lessonID
stringlengths 6
6
| lessonName
stringlengths 3
52
| ID
stringlengths 6
21
| content
stringlengths 10
6.57k
| media_type
stringclasses 2
values | path
stringlengths 28
76
⌀ |
---|---|---|---|---|---|
L_0165 | faults | T_1171 | If the blocks of rock on one or both sides of a fracture move, the fracture is called a fault (Figure 1.2). Stresses along faults cause rocks to break and move suddenly. The energy released is an earthquake. How do you know theres a fault in this rock? Try to line up the same type of rock on either side of the lines that cut across them. One side moved relative to the other side, so you know the lines are a fault. Slip is the distance rocks move along a fault. Slip can be up or down the fault plane. Slip is relative, because there is usually no way to know whether both sides moved or only one. Faults lie at an angle to the horizontal surface of the Earth. That angle is called the faults dip. The dip defines which of two basic types a fault is. If the faults dip is inclined relative to the horizontal, the fault is a dip-slip fault (Figure 1.3). | text | null |
L_0165 | faults | T_1172 | There are two types of dip-slip faults. In a normal fault, the hanging wall drops down relative to the footwall. In a reverse fault, the footwall drops down relative to the hanging wall. This diagram illustrates the two types of dip-slip faults: normal faults and reverse faults. Imagine miners extracting a re- source along a fault. The hanging wall is where miners would have hung their lanterns. The footwall is where they would have walked. A thrust fault is a type of reverse fault in which the fault plane angle is nearly horizontal. Rocks can slip many miles along thrust faults (Figure 1.4). At Chief Mountain in Montana, the upper rocks at the Lewis Overthrust are more than 1 billion years older than the lower rocks. How could this happen? Normal faults can be huge. They are responsible for uplifting mountain ranges in regions experiencing tensional stress. | text | null |
L_0165 | faults | T_1172 | There are two types of dip-slip faults. In a normal fault, the hanging wall drops down relative to the footwall. In a reverse fault, the footwall drops down relative to the hanging wall. This diagram illustrates the two types of dip-slip faults: normal faults and reverse faults. Imagine miners extracting a re- source along a fault. The hanging wall is where miners would have hung their lanterns. The footwall is where they would have walked. A thrust fault is a type of reverse fault in which the fault plane angle is nearly horizontal. Rocks can slip many miles along thrust faults (Figure 1.4). At Chief Mountain in Montana, the upper rocks at the Lewis Overthrust are more than 1 billion years older than the lower rocks. How could this happen? Normal faults can be huge. They are responsible for uplifting mountain ranges in regions experiencing tensional stress. | text | null |
L_0165 | faults | T_1173 | A strike-slip fault is a dip-slip fault in which the dip of the fault plane is vertical. Strike-slip faults result from shear stresses. Imagine placing one foot on either side of a strike-slip fault. One block moves toward you. If that block moves toward your right foot, the fault is a right-lateral strike-slip fault; if that block moves toward your left foot, the fault is a left-lateral strike-slip fault (Figure 1.5). Californias San Andreas Fault is the worlds most famous strike-slip fault. It is a right-lateral strike slip fault (See opening image). People sometimes say that California will fall into the ocean someday, which is not true. Strike-slip faults. Click image to the left or use the URL below. URL: | text | null |
L_0167 | flooding | T_1179 | Floods usually occur when precipitation falls more quickly than water can be absorbed into the ground or carried away by rivers or streams. Waters may build up gradually over a period of weeks, when a long period of rainfall or snowmelt fills the ground with water and raises stream levels. Extremely heavy rains across the Midwestern U.S. in April 2011 led to flooding of the rivers in the Mississippi River basin in May 2011 (Figures 1.1 and 1.2). Click image to the left or use the URL below. URL: This map shows the accumulated rainfall across the U.S. in the days from April 22 to April 29, 2011. Record flow in the Ohio and Mississippi Rivers has to go somewhere. Normal spring river levels are shown in 2010. The flooded region in the image from May 3, 2011 is the New Madrid Floodway, where overflow water is meant to go. 2011 is the first time since 1927 that this floodway was used. | text | null |
L_0167 | flooding | T_1179 | Floods usually occur when precipitation falls more quickly than water can be absorbed into the ground or carried away by rivers or streams. Waters may build up gradually over a period of weeks, when a long period of rainfall or snowmelt fills the ground with water and raises stream levels. Extremely heavy rains across the Midwestern U.S. in April 2011 led to flooding of the rivers in the Mississippi River basin in May 2011 (Figures 1.1 and 1.2). Click image to the left or use the URL below. URL: This map shows the accumulated rainfall across the U.S. in the days from April 22 to April 29, 2011. Record flow in the Ohio and Mississippi Rivers has to go somewhere. Normal spring river levels are shown in 2010. The flooded region in the image from May 3, 2011 is the New Madrid Floodway, where overflow water is meant to go. 2011 is the first time since 1927 that this floodway was used. | text | null |
L_0167 | flooding | T_1180 | Flash floods are sudden and unexpected, taking place when very intense rains fall over a very brief period (Figure streambed. A 2004 flash flood in England devastated two villages when 3-1/2 inches of rain fell in 60 minutes. Pictured here is some of the damage from the flash flood. Click image to the left or use the URL below. URL: | text | null |
L_0167 | flooding | T_1181 | Heavily vegetated lands are less likely to experience flooding. Plants slow down water as it runs over the land, giving it time to enter the ground. Even if the ground is too wet to absorb more water, plants still slow the waters passage and increase the time between rainfall and the waters arrival in a stream; this could keep all the water falling over a region from hitting the stream at once. Wetlands act as a buffer between land and high water levels and play a key role in minimizing the impacts of floods. Flooding is often more severe in areas that have been recently logged. | text | null |
L_0167 | flooding | T_1182 | People try to protect areas that might flood with dams, and dams are usually very effective. But high water levels sometimes cause a dam to break and then flooding can be catastrophic. People may also line a river bank with levees, high walls that keep the stream within its banks during floods. A levee in one location may just force the high water up or downstream and cause flooding there. The New Madrid Overflow in the Figure 1.2 was created with the recognition that the Mississippi River sometimes simply cannot be contained by levees and must be allowed to flood. | text | null |
L_0167 | flooding | T_1183 | Within the floodplain of the Nile, soils are fertile enough for productive agriculture. Beyond this, infertile desert soils prevent viable farming. Not all the consequences of flooding are negative. Rivers deposit new nutrient-rich sediments when they flood, so floodplains have traditionally been good for farming. Flooding as a source of nutrients was important to Egyptians along the Nile River until the Aswan Dam was built in the 1960s. Although the dam protects crops and settlements from the annual floods, farmers must now use fertilizers to feed their cops. Floods are also responsible for moving large amounts of sediments about within streams. These sediments provide habitats for animals, and the periodic movement of sediment is crucial to the lives of several types of organisms. Plants and fish along the Colorado River, for example, depend on seasonal flooding to rearrange sand bars. | text | null |
L_0169 | folds | T_1186 | Rocks deforming plastically under compressive stresses crumple into folds. They do not return to their original shape. If the rocks experience more stress, they may undergo more folding or even fracture. You can see three types of folds. | text | null |
L_0169 | folds | T_1187 | A monocline is a simple bend in the rock layers so that they are no longer horizontal (see Figure 1.1 for an example). At Utahs Cockscomb, the rocks plunge downward in a monocline. What you see in the image appears to be a monocline. Are you certain it is a monocline? What else might it be? What would you have to do to figure it out? | text | null |
L_0169 | folds | T_1188 | Anticline: An anticline is a fold that arches upward. The rocks dip away from the center of the fold (Figure 1.2). The oldest rocks are at the center of an anticline and the youngest are draped over them. When rocks arch upward to form a circular structure, that structure is called a dome. If the top of the dome is sliced off, where are the oldest rocks located? | text | null |
L_0169 | folds | T_1189 | A syncline is a fold that bends downward. The youngest rocks are at the center and the oldest are at the outside (Figure 1.3). When rocks bend downward in a circular structure, that structure is called a basin (Figure 1.4). If the rocks are exposed at the surface, where are the oldest rocks located? Click image to the left or use the URL below. URL: Anticlines are formations that have folded rocks upward. (a) Schematic of a syncline. (b) This syncline is in Rainbow Basin, California. Some folding can be fairly complicated. What do you see in the photo above? | text | null |
