.s, wrap_phase=0.2) with pytest.raises( u.UnitsError, match="wrap_phase should be dimensionless when normalize_phase=True", ): ts.fold(period=3.2 * u.s, wrap_phase=0.2 * u.s, normalize_phase=True) with pytest.raises( ValueError, match="wrap_phase should be between 0 and the period" ): ts.fold(period=3.2 * u.s, wrap_phase=-0.1 * u.s) with pytest.raises( ValueError, match="wrap_phase should be between 0 and the period" ): ts.fold(period=3.2 * u.s, wrap_phase=-4.2 * u.s) with pytest.raises(ValueError, match="wrap_phase should be between 0 and 1"): ts.fold(period=3.2 * u.s, wrap_phase=-0.1, normalize_phase=True) with pytest.raises(ValueError, match="wrap_phase should be between 0 and 1"): ts.fold(period=3.2 * u.s, wrap_phase=2.2, normalize_phase=True) def test_pandas(): pandas = pytest.importorskip("pandas") df1 = pandas.DataFrame() df1["a"] = [1, 2, 3] df1.set_index(pandas.DatetimeIndex(INPUT_TIME.datetime64), inplace=True) ts = TimeSeries.from_pandas(df1) assert_equal(ts.time.isot, INPUT_TIME.isot) assert ts.colnames == ["time", "a"] assert len(ts.indices) == 1 assert (ts.indices["time"].columns[0] == INPUT_TIME).all() ts_tcb = TimeSeries.from_pandas(df1, time_scale="tcb") assert ts_tcb.time.scale == "tcb" df2 = ts.to_pandas() assert (df2.index.values == pandas.Index(INPUT_TIME.datetime64).values).all() assert df2.columns == pandas.Index(["a"]) assert (df1["a"] == df2["a"]).all() with pytest.raises(TypeError, match=r"Input should be a pandas DataFrame"): TimeSeries.from_pandas(None) df4 = pandas.DataFrame() df4["a"] = [1, 2, 3] with pytest.raises(TypeError, match=r"DataFrame does not have a DatetimeIndex"): TimeSeries.from_pandas(df4) def test_read_time_missing(): with pytest.raises( ValueError, match=( r"``time_column`` should be provided since the default Table readers are" r" being used\." ), ): TimeSeries.read(CSV_FILE, format="csv") def test_read_time_wrong(): with pytest.raises( ValueError, match=r"Time column 'abc' not found in the input data\." ): TimeSeries.read(CSV_FILE, time_column="abc", format="csv") def test_read(): timeseries = TimeSeries.read(CSV_FILE, time_column="Date", format="csv") assert timeseries.colnames == ["time", "A", "B", "C", "D", "E", "F", "G"] assert len(timeseries) == 11 assert timeseries["time"].format == "iso" assert timeseries["A"].sum() == 266.5 @pytest.mark.remote_data(source="astropy") def test_kepler_astropy(): from astropy.units import UnitsWarning filename = get_pkg_data_filename("timeseries/kplr010666592-2009131110544_slc.fits") with pytest.warns(UnitsWarning): timeseries = TimeSeries.read(filename, format="kepler.fits") assert timeseries["time"].format == "isot" assert timeseries["time"].scale == "tdb" assert timeseries["sap_flux"].unit.to_string() == "electron / s" assert len(timeseries) == 14280 assert len(timeseries.columns) == 20 @pytest.mark.remote_data(source="astropy") def test_tess_astropy(): filename = get_pkg_data_filename( "timeseries/hlsp_tess-data-alerts_tess_phot_00025155310-s01_tess_v1_lc.fits" ) with pytest.warns(UserWarning, match="Ignoring 815 rows with NaN times"): timeseries = TimeSeries.read(filename, format="tess.fits") assert timeseries["time"].format == "isot" assert timeseries["time"].scale == "tdb" assert timeseries["sap_flux"].unit.to_string() == "electron / s" assert len(timeseries) == 19261 assert len(timeseries.columns) == 20 def test_required_columns(): # Test the machinery that makes sure that the required columns are present ts = TimeSeries(time=INPUT_TIME, data=[[10, 2, 3], [4, 5, 6]], names=["a", "b"]) # In the examples below, the operation (e.g. remove_column) is actually # carried out before the checks are made, so we need to use copy() so that # we don't change the main version of the time series. # Make sure copy works fine ts.copy() MESSAGE = ( r"TimeSeries object is invalid - expected 'time' as the first column but found" r" '{}'" ) with pytest.raises(ValueError, match=MESSAGE.format("c")): ts.copy().add_column(Column([3, 4, 5], name="c"), index=0) with pytest.raises(ValueError, match=MESSAGE.format("d")): ts.copy().add_columns( [Column([3, 4, 5], name="d"), Column([3, 4, 5], name="e")], indexes=[0, 1] ) with pytest.raises(ValueError, match=MESSAGE.format("a")): ts.copy().keep_columns(["a", "b"]) with pytest.raises(ValueError, match=MESSAGE.format("a")): ts.copy().remove_column("time") with pytest.raises(ValueError, match=MESSAGE.format("b")): ts.copy().remove_columns(["time", "a"]) with pytest.raises(ValueError, match=MESSAGE.format("banana")): ts.copy().rename_column("time", "banana") # https://github.com/astropy/astropy/issues/13009 MESSAGE = ( r"TimeSeries object is invalid - expected \['time', 'a'\] as the first columns" r" but found \['time', 'b'\]" ) ts_2cols_required = ts.copy() ts_2cols_required._required_columns = ["time", "a"] with pytest.raises(ValueError, match=MESSAGE): ts_2cols_required.remove_column("a") @pytest.mark.parametrize("cls", [BoxLeastSquares, LombScargle]) def test_periodogram(cls): # Note that we don't need to check the actual results from the periodogram # classes here since these are tested extensively in # astropy.timeseries.periodograms. ts = TimeSeries(time=INPUT_TIME, data=[[10, 2, 3], [4, 5, 6]], names=["a", "b"]) p1 = cls.from_timeseries(ts, "a") assert isinstance(p1, cls) assert_allclose(p1.t.jd, ts.time.jd) assert_equal(p1.y, ts["a"]) assert p1.dy is None p2 = cls.from_timeseries(ts, "a", uncertainty="b") assert_quantity_allclose(p2.dy, ts["b"]) p3 = cls.from_timeseries(ts, "a", uncertainty=0.1) assert_allclose(p3.dy, 0.1)
b3e223ce52673a7577321981e2ca10ddee78320ee332a2c1262bee52dd536d7f
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest from numpy.testing import assert_allclose, assert_equal from astropy import units as u from astropy.tests.helper import assert_quantity_allclose from astropy.time import Time, TimeDelta from astropy.timeseries.binned import BinnedTimeSeries from astropy.timeseries.periodograms import BoxLeastSquares, LombScargle from astropy.utils.data import get_pkg_data_filename CSV_FILE = get_pkg_data_filename("data/binned.csv") def test_empty_initialization(): ts = BinnedTimeSeries() ts["time_bin_start"] = Time([1, 2, 3], format="mjd") def test_empty_initialization_invalid(): # Make sure things crash when the first column added is not a time column ts = BinnedTimeSeries() with pytest.raises( ValueError, match=( r"BinnedTimeSeries object is invalid - expected 'time_bin_start' as the" r" first column but found 'flux'" ), ): ts["flux"] = [1, 2, 3] def test_initialization_time_bin_invalid(): # Make sure things crash when time_bin_* is passed incorrectly. with pytest.raises(TypeError, match=r"'time_bin_start' has not been specified"): BinnedTimeSeries(data=[[1, 4, 3]]) with pytest.raises( TypeError, match=r"Either 'time_bin_size' or 'time_bin_end' should be specified" ): BinnedTimeSeries(time_bin_start="2016-03-22T12:30:31", data=[[1, 4, 3]]) def test_initialization_time_bin_both(): # Make sure things crash when time_bin_* is passed twice. MESSAGE = r"'{}' has been given both in the table and as a keyword argument" with pytest.raises(TypeError, match=MESSAGE.format("time_bin_start")): BinnedTimeSeries( data={"time_bin_start": ["2016-03-22T12:30:31"]}, time_bin_start="2016-03-22T12:30:31", ) with pytest.raises(TypeError, match=MESSAGE.format("time_bin_size")): BinnedTimeSeries( data={"time_bin_size": ["2016-03-22T12:30:31"]}, time_bin_size=[1] * u.s ) def test_initialization_time_bin_size(): # Make sure things crash when time_bin_size has no units with pytest.raises( TypeError, match=r"'time_bin_size' should be a Quantity or a TimeDelta" ): BinnedTimeSeries( data={"time": ["2016-03-22T12:30:31"]}, time_bin_start="2016-03-22T12:30:31", time_bin_size=1, ) # TimeDelta for time_bin_size ts = BinnedTimeSeries( data={"time": ["2016-03-22T12:30:31"]}, time_bin_start="2016-03-22T12:30:31", time_bin_size=TimeDelta(1, format="jd"), ) assert isinstance(ts.time_bin_size, u.quantity.Quantity) def test_initialization_time_bin_start_scalar(): # Make sure things crash when time_bin_start is a scalar with no time_bin_size with pytest.raises( TypeError, match=r"'time_bin_start' is scalar, so 'time_bin_size' is required" ): BinnedTimeSeries( data={"time": ["2016-03-22T12:30:31"]}, time_bin_start=Time(1, format="mjd"), time_bin_end=Time(1, format="mjd"), ) def test_initialization_n_bins_invalid_arguments(): # Make sure an exception is raised when n_bins is passed as an argument while # any of the parameters 'time_bin_start' or 'time_bin_end' is not scalar. with pytest.raises( TypeError, match=( r"'n_bins' cannot be specified if 'time_bin_start' or 'time_bin_size' are" r" not scalar'" ), ): BinnedTimeSeries( time_bin_start=Time([1, 2, 3], format="cxcsec"), time_bin_size=1 * u.s, n_bins=10, ) def test_initialization_n_bins(): # Make sure things crash with incorrect n_bins with pytest.raises( TypeError, match=( r"'n_bins' has been given and it is not the same length as the input data\." ), ): BinnedTimeSeries( data={"time": ["2016-03-22T12:30:31"]}, time_bin_start=Time(1, format="mjd"), time_bin_size=1 * u.s, time_bin_end=Time(1, format="mjd"), n_bins=10, ) def test_initialization_non_scalar_time(): # Make sure things crash with incorrect size of time_bin_start with pytest.raises( ValueError, match=r"Length of 'time_bin_start' \(2\) should match table length \(1\)", ): BinnedTimeSeries( data={"time": ["2016-03-22T12:30:31"]}, time_bin_start=["2016-03-22T12:30:31", "2016-03-22T12:30:32"], time_bin_size=1 * u.s, time_bin_end=Time(1, format="mjd"), ) with pytest.raises( TypeError, match=r"Either 'time_bin_size' or 'time_bin_end' should be specified" ): BinnedTimeSeries( data={"time": ["2016-03-22T12:30:31"]}, time_bin_start=["2016-03-22T12:30:31"], time_bin_size=None, time_bin_end=None, ) def test_even_contiguous(): # Initialize a ``BinnedTimeSeries`` with even contiguous bins by specifying # the bin width: ts = BinnedTimeSeries( time_bin_start="2016-03-22T12:30:31", time_bin_size=3 * u.s, data=[[1, 4, 3]] ) assert_equal( ts.time_bin_start.isot, [ "2016-03-22T12:30:31.000", "2016-03-22T12:30:34.000", "2016-03-22T12:30:37.000", ], ) assert_equal( ts.time_bin_center.isot, [ "2016-03-22T12:30:32.500", "2016-03-22T12:30:35.500", "2016-03-22T12:30:38.500", ], ) assert_equal( ts.time_bin_end.isot, [ "2016-03-22T12:30:34.000", "2016-03-22T12:30:37.000", "2016-03-22T12:30:40.000", ], ) def test_uneven_contiguous(): # Initialize a ``BinnedTimeSeries`` with uneven contiguous bins by giving an # end time: ts = BinnedTimeSeries( time_bin_start=[ "2016-03-22T12:30:31", "2016-03-22T12:30:32", "2016-03-22T12:30:40", ], time_bin_end="2016-03-22T12:30:55", data=[[1, 4, 3]], ) assert_equal( ts.time_bin_start.isot, [ "2016-03-22T12:30:31.000", "2016-03-22T12:30:32.000", "2016-03-22T12:30:40.000", ], ) assert_equal( ts.time_bin_center.isot, [ "2016-03-22T12:30:31.500", "2016-03-22T12:30:36.000", "2016-03-22T12:30:47.500", ], ) assert_equal( ts.time_bin_end.isot, [ "2016-03-22T12:30:32.000", "2016-03-22T12:30:40.000", "2016-03-22T12:30:55.000", ], ) def test_uneven_non_contiguous(): # Initialize a ``BinnedTimeSeries`` with uneven non-contiguous bins with # lists of start times, bin sizes and data: ts = BinnedTimeSeries( time_bin_start=[ "2016-03-22T12:30:31", "2016-03-22T12:30:38", "2016-03-22T12:34:40", ], time_bin_size=[5, 100, 2] * u.s, data=[[1, 4, 3]], ) assert_equal( ts.time_bin_start.isot, [ "2016-03-22T12:30:31.000", "2016-03-22T12:30:38.000", "2016-03-22T12:34:40.000", ], ) assert_equal( ts.time_bin_center.isot, [ "2016-03-22T12:30:33.500", "2016-03-22T12:31:28.000", "2016-03-22T12:34:41.000", ], ) assert_equal( ts.time_bin_end.isot, [ "2016-03-22T12:30:36.000", "2016-03-22T12:32:18.000", "2016-03-22T12:34:42.000", ], ) def test_uneven_non_contiguous_full(): # Initialize a ``BinnedTimeSeries`` with uneven non-contiguous bins by # specifying the start and end times for the bins: ts = BinnedTimeSeries( time_bin_start=[ "2016-03-22T12:30:31", "2016-03-22T12:30:33", "2016-03-22T12:30:40", ], time_bin_end=[ "2016-03-22T12:30:32", "2016-03-22T12:30:35", "2016-03-22T12:30:41", ], data=[[1, 4, 3]], ) assert_equal( ts.time_bin_start.isot, [ "2016-03-22T12:30:31.000", "2016-03-22T12:30:33.000", "2016-03-22T12:30:40.000", ], ) assert_equal( ts.time_bin_center.isot, [ "2016-03-22T12:30:31.500", "2016-03-22T12:30:34.000", "2016-03-22T12:30:40.500", ], ) assert_equal( ts.time_bin_end.isot, [ "2016-03-22T12:30:32.000", "2016-03-22T12:30:35.000", "2016-03-22T12:30:41.000", ], ) def test_read_empty(): with pytest.raises( ValueError, match=( r"``time_bin_start_column`` should be provided since the default Table" r" readers are being used\." ), ): BinnedTimeSeries.read(CSV_FILE, format="csv") def test_read_no_size_end(): with pytest.raises( ValueError, match=( r"Either `time_bin_end_column` or `time_bin_size_column` should be" r" provided\." ), ): BinnedTimeSeries.read( CSV_FILE, time_bin_start_column="time_start", format="csv" ) def test_read_both_extra_bins(): with pytest.raises( ValueError, match=r"Cannot specify both `time_bin_end_column` and `time_bin_size_column`\.", ): BinnedTimeSeries.read( CSV_FILE, time_bin_start_column="time_start", time_bin_end_column="END", time_bin_size_column="bin_size", format="csv", ) def test_read_size_no_unit(): with pytest.raises( ValueError, match=( r"The bin size unit should be specified as an astropy Unit using" r" ``time_bin_size_unit``\." ), ): BinnedTimeSeries.read( CSV_FILE, time_bin_start_column="time_start", time_bin_size_column="bin_size", format="csv", ) def test_read_start_time_missing(): with pytest.raises( ValueError, match=r"Bin start time column 'abc' not found in the input data\." ): BinnedTimeSeries.read( CSV_FILE, time_bin_start_column="abc", time_bin_size_column="bin_size", time_bin_size_unit=u.second, format="csv", ) def test_read_end_time_missing(): with pytest.raises( ValueError, match=r"Bin end time column 'missing' not found in the input data\." ): BinnedTimeSeries.read( CSV_FILE, time_bin_start_column="time_start", time_bin_end_column="missing", format="csv", ) def test_read_size_missing(): with pytest.raises( ValueError, match=r"Bin size column 'missing' not found in the input data\." ): BinnedTimeSeries.read( CSV_FILE, time_bin_start_column="time_start", time_bin_size_column="missing", time_bin_size_unit=u.second, format="csv", ) def test_read_time_unit_missing(): with pytest.raises( ValueError, match=( r"The bin size unit should be specified as an astropy Unit using" r" ``time_bin_size_unit``\." ), ): BinnedTimeSeries.read( CSV_FILE, time_bin_start_column="time_start", time_bin_size_column="bin_size", format="csv", ) def test_read(): timeseries = BinnedTimeSeries.read( CSV_FILE, time_bin_start_column="time_start", time_bin_end_column="time_end", format="csv", ) assert timeseries.colnames == [ "time_bin_start", "time_bin_size", "bin_size", "A", "B", "C", "D", "E", "F", ] assert len(timeseries) == 10 assert timeseries["B"].sum() == 1151.54 timeseries = BinnedTimeSeries.read( CSV_FILE, time_bin_start_column="time_start", time_bin_size_column="bin_size", time_bin_size_unit=u.second, format="csv", ) assert timeseries.colnames == [ "time_bin_start", "time_bin_size", "time_end", "A", "B", "C", "D", "E", "F", ] assert len(timeseries) == 10 assert timeseries["B"].sum() == 1151.54 @pytest.mark.parametrize("cls", [BoxLeastSquares, LombScargle]) def test_periodogram(cls): # Note that we don't need to check the actual results from the periodogram # classes here since these are tested extensively in # astropy.timeseries.periodograms. ts = BinnedTimeSeries( time_bin_start="2016-03-22T12:30:31", time_bin_size=3 * u.s, data=[[1, 4, 3], [3, 4, 3]], names=["a", "b"], ) p1 = cls.from_timeseries(ts, "a") assert isinstance(p1, cls) assert_allclose(p1.t.jd, ts.time_bin_center.jd) assert_equal(p1.y, ts["a"]) assert p1.dy is None p2 = cls.from_timeseries(ts, "a", uncertainty="b") assert_quantity_allclose(p2.dy, ts["b"]) p3 = cls.from_timeseries(ts, "a", uncertainty=0.1) assert_allclose(p3.dy, 0.1)
e4a45b6042203909d8f583238558afcca0ca4c968af1d419f91e7ea6c8ddc964
# Licensed under a 3-clause BSD style license - see LICENSE.rst __all__ = ["bls_fast", "bls_slow"] from functools import partial import numpy as np from ._impl import bls_impl def bls_slow(t, y, ivar, period, duration, oversample, use_likelihood): """Compute the periodogram using a brute force reference method t : array-like Sequence of observation times. y : array-like Sequence of observations associated with times t. ivar : array-like The inverse variance of ``y``. period : array-like The trial periods where the periodogram should be computed. duration : array-like The durations that should be tested. oversample : The resolution of the phase grid in units of durations. use_likeliood : bool If true, maximize the log likelihood over phase, duration, and depth. Returns ------- power : array-like The periodogram evaluated at the periods in ``period``. depth : array-like The estimated depth of the maximum power model at each period. depth_err : array-like The 1-sigma uncertainty on ``depth``. duration : array-like The maximum power duration at each period. transit_time : array-like The maximum power phase of the transit in units of time. This indicates the mid-transit time and it will always be in the range (0, period). depth_snr : array-like The signal-to-noise with which the depth is measured at maximum power. log_likelihood : array-like The log likelihood of the maximum power model. """ f = partial(_bls_slow_one, t, y, ivar, duration, oversample, use_likelihood) return _apply(f, period) def bls_fast(t, y, ivar, period, duration, oversample, use_likelihood): """Compute the periodogram using an optimized Cython implementation t : array-like Sequence of observation times. y : array-like Sequence of observations associated with times t. ivar : array-like The inverse variance of ``y``. period : array-like The trial periods where the periodogram should be computed. duration : array-like The durations that should be tested. oversample : The resolution of the phase grid in units of durations. use_likeliood : bool If true, maximize the log likelihood over phase, duration, and depth. Returns ------- power : array-like The periodogram evaluated at the periods in ``period``. depth : array-like The estimated depth of the maximum power model at each period. depth_err : array-like The 1-sigma uncertainty on ``depth``. duration : array-like The maximum power duration at each period. transit_time : array-like The maximum power phase of the transit in units of time. This indicates the mid-transit time and it will always be in the range (0, period). depth_snr : array-like The signal-to-noise with which the depth is measured at maximum power. log_likelihood : array-like The log likelihood of the maximum power model. """ return bls_impl(t, y, ivar, period, duration, oversample, use_likelihood) def _bls_slow_one(t, y, ivar, duration, oversample, use_likelihood, period): """A private function to compute the brute force periodogram result""" best = (-np.inf, None) hp = 0.5 * period min_t = np.min(t) for dur in duration: # Compute the phase grid (this is set by the duration and oversample). d_phase = dur / oversample phase = np.arange(0, period + d_phase, d_phase) for t0 in phase: # Figure out which data points are in and out of transit. m_in = np.abs((t - min_t - t0 + hp) % period - hp) < 0.5 * dur m_out = ~m_in # Compute the estimates of the in and out-of-transit flux. ivar_in = np.sum(ivar[m_in]) ivar_out = np.sum(ivar[m_out]) y_in = np.sum(y[m_in] * ivar[m_in]) / ivar_in y_out = np.sum(y[m_out] * ivar[m_out]) / ivar_out # Use this to compute the best fit depth and uncertainty. depth = y_out - y_in depth_err = np.sqrt(1.0 / ivar_in + 1.0 / ivar_out) snr = depth / depth_err # Compute the log likelihood of this model. loglike = -0.5 * np.sum((y_in - y[m_in]) ** 2 * ivar[m_in]) loglike += 0.5 * np.sum((y_out - y[m_in]) ** 2 * ivar[m_in]) # Choose which objective should be used for the optimization. if use_likelihood: objective = loglike else: objective = snr # If this model is better than any before, keep it. if depth > 0 and objective > best[0]: best = ( objective, ( objective, depth, depth_err, dur, (t0 + min_t) % period, snr, loglike, ), ) return best[1] def _apply(f, period): return tuple(map(np.array, zip(*map(f, period))))
86b1ebb67e31fbea30e1ca84b8c6c184c37a8907423331397ce0b86ecdc7e8fc
# Licensed under a 3-clause BSD style license - see LICENSE.rst __all__ = ["BoxLeastSquares", "BoxLeastSquaresResults"] import numpy as np from astropy import units from astropy import units as u from astropy.time import Time, TimeDelta from astropy.timeseries.periodograms.base import BasePeriodogram from astropy.timeseries.periodograms.lombscargle.core import has_units, strip_units from . import methods def validate_unit_consistency(reference_object, input_object): if has_units(reference_object): input_object = units.Quantity(input_object, unit=reference_object.unit) else: if has_units(input_object): input_object = units.Quantity(input_object, unit=units.one) input_object = input_object.value return input_object class BoxLeastSquares(BasePeriodogram): """Compute the box least squares periodogram This method is a commonly used tool for discovering transiting exoplanets or eclipsing binaries in photometric time series datasets. This implementation is based on the "box least squares (BLS)" method described in [1]_ and [2]_. Parameters ---------- t : array-like, `~astropy.units.Quantity`, `~astropy.time.Time`, or `~astropy.time.TimeDelta` Sequence of observation times. y : array-like or `~astropy.units.Quantity` Sequence of observations associated with times ``t``. dy : float, array-like, or `~astropy.units.Quantity`, optional Error or sequence of observational errors associated with times ``t``. Examples -------- Generate noisy data with a transit: >>> rand = np.random.default_rng(42) >>> t = rand.uniform(0, 10, 500) >>> y = np.ones_like(t) >>> y[np.abs((t + 1.0)%2.0-1)<0.08] = 1.0 - 0.1 >>> y += 0.01 * rand.standard_normal(len(t)) Compute the transit periodogram on a heuristically determined period grid and find the period with maximum power: >>> model = BoxLeastSquares(t, y) >>> results = model.autopower(0.16) >>> results.period[np.argmax(results.power)] # doctest: +FLOAT_CMP 2.000412388152837 Compute the periodogram on a user-specified period grid: >>> periods = np.linspace(1.9, 2.1, 5) >>> results = model.power(periods, 0.16) >>> results.power # doctest: +FLOAT_CMP array([0.01723948, 0.0643028 , 0.1338783 , 0.09428816, 0.03577543]) If the inputs are AstroPy Quantities with units, the units will be validated and the outputs will also be Quantities with appropriate units: >>> from astropy import units as u >>> t = t * u.day >>> y = y * u.dimensionless_unscaled >>> model = BoxLeastSquares(t, y) >>> results = model.autopower(0.16 * u.day) >>> results.period.unit Unit("d") >>> results.power.unit Unit(dimensionless) References ---------- .. [1] Kovacs, Zucker, & Mazeh (2002), A&A, 391, 369 (arXiv:astro-ph/0206099) .. [2] Hartman & Bakos (2016), Astronomy & Computing, 17, 1 (arXiv:1605.06811) """ def __init__(self, t, y, dy=None): # If t is a TimeDelta, convert it to a quantity. The units we convert # to don't really matter since the user gets a Quantity back at the end # so can convert to any units they like. if isinstance(t, TimeDelta): t = t.to("day") # We want to expose self.t as being the times the user passed in, but # if the times are absolute, we need to convert them to relative times # internally, so we use self._trel and self._tstart for this. self.t = t if isinstance(self.t, (Time, TimeDelta)): self._tstart = self.t[0] trel = (self.t - self._tstart).to(u.day) else: self._tstart = None trel = self.t self._trel, self.y, self.dy = self._validate_inputs(trel, y, dy) def autoperiod( self, duration, minimum_period=None, maximum_period=None, minimum_n_transit=3, frequency_factor=1.0, ): """Determine a suitable grid of periods This method uses a set of heuristics to select a conservative period grid that is uniform in frequency. This grid might be too fine for some user's needs depending on the precision requirements or the sampling of the data. The grid can be made coarser by increasing ``frequency_factor``. Parameters ---------- duration : float, array-like, or `~astropy.units.Quantity` ['time'] The set of durations that will be considered. minimum_period, maximum_period : float or `~astropy.units.Quantity` ['time'], optional The minimum/maximum periods to search. If not provided, these will be computed as described in the notes below. minimum_n_transit : int, optional If ``maximum_period`` is not provided, this is used to compute the maximum period to search by asserting that any systems with at least ``minimum_n_transits`` will be within the range of searched periods. Note that this is not the same as requiring that ``minimum_n_transits`` be required for detection. The default value is ``3``. frequency_factor : float, optional A factor to control the frequency spacing as described in the notes below. The default value is ``1.0``. Returns ------- period : array-like or `~astropy.units.Quantity` ['time'] The set of periods computed using these heuristics with the same units as ``t``. Notes ----- The default minimum period is chosen to be twice the maximum duration because there won't be much sensitivity to periods shorter than that. The default maximum period is computed as .. code-block:: python maximum_period = (max(t) - min(t)) / minimum_n_transits ensuring that any systems with at least ``minimum_n_transits`` are within the range of searched periods. The frequency spacing is given by .. code-block:: python df = frequency_factor * min(duration) / (max(t) - min(t))**2 so the grid can be made finer by decreasing ``frequency_factor`` or coarser by increasing ``frequency_factor``. """ duration = self._validate_duration(duration) baseline = strip_units(self._trel.max() - self._trel.min()) min_duration = strip_units(np.min(duration)) # Estimate the required frequency spacing # Because of the sparsity of a transit, this must be much finer than # the frequency resolution for a sinusoidal fit. For a sinusoidal fit, # df would be 1/baseline (see LombScargle), but here this should be # scaled proportionally to the duration in units of baseline. df = frequency_factor * min_duration / baseline**2 # If a minimum period is not provided, choose one that is twice the # maximum duration because we won't be sensitive to any periods # shorter than that. if minimum_period is None: minimum_period = 2.0 * strip_units(np.max(duration)) else: minimum_period = validate_unit_consistency(self._trel, minimum_period) minimum_period = strip_units(minimum_period) # If no maximum period is provided, choose one by requiring that # all signals with at least minimum_n_transit should be detectable. if maximum_period is None: if minimum_n_transit <= 1: raise ValueError("minimum_n_transit must be greater than 1") maximum_period = baseline / (minimum_n_transit - 1) else: maximum_period = validate_unit_consistency(self._trel, maximum_period) maximum_period = strip_units(maximum_period) if maximum_period < minimum_period: minimum_period, maximum_period = maximum_period, minimum_period if minimum_period <= 0.0: raise ValueError("minimum_period must be positive") # Convert bounds to frequency minimum_frequency = 1.0 / strip_units(maximum_period) maximum_frequency = 1.0 / strip_units(minimum_period) # Compute the number of frequencies and the frequency grid nf = 1 + int(np.round((maximum_frequency - minimum_frequency) / df)) return 1.0 / (maximum_frequency - df * np.arange(nf)) * self._t_unit() def autopower( self, duration, objective=None, method=None, oversample=10, minimum_n_transit=3, minimum_period=None, maximum_period=None, frequency_factor=1.0, ): """Compute the periodogram at set of heuristically determined periods This method calls :func:`BoxLeastSquares.autoperiod` to determine the period grid and then :func:`BoxLeastSquares.power` to compute the periodogram. See those methods for documentation of the arguments. """ period = self.autoperiod( duration, minimum_n_transit=minimum_n_transit, minimum_period=minimum_period, maximum_period=maximum_period, frequency_factor=frequency_factor, ) return self.power( period, duration, objective=objective, method=method, oversample=oversample ) def power(self, period, duration, objective=None, method=None, oversample=10): """Compute the periodogram for a set of periods Parameters ---------- period : array-like or `~astropy.units.Quantity` ['time'] The periods where the power should be computed duration : float, array-like, or `~astropy.units.Quantity` ['time'] The set of durations to test objective : {'likelihood', 'snr'}, optional The scalar that should be optimized to find the best fit phase, duration, and depth. This can be either ``'likelihood'`` (default) to optimize the log-likelihood of the model, or ``'snr'`` to optimize the signal-to-noise with which the transit depth is measured. method : {'fast', 'slow'}, optional The computational method used to compute the periodogram. This is mainly included for the purposes of testing and most users will want to use the optimized ``'fast'`` method (default) that is implemented in Cython. ``'slow'`` is a brute-force method that is used to test the results of the ``'fast'`` method. oversample : int, optional The number of bins per duration that should be used. This sets the time resolution of the phase fit with larger values of ``oversample`` yielding a finer grid and higher computational cost. Returns ------- results : BoxLeastSquaresResults The periodogram results as a :class:`BoxLeastSquaresResults` object. Raises ------ ValueError If ``oversample`` is not an integer greater than 0 or if ``objective`` or ``method`` are not valid. """ period, duration = self._validate_period_and_duration(period, duration) # Check for absurdities in the ``oversample`` choice try: oversample = int(oversample) except TypeError: raise ValueError(f"oversample must be an int, got {oversample}") if oversample < 1: raise ValueError("oversample must be greater than or equal to 1") # Select the periodogram objective if objective is None: objective = "likelihood" allowed_objectives = ["snr", "likelihood"] if objective not in allowed_objectives: raise ValueError( f"Unrecognized method '{objective}'\n" f"allowed methods are: {allowed_objectives}" ) use_likelihood = objective == "likelihood" # Select the computational method if method is None: method = "fast" allowed_methods = ["fast", "slow"] if method not in allowed_methods: raise ValueError( f"Unrecognized method '{method}'\n" f"allowed methods are: {allowed_methods}" ) # Format and check the input arrays t = np.ascontiguousarray(strip_units(self._trel), dtype=np.float64) t_ref = np.min(t) y = np.ascontiguousarray(strip_units(self.y), dtype=np.float64) if self.dy is None: ivar = np.ones_like(y) else: ivar = ( 1.0 / np.ascontiguousarray(strip_units(self.dy), dtype=np.float64) ** 2 ) # Make sure that the period and duration arrays are C-order period_fmt = np.ascontiguousarray(strip_units(period), dtype=np.float64) duration = np.ascontiguousarray(strip_units(duration), dtype=np.float64) # Select the correct implementation for the chosen method if method == "fast": bls = methods.bls_fast else: bls = methods.bls_slow # Run the implementation results = bls( t - t_ref, y - np.median(y), ivar, period_fmt, duration, oversample, use_likelihood, ) return self._format_results(t_ref, objective, period, results) def _as_relative_time(self, name, times): """ Convert the provided times (if absolute) to relative times using the current _tstart value. If the times provided are relative, they are returned without conversion (though we still do some checks). """ if isinstance(times, TimeDelta): times = times.to("day") if self._tstart is None: if isinstance(times, Time): raise TypeError( f"{name} was provided as an absolute time but " "the BoxLeastSquares class was initialized " "with relative times." ) else: if isinstance(times, Time): times = (times - self._tstart).to(u.day) else: raise TypeError( f"{name} was provided as a relative time but " "the BoxLeastSquares class was initialized " "with absolute times." ) times = validate_unit_consistency(self._trel, times) return times def _as_absolute_time_if_needed(self, name, times): """ Convert the provided times to absolute times using the current _tstart value, if needed. """ if self._tstart is not None: # Some time formats/scales can't represent dates/times too far # off from the present, so we need to mask values offset by # more than 100,000 yr (the periodogram algorithm can return # transit times of e.g 1e300 for some periods). reset = np.abs(times.to_value(u.year)) > 100000 times[reset] = 0 times = self._tstart + times times[reset] = np.nan return times def model(self, t_model, period, duration, transit_time): """Compute the transit model at the given period, duration, and phase Parameters ---------- t_model : array-like, `~astropy.units.Quantity`, or `~astropy.time.Time` Times at which to compute the model. period : float or `~astropy.units.Quantity` ['time'] The period of the transits. duration : float or `~astropy.units.Quantity` ['time'] The duration of the transit. transit_time : float or `~astropy.units.Quantity` or `~astropy.time.Time` The mid-transit time of a reference transit. Returns ------- y_model : array-like or `~astropy.units.Quantity` The model evaluated at the times ``t_model`` with units of ``y``. """ period, duration = self._validate_period_and_duration(period, duration) transit_time = self._as_relative_time("transit_time", transit_time) t_model = strip_units(self._as_relative_time("t_model", t_model)) period = float(strip_units(period)) duration = float(strip_units(duration)) transit_time = float(strip_units(transit_time)) t = np.ascontiguousarray(strip_units(self._trel), dtype=np.float64) y = np.ascontiguousarray(strip_units(self.y), dtype=np.float64) if self.dy is None: ivar = np.ones_like(y) else: ivar = ( 1.0 / np.ascontiguousarray(strip_units(self.dy), dtype=np.float64) ** 2 ) # Compute the depth hp = 0.5 * period m_in = np.abs((t - transit_time + hp) % period - hp) < 0.5 * duration m_out = ~m_in y_in = np.sum(y[m_in] * ivar[m_in]) / np.sum(ivar[m_in]) y_out = np.sum(y[m_out] * ivar[m_out]) / np.sum(ivar[m_out]) # Evaluate the model y_model = y_out + np.zeros_like(t_model) m_model = np.abs((t_model - transit_time + hp) % period - hp) < 0.5 * duration y_model[m_model] = y_in return y_model * self._y_unit() def compute_stats(self, period, duration, transit_time): """Compute descriptive statistics for a given transit model These statistics are commonly used for vetting of transit candidates. Parameters ---------- period : float or `~astropy.units.Quantity` ['time'] The period of the transits. duration : float or `~astropy.units.Quantity` ['time'] The duration of the transit. transit_time : float or `~astropy.units.Quantity` or `~astropy.time.Time` The mid-transit time of a reference transit. Returns ------- stats : dict A dictionary containing several descriptive statistics: - ``depth``: The depth and uncertainty (as a tuple with two values) on the depth for the fiducial model. - ``depth_odd``: The depth and uncertainty on the depth for a model where the period is twice the fiducial period. - ``depth_even``: The depth and uncertainty on the depth for a model where the period is twice the fiducial period and the phase is offset by one orbital period. - ``depth_half``: The depth and uncertainty for a model with a period of half the fiducial period. - ``depth_phased``: The depth and uncertainty for a model with the fiducial period and the phase offset by half a period. - ``harmonic_amplitude``: The amplitude of the best fit sinusoidal model. - ``harmonic_delta_log_likelihood``: The difference in log likelihood between a sinusoidal model and the transit model. If ``harmonic_delta_log_likelihood`` is greater than zero, the sinusoidal model is preferred. - ``transit_times``: The mid-transit time for each transit in the baseline. - ``per_transit_count``: An array with a count of the number of data points in each unique transit included in the baseline. - ``per_transit_log_likelihood``: An array with the value of the log likelihood for each unique transit included in the baseline. """ period, duration = self._validate_period_and_duration(period, duration) transit_time = self._as_relative_time("transit_time", transit_time) period = float(strip_units(period)) duration = float(strip_units(duration)) transit_time = float(strip_units(transit_time)) t = np.ascontiguousarray(strip_units(self._trel), dtype=np.float64) y = np.ascontiguousarray(strip_units(self.y), dtype=np.float64) if self.dy is None: ivar = np.ones_like(y) else: ivar = ( 1.0 / np.ascontiguousarray(strip_units(self.dy), dtype=np.float64) ** 2 ) # This a helper function that will compute the depth for several # different hypothesized transit models with different parameters def _compute_depth(m, y_out=None, var_out=None): if np.any(m) and (var_out is None or np.isfinite(var_out)): var_m = 1.0 / np.sum(ivar[m]) y_m = np.sum(y[m] * ivar[m]) * var_m if y_out is None: return y_m, var_m return y_out - y_m, np.sqrt(var_m + var_out) return 0.0, np.inf # Compute the depth of the fiducial model and the two models at twice # the period hp = 0.5 * period m_in = np.abs((t - transit_time + hp) % period - hp) < 0.5 * duration m_out = ~m_in m_odd = np.abs((t - transit_time) % (2 * period) - period) < 0.5 * duration m_even = ( np.abs((t - transit_time + period) % (2 * period) - period) < 0.5 * duration ) y_out, var_out = _compute_depth(m_out) depth = _compute_depth(m_in, y_out, var_out) depth_odd = _compute_depth(m_odd, y_out, var_out) depth_even = _compute_depth(m_even, y_out, var_out) y_in = y_out - depth[0] # Compute the depth of the model at a phase of 0.5*period m_phase = np.abs((t - transit_time) % period - hp) < 0.5 * duration depth_phase = _compute_depth(m_phase, *_compute_depth((~m_phase) & m_out)) # Compute the depth of a model with a period of 0.5*period m_half = ( np.abs((t - transit_time + 0.25 * period) % (0.5 * period) - 0.25 * period) < 0.5 * duration ) depth_half = _compute_depth(m_half, *_compute_depth(~m_half)) # Compute the number of points in each transit transit_id = np.round((t[m_in] - transit_time) / period).astype(int) transit_times = ( period * np.arange(transit_id.min(), transit_id.max() + 1) + transit_time ) unique_ids, unique_counts = np.unique(transit_id, return_counts=True) unique_ids -= np.min(transit_id) transit_id -= np.min(transit_id) counts = np.zeros(np.max(transit_id) + 1, dtype=int) counts[unique_ids] = unique_counts # Compute the per-transit log likelihood ll = -0.5 * ivar[m_in] * ((y[m_in] - y_in) ** 2 - (y[m_in] - y_out) ** 2) lls = np.zeros(len(counts)) for i in unique_ids: lls[i] = np.sum(ll[transit_id == i]) full_ll = -0.5 * np.sum(ivar[m_in] * (y[m_in] - y_in) ** 2) full_ll -= 0.5 * np.sum(ivar[m_out] * (y[m_out] - y_out) ** 2) # Compute the log likelihood of a sine model A = np.vstack( ( np.sin(2 * np.pi * t / period), np.cos(2 * np.pi * t / period), np.ones_like(t), ) ).T w = np.linalg.solve(np.dot(A.T, A * ivar[:, None]), np.dot(A.T, y * ivar)) mod = np.dot(A, w) sin_ll = -0.5 * np.sum((y - mod) ** 2 * ivar) # Format the results y_unit = self._y_unit() ll_unit = 1 if self.dy is None: ll_unit = y_unit * y_unit return dict( transit_times=self._as_absolute_time_if_needed( "transit_times", transit_times * self._t_unit() ), per_transit_count=counts, per_transit_log_likelihood=lls * ll_unit, depth=(depth[0] * y_unit, depth[1] * y_unit), depth_phased=(depth_phase[0] * y_unit, depth_phase[1] * y_unit), depth_half=(depth_half[0] * y_unit, depth_half[1] * y_unit), depth_odd=(depth_odd[0] * y_unit, depth_odd[1] * y_unit), depth_even=(depth_even[0] * y_unit, depth_even[1] * y_unit), harmonic_amplitude=np.sqrt(np.sum(w[:2] ** 2)) * y_unit, harmonic_delta_log_likelihood=(sin_ll - full_ll) * ll_unit, ) def transit_mask(self, t, period, duration, transit_time): """Compute which data points are in transit for a given parameter set Parameters ---------- t : array-like or `~astropy.units.Quantity` ['time'] Times where the mask should be evaluated. period : float or `~astropy.units.Quantity` ['time'] The period of the transits. duration : float or `~astropy.units.Quantity` ['time'] The duration of the transit. transit_time : float or `~astropy.units.Quantity` or `~astropy.time.Time` The mid-transit time of a reference transit. Returns ------- transit_mask : array-like A boolean array where ``True`` indicates and in transit point and ``False`` indicates and out-of-transit point. """ period, duration = self._validate_period_and_duration(period, duration) transit_time = self._as_relative_time("transit_time", transit_time) t = strip_units(self._as_relative_time("t", t)) period = float(strip_units(period)) duration = float(strip_units(duration)) transit_time = float(strip_units(transit_time)) hp = 0.5 * period return np.abs((t - transit_time + hp) % period - hp) < 0.5 * duration def _validate_inputs(self, t, y, dy): """Private method used to check the consistency of the inputs Parameters ---------- t : array-like, `~astropy.units.Quantity`, `~astropy.time.Time`, or `~astropy.time.TimeDelta` Sequence of observation times. y : array-like or `~astropy.units.Quantity` Sequence of observations associated with times t. dy : float, array-like, or `~astropy.units.Quantity` Error or sequence of observational errors associated with times t. Returns ------- t, y, dy : array-like, `~astropy.units.Quantity`, or `~astropy.time.Time` The inputs with consistent shapes and units. Raises ------ ValueError If the dimensions are incompatible or if the units of dy cannot be converted to the units of y. """ # Validate shapes of inputs if dy is None: t, y = np.broadcast_arrays(t, y, subok=True) else: t, y, dy = np.broadcast_arrays(t, y, dy, subok=True) if t.ndim != 1: raise ValueError("Inputs (t, y, dy) must be 1-dimensional") # validate units of inputs if any is a Quantity if dy is not None: dy = validate_unit_consistency(y, dy) return t, y, dy def _validate_duration(self, duration): """Private method used to check a set of test durations Parameters ---------- duration : float, array-like, or `~astropy.units.Quantity` The set of durations that will be considered. Returns ------- duration : array-like or `~astropy.units.Quantity` The input reformatted with the correct shape and units. Raises ------ ValueError If the units of duration cannot be converted to the units of t. """ duration = np.atleast_1d(np.abs(duration)) if duration.ndim != 1 or duration.size == 0: raise ValueError("duration must be 1-dimensional") return validate_unit_consistency(self._trel, duration) def _validate_period_and_duration(self, period, duration): """Private method used to check a set of periods and durations Parameters ---------- period : float, array-like, or `~astropy.units.Quantity` ['time'] The set of test periods. duration : float, array-like, or `~astropy.units.Quantity` ['time'] The set of durations that will be considered. Returns ------- period, duration : array-like or `~astropy.units.Quantity` ['time'] The inputs reformatted with the correct shapes and units. Raises ------ ValueError If the units of period or duration cannot be converted to the units of t. """ duration = self._validate_duration(duration) period = np.atleast_1d(np.abs(period)) if period.ndim != 1 or period.size == 0: raise ValueError("period must be 1-dimensional") period = validate_unit_consistency(self._trel, period) if not np.min(period) > np.max(duration): raise ValueError( "The maximum transit duration must be shorter than the minimum period" ) return period, duration def _format_results(self, t_ref, objective, period, results): """A private method used to wrap and add units to the periodogram Parameters ---------- t_ref : float The minimum time in the time series (a reference time). objective : str The name of the objective used in the optimization. period : array-like or `~astropy.units.Quantity` ['time'] The set of trial periods. results : tuple The output of one of the periodogram implementations. """ ( power, depth, depth_err, duration, transit_time, depth_snr, log_likelihood, ) = results transit_time += t_ref if has_units(self._trel): transit_time = units.Quantity(transit_time, unit=self._trel.unit) transit_time = self._as_absolute_time_if_needed( "transit_time", transit_time ) duration = units.Quantity(duration, unit=self._trel.unit) if has_units(self.y): depth = units.Quantity(depth, unit=self.y.unit) depth_err = units.Quantity(depth_err, unit=self.y.unit) depth_snr = units.Quantity(depth_snr, unit=units.one) if self.dy is None: if objective == "likelihood": power = units.Quantity(power, unit=self.y.unit**2) else: power = units.Quantity(power, unit=units.one) log_likelihood = units.Quantity(log_likelihood, unit=self.y.unit**2) else: power = units.Quantity(power, unit=units.one) log_likelihood = units.Quantity(log_likelihood, unit=units.one) return BoxLeastSquaresResults( objective, period, power, depth, depth_err, duration, transit_time, depth_snr, log_likelihood, ) def _t_unit(self): if has_units(self._trel): return self._trel.unit else: return 1 def _y_unit(self): if has_units(self.y): return self.y.unit else: return 1 class BoxLeastSquaresResults(dict): """The results of a BoxLeastSquares search Attributes ---------- objective : str The scalar used to optimize to find the best fit phase, duration, and depth. See :func:`BoxLeastSquares.power` for more information. period : array-like or `~astropy.units.Quantity` ['time'] The set of test periods. power : array-like or `~astropy.units.Quantity` The periodogram evaluated at the periods in ``period``. If ``objective`` is: * ``'likelihood'``: the values of ``power`` are the log likelihood maximized over phase, depth, and duration, or * ``'snr'``: the values of ``power`` are the signal-to-noise with which the depth is measured maximized over phase, depth, and duration. depth : array-like or `~astropy.units.Quantity` The estimated depth of the maximum power model at each period. depth_err : array-like or `~astropy.units.Quantity` The 1-sigma uncertainty on ``depth``. duration : array-like or `~astropy.units.Quantity` ['time'] The maximum power duration at each period. transit_time : array-like, `~astropy.units.Quantity`, or `~astropy.time.Time` The maximum power phase of the transit in units of time. This indicates the mid-transit time and it will always be in the range (0, period). depth_snr : array-like or `~astropy.units.Quantity` The signal-to-noise with which the depth is measured at maximum power. log_likelihood : array-like or `~astropy.units.Quantity` The log likelihood of the maximum power model. """ def __init__(self, *args): super().__init__( zip( ( "objective", "period", "power", "depth", "depth_err", "duration", "transit_time", "depth_snr", "log_likelihood", ), args, ) ) def __getattr__(self, name): try: return self[name] except KeyError: raise AttributeError(name) __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ def __repr__(self): if self.keys(): m = max(map(len, list(self.keys()))) + 1 return "\n".join( [k.rjust(m) + ": " + repr(v) for k, v in sorted(self.items())] ) else: return self.__class__.__name__ + "()" def __dir__(self): return list(self.keys())
88d9d624a25f88d64f187a074830cad1f0c48e018383faf2f48e2bf0ba97b89e
# Licensed under a 3-clause BSD style license - see LICENSE.rst import os from os.path import join import numpy from setuptools import Extension BLS_ROOT = os.path.relpath(os.path.dirname(__file__)) def get_extensions(): ext = Extension( "astropy.timeseries.periodograms.bls._impl", sources=[ join(BLS_ROOT, "bls.c"), join(BLS_ROOT, "_impl.pyx"), ], include_dirs=[numpy.get_include()], ) return [ext]
e3554d34d18d4a04577f5535a37fef0b27cc57e7cc0af414c947a10bdaa38143
""" Utilities for computing periodogram statistics. This is an internal module; users should access this functionality via the ``false_alarm_probability`` and ``false_alarm_level`` methods of the ``astropy.timeseries.LombScargle`` API. """ from functools import wraps import numpy as np from astropy import units as u def _weighted_sum(val, dy): if dy is not None: return (val / dy**2).sum() else: return val.sum() def _weighted_mean(val, dy): if dy is None: return val.mean() else: return _weighted_sum(val, dy) / _weighted_sum(np.ones(val.shape), dy) def _weighted_var(val, dy): return _weighted_mean(val**2, dy) - _weighted_mean(val, dy) ** 2 def _gamma(N): from scipy.special import gammaln # Note: this is closely approximated by (1 - 0.75 / N) for large N return np.sqrt(2 / N) * np.exp(gammaln(N / 2) - gammaln((N - 1) / 2)) def vectorize_first_argument(func): @wraps(func) def new_func(x, *args, **kwargs): x = np.asarray(x) return np.array([func(xi, *args, **kwargs) for xi in x.flat]).reshape(x.shape) return new_func def pdf_single(z, N, normalization, dH=1, dK=3): """Probability density function for Lomb-Scargle periodogram Compute the expected probability density function of the periodogram for the null hypothesis - i.e. data consisting of Gaussian noise. Parameters ---------- z : array-like The periodogram value. N : int The number of data points from which the periodogram was computed. normalization : {'standard', 'model', 'log', 'psd'} The periodogram normalization. dH, dK : int, optional The number of parameters in the null hypothesis and the model. Returns ------- pdf : np.ndarray The expected probability density function. Notes ----- For normalization='psd', the distribution can only be computed for periodograms constructed with errors specified. All expressions used here are adapted from Table 1 of Baluev 2008 [1]_. References ---------- .. [1] Baluev, R.V. MNRAS 385, 1279 (2008) """ z = np.asarray(z) if dK - dH != 2: raise NotImplementedError("Degrees of freedom != 2") Nk = N - dK if normalization == "psd": return np.exp(-z) elif normalization == "standard": return 0.5 * Nk * (1 - z) ** (0.5 * Nk - 1) elif normalization == "model": return 0.5 * Nk * (1 + z) ** (-0.5 * Nk - 1) elif normalization == "log": return 0.5 * Nk * np.exp(-0.5 * Nk * z) else: raise ValueError(f"normalization='{normalization}' is not recognized") def fap_single(z, N, normalization, dH=1, dK=3): """Single-frequency false alarm probability for the Lomb-Scargle periodogram This is equal to 1 - cdf, where cdf is the cumulative distribution. The single-frequency false alarm probability should not be confused with the false alarm probability for the largest peak. Parameters ---------- z : array-like The periodogram value. N : int The number of data points from which the periodogram was computed. normalization : {'standard', 'model', 'log', 'psd'} The periodogram normalization. dH, dK : int, optional The number of parameters in the null hypothesis and the model. Returns ------- false_alarm_probability : np.ndarray The single-frequency false alarm probability. Notes ----- For normalization='psd', the distribution can only be computed for periodograms constructed with errors specified. All expressions used here are adapted from Table 1 of Baluev 2008 [1]_. References ---------- .. [1] Baluev, R.V. MNRAS 385, 1279 (2008) """ z = np.asarray(z) if dK - dH != 2: raise NotImplementedError("Degrees of freedom != 2") Nk = N - dK if normalization == "psd": return np.exp(-z) elif normalization == "standard": return (1 - z) ** (0.5 * Nk) elif normalization == "model": return (1 + z) ** (-0.5 * Nk) elif normalization == "log": return np.exp(-0.5 * Nk * z) else: raise ValueError(f"normalization='{normalization}' is not recognized") def inv_fap_single(fap, N, normalization, dH=1, dK=3): """Single-frequency inverse false alarm probability This function computes the periodogram value associated with the specified single-frequency false alarm probability. This should not be confused with the false alarm level of the largest peak. Parameters ---------- fap : array-like The false alarm probability. N : int The number of data points from which the periodogram was computed. normalization : {'standard', 'model', 'log', 'psd'} The periodogram normalization. dH, dK : int, optional The number of parameters in the null hypothesis and the model. Returns ------- z : np.ndarray The periodogram power corresponding to the single-peak false alarm probability. Notes ----- For normalization='psd', the distribution can only be computed for periodograms constructed with errors specified. All expressions used here are adapted from Table 1 of Baluev 2008 [1]_. References ---------- .. [1] Baluev, R.V. MNRAS 385, 1279 (2008) """ fap = np.asarray(fap) if dK - dH != 2: raise NotImplementedError("Degrees of freedom != 2") Nk = N - dK # No warnings for fap = 0; rather, just let it give the right infinity. with np.errstate(divide="ignore"): if normalization == "psd": return -np.log(fap) elif normalization == "standard": return 1 - fap ** (2 / Nk) elif normalization == "model": return -1 + fap ** (-2 / Nk) elif normalization == "log": return -2 / Nk * np.log(fap) else: raise ValueError(f"normalization='{normalization}' is not recognized") def cdf_single(z, N, normalization, dH=1, dK=3): """Cumulative distribution for the Lomb-Scargle periodogram Compute the expected cumulative distribution of the periodogram for the null hypothesis - i.e. data consisting of Gaussian noise. Parameters ---------- z : array-like The periodogram value. N : int The number of data points from which the periodogram was computed. normalization : {'standard', 'model', 'log', 'psd'} The periodogram normalization. dH, dK : int, optional The number of parameters in the null hypothesis and the model. Returns ------- cdf : np.ndarray The expected cumulative distribution function. Notes ----- For normalization='psd', the distribution can only be computed for periodograms constructed with errors specified. All expressions used here are adapted from Table 1 of Baluev 2008 [1]_. References ---------- .. [1] Baluev, R.V. MNRAS 385, 1279 (2008) """ return 1 - fap_single(z, N, normalization=normalization, dH=dH, dK=dK) def tau_davies(Z, fmax, t, y, dy, normalization="standard", dH=1, dK=3): """tau factor for estimating Davies bound (Baluev 2008, Table 1)""" N = len(t) NH = N - dH # DOF for null hypothesis NK = N - dK # DOF for periodic hypothesis Dt = _weighted_var(t, dy) Teff = np.sqrt(4 * np.pi * Dt) # Effective baseline W = fmax * Teff Z = np.asarray(Z) if normalization == "psd": # 'psd' normalization is same as Baluev's z return W * np.exp(-Z) * np.sqrt(Z) elif normalization == "standard": # 'standard' normalization is Z = 2/NH * z_1 return _gamma(NH) * W * (1 - Z) ** (0.5 * (NK - 1)) * np.sqrt(0.5 * NH * Z) elif normalization == "model": # 'model' normalization is Z = 2/NK * z_2 return _gamma(NK) * W * (1 + Z) ** (-0.5 * NK) * np.sqrt(0.5 * NK * Z) elif normalization == "log": # 'log' normalization is Z = 2/NK * z_3 return ( _gamma(NK) * W * np.exp(-0.5 * Z * (NK - 0.5)) * np.sqrt(NK * np.sinh(0.5 * Z)) ) else: raise NotImplementedError(f"normalization={normalization}") def fap_naive(Z, fmax, t, y, dy, normalization="standard"): """False Alarm Probability based on estimated number of indep frequencies""" N = len(t) T = max(t) - min(t) N_eff = fmax * T fap_s = fap_single(Z, N, normalization=normalization) # result is 1 - (1 - fap_s) ** N_eff # this is much more precise for small Z / large N # Ignore divide by zero no np.log1p - fine to let it return -inf. with np.errstate(divide="ignore"): return -np.expm1(N_eff * np.log1p(-fap_s)) def inv_fap_naive(fap, fmax, t, y, dy, normalization="standard"): """Inverse FAP based on estimated number of indep frequencies""" fap = np.asarray(fap) N = len(t) T = max(t) - min(t) N_eff = fmax * T # fap_s = 1 - (1 - fap) ** (1 / N_eff) # Ignore divide by zero no np.log - fine to let it return -inf. with np.errstate(divide="ignore"): fap_s = -np.expm1(np.log(1 - fap) / N_eff) return inv_fap_single(fap_s, N, normalization) def fap_davies(Z, fmax, t, y, dy, normalization="standard"): """Davies upper-bound to the false alarm probability (Eqn 5 of Baluev 2008) """ N = len(t) fap_s = fap_single(Z, N, normalization=normalization) tau = tau_davies(Z, fmax, t, y, dy, normalization=normalization) return fap_s + tau @vectorize_first_argument def inv_fap_davies(p, fmax, t, y, dy, normalization="standard"): """Inverse of the davies upper-bound""" from scipy import optimize args = (fmax, t, y, dy, normalization) z0 = inv_fap_naive(p, *args) func = lambda z, *args: fap_davies(z, *args) - p res = optimize.root(func, z0, args=args, method="lm") if not res.success: raise ValueError(f"inv_fap_baluev did not converge for p={p}") return res.x def fap_baluev(Z, fmax, t, y, dy, normalization="standard"): """Alias-free approximation to false alarm probability (Eqn 6 of Baluev 2008) """ fap_s = fap_single(Z, len(t), normalization) tau = tau_davies(Z, fmax, t, y, dy, normalization=normalization) # result is 1 - (1 - fap_s) * np.exp(-tau) # this is much more precise for small numbers return -np.expm1(-tau) + fap_s * np.exp(-tau) @vectorize_first_argument def inv_fap_baluev(p, fmax, t, y, dy, normalization="standard"): """Inverse of the Baluev alias-free approximation""" from scipy import optimize args = (fmax, t, y, dy, normalization) z0 = inv_fap_naive(p, *args) func = lambda z, *args: fap_baluev(z, *args) - p res = optimize.root(func, z0, args=args, method="lm") if not res.success: raise ValueError(f"inv_fap_baluev did not converge for p={p}") return res.x def _bootstrap_max(t, y, dy, fmax, normalization, random_seed, n_bootstrap=1000): """Generate a sequence of bootstrap estimates of the max""" from .core import LombScargle rng = np.random.default_rng(random_seed) power_max = [] for _ in range(n_bootstrap): s = rng.integers(0, len(y), len(y)) # sample with replacement ls_boot = LombScargle( t, y[s], dy if dy is None else dy[s], normalization=normalization ) freq, power = ls_boot.autopower(maximum_frequency=fmax) power_max.append(power.max()) power_max = u.Quantity(power_max) power_max.sort() return power_max def fap_bootstrap( Z, fmax, t, y, dy, normalization="standard", n_bootstraps=1000, random_seed=None ): """Bootstrap estimate of the false alarm probability""" pmax = _bootstrap_max(t, y, dy, fmax, normalization, random_seed, n_bootstraps) return 1 - np.searchsorted(pmax, Z) / len(pmax) def inv_fap_bootstrap( fap, fmax, t, y, dy, normalization="standard", n_bootstraps=1000, random_seed=None ): """Bootstrap estimate of the inverse false alarm probability""" fap = np.asarray(fap) pmax = _bootstrap_max(t, y, dy, fmax, normalization, random_seed, n_bootstraps) return pmax[np.clip(np.floor((1 - fap) * len(pmax)).astype(int), 0, len(pmax) - 1)] METHODS = { "single": fap_single, "naive": fap_naive, "davies": fap_davies, "baluev": fap_baluev, "bootstrap": fap_bootstrap, } def false_alarm_probability( Z, fmax, t, y, dy, normalization="standard", method="baluev", method_kwds=None ): """Compute the approximate false alarm probability for periodogram peaks Z This gives an estimate of the false alarm probability for the largest value in a periodogram, based on the null hypothesis of non-varying data with Gaussian noise. The true probability cannot be computed analytically, so each method available here is an approximation to the true value. Parameters ---------- Z : array-like The periodogram value. fmax : float The maximum frequency of the periodogram. t, y, dy : array-like The data times, values, and errors. normalization : {'standard', 'model', 'log', 'psd'}, optional The periodogram normalization. method : {'baluev', 'davies', 'naive', 'bootstrap'}, optional The approximation method to use. method_kwds : dict, optional Additional method-specific keywords. Returns ------- false_alarm_probability : np.ndarray The false alarm probability. Notes ----- For normalization='psd', the distribution can only be computed for periodograms constructed with errors specified. See Also -------- false_alarm_level : compute the periodogram level for a particular fap References ---------- .. [1] Baluev, R.V. MNRAS 385, 1279 (2008) """ if method == "single": return fap_single(Z, len(t), normalization) elif method not in METHODS: raise ValueError(f"Unrecognized method: {method}") method = METHODS[method] method_kwds = method_kwds or {} return method(Z, fmax, t, y, dy, normalization, **method_kwds) INV_METHODS = { "single": inv_fap_single, "naive": inv_fap_naive, "davies": inv_fap_davies, "baluev": inv_fap_baluev, "bootstrap": inv_fap_bootstrap, } def false_alarm_level( p, fmax, t, y, dy, normalization, method="baluev", method_kwds=None ): """Compute the approximate periodogram level given a false alarm probability This gives an estimate of the periodogram level corresponding to a specified false alarm probability for the largest peak, assuming a null hypothesis of non-varying data with Gaussian noise. The true level cannot be computed analytically, so each method available here is an approximation to the true value. Parameters ---------- p : array-like The false alarm probability (0 < p < 1). fmax : float The maximum frequency of the periodogram. t, y, dy : arrays The data times, values, and errors. normalization : {'standard', 'model', 'log', 'psd'}, optional The periodogram normalization. method : {'baluev', 'davies', 'naive', 'bootstrap'}, optional The approximation method to use. method_kwds : dict, optional Additional method-specific keywords. Returns ------- z : np.ndarray The periodogram level. Notes ----- For normalization='psd', the distribution can only be computed for periodograms constructed with errors specified. See Also -------- false_alarm_probability : compute the fap for a given periodogram level References ---------- .. [1] Baluev, R.V. MNRAS 385, 1279 (2008) """ if method == "single": return inv_fap_single(p, len(t), normalization) elif method not in INV_METHODS: raise ValueError(f"Unrecognized method: {method}") method = INV_METHODS[method] method_kwds = method_kwds or {} return method(p, fmax, t, y, dy, normalization, **method_kwds)
93239015756ec36e1d684cf3938c60bc61bcdb97bf24cafb97c4f399440e233d
"""Main Lomb-Scargle Implementation""" import numpy as np from astropy import units from astropy import units as u from astropy.time import Time, TimeDelta from astropy.timeseries.periodograms.base import BasePeriodogram from . import _statistics from .implementations import available_methods, lombscargle from .implementations.mle import design_matrix, periodic_fit def has_units(obj): return hasattr(obj, "unit") def get_unit(obj): return getattr(obj, "unit", 1) def strip_units(*arrs): strip = lambda a: None if a is None else np.asarray(a) if len(arrs) == 1: return strip(arrs[0]) else: return map(strip, arrs) class LombScargle(BasePeriodogram): """Compute the Lomb-Scargle Periodogram. This implementations here are based on code presented in [1]_ and [2]_; if you use this functionality in an academic application, citation of those works would be appreciated. Parameters ---------- t : array-like or `~astropy.units.Quantity` ['time'] sequence of observation times y : array-like or `~astropy.units.Quantity` sequence of observations associated with times t dy : float, array-like, or `~astropy.units.Quantity`, optional error or sequence of observational errors associated with times t fit_mean : bool, optional if True, include a constant offset as part of the model at each frequency. This can lead to more accurate results, especially in the case of incomplete phase coverage. center_data : bool, optional if True, pre-center the data by subtracting the weighted mean of the input data. This is especially important if fit_mean = False nterms : int, optional number of terms to use in the Fourier fit normalization : {'standard', 'model', 'log', 'psd'}, optional Normalization to use for the periodogram. Examples -------- Generate noisy periodic data: >>> rand = np.random.default_rng(42) >>> t = 100 * rand.random(100) >>> y = np.sin(2 * np.pi * t) + rand.standard_normal(100) Compute the Lomb-Scargle periodogram on an automatically-determined frequency grid & find the frequency of max power: >>> frequency, power = LombScargle(t, y).autopower() >>> frequency[np.argmax(power)] # doctest: +FLOAT_CMP 1.0007641728995051 Compute the Lomb-Scargle periodogram at a user-specified frequency grid: >>> freq = np.arange(0.8, 1.3, 0.1) >>> LombScargle(t, y).power(freq) # doctest: +FLOAT_CMP array([0.0792948 , 0.01778874, 0.25328167, 0.01064157, 0.01471387]) If the inputs are astropy Quantities with units, the units will be validated and the outputs will also be Quantities with appropriate units: >>> from astropy import units as u >>> t = t * u.s >>> y = y * u.mag >>> frequency, power = LombScargle(t, y).autopower() >>> frequency.unit Unit("1 / s") >>> power.unit Unit(dimensionless) Note here that the Lomb-Scargle power is always a unitless quantity, because it is related to the :math:`\\chi^2` of the best-fit periodic model at each frequency. References ---------- .. [1] Vanderplas, J., Connolly, A. Ivezic, Z. & Gray, A. *Introduction to astroML: Machine learning for astrophysics*. Proceedings of the Conference on Intelligent Data Understanding (2012) .. [2] VanderPlas, J. & Ivezic, Z. *Periodograms for Multiband Astronomical Time Series*. ApJ 812.1:18 (2015) """ available_methods = available_methods() def __init__( self, t, y, dy=None, fit_mean=True, center_data=True, nterms=1, normalization="standard", ): # If t is a TimeDelta, convert it to a quantity. The units we convert # to don't really matter since the user gets a Quantity back at the end # so can convert to any units they like. if isinstance(t, TimeDelta): t = t.to("day") # We want to expose self.t as being the times the user passed in, but # if the times are absolute, we need to convert them to relative times # internally, so we use self._trel and self._tstart for this. self.t = t if isinstance(self.t, Time): self._tstart = self.t[0] trel = (self.t - self._tstart).to(u.day) else: self._tstart = None trel = self.t self._trel, self.y, self.dy = self._validate_inputs(trel, y, dy) self.fit_mean = fit_mean self.center_data = center_data self.nterms = nterms self.normalization = normalization def _validate_inputs(self, t, y, dy): # Validate shapes of inputs if dy is None: t, y = np.broadcast_arrays(t, y, subok=True) else: t, y, dy = np.broadcast_arrays(t, y, dy, subok=True) if t.ndim != 1: raise ValueError("Inputs (t, y, dy) must be 1-dimensional") # validate units of inputs if any is a Quantity if any(has_units(arr) for arr in (t, y, dy)): t, y = map(units.Quantity, (t, y)) if dy is not None: dy = units.Quantity(dy) try: dy = units.Quantity(dy, unit=y.unit) except units.UnitConversionError: raise ValueError("Units of dy not equivalent to units of y") return t, y, dy def _validate_frequency(self, frequency): frequency = np.asanyarray(frequency) if has_units(self._trel): frequency = units.Quantity(frequency) try: frequency = units.Quantity(frequency, unit=1.0 / self._trel.unit) except units.UnitConversionError: raise ValueError("Units of frequency not equivalent to units of 1/t") else: if has_units(frequency): raise ValueError("frequency have units while 1/t doesn't.") return frequency def _validate_t(self, t): t = np.asanyarray(t) if has_units(self._trel): t = units.Quantity(t) try: t = units.Quantity(t, unit=self._trel.unit) except units.UnitConversionError: raise ValueError("Units of t not equivalent to units of input self.t") return t def _power_unit(self, norm): if has_units(self.y): if self.dy is None and norm == "psd": return self.y.unit**2 else: return units.dimensionless_unscaled else: return 1 def autofrequency( self, samples_per_peak=5, nyquist_factor=5, minimum_frequency=None, maximum_frequency=None, return_freq_limits=False, ): """Determine a suitable frequency grid for data. Note that this assumes the peak width is driven by the observational baseline, which is generally a good assumption when the baseline is much larger than the oscillation period. If you are searching for periods longer than the baseline of your observations, this may not perform well. Even with a large baseline, be aware that the maximum frequency returned is based on the concept of "average Nyquist frequency", which may not be useful for irregularly-sampled data. The maximum frequency can be adjusted via the nyquist_factor argument, or through the maximum_frequency argument. Parameters ---------- samples_per_peak : float, optional The approximate number of desired samples across the typical peak nyquist_factor : float, optional The multiple of the average nyquist frequency used to choose the maximum frequency if maximum_frequency is not provided. minimum_frequency : float, optional If specified, then use this minimum frequency rather than one chosen based on the size of the baseline. maximum_frequency : float, optional If specified, then use this maximum frequency rather than one chosen based on the average nyquist frequency. return_freq_limits : bool, optional if True, return only the frequency limits rather than the full frequency grid. Returns ------- frequency : ndarray or `~astropy.units.Quantity` ['frequency'] The heuristically-determined optimal frequency bin """ baseline = self._trel.max() - self._trel.min() n_samples = self._trel.size df = 1.0 / baseline / samples_per_peak if minimum_frequency is None: minimum_frequency = 0.5 * df if maximum_frequency is None: avg_nyquist = 0.5 * n_samples / baseline maximum_frequency = nyquist_factor * avg_nyquist Nf = 1 + int(np.round((maximum_frequency - minimum_frequency) / df)) if return_freq_limits: return minimum_frequency, minimum_frequency + df * (Nf - 1) else: return minimum_frequency + df * np.arange(Nf) def autopower( self, method="auto", method_kwds=None, normalization=None, samples_per_peak=5, nyquist_factor=5, minimum_frequency=None, maximum_frequency=None, ): """Compute Lomb-Scargle power at automatically-determined frequencies. Parameters ---------- method : str, optional specify the lomb scargle implementation to use. Options are: - 'auto': choose the best method based on the input - 'fast': use the O[N log N] fast method. Note that this requires evenly-spaced frequencies: by default this will be checked unless ``assume_regular_frequency`` is set to True. - 'slow': use the O[N^2] pure-python implementation - 'cython': use the O[N^2] cython implementation. This is slightly faster than method='slow', but much more memory efficient. - 'chi2': use the O[N^2] chi2/linear-fitting implementation - 'fastchi2': use the O[N log N] chi2 implementation. Note that this requires evenly-spaced frequencies: by default this will be checked unless ``assume_regular_frequency`` is set to True. - 'scipy': use ``scipy.signal.lombscargle``, which is an O[N^2] implementation written in C. Note that this does not support heteroskedastic errors. method_kwds : dict, optional additional keywords to pass to the lomb-scargle method normalization : {'standard', 'model', 'log', 'psd'}, optional If specified, override the normalization specified at instantiation. samples_per_peak : float, optional The approximate number of desired samples across the typical peak nyquist_factor : float, optional The multiple of the average nyquist frequency used to choose the maximum frequency if maximum_frequency is not provided. minimum_frequency : float or `~astropy.units.Quantity` ['frequency'], optional If specified, then use this minimum frequency rather than one chosen based on the size of the baseline. Should be `~astropy.units.Quantity` if inputs to LombScargle are `~astropy.units.Quantity`. maximum_frequency : float or `~astropy.units.Quantity` ['frequency'], optional If specified, then use this maximum frequency rather than one chosen based on the average nyquist frequency. Should be `~astropy.units.Quantity` if inputs to LombScargle are `~astropy.units.Quantity`. Returns ------- frequency, power : ndarray The frequency and Lomb-Scargle power """ frequency = self.autofrequency( samples_per_peak=samples_per_peak, nyquist_factor=nyquist_factor, minimum_frequency=minimum_frequency, maximum_frequency=maximum_frequency, ) power = self.power( frequency, normalization=normalization, method=method, method_kwds=method_kwds, assume_regular_frequency=True, ) return frequency, power def power( self, frequency, normalization=None, method="auto", assume_regular_frequency=False, method_kwds=None, ): """Compute the Lomb-Scargle power at the given frequencies. Parameters ---------- frequency : array-like or `~astropy.units.Quantity` ['frequency'] frequencies (not angular frequencies) at which to evaluate the periodogram. Note that in order to use method='fast', frequencies must be regularly-spaced. method : str, optional specify the lomb scargle implementation to use. Options are: - 'auto': choose the best method based on the input - 'fast': use the O[N log N] fast method. Note that this requires evenly-spaced frequencies: by default this will be checked unless ``assume_regular_frequency`` is set to True. - 'slow': use the O[N^2] pure-python implementation - 'cython': use the O[N^2] cython implementation. This is slightly faster than method='slow', but much more memory efficient. - 'chi2': use the O[N^2] chi2/linear-fitting implementation - 'fastchi2': use the O[N log N] chi2 implementation. Note that this requires evenly-spaced frequencies: by default this will be checked unless ``assume_regular_frequency`` is set to True. - 'scipy': use ``scipy.signal.lombscargle``, which is an O[N^2] implementation written in C. Note that this does not support heteroskedastic errors. assume_regular_frequency : bool, optional if True, assume that the input frequency is of the form freq = f0 + df * np.arange(N). Only referenced if method is 'auto' or 'fast'. normalization : {'standard', 'model', 'log', 'psd'}, optional If specified, override the normalization specified at instantiation. method_kwds : dict, optional additional keywords to pass to the lomb-scargle method Returns ------- power : ndarray The Lomb-Scargle power at the specified frequency """ if normalization is None: normalization = self.normalization frequency = self._validate_frequency(frequency) power = lombscargle( *strip_units(self._trel, self.y, self.dy), frequency=strip_units(frequency), center_data=self.center_data, fit_mean=self.fit_mean, nterms=self.nterms, normalization=normalization, method=method, method_kwds=method_kwds, assume_regular_frequency=assume_regular_frequency, ) return power * self._power_unit(normalization) def _as_relative_time(self, name, times): """ Convert the provided times (if absolute) to relative times using the current _tstart value. If the times provided are relative, they are returned without conversion (though we still do some checks). """ if isinstance(times, TimeDelta): times = times.to("day") if self._tstart is None: if isinstance(times, Time): raise TypeError( f"{name} was provided as an absolute time but " "the LombScargle class was initialized " "with relative times." ) else: if isinstance(times, Time): times = (times - self._tstart).to(u.day) else: raise TypeError( f"{name} was provided as a relative time but " "the LombScargle class was initialized " "with absolute times." ) return times def model(self, t, frequency): """Compute the Lomb-Scargle model at the given frequency. The model at a particular frequency is a linear model: model = offset + dot(design_matrix, model_parameters) Parameters ---------- t : array-like or `~astropy.units.Quantity` ['time'] Times (length ``n_samples``) at which to compute the model. frequency : float the frequency for the model Returns ------- y : np.ndarray The model fit corresponding to the input times (will have length ``n_samples``). See Also -------- design_matrix offset model_parameters """ frequency = self._validate_frequency(frequency) t = self._validate_t(self._as_relative_time("t", t)) y_fit = periodic_fit( *strip_units(self._trel, self.y, self.dy), frequency=strip_units(frequency), t_fit=strip_units(t), center_data=self.center_data, fit_mean=self.fit_mean, nterms=self.nterms, ) return y_fit * get_unit(self.y) def offset(self): """Return the offset of the model The offset of the model is the (weighted) mean of the y values. Note that if self.center_data is False, the offset is 0 by definition. Returns ------- offset : scalar See Also -------- design_matrix model model_parameters """ y, dy = strip_units(self.y, self.dy) if dy is None: dy = 1 dy = np.broadcast_to(dy, y.shape) if self.center_data: w = dy**-2.0 y_mean = np.dot(y, w) / w.sum() else: y_mean = 0 return y_mean * get_unit(self.y) def model_parameters(self, frequency, units=True): r"""Compute the best-fit model parameters at the given frequency. The model described by these parameters is: .. math:: y(t; f, \vec{\theta}) = \theta_0 + \sum_{n=1}^{\tt nterms} [\theta_{2n-1}\sin(2\pi n f t) + \theta_{2n}\cos(2\pi n f t)] where :math:`\vec{\theta}` is the array of parameters returned by this function. Parameters ---------- frequency : float the frequency for the model units : bool If True (default), return design matrix with data units. Returns ------- theta : np.ndarray (n_parameters,) The best-fit model parameters at the given frequency. See Also -------- design_matrix model offset """ frequency = self._validate_frequency(frequency) t, y, dy = strip_units(self._trel, self.y, self.dy) if self.center_data: y = y - strip_units(self.offset()) dy = np.ones_like(y) if dy is None else np.asarray(dy) X = self.design_matrix(frequency) parameters = np.linalg.solve(np.dot(X.T, X), np.dot(X.T, y / dy)) if units: parameters = get_unit(self.y) * parameters return parameters def design_matrix(self, frequency, t=None): """Compute the design matrix for a given frequency Parameters ---------- frequency : float the frequency for the model t : array-like, `~astropy.units.Quantity`, or `~astropy.time.Time` (optional) Times (length ``n_samples``) at which to compute the model. If not specified, then the times and uncertainties of the input data are used. Returns ------- X : array The design matrix for the model at the given frequency. This should have a shape of (``len(t)``, ``n_parameters``). See Also -------- model model_parameters offset """ if t is None: t, dy = strip_units(self._trel, self.dy) else: t, dy = strip_units(self._validate_t(self._as_relative_time("t", t)), None) return design_matrix(t, frequency, dy, nterms=self.nterms, bias=self.fit_mean) def distribution(self, power, cumulative=False): """Expected periodogram distribution under the null hypothesis. This computes the expected probability distribution or cumulative probability distribution of periodogram power, under the null hypothesis of a non-varying signal with Gaussian noise. Note that this is not the same as the expected distribution of peak values; for that see the ``false_alarm_probability()`` method. Parameters ---------- power : array-like The periodogram power at which to compute the distribution. cumulative : bool, optional If True, then return the cumulative distribution. See Also -------- false_alarm_probability false_alarm_level Returns ------- dist : np.ndarray The probability density or cumulative probability associated with the provided powers. """ dH = 1 if self.fit_mean or self.center_data else 0 dK = dH + 2 * self.nterms dist = _statistics.cdf_single if cumulative else _statistics.pdf_single return dist(power, len(self._trel), self.normalization, dH=dH, dK=dK) def false_alarm_probability( self, power, method="baluev", samples_per_peak=5, nyquist_factor=5, minimum_frequency=None, maximum_frequency=None, method_kwds=None, ): """False alarm probability of periodogram maxima under the null hypothesis. This gives an estimate of the false alarm probability given the height of the largest peak in the periodogram, based on the null hypothesis of non-varying data with Gaussian noise. Parameters ---------- power : array-like The periodogram value. method : {'baluev', 'davies', 'naive', 'bootstrap'}, optional The approximation method to use. maximum_frequency : float The maximum frequency of the periodogram. method_kwds : dict, optional Additional method-specific keywords. Returns ------- false_alarm_probability : np.ndarray The false alarm probability Notes ----- The true probability distribution for the largest peak cannot be determined analytically, so each method here provides an approximation to the value. The available methods are: - "baluev" (default): the upper-limit to the alias-free probability, using the approach of Baluev (2008) [1]_. - "davies" : the Davies upper bound from Baluev (2008) [1]_. - "naive" : the approximate probability based on an estimated effective number of independent frequencies. - "bootstrap" : the approximate probability based on bootstrap resamplings of the input data. Note also that for normalization='psd', the distribution can only be computed for periodograms constructed with errors specified. See Also -------- distribution false_alarm_level References ---------- .. [1] Baluev, R.V. MNRAS 385, 1279 (2008) """ if self.nterms != 1: raise NotImplementedError( "false alarm probability is not implemented for multiterm periodograms." ) if not (self.fit_mean or self.center_data): raise NotImplementedError( "false alarm probability is implemented " "only for periodograms of centered data." ) fmin, fmax = self.autofrequency( samples_per_peak=samples_per_peak, nyquist_factor=nyquist_factor, minimum_frequency=minimum_frequency, maximum_frequency=maximum_frequency, return_freq_limits=True, ) return _statistics.false_alarm_probability( power, fmax=fmax, t=self._trel, y=self.y, dy=self.dy, normalization=self.normalization, method=method, method_kwds=method_kwds, ) def false_alarm_level( self, false_alarm_probability, method="baluev", samples_per_peak=5, nyquist_factor=5, minimum_frequency=None, maximum_frequency=None, method_kwds=None, ): """Level of maximum at a given false alarm probability. This gives an estimate of the periodogram level corresponding to a specified false alarm probability for the largest peak, assuming a null hypothesis of non-varying data with Gaussian noise. Parameters ---------- false_alarm_probability : array-like The false alarm probability (0 < fap < 1). maximum_frequency : float The maximum frequency of the periodogram. method : {'baluev', 'davies', 'naive', 'bootstrap'}, optional The approximation method to use; default='baluev'. method_kwds : dict, optional Additional method-specific keywords. Returns ------- power : np.ndarray The periodogram peak height corresponding to the specified false alarm probability. Notes ----- The true probability distribution for the largest peak cannot be determined analytically, so each method here provides an approximation to the value. The available methods are: - "baluev" (default): the upper-limit to the alias-free probability, using the approach of Baluev (2008) [1]_. - "davies" : the Davies upper bound from Baluev (2008) [1]_. - "naive" : the approximate probability based on an estimated effective number of independent frequencies. - "bootstrap" : the approximate probability based on bootstrap resamplings of the input data. The number of samples can be set with the method-specific keyword "n_bootstraps" (default=1000). Note also that for normalization='psd', the distribution can only be computed for periodograms constructed with errors specified. See Also -------- distribution false_alarm_probability References ---------- .. [1] Baluev, R.V. MNRAS 385, 1279 (2008) """ if self.nterms != 1: raise NotImplementedError( "false alarm probability is not implemented for multiterm periodograms." ) if not (self.fit_mean or self.center_data): raise NotImplementedError( "false alarm probability is implemented " "only for periodograms of centered data." ) fmin, fmax = self.autofrequency( samples_per_peak=samples_per_peak, nyquist_factor=nyquist_factor, minimum_frequency=minimum_frequency, maximum_frequency=maximum_frequency, return_freq_limits=True, ) return _statistics.false_alarm_level( false_alarm_probability, fmax=fmax, t=self._trel, y=self.y, dy=self.dy, normalization=self.normalization, method=method, method_kwds=method_kwds, )
0cd7fc74b671426ea6f43ef3daf080d3228389193cb6537bc1462aec494a92ec
import numpy as np NORMALIZATIONS = ["standard", "psd", "model", "log"] def compute_chi2_ref(y, dy=None, center_data=True, fit_mean=True): """Compute the reference chi-square for a particular dataset. Note: this is not valid center_data=False and fit_mean=False. Parameters ---------- y : array-like data values dy : float, array, or None, optional data uncertainties center_data : bool specify whether data should be pre-centered fit_mean : bool specify whether model should fit the mean of the data Returns ------- chi2_ref : float The reference chi-square for the periodogram of this data """ if dy is None: dy = 1 y, dy = np.broadcast_arrays(y, dy) w = dy**-2.0 if center_data or fit_mean: mu = np.dot(w, y) / w.sum() else: mu = 0 yw = (y - mu) / dy return np.dot(yw, yw) def convert_normalization(Z, N, from_normalization, to_normalization, chi2_ref=None): """Convert power from one normalization to another. This currently only works for standard & floating-mean models. Parameters ---------- Z : array-like the periodogram output N : int the number of data points from_normalization, to_normalization : str the normalization to convert from and to. Options are ['standard', 'model', 'log', 'psd'] chi2_ref : float The reference chi-square, required for converting to or from the psd normalization. Returns ------- Z_out : ndarray The periodogram in the new normalization """ Z = np.asarray(Z) from_to = (from_normalization, to_normalization) for norm in from_to: if norm not in NORMALIZATIONS: raise ValueError(f"{from_normalization} is not a valid normalization") if from_normalization == to_normalization: return Z if "psd" in from_to and chi2_ref is None: raise ValueError( "must supply reference chi^2 when converting to or from psd normalization" ) if from_to == ("log", "standard"): return 1 - np.exp(-Z) elif from_to == ("standard", "log"): return -np.log(1 - Z) elif from_to == ("log", "model"): return np.exp(Z) - 1 elif from_to == ("model", "log"): return np.log(Z + 1) elif from_to == ("model", "standard"): return Z / (1 + Z) elif from_to == ("standard", "model"): return Z / (1 - Z) elif from_normalization == "psd": return convert_normalization( 2 / chi2_ref * Z, N, from_normalization="standard", to_normalization=to_normalization, ) elif to_normalization == "psd": Z_standard = convert_normalization( Z, N, from_normalization=from_normalization, to_normalization="standard" ) return 0.5 * chi2_ref * Z_standard else: raise NotImplementedError( f"conversion from '{from_normalization}' to '{to_normalization}'" )
1530684e80bf7942738fcba0740583f8af3463e59acc7118684d925e3e8676c6
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np import pytest from numpy.testing import assert_allclose, assert_equal from astropy import units as u from astropy.tests.helper import assert_quantity_allclose from astropy.time import Time, TimeDelta from astropy.timeseries.periodograms.bls import BoxLeastSquares from astropy.timeseries.periodograms.lombscargle.core import has_units def assert_allclose_blsresults(blsresult, other, **kwargs): """Assert that another BoxLeastSquaresResults object is consistent This method loops over all attributes and compares the values using :func:`~astropy.tests.helper.assert_quantity_allclose` function. Parameters ---------- other : BoxLeastSquaresResults The other results object to compare. """ for k, v in blsresult.items(): if k not in other: raise AssertionError(f"missing key '{k}'") if k == "objective": assert ( v == other[k] ), f"Mismatched objectives. Expected '{v}', got '{other[k]}'" continue assert_quantity_allclose(v, other[k], **kwargs) # NOTE: PR 10644 replaced deprecated usage of RandomState but could not # find a new seed that did not cause test failure, resorted to hardcoding. @pytest.fixture def data(): t = np.array( [ 6.96469186, 2.86139335, 2.26851454, 5.51314769, 7.1946897, 4.2310646, 9.80764198, 6.84829739, 4.80931901, 3.92117518, 3.43178016, 7.29049707, 4.38572245, 0.59677897, 3.98044255, 7.37995406, 1.8249173, 1.75451756, 5.31551374, 5.31827587, 6.34400959, 8.49431794, 7.24455325, 6.11023511, 7.22443383, 3.22958914, 3.61788656, 2.28263231, 2.93714046, 6.30976124, 0.9210494, 4.33701173, 4.30862763, 4.93685098, 4.2583029, 3.12261223, 4.26351307, 8.93389163, 9.44160018, 5.01836676, 6.23952952, 1.15618395, 3.17285482, 4.14826212, 8.66309158, 2.50455365, 4.83034264, 9.85559786, 5.19485119, 6.12894526, 1.20628666, 8.26340801, 6.03060128, 5.45068006, 3.42763834, 3.04120789, 4.17022211, 6.81300766, 8.75456842, 5.10422337, 6.69313783, 5.85936553, 6.24903502, 6.74689051, 8.42342438, 0.83194988, 7.63682841, 2.43666375, 1.94222961, 5.72456957, 0.95712517, 8.85326826, 6.27248972, 7.23416358, 0.16129207, 5.94431879, 5.56785192, 1.58959644, 1.53070515, 6.95529529, 3.18766426, 6.91970296, 5.5438325, 3.88950574, 9.2513249, 8.41669997, 3.57397567, 0.43591464, 3.04768073, 3.98185682, 7.0495883, 9.95358482, 3.55914866, 7.62547814, 5.93176917, 6.91701799, 1.51127452, 3.98876293, 2.40855898, 3.43456014, 5.13128154, 6.6662455, 1.05908485, 1.30894951, 3.21980606, 6.61564337, 8.46506225, 5.53257345, 8.54452488, 3.84837811, 3.16787897, 3.54264676, 1.71081829, 8.29112635, 3.38670846, 5.52370075, 5.78551468, 5.21533059, 0.02688065, 9.88345419, 9.05341576, 2.07635861, 2.92489413, 5.20010153, 9.01911373, 9.83630885, 2.57542064, 5.64359043, 8.06968684, 3.94370054, 7.31073036, 1.61069014, 6.00698568, 8.65864458, 9.83521609, 0.7936579, 4.28347275, 2.0454286, 4.50636491, 5.47763573, 0.9332671, 2.96860775, 9.2758424, 5.69003731, 4.57411998, 7.53525991, 7.41862152, 0.48579033, 7.08697395, 8.39243348, 1.65937884, 7.80997938, 2.86536617, 3.06469753, 6.65261465, 1.11392172, 6.64872449, 8.87856793, 6.96311268, 4.40327877, 4.38214384, 7.65096095, 5.65642001, 0.84904163, 5.82671088, 8.14843703, 3.37066383, 9.2757658, 7.50717, 5.74063825, 7.51643989, 0.79148961, 8.59389076, 8.21504113, 9.0987166, 1.28631198, 0.81780087, 1.38415573, 3.9937871, 4.24306861, 5.62218379, 1.2224355, 2.01399501, 8.11644348, 4.67987574, 8.07938209, 0.07426379, 5.51592726, 9.31932148, 5.82175459, 2.06095727, 7.17757562, 3.7898585, 6.68383947, 0.29319723, 6.35900359, 0.32197935, 7.44780655, 4.72913002, 1.21754355, 5.42635926, 0.66774443, 6.53364871, 9.96086327, 7.69397337, 5.73774114, 1.02635259, 6.99834075, 6.61167867, 0.49097131, 7.92299302, 5.18716591, 4.25867694, 7.88187174, 4.11569223, 4.81026276, 1.81628843, 3.213189, 8.45532997, 1.86903749, 4.17291061, 9.89034507, 2.36599812, 9.16832333, 9.18397468, 0.91296342, 4.63652725, 5.02216335, 3.1366895, 0.47339537, 2.41685637, 0.95529642, 2.38249906, 8.07791086, 8.94978288, 0.43222892, 3.01946836, 9.80582199, 5.39504823, 6.26309362, 0.05545408, 4.84909443, 9.88328535, 3.75185527, 0.97038159, 4.61908762, 9.63004466, 3.41830614, 7.98922733, 7.98846331, 2.08248297, 4.43367702, 7.15601275, 4.10519785, 1.91006955, 9.67494307, 6.50750366, 8.65459852, 2.52423578e-01, 2.66905815, 5.02071100, 6.74486351e-01, 9.93033261, 2.36462396, 3.74292182, 2.14011915, 1.05445866, 2.32479786, 3.00610136, 6.34442268, 2.81234781, 3.62276761, 5.94284372e-02, 3.65719126, 5.33885982, 1.62015837, 5.97433108, 2.93152469, 6.32050495, 2.61966053e-01, 8.87593460, 1.61186304e-01, 1.26958031, 7.77162462, 4.58952322e-01, 7.10998694, 9.71046141, 8.71682933, 7.10161651, 9.58509743, 4.29813338, 8.72878914, 3.55957668, 9.29763653, 1.48777656, 9.40029015, 8.32716197, 8.46054838, 1.23923010, 5.96486898, 1.63924809e-01, 7.21184366, 7.73751413e-02, 8.48222774e-01, 2.25498410, 8.75124534, 3.63576318, 5.39959935, 5.68103214, 2.25463360, 5.72146768, 6.60951795, 2.98245393, 4.18626859, 4.53088925, 9.32350662, 5.87493747, 9.48252372, 5.56034754, 5.00561421, 3.53221097e-02, 4.80889044, 9.27454999, 1.98365689, 5.20911344e-01, 4.06778893, 3.72396481, 8.57153058, 2.66111156e-01, 9.20149230, 6.80902999, 9.04225994, 6.07529071, 8.11953312, 3.35543874, 3.49566228, 3.89874230, 7.54797082, 3.69291174, 2.42219806, 9.37668357, 9.08011084, 3.48797316, 6.34638070, 2.73842212, 2.06115129, 3.36339529, 3.27099893, 8.82276101, 8.22303815, 7.09623229, 9.59345225, 4.22543353, 2.45033039, 1.17398437, 3.01053358, 1.45263734, 9.21860974e-01, 6.02932197, 3.64187450, 5.64570343, 1.91335721, 6.76905860, 2.15505447, 2.78023594, 7.41760422, 5.59737896, 3.34836413, 5.42988783, 6.93984703, 9.12132121, 5.80713213, 2.32686379, 7.46697631, 7.77769018, 2.00401315, 8.20574220, 4.64934855, 7.79766662, 2.37478220, 3.32580270, 9.53697119, 6.57815073, 7.72877831, 6.88374343, 2.04304118, 4.70688748, 8.08963873, 6.75035127, 6.02788565e-02, 8.74077427e-01, 3.46794720, 9.44365540, 4.91190481, 2.70176267, 3.60423719, 2.10652628, 4.21200057, 2.18035440, 8.45752507, 4.56270599, 2.79802018, 9.32891648, 3.14351354, 9.09714662, 4.34180910e-01, 7.07115060, 4.83889039, 4.44221061, 3.63233444e-01, 4.06831905e-01, 3.32753617, 9.47119540, 6.17659977, 3.68874842, 6.11977039, 2.06131536, 1.65066443, 3.61817266, 8.63353352, 5.09401727, 2.96901516, 9.50251625, 8.15966090, 3.22973943, 9.72098245, 9.87351098, 4.08660134, 6.55923103, 4.05653198, 2.57348106, 8.26526760e-01, 2.63610346, 2.71479854, 3.98639080, 1.84886031, 9.53818403, 1.02879885, 6.25208533, 4.41697388, 4.23518049, 3.71991783, 8.68314710, 2.80476981, 2.05761574e-01, 9.18097016, 8.64480278, 2.76901790, 5.23487548, 1.09088197, 9.34270688e-01, 8.37466108, 4.10265718, 6.61716540, 9.43200558, 2.45130592, 1.31598313e-01, 2.41484058e-01, 7.09385692, 9.24551885, 4.67330273, 3.75109148, 5.42860425, 8.58916838, 6.52153874, 2.32979897, 7.74580205, 1.34613497, 1.65559971, 6.12682283, 2.38783406, 7.04778548, 3.49518527, 2.77423960, 9.98918406, 4.06161246e-01, 6.45822522, 3.86995850e-01, 7.60210258, 2.30089957, 8.98318671e-01, 6.48449712, 7.32601217, 6.78095315, 5.19009471e-01, 2.94306946, 4.51088346, 2.87103290, 8.10513456, 1.31115105, 6.12179362, 9.88214944, 9.02556539, 2.22157062, 8.18876137e-04, 9.80597342, 8.82712985, 9.19472466, 4.15503551, 7.44615462, ] ) y = np.ones_like(t) dy = np.array( [ 0.00606416, 0.00696152, 0.00925774, 0.00563806, 0.00946933, 0.00748254, 0.00713048, 0.00652823, 0.00958424, 0.00758812, 0.00902013, 0.00928826, 0.00961191, 0.0065169, 0.00669905, 0.00797537, 0.00720662, 0.00966421, 0.00698782, 0.00738889, 0.00808593, 0.0070237, 0.00996239, 0.00549426, 0.00610302, 0.00661328, 0.00573861, 0.0064211, 0.00889623, 0.00761446, 0.00516977, 0.00991311, 0.00808003, 0.0052947, 0.00830584, 0.00689185, 0.00567837, 0.00781832, 0.0086354, 0.00835563, 0.00623757, 0.00762433, 0.00768832, 0.00858402, 0.00679934, 0.00898866, 0.00813961, 0.00519166, 0.0077324, 0.00930956, 0.00783787, 0.00587914, 0.00755188, 0.00878473, 0.00555053, 0.0090855, 0.00583741, 0.00767038, 0.00692872, 0.00624312, 0.00823716, 0.00518696, 0.00880023, 0.0076347, 0.00937886, 0.00760359, 0.00517517, 0.005718, 0.00897802, 0.00745988, 0.0072094, 0.00659217, 0.00642275, 0.00982943, 0.00716485, 0.00942002, 0.00824082, 0.00929214, 0.00926225, 0.00978156, 0.00848971, 0.00902698, 0.00866564, 0.00802613, 0.00858677, 0.00857875, 0.00520454, 0.00758055, 0.00896326, 0.00621481, 0.00732574, 0.00717493, 0.00701394, 0.0056092, 0.00762856, 0.00723124, 0.00831696, 0.00774707, 0.00513771, 0.00515959, 0.0085068, 0.00853791, 0.0097997, 0.00938352, 0.0073403, 0.00812953, 0.00728591, 0.00611473, 0.00688338, 0.00551942, 0.00833264, 0.00596015, 0.00737734, 0.00983718, 0.00515834, 0.00575865, 0.0064929, 0.00970903, 0.00954421, 0.00581, 0.00990559, 0.00875374, 0.00769989, 0.00965851, 0.00940304, 0.00695658, 0.00828172, 0.00823693, 0.00663484, 0.00589695, 0.00733405, 0.00631641, 0.00677533, 0.00977072, 0.00730569, 0.00842446, 0.00668115, 0.00997931, 0.00829384, 0.00598005, 0.00549092, 0.0097159, 0.00972389, 0.00810664, 0.00508496, 0.00612767, 0.00900638, 0.0093773, 0.00726995, 0.0068276, 0.00637113, 0.00558485, 0.00557872, 0.00976301, 0.00904313, 0.0058239, 0.00603525, 0.00827776, 0.00882332, 0.00905157, 0.00581669, 0.00992064, 0.00613901, 0.00794708, 0.00793808, 0.00983681, 0.00828834, 0.00792452, 0.00759386, 0.00882329, 0.00553028, 0.00501046, 0.00976244, 0.00749329, 0.00664168, 0.00684027, 0.00901922, 0.00691185, 0.00885085, 0.00720231, 0.00922039, 0.00538102, 0.00740564, 0.00733425, 0.00632164, 0.00971807, 0.00952514, 0.00721798, 0.0054858, 0.00603392, 0.00635746, 0.0074211, 0.00669189, 0.00887068, 0.00738013, 0.00935185, 0.00997891, 0.00609918, 0.00805836, 0.00923751, 0.00972618, 0.00645043, 0.00863521, 0.00507508, 0.00939571, 0.00531969, 0.00866698, 0.00997305, 0.00750595, 0.00604667, 0.00797322, 0.00812075, 0.00834036, 0.00586306, 0.00949356, 0.00810496, 0.00521784, 0.00842021, 0.00598042, 0.0051367, 0.00775477, 0.00906657, 0.00929971, 0.0055176, 0.00831521, 0.00855038, 0.00647258, 0.00985682, 0.00639344, 0.00534991, 0.0075964, 0.00847157, 0.0062233, 0.00669291, 0.00781814, 0.00943339, 0.00873663, 0.00604796, 0.00625889, 0.0076194, 0.00884479, 0.00809381, 0.00750662, 0.00798563, 0.0087803, 0.0076854, 0.00948876, 0.00973534, 0.00957677, 0.00877259, 0.00623161, 0.00692636, 0.0064, 0.0082883, 0.00662111, 0.00877196, 0.00556755, 0.00887682, 0.00792951, 0.00917694, 0.00715438, 0.00812482, 0.00777206, 0.00987836, 0.00877737, 0.00772407, 0.00587016, 0.00952057, 0.00602919, 0.00825022, 0.00968236, 0.0061179, 0.00612962, 0.00925909, 0.00913828, 0.00675852, 0.00632548, 0.00563694, 0.00993968, 0.00917672, 0.00949696, 0.0075684, 0.00557192, 0.0052629, 0.00665291, 0.00960165, 0.00973791, 0.00920582, 0.0057934, 0.00709962, 0.00623121, 0.00602675, 0.00842413, 0.00743056, 0.00662455, 0.00550107, 0.00772382, 0.00673513, 0.00695548, 0.00655254, 0.00693598, 0.0077793, 0.00507072, 0.00923823, 0.0096096, 0.00775265, 0.00634011, 0.0099512, 0.00691597, 0.00846828, 0.00844976, 0.00717155, 0.00599579, 0.0098329, 0.00531845, 0.00742575, 0.00610365, 0.00646987, 0.00914264, 0.00683633, 0.00541674, 0.00598155, 0.00930187, 0.00988514, 0.00633991, 0.00837704, 0.00540599, 0.00861733, 0.00708218, 0.0095908, 0.00655768, 0.00970733, 0.00751624, 0.00674446, 0.0082351, 0.00624873, 0.00614882, 0.00598173, 0.0097995, 0.00746457, 0.00875807, 0.00736996, 0.0079377, 0.00792069, 0.00989943, 0.00834217, 0.00619885, 0.00507599, 0.00609341, 0.0072776, 0.0069671, 0.00906163, 0.00892778, 0.00544548, 0.00976005, 0.00763728, 0.00798202, 0.00702528, 0.0082475, 0.00935663, 0.00836968, 0.00985049, 0.00850561, 0.0091086, 0.0052252, 0.00836349, 0.00827376, 0.00550873, 0.00921194, 0.00807086, 0.00549164, 0.00797234, 0.00739208, 0.00616647, 0.00509878, 0.00682784, 0.00809926, 0.0066464, 0.00653627, 0.00875561, 0.00879312, 0.00859383, 0.00550591, 0.00758083, 0.00778899, 0.00872402, 0.00951589, 0.00684519, 0.00714332, 0.00866384, 0.00831318, 0.00778935, 0.0067507, 0.00597676, 0.00591904, 0.00540792, 0.005406, 0.00922899, 0.00691836, 0.0053037, 0.00948213, 0.00611635, 0.00634062, 0.00597249, 0.00983751, 0.0055627, 0.00861082, 0.00966044, 0.00834001, 0.00929363, 0.00621224, 0.00836964, 0.00850436, 0.00729166, 0.00935273, 0.00847193, 0.00947439, 0.00876602, 0.00760145, 0.00749344, 0.00726864, 0.00510823, 0.00767571, 0.00711487, 0.00578767, 0.00559535, 0.00724676, 0.00519957, 0.0099329, 0.0068906, 0.00691055, 0.00525563, 0.00713336, 0.00507873, 0.00515047, 0.0066955, 0.00910484, 0.00729411, 0.0050742, 0.0058161, 0.00869961, 0.00869147, 0.00877261, 0.00675835, 0.00676138, 0.00901038, 0.00699069, 0.00863596, 0.00790562, 0.00682171, 0.00540003, 0.00558063, 0.00944779, 0.0072617, 0.00997002, 0.00681948, 0.00624977, 0.0067527, 0.00671543, 0.00818678, 0.00506369, 0.00881634, 0.00708207, 0.0071612, 0.00740558, 0.00724606, 0.00748735, 0.00672952, 0.00726673, 0.00702326, 0.00759121, 0.00811635, 0.0062052, 0.00754219, 0.00797311, 0.00508474, 0.00760247, 0.00619647, 0.00702269, 0.00913265, 0.00663118, 0.00741608, 0.00512371, 0.00654375, 0.00819861, 0.00657581, 0.00602899, 0.00645328, 0.00977189, 0.00543401, 0.00731679, 0.00529193, 0.00769329, 0.00573018, 0.00817042, 0.00632199, 0.00845458, 0.00673573, 0.00502084, 0.00647447, ] ) period = 2.0 transit_time = 0.5 duration = 0.16 depth = 0.2 m = ( np.abs((t - transit_time + 0.5 * period) % period - 0.5 * period) < 0.5 * duration ) y[m] = 1.0 - depth randn_arr = np.array( [ -1.00326528e-02, -8.45644428e-01, 9.11460610e-01, -1.37449688e00, -5.47065645e-01, -7.55266106e-05, -1.21166803e-01, -2.00858547e00, -9.20646543e-01, 1.68234342e-01, -1.31989156e00, 1.26642930e00, 4.95180889e-01, -5.14240391e-01, -2.20292465e-01, 1.86156412e00, 9.35988451e-01, 3.80219145e-01, -1.41551877e00, 1.62961132e00, 1.05240107e00, -1.48405388e-01, -5.49698069e-01, -1.87903939e-01, -1.20193668e00, -4.70785558e-01, 7.63160514e-01, -1.80762128e00, -3.14074374e-01, 1.13755973e-01, 1.03568037e-01, -1.17893695e00, -1.18215289e00, 1.08916538e00, -1.22452909e00, 1.00865096e00, -4.82365315e-01, 1.07979635e00, -4.21078505e-01, -1.16647132e00, 8.56554856e-01, -1.73912222e-02, 1.44857659e00, 8.92200085e-01, -2.29426629e-01, -4.49667602e-01, 2.33723433e-02, 1.90210018e-01, -8.81748527e-01, 8.41939573e-01, -3.97363492e-01, -4.23027745e-01, -5.40688337e-01, 2.31017267e-01, -6.92052602e-01, 1.34970110e-01, 2.76660307e00, -5.36094601e-02, -4.34004738e-01, -1.66768923e00, 5.02219248e-02, -1.10923094e00, -3.75558119e-01, 1.51607594e-01, -1.73098945e00, 1.57462752e-01, 3.04515175e-01, -1.29710002e00, -3.92309192e-01, -1.83066636e00, 1.57550094e00, 3.30563277e-01, -1.79588501e-01, -1.63435831e-01, 1.13144361e00, -9.41655519e-02, 3.30816771e-01, 1.51862956e00, -3.46167148e-01, -1.09263532e00, -8.24500575e-01, 1.42866383e00, 9.14283085e-02, -5.02331288e-01, 9.73644380e-01, 9.97957386e-01, -4.75647768e-01, -9.71936837e-01, -1.57052860e00, -1.79388892e00, -2.64986452e-01, -8.93195947e-01, 1.85847441e00, 5.85377547e-02, -1.94214954e00, 1.41872928e00, 1.61710309e-01, 7.04979480e-01, 6.82034777e-01, 2.96556567e-01, 5.23342630e-01, 2.38760672e-01, -1.10638591e00, 3.66732198e-01, 1.02390550e00, -2.10056413e-01, 5.51302218e-01, 4.19589145e-01, 1.81565206e00, -2.52750301e-01, -2.92004163e-01, -1.16931740e-01, -1.02391075e-01, -2.27261771e00, -6.42609841e-01, 2.99885067e-01, -8.25651467e-03, -7.99339154e-01, -6.64779252e-01, -3.55613128e-01, -8.01571781e-01, -5.13050610e-01, -5.39390119e-01, 8.95370847e-01, 1.01639127e00, 9.33585094e-01, 4.26701799e-01, -7.08322484e-01, 9.59830450e-01, -3.14250587e-01, 2.30522083e-02, 1.33822053e00, 8.39928561e-02, 2.47284030e-01, -1.41277949e00, 4.87009294e-01, -9.80006647e-01, 1.01193966e00, -1.84599177e-01, -2.23616884e00, -3.58020103e-01, -2.28034538e-01, 4.85475226e-01, 6.70512391e-01, -3.27764245e-01, 1.01286819e00, -3.16705533e00, -7.13988998e-01, -1.11236427e00, -1.25418351e00, 9.59706371e-01, 8.29170399e-01, -7.75770020e-01, 1.17805700e00, 1.01466892e-01, -4.21684101e-01, -6.92922796e-01, -7.78271726e-01, 4.72774857e-01, 6.50154901e-01, 2.38501212e-01, -2.05021768e00, 2.96358656e-01, 5.65396564e-01, -6.69205605e-01, 4.32505429e-02, -1.86388430e00, -1.22996906e00, -3.24235348e-01, -3.09751144e-01, 3.51679372e-01, -1.18692539e00, -3.41206065e-01, -4.89779780e-01, 5.28010474e-01, 1.42104277e00, 1.72092032e00, -1.56844005e00, -4.80141918e-02, -1.11252931e00, -6.47449515e-02, 4.22919280e-01, 8.14908987e-02, -4.90116988e-02, 1.48303917e00, 7.20989392e-01, -2.72654462e-01, 2.42113609e-02, 8.70897807e-01, 6.09790506e-01, -4.25076104e-01, -1.77524284e00, -1.18465749e00, 1.45979225e-01, -1.78652685e00, -1.52394498e-01, -4.53569176e-01, 9.99252803e-01, -1.31804382e00, -1.93176898e00, -4.19640742e-01, 6.34763132e-01, 1.06991860e00, -9.09327017e-01, 4.70263748e-01, -1.11143045e00, -7.48827466e-01, 5.67594726e-01, 7.18150543e-01, -9.99380749e-01, 4.74898323e-01, -1.86849981e00, -2.02658907e-01, -1.13424803e00, -8.07699340e-01, -1.27607735e00, 5.53626395e-01, 5.53874470e-01, -6.91200445e-01, 3.75582306e-01, 2.61272553e-01, -1.28451754e-01, 2.15817020e00, -8.40878617e-01, 1.43050907e-02, -3.82387029e-01, -3.71780015e-01, 1.59412004e-01, -2.94395700e-01, -8.60426760e-01, 1.24227498e-01, 1.18233165e00, 9.42766380e-01, 2.03044488e-01, -7.35396814e-01, 1.86429600e-01, 1.08464302e00, 1.19118926e00, 3.59687060e-01, -3.64357200e-01, -2.02752749e-01, 7.72045927e-01, 6.86346215e-01, -1.75769961e00, 6.58617565e-01, 7.11288340e-01, -8.87191425e-01, -7.64981116e-01, -7.57164098e-01, -6.80262803e-01, -1.41674959e00, 3.13091930e-01, -7.85719399e-01, -7.03838361e-02, -4.97568783e-01, 2.55177521e-01, -1.01061704e00, 2.45265375e-01, 3.89781016e-01, 8.27594585e-01, 1.96776909e00, -2.09210177e00, 3.20314334e-01, -7.09162842e-01, -1.92505867e00, 8.41630623e-01, 1.33219988e00, -3.91627710e-01, 2.10916296e-01, -6.40767402e-02, 4.34197668e-01, 8.80535749e-01, 3.44937336e-01, 3.45769929e-01, 1.25973654e00, -1.64662222e-01, 9.23064571e-01, -8.22000422e-01, 1.60708495e00, 7.37825392e-01, -4.03759534e-01, -2.11454815e00, -3.10717131e-04, -1.18180941e00, 2.99634603e-01, 1.45116882e00, 1.60059793e-01, -1.78012614e-01, 3.42205404e-01, 2.85650196e-01, -2.36286411e00, 2.40936864e-01, 6.20277356e-01, -2.59341634e-01, 9.78559078e-01, -1.27674575e-01, 7.66998762e-01, 2.27310511e00, -9.63911290e-02, -1.94213217e00, -3.36591724e-01, -1.72589000e00, 6.11237826e-01, 1.30935097e00, 6.95879662e-01, 3.20308213e-01, -6.44925458e-01, 1.57564975e00, 7.53276212e-01, 2.84469557e-01, 2.04860319e-01, 1.11627359e-01, 4.52216424e-01, -6.13327179e-01, 1.52524993e00, 1.52339753e-01, 6.00054450e-01, -4.33567278e-01, 3.74918534e-01, -2.28175243e00, -1.11829888e00, -3.14131532e-02, -1.32247311e00, 2.43941406e00, -1.66808131e00, 3.45900749e-01, 1.65577315e00, 4.81287059e-01, -3.10227553e-01, -5.52144084e-01, 6.73255489e-01, -8.00270681e-01, -1.19486110e-01, 6.91198606e-01, -3.07879027e-01, 8.75100102e-02, -3.04086293e-01, -9.69797604e-01, 1.18915048e00, 1.39306624e00, -3.16699954e-01, -2.65576159e-01, -1.77899339e-01, 5.38803274e-01, -9.05300265e-01, -8.85253056e-02, 2.62959055e-01, 6.42042149e-01, -2.78083727e00, 4.03403210e-01, 3.45846762e-01, 1.00772824e00, -5.26264015e-01, -5.18353205e-01, 1.20251659e00, -1.56315671e00, 1.62909029e00, 2.55589446e00, 4.77451685e-01, 8.14098474e-01, -1.48958171e00, -6.94559787e-01, 1.05786255e00, 3.61815347e-01, -1.81427463e-01, 2.32869132e-01, 5.06976484e-01, -2.93095701e-01, -2.89459450e-02, -3.63073748e-02, -1.05227898e00, 3.23594628e-01, 1.80358591e00, 1.73196213e00, -1.47639930e00, 5.70631220e-01, 6.75503781e-01, -4.10510463e-01, -9.64200035e-01, -1.32081431e00, -4.44703779e-01, 3.50009137e-01, -1.58058176e-01, -6.10933088e-01, -1.24915663e00, 3.50716258e-01, 1.06654245e00, -9.26921972e-01, 4.48428964e-01, -1.87947524e00, -6.57466109e-01, 7.29604120e-01, -1.11776721e00, -6.04436725e-01, 1.41796683e00, -7.32843980e-01, -8.53944819e-01, 5.75848362e-01, 1.95473356e00, -2.39669947e-01, 7.68735860e-01, 1.34576918e00, 3.25552163e-01, -2.69917901e-01, -8.76326739e-01, -1.42521096e00, 1.11170175e00, 1.80957146e-01, 1.33280094e00, 9.88925316e-01, -6.16970520e-01, -1.18688670e00, 4.12669583e-01, -6.32506884e-01, 3.76689141e-01, -7.31151938e-01, -8.61225253e-01, -1.40990810e-01, 9.34100620e-01, 3.06539895e-01, 1.17837515e00, -1.23356170e00, -1.05707714e00, -8.91636992e-02, 2.16570138e00, 6.74286114e-01, -1.06661274e00, -7.61404530e-02, 2.20714791e-01, -5.68685746e-01, 6.13274991e-01, -1.56446138e-01, -2.99330718e-01, 1.26025679e00, -1.70966090e00, -9.61805342e-01, -8.17308981e-01, -8.47681070e-01, -7.28753045e-01, 4.88475958e-01, 1.09653283e00, 9.16041261e-01, -1.01956213e00, -1.07417899e-01, 4.52265213e-01, 2.40002952e-01, 1.30574740e00, -6.75334236e-01, 1.56319421e-01, -3.93230715e-01, 2.51075019e-01, -1.07889691e00, -9.28937721e-01, -7.30110860e-01, -5.63669311e-01, 1.54792327e00, 1.17540191e00, -2.12649671e-01, 1.72933294e-01, -1.59443602e00, -1.79292347e-01, 1.59614713e-01, 1.14568421e00, 3.26804720e-01, 4.32890059e-01, 2.97762890e-01, 2.69001190e-01, -1.39675918e00, -4.16757668e-01, 1.43488680e00, 8.23896443e-01, 4.94234499e-01, 6.67153092e-02, 6.59441396e-01, -9.44889409e-01, -1.58005956e00, -3.82086552e-01, 5.37923058e-01, 1.07829882e-01, 1.01395868e00, 3.51450517e-01, 4.48421962e-02, 1.32748495e00, 1.13237578e00, -9.80913012e-02, -1.10304986e00, -9.07361492e-01, -1.61451138e-01, -3.66811384e-01, 1.65776233e00, -1.68013415e00, -6.42577869e-02, -1.06622649e00, 1.16801869e-01, 3.82264833e-01, -4.04896974e-01, 5.30481414e-01, -1.98626941e-01, -1.79395613e-01, -4.17888725e-01, ] ) y += dy * randn_arr return ( t, y, dy, dict(period=period, transit_time=transit_time, duration=duration, depth=depth), ) def test_32bit_bug(): rand = np.random.default_rng(42) t = rand.uniform(0, 10, 500) y = np.ones_like(t) y[np.abs((t + 1.0) % 2.0 - 1) < 0.08] = 1.0 - 0.1 y += 0.01 * rand.standard_normal(len(t)) model = BoxLeastSquares(t, y) results = model.autopower(0.16) assert_allclose(results.period[np.argmax(results.power)], 2.000412388152837) periods = np.linspace(1.9, 2.1, 5) results = model.power(periods, 0.16) assert_allclose( results.power, [0.01723948, 0.0643028, 0.1338783, 0.09428816, 0.03577543], rtol=1.1e-7, ) @pytest.mark.parametrize("objective", ["likelihood", "snr"]) def test_correct_model(data, objective): t, y, dy, params = data model = BoxLeastSquares(t, y, dy) periods = np.exp( np.linspace( np.log(params["period"]) - 0.1, np.log(params["period"]) + 0.1, 1000 ) ) results = model.power(periods, params["duration"], objective=objective) ind = np.argmax(results.power) for k, v in params.items(): assert_allclose(results[k][ind], v, atol=0.01) chi = (results.depth[ind] - params["depth"]) / results.depth_err[ind] assert np.abs(chi) < 1 @pytest.mark.parametrize("objective", ["likelihood", "snr"]) @pytest.mark.parametrize("offset", [False, True]) def test_fast_method(data, objective, offset): t, y, dy, params = data if offset: t = t - params["transit_time"] + params["period"] model = BoxLeastSquares(t, y, dy) periods = np.exp( np.linspace(np.log(params["period"]) - 1, np.log(params["period"]) + 1, 10) ) durations = params["duration"] results = model.power(periods, durations, objective=objective) assert_allclose_blsresults( results, model.power(periods, durations, method="slow", objective=objective) ) def test_input_units(data): t, y, dy, params = data t_unit = u.day y_unit = u.mag with pytest.raises(u.UnitConversionError): BoxLeastSquares(t * t_unit, y * y_unit, dy * u.one) with pytest.raises(u.UnitConversionError): BoxLeastSquares(t * t_unit, y * u.one, dy * y_unit) with pytest.raises(u.UnitConversionError): BoxLeastSquares(t * t_unit, y, dy * y_unit) model = BoxLeastSquares(t * t_unit, y * u.one, dy) assert model.dy.unit == model.y.unit model = BoxLeastSquares(t * t_unit, y * y_unit, dy) assert model.dy.unit == model.y.unit model = BoxLeastSquares(t * t_unit, y * y_unit) assert model.dy is None def test_period_units(data): t, y, dy, params = data t_unit = u.day y_unit = u.mag model = BoxLeastSquares(t * t_unit, y * y_unit, dy) p = model.autoperiod(params["duration"]) assert p.unit == t_unit p = model.autoperiod(params["duration"] * 24 * u.hour) assert p.unit == t_unit with pytest.raises(u.UnitConversionError): model.autoperiod(params["duration"] * u.mag) p = model.autoperiod(params["duration"], minimum_period=0.5) assert p.unit == t_unit with pytest.raises(u.UnitConversionError): p = model.autoperiod(params["duration"], minimum_period=0.5 * u.mag) p = model.autoperiod(params["duration"], maximum_period=0.5) assert p.unit == t_unit with pytest.raises(u.UnitConversionError): p = model.autoperiod(params["duration"], maximum_period=0.5 * u.mag) p = model.autoperiod(params["duration"], minimum_period=0.5, maximum_period=1.5) p2 = model.autoperiod(params["duration"], maximum_period=0.5, minimum_period=1.5) assert_quantity_allclose(p, p2) @pytest.mark.parametrize("method", ["fast", "slow"]) @pytest.mark.parametrize("with_err", [True, False]) @pytest.mark.parametrize("t_unit", [None, u.day]) @pytest.mark.parametrize("y_unit", [None, u.mag]) @pytest.mark.parametrize("objective", ["likelihood", "snr"]) def test_results_units(data, method, with_err, t_unit, y_unit, objective): t, y, dy, params = data periods = np.linspace(params["period"] - 1.0, params["period"] + 1.0, 3) if t_unit is not None: t = t * t_unit if y_unit is not None: y = y * y_unit dy = dy * y_unit if not with_err: dy = None model = BoxLeastSquares(t, y, dy) results = model.power( periods, params["duration"], method=method, objective=objective ) if t_unit is None: assert not has_units(results.period) assert not has_units(results.duration) assert not has_units(results.transit_time) else: assert results.period.unit == t_unit assert results.duration.unit == t_unit assert results.transit_time.unit == t_unit if y_unit is None: assert not has_units(results.power) assert not has_units(results.depth) assert not has_units(results.depth_err) assert not has_units(results.depth_snr) assert not has_units(results.log_likelihood) else: assert results.depth.unit == y_unit assert results.depth_err.unit == y_unit assert results.depth_snr.unit == u.one if dy is None: assert results.log_likelihood.unit == y_unit * y_unit if objective == "snr": assert results.power.unit == u.one else: assert results.power.unit == y_unit * y_unit else: assert results.log_likelihood.unit == u.one assert results.power.unit == u.one def test_autopower(data): t, y, dy, params = data duration = params["duration"] + np.linspace(-0.1, 0.1, 3) model = BoxLeastSquares(t, y, dy) period = model.autoperiod(duration) results1 = model.power(period, duration) results2 = model.autopower(duration) assert_allclose_blsresults(results1, results2) @pytest.mark.parametrize("with_units", [True, False]) def test_model(data, with_units): t, y, dy, params = data # Compute the model using linear regression A = np.zeros((len(t), 2)) p = params["period"] dt = np.abs((t - params["transit_time"] + 0.5 * p) % p - 0.5 * p) m_in = dt < 0.5 * params["duration"] A[~m_in, 0] = 1.0 A[m_in, 1] = 1.0 w = np.linalg.solve(np.dot(A.T, A / dy[:, None] ** 2), np.dot(A.T, y / dy**2)) model_true = np.dot(A, w) if with_units: t = t * u.day y = y * u.mag dy = dy * u.mag model_true = model_true * u.mag # Compute the model using the periodogram pgram = BoxLeastSquares(t, y, dy) model = pgram.model(t, p, params["duration"], params["transit_time"]) # Make sure that the transit mask is consistent with the model transit_mask = pgram.transit_mask(t, p, params["duration"], params["transit_time"]) transit_mask0 = (model - model.max()) < 0.0 assert_allclose(transit_mask, transit_mask0) assert_quantity_allclose(model, model_true) @pytest.mark.parametrize("shape", [(1,), (2,), (3,), (2, 3)]) def test_shapes(data, shape): t, y, dy, params = data duration = params["duration"] model = BoxLeastSquares(t, y, dy) period = np.empty(shape) period.flat = np.linspace(params["period"] - 1, params["period"] + 1, period.size) if len(period.shape) > 1: with pytest.raises(ValueError): results = model.power(period, duration) else: results = model.power(period, duration) for k, v in results.items(): if k == "objective": continue assert v.shape == shape @pytest.mark.parametrize("with_units", [True, False]) @pytest.mark.parametrize("with_err", [True, False]) def test_compute_stats(data, with_units, with_err): t, y, dy, params = data y_unit = 1 if with_units: y_unit = u.mag t = t * u.day y = y * u.mag dy = dy * u.mag params["period"] = params["period"] * u.day params["duration"] = params["duration"] * u.day params["transit_time"] = params["transit_time"] * u.day params["depth"] = params["depth"] * u.mag if not with_err: dy = None model = BoxLeastSquares(t, y, dy) results = model.power(params["period"], params["duration"], oversample=1000) stats = model.compute_stats( params["period"], params["duration"], params["transit_time"] ) # Test the calculated transit times tt = params["period"] * np.arange(int(t.max() / params["period"]) + 1) tt += params["transit_time"] assert_quantity_allclose(tt, stats["transit_times"]) # Test that the other parameters are consistent with the periodogram assert_allclose(stats["per_transit_count"], [9, 7, 7, 7, 8]) assert_quantity_allclose( np.sum(stats["per_transit_log_likelihood"]), results["log_likelihood"] ) assert_quantity_allclose(stats["depth"][0], results["depth"]) # Check the half period result results_half = model.power( 0.5 * params["period"], params["duration"], oversample=1000 ) assert_quantity_allclose(stats["depth_half"][0], results_half["depth"]) # Skip the uncertainty tests when the input errors are None if not with_err: assert_quantity_allclose( stats["harmonic_amplitude"], 0.029945029964964204 * y_unit ) assert_quantity_allclose( stats["harmonic_delta_log_likelihood"], -0.5875918155223113 * y_unit * y_unit, ) return assert_quantity_allclose(stats["harmonic_amplitude"], 0.033027988742275853 * y_unit) assert_quantity_allclose( stats["harmonic_delta_log_likelihood"], -12407.505922833765 ) assert_quantity_allclose(stats["depth"][1], results["depth_err"]) assert_quantity_allclose(stats["depth_half"][1], results_half["depth_err"]) for f, k in zip( (1.0, 1.0, 1.0, 0.0), ("depth", "depth_even", "depth_odd", "depth_phased") ): res = np.abs((stats[k][0] - f * params["depth"]) / stats[k][1]) assert res < 1, f"f={f}, k={k}, res={res}" def test_negative_times(data): t, y, dy, params = data mu = np.mean(t) duration = params["duration"] + np.linspace(-0.1, 0.1, 3) model1 = BoxLeastSquares(t, y, dy) results1 = model1.autopower(duration) # Compute the periodogram with offset (negative) times model2 = BoxLeastSquares(t - mu, y, dy) results2 = model2.autopower(duration) # Shift the transit times back into the unshifted coordinates results2.transit_time = (results2.transit_time + mu) % results2.period assert_allclose_blsresults(results1, results2) @pytest.mark.parametrize("timedelta", [False, True]) def test_absolute_times(data, timedelta): # Make sure that we handle absolute times correctly. We also check that # TimeDelta works properly when timedelta is True. # The example data uses relative times t, y, dy, params = data # Add units t = t * u.day y = y * u.mag dy = dy * u.mag # We now construct a set of absolute times but keeping the rest the same. start = Time("2019-05-04T12:34:56") trel = TimeDelta(t) if timedelta else t t = trel + start # and we set up two instances of BoxLeastSquares, one with absolute and one # with relative times. bls1 = BoxLeastSquares(t, y, dy) bls2 = BoxLeastSquares(trel, y, dy) results1 = bls1.autopower(0.16 * u.day) results2 = bls2.autopower(0.16 * u.day) # All the results should match except transit time which should be # absolute instead of relative in the first case. for key in results1: if key == "transit_time": assert_quantity_allclose((results1[key] - start).to(u.day), results2[key]) elif key == "objective": assert results1[key] == results2[key] else: assert_allclose(results1[key], results2[key]) # Check that model evaluation works fine model1 = bls1.model(t, 0.2 * u.day, 0.05 * u.day, Time("2019-06-04T12:34:56")) model2 = bls2.model(trel, 0.2 * u.day, 0.05 * u.day, TimeDelta(1 * u.day)) assert_quantity_allclose(model1, model2) # Check model validation MESSAGE = ( r"{} was provided as {} time but the BoxLeastSquares class was initialized with" r" {} times\." ) with pytest.raises( TypeError, match=MESSAGE.format("transit_time", "a relative", "absolute") ): bls1.model(t, 0.2 * u.day, 0.05 * u.day, 1 * u.day) with pytest.raises( TypeError, match=MESSAGE.format("t_model", "a relative", "absolute") ): bls1.model(trel, 0.2 * u.day, 0.05 * u.day, Time("2019-06-04T12:34:56")) with pytest.raises( TypeError, match=MESSAGE.format("transit_time", "an absolute", "relative") ): bls2.model(trel, 0.2 * u.day, 0.05 * u.day, Time("2019-06-04T12:34:56")) with pytest.raises( TypeError, match=MESSAGE.format("t_model", "an absolute", "relative") ): bls2.model(t, 0.2 * u.day, 0.05 * u.day, 1 * u.day) # Check compute_stats stats1 = bls1.compute_stats(0.2 * u.day, 0.05 * u.day, Time("2019-06-04T12:34:56")) stats2 = bls2.compute_stats(0.2 * u.day, 0.05 * u.day, 1 * u.day) for key in stats1: if key == "transit_times": assert_quantity_allclose( (stats1[key] - start).to(u.day), stats2[key], atol=1e-10 * u.day ) elif key.startswith("depth"): for value1, value2 in zip(stats1[key], stats2[key]): assert_quantity_allclose(value1, value2) else: assert_allclose(stats1[key], stats2[key]) # Check compute_stats validation MESSAGE = ( r"{} was provided as {} time but the BoxLeastSquares class was" r" initialized with {} times\." ) with pytest.raises( TypeError, match=MESSAGE.format("transit_time", "a relative", "absolute") ): bls1.compute_stats(0.2 * u.day, 0.05 * u.day, 1 * u.day) with pytest.raises( TypeError, match=MESSAGE.format("transit_time", "an absolute", "relative") ): bls2.compute_stats(0.2 * u.day, 0.05 * u.day, Time("2019-06-04T12:34:56")) # Check transit_mask mask1 = bls1.transit_mask(t, 0.2 * u.day, 0.05 * u.day, Time("2019-06-04T12:34:56")) mask2 = bls2.transit_mask(trel, 0.2 * u.day, 0.05 * u.day, 1 * u.day) assert_equal(mask1, mask2) # Check transit_mask validation with pytest.raises( TypeError, match=MESSAGE.format("transit_time", "a relative", "absolute") ): bls1.transit_mask(t, 0.2 * u.day, 0.05 * u.day, 1 * u.day) with pytest.raises(TypeError, match=MESSAGE.format("t", "a relative", "absolute")): bls1.transit_mask(trel, 0.2 * u.day, 0.05 * u.day, Time("2019-06-04T12:34:56")) with pytest.raises( TypeError, match=MESSAGE.format("transit_time", "an absolute", "relative") ): bls2.transit_mask(trel, 0.2 * u.day, 0.05 * u.day, Time("2019-06-04T12:34:56")) with pytest.raises(TypeError, match=MESSAGE.format("t", "an absolute", "relative")): bls2.transit_mask(t, 0.2 * u.day, 0.05 * u.day, 1 * u.day) def test_transit_time_in_range(data): t, y, dy, params = data t_ref = 10230.0 t2 = t + t_ref bls1 = BoxLeastSquares(t, y, dy) bls2 = BoxLeastSquares(t2, y, dy) results1 = bls1.autopower(0.16) results2 = bls2.autopower(0.16) assert np.allclose(results1.transit_time, results2.transit_time - t_ref) assert np.all(results1.transit_time >= t.min()) assert np.all(results1.transit_time <= t.max()) assert np.all(results2.transit_time >= t2.min()) assert np.all(results2.transit_time <= t2.max())
1a626db0ba5d3ef2c28310ab99090e7391922732bbee1e0fa7ee0cf856999178
import numpy as np from .mle import design_matrix def lombscargle_chi2( t, y, dy, frequency, normalization="standard", fit_mean=True, center_data=True, nterms=1, ): """Lomb-Scargle Periodogram This implements a chi-squared-based periodogram, which is relatively slow but useful for validating the faster algorithms in the package. Parameters ---------- t, y, dy : array-like times, values, and errors of the data points. These should be broadcastable to the same shape. None should be `~astropy.units.Quantity``. frequency : array-like frequencies (not angular frequencies) at which to calculate periodogram normalization : str, optional Normalization to use for the periodogram. Options are 'standard', 'model', 'log', or 'psd'. fit_mean : bool, optional if True, include a constant offset as part of the model at each frequency. This can lead to more accurate results, especially in the case of incomplete phase coverage. center_data : bool, optional if True, pre-center the data by subtracting the weighted mean of the input data. This is especially important if ``fit_mean = False`` nterms : int, optional Number of Fourier terms in the fit Returns ------- power : array-like Lomb-Scargle power associated with each frequency. Units of the result depend on the normalization. References ---------- .. [1] M. Zechmeister and M. Kurster, A&A 496, 577-584 (2009) .. [2] W. Press et al, Numerical Recipes in C (2002) .. [3] Scargle, J.D. 1982, ApJ 263:835-853 """ if dy is None: dy = 1 t, y, dy = np.broadcast_arrays(t, y, dy) frequency = np.asarray(frequency) if t.ndim != 1: raise ValueError("t, y, dy should be one dimensional") if frequency.ndim != 1: raise ValueError("frequency should be one-dimensional") w = dy**-2.0 w /= w.sum() # if fit_mean is true, centering the data now simplifies the math below. if center_data or fit_mean: yw = (y - np.dot(w, y)) / dy else: yw = y / dy chi2_ref = np.dot(yw, yw) # compute the unnormalized model chi2 at each frequency def compute_power(f): X = design_matrix(t, f, dy=dy, bias=fit_mean, nterms=nterms) XTX = np.dot(X.T, X) XTy = np.dot(X.T, yw) return np.dot(XTy.T, np.linalg.solve(XTX, XTy)) p = np.array([compute_power(f) for f in frequency]) if normalization == "psd": p *= 0.5 elif normalization == "model": p /= chi2_ref - p elif normalization == "log": p = -np.log(1 - p / chi2_ref) elif normalization == "standard": p /= chi2_ref else: raise ValueError(f"normalization='{normalization}' not recognized") return p
197953484a1a5dcc4ba5ad0e973da8137073dce587196fec2d22e527612cf49a
""" Main Lomb-Scargle Implementation The ``lombscargle`` function here is essentially a sophisticated switch statement for the various implementations available in this submodule """ __all__ = ["lombscargle", "available_methods"] import numpy as np from .chi2_impl import lombscargle_chi2 from .cython_impl import lombscargle_cython from .fast_impl import lombscargle_fast from .fastchi2_impl import lombscargle_fastchi2 from .scipy_impl import lombscargle_scipy from .slow_impl import lombscargle_slow METHODS = { "slow": lombscargle_slow, "fast": lombscargle_fast, "chi2": lombscargle_chi2, "scipy": lombscargle_scipy, "fastchi2": lombscargle_fastchi2, "cython": lombscargle_cython, } def available_methods(): methods = ["auto", "slow", "chi2", "cython", "fast", "fastchi2"] # Scipy required for scipy algorithm (obviously) try: import scipy # noqa: F401 except ImportError: pass else: methods.append("scipy") return methods def _is_regular(frequency): frequency = np.asarray(frequency) if frequency.ndim != 1: return False elif len(frequency) == 1: return True else: diff = np.diff(frequency) return np.allclose(diff[0], diff) def _get_frequency_grid(frequency, assume_regular_frequency=False): """Utility to get grid parameters from a frequency array Parameters ---------- frequency : array-like or `~astropy.units.Quantity` ['frequency'] input frequency grid assume_regular_frequency : bool (default = False) if True, then do not check whether frequency is a regular grid Returns ------- f0, df, N : scalar Parameters such that all(frequency == f0 + df * np.arange(N)) """ frequency = np.asarray(frequency) if frequency.ndim != 1: raise ValueError("frequency grid must be 1 dimensional") elif len(frequency) == 1: return frequency[0], frequency[0], 1 elif not (assume_regular_frequency or _is_regular(frequency)): raise ValueError("frequency must be a regular grid") return frequency[0], frequency[1] - frequency[0], len(frequency) def validate_method(method, dy, fit_mean, nterms, frequency, assume_regular_frequency): """ Validate the method argument, and if method='auto' choose the appropriate method """ methods = available_methods() prefer_fast = len(frequency) > 200 and ( assume_regular_frequency or _is_regular(frequency) ) prefer_scipy = "scipy" in methods and dy is None and not fit_mean # automatically choose the appropriate method if method == "auto": if nterms != 1: if prefer_fast: method = "fastchi2" else: method = "chi2" elif prefer_fast: method = "fast" elif prefer_scipy: method = "scipy" else: method = "cython" if method not in METHODS: raise ValueError(f"invalid method: {method}") return method def lombscargle( t, y, dy=None, frequency=None, method="auto", assume_regular_frequency=False, normalization="standard", fit_mean=True, center_data=True, method_kwds=None, nterms=1, ): """ Compute the Lomb-scargle Periodogram with a given method. Parameters ---------- t : array-like sequence of observation times y : array-like sequence of observations associated with times t dy : float or array-like, optional error or sequence of observational errors associated with times t frequency : array-like frequencies (not angular frequencies) at which to evaluate the periodogram. If not specified, optimal frequencies will be chosen using a heuristic which will attempt to provide sufficient frequency range and sampling so that peaks will not be missed. Note that in order to use method='fast', frequencies must be regularly spaced. method : str, optional specify the lomb scargle implementation to use. Options are: - 'auto': choose the best method based on the input - 'fast': use the O[N log N] fast method. Note that this requires evenly-spaced frequencies: by default this will be checked unless ``assume_regular_frequency`` is set to True. - `slow`: use the O[N^2] pure-python implementation - `chi2`: use the O[N^2] chi2/linear-fitting implementation - `fastchi2`: use the O[N log N] chi2 implementation. Note that this requires evenly-spaced frequencies: by default this will be checked unless `assume_regular_frequency` is set to True. - `scipy`: use ``scipy.signal.lombscargle``, which is an O[N^2] implementation written in C. Note that this does not support heteroskedastic errors. assume_regular_frequency : bool, optional if True, assume that the input frequency is of the form freq = f0 + df * np.arange(N). Only referenced if method is 'auto' or 'fast'. normalization : str, optional Normalization to use for the periodogram. Options are 'standard' or 'psd'. fit_mean : bool, optional if True, include a constant offset as part of the model at each frequency. This can lead to more accurate results, especially in the case of incomplete phase coverage. center_data : bool, optional if True, pre-center the data by subtracting the weighted mean of the input data. This is especially important if `fit_mean = False` method_kwds : dict, optional additional keywords to pass to the lomb-scargle method nterms : int, optional number of Fourier terms to use in the periodogram. Not supported with every method. Returns ------- PLS : array-like Lomb-Scargle power associated with each frequency omega """ # frequencies should be one-dimensional arrays output_shape = frequency.shape frequency = frequency.ravel() # we'll need to adjust args and kwds for each method args = (t, y, dy) kwds = dict( frequency=frequency, center_data=center_data, fit_mean=fit_mean, normalization=normalization, nterms=nterms, **(method_kwds or {}), ) method = validate_method( method, dy=dy, fit_mean=fit_mean, nterms=nterms, frequency=frequency, assume_regular_frequency=assume_regular_frequency, ) # scipy doesn't support dy or fit_mean=True if method == "scipy": if kwds.pop("fit_mean"): raise ValueError("scipy method does not support fit_mean=True") if dy is not None: dy = np.ravel(np.asarray(dy)) if not np.allclose(dy[0], dy): raise ValueError("scipy method only supports uniform uncertainties dy") args = (t, y) # fast methods require frequency expressed as a grid if method.startswith("fast"): f0, df, Nf = _get_frequency_grid( kwds.pop("frequency"), assume_regular_frequency ) kwds.update(f0=f0, df=df, Nf=Nf) # only chi2 methods support nterms if not method.endswith("chi2"): if kwds.pop("nterms") != 1: raise ValueError( "nterms != 1 only supported with 'chi2' or 'fastchi2' methods" ) PLS = METHODS[method](*args, **kwds) return PLS.reshape(output_shape)
b5d7ba97f1f072640da9519356933e3e7e9d7ebb2e8bb23fdfd4b1cbd1484553
"""Various implementations of the Lomb-Scargle Periodogram""" from .chi2_impl import lombscargle_chi2 from .fast_impl import lombscargle_fast from .fastchi2_impl import lombscargle_fastchi2 from .main import available_methods, lombscargle from .scipy_impl import lombscargle_scipy from .slow_impl import lombscargle_slow
c381fc947ab952fb2c509401c23fa371c97f7b646e899c0a70fac917df67c258
import numpy as np from .utils import trig_sum def lombscargle_fast( t, y, dy, f0, df, Nf, center_data=True, fit_mean=True, normalization="standard", use_fft=True, trig_sum_kwds=None, ): """Fast Lomb-Scargle Periodogram This implements the Press & Rybicki method [1]_ for fast O[N log(N)] Lomb-Scargle periodograms. Parameters ---------- t, y, dy : array-like times, values, and errors of the data points. These should be broadcastable to the same shape. None should be `~astropy.units.Quantity`. f0, df, Nf : (float, float, int) parameters describing the frequency grid, f = f0 + df * arange(Nf). center_data : bool (default=True) Specify whether to subtract the mean of the data before the fit fit_mean : bool (default=True) If True, then compute the floating-mean periodogram; i.e. let the mean vary with the fit. normalization : str, optional Normalization to use for the periodogram. Options are 'standard', 'model', 'log', or 'psd'. use_fft : bool (default=True) If True, then use the Press & Rybicki O[NlogN] algorithm to compute the result. Otherwise, use a slower O[N^2] algorithm trig_sum_kwds : dict or None, optional extra keyword arguments to pass to the ``trig_sum`` utility. Options are ``oversampling`` and ``Mfft``. See documentation of ``trig_sum`` for details. Returns ------- power : ndarray Lomb-Scargle power associated with each frequency. Units of the result depend on the normalization. Notes ----- Note that the ``use_fft=True`` algorithm is an approximation to the true Lomb-Scargle periodogram, and as the number of points grows this approximation improves. On the other hand, for very small datasets (<~50 points or so) this approximation may not be useful. References ---------- .. [1] Press W.H. and Rybicki, G.B, "Fast algorithm for spectral analysis of unevenly sampled data". ApJ 1:338, p277, 1989 .. [2] M. Zechmeister and M. Kurster, A&A 496, 577-584 (2009) .. [3] W. Press et al, Numerical Recipes in C (2002) """ if dy is None: dy = 1 # Validate and setup input data t, y, dy = np.broadcast_arrays(t, y, dy) if t.ndim != 1: raise ValueError("t, y, dy should be one dimensional") # Validate and setup frequency grid if f0 < 0: raise ValueError("Frequencies must be positive") if df <= 0: raise ValueError("Frequency steps must be positive") if Nf <= 0: raise ValueError("Number of frequencies must be positive") w = dy**-2.0 w /= w.sum() # Center the data. Even if we're fitting the offset, # this step makes the expressions below more succinct if center_data or fit_mean: y = y - np.dot(w, y) # set up arguments to trig_sum kwargs = dict.copy(trig_sum_kwds or {}) kwargs.update(f0=f0, df=df, use_fft=use_fft, N=Nf) # ---------------------------------------------------------------------- # 1. compute functions of the time-shift tau at each frequency Sh, Ch = trig_sum(t, w * y, **kwargs) S2, C2 = trig_sum(t, w, freq_factor=2, **kwargs) if fit_mean: S, C = trig_sum(t, w, **kwargs) tan_2omega_tau = (S2 - 2 * S * C) / (C2 - (C * C - S * S)) else: tan_2omega_tau = S2 / C2 # This is what we're computing below; the straightforward way is slower # and less stable, so we use trig identities instead # # omega_tau = 0.5 * np.arctan(tan_2omega_tau) # S2w, C2w = np.sin(2 * omega_tau), np.cos(2 * omega_tau) # Sw, Cw = np.sin(omega_tau), np.cos(omega_tau) S2w = tan_2omega_tau / np.sqrt(1 + tan_2omega_tau * tan_2omega_tau) C2w = 1 / np.sqrt(1 + tan_2omega_tau * tan_2omega_tau) Cw = np.sqrt(0.5) * np.sqrt(1 + C2w) Sw = np.sqrt(0.5) * np.sign(S2w) * np.sqrt(1 - C2w) # ---------------------------------------------------------------------- # 2. Compute the periodogram, following Zechmeister & Kurster # and using tricks from Press & Rybicki. YY = np.dot(w, y**2) YC = Ch * Cw + Sh * Sw YS = Sh * Cw - Ch * Sw CC = 0.5 * (1 + C2 * C2w + S2 * S2w) SS = 0.5 * (1 - C2 * C2w - S2 * S2w) if fit_mean: CC -= (C * Cw + S * Sw) ** 2 SS -= (S * Cw - C * Sw) ** 2 power = YC * YC / CC + YS * YS / SS if normalization == "standard": power /= YY elif normalization == "model": power /= YY - power elif normalization == "log": power = -np.log(1 - power / YY) elif normalization == "psd": power *= 0.5 * (dy**-2.0).sum() else: raise ValueError(f"normalization='{normalization}' not recognized") return power
83d0d9853f9ccd36f6a73862baf642b179c786e6a817164e66f5a8484e6f0812
import numpy as np def lombscargle_scipy(t, y, frequency, normalization="standard", center_data=True): """Lomb-Scargle Periodogram This is a wrapper of ``scipy.signal.lombscargle`` for computation of the Lomb-Scargle periodogram. This is a relatively fast version of the naive O[N^2] algorithm, but cannot handle heteroskedastic errors. Parameters ---------- t, y : array-like times, values, and errors of the data points. These should be broadcastable to the same shape. None should be `~astropy.units.Quantity`. frequency : array-like frequencies (not angular frequencies) at which to calculate periodogram normalization : str, optional Normalization to use for the periodogram. Options are 'standard', 'model', 'log', or 'psd'. center_data : bool, optional if True, pre-center the data by subtracting the weighted mean of the input data. Returns ------- power : array-like Lomb-Scargle power associated with each frequency. Units of the result depend on the normalization. References ---------- .. [1] M. Zechmeister and M. Kurster, A&A 496, 577-584 (2009) .. [2] W. Press et al, Numerical Recipes in C (2002) .. [3] Scargle, J.D. 1982, ApJ 263:835-853 """ try: from scipy import signal except ImportError: raise ImportError("scipy must be installed to use lombscargle_scipy") t, y = np.broadcast_arrays(t, y) # Scipy requires floating-point input t = np.asarray(t, dtype=float) y = np.asarray(y, dtype=float) frequency = np.asarray(frequency, dtype=float) if t.ndim != 1: raise ValueError("t, y, dy should be one dimensional") if frequency.ndim != 1: raise ValueError("frequency should be one-dimensional") if center_data: y = y - y.mean() # Note: scipy input accepts angular frequencies p = signal.lombscargle(t, y, 2 * np.pi * frequency) if normalization == "psd": pass elif normalization == "standard": p *= 2 / (t.size * np.mean(y**2)) elif normalization == "log": p = -np.log(1 - 2 * p / (t.size * np.mean(y**2))) elif normalization == "model": p /= 0.5 * t.size * np.mean(y**2) - p else: raise ValueError(f"normalization='{normalization}' not recognized") return p
6c689d5172d1a426bda2df7ce14a597025838796933935ddebd0754fa7fafe37
from math import factorial import numpy as np def bitceil(N): """ Find the bit (i.e. power of 2) immediately greater than or equal to N Note: this works for numbers up to 2 ** 64. Roughly equivalent to int(2 ** np.ceil(np.log2(N))) """ return 1 << int(N - 1).bit_length() def extirpolate(x, y, N=None, M=4): """ Extirpolate the values (x, y) onto an integer grid range(N), using lagrange polynomial weights on the M nearest points. Parameters ---------- x : array-like array of abscissas y : array-like array of ordinates N : int number of integer bins to use. For best performance, N should be larger than the maximum of x M : int number of adjoining points on which to extirpolate. Returns ------- yN : ndarray N extirpolated values associated with range(N) Examples -------- >>> rng = np.random.default_rng(0) >>> x = 100 * rng.random(20) >>> y = np.sin(x) >>> y_hat = extirpolate(x, y) >>> x_hat = np.arange(len(y_hat)) >>> f = lambda x: np.sin(x / 10) >>> np.allclose(np.sum(y * f(x)), np.sum(y_hat * f(x_hat))) True Notes ----- This code is based on the C implementation of spread() presented in Numerical Recipes in C, Second Edition (Press et al. 1989; p.583). """ x, y = map(np.ravel, np.broadcast_arrays(x, y)) if N is None: N = int(np.max(x) + 0.5 * M + 1) # Now use legendre polynomial weights to populate the results array; # This is an efficient recursive implementation (See Press et al. 1989) result = np.zeros(N, dtype=y.dtype) # first take care of the easy cases where x is an integer integers = x % 1 == 0 np.add.at(result, x[integers].astype(int), y[integers]) x, y = x[~integers], y[~integers] # For each remaining x, find the index describing the extirpolation range. # i.e. ilo[i] < x[i] < ilo[i] + M with x[i] in the center, # adjusted so that the limits are within the range 0...N ilo = np.clip((x - M // 2).astype(int), 0, N - M) numerator = y * np.prod(x - ilo - np.arange(M)[:, np.newaxis], 0) denominator = factorial(M - 1) for j in range(M): if j > 0: denominator *= j / (j - M) ind = ilo + (M - 1 - j) np.add.at(result, ind, numerator / (denominator * (x - ind))) return result def trig_sum(t, h, df, N, f0=0, freq_factor=1, oversampling=5, use_fft=True, Mfft=4): """Compute (approximate) trigonometric sums for a number of frequencies This routine computes weighted sine and cosine sums:: S_j = sum_i { h_i * sin(2 pi * f_j * t_i) } C_j = sum_i { h_i * cos(2 pi * f_j * t_i) } Where f_j = freq_factor * (f0 + j * df) for the values j in 1 ... N. The sums can be computed either by a brute force O[N^2] method, or by an FFT-based O[Nlog(N)] method. Parameters ---------- t : array-like array of input times h : array-like array weights for the sum df : float frequency spacing N : int number of frequency bins to return f0 : float, optional The low frequency to use freq_factor : float, optional Factor which multiplies the frequency use_fft : bool if True, use the approximate FFT algorithm to compute the result. This uses the FFT with Press & Rybicki's Lagrangian extirpolation. oversampling : int (default = 5) oversampling freq_factor for the approximation; roughly the number of time samples across the highest-frequency sinusoid. This parameter contains the trade-off between accuracy and speed. Not referenced if use_fft is False. Mfft : int The number of adjacent points to use in the FFT approximation. Not referenced if use_fft is False. Returns ------- S, C : ndarray summation arrays for frequencies f = df * np.arange(1, N + 1) """ df *= freq_factor f0 *= freq_factor if df <= 0: raise ValueError("df must be positive") t, h = map(np.ravel, np.broadcast_arrays(t, h)) if use_fft: Mfft = int(Mfft) if Mfft <= 0: raise ValueError("Mfft must be positive") # required size of fft is the power of 2 above the oversampling rate Nfft = bitceil(N * oversampling) t0 = t.min() if f0 > 0: h = h * np.exp(2j * np.pi * f0 * (t - t0)) tnorm = ((t - t0) * Nfft * df) % Nfft grid = extirpolate(tnorm, h, Nfft, Mfft) fftgrid = np.fft.ifft(grid)[:N] if t0 != 0: f = f0 + df * np.arange(N) fftgrid *= np.exp(2j * np.pi * t0 * f) C = Nfft * fftgrid.real S = Nfft * fftgrid.imag else: f = f0 + df * np.arange(N) C = np.dot(h, np.cos(2 * np.pi * f * t[:, np.newaxis])) S = np.dot(h, np.sin(2 * np.pi * f * t[:, np.newaxis])) return S, C
62f3ef0efe3964697a3d70c1c676f86a9f3d3e28bda7e62b22ef9faef0df1a99
import numpy as np def lombscargle_slow( t, y, dy, frequency, normalization="standard", fit_mean=True, center_data=True ): """Lomb-Scargle Periodogram This is a pure-python implementation of the original Lomb-Scargle formalism (e.g. [1]_, [2]_), with the addition of the floating mean (e.g. [3]_) Parameters ---------- t, y, dy : array-like times, values, and errors of the data points. These should be broadcastable to the same shape. None should be `~astropy.units.Quantity`. frequency : array-like frequencies (not angular frequencies) at which to calculate periodogram normalization : str, optional Normalization to use for the periodogram. Options are 'standard', 'model', 'log', or 'psd'. fit_mean : bool, optional if True, include a constant offset as part of the model at each frequency. This can lead to more accurate results, especially in the case of incomplete phase coverage. center_data : bool, optional if True, pre-center the data by subtracting the weighted mean of the input data. This is especially important if ``fit_mean = False`` Returns ------- power : array-like Lomb-Scargle power associated with each frequency. Units of the result depend on the normalization. References ---------- .. [1] W. Press et al, Numerical Recipes in C (2002) .. [2] Scargle, J.D. 1982, ApJ 263:835-853 .. [3] M. Zechmeister and M. Kurster, A&A 496, 577-584 (2009) """ if dy is None: dy = 1 t, y, dy = np.broadcast_arrays(t, y, dy) frequency = np.asarray(frequency) if t.ndim != 1: raise ValueError("t, y, dy should be one dimensional") if frequency.ndim != 1: raise ValueError("frequency should be one-dimensional") w = dy**-2.0 w /= w.sum() # if fit_mean is true, centering the data now simplifies the math below. if fit_mean or center_data: y = y - np.dot(w, y) omega = 2 * np.pi * frequency omega = omega.ravel()[np.newaxis, :] # make following arrays into column vectors t, y, dy, w = map(lambda x: x[:, np.newaxis], (t, y, dy, w)) sin_omega_t = np.sin(omega * t) cos_omega_t = np.cos(omega * t) # compute time-shift tau # S2 = np.dot(w.T, np.sin(2 * omega * t) S2 = 2 * np.dot(w.T, sin_omega_t * cos_omega_t) # C2 = np.dot(w.T, np.cos(2 * omega * t) C2 = 2 * np.dot(w.T, 0.5 - sin_omega_t**2) if fit_mean: S = np.dot(w.T, sin_omega_t) C = np.dot(w.T, cos_omega_t) S2 -= 2 * S * C C2 -= C * C - S * S # compute components needed for the fit omega_t_tau = omega * t - 0.5 * np.arctan2(S2, C2) sin_omega_t_tau = np.sin(omega_t_tau) cos_omega_t_tau = np.cos(omega_t_tau) Y = np.dot(w.T, y) wy = w * y YCtau = np.dot(wy.T, cos_omega_t_tau) YStau = np.dot(wy.T, sin_omega_t_tau) CCtau = np.dot(w.T, cos_omega_t_tau * cos_omega_t_tau) SStau = np.dot(w.T, sin_omega_t_tau * sin_omega_t_tau) if fit_mean: Ctau = np.dot(w.T, cos_omega_t_tau) Stau = np.dot(w.T, sin_omega_t_tau) YCtau -= Y * Ctau YStau -= Y * Stau CCtau -= Ctau * Ctau SStau -= Stau * Stau p = YCtau * YCtau / CCtau + YStau * YStau / SStau YY = np.dot(w.T, y * y) if normalization == "standard": p /= YY elif normalization == "model": p /= YY - p elif normalization == "log": p = -np.log(1 - p / YY) elif normalization == "psd": p *= 0.5 * (dy**-2.0).sum() else: raise ValueError(f"normalization='{normalization}' not recognized") return p.ravel()
79b100b7c201b9cfd6d393545d3cd12750b0e4adca35617cf62315ab3ebd21b1
import numpy as np from .utils import trig_sum def lombscargle_fastchi2( t, y, dy, f0, df, Nf, normalization="standard", fit_mean=True, center_data=True, nterms=1, use_fft=True, trig_sum_kwds=None, ): """Lomb-Scargle Periodogram This implements a fast chi-squared periodogram using the algorithm outlined in [4]_. The result is identical to the standard Lomb-Scargle periodogram. The advantage of this algorithm is the ability to compute multiterm periodograms relatively quickly. Parameters ---------- t, y, dy : array-like times, values, and errors of the data points. These should be broadcastable to the same shape. None should be `~astropy.units.Quantity`. f0, df, Nf : (float, float, int) parameters describing the frequency grid, f = f0 + df * arange(Nf). normalization : str, optional Normalization to use for the periodogram. Options are 'standard', 'model', 'log', or 'psd'. fit_mean : bool, optional if True, include a constant offset as part of the model at each frequency. This can lead to more accurate results, especially in the case of incomplete phase coverage. center_data : bool, optional if True, pre-center the data by subtracting the weighted mean of the input data. This is especially important if ``fit_mean = False`` nterms : int, optional Number of Fourier terms in the fit Returns ------- power : array-like Lomb-Scargle power associated with each frequency. Units of the result depend on the normalization. References ---------- .. [1] M. Zechmeister and M. Kurster, A&A 496, 577-584 (2009) .. [2] W. Press et al, Numerical Recipes in C (2002) .. [3] Scargle, J.D. ApJ 263:835-853 (1982) .. [4] Palmer, J. ApJ 695:496-502 (2009) """ if nterms == 0 and not fit_mean: raise ValueError("Cannot have nterms = 0 without fitting bias") if dy is None: dy = 1 # Validate and setup input data t, y, dy = np.broadcast_arrays(t, y, dy) if t.ndim != 1: raise ValueError("t, y, dy should be one dimensional") # Validate and setup frequency grid if f0 < 0: raise ValueError("Frequencies must be positive") if df <= 0: raise ValueError("Frequency steps must be positive") if Nf <= 0: raise ValueError("Number of frequencies must be positive") w = dy**-2.0 ws = np.sum(w) # if fit_mean is true, centering the data now simplifies the math below. if center_data or fit_mean: y = y - np.dot(w, y) / ws yw = y / dy chi2_ref = np.dot(yw, yw) kwargs = dict.copy(trig_sum_kwds or {}) kwargs.update(f0=f0, df=df, use_fft=use_fft, N=Nf) # Here we build-up the matrices XTX and XTy using pre-computed # sums. The relevant identities are # 2 sin(mx) sin(nx) = cos(m-n)x - cos(m+n)x # 2 cos(mx) cos(nx) = cos(m-n)x + cos(m+n)x # 2 sin(mx) cos(nx) = sin(m-n)x + sin(m+n)x yws = np.sum(y * w) SCw = [(np.zeros(Nf), ws * np.ones(Nf))] SCw.extend( [trig_sum(t, w, freq_factor=i, **kwargs) for i in range(1, 2 * nterms + 1)] ) Sw, Cw = zip(*SCw) SCyw = [(np.zeros(Nf), yws * np.ones(Nf))] SCyw.extend( [trig_sum(t, w * y, freq_factor=i, **kwargs) for i in range(1, nterms + 1)] ) Syw, Cyw = zip(*SCyw) # Now create an indexing scheme so we can quickly # build-up matrices at each frequency order = [("C", 0)] if fit_mean else [] order.extend(sum(([("S", i), ("C", i)] for i in range(1, nterms + 1)), [])) funcs = dict( S=lambda m, i: Syw[m][i], C=lambda m, i: Cyw[m][i], SS=lambda m, n, i: 0.5 * (Cw[abs(m - n)][i] - Cw[m + n][i]), CC=lambda m, n, i: 0.5 * (Cw[abs(m - n)][i] + Cw[m + n][i]), SC=lambda m, n, i: 0.5 * (np.sign(m - n) * Sw[abs(m - n)][i] + Sw[m + n][i]), CS=lambda m, n, i: 0.5 * (np.sign(n - m) * Sw[abs(n - m)][i] + Sw[n + m][i]), ) def compute_power(i): XTX = np.array( [[funcs[A[0] + B[0]](A[1], B[1], i) for A in order] for B in order] ) XTy = np.array([funcs[A[0]](A[1], i) for A in order]) return np.dot(XTy.T, np.linalg.solve(XTX, XTy)) p = np.array([compute_power(i) for i in range(Nf)]) if normalization == "psd": p *= 0.5 elif normalization == "standard": p /= chi2_ref elif normalization == "log": p = -np.log(1 - p / chi2_ref) elif normalization == "model": p /= chi2_ref - p else: raise ValueError(f"normalization='{normalization}' not recognized") return p
e25abff5cdc4d9f544fe29e89d348dfe93eb6e6f64ebb9f3fa0e18e97fe2e51d
import numpy as np def design_matrix(t, frequency, dy=None, bias=True, nterms=1): """Compute the Lomb-Scargle design matrix at the given frequency This is the matrix X such that the periodic model at the given frequency can be expressed :math:`\\hat{y} = X \\theta`. Parameters ---------- t : array-like, shape=(n_times,) times at which to compute the design matrix frequency : float frequency for the design matrix dy : float or array-like, optional data uncertainties: should be broadcastable with `t` bias : bool (default=True) If true, include a bias column in the matrix nterms : int (default=1) Number of Fourier terms to include in the model Returns ------- X : ndarray, shape=(n_times, n_parameters) The design matrix, where n_parameters = bool(bias) + 2 * nterms """ t = np.asarray(t) frequency = np.asarray(frequency) if t.ndim != 1: raise ValueError("t should be one dimensional") if frequency.ndim != 0: raise ValueError("frequency must be a scalar") if nterms == 0 and not bias: raise ValueError("cannot have nterms=0 and no bias") if bias: cols = [np.ones_like(t)] else: cols = [] for i in range(1, nterms + 1): cols.append(np.sin(2 * np.pi * i * frequency * t)) cols.append(np.cos(2 * np.pi * i * frequency * t)) XT = np.vstack(cols) if dy is not None: XT /= dy return np.transpose(XT) def periodic_fit(t, y, dy, frequency, t_fit, center_data=True, fit_mean=True, nterms=1): """Compute the Lomb-Scargle model fit at a given frequency Parameters ---------- t, y, dy : float or array-like The times, observations, and uncertainties to fit frequency : float The frequency at which to compute the model t_fit : float or array-like The times at which the fit should be computed center_data : bool (default=True) If True, center the input data before applying the fit fit_mean : bool (default=True) If True, include the bias as part of the model nterms : int (default=1) The number of Fourier terms to include in the fit Returns ------- y_fit : ndarray The model fit evaluated at each value of t_fit """ t, y, frequency = map(np.asarray, (t, y, frequency)) if dy is None: dy = np.ones_like(y) else: dy = np.asarray(dy) t_fit = np.asarray(t_fit) if t.ndim != 1: raise ValueError("t, y, dy should be one dimensional") if t_fit.ndim != 1: raise ValueError("t_fit should be one dimensional") if frequency.ndim != 0: raise ValueError("frequency should be a scalar") if center_data: w = dy**-2.0 y_mean = np.dot(y, w) / w.sum() y = y - y_mean else: y_mean = 0 X = design_matrix(t, frequency, dy=dy, bias=fit_mean, nterms=nterms) theta_MLE = np.linalg.solve(np.dot(X.T, X), np.dot(X.T, y / dy)) X_fit = design_matrix(t_fit, frequency, bias=fit_mean, nterms=nterms) return y_mean + np.dot(X_fit, theta_MLE)
