lessonID
stringlengths
6
6
lessonName
stringlengths
3
52
ID
stringlengths
6
21
content
stringlengths
10
6.57k
media_type
stringclasses
2 values
path
stringlengths
28
76
L_0780
covalent bonds
T_4029
A covalent bond is the force of attraction that holds together two atoms that share a pair of electrons. The shared electrons are attracted to the nuclei of both atoms. Covalent bonds form only between atoms of nonmetals. The two atoms may be the same or different elements. If the bonds form between atoms of different elements, a covalent compound forms. Covalent compounds are described in detail later in the lesson. To see a video about covalent bonding, go to this URL: (6:20). MEDIA Click image to the left or use the URL below. URL: Figure 7.7 shows an example of a covalent bond forming between two atoms of the same element, in this case two atoms of hydrogen. The two atoms share a pair of electrons. Hydrogen normally occurs in two-atom, or diatomic, molecules like this (di- means "two"). Several other elements also normally occur as diatomic molecules: nitrogen, oxygen, and all but one of the halogens (fluorine, chlorine, bromine, and iodine).
text
null
L_0780
covalent bonds
T_4030
Covalent bonds form because they give atoms a more stable arrangement of electrons. Look at the hydrogen atoms in Figure 7.7. Alone, each hydrogen atom has just one electron. By sharing electrons with another hydrogen atom, it has two electrons: its own and the one in the other hydrogen atom. The shared electrons are attracted to both hydrogen nuclei. This force of attraction holds the two atoms together as a molecule of hydrogen. Some atoms need to share more than one pair of electrons to have a full outer energy level. For example, an oxygen atom has six valence electrons. It needs two more electrons to fill its outer energy level. Therefore, it must form two covalent bonds. This can happen in many different ways. One way is shown in Figure 7.8. The oxygen atom in the figure has covalent bonds with two hydrogen atoms. This forms the covalent compound water.
text
null
L_0780
covalent bonds
T_4031
In some covalent bonds, electrons are not shared equally between the two atoms. These are called polar bonds. Figure 7.9 shows this for water. The oxygen atom attracts the shared electrons more strongly because its nucleus has more positively charged protons. As a result, the oxygen atom becomes slightly negative in charge. The hydrogen atoms attract the electrons less strongly. They become slightly positive in charge. For another example of polar bonds, see the video at this URL: (0:52). MEDIA Click image to the left or use the URL below. URL: In other covalent bonds, electrons are shared equally. These bonds are called nonpolar bonds. Neither atom attracts the shared electrons more strongly. As a result, the atoms remain neutral. Figure 7.10 shows an example of nonpolar bonds.
text
null
L_0780
covalent bonds
T_4031
In some covalent bonds, electrons are not shared equally between the two atoms. These are called polar bonds. Figure 7.9 shows this for water. The oxygen atom attracts the shared electrons more strongly because its nucleus has more positively charged protons. As a result, the oxygen atom becomes slightly negative in charge. The hydrogen atoms attract the electrons less strongly. They become slightly positive in charge. For another example of polar bonds, see the video at this URL: (0:52). MEDIA Click image to the left or use the URL below. URL: In other covalent bonds, electrons are shared equally. These bonds are called nonpolar bonds. Neither atom attracts the shared electrons more strongly. As a result, the atoms remain neutral. Figure 7.10 shows an example of nonpolar bonds.
text
null
L_0780
covalent bonds
T_4032
Covalent bonds between atoms of different elements form covalent compounds. The smallest, simplest covalent compounds have molecules with just two atoms. An example is hydrogen chloride (HCl). It consists of one hydrogen atom and one chlorine atom. The largest, most complex covalent molecules have thousands of atoms. Examples include proteins and carbohydrates. These are compounds in living things. Helpful Hints Naming Covalent Compounds Follow these rules in naming simple covalent compounds: The element closer to the left of the periodic table is named first. The second element gets the suffix ide. Prefixes such as di- (2) and tri- (3) show the number of each atom in the compound. These are written with subscripts in the chemical formula. Example: The gas that consists of one carbon atom and two oxygen atoms is named carbon dioxide. Its chemical formula is CO2 . You Try It! Problem: What is the name of the compound that contains three oxygen atoms and two nitrogen atoms? What is its chemical formula?
text
null
L_0780
covalent bonds
T_4033
Covalent compounds have different properties than ionic compounds because of their bonds. Covalent compounds exist as individual molecules rather than crystals. It takes less energy for individual molecules than ions in a crystal to pull apart. As a result, covalent compounds have lower melting and boiling points than ionic compounds. Many are gases or liquids at room temperature. Covalent compounds have shared electrons. These are not free to move like the transferred electrons of ionic compounds. This makes covalent compounds poor conductors of electricity. Many covalent compounds also do not dissolve in water as all ionic compounds do.
text
null
L_0780
covalent bonds
T_4034
Having polar bonds may make a covalent compound polar. A polar compound is one in which there is a slight difference in charge between opposite ends of the molecule. All polar compounds contain polar bonds. But having polar bonds does not necessarily result in a polar compound. It depends on how the atoms are arranged. This is illustrated in Figure 7.11. Both molecules in the figure contain polar bonds, but only formaldehyde is a polar compound. Why is carbon dioxide nonpolar? The molecules of polar compounds are attracted to each other. You can see this in Figure 7.12 for water. A bond forms between the positive hydrogen end of one water molecule and the negative oxygen end of another water molecule. This type of bond is called a hydrogen bond. Hydrogen bonds are weak, but they still must be overcome when a polar substance changes from a solid to a liquid or from a liquid to a gas. As a result, polar covalent compounds may have higher melting and boiling points than nonpolar covalent compounds. To learn more about hydrogen bonding and when it occurs, see the video at this URL: (0:58). MEDIA Click image to the left or use the URL below. URL:
text
null
L_0780
covalent bonds
T_4034
Having polar bonds may make a covalent compound polar. A polar compound is one in which there is a slight difference in charge between opposite ends of the molecule. All polar compounds contain polar bonds. But having polar bonds does not necessarily result in a polar compound. It depends on how the atoms are arranged. This is illustrated in Figure 7.11. Both molecules in the figure contain polar bonds, but only formaldehyde is a polar compound. Why is carbon dioxide nonpolar? The molecules of polar compounds are attracted to each other. You can see this in Figure 7.12 for water. A bond forms between the positive hydrogen end of one water molecule and the negative oxygen end of another water molecule. This type of bond is called a hydrogen bond. Hydrogen bonds are weak, but they still must be overcome when a polar substance changes from a solid to a liquid or from a liquid to a gas. As a result, polar covalent compounds may have higher melting and boiling points than nonpolar covalent compounds. To learn more about hydrogen bonding and when it occurs, see the video at this URL: (0:58). MEDIA Click image to the left or use the URL below. URL:
text
null
L_0781
metallic bonds
T_4035
A metallic bond is the force of attraction between a positive metal ion and the valence electrons it shares with other ions of the metal. The positive ions form a lattice-like structure. You can see an example in Figure 7.13. (For an animated version, go to the URL below.) The ions are held together in the lattice by bonds with the valence electrons around them. These valence electrons include their own and those of other ions. Why do metallic bonds form? Recall that metals "want" to give up their valence electrons. This means that their valence electrons move freely. The electrons form a "sea" of negative charge surrounding the positive ions. MEDIA Click image to the left or use the URL below. URL:
text
null
L_0781
metallic bonds
T_4036
Because of their freely moving electrons, metals are good conductors of electricity. Metals also can be shaped without breaking. They are ductile (can be shaped into wires) and malleable (can be shaped into thin sheets). Metals have these properties because of the nature of their metallic bonds. A metallic lattice, like the one in Figure 7.13, may resemble a rigid ionic crystal. However, it is much more flexible. Look at Figure 7.14. It shows a blacksmith hammering a piece of red-hot iron in order to shape it. Why doesnt the iron shatter, as an ionic crystal would? The ions of the metal can move within the "sea" of electrons without breaking the metallic bonds that hold them together. The ions can shift closer together or farther apart. In this way, the metal can change shape without breaking. You can learn more about metallic bonds and the properties of metals at this URL: (6:12). MEDIA Click image to the left or use the URL below. URL:
text
null
L_0781
metallic bonds
T_4037
Metals are useful for many purposes because of their unique properties. However, pure metals may be less useful than mixtures of metals. For example, iron is not as strong as steel, which is a mixture of iron and small amounts of carbon. Steel is so strong that it can hold up huge bridges, like the one Figure 7.15. Steel is also used to make skyscrapers, cargo ships, cars, and trains. Steel is an example of an alloy. An alloy is a mixture of a metal with one or more other elements. The other elements may be metals, nonmetals, or both. An alloy is a solid solution. It is formed by melting a metal and dissolving the other elements in it. The molten solution is then allowed to cool and harden. Several other examples of alloys and their uses are shown in Figure 7.16. You can learn about an amazing alloy called memory wire at the URL below. If you have braces on your teeth, you may even have this alloy in your mouth!
