Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
2,308
null
Robust Longitudinal Control for Vehicular Autonomous Platoons Using Deep Reinforcement Learning
In the last few years, researchers have applied machine learning strategies in the context of vehicular platoons to increase the safety and efficiency of cooperative transportation. Reinforcement Learning methods have been employed in the longitudinal spacing control of Cooperative Adaptive Cruise Control systems, but to date, none of those studies have addressed problems of disturbance rejection in such scenarios. Characteristics such as uncertain parameters in the model and external interferences may prevent agents from reaching null-spacing errors when traveling at cruising speed. On the other hand, complex communication topologies lead to specific training processes that can not be generalized to other contexts, demanding re-training every time the configuration changes. Therefore, in this paper, we propose an approach to generalize the training process of a vehicular platoon, such that the acceleration command of each agent becomes independent of the network topology. Also, we have modeled the acceleration input as a term with integral action, such that the Convolutional Neural Network is capable of learning corrective actions when the states are disturbed by unknown effects. We illustrate the effectiveness of our proposal with experiments using different network topologies, uncertain parameters, and external forces. Comparative analyses, in terms of the steady-state error and overshoot response, were conducted against the state-of-the-art literature. The findings offer new insights concerning generalization and robustness of using Reinforcement Learning in the control of autonomous platoons.
2,309
null
MAD-EN: Microarchitectural Attack Detection through System-wide Energy Consumption
Microarchitectural attacks have become more threatening the hardware security than before with the increasing diversity of attacks such as Spectre and Meltdown. Vendor patches cannot keep up with the pace of the new threats, which makes the dynamic anomaly detection tools more evident than before. Unfortunately, previous studies utilize hardware performance counters that lead to high performance overhead and profile limited number of microarchitectural attacks due to the small number of counters that can be profiled concurrently. This yields those detection tools inefficient in real-world scenarios. In this study, we introduce MAD-EN dynamic detection tool that leverages system-wide energy consumption traces collected from a generic Intel RAPL tool to detect ongoing anomalies in a system. In our experiments, we show that CNN-based MAD-EN can detect 10 different microarchitectural attacks with a total of 15 variants with the highest F1 score of 0.999, which makes our tool the most generic attack detection tool so far. Moreover, individual attacks can be distinguished with a 98% accuracy after an anomaly is detected in a system. We demonstrate that MAD-EN introduces 69.3% less performance overhead compared to performance counter-based detection mechanisms.
2,310
null
Provably and Practically Efficient Neural Contextual Bandits
We consider the neural contextual bandit problem. In contrast to the existing work which primarily focuses on ReLU neural nets, we consider a general set of smooth activation functions. Under this more general setting, (i) we derive non-asymptotic error bounds on the difference between an overparameterized neural net and its corresponding neural tangent kernel, (ii) we propose an algorithm with a provably sublinear regret bound that is also efficient in the finite regime as demonstrated by empirical studies. The non-asymptotic error bounds may be of broader interest as a tool to establish the relation between the smoothness of the activation functions in neural contextual bandits and the smoothness of the kernels in kernel bandits.
2,311
null
Easy Variational Inference for Categorical Models via an Independent Binary Approximation
We pursue tractable Bayesian analysis of generalized linear models (GLMs) for categorical data. Thus far, GLMs are difficult to scale to more than a few dozen categories due to non-conjugacy or strong posterior dependencies when using conjugate auxiliary variable methods. We define a new class of GLMs for categorical data called categorical-from-binary (CB) models. Each CB model has a likelihood that is bounded by the product of binary likelihoods, suggesting a natural posterior approximation. This approximation makes inference straightforward and fast; using well-known auxiliary variables for probit or logistic regression, the product of binary models admits conjugate closed-form variational inference that is embarrassingly parallel across categories and invariant to category ordering. Moreover, an independent binary model simultaneously approximates multiple CB models. Bayesian model averaging over these can improve the quality of the approximation for any given dataset. We show that our approach scales to thousands of categories, outperforming posterior estimation competitors like Automatic Differentiation Variational Inference (ADVI) and No U-Turn Sampling (NUTS) in the time required to achieve fixed prediction quality.
2,312
null
Extensive Study of Multiple Deep Neural Networks for Complex Random Telegraph Signals
Time-fluctuating signals are ubiquitous and diverse in many physical, chemical, and biological systems, among which random telegraph signals (RTSs) refer to a series of instantaneous switching events between two discrete levels from single-particle movements. Reliable RTS analyses are crucial prerequisite to identify underlying mechanisms related to performance sensitivity. When numerous levels partake, complex patterns of multilevel RTSs occur, making their quantitative analysis exponentially difficult, hereby systematic approaches are found elusive. Here, we present a three-step analysis protocol via progressive knowledge-transfer, where the outputs of early step are passed onto a subsequent step. Especially, to quantify complex RTSs, we build three deep neural network architectures that can process temporal data well and demonstrate the model accuracy extensively with a large dataset of different RTS types affected by controlling background noise size. Our protocol offers structured schemes to quantify complex RTSs from which meaningful interpretation and inference can ensue.
2,313
null
Semantically-enhanced Topic Recommendation System for Software Projects
Software-related platforms have enabled their users to collaboratively label software entities with topics. Tagging software repositories with relevant topics can be exploited for facilitating various downstream tasks. For instance, a correct and complete set of topics assigned to a repository can increase its visibility. Consequently, this improves the outcome of tasks such as browsing, searching, navigation, and organization of repositories. Unfortunately, assigned topics are usually highly noisy, and some repositories do not have well-assigned topics. Thus, there have been efforts on recommending topics for software projects, however, the semantic relationships among these topics have not been exploited so far. We propose two recommender models for tagging software projects that incorporate the semantic relationship among topics. Our approach has two main phases; (1) we first take a collaborative approach to curate a dataset of quality topics specifically for the domain of software engineering and development. We also enrich this data with the semantic relationships among these topics and encapsulate them in a knowledge graph we call SED-KGraph. Then, (2) we build two recommender systems; The first one operates only based on the list of original topics assigned to a repository and the relationships specified in our knowledge graph. The second predictive model, however, assumes there are no topics available for a repository, hence it proceeds to predict the relevant topics based on both textual information of a software project and SED-KGraph. We built SED-KGraph in a crowd-sourced project with 170 contributors from both academia and industry. The experiment results indicate that our solutions outperform baselines that neglect the semantic relationships among topics by at least 25% and 23% in terms of ASR and MAP metrics.
2,314
null
To the Fairness Frontier and Beyond: Identifying, Quantifying, and Optimizing the Fairness-Accuracy Pareto Frontier
Algorithmic fairness has emerged as an important consideration when using machine learning to make high-stakes societal decisions. Yet, improved fairness often comes at the expense of model accuracy. While aspects of the fairness-accuracy tradeoff have been studied, most work reports the fairness and accuracy of various models separately; this makes model comparisons nearly impossible without a model-agnostic metric that reflects the balance of the two desiderata. We seek to identify, quantify, and optimize the empirical Pareto frontier of the fairness-accuracy tradeoff. Specifically, we identify and outline the empirical Pareto frontier through Tradeoff-between-Fairness-and-Accuracy (TAF) Curves; we then develop a metric to quantify this Pareto frontier through the weighted area under the TAF Curve which we term the Fairness-Area-Under-the-Curve (FAUC). TAF Curves provide the first empirical, model-agnostic characterization of the Pareto frontier, while FAUC provides the first metric to impartially compare model families on both fairness and accuracy. Both TAF Curves and FAUC can be employed with all group fairness definitions and accuracy measures. Next, we ask: Is it possible to expand the empirical Pareto frontier and thus improve the FAUC for a given collection of fitted models? We answer affirmately by developing a novel fair model stacking framework, FairStacks, that solves a convex program to maximize the accuracy of model ensemble subject to a score-bias constraint. We show that optimizing with FairStacks always expands the empirical Pareto frontier and improves the FAUC; we additionally study other theoretical properties of our proposed approach. Finally, we empirically validate TAF, FAUC, and FairStacks through studies on several real benchmark data sets, showing that FairStacks leads to major improvements in FAUC that outperform existing algorithmic fairness approaches.
2,315
null
Generative Models with Information-Theoretic Protection Against Membership Inference Attacks
Deep generative models, such as Generative Adversarial Networks (GANs), synthesize diverse high-fidelity data samples by estimating the underlying distribution of high dimensional data. Despite their success, GANs may disclose private information from the data they are trained on, making them susceptible to adversarial attacks such as membership inference attacks, in which an adversary aims to determine if a record was part of the training set. We propose an information theoretically motivated regularization term that prevents the generative model from overfitting to training data and encourages generalizability. We show that this penalty minimizes the JensenShannon divergence between components of the generator trained on data with different membership, and that it can be implemented at low cost using an additional classifier. Our experiments on image datasets demonstrate that with the proposed regularization, which comes at only a small added computational cost, GANs are able to preserve privacy and generate high-quality samples that achieve better downstream classification performance compared to non-private and differentially private generative models.
2,316
null
On Analyzing Generative and Denoising Capabilities of Diffusion-based Deep Generative Models
Diffusion-based Deep Generative Models (DDGMs) offer state-of-the-art performance in generative modeling. Their main strength comes from their unique setup in which a model (the backward diffusion process) is trained to reverse the forward diffusion process, which gradually adds noise to the input signal. Although DDGMs are well studied, it is still unclear how the small amount of noise is transformed during the backward diffusion process. Here, we focus on analyzing this problem to gain more insight into the behavior of DDGMs and their denoising and generative capabilities. We observe a fluid transition point that changes the functionality of the backward diffusion process from generating a (corrupted) image from noise to denoising the corrupted image to the final sample. Based on this observation, we postulate to divide a DDGM into two parts: a denoiser and a generator. The denoiser could be parameterized by a denoising auto-encoder, while the generator is a diffusion-based model with its own set of parameters. We experimentally validate our proposition, showing its pros and cons.
2,317
null
FELARE: Fair Scheduling of Machine Learning Applications on Heterogeneous Edge Systems
Edge computing enables smart IoT-based systems via concurrent and continuous execution of latency-sensitive machine learning (ML) applications. These edge-based machine learning systems are often battery-powered (i.e., energy-limited). They use heterogeneous resources with diverse computing performance (e.g., CPU, GPU, and/or FPGAs) to fulfill the latency constraints of ML applications. The challenge is to allocate user requests for different ML applications on the Heterogeneous Edge Computing Systems (HEC) with respect to both the energy and latency constraints of these systems. To this end, we study and analyze resource allocation solutions that can increase the on-time task completion rate while considering the energy constraint. Importantly, we investigate edge-friendly (lightweight) multi-objective mapping heuristics that do not become biased toward a particular application type to achieve the objectives; instead, the heuristics consider "fairness" across the concurrent ML applications in their mapping decisions. Performance evaluations demonstrate that the proposed heuristic outperforms widely-used heuristics in heterogeneous systems in terms of the latency and energy objectives, particularly, at low to moderate request arrival rates. We observed 8.9% improvement in on-time task completion rate and 12.6% in energy-saving without imposing any significant overhead on the edge system.
2,318
null
Weight Set Decomposition for Weighted Rank Aggregation: An interpretable and visual decision support tool
The problem of interpreting or aggregating multiple rankings is common to many real-world applications. Perhaps the simplest and most common approach is a weighted rank aggregation, wherein a (convex) weight is applied to each input ranking and then ordered. This paper describes a new tool for visualizing and displaying ranking information for the weighted rank aggregation method. Traditionally, the aim of rank aggregation is to summarize the information from the input rankings and provide one final ranking that hopefully represents a more accurate or truthful result than any one input ranking. While such an aggregated ranking is, and clearly has been, useful to many applications, it also obscures information. In this paper, we show the wealth of information that is available for the weighted rank aggregation problem due to its structure. We apply weight set decomposition to the set of convex multipliers, study the properties useful for understanding this decomposition, and visualize the indifference regions. This methodology reveals information--that is otherwise collapsed by the aggregated ranking--into a useful, interpretable, and intuitive decision support tool. Included are multiple illustrative examples, along with heuristic and exact algorithms for computing the weight set decomposition.
2,319
null
Universal Early Warning Signals of Phase Transitions in Climate Systems
The potential for complex systems to exhibit tipping points in which an equilibrium state undergoes a sudden and potentially irreversible shift is well established, but prediction of these events using standard forecast modeling techniques is quite difficult. This has led to the development of an alternative suite of methods that seek to identify signatures of critical phenomena in data, which are expected to occur in advance of many classes of dynamical bifurcation. Crucially, the manifestations of these critical phenomena are generic across a variety of systems, meaning that data-intensive deep learning methods can be trained on (abundant) synthetic data and plausibly prove effective when transferred to (more limited) empirical data sets. This paper provides a proof of concept for this approach as applied to lattice phase transitions: a deep neural network trained exclusively on 2D Ising model phase transitions is tested on a number of real and simulated climate systems with considerable success. Its accuracy frequently surpasses that of conventional statistical indicators, with performance shown to be consistently improved by the inclusion of spatial indicators. Tools such as this may offer valuable insight into climate tipping events, as remote sensing measurements provide increasingly abundant data on complex geospatially-resolved Earth systems.