L_0169 | folds | T_1189 | A syncline is a fold that bends downward. The youngest rocks are at the center and the oldest are at the outside (Figure 1.3). When rocks bend downward in a circular structure, that structure is called a basin (Figure 1.4). If the rocks are exposed at the surface, where are the oldest rocks located? Click image to the left or use the URL below. URL: Anticlines are formations that have folded rocks upward. (a) Schematic of a syncline. (b) This syncline is in Rainbow Basin, California. Some folding can be fairly complicated. What do you see in the photo above? | text | null |
L_0169 | folds | T_1189 | A syncline is a fold that bends downward. The youngest rocks are at the center and the oldest are at the outside (Figure 1.3). When rocks bend downward in a circular structure, that structure is called a basin (Figure 1.4). If the rocks are exposed at the surface, where are the oldest rocks located? Click image to the left or use the URL below. URL: Anticlines are formations that have folded rocks upward. (a) Schematic of a syncline. (b) This syncline is in Rainbow Basin, California. Some folding can be fairly complicated. What do you see in the photo above? | text | null |
L_0169 | folds | T_1189 | A syncline is a fold that bends downward. The youngest rocks are at the center and the oldest are at the outside (Figure 1.3). When rocks bend downward in a circular structure, that structure is called a basin (Figure 1.4). If the rocks are exposed at the surface, where are the oldest rocks located? Click image to the left or use the URL below. URL: Anticlines are formations that have folded rocks upward. (a) Schematic of a syncline. (b) This syncline is in Rainbow Basin, California. Some folding can be fairly complicated. What do you see in the photo above? | text | null |
L_0170 | formation of earth | T_1190 | Earth formed at the same time as the other planets. The history of Earth is part of the history of the Solar System. | text | null |
L_0170 | formation of earth | T_1191 | Earth came together (accreted) from the cloud of dust and gas known as the solar nebula nearly 4.6 billion years ago, the same time the Sun and the rest of the solar system formed. Gravity caused small bodies of rock and metal orbiting the proto-Sun to smash together to create larger bodies. Over time, the planetoids got larger and larger until they became planets. | text | null |
L_0170 | formation of earth | T_1192 | When Earth first came together it was really hot, hot enough to melt the metal elements that it contained. Earth was so hot for three reasons: Gravitational contraction: As small bodies of rock and metal accreted, the planet grew larger and more massive. Gravity within such an enormous body squeezes the material in its interior so hard that the pressure swells. As Earths internal pressure grew, its temperature also rose. Radioactive decay: Radioactive decay releases heat, and early in the planets history there were many ra- dioactive elements with short half lives. These elements long ago decayed into stable materials, but they were responsible for the release of enormous amounts of heat in the beginning. Bombardment: Ancient impact craters found on the Moon and inner planets indicate that asteroid impacts were common in the early solar system. Earth was struck so much in its first 500 million years that the heat was intense. Very few large objects have struck the planet in the past many hundreds of millions of year. | text | null |
L_0170 | formation of earth | T_1193 | When Earth was entirely molten, gravity drew denser elements to the center and lighter elements rose to the surface. The separation of Earth into layers based on density is known as differentiation. The densest material moved to the center to create the planets dense metallic core. Materials that are intermediate in density became part of the mantle (Figure 1.1). | text | null |
L_0170 | formation of earth | T_1194 | Lighter materials accumulated at the surface of the mantle to become the earliest crust. The first crust was probably basaltic, like the oceanic crust is today. Intense heat from the early core drove rapid and vigorous mantle convection so that crust quickly recycled into the mantle. The recycling of basaltic crust was so effective that no remnants of it are found today. | text | null |
L_0170 | formation of earth | T_1195 | There is not much material to let us know about the earliest days of our planet Earth. What there is comes from three sources: (1) zircon crystals, the oldest materials found on Earth, which show that the age of the earliest crust formed at least 4.4 billion years ago; (2) meteorites that date from the beginning of the solar system, to nearly 4.6 billion years ago (Figure 1.2); and (3) lunar rocks, which represent the early days of the Earth-Moon system as far back as 4.5 billion years ago. | text | null |
L_0171 | formation of the moon | T_1196 | One of the most unique features of planet Earth is its large Moon. Unlike the only other natural satellites orbiting an inner planet, those of Mars, the Moon is not a captured asteroid. Understanding the Moons birth and early history reveals a great deal about Earths early days. | text | null |
L_0171 | formation of the moon | T_1197 | To determine how the Moon formed, scientists had to account for several lines of evidence: The Moon is large; not much smaller than the smallest planet, Mercury. Earth and Moon are very similar in composition. Moons surface is 4.5 billion years old, about the same as the age of the solar system. For a body its size and distance from the Sun, the Moon has very little core; Earth has a fairly large core. The oxygen isotope ratios of Earth and Moon indicate that they originated in the same part of the solar system. Earth has a faster spin than it should have for a planet of its size and distance from the Sun. Can you devise a birth story for the Moon that takes all of these bits of data into account? | text | null |
L_0171 | formation of the moon | T_1198 | Astronomers have carried out computer simulations that are consistent with these facts and have detailed a birth story for the Moon. A little more than 4.5 billion years ago, roughly 70 million years after Earth formed, planetary bodies were being pummeled by asteroids and planetoids of all kinds. Earth was struck by a Mars-sized asteroid (Figure 1.1). An artists depiction of the impact that produced the Moon. The tremendous energy from the impact melted both bodies. The molten material mixed up. The dense metals remained on Earth but some of the molten, rocky material was flung into an orbit around Earth. It eventually accreted into a single body, the Moon. Since both planetary bodies were molten, material could differentiate out of the magma ocean into core, mantle, and crust as they cooled. Earths fast spin is from energy imparted to it by the impact. | text | null |
L_0171 | formation of the moon | T_1199 | Lunar rocks reveal an enormous amount about Earths early days. The Genesis Rock, with a date of 4.5 billion years, is only about 100 million years younger than the solar system (see opening image). The rock is a piece of the Moons anorthosite crust, which was the original crust. Why do you think Moon rocks contain information that is not available from Earths own materials? Can you find how all of the evidence presented in the bullet points above is present in the Moons birth story? | text | null |
L_0172 | formation of the sun and planets | T_1200 | The most widely accepted explanation of how the solar system formed is called the nebular hypothesis. According to this hypothesis, the Sun and the planets of our solar system formed about 4.6 billion years ago from the collapse of a giant cloud of gas and dust, called a nebula. The nebula was drawn together by gravity, which released gravitational potential energy. As small particles of dust and gas smashed together to create larger ones, they released kinetic energy. As the nebula collapsed, the gravity at the center increased and the cloud started to spin because of its angular momentum. As it collapsed further, the spinning got faster, much as an ice skater spins faster when he pulls his arms to his sides during a spin. Much of the clouds mass migrated to its center but the rest of the material flattened out in an enormous disk. The disk contained hydrogen and helium, along with heavier elements and even simple organic molecules. | text | null |
L_0172 | formation of the sun and planets | T_1201 | As gravity pulled matter into the center of the disk, the density and pressure at the center became intense. When the pressure in the center of the disk was high enough, nuclear fusion began. A star was bornthe Sun. The burning star stopped the disk from collapsing further. Meanwhile, the outer parts of the disk were cooling off. Matter condensed from the cloud and small pieces of dust started clumping together. These clumps collided and combined with other clumps. Larger clumps, called An artists painting of a protoplanetary disk. planetesimals, attracted smaller clumps with their gravity. Gravity at the center of the disk attracted heavier particles, such as rock and metal and lighter particles remained further out in the disk. Eventually, the planetesimals formed protoplanets, which grew to become the planets and moons that we find in our solar system today. Because of the gravitational sorting of material, the inner planets Mercury, Venus, Earth, and Mars formed from dense rock and metal. The outer planets Jupiter, Saturn, Uranus and Neptune condensed farther from the Sun from lighter materials such as hydrogen, helium, water, ammonia, and methane. Out by Jupiter and beyond, where its very cold, these materials form solid particles. The nebular hypothesis was designed to explain some of the basic features of the solar system: The orbits of the planets lie in nearly the same plane with the Sun at the center The planets revolve in the same direction The planets mostly rotate in the same direction The axes of rotation of the planets are mostly nearly perpendicular to the orbital plane The oldest moon rocks are 4.5 billion years Click image to the left or use the URL below. URL: | text | null |
