text
stringlengths
15
7.82k
ids
sequencelengths
1
7
def METHOD_NAME(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('explore_states') op.drop_table('dashboards') # ### end Alembic commands ###
[ 1502 ]
def METHOD_NAME(self): name = get_conflicted_name(["bar"], "bar") eq_("[000] bar", name) name = get_conflicted_name(["bar", "[000] bar"], "bar") eq_("[001] bar", name)
[ 9, 53 ]
def METHOD_NAME(self, top: Optional[int] = None, **kwargs: Any) -> Iterable["_models.Resource"]: """The List operation gets information about the vaults associated with the subscription. :param top: Maximum number of results to return. Default value is None. :type top: int :keyword filter: The filter to apply on the operation. Default value is "resourceType eq 'Microsoft.KeyVault/vaults'". Note that overriding this default value may result in unsupported behavior. :paramtype filter: str :keyword api_version: Azure Resource Manager Api Version. Default value is "2015-11-01". Note that overriding this default value may result in unsupported behavior. :paramtype api_version: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either Resource or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.keyvault.v2023_02_01.models.Resource] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) filter: Literal["resourceType eq 'Microsoft.KeyVault/vaults'"] = kwargs.pop( "filter", _params.pop("$filter", "resourceType eq 'Microsoft.KeyVault/vaults'") ) api_version: Literal["2015-11-01"] = kwargs.pop("api_version", _params.pop("api-version", "2015-11-01")) cls: ClsType[_models.ResourceListResult] = kwargs.pop("cls", None) error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) def prepare_request(next_link=None): if not next_link: request = build_list_request( subscription_id=self._config.subscription_id, top=top, filter=filter, api_version=api_version, template_url=self.METHOD_NAME.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: # make call to next link with the client's api-version _parsed_next_link = urllib.parse.urlparse(next_link) _next_request_params = case_insensitive_dict( { key: [urllib.parse.quote(v) for v in value] for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() } ) # change this line to use the passed in api version _next_request_params["api-version"] = api_version request = HttpRequest( "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request def extract_data(pipeline_response): deserialized = self._deserialize("ResourceListResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) # type: ignore return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged(get_next, extract_data)
[ 245 ]
def METHOD_NAME(self): store = self.new_store(excludes='*/*20220502*') self.assertEqual({'l1b/olci-l1b-20220501.zarr', 'l1b/olci-l1b-20220503.zarr', 'l2/olci-l2-20220501.zarr', 'l2/olci-l2-20220503.zarr', 'l3/olci-l3-2020.levels', 'l3/olci-l3-2021.levels'}, set(store.get_data_ids())) store = self.new_store(excludes=['*/*20220502*', '*.levels']) self.assertEqual({'l1b/olci-l1b-20220501.zarr', 'l1b/olci-l1b-20220503.zarr', 'l2/olci-l2-20220501.zarr', 'l2/olci-l2-20220503.zarr'}, set(store.get_data_ids())) store = self.new_store(excludes=['*.zarr', '*.levels']) self.assertEqual(set(), set(store.get_data_ids()))
[ 9, 982 ]
def METHOD_NAME(): client = create_client() message = create_message() sequencer = unordered_sequencer.UnorderedSequencer(client, "topic_name") sequencer.publish(message, retry=mock.sentinel.custom_retry) assert sequencer._current_batch is not None assert sequencer._current_batch._commit_retry is mock.sentinel.custom_retry
[ 9, 2411, 343, 2052 ]
def METHOD_NAME(self, X): """Make predictions using the fitted XGBoost classifier. Args: X (pd.DataFrame): Data of shape [n_samples, n_features]. Returns: pd.DataFrame: Predicted values. """ X, _ = super()._manage_woodwork(X) X = _rename_column_names_to_numeric(X) predictions = super().METHOD_NAME(X) if not self._label_encoder: return predictions predictions = self._label_encoder.inverse_transform( predictions.astype(np.int64), ) return predictions
[ 2103 ]
def METHOD_NAME(): timeout = httpx.Timeout(None) assert timeout.connect is None assert timeout.read is None assert timeout.write is None assert timeout.pool is None
[ 9, 659, 280, 5996 ]
f METHOD_NAME(self):
[ 9, 1716, 156, 43, 3802 ]
def METHOD_NAME(cls, ctx, op): (in_chunk,), device_id, xp = as_same_device( [ctx[c.key] for c in op.inputs], device=op.device, ret_extra=True ) axis = cls.get_axis(op.axis) with device(device_id): chunk_count = numel( in_chunk, axis=axis, dtype=np.int64, keepdims=bool(op.keepdims) ) chunk_sum = xp.sum( in_chunk, axis=axis, dtype=op.dtype, keepdims=bool(op.keepdims) ) ctx[op.outputs[0].key] = (chunk_sum, chunk_count)
[ 750, 422 ]
def METHOD_NAME(self): return self.client.format_url( "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/snapshots/{snapshotName}", **self.url_parameters )
[ 274 ]
def METHOD_NAME(self): self._check_status(self.Status.CREATED, self.Status.INITED) if self.status_ == self.Status.CREATED: config_proto_str = text_format.MessageToString(self.config_proto) self._session_ctx.try_init(config_proto_str) self.status_ = self.Status.INITED
[ 1365, 176 ]
async def METHOD_NAME(): ...
