text
stringlengths 15
7.82k
| ids
sequencelengths 1
7
|
---|---|
def METHOD_NAME(key: str, default=None) -> float:
env_var = Environment._get(key, default)
return float(env_var) | [
19,
1819
] |
def METHOD_NAME(self, batch, names):
return [batch[name] for name in names] | [
24,
245
] |
def METHOD_NAME(self):
for attr in ['SWAP', 'SBSIZE', 'NPTS']:
with contextlib.suppress(AttributeError):
self.assertIsInstance(getattr(resource, 'RLIMIT_' + attr), int) | [
9,
7860,
7861
] |
def METHOD_NAME(self) -> None:
self._client.METHOD_NAME() | [
1462
] |
def METHOD_NAME(
self, resource_group_name: str, namespace_name: str, **kwargs: Any
) -> _models.PrivateLinkResourcesListResult:
"""Gets lists of resources that supports Privatelinks.
.. seealso::
- https://msdn.microsoft.com/en-us/library/azure/mt639379.aspx
:param resource_group_name: Name of the Resource group within the Azure subscription. Required.
:type resource_group_name: str
:param namespace_name: The namespace name. Required.
:type namespace_name: str
:keyword callable cls: A custom type or function that will be passed the direct response
:return: PrivateLinkResourcesListResult or the result of cls(response)
:rtype: ~azure.mgmt.servicebus.v2021_11_01.models.PrivateLinkResourcesListResult
:raises ~azure.core.exceptions.HttpResponseError:
"""
error_map = {
401: ClientAuthenticationError,
404: ResourceNotFoundError,
409: ResourceExistsError,
304: ResourceNotModifiedError,
}
error_map.update(kwargs.pop("error_map", {}) or {})
_headers = kwargs.pop("headers", {}) or {}
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
api_version: Literal["2021-11-01"] = kwargs.pop("api_version", _params.pop("api-version", "2021-11-01"))
cls: ClsType[_models.PrivateLinkResourcesListResult] = kwargs.pop("cls", None)
request = build_get_request(
resource_group_name=resource_group_name,
namespace_name=namespace_name,
subscription_id=self._config.subscription_id,
api_version=api_version,
template_url=self.METHOD_NAME.metadata["url"],
headers=_headers,
params=_params,
)
request = _convert_request(request)
request.url = self._client.format_url(request.url)
pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
request, stream=False, **kwargs
)
response = pipeline_response.http_response
if response.status_code not in [200]:
map_error(status_code=response.status_code, response=response, error_map=error_map)
error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
deserialized = self._deserialize("PrivateLinkResourcesListResult", pipeline_response)
if cls:
return cls(pipeline_response, deserialized, {})
return deserialized | [
19
] |
def METHOD_NAME(
self,
files: List[str],
file_path: str,
file_name: str,
results_filter: Optional[ObjectType],
) -> None:
filtered = ["__pycache__", "__init__.py"]
is_group = self.is_group(file_path)
is_config = self.is_config(file_path)
if (
is_group
and (results_filter is None or results_filter == ObjectType.GROUP)
and file_name not in filtered
):
files.append(file_name)
if (
is_config
and file_name not in filtered
and (results_filter is None or results_filter == ObjectType.CONFIG)
):
# strip extension
last_dot = file_name.rfind(".")
if last_dot != -1:
file_name = file_name[0:last_dot]
files.append(file_name) | [
245,
238,
1571
] |
def METHOD_NAME(address):
users = [
User(
email=f"john.doe.{i}@example.com",
is_active=True,
default_billing_address=address.get_copy(),
default_shipping_address=address.get_copy(),
first_name=f"John_{i}",
last_name=f"Doe_{i}",
)
for i in range(ORDER_COUNT_IN_BENCHMARKS)
]
return User.objects.bulk_create(users) | [
3467,
43,
852,
3906
] |
def METHOD_NAME():
client = boto3.client("appsync", region_name="ap-southeast-1")
api_id = client.create_graphql_api(name="api1", authenticationType="API_KEY")[
"graphqlApi"
]["apiId"]
resp = client.get_graphql_api(apiId=api_id)
assert "graphqlApi" in resp
api = resp["graphqlApi"]
assert api["name"] == "api1"
assert "apiId" in api
assert api["authenticationType"] == "API_KEY" | [
9,
19,
4487,
58
] |
def METHOD_NAME(
model: PipetteModel, output: pc.PipetteModelVersionType
) -> None:
assert output == ps.convert_pipette_model(model) | [
9,
197,
5302,
578
] |
def METHOD_NAME(a, b, transa, transb):
if transa:
a = a.transpose(0, 2, 1)
if not transb:
b = b.transpose(0, 2, 1)
return tvm.topi.testing.batch_matmul(a, b) | [
19,
2028
] |
def METHOD_NAME(self):
return True | [
220,
343,
112,
2770
] |
def METHOD_NAME(expected, create_roster_files):
"""Test that minion files in the directory roster match and render."""
expected = expected["basic"]
ret = dir_.targets(".*basic$", "pcre", saltenv="")
_test_match(ret, expected) | [
9,
756,
2647
] |
def METHOD_NAME(self, _ctxsw_re=...): ... | [
181,
3890,
6612
] |
def METHOD_NAME(other):
controller.call_ethplorer(other) | [
9,
128,
-1
] |
def METHOD_NAME(request, tmpdir):
"""
Fixture that prepares a simulation directory with a populated west.cfg file.
"""
test_dir = str(tmpdir)
os.chdir(test_dir)
copy_ref(test_dir)
copyfile(os.path.join(REFERENCE_PATH, 'west_init_ref.cfg'), CFG_FILENAME)
copyfile(os.path.join(REFERENCE_PATH, 'west_init_ref.h5'), "west_init_ref.h5")
request.cls.cfg_filepath = CFG_FILENAME
request.cls.h5_filepath = H5_FILENAME
request.cls.ref_h5_filepath = 'west_init_ref.h5'
os.environ['WEST_SIM_ROOT'] = test_dir
westpa.rc = westpa.core._rc.WESTRC()
request.addfinalizer(clear_state) | [
2360,
2610
] |
def METHOD_NAME(msn, user_agent, ip, data):
for report in data:
events = report.pop('events')
event_uuid = uuid.uuid4()
for event_index, (created_at, payload) in enumerate(events):
# event type
try:
failed = int(payload["status"]) != 0
except (KeyError, ValueError):
failed = True
payload_type = payload.get("type")
if payload_type == "install":
if failed:
event_cls = MunkiInstallFailedEvent
else:
event_cls = MunkiInstallEvent
elif payload_type == "removal":
if failed:
event_cls = MunkiRemovalFailedEvent
else:
event_cls = MunkiRemovalEvent
elif payload_type == "warning":
event_cls = MunkiWarningEvent
elif payload_type == "error":
event_cls = MunkiErrorEvent
elif payload_type == "start":
event_cls = MunkiStartEvent
else:
logger.error("Unknown munki event payload type %s", payload_type)
continue
# build event
metadata = EventMetadata(
uuid=event_uuid,
index=event_index,
machine_serial_number=msn,
request=EventRequest(user_agent, ip),
created_at=parser.parse(created_at),
incident_updates=payload.pop("incident_updates", []),
)
payload.update(report)
event = event_cls(metadata, payload)
event.post() | [
72,
15105,
239
] |
async def METHOD_NAME(
self,
resource_group_name: str,
server_name: str,
**kwargs: Any
) -> "_models.RecoverableServerResource":
"""Gets a recoverable MariaDB Server.
