Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
2,108
null
Graph Kernels Based on Multi-scale Graph Embeddings
Graph kernels are conventional methods for computing graph similarities. However, most of the R-convolution graph kernels face two challenges: 1) They cannot compare graphs at multiple different scales, and 2) they do not consider the distributions of substructures when computing the kernel matrix. These two challenges limit their performances. To mitigate the two challenges, we propose a novel graph kernel called the Multi-scale Path-pattern Graph kernel (MPG), at the heart of which is the multi-scale path-pattern node feature map. Each element of the path-pattern node feature map is the number of occurrences of a path-pattern around a node. A path-pattern is constructed by the concatenation of all the node labels in a path of a truncated BFS tree rooted at each node. Since the path-pattern node feature map can only compare graphs at local scales, we incorporate into it the multiple different scales of the graph structure, which are captured by the truncated BFS trees of different depth. We use the Wasserstein distance to compute the similarity between the multi-scale path-pattern node feature maps of two graphs, considering the distributions of substructures. We empirically validate MPG on various benchmark graph datasets and demonstrate that it achieves state-of-the-art performance.
2,109
null
Accelerated first-order methods for convex optimization with locally Lipschitz continuous gradient
In this paper we develop accelerated first-order methods for convex optimization with locally Lipschitz continuous gradient (LLCG), which is beyond the well-studied class of convex optimization with Lipschitz continuous gradient. In particular, we first consider unconstrained convex optimization with LLCG and propose accelerated proximal gradient (APG) methods for solving it. The proposed APG methods are equipped with a verifiable termination criterion and enjoy an operation complexity of ${\cal O}(\varepsilon^{-1/2}\log \varepsilon^{-1})$ and ${\cal O}(\log \varepsilon^{-1})$ for finding an $\varepsilon$-residual solution of an unconstrained convex and strongly convex optimization problem, respectively. We then consider constrained convex optimization with LLCG and propose an first-order proximal augmented Lagrangian method for solving it by applying one of our proposed APG methods to approximately solve a sequence of proximal augmented Lagrangian subproblems. The resulting method is equipped with a verifiable termination criterion and enjoys an operation complexity of ${\cal O}(\varepsilon^{-1}\log \varepsilon^{-1})$ and ${\cal O}(\varepsilon^{-1/2}\log \varepsilon^{-1})$ for finding an $\varepsilon$-KKT solution of a constrained convex and strongly convex optimization problem, respectively. All the proposed methods in this paper are parameter-free or almost parameter-free except that the knowledge on convexity parameter is required. To the best of our knowledge, no prior studies were conducted to investigate accelerated first-order methods with complexity guarantees for convex optimization with LLCG. All the complexity results obtained in this paper are entirely new.
2,110
null
Primal-dual extrapolation methods for monotone inclusions under local Lipschitz continuity with applications to variational inequality, conic constrained saddle point, and convex conic optimization problems
In this paper we consider a class of structured monotone inclusion (MI) problems that consist of finding a zero in the sum of two monotone operators, in which one is maximal monotone while another is locally Lipschitz continuous. In particular, we first propose a primal-dual extrapolation (PDE) method for solving a structured strongly MI problem by modifying the classical forward-backward splitting method by using a point and operator extrapolation technique, in which the parameters are adaptively updated by a backtracking line search scheme. The proposed PDE method is almost parameter-free, equipped with a verifiable termination criterion, and enjoys an operation complexity of ${\cal O}(\log \epsilon^{-1})$, measured by the amount of fundamental operations consisting only of evaluations of one operator and resolvent of another operator, for finding an $\epsilon$-residual solution of the structured strongly MI problem. We then propose another PDE method for solving a structured non-strongly MI problem by applying the above PDE method to approximately solve a sequence of structured strongly MI problems. The resulting PDE method is parameter-free, equipped with a verifiable termination criterion, and enjoys an operation complexity of ${\cal O}(\epsilon^{-1}\log \epsilon^{-1})$ for finding an $\epsilon$-residual solution of the structured non-strongly MI problem. As a consequence, we apply the latter PDE method to convex conic optimization, conic constrained saddle point, and variational inequality problems, and obtain complexity results for finding an $\epsilon$-KKT or $\epsilon$-residual solution of them under local Lipschitz continuity. To the best of our knowledge, no prior studies were conducted to investigate methods with complexity guarantees for solving the aforementioned problems under local Lipschitz continuity. All the complexity results obtained in this paper are entirely new.
2,111
null
A Deep Learning Network for the Classification of Intracardiac Electrograms in Atrial Tachycardia
A key technology enabling the success of catheter ablation treatment for atrial tachycardia is activation mapping, which relies on manual local activation time (LAT) annotation of all acquired intracardiac electrogram (EGM) signals. This is a time-consuming and error-prone procedure, due to the difficulty in identifying the signal activation peaks for fractionated signals. This work presents a Deep Learning approach for the automated classification of EGM signals into three different types: normal, abnormal, and unclassified, which forms part of the LAT annotation pipeline, and contributes towards bypassing the need for manual annotations of the LAT. The Deep Learning network, the CNN-LSTM model, is a hybrid network architecture which combines convolutional neural network (CNN) layers with long short-term memory (LSTM) layers. 1452 EGM signals from a total of 9 patients undergoing clinically-indicated 3D cardiac mapping were used for the training, validation and testing of our models. From our findings, the CNN-LSTM model achieved an accuracy of 81% for the balanced dataset. For comparison, we separately developed a rule-based Decision Trees model which attained an accuracy of 67% for the same balanced dataset. Our work elucidates that analysing the EGM signals using a set of explicitly specified rules as proposed by the Decision Trees model is not suitable as EGM signals are complex. The CNN-LSTM model, on the other hand, has the ability to learn the complex, intrinsic features within the signals and identify useful features to differentiate the EGM signals.
2,112
null
Transfer Language Selection for Zero-Shot Cross-Lingual Abusive Language Detection
We study the selection of transfer languages for automatic abusive language detection. Instead of preparing a dataset for every language, we demonstrate the effectiveness of cross-lingual transfer learning for zero-shot abusive language detection. This way we can use existing data from higher-resource languages to build better detection systems for low-resource languages. Our datasets are from seven different languages from three language families. We measure the distance between the languages using several language similarity measures, especially by quantifying the World Atlas of Language Structures. We show that there is a correlation between linguistic similarity and classifier performance. This discovery allows us to choose an optimal transfer language for zero shot abusive language detection.
2,113
null
Feature Space Particle Inference for Neural Network Ensembles
Ensembles of deep neural networks demonstrate improved performance over single models. For enhancing the diversity of ensemble members while keeping their performance, particle-based inference methods offer a promising approach from a Bayesian perspective. However, the best way to apply these methods to neural networks is still unclear: seeking samples from the weight-space posterior suffers from inefficiency due to the over-parameterization issues, while seeking samples directly from the function-space posterior often results in serious underfitting. In this study, we propose optimizing particles in the feature space where the activation of a specific intermediate layer lies to address the above-mentioned difficulties. Our method encourages each member to capture distinct features, which is expected to improve ensemble prediction robustness. Extensive evaluation on real-world datasets shows that our model significantly outperforms the gold-standard Deep Ensembles on various metrics, including accuracy, calibration, and robustness. Code is available at https://github.com/DensoITLab/featurePI .
2,114
null
Improving Diffusion Models for Inverse Problems using Manifold Constraints
Recently, diffusion models have been used to solve various inverse problems in an unsupervised manner with appropriate modifications to the sampling process. However, the current solvers, which recursively apply a reverse diffusion step followed by a measurement consistency step, often produce sub-optimal results. By studying the generative sampling path, here we show that current solvers throw the sample path off the data manifold, and hence the error accumulates. To address this, we propose an additional correction term inspired by the manifold constraint, which can be used synergistically with the previous solvers to make the iterations close to the manifold. The proposed manifold constraint is straightforward to implement within a few lines of code, yet boosts the performance by a surprisingly large margin. With extensive experiments, we show that our method is superior to the previous methods both theoretically and empirically, producing promising results in many applications such as image inpainting, colorization, and sparse-view computed tomography.
2,115
null
Compound Multi-branch Feature Fusion for Real Image Restoration
Image restoration is a challenging and ill-posed problem which also has been a long-standing issue. However, most of learning based restoration methods are proposed to target one degradation type which means they are lack of generalization. In this paper, we proposed a multi-branch restoration model inspired from the Human Visual System (i.e., Retinal Ganglion Cells) which can achieve multiple restoration tasks in a general framework. The experiments show that the proposed multi-branch architecture, called CMFNet, has competitive performance results on four datasets, including image dehazing, deraindrop, and deblurring, which are very common applications for autonomous cars. The source code and pretrained models of three restoration tasks are available at https://github.com/FanChiMao/CMFNet.
2,116
null
Gradient flow dynamics of shallow ReLU networks for square loss and orthogonal inputs
The training of neural networks by gradient descent methods is a cornerstone of the deep learning revolution. Yet, despite some recent progress, a complete theory explaining its success is still missing. This article presents, for orthogonal input vectors, a precise description of the gradient flow dynamics of training one-hidden layer ReLU neural networks for the mean squared error at small initialisation. In this setting, despite non-convexity, we show that the gradient flow converges to zero loss and characterise its implicit bias towards minimum variation norm. Furthermore, some interesting phenomena are highlighted: a quantitative description of the initial alignment phenomenon and a proof that the process follows a specific saddle to saddle dynamics.
2,117
null
Generating Sparse Counterfactual Explanations For Multivariate Time Series
Since neural networks play an increasingly important role in critical sectors, explaining network predictions has become a key research topic. Counterfactual explanations can help to understand why classifier models decide for particular class assignments and, moreover, how the respective input samples would have to be modified such that the class prediction changes. Previous approaches mainly focus on image and tabular data. In this work we propose SPARCE, a generative adversarial network (GAN) architecture that generates SPARse Counterfactual Explanations for multivariate time series. Our approach provides a custom sparsity layer and regularizes the counterfactual loss function in terms of similarity, sparsity, and smoothness of trajectories. We evaluate our approach on real-world human motion datasets as well as a synthetic time series interpretability benchmark. Although we make significantly sparser modifications than other approaches, we achieve comparable or better performance on all metrics. Moreover, we demonstrate that our approach predominantly modifies salient time steps and features, leaving non-salient inputs untouched.
2,118
null
DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps
Diffusion probabilistic models (DPMs) are emerging powerful generative models. Despite their high-quality generation performance, DPMs still suffer from their slow sampling as they generally need hundreds or thousands of sequential function evaluations (steps) of large neural networks to draw a sample. Sampling from DPMs can be viewed alternatively as solving the corresponding diffusion ordinary differential equations (ODEs). In this work, we propose an exact formulation of the solution of diffusion ODEs. The formulation analytically computes the linear part of the solution, rather than leaving all terms to black-box ODE solvers as adopted in previous works. By applying change-of-variable, the solution can be equivalently simplified to an exponentially weighted integral of the neural network. Based on our formulation, we propose DPM-Solver, a fast dedicated high-order solver for diffusion ODEs with the convergence order guarantee. DPM-Solver is suitable for both discrete-time and continuous-time DPMs without any further training. Experimental results show that DPM-Solver can generate high-quality samples in only 10 to 20 function evaluations on various datasets. We achieve 4.70 FID in 10 function evaluations and 2.87 FID in 20 function evaluations on the CIFAR10 dataset, and a $4\sim 16\times$ speedup compared with previous state-of-the-art training-free samplers on various datasets.
2,119
null
KPGT: Knowledge-Guided Pre-training of Graph Transformer for Molecular Property Prediction
Designing accurate deep learning models for molecular property prediction plays an increasingly essential role in drug and material discovery. Recently, due to the scarcity of labeled molecules, self-supervised learning methods for learning generalizable and transferable representations of molecular graphs have attracted lots of attention. In this paper, we argue that there exist two major issues hindering current self-supervised learning methods from obtaining desired performance on molecular property prediction, that is, the ill-defined pre-training tasks and the limited model capacity. To this end, we introduce Knowledge-guided Pre-training of Graph Transformer (KPGT), a novel self-supervised learning framework for molecular graph representation learning, to alleviate the aforementioned issues and improve the performance on the downstream molecular property prediction tasks. More specifically, we first introduce a high-capacity model, named Line Graph Transformer (LiGhT), which emphasizes the importance of chemical bonds and is mainly designed to model the structural information of molecular graphs. Then, a knowledge-guided pre-training strategy is proposed to exploit the additional knowledge of molecules to guide the model to capture the abundant structural and semantic information from large-scale unlabeled molecular graphs. Extensive computational tests demonstrated that KPGT can offer superior performance over current state-of-the-art methods on several molecular property prediction tasks.
