text
stringlengths
15
7.82k
ids
sequencelengths
1
7
def METHOD_NAME(self): """Get boolean indicating whether edge is directed. Returns: bool True if edge is directed, if nothing set None """ return self._directed
[ 137, 10068 ]
def METHOD_NAME(self, alarm: Alarm): """ Runs when an alarm is raised. Sets the class' killed state to ``True``. """ self._killed = True
[ 3966 ]
def METHOD_NAME(self, y): if self.pad and y.shape[-1] < 14000: y = F.pad(y, (0, 14000 - y.shape[-1])) window = torch.hann_window(self.win_length).to(y) y = torch.stft(y, n_fft=self.embedder_params["n_fft"], hop_length=self.hop_length, win_length=self.win_length, window=window) magnitudes = torch.norm(y, dim=-1, p=2) ** 2 mel = torch.log10(self.mel_basis @ magnitudes + 1e-6) return mel
[ 19, 3779 ]
def METHOD_NAME(infile: Path, outfile: Path, edge_types: List[str]) -> None: with text_out(outfile) as fh: exporter = NXGraphExporter(fh, edge_types=edge_types) export_stream(exporter, infile)
[ 294, -1 ]
def METHOD_NAME(self, message): index = self.find("id", str(id(message))) if index != -1: self.setProperty(index, "title", message.getTitle())
[ 69, 277, 2893, 1180 ]
def METHOD_NAME(self, user: User) -> PosixPath: if user.is_anonymous: user_id = "anonymous" else: user_id = str(user.id) return self.UPLOAD_DIR / user_id
[ 21, 1190 ]
def METHOD_NAME(self): return RET_OK
[ 7267 ]
def METHOD_NAME(self, filename): self.filename = filename or '' if filename and os.path.exists(filename): with open(filename, 'r') as handle: content = handle.read() else: content = '' self._set(content)
[ 1452 ]
def METHOD_NAME(self): return bool(self.__flags & DEF_ANNOT)
[ 137, 9109 ]
def METHOD_NAME(self, organisation, div, subtype=None): field_id = "__".join( [str(x) for x in [organisation.pk, div.pk, subtype] if x] ) field = forms.ChoiceField( choices=self.choices, widget=dc_forms.RadioSelectCluster, label=div.name, initial="no_seats", required=False, ) self.fields[field_id] = field
[ 238, 97, 101 ]
def METHOD_NAME(): return ( # The order of these source is significant as they will short-circuit HTTPSource, FilePathSource, BytesIOSource, BufferedIOSource, TextIOSource, WrappedTemporaryFileSource, IterableSource )
[ 19, 249, 505 ]
def METHOD_NAME(func): get_queue_or_skip() x = dpt.ones((), dtype="i4") assert_equal(dpt.asnumpy(func(x)), True) x = dpt.zeros((), dtype="i4") assert_equal(dpt.asnumpy(func(x)), False)
[ 9, 201, 6603, 3575 ]
def METHOD_NAME(calculation_layer, property_type): """Tests serialisation and deserialization of a calculation schema.""" schema = registered_calculation_schemas[calculation_layer][property_type] if callable(schema): schema = schema() json_schema = schema.json() schema_from_json = WorkflowSchema.parse_json(json_schema) property_recreated_json = schema_from_json.json() assert json_schema == property_recreated_json
[ 9, 135, 2109 ]
def METHOD_NAME(self): # size() self.assertEqual(self.ca.size(),3)
[ 9, 1318 ]
def METHOD_NAME(self, params): # Renaming for convenience zeta = params['zeta'] zeta_star = params['zeta_star'] gamma = params['gamma'] gamma_star = params['gamma_star'] dist_to_orig = params['dist_to_orig'] nsurf = len(zeta) for isurf in range(nsurf): r_surf, ndx1_surf, dx1_surf, dxmax_surf = self.get_all_surface_parameters(isurf) M, N = zeta_star[isurf][0, :, :].shape for j in range(N): zeta_star[isurf][:, 0, j] = zeta[isurf][:, -1, j] for i in range(1, M): deltax = self.get_deltax(i, dx1_surf, ndx1_surf, r_surf, dxmax_surf) zeta_star[isurf][:, i, j] = zeta_star[isurf][:, i - 1, j] + deltax*self.u_inf_direction gamma[isurf] *= 0. gamma_star[isurf] *= 0. for isurf in range(nsurf): M, N = zeta_star[isurf][0, :, :].shape dist_to_orig[isurf][0] = 0. for j in range(0, N): for i in range(1, M): dist_to_orig[isurf][i, j] = (dist_to_orig[isurf][i - 1, j] + np.linalg.norm(zeta_star[isurf][:, i, j] - zeta_star[isurf][:, i - 1, j])) dist_to_orig[isurf][:, j] /= dist_to_orig[isurf][-1, j]
[ 567 ]
def METHOD_NAME(a: dict, b: dict, message_start: str) -> None: """Assert that Directories ``a`` and ``b`` are the same. ``b`` is treated as the expected values that ``a`` shall abide by. Print helpful error with custom message start. """ mismatch: list[str] = [] for b_key, b_value in b.items(): if b_key not in a: mismatch.append(f"Missing item {b_key}: {b_value}") elif b_value != a[b_key]: mismatch.append(f"For {b_key} got {a[b_key]}, expected {b_value}") for a_key, a_value in a.items(): if a_key not in b: mismatch.append(f"Extraneous item {a_key}: {a_value}") mismatch_str = "\n".join(mismatch) assert len(mismatch) == 0, f"{message_start}\n{mismatch_str}"
[ 638, 5194, 553, 979 ]
def METHOD_NAME(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(6)) if o != 0: return self._tab.VectorLen(o) return 0
[ 553, 799 ]
def METHOD_NAME(self): # This is a regression test that checks that actuators delays are # disabled when the trim takes place (GitHub issue #293). script_path = self.sandbox.path_to_jsbsim_file('scripts', 'c1722.xml') aircraft_tree, aircraft_name, _ = CopyAircraftDef(script_path, self.sandbox) root = aircraft_tree.getroot() elevator_actuator = root.find("flight_control/channel/actuator[@name='fcs/elevator-actuator']") delay = et.SubElement(elevator_actuator, 'delay') delay.text = '0.1' aircraft_tree.write(self.sandbox('aircraft', aircraft_name, aircraft_name+'.xml')) fdm = self.create_fdm() fdm.set_aircraft_path(self.sandbox('aircraft')) fdm.load_script(script_path) fdm.run_ic() while fdm.run(): if fdm['simulation/trim-completed'] == 1: break