[ 9, 1047, 13273, 804, 43, 10507, 5399 ]
def METHOD_NAME(self): super().METHOD_NAME() self.user = UserFactory.create(password=self.password) self.profile = self.user.profile
[ 0, 1 ]
def METHOD_NAME(self): if self._first_page_iterator_instance is None: self._first_page_iterator_instance = self.by_page() return self._first_page_iterator_instance
[ 865, 640, 89 ]
def METHOD_NAME(self, coin_type, delta=0): if coin_type not in COIN_TYPES: raise ValueError("coin_type must be in ('pp', 'gp', 'ep', 'sp', 'cp')") delta_out = "" if delta: delta_out = f" ({delta:+,})" coin_value = f"{getattr(self, coin_type):,}" return f"{COIN_TYPES[coin_type]['icon']} {coin_value} {coin_type}{delta_out}"
[ 4865, 144 ]
def METHOD_NAME(self) -> None: self.collect_by_name(["Apple", "Champ", "Red ID Card"]) self.assertBeatable(False) # 0 floppies floppies = self.get_items_by_name("Floppy Disk") win = self.get_item_by_name("Win") self.collect(floppies[:-2]) # 1 too few self.assertEqual(self.count("Floppy Disk"), 5) self.assertBeatable(False) self.collect(floppies[-2:-1]) # exact self.assertEqual(self.count("Floppy Disk"), 6) self.assertBeatable(True) self.remove([win]) # reset self.collect(floppies[-1:]) # 1 extra self.assertEqual(self.count("Floppy Disk"), 7) self.assertBeatable(True)
[ 9, -1 ]
def METHOD_NAME(): METHOD_NAME = Main() METHOD_NAME.run()
[ 57 ]
def METHOD_NAME(self, customScript, configurationAttributes): print "Fido2Extension. Initialization" print "Fido2Extension. Initialized successfully" return True
[ 176 ]
def METHOD_NAME(self, devs): mps = set() return mps
[ -1 ]
def METHOD_NAME(self, event): value = event.new low, high = value low = max(low, 0) high = min(high, 1) self.plot.index.metadata["selections"] = (low, high) self.value = (low, high)
[ 86, 3223 ]
def METHOD_NAME( self, cognite_client: CogniteClient, integration_test_space: Space, monkeypatch: Any ) -> None: # Arrange valid_space = SpaceApply( space="myNewValidSpace", ) invalid_space = SpaceApply(space="myInvalidSpace", name="wayTooLong" * 255) monkeypatch.setattr(cognite_client.data_modeling.spaces, "_CREATE_LIMIT", 1) try: # Act with pytest.raises(CogniteAPIError) as error: cognite_client.data_modeling.spaces.apply([valid_space, invalid_space]) # Assert assert "name size must be between 0 and 255" in error.value.message assert error.value.code == 400 assert len(error.value.successful) == 1 assert len(error.value.failed) == 1 finally: # Cleanup cognite_client.data_modeling.spaces.delete(valid_space.as_id())
[ 9, 231, 1423, 61, 3163, 758 ]
def METHOD_NAME(self, widget): # About Dialog usage code about = gtk.AboutDialog() about.set_program_name("NNStreamer Toolkit") about.set_version("0.0.1") about.set_authors([ 'Geunsik Lim', 'Bug Reports and Patches:', 'MyungJoo Ham', 'Jijoong Moon', 'Sangjung Woo', 'Wook Song', 'Jaeyun Jung', 'Hyoungjoo Ahn', ]) about.set_copyright("(c) Samsung Electronics") about.set_comments("About NNStreamer Toolkit") about.set_website("https://github.com/nnstreamer/nnstreamer") about.run() about.destroy()
[ 69, -1 ]
def METHOD_NAME(self): """ Tests before and after start as well as after stop metadata. """ my_driver = TestDriverMetadata.MyDriver( name="mydriver", metadata_extractor=TestDriverMetadata.metadata_extractor_mydriver, ) test = my_driver.extract_driver_metadata().to_dict() expected = {"test_attribute": my_driver.test_attribute} assert test == expected my_driver.start() test = my_driver.extract_driver_metadata().to_dict() expected["test_attribute"] = "foo" assert test == expected my_driver.stop() test = my_driver.extract_driver_metadata().to_dict() expected["test_attribute"] = "bar" assert test == expected
[ 9, 297, -1, 773 ]
def METHOD_NAME(): for value in [None, "foo", 1, 1.39, 1 + 1j, True]: assert util.is_primitive(value) is True for value in [[], (), {}, set()]: assert util.is_primitive(value) is False
[ 9, 137, 1478 ]
def METHOD_NAME(processors_node): sysnode = '/sys/devices/system/cpu/' threads = processors_node.xpath("//thread") for thread in threads: cpu_id = get_node(thread, "cpu_id/text()") try: with open(sysnode + "cpu{cpu_id}/cpufreq/freqdomain_cpus", 'r') as f_node: freqdomain_cpus = f_node.read() except IOError: logging.info("No _PSD info for cpu {cpu_id}") freqdomain_cpus = cpu_id freqdomain_cpus.replace('\n','') add_child(thread, "freqdomain_cpus", freqdomain_cpus)
[ 297, 6737, 100 ]
def METHOD_NAME( raw_dict: Dict[Any, Any], cls: Type[PerturbationDescription] ) -> PerturbationDescription: """Convert a raw dictionary to a PerturbationDescription. This uses the name field to look up the correct PerturbationDescription subclass to output. """ structure = perturbation_name_to_base_structure_fn.get( raw_dict["name"], base_perturbation_description_structure_fn ) return structure(raw_dict, cls)
[ 1011, 11931, 1067 ]
def METHOD_NAME(self): dirname = os.path.join(support.TESTFN, 'Gr\xfc\xdf-\u66e8\u66e9\u66eb') filename = '\xdf-\u66e8\u66e9\u66eb' oldwd = os.getcwd() os.mkdir(dirname) os.chdir(dirname) try: with open(filename, 'wb') as f: f.write((filename + '\n').encode("utf-8")) os.access(filename,os.R_OK) os.remove(filename) finally: os.chdir(oldwd) os.rmdir(dirname)
[ 9, 2851 ]
def METHOD_NAME(self) -> str: """ Database name of the source data set """ return pulumi.get(self, "database_name")
[ 463, 156 ]
def METHOD_NAME(word): """Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs
[ 19, 3151 ]
def METHOD_NAME(cls): """Runs once before any tests in this class.""" if not QApplication.instance(): QApplication()
[ 0, 1, 2 ]