L_0173 | fossil fuel formation | T_1202 | Can you name some fossils? How about dinosaur bones or dinosaur footprints? Animal skeletons, teeth, shells, coprolites (otherwise known as feces), or any other remains or traces from a living creature that becomes rock is a fossil. The same processes that formed these fossils also created some of our most important energy resources, fossil fuels. Coal, oil, and natural gas are fossil fuels. Fossil fuels come from living matter starting about 500 million years ago. Millions of years ago, plants used energy from the Sun to form sugars, carbohydrates, and other energy-rich carbon compounds. As plants and animals died, their remains settled on the ground on land and in swamps, lakes, and seas (Figure 1.1). Over time, layer upon layer of these remains accumulated. Eventually, the layers were buried so deeply that they were crushed by an enormous mass of earth. The weight of this earth pressing down on these plant and animal remains created intense heat and pressure. After millions of years of heat and pressure, the material in these layers turned into chemicals called hydrocarbons (Figure 1.2). Hydrocarbons are made of carbon and hydrogen atoms. This molecule with one carbon and four hydrogen atoms is methane. Hydrocarbons can be solid, liquid, or gaseous. The solid form is what we know as coal. The liquid form is petroleum, or crude oil. Natural gas is the gaseous form. The solar energy stored in fossil fuels is a rich source of energy. Although fossil fuels provide very high quality energy, they are non-renewable. Click image to the left or use the URL below. URL: | text | null |
L_0173 | fossil fuel formation | T_1202 | Can you name some fossils? How about dinosaur bones or dinosaur footprints? Animal skeletons, teeth, shells, coprolites (otherwise known as feces), or any other remains or traces from a living creature that becomes rock is a fossil. The same processes that formed these fossils also created some of our most important energy resources, fossil fuels. Coal, oil, and natural gas are fossil fuels. Fossil fuels come from living matter starting about 500 million years ago. Millions of years ago, plants used energy from the Sun to form sugars, carbohydrates, and other energy-rich carbon compounds. As plants and animals died, their remains settled on the ground on land and in swamps, lakes, and seas (Figure 1.1). Over time, layer upon layer of these remains accumulated. Eventually, the layers were buried so deeply that they were crushed by an enormous mass of earth. The weight of this earth pressing down on these plant and animal remains created intense heat and pressure. After millions of years of heat and pressure, the material in these layers turned into chemicals called hydrocarbons (Figure 1.2). Hydrocarbons are made of carbon and hydrogen atoms. This molecule with one carbon and four hydrogen atoms is methane. Hydrocarbons can be solid, liquid, or gaseous. The solid form is what we know as coal. The liquid form is petroleum, or crude oil. Natural gas is the gaseous form. The solar energy stored in fossil fuels is a rich source of energy. Although fossil fuels provide very high quality energy, they are non-renewable. Click image to the left or use the URL below. URL: | text | null |
L_0174 | fossil fuel reserves | T_1203 | Fossil fuels provide about 85% of the worlds energy at this time. Worldwide fossil fuel usage has increased many times over in the past half century (coal - 2.6x, oil - 8x, natural gas - 14x) because of population increases, because of increases in the number of cars, televisions, and other fuel-consuming uses in the developed world, and because of lifestyle improvements in the developing world. The amount of fossil fuels that remain untapped is unknown, but can likely be measured in decades for oil and natural gas and in a few centuries for coal (Figure 1.1). | text | null |
L_0174 | fossil fuel reserves | T_1204 | As the easy-to-reach fossil fuel sources are depleted, alternative sources of fossil fuels are increasingly being exploited (Figure 1.2). These include oil shale and tar sands. Oil shale is rock that contains dispersed oil that has not collected in reservoirs. To extract the oil from the shale requires enormous amounts of hot water. Tar sands are rocky materials mixed with very thick oil. The tar is too thick to pump and so tar sands are strip-mined. Hot water and caustic soda are used to separate the oil from the rock. The environmental consequences of mining these fuels, and of fossil fuel use in general, along with the fact that these fuels do not have a limitless supply, are prompting the development of alternative energy sources in some regions. Click image to the left or use the URL below. URL: A satellite image of an oil-sands mine in Canada. Click image to the left or use the URL below. URL: | text | null |
L_0174 | fossil fuel reserves | T_1204 | As the easy-to-reach fossil fuel sources are depleted, alternative sources of fossil fuels are increasingly being exploited (Figure 1.2). These include oil shale and tar sands. Oil shale is rock that contains dispersed oil that has not collected in reservoirs. To extract the oil from the shale requires enormous amounts of hot water. Tar sands are rocky materials mixed with very thick oil. The tar is too thick to pump and so tar sands are strip-mined. Hot water and caustic soda are used to separate the oil from the rock. The environmental consequences of mining these fuels, and of fossil fuel use in general, along with the fact that these fuels do not have a limitless supply, are prompting the development of alternative energy sources in some regions. Click image to the left or use the URL below. URL: A satellite image of an oil-sands mine in Canada. Click image to the left or use the URL below. URL: | text | null |
L_0175 | fresh water ecosystems | T_1205 | Organisms that live in lakes, ponds, streams, springs or wetlands are part of freshwater ecosystems. These ecosys- tems vary by temperature, pressure (in lakes), the amount of light that penetrates and the type of vegetation that lives there. | text | null |
L_0175 | fresh water ecosystems | T_1206 | Limnology is the study of bodies of fresh water and the organisms that live there. A lake has zones just like the ocean. The ecosystem of a lake is divided into three distinct zones (Figure 1.1): 1. The surface (littoral) zone is the sloped area closest to the edge of the water. 2. The open-water zone (also called the photic or limnetic zone) has abundant sunlight. 3. The deep-water zone (also called the aphotic or profundal zone) has little or no sunlight. There are several life zones found within a lake: In the littoral zone, sunlight promotes plant growth, which provides food and shelter to animals such as snails, insects, and fish. In the open-water zone, other plants and fish, such as bass and trout, live. The deep-water zone does not have photosynthesis since there is no sunlight. Most deep-water organisms are scavengers, such as crabs and catfish that feed on dead organisms that fall to the bottom of the lake. Fungi and bacteria aid in the decomposition in the deep zone. Though different creatures live in the oceans, ocean waters also have these same divisions based on sunlight with similar types of creatures that live in each of the zones. The three primary zones of a lake are the littoral, open-water, and deep-water zones. | text | null |
L_0175 | fresh water ecosystems | T_1207 | Wetlands are lands that are wet for significant periods of time. They are common where water and land meet. Wetlands can be large flat areas or relatively small and steep areas. Wetlands are rich and unique ecosystems with many species that rely on both the land and the water for survival. Only specialized plants are able to grow in these conditions. Wetlands tend have a great deal of biological diversity. Wetland ecosystems can also be fragile systems that are sensitive to the amount and quality of water present within them. Click image to the left or use the URL below. URL: | text | null |
L_0175 | fresh water ecosystems | T_1208 | Marshes are shallow wetlands around lakes, streams, or the ocean where grasses and reeds are common, but trees are not (Figure 1.2). Frogs, turtles, muskrats, and many varieties of birds are at home in marshes. A salt marsh on Cape Cod in Mas- sachusetts. | text | null |
L_0175 | fresh water ecosystems | T_1209 | A swamp is a wetland with lush trees and vines found in low-lying areas beside slow-moving rivers (Figure 1.3). Like marshes, they are frequently or always inundated with water. Since the water in a swamp moves slowly, oxygen in the water is often scarce. Swamp plants and animals must be adapted for these low-oxygen conditions. Like marshes, swamps can be fresh water, salt water, or a mixture of both. | text | null |