[ 9, 1896, 41, 780, 1344 ]
def METHOD_NAME(): """ Return the application log directory. """ warnings.warn( f"'{__name__}.log_dir' is deprecated.", DeprecationWarning, stacklevel=2 ) if sys.platform == "darwin": name = QCoreApplication.applicationName() or "Orange" logdir = os.path.join(os.path.expanduser("~/Library/Logs"), name) else: logdir = data_dir() try: os.makedirs(logdir, exist_ok=True) except OSError: pass return logdir
[ 390, 1190 ]
async def METHOD_NAME(self): await super().METHOD_NAME()
[ 9, 19, 15806 ]
def METHOD_NAME(): f = BytesIO(sample_celestrak_text) s = list(parse_tle(f)) print(s) assert len(s) == 2 assert s[0][0] == ['ISS (ZARYA)', 'ISS', 'ZARYA'] assert s[0][1].name == 'ISS (ZARYA)' assert s[1][0] == ['FLOCK 2E-1'] assert s[1][1].name == 'FLOCK 2E-1'
[ 9, -1 ]
def METHOD_NAME(self): """break-guest-write behavior: Guest write fails, but snapshot-access continues working and further snapshot-read succeeds. """ log = self.do_cbw_error('break-guest-write') self.assertEqual(log, """\
[ 9, 699, 6483, 77, 69, 12479, 168 ]
def METHOD_NAME(self) : idx = 0 while idx < len(self.lightList) : if (self.lastChanged[idx] > 1) : self.lastChanged[idx] = self.lastChanged[idx] - 1 elif (self.lastChanged[idx] == 1) : self.bit3List[idx].setCommandedState(CLOSED) self.bit2List[idx].setCommandedState(CLOSED) self.bit1List[idx].setCommandedState(CLOSED) self.bit0List[idx].setCommandedState(CLOSED) self.lastChanged[idx] = 0 if (self.showMsg) : print "turning off " + self.lightNameList[idx] idx = idx + 1 return
[ 6553, 3988, 141 ]
def METHOD_NAME(self): """ Check if correct value is returned for filling in case of different column type and fill method """ d = {"col1": [1, 2, 3, np.nan, np.nan], "col2": ["a", "a", np.nan, "b", "c"]} df = pd.DataFrame(data=d) # fill with median preprocess_missing = PreprocessingMissingValues( df.columns, PreprocessingMissingValues.FILL_NA_MEDIAN ) self.assertEqual(preprocess_missing._get_fill_value(df["col1"]), 2) self.assertEqual(preprocess_missing._get_fill_value(df["col2"]), "a") # fill with mean preprocess_missing = PreprocessingMissingValues( df.columns, PreprocessingMissingValues.FILL_NA_MEDIAN ) self.assertEqual(preprocess_missing._get_fill_value(df["col1"]), 2) self.assertEqual(preprocess_missing._get_fill_value(df["col2"]), "a") # fill with min preprocess_missing = PreprocessingMissingValues( df.columns, PreprocessingMissingValues.FILL_NA_MIN ) self.assertEqual(preprocess_missing._get_fill_value(df["col1"]), 0) self.assertEqual( preprocess_missing._get_fill_value(df["col2"]), "_missing_value_" ) # added new value
[ 9, 19, 1917, 99 ]
METHOD_NAME(paths):
[ 9, 3336 ]
METHOD_NAME(self, tweet_id):
[ 34, 13901 ]
def METHOD_NAME(cls) -> ArgumentParser: from hathor.conf import HathorSettings settings = HathorSettings() def max_height(arg: str) -> Optional[int]: if arg.lower() == 'checkpoint': if not settings.CHECKPOINTS: raise ValueError('There are no checkpoints to use') return settings.CHECKPOINTS[-1].height elif arg: return int(arg) else: return None parser = super().METHOD_NAME() parser.add_argument('--export-file', type=FileType('wb', 0), required=True, help='Save the export to this file') parser.add_argument('--export-iterator', choices=['metadata', 'timestamp_index', 'dfs'], default='metadata', help='Which method of iterating to use, don\'t change unless you know what it does') parser.add_argument('--export-max-height', type=max_height, help='Make no assumption about the mempool when using this option. It may be partially' 'exported or not, depending on the timestamps and the traversal algorithm.') parser.add_argument('--export-skip-voided', action='store_true', help='Do not export voided txs/blocks') return parser
[ 129, 1319 ]
def METHOD_NAME(self): root_items = [] for folder in self.folders: item = WidgetItemFactory._build_item(None, folder) root_items.append(item) WidgetItemFactory.process_folder(item, folder) return root_items
[ 19, 1563, 451, 245 ]
def METHOD_NAME(db_file, db_file_name, report_folder): db = open_sqlite_db_readonly(db_file) cursor = db.cursor() messages_count, rows = _perform_query(cursor, CHAT_MESSAGES_QUERY) if messages_count > 0 and rows: _parse_chat_messages(messages_count, rows, report_folder, db_file_name) else: logfunc(f'No {APP_NAME} chat data found') cursor.close() db.close()
[ 214, 991, 463 ]
def METHOD_NAME(self): mpich_module = module("show", self.modname).splitlines() for line in mpich_module: if "CRAY_MPICH_DIR" in line: return get_path_args_from_module_line(line)[0] # Fixes an issue on Archer2 cray-mpich/8.0.16 where there is # no CRAY_MPICH_DIR variable in the module file. for line in mpich_module: if "CRAY_LD_LIBRARY_PATH" in line: libdir = get_path_args_from_module_line(line)[0] return os.path.dirname(os.path.normpath(libdir))
[ 751, 426 ]
def METHOD_NAME(self, x, y): """Get pixel at the speficied position.""" assert x >= 0 and x < self.width assert y >= 0 and y < self.height i = 3 * (y * self.width + x) return ( self.data[i], self.data[i + 1], self.data[i + 2] )