text
null
L_0781
metallic bonds
T_4037
Metals are useful for many purposes because of their unique properties. However, pure metals may be less useful than mixtures of metals. For example, iron is not as strong as steel, which is a mixture of iron and small amounts of carbon. Steel is so strong that it can hold up huge bridges, like the one Figure 7.15. Steel is also used to make skyscrapers, cargo ships, cars, and trains. Steel is an example of an alloy. An alloy is a mixture of a metal with one or more other elements. The other elements may be metals, nonmetals, or both. An alloy is a solid solution. It is formed by melting a metal and dissolving the other elements in it. The molten solution is then allowed to cool and harden. Several other examples of alloys and their uses are shown in Figure 7.16. You can learn about an amazing alloy called memory wire at the URL below. If you have braces on your teeth, you may even have this alloy in your mouth!
text
null
L_0782
introduction to chemical reactions
T_4038
A chemical reaction is a process in which some substances change into different substances. Substances that start a chemical reaction are called reactants. Substances that are produced in the reaction are called products. Reactants and products can be elements or compounds. A chemical reaction can be represented by this general equation: Reactants ! Products The arrow (!) shows the direction in which the reaction occurs. The reaction may occur quickly or slowly. For example, foam shoots out of a fire extinguisher as soon as the lever is pressed. But it might take years for metal to rust.
text
null
L_0782
introduction to chemical reactions
T_4039
In chemical reactions, bonds break in the reactants and new bonds form in the products. The reactants and prod- ucts contain the same atoms, but they are rearranged during the reaction. As a result, the atoms are in different combinations in the products than they were in the reactants. Look at the example in Figure 8.2. It shows how water forms. Bonds break in molecules of hydrogen and oxygen. Then new bonds form in molecules of water. In both reactants and products, there are four hydrogen atoms and two oxygen atoms. But the atoms are combined differently in water. You can see another example at this URL: http://w
text
null
L_0782
introduction to chemical reactions
T_4040
The arrow in Figure 8.2 shows that the reaction goes from left to right, from hydrogen and oxygen to water. The reaction can also go in the reverse direction. If an electric current passes through water, water molecules break down into molecules of hydrogen and oxygen. This reaction would be represented by a right-to-left arrow ( ) in Figure Many other reactions can also go in both forward and reverse directions. Often, a point is reached at which the forward and reverse reactions occur at the same rate. When this happens, there is no overall change in the amount of reactants and products. This point is called equilibrium, which refers to a balance between any opposing changes. You can see an animation of a chemical reaction reaching equilibrium at this URL:
text
null
L_0782
introduction to chemical reactions
T_4041
Not all changes in matter involve chemical reactions. For example, there are no chemical reactions involved in changes of state. When liquid water freezes or evaporates, it is still water. No bonds are broken and no new products are formed. How can you tell whether a change in matter involves a chemical reaction? Often, there is evidence. Four common signs that a chemical reaction has occurred are: Change in color: the products are a different color than the reactants. Change in temperature: heat is released or absorbed during the reaction. Production of a gas: gas bubbles are released during the reaction. Production of a solid: a solid settles out of a liquid solution. The solid is called a precipitate. You can see examples of each type of evidence in Figure 8.3 and at this URL: MEDIA Click image to the left or use the URL below. URL:
text
null
L_0783
chemical equations
T_4042
A chemical equation is a symbolic representation of a chemical reaction. It is a shorthand way of showing how atoms are rearranged in the reaction. The general form of a chemical equation was introduced in this chapters lesson "Introduction to Chemical Reactions." It is: Reactants ! Products Consider the simple example in Figure 8.4. When carbon (C) reacts with oxygen (O2 ), it produces carbon dioxide (CO2 ). The chemical equation for this reaction is: C + O2 ! CO2 The reactants are one atom of carbon and one molecule of oxygen. When there is more than one reactant, they are separated by plus signs (+). The product is one molecule of carbon dioxide. If more than one product were produced, plus signs would be used between them as well.
text
null
L_0783
chemical equations
T_4043
Some chemical equations are more challenging to write. Consider the reaction in which hydrogen (H2 ) and oxygen (O2 ) combine to form water (H2 O). Hydrogen and oxygen are the reactants, and water is the product. To write a chemical equation for this reaction, you would start by writing symbols for the reactants and products: Equation 1: H2 + O2 ! H2 O Like equations in math, equations in chemistry must balance. There must be the same number of each type of atom in the products as there is in the reactants. In equation 1, count the number of hydrogen and oxygen atoms on each side of the arrow. There are two hydrogen atoms in both reactants and products. There are two oxygen atoms in the reactants but only one in the product. Therefore, equation 1 is not balanced.
text
null
L_0783
chemical equations
T_4044
Coefficients are used to balance chemical equations. A coefficient is a number placed in front of a chemical symbol or formula. It shows how many atoms or molecules of the substance are involved in the reaction. For example, two molecules of hydrogen would be written as 2H2 . A coefficient of 1 usually isnt written. Coefficients can be used to balance equation 1 (above) as follows: Equation 2: 2H2 + O2 ! 2H2 O Equation 2 shows that two molecules of hydrogen react with one molecule of oxygen to produce two molecules of water. The two molecules of hydrogen each contain two hydrogen atoms. There are now four hydrogen atoms in both reactants and products. Is equation 2 balanced? Count the oxygen atoms to find out.
text
null
L_0783
chemical equations
T_4045
Balancing a chemical equation involves a certain amount of trial and error. In general, however, you should follow these steps: 1. Count the number of each type of atom in reactants and products. Does the same number of each atom appear on both sides of the arrow? If not, the equation is not balanced, and you need to go to step 2. 2. Add coefficients to increase the number of atoms or molecules of reactants or products. Use the smallest coefficients possible. 3. Repeat steps 1 and 2 until the equation is balanced. Helpful Hint When you balance chemical equations, never change the subscripts in chemical formulas. Changing subscripts changes the substances involved in the reaction. Change only the coefficients. Work through the Problem Solving examples below. Then do the You Try It! problems to check your understand- ing. If you need more help, go to this URL: (14:28). MEDIA Click image to the left or use the URL below. URL: Problem Solving Problem: Balance this chemical equation: N2 + H2 ! NH3 Hints for balancing 1. Two N are needed in the products to match the two N (N2 ) in the reactants. Add the coefficient 2 in front of NH3 . Now N is balanced. 2. Six H are now needed in the reactants to match the six H in the products. Add the coefficient 3 in front of H2 . Now H is balanced. Solution: N2 + 3H2 ! 2NH3 Problem: Balance this chemical equation: CH4 + O2 ! CO2 + H2 O Solution: CH4 + 2O2 ! CO2 + 2H2 O You Try It! Problem: Balance these chemical equations: Zn + HCl ! ZnCl2 + H2 Cu + O2 ! CuO
text
null
L_0783
chemical equations
T_4046
Why must chemical equations be balanced? Its the law! Matter cannot be created or destroyed in chemical reactions. This is the law of conservation of mass. In every chemical reaction, the same mass of matter must end up in the products as started in the reactants. Balanced chemical equations show that mass is conserved in chemical reactions. How do scientists know that mass is always conserved in chemical reactions? Careful experiments in the 1700s by a French chemist named Antoine Lavoisier led to this conclusion. For this and other contributions, Lavoisier has been called the father of modern chemistry. Lavoisier carefully measured the mass of reactants and products in many different chemical reactions. He carried out the reactions inside a sealed jar, like the one in Figure 8.5. As a result, any gases involved in the reactions were captured and could be measured. In every case, the total mass of the jar and its contents was the same after the reaction as it was before the reaction took place. This showed that matter was neither created nor destroyed in the reactions. Another outcome of Lavoisiers research was his discovery of oxygen. You can learn more about Lavoisier and his important research at:
text
null
L_0784
types of chemical reactions
T_4047
A synthesis reaction occurs when two or more reactants combine to form a single product. A synthesis reaction can be represented by the general equation: A+B !C In this general equation (and others like it in this lesson), the letters A, B,C, and so on represent atoms or ions of elements. The arrow shows the direction of the reaction. The letters on the left side of the arrow are the reactants that begin the chemical reaction. The letters on the right side of the arrow are the product of the reaction. Two examples of synthesis reactions are described below. You can see more examples at this URL:
text
null
L_0784
types of chemical reactions
T_4048
An example of a synthesis reaction is the combination of sodium (Na) and chlorine (Cl) to produce sodium chloride (NaCl). This reaction is represented by the chemical equation: 2Na + Cl2 ! 2NaCl Sodium is a highly reactive metal, and chlorine is a poisonous gas (see Figure 8.6). The compound they synthesize has very different properties. It is table salt, which is neither reactive nor poisonous. In fact, salt is a necessary component of the human diet.
