File size: 5,551 Bytes
88e3654
 
 
 
 
81368b8
88e3654
81368b8
88e3654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f6e05a
88e3654
 
81368b8
 
88e3654
81368b8
999146f
 
88e3654
 
 
 
 
81368b8
 
 
 
 
 
 
 
88e3654
 
2f6e05a
88e3654
 
 
 
 
81368b8
88e3654
 
 
 
 
 
 
 
 
 
 
 
 
 
81368b8
 
 
 
 
 
88e3654
2f6e05a
 
88e3654
2f6e05a
88e3654
 
 
 
81368b8
88e3654
 
 
 
 
 
81368b8
88e3654
 
 
81368b8
2f6e05a
81368b8
 
2f6e05a
2cad3e7
 
 
 
 
 
 
 
81368b8
 
 
 
 
 
2cad3e7
2f6e05a
 
81368b8
2cad3e7
81368b8
2f6e05a
81368b8
 
2cad3e7
 
81368b8
2cad3e7
 
 
 
 
 
 
2f6e05a
 
88e3654
 
2f6e05a
81368b8
 
 
 
88e3654
 
81368b8
88e3654
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
"""EMT dataset."""

import os
import datasets


_HOMEPAGE = "https://github.com/AV-Lab/emt-dataset"

_LICENSE = "CC-BY-SA 4.0"

_CITATION = """  
@article{EMTdataset2025,  
      title={EMT: A Visual Multi-Task Benchmark Dataset for Autonomous Driving in the Arab Gulf Region},  
      author={Nadya Abdel Madjid and Murad Mebrahtu and Abdelmoamen Nasser and Bilal Hassan and Naoufel Werghi and Jorge Dias and Majid Khonji},  
      year={2025},  
      eprint={2502.19260},  
      archivePrefix={arXiv},  
      primaryClass={cs.CV},  
      url={https://arxiv.org/abs/2502.19260}  
}  
""" 

_DESCRIPTION = """\
A multi-task dataset for detection, tracking, prediction, and intention prediction. 
This dataset includes 34,386 annotated frames collected over 57 minutes of driving, with annotations for detection + tracking.
"""

# Annotation repository
_ANNOTATION_REPO = "https://huggingface.co/datasets/Murdism/EMT/resolve/main/labels"

# Tar file URLs for images
_TRAIN_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_images.tar.gz"
_TEST_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/test_images.tar.gz"


class EMT(datasets.GeneratorBasedBuilder):
    """EMT dataset."""

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="full_size",
            description="All images are in their original size.",
            version=datasets.Version("1.0.0"),
        )
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "image": datasets.Image(),
                    "objects": datasets.Sequence(
                        {
                            "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
                            "class_id": datasets.Value("int32"),
                            "track_id": datasets.Value("int32"),
                            "class_name": datasets.Value("string"),
                        }
                    ),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Download and extract train/test images and annotations."""
        image_paths = {
            "train": dl_manager.download_and_extract(_TRAIN_IMAGE_ARCHIVE_URL),
            "test": dl_manager.download_and_extract(_TEST_IMAGE_ARCHIVE_URL),
        }

        annotation_paths = {
            "train": dl_manager.download_and_extract(f"{_ANNOTATION_REPO}/train/"),
            "test": dl_manager.download_and_extract(f"{_ANNOTATION_REPO}/test/"),
        }

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "images": dl_manager.iter_archive(image_paths["train"]),
                    "annotation_path": annotation_paths["train"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "images": dl_manager.iter_archive(image_paths["test"]),
                    "annotation_path": annotation_paths["test"],
                },
            ),
        ]

    def _generate_examples(self, images, annotation_path):
        """Generate dataset examples by matching images to their corresponding annotations."""
        annotations = {}

        for file_path, file_obj in images:
            img_name = os.path.basename(file_path)  # e.g., "000001.jpg"
            video_name = os.path.basename(os.path.dirname(file_path))  # e.g., "video_1112"

            ann_file = os.path.join(annotation_path, f"{video_name}.txt")

            if os.path.exists(ann_file):
                if ann_file not in annotations:
                    annotations[ann_file] = {}

                if img_name not in annotations[ann_file]:
                    annotations[ann_file][img_name] = []

                with open(ann_file, "r", encoding="utf-8") as f:
                    for line in f:
                        parts = line.strip().split()
                        if len(parts) < 8:
                            continue

                        frame_id, track_id, class_name = parts[:3]
                        bbox = list(map(float, parts[4:8]))
                        class_id = _GT_OBJECT_CLASSES.get(class_name, -1)

                        if f"{frame_id}.jpg" == img_name:
                            annotations[ann_file][img_name].append(
                                {
                                    "bbox": bbox,
                                    "class_id": class_id,
                                    "track_id": int(track_id),
                                    "class_name": class_name,
                                }
                            )

        # Yield dataset entries
        idx = 0
        for file_path, file_obj in images:
            img_name = os.path.basename(file_path)
            video_name = os.path.basename(os.path.dirname(file_path))
            ann_file = os.path.join(annotation_path, f"{video_name}.txt")

            if ann_file in annotations and img_name in annotations[ann_file]:
                yield idx, {
                    "image": {"path": file_path, "bytes": file_obj.read()},
                    "objects": annotations[ann_file][img_name],
                }
                idx += 1