lessonID
stringlengths 6
6
| lessonName
stringlengths 3
52
| ID
stringlengths 6
21
| content
stringlengths 10
6.57k
| media_type
stringclasses 2
values | path
stringlengths 28
76
⌀ |
---|---|---|---|---|---|
L_0761 | magnets and magnetism | T_3883 | A magnet is an object that attracts certain materials such as iron. Youre probably familiar with common bar magnets, like the one in Figure 24.2. Like all magnets, this bar magnet has north and south poles and attracts objects such as paper clips that contain iron. | text | null |
L_0761 | magnets and magnetism | T_3884 | All magnets have two magnetic poles. The poles are regions where the magnet is strongest. The poles are called north and south because they always line up with Earths north-south axis if the magnet is allowed to move freely. (Earths axis is the imaginary line around which the planet rotates.) What do you suppose would happen if you cut the bar magnet in Figure 24.2 in half along the line between the north and south poles? Both halves would also have north and south poles. If you cut each of the halves in half, all those pieces would have north and south poles as well. Pieces of a magnet always have both north and south poles no matter how many times you cut the magnet. | text | null |
L_0761 | magnets and magnetism | T_3885 | The force that a magnet exerts on certain materials is called magnetic force. Like electric force, magnetic force is exerted over a distance and includes forces of attraction and repulsion. North and south poles of two magnets attract each other, while two north poles or two south poles repel each other. | text | null |
L_0761 | magnets and magnetism | T_3886 | Like the electric field that surrounds a charged particle, a magnetic field surrounds a magnet. This is the area around the magnet where it exerts magnetic force. Figure 24.3 shows the magnetic field surrounding a bar magnet. Tiny bits of iron, called iron filings, were placed under a sheet of glass. When the magnet was placed on the glass, it attracted the iron filings. The pattern of the iron filings shows the lines of force that make up the magnetic field of the magnet. The concentration of iron filings near the poles indicates that these areas exert the strongest force. To see an animated magnetic field of a bar magnet, go to this URL: http://elgg.norfolk.e2bn.org/jsmith112/files/68/149/ When two magnets are brought close together, their magnetic fields interact. You can see how in Figure 24.4. The drawings show how lines of force of north and south poles attract each other whereas those of two north poles repel each other. The animations at the URL below show how magnetic field lines change as two or more magnets move in relation to each other. You can take an animated quiz to check your understanding of magnetic field interactions at this URL: http://elgg. | text | null |
L_0761 | magnets and magnetism | T_3887 | Magnetism is the ability of a material to be attracted by a magnet and to act as a magnet. No doubt youve handled refrigerator magnets like the ones in Figure 24.5. You probably know first-hand that they stick to a metal refrigerator but not to surfaces such as wooden doors and glass windows. Wood and glass arent attracted to a magnet, whereas the steel refrigerator is. Obviously, only certain materials respond to magnetic force. | text | null |
L_0761 | magnets and magnetism | T_3887 | Magnetism is the ability of a material to be attracted by a magnet and to act as a magnet. No doubt youve handled refrigerator magnets like the ones in Figure 24.5. You probably know first-hand that they stick to a metal refrigerator but not to surfaces such as wooden doors and glass windows. Wood and glass arent attracted to a magnet, whereas the steel refrigerator is. Obviously, only certain materials respond to magnetic force. | text | null |
L_0761 | magnets and magnetism | T_3888 | Magnetism is due to the movement of electrons within atoms of matter. When electrons spin around the nucleus of an atom, it causes the atom to become a tiny magnet, with north and south poles and a magnetic field. In most materials, the electrons orbiting the nuclei of the atoms are arranged in such a way that the materials have no magnetic properties. Also, in most types of matter, the north and south poles of atoms point in all different directions, so overall the matter is not magnetic. Examples of nonmagnetic materials include wood, glass, plastic, paper, copper, and aluminum. These materials are not attracted to magnets and cannot become magnets. In other materials, electrons fill the orbitals of the atoms that make up the material in a way to allow for each atom to have a tiny magnetic field, giving each atom a tiny north and south pole. There are large areas where the north and south poles of atoms are all lined up in the same direction. These areas are called magnetic domains. Generally, the magnetic domains point in different directions, so the material is still not magnetic. However, the material can be magnetized by placing it in a magnetic field. When this happens, all the magnetic domains become aligned, and the material becomes a magnet. This is illustrated in Figure 24.6. Materials that can be magnetized are called ferromagnetic materials. They include iron, cobalt, and nickel. | text | null |
L_0761 | magnets and magnetism | T_3889 | Materials that have been magnetized may become temporary or permanent magnets. An example of each type of magnet is described below. Both are demonstrated in Figure 24.7. If you bring a bar magnet close to pile of paper clips, the paper clips will become temporarily magnetized, as all their magnetic domains align. As a result, the paper clips will stick to the magnet and also to each other. However, if you remove the paper clips from the bar magnets magnetic field, their magnetic domains will no longer align. As a result, the paper clips will no longer be magnetized or stick together. If you stroke an iron nail with a bar magnet, the nail will become a permanent (or at least long-lasting) magnet. Its magnetic domains will remain aligned even after you remove it from the magnetic field of the bar magnet. Permanent magnets can be demagnetized, however, if they are dropped or heated to high temperatures. These actions move the magnetic domains out of alignment. | text | null |
L_0761 | magnets and magnetism | T_3889 | Materials that have been magnetized may become temporary or permanent magnets. An example of each type of magnet is described below. Both are demonstrated in Figure 24.7. If you bring a bar magnet close to pile of paper clips, the paper clips will become temporarily magnetized, as all their magnetic domains align. As a result, the paper clips will stick to the magnet and also to each other. However, if you remove the paper clips from the bar magnets magnetic field, their magnetic domains will no longer align. As a result, the paper clips will no longer be magnetized or stick together. If you stroke an iron nail with a bar magnet, the nail will become a permanent (or at least long-lasting) magnet. Its magnetic domains will remain aligned even after you remove it from the magnetic field of the bar magnet. Permanent magnets can be demagnetized, however, if they are dropped or heated to high temperatures. These actions move the magnetic domains out of alignment. | text | null |
L_0762 | earth as a magnet | T_3890 | Imagine a huge bar magnet passing through Earths axis, as illustrated in Figure 24.10. This is a good representation of Earth as a magnet. Like a bar magnet, Earth has north and south magnetic poles and a magnetic field. | text | null |
L_0762 | earth as a magnet | T_3891 | Although a compass always points north, it doesnt point to Earths geographic north pole, which is located at 90 north latitude (see Figure 24.11). Instead, it points to Earths magnetic north pole, which is located at about 80 north latitude. Earths magnetic south pole is also located several degrees of latitude away from the geographic south pole. A compass pointer has north and south poles, and its north pole points to Earths magnetic north pole. Why does this happen if opposite poles attract? Why doesnt the compass needle point south instead? The answer may surprise you. Earths magnetic north pole is actually the south pole of magnet Earth! Its called the magnetic north pole to avoid confusion. Because its close to the geographic north pole, it would be confusing to call it the magnetic south pole. | text | null |
L_0762 | earth as a magnet | T_3892 | Like all magnets, Earth has a magnetic field. Earths magnetic field is called the magnetosphere. It is a huge region that extends outward from Earth for several thousand kilometers but is strongest at the poles. You can see the extent of the magnetosphere in Figure 24.12. For an animated version of the magnetosphere, watch the video at this URL: MEDIA Click image to the left or use the URL below. URL: | text | null |