text
null
L_0784
types of chemical reactions
T_4049
Another example of a synthesis reaction is illustrated in Figure 8.7. The brown haze in the air over the city of Los Angeles is smog. A major component of smog is nitrogen dioxide (NO2 ). It forms when nitric oxide (NO), from sources such as car exhaust, combines with oxygen (O2 ) in the air. The equation for this reaction is: 2NO + O2 ! 2NO2 Nitrogen dioxide is a toxic gas with a sharp odor. It can irritate the eyes and throat and trigger asthma attacks. It is a major air pollutant.
text
null
L_0784
types of chemical reactions
T_4050
A decomposition reaction is the reverse of a synthesis reaction. In a decomposition reaction, one reactant breaks down into two or more products. This can be represented by the general equation: AB ! A + B Two examples of decomposition reactions are described below. You can see other examples at this URL: http://w
text
null
L_0784
types of chemical reactions
T_4051
An example of a decomposition reaction is the breakdown of carbonic acid (H2 CO3 ) to produce water (H2 O) and carbon dioxide (CO2 ). The equation for this reaction is: H2 CO3 ! H2 O + CO2 Carbonic acid is synthesized in the reverse reaction. It forms when carbon dioxide dissolves in water. For example, some of the carbon dioxide in the atmosphere dissolves in the ocean and forms carbonic acid. The amount of carbon dioxide in the atmosphere has increased over recent decades (see Figure 8.8). As a result, the acidity of ocean water is also increasing. How do you think this might affect ocean life?
text
null
L_0784
types of chemical reactions
T_4052
Another example of a decomposition reaction is illustrated in Figure 8.9. Water (H2 O) decomposes to hydrogen (H2 ) and oxygen (O2 ) when an electric current passes through it. This reaction is represented by the equation: 2H2 O ! 2H2 + O2 What is the reverse of this decomposition reaction? (Hint: How is water synthesized? You can look at this chapters "Introduction to Chemical Reactions" lesson to find out.)
text
null
L_0784
types of chemical reactions
T_4053
Replacement reactions involve ions. They occur when ions switch places in compounds. There are two types of replacement reactions: single and double. Both types are described below.
text
null
L_0784
types of chemical reactions
T_4054
A single replacement reaction occurs when one ion takes the place of another in a single compound. This type of reaction has the general equation: A + BC ! B + AC Do you see how A has replaced B in the compound? The compound BC has become the compound AC. An example of a single replacement reaction occurs when potassium (K) reacts with water (H2 O). A colorless solid called potassium hydroxide (KOH) forms, and hydrogen gas (H2 ) is released. The equation for the reaction is: 2K + 2H2 O ! 2KOH + H2 Potassium is a highly reactive group 1 alkali metal, so its reaction with water is explosive. You can actually watch this reaction occurring at: http://commons.wikimedia.org/wiki/File:Potassium_water_20.theora.ogv .
text
null
L_0784
types of chemical reactions
T_4055
A double replacement reaction occurs when two compounds exchange ions. This produces two new compounds. A double replacement reaction can be represented by the general equation: AB +CD ! AD +CB Do you see how B and D have changed places? Both reactant compounds have changed. An example of a double replacement reaction is sodium chloride (NaCl) reacting with silver fluoride (AgF). This reaction is represented by the equation: NaCl + AgF ! NaF + AgCl Cl and F have changed places. Can you name the products of this reaction?
text
null
L_0784
types of chemical reactions
T_4056
A combustion reaction occurs when a substance reacts quickly with oxygen (O2 ). You can see an example of a combustion reaction in Figure 8.10. Combustion is commonly called burning. The substance that burns is usually referred to as fuel. The products of a combustion reaction include carbon dioxide (CO2 ) and water (H2 O). The reaction typically gives off heat and light as well. The general equation for a combustion reaction can be represented by: Fuel + O2 ! CO2 + H2 O
text
null
L_0784
types of chemical reactions
T_4057
The fuel that burns in a combustion reaction is often a substance called a hydrocarbon. A hydrocarbon is a compound that contains only carbon (C) and hydrogen (H). Fossil fuels, such as natural gas, consist of hydrocarbons. Natural gas is a fuel that is commonly used in home furnaces and gas stoves (see Figure 8.11). The main component of natural gas is the hydrocarbon called methane (CH4 ). The combustion of methane is represented by the equation: CH4 + 2O2 ! CO2 + 2H2 O
text
null
L_0784
types of chemical reactions
T_4058
Your own body cells burn fuel in combustion reactions. The fuel is glucose (C6 H12 O6 ), a simple sugar. The process in which combustion of glucose occurs in body cells is called cellular respiration. This combustion reaction provides energy for life processes. Cellular respiration can be summed up by the equation: C6 H12 O6 + 6O2 ! 6CO2 + 6H2 O Where does glucose come from? It is produced by plants during photosynthesis. In this process, carbon dioxide and water combine to form glucose. Which type of chemical reaction is photosynthesis?
text
null
L_0785
chemical reactions and energy
T_4059
In an endothermic reaction, it takes more energy to break bonds in the reactants than is released when new bonds form in the products. The word "endothermic" literally means "taking in heat." A constant input of energy, often in the form of heat, is needed in an endothermic reaction. Not enough energy is released when products form to break more bonds in the reactants. Additional energy is needed to keep the reaction going. The general equation for an endothermic reaction is: Reactants + Energy ! Products In many endothermic reactions, heat is absorbed from the surroundings. As a result, the temperature drops. The drop in temperature may be great enough to cause liquid products to freeze. Thats what happens in the endothermic reaction at this URL: One of the most important endothermic reactions is photosynthesis. In this reaction, plants synthesize glucose (C6 H12 O6 ) from carbon dioxide (CO2 ) and water (H2 O). They also release oxygen (O2 ). The energy for photo- synthesis comes from light (see Figure 8.12). Without light energy, photosynthesis cannot occur. The chemical equation for photosynthesis is: 6CO2 + 6H2 O ! C6 H12 O6 + 6O2
text
null
L_0785
chemical reactions and energy
T_4060
In an exothermic reaction, it takes less energy to break bonds in the reactants than is released when new bonds form in the products. The word "exothermic" literally means "turning out heat." Energy, often in the form of heat, is released as an exothermic reaction occurs. The general equation for an exothermic reaction is: Reactants ! Products + Energy If the energy is released as heat, an exothermic reaction results in a rise in temperature. Thats what happens in the exothermic reaction at the URL below. Combustion reactions are examples of exothermic reactions. When substances burn, they usually give off energy as heat and light. Look at the big bonfire in Figure 8.13. You can see the light energy it is giving off. If you were standing near the fire, you would also feel its heat.
text
null
L_0785
chemical reactions and energy
T_4061
Whether a reaction absorbs energy or releases energy, there is no overall change in the amount of energy. Energy cannot be created or destroyed. This is the law of conservation of energy. Energy can change form for example, from electricity to light but the same amount of energy always remains. If energy cannot be destroyed, what happens to the energy that is absorbed in an endothermic reaction? The energy is stored in the chemical bonds of the products. This form of energy is called chemical energy. In an endothermic reaction, the products have more stored chemical energy than the reactants. In an exothermic reaction, the opposite is true. The products have less stored chemical energy than the reactants. The excess energy in the reactants is released to the surroundings when the reaction occurs. The graphs in Figure 8.14 show the chemical energy of reactants and products in each type of reaction.