2,320
null
Distributed Graph Neural Network Training with Periodic Historical Embedding Synchronization
Despite the recent success of Graph Neural Networks (GNNs), it remains challenging to train a GNN on large graphs, which are prevalent in various applications such as social network, recommender systems, and knowledge graphs. Traditional sampling-based methods accelerate GNN by dropping edges and nodes, which impairs the graph integrity and model performance. Differently, distributed GNN algorithms, which accelerate GNN training by utilizing multiple computing devices, can be classified into two types: "partition-based" methods enjoy low communication costs but suffer from information loss due to dropped edges, while "propagation-based" methods avoid information loss but suffer prohibitive communication overhead. To jointly address these problems, this paper proposes DIstributed Graph Embedding SynchronizaTion (DIGEST), a novel distributed GNN training framework that synergizes the complementary strength of both categories of existing methods. During subgraph parallel training, we propose to let each device store the historical embedding of its neighbors in other subgraphs. Therefore, our method does not discard any neighbors in other subgraphs, nor does it updates them intensively. This effectively avoids (1) the intensive computation on explosively-increasing neighbors and (2) excessive communications across different devices. We proved that the approximation error induced by the staleness of historical embedding can be upper bounded and it does NOT affect the GNN model's expressiveness. More importantly, our convergence analysis demonstrates that DIGEST enjoys a state-of-the-art convergence rate. Extensive experimental evaluation on large, real-world graph datasets shows that DIGEST achieves up to $21.82\times$ speedup without compromising the performance compared to state-of-the-art distributed GNN training frameworks.
2,321
null
A comparative study of back propagation and its alternatives on multilayer perceptrons
The de facto algorithm for training the back pass of a feedforward neural network is backpropagation (BP). The use of almost-everywhere differentiable activation functions made it efficient and effective to propagate the gradient backwards through layers of deep neural networks. However, in recent years, there has been much research in alternatives to backpropagation. This analysis has largely focused on reaching state-of-the-art accuracy in multilayer perceptrons (MLPs) and convolutional neural networks (CNNs). In this paper, we analyze the stability and similarity of predictions and neurons in MLPs and propose a new variation of one of the algorithms.
2,322
null
Asynchronous Hierarchical Federated Learning
Federated Learning is a rapidly growing area of research and with various benefits and industry applications. Typical federated patterns have some intrinsic issues such as heavy server traffic, long periods of convergence, and unreliable accuracy. In this paper, we address these issues by proposing asynchronous hierarchical federated learning, in which the central server uses either the network topology or some clustering algorithm to assign clusters for workers (i.e., client devices). In each cluster, a special aggregator device is selected to enable hierarchical learning, leads to efficient communication between server and workers, so that the burden of the server can be significantly reduced. In addition, asynchronous federated learning schema is used to tolerate heterogeneity of the system and achieve fast convergence, i.e., the server aggregates the gradients from the workers weighted by a staleness parameter to update the global model, and regularized stochastic gradient descent is performed in workers, so that the instability of asynchronous learning can be alleviated. We evaluate the proposed algorithm on CIFAR-10 image classification task, the experimental results demonstrate the effectiveness of asynchronous hierarchical federated learning.
2,323
null
Learning Instance-Specific Data Augmentations
Existing data augmentation methods typically assume independence between transformations and inputs: they use the same transformation distribution for all input instances. We explain why this can be problematic and propose InstaAug, a method for automatically learning input-specific augmentations from data. This is achieved by introducing an augmentation module that maps an input to a distribution over transformations. This is simultaneously trained alongside the base model in a fully end-to-end manner using only the training data. We empirically demonstrate that InstaAug learns meaningful augmentations for a wide range of transformation classes, which in turn provides better performance on supervised and self-supervised tasks compared with augmentations that assume input--transformation independence.
2,324
null
FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation
The ability to estimate epistemic uncertainty is often crucial when deploying machine learning in the real world, but modern methods often produce overconfident, uncalibrated uncertainty predictions. A common approach to quantify epistemic uncertainty, usable across a wide class of prediction models, is to train a model ensemble. In a naive implementation, the ensemble approach has high computational cost and high memory demand. This challenges in particular modern deep learning, where even a single deep network is already demanding in terms of compute and memory, and has given rise to a number of attempts to emulate the model ensemble without actually instantiating separate ensemble members. We introduce FiLM-Ensemble, a deep, implicit ensemble method based on the concept of Feature-wise Linear Modulation (FiLM). That technique was originally developed for multi-task learning, with the aim of decoupling different tasks. We show that the idea can be extended to uncertainty quantification: by modulating the network activations of a single deep network with FiLM, one obtains a model ensemble with high diversity, and consequently well-calibrated estimates of epistemic uncertainty, with low computational overhead in comparison. Empirically, FiLM-Ensemble outperforms other implicit ensemble methods, and it and comes very close to the upper bound of an explicit ensemble of networks (sometimes even beating it), at a fraction of the memory cost.
2,325
null
PandA: Unsupervised Learning of Parts and Appearances in the Feature Maps of GANs
Recent advances in the understanding of Generative Adversarial Networks (GANs) have led to remarkable progress in visual editing and synthesis tasks, capitalizing on the rich semantics that are embedded in the latent spaces of pre-trained GANs. However, existing methods are often tailored to specific GAN architectures and are limited to either discovering global semantic directions that do not facilitate localized control, or require some form of supervision through manually provided regions or segmentation masks. In this light, we present an architecture-agnostic approach that jointly discovers factors representing spatial parts and their appearances in an entirely unsupervised fashion. These factors are obtained by applying a semi-nonnegative tensor factorization on the feature maps, which in turn enables context-aware local image editing with pixel-level control. In addition, we show that the discovered appearance factors correspond to saliency maps that localize concepts of interest, without using any labels. Experiments on a wide range of GAN architectures and datasets show that, in comparison to the state of the art, our method is far more efficient in terms of training time and, most importantly, provides much more accurate localized control. Our code is available at: https://github.com/james-oldfield/PandA.
2,326
null
Evolving Domain Generalization
Domain generalization aims to learn a predictive model from multiple different but related source tasks that can generalize well to a target task without the need of accessing any target data. Existing domain generalization methods ignore the relationship between tasks, implicitly assuming that all the tasks are sampled from a stationary environment. Therefore, they can fail when deployed in an evolving environment. To this end, we formulate and study the \emph{evolving domain generalization} (EDG) scenario, which exploits not only the source data but also their evolving pattern to generate a model for the unseen task. Our theoretical result reveals the benefits of modeling the relation between two consecutive tasks by learning a globally consistent directional mapping function. In practice, our analysis also suggests solving the DDG problem in a meta-learning manner, which leads to \emph{directional prototypical network}, the first method for the DDG problem. Empirical evaluation of both synthetic and real-world data sets validates the effectiveness of our approach.
2,327
null
Online PAC-Bayes Learning
Most PAC-Bayesian bounds hold in the batch learning setting where data is collected at once, prior to inference or prediction. This somewhat departs from many contemporary learning problems where data streams are collected and the algorithms must dynamically adjust. We prove new PAC-Bayesian bounds in this online learning framework, leveraging an updated definition of regret, and we revisit classical PAC-Bayesian results with a batch-to-online conversion, extending their remit to the case of dependent data. Our results hold for bounded losses, potentially \emph{non-convex}, paving the way to promising developments in online learning.
2,328
null
What Knowledge Gets Distilled in Knowledge Distillation?
Knowledge distillation aims to transfer useful information from a teacher network to a student network, with the primary goal of improving the student's performance for the task at hand. Over the years, there has a been a deluge of novel techniques and use cases of knowledge distillation. Yet, despite the various improvements, there seems to be a glaring gap in the community's fundamental understanding of the process. Specifically, what is the knowledge that gets distilled in knowledge distillation? In other words, in what ways does the student become similar to the teacher? Does it start to localize objects in the same way? Does it get fooled by the same adversarial samples? Does its data invariance properties become similar? Our work presents a comprehensive study to try to answer these questions and more. Our results, using image classification as a case study and three state-of-the-art knowledge distillation techniques, show that knowledge distillation methods can indeed indirectly distill other kinds of properties beyond improving task performance. By exploring these questions, we hope for our work to provide a clearer picture of what happens during knowledge distillation.
2,329
null
Learning (Very) Simple Generative Models Is Hard
Motivated by the recent empirical successes of deep generative models, we study the computational complexity of the following unsupervised learning problem. For an unknown neural network $F:\mathbb{R}^d\to\mathbb{R}^{d'}$, let $D$ be the distribution over $\mathbb{R}^{d'}$ given by pushing the standard Gaussian $\mathcal{N}(0,\textrm{Id}_d)$ through $F$. Given i.i.d. samples from $D$, the goal is to output any distribution close to $D$ in statistical distance. We show under the statistical query (SQ) model that no polynomial-time algorithm can solve this problem even when the output coordinates of $F$ are one-hidden-layer ReLU networks with $\log(d)$ neurons. Previously, the best lower bounds for this problem simply followed from lower bounds for supervised learning and required at least two hidden layers and $\mathrm{poly}(d)$ neurons [Daniely-Vardi '21, Chen-Gollakota-Klivans-Meka '22]. The key ingredient in our proof is an ODE-based construction of a compactly supported, piecewise-linear function $f$ with polynomially-bounded slopes such that the pushforward of $\mathcal{N}(0,1)$ under $f$ matches all low-degree moments of $\mathcal{N}(0,1)$.
2,330
null
TransFuser: Imitation with Transformer-Based Sensor Fusion for Autonomous Driving
How should we integrate representations from complementary sensors for autonomous driving? Geometry-based fusion has shown promise for perception (e.g. object detection, motion forecasting). However, in the context of end-to-end driving, we find that imitation learning based on existing sensor fusion methods underperforms in complex driving scenarios with a high density of dynamic agents. Therefore, we propose TransFuser, a mechanism to integrate image and LiDAR representations using self-attention. Our approach uses transformer modules at multiple resolutions to fuse perspective view and bird's eye view feature maps. We experimentally validate its efficacy on a challenging new benchmark with long routes and dense traffic, as well as the official leaderboard of the CARLA urban driving simulator. At the time of submission, TransFuser outperforms all prior work on the CARLA leaderboard in terms of driving score by a large margin. Compared to geometry-based fusion, TransFuser reduces the average collisions per kilometer by 48%.
2,331
null
Private Federated Submodel Learning with Sparsification
We investigate the problem of private read update write (PRUW) in federated submodel learning (FSL) with sparsification. In FSL, a machine learning model is divided into multiple submodels, where each user updates only the submodel that is relevant to the user's local data. PRUW is the process of privately performing FSL by reading from and writing to the required submodel without revealing the submodel index, or the values of updates to the databases. Sparsification is a widely used concept in learning, where the users update only a small fraction of parameters to reduce the communication cost. Revealing the coordinates of these selected (sparse) updates leaks privacy of the user. We show how PRUW in FSL can be performed with sparsification. We propose a novel scheme which privately reads from and writes to arbitrary parameters of any given submodel, without revealing the submodel index, values of updates, or the coordinates of the sparse updates, to databases. The proposed scheme achieves significantly lower reading and writing costs compared to what is achieved without sparsification.
2,332
null
A deep learning approach to halo merger tree construction
A key ingredient for semi-analytic models (SAMs) of galaxy formation is the mass assembly history of haloes, encoded in a tree structure. The most commonly used method to construct halo merger histories is based on the outcomes of high-resolution, computationally intensive N-body simulations. We show that machine learning (ML) techniques, in particular Generative Adversarial Networks (GANs), are a promising new tool to tackle this problem with a modest computational cost and retaining the best features of merger trees from simulations. We train our GAN model with a limited sample of merger trees from the EAGLE simulation suite, constructed using two halo finders-tree builder algorithms: SUBFIND-D-TREES and ROCKSTAR-ConsistentTrees. Our GAN model successfully learns to generate well-constructed merger tree structures with high temporal resolution, and to reproduce the statistical features of the sample of merger trees used for training, when considering up to three variables in the training process. These inputs, whose representations are also learned by our GAN model, are mass of the halo progenitors and the final descendant, progenitor type (main halo or satellite) and distance of a progenitor to that in the main branch. The inclusion of the latter two inputs greatly improves the final learned representation of the halo mass growth history, especially for SUBFIND-like ML trees. When comparing equally sized samples of ML merger trees with those of the EAGLE simulation, we find better agreement for SUBFIND-like ML trees. Finally, our GAN-based framework can be utilised to construct merger histories of low and intermediate mass haloes, the most abundant in cosmological simulations.
