hash
stringlengths
64
64
content
stringlengths
0
1.51M
63a3dc5729503c5890bebcbbbedd943c2f6b2e9ecd8b401efb0f17e6b8ec1d5f
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Test separability of models. """ import numpy as np # pylint: disable=invalid-name import pytest from numpy.testing import assert_allclose from astropy.modeling import custom_model, models from astropy.modeling.core import ModelDefinitionError from astropy.modeling.models import Mapping from astropy.modeling.separable import ( _arith_oper, _cdot, _coord_matrix, _cstack, is_separable, separability_matrix, ) sh1 = models.Shift(1, name="shift1") sh2 = models.Shift(2, name="sh2") scl1 = models.Scale(1, name="scl1") scl2 = models.Scale(2, name="scl2") map1 = Mapping((0, 1, 0, 1), name="map1") map2 = Mapping((0, 0, 1), name="map2") map3 = Mapping((0, 0), name="map3") rot = models.Rotation2D(2, name="rotation") p2 = models.Polynomial2D(1, name="p2") p22 = models.Polynomial2D(2, name="p22") p1 = models.Polynomial1D(1, name="p1") cm_4d_expected = ( np.array([False, False, True, True]), np.array( [ [True, True, False, False], [True, True, False, False], [False, False, True, False], [False, False, False, True], ] ), ) compound_models = { "cm1": ( map3 & sh1 | rot & sh1 | sh1 & sh2 & sh1, ( np.array([False, False, True]), np.array([[True, False], [True, False], [False, True]]), ), ), "cm2": ( sh1 & sh2 | rot | map1 | p2 & p22, (np.array([False, False]), np.array([[True, True], [True, True]])), ), "cm3": ( map2 | rot & scl1, ( np.array([False, False, True]), np.array([[True, False], [True, False], [False, True]]), ), ), "cm4": ( sh1 & sh2 | map2 | rot & scl1, ( np.array([False, False, True]), np.array([[True, False], [True, False], [False, True]]), ), ), "cm5": ( map3 | sh1 & sh2 | scl1 & scl2, (np.array([False, False]), np.array([[True], [True]])), ), "cm7": ( map2 | p2 & sh1, (np.array([False, True]), np.array([[True, False], [False, True]])), ), "cm8": (rot & (sh1 & sh2), cm_4d_expected), "cm9": (rot & sh1 & sh2, cm_4d_expected), "cm10": ((rot & sh1) & sh2, cm_4d_expected), "cm11": ( rot & sh1 & (scl1 & scl2), ( np.array([False, False, True, True, True]), np.array( [ [True, True, False, False, False], [True, True, False, False, False], [False, False, True, False, False], [False, False, False, True, False], [False, False, False, False, True], ] ), ), ), } def test_coord_matrix(): c = _coord_matrix(p2, "left", 2) assert_allclose(np.array([[1, 1], [0, 0]]), c) c = _coord_matrix(p2, "right", 2) assert_allclose(np.array([[0, 0], [1, 1]]), c) c = _coord_matrix(p1, "left", 2) assert_allclose(np.array([[1], [0]]), c) c = _coord_matrix(p1, "left", 1) assert_allclose(np.array([[1]]), c) c = _coord_matrix(sh1, "left", 2) assert_allclose(np.array([[1], [0]]), c) c = _coord_matrix(sh1, "right", 2) assert_allclose(np.array([[0], [1]]), c) c = _coord_matrix(sh1, "right", 3) assert_allclose(np.array([[0], [0], [1]]), c) c = _coord_matrix(map3, "left", 2) assert_allclose(np.array([[1], [1]]), c) c = _coord_matrix(map3, "left", 3) assert_allclose(np.array([[1], [1], [0]]), c) def test_cdot(): result = _cdot(sh1, scl1) assert_allclose(result, np.array([[1]])) result = _cdot(rot, p2) assert_allclose(result, np.array([[2, 2]])) result = _cdot(rot, rot) assert_allclose(result, np.array([[2, 2], [2, 2]])) result = _cdot(Mapping((0, 0)), rot) assert_allclose(result, np.array([[2], [2]])) with pytest.raises( ModelDefinitionError, match=r"Models cannot be combined with the \"|\" operator; .*", ): _cdot(sh1, map1) def test_cstack(): result = _cstack(sh1, scl1) assert_allclose(result, np.array([[1, 0], [0, 1]])) result = _cstack(sh1, rot) assert_allclose(result, np.array([[1, 0, 0], [0, 1, 1], [0, 1, 1]])) result = _cstack(rot, sh1) assert_allclose(result, np.array([[1, 1, 0], [1, 1, 0], [0, 0, 1]])) def test_arith_oper(): # Models as inputs result = _arith_oper(sh1, scl1) assert_allclose(result, np.array([[1]])) result = _arith_oper(rot, rot) assert_allclose(result, np.array([[1, 1], [1, 1]])) # ndarray result = _arith_oper(np.array([[1, 2], [3, 4]]), np.array([[1, 2], [3, 4]])) assert_allclose(result, np.array([[1, 1], [1, 1]])) # Error with pytest.raises( ModelDefinitionError, match=r"Unsupported operands for arithmetic operator: .*" ): _arith_oper(sh1, map1) @pytest.mark.parametrize(("compound_model", "result"), compound_models.values()) def test_separable(compound_model, result): assert_allclose(is_separable(compound_model), result[0]) assert_allclose(separability_matrix(compound_model), result[1]) def test_custom_model_separable(): @custom_model def model_a(x): return x assert model_a().separable @custom_model def model_c(x, y): return x + y assert not model_c().separable assert np.all(separability_matrix(model_c()) == [True, True])
db445614d30daa9c81bdcde4e3a6db73336a30963ac9b409f788e1fb09c4bc44
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Tests models.parameters """ # pylint: disable=invalid-name import functools import itertools import unittest.mock as mk import numpy as np import pytest from astropy import units as u from astropy.modeling import fitting, models from astropy.modeling.core import FittableModel, Model from astropy.modeling.parameters import ( InputParameterError, Parameter, _tofloat, param_repr_oneline, ) from astropy.utils.data import get_pkg_data_filename from . import irafutil def setter1(val): return val def setter2(val, model): model.do_something(val) return val * model.p class SetterModel(FittableModel): n_inputs = 2 n_outputs = 1 xc = Parameter(default=1, setter=setter1) yc = Parameter(default=1, setter=setter2) def do_something(self, v): pass def __init__(self, xc, yc, p): self.p = p # p is a value intended to be used by the setter super().__init__() self.xc = xc self.yc = yc def evaluate(self, x, y, xc, yc): return (x - xc) ** 2 + (y - yc) ** 2 class TParModel(Model): """ A toy model to test parameters machinery """ coeff = Parameter() e = Parameter() def __init__(self, coeff, e, **kwargs): super().__init__(coeff=coeff, e=e, **kwargs) @staticmethod def evaluate(coeff, e): pass class MockModel(FittableModel): alpha = Parameter(name="alpha", default=42) @staticmethod def evaluate(*args): pass def test__tofloat(): # iterable value = _tofloat([1, 2, 3]) assert isinstance(value, np.ndarray) assert (value == np.array([1, 2, 3])).all() assert np.all([isinstance(val, float) for val in value]) value = _tofloat(np.array([1, 2, 3])) assert isinstance(value, np.ndarray) assert (value == np.array([1, 2, 3])).all() assert np.all([isinstance(val, float) for val in value]) MESSAGE = r"Parameter of .* could not be converted to float" with pytest.raises(InputParameterError, match=MESSAGE): _tofloat("test") # quantity assert _tofloat(1 * u.m) == 1 * u.m # dimensions/scalar array value = _tofloat(np.asanyarray(3)) assert isinstance(value, float) assert value == 3 # A regular number value = _tofloat(3) assert isinstance(value, float) assert value == 3 value = _tofloat(3.0) assert isinstance(value, float) assert value == 3 value = _tofloat(np.float32(3)) assert isinstance(value, float) assert value == 3 value = _tofloat(np.float64(3)) assert isinstance(value, float) assert value == 3 value = _tofloat(np.int32(3)) assert isinstance(value, float) assert value == 3 value = _tofloat(np.int64(3)) assert isinstance(value, float) assert value == 3 # boolean MESSAGE = r"Expected parameter to be of numerical type, not boolean" with pytest.raises(InputParameterError, match=MESSAGE): _tofloat(True) with pytest.raises(InputParameterError, match=MESSAGE): _tofloat(False) # other class Value: pass MESSAGE = r"Don't know how to convert parameter of .* to float" with pytest.raises(InputParameterError, match=MESSAGE): _tofloat(Value) def test_parameter_properties(): """Test if getting / setting of Parameter properties works.""" p = Parameter("alpha", default=1) assert p.name == "alpha" # Parameter names are immutable with pytest.raises(AttributeError): p.name = "beta" assert p.fixed is False p.fixed = True assert p.fixed is True assert p.tied is False p.tied = lambda _: 0 p.tied = False assert p.tied is False assert p.min is None p.min = 42 assert p.min == 42 p.min = None assert p.min is None assert p.max is None p.max = 41 assert p.max == 41 def test_parameter_operators(): """Test if the parameter arithmetic operators work.""" par = Parameter("alpha", default=42) num = 42.0 val = 3 assert par - val == num - val assert val - par == val - num assert par / val == num / val assert val / par == val / num assert par**val == num**val assert val**par == val**num assert par < 45 assert par > 41 assert par <= par assert par >= par assert par == par assert -par == -num assert abs(par) == abs(num) # Test inherited models class M1(Model): m1a = Parameter(default=1.0) m1b = Parameter(default=5.0) def evaluate(): pass class M2(M1): m2c = Parameter(default=11.0) class M3(M2): m3d = Parameter(default=20.0) def test_parameter_inheritance(): mod = M3() assert mod.m1a == 1.0 assert mod.m1b == 5.0 assert mod.m2c == 11.0 assert mod.m3d == 20.0 for key in ["m1a", "m1b", "m2c", "m3d"]: assert key in mod.__dict__ assert mod.param_names == ("m1a", "m1b", "m2c", "m3d") def test_param_metric(): mod = M3() assert mod._param_metrics["m1a"]["slice"] == slice(0, 1) assert mod._param_metrics["m1b"]["slice"] == slice(1, 2) assert mod._param_metrics["m2c"]["slice"] == slice(2, 3) assert mod._param_metrics["m3d"]["slice"] == slice(3, 4) mod._parameters_to_array() assert (mod._parameters == np.array([1.0, 5.0, 11.0, 20], dtype=np.float64)).all() class TestParameters: def setup_class(self): """ Unit tests for parameters Read an iraf database file created by onedspec.identify. Use the information to create a 1D Chebyshev model and perform the same fit. Create also a gaussian model. """ test_file = get_pkg_data_filename("data/idcompspec.fits") f = open(test_file) lines = f.read() reclist = lines.split("begin") f.close() record = irafutil.IdentifyRecord(reclist[1]) self.icoeff = record.coeff order = int(record.fields["order"]) self.model = models.Chebyshev1D(order - 1) self.gmodel = models.Gaussian1D(2, mean=3, stddev=4) self.linear_fitter = fitting.LinearLSQFitter() self.x = record.x self.y = record.z self.yy = np.array([record.z, record.z]) def test_set_parameters_as_list(self): """Tests updating parameters using a list.""" self.model.parameters = [30, 40, 50, 60, 70] assert (self.model.parameters == [30.0, 40.0, 50.0, 60, 70]).all() def test_set_parameters_as_array(self): """Tests updating parameters using an array.""" self.model.parameters = np.array([3, 4, 5, 6, 7]) assert (self.model.parameters == [3.0, 4.0, 5.0, 6.0, 7.0]).all() def test_set_as_tuple(self): """Tests updating parameters using a tuple.""" self.model.parameters = (1, 2, 3, 4, 5) assert (self.model.parameters == [1, 2, 3, 4, 5]).all() def test_set_model_attr_seq(self): """ Tests updating the parameters attribute when a model's parameter (in this case coeff) is updated. """ self.model.parameters = [0, 0.0, 0.0, 0, 0] self.model.c0 = 7 assert (self.model.parameters == [7, 0.0, 0.0, 0, 0]).all() def test_set_model_attr_num(self): """Update the parameter list when a model's parameter is updated.""" self.gmodel.amplitude = 7 assert (self.gmodel.parameters == [7, 3, 4]).all() def test_set_item(self): """Update the parameters using indexing.""" self.model.parameters = [1, 2, 3, 4, 5] tpar = self.model.parameters tpar[0] = 10.0 self.model.parameters = tpar assert (self.model.parameters == [10, 2, 3, 4, 5]).all() assert self.model.c0 == 10 def test_wrong_size1(self): """ Tests raising an error when attempting to reset the parameters using a list of a different size. """ MESSAGE = ( r"Input parameter values not compatible with the model parameters array: .*" ) with pytest.raises(InputParameterError, match=MESSAGE): self.model.parameters = [1, 2, 3] def test_wrong_size2(self): """ Tests raising an exception when attempting to update a model's parameter (in this case coeff) with a sequence of the wrong size. """ MESSAGE = ( r"Value for parameter c0 does not match shape or size\nexpected by model .*" r" vs .*" ) with pytest.raises(InputParameterError, match=MESSAGE): self.model.c0 = [1, 2, 3] def test_wrong_shape(self): """ Tests raising an exception when attempting to update a model's parameter and the new value has the wrong shape. """ MESSAGE = ( r"Value for parameter amplitude does not match shape or size\nexpected by" r" model .* vs .*" ) with pytest.raises(InputParameterError, match=MESSAGE): self.gmodel.amplitude = [1, 2] def test_par_against_iraf(self): """ Test the fitter modifies model.parameters. Uses an iraf example. """ new_model = self.linear_fitter(self.model, self.x, self.y) np.testing.assert_allclose( new_model.parameters, np.array( [ 4826.1066602783685, 952.8943813407858, 12.641236013982386, -1.7910672553339604, 0.90252884366711317, ] ), rtol=10 ** (-2), ) def testPolynomial1D(self): d = {"c0": 11, "c1": 12, "c2": 13, "c3": 14} p1 = models.Polynomial1D(3, **d) np.testing.assert_equal(p1.parameters, [11, 12, 13, 14]) def test_poly1d_multiple_sets(self): p1 = models.Polynomial1D(3, n_models=3) np.testing.assert_equal( p1.parameters, [0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) np.testing.assert_array_equal(p1.c0, [0, 0, 0]) p1.c0 = [10, 10, 10] np.testing.assert_equal( p1.parameters, [10.0, 10.0, 10.0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) def test_par_slicing(self): """ Test assigning to a parameter slice """ p1 = models.Polynomial1D(3, n_models=3) p1.c0[:2] = [10, 10] np.testing.assert_equal( p1.parameters, [10.0, 10.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) def test_poly2d(self): p2 = models.Polynomial2D(degree=3) p2.c0_0 = 5 np.testing.assert_equal(p2.parameters, [5, 0, 0, 0, 0, 0, 0, 0, 0, 0]) def test_poly2d_multiple_sets(self): kw = { "c0_0": [2, 3], "c1_0": [1, 2], "c2_0": [4, 5], "c0_1": [1, 1], "c0_2": [2, 2], "c1_1": [5, 5], } p2 = models.Polynomial2D(2, **kw) np.testing.assert_equal(p2.parameters, [2, 3, 1, 2, 4, 5, 1, 1, 2, 2, 5, 5]) def test_shift_model_parameters1d(self): sh1 = models.Shift(2) sh1.offset = 3 assert sh1.offset == 3 assert sh1.offset.value == 3 def test_scale_model_parametersnd(self): sc1 = models.Scale([2, 2]) sc1.factor = [3, 3] assert np.all(sc1.factor == [3, 3]) np.testing.assert_array_equal(sc1.factor.value, [3, 3]) def test_bounds(self): # Valid __init__ param = Parameter(bounds=(1, 2)) assert param.bounds == (1, 2) param = Parameter(min=1, max=2) assert param.bounds == (1, 2) # Errors __init__ MESSAGE = r"bounds may not be specified simultaneously with min or max .*" with pytest.raises(ValueError, match=MESSAGE): Parameter(bounds=(1, 2), min=1, name="test") with pytest.raises(ValueError, match=MESSAGE): Parameter(bounds=(1, 2), max=2, name="test") with pytest.raises(ValueError, match=MESSAGE): Parameter(bounds=(1, 2), min=1, max=2, name="test") # Setters param = Parameter(name="test", default=[1, 2, 3, 4]) assert param.bounds == (None, None) == param._bounds # Set errors MESSAGE = "{} value must be a number or a Quantity" with pytest.raises(TypeError, match=MESSAGE.format("Min")): param.bounds = ("test", None) with pytest.raises(TypeError, match=MESSAGE.format("Max")): param.bounds = (None, "test") # Set number param.bounds = (1, 2) assert param.bounds == (1, 2) == param._bounds # Set Quantity param.bounds = (1 * u.m, 2 * u.m) assert param.bounds == (1, 2) == param._bounds def test_modify_value(self): param = Parameter(name="test", default=[1, 2, 3]) assert (param.value == [1, 2, 3]).all() # Errors MESSAGE = r"Slice assignment outside the parameter dimensions for 'test'" with pytest.raises(InputParameterError, match=MESSAGE): param[slice(0, 0)] = 2 MESSAGE = r"Input dimension 3 invalid for 'test' parameter with dimension 1" with pytest.raises(InputParameterError, match=MESSAGE): param[3] = np.array([5]) # assignment of a slice param[slice(0, 2)] = [4, 5] assert (param.value == [4, 5, 3]).all() # assignment of a value param[2] = 6 assert (param.value == [4, 5, 6]).all() def test__set_unit(self): param = Parameter(name="test", default=[1, 2, 3]) assert param.unit is None # No force Error (no existing unit) MESSAGE = r"Cannot attach units to parameters that were .*" with pytest.raises(ValueError, match=MESSAGE): param._set_unit(u.m) # Force param._set_unit(u.m, True) assert param.unit == u.m # Force magnitude unit (mag=False) MESSAGE = r"This parameter does not support the magnitude units such as .*" with pytest.raises(ValueError, match=MESSAGE): param._set_unit(u.ABmag, True) # Force magnitude unit (mag=True) param._mag = True param._set_unit(u.ABmag, True) assert param._unit == u.ABmag # No force Error (existing unit) MESSAGE = r"Cannot change the unit attribute directly, instead change the .*" with pytest.raises(ValueError, match=MESSAGE): param._set_unit(u.K) def test_quantity(self): param = Parameter(name="test", default=[1, 2, 3]) assert param.unit is None assert param.quantity is None param = Parameter(name="test", default=[1, 2, 3], unit=u.m) assert param.unit == u.m assert (param.quantity == np.array([1, 2, 3]) * u.m).all() def test_shape(self): # Array like param = Parameter(name="test", default=[1, 2, 3, 4]) assert param.shape == (4,) # Reshape error MESSAGE = r"cannot reshape array of size 4 into shape .*" with pytest.raises(ValueError, match=MESSAGE): param.shape = (5,) # Reshape success param.shape = (2, 2) assert param.shape == (2, 2) assert (param.value == [[1, 2], [3, 4]]).all() # Scalar param = Parameter(name="test", default=1) assert param.shape == () # Reshape error MESSAGE = r"Cannot assign this shape to a scalar quantity" with pytest.raises(ValueError, match=MESSAGE): param.shape = (5,) param.shape = (1,) # single value param = Parameter(name="test", default=np.array([1])) assert param.shape == (1,) # Reshape error with pytest.raises(ValueError, match=MESSAGE): param.shape = (5,) param.shape = () def test_size(self): param = Parameter(name="test", default=[1, 2, 3, 4]) assert param.size == 4 param = Parameter(name="test", default=[1]) assert param.size == 1 param = Parameter(name="test", default=1) assert param.size == 1 def test_std(self): param = Parameter(name="test", default=[1, 2, 3, 4]) assert param.std is None assert param._std is None param.std = 5 assert param.std == 5 == param._std def test_fixed(self): param = Parameter(name="test", default=[1, 2, 3, 4]) assert param.fixed is False assert param._fixed is False # Set error MESSAGE = r"Value must be boolean" with pytest.raises(ValueError, match=MESSAGE): param.fixed = 3 # Set param.fixed = True assert param.fixed is True assert param._fixed is True def test_tied(self): param = Parameter(name="test", default=[1, 2, 3, 4]) assert param.tied is False assert param._tied is False # Set error MESSAGE = r"Tied must be a callable or set to False or None" with pytest.raises(TypeError, match=MESSAGE): param.tied = mk.NonCallableMagicMock() # Set None param.tied = None assert param.tied is None assert param._tied is None # Set False param.tied = False assert param.tied is False assert param._tied is False # Set other tied = mk.MagicMock() param.tied = tied assert param.tied == tied == param._tied def test_validator(self): param = Parameter(name="test", default=[1, 2, 3, 4]) assert param._validator is None valid = mk.MagicMock() param.validator(valid) assert param._validator == valid MESSAGE = r"This decorator method expects a callable.*" with pytest.raises(ValueError, match=MESSAGE): param.validator(mk.NonCallableMagicMock()) def test_validate(self): param = Parameter(name="test", default=[1, 2, 3, 4]) assert param._validator is None assert param.model is None # Run without validator param.validate(mk.MagicMock()) # Run with validator but no Model validator = mk.MagicMock() param.validator(validator) assert param._validator == validator param.validate(mk.MagicMock()) assert validator.call_args_list == [] # Full validate param._model = mk.MagicMock() value = mk.MagicMock() param.validate(value) assert validator.call_args_list == [mk.call(param._model, value)] def test_copy(self): param = Parameter(name="test", default=[1, 2, 3, 4]) copy_param = param.copy() assert (param == copy_param).all() assert id(param) != id(copy_param) def test_model(self): param = Parameter(name="test", default=[1, 2, 3, 4]) assert param.model is None assert param._model is None assert param._model_required is False assert (param._value == [1, 2, 3, 4]).all() setter = mk.MagicMock() getter = mk.MagicMock() param._setter = setter param._getter = getter # No Model Required param._value = [5, 6, 7, 8] model0 = mk.MagicMock() setter0 = mk.MagicMock() getter0 = mk.MagicMock() with mk.patch.object( Parameter, "_create_value_wrapper", side_effect=[setter0, getter0] ) as mkCreate: param.model = model0 assert param.model == model0 == param._model assert param._setter == setter0 assert param._getter == getter0 assert mkCreate.call_args_list == [ mk.call(setter, model0), mk.call(getter, model0), ] assert param._value == [5, 6, 7, 8] param._setter = setter param._getter = getter # Model required param._model_required = True model1 = mk.MagicMock() setter1 = mk.MagicMock() getter1 = mk.MagicMock() setter1.return_value = [9, 10, 11, 12] getter1.return_value = [9, 10, 11, 12] with mk.patch.object( Parameter, "_create_value_wrapper", side_effect=[setter1, getter1] ) as mkCreate: param.model = model1 assert param.model == model1 == param._model assert param._setter == setter1 assert param._getter == getter1 assert mkCreate.call_args_list == [ mk.call(setter, model1), mk.call(getter, model1), ] assert (param.value == [9, 10, 11, 12]).all() param._setter = setter param._getter = getter param._default = None with mk.patch.object( Parameter, "_create_value_wrapper", side_effect=[setter1, getter1] ) as mkCreate: param.model = model1 assert param.model == model1 == param._model assert param._setter == setter1 assert param._getter == getter1 assert mkCreate.call_args_list == [ mk.call(setter, model1), mk.call(getter, model1), ] assert param._value is None def test_raw_value(self): param = Parameter(name="test", default=[1, 2, 3, 4]) # Normal case assert (param._raw_value == param.value).all() # Bad setter param._setter = True param._internal_value = 4 assert param._raw_value == 4 def test__create_value_wrapper(self): param = Parameter(name="test", default=[1, 2, 3, 4]) # Bad ufunc MESSAGE = r"A numpy.ufunc used for Parameter getter/setter .*" with pytest.raises(TypeError, match=MESSAGE): param._create_value_wrapper(np.add, mk.MagicMock()) # Good ufunc assert param._create_value_wrapper(np.negative, mk.MagicMock()) == np.negative # None assert param._create_value_wrapper(None, mk.MagicMock()) is None # wrapper with one argument def wrapper1(a): pass assert param._create_value_wrapper(wrapper1, mk.MagicMock()) == wrapper1 # wrapper with two argument2 def wrapper2(a, b): pass # model is None assert param._model_required is False assert param._create_value_wrapper(wrapper2, None) == wrapper2 assert param._model_required is True # model is not None param._model_required = False model = mk.MagicMock() with mk.patch.object(functools, "partial", autospec=True) as mkPartial: assert ( param._create_value_wrapper(wrapper2, model) == mkPartial.return_value ) # wrapper with more than 2 arguments def wrapper3(a, b, c): pass MESSAGE = r"Parameter getter/setter must be a function .*" with pytest.raises(TypeError, match=MESSAGE): param._create_value_wrapper(wrapper3, mk.MagicMock()) def test_bool(self): # single value is true param = Parameter(name="test", default=1) assert param.value == 1 assert np.all(param) if param: assert True else: assert False # single value is false param = Parameter(name="test", default=0) assert param.value == 0 assert not np.all(param) if param: assert False else: assert True # vector value all true param = Parameter(name="test", default=[1, 2, 3, 4]) assert np.all(param.value == [1, 2, 3, 4]) assert np.all(param) if param: assert True else: assert False # vector value at least one false param = Parameter(name="test", default=[1, 2, 0, 3, 4]) assert np.all(param.value == [1, 2, 0, 3, 4]) assert not np.all(param) if param: assert False else: assert True def test_param_repr_oneline(self): # Single value no units param = Parameter(name="test", default=1) assert param_repr_oneline(param) == "1." # Vector value no units param = Parameter(name="test", default=[1, 2, 3, 4]) assert param_repr_oneline(param) == "[1., 2., 3., 4.]" # Single value units param = Parameter(name="test", default=1 * u.m) assert param_repr_oneline(param) == "1. m" # Vector value units param = Parameter(name="test", default=[1, 2, 3, 4] * u.m) assert param_repr_oneline(param) == "[1., 2., 3., 4.] m" class TestMultipleParameterSets: def setup_class(self): self.x1 = np.arange(1, 10, 0.1) self.y, self.x = np.mgrid[:10, :7] self.x11 = np.array([self.x1, self.x1]).T self.gmodel = models.Gaussian1D( [12, 10], [3.5, 5.2], stddev=[0.4, 0.7], n_models=2 ) def test_change_par(self): """ Test that a change to one parameter as a set propagates to param_sets. """ self.gmodel.amplitude = [1, 10] np.testing.assert_almost_equal( self.gmodel.param_sets, np.array( [ [1.0, 10], [3.5, 5.2], [0.4, 0.7], ] ), ) np.all(self.gmodel.parameters == [1.0, 10.0, 3.5, 5.2, 0.4, 0.7]) def test_change_par2(self): """ Test that a change to one single parameter in a set propagates to param_sets. """ self.gmodel.amplitude[0] = 11 np.testing.assert_almost_equal( self.gmodel.param_sets, np.array( [ [11.0, 10], [3.5, 5.2], [0.4, 0.7], ] ), ) np.all(self.gmodel.parameters == [11.0, 10.0, 3.5, 5.2, 0.4, 0.7]) def test_change_parameters(self): self.gmodel.parameters = [13, 10, 9, 5.2, 0.4, 0.7] np.testing.assert_almost_equal(self.gmodel.amplitude.value, [13.0, 10.0]) np.testing.assert_almost_equal(self.gmodel.mean.value, [9.0, 5.2]) class TestParameterInitialization: """ This suite of tests checks most if not all cases if instantiating a model with parameters of different shapes/sizes and with different numbers of parameter sets. """ def test_single_model_scalar_parameters(self): t = TParModel(10, 1) assert len(t) == 1 assert t.model_set_axis is False assert np.all(t.param_sets == [[10], [1]]) assert np.all(t.parameters == [10, 1]) assert t.coeff.shape == () assert t.e.shape == () def test_single_model_scalar_and_array_parameters(self): t = TParModel(10, [1, 2]) assert len(t) == 1 assert t.model_set_axis is False assert np.issubdtype(t.param_sets.dtype, np.object_) assert len(t.param_sets) == 2 assert np.all(t.param_sets[0] == [10]) assert np.all(t.param_sets[1] == [[1, 2]]) assert np.all(t.parameters == [10, 1, 2]) assert t.coeff.shape == () assert t.e.shape == (2,) def test_single_model_1d_array_parameters(self): t = TParModel([10, 20], [1, 2]) assert len(t) == 1 assert t.model_set_axis is False assert np.all(t.param_sets == [[[10, 20]], [[1, 2]]]) assert np.all(t.parameters == [10, 20, 1, 2]) assert t.coeff.shape == (2,) assert t.e.shape == (2,) def test_single_model_1d_array_different_length_parameters(self): MESSAGE = ( r"Parameter .* of shape .* cannot be broadcast with parameter .* of" r" shape .*" ) with pytest.raises(InputParameterError, match=MESSAGE): # Not broadcastable TParModel([1, 2], [3, 4, 5]) def test_single_model_2d_array_parameters(self): t = TParModel([[10, 20], [30, 40]], [[1, 2], [3, 4]]) assert len(t) == 1 assert t.model_set_axis is False assert np.all( t.param_sets == [ [[[10, 20], [30, 40]]], [[[1, 2], [3, 4]]], ] ) assert np.all(t.parameters == [10, 20, 30, 40, 1, 2, 3, 4]) assert t.coeff.shape == (2, 2) assert t.e.shape == (2, 2) def test_single_model_2d_non_square_parameters(self): coeff = np.array( [ [10, 20], [30, 40], [50, 60], ] ) e = np.array([[1, 2], [3, 4], [5, 6]]) t = TParModel(coeff, e) assert len(t) == 1 assert t.model_set_axis is False assert np.all( t.param_sets == [ [[[10, 20], [30, 40], [50, 60]]], [[[1, 2], [3, 4], [5, 6]]], ] ) assert np.all(t.parameters == [10, 20, 30, 40, 50, 60, 1, 2, 3, 4, 5, 6]) assert t.coeff.shape == (3, 2) assert t.e.shape == (3, 2) t2 = TParModel(coeff.T, e.T) assert len(t2) == 1 assert t2.model_set_axis is False assert np.all( t2.param_sets == [ [[[10, 30, 50], [20, 40, 60]]], [[[1, 3, 5], [2, 4, 6]]], ] ) assert np.all(t2.parameters == [10, 30, 50, 20, 40, 60, 1, 3, 5, 2, 4, 6]) assert t2.coeff.shape == (2, 3) assert t2.e.shape == (2, 3) # Not broadcastable MESSAGE = ( r"Parameter .* of shape .* cannot be broadcast with parameter .* of" r" shape .*" ) with pytest.raises(InputParameterError, match=MESSAGE): TParModel(coeff, e.T) with pytest.raises(InputParameterError, match=MESSAGE): TParModel(coeff.T, e) def test_single_model_2d_broadcastable_parameters(self): t = TParModel([[10, 20, 30], [40, 50, 60]], [1, 2, 3]) assert len(t) == 1 assert t.model_set_axis is False assert len(t.param_sets) == 2 assert np.issubdtype(t.param_sets.dtype, np.object_) assert np.all( t.param_sets[0] == [ [[10, 20, 30], [40, 50, 60]], ] ) assert np.all(t.param_sets[1] == [[1, 2, 3]]) assert np.all(t.parameters == [10, 20, 30, 40, 50, 60, 1, 2, 3]) @pytest.mark.parametrize( ("p1", "p2"), [ (1, 2), (1, [2, 3]), ([1, 2], 3), ([1, 2, 3], [4, 5]), ([1, 2], [3, 4, 5]), ], ) def test_two_model_incorrect_scalar_parameters(self, p1, p2): with pytest.raises(InputParameterError, match=r".*"): TParModel(p1, p2, n_models=2) @pytest.mark.parametrize( "kwargs", [ {"n_models": 2}, {"model_set_axis": 0}, {"n_models": 2, "model_set_axis": 0}, ], ) def test_two_model_scalar_parameters(self, kwargs): t = TParModel([10, 20], [1, 2], **kwargs) assert len(t) == 2 assert t.model_set_axis == 0 assert np.all(t.param_sets == [[10, 20], [1, 2]]) assert np.all(t.parameters == [10, 20, 1, 2]) assert t.coeff.shape == (2,) assert t.e.shape == (2,) @pytest.mark.parametrize( "kwargs", [ {"n_models": 2}, {"model_set_axis": 0}, {"n_models": 2, "model_set_axis": 0}, ], ) def test_two_model_scalar_and_array_parameters(self, kwargs): t = TParModel([10, 20], [[1, 2], [3, 4]], **kwargs) assert len(t) == 2 assert t.model_set_axis == 0 assert len(t.param_sets) == 2 assert np.issubdtype(t.param_sets.dtype, np.object_) assert np.all(t.param_sets[0] == [[10], [20]]) assert np.all(t.param_sets[1] == [[1, 2], [3, 4]]) assert np.all(t.parameters == [10, 20, 1, 2, 3, 4]) assert t.coeff.shape == (2,) assert t.e.shape == (2, 2) def test_two_model_1d_array_parameters(self): t = TParModel([[10, 20], [30, 40]], [[1, 2], [3, 4]], n_models=2) assert len(t) == 2 assert t.model_set_axis == 0 assert np.all( t.param_sets == [ [[10, 20], [30, 40]], [[1, 2], [3, 4]], ] ) assert np.all(t.parameters == [10, 20, 30, 40, 1, 2, 3, 4]) assert t.coeff.shape == (2, 2) assert t.e.shape == (2, 2) t2 = TParModel([[10, 20, 30], [40, 50, 60]], [[1, 2, 3], [4, 5, 6]], n_models=2) assert len(t2) == 2 assert t2.model_set_axis == 0 assert np.all( t2.param_sets == [ [[10, 20, 30], [40, 50, 60]], [[1, 2, 3], [4, 5, 6]], ] ) assert np.all(t2.parameters == [10, 20, 30, 40, 50, 60, 1, 2, 3, 4, 5, 6]) assert t2.coeff.shape == (2, 3) assert t2.e.shape == (2, 3) def test_two_model_mixed_dimension_array_parameters(self): MESSAGE = ( r"Parameter .* of shape .* cannot be broadcast with parameter .* of" r" shape .*" ) with pytest.raises(InputParameterError, match=MESSAGE): # Can't broadcast different array shapes TParModel( [[[1, 2], [3, 4]], [[5, 6], [7, 8]]], [[9, 10, 11], [12, 13, 14]], n_models=2, ) t = TParModel( [[[10, 20], [30, 40]], [[50, 60], [70, 80]]], [[1, 2], [3, 4]], n_models=2 ) assert len(t) == 2 assert t.model_set_axis == 0 assert len(t.param_sets) == 2 assert np.issubdtype(t.param_sets.dtype, np.object_) assert np.all(t.param_sets[0] == [[[10, 20], [30, 40]], [[50, 60], [70, 80]]]) assert np.all(t.param_sets[1] == [[[1, 2]], [[3, 4]]]) assert np.all(t.parameters == [10, 20, 30, 40, 50, 60, 70, 80, 1, 2, 3, 4]) assert t.coeff.shape == (2, 2, 2) assert t.e.shape == (2, 2) def test_two_model_2d_array_parameters(self): t = TParModel( [[[10, 20], [30, 40]], [[50, 60], [70, 80]]], [[[1, 2], [3, 4]], [[5, 6], [7, 8]]], n_models=2, ) assert len(t) == 2 assert t.model_set_axis == 0 assert np.all( t.param_sets == [ [[[10, 20], [30, 40]], [[50, 60], [70, 80]]], [[[1, 2], [3, 4]], [[5, 6], [7, 8]]], ] ) assert np.all( t.parameters == [10, 20, 30, 40, 50, 60, 70, 80, 1, 2, 3, 4, 5, 6, 7, 8] ) assert t.coeff.shape == (2, 2, 2) assert t.e.shape == (2, 2, 2) def test_two_model_nonzero_model_set_axis(self): # An example where the model set axis is the *last* axis of the # parameter arrays coeff = np.array([[[10, 20, 30], [30, 40, 50]], [[50, 60, 70], [70, 80, 90]]]) coeff = np.rollaxis(coeff, 0, 3) e = np.array([[1, 2, 3], [3, 4, 5]]) e = np.rollaxis(e, 0, 2) t = TParModel(coeff, e, n_models=2, model_set_axis=-1) assert len(t) == 2 assert t.model_set_axis == -1 assert len(t.param_sets) == 2 assert np.issubdtype(t.param_sets.dtype, np.object_) assert np.all( t.param_sets[0] == [ [[10, 50], [20, 60], [30, 70]], [[30, 70], [40, 80], [50, 90]], ] ) assert np.all(t.param_sets[1] == [[[1, 3], [2, 4], [3, 5]]]) assert np.all( t.parameters == [10, 50, 20, 60, 30, 70, 30, 70, 40, 80, 50, 90, 1, 3, 2, 4, 3, 5] ) assert t.coeff.shape == (2, 3, 2) # note change in api assert t.e.shape == (3, 2) # note change in api def test_wrong_number_of_params(self): MESSAGE = r"Inconsistent dimensions for parameter .* for 2 model sets.*" with pytest.raises(InputParameterError, match=MESSAGE): TParModel(coeff=[[1, 2], [3, 4]], e=(2, 3, 4), n_models=2) with pytest.raises(InputParameterError, match=MESSAGE): TParModel(coeff=[[1, 2], [3, 4]], e=(2, 3, 4), model_set_axis=0) def test_wrong_number_of_params2(self): MESSAGE = r"All parameter values must be arrays of dimension at .*" with pytest.raises(InputParameterError, match=MESSAGE): TParModel(coeff=[[1, 2], [3, 4]], e=4, n_models=2) with pytest.raises(InputParameterError, match=MESSAGE): TParModel(coeff=[[1, 2], [3, 4]], e=4, model_set_axis=0) def test_array_parameter1(self): MESSAGE = r"All parameter values must be arrays of dimension at .*" with pytest.raises(InputParameterError, match=MESSAGE): TParModel(np.array([[1, 2], [3, 4]]), 1, model_set_axis=0) def test_array_parameter2(self): MESSAGE = r"Inconsistent dimensions for parameter .* for 2 model sets.*" with pytest.raises(InputParameterError, match=MESSAGE): TParModel(np.array([[1, 2], [3, 4]]), (1, 1, 11), model_set_axis=0) def test_array_parameter4(self): """ Test multiple parameter model with array-valued parameters of the same size as the number of parameter sets. """ t4 = TParModel([[1, 2], [3, 4]], [5, 6], model_set_axis=False) assert len(t4) == 1 assert t4.coeff.shape == (2, 2) assert t4.e.shape == (2,) assert np.issubdtype(t4.param_sets.dtype, np.object_) assert np.all(t4.param_sets[0] == [[1, 2], [3, 4]]) assert np.all(t4.param_sets[1] == [5, 6]) def test_non_broadcasting_parameters(): """ Tests that in a model with 3 parameters that do not all mutually broadcast, this is determined correctly regardless of what order the parameters are in. """ a = 3 b = np.array([[1, 2, 3], [4, 5, 6]]) c = np.array([[1, 2, 3, 4], [1, 2, 3, 4]]) class TestModel(Model): p1 = Parameter() p2 = Parameter() p3 = Parameter() def evaluate(self, *args): return # a broadcasts with both b and c, but b does not broadcast with c MESSAGE = ( r"Parameter '.*' of shape .* cannot be broadcast with parameter '.*' of" r" shape .*" ) for args in itertools.permutations((a, b, c)): with pytest.raises(InputParameterError, match=MESSAGE): TestModel(*args) def test_setter(): pars = np.random.rand(20).reshape((10, 2)) model = SetterModel(xc=-1, yc=3, p=np.pi) for x, y in pars: np.testing.assert_almost_equal(model(x, y), (x + 1) ** 2 + (y - np.pi * 3) ** 2)
2f10840ad29a76c41916cedd2eec3b395b728040f73bc6f498a58d7ceab31fd1
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Tests for physical functions.""" # pylint: disable=no-member, invalid-name import numpy as np import pytest from astropy import cosmology from astropy import units as u from astropy.modeling.fitting import ( DogBoxLSQFitter, LevMarLSQFitter, LMLSQFitter, TRFLSQFitter, ) from astropy.modeling.physical_models import NFW, BlackBody from astropy.tests.helper import assert_quantity_allclose from astropy.utils.compat.optional_deps import HAS_SCIPY from astropy.utils.exceptions import AstropyUserWarning __doctest_skip__ = ["*"] fitters = [LevMarLSQFitter, TRFLSQFitter, LMLSQFitter, DogBoxLSQFitter] # BlackBody tests @pytest.mark.parametrize("temperature", (3000 * u.K, 2726.85 * u.deg_C)) def test_blackbody_evaluate(temperature): b = BlackBody(temperature=temperature, scale=1.0) assert_quantity_allclose(b(1.4 * u.micron), 486787299458.15656 * u.MJy / u.sr) assert_quantity_allclose(b(214.13747 * u.THz), 486787299458.15656 * u.MJy / u.sr) def test_blackbody_weins_law(): b = BlackBody(293.0 * u.K) assert_quantity_allclose(b.lambda_max, 9.890006672986939 * u.micron) assert_quantity_allclose(b.nu_max, 17.22525080856469 * u.THz) def test_blackbody_sefanboltzman_law(): b = BlackBody(293.0 * u.K) assert_quantity_allclose(b.bolometric_flux, 133.02471751812573 * u.W / (u.m * u.m)) def test_blackbody_input_units(): SLAM = u.erg / (u.cm**2 * u.s * u.AA * u.sr) SNU = u.erg / (u.cm**2 * u.s * u.Hz * u.sr) b_lam = BlackBody(3000 * u.K, scale=1 * SLAM) assert b_lam.input_units["x"] == u.AA b_nu = BlackBody(3000 * u.K, scale=1 * SNU) assert b_nu.input_units["x"] == u.Hz def test_blackbody_return_units(): # return of evaluate has no units when temperature has no units b = BlackBody(1000.0 * u.K, scale=1.0) assert not isinstance(b.evaluate(1.0 * u.micron, 1000.0, 1.0), u.Quantity) # return has "standard" units when scale has no units b = BlackBody(1000.0 * u.K, scale=1.0) assert isinstance(b(1.0 * u.micron), u.Quantity) assert b(1.0 * u.micron).unit == u.erg / (u.cm**2 * u.s * u.Hz * u.sr) # return has scale units when scale has units b = BlackBody(1000.0 * u.K, scale=1.0 * u.MJy / u.sr) assert isinstance(b(1.0 * u.micron), u.Quantity) assert b(1.0 * u.micron).unit == u.MJy / u.sr # scale has units but evaluate scale has no units assert_quantity_allclose( b.evaluate(1.0 * u.micron, 1000.0 * u.K, 4.0), 89668184.86321202 * u.MJy / u.sr ) @pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy") @pytest.mark.parametrize("fitter", fitters) def test_blackbody_fit(fitter): fitter = fitter() if isinstance(fitter, TRFLSQFitter) or isinstance(fitter, DogBoxLSQFitter): rtol = 0.54 atol = 1e-15 else: rtol = 1e-7 atol = 0 b = BlackBody(3000 * u.K, scale=5e-17 * u.Jy / u.sr) wav = np.array([0.5, 5, 10]) * u.micron fnu = np.array([1, 10, 5]) * u.Jy / u.sr b_fit = fitter(b, wav, fnu, maxiter=1000) assert_quantity_allclose(b_fit.temperature, 2840.7438355865065 * u.K, rtol=rtol) assert_quantity_allclose(b_fit.scale, 5.803783292762381e-17, atol=atol) def test_blackbody_overflow(): """Test Planck function with overflow.""" photlam = u.photon / (u.cm**2 * u.s * u.AA) wave = [0.0, 1000.0, 100000.0, 1e55] # Angstrom temp = 10000.0 # Kelvin bb = BlackBody(temperature=temp * u.K, scale=1.0) with pytest.warns( AstropyUserWarning, match=r"Input contains invalid wavelength/frequency value\(s\)", ): with np.errstate(all="ignore"): bb_lam = bb(wave) * u.sr flux = bb_lam.to(photlam, u.spectral_density(wave * u.AA)) / u.sr # First element is NaN, last element is very small, others normal assert np.isnan(flux[0]) with np.errstate(all="ignore"): assert np.log10(flux[-1].value) < -134 np.testing.assert_allclose( flux.value[1:-1], [0.00046368, 0.04636773], rtol=1e-3 ) # 0.1% accuracy in PHOTLAM/sr with np.errstate(all="ignore"): flux = bb(1.0 * u.AA) assert flux.value == 0 def test_blackbody_exceptions_and_warnings(): """Test exceptions.""" # Negative temperature with pytest.raises( ValueError, match="Temperature should be positive: \\[-100.\\] K" ): bb = BlackBody(-100 * u.K) bb(1.0 * u.micron) bb = BlackBody(5000 * u.K) # Zero wavelength given for conversion to Hz with pytest.warns(AstropyUserWarning, match="invalid") as w: bb(0 * u.AA) assert len(w) == 3 # 2 of these are RuntimeWarning from zero divide # Negative wavelength given for conversion to Hz with pytest.warns(AstropyUserWarning, match="invalid") as w: bb(-1.0 * u.AA) assert len(w) == 1 # Test that a non surface brightness convertible scale unit raises an error with pytest.raises( ValueError, match="scale units not dimensionless or in surface brightness: Jy" ): bb = BlackBody(5000 * u.K, scale=1.0 * u.Jy) def test_blackbody_array_temperature(): """Regression test to make sure that the temperature can be an array.""" multibb = BlackBody([100, 200, 300] * u.K) flux = multibb(1.2 * u.mm) np.testing.assert_allclose( flux.value, [1.804908e-12, 3.721328e-12, 5.638513e-12], rtol=1e-5 ) flux = multibb([2, 4, 6] * u.mm) np.testing.assert_allclose( flux.value, [6.657915e-13, 3.420677e-13, 2.291897e-13], rtol=1e-5 ) multibb = BlackBody(np.ones(4) * u.K) flux = multibb(np.ones((3, 4)) * u.mm) assert flux.shape == (3, 4) def test_blackbody_dimensionless(): """Test support for dimensionless (but not unscaled) units for scale""" T = 3000 * u.K r = 1e14 * u.cm DL = 100 * u.Mpc scale = np.pi * (r / DL) ** 2 bb1 = BlackBody(temperature=T, scale=scale) # even though we passed scale with units, we should be able to evaluate with unitless bb1.evaluate(0.5, T.value, scale.to_value(u.dimensionless_unscaled)) bb2 = BlackBody(temperature=T, scale=scale.to_value(u.dimensionless_unscaled)) bb2.evaluate(0.5, T.value, scale.to_value(u.dimensionless_unscaled)) # bolometric flux for both cases should be equivalent assert bb1.bolometric_flux == bb2.bolometric_flux @pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy") def test_blackbody_dimensionless_fit(): T = 3000 * u.K r = 1e14 * u.cm DL = 100 * u.Mpc scale = np.pi * (r / DL) ** 2 bb1 = BlackBody(temperature=T, scale=scale) bb2 = BlackBody(temperature=T, scale=scale.to_value(u.dimensionless_unscaled)) fitter = LevMarLSQFitter() wav = np.array([0.5, 5, 10]) * u.micron fnu = np.array([1, 10, 5]) * u.Jy / u.sr bb1_fit = fitter(bb1, wav, fnu, maxiter=1000) bb2_fit = fitter(bb2, wav, fnu, maxiter=1000) assert bb1_fit.temperature == bb2_fit.temperature @pytest.mark.parametrize("mass", (2.0000000000000e15 * u.M_sun, 3.976819741e45 * u.kg)) def test_NFW_evaluate(mass): """Evaluation, density, and radii validation of NFW model.""" # Test parameters concentration = 8.5 redshift = 0.63 cosmo = cosmology.Planck15 # Parsec tests # 200c Overdensity massfactor = ("critical", 200) n200c = NFW( mass=mass, concentration=concentration, redshift=redshift, cosmo=cosmo, massfactor=massfactor, ) assert_quantity_allclose( n200c(3.0 * u.Mpc), ( 3.709693508e12 * (u.solMass / u.Mpc**3), 7.376391187e42 * (u.kg / u.Mpc**3), ), ) assert_quantity_allclose( n200c.rho_scale, (7800150779863018.0 * (u.solMass / u.Mpc**3)) ) assert_quantity_allclose(n200c.r_s, (0.24684627641195428 * u.Mpc)) assert_quantity_allclose(n200c.r_virial, (2.0981933495016114 * u.Mpc)) # 200m Overdensity massfactor = ("mean", 200) n200m = NFW( mass=mass, concentration=concentration, redshift=redshift, cosmo=cosmo, massfactor=massfactor, ) assert_quantity_allclose( n200m(3.0 * u.Mpc), ( 3.626093406e12 * (u.solMass / u.Mpc**3), 7.210159921e42 * (u.kg / u.Mpc**3), ), ) assert_quantity_allclose( n200m.rho_scale, (5118547639858115.0 * (u.solMass / u.Mpc**3)) ) assert_quantity_allclose(n200m.r_s, (0.2840612517326848 * u.Mpc)) assert_quantity_allclose(n200m.r_virial, (2.414520639727821 * u.Mpc)) # Virial mass massfactor = "virial" nvir = NFW( mass=mass, concentration=concentration, redshift=redshift, cosmo=cosmo, massfactor=massfactor, ) assert_quantity_allclose( nvir(3.0 * u.Mpc), ( 3.646475546e12 * (u.solMass / u.Mpc**3), 7.250687967e42 * (u.kg / u.Mpc**3), ), ) assert_quantity_allclose( nvir.rho_scale, (5649367524651067.0 * (u.solMass / u.Mpc**3)) ) assert_quantity_allclose(nvir.r_s, (0.2748701862303786 * u.Mpc)) assert_quantity_allclose(nvir.r_virial, (2.3363965829582183 * u.Mpc)) # kpc tests # 200c Overdensity massfactor = ("critical", 200) n200c = NFW( mass=mass, concentration=concentration, redshift=redshift, cosmo=cosmo, massfactor=massfactor, ) assert_quantity_allclose( n200c(3141 * u.kpc), ( 3254.373619264334 * (u.solMass / u.kpc**3), 6.471028627484543e33 * (u.kg / u.kpc**3), ), ) assert_quantity_allclose( n200c.rho_scale, (7800150.779863021 * (u.solMass / u.kpc**3)) ) assert_quantity_allclose(n200c.r_s, (246.84627641195425 * u.kpc)) assert_quantity_allclose(n200c.r_virial, (2098.193349501611 * u.kpc)) # 200m Overdensity massfactor = ("mean", 200) n200m = NFW( mass=mass, concentration=concentration, redshift=redshift, cosmo=cosmo, massfactor=massfactor, ) assert_quantity_allclose( n200m(3141 * u.kpc), ( 3184.0370866188623 * (u.solMass / u.kpc**3), 6.33117077170161e33 * (u.kg / u.kpc**3), ), ) assert_quantity_allclose( n200m.rho_scale, (5118547.639858116 * (u.solMass / u.kpc**3)) ) assert_quantity_allclose(n200m.r_s, (284.0612517326848 * u.kpc)) assert_quantity_allclose(n200m.r_virial, (2414.5206397278207 * u.kpc)) # Virial mass massfactor = "virial" nvir = NFW( mass=mass, concentration=concentration, redshift=redshift, cosmo=cosmo, massfactor=massfactor, ) assert_quantity_allclose( nvir(3141 * u.kpc), ( 3201.1946851294997 * (u.solMass / u.kpc**3), 6.365287109937637e33 * (u.kg / u.kpc**3), ), ) assert_quantity_allclose( nvir.rho_scale, (5649367.5246510655 * (u.solMass / u.kpc**3)) ) assert_quantity_allclose(nvir.r_s, (274.87018623037864 * u.kpc)) assert_quantity_allclose(nvir.r_virial, (2336.3965829582185 * u.kpc)) # Meter tests # 200c Overdensity massfactor = ("critical", 200) n200c = NFW( mass=mass, concentration=concentration, redshift=redshift, cosmo=cosmo, massfactor=massfactor, ) assert_quantity_allclose( n200c(4.2e23 * u.m), ( 1.527649658673012e-57 * (u.solMass / u.m**3), 3.0375936602739256e-27 * (u.kg / u.m**3), ), ) assert_quantity_allclose( n200c.rho_scale, (2.654919529637763e-52 * (u.solMass / u.m**3)) ) assert_quantity_allclose(n200c.r_s, (7.616880211930209e21 * u.m)) assert_quantity_allclose(n200c.r_virial, (6.474348180140678e22 * u.m)) # 200m Overdensity massfactor = ("mean", 200) n200m = NFW( mass=mass, concentration=concentration, redshift=redshift, cosmo=cosmo, massfactor=massfactor, ) assert_quantity_allclose( n200m(4.2e23 * u.m), ( 1.5194778058079436e-57 * (u.solMass / u.m**3), 3.0213446673751314e-27 * (u.kg / u.m**3), ), ) assert_quantity_allclose( n200m.rho_scale, (1.742188385322371e-52 * (u.solMass / u.m**3)) ) assert_quantity_allclose(n200m.r_s, (8.76521436235054e21 * u.m)) assert_quantity_allclose(n200m.r_virial, (7.450432207997959e22 * u.m)) # Virial mass massfactor = "virial" nvir = NFW( mass=mass, concentration=concentration, redshift=redshift, cosmo=cosmo, massfactor=massfactor, ) assert_quantity_allclose( nvir(4.2e23 * u.m), ( 1.5214899184117633e-57 * (u.solMass / u.m**3), 3.0253455719375224e-27 * (u.kg / u.m**3), ), ) assert_quantity_allclose( nvir.rho_scale, (1.922862338766335e-52 * (u.solMass / u.m**3)) ) assert_quantity_allclose(nvir.r_s, (8.481607714647913e21 * u.m)) assert_quantity_allclose(nvir.r_virial, (7.209366557450727e22 * u.m)) # Verify string input of overdensity type # 200c Overdensity massfactor = "200c" n200c = NFW( mass=mass, concentration=concentration, redshift=redshift, cosmo=cosmo, massfactor=massfactor, ) assert_quantity_allclose( n200c(3.0 * u.Mpc), ( 3.709693508e12 * (u.solMass / u.Mpc**3), 7.376391187e42 * (u.kg / u.Mpc**3), ), ) # 200m Overdensity massfactor = "200m" n200m = NFW( mass=mass, concentration=concentration, redshift=redshift, cosmo=cosmo, massfactor=massfactor, ) assert_quantity_allclose( n200m(3.0 * u.Mpc), ( 3.626093406e12 * (u.solMass / u.Mpc**3), 7.210159921e42 * (u.kg / u.Mpc**3), ), ) # Virial mass massfactor = "virial" nvir = NFW( mass=mass, concentration=concentration, redshift=redshift, cosmo=cosmo, massfactor=massfactor, ) assert_quantity_allclose( nvir(3.0 * u.Mpc), ( 3.646475546e12 * (u.solMass / u.Mpc**3), 7.250687967e42 * (u.kg / u.Mpc**3), ), ) @pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy") @pytest.mark.parametrize("fitter", fitters) def test_NFW_fit(fitter): """Test linear fitting of NFW model.""" fitter = fitter() if isinstance(fitter, DogBoxLSQFitter): pytest.xfail("dogbox method is poor fitting method for NFW model") # Fixed parameters redshift = 0.63 cosmo = cosmology.Planck15 # Radial set # fmt: off r = np.array( [ 1.00e+01, 1.00e+02, 2.00e+02, 2.50e+02, 3.00e+02, 4.00e+02, 5.00e+02, 7.50e+02, 1.00e+03, 1.50e+03, 2.50e+03, 6.50e+03, 1.15e+04 ] ) * u.kpc # fmt: on # 200c Overdensity massfactor = ("critical", 200) # fmt: off density_r = np.array( [ 1.77842761e+08, 9.75233623e+06, 2.93789626e+06, 1.90107238e+06, 1.30776878e+06, 7.01004140e+05, 4.20678479e+05, 1.57421880e+05, 7.54669701e+04, 2.56319769e+04, 6.21976562e+03, 3.96522424e+02, 7.39336808e+01 ] ) * (u.solMass / u.kpc**3) # fmt: on n200c = NFW( mass=1.8e15 * u.M_sun, concentration=7.0, redshift=redshift, cosmo=cosmo, massfactor=massfactor, ) n200c.redshift.fixed = True n_fit = fitter(n200c, r, density_r, maxiter=1000) assert_quantity_allclose(n_fit.mass, 2.0000000000000e15 * u.M_sun) assert_quantity_allclose(n_fit.concentration, 8.5) # 200m Overdensity massfactor = ("mean", 200) # fmt: off density_r = np.array( [ 1.35677282e+08, 7.95392979e+06, 2.50352599e+06, 1.64535870e+06, 1.14642248e+06, 6.26805453e+05, 3.81691731e+05, 1.46294819e+05, 7.11559560e+04, 2.45737796e+04, 6.05459585e+03, 3.92183991e+02, 7.34674416e+01 ] ) * (u.solMass / u.kpc**3) # fmt: on n200m = NFW( mass=1.8e15 * u.M_sun, concentration=7.0, redshift=redshift, cosmo=cosmo, massfactor=massfactor, ) n200m.redshift.fixed = True n_fit = fitter(n200m, r, density_r, maxiter=1000) assert_quantity_allclose(n_fit.mass, 2.0000000000000e15 * u.M_sun) assert_quantity_allclose(n_fit.concentration, 8.5) # Virial mass massfactor = ("virial", 200) # fmt: off density_r = np.array( [ 1.44573515e+08, 8.34873998e+06, 2.60137484e+06, 1.70348738e+06, 1.18337370e+06, 6.43994654e+05, 3.90800249e+05, 1.48930537e+05, 7.21856397e+04, 2.48289464e+04, 6.09477095e+03, 3.93248818e+02, 7.35821787e+01 ] ) * (u.solMass / u.kpc**3) # fmt: on nvir = NFW( mass=1.8e15 * u.M_sun, concentration=7.0, redshift=redshift, cosmo=cosmo, massfactor=massfactor, ) nvir.redshift.fixed = True n_fit = fitter(nvir, r, density_r, maxiter=1000) assert_quantity_allclose(n_fit.mass, 2.0000000000000e15 * u.M_sun) assert_quantity_allclose(n_fit.concentration, 8.5) def test_NFW_circular_velocity(): """Test circular velocity and radial validation of NFW model.""" # Test parameters mass = 2.0000000000000e15 * u.M_sun concentration = 8.5 redshift = 0.63 cosmo = cosmology.Planck15 r_r = ( np.array([0.01, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.75, 1.0, 1.5, 2.5, 6.5, 11.5]) * u.Mpc ) # 200c Overdensity tests massfactor = ("critical", 200) n200c = NFW( mass=mass, concentration=concentration, redshift=redshift, cosmo=cosmo, massfactor=massfactor, ) # fmt: off circ_v_200c = np.array( [ 702.45487454, 1812.4138346, 2150.50929296, 2231.5802568, 2283.96950242, 2338.45989696, 2355.78876772, 2332.41766543, 2276.89433811, 2154.53909153, 1950.07947819, 1512.37442943, 1260.94034541 ] ) * (u.km / u.s) # fmt: on assert_quantity_allclose(n200c.circular_velocity(r_r), circ_v_200c) assert_quantity_allclose(n200c.r_max, (0.5338248204429641 * u.Mpc)) assert_quantity_allclose(n200c.v_max, (2356.7204380904027 * (u.km / u.s))) # 200m Overdensity tests massfactor = ("mean", 200) mass = 1.0e14 * u.M_sun concentration = 12.3 redshift = 1.5 n200m = NFW( mass=mass, concentration=concentration, redshift=redshift, cosmo=cosmo, massfactor=massfactor, ) # fmt: off circ_v_200m = np.array( [ 670.18236647, 1088.9843324, 1046.82334367, 1016.88890732, 987.97273478, 936.00207134, 891.80115232, 806.63307977, 744.91002191, 659.33401039, 557.82823549, 395.9735786, 318.29863006 ] ) * (u.km / u.s) # fmt: on assert_quantity_allclose(n200m.circular_velocity(r_r), circ_v_200m) assert_quantity_allclose(n200m.r_max, (0.10196917920081808 * u.Mpc)) assert_quantity_allclose(n200m.v_max, (1089.0224395818727 * (u.km / u.s))) # Virial Overdensity tests massfactor = "virial" mass = 1.2e45 * u.kg concentration = 2.4 redshift = 0.34 # fmt: off r_r = np.array( [ 3.08567758e+20, 3.08567758e+21, 6.17135516e+21, 7.71419395e+21, 9.25703274e+21, 1.23427103e+22, 1.54283879e+22, 2.31425819e+22, 3.08567758e+22, 4.62851637e+22, 7.71419395e+22, 2.00569043e+23, 3.54852922e+23 ] ) * u.m # fmt: on nvir = NFW( mass=mass, concentration=concentration, redshift=redshift, cosmo=cosmo, massfactor=massfactor, ) # fmt: off circ_v_vir = np.array( [ 205.87461783, 604.65091823, 793.9190629, 857.52516521, 908.90280843, 986.53582718, 1041.69089845, 1124.19719446, 1164.58270747, 1191.33193561, 1174.02934755, 1023.69360527, 895.52206321 ] ) * (u.km / u.s) # fmt: on assert_quantity_allclose(nvir.circular_velocity(r_r), circ_v_vir) assert_quantity_allclose(nvir.r_max, (1.6484542328623448 * u.Mpc)) assert_quantity_allclose(nvir.v_max, (1192.3130989914962 * (u.km / u.s))) def test_NFW_exceptions_and_warnings_and_misc(): """Test NFW exceptions.""" # Arbitrary Test parameters mass = 2.0000000000000e15 * u.M_sun concentration = 8.5 redshift = 0.63 cosmo = cosmology.Planck15 massfactor = ("critical", 200) # fmt: off r_r = np.array( [ 1.00e+01, 1.00e+02, 2.00e+02, 2.50e+02, 3.00e+02, 4.00e+02, 5.00e+02, 7.50e+02, 1.00e+03, 1.50e+03, 2.50e+03, 6.50e+03, 1.15e+04 ] ) * u.kpc # fmt: on # Massfactor exception tests MESSAGE = r"Massfactor 'not' not one of 'critical', 'mean', or 'virial'" with pytest.raises(ValueError, match=MESSAGE): NFW( mass=mass, concentration=concentration, redshift=redshift, cosmo=cosmo, massfactor=("not", "virial"), ) MESSAGE = r"Massfactor not virial string not of the form '#m', '#c', or 'virial'" with pytest.raises(ValueError, match=MESSAGE): NFW( mass=mass, concentration=concentration, redshift=redshift, cosmo=cosmo, massfactor="not virial", ) MESSAGE = r"Massfactor 200 not a tuple or string" with pytest.raises(TypeError, match=MESSAGE): NFW( mass=mass, concentration=concentration, redshift=redshift, cosmo=cosmo, massfactor=200, ) # Verify unitless mass # Density test n200c = NFW( mass=mass.value, concentration=concentration, redshift=redshift, cosmo=cosmo, massfactor=massfactor, ) assert_quantity_allclose( n200c(3000.0), ( 3.709693508e12 * (u.solMass / u.Mpc**3), 7.376391187e42 * (u.kg / u.Mpc**3), ), ) # Circular velocity test with unitless mass # fmt: off circ_v_200c = np.array( [ 702.45487454, 1812.4138346, 2150.50929296, 2231.5802568, 2283.96950242, 2338.45989696, 2355.78876772, 2332.41766543, 2276.89433811, 2154.53909153, 1950.07947819, 1512.37442943, 1260.94034541 ] ) * (u.km / u.s) # fmt: on assert_quantity_allclose(n200c.circular_velocity(r_r), circ_v_200c) # test with unitless input velocity assert_quantity_allclose(n200c.circular_velocity(r_r.value), circ_v_200c) # Test Default Cosmology ncos = NFW(mass=mass, concentration=concentration, redshift=redshift) assert_quantity_allclose(ncos.A_NFW(concentration), 1.356554956501232)
9be4fc998cd59f67d0fd6417234049ed04be3c6d2daba1a85c1b2e196f929378
# Licensed under a 3-clause BSD style license - see LICENSE.rst # pylint: disable=invalid-name import unittest.mock as mk from math import cos, sin import numpy as np import pytest from numpy.testing import assert_allclose import astropy.units as u from astropy.modeling import models, rotations from astropy.tests.helper import assert_quantity_allclose from astropy.wcs import wcs @pytest.mark.parametrize( "inp", [ (0, 0), (4000, -20.56), (-2001.5, 45.9), (0, 90), (0, -90), (np.mgrid[:4, :6]), ([[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]), ( [ [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], [[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]], ], [ [[25, 26, 27, 28], [29, 30, 31, 32], [33, 34, 35, 36]], [[37, 38, 39, 40], [41, 42, 43, 44], [45, 46, 47, 48]], ], ), ], ) def test_against_wcslib(inp): w = wcs.WCS() crval = [202.4823228, 47.17511893] w.wcs.crval = crval w.wcs.ctype = ["RA---TAN", "DEC--TAN"] lonpole = 180 tan = models.Pix2Sky_TAN() n2c = models.RotateNative2Celestial(crval[0], crval[1], lonpole) c2n = models.RotateCelestial2Native(crval[0], crval[1], lonpole) m = tan | n2c minv = c2n | tan.inverse radec = w.wcs_pix2world(inp[0], inp[1], 1) xy = w.wcs_world2pix(radec[0], radec[1], 1) assert_allclose(m(*inp), radec, atol=1e-12) assert_allclose(minv(*radec), xy, atol=1e-12) @pytest.mark.parametrize( "inp", [ (1e-5, 1e-4), (40, -20.56), (21.5, 45.9), ([[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]), ( [ [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], [[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]], ], [ [[25, 26, 27, 28], [29, 30, 31, 32], [33, 34, 35, 36]], [[37, 38, 39, 40], [41, 42, 43, 44], [45, 46, 47, 48]], ], ), ], ) def test_roundtrip_sky_rotation(inp): lon, lat, lon_pole = 42, 43, 44 n2c = models.RotateNative2Celestial(lon, lat, lon_pole) c2n = models.RotateCelestial2Native(lon, lat, lon_pole) assert_allclose(n2c.inverse(*n2c(*inp)), inp, atol=1e-13) assert_allclose(c2n.inverse(*c2n(*inp)), inp, atol=1e-13) def test_native_celestial_lat90(): n2c = models.RotateNative2Celestial(1, 90, 0) alpha, delta = n2c(1, 1) assert_allclose(delta, 1) assert_allclose(alpha, 182) def test_Rotation2D(): model = models.Rotation2D(angle=90) x, y = model(1, 0) assert_allclose([x, y], [0, 1], atol=1e-10) def test_Rotation2D_quantity(): model = models.Rotation2D(angle=90 * u.deg) x, y = model(1 * u.deg, 0 * u.arcsec) assert_quantity_allclose([x, y], [0, 1] * u.deg, atol=1e-10 * u.deg) def test_Rotation2D_inverse(): model = models.Rotation2D(angle=234.23494) x, y = model.inverse(*model(1, 0)) assert_allclose([x, y], [1, 0], atol=1e-10) def test_Rotation2D_errors(): model = models.Rotation2D(angle=90 * u.deg) # Bad evaluation input shapes x = np.array([1, 2]) y = np.array([1, 2, 3]) MESSAGE = r"Expected input arrays to have the same shape" with pytest.raises(ValueError, match=MESSAGE): model.evaluate(x, y, model.angle) with pytest.raises(ValueError, match=MESSAGE): model.evaluate(y, x, model.angle) # Bad evaluation units x = np.array([1, 2]) y = np.array([1, 2]) MESSAGE = r"x and y must have compatible units" with pytest.raises(u.UnitsError, match=MESSAGE): model.evaluate(x * u.m, y, model.angle) def test_euler_angle_rotations(): x = (0, 0) y = (90, 0) z = (0, 90) negx = (180, 0) negy = (-90, 0) # rotate y into minus z model = models.EulerAngleRotation(0, 90, 0, "zxz") assert_allclose(model(*z), y, atol=10**-12) # rotate z into minus x model = models.EulerAngleRotation(0, 90, 0, "zyz") assert_allclose(model(*z), negx, atol=10**-12) # rotate x into minus y model = models.EulerAngleRotation(0, 90, 0, "yzy") assert_allclose(model(*x), negy, atol=10**-12) euler_axes_order = ["zxz", "zyz", "yzy", "yxy", "xyx", "xzx"] @pytest.mark.parametrize("axes_order", euler_axes_order) def test_euler_angles(axes_order): """ Tests against all Euler sequences. The rotation matrices definitions come from Wikipedia. """ phi = np.deg2rad(23.4) theta = np.deg2rad(12.2) psi = np.deg2rad(34) c1 = cos(phi) c2 = cos(theta) c3 = cos(psi) s1 = sin(phi) s2 = sin(theta) s3 = sin(psi) matrices = { "zxz": np.array( [ [(c1 * c3 - c2 * s1 * s3), (-c1 * s3 - c2 * c3 * s1), (s1 * s2)], [(c3 * s1 + c1 * c2 * s3), (c1 * c2 * c3 - s1 * s3), (-c1 * s2)], [(s2 * s3), (c3 * s2), (c2)], ] ), "zyz": np.array( [ [(c1 * c2 * c3 - s1 * s3), (-c3 * s1 - c1 * c2 * s3), (c1 * s2)], [(c1 * s3 + c2 * c3 * s1), (c1 * c3 - c2 * s1 * s3), (s1 * s2)], [(-c3 * s2), (s2 * s3), (c2)], ] ), "yzy": np.array( [ [(c1 * c2 * c3 - s1 * s3), (-c1 * s2), (c3 * s1 + c1 * c2 * s3)], [(c3 * s2), (c2), (s2 * s3)], [(-c1 * s3 - c2 * c3 * s1), (s1 * s2), (c1 * c3 - c2 * s1 * s3)], ] ), "yxy": np.array( [ [(c1 * c3 - c2 * s1 * s3), (s1 * s2), (c1 * s3 + c2 * c3 * s1)], [(s2 * s3), (c2), (-c3 * s2)], [(-c3 * s1 - c1 * c2 * s3), (c1 * s2), (c1 * c2 * c3 - s1 * s3)], ] ), "xyx": np.array( [ [(c2), (s2 * s3), (c3 * s2)], [(s1 * s2), (c1 * c3 - c2 * s1 * s3), (-c1 * s3 - c2 * c3 * s1)], [(-c1 * s2), (c3 * s1 + c1 * c2 * s3), (c1 * c2 * c3 - s1 * s3)], ] ), "xzx": np.array( [ [(c2), (-c3 * s2), (s2 * s3)], [(c1 * s2), (c1 * c2 * c3 - s1 * s3), (-c3 * s1 - c1 * c2 * s3)], [(s1 * s2), (c1 * s3 + c2 * c3 * s1), (c1 * c3 - c2 * s1 * s3)], ] ), } mat = rotations._create_matrix([phi, theta, psi], axes_order) assert_allclose(mat.T, matrices[axes_order]) # get_rotation_matrix(axes_order)) def test_rotation_3d(): """ A sanity test - when V2_REF = 0 and V3_REF = 0, for V2, V3 close to the origin ROLL_REF should be approximately PA_V3 . (Test taken from JWST SIAF report.) """ def _roll_angle_from_matrix(matrix, v2, v3): X = -(matrix[2, 0] * np.cos(v2) + matrix[2, 1] * np.sin(v2)) * np.sin( v3 ) + matrix[2, 2] * np.cos(v3) Y = (matrix[0, 0] * matrix[1, 2] - matrix[1, 0] * matrix[0, 2]) * np.cos(v2) + ( matrix[0, 1] * matrix[1, 2] - matrix[1, 1] * matrix[0, 2] ) * np.sin(v2) new_roll = np.rad2deg(np.arctan2(Y, X)) if new_roll < 0: new_roll += 360 return new_roll # reference points on sky and in a coordinate frame associated # with the telescope ra_ref = 165 # in deg dec_ref = 54 # in deg v2_ref = 0 v3_ref = 0 pa_v3 = 37 # in deg v2 = np.deg2rad(2.7e-6) # in deg.01 # in arcsec v3 = np.deg2rad(2.7e-6) # in deg .01 # in arcsec angles = [v2_ref, -v3_ref, pa_v3, dec_ref, -ra_ref] axes = "zyxyz" M = rotations._create_matrix(np.deg2rad(angles) * u.deg, axes) roll_angle = _roll_angle_from_matrix(M, v2, v3) assert_allclose(roll_angle, pa_v3, atol=1e-3) def test_spherical_rotation(): """ Test taken from JWST INS report - converts JWST telescope (V2, V3) coordinates to RA, DEC. """ ra_ref = 165 # in deg dec_ref = 54 # in deg v2_ref = -503.654472 / 3600 # in deg v3_ref = -318.742464 / 3600 # in deg r0 = 37 # in deg v2 = 210 # in deg v3 = -75 # in deg expected_ra_dec = (107.12810484789563, -35.97940247128502) # in deg angles = np.array([v2_ref, -v3_ref, r0, dec_ref, -ra_ref]) axes = "zyxyz" v2s = rotations.RotationSequence3D(angles, axes_order=axes) x, y, z = rotations.spherical2cartesian(v2, v3) x1, y1, z1 = v2s(x, y, z) radec = rotations.cartesian2spherical(x1, y1, z1) assert_allclose(radec, expected_ra_dec, atol=1e-10) v2s = rotations.SphericalRotationSequence(angles, axes_order=axes) radec = v2s(v2, v3) assert_allclose(radec, expected_ra_dec, atol=1e-10) def test_RotationSequence3D_errors(): # Bad axes_order labels with pytest.raises( ValueError, match=r"Unrecognized axis label .* should be one of .*" ): rotations.RotationSequence3D(mk.MagicMock(), axes_order="abc") # Bad number of angles MESSAGE = r"The number of angles 4 should match the number of axes 3" with pytest.raises(ValueError, match=MESSAGE): rotations.RotationSequence3D([1, 2, 3, 4], axes_order="zyx") # Bad evaluation input shapes model = rotations.RotationSequence3D([1, 2, 3], axes_order="zyx") MESSAGE = r"Expected input arrays to have the same shape" with pytest.raises(ValueError, match=MESSAGE): model.evaluate( np.array([1, 2, 3]), np.array([1, 2]), np.array([1, 2]), [1, 2, 3] ) with pytest.raises(ValueError, match=MESSAGE): model.evaluate( np.array([1, 2]), np.array([1, 2, 3]), np.array([1, 2]), [1, 2, 3] ) with pytest.raises(ValueError, match=MESSAGE): model.evaluate( np.array([1, 2]), np.array([1, 2]), np.array([1, 2, 3]), [1, 2, 3] ) def test_RotationSequence3D_inverse(): model = rotations.RotationSequence3D([1, 2, 3], axes_order="zyx") assert_allclose(model.inverse.angles.value, [-3, -2, -1]) assert model.inverse.axes_order == "xyz" def test_EulerAngleRotation_errors(): # Bad length of axes_order MESSAGE = r"Expected axes_order to be a character sequence of length 3, got xyzx" with pytest.raises(TypeError, match=MESSAGE): rotations.EulerAngleRotation( mk.MagicMock(), mk.MagicMock(), mk.MagicMock(), axes_order="xyzx" ) # Bad axes_order labels with pytest.raises( ValueError, match=r"Unrecognized axis label .* should be one of .*" ): rotations.EulerAngleRotation( mk.MagicMock(), mk.MagicMock(), mk.MagicMock(), axes_order="abc" ) # Bad units MESSAGE = r"All parameters should be of the same type - float or Quantity" with pytest.raises(TypeError, match=MESSAGE): rotations.EulerAngleRotation(1 * u.m, 2, 3, axes_order="xyz") with pytest.raises(TypeError, match=MESSAGE): rotations.EulerAngleRotation(1, 2 * u.m, 3, axes_order="xyz") with pytest.raises(TypeError, match=MESSAGE): rotations.EulerAngleRotation(1, 2, 3 * u.m, axes_order="xyz") def test_EulerAngleRotation_inverse(): model = rotations.EulerAngleRotation(1, 2, 3, "xyz") assert_allclose(model.inverse.phi, -3) assert_allclose(model.inverse.theta, -2) assert_allclose(model.inverse.psi, -1) assert model.inverse.axes_order == "zyx" def test__SkyRotation_errors(): # Bad units MESSAGE = r"All parameters should be of the same type - float or Quantity" with pytest.raises(TypeError, match=MESSAGE): rotations._SkyRotation(1 * u.m, 2, 3) with pytest.raises(TypeError, match=MESSAGE): rotations._SkyRotation(1, 2 * u.m, 3) with pytest.raises(TypeError, match=MESSAGE): rotations._SkyRotation(1, 2, 3 * u.m) def test__SkyRotation__evaluate(): model = rotations._SkyRotation(1, 2, 3) phi = mk.MagicMock() theta = mk.MagicMock() lon = mk.MagicMock() lat = mk.MagicMock() lon_pole = mk.MagicMock() alpha = 5 delta = mk.MagicMock() with mk.patch.object( rotations._EulerRotation, "evaluate", autospec=True, return_value=(alpha, delta) ) as mkEval: assert (365, delta) == model._evaluate(phi, theta, lon, lat, lon_pole) assert mkEval.call_args_list == [ mk.call(model, phi, theta, lon, lat, lon_pole, "zxz") ]
19c60d735a03da723d83d84ce9c361e7c38c72f2a38b606ba92aff6edf2cc111
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np import pytest from numpy.testing import assert_allclose from astropy.modeling import math_functions x = np.linspace(-20, 360, 100) @pytest.mark.filterwarnings(r"ignore:.*:RuntimeWarning") def test_math(): for name in math_functions.__all__: model_class = getattr(math_functions, name) assert model_class.__module__ == "astropy.modeling.math_functions" model = model_class() func = getattr(np, model.func.__name__) if model.n_inputs == 1: assert_allclose(model(x), func(x)) elif model.n_inputs == 2: assert_allclose(model(x, x), func(x, x)) assert math_functions.ModUfunc is math_functions.RemainderUfunc assert math_functions.DivideUfunc is math_functions.True_divideUfunc
11af79d133afaa2c49c0ff7b29493a196ec5ec962044e1f0607555c2f58fd8f8
# Licensed under a 3-clause BSD style license - see LICENSE.rst # pylint: disable=invalid-name import platform import types import warnings import numpy as np import pytest from numpy.random import default_rng from numpy.testing import assert_allclose from astropy.modeling import fitting, models from astropy.modeling.core import Fittable1DModel from astropy.modeling.parameters import Parameter from astropy.utils.compat.optional_deps import HAS_SCIPY from astropy.utils.exceptions import AstropyUserWarning fitters = [ fitting.LevMarLSQFitter, fitting.TRFLSQFitter, fitting.LevMarLSQFitter, fitting.DogBoxLSQFitter, ] class TestNonLinearConstraints: def setup_class(self): self.g1 = models.Gaussian1D(10, 14.9, stddev=0.3) self.g2 = models.Gaussian1D(10, 13, stddev=0.4) self.x = np.arange(10, 20, 0.1) self.y1 = self.g1(self.x) self.y2 = self.g2(self.x) rsn = default_rng(1234567890) self.n = rsn.standard_normal(100) self.ny1 = self.y1 + 2 * self.n self.ny2 = self.y2 + 2 * self.n @pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy") @pytest.mark.parametrize("fitter", fitters) def test_fixed_par(self, fitter): fitter = fitter() g1 = models.Gaussian1D(10, mean=14.9, stddev=0.3, fixed={"amplitude": True}) model = fitter(g1, self.x, self.ny1) assert model.amplitude.value == 10 @pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy") @pytest.mark.parametrize("fitter", fitters) def test_tied_par(self, fitter): fitter = fitter() def tied(model): mean = 50 * model.stddev return mean g1 = models.Gaussian1D(10, mean=14.9, stddev=0.3, tied={"mean": tied}) model = fitter(g1, self.x, self.ny1) assert_allclose(model.mean.value, 50 * model.stddev, rtol=10 ** (-5)) @pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy") def test_joint_fitter(self): from scipy import optimize g1 = models.Gaussian1D(10, 14.9, stddev=0.3) g2 = models.Gaussian1D(10, 13, stddev=0.4) jf = fitting.JointFitter( [g1, g2], {g1: ["amplitude"], g2: ["amplitude"]}, [9.8] ) x = np.arange(10, 20, 0.1) y1 = g1(x) y2 = g2(x) n = np.random.randn(100) ny1 = y1 + 2 * n ny2 = y2 + 2 * n jf(x, ny1, x, ny2) p1 = [14.9, 0.3] p2 = [13, 0.4] A = 9.8 p = np.r_[A, p1, p2] def compmodel(A, p, x): return A * np.exp(-0.5 / p[1] ** 2 * (x - p[0]) ** 2) def errf(p, x1, y1, x2, y2): return np.ravel( np.r_[compmodel(p[0], p[1:3], x1) - y1, compmodel(p[0], p[3:], x2) - y2] ) fitparams, _ = optimize.leastsq(errf, p, args=(x, ny1, x, ny2)) assert_allclose(jf.fitparams, fitparams, rtol=10 ** (-5)) assert_allclose(g1.amplitude.value, g2.amplitude.value) @pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy") @pytest.mark.parametrize("fitter", fitters) def test_no_constraints(self, fitter): from scipy import optimize fitter = fitter() g1 = models.Gaussian1D(9.9, 14.5, stddev=0.3) def func(p, x): return p[0] * np.exp(-0.5 / p[2] ** 2 * (x - p[1]) ** 2) def errf(p, x, y): return func(p, x) - y p0 = [9.9, 14.5, 0.3] y = g1(self.x) n = np.random.randn(100) ny = y + n fitpar, s = optimize.leastsq(errf, p0, args=(self.x, ny)) model = fitter(g1, self.x, ny) assert_allclose(model.parameters, fitpar, rtol=5 * 10 ** (-3)) @pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy") class TestBounds: def setup_class(self): A = -2.0 B = 0.5 self.x = np.linspace(-1.0, 1.0, 100) self.y = A * self.x + B + np.random.normal(scale=0.1, size=100) # fmt: off data = np.array( [ 505.0, 556.0, 630.0, 595.0, 561.0, 553.0, 543.0, 496.0, 460.0, 469.0, 426.0, 518.0, 684.0, 798.0, 830.0, 794.0, 649.0, 706.0, 671.0, 545.0, 479.0, 454.0, 505.0, 700.0, 1058.0, 1231.0, 1325.0, 997.0, 1036.0, 884.0, 610.0, 487.0, 453.0, 527.0, 780.0, 1094.0, 1983.0, 1993.0, 1809.0, 1525.0, 1056.0, 895.0, 604.0, 466.0, 510.0, 678.0, 1130.0, 1986.0, 2670.0, 2535.0, 1878.0, 1450.0, 1200.0, 663.0, 511.0, 474.0, 569.0, 848.0, 1670.0, 2611.0, 3129.0, 2507.0, 1782.0, 1211.0, 723.0, 541.0, 511.0, 518.0, 597.0, 1137.0, 1993.0, 2925.0, 2438.0, 1910.0, 1230.0, 738.0, 506.0, 461.0, 486.0, 597.0, 733.0, 1262.0, 1896.0, 2342.0, 1792.0, 1180.0, 667.0, 482.0, 454.0, 482.0, 504.0, 566.0, 789.0, 1194.0, 1545.0, 1361.0, 933.0, 562.0, 418.0, 463.0, 435.0, 466.0, 528.0, 487.0, 664.0, 799.0, 746.0, 550.0, 478.0, 535.0, 443.0, 416.0, 439.0, 472.0, 472.0, 492.0, 523.0, 569.0, 487.0, 441.0, 428.0 ] ) # fmt: on self.data = data.reshape(11, 11) @pytest.mark.parametrize("fitter", fitters) def test_bounds_lsq(self, fitter): fitter = fitter() guess_slope = 1.1 guess_intercept = 0.0 bounds = {"slope": (-1.5, 5.0), "intercept": (-1.0, 1.0)} line_model = models.Linear1D(guess_slope, guess_intercept, bounds=bounds) with pytest.warns(AstropyUserWarning, match=r"Model is linear in parameters"): model = fitter(line_model, self.x, self.y) slope = model.slope.value intercept = model.intercept.value assert slope + 10**-5 >= bounds["slope"][0] assert slope - 10**-5 <= bounds["slope"][1] assert intercept + 10**-5 >= bounds["intercept"][0] assert intercept - 10**-5 <= bounds["intercept"][1] def test_bounds_slsqp(self): guess_slope = 1.1 guess_intercept = 0.0 bounds = {"slope": (-1.5, 5.0), "intercept": (-1.0, 1.0)} line_model = models.Linear1D(guess_slope, guess_intercept, bounds=bounds) fitter = fitting.SLSQPLSQFitter() with pytest.warns( AstropyUserWarning, match="consider using linear fitting methods" ): model = fitter(line_model, self.x, self.y) slope = model.slope.value intercept = model.intercept.value assert slope + 10**-5 >= bounds["slope"][0] assert slope - 10**-5 <= bounds["slope"][1] assert intercept + 10**-5 >= bounds["intercept"][0] assert intercept - 10**-5 <= bounds["intercept"][1] @pytest.mark.parametrize("fitter", fitters) def test_bounds_gauss2d_lsq(self, fitter): fitter = fitter() X, Y = np.meshgrid(np.arange(11), np.arange(11)) bounds = { "x_mean": [0.0, 11.0], "y_mean": [0.0, 11.0], "x_stddev": [1.0, 4], "y_stddev": [1.0, 4], } gauss = models.Gaussian2D( amplitude=10.0, x_mean=5.0, y_mean=5.0, x_stddev=4.0, y_stddev=4.0, theta=0.5, bounds=bounds, ) if isinstance(fitter, fitting.LevMarLSQFitter) or isinstance( fitter, fitting.DogBoxLSQFitter ): with pytest.warns(AstropyUserWarning, match="The fit may be unsuccessful"): model = fitter(gauss, X, Y, self.data) else: model = fitter(gauss, X, Y, self.data) x_mean = model.x_mean.value y_mean = model.y_mean.value x_stddev = model.x_stddev.value y_stddev = model.y_stddev.value assert x_mean + 10**-5 >= bounds["x_mean"][0] assert x_mean - 10**-5 <= bounds["x_mean"][1] assert y_mean + 10**-5 >= bounds["y_mean"][0] assert y_mean - 10**-5 <= bounds["y_mean"][1] assert x_stddev + 10**-5 >= bounds["x_stddev"][0] assert x_stddev - 10**-5 <= bounds["x_stddev"][1] assert y_stddev + 10**-5 >= bounds["y_stddev"][0] assert y_stddev - 10**-5 <= bounds["y_stddev"][1] def test_bounds_gauss2d_slsqp(self): X, Y = np.meshgrid(np.arange(11), np.arange(11)) bounds = { "x_mean": [0.0, 11.0], "y_mean": [0.0, 11.0], "x_stddev": [1.0, 4], "y_stddev": [1.0, 4], } gauss = models.Gaussian2D( amplitude=10.0, x_mean=5.0, y_mean=5.0, x_stddev=4.0, y_stddev=4.0, theta=0.5, bounds=bounds, ) gauss_fit = fitting.SLSQPLSQFitter() # Warning does not appear in all the CI jobs. # TODO: Rewrite the test for more consistent warning behavior. with warnings.catch_warnings(): warnings.filterwarnings( "ignore", message=r".*The fit may be unsuccessful.*", category=AstropyUserWarning, ) model = gauss_fit(gauss, X, Y, self.data) x_mean = model.x_mean.value y_mean = model.y_mean.value x_stddev = model.x_stddev.value y_stddev = model.y_stddev.value assert x_mean + 10**-5 >= bounds["x_mean"][0] assert x_mean - 10**-5 <= bounds["x_mean"][1] assert y_mean + 10**-5 >= bounds["y_mean"][0] assert y_mean - 10**-5 <= bounds["y_mean"][1] assert x_stddev + 10**-5 >= bounds["x_stddev"][0] assert x_stddev - 10**-5 <= bounds["x_stddev"][1] assert y_stddev + 10**-5 >= bounds["y_stddev"][0] assert y_stddev - 10**-5 <= bounds["y_stddev"][1] class TestLinearConstraints: def setup_class(self): self.p1 = models.Polynomial1D(4) self.p1.c0 = 0 self.p1.c1 = 0 self.p1.window = [0.0, 9.0] self.x = np.arange(10) self.y = self.p1(self.x) rsn = default_rng(1234567890) self.n = rsn.standard_normal(10) self.ny = self.y + self.n def test(self): self.p1.c0.fixed = True self.p1.c1.fixed = True pfit = fitting.LinearLSQFitter() model = pfit(self.p1, self.x, self.y) assert_allclose(self.y, model(self.x)) # Test constraints as parameter properties def test_set_fixed_1(): gauss = models.Gaussian1D(amplitude=20, mean=2, stddev=1) gauss.mean.fixed = True assert gauss.fixed == {"amplitude": False, "mean": True, "stddev": False} def test_set_fixed_2(): gauss = models.Gaussian1D(amplitude=20, mean=2, stddev=1, fixed={"mean": True}) assert gauss.mean.fixed is True def test_set_tied_1(): def tie_amplitude(model): return 50 * model.stddev gauss = models.Gaussian1D(amplitude=20, mean=2, stddev=1) gauss.amplitude.tied = tie_amplitude assert gauss.amplitude.tied is not False assert isinstance(gauss.tied["amplitude"], types.FunctionType) def test_set_tied_2(): def tie_amplitude(model): return 50 * model.stddev gauss = models.Gaussian1D( amplitude=20, mean=2, stddev=1, tied={"amplitude": tie_amplitude} ) assert gauss.amplitude.tied def test_unset_fixed(): gauss = models.Gaussian1D(amplitude=20, mean=2, stddev=1, fixed={"mean": True}) gauss.mean.fixed = False assert gauss.fixed == {"amplitude": False, "mean": False, "stddev": False} def test_unset_tied(): def tie_amplitude(model): return 50 * model.stddev gauss = models.Gaussian1D( amplitude=20, mean=2, stddev=1, tied={"amplitude": tie_amplitude} ) gauss.amplitude.tied = False assert gauss.tied == {"amplitude": False, "mean": False, "stddev": False} def test_set_bounds_1(): gauss = models.Gaussian1D( amplitude=20, mean=2, stddev=1, bounds={"stddev": (0, None)} ) assert gauss.bounds == { "amplitude": (None, None), "mean": (None, None), "stddev": (0.0, None), } def test_set_bounds_2(): gauss = models.Gaussian1D(amplitude=20, mean=2, stddev=1) gauss.stddev.min = 0.0 assert gauss.bounds == { "amplitude": (None, None), "mean": (None, None), "stddev": (0.0, None), } def test_unset_bounds(): gauss = models.Gaussian1D(amplitude=20, mean=2, stddev=1, bounds={"stddev": (0, 2)}) gauss.stddev.min = None gauss.stddev.max = None assert gauss.bounds == { "amplitude": (None, None), "mean": (None, None), "stddev": (None, None), } def test_default_constraints(): """Regression test for https://github.com/astropy/astropy/issues/2396 Ensure that default constraints defined on parameters are carried through to instances of the models those parameters are defined for. """ class MyModel(Fittable1DModel): a = Parameter(default=1) b = Parameter(default=0, min=0, fixed=True) @staticmethod def evaluate(x, a, b): return x * a + b assert MyModel.a.default == 1 assert MyModel.b.default == 0 assert MyModel.b.min == 0 assert MyModel.b.bounds == (0, None) assert MyModel.b.fixed is True m = MyModel() assert m.a.value == 1 assert m.b.value == 0 assert m.b.min == 0 assert m.b.bounds == (0, None) assert m.b.fixed is True assert m.bounds == {"a": (None, None), "b": (0, None)} assert m.fixed == {"a": False, "b": True} # Make a model instance that overrides the default constraints and values m = MyModel( 3, 4, bounds={"a": (1, None), "b": (2, None)}, fixed={"a": True, "b": False} ) assert m.a.value == 3 assert m.b.value == 4 assert m.a.min == 1 assert m.b.min == 2 assert m.a.bounds == (1, None) assert m.b.bounds == (2, None) assert m.a.fixed is True assert m.b.fixed is False assert m.bounds == {"a": (1, None), "b": (2, None)} assert m.fixed == {"a": True, "b": False} @pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy") @pytest.mark.filterwarnings(r"ignore:divide by zero encountered.*") @pytest.mark.parametrize("fitter", fitters) def test_fit_with_fixed_and_bound_constraints(fitter): """ Regression test for https://github.com/astropy/astropy/issues/2235 Currently doesn't test that the fit is any *good*--just that parameters stay within their given constraints. """ # DogBoxLSQFitter causes failure on s390x, aremel possibly others (not x86_64 or arm64) if fitter == fitting.DogBoxLSQFitter and ( platform.machine() not in ("x86_64", "arm64") ): pytest.xfail( "DogBoxLSQFitter can to be unstable on non-standard platforms leading to " "random test failures" ) fitter = fitter() m = models.Gaussian1D( amplitude=3, mean=4, stddev=1, bounds={"mean": (4, 5)}, fixed={"amplitude": True}, ) x = np.linspace(0, 10, 10) y = np.exp(-(x**2) / 2) fitted_1 = fitter(m, x, y) assert fitted_1.mean >= 4 assert fitted_1.mean <= 5 assert fitted_1.amplitude == 3.0 m.amplitude.fixed = False _ = fitter(m, x, y) # It doesn't matter anymore what the amplitude ends up as so long as the # bounds constraint was still obeyed assert fitted_1.mean >= 4 assert fitted_1.mean <= 5 @pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy") @pytest.mark.parametrize("fitter", fitters) def test_fit_with_bound_constraints_estimate_jacobian(fitter): """ Regression test for https://github.com/astropy/astropy/issues/2400 Checks that bounds constraints are obeyed on a custom model that does not define fit_deriv (and thus its Jacobian must be estimated for non-linear fitting). """ fitter = fitter() class MyModel(Fittable1DModel): a = Parameter(default=1) b = Parameter(default=2) @staticmethod def evaluate(x, a, b): return a * x + b m_real = MyModel(a=1.5, b=-3) x = np.arange(100) y = m_real(x) m = MyModel() fitted_1 = fitter(m, x, y) # This fit should be trivial so even without constraints on the bounds it # should be right assert np.allclose(fitted_1.a, 1.5) assert np.allclose(fitted_1.b, -3) m2 = MyModel() m2.a.bounds = (-2, 2) _ = fitter(m2, x, y) assert np.allclose(fitted_1.a, 1.5) assert np.allclose(fitted_1.b, -3) # Check that the estimated Jacobian was computed (it doesn't matter what # the values are so long as they're not all zero. if fitter == fitting.LevMarLSQFitter: assert np.any(fitter.fit_info["fjac"] != 0) # https://github.com/astropy/astropy/issues/6014 @pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy") @pytest.mark.parametrize("fitter", fitters) def test_gaussian2d_positive_stddev(fitter): # This is 2D Gaussian with noise to be fitted, as provided by @ysBach fitter = fitter() # fmt: off test = [ [-54.33, 13.81, -34.55, 8.95, -143.71, -0.81, 59.25, -14.78, -204.9, -30.87, -124.39, 123.53, 70.81, -109.48, -106.77, 35.64, 18.29], [-126.19, -89.13, 63.13, 50.74, 61.83, 19.06, 65.7, 77.94, 117.14, 139.37, 52.57, 236.04, 100.56, 242.28, -180.62, 154.02, -8.03], [91.43, 96.45, -118.59, -174.58, -116.49, 80.11, -86.81, 14.62, 79.26, 7.56, 54.99, 260.13, -136.42, -20.77, -77.55, 174.52, 134.41], [33.88, 7.63, 43.54, 70.99, 69.87, 33.97, 273.75, 176.66, 201.94, 336.34, 340.54, 163.77, -156.22, 21.49, -148.41, 94.88, 42.55], [82.28, 177.67, 26.81, 17.66, 47.81, -31.18, 353.23, 589.11, 553.27, 242.35, 444.12, 186.02, 140.73, 75.2, -87.98, -18.23, 166.74], [113.09, -37.01, 134.23, 71.89, 107.88, 198.69, 273.88, 626.63, 551.8, 547.61, 580.35, 337.8, 139.8, 157.64, -1.67, -26.99, 37.35], [106.47, 31.97, 84.99, -125.79, 195.0, 493.65, 861.89, 908.31, 803.9, 781.01, 532.59, 404.67, 115.18, 111.11, 28.08, 122.05, -58.36], [183.62, 45.22, 40.89, 111.58, 425.81, 321.53, 545.09, 866.02, 784.78, 731.35, 609.01, 405.41, -19.65, 71.2, -140.5, 144.07, 25.24], [137.13, -86.95, 15.39, 180.14, 353.23, 699.01, 1033.8, 1014.49, 814.11, 647.68, 461.03, 249.76, 94.8, 41.17, -1.16, 183.76, 188.19], [35.39, 26.92, 198.53, -37.78, 638.93, 624.41, 816.04, 867.28, 697.0, 491.56, 378.21, -18.46, -65.76, 98.1, 12.41, -102.18, 119.05], [190.73, 125.82, 311.45, 369.34, 554.39, 454.37, 755.7, 736.61, 542.43, 188.24, 214.86, 217.91, 7.91, 27.46, -172.14, -82.36, -80.31], [-55.39, 80.18, 267.19, 274.2, 169.53, 327.04, 488.15, 437.53, 225.38, 220.94, 4.01, -92.07, 39.68, 57.22, 144.66, 100.06, 34.96], [130.47, -4.23, 46.3, 101.49, 115.01, 217.38, 249.83, 115.9, 87.36, 105.81, -47.86, -9.94, -82.28, 144.45, 83.44, 23.49, 183.9], [-110.38, -115.98, 245.46, 103.51, 255.43, 163.47, 56.52, 33.82, -33.26, -111.29, 88.08, 193.2, -100.68, 15.44, 86.32, -26.44, -194.1], [109.36, 96.01, -124.89, -16.4, 84.37, 114.87, -65.65, -58.52, -23.22, 42.61, 144.91, -209.84, 110.29, 66.37, -117.85, -147.73, -122.51], [10.94, 45.98, 118.12, -46.53, -72.14, -74.22, 21.22, 0.39, 86.03, 23.97, -45.42, 12.05, -168.61, 27.79, 61.81, 84.07, 28.79], [46.61, -104.11, 56.71, -90.85, -16.51, -66.45, -141.34, 0.96, 58.08, 285.29, -61.41, -9.01, -323.38, 58.35, 80.14, -101.22, 145.65] ] # fmt: on g_init = models.Gaussian2D(x_mean=8, y_mean=8) if isinstance(fitter, fitting.TRFLSQFitter) or isinstance( fitter, fitting.DogBoxLSQFitter ): pytest.xfail("TRFLSQFitter seems to be broken for this test.") y, x = np.mgrid[:17, :17] g_fit = fitter(g_init, x, y, test) # Compare with @ysBach original result: # - x_stddev was negative, so its abs value is used for comparison here. # - theta is beyond (-90, 90) deg, which doesn't make sense, so ignored. assert_allclose( [g_fit.amplitude.value, g_fit.y_stddev.value], [984.7694929790363, 3.1840618351417307], rtol=1.5e-6, ) assert_allclose(g_fit.x_mean.value, 7.198391516587464) assert_allclose(g_fit.y_mean.value, 7.49720660088511, rtol=5e-7) assert_allclose(g_fit.x_stddev.value, 1.9840185107597297, rtol=2e-6) @pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy") @pytest.mark.filterwarnings(r"ignore:Model is linear in parameters.*") @pytest.mark.parametrize("fitter", fitters) def test_2d_model(fitter): """Issue #6403""" from astropy.utils import NumpyRNGContext fitter = fitter() # 2D model with LevMarLSQFitter gauss2d = models.Gaussian2D(10.2, 4.3, 5, 2, 1.2, 1.4) X = np.linspace(-1, 7, 200) Y = np.linspace(-1, 7, 200) x, y = np.meshgrid(X, Y) z = gauss2d(x, y) w = np.ones(x.size) w.shape = x.shape with NumpyRNGContext(1234567890): n = np.random.randn(x.size) n.shape = x.shape m = fitter(gauss2d, x, y, z + 2 * n, weights=w) assert_allclose(m.parameters, gauss2d.parameters, rtol=0.05) m = fitter(gauss2d, x, y, z + 2 * n, weights=None) assert_allclose(m.parameters, gauss2d.parameters, rtol=0.05) # 2D model with LevMarLSQFitter, fixed constraint gauss2d.x_stddev.fixed = True m = fitter(gauss2d, x, y, z + 2 * n, weights=w) assert_allclose(m.parameters, gauss2d.parameters, rtol=0.05) m = fitter(gauss2d, x, y, z + 2 * n, weights=None) assert_allclose(m.parameters, gauss2d.parameters, rtol=0.05) # Polynomial2D, col_fit_deriv=False p2 = models.Polynomial2D(1, c0_0=1, c1_0=1.2, c0_1=3.2) z = p2(x, y) m = fitter(p2, x, y, z + 2 * n, weights=None) assert_allclose(m.parameters, p2.parameters, rtol=0.05) m = fitter(p2, x, y, z + 2 * n, weights=w) assert_allclose(m.parameters, p2.parameters, rtol=0.05) # Polynomial2D, col_fit_deriv=False, fixed constraint p2.c1_0.fixed = True m = fitter(p2, x, y, z + 2 * n, weights=w) assert_allclose(m.parameters, p2.parameters, rtol=0.05) m = fitter(p2, x, y, z + 2 * n, weights=None) assert_allclose(m.parameters, p2.parameters, rtol=0.05) def test_set_prior_posterior(): model = models.Polynomial1D(1) model.c0.prior = models.Gaussian1D(2.3, 2, 0.1) assert model.c0.prior(2) == 2.3 model.c0.posterior = models.Linear1D(1, 0.2) assert model.c0.posterior(1) == 1.2 def test_set_constraints(): g = models.Gaussian1D() p = models.Polynomial1D(1) # Set bounds before model combination g.stddev.bounds = (0, 3) m = g + p assert m.bounds == { "amplitude_0": (None, None), "mean_0": (None, None), "stddev_0": (0.0, 3.0), "c0_1": (None, None), "c1_1": (None, None), } # Set bounds on the compound model m.stddev_0.bounds = (1, 3) assert m.bounds == { "amplitude_0": (None, None), "mean_0": (None, None), "stddev_0": (1.0, 3.0), "c0_1": (None, None), "c1_1": (None, None), } # Set the bounds of a Parameter directly in the bounds dict m.bounds["stddev_0"] = (4, 5) assert m.bounds == { "amplitude_0": (None, None), "mean_0": (None, None), "stddev_0": (4, 5), "c0_1": (None, None), "c1_1": (None, None), } # Set the bounds of a Parameter on the child model bounds dict g.bounds["stddev"] = (1, 5) m = g + p assert m.bounds == { "amplitude_0": (None, None), "mean_0": (None, None), "stddev_0": (1, 5), "c0_1": (None, None), "c1_1": (None, None), }
ef73504395877ef898958aa8633cecbca2c08607ee33893719e0ef9c469bb5a0
# Licensed under a 3-clause BSD style license - see LICENSE.rst # pylint: disable=invalid-name import numpy as np import pytest from numpy.testing import assert_allclose, assert_array_equal from astropy import units as u from astropy.modeling.fitting import ( DogBoxLSQFitter, LevMarLSQFitter, LMLSQFitter, TRFLSQFitter, ) from astropy.modeling.models import ( Gaussian1D, Identity, Mapping, Rotation2D, Shift, UnitsMapping, ) from astropy.utils import NumpyRNGContext from astropy.utils.compat.optional_deps import HAS_SCIPY fitters = [LevMarLSQFitter, TRFLSQFitter, LMLSQFitter, DogBoxLSQFitter] def test_swap_axes(): x = np.zeros((2, 3)) y = np.ones((2, 3)) mapping = Mapping((1, 0)) assert mapping(1, 2) == (2.0, 1.0) assert mapping.inverse(2, 1) == (1, 2) assert_array_equal(mapping(x, y), (y, x)) assert_array_equal(mapping.inverse(y, x), (x, y)) def test_duplicate_axes(): mapping = Mapping((0, 1, 0, 1)) assert mapping(1, 2) == (1.0, 2.0, 1.0, 2) assert mapping.inverse(1, 2, 1, 2) == (1, 2) assert mapping.inverse.n_inputs == 4 assert mapping.inverse.n_outputs == 2 def test_drop_axes_1(): mapping = Mapping((0,), n_inputs=2) assert mapping(1, 2) == (1.0) def test_drop_axes_2(): mapping = Mapping((1,)) assert mapping(1, 2) == (2.0) MESSAGE = ( r"Mappings such as .* that drop one or more of their inputs are not invertible" r" at this time" ) with pytest.raises(NotImplementedError, match=MESSAGE): mapping.inverse def test_drop_axes_3(): mapping = Mapping((1,), n_inputs=2) assert mapping.n_inputs == 2 rotation = Rotation2D(60) model = rotation | mapping assert_allclose(model(1, 2), 1.86602540378) @pytest.mark.parametrize("name", [None, "test_name"]) def test_bad_inputs(name): mapping = Mapping((1, 0), name=name) if name is None: name = "Mapping" x = [np.ones((2, 3)) * idx for idx in range(5)] for idx in range(1, 6): if idx == 2: continue MESSAGE = f"{name} expects 2 inputs; got {idx}" with pytest.raises(TypeError, match=MESSAGE): mapping.evaluate(*x[:idx]) def test_identity(): x = np.zeros((2, 3)) y = np.ones((2, 3)) ident1 = Identity(1) shift = Shift(1) rotation = Rotation2D(angle=60) model = ident1 & shift | rotation assert_allclose(model(1, 2), (-2.098076211353316, 2.3660254037844393)) res_x, res_y = model(x, y) assert_allclose( (res_x, res_y), ( np.array( [ [-1.73205081, -1.73205081, -1.73205081], [-1.73205081, -1.73205081, -1.73205081], ] ), np.array( [ [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], ] ), ), ) assert_allclose(model.inverse(res_x, res_y), (x, y), atol=1.0e-10) # https://github.com/astropy/astropy/pull/6018 @pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy") @pytest.mark.parametrize("fitter", fitters) def test_fittable_compound(fitter): fitter = fitter() m = Identity(1) | Mapping((0,)) | Gaussian1D(1, 5, 4) x = np.arange(10) y_real = m(x) dy = 0.005 with NumpyRNGContext(1234567): n = np.random.normal(0.0, dy, x.shape) y_noisy = y_real + n new_model = fitter(m, x, y_noisy) y_fit = new_model(x) assert_allclose(y_fit, y_real, atol=dy) def test_identity_repr(): m = Identity(1, name="foo") assert repr(m) == "<Identity(1, name='foo')>" m = Identity(1) assert repr(m) == "<Identity(1)>" def test_mapping_repr(): m = Mapping([0, 1], name="foo") assert repr(m) == "<Mapping([0, 1], name='foo')>" m = Mapping([0, 1]) assert repr(m) == "<Mapping([0, 1])>" class TestUnitsMapping: def test___init__(self): # Set values model = UnitsMapping( ((u.m, None),), input_units_equivalencies="test_eqiv", input_units_allow_dimensionless=True, name="test", ) assert model._mapping == ((u.m, None),) assert model._input_units_strict == {"x": True} assert model.input_units_equivalencies == "test_eqiv" assert model.input_units_allow_dimensionless == {"x": True} assert model.name == "test" assert model._input_units == {"x": u.m} # Default values model = UnitsMapping(((u.K, None),)) assert model._mapping == ((u.K, None),) assert model._input_units_strict == {"x": True} assert model.input_units_equivalencies is None assert model.input_units_allow_dimensionless == {"x": False} assert model.name is None assert model._input_units == {"x": u.K} # Error MESSAGE = r"If one return unit is None, then all must be None" with pytest.raises(ValueError, match=MESSAGE): UnitsMapping(((u.m, None), (u.m, u.K))) def test_evaluate(self): model = UnitsMapping(((u.m, None),)) assert model(10 * u.m) == 10 model = UnitsMapping(((u.m, u.K),)) assert model(10 * u.m) == 10 * u.K model = UnitsMapping( ((u.m, None), (u.K, None)), ) assert model(10 * u.m, 20 * u.K) == (10, 20) model = UnitsMapping( ((u.m, u.K), (u.K, u.m)), ) assert model(10 * u.m, 20 * u.K) == (10 * u.K, 20 * u.m) def test_repr(self): model = UnitsMapping(((u.m, None),), name="foo") assert repr(model) == f"<UnitsMapping((({repr(u.m)}, None),), name='foo')>" model = UnitsMapping(((u.m, None),)) assert repr(model) == f"<UnitsMapping((({repr(u.m)}, None),))>"
9a410d7808bbac388a5cd2bb90349bb476dc06dd98ba2a4b63bbdf14bc24edc0
# Various tests of models not related to evaluation, fitting, or parameters # pylint: disable=invalid-name, no-member import pytest from astropy import units as u from astropy.modeling import models from astropy.modeling.core import _ModelMeta from astropy.modeling.models import Gaussian1D, Mapping, Pix2Sky_TAN from astropy.tests.helper import assert_quantity_allclose def test_gaussian1d_bounding_box(): g = Gaussian1D(mean=3 * u.m, stddev=3 * u.cm, amplitude=3 * u.Jy) bbox = g.bounding_box.bounding_box() assert_quantity_allclose(bbox[0], 2.835 * u.m) assert_quantity_allclose(bbox[1], 3.165 * u.m) def test_gaussian1d_n_models(): g = Gaussian1D( amplitude=[1 * u.J, 2.0 * u.J], mean=[1 * u.m, 5000 * u.AA], stddev=[0.1 * u.m, 100 * u.AA], n_models=2, ) assert_quantity_allclose(g(1.01 * u.m), [0.99501248, 0.0] * u.J) assert_quantity_allclose( g(u.Quantity([1.01 * u.m, 5010 * u.AA])), [0.99501248, 1.990025] * u.J ) # FIXME: The following doesn't work as np.asanyarray doesn't work with a # list of quantity objects. # assert_quantity_allclose(g([1.01 * u.m, 5010 * u.AA]), # [ 0.99501248, 1.990025] * u.J) """ Test the "rules" of model units. """ def test_quantity_call(): """ Test that if constructed with Quanties models must be called with quantities. """ g = Gaussian1D(mean=3 * u.m, stddev=3 * u.cm, amplitude=3 * u.Jy) g(10 * u.m) MESSAGE = ( r".* Units of input 'x', .* could not be converted to required input units of" r" m .*" ) with pytest.raises(u.UnitsError, match=MESSAGE): g(10) def test_no_quantity_call(): """ Test that if not constructed with Quantites they can be called without quantities. """ g = Gaussian1D(mean=3, stddev=3, amplitude=3) assert isinstance(g, Gaussian1D) g(10) def test_default_parameters(): # Test that calling with a quantity works when one of the parameters # defaults to dimensionless g = Gaussian1D(mean=3 * u.m, stddev=3 * u.cm) assert isinstance(g, Gaussian1D) g(10 * u.m) def test_uses_quantity(): """ Test Quantity """ g = Gaussian1D(mean=3 * u.m, stddev=3 * u.cm, amplitude=3 * u.Jy) assert g.uses_quantity g = Gaussian1D(mean=3, stddev=3, amplitude=3) assert not g.uses_quantity g.mean = 3 * u.m assert g.uses_quantity def test_uses_quantity_compound(): """ Test Quantity """ g = Gaussian1D(mean=3 * u.m, stddev=3 * u.cm, amplitude=3 * u.Jy) g2 = Gaussian1D(mean=5 * u.m, stddev=5 * u.cm, amplitude=5 * u.Jy) assert (g | g2).uses_quantity g = Gaussian1D(mean=3, stddev=3, amplitude=3) g2 = Gaussian1D(mean=5, stddev=5, amplitude=5) comp = g | g2 assert not (comp).uses_quantity def test_uses_quantity_no_param(): comp = Mapping((0, 1)) | Pix2Sky_TAN() assert comp.uses_quantity def _allmodels(): allmodels = [] for name in dir(models): model = getattr(models, name) if type(model) is _ModelMeta: try: m = model() except Exception: pass allmodels.append(m) return allmodels @pytest.mark.parametrize("m", _allmodels()) def test_read_only(m): """ input_units return_units input_units_allow_dimensionless input_units_strict """ with pytest.raises(AttributeError): m.input_units = {} with pytest.raises(AttributeError): m.return_units = {} with pytest.raises(AttributeError): m.input_units_allow_dimensionless = {} with pytest.raises(AttributeError): m.input_units_strict = {}
18765dd12a86814a53d1384bccec1d84548558840c15ffb4d1d6379d4883605f
# Licensed under a 3-clause BSD style license - see LICENSE.rst # pylint: disable=invalid-name, no-member import numpy as np import pytest from astropy import units as u from astropy.modeling.bounding_box import ModelBoundingBox from astropy.modeling.core import fix_inputs from astropy.modeling.fitting import ( DogBoxLSQFitter, LevMarLSQFitter, LMLSQFitter, TRFLSQFitter, ) from astropy.modeling.functional_models import ( AiryDisk2D, ArcCosine1D, ArcSine1D, ArcTangent1D, Box1D, Box2D, Const1D, Const2D, Cosine1D, Disk2D, Ellipse2D, Exponential1D, Gaussian1D, Gaussian2D, KingProjectedAnalytic1D, Linear1D, Logarithmic1D, Lorentz1D, Moffat1D, Moffat2D, Multiply, Planar2D, RickerWavelet1D, RickerWavelet2D, Ring2D, Scale, Sersic1D, Sersic2D, Sine1D, Tangent1D, Trapezoid1D, TrapezoidDisk2D, Voigt1D, ) from astropy.modeling.parameters import InputParameterError from astropy.modeling.physical_models import Drude1D, Plummer1D from astropy.modeling.polynomial import Polynomial1D, Polynomial2D from astropy.modeling.powerlaws import ( BrokenPowerLaw1D, ExponentialCutoffPowerLaw1D, LogParabola1D, PowerLaw1D, Schechter1D, SmoothlyBrokenPowerLaw1D, ) from astropy.tests.helper import assert_quantity_allclose from astropy.utils.compat.optional_deps import HAS_SCIPY fitters = [LevMarLSQFitter, TRFLSQFitter, LMLSQFitter, DogBoxLSQFitter] FUNC_MODELS_1D = [ { "class": Gaussian1D, "parameters": {"amplitude": 3 * u.Jy, "mean": 2 * u.m, "stddev": 30 * u.cm}, "evaluation": [(2600 * u.mm, 3 * u.Jy * np.exp(-2))], "bounding_box": [0.35, 3.65] * u.m, }, { "class": Sersic1D, "parameters": {"amplitude": 3 * u.MJy / u.sr, "r_eff": 2 * u.arcsec, "n": 4}, "evaluation": [(3 * u.arcsec, 1.3237148119468918 * u.MJy / u.sr)], "bounding_box": False, }, { "class": Sine1D, "parameters": { "amplitude": 3 * u.km / u.s, "frequency": 0.25 * u.Hz, "phase": 0.5, }, "evaluation": [(1 * u.s, -3 * u.km / u.s)], "bounding_box": False, }, { "class": Cosine1D, "parameters": { "amplitude": 3 * u.km / u.s, "frequency": 0.25 * u.Hz, "phase": 0.25, }, "evaluation": [(1 * u.s, -3 * u.km / u.s)], "bounding_box": False, }, { "class": Tangent1D, "parameters": { "amplitude": 3 * u.km / u.s, "frequency": 0.125 * u.Hz, "phase": 0.25, }, "evaluation": [(1 * u.s, -3 * u.km / u.s)], "bounding_box": [-4, 0] / u.Hz, }, { "class": ArcSine1D, "parameters": { "amplitude": 3 * u.km / u.s, "frequency": 0.25 * u.Hz, "phase": 0.5, }, "evaluation": [(0 * u.km / u.s, -2 * u.s)], "bounding_box": [-3, 3] * u.km / u.s, }, { "class": ArcCosine1D, "parameters": { "amplitude": 3 * u.km / u.s, "frequency": 0.25 * u.Hz, "phase": 0.5, }, "evaluation": [(0 * u.km / u.s, -1 * u.s)], "bounding_box": [-3, 3] * u.km / u.s, }, { "class": ArcTangent1D, "parameters": { "amplitude": 3 * u.km / u.s, "frequency": 0.125 * u.Hz, "phase": 0.25, }, "evaluation": [(0 * u.km / u.s, -2 * u.s)], "bounding_box": False, }, { "class": Linear1D, "parameters": {"slope": 3 * u.km / u.s, "intercept": 5000 * u.m}, "evaluation": [(6000 * u.ms, 23 * u.km)], "bounding_box": False, }, { "class": Lorentz1D, "parameters": {"amplitude": 2 * u.Jy, "x_0": 505 * u.nm, "fwhm": 100 * u.AA}, "evaluation": [(0.51 * u.micron, 1 * u.Jy)], "bounding_box": [255, 755] * u.nm, }, { "class": Voigt1D, "parameters": { "amplitude_L": 2 * u.Jy, "x_0": 505 * u.nm, "fwhm_L": 100 * u.AA, "fwhm_G": 50 * u.AA, }, "evaluation": [(0.51 * u.micron, 1.0621795524 * u.Jy)], "bounding_box": False, }, { "class": Const1D, "parameters": {"amplitude": 3 * u.Jy}, "evaluation": [(0.6 * u.micron, 3 * u.Jy)], "bounding_box": False, }, { "class": Box1D, "parameters": {"amplitude": 3 * u.Jy, "x_0": 4.4 * u.um, "width": 1 * u.um}, "evaluation": [(4200 * u.nm, 3 * u.Jy), (1 * u.m, 0 * u.Jy)], "bounding_box": [3.9, 4.9] * u.um, }, { "class": Trapezoid1D, "parameters": { "amplitude": 3 * u.Jy, "x_0": 4.4 * u.um, "width": 1 * u.um, "slope": 5 * u.Jy / u.um, }, "evaluation": [(4200 * u.nm, 3 * u.Jy), (1 * u.m, 0 * u.Jy)], "bounding_box": [3.3, 5.5] * u.um, }, { "class": RickerWavelet1D, "parameters": {"amplitude": 3 * u.Jy, "x_0": 4.4 * u.um, "sigma": 1e-3 * u.mm}, "evaluation": [(1000 * u.nm, -0.09785050 * u.Jy)], "bounding_box": [-5.6, 14.4] * u.um, }, { "class": Moffat1D, "parameters": { "amplitude": 3 * u.Jy, "x_0": 4.4 * u.um, "gamma": 1e-3 * u.mm, "alpha": 1, }, "evaluation": [(1000 * u.nm, 0.238853503 * u.Jy)], "bounding_box": False, }, { "class": KingProjectedAnalytic1D, "parameters": { "amplitude": 1.0 * u.Msun / u.pc**2, "r_core": 1.0 * u.pc, "r_tide": 2.0 * u.pc, }, "evaluation": [(0.5 * u.pc, 0.2 * u.Msun / u.pc**2)], "bounding_box": [0.0 * u.pc, 2.0 * u.pc], }, { "class": Logarithmic1D, "parameters": {"amplitude": 5 * u.m, "tau": 2 * u.m}, "evaluation": [(4 * u.m, 3.4657359027997265 * u.m)], "bounding_box": False, }, { "class": Exponential1D, "parameters": {"amplitude": 5 * u.m, "tau": 2 * u.m}, "evaluation": [(4 * u.m, 36.945280494653254 * u.m)], "bounding_box": False, }, ] SCALE_MODELS = [ { "class": Scale, "parameters": {"factor": 2 * u.m}, "evaluation": [(1 * u.m, 2 * u.m)], "bounding_box": False, }, { "class": Multiply, "parameters": {"factor": 2 * u.m}, "evaluation": [(1 * u.m / u.m, 2 * u.m)], "bounding_box": False, }, ] PHYS_MODELS_1D = [ { "class": Plummer1D, "parameters": {"mass": 3 * u.kg, "r_plum": 0.5 * u.m}, "evaluation": [(1 * u.m, 0.10249381 * u.kg / (u.m**3))], "bounding_box": False, }, { "class": Drude1D, "parameters": { "amplitude": 1.0 * u.m, "x_0": 2175.0 * u.AA, "fwhm": 400.0 * u.AA, }, "evaluation": [(2000 * u.AA, 0.5452317018423869 * u.m)], "bounding_box": [-17825, 22175] * u.AA, }, ] FUNC_MODELS_2D = [ { "class": Gaussian2D, "parameters": { "amplitude": 3 * u.Jy, "x_mean": 2 * u.m, "y_mean": 1 * u.m, "x_stddev": 3 * u.m, "y_stddev": 2 * u.m, "theta": 45 * u.deg, }, "evaluation": [ (412.1320343 * u.cm, 3.121320343 * u.m, 3 * u.Jy * np.exp(-0.5)) ], "bounding_box": [[-13.02230366, 15.02230366], [-12.02230366, 16.02230366]] * u.m, }, { "class": Const2D, "parameters": {"amplitude": 3 * u.Jy}, "evaluation": [(0.6 * u.micron, 0.2 * u.m, 3 * u.Jy)], "bounding_box": False, }, { "class": Disk2D, "parameters": { "amplitude": 3 * u.Jy, "x_0": 3 * u.m, "y_0": 2 * u.m, "R_0": 300 * u.cm, }, "evaluation": [(5.8 * u.m, 201 * u.cm, 3 * u.Jy)], "bounding_box": [[-1, 5], [0, 6]] * u.m, }, { "class": TrapezoidDisk2D, "parameters": { "amplitude": 3 * u.Jy, "x_0": 1 * u.m, "y_0": 2 * u.m, "R_0": 100 * u.cm, "slope": 1 * u.Jy / u.m, }, "evaluation": [(3.5 * u.m, 2 * u.m, 1.5 * u.Jy)], "bounding_box": [[-2, 6], [-3, 5]] * u.m, }, { "class": Ellipse2D, "parameters": { "amplitude": 3 * u.Jy, "x_0": 3 * u.m, "y_0": 2 * u.m, "a": 300 * u.cm, "b": 200 * u.cm, "theta": 45 * u.deg, }, "evaluation": [(4 * u.m, 300 * u.cm, 3 * u.Jy)], "bounding_box": [ [-0.5495097567963922, 4.549509756796392], [0.4504902432036073, 5.549509756796393], ] * u.m, }, { "class": Ring2D, "parameters": { "amplitude": 3 * u.Jy, "x_0": 3 * u.m, "y_0": 2 * u.m, "r_in": 2 * u.cm, "r_out": 2.1 * u.cm, }, "evaluation": [(302.05 * u.cm, 2 * u.m + 10 * u.um, 3 * u.Jy)], "bounding_box": [[1.979, 2.021], [2.979, 3.021]] * u.m, }, { "class": Box2D, "parameters": { "amplitude": 3 * u.Jy, "x_0": 3 * u.m, "y_0": 2 * u.s, "x_width": 4 * u.cm, "y_width": 3 * u.s, }, "evaluation": [(301 * u.cm, 3 * u.s, 3 * u.Jy)], "bounding_box": [[0.5 * u.s, 3.5 * u.s], [2.98 * u.m, 3.02 * u.m]], }, { "class": RickerWavelet2D, "parameters": { "amplitude": 3 * u.Jy, "x_0": 3 * u.m, "y_0": 2 * u.m, "sigma": 1 * u.m, }, "evaluation": [(4 * u.m, 2.5 * u.m, 0.602169107 * u.Jy)], "bounding_box": False, }, { "class": AiryDisk2D, "parameters": { "amplitude": 3 * u.Jy, "x_0": 3 * u.m, "y_0": 2 * u.m, "radius": 1 * u.m, }, "evaluation": [(4 * u.m, 2.1 * u.m, 4.76998480e-05 * u.Jy)], "bounding_box": False, }, { "class": Moffat2D, "parameters": { "amplitude": 3 * u.Jy, "x_0": 4.4 * u.um, "y_0": 3.5 * u.um, "gamma": 1e-3 * u.mm, "alpha": 1, }, "evaluation": [(1000 * u.nm, 2 * u.um, 0.202565833 * u.Jy)], "bounding_box": False, }, { "class": Sersic2D, "parameters": { "amplitude": 3 * u.MJy / u.sr, "x_0": 1 * u.arcsec, "y_0": 2 * u.arcsec, "r_eff": 2 * u.arcsec, "n": 4, "ellip": 0, "theta": 0, }, "evaluation": [(3 * u.arcsec, 2.5 * u.arcsec, 2.829990489 * u.MJy / u.sr)], "bounding_box": False, }, { "class": Planar2D, "parameters": {"slope_x": 2 * u.m, "slope_y": 3 * u.m, "intercept": 4 * u.m}, "evaluation": [(5 * u.m / u.m, 6 * u.m / u.m, 32 * u.m)], "bounding_box": False, }, ] POWERLAW_MODELS = [ { "class": PowerLaw1D, "parameters": {"amplitude": 5 * u.kg, "x_0": 10 * u.cm, "alpha": 1}, "evaluation": [(1 * u.m, 500 * u.g)], "bounding_box": False, }, { "class": BrokenPowerLaw1D, "parameters": { "amplitude": 5 * u.kg, "x_break": 10 * u.cm, "alpha_1": 1, "alpha_2": -1, }, "evaluation": [(1 * u.m, 50 * u.kg), (1 * u.cm, 50 * u.kg)], "bounding_box": False, }, { "class": SmoothlyBrokenPowerLaw1D, "parameters": { "amplitude": 5 * u.kg, "x_break": 10 * u.cm, "alpha_1": 1, "alpha_2": -1, "delta": 1, }, "evaluation": [(1 * u.cm, 15.125 * u.kg), (1 * u.m, 15.125 * u.kg)], "bounding_box": False, }, { "class": ExponentialCutoffPowerLaw1D, "parameters": { "amplitude": 5 * u.kg, "x_0": 10 * u.cm, "alpha": 1, "x_cutoff": 1 * u.m, }, "evaluation": [(1 * u.um, 499999.5 * u.kg), (10 * u.m, 50 * np.exp(-10) * u.g)], "bounding_box": False, }, { "class": LogParabola1D, "parameters": {"amplitude": 5 * u.kg, "x_0": 10 * u.cm, "alpha": 1, "beta": 2}, "evaluation": [(1 * u.cm, 5 * 0.1 ** (-1 - 2 * np.log(0.1)) * u.kg)], "bounding_box": False, }, { "class": Schechter1D, "parameters": { "phi_star": 1.0e-4 * (u.Mpc**-3), "m_star": -20.0 * u.ABmag, "alpha": -1.9, }, "evaluation": [(-23 * u.ABmag, 1.002702276867279e-12 * (u.Mpc**-3))], "bounding_box": False, }, ] POLY_MODELS = [ { "class": Polynomial1D, "parameters": {"degree": 2, "c0": 3 * u.one, "c1": 2 / u.m, "c2": 3 / u.m**2}, "evaluation": [(3 * u.m, 36 * u.one)], "bounding_box": False, }, { "class": Polynomial1D, "parameters": { "degree": 2, "c0": 3 * u.kg, "c1": 2 * u.kg / u.m, "c2": 3 * u.kg / u.m**2, }, "evaluation": [(3 * u.m, 36 * u.kg)], "bounding_box": False, }, { "class": Polynomial1D, "parameters": {"degree": 2, "c0": 3 * u.kg, "c1": 2 * u.kg, "c2": 3 * u.kg}, "evaluation": [(3 * u.one, 36 * u.kg)], "bounding_box": False, }, { "class": Polynomial2D, "parameters": { "degree": 2, "c0_0": 3 * u.one, "c1_0": 2 / u.m, "c2_0": 3 / u.m**2, "c0_1": 3 / u.s, "c0_2": -2 / u.s**2, "c1_1": 5 / u.m / u.s, }, "evaluation": [(3 * u.m, 2 * u.s, 64 * u.one)], "bounding_box": False, }, { "class": Polynomial2D, "parameters": { "degree": 2, "c0_0": 3 * u.kg, "c1_0": 2 * u.kg / u.m, "c2_0": 3 * u.kg / u.m**2, "c0_1": 3 * u.kg / u.s, "c0_2": -2 * u.kg / u.s**2, "c1_1": 5 * u.kg / u.m / u.s, }, "evaluation": [(3 * u.m, 2 * u.s, 64 * u.kg)], "bounding_box": False, }, { "class": Polynomial2D, "parameters": { "degree": 2, "c0_0": 3 * u.kg, "c1_0": 2 * u.kg, "c2_0": 3 * u.kg, "c0_1": 3 * u.kg, "c0_2": -2 * u.kg, "c1_1": 5 * u.kg, }, "evaluation": [(3 * u.one, 2 * u.one, 64 * u.kg)], "bounding_box": False, }, ] MODELS = ( FUNC_MODELS_1D + SCALE_MODELS + FUNC_MODELS_2D + POWERLAW_MODELS + PHYS_MODELS_1D + POLY_MODELS ) SCIPY_MODELS = {Sersic1D, Sersic2D, AiryDisk2D} # These models will fail fitting test, because built in fitting data # will produce non-finite values NON_FINITE_LevMar_MODELS = [ Sersic1D, ArcSine1D, ArcCosine1D, PowerLaw1D, ExponentialCutoffPowerLaw1D, BrokenPowerLaw1D, LogParabola1D, Schechter1D, ] # These models will fail the TRFLSQFitter fitting test due to non-finite NON_FINITE_TRF_MODELS = [ ArcSine1D, ArcCosine1D, Sersic1D, Sersic2D, PowerLaw1D, ExponentialCutoffPowerLaw1D, BrokenPowerLaw1D, ] # These models will fail the LMLSQFitter fitting test due to non-finite NON_FINITE_LM_MODELS = [ Sersic1D, ArcSine1D, ArcCosine1D, PowerLaw1D, LogParabola1D, Schechter1D, ExponentialCutoffPowerLaw1D, BrokenPowerLaw1D, ] # These models will fail the DogBoxLSQFitter fitting test due to non-finite NON_FINITE_DogBox_MODELS = [ Sersic1D, Sersic2D, ArcSine1D, ArcCosine1D, SmoothlyBrokenPowerLaw1D, ExponentialCutoffPowerLaw1D, LogParabola1D, ] @pytest.mark.parametrize("model", MODELS) def test_models_evaluate_without_units(model): if not HAS_SCIPY and model["class"] in SCIPY_MODELS: pytest.skip() m = model["class"](**model["parameters"]) for args in model["evaluation"]: if len(args) == 2: kwargs = dict(zip(("x", "y"), args)) else: kwargs = dict(zip(("x", "y", "z"), args)) if kwargs["x"].unit.is_equivalent(kwargs["y"].unit): kwargs["x"] = kwargs["x"].to(kwargs["y"].unit) mnu = m.without_units_for_data(**kwargs) args = [x.value for x in kwargs.values()] assert_quantity_allclose(mnu(*args[:-1]), args[-1]) @pytest.mark.parametrize("model", MODELS) def test_models_evaluate_with_units(model): if not HAS_SCIPY and model["class"] in SCIPY_MODELS: pytest.skip() m = model["class"](**model["parameters"]) for args in model["evaluation"]: assert_quantity_allclose(m(*args[:-1]), args[-1]) @pytest.mark.parametrize("model", MODELS) def test_models_evaluate_with_units_x_array(model): if not HAS_SCIPY and model["class"] in SCIPY_MODELS: pytest.skip() m = model["class"](**model["parameters"]) for args in model["evaluation"]: if len(args) == 2: x, y = args x_arr = u.Quantity([x, x], subok=True) result = m(x_arr) assert_quantity_allclose(result, u.Quantity([y, y], subok=True)) else: x, y, z = args x_arr = u.Quantity([x, x]) y_arr = u.Quantity([y, y]) result = m(x_arr, y_arr) assert_quantity_allclose(result, u.Quantity([z, z])) @pytest.mark.parametrize("model", MODELS) def test_models_evaluate_with_units_param_array(model): if not HAS_SCIPY and model["class"] in SCIPY_MODELS: pytest.skip() params = {} for key, value in model["parameters"].items(): if value is None or key == "degree": params[key] = value else: params[key] = np.repeat(value, 2) params["n_models"] = 2 m = model["class"](**params) for args in model["evaluation"]: if len(args) == 2: x, y = args x_arr = u.Quantity([x, x], subok=True) result = m(x_arr) assert_quantity_allclose(result, u.Quantity([y, y], subok=True)) else: x, y, z = args x_arr = u.Quantity([x, x]) y_arr = u.Quantity([y, y]) result = m(x_arr, y_arr) assert_quantity_allclose(result, u.Quantity([z, z])) if model["class"] == Drude1D: params["x_0"][-1] = 0 * u.AA MESSAGE = r"0 is not an allowed value for x_0" with pytest.raises(InputParameterError, match=MESSAGE): model["class"](**params) @pytest.mark.parametrize("model", MODELS) def test_models_bounding_box(model): # In some cases, having units in parameters caused bounding_box to break, # so this is to ensure that it works correctly. if not HAS_SCIPY and model["class"] in SCIPY_MODELS: pytest.skip() m = model["class"](**model["parameters"]) # In the following we need to explicitly test that the value is False # since Quantities no longer evaluate as as True if model["bounding_box"] is False: # Check that NotImplementedError is raised, so that if bounding_box is # implemented we remember to set bounding_box=True in the list of models # above MESSAGE = r"No bounding box is defined for this model" with pytest.raises(NotImplementedError, match=MESSAGE): m.bounding_box else: # A bounding box may have inhomogeneous units so we need to check the # values one by one. for i in range(len(model["bounding_box"])): bbox = m.bounding_box if isinstance(bbox, ModelBoundingBox): bbox = bbox.bounding_box() assert_quantity_allclose(bbox[i], model["bounding_box"][i]) @pytest.mark.parametrize("model", MODELS) def test_compound_model_input_units_equivalencies_defaults(model): m = model["class"](**model["parameters"]) assert m.input_units_equivalencies is None compound_model = m + m assert compound_model.inputs_map()["x"][0].input_units_equivalencies is None fixed_input_model = fix_inputs(compound_model, {"x": 1}) assert fixed_input_model.input_units_equivalencies is None compound_model = m - m assert compound_model.inputs_map()["x"][0].input_units_equivalencies is None fixed_input_model = fix_inputs(compound_model, {"x": 1}) assert fixed_input_model.input_units_equivalencies is None compound_model = m & m assert compound_model.inputs_map()["x1"][0].input_units_equivalencies is None fixed_input_model = fix_inputs(compound_model, {"x0": 1}) assert fixed_input_model.inputs_map()["x1"][0].input_units_equivalencies is None assert fixed_input_model.input_units_equivalencies is None if m.n_outputs == m.n_inputs: compound_model = m | m assert compound_model.inputs_map()["x"][0].input_units_equivalencies is None fixed_input_model = fix_inputs(compound_model, {"x": 1}) assert fixed_input_model.input_units_equivalencies is None @pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy") @pytest.mark.filterwarnings(r"ignore:.*:RuntimeWarning") @pytest.mark.filterwarnings(r"ignore:Model is linear in parameters.*") @pytest.mark.filterwarnings(r"ignore:The fit may be unsuccessful.*") @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("fitter", fitters) def test_models_fitting(model, fitter): fitter = fitter() if ( ( isinstance(fitter, LevMarLSQFitter) and model["class"] in NON_FINITE_LevMar_MODELS ) or ( isinstance(fitter, TRFLSQFitter) and model["class"] in NON_FINITE_TRF_MODELS ) or (isinstance(fitter, LMLSQFitter) and model["class"] in NON_FINITE_LM_MODELS) or ( isinstance(fitter, DogBoxLSQFitter) and model["class"] in NON_FINITE_DogBox_MODELS ) ): return m = model["class"](**model["parameters"]) if len(model["evaluation"][0]) == 2: x = np.linspace(1, 3, 100) * model["evaluation"][0][0].unit y = np.exp(-x.value**2) * model["evaluation"][0][1].unit args = [x, y] else: x = np.linspace(1, 3, 100) * model["evaluation"][0][0].unit y = np.linspace(1, 3, 100) * model["evaluation"][0][1].unit z = np.exp(-x.value**2 - y.value**2) * model["evaluation"][0][2].unit args = [x, y, z] # Test that the model fits even if it has units on parameters m_new = fitter(m, *args) # Check that units have been put back correctly for param_name in m.param_names: par_bef = getattr(m, param_name) par_aft = getattr(m_new, param_name) if par_bef.unit is None: # If the parameter used to not have a unit then had a radian unit # for example, then we should allow that assert par_aft.unit is None or par_aft.unit is u.rad else: assert par_aft.unit.is_equivalent(par_bef.unit) unit_mismatch_models = [ { "class": Gaussian2D, "parameters": { "amplitude": 3 * u.Jy, "x_mean": 2 * u.m, "y_mean": 1 * u.m, "x_stddev": 3 * u.m, "y_stddev": 2 * u.m, "theta": 45 * u.deg, }, "evaluation": [ (412.1320343 * u.cm, 3.121320343 * u.K, 3 * u.Jy * np.exp(-0.5)), (412.1320343 * u.K, 3.121320343 * u.m, 3 * u.Jy * np.exp(-0.5)), ], "bounding_box": [[-14.18257445, 16.18257445], [-10.75693665, 14.75693665]] * u.m, }, { "class": Ellipse2D, "parameters": { "amplitude": 3 * u.Jy, "x_0": 3 * u.m, "y_0": 2 * u.m, "a": 300 * u.cm, "b": 200 * u.cm, "theta": 45 * u.deg, }, "evaluation": [(4 * u.m, 300 * u.K, 3 * u.Jy), (4 * u.K, 300 * u.cm, 3 * u.Jy)], "bounding_box": [[-0.76046808, 4.76046808], [0.68055697, 5.31944302]] * u.m, }, { "class": Disk2D, "parameters": { "amplitude": 3 * u.Jy, "x_0": 3 * u.m, "y_0": 2 * u.m, "R_0": 300 * u.cm, }, "evaluation": [ (5.8 * u.m, 201 * u.K, 3 * u.Jy), (5.8 * u.K, 201 * u.cm, 3 * u.Jy), ], "bounding_box": [[-1, 5], [0, 6]] * u.m, }, { "class": Ring2D, "parameters": { "amplitude": 3 * u.Jy, "x_0": 3 * u.m, "y_0": 2 * u.m, "r_in": 2 * u.cm, "r_out": 2.1 * u.cm, }, "evaluation": [ (302.05 * u.cm, 2 * u.K + 10 * u.K, 3 * u.Jy), (302.05 * u.K, 2 * u.m + 10 * u.um, 3 * u.Jy), ], "bounding_box": [[1.979, 2.021], [2.979, 3.021]] * u.m, }, { "class": TrapezoidDisk2D, "parameters": { "amplitude": 3 * u.Jy, "x_0": 1 * u.m, "y_0": 2 * u.m, "R_0": 100 * u.cm, "slope": 1 * u.Jy / u.m, }, "evaluation": [ (3.5 * u.m, 2 * u.K, 1.5 * u.Jy), (3.5 * u.K, 2 * u.m, 1.5 * u.Jy), ], "bounding_box": [[-2, 6], [-3, 5]] * u.m, }, { "class": RickerWavelet2D, "parameters": { "amplitude": 3 * u.Jy, "x_0": 3 * u.m, "y_0": 2 * u.m, "sigma": 1 * u.m, }, "evaluation": [ (4 * u.m, 2.5 * u.K, 0.602169107 * u.Jy), (4 * u.K, 2.5 * u.m, 0.602169107 * u.Jy), ], "bounding_box": False, }, { "class": AiryDisk2D, "parameters": { "amplitude": 3 * u.Jy, "x_0": 3 * u.m, "y_0": 2 * u.m, "radius": 1 * u.m, }, "evaluation": [ (4 * u.m, 2.1 * u.K, 4.76998480e-05 * u.Jy), (4 * u.K, 2.1 * u.m, 4.76998480e-05 * u.Jy), ], "bounding_box": False, }, { "class": Moffat2D, "parameters": { "amplitude": 3 * u.Jy, "x_0": 4.4 * u.um, "y_0": 3.5 * u.um, "gamma": 1e-3 * u.mm, "alpha": 1, }, "evaluation": [ (1000 * u.nm, 2 * u.K, 0.202565833 * u.Jy), (1000 * u.K, 2 * u.um, 0.202565833 * u.Jy), ], "bounding_box": False, }, { "class": Sersic2D, "parameters": { "amplitude": 3 * u.MJy / u.sr, "x_0": 1 * u.arcsec, "y_0": 2 * u.arcsec, "r_eff": 2 * u.arcsec, "n": 4, "ellip": 0, "theta": 0, }, "evaluation": [ (3 * u.arcsec, 2.5 * u.m, 2.829990489 * u.MJy / u.sr), (3 * u.m, 2.5 * u.arcsec, 2.829990489 * u.MJy / u.sr), ], "bounding_box": False, }, ] @pytest.mark.parametrize("model", unit_mismatch_models) def test_input_unit_mismatch_error(model): if not HAS_SCIPY and model["class"] in SCIPY_MODELS: pytest.skip() MESSAGE = "Units of 'x' and 'y' inputs should match" m = model["class"](**model["parameters"]) for args in model["evaluation"]: if len(args) == 2: kwargs = dict(zip(("x", "y"), args)) else: kwargs = dict(zip(("x", "y", "z"), args)) if kwargs["x"].unit.is_equivalent(kwargs["y"].unit): kwargs["x"] = kwargs["x"].to(kwargs["y"].unit) with pytest.raises(u.UnitsError, match=MESSAGE): m.without_units_for_data(**kwargs) mag_models = [ { "class": Const1D, "parameters": {"amplitude": 3 * u.ABmag}, "evaluation": [(0.6 * u.ABmag, 3 * u.ABmag)], }, { "class": Const1D, "parameters": {"amplitude": 3 * u.ABmag}, "evaluation": [(0.6 * u.mag, 3 * u.ABmag)], }, { "class": Const1D, "parameters": {"amplitude": 3 * u.mag}, "evaluation": [(0.6 * u.ABmag, 3 * u.mag)], }, { "class": Const1D, "parameters": {"amplitude": 3 * u.mag}, "evaluation": [(0.6 * u.mag, 3 * u.mag)], }, { "class": Const2D, "parameters": {"amplitude": 3 * u.ABmag}, "evaluation": [(0.6 * u.micron, 0.2 * u.m, 3 * u.ABmag)], }, { "class": Ellipse2D, "parameters": { "amplitude": 3 * u.ABmag, "x_0": 3 * u.m, "y_0": 2 * u.m, "a": 300 * u.cm, "b": 200 * u.cm, "theta": 45 * u.deg, }, "evaluation": [(4 * u.m, 300 * u.cm, 3 * u.ABmag)], }, { "class": Disk2D, "parameters": { "amplitude": 3 * u.ABmag, "x_0": 3 * u.m, "y_0": 2 * u.m, "R_0": 300 * u.cm, }, "evaluation": [(5.8 * u.m, 201 * u.cm, 3 * u.ABmag)], }, { "class": Ring2D, "parameters": { "amplitude": 3 * u.ABmag, "x_0": 3 * u.m, "y_0": 2 * u.m, "r_in": 2 * u.cm, "r_out": 2.1 * u.cm, }, "evaluation": [(302.05 * u.cm, 2 * u.m + 10 * u.um, 3 * u.ABmag)], }, { "class": Box2D, "parameters": { "amplitude": 3 * u.ABmag, "x_0": 3 * u.m, "y_0": 2 * u.s, "x_width": 4 * u.cm, "y_width": 3 * u.s, }, "evaluation": [(301 * u.cm, 3 * u.s, 3 * u.ABmag)], }, { "class": SmoothlyBrokenPowerLaw1D, "parameters": { "amplitude": 5 * u.ABmag, "x_break": 10 * u.cm, "alpha_1": 1, "alpha_2": -1, "delta": 1, }, "evaluation": [(1 * u.cm, 15.125 * u.ABmag), (1 * u.m, 15.125 * u.ABmag)], }, { "class": Box1D, "parameters": {"amplitude": 3 * u.ABmag, "x_0": 4.4 * u.um, "width": 1 * u.um}, "evaluation": [(4200 * u.nm, 3 * u.ABmag), (1 * u.m, 0 * u.ABmag)], "bounding_box": [3.9, 4.9] * u.um, }, { "class": Schechter1D, "parameters": { "phi_star": 1.0e-4 * (u.Mpc**-3), "m_star": -20.0 * u.ABmag, "alpha": -1.9, }, "evaluation": [(-23 * u.ABmag, 1.002702276867279e-12 * (u.Mpc**-3))], }, { "class": Schechter1D, "parameters": { "phi_star": 1.0e-4 * (u.Mpc**-3), "m_star": -20.0 * u.mag, "alpha": -1.9, }, "evaluation": [(-23 * u.mag, 1.002702276867279e-12 * (u.Mpc**-3))], }, ] @pytest.mark.parametrize("model", mag_models) def test_models_evaluate_magunits(model): if not HAS_SCIPY and model["class"] in SCIPY_MODELS: pytest.skip() m = model["class"](**model["parameters"]) for args in model["evaluation"]: assert_quantity_allclose(m(*args[:-1]), args[-1]) def test_Schechter1D_errors(): # Non magnitude units are bad model = Schechter1D( phi_star=1.0e-4 * (u.Mpc**-3), m_star=-20.0 * u.km, alpha=-1.9 ) MESSAGE = r"The units of magnitude and m_star must be a magnitude" with pytest.raises(u.UnitsError, match=MESSAGE): model(-23 * u.km) # Differing magnitude systems are bad model = Schechter1D( phi_star=1.0e-4 * (u.Mpc**-3), m_star=-20.0 * u.ABmag, alpha=-1.9 ) MESSAGE = ( r".*: Units of input 'x', .*, could not be converted to required input units" r" of .*" ) with pytest.raises(u.UnitsError, match=MESSAGE): model(-23 * u.STmag) # Differing magnitude systems are bad model = Schechter1D( phi_star=1.0e-4 * (u.Mpc**-3), m_star=-20.0 * u.ABmag, alpha=-1.9 ) with pytest.raises(u.UnitsError, match=MESSAGE): model(-23 * u.mag)
b629f533b10520db2ce861403c1e4764508f0900c0217815de9ab1572c696361