text
null
L_0785
chemical reactions and energy
T_4061
Whether a reaction absorbs energy or releases energy, there is no overall change in the amount of energy. Energy cannot be created or destroyed. This is the law of conservation of energy. Energy can change form for example, from electricity to light but the same amount of energy always remains. If energy cannot be destroyed, what happens to the energy that is absorbed in an endothermic reaction? The energy is stored in the chemical bonds of the products. This form of energy is called chemical energy. In an endothermic reaction, the products have more stored chemical energy than the reactants. In an exothermic reaction, the opposite is true. The products have less stored chemical energy than the reactants. The excess energy in the reactants is released to the surroundings when the reaction occurs. The graphs in Figure 8.14 show the chemical energy of reactants and products in each type of reaction.
text
null
L_0785
chemical reactions and energy
T_4062
All chemical reactions, even exothermic reactions, need a certain amount of energy to get started. This energy is called activation energy. For example, activation energy is needed to start a car. Turning the key causes a spark that activates the burning of gasoline in the engine. The combustion of gas wont occur without the spark of energy to begin the reaction. Why is activation energy needed? A reaction wont occur unless atoms or molecules of reactants come together. This happens only if the particles are moving, and movement takes energy. Often, reactants have to overcome forces that push them apart. This takes energy as well. Still more energy is needed to start breaking bonds in reactants. The graphs in Figure 8.15 show the changes in energy in endothermic and exothermic reactions. Both reactions need the same amount of activation energy in order to begin. You have probably used activation energy to start a chemical reaction. For example, if youve ever used a match to light a campfire, then you provided the activation energy needed to start a combustion reaction. Combustion is exothermic. Once a fire starts to burn, it releases enough energy to activate the next reaction, and the next, and so on. However, wood will not burst into flames on its own.
text
null
L_0785
chemical reactions and energy
T_4063
Any factor that helps reactants come together so they can react lowers the amount of activation energy needed to start the reaction. If the activation energy is lowered, more reactant particles can react, and the reaction occurs more quickly. How fast a reaction occurs is called the reaction rate. Factors that affect the reaction rate include: temperature of reactants concentration of reactants surface area of reactants presence of catalysts
text
null
L_0785
chemical reactions and energy
T_4064
When the temperature of reactants is higher, the rate of the reaction is faster. At higher temperatures, particles of reactants have more energy, so they move faster. They are more likely to bump into one another and to collide with greater force. For example, when you fry an egg, turning up the heat causes the egg to cook faster. The same principle explains why storing food in a cold refrigerator reduces the rate at which food spoils (see Figure 8.16). Both food frying and food spoiling are chemical reactions that happen faster at higher temperatures.
text
null
L_0785
chemical reactions and energy
T_4065
Concentration is the number of particles of a substance in a given volume. When the concentration of reactants is higher, the reaction rate is faster. At higher concentrations, particles of reactants are crowded closer together, so they are more likely to collide and react. Did you ever see a sign like the one in Figure 8.17? You might see it where someone is using a tank of pure oxygen for a breathing problem. The greater concentration of oxygen in the air makes combustion rapid if a fire starts burning.
text
null
L_0785
chemical reactions and energy
T_4066
When a solid substance is involved in a chemical reaction, only the matter at the surface of the solid is exposed to other reactants. If a solid has more surface area, more of it is exposed and able to react. Therefore, increasing the surface area of solid reactants increases the reaction rate. For example, crushing a solid into a powder exposes more of the substance to other reactants. This may greatly speed up the reaction. You can see another example in Figure 8.18. Iron rusts when it combines with oxygen in the air. The iron hammer head and iron nails will both rust eventually. Which will rust faster?
text
null
L_0785
chemical reactions and energy
T_4067
Some reactions need extra help to occur quickly. They need another substance, called a catalyst. A catalyst is a substance that increases the rate of a chemical reaction but is not changed or used up in the reaction. The catalyst can go on to catalyze many more reactions. Catalysts are not reactants, but they help reactants come together so they can react. You can see one way this happens in the animation at the URL below. By helping reactants come together, a catalyst decreases the activation energy needed to start a chemical reaction. This speeds up the reaction. Living things depend on catalysts to speed up many chemical reactions inside their cells. Catalysts in living things are called enzymes. Enzymes may be extremely effective. A reaction that takes a split second to occur with an enzyme might take billions of years without it!
text
null
L_0786
properties of carbon
T_4068
Carbon is a nonmetal in group 14 of the periodic table. Like other group 14 compounds, carbon has four valence electrons. Valence electrons are the electrons in the outer energy level of an atom that are involved in chemical bonds. The valence electrons of carbon are shown in Figure 9.1.
text
null
L_0786
properties of carbon
T_4069
Because it has four valence electrons, carbon needs four more electrons to fill its outer energy level. It can achieve this by forming four covalent bonds. Covalent bonds are chemical bonds that form between nonmetals. In a covalent bond, two atoms share a pair of electrons. By forming four covalent bonds, carbon shares four pairs of electrons, thus filling its outer energy level. A carbon atom can form bonds with other carbon atoms or with the atoms of other elements. Carbon often forms bonds with hydrogen. You can see an example in Figure 9.2. The compound represented in the figure is methane (CH4 ). The carbon atom in a methane molecule forms bonds with four hydrogen atoms. The diagram on the left shows all the shared electrons. The diagram on the right represents each pair of shared electrons with a dash (). This type of diagram is called a structural formula.
text
null
L_0786
properties of carbon
T_4070
Carbon can form single, double, or even triple bonds with other carbon atoms. In a single bond, two carbon atoms share one pair of electrons. In a double bond, they share two pairs of electrons, and in a triple bond they share three pairs of electrons. Examples of compounds with these types of bonds are shown in Figure 9.3.
text
null
L_0786
properties of carbon
T_4071
Because of carbons ability to form so many covalent bonds, it often forms polymers. A polymer is a large molecule that consists of many smaller molecules joined together by covalent bonds. The smaller molecules are called monomers. (The prefix mono means "one," and the prefix poly means "many.") Polymers may consist of just one type of monomer or of more than one type. Polymers are a little like the strings of beads in Figure 9.4. What do the individual beads represent? Many polymers occur naturally. You will read about natural polymers in this chapters "Hydrocarbons" and "Carbon and Living Things" lessons. Other polymers are synthetic. This means that they are produced in labs or factories. Synthetic polymers are created in synthesis reactions in which monomers bond together to form much larger compounds. Plastics are examples of synthetic polymers. The plastic items in Figure 9.5 are all made of polythene (also called polyethylene). It consists of repeating monomers of ethene (C2 H4 ). To learn more about polymers and how they form, go to this URL: (2:13).
text
null
L_0786
properties of carbon
T_4071
Because of carbons ability to form so many covalent bonds, it often forms polymers. A polymer is a large molecule that consists of many smaller molecules joined together by covalent bonds. The smaller molecules are called monomers. (The prefix mono means "one," and the prefix poly means "many.") Polymers may consist of just one type of monomer or of more than one type. Polymers are a little like the strings of beads in Figure 9.4. What do the individual beads represent? Many polymers occur naturally. You will read about natural polymers in this chapters "Hydrocarbons" and "Carbon and Living Things" lessons. Other polymers are synthetic. This means that they are produced in labs or factories. Synthetic polymers are created in synthesis reactions in which monomers bond together to form much larger compounds. Plastics are examples of synthetic polymers. The plastic items in Figure 9.5 are all made of polythene (also called polyethylene). It consists of repeating monomers of ethene (C2 H4 ). To learn more about polymers and how they form, go to this URL: (2:13).
text
null
L_0786
properties of carbon
T_4072
Exploratorium Staff Scientist Julie Yu changes and manipulates the physical and chemical properties of plastic bottles by exposing them to heat. This is how plastic bags and bottles can be recycled and used over and over again. For more information on properties of plastic, see http://science.kqed.org/quest/video/quest-lab-properties-of-plas MEDIA Click image to the left or use the URL below. URL:
text
null
L_0786
properties of carbon
T_4073
Pure carbon can exist in different forms, depending on how its atoms are arranged. The forms include diamond, graphite, and fullerenes. All three forms exist as crystals, but they have different structures. Their different structures, in turn, give them different properties. You can learn more about them in Table 9.1. atoms affect the properties of the substances formed? Structure Diamond crystal Description Diamond Diamond is a form of carbon in which each carbon atom is bonded to four other carbon atoms. This forms a strong, rigid, three- dimensional structure. Diamond is the hardest natural substance. It is used for cutting and grinding tools as well as for rings and other pieces of jewelry. Graphite Graphite is a form of carbon in which carbon atoms are arranged in layers. Bonds are strong between carbon atoms within each layer but relatively weak between atoms in different layers. The weak bonds between layers allow the layers to slide over one another. This makes graphite relatively soft and slippery. It is used as a lubricant. It also makes up the "lead" in pencils. Fullerene A fullerene (also called a bucky- ball) is a form of carbon in which carbon atoms are arranged in hol- low spheres. Each carbon atom is bonded to three others by sin- gle covalent bonds. The pattern of atoms resembles the pattern on the surface of a soccer ball. Fullerenes were first discovered in 1985. They have been found in soot and me- teorites. Possible commercial uses of fullerenes are under investiga- tion. To learn how this form of carbon got its funny names, go to this URL: This metal cutter has a diamond blade.