[ 19, 976 ]
def METHOD_NAME(fn, *args): import multiprocessing as mp mp.set_start_method("spawn", force=True) q = mp.Queue() p = mp.Process(target=target, args=(q, fn, *args)) p.start() retval = q.get() p.join() return retval
[ 22, 623, 356 ]
def METHOD_NAME(self, sample_rate): self.sample_rate = sample_rate self.osmosdr_source_0.METHOD_NAME(self.sample_rate)
[ 0, 734, 1585 ]
def METHOD_NAME(self, action_filename): """Parses the file and populates the data.""" self.actions = list() self.hiid_to_action_index = dict() f = codecs.open(action_filename, 'r', encoding='latin-1') first_line = True for line in f: line = line.rstrip() if first_line: # Ignore the first line first_line = False else: self.actions.append(GenewaysAction(line)) latestInd = len(self.actions)-1 hiid = self.actions[latestInd].hiid if hiid in self.hiid_to_action_index: raise Exception('action hiid not unique: %d' % hiid) self.hiid_to_action_index[hiid] = latestInd
[ 176, 1006, 245 ]
def METHOD_NAME(c2_netdef, tf_dir): log = logging.getLogger(__name__) log.setLevel(logging.INFO) def parse_net_def(path): import google.protobuf.text_format # type: ignore[import] net_def = caffe2_pb2.NetDef() with open(path) as f: google.protobuf.text_format.Merge(f.read(), net_def) return core.Net(net_def) graph_defs = [tb_exporter.nets_to_graph_def([parse_net_def(path)]) for path in c2_netdef] events = [graph_def_to_event(i, graph_def) for (i, graph_def) in enumerate(graph_defs, start=1)] write_events(tf_dir, events) log.info("Wrote %s graphs to logdir %s", len(events), tf_dir)
[ 6991, 2922 ]
def METHOD_NAME(remote_ip, timeout=300): """ Test for how long a target host went down. :param remote_ip: IP address or hostname of target host. :param timeout: For how long will return a timeout exception if host is not recovered. :return: Time elapsed before target host is pingable. :raise TimeoutExpection: : """ start_time = time.time() end_time = time.time() + timeout ping_cmd = 'ping -c 1 -W 1 ' + remote_ip logging.debug('Wait for host shutting down.') while True: if time.time() > end_time: raise TimeoutError( 'Downtime %s exceeds maximum allowed %s' % (time.time() - start_time, timeout)) res = process.run(ping_cmd, ignore_status=True, verbose=False, shell=True) if res.exit_status: logging.debug('Host %s is down.', remote_ip) break else: logging.debug('Host %s is up.', remote_ip) time.sleep(1) logging.debug('Time elapsed before host down: %.2fs', (time.time() - start_time)) logging.debug('Wait for host recover from sleep.') while True: if time.time() > end_time: raise TimeoutError( 'Downtime %s exceeds maximum allowed %s' % (time.time() - start_time, timeout)) res = process.run(ping_cmd, ignore_status=True, verbose=False, shell=True) if res.exit_status: logging.debug('Host %s is down.', remote_ip) else: logging.debug('Host %s is up.', remote_ip) break down_time = time.time() - start_time logging.debug('Time elapsed before host up: %.2fs', down_time) return down_time
[ 250, 1806, 481, 104 ]
def METHOD_NAME(): ocm_info = { "recommendedVersions": [ {"recommendedVersion": "1.0.0", "workload": "foo"}, ], "upgradePolicyAllowedWorkloads": ["foo", "bar"], "upgradePolicyClusters": [ {"name": "a", "upgradePolicy": {"workloads": ["foo"]}}, {"name": "c", "upgradePolicy": {"workloads": ["foo", "bar"]}}, {"name": "b", "upgradePolicy": {"workloads": ["bar"]}}, {"name": "b2", "upgradePolicy": {"workloads": ["bar"]}}, {"name": "b3", "upgradePolicy": {"workloads": ["bar"]}}, ], } clusters: dict[str, OCMSpec] = {} add_cluster(clusters, "a", "2.1.0", "stable") add_cluster(clusters, "c", "2.0.0", "stable") add_cluster(clusters, "b", "3.0.0", "fast") add_cluster(clusters, "b2", "3.0.0", "fast") add_cluster(clusters, "b3", "2.0.0", "fast") assert get_updated_recommended_versions(ocm_info, clusters) == [ { "channel": "stable", "recommendedVersion": "2.1.0", "workload": "foo", "initialVersion": "openshift-v2.1.0", }, { "channel": "stable", "recommendedVersion": "2.0.0", "workload": "bar", "initialVersion": "openshift-v2.0.0", }, { "channel": "fast", "recommendedVersion": "3.0.0", "workload": "bar", "initialVersion": "openshift-v3.0.0-fast", }, ]
[ 9, 19, 3758, 4324, 295, 107, 307 ]
def METHOD_NAME(self): # Use one query to find all the properties fo all species under the type species . short_species_list = [] triples = [] tmp = [] value_dictionary = {} rst = query_blazegraph(query=ONTOKIN_ALL_PROPERTIES_ALL_SPECIES, namespace="ontokin") non_attributes = ['species', 'label', 'transport'] heads = [h for h in rst['head']['vars'] if h not in non_attributes and '_unit' not in h] unique_labels = [] for r in rst['results']['bindings']: row = [] species = r['species']['value'] # .split('/')[-1] transport = r['transport']['value'] label = r['label']['value'] if "#" in species: short_species = species.split('#')[-1] else: short_species = species.split('/')[-1] # filter, only put findable species ... counter = 0 if label not in unique_labels: short_species_list.append(short_species) counter += 1 print(f"number of selected iris", counter) row.append(species) row.append(label) for head in heads: if