L_0175 | fresh water ecosystems | T_1210 | As mentioned above, wetlands are home to many different species of organisms. Although they make up only 5% of the area of the United States, wetlands contain more than 30% of the plant types. Many endangered species live in wetlands, so wetlands are protected from human use. Wetlands also play a key biological role by removing pollutants from water. For example, they can trap and use fertilizer that has washed off a farmers field, and therefore they prevent that fertilizer from contaminating another body of water. Since wetlands naturally purify water, preserving wetlands also helps to maintain clean supplies of water. | text | null |
L_0176 | galaxies | T_1211 | Galaxies are the biggest groups of stars and can contain anywhere from a few million stars to many billions of stars. Every star that is visible in the night sky is part of the Milky Way Galaxy. To the naked eye, the closest major galaxy the Andromeda Galaxy, shown in Figure 1.1 looks like only a dim, fuzzy spot. But that fuzzy spot contains one trillion 1,000,000,000,000 stars! Galaxies are divided into three types according to shape: spiral galaxies, elliptical galaxies, and irregular galaxies. | text | null |
L_0176 | galaxies | T_1212 | Spiral galaxies spin, so they appear as a rotating disk of stars and dust, with a bulge in the middle, like the Sombrero Galaxy shown in Figure 1.2. Several arms spiral outward in the Pinwheel Galaxy (seen in Figure 1.2) and are appropriately called spiral arms. Spiral galaxies have lots of gas and dust and lots of young stars. The Andromeda Galaxy is a large spiral galaxy similar to the Milky Way. (a) The Sombrero Galaxy is a spiral galaxy that we see from the side so the disk and central bulge are visible. (b) The Pinwheel Galaxy is a spiral galaxy that we see face-on so we can see the spiral arms. Because they contain lots of young stars, spiral arms tend to be blue. | text | null |
L_0176 | galaxies | T_1212 | Spiral galaxies spin, so they appear as a rotating disk of stars and dust, with a bulge in the middle, like the Sombrero Galaxy shown in Figure 1.2. Several arms spiral outward in the Pinwheel Galaxy (seen in Figure 1.2) and are appropriately called spiral arms. Spiral galaxies have lots of gas and dust and lots of young stars. The Andromeda Galaxy is a large spiral galaxy similar to the Milky Way. (a) The Sombrero Galaxy is a spiral galaxy that we see from the side so the disk and central bulge are visible. (b) The Pinwheel Galaxy is a spiral galaxy that we see face-on so we can see the spiral arms. Because they contain lots of young stars, spiral arms tend to be blue. | text | null |
L_0176 | galaxies | T_1213 | Figure 1.3 shows a typical egg-shaped elliptical galaxy. The smallest elliptical galaxies are as small as some globular clusters. Giant elliptical galaxies, on the other hand, can contain over a trillion stars. Elliptical galaxies are reddish to yellowish in color because they contain mostly old stars. Most elliptical galaxies contain very little gas and dust because the gas and dust have already formed into stars. However, some elliptical galaxies, such as the one shown in Figure 1.4, contain lots of dust. Why might some elliptical galaxies contain dust? | text | null |
L_0176 | galaxies | T_1213 | Figure 1.3 shows a typical egg-shaped elliptical galaxy. The smallest elliptical galaxies are as small as some globular clusters. Giant elliptical galaxies, on the other hand, can contain over a trillion stars. Elliptical galaxies are reddish to yellowish in color because they contain mostly old stars. Most elliptical galaxies contain very little gas and dust because the gas and dust have already formed into stars. However, some elliptical galaxies, such as the one shown in Figure 1.4, contain lots of dust. Why might some elliptical galaxies contain dust? | text | null |
L_0176 | galaxies | T_1214 | Is the galaxy in Figure 1.5 a spiral galaxy or an elliptical galaxy? It is neither one! Galaxies that are not clearly elliptical galaxies or spiral galaxies are irregular galaxies. How might an irregular galaxy form? Most irregular galaxies were once spiral or elliptical galaxies that were then deformed either by gravitational attraction to a larger galaxy or by a collision with another galaxy. This galaxy, called NGC 1427A, has nei- ther a spiral nor an elliptical shape. | text | null |
L_0176 | galaxies | T_1215 | Dwarf galaxies are small galaxies containing only a few million to a few billion stars. Dwarf galaxies are the most common type in the universe. However, because they are relatively small and dim, we dont see as many dwarf galaxies from Earth. Most dwarf galaxies are irregular in shape. However, there are also dwarf elliptical galaxies and dwarf spiral galaxies. Look back at the picture of the elliptical galaxy. In the figure, you can see two dwarf elliptical galaxies that are companions to the Andromeda Galaxy. One is a bright sphere to the left of center, and the other is a long ellipse below and to the right of center. Dwarf galaxies are often found near larger galaxies. They sometimes collide with and merge into their larger neighbors. Click image to the left or use the URL below. URL: Click image to the left or use the URL below. URL: | text | null |
L_0177 | geologic time scale | T_1216 | To be able to discuss Earth history, scientists needed some way to refer to the time periods in which events happened and organisms lived. With the information they collected from fossil evidence and using Stenos principles, they created a listing of rock layers from oldest to youngest. Then they divided Earths history into blocks of time with each block separated by important events, such as the disappearance of a species of fossil from the rock record. Since many of the scientists who first assigned names to times in Earths history were from Europe, they named the blocks of time from towns or other local places where the rock layers that represented that time were found. From these blocks of time the scientists created the geologic time scale (Figure 1.1). In the geologic time scale the youngest ages are on the top and the oldest on the bottom. Why do you think that the more recent time periods are divided more finely? Do you think the divisions in the scale below are proportional to the amount of time each time period represented in Earth history? In what eon, era, period and epoch do we now live? We live in the Holocene (sometimes called Recent) epoch, Quaternary period, Cenozoic era, and Phanerozoic eon. | text | null |
L_0177 | geologic time scale | T_1217 | Its always fun to think about geologic time in a framework that we can more readily understand. Here are when some major events in Earth history would have occurred if all of earth history was condensed down to one calendar year. January 1 12 am: Earth forms from the planetary nebula - 4600 million years ago February 25, 12:30 pm: The origin of life; the first cells - 3900 million years ago March 4, 3:39 pm: Oldest dated rocks - 3800 million years ago March 20, 1:33 pm: First stromatolite fossils - 3600 million years ago July 17, 9:54 pm: first fossil evidence of cells with nuclei - 2100 million years ago November 18, 5:11 pm: Cambrian Explosion - 544 million years ago December 1, 8:49 am: first insects - 385 million years ago December 2, 3:54 am: first land animals, amphibians - 375 million years ago December 5, 5:50 pm: first reptiles - 330 million years ago December 12, 12:09 pm: Permo-Triassic Extinction - 245 million years ago December 13, 8:37 pm: first dinosaurs - 228 million years ago December 14, 9:59 am: first mammals 220 million years ago December 22, 8:24 pm: first flowering plants - 115 million years ago December 26, 7:52 pm: Cretaceous-Tertiary Extinction - 66 million years ago December 26, 9:47 pm: first ancestors of dogs - 64 million years ago December 27, 5:25 am: widespread grasses - 60 million years ago December 27, 11:09 am: first ancestors of pigs and deer - 57 million years ago December 28, 9:31 pm: first monkeys - 39 million years ago December 31, 5:18 pm: oldest hominid - 4 million years ago December 31, 11:02 pm: oldest direct human ancestor - 1 million years ago December 31, 11:48 pm: first modern human - 200,000 years ago December 31, 11:59 pm: Revolutionary War - 235 years ago | text | null |
L_0178 | geological stresses | T_1218 | Stress is the force applied to an object. In geology, stress is the force per unit area that is placed on a rock. Four types of stresses act on materials. A deeply buried rock is pushed down by the weight of all the material above it. Since the rock cannot move, it cannot deform. This is called confining stress. Compression squeezes rocks together, causing rocks to fold or fracture (break) (Figure 1.1). Compression is the most common stress at convergent plate boundaries. Stress caused these rocks to fracture. Rocks that are pulled apart are under tension. Rocks under tension lengthen or break apart. Tension is the major type of stress at divergent plate boundaries. When forces are parallel but moving in opposite directions, the stress is called shear (Figure 1.2). Shear stress is the most common stress at transform plate boundaries. Shearing in rocks. The white quartz vein has been elongated by shear. When stress causes a material to change shape, it has undergone strain or deformation. Deformed rocks are common in geologically active areas. A rocks response to stress depends on the rock type, the surrounding temperature, the pressure conditions the rock is under, the length of time the rock is under stress, and the type of stress. | text | null |
