text
stringlengths 0
211k
|
---|
return 0; |
/* ------------------------------------ */ |
Exemple de sortie écran : |
A : |
+1 +1 +0 +0 |
+0 -1 -1 +0 |
+0 +0 +1 +0 |
-1 +0 +0 +0 |
b : |
+50 |
-40 |
+10 |
-20 |
Ab : |
+1 +1 +0 +0 +50 |
+0 -1 -1 +0 -40 |
+0 +0 +1 +0 +10 |
-1 +0 +0 +0 -20 |
------------------------------------ |
Copy/Past into the octave window. |
Ab=[ |
+1,+1,+0,+0,+50; |
+0,-1,-1,+0,-40; |
+0,+0,+1,+0,+10; |
-1,+0,+0,+0,-20] |
rref(Ab.00000000001) |
gj_TP_mR(Ab) : |
x1 x2 x3 |
+1 +0 +0 +0 +20 |
-0 +1 +0 -0 +30 |
+0 +0 +1 +0 +10 |
+0 +0 +0 +0 +0 |
Press return to continue. |
Mathc matrices/a210 |
Application |
En regardant le réseau nous pouvons écrire : |
Entrées = Sortie |
A = x1 + x2 = 50 |
B = 40 = x2 + x3 |
C = x3 + x4 = 20 |
D = 30 = x1 + x4 |
posons x4 = 10 |
A = x1 + x2 = 50 |
B = 40 = x2 + x3 |
C = x3 + 10 = 20 |
D = 30 = x1 + 10 |
arrangeons le système |
x1 + x2 = 50 |
-x2 - x3 = -40 |
x3 = 20 -10 |
-x1 = -30 + 10 |
Soit |
x1 x2 x3 |
+x1 +x2 +0 +0 +50 // A |
+0 -x2 -x3 +0 -40 // B |
+0 +0 +x3 +0 +20 -10 // C |
-x1 +0 +0 +0 -30 +10 // D |
Le code en langage C : |
double ab[RA*(CA+Cb)]={ |
// x1 x2 x3 |
+1, +1, +0, +0, +50, // A |
+0, -1, -1, +0, -40, // B |
+0, +0, +1, +0, +20 -10, // C |
-1, +0, +0, +0, -30 +10 // D |
La solution est donné par la résolution du système : |
x1 x2 x3 |
+1 +0 +0 +0 +20 |
-0 +1 +0 -0 +30 |
+0 +0 +1 +0 +10 |
+0 +0 +0 +0 +0 |
x1 = 20; x2 = 30; x3 = 10; |
avec x4 = 10 |
Mathc matrices/a212 |
Application |
En regardant le réseau nous pouvons écrire : |
Entrées = Sorties |
A = x1 = 20 + x2 |
B = x2 + x3 + x5 = 60 |
C = x4 = 20 + x3 |
D = 100 = x1 + x4 + x5 |
posons x2 = 10 et x5 = 30 |
A = x1 = 20 + 10 |
B = 10 + x3 + 30 = 60 |
C = x4 = 20 + x3 |
D = 100 = x1 + x4 + 30 |
arrangeons le système |
x1 = 20 + 10 |
x3 = 60 - 10 -30 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.