:param resource_group_name: The name of the resource group. The name is case insensitive.
:type resource_group_name: str
:param server_name: The name of the server.
:type server_name: str
:keyword callable cls: A custom type or function that will be passed the direct response
:return: RecoverableServerResource, or the result of cls(response)
:rtype: ~azure.mgmt.rdbms.mariadb.models.RecoverableServerResource
:raises: ~azure.core.exceptions.HttpResponseError
"""
cls = kwargs.pop('cls', None) # type: ClsType["_models.RecoverableServerResource"]
error_map = {
401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
}
error_map.update(kwargs.pop('error_map', {}))
api_version = "2018-06-01"
accept = "application/json"
# Construct URL
url = self.METHOD_NAME.metadata['url'] # type: ignore
path_format_arguments = {
'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1),
'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'),
'serverName': self._serialize.url("server_name", server_name, 'str'),
}
url = self._client.format_url(url, **path_format_arguments)
# Construct parameters
query_parameters = {} # type: Dict[str, Any]
query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str')
# Construct headers
header_parameters = {} # type: Dict[str, Any]
header_parameters['Accept'] = self._serialize.header("accept", accept, 'str')
request = self._client.METHOD_NAME(url, query_parameters, header_parameters)
pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
response = pipeline_response.http_response
if response.status_code not in [200]:
map_error(status_code=response.status_code, response=response, error_map=error_map)
raise HttpResponseError(response=response, error_format=ARMErrorFormat)
deserialized = self._deserialize('RecoverableServerResource', pipeline_response)
if cls:
return cls(pipeline_response, deserialized, {})
return deserialized | [
19
] |
def METHOD_NAME(static_exc, exc_args):
exc, static_args, locinfo = cloudpickle.loads(static_exc)
real_args = []
exc_args_iter = iter(exc_args)
for arg in static_args:
if isinstance(arg, ir.Value):
real_args.append(next(exc_args_iter))
else:
real_args.append(arg)
return (exc, tuple(real_args), locinfo) | [
1888,
56,
-1,
1755
] |
def METHOD_NAME(self):
"""Enables to get outputs of the operator by evaluating it
Returns
--------
outputs : OutputsChangeLocation
"""
return super().METHOD_NAME | [
141
] |
def METHOD_NAME(self, captchaType, url, siteKey, captchaParams):
taskID = None
if not captchaParams.get('clientKey'):
raise CaptchaParameter(
"CapMonster: Missing clientKey parameter."
)
self.clientKey = captchaParams.get('clientKey')
if captchaParams.get('proxy') and not captchaParams.get('no_proxy'):
hostParsed = urlparse(captchaParams.get('proxy', {}).get('https'))
if not hostParsed.scheme:
raise CaptchaParameter('Cannot parse proxy correctly, bad scheme')
if not hostParsed.netloc:
raise CaptchaParameter('Cannot parse proxy correctly, bad netloc')
ports = {
'http': 80,
'https': 443
}
self.proxy = {
'proxyType': hostParsed.scheme,
'proxyAddress': hostParsed.hostname,
'proxyPort': hostParsed.port if hostParsed.port else ports[self.proxy['proxyType']],
'proxyLogin': hostParsed.username,
'proxyPassword': hostParsed.password,
}
else:
self.proxy = None
try:
taskID = self.requestSolve(captchaType, url, siteKey)
return self.requestJob(taskID)
except polling2.TimeoutException:
try:
if taskID:
self.reportJob(taskID)
except polling2.TimeoutException:
raise CaptchaTimeout(
"CapMonster: Captcha solve took to long and also failed "
f"reporting the task with task id {taskID}."
)
raise CaptchaTimeout(
"CapMonster: Captcha solve took to long to execute "
f"task id {taskID}, aborting."
) | [
19,
2244,
3485
] |
def METHOD_NAME(self):
nucs = 'TTMTTCNTTTTA'
expected_aminos = '[FL]F[FILV]L'
stats = {}
expected_stats = dict(length=4, ambiguous=2, max_aminos=4)
aminos = translate(nucs, stats=stats, list_ambiguous=True)
self.assertEqual(expected_aminos, aminos)
self.assertEqual(expected_stats, stats) | [
9,
68,
9624
] |
def METHOD_NAME(self):
self.assertTrue(issubclass(MagicMock, Mock))
self.assertTrue(issubclass(NonCallableMagicMock, NonCallableMock)) | [
9,
6801
] |
f METHOD_NAME(self): | [
9,
1337,
623,
1097,
130,
259,
604
] |
def METHOD_NAME(doc):
basic_component, hra_component = frappe.db.get_value(
"Company", doc.company, ["basic_component", "hra_component"]
)
if not (basic_component and hra_component):
frappe.throw(
_("Please set Basic and HRA component in Company {0}").format(
get_link_to_form("Company", doc.company)
)
)
annual_exemption = monthly_exemption = hra_amount = basic_amount = 0
if hra_component and basic_component:
assignments = get_salary_assignments(doc.employee, doc.payroll_period)
if not assignments and doc.docstatus == 1:
frappe.throw(
_("Salary Structure must be submitted before submission of {0}").format(doc.doctype)
)
assignment_dates = [assignment.from_date for assignment in assignments]
for idx, assignment in enumerate(assignments):
if has_hra_component(assignment.salary_structure, hra_component):
basic_salary_amt, hra_salary_amt = get_component_amt_from_salary_slip(
doc.employee,
assignment.salary_structure,
basic_component,
hra_component,
assignment.from_date,
)
to_date = get_end_date_for_assignment(assignment_dates, idx, doc.payroll_period)
frequency = frappe.get_value(
"Salary Structure", assignment.salary_structure, "payroll_frequency"
)
basic_amount += get_component_pay(frequency, basic_salary_amt, assignment.from_date, to_date)
hra_amount += get_component_pay(frequency, hra_salary_amt, assignment.from_date, to_date)
if hra_amount:
if doc.monthly_house_rent:
annual_exemption = calculate_hra_exemption(
assignment.salary_structure,
basic_amount,
hra_amount,
doc.monthly_house_rent,
doc.rented_in_metro_city,
)
if annual_exemption > 0:
monthly_exemption = annual_exemption / 12
else:
annual_exemption = 0
return frappe._dict(
{
"hra_amount": hra_amount,
"annual_exemption": annual_exemption,
"monthly_exemption": monthly_exemption,
}
) | [
1593,
14173,
11014,
-1,
16343
] |
async def METHOD_NAME(self):
response = await self.get_as_heif("/unsafe/animated.gif")
expect(response.code).to_equal(200)
expect(response.body).to_be_gif() | [
9,
427,
130,
197,
5808,
-1,
24
] |
def METHOD_NAME(name):