def METHOD_NAME(self, town_code, measurement_number, user, referer): try: town_info = self._get_town_by_code(int(town_code)) if town_info is None: return {} files = os.listdir(town_info.get('path')) mes = self._add_char_before(5, measurement_number) files_list = [] for cur_file in files: if cur_file.startswith(mes): files_list.append({'filename': cur_file, 'is_downloadable': self._is_download_authorized( town_info.get('name'), user, referer) }) if len(files_list) == 0: return {} return {"town_info": town_info, "files": files_list} except: print(sys.exc_info()) return {}
[ 19, 4555, 171, 157 ]
def METHOD_NAME(self): room = create_object(tutrooms.DarkRoom, key="darkroom") self.char1.move_to(room, move_type="teleport") self.call(tutrooms.CmdDarkHelp(), "", "Can't help you until")
[ 9, -1 ]
def METHOD_NAME(labels_dense, num_classes=10): """Convert class labels from scalars to one-hot vectors.""" num_labels = labels_dense.shape[0] index_offset = numpy.arange(num_labels) * num_classes labels_one_hot = numpy.zeros((num_labels, num_classes)) labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1 return labels_one_hot
[ 3829, 24, 206, 3269 ]
def METHOD_NAME(self, host_info_list: HostInfoList, workdir: str, env: dict) -> None: """ Establish connections to a list of hosts Args: host_info_list (HostInfoList): a list of HostInfo objects workdir (str): the directory where command is executed env (dict): environment variables to propagate to hosts """ for hostinfo in host_info_list: master_send_conn, worker_recv_conn = Pipe() master_recv_conn, worker_send_conn = Pipe() p = Process(target=run_on_host, args=(hostinfo, workdir, worker_recv_conn, worker_send_conn, env)) p.start() self.processes[hostinfo.hostname] = p self.master_recv_conns[hostinfo.hostname] = master_recv_conn self.master_send_conns[hostinfo.hostname] = master_send_conn
[ 707 ]
def METHOD_NAME(self, session): data = self.deserialize_http_content(session) self.ctx.set_var( "instance", data, schema_builder=self._build_schema_on_200 )
[ 69, 1072 ]
def METHOD_NAME(self, path_to_yaml: str) -> None: """ Registers the environments listed in a yaml file (either local or remote). Note that the entries are registered lazily: the registration will only happen when an environment is accessed. The yaml file must have the following format : ```yaml environments: - <identifier of the first environment>: expected_reward: <expected reward of the environment> description: | <a multi line description of the environment> <continued multi line description> linux_url: <The url for the Linux executable zip file> darwin_url: <The url for the OSX executable zip file> win_url: <The url for the Windows executable zip file> - <identifier of the second environment>: expected_reward: <expected reward of the environment> description: | <a multi line description of the environment> <continued multi line description> linux_url: <The url for the Linux executable zip file> darwin_url: <The url for the OSX executable zip file> win_url: <The url for the Windows executable zip file> - ... ``` :param path_to_yaml: A local path or url to the yaml file """ self._manifests.append(path_to_yaml) self._sync = False
[ 372, 280, 406 ]
def METHOD_NAME(f): segbits = {} for l in f: # CLBLM_L.SLICEL_X1.ALUT.INIT[10] 29_14 l = l.strip() if not l: continue parts = l.split(' ') assert len(parts) > 1, l segbits[parts[0]] = [parsebit(val) for val in parts[1:]] return segbits
[ 203, 15010 ]
def METHOD_NAME(folders: List[str]) -> str: versioned_folders = [ (folder, version.parse(folder[1:])) for folder in folders if re.match(r"^v[0-9]+\.[0-9]+\.[0-9]+$", folder) ] versioned_folders.sort(key=lambda ver: ver[1]) # get the latest version if versioned_folders: return versioned_folders[-1][0] # fall back on main if available as default if "main" in folders: return "main" # fall back on any other folder sorted folders.sort() return folders[-1]
[ 19, 893, 451 ]
def METHOD_NAME(self): return super( SubmissionsSimilarityEntryAdmin, self ).METHOD_NAME() + [ 'submission', 'submission__user', 'submission__problem_instance', ]
[ 19, 343, 245, 1472, 252 ]
def METHOD_NAME(database: str, reset: bool, verbose: bool, legacy_region_name: str): """ This is a development tool that can convert a monolith database into control + region databases by using silo annotations. This operation will not modify the original source database. """ # We have a few tables that either need to be in both silos, # or only in control. These tables don't have silo annotations # as they are inherited from django and their silo assignments # need to be manually defined. region_tables = ["django_migrations", "django_content_type"] control_tables = [ "django_migrations", "django_admin_log", "django_content_type", "django_site", "django_session", "auth_user", "auth_group", "auth_permission", "auth_group_permissions", "auth_user_groups", "auth_user_user_permissions", ] for model in apps.get_models(): silo_limit = getattr(model._meta, "silo_limit", None) if not silo_limit: click.echo(f"> Could not find silo assignment for {model._meta.db_table}") continue if SiloMode.CONTROL in silo_limit.modes: control_tables.append(model._meta.db_table) if SiloMode.REGION in silo_limit.modes: region_tables.append(model._meta.db_table) revise_organization_mappings(legacy_region_name=legacy_region_name) split_database(control_tables, database, "control", reset=reset, verbose=verbose) split_database(region_tables, database, "region", reset=reset, verbose=verbose)
[ 57 ]