head in r: data = r[head]['value'] else: data = "EMPTY" new_node = head + '_' + short_species row.append(new_node) if head + '_unit' in r: data_unit = r[head + '_unit']['value'] value_dictionary[new_node] = data + ' ' + data_unit else: # insert a new node, with part of the species and the relations value_dictionary[new_node] = data triples.append((short_species, head + '_latent', new_node)) tmp.append(row) unique_labels.append(label) print('number of unique labels', len(unique_labels)) df_all_species = pd.DataFrame(tmp) df_all_species.columns = ['species', 'label'] + heads df_all_species.to_csv(os.path.join(self.dataset_path, 'all_species.tsv'), sep='\t') with open(os.path.join(self.dataset_path, 'value_dict.json'), 'w') as f: f.write(json.dumps(value_dictionary)) f.close() df_triples = pd.DataFrame(triples) df_triples.to_csv(os.path.join(self.dataset_path, 'ontokin-train.txt'), sep='\t', index=False, header=False) df_test = df_triples.sample(frac=0.2) df_test.to_csv(os.path.join(self.dataset_path, 'ontokin-test.txt'), sep='\t', index=False, header=False)
[ 539, 75, 8669 ]
def METHOD_NAME(self) -> Optional[str]: """ Peer IP. """ return pulumi.get(self, "peer_ip")
[ 502, 1213 ]
def METHOD_NAME(self, other: 'ComputationalBasisProductState') -> 'ComputationalBasisProductState': return ComputationalBasisProductState(self.basis + other.basis)
[ 8372 ]
def METHOD_NAME( x, y, xlabel, ylabel, cols=1, rows=1, same_x=False, ylabel_title=True, to_file=None ): """Make a grid of plots. Args: x: values for x-axis. If all plots have the same x-axis the same_x arg should be True, and only one x-value list is need, otherwise x should be a list of x value lists. y: list of lists of y values for plots xlabel: if same_x=True, a x-axis label, if same_x=False, list of xaxis labels ylable: list of y-axis labels cols: number of columns in plot grid rows: number of rows in plot grid same_x: If True use the same x-axis for all plots, otherwise expect a list of x-axis data for the x-axis of each plot ylabel_title: If True, use the ylabel for the plot title, otherwise label the y-axis Returns: matplotlib.pyplot """ assert cols * rows >= len(y) for i, yi in enumerate(y): yilabel = ylabel[i] if same_x: xi = x xilabel = xlabel else: xi = x[i] xilabel = xlabel[i] plt.subplot(rows, cols, i + 1) plt.xlabel(xilabel) plt.plot(xi, yi) if ylabel_title: plt.title(yilabel) else: plt.ylabel(yilabel) plt.tight_layout() if to_file: plt.savefig(to_file) else: plt.show() return plt
[ 1288, 753 ]
def METHOD_NAME(self): return self.__trans.METHOD_NAME()
[ 1452 ]
def METHOD_NAME(rotation_matrix_Y_HALF_PI): quaternion = np.array([0, 0.7071068, 0.0, 0.7071068]) matrix = quaternion_to_rotation_matrix(quaternion) assert np.allclose(rotation_matrix_Y_HALF_PI, matrix)
[ 9, 2270, 24, 2271, 430, 320 ]
def METHOD_NAME(): np.random.seed(1) reference = pd.Series(np.random.normal(0, 1, 10_000), name='A') analysis = reference wass_dist = WassersteinDistance(chunker=chunker, threshold=threshold) wass_dist = wass_dist.fit(reference).calculate(analysis) wass_dist = np.round(wass_dist, 2) assert wass_dist == 0
[ 9, -1, 2171, 2684, 1506, 1886 ]
def METHOD_NAME(): y_true = np.array([]) y_score = np.array([]) with pytest.raises(ValueError): sklearn.metrics.roc_auc_score(y_true, y_score) with pytest.raises(ValueError): roc_auc(y_true, y_score)
[ 9, 2066, 2067, 747, 41, 435, 313 ]
def METHOD_NAME(self, sourcename, status): return self._base_client.update_source_status( sourcename=sourcename, status=status, )
[ 959, 1458, 452 ]
def METHOD_NAME(self): clade_counts = {frozenset(['A', 'B']): 6, frozenset(['A']): 7, frozenset(['B']): 8} edge_lengths = {frozenset(['A', 'B']): 1, frozenset(['A']): 2, frozenset(['B']): 3} tree = _build_trees(clade_counts, edge_lengths, 'foo', TreeNode)[0] self.assertEqual(tree.foo, 6) tree_foos = set([c.foo for c in tree.children]) tree_lens = set([c.length for c in tree.children]) self.assertEqual(tree_foos, set([7, 8])) self.assertEqual(tree_lens, set([2, 3]))
[ 9, 56, 6587 ]
def METHOD_NAME(candidates: [dict], mask=None): contexts = [] for candidate in candidates: context = candidate["contexts"][0] if mask: context = context.replace(candidate["words_in_contexts"][0], mask) contexts.append(context) return contexts
[ 19, 865, 6295 ]
def METHOD_NAME(category, event): tpoint = "%s:%s" % (category, event) if not args.filter or fnmatch.fnmatch(tpoint, args.filter): print(tpoint) if args.verbosity > 0: print_tpoint_format(category, event)
[ 38, -1 ]
def METHOD_NAME(next_link=None): if not next_link: request = build_list_request( subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.list.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: # make call to next link with the client's api-version _parsed_next_link = urllib.parse.urlparse(next_link) _next_request_params = case_insensitive_dict( { key: [urllib.parse.quote(v) for v in value] for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() } ) _next_request_params["api-version"] = self._config.api_version request = HttpRequest( "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request
[ 123, 377 ]
def METHOD_NAME(): path = os.path.join(os.getcwd(), "instances.yml") with open(path, "rb") as fd: content = fd.read().decode("utf-8") return yaml.safe_load(content)