text
null
L_0787
hydrocarbons
T_4074
Hydrocarbons are compounds that contain only carbon and hydrogen. Hydrocarbons are the simplest type of carbon-based compounds. Nonetheless, they can vary greatly in size. The smallest hydrocarbons have just one or two carbon atoms, but large hydrocarbons may have hundreds. The size of hydrocarbon molecules influences their properties. For example, it influences their boiling and melting points. As a result, some hydrocarbons are gases at room temperature, while others are liquids or solids. Hydrocarbons are generally nonpolar and do not dissolve in water. In fact, they tend to repel water. Thats why they are used in floor wax and similar products. Hydrocarbons can be classified in two basic classes. The classes are saturated hydrocarbons and unsaturated hydrocarbons. This classification is based on the number of bonds between carbon atoms. You can learn more about both types of hydrocarbons at this URL: (6:41). MEDIA Click image to the left or use the URL below. URL:
text
null
L_0787
hydrocarbons
T_4075
Saturated hydrocarbons contain only single bonds between carbon atoms. They are the simplest hydrocarbons. They are called saturated because each carbon atom is bonded to as many hydrogen atoms as possible. In other words, the carbon atoms are saturated with hydrogen. You can see an example of a saturated hydrocarbon in Figure Saturated hydrocarbons are given the general name of alkanes. The name of specific alkanes always ends in -ane. The first part of the name indicates how many carbon atoms each molecule of the alkane has. The smallest alkane is methane. It has just one carbon atom. The next largest is ethane, with two carbon atoms. The chemical formulas and properties of methane, ethane, and several other alkanes are listed in Table 9.2. The boiling and melting points of alkanes are determined mainly by the number of carbon atoms they have. Alkanes with more carbon atoms generally have higher boiling and melting points. This table shows only alkanes with relatively few carbon atoms. Some alkanes have many more carbon atoms. What properties might larger alkanes have? For example, do you think that any of them might be solids? Alkane Methane Ethane Propane Butane Pentane Hexane Heptane Octane Chemical Formula CH4 C2 H6 C3 H8 C4 H10 C5 H12 C6 H14 C7 H16 C8 H18 Boiling Point (C) -162 -89 -42 0 36 69 98 126 Melting Point (C) -183 -172 -188 -138 -130 -95 -91 -57 State (at 20C) gas gas gas gas liquid liquid liquid liquid
text
null
L_0787
hydrocarbons
T_4076
Structural formulas are often used to represent hydrocarbon compounds because the molecules can have different shapes, or structures. Hydrocarbons may form straight chains, branched chains, or rings. Figure 9.8 shows an example of an alkane with each shape. In straight-chain molecules, all the carbon atoms are lined up in a row like cars of a train. They form what is called the backbone of the molecule. In branched-chain molecules, at least one of the carbon atoms branches off to the side from the backbone. In cyclic molecules, the chain of carbon atoms is joined at the two ends to form a ring.
text
null
L_0787
hydrocarbons
T_4077
Even compounds with the same number of carbon and hydrogen atoms can have different shapes. These compounds are called isomers. Look at the examples in Figure 9.9. The figure shows the structural formulas of butane and its isomer iso-butane. Both molecules have four carbon atoms and ten hydrogen atoms (C4 H10 ), but the atoms are arranged differently. Butane is a straight-chain molecule. Iso-butane is branched. You can see three-dimensional models of these two isomers at the URLs below. You can rotate the molecule models to get a better idea of their shapes.
text
null
L_0787
hydrocarbons
T_4078
Ring-shaped alkanes are called cycloalkanes. They usually contain just five or six carbon atoms because larger rings are not very stable. However, rings can join together to create larger molecules consisting of two or more rings. Compared with the straight- and branched-chain alkanes, cycloalkanes have higher boiling and melting points.
text
null
L_0787
hydrocarbons
T_4079
Unsaturated hydrocarbons contain at least one double or triple bond between carbon atoms. As a result, the carbon atoms are unable to bond with as many hydrogen atoms as they would if they were joined only by single bonds. This makes them unsaturated with hydrogen. Unsaturated hydrocarbons are classified on the basis of their bonds as alkenes, alkynes, or aromatic hydrocarbons.
text
null
L_0787
hydrocarbons
T_4080
Unsaturated hydrocarbons that contain at least one double bond are called alkenes. The name of a specific alkene always ends in ene, with a prefix indicating the number of carbon atoms. Figure 9.10 shows the structural formula for the smallest alkene. It has just two carbon atoms and is named ethene. Ethene is produced by most fruits and vegetables. It speeds up ripening and also rotting. Figure 9.11 shows the effects of ethene on bananas. Like alkanes, alkenes can have different shapes. They can form straight chains, branched chains, or rings. Alkenes can also form isomers, or compounds with the same atoms but different shapes. Generally, the physical properties of alkenes are similar to those of alkanes. Smaller alkenes, such as ethene, have relatively high boiling and melting points. They are gases at room temperature. Larger alkenes have lower boiling and melting points. They are liquids or waxy solids at room temperature.
text
null
L_0787
hydrocarbons
T_4081
Unsaturated hydrocarbons that contain at least one triple bond are called alkynes. The name of specific alkynes always end in yne, with a prefix for the number of carbon atoms. Figure 9.12 shows the smallest alkyne, called ethyne, which has just two carbon atoms. Ethyne is also called acetylene. It is burned in acetylene torches, like the one in Figure 9.13. Acetylene produces so much heat when it burns that it can melt metal. Breaking all those bonds between carbon atoms releases a lot of energy. Alkynes may form straight or branched chains. They rarely occur as cycloalkynes. In fact, alkynes of all shapes are relatively rare, at least in nature.
text
null
L_0787
hydrocarbons
T_4081
Unsaturated hydrocarbons that contain at least one triple bond are called alkynes. The name of specific alkynes always end in yne, with a prefix for the number of carbon atoms. Figure 9.12 shows the smallest alkyne, called ethyne, which has just two carbon atoms. Ethyne is also called acetylene. It is burned in acetylene torches, like the one in Figure 9.13. Acetylene produces so much heat when it burns that it can melt metal. Breaking all those bonds between carbon atoms releases a lot of energy. Alkynes may form straight or branched chains. They rarely occur as cycloalkynes. In fact, alkynes of all shapes are relatively rare, at least in nature.
text
null
L_0787
hydrocarbons
T_4081
Unsaturated hydrocarbons that contain at least one triple bond are called alkynes. The name of specific alkynes always end in yne, with a prefix for the number of carbon atoms. Figure 9.12 shows the smallest alkyne, called ethyne, which has just two carbon atoms. Ethyne is also called acetylene. It is burned in acetylene torches, like the one in Figure 9.13. Acetylene produces so much heat when it burns that it can melt metal. Breaking all those bonds between carbon atoms releases a lot of energy. Alkynes may form straight or branched chains. They rarely occur as cycloalkynes. In fact, alkynes of all shapes are relatively rare, at least in nature.
text
null
L_0787
hydrocarbons
T_4082
Unsaturated cyclic hydrocarbons are called aromatic hydrocarbons. Thats because they have a strong aroma, or scent. Their molecules consist of six carbon atoms in a ring shape, connected by alternating single and double bonds. Aromatic hydrocarbons may have a single ring or multiple rings joined together by bonds between their carbon atoms. Benzene is the smallest aromatic hydrocarbon. It has just one ring. You can see its structural formula in Figure 9.14. Benzene has many uses. For example, it is used in air fresheners and mothballs because of its strong scent. You can learn more about benzene and other aromatic hydrocarbons at this URL: MEDIA Click image to the left or use the URL below. URL:
text
null
L_0787
hydrocarbons
T_4083
It is hard to overstate the importance of hydrocarbons to modern life. Hydrocarbons have even been called the driving force of western civilization. You saw some ways they are used in Figure 9.6. Several other ways are illustrated in Figure 9.15. Their most important use is as fuels. Gasoline, natural gas, fuel oil, diesel fuel, jet fuel, coal, kerosene, and propane are just some of the hydrocarbon compounds that are burned for fuel. Hydrocarbons are also used to manufacture many products, including plastics and synthetic fabrics such as polyester. The main source of hydrocarbons is fossil fuels coal, petroleum, and natural gas. Fossil fuels form over hundreds of millions of years when dead organisms are covered with sediments and put under great pressure. Giant ferns in ancient swamps turned into coal deposits. Dead organisms in ancient seas gradually formed deposits of petroleum and natural gas. You can read more about these sources of hydrocarbons in the chapter Introduction to Energy and at the URL below.
