text
stringlengths 0
211k
|
---|
Application |
En regardant le réseau nous pouvons écrire : |
Entrées = Sorties |
A = x1 = x2 + x3 |
B = x2 + x4 = x5 |
C = x5 + x6 = x7 |
D = x3 + x7 = x8 |
E = x8 = x1 + x4 + x6 |
posons x1 = 50; x3 = 20; x5 = 60; x8 = 90; |
A = 50 = x2 + 20 |
B = x2 + x4 = 60 |
C = 60 + x6 = x7 |
D = 20 + x7 = 90 |
E = 90 = 50 + x4 + x6 |
arrangeons le système |
-x2 = +20 -50 |
+x2 +x4 = +60 |
+x6 -x7 = -60 |
+x7 = +90 -20 |
-x4 -x6 = +50 -90 |
Soit |
// x2 x4 x6 x7 |
-x2 +0 +0 +0 +0 = +20 -50 |
+x2 +x4 +0 +0 +0 = +60 |
+0 +0 +x6 -x7 +0 = -60 |
+0 +0 +0 +x7 +0 = +90 -20 |
+0 -x4 -x6 +0 +0 = +50 -90 |
Le code en langage C : |
double ab[RA*(CA+Cb)]={ |
// x2 x4 x6 x7 |
-1, +0, +0, +0, +0, +20 -50, |
+1, +1, +0, +0, +0, +60, |
+0, +0, +1, -1, +0, -60, |
+0, +0, +0, +1, +0, +90 -20, |
+0, -1, -1, +0, +0, +50 -90 |
La solution est donné par la résolution du système : |
x2 x4 x6 x7 |
+1 +0 +0 +0 +0 +30 |
+0 +1 +0 +0 +0 +30 |
+0 +0 +1 +0 +0 +10 |
+0 +0 +0 +1 +0 +70 |
+0 +0 +0 +0 +0 +0 |
x2 = +30; x4 = +20; x6 = +10; x7 = +70; |
et x1 = 50; x3 = 20; x5 = 60; x8 = 90; |
Mathc matrices/a215 |
Application |
Installer et compiler ces fichiers dans votre répertoire de travail. |
/* Save as : c00a.c */ |
int main(void) |
double ab[RA*(CA+Cb)]={ |
// x2 x4 x6 x7 |
-1, +0, +0, +0, +0, +20 -50, |
+1, +1, +0, +0, +0, +60, |
+0, +0, +1, -1, +0, -60, |
+0, +0, +0, +1, +0, +90 -20, |
+0, -1, -1, +0, +0, +50 -90 |
double **Ab = ca_A_mR(ab,i_Abr_Ac_bc_mR(RA,CA,Cb)); |
double **A = c_Ab_A_mR(Ab,i_mR(RA,CA)); |
double **b = c_Ab_b_mR(Ab,i_mR(RA,Cb)); |
clrscrn(); |
printf(" A :"); |
p_mR(A,S5,P0,C7); |
printf(" b :"); |
p_mR(b,S5,P0,C7); |
printf(" Ab :"); |
p_mR(Ab,S5,P0,C7); |
getchar(); |
clrscrn(); |
printf(" Copy/Past into the octave window.\n\n"); |
p_Octave_mR(Ab,"Ab",P0); |
printf("\n rref(Ab.00000000001)\n\n"); |
printf(" gj_TP_mR(Ab) :\n\n" |
" x2 x4 x6 x7 "); |
gj_TP_mR(Ab); |
p_mR(Ab,S5,P0,C7); |
stop(); |
f_mR(Ab); |
f_mR(b); |
f_mR(A); |
return 0; |
/* ------------------------------------ */ |
Exemple de sortie écran : |
A : |
-1 +0 +0 +0 +0 |
+1 +1 +0 +0 +0 |
+0 +0 +1 -1 +0 |
+0 +0 +0 +1 +0 |
+0 -1 -1 +0 +0 |
b : |
-30 |
+60 |
-60 |
+70 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.