47f398c7205cf62449648d2a455af646ad7e66843ced14f615d8f7e257876718
import numpy as np import pytest from numpy.testing import assert_allclose import astropy.units as u from astropy.timeseries.periodograms.lombscargle import LombScargle from astropy.timeseries.periodograms.lombscargle._statistics import ( METHODS, fap_single, inv_fap_single, ) from astropy.timeseries.periodograms.lombscargle.utils import ( compute_chi2_ref, convert_normalization, ) from astropy.utils.compat.optional_deps import HAS_SCIPY METHOD_KWDS = dict(bootstrap={"n_bootstraps": 20, "random_seed": 42}) NORMALIZATIONS = ["standard", "psd", "log", "model"] def make_data(N=100, period=1, theta=[10, 2, 3], dy=1, rseed=0, units=False): """Generate some data for testing""" rng = np.random.default_rng(rseed) t = 5 * period * rng.random(N) omega = 2 * np.pi / period y = theta[0] + theta[1] * np.sin(omega * t) + theta[2] * np.cos(omega * t) dy = dy * (0.5 + rng.random(N)) y += dy * rng.standard_normal(N) fmax = 5 if units: return t * u.day, y * u.mag, dy * u.mag, fmax / u.day else: return t, y, dy, fmax def null_data(N=1000, dy=1, rseed=0, units=False): """Generate null hypothesis data""" rng = np.random.default_rng(rseed) t = 100 * rng.random(N) dy = 0.5 * dy * (1 + rng.random(N)) y = dy * rng.standard_normal(N) fmax = 40 if units: return t * u.day, y * u.mag, dy * u.mag, fmax / u.day else: return t, y, dy, fmax @pytest.mark.parametrize("normalization", NORMALIZATIONS) @pytest.mark.parametrize("with_errors", [True, False]) @pytest.mark.parametrize("units", [False, True]) def test_distribution(normalization, with_errors, units): t, y, dy, fmax = null_data(units=units) if not with_errors: dy = None ls = LombScargle(t, y, dy, normalization=normalization) freq, power = ls.autopower(maximum_frequency=fmax) z = np.linspace(0, power.max(), 1000) # Test that pdf and cdf are consistent dz = z[1] - z[0] z_mid = z[:-1] + 0.5 * dz pdf = ls.distribution(z_mid) cdf = ls.distribution(z, cumulative=True) if isinstance(dz, u.Quantity): dz = dz.value assert_allclose(pdf, np.diff(cdf) / dz, rtol=1e-5, atol=1e-8) # psd normalization without specified errors produces bad results if not (normalization == "psd" and not with_errors): # Test that observed power is distributed according to the theoretical pdf hist, bins = np.histogram(power, 30, density=True) midpoints = 0.5 * (bins[1:] + bins[:-1]) pdf = ls.distribution(midpoints) assert_allclose(hist, pdf, rtol=0.05, atol=0.05 * pdf[0]) @pytest.mark.parametrize("N", [10, 100, 1000]) @pytest.mark.parametrize("normalization", NORMALIZATIONS) def test_inverse_single(N, normalization): fap = np.linspace(0, 1, 11) z = inv_fap_single(fap, N, normalization) fap_out = fap_single(z, N, normalization) assert_allclose(fap, fap_out) @pytest.mark.parametrize("normalization", NORMALIZATIONS) @pytest.mark.parametrize("use_errs", [True, False]) @pytest.mark.parametrize("units", [False, True]) def test_inverse_bootstrap(normalization, use_errs, units): t, y, dy, fmax = null_data(units=units) if not use_errs: dy = None fap = np.linspace(0, 1, 11) method = "bootstrap" method_kwds = METHOD_KWDS["bootstrap"] ls = LombScargle(t, y, dy, normalization=normalization) z = ls.false_alarm_level( fap, maximum_frequency=fmax, method=method, method_kwds=method_kwds ) fap_out = ls.false_alarm_probability( z, maximum_frequency=fmax, method=method, method_kwds=method_kwds ) # atol = 1 / n_bootstraps assert_allclose(fap, fap_out, atol=0.05) @pytest.mark.parametrize("method", sorted(set(METHODS) - {"bootstrap"})) @pytest.mark.parametrize("normalization", NORMALIZATIONS) @pytest.mark.parametrize("use_errs", [True, False]) @pytest.mark.parametrize("N", [10, 100, 1000]) @pytest.mark.parametrize("units", [False, True]) def test_inverses(method, normalization, use_errs, N, units, T=5): if not HAS_SCIPY and method in ["baluev", "davies"]: pytest.skip("SciPy required") t, y, dy, fmax = make_data(N, rseed=543, units=units) if not use_errs: dy = None method_kwds = METHOD_KWDS.get(method, None) fap = np.logspace(-10, 0, 11) ls = LombScargle(t, y, dy, normalization=normalization) z = ls.false_alarm_level( fap, maximum_frequency=fmax, method=method, method_kwds=method_kwds ) fap_out = ls.false_alarm_probability( z, maximum_frequency=fmax, method=method, method_kwds=method_kwds ) assert_allclose(fap, fap_out) @pytest.mark.parametrize("method", sorted(METHODS)) @pytest.mark.parametrize("normalization", NORMALIZATIONS) @pytest.mark.parametrize("units", [False, True]) def test_false_alarm_smoketest(method, normalization, units): if not HAS_SCIPY and method in ["baluev", "davies"]: pytest.skip("SciPy required") kwds = METHOD_KWDS.get(method, None) t, y, dy, fmax = make_data(rseed=42, units=units) ls = LombScargle(t, y, dy, normalization=normalization) freq, power = ls.autopower(maximum_frequency=fmax) Z = np.linspace(power.min(), power.max(), 30) fap = ls.false_alarm_probability( Z, maximum_frequency=fmax, method=method, method_kwds=kwds ) assert len(fap) == len(Z) if method != "davies": assert np.all(fap <= 1) assert np.all(fap[:-1] >= fap[1:]) # monotonically decreasing @pytest.mark.parametrize("method", sorted(METHODS)) @pytest.mark.parametrize("use_errs", [True, False]) @pytest.mark.parametrize("normalization", sorted(set(NORMALIZATIONS) - {"psd"})) @pytest.mark.parametrize("units", [False, True]) def test_false_alarm_equivalence(method, normalization, use_errs, units): # Note: the PSD normalization is not equivalent to the others, in that it # depends on the absolute errors rather than relative errors. Because the # scaling contributes to the distribution, it cannot be converted directly # from any of the three normalized versions. if not HAS_SCIPY and method in ["baluev", "davies"]: pytest.skip("SciPy required") kwds = METHOD_KWDS.get(method, None) t, y, dy, fmax = make_data(units=units) if not use_errs: dy = None ls = LombScargle(t, y, dy, normalization=normalization) freq, power = ls.autopower(maximum_frequency=fmax) Z = np.linspace(power.min(), power.max(), 30) fap = ls.false_alarm_probability( Z, maximum_frequency=fmax, method=method, method_kwds=kwds ) # Compute the equivalent Z values in the standard normalization # and check that the FAP is consistent Z_std = convert_normalization( Z, len(t), from_normalization=normalization, to_normalization="standard", chi2_ref=compute_chi2_ref(y, dy), ) ls = LombScargle(t, y, dy, normalization="standard") fap_std = ls.false_alarm_probability( Z_std, maximum_frequency=fmax, method=method, method_kwds=kwds ) assert_allclose(fap, fap_std, rtol=0.1)
9f50d83a8a9afaf70969aed3e5d211b534edc37933b97bf8b9fc2d489de1338e
import numpy as np import pytest from numpy.testing import assert_allclose from astropy.timeseries.periodograms.lombscargle.core import LombScargle from astropy.timeseries.periodograms.lombscargle.utils import ( compute_chi2_ref, convert_normalization, ) NORMALIZATIONS = ["standard", "model", "log", "psd"] @pytest.fixture def data(N=100, period=1, theta=[10, 2, 3], dy=1, rseed=0): """Generate some data for testing""" rng = np.random.default_rng(rseed) t = 5 * period * rng.random(N) omega = 2 * np.pi / period y = theta[0] + theta[1] * np.sin(omega * t) + theta[2] * np.cos(omega * t) dy = dy * (0.5 + rng.random(N)) y += dy * rng.standard_normal(N) return t, y, dy @pytest.mark.parametrize("norm_in", NORMALIZATIONS) @pytest.mark.parametrize("norm_out", NORMALIZATIONS) def test_convert_normalization(norm_in, norm_out, data): t, y, dy = data _, power_in = LombScargle(t, y, dy).autopower( maximum_frequency=5, normalization=norm_in ) _, power_out = LombScargle(t, y, dy).autopower( maximum_frequency=5, normalization=norm_out ) power_in_converted = convert_normalization( power_in, N=len(t), from_normalization=norm_in, to_normalization=norm_out, chi2_ref=compute_chi2_ref(y, dy), ) assert_allclose(power_in_converted, power_out)
c9609998a7e4cced37bff9377321cee96b02b2f8ce752df123fbc35c2ddf82e4
import numpy as np import pytest from numpy.testing import assert_allclose from astropy import units as u from astropy.tests.helper import assert_quantity_allclose from astropy.time import Time, TimeDelta from astropy.timeseries.periodograms.lombscargle import LombScargle ALL_METHODS = LombScargle.available_methods ALL_METHODS_NO_AUTO = [method for method in ALL_METHODS if method != "auto"] FAST_METHODS = [method for method in ALL_METHODS if "fast" in method] NTERMS_METHODS = [method for method in ALL_METHODS if "chi2" in method] NORMALIZATIONS = ["standard", "psd", "log", "model"] @pytest.fixture def data(N=100, period=1, theta=[10, 2, 3], dy=1, rseed=0): """Generate some data for testing""" rng = np.random.default_rng(rseed) t = 20 * period * rng.random(N) omega = 2 * np.pi / period y = theta[0] + theta[1] * np.sin(omega * t) + theta[2] * np.cos(omega * t) dy = dy * (0.5 + rng.random(N)) y += dy * rng.standard_normal(N) return t, y, dy @pytest.mark.parametrize("minimum_frequency", [None, 1.0]) @pytest.mark.parametrize("maximum_frequency", [None, 5.0]) @pytest.mark.parametrize("nyquist_factor", [1, 10]) @pytest.mark.parametrize("samples_per_peak", [1, 5]) def test_autofrequency( data, minimum_frequency, maximum_frequency, nyquist_factor, samples_per_peak ): t, y, dy = data baseline = t.max() - t.min() freq = LombScargle(t, y, dy).autofrequency( samples_per_peak, nyquist_factor, minimum_frequency, maximum_frequency ) df = freq[1] - freq[0] # Check sample spacing assert_allclose(df, 1.0 / baseline / samples_per_peak) # Check minimum frequency if minimum_frequency is None: assert_allclose(freq[0], 0.5 * df) else: assert_allclose(freq[0], minimum_frequency) if maximum_frequency is None: avg_nyquist = 0.5 * len(t) / baseline assert_allclose(freq[-1], avg_nyquist * nyquist_factor, atol=0.5 * df) else: assert_allclose(freq[-1], maximum_frequency, atol=0.5 * df) @pytest.mark.parametrize("method", ALL_METHODS_NO_AUTO) @pytest.mark.parametrize("center_data", [True, False]) @pytest.mark.parametrize("fit_mean", [True, False]) @pytest.mark.parametrize("errors", ["none", "partial", "full"]) @pytest.mark.parametrize("with_units", [True, False]) @pytest.mark.parametrize("normalization", NORMALIZATIONS) def test_all_methods( data, method, center_data, fit_mean, errors, with_units, normalization ): if method == "scipy" and (fit_mean or errors != "none"): return t, y, dy = data frequency = 0.8 + 0.01 * np.arange(40) if with_units: t = t * u.day y = y * u.mag dy = dy * u.mag frequency = frequency / t.unit if errors == "none": dy = None elif errors == "partial": dy = dy[0] elif errors == "full": pass else: raise ValueError(f"Unrecognized error type: '{errors}'") kwds = {} ls = LombScargle( t, y, dy, center_data=center_data, fit_mean=fit_mean, normalization=normalization, ) P_expected = ls.power(frequency) # don't use the fft approximation here; we'll test this elsewhere if method in FAST_METHODS: kwds["method_kwds"] = dict(use_fft=False) P_method = ls.power(frequency, method=method, **kwds) if with_units: if normalization == "psd" and errors == "none": assert P_method.unit == y.unit**2 else: assert P_method.unit == u.dimensionless_unscaled else: assert not hasattr(P_method, "unit") assert_quantity_allclose(P_expected, P_method) @pytest.mark.parametrize("method", ALL_METHODS_NO_AUTO) @pytest.mark.parametrize("center_data", [True, False]) @pytest.mark.parametrize("fit_mean", [True, False]) @pytest.mark.parametrize("with_errors", [True, False]) @pytest.mark.parametrize("normalization", NORMALIZATIONS) def test_integer_inputs( data, method, center_data, fit_mean, with_errors, normalization ): if method == "scipy" and (fit_mean or with_errors): return t, y, dy = data t = np.floor(100 * t) t_int = t.astype(int) y = np.floor(100 * y) y_int = y.astype(int) dy = np.floor(100 * dy) dy_int = dy.astype("int32") frequency = 1e-2 * (0.8 + 0.01 * np.arange(40)) if not with_errors: dy = None dy_int = None kwds = dict(center_data=center_data, fit_mean=fit_mean, normalization=normalization) P_float = LombScargle(t, y, dy, **kwds).power(frequency, method=method) P_int = LombScargle(t_int, y_int, dy_int, **kwds).power(frequency, method=method) assert_allclose(P_float, P_int) @pytest.mark.parametrize("method", NTERMS_METHODS) @pytest.mark.parametrize("center_data", [True, False]) @pytest.mark.parametrize("fit_mean", [True, False]) @pytest.mark.parametrize("errors", ["none", "partial", "full"]) @pytest.mark.parametrize("nterms", [0, 2, 4]) @pytest.mark.parametrize("normalization", NORMALIZATIONS) def test_nterms_methods( method, center_data, fit_mean, errors, nterms, normalization, data ): t, y, dy = data frequency = 0.8 + 0.01 * np.arange(40) if errors == "none": dy = None elif errors == "partial": dy = dy[0] elif errors == "full": pass else: raise ValueError(f"Unrecognized error type: '{errors}'") ls = LombScargle( t, y, dy, center_data=center_data, fit_mean=fit_mean, nterms=nterms, normalization=normalization, ) if nterms == 0 and not fit_mean: with pytest.raises(ValueError, match=r"[nterms, blas]"): ls.power(frequency, method=method) else: P_expected = ls.power(frequency) # don't use fast fft approximations here kwds = {} if "fast" in method: kwds["method_kwds"] = dict(use_fft=False) P_method = ls.power(frequency, method=method, **kwds) assert_allclose(P_expected, P_method, rtol=1e-7, atol=1e-25) @pytest.mark.parametrize("method", FAST_METHODS) @pytest.mark.parametrize("center_data", [True, False]) @pytest.mark.parametrize("fit_mean", [True, False]) @pytest.mark.parametrize("errors", ["none", "partial", "full"]) @pytest.mark.parametrize("nterms", [0, 1, 2]) def test_fast_approximations(method, center_data, fit_mean, errors, nterms, data): t, y, dy = data frequency = 0.8 + 0.01 * np.arange(40) if errors == "none": dy = None elif errors == "partial": dy = dy[0] elif errors == "full": pass else: raise ValueError(f"Unrecognized error type: '{errors}'") ls = LombScargle( t, y, dy, center_data=center_data, fit_mean=fit_mean, nterms=nterms, normalization="standard", ) # use only standard normalization because we compare via absolute tolerance kwds = dict(method=method) if method == "fast" and nterms != 1: with pytest.raises(ValueError, match=r"nterms"): ls.power(frequency, **kwds) elif nterms == 0 and not fit_mean: with pytest.raises(ValueError, match=r"[nterms, blas]"): ls.power(frequency, **kwds) else: P_fast = ls.power(frequency, **kwds) kwds["method_kwds"] = dict(use_fft=False) P_slow = ls.power(frequency, **kwds) assert_allclose(P_fast, P_slow, atol=0.008) @pytest.mark.parametrize("method", LombScargle.available_methods) @pytest.mark.parametrize("shape", [(), (1,), (2,), (3,), (2, 3)]) def test_output_shapes(method, shape, data): t, y, dy = data freq = np.asarray(np.zeros(shape)) freq.flat = np.arange(1, freq.size + 1) PLS = LombScargle(t, y, fit_mean=False).power(freq, method=method) assert PLS.shape == shape @pytest.mark.parametrize("method", LombScargle.available_methods) def test_errors_on_unit_mismatch(method, data): t, y, dy = data t = t * u.second y = y * u.mag frequency = np.linspace(0.5, 1.5, 10) # this should fail because frequency and 1/t units do not match MESSAGE = r"Units of {} not equivalent" with pytest.raises(ValueError, match=MESSAGE.format("frequency")): LombScargle(t, y, fit_mean=False).power(frequency, method=method) # this should fail because dy and y units do not match with pytest.raises(ValueError, match=MESSAGE.format("dy")): LombScargle(t, y, dy, fit_mean=False).power(frequency / t.unit) # we don't test all normalizations here because they are tested above # only test method='auto' because unit handling does not depend on method @pytest.mark.parametrize("with_error", [True, False]) def test_unit_conversions(data, with_error): t, y, dy = data t_day = t * u.day t_hour = u.Quantity(t_day, "hour") y_meter = y * u.meter y_millimeter = u.Quantity(y_meter, "millimeter") # sanity check on inputs assert_quantity_allclose(t_day, t_hour) assert_quantity_allclose(y_meter, y_millimeter) if with_error: dy = dy * u.meter else: dy = None freq_day, P1 = LombScargle(t_day, y_meter, dy).autopower() freq_hour, P2 = LombScargle(t_hour, y_millimeter, dy).autopower() # Check units of frequency assert freq_day.unit == 1.0 / u.day assert freq_hour.unit == 1.0 / u.hour # Check that results match assert_quantity_allclose(freq_day, freq_hour) assert_quantity_allclose(P1, P2) # Check that switching frequency units doesn't change things P3 = LombScargle(t_day, y_meter, dy).power(freq_hour) P4 = LombScargle(t_hour, y_meter, dy).power(freq_day) assert_quantity_allclose(P3, P4) @pytest.mark.parametrize("fit_mean", [True, False]) @pytest.mark.parametrize("with_units", [True, False]) @pytest.mark.parametrize("freq", [1.0, 2.0]) def test_model(fit_mean, with_units, freq): rand = np.random.default_rng(0) t = 10 * rand.random(40) params = 10 * rand.random(3) y = np.zeros_like(t) if fit_mean: y += params[0] y += params[1] * np.sin(2 * np.pi * freq * (t - params[2])) if with_units: t = t * u.day y = y * u.mag freq = freq / u.day ls = LombScargle(t, y, center_data=False, fit_mean=fit_mean) y_fit = ls.model(t, freq) assert_quantity_allclose(y_fit, y) @pytest.mark.parametrize("t_unit", [u.second, u.day]) @pytest.mark.parametrize("frequency_unit", [u.Hz, 1.0 / u.second]) @pytest.mark.parametrize("y_unit", [u.mag, u.jansky]) def test_model_units_match(data, t_unit, frequency_unit, y_unit): t, y, dy = data t_fit = t[:5] frequency = 1.0 t = t * t_unit t_fit = t_fit * t_unit y = y * y_unit dy = dy * y_unit frequency = frequency * frequency_unit ls = LombScargle(t, y, dy) y_fit = ls.model(t_fit, frequency) assert y_fit.unit == y_unit def test_model_units_mismatch(data): t, y, dy = data frequency = 1.0 t_fit = t[:5] t = t * u.second t_fit = t_fit * u.second y = y * u.mag frequency = 1.0 / t.unit # this should fail because frequency and 1/t units do not match MESSAGE = r"Units of {} not equivalent" with pytest.raises(ValueError, match=MESSAGE.format("frequency")): LombScargle(t, y).model(t_fit, frequency=1.0) # this should fail because t and t_fit units do not match with pytest.raises(ValueError, match=MESSAGE.format("t")): LombScargle(t, y).model([1, 2], frequency) # this should fail because dy and y units do not match with pytest.raises(ValueError, match=MESSAGE.format("dy")): LombScargle(t, y, dy).model(t_fit, frequency) def test_autopower(data): t, y, dy = data ls = LombScargle(t, y, dy) kwargs = dict( samples_per_peak=6, nyquist_factor=2, minimum_frequency=2, maximum_frequency=None, ) freq1 = ls.autofrequency(**kwargs) power1 = ls.power(freq1) freq2, power2 = ls.autopower(**kwargs) assert_allclose(freq1, freq2) assert_allclose(power1, power2) @pytest.mark.parametrize("with_units", [True, False]) @pytest.mark.parametrize("errors", ["none", "partial", "full"]) @pytest.mark.parametrize("center_data", [True, False]) @pytest.mark.parametrize("fit_mean", [True, False]) @pytest.mark.parametrize("nterms", [0, 1, 2]) def test_model_parameters(data, nterms, fit_mean, center_data, errors, with_units): if nterms == 0 and not fit_mean: return t, y, dy = data frequency = 1.5 if with_units: t = t * u.day y = y * u.mag dy = dy * u.mag frequency = frequency / t.unit if errors == "none": dy = None elif errors == "partial": dy = dy[0] elif errors == "full": pass else: raise ValueError(f"Unrecognized error type: '{errors}'") ls = LombScargle( t, y, dy, nterms=nterms, fit_mean=fit_mean, center_data=center_data ) tfit = np.linspace(0, 20, 10) if with_units: tfit = tfit * u.day model = ls.model(tfit, frequency) params = ls.model_parameters(frequency) design = ls.design_matrix(frequency, t=tfit) offset = ls.offset() assert len(params) == int(fit_mean) + 2 * nterms assert_quantity_allclose(offset + design.dot(params), model) @pytest.mark.parametrize("timedelta", [False, True]) def test_absolute_times(data, timedelta): # Make sure that we handle absolute times correctly. We also check that # TimeDelta works properly when timedelta is True. # The example data uses relative times t, y, dy = data # FIXME: There seems to be a numerical stability issue in that if we run # the algorithm with the same values but offset in time, the transit_time # is not offset by a fixed amount. To avoid this issue in this test, we # make sure the first time is also the smallest so that internally the # values of the relative time should be the same. t[0] = 0.0 # Add units t = t * u.day y = y * u.mag dy = dy * u.mag # We now construct a set of absolute times but keeping the rest the same start = Time("2019-05-04T12:34:56") trel = TimeDelta(t) if timedelta else t t = trel + start # and we set up two instances of LombScargle, one with absolute and one # with relative times. ls1 = LombScargle(t, y, dy) ls2 = LombScargle(trel, y, dy) kwargs = dict( samples_per_peak=6, nyquist_factor=2, minimum_frequency=2 / u.day, maximum_frequency=None, ) freq1 = ls1.autofrequency(**kwargs) freq2 = ls2.autofrequency(**kwargs) assert_quantity_allclose(freq1, freq2) power1 = ls1.power(freq1) power2 = ls2.power(freq2) assert_quantity_allclose(power1, power2) freq1, power1 = ls1.autopower(**kwargs) freq2, power2 = ls2.autopower(**kwargs) assert_quantity_allclose(freq1, freq2) assert_quantity_allclose(power1, power2) model1 = ls1.model(t, 2 / u.day) model2 = ls2.model(trel, 2 / u.day) assert_quantity_allclose(model1, model2) # Check model validation MESSAGE = ( r"t was provided as {} time but the LombScargle class was initialized with {}" r" times." ) with pytest.raises(TypeError, match=MESSAGE.format("a relative", "absolute")): ls1.model(trel, 2 / u.day) with pytest.raises(TypeError, match=MESSAGE.format("an absolute", "relative")): ls2.model(t, 2 / u.day) # Check design matrix design1 = ls1.design_matrix(2 / u.day, t=t) design2 = ls2.design_matrix(2 / u.day, t=trel) assert_quantity_allclose(design1, design2) # Check design matrix validation with pytest.raises(TypeError, match=MESSAGE.format("a relative", "absolute")): ls1.design_matrix(2 / u.day, t=trel) with pytest.raises(TypeError, match=MESSAGE.format("an absolute", "relative")): ls2.design_matrix(2 / u.day, t=t)
88c970795d5f769b57fc61d1e53f6e288541f24b18eefd8a7137939da081eb54
import numpy as np import pytest from numpy.testing import assert_allclose, assert_equal from astropy.timeseries.periodograms.lombscargle.implementations.utils import ( bitceil, extirpolate, trig_sum, ) @pytest.mark.parametrize("N", 2 ** np.arange(1, 12)) @pytest.mark.parametrize("offset", [-1, 0, 1]) def test_bitceil(N, offset): assert_equal(bitceil(N + offset), int(2 ** np.ceil(np.log2(N + offset)))) @pytest.fixture def extirpolate_data(): rng = np.random.default_rng(0) x = 100 * rng.random(50) y = np.sin(x) f = lambda x: np.sin(x / 10) return x, y, f @pytest.mark.parametrize("N", [100, None]) @pytest.mark.parametrize("M", [5]) def test_extirpolate(N, M, extirpolate_data): x, y, f = extirpolate_data y_hat = extirpolate(x, y, N, M) x_hat = np.arange(len(y_hat)) assert_allclose(np.dot(f(x), y), np.dot(f(x_hat), y_hat), rtol=1.5e-5) @pytest.fixture def extirpolate_int_data(): rng = np.random.default_rng(0) x = 100 * rng.random(50) x[:25] = x[:25].astype(int) y = np.sin(x) f = lambda x: np.sin(x / 10) return x, y, f @pytest.mark.parametrize("N", [100, None]) @pytest.mark.parametrize("M", [5]) def test_extirpolate_with_integers(N, M, extirpolate_int_data): x, y, f = extirpolate_int_data y_hat = extirpolate(x, y, N, M) x_hat = np.arange(len(y_hat)) assert_allclose(np.dot(f(x), y), np.dot(f(x_hat), y_hat), rtol=1.7e-5) @pytest.fixture def trig_sum_data(): rng = np.random.default_rng(0) t = 10 * rng.random(50) h = np.sin(t) return t, h @pytest.mark.parametrize("f0", [0, 1]) @pytest.mark.parametrize("adjust_t", [True, False]) @pytest.mark.parametrize("freq_factor", [1, 2]) @pytest.mark.parametrize("df", [0.1]) def test_trig_sum(f0, adjust_t, freq_factor, df, trig_sum_data): t, h = trig_sum_data tfit = t - t.min() if adjust_t else t S1, C1 = trig_sum( tfit, h, df, N=1000, use_fft=True, f0=f0, freq_factor=freq_factor, oversampling=10, ) S2, C2 = trig_sum( tfit, h, df, N=1000, use_fft=False, f0=f0, freq_factor=freq_factor, oversampling=10, ) assert_allclose(S1, S2, atol=1e-2) assert_allclose(C1, C2, atol=1e-2)
df343e6da494f06169d5c36b29f539b4c5f9a0b25bb039ae22bb86a06d28278f
import numpy as np import pytest from numpy.testing import assert_allclose from astropy.timeseries.periodograms.lombscargle.implementations.mle import ( design_matrix, periodic_fit, ) @pytest.fixture def t(): rand = np.random.default_rng(42) return 10 * rand.random(10) @pytest.mark.parametrize("freq", [1.0, 2]) @pytest.mark.parametrize("dy", [None, 2.0]) @pytest.mark.parametrize("bias", [True, False]) def test_design_matrix(t, freq, dy, bias): X = design_matrix(t, freq, dy, bias=bias) assert X.shape == (t.shape[0], 2 + bool(bias)) if bias: assert_allclose(X[:, 0], 1.0 / (dy or 1.0)) assert_allclose(X[:, -2], np.sin(2 * np.pi * freq * t) / (dy or 1.0)) assert_allclose(X[:, -1], np.cos(2 * np.pi * freq * t) / (dy or 1.0)) @pytest.mark.parametrize("nterms", range(4)) def test_multiterm_design_matrix(t, nterms): dy = 2.0 freq = 1.5 X = design_matrix(t, freq, dy=dy, bias=True, nterms=nterms) assert X.shape == (t.shape[0], 1 + 2 * nterms) assert_allclose(X[:, 0], 1.0 / dy) for i in range(1, nterms + 1): assert_allclose(X[:, 2 * i - 1], np.sin(2 * np.pi * i * freq * t) / dy) assert_allclose(X[:, 2 * i], np.cos(2 * np.pi * i * freq * t) / dy) @pytest.mark.parametrize("nterms", range(1, 4)) @pytest.mark.parametrize("freq", [1, 2]) @pytest.mark.parametrize("fit_mean", [True, False]) def test_exact_mle_fit(nterms, freq, fit_mean): rand = np.random.default_rng(42) t = 10 * rand.random(30) theta = -1 + rand.random(2 * nterms + 1) y = np.zeros(t.shape) if fit_mean: y = theta[0] * np.ones(t.shape) for i in range(1, nterms + 1): y += theta[2 * i - 1] * np.sin(2 * np.pi * i * freq * t) y += theta[2 * i] * np.cos(2 * np.pi * i * freq * t) y_fit = periodic_fit( t, y, dy=1, frequency=freq, t_fit=t, nterms=nterms, center_data=False, fit_mean=fit_mean, ) assert_allclose(y, y_fit)
2b439e8f29511589543b285cb2fe5f6e914fa6f217b614d975d4f9d6ab6af0bd
# Licensed under a 3-clause BSD style license - see LICENSE.rst from unittest import mock import pytest from astropy.io.fits import BinTableHDU, HDUList, Header, PrimaryHDU from astropy.timeseries.io.kepler import kepler_fits_reader from astropy.utils.data import get_pkg_data_filename def fake_header(extver, version, timesys, telescop): return Header( { "SIMPLE": "T", "BITPIX": 8, "NAXIS": 0, "EXTVER": extver, "VERSION": version, "TIMESYS": f"{timesys}", "TELESCOP": f"{telescop}", } ) def fake_hdulist(extver=1, version=2, timesys="TDB", telescop="KEPLER"): new_header = fake_header(extver, version, timesys, telescop) return [ HDUList( hdus=[ PrimaryHDU(header=new_header), BinTableHDU(header=new_header, name="LIGHTCURVE"), ] ) ] @mock.patch("astropy.io.fits.open", side_effect=fake_hdulist(telescop="MadeUp")) def test_raise_telescop_wrong(mock_file): with pytest.raises( NotImplementedError, match=( r"MadeUp is not implemented, only KEPLER or TESS are supported through this" r" reader" ), ): kepler_fits_reader(None) @mock.patch("astropy.io.fits.open", side_effect=fake_hdulist(extver=2)) def test_raise_extversion_kepler(mock_file): with pytest.raises( NotImplementedError, match=r"Support for KEPLER v2 files not yet implemented" ): kepler_fits_reader(None) @mock.patch("astropy.io.fits.open", side_effect=fake_hdulist(extver=2, telescop="TESS")) def test_raise_extversion_tess(mock_file): with pytest.raises( NotImplementedError, match=r"Support for TESS v2 files not yet implemented" ): kepler_fits_reader(None) @mock.patch("astropy.io.fits.open", side_effect=fake_hdulist(timesys="TCB")) def test_raise_timesys_kepler(mock_file): with pytest.raises( NotImplementedError, match=r"Support for TCB time scale not yet implemented in KEPLER reader", ): kepler_fits_reader(None) @mock.patch( "astropy.io.fits.open", side_effect=fake_hdulist(timesys="TCB", telescop="TESS") ) def test_raise_timesys_tess(mock_file): with pytest.raises( NotImplementedError, match=r"Support for TCB time scale not yet implemented in TESS reader", ): kepler_fits_reader(None) @pytest.mark.remote_data(source="astropy") def test_kepler_astropy(): from astropy.units import UnitsWarning filename = get_pkg_data_filename("timeseries/kplr010666592-2009131110544_slc.fits") with pytest.warns(UnitsWarning): timeseries = kepler_fits_reader(filename) assert timeseries["time"].format == "isot" assert timeseries["time"].scale == "tdb" assert timeseries["sap_flux"].unit.to_string() == "electron / s" assert len(timeseries) == 14280 assert len(timeseries.columns) == 20 @pytest.mark.remote_data(source="astropy") def test_tess_astropy(): filename = get_pkg_data_filename( "timeseries/hlsp_tess-data-alerts_tess_phot_00025155310-s01_tess_v1_lc.fits" ) with pytest.warns(UserWarning, match="Ignoring 815 rows with NaN times"): timeseries = kepler_fits_reader(filename) assert timeseries["time"].format == "isot" assert timeseries["time"].scale == "tdb" assert timeseries["sap_flux"].unit.to_string() == "electron / s" assert len(timeseries) == 19261 assert len(timeseries.columns) == 20
a9bc321b0593ce46a3d2a7d4d7458d05140db961808955a114513ddd108215d2
import pytest import astropy.constants as const from astropy import astronomical_constants, physical_constants def test_version_match(): pversion = physical_constants.get() refpversion = const.h.__class__.__name__.lower() assert pversion == refpversion aversion = astronomical_constants.get() refaversion = const.M_sun.__class__.__name__.lower() assert aversion == refaversion def test_previously_imported(): with pytest.raises(RuntimeError): physical_constants.set("codata2018") with pytest.raises(RuntimeError): astronomical_constants.set("iau2015")
0c680475adf40509ead694d191b200fa02460433e838ac39327e964fee5595f0
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest from astropy import constants as const from astropy.tests.helper import check_pickling_recovery, pickle_protocol # noqa: F401 originals = [ const.Constant("h_fake", "Not Planck", 0.0, "J s", 0.0, "fakeref", system="si"), const.h, const.e.si, ] @pytest.mark.parametrize("original", originals) def test_new_constant(pickle_protocol, original): # noqa: F811 check_pickling_recovery(original, pickle_protocol)
90a4eb22ce46df70f2c9a713cca02e6c44107e9d4e8cdec7492fd3501b61e01a
# Licensed under a 3-clause BSD style license - see LICENSE.rst import copy import numpy as np import pytest from astropy.constants import Constant from astropy.units import Quantity as Q def test_c(): from astropy.constants.codata2010 import c # c is an exactly defined constant, so it shouldn't be changing assert c.value == 2.99792458e8 # default is S.I. assert c.si.value == 2.99792458e8 assert c.cgs.value == 2.99792458e10 # make sure it has the necessary attributes and they're not blank assert c.uncertainty == 0 # c is a *defined* quantity assert c.name assert c.reference assert c.unit def test_h(): from astropy.constants import h as h_current from astropy.constants.codata2010 import h # check that the value is the CODATA2010 value assert abs(h.value - 6.62606957e-34) < 1e-43 assert abs(h.si.value - 6.62606957e-34) < 1e-43 assert abs(h.cgs.value - 6.62606957e-27) < 1e-36 # Check it is different than the current value assert abs(h.value - h_current.value) > 4e-42 # make sure it has the necessary attributes and they're not blank assert h.uncertainty assert h.name assert h.reference assert h.unit def test_e(): from astropy.constants.astropyconst13 import e as e_13 # A test quantity E = Q(100.00000348276221, "V/m") # e.cgs is too ambiguous and should not work at all with pytest.raises(TypeError): e_13.cgs * E assert isinstance(e_13.si, Q) assert isinstance(e_13.gauss, Q) assert isinstance(e_13.esu, Q) assert e_13.gauss * E == Q(e_13.gauss.value * E.value, "Fr V/m") assert e_13.esu * E == Q(e_13.esu.value * E.value, "Fr V/m") def test_g0(): """Tests for #1263 demonstrating how g0 constant should behave.""" from astropy.constants.astropyconst13 import g0 # g0 is an exactly defined constant, so it shouldn't be changing assert g0.value == 9.80665 # default is S.I. assert g0.si.value == 9.80665 assert g0.cgs.value == 9.80665e2 # make sure it has the necessary attributes and they're not blank assert g0.uncertainty == 0 # g0 is a *defined* quantity assert g0.name assert g0.reference assert g0.unit # Check that its unit have the correct physical type assert g0.unit.physical_type == "acceleration" def test_b_wien(): """b_wien should give the correct peak wavelength for given blackbody temperature. The Sun is used in this test. """ from astropy import units as u from astropy.constants.astropyconst13 import b_wien t = 5778 * u.K w = (b_wien / t).to(u.nm) assert round(w.value) == 502 def test_pc(): """Parsec is defined to use small-angle limit per IAU 2015 Resolution B 2. iau2012 version still uses tan(parallax). """ from astropy import units as u from astropy.constants import iau2012 plx = np.radians(1 / 3600) assert np.allclose( u.pc.to("m") / iau2012.pc.si.value, np.tan(plx) / plx, rtol=1.0e-14, atol=0 ) def test_masses(): """Ensure mass values are set up correctly. https://github.com/astropy/astropy/issues/8920 """ from astropy.constants import astropyconst13, astropyconst20, astropyconst40 ref_text = "Allen's Astrophysical Quantities 4th Ed." assert ( astropyconst13.M_sun.reference == ref_text and astropyconst13.M_jup.reference == ref_text and astropyconst13.M_earth.reference == ref_text ) ref_text = "IAU 2015 Resolution B 3 + CODATA 2014" assert ( astropyconst20.M_sun.reference == ref_text and astropyconst20.M_jup.reference == ref_text and astropyconst20.M_earth.reference == ref_text ) ref_text = "IAU 2015 Resolution B 3 + CODATA 2018" assert ( astropyconst40.M_sun.reference == ref_text and astropyconst40.M_jup.reference == ref_text and astropyconst40.M_earth.reference == ref_text ) def test_unit(): from astropy import units as u from astropy.constants import astropyconst13 as const for key, val in vars(const).items(): if isinstance(val, Constant): # Getting the unit forces the unit parser to run. Confirm # that none of the constants defined in astropy have # invalid unit. assert not isinstance(val.unit, u.UnrecognizedUnit) def test_copy(): from astropy import constants as const cc = copy.deepcopy(const.c) assert cc == const.c cc = copy.copy(const.c) assert cc == const.c def test_view(): """Check that Constant and Quantity views can be taken (#3537, #3538).""" from astropy.constants import c c2 = c.view(Constant) assert c2 == c assert c2.value == c.value # make sure it has the necessary attributes and they're not blank assert c2.uncertainty == 0 # c is a *defined* quantity assert c2.name == c.name assert c2.reference == c.reference assert c2.unit == c.unit q1 = c.view(Q) assert q1 == c assert q1.value == c.value assert type(q1) is Q assert not hasattr(q1, "reference") q2 = Q(c) assert q2 == c assert q2.value == c.value assert type(q2) is Q assert not hasattr(q2, "reference") c3 = Q(c, subok=True) assert c3 == c assert c3.value == c.value # make sure it has the necessary attributes and they're not blank assert c3.uncertainty == 0 # c is a *defined* quantity assert c3.name == c.name assert c3.reference == c.reference assert c3.unit == c.unit c4 = Q(c, subok=True, copy=False) assert c4 is c
6a5197153bb6bc5bf23fd01ceaebba730332929b8cd3008a2c6c00e1f276a886