# Save these images somewhat larger than a regular test case image
# since the images contain a lot of text.
swa = SaveWindowAttributes()
swa.width = 500
swa.height = 500
swa.screenCapture = 0
Test(name, swa) | [
73,
9,
660
] |
f METHOD_NAME(self, batch_size, context_dim): | [
9,
385,
5862,
86
] |
def METHOD_NAME(self):
"""Registering an external key/value will allow it to be included in
the list returned by config_option_list action."""
key = "ckanext.example_iconfigurer.test_conf"
value = "Test value"
params = {key: value}
# add registered external value
helpers.call_action("config_option_update", **params)
option_list = helpers.call_action("config_option_list")
assert key in option_list | [
9,
86,
3024,
751,
99,
623,
245
] |
f METHOD_NAME(self): | [
1668,
1413,
3402
] |
def METHOD_NAME(cmd,
client,
webhook_name,
registry_name,
resource_group_name=None,
parameters=None):
resource_group_name = get_resource_group_name_by_registry_name(
cmd.cli_ctx, registry_name, resource_group_name)
return client.begin_update(resource_group_name, registry_name, webhook_name, parameters) | [
2299,
12,
86,
0
] |
def METHOD_NAME():
tolerances = {
'multiquadric': 0.1,
'inverse multiquadric': 0.15,
'gaussian': 0.15,
'cubic': 0.15,
'quintic': 0.1,
'thin-plate': 0.15,
'linear': 0.2
}
for function in FUNCTIONS:
check_2drbf1d_regularity(function, tolerances.get(function, 1e-2)) | [
9,
-1,
16349
] |
def METHOD_NAME(self):
return tuple(self._normalize_bounds(self._src.bounds)) | [
2739
] |
def METHOD_NAME(self, user, *args, **kwargs):
return self.get_queryset().filter(
*args,
organizationmembership__user=user,
organizationmembership__status=OrganizationMembership.STATUS.ACTIVE,
**kwargs
) | [
19,
43,
21
] |
f METHOD_NAME(self): | [
9,
2654,
0,
116
] |
def METHOD_NAME(element):
x1 = float(element.get("x1"))
y1 = float(element.get("y1"))
x2 = float(element.get("x2"))
y2 = float(element.get("y2"))
fill = Color(get_style(element, "fill"))
stroke_weight = get_style(element, "stroke-width")
stroke = Color(get_style(element, "stroke"))
stroke_cap = get_style(element, "stroke-cap")
return PShape(
vertices=[(x1, y1), (x2, y2)],
fill_color=fill,
stroke_weight=stroke_weight,
stroke_color=stroke,
stroke_cap=stroke_cap,
stroke_join=default_values["stroke-join"],
) | [
214,
534
] |
def METHOD_NAME(self) -> str:
return pulumi.get(self, "parent") | [
935
] |
def METHOD_NAME(self):
logger.debug("Ensuring dependencies.")
dependencies = ["docker", "git"]
failed_dependencies = []
for dependency in dependencies:
return_code = shell.run(["which", dependency], check=False).returncode
if return_code:
failed_dependencies.append(dependency)
if failed_dependencies:
raise EnvironmentError(
f"Dependencies missing: {', '.join(failed_dependencies)}"
) | [
602,
2410,
1255
] |
def METHOD_NAME(
request,
salt_factories,
host_docker_network_ip_address,
state_tree,
pillar_tree,
):
master_id = random_string("master-compat-", uppercase=False)
root_dir = salt_factories.get_root_dir_for_daemon(master_id)
conf_dir = root_dir / "conf"
conf_dir.mkdir(exist_ok=True)
config_defaults = {
"root_dir": str(root_dir),
"transport": request.config.getoption("--transport"),
}
config_overrides = {
"interface": host_docker_network_ip_address,
"log_level_logfile": "quiet",
# We also want to scrutinize the key acceptance
"open_mode": False,
}
# We need to copy the extension modules into the new master root_dir or
# it will be prefixed by it
extension_modules_path = str(root_dir / "extension_modules")
if not os.path.exists(extension_modules_path):
shutil.copytree(
os.path.join(RUNTIME_VARS.FILES, "extension_modules"),
extension_modules_path,
)
config_overrides.update(
{
"extension_modules": extension_modules_path,
"file_roots": {"base": [str(state_tree)]},
"pillar_roots": {"base": [str(pillar_tree)]},
}
)
factory = salt_factories.salt_master_daemon(
master_id,
defaults=config_defaults,
overrides=config_overrides,
)
with factory.started():
yield factory | [
2229,
2614
] |
def METHOD_NAME(name, typ, body):
new_name = 'newname'
if not isinstance(body, bytes):
body = body.encode('UTF-8')
return File(new_name, '', body, content_type=typ) | [
343,
1276,
1155
] |
def METHOD_NAME():
received = []
class TestCollector(cirq.Collector):
def next_job(self):
q = cirq.LineQubit(0)
circuit = cirq.Circuit(cirq.H(q), cirq.measure(q))
return cirq.CircuitSampleJob(circuit=circuit, repetitions=10, tag='test')
def on_job_result(self, job, result):
received.append(job.tag)
TestCollector().collect(sampler=cirq.Simulator(), max_total_samples=100, concurrency=5)
assert received == ['test'] * 10 | [
9,
1444
] |
def METHOD_NAME(self, message):
if self.DEBUG:
print '[DEBUG] - ' + str(datetime.datetime.now()) + ' - ' + message | [
390
] |
def METHOD_NAME(value):
return isinstance(value, collections.abc.Sequence) and not isinstance(value, str) | [
137,
256,
3,
771
] |
def METHOD_NAME(nodes: List[Node], identifier: str) -> bool:
node = nodes[0]
try:
provider_id = node.spec.providerID
return identifier in provider_id
except (AttributeError, TypeError):
# is not aks, field is optional so could be missing
return False | [
137,
3,
623,
2059,
2275
] |
def METHOD_NAME(self, timeout: Optional[float] = None):
logger.info("Stopping Bitcoin mining network traffic simulator")
self._send_bitcoin_mining_request_periodically.METHOD_NAME(timeout) | [
631
] |
def METHOD_NAME(self, refresh_token): # noqa: ANN001
"""Set the refresh token in the database.