[ 203, 200, 171 ]
METHOD_NAME(self,cpustate,proc,task_addr):
[ 1917, -1 ]
async def METHOD_NAME(self, interaction: discord.Interaction) -> bool: if interaction.user.id != self._author_id: await interaction.response.send_message("You can't do that.", ephemeral=True) return False return True
[ 1309, 250 ]
def METHOD_NAME(self, packages_metadata: List[Dict[str, str]], ignore_warning_callback: Callable[[], None]) -> None: """ Show a dialog that prompts the user to install certain packages. The dialog is worded for packages that are missing and required for a certain operation. :param packages_metadata: The metadata of the packages that are missing. :param ignore_warning_callback: A callback that gets executed when the user ignores the pop-up, to show them a warning. """ self.missingPackageDialog = InstallMissingPackageDialog(packages_metadata, ignore_warning_callback) self.missingPackageDialog.show()
[ 697, 428, 1038, 360, 1301 ]
def METHOD_NAME(self, force=False): """ Clear the interface Args: force: Remove the object and create a new one (brute force) Returns: """ if force: self.canvas.fig.METHOD_NAME() self.canvas.ax = self.canvas.fig.add_subplot(111) # self.canvas.ax.clear() # self.canvas = MplCanvas() else: self.canvas.ax.METHOD_NAME() self.redraw()
[ 537 ]
def METHOD_NAME(self): alice_xmss = get_alice_xmss() bob_xmss = get_bob_xmss() random_xmss = get_random_xmss() signatories = [alice_xmss.address, bob_xmss.address] weights = [20, 20] threshold = 21 multi_sig_tx = MultiSigCreate.create(signatories, weights, threshold, 0, random_xmss.pk) multi_sig_tx.sign(random_xmss) multi_sig_address_state = MultiSigAddressState.get_default(multi_sig_tx.txhash, signatories, weights, threshold) multi_sig_addresses_state = {multi_sig_address_state.address: multi_sig_address_state} AddressState.put_addresses_state(self.state, multi_sig_addresses_state) multi_sig_address_state2 = MultiSigAddressState.get_multi_sig_address_state_by_address( self.state._db, MultiSigAddressState.generate_multi_sig_address(multi_sig_tx.txhash)) self.assertEqual(multi_sig_address_state.pbdata, multi_sig_address_state2.pbdata)
[ 9, 1276, 457, 5136, 1065, 551 ]
def METHOD_NAME(self): self.login_as(user=self.user, superuser=True) response = self.client.get(self.url, {"query": "nonsense"}) assert response.status_code == 400 assert "nonsense" in response.data
[ 9, 1068, 539 ]
def METHOD_NAME(label): # When computing outs derived from srcs in a different package (i.e., when # srcs labels have a colon), we only want their package-relative stem (the # dirname and basename after the colon). if ":" in label: label = label.split(":")[-1] return dirname(label), basename(label)
[ 1821, 2838, 5926 ]
def METHOD_NAME(document_classifier): docs = [ Document(content="""That's good. I like it.""", meta={"name": "0"}, id="1"), Document(content="""That's bad. I don't like it.""", meta={"name": "1"}, id="2"), ] results = document_classifier.predict_batch(documents=[docs, docs]) assert len(results) == 2 # 2 Document lists expected_labels = ["joy", "sadness"] for i, doc in enumerate(results[0]): assert doc.to_dict()["meta"]["classification"]["label"] == expected_labels[i]
[ 9, 352, 810, 2277, 107, 366, 50 ]
def METHOD_NAME( folder1, folder2 ): ts1 = OpenPMDTimeSeries( folder1 ) ts2 = OpenPMDTimeSeries( folder2 ) # Check the vector fields for field, coord in [("J", "z"), ("E","r"), ("E","z"), ("B","t")]: print("Checking %s%s" %(field, coord)) field1, info = ts1.get_field(field, coord, iteration=0) field2, info = ts2.get_field(field, coord, iteration=0) # For 0 fields, do not use allclose if abs(field1).max() == 0: assert abs(field2).max() == 0 else: assert np.allclose( field1/abs(field1).max(), field2/abs(field2).max() ) # Check the rho field print("Checking rho") field1, info = ts1.get_field("rho", iteration=0) field2, info = ts2.get_field("rho", iteration=0) assert np.allclose( field1/abs(field1).max(), field2/abs(field2).max() )
[ 250, 1741, 342 ]
def METHOD_NAME(self, base: ExerciseBase, delete: bool): if not base.pk: return exercise_languages = base.exercises.values_list('language', flat=True) duplicates = [ Language.objects.get(pk=item) for item, count in collections.Counter(exercise_languages).items() if count > 1 ] if not duplicates: return warning = f'Exercise {base.uuid} has duplicate translations!' self.stdout.write(self.style.WARNING(warning)) # Output the duplicates for language in duplicates: translations = base.exercises.filter(language=language) self.stdout.write(f'language {language.short_name}:') for translation in translations: self.stdout.write(f' * {translation.name} {translation.uuid}') self.stdout.write('') # And delete them if delete: self.stdout.write(f' Deleting all but first {language.short_name} translation') for translation in translations[1:]: translation.delete()
[ 276, 1119, 5285 ]