# Licensed under a 3-clause BSD style license - see LICENSE.rst # By default, tests should not use the internet. from astropy.samp import conf from astropy.samp.errors import SAMPClientError, SAMPHubError, SAMPProxyError def setup_module(module): conf.use_internet = False def test_SAMPHubError(): """Test that SAMPHubError can be instantiated""" SAMPHubError("test") def test_SAMPClientError(): """Test that SAMPClientError can be instantiated""" SAMPClientError("test") def test_SAMPProxyError(): """Test that SAMPProxyError can be instantiated""" SAMPProxyError("test", "any")
7a92d5cb4c824a58f0d09b5a8155b98eae98981c9f079de29a4f2945ae1b2c37
import pytest # By default, tests should not use the internet. from astropy.samp import conf from astropy.samp.errors import SAMPProxyError from astropy.samp.hub import SAMPHubServer from astropy.samp.integrated_client import SAMPIntegratedClient from .test_helpers import TEST_REPLY, Receiver, assert_output, random_params def setup_module(module): conf.use_internet = False class TestStandardProfile: @property def hub_init_kwargs(self): return {} @property def client_init_kwargs(self): return {} @property def client_connect_kwargs(self): return {} @pytest.fixture(autouse=True) def setup_method(self, tmp_path): self.tmpdir = str(tmp_path) self.hub = SAMPHubServer( web_profile=False, mode="multiple", pool_size=1, **self.hub_init_kwargs ) self.hub.start() self.client1 = SAMPIntegratedClient(**self.client_init_kwargs) self.client1.connect(hub=self.hub, pool_size=1, **self.client_connect_kwargs) self.client2 = SAMPIntegratedClient(**self.client_init_kwargs) self.client2.connect(hub=self.hub, pool_size=1, **self.client_connect_kwargs) def teardown_method(self): if self.client1.is_connected: self.client1.disconnect() if self.client2.is_connected: self.client2.disconnect() self.hub.stop() def test_main(self): self.client1_id = self.client1.get_public_id() self.client2_id = self.client2.get_public_id() self.metadata1 = { "samp.name": "Client 1", "samp.description.text": "Client 1 Description", "client.version": "1.1", } self.metadata2 = { "samp.name": "Client 2", "samp.description.text": "Client 2 Description", "client.version": "1.2", } # Check that the clients are connected assert self.client1.is_connected assert self.client2.is_connected # Check that ping works self.client1.ping() self.client2.ping() # Check that get_registered_clients works as expected. assert self.client1_id not in self.client1.get_registered_clients() assert self.client2_id in self.client1.get_registered_clients() assert self.client1_id in self.client2.get_registered_clients() assert self.client2_id not in self.client2.get_registered_clients() # Check that get_metadata works as expected assert self.client1.get_metadata(self.client1_id) == {} assert self.client1.get_metadata(self.client2_id) == {} assert self.client2.get_metadata(self.client1_id) == {} assert self.client2.get_metadata(self.client2_id) == {} self.client1.declare_metadata(self.metadata1) assert self.client1.get_metadata(self.client1_id) == self.metadata1 assert self.client2.get_metadata(self.client1_id) == self.metadata1 assert self.client1.get_metadata(self.client2_id) == {} assert self.client2.get_metadata(self.client2_id) == {} self.client2.declare_metadata(self.metadata2) assert self.client1.get_metadata(self.client1_id) == self.metadata1 assert self.client2.get_metadata(self.client1_id) == self.metadata1 assert self.client1.get_metadata(self.client2_id) == self.metadata2 assert self.client2.get_metadata(self.client2_id) == self.metadata2 # Check that, without subscriptions, sending a notification from one # client to another raises an error. message = {} message["samp.mtype"] = "table.load.votable" message["samp.params"] = {} with pytest.raises(SAMPProxyError): self.client1.notify(self.client2_id, message) # Check that there are no currently active subscriptions assert self.client1.get_subscribed_clients("table.load.votable") == {} assert self.client2.get_subscribed_clients("table.load.votable") == {} # We now test notifications and calls rec1 = Receiver(self.client1) rec2 = Receiver(self.client2) self.client2.bind_receive_notification( "table.load.votable", rec2.receive_notification ) self.client2.bind_receive_call("table.load.votable", rec2.receive_call) self.client1.bind_receive_response("test-tag", rec1.receive_response) # Check resulting subscriptions assert self.client1.get_subscribed_clients("table.load.votable") == { self.client2_id: {} } assert self.client2.get_subscribed_clients("table.load.votable") == {} assert "table.load.votable" in self.client1.get_subscriptions(self.client2_id) assert "table.load.votable" in self.client2.get_subscriptions(self.client2_id) # Once we have finished with the calls and notifications, we will # check the data got across correctly. # Test notify params = random_params(self.tmpdir) self.client1.notify( self.client2.get_public_id(), {"samp.mtype": "table.load.votable", "samp.params": params}, ) assert_output( "table.load.votable", self.client2.get_private_key(), self.client1_id, params, timeout=60, ) params = random_params(self.tmpdir) self.client1.enotify( self.client2.get_public_id(), "table.load.votable", **params ) assert_output( "table.load.votable", self.client2.get_private_key(), self.client1_id, params, timeout=60, ) # Test notify_all params = random_params(self.tmpdir) self.client1.notify_all( {"samp.mtype": "table.load.votable", "samp.params": params} ) assert_output( "table.load.votable", self.client2.get_private_key(), self.client1_id, params, timeout=60, ) params = random_params(self.tmpdir) self.client1.enotify_all("table.load.votable", **params) assert_output( "table.load.votable", self.client2.get_private_key(), self.client1_id, params, timeout=60, ) # Test call params = random_params(self.tmpdir) self.client1.call( self.client2.get_public_id(), "test-tag", {"samp.mtype": "table.load.votable", "samp.params": params}, ) assert_output( "table.load.votable", self.client2.get_private_key(), self.client1_id, params, timeout=60, ) params = random_params(self.tmpdir) self.client1.ecall( self.client2.get_public_id(), "test-tag", "table.load.votable", **params ) assert_output( "table.load.votable", self.client2.get_private_key(), self.client1_id, params, timeout=60, ) # Test call_all params = random_params(self.tmpdir) self.client1.call_all( "tag1", {"samp.mtype": "table.load.votable", "samp.params": params} ) assert_output( "table.load.votable", self.client2.get_private_key(), self.client1_id, params, timeout=60, ) params = random_params(self.tmpdir) self.client1.ecall_all("tag2", "table.load.votable", **params) assert_output( "table.load.votable", self.client2.get_private_key(), self.client1_id, params, timeout=60, ) # Test call_and_wait params = random_params(self.tmpdir) result = self.client1.call_and_wait( self.client2.get_public_id(), {"samp.mtype": "table.load.votable", "samp.params": params}, timeout=5, ) assert result == TEST_REPLY assert_output( "table.load.votable", self.client2.get_private_key(), self.client1_id, params, timeout=60, ) params = random_params(self.tmpdir) result = self.client1.ecall_and_wait( self.client2.get_public_id(), "table.load.votable", timeout=5, **params ) assert result == TEST_REPLY assert_output( "table.load.votable", self.client2.get_private_key(), self.client1_id, params, timeout=60, ) # TODO: check that receive_response received the right data
408115332bc3da55aaacb1abb031cb869f6af31784603766097e61412b2e055c
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest # By default, tests should not use the internet. from astropy.samp import conf from astropy.samp.client import SAMPClient from astropy.samp.hub import SAMPHubServer from astropy.samp.hub_proxy import SAMPHubProxy from astropy.samp.integrated_client import SAMPIntegratedClient def setup_module(module): conf.use_internet = False def test_SAMPHubProxy(): """Test that SAMPHubProxy can be instantiated""" SAMPHubProxy() def test_SAMPClient(): """Test that SAMPClient can be instantiated""" proxy = SAMPHubProxy() SAMPClient(proxy) def test_SAMPIntegratedClient(): """Test that SAMPIntegratedClient can be instantiated""" SAMPIntegratedClient() @pytest.fixture def samp_hub(request): """A fixture that can be used by client tests that require a HUB.""" my_hub = SAMPHubServer() my_hub.start() request.addfinalizer(my_hub.stop) def test_reconnect(samp_hub): """Test that SAMPIntegratedClient can reconnect. This is a regression test for bug [#2673] https://github.com/astropy/astropy/issues/2673 """ my_client = SAMPIntegratedClient() my_client.connect() my_client.disconnect() my_client.connect()
0821ae8c09ab28d422dae3867c816cee006c853ddd1995aa0bccbdffeb423f76
import sys import pytest from astropy.samp import conf from astropy.samp.hub_script import hub_script def setup_module(module): conf.use_internet = False def setup_function(function): function.sys_argv_orig = sys.argv sys.argv = ["samp_hub"] def teardown_function(function): sys.argv = function.sys_argv_orig @pytest.mark.slow def test_hub_script(): sys.argv.append("-m") # run in multiple mode sys.argv.append("-w") # disable web profile hub_script(timeout=3)
ec5359db21b618745e0e6c8c4d2a5a4fb2bb91043d01da2750775a2809bb2f9a
from astropy.samp import conf from astropy.samp.hub import SAMPHubServer from astropy.samp.hub_proxy import SAMPHubProxy def setup_module(module): conf.use_internet = False class TestHubProxy: def setup_method(self, method): self.hub = SAMPHubServer(web_profile=False, mode="multiple", pool_size=1) self.hub.start() self.proxy = SAMPHubProxy() self.proxy.connect(hub=self.hub, pool_size=1) def teardown_method(self, method): if self.proxy.is_connected: self.proxy.disconnect() self.hub.stop() def test_is_connected(self): assert self.proxy.is_connected def test_disconnect(self): self.proxy.disconnect() def test_ping(self): self.proxy.ping() def test_registration(self): result = self.proxy.register(self.proxy.lockfile["samp.secret"]) self.proxy.unregister(result["samp.private-key"]) def test_custom_lockfile(tmp_path): lockfile = str(tmp_path / ".samptest") hub = SAMPHubServer(web_profile=False, lockfile=lockfile, pool_size=1) hub.start() proxy = SAMPHubProxy() proxy.connect(hub=hub, pool_size=1) hub.stop()
194c84d28f91a6fb43b04dd652b3d0039b9f8c2e383022f26f1d3f232f7d6324
""" Test the web profile using Python classes that have been adapted to act like a web client. We can only put a single test here because only one hub can run with the web profile active, and the user might want to run the tests in parallel. """ import threading from urllib.request import Request, urlopen import pytest from astropy.samp import SAMPHubServer, SAMPIntegratedClient, conf from astropy.samp.web_profile import CLIENT_ACCESS_POLICY, CROSS_DOMAIN from astropy.utils.data import get_readable_fileobj from .test_standard_profile import TestStandardProfile as BaseTestStandardProfile from .web_profile_test_helpers import ( AlwaysApproveWebProfileDialog, SAMPIntegratedWebClient, ) def setup_module(module): conf.use_internet = False class TestWebProfile(BaseTestStandardProfile): @pytest.fixture(autouse=True) def setup_method(self, tmp_path): self.dialog = AlwaysApproveWebProfileDialog() t = threading.Thread(target=self.dialog.poll) t.start() self.tmpdir = str(tmp_path) lockfile = str(tmp_path / ".samp") self.hub = SAMPHubServer( web_profile_dialog=self.dialog, lockfile=lockfile, web_port=0, pool_size=1 ) self.hub.start() self.client1 = SAMPIntegratedClient() self.client1.connect(hub=self.hub, pool_size=1) self.client1_id = self.client1.get_public_id() self.client1_key = self.client1.get_private_key() self.client2 = SAMPIntegratedWebClient() self.client2.connect(web_port=self.hub._web_port, pool_size=2) self.client2_id = self.client2.get_public_id() self.client2_key = self.client2.get_private_key() def teardown_method(self): if self.client1.is_connected: self.client1.disconnect() if self.client2.is_connected: self.client2.disconnect() self.hub.stop() self.dialog.stop() # The full communication tests are run since TestWebProfile inherits # test_main from TestStandardProfile def test_web_profile(self): # Check some additional queries to the server with get_readable_fileobj( f"http://localhost:{self.hub._web_port}/crossdomain.xml" ) as f: assert f.read() == CROSS_DOMAIN with get_readable_fileobj( f"http://localhost:{self.hub._web_port}/clientaccesspolicy.xml" ) as f: assert f.read() == CLIENT_ACCESS_POLICY # Check headers req = Request(f"http://localhost:{self.hub._web_port}/crossdomain.xml") req.add_header("Origin", "test_web_profile") resp = urlopen(req) assert resp.getheader("Access-Control-Allow-Origin") == "test_web_profile" assert resp.getheader("Access-Control-Allow-Headers") == "Content-Type" assert resp.getheader("Access-Control-Allow-Credentials") == "true"
ec4d79932300c9142f6e190aeacdf61f0a181b9c9939fd5410b0c9701e78b16e
import os import pickle import random import string import time from astropy.samp import SAMP_STATUS_OK TEST_REPLY = {"samp.status": SAMP_STATUS_OK, "samp.result": {"txt": "test"}} def write_output(mtype, private_key, sender_id, params): filename = params["verification_file"] f = open(filename, "wb") pickle.dump(mtype, f) pickle.dump(private_key, f) pickle.dump(sender_id, f) pickle.dump(params, f) f.close() def assert_output(mtype, private_key, sender_id, params, timeout=None): filename = params["verification_file"] start = time.time() while True: try: with open(filename, "rb") as f: rec_mtype = pickle.load(f) rec_private_key = pickle.load(f) rec_sender_id = pickle.load(f) rec_params = pickle.load(f) break except (OSError, EOFError): if timeout is not None and time.time() - start > timeout: raise Exception(f"Timeout while waiting for file: {filename}") assert rec_mtype == mtype assert rec_private_key == private_key assert rec_sender_id == sender_id assert rec_params == params class Receiver: def __init__(self, client): self.client = client def receive_notification(self, private_key, sender_id, mtype, params, extra): write_output(mtype, private_key, sender_id, params) def receive_call(self, private_key, sender_id, msg_id, mtype, params, extra): # Here we need to make sure that we first reply, *then* write out the # file, otherwise the tests see the file and move to the next call # before waiting for the reply to be received. self.client.reply(msg_id, TEST_REPLY) self.receive_notification(private_key, sender_id, mtype, params, extra) def receive_response(self, private_key, sender_id, msg_id, response): pass def random_id(length=16): return "".join(random.sample(string.ascii_letters + string.digits, length)) def random_params(directory): return { "verification_file": os.path.join(directory, random_id()), "parameter1": "abcde", "parameter2": 1331, }
e8bf92499740072ff646a2696e252f276c940046bf96e649a6c2ae1cd3a6fb57
import threading import time import xmlrpc.client as xmlrpc from astropy.samp.client import SAMPClient from astropy.samp.errors import SAMPClientError, SAMPHubError from astropy.samp.hub import WebProfileDialog from astropy.samp.hub_proxy import SAMPHubProxy from astropy.samp.integrated_client import SAMPIntegratedClient from astropy.samp.utils import ServerProxyPool class AlwaysApproveWebProfileDialog(WebProfileDialog): def __init__(self): self.polling = True WebProfileDialog.__init__(self) def show_dialog(self, *args): self.consent() def poll(self): while self.polling: self.handle_queue() time.sleep(0.1) def stop(self): self.polling = False class SAMPWebHubProxy(SAMPHubProxy): """ Proxy class to simplify the client interaction with a SAMP hub (via the web profile). In practice web clients should run from the browser, so this is provided as a means of testing a hub's support for the web profile from Python. """ def connect(self, pool_size=20, web_port=21012): """ Connect to the current SAMP Hub on localhost:web_port Parameters ---------- pool_size : int, optional The number of socket connections opened to communicate with the Hub. """ self._connected = False try: self.proxy = ServerProxyPool( pool_size, xmlrpc.ServerProxy, f"http://127.0.0.1:{web_port}", allow_none=1, ) self.ping() self._connected = True except xmlrpc.ProtocolError as p: raise SAMPHubError(f"Protocol Error {p.errcode}: {p.errmsg}") @property def _samp_hub(self): """ Property to abstract away the path to the hub, which allows this class to be used for both the standard and the web profile. """ return self.proxy.samp.webhub def set_xmlrpc_callback(self, private_key, xmlrpc_addr): raise NotImplementedError( "set_xmlrpc_callback is not defined for the web profile" ) def register(self, identity_info): """ Proxy to ``register`` SAMP Hub method. """ return self._samp_hub.register(identity_info) def allow_reverse_callbacks(self, private_key, allow): """ Proxy to ``allowReverseCallbacks`` SAMP Hub method. """ return self._samp_hub.allowReverseCallbacks(private_key, allow) def pull_callbacks(self, private_key, timeout): """ Proxy to ``pullCallbacks`` SAMP Hub method. """ return self._samp_hub.pullCallbacks(private_key, timeout) class SAMPWebClient(SAMPClient): """ Utility class which provides facilities to create and manage a SAMP compliant XML-RPC server that acts as SAMP callable web client application. In practice web clients should run from the browser, so this is provided as a means of testing a hub's support for the web profile from Python. Parameters ---------- hub : :class:`~astropy.samp.hub_proxy.SAMPWebHubProxy` An instance of :class:`~astropy.samp.hub_proxy.SAMPWebHubProxy` to be used for messaging with the SAMP Hub. name : str, optional Client name (corresponding to ``samp.name`` metadata keyword). description : str, optional Client description (corresponding to ``samp.description.text`` metadata keyword). metadata : dict, optional Client application metadata in the standard SAMP format. callable : bool, optional Whether the client can receive calls and notifications. If set to `False`, then the client can send notifications and calls, but can not receive any. """ def __init__(self, hub, name=None, description=None, metadata=None, callable=True): # GENERAL self._is_running = False self._is_registered = False if metadata is None: metadata = {} if name is not None: metadata["samp.name"] = name if description is not None: metadata["samp.description.text"] = description self._metadata = metadata self._callable = callable # HUB INTERACTION self.client = None self._public_id = None self._private_key = None self._hub_id = None self._notification_bindings = {} self._call_bindings = { "samp.app.ping": [self._ping, {}], "client.env.get": [self._client_env_get, {}], } self._response_bindings = {} self.hub = hub self._registration_lock = threading.Lock() self._registered_event = threading.Event() if self._callable: self._thread = threading.Thread(target=self._serve_forever) self._thread.daemon = True def _serve_forever(self): while self.is_running: # Wait until we are actually registered before trying to do # anything, to avoid busy looping # Watch for callbacks here self._registered_event.wait() with self._registration_lock: if not self._is_registered: return results = self.hub.pull_callbacks(self.get_private_key(), 0) for result in results: if result["samp.methodName"] == "receiveNotification": self.receive_notification( self._private_key, *result["samp.params"] ) elif result["samp.methodName"] == "receiveCall": self.receive_call(self._private_key, *result["samp.params"]) elif result["samp.methodName"] == "receiveResponse": self.receive_response(self._private_key, *result["samp.params"]) self.hub.disconnect() def register(self): """ Register the client to the SAMP Hub. """ if self.hub.is_connected: if self._private_key is not None: raise SAMPClientError("Client already registered") result = self.hub.register("Astropy SAMP Web Client") if result["samp.self-id"] == "": raise SAMPClientError( "Registation failed - samp.self-id was not set by the hub." ) if result["samp.private-key"] == "": raise SAMPClientError( "Registation failed - samp.private-key was not set by the hub." ) self._public_id = result["samp.self-id"] self._private_key = result["samp.private-key"] self._hub_id = result["samp.hub-id"] if self._callable: self._declare_subscriptions() self.hub.allow_reverse_callbacks(self._private_key, True) if self._metadata != {}: self.declare_metadata() self._is_registered = True # Let the client thread proceed self._registered_event.set() else: raise SAMPClientError( "Unable to register to the SAMP Hub. Hub proxy not connected." ) def unregister(self): # We have to hold the registration lock if the client is callable # to avoid a race condition where the client queries the hub for # pushCallbacks after it has already been unregistered from the hub with self._registration_lock: super().unregister() class SAMPIntegratedWebClient(SAMPIntegratedClient): """ A Simple SAMP web client. In practice web clients should run from the browser, so this is provided as a means of testing a hub's support for the web profile from Python. This class is meant to simplify the client usage providing a proxy class that merges the :class:`~astropy.samp.client.SAMPWebClient` and :class:`~astropy.samp.hub_proxy.SAMPWebHubProxy` functionalities in a simplified API. Parameters ---------- name : str, optional Client name (corresponding to ``samp.name`` metadata keyword). description : str, optional Client description (corresponding to ``samp.description.text`` metadata keyword). metadata : dict, optional Client application metadata in the standard SAMP format. callable : bool, optional Whether the client can receive calls and notifications. If set to `False`, then the client can send notifications and calls, but can not receive any. """ def __init__(self, name=None, description=None, metadata=None, callable=True): self.hub = SAMPWebHubProxy() self.client = SAMPWebClient(self.hub, name, description, metadata, callable) def connect(self, pool_size=20, web_port=21012): """ Connect with the current or specified SAMP Hub, start and register the client. Parameters ---------- pool_size : int, optional The number of socket connections opened to communicate with the Hub. """ self.hub.connect(pool_size, web_port=web_port) self.client.start() self.client.register()
cca3ae431e73dd2a1d3aca6673bffc579a3b9a056ab107efce918857c7c8c8dd
# Licensed under a 3-clause BSD style license - see LICENSE.rst import time import pytest from astropy.samp import conf from astropy.samp.hub import SAMPHubServer def setup_module(module): conf.use_internet = False def test_SAMPHubServer(): """Test that SAMPHub can be instantiated""" SAMPHubServer(web_profile=False, mode="multiple", pool_size=1) def test_SAMPHubServer_run(): """Test that SAMPHub can be run""" hub = SAMPHubServer(web_profile=False, mode="multiple", pool_size=1) hub.start() time.sleep(1) hub.stop() @pytest.mark.slow def test_SAMPHubServer_run_repeated(): """ Test that SAMPHub can be restarted after it has been stopped, including when web profile support is enabled. """ hub = SAMPHubServer(web_profile=True, mode="multiple", pool_size=1) hub.start() time.sleep(1) hub.stop() time.sleep(1) hub.start() time.sleep(1) hub.stop()
c4efa832a3d068620e10540f14fe6e71fbcba71c191c195ba7c1c65bf80ebb10
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ The astropy.utils.iers package provides access to the tables provided by the International Earth Rotation and Reference Systems Service, in particular allowing interpolation of published UT1-UTC values for given times. These are used in `astropy.time` to provide UT1 values. The polar motions are also used for determining earth orientation for celestial-to-terrestrial coordinate transformations (in `astropy.coordinates`). """ import re from datetime import datetime from urllib.parse import urlparse from warnings import warn import erfa import numpy as np from astropy import config as _config from astropy import units as u from astropy import utils from astropy.table import MaskedColumn, QTable from astropy.time import Time, TimeDelta from astropy.utils.data import ( clear_download_cache, get_pkg_data_filename, get_readable_fileobj, is_url_in_cache, ) from astropy.utils.exceptions import AstropyWarning from astropy.utils.state import ScienceState __all__ = [ "Conf", "conf", "earth_orientation_table", "IERS", "IERS_B", "IERS_A", "IERS_Auto", "FROM_IERS_B", "FROM_IERS_A", "FROM_IERS_A_PREDICTION", "TIME_BEFORE_IERS_RANGE", "TIME_BEYOND_IERS_RANGE", "IERS_A_FILE", "IERS_A_URL", "IERS_A_URL_MIRROR", "IERS_A_README", "IERS_B_FILE", "IERS_B_URL", "IERS_B_README", "IERSRangeError", "IERSStaleWarning", "IERSWarning", "IERSDegradedAccuracyWarning", "LeapSeconds", "IERS_LEAP_SECOND_FILE", "IERS_LEAP_SECOND_URL", "IETF_LEAP_SECOND_URL", ] # IERS-A default file name, URL, and ReadMe with content description IERS_A_FILE = "finals2000A.all" IERS_A_URL = "https://datacenter.iers.org/data/9/finals2000A.all" IERS_A_URL_MIRROR = "https://maia.usno.navy.mil/ser7/finals2000A.all" IERS_A_README = get_pkg_data_filename("data/ReadMe.finals2000A") # IERS-B default file name, URL, and ReadMe with content description IERS_B_FILE = get_pkg_data_filename("data/eopc04_IAU2000.62-now") IERS_B_URL = "http://hpiers.obspm.fr/iers/eop/eopc04/eopc04_IAU2000.62-now" IERS_B_README = get_pkg_data_filename("data/ReadMe.eopc04_IAU2000") # LEAP SECONDS default file name, URL, and alternative format/URL IERS_LEAP_SECOND_FILE = get_pkg_data_filename("data/Leap_Second.dat") IERS_LEAP_SECOND_URL = "https://hpiers.obspm.fr/iers/bul/bulc/Leap_Second.dat" IETF_LEAP_SECOND_URL = "https://www.ietf.org/timezones/data/leap-seconds.list" # Status/source values returned by IERS.ut1_utc FROM_IERS_B = 0 FROM_IERS_A = 1 FROM_IERS_A_PREDICTION = 2 TIME_BEFORE_IERS_RANGE = -1 TIME_BEYOND_IERS_RANGE = -2 MJD_ZERO = 2400000.5 INTERPOLATE_ERROR = """\ interpolating from IERS_Auto using predictive values that are more than {0} days old. Normally you should not see this error because this class automatically downloads the latest IERS-A table. Perhaps you are offline? If you understand what you are doing then this error can be suppressed by setting the auto_max_age configuration variable to ``None``: from astropy.utils.iers import conf conf.auto_max_age = None """ MONTH_ABBR = [ "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec", ] class IERSWarning(AstropyWarning): """ Generic warning class for IERS. """ class IERSDegradedAccuracyWarning(AstropyWarning): """ IERS time conversion has degraded accuracy normally due to setting ``conf.auto_download = False`` and ``conf.iers_degraded_accuracy = 'warn'``. """ class IERSStaleWarning(IERSWarning): """ Downloaded IERS table may be stale. """ def download_file(*args, **kwargs): """ Overload astropy.utils.data.download_file within iers module to use a custom (longer) wait time. This just passes through ``*args`` and ``**kwargs`` after temporarily setting the download_file remote timeout to the local ``iers.conf.remote_timeout`` value. """ kwargs.setdefault( "http_headers", { "User-Agent": "astropy/iers", "Accept": "*/*", }, ) with utils.data.conf.set_temp("remote_timeout", conf.remote_timeout): return utils.data.download_file(*args, **kwargs) def _none_to_float(value): """ Convert None to a valid floating point value. Especially for auto_max_age = None. """ return value if value is not None else np.finfo(float).max class Conf(_config.ConfigNamespace): """ Configuration parameters for `astropy.utils.iers`. """ auto_download = _config.ConfigItem( True, "Enable auto-downloading of the latest IERS data. If set to False " "then the local IERS-B file will be used by default (even if the " "full IERS file with predictions was already downloaded and cached). " "This parameter also controls whether internet resources will be " "queried to update the leap second table if the installed version is " "out of date. Default is True.", ) auto_max_age = _config.ConfigItem( 30.0, "Maximum age (days) of predictive data before auto-downloading. " 'See "Auto refresh behavior" in astropy.utils.iers documentation for details. ' "Default is 30.", ) iers_auto_url = _config.ConfigItem( IERS_A_URL, "URL for auto-downloading IERS file data." ) iers_auto_url_mirror = _config.ConfigItem( IERS_A_URL_MIRROR, "Mirror URL for auto-downloading IERS file data." ) remote_timeout = _config.ConfigItem( 10.0, "Remote timeout downloading IERS file data (seconds)." ) iers_degraded_accuracy = _config.ConfigItem( ["error", "warn", "ignore"], "IERS behavior if the range of available IERS data does not " "cover the times when converting time scales, potentially leading " "to degraded accuracy.", ) system_leap_second_file = _config.ConfigItem("", "System file with leap seconds.") iers_leap_second_auto_url = _config.ConfigItem( IERS_LEAP_SECOND_URL, "URL for auto-downloading leap seconds." ) ietf_leap_second_auto_url = _config.ConfigItem( IETF_LEAP_SECOND_URL, "Alternate URL for auto-downloading leap seconds." ) conf = Conf() class IERSRangeError(IndexError): """ Any error for when dates are outside of the valid range for IERS """ class IERS(QTable): """Generic IERS table class, defining interpolation functions. Sub-classed from `astropy.table.QTable`. The table should hold columns 'MJD', 'UT1_UTC', 'dX_2000A'/'dY_2000A', and 'PM_x'/'PM_y'. """ iers_table = None """Cached table, returned if ``open`` is called without arguments.""" @classmethod def open(cls, file=None, cache=False, **kwargs): """Open an IERS table, reading it from a file if not loaded before. Parameters ---------- file : str or None full local or network path to the ascii file holding IERS data, for passing on to the ``read`` class methods (further optional arguments that are available for some IERS subclasses can be added). If None, use the default location from the ``read`` class method. cache : bool Whether to use cache. Defaults to False, since IERS files are regularly updated. Returns ------- IERS An IERS table class instance Notes ----- On the first call in a session, the table will be memoized (in the ``iers_table`` class attribute), and further calls to ``open`` will return this stored table if ``file=None`` (the default). If a table needs to be re-read from disk, pass on an explicit file location or use the (sub-class) close method and re-open. If the location is a network location it is first downloaded via download_file. For the IERS class itself, an IERS_B sub-class instance is opened. """ if file is not None or cls.iers_table is None: if file is not None: if urlparse(file).netloc: kwargs.update(file=download_file(file, cache=cache)) else: kwargs.update(file=file) # TODO: the below is really ugly and probably a bad idea. Instead, # there should probably be an IERSBase class, which provides # useful methods but cannot really be used on its own, and then # *perhaps* an IERS class which provides best defaults. But for # backwards compatibility, we use the IERS_B reader for IERS here. if cls is IERS: cls.iers_table = IERS_B.read(**kwargs) else: cls.iers_table = cls.read(**kwargs) return cls.iers_table @classmethod def close(cls): """Remove the IERS table from the class. This allows the table to be re-read from disk during one's session (e.g., if one finds it is out of date and has updated the file). """ cls.iers_table = None def mjd_utc(self, jd1, jd2=0.0): """Turn a time to MJD, returning integer and fractional parts. Parameters ---------- jd1 : float, array, or `~astropy.time.Time` first part of two-part JD, or Time object jd2 : float or array, optional second part of two-part JD. Default is 0., ignored if jd1 is `~astropy.time.Time`. Returns ------- mjd : float or array integer part of MJD utc : float or array fractional part of MJD """ try: # see if this is a Time object jd1, jd2 = jd1.utc.jd1, jd1.utc.jd2 except Exception: pass mjd = np.floor(jd1 - MJD_ZERO + jd2) utc = jd1 - (MJD_ZERO + mjd) + jd2 return mjd, utc def ut1_utc(self, jd1, jd2=0.0, return_status=False): """Interpolate UT1-UTC corrections in IERS Table for given dates. Parameters ---------- jd1 : float, array of float, or `~astropy.time.Time` object first part of two-part JD, or Time object jd2 : float or float array, optional second part of two-part JD. Default is 0., ignored if jd1 is `~astropy.time.Time`. return_status : bool Whether to return status values. If False (default), raise ``IERSRangeError`` if any time is out of the range covered by the IERS table. Returns ------- ut1_utc : float or float array UT1-UTC, interpolated in IERS Table status : int or int array Status values (if ``return_status``=``True``):: ``iers.FROM_IERS_B`` ``iers.FROM_IERS_A`` ``iers.FROM_IERS_A_PREDICTION`` ``iers.TIME_BEFORE_IERS_RANGE`` ``iers.TIME_BEYOND_IERS_RANGE`` """ return self._interpolate( jd1, jd2, ["UT1_UTC"], self.ut1_utc_source if return_status else None ) def dcip_xy(self, jd1, jd2=0.0, return_status=False): """Interpolate CIP corrections in IERS Table for given dates. Parameters ---------- jd1 : float, array of float, or `~astropy.time.Time` object first part of two-part JD, or Time object jd2 : float or float array, optional second part of two-part JD (default 0., ignored if jd1 is Time) return_status : bool Whether to return status values. If False (default), raise ``IERSRangeError`` if any time is out of the range covered by the IERS table. Returns ------- D_x : `~astropy.units.Quantity` ['angle'] x component of CIP correction for the requested times. D_y : `~astropy.units.Quantity` ['angle'] y component of CIP correction for the requested times status : int or int array Status values (if ``return_status``=``True``):: ``iers.FROM_IERS_B`` ``iers.FROM_IERS_A`` ``iers.FROM_IERS_A_PREDICTION`` ``iers.TIME_BEFORE_IERS_RANGE`` ``iers.TIME_BEYOND_IERS_RANGE`` """ return self._interpolate( jd1, jd2, ["dX_2000A", "dY_2000A"], self.dcip_source if return_status else None, ) def pm_xy(self, jd1, jd2=0.0, return_status=False): """Interpolate polar motions from IERS Table for given dates. Parameters ---------- jd1 : float, array of float, or `~astropy.time.Time` object first part of two-part JD, or Time object jd2 : float or float array, optional second part of two-part JD. Default is 0., ignored if jd1 is `~astropy.time.Time`. return_status : bool Whether to return status values. If False (default), raise ``IERSRangeError`` if any time is out of the range covered by the IERS table. Returns ------- PM_x : `~astropy.units.Quantity` ['angle'] x component of polar motion for the requested times. PM_y : `~astropy.units.Quantity` ['angle'] y component of polar motion for the requested times. status : int or int array Status values (if ``return_status``=``True``):: ``iers.FROM_IERS_B`` ``iers.FROM_IERS_A`` ``iers.FROM_IERS_A_PREDICTION`` ``iers.TIME_BEFORE_IERS_RANGE`` ``iers.TIME_BEYOND_IERS_RANGE`` """ return self._interpolate( jd1, jd2, ["PM_x", "PM_y"], self.pm_source if return_status else None ) def _check_interpolate_indices(self, indices_orig, indices_clipped, max_input_mjd): """ Check that the indices from interpolation match those after clipping to the valid table range. This method gets overridden in the IERS_Auto class because it has different requirements. """ if np.any(indices_orig != indices_clipped): if conf.iers_degraded_accuracy == "error": msg = ( "(some) times are outside of range covered by IERS table. Cannot" " convert with full accuracy. To allow conversion with degraded" " accuracy set astropy.utils.iers.conf.iers_degraded_accuracy to" ' "warn" or "silent". For more information about setting this' " configuration parameter or controlling its value globally, see" " the Astropy configuration system documentation" " https://docs.astropy.org/en/stable/config/index.html." ) raise IERSRangeError(msg) elif conf.iers_degraded_accuracy == "warn": # No IERS data covering the time(s) and user requested a warning. msg = ( "(some) times are outside of range covered by IERS table, " "accuracy is degraded." ) warn(msg, IERSDegradedAccuracyWarning) # No IERS data covering the time(s) and user is OK with no warning. def _interpolate(self, jd1, jd2, columns, source=None): mjd, utc = self.mjd_utc(jd1, jd2) # enforce array is_scalar = not hasattr(mjd, "__array__") or mjd.ndim == 0 if is_scalar: mjd = np.array([mjd]) utc = np.array([utc]) elif mjd.size == 0: # Short-cut empty input. return np.array([]) self._refresh_table_as_needed(mjd) # For typical format, will always find a match (since MJD are integer) # hence, important to define which side we will be; this ensures # self['MJD'][i-1]<=mjd<self['MJD'][i] i = np.searchsorted(self["MJD"].value, mjd, side="right") # Get index to MJD at or just below given mjd, clipping to ensure we # stay in range of table (status will be set below for those outside) i1 = np.clip(i, 1, len(self) - 1) i0 = i1 - 1 mjd_0, mjd_1 = self["MJD"][i0].value, self["MJD"][i1].value results = [] for column in columns: val_0, val_1 = self[column][i0], self[column][i1] d_val = val_1 - val_0 if column == "UT1_UTC": # Check & correct for possible leap second (correcting diff., # not 1st point, since jump can only happen right at 2nd point) d_val -= d_val.round() # Linearly interpolate (which is what TEMPO does for UT1-UTC, but # may want to follow IERS gazette #13 for more precise # interpolation and correction for tidal effects; # https://maia.usno.navy.mil/iers-gaz13) val = val_0 + (mjd - mjd_0 + utc) / (mjd_1 - mjd_0) * d_val # Do not extrapolate outside range, instead just propagate last values. val[i == 0] = self[column][0] val[i == len(self)] = self[column][-1] if is_scalar: val = val[0] results.append(val) if source: # Set status to source, using the routine passed in. status = source(i1) # Check for out of range status[i == 0] = TIME_BEFORE_IERS_RANGE status[i == len(self)] = TIME_BEYOND_IERS_RANGE if is_scalar: status = status[0] results.append(status) return results else: self._check_interpolate_indices(i1, i, np.max(mjd)) return results[0] if len(results) == 1 else results def _refresh_table_as_needed(self, mjd): """ Potentially update the IERS table in place depending on the requested time values in ``mdj`` and the time span of the table. The base behavior is not to update the table. ``IERS_Auto`` overrides this method. """ pass def ut1_utc_source(self, i): """Source for UT1-UTC. To be overridden by subclass.""" return np.zeros_like(i) def dcip_source(self, i): """Source for CIP correction. To be overridden by subclass.""" return np.zeros_like(i) def pm_source(self, i): """Source for polar motion. To be overridden by subclass.""" return np.zeros_like(i) @property def time_now(self): """ Property to provide the current time, but also allow for explicitly setting the _time_now attribute for testing purposes. """ try: return self._time_now except Exception: return Time.now() def _convert_col_for_table(self, col): # Fill masked columns with units to avoid dropped-mask warnings # when converting to Quantity. # TODO: Once we support masked quantities, we can drop this and # in the code below replace b_bad with table['UT1_UTC_B'].mask, etc. if getattr(col, "unit", None) is not None and isinstance(col, MaskedColumn): col = col.filled(np.nan) return super()._convert_col_for_table(col) class IERS_A(IERS): """IERS Table class targeted to IERS A, provided by USNO. These include rapid turnaround and predicted times. See https://datacenter.iers.org/eop.php Notes ----- The IERS A file is not part of astropy. It can be downloaded from ``iers.IERS_A_URL`` or ``iers.IERS_A_URL_MIRROR``. See ``iers.__doc__`` for instructions on use in ``Time``, etc. """ iers_table = None @classmethod def _combine_a_b_columns(cls, iers_a): """ Return a new table with appropriate combination of IERS_A and B columns. """ # IERS A has some rows at the end that hold nothing but dates & MJD # presumably to be filled later. Exclude those a priori -- there # should at least be a predicted UT1-UTC and PM! table = iers_a[np.isfinite(iers_a["UT1_UTC_A"]) & (iers_a["PolPMFlag_A"] != "")] # This does nothing for IERS_A, but allows IERS_Auto to ensure the # IERS B values in the table are consistent with the true ones. table = cls._substitute_iers_b(table) # Combine A and B columns, using B where possible. b_bad = np.isnan(table["UT1_UTC_B"]) table["UT1_UTC"] = np.where(b_bad, table["UT1_UTC_A"], table["UT1_UTC_B"]) table["UT1Flag"] = np.where(b_bad, table["UT1Flag_A"], "B") # Repeat for polar motions. b_bad = np.isnan(table["PM_X_B"]) | np.isnan(table["PM_Y_B"]) table["PM_x"] = np.where(b_bad, table["PM_x_A"], table["PM_X_B"]) table["PM_y"] = np.where(b_bad, table["PM_y_A"], table["PM_Y_B"]) table["PolPMFlag"] = np.where(b_bad, table["PolPMFlag_A"], "B") b_bad = np.isnan(table["dX_2000A_B"]) | np.isnan(table["dY_2000A_B"]) table["dX_2000A"] = np.where(b_bad, table["dX_2000A_A"], table["dX_2000A_B"]) table["dY_2000A"] = np.where(b_bad, table["dY_2000A_A"], table["dY_2000A_B"]) table["NutFlag"] = np.where(b_bad, table["NutFlag_A"], "B") # Get the table index for the first row that has predictive values # PolPMFlag_A IERS (I) or Prediction (P) flag for # Bull. A polar motion values # UT1Flag_A IERS (I) or Prediction (P) flag for # Bull. A UT1-UTC values # Since only 'P' and 'I' are possible and 'P' is guaranteed to come # after 'I', we can use searchsorted for 100 times speed up over # finding the first index where the flag equals 'P'. p_index = min( np.searchsorted(table["UT1Flag_A"], "P"), np.searchsorted(table["PolPMFlag_A"], "P"), ) table.meta["predictive_index"] = p_index table.meta["predictive_mjd"] = table["MJD"][p_index].value return table @classmethod def _substitute_iers_b(cls, table): # See documentation in IERS_Auto. return table @classmethod def read(cls, file=None, readme=None): """Read IERS-A table from a finals2000a.* file provided by USNO. Parameters ---------- file : str full path to ascii file holding IERS-A data. Defaults to ``iers.IERS_A_FILE``. readme : str full path to ascii file holding CDS-style readme. Defaults to package version, ``iers.IERS_A_README``. Returns ------- ``IERS_A`` class instance """ if file is None: file = IERS_A_FILE if readme is None: readme = IERS_A_README iers_a = super().read(file, format="cds", readme=readme) # Combine the A and B data for UT1-UTC and PM columns table = cls._combine_a_b_columns(iers_a) table.meta["data_path"] = file table.meta["readme_path"] = readme return table def ut1_utc_source(self, i): """Set UT1-UTC source flag for entries in IERS table""" ut1flag = self["UT1Flag"][i] source = np.ones_like(i) * FROM_IERS_B source[ut1flag == "I"] = FROM_IERS_A source[ut1flag == "P"] = FROM_IERS_A_PREDICTION return source def dcip_source(self, i): """Set CIP correction source flag for entries in IERS table""" nutflag = self["NutFlag"][i] source = np.ones_like(i) * FROM_IERS_B source[nutflag == "I"] = FROM_IERS_A source[nutflag == "P"] = FROM_IERS_A_PREDICTION return source def pm_source(self, i): """Set polar motion source flag for entries in IERS table""" pmflag = self["PolPMFlag"][i] source = np.ones_like(i) * FROM_IERS_B source[pmflag == "I"] = FROM_IERS_A source[pmflag == "P"] = FROM_IERS_A_PREDICTION return source class IERS_B(IERS): """IERS Table class targeted to IERS B, provided by IERS itself. These are final values; see https://www.iers.org/IERS/EN/Home/home_node.html Notes ----- If the package IERS B file (```iers.IERS_B_FILE``) is out of date, a new version can be downloaded from ``iers.IERS_B_URL``. """ iers_table = None @classmethod def read(cls, file=None, readme=None, data_start=14): """Read IERS-B table from a eopc04_iau2000.* file provided by IERS. Parameters ---------- file : str full path to ascii file holding IERS-B data. Defaults to package version, ``iers.IERS_B_FILE``. readme : str full path to ascii file holding CDS-style readme. Defaults to package version, ``iers.IERS_B_README``. data_start : int starting row. Default is 14, appropriate for standard IERS files. Returns ------- ``IERS_B`` class instance """ if file is None: file = IERS_B_FILE if readme is None: readme = IERS_B_README table = super().read(file, format="cds", readme=readme, data_start=data_start) table.meta["data_path"] = file table.meta["readme_path"] = readme return table def ut1_utc_source(self, i): """Set UT1-UTC source flag for entries in IERS table""" return np.ones_like(i) * FROM_IERS_B def dcip_source(self, i): """Set CIP correction source flag for entries in IERS table""" return np.ones_like(i) * FROM_IERS_B def pm_source(self, i): """Set PM source flag for entries in IERS table""" return np.ones_like(i) * FROM_IERS_B class IERS_Auto(IERS_A): """ Provide most-recent IERS data and automatically handle downloading of updated values as necessary. """ iers_table = None @classmethod def open(cls): """If the configuration setting ``astropy.utils.iers.conf.auto_download`` is set to True (default), then open a recent version of the IERS-A table with predictions for UT1-UTC and polar motion out to approximately one year from now. If the available version of this file is older than ``astropy.utils.iers.conf.auto_max_age`` days old (or non-existent) then it will be downloaded over the network and cached. If the configuration setting ``astropy.utils.iers.conf.auto_download`` is set to False then ``astropy.utils.iers.IERS()`` is returned. This is normally the IERS-B table that is supplied with astropy. On the first call in a session, the table will be memoized (in the ``iers_table`` class attribute), and further calls to ``open`` will return this stored table. Returns ------- `~astropy.table.QTable` instance With IERS (Earth rotation) data columns """ if not conf.auto_download: cls.iers_table = IERS_B.open() return cls.iers_table all_urls = (conf.iers_auto_url, conf.iers_auto_url_mirror) if cls.iers_table is not None: # If the URL has changed, we need to redownload the file, so we # should ignore the internally cached version. if cls.iers_table.meta.get("data_url") in all_urls: return cls.iers_table for url in all_urls: try: filename = download_file(url, cache=True) except Exception as err: warn(f"failed to download {url}: {err}", IERSWarning) continue try: cls.iers_table = cls.read(file=filename) except Exception as err: warn(f"malformed IERS table from {url}: {err}", IERSWarning) continue cls.iers_table.meta["data_url"] = url break else: # Issue a warning here, perhaps user is offline. An exception # will be raised downstream if actually trying to interpolate # predictive values. warn("unable to download valid IERS file, using local IERS-B", IERSWarning) cls.iers_table = IERS_B.open() return cls.iers_table def _check_interpolate_indices(self, indices_orig, indices_clipped, max_input_mjd): """Check that the indices from interpolation match those after clipping to the valid table range. The IERS_Auto class is exempted as long as it has sufficiently recent available data so the clipped interpolation is always within the confidence bounds of current Earth rotation knowledge. """ predictive_mjd = self.meta["predictive_mjd"] # See explanation in _refresh_table_as_needed for these conditions auto_max_age = _none_to_float(conf.auto_max_age) if ( max_input_mjd > predictive_mjd and self.time_now.mjd - predictive_mjd > auto_max_age ): raise ValueError(INTERPOLATE_ERROR.format(auto_max_age)) def _refresh_table_as_needed(self, mjd): """Potentially update the IERS table in place depending on the requested time values in ``mjd`` and the time span of the table. For IERS_Auto the behavior is that the table is refreshed from the IERS server if both the following apply: - Any of the requested IERS values are predictive. The IERS-A table contains predictive data out for a year after the available definitive values. - The first predictive values are at least ``conf.auto_max_age days`` old. In other words the IERS-A table was created by IERS long enough ago that it can be considered stale for predictions. """ max_input_mjd = np.max(mjd) now_mjd = self.time_now.mjd # IERS-A table contains predictive data out for a year after # the available definitive values. fpi = self.meta["predictive_index"] predictive_mjd = self.meta["predictive_mjd"] # Update table in place if necessary auto_max_age = _none_to_float(conf.auto_max_age) # If auto_max_age is smaller than IERS update time then repeated downloads may # occur without getting updated values (giving a IERSStaleWarning). if auto_max_age < 10: raise ValueError( "IERS auto_max_age configuration value must be larger than 10 days" ) if max_input_mjd > predictive_mjd and (now_mjd - predictive_mjd) > auto_max_age: all_urls = (conf.iers_auto_url, conf.iers_auto_url_mirror) # Get the latest version try: filename = download_file(all_urls[0], sources=all_urls, cache="update") except Exception as err: # Issue a warning here, perhaps user is offline. An exception # will be raised downstream when actually trying to interpolate # predictive values. warn( AstropyWarning( f'failed to download {" and ".join(all_urls)}: {err}.\nA' " coordinate or time-related calculation might be compromised" " or fail because the dates are not covered by the available" ' IERS file. See the "IERS data access" section of the' " astropy documentation for additional information on working" " offline." ) ) return new_table = self.__class__.read(file=filename) new_table.meta["data_url"] = str(all_urls[0]) # New table has new values? if new_table["MJD"][-1] > self["MJD"][-1]: # Replace *replace* current values from the first predictive index through # the end of the current table. This replacement is much faster than just # deleting all rows and then using add_row for the whole duration. new_fpi = np.searchsorted( new_table["MJD"].value, predictive_mjd, side="right" ) n_replace = len(self) - fpi self[fpi:] = new_table[new_fpi : new_fpi + n_replace] # Sanity check for continuity if new_table["MJD"][new_fpi + n_replace] - self["MJD"][-1] != 1.0 * u.d: raise ValueError("unexpected gap in MJD when refreshing IERS table") # Now add new rows in place for row in new_table[new_fpi + n_replace :]: self.add_row(row) self.meta.update(new_table.meta) else: warn( IERSStaleWarning( "IERS_Auto predictive values are older than" f" {conf.auto_max_age} days but downloading the latest table" " did not find newer values" ) ) @classmethod def _substitute_iers_b(cls, table): """Substitute IERS B values with those from a real IERS B table. IERS-A has IERS-B values included, but for reasons unknown these do not match the latest IERS-B values (see comments in #4436). Here, we use the bundled astropy IERS-B table to overwrite the values in the downloaded IERS-A table. """ iers_b = IERS_B.open() # Substitute IERS-B values for existing B values in IERS-A table mjd_b = table["MJD"][np.isfinite(table["UT1_UTC_B"])] i0 = np.searchsorted(iers_b["MJD"], mjd_b[0], side="left") i1 = np.searchsorted(iers_b["MJD"], mjd_b[-1], side="right") iers_b = iers_b[i0:i1] n_iers_b = len(iers_b) # If there is overlap then replace IERS-A values from available IERS-B if n_iers_b > 0: # Sanity check that we are overwriting the correct values if not u.allclose(table["MJD"][:n_iers_b], iers_b["MJD"]): raise ValueError( "unexpected mismatch when copying IERS-B values into IERS-A table." ) # Finally do the overwrite table["UT1_UTC_B"][:n_iers_b] = iers_b["UT1_UTC"] table["PM_X_B"][:n_iers_b] = iers_b["PM_x"] table["PM_Y_B"][:n_iers_b] = iers_b["PM_y"] table["dX_2000A_B"][:n_iers_b] = iers_b["dX_2000A"] table["dY_2000A_B"][:n_iers_b] = iers_b["dY_2000A"] return table class earth_orientation_table(ScienceState): """Default IERS table for Earth rotation and reference systems service. These tables are used to calculate the offsets between ``UT1`` and ``UTC`` and for conversion to Earth-based coordinate systems. The state itself is an IERS table, as an instance of one of the `~astropy.utils.iers.IERS` classes. The default, the auto-updating `~astropy.utils.iers.IERS_Auto` class, should suffice for most purposes. Examples -------- To temporarily use the IERS-B file packaged with astropy:: >>> from astropy.utils import iers >>> from astropy.time import Time >>> iers_b = iers.IERS_B.open(iers.IERS_B_FILE) >>> with iers.earth_orientation_table.set(iers_b): ... print(Time('2000-01-01').ut1.isot) 2000-01-01T00:00:00.355 To use the most recent IERS-A file for the whole session:: >>> iers_a = iers.IERS_A.open(iers.IERS_A_URL) # doctest: +SKIP >>> iers.earth_orientation_table.set(iers_a) # doctest: +SKIP <ScienceState earth_orientation_table: <IERS_A length=17463>...> To go back to the default (of `~astropy.utils.iers.IERS_Auto`):: >>> iers.earth_orientation_table.set(None) # doctest: +SKIP <ScienceState earth_orientation_table: <IERS_Auto length=17428>...> """ _value = None @classmethod def validate(cls, value): if value is None: value = IERS_Auto.open() if not isinstance(value, IERS): raise ValueError("earth_orientation_table requires an IERS Table.") return value class LeapSeconds(QTable): """Leap seconds class, holding TAI-UTC differences. The table should hold columns 'year', 'month', 'tai_utc'. Methods are provided to initialize the table from IERS ``Leap_Second.dat``, IETF/ntp ``leap-seconds.list``, or built-in ERFA/SOFA, and to update the list used by ERFA. Notes ----- Astropy has a built-in ``iers.IERS_LEAP_SECONDS_FILE``. Up to date versions can be downloaded from ``iers.IERS_LEAP_SECONDS_URL`` or ``iers.LEAP_SECONDS_LIST_URL``. Many systems also store a version of ``leap-seconds.list`` for use with ``ntp`` (e.g., on Debian/Ubuntu systems, ``/usr/share/zoneinfo/leap-seconds.list``). To prevent querying internet resources if the available local leap second file(s) are out of date, set ``iers.conf.auto_download = False``. This must be done prior to performing any ``Time`` scale transformations related to UTC (e.g. converting from UTC to TAI). """ # Note: Time instances in this class should use scale='tai' to avoid # needing leap seconds in their creation or interpretation. _re_expires = re.compile(r"^#.*File expires on[:\s]+(\d+\s\w+\s\d+)\s*$") _expires = None _auto_open_files = [ "erfa", IERS_LEAP_SECOND_FILE, "system_leap_second_file", "iers_leap_second_auto_url", "ietf_leap_second_auto_url", ] """Files or conf attributes to try in auto_open.""" @classmethod def open(cls, file=None, cache=False): """Open a leap-second list. Parameters ---------- file : path-like or None Full local or network path to the file holding leap-second data, for passing on to the various ``from_`` class methods. If 'erfa', return the data used by the ERFA library. If `None`, use default locations from file and configuration to find a table that is not expired. cache : bool Whether to use cache. Defaults to False, since leap-second files are regularly updated. Returns ------- leap_seconds : `~astropy.utils.iers.LeapSeconds` Table with 'year', 'month', and 'tai_utc' columns, plus possibly others. Notes ----- Bulletin C is released about 10 days after a possible leap second is introduced, i.e., mid-January or mid-July. Expiration days are thus generally at least 150 days after the present. For the auto-loading, a list comprised of the table shipped with astropy, and files and URLs in `~astropy.utils.iers.Conf` are tried, returning the first that is sufficiently new, or the newest among them all. """ if file is None: return cls.auto_open() if file.lower() == "erfa": return cls.from_erfa() if urlparse(file).netloc: file = download_file(file, cache=cache) # Just try both reading methods. try: return cls.from_iers_leap_seconds(file) except Exception: return cls.from_leap_seconds_list(file) @staticmethod def _today(): # Get current day in scale='tai' without going through a scale change # (so we do not need leap seconds). s = "{0.year:04d}-{0.month:02d}-{0.day:02d}".format(datetime.utcnow()) return Time(s, scale="tai", format="iso", out_subfmt="date") @classmethod def auto_open(cls, files=None): """Attempt to get an up-to-date leap-second list. The routine will try the files in sequence until it finds one whose expiration date is "good enough" (see below). If none are good enough, it returns the one with the most recent expiration date, warning if that file is expired. For remote files that are cached already, the cached file is tried first before attempting to retrieve it again. Parameters ---------- files : list of path-like, optional List of files/URLs to attempt to open. By default, uses ``cls._auto_open_files``. Returns ------- leap_seconds : `~astropy.utils.iers.LeapSeconds` Up to date leap-second table Notes ----- Bulletin C is released about 10 days after a possible leap second is introduced, i.e., mid-January or mid-July. Expiration days are thus generally at least 150 days after the present. We look for a file that expires more than 180 - `~astropy.utils.iers.Conf.auto_max_age` after the present. """ offset = 180 - (30 if conf.auto_max_age is None else conf.auto_max_age) good_enough = cls._today() + TimeDelta(offset, format="jd") if files is None: # Basic files to go over (entries in _auto_open_files can be # configuration items, which we want to be sure are up to date). files = [getattr(conf, f, f) for f in cls._auto_open_files] # Remove empty entries. files = [f for f in files if f] # Our trials start with normal files and remote ones that are # already in cache. The bools here indicate that the cache # should be used. trials = [ (f, True) for f in files if not urlparse(f).netloc or is_url_in_cache(f) ] # If we are allowed to download, we try downloading new versions # if none of the above worked. if conf.auto_download: trials += [(f, False) for f in files if urlparse(f).netloc] self = None err_list = [] # Go through all entries, and return the first one that # is not expired, or the most up to date one. for f, allow_cache in trials: if not allow_cache: clear_download_cache(f) try: trial = cls.open(f, cache=True) except Exception as exc: err_list.append(exc) continue if self is None or trial.expires > self.expires: self = trial self.meta["data_url"] = str(f) if self.expires > good_enough: break if self is None: raise ValueError( "none of the files could be read. The " f"following errors were raised:\n {err_list}" ) if self.expires < self._today() and conf.auto_max_age is not None: warn("leap-second file is expired.", IERSStaleWarning) return self @property def expires(self): """The limit of validity of the table.""" return self._expires @classmethod def _read_leap_seconds(cls, file, **kwargs): """Read a file, identifying expiration by matching 'File expires'""" expires = None # Find expiration date. with get_readable_fileobj(file) as fh: lines = fh.readlines() for line in lines: match = cls._re_expires.match(line) if match: day, month, year = match.groups()[0].split() month_nb = MONTH_ABBR.index(month[:3]) + 1 expires = Time( f"{year}-{month_nb:02d}-{day}", scale="tai", out_subfmt="date" ) break else: raise ValueError(f"did not find expiration date in {file}") self = cls.read(lines, format="ascii.no_header", **kwargs) self._expires = expires return self @classmethod def from_iers_leap_seconds(cls, file=IERS_LEAP_SECOND_FILE): """Create a table from a file like the IERS ``Leap_Second.dat``. Parameters ---------- file : path-like, optional Full local or network path to the file holding leap-second data in a format consistent with that used by IERS. By default, uses ``iers.IERS_LEAP_SECOND_FILE``. Notes ----- The file *must* contain the expiration date in a comment line, like '# File expires on 28 June 2020' """ return cls._read_leap_seconds( file, names=["mjd", "day", "month", "year", "tai_utc"] ) @classmethod def from_leap_seconds_list(cls, file): """Create a table from a file like the IETF ``leap-seconds.list``. Parameters ---------- file : path-like, optional Full local or network path to the file holding leap-second data in a format consistent with that used by IETF. Up to date versions can be retrieved from ``iers.IETF_LEAP_SECOND_URL``. Notes ----- The file *must* contain the expiration date in a comment line, like '# File expires on: 28 June 2020' """ from astropy.io.ascii import convert_numpy # Here to avoid circular import names = ["ntp_seconds", "tai_utc", "comment", "day", "month", "year"] # Note: ntp_seconds does not fit in 32 bit, so causes problems on # 32-bit systems without the np.int64 converter. self = cls._read_leap_seconds( file, names=names, include_names=names[:2], converters={"ntp_seconds": [convert_numpy(np.int64)]}, ) self["mjd"] = (self["ntp_seconds"] / 86400 + 15020).round() # Note: cannot use Time.ymdhms, since that might require leap seconds. isot = Time(self["mjd"], format="mjd", scale="tai").isot ymd = np.array( [[int(part) for part in t.partition("T")[0].split("-")] for t in isot] ) self["year"], self["month"], self["day"] = ymd.T return self @classmethod def from_erfa(cls, built_in=False): """Create table from the leap-second list in ERFA. Parameters ---------- built_in : bool If `False` (default), retrieve the list currently used by ERFA, which may have been updated. If `True`, retrieve the list shipped with erfa. """ current = cls(erfa.leap_seconds.get()) current._expires = Time( "{0.year:04d}-{0.month:02d}-{0.day:02d}".format(erfa.leap_seconds.expires), scale="tai", ) if not built_in: return current try: erfa.leap_seconds.set(None) # reset to defaults return cls.from_erfa(built_in=False) finally: erfa.leap_seconds.set(current) def update_erfa_leap_seconds(self, initialize_erfa=False): """Add any leap seconds not already present to the ERFA table. This method matches leap seconds with those present in the ERFA table, and extends the latter as necessary. Parameters ---------- initialize_erfa : bool, or 'only', or 'empty' Initialize the ERFA leap second table to its built-in value before trying to expand it. This is generally not needed but can help in case it somehow got corrupted. If equal to 'only', the ERFA table is reinitialized and no attempt it made to update it. If 'empty', the leap second table is emptied before updating, i.e., it is overwritten altogether (note that this may break things in surprising ways, as most leap second tables do not include pre-1970 pseudo leap-seconds; you were warned). Returns ------- n_update : int Number of items updated. Raises ------ ValueError If the leap seconds in the table are not on 1st of January or July, or if the matches are inconsistent. This would normally suggest a corrupted leap second table, but might also indicate that the ERFA table was corrupted. If needed, the ERFA table can be reset by calling this method with an appropriate value for ``initialize_erfa``. """ if initialize_erfa == "empty": # Initialize to empty and update is the same as overwrite. erfa.leap_seconds.set(self) return len(self) if initialize_erfa: erfa.leap_seconds.set() if initialize_erfa == "only": return 0 return erfa.leap_seconds.update(self)
dda6338ae27c841d06145a53e5a0f08896dcbd683b4521bce44204f2ccc34f61
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ A collection of functions for checking various XML-related strings for standards compliance. """ import re import urllib.parse def check_id(ID): """ Returns `True` if *ID* is a valid XML ID. """ return re.match(r"^[A-Za-z_][A-Za-z0-9_\.\-]*$", ID) is not None def fix_id(ID): """ Given an arbitrary string, create one that can be used as an xml id. This is rather simplistic at the moment, since it just replaces non-valid characters with underscores. """ if re.match(r"^[A-Za-z_][A-Za-z0-9_\.\-]*$", ID): return ID if len(ID): corrected = ID if not len(corrected) or re.match("^[^A-Za-z_]$", corrected[0]): corrected = "_" + corrected corrected = re.sub(r"[^A-Za-z_]", "_", corrected[0]) + re.sub( r"[^A-Za-z0-9_\.\-]", "_", corrected[1:] ) return corrected return "" _token_regex = r"(?![\r\l\t ])[^\r\l\t]*(?![\r\l\t ])" def check_token(token): """ Returns `True` if *token* is a valid XML token, as defined by XML Schema Part 2. """ return ( token == "" or re.match(r"[^\r\n\t ]?([^\r\n\t ]| [^\r\n\t ])*[^\r\n\t ]?$", token) is not None ) def check_mime_content_type(content_type): """ Returns `True` if *content_type* is a valid MIME content type (syntactically at least), as defined by RFC 2045. """ ctrls = "".join(chr(x) for x in range(0, 0x20)) token_regex = f'[^()<>@,;:\\"/[\\]?= {ctrls}\x7f]+' return ( re.match(rf"(?P<type>{token_regex})/(?P<subtype>{token_regex})$", content_type) is not None ) def check_anyuri(uri): """ Returns `True` if *uri* is a valid URI as defined in RFC 2396. """ if ( re.match( ( r"(([a-zA-Z][0-9a-zA-Z+\-\.]*:)?/{0,2}[0-9a-zA-Z;" + r"/?:@&=+$\.\-_!~*'()%]+)?(#[0-9a-zA-Z;/?:@&=+$\.\-_!~*'()%]+)?" ), uri, ) is None ): return False try: urllib.parse.urlparse(uri) except Exception: return False return True
c76919241255ac89ccbc8a9095d4d0e30eb9483cdbd8a7633e26068601beaf0c
# Licensed under a 3-clause BSD style license - see LICENSE.rst """URL unescaper functions.""" # STDLIB from xml.sax import saxutils __all__ = ["unescape_all"] # This is DIY _bytes_entities = { b"&amp;": b"&", b"&lt;": b"<", b"&gt;": b">", b"&amp;&amp;": b"&", b"&&": b"&", b"%2F": b"/", } _bytes_keys = [b"&amp;&amp;", b"&&", b"&amp;", b"&lt;", b"&gt;", b"%2F"] # This is used by saxutils _str_entities = {"&amp;&amp;": "&", "&&": "&", "%2F": "/"} _str_keys = ["&amp;&amp;", "&&", "&amp;", "&lt;", "&gt;", "%2F"] def unescape_all(url): """Recursively unescape a given URL. .. note:: '&amp;&amp;' becomes a single '&'. Parameters ---------- url : str or bytes URL to unescape. Returns ------- clean_url : str or bytes Unescaped URL. """ if isinstance(url, bytes): func2use = _unescape_bytes keys2use = _bytes_keys else: func2use = _unescape_str keys2use = _str_keys clean_url = func2use(url) not_done = [clean_url.count(key) > 0 for key in keys2use] if True in not_done: return unescape_all(clean_url) else: return clean_url def _unescape_str(url): return saxutils.unescape(url, _str_entities) def _unescape_bytes(url): clean_url = url for key in _bytes_keys: clean_url = clean_url.replace(key, _bytes_entities[key]) return clean_url
e6324c2ba4ae18676e4867091c67e99bbce2e0895387b7b7c1262c6754c3de6c
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Contains a class that makes it simple to stream out well-formed and nicely-indented XML. """ # STDLIB import contextlib import textwrap try: from . import _iterparser except ImportError: def xml_escape_cdata(s): """ Escapes &, < and > in an XML CDATA string. """ s = s.replace("&", "&amp;") s = s.replace("<", "&lt;") s = s.replace(">", "&gt;") return s def xml_escape(s): """ Escapes &, ', ", < and > in an XML attribute value. """ s = s.replace("&", "&amp;") s = s.replace("'", "&apos;") s = s.replace('"', "&quot;") s = s.replace("<", "&lt;") s = s.replace(">", "&gt;") return s else: xml_escape_cdata = _iterparser.escape_xml_cdata xml_escape = _iterparser.escape_xml class XMLWriter: """ A class to write well-formed and nicely indented XML. Use like this:: w = XMLWriter(fh) with w.tag('html'): with w.tag('body'): w.data('This is the content') Which produces:: <html> <body> This is the content </body> </html> """ def __init__(self, file): """ Parameters ---------- file : writable file-like """ self.write = file.write if hasattr(file, "flush"): self.flush = file.flush self._open = 0 # true if start tag is open self._tags = [] self._data = [] self._indentation = " " * 64 self.xml_escape_cdata = xml_escape_cdata self.xml_escape = xml_escape def _flush(self, indent=True, wrap=False): """ Flush internal buffers. """ if self._open: if indent: self.write(">\n") else: self.write(">") self._open = 0 if self._data: data = "".join(self._data) if wrap: indent = self.get_indentation_spaces(1) data = textwrap.fill( data, initial_indent=indent, subsequent_indent=indent ) self.write("\n") self.write(self.xml_escape_cdata(data)) self.write("\n") self.write(self.get_indentation_spaces()) else: self.write(self.xml_escape_cdata(data)) self._data = [] def start(self, tag, attrib={}, **extra): """ Opens a new element. Attributes can be given as keyword arguments, or as a string/string dictionary. The method returns an opaque identifier that can be passed to the :meth:`close` method, to close all open elements up to and including this one. Parameters ---------- tag : str The element name attrib : dict of str -> str Attribute dictionary. Alternatively, attributes can be given as keyword arguments. Returns ------- id : int Returns an element identifier. """ self._flush() # This is just busy work -- we know our tag names are clean # tag = xml_escape_cdata(tag) self._data = [] self._tags.append(tag) self.write(self.get_indentation_spaces(-1)) self.write(f"<{tag}") if attrib or extra: attrib = attrib.copy() attrib.update(extra) attrib = list(attrib.items()) attrib.sort() for k, v in attrib: if v is not None: # This is just busy work -- we know our keys are clean # k = xml_escape_cdata(k) v = self.xml_escape(v) self.write(f' {k}="{v}"') self._open = 1 return len(self._tags) @contextlib.contextmanager def xml_cleaning_method(self, method="escape_xml", **clean_kwargs): """Context manager to control how XML data tags are cleaned (escaped) to remove potentially unsafe characters or constructs. The default (``method='escape_xml'``) applies brute-force escaping of certain key XML characters like ``<``, ``>``, and ``&`` to ensure that the output is not valid XML. In order to explicitly allow certain XML tags (e.g. link reference or emphasis tags), use ``method='bleach_clean'``. This sanitizes the data string using the ``clean`` function of the `bleach <https://bleach.readthedocs.io/en/latest/clean.html>`_ package. Any additional keyword arguments will be passed directly to the ``clean`` function. Finally, use ``method='none'`` to disable any sanitization. This should be used sparingly. Example:: w = writer.XMLWriter(ListWriter(lines)) with w.xml_cleaning_method('bleach_clean'): w.start('td') w.data('<a href="https://google.com">google.com</a>') w.end() Parameters ---------- method : str Cleaning method. Allowed values are "escape_xml", "bleach_clean", and "none". **clean_kwargs : keyword args Additional keyword args that are passed to the bleach.clean() function. """ current_xml_escape_cdata = self.xml_escape_cdata if method == "bleach_clean": # NOTE: bleach is imported locally to avoid importing it when # it is not nocessary try: import bleach except ImportError: raise ValueError( "bleach package is required when HTML escaping is disabled.\n" 'Use "pip install bleach".' ) if clean_kwargs is None: clean_kwargs = {} self.xml_escape_cdata = lambda x: bleach.clean(x, **clean_kwargs) elif method == "none": self.xml_escape_cdata = lambda x: x elif method != "escape_xml": raise ValueError( 'allowed values of method are "escape_xml", "bleach_clean", and "none"' ) yield self.xml_escape_cdata = current_xml_escape_cdata @contextlib.contextmanager def tag(self, tag, attrib={}, **extra): """ A convenience method for creating wrapper elements using the ``with`` statement. Examples -------- >>> with writer.tag('foo'): # doctest: +SKIP ... writer.element('bar') ... # </foo> is implicitly closed here ... Parameters are the same as to `start`. """ self.start(tag, attrib, **extra) yield self.end(tag) def comment(self, comment): """ Adds a comment to the output stream. Parameters ---------- comment : str Comment text, as a Unicode string. """ self._flush() self.write(self.get_indentation_spaces()) self.write(f"<!-- {self.xml_escape_cdata(comment)} -->\n") def data(self, text): """ Adds character data to the output stream. Parameters ---------- text : str Character data, as a Unicode string. """ self._data.append(text) def end(self, tag=None, indent=True, wrap=False): """ Closes the current element (opened by the most recent call to `start`). Parameters ---------- tag : str Element name. If given, the tag must match the start tag. If omitted, the current element is closed. """ if tag: if not self._tags: raise ValueError(f"unbalanced end({tag})") if tag != self._tags[-1]: raise ValueError(f"expected end({self._tags[-1]}), got {tag}") else: if not self._tags: raise ValueError("unbalanced end()") tag = self._tags.pop() if self._data: self._flush(indent, wrap) elif self._open: self._open = 0 self.write("/>\n") return if indent: self.write(self.get_indentation_spaces()) self.write(f"</{tag}>\n") def close(self, id): """ Closes open elements, up to (and including) the element identified by the given identifier. Parameters ---------- id : int Element identifier, as returned by the `start` method. """ while len(self._tags) > id: self.end() def element(self, tag, text=None, wrap=False, attrib={}, **extra): """ Adds an entire element. This is the same as calling `start`, `data`, and `end` in sequence. The ``text`` argument can be omitted. """ self.start(tag, attrib, **extra) if text: self.data(text) self.end(indent=False, wrap=wrap) def flush(self): pass # replaced by the constructor def get_indentation(self): """ Returns the number of indentation levels the file is currently in. """ return len(self._tags) def get_indentation_spaces(self, offset=0): """ Returns a string of spaces that matches the current indentation level. """ return self._indentation[: len(self._tags) + offset] @staticmethod def object_attrs(obj, attrs): """ Converts an object with a bunch of attributes on an object into a dictionary for use by the `XMLWriter`. Parameters ---------- obj : object Any Python object attrs : sequence of str Attribute names to pull from the object Returns ------- attrs : dict Maps attribute names to the values retrieved from ``obj.attr``. If any of the attributes is `None`, it will not appear in the output dictionary. """ d = {} for attr in attrs: if getattr(obj, attr) is not None: d[attr.replace("_", "-")] = str(getattr(obj, attr)) return d
5c07b23e9376c212c3314028378e4f2ce55350a557007880cf15ce1a7740ba98
# Licensed under a 3-clause BSD style license - see LICENSE.rst import os import sys from collections import defaultdict from os.path import join from setuptools import Extension from extension_helpers import pkg_config def get_extensions(build_type="release"): XML_DIR = "astropy/utils/xml/src" cfg = defaultdict(list) cfg["sources"] = [join(XML_DIR, "iterparse.c")] if int(os.environ.get("ASTROPY_USE_SYSTEM_EXPAT", 0)) or int( os.environ.get("ASTROPY_USE_SYSTEM_ALL", 0) ): for k, v in pkg_config(["expat"], ["expat"]).items(): cfg[k].extend(v) else: EXPAT_DIR = "cextern/expat/lib" cfg["sources"].extend( [ join(EXPAT_DIR, fn) for fn in ["xmlparse.c", "xmlrole.c", "xmltok.c", "xmltok_impl.c"] ] ) cfg["include_dirs"].extend([XML_DIR, EXPAT_DIR]) if sys.platform.startswith("linux"): # This is to ensure we only export the Python entry point # symbols and the linker won't try to use the system expat in # place of ours. cfg["extra_link_args"].extend( [f"-Wl,--version-script={join(XML_DIR, 'iterparse.map')}"] ) cfg["define_macros"].append(("HAVE_EXPAT_CONFIG_H", 1)) if sys.byteorder == "big": cfg["define_macros"].append(("BYTEORDER", "4321")) else: cfg["define_macros"].append(("BYTEORDER", "1234")) if sys.platform != "win32": cfg["define_macros"].append(("HAVE_UNISTD_H", None)) return [Extension("astropy.utils.xml._iterparser", **cfg)]
9170e3658f0ab883f0ebbfe122a75f4cc104ebe2d3957bc460ac6240b0844b38
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This module includes a fast iterator-based XML parser. """ # STDLIB import contextlib import io import sys # ASTROPY from astropy.utils import data __all__ = ["get_xml_iterator", "get_xml_encoding", "xml_readlines"] @contextlib.contextmanager def _convert_to_fd_or_read_function(fd): """ Returns a function suitable for streaming input, or a file object. This function is only useful if passing off to C code where: - If it's a real file object, we want to use it as a real C file object to avoid the Python overhead. - If it's not a real file object, it's much handier to just have a Python function to call. This is somewhat quirky behavior, of course, which is why it is private. For a more useful version of similar behavior, see `astropy.utils.misc.get_readable_fileobj`. Parameters ---------- fd : object May be: - a file object. If the file is uncompressed, this raw file object is returned verbatim. Otherwise, the read method is returned. - a function that reads from a stream, in which case it is returned verbatim. - a file path, in which case it is opened. Again, like a file object, if it's uncompressed, a raw file object is returned, otherwise its read method. - an object with a :meth:`read` method, in which case that method is returned. Returns ------- fd : context-dependent See above. """ if callable(fd): yield fd return with data.get_readable_fileobj(fd, encoding="binary") as new_fd: if sys.platform.startswith("win"): yield new_fd.read else: if isinstance(new_fd, io.FileIO): yield new_fd else: yield new_fd.read def _fast_iterparse(fd, buffersize=2**10): from xml.parsers import expat if not callable(fd): read = fd.read else: read = fd queue = [] text = [] def start(name, attr): queue.append( (True, name, attr, (parser.CurrentLineNumber, parser.CurrentColumnNumber)) ) del text[:] def end(name): queue.append( ( False, name, "".join(text).strip(), (parser.CurrentLineNumber, parser.CurrentColumnNumber), ) ) parser = expat.ParserCreate() parser.specified_attributes = True parser.StartElementHandler = start parser.EndElementHandler = end parser.CharacterDataHandler = text.append Parse = parser.Parse data = read(buffersize) while data: Parse(data, False) yield from queue del queue[:] data = read(buffersize) Parse("", True) yield from queue # Try to import the C version of the iterparser, otherwise fall back # to the Python implementation above. _slow_iterparse = _fast_iterparse try: from . import _iterparser _fast_iterparse = _iterparser.IterParser except ImportError: pass @contextlib.contextmanager def get_xml_iterator(source, _debug_python_based_parser=False): """ Returns an iterator over the elements of an XML file. The iterator doesn't ever build a tree, so it is much more memory and time efficient than the alternative in ``cElementTree``. Parameters ---------- source : path-like, readable file-like, or callable Handle that contains the data or function that reads it. If a function or callable object, it must directly read from a stream. Non-callable objects must define a ``read`` method. Returns ------- parts : iterator The iterator returns 4-tuples (*start*, *tag*, *data*, *pos*): - *start*: when `True` is a start element event, otherwise an end element event. - *tag*: The name of the element - *data*: Depends on the value of *event*: - if *start* == `True`, data is a dictionary of attributes - if *start* == `False`, data is a string containing the text content of the element - *pos*: Tuple (*line*, *col*) indicating the source of the event. """ with _convert_to_fd_or_read_function(source) as fd: if _debug_python_based_parser: context = _slow_iterparse(fd) else: context = _fast_iterparse(fd) yield iter(context) def get_xml_encoding(source): """ Determine the encoding of an XML file by reading its header. Parameters ---------- source : path-like, readable file-like, or callable Handle that contains the data or function that reads it. If a function or callable object, it must directly read from a stream. Non-callable objects must define a ``read`` method. Returns ------- encoding : str """ with get_xml_iterator(source) as iterator: start, tag, data, pos = next(iterator) if not start or tag != "xml": raise OSError("Invalid XML file") # The XML spec says that no encoding === utf-8 return data.get("encoding") or "utf-8" def xml_readlines(source): """ Get the lines from a given XML file. Correctly determines the encoding and always returns unicode. Parameters ---------- source : path-like, readable file-like, or callable Handle that contains the data or function that reads it. If a function or callable object, it must directly read from a stream. Non-callable objects must define a ``read`` method. Returns ------- lines : list of unicode """ encoding = get_xml_encoding(source) with data.get_readable_fileobj(source, encoding=encoding) as input: input.seek(0) xml_lines = input.readlines() return xml_lines
5c80d94158a8a54f0e31e0813e10fd1adbc5a4b2f65e23cec4ce02f0aca51eee
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Functions to do XML schema and DTD validation. At the moment, this makes a subprocess call to xmllint. This could use a Python-based library at some point in the future, if something appropriate could be found. """ import os import subprocess def validate_schema(filename, schema_file): """ Validates an XML file against a schema or DTD. Parameters ---------- filename : str The path to the XML file to validate schema_file : str The path to the XML schema or DTD Returns ------- returncode, stdout, stderr : int, str, str Returns the returncode from xmllint and the stdout and stderr as strings """ base, ext = os.path.splitext(schema_file) if ext == ".xsd": schema_part = "--schema" elif ext == ".dtd": schema_part = "--dtdvalid" else: raise TypeError("schema_file must be a path to an XML Schema or DTD") p = subprocess.Popen( ["xmllint", "--noout", "--nonet", schema_part, schema_file, filename], stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) stdout, stderr = p.communicate() if p.returncode == 127: raise OSError("xmllint not found, so can not validate schema") elif p.returncode < 0: from astropy.utils.misc import signal_number_to_name raise OSError( "xmllint was terminated by signal '{}'".format( signal_number_to_name(-p.returncode) ) ) return p.returncode, stdout, stderr
8bca71b0e0352a2f5a9254e902de695da13e19441655f4343aca99c8b26ef348
# Licensed under a 3-clause BSD style license - see LICENSE.rst import json import locale import os import urllib.error from datetime import datetime import numpy as np import pytest from astropy.io import fits from astropy.utils import data, misc def test_isiterable(): assert misc.isiterable(2) is False assert misc.isiterable([2]) is True assert misc.isiterable([1, 2, 3]) is True assert misc.isiterable(np.array(2)) is False assert misc.isiterable(np.array([1, 2, 3])) is True def test_signal_number_to_name_no_failure(): # Regression test for #5340: ensure signal_number_to_name throws no # AttributeError (it used ".iteritems()" which was removed in Python3). misc.signal_number_to_name(0) @pytest.mark.remote_data def test_api_lookup(): try: strurl = misc.find_api_page("astropy.utils.misc", "dev", False, timeout=5) objurl = misc.find_api_page(misc, "dev", False, timeout=5) except urllib.error.URLError: if os.environ.get("CI", False): pytest.xfail("Timed out in CI") else: raise assert strurl == objurl assert ( strurl == "http://devdocs.astropy.org/utils/index.html#module-astropy.utils.misc" ) # Try a non-dev version objurl = misc.find_api_page(misc, "v3.2.1", False, timeout=3) assert ( objurl == "https://docs.astropy.org/en/v3.2.1/utils/index.html#module-astropy.utils.misc" ) def test_skip_hidden(): path = data.get_pkg_data_path("data") for root, dirs, files in os.walk(path): assert ".hidden_file.txt" in files assert "local.dat" in files # break after the first level since the data dir contains some other # subdirectories that don't have these files break for root, dirs, files in misc.walk_skip_hidden(path): assert ".hidden_file.txt" not in files assert "local.dat" in files break def test_JsonCustomEncoder(): from astropy import units as u assert json.dumps(np.arange(3), cls=misc.JsonCustomEncoder) == "[0, 1, 2]" assert json.dumps(1 + 2j, cls=misc.JsonCustomEncoder) == "[1.0, 2.0]" assert json.dumps({1, 2, 1}, cls=misc.JsonCustomEncoder) == "[1, 2]" assert ( json.dumps(b"hello world \xc3\x85", cls=misc.JsonCustomEncoder) == '"hello world \\u00c5"' ) assert json.dumps({1: 2}, cls=misc.JsonCustomEncoder) == '{"1": 2}' # default assert json.dumps({1: u.m}, cls=misc.JsonCustomEncoder) == '{"1": "m"}' # Quantities tmp = json.dumps({"a": 5 * u.cm}, cls=misc.JsonCustomEncoder) newd = json.loads(tmp) tmpd = {"a": {"unit": "cm", "value": 5.0}} assert newd == tmpd tmp2 = json.dumps({"a": np.arange(2) * u.cm}, cls=misc.JsonCustomEncoder) newd = json.loads(tmp2) tmpd = {"a": {"unit": "cm", "value": [0.0, 1.0]}} assert newd == tmpd tmp3 = json.dumps({"a": np.arange(2) * u.erg / u.s}, cls=misc.JsonCustomEncoder) newd = json.loads(tmp3) tmpd = {"a": {"unit": "erg / s", "value": [0.0, 1.0]}} assert newd == tmpd def test_JsonCustomEncoder_FITS_rec_from_files(): with fits.open( fits.util.get_testdata_filepath("variable_length_table.fits") ) as hdul: assert ( json.dumps(hdul[1].data, cls=misc.JsonCustomEncoder) == "[[[45, 56], [11, 3]], [[11, 12, 13], [12, 4]]]" ) with fits.open(fits.util.get_testdata_filepath("btable.fits")) as hdul: assert ( json.dumps(hdul[1].data, cls=misc.JsonCustomEncoder) == '[[1, "Sirius", -1.4500000476837158, "A1V"], ' '[2, "Canopus", -0.7300000190734863, "F0Ib"], ' '[3, "Rigil Kent", -0.10000000149011612, "G2V"]]' ) with fits.open(fits.util.get_testdata_filepath("table.fits")) as hdul: assert ( json.dumps(hdul[1].data, cls=misc.JsonCustomEncoder) == '[["NGC1001", 11.100000381469727], ' '["NGC1002", 12.300000190734863], ' '["NGC1003", 15.199999809265137]]' ) def test_set_locale(): # First, test if the required locales are available current = locale.setlocale(locale.LC_ALL) try: locale.setlocale(locale.LC_ALL, "en_US.utf8") locale.setlocale(locale.LC_ALL, "fr_FR.utf8") except locale.Error as e: pytest.skip(f"Locale error: {e}") finally: locale.setlocale(locale.LC_ALL, current) date = datetime(2000, 10, 1, 0, 0, 0) day_mon = date.strftime("%a, %b") with misc._set_locale("en_US.utf8"): assert date.strftime("%a, %b") == "Sun, Oct" with misc._set_locale("fr_FR.utf8"): assert date.strftime("%a, %b") == "dim., oct." # Back to original assert date.strftime("%a, %b") == day_mon with misc._set_locale(current): assert date.strftime("%a, %b") == day_mon def test_dtype_bytes_or_chars(): assert misc.dtype_bytes_or_chars(np.dtype(np.float64)) == 8 assert misc.dtype_bytes_or_chars(np.dtype(object)) is None assert misc.dtype_bytes_or_chars(np.dtype(np.int32)) == 4 assert misc.dtype_bytes_or_chars(np.array(b"12345").dtype) == 5 assert misc.dtype_bytes_or_chars(np.array("12345").dtype) == 5
cd6ead2e0885352120473bbd4f36386664fd8036a214a190e7a1f7843cfb1fda
# Licensed under a 3-clause BSD style license - see LICENSE.rst import io import pytest from astropy.utils.compat.optional_deps import HAS_BLEACH from astropy.utils.xml import check, unescaper, writer def test_writer(): fh = io.StringIO() w = writer.XMLWriter(fh) with w.tag("html"): with w.tag("body"): w.data("This is the content") w.comment("comment") value = "".join(fh.getvalue().split()) assert value == "<html><body>Thisisthecontent<!--comment--></body></html>" def test_check_id(): assert check.check_id("Fof32") assert check.check_id("_Fof32") assert not check.check_id("32Fof") def test_fix_id(): assert check.fix_id("Fof32") == "Fof32" assert check.fix_id("@#f") == "___f" def test_check_token(): assert check.check_token("token") assert not check.check_token("token\rtoken") def test_check_mime_content_type(): assert check.check_mime_content_type("image/jpeg") assert not check.check_mime_content_type("image") def test_check_anyuri(): assert check.check_anyuri("https://github.com/astropy/astropy") def test_unescape_all(): # str url_in = ( "http://casu.ast.cam.ac.uk/ag/iphas-dsa%2FSubmitCone?" "DSACAT=IDR&amp;amp;DSATAB=Emitters&amp;amp;" ) url_out = ( "http://casu.ast.cam.ac.uk/ag/iphas-dsa/SubmitCone?DSACAT=IDR&DSATAB=Emitters&" ) assert unescaper.unescape_all(url_in) == url_out # bytes url_in = ( b"http://casu.ast.cam.ac.uk/ag/iphas-dsa%2FSubmitCone?" b"DSACAT=IDR&amp;amp;DSATAB=Emitters&amp;amp;" ) url_out = ( b"http://casu.ast.cam.ac.uk/ag/iphas-dsa/SubmitCone?DSACAT=IDR&DSATAB=Emitters&" ) assert unescaper.unescape_all(url_in) == url_out def test_escape_xml(): s = writer.xml_escape("This & That") assert type(s) == str assert s == "This &amp; That" s = writer.xml_escape(1) assert type(s) == str assert s == "1" s = writer.xml_escape(b"This & That") assert type(s) == bytes assert s == b"This &amp; That" @pytest.mark.skipif(HAS_BLEACH, reason="bleach is installed") def test_escape_xml_without_bleach(): fh = io.StringIO() w = writer.XMLWriter(fh) with pytest.raises( ValueError, match=r"bleach package is required when HTML escaping is disabled" ): with w.xml_cleaning_method("bleach_clean"): pass @pytest.mark.skipif(not HAS_BLEACH, reason="requires bleach") def test_escape_xml_with_bleach(): fh = io.StringIO() w = writer.XMLWriter(fh) # Turn off XML escaping, but still sanitize unsafe tags like <script> with w.xml_cleaning_method("bleach_clean"): w.start("td") w.data("<script>x</script> <em>OK</em>") w.end(indent=False) assert fh.getvalue() == "<td>&lt;script&gt;x&lt;/script&gt; <em>OK</em></td>\n" fh = io.StringIO() w = writer.XMLWriter(fh) # Default is True (all XML tags escaped) with w.xml_cleaning_method(): w.start("td") w.data("<script>x</script> <em>OK</em>") w.end(indent=False) assert ( fh.getvalue() == "<td>&lt;script&gt;x&lt;/script&gt; &lt;em&gt;OK&lt;/em&gt;</td>\n" )
06e8d3f490ac0bd0043f7dc4404e494bdf767a33d7d6c7dd8e3067e8317428ac
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np import pytest from astropy.utils.shapes import check_broadcast, unbroadcast def test_check_broadcast(): assert check_broadcast((10, 1), (3,)) == (10, 3) assert check_broadcast((10, 1), (3,), (4, 1, 1, 3)) == (4, 1, 10, 3) with pytest.raises(ValueError): check_broadcast((10, 2), (3,)) with pytest.raises(ValueError): check_broadcast((10, 1), (3,), (4, 1, 2, 3)) def test_unbroadcast(): x = np.array([1, 2, 3]) y = np.broadcast_to(x, (2, 4, 3)) z = unbroadcast(y) assert z.shape == (3,) np.testing.assert_equal(z, x) x = np.ones((3, 5)) y = np.broadcast_to(x, (5, 3, 5)) z = unbroadcast(y) assert z.shape == (3, 5)
5ce1efac2ee665c2407e3e0c06ad3eb0fedf247c69d40084aef4782fb310ad1d
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Some might be indirectly tested already in ``astropy.io.fits.tests``. """ import io import numpy as np import pytest from astropy.table import Table from astropy.utils.diff import diff_values, report_diff_values, where_not_allclose @pytest.mark.parametrize("a", [np.nan, np.inf, 1.11, 1, "a"]) def test_diff_values_false(a): assert not diff_values(a, a) @pytest.mark.parametrize( ("a", "b"), [(np.inf, np.nan), (1.11, 1.1), (1, 2), (1, "a"), ("a", "b")] ) def test_diff_values_true(a, b): assert diff_values(a, b) def test_float_comparison(): """ Regression test for https://github.com/spacetelescope/PyFITS/issues/21 """ f = io.StringIO() a = np.float32(0.029751372) b = np.float32(0.029751368) identical = report_diff_values(a, b, fileobj=f) assert not identical out = f.getvalue() # This test doesn't care about what the exact output is, just that it # did show a difference in their text representations assert "a>" in out assert "b>" in out def test_diff_types(): """ Regression test for https://github.com/astropy/astropy/issues/4122 """ f = io.StringIO() a = 1.0 b = "1.0" identical = report_diff_values(a, b, fileobj=f) assert not identical out = f.getvalue() # fmt: off assert out == ( " (float) a> 1.0\n" " (str) b> '1.0'\n" " ? + +\n" ) # fmt: on def test_diff_numeric_scalar_types(): """Test comparison of different numeric scalar types.""" f = io.StringIO() assert not report_diff_values(1.0, 1, fileobj=f) out = f.getvalue() assert out == " (float) a> 1.0\n (int) b> 1\n" def test_array_comparison(): """ Test diff-ing two arrays. """ f = io.StringIO() a = np.arange(9).reshape(3, 3) b = a + 1 identical = report_diff_values(a, b, fileobj=f) assert not identical out = f.getvalue() assert ( out == " at [0, 0]:\n" " a> 0\n" " b> 1\n" " at [0, 1]:\n" " a> 1\n" " b> 2\n" " at [0, 2]:\n" " a> 2\n" " b> 3\n" " ...and at 6 more indices.\n" ) def test_diff_shaped_array_comparison(): """ Test diff-ing two differently shaped arrays. """ f = io.StringIO() a = np.empty((1, 2, 3)) identical = report_diff_values(a, a[0], fileobj=f) assert not identical out = f.getvalue() assert ( out == " Different array shapes:\n a> (1, 2, 3)\n ? ---\n b> (2, 3)\n" ) def test_tablediff(): """ Test diff-ing two simple Table objects. """ a = Table.read( """name obs_date mag_b mag_v M31 2012-01-02 17.0 16.0 M82 2012-10-29 16.2 15.2 M101 2012-10-31 15.1 15.5""", format="ascii", ) b = Table.read( """name obs_date mag_b mag_v M31 2012-01-02 17.0 16.5 M82 2012-10-29 16.2 15.2 M101 2012-10-30 15.1 15.5 NEW 2018-05-08 nan 9.0""", format="ascii", ) f = io.StringIO() identical = report_diff_values(a, b, fileobj=f) assert not identical out = f.getvalue() assert ( out == " name obs_date mag_b mag_v\n" " ---- ---------- ----- -----\n" " a> M31 2012-01-02 17.0 16.0\n" " ? ^\n" " b> M31 2012-01-02 17.0 16.5\n" " ? ^\n" " M82 2012-10-29 16.2 15.2\n" " a> M101 2012-10-31 15.1 15.5\n" " ? ^\n" " b> M101 2012-10-30 15.1 15.5\n" " ? ^\n" " b> NEW 2018-05-08 nan 9.0\n" ) # Identical assert report_diff_values(a, a, fileobj=f) @pytest.mark.parametrize("kwargs", [{}, {"atol": 0, "rtol": 0}]) def test_where_not_allclose(kwargs): a = np.array([1, np.nan, np.inf, 4.5]) b = np.array([1, np.inf, np.nan, 4.6]) assert where_not_allclose(a, b, **kwargs) == ([3],) assert len(where_not_allclose(a, a, **kwargs)[0]) == 0
fd43db8bf82cdc9c8119ab18a14be629c68f0e6ec27b50932e45858e2c3274bb
# Licensed under a 3-clause BSD style license - see LICENSE.rst import importlib import secrets from textwrap import dedent import pytest from astropy.utils.parsing import _TAB_HEADER def _docstring_canary(): """Docstring that's here just to check for -OO.""" @pytest.mark.skipif(not _docstring_canary.__doc__, reason="Test cannot be run with -OO") def test_generate_parser(tmp_path, monkeypatch): # Write Python code into the temporary directory, so that the # generated tables will also go into the temporary directory. # We use a unique suffix so that the test can be run multiple times # without weirdness due to module caching. suffix = secrets.token_hex(16) lexer_file = tmp_path / f"test_parsing_lexer_{suffix}.py" lexer_file.write_text( dedent( rf""" from astropy.utils.parsing import lex def make_lexer(): tokens = ('NUMBER', 'PLUS') t_PLUS = r'\+' def t_NUMBER(t): r'\d+' t.value = int(t.value) return t return lex('test_parsing_lextab_{suffix}', 'test_parsing_lexer_{suffix}') """ ) ) parser_file = tmp_path / f"test_parsing_parser_{suffix}.py" parser_file.write_text( dedent( rf""" from astropy.utils.parsing import yacc def make_parser(): tokens = ('NUMBER', 'PLUS') def p_expression_number(p): 'expression : NUMBER' p[0] = p[1] def p_expression_plus(p): 'expression : expression PLUS NUMBER' p[0] = p[1] + p[3] return yacc('test_parsing_parsetab_{suffix}', 'test_parsing_parser_{suffix}') """ ) ) monkeypatch.syspath_prepend(tmp_path) lexer_mod = importlib.import_module(f"test_parsing_lexer_{suffix}") lexer = lexer_mod.make_lexer() parser_mod = importlib.import_module(f"test_parsing_parser_{suffix}") parser = parser_mod.make_parser() result = parser.parse("1+2+3", lexer=lexer) assert result == 6 lextab = (tmp_path / f"test_parsing_lextab_{suffix}.py").read_text() assert lextab.startswith(_TAB_HEADER.format(package=f"test_parsing_lexer_{suffix}")) parsetab = (tmp_path / f"test_parsing_parsetab_{suffix}.py").read_text() assert parsetab.startswith( _TAB_HEADER.format(package=f"test_parsing_parser_{suffix}") )
d4ece921cdd89a4871f02a0836dde4c41fe7e7ac95441374859a4e533bcd0897
import abc from collections import OrderedDict import numpy as np import pytest from astropy.io import fits from astropy.utils import metadata from astropy.utils.metadata import ( MergeConflictError, MetaData, common_dtype, enable_merge_strategies, merge, ) class OrderedDictSubclass(OrderedDict): pass class MetaBaseTest: __metaclass__ = abc.ABCMeta def test_none(self): d = self.test_class(*self.args) assert isinstance(d.meta, OrderedDict) assert len(d.meta) == 0 @pytest.mark.parametrize( "meta", ([dict([("a", 1)]), OrderedDict([("a", 1)]), OrderedDictSubclass([("a", 1)])]), ) def test_mapping_init(self, meta): d = self.test_class(*self.args, meta=meta) assert type(d.meta) == type(meta) assert d.meta["a"] == 1 @pytest.mark.parametrize("meta", (["ceci n'est pas un meta", 1.2, [1, 2, 3]])) def test_non_mapping_init(self, meta): with pytest.raises(TypeError): self.test_class(*self.args, meta=meta) @pytest.mark.parametrize( "meta", ([dict([("a", 1)]), OrderedDict([("a", 1)]), OrderedDictSubclass([("a", 1)])]), ) def test_mapping_set(self, meta): d = self.test_class(*self.args, meta=meta) assert type(d.meta) == type(meta) assert d.meta["a"] == 1 @pytest.mark.parametrize("meta", (["ceci n'est pas un meta", 1.2, [1, 2, 3]])) def test_non_mapping_set(self, meta): with pytest.raises(TypeError): d = self.test_class(*self.args, meta=meta) def test_meta_fits_header(self): header = fits.header.Header() header.set("observer", "Edwin Hubble") header.set("exptime", "3600") d = self.test_class(*self.args, meta=header) assert d.meta["OBSERVER"] == "Edwin Hubble" class ExampleData: meta = MetaData() def __init__(self, meta=None): self.meta = meta class TestMetaExampleData(MetaBaseTest): test_class = ExampleData args = () def test_metadata_merging_conflict_exception(): """Regression test for issue #3294. Ensure that an exception is raised when a metadata conflict exists and ``metadata_conflicts='error'`` has been set. """ data1 = ExampleData() data2 = ExampleData() data1.meta["somekey"] = {"x": 1, "y": 1} data2.meta["somekey"] = {"x": 1, "y": 999} with pytest.raises(MergeConflictError): merge(data1.meta, data2.meta, metadata_conflicts="error") def test_metadata_merging(): # Recursive merge meta1 = { "k1": { "k1": [1, 2], "k2": 2, }, "k2": 2, "k4": (1, 2), } meta2 = { "k1": {"k1": [3]}, "k3": 3, "k4": (3,), } out = merge(meta1, meta2, metadata_conflicts="error") assert out == { "k1": { "k2": 2, "k1": [1, 2, 3], }, "k2": 2, "k3": 3, "k4": (1, 2, 3), } # Merge two ndarrays meta1 = {"k1": np.array([1, 2])} meta2 = {"k1": np.array([3])} out = merge(meta1, meta2, metadata_conflicts="error") assert np.all(out["k1"] == np.array([1, 2, 3])) # Merge list and np.ndarray meta1 = {"k1": [1, 2]} meta2 = {"k1": np.array([3])} assert np.all(out["k1"] == np.array([1, 2, 3])) # Can't merge two scalar types meta1 = {"k1": 1} meta2 = {"k1": 2} with pytest.raises(MergeConflictError): merge(meta1, meta2, metadata_conflicts="error") # Conflicting shape meta1 = {"k1": np.array([1, 2])} meta2 = {"k1": np.array([[3]])} with pytest.raises(MergeConflictError): merge(meta1, meta2, metadata_conflicts="error") # Conflicting array type meta1 = {"k1": np.array([1, 2])} meta2 = {"k1": np.array(["3"])} with pytest.raises(MergeConflictError): merge(meta1, meta2, metadata_conflicts="error") # Conflicting array type with 'silent' merging meta1 = {"k1": np.array([1, 2])} meta2 = {"k1": np.array(["3"])} out = merge(meta1, meta2, metadata_conflicts="silent") assert np.all(out["k1"] == np.array(["3"])) def test_metadata_merging_new_strategy(): original_merge_strategies = list(metadata.MERGE_STRATEGIES) class MergeNumbersAsList(metadata.MergeStrategy): """ Scalar float or int values are joined in a list. """ types = ((int, float), (int, float)) @classmethod def merge(cls, left, right): return [left, right] class MergeConcatStrings(metadata.MergePlus): """ Scalar string values are concatenated """ types = (str, str) enabled = False # Normally can't merge two scalar types meta1 = {"k1": 1, "k2": "a"} meta2 = {"k1": 2, "k2": "b"} # Enable new merge strategy with enable_merge_strategies(MergeNumbersAsList, MergeConcatStrings): assert MergeNumbersAsList.enabled assert MergeConcatStrings.enabled out = merge(meta1, meta2, metadata_conflicts="error") assert out["k1"] == [1, 2] assert out["k2"] == "ab" assert not MergeNumbersAsList.enabled assert not MergeConcatStrings.enabled # Confirm the default enabled=False behavior with pytest.raises(MergeConflictError): merge(meta1, meta2, metadata_conflicts="error") # Enable all MergeStrategy subclasses with enable_merge_strategies(metadata.MergeStrategy): assert MergeNumbersAsList.enabled assert MergeConcatStrings.enabled out = merge(meta1, meta2, metadata_conflicts="error") assert out["k1"] == [1, 2] assert out["k2"] == "ab" assert not MergeNumbersAsList.enabled assert not MergeConcatStrings.enabled metadata.MERGE_STRATEGIES = original_merge_strategies def test_common_dtype_string(): u3 = np.array(["123"]) u4 = np.array(["1234"]) b3 = np.array([b"123"]) b5 = np.array([b"12345"]) assert common_dtype([u3, u4]).endswith("U4") assert common_dtype([b5, u4]).endswith("U5") assert common_dtype([b3, b5]).endswith("S5") def test_common_dtype_basic(): i8 = np.array(1, dtype=np.int64) f8 = np.array(1, dtype=np.float64) u3 = np.array("123") with pytest.raises(MergeConflictError): common_dtype([i8, u3]) assert common_dtype([i8, i8]).endswith("i8") assert common_dtype([i8, f8]).endswith("f8")
70c05cd94e59bb455997e96eb69e5e44a39f983d8a6a80bc098d5fbe023a6d9d
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np import pytest import astropy.units as u from astropy.coordinates import SkyCoord from astropy.table import QTable from astropy.table.index import SlicedIndex from astropy.time import Time from astropy.utils.data_info import dtype_info_name STRING_TYPE_NAMES = {(True, "S"): "bytes", (True, "U"): "str"} DTYPE_TESTS = ( (np.array(b"abcd").dtype, STRING_TYPE_NAMES[(True, "S")] + "4"), (np.array("abcd").dtype, STRING_TYPE_NAMES[(True, "U")] + "4"), ("S4", STRING_TYPE_NAMES[(True, "S")] + "4"), ("U4", STRING_TYPE_NAMES[(True, "U")] + "4"), (np.void, "void"), (np.int32, "int32"), (bool, "bool"), (float, "float64"), ("<f4", "float32"), ("u8", "uint64"), ("c16", "complex128"), ("object", "object"), ) @pytest.mark.parametrize("input,output", DTYPE_TESTS) def test_dtype_info_name(input, output): """ Test that dtype_info_name is giving the expected output Here the available types:: 'b' boolean 'i' (signed) integer 'u' unsigned integer 'f' floating-point 'c' complex-floating point 'O' (Python) objects 'S', 'a' (byte-)string 'U' Unicode 'V' raw data (void) """ assert dtype_info_name(input) == output def test_info_no_copy_numpy(): """Test that getting a single item from Table column object does not copy info. See #10889. """ col = [1, 2] t = QTable([col], names=["col"]) t.add_index("col") val = t["col"][0] # Returns a numpy scalar (e.g. np.float64) with no .info assert isinstance(val, np.number) with pytest.raises(AttributeError): val.info val = t["col"][:] assert val.info.indices == [] cols = [[1, 2] * u.m, Time([1, 2], format="cxcsec")] @pytest.mark.parametrize("col", cols) def test_info_no_copy_mixin_with_index(col): """Test that getting a single item from Table column object does not copy info. See #10889. """ t = QTable([col], names=["col"]) t.add_index("col") val = t["col"][0] assert "info" not in val.__dict__ assert val.info.indices == [] val = t["col"][:] assert "info" in val.__dict__ assert val.info.indices == [] val = t[:]["col"] assert "info" in val.__dict__ assert isinstance(val.info.indices[0], SlicedIndex) def test_info_no_copy_skycoord(): """Test that getting a single item from Table SkyCoord column object does not copy info. Cannot create an index on a SkyCoord currently. """ col = (SkyCoord([1, 2], [1, 2], unit="deg"),) t = QTable([col], names=["col"]) val = t["col"][0] assert "info" not in val.__dict__ assert val.info.indices == [] val = t["col"][:] assert val.info.indices == [] val = t[:]["col"] assert val.info.indices == []
af5b38b7a93049962c823b5b71f80ec81ccfe7374f835a6342ed71e4a73aff34