L_0178 | geological stresses | T_1218 | Stress is the force applied to an object. In geology, stress is the force per unit area that is placed on a rock. Four types of stresses act on materials. A deeply buried rock is pushed down by the weight of all the material above it. Since the rock cannot move, it cannot deform. This is called confining stress. Compression squeezes rocks together, causing rocks to fold or fracture (break) (Figure 1.1). Compression is the most common stress at convergent plate boundaries. Stress caused these rocks to fracture. Rocks that are pulled apart are under tension. Rocks under tension lengthen or break apart. Tension is the major type of stress at divergent plate boundaries. When forces are parallel but moving in opposite directions, the stress is called shear (Figure 1.2). Shear stress is the most common stress at transform plate boundaries. Shearing in rocks. The white quartz vein has been elongated by shear. When stress causes a material to change shape, it has undergone strain or deformation. Deformed rocks are common in geologically active areas. A rocks response to stress depends on the rock type, the surrounding temperature, the pressure conditions the rock is under, the length of time the rock is under stress, and the type of stress. | text | null |
L_0178 | geological stresses | T_1219 | Rocks have three possible responses to increasing stress (illustrated in Figure 1.3): elastic deformation: the rock returns to its original shape when the stress is removed. plastic deformation: the rock does not return to its original shape when the stress is removed. fracture: the rock breaks. Under what conditions do you think a rock is more likely to fracture? Is it more likely to break deep within Earths crust or at the surface? What if the stress applied is sharp rather than gradual? At the Earths surface, rocks usually break quite quickly, but deeper in the crust, where temperatures and pressures are higher, rocks are more likely to deform plastically. Sudden stress, such as a hit with a hammer, is more likely to make a rock break. Stress applied over time often leads to plastic deformation. Click image to the left or use the URL below. URL: | text | null |
L_0179 | geothermal power | T_1220 | The heat that is used for geothermal power may come to the surface naturally as hot springs or geysers, like The Geysers in northern California. Where water does not naturally come to the surface, engineers may pump cool water into the ground. The water is heated by the hot rock and then pumped back to the surface for use. The hot water or steam from a geothermal well spins a turbine to make electricity. Geothermal energy is clean and safe. The energy source is renewable since hot rock is found everywhere in the Earth, although in many parts of the world the hot rock is not close enough to the surface for building geothermal power plants. In some areas, geothermal power is common (Figure 1.1). In the United States, California is a leader in producing geothermal energy. The largest geothermal power plant in the state is in the Geysers Geothermal Resource Area in Napa and Sonoma Counties. The source of heat is thought to be a large magma chamber lying beneath the area. Where Earths internal heat gets close to the surface, geothermal power is a clean source of energy. In California, The Geysers supplies energy for many nearby homes and businesses. Click image to the left or use the URL below. URL: Click image to the left or use the URL below. URL: | text | null |
L_0180 | glaciers | T_1221 | Nearly all glacial ice, 99%, is contained in ice sheets in the polar regions, particularly Antarctica and Greenland. Glaciers often form in the mountains because higher altitudes are colder and more likely to have snow that falls and collects. Every continent, except Australia, hosts at least some glaciers in the high mountains. | text | null |
L_0180 | glaciers | T_1222 | The types of glaciers are: Continental glaciers are large ice sheets that cover relatively flat ground. These glaciers flow outward from where the greatest amounts of snow and ice accumulate. Alpine (valley) glaciers flow downhill from where the snow and ice accumulates through mountains along existing valleys. Ice caps are large glaciers that cover a larger area than just a valley, possibly an entire mountain range or region. Glaciers come off of ice caps into valleys. The Greenland ice cap covers the entire landmass. | text | null |
L_0180 | glaciers | T_1224 | Glaciers grow when more snow falls near the top of the glacier, in the zone of accumulation, than is melted from lower down in the glacier, in the zone of ablation. These two zones are separated by the equilibrium line. Snow falls and over time converts to granular ice known as firn. Eventually, as more snow and ice collect, the firn becomes denser and converts to glacial ice. Water is too warm for a glacier to form, so they form only on land. A glacier may run out from land into water, but it usually breaks up into icebergs that eventually melt into the water. | text | null |
L_0180 | glaciers | T_1225 | Whether an ice field moves or not depends on the amount of ice in the field, the steepness of the slope and the roughness of the ground surface. Ice moves where the pressure is so great that it undergoes plastic flow. Ice also slides at the bottom, often lubricated by water that has melted and travels between the ground and the ice. The speed of a glacier ranges from extremely fast, where conditions are favorable, to nearly zero. Because the ice is moving, glaciers have crevasses, where cracks form in the ice as a result of movement. The large crevasse at the top of an alpine glacier where ice that is moving is separated from ice that is stuck to the mountain above is called a bergshrund. Crevasses in a glacier are the result of movement. | text | null |
L_0180 | glaciers | T_1226 | Glaciers are melting back in many locations around the world. When a glacier no longer moves, it is called an ice sheet. This usually happens when it is less than 0.1 km2 in area and 50 m thick. | text | null |
L_0180 | glaciers | T_1227 | Many of the glaciers in Glacier National Park have shrunk and are no longer active. Summer temperatures have risen rapidly in this part of the country and so the rate of melting has picked up. Whereas Glacier National Park had 150 glaciers in 1850, there are only about 25 today. Recent estimates are that the park will have no active glaciers as early as 2020. This satellite image shows Grinnell Glacier, Swiftcurrent Glacier, and Gem Glacier in 2003 with an outline of the extent of the glaciers as they were in 1950. Although it continues to be classified as a glacier, Gem Glacier is only 0.020 km2 (5 acres) in area, only one-fifth the size of the smallest active glaciers. | text | null |
L_0180 | glaciers | T_1228 | In regions where summers are long and dry, melting glaciers in mountain regions provide an important source of water for organisms and often for nearby human populations. Click image to the left or use the URL below. URL: | text | null |
L_0181 | global warming | T_1229 | With more greenhouse gases trapping heat, average annual global temperatures are rising. This is known as global warming. | text | null |
L_0181 | global warming | T_1230 | While temperatures have risen since the end of the Pleistocene, 10,000 years ago, this rate of increase has been more rapid in the past century, and has risen even faster since 1990. The 10 warmest years in the 134-year record have all occurred since in the 21st century, and only one year during the 20th century (1998) was warmer than 2013, the 4th warmest year on record (through 2013) (Figure 1.1). The 2000s were the warmest decade yet. Annual variations aside, the average global temperature increased about 0.8o C (1.5o F) between 1880 and 2010, according to the Goddard Institute for Space Studies, NOAA. This number doesnt seem very large. Why is it important? | text | null |
L_0181 | global warming | T_1231 | The United States has long been the largest emitter of greenhouse gases, with about 20% of total emissions in 2004. As a result of Chinas rapid economic growth, its emissions surpassed those of the United States in 2008. However, its also important to keep in mind that the United States has only about one-fifth the population of China. Whats the significance of this? The average United States citizen produces far more greenhouse gas emissions than the average Chinese person. | text | null |
L_0181 | global warming | T_1232 | The following images show changes in the Earth and organisms as a result of global warming: Figure 1.2, Figure (a) Breakup of the Larsen Ice Shelf in Antarctica in 2002 was related to climate warming in the region. (b) The Boulder Glacier has melted back tremendously since 1985. Other mountain glaciers around the world are also melting. The timing of events for species is changing. Mating and migrations take place earlier in the spring months. Species that can are moving their ranges uphill. Some regions that were already marginal for agriculture are no longer arable because they have become too warm or dry. What are the two major effects being seen in this animation? Glaciers are melting and vegetation zones are moving uphill. If fossil fuel use exploded in the 1950s, why do these changes begin early in the animation? Does this mean that the climate change we are seeing is caused by natural processes and not by fossil fuel use? Permafrost is melting and its extent de- creasing. There are now fewer summer lakes in Siberia. (a) Melting ice caps add water to the oceans, so sea level is rising. Remember that water slightly expands as it warms this expansion is also causing sea level to rise. (b) Weather is becoming more variable with more severe storms and droughts. Snow blanketed the west- ern United States in December 2009. (c) As surface seas warm, phytoplankton productivity has decreased. (d) Coral reefs are dying worldwide; corals that are stressed by high temperatures turn white. (e) Pine beetle infestations have killed trees in western North America The insects have expanded their ranges into areas that were once too cold. Warming temperatures are bringing changes to much of the planet, including California. Sea level is rising, snow pack is changing, and the ecology of the state is responding to these changes. Click image to the left or use the URL below. URL: | text | null |