2,333
null
Semi-Supervised Cross-Silo Advertising with Partial Knowledge Transfer
As an emerging secure learning paradigm in leveraging cross-agency private data, vertical federated learning (VFL) is expected to improve advertising models by enabling the joint learning of complementary user attributes privately owned by the advertiser and the publisher. However, there are two key challenges in applying it to advertising systems: a) the limited scale of labeled overlapping samples, and b) the high cost of real-time cross-agency serving. In this paper, we propose a semi-supervised split distillation framework VFed-SSD to alleviate the two limitations. We identify that: i) there are massive unlabeled overlapped data available in advertising systems, and ii) we can keep a balance between model performance and inference cost by decomposing the federated model. Specifically, we develop a self-supervised task Matched Pair Detection (MPD) to exploit the vertically partitioned unlabeled data and propose the Split Knowledge Distillation (SplitKD) schema to avoid cross-agency serving. Empirical studies on three industrial datasets exhibit the effectiveness of our methods, with the median AUC over all datasets improved by 0.86% and 2.6% in the local deployment mode and the federated deployment mode respectively. Overall, our framework provides an efficient federation-enhanced solution for real-time display advertising with minimal deploying cost and significant performance lift.
2,334
null
FedHarmony: Unlearning Scanner Bias with Distributed Data
The ability to combine data across scanners and studies is vital for neuroimaging, to increase both statistical power and the representation of biological variability. However, combining datasets across sites leads to two challenges: first, an increase in undesirable non-biological variance due to scanner and acquisition differences - the harmonisation problem - and second, data privacy concerns due to the inherently personal nature of medical imaging data, meaning that sharing them across sites may risk violation of privacy laws. To overcome these restrictions, we propose FedHarmony: a harmonisation framework operating in the federated learning paradigm. We show that to remove the scanner-specific effects, we only need to share the mean and standard deviation of the learned features, helping to protect individual subjects' privacy. We demonstrate our approach across a range of realistic data scenarios, using real multi-site data from the ABIDE dataset, thus showing the potential utility of our method for MRI harmonisation across studies. Our code is available at https://github.com/nkdinsdale/FedHarmony.
2,335
null
You Can't Count on Luck: Why Decision Transformers Fail in Stochastic Environments
Recently, methods such as Decision Transformer that reduce reinforcement learning to a prediction task and solve it via supervised learning (RvS) have become popular due to their simplicity, robustness to hyperparameters, and strong overall performance on offline RL tasks. However, simply conditioning a probabilistic model on a desired return and taking the predicted action can fail dramatically in stochastic environments since trajectories that result in a return may have only achieved that return due to luck. In this work, we describe the limitations of RvS approaches in stochastic environments and propose a solution. Rather than simply conditioning on the return of a single trajectory as is standard practice, our proposed method, ESPER, learns to cluster trajectories and conditions on average cluster returns, which are independent from environment stochasticity. Doing so allows ESPER to achieve strong alignment between target return and expected performance in real environments. We demonstrate this in several challenging stochastic offline-RL tasks including the challenging puzzle game 2048, and Connect Four playing against a stochastic opponent. In all tested domains, ESPER achieves significantly better alignment between the target return and achieved return than simply conditioning on returns. ESPER also achieves higher maximum performance than even the value-based baselines.
2,336
null
Classification of EEG Motor Imagery Using Deep Learning for Brain-Computer Interface Systems
A trained T1 class Convolutional Neural Network (CNN) model will be used to examine its ability to successfully identify motor imagery when fed pre-processed electroencephalography (EEG) data. In theory, and if the model has been trained accurately, it should be able to identify a class and label it accordingly. The CNN model will then be restored and used to try and identify the same class of motor imagery data using much smaller sampled data in an attempt to simulate live data.
2,337
null
Timing is Everything: Learning to Act Selectively with Costly Actions and Budgetary Constraints
Many real-world settings involve costs for performing actions; transaction costs in financial systems and fuel costs being common examples. In these settings, performing actions at each time step quickly accumulates costs leading to vastly suboptimal outcomes. Additionally, repeatedly acting produces wear and tear and ultimately, damage. Determining when to act is crucial for achieving successful outcomes and yet, the challenge of efficiently learning to behave optimally when actions incur minimally bounded costs remains unresolved. In this paper, we introduce a reinforcement learning (RL) framework named Learnable Impulse Control Reinforcement Algorithm (LICRA), for learning to optimally select both when to act and which actions to take when actions incur costs. At the core of LICRA is a nested structure that combines RL and a form of policy known as impulse control which learns to maximise objectives when actions incur costs. We prove that LICRA, which seamlessly adopts any RL method, converges to policies that optimally select when to perform actions and their optimal magnitudes. We then augment LICRA to handle problems in which the agent can perform at most $k<\infty$ actions and more generally, faces a budget constraint. We show LICRA learns the optimal value function and ensures budget constraints are satisfied almost surely. We demonstrate empirically LICRA's superior performance against benchmark RL methods in OpenAI gym's Lunar Lander and in Highway environments and a variant of the Merton portfolio problem within finance.
2,338
null
Knowledge Graph - Deep Learning: A Case Study in Question Answering in Aviation Safety Domain
In the commercial aviation domain, there are a large number of documents, like, accident reports (NTSB, ASRS) and regulatory directives (ADs). There is a need for a system to access these diverse repositories efficiently in order to service needs in the aviation industry, like maintenance, compliance, and safety. In this paper, we propose a Knowledge Graph (KG) guided Deep Learning (DL) based Question Answering (QA) system for aviation safety. We construct a Knowledge Graph from Aircraft Accident reports and contribute this resource to the community of researchers. The efficacy of this resource is tested and proved by the aforesaid QA system. Natural Language Queries constructed from the documents mentioned above are converted into SPARQL (the interface language of the RDF graph database) queries and answered. On the DL side, we have two different QA models: (i) BERT QA which is a pipeline of Passage Retrieval (Sentence-BERT based) and Question Answering (BERT based), and (ii) the recently released GPT-3. We evaluate our system on a set of queries created from the accident reports. Our combined QA system achieves 9.3% increase in accuracy over GPT-3 and 40.3% increase over BERT QA. Thus, we infer that KG-DL performs better than either singly.
2,339
null
Hollywood Identity Bias Dataset: A Context Oriented Bias Analysis of Movie Dialogues
Movies reflect society and also hold power to transform opinions. Social biases and stereotypes present in movies can cause extensive damage due to their reach. These biases are not always found to be the need of storyline but can creep in as the author's bias. Movie production houses would prefer to ascertain that the bias present in a script is the story's demand. Today, when deep learning models can give human-level accuracy in multiple tasks, having an AI solution to identify the biases present in the script at the writing stage can help them avoid the inconvenience of stalled release, lawsuits, etc. Since AI solutions are data intensive and there exists no domain specific data to address the problem of biases in scripts, we introduce a new dataset of movie scripts that are annotated for identity bias. The dataset contains dialogue turns annotated for (i) bias labels for seven categories, viz., gender, race/ethnicity, religion, age, occupation, LGBTQ, and other, which contains biases like body shaming, personality bias, etc. (ii) labels for sensitivity, stereotype, sentiment, emotion, emotion intensity, (iii) all labels annotated with context awareness, (iv) target groups and reason for bias labels and (v) expert-driven group-validation process for high quality annotations. We also report various baseline performances for bias identification and category detection on our dataset.
2,340
null
Towards Context-Aware Neural Performance-Score Synchronisation
Music can be represented in multiple forms, such as in the audio form as a recording of a performance, in the symbolic form as a computer readable score, or in the image form as a scan of the sheet music. Music synchronisation provides a way to navigate among multiple representations of music in a unified manner by generating an accurate mapping between them, lending itself applicable to a myriad of domains like music education, performance analysis, automatic accompaniment and music editing. Traditional synchronisation methods compute alignment using knowledge-driven and stochastic approaches, typically employing handcrafted features. These methods are often unable to generalise well to different instruments, acoustic environments and recording conditions, and normally assume complete structural agreement between the performances and the scores. This PhD furthers the development of performance-score synchronisation research by proposing data-driven, context-aware alignment approaches, on three fronts: Firstly, I replace the handcrafted features by employing a metric learning based approach that is adaptable to different acoustic settings and performs well in data-scarce conditions. Secondly, I address the handling of structural differences between the performances and scores, which is a common limitation of standard alignment methods. Finally, I eschew the reliance on both feature engineering and dynamic programming, and propose a completely data-driven synchronisation method that computes alignments using a neural framework, whilst also being robust to structural differences between the performances and scores.
2,341
null
Evaluating Robustness to Dataset Shift via Parametric Robustness Sets
We give a method for proactively identifying small, plausible shifts in distribution which lead to large differences in model performance. To ensure that these shifts are plausible, we parameterize them in terms of interpretable changes in causal mechanisms of observed variables. This defines a parametric robustness set of plausible distributions and a corresponding worst-case loss. While the loss under an individual parametric shift can be estimated via reweighting techniques such as importance sampling, the resulting worst-case optimization problem is non-convex, and the estimate may suffer from large variance. For small shifts, however, we can construct a local second-order approximation to the loss under shift and cast the problem of finding a worst-case shift as a particular non-convex quadratic optimization problem, for which efficient algorithms are available. We demonstrate that this second-order approximation can be estimated directly for shifts in conditional exponential family models, and we bound the approximation error. We apply our approach to a computer vision task (classifying gender from images), revealing sensitivity to shifts in non-causal attributes.
2,342
null
Hide and Seek: on the Stealthiness of Attacks against Deep Learning Systems
With the growing popularity of artificial intelligence and machine learning, a wide spectrum of attacks against deep learning models have been proposed in the literature. Both the evasion attacks and the poisoning attacks attempt to utilize adversarially altered samples to fool the victim model to misclassify the adversarial sample. While such attacks claim to be or are expected to be stealthy, i.e., imperceptible to human eyes, such claims are rarely evaluated. In this paper, we present the first large-scale study on the stealthiness of adversarial samples used in the attacks against deep learning. We have implemented 20 representative adversarial ML attacks on six popular benchmarking datasets. We evaluate the stealthiness of the attack samples using two complementary approaches: (1) a numerical study that adopts 24 metrics for image similarity or quality assessment; and (2) a user study of 3 sets of questionnaires that has collected 20,000+ annotations from 1,000+ responses. Our results show that the majority of the existing attacks introduce nonnegligible perturbations that are not stealthy to human eyes. We further analyze the factors that contribute to attack stealthiness. We further examine the correlation between the numerical analysis and the user studies, and demonstrate that some image quality metrics may provide useful guidance in attack designs, while there is still a significant gap between assessed image quality and visual stealthiness of attacks.
2,343
null
Minimax Classification under Concept Drift with Multidimensional Adaptation and Performance Guarantees
The statistical characteristics of instance-label pairs often change with time in practical scenarios of supervised classification. Conventional learning techniques adapt to such concept drift accounting for a scalar rate of change by means of a carefully chosen learning rate, forgetting factor, or window size. However, the time changes in common scenarios are multidimensional, i.e., different statistical characteristics often change in a different manner. This paper presents adaptive minimax risk classifiers (AMRCs) that account for multidimensional time changes by means of a multivariate and high-order tracking of the time-varying underlying distribution. In addition, differently from conventional techniques, AMRCs can provide computable tight performance guarantees. Experiments on multiple benchmark datasets show the classification improvement of AMRCs compared to the state-of-the-art and the reliability of the presented performance guarantees.
2,344
null
Optimal Activation Functions for the Random Features Regression Model
The asymptotic mean squared test error and sensitivity of the Random Features Regression model (RFR) have been recently studied. We build on this work and identify in closed-form the family of Activation Functions (AFs) that minimize a combination of the test error and sensitivity of the RFR under different notions of functional parsimony. We find scenarios under which the optimal AFs are linear, saturated linear functions, or expressible in terms of Hermite polynomials. Finally, we show how using optimal AFs impacts well-established properties of the RFR model, such as its double descent curve, and the dependency of its optimal regularization parameter on the observation noise level.