# Licensed under a 3-clause BSD style license - see LICENSE.rst import base64 import contextlib import errno import hashlib import io import itertools import os import pathlib import platform import random import shutil import stat import sys import tempfile import urllib.error import urllib.parse import urllib.request import warnings from concurrent.futures import ThreadPoolExecutor from itertools import islice from tempfile import NamedTemporaryFile, TemporaryDirectory import py.path import pytest import astropy.utils.data from astropy import units as _u # u is taken from astropy.config import paths from astropy.utils.data import ( CacheDamaged, CacheMissingWarning, _deltemps, _get_download_cache_loc, _tempfilestodel, cache_contents, cache_total_size, check_download_cache, check_free_space_in_dir, clear_download_cache, compute_hash, conf, download_file, download_files_in_parallel, export_download_cache, get_cached_urls, get_file_contents, get_free_space_in_dir, get_pkg_data_contents, get_pkg_data_filename, get_pkg_data_fileobj, get_pkg_data_path, get_readable_fileobj, import_download_cache, import_file_to_cache, is_url, is_url_in_cache, ) from astropy.utils.exceptions import AstropyWarning CI = os.environ.get("CI", "false") == "true" TESTURL = "http://www.astropy.org" TESTURL2 = "http://www.astropy.org/about.html" TESTURL_SSL = "https://www.astropy.org" TESTLOCAL = get_pkg_data_filename(os.path.join("data", "local.dat")) # NOTE: Python can be built without bz2 or lzma. from astropy.utils.compat.optional_deps import HAS_BZ2, HAS_LZMA # For when we need "some" test URLs FEW = 5 # For stress testing the locking system using multiprocessing N_PARALLEL_HAMMER = 5 # as high as 500 to replicate a bug # For stress testing the locking system using threads # (cheaper, works with coverage) N_THREAD_HAMMER = 10 # as high as 1000 to replicate a bug def can_rename_directory_in_use(): with TemporaryDirectory() as d: d1 = os.path.join(d, "a") d2 = os.path.join(d, "b") f1 = os.path.join(d1, "file") os.mkdir(d1) with open(f1, "w") as f: f.write("some contents\n") try: with open(f1): os.rename(d1, d2) except PermissionError: return False else: return True CAN_RENAME_DIRECTORY_IN_USE = can_rename_directory_in_use() def url_to(path): return pathlib.Path(path).resolve().as_uri() @pytest.fixture def valid_urls(tmp_path): def _valid_urls(tmp_path): for i in itertools.count(): c = os.urandom(16).hex() fn = tmp_path / f"valid_{str(i)}" with open(fn, "w") as f: f.write(c) u = url_to(fn) yield u, c return _valid_urls(tmp_path) @pytest.fixture def invalid_urls(tmp_path): def _invalid_urls(tmp_path): for i in itertools.count(): fn = tmp_path / f"invalid_{str(i)}" if not os.path.exists(fn): yield url_to(fn) return _invalid_urls(tmp_path) @pytest.fixture def temp_cache(tmp_path): with paths.set_temp_cache(tmp_path): yield None check_download_cache() def change_tree_permission(d, writable=False): if writable: dirperm = stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR fileperm = stat.S_IRUSR | stat.S_IWUSR else: dirperm = stat.S_IRUSR | stat.S_IXUSR fileperm = stat.S_IRUSR for dirpath, dirnames, filenames in os.walk(d): os.chmod(dirpath, dirperm) for f in filenames: os.chmod(os.path.join(dirpath, f), fileperm) def is_dir_readonly(d): try: with NamedTemporaryFile(dir=d): return False except PermissionError: return True @contextlib.contextmanager def readonly_dir(d): try: change_tree_permission(d, writable=False) yield finally: change_tree_permission(d, writable=True) @pytest.fixture def readonly_cache(tmp_path, valid_urls): with TemporaryDirectory(dir=tmp_path) as d: # other fixtures use the same tmp_path so we need a subdirectory # to make into the cache d = pathlib.Path(d) with paths.set_temp_cache(d): us = {u for u, c in islice(valid_urls, FEW)} urls = {u: download_file(u, cache=True) for u in us} files = set(d.iterdir()) with readonly_dir(d): if not is_dir_readonly(d): pytest.skip("Unable to make directory readonly") yield urls assert set(d.iterdir()) == files check_download_cache() @pytest.fixture def fake_readonly_cache(tmp_path, valid_urls, monkeypatch): def no_mkdir(path, mode=None): raise OSError(errno.EPERM, "os.mkdir monkeypatched out") def no_mkdtemp(*args, **kwargs): """On Windows, mkdtemp uses mkdir in a loop and therefore hangs with it monkeypatched out. """ raise OSError(errno.EPERM, "os.mkdtemp monkeypatched out") def no_TemporaryDirectory(*args, **kwargs): raise OSError(errno.EPERM, "_SafeTemporaryDirectory monkeypatched out") with TemporaryDirectory(dir=tmp_path) as d: # other fixtures use the same tmp_path so we need a subdirectory # to make into the cache d = pathlib.Path(d) with paths.set_temp_cache(d): us = {u for u, c in islice(valid_urls, FEW)} urls = {u: download_file(u, cache=True) for u in us} files = set(d.iterdir()) monkeypatch.setattr(os, "mkdir", no_mkdir) monkeypatch.setattr(tempfile, "mkdtemp", no_mkdtemp) monkeypatch.setattr( astropy.utils.data, "_SafeTemporaryDirectory", no_TemporaryDirectory ) yield urls assert set(d.iterdir()) == files check_download_cache() def test_download_file_basic(valid_urls, temp_cache): u, c = next(valid_urls) assert get_file_contents(download_file(u, cache=False)) == c assert not is_url_in_cache(u) assert get_file_contents(download_file(u, cache=True)) == c # Cache miss assert is_url_in_cache(u) assert get_file_contents(download_file(u, cache=True)) == c # Cache hit assert get_file_contents(download_file(u, cache=True, sources=[])) == c def test_download_file_absolute_path(valid_urls, temp_cache): def is_abs(p): return p == os.path.abspath(p) u, c = next(valid_urls) assert is_abs(download_file(u, cache=False)) # no cache assert is_abs(download_file(u, cache=True)) # not in cache assert is_abs(download_file(u, cache=True)) # in cache for k, v in cache_contents().items(): assert is_abs(v) def test_unicode_url(valid_urls, temp_cache): u, c = next(valid_urls) unicode_url = "http://é—☃—è.com" download_file(unicode_url, cache=False, sources=[u]) download_file(unicode_url, cache=True, sources=[u]) download_file(unicode_url, cache=True, sources=[]) assert is_url_in_cache(unicode_url) assert unicode_url in cache_contents() def test_too_long_url(valid_urls, temp_cache): u, c = next(valid_urls) long_url = "http://" + "a" * 256 + ".com" download_file(long_url, cache=False, sources=[u]) download_file(long_url, cache=True, sources=[u]) download_file(long_url, cache=True, sources=[]) def test_case_collision(valid_urls, temp_cache): u, c = next(valid_urls) u2, c2 = next(valid_urls) f1 = download_file("http://example.com/thing", cache=True, sources=[u]) f2 = download_file("http://example.com/THING", cache=True, sources=[u2]) assert f1 != f2 assert get_file_contents(f1) != get_file_contents(f2) def test_domain_name_case(valid_urls, temp_cache): u, c = next(valid_urls) download_file("http://Example.com/thing", cache=True, sources=[u]) assert is_url_in_cache("http://EXAMPLE.com/thing") download_file("http://EXAMPLE.com/thing", cache=True, sources=[]) assert is_url_in_cache("Http://example.com/thing") download_file("Http://example.com/thing", cache=True, sources=[]) @pytest.mark.remote_data(source="astropy") def test_download_nocache_from_internet(): fnout = download_file(TESTURL, cache=False) assert os.path.isfile(fnout) @pytest.fixture def a_binary_file(tmp_path): fn = tmp_path / "file" b_contents = b"\xde\xad\xbe\xef" with open(fn, "wb") as f: f.write(b_contents) yield fn, b_contents @pytest.fixture def a_file(tmp_path): fn = tmp_path / "file.txt" contents = "contents\n" with open(fn, "w") as f: f.write(contents) yield fn, contents def test_temp_cache(tmp_path): dldir0 = _get_download_cache_loc() check_download_cache() with paths.set_temp_cache(tmp_path): dldir1 = _get_download_cache_loc() check_download_cache() assert dldir1 != dldir0 dldir2 = _get_download_cache_loc() check_download_cache() assert dldir2 != dldir1 assert dldir2 == dldir0 # Check that things are okay even if we exit via an exception class Special(Exception): pass try: with paths.set_temp_cache(tmp_path): dldir3 = _get_download_cache_loc() check_download_cache() assert dldir3 == dldir1 raise Special except Special: pass dldir4 = _get_download_cache_loc() check_download_cache() assert dldir4 != dldir3 assert dldir4 == dldir0 @pytest.mark.parametrize("parallel", [False, True]) def test_download_with_sources_and_bogus_original( valid_urls, invalid_urls, temp_cache, parallel ): # This is a combined test because the parallel version triggered a nasty # bug and I was trying to track it down by comparing with the non-parallel # version. I think the bug was that the parallel downloader didn't respect # temporary cache settings. # Make a big list of test URLs u, c = next(valid_urls) # as tuples (URL, right_content, wrong_content) urls = [(u, c, None)] # where to download the contents sources = {} # Set up some URLs to download where the "true" URL is not in the sources # list; make the true URL valid with different contents so we can tell if # it was loaded by mistake. for i, (um, c_bad) in enumerate(islice(valid_urls, FEW)): assert not is_url_in_cache(um) sources[um] = [] # For many of them the sources list starts with invalid URLs for iu in islice(invalid_urls, i): sources[um].append(iu) u, c = next(valid_urls) sources[um].append(u) urls.append((um, c, c_bad)) # Now fetch them all if parallel: rs = download_files_in_parallel( [u for (u, c, c_bad) in urls], cache=True, sources=sources ) else: rs = [ download_file(u, cache=True, sources=sources.get(u, None)) for (u, c, c_bad) in urls ] assert len(rs) == len(urls) for r, (u, c, c_bad) in zip(rs, urls): assert get_file_contents(r) == c assert get_file_contents(r) != c_bad assert is_url_in_cache(u) @pytest.mark.skipif( (sys.platform.startswith("win") and CI), reason="flaky cache error on Windows CI" ) def test_download_file_threaded_many(temp_cache, valid_urls): """Hammer download_file with multiple threaded requests. The goal is to stress-test the locking system. Normal parallel downloading also does this but coverage tools lose track of which paths are explored. """ urls = list(islice(valid_urls, N_THREAD_HAMMER)) with ThreadPoolExecutor(max_workers=len(urls)) as P: r = list(P.map(lambda u: download_file(u, cache=True), [u for (u, c) in urls])) check_download_cache() assert len(r) == len(urls) for r, (u, c) in zip(r, urls): assert get_file_contents(r) == c @pytest.mark.skipif( (sys.platform.startswith("win") and CI), reason="flaky cache error on Windows CI" ) def test_threaded_segfault(valid_urls): """Demonstrate urllib's segfault.""" def slurp_url(u): with urllib.request.urlopen(u) as remote: block = True while block: block = remote.read(1024) urls = list(islice(valid_urls, N_THREAD_HAMMER)) with ThreadPoolExecutor(max_workers=len(urls)) as P: list(P.map(lambda u: slurp_url(u), [u for (u, c) in urls])) @pytest.mark.skipif( (sys.platform.startswith("win") and CI), reason="flaky cache error on Windows CI" ) def test_download_file_threaded_many_partial_success( temp_cache, valid_urls, invalid_urls ): """Hammer download_file with multiple threaded requests. Because some of these requests fail, the locking context manager is exercised with exceptions as well as success returns. I do not expect many surprises from the threaded version, but the process version gave trouble here. """ urls = [] contents = {} for (u, c), i in islice(zip(valid_urls, invalid_urls), N_THREAD_HAMMER): urls.append(u) contents[u] = c urls.append(i) def get(u): try: return download_file(u, cache=True) except OSError: return None with ThreadPoolExecutor(max_workers=len(urls)) as P: r = list(P.map(get, urls)) check_download_cache() assert len(r) == len(urls) for r, u in zip(r, urls): if u in contents: assert get_file_contents(r) == contents[u] else: assert r is None def test_clear_download_cache(valid_urls): u1, c1 = next(valid_urls) download_file(u1, cache=True) u2, c2 = next(valid_urls) download_file(u2, cache=True) assert is_url_in_cache(u2) clear_download_cache(u2) assert not is_url_in_cache(u2) assert is_url_in_cache(u1) u3, c3 = next(valid_urls) f3 = download_file(u3, cache=True) assert is_url_in_cache(u3) clear_download_cache(f3) assert not is_url_in_cache(u3) assert is_url_in_cache(u1) u4, c4 = next(valid_urls) f4 = download_file(u4, cache=True) assert is_url_in_cache(u4) clear_download_cache(compute_hash(f4)) assert not is_url_in_cache(u4) assert is_url_in_cache(u1) def test_clear_download_multiple_references_doesnt_corrupt_storage( temp_cache, tmp_path ): """Check that files with the same hash don't confuse the storage.""" content = "Test data; doesn't matter much.\n" def make_url(): with NamedTemporaryFile("w", dir=tmp_path, delete=False) as f: f.write(content) url = url_to(f.name) clear_download_cache(url) filename = download_file(url, cache=True) return url, filename a_url, a_filename = make_url() clear_download_cache(a_filename) assert not is_url_in_cache(a_url) f_url, f_filename = make_url() g_url, g_filename = make_url() assert f_url != g_url assert is_url_in_cache(f_url) assert is_url_in_cache(g_url) clear_download_cache(f_url) assert not is_url_in_cache(f_url) assert is_url_in_cache(g_url) assert os.path.exists( g_filename ), "Contents should not be deleted while a reference exists" clear_download_cache(g_url) assert not os.path.exists( g_filename ), "No reference exists any more, file should be deleted" @pytest.mark.parametrize("use_cache", [False, True]) def test_download_file_local_cache_survives(tmp_path, temp_cache, use_cache): """Confirm that downloading a local file does not delete it. When implemented with urlretrieve (rather than urlopen) local files are not copied to create temporaries, so importing them to the cache deleted the original from wherever it was in the filesystem. I lost some built-in astropy data. """ fn = tmp_path / "file" contents = "some text" with open(fn, "w") as f: f.write(contents) u = url_to(fn) f = download_file(u, cache=use_cache) assert fn not in _tempfilestodel, "File should not be deleted!" assert os.path.isfile(fn), "File should not be deleted!" assert get_file_contents(f) == contents def test_sources_normal(temp_cache, valid_urls, invalid_urls): primary, contents = next(valid_urls) fallback1 = next(invalid_urls) f = download_file(primary, cache=True, sources=[primary, fallback1]) assert get_file_contents(f) == contents assert is_url_in_cache(primary) assert not is_url_in_cache(fallback1) def test_sources_fallback(temp_cache, valid_urls, invalid_urls): primary = next(invalid_urls) fallback1, contents = next(valid_urls) f = download_file(primary, cache=True, sources=[primary, fallback1]) assert get_file_contents(f) == contents assert is_url_in_cache(primary) assert not is_url_in_cache(fallback1) def test_sources_ignore_primary(temp_cache, valid_urls, invalid_urls): primary, bogus = next(valid_urls) fallback1, contents = next(valid_urls) f = download_file(primary, cache=True, sources=[fallback1]) assert get_file_contents(f) == contents assert is_url_in_cache(primary) assert not is_url_in_cache(fallback1) def test_sources_multiple(temp_cache, valid_urls, invalid_urls): primary = next(invalid_urls) fallback1 = next(invalid_urls) fallback2, contents = next(valid_urls) f = download_file(primary, cache=True, sources=[primary, fallback1, fallback2]) assert get_file_contents(f) == contents assert is_url_in_cache(primary) assert not is_url_in_cache(fallback1) assert not is_url_in_cache(fallback2) def test_sources_multiple_missing(temp_cache, valid_urls, invalid_urls): primary = next(invalid_urls) fallback1 = next(invalid_urls) fallback2 = next(invalid_urls) with pytest.raises(urllib.error.URLError): download_file(primary, cache=True, sources=[primary, fallback1, fallback2]) assert not is_url_in_cache(primary) assert not is_url_in_cache(fallback1) assert not is_url_in_cache(fallback2) def test_update_url(tmp_path, temp_cache): with TemporaryDirectory(dir=tmp_path) as d: f_name = os.path.join(d, "f") with open(f_name, "w") as f: f.write("old") f_url = url_to(f.name) assert get_file_contents(download_file(f_url, cache=True)) == "old" with open(f_name, "w") as f: f.write("new") assert get_file_contents(download_file(f_url, cache=True)) == "old" assert get_file_contents(download_file(f_url, cache="update")) == "new" # Now the URL doesn't exist any more. assert not os.path.exists(f_name) with pytest.raises(urllib.error.URLError): # Direct download should fail download_file(f_url, cache=False) assert ( get_file_contents(download_file(f_url, cache=True)) == "new" ), "Cached version should still exist" with pytest.raises(urllib.error.URLError): # cannot download new version to check for updates download_file(f_url, cache="update") assert ( get_file_contents(download_file(f_url, cache=True)) == "new" ), "Failed update should not remove the current version" @pytest.mark.remote_data(source="astropy") def test_download_noprogress(): fnout = download_file(TESTURL, cache=False, show_progress=False) assert os.path.isfile(fnout) @pytest.mark.remote_data(source="astropy") def test_download_cache(): download_dir = _get_download_cache_loc() # Download the test URL and make sure it exists, then clear just that # URL and make sure it got deleted. fnout = download_file(TESTURL, cache=True) assert os.path.isdir(download_dir) assert os.path.isfile(fnout) clear_download_cache(TESTURL) assert not os.path.exists(fnout) # Clearing download cache succeeds even if the URL does not exist. clear_download_cache("http://this_was_never_downloaded_before.com") # Make sure lockdir was released lockdir = os.path.join(download_dir, "lock") assert not os.path.isdir(lockdir), "Cache dir lock was not released!" @pytest.mark.remote_data(source="astropy") def test_download_certificate_verification_failed(): """Tests for https://github.com/astropy/astropy/pull/10434""" # First test the expected exception when download fails due to a # certificate verification error; we simulate this by passing a bogus # CA directory to the ssl_context argument ssl_context = {"cafile": None, "capath": "/does/not/exist"} msg = f"Verification of TLS/SSL certificate at {TESTURL_SSL} failed" with pytest.raises(urllib.error.URLError, match=msg): download_file(TESTURL_SSL, cache=False, ssl_context=ssl_context) with pytest.warns(AstropyWarning, match=msg) as warning_lines: fnout = download_file( TESTURL_SSL, cache=False, ssl_context=ssl_context, allow_insecure=True ) assert len(warning_lines) == 1 assert os.path.isfile(fnout) def test_download_cache_after_clear(tmp_path, temp_cache, valid_urls): testurl, contents = next(valid_urls) # Test issues raised in #4427 with clear_download_cache() without a URL, # followed by subsequent download. download_dir = _get_download_cache_loc() fnout = download_file(testurl, cache=True) assert os.path.isfile(fnout) clear_download_cache() assert not os.path.exists(fnout) assert not os.path.exists(download_dir) fnout = download_file(testurl, cache=True) assert os.path.isfile(fnout) @pytest.mark.remote_data(source="astropy") def test_download_parallel_from_internet_works(temp_cache): main_url = conf.dataurl mirror_url = conf.dataurl_mirror fileloc = "intersphinx/README" urls = [] sources = {} for s in ["", fileloc]: urls.append(main_url + s) sources[urls[-1]] = [urls[-1], mirror_url + s] fnout = download_files_in_parallel(urls, sources=sources) assert all([os.path.isfile(f) for f in fnout]), fnout @pytest.mark.parametrize("method", [None, "spawn"]) def test_download_parallel_fills_cache(tmp_path, valid_urls, method): urls = [] # tmp_path is shared between many tests, and that can cause weird # interactions if we set the temporary cache too directly with paths.set_temp_cache(tmp_path): for um, c in islice(valid_urls, FEW): assert not is_url_in_cache(um) urls.append((um, c)) rs = download_files_in_parallel( [u for (u, c) in urls], multiprocessing_start_method=method ) assert len(rs) == len(urls) url_set = {u for (u, c) in urls} assert url_set <= set(get_cached_urls()) for r, (u, c) in zip(rs, urls): assert get_file_contents(r) == c check_download_cache() assert not url_set.intersection(get_cached_urls()) check_download_cache() def test_download_parallel_with_empty_sources(valid_urls, temp_cache): urls = [] sources = {} for um, c in islice(valid_urls, FEW): assert not is_url_in_cache(um) urls.append((um, c)) rs = download_files_in_parallel([u for (u, c) in urls], sources=sources) assert len(rs) == len(urls) # u = set(u for (u, c) in urls) # assert u <= set(get_cached_urls()) check_download_cache() for r, (u, c) in zip(rs, urls): assert get_file_contents(r) == c def test_download_parallel_with_sources_and_bogus_original( valid_urls, invalid_urls, temp_cache ): u, c = next(valid_urls) urls = [(u, c, None)] sources = {} for i, (um, c_bad) in enumerate(islice(valid_urls, FEW)): assert not is_url_in_cache(um) sources[um] = [] for iu in islice(invalid_urls, i): sources[um].append(iu) u, c = next(valid_urls) sources[um].append(u) urls.append((um, c, c_bad)) rs = download_files_in_parallel([u for (u, c, c_bad) in urls], sources=sources) assert len(rs) == len(urls) # u = set(u for (u, c, c_bad) in urls) # assert u <= set(get_cached_urls()) for r, (u, c, c_bad) in zip(rs, urls): assert get_file_contents(r) == c assert get_file_contents(r) != c_bad def test_download_parallel_many(temp_cache, valid_urls): td = list(islice(valid_urls, N_PARALLEL_HAMMER)) r = download_files_in_parallel([u for (u, c) in td]) assert len(r) == len(td) for r, (u, c) in zip(r, td): assert get_file_contents(r) == c def test_download_parallel_partial_success(temp_cache, valid_urls, invalid_urls): """Check that a partially successful download works. Even in the presence of many requested URLs, presumably hitting all the parallelism this system can manage, a download failure leads to a tidy shutdown. """ td = list(islice(valid_urls, N_PARALLEL_HAMMER)) u_bad = next(invalid_urls) with pytest.raises(urllib.request.URLError): download_files_in_parallel([u_bad] + [u for (u, c) in td]) # Actually some files may get downloaded, others not. # Is this good? Should we stubbornly keep trying? # assert not any([is_url_in_cache(u) for (u, c) in td]) @pytest.mark.slow def test_download_parallel_partial_success_lock_safe( temp_cache, valid_urls, invalid_urls ): """Check that a partially successful parallel download leaves the cache unlocked. This needs to be repeated many times because race conditions are what cause this sort of thing, especially situations where a process might be forcibly shut down while it holds the lock. """ s = random.getstate() try: random.seed(0) for _ in range(N_PARALLEL_HAMMER): td = list(islice(valid_urls, FEW)) u_bad = next(invalid_urls) urls = [u_bad] + [u for (u, c) in td] random.shuffle(urls) with pytest.raises(urllib.request.URLError): download_files_in_parallel(urls) finally: random.setstate(s) def test_download_parallel_update(temp_cache, tmp_path): td = [] for i in range(N_PARALLEL_HAMMER): c = f"{i:04d}" fn = tmp_path / c with open(fn, "w") as f: f.write(c) u = url_to(fn) clear_download_cache(u) td.append((fn, u, c)) r1 = download_files_in_parallel([u for (fn, u, c) in td]) assert len(r1) == len(td) for r_1, (fn, u, c) in zip(r1, td): assert get_file_contents(r_1) == c td2 = [] for fn, u, c in td: c_plus = f"{c} updated" fn = tmp_path / c with open(fn, "w") as f: f.write(c_plus) td2.append((fn, u, c, c_plus)) r2 = download_files_in_parallel([u for (fn, u, c) in td], cache=True) assert len(r2) == len(td) for r_2, (fn, u, c, c_plus) in zip(r2, td2): assert get_file_contents(r_2) == c assert c != c_plus r3 = download_files_in_parallel([u for (fn, u, c) in td], cache="update") assert len(r3) == len(td) for r_3, (fn, u, c, c_plus) in zip(r3, td2): assert get_file_contents(r_3) != c assert get_file_contents(r_3) == c_plus @pytest.mark.skipif( (sys.platform.startswith("win") and CI), reason="flaky cache error on Windows CI" ) def test_update_parallel(temp_cache, valid_urls): u, c = next(valid_urls) u2, c2 = next(valid_urls) f = download_file(u, cache=True) assert get_file_contents(f) == c def update(i): return download_file(u, cache="update", sources=[u2]) with ThreadPoolExecutor(max_workers=N_THREAD_HAMMER) as P: r = set(P.map(update, range(N_THREAD_HAMMER))) check_download_cache() for f in r: assert get_file_contents(f) == c2 @pytest.mark.skipif( (sys.platform.startswith("win") and CI), reason="flaky cache error on Windows CI" ) def test_update_parallel_multi(temp_cache, valid_urls): u, c = next(valid_urls) iucs = list(islice(valid_urls, N_THREAD_HAMMER)) f = download_file(u, cache=True) assert get_file_contents(f) == c def update(uc): u2, c2 = uc return download_file(u, cache="update", sources=[u2]), c2 with ThreadPoolExecutor(max_workers=len(iucs)) as P: r = list(P.map(update, iucs)) check_download_cache() assert any(get_file_contents(f) == c for (f, c) in r) @pytest.mark.remote_data(source="astropy") def test_url_nocache(): with get_readable_fileobj(TESTURL, cache=False, encoding="utf-8") as page: assert page.read().find("Astropy") > -1 def test_find_by_hash(valid_urls, temp_cache): testurl, contents = next(valid_urls) p = download_file(testurl, cache=True) hash = compute_hash(p) hashstr = "hash/" + hash fnout = get_pkg_data_filename(hashstr) assert os.path.isfile(fnout) clear_download_cache(fnout) assert not os.path.isfile(fnout) @pytest.mark.remote_data(source="astropy") def test_find_invalid(): # this is of course not a real data file and not on any remote server, but # it should *try* to go to the remote server with pytest.raises(urllib.error.URLError): get_pkg_data_filename( "kjfrhgjklahgiulrhgiuraehgiurhgiuhreglhurieghruelighiuerahiulruli" ) @pytest.mark.parametrize("package", [None, "astropy", "numpy"]) def test_get_invalid(package): """Test can create a file path to an invalid file.""" path = get_pkg_data_path("kjfrhgjkla", "hgiulrhgiu", package=package) assert not os.path.isfile(path) assert not os.path.isdir(path) # Package data functions @pytest.mark.parametrize( "filename", ["local.dat", "local.dat.gz", "local.dat.bz2", "local.dat.xz"] ) def test_local_data_obj(filename): if (not HAS_BZ2 and "bz2" in filename) or (not HAS_LZMA and "xz" in filename): with pytest.raises(ValueError, match=r" format files are not supported"): with get_pkg_data_fileobj( os.path.join("data", filename), encoding="binary" ) as f: f.readline() # assert f.read().rstrip() == b'CONTENT' else: with get_pkg_data_fileobj( os.path.join("data", filename), encoding="binary" ) as f: f.readline() assert f.read().rstrip() == b"CONTENT" @pytest.fixture(params=["invalid.dat.bz2", "invalid.dat.gz"]) def bad_compressed(request, tmp_path): # These contents have valid headers for their respective file formats, but # are otherwise malformed and invalid. bz_content = b"BZhinvalid" gz_content = b"\x1f\x8b\x08invalid" datafile = tmp_path / request.param filename = str(datafile) if filename.endswith(".bz2"): contents = bz_content elif filename.endswith(".gz"): contents = gz_content else: contents = "invalid" datafile.write_bytes(contents) return filename def test_local_data_obj_invalid(bad_compressed): is_bz2 = bad_compressed.endswith(".bz2") is_xz = bad_compressed.endswith(".xz") # Note, since these invalid files are created on the fly in order to avoid # problems with detection by antivirus software # (see https://github.com/astropy/astropy/issues/6520), it is no longer # possible to use ``get_pkg_data_fileobj`` to read the files. Technically, # they're not local anymore: they just live in a temporary directory # created by pytest. However, we can still use get_readable_fileobj for the # test. if (not HAS_BZ2 and is_bz2) or (not HAS_LZMA and is_xz): with pytest.raises( ModuleNotFoundError, match=r"does not provide the [lb]z[2m]a? module\." ): with get_readable_fileobj(bad_compressed, encoding="binary") as f: f.read() else: with get_readable_fileobj(bad_compressed, encoding="binary") as f: assert f.read().rstrip().endswith(b"invalid") def test_local_data_name(): assert os.path.isfile(TESTLOCAL) and TESTLOCAL.endswith("local.dat") # TODO: if in the future, the root data/ directory is added in, the below # test should be uncommented and the README.rst should be replaced with # whatever file is there # get something in the astropy root # fnout2 = get_pkg_data_filename('../../data/README.rst') # assert os.path.isfile(fnout2) and fnout2.endswith('README.rst') def test_data_name_third_party_package(): """Regression test for issue #1256 Tests that `get_pkg_data_filename` works in a third-party package that doesn't make any relative imports from the module it's used from. Uses a test package under ``data/test_package``. """ # Get the actual data dir: data_dir = os.path.join(os.path.dirname(__file__), "data") sys.path.insert(0, data_dir) try: import test_package filename = test_package.get_data_filename() assert os.path.normcase(filename) == ( os.path.normcase(os.path.join(data_dir, "test_package", "data", "foo.txt")) ) finally: sys.path.pop(0) def test_local_data_nonlocalfail(): # this would go *outside* the astropy tree with pytest.raises(RuntimeError): get_pkg_data_filename("../../../data/README.rst") def test_compute_hash(tmp_path): rands = b"1234567890abcdefghijklmnopqrstuvwxyz" filename = tmp_path / "tmp.dat" with open(filename, "wb") as ntf: ntf.write(rands) ntf.flush() chhash = compute_hash(filename) shash = hashlib.md5(rands).hexdigest() assert chhash == shash def test_get_pkg_data_contents(): with get_pkg_data_fileobj("data/local.dat") as f: contents1 = f.read() contents2 = get_pkg_data_contents("data/local.dat") assert contents1 == contents2 @pytest.mark.remote_data(source="astropy") def test_data_noastropy_fallback(monkeypatch): """ Tests to make sure the default behavior when the cache directory can't be located is correct """ # better yet, set the configuration to make sure the temp files are deleted conf.delete_temporary_downloads_at_exit = True # make sure the config and cache directories are not searched monkeypatch.setenv("XDG_CONFIG_HOME", "foo") monkeypatch.delenv("XDG_CONFIG_HOME") monkeypatch.setenv("XDG_CACHE_HOME", "bar") monkeypatch.delenv("XDG_CACHE_HOME") monkeypatch.setattr(paths.set_temp_config, "_temp_path", None) monkeypatch.setattr(paths.set_temp_cache, "_temp_path", None) # make sure the _find_or_create_astropy_dir function fails as though the # astropy dir could not be accessed def osraiser(dirnm, linkto, pkgname=None): raise OSError() monkeypatch.setattr(paths, "_find_or_create_root_dir", osraiser) with pytest.raises(OSError): # make sure the config dir search fails paths.get_cache_dir(rootname="astropy") with pytest.warns(CacheMissingWarning) as warning_lines: fnout = download_file(TESTURL, cache=True) n_warns = len(warning_lines) partial_warn_msgs = ["remote data cache could not be accessed", "temporary file"] if n_warns == 4: partial_warn_msgs.extend(["socket", "socket"]) for wl in warning_lines: cur_w = str(wl).lower() for i, partial_msg in enumerate(partial_warn_msgs): if partial_msg in cur_w: del partial_warn_msgs[i] break assert ( len(partial_warn_msgs) == 0 ), f"Got some unexpected warnings: {partial_warn_msgs}" assert n_warns in (2, 4), f"Expected 2 or 4 warnings, got {n_warns}" assert os.path.isfile(fnout) # clearing the cache should be a no-up that doesn't affect fnout with pytest.warns( CacheMissingWarning, match=r".*Not clearing data cache - cache inaccessible.*" ): clear_download_cache(TESTURL) assert os.path.isfile(fnout) # now remove it so tests don't clutter up the temp dir this should get # called at exit, anyway, but we do it here just to make sure it's working # correctly _deltemps() assert not os.path.isfile(fnout) # now try with no cache fnnocache = download_file(TESTURL, cache=False) with open(fnnocache, "rb") as page: assert page.read().decode("utf-8").find("Astropy") > -1 # no warnings should be raise in fileobj because cache is unnecessary @pytest.mark.parametrize( "filename", [ "unicode.txt", "unicode.txt.gz", pytest.param( "unicode.txt.bz2", marks=pytest.mark.xfail(not HAS_BZ2, reason="no bz2 support"), ), pytest.param( "unicode.txt.xz", marks=pytest.mark.xfail(not HAS_LZMA, reason="no lzma support"), ), ], ) def test_read_unicode(filename): contents = get_pkg_data_contents(os.path.join("data", filename), encoding="utf-8") assert isinstance(contents, str) contents = contents.splitlines()[1] assert contents == "האסטרונומי פייתון" contents = get_pkg_data_contents(os.path.join("data", filename), encoding="binary") assert isinstance(contents, bytes) x = contents.splitlines()[1] # fmt: off assert x == ( b"\xff\xd7\x94\xd7\x90\xd7\xa1\xd7\x98\xd7\xa8\xd7\x95\xd7\xa0\xd7\x95" b"\xd7\x9e\xd7\x99 \xd7\xa4\xd7\x99\xd7\x99\xd7\xaa\xd7\x95\xd7\x9f"[1:] ) # fmt: on def test_compressed_stream(): gzipped_data = ( b"H4sICIxwG1AAA2xvY2FsLmRhdAALycgsVkjLzElVANKlxakpCpl5CiUZqQ" b"olqcUl8Tn5yYk58SmJJYnxWmCRzLx0hbTSvOSSzPy8Yi5nf78QV78QLgAlLytnRQAAAA==" ) gzipped_data = base64.b64decode(gzipped_data) assert isinstance(gzipped_data, bytes) class FakeStream: """ A fake stream that has `read`, but no `seek`. """ def __init__(self, data): self.data = data def read(self, nbytes=None): if nbytes is None: result = self.data self.data = b"" else: result = self.data[:nbytes] self.data = self.data[nbytes:] return result stream = FakeStream(gzipped_data) with get_readable_fileobj(stream, encoding="binary") as f: f.readline() assert f.read().rstrip() == b"CONTENT" @pytest.mark.remote_data(source="astropy") def test_invalid_location_download_raises_urlerror(): """ checks that download_file gives a URLError and not an AttributeError, as its code pathway involves some fiddling with the exception. """ with pytest.raises(urllib.error.URLError): download_file("http://www.astropy.org/nonexistentfile") def test_invalid_location_download_noconnect(): """ checks that download_file gives an OSError if the socket is blocked """ # This should invoke socket's monkeypatched failure with pytest.raises(OSError): download_file("http://astropy.org/nonexistentfile") @pytest.mark.remote_data(source="astropy") def test_is_url_in_cache_remote(): assert not is_url_in_cache("http://astropy.org/nonexistentfile") download_file(TESTURL, cache=True, show_progress=False) assert is_url_in_cache(TESTURL) def test_is_url_in_cache_local(temp_cache, valid_urls, invalid_urls): testurl, contents = next(valid_urls) nonexistent = next(invalid_urls) assert not is_url_in_cache(testurl) assert not is_url_in_cache(nonexistent) download_file(testurl, cache=True, show_progress=False) assert is_url_in_cache(testurl) assert not is_url_in_cache(nonexistent) # If non-deterministic failure happens see # https://github.com/astropy/astropy/issues/9765 def test_check_download_cache(tmp_path, temp_cache, valid_urls, invalid_urls): testurl, testurl_contents = next(valid_urls) testurl2, testurl2_contents = next(valid_urls) zip_file_name = tmp_path / "the.zip" clear_download_cache() assert not check_download_cache() download_file(testurl, cache=True) check_download_cache() download_file(testurl2, cache=True) check_download_cache() export_download_cache(zip_file_name, [testurl, testurl2]) check_download_cache() clear_download_cache(testurl2) check_download_cache() import_download_cache(zip_file_name, [testurl]) check_download_cache() def test_export_import_roundtrip_one(tmp_path, temp_cache, valid_urls): testurl, contents = next(valid_urls) f = download_file(testurl, cache=True, show_progress=False) assert get_file_contents(f) == contents initial_urls_in_cache = set(get_cached_urls()) zip_file_name = tmp_path / "the.zip" export_download_cache(zip_file_name, [testurl]) clear_download_cache(testurl) import_download_cache(zip_file_name) assert is_url_in_cache(testurl) assert set(get_cached_urls()) == initial_urls_in_cache assert ( get_file_contents(download_file(testurl, cache=True, show_progress=False)) == contents ) def test_export_url_not_present(temp_cache, valid_urls): testurl, contents = next(valid_urls) with NamedTemporaryFile("wb") as zip_file: assert not is_url_in_cache(testurl) with pytest.raises(KeyError): export_download_cache(zip_file, [testurl]) def test_import_one(tmp_path, temp_cache, valid_urls): testurl, testurl_contents = next(valid_urls) testurl2, testurl2_contents = next(valid_urls) zip_file_name = tmp_path / "the.zip" download_file(testurl, cache=True) download_file(testurl2, cache=True) assert is_url_in_cache(testurl2) export_download_cache(zip_file_name, [testurl, testurl2]) clear_download_cache(testurl) clear_download_cache(testurl2) import_download_cache(zip_file_name, [testurl]) assert is_url_in_cache(testurl) assert not is_url_in_cache(testurl2) def test_export_import_roundtrip(tmp_path, temp_cache, valid_urls): zip_file_name = tmp_path / "the.zip" for u, c in islice(valid_urls, FEW): download_file(u, cache=True) initial_urls_in_cache = set(get_cached_urls()) export_download_cache(zip_file_name) clear_download_cache() import_download_cache(zip_file_name) assert set(get_cached_urls()) == initial_urls_in_cache def test_export_import_roundtrip_stream(temp_cache, valid_urls): for u, c in islice(valid_urls, FEW): download_file(u, cache=True) initial_urls_in_cache = set(get_cached_urls()) with io.BytesIO() as f: export_download_cache(f) b = f.getvalue() clear_download_cache() with io.BytesIO(b) as f: import_download_cache(f) assert set(get_cached_urls()) == initial_urls_in_cache def test_export_overwrite_flag_works(temp_cache, valid_urls, tmp_path): fn = tmp_path / "f.zip" c = b"Some contents\nto check later" with open(fn, "wb") as f: f.write(c) for u, _ in islice(valid_urls, FEW): download_file(u, cache=True) with pytest.raises(FileExistsError): export_download_cache(fn) assert get_file_contents(fn, encoding="binary") == c export_download_cache(fn, overwrite=True) assert get_file_contents(fn, encoding="binary") != c def test_export_import_roundtrip_different_location(tmp_path, valid_urls): original_cache = tmp_path / "original" original_cache.mkdir() zip_file_name = tmp_path / "the.zip" urls = list(islice(valid_urls, FEW)) initial_urls_in_cache = {u for (u, c) in urls} with paths.set_temp_cache(original_cache): for u, c in urls: download_file(u, cache=True) assert set(get_cached_urls()) == initial_urls_in_cache export_download_cache(zip_file_name) new_cache = tmp_path / "new" new_cache.mkdir() with paths.set_temp_cache(new_cache): import_download_cache(zip_file_name) check_download_cache() assert set(get_cached_urls()) == initial_urls_in_cache for u, c in urls: assert get_file_contents(download_file(u, cache=True)) == c def test_cache_size_is_zero_when_empty(temp_cache): assert not get_cached_urls() assert cache_total_size() == 0 def test_cache_size_changes_correctly_when_files_are_added_and_removed( temp_cache, valid_urls ): u, c = next(valid_urls) clear_download_cache(u) s_i = cache_total_size() download_file(u, cache=True) assert cache_total_size() == s_i + len(c) + len(u.encode("utf-8")) clear_download_cache(u) assert cache_total_size() == s_i def test_cache_contents_agrees_with_get_urls(temp_cache, valid_urls): r = [] for a, a_c in islice(valid_urls, FEW): a_f = download_file(a, cache=True) r.append((a, a_c, a_f)) assert set(cache_contents().keys()) == set(get_cached_urls()) for u, c, h in r: assert cache_contents()[u] == h @pytest.mark.parametrize("desired_size", [1_000_000_000_000_000_000, 1 * _u.Ebyte]) def test_free_space_checker_huge(tmp_path, desired_size): with pytest.raises(OSError): check_free_space_in_dir(tmp_path, desired_size) def test_get_free_space_file_directory(tmp_path): fn = tmp_path / "file" with open(fn, "w"): pass with pytest.raises(OSError): get_free_space_in_dir(fn) free_space = get_free_space_in_dir(tmp_path) assert free_space > 0 and not hasattr(free_space, "unit") # TODO: If unit=True starts to auto-guess prefix, this needs updating. free_space = get_free_space_in_dir(tmp_path, unit=True) assert free_space > 0 and free_space.unit == _u.byte free_space = get_free_space_in_dir(tmp_path, unit=_u.Mbit) assert free_space > 0 and free_space.unit == _u.Mbit def test_download_file_bogus_settings(invalid_urls, temp_cache): u = next(invalid_urls) with pytest.raises(KeyError): download_file(u, sources=[]) def test_download_file_local_directory(tmp_path): """Make sure we get a URLError rather than OSError even if it's a local directory.""" with pytest.raises(urllib.request.URLError): download_file(url_to(tmp_path)) def test_download_file_schedules_deletion(valid_urls): u, c = next(valid_urls) f = download_file(u) assert f in _tempfilestodel # how to test deletion actually occurs? def test_clear_download_cache_refuses_to_delete_outside_the_cache(tmp_path): fn = str(tmp_path / "file") with open(fn, "w") as f: f.write("content") assert os.path.exists(fn) with pytest.raises(RuntimeError): clear_download_cache(fn) assert os.path.exists(fn) def test_check_download_cache_finds_bogus_entries(temp_cache, valid_urls): u, c = next(valid_urls) download_file(u, cache=True) dldir = _get_download_cache_loc() bf = os.path.abspath(os.path.join(dldir, "bogus")) with open(bf, "w") as f: f.write("bogus file that exists") with pytest.raises(CacheDamaged) as e: check_download_cache() assert bf in e.value.bad_files clear_download_cache() def test_check_download_cache_finds_bogus_subentries(temp_cache, valid_urls): u, c = next(valid_urls) f = download_file(u, cache=True) bf = os.path.abspath(os.path.join(os.path.dirname(f), "bogus")) with open(bf, "w") as f: f.write("bogus file that exists") with pytest.raises(CacheDamaged) as e: check_download_cache() assert bf in e.value.bad_files clear_download_cache() def test_check_download_cache_cleanup(temp_cache, valid_urls): u, c = next(valid_urls) fn = download_file(u, cache=True) dldir = _get_download_cache_loc() bf1 = os.path.abspath(os.path.join(dldir, "bogus1")) with open(bf1, "w") as f: f.write("bogus file that exists") bf2 = os.path.abspath(os.path.join(os.path.dirname(fn), "bogus2")) with open(bf2, "w") as f: f.write("other bogus file that exists") bf3 = os.path.abspath(os.path.join(dldir, "contents")) with open(bf3, "w") as f: f.write("awkwardly-named bogus file that exists") u2, c2 = next(valid_urls) f2 = download_file(u, cache=True) os.unlink(f2) bf4 = os.path.dirname(f2) with pytest.raises(CacheDamaged) as e: check_download_cache() assert set(e.value.bad_files) == {bf1, bf2, bf3, bf4} for bf in e.value.bad_files: clear_download_cache(bf) # download cache will be checked on exit def test_download_cache_update_doesnt_damage_cache(temp_cache, valid_urls): u, _ = next(valid_urls) download_file(u, cache=True) download_file(u, cache="update") def test_cache_dir_is_actually_a_file(tmp_path, valid_urls): """Ensure that bogus cache settings are handled sensibly. Because the user can specify the cache location in a config file, and because they might try to deduce the location by looking around at what's in their directory tree, and because the cache directory is actual several tree levels down from the directory set in the config file, it's important to check what happens if each of the steps in the path is wrong somehow. """ def check_quietly_ignores_bogus_cache(): """We want a broken cache to produce a warning but then astropy should act like there isn't a cache. """ with pytest.warns(CacheMissingWarning): assert not get_cached_urls() with pytest.warns(CacheMissingWarning): assert not is_url_in_cache("http://www.example.com/") with pytest.warns(CacheMissingWarning): assert not cache_contents() with pytest.warns(CacheMissingWarning): u, c = next(valid_urls) r = download_file(u, cache=True) assert get_file_contents(r) == c # check the filename r appears in a warning message? # check r is added to the delete_at_exit list? # in fact should there be testing of the delete_at_exit mechanism, # as far as that is possible? with pytest.warns(CacheMissingWarning): assert not is_url_in_cache(u) with pytest.warns(CacheMissingWarning): with pytest.raises(OSError): check_download_cache() dldir = _get_download_cache_loc() # set_temp_cache acts weird if it is pointed at a file (see below) # but we want to see what happens when the cache is pointed # at a file instead of a directory, so make a directory we can # replace later. fn = tmp_path / "file" ct = "contents\n" os.mkdir(fn) with paths.set_temp_cache(fn): shutil.rmtree(fn) with open(fn, "w") as f: f.write(ct) with pytest.raises(OSError): paths.get_cache_dir() check_quietly_ignores_bogus_cache() assert dldir == _get_download_cache_loc() assert get_file_contents(fn) == ct, "File should not be harmed." # See what happens when set_temp_cache is pointed at a file with pytest.raises(OSError): with paths.set_temp_cache(fn): pass assert dldir == _get_download_cache_loc() assert get_file_contents(str(fn)) == ct # Now the cache directory is normal but the subdirectory it wants # to make is a file cd = tmp_path / "astropy" with open(cd, "w") as f: f.write(ct) with paths.set_temp_cache(tmp_path): check_quietly_ignores_bogus_cache() assert dldir == _get_download_cache_loc() assert get_file_contents(cd) == ct os.remove(cd) # Ditto one level deeper os.makedirs(cd) cd = tmp_path / "astropy" / "download" with open(cd, "w") as f: f.write(ct) with paths.set_temp_cache(tmp_path): check_quietly_ignores_bogus_cache() assert dldir == _get_download_cache_loc() assert get_file_contents(cd) == ct os.remove(cd) # Ditto another level deeper os.makedirs(cd) cd = tmp_path / "astropy" / "download" / "url" with open(cd, "w") as f: f.write(ct) with paths.set_temp_cache(tmp_path): check_quietly_ignores_bogus_cache() assert dldir == _get_download_cache_loc() assert get_file_contents(cd) == ct os.remove(cd) def test_get_fileobj_str(a_file): fn, c = a_file with get_readable_fileobj(str(fn)) as rf: assert rf.read() == c def test_get_fileobj_localpath(a_file): fn, c = a_file with get_readable_fileobj(py.path.local(fn)) as rf: assert rf.read() == c def test_get_fileobj_pathlib(a_file): fn, c = a_file with get_readable_fileobj(pathlib.Path(fn)) as rf: assert rf.read() == c def test_get_fileobj_binary(a_binary_file): fn, c = a_binary_file with get_readable_fileobj(fn, encoding="binary") as rf: assert rf.read() == c def test_get_fileobj_already_open_text(a_file): fn, c = a_file with open(fn) as f: with get_readable_fileobj(f) as rf: with pytest.raises(TypeError): rf.read() def test_get_fileobj_already_open_binary(a_file): fn, c = a_file with open(fn, "rb") as f: with get_readable_fileobj(f) as rf: assert rf.read() == c def test_get_fileobj_binary_already_open_binary(a_binary_file): fn, c = a_binary_file with open(fn, "rb") as f: with get_readable_fileobj(f, encoding="binary") as rf: assert rf.read() == c def test_cache_contents_not_writable(temp_cache, valid_urls): c = cache_contents() with pytest.raises(TypeError): c["foo"] = 7 u, _ = next(valid_urls) download_file(u, cache=True) c = cache_contents() assert u in c with pytest.raises(TypeError): c["foo"] = 7 def test_cache_relocatable(tmp_path, valid_urls): u, c = next(valid_urls) d1 = tmp_path / "1" d2 = tmp_path / "2" os.mkdir(d1) with paths.set_temp_cache(d1): p1 = download_file(u, cache=True) assert is_url_in_cache(u) assert get_file_contents(p1) == c shutil.copytree(d1, d2) clear_download_cache() with paths.set_temp_cache(d2): assert is_url_in_cache(u) p2 = download_file(u, cache=True) assert p1 != p2 assert os.path.exists(p2) clear_download_cache(p2) check_download_cache() def test_get_readable_fileobj_cleans_up_temporary_files(tmp_path, monkeypatch): """checks that get_readable_fileobj leaves no temporary files behind""" # Create a 'file://' URL pointing to a path on the local filesystem url = url_to(TESTLOCAL) # Save temporary files to a known location monkeypatch.setattr(tempfile, "tempdir", str(tmp_path)) # Call get_readable_fileobj() as a context manager with get_readable_fileobj(url) as f: f.read() # Get listing of files in temporary directory tempdir_listing = list(tmp_path.iterdir()) # Assert that the temporary file was empty after get_readable_fileobj() # context manager finished running assert len(tempdir_listing) == 0 def test_path_objects_get_readable_fileobj(): fpath = pathlib.Path(TESTLOCAL) with get_readable_fileobj(fpath) as f: assert ( f.read().rstrip() == "This file is used in the test_local_data_* testing functions\nCONTENT" ) def test_nested_get_readable_fileobj(): """Ensure fileobj state is as expected when get_readable_fileobj() is called inside another get_readable_fileobj(). """ with get_readable_fileobj(TESTLOCAL, encoding="binary") as fileobj: with get_readable_fileobj(fileobj, encoding="UTF-8") as fileobj2: fileobj2.seek(1) fileobj.seek(1) # Theoretically, fileobj2 should be closed already here but it is not. # See https://github.com/astropy/astropy/pull/8675. # UNCOMMENT THIS WHEN PYTHON FINALLY LETS IT HAPPEN. # assert fileobj2.closed assert fileobj.closed and fileobj2.closed def test_download_file_wrong_size(monkeypatch): @contextlib.contextmanager def mockurl(remote_url, timeout=None): yield MockURL() def mockurl_builder(*args, tlscontext=None, **kwargs): mock_opener = type("MockOpener", (object,), {})() mock_opener.open = mockurl return mock_opener class MockURL: def __init__(self): self.reader = io.BytesIO(b"a" * real_length) def info(self): return {"Content-Length": str(report_length)} def read(self, length=None): return self.reader.read(length) monkeypatch.setattr(astropy.utils.data, "_build_urlopener", mockurl_builder) with pytest.raises(urllib.error.ContentTooShortError): report_length = 1024 real_length = 1023 download_file(TESTURL, cache=False) with pytest.raises(urllib.error.URLError): report_length = 1023 real_length = 1024 download_file(TESTURL, cache=False) report_length = 1023 real_length = 1023 fn = download_file(TESTURL, cache=False) with open(fn, "rb") as f: assert f.read() == b"a" * real_length report_length = None real_length = 1023 fn = download_file(TESTURL, cache=False) with open(fn, "rb") as f: assert f.read() == b"a" * real_length def test_can_make_directories_readonly(tmp_path): try: with readonly_dir(tmp_path): assert is_dir_readonly(tmp_path) except AssertionError: if hasattr(os, "geteuid") and os.geteuid() == 0: pytest.skip( "We are root, we can't make a directory un-writable with chmod." ) elif platform.system() == "Windows": pytest.skip( "It seems we can't make a driectory un-writable under Windows " "with chmod, in spite of the documentation." ) else: raise def test_can_make_files_readonly(tmp_path): fn = tmp_path / "test" c = "contents\n" with open(fn, "w") as f: f.write(c) with readonly_dir(tmp_path): try: with open(fn, "w+") as f: f.write("more contents\n") except PermissionError: pass else: if hasattr(os, "geteuid") and os.geteuid() == 0: pytest.skip("We are root, we can't make a file un-writable with chmod.") assert get_file_contents(fn) == c def test_read_cache_readonly(readonly_cache): assert cache_contents() == readonly_cache def test_download_file_cache_readonly(readonly_cache): for u in readonly_cache: f = download_file(u, cache=True) assert f == readonly_cache[u] def test_import_file_cache_readonly(readonly_cache, tmp_path): filename = tmp_path / "test-file" content = "Some text or other" url = "http://example.com/" with open(filename, "w") as f: f.write(content) with pytest.raises(OSError): import_file_to_cache(url, filename, remove_original=True) assert not is_url_in_cache(url) def test_download_file_cache_readonly_cache_miss(readonly_cache, valid_urls): u, c = next(valid_urls) with pytest.warns(CacheMissingWarning): f = download_file(u, cache=True) assert get_file_contents(f) == c assert not is_url_in_cache(u) def test_download_file_cache_readonly_update(readonly_cache): for u in readonly_cache: with pytest.warns(CacheMissingWarning): f = download_file(u, cache="update") assert f != readonly_cache[u] assert compute_hash(f) == compute_hash(readonly_cache[u]) def test_check_download_cache_works_if_readonly(readonly_cache): check_download_cache() # On Windows I can't make directories readonly. On CircleCI I can't make # anything readonly because the test suite runs as root. So on those platforms # none of the "real" tests above can be run. I can use monkeypatch to trigger # the readonly code paths, see the "fake" versions of the tests below, but I # don't totally trust those to completely explore what happens either, so we # have both. I couldn't see an easy way to parameterize over fixtures and share # tests. def test_read_cache_fake_readonly(fake_readonly_cache): assert cache_contents() == fake_readonly_cache def test_download_file_cache_fake_readonly(fake_readonly_cache): for u in fake_readonly_cache: f = download_file(u, cache=True) assert f == fake_readonly_cache[u] def test_mkdtemp_cache_fake_readonly(fake_readonly_cache): with pytest.raises(OSError): tempfile.mkdtemp() def test_TD_cache_fake_readonly(fake_readonly_cache): with pytest.raises(OSError): with TemporaryDirectory(): pass def test_import_file_cache_fake_readonly(fake_readonly_cache, tmp_path): filename = tmp_path / "test-file" content = "Some text or other" url = "http://example.com/" with open(filename, "w") as f: f.write(content) with pytest.raises(OSError): import_file_to_cache(url, filename, remove_original=True) assert not is_url_in_cache(url) def test_download_file_cache_fake_readonly_cache_miss(fake_readonly_cache, valid_urls): u, c = next(valid_urls) with pytest.warns(CacheMissingWarning): f = download_file(u, cache=True) assert not is_url_in_cache(u) assert get_file_contents(f) == c def test_download_file_cache_fake_readonly_update(fake_readonly_cache): for u in fake_readonly_cache: with pytest.warns(CacheMissingWarning): f = download_file(u, cache="update") assert f != fake_readonly_cache[u] assert compute_hash(f) == compute_hash(fake_readonly_cache[u]) def test_check_download_cache_works_if_fake_readonly(fake_readonly_cache): check_download_cache() def test_pkgname_isolation(temp_cache, valid_urls): a = "bogus_cache_name" assert not get_cached_urls() assert not get_cached_urls(pkgname=a) for u, _ in islice(valid_urls, FEW): download_file(u, cache=True, pkgname=a) assert not get_cached_urls() assert len(get_cached_urls(pkgname=a)) == FEW assert cache_total_size() < cache_total_size(pkgname=a) for u, _ in islice(valid_urls, FEW + 1): download_file(u, cache=True) assert len(get_cached_urls()) == FEW + 1 assert len(get_cached_urls(pkgname=a)) == FEW assert cache_total_size() > cache_total_size(pkgname=a) assert set(get_cached_urls()) == set(cache_contents().keys()) assert set(get_cached_urls(pkgname=a)) == set(cache_contents(pkgname=a).keys()) for i in get_cached_urls(): assert is_url_in_cache(i) assert not is_url_in_cache(i, pkgname=a) for i in get_cached_urls(pkgname=a): assert not is_url_in_cache(i) assert is_url_in_cache(i, pkgname=a) # FIXME: need to break a cache to test whether we check the right one check_download_cache() check_download_cache(pkgname=a) # FIXME: check that cache='update' works u = get_cached_urls()[0] with pytest.raises(KeyError): download_file(u, cache=True, sources=[], pkgname=a) clear_download_cache(u, pkgname=a) assert len(get_cached_urls()) == FEW + 1, "wrong pkgname should do nothing" assert len(get_cached_urls(pkgname=a)) == FEW, "wrong pkgname should do nothing" f = download_file(u, sources=[], cache=True) with pytest.raises(RuntimeError): clear_download_cache(f, pkgname=a) ua = get_cached_urls(pkgname=a)[0] with pytest.raises(KeyError): download_file(ua, cache=True, sources=[]) fa = download_file(ua, sources=[], cache=True, pkgname=a) with pytest.raises(RuntimeError): clear_download_cache(fa) clear_download_cache(ua, pkgname=a) assert len(get_cached_urls()) == FEW + 1 assert len(get_cached_urls(pkgname=a)) == FEW - 1 clear_download_cache(u) assert len(get_cached_urls()) == FEW assert len(get_cached_urls(pkgname=a)) == FEW - 1 clear_download_cache(pkgname=a) assert len(get_cached_urls()) == FEW assert not get_cached_urls(pkgname=a) clear_download_cache() assert not get_cached_urls() assert not get_cached_urls(pkgname=a) def test_transport_cache_via_zip(temp_cache, valid_urls): a = "bogus_cache_name" assert not get_cached_urls() assert not get_cached_urls(pkgname=a) for u, _ in islice(valid_urls, FEW): download_file(u, cache=True) with io.BytesIO() as f: export_download_cache(f) b = f.getvalue() with io.BytesIO(b) as f: import_download_cache(f, pkgname=a) check_download_cache() check_download_cache(pkgname=a) assert set(get_cached_urls()) == set(get_cached_urls(pkgname=a)) cca = cache_contents(pkgname=a) for k, v in cache_contents().items(): assert v != cca[k] assert get_file_contents(v) == get_file_contents(cca[k]) clear_download_cache() with io.BytesIO() as f: export_download_cache(f, pkgname=a) b = f.getvalue() with io.BytesIO(b) as f: import_download_cache(f) assert set(get_cached_urls()) == set(get_cached_urls(pkgname=a)) def test_download_parallel_respects_pkgname(temp_cache, valid_urls): a = "bogus_cache_name" assert not get_cached_urls() assert not get_cached_urls(pkgname=a) download_files_in_parallel([u for (u, c) in islice(valid_urls, FEW)], pkgname=a) assert not get_cached_urls() assert len(get_cached_urls(pkgname=a)) == FEW @pytest.mark.skipif( not CAN_RENAME_DIRECTORY_IN_USE, reason="This platform is unable to rename directories that are in use.", ) def test_removal_of_open_files(temp_cache, valid_urls): u, c = next(valid_urls) with open(download_file(u, cache=True)): clear_download_cache(u) assert not is_url_in_cache(u) check_download_cache() @pytest.mark.skipif( not CAN_RENAME_DIRECTORY_IN_USE, reason="This platform is unable to rename directories that are in use.", ) def test_update_of_open_files(temp_cache, valid_urls): u, c = next(valid_urls) with open(download_file(u, cache=True)): u2, c2 = next(valid_urls) f = download_file(u, cache="update", sources=[u2]) check_download_cache() assert is_url_in_cache(u) assert get_file_contents(f) == c2 assert is_url_in_cache(u) def test_removal_of_open_files_windows(temp_cache, valid_urls, monkeypatch): def no_rmtree(*args, **kwargs): warnings.warn(CacheMissingWarning("in use")) raise PermissionError if CAN_RENAME_DIRECTORY_IN_USE: # This platform is able to remove files while in use. monkeypatch.setattr(astropy.utils.data, "_rmtree", no_rmtree) u, c = next(valid_urls) with open(download_file(u, cache=True)): with pytest.warns(CacheMissingWarning, match=r".*in use.*"): clear_download_cache(u) def test_update_of_open_files_windows(temp_cache, valid_urls, monkeypatch): def no_rmtree(*args, **kwargs): warnings.warn(CacheMissingWarning("in use")) raise PermissionError if CAN_RENAME_DIRECTORY_IN_USE: # This platform is able to remove files while in use. monkeypatch.setattr(astropy.utils.data, "_rmtree", no_rmtree) u, c = next(valid_urls) with open(download_file(u, cache=True)): u2, c2 = next(valid_urls) with pytest.warns(CacheMissingWarning, match=r".*in use.*"): f = download_file(u, cache="update", sources=[u2]) check_download_cache() assert is_url_in_cache(u) assert get_file_contents(f) == c2 assert get_file_contents(download_file(u, cache=True, sources=[])) == c def test_no_allow_internet(temp_cache, valid_urls): u, c = next(valid_urls) with conf.set_temp("allow_internet", False): with pytest.raises(urllib.error.URLError): download_file(u) assert not is_url_in_cache(u) with pytest.raises(urllib.error.URLError): # This will trigger the remote data error if it's allowed to touch the internet download_file(TESTURL) def test_clear_download_cache_not_too_aggressive(temp_cache, valid_urls): u, c = next(valid_urls) download_file(u, cache=True) dldir = _get_download_cache_loc() bad_filename = os.path.join(dldir, "contents") assert is_url_in_cache(u) clear_download_cache(bad_filename) assert is_url_in_cache(u) def test_clear_download_cache_variants(temp_cache, valid_urls): # deletion by contents filename u, c = next(valid_urls) f = download_file(u, cache=True) clear_download_cache(f) assert not is_url_in_cache(u) # deletion by url filename u, c = next(valid_urls) f = download_file(u, cache=True) clear_download_cache(os.path.join(os.path.dirname(f), "url")) assert not is_url_in_cache(u) # deletion by hash directory name u, c = next(valid_urls) f = download_file(u, cache=True) clear_download_cache(os.path.dirname(f)) assert not is_url_in_cache(u) # deletion by directory name with trailing slash u, c = next(valid_urls) f = download_file(u, cache=True) clear_download_cache(os.path.dirname(f) + "/") assert not is_url_in_cache(u) # deletion by hash of file contents u, c = next(valid_urls) f = download_file(u, cache=True) h = compute_hash(f) clear_download_cache(h) assert not is_url_in_cache(u) @pytest.mark.skipif( CI and os.environ.get("IS_CRON", "false") == "false", reason="Flaky/too much external traffic for regular CI", ) @pytest.mark.remote_data def test_ftp_tls_auto(temp_cache): """Test that download automatically enables TLS/SSL when required""" url = "ftp://anonymous:mail%[email protected]/pub/products/iers/finals2000A.daily" download_file(url) @pytest.mark.parametrize("base", ["http://example.com", "https://example.com"]) def test_url_trailing_slash(temp_cache, valid_urls, base): slash = base + "/" no_slash = base u, c = next(valid_urls) download_file(slash, cache=True, sources=[u]) assert is_url_in_cache(no_slash) download_file(no_slash, cache=True, sources=[]) clear_download_cache(no_slash) assert not is_url_in_cache(no_slash) assert not is_url_in_cache(slash) download_file(no_slash, cache=True, sources=[u]) # see if implicit check_download_cache squawks def test_empty_url(temp_cache, valid_urls): u, c = next(valid_urls) download_file("file://", cache=True, sources=[u]) assert not is_url_in_cache("file:///") @pytest.mark.remote_data def test_download_ftp_file_properly_handles_socket_error(): faulty_url = "ftp://anonymous:mail%40astropy.org@nonexisting/pub/products/iers/finals2000A.all" with pytest.raises(urllib.error.URLError) as excinfo: download_file(faulty_url) errmsg = excinfo.exconly() found_msg = False possible_msgs = [ "Name or service not known", "nodename nor servname provided, or not known", "getaddrinfo failed", "Temporary failure in name resolution", "No address associated with hostname", ] for cur_msg in possible_msgs: if cur_msg in errmsg: found_msg = True break assert found_msg, f'Got {errmsg}, expected one of these: {",".join(possible_msgs)}' @pytest.mark.parametrize( ("s", "ans"), [ ("http://googlecom", True), ("https://google.com", True), ("ftp://google.com", True), ("sftp://google.com", True), ("ssh://google.com", True), ("file:///c:/path/to/the%20file.txt", True), ("google.com", False), ("C:\\\\path\\\\file.docx", False), ("data://file", False), ], ) def test_string_is_url_check(s, ans): assert is_url(s) is ans
bfec6bea2fcf59b6ada83c2b18db1dfc3a7c2ea13f205485625ac4f971ea65da
# Licensed under a 3-clause BSD style license - see LICENSE.rst import io import sys import pytest from astropy import units as u from astropy.utils import console from . import test_progress_bar_func class FakeTTY(io.StringIO): """IOStream that fakes a TTY; provide an encoding to emulate an output stream with a specific encoding. """ def __new__(cls, encoding=None): # Return a new subclass of FakeTTY with the requested encoding if encoding is None: return super().__new__(cls) encoding = encoding cls = type(encoding.title() + cls.__name__, (cls,), {"encoding": encoding}) return cls.__new__(cls) def __init__(self, encoding=None): super().__init__() def write(self, s): if isinstance(s, bytes): # Just allow this case to work s = s.decode("latin-1") elif self.encoding is not None: s.encode(self.encoding) return super().write(s) def isatty(self): return True def test_fake_tty(): # First test without a specified encoding; we should be able to write # arbitrary unicode strings f1 = FakeTTY() assert f1.isatty() f1.write("☃") assert f1.getvalue() == "☃" # Now test an ASCII-only TTY--it should raise a UnicodeEncodeError when # trying to write a string containing non-ASCII characters f2 = FakeTTY("ascii") assert f2.isatty() assert f2.__class__.__name__ == "AsciiFakeTTY" assert pytest.raises(UnicodeEncodeError, f2.write, "☃") assert f2.getvalue() == "" @pytest.mark.skipif(sys.platform.startswith("win"), reason="Cannot test on Windows") def test_color_text(): assert console._color_text("foo", "green") == "\033[0;32mfoo\033[0m" def test_color_print(): # This stuff is hard to test, at least smoke test it console.color_print("foo", "green") console.color_print("foo", "green", "bar", "red") def test_color_print2(): # Test that this automatically detects that io.StringIO is # not a tty stream = io.StringIO() console.color_print("foo", "green", file=stream) assert stream.getvalue() == "foo\n" stream = io.StringIO() console.color_print("foo", "green", "bar", "red", "baz", file=stream) assert stream.getvalue() == "foobarbaz\n" @pytest.mark.skipif(sys.platform.startswith("win"), reason="Cannot test on Windows") def test_color_print3(): # Test that this thinks the FakeTTY is a tty and applies colors. stream = FakeTTY() console.color_print("foo", "green", file=stream) assert stream.getvalue() == "\x1b[0;32mfoo\x1b[0m\n" stream = FakeTTY() console.color_print("foo", "green", "bar", "red", "baz", file=stream) assert stream.getvalue() == "\x1b[0;32mfoo\x1b[0m\x1b[0;31mbar\x1b[0mbaz\n" def test_color_print_unicode(): console.color_print("überbær", "red") def test_color_print_invalid_color(): console.color_print("foo", "unknown") def test_spinner_non_unicode_console(): """Regression test for #1760 Ensures that the spinner can fall go into fallback mode when using the unicode spinner on a terminal whose default encoding cannot encode the unicode characters. """ stream = FakeTTY("ascii") chars = console.Spinner._default_unicode_chars with console.Spinner("Reticulating splines", file=stream, chars=chars) as s: next(s) def test_progress_bar(): # This stuff is hard to test, at least smoke test it with console.ProgressBar(50) as bar: for i in range(50): bar.update() def test_progress_bar2(): for x in console.ProgressBar(range(50)): pass def test_progress_bar3(): def do_nothing(*args, **kwargs): pass console.ProgressBar.map(do_nothing, range(50)) def test_zero_progress_bar(): with console.ProgressBar(0) as bar: pass def test_progress_bar_as_generator(): sum = 0 for x in console.ProgressBar(range(50)): sum += x assert sum == 1225 sum = 0 for x in console.ProgressBar(50): sum += x assert sum == 1225 def test_progress_bar_map(): items = list(range(100)) result = console.ProgressBar.map( test_progress_bar_func.func, items, step=10, multiprocess=True ) assert items == result result1 = console.ProgressBar.map( test_progress_bar_func.func, items, step=10, multiprocess=2 ) assert items == result1 @pytest.mark.parametrize( ("seconds", "string"), [ (864088, " 1w 3d"), (187213, " 2d 4h"), (3905, " 1h 5m"), (64, " 1m 4s"), (15, " 15s"), (2, " 2s"), ], ) def test_human_time(seconds, string): human_time = console.human_time(seconds) assert human_time == string @pytest.mark.parametrize( ("size", "string"), [ (8640882, "8.6M"), (187213, "187k"), (3905, "3.9k"), (64, " 64 "), (2, " 2 "), (10 * u.GB, " 10G"), ], ) def test_human_file_size(size, string): human_time = console.human_file_size(size) assert human_time == string @pytest.mark.parametrize("size", (50 * u.km, 100 * u.g)) def test_bad_human_file_size(size): assert pytest.raises(u.UnitConversionError, console.human_file_size, size)
40ae4c69ea72c5a4d49463f1b9f72498ed1d440518a48b7a66e16619787a2890
# Licensed under a 3-clause BSD style license - see LICENSE.rst # namedtuple is needed for find_mod_objs so it can have a non-local module from collections import namedtuple from unittest import mock import pytest import yaml from astropy.utils import introspection from astropy.utils.introspection import find_current_module, find_mod_objs, minversion def test_pkg_finder(): """ Tests that the `find_current_module` function works. Note that this also implicitly tests compat.misc._patched_getmodule """ mod1 = "astropy.utils.introspection" mod2 = "astropy.utils.tests.test_introspection" mod3 = "astropy.utils.tests.test_introspection" assert find_current_module(0).__name__ == mod1 assert find_current_module(1).__name__ == mod2 assert find_current_module(0, True).__name__ == mod3 def test_find_current_mod(): from sys import getrecursionlimit thismodnm = __name__ assert find_current_module(0) is introspection assert find_current_module(1).__name__ == thismodnm assert find_current_module(getrecursionlimit() + 1) is None assert find_current_module(0, True).__name__ == thismodnm assert find_current_module(0, [introspection]).__name__ == thismodnm assert find_current_module(0, ["astropy.utils.introspection"]).__name__ == thismodnm with pytest.raises(ImportError): find_current_module(0, ["faddfdsasewrweriopunjlfiurrhujnkflgwhu"]) def test_find_mod_objs(): lnms, fqns, objs = find_mod_objs("astropy") # this import is after the above call intentionally to make sure # find_mod_objs properly imports astropy on its own import astropy # just check for astropy.test ... other things might be added, so we # shouldn't check that it's the only thing assert "test" in lnms assert astropy.test in objs lnms, fqns, objs = find_mod_objs(__name__, onlylocals=False) assert "namedtuple" in lnms assert "collections.namedtuple" in fqns assert namedtuple in objs lnms, fqns, objs = find_mod_objs(__name__, onlylocals=True) assert "namedtuple" not in lnms assert "collections.namedtuple" not in fqns assert namedtuple not in objs def test_minversion(): import numpy good_versions = ["1.16", "1.16.1", "1.16.0.dev", "1.16dev"] bad_versions = ["100000", "100000.2rc1"] for version in good_versions: assert minversion(numpy, version) assert minversion("numpy", version) for version in bad_versions: assert not minversion(numpy, version) assert not minversion("numpy", version) assert minversion(yaml, "3.1") assert minversion("yaml", "3.1") def test_find_current_module_bundle(): """ Tests that the `find_current_module` function would work if used inside an application bundle. Since we can't test this directly, we test what would happen if inspect.getmodule returned `None`, which is what happens inside PyInstaller and py2app bundles. """ with mock.patch("inspect.getmodule", return_value=None): mod1 = "astropy.utils.introspection" mod2 = "astropy.utils.tests.test_introspection" mod3 = "astropy.utils.tests.test_introspection" assert find_current_module(0).__name__ == mod1 assert find_current_module(1).__name__ == mod2 assert find_current_module(0, True).__name__ == mod3
b67700da1702e2b118757b7f391b3789047aaae29a0870f20ecfb4da1868a8f9
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest from astropy.utils import collections def test_homogeneous_list(): l = collections.HomogeneousList(int) with pytest.raises(TypeError): l.append(5.0) def test_homogeneous_list2(): l = collections.HomogeneousList(int) with pytest.raises(TypeError): l.extend([5.0]) def test_homogeneous_list3(): l = collections.HomogeneousList(int) l.append(5) assert l == [5] def test_homogeneous_list4(): l = collections.HomogeneousList(int) l.extend([5]) assert l == [5] def test_homogeneous_list5(): l = collections.HomogeneousList(int, [1, 2, 3]) with pytest.raises(TypeError): l[1] = 5.0 def test_homogeneous_list_setitem_works(): l = collections.HomogeneousList(int, [1, 2, 3]) l[1] = 5 assert l == [1, 5, 3] def test_homogeneous_list_setitem_works_with_slice(): l = collections.HomogeneousList(int, [1, 2, 3]) l[0:1] = [10, 20, 30] assert l == [10, 20, 30, 2, 3] l[:] = [5, 4, 3] assert l == [5, 4, 3] l[::2] = [2, 1] assert l == [2, 4, 1] def test_homogeneous_list_init_got_invalid_type(): with pytest.raises(TypeError): collections.HomogeneousList(int, [1, 2.0, 3]) def test_homogeneous_list_works_with_generators(): hl = collections.HomogeneousList(int, (i for i in range(3))) assert hl == [0, 1, 2] hl = collections.HomogeneousList(int) hl.extend(i for i in range(3)) assert hl == [0, 1, 2] hl = collections.HomogeneousList(int) hl[0:1] = (i for i in range(3)) assert hl == [0, 1, 2] hl = collections.HomogeneousList(int) hl += (i for i in range(3)) assert hl == [0, 1, 2]
9850f41a66e002f9da35c2eedbd1155e3ca3cdf4ee6872db1f6da41f023f7d64
# Licensed under a 3-clause BSD style license - see LICENSE.rst import concurrent.futures import inspect import pickle import pytest from astropy.utils.decorators import ( classproperty, deprecated, deprecated_attribute, deprecated_renamed_argument, format_doc, lazyproperty, sharedmethod, ) from astropy.utils.exceptions import ( AstropyDeprecationWarning, AstropyPendingDeprecationWarning, AstropyUserWarning, ) class NewDeprecationWarning(AstropyDeprecationWarning): """ New Warning subclass to be used to test the deprecated decorator's ``warning_type`` parameter. """ def test_deprecated_attribute(): class DummyClass: def __init__(self): self.other = [42] self._foo = 42 self._bar = 4242 self._message = "42" self._pending = {42} foo = deprecated_attribute("foo", "0.2") bar = deprecated_attribute("bar", "0.2", warning_type=NewDeprecationWarning) alternative = deprecated_attribute("alternative", "0.2", alternative="other") message = deprecated_attribute("message", "0.2", message="MSG") pending = deprecated_attribute("pending", "0.2", pending=True) dummy = DummyClass() default_msg = ( r"^The {} attribute is deprecated and may be removed in a future version\.$" ) # Test getters and setters. msg = default_msg.format("foo") with pytest.warns(AstropyDeprecationWarning, match=msg) as w: assert dummy.foo == 42 assert len(w) == 1 with pytest.warns(AstropyDeprecationWarning, match=msg): dummy.foo = 24 # Handling ``_foo`` should not cause deprecation warnings. assert dummy._foo == 24 dummy._foo = 13 assert dummy._foo == 13 msg = default_msg.format("bar") with pytest.warns(NewDeprecationWarning, match=msg) as w: assert dummy.bar == 4242 assert len(w) == 1 with pytest.warns(NewDeprecationWarning, match=msg): dummy.bar = 2424 with pytest.warns(AstropyDeprecationWarning, match="^MSG$"): assert dummy.message == "42" with pytest.warns(AstropyDeprecationWarning, match="^MSG$"): dummy.message = "24" msg = default_msg.format("alternative")[:-1] + r"\n Use other instead\.$" with pytest.warns(AstropyDeprecationWarning, match=msg): assert dummy.alternative == [42] with pytest.warns(AstropyDeprecationWarning, match=msg): dummy.alternative = [24] # ``other`` is not deprecated. assert dummy.other == [24] dummy.other = [31] msg = r"^The pending attribute will be deprecated in a future version\.$" with pytest.warns(AstropyPendingDeprecationWarning, match=msg): assert dummy.pending == {42} with pytest.warns(AstropyPendingDeprecationWarning, match=msg): dummy.pending = {24} # This needs to be defined outside of the test function, because we # want to try to pickle it. @deprecated("100.0") class TA: """ This is the class docstring. """ def __init__(self): """ This is the __init__ docstring """ pass class TMeta(type): metaclass_attr = 1 @deprecated("100.0") class TB(metaclass=TMeta): pass @deprecated("100.0", warning_type=NewDeprecationWarning) class TC: """ This class has the custom warning. """ pass def test_deprecated_class(): orig_A = TA.__bases__[0] # The only thing that should be different about the new class # is __doc__, __init__, __bases__ and __subclasshook__. # and __init_subclass__ for Python 3.6+. for x in dir(orig_A): if x not in ( "__doc__", "__init__", "__bases__", "__dict__", "__subclasshook__", "__init_subclass__", ): assert getattr(TA, x) == getattr(orig_A, x) with pytest.warns(AstropyDeprecationWarning) as w: TA() assert len(w) == 1 if TA.__doc__ is not None: assert "function" not in TA.__doc__ assert "deprecated" in TA.__doc__ assert "function" not in TA.__init__.__doc__ assert "deprecated" in TA.__init__.__doc__ # Make sure the object is picklable pickle.dumps(TA) with pytest.warns(NewDeprecationWarning) as w: TC() assert len(w) == 1 def test_deprecated_class_with_new_method(): """ Test that a class with __new__ method still works even if it accepts additional arguments. This previously failed because the deprecated decorator would wrap objects __init__ which takes no arguments. """ @deprecated("1.0") class A: def __new__(cls, a): return super().__new__(cls) # Creating an instance should work but raise a DeprecationWarning with pytest.warns(AstropyDeprecationWarning) as w: A(1) assert len(w) == 1 @deprecated("1.0") class B: def __new__(cls, a): return super().__new__(cls) def __init__(self, a): pass # Creating an instance should work but raise a DeprecationWarning with pytest.warns(AstropyDeprecationWarning) as w: B(1) assert len(w) == 1 def test_deprecated_class_with_super(): """ Regression test for an issue where classes that used ``super()`` in their ``__init__`` did not actually call the correct class's ``__init__`` in the MRO. """ @deprecated("100.0") class TB: def __init__(self, a, b): super().__init__() with pytest.warns(AstropyDeprecationWarning) as w: TB(1, 2) assert len(w) == 1 if TB.__doc__ is not None: assert "function" not in TB.__doc__ assert "deprecated" in TB.__doc__ assert "function" not in TB.__init__.__doc__ assert "deprecated" in TB.__init__.__doc__ def test_deprecated_class_with_custom_metaclass(): """ Regression test for an issue where deprecating a class with a metaclass other than type did not restore the metaclass properly. """ with pytest.warns(AstropyDeprecationWarning) as w: TB() assert len(w) == 1 assert type(TB) is TMeta assert TB.metaclass_attr == 1 def test_deprecated_static_and_classmethod(): """ Regression test for issue introduced by https://github.com/astropy/astropy/pull/2811 and mentioned also here: https://github.com/astropy/astropy/pull/2580#issuecomment-51049969 where it appears that deprecated staticmethods didn't work on Python 2.6. """ class A: """Docstring""" @deprecated("1.0") @staticmethod def B(): pass @deprecated("1.0") @classmethod def C(cls): pass with pytest.warns(AstropyDeprecationWarning) as w: A.B() assert len(w) == 1 if A.__doc__ is not None: assert "deprecated" in A.B.__doc__ with pytest.warns(AstropyDeprecationWarning) as w: A.C() assert len(w) == 1 if A.__doc__ is not None: assert "deprecated" in A.C.__doc__ def test_deprecated_argument(): # Tests the decorator with function, method, staticmethod and classmethod. class Test: @classmethod @deprecated_renamed_argument("clobber", "overwrite", "1.3") def test1(cls, overwrite): return overwrite @staticmethod @deprecated_renamed_argument("clobber", "overwrite", "1.3") def test2(overwrite): return overwrite @deprecated_renamed_argument("clobber", "overwrite", "1.3") def test3(self, overwrite): return overwrite @deprecated_renamed_argument( "clobber", "overwrite", "1.3", warning_type=NewDeprecationWarning ) def test4(self, overwrite): return overwrite @deprecated_renamed_argument("clobber", "overwrite", "1.3", relax=False) def test1(overwrite): return overwrite for method in [Test().test1, Test().test2, Test().test3, Test().test4, test1]: # As positional argument only assert method(1) == 1 # As new keyword argument assert method(overwrite=1) == 1 # Using the deprecated name with pytest.warns(AstropyDeprecationWarning, match=r"1\.3") as w: assert method(clobber=1) == 1 assert len(w) == 1 assert "test_decorators.py" in str(w[0].filename) if method.__name__ == "test4": assert issubclass(w[0].category, NewDeprecationWarning) # Using both. Both keyword with pytest.raises(TypeError), pytest.warns(AstropyDeprecationWarning): method(clobber=2, overwrite=1) # One positional, one keyword with pytest.raises(TypeError), pytest.warns(AstropyDeprecationWarning): method(1, clobber=2) def test_deprecated_argument_custom_message(): @deprecated_renamed_argument("foo", "bar", "4.0", message="Custom msg") def test(bar=0): pass with pytest.warns(AstropyDeprecationWarning, match="Custom msg"): test(foo=0) def test_deprecated_argument_in_kwargs(): # To rename an argument that is consumed by "kwargs" the "arg_in_kwargs" # parameter is used. @deprecated_renamed_argument("clobber", "overwrite", "1.3", arg_in_kwargs=True) def test(**kwargs): return kwargs["overwrite"] # As positional argument only with pytest.raises(TypeError): test(1) # As new keyword argument assert test(overwrite=1) == 1 # Using the deprecated name with pytest.warns(AstropyDeprecationWarning, match=r"1\.3") as w: assert test(clobber=1) == 1 assert len(w) == 1 assert "test_decorators.py" in str(w[0].filename) # Using both. Both keyword with pytest.raises(TypeError), pytest.warns(AstropyDeprecationWarning): test(clobber=2, overwrite=1) # One positional, one keyword with pytest.raises(TypeError), pytest.warns(AstropyDeprecationWarning): test(1, clobber=2) def test_deprecated_argument_relaxed(): # Relax turns the TypeError if both old and new keyword are used into # a warning. @deprecated_renamed_argument("clobber", "overwrite", "1.3", relax=True) def test(overwrite): return overwrite # As positional argument only assert test(1) == 1 # As new keyword argument assert test(overwrite=1) == 1 # Using the deprecated name with pytest.warns(AstropyDeprecationWarning, match=r"1\.3") as w: assert test(clobber=1) == 1 assert len(w) == 1 # Using both. Both keyword with pytest.warns(AstropyUserWarning) as w: assert test(clobber=2, overwrite=1) == 1 assert len(w) == 2 assert '"clobber" was deprecated' in str(w[0].message) assert '"clobber" and "overwrite" keywords were set' in str(w[1].message) # One positional, one keyword with pytest.warns(AstropyUserWarning) as w: assert test(1, clobber=2) == 1 assert len(w) == 2 assert '"clobber" was deprecated' in str(w[0].message) assert '"clobber" and "overwrite" keywords were set' in str(w[1].message) def test_deprecated_argument_pending(): # Relax turns the TypeError if both old and new keyword are used into # a warning. @deprecated_renamed_argument("clobber", "overwrite", "1.3", pending=True) def test(overwrite): return overwrite # As positional argument only assert test(1) == 1 # As new keyword argument assert test(overwrite=1) == 1 # Using the deprecated name assert test(clobber=1) == 1 # Using both. Both keyword assert test(clobber=2, overwrite=1) == 1 # One positional, one keyword assert test(1, clobber=2) == 1 def test_deprecated_argument_multi_deprecation(): @deprecated_renamed_argument( ["x", "y", "z"], ["a", "b", "c"], [1.3, 1.2, 1.3], relax=True ) def test(a, b, c): return a, b, c with pytest.warns(AstropyDeprecationWarning) as w: assert test(x=1, y=2, z=3) == (1, 2, 3) assert len(w) == 3 # Make sure relax is valid for all arguments with pytest.warns(AstropyUserWarning) as w: assert test(x=1, y=2, z=3, b=3) == (1, 3, 3) assert len(w) == 4 with pytest.warns(AstropyUserWarning) as w: assert test(x=1, y=2, z=3, a=3) == (3, 2, 3) assert len(w) == 4 with pytest.warns(AstropyUserWarning) as w: assert test(x=1, y=2, z=3, c=5) == (1, 2, 5) assert len(w) == 4 def test_deprecated_argument_multi_deprecation_2(): @deprecated_renamed_argument( ["x", "y", "z"], ["a", "b", "c"], [1.3, 1.2, 1.3], relax=[True, True, False] ) def test(a, b, c): return a, b, c with pytest.warns(AstropyUserWarning) as w: assert test(x=1, y=2, z=3, b=3) == (1, 3, 3) assert len(w) == 4 with pytest.warns(AstropyUserWarning) as w: assert test(x=1, y=2, z=3, a=3) == (3, 2, 3) assert len(w) == 4 with pytest.raises(TypeError), pytest.warns(AstropyUserWarning): assert test(x=1, y=2, z=3, c=5) == (1, 2, 5) def test_deprecated_argument_not_allowed_use(): # If the argument is supposed to be inside the kwargs one needs to set the # arg_in_kwargs parameter. Without it it raises a TypeError. with pytest.raises(TypeError): @deprecated_renamed_argument("clobber", "overwrite", "1.3") def test1(**kwargs): return kwargs["overwrite"] # Cannot replace "*args". with pytest.raises(TypeError): @deprecated_renamed_argument("overwrite", "args", "1.3") def test2(*args): return args # Cannot replace "**kwargs". with pytest.raises(TypeError): @deprecated_renamed_argument("overwrite", "kwargs", "1.3") def test3(**kwargs): return kwargs def test_deprecated_argument_remove(): @deprecated_renamed_argument("x", None, "2.0", alternative="astropy.y") def test(dummy=11, x=3): return dummy, x with pytest.warns(AstropyDeprecationWarning, match=r"Use astropy\.y instead") as w: assert test(x=1) == (11, 1) assert len(w) == 1 with pytest.warns(AstropyDeprecationWarning) as w: assert test(x=1, dummy=10) == (10, 1) assert len(w) == 1 with pytest.warns(AstropyDeprecationWarning, match=r"Use astropy\.y instead"): test(121, 1) == (121, 1) assert test() == (11, 3) assert test(121) == (121, 3) assert test(dummy=121) == (121, 3) def test_sharedmethod_reuse_on_subclasses(): """ Regression test for an issue where sharedmethod would bind to one class for all time, causing the same method not to work properly on other subclasses of that class. It has the same problem when the same sharedmethod is called on different instances of some class as well. """ class AMeta(type): def foo(cls): return cls.x class A: x = 3 def __init__(self, x): self.x = x @sharedmethod def foo(self): return self.x a1 = A(1) a2 = A(2) assert a1.foo() == 1 assert a2.foo() == 2 # Similar test now, but for multiple subclasses using the same sharedmethod # as a classmethod assert A.foo() == 3 class B(A): x = 5 assert B.foo() == 5 def test_classproperty_docstring(): """ Tests that the docstring is set correctly on classproperties. This failed previously due to a bug in Python that didn't always set __doc__ properly on instances of property subclasses. """ class A: # Inherits docstring from getter @classproperty def foo(cls): """The foo.""" return 1 assert A.__dict__["foo"].__doc__ == "The foo." class B: # Use doc passed to classproperty constructor def _get_foo(cls): return 1 foo = classproperty(_get_foo, doc="The foo.") assert B.__dict__["foo"].__doc__ == "The foo." @pytest.mark.slow def test_classproperty_lazy_threadsafe(fast_thread_switching): """ Test that a class property with lazy=True is thread-safe. """ workers = 8 with concurrent.futures.ThreadPoolExecutor(max_workers=workers) as executor: # This is testing for race conditions, so try many times in the # hope that we'll get the timing right. for p in range(10000): class A: @classproperty(lazy=True) def foo(cls): nonlocal calls calls += 1 return object() # Have all worker threads query in parallel calls = 0 futures = [executor.submit(lambda: A.foo) for i in range(workers)] # Check that only one call happened and they all received it values = [future.result() for future in futures] assert calls == 1 assert values[0] is not None assert values == [values[0]] * workers @pytest.mark.slow def test_lazyproperty_threadsafe(fast_thread_switching): """ Test thread safety of lazyproperty. """ # This test is generally similar to test_classproperty_lazy_threadsafe # above. See there for comments. class A: def __init__(self): self.calls = 0 @lazyproperty def foo(self): self.calls += 1 return object() workers = 8 with concurrent.futures.ThreadPoolExecutor(max_workers=workers) as executor: for p in range(10000): a = A() futures = [executor.submit(lambda: a.foo) for i in range(workers)] values = [future.result() for future in futures] assert a.calls == 1 assert a.foo is not None assert values == [a.foo] * workers def test_format_doc_stringInput_simple(): # Simple tests with string input docstring_fail = "" # Raises an valueerror if input is empty with pytest.raises(ValueError): @format_doc(docstring_fail) def testfunc_fail(): pass docstring = "test" # A first test that replaces an empty docstring @format_doc(docstring) def testfunc_1(): pass assert inspect.getdoc(testfunc_1) == docstring # Test that it replaces an existing docstring @format_doc(docstring) def testfunc_2(): """not test""" pass assert inspect.getdoc(testfunc_2) == docstring def test_format_doc_stringInput_format(): # Tests with string input and formatting docstring = "yes {0} no {opt}" # Raises an indexerror if not given the formatted args and kwargs with pytest.raises(IndexError): @format_doc(docstring) def testfunc1(): pass # Test that the formatting is done right @format_doc(docstring, "/", opt="= life") def testfunc2(): pass assert inspect.getdoc(testfunc2) == "yes / no = life" # Test that we can include the original docstring docstring2 = "yes {0} no {__doc__}" @format_doc(docstring2, "/") def testfunc3(): """= 2 / 2 * life""" pass assert inspect.getdoc(testfunc3) == "yes / no = 2 / 2 * life" def test_format_doc_objectInput_simple(): # Simple tests with object input def docstring_fail(): pass # Self input while the function has no docstring raises an error with pytest.raises(ValueError): @format_doc(docstring_fail) def testfunc_fail(): pass def docstring0(): """test""" pass # A first test that replaces an empty docstring @format_doc(docstring0) def testfunc_1(): pass assert inspect.getdoc(testfunc_1) == inspect.getdoc(docstring0) # Test that it replaces an existing docstring @format_doc(docstring0) def testfunc_2(): """not test""" pass assert inspect.getdoc(testfunc_2) == inspect.getdoc(docstring0) def test_format_doc_objectInput_format(): # Tests with object input and formatting def docstring(): """test {0} test {opt}""" pass # Raises an indexerror if not given the formatted args and kwargs with pytest.raises(IndexError): @format_doc(docstring) def testfunc_fail(): pass # Test that the formatting is done right @format_doc(docstring, "+", opt="= 2 * test") def testfunc2(): pass assert inspect.getdoc(testfunc2) == "test + test = 2 * test" # Test that we can include the original docstring def docstring2(): """test {0} test {__doc__}""" pass @format_doc(docstring2, "+") def testfunc3(): """= 4 / 2 * test""" pass assert inspect.getdoc(testfunc3) == "test + test = 4 / 2 * test" def test_format_doc_selfInput_simple(): # Simple tests with self input # Self input while the function has no docstring raises an error with pytest.raises(ValueError): @format_doc(None) def testfunc_fail(): pass # Test that it keeps an existing docstring @format_doc(None) def testfunc_1(): """not test""" pass assert inspect.getdoc(testfunc_1) == "not test" def test_format_doc_selfInput_format(): # Tests with string input which is '__doc__' (special case) and formatting # Raises an indexerror if not given the formatted args and kwargs with pytest.raises(IndexError): @format_doc(None) def testfunc_fail(): """dum {0} dum {opt}""" pass # Test that the formatting is done right @format_doc(None, "di", opt="da dum") def testfunc1(): """dum {0} dum {opt}""" pass assert inspect.getdoc(testfunc1) == "dum di dum da dum" # Test that we cannot recursively insert the original documentation @format_doc(None, "di") def testfunc2(): """dum {0} dum {__doc__}""" pass assert inspect.getdoc(testfunc2) == "dum di dum " def test_format_doc_onMethod(): # Check if the decorator works on methods too, to spice it up we try double # decorator docstring = "what we do {__doc__}" class TestClass: @format_doc(docstring) @format_doc(None, "strange.") def test_method(self): """is {0}""" pass assert inspect.getdoc(TestClass.test_method) == "what we do is strange." def test_format_doc_onClass(): # Check if the decorator works on classes too docstring = "what we do {__doc__} {0}{opt}" @format_doc(docstring, "strange", opt=".") class TestClass: """is""" pass assert inspect.getdoc(TestClass) == "what we do is strange."
c19b5aad4256158e94d6f256e37eab620814d7818b01801bb3ee730a4571b8b5
# Licensed under a 3-clause BSD style license - see LICENSE.rst import sys import traceback import pytest from astropy.utils.codegen import make_function_with_signature def test_make_function_with_signature_lineno(): """ Tests that a function made with ``make_function_with_signature`` is give the correct line number into the module it was created from (i.e. the line ``make_function_with_signature`` was called from). """ def crashy_function(*args, **kwargs): 1 / 0 # Make a wrapper around this function with the signature: # crashy_function(a, b) # Note: the signature is not really relevant to this test wrapped = make_function_with_signature(crashy_function, ("a", "b")) line = """ wrapped = make_function_with_signature(crashy_function, ('a', 'b')) """.strip() try: wrapped(1, 2) except Exception: exc_cls, exc, tb = sys.exc_info() assert exc_cls is ZeroDivisionError # The *last* line in the traceback should be the 1 / 0 line in # crashy_function; the next line up should be the line that the # make_function_with_signature call was one tb_lines = traceback.format_tb(tb) assert "1 / 0" in tb_lines[-1] else: pytest.fail("This should have caused an exception")
0f0c2d380cbd7c07431920c8c63f3157a33d0f42962aed76c14b57427f04b760
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Built-in mask mixin class. The design uses `Masked` as a factory class which automatically generates new subclasses for any data class that is itself a subclass of a predefined masked class, with `MaskedNDArray` providing such a predefined class for `~numpy.ndarray`. Generally, any new predefined class should override the ``from_unmasked(data, mask, copy=False)`` class method that creates an instance from unmasked data and a mask, as well as the ``unmasked`` property that returns just the data. The `Masked` class itself provides a base ``mask`` property, which can also be overridden if needed. """ import builtins import numpy as np from astropy.utils.compat import NUMPY_LT_1_22 from astropy.utils.data_info import ParentDtypeInfo from astropy.utils.shapes import NDArrayShapeMethods from .function_helpers import ( APPLY_TO_BOTH_FUNCTIONS, DISPATCHED_FUNCTIONS, MASKED_SAFE_FUNCTIONS, UNSUPPORTED_FUNCTIONS, ) __all__ = ["Masked", "MaskedNDArray"] get__doc__ = """Masked version of {0.__name__}. Except for the ability to pass in a ``mask``, parameters are as for `{0.__module__}.{0.__name__}`. """.format class Masked(NDArrayShapeMethods): """A scalar value or array of values with associated mask. The resulting instance will take its exact type from whatever the contents are, with the type generated on the fly as needed. Parameters ---------- data : array-like The data for which a mask is to be added. The result will be a a subclass of the type of ``data``. mask : array-like of bool, optional The initial mask to assign. If not given, taken from the data. copy : bool Whether the data and mask should be copied. Default: `False`. """ _base_classes = {} """Explicitly defined masked classes keyed by their unmasked counterparts. For subclasses of these unmasked classes, masked counterparts can be generated. """ _masked_classes = {} """Masked classes keyed by their unmasked data counterparts.""" def __new__(cls, *args, **kwargs): if cls is Masked: # Initializing with Masked itself means we're in "factory mode". if not kwargs and len(args) == 1 and isinstance(args[0], type): # Create a new masked class. return cls._get_masked_cls(args[0]) else: return cls._get_masked_instance(*args, **kwargs) else: # Otherwise we're a subclass and should just pass information on. return super().__new__(cls, *args, **kwargs) def __init_subclass__(cls, base_cls=None, data_cls=None, **kwargs): """Register a Masked subclass. Parameters ---------- base_cls : type, optional If given, it is taken to mean that ``cls`` can be used as a base for masked versions of all subclasses of ``base_cls``, so it is registered as such in ``_base_classes``. data_cls : type, optional If given, ``cls`` should will be registered as the masked version of ``data_cls``. Will set the private ``cls._data_cls`` attribute, and auto-generate a docstring if not present already. **kwargs Passed on for possible further initialization by superclasses. """ if base_cls is not None: Masked._base_classes[base_cls] = cls if data_cls is not None: cls._data_cls = data_cls cls._masked_classes[data_cls] = cls if cls.__doc__ is None: cls.__doc__ = get__doc__(data_cls) super().__init_subclass__(**kwargs) # This base implementation just uses the class initializer. # Subclasses can override this in case the class does not work # with this signature, or to provide a faster implementation. @classmethod def from_unmasked(cls, data, mask=None, copy=False): """Create an instance from unmasked data and a mask.""" return cls(data, mask=mask, copy=copy) @classmethod def _get_masked_instance(cls, data, mask=None, copy=False): data, data_mask = cls._get_data_and_mask(data) if mask is None: mask = False if data_mask is None else data_mask masked_cls = cls._get_masked_cls(data.__class__) return masked_cls.from_unmasked(data, mask, copy) @classmethod def _get_masked_cls(cls, data_cls): """Get the masked wrapper for a given data class. If the data class does not exist yet but is a subclass of any of the registered base data classes, it is automatically generated (except we skip `~numpy.ma.MaskedArray` subclasses, since then the masking mechanisms would interfere). """ if issubclass(data_cls, (Masked, np.ma.MaskedArray)): return data_cls masked_cls = cls._masked_classes.get(data_cls) if masked_cls is None: # Walk through MRO and find closest base data class. # Note: right now, will basically always be ndarray, but # one could imagine needing some special care for one subclass, # which would then get its own entry. E.g., if MaskedAngle # defined something special, then MaskedLongitude should depend # on it. for mro_item in data_cls.__mro__: base_cls = cls._base_classes.get(mro_item) if base_cls is not None: break else: # Just hope that MaskedNDArray can handle it. # TODO: this covers the case where a user puts in a list or so, # but for those one could just explicitly do something like # _masked_classes[list] = MaskedNDArray. return MaskedNDArray # Create (and therefore register) new Masked subclass for the # given data_cls. masked_cls = type( "Masked" + data_cls.__name__, (data_cls, base_cls), {}, data_cls=data_cls, ) return masked_cls @classmethod def _get_data_and_mask(cls, data, allow_ma_masked=False): """Split data into unmasked and mask, if present. Parameters ---------- data : array-like Possibly masked item, judged by whether it has a ``mask`` attribute. If so, checks for being an instance of `~astropy.utils.masked.Masked` or `~numpy.ma.MaskedArray`, and gets unmasked data appropriately. allow_ma_masked : bool, optional Whether or not to process `~numpy.ma.masked`, i.e., an item that implies no data but the presence of a mask. Returns ------- unmasked, mask : array-like Unmasked will be `None` for `~numpy.ma.masked`. Raises ------ ValueError If `~numpy.ma.masked` is passed in and ``allow_ma_masked`` is not set. """ mask = getattr(data, "mask", None) if mask is not None: try: data = data.unmasked except AttributeError: if not isinstance(data, np.ma.MaskedArray): raise if data is np.ma.masked: if allow_ma_masked: data = None else: raise ValueError("cannot handle np.ma.masked here.") from None else: data = data.data return data, mask @classmethod def _get_data_and_masks(cls, *args): data_masks = [cls._get_data_and_mask(arg) for arg in args] return ( tuple(data for data, _ in data_masks), tuple(mask for _, mask in data_masks), ) def _get_mask(self): """The mask. If set, replace the original mask, with whatever it is set with, using a view if no broadcasting or type conversion is required. """ return self._mask def _set_mask(self, mask, copy=False): self_dtype = getattr(self, "dtype", None) mask_dtype = ( np.ma.make_mask_descr(self_dtype) if self_dtype and self_dtype.names else np.dtype("?") ) ma = np.asanyarray(mask, dtype=mask_dtype) if ma.shape != self.shape: # This will fail (correctly) if not broadcastable. self._mask = np.empty(self.shape, dtype=mask_dtype) self._mask[...] = ma elif ma is mask: # Even if not copying use a view so that shape setting # does not propagate. self._mask = mask.copy() if copy else mask.view() else: self._mask = ma mask = property(_get_mask, _set_mask) # Note: subclass should generally override the unmasked property. # This one assumes the unmasked data is stored in a private attribute. @property def unmasked(self): """The unmasked values. See Also -------- astropy.utils.masked.Masked.filled """ return self._unmasked def filled(self, fill_value): """Get a copy of the underlying data, with masked values filled in. Parameters ---------- fill_value : object Value to replace masked values with. See Also -------- astropy.utils.masked.Masked.unmasked """ unmasked = self.unmasked.copy() if self.mask.dtype.names: np.ma.core._recursive_filled(unmasked, self.mask, fill_value) else: unmasked[self.mask] = fill_value return unmasked def _apply(self, method, *args, **kwargs): # Required method for NDArrayShapeMethods, to help provide __getitem__ # and shape-changing methods. if callable(method): data = method(self.unmasked, *args, **kwargs) mask = method(self.mask, *args, **kwargs) else: data = getattr(self.unmasked, method)(*args, **kwargs) mask = getattr(self.mask, method)(*args, **kwargs) result = self.from_unmasked(data, mask, copy=False) if "info" in self.__dict__: result.info = self.info return result def __setitem__(self, item, value): value, mask = self._get_data_and_mask(value, allow_ma_masked=True) if value is not None: self.unmasked[item] = value self.mask[item] = mask class MaskedInfoBase: mask_val = np.ma.masked def __init__(self, bound=False): super().__init__(bound) # If bound to a data object instance then create the dict of attributes # which stores the info attribute values. if bound: # Specify how to serialize this object depending on context. self.serialize_method = { "fits": "null_value", "ecsv": "null_value", "hdf5": "data_mask", "parquet": "data_mask", None: "null_value", } class MaskedNDArrayInfo(MaskedInfoBase, ParentDtypeInfo): """ Container for meta information like name, description, format. """ # Add `serialize_method` attribute to the attrs that MaskedNDArrayInfo knows # about. This allows customization of the way that MaskedColumn objects # get written to file depending on format. The default is to use whatever # the writer would normally do, which in the case of FITS or ECSV is to use # a NULL value within the data itself. If serialize_method is 'data_mask' # then the mask is explicitly written out as a separate column if there # are any masked values. This is the same as for MaskedColumn. attr_names = ParentDtypeInfo.attr_names | {"serialize_method"} # When `serialize_method` is 'data_mask', and data and mask are being written # as separate columns, use column names <name> and <name>.mask (instead # of default encoding as <name>.data and <name>.mask). _represent_as_dict_primary_data = "data" def _represent_as_dict(self): out = super()._represent_as_dict() masked_array = self._parent # If the serialize method for this context (e.g. 'fits' or 'ecsv') is # 'data_mask', that means to serialize using an explicit mask column. method = self.serialize_method[self._serialize_context] if method == "data_mask": out["data"] = masked_array.unmasked if np.any(masked_array.mask): # Only if there are actually masked elements do we add the ``mask`` column out["mask"] = masked_array.mask elif method == "null_value": out["data"] = np.ma.MaskedArray( masked_array.unmasked, mask=masked_array.mask ) else: raise ValueError( 'serialize method must be either "data_mask" or "null_value"' ) return out def _construct_from_dict(self, map): # Override usual handling, since MaskedNDArray takes shape and buffer # as input, which is less useful here. # The map can contain either a MaskedColumn or a Column and a mask. # Extract the mask for the former case. map.setdefault("mask", getattr(map["data"], "mask", False)) return self._parent_cls.from_unmasked(**map) class MaskedArraySubclassInfo(MaskedInfoBase): """Mixin class to create a subclasses such as MaskedQuantityInfo.""" # This is used below in __init_subclass__, which also inserts a # 'serialize_method' attribute in attr_names. def _represent_as_dict(self): # Use the data_cls as the class name for serialization, # so that we do not have to store all possible masked classes # in astropy.table.serialize.__construct_mixin_classes. out = super()._represent_as_dict() data_cls = self._parent._data_cls out.setdefault("__class__", data_cls.__module__ + "." + data_cls.__name__) return out def _comparison_method(op): """ Create a comparison operator for MaskedNDArray. Needed since for string dtypes the base operators bypass __array_ufunc__ and hence return unmasked results. """ def _compare(self, other): other_data, other_mask = self._get_data_and_mask(other) result = getattr(self.unmasked, op)(other_data) if result is NotImplemented: return NotImplemented mask = self.mask | (other_mask if other_mask is not None else False) return self._masked_result(result, mask, None) return _compare class MaskedIterator: """ Flat iterator object to iterate over Masked Arrays. A `~astropy.utils.masked.MaskedIterator` iterator is returned by ``m.flat`` for any masked array ``m``. It allows iterating over the array as if it were a 1-D array, either in a for-loop or by calling its `next` method. Iteration is done in C-contiguous style, with the last index varying the fastest. The iterator can also be indexed using basic slicing or advanced indexing. Notes ----- The design of `~astropy.utils.masked.MaskedIterator` follows that of `~numpy.ma.core.MaskedIterator`. It is not exported by the `~astropy.utils.masked` module. Instead of instantiating directly, use the ``flat`` method in the masked array instance. """ def __init__(self, m): self._masked = m self._dataiter = m.unmasked.flat self._maskiter = m.mask.flat def __iter__(self): return self def __getitem__(self, indx): out = self._dataiter.__getitem__(indx) mask = self._maskiter.__getitem__(indx) # For single elements, ndarray.flat.__getitem__ returns scalars; these # need a new view as a Masked array. if not isinstance(out, np.ndarray): out = out[...] mask = mask[...] return self._masked.from_unmasked(out, mask, copy=False) def __setitem__(self, index, value): data, mask = self._masked._get_data_and_mask(value, allow_ma_masked=True) if data is not None: self._dataiter[index] = data self._maskiter[index] = mask def __next__(self): """ Return the next value, or raise StopIteration. """ out = next(self._dataiter)[...] mask = next(self._maskiter)[...] return self._masked.from_unmasked(out, mask, copy=False) next = __next__ class MaskedNDArray(Masked, np.ndarray, base_cls=np.ndarray, data_cls=np.ndarray): _mask = None info = MaskedNDArrayInfo() def __new__(cls, *args, mask=None, **kwargs): """Get data class instance from arguments and then set mask.""" self = super().__new__(cls, *args, **kwargs) if mask is not None: self.mask = mask elif self._mask is None: self.mask = False return self def __init_subclass__(cls, **kwargs): super().__init_subclass__(cls, **kwargs) # For all subclasses we should set a default __new__ that passes on # arguments other than mask to the data class, and then sets the mask. if "__new__" not in cls.__dict__: def __new__(newcls, *args, mask=None, **kwargs): """Get data class instance from arguments and then set mask.""" # Need to explicitly mention classes outside of class definition. self = super(cls, newcls).__new__(newcls, *args, **kwargs) if mask is not None: self.mask = mask elif self._mask is None: self.mask = False return self cls.__new__ = __new__ if "info" not in cls.__dict__ and hasattr(cls._data_cls, "info"): data_info = cls._data_cls.info attr_names = data_info.attr_names | {"serialize_method"} new_info = type( cls.__name__ + "Info", (MaskedArraySubclassInfo, data_info.__class__), dict(attr_names=attr_names), ) cls.info = new_info() # The two pieces typically overridden. @classmethod def from_unmasked(cls, data, mask=None, copy=False): # Note: have to override since __new__ would use ndarray.__new__ # which expects the shape as its first argument, not an array. data = np.array(data, subok=True, copy=copy) self = data.view(cls) self._set_mask(mask, copy=copy) return self @property def unmasked(self): return super().view(self._data_cls) @classmethod def _get_masked_cls(cls, data_cls): # Short-cuts if data_cls is np.ndarray: return MaskedNDArray elif data_cls is None: # for .view() return cls return super()._get_masked_cls(data_cls) @property def flat(self): """A 1-D iterator over the Masked array. This returns a ``MaskedIterator`` instance, which behaves the same as the `~numpy.flatiter` instance returned by `~numpy.ndarray.flat`, and is similar to Python's built-in iterator, except that it also allows assignment. """ return MaskedIterator(self) @property def _baseclass(self): """Work-around for MaskedArray initialization. Allows the base class to be inferred correctly when a masked instance is used to initialize (or viewed as) a `~numpy.ma.MaskedArray`. """ return self._data_cls def view(self, dtype=None, type=None): """New view of the masked array. Like `numpy.ndarray.view`, but always returning a masked array subclass. """ if type is None and ( isinstance(dtype, builtins.type) and issubclass(dtype, np.ndarray) ): return super().view(self._get_masked_cls(dtype)) if dtype is None: return super().view(self._get_masked_cls(type)) dtype = np.dtype(dtype) if not ( dtype.itemsize == self.dtype.itemsize and (dtype.names is None or len(dtype.names) == len(self.dtype.names)) ): raise NotImplementedError( f"{self.__class__} cannot be viewed with a dtype with a " "with a different number of fields or size." ) return super().view(dtype, self._get_masked_cls(type)) def __array_finalize__(self, obj): # If we're a new object or viewing an ndarray, nothing has to be done. if obj is None or obj.__class__ is np.ndarray: return # Logically, this should come from ndarray and hence be None, but # just in case someone creates a new mixin, we check. super_array_finalize = super().__array_finalize__ if super_array_finalize: # pragma: no cover super_array_finalize(obj) if self._mask is None: # Got here after, e.g., a view of another masked class. # Get its mask, or initialize ours. self._set_mask(getattr(obj, "_mask", False)) if "info" in obj.__dict__: self.info = obj.info @property def shape(self): """The shape of the data and the mask. Usually used to get the current shape of an array, but may also be used to reshape the array in-place by assigning a tuple of array dimensions to it. As with `numpy.reshape`, one of the new shape dimensions can be -1, in which case its value is inferred from the size of the array and the remaining dimensions. Raises ------ AttributeError If a copy is required, of either the data or the mask. """ # Redefinition to allow defining a setter and add a docstring. return super().shape @shape.setter def shape(self, shape): old_shape = self.shape self._mask.shape = shape # Reshape array proper in try/except just in case some broadcasting # or so causes it to fail. try: super(MaskedNDArray, type(self)).shape.__set__(self, shape) except Exception as exc: self._mask.shape = old_shape # Given that the mask reshaping succeeded, the only logical # reason for an exception is something like a broadcast error in # in __array_finalize__, or a different memory ordering between # mask and data. For those, give a more useful error message; # otherwise just raise the error. if "could not broadcast" in exc.args[0]: raise AttributeError( "Incompatible shape for in-place modification. " "Use `.reshape()` to make a copy with the desired " "shape." ) from None else: # pragma: no cover raise _eq_simple = _comparison_method("__eq__") _ne_simple = _comparison_method("__ne__") __lt__ = _comparison_method("__lt__") __le__ = _comparison_method("__le__") __gt__ = _comparison_method("__gt__") __ge__ = _comparison_method("__ge__") def __eq__(self, other): if not self.dtype.names: return self._eq_simple(other) # For structured arrays, we treat this as a reduction over the fields, # where masked fields are skipped and thus do not influence the result. other = np.asanyarray(other, dtype=self.dtype) result = np.stack( [self[field] == other[field] for field in self.dtype.names], axis=-1 ) return result.all(axis=-1) def __ne__(self, other): if not self.dtype.names: return self._ne_simple(other) # For structured arrays, we treat this as a reduction over the fields, # where masked fields are skipped and thus do not influence the result. other = np.asanyarray(other, dtype=self.dtype) result = np.stack( [self[field] != other[field] for field in self.dtype.names], axis=-1 ) return result.any(axis=-1) def _combine_masks(self, masks, out=None): masks = [m for m in masks if m is not None and m is not False] if not masks: return False if len(masks) == 1: if out is None: return masks[0].copy() else: np.copyto(out, masks[0]) return out out = np.logical_or(masks[0], masks[1], out=out) for mask in masks[2:]: np.logical_or(out, mask, out=out) return out def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): out = kwargs.pop("out", None) out_unmasked = None out_mask = None if out is not None: out_unmasked, out_masks = self._get_data_and_masks(*out) for d, m in zip(out_unmasked, out_masks): if m is None: # TODO: allow writing to unmasked output if nothing is masked? if d is not None: raise TypeError("cannot write to unmasked output") elif out_mask is None: out_mask = m unmasked, masks = self._get_data_and_masks(*inputs) if ufunc.signature: # We're dealing with a gufunc. For now, only deal with # np.matmul and gufuncs for which the mask of any output always # depends on all core dimension values of all inputs. # Also ignore axes keyword for now... # TODO: in principle, it should be possible to generate the mask # purely based on the signature. if "axes" in kwargs: raise NotImplementedError( "Masked does not yet support gufunc calls with 'axes'." ) if ufunc is np.matmul: # np.matmul is tricky and its signature cannot be parsed by # _parse_gufunc_signature. unmasked = np.atleast_1d(*unmasked) mask0, mask1 = masks masks = [] is_mat1 = unmasked[1].ndim >= 2 if mask0 is not None: masks.append(np.logical_or.reduce(mask0, axis=-1, keepdims=is_mat1)) if mask1 is not None: masks.append( np.logical_or.reduce(mask1, axis=-2, keepdims=True) if is_mat1 else np.logical_or.reduce(mask1) ) mask = self._combine_masks(masks, out=out_mask) else: # Parse signature with private numpy function. Note it # cannot handle spaces in tuples, so remove those. in_sig, out_sig = np.lib.function_base._parse_gufunc_signature( ufunc.signature.replace(" ", "") ) axis = kwargs.get("axis", -1) keepdims = kwargs.get("keepdims", False) in_masks = [] for sig, mask in zip(in_sig, masks): if mask is not None: if sig: # Input has core dimensions. Assume that if any # value in those is masked, the output will be # masked too (TODO: for multiple core dimensions # this may be too strong). mask = np.logical_or.reduce( mask, axis=axis, keepdims=keepdims ) in_masks.append(mask) mask = self._combine_masks(in_masks) result_masks = [] for os in out_sig: if os: # Output has core dimensions. Assume all those # get the same mask. result_mask = np.expand_dims(mask, axis) else: result_mask = mask result_masks.append(result_mask) mask = result_masks if len(result_masks) > 1 else result_masks[0] elif method == "__call__": # Regular ufunc call. mask = self._combine_masks(masks, out=out_mask) elif method == "outer": # Must have two arguments; adjust masks as will be done for data. assert len(masks) == 2 masks = [(m if m is not None else False) for m in masks] mask = np.logical_or.outer(masks[0], masks[1], out=out_mask) elif method in {"reduce", "accumulate"}: # Reductions like np.add.reduce (sum). if masks[0] is not None: # By default, we simply propagate masks, since for # things like np.sum, it makes no sense to do otherwise. # Individual methods need to override as needed. # TODO: take care of 'out' too? if method == "reduce": axis = kwargs.get("axis", None) keepdims = kwargs.get("keepdims", False) where = kwargs.get("where", True) mask = np.logical_or.reduce( masks[0], where=where, axis=axis, keepdims=keepdims, out=out_mask, ) if where is not True: # Mask also whole rows that were not selected by where, # so would have been left as unmasked above. mask |= np.logical_and.reduce( masks[0], where=where, axis=axis, keepdims=keepdims ) else: # Accumulate axis = kwargs.get("axis", 0) mask = np.logical_or.accumulate(masks[0], axis=axis, out=out_mask) elif out is not None: mask = False else: # pragma: no cover # Can only get here if neither input nor output was masked, but # perhaps axis or where was masked (in NUMPY_LT_1_21 this is # possible). We don't support this. return NotImplemented elif method in {"reduceat", "at"}: # pragma: no cover # TODO: implement things like np.add.accumulate (used for cumsum). raise NotImplementedError( "masked instances cannot yet deal with 'reduceat' or 'at'." ) if out_unmasked is not None: kwargs["out"] = out_unmasked result = getattr(ufunc, method)(*unmasked, **kwargs) if result is None: # pragma: no cover # This happens for the "at" method. return result if out is not None and len(out) == 1: out = out[0] return self._masked_result(result, mask, out) def __array_function__(self, function, types, args, kwargs): # TODO: go through functions systematically to see which ones # work and/or can be supported. if function in MASKED_SAFE_FUNCTIONS: return super().__array_function__(function, types, args, kwargs) elif function in APPLY_TO_BOTH_FUNCTIONS: helper = APPLY_TO_BOTH_FUNCTIONS[function] try: helper_result = helper(*args, **kwargs) except NotImplementedError: return self._not_implemented_or_raise(function, types) data_args, mask_args, kwargs, out = helper_result if out is not None: if not isinstance(out, Masked): return self._not_implemented_or_raise(function, types) function(*mask_args, out=out.mask, **kwargs) function(*data_args, out=out.unmasked, **kwargs) return out mask = function(*mask_args, **kwargs) result = function(*data_args, **kwargs) elif function in DISPATCHED_FUNCTIONS: dispatched_function = DISPATCHED_FUNCTIONS[function] try: dispatched_result = dispatched_function(*args, **kwargs) except NotImplementedError: return self._not_implemented_or_raise(function, types) if not isinstance(dispatched_result, tuple): return dispatched_result result, mask, out = dispatched_result elif function in UNSUPPORTED_FUNCTIONS: return NotImplemented else: # pragma: no cover # By default, just pass it through for now. return super().__array_function__(function, types, args, kwargs) if mask is None: return result else: return self._masked_result(result, mask, out) def _not_implemented_or_raise(self, function, types): # Our function helper or dispatcher found that the function does not # work with Masked. In principle, there may be another class that # knows what to do with us, for which we should return NotImplemented. # But if there is ndarray (or a non-Masked subclass of it) around, # it quite likely coerces, so we should just break. if any(issubclass(t, np.ndarray) and not issubclass(t, Masked) for t in types): raise TypeError( "the MaskedNDArray implementation cannot handle {} " "with the given arguments.".format(function) ) from None else: return NotImplemented def _masked_result(self, result, mask, out): if isinstance(result, tuple): if out is None: out = (None,) * len(result) if not isinstance(mask, (list, tuple)): mask = (mask,) * len(result) return tuple( self._masked_result(result_, mask_, out_) for (result_, mask_, out_) in zip(result, mask, out) ) if out is None: # Note that we cannot count on result being the same class as # 'self' (e.g., comparison of quantity results in an ndarray, most # operations on Longitude and Latitude result in Angle or # Quantity), so use Masked to determine the appropriate class. return Masked(result, mask) # TODO: remove this sanity check once test cases are more complete. assert isinstance(out, Masked) # If we have an output, the result was written in-place, so we should # also write the mask in-place (if not done already in the code). if out._mask is not mask: out._mask[...] = mask return out # Below are ndarray methods that need to be overridden as masked elements # need to be skipped and/or an initial value needs to be set. def _reduce_defaults(self, kwargs, initial_func=None): """Get default where and initial for masked reductions. Generally, the default should be to skip all masked elements. For reductions such as np.minimum.reduce, we also need an initial value, which can be determined using ``initial_func``. """ if "where" not in kwargs: kwargs["where"] = ~self.mask if initial_func is not None and "initial" not in kwargs: kwargs["initial"] = initial_func(self.unmasked) return kwargs def trace(self, offset=0, axis1=0, axis2=1, dtype=None, out=None): # Unfortunately, cannot override the call to diagonal inside trace, so # duplicate implementation in numpy/core/src/multiarray/calculation.c. diagonal = self.diagonal(offset=offset, axis1=axis1, axis2=axis2) return diagonal.sum(-1, dtype=dtype, out=out) def min(self, axis=None, out=None, **kwargs): return super().min( axis=axis, out=out, **self._reduce_defaults(kwargs, np.nanmax) ) def max(self, axis=None, out=None, **kwargs): return super().max( axis=axis, out=out, **self._reduce_defaults(kwargs, np.nanmin) ) def nonzero(self): unmasked_nonzero = self.unmasked.nonzero() if self.ndim >= 1: not_masked = ~self.mask[unmasked_nonzero] return tuple(u[not_masked] for u in unmasked_nonzero) else: return unmasked_nonzero if not self.mask else np.nonzero(0) def compress(self, condition, axis=None, out=None): if out is not None: raise NotImplementedError("cannot yet give output") return self._apply("compress", condition, axis=axis) def repeat(self, repeats, axis=None): return self._apply("repeat", repeats, axis=axis) def choose(self, choices, out=None, mode="raise"): # Let __array_function__ take care since choices can be masked too. return np.choose(self, choices, out=out, mode=mode) if NUMPY_LT_1_22: def argmin(self, axis=None, out=None): # Todo: should this return a masked integer array, with masks # if all elements were masked? at_min = self == self.min(axis=axis, keepdims=True) return at_min.filled(False).argmax(axis=axis, out=out) def argmax(self, axis=None, out=None): at_max = self == self.max(axis=axis, keepdims=True) return at_max.filled(False).argmax(axis=axis, out=out) else: def argmin(self, axis=None, out=None, *, keepdims=False): # Todo: should this return a masked integer array, with masks # if all elements were masked? at_min = self == self.min(axis=axis, keepdims=True) return at_min.filled(False).argmax(axis=axis, out=out, keepdims=keepdims) def argmax(self, axis=None, out=None, *, keepdims=False): at_max = self == self.max(axis=axis, keepdims=True) return at_max.filled(False).argmax(axis=axis, out=out, keepdims=keepdims) def argsort(self, axis=-1, kind=None, order=None): """Returns the indices that would sort an array. Perform an indirect sort along the given axis on both the array and the mask, with masked items being sorted to the end. Parameters ---------- axis : int or None, optional Axis along which to sort. The default is -1 (the last axis). If None, the flattened array is used. kind : str or None, ignored. The kind of sort. Present only to allow subclasses to work. order : str or list of str. For an array with fields defined, the fields to compare first, second, etc. A single field can be specified as a string, and not all fields need be specified, but unspecified fields will still be used, in dtype order, to break ties. Returns ------- index_array : ndarray, int Array of indices that sorts along the specified ``axis``. Use ``np.take_along_axis(self, index_array, axis=axis)`` to obtain the sorted array. """ if axis is None: data = self.ravel() axis = -1 else: data = self if self.dtype.names: # As done inside the argsort implementation in multiarray/methods.c. if order is None: order = self.dtype.names else: order = np.core._internal._newnames(self.dtype, order) keys = tuple(data[name] for name in order[::-1]) elif order is not None: raise ValueError("Cannot specify order when the array has no fields.") else: keys = (data,) return np.lexsort(keys, axis=axis) def sort(self, axis=-1, kind=None, order=None): """Sort an array in-place. Refer to `numpy.sort` for full documentation.""" # TODO: probably possible to do this faster than going through argsort! indices = self.argsort(axis, kind=kind, order=order) self[:] = np.take_along_axis(self, indices, axis=axis) def argpartition(self, kth, axis=-1, kind="introselect", order=None): # TODO: should be possible to do this faster than with a full argsort! return self.argsort(axis=axis, order=order) def partition(self, kth, axis=-1, kind="introselect", order=None): # TODO: should be possible to do this faster than with a full argsort! return self.sort(axis=axis, order=None) def cumsum(self, axis=None, dtype=None, out=None): if axis is None: self = self.ravel() axis = 0 return np.add.accumulate(self, axis=axis, dtype=dtype, out=out) def cumprod(self, axis=None, dtype=None, out=None): if axis is None: self = self.ravel() axis = 0 return np.multiply.accumulate(self, axis=axis, dtype=dtype, out=out) def clip(self, min=None, max=None, out=None, **kwargs): """Return an array whose values are limited to ``[min, max]``. Like `~numpy.clip`, but any masked values in ``min`` and ``max`` are ignored for clipping. The mask of the input array is propagated. """ # TODO: implement this at the ufunc level. dmin, mmin = self._get_data_and_mask(min) dmax, mmax = self._get_data_and_mask(max) if mmin is None and mmax is None: # Fast path for unmasked max, min. return super().clip(min, max, out=out, **kwargs) masked_out = np.positive(self, out=out) out = masked_out.unmasked if dmin is not None: np.maximum(out, dmin, out=out, where=True if mmin is None else ~mmin) if dmax is not None: np.minimum(out, dmax, out=out, where=True if mmax is None else ~mmax) return masked_out def mean(self, axis=None, dtype=None, out=None, keepdims=False, *, where=True): # Implementation based on that in numpy/core/_methods.py # Cast bool, unsigned int, and int to float64 by default, # and do float16 at higher precision. is_float16_result = False if dtype is None: if issubclass(self.dtype.type, (np.integer, np.bool_)): dtype = np.dtype("f8") elif issubclass(self.dtype.type, np.float16): dtype = np.dtype("f4") is_float16_result = out is None where = ~self.mask & where result = self.sum( axis=axis, dtype=dtype, out=out, keepdims=keepdims, where=where ) n = np.add.reduce(where, axis=axis, keepdims=keepdims) result /= n if is_float16_result: result = result.astype(self.dtype) return result def var( self, axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True ): where_final = ~self.mask & where # Simplified implementation based on that in numpy/core/_methods.py n = np.add.reduce(where_final, axis=axis, keepdims=keepdims)[...] # Cast bool, unsigned int, and int to float64 by default. if dtype is None and issubclass(self.dtype.type, (np.integer, np.bool_)): dtype = np.dtype("f8") mean = self.mean(axis=axis, dtype=dtype, keepdims=True, where=where) x = self - mean x *= x.conjugate() # Conjugate just returns x if not complex. result = x.sum( axis=axis, dtype=dtype, out=out, keepdims=keepdims, where=where_final ) n -= ddof n = np.maximum(n, 0, out=n) result /= n result._mask |= n == 0 return result def std( self, axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True ): result = self.var( axis=axis, dtype=dtype, out=out, ddof=ddof, keepdims=keepdims, where=where ) return np.sqrt(result, out=result) def __bool__(self): # First get result from array itself; this will error if not a scalar. result = super().__bool__() return result and not self.mask def any(self, axis=None, out=None, keepdims=False, *, where=True): return np.logical_or.reduce( self, axis=axis, out=out, keepdims=keepdims, where=~self.mask & where ) def all(self, axis=None, out=None, keepdims=False, *, where=True): return np.logical_and.reduce( self, axis=axis, out=out, keepdims=keepdims, where=~self.mask & where ) # Following overrides needed since somehow the ndarray implementation # does not actually call these. def __str__(self): return np.array_str(self) def __repr__(self): return np.array_repr(self) def __format__(self, format_spec): string = super().__format__(format_spec) if self.shape == () and self.mask: n = min(3, max(1, len(string))) return " " * (len(string) - n) + "\u2014" * n else: return string class MaskedRecarray(np.recarray, MaskedNDArray, data_cls=np.recarray): # Explicit definition since we need to override some methods. def __array_finalize__(self, obj): # recarray.__array_finalize__ does not do super, so we do it # explicitly. super().__array_finalize__(obj) super(np.recarray, self).__array_finalize__(obj) # __getattribute__, __setattr__, and field use these somewhat # obscrure ndarray methods. TODO: override in MaskedNDArray? def getfield(self, dtype, offset=0): for field, info in self.dtype.fields.items(): if offset == info[1] and dtype == info[0]: return self[field] raise NotImplementedError("can only get existing field from structured dtype.") def setfield(self, val, dtype, offset=0): for field, info in self.dtype.fields.items(): if offset == info[1] and dtype == info[0]: self[field] = val return raise NotImplementedError("can only set existing field from structured dtype.")