L_0762 | earth as a magnet | T_3892 | Like all magnets, Earth has a magnetic field. Earths magnetic field is called the magnetosphere. It is a huge region that extends outward from Earth for several thousand kilometers but is strongest at the poles. You can see the extent of the magnetosphere in Figure 24.12. For an animated version of the magnetosphere, watch the video at this URL: MEDIA Click image to the left or use the URL below. URL: | text | null |
L_0762 | earth as a magnet | T_3893 | Do you like to read science fiction? Science fiction writers are really creative. For example, an author might write about a time in the distant past when compasses pointed south instead of north. Actually, this idea isnt fictionits a fact! Earths magnetic poles have switched places repeatedly over the past hundreds of millions of years, each time reversing Earths magnetic field. This is illustrated in Figure 24.13. Scientists dont know for certain why magnetic reversals occur, but there is hard evidence showing that they have occurred. The evidence comes from rocks on the ocean floor. Look at Figure 24.14, which shows a ridge on the ocean floor. At the center of the ridge, hot magma pushes up through the crust and hardens into rock. Once the magma hardens, the alignment of magnetic domains in the rock is frozen in place forever. The newly hardened rock is then gradually pushed away from the ridge in both directions as more magma erupts and newer rock forms. Rock samples from many places on the ocean floor reveal that magnetic domains of rocks from different time periods are aligned in opposite directions. The evidence shows that Earths magnetic field reversed hundreds of times over the last 330 million years. The last reversal was less than a million years ago. What might happen if a magnetic reversal occurred in your lifetime? How might it affect you? You can learn more about Earths magnetic reversals at this URL: . | text | null |
L_0762 | earth as a magnet | T_3894 | The idea that Earth is a magnet is far from new. It was first proposed in 1600 by a British physician named William Gilbert. However, explaining why Earth acts like a magnet is a relatively recent discovery. It had to wait until the development of technologies such as seismographs, which detect and measure earthquake waves. Then scientists could learn about Earths inner structure (see Figure 24.15). They discovered that Earth has an inner and outer core and that the outer core consists of liquid metals, mainly iron and nickel. Scientists think that Earths magnetic field is generated by the movement of charged particles through the molten metals in the outer core. The particles move as Earth spins on its axis. The video at the URL below takes a closer look at how this occurs. MEDIA Click image to the left or use the URL below. URL: | text | null |
L_0762 | earth as a magnet | T_3894 | The idea that Earth is a magnet is far from new. It was first proposed in 1600 by a British physician named William Gilbert. However, explaining why Earth acts like a magnet is a relatively recent discovery. It had to wait until the development of technologies such as seismographs, which detect and measure earthquake waves. Then scientists could learn about Earths inner structure (see Figure 24.15). They discovered that Earth has an inner and outer core and that the outer core consists of liquid metals, mainly iron and nickel. Scientists think that Earths magnetic field is generated by the movement of charged particles through the molten metals in the outer core. The particles move as Earth spins on its axis. The video at the URL below takes a closer look at how this occurs. MEDIA Click image to the left or use the URL below. URL: | text | null |
L_0762 | earth as a magnet | T_3895 | Earths magnetic field helps protect Earth and its organisms from harmful particles given off by the sun. Most of the particles are attracted to the north and south magnetic poles, where Earths magnetic field is strongest. This is also where relatively few organisms live. Another benefit of Earths magnetic field is its use for navigation. People use compasses to detect Earths magnetic north pole and tell direction. Many animals have natural "compasses" that work just as well. Birds like the garden warbler in Figure 24.16 use Earths magnetic field to guide their annual migrations. Recent research suggests that warblers and other migrating birds have structures in their eyes that let them see Earths magnetic field as a visual pattern. You can learn more about animals and Earths magnetic field, including the potential effects of magnetic field reversals, at this URL: . | text | null |
L_0762 | earth as a magnet | T_3896 | Northern California residents may not be able to see the northern lights like people in Alaska can, but Bay Area scientists are playing a key role in understanding them. Find out more about the spectacular light shows up north and what scientists at UC Berkeley are discovering about the Earths magnetic field. For more information on the northern lights, see http://science.kqed.org/quest/video/illuminating-the-northern-lights/ . MEDIA Click image to the left or use the URL below. URL: | text | null |
L_0767 | types of matter | T_3921 | An element is a pure substance. It cannot be separated into any other substances. There are more than 90 different elements that occur in nature. Some are much more common than others. Hydrogen is the most common element in the universe. Oxygen is the most common element in Earths crust. Figure 3.7 shows other examples of elements. Still others are described in the video below. MEDIA Click image to the left or use the URL below. URL: | text | null |
L_0767 | types of matter | T_3922 | Each element has a unique set of properties that make it different from all other elements. As a result, elements can be identified by their properties. For example, the elements iron and nickel are both metals that are good conductors of heat and electricity. However, iron is attracted by a magnet, whereas nickel is not. How could you use this property to separate iron objects from nickel objects? | text | null |
L_0767 | types of matter | T_3923 | The idea of elements is not new. It dates back about 2500 years to ancient Greece. The ancient Greek philosopher Aristotle thought that all matter consists of just four elements. He identified the elements as earth, air, water, and fire. He thought that different kinds of matter contain only these four elements but in different combinations. Aristotles ideas about elements were accepted for the next 2000 years. Then, scientists started discovering the many unique substances we call elements today. You can read when and how each of the elements was discovered at the link below. Scientists soon realized that there are far more than just four elements. Eventually, they discovered a total of 92 naturally occurring elements. | text | null |
L_0767 | types of matter | T_3924 | The smallest particle of an element that still has the elements properties is an atom. All the atoms of an element are alike, and they are different from the atoms of all other elements. For example, atoms of gold are the same whether they are found in a gold nugget or a gold ring (see Figure 3.8). All gold atoms have the same structure and properties. | text | null |
L_0767 | types of matter | T_3925 | There are millions of different substances in the world. Thats because elements can combine in many different ways to form new substances. In fact, most elements are found in compounds. A compound is a unique substance that forms when two or more elements combine chemically. An example is water, which forms when hydrogen and oxygen combine chemically. A compound always has the same components in the same proportions. It also has the same composition throughout. You can learn more about compounds and how they form by watching this video: MEDIA Click image to the left or use the URL below. URL: | text | null |
L_0767 | types of matter | T_3926 | A compound has different properties than the substances it contains. For example, hydrogen and oxygen are gases at room temperature. But when they combine chemically, they form liquid water. Another example is table salt, or sodium chloride. It contains sodium and chlorine. Sodium is a silvery solid that reacts explosively with water, and chlorine is a poisonous gas (see Figure 3.9). But together, sodium and chlorine form a harmless, unreactive compound that you can safely sprinkle on food. | text | null |
L_0767 | types of matter | T_3927 | The smallest particle of a compound that still has the compounds properties is a molecule. A molecule consists of two or more atoms that are joined together. For example, a molecule of water consists of two hydrogen atoms joined to one oxygen atom (see Figure 3.10). You can learn more about molecules at this link: Some compounds form crystals instead of molecules. A crystal is a rigid, lattice-like framework of many atoms bonded together. Table salt is an example of a compound that forms crystals (see Figure 3.11). Its crystals are made up of many sodium and chloride ions. Ions are electrically charged forms of atoms. You can actually watch crystals forming in this video: . | text | null |