text
null
L_0788
carbon and living things
T_4084
A biochemical compound is any carbon-based compound found in living things. Like hydrocarbons, all biochemi- cal compounds contain hydrogen as well as carbon. However, biochemical compounds also contain other elements, such as oxygen and nitrogen. Almost all biochemical compounds are polymers. They consist of many, smaller monomer molecules. Biochemical polymers are referred to as macromolecules. The prefix macro means "large," and many biochemical molecules are very large indeed. They may contain thousands of monomer molecules. Biochemical compounds make up the cells and tissues of organisms. They are also involved in life processes, such as making and using food for energy. Given their diversity of functions, its not surprising that there are millions of different biochemical compounds. However, they can be grouped into just four main classes: carbohydrates, proteins, lipids, and nucleic acids. The classes are summarized in Table 9.3 and described in the rest of this lesson. Class Carbohydrates Elements carbon hydrogen oxygen Examples sugars starches cellulose Proteins carbon hydrogen oxygen nitrogen sulfur carbon hydrogen oxygen carbon hydrogen oxygen nitrogen phosphorus enzymes hormones Lipids Nucleic acids Functions provide energy to cells store energy in plants makes up the cell walls of plants speed up biochemical re- actions regulate life processes fats oils store energy in animals store energy in plants DNA RNA stores genetic information in cells helps cells make proteins
text
null
L_0788
carbon and living things
T_4085
Carbohydrates are biochemical compounds that include sugars, starches, and cellulose. They contain oxygen in addition to carbon and hydrogen. Organisms use carbohydrates mainly for energy.
text
null
L_0788
carbon and living things
T_4086
Sugars are simple carbohydrates. Molecules of sugar have just a few carbon atoms. The simplest sugar is glucose (C6 H12 O6 ). Glucose is the sugar that the cells of living things use for energy. Plants and some other organisms make glucose in the process of photosynthesis. Living things that cannot make glucose obtain it by consuming plants or these other organisms. You can see the structural formula of glucose and two other sugars in Figure 9.16. The other sugars in the figure are fructose and sucrose. Fructose is an isomer of glucose. It is found in fruits. It has the same atoms as glucose, but they are arranged differently. Sucrose is table sugar. It consists of one molecule of glucose and one molecule of fructose.
text
null
L_0788
carbon and living things
T_4087
Starches are complex carbohydrates. They are polymers of glucose. They consist of hundreds of glucose monomers bonded together. Plants make starch to store extra sugars. Consumers get starch from plants. Common sources of starch in the human diet are pictured in Figure 9.17. Our digestive system breaks down starch to simple sugars, which our cells use for energy.
text
null
L_0788
carbon and living things
T_4087
Starches are complex carbohydrates. They are polymers of glucose. They consist of hundreds of glucose monomers bonded together. Plants make starch to store extra sugars. Consumers get starch from plants. Common sources of starch in the human diet are pictured in Figure 9.17. Our digestive system breaks down starch to simple sugars, which our cells use for energy.
text
null
L_0788
carbon and living things
T_4088
Cellulose is another complex carbohydrate that is a polymer of glucose. However, the glucose molecules are bonded together differently in cellulose than they are in starches. Cellulose molecules bundle together to form long, tough fibers (see Figure 9.18). Have you ever eaten raw celery? If you have, then you probably noticed that the stalks contain long, stringy fibers. The fibers are mostly cellulose. Cellulose is the most abundant biochemical compound. It makes up the cell walls of plants and gives support to trunks and stems. Cellulose also provides needed fiber in the human diet. We cant digest cellulose, but it helps keep food wastes moving through the digestive tract.
text
null
L_0788
carbon and living things
T_4089
Proteins are biochemical compounds that contain oxygen, nitrogen, and sulfur in addition to carbon and hydrogen. Protein molecules consist of one or more chains of small molecules called amino acids.
text
null
L_0788
carbon and living things
T_4090
Amino acids are the "building blocks" of proteins. There are 20 different common amino acids. The structural formula of the simplest amino acid, called glycine, is shown in Figure 9.19. Other amino acids have a similar structure. The sequence of amino acids and the number of amino acid chains in a protein determine the proteins shape. The shape of a protein, in turn, determines its function. Shapes may be very complex. You can learn more about the structure of proteins at the URL below. MEDIA Click image to the left or use the URL below. URL:
text
null
L_0788
carbon and living things
T_4091
Proteins are the most common biochemicals. They have many different functions, including: making up tissues as components of muscle. speeding up biochemical reactions as enzymes. regulating life processes as hormones. helping defend against infections as antibodies. transporting materials as components of the blood (see the example in Figure 9.20).
text
null
L_0788
carbon and living things
T_4092
Lipids are biochemical compounds such as fats and oils. Organisms use lipids to store energy. In addition to carbon and hydrogen, lipids contain oxygen.
text
null
L_0788
carbon and living things
T_4093
Lipids are made up of long carbon chains called fatty acids. Like hydrocarbons, fatty acids may be saturated or unsaturated. Figure 9.21 shows structural formulas for two small fatty acids. One is saturated and one is unsaturated. In saturated fatty acids, there are only single bonds between carbon atoms. As a result, the carbons are saturated with hydrogen atoms. Saturated fatty acids are found in fats. Fats are solid lipids that animals use to store energy. In unsaturated fatty acids, there is at least one double bond between carbon atoms. As a result, some carbons are not bonded to as many hydrogen atoms as possible. Unsaturated fatty acids are found in oils. Oils are liquid lipids that plants use to store energy.
text
null
L_0788
carbon and living things
T_4094
Some lipids contain the element phosphorus as well as oxygen, carbon, and hydrogen. These lipids are called phospholipids. Two layers of phospholipid molecules make up most of the cell membrane in the cells of living things. Figure 9.22 shows how phospholipid molecules are arranged in a cell membrane. One end (the head) of each phospholipid molecule is polar and attracts water. This end is called hydrophilic ("water loving"). The other end (the tail) is nonpolar and repels water. This end is called hydrophobic ("water hating"). The nonpolar tails are on the inside of the membrane. The polar heads are on the outside of the membrane. These differences in polarity allow some molecules to pass through the membrane while keeping others out. You can see how this works in the video at the URL below.
text
null
L_0788
carbon and living things
T_4095
Nucleic acids are biochemical molecules that contain oxygen, nitrogen, and phosphorus in addition to carbon and hydrogen. There are two main types of nucleic acids. They are DNA (deoxyribonucleic acid) and RNA (ribonucleic acid).
text
null
L_0788
carbon and living things
T_4096
Nucleic acids consist of chains of small molecules called nucleotides. The structure of a nucleotide is shown in Figure 9.23. Each nucleotide contains a phosphate group (PO4 ), a sugar (C5 H8 O4 ) in DNA, and a nitrogen- containing base. (A base is a compound that is not neither acidic nor neutral.) There are four different nitrogenous bases in DNA. They are adenine, thymine, guanine, and cytosine. In RNA, the only difference is that thymine is replaced with a different base, uracil. DNA consists of two long chains of nucleotides. Nitrogen bases on the two chains form hydrogen bonds with each other. Adenine always bonds with thymine, and guanine always bonds with cytosine. These bonds hold the two chains together and give DNA is characteristic double helix, or spiral, shape. You can see the shape of the DNA molecule in Figure 9.24. Sugars and phosphate groups form the "backbone" of each chain of DNA. The bonded bases are called base pairs. RNA, in contrast to DNA, consists of just one chain of nucleotides. Determining the structure of DNA was a big scientific breakthrough. You can read the interesting story of its discovery at the URL below.