eb4fe420aaa96a8044e0230a138cc02708dca80b61fe8f77ba1ff11e100274db
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Built-in mask mixin class. The design uses `Masked` as a factory class which automatically generates new subclasses for any data class that is itself a subclass of a predefined masked class, with `MaskedNDArray` providing such a predefined class for `~numpy.ndarray`. """ from .core import *
efea3b589551fc0ea02b9606e4cdfc45b0e476ba5e3ccd142159abcb2dc2ce93
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Helpers for letting numpy functions interact with Masked arrays. The module supplies helper routines for numpy functions that propagate masks appropriately., for use in the ``__array_function__`` implementation of `~astropy.utils.masked.MaskedNDArray`. They are not very useful on their own, but the ones with docstrings are included in the documentation so that there is a place to find out how the mask is interpreted. """ import numpy as np from astropy.units.quantity_helper.function_helpers import FunctionAssigner from astropy.utils.compat import NUMPY_LT_1_23, NUMPY_LT_1_25 # This module should not really be imported, but we define __all__ # such that sphinx can typeset the functions with docstrings. # The latter are added to __all__ at the end. __all__ = [ "MASKED_SAFE_FUNCTIONS", "APPLY_TO_BOTH_FUNCTIONS", "DISPATCHED_FUNCTIONS", "UNSUPPORTED_FUNCTIONS", ] MASKED_SAFE_FUNCTIONS = set() """Set of functions that work fine on Masked classes already. Most of these internally use `numpy.ufunc` or other functions that are already covered. """ APPLY_TO_BOTH_FUNCTIONS = {} """Dict of functions that should apply to both data and mask. The `dict` is keyed by the numpy function and the values are functions that take the input arguments of the numpy function and organize these for passing the data and mask to the numpy function. Returns ------- data_args : tuple Arguments to pass on to the numpy function for the unmasked data. mask_args : tuple Arguments to pass on to the numpy function for the masked data. kwargs : dict Keyword arguments to pass on for both unmasked data and mask. out : `~astropy.utils.masked.Masked` instance or None Optional instance in which to store the output. Raises ------ NotImplementedError When an arguments is masked when it should not be or vice versa. """ DISPATCHED_FUNCTIONS = {} """Dict of functions that provide the numpy function's functionality. These are for more complicated versions where the numpy function itself cannot easily be used. It should return either the result of the function, or a tuple consisting of the unmasked result, the mask for the result and a possible output instance. It should raise `NotImplementedError` if one of the arguments is masked when it should not be or vice versa. """ UNSUPPORTED_FUNCTIONS = set() """Set of numpy functions that are not supported for masked arrays. For most, masked input simply makes no sense, but for others it may have been lack of time. Issues or PRs for support for functions are welcome. """ # Almost all from np.core.fromnumeric defer to methods so are OK. MASKED_SAFE_FUNCTIONS |= { getattr(np, name) for name in np.core.fromnumeric.__all__ if name not in {"choose", "put", "resize", "searchsorted", "where", "alen"} } MASKED_SAFE_FUNCTIONS |= { # built-in from multiarray np.may_share_memory, np.can_cast, np.min_scalar_type, np.result_type, np.shares_memory, # np.core.arrayprint np.array_repr, # np.core.function_base np.linspace, np.logspace, np.geomspace, # np.core.numeric np.isclose, np.allclose, np.flatnonzero, np.argwhere, # np.core.shape_base np.atleast_1d, np.atleast_2d, np.atleast_3d, np.stack, np.hstack, np.vstack, # np.lib.function_base np.average, np.diff, np.extract, np.meshgrid, np.trapz, np.gradient, # np.lib.index_tricks np.diag_indices_from, np.triu_indices_from, np.tril_indices_from, np.fill_diagonal, # np.lib.shape_base np.column_stack, np.row_stack, np.dstack, np.array_split, np.split, np.hsplit, np.vsplit, np.dsplit, np.expand_dims, np.apply_along_axis, np.kron, np.tile, np.take_along_axis, np.put_along_axis, # np.lib.type_check (all but asfarray, nan_to_num) np.iscomplexobj, np.isrealobj, np.imag, np.isreal, np.real, np.real_if_close, np.common_type, # np.lib.ufunclike np.fix, np.isneginf, np.isposinf, # np.lib.function_base np.angle, np.i0, } # fmt: skip IGNORED_FUNCTIONS = { # I/O - useless for Masked, since no way to store the mask. np.save, np.savez, np.savetxt, np.savez_compressed, # Polynomials np.poly, np.polyadd, np.polyder, np.polydiv, np.polyfit, np.polyint, np.polymul, np.polysub, np.polyval, np.roots, np.vander, } # fmt: skip IGNORED_FUNCTIONS |= { np.pad, np.searchsorted, np.digitize, np.is_busday, np.busday_count, np.busday_offset, # numpy.lib.function_base np.cov, np.corrcoef, np.trim_zeros, # numpy.core.numeric np.correlate, np.convolve, # numpy.lib.histograms np.histogram, np.histogram2d, np.histogramdd, np.histogram_bin_edges, # TODO!! np.dot, np.vdot, np.inner, np.tensordot, np.cross, np.einsum, np.einsum_path, } # fmt: skip # Really should do these... IGNORED_FUNCTIONS |= { getattr(np, setopsname) for setopsname in np.lib.arraysetops.__all__ } if NUMPY_LT_1_23: IGNORED_FUNCTIONS |= { # Deprecated, removed in numpy 1.23 np.asscalar, np.alen, } # Explicitly unsupported functions UNSUPPORTED_FUNCTIONS |= { np.unravel_index, np.ravel_multi_index, np.ix_, } # No support for the functions also not supported by Quantity # (io, polynomial, etc.). UNSUPPORTED_FUNCTIONS |= IGNORED_FUNCTIONS apply_to_both = FunctionAssigner(APPLY_TO_BOTH_FUNCTIONS) dispatched_function = FunctionAssigner(DISPATCHED_FUNCTIONS) def _get_data_and_masks(*args): """Separate out arguments into tuples of data and masks. An all-False mask is created if an argument does not have a mask. """ from .core import Masked data, masks = Masked._get_data_and_masks(*args) masks = tuple( m if m is not None else np.zeros(np.shape(d), bool) for d, m in zip(data, masks) ) return data, masks # Following are simple ufunc-like functions which should just copy the mask. @dispatched_function def datetime_as_string(arr, *args, **kwargs): return (np.datetime_as_string(arr.unmasked, *args, **kwargs), arr.mask.copy(), None) @dispatched_function def sinc(x): return np.sinc(x.unmasked), x.mask.copy(), None @dispatched_function def iscomplex(x): return np.iscomplex(x.unmasked), x.mask.copy(), None @dispatched_function def unwrap(p, *args, **kwargs): return np.unwrap(p.unmasked, *args, **kwargs), p.mask.copy(), None @dispatched_function def nan_to_num(x, copy=True, nan=0.0, posinf=None, neginf=None): data = np.nan_to_num(x.unmasked, copy=copy, nan=nan, posinf=posinf, neginf=neginf) return (data, x.mask.copy(), None) if copy else x # Following are simple functions related to shapes, where the same function # should be applied to the data and the mask. They cannot all share the # same helper, because the first arguments have different names. @apply_to_both( helps={np.copy, np.asfarray, np.resize, np.moveaxis, np.rollaxis, np.roll} ) def masked_a_helper(a, *args, **kwargs): data, mask = _get_data_and_masks(a) return data + args, mask + args, kwargs, None @apply_to_both(helps={np.flip, np.flipud, np.fliplr, np.rot90, np.triu, np.tril}) def masked_m_helper(m, *args, **kwargs): data, mask = _get_data_and_masks(m) return data + args, mask + args, kwargs, None @apply_to_both(helps={np.diag, np.diagflat}) def masked_v_helper(v, *args, **kwargs): data, mask = _get_data_and_masks(v) return data + args, mask + args, kwargs, None @apply_to_both(helps={np.delete}) def masked_arr_helper(array, *args, **kwargs): data, mask = _get_data_and_masks(array) return data + args, mask + args, kwargs, None @apply_to_both def broadcast_to(array, shape, subok=False): """Broadcast array to the given shape. Like `numpy.broadcast_to`, and applied to both unmasked data and mask. Note that ``subok`` is taken to mean whether or not subclasses of the unmasked data and mask are allowed, i.e., for ``subok=False``, a `~astropy.utils.masked.MaskedNDArray` will be returned. """ data, mask = _get_data_and_masks(array) return data, mask, dict(shape=shape, subok=subok), None @dispatched_function def outer(a, b, out=None): return np.multiply.outer(np.ravel(a), np.ravel(b), out=out) @dispatched_function def empty_like(prototype, dtype=None, order="K", subok=True, shape=None): """Return a new array with the same shape and type as a given array. Like `numpy.empty_like`, but will add an empty mask. """ unmasked = np.empty_like( prototype.unmasked, dtype=dtype, order=order, subok=subok, shape=shape ) if dtype is not None: dtype = ( np.ma.make_mask_descr(unmasked.dtype) if unmasked.dtype.names else np.dtype("?") ) mask = np.empty_like( prototype.mask, dtype=dtype, order=order, subok=subok, shape=shape ) return unmasked, mask, None @dispatched_function def zeros_like(a, dtype=None, order="K", subok=True, shape=None): """Return an array of zeros with the same shape and type as a given array. Like `numpy.zeros_like`, but will add an all-false mask. """ unmasked = np.zeros_like( a.unmasked, dtype=dtype, order=order, subok=subok, shape=shape ) return unmasked, False, None @dispatched_function def ones_like(a, dtype=None, order="K", subok=True, shape=None): """Return an array of ones with the same shape and type as a given array. Like `numpy.ones_like`, but will add an all-false mask. """ unmasked = np.ones_like( a.unmasked, dtype=dtype, order=order, subok=subok, shape=shape ) return unmasked, False, None @dispatched_function def full_like(a, fill_value, dtype=None, order="K", subok=True, shape=None): """Return a full array with the same shape and type as a given array. Like `numpy.full_like`, but with a mask that is also set. If ``fill_value`` is `numpy.ma.masked`, the data will be left unset (i.e., as created by `numpy.empty_like`). """ result = np.empty_like(a, dtype=dtype, order=order, subok=subok, shape=shape) result[...] = fill_value return result @dispatched_function def put(a, ind, v, mode="raise"): """Replaces specified elements of an array with given values. Like `numpy.put`, but for masked array ``a`` and possibly masked value ``v``. Masked indices ``ind`` are not supported. """ from astropy.utils.masked import Masked if isinstance(ind, Masked) or not isinstance(a, Masked): raise NotImplementedError v_data, v_mask = a._get_data_and_mask(v) if v_data is not None: np.put(a.unmasked, ind, v_data, mode=mode) # v_mask of None will be correctly interpreted as False. np.put(a.mask, ind, v_mask, mode=mode) return None @dispatched_function def putmask(a, mask, values): """Changes elements of an array based on conditional and input values. Like `numpy.putmask`, but for masked array ``a`` and possibly masked ``values``. Masked ``mask`` is not supported. """ from astropy.utils.masked import Masked if isinstance(mask, Masked) or not isinstance(a, Masked): raise NotImplementedError values_data, values_mask = a._get_data_and_mask(values) if values_data is not None: np.putmask(a.unmasked, mask, values_data) np.putmask(a.mask, mask, values_mask) return None @dispatched_function def place(arr, mask, vals): """Change elements of an array based on conditional and input values. Like `numpy.place`, but for masked array ``a`` and possibly masked ``values``. Masked ``mask`` is not supported. """ from astropy.utils.masked import Masked if isinstance(mask, Masked) or not isinstance(arr, Masked): raise NotImplementedError vals_data, vals_mask = arr._get_data_and_mask(vals) if vals_data is not None: np.place(arr.unmasked, mask, vals_data) np.place(arr.mask, mask, vals_mask) return None @dispatched_function def copyto(dst, src, casting="same_kind", where=True): """Copies values from one array to another, broadcasting as necessary. Like `numpy.copyto`, but for masked destination ``dst`` and possibly masked source ``src``. """ from astropy.utils.masked import Masked if not isinstance(dst, Masked) or isinstance(where, Masked): raise NotImplementedError src_data, src_mask = dst._get_data_and_mask(src) if src_data is not None: np.copyto(dst.unmasked, src_data, casting=casting, where=where) if src_mask is not None: np.copyto(dst.mask, src_mask, where=where) return None @dispatched_function def packbits(a, *args, **kwargs): result = np.packbits(a.unmasked, *args, **kwargs) mask = np.packbits(a.mask, *args, **kwargs).astype(bool) return result, mask, None @dispatched_function def unpackbits(a, *args, **kwargs): result = np.unpackbits(a.unmasked, *args, **kwargs) mask = np.zeros(a.shape, dtype="u1") mask[a.mask] = 255 mask = np.unpackbits(mask, *args, **kwargs).astype(bool) return result, mask, None @dispatched_function def bincount(x, weights=None, minlength=0): """Count number of occurrences of each value in array of non-negative ints. Like `numpy.bincount`, but masked entries in ``x`` will be skipped. Any masked entries in ``weights`` will lead the corresponding bin to be masked. """ from astropy.utils.masked import Masked if weights is not None: weights = np.asanyarray(weights) if isinstance(x, Masked) and x.ndim <= 1: # let other dimensions lead to errors. if weights is not None and weights.ndim == x.ndim: weights = weights[~x.mask] x = x.unmasked[~x.mask] mask = None if weights is not None: weights, w_mask = Masked._get_data_and_mask(weights) if w_mask is not None: mask = np.bincount(x, w_mask.astype(int), minlength=minlength).astype(bool) result = np.bincount(x, weights, minlength=0) return result, mask, None @dispatched_function def msort(a): result = a.copy() result.sort(axis=0) return result @dispatched_function def sort_complex(a): # Just a copy of function_base.sort_complex, to avoid the asarray. b = a.copy() b.sort() if not issubclass(b.dtype.type, np.complexfloating): # pragma: no cover if b.dtype.char in "bhBH": return b.astype("F") elif b.dtype.char == "g": return b.astype("G") else: return b.astype("D") else: return b @dispatched_function def concatenate(arrays, axis=0, out=None, dtype=None, casting="same_kind"): data, masks = _get_data_and_masks(*arrays) if out is None: return ( np.concatenate(data, axis=axis, dtype=dtype, casting=casting), np.concatenate(masks, axis=axis), None, ) else: from astropy.utils.masked import Masked if not isinstance(out, Masked): raise NotImplementedError np.concatenate(masks, out=out.mask, axis=axis) np.concatenate(data, out=out.unmasked, axis=axis, dtype=dtype, casting=casting) return out @apply_to_both def append(arr, values, axis=None): data, masks = _get_data_and_masks(arr, values) return data, masks, dict(axis=axis), None @dispatched_function def block(arrays): # We need to override block since the numpy implementation can take two # different paths, one for concatenation, one for creating a large empty # result array in which parts are set. Each assumes array input and # cannot be used directly. Since it would be very costly to inspect all # arrays and then turn them back into a nested list, we just copy here the # second implementation, np.core.shape_base._block_slicing, since it is # shortest and easiest. from astropy.utils.masked import Masked arrays, list_ndim, result_ndim, final_size = np.core.shape_base._block_setup(arrays) shape, slices, arrays = np.core.shape_base._block_info_recursion( arrays, list_ndim, result_ndim ) dtype = np.result_type(*[arr.dtype for arr in arrays]) F_order = all(arr.flags["F_CONTIGUOUS"] for arr in arrays) C_order = all(arr.flags["C_CONTIGUOUS"] for arr in arrays) order = "F" if F_order and not C_order else "C" result = Masked(np.empty(shape=shape, dtype=dtype, order=order)) for the_slice, arr in zip(slices, arrays): result[(Ellipsis,) + the_slice] = arr return result @dispatched_function def broadcast_arrays(*args, subok=True): """Broadcast arrays to a common shape. Like `numpy.broadcast_arrays`, applied to both unmasked data and masks. Note that ``subok`` is taken to mean whether or not subclasses of the unmasked data and masks are allowed, i.e., for ``subok=False``, `~astropy.utils.masked.MaskedNDArray` instances will be returned. """ from .core import Masked are_masked = [isinstance(arg, Masked) for arg in args] data = [ (arg.unmasked if is_masked else arg) for arg, is_masked in zip(args, are_masked) ] results = np.broadcast_arrays(*data, subok=subok) shape = results[0].shape if isinstance(results, list) else results.shape masks = [ (np.broadcast_to(arg.mask, shape, subok=subok) if is_masked else None) for arg, is_masked in zip(args, are_masked) ] results = [ (Masked(result, mask) if mask is not None else result) for (result, mask) in zip(results, masks) ] return results if len(results) > 1 else results[0] @apply_to_both def insert(arr, obj, values, axis=None): """Insert values along the given axis before the given indices. Like `numpy.insert` but for possibly masked ``arr`` and ``values``. Masked ``obj`` is not supported. """ from astropy.utils.masked import Masked if isinstance(obj, Masked) or not isinstance(arr, Masked): raise NotImplementedError (arr_data, val_data), (arr_mask, val_mask) = _get_data_and_masks(arr, values) return ((arr_data, obj, val_data, axis), (arr_mask, obj, val_mask, axis), {}, None) @dispatched_function def count_nonzero(a, axis=None, *, keepdims=False): """Counts the number of non-zero values in the array ``a``. Like `numpy.count_nonzero`, with masked values counted as 0 or `False`. """ filled = a.filled(np.zeros((), a.dtype)) return np.count_nonzero(filled, axis, keepdims=keepdims) def _masked_median_1d(a, overwrite_input): # TODO: need an in-place mask-sorting option. unmasked = a.unmasked[~a.mask] if unmasked.size: return a.from_unmasked(np.median(unmasked, overwrite_input=overwrite_input)) else: return a.from_unmasked(np.zeros_like(a.unmasked, shape=(1,))[0], mask=True) def _masked_median(a, axis=None, out=None, overwrite_input=False): # As for np.nanmedian, but without a fast option as yet. if axis is None or a.ndim == 1: part = a.ravel() result = _masked_median_1d(part, overwrite_input) else: result = np.apply_along_axis(_masked_median_1d, axis, a, overwrite_input) if out is not None: out[...] = result return result @dispatched_function def median(a, axis=None, out=None, **kwargs): from astropy.utils.masked import Masked if out is not None and not isinstance(out, Masked): raise NotImplementedError a = Masked(a) if NUMPY_LT_1_25: keepdims = kwargs.pop("keepdims", False) r, k = np.lib.function_base._ureduce( a, func=_masked_median, axis=axis, out=out, **kwargs ) return (r.reshape(k) if keepdims else r) if out is None else out else: return np.lib.function_base._ureduce( a, func=_masked_median, axis=axis, out=out, **kwargs ) def _masked_quantile_1d(a, q, **kwargs): """ Private function for rank 1 arrays. Compute quantile ignoring NaNs. See nanpercentile for parameter usage """ unmasked = a.unmasked[~a.mask] if unmasked.size: result = np.lib.function_base._quantile_unchecked(unmasked, q, **kwargs) return a.from_unmasked(result) else: return a.from_unmasked(np.zeros_like(a.unmasked, shape=q.shape), True) def _masked_quantile(a, q, axis=None, out=None, **kwargs): # As for np.nanmedian, but without a fast option as yet. if axis is None or a.ndim == 1: part = a.ravel() result = _masked_quantile_1d(part, q, **kwargs) else: result = np.apply_along_axis(_masked_quantile_1d, axis, a, q, **kwargs) # apply_along_axis fills in collapsed axis with results. # Move that axis to the beginning to match percentile's # convention. if q.ndim != 0: result = np.moveaxis(result, axis, 0) if out is not None: out[...] = result return result @dispatched_function def quantile(a, q, axis=None, out=None, **kwargs): from astropy.utils.masked import Masked if isinstance(q, Masked) or out is not None and not isinstance(out, Masked): raise NotImplementedError a = Masked(a) q = np.asanyarray(q) if not np.lib.function_base._quantile_is_valid(q): raise ValueError("Quantiles must be in the range [0, 1]") if NUMPY_LT_1_25: keepdims = kwargs.pop("keepdims", False) r, k = np.lib.function_base._ureduce( a, func=_masked_quantile, q=q, axis=axis, out=out, **kwargs ) return (r.reshape(q.shape + k) if keepdims else r) if out is None else out else: return np.lib.function_base._ureduce( a, func=_masked_quantile, q=q, axis=axis, out=out, **kwargs ) @dispatched_function def percentile(a, q, *args, **kwargs): q = np.true_divide(q, 100) return quantile(a, q, *args, **kwargs) @dispatched_function def array_equal(a1, a2, equal_nan=False): (a1d, a2d), (a1m, a2m) = _get_data_and_masks(a1, a2) if a1d.shape != a2d.shape: return False equal = a1d == a2d if equal_nan: equal |= np.isnan(a1d) & np.isnan(a2d) return bool((equal | a1m | a2m).all()) @dispatched_function def array_equiv(a1, a2): return bool((a1 == a2).all()) @dispatched_function def where(condition, *args): from astropy.utils.masked import Masked if not args: return condition.nonzero(), None, None condition, c_mask = Masked._get_data_and_mask(condition) data, masks = _get_data_and_masks(*args) unmasked = np.where(condition, *data) mask = np.where(condition, *masks) if c_mask is not None: mask |= c_mask return Masked(unmasked, mask=mask) @dispatched_function def choose(a, choices, out=None, mode="raise"): """Construct an array from an index array and a set of arrays to choose from. Like `numpy.choose`. Masked indices in ``a`` will lead to masked output values and underlying data values are ignored if out of bounds (for ``mode='raise'``). Any values masked in ``choices`` will be propagated if chosen. """ from astropy.utils.masked import Masked a_data, a_mask = Masked._get_data_and_mask(a) if a_mask is not None and mode == "raise": # Avoid raising on masked indices. a_data = a.filled(fill_value=0) kwargs = {"mode": mode} if out is not None: if not isinstance(out, Masked): raise NotImplementedError kwargs["out"] = out.unmasked data, masks = _get_data_and_masks(*choices) data_chosen = np.choose(a_data, data, **kwargs) if out is not None: kwargs["out"] = out.mask mask_chosen = np.choose(a_data, masks, **kwargs) if a_mask is not None: mask_chosen |= a_mask return Masked(data_chosen, mask_chosen) if out is None else out @apply_to_both def select(condlist, choicelist, default=0): """Return an array drawn from elements in choicelist, depending on conditions. Like `numpy.select`, with masks in ``choicelist`` are propagated. Any masks in ``condlist`` are ignored. """ from astropy.utils.masked import Masked condlist = [c.unmasked if isinstance(c, Masked) else c for c in condlist] data_list, mask_list = _get_data_and_masks(*choicelist) default = Masked(default) if default is not np.ma.masked else Masked(0, mask=True) return ( (condlist, data_list, default.unmasked), (condlist, mask_list, default.mask), {}, None, ) @dispatched_function def piecewise(x, condlist, funclist, *args, **kw): """Evaluate a piecewise-defined function. Like `numpy.piecewise` but for masked input array ``x``. Any masks in ``condlist`` are ignored. """ # Copied implementation from numpy.lib.function_base.piecewise, # just to ensure output is Masked. n2 = len(funclist) # undocumented: single condition is promoted to a list of one condition if np.isscalar(condlist) or ( not isinstance(condlist[0], (list, np.ndarray)) and x.ndim != 0 ): # pragma: no cover condlist = [condlist] condlist = np.array(condlist, dtype=bool) n = len(condlist) if n == n2 - 1: # compute the "otherwise" condition. condelse = ~np.any(condlist, axis=0, keepdims=True) condlist = np.concatenate([condlist, condelse], axis=0) n += 1 elif n != n2: raise ValueError( f"with {n} condition(s), either {n} or {n + 1} functions are expected" ) # The one real change... y = np.zeros_like(x) where = [] what = [] for k in range(n): item = funclist[k] if not callable(item): where.append(condlist[k]) what.append(item) else: vals = x[condlist[k]] if vals.size > 0: where.append(condlist[k]) what.append(item(vals, *args, **kw)) for item, value in zip(where, what): y[item] = value return y @dispatched_function def interp(x, xp, fp, *args, **kwargs): """One-dimensional linear interpolation. Like `numpy.interp`, but any masked points in ``xp`` and ``fp`` are ignored. Any masked values in ``x`` will still be evaluated, but masked on output. """ from astropy.utils.masked import Masked xd, xm = Masked._get_data_and_mask(x) if isinstance(xp, Masked) or isinstance(fp, Masked): (xp, fp), (xpm, fpm) = _get_data_and_masks(xp, fp) if xp.ndim == fp.ndim == 1: # Avoid making arrays 1-D; will just raise below. m = xpm | fpm xp = xp[~m] fp = fp[~m] result = np.interp(xd, xp, fp, *args, **kwargs) return result if xm is None else Masked(result, xm.copy()) @dispatched_function def lexsort(keys, axis=-1): """Perform an indirect stable sort using a sequence of keys. Like `numpy.lexsort` but for possibly masked ``keys``. Masked values are sorted towards the end for each key. """ # Sort masks to the end. from .core import Masked new_keys = [] for key in keys: if isinstance(key, Masked): # If there are other keys below, want to be sure that # for masked values, those other keys set the order. new_key = key.unmasked if new_keys and key.mask.any(): new_key = new_key.copy() new_key[key.mask] = new_key.flat[0] new_keys.extend([new_key, key.mask]) else: new_keys.append(key) return np.lexsort(new_keys, axis=axis) @dispatched_function def apply_over_axes(func, a, axes): # Copied straight from numpy/lib/shape_base, just to omit its # val = asarray(a); if only it had been asanyarray, or just not there # since a is assumed to an an array in the next line... # Which is what we do here - we can only get here if it is Masked. val = a N = a.ndim if np.array(axes).ndim == 0: axes = (axes,) for axis in axes: if axis < 0: axis = N + axis args = (val, axis) res = func(*args) if res.ndim == val.ndim: val = res else: res = np.expand_dims(res, axis) if res.ndim == val.ndim: val = res else: raise ValueError( "function is not returning an array of the correct shape" ) return val class MaskedFormat: """Formatter for masked array scalars. For use in `numpy.array2string`, wrapping the regular formatters such that if a value is masked, its formatted string is replaced. Typically initialized using the ``from_data`` class method. """ def __init__(self, format_function): self.format_function = format_function # Special case for structured void and subarray: we need to make all the # format functions for the items masked as well. # TODO: maybe is a separate class is more logical? ffs = getattr(format_function, "format_functions", None) if ffs: # StructuredVoidFormat: multiple format functions to be changed. self.format_function.format_functions = [MaskedFormat(ff) for ff in ffs] ff = getattr(format_function, "format_function", None) if ff: # SubarrayFormat: change format function for the elements. self.format_function.format_function = MaskedFormat(ff) def __call__(self, x): if x.dtype.names: # The replacement of x with a list is needed because the function # inside StructuredVoidFormat iterates over x, which works for an # np.void but not an array scalar. return self.format_function([x[field] for field in x.dtype.names]) if x.shape: # For a subarray pass on the data directly, since the # items will be iterated on inside the function. return self.format_function(x) # Single element: first just typeset it normally, replace with masked # string if needed. string = self.format_function(x.unmasked[()]) if x.mask: # Strikethrough would be neat, but terminal needs a different # formatting than, say, jupyter notebook. # return "\x1B[9m"+string+"\x1B[29m" # return ''.join(s+'\u0336' for s in string) n = min(3, max(1, len(string))) return " " * (len(string) - n) + "\u2014" * n else: return string @classmethod def from_data(cls, data, **options): from numpy.core.arrayprint import _get_format_function return cls(_get_format_function(data, **options)) def _array2string(a, options, separator=" ", prefix=""): # Mostly copied from numpy.core.arrayprint, except: # - The format function is wrapped in a mask-aware class; # - Arrays scalars are not cast as arrays. from numpy.core.arrayprint import _formatArray, _leading_trailing data = np.asarray(a) if a.size > options["threshold"]: summary_insert = "..." data = _leading_trailing(data, options["edgeitems"]) else: summary_insert = "" # find the right formatting function for the array format_function = MaskedFormat.from_data(data, **options) # skip over "[" next_line_prefix = " " # skip over array( next_line_prefix += " " * len(prefix) lst = _formatArray( a, format_function, options["linewidth"], next_line_prefix, separator, options["edgeitems"], summary_insert, options["legacy"], ) return lst @dispatched_function def array2string( a, max_line_width=None, precision=None, suppress_small=None, separator=" ", prefix="", style=np._NoValue, formatter=None, threshold=None, edgeitems=None, sign=None, floatmode=None, suffix="", ): # Copied from numpy.core.arrayprint, but using _array2string above. from numpy.core.arrayprint import _format_options, _make_options_dict overrides = _make_options_dict( precision, threshold, edgeitems, max_line_width, suppress_small, None, None, sign, formatter, floatmode, ) options = _format_options.copy() options.update(overrides) options["linewidth"] -= len(suffix) # treat as a null array if any of shape elements == 0 if a.size == 0: return "[]" return _array2string(a, options, separator, prefix) @dispatched_function def array_str(a, max_line_width=None, precision=None, suppress_small=None): # Override to avoid special treatment of array scalars. return array2string(a, max_line_width, precision, suppress_small, " ", "") # For the nanfunctions, we just treat any nan as an additional mask. _nanfunc_fill_values = {"nansum": 0, "nancumsum": 0, "nanprod": 1, "nancumprod": 1} def masked_nanfunc(nanfuncname): np_func = getattr(np, nanfuncname[3:]) fill_value = _nanfunc_fill_values.get(nanfuncname, None) def nanfunc(a, *args, **kwargs): from astropy.utils.masked import Masked a, mask = Masked._get_data_and_mask(a) if issubclass(a.dtype.type, np.inexact): nans = np.isnan(a) mask = nans if mask is None else (nans | mask) if mask is not None: a = Masked(a, mask) if fill_value is not None: a = a.filled(fill_value) return np_func(a, *args, **kwargs) doc = f"Like `numpy.{nanfuncname}`, skipping masked values as well.\n\n" if fill_value is not None: # sum, cumsum, prod, cumprod doc += ( f"Masked/NaN values are replaced with {fill_value}. " "The output is not masked." ) elif "arg" in nanfuncname: doc += ( "No exceptions are raised for fully masked/NaN slices.\n" "Instead, these give index 0." ) else: doc += ( "No warnings are given for fully masked/NaN slices.\n" "Instead, they are masked in the output." ) nanfunc.__doc__ = doc nanfunc.__name__ = nanfuncname return nanfunc for nanfuncname in np.lib.nanfunctions.__all__: globals()[nanfuncname] = dispatched_function( masked_nanfunc(nanfuncname), helps=getattr(np, nanfuncname) ) # Add any dispatched or helper function that has a docstring to # __all__, so they will be typeset by sphinx. The logic is that for # those presumably the use of the mask is not entirely obvious. __all__ += sorted( helper.__name__ for helper in ( set(APPLY_TO_BOTH_FUNCTIONS.values()) | set(DISPATCHED_FUNCTIONS.values()) ) if helper.__doc__ )
8ef802b41e5f0ec09cd50ae8d30d976c947fe346af91e83170ded1722731672c
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Checks for optional dependencies using lazy import from `PEP 562 <https://www.python.org/dev/peps/pep-0562/>`_. """ import importlib import warnings # First, the top-level packages: # TODO: This list is a duplicate of the dependencies in setup.cfg "all", but # some of the package names are different from the pip-install name (e.g., # beautifulsoup4 -> bs4). _optional_deps = [ "asdf", "asdf_astropy", "bleach", "bottleneck", "bs4", "bz2", "fsspec", "h5py", "html5lib", "IPython", "jplephem", "lxml", "matplotlib", "mpmath", "pandas", "PIL", "pytz", "s3fs", "scipy", "skyfield", "sortedcontainers", "lzma", "pyarrow", "pytest_mpl", ] _formerly_optional_deps = ["yaml"] # for backward compatibility _deps = {k.upper(): k for k in _optional_deps + _formerly_optional_deps} # Any subpackages that have different import behavior: _deps["PLT"] = "matplotlib.pyplot" __all__ = [f"HAS_{pkg}" for pkg in _deps] def __getattr__(name): if name in __all__: module_name = name[4:] if module_name == "YAML": from astropy.utils.exceptions import AstropyDeprecationWarning warnings.warn( "PyYaml is now a strict dependency. HAS_YAML is deprecated as " "of v5.0 and will be removed in a subsequent version.", category=AstropyDeprecationWarning, ) try: importlib.import_module(_deps[module_name]) except (ImportError, ModuleNotFoundError): return False return True raise AttributeError(f"Module {__name__!r} has no attribute {name!r}.")
0bad59dd58b508227b56cdbad7b6210edb0729a5d4bc9738e6aa8f9144de1fff
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This subpackage contains utility modules for compatibility with older/newer versions of python, as well as including some bugfixes for the stdlib that are important for Astropy. Note that all public functions in the `astropy.utils.compat.misc` module are imported here for easier access. The content of this module is solely for internal use of ``astropy`` and subject to changes without deprecations. Do not use it in external packages or code. """ from .misc import * # Importing this module will also install monkey-patches defined in it from .numpycompat import *
366b8824693aa31870c2b13623aa9174adfcea494a845f706eadbf72a4cc8fff
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This is a collection of monkey patches and workarounds for bugs in earlier versions of Numpy. """ import numpy as np from astropy.utils import minversion __all__ = [ "NUMPY_LT_1_21_1", "NUMPY_LT_1_22", "NUMPY_LT_1_22_1", "NUMPY_LT_1_23", "NUMPY_LT_1_24", "NUMPY_LT_1_25", ] # TODO: It might also be nice to have aliases to these named for specific # features/bugs we're checking for (ex: # astropy.table.table._BROKEN_UNICODE_TABLE_SORT) NUMPY_LT_1_21_1 = not minversion(np, "1.21.1") NUMPY_LT_1_22 = not minversion(np, "1.22") NUMPY_LT_1_22_1 = not minversion(np, "1.22.1") NUMPY_LT_1_23 = not minversion(np, "1.23") NUMPY_LT_1_24 = not minversion(np, "1.24dev0") NUMPY_LT_1_25 = not minversion(np, "1.25.0.dev0+151")
b56c9d08ce8d98983b79e4ef42f0576d2353900b2dcadfa8e8abf7903d41a180
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Simple utility functions and bug fixes for compatibility with all supported versions of Python. This module should generally not be used directly, as everything in `__all__` will be imported into `astropy.utils.compat` and can be accessed from there. """ import functools import sys from astropy.utils.decorators import deprecated __all__ = ["override__dir__", "PYTHON_LT_3_11"] PYTHON_LT_3_11 = sys.version_info < (3, 11) @deprecated( since="v5.2", message=( "http://bugs.python.org/issue12166 is resolved. See docstring for alternatives." ), ) def override__dir__(f): """ When overriding a __dir__ method on an object, you often want to include the "standard" members on the object as well. This decorator takes care of that automatically, and all the wrapped function needs to do is return a list of the "special" members that wouldn't be found by the normal Python means. .. deprecated:: v5.2 Use ``sorted(super().__dir__() + ...)`` instead. Example ------- Your class could define __dir__ as follows:: @override__dir__ def __dir__(self): return ['special_method1', 'special_method2'] Notes ----- This function was introduced because of http://bugs.python.org/issue12166, which has since been resolved by http://hg.python.org/cpython/rev/8f403199f999. Now, the best way to customize ``__dir__`` is to use ``super``. :: def __dir__(self): added = {'special_method1', 'special_method2'} return sorted(set(super().__dir__()) | added) """ # http://bugs.python.org/issue12166 @functools.wraps(f) def override__dir__wrapper(self): members = set(object.__dir__(self)) members.update(f(self)) return sorted(members) return override__dir__wrapper
b78f58ce16cbda6c92632c7a584fb65427597f931a04405c3f2a57af241c41d2
# Licensed under a 3-clause BSD style license - see LICENSE.rst import locale import os import platform import urllib.request import erfa import numpy as np import pytest from numpy.testing import assert_array_equal from astropy.tests.tests.test_imports import test_imports from astropy.time import Time, TimeDelta from astropy.utils.data import get_pkg_data_filename from astropy.utils.iers import iers # Import every top-level astropy module as a test that the ERFA leap second # table is not updated for normal imports. test_imports() # Now test that the erfa leap_seconds table has not been updated. This must be # done at the module level, which unfortunately will abort the entire test run # if if fails. Running within a normal pytest test will not work because the # other tests will end up updating this attribute by virtue of doing Time UTC # transformations. assert erfa.leap_seconds._expires is None # Tests in this module assume that the erfa.leap_seconds attribute has been # updated from the `erfa` package built-in table to the astropy built-in # leap-second table. That has the effect of ensuring that the # `erfa.leap_seconds.expires` property is sufficiently in the future. iers_table = iers.LeapSeconds.auto_open() erfa.leap_seconds.update(iers_table) assert erfa.leap_seconds._expires is not None SYSTEM_FILE = "/usr/share/zoneinfo/leap-seconds.list" # Test leap_seconds.list in test/data. LEAP_SECOND_LIST = get_pkg_data_filename("data/leap-seconds.list") def test_configuration(): # This test just ensures things stay consistent. # Adjust if changes are made. assert iers.conf.iers_leap_second_auto_url == iers.IERS_LEAP_SECOND_URL assert iers.conf.ietf_leap_second_auto_url == iers.IETF_LEAP_SECOND_URL class TestReading: """Basic tests that leap seconds can be read.""" def verify_day_month_year(self, ls): assert np.all(ls["day"] == 1) assert np.all((ls["month"] == 1) | (ls["month"] == 7) | (ls["year"] < 1970)) assert np.all(ls["year"] >= 1960) t = Time( {"year": ls["year"], "month": ls["month"], "day": ls["day"]}, format="ymdhms", ) assert np.all(t == Time(ls["mjd"], format="mjd")) def test_read_leap_second_dat(self): ls = iers.LeapSeconds.from_iers_leap_seconds(iers.IERS_LEAP_SECOND_FILE) # Below, >= to take into account we might ship and updated file. assert ls.expires >= Time("2020-06-28", scale="tai") assert ls["mjd"][0] == 41317 assert ls["tai_utc"][0] == 10 assert ls["mjd"][-1] >= 57754 assert ls["tai_utc"][-1] >= 37 self.verify_day_month_year(ls) def test_read_leap_second_dat_locale(self): current = locale.setlocale(locale.LC_ALL) try: if platform.system() == "Darwin": locale.setlocale(locale.LC_ALL, "fr_FR") else: locale.setlocale(locale.LC_ALL, "fr_FR.utf8") ls = iers.LeapSeconds.from_iers_leap_seconds(iers.IERS_LEAP_SECOND_FILE) except locale.Error as e: pytest.skip(f"Locale error: {e}") finally: locale.setlocale(locale.LC_ALL, current) # Below, >= to take into account we might ship and updated file. assert ls.expires >= Time("2020-06-28", scale="tai") def test_open_leap_second_dat(self): ls = iers.LeapSeconds.from_iers_leap_seconds(iers.IERS_LEAP_SECOND_FILE) ls2 = iers.LeapSeconds.open(iers.IERS_LEAP_SECOND_FILE) assert np.all(ls == ls2) @pytest.mark.parametrize( "file", (LEAP_SECOND_LIST, "file:" + urllib.request.pathname2url(LEAP_SECOND_LIST)), ) def test_read_leap_seconds_list(self, file): ls = iers.LeapSeconds.from_leap_seconds_list(file) assert ls.expires == Time("2020-06-28", scale="tai") assert ls["mjd"][0] == 41317 assert ls["tai_utc"][0] == 10 assert ls["mjd"][-1] == 57754 assert ls["tai_utc"][-1] == 37 self.verify_day_month_year(ls) @pytest.mark.parametrize( "file", (LEAP_SECOND_LIST, "file:" + urllib.request.pathname2url(LEAP_SECOND_LIST)), ) def test_open_leap_seconds_list(self, file): ls = iers.LeapSeconds.from_leap_seconds_list(file) ls2 = iers.LeapSeconds.open(file) assert np.all(ls == ls2) @pytest.mark.skipif( not os.path.isfile(SYSTEM_FILE), reason=f"system does not have {SYSTEM_FILE}" ) def test_open_system_file(self): ls = iers.LeapSeconds.open(SYSTEM_FILE) expired = ls.expires < Time.now() if expired: pytest.skip("System leap second file is expired.") assert not expired def make_fake_file(expiration, tmp_path): """copy the built-in IERS file but set a different expiration date.""" ls = iers.LeapSeconds.from_iers_leap_seconds() fake_file = str(tmp_path / "fake_leap_seconds.dat") with open(fake_file, "w") as fh: fh.write( "\n".join([f"# File expires on {expiration}"] + str(ls).split("\n")[2:-1]) ) return fake_file def test_fake_file(tmp_path): fake_file = make_fake_file("28 June 2345", tmp_path) fake = iers.LeapSeconds.from_iers_leap_seconds(fake_file) assert fake.expires == Time("2345-06-28", scale="tai") class TestAutoOpenExplicitLists: # For this set of tests, leap-seconds are allowed to be expired # except as explicitly tested. @pytest.mark.filterwarnings(iers.IERSStaleWarning) def test_auto_open_simple(self): ls = iers.LeapSeconds.auto_open([iers.IERS_LEAP_SECOND_FILE]) assert ls.meta["data_url"] == iers.IERS_LEAP_SECOND_FILE @pytest.mark.filterwarnings(iers.IERSStaleWarning) def test_auto_open_erfa(self): ls = iers.LeapSeconds.auto_open(["erfa", iers.IERS_LEAP_SECOND_FILE]) assert ls.meta["data_url"] in ["erfa", iers.IERS_LEAP_SECOND_FILE] @pytest.mark.filterwarnings(iers.IERSStaleWarning) def test_fake_future_file(self, tmp_path): fake_file = make_fake_file("28 June 2345", tmp_path) # Try as system file for auto_open, setting auto_max_age such # that any ERFA or system files are guaranteed to be expired, # while the fake file is guaranteed to be OK. with iers.conf.set_temp("auto_max_age", -100000): ls = iers.LeapSeconds.auto_open( ["erfa", iers.IERS_LEAP_SECOND_FILE, fake_file] ) assert ls.expires == Time("2345-06-28", scale="tai") assert ls.meta["data_url"] == str(fake_file) # And as URL fake_url = "file:" + urllib.request.pathname2url(fake_file) ls2 = iers.LeapSeconds.auto_open( ["erfa", iers.IERS_LEAP_SECOND_FILE, fake_url] ) assert ls2.expires == Time("2345-06-28", scale="tai") assert ls2.meta["data_url"] == str(fake_url) def test_fake_expired_file(self, tmp_path): fake_file1 = make_fake_file("28 June 2010", tmp_path) fake_file2 = make_fake_file("27 June 2012", tmp_path) # Between these and the built-in one, the built-in file is best. ls = iers.LeapSeconds.auto_open( [fake_file1, fake_file2, iers.IERS_LEAP_SECOND_FILE] ) assert ls.meta["data_url"] == iers.IERS_LEAP_SECOND_FILE # But if we remove the built-in one, the least expired one will be # used and we get a warning that it is stale. with pytest.warns(iers.IERSStaleWarning): ls2 = iers.LeapSeconds.auto_open([fake_file1, fake_file2]) assert ls2.meta["data_url"] == fake_file2 assert ls2.expires == Time("2012-06-27", scale="tai") # Use the fake files to make sure auto_max_age is safe. # Should have no warning in either example. with iers.conf.set_temp("auto_max_age", None): ls3 = iers.LeapSeconds.auto_open([fake_file1, iers.IERS_LEAP_SECOND_FILE]) assert ls3.meta["data_url"] == iers.IERS_LEAP_SECOND_FILE with iers.conf.set_temp("auto_max_age", None): ls4 = iers.LeapSeconds.auto_open([fake_file1, fake_file2]) assert ls4.meta["data_url"] == fake_file2 @pytest.mark.remote_data class TestRemoteURLs: def setup_class(cls): # Need auto_download so that IERS_B won't be loaded and cause tests to # fail. iers.conf.auto_download = True def teardown_class(cls): # This setting is to be consistent with astropy/conftest.py iers.conf.auto_download = False # In these tests, the results may be cached. # This is fine - no need to download again. def test_iers_url(self): ls = iers.LeapSeconds.auto_open([iers.IERS_LEAP_SECOND_URL]) assert ls.expires > Time.now() def test_ietf_url(self): ls = iers.LeapSeconds.auto_open([iers.IETF_LEAP_SECOND_URL]) assert ls.expires > Time.now() class TestDefaultAutoOpen: """Test auto_open with different _auto_open_files.""" def setup_method(self): # Identical to what is used in LeapSeconds.auto_open(). self.good_enough = iers.LeapSeconds._today() + TimeDelta( 180 - iers._none_to_float(iers.conf.auto_max_age), format="jd" ) self._auto_open_files = iers.LeapSeconds._auto_open_files.copy() def teardown_method(self): iers.LeapSeconds._auto_open_files = self._auto_open_files def remove_auto_open_files(self, *files): """Remove some files from the auto-opener. The default set is restored in teardown. """ for f in files: iers.LeapSeconds._auto_open_files.remove(f) def test_erfa_found(self): # Set huge maximum age such that whatever ERFA has is OK. # Since it is checked first, it should thus be found. with iers.conf.set_temp("auto_max_age", 100000): ls = iers.LeapSeconds.open() assert ls.meta["data_url"] == "erfa" def test_builtin_found(self): # Set huge maximum age such that built-in file is always OK. # If we remove 'erfa', it should thus be found. self.remove_auto_open_files("erfa") with iers.conf.set_temp("auto_max_age", 100000): ls = iers.LeapSeconds.open() assert ls.meta["data_url"] == iers.IERS_LEAP_SECOND_FILE # The test below is marked remote_data only to ensure it runs # as an allowed-fail job on CI: i.e., we will notice it (eventually) # but will not be misled in thinking that a PR is bad. @pytest.mark.remote_data def test_builtin_not_expired(self): # TODO: would be nice to have automatic PRs for this! ls = iers.LeapSeconds.open(iers.IERS_LEAP_SECOND_FILE) assert ls.expires > self.good_enough, ( "The leap second file built in to astropy is expired. Fix with:\n" "cd astropy/utils/iers/data/; . update_builtin_iers.sh\n" "and commit as a PR (for details, see release procedure)." ) def test_fake_future_file(self, tmp_path): fake_file = make_fake_file("28 June 2345", tmp_path) # Try as system file for auto_open, setting auto_max_age such # that any ERFA or system files are guaranteed to be expired. with iers.conf.set_temp("auto_max_age", -100000), iers.conf.set_temp( "system_leap_second_file", fake_file ): ls = iers.LeapSeconds.open() assert ls.expires == Time("2345-06-28", scale="tai") assert ls.meta["data_url"] == str(fake_file) # And as URL fake_url = "file:" + urllib.request.pathname2url(fake_file) with iers.conf.set_temp("auto_max_age", -100000), iers.conf.set_temp( "iers_leap_second_auto_url", fake_url ): ls2 = iers.LeapSeconds.open() assert ls2.expires == Time("2345-06-28", scale="tai") assert ls2.meta["data_url"] == str(fake_url) def test_fake_expired_file(self, tmp_path): self.remove_auto_open_files( "erfa", "iers_leap_second_auto_url", "ietf_leap_second_auto_url" ) fake_file = make_fake_file("28 June 2010", tmp_path) with iers.conf.set_temp("system_leap_second_file", fake_file): # If we try this directly, the built-in file will be found. ls = iers.LeapSeconds.open() assert ls.meta["data_url"] == iers.IERS_LEAP_SECOND_FILE # But if we remove the built-in one, the expired one will be # used and we get a warning that it is stale. self.remove_auto_open_files(iers.IERS_LEAP_SECOND_FILE) with pytest.warns(iers.IERSStaleWarning): ls2 = iers.LeapSeconds.open() assert ls2.meta["data_url"] == fake_file assert ls2.expires == Time("2010-06-28", scale="tai") @pytest.mark.skipif( not os.path.isfile(SYSTEM_FILE), reason=f"system does not have {SYSTEM_FILE}" ) def test_system_file_used_if_not_expired(self, tmp_path): # We skip the test if the system file is on a CI and is expired - # we should not depend on CI keeping it up to date, but if it is, # we should check that it is used if possible. if iers.LeapSeconds.open(SYSTEM_FILE).expires <= self.good_enough: pytest.skip("System leap second file is expired.") self.remove_auto_open_files("erfa") with iers.conf.set_temp("system_leap_second_file", SYSTEM_FILE): ls = iers.LeapSeconds.open() assert ls.expires > self.good_enough assert ls.meta["data_url"] in (iers.IERS_LEAP_SECOND_FILE, SYSTEM_FILE) # Also check with a "built-in" file that is expired fake_file = make_fake_file("28 June 2017", tmp_path) iers.LeapSeconds._auto_open_files[0] = fake_file ls2 = iers.LeapSeconds.open() assert ls2.expires > Time.now() assert ls2.meta["data_url"] == SYSTEM_FILE @pytest.mark.remote_data def test_auto_open_urls_always_good_enough(self): # Avoid using the erfa, built-in and system files, as they might # be good enough already. try: # Need auto_download so that IERS_B won't be loaded and # cause tests to fail. iers.conf.auto_download = True self.remove_auto_open_files( "erfa", iers.IERS_LEAP_SECOND_FILE, "system_leap_second_file" ) ls = iers.LeapSeconds.open() assert ls.expires > self.good_enough assert ls.meta["data_url"].startswith("http") finally: # This setting is to be consistent with astropy/conftest.py iers.conf.auto_download = False class ERFALeapSecondsSafe: """Base class for tests that change the ERFA leap-second tables. It ensures the original state is restored. """ def setup_method(self): # Keep current leap-second table and expiration. self.erfa_ls = self._erfa_ls = erfa.leap_seconds.get() self.erfa_expires = self._expires = erfa.leap_seconds._expires def teardown_method(self): # Restore leap-second table and expiration. erfa.leap_seconds.set(self.erfa_ls) erfa.leap_seconds._expires = self._expires class TestFromERFA(ERFALeapSecondsSafe): def test_get_erfa_ls(self): ls = iers.LeapSeconds.from_erfa() assert ls.colnames == ["year", "month", "tai_utc"] assert isinstance(ls.expires, Time) assert ls.expires == self.erfa_expires ls_array = np.array(ls["year", "month", "tai_utc"]) assert np.all(ls_array == self.erfa_ls) def test_get_built_in_erfa_ls(self): ls = iers.LeapSeconds.from_erfa(built_in=True) assert ls.colnames == ["year", "month", "tai_utc"] assert isinstance(ls.expires, Time) ls_array = np.array(ls["year", "month", "tai_utc"]) assert np.all(ls_array == self.erfa_ls[: len(ls_array)]) def test_get_modified_erfa_ls(self): erfa.leap_seconds.set(self.erfa_ls[:-10]) ls = iers.LeapSeconds.from_erfa() assert len(ls) == len(self.erfa_ls) - 10 ls_array = np.array(ls["year", "month", "tai_utc"]) assert np.all(ls_array == self.erfa_ls[:-10]) ls2 = iers.LeapSeconds.from_erfa(built_in=True) assert len(ls2) > len(ls) erfa.leap_seconds.set(None) erfa_built_in = erfa.leap_seconds.get() assert len(ls2) == len(erfa_built_in) ls2_array = np.array(ls2["year", "month", "tai_utc"]) assert np.all(ls2_array == erfa_built_in) def test_open(self): ls = iers.LeapSeconds.open("erfa") assert isinstance(ls.expires, Time) assert ls.expires == self.erfa_expires ls_array = np.array(ls["year", "month", "tai_utc"]) assert np.all(ls_array == self.erfa_ls) class TestUpdateLeapSeconds(ERFALeapSecondsSafe): def setup_method(self): super().setup_method() # Read default leap second table. self.ls = iers.LeapSeconds.from_iers_leap_seconds() # For tests, reset ERFA table to built-in default. erfa.leap_seconds.set() self.erfa_ls = erfa.leap_seconds.get() def test_built_in_up_to_date(self): """Leap second should match between built-in and ERFA.""" erfa_since_1970 = self.erfa_ls[self.erfa_ls["year"] > 1970] assert len(self.ls) >= len(erfa_since_1970), "built-in leap seconds out of date" assert len(self.ls) <= len(erfa_since_1970), "ERFA leap seconds out of date" overlap = np.array(self.ls["year", "month", "tai_utc"]) assert np.all(overlap == erfa_since_1970.astype(overlap.dtype)) def test_update_with_built_in(self): """An update with built-in should not do anything.""" n_update = self.ls.update_erfa_leap_seconds() assert n_update == 0 new_erfa_ls = erfa.leap_seconds.get() assert np.all(new_erfa_ls == self.erfa_ls) @pytest.mark.parametrize("n_short", (1, 3)) def test_update(self, n_short): """Check whether we can recover removed leap seconds.""" erfa.leap_seconds.set(self.erfa_ls[:-n_short]) n_update = self.ls.update_erfa_leap_seconds() assert n_update == n_short new_erfa_ls = erfa.leap_seconds.get() assert_array_equal(new_erfa_ls, self.erfa_ls) # Check that a second update does not do anything. n_update2 = self.ls.update_erfa_leap_seconds() assert n_update2 == 0 new_erfa_ls2 = erfa.leap_seconds.get() assert_array_equal(new_erfa_ls2, self.erfa_ls) def test_update_initialize_erfa(self): # With pre-initialization, update does nothing. erfa.leap_seconds.set(self.erfa_ls[:-2]) n_update = self.ls.update_erfa_leap_seconds(initialize_erfa=True) assert n_update == 0 new_erfa_ls = erfa.leap_seconds.get() assert_array_equal(new_erfa_ls, self.erfa_ls) def test_update_overwrite(self): n_update = self.ls.update_erfa_leap_seconds(initialize_erfa="empty") assert n_update == len(self.ls) new_erfa_ls = erfa.leap_seconds.get() assert new_erfa_ls["year"].min() > 1970 n_update2 = self.ls.update_erfa_leap_seconds() assert n_update2 == 0 new_erfa_ls2 = erfa.leap_seconds.get() assert_array_equal(new_erfa_ls2, new_erfa_ls) n_update3 = self.ls.update_erfa_leap_seconds(initialize_erfa=True) assert n_update3 == 0 new_erfa_ls3 = erfa.leap_seconds.get() assert_array_equal(new_erfa_ls3, self.erfa_ls) def test_bad_jump(self): erfa.leap_seconds.set(self.erfa_ls[:-2]) bad = self.ls.copy() bad["tai_utc"][-1] = 5 with pytest.raises(ValueError, match="jump"): bad.update_erfa_leap_seconds() # With an error the ERFA table should not change. assert_array_equal(erfa.leap_seconds.get(), self.erfa_ls[:-2]) # Unless we initialized it beforehand. with pytest.raises(ValueError, match="jump"): bad.update_erfa_leap_seconds(initialize_erfa=True) assert_array_equal(erfa.leap_seconds.get(), self.erfa_ls) # Of course, we get no errors if we initialize only. erfa.leap_seconds.set(self.erfa_ls[:-2]) n_update = bad.update_erfa_leap_seconds(initialize_erfa="only") assert n_update == 0 new_erfa_ls = erfa.leap_seconds.get() assert_array_equal(new_erfa_ls, self.erfa_ls) def test_bad_day(self): erfa.leap_seconds.set(self.erfa_ls[:-2]) bad = self.ls.copy() bad["day"][-1] = 5 with pytest.raises(ValueError, match="not on 1st"): bad.update_erfa_leap_seconds() def test_bad_month(self): erfa.leap_seconds.set(self.erfa_ls[:-2]) bad = self.ls.copy() bad["month"][-1] = 5 with pytest.raises(ValueError, match="January"): bad.update_erfa_leap_seconds() assert_array_equal(erfa.leap_seconds.get(), self.erfa_ls[:-2])
da16f65ab44e683f4b5f8c085d8473f7d7af1573e5b64bc976b70ee26c9d8774
# Licensed under a 3-clause BSD style license - see LICENSE.rst import os import re import warnings from pathlib import Path import numpy as np import pytest from astropy import units as u from astropy.config import set_temp_cache from astropy.table import QTable from astropy.tests.helper import assert_quantity_allclose from astropy.time import Time, TimeDelta from astropy.utils.data import get_pkg_data_filename from astropy.utils.iers import iers CI = os.environ.get("CI", False) FILE_NOT_FOUND_ERROR = getattr(__builtins__, "FileNotFoundError", OSError) try: iers.IERS_A.open("finals2000A.all") # check if IERS_A is available except OSError: HAS_IERS_A = False else: HAS_IERS_A = True IERS_A_EXCERPT = get_pkg_data_filename(os.path.join("data", "iers_a_excerpt")) def setup_module(): # Need auto_download so that IERS_B won't be loaded and cause tests to # fail. Files to be downloaded are handled appropriately in the tests. iers.conf.auto_download = True def teardown_module(): # This setting is to be consistent with astropy/conftest.py iers.conf.auto_download = False class TestBasic: """Basic tests that IERS_B returns correct values""" @pytest.mark.parametrize("iers_cls", (iers.IERS_B, iers.IERS)) def test_simple(self, iers_cls): """Test the default behaviour for IERS_B and IERS.""" # Arguably, IERS itself should not be used at all, but it used to # provide IERS_B by default so we check that it continues to do so. # Eventually, IERS should probably be deprecated. iers_cls.close() assert iers_cls.iers_table is None iers_tab = iers_cls.open() assert iers_cls.iers_table is not None assert iers_cls.iers_table is iers_tab assert isinstance(iers_tab, QTable) assert isinstance(iers_tab, iers.IERS_B) assert (iers_tab["UT1_UTC"].unit / u.second).is_unity() assert (iers_tab["PM_x"].unit / u.arcsecond).is_unity() assert (iers_tab["PM_y"].unit / u.arcsecond).is_unity() jd1 = np.array([2456108.5, 2456108.5, 2456108.5, 2456109.5, 2456109.5]) jd2 = np.array([0.49999421, 0.99997685, 0.99998843, 0.0, 0.5]) ut1_utc = iers_tab.ut1_utc(jd1, jd2) assert isinstance(ut1_utc, u.Quantity) assert (ut1_utc.unit / u.second).is_unity() # IERS files change at the 0.1 ms level; see gh-6981 assert_quantity_allclose( ut1_utc, [-0.5868211, -0.5868184, -0.5868184, 0.4131816, 0.41328895] * u.s, atol=0.1 * u.ms, ) # should be future-proof; surely we've moved to another planet by then with pytest.raises(IndexError): ut1_utc2, status2 = iers_tab.ut1_utc(1e11, 0.0) # also check it returns the right status ut1_utc2, status2 = iers_tab.ut1_utc(jd1, jd2, return_status=True) assert np.all(status2 == iers.FROM_IERS_B) ut1_utc4, status4 = iers_tab.ut1_utc(1e11, 0.0, return_status=True) assert status4 == iers.TIME_BEYOND_IERS_RANGE # check it works via Time too t = Time(jd1, jd2, format="jd", scale="utc") ut1_utc3 = iers_tab.ut1_utc(t) assert_quantity_allclose( ut1_utc3, [-0.5868211, -0.5868184, -0.5868184, 0.4131816, 0.41328895] * u.s, atol=0.1 * u.ms, ) # Table behaves properly as a table (e.g. can be sliced) assert len(iers_tab[:2]) == 2 def test_open_filename(self): iers.IERS_B.close() iers.IERS_B.open(iers.IERS_B_FILE) assert iers.IERS_B.iers_table is not None assert isinstance(iers.IERS_B.iers_table, QTable) iers.IERS_B.close() with pytest.raises(FILE_NOT_FOUND_ERROR): iers.IERS_B.open("surely this does not exist") def test_open_network_url(self): iers.IERS_A.close() iers.IERS_A.open(Path(IERS_A_EXCERPT).as_uri()) assert iers.IERS_A.iers_table is not None assert isinstance(iers.IERS_A.iers_table, QTable) iers.IERS_A.close() class TestIERS_AExcerpt: def test_simple(self): # Test the IERS A reader. It is also a regression tests that ensures # values do not get overridden by IERS B; see #4933. iers_tab = iers.IERS_A.open(IERS_A_EXCERPT) assert (iers_tab["UT1_UTC"].unit / u.second).is_unity() assert "P" in iers_tab["UT1Flag"] assert "I" in iers_tab["UT1Flag"] assert "B" in iers_tab["UT1Flag"] assert np.all( (iers_tab["UT1Flag"] == "I") | (iers_tab["UT1Flag"] == "P") | (iers_tab["UT1Flag"] == "B") ) assert (iers_tab["dX_2000A"].unit / u.marcsec).is_unity() assert (iers_tab["dY_2000A"].unit / u.marcsec).is_unity() assert "P" in iers_tab["NutFlag"] assert "I" in iers_tab["NutFlag"] assert "B" in iers_tab["NutFlag"] assert np.all( (iers_tab["NutFlag"] == "P") | (iers_tab["NutFlag"] == "I") | (iers_tab["NutFlag"] == "B") ) assert (iers_tab["PM_x"].unit / u.arcsecond).is_unity() assert (iers_tab["PM_y"].unit / u.arcsecond).is_unity() assert "P" in iers_tab["PolPMFlag"] assert "I" in iers_tab["PolPMFlag"] assert "B" in iers_tab["PolPMFlag"] assert np.all( (iers_tab["PolPMFlag"] == "P") | (iers_tab["PolPMFlag"] == "I") | (iers_tab["PolPMFlag"] == "B") ) t = Time([57053.0, 57054.0, 57055.0], format="mjd") ut1_utc, status = iers_tab.ut1_utc(t, return_status=True) assert status[0] == iers.FROM_IERS_B assert np.all(status[1:] == iers.FROM_IERS_A) # These values are *exactly* as given in the table, so they should # match to double precision accuracy. assert_quantity_allclose( ut1_utc, [-0.4916557, -0.4925323, -0.4934373] * u.s, atol=0.1 * u.ms ) dcip_x, dcip_y, status = iers_tab.dcip_xy(t, return_status=True) assert status[0] == iers.FROM_IERS_B assert np.all(status[1:] == iers.FROM_IERS_A) # These values are *exactly* as given in the table, so they should # match to double precision accuracy. print(dcip_x) print(dcip_y) assert_quantity_allclose( dcip_x, [-0.086, -0.093, -0.087] * u.marcsec, atol=1.0 * u.narcsec ) assert_quantity_allclose( dcip_y, [0.094, 0.081, 0.072] * u.marcsec, atol=1 * u.narcsec ) pm_x, pm_y, status = iers_tab.pm_xy(t, return_status=True) assert status[0] == iers.FROM_IERS_B assert np.all(status[1:] == iers.FROM_IERS_A) assert_quantity_allclose( pm_x, [0.003734, 0.004581, 0.004623] * u.arcsec, atol=0.1 * u.marcsec ) assert_quantity_allclose( pm_y, [0.310824, 0.313150, 0.315517] * u.arcsec, atol=0.1 * u.marcsec ) # Table behaves properly as a table (e.g. can be sliced) assert len(iers_tab[:2]) == 2 @pytest.mark.skipif(not HAS_IERS_A, reason="requires IERS_A") class TestIERS_A: def test_simple(self): """Test that open() by default reads a 'finals2000A.all' file.""" # Ensure we remove any cached table (gh-5131). iers.IERS_A.close() iers_tab = iers.IERS_A.open() jd1 = np.array([2456108.5, 2456108.5, 2456108.5, 2456109.5, 2456109.5]) jd2 = np.array([0.49999421, 0.99997685, 0.99998843, 0.0, 0.5]) ut1_utc, status = iers_tab.ut1_utc(jd1, jd2, return_status=True) assert np.all(status == iers.FROM_IERS_B) assert_quantity_allclose( ut1_utc, [-0.5868211, -0.5868184, -0.5868184, 0.4131816, 0.41328895] * u.s, atol=0.1 * u.ms, ) ut1_utc2, status2 = iers_tab.ut1_utc(1e11, 0.0, return_status=True) assert status2 == iers.TIME_BEYOND_IERS_RANGE tnow = Time.now() ut1_utc3, status3 = iers_tab.ut1_utc(tnow, return_status=True) assert status3 == iers.FROM_IERS_A_PREDICTION assert ut1_utc3 != 0.0 class TestIERS_Auto: def setup_class(self): """Set up useful data for the tests.""" self.N = 40 self.ame = 30.0 self.iers_a_file_1 = get_pkg_data_filename( os.path.join("data", "finals2000A-2016-02-30-test") ) self.iers_a_file_2 = get_pkg_data_filename( os.path.join("data", "finals2000A-2016-04-30-test") ) self.iers_a_url_1 = Path(self.iers_a_file_1).as_uri() self.iers_a_url_2 = Path(self.iers_a_file_2).as_uri() self.t = Time.now() + TimeDelta(10, format="jd") * np.arange(self.N) def teardown_method(self, method): """Run this after every test.""" iers.IERS_Auto.close() def test_interpolate_error_formatting(self): """Regression test: make sure the error message in IERS_Auto._check_interpolate_indices() is formatted correctly. """ with iers.conf.set_temp("iers_auto_url", self.iers_a_url_1): with iers.conf.set_temp("iers_auto_url_mirror", self.iers_a_url_1): with iers.conf.set_temp("auto_max_age", self.ame): with pytest.raises( ValueError, match=re.escape(iers.INTERPOLATE_ERROR.format(self.ame)), ): iers_table = iers.IERS_Auto.open() with warnings.catch_warnings(): # Ignoring this if it comes up -- IERS_Auto predictive # values are older than 30.0 days but downloading the # latest table did not find newer values warnings.simplefilter("ignore", iers.IERSStaleWarning) iers_table.ut1_utc(self.t.jd1, self.t.jd2) def test_auto_max_age_none(self): """Make sure that iers.INTERPOLATE_ERROR's advice about setting auto_max_age = None actually works. """ with iers.conf.set_temp("iers_auto_url", self.iers_a_url_1): with iers.conf.set_temp("auto_max_age", None): iers_table = iers.IERS_Auto.open() delta = iers_table.ut1_utc(self.t.jd1, self.t.jd2) assert isinstance(delta, np.ndarray) assert delta.shape == (self.N,) assert_quantity_allclose(delta, np.array([-0.2246227] * self.N) * u.s) def test_auto_max_age_minimum(self): """Check that the minimum auto_max_age is enforced.""" with iers.conf.set_temp("iers_auto_url", self.iers_a_url_1): with iers.conf.set_temp("auto_max_age", 5.0): with pytest.raises( ValueError, match=( r"IERS auto_max_age configuration value must be larger than 10" r" days" ), ): iers_table = iers.IERS_Auto.open() _ = iers_table.ut1_utc(self.t.jd1, self.t.jd2) def test_no_auto_download(self): with iers.conf.set_temp("auto_download", False): t = iers.IERS_Auto.open() assert type(t) is iers.IERS_B @pytest.mark.remote_data def test_simple(self): with iers.conf.set_temp("iers_auto_url", self.iers_a_url_1): dat = iers.IERS_Auto.open() assert dat["MJD"][0] == 57359.0 * u.d assert dat["MJD"][-1] == 57539.0 * u.d # Pretend we are accessing at a time 7 days after start of predictive data predictive_mjd = dat.meta["predictive_mjd"] dat._time_now = Time(predictive_mjd, format="mjd") + 7 * u.d # Look at times before and after the test file begins. 0.1292905 is # the IERS-B value from MJD=57359. The value in # finals2000A-2016-02-30-test has been replaced at this point. assert np.allclose( dat.ut1_utc(Time(50000, format="mjd").jd).value, 0.1293286 ) assert np.allclose( dat.ut1_utc(Time(60000, format="mjd").jd).value, -0.2246227 ) # Now pretend we are accessing at time 60 days after start of predictive data. # There will be a warning when downloading the file doesn't give new data # and an exception when extrapolating into the future with insufficient data. dat._time_now = Time(predictive_mjd, format="mjd") + 60 * u.d assert np.allclose( dat.ut1_utc(Time(50000, format="mjd").jd).value, 0.1293286 ) with pytest.warns( iers.IERSStaleWarning, match="IERS_Auto predictive values are older" ) as warns, pytest.raises( ValueError, match="interpolating from IERS_Auto using predictive values", ): dat.ut1_utc(Time(60000, format="mjd").jd) assert len(warns) == 1 # Warning only if we are getting return status with pytest.warns( iers.IERSStaleWarning, match="IERS_Auto predictive values are older" ) as warns: dat.ut1_utc(Time(60000, format="mjd").jd, return_status=True) assert len(warns) == 1 # Now set auto_max_age = None which says that we don't care how old the # available IERS-A file is. There should be no warnings or exceptions. with iers.conf.set_temp("auto_max_age", None): dat.ut1_utc(Time(60000, format="mjd").jd) # Now point to a later file with same values but MJD increased by # 60 days and see that things work. dat._time_now is still the same value # as before, i.e. right around the start of predictive values for the new file. # (In other words this is like downloading the latest file online right now). with iers.conf.set_temp("iers_auto_url", self.iers_a_url_2): # Look at times before and after the test file begins. This forces a new download. assert np.allclose( dat.ut1_utc(Time(50000, format="mjd").jd).value, 0.1293286 ) assert np.allclose(dat.ut1_utc(Time(60000, format="mjd").jd).value, -0.3) # Now the time range should be different. assert dat["MJD"][0] == 57359.0 * u.d assert dat["MJD"][-1] == (57539.0 + 60) * u.d @pytest.mark.remote_data def test_IERS_B_parameters_loading_into_IERS_Auto(): A = iers.IERS_Auto.open() B = iers.IERS_B.open() ok_A = A["MJD"] <= B["MJD"][-1] assert not np.all(ok_A), "IERS B covers all of IERS A: should not happen" # We only overwrite IERS_B values in the IERS_A table that were already # there in the first place. Better take that into account. ok_A &= np.isfinite(A["UT1_UTC_B"]) i_B = np.searchsorted(B["MJD"], A["MJD"][ok_A]) assert np.all(np.diff(i_B) == 1), "Valid region not contiguous" assert np.all(A["MJD"][ok_A] == B["MJD"][i_B]) # Check that values are copied correctly. Since units are not # necessarily the same, we use allclose with very strict tolerance. for name in ("UT1_UTC", "PM_x", "PM_y", "dX_2000A", "dY_2000A"): assert_quantity_allclose( A[name][ok_A], B[name][i_B], rtol=1e-15, err_msg=( f"Bug #9206 IERS B parameter {name} not copied over " "correctly to IERS Auto" ), ) # Issue with FTP, rework test into previous one when it's fixed @pytest.mark.skipif("CI", reason="Flaky on CI") @pytest.mark.remote_data def test_iers_a_dl(): iersa_tab = iers.IERS_A.open(iers.IERS_A_URL, cache=False) try: # some basic checks to ensure the format makes sense assert len(iersa_tab) > 0 assert "UT1_UTC_A" in iersa_tab.colnames finally: iers.IERS_A.close() @pytest.mark.remote_data def test_iers_a_dl_mirror(): iersa_tab = iers.IERS_A.open(iers.IERS_A_URL_MIRROR, cache=False) try: # some basic checks to ensure the format makes sense assert len(iersa_tab) > 0 assert "UT1_UTC_A" in iersa_tab.colnames finally: iers.IERS_A.close() @pytest.mark.remote_data def test_iers_b_dl(): iersb_tab = iers.IERS_B.open(iers.IERS_B_URL, cache=False) try: # some basic checks to ensure the format makes sense assert len(iersb_tab) > 0 assert "UT1_UTC" in iersb_tab.colnames finally: iers.IERS_B.close() @pytest.mark.remote_data def test_iers_out_of_range_handling(tmp_path): # Make sure we don't have IERS-A data available anywhere with set_temp_cache(tmp_path): iers.IERS_A.close() iers.IERS_Auto.close() iers.IERS.close() now = Time.now() with iers.conf.set_temp("auto_download", False): # Should be fine with built-in IERS_B (now - 300 * u.day).ut1 # Default is to raise an error match = r"\(some\) times are outside of range covered by IERS table" with pytest.raises(iers.IERSRangeError, match=match): (now + 100 * u.day).ut1 with iers.conf.set_temp("iers_degraded_accuracy", "warn"): with pytest.warns(iers.IERSDegradedAccuracyWarning, match=match): (now + 100 * u.day).ut1 with iers.conf.set_temp("iers_degraded_accuracy", "ignore"): (now + 100 * u.day).ut1 @pytest.mark.remote_data def test_iers_download_error_handling(tmp_path): # Make sure we don't have IERS-A data available anywhere with set_temp_cache(tmp_path): iers.IERS_A.close() iers.IERS_Auto.close() iers.IERS.close() now = Time.now() # bad site name with iers.conf.set_temp("iers_auto_url", "FAIL FAIL"): # site that exists but doesn't have IERS data with iers.conf.set_temp("iers_auto_url_mirror", "https://google.com"): with pytest.warns(iers.IERSWarning) as record: with iers.conf.set_temp("iers_degraded_accuracy", "ignore"): (now + 100 * u.day).ut1 assert len(record) == 3 assert str(record[0].message).startswith( "failed to download FAIL FAIL: Malformed URL" ) assert str(record[1].message).startswith( "malformed IERS table from https://google.com" ) assert str(record[2].message).startswith( "unable to download valid IERS file, using local IERS-B" )
56afd7938e4d78ec021f03959ebbc280e744b558f993c85baed1749f1a216c52
# Licensed under a 3-clause BSD style license - see LICENSE.rst # LOCAL # SYSTEM import io import zlib from astropy.utils.xml.iterparser import _fast_iterparse # The C-based XML parser for VOTables previously used fixed-sized # buffers (allocated at __init__() time). This test will # only pass with the patch that allows a dynamic realloc() of # the queue. This addresses the bugs: # # - "RuntimeError: XML queue overflow" # https://github.com/astropy/astropy/issues/5824 # (Kudos to Stefan Becker---ARI/ZAH Heidelberg) # # - "iterparse.c: add queue_realloc() + move 'buffersize / 2' logic there" # https://github.com/astropy/astropy/issues/5869 # # This test code can emulate a combination of network buffering and # gzip decompression---with different request sizes, it can be used to # demonstrate both under-reading and over-reading. # # Using the 512-tag VOTABLE XML sample input, and various combinations # of minimum/maximum fetch sizes, the following situations can be # generated: # # maximum_fetch = 1 (ValueError, no element found) still within gzip headers # maximum_fetch = 80 (ValueError, unclosed token) short read # maximum_fetch =217 passes, because decompressed_length > requested # && <512 tags in a single parse # maximum_fetch =218 (RuntimeError, XML queue overflow) # # The test provided here covers the over-reading identified in #5824 # (equivalent to the 217). # Firstly, assemble a minimal VOTABLE header, table contents and footer. # This is done in textual form, as the aim is to only test the parser, not # the outputter! HEADER = """<?xml version="1.0" encoding="UTF-8"?> <VOTABLE> <RESOURCE type="results"> <TABLE> <FIELD ID="foo" name="foo" datatype="int" arraysize="1"/> <DATA> <TABLEDATA> """ ROW = """<TR><TD>0</TD></TR> """ FOOTER = """ </TABLEDATA> </DATA> </TABLE> </RESOURCE> </VOTABLE> """ # minimum passable buffer size => 1024 # 1024 / 2 => 512 tags for overflow # 512 - 7 tags in header, - 5 tags in footer = 500 tags required for overflow # 500 / 4 tags (<tr><td></td></tr>) per row == 125 rows required for overflow VOTABLE_XML = HEADER + 125 * ROW + FOOTER # UngzipFileWrapper() wraps an existing file-like Object, # decompressing the content and returning the plaintext. # This therefore emulates the behavior of the Python 'requests' # library when transparently decompressing Gzip HTTP responses. # # The critical behavior is that---because of the # decompression---read() can return considerably more # bytes than were requested! (But, read() can also return less). # # inspiration: # http://stackoverflow.com/questions/4013843/how-to-wrap-file-object-read-and-write-operation-which-are-readonly class UngzipFileWrapper: def __init__(self, fd, **kwargs): self._file = fd self._z = zlib.decompressobj(16 + zlib.MAX_WBITS) def read(self, requested_length): # emulate network buffering dynamics by clamping the read size clamped_length = max(1, min(1 << 24, requested_length)) compressed = self._file.read(clamped_length) plaintext = self._z.decompress(compressed) # Only for real local files---just for the testcase if len(compressed) == 0: self.close() return plaintext def __getattr__(self, attr): return getattr(self._file, attr) # test_iterparser_over_read_simple() is a very cut down test, # of the original more flexible test-case, but without external # dependencies. The plaintext is compressed and then decompressed # to provide a better emulation of the original situation where # the bug was observed. # # If a dependency upon 'zlib' is not desired, it would be possible to # simplify this testcase by replacing the compress/decompress with a # read() method emulation that always returned more from a buffer # that was requested. def test_iterparser_over_read_simple(): # Take the plaintext of 512 tags, and compression it with a # Gzip-style header (+16), to most closely emulate the behavior # of most HTTP servers. zlib_GZIP_STYLE_HEADER = 16 compo = zlib.compressobj( zlib.Z_BEST_COMPRESSION, zlib.DEFLATED, zlib.MAX_WBITS + zlib_GZIP_STYLE_HEADER ) # Bytes vs. String .encode()/.decode() for compatibility with Python 3.5. s = compo.compress(VOTABLE_XML.encode()) s = s + compo.flush() fd = io.BytesIO(s) fd.seek(0) # Finally setup the test of the C-based '_fast_iterparse()' iterator # and a situation in which it can be called a-la the VOTable Parser. MINIMUM_REQUESTABLE_BUFFER_SIZE = 1024 uncompressed_fd = UngzipFileWrapper(fd) iterable = _fast_iterparse(uncompressed_fd.read, MINIMUM_REQUESTABLE_BUFFER_SIZE) list(iterable)
886a393d95015a64cbf5529ade487319feb4c54e0f31d756828d36e6b81130e5
from astropy.utils.data import get_pkg_data_filename def get_data_filename(): return get_pkg_data_filename("data/foo.txt")
8bd0b0dd174c9b6d9d02325a0554d1af4d8a82eaf65d1e5711b4ac41ce514de0
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np import pytest from numpy.testing import assert_array_equal from astropy import units as u from astropy.table import QTable, hstack, join, vstack from astropy.utils.compat.optional_deps import HAS_H5PY from astropy.utils.masked import Masked from .test_masked import assert_masked_equal FILE_FORMATS = ["ecsv", "fits"] if HAS_H5PY: FILE_FORMATS.append("h5") class MaskedArrayTableSetup: @classmethod def setup_arrays(self): self.a = np.array([3.0, 5.0, 0.0]) self.mask_a = np.array([True, False, False]) @classmethod def setup_class(self): self.setup_arrays() self.ma = Masked(self.a, mask=self.mask_a) self.ma.info.format = ".1f" self.t = QTable([self.ma], names=["ma"]) class MaskedQuantityTableSetup(MaskedArrayTableSetup): @classmethod def setup_arrays(self): self.a = np.array([3.0, 5.0, 0.0]) << u.m self.mask_a = np.array([True, False, False]) class TestMaskedArrayTable(MaskedArrayTableSetup): def test_table_initialization(self): assert_array_equal(self.t["ma"].unmasked, self.a) assert_array_equal(self.t["ma"].mask, self.mask_a) assert repr(self.t).splitlines()[-3:] == [ " ———", " 5.0", " 0.0", ] def test_info_basics(self): assert self.t["ma"].info.name == "ma" assert "serialize_method" in self.t["ma"].info.attr_names t2 = self.t.copy() t2["ma"].info.format = ".2f" t2["ma"].info.serialize_method["fits"] = "nonsense" assert repr(t2).splitlines()[-3:] == [ " ———", " 5.00", " 0.00", ] # Check that if we slice, things get copied over correctly. t3 = t2[:2] assert t3["ma"].info.name == "ma" assert t3["ma"].info.format == ".2f" assert "serialize_method" in t3["ma"].info.attr_names assert t3["ma"].info.serialize_method["fits"] == "nonsense" @pytest.mark.parametrize("file_format", FILE_FORMATS) def test_table_write(self, file_format, tmp_path): name = tmp_path / f"a.{file_format}" kwargs = {} if file_format == "h5": kwargs["path"] = "trial" kwargs["serialize_meta"] = True self.t.write(name, **kwargs) t2 = QTable.read(name) assert isinstance(t2["ma"], self.ma.__class__) assert np.all(t2["ma"] == self.ma) assert np.all(t2["ma"].mask == self.mask_a) if file_format == "fits": # Imperfect roundtrip through FITS native format description. assert self.t["ma"].info.format in t2["ma"].info.format else: assert t2["ma"].info.format == self.t["ma"].info.format @pytest.mark.parametrize("serialize_method", ["data_mask", "null_value"]) def test_table_write_serialization(self, serialize_method, tmp_path): name = tmp_path / "test.ecsv" self.t.write(name, serialize_method=serialize_method) with open(name) as fh: lines = fh.readlines() t2 = QTable.read(name) assert isinstance(t2["ma"], self.ma.__class__) if serialize_method == "data_mask": # Will data_mask, we have data and mask columns and should # exactly round-trip. assert len(lines[-1].split()) == 2 assert_masked_equal(t2["ma"], self.ma) else: # With null_value we have just a data column with null values # marked, so we lost information on the data below the mask. assert len(lines[-1].split()) == 1 assert np.all(t2["ma"] == self.ma) assert np.all(t2["ma"].mask == self.mask_a) def test_non_existing_serialize_method(self, tmp_path): name = tmp_path / "bad.ecsv" with pytest.raises(ValueError, match="serialize method must be"): self.t.write(name, serialize_method="bad_serialize_method") class TestMaskedQuantityTable(TestMaskedArrayTable, MaskedQuantityTableSetup): # Runs tests from TestMaskedArrayTable as well as some extra ones. def test_table_operations_requiring_masking(self): t1 = self.t t2 = QTable({"ma2": Masked([1, 2] * u.m)}) t12 = hstack([t1, t2], join_type="outer") assert np.all(t12["ma"].mask == [True, False, False]) # 'ma2' is shorter by one so we expect one True from hstack so length matches assert np.all(t12["ma2"].mask == [False, False, True]) t12 = hstack([t1, t2], join_type="inner") assert np.all(t12["ma"].mask == [True, False]) assert np.all(t12["ma2"].mask == [False, False]) # Vstack tables with different column names. In this case we get masked # values t12 = vstack([t1, t2], join_type="outer") # ma ma2 # m m # --- --- # —— —— # 5.0 —— # 0.0 —— # —— 1.0 # —— 2.0 assert np.all(t12["ma"].mask == [True, False, False, True, True]) assert np.all(t12["ma2"].mask == [True, True, True, False, False]) def test_table_operations_requiring_masking_auto_promote(self): MaskedQuantity = Masked(u.Quantity) t1 = QTable({"ma1": [1, 2] * u.m}) t2 = QTable({"ma2": [3, 4, 5] * u.m}) t12 = hstack([t1, t2], join_type="outer") assert isinstance(t12["ma1"], MaskedQuantity) assert np.all(t12["ma1"].mask == [False, False, True]) assert np.all(t12["ma1"] == [1, 2, 0] * u.m) assert not isinstance(t12["ma2"], MaskedQuantity) assert isinstance(t12["ma2"], u.Quantity) assert np.all(t12["ma2"] == [3, 4, 5] * u.m) t12 = hstack([t1, t2], join_type="inner") assert isinstance(t12["ma1"], u.Quantity) assert not isinstance(t12["ma1"], MaskedQuantity) assert isinstance(t12["ma2"], u.Quantity) assert not isinstance(t12["ma2"], MaskedQuantity) # Vstack tables with different column names. In this case we get masked # values t12 = vstack([t1, t2], join_type="outer") assert np.all(t12["ma1"].mask == [False, False, True, True, True]) assert np.all(t12["ma2"].mask == [True, True, False, False, False]) t1["a"] = [1, 2] t2["a"] = [1, 3, 4] t12 = join(t1, t2, join_type="outer") assert np.all(t12["ma1"].mask == [False, False, True, True]) assert np.all(t12["ma2"].mask == [False, True, False, False])
9d33b81c4e2cdad0b8493a201daedd08b87bb74da6e10ad88c116526414adf19
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Test numpy functions and ufuncs on Masked arrays and quantities. The tests here are fairly detailed but do not aim for complete coverage. Complete coverage of all numpy functions is done with less detailed tests in test_function_helpers. """ import numpy as np import pytest from numpy.testing import assert_array_equal from astropy import units as u from astropy.units import Quantity from astropy.utils.masked.core import Masked from .test_masked import ( LongitudeSetup, MaskedArraySetup, QuantitySetup, assert_masked_equal, ) class MaskedUfuncTests(MaskedArraySetup): @pytest.mark.parametrize( "ufunc", (np.add, np.subtract, np.divide, np.arctan2, np.minimum) ) def test_2op_ufunc(self, ufunc): ma_mb = ufunc(self.ma, self.mb) expected_data = ufunc(self.a, self.b) expected_mask = self.ma.mask | self.mb.mask # Note: assert_array_equal also checks type, i.e., that, e.g., # Longitude decays into an Angle. assert_array_equal(ma_mb.unmasked, expected_data) assert_array_equal(ma_mb.mask, expected_mask) @pytest.mark.parametrize( "ufunc", (np.add, np.subtract, np.divide, np.arctan2, np.minimum) ) def test_ufunc_inplace(self, ufunc): ma_mb = ufunc(self.ma, self.mb) out = Masked(np.zeros_like(ma_mb.unmasked)) result = ufunc(self.ma, self.mb, out=out) assert result is out assert_masked_equal(result, ma_mb) def test_ufunc_inplace_no_masked_input(self): a_b = np.add(self.a, self.b) out = Masked(np.zeros_like(a_b)) result = np.add(self.a, self.b, out=out) assert result is out assert_array_equal(result.unmasked, a_b) assert_array_equal(result.mask, np.zeros(a_b.shape, bool)) def test_ufunc_inplace_error(self): out = np.zeros(self.ma.shape) with pytest.raises(TypeError): np.add(self.ma, self.mb, out=out) @pytest.mark.parametrize("ufunc", (np.add.outer, np.minimum.outer)) def test_2op_ufunc_outer(self, ufunc): ma_mb = ufunc(self.ma, self.mb) expected_data = ufunc(self.a, self.b) expected_mask = np.logical_or.outer(self.mask_a, self.mask_b) # Note: assert_array_equal also checks type, i.e., that, e.g., # Longitude decays into an Angle. assert_array_equal(ma_mb.unmasked, expected_data) assert_array_equal(ma_mb.mask, expected_mask) def test_3op_ufunc(self): ma_mb = np.clip(self.ma, self.b, self.c) expected_data = np.clip(self.a, self.b, self.c) expected_mask = self.mask_a assert_array_equal(ma_mb.unmasked, expected_data) assert_array_equal(ma_mb.mask, expected_mask) @pytest.mark.parametrize("axis", (0, 1, None)) def test_add_reduce(self, axis): ma_reduce = np.add.reduce(self.ma, axis=axis) expected_data = np.add.reduce(self.a, axis=axis) expected_mask = np.logical_or.reduce(self.ma.mask, axis=axis) assert_array_equal(ma_reduce.unmasked, expected_data) assert_array_equal(ma_reduce.mask, expected_mask) out = Masked(np.zeros_like(ma_reduce.unmasked), np.ones_like(ma_reduce.mask)) ma_reduce2 = np.add.reduce(self.ma, axis=axis, out=out) assert ma_reduce2 is out assert_masked_equal(ma_reduce2, ma_reduce) def test_add_reduce_no_masked_input(self): a_reduce = np.add.reduce(self.a, axis=0) out = Masked(np.zeros_like(a_reduce), np.ones(a_reduce.shape, bool)) result = np.add.reduce(self.a, axis=0, out=out) assert result is out assert_array_equal(out.unmasked, a_reduce) assert_array_equal(out.mask, np.zeros(a_reduce.shape, bool)) @pytest.mark.parametrize("axis", (0, 1, None)) def test_minimum_reduce(self, axis): ma_reduce = np.minimum.reduce(self.ma, axis=axis) expected_data = np.minimum.reduce(self.a, axis=axis) expected_mask = np.logical_or.reduce(self.ma.mask, axis=axis) assert_array_equal(ma_reduce.unmasked, expected_data) assert_array_equal(ma_reduce.mask, expected_mask) @pytest.mark.parametrize("axis", (0, 1, None)) def test_maximum_reduce(self, axis): ma_reduce = np.maximum.reduce(self.ma, axis=axis) expected_data = np.maximum.reduce(self.a, axis=axis) expected_mask = np.logical_or.reduce(self.ma.mask, axis=axis) assert_array_equal(ma_reduce.unmasked, expected_data) assert_array_equal(ma_reduce.mask, expected_mask) class TestMaskedArrayUfuncs(MaskedUfuncTests): # multiply.reduce does not work with units, so test only for plain array. @pytest.mark.parametrize("axis", (0, 1, None)) def test_multiply_reduce(self, axis): ma_reduce = np.multiply.reduce(self.ma, axis=axis) expected_data = np.multiply.reduce(self.a, axis=axis) expected_mask = np.logical_or.reduce(self.ma.mask, axis=axis) assert_array_equal(ma_reduce.unmasked, expected_data) assert_array_equal(ma_reduce.mask, expected_mask) def test_ufunc_not_implemented_for_other(self): """ If the unmasked operation returns NotImplemented, this should lead to a TypeError also for the masked version. """ a = np.array([1, 2]) b = 3 * u.m with pytest.raises(TypeError): a & b ma = Masked(a) with pytest.raises(TypeError): ma & b class TestMaskedQuantityUfuncs(MaskedUfuncTests, QuantitySetup): def test_ufunc_inplace_error2(self): out = Masked(np.zeros(self.ma.shape)) with pytest.raises(TypeError): np.add(self.ma, self.mb, out=out) class TestMaskedLongitudeUfuncs(MaskedUfuncTests, LongitudeSetup): def test_ufunc_inplace_quantity_initial(self): out = Masked(np.zeros(self.ma.shape) << u.m) result = np.add(self.ma, self.mb, out=out) assert result is out expected = np.add(self.ma, self.mb).view(Quantity) assert_masked_equal(result, expected) class TestMaskedArrayConcatenation(MaskedArraySetup): def test_concatenate(self): mb = self.mb[np.newaxis] concat_a_b = np.concatenate((self.ma, mb), axis=0) expected_data = np.concatenate((self.a, self.b[np.newaxis]), axis=0) expected_mask = np.concatenate((self.mask_a, self.mask_b[np.newaxis]), axis=0) assert_array_equal(concat_a_b.unmasked, expected_data) assert_array_equal(concat_a_b.mask, expected_mask) def test_concatenate_not_all_masked(self): mb = self.mb[np.newaxis] concat_a_b = np.concatenate((self.a, mb), axis=0) expected_data = np.concatenate((self.a, self.b[np.newaxis]), axis=0) expected_mask = np.concatenate( (np.zeros(self.a.shape, bool), self.mask_b[np.newaxis]), axis=0 ) assert_array_equal(concat_a_b.unmasked, expected_data) assert_array_equal(concat_a_b.mask, expected_mask) @pytest.mark.parametrize("obj", (1, slice(2, 3))) def test_insert(self, obj): mc_in_a = np.insert(self.ma, obj, self.mc, axis=-1) expected = Masked( np.insert(self.a, obj, self.c, axis=-1), np.insert(self.mask_a, obj, self.mask_c, axis=-1), ) assert_masked_equal(mc_in_a, expected) def test_insert_masked_obj(self): with pytest.raises(TypeError): np.insert(self.ma, Masked(1, mask=False), self.mc, axis=-1) def test_append(self): mc_to_a = np.append(self.ma, self.mc, axis=-1) expected = Masked( np.append(self.a, self.c, axis=-1), np.append(self.mask_a, self.mask_c, axis=-1), ) assert_masked_equal(mc_to_a, expected) class TestMaskedQuantityConcatenation(TestMaskedArrayConcatenation, QuantitySetup): pass class TestMaskedLongitudeConcatenation(TestMaskedArrayConcatenation, LongitudeSetup): pass class TestMaskedArrayBroadcast(MaskedArraySetup): def test_broadcast_to(self): shape = self.ma.shape ba = np.broadcast_to(self.mb, shape, subok=True) assert ba.shape == shape assert ba.mask.shape == shape expected = Masked( np.broadcast_to(self.mb.unmasked, shape, subok=True), np.broadcast_to(self.mb.mask, shape, subok=True), ) assert_masked_equal(ba, expected) def test_broadcast_to_using_apply(self): # Partially just to ensure we cover the relevant part of _apply. shape = self.ma.shape ba = self.mb._apply(np.broadcast_to, shape=shape, subok=True) assert ba.shape == shape assert ba.mask.shape == shape expected = Masked( np.broadcast_to(self.mb.unmasked, shape, subok=True), np.broadcast_to(self.mb.mask, shape, subok=True), ) assert_masked_equal(ba, expected) def test_broadcast_arrays(self): mb = np.broadcast_arrays(self.ma, self.mb, self.mc, subok=True) b = np.broadcast_arrays(self.a, self.b, self.c, subok=True) bm = np.broadcast_arrays(self.mask_a, self.mask_b, self.mask_c) for mb_, b_, bm_ in zip(mb, b, bm): assert_array_equal(mb_.unmasked, b_) assert_array_equal(mb_.mask, bm_) def test_broadcast_arrays_not_all_masked(self): mb = np.broadcast_arrays(self.a, self.mb, self.c, subok=True) assert_array_equal(mb[0], self.a) expected1 = np.broadcast_to(self.mb, self.a.shape, subok=True) assert_masked_equal(mb[1], expected1) expected2 = np.broadcast_to(self.c, self.a.shape, subok=True) assert_array_equal(mb[2], expected2) def test_broadcast_arrays_subok_false(self): # subok affects ndarray subclasses but not masking itself. mb = np.broadcast_arrays(self.ma, self.mb, self.mc, subok=False) assert all(type(mb_.unmasked) is np.ndarray for mb_ in mb) b = np.broadcast_arrays(self.a, self.b, self.c, subok=False) mask_b = np.broadcast_arrays(self.mask_a, self.mask_b, self.mask_c, subok=False) for mb_, b_, mask_ in zip(mb, b, mask_b): assert_array_equal(mb_.unmasked, b_) assert_array_equal(mb_.mask, mask_) class TestMaskedQuantityBroadcast(TestMaskedArrayBroadcast, QuantitySetup): pass class TestMaskedLongitudeBroadcast(TestMaskedArrayBroadcast, LongitudeSetup): pass class TestMaskedArrayCalculation(MaskedArraySetup): @pytest.mark.parametrize("n,axis", [(1, -1), (2, -1), (1, 0)]) def test_diff(self, n, axis): mda = np.diff(self.ma, n=n, axis=axis) expected_data = np.diff(self.a, n, axis) nan_mask = np.zeros_like(self.a) nan_mask[self.ma.mask] = np.nan expected_mask = np.isnan(np.diff(nan_mask, n=n, axis=axis)) assert_array_equal(mda.unmasked, expected_data) assert_array_equal(mda.mask, expected_mask) def test_diff_explicit(self): ma = Masked( np.arange(8.0), [True, False, False, False, False, True, False, False] ) mda = np.diff(ma) assert np.all(mda.unmasked == 1.0) assert np.all(mda.mask == [True, False, False, False, True, True, False]) mda = np.diff(ma, n=2) assert np.all(mda.unmasked == 0.0) assert np.all(mda.mask == [True, False, False, True, True, True]) class TestMaskedQuantityCalculation(TestMaskedArrayCalculation, QuantitySetup): pass class TestMaskedLongitudeCalculation(TestMaskedArrayCalculation, LongitudeSetup): pass class TestMaskedArraySorting(MaskedArraySetup): @pytest.mark.parametrize("axis", [-1, 0]) def test_lexsort1(self, axis): ma_lexsort = np.lexsort((self.ma,), axis=axis) filled = self.a.copy() filled[self.mask_a] = 9e9 expected_data = filled.argsort(axis) assert_array_equal(ma_lexsort, expected_data) @pytest.mark.parametrize("axis", [-1, 0]) def test_lexsort2(self, axis): mb = np.broadcast_to(-self.mb, self.ma.shape).copy() mamb_lexsort = np.lexsort((self.ma, mb), axis=axis) filled_a = self.ma.filled(9e9) filled_b = mb.filled(9e9) expected_ab = np.lexsort((filled_a, filled_b), axis=axis) assert_array_equal(mamb_lexsort, expected_ab) mbma_lexsort = np.lexsort((mb, self.ma), axis=axis) expected_ba = np.lexsort((filled_b, filled_a), axis=axis) assert_array_equal(mbma_lexsort, expected_ba) mbma_lexsort2 = np.lexsort(np.stack([mb, self.ma], axis=0), axis=axis) assert_array_equal(mbma_lexsort2, expected_ba) @pytest.mark.parametrize("axis", [-1, 0]) def test_lexsort_mix(self, axis): mb = np.broadcast_to(-self.mb, self.ma.shape).copy() mamb_lexsort = np.lexsort((self.a, mb), axis=axis) filled_b = mb.filled(9e9) expected_ab = np.lexsort((self.a, filled_b), axis=axis) assert_array_equal(mamb_lexsort, expected_ab) mbma_lexsort = np.lexsort((mb, self.a), axis=axis) expected_ba = np.lexsort((filled_b, self.a), axis=axis) assert_array_equal(mbma_lexsort, expected_ba) mbma_lexsort2 = np.lexsort(np.stack([mb, self.a], axis=0), axis=axis) assert_array_equal(mbma_lexsort2, expected_ba)
67484867e2f1c2771f424ce3324e7d2382788619234053cc788a1d78fdae2408
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Test masked class initialization, methods, and operators. Functions, including ufuncs, are tested in test_functions.py """ import operator import numpy as np import pytest from numpy.testing import assert_array_equal from astropy import units as u from astropy.coordinates import Longitude from astropy.units import Quantity from astropy.utils.compat import NUMPY_LT_1_22 from astropy.utils.masked import Masked, MaskedNDArray def assert_masked_equal(a, b): assert_array_equal(a.unmasked, b.unmasked) assert_array_equal(a.mask, b.mask) VARIOUS_ITEMS = [(1, 1), slice(None, 1), (), 1] class ArraySetup: _data_cls = np.ndarray @classmethod def setup_class(self): self.a = np.arange(6.0).reshape(2, 3) self.mask_a = np.array([[True, False, False], [False, True, False]]) self.b = np.array([-3.0, -2.0, -1.0]) self.mask_b = np.array([False, True, False]) self.c = np.array([[0.25], [0.5]]) self.mask_c = np.array([[False], [True]]) self.sdt = np.dtype([("a", "f8"), ("b", "f8")]) self.mask_sdt = np.dtype([("a", "?"), ("b", "?")]) self.sa = np.array( [ [(1.0, 2.0), (3.0, 4.0)], [(11.0, 12.0), (13.0, 14.0)], ], dtype=self.sdt, ) self.mask_sa = np.array( [ [(True, True), (False, False)], [(False, True), (True, False)], ], dtype=self.mask_sdt, ) self.sb = np.array([(1.0, 2.0), (-3.0, 4.0)], dtype=self.sdt) self.mask_sb = np.array([(True, False), (False, False)], dtype=self.mask_sdt) self.scdt = np.dtype([("sa", "2f8"), ("sb", "i8", (2, 2))]) self.sc = np.array( [ ([1.0, 2.0], [[1, 2], [3, 4]]), ([-1.0, -2.0], [[-1, -2], [-3, -4]]), ], dtype=self.scdt, ) self.mask_scdt = np.dtype([("sa", "2?"), ("sb", "?", (2, 2))]) self.mask_sc = np.array( [ ([True, False], [[False, False], [True, True]]), ([False, True], [[True, False], [False, True]]), ], dtype=self.mask_scdt, ) class QuantitySetup(ArraySetup): _data_cls = Quantity @classmethod def setup_class(self): super().setup_class() self.a = Quantity(self.a, u.m) self.b = Quantity(self.b, u.cm) self.c = Quantity(self.c, u.km) self.sa = Quantity(self.sa, u.m, dtype=self.sdt) self.sb = Quantity(self.sb, u.cm, dtype=self.sdt) class LongitudeSetup(ArraySetup): _data_cls = Longitude @classmethod def setup_class(self): super().setup_class() self.a = Longitude(self.a, u.deg) self.b = Longitude(self.b, u.deg) self.c = Longitude(self.c, u.deg) # Note: Longitude does not work on structured arrays, so # leaving it as regular array (which just reruns some tests). class TestMaskedArrayInitialization(ArraySetup): def test_simple(self): ma = Masked(self.a, mask=self.mask_a) assert isinstance(ma, np.ndarray) assert isinstance(ma, type(self.a)) assert isinstance(ma, Masked) assert_array_equal(ma.unmasked, self.a) assert_array_equal(ma.mask, self.mask_a) assert ma.mask is not self.mask_a assert np.may_share_memory(ma.mask, self.mask_a) def test_structured(self): ma = Masked(self.sa, mask=self.mask_sa) assert isinstance(ma, np.ndarray) assert isinstance(ma, type(self.sa)) assert isinstance(ma, Masked) assert_array_equal(ma.unmasked, self.sa) assert_array_equal(ma.mask, self.mask_sa) assert ma.mask is not self.mask_sa assert np.may_share_memory(ma.mask, self.mask_sa) def test_masked_ndarray_init(): # Note: as a straight ndarray subclass, MaskedNDArray passes on # the arguments relevant for np.ndarray, not np.array. a_in = np.arange(3, dtype=int) m_in = np.array([True, False, False]) buff = a_in.tobytes() # Check we're doing things correctly using regular ndarray. a = np.ndarray(shape=(3,), dtype=int, buffer=buff) assert_array_equal(a, a_in) # Check with and without mask. ma = MaskedNDArray((3,), dtype=int, mask=m_in, buffer=buff) assert_array_equal(ma.unmasked, a_in) assert_array_equal(ma.mask, m_in) ma = MaskedNDArray((3,), dtype=int, buffer=buff) assert_array_equal(ma.unmasked, a_in) assert_array_equal(ma.mask, np.zeros(3, bool)) def test_cannot_initialize_with_masked(): with pytest.raises(ValueError, match="cannot handle np.ma.masked"): Masked(np.ma.masked) def test_cannot_just_use_anything_with_a_mask_attribute(): class my_array(np.ndarray): mask = True a = np.array([1.0, 2.0]).view(my_array) with pytest.raises(AttributeError, match="unmasked"): Masked(a) class TestMaskedClassCreation: """Try creating a MaskedList and subclasses. By no means meant to be realistic, just to check that the basic machinery allows it. """ @classmethod def setup_class(self): self._base_classes_orig = Masked._base_classes.copy() self._masked_classes_orig = Masked._masked_classes.copy() class MaskedList(Masked, list, base_cls=list, data_cls=list): def __new__(cls, *args, mask=None, copy=False, **kwargs): self = super().__new__(cls) self._unmasked = self._data_cls(*args, **kwargs) self.mask = mask return self # Need to have shape for basics to work. @property def shape(self): return (len(self._unmasked),) self.MaskedList = MaskedList def teardown_class(self): Masked._base_classes = self._base_classes_orig Masked._masked_classes = self._masked_classes_orig def test_setup(self): assert issubclass(self.MaskedList, Masked) assert issubclass(self.MaskedList, list) assert Masked(list) is self.MaskedList def test_masked_list(self): ml = self.MaskedList(range(3), mask=[True, False, False]) assert ml.unmasked == [0, 1, 2] assert_array_equal(ml.mask, np.array([True, False, False])) ml01 = ml[:2] assert ml01.unmasked == [0, 1] assert_array_equal(ml01.mask, np.array([True, False])) def test_from_list(self): ml = Masked([1, 2, 3], mask=[True, False, False]) assert ml.unmasked == [1, 2, 3] assert_array_equal(ml.mask, np.array([True, False, False])) def test_masked_list_subclass(self): class MyList(list): pass ml = MyList(range(3)) mml = Masked(ml, mask=[False, True, False]) assert isinstance(mml, Masked) assert isinstance(mml, MyList) assert isinstance(mml.unmasked, MyList) assert mml.unmasked == [0, 1, 2] assert_array_equal(mml.mask, np.array([False, True, False])) assert Masked(MyList) is type(mml) class TestMaskedNDArraySubclassCreation: """Test that masked subclasses can be created directly and indirectly.""" @classmethod def setup_class(self): class MyArray(np.ndarray): def __new__(cls, *args, **kwargs): return np.asanyarray(*args, **kwargs).view(cls) self.MyArray = MyArray self.a = np.array([1.0, 2.0]).view(self.MyArray) self.m = np.array([True, False], dtype=bool) def teardown_method(self, method): Masked._masked_classes.pop(self.MyArray, None) def test_direct_creation(self): assert self.MyArray not in Masked._masked_classes mcls = Masked(self.MyArray) assert issubclass(mcls, Masked) assert issubclass(mcls, self.MyArray) assert mcls.__name__ == "MaskedMyArray" assert mcls.__doc__.startswith("Masked version of MyArray") mms = mcls(self.a, mask=self.m) assert isinstance(mms, mcls) assert_array_equal(mms.unmasked, self.a) assert_array_equal(mms.mask, self.m) def test_initialization_without_mask(self): # Default for not giving a mask should be False. mcls = Masked(self.MyArray) mms = mcls(self.a) assert isinstance(mms, mcls) assert_array_equal(mms.unmasked, self.a) assert_array_equal(mms.mask, np.zeros(mms.shape, bool)) @pytest.mark.parametrize("masked_array", [Masked, np.ma.MaskedArray]) def test_initialization_with_masked_values(self, masked_array): mcls = Masked(self.MyArray) ma = masked_array(np.asarray(self.a), mask=self.m) mms = mcls(ma) assert isinstance(mms, Masked) assert isinstance(mms, self.MyArray) assert_array_equal(mms.unmasked, self.a) assert_array_equal(mms.mask, self.m) def test_indirect_creation(self): assert self.MyArray not in Masked._masked_classes mms = Masked(self.a, mask=self.m) assert isinstance(mms, Masked) assert isinstance(mms, self.MyArray) assert_array_equal(mms.unmasked, self.a) assert_array_equal(mms.mask, self.m) assert self.MyArray in Masked._masked_classes assert Masked(self.MyArray) is type(mms) def test_can_initialize_with_masked_values(self): mcls = Masked(self.MyArray) mms = mcls(Masked(np.asarray(self.a), mask=self.m)) assert isinstance(mms, Masked) assert isinstance(mms, self.MyArray) assert_array_equal(mms.unmasked, self.a) assert_array_equal(mms.mask, self.m) def test_viewing(self): mms = Masked(self.a, mask=self.m) mms2 = mms.view() assert type(mms2) is mms.__class__ assert_masked_equal(mms2, mms) ma = mms.view(np.ndarray) assert type(ma) is MaskedNDArray assert_array_equal(ma.unmasked, self.a.view(np.ndarray)) assert_array_equal(ma.mask, self.m) class TestMaskedQuantityInitialization(TestMaskedArrayInitialization, QuantitySetup): def test_masked_quantity_class_init(self): # TODO: class definitions should be more easily accessible. mcls = Masked._masked_classes[self.a.__class__] # This is not a very careful test. mq = mcls([1.0, 2.0], mask=[True, False], unit=u.s) assert mq.unit == u.s assert np.all(mq.value.unmasked == [1.0, 2.0]) assert np.all(mq.value.mask == [True, False]) assert np.all(mq.mask == [True, False]) def test_masked_quantity_getting(self): mcls = Masked._masked_classes[self.a.__class__] MQ = Masked(Quantity) assert MQ is mcls def test_initialization_without_mask(self): # Default for not giving a mask should be False. MQ = Masked(Quantity) mq = MQ([1.0, 2.0], u.s) assert mq.unit == u.s assert np.all(mq.value.unmasked == [1.0, 2.0]) assert np.all(mq.mask == [False, False]) @pytest.mark.parametrize("masked_array", [Masked, np.ma.MaskedArray]) def test_initialization_with_masked_values(self, masked_array): MQ = Masked(Quantity) a = np.array([1.0, 2.0]) m = np.array([True, False]) ma = masked_array(a, m) mq = MQ(ma) assert isinstance(mq, Masked) assert isinstance(mq, Quantity) assert_array_equal(mq.value.unmasked, a) assert_array_equal(mq.mask, m) class TestMaskSetting(ArraySetup): def test_whole_mask_setting_simple(self): ma = Masked(self.a) assert ma.mask.shape == ma.shape assert not ma.mask.any() ma.mask = True assert ma.mask.shape == ma.shape assert ma.mask.all() ma.mask = [[True], [False]] assert ma.mask.shape == ma.shape assert_array_equal(ma.mask, np.array([[True] * 3, [False] * 3])) ma.mask = self.mask_a assert ma.mask.shape == ma.shape assert_array_equal(ma.mask, self.mask_a) assert ma.mask is not self.mask_a assert np.may_share_memory(ma.mask, self.mask_a) def test_whole_mask_setting_structured(self): ma = Masked(self.sa) assert ma.mask.shape == ma.shape assert not ma.mask["a"].any() and not ma.mask["b"].any() ma.mask = True assert ma.mask.shape == ma.shape assert ma.mask["a"].all() and ma.mask["b"].all() ma.mask = [[True], [False]] assert ma.mask.shape == ma.shape assert_array_equal( ma.mask, np.array([[(True, True)] * 2, [(False, False)] * 2], dtype=self.mask_sdt), ) ma.mask = self.mask_sa assert ma.mask.shape == ma.shape assert_array_equal(ma.mask, self.mask_sa) assert ma.mask is not self.mask_sa assert np.may_share_memory(ma.mask, self.mask_sa) @pytest.mark.parametrize("item", VARIOUS_ITEMS) def test_part_mask_setting(self, item): ma = Masked(self.a) ma.mask[item] = True expected = np.zeros(ma.shape, bool) expected[item] = True assert_array_equal(ma.mask, expected) ma.mask[item] = False assert_array_equal(ma.mask, np.zeros(ma.shape, bool)) # Mask propagation mask = np.zeros(self.a.shape, bool) ma = Masked(self.a, mask) ma.mask[item] = True assert np.may_share_memory(ma.mask, mask) assert_array_equal(ma.mask, mask) @pytest.mark.parametrize("item", ["a"] + VARIOUS_ITEMS) def test_part_mask_setting_structured(self, item): ma = Masked(self.sa) ma.mask[item] = True expected = np.zeros(ma.shape, self.mask_sdt) expected[item] = True assert_array_equal(ma.mask, expected) ma.mask[item] = False assert_array_equal(ma.mask, np.zeros(ma.shape, self.mask_sdt)) # Mask propagation mask = np.zeros(self.sa.shape, self.mask_sdt) ma = Masked(self.sa, mask) ma.mask[item] = True assert np.may_share_memory(ma.mask, mask) assert_array_equal(ma.mask, mask) # Following are tests where we trust the initializer works. class MaskedArraySetup(ArraySetup): @classmethod def setup_class(self): super().setup_class() self.ma = Masked(self.a, mask=self.mask_a) self.mb = Masked(self.b, mask=self.mask_b) self.mc = Masked(self.c, mask=self.mask_c) self.msa = Masked(self.sa, mask=self.mask_sa) self.msb = Masked(self.sb, mask=self.mask_sb) self.msc = Masked(self.sc, mask=self.mask_sc) class TestViewing(MaskedArraySetup): def test_viewing_as_new_type(self): ma2 = self.ma.view(type(self.ma)) assert_masked_equal(ma2, self.ma) ma3 = self.ma.view() assert_masked_equal(ma3, self.ma) def test_viewing_as_new_dtype(self): # Not very meaningful, but possible... ma2 = self.ma.view("c8") assert_array_equal(ma2.unmasked, self.a.view("c8")) assert_array_equal(ma2.mask, self.mask_a) @pytest.mark.parametrize("new_dtype", ["2f4", "f8,f8,f8"]) def test_viewing_as_new_dtype_not_implemented(self, new_dtype): # But cannot (yet) view in way that would need to create a new mask, # even though that view is possible for a regular array. check = self.a.view(new_dtype) with pytest.raises(NotImplementedError, match="different.*size"): self.ma.view(check.dtype) def test_viewing_as_something_impossible(self): with pytest.raises(TypeError): # Use intp to ensure have the same size as object, # otherwise we get a different error message Masked(np.array([1, 2], dtype=np.intp)).view(Masked) class TestMaskedArrayCopyFilled(MaskedArraySetup): def test_copy(self): ma_copy = self.ma.copy() assert type(ma_copy) is type(self.ma) assert_array_equal(ma_copy.unmasked, self.ma.unmasked) assert_array_equal(ma_copy.mask, self.ma.mask) assert not np.may_share_memory(ma_copy.unmasked, self.ma.unmasked) assert not np.may_share_memory(ma_copy.mask, self.ma.mask) @pytest.mark.parametrize("fill_value", (0, 1)) def test_filled(self, fill_value): fill_value = fill_value * getattr(self.a, "unit", 1) expected = self.a.copy() expected[self.ma.mask] = fill_value result = self.ma.filled(fill_value) assert_array_equal(expected, result) def test_filled_no_fill_value(self): with pytest.raises(TypeError, match="missing 1 required"): self.ma.filled() @pytest.mark.parametrize("fill_value", [(0, 1), (-1, -1)]) def test_filled_structured(self, fill_value): fill_value = np.array(fill_value, dtype=self.sdt) if hasattr(self.sa, "unit"): fill_value = fill_value << self.sa.unit expected = self.sa.copy() expected["a"][self.msa.mask["a"]] = fill_value["a"] expected["b"][self.msa.mask["b"]] = fill_value["b"] result = self.msa.filled(fill_value) assert_array_equal(expected, result) def test_flat(self): ma_copy = self.ma.copy() ma_flat = ma_copy.flat # Check that single item keeps class and mask ma_flat1 = ma_flat[1] assert ma_flat1.unmasked == self.a.flat[1] assert ma_flat1.mask == self.mask_a.flat[1] # As well as getting items via iteration. assert all( (ma.unmasked == a and ma.mask == m) for (ma, a, m) in zip(self.ma.flat, self.a.flat, self.mask_a.flat) ) # check that flat works like a view of the real array ma_flat[1] = self.b[1] assert ma_flat[1] == self.b[1] assert ma_copy[0, 1] == self.b[1] class TestMaskedQuantityCopyFilled(TestMaskedArrayCopyFilled, QuantitySetup): pass class TestMaskedLongitudeCopyFilled(TestMaskedArrayCopyFilled, LongitudeSetup): pass class TestMaskedArrayShaping(MaskedArraySetup): def test_reshape(self): ma_reshape = self.ma.reshape((6,)) expected_data = self.a.reshape((6,)) expected_mask = self.mask_a.reshape((6,)) assert ma_reshape.shape == expected_data.shape assert_array_equal(ma_reshape.unmasked, expected_data) assert_array_equal(ma_reshape.mask, expected_mask) def test_shape_setting(self): ma_reshape = self.ma.copy() ma_reshape.shape = (6,) expected_data = self.a.reshape((6,)) expected_mask = self.mask_a.reshape((6,)) assert ma_reshape.shape == expected_data.shape assert_array_equal(ma_reshape.unmasked, expected_data) assert_array_equal(ma_reshape.mask, expected_mask) def test_shape_setting_failure(self): ma = self.ma.copy() with pytest.raises(ValueError, match="cannot reshape"): ma.shape = (5,) assert ma.shape == self.ma.shape assert ma.mask.shape == self.ma.shape # Here, mask can be reshaped but array cannot. ma2 = Masked(np.broadcast_to([[1.0], [2.0]], self.a.shape), mask=self.mask_a) with pytest.raises(AttributeError, match="ncompatible shape"): ma2.shape = (6,) assert ma2.shape == self.ma.shape assert ma2.mask.shape == self.ma.shape # Here, array can be reshaped but mask cannot. ma3 = Masked( self.a.copy(), mask=np.broadcast_to([[True], [False]], self.mask_a.shape) ) with pytest.raises(AttributeError, match="ncompatible shape"): ma3.shape = (6,) assert ma3.shape == self.ma.shape assert ma3.mask.shape == self.ma.shape def test_ravel(self): ma_ravel = self.ma.ravel() expected_data = self.a.ravel() expected_mask = self.mask_a.ravel() assert ma_ravel.shape == expected_data.shape assert_array_equal(ma_ravel.unmasked, expected_data) assert_array_equal(ma_ravel.mask, expected_mask) def test_transpose(self): ma_transpose = self.ma.transpose() expected_data = self.a.transpose() expected_mask = self.mask_a.transpose() assert ma_transpose.shape == expected_data.shape assert_array_equal(ma_transpose.unmasked, expected_data) assert_array_equal(ma_transpose.mask, expected_mask) def test_iter(self): for ma, d, m in zip(self.ma, self.a, self.mask_a): assert_array_equal(ma.unmasked, d) assert_array_equal(ma.mask, m) class MaskedItemTests(MaskedArraySetup): @pytest.mark.parametrize("item", VARIOUS_ITEMS) def test_getitem(self, item): ma_part = self.ma[item] expected_data = self.a[item] expected_mask = self.mask_a[item] assert_array_equal(ma_part.unmasked, expected_data) assert_array_equal(ma_part.mask, expected_mask) @pytest.mark.parametrize("item", ["a"] + VARIOUS_ITEMS) def test_getitem_structured(self, item): ma_part = self.msa[item] expected_data = self.sa[item] expected_mask = self.mask_sa[item] assert_array_equal(ma_part.unmasked, expected_data) assert_array_equal(ma_part.mask, expected_mask) @pytest.mark.parametrize( "indices,axis", [([0, 1], 1), ([0, 1], 0), ([0, 1], None), ([[0, 1], [2, 3]], None)], ) def test_take(self, indices, axis): ma_take = self.ma.take(indices, axis=axis) expected_data = self.a.take(indices, axis=axis) expected_mask = self.mask_a.take(indices, axis=axis) assert_array_equal(ma_take.unmasked, expected_data) assert_array_equal(ma_take.mask, expected_mask) ma_take2 = np.take(self.ma, indices, axis=axis) assert_masked_equal(ma_take2, ma_take) @pytest.mark.parametrize("item", VARIOUS_ITEMS) @pytest.mark.parametrize("mask", [None, True, False]) def test_setitem(self, item, mask): base = self.ma.copy() expected_data = self.a.copy() expected_mask = self.mask_a.copy() value = self.a[0, 0] if mask is None else Masked(self.a[0, 0], mask) base[item] = value expected_data[item] = value if mask is None else value.unmasked expected_mask[item] = False if mask is None else value.mask assert_array_equal(base.unmasked, expected_data) assert_array_equal(base.mask, expected_mask) @pytest.mark.parametrize("item", ["a"] + VARIOUS_ITEMS) @pytest.mark.parametrize("mask", [None, True, False]) def test_setitem_structured(self, item, mask): base = self.msa.copy() expected_data = self.sa.copy() expected_mask = self.mask_sa.copy() value = self.sa["b"] if item == "a" else self.sa[0, 0] if mask is not None: value = Masked(value, mask) base[item] = value expected_data[item] = value if mask is None else value.unmasked expected_mask[item] = False if mask is None else value.mask assert_array_equal(base.unmasked, expected_data) assert_array_equal(base.mask, expected_mask) @pytest.mark.parametrize("item", VARIOUS_ITEMS) def test_setitem_np_ma_masked(self, item): base = self.ma.copy() expected_mask = self.mask_a.copy() base[item] = np.ma.masked expected_mask[item] = True assert_array_equal(base.unmasked, self.a) assert_array_equal(base.mask, expected_mask) class TestMaskedArrayItems(MaskedItemTests): @classmethod def setup_class(self): super().setup_class() self.d = np.array(["aa", "bb"]) self.mask_d = np.array([True, False]) self.md = Masked(self.d, self.mask_d) # Quantity, Longitude cannot hold strings. def test_getitem_strings(self): md = self.md.copy() md0 = md[0] assert md0.unmasked == self.d[0] assert md0.mask md_all = md[:] assert_masked_equal(md_all, md) def test_setitem_strings_np_ma_masked(self): md = self.md.copy() md[1] = np.ma.masked assert_array_equal(md.unmasked, self.d) assert_array_equal(md.mask, np.ones(2, bool)) class TestMaskedQuantityItems(MaskedItemTests, QuantitySetup): pass class TestMaskedLongitudeItems(MaskedItemTests, LongitudeSetup): pass class MaskedOperatorTests(MaskedArraySetup): @pytest.mark.parametrize("op", (operator.add, operator.sub)) def test_add_subtract(self, op): mapmb = op(self.ma, self.mb) expected_data = op(self.a, self.b) expected_mask = self.ma.mask | self.mb.mask # Note: assert_array_equal also checks type, i.e., that, e.g., # Longitude decays into an Angle. assert_array_equal(mapmb.unmasked, expected_data) assert_array_equal(mapmb.mask, expected_mask) @pytest.mark.parametrize("op", (operator.eq, operator.ne)) def test_equality(self, op): mapmb = op(self.ma, self.mb) expected_data = op(self.a, self.b) expected_mask = self.ma.mask | self.mb.mask # Note: assert_array_equal also checks type, i.e., that boolean # output is represented as plain Masked ndarray. assert_array_equal(mapmb.unmasked, expected_data) assert_array_equal(mapmb.mask, expected_mask) def test_not_implemented(self): with pytest.raises(TypeError): self.ma > "abc" @pytest.mark.parametrize("different_names", [False, True]) @pytest.mark.parametrize("op", (operator.eq, operator.ne)) def test_structured_equality(self, op, different_names): msb = self.msb if different_names: msb = msb.astype( [(f"different_{name}", dt) for name, dt in msb.dtype.fields.items()] ) mapmb = op(self.msa, self.msb) # Expected is a bit tricky here: only unmasked fields count expected_data = np.ones(mapmb.shape, bool) expected_mask = np.ones(mapmb.shape, bool) for field in self.sdt.names: fa, mfa = self.sa[field], self.mask_sa[field] fb, mfb = self.sb[field], self.mask_sb[field] mfequal = mfa | mfb fequal = (fa == fb) | mfequal expected_data &= fequal expected_mask &= mfequal if op is operator.ne: expected_data = ~expected_data # Note: assert_array_equal also checks type, i.e., that boolean # output is represented as plain Masked ndarray. assert_array_equal(mapmb.unmasked, expected_data) assert_array_equal(mapmb.mask, expected_mask) def test_matmul(self): result = self.ma.T @ self.ma assert_array_equal(result.unmasked, self.a.T @ self.a) mask1 = np.any(self.mask_a, axis=0) expected_mask = np.logical_or.outer(mask1, mask1) assert_array_equal(result.mask, expected_mask) result2 = self.ma.T @ self.a assert_array_equal(result2.unmasked, self.a.T @ self.a) expected_mask2 = np.logical_or.outer(mask1, np.zeros(3, bool)) assert_array_equal(result2.mask, expected_mask2) result3 = self.a.T @ self.ma assert_array_equal(result3.unmasked, self.a.T @ self.a) expected_mask3 = np.logical_or.outer(np.zeros(3, bool), mask1) assert_array_equal(result3.mask, expected_mask3) def test_matvec(self): result = self.ma @ self.mb assert np.all(result.mask) assert_array_equal(result.unmasked, self.a @ self.b) # Just using the masked vector still has all elements masked. result2 = self.a @ self.mb assert np.all(result2.mask) assert_array_equal(result2.unmasked, self.a @ self.b) new_ma = self.ma.copy() new_ma.mask[0, 0] = False result3 = new_ma @ self.b assert_array_equal(result3.unmasked, self.a @ self.b) assert_array_equal(result3.mask, new_ma.mask.any(-1)) def test_vecmat(self): result = self.mb @ self.ma.T assert np.all(result.mask) assert_array_equal(result.unmasked, self.b @ self.a.T) result2 = self.b @ self.ma.T assert np.all(result2.mask) assert_array_equal(result2.unmasked, self.b @ self.a.T) new_ma = self.ma.T.copy() new_ma.mask[0, 0] = False result3 = self.b @ new_ma assert_array_equal(result3.unmasked, self.b @ self.a.T) assert_array_equal(result3.mask, new_ma.mask.any(0)) def test_vecvec(self): result = self.mb @ self.mb assert result.shape == () assert result.mask assert result.unmasked == self.b @ self.b mb_no_mask = Masked(self.b, False) result2 = mb_no_mask @ mb_no_mask assert not result2.mask class TestMaskedArrayOperators(MaskedOperatorTests): # Some further tests that use strings, which are not useful for Quantity. @pytest.mark.parametrize("op", (operator.eq, operator.ne)) def test_equality_strings(self, op): m1 = Masked(np.array(["a", "b", "c"]), mask=[True, False, False]) m2 = Masked(np.array(["a", "b", "d"]), mask=[False, False, False]) result = op(m1, m2) assert_array_equal(result.unmasked, op(m1.unmasked, m2.unmasked)) assert_array_equal(result.mask, m1.mask | m2.mask) result2 = op(m1, m2.unmasked) assert_masked_equal(result2, result) def test_not_implemented(self): with pytest.raises(TypeError): Masked(["a", "b"]) > object() class TestMaskedQuantityOperators(MaskedOperatorTests, QuantitySetup): pass class TestMaskedLongitudeOperators(MaskedOperatorTests, LongitudeSetup): pass class TestMaskedArrayMethods(MaskedArraySetup): def test_round(self): # Goes via ufunc, hence easy. mrc = self.mc.round() expected = Masked(self.c.round(), self.mask_c) assert_masked_equal(mrc, expected) @pytest.mark.parametrize("axis", (0, 1, None)) def test_sum(self, axis): ma_sum = self.ma.sum(axis) expected_data = self.a.sum(axis) expected_mask = self.ma.mask.any(axis) assert_array_equal(ma_sum.unmasked, expected_data) assert_array_equal(ma_sum.mask, expected_mask) @pytest.mark.parametrize("axis", (0, 1, None)) def test_sum_where(self, axis): where = np.array( [ [True, False, False], [True, True, True], ] ) where_final = ~self.ma.mask & where ma_sum = self.ma.sum(axis, where=where_final) expected_data = self.ma.unmasked.sum(axis, where=where_final) expected_mask = np.logical_or.reduce( self.ma.mask, axis=axis, where=where_final ) | (~where_final).all(axis) assert_array_equal(ma_sum.unmasked, expected_data) assert_array_equal(ma_sum.mask, expected_mask) @pytest.mark.parametrize("axis", (0, 1, None)) def test_cumsum(self, axis): ma_sum = self.ma.cumsum(axis) expected_data = self.a.cumsum(axis) mask = self.mask_a if axis is None: mask = mask.ravel() expected_mask = np.logical_or.accumulate(mask, axis=axis) assert_array_equal(ma_sum.unmasked, expected_data) assert_array_equal(ma_sum.mask, expected_mask) @pytest.mark.parametrize("axis", (0, 1, None)) def test_mean(self, axis): ma_mean = self.ma.mean(axis) filled = self.a.copy() filled[self.mask_a] = 0.0 count = 1 - self.ma.mask.astype(int) expected_data = filled.sum(axis) / count.sum(axis) expected_mask = self.ma.mask.all(axis) assert_array_equal(ma_mean.unmasked, expected_data) assert_array_equal(ma_mean.mask, expected_mask) def test_mean_int16(self): ma = self.ma.astype("i2") ma_mean = ma.mean() assert ma_mean.dtype == "f8" expected = ma.astype("f8").mean() assert_masked_equal(ma_mean, expected) def test_mean_float16(self): ma = self.ma.astype("f2") ma_mean = ma.mean() assert ma_mean.dtype == "f2" expected = self.ma.mean().astype("f2") assert_masked_equal(ma_mean, expected) def test_mean_inplace(self): expected = self.ma.mean(1) out = Masked(np.zeros_like(expected.unmasked)) result = self.ma.mean(1, out=out) assert result is out assert_masked_equal(out, expected) @pytest.mark.filterwarnings("ignore:.*encountered in.*divide") @pytest.mark.filterwarnings("ignore:Mean of empty slice") @pytest.mark.parametrize("axis", (0, 1, None)) def test_mean_where(self, axis): where = np.array( [ [True, False, False], [True, True, True], ] ) where_final = ~self.ma.mask & where ma_mean = self.ma.mean(axis, where=where) expected_data = self.ma.unmasked.mean(axis, where=where_final) expected_mask = np.logical_or.reduce( self.ma.mask, axis=axis, where=where_final ) | (~where_final).all(axis) assert_array_equal(ma_mean.unmasked, expected_data) assert_array_equal(ma_mean.mask, expected_mask) @pytest.mark.filterwarnings("ignore:.*encountered in.*divide") @pytest.mark.parametrize("axis", (0, 1, None)) def test_var(self, axis): ma_var = self.ma.var(axis) filled = (self.a - self.ma.mean(axis, keepdims=True)) ** 2 filled[self.mask_a] = 0.0 count = (1 - self.ma.mask.astype(int)).sum(axis) expected_data = filled.sum(axis) / count expected_mask = self.ma.mask.all(axis) assert_array_equal(ma_var.unmasked, expected_data) assert_array_equal(ma_var.mask, expected_mask) ma_var1 = self.ma.var(axis, ddof=1) expected_data1 = filled.sum(axis) / (count - 1) expected_mask1 = self.ma.mask.all(axis) | (count <= 1) assert_array_equal(ma_var1.unmasked, expected_data1) assert_array_equal(ma_var1.mask, expected_mask1) ma_var5 = self.ma.var(axis, ddof=5) assert np.all(~np.isfinite(ma_var5.unmasked)) assert ma_var5.mask.all() def test_var_int16(self): ma = self.ma.astype("i2") ma_var = ma.var() assert ma_var.dtype == "f8" expected = ma.astype("f8").var() assert_masked_equal(ma_var, expected) @pytest.mark.filterwarnings("ignore:.*encountered in.*divide") @pytest.mark.filterwarnings("ignore:Degrees of freedom <= 0 for slice") @pytest.mark.parametrize("axis", (0, 1, None)) def test_var_where(self, axis): where = np.array( [ [True, False, False], [True, True, True], ] ) where_final = ~self.ma.mask & where ma_var = self.ma.var(axis, where=where) expected_data = self.ma.unmasked.var(axis, where=where_final) expected_mask = np.logical_or.reduce( self.ma.mask, axis=axis, where=where_final ) | (~where_final).all(axis) assert_array_equal(ma_var.unmasked, expected_data) assert_array_equal(ma_var.mask, expected_mask) def test_std(self): ma_std = self.ma.std(1, ddof=1) ma_var1 = self.ma.var(1, ddof=1) expected = np.sqrt(ma_var1) assert_masked_equal(ma_std, expected) def test_std_inplace(self): expected = self.ma.std(1, ddof=1) out = Masked(np.zeros_like(expected.unmasked)) result = self.ma.std(1, ddof=1, out=out) assert result is out assert_masked_equal(result, expected) @pytest.mark.filterwarnings("ignore:.*encountered in.*divide") @pytest.mark.filterwarnings("ignore:Degrees of freedom <= 0 for slice") @pytest.mark.parametrize("axis", (0, 1, None)) def test_std_where(self, axis): where = np.array( [ [True, False, False], [True, True, True], ] ) where_final = ~self.ma.mask & where ma_std = self.ma.std(axis, where=where) expected_data = self.ma.unmasked.std(axis, where=where_final) expected_mask = np.logical_or.reduce( self.ma.mask, axis=axis, where=where_final ) | (~where_final).all(axis) assert_array_equal(ma_std.unmasked, expected_data) assert_array_equal(ma_std.mask, expected_mask) @pytest.mark.parametrize("axis", (0, 1, None)) def test_min(self, axis): ma_min = self.ma.min(axis) filled = self.a.copy() filled[self.mask_a] = self.a.max() expected_data = filled.min(axis) assert_array_equal(ma_min.unmasked, expected_data) assert not np.any(ma_min.mask) def test_min_with_masked_nan(self): ma = Masked([3.0, np.nan, 2.0], mask=[False, True, False]) ma_min = ma.min() assert_array_equal(ma_min.unmasked, np.array(2.0)) assert not ma_min.mask @pytest.mark.parametrize("axis", (0, 1, None)) def test_min_where(self, axis): where = np.array( [ [True, False, False], [True, True, True], ] ) where_final = ~self.ma.mask & where ma_min = self.ma.min(axis, where=where_final, initial=np.inf) expected_data = self.ma.unmasked.min(axis, where=where_final, initial=np.inf) expected_mask = np.logical_or.reduce( self.ma.mask, axis=axis, where=where_final ) | (~where_final).all(axis) assert_array_equal(ma_min.unmasked, expected_data) assert_array_equal(ma_min.mask, expected_mask) @pytest.mark.parametrize("axis", (0, 1, None)) def test_max(self, axis): ma_max = self.ma.max(axis) filled = self.a.copy() filled[self.mask_a] = self.a.min() expected_data = filled.max(axis) assert_array_equal(ma_max.unmasked, expected_data) assert not np.any(ma_max.mask) @pytest.mark.parametrize("axis", (0, 1, None)) def test_max_where(self, axis): where = np.array( [ [True, False, False], [True, True, True], ] ) where_final = ~self.ma.mask & where ma_max = self.ma.max(axis, where=where_final, initial=-np.inf) expected_data = self.ma.unmasked.max(axis, where=where_final, initial=-np.inf) expected_mask = np.logical_or.reduce( self.ma.mask, axis=axis, where=where_final ) | (~where_final).all(axis) assert_array_equal(ma_max.unmasked, expected_data) assert_array_equal(ma_max.mask, expected_mask) @pytest.mark.parametrize("axis", (0, 1, None)) def test_argmin(self, axis): ma_argmin = self.ma.argmin(axis) filled = self.a.copy() filled[self.mask_a] = self.a.max() expected_data = filled.argmin(axis) assert_array_equal(ma_argmin, expected_data) def test_argmin_only_one_unmasked_element(self): # Regression test for example from @taldcroft at # https://github.com/astropy/astropy/pull/11127#discussion_r600864559 ma = Masked(data=[1, 2], mask=[True, False]) assert ma.argmin() == 1 if not NUMPY_LT_1_22: def test_argmin_keepdims(self): ma = Masked(data=[[1, 2], [3, 4]], mask=[[True, False], [False, False]]) assert_array_equal(ma.argmin(axis=0, keepdims=True), np.array([[1, 0]])) @pytest.mark.parametrize("axis", (0, 1, None)) def test_argmax(self, axis): ma_argmax = self.ma.argmax(axis) filled = self.a.copy() filled[self.mask_a] = self.a.min() expected_data = filled.argmax(axis) assert_array_equal(ma_argmax, expected_data) if not NUMPY_LT_1_22: def test_argmax_keepdims(self): ma = Masked(data=[[1, 2], [3, 4]], mask=[[True, False], [False, False]]) assert_array_equal(ma.argmax(axis=1, keepdims=True), np.array([[1], [1]])) @pytest.mark.parametrize("axis", (0, 1, None)) def test_argsort(self, axis): ma_argsort = self.ma.argsort(axis) filled = self.a.copy() filled[self.mask_a] = self.a.max() * 1.1 expected_data = filled.argsort(axis) assert_array_equal(ma_argsort, expected_data) @pytest.mark.parametrize("order", [None, "a", ("a", "b"), ("b", "a")]) @pytest.mark.parametrize("axis", [0, 1]) def test_structured_argsort(self, axis, order): ma_argsort = self.msa.argsort(axis, order=order) filled = self.msa.filled(fill_value=np.array((np.inf, np.inf), dtype=self.sdt)) expected_data = filled.argsort(axis, order=order) assert_array_equal(ma_argsort, expected_data) def test_argsort_error(self): with pytest.raises(ValueError, match="when the array has no fields"): self.ma.argsort(axis=0, order="a") @pytest.mark.parametrize("axis", (0, 1)) def test_sort(self, axis): ma_sort = self.ma.copy() ma_sort.sort(axis) indices = self.ma.argsort(axis) expected_data = np.take_along_axis(self.ma.unmasked, indices, axis) expected_mask = np.take_along_axis(self.ma.mask, indices, axis) assert_array_equal(ma_sort.unmasked, expected_data) assert_array_equal(ma_sort.mask, expected_mask) @pytest.mark.parametrize("kth", [1, 3]) def test_argpartition(self, kth): ma = self.ma.ravel() ma_argpartition = ma.argpartition(kth) partitioned = ma[ma_argpartition] assert (partitioned[:kth] < partitioned[kth]).all() assert (partitioned[kth:] >= partitioned[kth]).all() if partitioned[kth].mask: assert all(partitioned.mask[kth:]) else: assert not any(partitioned.mask[:kth]) @pytest.mark.parametrize("kth", [1, 3]) def test_partition(self, kth): partitioned = self.ma.flatten() partitioned.partition(kth) assert (partitioned[:kth] < partitioned[kth]).all() assert (partitioned[kth:] >= partitioned[kth]).all() if partitioned[kth].mask: assert all(partitioned.mask[kth:]) else: assert not any(partitioned.mask[:kth]) def test_all_explicit(self): a1 = np.array( [ [1.0, 2.0], [3.0, 4.0], ] ) a2 = np.array( [ [1.0, 0.0], [3.0, 4.0], ] ) if self._data_cls is not np.ndarray: a1 = self._data_cls(a1, self.a.unit) a2 = self._data_cls(a2, self.a.unit) ma1 = Masked( a1, mask=[ [False, False], [True, True], ], ) ma2 = Masked( a2, mask=[ [False, True], [False, True], ], ) ma1_eq_ma2 = ma1 == ma2 assert_array_equal( ma1_eq_ma2.unmasked, np.array( [ [True, False], [True, True], ] ), ) assert_array_equal( ma1_eq_ma2.mask, np.array( [ [False, True], [True, True], ] ), ) assert ma1_eq_ma2.all() assert not (ma1 != ma2).all() ma_eq1 = ma1_eq_ma2.all(1) assert_array_equal(ma_eq1.mask, np.array([False, True])) assert bool(ma_eq1[0]) is True assert bool(ma_eq1[1]) is False ma_eq0 = ma1_eq_ma2.all(0) assert_array_equal(ma_eq0.mask, np.array([False, True])) assert bool(ma_eq1[0]) is True assert bool(ma_eq1[1]) is False @pytest.mark.parametrize("method", ["any", "all"]) @pytest.mark.parametrize( "array,axis", [("a", 0), ("a", 1), ("a", None), ("b", None), ("c", 0), ("c", 1), ("c", None)], ) def test_all_and_any(self, array, axis, method): ma = getattr(self, "m" + array) ma_eq = ma == ma ma_all_or_any = getattr(ma_eq, method)(axis=axis) filled = ma_eq.unmasked.copy() filled[ma_eq.mask] = method == "all" a_all_or_any = getattr(filled, method)(axis=axis) all_masked = ma.mask.all(axis) assert_array_equal(ma_all_or_any.mask, all_masked) assert_array_equal(ma_all_or_any.unmasked, a_all_or_any) # interpretation as bool as_bool = [bool(a) for a in ma_all_or_any.ravel()] expected = [bool(a) for a in (a_all_or_any & ~all_masked).ravel()] assert as_bool == expected def test_any_inplace(self): ma_eq = self.ma == self.ma expected = ma_eq.any(1) out = Masked(np.zeros_like(expected.unmasked)) result = ma_eq.any(1, out=out) assert result is out assert_masked_equal(result, expected) @pytest.mark.parametrize("method", ("all", "any")) @pytest.mark.parametrize("axis", (0, 1, None)) def test_all_and_any_where(self, method, axis): where = np.array( [ [True, False, False], [True, True, True], ] ) where_final = ~self.ma.mask & where ma_eq = self.ma == self.ma ma_any = getattr(ma_eq, method)(axis, where=where) expected_data = getattr(ma_eq.unmasked, method)(axis, where=where_final) expected_mask = np.logical_or.reduce( self.ma.mask, axis=axis, where=where_final ) | (~where_final).all(axis) assert_array_equal(ma_any.unmasked, expected_data) assert_array_equal(ma_any.mask, expected_mask) @pytest.mark.parametrize("offset", (0, 1)) def test_diagonal(self, offset): mda = self.ma.diagonal(offset=offset) expected = Masked( self.a.diagonal(offset=offset), self.mask_a.diagonal(offset=offset) ) assert_masked_equal(mda, expected) @pytest.mark.parametrize("offset", (0, 1)) def test_trace(self, offset): mta = self.ma.trace(offset=offset) expected = Masked( self.a.trace(offset=offset), self.mask_a.trace(offset=offset, dtype=bool) ) assert_masked_equal(mta, expected) def test_clip(self): maclip = self.ma.clip(self.b, self.c) expected = Masked(self.a.clip(self.b, self.c), self.mask_a) assert_masked_equal(maclip, expected) def test_clip_masked_min_max(self): maclip = self.ma.clip(self.mb, self.mc) # Need to be careful with min, max because of Longitude, which wraps. dmax = np.maximum(np.maximum(self.a, self.b), self.c).max() dmin = np.minimum(np.minimum(self.a, self.b), self.c).min() expected = Masked( self.a.clip(self.mb.filled(dmin), self.mc.filled(dmax)), mask=self.mask_a ) assert_masked_equal(maclip, expected) class TestMaskedQuantityMethods(TestMaskedArrayMethods, QuantitySetup): pass class TestMaskedLongitudeMethods(TestMaskedArrayMethods, LongitudeSetup): pass class TestMaskedArrayProductMethods(MaskedArraySetup): # These cannot work on Quantity, so done separately @pytest.mark.parametrize("axis", (0, 1, None)) def test_prod(self, axis): ma_sum = self.ma.prod(axis) expected_data = self.a.prod(axis) expected_mask = self.ma.mask.any(axis) assert_array_equal(ma_sum.unmasked, expected_data) assert_array_equal(ma_sum.mask, expected_mask) @pytest.mark.parametrize("axis", (0, 1, None)) def test_cumprod(self, axis): ma_sum = self.ma.cumprod(axis) expected_data = self.a.cumprod(axis) mask = self.mask_a if axis is None: mask = mask.ravel() expected_mask = np.logical_or.accumulate(mask, axis=axis) assert_array_equal(ma_sum.unmasked, expected_data) assert_array_equal(ma_sum.mask, expected_mask) def test_masked_str_explicit(): sa = np.array([(1.0, 2.0), (3.0, 4.0)], dtype="f8,f8") msa = Masked(sa, [(False, True), (False, False)]) assert str(msa) == "[(1., ——) (3., 4.)]" assert str(msa[0]) == "(1., ——)" assert str(msa[1]) == "(3., 4.)" with np.printoptions(precision=3, floatmode="fixed"): assert str(msa) == "[(1.000, ———) (3.000, 4.000)]" def test_masked_repr_explicit(): # Use explicit endianness to ensure tests pass on all architectures sa = np.array([(1.0, 2.0), (3.0, 4.0)], dtype=">f8,>f8") msa = Masked(sa, [(False, True), (False, False)]) assert ( repr(msa) == "MaskedNDArray([(1., ——), (3., 4.)], dtype=[('f0', '>f8'), ('f1', '>f8')])" ) assert ( repr(msa[0]) == "MaskedNDArray((1., ——), dtype=[('f0', '>f8'), ('f1', '>f8')])" ) assert ( repr(msa[1]) == "MaskedNDArray((3., 4.), dtype=[('f0', '>f8'), ('f1', '>f8')])" ) def test_masked_repr_summary(): ma = Masked(np.arange(15.0), mask=[True] + [False] * 14) with np.printoptions(threshold=2): assert repr(ma) == "MaskedNDArray([———, 1., 2., ..., 12., 13., 14.])" def test_masked_repr_nodata(): assert repr(Masked([])) == "MaskedNDArray([], dtype=float64)" class TestMaskedArrayRepr(MaskedArraySetup): def test_array_str(self): # very blunt check they work at all. str(self.ma) str(self.mb) str(self.mc) str(self.msa) str(self.msb) str(self.msc) def test_scalar_str(self): assert self.mb[0].shape == () str(self.mb[0]) assert self.msb[0].shape == () str(self.msb[0]) assert self.msc[0].shape == () str(self.msc[0]) def test_array_repr(self): repr(self.ma) repr(self.mb) repr(self.mc) repr(self.msa) repr(self.msb) repr(self.msc) def test_scalar_repr(self): repr(self.mb[0]) repr(self.msb[0]) repr(self.msc[0]) class TestMaskedQuantityRepr(TestMaskedArrayRepr, QuantitySetup): pass class TestMaskedRecarray(MaskedArraySetup): @classmethod def setup_class(self): super().setup_class() self.ra = self.sa.view(np.recarray) self.mra = Masked(self.ra, mask=self.mask_sa) def test_recarray_setup(self): assert isinstance(self.mra, Masked) assert isinstance(self.mra, np.recarray) assert np.all(self.mra.unmasked == self.ra) assert np.all(self.mra.mask == self.mask_sa) assert_array_equal(self.mra.view(np.ndarray), self.sa) assert isinstance(self.mra.a, Masked) assert_array_equal(self.mra.a.unmasked, self.sa["a"]) assert_array_equal(self.mra.a.mask, self.mask_sa["a"]) def test_recarray_setting(self): mra = self.mra.copy() mra.a = self.msa["b"] assert_array_equal(mra.a.unmasked, self.msa["b"].unmasked) assert_array_equal(mra.a.mask, self.msa["b"].mask) @pytest.mark.parametrize("attr", [0, "a"]) def test_recarray_field_getting(self, attr): mra_a = self.mra.field(attr) assert isinstance(mra_a, Masked) assert_array_equal(mra_a.unmasked, self.sa["a"]) assert_array_equal(mra_a.mask, self.mask_sa["a"]) @pytest.mark.parametrize("attr", [0, "a"]) def test_recarray_field_setting(self, attr): mra = self.mra.copy() mra.field(attr, self.msa["b"]) assert_array_equal(mra.a.unmasked, self.msa["b"].unmasked) assert_array_equal(mra.a.mask, self.msa["b"].mask) class TestMaskedArrayInteractionWithNumpyMA(MaskedArraySetup): def test_masked_array_from_masked(self): """Check that we can initialize a MaskedArray properly.""" np_ma = np.ma.MaskedArray(self.ma) assert type(np_ma) is np.ma.MaskedArray assert type(np_ma.data) is self._data_cls assert type(np_ma.mask) is np.ndarray assert_array_equal(np_ma.data, self.a) assert_array_equal(np_ma.mask, self.mask_a) def test_view_as_masked_array(self): """Test that we can be viewed as a MaskedArray.""" np_ma = self.ma.view(np.ma.MaskedArray) assert type(np_ma) is np.ma.MaskedArray assert type(np_ma.data) is self._data_cls assert type(np_ma.mask) is np.ndarray assert_array_equal(np_ma.data, self.a) assert_array_equal(np_ma.mask, self.mask_a) class TestMaskedQuantityInteractionWithNumpyMA( TestMaskedArrayInteractionWithNumpyMA, QuantitySetup ): pass