L_0181 | global warming | T_1232 | The following images show changes in the Earth and organisms as a result of global warming: Figure 1.2, Figure (a) Breakup of the Larsen Ice Shelf in Antarctica in 2002 was related to climate warming in the region. (b) The Boulder Glacier has melted back tremendously since 1985. Other mountain glaciers around the world are also melting. The timing of events for species is changing. Mating and migrations take place earlier in the spring months. Species that can are moving their ranges uphill. Some regions that were already marginal for agriculture are no longer arable because they have become too warm or dry. What are the two major effects being seen in this animation? Glaciers are melting and vegetation zones are moving uphill. If fossil fuel use exploded in the 1950s, why do these changes begin early in the animation? Does this mean that the climate change we are seeing is caused by natural processes and not by fossil fuel use? Permafrost is melting and its extent de- creasing. There are now fewer summer lakes in Siberia. (a) Melting ice caps add water to the oceans, so sea level is rising. Remember that water slightly expands as it warms this expansion is also causing sea level to rise. (b) Weather is becoming more variable with more severe storms and droughts. Snow blanketed the west- ern United States in December 2009. (c) As surface seas warm, phytoplankton productivity has decreased. (d) Coral reefs are dying worldwide; corals that are stressed by high temperatures turn white. (e) Pine beetle infestations have killed trees in western North America The insects have expanded their ranges into areas that were once too cold. Warming temperatures are bringing changes to much of the planet, including California. Sea level is rising, snow pack is changing, and the ecology of the state is responding to these changes. Click image to the left or use the URL below. URL: | text | null |
L_0181 | global warming | T_1232 | The following images show changes in the Earth and organisms as a result of global warming: Figure 1.2, Figure (a) Breakup of the Larsen Ice Shelf in Antarctica in 2002 was related to climate warming in the region. (b) The Boulder Glacier has melted back tremendously since 1985. Other mountain glaciers around the world are also melting. The timing of events for species is changing. Mating and migrations take place earlier in the spring months. Species that can are moving their ranges uphill. Some regions that were already marginal for agriculture are no longer arable because they have become too warm or dry. What are the two major effects being seen in this animation? Glaciers are melting and vegetation zones are moving uphill. If fossil fuel use exploded in the 1950s, why do these changes begin early in the animation? Does this mean that the climate change we are seeing is caused by natural processes and not by fossil fuel use? Permafrost is melting and its extent de- creasing. There are now fewer summer lakes in Siberia. (a) Melting ice caps add water to the oceans, so sea level is rising. Remember that water slightly expands as it warms this expansion is also causing sea level to rise. (b) Weather is becoming more variable with more severe storms and droughts. Snow blanketed the west- ern United States in December 2009. (c) As surface seas warm, phytoplankton productivity has decreased. (d) Coral reefs are dying worldwide; corals that are stressed by high temperatures turn white. (e) Pine beetle infestations have killed trees in western North America The insects have expanded their ranges into areas that were once too cold. Warming temperatures are bringing changes to much of the planet, including California. Sea level is rising, snow pack is changing, and the ecology of the state is responding to these changes. Click image to the left or use the URL below. URL: | text | null |
L_0183 | gravity in the solar system | T_1238 | Isaac Newton first described gravity as the force that causes objects to fall to the ground and also the force that keeps the Moon circling Earth instead of flying off into space in a straight line. Newton defined the Universal Law of Gravitation, which states that a force of attraction, called gravity, exists between all objects in the universe (Figure from each other. The greater the objects mass, the greater the force of attraction; in addition, the greater the distance between objects, the smaller the force of attraction. The distance between the Sun and each of its planets is very large, but the Sun and each of the planets are also very large. Gravity keeps each planet orbiting the Sun because the star and its planets are very large objects. The force of gravity also holds moons in orbit around planets. The force of gravity exists between all objects in the universe; the strength of the force depends on the mass of the objects and the distance between them. Click image to the left or use the URL below. URL: | text | null |
L_0184 | greenhouse effect | T_1239 | The exception to Earths temperature being in balance is caused by greenhouse gases. But first the role of greenhouse gases in the atmosphere must be explained. Greenhouse gases warm the atmosphere by trapping heat. Some of the heat that radiates out from the ground is trapped by greenhouse gases in the troposphere. Like a blanket on a sleeping person, greenhouse gases act as insulation for the planet. The warming of the atmosphere because of insulation by greenhouse gases is called the greenhouse effect (Figure 1.1). Greenhouse gases are the component of the atmosphere that moderate Earths temperatures. | text | null |
L_0184 | greenhouse effect | T_1240 | Greenhouse gases include CO2 , H2 O, methane, O3 , nitrous oxides (NO and NO2 ), and chlorofluorocarbons (CFCs). All are a normal part of the atmosphere except CFCs. Table 1.1 shows how each greenhouse gas naturally enters the atmosphere. Greenhouse Gas Carbon dioxide Methane Nitrous oxide Ozone Chlorofluorocarbons Where It Comes From Respiration, volcanic eruptions, decomposition of plant material; burning of fossil fuels Decomposition of plant material under some condi- tions, biochemical reactions in stomachs Produced by bacteria Atmospheric processes Not naturally occurring; made by humans Different greenhouse gases have different abilities to trap heat. For example, one methane molecule traps 23 times as much heat as one CO2 molecule. One CFC-12 molecule (a type of CFC) traps 10,600 times as much heat as one CO2 . Still, CO2 is a very important greenhouse gas because it is much more abundant in the atmosphere. | text | null |
L_0184 | greenhouse effect | T_1241 | Human activity has significantly raised the levels of many of greenhouse gases in the atmosphere. Methane levels are about 2 1/2 times higher as a result of human activity. Carbon dioxide has increased more than 35%. CFCs have only recently existed. What do you think happens as atmospheric greenhouse gas levels increase? More greenhouse gases trap more heat and warm the atmosphere. The increase or decrease of greenhouse gases in the atmosphere affect climate and weather the world over. Click image to the left or use the URL below. URL: | text | null |
L_0185 | groundwater aquifers | T_1242 | To be a good aquifer, the rock in the aquifer must have good: porosity: small spaces between grains permeability: connections between pores To reach an aquifer, surface water infiltrates downward into the ground through tiny spaces or pores in the rock. The water travels down through the permeable rock until it reaches a layer that does not have pores; this rock is impermeable (Figure 1.1). This impermeable rock layer forms the base of the aquifer. The upper surface where the groundwater reaches is the water table. Groundwater is found beneath the solid surface. Notice that the water table roughly mirrors the slope of the lands surface. A well penetrates the water table. | text | null |
L_0185 | groundwater aquifers | T_1243 | For a groundwater aquifer to contain the same amount of water, the amount of recharge must equal the amount of discharge. What are the likely sources of recharge? What are the likely sources of discharge? What happens to the water table when there is a lot of rainfall? What happens when there is a drought? Although groundwater levels do not rise and fall as rapidly as at the surface, over time the water table will rise during wet periods and fall during droughts. In wet regions, streams are fed by groundwater; the surface of the stream is the top of the water table (Figure 1.2). In dry regions, water seeps down from the stream into the aquifer. These streams are often dry much of the year. Water leaves a groundwater reservoir in streams or springs. People take water from aquifers, too. | text | null |
L_0185 | groundwater aquifers | T_1244 | Groundwater meets the surface in a stream (Figure 1.2) or a spring (Figure 1.3). A spring may be constant, or may only flow at certain times of year. Towns in many locations depend on water from springs. Springs can be an extremely important source of water in locations where surface water is scarce. | text | null |