def METHOD_NAME() -> None: """ An example for initializing a torchrec sharded embedding bag with a pretrained embedding weight. Environment assumptions: - The embedding weight fits in the RAM of a single host, but may OOM if all processes on the host load the embedding weight simultaneously. - For simplicity, the demo assumes a single-host, multi-process environment. """ dist.init_process_group(backend="nccl") local_rank = int(os.environ["LOCAL_RANK"]) device = torch.device(f"cuda:{local_rank}") torch.cuda.set_device(device) pg = dist.group.WORLD assert pg is not None dist.barrier() if dist.get_rank() == 0: # Pretend that we are loading the pretrained embedding weight from a parquet file on rank 0. emb = torch.rand(2000000, 64) # Share the tensor to local peers via shared memory emb = share_tensor_via_shm(tensor=emb) else: # Received the tensor shared by rank 0 via shared memory emb = share_tensor_via_shm(tensor=None) assert emb.is_shared() # For demo purpose, the entire model is an embedding bag collection with a # single embedding bag. ebc = EmbeddingBagCollection( device=torch.device("meta"), tables=[ torchrec.EmbeddingBagConfig( name="emb", embedding_dim=64, num_embeddings=2000000, feature_names=["f"], pooling=torchrec.PoolingType.SUM, ) ], ) # Create a rowwise sharding plan sharders = cast( List[ModuleSharder[nn.Module]], [ EmbeddingBagCollectionSharder( fused_params={ "optimizer": EmbOptimType.EXACT_ROWWISE_ADAGRAD, "learning_rate": 0.01, "eps": 0.01, } ) ], ) plan = EmbeddingShardingPlanner( topology=Topology(world_size=dist.get_world_size(), compute_device=device.type), constraints={ "emb": ParameterConstraints(sharding_types=[ShardingType.ROW_WISE.value]) }, ).collective_plan( ebc, sharders, pg, ) print(plan) # Initialize dmp which shards the embedding bag dmp = DistributedModelParallel( module=ebc, device=device, plan=plan, sharders=sharders, ) print( "Finished initializing DistributedModelParallel. " f"Current device utilization: {torch.cuda.memory_allocated() / 1_000_000} MB" ) # For each shard in sharded tensors, load from the corresponding slice from # the pretrained weights in shared memory. for rank in range(dist.get_world_size()): if dist.get_rank() == rank: for _, t in dmp.state_dict().items(): for shard in t.local_shards(): offsets = shard.metadata.shard_offsets lengths = shard.metadata.shard_sizes src = emb[ offsets[0] : offsets[0] + lengths[0], offsets[1] : offsets[1] + lengths[1], ] shard.tensor.copy_(src) dist.barrier() else: dist.barrier()
[ 57 ]
f METHOD_NAME(*args, **kwargs):
[ 1413, 141, 61, 238, 9553 ]
def METHOD_NAME(self, batch_cnt): return self.decay_steps / ( self.decay_steps + np.exp(batch_cnt / self.decay_steps) )
[ 226, 5323 ]
def METHOD_NAME(str): return str.replace('_Bool', 'bool')
[ 527, 119 ]
def METHOD_NAME(x1: Tensor, x2: Tensor, x1_eq_x2: bool) -> Tensor: res = x1.size(-2) - (x1.unsqueeze(-3) * x2.unsqueeze(-4)).sum(dim=(-1, -2)) if x1_eq_x2 and not x1.requires_grad and not x2.requires_grad: res.diagonal(dim1=-2, dim2=-1).fill_(0) # Zero out negative values return res.clamp_min_(0)
[ 2771, 1260 ]
def METHOD_NAME(self, input, **opts): try: logger.info("Exporting raster {} with options: {}".format(input, json.dumps(opts))) tmpfile = tempfile.mktemp('_raster.{}'.format(extension_for_export_format(opts.get('format', 'gtiff'))), dir=settings.MEDIA_TMP) export_raster_sync(input, tmpfile, **opts) result = {'file': tmpfile} if settings.TESTING: TestSafeAsyncResult.set(self.request.id, result) return result except Exception as e: logger.error(str(e)) return {'error': str(e)}
[ 294, 5227 ]
def METHOD_NAME(G): r""" Creates an OpenPNM Network from a undirected NetworkX graph object Parameters ---------- G : networkx.classes.graph.Graph Object The NetworkX graph. G should be undirected. The numbering of nodes should be numeric (int's), zero-based and should not contain any gaps, i.e. ``G.nodes() = [0,1,3,4,5]`` is not allowed and should be mapped to ``G.nodes() = [0,1,2,3,4]``. Returns ------- network : dict An OpenPNM network dictionary Notes ----- 1. Each node in a NetworkX object (i.e. ``G``) can be assigned properties using syntax like ``G.node[n]['diameter'] = 0.5`` where ``n`` is the node number. There is no need to precede the property name with any indication that it is pore data such as \'pore\_\'. OpenPNM will prepend \'pore.\' to each property name. 2. Since \'pore.coords\' is so central to OpenPNM it should be specified in the NetworkX object as \'coords\', and the [X, Y, Z] coordinates of each node should be a 1x3 list. 3. Edges in a NetworkX object are accessed using the index numbers of the two nodes it connects, such as ``G.adj[2][3]['length'] = 0.1`` indicating the edge that connects nodes 2 and 3. There is no need to precede the property name with any indication that it is throat data such as \'throat\_\'. OpenPNM will prepend \'throat.\' to each property name. 4. The \'throat.conns\' property is essential to OpenPNM, but this does NOT need to be specified explicitly as a property in NetworkX. The connectivity is embedded into the network representation and is extracted by OpenPNM. """ import networkx as nx from openpnm.network import Network net = {} # Ensure G is an undirected networkX graph with numerically numbered # nodes for which numbering starts at 0 and does not contain any gaps if not isinstance(G, nx.Graph): # pragma: no cover raise Exception('Provided object is not a NetworkX graph.') if nx.is_directed(G): # pragma: no cover raise Exception('Provided graph is directed. Convert to undirected graph.') if not all(isinstance(n, int) for n in G.nodes()): # pragma: no cover raise Exception('Node numbering is not numeric. Convert to int.') if min(G.nodes()) != 0: # pragma: no cover raise Exception('Node numbering does not start at zero.') if max(G.nodes()) + 1 != len(G.nodes()): # pragma: no cover raise Exception('Node numbering contains gaps. Map nodes to remove gaps.') # Parsing node data Np = len(G) net.update({'pore.all': np.ones((Np,), dtype=bool)}) for n, props in G.nodes(data=True): for item in props.keys(): val = props[item] dtype = type(val) # Remove prepended pore. and pore_ if present for b in ['pore.', 'pore_']: item = item.replace(b, '') # Create arrays for subsequent indexing, if not present already if 'pore.'