This function will overwrite an existing value if the corresponding ``key``
already exists.
"""
self._connection.execute(
"REPLACE INTO tokens VALUES (?, ?, datetime('now'))",
(self.key, refresh_token),
)
self._connection.commit() | [
0
] |
def METHOD_NAME(self):
if self.is_file and self.extension.lower() in DOCUMENT_MIMETYPE_MAP:
return DOCUMENT_MIMETYPE_MAP[self.extension.lower()]
return None | [
1526,
44
] |
def METHOD_NAME(self, s):
# type: (str) -> value_t
"""
Raises exception on error?
- Can parse either J8 or JSON strings
"""
# TODO: feed it to lexer first, then parser
return None | [
214
] |
def METHOD_NAME():
# as we don't use session from flask, then we save into user registry, at least for now
if not app.auth.authorized([], 'global_preferences', 'POST'):
return app.auth.authenticate()
secrets = request.files.get('secretsFile', None)
if secrets is None:
return api_error('Please provide your youtube credentials', 400)
secrets.seek(0)
file_content = secrets.read()
yt_data = json.loads(bytes2string(file_content))
if 'web' not in yt_data:
return api_error('OAuth project has to be configured as web in google console', 400)
# let's save secrets file content in db for future usage
global_serv = get_resource_service('global_preferences')
global_serv.save_preference(YT_KEY, yt_data)
redirect_uri = flask.url_for(
'video_upload.oauth2callback', _external=True, _scheme=SCHEME)
flow = Flow.from_client_config(
yt_data, scopes=SCOPES, redirect_uri=redirect_uri)
auth_url, _ = flow.authorization_url(
prompt='consent',
access_type='offline',
include_granted_scopes='true')
return make_response(auth_url, 200) | [
19,
1920,
466
] |
def METHOD_NAME(config):
p = ESRIServiceProvider(config)
results = p.query()
assert results['features'][0]['id'] == 1
assert results['numberReturned'] == 10
results = p.query(limit=50)
assert results['numberReturned'] == 50
results = p.query(offset=10)
assert results['features'][0]['id'] == 11
assert results['numberReturned'] == 10
results = p.query(limit=10)
assert len(results['features']) == 10
assert results['numberMatched'] == 406
results = p.query(limit=10001, resulttype='hits')
assert results['numberMatched'] == 406 | [
9,
539
] |
def METHOD_NAME(directory):
"""Delete a directory in a filesystem.
Args:
directory: Full path to a directory supported by Beam filesystems (e.g.
"gs://mybucket/mydir/", "s3://...", ...)
"""
filesystems.FileSystems.delete([directory]) | [
34,
2851
] |
def METHOD_NAME(self) -> Optional[int]:
if not self.has_more():
return None
ctrl = self.peek()
if ctrl == "Z":
self.vidx += 1
return 0
if ctrl == "-" or ctrl == "+":
self.vidx += 1
offset = self.parse_digits(2) * 60
self.skip(":")
offset += self.parse_digits(2)
offset *= -1 if ctrl == "-" else 1
return offset
raise ValueError() | [
214,
1540
] |
def METHOD_NAME(x: TensorType, mean: TensorType, scale: TensorType, df: TensorType) -> tf.Tensor:
df = to_default_float(df)
const = (
tf.math.lgamma((df + 1.0) * 0.5)
- tf.math.lgamma(df * 0.5)
- 0.5 * (tf.math.log(tf.square(scale)) + tf.math.log(df) + np.log(np.pi))
)
return const - 0.5 * (df + 1.0) * tf.math.log(
1.0 + (1.0 / df) * (tf.square((x - mean) / scale))
) | [
1316,
791
] |
def METHOD_NAME(self):
examinee = notification.cfg_from_callback
callback_file = os.path.join(self.tmp_dir.name, 'call_me')
with open(callback_file, 'w') as f:
f.write('#!/usr/bin/env sh\necho "foo: 42">"${NOTIFY_CFG_OUT}"')
os.chmod(callback_file, stat.S_IEXEC | stat.S_IREAD)
assert examinee(
repo_root=self.tmp_dir.name,
callback_path=callback_file,
effective_cfg_file='no-file-yet',
) == {'foo':42} | [
9,
2610,
280,
1076
] |
def METHOD_NAME(empty_index, small_movies):
small_movies[0]["_vectors"] = [0.1, 0.2]
def index_maker(index_uid=common.INDEX_UID, documents=small_movies):
index = empty_index(index_uid)
task = index.add_documents(documents)
index.wait_for_task(task.task_uid)
return index
return index_maker | [
724,
41,
7510,
61,
1742
] |
def METHOD_NAME(self) -> Optional[OpResIdent]:
if len(self._disabled_res_ident_list) == 0:
return None
ident = self._disabled_res_ident_list.popleft()
LOG.debug(f'Recheck resource {ident}')
self._checked_res_ident_set.add(ident)
self._commit_stat()
return ident | [
19,
1295,
191
] |
def METHOD_NAME():
return [APIStates.online, APIStates.offline] | [
1019,
4085
] |
def METHOD_NAME(self, port_num, lpmode):
# Check for invalid port_num
if port_num < self.port_start or port_num > self.port_end:
return False
try:
lpmode_val_device_file = self.BASE_VAL_PATH.format(
port_num + self.LP_GPIO_BASE)
val_file = open(lpmode_val_device_file, "w")
except IOError as e:
print("Error: unable to open file: %s" % str(e))
return False
val_file.write("1" if lpmode is True else "0")
val_file.close()
return True | [
0,
3420,
1928,
854
] |
def METHOD_NAME(self, ignore_results_formatting=False, ignore_metric_reference=False):
self._internal_module.print_metrics(ignore_results_formatting, ignore_metric_reference) | [
38,
1097,
51
] |
def METHOD_NAME():
args = parser.parse_args()
if not args.checkpoint and not args.pretrained:
args.pretrained = True
amp_autocast = suppress # do nothing
if args.amp:
if not has_native_amp:
print("Native Torch AMP is not available (requires torch >= 1.6), using FP32.")