# Licensed under a 3-clause BSD style license - see LICENSE.rst import copy import pytest from astropy.constants import Constant from astropy.units import Quantity as Q def test_c(): from astropy.constants import c # c is an exactly defined constant, so it shouldn't be changing assert c.value == 2.99792458e8 # default is S.I. assert c.si.value == 2.99792458e8 assert c.cgs.value == 2.99792458e10 # make sure it has the necessary attributes and they're not blank assert c.uncertainty == 0 # c is a *defined* quantity assert c.name assert c.reference assert c.unit def test_h(): from astropy.constants import h # check that the value is fairly close to what it should be (not exactly # checking because this might get updated in the future) assert abs(h.value - 6.626e-34) < 1e-38 assert abs(h.si.value - 6.626e-34) < 1e-38 assert abs(h.cgs.value - 6.626e-27) < 1e-31 # make sure it has the necessary attributes and they're not blank assert h.uncertainty == 0 # CODATA 2018 set h to exact value assert h.name assert h.reference assert h.unit def test_e(): """Tests for #572 demonstrating how EM constants should behave.""" from astropy.constants import e # A test quantity E = Q(100, "V/m") # Without specifying a system e should not combine with other quantities pytest.raises(TypeError, lambda: e * E) # Try it again (as regression test on a minor issue mentioned in #745 where # repeated attempts to use e in an expression resulted in UnboundLocalError # instead of TypeError) pytest.raises(TypeError, lambda: e * E) # e.cgs is too ambiguous and should not work at all pytest.raises(TypeError, lambda: e.cgs * E) assert isinstance(e.si, Q) assert isinstance(e.gauss, Q) assert isinstance(e.esu, Q) assert e.si * E == Q(100, "eV/m") assert e.gauss * E == Q(e.gauss.value * E.value, "Fr V/m") assert e.esu * E == Q(e.esu.value * E.value, "Fr V/m") def test_g0(): """Tests for #1263 demonstrating how g0 constant should behave.""" from astropy.constants import g0 # g0 is an exactly defined constant, so it shouldn't be changing assert g0.value == 9.80665 # default is S.I. assert g0.si.value == 9.80665 assert g0.cgs.value == 9.80665e2 # make sure it has the necessary attributes and they're not blank assert g0.uncertainty == 0 # g0 is a *defined* quantity assert g0.name assert g0.reference assert g0.unit # Check that its unit have the correct physical type assert g0.unit.physical_type == "acceleration" def test_b_wien(): """b_wien should give the correct peak wavelength for given blackbody temperature. The Sun is used in this test. """ from astropy import units as u from astropy.constants import b_wien t = 5778 * u.K w = (b_wien / t).to(u.nm) assert round(w.value) == 502 def test_unit(): from astropy import constants as const from astropy import units as u for key, val in vars(const).items(): if isinstance(val, Constant): # Getting the unit forces the unit parser to run. Confirm # that none of the constants defined in astropy have # invalid unit. assert not isinstance(val.unit, u.UnrecognizedUnit) def test_copy(): from astropy import constants as const cc = copy.deepcopy(const.c) assert cc == const.c cc = copy.copy(const.c) assert cc == const.c def test_view(): """Check that Constant and Quantity views can be taken (#3537, #3538).""" from astropy.constants import c c2 = c.view(Constant) assert c2 == c assert c2.value == c.value # make sure it has the necessary attributes and they're not blank assert c2.uncertainty == 0 # c is a *defined* quantity assert c2.name == c.name assert c2.reference == c.reference assert c2.unit == c.unit q1 = c.view(Q) assert q1 == c assert q1.value == c.value assert type(q1) is Q assert not hasattr(q1, "reference") q2 = Q(c) assert q2 == c assert q2.value == c.value assert type(q2) is Q assert not hasattr(q2, "reference") c3 = Q(c, subok=True) assert c3 == c assert c3.value == c.value # make sure it has the necessary attributes and they're not blank assert c3.uncertainty == 0 # c is a *defined* quantity assert c3.name == c.name assert c3.reference == c.reference assert c3.unit == c.unit c4 = Q(c, subok=True, copy=False) assert c4 is c
f3fc4c5c0c1e84463f0fb770d68b83a38bb7373c62a40f22c519e50568fe3bb1
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Comparison functions for `astropy.cosmology.Cosmology`. This module is **NOT** public API. To use these functions, import them from the top-level namespace -- :mod:`astropy.cosmology`. This module will be moved. """ from __future__ import annotations import functools import inspect from typing import Any, Callable, Tuple, Union import numpy as np from numpy import False_, True_, ndarray from astropy import table from astropy.cosmology.core import Cosmology __all__ = [] # Nothing is scoped here ############################################################################## # PARAMETERS _FormatType = Union[bool, None, str] _FormatsT = Union[_FormatType, Tuple[_FormatType, ...]] _CompFnT = Callable[[Any, _FormatType], Cosmology] _COSMO_AOK: set[Any] = {None, True_, False_, "astropy.cosmology"} # The numpy bool also catches real bool for ops "==" and "in" ############################################################################## # UTILITIES class _CosmologyWrapper: """ A private wrapper class to hide things from :mod:`numpy`. This should never be exposed to the user. """ __slots__ = ("wrapped",) # Use less memory and speed up initilization. _cantbroadcast: tuple[type, ...] = (table.Row, table.Table) """ Have to deal with things that do not broadcast well. e.g. `~astropy.table.Row` cannot be used in an array, even if ``dtype=object`` and will raise a segfault when used in a `numpy.ufunc`. """ wrapped: Any def __init__(self, wrapped: Any) -> None: self.wrapped = wrapped # TODO! when py3.9+ use @functools.partial(np.frompyfunc, nin=2, nout=1) # TODO! https://github.com/numpy/numpy/issues/9477 segfaults on astropy.row # and np.vectorize can't coerce table to dtypes def _wrap_to_ufunc(nin: int, nout: int) -> Callable[[_CompFnT], np.ufunc]: def wrapper(pyfunc: _CompFnT) -> np.ufunc: ufunc = np.frompyfunc(pyfunc, 2, 1) return ufunc return wrapper @_wrap_to_ufunc(2, 1) def _parse_format(cosmo: Any, format: _FormatType, /) -> Cosmology: """Parse Cosmology-like input into Cosmologies, given a format hint. Parameters ---------- cosmo : |Cosmology|-like, positional-only |Cosmology| to parse. format : bool or None or str, positional-only Whether to allow, before equivalence is checked, the object to be converted to a |Cosmology|. This allows, e.g. a |Table| to be equivalent to a |Cosmology|. `False` (default) will not allow conversion. `True` or `None` will, and will use the auto-identification to try to infer the correct format. A `str` is assumed to be the correct format to use when converting. Returns ------- |Cosmology| or generator thereof Raises ------ TypeError If ``cosmo`` is not a |Cosmology| and ``format`` equals `False`. TypeError If ``cosmo`` is a |Cosmology| and ``format`` is not `None` or equal to `True`. """ # Deal with private wrapper if isinstance(cosmo, _CosmologyWrapper): cosmo = cosmo.wrapped # Shortcut if already a cosmology if isinstance(cosmo, Cosmology): if format not in _COSMO_AOK: allowed = "/".join(map(str, _COSMO_AOK)) raise ValueError( f"for parsing a Cosmology, 'format' must be {allowed}, not {format}" ) return cosmo # Convert, if allowed. elif format == False_: # catches False and False_ raise TypeError( f"if 'format' is False, arguments must be a Cosmology, not {cosmo}" ) else: format = None if format == True_ else format # str->str, None/True/True_->None out = Cosmology.from_format(cosmo, format=format) # this can error! return out def _parse_formats(*cosmos: object, format: _FormatsT) -> ndarray: """Parse Cosmology-like to |Cosmology|, using provided formats. ``format`` is broadcast to match the shape of the cosmology arguments. Note that the cosmology arguments are not broadcast against ``format``, so it cannot determine the output shape. Parameters ---------- *cosmos : |Cosmology|-like The objects to compare. Must be convertible to |Cosmology|, as specified by the corresponding ``format``. format : bool or None or str or array-like thereof, positional-only Whether to allow, before equivalence is checked, the object to be converted to a |Cosmology|. This allows, e.g. a |Table| to be equivalent to a |Cosmology|. `False` (default) will not allow conversion. `True` or `None` will, and will use the auto-identification to try to infer the correct format. A `str` is assumed to be the correct format to use when converting. Note ``format`` is broadcast as an object array to match the shape of ``cosmos`` so ``format`` cannot determine the output shape. Raises ------ TypeError If any in ``cosmos`` is not a |Cosmology| and the corresponding ``format`` equals `False`. """ formats = np.broadcast_to(np.array(format, dtype=object), len(cosmos)) # parse each cosmo & format # Have to deal with things that do not broadcast well. # astropy.row cannot be used in an array, even if dtype=object # and will raise a segfault when used in a ufunc. towrap = (isinstance(cosmo, _CosmologyWrapper._cantbroadcast) for cosmo in cosmos) wcosmos = [ c if not wrap else _CosmologyWrapper(c) for c, wrap in zip(cosmos, towrap) ] return _parse_format(wcosmos, formats) def _comparison_decorator(pyfunc: Callable[..., Any]) -> Callable[..., Any]: """Decorator to make wrapper function that parses |Cosmology|-like inputs. Parameters ---------- pyfunc : Python function object An arbitrary Python function. Returns ------- callable[..., Any] Wrapped `pyfunc`, as described above. Notes ----- All decorated functions should add the following to 'Parameters'. format : bool or None or str or array-like thereof, optional keyword-only Whether to allow the arguments to be converted to a |Cosmology|. This allows, e.g. a |Table| to be given instead a |Cosmology|. `False` (default) will not allow conversion. `True` or `None` will, and will use the auto-identification to try to infer the correct format. A `str` is assumed to be the correct format to use when converting. Note ``format`` is broadcast as an object array to match the shape of ``cosmos`` so ``format`` cannot determine the output shape. """ sig = inspect.signature(pyfunc) nin = sum(p.kind == 0 for p in sig.parameters.values()) # Make wrapper function that parses cosmology-like inputs @functools.wraps(pyfunc) def wrapper(*cosmos: Any, format: _FormatsT = False, **kwargs: Any) -> bool: if len(cosmos) > nin: raise TypeError( f"{wrapper.__wrapped__.__name__} takes {nin} positional" f" arguments but {len(cosmos)} were given" ) # Parse cosmologies to format. Only do specified number. cosmos = _parse_formats(*cosmos, format=format) # Evaluate pyfunc, erroring if didn't match specified number. result = wrapper.__wrapped__(*cosmos, **kwargs) # Return, casting to correct type casting is possible. return result return wrapper ############################################################################## # COMPARISON FUNCTIONS @_comparison_decorator def cosmology_equal( cosmo1: Any, cosmo2: Any, /, *, allow_equivalent: bool = False ) -> bool: r"""Return element-wise equality check on the cosmologies. .. note:: Cosmologies are currently scalar in their parameters. Parameters ---------- cosmo1, cosmo2 : |Cosmology|-like The objects to compare. Must be convertible to |Cosmology|, as specified by ``format``. format : bool or None or str or tuple thereof, optional keyword-only Whether to allow the arguments to be converted to a |Cosmology|. This allows, e.g. a |Table| to be given instead a |Cosmology|. `False` (default) will not allow conversion. `True` or `None` will, and will use the auto-identification to try to infer the correct format. A `str` is assumed to be the correct format to use when converting. Note ``format`` is broadcast as an object array to match the shape of ``cosmos`` so ``format`` cannot determine the output shape. allow_equivalent : bool, optional keyword-only Whether to allow cosmologies to be equal even if not of the same class. For example, an instance of |LambdaCDM| might have :math:`\Omega_0=1` and :math:`\Omega_k=0` and therefore be flat, like |FlatLambdaCDM|. Examples -------- Assuming the following imports >>> import astropy.units as u >>> from astropy.cosmology import FlatLambdaCDM Two identical cosmologies are equal. >>> cosmo1 = FlatLambdaCDM(70 * (u.km/u.s/u.Mpc), 0.3) >>> cosmo2 = FlatLambdaCDM(70 * (u.km/u.s/u.Mpc), 0.3) >>> cosmology_equal(cosmo1, cosmo2) True And cosmologies with different parameters are not. >>> cosmo3 = FlatLambdaCDM(70 * (u.km/u.s/u.Mpc), 0.4) >>> cosmology_equal(cosmo1, cosmo3) False Two cosmologies may be equivalent even if not of the same class. In these examples the |LambdaCDM| has :attr:`~astropy.cosmology.LambdaCDM.Ode0` set to the same value calculated in |FlatLambdaCDM|. >>> from astropy.cosmology import LambdaCDM >>> cosmo3 = LambdaCDM(70 * (u.km/u.s/u.Mpc), 0.3, 0.7) >>> cosmology_equal(cosmo1, cosmo3) False >>> cosmology_equal(cosmo1, cosmo3, allow_equivalent=True) True While in this example, the cosmologies are not equivalent. >>> cosmo4 = FlatLambdaCDM(70 * (u.km/u.s/u.Mpc), 0.3, Tcmb0=3 * u.K) >>> cosmology_equal(cosmo3, cosmo4, allow_equivalent=True) False Also, using the keyword argument, the notion of equality is extended to any Python object that can be converted to a |Cosmology|. >>> mapping = cosmo2.to_format("mapping") >>> cosmology_equal(cosmo1, mapping, format=True) True Either (or both) arguments can be |Cosmology|-like. >>> cosmology_equal(mapping, cosmo2, format=True) True The list of valid formats, e.g. the |Table| in this example, may be checked with ``Cosmology.from_format.list_formats()``. As can be seen in the list of formats, not all formats can be auto-identified by ``Cosmology.from_format.registry``. Objects of these kinds can still be checked for equality, but the correct format string must be used. >>> yml = cosmo2.to_format("yaml") >>> cosmology_equal(cosmo1, yml, format=(None, "yaml")) True This also works with an array of ``format`` matching the number of cosmologies. >>> cosmology_equal(mapping, yml, format=[True, "yaml"]) True """ # Check parameter equality if not allow_equivalent: eq = cosmo1 == cosmo2 else: # Check parameter equivalence # The options are: 1) same class & parameters; 2) same class, different # parameters; 3) different classes, equivalent parameters; 4) different # classes, different parameters. (1) & (3) => True, (2) & (4) => False. eq = cosmo1.__equiv__(cosmo2) if eq is NotImplemented: eq = cosmo2.__equiv__(cosmo1) # that failed, try from 'other' eq = False if eq is NotImplemented else eq # TODO! include equality check of metadata return eq @_comparison_decorator def _cosmology_not_equal( cosmo1: Any, cosmo2: Any, /, *, allow_equivalent: bool = False ) -> bool: r"""Return element-wise cosmology non-equality check. .. note:: Cosmologies are currently scalar in their parameters. Parameters ---------- cosmo1, cosmo2 : |Cosmology|-like The objects to compare. Must be convertible to |Cosmology|, as specified by ``format``. out : ndarray, None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. format : bool or None or str or tuple thereof, optional keyword-only Whether to allow the arguments to be converted to a |Cosmology|. This allows, e.g. a |Table| to be given instead a Cosmology. `False` (default) will not allow conversion. `True` or `None` will, and will use the auto-identification to try to infer the correct format. A `str` is assumed to be the correct format to use when converting. ``format`` is broadcast to match the shape of the cosmology arguments. Note that the cosmology arguments are not broadcast against ``format``, so it cannot determine the output shape. allow_equivalent : bool, optional keyword-only Whether to allow cosmologies to be equal even if not of the same class. For example, an instance of |LambdaCDM| might have :math:`\Omega_0=1` and :math:`\Omega_k=0` and therefore be flat, like |FlatLambdaCDM|. See Also -------- astropy.cosmology.cosmology_equal Element-wise equality check, with argument conversion to Cosmology. """ neq = not cosmology_equal(cosmo1, cosmo2, allow_equivalent=allow_equivalent) # TODO! it might eventually be worth the speed boost to implement some of # the internals of cosmology_equal here, but for now it's a hassle. return neq
e38938de588dabaaf72d8a438fe2d86ad24965610a96daa0bda8860ae7e14ff6
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Functions for `astropy.cosmology`.""" from .comparison import cosmology_equal # _z_at_scalar_value is imported for backards compat from .optimize import _z_at_scalar_value, z_at_value __all__ = ["z_at_value", "cosmology_equal"]
f6f35dfb24c755f31945b957d27d4825e03b9e816550bd9b8dbfba449dfbbe3a
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Convenience functions for `astropy.cosmology`. """ import warnings import numpy as np from astropy.cosmology import units as cu from astropy.cosmology.core import CosmologyError from astropy.units import Quantity from astropy.utils.exceptions import AstropyUserWarning __all__ = ["z_at_value"] __doctest_requires__ = {"*": ["scipy"]} def _z_at_scalar_value( func, fval, zmin=1e-8, zmax=1000, ztol=1e-8, maxfun=500, method="Brent", bracket=None, verbose=False, ): """ Find the redshift ``z`` at which ``func(z) = fval``. See :func:`astropy.cosmology.funcs.z_at_value`. """ from scipy.optimize import minimize_scalar opt = {"maxiter": maxfun} # Assume custom methods support the same options as default; otherwise user # will see warnings. if str(method).lower() == "bounded": opt["xatol"] = ztol if bracket is not None: warnings.warn(f"Option 'bracket' is ignored by method {method}.") bracket = None else: opt["xtol"] = ztol # fval falling inside the interval of bracketing function values does not # guarantee it has a unique solution, but for Standard Cosmological # quantities normally should (being monotonic or having a single extremum). # In these cases keep solver from returning solutions outside of bracket. fval_zmin, fval_zmax = func(zmin), func(zmax) nobracket = False if np.sign(fval - fval_zmin) != np.sign(fval_zmax - fval): if bracket is None: nobracket = True else: fval_brac = func(np.asanyarray(bracket)) if np.sign(fval - fval_brac[0]) != np.sign(fval_brac[-1] - fval): nobracket = True else: zmin, zmax = bracket[0], bracket[-1] fval_zmin, fval_zmax = fval_brac[[0, -1]] if nobracket: warnings.warn( f"fval is not bracketed by func(zmin)={fval_zmin} and " f"func(zmax)={fval_zmax}. This means either there is no " "solution, or that there is more than one solution " "between zmin and zmax satisfying fval = func(z).", AstropyUserWarning, ) if isinstance(fval_zmin, Quantity): val = fval.to_value(fval_zmin.unit) else: val = fval # 'Brent' and 'Golden' ignore `bounds`, force solution inside zlim def f(z): if z > zmax: return 1.0e300 * (1.0 + z - zmax) elif z < zmin: return 1.0e300 * (1.0 + zmin - z) elif isinstance(fval_zmin, Quantity): return abs(func(z).value - val) else: return abs(func(z) - val) res = minimize_scalar( f, method=method, bounds=(zmin, zmax), bracket=bracket, options=opt ) # Scipy docs state that `OptimizeResult` always has 'status' and 'message' # attributes, but only `_minimize_scalar_bounded()` seems to have really # implemented them. if not res.success: warnings.warn( f"Solver returned {res.get('status')}:" f" {res.get('message', 'Unsuccessful')}\nPrecision {res.fun} reached after" f" {res.nfev} function calls.", AstropyUserWarning, ) if verbose: print(res) if np.allclose(res.x, zmax): raise CosmologyError( f"Best guess z={res.x} is very close to the upper z limit {zmax}." "\nTry re-running with a different zmax." ) elif np.allclose(res.x, zmin): raise CosmologyError( f"Best guess z={res.x} is very close to the lower z limit {zmin}." "\nTry re-running with a different zmin." ) return res.x def z_at_value( func, fval, zmin=1e-8, zmax=1000, ztol=1e-8, maxfun=500, method="Brent", bracket=None, verbose=False, ): """Find the redshift ``z`` at which ``func(z) = fval``. This finds the redshift at which one of the cosmology functions or methods (for example Planck13.distmod) is equal to a known value. .. warning:: Make sure you understand the behavior of the function that you are trying to invert! Depending on the cosmology, there may not be a unique solution. For example, in the standard Lambda CDM cosmology, there are two redshifts which give an angular diameter distance of 1500 Mpc, z ~ 0.7 and z ~ 3.8. To force ``z_at_value`` to find the solution you are interested in, use the ``zmin`` and ``zmax`` keywords to limit the search range (see the example below). Parameters ---------- func : function or method A function that takes a redshift as input. fval : `~astropy.units.Quantity` The (scalar or array) value of ``func(z)`` to recover. zmin : float or array-like['dimensionless'] or quantity-like, optional The lower search limit for ``z``. Beware of divergences in some cosmological functions, such as distance moduli, at z=0 (default 1e-8). zmax : float or array-like['dimensionless'] or quantity-like, optional The upper search limit for ``z`` (default 1000). ztol : float or array-like['dimensionless'], optional The relative error in ``z`` acceptable for convergence. maxfun : int or array-like, optional The maximum number of function evaluations allowed in the optimization routine (default 500). method : str or callable, optional Type of solver to pass to the minimizer. The built-in options provided by :func:`~scipy.optimize.minimize_scalar` are 'Brent' (default), 'Golden' and 'Bounded' with names case insensitive - see documentation there for details. It also accepts a custom solver by passing any user-provided callable object that meets the requirements listed therein under the Notes on "Custom minimizers" - or in more detail in :doc:`scipy:tutorial/optimize` - although their use is currently untested. .. versionadded:: 4.3 bracket : sequence or object array[sequence], optional For methods 'Brent' and 'Golden', ``bracket`` defines the bracketing interval and can either have three items (z1, z2, z3) so that z1 < z2 < z3 and ``func(z2) < func (z1), func(z3)`` or two items z1 and z3 which are assumed to be a starting interval for a downhill bracket search. For non-monotonic functions such as angular diameter distance this may be used to start the search on the desired side of the maximum, but see Examples below for usage notes. .. versionadded:: 4.3 verbose : bool, optional Print diagnostic output from solver (default `False`). .. versionadded:: 4.3 Returns ------- z : `~astropy.units.Quantity` ['redshift'] The redshift ``z`` satisfying ``zmin < z < zmax`` and ``func(z) = fval`` within ``ztol``. Has units of cosmological redshift. Warns ----- :class:`~astropy.utils.exceptions.AstropyUserWarning` If ``fval`` is not bracketed by ``func(zmin)=fval(zmin)`` and ``func(zmax)=fval(zmax)``. If the solver was not successful. Raises ------ :class:`astropy.cosmology.CosmologyError` If the result is very close to either ``zmin`` or ``zmax``. ValueError If ``bracket`` is not an array nor a 2 (or 3) element sequence. TypeError If ``bracket`` is not an object array. 2 (or 3) element sequences will be turned into object arrays, so this error should only occur if a non-object array is used for ``bracket``. Notes ----- This works for any arbitrary input cosmology, but is inefficient if you want to invert a large number of values for the same cosmology. In this case, it is faster to instead generate an array of values at many closely-spaced redshifts that cover the relevant redshift range, and then use interpolation to find the redshift at each value you are interested in. For example, to efficiently find the redshifts corresponding to 10^6 values of the distance modulus in a Planck13 cosmology, you could do the following: >>> import astropy.units as u >>> from astropy.cosmology import Planck13, z_at_value Generate 10^6 distance moduli between 24 and 44 for which we want to find the corresponding redshifts: >>> Dvals = (24 + np.random.rand(1000000) * 20) * u.mag Make a grid of distance moduli covering the redshift range we need using 50 equally log-spaced values between zmin and zmax. We use log spacing to adequately sample the steep part of the curve at low distance moduli: >>> zmin = z_at_value(Planck13.distmod, Dvals.min()) >>> zmax = z_at_value(Planck13.distmod, Dvals.max()) >>> zgrid = np.geomspace(zmin, zmax, 50) >>> Dgrid = Planck13.distmod(zgrid) Finally interpolate to find the redshift at each distance modulus: >>> zvals = np.interp(Dvals.value, Dgrid.value, zgrid) Examples -------- >>> import astropy.units as u >>> from astropy.cosmology import Planck13, Planck18, z_at_value The age and lookback time are monotonic with redshift, and so a unique solution can be found: >>> z_at_value(Planck13.age, 2 * u.Gyr) # doctest: +FLOAT_CMP <Quantity 3.19812268 redshift> The angular diameter is not monotonic however, and there are two redshifts that give a value of 1500 Mpc. You can use the zmin and zmax keywords to find the one you are interested in: >>> z_at_value(Planck18.angular_diameter_distance, ... 1500 * u.Mpc, zmax=1.5) # doctest: +FLOAT_CMP <Quantity 0.68044452 redshift> >>> z_at_value(Planck18.angular_diameter_distance, ... 1500 * u.Mpc, zmin=2.5) # doctest: +FLOAT_CMP <Quantity 3.7823268 redshift> Alternatively the ``bracket`` option may be used to initialize the function solver on a desired region, but one should be aware that this does not guarantee it will remain close to this starting bracket. For the example of angular diameter distance, which has a maximum near a redshift of 1.6 in this cosmology, defining a bracket on either side of this maximum will often return a solution on the same side: >>> z_at_value(Planck18.angular_diameter_distance, ... 1500 * u.Mpc, bracket=(1.0, 1.2)) # doctest: +FLOAT_CMP +IGNORE_WARNINGS <Quantity 0.68044452 redshift> But this is not ascertained especially if the bracket is chosen too wide and/or too close to the turning point: >>> z_at_value(Planck18.angular_diameter_distance, ... 1500 * u.Mpc, bracket=(0.1, 1.5)) # doctest: +SKIP <Quantity 3.7823268 redshift> # doctest: +SKIP Likewise, even for the same minimizer and same starting conditions different results can be found depending on architecture or library versions: >>> z_at_value(Planck18.angular_diameter_distance, ... 1500 * u.Mpc, bracket=(2.0, 2.5)) # doctest: +SKIP <Quantity 3.7823268 redshift> # doctest: +SKIP >>> z_at_value(Planck18.angular_diameter_distance, ... 1500 * u.Mpc, bracket=(2.0, 2.5)) # doctest: +SKIP <Quantity 0.68044452 redshift> # doctest: +SKIP It is therefore generally safer to use the 3-parameter variant to ensure the solution stays within the bracketing limits: >>> z_at_value(Planck18.angular_diameter_distance, 1500 * u.Mpc, ... bracket=(0.1, 1.0, 1.5)) # doctest: +FLOAT_CMP <Quantity 0.68044452 redshift> Also note that the luminosity distance and distance modulus (two other commonly inverted quantities) are monotonic in flat and open universes, but not in closed universes. All the arguments except ``func``, ``method`` and ``verbose`` accept array inputs. This does NOT use interpolation tables or any method to speed up evaluations, rather providing a convenient means to broadcast arguments over an element-wise scalar evaluation. The most common use case for non-scalar input is to evaluate 'func' for an array of ``fval``: >>> z_at_value(Planck13.age, [2, 7] * u.Gyr) # doctest: +FLOAT_CMP <Quantity [3.19812061, 0.75620443] redshift> ``fval`` can be any shape: >>> z_at_value(Planck13.age, [[2, 7], [1, 3]]*u.Gyr) # doctest: +FLOAT_CMP <Quantity [[3.19812061, 0.75620443], [5.67661227, 2.19131955]] redshift> Other arguments can be arrays. For non-monotic functions -- for example, the angular diameter distance -- this can be useful to find all solutions. >>> z_at_value(Planck13.angular_diameter_distance, 1500 * u.Mpc, ... zmin=[0, 2.5], zmax=[2, 4]) # doctest: +FLOAT_CMP <Quantity [0.68127747, 3.79149062] redshift> The ``bracket`` argument can likewise be be an array. However, since bracket must already be a sequence (or None), it MUST be given as an object `numpy.ndarray`. Importantly, the depth of the array must be such that each bracket subsequence is an object. Errors or unexpected results will happen otherwise. A convenient means to ensure the right depth is by including a length-0 tuple as a bracket and then truncating the object array to remove the placeholder. This can be seen in the following example: >>> bracket=np.array([(1.0, 1.2),(2.0, 2.5), ()], dtype=object)[:-1] >>> z_at_value(Planck18.angular_diameter_distance, 1500 * u.Mpc, ... bracket=bracket) # doctest: +SKIP <Quantity [0.68044452, 3.7823268] redshift> """ # `fval` can be a Quantity, which isn't (yet) compatible w/ `numpy.nditer` # so we strip it of units for broadcasting and restore the units when # passing the elements to `_z_at_scalar_value`. fval = np.asanyarray(fval) unit = getattr(fval, "unit", 1) # can be unitless zmin = Quantity(zmin, cu.redshift).value # must be unitless zmax = Quantity(zmax, cu.redshift).value # bracket must be an object array (assumed to be correct) or a 'scalar' # bracket: 2 or 3 elt sequence if not isinstance(bracket, np.ndarray): # 'scalar' bracket if bracket is not None and len(bracket) not in (2, 3): raise ValueError( "`bracket` is not an array nor a 2 (or 3) element sequence." ) else: # munge bracket into a 1-elt object array bracket = np.array([bracket, ()], dtype=object)[:1].squeeze() if bracket.dtype != np.object_: raise TypeError(f"`bracket` has dtype {bracket.dtype}, not 'O'") # make multi-dimensional iterator for all but `method`, `verbose` with np.nditer( [fval, zmin, zmax, ztol, maxfun, bracket, None], flags=["refs_ok"], op_flags=[ *[["readonly"]] * 6, # ← inputs output ↓ ["writeonly", "allocate", "no_subtype"], ], op_dtypes=(*(None,) * 6, fval.dtype), casting="no", ) as it: for fv, zmn, zmx, zt, mfe, bkt, zs in it: # ← eltwise unpack & eval ↓ zs[...] = _z_at_scalar_value( func, fv * unit, zmin=zmn, zmax=zmx, ztol=zt, maxfun=mfe, bracket=bkt.item(), # not broadcasted method=method, verbose=verbose, ) # since bracket is an object array, the output will be too, so it is # cast to the same type as the function value. result = it.operands[-1] # zs return result << cu.redshift
075b96c285c75124b306739f2a03782060cdcaf3bf9ffeabb91cc49231d015a3
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ The following are private functions, included here **FOR REFERENCE ONLY** since the io registry cannot be displayed. These functions are registered into :meth:`~astropy.cosmology.Cosmology.to_format` and :meth:`~astropy.cosmology.Cosmology.from_format` and should only be accessed via these methods. """ # this is shown in the docs. import abc import copy import inspect import numpy as np from astropy.cosmology.connect import convert_registry from astropy.cosmology.core import Cosmology from astropy.modeling import FittableModel, Model from astropy.utils.decorators import classproperty from .utils import convert_parameter_to_model_parameter __all__ = [] # nothing is publicly scoped class _CosmologyModel(FittableModel): """Base class for Cosmology redshift-method Models. .. note:: This class is not publicly scoped so should not be used directly. Instead, from a Cosmology instance use ``.to_format("astropy.model")`` to create an instance of a subclass of this class. `_CosmologyModel` (subclasses) wrap a redshift-method of a :class:`~astropy.cosmology.Cosmology` class, converting each non-`None` |Cosmology| :class:`~astropy.cosmology.Parameter` to a :class:`astropy.modeling.Model` :class:`~astropy.modeling.Parameter` and the redshift-method to the model's ``__call__ / evaluate``. See Also -------- astropy.cosmology.Cosmology.to_format """ @abc.abstractmethod def _cosmology_class(self): """Cosmology class as a private attribute. Set in subclasses.""" @abc.abstractmethod def _method_name(self): """Cosmology method name as a private attribute. Set in subclasses.""" @classproperty def cosmology_class(cls): """|Cosmology| class.""" return cls._cosmology_class @property def cosmology(self): """Return |Cosmology| using `~astropy.modeling.Parameter` values.""" cosmo = self._cosmology_class( name=self.name, **{ k: (v.value if not (v := getattr(self, k)).unit else v.quantity) for k in self.param_names }, ) return cosmo @classproperty def method_name(self): """Redshift-method name on |Cosmology| instance.""" return self._method_name # --------------------------------------------------------------- def evaluate(self, *args, **kwargs): """Evaluate method {method!r} of {cosmo_cls!r} Cosmology. The Model wraps the :class:`~astropy.cosmology.Cosmology` method, converting each |Cosmology| :class:`~astropy.cosmology.Parameter` to a :class:`astropy.modeling.Model` :class:`~astropy.modeling.Parameter` (unless the Parameter is None, in which case it is skipped). Here an instance of the cosmology is created using the current Parameter values and the method is evaluated given the input. Parameters ---------- *args, **kwargs The first ``n_inputs`` of ``*args`` are for evaluating the method of the cosmology. The remaining args and kwargs are passed to the cosmology class constructor. Any unspecified Cosmology Parameter use the current value of the corresponding Model Parameter. Returns ------- Any Results of evaluating the Cosmology method. """ # create BoundArgument with all available inputs beyond the Parameters, # which will be filled in next ba = self.cosmology_class._init_signature.bind_partial( *args[self.n_inputs :], **kwargs ) # fill in missing Parameters for k in self.param_names: if k not in ba.arguments: v = getattr(self, k) ba.arguments[k] = v.value if not v.unit else v.quantity # unvectorize, since Cosmology is not vectorized # TODO! remove when vectorized if np.shape(ba.arguments[k]): # only in __call__ # m_nu is a special case # TODO! fix by making it 'structured' if k == "m_nu" and len(ba.arguments[k].shape) == 1: continue ba.arguments[k] = ba.arguments[k][0] # make instance of cosmology cosmo = self._cosmology_class(**ba.arguments) # evaluate method result = getattr(cosmo, self._method_name)(*args[: self.n_inputs]) return result ############################################################################## def from_model(model): """Load |Cosmology| from `~astropy.modeling.Model` object. Parameters ---------- model : `_CosmologyModel` subclass instance See ``Cosmology.to_format.help("astropy.model") for details. Returns ------- `~astropy.cosmology.Cosmology` subclass instance Examples -------- >>> from astropy.cosmology import Cosmology, Planck18 >>> model = Planck18.to_format("astropy.model", method="lookback_time") >>> Cosmology.from_format(model) FlatLambdaCDM(name="Planck18", H0=67.66 km / (Mpc s), Om0=0.30966, Tcmb0=2.7255 K, Neff=3.046, m_nu=[0. 0. 0.06] eV, Ob0=0.04897) """ cosmology = model.cosmology_class meta = copy.deepcopy(model.meta) # assemble the Parameters params = {} for n in model.param_names: p = getattr(model, n) params[p.name] = p.quantity if p.unit else p.value # put all attributes in a dict meta[p.name] = { n: getattr(p, n) for n in dir(p) if not (n.startswith("_") or callable(getattr(p, n))) } ba = cosmology._init_signature.bind(name=model.name, **params, meta=meta) return cosmology(*ba.args, **ba.kwargs) def to_model(cosmology, *_, method): """Convert a `~astropy.cosmology.Cosmology` to a `~astropy.modeling.Model`. Parameters ---------- cosmology : `~astropy.cosmology.Cosmology` subclass instance method : str, keyword-only The name of the method on the ``cosmology``. Returns ------- `_CosmologyModel` subclass instance The Model wraps the |Cosmology| method, converting each non-`None` :class:`~astropy.cosmology.Parameter` to a :class:`astropy.modeling.Model` :class:`~astropy.modeling.Parameter` and the method to the model's ``__call__ / evaluate``. Examples -------- >>> from astropy.cosmology import Planck18 >>> model = Planck18.to_format("astropy.model", method="lookback_time") >>> model <FlatLambdaCDMCosmologyLookbackTimeModel(H0=67.66 km / (Mpc s), Om0=0.30966, Tcmb0=2.7255 K, Neff=3.046, m_nu=[0. , 0. , 0.06] eV, Ob0=0.04897, name='Planck18')> """ cosmo_cls = cosmology.__class__ # get bound method & sig from cosmology (unbound if class). if not hasattr(cosmology, method): raise AttributeError(f"{method} is not a method on {cosmology.__class__}.") func = getattr(cosmology, method) if not callable(func): raise ValueError(f"{cosmology.__class__}.{method} is not callable.") msig = inspect.signature(func) # introspect for number of positional inputs, ignoring "self" n_inputs = len([p for p in tuple(msig.parameters.values()) if (p.kind in (0, 1))]) attrs = {} # class attributes attrs["_cosmology_class"] = cosmo_cls attrs["_method_name"] = method attrs["n_inputs"] = n_inputs attrs["n_outputs"] = 1 params = {} # Parameters (also class attributes) for n in cosmology.__parameters__: v = getattr(cosmology, n) # parameter value if v is None: # skip unspecified parameters continue # add as Model Parameter params[n] = convert_parameter_to_model_parameter( getattr(cosmo_cls, n), v, cosmology.meta.get(n) ) # class name is cosmology name + Cosmology + method name + Model clsname = ( cosmo_cls.__qualname__.replace(".", "_") + "Cosmology" + method.replace("_", " ").title().replace(" ", "") + "Model" ) # make Model class CosmoModel = type(clsname, (_CosmologyModel,), {**attrs, **params}) # override __signature__ and format the doc. setattr(CosmoModel.evaluate, "__signature__", msig) CosmoModel.evaluate.__doc__ = CosmoModel.evaluate.__doc__.format( cosmo_cls=cosmo_cls.__qualname__, method=method ) # instantiate class using default values ps = {n: getattr(cosmology, n) for n in params.keys()} model = CosmoModel(**ps, name=cosmology.name, meta=copy.deepcopy(cosmology.meta)) return model def model_identify(origin, format, *args, **kwargs): """Identify if object uses the :class:`~astropy.modeling.Model` format. Returns ------- bool """ itis = False if origin == "read": itis = isinstance(args[1], Model) and (format in (None, "astropy.model")) return itis # =================================================================== # Register convert_registry.register_reader("astropy.model", Cosmology, from_model) convert_registry.register_writer("astropy.model", Cosmology, to_model) convert_registry.register_identifier("astropy.model", Cosmology, model_identify)
3a9b778fe0e9758afdbc84f2b6c67b440dc81d508f2eedc50a9938ef164901eb