L_0767 | types of matter | T_3927 | The smallest particle of a compound that still has the compounds properties is a molecule. A molecule consists of two or more atoms that are joined together. For example, a molecule of water consists of two hydrogen atoms joined to one oxygen atom (see Figure 3.10). You can learn more about molecules at this link: Some compounds form crystals instead of molecules. A crystal is a rigid, lattice-like framework of many atoms bonded together. Table salt is an example of a compound that forms crystals (see Figure 3.11). Its crystals are made up of many sodium and chloride ions. Ions are electrically charged forms of atoms. You can actually watch crystals forming in this video: . | text | null |
L_0767 | types of matter | T_3928 | Not all combined substances are compounds. Some are mixtures. A mixture is a combination of two or more substances in any proportion. The substances in a mixture may be elements or compounds. The substances dont combine chemically to form a new substance, as they do in a compound. Instead, they keep their original properties and just intermix. Examples of mixtures include salt and water in the ocean and gases in the atmosphere. Other examples are pictured in Figure 3.12. | text | null |
L_0767 | types of matter | T_3929 | Some mixtures are homogeneous. This means they have the same composition throughout. An example is salt water in the ocean. Ocean water everywhere is about 3.5 percent salt. Some mixtures are heterogeneous. This means they vary in their composition. An example is trail mix. No two samples of trail mix, even from the same package, are likely to be exactly the same. One sample might have more raisins, another might have more nuts. | text | null |
L_0767 | types of matter | T_3930 | Mixtures have different properties depending on the size of their particles. Three types of mixtures based on particle size are described below. Figure 3.13 shows examples of each type. You can watch videos about the three types of mixtures at these links: MEDIA Click image to the left or use the URL below. URL: MEDIA Click image to the left or use the URL below. URL: A solution is a homogeneous mixture with tiny particles. An example is salt water. The particles of a solution are too small to reflect light. As a result, you cannot see them. Thats why salt water looks the same as pure water. The particles of solutions are also too small to settle or be filtered out of the mixture. A suspension is a heterogeneous mixture with large particles. An example is muddy water. The particles of a suspension are big enough to reflect light, so you can see them. They are also big enough to settle or be filtered out. Anything that you have to shake before using, such as salad dressing, is usually a suspension. A colloid is a homogeneous mixture with medium-sized particles. Examples include homogenized milk and gelatin. The particles of a colloid are large enough to reflect light, so you can see them. But they are too small to settle or filter out of the mixture. | text | null |
L_0767 | types of matter | T_3931 | The components of a mixture keep their own identity when they combine. Therefore, they usually can be easily separated again. Their different physical properties are used to separate them. For example, oil is less dense than water, so a mixture of oil and water can be separated by letting it stand until the oil floats to the top. Other ways of separating mixtures are shown in Figure 3.14 and in the videos below. (2:30) MEDIA Click image to the left or use the URL below. URL: (2:41) MEDIA Click image to the left or use the URL below. URL: | text | null |
L_0772 | inside the atom | T_3963 | Figure 5.1 represents a simple model of an atom. You will learn about more complex models in later lessons, but this model is a good place to start. You can see similar, animated models of atoms at this URL: http://web.jjay.cuny | text | null |
L_0772 | inside the atom | T_3964 | At the center of an atom is the nucleus (plural, nuclei). The nucleus contains most of the atoms mass. However, in size, its just a tiny part of the atom. The model in Figure 5.1 is not to scale. If an atom were the size of a football stadium, the nucleus would be only about the size of a pea. The nucleus, in turn, consists of two types of particles, called protons and neutrons. These particles are tightly packed inside the nucleus. Constantly moving about the nucleus are other particles called electrons. You can see a video about all three types of atomic particles at this URL: (1:57). | text | null |
L_0772 | inside the atom | T_3965 | A proton is a particle in the nucleus of an atom that has a positive electric charge. All protons are identical. It is the number of protons that gives atoms of different elements their unique properties. Atoms of each type of element have a characteristic number of protons. For example, each atom of carbon has six protons, as you can see in Figure | text | null |
L_0772 | inside the atom | T_3966 | A neutron is a particle in the nucleus of an atom that has no electric charge. Atoms of an element often have the same number of neutrons as protons. For example, most carbon atoms have six neutrons as well as six protons. This is also shown in Figure 5.2. | text | null |
L_0772 | inside the atom | T_3967 | An electron is a particle outside the nucleus of an atom that has a negative electric charge. The charge of an electron is opposite but equal to the charge of a proton. Atoms have the same number of electrons as protons. As a result, the negative and positive charges "cancel out." This makes atoms electrically neutral. For example, a carbon atom has six electrons that "cancel out" its six protons. | text | null |
L_0772 | inside the atom | T_3968 | When it comes to atomic particles, opposites attract. Negative electrons are attracted to positive protons. This force of attraction keeps the electrons moving about the nucleus. An analogy is the way planets orbit the sun. What about particles with the same charge, such as protons in the nucleus? They push apart, or repel, each other. So why doesnt the nucleus fly apart? The reason is a force of attraction between protons and neutrons called the strong force. The name of the strong force suits it. It is stronger than the electric force pushing protons apart. However, the strong force affects only nearby particles (see Figure 5.3). It is not effective if the nucleus gets too big. This puts an upper limit on the number of protons an atom can have and remain stable. You can learn more about atomic forces in the colorful tutorial at this URL: . | text | null |
L_0772 | inside the atom | T_3969 | Electrons have almost no mass. Instead, almost all the mass of an atom is in its protons and neutrons in the nucleus. The nucleus is very small, but it is densely packed with matter. The SI unit for the mass of an atom is the atomic mass unit (amu). One atomic mass unit equals the mass of a proton, which is about 1.7 10 24 g. Each neutron also has a mass of 1 amu. Therefore, the sum of the protons and neutrons in an atom is about equal to the atoms total mass in atomic mass units. Two numbers are commonly used to distinguish atoms: atomic number and mass number. Figure 5.4 shows how these numbers are usually written. The atomic number is the number of protons in an atom. This number is unique for atoms of each kind of element. For example, the atomic number of all helium atoms is 2. The mass number is the number of protons plus the number of neutrons in an atom. For example, most atoms of helium have 2 neutrons, so their mass number is 2 + 2 = 4. This mass number means that an atom of helium has a mass of about 4 amu. Problem Solving Problem: An atom has an atomic number of 12 and a mass number of 24. How many protons and neutrons does the atom have? Solution: The number of protons is the same as the atomic number, or 12. The number of neutrons is equal to the mass number minus the atomic number, or 24 12 = 12. You Try It! Problem: An atom has an atomic number of 8 and a mass number of 16. How many neutrons does it have? What is the atoms mass in atomic mass units? | text | null |
L_0772 | inside the atom | T_3970 | The number of protons per atom is always the same for a given element. However, the number of neutrons may vary, and the number of electrons can change. | text | null |
L_0772 | inside the atom | T_3971 | Sometimes atoms lose or gain electrons. Then they become ions. Ions have a positive or negative charge. Thats because they do not have the same number of electrons as protons. If atoms lose electrons, they become positive ions, or cations. If atoms gain electrons, they become negative ions, or anions. Consider the example of fluorine in Figure 5.5. A fluorine atom has nine protons and nine electrons, so it is electrically neutral. If a fluorine atom gains an electron, it becomes a fluoride ion with a negative charge of minus one. | text | null |