else:
amp_autocast = torch.cuda.amp.autocast
# create model
model = geffnet.create_model(
args.model,
num_classes=args.num_classes,
in_chans=3,
pretrained=args.pretrained,
checkpoint_path=args.checkpoint,
scriptable=args.torchscript)
if args.channels_last:
model = model.to(memory_format=torch.channels_last)
if args.torchscript:
torch.jit.optimized_execution(True)
model = torch.jit.script(model)
print('Model %s created, param count: %d' %
(args.model, sum([m.numel() for m in model.parameters()])))
data_config = resolve_data_config(model, args)
criterion = nn.CrossEntropyLoss()
if not args.no_cuda:
if args.num_gpu > 1:
model = torch.nn.DataParallel(model, device_ids=list(range(args.num_gpu))).cuda()
else:
model = model.cuda()
criterion = criterion.cuda()
loader = create_loader(
Dataset(args.data, load_bytes=args.tf_preprocessing),
input_size=data_config['input_size'],
batch_size=args.batch_size,
use_prefetcher=not args.no_cuda,
interpolation=data_config['interpolation'],
mean=data_config['mean'],
std=data_config['std'],
num_workers=args.workers,
crop_pct=data_config['crop_pct'],
tensorflow_preprocessing=args.tf_preprocessing)
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
model.eval()
end = time.time()
with torch.no_grad():
for i, (input, target) in enumerate(loader):
if not args.no_cuda:
target = target.cuda()
input = input.cuda()
if args.channels_last:
input = input.contiguous(memory_format=torch.channels_last)
# compute output
with amp_autocast():
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f}, {rate_avg:.3f}/s) \t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(loader), batch_time=batch_time,
rate_avg=input.size(0) / batch_time.avg,
loss=losses, top1=top1, top5=top5))
print(' * Prec@1 {top1.avg:.3f} ({top1a:.3f}) Prec@5 {top5.avg:.3f} ({top5a:.3f})'.format(
top1=top1, top1a=100-top1.avg, top5=top5, top5a=100.-top5.avg)) | [
57
] |
def METHOD_NAME(registry_name: Optional[pulumi.Input[str]] = None,
resource_group_name: Optional[pulumi.Input[str]] = None,
task_run_name: Optional[pulumi.Input[str]] = None,
opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetTaskRunResult]:
"""
Gets the detailed information for a given task run.
:param str registry_name: The name of the container registry.
:param str resource_group_name: The name of the resource group to which the container registry belongs.
:param str task_run_name: The name of the task run.
"""
... | [
19,
758,
22,
146
] |
def METHOD_NAME(ent):
try:
return valid_ents_ordered.index(ent)
except ValueError:
return len(valid_ents_ordered) | [
266,
852,
41,
4975,
679
] |
def METHOD_NAME(self):
self.assertEqual(dis.opmap["STOP_CODE"], 0)
self.assertIn(dis.opmap["LOAD_CONST"], dis.hasconst)
self.assertIn(dis.opmap["STORE_NAME"], dis.hasname) | [
9,
9318
] |
def METHOD_NAME(self, secret_data):
nodes_with_system_id = {}
secret_config = utils.get_secret_config(secret_data)
nodes_info = self.get_nodes_info()
for node_info in nodes_info:
nodes_with_system_id[node_info.name] = self._get_system_id_for_node(node_info, secret_config)
return nodes_with_system_id | [
567,
480,
41,
112,
147
] |
def METHOD_NAME(self, line):
# Possible formats:
# goroutine 0 [idle]:
# goroutine 1 [chan receive, 30 minutes]:
# goroutine 17 [syscall, 31 minutes, locked to thread]:
# goroutine 34 [syscall, locked to thread]:
fieldnum = 0
warnings = []
line = line.strip()
try:
fieldnum = 1 # 'goroutine'
goword, line = line.split(' ', 1)
if goword.lower() != 'goroutine':
raise ParseError('First word ({0}) is not \'goroutine\'!'.format(goword))
fieldnum = 2 # goroutine ID
goId, line = line.split(' ', 1)
if not goId.isdigit():
raise ParseError('Expected integer goroutine ID, got: {0}'.format(goId))
self.id = int(goId)
fieldnum = 3 # State, wait time, etc.
# Pull the state fields (the stuff between [ and ]) out from the rest of the line
leftBraceIndex = line.find('[')
rightBraceIndex = line.find(']')
if leftBraceIndex == -1 or rightBraceIndex == -1 or rightBraceIndex < (leftBraceIndex + 2):
raise ParseError('State info not found (or is empty)!')