2,120
null
Federated Learning with a Sampling Algorithm under Isoperimetry
Federated learning uses a set of techniques to efficiently distribute the training of a machine learning algorithm across several devices, who own the training data. These techniques critically rely on reducing the communication cost -- the main bottleneck -- between the devices and a central server. Federated learning algorithms usually take an optimization approach: they are algorithms for minimizing the training loss subject to communication (and other) constraints. In this work, we instead take a Bayesian approach for the training task, and propose a communication-efficient variant of the Langevin algorithm to sample a posteriori. The latter approach is more robust and provides more knowledge of the \textit{a posteriori} distribution than its optimization counterpart. We analyze our algorithm without assuming that the target distribution is strongly log-concave. Instead, we assume the weaker log Sobolev inequality, which allows for nonconvexity.
2,121
null
Mask-Guided Divergence Loss Improves the Generalization and Robustness of Deep Neural Network
Deep neural network (DNN) with dropout can be regarded as an ensemble model consisting of lots of sub-DNNs (i.e., an ensemble sub-DNN where the sub-DNN is the remaining part of the DNN after dropout), and through increasing the diversity of the ensemble sub-DNN, the generalization and robustness of the DNN can be effectively improved. In this paper, a mask-guided divergence loss function (MDL), which consists of a cross-entropy loss term and an orthogonal term, is proposed to increase the diversity of the ensemble sub-DNN by the added orthogonal term. Particularly, the mask technique is introduced to assist in generating the orthogonal term for avoiding overfitting of the diversity learning. The theoretical analysis and extensive experiments on 4 datasets (i.e., MNIST, FashionMNIST, CIFAR10, and CIFAR100) manifest that MDL can improve the generalization and robustness of standard training and adversarial training. For CIFAR10 and CIFAR100, in standard training, the maximum improvement of accuracy is $1.38\%$ on natural data, $30.97\%$ on FGSM (i.e., Fast Gradient Sign Method) attack, $38.18\%$ on PGD (i.e., Projected Gradient Descent) attack. While in adversarial training, the maximum improvement is $1.68\%$ on natural data, $4.03\%$ on FGSM attack and $2.65\%$ on PGD attack.
2,122
null
A Local Optima Network Analysis of the Feedforward Neural Architecture Space
This study investigates the use of local optima network (LON) analysis, a derivative of the fitness landscape of candidate solutions, to characterise and visualise the neural architecture space. The search space of feedforward neural network architectures with up to three layers, each with up to 10 neurons, is fully enumerated by evaluating trained model performance on a selection of data sets. Extracted LONs, while heterogeneous across data sets, all exhibit simple global structures, with single global funnels in all cases but one. These results yield early indication that LONs may provide a viable paradigm by which to analyse and optimise neural architectures.
2,123
null
Conversation Group Detection With Spatio-Temporal Context
In this work, we propose an approach for detecting conversation groups in social scenarios like cocktail parties and networking events, from overhead camera recordings. We posit the detection of conversation groups as a learning problem that could benefit from leveraging the spatial context of the surroundings, and the inherent temporal context in interpersonal dynamics which is reflected in the temporal dynamics in human behavior signals, an aspect that has not been addressed in recent prior works. This motivates our approach which consists of a dynamic LSTM-based deep learning model that predicts continuous pairwise affinity values indicating how likely two people are in the same conversation group. These affinity values are also continuous in time, since relationships and group membership do not occur instantaneously, even though the ground truths of group membership are binary. Using the predicted affinity values, we apply a graph clustering method based on Dominant Set extraction to identify the conversation groups. We benchmark the proposed method against established methods on multiple social interaction datasets. Our results showed that the proposed method improves group detection performance in data that has more temporal granularity in conversation group labels. Additionally, we provide an analysis in the predicted affinity values in relation to the conversation group detection. Finally, we demonstrate the usability of the predicted affinity values in a forecasting framework to predict group membership for a given forecast horizon.
2,124
null
Adversarial RAW: Image-Scaling Attack Against Imaging Pipeline
Deep learning technologies have become the backbone for the development of computer vision. With further explorations, deep neural networks have been found vulnerable to well-designed adversarial attacks. Most of the vision devices are equipped with image signal processing (ISP) pipeline to implement RAW-to-RGB transformations and embedded into data preprocessing module for efficient image processing. Actually, ISP pipeline can introduce adversarial behaviors to post-capture images while data preprocessing may destroy attack patterns. However, none of the existing adversarial attacks takes into account the impacts of both ISP pipeline and data preprocessing. In this paper, we develop an image-scaling attack targeting on ISP pipeline, where the crafted adversarial RAW can be transformed into attack image that presents entirely different appearance once being scaled to a specific-size image. We first consider the gradient-available ISP pipeline, i.e., the gradient information can be directly used in the generation process of adversarial RAW to launch the attack. To make the adversarial attack more applicable, we further consider the gradient-unavailable ISP pipeline, in which a proxy model that well learns the RAW-to-RGB transformations is proposed as the gradient oracles. Extensive experiments show that the proposed adversarial attacks can craft adversarial RAW data against the target ISP pipelines with high attack rates.
2,125
null
Leveraging Systematic Knowledge of 2D Transformations
The existing deep learning models suffer from out-of-distribution (o.o.d.) performance drop in computer vision tasks. In comparison, humans have a remarkable ability to interpret images, even if the scenes in the images are rare, thanks to the systematicity of acquired knowledge. This work focuses on 1) the acquisition of systematic knowledge of 2D transformations, and 2) architectural components that can leverage the learned knowledge in image classification tasks in an o.o.d. setting. With a new training methodology based on synthetic datasets that are constructed under the causal framework, the deep neural networks acquire knowledge from semantically different domains (e.g. even from noise), and exhibit certain level of systematicity in parameter estimation experiments. Based on this, a novel architecture is devised consisting of a classifier, an estimator and an identifier (abbreviated as "CED"). By emulating the "hypothesis-verification" process in human visual perception, CED improves the classification accuracy significantly on test sets under covariate shift.
2,126
null
Watch Out for the Safety-Threatening Actors: Proactively Mitigating Safety Hazards
Despite the successful demonstration of autonomous vehicles (AVs), such as self-driving cars, ensuring AV safety remains a challenging task. Although some actors influence an AV's driving decisions more than others, current approaches pay equal attention to each actor on the road. An actor's influence on the AV's decision can be characterized in terms of its ability to decrease the number of safe navigational choices for the AV. In this work, we propose a safety threat indicator (STI) using counterfactual reasoning to estimate the importance of each actor on the road with respect to its influence on the AV's safety. We use this indicator to (i) characterize the existing real-world datasets to identify rare hazardous scenarios as well as the poor performance of existing controllers in such scenarios; and (ii) design an RL based safety mitigation controller to proactively mitigate the safety hazards those actors pose to the AV. Our approach reduces the accident rate for the state-of-the-art AV agent(s) in rare hazardous scenarios by more than 70%.
2,127
null
Coordinated Double Machine Learning
Double machine learning is a statistical method for leveraging complex black-box models to construct approximately unbiased treatment effect estimates given observational data with high-dimensional covariates, under the assumption of a partially linear model. The idea is to first fit on a subset of the samples two non-linear predictive models, one for the continuous outcome of interest and one for the observed treatment, and then to estimate a linear coefficient for the treatment using the remaining samples through a simple orthogonalized regression. While this methodology is flexible and can accommodate arbitrary predictive models, typically trained independently of one another, this paper argues that a carefully coordinated learning algorithm for deep neural networks may reduce the estimation bias. The improved empirical performance of the proposed method is demonstrated through numerical experiments on both simulated and real data.
2,128
null
Prediction of Maneuvering Status for Aerial Vehicles using Supervised Learning Methods
Aerial Vehicles follow a guided approach based on Latitude, Longitude and Altitude. This information can be used for calculating the status of maneuvering for the aerial vehicles along the line of trajectory. This is a binary classification problem and Machine Learning can be leveraged for solving such problem. In this paper we present a methodology for deriving maneuvering status and its prediction using Linear, Distance Metric, Discriminant Analysis and Boosting Ensemble supervised learning methods. We provide various metrics along the line in the results section that give condensed comparison of the appropriate algorithm for prediction of the maneuvering status.
2,129
null
Nearly Optimal Best-of-Both-Worlds Algorithms for Online Learning with Feedback Graphs
This study considers online learning with general directed feedback graphs. For this problem, we present best-of-both-worlds algorithms that achieve nearly tight regret bounds for adversarial environments as well as poly-logarithmic regret bounds for stochastic environments. As Alon et al. [2015] have shown, tight regret bounds depend on the structure of the feedback graph: \textit{strongly observable} graphs yield minimax regret of $\tilde{\Theta}( \alpha^{1/2} T^{1/2} )$, while \textit{weakly observable} graphs induce minimax regret of $\tilde{\Theta}( \delta^{1/3} T^{2/3} )$, where $\alpha$ and $\delta$, respectively, represent the independence number of the graph and the domination number of a certain portion of the graph. Our proposed algorithm for strongly observable graphs has a regret bound of $\tilde{O}( \alpha^{1/2} T^{1/2} ) $ for adversarial environments, as well as of $ {O} ( \frac{\alpha (\ln T)^3 }{\Delta_{\min}} ) $ for stochastic environments, where $\Delta_{\min}$ expresses the minimum suboptimality gap. This result resolves an open question raised by Erez and Koren [2021]. We also provide an algorithm for weakly observable graphs that achieves a regret bound of $\tilde{O}( \delta^{1/3}T^{2/3} )$ for adversarial environments and poly-logarithmic regret for stochastic environments. The proposed algorithms are based on the follow-the-perturbed-leader approach combined with newly designed update rules for learning rates.
2,130
null
Resource Allocation for Compression-aided Federated Learning with High Distortion Rate
Recently, a considerable amount of works have been made to tackle the communication burden in federated learning (FL) (e.g., model quantization, data sparsification, and model compression). However, the existing methods, that boost the communication efficiency in FL, result in a considerable trade-off between communication efficiency and global convergence rate. We formulate an optimization problem for compression-aided FL, which captures the relationship between the distortion rate, number of participating IoT devices, and convergence rate. Following that, the objective function is to minimize the total transmission time for FL convergence. Because the problem is non-convex, we propose to decompose it into sub-problems. Based on the property of a FL model, we first determine the number of IoT devices participating in the FL process. Then, the communication between IoT devices and the server is optimized by efficiently allocating wireless resources based on a coalition game. Our theoretical analysis shows that, by actively controlling the number of participating IoT devices, we can avoid the training divergence of compression-aided FL while maintaining the communication efficiency.
2,131
null
Dynamic Structure Estimation from Bandit Feedback
This work present novel method for structure estimation of an underlying dynamical system. We tackle problems of estimating dynamic structure from bandit feedback contaminated by sub-Gaussian noise. In particular, we focus on periodically behaved discrete dynamical system in the Euclidean space, and carefully identify certain obtainable subset of full information of the periodic structure. We then derive a sample complexity bound for periodic structure estimation. Technically, asymptotic results for exponential sums are adopted to effectively average out the noise effects while preventing the information to be estimated from vanishing. For linear systems, the use of the Weyl sum further allows us to extract eigenstructures. Our theoretical claims are experimentally validated on simulations of toy examples, including Cellular Automata.
2,132
null
Self-Consistency of the Fokker-Planck Equation
The Fokker-Planck equation (FPE) is the partial differential equation that governs the density evolution of the It\^o process and is of great importance to the literature of statistical physics and machine learning. The FPE can be regarded as a continuity equation where the change of the density is completely determined by a time varying velocity field. Importantly, this velocity field also depends on the current density function. As a result, the ground-truth velocity field can be shown to be the solution of a fixed-point equation, a property that we call self-consistency. In this paper, we exploit this concept to design a potential function of the hypothesis velocity fields, and prove that, if such a function diminishes to zero during the training procedure, the trajectory of the densities generated by the hypothesis velocity fields converges to the solution of the FPE in the Wasserstein-2 sense. The proposed potential function is amenable to neural-network based parameterization as the stochastic gradient with respect to the parameter can be efficiently computed. Once a parameterized model, such as Neural Ordinary Differential Equation is trained, we can generate the entire trajectory to the FPE.