+item not in net.keys(): if dtype == str: # handle strings of arbitrary length net['pore.'+item] = np.ndarray((Np,), dtype='object') elif dtype is list: dtype = type(val[0]) if dtype == str: dtype = 'object' cols = len(val) net['pore.'+item] = np.ndarray((Np, cols), dtype=dtype) else: net['pore.'+item] = np.ndarray((Np,), dtype=dtype) net['pore.'+item][n] = val # Parsing edge data # Deal with conns explicitly try: conns = list(G.edges) # NetworkX V2 except Exception: # pragma: no cover conns = G.edges() # NetworkX V1 conns.sort() # Add conns to Network Nt = len(conns) net.update({'throat.all': np.ones(Nt, dtype=bool)}) net.update({'throat.conns': np.array(conns)}) # Scan through each edge and extract all its properties i = 0 for t in conns: props = G[t[0]][t[1]] for item in props: val = props[item] dtype = type(val) # Remove prepended throat. and throat_ if present for b in ['throat.', 'throat_']: item = item.replace(b, '') # Create arrays for subsequent indexing, if not present already if 'throat.'+item not in net.keys(): if dtype == str: net['throat.'+item] = np.ndarray((Nt,), dtype='object') if dtype is list: dtype = type(val[0]) if dtype == str: dtype = 'object' cols = len(val) net['throat.'+item] = np.ndarray((Nt, cols), dtype=dtype) else: net['throat.'+item] = np.ndarray((Nt,), dtype=dtype) net['throat.'+item][i] = val i += 1 network = Network() network.update(net) return network
[ 1228, 280, 13559 ]
def METHOD_NAME(self, monkeypatch): '''pwd is not readable, use instance's tmpdir property''' def mock_getcwd(): return '/tmp' def mock_access(path, perm): if path == '/tmp' and perm == 4: return False return True def mock_expandvars(var): if var == '$HOME': return '/home/foobar' return var def mock_gettempdir(): return '/tmp/testdir' def mock_chdir(path): if path == '/tmp': raise Exception() return monkeypatch.setattr(os, 'getcwd', mock_getcwd) monkeypatch.setattr(os, 'chdir', mock_chdir) monkeypatch.setattr(os, 'access', mock_access) monkeypatch.setattr(os.path, 'expandvars', mock_expandvars) monkeypatch.setattr(basic, '_ANSIBLE_ARGS', to_bytes(json.dumps({'ANSIBLE_MODULE_ARGS': {}}))) with patch('time.time', return_value=42): am = basic.AnsibleModule(argument_spec={}) am._tmpdir = '/tmp2' result = am._set_cwd() assert result == am._tmpdir
[ 9, 0, 1925, 8145, 1080, 927, 4015 ]
def METHOD_NAME() -> None: lex = FilterSyntaxLexer().lex data = "#some_tag ^some_link -^some_link" assert [(tok.type, tok.value) for tok in lex(data)] == [ ("TAG", "some_tag"), ("LINK", "some_link"), ("-", "-"), ("LINK", "some_link"), ] data = "'string' string \"string\"" assert [(tok.type, tok.value) for tok in lex(data)] == [ ("STRING", "string"), ("STRING", "string"), ("STRING", "string"), ] with pytest.raises(FilterError): list(lex("|"))
[ 9, 5886, 756 ]
def METHOD_NAME(self): self.assertEqual(self.enum.name_text, 'errors')
[ 9, 156, 526, 610, 668, 156 ]
def METHOD_NAME(): resgrid = np.array([ [[100., 100., 100., 100., 100.], [150., 150., 150., 150., 150.], [100., 100., 100, 100., 100.]], [[150., 150., 150., 150., 150.], [100., 100., 100., 100., 100.], [150., 150., 150., 150., 150.]], ]) # Transpose to get [[Y], [X], [Z]] resgrid = resgrid.T test = conv._strip_resgrid(resgrid, 1, 1, 1) # We're padding one cell off either side of X and Y, and one cell # off the end of Z. So we're left with the [150.] array in middle # of the top row, with two elements from either side removed. expected = np.array([[[150., 150., 150.]]]).T # Again, note the transpose. np.testing.assert_array_equal(test, expected)
[ 9, 1360, -1 ]
def METHOD_NAME(levels): """ Create a general full-factorial design Parameters ---------- levels : array-like An array of integers that indicate the number of levels of each input design factor. Returns ------- mat : 2d-array The design matrix with coded levels 0 to k-1 for a k-level factor Example ------- :: >>> fullfact([2, 4, 3]) array([[ 0., 0., 0.], [ 1., 0., 0.], [ 0., 1., 0.], [ 1., 1., 0.], [ 0., 2., 0.], [ 1., 2., 0.], [ 0., 3., 0.], [ 1., 3., 0.], [ 0., 0., 1.], [ 1., 0., 1.], [ 0., 1., 1.], [ 1., 1., 1.], [ 0., 2., 1.], [ 1., 2., 1.], [ 0., 3., 1.], [ 1., 3., 1.], [ 0., 0., 2.], [ 1., 0., 2.], [ 0., 1., 2.], [ 1., 1., 2.], [ 0., 2., 2.], [ 1., 2., 2.], [ 0., 3., 2.], [ 1., 3., 2.]]) """ n = len(levels) # number of factors nb_lines = np.prod(levels) # number of trial conditions H = np.zeros((nb_lines, n)) level_repeat = 1 range_repeat = np.prod(levels) for i in range(n): range_repeat //= levels[i] lvl = [] for j in range(levels[i]): lvl += [j]*level_repeat rng = lvl*range_repeat level_repeat *= levels[i] H[:, i] = rng return H
[ -1 ]
def METHOD_NAME(self, data: dict): data["event"]["type"] = Event.Type.ACKNOWLEDGE return super().METHOD_NAME(data)
[ 24, 2026, 99 ]
def METHOD_NAME(): def group_func(d): return d.time dimension = 'time' units = None datasets = [ SimpleNamespace(time=datetime.datetime(2016, 1, 1), value='foo', id=UUID(int=10)), SimpleNamespace(time=datetime.datetime(2016, 2, 1), value='bar', id=UUID(int=1)), SimpleNamespace(time=datetime.datetime(2016, 1, 1), value='flim', id=UUID(int=9)), ] group_by = GroupBy(group_func, dimension, units, sort_key=group_func) grouped = Datacube.group_datasets(datasets, group_by) dss = grouped.isel(time=0).values[()] assert isinstance(dss, tuple) assert len(dss) == 2 assert [ds.value for ds in dss] == ['flim', 'foo'] dss = grouped.isel(time=1).values[()] assert isinstance(dss, tuple) assert len(dss) == 1 assert [ds.value for ds in dss] == ['bar'] assert str(grouped.time.dtype) == 'datetime64[ns]' assert grouped.loc['2016-01-01':'2016-01-15']