L_0772 | inside the atom | T_3972 | Some atoms of the same element may have different numbers of neutrons. For example, some carbon atoms have seven or eight neutrons instead of the usual six. Atoms of the same element that differ in number of neutrons are called isotopes. Many isotopes occur naturally. Usually one or two isotopes of an element are the most stable and common. Different isotopes of an element generally have the same chemical properties. Thats because they have the same numbers of protons and electrons. For a video explanation of isotopes, go to this URL: MEDIA Click image to the left or use the URL below. URL: | text | null |
L_0772 | inside the atom | T_3973 | Hydrogen is a good example of isotopes because it has the simplest atoms. Three isotopes of hydrogen are modeled in Figure 5.6. Most hydrogen atoms have just one proton and one electron and lack a neutron. They are just called hydrogen. Some hydrogen atoms have one neutron. These atoms are the isotope named deuterium. Other hydrogen atoms have two neutrons. These atoms are the isotope named tritium. | text | null |
L_0772 | inside the atom | T_3974 | For most other elements, isotopes are named for their mass number. For example, carbon atoms with the usual 6 neutrons have a mass number of 12 (6 protons + 6 neutrons = 12), so they are called carbon-12. Carbon atoms with 7 neutrons have an atomic mass of 13 (6 protons + 7 neutrons = 13). These atoms are the isotope called carbon-13. Some carbon atoms have 8 neutrons. What is the name of this isotope of carbon? You can learn more about this isotope at the URL below. It is used by scientists to estimate the ages of rocks and fossils. | text | null |
L_0772 | inside the atom | T_3975 | Remember the quarks from the first page of this chapter? Quarks are even tinier particles of matter that make up protons and neutrons. There are three quarks in each proton and three quarks in each neutron. The charges of quarks are balanced exactly right to give a positive charge to a proton and a neutral charge to a neutron. It might seem strange that quarks are never found alone but only as components of other particles. This is because the quarks are held together by very strange particles called gluons. | text | null |
L_0772 | inside the atom | T_3976 | Gluons make quarks attract each other more strongly the farther apart the quarks get. To understand how gluons work, imagine holding a rubber band between your fingers. If you try to move your hands apart, they will be pulled back together by the rubber band. The farther apart you move your hands, the stronger the force of the rubber band pulling your hands together. Gluons work the same way on quarks inside protons and neutrons (and other, really rare particles too). If you were to move your hands apart with enough force, the rubber band holding them together would break. The same is true of quarks. If they are given enough energy, they pull apart with enough force to "break" the binding from the gluons. However, all the energy that is put into a particle to make this possible is then used to create a new set of quarks and gluons. And so a new proton or neutron appears. | text | null |
L_0772 | inside the atom | T_3977 | The existence of quarks was first proposed in the 1960s. Since then, scientists have done experiments to show that quarks really do exist. In fact, they have identified six different types of quarks. However, much remains to be learned about these tiny, fundamental particles of matter. They are very difficult and expensive to study. If you want to learn more about them, including how they are studied, the URL below is a good place to start. | text | null |
L_0772 | inside the atom | T_3978 | QUEST journeys back to find out how physicists on the UC Berkeley campus in the 1930s, and at the Stanford Linear Accelerator Center in the 1970s, created "atom smashers" that led to key discoveries about the tiny constituents of the atom and paved the way for the Large Hadron Collider in Switzerland. For more information on particle accelerators, see http://science.kqed.org/quest/video/homegrown-particle-accelerators/ . MEDIA Click image to the left or use the URL below. URL: | text | null |
L_0773 | history of the atom | T_3979 | The history of the atom begins around 450 B.C. with a Greek philosopher named Democritus (see Figure 5.7). Democritus wondered what would happen if you cut a piece of matter, such as an apple, into smaller and smaller pieces. He thought that a point would be reached where matter could not be cut into still smaller pieces. He called these "uncuttable" pieces atomos. This is where the modern term atom comes from. Democritus was an important philosopher. However, he was less influential than the Greek philosopher Aristotle, who lived about 100 years after Democritus. Aristotle rejected Democrituss idea of atoms. In fact, Aristotle thought | text | null |
L_0773 | history of the atom | T_3980 | Around 1800, a British chemist named John Dalton revived Democrituss early ideas about the atom. Dalton is pictured in Figure 5.8. He made a living by teaching and just did research in his spare time. Nonetheless, from his research results, he developed one of the most important theories in science. | text | null |
L_0773 | history of the atom | T_3981 | Dalton did many experiments that provided evidence for atoms. For example, he studied the pressure of gases. He concluded that gases must consist of tiny particles in constant motion. Dalton also researched the properties of compounds. He showed that a compound always consists of the same elements in the same ratio. On the other hand, different compounds always consist of different elements or ratios. This can happen, Dalton reasoned, only if elements are made of tiny particles that can combine in an endless variety of ways. From his research, Dalton developed a theory of the atom. You can learn more about Dalton and his research by watching the video at this URL: (9:03). MEDIA Click image to the left or use the URL below. URL: | text | null |
L_0773 | history of the atom | T_3982 | The atomic theory Dalton developed consists of three ideas: All substances are made of atoms. Atoms are the smallest particles of matter. They cannot be divided into smaller particles. They also cannot be created or destroyed. All atoms of the same element are alike and have the same mass. Atoms of different elements are different and have different masses. Atoms join together to form compounds. A given compound always consists of the same kinds of atoms in the same ratio. Daltons theory was soon widely accepted. Most of it is still accepted today. The only part that is no longer accepted is his idea that atoms are the smallest particles. Scientists now know that atoms consist of even smaller particles. | text | null |
L_0773 | history of the atom | T_3983 | Dalton incorrectly thought that atoms are tiny solid particles of matter. He used solid wooden balls to model them. The sketch in the Figure 5.9 shows how Daltons model atoms looked. He made holes in the balls so they could be joined together with hooks. In this way, the balls could be used to model compounds. When later scientists discovered subatomic particles (particles smaller than the atom itself), they realized that Daltons models were too simple. They didnt show that atoms consist of even smaller particles. Models including these smaller particles were later developed. | text | null |
L_0773 | history of the atom | T_3984 | The next major advance in the history of the atom was the discovery of electrons. These were the first subatomic particles to be identified. They were discovered in 1897 by a British physicist named J. J. Thomson. You can learn more about Thomson and his discovery at this online exhibit: . | text | null |
L_0773 | history of the atom | T_3985 | Thomson was interested in electricity. He did experiments in which he passed an electric current through a vacuum tube. The experiments are described in Figure 5.10. Thomsons experiments showed that an electric current consists of flowing, negatively charged particles. Why was this discovery important? Many scientists of Thomsons time thought that electric current consists of rays, like rays of light, and that it is positive rather than negative. Thomsons experiments also showed that the negative particles are all alike and smaller than atoms. Thomson concluded that the negative particles couldnt be fundamental units of matter because they are all alike. Instead, they must be parts of atoms. The negative particles were later named electrons. | text | null |
L_0773 | history of the atom | T_3986 | Thomson knew that atoms are neutral in electric charge. So how could atoms contain negative particles? Thomson thought that the rest of the atom must be positive to cancel out the negative charge. He said that an atom is like a plum pudding, which has plums scattered through it. Thats why Thomsons model of the atom is called the plum pudding model. You can see it in Figure 5.11. It shows the atom as a sphere of positive charge (the pudding) with negative electrons (the plums) scattered through it. | text | null |