2,345
null
Inducing bias is simpler than you think
Machine learning may be oblivious to human bias but it is not immune to its perpetuation. Marginalisation and iniquitous group representation are often traceable in the very data used for training, and may be reflected or even enhanced by the learning models. To counter this, some of the model accuracy can be traded off for a secondary objective that helps prevent a specific type of bias. Multiple notions of fairness have been proposed to this end but recent studies show that some fairness criteria often stand in mutual competition. In the present work, we introduce a solvable high-dimensional model of data imbalance, where parametric control over the many bias-inducing factors allows for an extensive exploration of the bias inheritance mechanism. Through the tools of statistical physics, we analytically characterise the typical behaviour of learning models trained in our synthetic framework and find similar unfairness behaviours as those observed on more realistic data. However, we also identify a positive transfer effect between the different subpopulations within the data. This suggests that mixing data with different statistical properties could be helpful, provided the learning model is made aware of this structure. Finally, we analyse the issue of bias mitigation: by reweighing the various terms in the training loss, we indirectly minimise standard unfairness metrics and highlight their incompatibilities. Leveraging the insights on positive transfer, we also propose a theory-informed mitigation strategy, based on the introduction of coupled learning models. By allowing each model to specialise on a different community within the data, we find that multiple fairness criteria and high accuracy can be achieved simultaneously.
2,346
null
Continuous Temporal Graph Networks for Event-Based Graph Data
There has been an increasing interest in modeling continuous-time dynamics of temporal graph data. Previous methods encode time-evolving relational information into a low-dimensional representation by specifying discrete layers of neural networks, while real-world dynamic graphs often vary continuously over time. Hence, we propose Continuous Temporal Graph Networks (CTGNs) to capture the continuous dynamics of temporal graph data. We use both the link starting timestamps and link duration as evolving information to model the continuous dynamics of nodes. The key idea is to use neural ordinary differential equations (ODE) to characterize the continuous dynamics of node representations over dynamic graphs. We parameterize ordinary differential equations using a novel graph neural network. The existing dynamic graph networks can be considered as a specific discretization of CTGNs. Experiment results on both transductive and inductive tasks demonstrate the effectiveness of our proposed approach over competitive baselines.
2,347
null
Online Meta-Learning in Adversarial Multi-Armed Bandits
We study meta-learning for adversarial multi-armed bandits. We consider the online-within-online setup, in which a player (learner) encounters a sequence of multi-armed bandit episodes. The player's performance is measured as regret against the best arm in each episode, according to the losses generated by an adversary. The difficulty of the problem depends on the empirical distribution of the per-episode best arm chosen by the adversary. We present an algorithm that can leverage the non-uniformity in this empirical distribution, and derive problem-dependent regret bounds. This solution comprises an inner learner that plays each episode separately, and an outer learner that updates the hyper-parameters of the inner algorithm between the episodes. In the case where the best arm distribution is far from uniform, it improves upon the best bound that can be achieved by any online algorithm executed on each episode individually without meta-learning.
2,348
null
Variational inference via Wasserstein gradient flows
Along with Markov chain Monte Carlo (MCMC) methods, variational inference (VI) has emerged as a central computational approach to large-scale Bayesian inference. Rather than sampling from the true posterior $\pi$, VI aims at producing a simple but effective approximation $\hat \pi$ to $\pi$ for which summary statistics are easy to compute. However, unlike the well-studied MCMC methodology, VI is still poorly understood and dominated by heuristics. In this work, we propose principled methods for VI, in which $\hat \pi$ is taken to be a Gaussian or a mixture of Gaussians, which rest upon the theory of gradient flows on the Bures-Wasserstein space of Gaussian measures. Akin to MCMC, it comes with strong theoretical guarantees when $\pi$ is log-concave.
2,349
null
Learning brain MRI quality control: a multi-factorial generalization problem
Due to the growing number of MRI data, automated quality control (QC) has become essential, especially for larger scale analysis. Several attempts have been made in order to develop reliable and scalable QC pipelines. However, the generalization of these methods on new data independent of those used for learning is a difficult problem because of the biases inherent in MRI data. This work aimed at evaluating the performances of the MRIQC pipeline on various large-scale datasets (ABIDE, N = 1102 and CATI derived datasets, N = 9037) used for both training and evaluation purposes. We focused our analysis on the MRIQC preprocessing steps and tested the pipeline with and without them. We further analyzed the site-wise and study-wise predicted classification probability distributions of the models without preprocessing trained on ABIDE and CATI data. Our main results were that a model using features extracted from MRIQC without preprocessing yielded the best results when trained and evaluated on large multi-center datasets with a heterogeneous population (an improvement of the ROC-AUC score on unseen data of 0.10 for the model trained on a subset of the CATI dataset). We concluded that a model trained with data from a heterogeneous population, such as the CATI dataset, provides the best scores on unseen data. In spite of the performance improvement, the generalization abilities of the models remain questionable when looking at the site-wise/study-wise probability predictions and the optimal classification threshold derived from them.
2,350
null
FedWalk: Communication Efficient Federated Unsupervised Node Embedding with Differential Privacy
Node embedding aims to map nodes in the complex graph into low-dimensional representations. The real-world large-scale graphs and difficulties of labeling motivate wide studies of unsupervised node embedding problems. Nevertheless, previous effort mostly operates in a centralized setting where a complete graph is given. With the growing awareness of data privacy, data holders who are only aware of one vertex and its neighbours demand greater privacy protection. In this paper, we introduce FedWalk, a random-walk-based unsupervised node embedding algorithm that operates in such a node-level visibility graph with raw graph information remaining locally. FedWalk is designed to offer centralized competitive graph representation capability with data privacy protection and great communication efficiency. FedWalk instantiates the prevalent federated paradigm and contains three modules. We first design a hierarchical clustering tree (HCT) constructor to extract the structural feature of each node. A dynamic time warping algorithm seamlessly handles the structural heterogeneity across different nodes. Based on the constructed HCT, we then design a random walk generator, wherein a sequence encoder is designed to preserve privacy and a two-hop neighbor predictor is designed to save communication cost. The generated random walks are then used to update node embedding based on a SkipGram model. Extensive experiments on two large graphs demonstrate that Fed-Walk achieves competitive representativeness as a centralized node embedding algorithm does with only up to 1.8% Micro-F1 score and 4.4% Marco-F1 score loss while reducing about 6.7 times of inter-device communication per walk.
2,351
null
A robust and lightweight deep attention multiple instance learning algorithm for predicting genetic alterations
Deep-learning models based on whole-slide digital pathology images (WSIs) become increasingly popular for predicting molecular biomarkers. Instance-based models has been the mainstream strategy for predicting genetic alterations using WSIs although bag-based models along with self-attention mechanism-based algorithms have been proposed for other digital pathology applications. In this paper, we proposed a novel Attention-based Multiple Instance Mutation Learning (AMIML) model for predicting gene mutations. AMIML was comprised of successive 1-D convolutional layers, a decoder, and a residual weight connection to facilitate further integration of a lightweight attention mechanism to detect the most predictive image patches. Using data for 24 clinically relevant genes from four cancer cohorts in The Cancer Genome Atlas (TCGA) studies (UCEC, BRCA, GBM and KIRC), we compared AMIML with one popular instance-based model and four recently published bag-based models (e.g., CHOWDER, HE2RNA, etc.). AMIML demonstrated excellent robustness, not only outperforming all the five baseline algorithms in the vast majority of the tested genes (17 out of 24), but also providing near-best-performance for the other seven genes. Conversely, the performance of the baseline published algorithms varied across different cancers/genes. In addition, compared to the published models for genetic alterations, AMIML provided a significant improvement for predicting a wide range of genes (e.g., KMT2C, TP53, and SETD2 for KIRC; ERBB2, BRCA1, and BRCA2 for BRCA; JAK1, POLE, and MTOR for UCEC) as well as produced outstanding predictive models for other clinically relevant gene mutations, which have not been reported in the current literature. Furthermore, with the flexible and interpretable attention-based MIL pooling mechanism, AMIML could further zero-in and detect predictive image patches.
2,352
null
VQ-AR: Vector Quantized Autoregressive Probabilistic Time Series Forecasting
Time series models aim for accurate predictions of the future given the past, where the forecasts are used for important downstream tasks like business decision making. In practice, deep learning based time series models come in many forms, but at a high level learn some continuous representation of the past and use it to output point or probabilistic forecasts. In this paper, we introduce a novel autoregressive architecture, VQ-AR, which instead learns a \emph{discrete} set of representations that are used to predict the future. Extensive empirical comparison with other competitive deep learning models shows that surprisingly such a discrete set of representations gives state-of-the-art or equivalent results on a wide variety of time series datasets. We also highlight the shortcomings of this approach, explore its zero-shot generalization capabilities, and present an ablation study on the number of representations. The full source code of the method will be available at the time of publication with the hope that researchers can further investigate this important but overlooked inductive bias for the time series domain.
2,353
null
One Policy is Enough: Parallel Exploration with a Single Policy is Minimax Optimal for Reward-Free Reinforcement Learning
While parallelism has been extensively used in Reinforcement Learning (RL), the quantitative effects of parallel exploration are not well understood theoretically. We study the benefits of simple parallel exploration for reward-free RL for linear Markov decision processes (MDPs) and two-player zero-sum Markov games (MGs). In contrast to the existing literature focused on approaches that encourage agents to explore over a diverse set of policies, we show that using a single policy to guide exploration across all agents is sufficient to obtain an almost-linear speedup in all cases compared to their fully sequential counterpart. Further, we show that this simple procedure is minimax optimal up to logarithmic factors in the reward-free setting for both linear MDPs and two-player zero-sum MGs. From a practical perspective, our paper shows that a single policy is sufficient and provably optimal for incorporating parallelism during the exploration phase.
2,354
null
Compressed Hierarchical Representations for Multi-Task Learning and Task Clustering
In this paper, we frame homogeneous-feature multi-task learning (MTL) as a hierarchical representation learning problem, with one task-agnostic and multiple task-specific latent representations. Drawing inspiration from the information bottleneck principle and assuming an additive independent noise model between the task-agnostic and task-specific latent representations, we limit the information contained in each task-specific representation. It is shown that our resulting representations yield competitive performance for several MTL benchmarks. Furthermore, for certain setups, we show that the trained parameters of the additive noise model are closely related to the similarity of different tasks. This indicates that our approach yields a task-agnostic representation that is disentangled in the sense that its individual dimensions may be interpretable from a task-specific perspective.
2,355
null
Simplex Neural Population Learning: Any-Mixture Bayes-Optimality in Symmetric Zero-sum Games
Learning to play optimally against any mixture over a diverse set of strategies is of important practical interests in competitive games. In this paper, we propose simplex-NeuPL that satisfies two desiderata simultaneously: i) learning a population of strategically diverse basis policies, represented by a single conditional network; ii) using the same network, learn best-responses to any mixture over the simplex of basis policies. We show that the resulting conditional policies incorporate prior information about their opponents effectively, enabling near optimal returns against arbitrary mixture policies in a game with tractable best-responses. We verify that such policies behave Bayes-optimally under uncertainty and offer insights in using this flexibility at test time. Finally, we offer evidence that learning best-responses to any mixture policies is an effective auxiliary task for strategic exploration, which, by itself, can lead to more performant populations.
2,356
null
SOM-CPC: Unsupervised Contrastive Learning with Self-Organizing Maps for Structured Representations of High-Rate Time Series
Continuous monitoring with an ever-increasing number of sensors has become ubiquitous across many application domains. Acquired data are typically high-dimensional and difficult to interpret, but they are also hypothesized to lie on a lower-dimensional manifold. Many deep learning (DL) models aim to identify this manifold, but do not promote structure nor interpretability. We propose the SOM-CPC model, which jointly optimizes Contrastive Predictive Coding (CPC), and a Self-Organizing Map (SOM) to find such an organized manifold. We address a largely unexplored and challenging set of scenarios comprising high-rate time series, and show on synthetic and real-life medical and audio data that SOM-CPC outperforms strong baseline models that combine DL with SOMs. SOM-CPC has great potential to expose latent patterns in high-rate data streams, and may therefore contribute to a better understanding of many different processes and systems.
2,357
null
A Reduction to Binary Approach for Debiasing Multiclass Datasets
We propose a novel reduction-to-binary (R2B) approach that enforces demographic parity for multiclass classification with non-binary sensitive attributes via a reduction to a sequence of binary debiasing tasks. We prove that R2B satisfies optimality and bias guarantees and demonstrate empirically that it can lead to an improvement over two baselines: (1) treating multiclass problems as multi-label by debiasing labels independently and (2) transforming the features instead of the labels. Surprisingly, we also demonstrate that independent label debiasing yields competitive results in most (but not all) settings. We validate these conclusions on synthetic and real-world datasets from social science, computer vision, and healthcare.