if leftBraceIndex > 0:
warnings.append(self.formatMessage('Extra fields found before state info: {0}'.format(line[0:leftBraceIndex]), fieldnum))
stateFields = line[leftBraceIndex+1:rightBraceIndex].split(',')
line = line[rightBraceIndex+1:]
# Now process each field
for i in range(len(stateFields)):
field = stateFields[i].strip()
if i == 0: # First field is always state
self.state = field
elif field == 'locked to thread':
self.lockedtothread = True
elif re.match('^[0-9]+ minutes$', field): # Wait time
waittime, minutes = field.split(' ', 1)
if not waittime.isdigit():
raise ParseError('Expected integer wait time, got: {0}'.format(waittime[0]))
self.waittime = int(waittime)
else:
warnings.append(self.formatMessage('Unknown field found in state info: {0}'.format(field), fieldnum))
fieldnum += 1
fieldnum = 0 # Done processing fields
# Verify no extra fields found on line
if line is not None and line != ':':
warnings.append(self.formatMessage('Extra fields found: ''{0}'''.format(line), fieldnum))
return warnings
except Exception as exc:
raiseWithModifiedMessage(sys.exc_info(), self.formatMessage(str(exc), fieldnum)) | [
214,
534
] |
def METHOD_NAME():
x = flow.nn.Parameter(flow.Tensor(init_value, device=flow.device(device)))
optim_kwargs = {
"params": [x],
"lr": learning_rate,
"betas": betas,
"eps": eps,
"weight_decay": weight_decay,
"adam_w_mode": adam_w_mode,
"do_bias_correction": do_bias_correction,
"contiguous_params": contiguous_params,
}
if clip_grad_max_norm != -1:
optim_kwargs["clip_grad_max_norm"] = clip_grad_max_norm
optim_kwargs["clip_grad_norm_type"] = clip_grad_norm_type
lamb = flow.optim.LAMB([optim_kwargs])
def train_one_iter(grad):
grad_tensor = flow.tensor(
grad,
dtype=flow.float32,
requires_grad=False,
device=flow.device(device),
)
loss = flow.sum(x * grad_tensor)
loss.backward()
if clip_grad_max_norm != -1:
lamb.clip_grad()
lamb.step()
lamb.zero_grad()
for i in range(train_iters):
train_one_iter(random_grad_seq[i])
if i == reload_state_step:
state_dict = lamb.state_dict()
lamb = flow.optim.LAMB([optim_kwargs])
if save_load_by_pickle:
with tempfile.NamedTemporaryFile() as f:
flow.save(state_dict, f.name)
state_dict = flow.load(f.name)
lamb.load_state_dict(state_dict)
return x | [
849,
604,
4080
] |
def METHOD_NAME(halcomp,widgets,paths):
return [HandlerClass(halcomp,widgets,paths)] | [
19,
376
] |
def METHOD_NAME(test_case):
for i in range(5):
_test_bce_loss_grad_grad_impl(test_case, with_logits=True) | [
9,
9538,
41,
9016,
1572,
140,
140
] |
def METHOD_NAME(self):
# Ensure that an error is raised if the In wrapped is used to wrap
# a shared variable
a = shared(1.0)
a_wrapped = In(a, update=a + 1)
with pytest.raises(TypeError):
function([a_wrapped]) | [
9,
623,
1644,
1210
] |
def METHOD_NAME(self, buf):
string = re_vt100.sub("", buf.decode("utf-8", errors="replace"))
string = string.replace("\r", "␍")
string = string.replace("\n", "")
string = string.replace("\b", "␈")
string = string.replace("\a", "␇")
string = string.replace("\v", "␋")
string = string.replace("\f", "␌")
return string | [
-1,
369,
3630,
3130
] |
f METHOD_NAME(self): | [
9,
7320,
14012,
41,
10263,
1461
] |
def METHOD_NAME(pnode):
'''
Get the root node for the path tree which contains
pnode.
Example: root = getRootNode(branchnode)
'''
ret = pnode
while pnode[0] is not None:
pnode = pnode[0]
return pnode | [
19,
1563,
1716
] |
def METHOD_NAME():
data = np.array([[], []])
with pytest.raises(ValueError):
EPSFModel(data)
data = np.ones((5, 5), dtype=float)
data[2, 2] = np.inf
with pytest.raises(ValueError, match='must be finite'):
EPSFModel(data)
data[2, 2] = np.nan
with pytest.raises(ValueError, match='must be finite'):
EPSFModel(data, flux=None)
data[2, 2] = 1
for oversampling in [-1, [-2, 4], (1, 4, 8), ((1, 2), (3, 4)),
np.ones((2, 2, 2)), 2.1, np.nan, (1, np.inf)]:
with pytest.raises(ValueError):
EPSFModel(data, oversampling=oversampling)
origin = (1, 2, 3)
with pytest.raises(TypeError):
EPSFModel(data, origin=origin) | [
9,
-1,
1461
] |
def METHOD_NAME():
tol = 10 ** (-6)
rng = np.random.default_rng(utt.fetch_seed())
x = matrix()
radius_bound = spectral_radius_bound(x, 5)
f = aesara.function([x], radius_bound)
shp = (3, 4)
m = rng.random(shp)
m = np.cov(m).astype(config.floatX)
radius_bound_aesara = f(m)
# test the approximation
mm = m
for i in range(5):
mm = np.dot(mm, mm)
radius_bound_numpy = np.trace(mm) ** (2 ** (-5))
assert abs(radius_bound_numpy - radius_bound_aesara) < tol
# test the bound
eigen_val = numpy.linalg.eig(m)
assert (eigen_val[0].max() - radius_bound_aesara) < tol
# test type errors
xx = vector()
ok = False
try:
spectral_radius_bound(xx, 5)
except TypeError:
ok = True
assert ok
ok = False
try:
spectral_radius_bound(x, 5.0)
except TypeError:
ok = True
assert ok
# test value error
ok = False
try:
spectral_radius_bound(x, -5)
except ValueError:
ok = True
assert ok | [
9,
5050,
3662,
4432
] |
f METHOD_NAME(self,x): | [
226,
1030
] |
def METHOD_NAME(self):
settings = self._create_importantpagesgenericsetting_object()
# when called directly
with self.assertRaises(AttributeError):
settings.get_page_url("not_an_attribute")
# when called indirectly via shortcut
with self.assertRaises(AttributeError):
settings.page_url.not_an_attribute | [
9,
19,
1174,
274,
45,
-1,
217
] |
def METHOD_NAME(x):
return -x[0]**2-x[1]**2 | [
784,
11805
] |
def METHOD_NAME(farm_beats_resource_name: Optional[str] = None,
resource_group_name: Optional[str] = None,
solution_id: Optional[str] = None,
opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetSolutionResult:
"""
Get installed Solution details by Solution id.
:param str farm_beats_resource_name: FarmBeats resource name.
:param str resource_group_name: The name of the resource group. The name is case insensitive.
:param str solution_id: Solution Id of the solution.
"""
__args__ = dict()
__args__['farmBeatsResourceName'] = farm_beats_resource_name
__args__['resourceGroupName'] = resource_group_name
__args__['solutionId'] = solution_id
opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts)
__ret__ = pulumi.runtime.invoke('azure-native:agfoodplatform/v20210901preview:getSolution', __args__, opts=opts, typ=GetSolutionResult).value
return AwaitableGetSolutionResult(
e_tag=pulumi.get(__ret__, 'e_tag'),
id=pulumi.get(__ret__, 'id'),
name=pulumi.get(__ret__, 'name'),
properties=pulumi.get(__ret__, 'properties'),
system_data=pulumi.get(__ret__, 'system_data'),
type=pulumi.get(__ret__, 'type')) | [
19,
725
] |
def METHOD_NAME(self):
data = [
utils.build_conf_dict(
"marshal",
"B302",
issue.Cwe.DESERIALIZATION_OF_UNTRUSTED_DATA,
["marshal.load", "marshal.loads"],
(
"Deserialization with the marshal module is possibly "
"dangerous."