L_0185 | groundwater aquifers | T_1245 | A well is created by digging or drilling to reach groundwater. It is important for anyone who intends to dig a well to know how deep beneath the surface the water table is. When the water table is close to the surface, wells are a convenient method for extracting water. When the water table is far below the surface, specialized equipment must The top of the stream is the top of the water table. The stream feeds the aquifer. A spring in Croatia bubbles to the surface and feeds the river Cetina. be used to dig a well. Most wells use motorized pumps to bring water to the surface, but some still require people to use a bucket to draw water up (Figure 1.4). An old-fashioned well that uses a bucket drawn up by hand. | text | null |
L_0185 | groundwater aquifers | T_1245 | A well is created by digging or drilling to reach groundwater. It is important for anyone who intends to dig a well to know how deep beneath the surface the water table is. When the water table is close to the surface, wells are a convenient method for extracting water. When the water table is far below the surface, specialized equipment must The top of the stream is the top of the water table. The stream feeds the aquifer. A spring in Croatia bubbles to the surface and feeds the river Cetina. be used to dig a well. Most wells use motorized pumps to bring water to the surface, but some still require people to use a bucket to draw water up (Figure 1.4). An old-fashioned well that uses a bucket drawn up by hand. | text | null |
L_0185 | groundwater aquifers | T_1245 | A well is created by digging or drilling to reach groundwater. It is important for anyone who intends to dig a well to know how deep beneath the surface the water table is. When the water table is close to the surface, wells are a convenient method for extracting water. When the water table is far below the surface, specialized equipment must The top of the stream is the top of the water table. The stream feeds the aquifer. A spring in Croatia bubbles to the surface and feeds the river Cetina. be used to dig a well. Most wells use motorized pumps to bring water to the surface, but some still require people to use a bucket to draw water up (Figure 1.4). An old-fashioned well that uses a bucket drawn up by hand. | text | null |
L_0186 | groundwater depletion | T_1246 | Some aquifers are overused; people pump out more water than is replaced. As the water is pumped out, the water table slowly falls, requiring wells to be dug deeper, which takes more money and energy. Wells may go completely dry if they are not deep enough to reach into the lowered water table. Other problems may stem from groundwater overuse. Subsidence and saltwater intrusion are two of them. | text | null |
L_0186 | groundwater depletion | T_1247 | The Ogallala Aquifer supplies about one-third of the irrigation water in the United States. The Ogallala Aquifer is widely used by people for municipal and agricultural needs. (Figure 1.2). The aquifer is found from 30 to 100 meters deep over an area of about 440,000 square kilometers! The water in the aquifer is mostly from the last ice age. About eight times more water is taken from the Ogallala Aquifer each year than is replenished. Much of the water is used for irrigation (Figure 1.3). Click image to the left or use the URL below. URL: Intense drought has reduced groundwater levels in the southern U.S., particularly in Texas and New Mexico. | text | null |
L_0186 | groundwater depletion | T_1248 | Lowering the water table may cause the ground surface to sink. Subsidence may occur beneath houses and other structures (Figure 1.4). | text | null |
L_0186 | groundwater depletion | T_1249 | When coastal aquifers are overused, salt water from the ocean may enter the aquifer, contaminating the aquifer and making it less useful for drinking and irrigation. Salt water incursion is a problem in developed coastal regions, such as on Hawaii. | text | null |
L_0187 | groundwater pollution | T_1250 | Groundwater pollutants are the same as surface water pollutants: municipal, agricultural, and industrial. Ground- water is more susceptible to some sources of pollution. For example, irrigation water infiltrates into the ground, bringing with it the pesticides, fertilizers, and herbicides that were sprayed on the fields. Water that seeps through landfills also carries toxins into the ground. Toxic substances and things like gasoline are kept in underground storage tanks; more than 100,000 of the tanks are currently leaking and many more may develop leaks. | text | null |
L_0187 | groundwater pollution | T_1251 | Groundwater is a bit safer from pollution than surface water from some types of pollution because some pollutants are filtered out by the rock and soil that water travels through as it travels through the ground or once it is in the aquifer. But rock and soil cant get out everything, depending on the type of rock and soil and on the types of pollutants. As it is, about 25% of the usable groundwater and 45% of the municipal groundwater supplies in the United States are polluted. | text | null |
L_0187 | groundwater pollution | T_1252 | When the pollutant enters the aquifer, contamination spreads in the water outward from the source and travels in the direction that the water is moving. This pollutant plume may travel very slowly, only a few inches a day, but over time can contaminate a large portion of the aquifer. Many wells that are currently in use are contaminated. In Florida, for example, more than 90% of wells have detectible contaminants and thousands have been closed. | text | null |
L_0188 | growth of human populations | T_1253 | Human population growth over the past 10,000 years has been tremendous (Figure 1.1). The entire human popula- tion was estimated to be 5 million in 8000 B.C. 300 million in A.D. 1 1 billion in 1802 3 billion in 1961 7 billion in 2011 As the human population continues to grow, different factors limit population in different parts of the world. What might be a limiting factor for human population in a particular location? Space, clean air, clean water, and food to feed everyone are limiting in some locations. | text | null |
L_0188 | growth of human populations | T_1254 | Not only has the population increased, but the rate of population growth has increased (Figure 1.2). The population was estimated to reach 7 billion in 2012, but it did so in 2011, just 12 years after reaching 6 billion. Human population from 10,000 BC through 2000 AD, showing the exponential increase in human population that has occurred in the last few centuries. The amount of time between the addition of each one billion people to the planets population, including speculation about the future. Although population continues to grow rapidly, the rate that the growth rate is increasing has declined. Still, a recent estimate by the United Nations estimates that 10.1 billion people will be sharing this planet by the end of the century. The total added will be about 3 billion people, which is more than were even in existence as recently as 1960. | text | null |
L_0188 | growth of human populations | T_1254 | Not only has the population increased, but the rate of population growth has increased (Figure 1.2). The population was estimated to reach 7 billion in 2012, but it did so in 2011, just 12 years after reaching 6 billion. Human population from 10,000 BC through 2000 AD, showing the exponential increase in human population that has occurred in the last few centuries. The amount of time between the addition of each one billion people to the planets population, including speculation about the future. Although population continues to grow rapidly, the rate that the growth rate is increasing has declined. Still, a recent estimate by the United Nations estimates that 10.1 billion people will be sharing this planet by the end of the century. The total added will be about 3 billion people, which is more than were even in existence as recently as 1960. | text | null |
L_0189 | hazardous waste | T_1255 | Hazardous waste is any waste material that is dangerous to human health or that degrades the environment. Haz- ardous waste includes substances that are: 1. 2. 3. 4. Toxic: causes serious harm or death, or is poisonous. Chemically active: causes dangerous or unwanted chemical reactions, such as explosions. Corrosive: destroys other things by chemical reactions. Flammable: easily catches fire and may send dangerous smoke into the air. All sorts of materials are hazardous wastes and there are many sources. Many people have substances that could become hazardous wastes in their homes. Several cleaning and gardening chemicals are hazardous if not used properly. These include chemicals like drain cleaners and pesticides that are toxic to humans and many other creatures. While these chemicals are fine if they are stored and used properly, if they are used or disposed of improperly, they may become hazardous wastes. Others sources of hazardous waste are shown in Table 1.1. Type of Hazardous Waste Chemicals from the automobile in- dustry Example Gasoline, used motor oil, battery acid, brake fluid Batteries Car batteries, household batteries Medical wastes Dry cleaning chemicals Surgical gloves, wastes contami- nated with body fluids such as blood, x-ray equipment Paints, paint thinners, paint strip- pers, wood stains Many various chemicals Agricultural chemicals Pesticides, herbicides, fertilizers Paints Why it is Hazardous Toxic to humans and other organ- isms; often chemically active; often flammable. Contain toxic chemicals; are often corrosive. Toxic to humans and other organ- isms; may be chemically active. Toxic; flammable. Toxic; many cause cancer in hu- mans. Toxic to humans; can harm other organism; pollute soils and water. Click image to the left or use the URL below. URL: | text | null |