2,358
null
Automatic Diagnosis of Schizophrenia and Attention Deficit Hyperactivity Disorder in rs-fMRI Modality using Convolutional Autoencoder Model and Interval Type-2 Fuzzy Regression
Nowadays, many people worldwide suffer from brain disorders, and their health is in danger. So far, numerous methods have been proposed for the diagnosis of Schizophrenia (SZ) and attention deficit hyperactivity disorder (ADHD), among which functional magnetic resonance imaging (fMRI) modalities are known as a popular method among physicians. This paper presents an SZ and ADHD intelligent detection method of resting-state fMRI (rs-fMRI) modality using a new deep learning (DL) method. The University of California Los Angeles (UCLA) dataset, which contains the rs-fMRI modalities of SZ and ADHD patients, has been used for experiments. The FMRIB software library (FSL) toolbox first performed preprocessing on rs-fMRI data. Then, a convolutional Autoencoder (CNN-AE) model with the proposed number of layers is used to extract features from rs-fMRI data. In the classification step, a new fuzzy method called interval type-2 fuzzy regression (IT2FR) is introduced and then optimized by genetic algorithm (GA), particle swarm optimization (PSO), and gray wolf optimization (GWO) techniques. Also, the results of IT2FR methods are compared with multilayer perceptron (MLP), k-nearest neighbors (KNN), support vector machine (SVM), random forest (RF), decision tree (DT), and adaptive neuro-fuzzy inference system (ANFIS) methods. The experiment results show that the IT2FR method with the GWO optimization algorithm has achieved satisfactory results compared to other classifier methods. Finally, the proposed classification technique was able to provide 72.71% accuracy.
2,359
null
coVariance Neural Networks
Graph neural networks (GNN) are an effective framework that exploit inter-relationships within graph-structured data for learning. Principal component analysis (PCA) involves the projection of data on the eigenspace of the covariance matrix and draws similarities with the graph convolutional filters in GNNs. Motivated by this observation, we propose a GNN architecture, called coVariance neural network (VNN), that operates on sample covariance matrices as graphs. We theoretically establish the stability of VNNs to perturbations in the covariance matrix, thus, implying an advantage over standard PCA-based data analysis approaches that are prone to instability due to principal components associated with close eigenvalues. Our experiments on real-world datasets validate our theoretical results and show that VNN performance is indeed more stable than PCA-based statistical approaches. Moreover, our experiments on multi-resolution datasets also demonstrate that VNNs are amenable to transferability of performance over covariance matrices of different dimensions; a feature that is infeasible for PCA-based approaches.
2,360
null
Predicting Day-Ahead Stock Returns using Search Engine Query Volumes: An Application of Gradient Boosted Decision Trees to the S&P 100
The internet has changed the way we live, work and take decisions. As it is the major modern resource for research, detailed data on internet usage exhibits vast amounts of behavioral information. This paper aims to answer the question whether this information can be facilitated to predict future returns of stocks on financial capital markets. In an empirical analysis it implements gradient boosted decision trees to learn relationships between abnormal returns of stocks within the S&P 100 index and lagged predictors derived from historical financial data, as well as search term query volumes on the internet search engine Google. Models predict the occurrence of day-ahead stock returns in excess of the index median. On a time frame from 2005 to 2017, all disparate datasets exhibit valuable information. Evaluated models have average areas under the receiver operating characteristic between 54.2% and 56.7%, clearly indicating a classification better than random guessing. Implementing a simple statistical arbitrage strategy, models are used to create daily trading portfolios of ten stocks and result in annual performances of more than 57% before transaction costs. With ensembles of different data sets topping up the performance ranking, the results further question the weak form and semi-strong form efficiency of modern financial capital markets. Even though transaction costs are not included, the approach adds to the existing literature. It gives guidance on how to use and transform data on internet usage behavior for financial and economic modeling and forecasting.
2,361
null
A review of machine learning approaches, challenges and prospects for computational tumor pathology
Computational pathology is part of precision oncology medicine. The integration of high-throughput data including genomics, transcriptomics, proteomics, metabolomics, pathomics, and radiomics into clinical practice improves cancer treatment plans, treatment cycles, and cure rates, and helps doctors open up innovative approaches to patient prognosis. In the past decade, rapid advances in artificial intelligence, chip design and manufacturing, and mobile computing have facilitated research in computational pathology and have the potential to provide better-integrated solutions for whole-slide images, multi-omics data, and clinical informatics. However, tumor computational pathology now brings some challenges to the application of tumour screening, diagnosis and prognosis in terms of data integration, hardware processing, network sharing bandwidth and machine learning technology. This review investigates image preprocessing methods in computational pathology from a pathological and technical perspective, machine learning-based methods, and applications of computational pathology in breast, colon, prostate, lung, and various tumour disease scenarios. Finally, the challenges and prospects of machine learning in computational pathology applications are discussed.
2,362
null
Surface Analysis with Vision Transformers
The extension of convolutional neural networks (CNNs) to non-Euclidean geometries has led to multiple frameworks for studying manifolds. Many of those methods have shown design limitations resulting in poor modelling of long-range associations, as the generalisation of convolutions to irregular surfaces is non-trivial. Recent state-of-the-art performance of Vision Transformers (ViTs) demonstrates that a general-purpose architecture, which implements self-attention, could replace the local feature learning operations of CNNs. Motivated by the success of attention-modelling in computer vision, we extend ViTs to surfaces by reformulating the task of surface learning as a sequence-to-sequence problem and propose a patching mechanism for surface meshes. We validate the performance of the proposed Surface Vision Transformer (SiT) on two brain age prediction tasks in the developing Human Connectome Project (dHCP) dataset and investigate the impact of pre-training on model performance. Experiments show that the SiT outperforms many surface CNNs, while indicating some evidence of general transformation invariance. Code available at https://github.com/metrics-lab/surface-vision-transformers
2,363
null
Attribution-based Explanations that Provide Recourse Cannot be Robust
Different users of machine learning methods require different explanations, depending on their goals. To make machine learning accountable to society, one important goal is to get actionable options for recourse, which allow an affected user to change the decision $f(x)$ of a machine learning system by making limited changes to its input $x$. We formalize this by providing a general definition of recourse sensitivity, which needs to be instantiated with a utility function that describes which changes to the decisions are relevant to the user. This definition applies to local attribution methods, which attribute an importance weight to each input feature. It is often argued that such local attributions should be robust, in the sense that a small change in the input $x$ that is being explained, should not cause a large change in the feature weights. However, we prove formally that it is in general impossible for any single attribution method to be both recourse sensitive and robust at the same time. It follows that there must always exist counterexamples to at least one of these properties. We provide such counterexamples for several popular attribution methods, including LIME, SHAP, Integrated Gradients and SmoothGrad. Our results also cover counterfactual explanations, which may be viewed as attributions that describe a perturbation of $x$. We further discuss possible ways to work around our impossibility result, for instance by allowing the output to consist of sets with multiple attributions. Finally, we strengthen our impossibility result for the restricted case where users are only able to change a single attribute of x, by providing an exact characterization of the functions $f$ to which impossibility applies.
2,364
null
Robust Anytime Learning of Markov Decision Processes
Markov decision processes (MDPs) are formal models commonly used in sequential decision-making. MDPs capture the stochasticity that may arise, for instance, from imprecise actuators via probabilities in the transition function. However, in data-driven applications, deriving precise probabilities from (limited) data introduces statistical errors that may lead to unexpected or undesirable outcomes. Uncertain MDPs (uMDPs) do not require precise probabilities but instead use so-called uncertainty sets in the transitions, accounting for such limited data. Tools from the formal verification community efficiently compute robust policies that provably adhere to formal specifications, like safety constraints, under the worst-case instance in the uncertainty set. We continuously learn the transition probabilities of an MDP in a robust anytime-learning approach that combines a dedicated Bayesian inference scheme with the computation of robust policies. In particular, our method (1) approximates probabilities as intervals, (2) adapts to new data that may be inconsistent with an intermediate model, and (3) may be stopped at any time to compute a robust policy on the uMDP that faithfully captures the data so far. We show the effectiveness of our approach and compare it to robust policies computed on uMDPs learned by the UCRL2 reinforcement learning algorithm in an experimental evaluation on several benchmarks.
2,365
null
Graph Backup: Data Efficient Backup Exploiting Markovian Transitions
The successes of deep Reinforcement Learning (RL) are limited to settings where we have a large stream of online experiences, but applying RL in the data-efficient setting with limited access to online interactions is still challenging. A key to data-efficient RL is good value estimation, but current methods in this space fail to fully utilise the structure of the trajectory data gathered from the environment. In this paper, we treat the transition data of the MDP as a graph, and define a novel backup operator, Graph Backup, which exploits this graph structure for better value estimation. Compared to multi-step backup methods such as $n$-step $Q$-Learning and TD($\lambda$), Graph Backup can perform counterfactual credit assignment and gives stable value estimates for a state regardless of which trajectory the state is sampled from. Our method, when combined with popular value-based methods, provides improved performance over one-step and multi-step methods on a suite of data-efficient RL benchmarks including MiniGrid, Minatar and Atari100K. We further analyse the reasons for this performance boost through a novel visualisation of the transition graphs of Atari games.
2,366
null
Unsupervised Image Representation Learning with Deep Latent Particles
We propose a new representation of visual data that disentangles object position from appearance. Our method, termed Deep Latent Particles (DLP), decomposes the visual input into low-dimensional latent ``particles'', where each particle is described by its spatial location and features of its surrounding region. To drive learning of such representations, we follow a VAE-based approach and introduce a prior for particle positions based on a spatial-softmax architecture, and a modification of the evidence lower bound loss inspired by the Chamfer distance between particles. We demonstrate that our DLP representations are useful for downstream tasks such as unsupervised keypoint (KP) detection, image manipulation, and video prediction for scenes composed of multiple dynamic objects. In addition, we show that our probabilistic interpretation of the problem naturally provides uncertainty estimates for particle locations, which can be used for model selection, among other tasks. Videos and code are available: https://taldatech.github.io/deep-latent-particles-web/
2,367
null
Feature Learning in $L_{2}$-regularized DNNs: Attraction/Repulsion and Sparsity
We study the loss surface of DNNs with $L_{2}$ regularization. We show that the loss in terms of the parameters can be reformulated into a loss in terms of the layerwise activations $Z_{\ell}$ of the training set. This reformulation reveals the dynamics behind feature learning: each hidden representations $Z_{\ell}$ are optimal w.r.t. to an attraction/repulsion problem and interpolate between the input and output representations, keeping as little information from the input as necessary to construct the activation of the next layer. For positively homogeneous non-linearities, the loss can be further reformulated in terms of the covariances of the hidden representations, which takes the form of a partially convex optimization over a convex cone. This second reformulation allows us to prove a sparsity result for homogeneous DNNs: any local minimum of the $L_{2}$-regularized loss can be achieved with at most $N(N+1)$ neurons in each hidden layer (where $N$ is the size of the training set). We show that this bound is tight by giving an example of a local minimum which requires $N^{2}/4$ hidden neurons. But we also observe numerically that in more traditional settings much less than $N^{2}$ neurons are required to reach the minima.
2,368
null
AdaTask: Adaptive Multitask Online Learning
We introduce and analyze AdaTask, a multitask online learning algorithm that adapts to the unknown structure of the tasks. When the $N$ tasks are stochastically activated, we show that the regret of AdaTask is better, by a factor that can be as large as $\sqrt{N}$, than the regret achieved by running $N$ independent algorithms, one for each task. AdaTask can be seen as a comparator-adaptive version of Follow-the-Regularized-Leader with a Mahalanobis norm potential. Through a variational formulation of this potential, our analysis reveals how AdaTask jointly learns the tasks and their structure. Experiments supporting our findings are presented.
2,369
null
A Meta Reinforcement Learning Approach for Predictive Autoscaling in the Cloud
Predictive autoscaling (autoscaling with workload forecasting) is an important mechanism that supports autonomous adjustment of computing resources in accordance with fluctuating workload demands in the Cloud. In recent works, Reinforcement Learning (RL) has been introduced as a promising approach to learn the resource management policies to guide the scaling actions under the dynamic and uncertain cloud environment. However, RL methods face the following challenges in steering predictive autoscaling, such as lack of accuracy in decision-making, inefficient sampling and significant variability in workload patterns that may cause policies to fail at test time. To this end, we propose an end-to-end predictive meta model-based RL algorithm, aiming to optimally allocate resource to maintain a stable CPU utilization level, which incorporates a specially-designed deep periodic workload prediction model as the input and embeds the Neural Process to guide the learning of the optimal scaling actions over numerous application services in the Cloud. Our algorithm not only ensures the predictability and accuracy of the scaling strategy, but also enables the scaling decisions to adapt to the changing workloads with high sample efficiency. Our method has achieved significant performance improvement compared to the existing algorithms and has been deployed online at Alipay, supporting the autoscaling of applications for the world-leading payment platform.
