File size: 11,377 Bytes
cdb0b4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88e3654
 
cdb0b4e
 
 
88e3654
81368b8
999146f
 
88e3654
 
 
 
 
81368b8
 
 
 
 
 
 
 
88e3654
 
2f6e05a
88e3654
 
 
 
 
81368b8
88e3654
 
 
 
 
 
 
 
 
 
 
 
 
 
5246ac6
dfb9bd5
 
 
81368b8
cdb0b4e
dfb9bd5
 
 
 
 
cdb0b4e
 
 
 
 
 
 
dfb9bd5
 
 
 
cdb0b4e
88e3654
 
 
 
dfb9bd5
 
88e3654
 
 
 
 
dfb9bd5
 
88e3654
 
81368b8
2ccf758
81368b8
 
75e71e7
2f6e05a
dfb9bd5
cdb0b4e
dfb9bd5
cdb0b4e
 
75e71e7
dfb9bd5
cdb0b4e
2ccf758
 
 
 
 
cdb0b4e
2ccf758
 
 
 
cdb0b4e
2ccf758
 
 
 
cdb0b4e
2ccf758
 
 
 
 
 
 
 
dfb9bd5
2f6e05a
88e3654
 
2f6e05a
dfb9bd5
 
cdb0b4e
75e71e7
88e3654
 
75e71e7
88e3654
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# import os
# import datasets
# import tarfile

# _HOMEPAGE = "https://github.com/AV-Lab/emt-dataset"
# _LICENSE = "CC-BY-SA 4.0"
# _CITATION = """  
# @article{EMTdataset2025,  
#       title={EMT: A Visual Multi-Task Benchmark Dataset for Autonomous Driving in the Arab Gulf Region},  
#       author={Nadya Abdel Madjid and Murad Mebrahtu and Abdelmoamen Nasser and Bilal Hassan and Naoufel Werghi and Jorge Dias and Majid Khonji},  
#       year={2025},  
#       eprint={2502.19260},  
#       archivePrefix={arXiv},  
#       primaryClass={cs.CV},  
#       url={https://arxiv.org/abs/2502.19260}  
# }  
# """ 

# _DESCRIPTION = """\
# A multi-task dataset for detection, tracking, prediction, and intention prediction. 
# This dataset includes 34,386 annotated frames collected over 57 minutes of driving, with annotations for detection and tracking.
# """

# # # Annotation repository
# # _ANNOTATION_REPO = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/annotations"

# # Tar file URLs for images
# _TRAIN_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_images.tar.gz"
# _TEST_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/test_images.tar.gz"

# # Tar file URLs for annotations
# _TRAIN_ANNOTATION_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_annotation.tar.gz"
# _TEST_ANNOTATION_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/test_annotation.tar.gz"


# class EMT(datasets.GeneratorBasedBuilder):
#     """EMT dataset."""

#     BUILDER_CONFIGS = [
#         datasets.BuilderConfig(
#             name="full_size",
#             description="All images are in their original size.",
#             version=datasets.Version("1.0.0"),
#         )
#     ]

#     def _info(self):
#         return datasets.DatasetInfo(
#             description=_DESCRIPTION,
#             features=datasets.Features(
#                 {
#                     "image": datasets.Image(),
#                     "objects": datasets.Sequence(
#                         {
#                             "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
#                             "class_id": datasets.Value("int32"),
#                             "track_id": datasets.Value("int32"),
#                             "class_name": datasets.Value("string"),
#                         }
#                     ),
#                 }
#             ),
#             supervised_keys=None,
#             homepage=_HOMEPAGE,
#             license=_LICENSE,
#             citation=_CITATION,
#         )

#     def _split_generators(self, dl_manager):
#         """Download train/test images and annotations."""
#         image_urls = {
#             "train": _TRAIN_IMAGE_ARCHIVE_URL,
#             "test": _TEST_IMAGE_ARCHIVE_URL,
#         }
    
#         # Download the tar file for annotations
#         # annotation_urls = {
#         #     "train": _TRAIN_ANNOTATION_ARCHIVE_URL,
#         #     "test": _TEST_ANNOTATION_ARCHIVE_URL,
#         # }
#         annotation_urls = {
#         "train": "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_annotation.tar.gz",
#         "test": "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/test_annotation.tar.gz",
#         }
#         # Download image files
#         images = {
#             "train": dl_manager.iter_archive(image_urls["train"]),
#             "test": dl_manager.iter_archive(image_urls["test"]),
#         }
    
#         # Download annotation files and extract them
#         annotations = {
#             "train": dl_manager.download_and_extract(annotation_urls["train"]),
#             "test": dl_manager.download_and_extract(annotation_urls["test"]),
#         }
    
#         return [
#             datasets.SplitGenerator(
#                 name=datasets.Split.TRAIN,
#                 gen_kwargs={
#                     "images": images["train"],
#                     "annotation_path": annotations["train"],
#                 },
#             ),
#             datasets.SplitGenerator(
#                 name=datasets.Split.TEST,
#                 gen_kwargs={
#                     "images": images["test"],
#                     "annotation_path": annotations["test"],
#                 },
#             ),
#         ]

#     def _generate_examples(self, images, annotation_path):
#         """Generate dataset examples by matching images to their corresponding annotations."""
        