317e2473ce31927eb0fdc9c4a67d5f4cf4e35f43d3afe531839a64f083a5621a
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np import pytest from numpy.testing import assert_array_equal from astropy import units as u from astropy.coordinates import SkyCoord from astropy.coordinates import representation as r from astropy.time import Time from astropy.utils.masked import Masked class TestRepresentations: def setup_class(self): self.x = np.array([3.0, 5.0, 0.0]) << u.m self.y = np.array([4.0, 12.0, 1.0]) << u.m self.z = np.array([0.0, 0.0, 1.0]) << u.m self.c = r.CartesianRepresentation(self.x, self.y, self.z) self.mask = np.array([False, False, True]) self.mx = Masked(self.x, self.mask) self.my = Masked(self.y, self.mask) self.mz = Masked(self.z, self.mask) self.mc = r.CartesianRepresentation(self.mx, self.my, self.mz) def test_initialization(self): check = self.mc.z == self.mz assert_array_equal(check.unmasked, np.ones(3, bool)) assert_array_equal(check.mask, self.mask) assert_array_equal(self.mc.x, self.mx) assert_array_equal(self.mc.y, self.my) assert_array_equal(self.mc.z, self.mz) def test_norm(self): # Need stacking and erfa override. norm = self.mc.norm() assert_array_equal(norm.unmasked, self.c.norm()) assert_array_equal(norm.mask, self.mask) def test_transformation(self): msr = self.mc.represent_as(r.SphericalRepresentation) sr = self.c.represent_as(r.SphericalRepresentation) for comp in msr.components: mc = getattr(msr, comp) c = getattr(sr, comp) assert_array_equal(mc.unmasked, c) assert_array_equal(mc.mask, self.mask) # Transformation back. This also tests erfa.ufunc.s2p, which # is special in having a core dimension only in the output. cr2 = sr.represent_as(r.CartesianRepresentation) mcr2 = msr.represent_as(r.CartesianRepresentation) for comp in mcr2.components: mc = getattr(mcr2, comp) c = getattr(cr2, comp) assert_array_equal(mc.unmasked, c) assert_array_equal(mc.mask, self.mask) class TestSkyCoord: def setup_class(self): self.ra = np.array([3.0, 5.0, 0.0]) << u.hourangle self.dec = np.array([4.0, 12.0, 1.0]) << u.deg self.sc = SkyCoord(self.ra, self.dec) self.mask = np.array([False, False, True]) self.mra = Masked(self.ra, self.mask) self.mdec = Masked(self.dec, self.mask) self.msc = SkyCoord(self.mra, self.mdec) def test_initialization(self): check = self.msc.dec == self.mdec assert_array_equal(check.unmasked, np.ones(3, bool)) assert_array_equal(check.mask, self.mask) assert_array_equal(self.msc.data.lon, self.mra) assert_array_equal(self.msc.data.lat, self.mdec) def test_transformation(self): gcrs = self.sc.gcrs mgcrs = self.msc.gcrs assert_array_equal(mgcrs.data.lon.mask, self.msc.data.lon.mask) assert_array_equal(mgcrs.data.lon.unmasked, gcrs.data.lon) assert_array_equal(mgcrs.data.lat.unmasked, gcrs.data.lat) class TestTime: def setup_class(self): self.s = np.array( [ "2010-11-12T13:14:15.160", "2010-11-12T13:14:15.161", "2011-12-13T14:15:16.170", ] ) self.t = Time(self.s) # Time formats will currently strip any ndarray subtypes, so we cannot # initialize a Time with a Masked version of self.s yet. Instead, we # work around it, for now only testing that masked are preserved by # transformations. self.mask = np.array([False, False, True]) self.mt = self.t._apply(Masked, self.mask) def test_initialization(self): assert_array_equal(self.mt.jd1.mask, self.mask) assert_array_equal(self.mt.jd2.mask, self.mask) assert_array_equal(self.mt.jd1.unmasked, self.t.jd1) assert_array_equal(self.mt.jd2.unmasked, self.t.jd2) @pytest.mark.parametrize("format_", ["jd", "cxcsec", "jyear"]) def test_different_formats(self, format_): # Formats do not yet work with everything; e.g., isot is not supported # since the Masked class does not yet support structured arrays. tfmt = getattr(self.t, format_) mtfmt = getattr(self.mt, format_) check = mtfmt == tfmt assert_array_equal(check.unmasked, np.ones(3, bool)) assert_array_equal(check.mask, self.mask) @pytest.mark.parametrize("scale", ["tai", "tcb", "ut1"]) def test_transformation(self, scale): tscl = getattr(self.t, scale) mtscl = getattr(self.mt, scale) assert_array_equal(mtscl.jd1.mask, self.mask) assert_array_equal(mtscl.jd2.mask, self.mask) assert_array_equal(mtscl.jd1.unmasked, tscl.jd1) assert_array_equal(mtscl.jd2.unmasked, tscl.jd2)
6feeed70d1b9fb33f8bd437f3b1c4c097796499d7a1e5c4148c94b9081adbb5f
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Test all functions covered by __array_function__. Here, run through all functions, with simple tests just to check the helpers. More complicated tests of functionality, including with subclasses, are done in test_functions. TODO: finish full coverage (see also `~astropy.utils.masked.function_helpers`) - np.linalg - np.fft (is there any point?) - np.lib.nanfunctions """ import inspect import itertools import numpy as np import pytest from numpy.testing import assert_array_equal from astropy.units.tests.test_quantity_non_ufuncs import get_wrapped_functions from astropy.utils.compat import NUMPY_LT_1_23, NUMPY_LT_1_24, NUMPY_LT_1_25 from astropy.utils.masked import Masked, MaskedNDArray from astropy.utils.masked.function_helpers import ( APPLY_TO_BOTH_FUNCTIONS, DISPATCHED_FUNCTIONS, IGNORED_FUNCTIONS, MASKED_SAFE_FUNCTIONS, UNSUPPORTED_FUNCTIONS, ) from .test_masked import MaskedArraySetup, assert_masked_equal all_wrapped_functions = get_wrapped_functions(np) all_wrapped = set(all_wrapped_functions.values()) class BasicTestSetup(MaskedArraySetup): def check(self, func, *args, **kwargs): out = func(self.ma, *args, **kwargs) expected = Masked( func(self.a, *args, **kwargs), mask=func(self.mask_a, *args, **kwargs) ) assert_masked_equal(out, expected) def check2(self, func, *args, **kwargs): out = func(self.ma, self.mb, *args, **kwargs) expected = Masked( func(self.a, self.b, *args, **kwargs), mask=func(self.mask_a, self.mask_b, *args, **kwargs), ) if isinstance(out, (tuple, list)): for o, x in zip(out, expected): assert_masked_equal(o, x) else: assert_masked_equal(out, expected) class NoMaskTestSetup(MaskedArraySetup): def check(self, func, *args, **kwargs): o = func(self.ma, *args, **kwargs) expected = func(self.a, *args, **kwargs) assert_array_equal(o, expected) class InvariantMaskTestSetup(MaskedArraySetup): def check(self, func, *args, **kwargs): o = func(self.ma, *args, **kwargs) expected = func(self.a, *args, **kwargs) assert_array_equal(o.unmasked, expected) assert_array_equal(o.mask, self.mask_a) class TestShapeInformation(BasicTestSetup): def test_shape(self): assert np.shape(self.ma) == (2, 3) def test_size(self): assert np.size(self.ma) == 6 def test_ndim(self): assert np.ndim(self.ma) == 2 class TestShapeManipulation(BasicTestSetup): # Note: do not parametrize the below, since test names are used # to check coverage. def test_reshape(self): self.check(np.reshape, (6, 1)) def test_ravel(self): self.check(np.ravel) def test_moveaxis(self): self.check(np.moveaxis, 0, 1) def test_rollaxis(self): self.check(np.rollaxis, 0, 2) def test_swapaxes(self): self.check(np.swapaxes, 0, 1) def test_transpose(self): self.check(np.transpose) def test_atleast_1d(self): self.check(np.atleast_1d) o, so = np.atleast_1d(self.mb[0], self.mc[0]) assert o.shape == o.mask.shape == so.shape == so.mask.shape == (1,) def test_atleast_2d(self): self.check(np.atleast_2d) o, so = np.atleast_2d(self.mb[0], self.mc[0]) assert o.shape == o.mask.shape == so.shape == so.mask.shape == (1, 1) def test_atleast_3d(self): self.check(np.atleast_3d) o, so = np.atleast_3d(self.mb[0], self.mc[0]) assert o.shape == o.mask.shape == so.shape == so.mask.shape == (1, 1, 1) def test_expand_dims(self): self.check(np.expand_dims, 1) def test_squeeze(self): o = np.squeeze(self.mc) assert o.shape == o.mask.shape == (2,) assert_array_equal(o.unmasked, self.c.squeeze()) assert_array_equal(o.mask, self.mask_c.squeeze()) def test_flip(self): self.check(np.flip) def test_fliplr(self): self.check(np.fliplr) def test_flipud(self): self.check(np.flipud) def test_rot90(self): self.check(np.rot90) def test_broadcast_to(self): self.check(np.broadcast_to, (3, 2, 3)) self.check(np.broadcast_to, (3, 2, 3), subok=False) def test_broadcast_arrays(self): self.check2(np.broadcast_arrays) self.check2(np.broadcast_arrays, subok=False) class TestArgFunctions(MaskedArraySetup): def check(self, function, *args, fill_value=np.nan, **kwargs): o = function(self.ma, *args, **kwargs) a_filled = self.ma.filled(fill_value=fill_value) expected = function(a_filled, *args, **kwargs) assert_array_equal(o, expected) def test_argmin(self): self.check(np.argmin, fill_value=np.inf) def test_argmax(self): self.check(np.argmax, fill_value=-np.inf) def test_argsort(self): self.check(np.argsort, fill_value=np.nan) def test_lexsort(self): self.check(np.lexsort, fill_value=np.nan) def test_nonzero(self): self.check(np.nonzero, fill_value=0.0) @pytest.mark.filterwarnings("ignore:Calling nonzero on 0d arrays is deprecated") def test_nonzero_0d(self): res1 = Masked(1, mask=False).nonzero() assert len(res1) == 1 assert_array_equal(res1[0], np.ones(()).nonzero()[0]) res2 = Masked(1, mask=True).nonzero() assert len(res2) == 1 assert_array_equal(res2[0], np.zeros(()).nonzero()[0]) def test_argwhere(self): self.check(np.argwhere, fill_value=0.0) def test_argpartition(self): self.check(np.argpartition, 2, fill_value=np.inf) def test_flatnonzero(self): self.check(np.flatnonzero, fill_value=0.0) class TestAlongAxis(MaskedArraySetup): def test_take_along_axis(self): indices = np.expand_dims(np.argmax(self.ma, axis=0), axis=0) out = np.take_along_axis(self.ma, indices, axis=0) expected = np.take_along_axis(self.a, indices, axis=0) expected_mask = np.take_along_axis(self.mask_a, indices, axis=0) assert_array_equal(out.unmasked, expected) assert_array_equal(out.mask, expected_mask) def test_put_along_axis(self): ma = self.ma.copy() indices = np.expand_dims(np.argmax(self.ma, axis=0), axis=0) np.put_along_axis(ma, indices, axis=0, values=-1) expected = self.a.copy() np.put_along_axis(expected, indices, axis=0, values=-1) assert_array_equal(ma.unmasked, expected) assert_array_equal(ma.mask, self.mask_a) np.put_along_axis(ma, indices, axis=0, values=np.ma.masked) assert_array_equal(ma.unmasked, expected) expected_mask = self.mask_a.copy() np.put_along_axis(expected_mask, indices, axis=0, values=True) assert_array_equal(ma.mask, expected_mask) @pytest.mark.parametrize("axis", (0, 1)) def test_apply_along_axis(self, axis): out = np.apply_along_axis(np.square, axis, self.ma) expected = np.apply_along_axis(np.square, axis, self.a) assert_array_equal(out.unmasked, expected) assert_array_equal(out.mask, self.mask_a) @pytest.mark.parametrize("axes", [(1,), 0, (0, -1)]) def test_apply_over_axes(self, axes): def function(x, axis): return np.mean(np.square(x), axis) out = np.apply_over_axes(function, self.ma, axes) expected = self.ma for axis in axes if isinstance(axes, tuple) else (axes,): expected = (expected**2).mean(axis, keepdims=True) assert_array_equal(out.unmasked, expected.unmasked) assert_array_equal(out.mask, expected.mask) def test_apply_over_axes_no_reduction(self): out = np.apply_over_axes(np.cumsum, self.ma, 0) expected = self.ma.cumsum(axis=0) assert_masked_equal(out, expected) def test_apply_over_axes_wrong_size(self): with pytest.raises(ValueError, match="not.*correct shape"): np.apply_over_axes(lambda x, axis: x[..., np.newaxis], self.ma, 0) class TestIndicesFrom(NoMaskTestSetup): @classmethod def setup_class(self): self.a = np.arange(9).reshape(3, 3) self.mask_a = np.eye(3, dtype=bool) self.ma = Masked(self.a, self.mask_a) def test_diag_indices_from(self): self.check(np.diag_indices_from) def test_triu_indices_from(self): self.check(np.triu_indices_from) def test_tril_indices_from(self): self.check(np.tril_indices_from) class TestRealImag(InvariantMaskTestSetup): @classmethod def setup_class(self): self.a = np.array([1 + 2j, 3 + 4j]) self.mask_a = np.array([True, False]) self.ma = Masked(self.a, mask=self.mask_a) def test_real(self): self.check(np.real) def test_imag(self): self.check(np.imag) class TestCopyAndCreation(InvariantMaskTestSetup): def test_copy(self): self.check(np.copy) # Also as kwarg copy = np.copy(a=self.ma) assert_array_equal(copy, self.ma) def test_asfarray(self): self.check(np.asfarray) farray = np.asfarray(a=self.ma) assert_array_equal(farray, self.ma) class TestArrayCreation(MaskedArraySetup): def test_empty_like(self): o = np.empty_like(self.ma) assert o.shape == (2, 3) assert isinstance(o, Masked) assert isinstance(o, np.ndarray) o2 = np.empty_like(prototype=self.ma) assert o2.shape == (2, 3) assert isinstance(o2, Masked) assert isinstance(o2, np.ndarray) o3 = np.empty_like(self.ma, subok=False) assert type(o3) is MaskedNDArray def test_zeros_like(self): o = np.zeros_like(self.ma) assert_array_equal(o.unmasked, np.zeros_like(self.a)) assert_array_equal(o.mask, np.zeros_like(self.mask_a)) o2 = np.zeros_like(a=self.ma) assert_array_equal(o2.unmasked, np.zeros_like(self.a)) assert_array_equal(o2.mask, np.zeros_like(self.mask_a)) def test_ones_like(self): o = np.ones_like(self.ma) assert_array_equal(o.unmasked, np.ones_like(self.a)) assert_array_equal(o.mask, np.zeros_like(self.mask_a)) o2 = np.ones_like(a=self.ma) assert_array_equal(o2.unmasked, np.ones_like(self.a)) assert_array_equal(o2.mask, np.zeros_like(self.mask_a)) @pytest.mark.parametrize("value", [0.5, Masked(0.5, mask=True), np.ma.masked]) def test_full_like(self, value): o = np.full_like(self.ma, value) if value is np.ma.masked: expected = Masked(o.unmasked, True) else: expected = Masked(np.empty_like(self.a)) expected[...] = value assert_array_equal(o.unmasked, expected.unmasked) assert_array_equal(o.mask, expected.mask) class TestAccessingParts(BasicTestSetup): def test_diag(self): self.check(np.diag) def test_diag_1d_input(self): ma = self.ma.ravel() o = np.diag(ma) assert_array_equal(o.unmasked, np.diag(self.a.ravel())) assert_array_equal(o.mask, np.diag(self.mask_a.ravel())) def test_diagonal(self): self.check(np.diagonal) def test_diagflat(self): self.check(np.diagflat) def test_compress(self): o = np.compress([True, False], self.ma, axis=0) expected = np.compress([True, False], self.a, axis=0) expected_mask = np.compress([True, False], self.mask_a, axis=0) assert_array_equal(o.unmasked, expected) assert_array_equal(o.mask, expected_mask) def test_extract(self): o = np.extract([True, False, True], self.ma) expected = np.extract([True, False, True], self.a) expected_mask = np.extract([True, False, True], self.mask_a) assert_array_equal(o.unmasked, expected) assert_array_equal(o.mask, expected_mask) def test_delete(self): self.check(np.delete, slice(1, 2), 0) self.check(np.delete, [0, 2], 1) def test_roll(self): self.check(np.roll, 1) self.check(np.roll, 1, axis=0) def test_take(self): self.check(np.take, [0, 1], axis=1) self.check(np.take, 1) class TestSettingParts(MaskedArraySetup): def test_put(self): ma = self.ma.copy() v = Masked([50, 150], [False, True]) np.put(ma, [0, 2], v) expected = self.a.copy() np.put(expected, [0, 2], [50, 150]) expected_mask = self.mask_a.copy() np.put(expected_mask, [0, 2], [False, True]) assert_array_equal(ma.unmasked, expected) assert_array_equal(ma.mask, expected_mask) with pytest.raises(TypeError): # Indices cannot be masked. np.put(ma, Masked([0, 2]), v) with pytest.raises(TypeError): # Array to put masked values in must be masked. np.put(self.a.copy(), [0, 2], v) def test_putmask(self): ma = self.ma.flatten() mask = [True, False, False, False, True, False] values = Masked( np.arange(100, 650, 100), mask=[False, True, True, True, False, False] ) np.putmask(ma, mask, values) expected = self.a.flatten() np.putmask(expected, mask, values.unmasked) expected_mask = self.mask_a.flatten() np.putmask(expected_mask, mask, values.mask) assert_array_equal(ma.unmasked, expected) assert_array_equal(ma.mask, expected_mask) with pytest.raises(TypeError): np.putmask(self.a.flatten(), mask, values) def test_place(self): ma = self.ma.flatten() mask = [True, False, False, False, True, False] values = Masked([100, 200], mask=[False, True]) np.place(ma, mask, values) expected = self.a.flatten() np.place(expected, mask, values.unmasked) expected_mask = self.mask_a.flatten() np.place(expected_mask, mask, values.mask) assert_array_equal(ma.unmasked, expected) assert_array_equal(ma.mask, expected_mask) with pytest.raises(TypeError): np.place(self.a.flatten(), mask, values) def test_copyto(self): ma = self.ma.flatten() mask = [True, False, False, False, True, False] values = Masked( np.arange(100, 650, 100), mask=[False, True, True, True, False, False] ) np.copyto(ma, values, where=mask) expected = self.a.flatten() np.copyto(expected, values.unmasked, where=mask) expected_mask = self.mask_a.flatten() np.copyto(expected_mask, values.mask, where=mask) assert_array_equal(ma.unmasked, expected) assert_array_equal(ma.mask, expected_mask) with pytest.raises(TypeError): np.copyto(self.a.flatten(), values, where=mask) @pytest.mark.parametrize("value", [0.25, np.ma.masked]) def test_fill_diagonal(self, value): ma = self.ma[:2, :2].copy() np.fill_diagonal(ma, value) expected = ma.copy() expected[np.diag_indices_from(expected)] = value assert_array_equal(ma.unmasked, expected.unmasked) assert_array_equal(ma.mask, expected.mask) class TestRepeat(BasicTestSetup): def test_tile(self): self.check(np.tile, 2) def test_repeat(self): self.check(np.repeat, 2) def test_resize(self): self.check(np.resize, (4, 4)) class TestConcatenate(MaskedArraySetup): # More tests at TestMaskedArrayConcatenation in test_functions. def check(self, func, *args, **kwargs): ma_list = kwargs.pop("ma_list", [self.ma, self.ma]) a_list = [Masked(ma).unmasked for ma in ma_list] m_list = [Masked(ma).mask for ma in ma_list] o = func(ma_list, *args, **kwargs) expected = func(a_list, *args, **kwargs) expected_mask = func(m_list, *args, **kwargs) assert_array_equal(o.unmasked, expected) assert_array_equal(o.mask, expected_mask) def test_concatenate(self): self.check(np.concatenate) self.check(np.concatenate, axis=1) self.check(np.concatenate, ma_list=[self.a, self.ma]) self.check(np.concatenate, dtype="f4") out = Masked(np.empty((4, 3))) result = np.concatenate([self.ma, self.ma], out=out) assert out is result expected = np.concatenate([self.a, self.a]) expected_mask = np.concatenate([self.mask_a, self.mask_a]) assert_array_equal(out.unmasked, expected) assert_array_equal(out.mask, expected_mask) with pytest.raises(TypeError): np.concatenate([self.ma, self.ma], out=np.empty((4, 3))) def test_stack(self): self.check(np.stack) def test_column_stack(self): self.check(np.column_stack) def test_hstack(self): self.check(np.hstack) def test_vstack(self): self.check(np.vstack) def test_dstack(self): self.check(np.dstack) def test_block(self): self.check(np.block) out = np.block([[0.0, Masked(1.0, True)], [Masked(1, False), Masked(2, False)]]) expected = np.array([[0, 1.0], [1, 2]]) expected_mask = np.array([[False, True], [False, False]]) assert_array_equal(out.unmasked, expected) assert_array_equal(out.mask, expected_mask) def test_append(self): out = np.append(self.ma, self.mc, axis=1) expected = np.append(self.a, self.c, axis=1) expected_mask = np.append(self.mask_a, self.mask_c, axis=1) assert_array_equal(out.unmasked, expected) assert_array_equal(out.mask, expected_mask) def test_insert(self): obj = (1, 1) values = Masked([50.0, 25.0], mask=[True, False]) out = np.insert(self.ma.flatten(), obj, values) expected = np.insert(self.a.flatten(), obj, [50.0, 25.0]) expected_mask = np.insert(self.mask_a.flatten(), obj, [True, False]) assert_array_equal(out.unmasked, expected) assert_array_equal(out.mask, expected_mask) with pytest.raises(TypeError): np.insert(self.a.flatten(), obj, values) with pytest.raises(TypeError): np.insert(self.ma.flatten(), Masked(obj), values) class TestSplit: @classmethod def setup_class(self): self.a = np.arange(54.0).reshape(3, 3, 6) self.mask_a = np.zeros(self.a.shape, dtype=bool) self.mask_a[1, 1, 1] = True self.mask_a[0, 1, 4] = True self.mask_a[1, 2, 5] = True self.ma = Masked(self.a, mask=self.mask_a) def check(self, func, *args, **kwargs): out = func(self.ma, *args, **kwargs) expected = func(self.a, *args, **kwargs) expected_mask = func(self.mask_a, *args, **kwargs) assert len(out) == len(expected) for o, x, xm in zip(out, expected, expected_mask): assert_array_equal(o.unmasked, x) assert_array_equal(o.mask, xm) def test_split(self): self.check(np.split, [1]) def test_array_split(self): self.check(np.array_split, 2) def test_hsplit(self): self.check(np.hsplit, [1, 4]) def test_vsplit(self): self.check(np.vsplit, [1]) def test_dsplit(self): self.check(np.dsplit, [1]) class TestMethodLikes(MaskedArraySetup): def check(self, function, *args, method=None, **kwargs): if method is None: method = function.__name__ o = function(self.ma, *args, **kwargs) x = getattr(self.ma, method)(*args, **kwargs) assert_masked_equal(o, x) def test_amax(self): self.check(np.amax, method="max") def test_amin(self): self.check(np.amin, method="min") def test_sum(self): self.check(np.sum) def test_cumsum(self): self.check(np.cumsum) def test_any(self): self.check(np.any) def test_all(self): self.check(np.all) def test_sometrue(self): self.check(np.sometrue, method="any") def test_alltrue(self): self.check(np.alltrue, method="all") def test_prod(self): self.check(np.prod) def test_product(self): self.check(np.product, method="prod") def test_cumprod(self): self.check(np.cumprod) def test_cumproduct(self): self.check(np.cumproduct, method="cumprod") def test_ptp(self): self.check(np.ptp) self.check(np.ptp, axis=0) def test_round_(self): self.check(np.round_, method="round") def test_around(self): self.check(np.around, method="round") def test_clip(self): self.check(np.clip, 2.0, 4.0) self.check(np.clip, self.mb, self.mc) def test_mean(self): self.check(np.mean) def test_std(self): self.check(np.std) def test_var(self): self.check(np.var) class TestUfuncLike(InvariantMaskTestSetup): def test_fix(self): self.check(np.fix) def test_angle(self): a = np.array([1 + 0j, 0 + 1j, 1 + 1j, 0 + 0j]) mask_a = np.array([True, False, True, False]) ma = Masked(a, mask=mask_a) out = np.angle(ma) expected = np.angle(ma.unmasked) assert_array_equal(out.unmasked, expected) assert_array_equal(out.mask, mask_a) def test_i0(self): self.check(np.i0) def test_sinc(self): self.check(np.sinc) def test_where(self): mask = [True, False, True] out = np.where(mask, self.ma, 1000.0) expected = np.where(mask, self.a, 1000.0) expected_mask = np.where(mask, self.mask_a, False) assert_array_equal(out.unmasked, expected) assert_array_equal(out.mask, expected_mask) mask2 = Masked(mask, [True, False, False]) out2 = np.where(mask2, self.ma, 1000.0) expected2 = np.where(mask, self.a, 1000.0) expected_mask2 = np.where(mask, self.mask_a, False) | mask2.mask assert_array_equal(out2.unmasked, expected2) assert_array_equal(out2.mask, expected_mask2) def test_where_single_arg(self): m = Masked(np.arange(3), mask=[True, False, False]) out = np.where(m) expected = m.nonzero() assert isinstance(out, tuple) and len(out) == 1 assert_array_equal(out[0], expected[0]) def test_where_wrong_number_of_arg(self): with pytest.raises(ValueError, match="either both or neither"): np.where([True, False, False], self.a) def test_choose(self): a = np.array([0, 1]).reshape((2, 1)) result = np.choose(a, (self.ma, self.mb)) expected = np.choose(a, (self.a, self.b)) expected_mask = np.choose(a, (self.mask_a, self.mask_b)) assert_array_equal(result.unmasked, expected) assert_array_equal(result.mask, expected_mask) out = np.zeros_like(result) result2 = np.choose(a, (self.ma, self.mb), out=out) assert result2 is out assert_array_equal(result2, result) with pytest.raises(TypeError): np.choose(a, (self.ma, self.mb), out=np.zeros_like(expected)) def test_choose_masked(self): ma = Masked(np.array([-1, 1]), mask=[True, False]).reshape((2, 1)) out = ma.choose((self.ma, self.mb)) expected = np.choose(ma.filled(0), (self.a, self.b)) expected_mask = np.choose(ma.filled(0), (self.mask_a, self.mask_b)) | ma.mask assert_array_equal(out.unmasked, expected) assert_array_equal(out.mask, expected_mask) with pytest.raises(ValueError): ma.unmasked.choose((self.ma, self.mb)) @pytest.mark.parametrize("default", [-1.0, np.ma.masked, Masked(-1, mask=True)]) def test_select(self, default): a, mask_a, ma = self.a, self.mask_a, self.ma out = np.select([a < 1.5, a > 3.5], [ma, ma + 1], default=default) expected = np.select( [a < 1.5, a > 3.5], [a, a + 1], default=-1 if default is not np.ma.masked else 0, ) expected_mask = np.select( [a < 1.5, a > 3.5], [mask_a, mask_a], default=getattr(default, "mask", False), ) assert_array_equal(out.unmasked, expected) assert_array_equal(out.mask, expected_mask) def test_real_if_close(self): a = np.array([1 + 0j, 0 + 1j, 1 + 1j, 0 + 0j]) mask_a = np.array([True, False, True, False]) ma = Masked(a, mask=mask_a) out = np.real_if_close(ma) expected = np.real_if_close(a) assert_array_equal(out.unmasked, expected) assert_array_equal(out.mask, mask_a) def test_tril(self): self.check(np.tril) def test_triu(self): self.check(np.triu) def test_unwrap(self): self.check(np.unwrap) def test_nan_to_num(self): self.check(np.nan_to_num) ma = Masked([np.nan, 1.0], mask=[True, False]) o = np.nan_to_num(ma, copy=False) assert_masked_equal(o, Masked([0.0, 1.0], mask=[True, False])) assert ma is o class TestUfuncLikeTests: @classmethod def setup_class(self): self.a = np.array([[-np.inf, +np.inf, np.nan, 3.0, 4.0]] * 2) self.mask_a = np.array([[False] * 5, [True] * 4 + [False]]) self.ma = Masked(self.a, mask=self.mask_a) self.b = np.array([[3.0001], [3.9999]]) self.mask_b = np.array([[True], [False]]) self.mb = Masked(self.b, mask=self.mask_b) def check(self, func): out = func(self.ma) expected = func(self.a) assert type(out) is MaskedNDArray assert out.dtype.kind == "b" assert_array_equal(out.unmasked, expected) assert_array_equal(out.mask, self.mask_a) assert not np.may_share_memory(out.mask, self.mask_a) def test_isposinf(self): self.check(np.isposinf) def test_isneginf(self): self.check(np.isneginf) def test_isreal(self): self.check(np.isreal) o = np.isreal(Masked([1.0 + 1j], mask=False)) assert not o.unmasked and not o.mask o = np.isreal(Masked([1.0 + 1j], mask=True)) assert not o.unmasked and o.mask def test_iscomplex(self): self.check(np.iscomplex) o = np.iscomplex(Masked([1.0 + 1j], mask=False)) assert o.unmasked and not o.mask o = np.iscomplex(Masked([1.0 + 1j], mask=True)) assert o.unmasked and o.mask def test_isclose(self): out = np.isclose(self.ma, self.mb, atol=0.01) expected = np.isclose(self.ma, self.mb, atol=0.01) expected_mask = self.mask_a | self.mask_b assert_array_equal(out.unmasked, expected) assert_array_equal(out.mask, expected_mask) def test_allclose(self): out = np.allclose(self.ma, self.mb, atol=0.01) expected = np.isclose(self.ma, self.mb, atol=0.01)[ self.mask_a | self.mask_b ].all() assert_array_equal(out, expected) def test_array_equal(self): assert not np.array_equal(self.ma, self.ma) assert not np.array_equal(self.ma, self.a) assert np.array_equal(self.ma, self.ma, equal_nan=True) assert np.array_equal(self.ma, self.a, equal_nan=True) assert not np.array_equal(self.ma, self.mb) ma2 = self.ma.copy() ma2.mask |= np.isnan(self.a) assert np.array_equal(ma2, self.ma) def test_array_equiv(self): assert np.array_equiv(self.mb, self.mb) assert np.array_equiv(self.mb, self.b) assert not np.array_equiv(self.ma, self.mb) assert np.array_equiv(self.mb, np.stack([self.mb, self.mb])) class TestOuterLikeFunctions(MaskedArraySetup): def test_outer(self): result = np.outer(self.ma, self.mb) expected_data = np.outer(self.a.ravel(), self.b.ravel()) expected_mask = np.logical_or.outer(self.mask_a.ravel(), self.mask_b.ravel()) assert_array_equal(result.unmasked, expected_data) assert_array_equal(result.mask, expected_mask) out = np.zeros_like(result) result2 = np.outer(self.ma, self.mb, out=out) assert result2 is out assert result2 is not result assert_masked_equal(result2, result) out2 = np.zeros_like(result.unmasked) with pytest.raises(TypeError): np.outer(self.ma, self.mb, out=out2) def test_kron(self): result = np.kron(self.ma, self.mb) expected_data = np.kron(self.a, self.b) expected_mask = np.logical_or.outer(self.mask_a, self.mask_b).reshape( result.shape ) assert_array_equal(result.unmasked, expected_data) assert_array_equal(result.mask, expected_mask) class TestReductionLikeFunctions(MaskedArraySetup): def test_average(self): o = np.average(self.ma) assert_masked_equal(o, self.ma.mean()) o = np.average(self.ma, weights=self.mb, axis=-1) expected = np.average(self.a, weights=self.b, axis=-1) expected_mask = (self.mask_a | self.mask_b).any(-1) assert_array_equal(o.unmasked, expected) assert_array_equal(o.mask, expected_mask) def test_trace(self): o = np.trace(self.ma) expected = np.trace(self.a) expected_mask = np.trace(self.mask_a).astype(bool) assert_array_equal(o.unmasked, expected) assert_array_equal(o.mask, expected_mask) @pytest.mark.parametrize("axis", [0, 1, None]) def test_count_nonzero(self, axis): o = np.count_nonzero(self.ma, axis=axis) expected = np.count_nonzero(self.ma.filled(0), axis=axis) assert_array_equal(o, expected) @pytest.mark.filterwarnings("ignore:all-nan") class TestPartitionLikeFunctions: @classmethod def setup_class(self): self.a = np.arange(36.0).reshape(6, 6) self.mask_a = np.zeros_like(self.a, bool) # On purpose fill diagonal, so we get all masked elements. self.mask_a[np.tril_indices_from(self.a)] = True self.ma = Masked(self.a, mask=self.mask_a) def check(self, function, *args, **kwargs): # Check function by comparing to nan-equivalent, with masked # values set to NaN. o = function(self.ma, *args, **kwargs) nanfunc = getattr(np, "nan" + function.__name__) nanfilled = self.ma.filled(np.nan) expected = nanfunc(nanfilled, *args, **kwargs) assert_array_equal(o.filled(np.nan), expected) assert_array_equal(o.mask, np.isnan(expected)) # Also check that we can give an output MaskedArray. if NUMPY_LT_1_25 and kwargs.get("keepdims", False): # numpy bug gh-22714 prevents using out with keepdims=True. # This is fixed in numpy 1.25. return out = np.zeros_like(o) o2 = function(self.ma, *args, out=out, **kwargs) assert o2 is out assert_masked_equal(o2, o) # But that a regular array cannot be used since it has no mask. with pytest.raises(TypeError): function(self.ma, *args, out=np.zeros_like(expected), **kwargs) @pytest.mark.parametrize("keepdims", [False, True]) @pytest.mark.parametrize("axis", [None, 0, 1]) def test_median(self, axis, keepdims): self.check(np.median, axis=axis, keepdims=keepdims) @pytest.mark.parametrize("keepdims", [False, True]) @pytest.mark.parametrize("axis", [None, 0, 1]) def test_quantile(self, axis, keepdims): self.check(np.quantile, q=[0.25, 0.5], axis=axis, keepdims=keepdims) def test_quantile_out_of_range(self): with pytest.raises(ValueError, match="must be in the range"): np.quantile(self.ma, q=1.5) @pytest.mark.parametrize("axis", [None, 0, 1]) def test_percentile(self, axis): self.check(np.percentile, q=50, axis=axis) class TestIntDiffFunctions(MaskedArraySetup): def test_diff(self): out = np.diff(self.ma) expected = np.diff(self.a) expected_mask = self.mask_a[:, 1:] | self.mask_a[:, :-1] assert_array_equal(out.unmasked, expected) assert_array_equal(out.mask, expected_mask) def test_diff_prepend_append(self): out = np.diff(self.ma, prepend=Masked(-1, mask=True), append=1) expected = np.diff(self.a, prepend=-1, append=1.0) mask = np.concatenate( [np.ones((2, 1), bool), self.mask_a, np.zeros((2, 1), bool)], axis=-1 ) expected_mask = mask[:, 1:] | mask[:, :-1] assert_array_equal(out.unmasked, expected) assert_array_equal(out.mask, expected_mask) def test_trapz(self): ma = self.ma.copy() ma.mask[1] = False out = np.trapz(ma) assert_array_equal(out.unmasked, np.trapz(self.a)) assert_array_equal(out.mask, np.array([True, False])) def test_gradient(self): out = np.gradient(self.ma) expected = np.gradient(self.a) expected_mask = [ (self.mask_a[1:] | self.mask_a[:-1]).repeat(2, axis=0), np.stack( [ self.mask_a[:, 0] | self.mask_a[:, 1], self.mask_a[:, 0] | self.mask_a[:, 2], self.mask_a[:, 1] | self.mask_a[:, 2], ], axis=-1, ), ] for o, x, m in zip(out, expected, expected_mask): assert_array_equal(o.unmasked, x) assert_array_equal(o.mask, m) class TestSpaceFunctions: @classmethod def setup_class(self): self.a = np.arange(1.0, 7.0).reshape(2, 3) self.mask_a = np.array( [ [True, False, False], [False, True, False], ] ) self.ma = Masked(self.a, mask=self.mask_a) self.b = np.array([2.5, 10.0, 3.0]) self.mask_b = np.array([False, True, False]) self.mb = Masked(self.b, mask=self.mask_b) def check(self, function, *args, **kwargs): out = function(self.ma, self.mb, 5) expected = function(self.a, self.b, 5) expected_mask = np.broadcast_to( self.mask_a | self.mask_b, expected.shape ).copy() # TODO: make implementation that also ensures start point mask is # determined just by start point? (as for geomspace in numpy 1.20)? expected_mask[-1] = self.mask_b if function is np.geomspace: expected_mask[0] = self.mask_a assert_array_equal(out.unmasked, expected) assert_array_equal(out.mask, expected_mask) def test_linspace(self): self.check(np.linspace, 5) def test_logspace(self): self.check(np.logspace, 10) def test_geomspace(self): self.check(np.geomspace, 5) class TestInterpolationFunctions(MaskedArraySetup): def test_interp(self): xp = np.arange(5.0) fp = np.array([1.0, 5.0, 6.0, 19.0, 20.0]) mask_fp = np.array([False, False, False, True, False]) mfp = Masked(fp, mask=mask_fp) x = np.array([1.5, 17.0]) mask_x = np.array([False, True]) mx = Masked(x, mask=mask_x) out = np.interp(mx, xp, mfp) expected = np.interp(x, xp[~mask_fp], fp[~mask_fp]) assert_array_equal(out.unmasked, expected) assert_array_equal(out.mask, mask_x) def test_piecewise(self): condlist = [self.a < 1, self.a >= 1] out = np.piecewise(self.ma, condlist, [Masked(-1, mask=True), 1.0]) expected = np.piecewise(self.a, condlist, [-1, 1.0]) expected_mask = np.piecewise(self.mask_a, condlist, [True, False]) assert_array_equal(out.unmasked, expected) assert_array_equal(out.mask, expected_mask) condlist2 = [self.a < 1, self.a >= 3] out2 = np.piecewise( self.ma, condlist2, [Masked(-1, True), 1, lambda x: Masked(np.full_like(x, 2.0), mask=~x.mask)], ) expected = np.piecewise(self.a, condlist2, [-1, 1, 2]) expected_mask = np.piecewise( self.mask_a, condlist2, [True, False, lambda x: ~x] ) assert_array_equal(out2.unmasked, expected) assert_array_equal(out2.mask, expected_mask) with pytest.raises(ValueError, match="with 2 condition"): np.piecewise(self.ma, condlist2, []) def test_regression_12978(self): """Regression tests for https://github.com/astropy/astropy/pull/12978""" # This case produced incorrect results mask = [False, True, False] x = np.array([1, 2, 3]) xp = Masked(np.array([1, 2, 3]), mask=mask) fp = Masked(np.array([1, 2, 3]), mask=mask) result = np.interp(x, xp, fp) assert_array_equal(result, x) # This case raised a ValueError xp = np.array([1, 3]) fp = Masked(np.array([1, 3])) result = np.interp(x, xp, fp) assert_array_equal(result, x) class TestBincount(MaskedArraySetup): def test_bincount(self): i = np.array([1, 1, 2, 3, 2, 4]) mask_i = np.array([True, False, False, True, False, False]) mi = Masked(i, mask=mask_i) out = np.bincount(mi) expected = np.bincount(i[~mask_i]) assert_array_equal(out, expected) w = np.arange(len(i)) mask_w = np.array([True] + [False] * 5) mw = Masked(w, mask=mask_w) out2 = np.bincount(i, mw) expected = np.bincount(i, w) expected_mask = np.array([False, True, False, False, False]) assert_array_equal(out2.unmasked, expected) assert_array_equal(out2.mask, expected_mask) out3 = np.bincount(mi, mw) expected = np.bincount(i[~mask_i], w[~mask_i]) expected_mask = np.array([False, False, False, False, False]) assert_array_equal(out3.unmasked, expected) assert_array_equal(out3.mask, expected_mask) class TestSortFunctions(MaskedArraySetup): def test_sort(self): o = np.sort(self.ma) expected = self.ma.copy() expected.sort() assert_masked_equal(o, expected) def test_sort_complex(self): ma = Masked( np.array([1 + 2j, 0 + 4j, 3 + 0j, -1 - 1j]), mask=[True, False, False, False], ) o = np.sort_complex(ma) indx = np.lexsort((ma.unmasked.imag, ma.unmasked.real, ma.mask)) expected = ma[indx] assert_masked_equal(o, expected) @pytest.mark.skipif(not NUMPY_LT_1_24, reason="np.msort is deprecated") def test_msort(self): o = np.msort(self.ma) expected = np.sort(self.ma, axis=0) assert_masked_equal(o, expected) def test_partition(self): o = np.partition(self.ma, 1) expected = self.ma.copy() expected.partition(1) assert_masked_equal(o, expected) class TestStringFunctions: # More elaborate tests done in test_masked.py @classmethod def setup_class(self): self.ma = Masked(np.arange(3), mask=[True, False, False]) def test_array2string(self): out0 = np.array2string(self.ma) assert out0 == "[— 1 2]" # Arguments are interpreted as usual. out1 = np.array2string(self.ma, separator=", ") assert out1 == "[—, 1, 2]" # If we do pass in a formatter, though, it should be used. out2 = np.array2string(self.ma, separator=", ", formatter={"all": hex}) assert out2 == "[———, 0x1, 0x2]" # Also as positional argument (no, nobody will do this!) out3 = np.array2string( self.ma, None, None, None, ", ", "", np._NoValue, {"int": hex} ) assert out3 == out2 # But not if the formatter is not relevant for us. out4 = np.array2string(self.ma, separator=", ", formatter={"float": hex}) assert out4 == out1 def test_array_repr(self): out = np.array_repr(self.ma) assert out == "MaskedNDArray([—, 1, 2])" ma2 = self.ma.astype("f4") out2 = np.array_repr(ma2) assert out2 == "MaskedNDArray([——, 1., 2.], dtype=float32)" def test_array_str(self): out = np.array_str(self.ma) assert out == "[— 1 2]" class TestBitFunctions: @classmethod def setup_class(self): self.a = np.array([15, 255, 0], dtype="u1") self.mask_a = np.array([False, True, False]) self.ma = Masked(self.a, mask=self.mask_a) self.b = np.unpackbits(self.a).reshape(6, 4) self.mask_b = np.array([False] * 15 + [True, True] + [False] * 7).reshape(6, 4) self.mb = Masked(self.b, mask=self.mask_b) @pytest.mark.parametrize("axis", [None, 1, 0]) def test_packbits(self, axis): out = np.packbits(self.mb, axis=axis) if axis is None: expected = self.a else: expected = np.packbits(self.b, axis=axis) expected_mask = np.packbits(self.mask_b, axis=axis) > 0 assert_array_equal(out.unmasked, expected) assert_array_equal(out.mask, expected_mask) def test_unpackbits(self): out = np.unpackbits(self.ma) mask = np.where(self.mask_a, np.uint8(255), np.uint8(0)) expected_mask = np.unpackbits(mask) > 0 assert_array_equal(out.unmasked, self.b.ravel()) assert_array_equal(out.mask, expected_mask) class TestIndexFunctions(MaskedArraySetup): """Does not seem much sense to support these...""" def test_unravel_index(self): with pytest.raises(TypeError): np.unravel_index(self.ma, 3) def test_ravel_multi_index(self): with pytest.raises(TypeError): np.ravel_multi_index((self.ma,), 3) def test_ix_(self): with pytest.raises(TypeError): np.ix_(self.ma) class TestDtypeFunctions(MaskedArraySetup): def check(self, function, *args, **kwargs): out = function(self.ma, *args, **kwargs) expected = function(self.a, *args, **kwargs) assert out == expected def test_common_type(self): self.check(np.common_type) def test_result_type(self): self.check(np.result_type) def test_can_cast(self): self.check(np.can_cast, self.a.dtype) self.check(np.can_cast, "f4") def test_min_scalar_type(self): out = np.min_scalar_type(self.ma[0, 0]) expected = np.min_scalar_type(self.a[0, 0]) assert out == expected def test_iscomplexobj(self): self.check(np.iscomplexobj) def test_isrealobj(self): self.check(np.isrealobj) class TestMeshGrid(MaskedArraySetup): def test_meshgrid(self): a = np.arange(1.0, 4.0) mask_a = np.array([True, False, False]) ma = Masked(a, mask=mask_a) b = np.array([2.5, 10.0, 3.0, 4.0]) mask_b = np.array([False, True, False, True]) mb = Masked(b, mask=mask_b) oa, ob = np.meshgrid(ma, mb) xa, xb = np.broadcast_arrays(a, b[:, np.newaxis]) ma, mb = np.broadcast_arrays(mask_a, mask_b[:, np.newaxis]) for o, x, m in ((oa, xa, ma), (ob, xb, mb)): assert_array_equal(o.unmasked, x) assert_array_equal(o.mask, m) class TestMemoryFunctions(MaskedArraySetup): def test_shares_memory(self): assert np.shares_memory(self.ma, self.ma.unmasked) assert not np.shares_memory(self.ma, self.ma.mask) def test_may_share_memory(self): assert np.may_share_memory(self.ma, self.ma.unmasked) assert not np.may_share_memory(self.ma, self.ma.mask) class TestDatetimeFunctions: # Could in principle support np.is_busday, np.busday_count, np.busday_offset. @classmethod def setup_class(self): self.a = np.array(["2020-12-31", "2021-01-01", "2021-01-02"], dtype="M") self.mask_a = np.array([False, True, False]) self.ma = Masked(self.a, mask=self.mask_a) self.b = np.array([["2021-01-07"], ["2021-01-31"]], dtype="M") self.mask_b = np.array([[False], [True]]) self.mb = Masked(self.b, mask=self.mask_b) def test_datetime_as_string(self): out = np.datetime_as_string(self.ma) expected = np.datetime_as_string(self.a) assert_array_equal(out.unmasked, expected) assert_array_equal(out.mask, self.mask_a) @pytest.mark.filterwarnings("ignore:all-nan") class TestNaNFunctions: def setup_class(self): self.a = np.array( [ [np.nan, np.nan, 3.0], [4.0, 5.0, 6.0], ] ) self.mask_a = np.array( [ [True, False, False], [False, True, False], ] ) self.b = np.arange(1, 7).reshape(2, 3) self.mask_b = self.mask_a self.ma = Masked(self.a, mask=self.mask_a) self.mb = Masked(self.b, mask=self.mask_b) def check(self, function, exact_fill_value=None, masked_result=True, **kwargs): result = function(self.ma, **kwargs) expected_data = function(self.ma.filled(np.nan), **kwargs) expected_mask = np.isnan(expected_data) if masked_result: assert isinstance(result, Masked) assert_array_equal(result.mask, expected_mask) assert np.all(result == expected_data) else: assert not isinstance(result, Masked) assert_array_equal(result, expected_data) assert not np.any(expected_mask) out = np.zeros_like(result) result2 = function(self.ma, out=out, **kwargs) assert result2 is out assert_array_equal(result2, result) def check_arg(self, function, **kwargs): # arg functions do not have an 'out' argument, so just test directly. result = function(self.ma, **kwargs) assert not isinstance(result, Masked) expected = function(self.ma.filled(np.nan), **kwargs) assert_array_equal(result, expected) def test_nanmin(self): self.check(np.nanmin) self.check(np.nanmin, axis=0) self.check(np.nanmin, axis=1) resi = np.nanmin(self.mb, axis=1) assert_array_equal(resi.unmasked, np.array([2, 4])) assert_array_equal(resi.mask, np.array([False, False])) def test_nanmax(self): self.check(np.nanmax) def test_nanargmin(self): self.check_arg(np.nanargmin) self.check_arg(np.nanargmin, axis=1) def test_nanargmax(self): self.check_arg(np.nanargmax) def test_nansum(self): self.check(np.nansum, masked_result=False) resi = np.nansum(self.mb, axis=1) assert not isinstance(resi, Masked) assert_array_equal(resi, np.array([5, 10])) def test_nanprod(self): self.check(np.nanprod, masked_result=False) resi = np.nanprod(self.mb, axis=1) assert not isinstance(resi, Masked) assert_array_equal(resi, np.array([6, 24])) def test_nancumsum(self): self.check(np.nancumsum, masked_result=False) resi = np.nancumsum(self.mb, axis=1) assert not isinstance(resi, Masked) assert_array_equal(resi, np.array([[0, 2, 5], [4, 4, 10]])) def test_nancumprod(self): self.check(np.nancumprod, masked_result=False) resi = np.nancumprod(self.mb, axis=1) assert not isinstance(resi, Masked) assert_array_equal(resi, np.array([[1, 2, 6], [4, 4, 24]])) def test_nanmean(self): self.check(np.nanmean) resi = np.nanmean(self.mb, axis=1) assert_array_equal(resi.unmasked, np.mean(self.mb, axis=1).unmasked) assert_array_equal(resi.mask, np.array([False, False])) def test_nanvar(self): self.check(np.nanvar) self.check(np.nanvar, ddof=1) def test_nanstd(self): self.check(np.nanstd) def test_nanmedian(self): self.check(np.nanmedian) def test_nanquantile(self): self.check(np.nanquantile, q=0.5) def test_nanpercentile(self): self.check(np.nanpercentile, q=50) untested_functions = set() if NUMPY_LT_1_23: deprecated_functions = { # Deprecated, removed in numpy 1.23 np.asscalar, np.alen, } else: deprecated_functions = set() untested_functions |= deprecated_functions io_functions = {np.save, np.savez, np.savetxt, np.savez_compressed} untested_functions |= io_functions poly_functions = { np.poly, np.polyadd, np.polyder, np.polydiv, np.polyfit, np.polyint, np.polymul, np.polysub, np.polyval, np.roots, np.vander, } # fmt: skip untested_functions |= poly_functions # Get covered functions tested_functions = set() for cov_cls in list(filter(inspect.isclass, locals().values())): for k, v in cov_cls.__dict__.items(): if inspect.isfunction(v) and k.startswith("test"): f = k.replace("test_", "") if f in all_wrapped_functions: tested_functions.add(all_wrapped_functions[f]) def test_basic_testing_completeness(): assert all_wrapped == (tested_functions | IGNORED_FUNCTIONS | UNSUPPORTED_FUNCTIONS) @pytest.mark.xfail(reason="coverage not completely set up yet") def test_testing_completeness(): assert not tested_functions.intersection(untested_functions) assert all_wrapped == (tested_functions | untested_functions) class TestFunctionHelpersCompleteness: @pytest.mark.parametrize( "one, two", itertools.combinations( ( MASKED_SAFE_FUNCTIONS, UNSUPPORTED_FUNCTIONS, set(APPLY_TO_BOTH_FUNCTIONS.keys()), set(DISPATCHED_FUNCTIONS.keys()), ), 2, ), ) def test_no_duplicates(self, one, two): assert not one.intersection(two) def test_all_included(self): included_in_helpers = ( MASKED_SAFE_FUNCTIONS | UNSUPPORTED_FUNCTIONS | set(APPLY_TO_BOTH_FUNCTIONS.keys()) | set(DISPATCHED_FUNCTIONS.keys()) ) assert all_wrapped == included_in_helpers @pytest.mark.xfail(reason="coverage not completely set up yet") def test_ignored_are_untested(self): assert IGNORED_FUNCTIONS == untested_functions
d3118faae84eea9ee080c92c4249ad253c326eec28fecd627b89e1ed3c5205b9
# Licensed under a 3-clause BSD style license - see LICENSE.rst import os from astropy import log from astropy.io.fits import getdata from astropy.visualization.mpl_normalize import simple_norm __all__ = ["fits2bitmap", "main"] def fits2bitmap( filename, ext=0, out_fn=None, stretch="linear", power=1.0, asinh_a=0.1, min_cut=None, max_cut=None, min_percent=None, max_percent=None, percent=None, cmap="Greys_r", ): """ Create a bitmap file from a FITS image, applying a stretching transform between minimum and maximum cut levels and a matplotlib colormap. Parameters ---------- filename : str The filename of the FITS file. ext : int FITS extension name or number of the image to convert. The default is 0. out_fn : str The filename of the output bitmap image. The type of bitmap is determined by the filename extension (e.g. '.jpg', '.png'). The default is a PNG file with the same name as the FITS file. stretch : {'linear', 'sqrt', 'power', log', 'asinh'} The stretching function to apply to the image. The default is 'linear'. power : float, optional The power index for ``stretch='power'``. The default is 1.0. asinh_a : float, optional For ``stretch='asinh'``, the value where the asinh curve transitions from linear to logarithmic behavior, expressed as a fraction of the normalized image. Must be in the range between 0 and 1. The default is 0.1. min_cut : float, optional The pixel value of the minimum cut level. Data values less than ``min_cut`` will set to ``min_cut`` before stretching the image. The default is the image minimum. ``min_cut`` overrides ``min_percent``. max_cut : float, optional The pixel value of the maximum cut level. Data values greater than ``min_cut`` will set to ``min_cut`` before stretching the image. The default is the image maximum. ``max_cut`` overrides ``max_percent``. min_percent : float, optional The percentile value used to determine the pixel value of minimum cut level. The default is 0.0. ``min_percent`` overrides ``percent``. max_percent : float, optional The percentile value used to determine the pixel value of maximum cut level. The default is 100.0. ``max_percent`` overrides ``percent``. percent : float, optional The percentage of the image values used to determine the pixel values of the minimum and maximum cut levels. The lower cut level will set at the ``(100 - percent) / 2`` percentile, while the upper cut level will be set at the ``(100 + percent) / 2`` percentile. The default is 100.0. ``percent`` is ignored if either ``min_percent`` or ``max_percent`` is input. cmap : str The matplotlib color map name. The default is 'Greys_r'. """ import matplotlib import matplotlib.image as mimg from astropy.utils.introspection import minversion # __main__ gives ext as a string try: ext = int(ext) except ValueError: pass try: image = getdata(filename, ext) except Exception as e: log.critical(e) return 1 if image.ndim != 2: log.critical(f"data in FITS extension {ext} is not a 2D array") if out_fn is None: out_fn = os.path.splitext(filename)[0] if out_fn.endswith(".fits"): out_fn = os.path.splitext(out_fn)[0] out_fn += ".png" # explicitly define the output format out_format = os.path.splitext(out_fn)[1][1:] try: if minversion(matplotlib, "3.5"): matplotlib.colormaps[cmap] else: from matplotlib import cm cm.get_cmap(cmap) except (ValueError, KeyError): log.critical(f"{cmap} is not a valid matplotlib colormap name.") return 1 norm = simple_norm( image, stretch=stretch, power=power, asinh_a=asinh_a, min_cut=min_cut, max_cut=max_cut, min_percent=min_percent, max_percent=max_percent, percent=percent, ) mimg.imsave(out_fn, norm(image), cmap=cmap, origin="lower", format=out_format) log.info(f"Saved file to {out_fn}.") def main(args=None): import argparse parser = argparse.ArgumentParser( description="Create a bitmap file from a FITS image." ) parser.add_argument( "-e", "--ext", metavar="hdu", default=0, help="Specify the HDU extension number or name (Default is 0).", ) parser.add_argument( "-o", metavar="filename", type=str, default=None, help=( "Filename for the output image (Default is a " "PNG file with the same name as the FITS file)." ), ) parser.add_argument( "--stretch", type=str, default="linear", help=( 'Type of image stretching ("linear", "sqrt", ' '"power", "log", or "asinh") (Default is "linear").' ), ) parser.add_argument( "--power", type=float, default=1.0, help='Power index for "power" stretching (Default is 1.0).', ) parser.add_argument( "--asinh_a", type=float, default=0.1, help=( "The value in normalized image where the asinh " "curve transitions from linear to logarithmic " 'behavior (used only for "asinh" stretch) ' "(Default is 0.1)." ), ) parser.add_argument( "--min_cut", type=float, default=None, help="The pixel value of the minimum cut level (Default is the image minimum).", ) parser.add_argument( "--max_cut", type=float, default=None, help="The pixel value of the maximum cut level (Default is the image maximum).", ) parser.add_argument( "--min_percent", type=float, default=None, help=( "The percentile value used to determine the " "minimum cut level (Default is 0)." ), ) parser.add_argument( "--max_percent", type=float, default=None, help=( "The percentile value used to determine the " "maximum cut level (Default is 100)." ), ) parser.add_argument( "--percent", type=float, default=None, help=( "The percentage of the image values used to " "determine the pixel values of the minimum and " "maximum cut levels (Default is 100)." ), ) parser.add_argument( "--cmap", metavar="colormap_name", type=str, default="Greys_r", help='matplotlib color map name (Default is "Greys_r").', ) parser.add_argument( "filename", nargs="+", help="Path to one or more FITS files to convert" ) args = parser.parse_args(args) for filename in args.filename: fits2bitmap( filename, ext=args.ext, out_fn=args.o, stretch=args.stretch, min_cut=args.min_cut, max_cut=args.max_cut, min_percent=args.min_percent, max_percent=args.max_percent, percent=args.percent, power=args.power, asinh_a=args.asinh_a, cmap=args.cmap, )
6543a76914c37e65b3a89bfd96db1056f7b2fee602cf1c33de8bafe47ae8af8a
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Helpers functions for different kinds of WCSAxes instances """ import numpy as np from mpl_toolkits.axes_grid1.anchored_artists import AnchoredEllipse, AnchoredSizeBar import astropy.units as u from astropy.wcs.utils import proj_plane_pixel_scales __all__ = ["add_beam", "add_scalebar"] CORNERS = { "top right": 1, "top left": 2, "bottom left": 3, "bottom right": 4, "right": 5, "left": 6, "bottom": 8, "top": 9, } def add_beam( ax, header=None, major=None, minor=None, angle=None, corner="bottom left", frame=False, borderpad=0.4, pad=0.5, **kwargs, ): """ Display the beam shape and size Parameters ---------- ax : :class:`~astropy.visualization.wcsaxes.WCSAxes` WCSAxes instance in which the beam shape and size is displayed. The WCS must be celestial. header : :class:`~astropy.io.fits.Header`, optional Header containing the beam parameters. If specified, the ``BMAJ``, ``BMIN``, and ``BPA`` keywords will be searched in the FITS header to set the major and minor axes and the position angle on the sky. major : float or :class:`~astropy.units.Quantity`, optional Major axis of the beam in degrees or an angular quantity. minor : float, or :class:`~astropy.units.Quantity`, optional Minor axis of the beam in degrees or an angular quantity. angle : float or :class:`~astropy.units.Quantity`, optional Position angle of the beam on the sky in degrees or an angular quantity in the anticlockwise direction. corner : str, optional The beam location. Acceptable values are ``'left'``, ``'right'``, ``'top'``, 'bottom', ``'top left'``, ``'top right'``, ``'bottom left'`` (default), and ``'bottom right'``. frame : bool, optional Whether to display a frame behind the beam (default is ``False``). borderpad : float, optional Border padding, in fraction of the font size. Default is 0.4. pad : float, optional Padding around the beam, in fraction of the font size. Default is 0.5. kwargs Additional arguments are passed to :class:`matplotlib.patches.Ellipse`. Notes ----- This function may be inaccurate when: - The pixel scales at the reference pixel are different from the pixel scales within the image extent (e.g., when the reference pixel is well outside of the image extent and the projection is non-linear) - The pixel scales in the two directions are very different from each other (e.g., rectangular pixels) """ if header and major: raise ValueError( "Either header or major/minor/angle must be specified, not both." ) if header: major = header["BMAJ"] minor = header["BMIN"] angle = header["BPA"] if isinstance(major, u.Quantity): major = major.to(u.degree).value if isinstance(minor, u.Quantity): minor = minor.to(u.degree).value if isinstance(angle, u.Quantity): angle = angle.to(u.degree).value if ax.wcs.is_celestial: pix_scale = proj_plane_pixel_scales(ax.wcs) sx = pix_scale[0] sy = pix_scale[1] degrees_per_pixel = np.sqrt(sx * sy) else: raise ValueError("Cannot show beam when WCS is not celestial") minor /= degrees_per_pixel major /= degrees_per_pixel corner = CORNERS[corner] beam = AnchoredEllipse( ax.transData, width=minor, height=major, angle=angle, loc=corner, pad=pad, borderpad=borderpad, frameon=frame, ) beam.ellipse.set(**kwargs) ax.add_artist(beam) def add_scalebar( ax, length, label=None, corner="bottom right", frame=False, borderpad=0.4, pad=0.5, **kwargs, ): """Add a scale bar Parameters ---------- ax : :class:`~astropy.visualization.wcsaxes.WCSAxes` WCSAxes instance in which the scale bar is displayed. The WCS must be celestial. length : float or :class:`~astropy.units.Quantity` The lenght of the scalebar in degrees or an angular quantity label : str, optional Label to place below the scale bar corner : str, optional Where to place the scale bar. Acceptable values are:, ``'left'``, ``'right'``, ``'top'``, ``'bottom'``, ``'top left'``, ``'top right'``, ``'bottom left'`` and ``'bottom right'`` (default) frame : bool, optional Whether to display a frame behind the scale bar (default is ``False``) borderpad : float, optional Border padding, in fraction of the font size. Default is 0.4. pad : float, optional Padding around the scale bar, in fraction of the font size. Default is 0.5. kwargs Additional arguments are passed to :class:`mpl_toolkits.axes_grid1.anchored_artists.AnchoredSizeBar`. Notes ----- This function may be inaccurate when: - The pixel scales at the reference pixel are different from the pixel scales within the image extent (e.g., when the reference pixel is well outside of the image extent and the projection is non-linear) - The pixel scales in the two directions are very different from each other (e.g., rectangular pixels) """ if isinstance(length, u.Quantity): length = length.to(u.degree).value if ax.wcs.is_celestial: pix_scale = proj_plane_pixel_scales(ax.wcs) sx = pix_scale[0] sy = pix_scale[1] degrees_per_pixel = np.sqrt(sx * sy) else: raise ValueError("Cannot show scalebar when WCS is not celestial") length = length / degrees_per_pixel corner = CORNERS[corner] scalebar = AnchoredSizeBar( ax.transData, length, label, corner, pad=pad, borderpad=borderpad, sep=5, frameon=frame, **kwargs, ) ax.add_artist(scalebar)
0ab45f25edf8947c2a681492203f71db04d84fd14027c438f35015c55c5a32df
# Licensed under a 3-clause BSD style license - see LICENSE.rst # Note: This file includes code derived from pywcsgrid2 # # This file contains Matplotlib transformation objects (e.g. from pixel to world # coordinates, but also world-to-world). import abc import numpy as np from matplotlib.path import Path from matplotlib.transforms import Transform from astropy import units as u from astropy.coordinates import ( BaseCoordinateFrame, SkyCoord, UnitSphericalRepresentation, frame_transform_graph, ) __all__ = [ "CurvedTransform", "CoordinateTransform", "World2PixelTransform", "Pixel2WorldTransform", ] class CurvedTransform(Transform, metaclass=abc.ABCMeta): """ Abstract base class for non-affine curved transforms """ input_dims = 2 output_dims = 2 is_separable = False def transform_path(self, path): """ Transform a Matplotlib Path Parameters ---------- path : :class:`~matplotlib.path.Path` The path to transform Returns ------- path : :class:`~matplotlib.path.Path` The resulting path """ return Path(self.transform(path.vertices), path.codes) transform_path_non_affine = transform_path def transform(self, input): raise NotImplementedError("") def inverted(self): raise NotImplementedError("") class CoordinateTransform(CurvedTransform): has_inverse = True def __init__(self, input_system, output_system): super().__init__() self._input_system_name = input_system self._output_system_name = output_system if isinstance(self._input_system_name, str): frame_cls = frame_transform_graph.lookup_name(self._input_system_name) if frame_cls is None: raise ValueError(f"Frame {self._input_system_name} not found") else: self.input_system = frame_cls() elif isinstance(self._input_system_name, BaseCoordinateFrame): self.input_system = self._input_system_name else: raise TypeError( "input_system should be a WCS instance, string, or a coordinate frame" " instance" ) if isinstance(self._output_system_name, str): frame_cls = frame_transform_graph.lookup_name(self._output_system_name) if frame_cls is None: raise ValueError(f"Frame {self._output_system_name} not found") else: self.output_system = frame_cls() elif isinstance(self._output_system_name, BaseCoordinateFrame): self.output_system = self._output_system_name else: raise TypeError( "output_system should be a WCS instance, string, or a coordinate frame" " instance" ) if self.output_system == self.input_system: self.same_frames = True else: self.same_frames = False @property def same_frames(self): return self._same_frames @same_frames.setter def same_frames(self, same_frames): self._same_frames = same_frames def transform(self, input_coords): """ Transform one set of coordinates to another """ if self.same_frames: return input_coords input_coords = input_coords * u.deg x_in, y_in = input_coords[:, 0], input_coords[:, 1] c_in = SkyCoord( UnitSphericalRepresentation(x_in, y_in), frame=self.input_system ) # We often need to transform arrays that contain NaN values, and filtering # out the NaN values would have a performance hit, so instead we just pass # on all values and just ignore Numpy warnings with np.errstate(all="ignore"): c_out = c_in.transform_to(self.output_system) lon = c_out.spherical.lon.deg lat = c_out.spherical.lat.deg return np.concatenate((lon[:, np.newaxis], lat[:, np.newaxis]), axis=1) transform_non_affine = transform def inverted(self): """ Return the inverse of the transform """ return CoordinateTransform(self._output_system_name, self._input_system_name) class World2PixelTransform(CurvedTransform, metaclass=abc.ABCMeta): """ Base transformation from world to pixel coordinates """ has_inverse = True frame_in = None @property @abc.abstractmethod def input_dims(self): """ The number of input world dimensions """ @abc.abstractmethod def transform(self, world): """ Transform world to pixel coordinates. You should pass in a NxM array where N is the number of points to transform, and M is the number of dimensions. This then returns the (x, y) pixel coordinates as a Nx2 array. """ @abc.abstractmethod def inverted(self): """ Return the inverse of the transform """ class Pixel2WorldTransform(CurvedTransform, metaclass=abc.ABCMeta): """ Base transformation from pixel to world coordinates """ has_inverse = True frame_out = None @property @abc.abstractmethod def output_dims(self): """ The number of output world dimensions """ @abc.abstractmethod def transform(self, pixel): """ Transform pixel to world coordinates. You should pass in a Nx2 array of (x, y) pixel coordinates to transform to world coordinates. This will then return an NxM array where M is the number of dimensions. """ @abc.abstractmethod def inverted(self): """ Return the inverse of the transform """
a316dc354112ac651bf4c558b363a733b8a77c3d3d27e03084ecf1e1ac40c73b
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This file defines the classes used to represent a 'coordinate', which includes axes, ticks, tick labels, and grid lines. """ import warnings import numpy as np from matplotlib import rcParams from matplotlib.patches import PathPatch from matplotlib.path import Path from matplotlib.ticker import Formatter from matplotlib.transforms import Affine2D, ScaledTranslation from astropy import units as u from astropy.utils.exceptions import AstropyDeprecationWarning from .axislabels import AxisLabels from .formatter_locator import AngleFormatterLocator, ScalarFormatterLocator from .frame import EllipticalFrame, RectangularFrame1D from .grid_paths import get_gridline_path, get_lon_lat_path from .ticklabels import TickLabels from .ticks import Ticks __all__ = ["CoordinateHelper"] # Matplotlib's gridlines use Line2D, but ours use PathPatch. # Patches take a slightly different format of linestyle argument. LINES_TO_PATCHES_LINESTYLE = { "-": "solid", "--": "dashed", "-.": "dashdot", ":": "dotted", "none": "none", "None": "none", " ": "none", "": "none", } def wrap_angle_at(values, coord_wrap): # On ARM processors, np.mod emits warnings if there are NaN values in the # array, although this doesn't seem to happen on other processors. with np.errstate(invalid="ignore"): return np.mod(values - coord_wrap, 360.0) - (360.0 - coord_wrap) class CoordinateHelper: """ Helper class to control one of the coordinates in the :class:`~astropy.visualization.wcsaxes.WCSAxes`. Parameters ---------- parent_axes : :class:`~astropy.visualization.wcsaxes.WCSAxes` The axes the coordinate helper belongs to. parent_map : :class:`~astropy.visualization.wcsaxes.CoordinatesMap` The :class:`~astropy.visualization.wcsaxes.CoordinatesMap` object this coordinate belongs to. transform : `~matplotlib.transforms.Transform` The transform corresponding to this coordinate system. coord_index : int The index of this coordinate in the :class:`~astropy.visualization.wcsaxes.CoordinatesMap`. coord_type : {'longitude', 'latitude', 'scalar'} The type of this coordinate, which is used to determine the wrapping and boundary behavior of coordinates. Longitudes wrap at ``coord_wrap``, latitudes have to be in the range -90 to 90, and scalars are unbounded and do not wrap. coord_unit : `~astropy.units.Unit` The unit that this coordinate is in given the output of transform. format_unit : `~astropy.units.Unit`, optional The unit to use to display the coordinates. coord_wrap : float The angle at which the longitude wraps (defaults to 360) frame : `~astropy.visualization.wcsaxes.frame.BaseFrame` The frame of the :class:`~astropy.visualization.wcsaxes.WCSAxes`. """ def __init__( self, parent_axes=None, parent_map=None, transform=None, coord_index=None, coord_type="scalar", coord_unit=None, coord_wrap=None, frame=None, format_unit=None, default_label=None, ): # Keep a reference to the parent axes and the transform self.parent_axes = parent_axes self.parent_map = parent_map self.transform = transform self.coord_index = coord_index self.coord_unit = coord_unit self._format_unit = format_unit self.frame = frame self.default_label = default_label or "" self._auto_axislabel = True # Disable auto label for elliptical frames as it puts labels in # annoying places. if issubclass(self.parent_axes.frame_class, EllipticalFrame): self._auto_axislabel = False self.set_coord_type(coord_type, coord_wrap) # Initialize ticks self.dpi_transform = Affine2D() self.offset_transform = ScaledTranslation(0, 0, self.dpi_transform) self.ticks = Ticks(transform=parent_axes.transData + self.offset_transform) # Initialize tick labels self.ticklabels = TickLabels( self.frame, transform=None, # display coordinates figure=parent_axes.get_figure(), ) self.ticks.display_minor_ticks(rcParams["xtick.minor.visible"]) self.minor_frequency = 5 # Initialize axis labels self.axislabels = AxisLabels( self.frame, transform=None, # display coordinates figure=parent_axes.get_figure(), ) # Initialize container for the grid lines self.grid_lines = [] # Initialize grid style. Take defaults from matplotlib.rcParams. # Based on matplotlib.axis.YTick._get_gridline. self.grid_lines_kwargs = { "visible": False, "facecolor": "none", "edgecolor": rcParams["grid.color"], "linestyle": LINES_TO_PATCHES_LINESTYLE[rcParams["grid.linestyle"]], "linewidth": rcParams["grid.linewidth"], "alpha": rcParams["grid.alpha"], "transform": self.parent_axes.transData, } def grid(self, draw_grid=True, grid_type=None, **kwargs): """ Plot grid lines for this coordinate. Standard matplotlib appearance options (color, alpha, etc.) can be passed as keyword arguments. Parameters ---------- draw_grid : bool Whether to show the gridlines grid_type : {'lines', 'contours'} Whether to plot the contours by determining the grid lines in world coordinates and then plotting them in world coordinates (``'lines'``) or by determining the world coordinates at many positions in the image and then drawing contours (``'contours'``). The first is recommended for 2-d images, while for 3-d (or higher dimensional) cubes, the ``'contours'`` option is recommended. By default, 'lines' is used if the transform has an inverse, otherwise 'contours' is used. """ if grid_type == "lines" and not self.transform.has_inverse: raise ValueError( "The specified transform has no inverse, so the " "grid cannot be drawn using grid_type='lines'" ) if grid_type is None: grid_type = "lines" if self.transform.has_inverse else "contours" if grid_type in ("lines", "contours"): self._grid_type = grid_type else: raise ValueError("grid_type should be 'lines' or 'contours'") if "color" in kwargs: kwargs["edgecolor"] = kwargs.pop("color") self.grid_lines_kwargs.update(kwargs) if self.grid_lines_kwargs["visible"]: if not draw_grid: self.grid_lines_kwargs["visible"] = False else: self.grid_lines_kwargs["visible"] = True def set_coord_type(self, coord_type, coord_wrap=None): """ Set the coordinate type for the axis. Parameters ---------- coord_type : str One of 'longitude', 'latitude' or 'scalar' coord_wrap : float, optional The value to wrap at for angular coordinates """ self.coord_type = coord_type if coord_type == "longitude" and coord_wrap is None: self.coord_wrap = 360 elif coord_type != "longitude" and coord_wrap is not None: raise NotImplementedError( "coord_wrap is not yet supported for non-longitude coordinates" ) else: self.coord_wrap = coord_wrap # Initialize tick formatter/locator if coord_type == "scalar": self._coord_scale_to_deg = None self._formatter_locator = ScalarFormatterLocator(unit=self.coord_unit) elif coord_type in ["longitude", "latitude"]: if self.coord_unit is u.deg: self._coord_scale_to_deg = None else: self._coord_scale_to_deg = self.coord_unit.to(u.deg) self._formatter_locator = AngleFormatterLocator( unit=self.coord_unit, format_unit=self._format_unit ) else: raise ValueError( "coord_type should be one of 'scalar', 'longitude', or 'latitude'" ) def set_major_formatter(self, formatter): """ Set the formatter to use for the major tick labels. Parameters ---------- formatter : str or `~matplotlib.ticker.Formatter` The format or formatter to use. """ if isinstance(formatter, Formatter): raise NotImplementedError() # figure out how to swap out formatter elif isinstance(formatter, str): self._formatter_locator.format = formatter else: raise TypeError("formatter should be a string or a Formatter instance") def format_coord(self, value, format="auto"): """ Given the value of a coordinate, will format it according to the format of the formatter_locator. Parameters ---------- value : float The value to format format : {'auto', 'ascii', 'latex'}, optional The format to use - by default the formatting will be adjusted depending on whether Matplotlib is using LaTeX or MathTex. To get plain ASCII strings, use format='ascii'. """ if not hasattr(self, "_fl_spacing"): return "" # _update_ticks has not been called yet fl = self._formatter_locator if isinstance(fl, AngleFormatterLocator): # Convert to degrees if needed if self._coord_scale_to_deg is not None: value *= self._coord_scale_to_deg if self.coord_type == "longitude": value = wrap_angle_at(value, self.coord_wrap) value = value * u.degree value = value.to_value(fl._unit) spacing = self._fl_spacing string = fl.formatter(values=[value] * fl._unit, spacing=spacing, format=format) return string[0] def set_separator(self, separator): """ Set the separator to use for the angle major tick labels. Parameters ---------- separator : str or tuple or None The separator between numbers in sexagesimal representation. Can be either a string or a tuple (or `None` for default). """ if not (self._formatter_locator.__class__ == AngleFormatterLocator): raise TypeError("Separator can only be specified for angle coordinates") if isinstance(separator, (str, tuple)) or separator is None: self._formatter_locator.sep = separator else: raise TypeError("separator should be a string, a tuple, or None") def set_format_unit(self, unit, decimal=None, show_decimal_unit=True): """ Set the unit for the major tick labels. Parameters ---------- unit : class:`~astropy.units.Unit` The unit to which the tick labels should be converted to. decimal : bool, optional Whether to use decimal formatting. By default this is `False` for degrees or hours (which therefore use sexagesimal formatting) and `True` for all other units. show_decimal_unit : bool, optional Whether to include units when in decimal mode. """ self._formatter_locator.format_unit = u.Unit(unit) self._formatter_locator.decimal = decimal self._formatter_locator.show_decimal_unit = show_decimal_unit def get_format_unit(self): """ Get the unit for the major tick labels. """ return self._formatter_locator.format_unit def set_ticks( self, values=None, spacing=None, number=None, size=None, width=None, color=None, alpha=None, direction=None, exclude_overlapping=None, ): """ Set the location and properties of the ticks. At most one of the options from ``values``, ``spacing``, or ``number`` can be specified. Parameters ---------- values : iterable, optional The coordinate values at which to show the ticks. spacing : float, optional The spacing between ticks. number : float, optional The approximate number of ticks shown. size : float, optional The length of the ticks in points color : str or tuple, optional A valid Matplotlib color for the ticks alpha : float, optional The alpha value (transparency) for the ticks. direction : {'in','out'}, optional Whether the ticks should point inwards or outwards. """ if sum([values is None, spacing is None, number is None]) < 2: raise ValueError( "At most one of values, spacing, or number should be specified" ) if values is not None: self._formatter_locator.values = values elif spacing is not None: self._formatter_locator.spacing = spacing elif number is not None: self._formatter_locator.number = number if size is not None: self.ticks.set_ticksize(size) if width is not None: self.ticks.set_linewidth(width) if color is not None: self.ticks.set_color(color) if alpha is not None: self.ticks.set_alpha(alpha) if direction is not None: if direction in ("in", "out"): self.ticks.set_tick_out(direction == "out") else: raise ValueError("direction should be 'in' or 'out'") if exclude_overlapping is not None: warnings.warn( "exclude_overlapping= should be passed to " "set_ticklabel instead of set_ticks", AstropyDeprecationWarning, ) self.ticklabels.set_exclude_overlapping(exclude_overlapping) def set_ticks_position(self, position): """ Set where ticks should appear Parameters ---------- position : str The axes on which the ticks for this coordinate should appear. Should be a string containing zero or more of ``'b'``, ``'t'``, ``'l'``, ``'r'``. For example, ``'lb'`` will lead the ticks to be shown on the left and bottom axis. """ self.ticks.set_visible_axes(position) def set_ticks_visible(self, visible): """ Set whether ticks are visible or not. Parameters ---------- visible : bool The visibility of ticks. Setting as ``False`` will hide ticks along this coordinate. """ self.ticks.set_visible(visible) def set_ticklabel( self, color=None, size=None, pad=None, exclude_overlapping=None, **kwargs ): """ Set the visual properties for the tick labels. Parameters ---------- size : float, optional The size of the ticks labels in points color : str or tuple, optional A valid Matplotlib color for the tick labels pad : float, optional Distance in points between tick and label. exclude_overlapping : bool, optional Whether to exclude tick labels that overlap over each other. **kwargs Other keyword arguments are passed to :class:`matplotlib.text.Text`. """ if size is not None: self.ticklabels.set_size(size) if color is not None: self.ticklabels.set_color(color) if pad is not None: self.ticklabels.set_pad(pad) if exclude_overlapping is not None: self.ticklabels.set_exclude_overlapping(exclude_overlapping) self.ticklabels.set(**kwargs) def set_ticklabel_position(self, position): """ Set where tick labels should appear Parameters ---------- position : str The axes on which the tick labels for this coordinate should appear. Should be a string containing zero or more of ``'b'``, ``'t'``, ``'l'``, ``'r'``. For example, ``'lb'`` will lead the tick labels to be shown on the left and bottom axis. """ self.ticklabels.set_visible_axes(position) def set_ticklabel_visible(self, visible): """ Set whether the tick labels are visible or not. Parameters ---------- visible : bool The visibility of ticks. Setting as ``False`` will hide this coordinate's tick labels. """ self.ticklabels.set_visible(visible) def set_axislabel(self, text, minpad=1, **kwargs): """ Set the text and optionally visual properties for the axis label. Parameters ---------- text : str The axis label text. minpad : float, optional The padding for the label in terms of axis label font size. **kwargs Keywords are passed to :class:`matplotlib.text.Text`. These can include keywords to set the ``color``, ``size``, ``weight``, and other text properties. """ fontdict = kwargs.pop("fontdict", None) # NOTE: When using plt.xlabel/plt.ylabel, minpad can get set explicitly # to None so we need to make sure that in that case we change to a # default numerical value. if minpad is None: minpad = 1 self.axislabels.set_text(text) self.axislabels.set_minpad(minpad) self.axislabels.set(**kwargs) if fontdict is not None: self.axislabels.update(fontdict) def get_axislabel(self): """ Get the text for the axis label Returns ------- label : str The axis label """ return self.axislabels.get_text() def set_auto_axislabel(self, auto_label): """ Render default axis labels if no explicit label is provided. Parameters ---------- auto_label : `bool` `True` if default labels will be rendered. """ self._auto_axislabel = bool(auto_label) def get_auto_axislabel(self): """ Render default axis labels if no explicit label is provided. Returns ------- auto_axislabel : `bool` `True` if default labels will be rendered. """ return self._auto_axislabel def _get_default_axislabel(self): unit = self.get_format_unit() or self.coord_unit if not unit or unit is u.one or self.coord_type in ("longitude", "latitude"): return f"{self.default_label}" else: return f"{self.default_label} [{unit:latex}]" def set_axislabel_position(self, position): """ Set where axis labels should appear Parameters ---------- position : str The axes on which the axis label for this coordinate should appear. Should be a string containing zero or more of ``'b'``, ``'t'``, ``'l'``, ``'r'``. For example, ``'lb'`` will lead the axis label to be shown on the left and bottom axis. """ self.axislabels.set_visible_axes(position) def set_axislabel_visibility_rule(self, rule): """ Set the rule used to determine when the axis label is drawn. Parameters ---------- rule : str If the rule is 'always' axis labels will always be drawn on the axis. If the rule is 'ticks' the label will only be drawn if ticks were drawn on that axis. If the rule is 'labels' the axis label will only be drawn if tick labels were drawn on that axis. """ self.axislabels.set_visibility_rule(rule) def get_axislabel_visibility_rule(self, rule): """ Get the rule used to determine when the axis label is drawn. """ return self.axislabels.get_visibility_rule() @property def locator(self): return self._formatter_locator.locator @property def formatter(self): return self._formatter_locator.formatter def _draw_grid(self, renderer): renderer.open_group("grid lines") self._update_ticks() if self.grid_lines_kwargs["visible"]: if isinstance(self.frame, RectangularFrame1D): self._update_grid_lines_1d() else: if self._grid_type == "lines": self._update_grid_lines() else: self._update_grid_contour() if self._grid_type == "lines": frame_patch = self.frame.patch for path in self.grid_lines: p = PathPatch(path, **self.grid_lines_kwargs) p.set_clip_path(frame_patch) p.draw(renderer) elif self._grid is not None: for line in self._grid.collections: line.set(**self.grid_lines_kwargs) line.draw(renderer) renderer.close_group("grid lines") def _draw_ticks(self, renderer, bboxes, ticklabels_bbox): """ Draw all ticks and ticklabels. """ renderer.open_group("ticks") self.ticks.draw(renderer) self.ticklabels.draw( renderer, bboxes=bboxes, ticklabels_bbox=ticklabels_bbox, tick_out_size=self.ticks.out_size, ) renderer.close_group("ticks") def _draw_axislabels(self, renderer, bboxes, ticklabels_bbox, visible_ticks): # Render the default axis label if no axis label is set. if self._auto_axislabel and not self.get_axislabel(): self.set_axislabel(self._get_default_axislabel()) renderer.open_group("axis labels") self.axislabels.draw( renderer, bboxes=bboxes, ticklabels_bbox=ticklabels_bbox, coord_ticklabels_bbox=ticklabels_bbox[self], ticks_locs=self.ticks.ticks_locs, visible_ticks=visible_ticks, ) renderer.close_group("axis labels") def _update_ticks(self): if self.coord_index is None: return # TODO: this method should be optimized for speed # Here we determine the location and rotation of all the ticks. For # each axis, we can check the intersections for the specific # coordinate and once we have the tick positions, we can use the WCS # to determine the rotations. # Find the range of coordinates in all directions coord_range = self.parent_map.get_coord_range() # First find the ticks we want to show tick_world_coordinates, self._fl_spacing = self.locator( *coord_range[self.coord_index] ) if self.ticks.get_display_minor_ticks(): minor_ticks_w_coordinates = self._formatter_locator.minor_locator( self._fl_spacing, self.get_minor_frequency(), *coord_range[self.coord_index], ) # We want to allow non-standard rectangular frames, so we just rely on # the parent axes to tell us what the bounding frame is. from . import conf frame = self.frame.sample(conf.frame_boundary_samples) self.ticks.clear() self.ticklabels.clear() self.lblinfo = [] self.lbl_world = [] # Look up parent axes' transform from data to figure coordinates. # # See: # https://matplotlib.org/stable/tutorials/advanced/transforms_tutorial.html#the-transformation-pipeline transData = self.parent_axes.transData invertedTransLimits = transData.inverted() for axis, spine in frame.items(): if spine.data.size == 0: continue if not isinstance(self.frame, RectangularFrame1D): # Determine tick rotation in display coordinates and compare to # the normal angle in display coordinates. pixel0 = spine.data world0 = spine.world[:, self.coord_index] if np.isnan(world0).all(): continue axes0 = transData.transform(pixel0) # Advance 2 pixels in figure coordinates pixel1 = axes0.copy() pixel1[:, 0] += 2.0 pixel1 = invertedTransLimits.transform(pixel1) with np.errstate(invalid="ignore"): world1 = self.transform.transform(pixel1)[:, self.coord_index] # Advance 2 pixels in figure coordinates pixel2 = axes0.copy() pixel2[:, 1] += 2.0 if self.frame.origin == "lower" else -2.0 pixel2 = invertedTransLimits.transform(pixel2) with np.errstate(invalid="ignore"): world2 = self.transform.transform(pixel2)[:, self.coord_index] dx = world1 - world0 dy = world2 - world0 # Rotate by 90 degrees dx, dy = -dy, dx if self.coord_type == "longitude": if self._coord_scale_to_deg is not None: dx *= self._coord_scale_to_deg dy *= self._coord_scale_to_deg # Here we wrap at 180 not self.coord_wrap since we want to # always ensure abs(dx) < 180 and abs(dy) < 180 dx = wrap_angle_at(dx, 180.0) dy = wrap_angle_at(dy, 180.0) tick_angle = np.degrees(np.arctan2(dy, dx)) normal_angle_full = np.hstack( [spine.normal_angle, spine.normal_angle[-1]] ) with np.errstate(invalid="ignore"): reset = ((normal_angle_full - tick_angle) % 360 > 90.0) & ( (tick_angle - normal_angle_full) % 360 > 90.0 ) tick_angle[reset] -= 180.0 else: rotation = 90 if axis == "b" else -90 tick_angle = np.zeros((conf.frame_boundary_samples,)) + rotation # We find for each interval the starting and ending coordinate, # ensuring that we take wrapping into account correctly for # longitudes. w1 = spine.world[:-1, self.coord_index] w2 = spine.world[1:, self.coord_index] if self.coord_type == "longitude": if self._coord_scale_to_deg is not None: w1 = w1 * self._coord_scale_to_deg w2 = w2 * self._coord_scale_to_deg w1 = wrap_angle_at(w1, self.coord_wrap) w2 = wrap_angle_at(w2, self.coord_wrap) with np.errstate(invalid="ignore"): w1[w2 - w1 > 180.0] += 360 w2[w1 - w2 > 180.0] += 360 if self._coord_scale_to_deg is not None: w1 = w1 / self._coord_scale_to_deg w2 = w2 / self._coord_scale_to_deg # For longitudes, we need to check ticks as well as ticks + 360, # since the above can produce pairs such as 359 to 361 or 0.5 to # 1.5, both of which would match a tick at 0.75. Otherwise we just # check the ticks determined above. self._compute_ticks(tick_world_coordinates, spine, axis, w1, w2, tick_angle) if self.ticks.get_display_minor_ticks(): self._compute_ticks( minor_ticks_w_coordinates, spine, axis, w1, w2, tick_angle, ticks="minor", ) # format tick labels, add to scene text = self.formatter( self.lbl_world * tick_world_coordinates.unit, spacing=self._fl_spacing ) for kwargs, txt in zip(self.lblinfo, text): self.ticklabels.add(text=txt, **kwargs) def _compute_ticks( self, tick_world_coordinates, spine, axis, w1, w2, tick_angle, ticks="major" ): if self.coord_type == "longitude": tick_world_coordinates_values = tick_world_coordinates.to_value(u.deg) tick_world_coordinates_values = np.hstack( [tick_world_coordinates_values, tick_world_coordinates_values + 360] ) tick_world_coordinates_values *= u.deg.to(self.coord_unit) else: tick_world_coordinates_values = tick_world_coordinates.to_value( self.coord_unit ) for t in tick_world_coordinates_values: # Find steps where a tick is present. We have to check # separately for the case where the tick falls exactly on the # frame points, otherwise we'll get two matches, one for w1 and # one for w2. with np.errstate(invalid="ignore"): intersections = np.hstack( [ np.nonzero((t - w1) == 0)[0], np.nonzero(((t - w1) * (t - w2)) < 0)[0], ] ) # But we also need to check for intersection with the last w2 if t - w2[-1] == 0: intersections = np.append(intersections, len(w2) - 1) # Loop over ticks, and find exact pixel coordinates by linear # interpolation for imin in intersections: imax = imin + 1 if np.allclose(w1[imin], w2[imin], rtol=1.0e-13, atol=1.0e-13): continue # tick is exactly aligned with frame else: frac = (t - w1[imin]) / (w2[imin] - w1[imin]) x_data_i = spine.data[imin, 0] + frac * ( spine.data[imax, 0] - spine.data[imin, 0] ) y_data_i = spine.data[imin, 1] + frac * ( spine.data[imax, 1] - spine.data[imin, 1] ) delta_angle = tick_angle[imax] - tick_angle[imin] if delta_angle > 180.0: delta_angle -= 360.0 elif delta_angle < -180.0: delta_angle += 360.0 angle_i = tick_angle[imin] + frac * delta_angle if self.coord_type == "longitude": if self._coord_scale_to_deg is not None: t *= self._coord_scale_to_deg world = wrap_angle_at(t, self.coord_wrap) if self._coord_scale_to_deg is not None: world /= self._coord_scale_to_deg else: world = t if ticks == "major": self.ticks.add( axis=axis, pixel=(x_data_i, y_data_i), world=world, angle=angle_i, axis_displacement=imin + frac, ) # store information to pass to ticklabels.add # it's faster to format many ticklabels at once outside # of the loop self.lblinfo.append( dict( axis=axis, data=(x_data_i, y_data_i), world=world, angle=spine.normal_angle[imin], axis_displacement=imin + frac, ) ) self.lbl_world.append(world) else: self.ticks.add_minor( minor_axis=axis, minor_pixel=(x_data_i, y_data_i), minor_world=world, minor_angle=angle_i, minor_axis_displacement=imin + frac, ) def display_minor_ticks(self, display_minor_ticks): """ Display minor ticks for this coordinate. Parameters ---------- display_minor_ticks : bool Whether or not to display minor ticks. """ self.ticks.display_minor_ticks(display_minor_ticks) def get_minor_frequency(self): return self.minor_frequency def set_minor_frequency(self, frequency): """ Set the frequency of minor ticks per major ticks. Parameters ---------- frequency : int The number of minor ticks per major ticks. """ self.minor_frequency = frequency def _update_grid_lines_1d(self): if self.coord_index is None: return x_ticks_pos = [a[0] for a in self.ticks.pixel["b"]] ymin, ymax = self.parent_axes.get_ylim() self.grid_lines = [] for x_coord in x_ticks_pos: pixel = [[x_coord, ymin], [x_coord, ymax]] self.grid_lines.append(Path(pixel)) def _update_grid_lines(self): # For 3-d WCS with a correlated third axis, the *proper* way of # drawing a grid should be to find the world coordinates of all pixels # and drawing contours. What we are doing here assumes that we can # define the grid lines with just two of the coordinates (and # therefore assumes that the other coordinates are fixed and set to # the value in the slice). Here we basically assume that if the WCS # had a third axis, it has been abstracted away in the transformation. if self.coord_index is None: return coord_range = self.parent_map.get_coord_range() tick_world_coordinates, spacing = self.locator(*coord_range[self.coord_index]) tick_world_coordinates_values = tick_world_coordinates.to_value(self.coord_unit) n_coord = len(tick_world_coordinates_values) from . import conf n_samples = conf.grid_samples xy_world = np.zeros((n_samples * n_coord, 2)) self.grid_lines = [] for iw, w in enumerate(tick_world_coordinates_values): subset = slice(iw * n_samples, (iw + 1) * n_samples) if self.coord_index == 0: xy_world[subset, 0] = np.repeat(w, n_samples) xy_world[subset, 1] = np.linspace( coord_range[1][0], coord_range[1][1], n_samples ) else: xy_world[subset, 0] = np.linspace( coord_range[0][0], coord_range[0][1], n_samples ) xy_world[subset, 1] = np.repeat(w, n_samples) # We now convert all the world coordinates to pixel coordinates in a # single go rather than doing this in the gridline to path conversion # to fully benefit from vectorized coordinate transformations. # Transform line to pixel coordinates pixel = self.transform.inverted().transform(xy_world) # Create round-tripped values for checking xy_world_round = self.transform.transform(pixel) for iw in range(n_coord): subset = slice(iw * n_samples, (iw + 1) * n_samples) self.grid_lines.append( self._get_gridline( xy_world[subset], pixel[subset], xy_world_round[subset] ) ) def add_tickable_gridline(self, name, constant): """ Define a gridline that can be used for ticks and labels. This gridline is not itself drawn, but instead can be specified in calls to methods such as :meth:`~astropy.visualization.wcsaxes.coordinate_helpers.CoordinateHelper.set_ticklabel_position` for drawing ticks and labels. Since the gridline has a constant value in this coordinate, and thus would not have any ticks or labels for the same coordinate, the call to :meth:`~astropy.visualization.wcsaxes.coordinate_helpers.CoordinateHelper.set_ticklabel_position` would typically be made on the complementary coordinate. Parameters ---------- name : str The name for the gridline, usually a single character, but can be longer constant : `~astropy.units.Quantity` The constant coordinate value of the gridline Notes ----- A limitation is that the tickable part of the gridline must be contiguous. If the gridline consists of more than one disconnected segment within the plot extent, only one of those segments will be made tickable. """ if self.coord_index is None: return if name in self.frame: raise ValueError(f"The frame already has a spine with the name '{name}'") coord_range = self.parent_map.get_coord_range() constant = constant.to_value(self.coord_unit) from . import conf n_samples = conf.grid_samples # See comment in _update_grid_lines() about a WCS with more than 2 axes xy_world = np.zeros((n_samples, 2)) xy_world[:, self.coord_index] = np.repeat(constant, n_samples) # If the complementary coordinate is longitude, we attempt to close the gridline # If such closure is a discontinuity, it will be filtered out later if self.parent_map[1 - self.coord_index].coord_type == "longitude": xy_world[:-1, 1 - self.coord_index] = np.linspace( coord_range[1 - self.coord_index][0], coord_range[1 - self.coord_index][1], n_samples - 1, ) xy_world[-1, 1 - self.coord_index] = coord_range[1 - self.coord_index][0] else: xy_world[:, 1 - self.coord_index] = np.linspace( coord_range[1 - self.coord_index][0], coord_range[1 - self.coord_index][1], n_samples, ) # Transform line to pixel coordinates pixel = self.transform.inverted().transform(xy_world) # Create round-tripped values for checking xy_world_round = self.transform.transform(pixel) # Get the path of the gridline, which masks hidden parts gridline = self._get_gridline(xy_world, pixel, xy_world_round) def data_for_spine(spine): vertices = gridline.vertices.copy() codes = gridline.codes.copy() # Retain the parts of the gridline within the rectangular plot bounds. # We ought to use the potentially non-rectangular plot frame, but # calculating that patch requires updating all spines first, which is a # catch-22. xmin, xmax = spine.parent_axes.get_xlim() ymin, ymax = spine.parent_axes.get_ylim() keep = ( (vertices[:, 0] >= xmin) & (vertices[:, 0] <= xmax) & (vertices[:, 1] >= ymin) & (vertices[:, 1] <= ymax) ) codes[~keep] = Path.MOVETO codes[1:][~keep[:-1]] = Path.MOVETO # We isolate the last segment (the last run of LINETOs), which must be preceded # by at least one MOVETO and may be succeeded by MOVETOs. # We have to account for longitude wrapping as well. # Bail out if there is no visible segment lineto = np.flatnonzero(codes == Path.LINETO) if np.size(lineto) == 0: return np.zeros((0, 2)) # Find the start of the last segment (the last MOVETO before the LINETOs) last_segment = np.flatnonzero(codes[: lineto[-1]] == Path.MOVETO)[-1] # Double the gridline if it is closed (i.e., spans all longitudes) if vertices[0, 0] == vertices[-1, 0] and vertices[0, 1] == vertices[-1, 1]: codes = np.concatenate([codes, codes[1:]]) vertices = np.vstack([vertices, vertices[1:, :]]) # Stop the last segment before any trailing MOVETOs moveto = np.flatnonzero(codes[last_segment + 1 :] == Path.MOVETO) if np.size(moveto) > 0: return vertices[last_segment : last_segment + moveto[0] + 1, :] else: return vertices[last_segment:n_samples, :] self.frame[name] = self.frame.spine_class( self.frame.parent_axes, self.frame.transform, data_func=data_for_spine ) def _get_gridline(self, xy_world, pixel, xy_world_round): if self.coord_type == "scalar": return get_gridline_path(xy_world, pixel) else: return get_lon_lat_path(xy_world, pixel, xy_world_round) def _clear_grid_contour(self): if hasattr(self, "_grid") and self._grid: for line in self._grid.collections: line.remove() def _update_grid_contour(self): if self.coord_index is None: return xmin, xmax = self.parent_axes.get_xlim() ymin, ymax = self.parent_axes.get_ylim() from . import conf res = conf.contour_grid_samples x, y = np.meshgrid(np.linspace(xmin, xmax, res), np.linspace(ymin, ymax, res)) pixel = np.array([x.ravel(), y.ravel()]).T world = self.transform.transform(pixel) field = world[:, self.coord_index].reshape(res, res).T coord_range = self.parent_map.get_coord_range() tick_world_coordinates, spacing = self.locator(*coord_range[self.coord_index]) # tick_world_coordinates is a Quantities array and we only needs its values tick_world_coordinates_values = tick_world_coordinates.value if self.coord_type == "longitude": # Find biggest gap in tick_world_coordinates and wrap in middle # For now just assume spacing is equal, so any mid-point will do mid = 0.5 * ( tick_world_coordinates_values[0] + tick_world_coordinates_values[1] ) field = wrap_angle_at(field, mid) tick_world_coordinates_values = wrap_angle_at( tick_world_coordinates_values, mid ) # Replace wraps by NaN with np.errstate(invalid="ignore"): reset = (np.abs(np.diff(field[:, :-1], axis=0)) > 180) | ( np.abs(np.diff(field[:-1, :], axis=1)) > 180 ) field[:-1, :-1][reset] = np.nan field[1:, :-1][reset] = np.nan field[:-1, 1:][reset] = np.nan field[1:, 1:][reset] = np.nan if len(tick_world_coordinates_values) > 0: with np.errstate(invalid="ignore"): self._grid = self.parent_axes.contour( x, y, field.transpose(), levels=np.sort(tick_world_coordinates_values), ) else: self._grid = None def tick_params(self, which="both", **kwargs): """ Method to set the tick and tick label parameters in the same way as the :meth:`~matplotlib.axes.Axes.tick_params` method in Matplotlib. This is provided for convenience, but the recommended API is to use :meth:`~astropy.visualization.wcsaxes.CoordinateHelper.set_ticks`, :meth:`~astropy.visualization.wcsaxes.CoordinateHelper.set_ticklabel`, :meth:`~astropy.visualization.wcsaxes.CoordinateHelper.set_ticks_position`, :meth:`~astropy.visualization.wcsaxes.CoordinateHelper.set_ticklabel_position`, and :meth:`~astropy.visualization.wcsaxes.CoordinateHelper.grid`. Parameters ---------- which : {'both', 'major', 'minor'}, optional Which ticks to apply the settings to. By default, setting are applied to both major and minor ticks. Note that if ``'minor'`` is specified, only the length of the ticks can be set currently. direction : {'in', 'out'}, optional Puts ticks inside the axes, or outside the axes. length : float, optional Tick length in points. width : float, optional Tick width in points. color : color, optional Tick color (accepts any valid Matplotlib color) pad : float, optional Distance in points between tick and label. labelsize : float or str, optional Tick label font size in points or as a string (e.g., 'large'). labelcolor : color, optional Tick label color (accepts any valid Matplotlib color) colors : color, optional Changes the tick color and the label color to the same value (accepts any valid Matplotlib color). bottom, top, left, right : bool, optional Where to draw the ticks. Note that this will not work correctly if the frame is not rectangular. labelbottom, labeltop, labelleft, labelright : bool, optional Where to draw the tick labels. Note that this will not work correctly if the frame is not rectangular. grid_color : color, optional The color of the grid lines (accepts any valid Matplotlib color). grid_alpha : float, optional Transparency of grid lines: 0 (transparent) to 1 (opaque). grid_linewidth : float, optional Width of grid lines in points. grid_linestyle : str, optional The style of the grid lines (accepts any valid Matplotlib line style). """ # First do some sanity checking on the keyword arguments # colors= is a fallback default for color and labelcolor if "colors" in kwargs: if "color" not in kwargs: kwargs["color"] = kwargs["colors"] if "labelcolor" not in kwargs: kwargs["labelcolor"] = kwargs["colors"] # The only property that can be set *specifically* for minor ticks is # the length. In future we could consider having a separate Ticks instance # for minor ticks so that e.g. the color can be set separately. if which == "minor": if len(set(kwargs) - {"length"}) > 0: raise ValueError( "When setting which='minor', the only " "property that can be set at the moment is " "'length' (the minor tick length)" ) else: if "length" in kwargs: self.ticks.set_minor_ticksize(kwargs["length"]) return # At this point, we can now ignore the 'which' argument. # Set the tick arguments self.set_ticks( size=kwargs.get("length"), width=kwargs.get("width"), color=kwargs.get("color"), direction=kwargs.get("direction"), ) # Set the tick position position = None for arg in ("bottom", "left", "top", "right"): if arg in kwargs and position is None: position = "" if kwargs.get(arg): position += arg[0] if position is not None: self.set_ticks_position(position) # Set the tick label arguments. self.set_ticklabel( color=kwargs.get("labelcolor"), size=kwargs.get("labelsize"), pad=kwargs.get("pad"), ) # Set the tick label position position = None for arg in ("bottom", "left", "top", "right"): if "label" + arg in kwargs and position is None: position = "" if kwargs.get("label" + arg): position += arg[0] if position is not None: self.set_ticklabel_position(position) # And the grid settings if "grid_color" in kwargs: self.grid_lines_kwargs["edgecolor"] = kwargs["grid_color"] if "grid_alpha" in kwargs: self.grid_lines_kwargs["alpha"] = kwargs["grid_alpha"] if "grid_linewidth" in kwargs: self.grid_lines_kwargs["linewidth"] = kwargs["grid_linewidth"] if "grid_linestyle" in kwargs: if kwargs["grid_linestyle"] in LINES_TO_PATCHES_LINESTYLE: self.grid_lines_kwargs["linestyle"] = LINES_TO_PATCHES_LINESTYLE[ kwargs["grid_linestyle"] ] else: self.grid_lines_kwargs["linestyle"] = kwargs["grid_linestyle"]
cd16f439257dbb42260038c532aa60921f1bebe83a88dfa6ed8d42275db4cd83