2,133
null
RACA: Relation-Aware Credit Assignment for Ad-Hoc Cooperation in Multi-Agent Deep Reinforcement Learning
In recent years, reinforcement learning has faced several challenges in the multi-agent domain, such as the credit assignment issue. Value function factorization emerges as a promising way to handle the credit assignment issue under the centralized training with decentralized execution (CTDE) paradigm. However, existing value function factorization methods cannot deal with ad-hoc cooperation, that is, adapting to new configurations of teammates at test time. Specifically, these methods do not explicitly utilize the relationship between agents and cannot adapt to different sizes of inputs. To address these limitations, we propose a novel method, called Relation-Aware Credit Assignment (RACA), which achieves zero-shot generalization in ad-hoc cooperation scenarios. RACA takes advantage of a graph-based relation encoder to encode the topological structure between agents. Furthermore, RACA utilizes an attention-based observation abstraction mechanism that can generalize to an arbitrary number of teammates with a fixed number of parameters. Experiments demonstrate that our method outperforms baseline methods on the StarCraftII micromanagement benchmark and ad-hoc cooperation scenarios.
2,134
null
Bayesian Inference of Stochastic Dynamical Networks
Network inference has been extensively studied in several fields, such as systems biology and social sciences. Learning network topology and internal dynamics is essential to understand mechanisms of complex systems. In particular, sparse topologies and stable dynamics are fundamental features of many real-world continuous-time (CT) networks. Given that usually only a partial set of nodes are able to observe, in this paper, we consider linear CT systems to depict networks since they can model unmeasured nodes via transfer functions. Additionally, measurements tend to be noisy and with low and varying sampling frequencies. For this reason, we consider CT models since discrete-time approximations often require fine-grained measurements and uniform sampling steps. The developed method applies dynamical structure functions (DSFs) derived from linear stochastic differential equations (SDEs) to describe networks of measured nodes. A numerical sampling method, preconditioned Crank-Nicolson (pCN), is used to refine coarse-grained trajectories to improve inference accuracy. The convergence property of the developed method is robust to the dimension of data sources. Monte Carlo simulations indicate that the developed method outperforms state-of-the-art methods including group sparse Bayesian learning (GSBL), BINGO, kernel-based methods, dynGENIE3, GENIE3, and ARNI. The simulations include random and ring networks, and a synthetic biological network. These are challenging networks, suggesting that the developed method can be applied under a wide range of contexts, such as gene regulatory networks, social networks, and communication systems.
2,135
null
Masked Bayesian Neural Networks : Computation and Optimality
As data size and computing power increase, the architectures of deep neural networks (DNNs) have been getting more complex and huge, and thus there is a growing need to simplify such complex and huge DNNs. In this paper, we propose a novel sparse Bayesian neural network (BNN) which searches a good DNN with an appropriate complexity. We employ the masking variables at each node which can turn off some nodes according to the posterior distribution to yield a nodewise sparse DNN. We devise a prior distribution such that the posterior distribution has theoretical optimalities (i.e. minimax optimality and adaptiveness), and develop an efficient MCMC algorithm. By analyzing several benchmark datasets, we illustrate that the proposed BNN performs well compared to other existing methods in the sense that it discovers well condensed DNN architectures with similar prediction accuracy and uncertainty quantification compared to large DNNs.
2,136
null
Dynamic MRI using Learned Transform-based Deep Tensor Low-Rank Network (DTLR-Net)
While low-rank matrix prior has been exploited in dynamic MR image reconstruction and has obtained satisfying performance, low-rank tensors models have recently emerged as powerful alternative representations for three-dimensional dynamic MR datasets. In this paper, we introduce a model-based deep learning network by learning the tensor low-rank prior of the cardiac dynamic MR images. Instead of representing the dynamic dataset as a low-rank tensor directly, we propose a learned transformation operator to exploit the tensor low-rank property in a transform domain. In particular, by generalizing the t-SVD tensor decomposition into a unitary transformed t-SVD, we define a transformed tensor nuclear norm (TTNN) to enforce the tensor low-rankness. The dynamic MRI reconstruction problem is thus formulated using a TTNN regularized optimization problem. An iterative algorithm based on ADMM used to minimize the cost is unrolled into a deep network, where the transform is learned using convolutional neural networks (CNNs) to promote the reconstruction quality in the feature domain. Experimental results on cardiac cine MRI reconstruction demonstrate that the proposed framework is able to provide improved recovery results compared with the state-of-the-art algorithms.
2,137
null
Faster Rates of Convergence to Stationary Points in Differentially Private Optimization
We study the problem of approximating stationary points of Lipschitz and smooth functions under $(\varepsilon,\delta)$-differential privacy (DP) in both the finite-sum and stochastic settings. A point $\widehat{w}$ is called an $\alpha$-stationary point of a function $F:\mathbb{R}^d\rightarrow\mathbb{R}$ if $\|\nabla F(\widehat{w})\|\leq \alpha$. We provide a new efficient algorithm that finds an $\tilde{O}\big(\big[\frac{\sqrt{d}}{n\varepsilon}\big]^{2/3}\big)$-stationary point in the finite-sum setting, where $n$ is the number of samples. This improves on the previous best rate of $\tilde{O}\big(\big[\frac{\sqrt{d}}{n\varepsilon}\big]^{1/2}\big)$. We also give a new construction that improves over the existing rates in the stochastic optimization setting, where the goal is to find approximate stationary points of the population risk. Our construction finds a $\tilde{O}\big(\frac{1}{n^{1/3}} + \big[\frac{\sqrt{d}}{n\varepsilon}\big]^{1/2}\big)$-stationary point of the population risk in time linear in $n$. Furthermore, under the additional assumption of convexity, we completely characterize the sample complexity of finding stationary points of the population risk (up to polylog factors) and show that the optimal rate on population stationarity is $\tilde \Theta\big(\frac{1}{\sqrt{n}}+\frac{\sqrt{d}}{n\varepsilon}\big)$. Finally, we show that our methods can be used to provide dimension-independent rates of $O\big(\frac{1}{\sqrt{n}}+\min\big(\big[\frac{\sqrt{rank}}{n\varepsilon}\big]^{2/3},\frac{1}{(n\varepsilon)^{2/5}}\big)\big)$ on population stationarity for Generalized Linear Models (GLM), where $rank$ is the rank of the design matrix, which improves upon the previous best known rate.
2,138
null
Hyperspherical Consistency Regularization
Recent advances in contrastive learning have enlightened diverse applications across various semi-supervised fields. Jointly training supervised learning and unsupervised learning with a shared feature encoder becomes a common scheme. Though it benefits from taking advantage of both feature-dependent information from self-supervised learning and label-dependent information from supervised learning, this scheme remains suffering from bias of the classifier. In this work, we systematically explore the relationship between self-supervised learning and supervised learning, and study how self-supervised learning helps robust data-efficient deep learning. We propose hyperspherical consistency regularization (HCR), a simple yet effective plug-and-play method, to regularize the classifier using feature-dependent information and thus avoid bias from labels. Specifically, HCR first projects logits from the classifier and feature projections from the projection head on the respective hypersphere, then it enforces data points on hyperspheres to have similar structures by minimizing binary cross entropy of pairwise distances' similarity metrics. Extensive experiments on semi-supervised and weakly-supervised learning demonstrate the effectiveness of our method, by showing superior performance with HCR.
2,139
null
DepthShrinker: A New Compression Paradigm Towards Boosting Real-Hardware Efficiency of Compact Neural Networks
Efficient deep neural network (DNN) models equipped with compact operators (e.g., depthwise convolutions) have shown great potential in reducing DNNs' theoretical complexity (e.g., the total number of weights/operations) while maintaining a decent model accuracy. However, existing efficient DNNs are still limited in fulfilling their promise in boosting real-hardware efficiency, due to their commonly adopted compact operators' low hardware utilization. In this work, we open up a new compression paradigm for developing real-hardware efficient DNNs, leading to boosted hardware efficiency while maintaining model accuracy. Interestingly, we observe that while some DNN layers' activation functions help DNNs' training optimization and achievable accuracy, they can be properly removed after training without compromising the model accuracy. Inspired by this observation, we propose a framework dubbed DepthShrinker, which develops hardware-friendly compact networks via shrinking the basic building blocks of existing efficient DNNs that feature irregular computation patterns into dense ones with much improved hardware utilization and thus real-hardware efficiency. Excitingly, our DepthShrinker framework delivers hardware-friendly compact networks that outperform both state-of-the-art efficient DNNs and compression techniques, e.g., a 3.06% higher accuracy and 1.53$\times$ throughput on Tesla V100 over SOTA channel-wise pruning method MetaPruning. Our codes are available at: https://github.com/facebookresearch/DepthShrinker.
2,140
null
Robustness Evaluation and Adversarial Training of an Instance Segmentation Model
To evaluate the robustness of non-classifier models, we propose probabilistic local equivalence, based on the notion of randomized smoothing, as a way to quantitatively evaluate the robustness of an arbitrary function. In addition, to understand the effect of adversarial training on non-classifiers and to investigate the level of robustness that can be obtained without degrading performance on the training distribution, we apply Fast is Better than Free adversarial training together with the TRADES robust loss to the training of an instance segmentation network. In this direction, we were able to achieve a symmetric best dice score of 0.85 on the TuSimple lane detection challenge, outperforming the standardly-trained network's score of 0.82. Additionally, we were able to obtain an F-measure of 0.49 on manipulated inputs, in contrast to the standardly-trained network's score of 0. We show that probabilisitic local equivalence is able to successfully distinguish between standardly-trained and adversarially-trained models, providing another view of the improved robustness of the adversarially-trained models.
2,141
null
Finite-Time Analysis of Entropy-Regularized Neural Natural Actor-Critic Algorithm
Natural actor-critic (NAC) and its variants, equipped with the representation power of neural networks, have demonstrated impressive empirical success in solving Markov decision problems with large state spaces. In this paper, we present a finite-time analysis of NAC with neural network approximation, and identify the roles of neural networks, regularization and optimization techniques (e.g., gradient clipping and averaging) to achieve provably good performance in terms of sample complexity, iteration complexity and overparametrization bounds for the actor and the critic. In particular, we prove that (i) entropy regularization and averaging ensure stability by providing sufficient exploration to avoid near-deterministic and strictly suboptimal policies and (ii) regularization leads to sharp sample complexity and network width bounds in the regularized MDPs, yielding a favorable bias-variance tradeoff in policy optimization. In the process, we identify the importance of uniform approximation power of the actor neural network to achieve global optimality in policy optimization due to distributional shift.
2,142
null
A Survey of Detection Methods for Die Attachment and Wire Bonding Defects in Integrated Circuit Manufacturing
Defect detection plays a vital role in the manufacturing process of integrated circuits (ICs). Die attachment and wire bonding are two steps of the manufacturing process that determine the power and signal transmission quality and dependability in an IC. This paper presents a survey or literature review of the methods used for detecting these defects based on different sensing modalities used including optical, radiological, acoustical, and infrared thermography. A discussion of the detection methods used is provided in this survey. Both conventional and deep learning approaches for detecting die attachment and wire bonding defects are considered along with challenges and future research directions.
2,143
null
Fast Benchmarking of Accuracy vs. Training Time with Cyclic Learning Rates
Benchmarking the tradeoff between neural network accuracy and training time is computationally expensive. Here we show how a multiplicative cyclic learning rate schedule can be used to construct a tradeoff curve in a single training run. We generate cyclic tradeoff curves for combinations of training methods such as Blurpool, Channels Last, Label Smoothing and MixUp, and highlight how these cyclic tradeoff curves can be used to evaluate the effects of algorithmic choices on network training efficiency.
2,144
null
Dynamic Cardiac MRI Reconstruction Using Combined Tensor Nuclear Norm and Casorati Matrix Nuclear Norm Regularizations
Low-rank tensor models have been applied in accelerating dynamic magnetic resonance imaging (dMRI). Recently, a new tensor nuclear norm based on t-SVD has been proposed and applied to tensor completion. Inspired by the different properties of the tensor nuclear norm (TNN) and the Casorati matrix nuclear norm (MNN), we introduce a combined TNN and Casorati MNN regularizations framework to reconstruct dMRI, which we term as TMNN. The proposed method simultaneously exploits the spatial structure and the temporal correlation of the dynamic MR data. The optimization problem can be efficiently solved by the alternating direction method of multipliers (ADMM). In order to further improve the computational efficiency, we develop a fast algorithm under the Cartesian sampling scenario. Numerical experiments based on cardiac cine MRI and perfusion MRI data demonstrate the performance improvement over the traditional Casorati nuclear norm regularization method.