# Licensed under a 3-clause BSD style license - see LICENSE.rst import copy from collections import defaultdict from astropy.cosmology.connect import convert_registry from astropy.cosmology.core import Cosmology from astropy.table import QTable, Row from .mapping import from_mapping def from_row(row, *, move_to_meta=False, cosmology=None): """Instantiate a `~astropy.cosmology.Cosmology` from a `~astropy.table.Row`. Parameters ---------- row : `~astropy.table.Row` The object containing the Cosmology information. move_to_meta : bool (optional, keyword-only) Whether to move keyword arguments that are not in the Cosmology class' signature to the Cosmology's metadata. This will only be applied if the Cosmology does NOT have a keyword-only argument (e.g. ``**kwargs``). Arguments moved to the metadata will be merged with existing metadata, preferring specified metadata in the case of a merge conflict (e.g. for ``Cosmology(meta={'key':10}, key=42)``, the ``Cosmology.meta`` will be ``{'key': 10}``). cosmology : str, `~astropy.cosmology.Cosmology` class, or None (optional, keyword-only) The cosmology class (or string name thereof) to use when constructing the cosmology instance. The class also provides default parameter values, filling in any non-mandatory arguments missing in 'table'. Returns ------- `~astropy.cosmology.Cosmology` subclass instance Examples -------- To see loading a `~astropy.cosmology.Cosmology` from a Row with ``from_row``, we will first make a `~astropy.table.Row` using :func:`~astropy.cosmology.Cosmology.to_format`. >>> from astropy.cosmology import Cosmology, Planck18 >>> cr = Planck18.to_format("astropy.row") >>> cr <Row index=0> cosmology name H0 Om0 Tcmb0 Neff m_nu Ob0 km / (Mpc s) K eV str13 str8 float64 float64 float64 float64 float64[3] float64 ------------- -------- ------------ ------- ------- ------- ----------- ------- FlatLambdaCDM Planck18 67.66 0.30966 2.7255 3.046 0.0 .. 0.06 0.04897 Now this row can be used to load a new cosmological instance identical to the ``Planck18`` cosmology from which it was generated. >>> cosmo = Cosmology.from_format(cr, format="astropy.row") >>> cosmo FlatLambdaCDM(name="Planck18", H0=67.66 km / (Mpc s), Om0=0.30966, Tcmb0=2.7255 K, Neff=3.046, m_nu=[0. 0. 0.06] eV, Ob0=0.04897) """ # special values name = row["name"] if "name" in row.columns else None # get name from column meta = defaultdict(dict, copy.deepcopy(row.meta)) # Now need to add the Columnar metadata. This is only available on the # parent table. If Row is ever separated from Table, this should be moved # to ``to_table``. for col in row._table.itercols(): if col.info.meta: # Only add metadata if not empty meta[col.name].update(col.info.meta) # turn row into mapping, filling cosmo if not in a column mapping = dict(row) mapping["name"] = name mapping.setdefault("cosmology", meta.pop("cosmology", None)) mapping["meta"] = dict(meta) # build cosmology from map return from_mapping(mapping, move_to_meta=move_to_meta, cosmology=cosmology) def to_row(cosmology, *args, cosmology_in_meta=False, table_cls=QTable): """Serialize the cosmology into a `~astropy.table.Row`. Parameters ---------- cosmology : `~astropy.cosmology.Cosmology` subclass instance *args Not used. Needed for compatibility with `~astropy.io.registry.UnifiedReadWriteMethod` table_cls : type (optional, keyword-only) Astropy :class:`~astropy.table.Table` class or subclass type to use. Default is :class:`~astropy.table.QTable`. cosmology_in_meta : bool Whether to put the cosmology class in the Table metadata (if `True`) or as the first column (if `False`, default). Returns ------- `~astropy.table.Row` With columns for the cosmology parameters, and metadata in the Table's ``meta`` attribute. The cosmology class name will either be a column or in ``meta``, depending on 'cosmology_in_meta'. Examples -------- A Cosmology as a `~astropy.table.Row` will have the cosmology's name and parameters as columns. >>> from astropy.cosmology import Planck18 >>> cr = Planck18.to_format("astropy.row") >>> cr <Row index=0> cosmology name H0 Om0 Tcmb0 Neff m_nu Ob0 km / (Mpc s) K eV str13 str8 float64 float64 float64 float64 float64[3] float64 ------------- -------- ------------ ------- ------- ------- ----------- ------- FlatLambdaCDM Planck18 67.66 0.30966 2.7255 3.046 0.0 .. 0.06 0.04897 The cosmological class and other metadata, e.g. a paper reference, are in the Table's metadata. """ from .table import to_table table = to_table(cosmology, cls=table_cls, cosmology_in_meta=cosmology_in_meta) return table[0] # extract row from table def row_identify(origin, format, *args, **kwargs): """Identify if object uses the `~astropy.table.Row` format. Returns ------- bool """ itis = False if origin == "read": itis = isinstance(args[1], Row) and (format in (None, "astropy.row")) return itis # =================================================================== # Register convert_registry.register_reader("astropy.row", Cosmology, from_row) convert_registry.register_writer("astropy.row", Cosmology, to_row) convert_registry.register_identifier("astropy.row", Cosmology, row_identify)
66a763ad6a24cfd44aa48547e023dac54ce01efba89e80b9b6f81d96f8f87c53
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ The following are private functions. These functions are registered into :meth:`~astropy.cosmology.Cosmology.to_format` and :meth:`~astropy.cosmology.Cosmology.from_format` and should only be accessed via these methods. """ from astropy.cosmology.connect import convert_registry from astropy.cosmology.core import _COSMOLOGY_CLASSES, Cosmology __all__ = [] # nothing is publicly scoped def from_cosmology(cosmo, /, **kwargs): """Return the |Cosmology| unchanged. Parameters ---------- cosmo : `~astropy.cosmology.Cosmology` The cosmology to return. **kwargs This argument is required for compatibility with the standard set of keyword arguments in format `~astropy.cosmology.Cosmology.from_format`, e.g. "cosmology". If "cosmology" is included and is not `None`, ``cosmo`` is checked for correctness. Returns ------- `~astropy.cosmology.Cosmology` subclass instance Just ``cosmo`` passed through. Raises ------ TypeError If the |Cosmology| object is not an instance of ``cosmo`` (and ``cosmology`` is not `None`). """ # Check argument `cosmology` cosmology = kwargs.get("cosmology") if isinstance(cosmology, str): cosmology = _COSMOLOGY_CLASSES[cosmology] if cosmology is not None and not isinstance(cosmo, cosmology): raise TypeError(f"cosmology {cosmo} is not an {cosmology} instance.") return cosmo def to_cosmology(cosmo, *args): """Return the |Cosmology| unchanged. Parameters ---------- cosmo : `~astropy.cosmology.Cosmology` The cosmology to return. *args Not used. Returns ------- `~astropy.cosmology.Cosmology` subclass instance Just ``cosmo`` passed through. """ return cosmo def cosmology_identify(origin, format, *args, **kwargs): """Identify if object is a `~astropy.cosmology.Cosmology`. Returns ------- bool """ itis = False if origin == "read": itis = isinstance(args[1], Cosmology) and ( format in (None, "astropy.cosmology") ) return itis # =================================================================== # Register convert_registry.register_reader("astropy.cosmology", Cosmology, from_cosmology) convert_registry.register_writer("astropy.cosmology", Cosmology, to_cosmology) convert_registry.register_identifier("astropy.cosmology", Cosmology, cosmology_identify)
fb1bd98490c6619e59b3ff736b43544f7d6689b2a82431e24c31654e959ef43c
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np from astropy.cosmology.connect import convert_registry from astropy.cosmology.core import Cosmology from astropy.table import Column, QTable, Table from .mapping import to_mapping from .row import from_row from .utils import convert_parameter_to_column def from_table(table, index=None, *, move_to_meta=False, cosmology=None): """Instantiate a `~astropy.cosmology.Cosmology` from a |QTable|. Parameters ---------- table : `~astropy.table.Table` The object to parse into a |Cosmology|. index : int, str, or None, optional Needed to select the row in tables with multiple rows. ``index`` can be an integer for the row number or, if the table is indexed by a column, the value of that column. If the table is not indexed and ``index`` is a string, the "name" column is used as the indexing column. move_to_meta : bool (optional, keyword-only) Whether to move keyword arguments that are not in the Cosmology class' signature to the Cosmology's metadata. This will only be applied if the Cosmology does NOT have a keyword-only argument (e.g. ``**kwargs``). Arguments moved to the metadata will be merged with existing metadata, preferring specified metadata in the case of a merge conflict (e.g. for ``Cosmology(meta={'key':10}, key=42)``, the ``Cosmology.meta`` will be ``{'key': 10}``). cosmology : str, `~astropy.cosmology.Cosmology` class, or None (optional, keyword-only) The cosmology class (or string name thereof) to use when constructing the cosmology instance. The class also provides default parameter values, filling in any non-mandatory arguments missing in 'table'. Returns ------- `~astropy.cosmology.Cosmology` subclass instance Examples -------- To see loading a `~astropy.cosmology.Cosmology` from a Table with ``from_table``, we will first make a |QTable| using :func:`~astropy.cosmology.Cosmology.to_format`. >>> from astropy.cosmology import Cosmology, Planck18 >>> ct = Planck18.to_format("astropy.table") >>> ct <QTable length=1> name H0 Om0 Tcmb0 Neff m_nu Ob0 km / (Mpc s) K eV str8 float64 float64 float64 float64 float64[3] float64 -------- ------------ ------- ------- ------- ----------- ------- Planck18 67.66 0.30966 2.7255 3.046 0.0 .. 0.06 0.04897 Now this table can be used to load a new cosmological instance identical to the ``Planck18`` cosmology from which it was generated. >>> cosmo = Cosmology.from_format(ct, format="astropy.table") >>> cosmo FlatLambdaCDM(name="Planck18", H0=67.66 km / (Mpc s), Om0=0.30966, Tcmb0=2.7255 K, Neff=3.046, m_nu=[0. 0. 0.06] eV, Ob0=0.04897) Specific cosmology classes can be used to parse the data. The class' default parameter values are used to fill in any information missing in the data. >>> from astropy.cosmology import FlatLambdaCDM >>> del ct["Tcmb0"] # show FlatLambdaCDM provides default >>> FlatLambdaCDM.from_format(ct) FlatLambdaCDM(name="Planck18", H0=67.66 km / (Mpc s), Om0=0.30966, Tcmb0=0.0 K, Neff=3.046, m_nu=None, Ob0=0.04897) For tables with multiple rows of cosmological parameters, the ``index`` argument is needed to select the correct row. The index can be an integer for the row number or, if the table is indexed by a column, the value of that column. If the table is not indexed and ``index`` is a string, the "name" column is used as the indexing column. Here is an example where ``index`` is needed and can be either an integer (for the row number) or the name of one of the cosmologies, e.g. 'Planck15'. >>> from astropy.cosmology import Planck13, Planck15, Planck18 >>> from astropy.table import vstack >>> cts = vstack([c.to_format("astropy.table") ... for c in (Planck13, Planck15, Planck18)], ... metadata_conflicts='silent') >>> cts <QTable length=3> name H0 Om0 Tcmb0 Neff m_nu Ob0 km / (Mpc s) K eV str8 float64 float64 float64 float64 float64[3] float64 -------- ------------ ------- ------- ------- ----------- -------- Planck13 67.77 0.30712 2.7255 3.046 0.0 .. 0.06 0.048252 Planck15 67.74 0.3075 2.7255 3.046 0.0 .. 0.06 0.0486 Planck18 67.66 0.30966 2.7255 3.046 0.0 .. 0.06 0.04897 >>> cosmo = Cosmology.from_format(cts, index=1, format="astropy.table") >>> cosmo == Planck15 True For further examples, see :doc:`astropy:cosmology/io`. """ # Get row from table # string index uses the indexed column on the table to find the row index. if isinstance(index, str): if not table.indices: # no indexing column, find by string match indices = np.where(table["name"] == index)[0] else: # has indexing column indices = table.loc_indices[index] # need to convert to row index (int) if isinstance(indices, (int, np.integer)): # loc_indices index = indices elif len(indices) == 1: # only happens w/ np.where index = indices[0] elif len(indices) == 0: # matches from loc_indices raise KeyError(f"No matches found for key {indices}") else: # like the Highlander, there can be only 1 Cosmology raise ValueError(f"more than one cosmology found for key {indices}") # no index is needed for a 1-row table. For a multi-row table... if index is None: if len(table) != 1: # multi-row table and no index raise ValueError( "need to select a specific row (e.g. index=1) when " "constructing a Cosmology from a multi-row table." ) else: # single-row table index = 0 row = table[index] # index is now the row index (int) # parse row to cosmo return from_row(row, move_to_meta=move_to_meta, cosmology=cosmology) def to_table(cosmology, *args, cls=QTable, cosmology_in_meta=True): """Serialize the cosmology into a `~astropy.table.QTable`. Parameters ---------- cosmology : `~astropy.cosmology.Cosmology` subclass instance *args Not used. Needed for compatibility with `~astropy.io.registry.UnifiedReadWriteMethod` cls : type (optional, keyword-only) Astropy :class:`~astropy.table.Table` class or subclass type to return. Default is :class:`~astropy.table.QTable`. cosmology_in_meta : bool Whether to put the cosmology class in the Table metadata (if `True`, default) or as the first column (if `False`). Returns ------- `~astropy.table.QTable` With columns for the cosmology parameters, and metadata and cosmology class name in the Table's ``meta`` attribute Raises ------ TypeError If kwarg (optional) 'cls' is not a subclass of `astropy.table.Table` Examples -------- A Cosmology as a `~astropy.table.QTable` will have the cosmology's name and parameters as columns. >>> from astropy.cosmology import Planck18 >>> ct = Planck18.to_format("astropy.table") >>> ct <QTable length=1> name H0 Om0 Tcmb0 Neff m_nu Ob0 km / (Mpc s) K eV str8 float64 float64 float64 float64 float64[3] float64 -------- ------------ ------- ------- ------- ----------- ------- Planck18 67.66 0.30966 2.7255 3.046 0.0 .. 0.06 0.04897 The cosmological class and other metadata, e.g. a paper reference, are in the Table's metadata. >>> ct.meta OrderedDict([..., ('cosmology', 'FlatLambdaCDM')]) To move the cosmology class from the metadata to a Table row, set the ``cosmology_in_meta`` argument to `False`: >>> Planck18.to_format("astropy.table", cosmology_in_meta=False) <QTable length=1> cosmology name H0 Om0 Tcmb0 Neff m_nu Ob0 km / (Mpc s) K eV str13 str8 float64 float64 float64 float64 float64[3] float64 ------------- -------- ------------ ------- ------- ------- ----------- ------- FlatLambdaCDM Planck18 67.66 0.30966 2.7255 3.046 0.0 .. 0.06 0.04897 Astropy recommends `~astropy.table.QTable` for tables with `~astropy.units.Quantity` columns. However the returned type may be overridden using the ``cls`` argument: >>> from astropy.table import Table >>> Planck18.to_format("astropy.table", cls=Table) <Table length=1> ... """ if not issubclass(cls, Table): raise TypeError(f"'cls' must be a (sub)class of Table, not {type(cls)}") # Start by getting a map representation. data = to_mapping(cosmology) data["cosmology"] = data["cosmology"].__qualname__ # change to str # Metadata meta = data.pop("meta") # remove the meta if cosmology_in_meta: meta["cosmology"] = data.pop("cosmology") # Need to turn everything into something Table can process: # - Column for Parameter # - list for anything else cosmo_cls = cosmology.__class__ for k, v in data.items(): if k in cosmology.__parameters__: col = convert_parameter_to_column( getattr(cosmo_cls, k), v, cosmology.meta.get(k) ) else: col = Column([v]) data[k] = col tbl = cls(data, meta=meta) tbl.add_index("name", unique=True) return tbl def table_identify(origin, format, *args, **kwargs): """Identify if object uses the Table format. Returns ------- bool """ itis = False if origin == "read": itis = isinstance(args[1], Table) and (format in (None, "astropy.table")) return itis # =================================================================== # Register convert_registry.register_reader("astropy.table", Cosmology, from_table) convert_registry.register_writer("astropy.table", Cosmology, to_table) convert_registry.register_identifier("astropy.table", Cosmology, table_identify)
376017135fed6af3e926e81fa3d00b53ea49c36827abc037fff3a00613099a05
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Read/Write/Interchange methods for `astropy.cosmology`. **NOT public API**. """ # Import to register with the I/O machinery from . import cosmology, ecsv, html, mapping, model, row, table, yaml # noqa: F401
b3905adfeab0c5c999e8b02a45ab6e41bed2ee144127694672215f1787a7d6ae
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ The following are private functions, included here **FOR REFERENCE ONLY** since the io registry cannot be displayed. These functions are registered into :meth:`~astropy.cosmology.Cosmology.to_format` and :meth:`~astropy.cosmology.Cosmology.from_format` and should only be accessed via these methods. """ # this is shown in the docs. import astropy.cosmology.units as cu import astropy.units as u from astropy.cosmology.connect import convert_registry from astropy.cosmology.core import _COSMOLOGY_CLASSES, Cosmology from astropy.io.misc.yaml import AstropyDumper, AstropyLoader, dump, load from .mapping import from_mapping from .utils import FULLQUALNAME_SUBSTITUTIONS as QNS __all__ = [] # nothing is publicly scoped ############################################################################## # Serializer Functions # these do Cosmology <-> YAML through a modified dictionary representation of # the Cosmology object. The Unified-I/O functions are just wrappers to the YAML # that calls these functions. def yaml_representer(tag): """:mod:`yaml` representation of |Cosmology| object. Parameters ---------- tag : str The class tag, e.g. '!astropy.cosmology.LambdaCDM' Returns ------- representer : callable[[`~astropy.io.misc.yaml.AstropyDumper`, |Cosmology|], str] Function to construct :mod:`yaml` representation of |Cosmology| object. """ def representer(dumper, obj): """Cosmology yaml representer function for {}. Parameters ---------- dumper : `~astropy.io.misc.yaml.AstropyDumper` obj : `~astropy.cosmology.Cosmology` Returns ------- str :mod:`yaml` representation of |Cosmology| object. """ # convert to mapping map = obj.to_format("mapping") # remove the cosmology class info. It's already recorded in `tag` map.pop("cosmology") # make the metadata serializable in an order-preserving way. map["meta"] = tuple(map["meta"].items()) return dumper.represent_mapping(tag, map) representer.__doc__ = representer.__doc__.format(tag) return representer def yaml_constructor(cls): """Cosmology| object from :mod:`yaml` representation. Parameters ---------- cls : type The class type, e.g. `~astropy.cosmology.LambdaCDM`. Returns ------- constructor : callable Function to construct |Cosmology| object from :mod:`yaml` representation. """ def constructor(loader, node): """Cosmology yaml constructor function. Parameters ---------- loader : `~astropy.io.misc.yaml.AstropyLoader` node : `yaml.nodes.MappingNode` yaml representation of |Cosmology| object. Returns ------- `~astropy.cosmology.Cosmology` subclass instance """ # create mapping from YAML node map = loader.construct_mapping(node) # restore metadata to dict map["meta"] = dict(map["meta"]) # get cosmology class qualified name from node cosmology = str(node.tag).split(".")[-1] # create Cosmology from mapping return from_mapping(map, move_to_meta=False, cosmology=cosmology) return constructor def register_cosmology_yaml(cosmo_cls): """Register :mod:`yaml` for Cosmology class. Parameters ---------- cosmo_cls : `~astropy.cosmology.Cosmology` class """ fqn = f"{cosmo_cls.__module__}.{cosmo_cls.__qualname__}" tag = "!" + QNS.get( fqn, fqn ) # Possibly sub fully qualified name for a preferred path AstropyDumper.add_representer(cosmo_cls, yaml_representer(tag)) AstropyLoader.add_constructor(tag, yaml_constructor(cosmo_cls)) ############################################################################## # Unified-I/O Functions def from_yaml(yml, *, cosmology=None): """Load `~astropy.cosmology.Cosmology` from :mod:`yaml` object. Parameters ---------- yml : str :mod:`yaml` representation of |Cosmology| object cosmology : str, `~astropy.cosmology.Cosmology` class, or None (optional, keyword-only) The expected cosmology class (or string name thereof). This argument is is only checked for correctness if not `None`. Returns ------- `~astropy.cosmology.Cosmology` subclass instance Raises ------ TypeError If the |Cosmology| object loaded from ``yml`` is not an instance of the ``cosmology`` (and ``cosmology`` is not `None`). """ with u.add_enabled_units(cu): cosmo = load(yml) # Check argument `cosmology`, if not None # This kwarg is required for compatibility with |Cosmology.from_format| if isinstance(cosmology, str): cosmology = _COSMOLOGY_CLASSES[cosmology] if cosmology is not None and not isinstance(cosmo, cosmology): raise TypeError(f"cosmology {cosmo} is not an {cosmology} instance.") return cosmo def to_yaml(cosmology, *args): """Return the cosmology class, parameters, and metadata as a :mod:`yaml` object. Parameters ---------- cosmology : `~astropy.cosmology.Cosmology` subclass instance *args Not used. Needed for compatibility with `~astropy.io.registry.UnifiedReadWriteMethod` Returns ------- str :mod:`yaml` representation of |Cosmology| object """ return dump(cosmology) # ``read`` cannot handle non-path strings. # TODO! this says there should be different types of I/O registries. # not just hacking object conversion on top of file I/O. # def yaml_identify(origin, format, *args, **kwargs): # """Identify if object uses the yaml format. # # Returns # ------- # bool # """ # itis = False # if origin == "read": # itis = isinstance(args[1], str) and args[1][0].startswith("!") # itis &= format in (None, "yaml") # # return itis # =================================================================== # Register for cosmo_cls in _COSMOLOGY_CLASSES.values(): register_cosmology_yaml(cosmo_cls) convert_registry.register_reader("yaml", Cosmology, from_yaml) convert_registry.register_writer("yaml", Cosmology, to_yaml) # convert_registry.register_identifier("yaml", Cosmology, yaml_identify)
7c46f6afe085cfce39bfcf0d8c1dfc9ed5f783e6bd6595d6393c8ecb1c7f1baa
import astropy.cosmology.units as cu import astropy.units as u from astropy.cosmology.connect import readwrite_registry from astropy.cosmology.core import Cosmology from astropy.cosmology.parameter import Parameter from astropy.table import QTable from .table import from_table, to_table # Format look-up for conversion, {original_name: new_name} # TODO! move this information into the Parameters themselves _FORMAT_TABLE = { "H0": "$$H_{0}$$", "Om0": "$$\\Omega_{m,0}$$", "Ode0": "$$\\Omega_{\\Lambda,0}$$", "Tcmb0": "$$T_{0}$$", "Neff": "$$N_{eff}$$", "m_nu": "$$m_{nu}$$", "Ob0": "$$\\Omega_{b,0}$$", "w0": "$$w_{0}$$", "wa": "$$w_{a}$$", "wz": "$$w_{z}$$", "wp": "$$w_{p}$$", "zp": "$$z_{p}$$", } def read_html_table( filename, index=None, *, move_to_meta=False, cosmology=None, latex_names=True, **kwargs, ): """Read a |Cosmology| from an HTML file. Parameters ---------- filename : path-like or file-like From where to read the Cosmology. index : int or str or None, optional Needed to select the row in tables with multiple rows. ``index`` can be an integer for the row number or, if the table is indexed by a column, the value of that column. If the table is not indexed and ``index`` is a string, the "name" column is used as the indexing column. move_to_meta : bool, optional keyword-only Whether to move keyword arguments that are not in the Cosmology class' signature to the Cosmology's metadata. This will only be applied if the Cosmology does NOT have a keyword-only argument (e.g. ``**kwargs``). Arguments moved to the metadata will be merged with existing metadata, preferring specified metadata in the case of a merge conflict (e.g. for ``Cosmology(meta={'key':10}, key=42)``, the ``Cosmology.meta`` will be ``{'key': 10}``). cosmology : str or |Cosmology| class or None, optional keyword-only The cosmology class (or string name thereof) to use when constructing the cosmology instance. The class also provides default parameter values, filling in any non-mandatory arguments missing in 'table'. latex_names : bool, optional keyword-only Whether the |Table| (might) have latex column names for the parameters that need to be mapped to the correct parameter name -- e.g. $$H_{0}$$ to 'H0'. This is `True` by default, but can be turned off (set to `False`) if there is a known name conflict (e.g. both an 'H0' and '$$H_{0}$$' column) as this will raise an error. In this case, the correct name ('H0') is preferred. **kwargs : Any Passed to :attr:`astropy.table.QTable.read`. ``format`` is set to 'ascii.html', regardless of input. Returns ------- |Cosmology| subclass instance Raises ------ ValueError If the keyword argument 'format' is given and is not "ascii.html". """ # Check that the format is 'ascii.html' (or not specified) format = kwargs.pop("format", "ascii.html") if format != "ascii.html": raise ValueError(f"format must be 'ascii.html', not {format}") # Reading is handled by `QTable`. with u.add_enabled_units(cu): # (cosmology units not turned on by default) table = QTable.read(filename, format="ascii.html", **kwargs) # Need to map the table's column names to Cosmology inputs (parameter # names). # TODO! move the `latex_names` into `from_table` if latex_names: table_columns = set(table.colnames) for name, latex in _FORMAT_TABLE.items(): if latex in table_columns: table.rename_column(latex, name) # Build the cosmology from table, using the private backend. return from_table( table, index=index, move_to_meta=move_to_meta, cosmology=cosmology ) def write_html_table( cosmology, file, *, overwrite=False, cls=QTable, latex_names=False, **kwargs ): r"""Serialize the |Cosmology| into a HTML table. Parameters ---------- cosmology : |Cosmology| subclass instance file : path-like or file-like Location to save the serialized cosmology. file : path-like or file-like Where to write the html table. overwrite : bool, optional keyword-only Whether to overwrite the file, if it exists. cls : |Table| class, optional keyword-only Astropy |Table| (sub)class to use when writing. Default is |QTable| class. latex_names : bool, optional keyword-only Whether to format the parameters (column) names to latex -- e.g. 'H0' to $$H_{0}$$. **kwargs : Any Passed to ``cls.write``. Raises ------ TypeError If the optional keyword-argument 'cls' is not a subclass of |Table|. ValueError If the keyword argument 'format' is given and is not "ascii.html". Notes ----- A HTML file containing a Cosmology HTML table should have scripts enabling MathJax. :: <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script> <script type="text/javascript" id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js"> </script> """ # Check that the format is 'ascii.html' (or not specified) format = kwargs.pop("format", "ascii.html") if format != "ascii.html": raise ValueError(f"format must be 'ascii.html', not {format}") # Set cosmology_in_meta as false for now since there is no metadata being kept table = to_table(cosmology, cls=cls, cosmology_in_meta=False) cosmo_cls = type(cosmology) for name, col in table.columns.items(): param = getattr(cosmo_cls, name, None) if not isinstance(param, Parameter) or param.unit in (None, u.one): continue # Replace column with unitless version table.replace_column(name, (col << param.unit).value, copy=False) # TODO! move the `latex_names` into `to_table` if latex_names: new_names = [_FORMAT_TABLE.get(k, k) for k in cosmology.__parameters__] table.rename_columns(cosmology.__parameters__, new_names) # Write HTML, using table I/O table.write(file, overwrite=overwrite, format="ascii.html", **kwargs) def html_identify(origin, filepath, fileobj, *args, **kwargs): """Identify if an object uses the HTML Table format. Parameters ---------- origin : Any Not used. filepath : str or Any From where to read the Cosmology. fileobj : Any Not used. *args : Any Not used. **kwargs : Any Not used. Returns ------- bool If the filepath is a string ending with '.html'. """ return isinstance(filepath, str) and filepath.endswith(".html") # =================================================================== # Register readwrite_registry.register_reader("ascii.html", Cosmology, read_html_table) readwrite_registry.register_writer("ascii.html", Cosmology, write_html_table) readwrite_registry.register_identifier("ascii.html", Cosmology, html_identify)
22ebd57a0010c0ea674ef94f1e09a7000a459b0cfee5ed13a39fc7a0e46c3d69
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ The following are private functions, included here **FOR REFERENCE ONLY** since the io registry cannot be displayed. These functions are registered into :meth:`~astropy.cosmology.Cosmology.to_format` and :meth:`~astropy.cosmology.Cosmology.from_format` and should only be accessed via these methods. """ # this is shown in the docs. import copy from collections.abc import Mapping from astropy.cosmology.connect import convert_registry from astropy.cosmology.core import _COSMOLOGY_CLASSES, Cosmology __all__ = [] # nothing is publicly scoped def from_mapping(map, *, move_to_meta=False, cosmology=None): """Load `~astropy.cosmology.Cosmology` from mapping object. Parameters ---------- map : mapping Arguments into the class -- like "name" or "meta". If 'cosmology' is None, must have field "cosmology" which can be either the string name of the cosmology class (e.g. "FlatLambdaCDM") or the class itself. move_to_meta : bool (optional, keyword-only) Whether to move keyword arguments that are not in the Cosmology class' signature to the Cosmology's metadata. This will only be applied if the Cosmology does NOT have a keyword-only argument (e.g. ``**kwargs``). Arguments moved to the metadata will be merged with existing metadata, preferring specified metadata in the case of a merge conflict (e.g. for ``Cosmology(meta={'key':10}, key=42)``, the ``Cosmology.meta`` will be ``{'key': 10}``). cosmology : str, `~astropy.cosmology.Cosmology` class, or None (optional, keyword-only) The cosmology class (or string name thereof) to use when constructing the cosmology instance. The class also provides default parameter values, filling in any non-mandatory arguments missing in 'map'. Returns ------- `~astropy.cosmology.Cosmology` subclass instance Examples -------- To see loading a `~astropy.cosmology.Cosmology` from a dictionary with ``from_mapping``, we will first make a mapping using :meth:`~astropy.cosmology.Cosmology.to_format`. >>> from astropy.cosmology import Cosmology, Planck18 >>> cm = Planck18.to_format('mapping') >>> cm {'cosmology': <class 'astropy.cosmology.flrw.lambdacdm.FlatLambdaCDM'>, 'name': 'Planck18', 'H0': <Quantity 67.66 km / (Mpc s)>, 'Om0': 0.30966, 'Tcmb0': <Quantity 2.7255 K>, 'Neff': 3.046, 'm_nu': <Quantity [0. , 0. , 0.06] eV>, 'Ob0': 0.04897, 'meta': ... Now this dict can be used to load a new cosmological instance identical to the ``Planck18`` cosmology from which it was generated. >>> cosmo = Cosmology.from_format(cm, format="mapping") >>> cosmo FlatLambdaCDM(name="Planck18", H0=67.66 km / (Mpc s), Om0=0.30966, Tcmb0=2.7255 K, Neff=3.046, m_nu=[0. 0. 0.06] eV, Ob0=0.04897) Specific cosmology classes can be used to parse the data. The class' default parameter values are used to fill in any information missing in the data. >>> from astropy.cosmology import FlatLambdaCDM >>> del cm["Tcmb0"] # show FlatLambdaCDM provides default >>> FlatLambdaCDM.from_format(cm) FlatLambdaCDM(name="Planck18", H0=67.66 km / (Mpc s), Om0=0.30966, Tcmb0=0.0 K, Neff=3.046, m_nu=None, Ob0=0.04897) """ params = dict(map) # so we are guaranteed to have a poppable map # get cosmology # 1st from argument. Allows for override of the cosmology, if on file. # 2nd from params. This MUST have the cosmology if 'kwargs' did not. if cosmology is None: cosmology = params.pop("cosmology") else: params.pop("cosmology", None) # pop, but don't use # if string, parse to class if isinstance(cosmology, str): cosmology = _COSMOLOGY_CLASSES[cosmology] # select arguments from mapping that are in the cosmo's signature. ba = cosmology._init_signature.bind_partial() # blank set of args ba.apply_defaults() # fill in the defaults for k in cosmology._init_signature.parameters.keys(): if k in params: # transfer argument, if in params ba.arguments[k] = params.pop(k) # deal with remaining params. If there is a **kwargs use that, else # allow to transfer to metadata. Raise TypeError if can't. lastp = tuple(cosmology._init_signature.parameters.values())[-1] if lastp.kind == 4: # variable keyword-only ba.arguments[lastp.name] = params elif move_to_meta: # prefers current meta, which was explicitly set meta = ba.arguments["meta"] or {} # (None -> dict) ba.arguments["meta"] = {**params, **meta} elif params: raise TypeError(f"there are unused parameters {params}.") # else: pass # no kwargs, no move-to-meta, and all the params are used return cosmology(*ba.args, **ba.kwargs) def to_mapping( cosmology, *args, cls=dict, cosmology_as_str=False, move_from_meta=False ): """Return the cosmology class, parameters, and metadata as a `dict`. Parameters ---------- cosmology : `~astropy.cosmology.Cosmology` subclass instance *args Not used. Needed for compatibility with `~astropy.io.registry.UnifiedReadWriteMethod` cls : type (optional, keyword-only) `dict` or `collections.Mapping` subclass. The mapping type to return. Default is `dict`. cosmology_as_str : bool (optional, keyword-only) Whether the cosmology value is the class (if `False`, default) or the semi-qualified name (if `True`). move_from_meta : bool (optional, keyword-only) Whether to add the Cosmology's metadata as an item to the mapping (if `False`, default) or to merge with the rest of the mapping, preferring the original values (if `True`) Returns ------- dict with key-values for the cosmology parameters and also: - 'cosmology' : the class - 'meta' : the contents of the cosmology's metadata attribute. If ``move_from_meta`` is `True`, this key is missing and the contained metadata are added to the main `dict`. Examples -------- A Cosmology as a mapping will have the cosmology's name and parameters as items, and the metadata as a nested dictionary. >>> from astropy.cosmology import Planck18 >>> Planck18.to_format('mapping') {'cosmology': <class 'astropy.cosmology.flrw.lambdacdm.FlatLambdaCDM'>, 'name': 'Planck18', 'H0': <Quantity 67.66 km / (Mpc s)>, 'Om0': 0.30966, 'Tcmb0': <Quantity 2.7255 K>, 'Neff': 3.046, 'm_nu': <Quantity [0. , 0. , 0.06] eV>, 'Ob0': 0.04897, 'meta': ... The dictionary type may be changed with the ``cls`` keyword argument: >>> from collections import OrderedDict >>> Planck18.to_format('mapping', cls=OrderedDict) OrderedDict([('cosmology', <class 'astropy.cosmology.flrw.lambdacdm.FlatLambdaCDM'>), ('name', 'Planck18'), ('H0', <Quantity 67.66 km / (Mpc s)>), ('Om0', 0.30966), ('Tcmb0', <Quantity 2.7255 K>), ('Neff', 3.046), ('m_nu', <Quantity [0. , 0. , 0.06] eV>), ('Ob0', 0.04897), ('meta', ... Sometimes it is more useful to have the name of the cosmology class, not the object itself. The keyword argument ``cosmology_as_str`` may be used: >>> Planck18.to_format('mapping', cosmology_as_str=True) {'cosmology': 'FlatLambdaCDM', ... The metadata is normally included as a nested mapping. To move the metadata into the main mapping, use the keyword argument ``move_from_meta``. This kwarg inverts ``move_to_meta`` in ``Cosmology.to_format("mapping", move_to_meta=...)`` where extra items are moved to the metadata (if the cosmology constructor does not have a variable keyword-only argument -- ``**kwargs``). >>> from astropy.cosmology import Planck18 >>> Planck18.to_format('mapping', move_from_meta=True) {'cosmology': <class 'astropy.cosmology.flrw.lambdacdm.FlatLambdaCDM'>, 'name': 'Planck18', 'Oc0': 0.2607, 'n': 0.9665, 'sigma8': 0.8102, ... """ if not issubclass(cls, (dict, Mapping)): raise TypeError(f"'cls' must be a (sub)class of dict or Mapping, not {cls}") m = cls() # start with the cosmology class & name m["cosmology"] = ( cosmology.__class__.__qualname__ if cosmology_as_str else cosmology.__class__ ) m["name"] = cosmology.name # here only for dict ordering meta = copy.deepcopy(cosmology.meta) # metadata (mutable) if move_from_meta: # Merge the mutable metadata. Since params are added later they will # be preferred in cases of overlapping keys. Likewise, need to pop # cosmology and name from meta. meta.pop("cosmology", None) meta.pop("name", None) m.update(meta) # Add all the immutable inputs m.update( { k: v for k, v in cosmology._init_arguments.items() if k not in ("meta", "name") } ) # Lastly, add the metadata, if haven't already (above) if not move_from_meta: m["meta"] = meta # TODO? should meta be type(cls) return m def mapping_identify(origin, format, *args, **kwargs): """Identify if object uses the mapping format. Returns ------- bool """ itis = False if origin == "read": itis = isinstance(args[1], Mapping) and (format in (None, "mapping")) return itis # =================================================================== # Register convert_registry.register_reader("mapping", Cosmology, from_mapping) convert_registry.register_writer("mapping", Cosmology, to_mapping) convert_registry.register_identifier("mapping", Cosmology, mapping_identify)
3b62e9cfb3a7360af99ad77f64c7e1330933447353ac7230fc37adc43967c06c