# Licensed under a 3-clause BSD style license - see LICENSE.rst # This file defines the AngleFormatterLocator class which is a class that # provides both a method for a formatter and one for a locator, for a given # label spacing. The advantage of keeping the two connected is that we need to # make sure that the formatter can correctly represent the spacing requested and # vice versa. For example, a format of dd:mm cannot work with a tick spacing # that is not a multiple of one arcminute. import re import warnings import numpy as np from matplotlib import rcParams from astropy import units as u from astropy.coordinates import Angle from astropy.units import UnitsError DMS_RE = re.compile("^dd(:mm(:ss(.(s)+)?)?)?$") HMS_RE = re.compile("^hh(:mm(:ss(.(s)+)?)?)?$") DDEC_RE = re.compile("^d(.(d)+)?$") DMIN_RE = re.compile("^m(.(m)+)?$") DSEC_RE = re.compile("^s(.(s)+)?$") SCAL_RE = re.compile("^x(.(x)+)?$") # Units with custom representations - see the note where it is used inside # AngleFormatterLocator.formatter for more details. CUSTOM_UNITS = { u.degree: u.def_unit( "custom_degree", represents=u.degree, format={"generic": "\xb0", "latex": r"^\circ", "unicode": "°"}, ), u.arcmin: u.def_unit( "custom_arcmin", represents=u.arcmin, format={"generic": "'", "latex": r"^\prime", "unicode": "′"}, ), u.arcsec: u.def_unit( "custom_arcsec", represents=u.arcsec, format={"generic": '"', "latex": r"^{\prime\prime}", "unicode": "″"}, ), u.hourangle: u.def_unit( "custom_hourangle", represents=u.hourangle, format={ "generic": "h", "latex": r"^{\mathrm{h}}", "unicode": r"$\mathregular{^h}$", }, ), } class BaseFormatterLocator: """ A joint formatter/locator """ def __init__( self, values=None, number=None, spacing=None, format=None, unit=None, format_unit=None, ): if len([x for x in (values, number, spacing) if x is None]) < 2: raise ValueError("At most one of values/number/spacing can be specified") self._unit = unit self._format_unit = format_unit or unit if values is not None: self.values = values elif number is not None: self.number = number elif spacing is not None: self.spacing = spacing else: self.number = 5 self.format = format @property def values(self): return self._values @values.setter def values(self, values): if not isinstance(values, u.Quantity) or (not values.ndim == 1): raise TypeError("values should be an astropy.units.Quantity array") if not values.unit.is_equivalent(self._unit): raise UnitsError( "value should be in units compatible with " "coordinate units ({}) but found {}".format(self._unit, values.unit) ) self._number = None self._spacing = None self._values = values @property def number(self): return self._number @number.setter def number(self, number): self._number = number self._spacing = None self._values = None @property def spacing(self): return self._spacing @spacing.setter def spacing(self, spacing): self._number = None self._spacing = spacing self._values = None def minor_locator(self, spacing, frequency, value_min, value_max): if self.values is not None: return [] * self._unit minor_spacing = spacing.value / frequency values = self._locate_values(value_min, value_max, minor_spacing) index = np.where((values % frequency) == 0) index = index[0][0] values = np.delete(values, np.s_[index::frequency]) return values * minor_spacing * self._unit @property def format_unit(self): return self._format_unit @format_unit.setter def format_unit(self, unit): self._format_unit = u.Unit(unit) @staticmethod def _locate_values(value_min, value_max, spacing): imin = np.ceil(value_min / spacing) imax = np.floor(value_max / spacing) values = np.arange(imin, imax + 1, dtype=int) return values class AngleFormatterLocator(BaseFormatterLocator): """ A joint formatter/locator """ def __init__( self, values=None, number=None, spacing=None, format=None, unit=None, decimal=None, format_unit=None, show_decimal_unit=True, ): if unit is None: unit = u.degree if format_unit is None: format_unit = unit if format_unit not in (u.degree, u.hourangle, u.hour): if decimal is False: raise UnitsError( "Units should be degrees or hours when using non-decimal" " (sexagesimal) mode" ) self._decimal = decimal self._sep = None self.show_decimal_unit = show_decimal_unit super().__init__( values=values, number=number, spacing=spacing, format=format, unit=unit, format_unit=format_unit, ) @property def decimal(self): decimal = self._decimal if self.format_unit not in (u.degree, u.hourangle, u.hour): if self._decimal is None: decimal = True elif self._decimal is False: raise UnitsError( "Units should be degrees or hours when using non-decimal" " (sexagesimal) mode" ) elif self._decimal is None: decimal = False return decimal @decimal.setter def decimal(self, value): self._decimal = value @property def spacing(self): return self._spacing @spacing.setter def spacing(self, spacing): if spacing is not None and ( not isinstance(spacing, u.Quantity) or spacing.unit.physical_type != "angle" ): raise TypeError( "spacing should be an astropy.units.Quantity " "instance with units of angle" ) self._number = None self._spacing = spacing self._values = None @property def sep(self): return self._sep @sep.setter def sep(self, separator): self._sep = separator @property def format(self): return self._format @format.setter def format(self, value): self._format = value if value is None: return if DMS_RE.match(value) is not None: self._decimal = False self._format_unit = u.degree if "." in value: self._precision = len(value) - value.index(".") - 1 self._fields = 3 else: self._precision = 0 self._fields = value.count(":") + 1 elif HMS_RE.match(value) is not None: self._decimal = False self._format_unit = u.hourangle if "." in value: self._precision = len(value) - value.index(".") - 1 self._fields = 3 else: self._precision = 0 self._fields = value.count(":") + 1 elif DDEC_RE.match(value) is not None: self._decimal = True self._format_unit = u.degree self._fields = 1 if "." in value: self._precision = len(value) - value.index(".") - 1 else: self._precision = 0 elif DMIN_RE.match(value) is not None: self._decimal = True self._format_unit = u.arcmin self._fields = 1 if "." in value: self._precision = len(value) - value.index(".") - 1 else: self._precision = 0 elif DSEC_RE.match(value) is not None: self._decimal = True self._format_unit = u.arcsec self._fields = 1 if "." in value: self._precision = len(value) - value.index(".") - 1 else: self._precision = 0 else: raise ValueError(f"Invalid format: {value}") if self.spacing is not None and self.spacing < self.base_spacing: warnings.warn("Spacing is too small - resetting spacing to match format") self.spacing = self.base_spacing if self.spacing is not None: ratio = (self.spacing / self.base_spacing).decompose().value remainder = ratio - np.round(ratio) if abs(remainder) > 1.0e-10: warnings.warn( "Spacing is not a multiple of base spacing - resetting spacing to" " match format" ) self.spacing = self.base_spacing * max(1, round(ratio)) @property def base_spacing(self): if self.decimal: spacing = self._format_unit / (10.0**self._precision) else: if self._fields == 1: spacing = 1.0 * u.degree elif self._fields == 2: spacing = 1.0 * u.arcmin elif self._fields == 3: if self._precision == 0: spacing = 1.0 * u.arcsec else: spacing = u.arcsec / (10.0**self._precision) if self._format_unit is u.hourangle: spacing *= 15 return spacing def locator(self, value_min, value_max): if self.values is not None: # values were manually specified return self.values, 1.1 * u.arcsec else: # In the special case where value_min is the same as value_max, we # don't locate any ticks. This can occur for example when taking a # slice for a cube (along the dimension sliced). We return a # non-zero spacing in case the caller needs to format a single # coordinate, e.g. for mousover. if value_min == value_max: return [] * self._unit, 1 * u.arcsec if self.spacing is not None: # spacing was manually specified spacing_value = self.spacing.to_value(self._unit) elif self.number is not None: # number of ticks was specified, work out optimal spacing # first compute the exact spacing dv = abs(float(value_max - value_min)) / self.number * self._unit if self.format is not None and dv < self.base_spacing: # if the spacing is less than the minimum spacing allowed by the format, simply # use the format precision instead. spacing_value = self.base_spacing.to_value(self._unit) else: # otherwise we clip to the nearest 'sensible' spacing if self.decimal: from .utils import select_step_scalar spacing_value = select_step_scalar( dv.to_value(self._format_unit) ) * self._format_unit.to(self._unit) else: if self._format_unit is u.degree: from .utils import select_step_degree spacing_value = select_step_degree(dv).to_value(self._unit) else: from .utils import select_step_hour spacing_value = select_step_hour(dv).to_value(self._unit) # We now find the interval values as multiples of the spacing and # generate the tick positions from this. values = self._locate_values(value_min, value_max, spacing_value) return values * spacing_value * self._unit, spacing_value * self._unit def formatter(self, values, spacing, format="auto"): if not isinstance(values, u.Quantity) and values is not None: raise TypeError("values should be a Quantities array") if len(values) > 0: decimal = self.decimal unit = self._format_unit if unit is u.hour: unit = u.hourangle if self.format is None: if decimal: # Here we assume the spacing can be arbitrary, so for example # 1.000223 degrees, in which case we don't want to have a # format that rounds to degrees. So we find the number of # decimal places we get from representing the spacing as a # string in the desired units. The easiest way to find # the smallest number of decimal places required is to # format the number as a decimal float and strip any zeros # from the end. We do this rather than just trusting e.g. # str() because str(15.) == 15.0. We format using 10 decimal # places by default before stripping the zeros since this # corresponds to a resolution of less than a microarcecond, # which should be sufficient. spacing = spacing.to_value(unit) fields = 0 precision = len( f"{spacing:.10f}".replace("0", " ").strip().split(".", 1)[1] ) else: spacing = spacing.to_value(unit / 3600) if spacing >= 3600: fields = 1 precision = 0 elif spacing >= 60: fields = 2 precision = 0 elif spacing >= 1: fields = 3 precision = 0 else: fields = 3 precision = -int(np.floor(np.log10(spacing))) else: fields = self._fields precision = self._precision is_latex = format == "latex" or ( format == "auto" and rcParams["text.usetex"] ) if decimal: if self.show_decimal_unit: sep = "fromunit" if is_latex: fmt = "latex" else: if unit is u.hourangle: fmt = "unicode" else: fmt = "generic" unit = CUSTOM_UNITS.get(unit, unit) else: sep = "fromunit" fmt = None elif self.sep is not None: sep = self.sep fmt = None else: sep = "fromunit" if unit == u.degree: if is_latex: fmt = "latex" else: sep = ("\xb0", "'", '"') fmt = None else: if format == "ascii": fmt = None elif is_latex: fmt = "latex" else: # Here we still use LaTeX but this is for Matplotlib's # LaTeX engine - we can't use fmt='latex' as this # doesn't produce LaTeX output that respects the fonts. sep = ( r"$\mathregular{^h}$", r"$\mathregular{^m}$", r"$\mathregular{^s}$", ) fmt = None angles = Angle(values) string = angles.to_string( unit=unit, precision=precision, decimal=decimal, fields=fields, sep=sep, format=fmt, ).tolist() return string else: return [] class ScalarFormatterLocator(BaseFormatterLocator): """ A joint formatter/locator """ def __init__( self, values=None, number=None, spacing=None, format=None, unit=None, format_unit=None, ): if unit is not None: unit = unit format_unit = format_unit or unit elif spacing is not None: unit = spacing.unit format_unit = format_unit or spacing.unit elif values is not None: unit = values.unit format_unit = format_unit or values.unit super().__init__( values=values, number=number, spacing=spacing, format=format, unit=unit, format_unit=format_unit, ) @property def spacing(self): return self._spacing @spacing.setter def spacing(self, spacing): if spacing is not None and not isinstance(spacing, u.Quantity): raise TypeError("spacing should be an astropy.units.Quantity instance") self._number = None self._spacing = spacing self._values = None @property def format(self): return self._format @format.setter def format(self, value): self._format = value if value is None: return if SCAL_RE.match(value) is not None: if "." in value: self._precision = len(value) - value.index(".") - 1 else: self._precision = 0 if self.spacing is not None and self.spacing < self.base_spacing: warnings.warn( "Spacing is too small - resetting spacing to match format" ) self.spacing = self.base_spacing if self.spacing is not None: ratio = (self.spacing / self.base_spacing).decompose().value remainder = ratio - np.round(ratio) if abs(remainder) > 1.0e-10: warnings.warn( "Spacing is not a multiple of base spacing - resetting spacing" " to match format" ) self.spacing = self.base_spacing * max(1, round(ratio)) elif not value.startswith("%"): raise ValueError(f"Invalid format: {value}") @property def base_spacing(self): return self._format_unit / (10.0**self._precision) def locator(self, value_min, value_max): if self.values is not None: # values were manually specified return self.values, 1.1 * self._unit else: # In the special case where value_min is the same as value_max, we # don't locate any ticks. This can occur for example when taking a # slice for a cube (along the dimension sliced). if value_min == value_max: return [] * self._unit, 0 * self._unit if self.spacing is not None: # spacing was manually specified spacing = self.spacing.to_value(self._unit) elif self.number is not None: # number of ticks was specified, work out optimal spacing # first compute the exact spacing dv = abs(float(value_max - value_min)) / self.number * self._unit if ( self.format is not None and (not self.format.startswith("%")) and dv < self.base_spacing ): # if the spacing is less than the minimum spacing allowed by the format, simply # use the format precision instead. spacing = self.base_spacing.to_value(self._unit) else: from .utils import select_step_scalar spacing = select_step_scalar( dv.to_value(self._format_unit) ) * self._format_unit.to(self._unit) # We now find the interval values as multiples of the spacing and # generate the tick positions from this values = self._locate_values(value_min, value_max, spacing) return values * spacing * self._unit, spacing * self._unit def formatter(self, values, spacing, format="auto"): if len(values) > 0: if self.format is None: if spacing.value < 1.0: precision = -int(np.floor(np.log10(spacing.value))) else: precision = 0 elif self.format.startswith("%"): return [(self.format % x.value) for x in values] else: precision = self._precision return [ ("{0:." + str(precision) + "f}").format(x.to_value(self._format_unit)) for x in values ] else: return []
3831d95563f2f2d4fe9d99a7a72e09f442e2074ef3b88a2c0f99feeb3417a91c
# Licensed under a 3-clause BSD style license - see LICENSE.rst from collections import defaultdict from functools import partial import numpy as np from matplotlib import rcParams from matplotlib.artist import Artist from matplotlib.axes import Axes, subplot_class_factory from matplotlib.transforms import Affine2D, Bbox, Transform import astropy.units as u from astropy.coordinates import BaseCoordinateFrame, SkyCoord from astropy.utils import minversion from astropy.utils.compat.optional_deps import HAS_PIL from astropy.wcs import WCS from astropy.wcs.wcsapi import BaseHighLevelWCS, BaseLowLevelWCS from .coordinates_map import CoordinatesMap from .frame import RectangularFrame, RectangularFrame1D from .transforms import CoordinateTransform from .utils import get_coord_meta, transform_contour_set_inplace from .wcsapi import IDENTITY, transform_coord_meta_from_wcs __all__ = ["WCSAxes", "WCSAxesSubplot"] VISUAL_PROPERTIES = ["facecolor", "edgecolor", "linewidth", "alpha", "linestyle"] class _WCSAxesArtist(Artist): """This is a dummy artist to enforce the correct z-order of axis ticks, tick labels, and gridlines. FIXME: This is a bit of a hack. ``Axes.draw`` sorts the artists by zorder and then renders them in sequence. For normal Matplotlib axes, the ticks, tick labels, and gridlines are included in this list of artists and hence are automatically drawn in the correct order. However, ``WCSAxes`` disables the native ticks, labels, and gridlines. Instead, ``WCSAxes.draw`` renders ersatz ticks, labels, and gridlines by explicitly calling the functions ``CoordinateHelper._draw_ticks``, ``CoordinateHelper._draw_grid``, etc. This hack would not be necessary if ``WCSAxes`` drew ticks, tick labels, and gridlines in the standary way.""" def draw(self, renderer, *args, **kwargs): self.axes.draw_wcsaxes(renderer) class WCSAxes(Axes): """ The main axes class that can be used to show world coordinates from a WCS. Parameters ---------- fig : `~matplotlib.figure.Figure` The figure to add the axes to *args ``*args`` can be a single ``(left, bottom, width, height)`` rectangle or a single `matplotlib.transforms.Bbox`. This specifies the rectangle (in figure coordinates) where the Axes is positioned. ``*args`` can also consist of three numbers or a single three-digit number; in the latter case, the digits are considered as independent numbers. The numbers are interpreted as ``(nrows, ncols, index)``: ``(nrows, ncols)`` specifies the size of an array of subplots, and ``index`` is the 1-based index of the subplot being created. Finally, ``*args`` can also directly be a `matplotlib.gridspec.SubplotSpec` instance. wcs : :class:`~astropy.wcs.WCS`, optional The WCS for the data. If this is specified, ``transform`` cannot be specified. transform : `~matplotlib.transforms.Transform`, optional The transform for the data. If this is specified, ``wcs`` cannot be specified. coord_meta : dict, optional A dictionary providing additional metadata when ``transform`` is specified. This should include the keys ``type``, ``wrap``, and ``unit``. Each of these should be a list with as many items as the dimension of the WCS. The ``type`` entries should be one of ``longitude``, ``latitude``, or ``scalar``, the ``wrap`` entries should give, for the longitude, the angle at which the coordinate wraps (and `None` otherwise), and the ``unit`` should give the unit of the coordinates as :class:`~astropy.units.Unit` instances. This can optionally also include a ``format_unit`` entry giving the units to use for the tick labels (if not specified, this defaults to ``unit``). transData : `~matplotlib.transforms.Transform`, optional Can be used to override the default data -> pixel mapping. slices : tuple, optional For WCS transformations with more than two dimensions, we need to choose which dimensions are being shown in the 2D image. The slice should contain one ``x`` entry, one ``y`` entry, and the rest of the values should be integers indicating the slice through the data. The order of the items in the slice should be the same as the order of the dimensions in the :class:`~astropy.wcs.WCS`, and the opposite of the order of the dimensions in Numpy. For example, ``(50, 'x', 'y')`` means that the first WCS dimension (last Numpy dimension) will be sliced at an index of 50, the second WCS and Numpy dimension will be shown on the x axis, and the final WCS dimension (first Numpy dimension) will be shown on the y-axis (and therefore the data will be plotted using ``data[:, :, 50].transpose()``) frame_class : type, optional The class for the frame, which should be a subclass of :class:`~astropy.visualization.wcsaxes.frame.BaseFrame`. The default is to use a :class:`~astropy.visualization.wcsaxes.frame.RectangularFrame` """ def __init__( self, fig, *args, wcs=None, transform=None, coord_meta=None, transData=None, slices=None, frame_class=None, **kwargs, ): """ """ super().__init__(fig, *args, **kwargs) self._bboxes = [] if frame_class is not None: self.frame_class = frame_class elif wcs is not None and ( wcs.pixel_n_dim == 1 or (slices is not None and "y" not in slices) ): self.frame_class = RectangularFrame1D else: self.frame_class = RectangularFrame if not (transData is None): # User wants to override the transform for the final # data->pixel mapping self.transData = transData self.reset_wcs( wcs=wcs, slices=slices, transform=transform, coord_meta=coord_meta ) self._hide_parent_artists() self.format_coord = self._display_world_coords self._display_coords_index = 0 fig.canvas.mpl_connect("key_press_event", self._set_cursor_prefs) self.patch = self.coords.frame.patch self._wcsaxesartist = _WCSAxesArtist() self.add_artist(self._wcsaxesartist) self._drawn = False def _display_world_coords(self, x, y): if not self._drawn: return "" if self._display_coords_index == -1: return f"{x} {y} (pixel)" pixel = np.array([x, y]) coords = self._all_coords[self._display_coords_index] world = coords._transform.transform(np.array([pixel]))[0] coord_strings = [] for idx, coord in enumerate(coords): if coord.coord_index is not None: coord_strings.append( coord.format_coord(world[coord.coord_index], format="ascii") ) coord_string = " ".join(coord_strings) if self._display_coords_index == 0: system = "world" else: system = f"world, overlay {self._display_coords_index}" coord_string = f"{coord_string} ({system})" return coord_string def _set_cursor_prefs(self, event, **kwargs): if event.key == "w": self._display_coords_index += 1 if self._display_coords_index + 1 > len(self._all_coords): self._display_coords_index = -1 def _hide_parent_artists(self): # Turn off spines and current axes for s in self.spines.values(): s.set_visible(False) self.xaxis.set_visible(False) if self.frame_class is not RectangularFrame1D: self.yaxis.set_visible(False) # We now overload ``imshow`` because we need to make sure that origin is # set to ``lower`` for all images, which means that we need to flip RGB # images. def imshow(self, X, *args, **kwargs): """ Wrapper to Matplotlib's :meth:`~matplotlib.axes.Axes.imshow`. If an RGB image is passed as a PIL object, it will be flipped vertically and ``origin`` will be set to ``lower``, since WCS transformations - like FITS files - assume that the origin is the lower left pixel of the image (whereas RGB images have the origin in the top left). All arguments are passed to :meth:`~matplotlib.axes.Axes.imshow`. """ origin = kwargs.pop("origin", "lower") # plt.imshow passes origin as None, which we should default to lower. if origin is None: origin = "lower" elif origin == "upper": raise ValueError("Cannot use images with origin='upper' in WCSAxes.") if HAS_PIL: from PIL.Image import Image if minversion("PIL", "9.1"): from PIL.Image import Transpose FLIP_TOP_BOTTOM = Transpose.FLIP_TOP_BOTTOM else: from PIL.Image import FLIP_TOP_BOTTOM if isinstance(X, Image) or hasattr(X, "getpixel"): X = X.transpose(FLIP_TOP_BOTTOM) return super().imshow(X, *args, origin=origin, **kwargs) def contour(self, *args, **kwargs): """ Plot contours. This is a custom implementation of :meth:`~matplotlib.axes.Axes.contour` which applies the transform (if specified) to all contours in one go for performance rather than to each contour line individually. All positional and keyword arguments are the same as for :meth:`~matplotlib.axes.Axes.contour`. """ # In Matplotlib, when calling contour() with a transform, each # individual path in the contour map is transformed separately. However, # this is much too slow for us since each call to the transforms results # in an Astropy coordinate transformation, which has a non-negligible # overhead - therefore a better approach is to override contour(), call # the Matplotlib one with no transform, then apply the transform in one # go to all the segments that make up the contour map. transform = kwargs.pop("transform", None) cset = super().contour(*args, **kwargs) if transform is not None: # The transform passed to self.contour will normally include # a transData component at the end, but we can remove that since # we are already working in data space. transform = transform - self.transData transform_contour_set_inplace(cset, transform) return cset def contourf(self, *args, **kwargs): """ Plot filled contours. This is a custom implementation of :meth:`~matplotlib.axes.Axes.contourf` which applies the transform (if specified) to all contours in one go for performance rather than to each contour line individually. All positional and keyword arguments are the same as for :meth:`~matplotlib.axes.Axes.contourf`. """ # See notes for contour above. transform = kwargs.pop("transform", None) cset = super().contourf(*args, **kwargs) if transform is not None: # The transform passed to self.contour will normally include # a transData component at the end, but we can remove that since # we are already working in data space. transform = transform - self.transData transform_contour_set_inplace(cset, transform) return cset def _transform_plot_args(self, *args, **kwargs): """ Apply transformations to arguments to ``plot_coord`` and ``scatter_coord`` """ if isinstance(args[0], (SkyCoord, BaseCoordinateFrame)): # Extract the frame from the first argument. frame0 = args[0] if isinstance(frame0, SkyCoord): frame0 = frame0.frame native_frame = self._transform_pixel2world.frame_out # Transform to the native frame of the plot frame0 = frame0.transform_to(native_frame) plot_data = [] for coord in self.coords: if coord.coord_type == "longitude": plot_data.append(frame0.spherical.lon.to_value(u.deg)) elif coord.coord_type == "latitude": plot_data.append(frame0.spherical.lat.to_value(u.deg)) else: raise NotImplementedError( "Coordinates cannot be plotted with this " "method because the WCS does not represent longitude/latitude." ) if "transform" in kwargs.keys(): raise TypeError( "The 'transform' keyword argument is not allowed," " as it is automatically determined by the input coordinate frame." ) transform = self.get_transform(native_frame) kwargs.update({"transform": transform}) args = tuple(plot_data) + args[1:] return args, kwargs def plot_coord(self, *args, **kwargs): """ Plot `~astropy.coordinates.SkyCoord` or `~astropy.coordinates.BaseCoordinateFrame` objects onto the axes. The first argument to :meth:`~astropy.visualization.wcsaxes.WCSAxes.plot_coord` should be a coordinate, which will then be converted to the first two parameters to `matplotlib.axes.Axes.plot`. All other arguments are the same as `matplotlib.axes.Axes.plot`. If not specified a ``transform`` keyword argument will be created based on the coordinate. Parameters ---------- coordinate : `~astropy.coordinates.SkyCoord` or `~astropy.coordinates.BaseCoordinateFrame` The coordinate object to plot on the axes. This is converted to the first two arguments to `matplotlib.axes.Axes.plot`. See Also -------- matplotlib.axes.Axes.plot : This method is called from this function with all arguments passed to it. """ args, kwargs = self._transform_plot_args(*args, **kwargs) return super().plot(*args, **kwargs) def scatter_coord(self, *args, **kwargs): """ Scatter `~astropy.coordinates.SkyCoord` or `~astropy.coordinates.BaseCoordinateFrame` objects onto the axes. The first argument to :meth:`~astropy.visualization.wcsaxes.WCSAxes.scatter_coord` should be a coordinate, which will then be converted to the first two parameters to `matplotlib.axes.Axes.scatter`. All other arguments are the same as `matplotlib.axes.Axes.scatter`. If not specified a ``transform`` keyword argument will be created based on the coordinate. Parameters ---------- coordinate : `~astropy.coordinates.SkyCoord` or `~astropy.coordinates.BaseCoordinateFrame` The coordinate object to scatter on the axes. This is converted to the first two arguments to `matplotlib.axes.Axes.scatter`. See Also -------- matplotlib.axes.Axes.scatter : This method is called from this function with all arguments passed to it. """ args, kwargs = self._transform_plot_args(*args, **kwargs) return super().scatter(*args, **kwargs) def reset_wcs(self, wcs=None, slices=None, transform=None, coord_meta=None): """ Reset the current Axes, to use a new WCS object. """ # Here determine all the coordinate axes that should be shown. if wcs is None and transform is None: self.wcs = IDENTITY else: # We now force call 'set', which ensures the WCS object is # consistent, which will only be important if the WCS has been set # by hand. For example if the user sets a celestial WCS by hand and # forgets to set the units, WCS.wcs.set() will do this. if wcs is not None: # Check if the WCS object is an instance of `astropy.wcs.WCS` # This check is necessary as only `astropy.wcs.WCS` supports # wcs.set() method if isinstance(wcs, WCS): wcs.wcs.set() if isinstance(wcs, BaseHighLevelWCS): wcs = wcs.low_level_wcs self.wcs = wcs # If we are making a new WCS, we need to preserve the path object since # it may already be used by objects that have been plotted, and we need # to continue updating it. CoordinatesMap will create a new frame # instance, but we can tell that instance to keep using the old path. if hasattr(self, "coords"): previous_frame = { "path": self.coords.frame._path, "color": self.coords.frame.get_color(), "linewidth": self.coords.frame.get_linewidth(), } else: previous_frame = {"path": None} if self.wcs is not None: transform, coord_meta = transform_coord_meta_from_wcs( self.wcs, self.frame_class, slices=slices ) self.coords = CoordinatesMap( self, transform=transform, coord_meta=coord_meta, frame_class=self.frame_class, previous_frame_path=previous_frame["path"], ) self._transform_pixel2world = transform if previous_frame["path"] is not None: self.coords.frame.set_color(previous_frame["color"]) self.coords.frame.set_linewidth(previous_frame["linewidth"]) self._all_coords = [self.coords] # Common default settings for Rectangular Frame for ind, pos in enumerate( coord_meta.get("default_axislabel_position", ["b", "l"]) ): self.coords[ind].set_axislabel_position(pos) for ind, pos in enumerate( coord_meta.get("default_ticklabel_position", ["b", "l"]) ): self.coords[ind].set_ticklabel_position(pos) for ind, pos in enumerate( coord_meta.get("default_ticks_position", ["bltr", "bltr"]) ): self.coords[ind].set_ticks_position(pos) if rcParams["axes.grid"]: self.grid() def draw_wcsaxes(self, renderer): if not self.axison: return # Here need to find out range of all coordinates, and update range for # each coordinate axis. For now, just assume it covers the whole sky. self._bboxes = [] # This generates a structure like [coords][axis] = [...] ticklabels_bbox = defaultdict(partial(defaultdict, list)) visible_ticks = [] for coords in self._all_coords: # Draw grids coords.frame.update() for coord in coords: coord._draw_grid(renderer) for coords in self._all_coords: # Draw tick labels for coord in coords: coord._draw_ticks( renderer, bboxes=self._bboxes, ticklabels_bbox=ticklabels_bbox[coord], ) visible_ticks.extend(coord.ticklabels.get_visible_axes()) for coords in self._all_coords: # Draw axis labels for coord in coords: coord._draw_axislabels( renderer, bboxes=self._bboxes, ticklabels_bbox=ticklabels_bbox, visible_ticks=visible_ticks, ) self.coords.frame.draw(renderer) def draw(self, renderer, **kwargs): """Draw the axes.""" # Before we do any drawing, we need to remove any existing grid lines # drawn with contours, otherwise if we try and remove the contours # part way through drawing, we end up with the issue mentioned in # https://github.com/astropy/astropy/issues/12446 for coords in self._all_coords: for coord in coords: coord._clear_grid_contour() # In Axes.draw, the following code can result in the xlim and ylim # values changing, so we need to force call this here to make sure that # the limits are correct before we update the patch. locator = self.get_axes_locator() if locator: pos = locator(self, renderer) self.apply_aspect(pos) else: self.apply_aspect() if self._axisbelow is True: self._wcsaxesartist.set_zorder(0.5) elif self._axisbelow is False: self._wcsaxesartist.set_zorder(2.5) else: # 'line': above patches, below lines self._wcsaxesartist.set_zorder(1.5) # We need to make sure that that frame path is up to date self.coords.frame._update_patch_path() super().draw(renderer, **kwargs) self._drawn = True # Matplotlib internally sometimes calls set_xlabel(label=...). def set_xlabel(self, xlabel=None, labelpad=1, loc=None, **kwargs): """Set x-label.""" if xlabel is None: xlabel = kwargs.pop("label", None) if xlabel is None: raise TypeError( "set_xlabel() missing 1 required positional argument: 'xlabel'" ) for coord in self.coords: if ( "b" in coord.axislabels.get_visible_axes() or "h" in coord.axislabels.get_visible_axes() ): coord.set_axislabel(xlabel, minpad=labelpad, **kwargs) break def set_ylabel(self, ylabel=None, labelpad=1, loc=None, **kwargs): """Set y-label""" if ylabel is None: ylabel = kwargs.pop("label", None) if ylabel is None: raise TypeError( "set_ylabel() missing 1 required positional argument: 'ylabel'" ) if self.frame_class is RectangularFrame1D: return super().set_ylabel(ylabel, labelpad=labelpad, **kwargs) for coord in self.coords: if ( "l" in coord.axislabels.get_visible_axes() or "c" in coord.axislabels.get_visible_axes() ): coord.set_axislabel(ylabel, minpad=labelpad, **kwargs) break def get_xlabel(self): for coord in self.coords: if ( "b" in coord.axislabels.get_visible_axes() or "h" in coord.axislabels.get_visible_axes() ): return coord.get_axislabel() def get_ylabel(self): if self.frame_class is RectangularFrame1D: return super().get_ylabel() for coord in self.coords: if ( "l" in coord.axislabels.get_visible_axes() or "c" in coord.axislabels.get_visible_axes() ): return coord.get_axislabel() def get_coords_overlay(self, frame, coord_meta=None): """Get coordinates overlay on given frame. Parameters ---------- frame : str, `~astropy.coordinates.BaseCoordinateFrame` Frame to get overlay for. If a string must correspond to one of the coordinate frames registered in the astropy frame transform graph. coord_meta : dict Metadata for the coordinates overlay. Returns ------- overlay : `~astropy.visualization.wcsaxes.CoordinatesMap` Coordinates overlay. """ # Here we can't use get_transform because that deals with # pixel-to-pixel transformations when passing a WCS object. if isinstance(frame, WCS): transform, coord_meta = transform_coord_meta_from_wcs( frame, self.frame_class ) else: transform = self._get_transform_no_transdata(frame) if coord_meta is None: coord_meta = get_coord_meta(frame) coords = CoordinatesMap( self, transform=transform, coord_meta=coord_meta, frame_class=self.frame_class, ) self._all_coords.append(coords) # Common settings for overlay coords[0].set_axislabel_position("t") coords[1].set_axislabel_position("r") coords[0].set_ticklabel_position("t") coords[1].set_ticklabel_position("r") self.overlay_coords = coords return coords def get_transform(self, frame): """ Return a transform from the specified frame to display coordinates. This does not include the transData transformation Parameters ---------- frame : :class:`~astropy.wcs.WCS` or :class:`~matplotlib.transforms.Transform` or str The ``frame`` parameter can have several possible types: * :class:`~astropy.wcs.WCS` instance: assumed to be a transformation from pixel to world coordinates, where the world coordinates are the same as those in the WCS transformation used for this ``WCSAxes`` instance. This is used for example to show contours, since this involves plotting an array in pixel coordinates that are not the final data coordinate and have to be transformed to the common world coordinate system first. * :class:`~matplotlib.transforms.Transform` instance: it is assumed to be a transform to the world coordinates that are part of the WCS used to instantiate this ``WCSAxes`` instance. * ``'pixel'`` or ``'world'``: return a transformation that allows users to plot in pixel/data coordinates (essentially an identity transform) and ``world`` (the default world-to-pixel transformation used to instantiate the ``WCSAxes`` instance). * ``'fk5'`` or ``'galactic'``: return a transformation from the specified frame to the pixel/data coordinates. * :class:`~astropy.coordinates.BaseCoordinateFrame` instance. """ return self._get_transform_no_transdata(frame).inverted() + self.transData def _get_transform_no_transdata(self, frame): """ Return a transform from data to the specified frame """ if isinstance(frame, (BaseLowLevelWCS, BaseHighLevelWCS)): if isinstance(frame, BaseHighLevelWCS): frame = frame.low_level_wcs transform, coord_meta = transform_coord_meta_from_wcs( frame, self.frame_class ) transform_world2pixel = transform.inverted() if self._transform_pixel2world.frame_out == transform_world2pixel.frame_in: return self._transform_pixel2world + transform_world2pixel else: return ( self._transform_pixel2world + CoordinateTransform( self._transform_pixel2world.frame_out, transform_world2pixel.frame_in, ) + transform_world2pixel ) elif isinstance(frame, str) and frame == "pixel": return Affine2D() elif isinstance(frame, Transform): return self._transform_pixel2world + frame else: if isinstance(frame, str) and frame == "world": return self._transform_pixel2world else: coordinate_transform = CoordinateTransform( self._transform_pixel2world.frame_out, frame ) if coordinate_transform.same_frames: return self._transform_pixel2world else: return self._transform_pixel2world + coordinate_transform def get_tightbbox(self, renderer, *args, **kwargs): # FIXME: we should determine what to do with the extra arguments here. # Note that the expected signature of this method is different in # Matplotlib 3.x compared to 2.x, but we only support 3.x now. if not self.get_visible(): return # Do a draw to populate the self._bboxes list self.draw_wcsaxes(renderer) bb = [b for b in self._bboxes if b and (b.width != 0 or b.height != 0)] bb.append(super().get_tightbbox(renderer, *args, **kwargs)) if bb: _bbox = Bbox.union(bb) return _bbox else: return self.get_window_extent(renderer) def grid(self, b=None, axis="both", *, which="major", **kwargs): """ Plot gridlines for both coordinates. Standard matplotlib appearance options (color, alpha, etc.) can be passed as keyword arguments. This behaves like `matplotlib.axes.Axes` except that if no arguments are specified, the grid is shown rather than toggled. Parameters ---------- b : bool Whether to show the gridlines. axis : 'both', 'x', 'y' Which axis to turn the gridlines on/off for. which : str Currently only ``'major'`` is supported. """ if not hasattr(self, "coords"): return if which != "major": raise NotImplementedError( "Plotting the grid for the minor ticks is not supported." ) if axis == "both": self.coords.grid(draw_grid=b, **kwargs) elif axis == "x": self.coords[0].grid(draw_grid=b, **kwargs) elif axis == "y": self.coords[1].grid(draw_grid=b, **kwargs) else: raise ValueError("axis should be one of x/y/both") def tick_params(self, axis="both", **kwargs): """ Method to set the tick and tick label parameters in the same way as the :meth:`~matplotlib.axes.Axes.tick_params` method in Matplotlib. This is provided for convenience, but the recommended API is to use :meth:`~astropy.visualization.wcsaxes.CoordinateHelper.set_ticks`, :meth:`~astropy.visualization.wcsaxes.CoordinateHelper.set_ticklabel`, :meth:`~astropy.visualization.wcsaxes.CoordinateHelper.set_ticks_position`, :meth:`~astropy.visualization.wcsaxes.CoordinateHelper.set_ticklabel_position`, and :meth:`~astropy.visualization.wcsaxes.CoordinateHelper.grid`. Parameters ---------- axis : int or str, optional Which axis to apply the parameters to. This defaults to 'both' but this can also be set to an `int` or `str` that refers to the axis to apply it to, following the valid values that can index ``ax.coords``. Note that ``'x'`` and ``'y``' are also accepted in the case of rectangular axes. which : {'both', 'major', 'minor'}, optional Which ticks to apply the settings to. By default, setting are applied to both major and minor ticks. Note that if ``'minor'`` is specified, only the length of the ticks can be set currently. direction : {'in', 'out'}, optional Puts ticks inside the axes, or outside the axes. length : float, optional Tick length in points. width : float, optional Tick width in points. color : color, optional Tick color (accepts any valid Matplotlib color) pad : float, optional Distance in points between tick and label. labelsize : float or str, optional Tick label font size in points or as a string (e.g., 'large'). labelcolor : color, optional Tick label color (accepts any valid Matplotlib color) colors : color, optional Changes the tick color and the label color to the same value (accepts any valid Matplotlib color). bottom, top, left, right : bool, optional Where to draw the ticks. Note that this can only be given if a specific coordinate is specified via the ``axis`` argument, and it will not work correctly if the frame is not rectangular. labelbottom, labeltop, labelleft, labelright : bool, optional Where to draw the tick labels. Note that this can only be given if a specific coordinate is specified via the ``axis`` argument, and it will not work correctly if the frame is not rectangular. grid_color : color, optional The color of the grid lines (accepts any valid Matplotlib color). grid_alpha : float, optional Transparency of grid lines: 0 (transparent) to 1 (opaque). grid_linewidth : float, optional Width of grid lines in points. grid_linestyle : str, optional The style of the grid lines (accepts any valid Matplotlib line style). """ if not hasattr(self, "coords"): # Axes haven't been fully initialized yet, so just ignore, as # Axes.__init__ calls this method return if axis == "both": for pos in ("bottom", "left", "top", "right"): if pos in kwargs: raise ValueError(f"Cannot specify {pos}= when axis='both'") if "label" + pos in kwargs: raise ValueError(f"Cannot specify label{pos}= when axis='both'") for coord in self.coords: coord.tick_params(**kwargs) elif axis in self.coords: self.coords[axis].tick_params(**kwargs) elif axis in ("x", "y") and self.frame_class is RectangularFrame: spine = "b" if axis == "x" else "l" for coord in self.coords: if spine in coord.axislabels.get_visible_axes(): coord.tick_params(**kwargs) # In the following, we put the generated subplot class in a temporary class and # we then inherit it - if we don't do this, the generated class appears to # belong in matplotlib, not in WCSAxes, from the API's point of view. class WCSAxesSubplot(subplot_class_factory(WCSAxes)): """ A subclass class for WCSAxes """ pass
09c156e7e788ff31ef8832efe4a9e0b7d8aa52d776ae4e917206b0aa8c2d40ce
# Licensed under a 3-clause BSD style license - see LICENSE.rst # The following few lines skip this module when running tests if matplotlib is # not available (and will have no impact otherwise) try: import pytest pytest.importorskip("matplotlib") del pytest except ImportError: pass from astropy import config as _config from .coordinate_helpers import CoordinateHelper from .coordinates_map import CoordinatesMap from .core import * from .helpers import * from .patches import * class Conf(_config.ConfigNamespace): """ Configuration parameters for `astropy.visualization.wcsaxes`. """ coordinate_range_samples = _config.ConfigItem( 50, "The number of samples along each image axis when determining " "the range of coordinates in a plot.", ) frame_boundary_samples = _config.ConfigItem( 1000, "How many points to sample along the axes when determining tick locations.", ) grid_samples = _config.ConfigItem( 1000, "How many points to sample along grid lines." ) contour_grid_samples = _config.ConfigItem( 200, "The grid size to use when drawing a grid using contours" ) conf = Conf()
17a2a74878f47d486b0b51e821f00c531604c3acaf0ba90b092f1c4f1bccda64
# Licensed under a 3-clause BSD style license - see LICENSE.rst from collections import defaultdict import numpy as np from matplotlib import rcParams from matplotlib.text import Text from .frame import RectangularFrame def sort_using(X, Y): return [x for (y, x) in sorted(zip(Y, X))] class TickLabels(Text): def __init__(self, frame, *args, **kwargs): self.clear() self._frame = frame super().__init__(*args, **kwargs) self.set_clip_on(True) self.set_visible_axes("all") self.set_pad(rcParams["xtick.major.pad"]) self._exclude_overlapping = False # Stale if either xy positions haven't been calculated, or if # something changes that requires recomputing the positions self._stale = True # Check rcParams if "color" not in kwargs: self.set_color(rcParams["xtick.color"]) if "size" not in kwargs: self.set_size(rcParams["xtick.labelsize"]) def clear(self): self.world = defaultdict(list) self.data = defaultdict(list) self.angle = defaultdict(list) self.text = defaultdict(list) self.disp = defaultdict(list) def add( self, axis=None, world=None, pixel=None, angle=None, text=None, axis_displacement=None, data=None, ): """ Add a label. Parameters ---------- axis : str Axis to add label to. world : Quantity Coordinate value along this axis. pixel : [float, float] Pixel coordinates of the label. Deprecated and no longer used. angle : float Angle of the label. text : str Label text. axis_displacement : float Displacement from axis. data : [float, float] Data coordinates of the label. """ required_args = ["axis", "world", "angle", "text", "axis_displacement", "data"] if pixel is not None: warnings.warn( "Setting the pixel coordinates of a label does nothing and is" " deprecated, as these can only be accurately calculated when" " Matplotlib is drawing a figure. To prevent this warning pass the" f" following arguments as keyword arguments: {required_args}", AstropyDeprecationWarning, ) if ( axis is None or world is None or angle is None or text is None or axis_displacement is None or data is None ): raise TypeError( f"All of the following arguments must be provided: {required_args}" ) self.world[axis].append(world) self.data[axis].append(data) self.angle[axis].append(angle) self.text[axis].append(text) self.disp[axis].append(axis_displacement) self._stale = True def sort(self): """ Sort by axis displacement, which allows us to figure out which parts of labels to not repeat. """ for axis in self.world: self.world[axis] = sort_using(self.world[axis], self.disp[axis]) self.data[axis] = sort_using(self.data[axis], self.disp[axis]) self.angle[axis] = sort_using(self.angle[axis], self.disp[axis]) self.text[axis] = sort_using(self.text[axis], self.disp[axis]) self.disp[axis] = sort_using(self.disp[axis], self.disp[axis]) self._stale = True def simplify_labels(self): """ Figure out which parts of labels can be dropped to avoid repetition. """ self.sort() for axis in self.world: t1 = self.text[axis][0] for i in range(1, len(self.world[axis])): t2 = self.text[axis][i] if len(t1) != len(t2): t1 = self.text[axis][i] continue start = 0 # In the following loop, we need to ignore the last character, # hence the len(t1) - 1. This is because if we have two strings # like 13d14m15s we want to make sure that we keep the last # part (15s) even if the two labels are identical. for j in range(len(t1) - 1): if t1[j] != t2[j]: break if t1[j] not in "-0123456789.": start = j + 1 t1 = self.text[axis][i] if start != 0: starts_dollar = self.text[axis][i].startswith("$") self.text[axis][i] = self.text[axis][i][start:] if starts_dollar: self.text[axis][i] = "$" + self.text[axis][i] # Remove any empty LaTeX inline math mode string if self.text[axis][i] == "$$": self.text[axis][i] = "" self._stale = True def set_pad(self, value): self._pad = value self._stale = True def get_pad(self): return self._pad def set_visible_axes(self, visible_axes): self._visible_axes = visible_axes self._stale = True def get_visible_axes(self): if self._visible_axes == "all": return self.world.keys() else: return [x for x in self._visible_axes if x in self.world] def set_exclude_overlapping(self, exclude_overlapping): self._exclude_overlapping = exclude_overlapping def _set_xy_alignments(self, renderer, tick_out_size): """ Compute and set the x, y positions and the horizontal/vertical alignment of each label. """ if not self._stale: return self.simplify_labels() text_size = renderer.points_to_pixels(self.get_size()) visible_axes = self.get_visible_axes() self.xy = {axis: {} for axis in visible_axes} self.ha = {axis: {} for axis in visible_axes} self.va = {axis: {} for axis in visible_axes} for axis in visible_axes: for i in range(len(self.world[axis])): # In the event that the label is empty (which is not expected # but could happen in unforeseen corner cases), we should just # skip to the next label. if self.text[axis][i] == "": continue x, y = self._frame.parent_axes.transData.transform(self.data[axis][i]) pad = renderer.points_to_pixels(self.get_pad() + tick_out_size) if isinstance(self._frame, RectangularFrame): # This is just to preserve the current results, but can be # removed next time the reference images are re-generated. if np.abs(self.angle[axis][i]) < 45.0: ha = "right" va = "bottom" dx = -pad dy = -text_size * 0.5 elif np.abs(self.angle[axis][i] - 90.0) < 45: ha = "center" va = "bottom" dx = 0 dy = -text_size - pad elif np.abs(self.angle[axis][i] - 180.0) < 45: ha = "left" va = "bottom" dx = pad dy = -text_size * 0.5 else: ha = "center" va = "bottom" dx = 0 dy = pad x = x + dx y = y + dy else: # This is the more general code for arbitrarily oriented # axes # Set initial position and find bounding box self.set_text(self.text[axis][i]) self.set_position((x, y)) bb = super().get_window_extent(renderer) # Find width and height, as well as angle at which we # transition which side of the label we use to anchor the # label. width = bb.width height = bb.height # Project axis angle onto bounding box ax = np.cos(np.radians(self.angle[axis][i])) ay = np.sin(np.radians(self.angle[axis][i])) # Set anchor point for label if np.abs(self.angle[axis][i]) < 45.0: dx = width dy = ay * height elif np.abs(self.angle[axis][i] - 90.0) < 45: dx = ax * width dy = height elif np.abs(self.angle[axis][i] - 180.0) < 45: dx = -width dy = ay * height else: dx = ax * width dy = -height dx *= 0.5 dy *= 0.5 # Find normalized vector along axis normal, so as to be # able to nudge the label away by a constant padding factor dist = np.hypot(dx, dy) ddx = dx / dist ddy = dy / dist dx += ddx * pad dy += ddy * pad x = x - dx y = y - dy ha = "center" va = "center" self.xy[axis][i] = (x, y) self.ha[axis][i] = ha self.va[axis][i] = va self._stale = False def _get_bb(self, axis, i, renderer): """ Get the bounding box of an individual label. n.b. _set_xy_alignment() must be called before this method. """ if self.text[axis][i] == "": return self.set_text(self.text[axis][i]) self.set_position(self.xy[axis][i]) self.set_ha(self.ha[axis][i]) self.set_va(self.va[axis][i]) return super().get_window_extent(renderer) def draw(self, renderer, bboxes, ticklabels_bbox, tick_out_size): if not self.get_visible(): return self._set_xy_alignments(renderer, tick_out_size) for axis in self.get_visible_axes(): for i in range(len(self.world[axis])): # This implicitly sets the label text, position, alignment bb = self._get_bb(axis, i, renderer) if bb is None: continue # TODO: the problem here is that we might get rid of a label # that has a key starting bit such as -0:30 where the -0 # might be dropped from all other labels. if not self._exclude_overlapping or bb.count_overlaps(bboxes) == 0: super().draw(renderer) bboxes.append(bb) ticklabels_bbox[axis].append(bb)
11ca2bb0eaea32fa238f658479563e8fb7ef5cc47eea56a0105b96dc3e94adb9
# Functions/classes for WCSAxes related to APE14 WCSes import numpy as np from astropy import units as u from astropy.coordinates import ICRS, BaseCoordinateFrame, SkyCoord from astropy.wcs import WCS from astropy.wcs.utils import local_partial_pixel_derivatives from astropy.wcs.wcsapi import SlicedLowLevelWCS from .frame import EllipticalFrame, RectangularFrame, RectangularFrame1D from .transforms import CurvedTransform __all__ = [ "transform_coord_meta_from_wcs", "WCSWorld2PixelTransform", "WCSPixel2WorldTransform", ] IDENTITY = WCS(naxis=2) IDENTITY.wcs.ctype = ["X", "Y"] IDENTITY.wcs.crval = [0.0, 0.0] IDENTITY.wcs.crpix = [1.0, 1.0] IDENTITY.wcs.cdelt = [1.0, 1.0] def transform_coord_meta_from_wcs(wcs, frame_class, slices=None): if slices is not None: slices = tuple(slices) if wcs.pixel_n_dim > 2: if slices is None: raise ValueError( "WCS has more than 2 pixel dimensions, so 'slices' should be set" ) elif len(slices) != wcs.pixel_n_dim: raise ValueError( "'slices' should have as many elements as WCS " "has pixel dimensions (should be {})".format(wcs.pixel_n_dim) ) is_fits_wcs = isinstance(wcs, WCS) or ( isinstance(wcs, SlicedLowLevelWCS) and isinstance(wcs._wcs, WCS) ) coord_meta = {} coord_meta["name"] = [] coord_meta["type"] = [] coord_meta["wrap"] = [] coord_meta["unit"] = [] coord_meta["visible"] = [] coord_meta["format_unit"] = [] for idx in range(wcs.world_n_dim): axis_type = wcs.world_axis_physical_types[idx] axis_unit = u.Unit(wcs.world_axis_units[idx]) coord_wrap = None format_unit = axis_unit coord_type = "scalar" if axis_type is not None: axis_type_split = axis_type.split(".") if "pos.helioprojective.lon" in axis_type: coord_wrap = 180.0 format_unit = u.arcsec coord_type = "longitude" elif "pos.helioprojective.lat" in axis_type: format_unit = u.arcsec coord_type = "latitude" elif "pos.heliographic.stonyhurst.lon" in axis_type: coord_wrap = 180.0 format_unit = u.deg coord_type = "longitude" elif "pos.heliographic.stonyhurst.lat" in axis_type: format_unit = u.deg coord_type = "latitude" elif "pos.heliographic.carrington.lon" in axis_type: coord_wrap = 360.0 format_unit = u.deg coord_type = "longitude" elif "pos.heliographic.carrington.lat" in axis_type: format_unit = u.deg coord_type = "latitude" elif "pos" in axis_type_split: if "lon" in axis_type_split: coord_type = "longitude" elif "lat" in axis_type_split: coord_type = "latitude" elif "ra" in axis_type_split: coord_type = "longitude" format_unit = u.hourangle elif "dec" in axis_type_split: coord_type = "latitude" elif "alt" in axis_type_split: coord_type = "longitude" elif "az" in axis_type_split: coord_type = "latitude" elif "long" in axis_type_split: coord_type = "longitude" coord_meta["type"].append(coord_type) coord_meta["wrap"].append(coord_wrap) coord_meta["format_unit"].append(format_unit) coord_meta["unit"].append(axis_unit) # For FITS-WCS, for backward-compatibility, we need to make sure that we # provide aliases based on CTYPE for the name. if is_fits_wcs: name = [] if isinstance(wcs, WCS): name.append(wcs.wcs.ctype[idx].lower()) name.append(wcs.wcs.ctype[idx][:4].replace("-", "").lower()) elif isinstance(wcs, SlicedLowLevelWCS): name.append(wcs._wcs.wcs.ctype[wcs._world_keep[idx]].lower()) name.append( wcs._wcs.wcs.ctype[wcs._world_keep[idx]][:4] .replace("-", "") .lower() ) if name[0] == name[1]: name = name[0:1] if axis_type: if axis_type not in name: name.insert(0, axis_type) if wcs.world_axis_names and wcs.world_axis_names[idx]: if wcs.world_axis_names[idx] not in name: name.append(wcs.world_axis_names[idx]) name = tuple(name) if len(name) > 1 else name[0] else: name = axis_type or "" if wcs.world_axis_names: name = ( (name, wcs.world_axis_names[idx]) if wcs.world_axis_names[idx] else name ) coord_meta["name"].append(name) coord_meta["default_axislabel_position"] = [""] * wcs.world_n_dim coord_meta["default_ticklabel_position"] = [""] * wcs.world_n_dim coord_meta["default_ticks_position"] = [""] * wcs.world_n_dim # If the world axis has a name use it, else display the world axis physical type. fallback_labels = [ name[0] if isinstance(name, (list, tuple)) else name for name in coord_meta["name"] ] coord_meta["default_axis_label"] = [ wcs.world_axis_names[i] or fallback_label for i, fallback_label in enumerate(fallback_labels) ] transform_wcs, invert_xy, world_map = apply_slices(wcs, slices) transform = WCSPixel2WorldTransform(transform_wcs, invert_xy=invert_xy) for i in range(len(coord_meta["type"])): coord_meta["visible"].append(i in world_map) inv_all_corr = [False] * wcs.world_n_dim m = transform_wcs.axis_correlation_matrix.copy() if invert_xy: inv_all_corr = np.all(m, axis=1) m = m[:, ::-1] if frame_class is RectangularFrame: for i, spine_name in enumerate("bltr"): pos = np.nonzero(m[:, i % 2])[0] # If all the axes we have are correlated with each other and we # have inverted the axes, then we need to reverse the index so we # put the 'y' on the left. if inv_all_corr[i % 2]: pos = pos[::-1] if len(pos) > 0: index = world_map[pos[0]] coord_meta["default_axislabel_position"][index] = spine_name coord_meta["default_ticklabel_position"][index] = spine_name coord_meta["default_ticks_position"][index] = spine_name m[pos[0], :] = 0 # In the special and common case where the frame is rectangular and # we are dealing with 2-d WCS (after slicing), we show all ticks on # all axes for backward-compatibility. if len(world_map) == 2: for index in world_map: coord_meta["default_ticks_position"][index] = "bltr" elif frame_class is RectangularFrame1D: derivs = np.abs( local_partial_pixel_derivatives( transform_wcs, *[0] * transform_wcs.pixel_n_dim, normalize_by_world=False, ) )[:, 0] for i, spine_name in enumerate("bt"): # Here we are iterating over the correlated axes in world axis order. # We want to sort the correlated axes by their partial derivatives, # so we put the most rapidly changing world axis on the bottom. pos = np.nonzero(m[:, 0])[0] order = np.argsort(derivs[pos])[::-1] # Sort largest to smallest pos = pos[order] if len(pos) > 0: index = world_map[pos[0]] coord_meta["default_axislabel_position"][index] = spine_name coord_meta["default_ticklabel_position"][index] = spine_name coord_meta["default_ticks_position"][index] = spine_name m[pos[0], :] = 0 # In the special and common case where the frame is rectangular and # we are dealing with 2-d WCS (after slicing), we show all ticks on # all axes for backward-compatibility. if len(world_map) == 1: for index in world_map: coord_meta["default_ticks_position"][index] = "bt" elif frame_class is EllipticalFrame: if "longitude" in coord_meta["type"]: lon_idx = coord_meta["type"].index("longitude") coord_meta["default_axislabel_position"][lon_idx] = "h" coord_meta["default_ticklabel_position"][lon_idx] = "h" coord_meta["default_ticks_position"][lon_idx] = "h" if "latitude" in coord_meta["type"]: lat_idx = coord_meta["type"].index("latitude") coord_meta["default_axislabel_position"][lat_idx] = "c" coord_meta["default_ticklabel_position"][lat_idx] = "c" coord_meta["default_ticks_position"][lat_idx] = "c" else: for index in range(len(coord_meta["type"])): if index in world_map: coord_meta["default_axislabel_position"][ index ] = frame_class.spine_names coord_meta["default_ticklabel_position"][ index ] = frame_class.spine_names coord_meta["default_ticks_position"][index] = frame_class.spine_names return transform, coord_meta def apply_slices(wcs, slices): """ Take the input WCS and slices and return a sliced WCS for the transform and a mapping of world axes in the sliced WCS to the input WCS. """ if isinstance(wcs, SlicedLowLevelWCS): world_keep = list(wcs._world_keep) else: world_keep = list(range(wcs.world_n_dim)) # world_map is the index of the world axis in the input WCS for a given # axis in the transform_wcs world_map = list(range(wcs.world_n_dim)) transform_wcs = wcs invert_xy = False if slices is not None: wcs_slice = list(slices) wcs_slice[wcs_slice.index("x")] = slice(None) if "y" in slices: wcs_slice[wcs_slice.index("y")] = slice(None) invert_xy = slices.index("x") > slices.index("y") transform_wcs = SlicedLowLevelWCS(wcs, wcs_slice[::-1]) world_map = tuple(world_keep.index(i) for i in transform_wcs._world_keep) return transform_wcs, invert_xy, world_map def wcsapi_to_celestial_frame(wcs): for cls, _, kwargs, *_ in wcs.world_axis_object_classes.values(): if issubclass(cls, SkyCoord): return kwargs.get("frame", ICRS()) elif issubclass(cls, BaseCoordinateFrame): return cls(**kwargs) class WCSWorld2PixelTransform(CurvedTransform): """ WCS transformation from world to pixel coordinates """ has_inverse = True frame_in = None def __init__(self, wcs, invert_xy=False): super().__init__() if wcs.pixel_n_dim > 2: raise ValueError("Only pixel_n_dim =< 2 is supported") self.wcs = wcs self.invert_xy = invert_xy self.frame_in = wcsapi_to_celestial_frame(wcs) def __eq__(self, other): return ( isinstance(other, type(self)) and self.wcs is other.wcs and self.invert_xy == other.invert_xy ) @property def input_dims(self): return self.wcs.world_n_dim def transform(self, world): # Convert to a list of arrays world = list(world.T) if len(world) != self.wcs.world_n_dim: raise ValueError( f"Expected {self.wcs.world_n_dim} world coordinates, got {len(world)} " ) if len(world[0]) == 0: pixel = np.zeros((0, 2)) else: pixel = self.wcs.world_to_pixel_values(*world) if self.invert_xy: pixel = pixel[::-1] pixel = np.array(pixel).T return pixel transform_non_affine = transform def inverted(self): """ Return the inverse of the transform """ return WCSPixel2WorldTransform(self.wcs, invert_xy=self.invert_xy) class WCSPixel2WorldTransform(CurvedTransform): """ WCS transformation from pixel to world coordinates """ has_inverse = True def __init__(self, wcs, invert_xy=False): super().__init__() if wcs.pixel_n_dim > 2: raise ValueError("Only pixel_n_dim =< 2 is supported") self.wcs = wcs self.invert_xy = invert_xy self.frame_out = wcsapi_to_celestial_frame(wcs) def __eq__(self, other): return ( isinstance(other, type(self)) and self.wcs is other.wcs and self.invert_xy == other.invert_xy ) @property def output_dims(self): return self.wcs.world_n_dim def transform(self, pixel): # Convert to a list of arrays pixel = list(pixel.T) if len(pixel) != self.wcs.pixel_n_dim: raise ValueError( f"Expected {self.wcs.pixel_n_dim} world coordinates, got {len(pixel)} " ) if self.invert_xy: pixel = pixel[::-1] if len(pixel[0]) == 0: world = np.zeros((0, self.wcs.world_n_dim)) else: world = self.wcs.pixel_to_world_values(*pixel) if self.wcs.world_n_dim == 1: world = [world] world = np.array(world).T return world transform_non_affine = transform def inverted(self): """ Return the inverse of the transform """ return WCSWorld2PixelTransform(self.wcs, invert_xy=self.invert_xy)
858dac09b8a37ac74d4415734bfa61094c74b5e4635229e777e7108413fc9a84
# Licensed under a 3-clause BSD style license - see LICENSE.rst from collections import defaultdict import numpy as np from matplotlib import rcParams from matplotlib.lines import Line2D, Path from matplotlib.transforms import Affine2D class Ticks(Line2D): """ Ticks are derived from Line2D, and note that ticks themselves are markers. Thus, you should use set_mec, set_mew, etc. To change the tick size (length), you need to use set_ticksize. To change the direction of the ticks (ticks are in opposite direction of ticklabels by default), use set_tick_out(False). Note that Matplotlib's defaults dictionary :data:`~matplotlib.rcParams` contains default settings (color, size, width) of the form `xtick.*` and `ytick.*`. In a WCS projection, there may not be a clear relationship between axes of the projection and 'x' or 'y' axes. For this reason, we read defaults from `xtick.*`. The following settings affect the default appearance of ticks: * `xtick.direction` * `xtick.major.size` * `xtick.major.width` * `xtick.minor.size` * `xtick.color` Attributes ---------- ticks_locs : dict This is set when the ticks are drawn, and is a mapping from axis to the locations of the ticks for that axis. """ def __init__(self, ticksize=None, tick_out=None, **kwargs): if ticksize is None: ticksize = rcParams["xtick.major.size"] self.set_ticksize(ticksize) self.set_minor_ticksize(rcParams["xtick.minor.size"]) self.set_tick_out(rcParams["xtick.direction"] == "out") self.clear() line2d_kwargs = { "color": rcParams["xtick.color"], "linewidth": rcParams["xtick.major.width"], } line2d_kwargs.update(kwargs) Line2D.__init__(self, [0.0], [0.0], **line2d_kwargs) self.set_visible_axes("all") self._display_minor_ticks = False def display_minor_ticks(self, display_minor_ticks): self._display_minor_ticks = display_minor_ticks def get_display_minor_ticks(self): return self._display_minor_ticks def set_tick_out(self, tick_out): """ set True if tick need to be rotated by 180 degree. """ self._tick_out = tick_out def get_tick_out(self): """ Return True if the tick will be rotated by 180 degree. """ return self._tick_out def set_ticksize(self, ticksize): """ set length of the ticks in points. """ self._ticksize = ticksize def get_ticksize(self): """ Return length of the ticks in points. """ return self._ticksize def set_minor_ticksize(self, ticksize): """ set length of the minor ticks in points. """ self._minor_ticksize = ticksize def get_minor_ticksize(self): """ Return length of the minor ticks in points. """ return self._minor_ticksize @property def out_size(self): if self._tick_out: return self._ticksize else: return 0.0 def set_visible_axes(self, visible_axes): self._visible_axes = visible_axes def get_visible_axes(self): if self._visible_axes == "all": return self.world.keys() else: return [x for x in self._visible_axes if x in self.world] def clear(self): self.world = defaultdict(list) self.pixel = defaultdict(list) self.angle = defaultdict(list) self.disp = defaultdict(list) self.minor_world = defaultdict(list) self.minor_pixel = defaultdict(list) self.minor_angle = defaultdict(list) self.minor_disp = defaultdict(list) def add(self, axis, world, pixel, angle, axis_displacement): self.world[axis].append(world) self.pixel[axis].append(pixel) self.angle[axis].append(angle) self.disp[axis].append(axis_displacement) def get_minor_world(self): return self.minor_world def add_minor( self, minor_axis, minor_world, minor_pixel, minor_angle, minor_axis_displacement ): self.minor_world[minor_axis].append(minor_world) self.minor_pixel[minor_axis].append(minor_pixel) self.minor_angle[minor_axis].append(minor_angle) self.minor_disp[minor_axis].append(minor_axis_displacement) def __len__(self): return len(self.world) _tickvert_path = Path([[0.0, 0.0], [1.0, 0.0]]) def draw(self, renderer): """ Draw the ticks. """ self.ticks_locs = defaultdict(list) if not self.get_visible(): return offset = renderer.points_to_pixels(self.get_ticksize()) self._draw_ticks(renderer, self.pixel, self.angle, offset) if self._display_minor_ticks: offset = renderer.points_to_pixels(self.get_minor_ticksize()) self._draw_ticks(renderer, self.minor_pixel, self.minor_angle, offset) def _draw_ticks(self, renderer, pixel_array, angle_array, offset): """ Draw the minor ticks. """ path_trans = self.get_transform() gc = renderer.new_gc() gc.set_foreground(self.get_color()) gc.set_alpha(self.get_alpha()) gc.set_linewidth(self.get_linewidth()) marker_scale = Affine2D().scale(offset, offset) marker_rotation = Affine2D() marker_transform = marker_scale + marker_rotation initial_angle = 180.0 if self.get_tick_out() else 0.0 for axis in self.get_visible_axes(): if axis not in pixel_array: continue for loc, angle in zip(pixel_array[axis], angle_array[axis]): # Set the rotation for this tick marker_rotation.rotate_deg(initial_angle + angle) # Draw the markers locs = path_trans.transform_non_affine(np.array([loc, loc])) renderer.draw_markers( gc, self._tickvert_path, marker_transform, Path(locs), path_trans.get_affine(), ) # Reset the tick rotation before moving to the next tick marker_rotation.clear() self.ticks_locs[axis].append(locs) gc.restore()
a44e252370d7b6b531e7d43607cb761ada5f96fd6ce12e46d6ffa88f88977de3
# Licensed under a 3-clause BSD style license - see LICENSE.rst import warnings import numpy as np from matplotlib.patches import Polygon from astropy import units as u from astropy.coordinates import SkyCoord from astropy.coordinates.matrix_utilities import rotation_matrix from astropy.coordinates.representation import ( SphericalRepresentation, UnitSphericalRepresentation, ) from astropy.utils.exceptions import AstropyUserWarning __all__ = ["Quadrangle", "SphericalCircle"] # Monkey-patch the docs to fix CapStyle and JoinStyle subs. # TODO! delete when upstream fix matplotlib/matplotlib#19839 Polygon.__init__.__doc__ = Polygon.__init__.__doc__.replace( "`.CapStyle`", "``matplotlib._enums.CapStyle``" ) Polygon.__init__.__doc__ = Polygon.__init__.__doc__.replace( "`.JoinStyle`", "``matplotlib._enums.JoinStyle``" ) Polygon.set_capstyle.__doc__ = Polygon.set_capstyle.__doc__.replace( "`.CapStyle`", "``matplotlib._enums.CapStyle``" ) Polygon.set_joinstyle.__doc__ = Polygon.set_joinstyle.__doc__.replace( "`.JoinStyle`", "``matplotlib._enums.JoinStyle``" ) def _rotate_polygon(lon, lat, lon0, lat0): """ Given a polygon with vertices defined by (lon, lat), rotate the polygon such that the North pole of the spherical coordinates is now at (lon0, lat0). Therefore, to end up with a polygon centered on (lon0, lat0), the polygon should initially be drawn around the North pole. """ # Create a representation object polygon = UnitSphericalRepresentation(lon=lon, lat=lat) # Determine rotation matrix to make it so that the circle is centered # on the correct longitude/latitude. transform_matrix = rotation_matrix(-lon0, axis="z") @ rotation_matrix( -(0.5 * np.pi * u.radian - lat0), axis="y" ) # Apply 3D rotation polygon = polygon.to_cartesian() polygon = polygon.transform(transform_matrix) polygon = UnitSphericalRepresentation.from_cartesian(polygon) return polygon.lon, polygon.lat class SphericalCircle(Polygon): """ Create a patch representing a spherical circle - that is, a circle that is formed of all the points that are within a certain angle of the central coordinates on a sphere. Here we assume that latitude goes from -90 to +90 This class is needed in cases where the user wants to add a circular patch to a celestial image, since otherwise the circle will be distorted, because a fixed interval in longitude corresponds to a different angle on the sky depending on the latitude. Parameters ---------- center : tuple or `~astropy.units.Quantity` ['angle'] This can be either a tuple of two `~astropy.units.Quantity` objects, or a single `~astropy.units.Quantity` array with two elements or a `~astropy.coordinates.SkyCoord` object. radius : `~astropy.units.Quantity` ['angle'] The radius of the circle resolution : int, optional The number of points that make up the circle - increase this to get a smoother circle. vertex_unit : `~astropy.units.Unit` The units in which the resulting polygon should be defined - this should match the unit that the transformation (e.g. the WCS transformation) expects as input. Notes ----- Additional keyword arguments are passed to `~matplotlib.patches.Polygon` """ def __init__(self, center, radius, resolution=100, vertex_unit=u.degree, **kwargs): # Extract longitude/latitude, either from a SkyCoord object, or # from a tuple of two quantities or a single 2-element Quantity. # The SkyCoord is converted to SphericalRepresentation, if not already. if isinstance(center, SkyCoord): rep_type = center.representation_type if not issubclass( rep_type, (SphericalRepresentation, UnitSphericalRepresentation) ): warnings.warn( f"Received `center` of representation type {rep_type} " "will be converted to SphericalRepresentation ", AstropyUserWarning, ) longitude, latitude = center.spherical.lon, center.spherical.lat else: longitude, latitude = center # Start off by generating the circle around the North pole lon = np.linspace(0.0, 2 * np.pi, resolution + 1)[:-1] * u.radian lat = np.repeat(0.5 * np.pi - radius.to_value(u.radian), resolution) * u.radian lon, lat = _rotate_polygon(lon, lat, longitude, latitude) # Extract new longitude/latitude in the requested units lon = lon.to_value(vertex_unit) lat = lat.to_value(vertex_unit) # Create polygon vertices vertices = np.array([lon, lat]).transpose() super().__init__(vertices, **kwargs) class Quadrangle(Polygon): """ Create a patch representing a latitude-longitude quadrangle. The edges of the quadrangle lie on two lines of constant longitude and two lines of constant latitude (or the equivalent component names in the coordinate frame of interest, such as right ascension and declination). Note that lines of constant latitude are not great circles. Unlike `matplotlib.patches.Rectangle`, the edges of this patch will render as curved lines if appropriate for the WCS transformation. Parameters ---------- anchor : tuple or `~astropy.units.Quantity` ['angle'] This can be either a tuple of two `~astropy.units.Quantity` objects, or a single `~astropy.units.Quantity` array with two elements. width : `~astropy.units.Quantity` ['angle'] The width of the quadrangle in longitude (or, e.g., right ascension) height : `~astropy.units.Quantity` ['angle'] The height of the quadrangle in latitude (or, e.g., declination) resolution : int, optional The number of points that make up each side of the quadrangle - increase this to get a smoother quadrangle. vertex_unit : `~astropy.units.Unit` ['angle'] The units in which the resulting polygon should be defined - this should match the unit that the transformation (e.g. the WCS transformation) expects as input. Notes ----- Additional keyword arguments are passed to `~matplotlib.patches.Polygon` """ def __init__( self, anchor, width, height, resolution=100, vertex_unit=u.degree, **kwargs ): # Extract longitude/latitude, either from a tuple of two quantities, or # a single 2-element Quantity. longitude, latitude = u.Quantity(anchor).to_value(vertex_unit) # Convert the quadrangle dimensions to the appropriate units width = width.to_value(vertex_unit) height = height.to_value(vertex_unit) # Create progressions in longitude and latitude lon_seq = longitude + np.linspace(0, width, resolution + 1) lat_seq = latitude + np.linspace(0, height, resolution + 1) # Trace the path of the quadrangle lon = np.concatenate( [ lon_seq[:-1], np.repeat(lon_seq[-1], resolution), np.flip(lon_seq[1:]), np.repeat(lon_seq[0], resolution), ] ) lat = np.concatenate( [ np.repeat(lat_seq[0], resolution), lat_seq[:-1], np.repeat(lat_seq[-1], resolution), np.flip(lat_seq[1:]), ] ) # Create polygon vertices vertices = np.array([lon, lat]).transpose() super().__init__(vertices, **kwargs)
5ffc70d730fc75496de08509b9813b1ebe79d696d5697f4c47113dfb8eb53130
# Licensed under a 3-clause BSD style license - see LICENSE.rst from collections import OrderedDict from textwrap import indent from .coordinate_helpers import CoordinateHelper from .coordinate_range import find_coordinate_range from .frame import RectangularFrame, RectangularFrame1D class CoordinatesMap: """ A container for coordinate helpers that represents a coordinate system. This object can be used to access coordinate helpers by index (like a list) or by name (like a dictionary). Parameters ---------- axes : :class:`~astropy.visualization.wcsaxes.WCSAxes` The axes the coordinate map belongs to. transform : `~matplotlib.transforms.Transform`, optional The transform for the data. coord_meta : dict, optional A dictionary providing additional metadata. This should include the keys ``type``, ``wrap``, and ``unit``. Each of these should be a list with as many items as the dimension of the coordinate system. The ``type`` entries should be one of ``longitude``, ``latitude``, or ``scalar``, the ``wrap`` entries should give, for the longitude, the angle at which the coordinate wraps (and `None` otherwise), and the ``unit`` should give the unit of the coordinates as :class:`~astropy.units.Unit` instances. This can optionally also include a ``format_unit`` entry giving the units to use for the tick labels (if not specified, this defaults to ``unit``). frame_class : type, optional The class for the frame, which should be a subclass of :class:`~astropy.visualization.wcsaxes.frame.BaseFrame`. The default is to use a :class:`~astropy.visualization.wcsaxes.frame.RectangularFrame` previous_frame_path : `~matplotlib.path.Path`, optional When changing the WCS of the axes, the frame instance will change but we might want to keep re-using the same underlying matplotlib `~matplotlib.path.Path` - in that case, this can be passed to this keyword argument. """ def __init__( self, axes, transform=None, coord_meta=None, frame_class=RectangularFrame, previous_frame_path=None, ): self._axes = axes self._transform = transform self.frame = frame_class(axes, self._transform, path=previous_frame_path) # Set up coordinates self._coords = [] self._aliases = {} visible_count = 0 for index in range(len(coord_meta["type"])): # Extract coordinate metadata coord_type = coord_meta["type"][index] coord_wrap = coord_meta["wrap"][index] coord_unit = coord_meta["unit"][index] name = coord_meta["name"][index] visible = True if "visible" in coord_meta: visible = coord_meta["visible"][index] format_unit = None if "format_unit" in coord_meta: format_unit = coord_meta["format_unit"][index] default_label = name[0] if isinstance(name, (tuple, list)) else name if "default_axis_label" in coord_meta: default_label = coord_meta["default_axis_label"][index] coord_index = None if visible: visible_count += 1 coord_index = visible_count - 1 self._coords.append( CoordinateHelper( parent_axes=axes, parent_map=self, transform=self._transform, coord_index=coord_index, coord_type=coord_type, coord_wrap=coord_wrap, coord_unit=coord_unit, format_unit=format_unit, frame=self.frame, default_label=default_label, ) ) # Set up aliases for coordinates if isinstance(name, tuple): for nm in name: nm = nm.lower() # Do not replace an alias already in the map if we have # more than one alias for this axis. if nm not in self._aliases: self._aliases[nm] = index else: self._aliases[name.lower()] = index def __getitem__(self, item): if isinstance(item, str): return self._coords[self._aliases[item.lower()]] else: return self._coords[item] def __contains__(self, item): if isinstance(item, str): return item.lower() in self._aliases else: return 0 <= item < len(self._coords) def set_visible(self, visibility): raise NotImplementedError() def __iter__(self): yield from self._coords def grid(self, draw_grid=True, grid_type=None, **kwargs): """ Plot gridlines for both coordinates. Standard matplotlib appearance options (color, alpha, etc.) can be passed as keyword arguments. Parameters ---------- draw_grid : bool Whether to show the gridlines grid_type : { 'lines' | 'contours' } Whether to plot the contours by determining the grid lines in world coordinates and then plotting them in world coordinates (``'lines'``) or by determining the world coordinates at many positions in the image and then drawing contours (``'contours'``). The first is recommended for 2-d images, while for 3-d (or higher dimensional) cubes, the ``'contours'`` option is recommended. By default, 'lines' is used if the transform has an inverse, otherwise 'contours' is used. """ for coord in self: coord.grid(draw_grid=draw_grid, grid_type=grid_type, **kwargs) def get_coord_range(self): xmin, xmax = self._axes.get_xlim() if isinstance(self.frame, RectangularFrame1D): extent = [xmin, xmax] else: ymin, ymax = self._axes.get_ylim() extent = [xmin, xmax, ymin, ymax] return find_coordinate_range( self._transform, extent, [coord.coord_type for coord in self if coord.coord_index is not None], [coord.coord_unit for coord in self if coord.coord_index is not None], [coord.coord_wrap for coord in self if coord.coord_index is not None], ) def _as_table(self): # Import Table here to avoid importing the astropy.table package # every time astropy.visualization.wcsaxes is imported. from astropy.table import Table rows = [] for icoord, coord in enumerate(self._coords): aliases = [key for key, value in self._aliases.items() if value == icoord] row = OrderedDict( [ ("index", icoord), ("aliases", " ".join(aliases)), ("type", coord.coord_type), ("unit", coord.coord_unit), ("wrap", coord.coord_wrap), ("format_unit", coord.get_format_unit()), ("visible", "no" if coord.coord_index is None else "yes"), ] ) rows.append(row) return Table(rows=rows) def __repr__(self): s = f"<CoordinatesMap with {len(self._coords)} world coordinates:\n\n" table = indent(str(self._as_table()), " ") return s + table + "\n\n>"
33293045c9665329547c5840cbf8909ecaa3d5776b32dcb234519a2c368bd3b4
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np from astropy import units as u from astropy.coordinates import BaseCoordinateFrame __all__ = [ "select_step_degree", "select_step_hour", "select_step_scalar", "transform_contour_set_inplace", ] def select_step_degree(dv): # Modified from axis_artist, supports astropy.units if dv > 1.0 * u.arcsec: degree_limits_ = [1.5, 3, 7, 13, 20, 40, 70, 120, 270, 520] degree_steps_ = [1, 2, 5, 10, 15, 30, 45, 90, 180, 360] degree_units = [u.degree] * len(degree_steps_) minsec_limits_ = [1.5, 2.5, 3.5, 8, 11, 18, 25, 45] minsec_steps_ = [1, 2, 3, 5, 10, 15, 20, 30] minute_limits_ = np.array(minsec_limits_) / 60.0 minute_units = [u.arcmin] * len(minute_limits_) second_limits_ = np.array(minsec_limits_) / 3600.0 second_units = [u.arcsec] * len(second_limits_) degree_limits = np.concatenate([second_limits_, minute_limits_, degree_limits_]) degree_steps = minsec_steps_ + minsec_steps_ + degree_steps_ degree_units = second_units + minute_units + degree_units n = degree_limits.searchsorted(dv.to(u.degree)) step = degree_steps[n] unit = degree_units[n] return step * unit else: return select_step_scalar(dv.to_value(u.arcsec)) * u.arcsec def select_step_hour(dv): if dv > 15.0 * u.arcsec: hour_limits_ = [1.5, 2.5, 3.5, 5, 7, 10, 15, 21, 36] hour_steps_ = [1, 2, 3, 4, 6, 8, 12, 18, 24] hour_units = [u.hourangle] * len(hour_steps_) minsec_limits_ = [1.5, 2.5, 3.5, 4.5, 5.5, 8, 11, 14, 18, 25, 45] minsec_steps_ = [1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30] minute_limits_ = np.array(minsec_limits_) / 60.0 minute_units = [15.0 * u.arcmin] * len(minute_limits_) second_limits_ = np.array(minsec_limits_) / 3600.0 second_units = [15.0 * u.arcsec] * len(second_limits_) hour_limits = np.concatenate([second_limits_, minute_limits_, hour_limits_]) hour_steps = minsec_steps_ + minsec_steps_ + hour_steps_ hour_units = second_units + minute_units + hour_units n = hour_limits.searchsorted(dv.to(u.hourangle)) step = hour_steps[n] unit = hour_units[n] return step * unit else: return select_step_scalar(dv.to_value(15.0 * u.arcsec)) * (15.0 * u.arcsec) def select_step_scalar(dv): log10_dv = np.log10(dv) base = np.floor(log10_dv) frac = log10_dv - base steps = np.log10([1, 2, 5, 10]) imin = np.argmin(np.abs(frac - steps)) return 10.0 ** (base + steps[imin]) def get_coord_meta(frame): coord_meta = {} coord_meta["type"] = ("longitude", "latitude") coord_meta["wrap"] = (None, None) coord_meta["unit"] = (u.deg, u.deg) from astropy.coordinates import frame_transform_graph if isinstance(frame, str): initial_frame = frame frame = frame_transform_graph.lookup_name(frame) if frame is None: raise ValueError(f"Unknown frame: {initial_frame}") if not isinstance(frame, BaseCoordinateFrame): frame = frame() names = list(frame.representation_component_names.keys()) coord_meta["name"] = names[:2] return coord_meta def transform_contour_set_inplace(cset, transform): """ Transform a contour set in-place using a specified :class:`matplotlib.transform.Transform` Using transforms with the native Matplotlib contour/contourf can be slow if the transforms have a non-negligible overhead (which is the case for WCS/SkyCoord transforms) since the transform is called for each individual contour line. It is more efficient to stack all the contour lines together temporarily and transform them in one go. """ # The contours are represented as paths grouped into levels. Each can have # one or more paths. The approach we take here is to stack the vertices of # all paths and transform them in one go. The pos_level list helps us keep # track of where the set of segments for each overall contour level ends. # The pos_segments list helps us keep track of where each segmnt ends for # each contour level. all_paths = [] pos_level = [] pos_segments = [] for collection in cset.collections: paths = collection.get_paths() if len(paths) == 0: continue all_paths.append(paths) # The last item in pos isn't needed for np.split and in fact causes # issues if we keep it because it will cause an extra empty array to be # returned. pos = np.cumsum([len(x) for x in paths]) pos_segments.append(pos[:-1]) pos_level.append(pos[-1]) # As above the last item isn't needed pos_level = np.cumsum(pos_level)[:-1] # Stack all the segments into a single (n, 2) array vertices = [path.vertices for paths in all_paths for path in paths] if len(vertices) > 0: vertices = np.concatenate(vertices) else: return # Transform all coordinates in one go vertices = transform.transform(vertices) # Split up into levels again vertices = np.split(vertices, pos_level) # Now re-populate the segments in the line collections for ilevel, vert in enumerate(vertices): vert = np.split(vert, pos_segments[ilevel]) for iseg, ivert in enumerate(vert): all_paths[ilevel][iseg].vertices = ivert
7bd5c3b22572114865ab0163a88e975a331483e859f2bbff6d99f69e2315302d
# Licensed under a 3-clause BSD style license - see LICENSE.rst import matplotlib.transforms as mtransforms import numpy as np from matplotlib import rcParams from matplotlib.text import Text from .frame import RectangularFrame class AxisLabels(Text): def __init__(self, frame, minpad=1, *args, **kwargs): # Use rcParams if the following parameters were not specified explicitly if "weight" not in kwargs: kwargs["weight"] = rcParams["axes.labelweight"] if "size" not in kwargs: kwargs["size"] = rcParams["axes.labelsize"] if "color" not in kwargs: kwargs["color"] = rcParams["axes.labelcolor"] self._frame = frame super().__init__(*args, **kwargs) self.set_clip_on(True) self.set_visible_axes("all") self.set_ha("center") self.set_va("center") self._minpad = minpad self._visibility_rule = "labels" def get_minpad(self, axis): try: return self._minpad[axis] except TypeError: return self._minpad def set_visible_axes(self, visible_axes): self._visible_axes = visible_axes def get_visible_axes(self): if self._visible_axes == "all": return self._frame.keys() else: return [x for x in self._visible_axes if x in self._frame] def set_minpad(self, minpad): self._minpad = minpad def set_visibility_rule(self, value): allowed = ["always", "labels", "ticks"] if value not in allowed: raise ValueError( f"Axis label visibility rule must be one of{' / '.join(allowed)}" ) self._visibility_rule = value def get_visibility_rule(self): return self._visibility_rule def draw( self, renderer, bboxes, ticklabels_bbox, coord_ticklabels_bbox, ticks_locs, visible_ticks, ): if not self.get_visible(): return text_size = renderer.points_to_pixels(self.get_size()) # Flatten the bboxes for all coords and all axes ticklabels_bbox_list = [] for bbcoord in ticklabels_bbox.values(): for bbaxis in bbcoord.values(): ticklabels_bbox_list += bbaxis for axis in self.get_visible_axes(): if self.get_visibility_rule() == "ticks": if not ticks_locs[axis]: continue elif self.get_visibility_rule() == "labels": if not coord_ticklabels_bbox: continue padding = text_size * self.get_minpad(axis) # Find position of the axis label. For now we pick the mid-point # along the path but in future we could allow this to be a # parameter. x, y, normal_angle = self._frame[axis]._halfway_x_y_angle() label_angle = (normal_angle - 90.0) % 360.0 if 135 < label_angle < 225: label_angle += 180 self.set_rotation(label_angle) # Find label position by looking at the bounding box of ticks' # labels and the image. It sets the default padding at 1 times the # axis label font size which can also be changed by setting # the minpad parameter. if isinstance(self._frame, RectangularFrame): if ( len(ticklabels_bbox_list) > 0 and ticklabels_bbox_list[0] is not None ): coord_ticklabels_bbox[axis] = [ mtransforms.Bbox.union(ticklabels_bbox_list) ] else: coord_ticklabels_bbox[axis] = [None] visible = ( axis in visible_ticks and coord_ticklabels_bbox[axis][0] is not None ) if axis == "l": if visible: x = coord_ticklabels_bbox[axis][0].xmin x = x - padding elif axis == "r": if visible: x = coord_ticklabels_bbox[axis][0].x1 x = x + padding elif axis == "b": if visible: y = coord_ticklabels_bbox[axis][0].ymin y = y - padding elif axis == "t": if visible: y = coord_ticklabels_bbox[axis][0].y1 y = y + padding else: # arbitrary axis x = x + np.cos(np.radians(normal_angle)) * (padding + text_size * 1.5) y = y + np.sin(np.radians(normal_angle)) * (padding + text_size * 1.5) self.set_position((x, y)) super().draw(renderer) bb = super().get_window_extent(renderer) bboxes.append(bb)
50c05d74e38c8611ad3d398ea2ffdb41387fea5ae24cc5f01f6669c38b2cb643
# Licensed under a 3-clause BSD style license - see LICENSE.rst import warnings import numpy as np from astropy import units as u # Algorithm inspired by PGSBOX from WCSLIB by M. Calabretta LONLAT = {"longitude", "latitude"} def wrap_180(values): values_new = values % 360.0 with np.errstate(invalid="ignore"): values_new[values_new > 180.0] -= 360 return values_new def find_coordinate_range(transform, extent, coord_types, coord_units, coord_wraps): """ Find the range of coordinates to use for ticks/grids Parameters ---------- transform : func Function to transform pixel to world coordinates. Should take two values (the pixel coordinates) and return two values (the world coordinates). extent : iterable The range of the image viewport in pixel coordinates, given as [xmin, xmax, ymin, ymax]. coord_types : list of str Whether each coordinate is a ``'longitude'``, ``'latitude'``, or ``'scalar'`` value. coord_units : list of `astropy.units.Unit` The units for each coordinate. coord_wraps : list of float The wrap angles for longitudes. """ # Sample coordinates on a NX x NY grid. from . import conf if len(extent) == 4: nx = ny = conf.coordinate_range_samples x = np.linspace(extent[0], extent[1], nx + 1) y = np.linspace(extent[2], extent[3], ny + 1) xp, yp = np.meshgrid(x, y) with np.errstate(invalid="ignore"): world = transform.transform(np.vstack([xp.ravel(), yp.ravel()]).transpose()) else: nx = conf.coordinate_range_samples xp = np.linspace(extent[0], extent[1], nx + 1)[None] with np.errstate(invalid="ignore"): world = transform.transform(xp.T) ranges = [] for coord_index, coord_type in enumerate(coord_types): xw = world[:, coord_index].reshape(xp.shape) if coord_type in LONLAT: unit = coord_units[coord_index] xw = xw * unit.to(u.deg) # Iron out coordinates along first row wjump = xw[0, 1:] - xw[0, :-1] with np.errstate(invalid="ignore"): reset = np.abs(wjump) > 180.0 if np.any(reset): wjump = wjump + np.sign(wjump) * 180.0 wjump = 360.0 * (wjump / 360.0).astype(int) xw[0, 1:][reset] -= wjump[reset] # Now iron out coordinates along all columns, starting with first row. wjump = xw[1:] - xw[:1] with np.errstate(invalid="ignore"): reset = np.abs(wjump) > 180.0 if np.any(reset): wjump = wjump + np.sign(wjump) * 180.0 wjump = 360.0 * (wjump / 360.0).astype(int) xw[1:][reset] -= wjump[reset] with warnings.catch_warnings(): warnings.simplefilter("ignore", RuntimeWarning) xw_min = np.nanmin(xw) xw_max = np.nanmax(xw) # Check if range is smaller when normalizing to the range 0 to 360 if coord_type in LONLAT: with warnings.catch_warnings(): warnings.simplefilter("ignore", RuntimeWarning) xw_min_check = np.nanmin(xw % 360.0) xw_max_check = np.nanmax(xw % 360.0) if xw_max_check - xw_min_check <= xw_max - xw_min < 360.0: xw_min = xw_min_check xw_max = xw_max_check # Check if range is smaller when normalizing to the range -180 to 180 if coord_type in LONLAT: with warnings.catch_warnings(): warnings.simplefilter("ignore", RuntimeWarning) xw_min_check = np.nanmin(wrap_180(xw)) xw_max_check = np.nanmax(wrap_180(xw)) if ( xw_max_check - xw_min_check < 360.0 and xw_max - xw_min >= xw_max_check - xw_min_check ): xw_min = xw_min_check xw_max = xw_max_check x_range = xw_max - xw_min if coord_type == "longitude": if x_range > 300.0: xw_min = coord_wraps[coord_index] - 360 xw_max = coord_wraps[coord_index] - np.spacing(360.0) elif xw_min < 0.0: xw_min = max(-180.0, xw_min - 0.1 * x_range) xw_max = min(+180.0, xw_max + 0.1 * x_range) else: xw_min = max(0.0, xw_min - 0.1 * x_range) xw_max = min(360.0, xw_max + 0.1 * x_range) elif coord_type == "latitude": xw_min = max(-90.0, xw_min - 0.1 * x_range) xw_max = min(+90.0, xw_max + 0.1 * x_range) if coord_type in LONLAT: xw_min *= u.deg.to(unit) xw_max *= u.deg.to(unit) ranges.append((xw_min, xw_max)) return ranges
d2184ec8d05c4515446ef9d69a1d02419af71ed58d281fd31f5b9042d49b2864
# Licensed under a 3-clause BSD style license - see LICENSE.rst import abc from collections import OrderedDict import numpy as np from matplotlib import rcParams from matplotlib.lines import Line2D, Path from matplotlib.patches import PathPatch __all__ = [ "RectangularFrame1D", "Spine", "BaseFrame", "RectangularFrame", "EllipticalFrame", ] class Spine: """ A single side of an axes. This does not need to be a straight line, but represents a 'side' when determining which part of the frame to put labels and ticks on. Parameters ---------- parent_axes : `~astropy.visualization.wcsaxes.WCSAxes` The parent axes transform : `~matplotlib.transforms.Transform` The transform from data to world data_func : callable If not ``None``, it should be a function that returns the appropriate spine data when called with this object as the sole argument. If ``None``, the spine data must be manually updated in ``update_spines()``. """ def __init__(self, parent_axes, transform, *, data_func=None): self.parent_axes = parent_axes self.transform = transform self.data_func = data_func self._data = None self._pixel = None self._world = None @property def data(self): if self._data is None and self.data_func: self.data = self.data_func(self) return self._data @data.setter def data(self, value): self._data = value if value is None: self._pixel = None self._world = None else: self._pixel = self.parent_axes.transData.transform(self._data) with np.errstate(invalid="ignore"): self._world = self.transform.transform(self._data) self._update_normal() @property def pixel(self): return self._pixel @pixel.setter def pixel(self, value): self._pixel = value if value is None: self._data = None self._world = None else: self._data = self.parent_axes.transData.inverted().transform(self._data) self._world = self.transform.transform(self._data) self._update_normal() @property def world(self): return self._world @world.setter def world(self, value): self._world = value if value is None: self._data = None self._pixel = None else: self._data = self.transform.transform(value) self._pixel = self.parent_axes.transData.transform(self._data) self._update_normal() def _update_normal(self): # Find angle normal to border and inwards, in display coordinate dx = self.pixel[1:, 0] - self.pixel[:-1, 0] dy = self.pixel[1:, 1] - self.pixel[:-1, 1] self.normal_angle = np.degrees(np.arctan2(dx, -dy)) def _halfway_x_y_angle(self): """ Return the x, y, normal_angle values halfway along the spine """ x_disp, y_disp = self.pixel[:, 0], self.pixel[:, 1] # Get distance along the path d = np.hstack( [0.0, np.cumsum(np.sqrt(np.diff(x_disp) ** 2 + np.diff(y_disp) ** 2))] ) xcen = np.interp(d[-1] / 2.0, d, x_disp) ycen = np.interp(d[-1] / 2.0, d, y_disp) # Find segment along which the mid-point lies imin = np.searchsorted(d, d[-1] / 2.0) - 1 # Find normal of the axis label facing outwards on that segment normal_angle = self.normal_angle[imin] + 180.0 return xcen, ycen, normal_angle class SpineXAligned(Spine): """ A single side of an axes, aligned with the X data axis. This does not need to be a straight line, but represents a 'side' when determining which part of the frame to put labels and ticks on. """ @property def data(self): return self._data @data.setter def data(self, value): self._data = value if value is None: self._pixel = None self._world = None else: self._pixel = self.parent_axes.transData.transform(self._data) with np.errstate(invalid="ignore"): self._world = self.transform.transform(self._data[:, 0:1]) self._update_normal() @property def pixel(self): return self._pixel @pixel.setter def pixel(self, value): self._pixel = value if value is None: self._data = None self._world = None else: self._data = self.parent_axes.transData.inverted().transform(self._data) self._world = self.transform.transform(self._data[:, 0:1]) self._update_normal() class BaseFrame(OrderedDict, metaclass=abc.ABCMeta): """ Base class for frames, which are collections of :class:`~astropy.visualization.wcsaxes.frame.Spine` instances. """ spine_class = Spine def __init__(self, parent_axes, transform, path=None): super().__init__() self.parent_axes = parent_axes self._transform = transform self._linewidth = rcParams["axes.linewidth"] self._color = rcParams["axes.edgecolor"] self._path = path for axis in self.spine_names: self[axis] = self.spine_class(parent_axes, transform) @property def origin(self): ymin, ymax = self.parent_axes.get_ylim() return "lower" if ymin < ymax else "upper" @property def transform(self): return self._transform @transform.setter def transform(self, value): self._transform = value for axis in self: self[axis].transform = value def _update_patch_path(self): self.update_spines() x, y = [], [] for axis in self.spine_names: x.append(self[axis].data[:, 0]) y.append(self[axis].data[:, 1]) vertices = np.vstack([np.hstack(x), np.hstack(y)]).transpose() if self._path is None: self._path = Path(vertices) else: self._path.vertices = vertices @property def patch(self): self._update_patch_path() return PathPatch( self._path, transform=self.parent_axes.transData, facecolor=rcParams["axes.facecolor"], edgecolor="white", ) def draw(self, renderer): for axis in self.spine_names: x, y = self[axis].pixel[:, 0], self[axis].pixel[:, 1] line = Line2D( x, y, linewidth=self._linewidth, color=self._color, zorder=1000 ) line.draw(renderer) def sample(self, n_samples): self.update_spines() spines = OrderedDict() for axis in self: data = self[axis].data spines[axis] = self.spine_class(self.parent_axes, self.transform) if data.size > 0: p = np.linspace(0.0, 1.0, data.shape[0]) p_new = np.linspace(0.0, 1.0, n_samples) spines[axis].data = np.array( [np.interp(p_new, p, d) for d in data.T] ).transpose() else: spines[axis].data = data return spines def set_color(self, color): """ Sets the color of the frame. Parameters ---------- color : str The color of the frame. """ self._color = color def get_color(self): return self._color def set_linewidth(self, linewidth): """ Sets the linewidth of the frame. Parameters ---------- linewidth : float The linewidth of the frame in points. """ self._linewidth = linewidth def get_linewidth(self): return self._linewidth def update_spines(self): for spine in self.values(): if spine.data_func: spine.data = spine.data_func(spine) class RectangularFrame1D(BaseFrame): """ A classic rectangular frame. """ spine_names = "bt" spine_class = SpineXAligned def update_spines(self): xmin, xmax = self.parent_axes.get_xlim() ymin, ymax = self.parent_axes.get_ylim() self["b"].data = np.array(([xmin, ymin], [xmax, ymin])) self["t"].data = np.array(([xmax, ymax], [xmin, ymax])) super().update_spines() def _update_patch_path(self): self.update_spines() xmin, xmax = self.parent_axes.get_xlim() ymin, ymax = self.parent_axes.get_ylim() x = [xmin, xmax, xmax, xmin, xmin] y = [ymin, ymin, ymax, ymax, ymin] vertices = np.vstack([np.hstack(x), np.hstack(y)]).transpose() if self._path is None: self._path = Path(vertices) else: self._path.vertices = vertices def draw(self, renderer): xmin, xmax = self.parent_axes.get_xlim() ymin, ymax = self.parent_axes.get_ylim() x = [xmin, xmax, xmax, xmin, xmin] y = [ymin, ymin, ymax, ymax, ymin] line = Line2D( x, y, linewidth=self._linewidth, color=self._color, zorder=1000, transform=self.parent_axes.transData, ) line.draw(renderer) class RectangularFrame(BaseFrame): """ A classic rectangular frame. """ spine_names = "brtl" def update_spines(self): xmin, xmax = self.parent_axes.get_xlim() ymin, ymax = self.parent_axes.get_ylim() self["b"].data = np.array(([xmin, ymin], [xmax, ymin])) self["r"].data = np.array(([xmax, ymin], [xmax, ymax])) self["t"].data = np.array(([xmax, ymax], [xmin, ymax])) self["l"].data = np.array(([xmin, ymax], [xmin, ymin])) super().update_spines() class EllipticalFrame(BaseFrame): """ An elliptical frame. """ spine_names = "chv" def update_spines(self): xmin, xmax = self.parent_axes.get_xlim() ymin, ymax = self.parent_axes.get_ylim() xmid = 0.5 * (xmax + xmin) ymid = 0.5 * (ymax + ymin) dx = xmid - xmin dy = ymid - ymin theta = np.linspace(0.0, 2 * np.pi, 1000) self["c"].data = np.array( [xmid + dx * np.cos(theta), ymid + dy * np.sin(theta)] ).transpose() self["h"].data = np.array( [np.linspace(xmin, xmax, 1000), np.repeat(ymid, 1000)] ).transpose() self["v"].data = np.array( [np.repeat(xmid, 1000), np.linspace(ymin, ymax, 1000)] ).transpose() super().update_spines() def _update_patch_path(self): """Override path patch to include only the outer ellipse, not the major and minor axes in the middle.""" self.update_spines() vertices = self["c"].data if self._path is None: self._path = Path(vertices) else: self._path.vertices = vertices def draw(self, renderer): """Override to draw only the outer ellipse, not the major and minor axes in the middle. FIXME: we may want to add a general method to give the user control over which spines are drawn.""" axis = "c" x, y = self[axis].pixel[:, 0], self[axis].pixel[:, 1] line = Line2D(x, y, linewidth=self._linewidth, color=self._color, zorder=1000) line.draw(renderer)
c11fe6e9a00a639a7829ca22d14c7ac4be7737e8a514fb55cb7606d2b1f84af9
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np from matplotlib.lines import Path from astropy.coordinates.angle_utilities import angular_separation # Tolerance for WCS round-tripping, relative to the scale size ROUND_TRIP_RTOL = 1.0 # Tolerance for discontinuities relative to the median DISCONT_FACTOR = 10.0 def get_lon_lat_path(lon_lat, pixel, lon_lat_check): """ Draw a curve, taking into account discontinuities. Parameters ---------- lon_lat : ndarray The longitude and latitude values along the curve, given as a (n,2) array. pixel : ndarray The pixel coordinates corresponding to ``lon_lat`` lon_lat_check : ndarray The world coordinates derived from converting from ``pixel``, which is used to ensure round-tripping. """ # In some spherical projections, some parts of the curve are 'behind' or # 'in front of' the plane of the image, so we find those by reversing the # transformation and finding points where the result is not consistent. sep = angular_separation( np.radians(lon_lat[:, 0]), np.radians(lon_lat[:, 1]), np.radians(lon_lat_check[:, 0]), np.radians(lon_lat_check[:, 1]), ) # Define the relevant scale size using the separation between the first two points scale_size = angular_separation( *np.radians(lon_lat[0, :]), *np.radians(lon_lat[1, :]) ) with np.errstate(invalid="ignore"): sep[sep > np.pi] -= 2.0 * np.pi mask = np.abs(sep > ROUND_TRIP_RTOL * scale_size) # Mask values with invalid pixel positions mask = mask | np.isnan(pixel[:, 0]) | np.isnan(pixel[:, 1]) # We can now start to set up the codes for the Path. codes = np.zeros(lon_lat.shape[0], dtype=np.uint8) codes[:] = Path.LINETO codes[0] = Path.MOVETO codes[mask] = Path.MOVETO # Also need to move to point *after* a hidden value codes[1:][mask[:-1]] = Path.MOVETO # We now go through and search for discontinuities in the curve that would # be due to the curve going outside the field of view, invalid WCS values, # or due to discontinuities in the projection. # We start off by pre-computing the step in pixel coordinates from one # point to the next. The idea is to look for large jumps that might indicate # discontinuities. step = np.sqrt( (pixel[1:, 0] - pixel[:-1, 0]) ** 2 + (pixel[1:, 1] - pixel[:-1, 1]) ** 2 ) # We search for discontinuities by looking for places where the step # is larger by more than a given factor compared to the median # discontinuous = step > DISCONT_FACTOR * np.median(step) discontinuous = step[1:] > DISCONT_FACTOR * step[:-1] # Skip over discontinuities codes[2:][discontinuous] = Path.MOVETO # The above missed the first step, so check that too if step[0] > DISCONT_FACTOR * step[1]: codes[1] = Path.MOVETO # Create the path path = Path(pixel, codes=codes) return path def get_gridline_path(world, pixel): """ Draw a grid line Parameters ---------- world : ndarray The longitude and latitude values along the curve, given as a (n,2) array. pixel : ndarray The pixel coordinates corresponding to ``lon_lat`` """ # Mask values with invalid pixel positions mask = np.isnan(pixel[:, 0]) | np.isnan(pixel[:, 1]) # We can now start to set up the codes for the Path. codes = np.zeros(world.shape[0], dtype=np.uint8) codes[:] = Path.LINETO codes[0] = Path.MOVETO codes[mask] = Path.MOVETO # Also need to move to point *after* a hidden value codes[1:][mask[:-1]] = Path.MOVETO # We now go through and search for discontinuities in the curve that would # be due to the curve going outside the field of view, invalid WCS values, # or due to discontinuities in the projection. # Create the path path = Path(pixel, codes=codes) return path
38fa46d27f53da5d5e8446ddd8a5c9f4b2d334fee7556aa812034d8498421f5d
# Licensed under a 3-clause BSD style license - see LICENSE.rst from numpy.testing import assert_allclose from astropy.utils.compat.optional_deps import HAS_PLT, HAS_SCIPY if HAS_PLT: import matplotlib.pyplot as plt import numpy as np import pytest from astropy.stats import histogram from astropy.visualization import hist @pytest.mark.skipif(not HAS_PLT, reason="requires matplotlib.pyplot") def test_hist_basic(rseed=0): rng = np.random.default_rng(rseed) x = rng.standard_normal(100) for range in [None, (-2, 2)]: n1, bins1, patches1 = plt.hist(x, 10, range=range) n2, bins2, patches2 = hist(x, 10, range=range) assert_allclose(n1, n2) assert_allclose(bins1, bins2) @pytest.mark.skipif(not HAS_PLT, reason="requires matplotlib.pyplot") def test_hist_specify_ax(rseed=0): rng = np.random.default_rng(rseed) x = rng.standard_normal(100) fig, ax = plt.subplots(2) n1, bins1, patches1 = hist(x, 10, ax=ax[0]) assert patches1[0].axes is ax[0] n2, bins2, patches2 = hist(x, 10, ax=ax[1]) assert patches2[0].axes is ax[1] @pytest.mark.skipif(not HAS_PLT, reason="requires matplotlib.pyplot") def test_hist_autobin(rseed=0): rng = np.random.default_rng(rseed) x = rng.standard_normal(100) # 'knuth' bintype depends on scipy that is optional dependency if HAS_SCIPY: bintypes = [10, np.arange(-3, 3, 10), "knuth", "scott", "freedman", "blocks"] else: bintypes = [10, np.arange(-3, 3, 10), "scott", "freedman", "blocks"] for bintype in bintypes: for range in [None, (-3, 3)]: n1, bins1 = histogram(x, bintype, range=range) n2, bins2, patches = hist(x, bintype, range=range) assert_allclose(n1, n2) assert_allclose(bins1, bins2) def test_histogram_pathological_input(): # Regression test for https://github.com/astropy/astropy/issues/7758 # The key feature of the data below is that one of the points is very, # very different than the rest. That leads to a large number of bins. data = [ 9.99999914e05, -8.31312483e-03, 6.52755852e-02, 1.43104653e-03, -2.26311017e-02, 2.82660007e-03, 1.80307521e-02, 9.26294279e-03, 5.06606026e-02, 2.05418011e-03, ] with pytest.raises(ValueError): hist(data, bins="freedman", max_bins=10000)
6bda045ebc507635195eecb593b663737fff391a43fff585b95de9e901c7d958
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np import pytest from astropy.utils import NumpyRNGContext from astropy.visualization.interval import ( AsymmetricPercentileInterval, ManualInterval, MinMaxInterval, PercentileInterval, ZScaleInterval, ) class TestInterval: data = np.linspace(-20.0, 60.0, 100) def test_manual(self): interval = ManualInterval(-10.0, +15.0) vmin, vmax = interval.get_limits(self.data) np.testing.assert_allclose(vmin, -10.0) np.testing.assert_allclose(vmax, +15.0) def test_manual_defaults(self): interval = ManualInterval(vmin=-10.0) vmin, vmax = interval.get_limits(self.data) np.testing.assert_allclose(vmin, -10.0) np.testing.assert_allclose(vmax, np.max(self.data)) interval = ManualInterval(vmax=15.0) vmin, vmax = interval.get_limits(self.data) np.testing.assert_allclose(vmin, np.min(self.data)) np.testing.assert_allclose(vmax, 15.0) def test_manual_zero_limit(self): # Regression test for a bug that caused ManualInterval to compute the # limit (min or max) if it was set to zero. interval = ManualInterval(vmin=0, vmax=0) vmin, vmax = interval.get_limits(self.data) np.testing.assert_allclose(vmin, 0) np.testing.assert_allclose(vmax, 0) def test_manual_defaults_with_nan(self): interval = ManualInterval() data = np.copy(self.data) data[0] = np.nan vmin, vmax = interval.get_limits(self.data) np.testing.assert_allclose(vmin, -20) np.testing.assert_allclose(vmax, +60) def test_minmax(self): interval = MinMaxInterval() vmin, vmax = interval.get_limits(self.data) np.testing.assert_allclose(vmin, -20.0) np.testing.assert_allclose(vmax, +60.0) def test_percentile(self): interval = PercentileInterval(62.2) vmin, vmax = interval.get_limits(self.data) np.testing.assert_allclose(vmin, -4.88) np.testing.assert_allclose(vmax, 44.88) def test_asymmetric_percentile(self): interval = AsymmetricPercentileInterval(10.5, 70.5) vmin, vmax = interval.get_limits(self.data) np.testing.assert_allclose(vmin, -11.6) np.testing.assert_allclose(vmax, 36.4) def test_asymmetric_percentile_nsamples(self): with NumpyRNGContext(12345): interval = AsymmetricPercentileInterval(10.5, 70.5, n_samples=20) vmin, vmax = interval.get_limits(self.data) np.testing.assert_allclose(vmin, -14.367676767676768) np.testing.assert_allclose(vmax, 40.266666666666666) class TestIntervalList(TestInterval): # Make sure intervals work with lists data = np.linspace(-20.0, 60.0, 100).tolist() class TestInterval2D(TestInterval): # Make sure intervals work with 2d arrays data = np.linspace(-20.0, 60.0, 100).reshape(100, 1) def test_zscale(): np.random.seed(42) data = np.random.randn(100, 100) * 5 + 10 interval = ZScaleInterval() vmin, vmax = interval.get_limits(data) np.testing.assert_allclose(vmin, -9.6, atol=0.1) np.testing.assert_allclose(vmax, 25.4, atol=0.1) data = list(range(1000)) + [np.nan] interval = ZScaleInterval() vmin, vmax = interval.get_limits(data) np.testing.assert_allclose(vmin, 0, atol=0.1) np.testing.assert_allclose(vmax, 999, atol=0.1) data = list(range(100)) interval = ZScaleInterval() vmin, vmax = interval.get_limits(data) np.testing.assert_allclose(vmin, 0, atol=0.1) np.testing.assert_allclose(vmax, 99, atol=0.1) def test_zscale_npoints(): """ Regression test to ensure ZScaleInterval returns the minimum and maximum of the data if the number of data points is less than ``min_pixels``. """ data = np.arange(4).reshape((2, 2)) interval = ZScaleInterval(min_npixels=5) vmin, vmax = interval.get_limits(data) assert vmin == 0 assert vmax == 3 def test_integers(): # Need to make sure integers get cast to float interval = MinMaxInterval() values = interval([1, 3, 4, 5, 6]) np.testing.assert_allclose(values, [0.0, 0.4, 0.6, 0.8, 1.0]) # Don't accept integer array in output out = np.zeros(5, dtype=int) with pytest.raises( TypeError, match=r"Can only do in-place scaling for floating-point arrays" ): values = interval([1, 3, 4, 5, 6], out=out) # But integer input and floating point output is fine out = np.zeros(5, dtype=float) interval([1, 3, 4, 5, 6], out=out) np.testing.assert_allclose(out, [0.0, 0.4, 0.6, 0.8, 1.0]) def test_constant_data(): """Test intervals with constant data (avoiding divide-by-zero).""" shape = (10, 10) data = np.ones(shape) interval = MinMaxInterval() limits = interval.get_limits(data) values = interval(data) np.testing.assert_allclose(limits, (1.0, 1.0)) np.testing.assert_allclose(values, np.zeros(shape))
6888a489cb12d8b9e5f99d39c16784d871ec6b6e0ecdd5f4bc7bc77c1c6e7c85
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np import pytest from numpy.testing import assert_equal from astropy.visualization.stretch import ( AsinhStretch, ContrastBiasStretch, HistEqStretch, InvertedHistEqStretch, InvertedLogStretch, InvertedPowerDistStretch, LinearStretch, LogStretch, PowerDistStretch, PowerStretch, SinhStretch, SqrtStretch, SquaredStretch, ) DATA = np.array([0.00, 0.25, 0.50, 0.75, 1.00]) RESULTS = {} RESULTS[LinearStretch()] = np.array([0.00, 0.25, 0.50, 0.75, 1.00]) RESULTS[LinearStretch(intercept=0.5) + LinearStretch(slope=0.5)] = np.array( [0.5, 0.625, 0.75, 0.875, 1.0] ) RESULTS[SqrtStretch()] = np.array([0.0, 0.5, 0.70710678, 0.8660254, 1.0]) RESULTS[SquaredStretch()] = np.array([0.0, 0.0625, 0.25, 0.5625, 1.0]) RESULTS[PowerStretch(0.5)] = np.array([0.0, 0.5, 0.70710678, 0.8660254, 1.0]) RESULTS[PowerDistStretch()] = np.array([0.0, 0.004628, 0.030653, 0.177005, 1.0]) RESULTS[LogStretch()] = np.array([0.0, 0.799776, 0.899816, 0.958408, 1.0]) RESULTS[AsinhStretch()] = np.array([0.0, 0.549402, 0.77127, 0.904691, 1.0]) RESULTS[SinhStretch()] = np.array([0.0, 0.082085, 0.212548, 0.46828, 1.0]) RESULTS[ContrastBiasStretch(contrast=2.0, bias=0.4)] = np.array( [-0.3, 0.2, 0.7, 1.2, 1.7] ) RESULTS[HistEqStretch(DATA)] = DATA RESULTS[HistEqStretch(DATA[::-1])] = DATA RESULTS[HistEqStretch(DATA**0.5)] = np.array([0.0, 0.125, 0.25, 0.5674767, 1.0]) class TestStretch: @pytest.mark.parametrize("stretch", RESULTS.keys()) def test_no_clip(self, stretch): np.testing.assert_allclose( stretch(DATA, clip=False), RESULTS[stretch], atol=1.0e-6 ) @pytest.mark.parametrize("ndim", [2, 3]) @pytest.mark.parametrize("stretch", RESULTS.keys()) def test_clip_ndimensional(self, stretch, ndim): new_shape = DATA.shape + (1,) * ndim np.testing.assert_allclose( stretch(DATA.reshape(new_shape), clip=True).ravel(), np.clip(RESULTS[stretch], 0.0, 1), atol=1.0e-6, ) @pytest.mark.parametrize("stretch", RESULTS.keys()) def test_clip(self, stretch): np.testing.assert_allclose( stretch(DATA, clip=True), np.clip(RESULTS[stretch], 0.0, 1), atol=1.0e-6 ) @pytest.mark.parametrize("stretch", RESULTS.keys()) def test_inplace(self, stretch): data_in = DATA.copy() result = np.zeros(DATA.shape) stretch(data_in, out=result, clip=False) np.testing.assert_allclose(result, RESULTS[stretch], atol=1.0e-6) np.testing.assert_allclose(data_in, DATA) @pytest.mark.parametrize("stretch", RESULTS.keys()) def test_round_trip(self, stretch): np.testing.assert_allclose( stretch.inverse(stretch(DATA, clip=False), clip=False), DATA ) @pytest.mark.parametrize("stretch", RESULTS.keys()) def test_inplace_roundtrip(self, stretch): result = np.zeros(DATA.shape) stretch(DATA, out=result, clip=False) stretch.inverse(result, out=result, clip=False) np.testing.assert_allclose(result, DATA) @pytest.mark.parametrize("stretch", RESULTS.keys()) def test_double_inverse(self, stretch): np.testing.assert_allclose( stretch.inverse.inverse(DATA), stretch(DATA), atol=1.0e-6 ) def test_inverted(self): stretch_1 = SqrtStretch().inverse stretch_2 = PowerStretch(2) np.testing.assert_allclose(stretch_1(DATA), stretch_2(DATA)) def test_chaining(self): stretch_1 = SqrtStretch() + SqrtStretch() stretch_2 = PowerStretch(0.25) stretch_3 = PowerStretch(4.0) np.testing.assert_allclose(stretch_1(DATA), stretch_2(DATA)) np.testing.assert_allclose(stretch_1.inverse(DATA), stretch_3(DATA)) def test_clip_invalid(): stretch = SqrtStretch() values = stretch([-1.0, 0.0, 0.5, 1.0, 1.5]) np.testing.assert_allclose(values, [0.0, 0.0, 0.70710678, 1.0, 1.0]) values = stretch([-1.0, 0.0, 0.5, 1.0, 1.5], clip=False) np.testing.assert_allclose(values, [np.nan, 0.0, 0.70710678, 1.0, 1.2247448]) @pytest.mark.parametrize("a", [-2.0, -1, 1.0]) def test_invalid_powerdist_a(a): match = "a must be >= 0, but cannot be set to 1" with pytest.raises(ValueError, match=match): PowerDistStretch(a=a) with pytest.raises(ValueError, match=match): InvertedPowerDistStretch(a=a) @pytest.mark.parametrize("a", [-2.0, -1, 0.0]) def test_invalid_power_log_a(a): match = "a must be > 0" with pytest.raises(ValueError, match=match): PowerStretch(a=a) with pytest.raises(ValueError, match=match): LogStretch(a=a) with pytest.raises(ValueError, match=match): InvertedLogStretch(a=a) @pytest.mark.parametrize("a", [-2.0, -1, 0.0, 1.5]) def test_invalid_sinh_a(a): match = "a must be > 0 and <= 1" with pytest.raises(ValueError, match=match): AsinhStretch(a=a) with pytest.raises(ValueError, match=match): SinhStretch(a=a) def test_histeqstretch_invalid(): data = np.array([-np.inf, 0.00, 0.25, 0.50, 0.75, 1.00, np.inf]) result = np.array([0.0, 0.0, 0.25, 0.5, 0.75, 1.0, 1.0]) assert_equal(HistEqStretch(data)(data), result) assert_equal(InvertedHistEqStretch(data)(data), result)
26672a68b638e9c49a783a8ece920c8e54b844c24d93a973600133b61d2cdec2
# Licensed under a 3-clause BSD style license - see LICENSE.rst import io import pytest from astropy.utils.compat.optional_deps import HAS_PLT if HAS_PLT: import matplotlib.pyplot as plt import numpy as np from astropy import units as u from astropy.coordinates import Angle from astropy.visualization.units import quantity_support def teardown_function(function): plt.close("all") @pytest.mark.skipif(not HAS_PLT, reason="requires matplotlib.pyplot") def test_units(): plt.figure() with quantity_support(): buff = io.BytesIO() plt.plot([1, 2, 3] * u.m, [3, 4, 5] * u.kg, label="label") plt.plot([105, 210, 315] * u.cm, [3050, 3025, 3010] * u.g) plt.legend() # Also test fill_between, which requires actual conversion to ndarray # with numpy >=1.10 (#4654). plt.fill_between([1, 3] * u.m, [3, 5] * u.kg, [3050, 3010] * u.g) plt.savefig(buff, format="svg") assert plt.gca().xaxis.get_units() == u.m assert plt.gca().yaxis.get_units() == u.kg @pytest.mark.skipif(not HAS_PLT, reason="requires matplotlib.pyplot") def test_units_errbarr(): pytest.importorskip("matplotlib") plt.figure() with quantity_support(): x = [1, 2, 3] * u.s y = [1, 2, 3] * u.m yerr = [3, 2, 1] * u.cm fig, ax = plt.subplots() ax.errorbar(x, y, yerr=yerr) assert ax.xaxis.get_units() == u.s assert ax.yaxis.get_units() == u.m @pytest.mark.skipif(not HAS_PLT, reason="requires matplotlib.pyplot") def test_incompatible_units(): # NOTE: minversion check does not work properly for matplotlib dev. try: # https://github.com/matplotlib/matplotlib/pull/13005 from matplotlib.units import ConversionError except ImportError: err_type = u.UnitConversionError else: err_type = ConversionError plt.figure() with quantity_support(): plt.plot([1, 2, 3] * u.m) with pytest.raises(err_type): plt.plot([105, 210, 315] * u.kg) @pytest.mark.skipif(not HAS_PLT, reason="requires matplotlib.pyplot") def test_quantity_subclass(): """Check that subclasses are recognized. This sadly is not done by matplotlib.units itself, though there is a PR to change it: https://github.com/matplotlib/matplotlib/pull/13536 """ plt.figure() with quantity_support(): plt.scatter(Angle([1, 2, 3], u.deg), [3, 4, 5] * u.kg) plt.scatter([105, 210, 315] * u.arcsec, [3050, 3025, 3010] * u.g) plt.plot(Angle([105, 210, 315], u.arcsec), [3050, 3025, 3010] * u.g) assert plt.gca().xaxis.get_units() == u.deg assert plt.gca().yaxis.get_units() == u.kg @pytest.mark.skipif(not HAS_PLT, reason="requires matplotlib.pyplot") def test_nested(): with quantity_support(): with quantity_support(): fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.scatter(Angle([1, 2, 3], u.deg), [3, 4, 5] * u.kg) assert ax.xaxis.get_units() == u.deg assert ax.yaxis.get_units() == u.kg fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.scatter(Angle([1, 2, 3], u.arcsec), [3, 4, 5] * u.pc) assert ax.xaxis.get_units() == u.arcsec assert ax.yaxis.get_units() == u.pc @pytest.mark.skipif(not HAS_PLT, reason="requires matplotlib.pyplot") def test_empty_hist(): with quantity_support(): fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.hist([1, 2, 3, 4] * u.mmag, bins=100) # The second call results in an empty list being passed to the # unit converter in matplotlib >= 3.1 ax.hist([] * u.mmag, bins=100) @pytest.mark.skipif(not HAS_PLT, reason="requires matplotlib.pyplot") def test_radian_formatter(): with quantity_support(): fig, ax = plt.subplots() ax.plot([1, 2, 3], [1, 2, 3] * u.rad * np.pi) fig.canvas.draw() labels = [tl.get_text() for tl in ax.yaxis.get_ticklabels()] assert labels == ["π/2", "π", "3π/2", "2π", "5π/2", "3π", "7π/2"]
fdd4fe3353206b8a847501f3e832afa548a110c5a7c30d716aff8813c674b43b