2,145
null
Progressive Purification for Instance-Dependent Partial Label Learning
Partial label learning (PLL) aims to train multi-class classifiers from instances with partial labels (PLs)-a PL for an instance is a set of candidate labels where a fixed but unknown candidate is the true label. In the last few years, the instance-independent generation process of PLs has been extensively studied, on the basis of which many practical and theoretical advances have been made in PLL, whereas relatively less attention has been paid to the practical setting of instance-dependent PLs, namely, the PL depends not only on the true label but the instance itself. In this paper, we propose a theoretically grounded and practically effective approach called PrOgressive Purification (POP) for instance-dependent PLL: in each epoch, POP updates the learning model while purifying each PL for the next epoch of the model training by progressively moving out false candidate labels. Theoretically, we prove that POP enlarges the region appropriately fast where the model is reliable, and eventually approximates the Bayes optimal classifier with mild assumptions; technically, POP is flexible with arbitrary losses and compatible with deep networks, so that the previous advanced PLL losses can be embedded in it and the performance is often significantly improved.
2,146
null
BayesFormer: Transformer with Uncertainty Estimation
Transformer has become ubiquitous due to its dominant performance in various NLP and image processing tasks. However, it lacks understanding of how to generate mathematically grounded uncertainty estimates for transformer architectures. Models equipped with such uncertainty estimates can typically improve predictive performance, make networks robust, avoid over-fitting and used as acquisition function in active learning. In this paper, we introduce BayesFormer, a Transformer model with dropouts designed by Bayesian theory. We proposed a new theoretical framework to extend the approximate variational inference-based dropout to Transformer-based architectures. Through extensive experiments, we validate the proposed architecture in four paradigms and show improvements across the board: language modeling and classification, long-sequence understanding, machine translation and acquisition function for active learning.
2,147
null
NIPQ: Noise Injection Pseudo Quantization for Automated DNN Optimization
The optimization of neural networks in terms of computation cost and memory footprint is crucial for their practical deployment on edge devices. In this work, we propose a novel quantization-aware training (QAT) scheme called noise injection pseudo quantization (NIPQ). NIPQ is implemented based on pseudo quantization noise (PQN) and has several advantages. First, both activation and weight can be quantized based on a unified framework. Second, the hyper-parameters of quantization (e.g., layer-wise bit-width and quantization interval) are automatically tuned. Third, after QAT, the network has robustness against quantization, thereby making it easier to deploy in practice. To validate the superiority of the proposed algorithm, we provide extensive analysis and conduct diverse experiments for various vision applications. Our comprehensive experiments validate the outstanding performance of the proposed algorithm in several aspects.
2,148
null
Offline Reinforcement Learning with Differential Privacy
The offline reinforcement learning (RL) problem is often motivated by the need to learn data-driven decision policies in financial, legal and healthcare applications. However, the learned policy could retain sensitive information of individuals in the training data (e.g., treatment and outcome of patients), thus susceptible to various privacy risks. We design offline RL algorithms with differential privacy guarantees which provably prevent such risks. These algorithms also enjoy strong instance-dependent learning bounds under both tabular and linear Markov decision process (MDP) settings. Our theory and simulation suggest that the privacy guarantee comes at (almost) no drop in utility comparing to the non-private counterpart for a medium-size dataset.
2,149
null
Applied Federated Learning: Architectural Design for Robust and Efficient Learning in Privacy Aware Settings
The classical machine learning paradigm requires the aggregation of user data in a central location where machine learning practitioners can preprocess data, calculate features, tune models and evaluate performance. The advantage of this approach includes leveraging high performance hardware (such as GPUs) and the ability of machine learning practitioners to do in depth data analysis to improve model performance. However, these advantages may come at a cost to data privacy. User data is collected, aggregated, and stored on centralized servers for model development. Centralization of data poses risks, including a heightened risk of internal and external security incidents as well as accidental data misuse. Federated learning with differential privacy is designed to avoid the server-side centralization pitfall by bringing the ML learning step to users' devices. Learning is done in a federated manner where each mobile device runs a training loop on a local copy of a model. Updates from on-device models are sent to the server via encrypted communication and through differential privacy to improve the global model. In this paradigm, users' personal data remains on their devices. Surprisingly, model training in this manner comes at a fairly minimal degradation in model performance. However, federated learning comes with many other challenges due to its distributed nature, heterogeneous compute environments and lack of data visibility. This paper explores those challenges and outlines an architectural design solution we are exploring and testing to productionize federated learning at Meta scale.
2,150
null
Learning code summarization from a small and local dataset
Foundation models (e.g., CodeBERT, GraphCodeBERT, CodeT5) work well for many software engineering tasks. These models are pre-trained (using self-supervision) with billions of code tokens, and then fine-tuned with hundreds of thousands of labeled examples, typically drawn from many projects. However, software phenomena can be very project-specific. Vocabulary, and other phenomena vary substantially with each project. Thus, training on project-specific data, and testing on the same project, is a promising idea. This hypothesis has to be evaluated carefully, e.g., in a time-series setting, to prevent training-test leakage. We compare several models and training approaches, including same-project training, cross-project training, training a model especially designed to be sample efficient (and thus prima facie well-suited for learning in a limited-sample same-project setting) and a maximalist hybrid approach, fine-tuning first on many projects in many languages and then training on the same-project. We find that the maximalist hybrid setting provides consistent, substantial gains over the state-of-the-art, on many different projects in both Java and Python.
2,151
null
Indeterminacy in Latent Variable Models: Characterization and Strong Identifiability
Most modern latent variable and probabilistic generative models, such as the variational autoencoder (VAE), have certain indeterminacies that are unresolvable even with an infinite amount of data. Recent applications of such models have indicated the need for strongly identifiable models, in which an observation corresponds to a unique latent code. Progress has been made towards reducing model indeterminacies while maintaining flexibility, most notably by the iVAE (arXiv:1907.04809 [stat.ML]), which excludes many -- but not all -- indeterminacies. We construct a full theoretical framework for analyzing the indeterminacies of latent variable models, and characterize them precisely in terms of properties of the generator functions and the latent variable prior distributions. To illustrate, we apply the framework to better understand the structure of recent identifiability results. We then investigate how we might specify strongly identifiable latent variable models, and construct two such classes of models. One is a straightforward modification of iVAE; the other uses ideas from optimal transport and leads to novel models and connections to recent work.
2,152
null
Federated Learning under Distributed Concept Drift
Federated Learning (FL) under distributed concept drift is a largely unexplored area. Although concept drift is itself a well-studied phenomenon, it poses particular challenges for FL, because drifts arise staggered in time and space (across clients). Our work is the first to explicitly study data heterogeneity in both dimensions. We first demonstrate that prior solutions to drift adaptation, with their single global model, are ill-suited to staggered drifts, necessitating multi-model solutions. We identify the problem of drift adaptation as a time-varying clustering problem, and we propose two new clustering algorithms for reacting to drifts based on local drift detection and hierarchical clustering. Empirical evaluation shows that our solutions achieve significantly higher accuracy than existing baselines, and are comparable to an idealized algorithm with oracle knowledge of the ground-truth clustering of clients to concepts at each time step.
2,153
null
Stabilizing Q-learning with Linear Architectures for Provably Efficient Learning
The $Q$-learning algorithm is a simple and widely-used stochastic approximation scheme for reinforcement learning, but the basic protocol can exhibit instability in conjunction with function approximation. Such instability can be observed even with linear function approximation. In practice, tools such as target networks and experience replay appear to be essential, but the individual contribution of each of these mechanisms is not well understood theoretically. This work proposes an exploration variant of the basic $Q$-learning protocol with linear function approximation. Our modular analysis illustrates the role played by each algorithmic tool that we adopt: a second order update rule, a set of target networks, and a mechanism akin to experience replay. Together, they enable state of the art regret bounds on linear MDPs while preserving the most prominent feature of the algorithm, namely a space complexity independent of the number of step elapsed. We show that the performance of the algorithm degrades very gracefully under a novel and more permissive notion of approximation error. The algorithm also exhibits a form of instance-dependence, in that its performance depends on the "effective" feature dimension.
2,154
null
Sequential Bayesian Neural Subnetwork Ensembles
Deep neural network ensembles that appeal to model diversity have been used successfully to improve predictive performance and model robustness in several applications. Whereas, it has recently been shown that sparse subnetworks of dense models can match the performance of their dense counterparts and increase their robustness while effectively decreasing the model complexity. However, most ensembling techniques require multiple parallel and costly evaluations and have been proposed primarily with deterministic models, whereas sparsity induction has been mostly done through ad-hoc pruning. We propose sequential ensembling of dynamic Bayesian neural subnetworks that systematically reduce model complexity through sparsity-inducing priors and generate diverse ensembles in a single forward pass of the model. The ensembling strategy consists of an exploration phase that finds high-performing regions of the parameter space and multiple exploitation phases that effectively exploit the compactness of the sparse model to quickly converge to different minima in the energy landscape corresponding to high-performing subnetworks yielding diverse ensembles. We empirically demonstrate that our proposed approach surpasses the baselines of the dense frequentist and Bayesian ensemble models in prediction accuracy, uncertainty estimation, and out-of-distribution (OoD) robustness on CIFAR10, CIFAR100 datasets, and their out-of-distribution variants: CIFAR10-C, CIFAR100-C induced by corruptions. Furthermore, we found that our approach produced the most diverse ensembles compared to the approaches with a single forward pass and even compared to the approaches with multiple forward passes in some cases.
2,155
null
On the Generalization of Neural Combinatorial Optimization Heuristics
Neural Combinatorial Optimization approaches have recently leveraged the expressiveness and flexibility of deep neural networks to learn efficient heuristics for hard Combinatorial Optimization (CO) problems. However, most of the current methods lack generalization: for a given CO problem, heuristics which are trained on instances with certain characteristics underperform when tested on instances with different characteristics. While some previous works have focused on varying the training instances properties, we postulate that a one-size-fit-all model is out of reach. Instead, we formalize solving a CO problem over a given instance distribution as a separate learning task and investigate meta-learning techniques to learn a model on a variety of tasks, in order to optimize its capacity to adapt to new tasks. Through extensive experiments, on two CO problems, using both synthetic and realistic instances, we show that our proposed meta-learning approach significantly improves the generalization of two state-of-the-art models.
2,156
null
Neural Decoding with Optimization of Node Activations
The problem of maximum likelihood decoding with a neural decoder for error-correcting code is considered. It is shown that the neural decoder can be improved with two novel loss terms on the node's activations. The first loss term imposes a sparse constraint on the node's activations. Whereas, the second loss term tried to mimic the node's activations from a teacher decoder which has better performance. The proposed method has the same run time complexity and model size as the neural Belief Propagation decoder, while improving the decoding performance by up to $1.1dB$ on BCH codes.
2,157
null
Core-periphery Models for Hypergraphs
We introduce a random hypergraph model for core-periphery structure. By leveraging our model's sufficient statistics, we develop a novel statistical inference algorithm that is able to scale to large hypergraphs with runtime that is practically linear wrt. the number of nodes in the graph after a preprocessing step that is almost linear in the number of hyperedges, as well as a scalable sampling algorithm. Our inference algorithm is capable of learning embeddings that correspond to the reputation (rank) of a node within the hypergraph. We also give theoretical bounds on the size of the core of hypergraphs generated by our model. We experiment with hypergraph data that range to $\sim 10^5$ hyperedges mined from the Microsoft Academic Graph, Stack Exchange, and GitHub and show that our model outperforms baselines wrt. producing good fits.