2,370
null
Likelihood-Free Inference with Generative Neural Networks via Scoring Rule Minimization
Bayesian Likelihood-Free Inference methods yield posterior approximations for simulator models with intractable likelihood. Recently, many works trained neural networks to approximate either the intractable likelihood or the posterior directly. Most proposals use normalizing flows, namely neural networks parametrizing invertible maps used to transform samples from an underlying base measure; the probability density of the transformed samples is then accessible and the normalizing flow can be trained via maximum likelihood on simulated parameter-observation pairs. A recent work [Ramesh et al., 2022] approximated instead the posterior with generative networks, which drop the invertibility requirement and are thus a more flexible class of distributions scaling to high-dimensional and structured data. However, generative networks only allow sampling from the parametrized distribution; for this reason, Ramesh et al. [2022] follows the common solution of adversarial training, where the generative network plays a min-max game against a "critic" network. This procedure is unstable and can lead to a learned distribution underestimating the uncertainty - in extreme cases collapsing to a single point. Here, we propose to approximate the posterior with generative networks trained by Scoring Rule minimization, an overlooked adversarial-free method enabling smooth training and better uncertainty quantification. In simulation studies, the Scoring Rule approach yields better performances with shorter training time with respect to the adversarial framework.
2,371
null
Three-dimensional microstructure generation using generative adversarial neural networks in the context of continuum micromechanics
Multiscale simulations are demanding in terms of computational resources. In the context of continuum micromechanics, the multiscale problem arises from the need of inferring macroscopic material parameters from the microscale. If the underlying microstructure is explicitly given by means of microCT-scans, convolutional neural networks can be used to learn the microstructure-property mapping, which is usually obtained from computational homogenization. The CNN approach provides a significant speedup, especially in the context of heterogeneous or functionally graded materials. Another application is uncertainty quantification, where many expansive evaluations are required. However, one bottleneck of this approach is the large number of training microstructures needed. This work closes this gap by proposing a generative adversarial network tailored towards three-dimensional microstructure generation. The lightweight algorithm is able to learn the underlying properties of the material from a single microCT-scan without the need of explicit descriptors. During prediction time, the network can produce unique three-dimensional microstructures with the same properties of the original data in a fraction of seconds and at consistently high quality.
2,372
null
Concept-level Debugging of Part-Prototype Networks
Part-prototype Networks (ProtoPNets) are concept-based classifiers designed to achieve the same performance as black-box models without compromising transparency. ProtoPNets compute predictions based on similarity to class-specific part-prototypes learned to recognize parts of training examples, making it easy to faithfully determine what examples are responsible for any target prediction and why. However, like other models, they are prone to picking up confounds and shortcuts from the data, thus suffering from compromised prediction accuracy and limited generalization. We propose ProtoPDebug, an effective concept-level debugger for ProtoPNets in which a human supervisor, guided by the model's explanations, supplies feedback in the form of what part-prototypes must be forgotten or kept, and the model is fine-tuned to align with this supervision. An extensive empirical evaluation on synthetic and real-world data shows that ProtoPDebug outperforms state-of-the-art debuggers for a fraction of the annotation cost.
2,373
null
SAMURAI: Shape And Material from Unconstrained Real-world Arbitrary Image collections
Inverse rendering of an object under entirely unknown capture conditions is a fundamental challenge in computer vision and graphics. Neural approaches such as NeRF have achieved photorealistic results on novel view synthesis, but they require known camera poses. Solving this problem with unknown camera poses is highly challenging as it requires joint optimization over shape, radiance, and pose. This problem is exacerbated when the input images are captured in the wild with varying backgrounds and illuminations. Standard pose estimation techniques fail in such image collections in the wild due to very few estimated correspondences across images. Furthermore, NeRF cannot relight a scene under any illumination, as it operates on radiance (the product of reflectance and illumination). We propose a joint optimization framework to estimate the shape, BRDF, and per-image camera pose and illumination. Our method works on in-the-wild online image collections of an object and produces relightable 3D assets for several use-cases such as AR/VR. To our knowledge, our method is the first to tackle this severely unconstrained task with minimal user interaction. Project page: https://markboss.me/publication/2022-samurai/ Video: https://youtu.be/LlYuGDjXp-8
2,374
null
Strategic Classification with Graph Neural Networks
Strategic classification studies learning in settings where users can modify their features to obtain favorable predictions. Most current works focus on simple classifiers that trigger independent user responses. Here we examine the implications of learning with more elaborate models that break the independence assumption. Motivated by the idea that applications of strategic classification are often social in nature, we focus on \emph{graph neural networks}, which make use of social relations between users to improve predictions. Using a graph for learning introduces inter-user dependencies in prediction; our key point is that strategic users can exploit these to promote their goals. As we show through analysis and simulation, this can work either against the system -- or for it. Based on this, we propose a differentiable framework for strategically-robust learning of graph-based classifiers. Experiments on several real networked datasets demonstrate the utility of our approach.
2,375
null
SymFormer: End-to-end symbolic regression using transformer-based architecture
Many real-world problems can be naturally described by mathematical formulas. The task of finding formulas from a set of observed inputs and outputs is called symbolic regression. Recently, neural networks have been applied to symbolic regression, among which the transformer-based ones seem to be the most promising. After training the transformer on a large number of formulas (in the order of days), the actual inference, i.e., finding a formula for new, unseen data, is very fast (in the order of seconds). This is considerably faster than state-of-the-art evolutionary methods. The main drawback of transformers is that they generate formulas without numerical constants, which have to be optimized separately, so yielding suboptimal results. We propose a transformer-based approach called SymFormer, which predicts the formula by outputting the individual symbols and the corresponding constants simultaneously. This leads to better performance in terms of fitting the available data. In addition, the constants provided by SymFormer serve as a good starting point for subsequent tuning via gradient descent to further improve the performance. We show on a set of benchmarks that SymFormer outperforms two state-of-the-art methods while having faster inference.
2,376
null
Exact Feature Collisions in Neural Networks
Predictions made by deep neural networks were shown to be highly sensitive to small changes made in the input space where such maliciously crafted data points containing small perturbations are being referred to as adversarial examples. On the other hand, recent research suggests that the same networks can also be extremely insensitive to changes of large magnitude, where predictions of two largely different data points can be mapped to approximately the same output. In such cases, features of two data points are said to approximately collide, thus leading to the largely similar predictions. Our results improve and extend the work of Li et al.(2019), laying out theoretical grounds for the data points that have colluding features from the perspective of weights of neural networks, revealing that neural networks not only suffer from features that approximately collide but also suffer from features that exactly collide. We identify the necessary conditions for the existence of such scenarios, hereby investigating a large number of DNNs that have been used to solve various computer vision problems. Furthermore, we propose the Null-space search, a numerical approach that does not rely on heuristics, to create data points with colliding features for any input and for any task, including, but not limited to, classification, localization, and segmentation.
2,377
null
Knowledge Enhanced Neural Networks for relational domains
In the recent past, there has been a growing interest in Neural-Symbolic Integration frameworks, i.e., hybrid systems that integrate connectionist and symbolic approaches to obtain the best of both worlds. In this work we focus on a specific method, KENN (Knowledge Enhanced Neural Networks), a Neural-Symbolic architecture that injects prior logical knowledge into a neural network by adding on its top a residual layer that modifies the initial predictions accordingly to the knowledge. Among the advantages of this strategy, there is the inclusion of clause weights, learnable parameters that represent the strength of the clauses, meaning that the model can learn the impact of each rule on the final predictions. As a special case, if the training data contradicts a constraint, KENN learns to ignore it, making the system robust to the presence of wrong knowledge. In this paper, we propose an extension of KENN for relational data. One of the main advantages of KENN resides in its scalability, thanks to a flexible treatment of dependencies between the rules obtained by stacking multiple logical layers. We show experimentally the efficacy of this strategy. The results show that KENN is capable of increasing the performances of the underlying neural network, obtaining better or comparable accuracies in respect to other two related methods that combine learning with logic, requiring significantly less time for learning.
2,378
null
Investigating the Role of Image Retrieval for Visual Localization -- An exhaustive benchmark
Visual localization, i.e., camera pose estimation in a known scene, is a core component of technologies such as autonomous driving and augmented reality. State-of-the-art localization approaches often rely on image retrieval techniques for one of two purposes: (1) provide an approximate pose estimate or (2) determine which parts of the scene are potentially visible in a given query image. It is common practice to use state-of-the-art image retrieval algorithms for both of them. These algorithms are often trained for the goal of retrieving the same landmark under a large range of viewpoint changes which often differs from the requirements of visual localization. In order to investigate the consequences for visual localization, this paper focuses on understanding the role of image retrieval for multiple visual localization paradigms. First, we introduce a novel benchmark setup and compare state-of-the-art retrieval representations on multiple datasets using localization performance as metric. Second, we investigate several definitions of "ground truth" for image retrieval. Using these definitions as upper bounds for the visual localization paradigms, we show that there is still sgnificant room for improvement. Third, using these tools and in-depth analysis, we show that retrieval performance on classical landmark retrieval or place recognition tasks correlates only for some but not all paradigms to localization performance. Finally, we analyze the effects of blur and dynamic scenes in the images. We conclude that there is a need for retrieval approaches specifically designed for localization paradigms. Our benchmark and evaluation protocols are available at https://github.com/naver/kapture-localization.
2,379
null
A Cross-City Federated Transfer Learning Framework: A Case Study on Urban Region Profiling
Data insufficiency problem (i.e., data missing and label scarcity issues) caused by inadequate services and infrastructures or unbalanced development levels of cities has seriously affected the urban computing tasks in real scenarios. Prior transfer learning methods inspire an elegant solution to the data insufficiency, but are only concerned with one kind of insufficiency issue and fail to fully explore these two issues existing in the real world. In addition, cross-city transfer in existing methods overlooks the inter-city data privacy which is a public concern in practical application. To address the above challenging problems, we propose a novel Cross-city Federated Transfer Learning framework (CcFTL) to cope with the data insufficiency and privacy problems. Concretely, CcFTL transfers the relational knowledge from multiple rich-data source cities to the target city. Besides, the model parameters specific to the target task are firstly trained on the source data and then fine-tuned to the target city by parameter transfer. With our adaptation of federated training and homomorphic encryption settings, CcFTL can effectively deal with the data privacy problem among cities. We take the urban region profiling as an application of smart cities and evaluate the proposed method with a real-world study. The experiments demonstrate the notable superiority of our framework over several competitive state-of-the-art models.
2,380
null
Hierarchies of Reward Machines
Reward machines (RMs) are a recent formalism for representing the reward function of a reinforcement learning task through a finite-state machine whose edges encode landmarks of the task using high-level events. The structure of RMs enables the decomposition of a task into simpler and independently solvable subtasks that help tackle long-horizon and/or sparse reward tasks. We propose a formalism for further abstracting the subtask structure by endowing an RM with the ability to call other RMs, thus composing a hierarchy of RMs (HRM). We exploit HRMs by treating each call to an RM as an independently solvable subtask using the options framework, and describe a curriculum-based method to induce HRMs from example traces observed by the agent. Our experiments reveal that exploiting a handcrafted HRM leads to faster convergence than with a flat HRM, and that learning an HRM is more scalable than learning an equivalent flat HRM.
2,381
null
Variable importance without impossible data
The most popular methods for measuring importance of the variables in a black box prediction algorithm make use of synthetic inputs that combine predictor variables from multiple subjects. These inputs can be unlikely, physically impossible, or even logically impossible. As a result, the predictions for such cases can be based on data very unlike any the black box was trained on. We think that users cannot trust an explanation of the decision of a prediction algorithm when the explanation uses such values. Instead we advocate a method called Cohort Shapley that is grounded in economic game theory and unlike most other game theoretic methods, it uses only actually observed data to quantify variable importance. Cohort Shapley works by narrowing the cohort of subjects judged to be similar to a target subject on one or more features. A feature is important if using it to narrow the cohort makes a large difference to the cohort mean. We illustrate it on an algorithmic fairness problem where it is essential to attribute importance to protected variables that the model was not trained on. For every subject and every predictor variable, we can compute the importance of that predictor to the subject's predicted response or to their actual response. These values can be aggregated, for example over all Black subjects, and we propose a Bayesian bootstrap to quantify uncertainty in both individual and aggregate Shapley values.
2,382
null
Non-Iterative Recovery from Nonlinear Observations using Generative Models
In this paper, we aim to estimate the direction of an underlying signal from its nonlinear observations following the semi-parametric single index model (SIM). Unlike conventional compressed sensing where the signal is assumed to be sparse, we assume that the signal lies in the range of an $L$-Lipschitz continuous generative model with bounded $k$-dimensional inputs. This is mainly motivated by the tremendous success of deep generative models in various real applications. Our reconstruction method is non-iterative (though approximating the projection step may use an iterative procedure) and highly efficient, and it is shown to attain the near-optimal statistical rate of order $\sqrt{(k \log L)/m}$, where $m$ is the number of measurements. We consider two specific instances of the SIM, namely noisy $1$-bit and cubic measurement models, and perform experiments on image datasets to demonstrate the efficacy of our method. In particular, for the noisy $1$-bit measurement model, we show that our non-iterative method significantly outperforms a state-of-the-art iterative method in terms of both accuracy and efficiency.