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Tests for RGB Images """ import os import sys import tempfile import numpy as np import pytest from numpy.testing import assert_equal from astropy.convolution import Gaussian2DKernel, convolve from astropy.utils.compat.optional_deps import HAS_MATPLOTLIB from astropy.visualization import lupton_rgb # Set display=True to get matplotlib imshow windows to help with debugging. display = False def display_rgb(rgb, title=None): """Display an rgb image using matplotlib (useful for debugging)""" import matplotlib.pyplot as plt plt.imshow(rgb, interpolation="nearest", origin="lower") if title: plt.title(title) plt.show() return plt def saturate(image, satValue): """ Return image with all points above satValue set to NaN. Simulates saturation on an image, so we can test 'replace_saturated_pixels' """ result = image.copy() saturated = image > satValue result[saturated] = np.nan return result def random_array(dtype, N=100): return np.array(np.random.random(10) * 100, dtype=dtype) def test_compute_intensity_1_float(): image_r = random_array(np.float64) intensity = lupton_rgb.compute_intensity(image_r) assert image_r.dtype == intensity.dtype assert_equal(image_r, intensity) def test_compute_intensity_1_uint(): image_r = random_array(np.uint8) intensity = lupton_rgb.compute_intensity(image_r) assert image_r.dtype == intensity.dtype assert_equal(image_r, intensity) def test_compute_intensity_3_float(): image_r = random_array(np.float64) image_g = random_array(np.float64) image_b = random_array(np.float64) intensity = lupton_rgb.compute_intensity(image_r, image_g, image_b) assert image_r.dtype == intensity.dtype assert_equal(intensity, (image_r + image_g + image_b) / 3.0) def test_compute_intensity_3_uint(): image_r = random_array(np.uint8) image_g = random_array(np.uint8) image_b = random_array(np.uint8) intensity = lupton_rgb.compute_intensity(image_r, image_g, image_b) assert image_r.dtype == intensity.dtype assert_equal(intensity, (image_r + image_g + image_b) // 3) class TestLuptonRgb: """A test case for Rgb""" def setup_method(self, method): np.random.seed(1000) # so we always get the same images. self.min_, self.stretch_, self.Q = 0, 5, 20 # asinh width, height = 85, 75 self.width = width self.height = height shape = (width, height) image_r = np.zeros(shape) image_g = np.zeros(shape) image_b = np.zeros(shape) # pixel locations, values and colors points = [[15, 15], [50, 45], [30, 30], [45, 15]] values = [1000, 5500, 600, 20000] g_r = [1.0, -1.0, 1.0, 1.0] r_i = [2.0, -0.5, 2.5, 1.0] # Put pixels in the images. for p, v, gr, ri in zip(points, values, g_r, r_i): image_r[p[0], p[1]] = v * pow(10, 0.4 * ri) image_g[p[0], p[1]] = v * pow(10, 0.4 * gr) image_b[p[0], p[1]] = v # convolve the image with a reasonable PSF, and add Gaussian background noise def convolve_with_noise(image, psf): convolvedImage = convolve( image, psf, boundary="extend", normalize_kernel=True ) randomImage = np.random.normal(0, 2, image.shape) return randomImage + convolvedImage psf = Gaussian2DKernel(2.5) self.image_r = convolve_with_noise(image_r, psf) self.image_g = convolve_with_noise(image_g, psf) self.image_b = convolve_with_noise(image_b, psf) def test_Asinh(self): """Test creating an RGB image using an asinh stretch""" asinhMap = lupton_rgb.AsinhMapping(self.min_, self.stretch_, self.Q) rgbImage = asinhMap.make_rgb_image(self.image_r, self.image_g, self.image_b) if display: display_rgb(rgbImage, title=sys._getframe().f_code.co_name) def test_AsinhZscale(self): """Test creating an RGB image using an asinh stretch estimated using zscale""" map = lupton_rgb.AsinhZScaleMapping(self.image_r, self.image_g, self.image_b) rgbImage = map.make_rgb_image(self.image_r, self.image_g, self.image_b) if display: display_rgb(rgbImage, title=sys._getframe().f_code.co_name) def test_AsinhZscaleIntensity(self): """ Test creating an RGB image using an asinh stretch estimated using zscale on the intensity """ map = lupton_rgb.AsinhZScaleMapping(self.image_r, self.image_g, self.image_b) rgbImage = map.make_rgb_image(self.image_r, self.image_g, self.image_b) if display: display_rgb(rgbImage, title=sys._getframe().f_code.co_name) def test_AsinhZscaleIntensityPedestal(self): """Test creating an RGB image using an asinh stretch estimated using zscale on the intensity where the images each have a pedestal added""" pedestal = [100, 400, -400] self.image_r += pedestal[0] self.image_g += pedestal[1] self.image_b += pedestal[2] map = lupton_rgb.AsinhZScaleMapping( self.image_r, self.image_g, self.image_b, pedestal=pedestal ) rgbImage = map.make_rgb_image(self.image_r, self.image_g, self.image_b) if display: display_rgb(rgbImage, title=sys._getframe().f_code.co_name) def test_AsinhZscaleIntensityBW(self): """Test creating a black-and-white image using an asinh stretch estimated using zscale on the intensity""" map = lupton_rgb.AsinhZScaleMapping(self.image_r) rgbImage = map.make_rgb_image(self.image_r, self.image_r, self.image_r) if display: display_rgb(rgbImage, title=sys._getframe().f_code.co_name) @pytest.mark.skipif(not HAS_MATPLOTLIB, reason="requires matplotlib") def test_make_rgb(self): """Test the function that does it all""" satValue = 1000.0 with tempfile.NamedTemporaryFile(suffix=".png") as temp: red = saturate(self.image_r, satValue) green = saturate(self.image_g, satValue) blue = saturate(self.image_b, satValue) lupton_rgb.make_lupton_rgb( red, green, blue, self.min_, self.stretch_, self.Q, filename=temp ) assert os.path.exists(temp.name) def test_make_rgb_saturated_fix(self): pytest.skip("saturation correction is not implemented") satValue = 1000.0 # TODO: Cannot test with these options yet, as that part of the code is not implemented. with tempfile.NamedTemporaryFile(suffix=".png") as temp: red = saturate(self.image_r, satValue) green = saturate(self.image_g, satValue) blue = saturate(self.image_b, satValue) lupton_rgb.make_lupton_rgb( red, green, blue, self.min_, self.stretch_, self.Q, saturated_border_width=1, saturated_pixel_value=2000, filename=temp, ) def test_linear(self): """Test using a specified linear stretch""" map = lupton_rgb.LinearMapping(-8.45, 13.44) rgbImage = map.make_rgb_image(self.image_r, self.image_g, self.image_b) if display: display_rgb(rgbImage, title=sys._getframe().f_code.co_name) def test_linear_min_max(self): """Test using a min/max linear stretch determined from one image""" map = lupton_rgb.LinearMapping(image=self.image_b) rgbImage = map.make_rgb_image(self.image_r, self.image_g, self.image_b) if display: display_rgb(rgbImage, title=sys._getframe().f_code.co_name) def test_saturated(self): """Test interpolationolating saturated pixels""" pytest.skip("replaceSaturatedPixels is not implemented in astropy yet") satValue = 1000.0 self.image_r = saturate(self.image_r, satValue) self.image_g = saturate(self.image_g, satValue) self.image_b = saturate(self.image_b, satValue) lupton_rgb.replaceSaturatedPixels( self.image_r, self.image_g, self.image_b, 1, 2000 ) # Check that we replaced those NaNs with some reasonable value assert np.isfinite(self.image_r.getImage().getArray()).all() assert np.isfinite(self.image_g.getImage().getArray()).all() assert np.isfinite(self.image_b.getImage().getArray()).all() # Prepare for generating an output file self.imagesR = self.imagesR.getImage() self.imagesR = self.imagesG.getImage() self.imagesR = self.imagesB.getImage() asinhMap = lupton_rgb.AsinhMapping(self.min_, self.stretch_, self.Q) rgbImage = asinhMap.make_rgb_image(self.image_r, self.image_g, self.image_b) if display: display_rgb(rgbImage, title=sys._getframe().f_code.co_name) def test_different_shapes_asserts(self): with pytest.raises(ValueError, match=r"shapes must match"): # just swap the dimensions to get a differently-shaped 'r' image_r = self.image_r.reshape(self.height, self.width) lupton_rgb.make_lupton_rgb(image_r, self.image_g, self.image_b)
b6ab9ebf95a3b613acd0879ada5e8b42a876b2be05f68a2ee7619b5d52cf1395
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np import pytest from numpy import ma from numpy.testing import assert_allclose, assert_equal from packaging.version import Version from astropy.utils.compat.optional_deps import HAS_MATPLOTLIB, HAS_PLT from astropy.visualization.interval import ManualInterval, PercentileInterval from astropy.visualization.mpl_normalize import ImageNormalize, imshow_norm, simple_norm from astropy.visualization.stretch import LogStretch, PowerStretch, SqrtStretch if HAS_MATPLOTLIB: import matplotlib MATPLOTLIB_LT_32 = Version(matplotlib.__version__) < Version("3.2") DATA = np.linspace(0.0, 15.0, 6) DATA2 = np.arange(3) DATA2SCL = 0.5 * DATA2 DATA3 = np.linspace(-3.0, 3.0, 7) STRETCHES = (SqrtStretch(), PowerStretch(0.5), LogStretch()) INVALID = (None, -np.inf, -1) @pytest.mark.skipif(HAS_MATPLOTLIB, reason="matplotlib is installed") def test_normalize_error_message(): with pytest.raises( ImportError, match=r"matplotlib is required in order to use this class." ): ImageNormalize() @pytest.mark.skipif(not HAS_MATPLOTLIB, reason="requires matplotlib") class TestNormalize: def test_invalid_interval(self): with pytest.raises(TypeError): ImageNormalize(vmin=2.0, vmax=10.0, interval=ManualInterval, clip=True) def test_invalid_stretch(self): with pytest.raises(TypeError): ImageNormalize(vmin=2.0, vmax=10.0, stretch=SqrtStretch, clip=True) def test_stretch_none(self): with pytest.raises(ValueError): ImageNormalize(vmin=2.0, vmax=10.0, stretch=None) def test_scalar(self): norm = ImageNormalize(vmin=2.0, vmax=10.0, stretch=SqrtStretch(), clip=True) norm2 = ImageNormalize( data=6, interval=ManualInterval(2, 10), stretch=SqrtStretch(), clip=True ) assert_allclose(norm(6), 0.70710678) assert_allclose(norm(6), norm2(6)) def test_clip(self): norm = ImageNormalize(vmin=2.0, vmax=10.0, stretch=SqrtStretch(), clip=True) norm2 = ImageNormalize( DATA, interval=ManualInterval(2, 10), stretch=SqrtStretch(), clip=True ) output = norm(DATA) expected = [0.0, 0.35355339, 0.70710678, 0.93541435, 1.0, 1.0] assert_allclose(output, expected) assert_allclose(output.mask, [0, 0, 0, 0, 0, 0]) assert_allclose(output, norm2(DATA)) def test_noclip(self): norm = ImageNormalize( vmin=2.0, vmax=10.0, stretch=SqrtStretch(), clip=False, invalid=None ) norm2 = ImageNormalize( DATA, interval=ManualInterval(2, 10), stretch=SqrtStretch(), clip=False, invalid=None, ) output = norm(DATA) expected = [np.nan, 0.35355339, 0.70710678, 0.93541435, 1.11803399, 1.27475488] assert_allclose(output, expected) assert_allclose(output.mask, [0, 0, 0, 0, 0, 0]) assert_allclose(norm.inverse(norm(DATA))[1:], DATA[1:]) assert_allclose(output, norm2(DATA)) def test_implicit_autoscale(self): norm = ImageNormalize(vmin=None, vmax=10.0, stretch=SqrtStretch(), clip=False) norm2 = ImageNormalize( DATA, interval=ManualInterval(None, 10), stretch=SqrtStretch(), clip=False ) output = norm(DATA) assert norm.vmin == np.min(DATA) assert norm.vmax == 10.0 assert_allclose(output, norm2(DATA)) norm = ImageNormalize(vmin=2.0, vmax=None, stretch=SqrtStretch(), clip=False) norm2 = ImageNormalize( DATA, interval=ManualInterval(2, None), stretch=SqrtStretch(), clip=False ) output = norm(DATA) assert norm.vmin == 2.0 assert norm.vmax == np.max(DATA) assert_allclose(output, norm2(DATA)) def test_call_clip(self): """Test that the clip keyword is used when calling the object.""" data = np.arange(5) norm = ImageNormalize(vmin=1.0, vmax=3.0, clip=False) output = norm(data, clip=True) assert_equal(output.data, [0, 0, 0.5, 1.0, 1.0]) assert np.all(~output.mask) output = norm(data, clip=False) assert_equal(output.data, [-0.5, 0, 0.5, 1.0, 1.5]) assert np.all(~output.mask) def test_masked_clip(self): mdata = ma.array(DATA, mask=[0, 0, 1, 0, 0, 0]) norm = ImageNormalize(vmin=2.0, vmax=10.0, stretch=SqrtStretch(), clip=True) norm2 = ImageNormalize( mdata, interval=ManualInterval(2, 10), stretch=SqrtStretch(), clip=True ) output = norm(mdata) expected = [0.0, 0.35355339, 1.0, 0.93541435, 1.0, 1.0] assert_allclose(output.filled(-10), expected) assert_allclose(output.mask, [0, 0, 0, 0, 0, 0]) assert_allclose(output, norm2(mdata)) def test_masked_noclip(self): mdata = ma.array(DATA, mask=[0, 0, 1, 0, 0, 0]) norm = ImageNormalize( vmin=2.0, vmax=10.0, stretch=SqrtStretch(), clip=False, invalid=None ) norm2 = ImageNormalize( mdata, interval=ManualInterval(2, 10), stretch=SqrtStretch(), clip=False, invalid=None, ) output = norm(mdata) expected = [np.nan, 0.35355339, -10, 0.93541435, 1.11803399, 1.27475488] assert_allclose(output.filled(-10), expected) assert_allclose(output.mask, [0, 0, 1, 0, 0, 0]) assert_allclose(norm.inverse(norm(DATA))[1:], DATA[1:]) assert_allclose(output, norm2(mdata)) def test_invalid_data(self): data = np.arange(25.0).reshape((5, 5)) data[2, 2] = np.nan data[1, 2] = np.inf percent = 85.0 interval = PercentileInterval(percent) # initialized without data norm = ImageNormalize(interval=interval) norm(data) # sets vmin/vmax assert_equal((norm.vmin, norm.vmax), (1.65, 22.35)) # initialized with data norm2 = ImageNormalize(data, interval=interval) assert_equal((norm2.vmin, norm2.vmax), (norm.vmin, norm.vmax)) norm3 = simple_norm(data, "linear", percent=percent) assert_equal((norm3.vmin, norm3.vmax), (norm.vmin, norm.vmax)) assert_allclose(norm(data), norm2(data)) assert_allclose(norm(data), norm3(data)) norm4 = ImageNormalize() norm4(data) # sets vmin/vmax assert_equal((norm4.vmin, norm4.vmax), (0, 24)) norm5 = ImageNormalize(data) assert_equal((norm5.vmin, norm5.vmax), (norm4.vmin, norm4.vmax)) @pytest.mark.parametrize("stretch", STRETCHES) def test_invalid_keyword(self, stretch): norm1 = ImageNormalize( stretch=stretch, vmin=-1, vmax=1, clip=False, invalid=None ) norm2 = ImageNormalize(stretch=stretch, vmin=-1, vmax=1, clip=False) norm3 = ImageNormalize( DATA3, stretch=stretch, vmin=-1, vmax=1, clip=False, invalid=-1.0 ) result1 = norm1(DATA3) result2 = norm2(DATA3) result3 = norm3(DATA3) assert_equal(result1[0:2], (np.nan, np.nan)) assert_equal(result2[0:2], (-1.0, -1.0)) assert_equal(result1[2:], result2[2:]) assert_equal(result2, result3) @pytest.mark.skipif(not HAS_MATPLOTLIB, reason="requires matplotlib") class TestImageScaling: def test_linear(self): """Test linear scaling.""" norm = simple_norm(DATA2, stretch="linear") assert_allclose(norm(DATA2), DATA2SCL, atol=0, rtol=1.0e-5) def test_sqrt(self): """Test sqrt scaling.""" norm1 = simple_norm(DATA2, stretch="sqrt") assert_allclose(norm1(DATA2), np.sqrt(DATA2SCL), atol=0, rtol=1.0e-5) @pytest.mark.parametrize("invalid", INVALID) def test_sqrt_invalid_kw(self, invalid): stretch = SqrtStretch() norm1 = simple_norm( DATA3, stretch="sqrt", min_cut=-1, max_cut=1, clip=False, invalid=invalid ) norm2 = ImageNormalize( stretch=stretch, vmin=-1, vmax=1, clip=False, invalid=invalid ) assert_equal(norm1(DATA3), norm2(DATA3)) def test_power(self): """Test power scaling.""" power = 3.0 norm = simple_norm(DATA2, stretch="power", power=power) assert_allclose(norm(DATA2), DATA2SCL**power, atol=0, rtol=1.0e-5) def test_log(self): """Test log10 scaling.""" norm = simple_norm(DATA2, stretch="log") ref = np.log10(1000 * DATA2SCL + 1.0) / np.log10(1001.0) assert_allclose(norm(DATA2), ref, atol=0, rtol=1.0e-5) def test_log_with_log_a(self): """Test log10 scaling with a custom log_a.""" log_a = 100 norm = simple_norm(DATA2, stretch="log", log_a=log_a) ref = np.log10(log_a * DATA2SCL + 1.0) / np.log10(log_a + 1) assert_allclose(norm(DATA2), ref, atol=0, rtol=1.0e-5) def test_asinh(self): """Test asinh scaling.""" norm = simple_norm(DATA2, stretch="asinh") ref = np.arcsinh(10 * DATA2SCL) / np.arcsinh(10) assert_allclose(norm(DATA2), ref, atol=0, rtol=1.0e-5) def test_asinh_with_asinh_a(self): """Test asinh scaling with a custom asinh_a.""" asinh_a = 0.5 norm = simple_norm(DATA2, stretch="asinh", asinh_a=asinh_a) ref = np.arcsinh(DATA2SCL / asinh_a) / np.arcsinh(1.0 / asinh_a) assert_allclose(norm(DATA2), ref, atol=0, rtol=1.0e-5) def test_sinh(self): """Test sinh scaling.""" sinh_a = 0.5 norm = simple_norm(DATA2, stretch="sinh", sinh_a=sinh_a) ref = np.sinh(DATA2SCL / sinh_a) / np.sinh(1 / sinh_a) assert_allclose(norm(DATA2), ref, atol=0, rtol=1.0e-5) def test_min(self): """Test linear scaling.""" norm = simple_norm(DATA2, stretch="linear", min_cut=1.0, clip=True) assert_allclose(norm(DATA2), [0.0, 0.0, 1.0], atol=0, rtol=1.0e-5) def test_percent(self): """Test percent keywords.""" norm = simple_norm(DATA2, stretch="linear", percent=99.0, clip=True) assert_allclose(norm(DATA2), DATA2SCL, atol=0, rtol=1.0e-5) norm2 = simple_norm( DATA2, stretch="linear", min_percent=0.5, max_percent=99.5, clip=True ) assert_allclose(norm(DATA2), norm2(DATA2), atol=0, rtol=1.0e-5) def test_invalid_stretch(self): """Test invalid stretch keyword.""" with pytest.raises(ValueError): simple_norm(DATA2, stretch="invalid") @pytest.mark.skipif(not HAS_PLT, reason="requires matplotlib.pyplot") def test_imshow_norm(): import matplotlib.pyplot as plt image = np.random.randn(10, 10) plt.clf() ax = plt.subplot(label="test_imshow_norm") imshow_norm(image, ax=ax) with pytest.raises(ValueError): # X and data are the same, can't give both imshow_norm(image, X=image, ax=ax) with pytest.raises(ValueError): # illegal to manually pass in normalization since that defeats the point imshow_norm(image, ax=ax, norm=ImageNormalize()) plt.clf() imshow_norm(image, ax=ax, vmin=0, vmax=1) # make sure the pyplot version works plt.clf() imres, norm = imshow_norm(image, ax=None) assert isinstance(norm, ImageNormalize) plt.close("all")
ea737c446dfab7356a06146219061473d8d039e991661081efac95e3f677b19c
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest pytest.importorskip("matplotlib") from contextlib import nullcontext import matplotlib.dates import matplotlib.pyplot as plt from erfa import ErfaWarning from astropy.time import Time from astropy.visualization.time import time_support # Matplotlib 3.3 added a settable epoch for plot dates and changed the default # from 0000-12-31 to 1970-01-01. This can be checked by the existence of # get_epoch() in matplotlib.dates. MPL_EPOCH_1970 = hasattr(matplotlib.dates, "get_epoch") # Since some of the examples below use times/dates in the future, we use the # TAI time scale to avoid ERFA warnings about dubious years. DEFAULT_SCALE = "tai" def get_ticklabels(axis): axis.figure.canvas.draw() return [x.get_text() for x in axis.get_ticklabels()] def teardown_function(function): plt.close("all") # We first check that we get the expected labels for different time intervals # for standard ISO formatting. This is a way to check both the locator and # formatter code. RANGE_CASES = [ # Interval of many years ( ("2014-03-22T12:30:30.9", "2077-03-22T12:30:32.1"), ["2020-01-01", "2040-01-01", "2060-01-01"], ), # Interval of a few years ( ("2014-03-22T12:30:30.9", "2017-03-22T12:30:32.1"), ["2015-01-01", "2016-01-01", "2017-01-01"], ), # Interval of just under a year (("2014-03-22T12:30:30.9", "2015-01-22T12:30:32.1"), ["2014-05-01", "2014-10-01"]), # Interval of a few months ( ("2014-11-22T12:30:30.9", "2015-02-22T12:30:32.1"), ["2014-12-01", "2015-01-01", "2015-02-01"], ), # Interval of just over a month (("2014-03-22T12:30:30.9", "2014-04-23T12:30:32.1"), ["2014-04-01"]), # Interval of just under a month ( ("2014-03-22T12:30:30.9", "2014-04-21T12:30:32.1"), ["2014-03-24", "2014-04-03", "2014-04-13"], ), # Interval of just over an hour ( ("2014-03-22T12:30:30.9", "2014-03-22T13:31:30.9"), [ "2014-03-22T12:40:00.000", "2014-03-22T13:00:00.000", "2014-03-22T13:20:00.000", ], ), # Interval of just under an hour ( ("2014-03-22T12:30:30.9", "2014-03-22T13:28:30.9"), [ "2014-03-22T12:40:00.000", "2014-03-22T13:00:00.000", "2014-03-22T13:20:00.000", ], ), # Interval of a few minutes ( ("2014-03-22T12:30:30.9", "2014-03-22T12:38:30.9"), ["2014-03-22T12:33:00.000", "2014-03-22T12:36:00.000"], ), # Interval of a few seconds ( ("2014-03-22T12:30:30.9", "2014-03-22T12:30:40.9"), [ "2014-03-22T12:30:33.000", "2014-03-22T12:30:36.000", "2014-03-22T12:30:39.000", ], ), # Interval of a couple of seconds ( ("2014-03-22T12:30:30.9", "2014-03-22T12:30:32.1"), [ "2014-03-22T12:30:31.000", "2014-03-22T12:30:31.500", "2014-03-22T12:30:32.000", ], ), # Interval of under a second ( ("2014-03-22T12:30:30.89", "2014-03-22T12:30:31.19"), [ "2014-03-22T12:30:30.900", "2014-03-22T12:30:31.000", "2014-03-22T12:30:31.100", ], ), ] @pytest.mark.parametrize(("interval", "expected"), RANGE_CASES) def test_formatter_locator(interval, expected): # Check that the ticks and labels returned for the above cases are correct. with time_support(): fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.set_xlim( Time(interval[0], scale=DEFAULT_SCALE), Time(interval[1], scale=DEFAULT_SCALE), ) assert get_ticklabels(ax.xaxis) == expected FORMAT_CASES = [ ("byear", ["2020", "2040", "2060"]), ("byear_str", ["B2020.000", "B2040.000", "B2060.000"]), ("cxcsec", ["1000000000", "1500000000", "2000000000", "2500000000"]), ("decimalyear", ["2020", "2040", "2060"]), ( "fits", [ "2020-01-01T00:00:00.000", "2040-01-01T00:00:00.000", "2060-01-01T00:00:00.000", ], ), ("gps", ["1500000000", "2000000000", "2500000000", "3000000000"]), ( "iso", [ "2020-01-01 00:00:00.000", "2040-01-01 00:00:00.000", "2060-01-01 00:00:00.000", ], ), ( "isot", [ "2020-01-01T00:00:00.000", "2040-01-01T00:00:00.000", "2060-01-01T00:00:00.000", ], ), ("jd", ["2458000", "2464000", "2470000", "2476000"]), ("jyear", ["2020", "2040", "2060"]), ("jyear_str", ["J2020.000", "J2040.000", "J2060.000"]), ("mjd", ["60000", "66000", "72000", "78000"]), ( "plot_date", ( ["18000", "24000", "30000", "36000"] if MPL_EPOCH_1970 else ["738000", "744000", "750000", "756000"] ), ), ("unix", ["1500000000", "2000000000", "2500000000", "3000000000"]), ( "yday", ["2020:001:00:00:00.000", "2040:001:00:00:00.000", "2060:001:00:00:00.000"], ), ] @pytest.mark.parametrize(("format", "expected"), FORMAT_CASES) def test_formats(format, expected): # Check that the locators/formatters work fine for all time formats with time_support(format=format, simplify=False): fig = plt.figure() ax = fig.add_subplot(1, 1, 1) # Getting unix time and plot_date requires going through a scale for # which ERFA emits a warning about the date being dubious with pytest.warns(ErfaWarning) if format in [ "unix", "plot_date", ] else nullcontext(): ax.set_xlim( Time("2014-03-22T12:30:30.9", scale=DEFAULT_SCALE), Time("2077-03-22T12:30:32.1", scale=DEFAULT_SCALE), ) assert get_ticklabels(ax.xaxis) == expected ax.get_xlabel() == f"Time ({format})" @pytest.mark.parametrize(("format", "expected"), FORMAT_CASES) def test_auto_formats(format, expected): # Check that the format/scale is taken from the first time used. with time_support(simplify=False): fig = plt.figure() ax = fig.add_subplot(1, 1, 1) # Getting unix time and plot_date requires going through a scale for # which ERFA emits a warning about the date being dubious with pytest.warns(ErfaWarning) if format in [ "unix", "plot_date", ] else nullcontext(): ax.set_xlim( Time(Time("2014-03-22T12:30:30.9", scale=DEFAULT_SCALE), format=format), Time("2077-03-22T12:30:32.1", scale=DEFAULT_SCALE), ) assert get_ticklabels(ax.xaxis) == expected ax.get_xlabel() == f"Time ({format})" FORMAT_CASES_SIMPLIFY = [ ("fits", ["2020-01-01", "2040-01-01", "2060-01-01"]), ("iso", ["2020-01-01", "2040-01-01", "2060-01-01"]), ("isot", ["2020-01-01", "2040-01-01", "2060-01-01"]), ("yday", ["2020", "2040", "2060"]), ] @pytest.mark.parametrize(("format", "expected"), FORMAT_CASES_SIMPLIFY) def test_formats_simplify(format, expected): # Check the use of the simplify= option with time_support(format=format, simplify=True): fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.set_xlim( Time("2014-03-22T12:30:30.9", scale=DEFAULT_SCALE), Time("2077-03-22T12:30:32.1", scale=DEFAULT_SCALE), ) assert get_ticklabels(ax.xaxis) == expected def test_plot(): # Make sure that plot() works properly with time_support(): fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.set_xlim( Time("2014-03-22T12:30:30.9", scale=DEFAULT_SCALE), Time("2077-03-22T12:30:32.1", scale=DEFAULT_SCALE), ) ax.plot( Time( [ "2015-03-22T12:30:30.9", "2018-03-22T12:30:30.9", "2021-03-22T12:30:30.9", ], scale=DEFAULT_SCALE, ) ) def test_nested(): with time_support(format="iso", simplify=False): with time_support(format="yday", simplify=True): fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.set_xlim( Time("2014-03-22T12:30:30.9", scale=DEFAULT_SCALE), Time("2077-03-22T12:30:32.1", scale=DEFAULT_SCALE), ) assert get_ticklabels(ax.xaxis) == ["2020", "2040", "2060"] fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.set_xlim( Time("2014-03-22T12:30:30.9", scale=DEFAULT_SCALE), Time("2077-03-22T12:30:32.1", scale=DEFAULT_SCALE), ) assert get_ticklabels(ax.xaxis) == [ "2020-01-01 00:00:00.000", "2040-01-01 00:00:00.000", "2060-01-01 00:00:00.000", ]
e5dff3111595192eb15a7e444ca02eda1e6571d6eda1fc23700f85ade58fc0f9
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np import pytest from astropy.io import fits from astropy.utils.compat.optional_deps import HAS_MATPLOTLIB if HAS_MATPLOTLIB: import matplotlib.image as mpimg from astropy.visualization.scripts.fits2bitmap import fits2bitmap, main @pytest.mark.skipif(not HAS_MATPLOTLIB, reason="requires matplotlib") class TestFits2Bitmap: def setup_class(self): self.filename = "test.fits" self.array = np.arange(16384).reshape((128, 128)) @pytest.mark.openfiles_ignore def test_function(self, tmp_path): filename = tmp_path / self.filename fits.writeto(filename, self.array) fits2bitmap(filename) @pytest.mark.openfiles_ignore def test_script(self, tmp_path): filename = str(tmp_path / self.filename) fits.writeto(filename, self.array) main([filename, "-e", "0"]) @pytest.mark.openfiles_ignore def test_exten_num(self, tmp_path): filename = str(tmp_path / self.filename) hdu1 = fits.PrimaryHDU() hdu2 = fits.ImageHDU(self.array) hdulist = fits.HDUList([hdu1, hdu2]) hdulist.writeto(filename) main([filename, "-e", "1"]) @pytest.mark.openfiles_ignore def test_exten_name(self, tmp_path): filename = str(tmp_path / self.filename) hdu1 = fits.PrimaryHDU() extname = "SCI" hdu2 = fits.ImageHDU(self.array) hdu2.header["EXTNAME"] = extname hdulist = fits.HDUList([hdu1, hdu2]) hdulist.writeto(filename) main([filename, "-e", extname]) @pytest.mark.parametrize("file_exten", [".gz", ".bz2"]) def test_compressed_fits(self, tmp_path, file_exten): filename = str(tmp_path / f"test.fits{file_exten}") fits.writeto(filename, self.array) main([filename, "-e", "0"]) @pytest.mark.openfiles_ignore def test_orientation(self, tmp_path): """ Regression test to check the image vertical orientation/origin. """ filename = str(tmp_path / self.filename) out_filename = "fits2bitmap_test.png" out_filename = str(tmp_path / out_filename) data = np.zeros((32, 32)) data[0:16, :] = 1.0 fits.writeto(filename, data) main([filename, "-e", "0", "-o", out_filename]) img = mpimg.imread(out_filename) assert img[0, 0, 0] == 0 assert img[31, 31, 0] == 1
8e0bbf5ab82acba814436d4112636886fb224480a363089335516679c082c399
# Licensed under a 3-clause BSD style license - see LICENSE.rst import warnings import matplotlib import matplotlib.pyplot as plt import numpy as np import pytest from matplotlib.contour import QuadContourSet from packaging.version import Version from astropy import units as u from astropy.coordinates import SkyCoord from astropy.io import fits from astropy.utils.data import get_pkg_data_filename from astropy.visualization.wcsaxes.core import WCSAxes from astropy.visualization.wcsaxes.frame import ( EllipticalFrame, RectangularFrame, RectangularFrame1D, ) from astropy.visualization.wcsaxes.transforms import CurvedTransform from astropy.visualization.wcsaxes.utils import get_coord_meta from astropy.wcs import WCS from astropy.wcs.wcsapi import HighLevelWCSWrapper, SlicedLowLevelWCS ft_version = Version(matplotlib.ft2font.__freetype_version__) FREETYPE_261 = ft_version == Version("2.6.1") # We cannot use matplotlib.checkdep_usetex() anymore, see # https://github.com/matplotlib/matplotlib/issues/23244 TEX_UNAVAILABLE = True MATPLOTLIB_DEV = Version(matplotlib.__version__).is_devrelease def teardown_function(function): plt.close("all") def test_grid_regression(ignore_matplotlibrc): # Regression test for a bug that meant that if the rc parameter # axes.grid was set to True, WCSAxes would crash upon initialization. plt.rc("axes", grid=True) fig = plt.figure(figsize=(3, 3)) WCSAxes(fig, [0.1, 0.1, 0.8, 0.8]) def test_format_coord_regression(ignore_matplotlibrc, tmp_path): # Regression test for a bug that meant that if format_coord was called by # Matplotlib before the axes were drawn, an error occurred. fig = plt.figure(figsize=(3, 3)) ax = WCSAxes(fig, [0.1, 0.1, 0.8, 0.8]) fig.add_axes(ax) assert ax.format_coord(10, 10) == "" assert ax.coords[0].format_coord(10) == "" assert ax.coords[1].format_coord(10) == "" fig.savefig(tmp_path / "nothing") assert ax.format_coord(10, 10) == "10.0 10.0 (world)" assert ax.coords[0].format_coord(10) == "10.0" assert ax.coords[1].format_coord(10) == "10.0" TARGET_HEADER = fits.Header.fromstring( """ NAXIS = 2 NAXIS1 = 200 NAXIS2 = 100 CTYPE1 = 'RA---MOL' CRPIX1 = 500 CRVAL1 = 180.0 CDELT1 = -0.4 CUNIT1 = 'deg ' CTYPE2 = 'DEC--MOL' CRPIX2 = 400 CRVAL2 = 0.0 CDELT2 = 0.4 CUNIT2 = 'deg ' COORDSYS= 'icrs ' """, sep="\n", ) @pytest.mark.parametrize("grid_type", ["lines", "contours"]) def test_no_numpy_warnings(ignore_matplotlibrc, tmp_path, grid_type): fig = plt.figure() ax = fig.add_subplot(1, 1, 1, projection=WCS(TARGET_HEADER)) ax.imshow(np.zeros((100, 200))) ax.coords.grid(color="white", grid_type=grid_type) # There should be no warnings raised if some pixels are outside WCS # (since this is normal). # BUT our own catch_warning was ignoring some warnings before, so now we # have to catch it. Otherwise, the pytest filterwarnings=error # setting in setup.cfg will fail this test. # There are actually multiple warnings but they are all similar. with warnings.catch_warnings(): warnings.filterwarnings( "ignore", message=r".*converting a masked element to nan.*" ) warnings.filterwarnings( "ignore", message=r".*No contour levels were found within the data range.*" ) warnings.filterwarnings( "ignore", message=r".*np\.asscalar\(a\) is deprecated since NumPy v1\.16.*" ) warnings.filterwarnings( "ignore", message=r".*PY_SSIZE_T_CLEAN will be required.*" ) fig.savefig(tmp_path / "test.png") def test_invalid_frame_overlay(ignore_matplotlibrc): # Make sure a nice error is returned if a frame doesn't exist ax = plt.subplot(1, 1, 1, projection=WCS(TARGET_HEADER)) with pytest.raises(ValueError, match=r"Frame banana not found"): ax.get_coords_overlay("banana") with pytest.raises(ValueError, match=r"Unknown frame: banana"): get_coord_meta("banana") def test_plot_coord_transform(ignore_matplotlibrc): twoMASS_k_header = get_pkg_data_filename("data/2MASS_k_header") twoMASS_k_header = fits.Header.fromtextfile(twoMASS_k_header) fig = plt.figure(figsize=(6, 6)) ax = fig.add_axes( [0.15, 0.15, 0.8, 0.8], projection=WCS(twoMASS_k_header), aspect="equal" ) ax.set_xlim(-0.5, 720.5) ax.set_ylim(-0.5, 720.5) c = SkyCoord(359.76045223 * u.deg, 0.26876217 * u.deg) with pytest.raises(TypeError): ax.plot_coord(c, "o", transform=ax.get_transform("galactic")) def test_scatter_coord_transform(ignore_matplotlibrc): twoMASS_k_header = get_pkg_data_filename("data/2MASS_k_header") twoMASS_k_header = fits.Header.fromtextfile(twoMASS_k_header) fig = plt.figure(figsize=(6, 6)) ax = fig.add_axes( [0.15, 0.15, 0.8, 0.8], projection=WCS(twoMASS_k_header), aspect="equal" ) ax.set_xlim(-0.5, 720.5) ax.set_ylim(-0.5, 720.5) c = SkyCoord(359.76045223 * u.deg, 0.26876217 * u.deg) with pytest.raises(TypeError): ax.scatter_coord(c, marker="o", transform=ax.get_transform("galactic")) def test_set_label_properties(ignore_matplotlibrc): # Regression test to make sure that arguments passed to # set_xlabel/set_ylabel are passed to the underlying coordinate helpers ax = plt.subplot(1, 1, 1, projection=WCS(TARGET_HEADER)) ax.set_xlabel("Test x label", labelpad=2, color="red") ax.set_ylabel("Test y label", labelpad=3, color="green") assert ax.coords[0].axislabels.get_text() == "Test x label" assert ax.coords[0].axislabels.get_minpad("b") == 2 assert ax.coords[0].axislabels.get_color() == "red" assert ax.coords[1].axislabels.get_text() == "Test y label" assert ax.coords[1].axislabels.get_minpad("l") == 3 assert ax.coords[1].axislabels.get_color() == "green" assert ax.get_xlabel() == "Test x label" assert ax.get_ylabel() == "Test y label" GAL_HEADER = fits.Header.fromstring( """ SIMPLE = T / conforms to FITS standard BITPIX = -32 / array data type NAXIS = 3 / number of array dimensions NAXIS1 = 31 NAXIS2 = 2881 NAXIS3 = 480 EXTEND = T CTYPE1 = 'DISTMOD ' CRVAL1 = 3.5 CDELT1 = 0.5 CRPIX1 = 1.0 CTYPE2 = 'GLON-CAR' CRVAL2 = 180.0 CDELT2 = -0.125 CRPIX2 = 1.0 CTYPE3 = 'GLAT-CAR' CRVAL3 = 0.0 CDELT3 = 0.125 CRPIX3 = 241.0 """, sep="\n", ) def test_slicing_warnings(ignore_matplotlibrc, tmp_path): # Regression test to make sure that no warnings are emitted by the tick # locator for the sliced axis when slicing a cube. # Scalar case wcs3d = WCS(naxis=3) wcs3d.wcs.ctype = ["x", "y", "z"] wcs3d.wcs.cunit = ["deg", "deg", "km/s"] wcs3d.wcs.crpix = [614.5, 856.5, 333] wcs3d.wcs.cdelt = [6.25, 6.25, 23] wcs3d.wcs.crval = [0.0, 0.0, 1.0] with warnings.catch_warnings(): # https://github.com/astropy/astropy/issues/9690 warnings.filterwarnings("ignore", message=r".*PY_SSIZE_T_CLEAN.*") plt.subplot(1, 1, 1, projection=wcs3d, slices=("x", "y", 1)) plt.savefig(tmp_path / "test.png") # Angle case wcs3d = WCS(GAL_HEADER) with warnings.catch_warnings(): # https://github.com/astropy/astropy/issues/9690 warnings.filterwarnings("ignore", message=r".*PY_SSIZE_T_CLEAN.*") plt.clf() plt.subplot(1, 1, 1, projection=wcs3d, slices=("x", "y", 2)) plt.savefig(tmp_path / "test.png") def test_plt_xlabel_ylabel(tmp_path): # Regression test for a bug that happened when using plt.xlabel # and plt.ylabel with Matplotlib 3.0 plt.subplot(projection=WCS()) plt.xlabel("Galactic Longitude") plt.ylabel("Galactic Latitude") plt.savefig(tmp_path / "test.png") def test_grid_type_contours_transform(tmp_path): # Regression test for a bug that caused grid_type='contours' to not work # with custom transforms class CustomTransform(CurvedTransform): # We deliberately don't define the inverse, and has_inverse should # default to False. def transform(self, values): return values * 1.3 transform = CustomTransform() coord_meta = { "type": ("scalar", "scalar"), "unit": (u.m, u.s), "wrap": (None, None), "name": ("x", "y"), } fig = plt.figure() ax = WCSAxes(fig, [0.1, 0.1, 0.8, 0.8], transform=transform, coord_meta=coord_meta) fig.add_axes(ax) ax.grid(grid_type="contours") fig.savefig(tmp_path / "test.png") def test_plt_imshow_origin(): # Regression test for a bug that caused origin to be set to upper when # plt.imshow was called. ax = plt.subplot(projection=WCS()) plt.imshow(np.ones((2, 2))) assert ax.get_xlim() == (-0.5, 1.5) assert ax.get_ylim() == (-0.5, 1.5) def test_ax_imshow_origin(): # Regression test for a bug that caused origin to be set to upper when # ax.imshow was called with no origin ax = plt.subplot(projection=WCS()) ax.imshow(np.ones((2, 2))) assert ax.get_xlim() == (-0.5, 1.5) assert ax.get_ylim() == (-0.5, 1.5) def test_grid_contour_large_spacing(tmp_path): # Regression test for a bug that caused a crash when grid was called and # didn't produce grid lines (due e.g. to too large spacing) and was then # called again. filename = tmp_path / "test.png" ax = plt.subplot(projection=WCS()) ax.set_xlim(-0.5, 1.5) ax.set_ylim(-0.5, 1.5) ax.coords[0].set_ticks(values=[] * u.one) ax.coords[0].grid(grid_type="contours") plt.savefig(filename) ax.coords[0].grid(grid_type="contours") plt.savefig(filename) def test_contour_return(): # Regression test for a bug that caused contour and contourf to return None # instead of the contour object. fig = plt.figure() ax = WCSAxes(fig, [0.1, 0.1, 0.8, 0.8]) fig.add_axes(ax) cset = ax.contour(np.arange(16).reshape(4, 4), transform=ax.get_transform("world")) assert isinstance(cset, QuadContourSet) cset = ax.contourf(np.arange(16).reshape(4, 4), transform=ax.get_transform("world")) assert isinstance(cset, QuadContourSet) def test_contour_empty(): # Regression test for a bug that caused contour to crash if no contours # were present. fig = plt.figure() ax = WCSAxes(fig, [0.1, 0.1, 0.8, 0.8]) fig.add_axes(ax) with pytest.warns( UserWarning, match="No contour levels were found within the data range" ): ax.contour(np.zeros((4, 4)), transform=ax.get_transform("world")) def test_iterate_coords(ignore_matplotlibrc): # Regression test for a bug that caused ax.coords to return too few axes wcs3d = WCS(naxis=3) wcs3d.wcs.ctype = ["x", "y", "z"] wcs3d.wcs.cunit = ["deg", "deg", "km/s"] wcs3d.wcs.crpix = [614.5, 856.5, 333] wcs3d.wcs.cdelt = [6.25, 6.25, 23] wcs3d.wcs.crval = [0.0, 0.0, 1.0] ax = plt.subplot(1, 1, 1, projection=wcs3d, slices=("x", "y", 1)) x, y, z = ax.coords def test_invalid_slices_errors(ignore_matplotlibrc): # Make sure that users get a clear message when specifying a WCS with # >2 dimensions without giving the 'slices' argument, or if the 'slices' # argument has too many/few elements. wcs3d = WCS(naxis=3) wcs3d.wcs.ctype = ["x", "y", "z"] plt.subplot(1, 1, 1, projection=wcs3d, slices=("x", "y", 1)) with pytest.raises( ValueError, match=r"WCS has more than 2 pixel dimensions, so 'slices' should be set", ): plt.subplot(1, 1, 1, projection=wcs3d) with pytest.raises( ValueError, match=( r"'slices' should have as many elements as WCS has pixel dimensions .should" r" be 3." ), ): plt.subplot(1, 1, 1, projection=wcs3d, slices=("x", "y", 1, 2)) wcs2d = WCS(naxis=2) wcs2d.wcs.ctype = ["x", "y"] plt.clf() ax = plt.subplot(1, 1, 1, projection=wcs2d) assert ax.frame_class is RectangularFrame plt.clf() ax = plt.subplot(1, 1, 1, projection=wcs2d, slices=("x", "y")) assert ax.frame_class is RectangularFrame plt.clf() ax = plt.subplot(1, 1, 1, projection=wcs2d, slices=("y", "x")) assert ax.frame_class is RectangularFrame plt.clf() ax = plt.subplot(1, 1, 1, projection=wcs2d, slices=["x", "y"]) assert ax.frame_class is RectangularFrame plt.clf() ax = plt.subplot(1, 1, 1, projection=wcs2d, slices=(1, "x")) assert ax.frame_class is RectangularFrame1D wcs1d = WCS(naxis=1) wcs1d.wcs.ctype = ["x"] plt.clf() ax = plt.subplot(1, 1, 1, projection=wcs1d) assert ax.frame_class is RectangularFrame1D with pytest.raises(ValueError): plt.subplot(1, 1, 1, projection=wcs2d, slices=(1, "y")) EXPECTED_REPR_1 = """ <CoordinatesMap with 3 world coordinates: index aliases type unit wrap format_unit visible ----- ------------------------------ --------- ---- ---- ----------- ------- 0 distmod dist scalar None no 1 pos.galactic.lon glon-car glon longitude deg 360 deg yes 2 pos.galactic.lat glat-car glat latitude deg None deg yes > """.strip() EXPECTED_REPR_2 = """ <CoordinatesMap with 3 world coordinates: index aliases type unit wrap format_unit visible ----- ------------------------------ --------- ---- ---- ----------- ------- 0 distmod dist scalar None yes 1 pos.galactic.lon glon-car glon longitude deg 360 deg yes 2 pos.galactic.lat glat-car glat latitude deg None deg yes > """.strip() def test_repr(ignore_matplotlibrc): # Unit test to make sure __repr__ looks as expected wcs3d = WCS(GAL_HEADER) # Cube header has world coordinates as distance, lon, lat, so start off # by slicing in a way that we select just lon,lat: ax = plt.subplot(1, 1, 1, projection=wcs3d, slices=(1, "x", "y")) assert repr(ax.coords) == EXPECTED_REPR_1 # Now slice in a way that all world coordinates are still present: plt.clf() ax = plt.subplot(1, 1, 1, projection=wcs3d, slices=("x", "y", 1)) assert repr(ax.coords) == EXPECTED_REPR_2 @pytest.fixture def time_spectral_wcs_2d(): wcs = WCS(naxis=2) wcs.wcs.ctype = ["FREQ", "TIME"] wcs.wcs.set() return wcs def test_time_wcs(time_spectral_wcs_2d): # Regression test for a bug that caused WCSAxes to error when using a WCS # with a time axis. plt.subplot(projection=time_spectral_wcs_2d) @pytest.mark.skipif(TEX_UNAVAILABLE, reason="TeX is unavailable") def test_simplify_labels_usetex(ignore_matplotlibrc, tmp_path): """Regression test for https://github.com/astropy/astropy/issues/8004.""" plt.rc("text", usetex=True) header = { "NAXIS": 2, "NAXIS1": 360, "NAXIS2": 180, "CRPIX1": 180.5, "CRPIX2": 90.5, "CRVAL1": 180.0, "CRVAL2": 0.0, "CDELT1": -2 * np.sqrt(2) / np.pi, "CDELT2": 2 * np.sqrt(2) / np.pi, "CTYPE1": "RA---MOL", "CTYPE2": "DEC--MOL", "RADESYS": "ICRS", } wcs = WCS(header) fig, ax = plt.subplots(subplot_kw=dict(frame_class=EllipticalFrame, projection=wcs)) ax.set_xlim(-0.5, header["NAXIS1"] - 0.5) ax.set_ylim(-0.5, header["NAXIS2"] - 0.5) ax.coords[0].set_ticklabel(exclude_overlapping=True) ax.coords[1].set_ticklabel(exclude_overlapping=True) ax.coords[0].set_ticks(spacing=45 * u.deg) ax.coords[1].set_ticks(spacing=30 * u.deg) ax.grid() fig.savefig(tmp_path / "plot.png") @pytest.mark.parametrize("frame_class", [RectangularFrame, EllipticalFrame]) def test_set_labels_with_coords(ignore_matplotlibrc, frame_class): """Test if ``axis.set_xlabel()`` calls the correct ``coords[i]_set_axislabel()`` in a WCS plot. Regression test for https://github.com/astropy/astropy/issues/10435. """ labels = ["RA", "Declination"] header = { "NAXIS": 2, "NAXIS1": 360, "NAXIS2": 180, "CRPIX1": 180.5, "CRPIX2": 90.5, "CRVAL1": 180.0, "CRVAL2": 0.0, "CDELT1": -2 * np.sqrt(2) / np.pi, "CDELT2": 2 * np.sqrt(2) / np.pi, "CTYPE1": "RA---AIT", "CTYPE2": "DEC--AIT", } wcs = WCS(header) fig, ax = plt.subplots(subplot_kw=dict(frame_class=frame_class, projection=wcs)) ax.set_xlabel(labels[0]) ax.set_ylabel(labels[1]) assert ax.get_xlabel() == labels[0] assert ax.get_ylabel() == labels[1] for i in range(2): assert ax.coords[i].get_axislabel() == labels[i] @pytest.mark.parametrize("atol", [0.2, 1.0e-8]) def test_bbox_size(atol): # Test for the size of a WCSAxes bbox (only have Matplotlib >= 3.0 now) extents = [11.38888888888889, 3.5, 576.0, 432.0] fig = plt.figure() ax = WCSAxes(fig, [0.1, 0.1, 0.8, 0.8]) fig.add_axes(ax) fig.canvas.draw() renderer = fig.canvas.renderer ax_bbox = ax.get_tightbbox(renderer) # Enforce strict test only with reference Freetype version if atol < 0.1 and not FREETYPE_261: pytest.xfail( "Exact BoundingBox dimensions are only ensured with FreeType 2.6.1" ) assert np.allclose(ax_bbox.extents, extents, atol=atol) def test_wcs_type_transform_regression(): wcs = WCS(TARGET_HEADER) sliced_wcs = SlicedLowLevelWCS(wcs, np.s_[1:-1, 1:-1]) ax = plt.subplot(1, 1, 1, projection=wcs) ax.get_transform(sliced_wcs) high_wcs = HighLevelWCSWrapper(sliced_wcs) ax.get_transform(sliced_wcs) def test_multiple_draws_grid_contours(tmp_path): fig = plt.figure() ax = fig.add_subplot(1, 1, 1, projection=WCS()) ax.grid(color="black", grid_type="contours") fig.savefig(tmp_path / "plot.png") fig.savefig(tmp_path / "plot.png")
c2a0cc762362d7f3897b8d4855299df99bb75517ca96e74211c9d68d3eaca7f6
# Licensed under a 3-clause BSD style license - see LICENSE.rst from numpy.testing import assert_almost_equal from astropy import units as u from astropy.tests.helper import ( assert_quantity_allclose as assert_almost_equal_quantity, ) from astropy.visualization.wcsaxes.utils import ( select_step_degree, select_step_hour, select_step_scalar, ) def test_select_step_degree(): assert_almost_equal_quantity(select_step_degree(127 * u.deg), 180.0 * u.deg) assert_almost_equal_quantity(select_step_degree(44 * u.deg), 45.0 * u.deg) assert_almost_equal_quantity(select_step_degree(18 * u.arcmin), 15 * u.arcmin) assert_almost_equal_quantity(select_step_degree(3.4 * u.arcmin), 3 * u.arcmin) assert_almost_equal_quantity(select_step_degree(2 * u.arcmin), 2 * u.arcmin) assert_almost_equal_quantity(select_step_degree(59 * u.arcsec), 1 * u.arcmin) assert_almost_equal_quantity(select_step_degree(33 * u.arcsec), 30 * u.arcsec) assert_almost_equal_quantity(select_step_degree(2.2 * u.arcsec), 2 * u.arcsec) assert_almost_equal_quantity(select_step_degree(0.8 * u.arcsec), 1 * u.arcsec) assert_almost_equal_quantity(select_step_degree(0.2 * u.arcsec), 0.2 * u.arcsec) assert_almost_equal_quantity(select_step_degree(0.11 * u.arcsec), 0.1 * u.arcsec) assert_almost_equal_quantity(select_step_degree(0.022 * u.arcsec), 0.02 * u.arcsec) assert_almost_equal_quantity( select_step_degree(0.0043 * u.arcsec), 0.005 * u.arcsec ) assert_almost_equal_quantity( select_step_degree(0.00083 * u.arcsec), 0.001 * u.arcsec ) assert_almost_equal_quantity( select_step_degree(0.000027 * u.arcsec), 0.00002 * u.arcsec ) def test_select_step_hour(): assert_almost_equal_quantity(select_step_hour(127 * u.deg), 8.0 * u.hourangle) assert_almost_equal_quantity(select_step_hour(44 * u.deg), 3.0 * u.hourangle) assert_almost_equal_quantity(select_step_hour(18 * u.arcmin), 15 * u.arcmin) assert_almost_equal_quantity(select_step_hour(3.4 * u.arcmin), 3 * u.arcmin) assert_almost_equal_quantity(select_step_hour(2 * u.arcmin), 1.5 * u.arcmin) assert_almost_equal_quantity(select_step_hour(59 * u.arcsec), 1 * u.arcmin) assert_almost_equal_quantity(select_step_hour(33 * u.arcsec), 30 * u.arcsec) assert_almost_equal_quantity(select_step_hour(2.2 * u.arcsec), 3.0 * u.arcsec) assert_almost_equal_quantity(select_step_hour(0.8 * u.arcsec), 0.75 * u.arcsec) assert_almost_equal_quantity(select_step_hour(0.2 * u.arcsec), 0.15 * u.arcsec) assert_almost_equal_quantity(select_step_hour(0.11 * u.arcsec), 0.15 * u.arcsec) assert_almost_equal_quantity(select_step_hour(0.022 * u.arcsec), 0.03 * u.arcsec) assert_almost_equal_quantity(select_step_hour(0.0043 * u.arcsec), 0.003 * u.arcsec) assert_almost_equal_quantity( select_step_hour(0.00083 * u.arcsec), 0.00075 * u.arcsec ) assert_almost_equal_quantity( select_step_hour(0.000027 * u.arcsec), 0.00003 * u.arcsec ) def test_select_step_scalar(): assert_almost_equal(select_step_scalar(33122.0), 50000.0) assert_almost_equal(select_step_scalar(433.0), 500.0) assert_almost_equal(select_step_scalar(12.3), 10) assert_almost_equal(select_step_scalar(3.3), 5.0) assert_almost_equal(select_step_scalar(0.66), 0.5) assert_almost_equal(select_step_scalar(0.0877), 0.1) assert_almost_equal(select_step_scalar(0.00577), 0.005) assert_almost_equal(select_step_scalar(0.00022), 0.0002) assert_almost_equal(select_step_scalar(0.000012), 0.00001) assert_almost_equal(select_step_scalar(0.000000443), 0.0000005)
00afe13a94db72822b57e6e2583f4e99eb6c4da656fd40626b185a8c008632dc
# Licensed under a 3-clause BSD style license - see LICENSE.rst import matplotlib.pyplot as plt import numpy as np from astropy.tests.figures import figure_test from astropy.visualization.wcsaxes import WCSAxes from astropy.visualization.wcsaxes.frame import BaseFrame from astropy.wcs import WCS from .test_images import BaseImageTests class HexagonalFrame(BaseFrame): spine_names = "abcdef" def update_spines(self): xmin, xmax = self.parent_axes.get_xlim() ymin, ymax = self.parent_axes.get_ylim() ymid = 0.5 * (ymin + ymax) xmid1 = (xmin + xmax) / 4.0 xmid2 = (xmin + xmax) * 3.0 / 4.0 self["a"].data = np.array(([xmid1, ymin], [xmid2, ymin])) self["b"].data = np.array(([xmid2, ymin], [xmax, ymid])) self["c"].data = np.array(([xmax, ymid], [xmid2, ymax])) self["d"].data = np.array(([xmid2, ymax], [xmid1, ymax])) self["e"].data = np.array(([xmid1, ymax], [xmin, ymid])) self["f"].data = np.array(([xmin, ymid], [xmid1, ymin])) class TestFrame(BaseImageTests): @figure_test def test_custom_frame(self): wcs = WCS(self.msx_header) fig = plt.figure(figsize=(4, 4)) ax = WCSAxes(fig, [0.15, 0.15, 0.7, 0.7], wcs=wcs, frame_class=HexagonalFrame) fig.add_axes(ax) ax.coords.grid(color="white") im = ax.imshow( np.ones((149, 149)), vmin=0.0, vmax=2.0, origin="lower", cmap=plt.cm.gist_heat, ) minpad = {} minpad["a"] = minpad["d"] = 1 minpad["b"] = minpad["c"] = minpad["e"] = minpad["f"] = 2.75 ax.coords["glon"].set_axislabel("Longitude", minpad=minpad) ax.coords["glon"].set_axislabel_position("ad") ax.coords["glat"].set_axislabel("Latitude", minpad=minpad) ax.coords["glat"].set_axislabel_position("bcef") ax.coords["glon"].set_ticklabel_position("ad") ax.coords["glat"].set_ticklabel_position("bcef") # Set limits so that no labels overlap ax.set_xlim(5.5, 100.5) ax.set_ylim(5.5, 110.5) # Clip the image to the frame im.set_clip_path(ax.coords.frame.patch) return fig @figure_test def test_update_clip_path_rectangular(self, tmp_path): fig = plt.figure() ax = WCSAxes(fig, [0.1, 0.1, 0.8, 0.8], aspect="equal") fig.add_axes(ax) ax.set_xlim(0.0, 2.0) ax.set_ylim(0.0, 2.0) # Force drawing, which freezes the clip path returned by WCSAxes fig.savefig(tmp_path / "nothing") ax.imshow(np.zeros((12, 4))) ax.set_xlim(-0.5, 3.5) ax.set_ylim(-0.5, 11.5) ax.coords[0].set_auto_axislabel(False) ax.coords[1].set_auto_axislabel(False) return fig @figure_test def test_update_clip_path_nonrectangular(self, tmp_path): fig = plt.figure() ax = WCSAxes( fig, [0.1, 0.1, 0.8, 0.8], aspect="equal", frame_class=HexagonalFrame ) fig.add_axes(ax) ax.set_xlim(0.0, 2.0) ax.set_ylim(0.0, 2.0) # Force drawing, which freezes the clip path returned by WCSAxes fig.savefig(tmp_path / "nothing") ax.imshow(np.zeros((12, 4))) ax.set_xlim(-0.5, 3.5) ax.set_ylim(-0.5, 11.5) return fig @figure_test def test_update_clip_path_change_wcs(self, tmp_path): # When WCS is changed, a new frame is created, so we need to make sure # that the path is carried over to the new frame. fig = plt.figure() ax = WCSAxes(fig, [0.1, 0.1, 0.8, 0.8], aspect="equal") fig.add_axes(ax) ax.set_xlim(0.0, 2.0) ax.set_ylim(0.0, 2.0) # Force drawing, which freezes the clip path returned by WCSAxes fig.savefig(tmp_path / "nothing") ax.reset_wcs() ax.imshow(np.zeros((12, 4))) ax.set_xlim(-0.5, 3.5) ax.set_ylim(-0.5, 11.5) ax.coords[0].set_auto_axislabel(False) ax.coords[1].set_auto_axislabel(False) return fig def test_copy_frame_properties_change_wcs(self): # When WCS is changed, a new frame is created, so we need to make sure # that the color and linewidth are transferred over fig = plt.figure() ax = WCSAxes(fig, [0.1, 0.1, 0.8, 0.8]) fig.add_axes(ax) ax.coords.frame.set_linewidth(5) ax.coords.frame.set_color("purple") ax.reset_wcs() assert ax.coords.frame.get_linewidth() == 5 assert ax.coords.frame.get_color() == "purple"
5a15f1b4c9bc87f122297579b34a7c357b878c1d517467d9a2bbf7103dcf9daf
# Licensed under a 3-clause BSD style license - see LICENSE.rst import matplotlib.pyplot as plt import numpy as np from astropy import units as u from astropy.tests.figures import figure_test from astropy.visualization.wcsaxes import WCSAxes from astropy.visualization.wcsaxes.transforms import CurvedTransform from astropy.wcs import WCS from .test_images import BaseImageTests # Create fake transforms that roughly mimic a polar projection class DistanceToLonLat(CurvedTransform): has_inverse = True def __init__(self, R=6e3): super().__init__() self.R = R def transform(self, xy): x, y = xy[:, 0], xy[:, 1] lam = np.degrees(np.arctan2(y, x)) phi = 90.0 - np.degrees(np.hypot(x, y) / self.R) return np.array((lam, phi)).transpose() transform_non_affine = transform def inverted(self): return LonLatToDistance(R=self.R) class LonLatToDistance(CurvedTransform): def __init__(self, R=6e3): super().__init__() self.R = R def transform(self, lamphi): lam, phi = lamphi[:, 0], lamphi[:, 1] r = np.radians(90 - phi) * self.R x = r * np.cos(np.radians(lam)) y = r * np.sin(np.radians(lam)) return np.array((x, y)).transpose() transform_non_affine = transform def inverted(self): return DistanceToLonLat(R=self.R) class TestTransformCoordMeta(BaseImageTests): @figure_test def test_coords_overlay(self): # Set up a simple WCS that maps pixels to non-projected distances wcs = WCS(naxis=2) wcs.wcs.ctype = ["x", "y"] wcs.wcs.cunit = ["km", "km"] wcs.wcs.crpix = [614.5, 856.5] wcs.wcs.cdelt = [6.25, 6.25] wcs.wcs.crval = [0.0, 0.0] fig = plt.figure(figsize=(4, 4)) ax = WCSAxes(fig, [0.15, 0.15, 0.7, 0.7], wcs=wcs) fig.add_axes(ax) s = DistanceToLonLat(R=6378.273) ax.coords["x"].set_ticklabel_position("") ax.coords["y"].set_ticklabel_position("") coord_meta = {} coord_meta["type"] = ("longitude", "latitude") coord_meta["wrap"] = (360.0, None) coord_meta["unit"] = (u.deg, u.deg) coord_meta["name"] = "lon", "lat" overlay = ax.get_coords_overlay(s, coord_meta=coord_meta) overlay.grid(color="red") overlay["lon"].grid(color="red", linestyle="solid", alpha=0.3) overlay["lat"].grid(color="blue", linestyle="solid", alpha=0.3) overlay["lon"].set_ticklabel(size=7, exclude_overlapping=True) overlay["lat"].set_ticklabel(size=7, exclude_overlapping=True) overlay["lon"].set_ticklabel_position("brtl") overlay["lat"].set_ticklabel_position("brtl") overlay["lon"].set_ticks(spacing=10.0 * u.deg) overlay["lat"].set_ticks(spacing=10.0 * u.deg) ax.set_xlim(-0.5, 1215.5) ax.set_ylim(-0.5, 1791.5) return fig @figure_test def test_coords_overlay_auto_coord_meta(self): fig = plt.figure(figsize=(4, 4)) ax = WCSAxes(fig, [0.15, 0.15, 0.7, 0.7], wcs=WCS(self.msx_header)) fig.add_axes(ax) ax.grid(color="red", alpha=0.5, linestyle="solid") overlay = ax.get_coords_overlay("fk5") # automatically sets coord_meta overlay.grid(color="black", alpha=0.5, linestyle="solid") overlay["ra"].set_ticks(color="black") overlay["dec"].set_ticks(color="black") ax.set_xlim(-0.5, 148.5) ax.set_ylim(-0.5, 148.5) return fig @figure_test def test_direct_init(self): s = DistanceToLonLat(R=6378.273) coord_meta = {} coord_meta["type"] = ("longitude", "latitude") coord_meta["wrap"] = (360.0, None) coord_meta["unit"] = (u.deg, u.deg) coord_meta["name"] = "lon", "lat" fig = plt.figure(figsize=(4, 4)) ax = WCSAxes(fig, [0.15, 0.15, 0.7, 0.7], transform=s, coord_meta=coord_meta) fig.add_axes(ax) ax.coords["lon"].grid(color="red", linestyle="solid", alpha=0.3) ax.coords["lat"].grid(color="blue", linestyle="solid", alpha=0.3) ax.coords["lon"].set_auto_axislabel(False) ax.coords["lat"].set_auto_axislabel(False) ax.coords["lon"].set_ticklabel(size=7, exclude_overlapping=True) ax.coords["lat"].set_ticklabel(size=7, exclude_overlapping=True) ax.coords["lon"].set_ticklabel_position("brtl") ax.coords["lat"].set_ticklabel_position("brtl") ax.coords["lon"].set_ticks(spacing=10.0 * u.deg) ax.coords["lat"].set_ticks(spacing=10.0 * u.deg) ax.set_xlim(-400.0, 500.0) ax.set_ylim(-300.0, 400.0) return fig
17b4305211d96e7b2becee265fd3c34d7d5e77c888fba8490c336ea9d3c7d3a8
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np import pytest from matplotlib import rc_context from numpy.testing import assert_almost_equal from astropy import units as u from astropy.tests.helper import assert_quantity_allclose from astropy.units import UnitsError from astropy.visualization.wcsaxes.formatter_locator import ( AngleFormatterLocator, ScalarFormatterLocator, ) class TestAngleFormatterLocator: def test_no_options(self): fl = AngleFormatterLocator() assert fl.values is None assert fl.number == 5 assert fl.spacing is None def test_too_many_options(self): MESSAGE = r"At most one of values/number/spacing can be specified" with pytest.raises(ValueError, match=MESSAGE): AngleFormatterLocator(values=[1.0, 2.0], number=5) with pytest.raises(ValueError, match=MESSAGE): AngleFormatterLocator(values=[1.0, 2.0], spacing=5.0 * u.deg) with pytest.raises(ValueError, match=MESSAGE): AngleFormatterLocator(number=5, spacing=5.0 * u.deg) with pytest.raises(ValueError, match=MESSAGE): AngleFormatterLocator(values=[1.0, 2.0], number=5, spacing=5.0 * u.deg) def test_values(self): fl = AngleFormatterLocator(values=[0.1, 1.0, 14.0] * u.degree) assert fl.values.to_value(u.degree).tolist() == [0.1, 1.0, 14.0] assert fl.number is None assert fl.spacing is None values, spacing = fl.locator(34.3, 55.4) assert_almost_equal(values.to_value(u.degree), [0.1, 1.0, 14.0]) def test_number(self): fl = AngleFormatterLocator(number=7) assert fl.values is None assert fl.number == 7 assert fl.spacing is None values, spacing = fl.locator(34.3, 55.4) assert_almost_equal(values.to_value(u.degree), [35.0, 40.0, 45.0, 50.0, 55.0]) values, spacing = fl.locator(34.3, 36.1) assert_almost_equal( values.to_value(u.degree), [34.5, 34.75, 35.0, 35.25, 35.5, 35.75, 36.0] ) fl.format = "dd" values, spacing = fl.locator(34.3, 36.1) assert_almost_equal(values.to_value(u.degree), [35.0, 36.0]) def test_spacing(self): with pytest.raises( TypeError, match=( r"spacing should be an astropy.units.Quantity instance with units of" r" angle" ), ): AngleFormatterLocator(spacing=3.0) fl = AngleFormatterLocator(spacing=3.0 * u.degree) assert fl.values is None assert fl.number is None assert fl.spacing == 3.0 * u.degree values, spacing = fl.locator(34.3, 55.4) assert_almost_equal( values.to_value(u.degree), [36.0, 39.0, 42.0, 45.0, 48.0, 51.0, 54.0] ) fl.spacing = 30.0 * u.arcmin values, spacing = fl.locator(34.3, 36.1) assert_almost_equal(values.to_value(u.degree), [34.5, 35.0, 35.5, 36.0]) with pytest.warns(UserWarning, match=r"Spacing is too small"): fl.format = "dd" values, spacing = fl.locator(34.3, 36.1) assert_almost_equal(values.to_value(u.degree), [35.0, 36.0]) def test_minor_locator(self): fl = AngleFormatterLocator() values, spacing = fl.locator(34.3, 55.4) minor_values = fl.minor_locator(spacing, 5, 34.3, 55.4) assert_almost_equal( minor_values.to_value(u.degree), [ 36.0, 37.0, 38.0, 39.0, 41.0, 42.0, 43.0, 44.0, 46.0, 47.0, 48.0, 49.0, 51.0, 52.0, 53.0, 54.0, ], ) minor_values = fl.minor_locator(spacing, 2, 34.3, 55.4) assert_almost_equal(minor_values.to_value(u.degree), [37.5, 42.5, 47.5, 52.5]) fl.values = [0.1, 1.0, 14.0] * u.degree values, spacing = fl.locator(34.3, 36.1) minor_values = fl.minor_locator(spacing, 2, 34.3, 55.4) assert_almost_equal(minor_values.to_value(u.degree), []) @pytest.mark.parametrize( ("format", "string"), [ ("dd", "15\xb0"), ("dd:mm", "15\xb024'"), ("dd:mm:ss", "15\xb023'32\""), ("dd:mm:ss.s", "15\xb023'32.0\""), ("dd:mm:ss.ssss", "15\xb023'32.0316\""), ("hh", "1h"), ("hh:mm", "1h02m"), ("hh:mm:ss", "1h01m34s"), ("hh:mm:ss.s", "1h01m34.1s"), ("hh:mm:ss.ssss", "1h01m34.1354s"), ("d", "15\xb0"), ("d.d", "15.4\xb0"), ("d.dd", "15.39\xb0"), ("d.ddd", "15.392\xb0"), ("m", "924'"), ("m.m", "923.5'"), ("m.mm", "923.53'"), ("s", '55412"'), ("s.s", '55412.0"'), ("s.ss", '55412.03"'), ], ) def test_format(self, format, string): fl = AngleFormatterLocator(number=5, format=format) assert fl.formatter([15.392231] * u.degree, None, format="ascii")[0] == string @pytest.mark.parametrize( ("separator", "format", "string"), [ (("deg", "'", '"'), "dd", "15deg"), (("deg", "'", '"'), "dd:mm", "15deg24'"), (("deg", "'", '"'), "dd:mm:ss", "15deg23'32\""), ((":", "-", "s"), "dd:mm:ss.s", "15:23-32.0s"), (":", "dd:mm:ss.s", "15:23:32.0"), ((":", ":", "s"), "hh", "1:"), (("-", "-", "s"), "hh:mm:ss.ssss", "1-01-34.1354s"), (("d", ":", '"'), "d", "15\xb0"), (("d", ":", '"'), "d.d", "15.4\xb0"), ], ) def test_separator(self, separator, format, string): fl = AngleFormatterLocator(number=5, format=format) fl.sep = separator assert fl.formatter([15.392231] * u.degree, None)[0] == string def test_latex_format(self): fl = AngleFormatterLocator(number=5, format="dd:mm:ss") assert fl.formatter([15.392231] * u.degree, None)[0] == "15\xb023'32\"" with rc_context(rc={"text.usetex": True}): assert ( fl.formatter([15.392231] * u.degree, None)[0] == "$15^\\circ23{}^\\prime32{}^{\\prime\\prime}$" ) @pytest.mark.parametrize("format", ["x.xxx", "dd.ss", "dd:ss", "mdd:mm:ss"]) def test_invalid_formats(self, format): fl = AngleFormatterLocator(number=5) with pytest.raises(ValueError, match=f"Invalid format: {format}"): fl.format = format @pytest.mark.parametrize( ("format", "base_spacing"), [ ("dd", 1.0 * u.deg), ("dd:mm", 1.0 * u.arcmin), ("dd:mm:ss", 1.0 * u.arcsec), ("dd:mm:ss.ss", 0.01 * u.arcsec), ("hh", 15.0 * u.deg), ("hh:mm", 15.0 * u.arcmin), ("hh:mm:ss", 15.0 * u.arcsec), ("hh:mm:ss.ss", 0.15 * u.arcsec), ("d", 1.0 * u.deg), ("d.d", 0.1 * u.deg), ("d.dd", 0.01 * u.deg), ("d.ddd", 0.001 * u.deg), ("m", 1.0 * u.arcmin), ("m.m", 0.1 * u.arcmin), ("m.mm", 0.01 * u.arcmin), ("s", 1.0 * u.arcsec), ("s.s", 0.1 * u.arcsec), ("s.ss", 0.01 * u.arcsec), ], ) def test_base_spacing(self, format, base_spacing): fl = AngleFormatterLocator(number=5, format=format) assert fl.base_spacing == base_spacing def test_incorrect_spacing(self): fl = AngleFormatterLocator() fl.spacing = 0.032 * u.deg with pytest.warns( UserWarning, match=r"Spacing is not a multiple of base spacing" ): fl.format = "dd:mm:ss" assert_almost_equal(fl.spacing.to_value(u.arcsec), 115.0) def test_decimal_values(self): # Regression test for a bug that meant that the spacing was not # determined correctly for decimal coordinates fl = AngleFormatterLocator() fl.format = "d.dddd" assert_quantity_allclose( fl.locator(266.9730, 266.9750)[0], [266.9735, 266.9740, 266.9745, 266.9750] * u.deg, ) fl = AngleFormatterLocator(decimal=True, format_unit=u.hourangle, number=4) assert_quantity_allclose( fl.locator(266.9730, 266.9750)[0], [17.79825, 17.79830] * u.hourangle ) def test_values_unit(self): # Make sure that the intrinsic unit and format unit are correctly # taken into account when using the locator fl = AngleFormatterLocator(unit=u.arcsec, format_unit=u.arcsec, decimal=True) assert_quantity_allclose( fl.locator(850, 2150)[0], [1000.0, 1200.0, 1400.0, 1600.0, 1800.0, 2000.0] * u.arcsec, ) fl = AngleFormatterLocator(unit=u.arcsec, format_unit=u.degree, decimal=False) assert_quantity_allclose( fl.locator(850, 2150)[0], [15.0, 20.0, 25.0, 30.0, 35.0] * u.arcmin ) fl = AngleFormatterLocator( unit=u.arcsec, format_unit=u.hourangle, decimal=False ) assert_quantity_allclose( fl.locator(850, 2150)[0], [60.0, 75.0, 90.0, 105.0, 120.0, 135.0] * (15 * u.arcsec), ) fl = AngleFormatterLocator(unit=u.arcsec) fl.format = "dd:mm:ss" assert_quantity_allclose(fl.locator(0.9, 1.1)[0], [1] * u.arcsec) fl = AngleFormatterLocator(unit=u.arcsec, spacing=0.2 * u.arcsec) assert_quantity_allclose(fl.locator(0.3, 0.9)[0], [0.4, 0.6, 0.8] * u.arcsec) @pytest.mark.parametrize( ("spacing", "string"), [ (2 * u.deg, "15\xb0"), (2 * u.arcmin, "15\xb024'"), (2 * u.arcsec, "15\xb023'32\""), (0.1 * u.arcsec, "15\xb023'32.0\""), ], ) def test_formatter_no_format(self, spacing, string): fl = AngleFormatterLocator() assert fl.formatter([15.392231] * u.degree, spacing)[0] == string @pytest.mark.parametrize( ("format_unit", "decimal", "show_decimal_unit", "spacing", "ascii", "latex"), [ (u.degree, False, True, 2 * u.degree, "15\xb0", r"$15^\circ$"), ( u.degree, False, True, 2 * u.arcmin, "15\xb024'", r"$15^\circ24{}^\prime$", ), ( u.degree, False, True, 2 * u.arcsec, "15\xb023'32\"", r"$15^\circ23{}^\prime32{}^{\prime\prime}$", ), ( u.degree, False, True, 0.1 * u.arcsec, "15\xb023'32.0\"", r"$15^\circ23{}^\prime32.0{}^{\prime\prime}$", ), (u.hourangle, False, True, 15 * u.degree, "1h", r"$1^{\mathrm{h}}$"), ( u.hourangle, False, True, 15 * u.arcmin, "1h02m", r"$1^{\mathrm{h}}02^{\mathrm{m}}$", ), ( u.hourangle, False, True, 15 * u.arcsec, "1h01m34s", r"$1^{\mathrm{h}}01^{\mathrm{m}}34^{\mathrm{s}}$", ), ( u.hourangle, False, True, 1.5 * u.arcsec, "1h01m34.1s", r"$1^{\mathrm{h}}01^{\mathrm{m}}34.1^{\mathrm{s}}$", ), (u.degree, True, True, 15 * u.degree, "15\xb0", r"$15\mathrm{^\circ}$"), ( u.degree, True, True, 0.12 * u.degree, "15.39\xb0", r"$15.39\mathrm{^\circ}$", ), ( u.degree, True, True, 0.0036 * u.arcsec, "15.392231\xb0", r"$15.392231\mathrm{^\circ}$", ), (u.arcmin, True, True, 15 * u.degree, "924'", r"$924\mathrm{^\prime}$"), ( u.arcmin, True, True, 0.12 * u.degree, "923.5'", r"$923.5\mathrm{^\prime}$", ), ( u.arcmin, True, True, 0.1 * u.arcmin, "923.5'", r"$923.5\mathrm{^\prime}$", ), ( u.arcmin, True, True, 0.0002 * u.arcmin, "923.5339'", r"$923.5339\mathrm{^\prime}$", ), ( u.arcsec, True, True, 0.01 * u.arcsec, '55412.03"', r"$55412.03\mathrm{^{\prime\prime}}$", ), ( u.arcsec, True, True, 0.001 * u.arcsec, '55412.032"', r"$55412.032\mathrm{^{\prime\prime}}$", ), ( u.mas, True, True, 0.001 * u.arcsec, "55412032mas", r"$55412032\mathrm{mas}$", ), (u.degree, True, False, 15 * u.degree, "15", "15"), (u.degree, True, False, 0.12 * u.degree, "15.39", "15.39"), (u.degree, True, False, 0.0036 * u.arcsec, "15.392231", "15.392231"), (u.arcmin, True, False, 15 * u.degree, "924", "924"), (u.arcmin, True, False, 0.12 * u.degree, "923.5", "923.5"), (u.arcmin, True, False, 0.1 * u.arcmin, "923.5", "923.5"), (u.arcmin, True, False, 0.0002 * u.arcmin, "923.5339", "923.5339"), (u.arcsec, True, False, 0.01 * u.arcsec, "55412.03", "55412.03"), (u.arcsec, True, False, 0.001 * u.arcsec, "55412.032", "55412.032"), (u.mas, True, False, 0.001 * u.arcsec, "55412032", "55412032"), # Make sure that specifying None defaults to # decimal for non-degree or non-hour angles ( u.arcsec, None, True, 0.01 * u.arcsec, '55412.03"', r"$55412.03\mathrm{^{\prime\prime}}$", ), ], ) def test_formatter_no_format_with_units( self, format_unit, decimal, show_decimal_unit, spacing, ascii, latex ): # Check the formatter works when specifying the default units and # decimal behavior to use. fl = AngleFormatterLocator( unit=u.degree, format_unit=format_unit, decimal=decimal, show_decimal_unit=show_decimal_unit, ) assert fl.formatter([15.392231] * u.degree, spacing, format="ascii")[0] == ascii assert fl.formatter([15.392231] * u.degree, spacing, format="latex")[0] == latex def test_incompatible_unit_decimal(self): with pytest.raises( UnitsError, match=( r"Units should be degrees or hours when using non-decimal .sexagesimal." r" mode" ), ): AngleFormatterLocator(unit=u.arcmin, decimal=False) class TestScalarFormatterLocator: def test_no_options(self): fl = ScalarFormatterLocator(unit=u.m) assert fl.values is None assert fl.number == 5 assert fl.spacing is None def test_too_many_options(self): MESSAGE = r"At most one of values/number/spacing can be specified" with pytest.raises(ValueError, match=MESSAGE): ScalarFormatterLocator(values=[1.0, 2.0] * u.m, number=5) with pytest.raises(ValueError, match=MESSAGE): ScalarFormatterLocator(values=[1.0, 2.0] * u.m, spacing=5.0 * u.m) with pytest.raises(ValueError, match=MESSAGE): ScalarFormatterLocator(number=5, spacing=5.0 * u.m) with pytest.raises(ValueError, match=MESSAGE): ScalarFormatterLocator(values=[1.0, 2.0] * u.m, number=5, spacing=5.0 * u.m) def test_values(self): fl = ScalarFormatterLocator(values=[0.1, 1.0, 14.0] * u.m, unit=u.m) assert fl.values.value.tolist() == [0.1, 1.0, 14.0] assert fl.number is None assert fl.spacing is None values, spacing = fl.locator(34.3, 55.4) assert_almost_equal(values.value, [0.1, 1.0, 14.0]) def test_number(self): fl = ScalarFormatterLocator(number=7, unit=u.m) assert fl.values is None assert fl.number == 7 assert fl.spacing is None values, spacing = fl.locator(34.3, 55.4) assert_almost_equal(values.value, np.linspace(36.0, 54.0, 10)) values, spacing = fl.locator(34.3, 36.1) assert_almost_equal(values.value, np.linspace(34.4, 36, 9)) fl.format = "x" values, spacing = fl.locator(34.3, 36.1) assert_almost_equal(values.value, [35.0, 36.0]) def test_spacing(self): fl = ScalarFormatterLocator(spacing=3.0 * u.m) assert fl.values is None assert fl.number is None assert fl.spacing == 3.0 * u.m values, spacing = fl.locator(34.3, 55.4) assert_almost_equal(values.value, [36.0, 39.0, 42.0, 45.0, 48.0, 51.0, 54.0]) fl.spacing = 0.5 * u.m values, spacing = fl.locator(34.3, 36.1) assert_almost_equal(values.value, [34.5, 35.0, 35.5, 36.0]) with pytest.warns(UserWarning, match=r"Spacing is too small"): fl.format = "x" values, spacing = fl.locator(34.3, 36.1) assert_almost_equal(values.value, [35.0, 36.0]) def test_minor_locator(self): fl = ScalarFormatterLocator(unit=u.m) values, spacing = fl.locator(34.3, 55.4) minor_values = fl.minor_locator(spacing, 5, 34.3, 55.4) assert_almost_equal( minor_values.value, [ 36.0, 37.0, 38.0, 39.0, 41.0, 42.0, 43.0, 44.0, 46.0, 47.0, 48.0, 49.0, 51.0, 52.0, 53.0, 54.0, ], ) minor_values = fl.minor_locator(spacing, 2, 34.3, 55.4) assert_almost_equal(minor_values.value, [37.5, 42.5, 47.5, 52.5]) fl.values = [0.1, 1.0, 14.0] * u.m values, spacing = fl.locator(34.3, 36.1) minor_values = fl.minor_locator(spacing, 2, 34.3, 55.4) assert_almost_equal(minor_values.value, []) @pytest.mark.parametrize( ("format", "string"), [ ("x", "15"), ("x.x", "15.4"), ("x.xx", "15.39"), ("x.xxx", "15.392"), ("%g", "15.3922"), ("%f", "15.392231"), ("%.2f", "15.39"), ("%.3f", "15.392"), ], ) def test_format(self, format, string): fl = ScalarFormatterLocator(number=5, format=format, unit=u.m) assert fl.formatter([15.392231] * u.m, None)[0] == string @pytest.mark.parametrize( ("format", "string"), [("x", "1539"), ("x.x", "1539.2"), ("x.xx", "1539.22"), ("x.xxx", "1539.223")], ) def test_format_unit(self, format, string): fl = ScalarFormatterLocator(number=5, format=format, unit=u.m) fl.format_unit = u.cm assert fl.formatter([15.392231] * u.m, None)[0] == string @pytest.mark.parametrize("format", ["dd", "dd:mm", "xx:mm", "mx.xxx"]) def test_invalid_formats(self, format): fl = ScalarFormatterLocator(number=5, unit=u.m) with pytest.raises(ValueError, match=f"Invalid format: {format}"): fl.format = format @pytest.mark.parametrize( ("format", "base_spacing"), [("x", 1.0 * u.m), ("x.x", 0.1 * u.m), ("x.xxx", 0.001 * u.m)], ) def test_base_spacing(self, format, base_spacing): fl = ScalarFormatterLocator(number=5, format=format, unit=u.m) assert fl.base_spacing == base_spacing def test_incorrect_spacing(self): fl = ScalarFormatterLocator(unit=u.m) fl.spacing = 0.032 * u.m with pytest.warns( UserWarning, match=r"Spacing is not a multiple of base spacing" ): fl.format = "x.xx" assert_almost_equal(fl.spacing.to_value(u.m), 0.03) def test_values_unit(self): # Make sure that the intrinsic unit and format unit are correctly # taken into account when using the locator fl = ScalarFormatterLocator(unit=u.cm, format_unit=u.m) assert_quantity_allclose( fl.locator(850, 2150)[0], [1000.0, 1200.0, 1400.0, 1600.0, 1800.0, 2000.0] * u.cm, ) fl = ScalarFormatterLocator(unit=u.cm, format_unit=u.m) fl.format = "x.x" assert_quantity_allclose(fl.locator(1, 19)[0], [10] * u.cm)
3db5a938e009bde186d950deadd74f7c82152d9b5ba07eceb7f656473449078f
# Licensed under a 3-clause BSD style license - see LICENSE.rst import warnings from textwrap import dedent import matplotlib.pyplot as plt import numpy as np import pytest from matplotlib.transforms import Affine2D, IdentityTransform from astropy import units as u from astropy.coordinates import SkyCoord from astropy.io import fits from astropy.tests.figures import figure_test from astropy.time import Time from astropy.units import Quantity from astropy.utils.data import get_pkg_data_filename from astropy.visualization.wcsaxes.frame import RectangularFrame, RectangularFrame1D from astropy.visualization.wcsaxes.wcsapi import ( WCSWorld2PixelTransform, apply_slices, transform_coord_meta_from_wcs, ) from astropy.wcs import WCS from astropy.wcs.wcsapi import BaseLowLevelWCS, SlicedLowLevelWCS @pytest.fixture def plt_close(): yield plt.close("all") WCS2D = WCS(naxis=2) WCS2D.wcs.ctype = ["x", "y"] WCS2D.wcs.cunit = ["km", "km"] WCS2D.wcs.crpix = [614.5, 856.5] WCS2D.wcs.cdelt = [6.25, 6.25] WCS2D.wcs.crval = [0.0, 0.0] WCS3D = WCS(naxis=3) WCS3D.wcs.ctype = ["x", "y", "z"] WCS3D.wcs.cunit = ["km", "km", "km"] WCS3D.wcs.crpix = [614.5, 856.5, 333] WCS3D.wcs.cdelt = [6.25, 6.25, 23] WCS3D.wcs.crval = [0.0, 0.0, 1.0] @pytest.fixture def wcs_4d(): header = dedent( """\ WCSAXES = 4 / Number of coordinate axes CRPIX1 = 0.0 / Pixel coordinate of reference point CRPIX2 = 0.0 / Pixel coordinate of reference point CRPIX3 = 0.0 / Pixel coordinate of reference point CRPIX4 = 5.0 / Pixel coordinate of reference point CDELT1 = 0.4 / [min] Coordinate increment at reference point CDELT2 = 2E-11 / [m] Coordinate increment at reference point CDELT3 = 0.0027777777777778 / [deg] Coordinate increment at reference point CDELT4 = 0.0013888888888889 / [deg] Coordinate increment at reference point CUNIT1 = 'min' / Units of coordinate increment and value CUNIT2 = 'm' / Units of coordinate increment and value CUNIT3 = 'deg' / Units of coordinate increment and value CUNIT4 = 'deg' / Units of coordinate increment and value CTYPE1 = 'TIME' / Coordinate type code CTYPE2 = 'WAVE' / Vacuum wavelength (linear) CTYPE3 = 'HPLT-TAN' / Coordinate type codegnomonic projection CTYPE4 = 'HPLN-TAN' / Coordinate type codegnomonic projection CRVAL1 = 0.0 / [min] Coordinate value at reference point CRVAL2 = 0.0 / [m] Coordinate value at reference point CRVAL3 = 0.0 / [deg] Coordinate value at reference point CRVAL4 = 0.0 / [deg] Coordinate value at reference point LONPOLE = 180.0 / [deg] Native longitude of celestial pole LATPOLE = 0.0 / [deg] Native latitude of celestial pole """ ) return WCS(header=fits.Header.fromstring(header, sep="\n")) @pytest.fixture def cube_wcs(): cube_header = get_pkg_data_filename("data/cube_header") header = fits.Header.fromtextfile(cube_header) return WCS(header=header) def test_shorthand_inversion(): """ Test that the Matplotlib subtraction shorthand for composing and inverting transformations works. """ w1 = WCS(naxis=2) w1.wcs.ctype = ["RA---TAN", "DEC--TAN"] w1.wcs.crpix = [256.0, 256.0] w1.wcs.cdelt = [-0.05, 0.05] w1.wcs.crval = [120.0, -19.0] w2 = WCS(naxis=2) w2.wcs.ctype = ["RA---SIN", "DEC--SIN"] w2.wcs.crpix = [256.0, 256.0] w2.wcs.cdelt = [-0.05, 0.05] w2.wcs.crval = [235.0, +23.7] t1 = WCSWorld2PixelTransform(w1) t2 = WCSWorld2PixelTransform(w2) assert t1 - t2 == t1 + t2.inverted() assert t1 - t2 != t2.inverted() + t1 assert t1 - t1 == IdentityTransform() # We add Affine2D to catch the fact that in Matplotlib, having a Composite # transform can end up in more strict requirements for the dimensionality. def test_2d(): world = np.ones((10, 2)) w1 = WCSWorld2PixelTransform(WCS2D) + Affine2D() pixel = w1.transform(world) world_2 = w1.inverted().transform(pixel) np.testing.assert_allclose(world, world_2) def test_3d(): world = np.ones((10, 2)) w1 = WCSWorld2PixelTransform(WCS3D[:, 0, :]) + Affine2D() pixel = w1.transform(world) world_2 = w1.inverted().transform(pixel) np.testing.assert_allclose(world[:, 0], world_2[:, 0]) np.testing.assert_allclose(world[:, 1], world_2[:, 1]) def test_coord_type_from_ctype(cube_wcs): _, coord_meta = transform_coord_meta_from_wcs( cube_wcs, RectangularFrame, slices=(50, "y", "x") ) axislabel_position = coord_meta["default_axislabel_position"] ticklabel_position = coord_meta["default_ticklabel_position"] ticks_position = coord_meta["default_ticks_position"] # These axes are swapped due to the pixel derivatives assert axislabel_position == ["l", "r", "b"] assert ticklabel_position == ["l", "r", "b"] assert ticks_position == ["l", "r", "b"] wcs = WCS(naxis=2) wcs.wcs.ctype = ["GLON-TAN", "GLAT-TAN"] wcs.wcs.crpix = [256.0] * 2 wcs.wcs.cdelt = [-0.05] * 2 wcs.wcs.crval = [50.0] * 2 wcs.wcs.cname = ["Longitude", ""] wcs.wcs.set() _, coord_meta = transform_coord_meta_from_wcs(wcs, RectangularFrame) assert coord_meta["type"] == ["longitude", "latitude"] assert coord_meta["format_unit"] == [u.deg, u.deg] assert coord_meta["wrap"] == [None, None] assert coord_meta["default_axis_label"] == ["Longitude", "pos.galactic.lat"] assert coord_meta["name"] == [ ("pos.galactic.lon", "glon-tan", "glon", "Longitude"), ("pos.galactic.lat", "glat-tan", "glat"), ] wcs = WCS(naxis=2) wcs.wcs.ctype = ["HPLN-TAN", "HPLT-TAN"] wcs.wcs.crpix = [256.0] * 2 wcs.wcs.cdelt = [-0.05] * 2 wcs.wcs.crval = [50.0] * 2 wcs.wcs.set() _, coord_meta = transform_coord_meta_from_wcs(wcs, RectangularFrame) assert coord_meta["type"] == ["longitude", "latitude"] assert coord_meta["format_unit"] == [u.arcsec, u.arcsec] assert coord_meta["wrap"] == [180.0, None] _, coord_meta = transform_coord_meta_from_wcs( wcs, RectangularFrame, slices=("y", "x") ) axislabel_position = coord_meta["default_axislabel_position"] ticklabel_position = coord_meta["default_ticklabel_position"] ticks_position = coord_meta["default_ticks_position"] # These axes should be swapped because of slices assert axislabel_position == ["l", "b"] assert ticklabel_position == ["l", "b"] assert ticks_position == ["bltr", "bltr"] wcs = WCS(naxis=2) wcs.wcs.ctype = ["HGLN-TAN", "HGLT-TAN"] wcs.wcs.crpix = [256.0] * 2 wcs.wcs.cdelt = [-0.05] * 2 wcs.wcs.crval = [50.0] * 2 wcs.wcs.set() _, coord_meta = transform_coord_meta_from_wcs(wcs, RectangularFrame) assert coord_meta["type"] == ["longitude", "latitude"] assert coord_meta["format_unit"] == [u.deg, u.deg] assert coord_meta["wrap"] == [180.0, None] wcs = WCS(naxis=2) wcs.wcs.ctype = ["CRLN-TAN", "CRLT-TAN"] wcs.wcs.crpix = [256.0] * 2 wcs.wcs.cdelt = [-0.05] * 2 wcs.wcs.crval = [50.0] * 2 wcs.wcs.set() _, coord_meta = transform_coord_meta_from_wcs(wcs, RectangularFrame) assert coord_meta["type"] == ["longitude", "latitude"] assert coord_meta["format_unit"] == [u.deg, u.deg] assert coord_meta["wrap"] == [360.0, None] wcs = WCS(naxis=2) wcs.wcs.ctype = ["RA---TAN", "DEC--TAN"] wcs.wcs.crpix = [256.0] * 2 wcs.wcs.cdelt = [-0.05] * 2 wcs.wcs.crval = [50.0] * 2 wcs.wcs.set() _, coord_meta = transform_coord_meta_from_wcs(wcs, RectangularFrame) assert coord_meta["type"] == ["longitude", "latitude"] assert coord_meta["format_unit"] == [u.hourangle, u.deg] assert coord_meta["wrap"] == [None, None] wcs = WCS(naxis=2) wcs.wcs.ctype = ["spam", "spam"] wcs.wcs.crpix = [256.0] * 2 wcs.wcs.cdelt = [-0.05] * 2 wcs.wcs.crval = [50.0] * 2 wcs.wcs.set() _, coord_meta = transform_coord_meta_from_wcs(wcs, RectangularFrame) assert coord_meta["type"] == ["scalar", "scalar"] assert coord_meta["format_unit"] == [u.one, u.one] assert coord_meta["wrap"] == [None, None] def test_coord_type_1d_1d_wcs(): wcs = WCS(naxis=1) wcs.wcs.ctype = ["WAVE"] wcs.wcs.crpix = [256.0] wcs.wcs.cdelt = [-0.05] wcs.wcs.crval = [50.0] wcs.wcs.set() _, coord_meta = transform_coord_meta_from_wcs(wcs, RectangularFrame1D) assert coord_meta["type"] == ["scalar"] assert coord_meta["format_unit"] == [u.m] assert coord_meta["wrap"] == [None] def test_coord_type_1d_2d_wcs_correlated(): wcs = WCS(naxis=2) wcs.wcs.ctype = ["GLON-TAN", "GLAT-TAN"] wcs.wcs.crpix = [256.0] * 2 wcs.wcs.cdelt = [-0.05] * 2 wcs.wcs.crval = [50.0] * 2 wcs.wcs.set() _, coord_meta = transform_coord_meta_from_wcs( wcs, RectangularFrame1D, slices=("x", 0) ) assert coord_meta["type"] == ["longitude", "latitude"] assert coord_meta["format_unit"] == [u.deg, u.deg] assert coord_meta["wrap"] == [None, None] assert coord_meta["visible"] == [True, True] def test_coord_type_1d_2d_wcs_uncorrelated(): wcs = WCS(naxis=2) wcs.wcs.ctype = ["WAVE", "UTC"] wcs.wcs.crpix = [256.0] * 2 wcs.wcs.cdelt = [-0.05] * 2 wcs.wcs.crval = [50.0] * 2 wcs.wcs.cunit = ["nm", "s"] wcs.wcs.set() _, coord_meta = transform_coord_meta_from_wcs( wcs, RectangularFrame1D, slices=("x", 0) ) assert coord_meta["type"] == ["scalar", "scalar"] assert coord_meta["format_unit"] == [u.m, u.s] assert coord_meta["wrap"] == [None, None] assert coord_meta["visible"] == [True, False] def test_coord_meta_4d(wcs_4d): _, coord_meta = transform_coord_meta_from_wcs( wcs_4d, RectangularFrame, slices=(0, 0, "x", "y") ) axislabel_position = coord_meta["default_axislabel_position"] ticklabel_position = coord_meta["default_ticklabel_position"] ticks_position = coord_meta["default_ticks_position"] assert axislabel_position == ["", "", "b", "l"] assert ticklabel_position == ["", "", "b", "l"] assert ticks_position == ["", "", "bltr", "bltr"] def test_coord_meta_4d_line_plot(wcs_4d): _, coord_meta = transform_coord_meta_from_wcs( wcs_4d, RectangularFrame1D, slices=(0, 0, 0, "x") ) axislabel_position = coord_meta["default_axislabel_position"] ticklabel_position = coord_meta["default_ticklabel_position"] ticks_position = coord_meta["default_ticks_position"] # These axes are swapped due to the pixel derivatives assert axislabel_position == ["", "", "t", "b"] assert ticklabel_position == ["", "", "t", "b"] assert ticks_position == ["", "", "t", "b"] @pytest.fixture def sub_wcs(wcs_4d, wcs_slice): return SlicedLowLevelWCS(wcs_4d, wcs_slice) @pytest.mark.parametrize( ("wcs_slice", "wcsaxes_slices", "world_map", "ndim"), [ (np.s_[...], [0, 0, "x", "y"], (2, 3), 2), (np.s_[...], [0, "x", 0, "y"], (1, 2, 3), 3), (np.s_[...], ["x", 0, 0, "y"], (0, 2, 3), 3), (np.s_[...], ["x", "y", 0, 0], (0, 1), 2), (np.s_[:, :, 0, :], [0, "x", "y"], (1, 2), 2), (np.s_[:, :, 0, :], ["x", 0, "y"], (0, 1, 2), 3), (np.s_[:, :, 0, :], ["x", "y", 0], (0, 1, 2), 3), (np.s_[:, 0, :, :], ["x", "y", 0], (0, 1), 2), ], ) def test_apply_slices(sub_wcs, wcs_slice, wcsaxes_slices, world_map, ndim): transform_wcs, _, out_world_map = apply_slices(sub_wcs, wcsaxes_slices) assert transform_wcs.world_n_dim == ndim assert out_world_map == world_map # parametrize here to pass to the fixture @pytest.mark.parametrize("wcs_slice", [np.s_[:, :, 0, :]]) def test_sliced_ND_input(wcs_4d, sub_wcs, wcs_slice, plt_close): slices_wcsaxes = [0, "x", "y"] for sub_wcs in (sub_wcs, SlicedLowLevelWCS(wcs_4d, wcs_slice)): with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=FutureWarning) _, coord_meta = transform_coord_meta_from_wcs( sub_wcs, RectangularFrame, slices=slices_wcsaxes ) assert all(len(x) == 3 for x in coord_meta.values()) assert coord_meta["name"] == [ "time", ("custom:pos.helioprojective.lat", "hplt-tan", "hplt"), ("custom:pos.helioprojective.lon", "hpln-tan", "hpln"), ] assert coord_meta["type"] == ["scalar", "latitude", "longitude"] assert coord_meta["wrap"] == [None, None, 180.0] assert coord_meta["unit"] == [u.Unit("min"), u.Unit("deg"), u.Unit("deg")] assert coord_meta["visible"] == [False, True, True] assert coord_meta["format_unit"] == [ u.Unit("min"), u.Unit("arcsec"), u.Unit("arcsec"), ] assert coord_meta["default_axislabel_position"] == ["", "b", "l"] assert coord_meta["default_ticklabel_position"] == ["", "b", "l"] assert coord_meta["default_ticks_position"] == ["", "bltr", "bltr"] # Validate the axes initialize correctly plt.clf() plt.subplot(projection=sub_wcs, slices=slices_wcsaxes) class LowLevelWCS5D(BaseLowLevelWCS): pixel_dim = 2 @property def pixel_n_dim(self): return self.pixel_dim @property def world_n_dim(self): return 5 @property def world_axis_physical_types(self): return [ "em.freq", "time", "pos.eq.ra", "pos.eq.dec", "phys.polarization.stokes", ] @property def world_axis_units(self): return ["Hz", "day", "deg", "deg", ""] @property def world_axis_names(self): return ["Frequency", "", "RA", "DEC", ""] def pixel_to_world_values(self, *pixel_arrays): pixel_arrays = (list(pixel_arrays) * 3)[:-1] # make list have 5 elements return [ np.asarray(pix) * scale for pix, scale in zip(pixel_arrays, [10, 0.2, 0.4, 0.39, 2]) ] def world_to_pixel_values(self, *world_arrays): world_arrays = world_arrays[:2] # make list have 2 elements return [ np.asarray(world) / scale for world, scale in zip(world_arrays, [10, 0.2]) ] @property def world_axis_object_components(self): return [ ("freq", 0, "value"), ("time", 0, "mjd"), ("celestial", 0, "spherical.lon.degree"), ("celestial", 1, "spherical.lat.degree"), ("stokes", 0, "value"), ] @property def world_axis_object_classes(self): return { "celestial": (SkyCoord, (), {"unit": "deg"}), "time": (Time, (), {"format": "mjd"}), "freq": (Quantity, (), {"unit": "Hz"}), "stokes": (Quantity, (), {"unit": "one"}), } def test_edge_axes(): # Check that axes on the edge of a spherical projection are shown properley # (see https://github.com/astropy/astropy/issues/10441) shape = [180, 360] data = np.random.rand(*shape) header = { "wcsaxes": 2, "crpix1": 180.5, "crpix2": 90.5, "cdelt1": 1.0, "cdelt2": 1.0, "cunit1": "deg", "cunit2": "deg", "ctype1": "CRLN-CAR", "ctype2": "CRLT-CAR", "crval1": 0.0, "crval2": 0.0, "lonpole": 0.0, "latpole": 90.0, } wcs = WCS(header) fig = plt.figure() ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], projection=wcs) ax.imshow(data, origin="lower") # By default the x- and y- axes should be drawn lon = ax.coords[0] lat = ax.coords[1] fig.canvas.draw() np.testing.assert_equal( lon.ticks.world["b"], np.array([90.0, 180.0, 180.0, 270.0, 0.0]) ) np.testing.assert_equal( lat.ticks.world["l"], np.array([-90.0, -60.0, -30.0, 0.0, 30.0, 60.0, 90.0]) ) def test_coord_meta_wcsapi(): wcs = LowLevelWCS5D() wcs.pixel_dim = 5 _, coord_meta = transform_coord_meta_from_wcs( wcs, RectangularFrame, slices=[0, 0, "x", "y", 0] ) assert coord_meta["name"] == [ ("em.freq", "Frequency"), "time", ("pos.eq.ra", "RA"), ("pos.eq.dec", "DEC"), "phys.polarization.stokes", ] assert coord_meta["type"] == ["scalar", "scalar", "longitude", "latitude", "scalar"] assert coord_meta["wrap"] == [None, None, None, None, None] assert coord_meta["unit"] == [ u.Unit("Hz"), u.Unit("d"), u.Unit("deg"), u.Unit("deg"), u.one, ] assert coord_meta["visible"] == [True, True, True, True, True] assert coord_meta["format_unit"] == [ u.Unit("Hz"), u.Unit("d"), u.Unit("hourangle"), u.Unit("deg"), u.one, ] assert coord_meta["default_axislabel_position"] == ["b", "l", "t", "r", ""] assert coord_meta["default_ticklabel_position"] == ["b", "l", "t", "r", ""] assert coord_meta["default_ticks_position"] == ["b", "l", "t", "r", ""] assert coord_meta["default_axis_label"] == [ "Frequency", "time", "RA", "DEC", "phys.polarization.stokes", ] @figure_test def test_wcsapi_5d_with_names(plt_close): # Test for plotting image and also setting values of ticks fig = plt.figure(figsize=(6, 6)) ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], projection=LowLevelWCS5D()) ax.set_xlim(-0.5, 148.5) ax.set_ylim(-0.5, 148.5) return fig
86fe3abcd13663b36c31eb01b993b1a560fcd46ae85f6e034fe112303f05829e
# Licensed under a 3-clause BSD style license - see LICENSE.rst import matplotlib.pyplot as plt import numpy as np from matplotlib.backend_bases import KeyEvent import astropy.units as u from astropy.coordinates import FK5, SkyCoord, galactocentric_frame_defaults from astropy.time import Time from astropy.visualization.wcsaxes.core import WCSAxes from astropy.wcs import WCS from .test_images import BaseImageTests class TestDisplayWorldCoordinate(BaseImageTests): def teardown_method(self, method): plt.close("all") def test_overlay_coords(self, ignore_matplotlibrc, tmp_path): wcs = WCS(self.msx_header) fig = plt.figure(figsize=(4, 4)) canvas = fig.canvas ax = WCSAxes(fig, [0.1, 0.1, 0.8, 0.8], wcs=wcs) fig.add_axes(ax) # On some systems, fig.canvas.draw is not enough to force a draw, so we # save to a temporary file. fig.savefig(tmp_path / "test1.png") # Testing default displayed world coordinates string_world = ax._display_world_coords(0.523412, 0.518311) assert string_world == "0\xb029'45\" -0\xb029'20\" (world)" # Test pixel coordinates event1 = KeyEvent("test_pixel_coords", canvas, "w") fig.canvas.callbacks.process("key_press_event", event1) string_pixel = ax._display_world_coords(0.523412, 0.523412) assert string_pixel == "0.523412 0.523412 (pixel)" event3 = KeyEvent("test_pixel_coords", canvas, "w") fig.canvas.callbacks.process("key_press_event", event3) # Test that it still displays world coords when there are no overlay coords string_world2 = ax._display_world_coords(0.523412, 0.518311) assert string_world2 == "0\xb029'45\" -0\xb029'20\" (world)" overlay = ax.get_coords_overlay("fk5") # Regression test for bug that caused format to always be taken from # main world coordinates. overlay[0].set_major_formatter("d.ddd") # On some systems, fig.canvas.draw is not enough to force a draw, so we # save to a temporary file. fig.savefig(tmp_path / "test2.png") event4 = KeyEvent("test_pixel_coords", canvas, "w") fig.canvas.callbacks.process("key_press_event", event4) # Test that it displays the overlay world coordinates string_world3 = ax._display_world_coords(0.523412, 0.518311) assert string_world3 == "267.176\xb0 -28\xb045'56\" (world, overlay 1)" overlay = ax.get_coords_overlay(FK5()) # Regression test for bug that caused format to always be taken from # main world coordinates. overlay[0].set_major_formatter("d.ddd") # On some systems, fig.canvas.draw is not enough to force a draw, so we # save to a temporary file. fig.savefig(tmp_path / "test3.png") event5 = KeyEvent("test_pixel_coords", canvas, "w") fig.canvas.callbacks.process("key_press_event", event5) # Test that it displays the overlay world coordinates string_world4 = ax._display_world_coords(0.523412, 0.518311) assert string_world4 == "267.176\xb0 -28\xb045'56\" (world, overlay 2)" overlay = ax.get_coords_overlay(FK5(equinox=Time("J2030"))) # Regression test for bug that caused format to always be taken from # main world coordinates. overlay[0].set_major_formatter("d.ddd") # On some systems, fig.canvas.draw is not enough to force a draw, so we # save to a temporary file. fig.savefig(tmp_path / "test4.png") event6 = KeyEvent("test_pixel_coords", canvas, "w") fig.canvas.callbacks.process("key_press_event", event6) # Test that it displays the overlay world coordinates string_world5 = ax._display_world_coords(0.523412, 0.518311) assert string_world5 == "267.652\xb0 -28\xb046'23\" (world, overlay 3)" def test_cube_coords(self, ignore_matplotlibrc, tmp_path): wcs = WCS(self.cube_header) fig = plt.figure(figsize=(4, 4)) canvas = fig.canvas ax = WCSAxes(fig, [0.1, 0.1, 0.8, 0.8], wcs=wcs, slices=("y", 50, "x")) fig.add_axes(ax) # On some systems, fig.canvas.draw is not enough to force a draw, so we # save to a temporary file. fig.savefig(tmp_path / "test.png") # Testing default displayed world coordinates string_world = ax._display_world_coords(0.523412, 0.518311) assert string_world == "3h26m52.0s 30\xb037'17\" 2563 (world)" # Test pixel coordinates event1 = KeyEvent("test_pixel_coords", canvas, "w") fig.canvas.callbacks.process("key_press_event", event1) string_pixel = ax._display_world_coords(0.523412, 0.523412) assert string_pixel == "0.523412 0.523412 (pixel)" def test_cube_coords_uncorr_slicing(self, ignore_matplotlibrc, tmp_path): # Regression test for a bug that occurred with coordinate formatting if # some dimensions were uncorrelated and sliced out. wcs = WCS(self.cube_header) fig = plt.figure(figsize=(4, 4)) canvas = fig.canvas ax = WCSAxes(fig, [0.1, 0.1, 0.8, 0.8], wcs=wcs, slices=("x", "y", 2)) fig.add_axes(ax) # On some systems, fig.canvas.draw is not enough to force a draw, so we # save to a temporary file. fig.savefig(tmp_path / "test.png") # Testing default displayed world coordinates string_world = ax._display_world_coords(0.523412, 0.518311) assert string_world == "3h26m56.6s 30\xb018'19\" (world)" # Test pixel coordinates event1 = KeyEvent("test_pixel_coords", canvas, "w") fig.canvas.callbacks.process("key_press_event", event1) string_pixel = ax._display_world_coords(0.523412, 0.523412) assert string_pixel == "0.523412 0.523412 (pixel)" def test_plot_coord_3d_transform(self): wcs = WCS(self.msx_header) with galactocentric_frame_defaults.set("latest"): coord = SkyCoord(0 * u.kpc, 0 * u.kpc, 0 * u.kpc, frame="galactocentric") fig = plt.figure() ax = fig.add_subplot(1, 1, 1, projection=wcs) (point,) = ax.plot_coord(coord, "ro") np.testing.assert_allclose(point.get_xydata()[0], [0, 0], atol=1e-4)
88ab470783a06c1e6f2c224b5c82040a3d6b3df951489cfbb729b718492362bf
import numpy as np import pytest from matplotlib.lines import Path from astropy.visualization.wcsaxes.grid_paths import get_lon_lat_path @pytest.mark.parametrize("step_in_degrees", [10, 1, 0.01]) def test_round_trip_visibility(step_in_degrees): zero = np.zeros(100) # The pixel values are irrelevant for this test pixel = np.stack([zero, zero]).T # Create a grid line of constant latitude with a point every step line = np.stack([np.arange(100), zero]).T * step_in_degrees # Create a modified grid line where the point spacing is larger by 5% # Starting with point 20, the discrepancy between `line` and `line_round` is greater than `step` line_round = line * 1.05 # Perform the round-trip check path = get_lon_lat_path(line, pixel, line_round) # The grid line should be visible for only the initial part line (19 points) codes_check = np.full(100, Path.MOVETO) codes_check[line_round[:, 0] - line[:, 0] < step_in_degrees] = Path.LINETO assert np.all(path.codes[1:] == codes_check[1:])
10a96f89397b0da396e11344d19fde44b994b438af5ddc71ea0298a7571043d6
# Licensed under a 3-clause BSD style license - see LICENSE.rst from unittest.mock import patch import matplotlib.pyplot as plt import pytest from astropy import units as u from astropy.io import fits from astropy.utils.data import get_pkg_data_filename from astropy.visualization.wcsaxes.core import WCSAxes from astropy.wcs import WCS MSX_HEADER = fits.Header.fromtextfile(get_pkg_data_filename("data/msx_header")) def teardown_function(function): plt.close("all") def test_getaxislabel(ignore_matplotlibrc): fig = plt.figure() ax = WCSAxes(fig, [0.1, 0.1, 0.8, 0.8], aspect="equal") ax.coords[0].set_axislabel("X") ax.coords[1].set_axislabel("Y") assert ax.coords[0].get_axislabel() == "X" assert ax.coords[1].get_axislabel() == "Y" @pytest.fixture def ax(): fig = plt.figure() ax = WCSAxes(fig, [0.1, 0.1, 0.8, 0.8], aspect="equal") fig.add_axes(ax) return ax def assert_label_draw(ax, x_label, y_label): ax.coords[0].set_axislabel("Label 1") ax.coords[1].set_axislabel("Label 2") with patch.object(ax.coords[0].axislabels, "set_position") as pos1: with patch.object(ax.coords[1].axislabels, "set_position") as pos2: ax.figure.canvas.draw() assert pos1.call_count == x_label assert pos2.call_count == y_label def test_label_visibility_rules_default(ignore_matplotlibrc, ax): assert_label_draw(ax, True, True) def test_label_visibility_rules_label(ignore_matplotlibrc, ax): ax.coords[0].set_ticklabel_visible(False) ax.coords[1].set_ticks(values=[-9999] * u.one) assert_label_draw(ax, False, False) def test_label_visibility_rules_ticks(ignore_matplotlibrc, ax): ax.coords[0].set_axislabel_visibility_rule("ticks") ax.coords[1].set_axislabel_visibility_rule("ticks") ax.coords[0].set_ticklabel_visible(False) ax.coords[1].set_ticks(values=[-9999] * u.one) assert_label_draw(ax, True, False) def test_label_visibility_rules_always(ignore_matplotlibrc, ax): ax.coords[0].set_axislabel_visibility_rule("always") ax.coords[1].set_axislabel_visibility_rule("always") ax.coords[0].set_ticklabel_visible(False) ax.coords[1].set_ticks(values=[-9999] * u.one) assert_label_draw(ax, True, True) def test_format_unit(): fig = plt.figure() ax = WCSAxes(fig, [0.1, 0.1, 0.8, 0.8], wcs=WCS(MSX_HEADER)) fig.add_axes(ax) # Force a draw which is required for format_coord to work ax.figure.canvas.draw() ori_fu = ax.coords[1].get_format_unit() assert ori_fu == "deg" ax.coords[1].set_format_unit("arcsec") fu = ax.coords[1].get_format_unit() assert fu == "arcsec" def test_set_separator(): fig = plt.figure() ax = WCSAxes(fig, [0.1, 0.1, 0.8, 0.8], wcs=WCS(MSX_HEADER)) fig.add_axes(ax) # Force a draw which is required for format_coord to work ax.figure.canvas.draw() ax.coords[1].set_format_unit("deg") assert ax.coords[1].format_coord(4) == "4\xb000'00\"" ax.coords[1].set_separator((":", ":", "")) assert ax.coords[1].format_coord(4) == "4:00:00" ax.coords[1].set_separator("abc") assert ax.coords[1].format_coord(4) == "4a00b00c" ax.coords[1].set_separator(None) assert ax.coords[1].format_coord(4) == "4\xb000'00\""
2fcede79e7a128384c5e5dd6e63382120512b87f62846f250b46452d762829c8
# Licensed under a 3-clause BSD style license - see LICENSE.rst import matplotlib.lines import matplotlib.pyplot as plt import numpy as np import pytest from matplotlib import rc_context from matplotlib.figure import Figure from matplotlib.patches import Circle, Rectangle from astropy import units as u from astropy.coordinates import SkyCoord from astropy.io import fits from astropy.tests.figures import figure_test from astropy.utils.data import get_pkg_data_filename from astropy.utils.exceptions import AstropyUserWarning from astropy.visualization.wcsaxes import WCSAxes, add_beam, add_scalebar from astropy.visualization.wcsaxes.frame import EllipticalFrame from astropy.visualization.wcsaxes.patches import Quadrangle, SphericalCircle from astropy.wcs import WCS class BaseImageTests: @classmethod def setup_class(cls): msx_header = get_pkg_data_filename("data/msx_header") cls.msx_header = fits.Header.fromtextfile(msx_header) rosat_header = get_pkg_data_filename("data/rosat_header") cls.rosat_header = fits.Header.fromtextfile(rosat_header) twoMASS_k_header = get_pkg_data_filename("data/2MASS_k_header") cls.twoMASS_k_header = fits.Header.fromtextfile(twoMASS_k_header) cube_header = get_pkg_data_filename("data/cube_header") cls.cube_header = fits.Header.fromtextfile(cube_header) slice_header = get_pkg_data_filename("data/slice_header") cls.slice_header = fits.Header.fromtextfile(slice_header) def teardown_method(self, method): plt.close("all") class TestBasic(BaseImageTests): @figure_test def test_tight_layout(self): # Check that tight_layout works on a WCSAxes. fig = plt.figure(figsize=(8, 6)) for i in (1, 2): fig.add_subplot(2, 1, i, projection=WCS(self.msx_header)) fig.tight_layout() return fig @figure_test def test_image_plot(self): # Test for plotting image and also setting values of ticks fig = plt.figure(figsize=(6, 6)) ax = fig.add_axes( [0.1, 0.1, 0.8, 0.8], projection=WCS(self.msx_header), aspect="equal" ) ax.set_xlim(-0.5, 148.5) ax.set_ylim(-0.5, 148.5) ax.coords[0].set_ticks([-0.30, 0.0, 0.20] * u.degree, size=5, width=1) return fig @figure_test def test_axes_off(self): # Test for turning the axes off fig = plt.figure(figsize=(3, 3)) ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], projection=WCS(self.msx_header)) ax.imshow(np.arange(12).reshape((3, 4))) ax.set_axis_off() return fig @figure_test @pytest.mark.parametrize("axisbelow", [True, False, "line"]) def test_axisbelow(self, axisbelow): # Test that tick marks, labels, and gridlines are drawn with the # correct zorder controlled by the axisbelow property. fig = plt.figure(figsize=(6, 6)) ax = fig.add_axes( [0.1, 0.1, 0.8, 0.8], projection=WCS(self.msx_header), aspect="equal" ) ax.set_axisbelow(axisbelow) ax.set_xlim(-0.5, 148.5) ax.set_ylim(-0.5, 148.5) ax.coords[0].set_ticks([-0.30, 0.0, 0.20] * u.degree, size=5, width=1) ax.grid() ax.coords[0].set_auto_axislabel(False) ax.coords[1].set_auto_axislabel(False) # Add an image (default zorder=0). ax.imshow(np.zeros((64, 64))) # Add a patch (default zorder=1). r = Rectangle((30.0, 50.0), 60.0, 50.0, facecolor="green", edgecolor="red") ax.add_patch(r) # Add a line (default zorder=2). ax.plot([32, 128], [32, 128], linewidth=10) return fig @figure_test def test_contour_overlay(self): # Test for overlaying contours on images path = get_pkg_data_filename("galactic_center/gc_msx_e.fits") with fits.open(path) as pf: data = pf[0].data wcs_msx = WCS(self.msx_header) fig = plt.figure(figsize=(6, 6)) ax = fig.add_axes( [0.15, 0.15, 0.8, 0.8], projection=WCS(self.twoMASS_k_header), aspect="equal", ) ax.set_xlim(-0.5, 720.5) ax.set_ylim(-0.5, 720.5) # Overplot contour ax.contour( data, transform=ax.get_transform(wcs_msx), colors="orange", levels=[2.5e-5, 5e-5, 1.0e-4], ) ax.coords[0].set_ticks(size=5, width=1) ax.coords[1].set_ticks(size=5, width=1) ax.set_xlim(0.0, 720.0) ax.set_ylim(0.0, 720.0) # In previous versions, all angle axes defaulted to being displayed in # degrees. We now automatically show RA axes in hour angle units, but # for backward-compatibility with previous reference images we # explicitly use degrees here. ax.coords[0].set_format_unit(u.degree) return fig @figure_test def test_contourf_overlay(self): # Test for overlaying contours on images path = get_pkg_data_filename("galactic_center/gc_msx_e.fits") with fits.open(path) as pf: data = pf[0].data wcs_msx = WCS(self.msx_header) fig = plt.figure(figsize=(6, 6)) ax = fig.add_axes( [0.15, 0.15, 0.8, 0.8], projection=WCS(self.twoMASS_k_header), aspect="equal", ) ax.set_xlim(-0.5, 720.5) ax.set_ylim(-0.5, 720.5) # Overplot contour ax.contourf( data, transform=ax.get_transform(wcs_msx), levels=[2.5e-5, 5e-5, 1.0e-4] ) ax.coords[0].set_ticks(size=5, width=1) ax.coords[1].set_ticks(size=5, width=1) ax.set_xlim(0.0, 720.0) ax.set_ylim(0.0, 720.0) # In previous versions, all angle axes defaulted to being displayed in # degrees. We now automatically show RA axes in hour angle units, but # for backward-compatibility with previous reference images we # explicitly use degrees here. ax.coords[0].set_format_unit(u.degree) return fig @figure_test def test_overlay_features_image(self): # Test for overlaying grid, changing format of ticks, setting spacing # and number of ticks fig = plt.figure(figsize=(6, 6)) ax = fig.add_axes( [0.25, 0.25, 0.65, 0.65], projection=WCS(self.msx_header), aspect="equal" ) # Change the format of the ticks ax.coords[0].set_major_formatter("dd:mm:ss") ax.coords[1].set_major_formatter("dd:mm:ss.ssss") # Overlay grid on image ax.grid(color="red", alpha=1.0, lw=1, linestyle="dashed") # Set the spacing of ticks on the 'glon' axis to 4 arcsec ax.coords["glon"].set_ticks(spacing=4 * u.arcsec, size=5, width=1) # Set the number of ticks on the 'glat' axis to 9 ax.coords["glat"].set_ticks(number=9, size=5, width=1) # Set labels on axes ax.coords["glon"].set_axislabel("Galactic Longitude", minpad=1.6) ax.coords["glat"].set_axislabel("Galactic Latitude", minpad=-0.75) # Change the frame linewidth and color ax.coords.frame.set_color("red") ax.coords.frame.set_linewidth(2) assert ax.coords.frame.get_color() == "red" assert ax.coords.frame.get_linewidth() == 2 return fig @figure_test def test_curvilinear_grid_patches_image(self): # Overlay curvilinear grid and patches on image fig = plt.figure(figsize=(8, 8)) ax = fig.add_axes( [0.1, 0.1, 0.8, 0.8], projection=WCS(self.rosat_header), aspect="equal" ) ax.set_xlim(-0.5, 479.5) ax.set_ylim(-0.5, 239.5) ax.grid(color="black", alpha=1.0, lw=1, linestyle="dashed") p = Circle((300, 100), radius=40, ec="yellow", fc="none") ax.add_patch(p) p = Circle( (30.0, 20.0), radius=20.0, ec="orange", fc="none", transform=ax.get_transform("world"), ) ax.add_patch(p) p = Circle( (60.0, 50.0), radius=20.0, ec="red", fc="none", transform=ax.get_transform("fk5"), ) ax.add_patch(p) p = Circle( (40.0, 60.0), radius=20.0, ec="green", fc="none", transform=ax.get_transform("galactic"), ) ax.add_patch(p) return fig @figure_test def test_cube_slice_image(self): # Test for cube slicing fig = plt.figure() ax = fig.add_axes( [0.1, 0.1, 0.8, 0.8], projection=WCS(self.cube_header), slices=(50, "y", "x"), aspect="equal", ) ax.set_xlim(-0.5, 52.5) ax.set_ylim(-0.5, 106.5) ax.coords[2].set_axislabel("Velocity m/s") ax.coords[1].set_ticks(spacing=0.2 * u.deg, width=1) ax.coords[2].set_ticks(spacing=400 * u.m / u.s, width=1) ax.coords[1].set_ticklabel(exclude_overlapping=True) ax.coords[2].set_ticklabel(exclude_overlapping=True) ax.coords[0].grid(grid_type="contours", color="purple", linestyle="solid") ax.coords[1].grid(grid_type="contours", color="orange", linestyle="solid") ax.coords[2].grid(grid_type="contours", color="red", linestyle="solid") return fig @figure_test def test_cube_slice_image_lonlat(self): # Test for cube slicing. Here we test with longitude and latitude since # there is some longitude-specific code in _update_grid_contour. fig = plt.figure() ax = fig.add_axes( [0.1, 0.1, 0.8, 0.8], projection=WCS(self.cube_header), slices=("x", "y", 50), aspect="equal", ) ax.set_xlim(-0.5, 106.5) ax.set_ylim(-0.5, 106.5) ax.coords[0].grid(grid_type="contours", color="blue", linestyle="solid") ax.coords[1].grid(grid_type="contours", color="red", linestyle="solid") # In previous versions, all angle axes defaulted to being displayed in # degrees. We now automatically show RA axes in hour angle units, but # for backward-compatibility with previous reference images we # explicitly use degrees here. ax.coords[0].set_format_unit(u.degree) return fig @figure_test def test_plot_coord(self): fig = plt.figure(figsize=(6, 6)) ax = fig.add_axes( [0.15, 0.15, 0.8, 0.8], projection=WCS(self.twoMASS_k_header), aspect="equal", ) ax.set_xlim(-0.5, 720.5) ax.set_ylim(-0.5, 720.5) c = SkyCoord(266 * u.deg, -29 * u.deg) lines = ax.plot_coord(c, "o") # Test that plot_coord returns the results from ax.plot assert isinstance(lines, list) assert isinstance(lines[0], matplotlib.lines.Line2D) # In previous versions, all angle axes defaulted to being displayed in # degrees. We now automatically show RA axes in hour angle units, but # for backward-compatibility with previous reference images we # explicitly use degrees here. ax.coords[0].set_format_unit(u.degree) return fig @figure_test def test_scatter_coord(self): from matplotlib.collections import PathCollection fig = plt.figure(figsize=(6, 6)) ax = fig.add_axes( [0.15, 0.15, 0.8, 0.8], projection=WCS(self.twoMASS_k_header), aspect="equal", ) ax.set_xlim(-0.5, 720.5) ax.set_ylim(-0.5, 720.5) c = SkyCoord(266 * u.deg, -29 * u.deg) sc = ax.scatter_coord(c, marker="o") # Test that plot_coord returns the results from ax.plot assert isinstance(sc, PathCollection) # In previous versions, all angle axes defaulted to being displayed in # degrees. We now automatically show RA axes in hour angle units, but # for backward-compatibility with previous reference images we # explicitly use degrees here. ax.coords[0].set_format_unit(u.degree) return fig @figure_test def test_plot_line(self): fig = plt.figure(figsize=(6, 6)) ax = fig.add_axes( [0.15, 0.15, 0.8, 0.8], projection=WCS(self.twoMASS_k_header), aspect="equal", ) ax.set_xlim(-0.5, 720.5) ax.set_ylim(-0.5, 720.5) c = SkyCoord([266, 266.8] * u.deg, [-29, -28.9] * u.deg) ax.plot_coord(c) # In previous versions, all angle axes defaulted to being displayed in # degrees. We now automatically show RA axes in hour angle units, but # for backward-compatibility with previous reference images we # explicitly use degrees here. ax.coords[0].set_format_unit(u.degree) return fig @figure_test def test_changed_axis_units(self): # Test to see if changing the units of axis works fig = plt.figure() ax = fig.add_axes( [0.1, 0.1, 0.8, 0.8], projection=WCS(self.cube_header), slices=(50, "y", "x"), aspect="equal", ) ax.set_xlim(-0.5, 52.5) ax.set_ylim(-0.5, 106.5) ax.coords[0].set_ticks_position("") ax.coords[0].set_ticklabel_position("") ax.coords[0].set_axislabel_position("") ax.coords[1].set_ticks_position("lr") ax.coords[1].set_ticklabel_position("l") ax.coords[1].set_axislabel_position("l") ax.coords[2].set_ticks_position("bt") ax.coords[2].set_ticklabel_position("b") ax.coords[2].set_axislabel_position("b") ax.coords[2].set_major_formatter("x.xx") ax.coords[2].set_format_unit(u.km / u.s) ax.coords[2].set_axislabel("Velocity km/s") ax.coords[1].set_ticks(width=1) ax.coords[2].set_ticks(width=1) ax.coords[1].set_ticklabel(exclude_overlapping=True) ax.coords[2].set_ticklabel(exclude_overlapping=True) return fig @figure_test def test_minor_ticks(self): # Test for drawing minor ticks fig = plt.figure() ax = fig.add_axes( [0.1, 0.1, 0.8, 0.8], projection=WCS(self.cube_header), slices=(50, "y", "x"), aspect="equal", ) ax.set_xlim(-0.5, 52.5) ax.set_ylim(-0.5, 106.5) ax.coords[0].set_ticks_position("") ax.coords[0].set_ticklabel_position("") ax.coords[0].set_axislabel_position("") ax.coords[1].set_ticks_position("lr") ax.coords[1].set_ticklabel_position("l") ax.coords[1].set_axislabel_position("l") ax.coords[2].set_ticks_position("bt") ax.coords[2].set_ticklabel_position("b") ax.coords[2].set_axislabel_position("b") ax.coords[2].set_ticklabel(exclude_overlapping=True) ax.coords[1].set_ticklabel(exclude_overlapping=True) ax.coords[2].display_minor_ticks(True) ax.coords[1].display_minor_ticks(True) ax.coords[2].set_minor_frequency(3) ax.coords[1].set_minor_frequency(10) return fig @figure_test def test_ticks_labels(self): fig = plt.figure(figsize=(6, 6)) ax = WCSAxes(fig, [0.1, 0.1, 0.7, 0.7], wcs=None) fig.add_axes(ax) ax.set_xlim(-0.5, 2) ax.set_ylim(-0.5, 2) ax.coords[0].set_ticks(size=10, color="blue", alpha=0.2, width=1) ax.coords[1].set_ticks(size=20, color="red", alpha=0.9, width=1) ax.coords[0].set_ticks_position("all") ax.coords[1].set_ticks_position("all") ax.coords[0].set_axislabel("X-axis", size=20) ax.coords[1].set_axislabel( "Y-axis", color="green", size=25, weight="regular", style="normal", family="cmtt10", ) ax.coords[0].set_axislabel_position("t") ax.coords[1].set_axislabel_position("r") ax.coords[0].set_ticklabel( color="purple", size=15, alpha=1, weight="light", style="normal", family="cmss10", ) ax.coords[1].set_ticklabel( color="black", size=18, alpha=0.9, weight="bold", family="cmr10" ) ax.coords[0].set_ticklabel_position("all") ax.coords[1].set_ticklabel_position("r") return fig @figure_test def test_rcparams(self): # Test custom rcParams with rc_context( { "axes.labelcolor": "purple", "axes.labelsize": 14, "axes.labelweight": "bold", "axes.linewidth": 3, "axes.facecolor": "0.5", "axes.edgecolor": "green", "xtick.color": "red", "xtick.labelsize": 8, "xtick.direction": "in", "xtick.minor.visible": True, "xtick.minor.size": 5, "xtick.major.size": 20, "xtick.major.width": 3, "xtick.major.pad": 10, "grid.color": "blue", "grid.linestyle": ":", "grid.linewidth": 1, "grid.alpha": 0.5, } ): fig = plt.figure(figsize=(6, 6)) ax = WCSAxes(fig, [0.15, 0.1, 0.7, 0.7], wcs=None) fig.add_axes(ax) ax.set_xlim(-0.5, 2) ax.set_ylim(-0.5, 2) ax.grid() ax.set_xlabel("X label") ax.set_ylabel("Y label") ax.coords[0].set_ticklabel(exclude_overlapping=True) ax.coords[1].set_ticklabel(exclude_overlapping=True) return fig @figure_test def test_tick_angles(self): # Test that tick marks point in the correct direction, even when the # axes limits extend only over a few FITS pixels. Addresses #45, #46. w = WCS() w.wcs.ctype = ["RA---TAN", "DEC--TAN"] w.wcs.crval = [90, 70] w.wcs.cdelt = [16, 16] w.wcs.crpix = [1, 1] w.wcs.radesys = "ICRS" w.wcs.equinox = 2000.0 fig = plt.figure(figsize=(3, 3)) ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], projection=w) ax.set_xlim(1, -1) ax.set_ylim(-1, 1) ax.grid(color="gray", alpha=0.5, linestyle="solid") ax.coords["ra"].set_ticks(color="red", size=20) ax.coords["dec"].set_ticks(color="red", size=20) # In previous versions, all angle axes defaulted to being displayed in # degrees. We now automatically show RA axes in hour angle units, but # for backward-compatibility with previous reference images we # explicitly use degrees here. ax.coords[0].set_format_unit(u.degree) return fig @figure_test def test_tick_angles_non_square_axes(self): # Test that tick marks point in the correct direction, even when the # axes limits extend only over a few FITS pixels, and the axes are # non-square. w = WCS() w.wcs.ctype = ["RA---TAN", "DEC--TAN"] w.wcs.crval = [90, 70] w.wcs.cdelt = [16, 16] w.wcs.crpix = [1, 1] w.wcs.radesys = "ICRS" w.wcs.equinox = 2000.0 fig = plt.figure(figsize=(6, 3)) ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], projection=w) ax.set_xlim(1, -1) ax.set_ylim(-1, 1) ax.grid(color="gray", alpha=0.5, linestyle="solid") ax.coords["ra"].set_ticks(color="red", size=20) ax.coords["dec"].set_ticks(color="red", size=20) # In previous versions, all angle axes defaulted to being displayed in # degrees. We now automatically show RA axes in hour angle units, but # for backward-compatibility with previous reference images we # explicitly use degrees here. ax.coords[0].set_format_unit(u.degree) return fig @figure_test def test_set_coord_type(self): # Test for setting coord_type fig = plt.figure(figsize=(3, 3)) ax = fig.add_axes( [0.2, 0.2, 0.6, 0.6], projection=WCS(self.msx_header), aspect="equal" ) ax.set_xlim(-0.5, 148.5) ax.set_ylim(-0.5, 148.5) ax.coords[0].set_coord_type("scalar") ax.coords[1].set_coord_type("scalar") ax.coords[0].set_major_formatter("x.xxx") ax.coords[1].set_major_formatter("x.xxx") ax.coords[0].set_ticklabel(exclude_overlapping=True) ax.coords[1].set_ticklabel(exclude_overlapping=True) return fig @figure_test def test_ticks_regression(self): # Regression test for a bug that caused ticks aligned exactly with a # sampled frame point to not appear. This also checks that tick labels # don't get added more than once, and that no error occurs when e.g. # the top part of the frame is all at the same coordinate as one of the # potential ticks (which causes the tick angle calculation to return # NaN). wcs = WCS(self.slice_header) fig = plt.figure(figsize=(3, 3)) ax = fig.add_axes([0.25, 0.25, 0.5, 0.5], projection=wcs, aspect="auto") limits = wcs.wcs_world2pix([0, 0], [35e3, 80e3], 0)[1] ax.set_ylim(*limits) ax.coords[0].set_ticks(spacing=0.002 * u.deg) ax.coords[1].set_ticks(spacing=5 * u.km / u.s) ax.coords[0].set_ticklabel(alpha=0.5) # to see multiple labels ax.coords[1].set_ticklabel(alpha=0.5) ax.coords[0].set_ticklabel_position("all") ax.coords[1].set_ticklabel_position("all") return fig @figure_test def test_axislabels_regression(self): # Regression test for a bug that meant that if tick labels were made # invisible with ``set_visible(False)``, they were still added to the # list of bounding boxes for tick labels, but with default values of 0 # to 1, which caused issues. wcs = WCS(self.msx_header) fig = plt.figure(figsize=(3, 3)) ax = fig.add_axes([0.25, 0.25, 0.5, 0.5], projection=wcs, aspect="auto") ax.coords[0].set_axislabel("Label 1") ax.coords[1].set_axislabel("Label 2") ax.coords[1].set_axislabel_visibility_rule("always") ax.coords[1].ticklabels.set_visible(False) return fig @figure_test(savefig_kwargs={"bbox_inches": "tight"}) def test_noncelestial_angular(self, tmp_path): # Regression test for a bug that meant that when passing a WCS that had # angular axes and using set_coord_type to set the coordinates to # longitude/latitude, but where the WCS wasn't recognized as celestial, # the WCS units are not converted to deg, so we can't assume that # transform will always return degrees. wcs = WCS(naxis=2) wcs.wcs.ctype = ["solar-x", "solar-y"] wcs.wcs.cunit = ["arcsec", "arcsec"] fig = plt.figure(figsize=(3, 3)) ax = fig.add_subplot(1, 1, 1, projection=wcs) ax.imshow(np.zeros([1024, 1024]), origin="lower") ax.coords[0].set_coord_type("longitude", coord_wrap=180) ax.coords[1].set_coord_type("latitude") ax.coords[0].set_major_formatter("s.s") ax.coords[1].set_major_formatter("s.s") ax.coords[0].set_format_unit(u.arcsec, show_decimal_unit=False) ax.coords[1].set_format_unit(u.arcsec, show_decimal_unit=False) ax.grid(color="white", ls="solid") # Force drawing (needed for format_coord) fig.savefig(tmp_path / "nothing") assert ax.format_coord(512, 512) == "513.0 513.0 (world)" return fig @figure_test def test_patches_distortion(self, tmp_path): # Check how patches get distorted (and make sure that scatter markers # and SphericalCircle don't) wcs = WCS(self.msx_header) fig = plt.figure(figsize=(3, 3)) ax = fig.add_axes([0.25, 0.25, 0.5, 0.5], projection=wcs, aspect="equal") # Pixel coordinates r = Rectangle((30.0, 50.0), 60.0, 50.0, edgecolor="green", facecolor="none") ax.add_patch(r) # FK5 coordinates r = Rectangle( (266.4, -28.9), 0.3, 0.3, edgecolor="cyan", facecolor="none", transform=ax.get_transform("fk5"), ) ax.add_patch(r) # FK5 coordinates c = Circle( (266.4, -29.1), 0.15, edgecolor="magenta", facecolor="none", transform=ax.get_transform("fk5"), ) ax.add_patch(c) # Pixel coordinates ax.scatter( [40, 100, 130], [30, 130, 60], s=100, edgecolor="red", facecolor=(1, 0, 0, 0.5), ) # World coordinates (should not be distorted) ax.scatter( 266.78238, -28.769255, transform=ax.get_transform("fk5"), s=300, edgecolor="red", facecolor="none", ) # World coordinates (should not be distorted) r1 = SphericalCircle( (266.4 * u.deg, -29.1 * u.deg), 0.15 * u.degree, edgecolor="purple", facecolor="none", transform=ax.get_transform("fk5"), ) ax.add_patch(r1) r2 = SphericalCircle( SkyCoord(266.4 * u.deg, -29.1 * u.deg), 0.15 * u.degree, edgecolor="purple", facecolor="none", transform=ax.get_transform("fk5"), ) with pytest.warns( AstropyUserWarning, match="Received `center` of representation type " "<class 'astropy.coordinates.representation.CartesianRepresentation'> " "will be converted to SphericalRepresentation", ): r3 = SphericalCircle( SkyCoord( x=-0.05486461, y=-0.87204803, z=-0.48633538, representation_type="cartesian", ), 0.15 * u.degree, edgecolor="purple", facecolor="none", transform=ax.get_transform("fk5"), ) ax.coords[0].set_ticklabel_visible(False) ax.coords[1].set_ticklabel_visible(False) # Test to verify that SphericalCircle works irrespective of whether # the input(center) is a tuple or a SkyCoord object. assert (r1.get_xy() == r2.get_xy()).all() assert np.allclose(r1.get_xy(), r3.get_xy()) assert np.allclose(r2.get_xy()[0], [266.4, -29.25]) return fig @figure_test def test_quadrangle(self, tmp_path): # Test that Quadrangle can have curved edges while Rectangle does not wcs = WCS(self.msx_header) fig = plt.figure(figsize=(3, 3)) ax = fig.add_axes([0.25, 0.25, 0.5, 0.5], projection=wcs, aspect="equal") ax.set_xlim(0, 10000) ax.set_ylim(-10000, 0) # Add a quadrangle patch (100 degrees by 20 degrees) q = Quadrangle( (255, -70) * u.deg, 100 * u.deg, 20 * u.deg, label="Quadrangle", edgecolor="blue", facecolor="none", transform=ax.get_transform("icrs"), ) ax.add_patch(q) # Add a rectangle patch (100 degrees by 20 degrees) r = Rectangle( (255, -70), 100, 20, label="Rectangle", edgecolor="red", facecolor="none", linestyle="--", transform=ax.get_transform("icrs"), ) ax.add_patch(r) ax.coords[0].set_ticklabel_visible(False) ax.coords[1].set_ticklabel_visible(False) return fig @figure_test def test_beam_shape_from_args(self, tmp_path): # Test for adding the beam shape with the beam parameters as arguments wcs = WCS(self.msx_header) fig = plt.figure(figsize=(4, 3)) ax = fig.add_axes([0.2, 0.2, 0.6, 0.6], projection=wcs, aspect="equal") ax.set_xlim(-10, 10) ax.set_ylim(-10, 10) add_beam( ax, major=2 * u.arcmin, minor=1 * u.arcmin, angle=-30 * u.degree, corner="bottom right", frame=True, borderpad=0.0, pad=1.0, color="black", ) return fig @figure_test def test_beam_shape_from_header(self, tmp_path): # Test for adding the beam shape with the beam parameters from a header hdr = self.msx_header hdr["BMAJ"] = (2 * u.arcmin).to(u.degree).value hdr["BMIN"] = (1 * u.arcmin).to(u.degree).value hdr["BPA"] = 30.0 wcs = WCS(hdr) fig = plt.figure(figsize=(4, 3)) ax = fig.add_axes([0.2, 0.2, 0.6, 0.6], projection=wcs, aspect="equal") ax.set_xlim(-10, 10) ax.set_ylim(-10, 10) add_beam(ax, header=hdr) return fig @figure_test def test_scalebar(self, tmp_path): # Test for adding a scale bar wcs = WCS(self.msx_header) fig = plt.figure(figsize=(4, 3)) ax = fig.add_axes([0.2, 0.2, 0.6, 0.6], projection=wcs, aspect="equal") ax.set_xlim(-10, 10) ax.set_ylim(-10, 10) add_scalebar( ax, 2 * u.arcmin, label="2'", corner="top right", borderpad=1.0, label_top=True, ) return fig @figure_test def test_elliptical_frame(self): # Regression test for a bug (astropy/astropy#6063) that caused labels to # be incorrectly simplified. wcs = WCS(self.msx_header) fig = plt.figure(figsize=(5, 3)) fig.add_axes([0.2, 0.2, 0.6, 0.6], projection=wcs, frame_class=EllipticalFrame) return fig @figure_test def test_hms_labels(self): # This tests the apparance of the hms superscripts in tick labels fig = plt.figure(figsize=(3, 3)) ax = fig.add_axes( [0.3, 0.2, 0.65, 0.6], projection=WCS(self.twoMASS_k_header), aspect="equal" ) ax.set_xlim(-0.5, 0.5) ax.set_ylim(-0.5, 0.5) ax.coords[0].set_ticks(spacing=0.2 * 15 * u.arcsec) return fig @figure_test(style={"text.usetex": True}) def test_latex_labels(self): fig = plt.figure(figsize=(3, 3)) ax = fig.add_axes( [0.3, 0.2, 0.65, 0.6], projection=WCS(self.twoMASS_k_header), aspect="equal" ) ax.set_xlim(-0.5, 0.5) ax.set_ylim(-0.5, 0.5) ax.coords[0].set_ticks(spacing=0.2 * 15 * u.arcsec) return fig @figure_test def test_tick_params(self): # This is a test to make sure that tick_params works correctly. We try # and test as much as possible with a single reference image. wcs = WCS() wcs.wcs.ctype = ["lon", "lat"] fig = plt.figure(figsize=(6, 6)) # The first subplot tests: # - that plt.tick_params works # - that by default both axes are changed # - changing the tick direction and appearance, the label appearance and padding ax = fig.add_subplot(2, 2, 1, projection=wcs) plt.tick_params( direction="in", length=20, width=5, pad=6, labelsize=6, color="red", labelcolor="blue", ) ax.coords[0].set_auto_axislabel(False) ax.coords[1].set_auto_axislabel(False) # The second subplot tests: # - that specifying grid parameters doesn't actually cause the grid to # be shown (as expected) # - that axis= can be given integer coordinates or their string name # - that the tick positioning works (bottom/left/top/right) # Make sure that we can pass things that can index coords ax = fig.add_subplot(2, 2, 2, projection=wcs) plt.tick_params( axis=0, direction="in", length=20, width=5, pad=4, labelsize=6, color="red", labelcolor="blue", bottom=True, grid_color="purple", ) plt.tick_params( axis="lat", direction="out", labelsize=8, color="blue", labelcolor="purple", left=True, right=True, grid_color="red", ) ax.coords[0].set_auto_axislabel(False) ax.coords[1].set_auto_axislabel(False) # The third subplot tests: # - that ax.tick_params works # - that the grid has the correct settings once shown explicitly # - that we can use axis='x' and axis='y' ax = fig.add_subplot(2, 2, 3, projection=wcs) ax.tick_params( axis="x", direction="in", length=20, width=5, pad=20, labelsize=6, color="red", labelcolor="blue", bottom=True, grid_color="purple", ) ax.tick_params( axis="y", direction="out", labelsize=8, color="blue", labelcolor="purple", left=True, right=True, grid_color="red", ) plt.grid() ax.coords[0].set_auto_axislabel(False) ax.coords[1].set_auto_axislabel(False) # The final subplot tests: # - that we can use tick_params on a specific coordinate # - that the label positioning can be customized # - that the colors argument works # - that which='minor' works ax = fig.add_subplot(2, 2, 4, projection=wcs) ax.coords[0].tick_params( length=4, pad=2, colors="orange", labelbottom=True, labeltop=True, labelsize=10, ) ax.coords[1].display_minor_ticks(True) ax.coords[1].tick_params(which="minor", length=6) ax.coords[0].set_auto_axislabel(False) ax.coords[1].set_auto_axislabel(False) return fig @pytest.fixture def wave_wcs_1d(): wcs = WCS(naxis=1) wcs.wcs.ctype = ["WAVE"] wcs.wcs.cunit = ["m"] wcs.wcs.crpix = [1] wcs.wcs.cdelt = [5] wcs.wcs.crval = [45] wcs.wcs.set() return wcs @figure_test def test_1d_plot_1d_wcs(wave_wcs_1d): fig = plt.figure() ax = fig.add_subplot(1, 1, 1, projection=wave_wcs_1d) (lines,) = ax.plot([10, 12, 14, 12, 10]) ax.set_xlabel("this is the x-axis") ax.set_ylabel("this is the y-axis") return fig @figure_test def test_1d_plot_1d_wcs_format_unit(wave_wcs_1d): """ This test ensures that the format unit is updated and displayed for both the axis ticks and default axis labels. """ fig = plt.figure() ax = fig.add_subplot(1, 1, 1, projection=wave_wcs_1d) (lines,) = ax.plot([10, 12, 14, 12, 10]) ax.coords[0].set_format_unit("nm") return fig @pytest.fixture def spatial_wcs_2d(): wcs = WCS(naxis=2) wcs.wcs.ctype = ["GLON-TAN", "GLAT-TAN"] wcs.wcs.crpix = [3.0] * 2 wcs.wcs.cdelt = [15] * 2 wcs.wcs.crval = [50.0] * 2 wcs.wcs.set() return wcs @figure_test def test_1d_plot_2d_wcs_correlated(spatial_wcs_2d): fig = plt.figure() ax = fig.add_subplot(1, 1, 1, projection=spatial_wcs_2d, slices=("x", 0)) (lines,) = ax.plot([10, 12, 14, 12, 10], "-o", color="orange") ax.coords["glon"].set_ticks(color="red") ax.coords["glon"].set_ticklabel(color="red") ax.coords["glon"].grid(color="red") ax.coords["glat"].set_ticks(color="blue") ax.coords["glat"].set_ticklabel(color="blue") ax.coords["glat"].grid(color="blue") return fig @pytest.fixture def spatial_wcs_2d_small_angle(): """ This WCS has an almost linear correlation between the pixel and world axes close to the reference pixel. """ wcs = WCS(naxis=2) wcs.wcs.ctype = ["HPLN-TAN", "HPLT-TAN"] wcs.wcs.crpix = [3.0] * 2 wcs.wcs.cdelt = [10 / 3600, 5 / 3600] wcs.wcs.crval = [0] * 2 wcs.wcs.set() return wcs @pytest.mark.parametrize( "slices, bottom_axis", [ # Remember SLLWCS takes slices in array order (np.s_[0, :], "custom:pos.helioprojective.lon"), (np.s_[:, 0], "custom:pos.helioprojective.lat"), ], ) @figure_test def test_1d_plot_1d_sliced_low_level_wcs( spatial_wcs_2d_small_angle, slices, bottom_axis ): """ Test that a SLLWCS through a coupled 2D WCS plots as line OK. """ fig = plt.figure() ax = fig.add_subplot(1, 1, 1, projection=spatial_wcs_2d_small_angle[slices]) (lines,) = ax.plot([10, 12, 14, 12, 10], "-o", color="orange") # Draw to trigger rendering the ticks. plt.draw() assert ax.coords[bottom_axis].ticks.get_visible_axes() == ["b"] return fig @pytest.mark.parametrize( "slices, bottom_axis", [(("x", 0), "hpln"), ((0, "x"), "hplt")] ) @figure_test def test_1d_plot_put_varying_axis_on_bottom_lon( spatial_wcs_2d_small_angle, slices, bottom_axis ): """ When we plot a 1D slice through spatial axes, we want to put the axis which actually changes on the bottom. For example an aligned wcs, pixel grid where you plot a lon slice through a lat axis, you would end up with no ticks on the bottom as the lon doesn't change, and a set of lat ticks on the top because it does but it's the correlated axis not the actual one you are plotting against. """ fig = plt.figure() ax = fig.add_subplot(1, 1, 1, projection=spatial_wcs_2d_small_angle, slices=slices) (lines,) = ax.plot([10, 12, 14, 12, 10], "-o", color="orange") # Draw to trigger rendering the ticks. plt.draw() assert ax.coords[bottom_axis].ticks.get_visible_axes() == ["b"] return fig @figure_test def test_allsky_labels_wrap(): # Regression test for a bug that caused some tick labels to not be shown # when looking at all-sky maps in the case where coord_wrap < 360 fig = plt.figure(figsize=(4, 4)) icen = 0 for ctype in [("GLON-CAR", "GLAT-CAR"), ("HGLN-CAR", "HGLT-CAR")]: for cen in [0, 90, 180, 270]: icen += 1 wcs = WCS(naxis=2) wcs.wcs.ctype = ctype wcs.wcs.crval = cen, 0 wcs.wcs.crpix = 360.5, 180.5 wcs.wcs.cdelt = -0.5, 0.5 ax = fig.add_subplot(8, 1, icen, projection=wcs) ax.set_xlim(-0.5, 719.5) ax.coords[0].set_ticks(spacing=50 * u.deg) ax.coords[0].set_ticks_position("b") ax.coords[0].set_auto_axislabel(False) ax.coords[1].set_auto_axislabel(False) ax.coords[1].set_ticklabel_visible(False) ax.coords[1].set_ticks_visible(False) fig.subplots_adjust(hspace=2, left=0.05, right=0.95, bottom=0.1, top=0.95) return fig @figure_test def test_tickable_gridlines(): wcs = WCS( { "naxis": 2, "naxis1": 360, "naxis2": 180, "crpix1": 180.5, "crpix2": 90.5, "cdelt1": -1, "cdelt2": 1, "ctype1": "RA---CAR", "ctype2": "DEC--CAR", } ) fig = Figure() ax = fig.add_subplot(projection=wcs) ax.set_xlim(-0.5, 360 - 0.5) ax.set_ylim(-0.5, 150 - 0.5) lon, lat = ax.coords lon.grid() lat.grid() overlay = ax.get_coords_overlay("galactic") overlay[0].set_ticks(spacing=30 * u.deg) overlay[1].set_ticks(spacing=30 * u.deg) # Test both single-character and multi-character names overlay[1].add_tickable_gridline("g", -30 * u.deg) overlay[0].add_tickable_gridline("const-glon", 30 * u.deg) overlay[0].grid(color="magenta") overlay[0].set_ticklabel_position("gt") overlay[0].set_ticklabel(color="magenta") overlay[0].set_axislabel("Galactic longitude", color="magenta") overlay[1].grid(color="blue") overlay[1].set_ticklabel_position(("const-glon", "r")) overlay[1].set_ticklabel(color="blue") overlay[1].set_axislabel("Galactic latitude", color="blue") return fig
09e956d3a90a054ba8721f36fd981cefbc2738f54031c1d821235c4b612961a7