2,158
null
Binding Dancers Into Attractors
To effectively perceive and process observations in our environment, feature binding and perspective taking are crucial cognitive abilities. Feature binding combines observed features into one entity, called a Gestalt. Perspective taking transfers the percept into a canonical, observer-centered frame of reference. Here we propose a recurrent neural network model that solves both challenges. We first train an LSTM to predict 3D motion dynamics from a canonical perspective. We then present similar motion dynamics with novel viewpoints and feature arrangements. Retrospective inference enables the deduction of the canonical perspective. Combined with a robust mutual-exclusive softmax selection scheme, random feature arrangements are reordered and precisely bound into known Gestalt percepts. To corroborate evidence for the architecture's cognitive validity, we examine its behavior on the silhouette illusion, which elicits two competitive Gestalt interpretations of a rotating dancer. Our system flexibly binds the information of the rotating figure into the alternative attractors resolving the illusion's ambiguity and imagining the respective depth interpretation and the corresponding direction of rotation. We finally discuss the potential universality of the proposed mechanisms.
2,159
null
Adaptive Local Neighborhood-based Neural Networks for MR Image Reconstruction from Undersampled Data
Recent medical image reconstruction techniques focus on generating high-quality medical images suitable for clinical use at the lowest possible cost and with the fewest possible adverse effects on patients. Recent works have shown significant promise for reconstructing MR images from sparsely sampled k-space data using deep learning. In this work, we propose a technique that rapidly estimates deep neural networks directly at reconstruction time by fitting them on small adaptively estimated neighborhoods of a training set. In brief, our algorithm alternates between searching for neighbors in a data set that are similar to the test reconstruction, and training a local network on these neighbors followed by updating the test reconstruction. Because our reconstruction model is learned on a dataset that is structurally similar to the image being reconstructed rather than being fit on a large, diverse training set, it is more adaptive to new scans. It can also handle changes in training sets and flexible scan settings, while being relatively fast. Our approach, dubbed LONDN-MRI, was validated on the FastMRI multi-coil knee data set using deep unrolled reconstruction networks. Reconstructions were performed at four fold and eight fold undersampling of k-space with 1D variable-density random phase-encode undersampling masks. Our results demonstrate that our proposed locally-trained method produces higher-quality reconstructions compared to models trained globally on larger datasets.
2,160
null
Assessing the trade-off between prediction accuracy and interpretability for topic modeling on energetic materials corpora
As the amount and variety of energetics research increases, machine aware topic identification is necessary to streamline future research pipelines. The makeup of an automatic topic identification process consists of creating document representations and performing classification. However, the implementation of these processes on energetics research imposes new challenges. Energetics datasets contain many scientific terms that are necessary to understand the context of a document but may require more complex document representations. Secondly, the predictions from classification must be understandable and trusted by the chemists within the pipeline. In this work, we study the trade-off between prediction accuracy and interpretability by implementing three document embedding methods that vary in computational complexity. With our accuracy results, we also introduce local interpretability model-agnostic explanations (LIME) of each prediction to provide a localized understanding of each prediction and to validate classifier decisions with our team of energetics experts. This study was carried out on a novel labeled energetics dataset created and validated by our team of energetics experts.
2,161
null
A Multi-Policy Framework for Deep Learning-Based Fake News Detection
Connectivity plays an ever-increasing role in modern society, with people all around the world having easy access to rapidly disseminated information. However, a more interconnected society enables the spread of intentionally false information. To mitigate the negative impacts of fake news, it is essential to improve detection methodologies. This work introduces Multi-Policy Statement Checker (MPSC), a framework that automates fake news detection by using deep learning techniques to analyze a statement itself and its related news articles, predicting whether it is seemingly credible or suspicious. The proposed framework was evaluated using four merged datasets containing real and fake news. Long-Short Term Memory (LSTM), Gated Recurrent Unit (GRU) and Bidirectional Encoder Representations from Transformers (BERT) models were trained to utilize both lexical and syntactic features, and their performance was evaluated. The obtained results demonstrate that a multi-policy analysis reliably identifies suspicious statements, which can be advantageous for fake news detection.
2,162
null
On the reversibility of adversarial attacks
Adversarial attacks modify images with perturbations that change the prediction of classifiers. These modified images, known as adversarial examples, expose the vulnerabilities of deep neural network classifiers. In this paper, we investigate the predictability of the mapping between the classes predicted for original images and for their corresponding adversarial examples. This predictability relates to the possibility of retrieving the original predictions and hence reversing the induced misclassification. We refer to this property as the reversibility of an adversarial attack, and quantify reversibility as the accuracy in retrieving the original class or the true class of an adversarial example. We present an approach that reverses the effect of an adversarial attack on a classifier using a prior set of classification results. We analyse the reversibility of state-of-the-art adversarial attacks on benchmark classifiers and discuss the factors that affect the reversibility.
2,163
null
Defense Against Gradient Leakage Attacks via Learning to Obscure Data
Federated learning is considered as an effective privacy-preserving learning mechanism that separates the client's data and model training process. However, federated learning is still under the risk of privacy leakage because of the existence of attackers who deliberately conduct gradient leakage attacks to reconstruct the client data. Recently, popular strategies such as gradient perturbation methods and input encryption methods have been proposed to defend against gradient leakage attacks. Nevertheless, these defenses can either greatly sacrifice the model performance, or be evaded by more advanced attacks. In this paper, we propose a new defense method to protect the privacy of clients' data by learning to obscure data. Our defense method can generate synthetic samples that are totally distinct from the original samples, but they can also maximally preserve their predictive features and guarantee the model performance. Furthermore, our defense strategy makes the gradient leakage attack and its variants extremely difficult to reconstruct the client data. Through extensive experiments, we show that our proposed defense method obtains better privacy protection while preserving high accuracy compared with state-of-the-art methods.
2,164
null
On Reinforcement Learning and Distribution Matching for Fine-Tuning Language Models with no Catastrophic Forgetting
The availability of large pre-trained models is changing the landscape of Machine Learning research and practice, moving from a training-from-scratch to a fine-tuning paradigm. While in some applications the goal is to "nudge" the pre-trained distribution towards preferred outputs, in others it is to steer it towards a different distribution over the sample space. Two main paradigms have emerged to tackle this challenge: Reward Maximization (RM) and, more recently, Distribution Matching (DM). RM applies standard Reinforcement Learning (RL) techniques, such as Policy Gradients, to gradually increase the reward signal. DM prescribes to first make explicit the target distribution that the model is fine-tuned to approximate. Here we explore the theoretical connections between the two paradigms, and show that methods such as KL-control developed for RM can also be construed as belonging to DM. We further observe that while DM differs from RM, it can suffer from similar training difficulties, such as high gradient variance. We leverage connections between the two paradigms to import the concept of baseline into DM methods. We empirically validate the benefits of adding a baseline on an array of controllable language generation tasks such as constraining topic, sentiment, and gender distributions in texts sampled from a language model. We observe superior performance in terms of constraint satisfaction, stability and sample efficiency.
2,165
null
Merlin-Arthur Classifiers: Formal Interpretability with Interactive Black Boxes
We present a new theoretical framework for making black box classifiers such as Neural Networks interpretable, basing our work on clear assumptions and guarantees. In our setting, which is inspired by the Merlin-Arthur protocol from Interactive Proof Systems, two functions cooperate to achieve a classification together: the \emph{prover} selects a small set of features as a certificate and presents it to the \emph{classifier}. Including a second, adversarial prover allows us to connect a game-theoretic equilibrium to information-theoretic guarantees on the exchanged features. We define notions of completeness and soundness that enable us to lower bound the mutual information between features and class. To demonstrate good agreement between theory and practice, we support our framework by providing numerical experiments for Neural Network classifiers, explicitly calculating the mutual information of features with respect to the class.
2,166
null
SolarGAN: Synthetic Annual Solar Irradiance Time Series on Urban Building Facades via Deep Generative Networks
Building Integrated Photovoltaics (BIPV) is a promising technology to decarbonize urban energy systems via harnessing solar energy available on building envelopes. While methods to assess solar irradiation, especially on rooftops, are well established, the assessment on building facades usually involves a higher effort due to more complex urban features and obstructions. The drawback of existing physics-based simulation programs is that they require significant manual modelling effort and computing time for generating time resolved deterministic results. Yet, solar irradiation is highly intermittent and representing its inherent uncertainty may be required for designing robust BIPV energy systems. Targeting on these drawbacks, this paper proposes a data-driven model based on Deep Generative Networks (DGN) to efficiently generate high-fidelity stochastic ensembles of annual hourly solar irradiance time series on building facades with uncompromised spatiotemporal resolution at the urban scale. The only input required is easily obtainable, simple fisheye images as categorical shading masks captured from 3D models. In principle, even actual photographs of urban contexts can be utilized, given they are semantically segmented. Our validations exemplify the high fidelity of the generated time series when compared to the physics-based simulator. To demonstrate the model's relevance for urban energy planning, we showcase its potential for generative design by parametrically altering characteristic features of the urban environment and producing corresponding time series on building facades under different climatic contexts in real-time.
2,167
null
Positive Unlabeled Contrastive Learning
Self-supervised pretraining on unlabeled data followed by supervised finetuning on labeled data is a popular paradigm for learning from limited labeled examples. In this paper, we investigate and extend this paradigm to the classical positive unlabeled (PU) setting - the weakly supervised task of learning a binary classifier only using a few labeled positive examples and a set of unlabeled samples. We propose a novel PU learning objective positive unlabeled Noise Contrastive Estimation (puNCE) that leverages the available explicit (from labeled samples) and implicit (from unlabeled samples) supervision to learn useful representations from positive unlabeled input data. The underlying idea is to assign each training sample an individual weight; labeled positives are given unit weight; unlabeled samples are duplicated, one copy is labeled positive and the other as negative with weights $\pi$ and $(1-\pi)$ where $\pi$ denotes the class prior. Extensive experiments across vision and natural language tasks reveal that puNCE consistently improves over existing unsupervised and supervised contrastive baselines under limited supervision.
2,168
null
Residual Multiplicative Filter Networks for Multiscale Reconstruction
Coordinate networks like Multiplicative Filter Networks (MFNs) and BACON offer some control over the frequency spectrum used to represent continuous signals such as images or 3D volumes. Yet, they are not readily applicable to problems for which coarse-to-fine estimation is required, including various inverse problems in which coarse-to-fine optimization plays a key role in avoiding poor local minima. We introduce a new coordinate network architecture and training scheme that enables coarse-to-fine optimization with fine-grained control over the frequency support of learned reconstructions. This is achieved with two key innovations. First, we incorporate skip connections so that structure at one scale is preserved when fitting finer-scale structure. Second, we propose a novel initialization scheme to provide control over the model frequency spectrum at each stage of optimization. We demonstrate how these modifications enable multiscale optimization for coarse-to-fine fitting to natural images. We then evaluate our model on synthetically generated datasets for the the problem of single-particle cryo-EM reconstruction. We learn high resolution multiscale structures, on par with the state-of-the art.
2,169
null
A Log-Linear Time Sequential Optimal Calibration Algorithm for Quantized Isotonic L2 Regression
We study the sequential calibration of estimations in a quantized isotonic L2 regression setting. We start by showing that the optimal calibrated quantized estimations can be acquired from the traditional isotonic L2 regression solution. We modify the traditional PAVA algorithm to create calibrators for both batch and sequential optimization of the quantized isotonic regression problem. Our algorithm can update the optimal quantized monotone mapping for the samples observed so far in linear space and logarithmic time per new unordered sample.
2,170
null
Nest Your Adaptive Algorithm for Parameter-Agnostic Nonconvex Minimax Optimization
Adaptive algorithms like AdaGrad and AMSGrad are successful in nonconvex optimization owing to their parameter-agnostic ability -- requiring no a priori knowledge about problem-specific parameters nor tuning of learning rates. However, when it comes to nonconvex minimax optimization, direct extensions of such adaptive optimizers without proper time-scale separation may fail to work in practice. We provide such an example proving that the simple combination of Gradient Descent Ascent (GDA) with adaptive stepsizes can diverge if the primal-dual stepsize ratio is not carefully chosen; hence, a fortiori, such adaptive extensions are not parameter-agnostic. To address the issue, we formally introduce a Nested Adaptive framework, NeAda for short, that carries an inner loop for adaptively maximizing the dual variable with controllable stopping criteria and an outer loop for adaptively minimizing the primal variable. Such mechanism can be equipped with off-the-shelf adaptive optimizers and automatically balance the progress in the primal and dual variables. Theoretically, for nonconvex-strongly-concave minimax problems, we show that NeAda can achieve the near-optimal $\tilde{O}(\epsilon^{-2})$ and $\tilde{O}(\epsilon^{-4})$ gradient complexities respectively in the deterministic and stochastic settings, without prior information on the problem's smoothness and strong concavity parameters. To the best of our knowledge, this is the first algorithm that simultaneously achieves near-optimal convergence rates and parameter-agnostic adaptation in the nonconvex minimax setting. Numerically, we further illustrate the robustness of the NeAda family with experiments on simple test functions and a real-world application.