[ 9, 5421, 4146 ]
def METHOD_NAME(self): """ Test if gecos fields are built correctly (removing trailing commas) """ test_gecos = { "fullname": "Testing", "roomnumber": 1234, "workphone": 22222, "homephone": 99999, } expected_gecos_fields = "Testing,1234,22222,99999" self.assertEqual(useradd._build_gecos(test_gecos), expected_gecos_fields) test_gecos.pop("roomnumber") test_gecos.pop("workphone") expected_gecos_fields = "Testing,,,99999" self.assertEqual(useradd._build_gecos(test_gecos), expected_gecos_fields) test_gecos.pop("homephone") expected_gecos_fields = "Testing" self.assertEqual(useradd._build_gecos(test_gecos), expected_gecos_fields)
[ 9, 56, 2442, 101 ]
def METHOD_NAME(self): parameters = { **self.serialize_header_param( "Accept", "application/json", ), } return parameters
[ 572, 386 ]
def METHOD_NAME(self, _utils: PulseAudioUtils) -> None: logging.info("connected") for dev in self.deferred: self.regenerate_with_device(dev['Address']) self.deferred = []
[ 69, 10792, 1338 ]
def METHOD_NAME(): return codecs.CodecInfo( name='utf-8-sig', encode=encode, decode=decode, incrementalencoder=IncrementalEncoder, incrementaldecoder=IncrementalDecoder, streamreader=StreamReader, streamwriter=StreamWriter, )
[ 8277 ]
def METHOD_NAME(): # Basic view assert_equal("/", reverse_with_get("desktop_views.index")) # Arguments for the view assert_equal("/desktop/api2/user_preferences/foo", reverse_with_get("desktop.api2.user_preferences", kwargs=dict(key="foo"))) # Arguments for the view as well as GET parameters assert_equal("/desktop/api2/user_preferences/foo?a=1&b=2", reverse_with_get("desktop.api2.user_preferences", kwargs=dict(key="foo"), get=dict(a=1,b=2))) # You can use a list of args instead of kwargs, too assert_equal("/desktop/api2/user_preferences/foo?a=1&b=2", reverse_with_get("desktop.api2.user_preferences", args=["foo"], get=dict(a=1,b=2))) # Just GET parameters assert_equal("/?a=1", reverse_with_get("desktop_views.index", get=dict(a="1"))) # No GET parameters assert_equal("/", reverse_with_get("desktop_views.index", get=dict()))
[ 9, 1354, 41, 19 ]
def METHOD_NAME(thread, wrapper): """ Adds the indicated core.Thread object, with the indicated Python wrapper, to the thread list. Returns the new thread ID. """ global _nextThreadId _threadsLock.acquire() try: threadId = _nextThreadId _nextThreadId += 1 thread.setPythonIndex(threadId) _threads[threadId] = (thread, {}, wrapper) return threadId finally: _threadsLock.release()
[ 238, 600 ]
def METHOD_NAME(obj, enable, placement = None, offset = 0, tv = None): if tv is None: from Show import TempoVis tv = TempoVis(obj.Document) tv.modify(ClipPlane(obj, enable, placement, offset)) return tv
[ 4226, 1088 ]
def METHOD_NAME(self, *iterables: Iterable[_S]) -> SortedSet[Union[_T, _S]]: ...
[ 86 ]
def METHOD_NAME(timer_client, start, interval): meta = load_response(timer_client.create_job).metadata transfer_data = TransferData( source_endpoint=GO_EP1_ID, destination_endpoint=GO_EP2_ID ) timer_job = TimerJob.from_transfer_data(transfer_data, start, interval) response = timer_client.create_job(timer_job) assert response.http_status == 201 assert response.data["job_id"] == meta["job_id"] timer_job = TimerJob.from_transfer_data(dict(transfer_data), start, interval) response = timer_client.create_job(timer_job) assert response.http_status == 201 assert response.data["job_id"] == meta["job_id"] req_body = json.loads(get_last_request().body) if isinstance(start, datetime.datetime): assert req_body["start"] == start.isoformat() else: assert req_body["start"] == start if isinstance(interval, datetime.timedelta): assert req_body["interval"] == interval.total_seconds() else: assert req_body["interval"] == interval assert req_body["callback_url"] == slash_join( get_service_url("actions"), "/transfer/transfer/run" )
[ 9, 129, 202 ]
def METHOD_NAME(self): fake_module = MagicMock() fake_module.params = fake_params expected_cmd = [ fake_binary, '--cluster', fake_cluster, 'zonegroup', 'modify', '--rgw-realm=' + fake_realm, '--rgw-zonegroup=' + fake_zonegroup, '--endpoints=' + ','.join(fake_endpoints), '--default', '--master' ] assert radosgw_zonegroup.modify_zonegroup(fake_module) == expected_cmd
[ 9, 2444, -1 ]
def METHOD_NAME(self): "Test the recipe run view with POST request" data = {"name": "name of the job"} url = reverse('recipe_run', kwargs=dict(uid=self.recipe.uid)) request = fake_request(url=url, data=data, user=self.owner) self.recipe.security = models.Analysis.AUTHORIZED self.recipe.save() response = views.recipe_run(request=request, uid=self.recipe.uid) self.process_response(response=response, data=data, save=True, model=models.Job)
[ 9, 3912, 22 ]
def METHOD_NAME(cmd): if (options.debug == True): print >>sys.stderr, "running cmd:",cmd try: retcode = subprocess.call(cmd, shell=True) if retcode < 0: print >>sys.stderr, "Child was terminated by signal: ", -retcode else: if (options.debug == True): print >>sys.stderr, "Child returned code: ", retcode except OSError, e: print >>sys.stderr, "Execution failed:", e
[ 22, 462 ]
def METHOD_NAME(self, t): """Compute the value of u10 (real and imag), the offdiagonal term""" pr, pi = self.u00(t, swap=-1.0) return pr, pi
[ -1 ]
def METHOD_NAME(private_endpoint_connection_name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, scope_name: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetPrivateEndpointConnectionResult]: """ Gets a private endpoint connection. :param str private_endpoint_connection_name: The name of the private endpoint connection. :param str resource_group_name: The name of the resource group. :param str scope_name: The name of the Azure Arc PrivateLinkScope resource. """ ...