# Licensed under a 3-clause BSD style license - see LICENSE.rst # This module implements the Slicing mixin to the NDData class. from astropy import log from astropy.wcs.wcsapi import ( BaseHighLevelWCS, BaseLowLevelWCS, HighLevelWCSWrapper, SlicedLowLevelWCS, ) __all__ = ["NDSlicingMixin"] class NDSlicingMixin: """Mixin to provide slicing on objects using the `NDData` interface. The ``data``, ``mask``, ``uncertainty`` and ``wcs`` will be sliced, if set and sliceable. The ``unit`` and ``meta`` will be untouched. The return will be a reference and not a copy, if possible. Examples -------- Using this Mixin with `~astropy.nddata.NDData`: >>> from astropy.nddata import NDData, NDSlicingMixin >>> class NDDataSliceable(NDSlicingMixin, NDData): ... pass Slicing an instance containing data:: >>> nd = NDDataSliceable([1,2,3,4,5]) >>> nd[1:3] NDDataSliceable([2, 3]) Also the other attributes are sliced for example the ``mask``:: >>> import numpy as np >>> mask = np.array([True, False, True, True, False]) >>> nd2 = NDDataSliceable(nd, mask=mask) >>> nd2slc = nd2[1:3] >>> nd2slc[nd2slc.mask] NDDataSliceable([3]) Be aware that changing values of the sliced instance will change the values of the original:: >>> nd3 = nd2[1:3] >>> nd3.data[0] = 100 >>> nd2 NDDataSliceable([ 1, 100, 3, 4, 5]) See also -------- NDDataRef NDDataArray """ def __getitem__(self, item): # Abort slicing if the data is a single scalar. if self.data.shape == (): raise TypeError("scalars cannot be sliced.") # Let the other methods handle slicing. kwargs = self._slice(item) return self.__class__(**kwargs) def _slice(self, item): """Collects the sliced attributes and passes them back as `dict`. It passes uncertainty, mask and wcs to their appropriate ``_slice_*`` method, while ``meta`` and ``unit`` are simply taken from the original. The data is assumed to be sliceable and is sliced directly. When possible the return should *not* be a copy of the data but a reference. Parameters ---------- item : slice The slice passed to ``__getitem__``. Returns ------- dict : Containing all the attributes after slicing - ready to use them to create ``self.__class__.__init__(**kwargs)`` in ``__getitem__``. """ kwargs = {} kwargs["data"] = self.data[item] # Try to slice some attributes kwargs["uncertainty"] = self._slice_uncertainty(item) kwargs["mask"] = self._slice_mask(item) kwargs["wcs"] = self._slice_wcs(item) # Attributes which are copied and not intended to be sliced kwargs["unit"] = self.unit kwargs["meta"] = self.meta return kwargs def _slice_uncertainty(self, item): if self.uncertainty is None: return None try: return self.uncertainty[item] except TypeError: # Catching TypeError in case the object has no __getitem__ method. # But let IndexError raise. log.info("uncertainty cannot be sliced.") return self.uncertainty def _slice_mask(self, item): if self.mask is None: return None try: return self.mask[item] except TypeError: log.info("mask cannot be sliced.") return self.mask def _slice_wcs(self, item): if self.wcs is None: return None try: llwcs = SlicedLowLevelWCS(self.wcs.low_level_wcs, item) return HighLevelWCSWrapper(llwcs) except Exception as err: self._handle_wcs_slicing_error(err, item) # Implement this in a method to allow subclasses to customise the error. def _handle_wcs_slicing_error(self, err, item): raise ValueError( f"Slicing the WCS object with the slice '{item}' " "failed, if you want to slice the NDData object without the WCS, you " "can remove by setting `NDData.wcs = None` and then retry." ) from err
1663bab7cf14eb698630cd30a32a2b709d77fbed205b9f25ebd5ea3ab0baf707
# Licensed under a 3-clause BSD style license - see LICENSE.rst # This module implements the Arithmetic mixin to the NDData class. import warnings from copy import deepcopy import numpy as np from astropy.nddata.nduncertainty import NDUncertainty from astropy.units import dimensionless_unscaled from astropy.utils import format_doc, sharedmethod from astropy.utils.exceptions import AstropyUserWarning __all__ = ["NDArithmeticMixin"] # Global so it doesn't pollute the class dict unnecessarily: # Docstring templates for add, subtract, multiply, divide methods. _arit_doc = """ Performs {name} by evaluating ``self`` {op} ``operand``. Parameters ---------- operand, operand2 : `NDData`-like instance If ``operand2`` is ``None`` or not given it will perform the operation ``self`` {op} ``operand``. If ``operand2`` is given it will perform ``operand`` {op} ``operand2``. If the method was called on a class rather than on the instance ``operand2`` must be given. propagate_uncertainties : `bool` or ``None``, optional If ``None`` the result will have no uncertainty. If ``False`` the result will have a copied version of the first operand that has an uncertainty. If ``True`` the result will have a correctly propagated uncertainty from the uncertainties of the operands but this assumes that the uncertainties are `NDUncertainty`-like. Default is ``True``. .. versionchanged:: 1.2 This parameter must be given as keyword-parameter. Using it as positional parameter is deprecated. ``None`` was added as valid parameter value. handle_mask : callable, ``'first_found'`` or ``None``, optional If ``None`` the result will have no mask. If ``'first_found'`` the result will have a copied version of the first operand that has a mask). If it is a callable then the specified callable must create the results ``mask`` and if necessary provide a copy. Default is `numpy.logical_or`. .. versionadded:: 1.2 handle_meta : callable, ``'first_found'`` or ``None``, optional If ``None`` the result will have no meta. If ``'first_found'`` the result will have a copied version of the first operand that has a (not empty) meta. If it is a callable then the specified callable must create the results ``meta`` and if necessary provide a copy. Default is ``None``. .. versionadded:: 1.2 compare_wcs : callable, ``'first_found'`` or ``None``, optional If ``None`` the result will have no wcs and no comparison between the wcs of the operands is made. If ``'first_found'`` the result will have a copied version of the first operand that has a wcs. If it is a callable then the specified callable must compare the ``wcs``. The resulting ``wcs`` will be like if ``False`` was given otherwise it raises a ``ValueError`` if the comparison was not successful. Default is ``'first_found'``. .. versionadded:: 1.2 uncertainty_correlation : number or `~numpy.ndarray`, optional The correlation between the two operands is used for correct error propagation for correlated data as given in: https://en.wikipedia.org/wiki/Propagation_of_uncertainty#Example_formulas Default is 0. .. versionadded:: 1.2 kwargs : Any other parameter that should be passed to the callables used. Returns ------- result : `~astropy.nddata.NDData`-like The resulting dataset Notes ----- If a ``callable`` is used for ``mask``, ``wcs`` or ``meta`` the callable must accept the corresponding attributes as first two parameters. If the callable also needs additional parameters these can be defined as ``kwargs`` and must start with ``"wcs_"`` (for wcs callable) or ``"meta_"`` (for meta callable). This startstring is removed before the callable is called. ``"first_found"`` can also be abbreviated with ``"ff"``. """ class NDArithmeticMixin: """ Mixin class to add arithmetic to an NDData object. When subclassing, be sure to list the superclasses in the correct order so that the subclass sees NDData as the main superclass. See `~astropy.nddata.NDDataArray` for an example. Notes ----- This class only aims at covering the most common cases so there are certain restrictions on the saved attributes:: - ``uncertainty`` : has to be something that has a `NDUncertainty`-like interface for uncertainty propagation - ``mask`` : has to be something that can be used by a bitwise ``or`` operation. - ``wcs`` : has to implement a way of comparing with ``=`` to allow the operation. But there is a workaround that allows to disable handling a specific attribute and to simply set the results attribute to ``None`` or to copy the existing attribute (and neglecting the other). For example for uncertainties not representing an `NDUncertainty`-like interface you can alter the ``propagate_uncertainties`` parameter in :meth:`NDArithmeticMixin.add`. ``None`` means that the result will have no uncertainty, ``False`` means it takes the uncertainty of the first operand (if this does not exist from the second operand) as the result's uncertainty. This behavior is also explained in the docstring for the different arithmetic operations. Decomposing the units is not attempted, mainly due to the internal mechanics of `~astropy.units.Quantity`, so the resulting data might have units like ``km/m`` if you divided for example 100km by 5m. So this Mixin has adopted this behavior. Examples -------- Using this Mixin with `~astropy.nddata.NDData`: >>> from astropy.nddata import NDData, NDArithmeticMixin >>> class NDDataWithMath(NDArithmeticMixin, NDData): ... pass Using it with one operand on an instance:: >>> ndd = NDDataWithMath(100) >>> ndd.add(20) NDDataWithMath(120) Using it with two operand on an instance:: >>> ndd = NDDataWithMath(-4) >>> ndd.divide(1, ndd) NDDataWithMath(-0.25) Using it as classmethod requires two operands:: >>> NDDataWithMath.subtract(5, 4) NDDataWithMath(1) """ def _arithmetic( self, operation, operand, propagate_uncertainties=True, handle_mask=np.logical_or, handle_meta=None, uncertainty_correlation=0, compare_wcs="first_found", **kwds, ): """ Base method which calculates the result of the arithmetic operation. This method determines the result of the arithmetic operation on the ``data`` including their units and then forwards to other methods to calculate the other properties for the result (like uncertainty). Parameters ---------- operation : callable The operation that is performed on the `NDData`. Supported are `numpy.add`, `numpy.subtract`, `numpy.multiply` and `numpy.true_divide`. operand : same type (class) as self see :meth:`NDArithmeticMixin.add` propagate_uncertainties : `bool` or ``None``, optional see :meth:`NDArithmeticMixin.add` handle_mask : callable, ``'first_found'`` or ``None``, optional see :meth:`NDArithmeticMixin.add` handle_meta : callable, ``'first_found'`` or ``None``, optional see :meth:`NDArithmeticMixin.add` compare_wcs : callable, ``'first_found'`` or ``None``, optional see :meth:`NDArithmeticMixin.add` uncertainty_correlation : ``Number`` or `~numpy.ndarray`, optional see :meth:`NDArithmeticMixin.add` kwargs : Any other parameter that should be passed to the different :meth:`NDArithmeticMixin._arithmetic_mask` (or wcs, ...) methods. Returns ------- result : ndarray or `~astropy.units.Quantity` The resulting data as array (in case both operands were without unit) or as quantity if at least one had a unit. kwargs : `dict` The kwargs should contain all the other attributes (besides data and unit) needed to create a new instance for the result. Creating the new instance is up to the calling method, for example :meth:`NDArithmeticMixin.add`. """ # Find the appropriate keywords for the appropriate method (not sure # if data and uncertainty are ever used ...) kwds2 = {"mask": {}, "meta": {}, "wcs": {}, "data": {}, "uncertainty": {}} for i in kwds: splitted = i.split("_", 1) try: kwds2[splitted[0]][splitted[1]] = kwds[i] except KeyError: raise KeyError(f"Unknown prefix {splitted[0]} for parameter {i}") kwargs = {} # First check that the WCS allows the arithmetic operation if compare_wcs is None: kwargs["wcs"] = None elif compare_wcs in ["ff", "first_found"]: if self.wcs is None: kwargs["wcs"] = deepcopy(operand.wcs) else: kwargs["wcs"] = deepcopy(self.wcs) else: kwargs["wcs"] = self._arithmetic_wcs( operation, operand, compare_wcs, **kwds2["wcs"] ) # Then calculate the resulting data (which can but not needs to be a # quantity) result = self._arithmetic_data(operation, operand, **kwds2["data"]) # Determine the other properties if propagate_uncertainties is None: kwargs["uncertainty"] = None elif not propagate_uncertainties: if self.uncertainty is None: kwargs["uncertainty"] = deepcopy(operand.uncertainty) else: kwargs["uncertainty"] = deepcopy(self.uncertainty) else: kwargs["uncertainty"] = self._arithmetic_uncertainty( operation, operand, result, uncertainty_correlation, **kwds2["uncertainty"], ) # If both are None, there is nothing to do. if self.psf is not None or operand.psf is not None: warnings.warn( f"Not setting psf attribute during {operation.__name__}.", AstropyUserWarning, ) if handle_mask is None: kwargs["mask"] = None elif handle_mask in ["ff", "first_found"]: if self.mask is None: kwargs["mask"] = deepcopy(operand.mask) else: kwargs["mask"] = deepcopy(self.mask) else: kwargs["mask"] = self._arithmetic_mask( operation, operand, handle_mask, **kwds2["mask"] ) if handle_meta is None: kwargs["meta"] = None elif handle_meta in ["ff", "first_found"]: if not self.meta: kwargs["meta"] = deepcopy(operand.meta) else: kwargs["meta"] = deepcopy(self.meta) else: kwargs["meta"] = self._arithmetic_meta( operation, operand, handle_meta, **kwds2["meta"] ) # Wrap the individual results into a new instance of the same class. return result, kwargs def _arithmetic_data(self, operation, operand, **kwds): """ Calculate the resulting data Parameters ---------- operation : callable see `NDArithmeticMixin._arithmetic` parameter description. operand : `NDData`-like instance The second operand wrapped in an instance of the same class as self. kwds : Additional parameters. Returns ------- result_data : ndarray or `~astropy.units.Quantity` If both operands had no unit the resulting data is a simple numpy array, but if any of the operands had a unit the return is a Quantity. """ # Do the calculation with or without units if self.unit is None and operand.unit is None: result = operation(self.data, operand.data) elif self.unit is None: result = operation( self.data << dimensionless_unscaled, operand.data << operand.unit ) elif operand.unit is None: result = operation( self.data << self.unit, operand.data << dimensionless_unscaled ) else: result = operation(self.data << self.unit, operand.data << operand.unit) return result def _arithmetic_uncertainty(self, operation, operand, result, correlation, **kwds): """ Calculate the resulting uncertainty. Parameters ---------- operation : callable see :meth:`NDArithmeticMixin._arithmetic` parameter description. operand : `NDData`-like instance The second operand wrapped in an instance of the same class as self. result : `~astropy.units.Quantity` or `~numpy.ndarray` The result of :meth:`NDArithmeticMixin._arithmetic_data`. correlation : number or `~numpy.ndarray` see :meth:`NDArithmeticMixin.add` parameter description. kwds : Additional parameters. Returns ------- result_uncertainty : `NDUncertainty` subclass instance or None The resulting uncertainty already saved in the same `NDUncertainty` subclass that ``self`` had (or ``operand`` if self had no uncertainty). ``None`` only if both had no uncertainty. """ # Make sure these uncertainties are NDUncertainties so this kind of # propagation is possible. if self.uncertainty is not None and not isinstance( self.uncertainty, NDUncertainty ): raise TypeError( "Uncertainty propagation is only defined for " "subclasses of NDUncertainty." ) if operand.uncertainty is not None and not isinstance( operand.uncertainty, NDUncertainty ): raise TypeError( "Uncertainty propagation is only defined for " "subclasses of NDUncertainty." ) # Now do the uncertainty propagation # TODO: There is no enforced requirement that actually forbids the # uncertainty to have negative entries but with correlation the # sign of the uncertainty DOES matter. if self.uncertainty is None and operand.uncertainty is None: # Neither has uncertainties so the result should have none. return None elif self.uncertainty is None: # Create a temporary uncertainty to allow uncertainty propagation # to yield the correct results. (issue #4152) self.uncertainty = operand.uncertainty.__class__(None) result_uncert = self.uncertainty.propagate( operation, operand, result, correlation ) # Delete the temporary uncertainty again. self.uncertainty = None return result_uncert elif operand.uncertainty is None: # As with self.uncertainty is None but the other way around. operand.uncertainty = self.uncertainty.__class__(None) result_uncert = self.uncertainty.propagate( operation, operand, result, correlation ) operand.uncertainty = None return result_uncert else: # Both have uncertainties so just propagate. return self.uncertainty.propagate(operation, operand, result, correlation) def _arithmetic_mask(self, operation, operand, handle_mask, **kwds): """ Calculate the resulting mask This is implemented as the piecewise ``or`` operation if both have a mask. Parameters ---------- operation : callable see :meth:`NDArithmeticMixin._arithmetic` parameter description. By default, the ``operation`` will be ignored. operand : `NDData`-like instance The second operand wrapped in an instance of the same class as self. handle_mask : callable see :meth:`NDArithmeticMixin.add` kwds : Additional parameters given to ``handle_mask``. Returns ------- result_mask : any type If only one mask was present this mask is returned. If neither had a mask ``None`` is returned. Otherwise ``handle_mask`` must create (and copy) the returned mask. """ # If only one mask is present we need not bother about any type checks if self.mask is None and operand.mask is None: return None elif self.mask is None: # Make a copy so there is no reference in the result. return deepcopy(operand.mask) elif operand.mask is None: return deepcopy(self.mask) else: # Now lets calculate the resulting mask (operation enforces copy) return handle_mask(self.mask, operand.mask, **kwds) def _arithmetic_wcs(self, operation, operand, compare_wcs, **kwds): """ Calculate the resulting wcs. There is actually no calculation involved but it is a good place to compare wcs information of both operands. This is currently not working properly with `~astropy.wcs.WCS` (which is the suggested class for storing as wcs property) but it will not break it neither. Parameters ---------- operation : callable see :meth:`NDArithmeticMixin._arithmetic` parameter description. By default, the ``operation`` will be ignored. operand : `NDData` instance or subclass The second operand wrapped in an instance of the same class as self. compare_wcs : callable see :meth:`NDArithmeticMixin.add` parameter description. kwds : Additional parameters given to ``compare_wcs``. Raises ------ ValueError If ``compare_wcs`` returns ``False``. Returns ------- result_wcs : any type The ``wcs`` of the first operand is returned. """ # ok, not really arithmetics but we need to check which wcs makes sense # for the result and this is an ideal place to compare the two WCS, # too. # I'll assume that the comparison returned None or False in case they # are not equal. if not compare_wcs(self.wcs, operand.wcs, **kwds): raise ValueError("WCS are not equal.") return deepcopy(self.wcs) def _arithmetic_meta(self, operation, operand, handle_meta, **kwds): """ Calculate the resulting meta. Parameters ---------- operation : callable see :meth:`NDArithmeticMixin._arithmetic` parameter description. By default, the ``operation`` will be ignored. operand : `NDData`-like instance The second operand wrapped in an instance of the same class as self. handle_meta : callable see :meth:`NDArithmeticMixin.add` kwds : Additional parameters given to ``handle_meta``. Returns ------- result_meta : any type The result of ``handle_meta``. """ # Just return what handle_meta does with both of the metas. return handle_meta(self.meta, operand.meta, **kwds) @sharedmethod @format_doc(_arit_doc, name="addition", op="+") def add(self, operand, operand2=None, **kwargs): return self._prepare_then_do_arithmetic(np.add, operand, operand2, **kwargs) @sharedmethod @format_doc(_arit_doc, name="subtraction", op="-") def subtract(self, operand, operand2=None, **kwargs): return self._prepare_then_do_arithmetic( np.subtract, operand, operand2, **kwargs ) @sharedmethod @format_doc(_arit_doc, name="multiplication", op="*") def multiply(self, operand, operand2=None, **kwargs): return self._prepare_then_do_arithmetic( np.multiply, operand, operand2, **kwargs ) @sharedmethod @format_doc(_arit_doc, name="division", op="/") def divide(self, operand, operand2=None, **kwargs): return self._prepare_then_do_arithmetic( np.true_divide, operand, operand2, **kwargs ) @sharedmethod def _prepare_then_do_arithmetic( self_or_cls, operation, operand, operand2, **kwargs ): """Intermediate method called by public arithmetics (i.e. ``add``) before the processing method (``_arithmetic``) is invoked. .. warning:: Do not override this method in subclasses. This method checks if it was called as instance or as class method and then wraps the operands and the result from ``_arithmetics`` in the appropriate subclass. Parameters ---------- self_or_cls : instance or class ``sharedmethod`` behaves like a normal method if called on the instance (then this parameter is ``self``) but like a classmethod when called on the class (then this parameter is ``cls``). operations : callable The operation (normally a numpy-ufunc) that represents the appropriate action. operand, operand2, kwargs : See for example ``add``. Result ------ result : `~astropy.nddata.NDData`-like Depending how this method was called either ``self_or_cls`` (called on class) or ``self_or_cls.__class__`` (called on instance) is the NDData-subclass that is used as wrapper for the result. """ # DO NOT OVERRIDE THIS METHOD IN SUBCLASSES. if isinstance(self_or_cls, NDArithmeticMixin): # True means it was called on the instance, so self_or_cls is # a reference to self cls = self_or_cls.__class__ if operand2 is None: # Only one operand was given. Set operand2 to operand and # operand to self so that we call the appropriate method of the # operand. operand2 = operand operand = self_or_cls else: # Convert the first operand to the class of this method. # This is important so that always the correct _arithmetics is # called later that method. operand = cls(operand) else: # It was used as classmethod so self_or_cls represents the cls cls = self_or_cls # It was called on the class so we expect two operands! if operand2 is None: raise TypeError( "operand2 must be given when the method isn't " "called on an instance." ) # Convert to this class. See above comment why. operand = cls(operand) # At this point operand, operand2, kwargs and cls are determined. # Let's try to convert operand2 to the class of operand to allows for # arithmetic operations with numbers, lists, numpy arrays, numpy masked # arrays, astropy quantities, masked quantities and of other subclasses # of NDData. operand2 = cls(operand2) # Now call the _arithmetics method to do the arithmetics. result, init_kwds = operand._arithmetic(operation, operand2, **kwargs) # Return a new class based on the result return cls(result, **init_kwds)
9f0eb944a96d790a6832d7be99a08c23b8f9c7931fc74a876538dc5c4d84c44e
# Licensed under a 3-clause BSD style license - see LICENSE.rst # This module implements the I/O mixin to the NDData class. from astropy.io import registry __all__ = ["NDIOMixin"] __doctest_skip__ = ["NDDataRead", "NDDataWrite"] class NDDataRead(registry.UnifiedReadWrite): """Read and parse gridded N-dimensional data and return as an NDData-derived object. This function provides the NDDataBase interface to the astropy unified I/O layer. This allows easily reading a file in the supported data formats, for example:: >>> from astropy.nddata import CCDData >>> dat = CCDData.read('image.fits') Get help on the available readers for ``CCDData`` using the``help()`` method:: >>> CCDData.read.help() # Get help reading CCDData and list supported formats >>> CCDData.read.help('fits') # Get detailed help on CCDData FITS reader >>> CCDData.read.list_formats() # Print list of available formats See also: - https://docs.astropy.org/en/stable/nddata - https://docs.astropy.org/en/stable/io/unified.html Parameters ---------- *args : tuple, optional Positional arguments passed through to data reader. If supplied the first argument is the input filename. format : str, optional File format specifier. cache : bool, optional Caching behavior if file is a URL. **kwargs : dict, optional Keyword arguments passed through to data reader. Returns ------- out : `NDData` subclass NDData-basd object corresponding to file contents Notes ----- """ def __init__(self, instance, cls): super().__init__(instance, cls, "read", registry=None) # uses default global registry def __call__(self, *args, **kwargs): return self.registry.read(self._cls, *args, **kwargs) class NDDataWrite(registry.UnifiedReadWrite): """Write this CCDData object out in the specified format. This function provides the NDData interface to the astropy unified I/O layer. This allows easily writing a file in many supported data formats using syntax such as:: >>> from astropy.nddata import CCDData >>> dat = CCDData(np.zeros((12, 12)), unit='adu') # 12x12 image of zeros >>> dat.write('zeros.fits') Get help on the available writers for ``CCDData`` using the``help()`` method:: >>> CCDData.write.help() # Get help writing CCDData and list supported formats >>> CCDData.write.help('fits') # Get detailed help on CCDData FITS writer >>> CCDData.write.list_formats() # Print list of available formats See also: - https://docs.astropy.org/en/stable/nddata - https://docs.astropy.org/en/stable/io/unified.html Parameters ---------- *args : tuple, optional Positional arguments passed through to data writer. If supplied the first argument is the output filename. format : str, optional File format specifier. **kwargs : dict, optional Keyword arguments passed through to data writer. Notes ----- """ def __init__(self, instance, cls): super().__init__(instance, cls, "write", registry=None) # uses default global registry def __call__(self, *args, **kwargs): self.registry.write(self._instance, *args, **kwargs) class NDIOMixin: """ Mixin class to connect NDData to the astropy input/output registry. This mixin adds two methods to its subclasses, ``read`` and ``write``. """ read = registry.UnifiedReadWriteMethod(NDDataRead) write = registry.UnifiedReadWriteMethod(NDDataWrite)
2de25808385032793ca8f27275531bc9e0cf9a94a055568d1fb5622f42e46b02
# Licensed under a 3-clause BSD style license - see LICENSE.rst import os import textwrap import numpy as np import pytest from astropy import log from astropy import units as u from astropy.io import fits from astropy.nddata import _testing as nd_testing from astropy.nddata.ccddata import CCDData from astropy.nddata.nduncertainty import ( InverseVariance, MissingDataAssociationException, StdDevUncertainty, VarianceUncertainty, ) from astropy.table import Table from astropy.utils import NumpyRNGContext from astropy.utils.data import ( get_pkg_data_contents, get_pkg_data_filename, get_pkg_data_filenames, ) from astropy.utils.exceptions import AstropyWarning from astropy.wcs import WCS, FITSFixedWarning DEFAULT_DATA_SIZE = 100 with NumpyRNGContext(123): _random_array = np.random.normal(size=[DEFAULT_DATA_SIZE, DEFAULT_DATA_SIZE]) _random_psf = np.random.normal(size=(20, 20)) @pytest.fixture def home_is_tmpdir(tmp_path, monkeypatch, request): """ Pytest fixture to run a test case with tilde-prefixed paths. In the tilde-path case, environment variables will be temporarily modified so that '~' resolves to the temp directory. """ # For Unix monkeypatch.setenv("HOME", str(tmp_path)) # For Windows monkeypatch.setenv("USERPROFILE", str(tmp_path)) def create_ccd_data(): """ Return a CCDData object of size DEFAULT_DATA_SIZE x DEFAULT_DATA_SIZE with units of ADU. """ data = _random_array.copy() fake_meta = {"my_key": 42, "your_key": "not 42"} ccd = CCDData(data, unit=u.adu) ccd.header = fake_meta return ccd def test_ccddata_empty(): with pytest.raises(TypeError): CCDData() # empty initializer should fail def test_ccddata_must_have_unit(): with pytest.raises(ValueError): CCDData(np.zeros([2, 2])) def test_ccddata_unit_cannot_be_set_to_none(): ccd_data = create_ccd_data() with pytest.raises(TypeError): ccd_data.unit = None def test_ccddata_meta_header_conflict(): with pytest.raises(ValueError, match=".*can't have both header and meta.*"): CCDData([1, 2, 3], unit="", meta={1: 1}, header={2: 2}) def test_ccddata_simple(): ccd_data = create_ccd_data() assert ccd_data.shape == (DEFAULT_DATA_SIZE, DEFAULT_DATA_SIZE) assert ccd_data.size == DEFAULT_DATA_SIZE * DEFAULT_DATA_SIZE assert ccd_data.dtype == np.dtype(float) def test_ccddata_init_with_string_electron_unit(): ccd = CCDData(np.zeros([2, 2]), unit="electron") assert ccd.unit is u.electron def test_initialize_from_FITS(tmp_path): ccd_data = create_ccd_data() hdu = fits.PrimaryHDU(ccd_data) hdulist = fits.HDUList([hdu]) filename = str(tmp_path / "afile.fits") hdulist.writeto(filename) cd = CCDData.read(filename, unit=u.electron) assert cd.shape == (DEFAULT_DATA_SIZE, DEFAULT_DATA_SIZE) assert cd.size == DEFAULT_DATA_SIZE * DEFAULT_DATA_SIZE assert np.issubdtype(cd.data.dtype, np.floating) for k, v in hdu.header.items(): assert cd.meta[k] == v def test_initialize_from_fits_with_unit_in_header(tmp_path): fake_img = np.zeros([2, 2]) hdu = fits.PrimaryHDU(fake_img) hdu.header["bunit"] = u.adu.to_string() filename = str(tmp_path / "afile.fits") hdu.writeto(filename) ccd = CCDData.read(filename) # ccd should pick up the unit adu from the fits header...did it? assert ccd.unit is u.adu # An explicit unit in the read overrides any unit in the FITS file ccd2 = CCDData.read(filename, unit="photon") assert ccd2.unit is u.photon def test_initialize_from_fits_with_ADU_in_header(tmp_path): fake_img = np.zeros([2, 2]) hdu = fits.PrimaryHDU(fake_img) hdu.header["bunit"] = "ADU" filename = str(tmp_path / "afile.fits") hdu.writeto(filename) ccd = CCDData.read(filename) # ccd should pick up the unit adu from the fits header...did it? assert ccd.unit is u.adu def test_initialize_from_fits_with_invalid_unit_in_header(tmp_path): hdu = fits.PrimaryHDU(np.ones((2, 2))) hdu.header["bunit"] = "definetely-not-a-unit" filename = str(tmp_path / "afile.fits") hdu.writeto(filename) with pytest.raises(ValueError): CCDData.read(filename) def test_initialize_from_fits_with_technically_invalid_but_not_really(tmp_path): hdu = fits.PrimaryHDU(np.ones((2, 2))) hdu.header["bunit"] = "ELECTRONS/S" filename = str(tmp_path / "afile.fits") hdu.writeto(filename) ccd = CCDData.read(filename) assert ccd.unit == u.electron / u.s def test_initialize_from_fits_with_data_in_different_extension(tmp_path): fake_img = np.arange(4).reshape(2, 2) hdu1 = fits.PrimaryHDU() hdu2 = fits.ImageHDU(fake_img) hdus = fits.HDUList([hdu1, hdu2]) filename = str(tmp_path / "afile.fits") hdus.writeto(filename) ccd = CCDData.read(filename, unit="adu") # ccd should pick up the unit adu from the fits header...did it? np.testing.assert_array_equal(ccd.data, fake_img) # check that the header is the combined header assert hdu2.header + hdu1.header == ccd.header def test_initialize_from_fits_with_extension(tmp_path): fake_img1 = np.zeros([2, 2]) fake_img2 = np.arange(4).reshape(2, 2) hdu0 = fits.PrimaryHDU() hdu1 = fits.ImageHDU(fake_img1, name="first", ver=1) hdu2 = fits.ImageHDU(fake_img2, name="second", ver=1) hdus = fits.HDUList([hdu0, hdu1, hdu2]) filename = str(tmp_path / "afile.fits") hdus.writeto(filename) ccd = CCDData.read(filename, hdu=2, unit="adu") # ccd should pick up the unit adu from the fits header...did it? np.testing.assert_array_equal(ccd.data, fake_img2) # check hdu string parameter ccd = CCDData.read(filename, hdu="second", unit="adu") np.testing.assert_array_equal(ccd.data, fake_img2) # check hdu tuple parameter ccd = CCDData.read(filename, hdu=("second", 1), unit="adu") np.testing.assert_array_equal(ccd.data, fake_img2) def test_write_unit_to_hdu(): ccd_data = create_ccd_data() ccd_unit = ccd_data.unit hdulist = ccd_data.to_hdu() assert "bunit" in hdulist[0].header assert hdulist[0].header["bunit"] == ccd_unit.to_string() def test_initialize_from_FITS_bad_keyword_raises_error(tmp_path): # There are two fits.open keywords that are not permitted in ccdproc: # do_not_scale_image_data and scale_back ccd_data = create_ccd_data() filename = str(tmp_path / "test.fits") ccd_data.write(filename) with pytest.raises(TypeError): CCDData.read(filename, unit=ccd_data.unit, do_not_scale_image_data=True) with pytest.raises(TypeError): CCDData.read(filename, unit=ccd_data.unit, scale_back=True) def test_ccddata_writer(tmp_path): ccd_data = create_ccd_data() filename = str(tmp_path / "test.fits") ccd_data.write(filename) ccd_disk = CCDData.read(filename, unit=ccd_data.unit) np.testing.assert_array_equal(ccd_data.data, ccd_disk.data) def test_ccddata_writer_as_imagehdu(tmp_path): ccd_data = create_ccd_data() filename = str(tmp_path / "test.fits") ccd_data.write(filename, as_image_hdu=False) with fits.open(filename) as hdus: assert len(hdus) == 1 filename = str(tmp_path / "test2.fits") ccd_data.write(filename, as_image_hdu=True) with fits.open(filename) as hdus: assert len(hdus) == 2 assert isinstance(hdus[1], fits.ImageHDU) def test_ccddata_meta_is_case_sensitive(): ccd_data = create_ccd_data() key = "SoMeKEY" ccd_data.meta[key] = 10 assert key.lower() not in ccd_data.meta assert key.upper() not in ccd_data.meta assert key in ccd_data.meta def test_ccddata_meta_is_not_fits_header(): ccd_data = create_ccd_data() ccd_data.meta = {"OBSERVER": "Edwin Hubble"} assert not isinstance(ccd_data.meta, fits.Header) def test_fromMEF(tmp_path): ccd_data = create_ccd_data() hdu = fits.PrimaryHDU(ccd_data) hdu2 = fits.PrimaryHDU(2 * ccd_data.data) hdulist = fits.HDUList(hdu) hdulist.append(hdu2) filename = str(tmp_path / "afile.fits") hdulist.writeto(filename) # by default, we reading from the first extension cd = CCDData.read(filename, unit=u.electron) np.testing.assert_array_equal(cd.data, ccd_data.data) # but reading from the second should work too cd = CCDData.read(filename, hdu=1, unit=u.electron) np.testing.assert_array_equal(cd.data, 2 * ccd_data.data) def test_metafromheader(): hdr = fits.header.Header() hdr["observer"] = "Edwin Hubble" hdr["exptime"] = "3600" d1 = CCDData(np.ones((5, 5)), meta=hdr, unit=u.electron) assert d1.meta["OBSERVER"] == "Edwin Hubble" assert d1.header["OBSERVER"] == "Edwin Hubble" def test_metafromdict(): dic = {"OBSERVER": "Edwin Hubble", "EXPTIME": 3600} d1 = CCDData(np.ones((5, 5)), meta=dic, unit=u.electron) assert d1.meta["OBSERVER"] == "Edwin Hubble" def test_header2meta(): hdr = fits.header.Header() hdr["observer"] = "Edwin Hubble" hdr["exptime"] = "3600" d1 = CCDData(np.ones((5, 5)), unit=u.electron) d1.header = hdr assert d1.meta["OBSERVER"] == "Edwin Hubble" assert d1.header["OBSERVER"] == "Edwin Hubble" def test_metafromstring_fail(): hdr = "this is not a valid header" with pytest.raises(TypeError): CCDData(np.ones((5, 5)), meta=hdr, unit=u.adu) def test_setting_bad_uncertainty_raises_error(): ccd_data = create_ccd_data() with pytest.raises(TypeError): # Uncertainty is supposed to be an instance of NDUncertainty ccd_data.uncertainty = 10 def test_setting_uncertainty_with_array(): ccd_data = create_ccd_data() ccd_data.uncertainty = None fake_uncertainty = np.sqrt(np.abs(ccd_data.data)) ccd_data.uncertainty = fake_uncertainty.copy() np.testing.assert_array_equal(ccd_data.uncertainty.array, fake_uncertainty) def test_setting_uncertainty_wrong_shape_raises_error(): ccd_data = create_ccd_data() with pytest.raises(ValueError): ccd_data.uncertainty = np.zeros([3, 4]) def test_to_hdu(): ccd_data = create_ccd_data() ccd_data.meta = {"observer": "Edwin Hubble"} fits_hdulist = ccd_data.to_hdu() assert isinstance(fits_hdulist, fits.HDUList) for k, v in ccd_data.meta.items(): assert fits_hdulist[0].header[k] == v np.testing.assert_array_equal(fits_hdulist[0].data, ccd_data.data) def test_to_hdu_as_imagehdu(): ccd_data = create_ccd_data() fits_hdulist = ccd_data.to_hdu(as_image_hdu=False) assert isinstance(fits_hdulist[0], fits.PrimaryHDU) fits_hdulist = ccd_data.to_hdu(as_image_hdu=True) assert isinstance(fits_hdulist[0], fits.ImageHDU) def test_copy(): ccd_data = create_ccd_data() ccd_copy = ccd_data.copy() np.testing.assert_array_equal(ccd_copy.data, ccd_data.data) assert ccd_copy.unit == ccd_data.unit assert ccd_copy.meta == ccd_data.meta @pytest.mark.parametrize( "operation,affects_uncertainty", [ ("multiply", True), ("divide", True), ], ) @pytest.mark.parametrize( "operand", [ 2.0, 2 * u.dimensionless_unscaled, 2 * u.photon / u.adu, ], ) @pytest.mark.parametrize("with_uncertainty", [True, False]) def test_mult_div_overload(operand, with_uncertainty, operation, affects_uncertainty): ccd_data = create_ccd_data() if with_uncertainty: ccd_data.uncertainty = StdDevUncertainty(np.ones_like(ccd_data)) method = getattr(ccd_data, operation) np_method = getattr(np, operation) result = method(operand) assert result is not ccd_data assert isinstance(result, CCDData) assert result.uncertainty is None or isinstance( result.uncertainty, StdDevUncertainty ) try: op_value = operand.value except AttributeError: op_value = operand np.testing.assert_array_equal(result.data, np_method(ccd_data.data, op_value)) if with_uncertainty: if affects_uncertainty: np.testing.assert_array_equal( result.uncertainty.array, np_method(ccd_data.uncertainty.array, op_value), ) else: np.testing.assert_array_equal( result.uncertainty.array, ccd_data.uncertainty.array ) else: assert result.uncertainty is None if isinstance(operand, u.Quantity): # Need the "1 *" below to force arguments to be Quantity to work around # astropy/astropy#2377 expected_unit = np_method(1 * ccd_data.unit, 1 * operand.unit).unit assert result.unit == expected_unit else: assert result.unit == ccd_data.unit @pytest.mark.parametrize( "operation,affects_uncertainty", [ ("add", False), ("subtract", False), ], ) @pytest.mark.parametrize( "operand,expect_failure", [ (2.0, u.UnitsError), # fail--units don't match image (2 * u.dimensionless_unscaled, u.UnitsError), # same (2 * u.adu, False), ], ) @pytest.mark.parametrize("with_uncertainty", [True, False]) def test_add_sub_overload( operand, expect_failure, with_uncertainty, operation, affects_uncertainty ): ccd_data = create_ccd_data() if with_uncertainty: ccd_data.uncertainty = StdDevUncertainty(np.ones_like(ccd_data)) method = getattr(ccd_data, operation) np_method = getattr(np, operation) if expect_failure: with pytest.raises(expect_failure): result = method(operand) return else: result = method(operand) assert result is not ccd_data assert isinstance(result, CCDData) assert result.uncertainty is None or isinstance( result.uncertainty, StdDevUncertainty ) try: op_value = operand.value except AttributeError: op_value = operand np.testing.assert_array_equal(result.data, np_method(ccd_data.data, op_value)) if with_uncertainty: if affects_uncertainty: np.testing.assert_array_equal( result.uncertainty.array, np_method(ccd_data.uncertainty.array, op_value), ) else: np.testing.assert_array_equal( result.uncertainty.array, ccd_data.uncertainty.array ) else: assert result.uncertainty is None if isinstance(operand, u.Quantity): assert result.unit == ccd_data.unit and result.unit == operand.unit else: assert result.unit == ccd_data.unit def test_arithmetic_overload_fails(): ccd_data = create_ccd_data() with pytest.raises(TypeError): ccd_data.multiply("five") with pytest.raises(TypeError): ccd_data.divide("five") with pytest.raises(TypeError): ccd_data.add("five") with pytest.raises(TypeError): ccd_data.subtract("five") def test_arithmetic_no_wcs_compare(): ccd = CCDData(np.ones((10, 10)), unit="") assert ccd.add(ccd, compare_wcs=None).wcs is None assert ccd.subtract(ccd, compare_wcs=None).wcs is None assert ccd.multiply(ccd, compare_wcs=None).wcs is None assert ccd.divide(ccd, compare_wcs=None).wcs is None def test_arithmetic_with_wcs_compare(): def return_true(_, __): return True wcs1, wcs2 = nd_testing.create_two_equal_wcs(naxis=2) ccd1 = CCDData(np.ones((10, 10)), unit="", wcs=wcs1) ccd2 = CCDData(np.ones((10, 10)), unit="", wcs=wcs2) nd_testing.assert_wcs_seem_equal(ccd1.add(ccd2, compare_wcs=return_true).wcs, wcs1) nd_testing.assert_wcs_seem_equal( ccd1.subtract(ccd2, compare_wcs=return_true).wcs, wcs1 ) nd_testing.assert_wcs_seem_equal( ccd1.multiply(ccd2, compare_wcs=return_true).wcs, wcs1 ) nd_testing.assert_wcs_seem_equal( ccd1.divide(ccd2, compare_wcs=return_true).wcs, wcs1 ) def test_arithmetic_with_wcs_compare_fail(): def return_false(_, __): return False ccd1 = CCDData(np.ones((10, 10)), unit="", wcs=WCS()) ccd2 = CCDData(np.ones((10, 10)), unit="", wcs=WCS()) with pytest.raises(ValueError): ccd1.add(ccd2, compare_wcs=return_false) with pytest.raises(ValueError): ccd1.subtract(ccd2, compare_wcs=return_false) with pytest.raises(ValueError): ccd1.multiply(ccd2, compare_wcs=return_false) with pytest.raises(ValueError): ccd1.divide(ccd2, compare_wcs=return_false) def test_arithmetic_overload_ccddata_operand(): ccd_data = create_ccd_data() ccd_data.uncertainty = StdDevUncertainty(np.ones_like(ccd_data)) operand = ccd_data.copy() result = ccd_data.add(operand) assert len(result.meta) == 0 np.testing.assert_array_equal(result.data, 2 * ccd_data.data) np.testing.assert_array_almost_equal_nulp( result.uncertainty.array, np.sqrt(2) * ccd_data.uncertainty.array ) result = ccd_data.subtract(operand) assert len(result.meta) == 0 np.testing.assert_array_equal(result.data, 0 * ccd_data.data) np.testing.assert_array_almost_equal_nulp( result.uncertainty.array, np.sqrt(2) * ccd_data.uncertainty.array ) result = ccd_data.multiply(operand) assert len(result.meta) == 0 np.testing.assert_array_equal(result.data, ccd_data.data**2) expected_uncertainty = ( np.sqrt(2) * np.abs(ccd_data.data) * ccd_data.uncertainty.array ) np.testing.assert_allclose(result.uncertainty.array, expected_uncertainty) result = ccd_data.divide(operand) assert len(result.meta) == 0 np.testing.assert_array_equal(result.data, np.ones_like(ccd_data.data)) expected_uncertainty = ( np.sqrt(2) / np.abs(ccd_data.data) * ccd_data.uncertainty.array ) np.testing.assert_allclose(result.uncertainty.array, expected_uncertainty) def test_arithmetic_overload_differing_units(): a = np.array([1, 2, 3]) * u.m b = np.array([1, 2, 3]) * u.cm ccddata = CCDData(a) # TODO: Could also be parametrized. res = ccddata.add(b) np.testing.assert_array_almost_equal(res.data, np.add(a, b).value) assert res.unit == np.add(a, b).unit res = ccddata.subtract(b) np.testing.assert_array_almost_equal(res.data, np.subtract(a, b).value) assert res.unit == np.subtract(a, b).unit res = ccddata.multiply(b) np.testing.assert_array_almost_equal(res.data, np.multiply(a, b).value) assert res.unit == np.multiply(a, b).unit res = ccddata.divide(b) np.testing.assert_array_almost_equal(res.data, np.divide(a, b).value) assert res.unit == np.divide(a, b).unit def test_arithmetic_add_with_array(): ccd = CCDData(np.ones((3, 3)), unit="") res = ccd.add(np.arange(3)) np.testing.assert_array_equal(res.data, [[1, 2, 3]] * 3) ccd = CCDData(np.ones((3, 3)), unit="adu") with pytest.raises(ValueError): ccd.add(np.arange(3)) def test_arithmetic_subtract_with_array(): ccd = CCDData(np.ones((3, 3)), unit="") res = ccd.subtract(np.arange(3)) np.testing.assert_array_equal(res.data, [[1, 0, -1]] * 3) ccd = CCDData(np.ones((3, 3)), unit="adu") with pytest.raises(ValueError): ccd.subtract(np.arange(3)) def test_arithmetic_multiply_with_array(): ccd = CCDData(np.ones((3, 3)) * 3, unit=u.m) res = ccd.multiply(np.ones((3, 3)) * 2) np.testing.assert_array_equal(res.data, [[6, 6, 6]] * 3) assert res.unit == ccd.unit def test_arithmetic_divide_with_array(): ccd = CCDData(np.ones((3, 3)), unit=u.m) res = ccd.divide(np.ones((3, 3)) * 2) np.testing.assert_array_equal(res.data, [[0.5, 0.5, 0.5]] * 3) assert res.unit == ccd.unit def test_history_preserved_if_metadata_is_fits_header(tmp_path): fake_img = np.zeros([2, 2]) hdu = fits.PrimaryHDU(fake_img) hdu.header["history"] = "one" hdu.header["history"] = "two" hdu.header["history"] = "three" assert len(hdu.header["history"]) == 3 tmp_file = str(tmp_path / "temp.fits") hdu.writeto(tmp_file) ccd_read = CCDData.read(tmp_file, unit="adu") assert ccd_read.header["history"] == hdu.header["history"] def test_infol_logged_if_unit_in_fits_header(tmp_path): ccd_data = create_ccd_data() tmpfile = str(tmp_path / "temp.fits") ccd_data.write(tmpfile) log.setLevel("INFO") explicit_unit_name = "photon" with log.log_to_list() as log_list: _ = CCDData.read(tmpfile, unit=explicit_unit_name) assert explicit_unit_name in log_list[0].message def test_wcs_attribute(tmp_path): """ Check that WCS attribute gets added to header, and that if a CCDData object is created from a FITS file with a header, and the WCS attribute is modified, then the CCDData object is turned back into an hdu, the WCS object overwrites the old WCS information in the header. """ ccd_data = create_ccd_data() tmpfile = str(tmp_path / "temp.fits") # This wcs example is taken from the astropy.wcs docs. wcs = WCS(naxis=2) wcs.wcs.crpix = np.array(ccd_data.shape) / 2 wcs.wcs.cdelt = np.array([-0.066667, 0.066667]) wcs.wcs.crval = [0, -90] wcs.wcs.ctype = ["RA---AIR", "DEC--AIR"] wcs.wcs.set_pv([(2, 1, 45.0)]) ccd_data.header = ccd_data.to_hdu()[0].header ccd_data.header.extend(wcs.to_header(), useblanks=False) ccd_data.write(tmpfile) # Get the header length after it has been extended by the WCS keywords original_header_length = len(ccd_data.header) ccd_new = CCDData.read(tmpfile) # WCS attribute should be set for ccd_new assert ccd_new.wcs is not None # WCS attribute should be equal to wcs above. assert ccd_new.wcs.wcs == wcs.wcs # Converting CCDData object with wcs to an hdu shouldn't # create duplicate wcs-related entries in the header. ccd_new_hdu = ccd_new.to_hdu()[0] assert len(ccd_new_hdu.header) == original_header_length # Making a CCDData with WCS (but not WCS in the header) should lead to # WCS information in the header when it is converted to an HDU. ccd_wcs_not_in_header = CCDData(ccd_data.data, wcs=wcs, unit="adu") hdu = ccd_wcs_not_in_header.to_hdu()[0] wcs_header = wcs.to_header() for k in wcs_header.keys(): # Skip these keywords if they are in the WCS header because they are # not WCS-specific. if k in ["", "COMMENT", "HISTORY"]: continue # No keyword from the WCS should be in the header. assert k not in ccd_wcs_not_in_header.header # Every keyword in the WCS should be in the header of the HDU assert hdu.header[k] == wcs_header[k] # Now check that if WCS of a CCDData is modified, then the CCDData is # converted to an HDU, the WCS keywords in the header are overwritten # with the appropriate keywords from the header. # # ccd_new has a WCS and WCS keywords in the header, so try modifying # the WCS. ccd_new.wcs.wcs.cdelt *= 2 ccd_new_hdu_mod_wcs = ccd_new.to_hdu()[0] assert ccd_new_hdu_mod_wcs.header["CDELT1"] == ccd_new.wcs.wcs.cdelt[0] assert ccd_new_hdu_mod_wcs.header["CDELT2"] == ccd_new.wcs.wcs.cdelt[1] def test_wcs_keywords_removed_from_header(): """ Test, for the file included with the nddata tests, that WCS keywords are properly removed from header. """ from astropy.nddata.ccddata import _KEEP_THESE_KEYWORDS_IN_HEADER keepers = set(_KEEP_THESE_KEYWORDS_IN_HEADER) data_file = get_pkg_data_filename("data/sip-wcs.fits") ccd = CCDData.read(data_file) with pytest.warns( AstropyWarning, match=r"Some non-standard WCS keywords were excluded" ): wcs_header = ccd.wcs.to_header() assert not (set(wcs_header) & set(ccd.meta) - keepers) # Make sure that exceptions are not raised when trying to remove missing # keywords. o4sp040b0_raw.fits of io.fits is missing keyword 'PC1_1'. data_file1 = get_pkg_data_filename("../../io/fits/tests/data/o4sp040b0_raw.fits") with pytest.warns(FITSFixedWarning, match=r"'unitfix' made the change"): ccd = CCDData.read(data_file1, unit="count") def test_wcs_SIP_coefficient_keywords_removed(): # If SIP polynomials are present, check that no more polynomial # coefficients remain in the header. See #8598 # The SIP paper is ambiguous as to whether keywords like # A_0_0 can appear in the header for a 2nd order or higher # polynomial. The paper clearly says that the corrections # are only for quadratic or higher order, so A_0_0 and the like # should be zero if they are present, but they apparently can be # there (or at least astrometry.net produces them). # astropy WCS does not write those coefficients, so they were # not being removed from the header even though they are WCS-related. data_file = get_pkg_data_filename("data/sip-wcs.fits") test_keys = ["A_0_0", "B_0_1"] # Make sure the keywords added to this file for testing are there with fits.open(data_file) as hdu: for key in test_keys: assert key in hdu[0].header ccd = CCDData.read(data_file) # Now the test...the two keywords above should have been removed. for key in test_keys: assert key not in ccd.header @pytest.mark.filterwarnings("ignore") def test_wcs_keyword_removal_for_wcs_test_files(): """ Test, for the WCS test files, that keyword removal works as expected. Those cover a much broader range of WCS types than test_wcs_keywords_removed_from_header. Includes regression test for #8597 """ from astropy.nddata.ccddata import ( _KEEP_THESE_KEYWORDS_IN_HEADER, _CDs, _generate_wcs_and_update_header, _PCs, ) keepers = set(_KEEP_THESE_KEYWORDS_IN_HEADER) wcs_headers = get_pkg_data_filenames("../../wcs/tests/data", pattern="*.hdr") for hdr in wcs_headers: # Skip the files that are expected to be bad... if ( "invalid" in hdr or "nonstandard" in hdr or "segfault" in hdr or "chandra-pixlist-wcs" in hdr ): continue header_string = get_pkg_data_contents(hdr) header = fits.Header.fromstring(header_string) wcs = WCS(header_string) header_from_wcs = wcs.to_header(relax=True) new_header, new_wcs = _generate_wcs_and_update_header(header) new_wcs_header = new_wcs.to_header(relax=True) # Make sure all of the WCS-related keywords generated by astropy # have been removed. assert not (set(new_header) & set(new_wcs_header) - keepers) # Check that new_header contains no remaining WCS information. # Specifically, check that # 1. The combination of new_header and new_wcs does not contain # both PCi_j and CDi_j keywords. See #8597. # Check for 1 final_header = new_header + new_wcs_header final_header_set = set(final_header) if _PCs & final_header_set: assert not (_CDs & final_header_set) elif _CDs & final_header_set: assert not (_PCs & final_header_set) # Check that the new wcs is the same as the old. for k, v in new_wcs_header.items(): if isinstance(v, str): assert header_from_wcs[k] == v else: np.testing.assert_almost_equal(header_from_wcs[k], v) def test_read_wcs_not_creatable(tmp_path): # The following Header can't be converted to a WCS object. See also #6499. hdr_txt_example_WCS = textwrap.dedent( """ SIMPLE = T / Fits standard BITPIX = 16 / Bits per pixel NAXIS = 2 / Number of axes NAXIS1 = 1104 / Axis length NAXIS2 = 4241 / Axis length CRVAL1 = 164.98110962 / Physical value of the reference pixel X CRVAL2 = 44.34089279 / Physical value of the reference pixel Y CRPIX1 = -34.0 / Reference pixel in X (pixel) CRPIX2 = 2041.0 / Reference pixel in Y (pixel) CDELT1 = 0.10380000 / X Scale projected on detector (#/pix) CDELT2 = 0.10380000 / Y Scale projected on detector (#/pix) CTYPE1 = 'RA---TAN' / Pixel coordinate system CTYPE2 = 'WAVELENGTH' / Pixel coordinate system CUNIT1 = 'degree ' / Units used in both CRVAL1 and CDELT1 CUNIT2 = 'nm ' / Units used in both CRVAL2 and CDELT2 CD1_1 = 0.20760000 / Pixel Coordinate translation matrix CD1_2 = 0.00000000 / Pixel Coordinate translation matrix CD2_1 = 0.00000000 / Pixel Coordinate translation matrix CD2_2 = 0.10380000 / Pixel Coordinate translation matrix C2YPE1 = 'RA---TAN' / Pixel coordinate system C2YPE2 = 'DEC--TAN' / Pixel coordinate system C2NIT1 = 'degree ' / Units used in both C2VAL1 and C2ELT1 C2NIT2 = 'degree ' / Units used in both C2VAL2 and C2ELT2 RADECSYS= 'FK5 ' / The equatorial coordinate system """ ) hdr = fits.Header.fromstring(hdr_txt_example_WCS, sep="\n") hdul = fits.HDUList([fits.PrimaryHDU(np.ones((4241, 1104)), header=hdr)]) filename = str(tmp_path / "afile.fits") hdul.writeto(filename) # The hdr cannot be converted to a WCS object because of an # InconsistentAxisTypesError but it should still open the file ccd = CCDData.read(filename, unit="adu") assert ccd.wcs is None def test_header(): ccd_data = create_ccd_data() a = {"Observer": "Hubble"} ccd = CCDData(ccd_data, header=a) assert ccd.meta == a def test_wcs_arithmetic(): ccd_data = create_ccd_data() wcs = WCS(naxis=2) ccd_data.wcs = wcs result = ccd_data.multiply(1.0) nd_testing.assert_wcs_seem_equal(result.wcs, wcs) @pytest.mark.parametrize("operation", ["multiply", "divide", "add", "subtract"]) def test_wcs_arithmetic_ccd(operation): ccd_data = create_ccd_data() ccd_data2 = ccd_data.copy() ccd_data.wcs = WCS(naxis=2) method = getattr(ccd_data, operation) result = method(ccd_data2) nd_testing.assert_wcs_seem_equal(result.wcs, ccd_data.wcs) assert ccd_data2.wcs is None def test_wcs_sip_handling(): """ Check whether the ctypes RA---TAN-SIP and DEC--TAN-SIP survive a roundtrip unchanged. """ data_file = get_pkg_data_filename("data/sip-wcs.fits") def check_wcs_ctypes(header): expected_wcs_ctypes = {"CTYPE1": "RA---TAN-SIP", "CTYPE2": "DEC--TAN-SIP"} return [header[k] == v for k, v in expected_wcs_ctypes.items()] ccd_original = CCDData.read(data_file) # After initialization the keywords should be in the WCS, not in the # meta. with fits.open(data_file) as raw: good_ctype = check_wcs_ctypes(raw[0].header) assert all(good_ctype) ccd_new = ccd_original.to_hdu() good_ctype = check_wcs_ctypes(ccd_new[0].header) assert all(good_ctype) # Try converting to header with wcs_relax=False and # the header should contain the CTYPE keywords without # the -SIP ccd_no_relax = ccd_original.to_hdu(wcs_relax=False) good_ctype = check_wcs_ctypes(ccd_no_relax[0].header) assert not any(good_ctype) assert ccd_no_relax[0].header["CTYPE1"] == "RA---TAN" assert ccd_no_relax[0].header["CTYPE2"] == "DEC--TAN" @pytest.mark.parametrize("operation", ["multiply", "divide", "add", "subtract"]) def test_mask_arithmetic_ccd(operation): ccd_data = create_ccd_data() ccd_data2 = ccd_data.copy() ccd_data.mask = ccd_data.data > 0 method = getattr(ccd_data, operation) result = method(ccd_data2) np.testing.assert_equal(result.mask, ccd_data.mask) def test_write_read_multiextensionfits_mask_default(tmp_path): # Test that if a mask is present the mask is saved and loaded by default. ccd_data = create_ccd_data() ccd_data.mask = ccd_data.data > 10 filename = str(tmp_path / "afile.fits") ccd_data.write(filename) ccd_after = CCDData.read(filename) assert ccd_after.mask is not None np.testing.assert_array_equal(ccd_data.mask, ccd_after.mask) @pytest.mark.parametrize( "uncertainty_type", [StdDevUncertainty, VarianceUncertainty, InverseVariance] ) def test_write_read_multiextensionfits_uncertainty_default(tmp_path, uncertainty_type): # Test that if a uncertainty is present it is saved and loaded by default. ccd_data = create_ccd_data() ccd_data.uncertainty = uncertainty_type(ccd_data.data * 10) filename = str(tmp_path / "afile.fits") ccd_data.write(filename) ccd_after = CCDData.read(filename) assert ccd_after.uncertainty is not None assert type(ccd_after.uncertainty) is uncertainty_type np.testing.assert_array_equal( ccd_data.uncertainty.array, ccd_after.uncertainty.array ) @pytest.mark.parametrize( "uncertainty_type", [StdDevUncertainty, VarianceUncertainty, InverseVariance] ) def test_write_read_multiextensionfits_uncertainty_different_uncertainty_key( tmp_path, uncertainty_type ): # Test that if a uncertainty is present it is saved and loaded by default. ccd_data = create_ccd_data() ccd_data.uncertainty = uncertainty_type(ccd_data.data * 10) filename = str(tmp_path / "afile.fits") ccd_data.write(filename, key_uncertainty_type="Blah") ccd_after = CCDData.read(filename, key_uncertainty_type="Blah") assert ccd_after.uncertainty is not None assert type(ccd_after.uncertainty) is uncertainty_type np.testing.assert_array_equal( ccd_data.uncertainty.array, ccd_after.uncertainty.array ) def test_write_read_multiextensionfits_not(tmp_path): # Test that writing mask and uncertainty can be disabled ccd_data = create_ccd_data() ccd_data.mask = ccd_data.data > 10 ccd_data.uncertainty = StdDevUncertainty(ccd_data.data * 10) filename = str(tmp_path / "afile.fits") ccd_data.write(filename, hdu_mask=None, hdu_uncertainty=None) ccd_after = CCDData.read(filename) assert ccd_after.uncertainty is None assert ccd_after.mask is None def test_write_read_multiextensionfits_custom_ext_names(tmp_path): # Test writing mask, uncertainty in another extension than default ccd_data = create_ccd_data() ccd_data.mask = ccd_data.data > 10 ccd_data.uncertainty = StdDevUncertainty(ccd_data.data * 10) filename = str(tmp_path / "afile.fits") ccd_data.write(filename, hdu_mask="Fun", hdu_uncertainty="NoFun") # Try reading with defaults extension names ccd_after = CCDData.read(filename) assert ccd_after.uncertainty is None assert ccd_after.mask is None # Try reading with custom extension names ccd_after = CCDData.read(filename, hdu_mask="Fun", hdu_uncertainty="NoFun") assert ccd_after.uncertainty is not None assert ccd_after.mask is not None np.testing.assert_array_equal(ccd_data.mask, ccd_after.mask) np.testing.assert_array_equal( ccd_data.uncertainty.array, ccd_after.uncertainty.array ) def test_read_old_style_multiextensionfits(tmp_path): # Regression test for https://github.com/astropy/ccdproc/issues/664 # # Prior to astropy 3.1 there was no uncertainty type saved # in the multiextension fits files generated by CCDData # because the uncertainty had to be StandardDevUncertainty. # # Current version should be able to read those in. # size = 4 # Value of the variables below are not important to the test. data = np.zeros([size, size]) mask = data > 0.9 uncert = np.sqrt(data) ccd = CCDData(data=data, mask=mask, uncertainty=uncert, unit="adu") # We'll create the file manually to ensure we have the # right extension names and no uncertainty type. hdulist = ccd.to_hdu() del hdulist[2].header["UTYPE"] file_name = str(tmp_path / "old_ccddata_mef.fits") hdulist.writeto(file_name) ccd = CCDData.read(file_name) assert isinstance(ccd.uncertainty, StdDevUncertainty) def test_wcs(): ccd_data = create_ccd_data() wcs = WCS(naxis=2) ccd_data.wcs = wcs assert ccd_data.wcs is wcs def test_recognized_fits_formats_for_read_write(tmp_path): # These are the extensions that are supposed to be supported. ccd_data = create_ccd_data() supported_extensions = ["fit", "fits", "fts"] for ext in supported_extensions: path = str(tmp_path / f"test.{ext}") ccd_data.write(path) from_disk = CCDData.read(path) assert (ccd_data.data == from_disk.data).all() def test_stddevuncertainty_compat_descriptor_no_parent(): with pytest.raises(MissingDataAssociationException): StdDevUncertainty(np.ones((10, 10))).parent_nddata def test_stddevuncertainty_compat_descriptor_no_weakref(): # TODO: Remove this test if astropy 1.0 isn't supported anymore # This test might create a Memoryleak on purpose, so the last lines after # the assert are IMPORTANT cleanup. ccd = CCDData(np.ones((10, 10)), unit="") uncert = StdDevUncertainty(np.ones((10, 10))) uncert._parent_nddata = ccd assert uncert.parent_nddata is ccd uncert._parent_nddata = None # https://github.com/astropy/astropy/issues/7595 def test_read_returns_image(tmp_path): # Test if CCData.read returns a image when reading a fits file containing # a table and image, in that order. tbl = Table(np.ones(10).reshape(5, 2)) img = np.ones((5, 5)) hdul = fits.HDUList( hdus=[fits.PrimaryHDU(), fits.TableHDU(tbl.as_array()), fits.ImageHDU(img)] ) filename = str(tmp_path / "table_image.fits") hdul.writeto(filename) ccd = CCDData.read(filename, unit="adu") # Expecting to get (5, 5), the size of the image assert ccd.data.shape == (5, 5) # https://github.com/astropy/astropy/issues/9664 def test_sliced_ccdata_to_hdu(): wcs = WCS(naxis=2) wcs.wcs.crpix = 10, 10 ccd = CCDData(np.ones((10, 10)), wcs=wcs, unit="pixel") trimmed = ccd[2:-2, 2:-2] hdul = trimmed.to_hdu() assert isinstance(hdul, fits.HDUList) assert hdul[0].header["CRPIX1"] == 8 assert hdul[0].header["CRPIX2"] == 8 def test_read_write_tilde_paths(home_is_tmpdir): # Test for reading and writing to tilde-prefixed paths without errors ccd_data = create_ccd_data() filename = os.path.join("~", "test.fits") ccd_data.write(filename) ccd_disk = CCDData.read(filename, unit=ccd_data.unit) np.testing.assert_array_equal(ccd_data.data, ccd_disk.data) # Ensure the unexpanded path doesn't exist (e.g. no directory whose name is # a literal ~ was created) assert not os.path.exists(filename) def test_ccddata_with_psf(): psf = _random_psf.copy() ccd = CCDData(_random_array.copy(), unit=u.adu, psf=psf) assert (ccd.psf == psf).all() # cannot pass in non-ndarray with pytest.raises(TypeError, match="The psf must be a numpy array."): CCDData(_random_array.copy(), unit=u.adu, psf="something") def test_psf_setter(): psf = _random_psf.copy() ccd = CCDData(_random_array.copy(), unit=u.adu) ccd.psf = psf assert (ccd.psf == psf).all() # cannot set with non-ndarray with pytest.raises(TypeError, match="The psf must be a numpy array."): ccd.psf = 5 def test_write_read_psf(tmp_path): """Test that we can round-trip a CCDData with an attached PSF image.""" ccd_data = create_ccd_data() ccd_data.psf = _random_psf filename = tmp_path / "test_write_read_psf.fits" ccd_data.write(filename) ccd_disk = CCDData.read(filename) np.testing.assert_array_equal(ccd_data.data, ccd_disk.data) np.testing.assert_array_equal(ccd_data.psf, ccd_disk.psf) # Try a different name for the PSF HDU. filename = tmp_path / "test_write_read_psf_hdu.fits" ccd_data.write(filename, hdu_psf="PSFOTHER") # psf will be None if we don't supply the new HDU name to the reader. ccd_disk = CCDData.read(filename) np.testing.assert_array_equal(ccd_data.data, ccd_disk.data) assert ccd_disk.psf is None # psf will round-trip if we do supply the new HDU name. ccd_disk = CCDData.read(filename, hdu_psf="PSFOTHER") np.testing.assert_array_equal(ccd_data.data, ccd_disk.data) np.testing.assert_array_equal(ccd_data.psf, ccd_disk.psf)
cadce47cdba7dfa234a8bb71b28834b6edc15065deedd289d80c20a0828a7a5e
# Licensed under a 3-clause BSD style license - see LICENSE.rst # Tests of NDDataBase from astropy.nddata.nddata_base import NDDataBase class MinimalSubclass(NDDataBase): def __init__(self): super().__init__() @property def data(self): return None @property def mask(self): return super().mask @property def unit(self): return super().unit @property def wcs(self): return super().wcs @property def meta(self): return super().meta @property def uncertainty(self): return super().uncertainty @property def psf(self): return super().psf class MinimalSubclassNoPSF(NDDataBase): def __init__(self): super().__init__() @property def data(self): return None @property def mask(self): return super().mask @property def unit(self): return super().unit @property def wcs(self): return super().wcs @property def meta(self): return super().meta @property def uncertainty(self): return super().uncertainty def test_nddata_base_subclass(): a = MinimalSubclass() assert a.meta is None assert a.data is None assert a.mask is None assert a.unit is None assert a.wcs is None assert a.uncertainty is None assert a.psf is None def test_omitting_psf_is_ok(): # Make sure that psf does not need to be overridden when creating a subclass b = MinimalSubclassNoPSF() assert b.psf is None
8347990c99f5173ac82449dfa58ee788bf84bed45d2c1fcfe5d64d04194b2b39
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np import pytest from numpy.testing import assert_allclose, assert_array_equal from packaging.version import Version from astropy import units as u from astropy.coordinates import SkyCoord from astropy.nddata import ( CCDData, Cutout2D, NoOverlapError, PartialOverlapError, add_array, extract_array, overlap_slices, subpixel_indices, ) from astropy.tests.helper import assert_quantity_allclose from astropy.wcs import WCS, Sip from astropy.wcs.utils import proj_plane_pixel_area test_positions = [ (10.52, 3.12), (5.62, 12.97), (31.33, 31.77), (0.46, 0.94), (20.45, 12.12), (42.24, 24.42), ] test_position_indices = [(0, 3), (0, 2), (4, 1), (4, 2), (4, 3), (3, 4)] test_slices = [ slice(10.52, 3.12), slice(5.62, 12.97), slice(31.33, 31.77), slice(0.46, 0.94), slice(20.45, 12.12), slice(42.24, 24.42), ] subsampling = 5 test_pos_bad = [(-1, -4), (-2, 0), (6, 2), (6, 6)] test_nonfinite_positions = [ (np.nan, np.nan), (np.inf, np.inf), (1, np.nan), (np.nan, 2), (2, -np.inf), (-np.inf, 3), ] def test_slices_different_dim(): """Overlap from arrays with different number of dim is undefined.""" with pytest.raises(ValueError, match=".*the same number of dimensions.*"): overlap_slices((4, 5, 6), (1, 2), (0, 0)) def test_slices_pos_different_dim(): """Position must have same dim as arrays.""" with pytest.raises(ValueError, match=".*the same number of dimensions.*"): overlap_slices((4, 5), (1, 2), (0, 0, 3)) @pytest.mark.parametrize("pos", test_pos_bad) def test_slices_no_overlap(pos): """If there is no overlap between arrays, an error should be raised.""" with pytest.raises(NoOverlapError): overlap_slices((5, 5), (2, 2), pos) def test_slices_partial_overlap(): """Compute a slice for partially overlapping arrays.""" temp = overlap_slices((5,), (3,), (0,)) assert temp == ((slice(0, 2, None),), (slice(1, 3, None),)) temp = overlap_slices((5,), (3,), (0,), mode="partial") assert temp == ((slice(0, 2, None),), (slice(1, 3, None),)) for pos in [0, 4]: with pytest.raises( PartialOverlapError, match=".*Arrays overlap only partially.*" ): temp = overlap_slices((5,), (3,), (pos,), mode="strict") def test_slices_edges(): """ Test overlap_slices when extracting along edges. """ slc_lg, slc_sm = overlap_slices((10, 10), (3, 3), (1, 1), mode="strict") assert slc_lg[0].start == slc_lg[1].start == 0 assert slc_lg[0].stop == slc_lg[1].stop == 3 assert slc_sm[0].start == slc_sm[1].start == 0 assert slc_sm[0].stop == slc_sm[1].stop == 3 slc_lg, slc_sm = overlap_slices((10, 10), (3, 3), (8, 8), mode="strict") assert slc_lg[0].start == slc_lg[1].start == 7 assert slc_lg[0].stop == slc_lg[1].stop == 10 assert slc_sm[0].start == slc_sm[1].start == 0 assert slc_sm[0].stop == slc_sm[1].stop == 3 # test (0, 0) shape slc_lg, slc_sm = overlap_slices((10, 10), (0, 0), (0, 0)) assert slc_lg[0].start == slc_lg[0].stop == 0 assert slc_lg[1].start == slc_lg[1].stop == 0 assert slc_sm[0].start == slc_sm[0].stop == 0 assert slc_sm[1].start == slc_sm[1].stop == 0 slc_lg, slc_sm = overlap_slices((10, 10), (0, 0), (5, 5)) assert slc_lg[0].start == slc_lg[0].stop == 5 assert slc_lg[1].start == slc_lg[1].stop == 5 assert slc_sm[0].start == slc_sm[0].stop == 0 assert slc_sm[1].start == slc_sm[1].stop == 0 def test_slices_overlap_wrong_mode(): """Call overlap_slices with non-existing mode.""" with pytest.raises(ValueError, match="^Mode can be only.*"): overlap_slices((5,), (3,), (0,), mode="full") @pytest.mark.parametrize("position", test_nonfinite_positions) def test_slices_nonfinite_position(position): """ A ValueError should be raised if position contains a non-finite value. """ with pytest.raises(ValueError): overlap_slices((7, 7), (3, 3), position) def test_extract_array_even_shape_rounding(): """ Test overlap_slices (via extract_array) for rounding with an even-shaped extraction. """ data = np.arange(10) shape = (2,) positions_expected = [ (1.49, (1, 2)), (1.5, (1, 2)), (1.501, (1, 2)), (1.99, (1, 2)), (2.0, (1, 2)), (2.01, (2, 3)), (2.49, (2, 3)), (2.5, (2, 3)), (2.501, (2, 3)), (2.99, (2, 3)), (3.0, (2, 3)), (3.01, (3, 4)), ] for pos, exp in positions_expected: out = extract_array(data, shape, (pos,), mode="partial") assert_array_equal(out, exp) # test negative positions positions = (-0.99, -0.51, -0.5, -0.49, -0.01, 0) exp1 = (-99, 0) exp2 = (0, 1) expected = [exp1,] * 6 + [ exp2, ] for pos, exp in zip(positions, expected): out = extract_array(data, shape, (pos,), mode="partial", fill_value=-99) assert_array_equal(out, exp) def test_extract_array_odd_shape_rounding(): """ Test overlap_slices (via extract_array) for rounding with an even-shaped extraction. """ data = np.arange(10) shape = (3,) positions_expected = [ (1.49, (0, 1, 2)), (1.5, (0, 1, 2)), (1.501, (1, 2, 3)), (1.99, (1, 2, 3)), (2.0, (1, 2, 3)), (2.01, (1, 2, 3)), (2.49, (1, 2, 3)), (2.5, (1, 2, 3)), (2.501, (2, 3, 4)), (2.99, (2, 3, 4)), (3.0, (2, 3, 4)), (3.01, (2, 3, 4)), ] for pos, exp in positions_expected: out = extract_array(data, shape, (pos,), mode="partial") assert_array_equal(out, exp) # test negative positions positions = (-0.99, -0.51, -0.5, -0.49, -0.01, 0) exp1 = (-99, -99, 0) exp2 = (-99, 0, 1) expected = [exp1,] * 3 + [ exp2, ] * 4 for pos, exp in zip(positions, expected): out = extract_array(data, shape, (pos,), mode="partial", fill_value=-99) assert_array_equal(out, exp) def test_extract_array_wrong_mode(): """Call extract_array with non-existing mode.""" with pytest.raises(ValueError) as e: extract_array(np.arange(4), (2,), (0,), mode="full") assert "Valid modes are 'partial', 'trim', and 'strict'." == str(e.value) def test_extract_array_1d_even(): """Extract 1 d arrays. All dimensions are treated the same, so we can test in 1 dim. """ assert np.all( extract_array(np.arange(4), (2,), (0,), fill_value=-99) == np.array([-99, 0]) ) for i in [1, 2, 3]: assert np.all(extract_array(np.arange(4), (2,), (i,)) == np.array([i - 1, i])) assert np.all( extract_array(np.arange(4.0), (2,), (4,), fill_value=np.inf) == np.array([3, np.inf]) ) def test_extract_array_1d_odd(): """Extract 1 d arrays. All dimensions are treated the same, so we can test in 1 dim. The first few lines test the most error-prone part: Extraction of an array on the boundaries. Additional tests (e.g. dtype of return array) are done for the last case only. """ assert np.all( extract_array(np.arange(4), (3,), (-1,), fill_value=-99) == np.array([-99, -99, 0]) ) assert np.all( extract_array(np.arange(4), (3,), (0,), fill_value=-99) == np.array([-99, 0, 1]) ) for i in [1, 2]: assert np.all( extract_array(np.arange(4), (3,), (i,)) == np.array([i - 1, i, i + 1]) ) assert np.all( extract_array(np.arange(4), (3,), (3,), fill_value=-99) == np.array([2, 3, -99]) ) arrayin = np.arange(4.0) extracted = extract_array(arrayin, (3,), (4,)) assert extracted[0] == 3 assert np.isnan(extracted[1]) # since I cannot use `==` to test for nan assert extracted.dtype == arrayin.dtype def test_extract_array_1d(): """In 1d, shape can be int instead of tuple""" assert np.all( extract_array(np.arange(4), 3, (-1,), fill_value=-99) == np.array([-99, -99, 0]) ) assert np.all( extract_array(np.arange(4), 3, -1, fill_value=-99) == np.array([-99, -99, 0]) ) def test_extract_Array_float(): """integer is at bin center""" for a in np.arange(2.51, 3.49, 0.1): assert np.all(extract_array(np.arange(5), 3, a) == np.array([2, 3, 4])) def test_extract_array_1d_trim(): """Extract 1 d arrays. All dimensions are treated the same, so we can test in 1 dim. """ assert np.all(extract_array(np.arange(4), (2,), (0,), mode="trim") == np.array([0])) for i in [1, 2, 3]: assert np.all( extract_array(np.arange(4), (2,), (i,), mode="trim") == np.array([i - 1, i]) ) assert np.all( extract_array(np.arange(4.0), (2,), (4,), mode="trim") == np.array([3]) ) @pytest.mark.parametrize("mode", ["partial", "trim", "strict"]) def test_extract_array_easy(mode): """ Test extract_array utility function. Test by extracting an array of ones out of an array of zeros. """ large_test_array = np.zeros((11, 11)) small_test_array = np.ones((5, 5)) large_test_array[3:8, 3:8] = small_test_array extracted_array = extract_array(large_test_array, (5, 5), (5, 5), mode=mode) assert np.all(extracted_array == small_test_array) def test_extract_array_return_pos(): """Check that the return position is calculated correctly. The result will differ by mode. All test here are done in 1d because it's easier to construct correct test cases. """ large_test_array = np.arange(5, dtype=float) for i in np.arange(-1, 6): extracted, new_pos = extract_array( large_test_array, 3, i, mode="partial", return_position=True ) assert new_pos == (1,) # Now check an array with an even number for i, expected in zip([1.49, 1.51, 3], [0.49, 0.51, 1]): extracted, new_pos = extract_array( large_test_array, (2,), (i,), mode="strict", return_position=True ) assert new_pos == (expected,) # For mode='trim' the answer actually depends for i, expected in zip(np.arange(-1, 6), (-1, 0, 1, 1, 1, 1, 1)): extracted, new_pos = extract_array( large_test_array, (3,), (i,), mode="trim", return_position=True ) assert new_pos == (expected,) def test_extract_array_nan_fillvalue(): if Version(np.__version__) >= Version("1.20"): msg = "fill_value cannot be set to np.nan if the input array has" with pytest.raises(ValueError, match=msg): extract_array( np.ones((10, 10), dtype=int), (5, 5), (1, 1), fill_value=np.nan ) def test_add_array_odd_shape(): """ Test add_array utility function. Test by adding an array of ones out of an array of zeros. """ large_test_array = np.zeros((11, 11)) small_test_array = np.ones((5, 5)) large_test_array_ref = large_test_array.copy() large_test_array_ref[3:8, 3:8] += small_test_array added_array = add_array(large_test_array, small_test_array, (5, 5)) assert np.all(added_array == large_test_array_ref) def test_add_array_even_shape(): """ Test add_array_2D utility function. Test by adding an array of ones out of an array of zeros. """ large_test_array = np.zeros((11, 11)) small_test_array = np.ones((4, 4)) large_test_array_ref = large_test_array.copy() large_test_array_ref[0:2, 0:2] += small_test_array[2:4, 2:4] added_array = add_array(large_test_array, small_test_array, (0, 0)) assert np.all(added_array == large_test_array_ref) def test_add_array_equal_shape(): """ Test add_array_2D utility function. Test by adding an array of ones out of an array of zeros. """ large_test_array = np.zeros((11, 11)) small_test_array = np.ones((11, 11)) large_test_array_ref = large_test_array.copy() large_test_array_ref += small_test_array added_array = add_array(large_test_array, small_test_array, (5, 5)) assert np.all(added_array == large_test_array_ref) @pytest.mark.parametrize( ("position", "subpixel_index"), zip(test_positions, test_position_indices) ) def test_subpixel_indices(position, subpixel_index): """ Test subpixel_indices utility function. Test by asserting that the function returns correct results for given test values. """ assert np.all(subpixel_indices(position, subsampling) == subpixel_index) class TestCutout2D: def setup_class(self): self.data = np.arange(20.0).reshape(5, 4) self.position = SkyCoord("13h11m29.96s -01d19m18.7s", frame="icrs") wcs = WCS(naxis=2) rho = np.pi / 3.0 scale = 0.05 / 3600.0 wcs.wcs.cd = [ [scale * np.cos(rho), -scale * np.sin(rho)], [scale * np.sin(rho), scale * np.cos(rho)], ] wcs.wcs.ctype = ["RA---TAN", "DEC--TAN"] wcs.wcs.crval = [ self.position.ra.to_value(u.deg), self.position.dec.to_value(u.deg), ] wcs.wcs.crpix = [3, 3] self.wcs = wcs # add SIP sipwcs = wcs.deepcopy() sipwcs.wcs.ctype = ["RA---TAN-SIP", "DEC--TAN-SIP"] a = np.array( [ [0, 0, 5.33092692e-08, 3.73753773e-11, -2.02111473e-13], [0, 2.44084308e-05, 2.81394789e-11, 5.17856895e-13, 0.0], [-2.41334657e-07, 1.29289255e-10, 2.35753629e-14, 0.0, 0.0], [-2.37162007e-10, 5.43714947e-13, 0.0, 0.0, 0.0], [-2.81029767e-13, 0.0, 0.0, 0.0, 0.0], ] ) b = np.array( [ [0, 0, 2.99270374e-05, -2.38136074e-10, 7.23205168e-13], [0, -1.71073858e-07, 6.31243431e-11, -5.16744347e-14, 0.0], [6.95458963e-06, -3.08278961e-10, -1.75800917e-13, 0.0, 0.0], [3.51974159e-11, 5.60993016e-14, 0.0, 0.0, 0.0], [-5.92438525e-13, 0.0, 0.0, 0.0, 0.0], ] ) sipwcs.sip = Sip(a, b, None, None, wcs.wcs.crpix) sipwcs.wcs.set() self.sipwcs = sipwcs def test_cutout(self): sizes = [ 3, 3 * u.pixel, (3, 3), (3 * u.pixel, 3 * u.pix), (3.0, 3 * u.pixel), (2.9, 3.3), ] for size in sizes: position = (2.1, 1.9) c = Cutout2D(self.data, position, size) assert c.data.shape == (3, 3) assert c.data[1, 1] == 10 assert c.origin_original == (1, 1) assert c.origin_cutout == (0, 0) assert c.input_position_original == position assert_allclose(c.input_position_cutout, (1.1, 0.9)) assert c.position_original == (2.0, 2.0) assert c.position_cutout == (1.0, 1.0) assert c.center_original == (2.0, 2.0) assert c.center_cutout == (1.0, 1.0) assert c.bbox_original == ((1, 3), (1, 3)) assert c.bbox_cutout == ((0, 2), (0, 2)) assert c.slices_original == (slice(1, 4), slice(1, 4)) assert c.slices_cutout == (slice(0, 3), slice(0, 3)) def test_size_length(self): with pytest.raises(ValueError): Cutout2D(self.data, (2, 2), (1, 1, 1)) def test_size_units(self): for size in [3 * u.cm, (3, 3 * u.K)]: with pytest.raises(ValueError): Cutout2D(self.data, (2, 2), size) def test_size_pixel(self): """ Check size in derived pixel units. """ size = 0.3 * u.arcsec / (0.1 * u.arcsec / u.pixel) c = Cutout2D(self.data, (2, 2), size) assert c.data.shape == (3, 3) assert c.data[0, 0] == 5 assert c.slices_original == (slice(1, 4), slice(1, 4)) assert c.slices_cutout == (slice(0, 3), slice(0, 3)) def test_size_angle(self): c = Cutout2D(self.data, (2, 2), (0.1 * u.arcsec), wcs=self.wcs) assert c.data.shape == (2, 2) assert c.data[0, 0] == 5 assert c.slices_original == (slice(1, 3), slice(1, 3)) assert c.slices_cutout == (slice(0, 2), slice(0, 2)) def test_size_angle_without_wcs(self): with pytest.raises(ValueError): Cutout2D(self.data, (2, 2), (3, 3 * u.arcsec)) def test_cutout_trim_overlap(self): c = Cutout2D(self.data, (0, 0), (3, 3), mode="trim") assert c.data.shape == (2, 2) assert c.data[0, 0] == 0 assert c.slices_original == (slice(0, 2), slice(0, 2)) assert c.slices_cutout == (slice(0, 2), slice(0, 2)) def test_cutout_partial_overlap(self): c = Cutout2D(self.data, (0, 0), (3, 3), mode="partial") assert c.data.shape == (3, 3) assert c.data[1, 1] == 0 assert c.slices_original == (slice(0, 2), slice(0, 2)) assert c.slices_cutout == (slice(1, 3), slice(1, 3)) def test_cutout_partial_overlap_fill_value(self): fill_value = -99 c = Cutout2D(self.data, (0, 0), (3, 3), mode="partial", fill_value=fill_value) assert c.data.shape == (3, 3) assert c.data[1, 1] == 0 assert c.data[0, 0] == fill_value def test_copy(self): data = np.copy(self.data) c = Cutout2D(data, (2, 3), (3, 3)) xy = (0, 0) value = 100.0 c.data[xy] = value xy_orig = c.to_original_position(xy) yx = xy_orig[::-1] assert data[yx] == value data = np.copy(self.data) c2 = Cutout2D(self.data, (2, 3), (3, 3), copy=True) c2.data[xy] = value assert data[yx] != value def test_to_from_large(self): position = (2, 2) c = Cutout2D(self.data, position, (3, 3)) xy = (0, 0) result = c.to_cutout_position(c.to_original_position(xy)) assert_allclose(result, xy) def test_skycoord_without_wcs(self): with pytest.raises(ValueError): Cutout2D(self.data, self.position, (3, 3)) def test_skycoord(self): c = Cutout2D(self.data, self.position, (3, 3), wcs=self.wcs) skycoord_original = self.position.from_pixel( c.center_original[1], c.center_original[0], self.wcs ) skycoord_cutout = self.position.from_pixel( c.center_cutout[1], c.center_cutout[0], c.wcs ) assert_quantity_allclose(skycoord_original.ra, skycoord_cutout.ra) assert_quantity_allclose(skycoord_original.dec, skycoord_cutout.dec) def test_skycoord_partial(self): c = Cutout2D(self.data, self.position, (3, 3), wcs=self.wcs, mode="partial") skycoord_original = self.position.from_pixel( c.center_original[1], c.center_original[0], self.wcs ) skycoord_cutout = self.position.from_pixel( c.center_cutout[1], c.center_cutout[0], c.wcs ) assert_quantity_allclose(skycoord_original.ra, skycoord_cutout.ra) assert_quantity_allclose(skycoord_original.dec, skycoord_cutout.dec) def test_naxis_update(self): xsize = 2 ysize = 3 c = Cutout2D(self.data, self.position, (ysize, xsize), wcs=self.wcs) assert c.wcs.array_shape == (ysize, xsize) def test_crpix_maps_to_crval(self): w = Cutout2D(self.data, (0, 0), (3, 3), wcs=self.sipwcs, mode="partial").wcs pscale = np.sqrt(proj_plane_pixel_area(w)) assert_allclose( w.wcs_pix2world(*w.wcs.crpix, 1), w.wcs.crval, rtol=0.0, atol=1e-6 * pscale ) assert_allclose( w.all_pix2world(*w.wcs.crpix, 1), w.wcs.crval, rtol=0.0, atol=1e-6 * pscale ) def test_cutout_with_nddata_as_input(self): # This is essentially a copy/paste of test_skycoord with the # input a ccd with wcs attribute instead of passing the # wcs separately. ccd = CCDData(data=self.data, wcs=self.wcs, unit="adu") c = Cutout2D(ccd, self.position, (3, 3)) skycoord_original = self.position.from_pixel( c.center_original[1], c.center_original[0], self.wcs ) skycoord_cutout = self.position.from_pixel( c.center_cutout[1], c.center_cutout[0], c.wcs ) assert_quantity_allclose(skycoord_original.ra, skycoord_cutout.ra) assert_quantity_allclose(skycoord_original.dec, skycoord_cutout.dec)
762cfaa17755c43507e5e2b3cc15a53813c2a54b5fcd5a1f4c2689dbae59bcdc
""" A module containing unit tests for the `bitmask` module. Licensed under a 3-clause BSD style license - see LICENSE.rst """ import warnings import numpy as np import pytest from astropy.nddata import bitmask MAX_INT_TYPE = np.maximum_sctype(np.int_) MAX_UINT_TYPE = np.maximum_sctype(np.uint) MAX_UINT_FLAG = np.left_shift( MAX_UINT_TYPE(1), MAX_UINT_TYPE(np.iinfo(MAX_UINT_TYPE).bits - 1) ) MAX_INT_FLAG = np.left_shift( MAX_INT_TYPE(1), MAX_INT_TYPE(np.iinfo(MAX_INT_TYPE).bits - 2) ) SUPER_LARGE_FLAG = 1 << np.iinfo(MAX_UINT_TYPE).bits EXTREME_TEST_DATA = np.array( [ 0, 1, 1 + 1 << 2, MAX_INT_FLAG, ~0, MAX_INT_TYPE(MAX_UINT_FLAG), 1 + MAX_INT_TYPE(MAX_UINT_FLAG), ], dtype=MAX_INT_TYPE, ) @pytest.mark.parametrize("flag", [0, -1]) def test_nonpositive_not_a_bit_flag(flag): assert not bitmask._is_bit_flag(n=flag) @pytest.mark.parametrize( "flag", [1, MAX_UINT_FLAG, int(MAX_UINT_FLAG), SUPER_LARGE_FLAG] ) def test_is_bit_flag(flag): assert bitmask._is_bit_flag(n=flag) @pytest.mark.parametrize("number", [0, 1, MAX_UINT_FLAG, SUPER_LARGE_FLAG]) def test_is_int(number): assert bitmask._is_int(number) @pytest.mark.parametrize("number", ["1", True, 1.0]) def test_nonint_is_not_an_int(number): assert not bitmask._is_int(number) @pytest.mark.parametrize( "flag,flip,expected", [ (3, None, 3), (3, True, -4), (3, False, 3), ([1, 2], False, 3), ([1, 2], True, -4), ], ) def test_interpret_valid_int_bit_flags(flag, flip, expected): assert bitmask.interpret_bit_flags(bit_flags=flag, flip_bits=flip) == expected @pytest.mark.parametrize("flag", [None, " ", "None", "Indef"]) def test_interpret_none_bit_flags_as_None(flag): assert bitmask.interpret_bit_flags(bit_flags=flag) is None @pytest.mark.parametrize( "flag,expected", [ ("1", 1), ("~-1", ~(-1)), ("~1", ~1), ("1,2", 3), ("1|2", 3), ("1+2", 3), ("(1,2)", 3), ("(1+2)", 3), ("~1,2", ~3), ("~1+2", ~3), ("~(1,2)", ~3), ("~(1+2)", ~3), ], ) def test_interpret_valid_str_bit_flags(flag, expected): assert bitmask.interpret_bit_flags(bit_flags=flag) == expected @pytest.mark.parametrize( "flag,expected", [ ("CR", 1), ("~CR", ~1), ("CR|HOT", 3), ("CR,HOT", 3), ("CR+HOT", 3), (["CR", "HOT"], 3), ("(CR,HOT)", 3), ("(HOT+CR)", 3), ("~HOT,CR", ~3), ("~CR+HOT", ~3), ("~(HOT,CR)", ~3), ("~(HOT|CR)", ~3), ("~(CR+HOT)", ~3), ], ) def test_interpret_valid_mnemonic_bit_flags(flag, expected): flagmap = bitmask.extend_bit_flag_map("DetectorMap", CR=1, HOT=2) assert ( bitmask.interpret_bit_flags(bit_flags=flag, flag_name_map=flagmap) == expected ) @pytest.mark.parametrize( "flag,flip", [ (None, True), (" ", True), ("None", True), ("Indef", True), (None, False), (" ", False), ("None", False), ("Indef", False), ("1", True), ("1", False), ], ) def test_interpret_None_or_str_and_flip_incompatibility(flag, flip): with pytest.raises(TypeError): bitmask.interpret_bit_flags(bit_flags=flag, flip_bits=flip) @pytest.mark.parametrize("flag", [True, 1.0, [1.0], object]) def test_interpret_wrong_flag_type(flag): with pytest.raises(TypeError): bitmask.interpret_bit_flags(bit_flags=flag) @pytest.mark.parametrize("flag", ["SOMETHING", "1.0,2,3"]) def test_interpret_wrong_string_int_format(flag): with pytest.raises(ValueError): bitmask.interpret_bit_flags(bit_flags=flag) def test_interpret_duplicate_flag_warning(): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") assert bitmask.interpret_bit_flags([2, 4, 4]) == 6 assert len(w) assert issubclass(w[-1].category, UserWarning) assert "Duplicate" in str(w[-1].message) @pytest.mark.parametrize("flag", [[1, 2, 3], "1, 2, 3"]) def test_interpret_non_flag(flag): with pytest.raises(ValueError): bitmask.interpret_bit_flags(bit_flags=flag) def test_interpret_allow_single_value_str_nonflags(): assert bitmask.interpret_bit_flags(bit_flags=str(3)) == 3 @pytest.mark.parametrize( "flag", ["~", "( )", "(~1,2)", "~(1,2", "1,~2", "1,(2,4)", "1,2+4", "1+4,2", "1|4+2"], ) def test_interpret_bad_str_syntax(flag): with pytest.raises(ValueError): bitmask.interpret_bit_flags(bit_flags=flag) def test_bitfield_must_be_integer_check(): with pytest.raises(TypeError): bitmask.bitfield_to_boolean_mask(1.0, 1) @pytest.mark.parametrize( "data,flags,flip,goodval,dtype,ref", [ (EXTREME_TEST_DATA, None, None, True, np.bool_, EXTREME_TEST_DATA.size * [1]), (EXTREME_TEST_DATA, None, None, False, np.bool_, EXTREME_TEST_DATA.size * [0]), ( EXTREME_TEST_DATA, [1, MAX_UINT_FLAG], False, True, np.bool_, [1, 1, 0, 0, 0, 1, 1], ), (EXTREME_TEST_DATA, None, None, True, np.bool_, EXTREME_TEST_DATA.size * [1]), ( EXTREME_TEST_DATA, [1, MAX_UINT_FLAG], False, False, np.bool_, [0, 0, 1, 1, 1, 0, 0], ), ( EXTREME_TEST_DATA, [1, MAX_UINT_FLAG], True, True, np.int8, [1, 0, 1, 1, 0, 0, 0], ), ], ) def test_bitfield_to_boolean_mask(data, flags, flip, goodval, dtype, ref): mask = bitmask.bitfield_to_boolean_mask( bitfield=data, ignore_flags=flags, flip_bits=flip, good_mask_value=goodval, dtype=dtype, ) assert mask.dtype == dtype assert np.all(mask == ref) @pytest.mark.parametrize("flag", [(4, "flag1"), 8]) def test_bitflag(flag): f = bitmask.BitFlag(flag) if isinstance(flag, tuple): assert f == flag[0] assert f.__doc__ == flag[1] f = bitmask.BitFlag(*flag) assert f == flag[0] assert f.__doc__ == flag[1] else: assert f == flag def test_bitflag_docs2(): with pytest.raises(ValueError): bitmask.BitFlag((1, "docs1"), "docs2") @pytest.mark.parametrize("flag", [0, 3]) def test_bitflag_not_pow2(flag): with pytest.raises(bitmask.InvalidBitFlag): bitmask.BitFlag(flag, "custom flag") @pytest.mark.parametrize("flag", [0.0, True, "1"]) def test_bitflag_not_int_flag(flag): with pytest.raises(bitmask.InvalidBitFlag): bitmask.BitFlag((flag, "custom flag")) @pytest.mark.parametrize("caching", [True, False]) def test_basic_map(monkeypatch, caching): monkeypatch.setattr(bitmask, "_ENABLE_BITFLAG_CACHING", False) class ObservatoryDQMap(bitmask.BitFlagNameMap): _not_a_flag = 1 CR = 1, "cosmic ray" HOT = 2 DEAD = 4 class DetectorMap(ObservatoryDQMap): __version__ = "1.0" _not_a_flag = 181 READOUT_ERR = 16 assert ObservatoryDQMap.cr == 1 assert ObservatoryDQMap.cr.__doc__ == "cosmic ray" assert DetectorMap.READOUT_ERR == 16 @pytest.mark.parametrize("caching", [True, False]) def test_extend_map(monkeypatch, caching): monkeypatch.setattr(bitmask, "_ENABLE_BITFLAG_CACHING", caching) class ObservatoryDQMap(bitmask.BitFlagNameMap): CR = 1 HOT = 2 DEAD = 4 DetectorMap = bitmask.extend_bit_flag_map( "DetectorMap", ObservatoryDQMap, __version__="1.0", DEAD=4, READOUT_ERR=16 ) assert DetectorMap.CR == 1 assert DetectorMap.readout_err == 16 @pytest.mark.parametrize("caching", [True, False]) def test_extend_map_redefine_flag(monkeypatch, caching): monkeypatch.setattr(bitmask, "_ENABLE_BITFLAG_CACHING", caching) class ObservatoryDQMap(bitmask.BitFlagNameMap): CR = 1 HOT = 2 DEAD = 4 with pytest.raises(AttributeError): bitmask.extend_bit_flag_map( "DetectorMap", ObservatoryDQMap, __version__="1.0", DEAD=32 ) with pytest.raises(AttributeError): bitmask.extend_bit_flag_map( "DetectorMap", ObservatoryDQMap, __version__="1.0", DEAD=32, dead=64 ) @pytest.mark.parametrize("caching", [True, False]) def test_map_redefine_flag(monkeypatch, caching): monkeypatch.setattr(bitmask, "_ENABLE_BITFLAG_CACHING", caching) class ObservatoryDQMap(bitmask.BitFlagNameMap): _not_a_flag = 8 CR = 1 HOT = 2 DEAD = 4 with pytest.raises(AttributeError): class DetectorMap1(ObservatoryDQMap): __version__ = "1.0" CR = 16 with pytest.raises(AttributeError): class DetectorMap2(ObservatoryDQMap): SHADE = 8 _FROZEN = 16 DetectorMap2.novel = 32 with pytest.raises(AttributeError): bitmask.extend_bit_flag_map( "DetectorMap", ObservatoryDQMap, READOUT_ERR=16, SHADE=32, readout_err=128 ) def test_map_cant_modify_version(): class ObservatoryDQMap(bitmask.BitFlagNameMap): __version__ = "1.2.3" CR = 1 assert ObservatoryDQMap.__version__ == "1.2.3" assert ObservatoryDQMap.CR == 1 with pytest.raises(AttributeError): ObservatoryDQMap.__version__ = "3.2.1" @pytest.mark.parametrize("flag", [0, 3]) def test_map_not_bit_flag(flag): with pytest.raises(ValueError): bitmask.extend_bit_flag_map("DetectorMap", DEAD=flag) with pytest.raises(ValueError): class DetectorMap(bitmask.BitFlagNameMap): DEAD = flag @pytest.mark.parametrize("flag", [0.0, True, "1"]) def test_map_not_int_flag(flag): with pytest.raises(bitmask.InvalidBitFlag): bitmask.extend_bit_flag_map("DetectorMap", DEAD=flag) with pytest.raises(bitmask.InvalidBitFlag): class ObservatoryDQMap(bitmask.BitFlagNameMap): CR = flag def test_map_access_undefined_flag(): DetectorMap = bitmask.extend_bit_flag_map("DetectorMap", DEAD=1) with pytest.raises(AttributeError): DetectorMap.DEAD1 with pytest.raises(AttributeError): DetectorMap["DEAD1"] def test_map_delete_flag(): DetectorMap = bitmask.extend_bit_flag_map("DetectorMap", DEAD=1) with pytest.raises(AttributeError): del DetectorMap.DEAD1 with pytest.raises(AttributeError): del DetectorMap["DEAD1"] def test_map_repr(): DetectorMap = bitmask.extend_bit_flag_map("DetectorMap", DEAD=1) assert repr(DetectorMap) == "<BitFlagNameMap 'DetectorMap'>" def test_map_add_flags(): map1 = bitmask.extend_bit_flag_map("DetectorMap", CR=1) map2 = map1 + {"HOT": 2, "DEAD": (4, "a really dead pixel")} assert map2.CR == 1 assert map2.HOT == 2 assert map2.DEAD.__doc__ == "a really dead pixel" assert map2.DEAD == 4 map2 = map1 + [("HOT", 2), ("DEAD", 4)] assert map2.CR == 1 assert map2.HOT == 2 map2 = map1 + ("HOT", 2) assert map2.CR == 1 assert map2.HOT == 2
cc61698a18fee16af2abd21211a8abf7add9769ea701040f6a4335b19c77d7b0
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np import pytest from astropy.nddata import block_reduce, block_replicate, reshape_as_blocks class TestReshapeAsBlocks: def test_1d(self): data = np.arange(16) reshaped = reshape_as_blocks(data, 2) assert reshaped.shape == (8, 2) reshaped = reshape_as_blocks(data, 4) assert reshaped.shape == (4, 4) reshaped = reshape_as_blocks(data, 8) assert reshaped.shape == (2, 8) def test_2d(self): data = np.arange(16).reshape(4, 4) reshaped = reshape_as_blocks(data, (2, 2)) assert reshaped.shape == (2, 2, 2, 2) data = np.arange(64).reshape(8, 8) reshaped = reshape_as_blocks(data, (2, 2)) assert reshaped.shape == (4, 4, 2, 2) reshaped = reshape_as_blocks(data, (4, 4)) assert reshaped.shape == (2, 2, 4, 4) def test_3d(self): data = np.arange(64).reshape(4, 4, 4) reshaped = reshape_as_blocks(data, (2, 2, 2)) assert reshaped.shape == (2, 2, 2, 2, 2, 2) data = np.arange(2 * 3 * 4).reshape(2, 3, 4) reshaped = reshape_as_blocks(data, (2, 1, 2)) assert reshaped.shape == (1, 3, 2, 2, 1, 2) def test_view(self): data = np.arange(16).reshape(4, 4) reshaped = reshape_as_blocks(data, (2, 2)) data[0, 0] = 100 assert reshaped[0, 0, 0, 0] == 100 def test_invalid_block_dim(self): data = np.arange(64).reshape(4, 4, 4) match = ( "block_size must be a scalar or have the same " "length as the number of data dimensions" ) with pytest.raises(ValueError, match=match): reshape_as_blocks(data, (2, 2)) def test_invalid_block_size(self): data = np.arange(16).reshape(4, 4) match = ( "Each dimension of block_size must divide evenly " "into the corresponding dimension of data" ) with pytest.raises(ValueError, match=match): reshape_as_blocks(data, (2, 3)) def test_invalid_block_value(self): data = np.arange(16).reshape(4, 4) match = "block_size elements must be integers" with pytest.raises(ValueError, match=match): reshape_as_blocks(data, (2.1, 2)) match = "block_size elements must be strictly positive" with pytest.raises(ValueError, match=match): reshape_as_blocks(data, (-1, 0)) class TestBlockReduce: def test_1d(self): """Test 1D array.""" data = np.arange(4) expected = np.array([1, 5]) result = block_reduce(data, 2) assert np.all(result == expected) def test_1d_mean(self): """Test 1D array with func=np.mean.""" data = np.arange(4) block_size = 2.0 expected = block_reduce(data, block_size, func=np.sum) / block_size result_mean = block_reduce(data, block_size, func=np.mean) assert np.all(result_mean == expected) def test_2d(self): """Test 2D array.""" data = np.arange(4).reshape(2, 2) expected = np.array([[6]]) result = block_reduce(data, 2) assert np.all(result == expected) def test_2d_mean(self): """Test 2D array with func=np.mean.""" data = np.arange(4).reshape(2, 2) block_size = 2.0 expected = block_reduce(data, block_size, func=np.sum) / block_size**2 result = block_reduce(data, block_size, func=np.mean) assert np.all(result == expected) def test_2d_trim(self): """ Test trimming of 2D array when size is not perfectly divisible by block_size. """ data1 = np.arange(15).reshape(5, 3) result1 = block_reduce(data1, 2) data2 = data1[0:4, 0:2] result2 = block_reduce(data2, 2) assert np.all(result1 == result2) def test_block_size_broadcasting(self): """Test scalar block_size broadcasting.""" data = np.arange(16).reshape(4, 4) result1 = block_reduce(data, 2) result2 = block_reduce(data, (2, 2)) assert np.all(result1 == result2) def test_block_size_len(self): """Test block_size length.""" data = np.ones((2, 2)) with pytest.raises(ValueError): block_reduce(data, (2, 2, 2)) class TestBlockReplicate: def test_1d(self): """Test 1D array.""" data = np.arange(2) expected = np.array([0, 0, 0.5, 0.5]) result = block_replicate(data, 2) assert np.all(result == expected) def test_1d_conserve_sum(self): """Test 1D array with conserve_sum=False.""" data = np.arange(2) block_size = 2.0 expected = block_replicate(data, block_size) * block_size result = block_replicate(data, block_size, conserve_sum=False) assert np.all(result == expected) def test_2d(self): """Test 2D array.""" data = np.arange(2).reshape(2, 1) expected = np.array([[0, 0], [0, 0], [0.25, 0.25], [0.25, 0.25]]) result = block_replicate(data, 2) assert np.all(result == expected) def test_2d_conserve_sum(self): """Test 2D array with conserve_sum=False.""" data = np.arange(6).reshape(2, 3) block_size = 2.0 expected = block_replicate(data, block_size) * block_size**2 result = block_replicate(data, block_size, conserve_sum=False) assert np.all(result == expected) def test_block_size_broadcasting(self): """Test scalar block_size broadcasting.""" data = np.arange(4).reshape(2, 2) result1 = block_replicate(data, 2) result2 = block_replicate(data, (2, 2)) assert np.all(result1 == result2) def test_block_size_len(self): """Test block_size length.""" data = np.arange(5) with pytest.raises(ValueError): block_replicate(data, (2, 2))
40b8862d769434488841bad80c8071ed7691ac01845bb06999b006a96de77fa2
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np import pytest from astropy.nddata import FlagCollection def test_init(): FlagCollection(shape=(1, 2, 3)) def test_init_noshape(): with pytest.raises(Exception) as exc: FlagCollection() assert ( exc.value.args[0] == "FlagCollection should be initialized with the shape of the data" ) def test_init_notiterable(): with pytest.raises(Exception) as exc: FlagCollection(shape=1.0) assert exc.value.args[0] == "FlagCollection shape should be an iterable object" def test_setitem(): f = FlagCollection(shape=(1, 2, 3)) f["a"] = np.ones((1, 2, 3)).astype(float) f["b"] = np.ones((1, 2, 3)).astype(int) f["c"] = np.ones((1, 2, 3)).astype(bool) f["d"] = np.ones((1, 2, 3)).astype(str) @pytest.mark.parametrize("value", [1, 1.0, "spam", [1, 2, 3], (1.0, 2.0, 3.0)]) def test_setitem_invalid_type(value): f = FlagCollection(shape=(1, 2, 3)) with pytest.raises(Exception) as exc: f["a"] = value assert exc.value.args[0] == "flags should be given as a Numpy array" def test_setitem_invalid_shape(): f = FlagCollection(shape=(1, 2, 3)) with pytest.raises(ValueError) as exc: f["a"] = np.ones((3, 2, 1)) assert exc.value.args[0].startswith("flags array shape") assert exc.value.args[0].endswith("does not match data shape (1, 2, 3)")
498c17d1035becbb1addd9ce7dbc4155da4e9aaa3c321a00b6f4c2525f8d3682
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pickle import textwrap from collections import OrderedDict import numpy as np import pytest from numpy.testing import assert_array_equal from astropy import units as u from astropy.nddata import _testing as nd_testing from astropy.nddata.nddata import NDData from astropy.nddata.nduncertainty import StdDevUncertainty from astropy.utils import NumpyRNGContext from astropy.wcs import WCS from astropy.wcs.wcsapi import BaseHighLevelWCS, HighLevelWCSWrapper, SlicedLowLevelWCS from .test_nduncertainty import FakeUncertainty class FakeNumpyArray: """ Class that has a few of the attributes of a numpy array. These attributes are checked for by NDData. """ def __init__(self): super().__init__() def shape(self): pass def __getitem__(self): pass def __array__(self): pass @property def dtype(self): return "fake" class MinimalUncertainty: """ Define the minimum attributes acceptable as an uncertainty object. """ def __init__(self, value): self._uncertainty = value @property def uncertainty_type(self): return "totally and completely fake" class BadNDDataSubclass(NDData): def __init__( self, data, uncertainty=None, mask=None, wcs=None, meta=None, unit=None, psf=None, ): self._data = data self._uncertainty = uncertainty self._mask = mask self._wcs = wcs self._psf = psf self._unit = unit self._meta = meta # Setter tests def test_uncertainty_setter(): nd = NDData([1, 2, 3]) good_uncertainty = MinimalUncertainty(5) nd.uncertainty = good_uncertainty assert nd.uncertainty is good_uncertainty # Check the fake uncertainty (minimal does not work since it has no # parent_nddata attribute from NDUncertainty) nd.uncertainty = FakeUncertainty(5) assert nd.uncertainty.parent_nddata is nd # Check that it works if the uncertainty was set during init nd = NDData(nd) assert isinstance(nd.uncertainty, FakeUncertainty) nd.uncertainty = 10 assert not isinstance(nd.uncertainty, FakeUncertainty) assert nd.uncertainty.array == 10 def test_mask_setter(): # Since it just changes the _mask attribute everything should work nd = NDData([1, 2, 3]) nd.mask = True assert nd.mask nd.mask = False assert not nd.mask # Check that it replaces a mask from init nd = NDData(nd, mask=True) assert nd.mask nd.mask = False assert not nd.mask # Init tests def test_nddata_empty(): with pytest.raises(TypeError): NDData() # empty initializer should fail def test_nddata_init_data_nonarray(): inp = [1, 2, 3] nd = NDData(inp) assert (np.array(inp) == nd.data).all() def test_nddata_init_data_ndarray(): # random floats with NumpyRNGContext(123): nd = NDData(np.random.random((10, 10))) assert nd.data.shape == (10, 10) assert nd.data.size == 100 assert nd.data.dtype == np.dtype(float) # specific integers nd = NDData(np.array([[1, 2, 3], [4, 5, 6]])) assert nd.data.size == 6 assert nd.data.dtype == np.dtype(int) # Tests to ensure that creating a new NDData object copies by *reference*. a = np.ones((10, 10)) nd_ref = NDData(a) a[0, 0] = 0 assert nd_ref.data[0, 0] == 0 # Except we choose copy=True a = np.ones((10, 10)) nd_ref = NDData(a, copy=True) a[0, 0] = 0 assert nd_ref.data[0, 0] != 0 def test_nddata_init_data_maskedarray(): with NumpyRNGContext(456): NDData(np.random.random((10, 10)), mask=np.random.random((10, 10)) > 0.5) # Another test (just copied here) with NumpyRNGContext(12345): a = np.random.randn(100) marr = np.ma.masked_where(a > 0, a) nd = NDData(marr) # check that masks and data match assert_array_equal(nd.mask, marr.mask) assert_array_equal(nd.data, marr.data) # check that they are both by reference marr.mask[10] = ~marr.mask[10] marr.data[11] = 123456789 assert_array_equal(nd.mask, marr.mask) assert_array_equal(nd.data, marr.data) # or not if we choose copy=True nd = NDData(marr, copy=True) marr.mask[10] = ~marr.mask[10] marr.data[11] = 0 assert nd.mask[10] != marr.mask[10] assert nd.data[11] != marr.data[11] @pytest.mark.parametrize("data", [np.array([1, 2, 3]), 5]) def test_nddata_init_data_quantity(data): # Test an array and a scalar because a scalar Quantity does not always # behaves the same way as an array. quantity = data * u.adu ndd = NDData(quantity) assert ndd.unit == quantity.unit assert_array_equal(ndd.data, np.array(quantity.value)) if ndd.data.size > 1: # check that if it is an array it is not copied quantity.value[1] = 100 assert ndd.data[1] == quantity.value[1] # or is copied if we choose copy=True ndd = NDData(quantity, copy=True) quantity.value[1] = 5 assert ndd.data[1] != quantity.value[1] def test_nddata_init_data_masked_quantity(): a = np.array([2, 3]) q = a * u.m m = False mq = np.ma.array(q, mask=m) nd = NDData(mq) assert_array_equal(nd.data, a) # This test failed before the change in nddata init because the masked # arrays data (which in fact was a quantity was directly saved) assert nd.unit == u.m assert not isinstance(nd.data, u.Quantity) np.testing.assert_array_equal(nd.mask, np.array(m)) def test_nddata_init_data_nddata(): nd1 = NDData(np.array([1])) nd2 = NDData(nd1) assert nd2.wcs == nd1.wcs assert nd2.uncertainty == nd1.uncertainty assert nd2.mask == nd1.mask assert nd2.unit == nd1.unit assert nd2.meta == nd1.meta assert nd2.psf == nd1.psf # Check that it is copied by reference nd1 = NDData(np.ones((5, 5))) nd2 = NDData(nd1) assert nd1.data is nd2.data # Check that it is really copied if copy=True nd2 = NDData(nd1, copy=True) nd1.data[2, 3] = 10 assert nd1.data[2, 3] != nd2.data[2, 3] # Now let's see what happens if we have all explicitly set nd1 = NDData( np.array([1]), mask=False, uncertainty=StdDevUncertainty(10), unit=u.s, meta={"dest": "mordor"}, wcs=WCS(naxis=1), psf=np.array([10]), ) nd2 = NDData(nd1) assert nd2.data is nd1.data assert nd2.wcs is nd1.wcs assert nd2.uncertainty.array == nd1.uncertainty.array assert nd2.mask == nd1.mask assert nd2.unit == nd1.unit assert nd2.meta == nd1.meta assert nd2.psf == nd1.psf # now what happens if we overwrite them all too nd3 = NDData( nd1, mask=True, uncertainty=StdDevUncertainty(200), unit=u.km, meta={"observer": "ME"}, wcs=WCS(naxis=1), psf=np.array([20]), ) assert nd3.data is nd1.data assert nd3.wcs is not nd1.wcs assert nd3.uncertainty.array != nd1.uncertainty.array assert nd3.mask != nd1.mask assert nd3.unit != nd1.unit assert nd3.meta != nd1.meta assert nd3.psf != nd1.psf def test_nddata_init_data_nddata_subclass(): uncert = StdDevUncertainty(3) # There might be some incompatible subclasses of NDData around. bnd = BadNDDataSubclass(False, True, 3, 2, "gollum", 100, 12) # Before changing the NDData init this would not have raised an error but # would have lead to a compromised nddata instance with pytest.raises(TypeError): NDData(bnd) # but if it has no actual incompatible attributes it passes bnd_good = BadNDDataSubclass( np.array([1, 2]), uncert, 3, HighLevelWCSWrapper(WCS(naxis=1)), {"enemy": "black knight"}, u.km, ) nd = NDData(bnd_good) assert nd.unit == bnd_good.unit assert nd.meta == bnd_good.meta assert nd.uncertainty == bnd_good.uncertainty assert nd.mask == bnd_good.mask assert nd.wcs is bnd_good.wcs assert nd.data is bnd_good.data def test_nddata_init_data_fail(): # First one is sliceable but has no shape, so should fail. with pytest.raises(TypeError): NDData({"a": "dict"}) # This has a shape but is not sliceable class Shape: def __init__(self): self.shape = 5 def __repr__(self): return "7" with pytest.raises(TypeError): NDData(Shape()) def test_nddata_init_data_fakes(): ndd1 = NDData(FakeNumpyArray()) # First make sure that NDData isn't converting its data to a numpy array. assert isinstance(ndd1.data, FakeNumpyArray) # Make a new NDData initialized from an NDData ndd2 = NDData(ndd1) # Check that the data wasn't converted to numpy assert isinstance(ndd2.data, FakeNumpyArray) # Specific parameters def test_param_uncertainty(): u = StdDevUncertainty(array=np.ones((5, 5))) d = NDData(np.ones((5, 5)), uncertainty=u) # Test that the parent_nddata is set. assert d.uncertainty.parent_nddata is d # Test conflicting uncertainties (other NDData) u2 = StdDevUncertainty(array=np.ones((5, 5)) * 2) d2 = NDData(d, uncertainty=u2) assert d2.uncertainty is u2 assert d2.uncertainty.parent_nddata is d2 def test_param_wcs(): # Since everything is allowed we only need to test something nd = NDData([1], wcs=WCS(naxis=1)) assert nd.wcs is not None # Test conflicting wcs (other NDData) nd2 = NDData(nd, wcs=WCS(naxis=1)) assert nd2.wcs is not None and nd2.wcs is not nd.wcs def test_param_meta(): # everything dict-like is allowed with pytest.raises(TypeError): NDData([1], meta=3) nd = NDData([1, 2, 3], meta={}) assert len(nd.meta) == 0 nd = NDData([1, 2, 3]) assert isinstance(nd.meta, OrderedDict) assert len(nd.meta) == 0 # Test conflicting meta (other NDData) nd2 = NDData(nd, meta={"image": "sun"}) assert len(nd2.meta) == 1 nd3 = NDData(nd2, meta={"image": "moon"}) assert len(nd3.meta) == 1 assert nd3.meta["image"] == "moon" def test_param_mask(): # Since everything is allowed we only need to test something nd = NDData([1], mask=False) assert not nd.mask # Test conflicting mask (other NDData) nd2 = NDData(nd, mask=True) assert nd2.mask # (masked array) nd3 = NDData(np.ma.array([1], mask=False), mask=True) assert nd3.mask # (masked quantity) mq = np.ma.array(np.array([2, 3]) * u.m, mask=False) nd4 = NDData(mq, mask=True) assert nd4.mask def test_param_unit(): with pytest.raises(ValueError): NDData(np.ones((5, 5)), unit="NotAValidUnit") NDData([1, 2, 3], unit="meter") # Test conflicting units (quantity as data) q = np.array([1, 2, 3]) * u.m nd = NDData(q, unit="cm") assert nd.unit != q.unit assert nd.unit == u.cm # (masked quantity) mq = np.ma.array(np.array([2, 3]) * u.m, mask=False) nd2 = NDData(mq, unit=u.s) assert nd2.unit == u.s # (another NDData as data) nd3 = NDData(nd, unit="km") assert nd3.unit == u.km def test_pickle_nddata_with_uncertainty(): ndd = NDData( np.ones(3), uncertainty=StdDevUncertainty(np.ones(5), unit=u.m), unit=u.m ) ndd_dumped = pickle.dumps(ndd) ndd_restored = pickle.loads(ndd_dumped) assert type(ndd_restored.uncertainty) is StdDevUncertainty assert ndd_restored.uncertainty.parent_nddata is ndd_restored assert ndd_restored.uncertainty.unit == u.m def test_pickle_uncertainty_only(): ndd = NDData( np.ones(3), uncertainty=StdDevUncertainty(np.ones(5), unit=u.m), unit=u.m ) uncertainty_dumped = pickle.dumps(ndd.uncertainty) uncertainty_restored = pickle.loads(uncertainty_dumped) np.testing.assert_array_equal(ndd.uncertainty.array, uncertainty_restored.array) assert ndd.uncertainty.unit == uncertainty_restored.unit # Even though it has a parent there is no one that references the parent # after unpickling so the weakref "dies" immediately after unpickling # finishes. assert uncertainty_restored.parent_nddata is None def test_pickle_nddata_without_uncertainty(): ndd = NDData(np.ones(3), unit=u.m) dumped = pickle.dumps(ndd) ndd_restored = pickle.loads(dumped) np.testing.assert_array_equal(ndd.data, ndd_restored.data) # Check that the meta descriptor is working as expected. The MetaBaseTest class # takes care of defining all the tests, and we simply have to define the class # and any minimal set of args to pass. from astropy.utils.tests.test_metadata import MetaBaseTest class TestMetaNDData(MetaBaseTest): test_class = NDData args = np.array([[1.0]]) # Representation tests def test_nddata_str(): arr1d = NDData(np.array([1, 2, 3])) assert str(arr1d) == "[1 2 3]" arr2d = NDData(np.array([[1, 2], [3, 4]])) assert str(arr2d) == textwrap.dedent( """ [[1 2] [3 4]]"""[ 1: ] ) arr3d = NDData(np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])) assert str(arr3d) == textwrap.dedent( """ [[[1 2] [3 4]] [[5 6] [7 8]]]"""[ 1: ] ) # let's add units! arr = NDData(np.array([1, 2, 3]), unit="km") assert str(arr) == "[1 2 3] km" # what if it had these units? arr = NDData(np.array([1, 2, 3]), unit="erg cm^-2 s^-1 A^-1") assert str(arr) == "[1 2 3] erg / (A cm2 s)" def test_nddata_repr(): # The big test is eval(repr()) should be equal to the original! arr1d = NDData(np.array([1, 2, 3])) s = repr(arr1d) assert s == "NDData([1, 2, 3])" got = eval(s) assert np.all(got.data == arr1d.data) assert got.unit == arr1d.unit arr2d = NDData(np.array([[1, 2], [3, 4]])) s = repr(arr2d) assert s == textwrap.dedent( """ NDData([[1, 2], [3, 4]])"""[ 1: ] ) got = eval(s) assert np.all(got.data == arr2d.data) assert got.unit == arr2d.unit arr3d = NDData(np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])) s = repr(arr3d) assert s == textwrap.dedent( """ NDData([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])"""[ 1: ] ) got = eval(s) assert np.all(got.data == arr3d.data) assert got.unit == arr3d.unit # let's add units! arr = NDData(np.array([1, 2, 3]), unit="km") s = repr(arr) assert s == "NDData([1, 2, 3], unit='km')" got = eval(s) assert np.all(got.data == arr.data) assert got.unit == arr.unit # Not supported features def test_slicing_not_supported(): ndd = NDData(np.ones((5, 5))) with pytest.raises(TypeError): ndd[0] def test_arithmetic_not_supported(): ndd = NDData(np.ones((5, 5))) with pytest.raises(TypeError): ndd + ndd def test_nddata_wcs_setter_error_cases(): ndd = NDData(np.ones((5, 5))) # Setting with a non-WCS should raise an error with pytest.raises(TypeError): ndd.wcs = "I am not a WCS" naxis = 2 # This should succeed since the WCS is currently None ndd.wcs = nd_testing._create_wcs_simple( naxis=naxis, ctype=["deg"] * naxis, crpix=[0] * naxis, crval=[10] * naxis, cdelt=[1] * naxis, ) with pytest.raises(ValueError): # This should fail since the WCS is not None ndd.wcs = nd_testing._create_wcs_simple( naxis=naxis, ctype=["deg"] * naxis, crpix=[0] * naxis, crval=[10] * naxis, cdelt=[1] * naxis, ) def test_nddata_wcs_setter_with_low_level_wcs(): ndd = NDData(np.ones((5, 5))) wcs = WCS() # If the wcs property is set with a low level WCS it should get # wrapped to high level. low_level = SlicedLowLevelWCS(wcs, 5) assert not isinstance(low_level, BaseHighLevelWCS) ndd.wcs = low_level assert isinstance(ndd.wcs, BaseHighLevelWCS) def test_nddata_init_with_low_level_wcs(): wcs = WCS() low_level = SlicedLowLevelWCS(wcs, 5) ndd = NDData(np.ones((5, 5)), wcs=low_level) assert isinstance(ndd.wcs, BaseHighLevelWCS) class NDDataCustomWCS(NDData): @property def wcs(self): return WCS() def test_overriden_wcs(): # Check that a sub-class that overrides `.wcs` without providing a setter # works NDDataCustomWCS(np.ones((5, 5)))
1c3b8f28d178313694e1c690e9d8ad679f9355ca15fae34d4efbc8bcb604652d
# Licensed under a 3-clause BSD style license - see LICENSE.rst # This module contains tests of a class equivalent to pre-1.0 NDData. import numpy as np import pytest from astropy import units as u from astropy.nddata.compat import NDDataArray from astropy.nddata.nddata import NDData from astropy.nddata.nduncertainty import StdDevUncertainty from astropy.wcs import WCS NDDATA_ATTRIBUTES = [ "mask", "flags", "uncertainty", "unit", "shape", "size", "dtype", "ndim", "wcs", "convert_unit_to", ] def test_nddataarray_has_attributes_of_old_nddata(): ndd = NDDataArray([1, 2, 3]) for attr in NDDATA_ATTRIBUTES: assert hasattr(ndd, attr) def test_nddata_simple(): nd = NDDataArray(np.zeros((10, 10))) assert nd.shape == (10, 10) assert nd.size == 100 assert nd.dtype == np.dtype(float) def test_nddata_parameters(): # Test for issue 4620 nd = NDDataArray(data=np.zeros((10, 10))) assert nd.shape == (10, 10) assert nd.size == 100 assert nd.dtype == np.dtype(float) # Change order; `data` has to be given explicitly here nd = NDDataArray(meta={}, data=np.zeros((10, 10))) assert nd.shape == (10, 10) assert nd.size == 100 assert nd.dtype == np.dtype(float) # Pass uncertainty as second implicit argument data = np.zeros((10, 10)) uncertainty = StdDevUncertainty(0.1 + np.zeros_like(data)) nd = NDDataArray(data, uncertainty) assert nd.shape == (10, 10) assert nd.size == 100 assert nd.dtype == np.dtype(float) assert nd.uncertainty == uncertainty def test_nddata_conversion(): nd = NDDataArray(np.array([[1, 2, 3], [4, 5, 6]])) assert nd.size == 6 assert nd.dtype == np.dtype(int) @pytest.mark.parametrize( "flags_in", [ np.array([True, False]), np.array([1, 0]), [True, False], [1, 0], np.array(["a", "b"]), ["a", "b"], ], ) def test_nddata_flags_init_without_np_array(flags_in): ndd = NDDataArray([1, 1], flags=flags_in) assert (ndd.flags == flags_in).all() @pytest.mark.parametrize("shape", [(10,), (5, 5), (3, 10, 10)]) def test_nddata_flags_invalid_shape(shape): with pytest.raises(ValueError) as exc: NDDataArray(np.zeros((10, 10)), flags=np.ones(shape)) assert exc.value.args[0] == "dimensions of flags do not match data" def test_convert_unit_to(): # convert_unit_to should return a copy of its input d = NDDataArray(np.ones((5, 5))) d.unit = "km" d.uncertainty = StdDevUncertainty(0.1 + np.zeros_like(d)) # workaround because zeros_like does not support dtype arg until v1.6 # and NDData accepts only bool ndarray as mask tmp = np.zeros_like(d.data) d.mask = np.array(tmp, dtype=bool) d1 = d.convert_unit_to("m") assert np.all(d1.data == np.array(1000.0)) assert np.all(d1.uncertainty.array == 1000.0 * d.uncertainty.array) assert d1.unit == u.m # changing the output mask should not change the original d1.mask[0, 0] = True assert d.mask[0, 0] != d1.mask[0, 0] d.flags = np.zeros_like(d.data) d1 = d.convert_unit_to("m") # check that subclasses can require wcs and/or unit to be present and use # _arithmetic and convert_unit_to class SubNDData(NDDataArray): """ Subclass for test initialization of subclasses in NDData._arithmetic and NDData.convert_unit_to """ def __init__(self, *arg, **kwd): super().__init__(*arg, **kwd) if self.unit is None: raise ValueError("Unit for subclass must be specified") if self.wcs is None: raise ValueError("WCS for subclass must be specified") def test_init_of_subclass_in_convert_unit_to(): data = np.ones([10, 10]) arr1 = SubNDData(data, unit="m", wcs=WCS(naxis=2)) result = arr1.convert_unit_to("km") np.testing.assert_array_equal(arr1.data, 1000 * result.data) # Test for issue #4129: def test_nddataarray_from_nddataarray(): ndd1 = NDDataArray( [1.0, 4.0, 9.0], uncertainty=StdDevUncertainty([1.0, 2.0, 3.0]), flags=[0, 1, 0] ) ndd2 = NDDataArray(ndd1) # Test that the 2 instances point to the same objects and aren't just # equal; this is explicitly documented for the main data array and we # probably want to catch any future change in behavior for the other # attributes too and ensure they are intentional. assert ndd2.data is ndd1.data assert ndd2.uncertainty is ndd1.uncertainty assert ndd2.flags is ndd1.flags assert ndd2.meta == ndd1.meta # Test for issue #4137: def test_nddataarray_from_nddata(): ndd1 = NDData([1.0, 4.0, 9.0], uncertainty=StdDevUncertainty([1.0, 2.0, 3.0])) ndd2 = NDDataArray(ndd1) assert ndd2.data is ndd1.data assert ndd2.uncertainty is ndd1.uncertainty assert ndd2.meta == ndd1.meta