),
)
]
profile = {"include": ["B001"], "blacklist": {"Call": data}}
ts = test_set.BanditTestSet(self.config, profile)
blacklist = ts.get_tests("Call")[0]
self.assertNotIn("Import", blacklist._config)
self.assertNotIn("ImportFrom", blacklist._config)
self.assertEqual(1, len(blacklist._config["Call"])) | [
9,
337,
3301,
4593
] |
def METHOD_NAME(self) -> None: ... | [
38,
390
] |
def METHOD_NAME(backend):
c = tc.Circuit(2)
for _ in range(3):
c.rx(range(2), theta=0.4)
c.cnot(0, 1)
def execute(circuit):
value = circuit.expectation_ps(z=[0])
return value
def execute2(circuit):
key = tc.backend.get_random_state(42)
count = circuit.sample(
batch=1000, allow_state=True, format_="count_dict_bin", random_generator=key
)
return count
_ = apply_rc(circuit=c, executor=execute, num_to_average=6, simplify=False)
_ = apply_rc(
circuit=c, executor=execute2, num_to_average=6, simplify=True, iscount=True
)
# generate a circuit with rc
_ = qem.rc_circuit(c) | [
9,
7671
] |
def METHOD_NAME(self):
"""Return localpath."""
return f"{self.hacs.core.config_path}/www/community/{self.data.full_name.split('/')[-1]}" | [
-1
] |
def METHOD_NAME(self, user, version):
"""
Check if `user` is authorized to access `version`.
The queryset from `_get_subproject_version` already filters public
projects. This is mainly to be overridden in .com to make use of
the auth backends in the proxied API.
"""
return True | [
220,
204
] |
def METHOD_NAME(resp):
try:
resp_json = json.loads(resp.text)
except BaseException:
resp_json = resp.text
return {
"status_code": resp.status_code,
"headers": resp.headers,
"content": resp_json,
} | [
17
] |
def METHOD_NAME(name, op):
def_op(name, op)
hasname.append(op) | [
156,
441
] |
def METHOD_NAME(packer, frame, es_lkas_state_msg, enabled, visual_alert, left_line, right_line, left_lane_depart, right_lane_depart):
values = {s: es_lkas_state_msg[s] for s in [
"CHECKSUM",
"LKAS_Alert_Msg",
"Signal1",
"LKAS_ACTIVE",
"LKAS_Dash_State",
"Signal2",
"Backward_Speed_Limit_Menu",
"LKAS_Left_Line_Enable",
"LKAS_Left_Line_Light_Blink",
"LKAS_Right_Line_Enable",
"LKAS_Right_Line_Light_Blink",
"LKAS_Left_Line_Visible",
"LKAS_Right_Line_Visible",
"LKAS_Alert",
"Signal3",
]}
values["COUNTER"] = frame % 0x10
# Filter the stock LKAS "Keep hands on wheel" alert
if values["LKAS_Alert_Msg"] == 1:
values["LKAS_Alert_Msg"] = 0
# Filter the stock LKAS sending an audible alert when it turns off LKAS
if values["LKAS_Alert"] == 27:
values["LKAS_Alert"] = 0
# Filter the stock LKAS sending an audible alert when "Keep hands on wheel" alert is active (2020+ models)
if values["LKAS_Alert"] == 28 and values["LKAS_Alert_Msg"] == 7:
values["LKAS_Alert"] = 0
# Filter the stock LKAS sending an audible alert when "Keep hands on wheel OFF" alert is active (2020+ models)
if values["LKAS_Alert"] == 30:
values["LKAS_Alert"] = 0
# Filter the stock LKAS sending "Keep hands on wheel OFF" alert (2020+ models)
if values["LKAS_Alert_Msg"] == 7:
values["LKAS_Alert_Msg"] = 0
# Show Keep hands on wheel alert for openpilot steerRequired alert
if visual_alert == VisualAlert.steerRequired:
values["LKAS_Alert_Msg"] = 1
# Ensure we don't overwrite potentially more important alerts from stock (e.g. FCW)
if visual_alert == VisualAlert.ldw and values["LKAS_Alert"] == 0:
if left_lane_depart:
values["LKAS_Alert"] = 12 # Left lane departure dash alert
elif right_lane_depart:
values["LKAS_Alert"] = 11 # Right lane departure dash alert
if enabled:
values["LKAS_ACTIVE"] = 1 # Show LKAS lane lines
values["LKAS_Dash_State"] = 2 # Green enabled indicator
else:
values["LKAS_Dash_State"] = 0 # LKAS Not enabled
values["LKAS_Left_Line_Visible"] = int(left_line)
values["LKAS_Right_Line_Visible"] = int(right_line)
return packer.make_can_msg("ES_LKAS_State", CanBus.main, values) | [
129,
2752,
2542,
551
] |
def METHOD_NAME(self):
self.stored_problems = {}
self.any_compression = False | [
176
] |
def METHOD_NAME(self):
return self.client.format_url(
"/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.EventHub/namespaces/{namespaceName}/authorizationRules",
**self.url_parameters
) | [
274
] |
def METHOD_NAME(self) -> Optional['outputs.ShippingAddressResponse']:
"""
Shipping details for the address
"""
return pulumi.get(self, "shipping_address") | [
850,
85
] |
def METHOD_NAME(self, tasks):
""" Show and run dialog for selected tasks """
if len(tasks) == 0:
return
self.tasks = tasks
self.tag_entry.set_text(self.last_tag_entry)
self.tag_entry.grab_focus()
self.apply_to_subtasks.set_active(self.last_apply_to_subtasks)
self.dialog.run()
self.dialog.hide()
self.tasks = [] | [
2444,
114
] |
def METHOD_NAME(self, obj):
"""Get resource type."""
resource_type = obj["metadata"].get(
"resource_type", {"id": "publication-article"}
)
resource_type_record = self._read_resource_type(resource_type["id"])
props = resource_type_record["props"]
return props.get("csl", "article") # article is CSL "Other" | [
19,
44
] |
def METHOD_NAME(self, f, use_iord=True):
self.use_iord = use_iord
if use_iord:
pt = f['iord']
else:
pt = f.get_index_list(f.ancestor)
self.particles = pt | [
1472
] |
def METHOD_NAME(self):
'''It should not duplicate badges'''
fake = Fake.objects.create()
result1 = fake.add_badge(TEST)
result2 = fake.add_badge(TEST)
self.assertEqual(len(fake.badges), 1)
self.assertEqual(result1, result2)
badge = fake.badges[0]
self.assertEqual(badge.kind, TEST)
self.assertIsNotNone(badge.created)
self.assertIsNone(badge.created_by) | [
9,
238,
5303,
2430
] |
def METHOD_NAME(self):
expected_vals = self.MOCK_WASM_UDF_VALS.copy()
udf_yaml_filename = "./sdcm/utils/udf_scripts/wasm_plus.yaml"
udf = UDF.from_yaml(udf_yaml_filename)
self.assertIsNotNone(udf)
for key, value in expected_vals.items():
self.assertEqual(value, getattr(udf, key), f"Did not find expected value for {key} in the udf class.") | [
9,
2309,
16980,
41,
6390,
2942
] |
def METHOD_NAME(self):
polygon = array(((0.0, 0.0), (10.0, 0.0), (10.0, 10.0), (0.0, 10.0)))
points = zeros((0, 2))
result = points_in_polygon(points, polygon)
self.assertTrue(len(result) == len(points))
polygon = array([])
points = array(((-1.0, -1.0), (5.0, 5.0), (15.0, 15.0)))
result = points_in_polygon(points, polygon)
self.assertTrue(allclose(array([0, 0, 0]), result)) | [
9,
35,
182,
623,
1117
] |
def METHOD_NAME(self):
"""
This test case runs a job on two nodes. Kills the mom process on
MS, waits for the job to be requeued and tests for the
resources_used value to be present in the 'R' record.