2,383
null
Omni-Granular Ego-Semantic Propagation for Self-Supervised Graph Representation Learning
Unsupervised/self-supervised graph representation learning is critical for downstream node- and graph-level classification tasks. Global structure of graphs helps discriminating representations and existing methods mainly utilize the global structure by imposing additional supervisions. However, their global semantics are usually invariant for all nodes/graphs and they fail to explicitly embed the global semantics to enrich the representations. In this paper, we propose Omni-Granular Ego-Semantic Propagation for Self-Supervised Graph Representation Learning (OEPG). Specifically, we introduce instance-adaptive global-aware ego-semantic descriptors, leveraging the first- and second-order feature differences between each node/graph and hierarchical global clusters of the entire graph dataset. The descriptors can be explicitly integrated into local graph convolution as new neighbor nodes. Besides, we design an omni-granular normalization on the whole scales and hierarchies of the ego-semantic to assign attentional weight to each descriptor from an omni-granular perspective. Specialized pretext tasks and cross-iteration momentum update are further developed for local-global mutual adaptation. In downstream tasks, OEPG consistently achieves the best performance with a 2%~6% accuracy gain on multiple datasets cross scales and domains. Notably, OEPG also generalizes to quantity- and topology-imbalance scenarios.
2,384
null
HyperMAML: Few-Shot Adaptation of Deep Models with Hypernetworks
The aim of Few-Shot learning methods is to train models which can easily adapt to previously unseen tasks, based on small amounts of data. One of the most popular and elegant Few-Shot learning approaches is Model-Agnostic Meta-Learning (MAML). The main idea behind this method is to learn the general weights of the meta-model, which are further adapted to specific problems in a small number of gradient steps. However, the model's main limitation lies in the fact that the update procedure is realized by gradient-based optimisation. In consequence, MAML cannot always modify weights to the essential level in one or even a few gradient iterations. On the other hand, using many gradient steps results in a complex and time-consuming optimization procedure, which is hard to train in practice, and may lead to overfitting. In this paper, we propose HyperMAML, a novel generalization of MAML, where the training of the update procedure is also part of the model. Namely, in HyperMAML, instead of updating the weights with gradient descent, we use for this purpose a trainable Hypernetwork. Consequently, in this framework, the model can generate significant updates whose range is not limited to a fixed number of gradient steps. Experiments show that HyperMAML consistently outperforms MAML and performs comparably to other state-of-the-art techniques in a number of standard Few-Shot learning benchmarks.
2,385
null
Template based Graph Neural Network with Optimal Transport Distances
Current Graph Neural Networks (GNN) architectures generally rely on two important components: node features embedding through message passing, and aggregation with a specialized form of pooling. The structural (or topological) information is implicitly taken into account in these two steps. We propose in this work a novel point of view, which places distances to some learnable graph templates at the core of the graph representation. This distance embedding is constructed thanks to an optimal transport distance: the Fused Gromov-Wasserstein (FGW) distance, which encodes simultaneously feature and structure dissimilarities by solving a soft graph-matching problem. We postulate that the vector of FGW distances to a set of template graphs has a strong discriminative power, which is then fed to a non-linear classifier for final predictions. Distance embedding can be seen as a new layer, and can leverage on existing message passing techniques to promote sensible feature representations. Interestingly enough, in our work the optimal set of template graphs is also learnt in an end-to-end fashion by differentiating through this layer. After describing the corresponding learning procedure, we empirically validate our claim on several synthetic and real life graph classification datasets, where our method is competitive or surpasses kernel and GNN state-of-the-art approaches. We complete our experiments by an ablation study and a sensitivity analysis to parameters.
2,386
null
ViNNPruner: Visual Interactive Pruning for Deep Learning
Neural networks grow vastly in size to tackle more sophisticated tasks. In many cases, such large networks are not deployable on particular hardware and need to be reduced in size. Pruning techniques help to shrink deep neural networks to smaller sizes by only decreasing their performance as little as possible. However, such pruning algorithms are often hard to understand by applying them and do not include domain knowledge which can potentially be bad for user goals. We propose ViNNPruner, a visual interactive pruning application that implements state-of-the-art pruning algorithms and the option for users to do manual pruning based on their knowledge. We show how the application facilitates gaining insights into automatic pruning algorithms and semi-automatically pruning oversized networks to make them more efficient using interactive visualizations.
2,387
null
Transformers for Multi-Object Tracking on Point Clouds
We present TransMOT, a novel transformer-based end-to-end trainable online tracker and detector for point cloud data. The model utilizes a cross- and a self-attention mechanism and is applicable to lidar data in an automotive context, as well as other data types, such as radar. Both track management and the detection of new tracks are performed by the same transformer decoder module and the tracker state is encoded in feature space. With this approach, we make use of the rich latent space of the detector for tracking rather than relying on low-dimensional bounding boxes. Still, we are able to retain some of the desirable properties of traditional Kalman-filter based approaches, such as an ability to handle sensor input at arbitrary timesteps or to compensate frame skips. This is possible due to a novel module that transforms the track information from one frame to the next on feature-level and thereby fulfills a similar task as the prediction step of a Kalman filter. Results are presented on the challenging real-world dataset nuScenes, where the proposed model outperforms its Kalman filter-based tracking baseline.
2,388
null
One Loss for Quantization: Deep Hashing with Discrete Wasserstein Distributional Matching
Image hashing is a principled approximate nearest neighbor approach to find similar items to a query in a large collection of images. Hashing aims to learn a binary-output function that maps an image to a binary vector. For optimal retrieval performance, producing balanced hash codes with low-quantization error to bridge the gap between the learning stage's continuous relaxation and the inference stage's discrete quantization is important. However, in the existing deep supervised hashing methods, coding balance and low-quantization error are difficult to achieve and involve several losses. We argue that this is because the existing quantization approaches in these methods are heuristically constructed and not effective to achieve these objectives. This paper considers an alternative approach to learning the quantization constraints. The task of learning balanced codes with low quantization error is re-formulated as matching the learned distribution of the continuous codes to a pre-defined discrete, uniform distribution. This is equivalent to minimizing the distance between two distributions. We then propose a computationally efficient distributional distance by leveraging the discrete property of the hash functions. This distributional distance is a valid distance and enjoys lower time and sample complexities. The proposed single-loss quantization objective can be integrated into any existing supervised hashing method to improve code balance and quantization error. Experiments confirm that the proposed approach substantially improves the performance of several representative hashing~methods.
2,389
null
Multi-Agent Learning of Numerical Methods for Hyperbolic PDEs with Factored Dec-MDP
Factored decentralized Markov decision process (Dec-MDP) is a framework for modeling sequential decision making problems in multi-agent systems. In this paper, we formalize the learning of numerical methods for hyperbolic partial differential equations (PDEs), specifically the Weighted Essentially Non-Oscillatory (WENO) scheme, as a factored Dec-MDP problem. We show that different reward formulations lead to either reinforcement learning (RL) or behavior cloning, and a homogeneous policy could be learned for all agents under the RL formulation with a policy gradient algorithm. Because the trained agents only act on their local observations, the multi-agent system can be used as a general numerical method for hyperbolic PDEs and generalize to different spatial discretizations, episode lengths, dimensions, and even equation types.
2,390
null
Multilingual Transformers for Product Matching -- Experiments and a New Benchmark in Polish
Product matching corresponds to the task of matching identical products across different data sources. It typically employs available product features which, apart from being multimodal, i.e., comprised of various data types, might be non-homogeneous and incomplete. The paper shows that pre-trained, multilingual Transformer models, after fine-tuning, are suitable for solving the product matching problem using textual features both in English and Polish languages. We tested multilingual mBERT and XLM-RoBERTa models in English on Web Data Commons - training dataset and gold standard for large-scale product matching. The obtained results show that these models perform similarly to the latest solutions tested on this set, and in some cases, the results were even better. Additionally, we prepared a new dataset entirely in Polish and based on offers in selected categories obtained from several online stores for the research purpose. It is the first open dataset for product matching tasks in Polish, which allows comparing the effectiveness of the pre-trained models. Thus, we also showed the baseline results obtained by the fine-tuned mBERT and XLM-RoBERTa models on the Polish datasets.
2,391
null
Mitigating Dataset Bias by Using Per-sample Gradient
The performance of deep neural networks is strongly influenced by the training dataset setup. In particular, when attributes having a strong correlation with the target attribute are present, the trained model can provide unintended prejudgments and show significant inference errors (i.e., the dataset bias problem). Various methods have been proposed to mitigate dataset bias, and their emphasis is on weakly correlated samples, called bias-conflicting samples. These methods are based on explicit bias labels involving human or empirical correlation metrics (e.g., training loss). However, such metrics require human costs or have insufficient theoretical explanation. In this study, we propose a debiasing algorithm, called PGD (Per-sample Gradient-based Debiasing), that comprises three steps: (1) training a model on uniform batch sampling, (2) setting the importance of each sample in proportion to the norm of the sample gradient, and (3) training the model using importance-batch sampling, whose probability is obtained in step (2). Compared with existing baselines for various synthetic and real-world datasets, the proposed method showed state-of-the-art accuracy for a the classification task. Furthermore, we describe theoretical understandings about how PGD can mitigate dataset bias.
2,392
null
Lessons Learned from Data-Driven Building Control Experiments: Contrasting Gaussian Process-based MPC, Bilevel DeePC, and Deep Reinforcement Learning
This manuscript offers the perspective of experimentalists on a number of modern data-driven techniques: model predictive control relying on Gaussian processes, adaptive data-driven control based on behavioral theory, and deep reinforcement learning. These techniques are compared in terms of data requirements, ease of use, computational burden, and robustness in the context of real-world applications. Our remarks and observations stem from a number of experimental investigations carried out in the field of building control in diverse environments, from lecture halls and apartment spaces to a hospital surgery center. The final goal is to support others in identifying what technique is best suited to tackle their own problems.
2,393
null
Provable General Function Class Representation Learning in Multitask Bandits and MDPs
While multitask representation learning has become a popular approach in reinforcement learning (RL) to boost the sample efficiency, the theoretical understanding of why and how it works is still limited. Most previous analytical works could only assume that the representation function is already known to the agent or from linear function class, since analyzing general function class representation encounters non-trivial technical obstacles such as generalization guarantee, formulation of confidence bound in abstract function space, etc. However, linear-case analysis heavily relies on the particularity of linear function class, while real-world practice usually adopts general non-linear representation functions like neural networks. This significantly reduces its applicability. In this work, we extend the analysis to general function class representations. Specifically, we consider an agent playing $M$ contextual bandits (or MDPs) concurrently and extracting a shared representation function $\phi$ from a specific function class $\Phi$ using our proposed Generalized Functional Upper Confidence Bound algorithm (GFUCB). We theoretically validate the benefit of multitask representation learning within general function class for bandits and linear MDP for the first time. Lastly, we conduct experiments to demonstrate the effectiveness of our algorithm with neural net representation.
2,394
null
A novel approach to rating transition modelling via Machine Learning and SDEs on Lie groups
In this paper, we introduce a novel methodology to model rating transitions with a stochastic process. To introduce stochastic processes, whose values are valid rating matrices, we noticed the geometric properties of stochastic matrices and its link to matrix Lie groups. We give a gentle introduction to this topic and demonstrate how It\^o-SDEs in R will generate the desired model for rating transitions. To calibrate the rating model to historical data, we use a Deep-Neural-Network (DNN) called TimeGAN to learn the features of a time series of historical rating matrices. Then, we use this DNN to generate synthetic rating transition matrices. Afterwards, we fit the moments of the generated rating matrices and the rating process at specific time points, which results in a good fit. After calibration, we discuss the quality of the calibrated rating transition process by examining some properties that a time series of rating matrices should satisfy, and we will see that this geometric approach works very well.
2,395
null
Static Scheduling with Predictions Learned through Efficient Exploration
A popular approach to go beyond the worst-case analysis of online algorithms is to assume the existence of predictions that can be leveraged to improve performances. Those predictions are usually given by some external sources that cannot be fully trusted. Instead, we argue that trustful predictions can be built by algorithms, while they run. We investigate this idea in the illustrative context of static scheduling with exponential job sizes. Indeed, we prove that algorithms agnostic to this structure do not perform better than in the worst case. In contrast, when the expected job sizes are known, we show that the best algorithm using this information, called Follow-The-Perfect-Prediction (FTPP), exhibits much better performances. Then, we introduce two adaptive explore-then-commit types of algorithms: they both first (partially) learn expected job sizes and then follow FTPP once their self-predictions are confident enough. On the one hand, ETCU explores in "series", by completing jobs sequentially to acquire information. On the other hand, ETCRR, inspired by the optimal worst-case algorithm Round-Robin (RR), explores efficiently in "parallel". We prove that both of them asymptotically reach the performances of FTPP, with a faster rate for ETCRR. Those findings are empirically evaluated on synthetic data.