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np from astropy.modeling import Parameter as ModelParameter from astropy.table import Column FULLQUALNAME_SUBSTITUTIONS = { "astropy.cosmology.flrw.base.FLRW": "astropy.cosmology.flrw.FLRW", "astropy.cosmology.flrw.lambdacdm.LambdaCDM": "astropy.cosmology.flrw.LambdaCDM", "astropy.cosmology.flrw.lambdacdm.FlatLambdaCDM": ( "astropy.cosmology.flrw.FlatLambdaCDM" ), "astropy.cosmology.flrw.w0wacdm.w0waCDM": "astropy.cosmology.flrw.w0waCDM", "astropy.cosmology.flrw.w0wacdm.Flatw0waCDM": "astropy.cosmology.flrw.Flatw0waCDM", "astropy.cosmology.flrw.w0wzcdm.w0wzCDM": "astropy.cosmology.flrw.w0wzCDM", "astropy.cosmology.flrw.w0cdm.wCDM": "astropy.cosmology.flrw.wCDM", "astropy.cosmology.flrw.w0cdm.FlatwCDM": "astropy.cosmology.flrw.FlatwCDM", "astropy.cosmology.flrw.wpwazpcdm.wpwaCDM": "astropy.cosmology.flrw.wpwaCDM", } """Substitutions mapping the actual qualified name to its preferred value.""" def convert_parameter_to_column(parameter, value, meta=None): """Convert a |Cosmology| Parameter to a Table |Column|. Parameters ---------- parameter : `astropy.cosmology.parameter.Parameter` value : Any meta : dict or None, optional Information from the Cosmology's metadata. Returns ------- `astropy.table.Column` """ shape = (1,) + np.shape(value) # minimum of 1d col = Column( data=np.reshape(value, shape), name=parameter.name, dtype=None, # inferred from the data description=parameter.__doc__, format=None, meta=meta, ) return col def convert_parameter_to_model_parameter(parameter, value, meta=None): """Convert a Cosmology Parameter to a Model Parameter. Parameters ---------- parameter : `astropy.cosmology.parameter.Parameter` value : Any meta : dict or None, optional Information from the Cosmology's metadata. This function will use any of: 'getter', 'setter', 'fixed', 'tied', 'min', 'max', 'bounds', 'prior', 'posterior'. Returns ------- `astropy.modeling.Parameter` """ # Get from meta information relavant to Model attrs = ( "getter", "setter", "fixed", "tied", "min", "max", "bounds", "prior", "posterior", ) extra = {k: v for k, v in (meta or {}).items() if k in attrs} return ModelParameter( description=parameter.__doc__, default=value, unit=getattr(value, "unit", None), **extra )
d0156126f15fb8fd21d08ad92751b5e5569c60a2b0cc05f5022edaaf86da41ce
# Licensed under a 3-clause BSD style license - see LICENSE.rst import astropy.cosmology.units as cu import astropy.units as u from astropy.cosmology.connect import readwrite_registry from astropy.cosmology.core import Cosmology from astropy.table import QTable from .table import from_table, to_table def read_ecsv(filename, index=None, *, move_to_meta=False, cosmology=None, **kwargs): """Read a `~astropy.cosmology.Cosmology` from an ECSV file. Parameters ---------- filename : path-like or file-like From where to read the Cosmology. index : int, str, or None, optional Needed to select the row in tables with multiple rows. ``index`` can be an integer for the row number or, if the table is indexed by a column, the value of that column. If the table is not indexed and ``index`` is a string, the "name" column is used as the indexing column. move_to_meta : bool (optional, keyword-only) Whether to move keyword arguments that are not in the Cosmology class' signature to the Cosmology's metadata. This will only be applied if the Cosmology does NOT have a keyword-only argument (e.g. ``**kwargs``). Arguments moved to the metadata will be merged with existing metadata, preferring specified metadata in the case of a merge conflict (e.g. for ``Cosmology(meta={'key':10}, key=42)``, the ``Cosmology.meta`` will be ``{'key': 10}``). cosmology : str, `~astropy.cosmology.Cosmology` class, or None (optional, keyword-only) The cosmology class (or string name thereof) to use when constructing the cosmology instance. The class also provides default parameter values, filling in any non-mandatory arguments missing in 'table'. **kwargs Passed to :attr:`astropy.table.QTable.read` Returns ------- `~astropy.cosmology.Cosmology` subclass instance """ kwargs["format"] = "ascii.ecsv" with u.add_enabled_units(cu): table = QTable.read(filename, **kwargs) # build cosmology from table return from_table( table, index=index, move_to_meta=move_to_meta, cosmology=cosmology ) def write_ecsv( cosmology, file, *, overwrite=False, cls=QTable, cosmology_in_meta=True, **kwargs ): """Serialize the cosmology into a ECSV. Parameters ---------- cosmology : `~astropy.cosmology.Cosmology` subclass instance file : path-like or file-like Location to save the serialized cosmology. overwrite : bool Whether to overwrite the file, if it exists. cls : type (optional, keyword-only) Astropy :class:`~astropy.table.Table` (sub)class to use when writing. Default is :class:`~astropy.table.QTable`. cosmology_in_meta : bool Whether to put the cosmology class in the Table metadata (if `True`, default) or as the first column (if `False`). **kwargs Passed to ``cls.write`` Raises ------ TypeError If kwarg (optional) 'cls' is not a subclass of `astropy.table.Table` """ table = to_table(cosmology, cls=cls, cosmology_in_meta=cosmology_in_meta) kwargs["format"] = "ascii.ecsv" table.write(file, overwrite=overwrite, **kwargs) def ecsv_identify(origin, filepath, fileobj, *args, **kwargs): """Identify if object uses the Table format. Returns ------- bool """ return filepath is not None and filepath.endswith(".ecsv") # =================================================================== # Register readwrite_registry.register_reader("ascii.ecsv", Cosmology, read_ecsv) readwrite_registry.register_writer("ascii.ecsv", Cosmology, write_ecsv) readwrite_registry.register_identifier("ascii.ecsv", Cosmology, ecsv_identify)
d01c27897ae7fd956c3463b457ec4797846e20e929e0ca796f59863bc5df3cb7
# Licensed under a 3-clause BSD style license - see LICENSE.rst from math import inf import numpy as np import pytest from astropy.cosmology.utils import ( aszarr, inf_like, vectorize_if_needed, vectorize_redshift_method, ) from astropy.utils.exceptions import AstropyDeprecationWarning from .test_core import _zarr, invalid_zs, valid_zs def test_vectorize_redshift_method(): """Test :func:`astropy.cosmology.utils.vectorize_redshift_method`.""" class Class: @vectorize_redshift_method def method(self, z): return z c = Class() assert hasattr(c.method, "__vectorized__") assert isinstance(c.method.__vectorized__, np.vectorize) # calling with Number assert c.method(1) == 1 assert isinstance(c.method(1), int) # calling with a numpy scalar assert c.method(np.float64(1)) == np.float64(1) assert isinstance(c.method(np.float64(1)), np.float64) # numpy array assert all(c.method(np.array([1, 2])) == np.array([1, 2])) assert isinstance(c.method(np.array([1, 2])), np.ndarray) # non-scalar assert all(c.method([1, 2]) == np.array([1, 2])) assert isinstance(c.method([1, 2]), np.ndarray) def test_vectorize_if_needed(): """ Test :func:`astropy.cosmology.utils.vectorize_if_needed`. There's no need to test 'veckw' because that is directly pasased to `numpy.vectorize` which thoroughly tests the various inputs. """ def func(x): return x**2 with pytest.warns(AstropyDeprecationWarning): # not vectorized assert vectorize_if_needed(func, 2) == 4 # vectorized assert all(vectorize_if_needed(func, [2, 3]) == [4, 9]) @pytest.mark.parametrize( "arr, expected", [ (0.0, inf), # float scalar (1, inf), # integer scalar should give float output ([0.0, 1.0, 2.0, 3.0], (inf, inf, inf, inf)), ([0, 1, 2, 3], (inf, inf, inf, inf)), # integer list ], ) def test_inf_like(arr, expected): """ Test :func:`astropy.cosmology.utils.inf_like`. All inputs should give a float output. These tests are also in the docstring, but it's better to have them also in one consolidated location. """ with pytest.warns(AstropyDeprecationWarning): assert np.all(inf_like(arr) == expected) # ------------------------------------------------------------------- class Test_aszarr: @pytest.mark.parametrize( "z, expect", list( zip( valid_zs, [0, 1, 1100, np.float64(3300), 2.0, 3.0, _zarr, _zarr, _zarr, _zarr], ) ), ) def test_valid(self, z, expect): """Test :func:`astropy.cosmology.utils.aszarr`.""" got = aszarr(z) assert np.array_equal(got, expect) @pytest.mark.parametrize("z, exc", invalid_zs) def test_invalid(self, z, exc): """Test :func:`astropy.cosmology.utils.aszarr`.""" with pytest.raises(exc): aszarr(z)
c909205b362821a556fe8d9c68539d0100a8fb94cfd49835b9f6217dd96c8017
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Configure the tests for :mod:`astropy.cosmology`.""" from astropy.cosmology.tests.helper import clean_registry # noqa: F401 from astropy.tests.helper import pickle_protocol # noqa: F401
6118cbb0b44399a8a9624a48a00044d2f99f7f1c4463c8774d141b5b64cc927d
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Testing :mod:`astropy.cosmology.parameter`.""" ############################################################################## # IMPORTS # STDLIB import inspect # THIRD PARTY import numpy as np import pytest # LOCAL import astropy.units as u from astropy.cosmology import Cosmology from astropy.cosmology.core import _COSMOLOGY_CLASSES from astropy.cosmology.parameter import ( Parameter, _validate_to_float, _validate_with_unit, ) from astropy.utils.exceptions import AstropyDeprecationWarning ############################################################################## # TESTS ############################################################################## class ParameterTestMixin: """Tests for a :class:`astropy.cosmology.Parameter` on a Cosmology. :class:`astropy.cosmology.Parameter` is a descriptor and this test suite tests descriptors by class inheritance, so ``ParameterTestMixin`` is mixed into ``TestCosmology`` (tests :class:`astropy.cosmology.Cosmology`). """ @pytest.fixture def parameter(self, cosmo_cls): """Cosmological Parameters""" # I wish this would work # yield from {getattr(cosmo_cls, n) for n in cosmo_cls.__parameters__} # just return one parameter at random yield getattr(cosmo_cls, set(cosmo_cls.__parameters__).pop()) @pytest.fixture def all_parameter(self, cosmo_cls): """Cosmological All Parameter instances""" # I wish this would work # yield from {getattr(cosmo_cls, n) for n in cosmo_cls.__all_parameters__} # just return one parameter at random yield getattr(cosmo_cls, set(cosmo_cls.__all_parameters__).pop()) # =============================================================== # Method Tests def test_Parameter_class_attributes(self, all_parameter): """Test :class:`astropy.cosmology.Parameter` attributes on class.""" # _registry_validators assert hasattr(all_parameter, "_registry_validators") assert isinstance(all_parameter._registry_validators, dict) assert all( isinstance(k, str) for k in all_parameter._registry_validators.keys() ) assert all(callable(v) for v in all_parameter._registry_validators.values()) def test_Parameter_init(self): """Test :class:`astropy.cosmology.Parameter` instantiation.""" # defaults parameter = Parameter() assert parameter.fvalidate is _validate_with_unit assert parameter.unit is None assert parameter.equivalencies == [] assert parameter.derived is False assert parameter.name is None # setting all kwargs parameter = Parameter( fvalidate="float", doc="DOCSTRING", unit="km", equivalencies=[u.mass_energy()], derived=True, ) assert parameter.fvalidate is _validate_to_float assert parameter.unit is u.km assert parameter.equivalencies == [u.mass_energy()] assert parameter.derived is True def test_Parameter_init_deprecated_fmt(self): """Test that passing the argument ``fmt`` is deprecated.""" with pytest.warns(AstropyDeprecationWarning): parameter = Parameter(fmt=".4f") assert parameter._format_spec == ".4f" # Test that it appears in initializing arguments init_args = parameter._get_init_arguments() assert init_args["fmt"] == ".4f" def test_Parameter_instance_attributes(self, all_parameter): """Test :class:`astropy.cosmology.Parameter` attributes from init.""" assert hasattr(all_parameter, "fvalidate") assert callable(all_parameter.fvalidate) assert hasattr(all_parameter, "__doc__") # Parameter assert hasattr(all_parameter, "_unit") assert hasattr(all_parameter, "_equivalencies") assert hasattr(all_parameter, "_derived") assert hasattr(all_parameter, "_format_spec") # __set_name__ assert hasattr(all_parameter, "_attr_name") assert hasattr(all_parameter, "_attr_name_private") def test_Parameter_fvalidate(self, all_parameter): """Test :attr:`astropy.cosmology.Parameter.fvalidate`.""" assert hasattr(all_parameter, "fvalidate") assert callable(all_parameter.fvalidate) def test_Parameter_name(self, all_parameter): """Test :attr:`astropy.cosmology.Parameter.name`.""" assert hasattr(all_parameter, "name") assert isinstance(all_parameter.name, str) assert all_parameter.name is all_parameter._attr_name def test_Parameter_unit(self, all_parameter): """Test :attr:`astropy.cosmology.Parameter.unit`.""" assert hasattr(all_parameter, "unit") assert isinstance(all_parameter.unit, (u.UnitBase, type(None))) assert all_parameter.unit is all_parameter._unit def test_Parameter_equivalencies(self, all_parameter): """Test :attr:`astropy.cosmology.Parameter.equivalencies`.""" assert hasattr(all_parameter, "equivalencies") assert isinstance(all_parameter.equivalencies, (list, u.Equivalency)) assert all_parameter.equivalencies is all_parameter._equivalencies def test_Parameter_format_spec(self, all_parameter): """Test :attr:`astropy.cosmology.Parameter.format_spec`.""" with pytest.warns(AstropyDeprecationWarning): fmt = all_parameter.format_spec assert isinstance(fmt, str) assert fmt is all_parameter._format_spec def test_Parameter_derived(self, cosmo_cls, all_parameter): """Test :attr:`astropy.cosmology.Parameter.derived`.""" assert hasattr(all_parameter, "derived") assert isinstance(all_parameter.derived, bool) assert all_parameter.derived is all_parameter._derived # test value if all_parameter.name in cosmo_cls.__parameters__: assert all_parameter.derived is False else: assert all_parameter.derived is True # ------------------------------------------- # descriptor methods def test_Parameter_descriptor_get(self, cosmo_cls, cosmo, all_parameter): """Test :attr:`astropy.cosmology.Parameter.__get__`.""" # from class parameter = getattr(cosmo_cls, all_parameter.name) assert isinstance(parameter, Parameter) assert parameter is all_parameter # from instance parameter = getattr(cosmo, all_parameter.name) assert np.all(parameter == getattr(cosmo, all_parameter._attr_name_private)) def test_Parameter_descriptor_set(self, cosmo, all_parameter): """Test :attr:`astropy.cosmology.Parameter.__set__`.""" # test it's already set assert hasattr(cosmo, all_parameter._attr_name_private) # and raises an error if set again with pytest.raises(AttributeError, match="can't set attribute"): setattr(cosmo, all_parameter._attr_name, None) # ------------------------------------------- # validate value # tested later. # =============================================================== # Usage Tests def test_Parameter_listed(self, cosmo_cls, all_parameter): """Test each `astropy.cosmology.Parameter` attached to Cosmology.""" # just double check that each entry is a Parameter assert isinstance(all_parameter, Parameter) # the reverse: check that if it is a Parameter, it's listed. # note have to check the more inclusive ``__all_parameters__`` assert all_parameter.name in cosmo_cls.__all_parameters__ if not all_parameter.derived: assert all_parameter.name in cosmo_cls.__parameters__ def test_parameter_related_attributes_on_Cosmology(self, cosmo_cls): """Test `astropy.cosmology.Parameter`-related on Cosmology.""" # establish has expected attribute assert hasattr(cosmo_cls, "__parameters__") assert hasattr(cosmo_cls, "__all_parameters__") def test_Parameter_not_unique(self, cosmo_cls, clean_registry): """Cosmology Parameter not unique to class when subclass defined.""" # define subclass to show param is same class ExampleBase(cosmo_cls): param = Parameter() class Example(ExampleBase): pass assert Example.param is ExampleBase.param assert Example.__parameters__ == ExampleBase.__parameters__ def test_Parameters_reorder_by_signature(self, cosmo_cls, clean_registry): """Test parameters are reordered.""" class Example(cosmo_cls): param = Parameter() def __init__(self, param, *, name=None, meta=None): pass # never actually initialized # param should be 1st, all other parameters next Example.__parameters__[0] == "param" # Check the other parameters are as expected. # only run this test if "param" is not already on the cosmology if cosmo_cls.__parameters__[0] != "param": assert set(Example.__parameters__[1:]) == set(cosmo_cls.__parameters__) def test_make_from_Parameter(self, cosmo_cls, clean_registry): """Test the parameter creation process. Uses ``__set__``.""" class Example(cosmo_cls): param = Parameter(unit=u.eV, equivalencies=u.mass_energy()) def __init__(self, param, *, name=None, meta=None): self.param = param @property def is_flat(self): return super().is_flat() assert Example(1).param == 1 * u.eV assert Example(1 * u.eV).param == 1 * u.eV assert Example(1 * u.J).param == (1 * u.J).to(u.eV) assert Example(1 * u.kg).param == (1 * u.kg).to(u.eV, u.mass_energy()) # ======================================================================== class TestParameter(ParameterTestMixin): """ Test `astropy.cosmology.Parameter` directly. Adds a lot of specific tests that wouldn't be covered by the per-cosmology tests. """ def setup_class(self): class Example1(Cosmology): param = Parameter( doc="Description of example parameter.", unit=u.m, equivalencies=u.mass_energy(), ) def __init__(self, param=15): self.param = param @property def is_flat(self): return super().is_flat() # with validator class Example2(Example1): def __init__(self, param=15 * u.m): self.param = param @Example1.param.validator def param(self, param, value): return value.to(u.km) # attributes self.classes = {"Example1": Example1, "Example2": Example2} def teardown_class(self): for cls in self.classes.values(): _COSMOLOGY_CLASSES.pop(cls.__qualname__) @pytest.fixture(scope="class", params=["Example1", "Example2"]) def cosmo_cls(self, request): """Cosmology class.""" return self.classes[request.param] @pytest.fixture(scope="class") def cosmo(self, cosmo_cls): """Cosmology instance""" return cosmo_cls() @pytest.fixture(scope="class") def param(self, cosmo_cls): """Get Parameter 'param' from cosmology class.""" return cosmo_cls.param # ============================================================== def test_Parameter_instance_attributes(self, param): """Test :class:`astropy.cosmology.Parameter` attributes from init.""" super().test_Parameter_instance_attributes(param) # property assert param.__doc__ == "Description of example parameter." # custom from init assert param._unit == u.m assert param._equivalencies == u.mass_energy() assert param._format_spec == "" assert param._derived == np.False_ # custom from set_name assert param._attr_name == "param" assert param._attr_name_private == "_param" def test_Parameter_fvalidate(self, cosmo, param): """Test :attr:`astropy.cosmology.Parameter.fvalidate`.""" super().test_Parameter_fvalidate(param) value = param.fvalidate(cosmo, param, 1000 * u.m) assert value == 1 * u.km def test_Parameter_name(self, param): """Test :attr:`astropy.cosmology.Parameter.name`.""" super().test_Parameter_name(param) assert param.name == "param" def test_Parameter_unit(self, param): """Test :attr:`astropy.cosmology.Parameter.unit`.""" super().test_Parameter_unit(param) assert param.unit == u.m def test_Parameter_equivalencies(self, param): """Test :attr:`astropy.cosmology.Parameter.equivalencies`.""" super().test_Parameter_equivalencies(param) assert param.equivalencies == u.mass_energy() def test_Parameter_format_spec(self, param): """Test :attr:`astropy.cosmology.Parameter.format_spec`.""" super().test_Parameter_format_spec(param) with pytest.warns(AstropyDeprecationWarning): assert param.format_spec == "" def test_Parameter_derived(self, cosmo_cls, param): """Test :attr:`astropy.cosmology.Parameter.derived`.""" super().test_Parameter_derived(cosmo_cls, param) assert param.derived is False # ------------------------------------------- # descriptor methods def test_Parameter_descriptor_get(self, cosmo_cls, cosmo, param): """Test :meth:`astropy.cosmology.Parameter.__get__`.""" super().test_Parameter_descriptor_get(cosmo_cls, cosmo, param) # from instance value = getattr(cosmo, param.name) assert value == 15 * u.m # ------------------------------------------- # validation def test_Parameter_validator(self, param): """Test :meth:`astropy.cosmology.Parameter.validator`.""" for k in Parameter._registry_validators: newparam = param.validator(k) assert newparam.fvalidate == newparam._registry_validators[k] # error for non-registered str with pytest.raises(ValueError, match="`fvalidate`, if str"): Parameter(fvalidate="NOT REGISTERED") # error if wrong type with pytest.raises(TypeError, match="`fvalidate` must be a function or"): Parameter(fvalidate=object()) def test_Parameter_validate(self, cosmo, param): """Test :meth:`astropy.cosmology.Parameter.validate`.""" value = param.validate(cosmo, 1000 * u.m) # whether has custom validator if param.fvalidate is param._registry_validators["default"]: assert value.unit == u.m assert value.value == 1000 else: assert value.unit == u.km assert value.value == 1 def test_Parameter_register_validator(self, param): """Test :meth:`astropy.cosmology.Parameter.register_validator`.""" # already registered with pytest.raises(KeyError, match="validator 'default' already"): param.__class__.register_validator("default", None) # validator not None def notnonefunc(x): return x try: validator = param.__class__.register_validator("newvalidator", notnonefunc) assert validator is notnonefunc finally: param.__class__._registry_validators.pop("newvalidator", None) # used as decorator try: @param.__class__.register_validator("newvalidator") def func(cosmology, param, value): return value assert param.__class__._registry_validators["newvalidator"] is func finally: param.__class__._registry_validators.pop("newvalidator", None) # ------------------------------------------- def test_Parameter_clone(self, param): """Test :meth:`astropy.cosmology.Parameter.clone`.""" # this implicitly relies on `__eq__` testing properly. Which is tested. # basic test that nothing changes assert param.clone() == param assert param.clone() is not param # but it's not a 'singleton' # passing kwargs will change stuff newparam = param.clone(unit="km/(yr sr)") assert newparam.unit == u.km / u.yr / u.sr assert param.unit != u.km / u.yr / u.sr # original is unchanged # expected failure for not-an-argument with pytest.raises(TypeError): param.clone(not_a_valid_parameter=True) # ------------------------------------------- def test_Parameter_equality(self): """ Test Parameter equality. Determined from the processed initialization args (including defaults). """ p1 = Parameter(unit="km / (s Mpc)") p2 = Parameter(unit="km / (s Mpc)") assert p1 == p2 # not equal parameters p3 = Parameter(unit="km / s") assert p3 != p1 # misc assert p1 != 2 # show doesn't error # ------------------------------------------- def test_Parameter_repr(self, cosmo_cls, param): """Test Parameter repr.""" r = repr(param) assert "Parameter(" in r for subs in ( "derived=False", 'unit=Unit("m")', 'equivalencies=[(Unit("kg"), Unit("J")', "doc='Description of example parameter.'", ): assert subs in r, subs # `fvalidate` is a little tricker b/c one of them is custom! if param.fvalidate in param._registry_validators.values(): # not custom assert "fvalidate='default'" in r else: assert "fvalidate=<" in r # Some function, don't care about details. def test_Parameter_repr_roundtrip(self, param): """Test ``eval(repr(Parameter))`` can round trip to ``Parameter``.""" P = Parameter(doc="A description of this parameter.", derived=True) NP = eval(repr(P)) # Evaluate string representation back into a param. assert P == NP # ============================================================== def test_Parameter_doesnt_change_with_generic_class(self): """Descriptors are initialized once and not updated on subclasses.""" class ExampleBase: def __init__(self, param=15): self._param = param sig = inspect.signature(__init__) _init_signature = sig.replace(parameters=list(sig.parameters.values())[1:]) param = Parameter(doc="example parameter") class Example(ExampleBase): pass assert Example.param is ExampleBase.param def test_Parameter_doesnt_change_with_cosmology(self, cosmo_cls): """Cosmology reinitializes all descriptors when a subclass is defined.""" # define subclass to show param is same class Example(cosmo_cls): pass assert Example.param is cosmo_cls.param # unregister _COSMOLOGY_CLASSES.pop(Example.__qualname__) assert Example.__qualname__ not in _COSMOLOGY_CLASSES
0b154335d1ec1a58d0c9fe5377421b6b7efe980c58d777d4d3ec57d2f03065ae
"""Testing :mod:`astropy.cosmology.units`.""" ############################################################################## # IMPORTS import pytest import astropy.cosmology.units as cu import astropy.units as u from astropy.cosmology import Planck13, default_cosmology from astropy.tests.helper import assert_quantity_allclose from astropy.utils.compat.optional_deps import HAS_SCIPY from astropy.utils.exceptions import AstropyDeprecationWarning ############################################################################## # TESTS ############################################################################## def test_has_expected_units(): """ Test that this module has the expected set of units. Some of the units are imported from :mod:`astropy.units`, or vice versa. Here we test presence, not usage. Units from :mod:`astropy.units` are tested in that module. Units defined in :mod:`astropy.cosmology` will be tested subsequently. """ with pytest.warns(AstropyDeprecationWarning, match="`littleh`"): assert u.astrophys.littleh is cu.littleh def test_has_expected_equivalencies(): """ Test that this module has the expected set of equivalencies. Many of the equivalencies are imported from :mod:`astropy.units`, so here we test presence, not usage. Equivalencies from :mod:`astropy.units` are tested in that module. Equivalencies defined in :mod:`astropy.cosmology` will be tested subsequently. """ with pytest.warns(AstropyDeprecationWarning, match="`with_H0`"): assert u.equivalencies.with_H0 is cu.with_H0 def test_littleh(): """Test :func:`astropy.cosmology.units.with_H0`.""" H0_70 = 70 * u.km / u.s / u.Mpc h70dist = 70 * u.Mpc / cu.littleh assert_quantity_allclose(h70dist.to(u.Mpc, cu.with_H0(H0_70)), 100 * u.Mpc) # make sure using the default cosmology works cosmodist = default_cosmology.get().H0.value * u.Mpc / cu.littleh assert_quantity_allclose(cosmodist.to(u.Mpc, cu.with_H0()), 100 * u.Mpc) # Now try a luminosity scaling h1lum = 0.49 * u.Lsun * cu.littleh**-2 assert_quantity_allclose(h1lum.to(u.Lsun, cu.with_H0(H0_70)), 1 * u.Lsun) # And the trickiest one: magnitudes. Using H0=10 here for the round numbers H0_10 = 10 * u.km / u.s / u.Mpc # assume the "true" magnitude M = 12. # Then M - 5*log_10(h) = M + 5 = 17 withlittlehmag = 17 * (u.mag - u.MagUnit(cu.littleh**2)) assert_quantity_allclose(withlittlehmag.to(u.mag, cu.with_H0(H0_10)), 12 * u.mag) @pytest.mark.skipif(not HAS_SCIPY, reason="Cosmology needs scipy") def test_dimensionless_redshift(): """Test :func:`astropy.cosmology.units.dimensionless_redshift`.""" z = 3 * cu.redshift val = 3 * u.one # show units not equal assert z.unit == cu.redshift assert z.unit != u.one assert u.get_physical_type(z) == "redshift" # test equivalency enabled by default assert z == val # also test that it works for powers assert (3 * cu.redshift**3) == val # and in composite units assert (3 * u.km / cu.redshift**3) == 3 * u.km # test it also works as an equivalency with u.set_enabled_equivalencies([]): # turn off default equivalencies assert z.to(u.one, equivalencies=cu.dimensionless_redshift()) == val with pytest.raises(ValueError): z.to(u.one) # if this fails, something is really wrong with u.add_enabled_equivalencies(cu.dimensionless_redshift()): assert z == val @pytest.mark.skipif(not HAS_SCIPY, reason="Cosmology needs scipy") def test_redshift_temperature(): """Test :func:`astropy.cosmology.units.redshift_temperature`.""" cosmo = Planck13.clone(Tcmb0=3 * u.K) default_cosmo = default_cosmology.get() z = 15 * cu.redshift Tcmb = cosmo.Tcmb(z) # 1) Default (without specifying the cosmology) with default_cosmology.set(cosmo): equivalency = cu.redshift_temperature() assert_quantity_allclose(z.to(u.K, equivalency), Tcmb) assert_quantity_allclose(Tcmb.to(cu.redshift, equivalency), z) # showing the answer changes if the cosmology changes # this test uses the default cosmology equivalency = cu.redshift_temperature() assert_quantity_allclose(z.to(u.K, equivalency), default_cosmo.Tcmb(z)) assert default_cosmo.Tcmb(z) != Tcmb # 2) Specifying the cosmology equivalency = cu.redshift_temperature(cosmo) assert_quantity_allclose(z.to(u.K, equivalency), Tcmb) assert_quantity_allclose(Tcmb.to(cu.redshift, equivalency), z) # Test `atzkw` equivalency = cu.redshift_temperature(cosmo, ztol=1e-10) assert_quantity_allclose(Tcmb.to(cu.redshift, equivalency), z) @pytest.mark.skipif(not HAS_SCIPY, reason="Cosmology needs scipy") def test_redshift_hubble(): """Test :func:`astropy.cosmology.units.redshift_hubble`.""" unit = u.km / u.s / u.Mpc cosmo = Planck13.clone(H0=100 * unit) default_cosmo = default_cosmology.get() z = 15 * cu.redshift H = cosmo.H(z) h = H.to_value(u.km / u.s / u.Mpc) / 100 * cu.littleh # 1) Default (without specifying the cosmology) with default_cosmology.set(cosmo): equivalency = cu.redshift_hubble() # H assert_quantity_allclose(z.to(unit, equivalency), H) assert_quantity_allclose(H.to(cu.redshift, equivalency), z) # little-h assert_quantity_allclose(z.to(cu.littleh, equivalency), h) assert_quantity_allclose(h.to(cu.redshift, equivalency), z) # showing the answer changes if the cosmology changes # this test uses the default cosmology equivalency = cu.redshift_hubble() assert_quantity_allclose(z.to(unit, equivalency), default_cosmo.H(z)) assert default_cosmo.H(z) != H # 2) Specifying the cosmology equivalency = cu.redshift_hubble(cosmo) # H assert_quantity_allclose(z.to(unit, equivalency), H) assert_quantity_allclose(H.to(cu.redshift, equivalency), z) # little-h assert_quantity_allclose(z.to(cu.littleh, equivalency), h) assert_quantity_allclose(h.to(cu.redshift, equivalency), z) # Test `atzkw` equivalency = cu.redshift_hubble(cosmo, ztol=1e-10) assert_quantity_allclose(H.to(cu.redshift, equivalency), z) # H assert_quantity_allclose(h.to(cu.redshift, equivalency), z) # little-h @pytest.mark.skipif(not HAS_SCIPY, reason="Cosmology needs scipy") @pytest.mark.parametrize( "kind", [cu.redshift_distance.__defaults__[-1], "comoving", "lookback", "luminosity"], ) def test_redshift_distance(kind): """Test :func:`astropy.cosmology.units.redshift_distance`.""" z = 15 * cu.redshift d = getattr(Planck13, kind + "_distance")(z) equivalency = cu.redshift_distance(cosmology=Planck13, kind=kind) # properties of Equivalency assert equivalency.name[0] == "redshift_distance" assert equivalency.kwargs[0]["cosmology"] == Planck13 assert equivalency.kwargs[0]["distance"] == kind # roundtrip assert_quantity_allclose(z.to(u.Mpc, equivalency), d) assert_quantity_allclose(d.to(cu.redshift, equivalency), z) def test_redshift_distance_wrong_kind(): """Test :func:`astropy.cosmology.units.redshift_distance` wrong kind.""" with pytest.raises(ValueError, match="`kind`"): cu.redshift_distance(kind=None) @pytest.mark.skipif(not HAS_SCIPY, reason="Cosmology needs scipy") class Test_with_redshift: """Test `astropy.cosmology.units.with_redshift`.""" @pytest.fixture(scope="class") def cosmo(self): """Test cosmology.""" return Planck13.clone(Tcmb0=3 * u.K) # =========================================== def test_cosmo_different(self, cosmo): """The default is different than the test cosmology.""" default_cosmo = default_cosmology.get() assert default_cosmo != cosmo # shows changing default def test_no_equivalency(self, cosmo): """Test the equivalency ``with_redshift`` without any enabled.""" equivalency = cu.with_redshift(distance=None, hubble=False, Tcmb=False) assert len(equivalency) == 0 # ------------------------------------------- def test_temperature_off(self, cosmo): """Test ``with_redshift`` with the temperature off.""" z = 15 * cu.redshift err_msg = ( r"^'redshift' \(redshift\) and 'K' \(temperature\) are not convertible$" ) # 1) Default (without specifying the cosmology) with default_cosmology.set(cosmo): equivalency = cu.with_redshift(Tcmb=False) with pytest.raises(u.UnitConversionError, match=err_msg): z.to(u.K, equivalency) # 2) Specifying the cosmology equivalency = cu.with_redshift(cosmo, Tcmb=False) with pytest.raises(u.UnitConversionError, match=err_msg): z.to(u.K, equivalency) def test_temperature(self, cosmo): """Test temperature equivalency component.""" default_cosmo = default_cosmology.get() z = 15 * cu.redshift Tcmb = cosmo.Tcmb(z) # 1) Default (without specifying the cosmology) with default_cosmology.set(cosmo): equivalency = cu.with_redshift(Tcmb=True) assert_quantity_allclose(z.to(u.K, equivalency), Tcmb) assert_quantity_allclose(Tcmb.to(cu.redshift, equivalency), z) # showing the answer changes if the cosmology changes # this test uses the default cosmology equivalency = cu.with_redshift(Tcmb=True) assert_quantity_allclose(z.to(u.K, equivalency), default_cosmo.Tcmb(z)) assert default_cosmo.Tcmb(z) != Tcmb # 2) Specifying the cosmology equivalency = cu.with_redshift(cosmo, Tcmb=True) assert_quantity_allclose(z.to(u.K, equivalency), Tcmb) assert_quantity_allclose(Tcmb.to(cu.redshift, equivalency), z) # Test `atzkw` # this is really just a test that 'atzkw' doesn't fail equivalency = cu.with_redshift(cosmo, Tcmb=True, atzkw={"ztol": 1e-10}) assert_quantity_allclose(Tcmb.to(cu.redshift, equivalency), z) # ------------------------------------------- def test_hubble_off(self, cosmo): """Test ``with_redshift`` with Hubble off.""" unit = u.km / u.s / u.Mpc z = 15 * cu.redshift err_msg = ( r"^'redshift' \(redshift\) and 'km / \(Mpc s\)' \(frequency\) are not " "convertible$" ) # 1) Default (without specifying the cosmology) with default_cosmology.set(cosmo): equivalency = cu.with_redshift(hubble=False) with pytest.raises(u.UnitConversionError, match=err_msg): z.to(unit, equivalency) # 2) Specifying the cosmology equivalency = cu.with_redshift(cosmo, hubble=False) with pytest.raises(u.UnitConversionError, match=err_msg): z.to(unit, equivalency) def test_hubble(self, cosmo): """Test Hubble equivalency component.""" unit = u.km / u.s / u.Mpc default_cosmo = default_cosmology.get() z = 15 * cu.redshift H = cosmo.H(z) h = H.to_value(u.km / u.s / u.Mpc) / 100 * cu.littleh # 1) Default (without specifying the cosmology) with default_cosmology.set(cosmo): equivalency = cu.with_redshift(hubble=True) # H assert_quantity_allclose(z.to(unit, equivalency), H) assert_quantity_allclose(H.to(cu.redshift, equivalency), z) # little-h assert_quantity_allclose(z.to(cu.littleh, equivalency), h) assert_quantity_allclose(h.to(cu.redshift, equivalency), z) # showing the answer changes if the cosmology changes # this test uses the default cosmology equivalency = cu.with_redshift(hubble=True) assert_quantity_allclose(z.to(unit, equivalency), default_cosmo.H(z)) assert default_cosmo.H(z) != H # 2) Specifying the cosmology equivalency = cu.with_redshift(cosmo, hubble=True) # H assert_quantity_allclose(z.to(unit, equivalency), H) assert_quantity_allclose(H.to(cu.redshift, equivalency), z) # little-h assert_quantity_allclose(z.to(cu.littleh, equivalency), h) assert_quantity_allclose(h.to(cu.redshift, equivalency), z) # Test `atzkw` # this is really just a test that 'atzkw' doesn't fail equivalency = cu.with_redshift(cosmo, hubble=True, atzkw={"ztol": 1e-10}) assert_quantity_allclose(H.to(cu.redshift, equivalency), z) # H assert_quantity_allclose(h.to(cu.redshift, equivalency), z) # h # ------------------------------------------- def test_distance_off(self, cosmo): """Test ``with_redshift`` with the distance off.""" z = 15 * cu.redshift err_msg = r"^'redshift' \(redshift\) and 'Mpc' \(length\) are not convertible$" # 1) Default (without specifying the cosmology) with default_cosmology.set(cosmo): equivalency = cu.with_redshift(distance=None) with pytest.raises(u.UnitConversionError, match=err_msg): z.to(u.Mpc, equivalency) # 2) Specifying the cosmology equivalency = cu.with_redshift(cosmo, distance=None) with pytest.raises(u.UnitConversionError, match=err_msg): z.to(u.Mpc, equivalency) def test_distance_default(self): """Test distance equivalency default.""" z = 15 * cu.redshift d = default_cosmology.get().comoving_distance(z) equivalency = cu.with_redshift() assert_quantity_allclose(z.to(u.Mpc, equivalency), d) assert_quantity_allclose(d.to(cu.redshift, equivalency), z) def test_distance_wrong_kind(self): """Test distance equivalency, but the wrong kind.""" with pytest.raises(ValueError, match="`kind`"): cu.with_redshift(distance=ValueError) @pytest.mark.parametrize("kind", ["comoving", "lookback", "luminosity"]) def test_distance(self, kind): """Test distance equivalency.""" cosmo = Planck13 z = 15 * cu.redshift dist = getattr(cosmo, kind + "_distance")(z) default_cosmo = default_cosmology.get() assert default_cosmo != cosmo # shows changing default # 1) without specifying the cosmology with default_cosmology.set(cosmo): equivalency = cu.with_redshift(distance=kind) assert_quantity_allclose(z.to(u.Mpc, equivalency), dist) # showing the answer changes if the cosmology changes # this test uses the default cosmology equivalency = cu.with_redshift(distance=kind) assert_quantity_allclose( z.to(u.Mpc, equivalency), getattr(default_cosmo, kind + "_distance")(z) ) assert not u.allclose(getattr(default_cosmo, kind + "_distance")(z), dist) # 2) Specifying the cosmology equivalency = cu.with_redshift(cosmo, distance=kind) assert_quantity_allclose(z.to(u.Mpc, equivalency), dist) assert_quantity_allclose(dist.to(cu.redshift, equivalency), z) # Test atzkw # this is really just a test that 'atzkw' doesn't fail equivalency = cu.with_redshift(cosmo, distance=kind, atzkw={"ztol": 1e-10}) assert_quantity_allclose(dist.to(cu.redshift, equivalency), z) def test_equivalency_context_manager(): base_registry = u.get_current_unit_registry() # check starting with only the dimensionless_redshift equivalency. assert len(base_registry.equivalencies) == 1 assert str(base_registry.equivalencies[0][0]) == "redshift"