def METHOD_NAME( script_runner, mock_filtering, in_fodf, out_fodf, sym_fodf): os.chdir(os.path.expanduser(tmp_dir.name)) ret = script_runner.run('scil_execute_angle_aware_bilateral_filtering.py', in_fodf, 'out_fodf2.nii.gz', '--out_sym', 'out_sym.nii.gz', '--sphere', 'repulsion100', '--sigma_angular', '1.0', '--sigma_spatial', '1.0', '--sigma_range', '1.0', '--sh_basis', 'descoteaux07', '--processes', '1', '-f', print_result=True, shell=True) assert ret.success mock_filtering.assert_called_once() ret_sym_fodf = nib.load("out_sym.nii.gz") test_sym_fodf = nib.load(sym_fodf) assert np.allclose(ret_sym_fodf.get_fdata(), test_sym_fodf.get_fdata())
[ 9, 6794, 1189, 146 ]
def METHOD_NAME(self, value): """Insert an occurrence of `value` into the btree.""" i = 0 n = len(self._tree) while i < n: cur = self._tree[i] self._counts[i] += 1 if value < cur: i = 2 * i + 1 elif value > cur: i = 2 * i + 2 else: return raise ValueError("Value %s not contained in tree." "Also, the counts are now messed up." % value)
[ 408 ]
def METHOD_NAME(self, widget=None): """ Aborts the addition of a new backend. Shows the configuration panel previously loaded. @param widget: just to make this function usable as a signal callback. Not used. """ self.dialog.show_config_for_backend(None)
[ 69, 608 ]
def METHOD_NAME(self) -> str: return self._node_id.value
[ 1716, 147 ]
def METHOD_NAME(pt, rkb, rk): pt = hex2bin(pt) # Initial Permutation pt = permute(pt, initial_perm, 64) print("After initial permutation", bin2hex(pt)) # Splitting left = pt[0:32] right = pt[32:64] for i in range(0, 16): # Expansion D-box: Expanding the 32 bits data into 48 bits right_expanded = permute(right, exp_d, 48) # XOR RoundKey[i] and right_expanded xor_x = xor(right_expanded, rkb[i]) # S-boxex: substituting the value from s-box table by calculating row and column sbox_str = "" for j in range(0, 8): row = bin2dec(int(xor_x[j * 6] + xor_x[j * 6 + 5])) col = bin2dec( int(xor_x[j * 6 + 1] + xor_x[j * 6 + 2] + xor_x[j * 6 + 3] + xor_x[j * 6 + 4])) val = sbox[j][row][col] sbox_str = sbox_str + dec2bin(val) # Straight D-box: After substituting rearranging the bits sbox_str = permute(sbox_str, per, 32) # XOR left and sbox_str result = xor(left, sbox_str) left = result # Swapper if(i != 15): left, right = right, left print("Round ", i + 1, " ", bin2hex(left), " ", bin2hex(right), " ", rk[i]) # Combination combine = left + right # Final permutation: final rearranging of bits to get cipher text cipher_text = permute(combine, final_perm, 64) return cipher_text
[ 2196 ]
def METHOD_NAME(self, item_list, user, **kwargs): return { item: { "config": [ serialize_field(self.project, item, c) for c in item.get_config( project=self.project, user=user, add_additial_fields=True ) ] } for item in item_list }
[ 19, 1685 ]
def METHOD_NAME(self): base_class = self.env["l10n_br_fiscal.document.related"] tree, visited = self.get_stacked_tree(base_class) self.assertEqual(tree, NFeRelated.NFREF_TREE) self.assertEqual(len(visited), 4)
[ 9, -1, 151 ]
def METHOD_NAME(self): response = self.client.get(f'{self.base_endpoint}{self.questionnaire.uuid}') self.assertEqual(response.status_code, 200) response_json = response.json() self.assertEqual(len(response_json['explanation']['sections']), 2) self.assertIn('title', response_json['explanation']) self.assertJsonSchema(self.detail_schema, response_json) response_json = response.json() self.assertIn('explanation', response_json) self.assertEqual(len(response_json['explanation']['sections']), 2)
[ 9, 16287, 1801, 604, 4977 ]
def METHOD_NAME(cmd1, cmd2): try: rc, result = getstatusoutput_noshell_pipe(cmd1, cmd2) if rc != [0, 0]: raise RuntimeError("Failed to execute command {} {}, return code {}, {}".format(cmd1, cmd2, rc, result)) except OSError as e: raise RuntimeError("Failed to execute command {} {} due to {}".format(cmd1, cmd2, repr(e))) return result
[ 19, 462, 1571, 890 ]
def METHOD_NAME(self): """ :type: string """ self._completeIfNotSet(self._encoding) return self._encoding.value
[ 2300 ]
def METHOD_NAME(): import sverchok # This part is called upon scrip.reload (F8), because old nodes will be unregistered again # There is no way to say which old node classes should be registered without registering them all if sverchok.reload_event: register_all()
[ 372 ]
def METHOD_NAME( typeclass=None, key="testobj", location=None, delete_duplicates=True, **kwargs ): """ This is a convenience-wrapper for quickly building EvscapeRoom objects. This is called from the helper-method create_object on states, but is also useful for the object-create admin command. Note that for the purpose of the Evscaperoom, we only allow one instance of each *name*, deleting the old version if it already exists. Keyword Args: typeclass (str): This can take just the class-name in the evscaperoom's objects.py module. Otherwise, a full path is needed. key (str): Name of object. location (Object): The location to create new object. delete_duplicates (bool): Delete old object with same key. kwargs (any): Will be passed into create_object. Returns: new_obj (Object): The newly created object, if any. """ if not ( callable(typeclass) or typeclass.startswith("evennia") or typeclass.startswith("typeclasses") or typeclass.startswith("evscaperoom") ): # unless we specify a full typeclass path or the class itself, # auto-complete it typeclass = _BASE_TYPECLASS_PATH + typeclass if delete_duplicates: old_objs = [ obj for obj in search_object(key) if not inherits_from(obj, "evennia.objects.objects.DefaultCharacter") ] if location: # delete only matching objects in the given location [obj.delete() for obj in old_objs if obj.location == location] else: [obj.delete() for obj in old_objs] new_obj = create_object(typeclass=typeclass, key=key, location=location, **kwargs) return new_obj