[ 19, 547, 841, 550, 146 ]
def METHOD_NAME(self): nc_path = cdl_to_nc(self.ref_cdl) with self.assertRaisesRegex( ValueError, ".*Must be True to enable mesh loading." ): _ = load_meshes(nc_path)
[ 9, 654, 4078 ]
def METHOD_NAME(expect_filename, expect_bucket, expect_key, expect_extra_args=None, expect_config=None): """Make a mock upload function that asserts against expected arguments and calls the Callback with the upload file size.""" def mock_upload_file(Filename=None, Bucket=None, Key=None, Callback=None, ExtraArgs=None, Config=None): assert Filename == expect_filename assert Bucket == expect_bucket assert expect_key == Key assert expect_extra_args == ExtraArgs if expect_config or Config: for key, val in expect_config.items(): assert getattr(Config, key) == val Callback(os.path.getsize(Filename)) return mock_upload_file
[ 93, 248, 172 ]
def METHOD_NAME(self) -> Optional[str]: """ A resource identifier for the API the issue was created for. """ return pulumi.get(self, "api_id")
[ 58, 147 ]
def METHOD_NAME(self) -> UploadFileDict: """Gives the files contained in this object as mapping of part name to encoded content.""" METHOD_NAME: UploadFileDict = {} for param in self._parameters: m_data = param.METHOD_NAME if m_data: METHOD_NAME.update(m_data) return METHOD_NAME
[ 6261, 365 ]
def METHOD_NAME(self): editor = self.get_plugin(Plugins.Editor) editor.sig_open_files_finished.connect( self.update_all_editors)
[ 69, 2977, 1272 ]
def METHOD_NAME(self, libraries): """Ensure that the list of libraries is valid. `library` is presumably provided as a command option 'libraries'. This method checks that it is a list of 2-tuples, where the tuples are (library_name, build_info_dict). Raise DistutilsSetupError if the structure is invalid anywhere; just returns otherwise. """ if not isinstance(libraries, list): raise DistutilsSetupError( "'libraries' option must be a list of tuples") for lib in libraries: if not isinstance(lib, tuple) and len(lib) != 2: raise DistutilsSetupError( "each element of 'libraries' must a 2-tuple") name, build_info = lib if not isinstance(name, str): raise DistutilsSetupError( "first element of each tuple in 'libraries' " "must be a string (the library name)") if '/' in name or (os.sep != '/' and os.sep in name): raise DistutilsSetupError("bad library name '%s': " "may not contain directory separators" % lib[0]) if not isinstance(build_info, dict): raise DistutilsSetupError( "second element of each tuple in 'libraries' " "must be a dictionary (build info)")
[ 250, 3106, 245 ]
def METHOD_NAME(fs: fsspec.AbstractFileSystem, monkeypatch, file_name: str): monkeypatch.setattr(TransactionalFile, "LOCK_TTL_SECONDS", 1) writer_1 = TransactionalFile(file_name, fs) writer_2 = TransactionalFile(file_name, fs) writer_1.acquire_lock() writer_1._stop_heartbeat() time.sleep(2.0) # Ensure a lock can be acquired after the TTL has expired assert writer_2.acquire_lock(blocking=False) writer_2.release_lock()
[ 9, 171, 1853, 858, 3191 ]
def METHOD_NAME(self, job: "CreateBackupJob") -> None: if job.backup_upload_error_message != "": # If the job contains an error message we pass it along so the UI can display it. self.creatingStateChanged.emit(is_creating = False, error_message = job.backup_upload_error_message) else: self.creatingStateChanged.emit(is_creating = False)
[ 69, 172, 1756 ]
def METHOD_NAME(session, url): for res in session.read(url): status = res.get('phase', 'error') percent = res.get('progress', None) detail = res.get('detail', repr(res)), if status == 'error': text = 'error!' else: text = '{0}: {1:3.0f}%'.format(status, percent) return text, status, detail
[ 19, 86, 3064 ]
def METHOD_NAME(self): self._test('=?us-ascii?b?dmk=?=', 'vi')
[ 9, 53, 1484 ]
def METHOD_NAME(self, AttachmentsData, invoice_id): AttachModel = self.env["fatturapa.attachments"] for attach in AttachmentsData: if not attach.NomeAttachment: name = _("Attachment without name") else: name = attach.NomeAttachment content = attach.Attachment.encode() _attach_dict = { "name": name, "datas": content, "description": attach.DescrizioneAttachment or "", "compression": attach.AlgoritmoCompressione or "", "format": attach.FormatoAttachment or "", "invoice_id": invoice_id, } AttachModel.create(_attach_dict)
[ 297, 81 ]
def METHOD_NAME(self): return self._fp.METHOD_NAME()
[ 7385 ]
def METHOD_NAME(dttm: str, grain: str, expected: str) -> None: from superset.db_engine_specs.sqlite import SqliteEngineSpec engine = create_engine("sqlite://") connection = engine.connect() connection.execute("CREATE TABLE t (dttm DATETIME)") connection.execute("INSERT INTO t VALUES (?)", dttm) # pylint: disable=protected-access expression = SqliteEngineSpec._time_grain_expressions[grain].format(col="dttm") sql = f"SELECT {expression} FROM t" result = connection.execute(sql).scalar() assert result == expected
[ 9, 104, 11445, 7580 ]
def METHOD_NAME(self) -> cftime.DatetimeJulian: return self._time
[ 104 ]
METHOD_NAME(self, key):
[ 19, 75 ]
def METHOD_NAME(x, max_absval, num_bits): y = x # get maximum/minimum exponent n1 = np.floor(np.log2(max_absval)) + (np.log2(max_absval) - np.floor(np.log2(max_absval)) >= np.log2(1.5)) n2 = n1 + 1 - 2 ** (num_bits - 2) pruning_threshold = 2 ** (n2 - 1) # prune all small values y[np.abs(x) < pruning_threshold] = 0.0 # quantize remaining values to powers of two _i = y != 0 _s = np.sign(y[_i]) _b = np.log2(np.abs(y[_i])) _d = np.log2(1.5) # quantization threshold # _d = 0.5 use geometric mean # _d = np.log2(1.5) use arithmetic mean _e = np.floor(_b) + (_b - np.floor(_b) >= _d) _e = np.maximum(n2, np.minimum(n1, _e)) y[_i] = _s * 2 ** (_e) return y
[ 1429 ]
def METHOD_NAME(self): if self.firstPoint is not None: # always make sure the sub paths are closed; the algorithm only works # for closed paths. self.closePath() return self.intersectionCount
[ 19, 14344 ]
def METHOD_NAME(is_sac): mock_specs = mb.create_mock_banana_behavior_specs() bc_settings = BehavioralCloningSettings( demo_path=os.path.dirname(os.path.abspath(__file__)) + "/" + "testdcvis.demo" ) bc_module = create_bc_module(mock_specs, bc_settings, True, is_sac) stats = bc_module.update() assert_stats_are_float(stats)
[ 9, 13338, 5820, 1362, 86 ]