2,171
null
Composition of Relational Features with an Application to Explaining Black-Box Predictors
Relational machine learning programs like those developed in Inductive Logic Programming (ILP) offer several advantages: (1) The ability to model complex relationships amongst data instances; (2) The use of domain-specific relations during model construction; and (3) The models constructed are human-readable, which is often one step closer to being human-understandable. However, these ILP-like methods have not been able to capitalise fully on the rapid hardware, software and algorithmic developments fuelling current developments in deep neural networks. In this paper, we treat relational features as functions and use the notion of generalised composition of functions to derive complex functions from simpler ones. We formulate the notion of a set of $\text{M}$-simple features in a mode language $\text{M}$ and identify two composition operators ($\rho_1$ and $\rho_2$) from which all possible complex features can be derived. We use these results to implement a form of "explainable neural network" called Compositional Relational Machines, or CRMs, which are labelled directed-acyclic graphs. The vertex-label for any vertex $j$ in the CRM contains a feature-function $f_j$ and a continuous activation function $g_j$. If $j$ is a "non-input" vertex, then $f_j$ is the composition of features associated with vertices in the direct predecessors of $j$. Our focus is on CRMs in which input vertices (those without any direct predecessors) all have $\text{M}$-simple features in their vertex-labels. We provide a randomised procedure for constructing and learning such CRMs. Using a notion of explanations based on the compositional structure of features in a CRM, we provide empirical evidence on synthetic data of the ability to identify appropriate explanations; and demonstrate the use of CRMs as 'explanation machines' for black-box models that do not provide explanations for their predictions.
2,172
null
Walk for Learning: A Random Walk Approach for Federated Learning from Heterogeneous Data
We consider the problem of a Parameter Server (PS) that wishes to learn a model that fits data distributed on the nodes of a graph. We focus on Federated Learning (FL) as a canonical application. One of the main challenges of FL is the communication bottleneck between the nodes and the parameter server. A popular solution in the literature is to allow each node to do several local updates on the model in each iteration before sending it back to the PS. While this mitigates the communication bottleneck, the statistical heterogeneity of the data owned by the different nodes has proven to delay convergence and bias the model. In this work, we study random walk (RW) learning algorithms for tackling the communication and data heterogeneity problems. The main idea is to leverage available direct connections among the nodes themselves, which are typically "cheaper" than the communication to the PS. In a random walk, the model is thought of as a "baton" that is passed from a node to one of its neighbors after being updated in each iteration. The challenge in designing the RW is the data heterogeneity and the uncertainty about the data distributions. Ideally, we would want to visit more often nodes that hold more informative data. We cast this problem as a sleeping multi-armed bandit (MAB) to design a near-optimal node sampling strategy that achieves variance-reduced gradient estimates and approaches sub-linearly the optimal sampling strategy. Based on this framework, we present an adaptive random walk learning algorithm. We provide theoretical guarantees on its convergence. Our numerical results validate our theoretical findings and show that our algorithm outperforms existing random walk algorithms.
2,173
null
Cascaded Video Generation for Videos In-the-Wild
Videos can be created by first outlining a global view of the scene and then adding local details. Inspired by this idea we propose a cascaded model for video generation which follows a coarse to fine approach. First our model generates a low resolution video, establishing the global scene structure, which is then refined by subsequent cascade levels operating at larger resolutions. We train each cascade level sequentially on partial views of the videos, which reduces the computational complexity of our model and makes it scalable to high-resolution videos with many frames. We empirically validate our approach on UCF101 and Kinetics-600, for which our model is competitive with the state-of-the-art. We further demonstrate the scaling capabilities of our model and train a three-level model on the BDD100K dataset which generates 256x256 pixels videos with 48 frames.
2,174
null
The Phenomenon of Policy Churn
We identify and study the phenomenon of policy churn, that is, the rapid change of the greedy policy in value-based reinforcement learning. Policy churn operates at a surprisingly rapid pace, changing the greedy action in a large fraction of states within a handful of learning updates (in a typical deep RL set-up such as DQN on Atari). We characterise the phenomenon empirically, verifying that it is not limited to specific algorithm or environment properties. A number of ablations help whittle down the plausible explanations on why churn occurs to just a handful, all related to deep learning. Finally, we hypothesise that policy churn is a beneficial but overlooked form of implicit exploration that casts $\epsilon$-greedy exploration in a fresh light, namely that $\epsilon$-noise plays a much smaller role than expected.
2,175
null
(Machine) Learning What Policies Value
When a policy prioritizes one person over another, is it because they benefit more, or because they are preferred? This paper develops a method to uncover the values consistent with observed allocation decisions. We use machine learning methods to estimate how much each individual benefits from an intervention, and then reconcile its allocation with (i) the welfare weights assigned to different people; (ii) heterogeneous treatment effects of the intervention; and (iii) weights on different outcomes. We demonstrate this approach by analyzing Mexico's PROGRESA anti-poverty program. The analysis reveals that while the program prioritized certain subgroups -- such as indigenous households -- the fact that those groups benefited more implies that they were in fact assigned a lower welfare weight. The PROGRESA case illustrates how the method makes it possible to audit existing policies, and to design future policies that better align with values.
2,176
null
Dataset Distillation using Neural Feature Regression
Dataset distillation aims to learn a small synthetic dataset that preserves most of the information from the original dataset. Dataset distillation can be formulated as a bi-level meta-learning problem where the outer loop optimizes the meta-dataset and the inner loop trains a model on the distilled data. Meta-gradient computation is one of the key challenges in this formulation, as differentiating through the inner loop learning procedure introduces significant computation and memory costs. In this paper, we address these challenges using neural Feature Regression with Pooling (FRePo), achieving the state-of-the-art performance with an order of magnitude less memory requirement and two orders of magnitude faster training than previous methods. The proposed algorithm is analogous to truncated backpropagation through time with a pool of models to alleviate various types of overfitting in dataset distillation. FRePo significantly outperforms the previous methods on CIFAR100, Tiny ImageNet, and ImageNet-1K. Furthermore, we show that high-quality distilled data can greatly improve various downstream applications, such as continual learning and membership inference defense.
2,177
null
Learning to Solve PDE-constrained Inverse Problems with Graph Networks
Learned graph neural networks (GNNs) have recently been established as fast and accurate alternatives for principled solvers in simulating the dynamics of physical systems. In many application domains across science and engineering, however, we are not only interested in a forward simulation but also in solving inverse problems with constraints defined by a partial differential equation (PDE). Here we explore GNNs to solve such PDE-constrained inverse problems. Given a sparse set of measurements, we are interested in recovering the initial condition or parameters of the PDE. We demonstrate that GNNs combined with autodecoder-style priors are well-suited for these tasks, achieving more accurate estimates of initial conditions or physical parameters than other learned approaches when applied to the wave equation or Navier-Stokes equations. We also demonstrate computational speedups of up to 90x using GNNs compared to principled solvers. Project page: https://cyanzhao42.github.io/LearnInverseProblem
2,178
null
Collaborative Learning of Distributions under Heterogeneity and Communication Constraints
In modern machine learning, users often have to collaborate to learn the distribution of the data. Communication can be a significant bottleneck. Prior work has studied homogeneous users -- i.e., whose data follow the same discrete distribution -- and has provided optimal communication-efficient methods for estimating that distribution. However, these methods rely heavily on homogeneity, and are less applicable in the common case when users' discrete distributions are heterogeneous. Here we consider a natural and tractable model of heterogeneity, where users' discrete distributions only vary sparsely, on a small number of entries. We propose a novel two-stage method named SHIFT: First, the users collaborate by communicating with the server to learn a central distribution; relying on methods from robust statistics. Then, the learned central distribution is fine-tuned to estimate their respective individual distribution. We show that SHIFT is minimax optimal in our model of heterogeneity and under communication constraints. Further, we provide experimental results using both synthetic data and $n$-gram frequency estimation in the text domain, which corroborate its efficiency.
2,179
null
Split-kl and PAC-Bayes-split-kl Inequalities
We present a new concentration of measure inequality for sums of independent bounded random variables, which we name a split-kl inequality. The inequality combines the combinatorial power of the kl inequality with ability to exploit low variance. While for Bernoulli random variables the kl inequality is tighter than the Empirical Bernstein, for random variables taking values inside a bounded interval and having low variance the Empirical Bernstein inequality is tighter than the kl. The proposed split-kl inequality yields the best of both worlds. We discuss an application of the split-kl inequality to bounding excess losses. We also derive a PAC-Bayes-split-kl inequality and use a synthetic example and several UCI datasets to compare it with the PAC-Bayes-kl, PAC-Bayes Empirical Bernstein, PAC-Bayes Unexpected Bernstein, and PAC-Bayes Empirical Bennett inequalities.
2,180
null
Fast and Precise: Adjusting Planning Horizon with Adaptive Subgoal Search
Complex reasoning problems contain states that vary in the computational cost required to determine a good action plan. Taking advantage of this property, we propose Adaptive Subgoal Search (AdaSubS), a search method that adaptively adjusts the planning horizon. To this end, AdaSubS generates diverse sets of subgoals at different distances. A verification mechanism is employed to filter out unreachable subgoals swiftly and thus allowing to focus on feasible further subgoals. In this way, AdaSubS benefits from the efficiency of planning with longer subgoals and the fine control with the shorter ones. We show that AdaSubS significantly surpasses hierarchical planning algorithms on three complex reasoning tasks: Sokoban, the Rubik's Cube, and inequality proving benchmark INT, setting new state-of-the-art on INT.
2,181
null
Snow Mountain: Dataset of Audio Recordings of The Bible in Low Resource Languages
Automatic Speech Recognition (ASR) has increasing utility in the modern world. There are a many ASR models available for languages with large amounts of training data like English. However, low-resource languages are poorly represented. In response we create and release an open-licensed and formatted dataset of audio recordings of the Bible in low-resource northern Indian languages. We setup multiple experimental splits and train and analyze two competitive ASR models to serve as the baseline for future research using this data.
2,182
null
RoCourseNet: Distributionally Robust Training of a Prediction Aware Recourse Model
Counterfactual (CF) explanations for machine learning (ML) models are preferred by end-users, as they explain the predictions of ML models by providing a recourse case to individuals who are adversely impacted by predicted outcomes. Existing CF explanation methods generate recourses under the assumption that the underlying target ML model remains stationary over time. However, due to commonly occurring distributional shifts in training data, ML models constantly get updated in practice, which might render previously generated recourses invalid and diminish end-users trust in our algorithmic framework. To address this problem, we propose RoCourseNet, a training framework that jointly optimizes for predictions and robust recourses to future data shifts. We have three main contributions: (i) We propose a novel virtual data shift (VDS) algorithm to find worst-case shifted ML models by explicitly considering the worst-case data shift in the training dataset. (ii) We leverage adversarial training to solve a novel tri-level optimization problem inside RoCourseNet, which simultaneously generates predictions and corresponding robust recourses. (iii) Finally, we evaluate RoCourseNet's performance on three real-world datasets and show that RoCourseNet outperforms state-of-the-art baselines by 10% in generating robust CF explanations.
2,183
null
Know Your Boundaries: The Necessity of Explicit Behavioral Cloning in Offline RL
We introduce an offline reinforcement learning (RL) algorithm that explicitly clones a behavior policy to constrain value learning. In offline RL, it is often important to prevent a policy from selecting unobserved actions, since the consequence of these actions cannot be presumed without additional information about the environment. One straightforward way to implement such a constraint is to explicitly model a given data distribution via behavior cloning and directly force a policy not to select uncertain actions. However, many offline RL methods instantiate the constraint indirectly -- for example, pessimistic value estimation -- due to a concern about errors when modeling a potentially complex behavior policy. In this work, we argue that it is not only viable but beneficial to explicitly model the behavior policy for offline RL because the constraint can be realized in a stable way with the trained model. We first suggest a theoretical framework that allows us to incorporate behavior-cloned models into value-based offline RL methods, enjoying the strength of both explicit behavior cloning and value learning. Then, we propose a practical method utilizing a score-based generative model for behavior cloning. With the proposed method, we show state-of-the-art performance on several datasets within the D4RL and Robomimic benchmarks and achieve competitive performance across all datasets tested.