[ 129, -1, 279 ]
def METHOD_NAME(text): """ classify tweets for tweets about car accidents and others :param text: tweet text :return: boolean, true if tweet is about car accident, false for others """ return text.startswith("בשעה") and ( tweet_with_accident_vehicle_and_person(text) or tweet_with_car_accident(text) or tweet_with_vehicles(text) )
[ 6144, 11319 ]
def METHOD_NAME(): with patch( "salt.modules.nexus._get_snapshot_version_metadata", MagicMock( return_value={"snapshot_versions": {"zip": "0.0.2-20170920.212353-3"}} ), ): artifact_url, file_name = nexus._get_snapshot_url( nexus_url="http://nexus.example.com/repository", repository="libs-snapshots", group_id="com.company.sampleapp.web-module", artifact_id="web", version="0.2.0-SNAPSHOT", packaging="zip", headers={}, ) assert ( artifact_url == "http://nexus.example.com/repository/libs-snapshots/com/company/sampleapp/web-module/web/0.2.0-SNAPSHOT/web-0.0.2-20170920.212353-3.zip" ) assert file_name == "web-0.0.2-20170920.212353-3.zip"
[ 9, 363, 274, 43, 394, 281 ]
def METHOD_NAME(self, *largs): if self._dropdown: self._dropdown.unbind(on_select=self._on_dropdown_select) self._dropdown.unbind(on_dismiss=self._close_dropdown) self._dropdown.dismiss() self._dropdown = None cls = self.dropdown_cls if isinstance(cls, string_types): cls = Factory.get(cls) self._dropdown = cls() self._dropdown.bind(on_select=self._on_dropdown_select) self._dropdown.bind(on_dismiss=self._close_dropdown) self._update_dropdown()
[ 56, 5503 ]
def METHOD_NAME(self) -> 'outputs.LabelingJobPropertiesResponse': """ Definition of a labeling job. """ return pulumi.get(self, "properties")
[ 748 ]
async def METHOD_NAME(): raise error
[ 241, 168 ]
def METHOD_NAME(self, data): data = self.preprocess(data) data = self.inference(data) return self.postprocess(data)
[ 2103 ]
def METHOD_NAME(batch, y, nxt_y, y0, alpha): pred = graph.predecessor(batch.numpy()) self_label = paddle.to_tensor(y[batch.numpy()]) self_label0 = paddle.to_tensor(y0[batch.numpy()]) pred_id = [] for n, p in enumerate(pred): if len(p) > 0: pred_id.append(np.ones(len(p)) * n) pred_cat = np.concatenate(pred) pred_id_cat = paddle.to_tensor(np.concatenate(pred_id), dtype="int64") pred_cat_pd = paddle.to_tensor(pred_cat) pred_label = paddle.to_tensor(y[pred_cat]) pred_norm = paddle.gather(indegree, pred_cat_pd) self_norm = paddle.gather(indegree, paddle.to_tensor(batch, dtype="int64")) others = paddle.zeros_like(self_label) others = paddle.scatter(others, pred_id_cat, pred_label) others = (1 - alpha) * (others + self_label ) * self_norm + alpha * self_label0 others = others / paddle.sum(others, -1, keepdim=True) nxt_y[batch] = others.numpy()
[ 13748 ]
def METHOD_NAME(self): barrier() data = self.generateData(1) self.checkResult(data, parallel_sort(data))
[ 9, 266, -1 ]
async def METHOD_NAME(self, **kwargs): client = kwargs.pop("client") with open(self.receipt_jpg, "rb") as fd: my_file = fd.read() with pytest.raises(ValueError): async with client: poller = await client.begin_recognize_receipts( my_file, content_type="application/jpeg" ) result = await poller.result()
[ 9, 7405, 1068, 459, 44, 49, 7680 ]
def METHOD_NAME(self): """ Make sure we can list all the tables in a schema. """ table_list = ( SchemaManager() .list_tables(schema_name=Band._meta.schema) .run_sync() ) self.assertListEqual(table_list, [Band._meta.tablename])
[ 9, 245, 2253 ]
def METHOD_NAME(self): ''' Set status to 'on' Input: None Output: None ''' self.set_status(True)
[ 69 ]
def METHOD_NAME(self): self.x_np = self.random( shape=self.case["x_shape"], dtype=self.case["dtype"], low=self.case["x_low"], high=self.case["x_high"]) self.y_np = self.random( shape=self.case["y_shape"], dtype=self.case["dtype"], low=self.case["y_low"], high=self.case["y_high"]) self.y_np = np.where(self.y_np == 0, 1, self.y_np)
[ 123, 1461 ]
def METHOD_NAME( src: Path, dest: Path, copy_excludes: typing.Optional[typing.List[str]] = None, patch_func: typing.Callable[[], None] = owlbot_patch, ) -> None: """Copies files from generated tree.""" entries = os.scandir(src) if not entries: logger.info("there is no version subdirectory to copy") return for entry in entries: if entry.is_dir(): version_src = Path(entry.path).resolve() owlbot_copy_version(version_src, dest, copy_excludes) with pushd(dest): patch_func()
[ 16012, 57 ]
def METHOD_NAME(self) -> str: """ ARN of the KMS key used to encrypt the snapshot at rest. """ return pulumi.get(self, "kms_key_arn")
[ 1666, 59, 1059 ]