def METHOD_NAME( message, subject, from_addr, to_addrs, cc_addrs, additional_headers, priority, logger ): """Sets headers on Mimetext message""" message["Subject"] = subject message["From"] = from_addr message["To"] = ", ".join(to_addrs) if cc_addrs: # NOTE filter out unenhanced cc_addrs added by self.get_mimetext_message cc_addrs = [cc for cc in cc_addrs if is_email(cc)] message["Cc"] = ", ".join(cc_addrs) if additional_headers: for k, v in additional_headers.items(): message[k] = v if priority and priority_header_is_valid(priority, logger): priority = PRIORITIES[str(priority)].copy() for key in priority: message[key] = priority[key] return message
[ 0, -1, 2131 ]
def METHOD_NAME(): # COO graph: # [0, 0, 1, 1, 2, 2, 3, 3, 4, 4] # [2, 4, 2, 3, 0, 1, 1, 0, 0, 1] # [1, 1, 1, 1, 0, 0, 0, 0, 0] - > edge type. # num_nodes = 5, num_n1 = 2, num_n2 = 3 ntypes = {"n1": 0, "n2": 1} etypes = {"n1:e1:n2": 0, "n2:e2:n1": 1} metadata = gb.GraphMetadata(ntypes, etypes) indptr = torch.LongTensor([0, 2, 4, 6, 8, 10]) indices = torch.LongTensor([2, 4, 2, 3, 0, 1, 1, 0, 0, 1]) type_per_edge = torch.LongTensor([1, 1, 1, 1, 0, 0, 0, 0, 0, 0]) node_type_offset = torch.LongTensor([0, 2, 5]) return gb.from_csc( indptr, indices, node_type_offset=node_type_offset, type_per_edge=type_per_edge, metadata=metadata, )
[ 19, 7271, 303 ]
def METHOD_NAME( staff_api_client, permission_manage_orders, draft_order ): # given order = draft_order order.status = OrderStatus.DRAFT order.save(update_fields=["status"]) line = order.lines.first() product = line.variant.product product.channel_listings.update(available_for_purchase_at=None) order_id = graphene.Node.to_global_id("Order", order.id) variables = {"id": order_id} staff_api_client.user.user_permissions.add(permission_manage_orders) # when response = staff_api_client.post_graphql(ORDER_CAN_FINALIZE_QUERY, variables) content = get_graphql_content(response) # then assert content["data"]["order"]["canFinalize"] is False errors = content["data"]["order"]["errors"] assert len(errors) == 1 assert errors[0]["code"] == OrderErrorCode.PRODUCT_UNAVAILABLE_FOR_PURCHASE.name assert errors[0]["field"] == "lines" assert errors[0]["orderLines"] == [graphene.Node.to_global_id("OrderLine", line.pk)]
[ 9, 1046, 977, 852, 1188, 1731, 43 ]
def METHOD_NAME(x, distribution1, distribution2): if distribution1.n_dimensions != distribution2.n_dimensions: raise NameError("mapping_dx: The two distributions are not compatible") return distribution2.ppf_dx(distribution1.cdf(x)) * distribution1.cdf_dx(x)
[ 445, 5710 ]
def METHOD_NAME(license_pools, identifier): """Find and return a LicensePool object with the specified identifier. :param license_pools: List of LicensePool objects :type license_pools: List[core.model.licensing.LicensePool] :param identifier: Identifier to look for :type identifier: str :return: LicensePool object with the specified identifier, None otherwise :rtype: Optional[core.model.licensing.LicensePool] """ for license_pool in license_pools: if license_pool.identifier.identifier == identifier: return license_pool return None
[ 19, 6226, 604, 769 ]
def METHOD_NAME(self): steps, hit_addrs, finished = arch_data["mips64"] self._emulate("mips64", "test_arrays", False, steps, hit_addrs, finished)
[ 9, 7613 ]
def METHOD_NAME(config_path, bin_length, measurements, classifiers): calculator = TimeBinsClfCalculator(config_path=config_path, bin_length=bin_length, measurements=measurements, classifiers=classifiers) calculator.run() assert os.path.isfile(calculator.save_path) os.remove(calculator.save_path)
[ 9, 104, 4704, 7310, 8688, 1080, 331 ]
def METHOD_NAME(self, bcs=None): """Return a null cell to node map.""" if bcs is not None: raise RuntimeError("Can't apply boundary conditions to a Constant") return None
[ 118, 1716, 422 ]
def METHOD_NAME(self, geometry_seq) -> List: return self._jvm.PythonConverter.translateGeometrySeqToPython(geometry_seq)
[ 711, 1525, 5355, 24, 440 ]
def METHOD_NAME(context): """ verify that the subscription is stored in mongo :param context: It’s a clever place where you and behave can store information to share around. It runs at three levels, automatically managed by behave. """ props_mongo = properties_class.read_properties()[MONGO_ENV] # mongo properties dict __logger__.debug(" >> verifying that subscription is stored in mongo") mongo = Mongo(host=props_mongo["MONGO_HOST"], port=props_mongo["MONGO_PORT"], user=props_mongo["MONGO_USER"], password=props_mongo["MONGO_PASS"]) ngsi = NGSI() ngsi.verify_subscription_stored_in_mongo(mongo, context.cb.get_subscription_context(), context.cb.get_headers(), context.resp) __logger__.info(" >> verified that subscription is stored in mongo")
[ 1162, 3800, 983, 835, 137, 5125, 623 ]
def METHOD_NAME() -> None: """Write git attributes in ~/.config/git/attributes.""" git_config = home / ".config" / "git" git_config.mkdir(exist_ok=True, parents=True) line_to_add = "*.gds diff=gdsdiff\n" # Specify the path to the .config/git/attributes file dirpath = home / ".config" / "git" dirpath.mkdir(exist_ok=True, parents=True) file_path = dirpath / "attributes" # Read the file to check if the line already exists file_content = file_path.read_text() if file_path.exists() else "" # Add the line only if it doesn't exist if line_to_add not in file_content: with open(file_path, "a") as file: file.write(line_to_add)
[ 77, 1493, 177 ]
def METHOD_NAME(self): path = 'path' issue2 = self.issue.relative_to(path) self.issue.origin.relative_to.assert_called_with(path) self.assertIs(self.issue.message, issue2.message) self.assertIs(self.issue.severity, issue2.severity) self.assertIs(self.issue.kind, issue2.kind) self.assertIs(self.issue.origin.relative_to(path), issue2.origin)
[ 9, 1821, 24, 41, 1788 ]
def METHOD_NAME( script: PipTestEnvironment, ) -> None: """ Test search exit status code for no matches """ result = script.pip("search", "nonexistentpackage", expect_error=True) assert result.returncode == NO_MATCHES_FOUND, result.returncode
[ 9, 1070, 538, 452, 544, 1646, 8818 ]
def METHOD_NAME(): with FluxExecutor() as executor: executor.start() future = executor.submit(bad_foo, {}) with pytest.raises(ValueError, match=ERRMSG): future.result() assert isinstance(future.exception(), ValueError)
[ 9, 1366 ]