L_0773 | history of the atom | T_3987 | A physicist from New Zealand named Ernest Rutherford made the next major discovery about atoms. He discovered the nucleus. You can watch a video about Rutherford and his discovery at this URL: MEDIA Click image to the left or use the URL below. URL: | text | null |
L_0773 | history of the atom | T_3988 | In 1899, Rutherford discovered that some elements give off positively charged particles. He named them alpha particles (a). In 1911, he used alpha particles to study atoms. He aimed a beam of alpha particles at a very thin sheet of gold foil. Outside the foil, he placed a screen of material that glowed when alpha particles struck it. If Thomsons plum pudding model were correct, the alpha particles should be deflected a little as they passed through the foil. Why? The positive "pudding" part of gold atoms would slightly repel the positive alpha particles. This would cause the alpha particles to change course. But Rutherford got a surprise. Most of the alpha particles passed straight through the foil as though they were moving through empty space. Even more surprising, a few of the alpha particles bounced back from the foil as though they had struck a wall. This is called back scattering. It happened only in very small areas at the centers of the gold atoms. | text | null |
L_0773 | history of the atom | T_3989 | Based on his results, Rutherford concluded that all the positive charge of an atom is concentrated in a small central area. He called this area the nucleus. Rutherford later discovered that the nucleus contains positively charged particles. He named the positive particles protons. Rutherford also predicted the existence of neutrons in the nucleus. However, he failed to find them. One of his students, a physicist named James Chadwick, went on to discover neutrons in 1932. You learn how at this URL: . | text | null |
L_0773 | history of the atom | T_3990 | Rutherfords discoveries meant that Thomsons plum pudding model was incorrect. Positive charge is not spread out everywhere in an atom. It is all concentrated in the tiny nucleus. The rest of the atom is empty space, except for the electrons moving randomly through it. In Rutherfords model, electrons move around the nucleus in random orbits. He compared them to planets orbiting a star. Thats why Rutherfords model is called the planetary model. You can see it in Figure 5.13. | text | null |
L_0773 | history of the atom | T_3990 | Rutherfords discoveries meant that Thomsons plum pudding model was incorrect. Positive charge is not spread out everywhere in an atom. It is all concentrated in the tiny nucleus. The rest of the atom is empty space, except for the electrons moving randomly through it. In Rutherfords model, electrons move around the nucleus in random orbits. He compared them to planets orbiting a star. Thats why Rutherfords model is called the planetary model. You can see it in Figure 5.13. | text | null |
L_0774 | modern atomic theory | T_3991 | Bohrs research focused on electrons. In 1913, he discovered evidence that the orbits of electrons are located at fixed distances from the nucleus. Remember, Rutherford thought that electrons orbit the nucleus at random. Figure 5.14 shows Bohrs model of the atom. | text | null |
L_0774 | modern atomic theory | T_3992 | Basic to Bohrs model is the idea of energy levels. Energy levels are areas located at fixed distances from the nucleus of the atom. They are the only places where electrons can be found. Energy levels are a little like rungs on a ladder. You can stand on one rung or another but not between the rungs. The same goes for electrons. They can occupy one energy level or another but not the space between energy levels. The model of an atom in Figure 5.15 has six energy levels. The level with the least energy is the one closest to the nucleus. As you go farther from the nucleus, the levels have more and more energy. Electrons can jump from one energy level to another. If an atom absorbs energy, some of its electrons can jump to a higher energy level. If electrons jump to a lower energy level, the atom emits, or gives off, energy. You can see an animation at this happening at the URL below. | text | null |
L_0774 | modern atomic theory | T_3992 | Basic to Bohrs model is the idea of energy levels. Energy levels are areas located at fixed distances from the nucleus of the atom. They are the only places where electrons can be found. Energy levels are a little like rungs on a ladder. You can stand on one rung or another but not between the rungs. The same goes for electrons. They can occupy one energy level or another but not the space between energy levels. The model of an atom in Figure 5.15 has six energy levels. The level with the least energy is the one closest to the nucleus. As you go farther from the nucleus, the levels have more and more energy. Electrons can jump from one energy level to another. If an atom absorbs energy, some of its electrons can jump to a higher energy level. If electrons jump to a lower energy level, the atom emits, or gives off, energy. You can see an animation at this happening at the URL below. | text | null |
L_0774 | modern atomic theory | T_3993 | Bohrs idea of energy levels is still useful today. It helps explain how matter behaves. For example, when chemicals in fireworks explode, their atoms absorb energy. Some of their electrons jump to a higher energy level. When the electrons move back to their original energy level, they give off the energy as light. Different chemicals have different arrangements of electrons, so they give off light of different colors. This explains the blue- and purple- colored fireworks in Figure 5.16. | text | null |
L_0774 | modern atomic theory | T_3994 | In the 1920s, physicists discovered that electrons do not travel in fixed paths. In fact, they found that electrons only have a certain chance of being in any particular place. They could only describe where electrons are with mathematical formulas. Thats because electrons have wave-like properties as well as properties of particles of matter. It is the "wave nature" of electrons that lets them exist only at certain distances from the nucleus. The negative electrons are attracted to the positive nucleus. However, because the electrons behave like waves, they bend around the nucleus instead of falling toward it. Electrons exist only where the wave is stable. These are the orbitals. They do not exist where the wave is not stable. These are the places between orbitals. | text | null |
L_0774 | modern atomic theory | T_3995 | Today, these ideas about electrons are represented by the electron cloud model. The electron cloud is an area around the nucleus where electrons are likely to be. Figure 5.17 shows an electron cloud model for a helium atom. | text | null |
L_0774 | modern atomic theory | T_3996 | Some regions of the electron cloud are denser than others. The denser regions are areas where electrons are most likely to be. These regions are called orbitals. Each orbital has a maximum of just two electrons. Different energy levels in the cloud have different numbers of orbitals. Therefore, different energy levels have different maximum numbers of electrons. Table 5.1 lists the number of orbitals and electrons for the first four energy levels. Energy levels farther from the nucleus have more orbitals. Therefore, these levels can hold more electrons. Energy Level Number of Orbitals 1 2 3 4 1 4 9 16 Max. No. of Electrons (@ 2 per orbital) 2 8 18 32 Figure 5.18 shows the arrangement of electrons in an atom of magnesium as an example. The most stable arrange- ment of electrons occurs when electrons fill the orbitals at the lowest energy levels first before more are added at higher levels. You can learn more about orbitals and their electrons at the URL below: | text | null |
L_0774 | modern atomic theory | T_3996 | Some regions of the electron cloud are denser than others. The denser regions are areas where electrons are most likely to be. These regions are called orbitals. Each orbital has a maximum of just two electrons. Different energy levels in the cloud have different numbers of orbitals. Therefore, different energy levels have different maximum numbers of electrons. Table 5.1 lists the number of orbitals and electrons for the first four energy levels. Energy levels farther from the nucleus have more orbitals. Therefore, these levels can hold more electrons. Energy Level Number of Orbitals 1 2 3 4 1 4 9 16 Max. No. of Electrons (@ 2 per orbital) 2 8 18 32 Figure 5.18 shows the arrangement of electrons in an atom of magnesium as an example. The most stable arrange- ment of electrons occurs when electrons fill the orbitals at the lowest energy levels first before more are added at higher levels. You can learn more about orbitals and their electrons at the URL below: | text | null |
L_0775 | how elements are organized | T_3997 | Mendeleev was a teacher as well as a chemist. He was writing a chemistry textbook and needed a way to organize the elements so it would be easier for students to learn about them. He made a set of cards of the elements, similar to a deck of playing cards, with one element per card. On the card, he wrote the elements name, atomic mass, and known properties. He arranged and rearranged the cards in many different ways, looking for a pattern. He finally found it when he placed the elements in order by atomic mass. | text | null |