2,184
null
Meta-SysId: A Meta-Learning Approach for Simultaneous Identification and Prediction
In this paper, we propose Meta-SysId, a meta-learning approach to model sets of systems that have behavior governed by common but unknown laws and that differentiate themselves by their context. Inspired by classical modeling-and-identification approaches, Meta-SysId learns to represent the common law through shared parameters and relies on online optimization to compute system-specific context. Compared to optimization-based meta-learning methods, the separation between class parameters and context variables reduces the computational burden while allowing batch computations and a simple training scheme. We test Meta-SysId on polynomial regression, time-series prediction, model-based control, and real-world traffic prediction domains, empirically finding it outperforms or is competitive with meta-learning baselines.
2,185
null
Federated Learning in Non-IID Settings Aided by Differentially Private Synthetic Data
Federated learning (FL) is a privacy-promoting framework that enables potentially large number of clients to collaboratively train machine learning models. In a FL system, a server coordinates the collaboration by collecting and aggregating clients' model updates while the clients' data remains local and private. A major challenge in federated learning arises when the local data is heterogeneous -- the setting in which performance of the learned global model may deteriorate significantly compared to the scenario where the data is identically distributed across the clients. In this paper we propose FedDPMS (Federated Differentially Private Means Sharing), an FL algorithm in which clients deploy variational auto-encoders to augment local datasets with data synthesized using differentially private means of latent data representations communicated by a trusted server. Such augmentation ameliorates effects of data heterogeneity across the clients without compromising privacy. Our experiments on deep image classification tasks demonstrate that FedDPMS outperforms competing state-of-the-art FL methods specifically designed for heterogeneous data settings.
2,186
null
Why Did This Model Forecast This Future? Closed-Form Temporal Saliency Towards Causal Explanations of Probabilistic Forecasts
Forecasting tasks surrounding the dynamics of low-level human behavior are of significance to multiple research domains. In such settings, methods for explaining specific forecasts can enable domain experts to gain insights into the predictive relationships between behaviors. In this work, we introduce and address the following question: given a probabilistic forecasting model how can we identify observed windows that the model considers salient when making its forecasts? We build upon a general definition of information-theoretic saliency grounded in human perception and extend it to forecasting settings by leveraging a crucial attribute of the domain: a single observation can result in multiple valid futures. We propose to express the saliency of an observed window in terms of the differential entropy of the resulting predicted future distribution. In contrast to existing methods that either require explicit training of the saliency mechanism or access to the internal states of the forecasting model, we obtain a closed-form solution for the saliency map for commonly used density functions in probabilistic forecasting. We empirically demonstrate how our framework can recover salient observed windows from head pose features for the sample task of speaking-turn forecasting using a synthesized conversation dataset.
2,187
null
Hopular: Modern Hopfield Networks for Tabular Data
While Deep Learning excels in structured data as encountered in vision and natural language processing, it failed to meet its expectations on tabular data. For tabular data, Support Vector Machines (SVMs), Random Forests, and Gradient Boosting are the best performing techniques with Gradient Boosting in the lead. Recently, we saw a surge of Deep Learning methods that were tailored to tabular data but still underperform compared to Gradient Boosting on small-sized datasets. We suggest "Hopular", a novel Deep Learning architecture for medium- and small-sized datasets, where each layer is equipped with continuous modern Hopfield networks. The modern Hopfield networks use stored data to identify feature-feature, feature-target, and sample-sample dependencies. Hopular's novelty is that every layer can directly access the original input as well as the whole training set via stored data in the Hopfield networks. Therefore, Hopular can step-wise update its current model and the resulting prediction at every layer like standard iterative learning algorithms. In experiments on small-sized tabular datasets with less than 1,000 samples, Hopular surpasses Gradient Boosting, Random Forests, SVMs, and in particular several Deep Learning methods. In experiments on medium-sized tabular data with about 10,000 samples, Hopular outperforms XGBoost, CatBoost, LightGBM and a state-of-the art Deep Learning method designed for tabular data. Thus, Hopular is a strong alternative to these methods on tabular data.
2,188
null
Learning-Augmented Algorithms for Online TSP on the Line
We study the online Traveling Salesman Problem (TSP) on the line augmented with machine-learned predictions. In the classical problem, there is a stream of requests released over time along the real line. The goal is to minimize the makespan of the algorithm. We distinguish between the open variant and the closed one, in which we additionally require the algorithm to return to the origin after serving all requests. The state of the art is a $1.64$-competitive algorithm and a $2.04$-competitive algorithm for the closed and open variants, respectively \cite{Bjelde:1.64}. In both cases, a tight lower bound is known \cite{Ausiello:1.75, Bjelde:1.64}. In both variants, our primary prediction model involves predicted positions of the requests. We introduce algorithms that (i) obtain a tight 1.5 competitive ratio for the closed variant and a 1.66 competitive ratio for the open variant in the case of perfect predictions, (ii) are robust against unbounded prediction error, and (iii) are smooth, i.e., their performance degrades gracefully as the prediction error increases. Moreover, we further investigate the learning-augmented setting in the open variant by additionally considering a prediction for the last request served by the optimal offline algorithm. Our algorithm for this enhanced setting obtains a 1.33 competitive ratio with perfect predictions while also being smooth and robust, beating the lower bound of 1.44 we show for our original prediction setting for the open variant. Also, we provide a lower bound of 1.25 for this enhanced setting.
2,189
null
Graph Neural Networks with Precomputed Node Features
Most Graph Neural Networks (GNNs) cannot distinguish some graphs or indeed some pairs of nodes within a graph. This makes it impossible to solve certain classification tasks. However, adding additional node features to these models can resolve this problem. We introduce several such augmentations, including (i) positional node embeddings, (ii) canonical node IDs, and (iii) random features. These extensions are motivated by theoretical results and corroborated by extensive testing on synthetic subgraph detection tasks. We find that positional embeddings significantly outperform other extensions in these tasks. Moreover, positional embeddings have better sample efficiency, perform well on different graph distributions and even outperform learning with ground truth node positions. Finally, we show that the different augmentations perform competitively on established GNN benchmarks, and advise on when to use them.
2,190
null
Computing the Variance of Shuffling Stochastic Gradient Algorithms via Power Spectral Density Analysis
When solving finite-sum minimization problems, two common alternatives to stochastic gradient descent (SGD) with theoretical benefits are random reshuffling (SGD-RR) and shuffle-once (SGD-SO), in which functions are sampled in cycles without replacement. Under a convenient stochastic noise approximation which holds experimentally, we study the stationary variances of the iterates of SGD, SGD-RR and SGD-SO, whose leading terms decrease in this order, and obtain simple approximations. To obtain our results, we study the power spectral density of the stochastic gradient noise sequences. Our analysis extends beyond SGD to SGD with momentum and to the stochastic Nesterov's accelerated gradient method. We perform experiments on quadratic objective functions to test the validity of our approximation and the correctness of our findings.
2,191
null
Cross-View Language Modeling: Towards Unified Cross-Lingual Cross-Modal Pre-training
In this paper, we introduce Cross-View Language Modeling, a simple and effective language model pre-training framework that unifies cross-lingual cross-modal pre-training with shared architectures and objectives. Our approach is motivated by a key observation that cross-lingual and cross-modal pre-training share the same goal of aligning two different views of the same object into a common semantic space. To this end, the cross-view language modeling framework considers both multi-modal data (i.e., image-caption pairs) and multi-lingual data (i.e., parallel sentence pairs) as two different views of the same object, and trains the model to align the two views by maximizing the mutual information between them with conditional masked language modeling and contrastive learning. We pre-train CCLM, a Cross-lingual Cross-modal Language Model, with the cross-view language modeling framework. Empirical results on IGLUE, a multi-lingual multi-modal benchmark, and two multi-lingual image-text retrieval datasets show that while conceptually simpler, CCLM significantly outperforms the prior state-of-the-art with an average absolute improvement of over 10%. Notably, CCLM is the first multi-lingual multi-modal model that surpasses the translate-test performance of representative English vision-language models by zero-shot cross-lingual transfer.
2,192
null
Graph Machine Learning for Design of High-Octane Fuels
Fuels with high-knock resistance enable modern spark-ignition engines to achieve high efficiency and thus low CO2 emissions. Identification of molecules with desired autoignition properties indicated by a high research octane number and a high octane sensitivity is therefore of great practical relevance and can be supported by computer-aided molecular design (CAMD). Recent developments in the field of graph machine learning (graph-ML) provide novel, promising tools for CAMD. We propose a modular graph-ML CAMD framework that integrates generative graph-ML models with graph neural networks and optimization, enabling the design of molecules with desired ignition properties in a continuous molecular space. In particular, we explore the potential of Bayesian optimization and genetic algorithms in combination with generative graph-ML models. The graph-ML CAMD framework successfully identifies well-established high-octane components. It also suggests new candidates, one of which we experimentally investigate and use to illustrate the need for further auto-ignition training data.
2,193
null
On the Choice of Data for Efficient Training and Validation of End-to-End Driving Models
The emergence of data-driven machine learning (ML) has facilitated significant progress in many complicated tasks such as highly-automated driving. While much effort is put into improving the ML models and learning algorithms in such applications, little focus is put into how the training data and/or validation setting should be designed. In this paper we investigate the influence of several data design choices regarding training and validation of deep driving models trainable in an end-to-end fashion. Specifically, (i) we investigate how the amount of training data influences the final driving performance, and which performance limitations are induced through currently used mechanisms to generate training data. (ii) Further, we show by correlation analysis, which validation design enables the driving performance measured during validation to generalize well to unknown test environments. (iii) Finally, we investigate the effect of random seeding and non-determinism, giving insights which reported improvements can be deemed significant. Our evaluations using the popular CARLA simulator provide recommendations regarding data generation and driving route selection for an efficient future development of end-to-end driving models.
2,194
null
Higher-Order Attention Networks
This paper introduces higher-order attention networks (HOANs), a novel class of attention-based neural networks defined on a generalized higher-order domain called a combinatorial complex (CC). Similar to hypergraphs, CCs admit arbitrary set-like relations between a collection of abstract entities. Simultaneously, CCs permit the construction of hierarchical higher-order relations analogous to those supported by cell complexes. Thus, CCs effectively generalize both hypergraphs and cell complexes and combine their desirable characteristics. By exploiting the rich combinatorial nature of CCs, HOANs define a new class of message-passing attention-based networks that unifies higher-order neural networks. Our evaluation on tasks related to mesh shape analysis and graph learning demonstrates that HOANs attain competitive, and in some examples superior, predictive performance in comparison to state-of-the-art neural networks.
2,195
null
Multi-Armed Bandit Problem with Temporally-Partitioned Rewards: When Partial Feedback Counts
There is a rising interest in industrial online applications where data becomes available sequentially. Inspired by the recommendation of playlists to users where their preferences can be collected during the listening of the entire playlist, we study a novel bandit setting, namely Multi-Armed Bandit with Temporally-Partitioned Rewards (TP-MAB), in which the stochastic reward associated with the pull of an arm is partitioned over a finite number of consecutive rounds following the pull. This setting, unexplored so far to the best of our knowledge, is a natural extension of delayed-feedback bandits to the case in which rewards may be dilated over a finite-time span after the pull instead of being fully disclosed in a single, potentially delayed round. We provide two algorithms to address TP-MAB problems, namely, TP-UCB-FR and TP-UCB-EW, which exploit the partial information disclosed by the reward collected over time. We show that our algorithms provide better asymptotical regret upper bounds than delayed-feedback bandit algorithms when a property characterizing a broad set of reward structures of practical interest, namely alpha-smoothness, holds. We also empirically evaluate their performance across a wide range of settings, both synthetically generated and from a real-world media recommendation problem.
2,196
null
Calibrate and Debias Layer-wise Sampling for Graph Convolutional Networks
To accelerate the training of graph convolutional networks (GCNs), many sampling-based methods have been developed for approximating the embedding aggregation. Among them, a layer-wise approach recursively performs importance sampling to select neighbors jointly for existing nodes in each layer. This paper revisits the approach from a matrix approximation perspective. We identify two issues in the existing layer-wise sampling methods: sub-optimal sampling probabilities and the approximation bias induced by sampling without replacement. We propose two remedies: new sampling probabilities and a debiasing algorithm, to address these issues, and provide the statistical analysis of the estimation variance. The improvements are demonstrated by extensive analyses and experiments on common benchmarks.