#         annotations = {}
        
#         # Load all annotations into memory
#         for ann_file in os.listdir(annotation_path):
#             video_name = os.path.splitext(ann_file)[0]  # Get video folder name from the annotation file
#             ann_path = os.path.join(annotation_path, ann_file)
#             print("ann_path:,",ann_path,"\nannotation_path: ",annotation_path)
            
#             with open(ann_path, "r", encoding="utf-8") as f:
#                 for line in f:
#                     parts = line.strip().split()
#                     if len(parts) < 8:
#                         continue
    
#                     frame_id, track_id, class_name = parts[:3]
#                     bbox = list(map(float, parts[4:8]))
#                     class_id = _GT_OBJECT_CLASSES.get(class_name, -1)
#                     img_name = f"{frame_id}.jpg"
    
#                     # Store annotation in a dictionary
#                     key = f"{video_name}/{img_name}"
#                     if key not in annotations:
#                         annotations[key] = []
    
#                     annotations[key].append(
#                         {
#                             "bbox": bbox,
#                             "class_id": class_id,
#                             "track_id": int(track_id),
#                             "class_name": class_name,
#                         }
#                     )
        
#         # Yield dataset entries
#         idx = 0
#         for file_path, file_obj in images:
#             img_name = os.path.basename(file_path)
#             video_name = os.path.basename(os.path.dirname(file_path))  # Match the video folder
#             key = f"{video_name}/{img_name}"
    
#             if key in annotations:
#                 yield idx, {
#                     "image": {"path": file_path, "bytes": file_obj.read()},
#                     "objects": annotations[key],
#                 }
#                 idx += 1

import os
import datasets

# Annotation repository
_ANNOTATION_REPO = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/annotations"

# Tar file URLs for images
_TRAIN_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_images.tar.gz"
_TEST_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/test_images.tar.gz"


class EMT(datasets.GeneratorBasedBuilder):
    """EMT dataset."""

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="full_size",
            description="All images are in their original size.",
            version=datasets.Version("1.0.0"),
        )
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "image": datasets.Image(),
                    "objects": datasets.Sequence(
                        {
                            "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
                            "class_id": datasets.Value("int32"),
                            "track_id": datasets.Value("int32"),
                            "class_name": datasets.Value("string"),
                        }
                    ),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Download train/test images and annotations."""
        image_urls = {
            "train": _TRAIN_IMAGE_ARCHIVE_URL,
            "test": _TEST_IMAGE_ARCHIVE_URL,
        }

        # Download image files
        images = {
            "train": dl_manager.iter_archive(image_urls["train"]),
            "test": dl_manager.iter_archive(image_urls["test"]),
        }

        # Download the annotation files from the remote repository
        annotation_urls = {
            "train": _ANNOTATION_REPO + "/train/",
            "test": _ANNOTATION_REPO + "/test/",
        }

        annotations = {
            "train": dl_manager.download_and_extract(annotation_urls["train"]),
            "test": dl_manager.download_and_extract(annotation_urls["test"]),
        }

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "images": images["train"],
                    "annotation_path": annotations["train"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "images": images["test"],
                    "annotation_path": annotations["test"],
                },
            ),
        ]

    def _generate_examples(self, images, annotation_path):
        """Generate dataset examples by matching images to their corresponding annotations."""
        
        annotations = {}
        
        # Load all annotations into memory from the extracted remote tar file
        for ann_file in os.listdir(annotation_path):
            # Get video folder name (e.g., video_12211.txt)
            video_name = os.path.splitext(ann_file)[0]
            ann_path = os.path.join(annotation_path, ann_file)
            
            # Open the annotation file for reading
            with open(ann_path, "r", encoding="utf-8") as f:
                for line in f:
                    parts = line.strip().split()
                    if len(parts) < 8:
                        continue

                    frame_id, track_id, class_name = parts[:3]
                    bbox = list(map(float, parts[4:8]))
                    class_id = _GT_OBJECT_CLASSES.get(class_name, -1)
                    img_name = f"{frame_id}.jpg"

                    # Store annotation in a dictionary
                    key = f"{video_name}/{img_name}"
                    if key not in annotations:
                        annotations[key] = []

                    annotations[key].append(
                        {
                            "bbox": bbox,
                            "class_id": class_id,
                            "track_id": int(track_id),
                            "class_name": class_name,
                        }
                    )
        
        # Yield dataset entries
        idx = 0
        for file_path, file_obj in images:
            img_name = os.path.basename(file_path)
            video_name = os.path.basename(os.path.dirname(file_path))  # Match the video folder
            key = f"{video_name}/{img_name}"

            if key in annotations:
                yield idx, {
                    "image": {"path": file_path, "bytes": file_obj.read()},
                    "objects": annotations[key],
                }
                idx += 1