L_0775 | how elements are organized | T_3998 | You can see how Mendeleev organized the elements in Figure 6.2. From left to right across each row, elements are arranged by increasing atomic mass. Mendeleev discovered that if he placed eight elements in each row and then continued on to the next row, the columns of the table would contain elements with similar properties. He called the columns groups. They are sometimes called families, because elements within a group are similar but not identical to one another, like people in a family. Mendeleevs table of the elements is called a periodic table because of its repeating pattern. Anything that keeps repeating is referred to as periodic. Other examples of things that are periodic include the monthly phases of the moon and the daily cycle of night and day. The term period refers to the interval between repetitions. In a periodic table, the periods are the rows of the table. In Mendeleevs table, each period contains eight elements, and then the pattern repeats in the next row. | text | null |
L_0775 | how elements are organized | T_3999 | Did you notice the blanks in Mendeleevs table (Figure 6.2)? They are spaces that Mendeleev left for elements that had not yet been discovered when he created his table. He predicted that these missing elements would eventually be discovered. Based on their position in the table, he could even predict their properties. For example, he predicted a missing element in row 5 of his group 3. He said it would have an atomic mass of about 68 and be a soft metal like other group 3 elements. Scientists searched for the missing element. They found it a few years later and named it gallium. Scientists searched for the other missing elements. Eventually, all of them were found. An important measure of a good model is its ability to make accurate predictions. This makes it a useful model. Clearly, Mendeleevs periodic table was a useful model. It helped scientists discover new elements and make sense of those that were already known. | text | null |
L_0775 | how elements are organized | T_4000 | A periodic table is still used today to classify the elements. Figure 6.3 shows the modern periodic table. You can see an interactive version at this URL: . | text | null |
L_0775 | how elements are organized | T_4001 | In the modern periodic table, elements are organized by atomic number. The atomic number is the number of protons in an atom of an element. This number is unique for each element, so it seems like an obvious way to organize the elements. (Mendeleev used atomic mass instead of atomic number because protons had not yet been discovered when he made his table.) In the modern table, atomic number increases from left to right across each period. It also increases from top to bottom within each group. How is this like Mendeleevs table? | text | null |
L_0775 | how elements are organized | T_4002 | Besides atomic number, the periodic table includes each elements chemical symbol and class. Some tables include other information as well. The chemical symbol consists of one or two letters that come from the chemicals name in English or another language. The first letter is always written in upper case. The second letter, if there is one, is always written in lower case. For example, the symbol for lead is Pb. It comes from the Latin word plumbum, which means "lead." Find lead in Figure 6.3. What is its atomic number? You can access videos about lead and other elements in the modern periodic table at this URL: . The classes of elements are metals, metalloids, and nonmetals. They are color-coded in the table. Blue stands for metals, orange for metalloids, and green for nonmetals. You can read about each of these three classes of elements later in the chapter, in the lesson "Classes of Elements." | text | null |
L_0775 | how elements are organized | T_4003 | Rows of the modern table are called periods, as they are in Mendeleevs table. From left to right across a period, each element has one more proton than the element before it. In each period, elements change from metals on the left side of the table, to metalloids, and then to nonmetals on the right. Figure 6.4 shows this for period 4. Some periods in the modern periodic table are longer than others. For example, period 1 contains only two elements. Periods 6 and 7, in contrast, are so long that some of their elements are placed below the main part of the table. They are the elements starting with lanthanum (La) in period 6 and actinium (Ac) in period 7. Some elements in period 7 have not yet been named. They are represented by temporary symbols, such as Uub. Many of these elements have only recently been shown to exist. Elements 114 and 116 were added to the table in 2011. Four more elements (113, 115, 117, and 118) were approved for addition in December 2015 and will be named at some later date. | text | null |
L_0775 | how elements are organized | T_4004 | Columns of the modern table are called groups, as they are in Mendeleevs table. However, the modern table has many more groups 18 to be exact. Elements in the same group have similar properties. For example, all elements in group 18 are colorless, odorless gases. You can read about the different groups of elements in this chapters lesson on "Groups of Elements." | text | null |
L_0776 | classes of elements | T_4005 | Metals are elements that are good conductors of electricity. They are the largest of the three classes of elements. In fact, most elements are metals. Look back at the modern periodic table (Figure 6.3) in this chapters lesson "How Elements Are Organized." Find the metals in the table. They are all the elements that are color-coded blue. Examples include sodium (Na), silver (Ag), and zinc (Zn). Metals have relatively high melting points, so almost all are solids at room temperature. The only exception is mercury (Hg), which is a liquid. Most metals are also good conductors of heat. Thats why they are used for cooking pots and stovetops. Metals have other characteristic properties as well. Most are shiny, ductile, and malleable. These properties are illustrated in Figure 6.5. You can dig deeper into the properties of metals at this URL: | text | null |
L_0776 | classes of elements | T_4006 | Nonmetals are elements that do not conduct electricity. They are the second largest class of elements. Find the nonmetals in Figure 6.3. They are all the elements on the right side of the table that are color-coded green. Examples of nonmetals include helium (He), carbon (C), and oxygen (O). Nonmetals generally have properties that are the opposite of those of metals. They also tend to vary more in their properties than metals do. For example, nonmetals have relatively low boiling points, so many of them are gases at room temperature. But several nonmetals are solids, including carbon and phosphorus (P). One nonmetal, bromine (Br), is a liquid at room temperature. Generally, nonmetals are also poor conductors of heat. In fact, they may be used for insulation. For example, the down filling in a down jacket is mostly air, which consists mainly of nitrogen (N) and oxygen (O). These nonmetal gases are poor conductors of heat, so they keep body heat in and cold air out. Solid nonmetals are dull rather than shiny. They are also brittle rather than ductile or malleable. You can see examples of solid nonmetals in Figure 6.6. You can learn more about specific nonmetals with the interactive table at this URL: http://library.thinkquest.org/36 | text | null |
L_0776 | classes of elements | T_4007 | Metalloids are elements that fall between metals and nonmetals in the periodic table. Just seven elements are metalloids, so they are the smallest class of elements. In Figure 6.3, they are color-coded orange. Examples of metalloids include boron (B), silicon (Si), and germanium (Ge). Metalloids have some properties of metals and some properties of nonmetals. For example, many metalloids can conduct electricity but only at certain temperatures. These metalloids are called semiconductors. Silicon is an example. It is used in computer chips. It is also the most common metalloid on Earth. It is shiny like a metal but brittle like a nonmetal. You see a sample of silicon in Figure 6.7. The figure also shows other examples of metalloids. You can learn more about the properties of metalloids at this URL: http://library.thinkquest.org/3659/p | text | null |
L_0776 | classes of elements | T_4008 | From left to right across the periodic table, each element has one more proton than the element to its left. Because atoms are always electrically neutral, for each added proton, one electron is also added. Electrons are added first to the lowest energy level possible until that level is full. Only then are electrons added to the next higher energy level. | text | null |