2,197
null
SAMPLE-HD: Simultaneous Action and Motion Planning Learning Environment
Humans exhibit incredibly high levels of multi-modal understanding - combining visual cues with read, or heard knowledge comes easy to us and allows for very accurate interaction with the surrounding environment. Various simulation environments focus on providing data for tasks related to scene understanding, question answering, space exploration, visual navigation. In this work, we are providing a solution to encompass both, visual and behavioural aspects of simulation in a new environment for learning interactive reasoning in manipulation setup. SAMPLE-HD environment allows to generate various scenes composed of small household objects, to procedurally generate language instructions for manipulation, and to generate ground truth paths serving as training data.
2,198
null
Dynaformer: A Deep Learning Model for Ageing-aware Battery Discharge Prediction
Electrochemical batteries are ubiquitous devices in our society. When they are employed in mission-critical applications, the ability to precisely predict the end of discharge under highly variable environmental and operating conditions is of paramount importance in order to support operational decision-making. While there are accurate predictive models of the processes underlying the charge and discharge phases of batteries, the modelling of ageing and its effect on performance remains poorly understood. Such a lack of understanding often leads to inaccurate models or the need for time-consuming calibration procedures whenever the battery ages or its conditions change significantly. This represents a major obstacle to the real-world deployment of efficient and robust battery management systems. In this paper, we propose for the first time an approach that can predict the voltage discharge curve for batteries of any degradation level without the need for calibration. In particular, we introduce Dynaformer, a novel Transformer-based deep learning architecture which is able to simultaneously infer the ageing state from a limited number of voltage/current samples and predict the full voltage discharge curve for real batteries with high precision. Our experiments show that the trained model is effective for input current profiles of different complexities and is robust to a wide range of degradation levels. In addition to evaluating the performance of the proposed framework on simulated data, we demonstrate that a minimal amount of fine-tuning allows the model to bridge the simulation-to-real gap between simulations and real data collected from a set of batteries. The proposed methodology enables the utilization of battery-powered systems until the end of discharge in a controlled and predictable way, thereby significantly prolonging the operating cycles and reducing costs.
2,199
null
RMT-Net: Reject-aware Multi-Task Network for Modeling Missing-not-at-random Data in Financial Credit Scoring
In financial credit scoring, loan applications may be approved or rejected. We can only observe default/non-default labels for approved samples but have no observations for rejected samples, which leads to missing-not-at-random selection bias. Machine learning models trained on such biased data are inevitably unreliable. In this work, we find that the default/non-default classification task and the rejection/approval classification task are highly correlated, according to both real-world data study and theoretical analysis. Consequently, the learning of default/non-default can benefit from rejection/approval. Accordingly, we for the first time propose to model the biased credit scoring data with Multi-Task Learning (MTL). Specifically, we propose a novel Reject-aware Multi-Task Network (RMT-Net), which learns the task weights that control the information sharing from the rejection/approval task to the default/non-default task by a gating network based on rejection probabilities. RMT-Net leverages the relation between the two tasks that the larger the rejection probability, the more the default/non-default task needs to learn from the rejection/approval task. Furthermore, we extend RMT-Net to RMT-Net++ for modeling scenarios with multiple rejection/approval strategies. Extensive experiments are conducted on several datasets, and strongly verifies the effectiveness of RMT-Net on both approved and rejected samples. In addition, RMT-Net++ further improves RMT-Net's performances.
2,200
null
Non-Intrusive Reduced Models based on Operator Inference for Chaotic Systems
This work explores the physics-driven machine learning technique Operator Inference (OpInf) for predicting the state of chaotic dynamical systems. OpInf provides a non-intrusive approach to infer approximations of polynomial operators in reduced space without having access to the full order operators appearing in discretized models. Datasets for the physics systems are generated using conventional numerical solvers and then projected to a low-dimensional space via Principal Component Analysis (PCA). In latent space, a least-squares problem is set to fit a quadratic polynomial operator which is subsequently employed in a time-integration scheme in order to produce extrapolations in the same space. Once solved, the inverse PCA operation is applied for reconstructing the extrapolations in the original space. The quality of the OpInf predictions is assessed via the Normalized Root Mean Squared Error (NRMSE) metric from which the Valid Prediction Time (VPT) is computed. Numerical experiments considering the chaotic systems Lorenz 96 and the Kuramoto-Sivashinsky equation show promising forecasting capabilities of the OpInf reduced order models with VPT ranges that outperform state-of-the-art machine learning methods such as backpropagation and reservoir computing recurrent neural networks [1], as well as Markov neural operators [2]. The best results based on randomized initial conditions show that Lorenz 96 system can be forecasted up to 6.66 or 3.19 Lyapunov time units corresponding to the forcing terms F=8 and F=10, respectively, while the KS system achieved remarkable 794 Lyapunov time units.
2,201
null
A Near-Optimal Best-of-Both-Worlds Algorithm for Online Learning with Feedback Graphs
We consider online learning with feedback graphs, a sequential decision-making framework where the learner's feedback is determined by a directed graph over the action set. We present a computationally efficient algorithm for learning in this framework that simultaneously achieves near-optimal regret bounds in both stochastic and adversarial environments. The bound against oblivious adversaries is $\tilde{O} (\sqrt{\alpha T})$, where $T$ is the time horizon and $\alpha$ is the independence number of the feedback graph. The bound against stochastic environments is $O\big( (\ln T)^2 \max_{S\in \mathcal I(G)} \sum_{i \in S} \Delta_i^{-1}\big)$ where $\mathcal I(G)$ is the family of all independent sets in a suitably defined undirected version of the graph and $\Delta_i$ are the suboptimality gaps. The algorithm combines ideas from the EXP3++ algorithm for stochastic and adversarial bandits and the EXP3.G algorithm for feedback graphs with a novel exploration scheme. The scheme, which exploits the structure of the graph to reduce exploration, is key to obtain best-of-both-worlds guarantees with feedback graphs. We also extend our algorithm and results to a setting where the feedback graphs are allowed to change over time.
2,202
null
FETA: Fairness Enforced Verifying, Training, and Predicting Algorithms for Neural Networks
Algorithmic decision making driven by neural networks has become very prominent in applications that directly affect people's quality of life. In this paper, we study the problem of verifying, training, and guaranteeing individual fairness of neural network models. A popular approach for enforcing fairness is to translate a fairness notion into constraints over the parameters of the model. However, such a translation does not always guarantee fair predictions of the trained neural network model. To address this challenge, we develop a counterexample-guided post-processing technique to provably enforce fairness constraints at prediction time. Contrary to prior work that enforces fairness only on points around test or train data, we are able to enforce and guarantee fairness on all points in the input domain. Additionally, we propose an in-processing technique to use fairness as an inductive bias by iteratively incorporating fairness counterexamples in the learning process. We have implemented these techniques in a tool called FETA. Empirical evaluation on real-world datasets indicates that FETA is not only able to guarantee fairness on-the-fly at prediction time but also is able to train accurate models exhibiting a much higher degree of individual fairness.
2,203
null
Variance Reduction is an Antidote to Byzantines: Better Rates, Weaker Assumptions and Communication Compression as a Cherry on the Top
Byzantine-robustness has been gaining a lot of attention due to the growth of the interest in collaborative and federated learning. However, many fruitful directions, such as the usage of variance reduction for achieving robustness and communication compression for reducing communication costs, remain weakly explored in the field. This work addresses this gap and proposes Byz-VR-MARINA - a new Byzantine-tolerant method with variance reduction and compression. A key message of our paper is that variance reduction is key to fighting Byzantine workers more effectively. At the same time, communication compression is a bonus that makes the process more communication efficient. We derive theoretical convergence guarantees for Byz-VR-MARINA outperforming previous state-of-the-art for general non-convex and Polyak-Lojasiewicz loss functions. Unlike the concurrent Byzantine-robust methods with variance reduction and/or compression, our complexity results are tight and do not rely on restrictive assumptions such as boundedness of the gradients or limited compression. Moreover, we provide the first analysis of a Byzantine-tolerant method supporting non-uniform sampling of stochastic gradients. Numerical experiments corroborate our theoretical findings.
2,204
null
Vietnamese Hate and Offensive Detection using PhoBERT-CNN and Social Media Streaming Data
Society needs to develop a system to detect hate and offense to build a healthy and safe environment. However, current research in this field still faces four major shortcomings, including deficient pre-processing techniques, indifference to data imbalance issues, modest performance models, and lacking practical applications. This paper focused on developing an intelligent system capable of addressing these shortcomings. Firstly, we proposed an efficient pre-processing technique to clean comments collected from Vietnamese social media. Secondly, a novel hate speech detection (HSD) model, which is the combination of a pre-trained PhoBERT model and a Text-CNN model, was proposed for solving tasks in Vietnamese. Thirdly, EDA techniques are applied to deal with imbalanced data to improve the performance of classification models. Besides, various experiments were conducted as baselines to compare and investigate the proposed model's performance against state-of-the-art methods. The experiment results show that the proposed PhoBERT-CNN model outperforms SOTA methods and achieves an F1-score of 67,46% and 98,45% on two benchmark datasets, ViHSD and HSD-VLSP, respectively. Finally, we also built a streaming HSD application to demonstrate the practicality of our proposed system.
2,205
null
Deep Learning Opacity in Scientific Discovery
Philosophers have recently focused on critical, epistemological challenges that arise from the opacity of deep neural networks. One might conclude from this literature that doing good science with opaque models is exceptionally challenging, if not impossible. Yet, this is hard to square with the recent boom in optimism for AI in science alongside a flood of recent scientific breakthroughs driven by AI methods. In this paper, I argue that the disconnect between philosophical pessimism and scientific optimism is driven by a failure to examine how AI is actually used in science. I show that, in order to understand the epistemic justification for AI-powered breakthroughs, philosophers must examine the role played by deep learning as part of a wider process of discovery. The philosophical distinction between the 'context of discovery' and the 'context of justification' is helpful in this regard. I demonstrate the importance of attending to this distinction with two cases drawn from the scientific literature, and show that epistemic opacity need not diminish AI's capacity to lead scientists to significant and justifiable breakthroughs.
2,206
null
Efficient Scheduling of Data Augmentation for Deep Reinforcement Learning
In deep reinforcement learning (RL), data augmentation is widely considered as a tool to induce a set of useful priors about semantic consistency and improve sample efficiency and generalization performance. However, even when the prior is useful for generalization, distilling it to RL agent often interferes with RL training and degenerates sample efficiency. Meanwhile, the agent is forgetful of the prior due to the non-stationary nature of RL. These observations suggest two extreme schedules of distillation: (i) over the entire training; or (ii) only at the end. Hence, we devise a stand-alone network distillation method to inject the consistency prior at any time (even after RL), and a simple yet efficient framework to automatically schedule the distillation. Specifically, the proposed framework first focuses on mastering train environments regardless of generalization by adaptively deciding which {\it or no} augmentation to be used for the training. After this, we add the distillation to extract the remaining benefits for generalization from all the augmentations, which requires no additional new samples. In our experiments, we demonstrate the utility of the proposed framework, in particular, that considers postponing the augmentation to the end of RL training.
2,207
null
One Positive Label is Sufficient: Single-Positive Multi-Label Learning with Label Enhancement
Multi-label learning (MLL) learns from the examples each associated with multiple labels simultaneously, where the high cost of annotating all relevant labels for each training example is challenging for real-world applications. To cope with the challenge, we investigate single-positive multi-label learning (SPMLL) where each example is annotated with only one relevant label and show that one can successfully learn a theoretically grounded multi-label classifier for the problem. In this paper, a novel SPMLL method named {\proposed}, i.e., Single-positive MultI-label learning with Label Enhancement, is proposed. Specifically, an unbiased risk estimator is derived, which could be guaranteed to approximately converge to the optimal risk minimizer of fully supervised learning and shows that one positive label of each instance is sufficient to train the predictive model. Then, the corresponding empirical risk estimator is established via recovering the latent soft label as a label enhancement process, where the posterior density of the latent soft labels is approximate to the variational Beta density parameterized by an inference model. Experiments on benchmark datasets validate the effectiveness of the proposed method.