2,396
null
Differentiable programming for functional connectomics
Mapping the functional connectome has the potential to uncover key insights into brain organisation. However, existing workflows for functional connectomics are limited in their adaptability to new data, and principled workflow design is a challenging combinatorial problem. We introduce a new analytic paradigm and software toolbox that implements common operations used in functional connectomics as fully differentiable processing blocks. Under this paradigm, workflow configurations exist as reparameterisations of a differentiable functional that interpolates them. The differentiable program that we envision occupies a niche midway between traditional pipelines and end-to-end neural networks, combining the glass-box tractability and domain knowledge of the former with the amenability to optimisation of the latter. In this preliminary work, we provide a proof of concept for differentiable connectomics, demonstrating the capacity of our processing blocks both to recapitulate canonical knowledge in neuroscience and to make new discoveries in an unsupervised setting. Our differentiable modules are competitive with state-of-the-art methods in problem domains including functional parcellation, denoising, and covariance modelling. Taken together, our results and software demonstrate the promise of differentiable programming for functional connectomics.
2,397
null
Simulation-Based Inference with WALDO: Perfectly Calibrated Confidence Regions Using Any Prediction or Posterior Estimation Algorithm
The vast majority of modern machine learning targets prediction problems, with algorithms such as Deep Neural Networks revolutionizing the accuracy of point predictions for high-dimensional complex data. Predictive approaches are now used in many domain sciences to directly estimate internal parameters of interest in theoretical simulator-based models. In parallel, common alternatives focus on estimating the full posterior using modern neural density estimators such as normalizing flows. However, an open problem in simulation-based inference (SBI) is how to construct properly calibrated confidence regions for internal parameters with nominal conditional coverage and high power. Many SBI methods are indeed known to produce overly confident posterior approximations, yielding misleading uncertainty estimates. Similarly, existing approaches for uncertainty quantification in deep learning provide no guarantees on conditional coverage. In this work, we present WALDO, a novel method for constructing correctly calibrated confidence regions in SBI. WALDO reframes the well-known Wald test and uses Neyman inversion to convert point predictions and posteriors from any prediction or posterior estimation algorithm to confidence sets with correct conditional coverage, even for finite sample sizes. As a concrete example, we demonstrate how a recently proposed deep learning prediction approach for particle energies in high-energy physics can be recalibrated using WALDO to produce confidence intervals with correct coverage and high power.
2,398
null
Automatic Relation-aware Graph Network Proliferation
Graph neural architecture search has sparked much attention as Graph Neural Networks (GNNs) have shown powerful reasoning capability in many relational tasks. However, the currently used graph search space overemphasizes learning node features and neglects mining hierarchical relational information. Moreover, due to diverse mechanisms in the message passing, the graph search space is much larger than that of CNNs. This hinders the straightforward application of classical search strategies for exploring complicated graph search space. We propose Automatic Relation-aware Graph Network Proliferation (ARGNP) for efficiently searching GNNs with a relation-guided message passing mechanism. Specifically, we first devise a novel dual relation-aware graph search space that comprises both node and relation learning operations. These operations can extract hierarchical node/relational information and provide anisotropic guidance for message passing on a graph. Second, analogous to cell proliferation, we design a network proliferation search paradigm to progressively determine the GNN architectures by iteratively performing network division and differentiation. The experiments on six datasets for four graph learning tasks demonstrate that GNNs produced by our method are superior to the current state-of-the-art hand-crafted and search-based GNNs. Codes are available at https://github.com/phython96/ARGNP.
2,399
null
Augmentation-Aware Self-Supervision for Data-Efficient GAN Training
Training generative adversarial networks (GANs) with limited data is valuable but challenging because discriminators are prone to over-fitting in such situations. Recently proposed differentiable data augmentation techniques for discriminators demonstrate improved data efficiency of training GANs. However, the naive data augmentation introduces undesired invariance to augmentation into the discriminator. The invariance may degrade the representation learning ability of the discriminator, thereby affecting the generative modeling performance of the generator. To mitigate the invariance while inheriting the benefits of data augmentation, we propose a novel augmentation-aware self-supervised discriminator that predicts the parameter of augmentation given the augmented and original data. Moreover, the prediction task is required to distinguishable between real data and generated data since they are different during training. We further encourage the generator to learn from the proposed discriminator by generating augmentation-predictable real data. We compare the proposed method with state-of-the-arts across the class-conditional BigGAN and unconditional StyleGAN2 architectures on CIFAR-10/100 and several low-shot datasets, respectively. Experimental results show a significantly improved generation performance of our method over competing methods for training data-efficient GANs.
2,400
null
Contrastive Representation Learning for 3D Protein Structures
Learning from 3D protein structures has gained wide interest in protein modeling and structural bioinformatics. Unfortunately, the number of available structures is orders of magnitude lower than the training data sizes commonly used in computer vision and machine learning. Moreover, this number is reduced even further, when only annotated protein structures can be considered, making the training of existing models difficult and prone to over-fitting. To address this challenge, we introduce a new representation learning framework for 3D protein structures. Our framework uses unsupervised contrastive learning to learn meaningful representations of protein structures, making use of proteins from the Protein Data Bank. We show, how these representations can be used to solve a large variety of tasks, such as protein function prediction, protein fold classification, structural similarity prediction, and protein-ligand binding affinity prediction. Moreover, we show how fine-tuned networks, pre-trained with our algorithm, lead to significantly improved task performance, achieving new state-of-the-art results in many tasks.
2,401
null
Generalised Implicit Neural Representations
We consider the problem of learning implicit neural representations (INRs) for signals on non-Euclidean domains. In the Euclidean case, INRs are trained on a discrete sampling of a signal over a regular lattice. Here, we assume that the continuous signal exists on some unknown topological space from which we sample a discrete graph. In the absence of a coordinate system to identify the sampled nodes, we propose approximating their location with a spectral embedding of the graph. This allows us to train INRs without knowing the underlying continuous domain, which is the case for most graph signals in nature, while also making the INRs equivariant under the symmetry group of the domain. We show experiments with our method on various real-world signals on non-Euclidean domains.
2,402
null
COIN: Co-Cluster Infomax for Bipartite Graphs
Bipartite graphs are powerful data structures to model interactions between two types of nodes, which have been used in a variety of applications, such as recommender systems, information retrieval, and drug discovery. A fundamental challenge for bipartite graphs is how to learn informative node embeddings. Despite the success of recent self-supervised learning methods on bipartite graphs, their objectives are discriminating instance-wise positive and negative node pairs, which could contain cluster-level errors. In this paper, we introduce a novel co-cluster infomax (COIN) framework, which captures the cluster-level information by maximizing the mutual information of co-clusters. Different from previous infomax methods which estimate mutual information by neural networks, COIN could easily calculate mutual information. Besides, COIN is an end-to-end co-clustering method which can be trained jointly with other objective functions and optimized via back-propagation. Furthermore, we also provide theoretical analysis for COIN. We theoretically prove that COIN is able to effectively maximize the mutual information of node embeddings and COIN is upper-bounded by the prior distributions of nodes. We extensively evaluate the proposed COIN framework on various benchmark datasets and tasks to demonstrate the effectiveness of COIN.
2,403
null
Multi-task Optimization Based Co-training for Electricity Consumption Prediction
Real-world electricity consumption prediction may involve different tasks, e.g., prediction for different time steps ahead or different geo-locations. These tasks are often solved independently without utilizing some common problem-solving knowledge that could be extracted and shared among these tasks to augment the performance of solving each task. In this work, we propose a multi-task optimization (MTO) based co-training (MTO-CT) framework, where the models for solving different tasks are co-trained via an MTO paradigm in which solving each task may benefit from the knowledge gained from when solving some other tasks to help its solving process. MTO-CT leverages long short-term memory (LSTM) based model as the predictor where the knowledge is represented via connection weights and biases. In MTO-CT, an inter-task knowledge transfer module is designed to transfer knowledge between different tasks, where the most helpful source tasks are selected by using the probability matching and stochastic universal selection, and evolutionary operations like mutation and crossover are performed for reusing the knowledge from selected source tasks in a target task. We use electricity consumption data from five states in Australia to design two sets of tasks at different scales: a) one-step ahead prediction for each state (five tasks) and b) 6-step, 12-step, 18-step, and 24-step ahead prediction for each state (20 tasks). The performance of MTO-CT is evaluated on solving each of these two sets of tasks in comparison to solving each task in the set independently without knowledge sharing under the same settings, which demonstrates the superiority of MTO-CT in terms of prediction accuracy.
2,404
null
The CLRS Algorithmic Reasoning Benchmark
Learning representations of algorithms is an emerging area of machine learning, seeking to bridge concepts from neural networks with classical algorithms. Several important works have investigated whether neural networks can effectively reason like algorithms, typically by learning to execute them. The common trend in the area, however, is to generate targeted kinds of algorithmic data to evaluate specific hypotheses, making results hard to transfer across publications, and increasing the barrier of entry. To consolidate progress and work towards unified evaluation, we propose the CLRS Algorithmic Reasoning Benchmark, covering classical algorithms from the Introduction to Algorithms textbook. Our benchmark spans a variety of algorithmic reasoning procedures, including sorting, searching, dynamic programming, graph algorithms, string algorithms and geometric algorithms. We perform extensive experiments to demonstrate how several popular algorithmic reasoning baselines perform on these tasks, and consequently, highlight links to several open challenges. Our library is readily available at https://github.com/deepmind/clrs.
2,405
null
Sample-Efficient, Exploration-Based Policy Optimisation for Routing Problems
Model-free deep-reinforcement-based learning algorithms have been applied to a range of COPs~\cite{bello2016neural}~\cite{kool2018attention}~\cite{nazari2018reinforcement}. However, these approaches suffer from two key challenges when applied to combinatorial problems: insufficient exploration and the requirement of many training examples of the search space to achieve reasonable performance. Combinatorial optimisation can be complex, characterised by search spaces with many optimas and large spaces to search and learn. Therefore, a new method is needed to find good solutions that are more efficient by being more sample efficient. This paper presents a new reinforcement learning approach that is based on entropy. In addition, we design an off-policy-based reinforcement learning technique that maximises the expected return and improves the sample efficiency to achieve faster learning during training time. We systematically evaluate our approach on a range of route optimisation tasks typically used to evaluate learning-based optimisation, such as the such as the Travelling Salesman problems (TSP), Capacitated Vehicle Routing Problem (CVRP). In this paper, we show that our model can generalise to various route problems, such as the split-delivery VRP (SDVRP), and compare the performance of our method with that of current state-of-the-art approaches. The Empirical results show that the proposed method can improve on state-of-the-art methods in terms of solution quality and computation time and generalise to problems of different sizes.
2,406
null
Label-Enhanced Graph Neural Network for Semi-supervised Node Classification
Graph Neural Networks (GNNs) have been widely applied in the semi-supervised node classification task, where a key point lies in how to sufficiently leverage the limited but valuable label information. Most of the classical GNNs solely use the known labels for computing the classification loss at the output. In recent years, several methods have been designed to additionally utilize the labels at the input. One part of the methods augment the node features via concatenating or adding them with the one-hot encodings of labels, while other methods optimize the graph structure by assuming neighboring nodes tend to have the same label. To bring into full play the rich information of labels, in this paper, we present a label-enhanced learning framework for GNNs, which first models each label as a virtual center for intra-class nodes and then jointly learns the representations of both nodes and labels. Our approach could not only smooth the representations of nodes belonging to the same class, but also explicitly encode the label semantics into the learning process of GNNs. Moreover, a training node selection technique is provided to eliminate the potential label leakage issue and guarantee the model generalization ability. Finally, an adaptive self-training strategy is proposed to iteratively enlarge the training set with more reliable pseudo labels and distinguish the importance of each pseudo-labeled node during the model training process. Experimental results on both real-world and synthetic datasets demonstrate our approach can not only consistently outperform the state-of-the-arts, but also effectively smooth the representations of intra-class nodes.
2,407
null
Are classical neural networks quantum?
Neural networks are being used to improve the probing of the state spaces of many particle systems as approximations to wavefunctions and in order to avoid the recurring sign problem of quantum monte-carlo. One may ask whether the usual classical neural networks have some actual hidden quantum properties that make them such suitable tools for a highly coupled quantum problem. I discuss here what makes a system quantum and to what extent we can interpret a neural network as having quantum remnants.