text
null
L_0788
carbon and living things
T_4096
Nucleic acids consist of chains of small molecules called nucleotides. The structure of a nucleotide is shown in Figure 9.23. Each nucleotide contains a phosphate group (PO4 ), a sugar (C5 H8 O4 ) in DNA, and a nitrogen- containing base. (A base is a compound that is not neither acidic nor neutral.) There are four different nitrogenous bases in DNA. They are adenine, thymine, guanine, and cytosine. In RNA, the only difference is that thymine is replaced with a different base, uracil. DNA consists of two long chains of nucleotides. Nitrogen bases on the two chains form hydrogen bonds with each other. Adenine always bonds with thymine, and guanine always bonds with cytosine. These bonds hold the two chains together and give DNA is characteristic double helix, or spiral, shape. You can see the shape of the DNA molecule in Figure 9.24. Sugars and phosphate groups form the "backbone" of each chain of DNA. The bonded bases are called base pairs. RNA, in contrast to DNA, consists of just one chain of nucleotides. Determining the structure of DNA was a big scientific breakthrough. You can read the interesting story of its discovery at the URL below.
text
null
L_0788
carbon and living things
T_4097
DNA stores genetic information in the cells of all living things. It contains the genetic code. This is the code that instructs cells how to make proteins. The instructions are encoded in the sequence of nitrogen bases in the nucleotide chains of DNA. RNA "reads" the genetic code in DNA and is involved in the synthesis of proteins based on the code. This video shows how: (2:51). MEDIA Click image to the left or use the URL below. URL:
text
null
L_0789
biochemical reactions
T_4098
Most of the energy used by living things comes either directly or indirectly from the sun. Sunlight provides the energy for photosynthesis. This is the process in which plants and certain other organisms (see Figure 9.26) synthesize glucose (C6 H12 O6 ). The process uses carbon dioxide and water and also produces oxygen. The overall chemical equation for photosynthesis is: 6CO2 + 6H2 O + Light Energy ! C6 H12 O6 + 6O2 Photosynthesis changes light energy to chemical energy. The chemical energy is stored in the bonds of glucose molecules. Glucose is used for energy by the cells of almost all living things. Plants make their own glucose. Other organisms get glucose by consuming plants (or organisms that consume plants). How do living things get energy from glucose? The answer is cellular respiration.
text
null
L_0789
biochemical reactions
T_4098
Most of the energy used by living things comes either directly or indirectly from the sun. Sunlight provides the energy for photosynthesis. This is the process in which plants and certain other organisms (see Figure 9.26) synthesize glucose (C6 H12 O6 ). The process uses carbon dioxide and water and also produces oxygen. The overall chemical equation for photosynthesis is: 6CO2 + 6H2 O + Light Energy ! C6 H12 O6 + 6O2 Photosynthesis changes light energy to chemical energy. The chemical energy is stored in the bonds of glucose molecules. Glucose is used for energy by the cells of almost all living things. Plants make their own glucose. Other organisms get glucose by consuming plants (or organisms that consume plants). How do living things get energy from glucose? The answer is cellular respiration.
text
null
L_0789
biochemical reactions
T_4099
Cellular respiration is the process in which the cells of living things break down glucose with oxygen to produce carbon dioxide, water, and energy. The overall chemical equation for cellular respiration is: C6 H12 O6 + 6O2 ! 6CO2 + 6H2 O + Heat and Chemical Energy Cellular respiration releases some of the energy in glucose as heat. It uses the rest of the energy to form many, even smaller molecules. The smaller molecules contain just the right amount of energy to power chemical reactions inside cells. You can look at cellular respiration in more detail at this URL: MEDIA Click image to the left or use the URL below. URL:
text
null
L_0789
biochemical reactions
T_4100
Human body temperature must remain within a narrow range around 37C (98.6F). At this temperature, most biochemical reactions would occur too slowly to keep us alive. Thats where enzymes come in. Enzymes are biochemical catalysts. They speed up biochemical reactions, not only in humans but in virtually all living things. Most enzymes are proteins. Two are described in Figure 9.27.
text
null
L_0790
acceleration
T_4101
Acceleration is a measure of the change in velocity of a moving object. It measures the rate at which velocity changes. Velocity, in turn, is a measure of the speed and direction of motion, so a change in velocity may reflect a change in speed, a change in direction, or both. Both velocity and acceleration are vectors. A vector is any measurement that has both size and direction. People commonly think of acceleration as in increase in speed, but a decrease in speed is also acceleration. In this case, acceleration is negative and called deceleration. A change in direction without a change in speed is acceleration as well. Q: Can you think of an example of acceleration that doesnt involve a change in speed? A: Driving at a constant speed around a bend in a road is one example. Use your imagination to think of others.
text
null
L_0790
acceleration
T_4102
You can see several examples of acceleration in the pictures from the Figure 1.1. In each example, velocity is changing but in different ways. For example, direction may be changing but not speed, or vice versa. Figure out what is moving and how its moving in each of the photos. Q: Describe how velocity is changing in each of the motions you identified from the Figure 1.1. A: You should describe how both direction and speed are changing. For example, the boy on the carousel is moving up and down and around in a circle, so his direction is constantly changing, but his speed changes only at the beginning and end of the ride. The skydiver is falling straight down toward the ground so her direction isnt changing, but her speed keeps increasing as she falls until she opens her parachute.
text
null
L_0790
acceleration
T_4103
If you are accelerating, you may be able to feel the change in velocity. This is true whether the change is in speed, direction, or both. You often feel acceleration when you ride in a car. As the car speeds up, you feel as though you are being pressed against the seat. When the car slows down, you feel like you are being pushed forward, especially if the change in speed is sudden. If the car changes direction and turns right, you feel as though you are being pushed to the left. With a left turn, you feel a push to the right. The next time you ride in a car, notice how it feels as the car accelerates in each of these ways.
text
null
L_0791
acceleration due to gravity
T_4104
Gravity is a force that pulls objects down toward the ground. When objects fall to the ground, gravity causes them to accelerate. Acceleration is a change in velocity, and velocity, in turn, is a measure of the speed and direction of motion. Gravity causes an object to fall toward the ground at a faster and faster velocity the longer the object falls. In fact, its velocity increases by 9.8 m/s2, so by 1 second after an object starts falling, its velocity is 9.8 m/s. By 2 seconds after it starts falling, its velocity is 19.6 m/s (9.8 m/s + 9.8 m/s), and so on. The acceleration of a falling object due to gravity is illustrated in the Figure 1.1. Q: In this diagram, the boy drops the object at time t= 0 s. By t = 1 s, the object is falling at a velocity of 9.8 m/s. What is its velocity by t = 5 s? What will its velocity be at t = 6 s if it keeps falling? A: Its velocity at t = 5 s is 49.0 m/s, and at t = 6 s, it will be 58.8 m/s (49.0 m/s + 9.8 m/s).
text
null
L_0791
acceleration due to gravity
T_4105
What if you were to drop a bowling ball and a soccer ball at the same time from the same distance above the ground? The bowling ball has greater mass than the basketball, so the pull of gravity on it is greater. Would it fall to the ground faster? No, the bowling ball and basketball would reach the ground at the same time. The reason? The more massive bowling ball is also harder to move because of its greater mass, so it ends up moving at the same acceleration as the soccer ball. This is true of all falling objects. They all accelerate at the same rate due to gravity, unless air resistance affects one object more than another. For example, a falling leaf is slowed down by air resistance more than a falling acorn because of the leafs greater surface area. Q: If a leaf and an acorn were to fall to the ground in the absence of air (that is, in a vacuum), how would this affect their acceleration due to gravity? A: They would both accelerate at the same rate and reach the ground at the same time.
text
null
L_0792
accuracy and precision
T_4106
The accuracy of a measurement is how close the measurement is to the true value. If you were to hit four different golf balls toward an over-sized hole, all of them might land in the hole. These shots would all be accurate because they all landed in the hole. This is illustrated in the sketch below.
text
null
L_0792
accuracy and precision
T_4107
As you can see from the sketch above, the four golf balls did not land as close to one another as they could have. Each one landed in a different part of the hole. Therefore, these shots are not very precise. The precision of measurements is how close they are to each other. If you make the same measurement twice, the answers are precise if they are the same or at least very close to one another. The golf balls in the sketch below landed quite close together in a cluster, so they would be considered precise. However, they are all far from the hole, so they are not accurate. Q: If you were to hit four golf balls toward a hole and your shots were both accurate and precise, where would the balls land? A: All four golf balls would land in the hole (accurate) and also very close to one another (precise).