L_0190 | heat budget of planet earth | T_1256 | About half of the solar radiation that strikes the top of the atmosphere is filtered out before it reaches the ground. This energy can be absorbed by atmospheric gases, reflected by clouds, or scattered. Scattering occurs when a light wave strikes a particle and bounces off in some other direction. About 3% of the energy that strikes the ground is reflected back into the atmosphere. The rest is absorbed by rocks, soil, and water and then radiated back into the air as heat. These infrared wavelengths can only be seen by infrared sensors. Click image to the left or use the URL below. URL: | text | null |
L_0190 | heat budget of planet earth | T_1257 | Because solar energy continually enters Earths atmosphere and ground surface, is the planet getting hotter? The answer is no (although the next section contains an exception), because energy from Earth escapes into space through the top of the atmosphere. If the amount that exits is equal to the amount that comes in, then average global temperature stays the same. This means that the planets heat budget is in balance. What happens if more energy comes in than goes out? If more energy goes out than comes in? To say that the Earths heat budget is balanced ignores an important point. The amount of incoming solar energy is different at different latitudes. Where do you think the most solar energy ends up and why? Where does the least solar energy end up and why? See the Table 1.1. Equatorial Region Polar Regions Day Length Nearly the same all year Night 6 months Sun Angle High Solar Radiation High Albedo Low Low Low High Note: Colder temperatures mean more ice and snow cover the ground, making albedo relatively high. The difference in solar energy received at different latitudes drives atmospheric circulation. | text | null |
L_0191 | heat transfer in the atmosphere | T_1258 | Heat moves in the atmosphere the same way it moves through the solid Earth or another medium. What follows is a review of the way heat flows, but applied to the atmosphere. Radiation is the transfer of energy between two objects by electromagnetic waves. Heat radiates from the ground into the lower atmosphere. In conduction, heat moves from areas of more heat to areas of less heat by direct contact. Warmer molecules vibrate rapidly and collide with other nearby molecules, transferring their energy. In the atmosphere, conduction is more effective at lower altitudes, where air density is higher. This transfers heat upward to where the molecules are spread further apart or transfers heat laterally from a warmer to a cooler spot, where the molecules are moving less vigorously. Heat transfer by movement of heated materials is called convection. Heat that radiates from the ground initiates convection cells in the atmosphere (Figure 1.1). Click image to the left or use the URL below. URL: | text | null |
L_0191 | heat transfer in the atmosphere | T_1259 | Different parts of the Earth receive different amounts of solar radiation. Which part of the planet receives the most solar radiation? The Suns rays strike the surface most directly at the Equator. The difference in solar energy received at different latitudes drives atmospheric circulation. | text | null |
L_0192 | heat waves and droughts | T_1260 | A heat wave is different depending on its location. According to the World Meteorological Organization, a region is in a heat wave if it has more than five consecutive days of temperatures that are more than 9 F (5 C) above average. Heat waves have increased in frequency and duration in recent years. The summer 2011 North American heat wave brought record temperatures across the Midwestern and Eastern United States. Many states and localities broke records for temperatures and for most days above 100 F. | text | null |
L_0192 | heat waves and droughts | T_1261 | A high pressure cell sitting over a region with no movement is the likely cause of a heat wave. What do you think caused the heat wave in the image below (Figure 1.1)? A high pressure zone kept the jet stream further north than normal for August. A heat wave over the United States as in- dicated by heat radiated from the ground. The bright yellow areas are the hottest and the blue and white are coolest. Click image to the left or use the URL below. URL: Click image to the left or use the URL below. URL: | text | null |
L_0192 | heat waves and droughts | T_1262 | Droughts also depend on what is normal for a region. When a region gets significantly less precipitation than normal for an extended period of time, it is in drought. The Southern United States is experiencing an ongoing and prolonged drought. Drought has many consequences. When soil loses moisture it may blow away, as happened during the Dust Bowl in the United States in the 1930s. Forests may be lost, dust storms may become common, and wildlife are disturbed. Wildfires become much more common during times of drought. | text | null |
L_0196 | hot springs and geysers | T_1277 | Water sometimes comes into contact with hot rock. The water may emerge at the surface as either a hot spring or a geyser. | text | null |
L_0196 | hot springs and geysers | T_1278 | Water heated below ground that rises through a crack to the surface creates a hot spring. The water in hot springs may reach temperatures in the hundreds of degrees Celsius beneath the surface, although most hot springs are much cooler. Click image to the left or use the URL below. URL: | text | null |
L_0196 | hot springs and geysers | T_1279 | Geysers are also created by water that is heated beneath the Earths surface, but geysers do not bubble to the surface they erupt. When water is both superheated by magma and flows through a narrow passageway underground, the environment is ideal for a geyser. The passageway traps the heated water underground, so that heat and pressure can build. Eventually, the pressure grows so great that the superheated water bursts out onto the surface to create a geyser. Figure 1.2. Conditions are right for the formation of geysers in only a few places on Earth. Of the roughly 1,000 geysers worldwide, about half are found in the United States. Yellowstone isnt the only place in the continental U.S. with hot springs and geysers. Hot Creek in California deserves its name; Like Yellowstone, it is above a supervolcano. Click image to the left or use the URL below. URL: Castle Geyser is one of the many gey- sers at Yellowstone National Park. Castle erupts regularly, but not as frequently or predictably as Old Faithful. | text | null |
L_0197 | how fossilization creates fossils | T_1280 | It wasnt always known that fossils were parts of living organisms. In 1666, a young doctor named Nicholas Steno dissected the head of an enormous great white shark that had been caught by fisherman near Florence, Italy. Steno was struck by the resemblance of the sharks teeth to fossils found in inland mountains and hills (Figure 1.1). Most people at the time did not believe that fossils were once part of living creatures. Authors in that day thought that the fossils of marine animals found in tall mountains, miles from any ocean could be explained in one of two ways: The shells were washed up during the Biblical flood. (This explanation could not account for the fact that fossils were not only found on mountains, but also within mountains, in rocks that had been quarried from deep below Earths surface.) The fossils formed within the rocks as a result of mysterious forces. But for Steno, the close resemblance between fossils and modern organisms was impossible to ignore. Instead of invoking supernatural forces, Steno concluded that fossils were once parts of living creatures. Fossil Shark Tooth (left) and Modern Shark Tooth (right). | text | null |
L_0197 | how fossilization creates fossils | T_1281 | A fossil is any remains or traces of an ancient organism. Fossils include body fossils, left behind when the soft parts have decayed away, and trace fossils, such as burrows, tracks, or fossilized coprolites (feces). Collections of fossils are known as fossil assemblages. Click image to the left or use the URL below. URL: | text | null |
L_0197 | how fossilization creates fossils | T_1282 | Becoming a fossil isnt easy. Only a tiny percentage of the organisms that have ever lived become fossils. Why do you think only a tiny percentage of living organisms become fossils after death? Think about an antelope that dies on the African plain (Figure 1.2). Most of its body is eaten by hyenas and other scavengers and the remaining flesh is devoured by insects and bacteria. Only bones are left behind. As the years go by, the bones are scattered and fragmented into small pieces, eventually turning into dust. The remaining nutrients return to the soil. This antelope will not be preserved as a fossil. Is it more likely that a marine organism will become a fossil? When clams, oysters, and other shellfish die, the soft parts quickly decay, and the shells are scattered. In shallow water, wave action grinds them into sand-sized pieces. The shells are also attacked by worms, sponges, and other animals (Figure 1.3). How about a soft bodied organism? Will a creature without hard shells or bones become a fossil? There is virtually no fossil record of soft bodied organisms such as jellyfish, worms, or slugs. Insects, which are by far the most common land animals, are only rarely found as fossils (Figure 1.4). | text | null |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.