L_0776 | classes of elements | T_4009 | The increase in electrons across the periodic table explains why elements go from metals to metalloids and then to nonmetals from left to right across the table. Look at period 2 in Figure 6.8 as an example. Lithium (Li) is a metal, boron (B) a metalloid, and fluorine (F) and neon (Ne) are nonmetals. The inner energy level is full for all four elements. This level has just one orbital and can hold a maximum of two electrons. The outer energy level is a different story. This level has four orbitals and can hold a maximum of eight electrons. Lithium has just one electron in this level, boron has three, fluorine has seven, and neon has eight. | text | null |
L_0776 | classes of elements | T_4010 | The electrons in the outer energy level of an atom are called valence electrons. It is valence electrons that are potentially involved in chemical reactions. The number of valence electrons determines an elements reactivity, or how likely the element is to react with other elements. The number of valence electrons also determines whether the element can conduct electric current. Thats because electric current is the flow of electrons. Table 6.1 shows how these properties vary in elements from each class. Metals such as lithium have an outer energy level that is almost empty. They "want" to give up their few valence electrons so they will have a full outer energy level. As a result, metals are very reactive and good conductors of electricity. Metalloids such as boron have an outer energy level that is about half full. These elements need to gain or lose too many electrons for a full outer energy level to come about easily. As a result, these elements are not very reactive. They may be able to conduct electricity but not very well. Some nonmetals, such as bromine, have an outer energy level that is almost full. They "want" to gain electrons so they will have a full outer energy level. As a result, these nonmetals are very reactive. Because they only accept electrons and do not give them up, they do not conduct electricity. Other nonmetals, such as neon, have a completely full outer energy level. Their electrons are already in the most stable arrangement possible. They are unreactive and do not conduct electricity. Element Description Element Lithium Description Lithium (Li) is a highly reactive metal. It has just one electron in its outer energy level. Lithium reacts explosively with water (see picture). It can react with moisture on skin and cause serious burns. Boron Boron (B) is a metalloid. It has three valence electrons and is less reactive than lithium. Boron compounds dissolved in water form boric acid. Dilute boric acid is weak enough to use as eye wash. Bromine Bromine (Br) is an extremely reactive nonmetal. In fact, reactions with fluorine are often explosive, as you can see in the URL below. Neon (Ne) is a nonmetal gas with a completely filled outer energy level. This makes it unreactive, so it doesnt combine with other elements. Neon is used for lighted signs like this one. You can learn why neon gives off light at this link: Neon | text | null |
L_0777 | groups of elements | T_4011 | All the elements in group 1 have just one valence electron, so they are highly reactive. Group 1 is shown in Figure element in the universe. All the other elements in group 1 are alkali metals. They are the most reactive of all metals, and along with the elements in group 17, the most reactive elements. Because alkali metals are so reactive, they are only found in nature combined with other elements. The alkali metals are soft. Most are soft enough to cut with a knife. They are also low in density. Some of them even float on water. All are solids at room temperature. You can see a video demonstrating the reactivity of alkali metals with water at this URL: (2:22). MEDIA Click image to the left or use the URL below. URL: | text | null |
L_0777 | groups of elements | T_4012 | The alkaline Earth metals include all the elements in group 2 (see Figure 6.10). These metals have just two valence electrons, so they are very reactive, although not quite as reactive as the alkali metals. In nature, they are always found combined with other elements. Alkaline Earth metals are silvery grey in color. They are harder and denser than the alkali metals. All are solids at room temperature. | text | null |
L_0777 | groups of elements | T_4013 | Groups 3-12 of the periodic table contain transition metals (see Figure 6.11). Transition metals have more valence electrons and are less reactive than metals in the first two metal groups. The transition metals are shiny. Many are silver colored. They tend to be very hard, with high melting and boiling points. All except mercury (Hg) are solids at room temperature. Transition metals include the elements that are placed below the periodic table. Those that follow lanthanum (La) are called lanthanides. They are all shiny, relatively reactive metals. Those that follow Actinium (Ac) are called actinides. They are all radioactive metals. This means they are unstable. They break down into different, more stable elements. You can read more about radioactive elements in the chapter Nuclear Chemistry. Many of the actinides do not occur in nature but are made in laboratories. | text | null |
L_0777 | groups of elements | T_4013 | Groups 3-12 of the periodic table contain transition metals (see Figure 6.11). Transition metals have more valence electrons and are less reactive than metals in the first two metal groups. The transition metals are shiny. Many are silver colored. They tend to be very hard, with high melting and boiling points. All except mercury (Hg) are solids at room temperature. Transition metals include the elements that are placed below the periodic table. Those that follow lanthanum (La) are called lanthanides. They are all shiny, relatively reactive metals. Those that follow Actinium (Ac) are called actinides. They are all radioactive metals. This means they are unstable. They break down into different, more stable elements. You can read more about radioactive elements in the chapter Nuclear Chemistry. Many of the actinides do not occur in nature but are made in laboratories. | text | null |
L_0777 | groups of elements | T_4014 | Groups 13-16 each contain one or more metalloids. These groups are shown in Figure 6.12. Group 13 is called the boron group. The only metalloid in this group is boron (B). The other four elements are metals. All group 13 elements have three valence electrons and are fairly reactive. All are solids at room temperature. Group 14 is called the carbon group. Carbon (C) is a nonmetal. The next two elements are metalloids, and the final two are metals. All the elements in the carbon group have four valence electrons. They are not very reactive. All are solids at room temperature. Group 15 is called the nitrogen group. The first two elements in this group are nonmetals. These are followed by two metalloids and one metal. All the elements in the nitrogen group have five valence electrons, but they vary in their reactivity. Nitrogen (N) in not reactive at all. Phosphorus (P), in contrast, is quite reactive. In fact, it is found naturally only in combination with other substances. Nitrogen is a gas at room temperature. The other group 15 elements are solids. Group 16 is called the oxygen group. The first three elements in this group are nonmetals. They are followed by one metalloid and one metal. All the elements in the oxygen group have six valence electrons, and all are | text | null |
L_0777 | groups of elements | T_4015 | Elements in group 17 are called halogens (see Figure 6.13). They are highly reactive nonmetals with seven valence electrons. The halogens react violently with alkali metals, which have one valence electron. The two elements combine to form a salt. For example, the halogen chlorine (Cl) and the alkali metal sodium (Na) react to form table salt, or sodium chloride (NaCl). The halogen group includes gases, liquids, and solids. For example, chlorine is a gas at room temperature, bromine (Br) is a liquid, and iodine (I) is a solid. You can watch a video demonstrating the reactivity of halogens at this URL: . | text | null |
L_0777 | groups of elements | T_4016 | Group 18 elements are nonmetals called noble gases (see Figure 6.14). They are all colorless, odorless gases. Their outer energy level is also full, so they are the least reactive elements. In nature, they seldom combine with other substances. For a short video about the noble gases and their properties, go to this URL: | text | null |