text
null
L_0793
acid base neutralization
T_4108
An acid is a compound that produces positive hydrogen ions (H+ ) and negative nonmetal ions when it dissolves in water. (Ions are atoms that have become charged by losing or gaining electrons.) Hydrochloric acid (HCl) is an example of an acid. When it dissolves in water, it produces positive hydrogen ions and negative chloride ions (Cl ). This can be represented by the chemical equation: H O 2 HCl H+ + Cl A base is a compound that produces negative hydroxide ions (OH ) and positive metal ions when it dissolves in water. For example, when the base sodium hydroxide (NaOH) dissolves in water, it produces negative hydroxide ions and positive sodium ions (Na+ ). This can be represented by the chemical equation: H O 2 NaOH OH + Na+ Q: If you were to combine acid and base solutions, what products do you think would be produced? A: Combining acid and base solutions produces water and a neutral ionic compound.
text
null
L_0793
acid base neutralization
T_4109
When an acid and a base react, the reaction is called a neutralization reaction. Thats because the reaction produces neutral products. Water is always one product, and a salt is also produced. A salt is a neutral ionic compound. Lets see how a neutralization reaction produces both water and a salt, using as an example the reaction between solutions of hydrochloric acid and sodium hydroxide. The overall equation for this reaction is: NaOH + HCl H2 O and NaCl Now lets break this reaction down into two parts to see how each product forms. Positive hydrogen ions from HCl and negative hydroxide ions from NaOH combine to form water. This part of the reaction can be represented by the equation: H+ + OH H2 O Positive sodium ions from NaOH and negative chloride ions from HCL combine to form the salt sodium chloride (NaCl), commonly called table salt. This part of the reaction can be represented by the equation: Na+ + Cl NaCl Another example of a neutralization reaction can be seen in the Figure 1.1. Q: What products are produced when antacid tablets react with hydrochloric acid in the stomach? A: The products are water and the salt calcium chloride (CaCl2 ). Carbon dioxide (CO2 ) is also produced. The reaction is represented by the chemical equation: CaCO3 + 2HCl H2 O + CaCl2 + CO2
text
null
L_0794
activation energy
T_4110
Chemical reactions also need energy to be activated. They require a certain amount of energy just to get started. This energy is called activation energy. For example, activation energy is needed to start a car engine. Turning the key causes a spark that activates the burning of gasoline in the engine. The combustion of gas wont occur without the spark of energy to begin the reaction. Q: Why is activation energy needed? Why wont a reaction occur without it? A: A reaction wont occur unless atoms or molecules of reactants come together. This happens only if the particles are moving, and movement takes energy. Often, reactants have to overcome forces that push them apart. This takes energy as well. Still more energy is needed to start breaking bonds in reactants.
text
null
L_0794
activation energy
T_4111
Some chemical reactions need a constant input of energy to take place. They are called endothermic reactions. Other chemical reactions release energy when they occur, so they can keep going without any added energy. They are called exothermic reactions. Q: It makes sense that endothermic reactions need activation energy. But do exothermic reactions also need activation energy? A: All chemical reactions need energy to get started, even exothermic reactions. Look at the Figure 1.1. They compare energy changes that occur during endothermic and exothermic reactions. From the graphs, you can see that both types of reactions need the same amount of activation energy in order to get started. Only after it starts does the exothermic reaction produce more energy than it uses.
text
null
L_0794
activation energy
T_4112
You have probably used activation energy to start a chemical reaction. For example, if youve ever struck a match to light it, then you provided the activation energy needed to start a combustion reaction. When you struck the match on the box, the friction started the match head burning. Combustion is exothermic. Once a match starts to burn, it releases enough energy to activate the next reaction, and the next, and so on. However, the match wont burst into flames on its own.
text
null
L_0796
alkaline earth metals
T_4116
Barium (Ba) is one of six elements in group 2 of the periodic table, which is shown in Figure 1.1. Elements in this group are called alkaline Earth metals. These metals are silver or gray in color. They are relatively soft and low in density, although not as soft and lightweight as alkali metals.
text
null
L_0796
alkaline earth metals
T_4117
All alkaline Earth metals have similar properties because they all have two valence electrons. They readily give up their two valence electrons to achieve a full outer energy level, which is the most stable arrangement of electrons. As a result, they are very reactive, although not quite as reactive as the alkali metals in group 1. For example, alkaline Earth metals will react with cold water, but not explosively as alkali metals do. Because of their reactivity, alkaline Earth metals never exist as pure substances in nature. Instead, they are always found combined with other elements. The reactivity of alkaline Earth metals increases from the top to the bottom of the group. Thats because the atoms get bigger from the top to the bottom, so the valence electrons are farther from the nucleus. When valence electrons are farther from the nucleus, they are attracted less strongly by the nucleus and more easily removed from the atom. This makes the atom more reactive. Q: Alkali metals have just one valence electron. Why are alkaline Earth metals less reactive than alkali metals? A: It takes more energy to remove two valence electrons from an atom than one valence electron. This makes alkaline Earth metals with their two valence electrons less reactive than alkali metals with their one valence electron.
text
null
L_0796
alkaline earth metals
T_4118
For a better understanding of alkaline Earth metals, lets take a closer look at two of them: calcium (Ca) and strontium (Sr). Calcium is a soft, gray, nontoxic alkaline Earth metal. Although pure calcium doesnt exist in nature, calcium compounds are very common in Earths crust and in sea water. Calcium is also the most abundant metal in the human body, occurring as calcium compounds such as calcium phosphate and calcium carbonate. These calcium compounds are found in bones and make them hard and strong. The skeleton of the average adult contains about a kilogram of calcium. Because calciumlike bariumabsorbs x-rays, bones show up white in x-ray images. Calcium is an important component of a healthy human diet. Good food sources of calcium are pictured in Figure Q: What health problems might result from a diet low in calcium? A: Children who dont get enough calcium while their bones are forming may develop a deficiency disease called rickets, in which their bones are softer than normal and become bent and stunted. Adults who dont get enough calcium may develop a condition called osteoporosis, in which the bones lose calcium and become weak and brittle. People with osteoporosis are at high risk of bone fractures. Strontium is a silver-colored alkaline Earth metal that is even softer than calcium. Strontium compounds are quite common and have a variety of usesfrom fireworks to cement to toothpaste. In fireworks, strontium compounds produce deep red explosions. In toothpaste, the compound strontium chloride reduces tooth sensitivity.
text
null
L_0797
alloys
T_4119
An alloy is a mixture of a metal with one or more other elements. The other elements may be metals, nonmetals, or both. An alloy is formed by melting a metal and dissolving the other elements in it. The molten solution is then allowed to cool and harden. Alloys generally have more useful properties than pure metals. Several examples of alloys are described and pictured below. If you have braces on your teeth, you might even have this alloy in your mouth! Click image to the left or use the URL below. URL:
text
null
L_0797
alloys
T_4120
Most metal objects are made of alloys rather than pure metals. Objects made of four different alloys are shown in the Figure 1.1. Brass saxophone: Brass is an alloy of copper and zinc. It is softer than bronze and easier to shape. Its also very shiny. Notice the curved pieces in this shiny brass saxophone. Brass is used for shap- ing many other curved objects, such as doorknobs and plumbing fixtures. Stain- less steel sink: Stainless steel is a type of steel that contains nickel and chromium in addition to carbon and iron. It is shiny, strong, and resistant to rusting. This makes it useful for sinks, eating utensils, and other objects that are exposed to wa- ter. "Gold" bracelet: Pure gold is relatively soft, so it is rarely used for jewelry. Most "gold" jewelry is actually made of an alloy of gold, copper and silver. Bronze statue: Bronze was the first alloy ever made. The earliest bronze dates back many thou- sands of years. Bronze is a mixture of copper and tin. Both copper and tin are relatively soft metals, but mixed together in bronze they are much harder. Bronze has been used for statues, coins, and other objects. Q: Sterling silver is an alloy that is used to make fine jewelry. What elements do you think sterling silver contains? What properties might sterling silver have that make it more useful than pure silver? A: Most sterling silver is about 93 percent silver and about 7 percent copper. Sterling silver is harder and stronger than pure silver, while retaining the malleability and luster of pure silver.
text
null
L_0798
alpha decay
T_4121
Radioactive elements and isotopes have unstable nuclei. To become more stable, the nuclei undergo radioactive decay. In radioactive decay, the nuclei give off, or emit, radiation in the form of energy and often particles as well. There are several types of radioactive decay, including alpha, beta, and gamma decay. Energy is emitted in all three types of decay, but only alpha and beta decay also emit particles.
text
null