"""
# Submit job
select = "vnode=" + self.hostA + "+vnode=" + self.hostB
j1 = Job(TEST_USER, attrs={
ATTR_N: 'NodeFailRequeueTest',
'Resource_List.select': select})
jid1 = self.server.submit(j1)
# Wait for the job to start running.
self.server.expect(JOB, {ATTR_state: 'R'}, jid1)
# Kill the MoM process on the MS.
self.momA.signal('-KILL')
# Wait for the job to be requeued.
self.server.expect(JOB, {'job_state': 'Q'}, id=jid1)
# Check for resources_used value in the 'R' record.
msg = '.*R;' + str(jid1) + '.*resources_used.ncpus=2.*'
self.server.accounting_match(msg, regexp=True, n='ALL') | [
9,
-1
] |
def METHOD_NAME(self, data: Tuple[Tuple[Any, Tuple[str, BinaryIO]], Tuple[str, BinaryIO]]) -> Dict[str, Any]:
split_and_image_data, ann_data = data
_, image_data = split_and_image_data
image_path, image_buffer = image_data
ann_path, ann_buffer = ann_data
anns = read_mat(ann_buffer, squeeze_me=True)["GTcls"]
return dict(
image_path=image_path,
image=EncodedImage.from_file(image_buffer),
ann_path=ann_path,
# the boundaries are stored in sparse CSC format, which is not supported by PyTorch
boundaries=torch.as_tensor(
np.stack([raw_boundary.toarray() for raw_boundary in anns["Boundaries"].item()])
),
segmentation=torch.as_tensor(anns["Segmentation"].item()),
) | [
123,
734
] |
def METHOD_NAME(conf):
"""Configuration flags for executing gcc on MacOS"""
v = conf.env
v.CFLAGS_cshlib = ['-fPIC']
v.LINKFLAGS_cshlib = ['-dynamiclib']
v.cshlib_PATTERN = 'lib%s.dylib'
v.FRAMEWORKPATH_ST = '-F%s'
v.FRAMEWORK_ST = ['-framework']
v.ARCH_ST = ['-arch']
v.LINKFLAGS_cstlib = []
v.SHLIB_MARKER = []
v.STLIB_MARKER = []
v.SONAME_ST = [] | [
4110,
2872,
6697
] |
def METHOD_NAME(
self,
skip_token: Optional[str] = None,
top: Optional[int] = None,
select: Optional[str] = None,
offer_guid: Optional[str] = None,
report_creator_tenant_id: Optional[str] = None,
**kwargs: Any
) -> AsyncIterable["_models.ReportResource"]:
"""Get the AppComplianceAutomation report list for the tenant.
:param skip_token: Skip over when retrieving results. Default value is None.
:type skip_token: str
:param top: Number of elements to return when retrieving results. Default value is None.
:type top: int
:param select: OData Select statement. Limits the properties on each entry to just those
requested, e.g. ?$select=reportName,id. Default value is None.
:type select: str
:param offer_guid: The offerGuid which mapping to the reports. Default value is None.
:type offer_guid: str
:param report_creator_tenant_id: The tenant id of the report creator. Default value is None.
:type report_creator_tenant_id: str
:keyword callable cls: A custom type or function that will be passed the direct response
:return: An iterator like instance of either ReportResource or the result of cls(response)
:rtype:
~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.appcomplianceautomation.models.ReportResource]
:raises ~azure.core.exceptions.HttpResponseError:
"""
_headers = kwargs.pop("headers", {}) or {}
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
api_version = kwargs.pop(
"api_version", _params.pop("api-version", self._config.api_version)
) # type: Literal["2022-11-16-preview"]
cls = kwargs.pop("cls", None) # type: ClsType[_models.ReportResourceList]
error_map = {
401: ClientAuthenticationError,
404: ResourceNotFoundError,
409: ResourceExistsError,
304: ResourceNotModifiedError,
}
error_map.update(kwargs.pop("error_map", {}) or {})
def prepare_request(next_link=None):
if not next_link:
request = build_list_request(
skip_token=skip_token,
top=top,
select=select,
offer_guid=offer_guid,
report_creator_tenant_id=report_creator_tenant_id,
api_version=api_version,
template_url=self.METHOD_NAME.metadata["url"],
headers=_headers,
params=_params,
)
request = _convert_request(request)
request.url = self._client.format_url(request.url) # type: ignore
else:
# make call to next link with the client's api-version
_parsed_next_link = urllib.parse.urlparse(next_link)
_next_request_params = case_insensitive_dict(
{
key: [urllib.parse.quote(v) for v in value]
for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items()
}
)
_next_request_params["api-version"] = self._config.api_version
request = HttpRequest(
"GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params
)
request = _convert_request(request)
request.url = self._client.format_url(request.url) # type: ignore
request.method = "GET"
return request
async def extract_data(pipeline_response):
deserialized = self._deserialize("ReportResourceList", pipeline_response)
list_of_elem = deserialized.value
if cls:
list_of_elem = cls(list_of_elem)
return deserialized.next_link or None, AsyncList(list_of_elem)
async def get_next(next_link=None):
request = prepare_request(next_link)
pipeline_response = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access
request, stream=False, **kwargs
)
response = pipeline_response.http_response
if response.status_code not in [200]:
map_error(status_code=response.status_code, response=response, error_map=error_map)
error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
return pipeline_response
return AsyncItemPaged(get_next, extract_data) | [
245
] |
f METHOD_NAME(
self): | [
9,
3724,
2685,
1751,
45,
168,
2421
] |
def METHOD_NAME(
name: str, connection: sqlite3.Connection, version: int
) -> str | None:
"""Return uuid for album with name or None if not found"""
return _folder_album_uuid_for_name(name, connection, version, folder=True) | [
451,
4977,
43,
156
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.