def METHOD_NAME( app, item_lib_martigny, patron_martigny, item_type_on_site_martigny, loc_public_martigny, librarian_martigny, lib_martigny, lib_saxon, loc_public_saxon, patron_type_adults_martigny, circulation_policies): """Test extend an on_loan item at an external library.""" patron_martigny['patron']['type']['$ref'] = get_ref_for_pid( 'ptty', patron_type_adults_martigny.pid) patron_martigny.update(patron_martigny, dbcommit=True, reindex=True) item_lib_martigny['item_type']['$ref'] = get_ref_for_pid( 'itty', item_type_on_site_martigny.pid) item_lib_martigny.update(item_lib_martigny, dbcommit=True, reindex=True) # the library level cipo3 is used here circ_policy_temp_martigny params = { 'patron_pid': patron_martigny.pid, 'transaction_location_pid': loc_public_martigny.pid, 'transaction_user_pid': librarian_martigny.pid, 'pickup_location_pid': loc_public_martigny.pid } item, loan = item_record_to_a_specific_loan_state( item=item_lib_martigny, loan_state=LoanState.ITEM_ON_LOAN, params=params, copy_item=True) settings = app.config['CIRCULATION_POLICIES']['extension'] app.config['CIRCULATION_POLICIES']['extension']['from_end_date'] = True loan['end_date'] = loan['start_date'] initial_loan = loan.update(loan, dbcommit=True, reindex=True) assert get_circ_policy( loan, checkout_location=True) == get_circ_policy(loan) # The cipo used for the checkout or renewal is "short" which is configured # only for lib_martigny. For other libraries it is the default cipo to be # used. params = { 'transaction_location_pid': loc_public_saxon.pid, 'transaction_user_pid': librarian_martigny.pid } cipo = get_circ_policy(loan) item, actions = item.extend_loan(**params) loan = Loan.get_record_by_pid(initial_loan.pid) # now the extend action does not take into account anymore the transaction # library so it continues to use the "short" policy for the extend action. assert get_circ_policy( loan, checkout_location=True).get('pid') == cipo.get('pid') assert get_circ_policy(loan).get('pid') != cipo.get('pid')
[ 9, 978, 69, 1024, 69, 16026, 41 ]
def METHOD_NAME(self): from kivy.lang import Builder from kivy.factory import Factory from kivy.properties import StringProperty from kivy.uix.floatlayout import FloatLayout Builder.load_string("""
[ 9, 706, 1563, 280, 544, 41, 4135 ]
def METHOD_NAME(): """display all known resources""" print("\n*** ctapipe resources ***\n") print("CTAPIPE_SVC_PATH: (directories where resources are searched)") if os.getenv("CTAPIPE_SVC_PATH") is not None: for directory in datasets.get_searchpath_dirs(): print(f"\t * {directory}") else: print("\t no path is set") print("") all_resources = sorted(datasets.find_all_matching_datasets(r"\w.*")) home = os.path.expanduser("~") try: resource_dir = files("ctapipe_resources") except ImportError: resource_dir = None fmt = "{name:<30.30s} : {loc:<30.30s}" print(fmt.format(name="RESOURCE NAME", loc="LOCATION")) print("-" * 70) for resource in all_resources: if resource.suffix == ".py" or resource.name.startswith("_"): continue loc = str(resource) if resource_dir is not None: loc = loc.replace(resource_dir, "[ctapipe_resources]") loc = loc.replace(home, "~") print(fmt.format(name=resource.name, loc=loc))
[ 100, 1614 ]
def METHOD_NAME(self, routingKey, shouldMatch, filter): cb = mock.Mock() yield self.mq.startConsuming(cb, filter) self.mq.produce(routingKey, 'x') self.assertEqual(shouldMatch, cb.call_count == 1) if shouldMatch: cb.assert_called_once_with(routingKey, 'x')
[ 74, 9, 590 ]
def METHOD_NAME(hostString): a = hostString.split('.') if len(a) != 4: return False for group in a: if (group.find("/")!=-1): group = group[:group.find("/")] if not group.isdigit(): return False i = int(group) if i < 0 or i > 255: return False return True
[ 1205, 4200 ]
def METHOD_NAME(self): transaction = self.registration.transaction if not transaction or transaction.provider != 'paypal': return False return (transaction.data['payment_status'] == request.form.get('payment_status') and transaction.data['txn_id'] == request.form.get('txn_id'))
[ 137, 1853, 3159 ]
def METHOD_NAME(a): return \
[ 497, 12663, 497, 1305, 12664, 1178, 12665 ]
def METHOD_NAME(self): self.client.logout() response = self.client.get(reverse('course-experience-course-deadlines-mobile', args=[self.course.id])) assert response.status_code == 401
[ 9, 18, 19, 20, 21 ]
def METHOD_NAME(submission_) -> bool: """Check if submission has text or title.""" return hasattr(submission_, "selftext") or hasattr(submission_, "title")
[ 220, 459 ]
def METHOD_NAME(self): return self.rank == 0
[ 137, 2614 ]
def METHOD_NAME(self): for label in [ '1.2.1.2.1a','1.2.3.1.1a', '1.4.1.12.4d', '1.4.3.6.2a', '1.4.6.1.1a', '1.4.10.1.1a' ]: L = self.tc.get('/SatoTateGroup/'+label, follow_redirects=True) assert "Moment sequences" in L.get_data(as_text=True) for label in [ '1.2.B.2.1a','1.2.A.1.1a', '1.4.F.12.4d', '1.4.E.6.2a', '1.4.B.1.1a', '1.4.A.1.1a' ]: L = self.tc.get('/SatoTateGroup/'+label) assert "Moment sequences" in L.get_data(as_text=True)
[ 9, -1 ]
def METHOD_NAME(self, file_pattern, index): """ Reads the file of the PSU :param file_pattern: The filename convention :param index: An integer, 1-based index of the PSU of which to query status :return: int """ return_value = 0 try: with open(self.psu_path + file_pattern.format(index), 'r') as file_to_read: return_value = int(file_to_read.read()) except IOError: log_err("Read file {} failed".format(self.psu_path + file_pattern.format(index))) return 0 return return_value
[ 203, 171 ]
def METHOD_NAME(pid: int) -> None: try: os.kill(pid, signal.SIGTERM) print(f"Process {pid} terminated.") except Exception as e: print(f"Error killing process {pid}: {e}")
[ 643, 356 ]