L_0778 | introduction to chemical bonds | T_4017 | Elements form compounds when they combine chemically. Their atoms join together to form molecules, crystals, or other structures. The atoms are held together by chemical bonds. A chemical bond is a force of attraction between atoms or ions. It occurs when atoms share or transfer valence electrons. Valence electrons are the electrons in the outer energy level of an atom. You can learn more about chemical bonds in this video: MEDIA Click image to the left or use the URL below. URL: Look at the example of water in Figure 7.1. A water molecule consists of two atoms of hydrogen and one atom of oxygen. Each hydrogen atom has just one electron. The oxygen atom has six valence electrons. In a water molecule, two hydrogen atoms share their two electrons with the six valence electrons of one oxygen atom. By sharing electrons, each atom has electrons available to fill its sole or outer energy level. This gives it a more stable arrangement of electrons that takes less energy to maintain. | text | null |
L_0778 | introduction to chemical bonds | T_4018 | Water (H2 O) is an example of a chemical compound. Water molecules always consist of two atoms of hydrogen and one atom of oxygen. Like water, all other chemical compounds consist of a fixed ratio of elements. It doesnt matter how much or how little of a compound there is. It always has the same composition. | text | null |
L_0778 | introduction to chemical bonds | T_4019 | Elements are represented by chemical symbols. Examples are H for hydrogen and O for oxygen. Compounds are represented by chemical formulas. Youve already seen the chemical formula for water. Its H2 O. The subscript 2 after the H shows that there are two atoms of hydrogen in a molecule of water. The O for oxygen has no subscript. When there is just one atom of an element in a molecule, no subscript is used. Table 7.1 shows some other examples of compounds and their chemical formulas. Name of Compound Electron Dot Diagram Numbers of Atoms Chemical Formula Name of Compound Hydrogen chloride Electron Dot Diagram Numbers of Atoms H=1 Cl = 1 Chemical Formula HCl Methane C=1 H=4 CH4 Hydrogen peroxide H=2 O=2 H2 O2 Carbon dioxide C=1 O=2 CO2 Problem Solving Problem: A molecule of ammonia consists of one atom of nitrogen (N) and three atoms of hydrogen (H). What is its chemical formula? Solution: The chemical formula is NH3 . You Try It! Problem: A molecule of nitrogen dioxide consists of one atom of nitrogen (N) and two atoms of oxygen (O). What is its chemical formula? | text | null |
L_0778 | introduction to chemical bonds | T_4020 | The same elements may combine in different ratios. If they do, they form different compounds. Figure 7.2 shows some examples. Both water (H2 O) and hydrogen peroxide (H2 O2 ) consist of hydrogen and oxygen. However, they have different ratios of the two elements. As a result, water and hydrogen peroxide are different compounds with different properties. If youve ever used hydrogen peroxide to disinfect a cut, then you know that it is very different from water! Both carbon dioxide (CO2 ) and carbon monoxide (CO) consist of carbon and oxygen, but in different ratios. How do their properties differ? | text | null |
L_0778 | introduction to chemical bonds | T_4021 | There are different types of compounds. They differ in the nature of the bonds that hold their atoms together. The type of bonds in a compound determines many of its properties. Three types of bonds are ionic, covalent, and metallic bonds. You will read about these three types in later lessons. You can also learn more about them by watching this video: (7:18). MEDIA Click image to the left or use the URL below. URL: | text | null |
L_0778 | introduction to chemical bonds | T_4022 | Chocolate: Its been revered for millennia by cultures throughout the world. But while its easy to appreciate all of its delicious forms, creating this confection is a complex culinary feat. Local chocolate makers explain the elaborate engineering and chemistry behind this tasty treat. And learn why its actually good for your health! For more information on the science of chocolate, see http://science.kqed.org/quest/video/the-sweet-science-of-chocolate/ . MEDIA Click image to the left or use the URL below. URL: | text | null |
L_0779 | ionic bonds | T_4023 | An ionic bond is the force of attraction that holds together positive and negative ions. It forms when atoms of a metallic element give up electrons to atoms of a nonmetallic element. Figure 7.3 shows how this happens. In row 1 of Figure 7.3, an atom of sodium donates an electron to an atom of chlorine (Cl). By losing an electron, the sodium atom becomes a sodium ion. It now has one less electron than protons, giving it a charge of +1. Positive ions such as sodium are given the same name as the element. The chemical symbol has a plus sign to distinguish the ion from an atom of the element. The symbol for a sodium ion is Na+ . By gaining an electron, the chlorine atom becomes a chloride ion. It now has one more electron than protons, giving it a charge of -1. Negative ions are named by adding the suffix ide to the first part of the element name. The symbol for chloride is Cl . Sodium and chloride ions have equal but opposite charges. Opposites attract, so sodium and chloride ions attract each other. They cling together in a strong ionic bond. You can see this in row 2 of Figure 7.3. Brackets separate the ions in the diagram to show that the ions in the compound do not share electrons. You can see animations of sodium chloride forming at these URLs: http://web.jjay.cuny.edu/~acarpi/NSC/salt.htm | text | null |
L_0779 | ionic bonds | T_4024 | Ionic bonds form only between metals and nonmetals. Metals "want" to give up electrons, and nonmetals "want" to gain electrons. Find sodium (Na) in Figure 7.4. Sodium is an alkali metal in group 1. Like other group 1 elements, it has just one valence electron. If sodium loses that one electron, it will have a full outer energy level. Now find fluorine (F) in Figure 7.4. Fluorine is a halogen in group 17. It has seven valence electrons. If fluorine gains one electron, it will have a full outer energy level. After sodium gives up its valence electron to fluorine, both atoms have a more stable arrangement of electrons. | text | null |
L_0779 | ionic bonds | T_4025 | It takes energy to remove valence electrons from an atom. The force of attraction between the negative electrons and positive nucleus must be overcome. The amount of energy needed depends on the element. Less energy is needed to remove just one or a few electrons than many. This explains why sodium and other alkali metals form positive ions so easily. Less energy is also needed to remove electrons from larger atoms in the same group. For example, in group 1, it takes less energy to remove an electron from francium (Fr) at the bottom of the group than from lithium (Li) at the top of the group (see Figure 7.4). In bigger atoms, valence electrons are farther from the nucleus. As a result, the force of attraction between the electrons and nucleus is weaker. What happens when an atom gains an electron and becomes a negative ion? Energy is released. Halogens release the most energy when they form ions. As a result, they are very reactive. | text | null |
L_0779 | ionic bonds | T_4026 | Ionic compounds contain ions of metals and nonmetals held together by ionic bonds. Ionic compounds do not form molecules. Instead, many positive and negative ions bond together to form a structure called a crystal. You can see an example of a crystal in Figure 7.5. It shows the ionic compound sodium chloride. Positive sodium ions (Na+ ) alternate with negative chloride ions (Cl ). The oppositely charged ions are strongly attracted to each other. Helpful Hints Naming Ionic Compounds Ionic compounds are named for their positive and negative ions. The name of the positive | text | null |
L_0779 | ionic bonds | T_4027 | The crystal structure of ionic compounds is strong and rigid. It takes a lot of energy to break all those strong ionic bonds. As a result, ionic compounds are solids with high melting and boiling points (see Table 7.2). The rigid crystals are brittle and more likely to break than bend when struck. As a result, ionic crystals tend to shatter. You can learn more about the properties of ionic compounds by watching the video at this URL: MEDIA Click image to the left or use the URL below. URL: Compare the melting and boiling points of these ionic compounds with those of water (0C and 100C), which is not an ionic compound. Ionic Compound Sodium chloride (NaCl) Calcium chloride (CaCl2 ) Barium oxide (BaO) Iron bromide (FeBr3 ) Melting Point (C) 801 772 1923 684 Boiling Point (C) 1413 1935 2000 934 Solid ionic compounds are poor conductors of electricity. The strong bonds between ions lock them into place in the crystal. However, in the liquid state, ionic compounds are good conductors of electricity. Most ionic compounds dissolve easily in water. When they dissolve, they separate into individual ions. The ions can move freely, so they are good conductors of electricity. Dissolved ionic compounds are called electrolytes. | text | null |
L_0779 | ionic bonds | T_4028 | Ionic compounds have many uses. Some are shown in Figure 7.6. Many ionic compounds are used in industry. The human body also needs several ions for good health. Having low levels of the ions can endanger important functions such as heartbeat. Solutions of ionic compounds can be used to restore the ions. | text | null |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.