Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
1,908
null
Zeroth-Order SciML: Non-intrusive Integration of Scientific Software with Deep Learning
Using deep learning (DL) to accelerate and/or improve scientific workflows can yield discoveries that are otherwise impossible. Unfortunately, DL models have yielded limited success in complex scientific domains due to large data requirements. In this work, we propose to overcome this issue by integrating the abundance of scientific knowledge sources (SKS) with the DL training process. Existing knowledge integration approaches are limited to using differentiable knowledge source to be compatible with first-order DL training paradigm. In contrast, our proposed approach treats knowledge source as a black-box in turn allowing to integrate virtually any knowledge source. To enable an end-to-end training of SKS-coupled-DL, we propose to use zeroth-order optimization (ZOO) based gradient-free training schemes, which is non-intrusive, i.e., does not require making any changes to the SKS. We evaluate the performance of our ZOO training scheme on two real-world material science applications. We show that proposed scheme is able to effectively integrate scientific knowledge with DL training and is able to outperform purely data-driven model for data-limited scientific applications. We also discuss some limitations of the proposed method and mention potentially worthwhile future directions.
1,909
null
A Neural Network Approach for Homogenization of Multiscale Problems
We propose a neural network-based approach to the homogenization of multiscale problems. The proposed method uses a derivative-free formulation of a training loss, which incorporates Brownian walkers to find the macroscopic description of a multiscale PDE solution. Compared with other network-based approaches for multiscale problems, the proposed method is free from the design of hand-crafted neural network architecture and the cell problem to calculate the homogenization coefficient. The exploration neighborhood of the Brownian walkers affects the overall learning trajectory. We determine the bounds of micro- and macro-time steps that capture the local heterogeneous and global homogeneous solution behaviors, respectively, through a neural network. The bounds imply that the computational cost of the proposed method is independent of the microscale periodic structure for the standard periodic problems. We validate the efficiency and robustness of the proposed method through a suite of linear and nonlinear multiscale problems with periodic and random field coefficients.
1,910
null
Guided Deep Metric Learning
Deep Metric Learning (DML) methods have been proven relevant for visual similarity learning. However, they sometimes lack generalization properties because they are trained often using an inappropriate sample selection strategy or due to the difficulty of the dataset caused by a distributional shift in the data. These represent a significant drawback when attempting to learn the underlying data manifold. Therefore, there is a pressing need to develop better ways of obtaining generalization and representation of the underlying manifold. In this paper, we propose a novel approach to DML that we call Guided Deep Metric Learning, a novel architecture oriented to learning more compact clusters, improving generalization under distributional shifts in DML. This novel architecture consists of two independent models: A multi-branch master model, inspired from a Few-Shot Learning (FSL) perspective, generates a reduced hypothesis space based on prior knowledge from labeled data, which guides or regularizes the decision boundary of a student model during training under an offline knowledge distillation scheme. Experiments have shown that the proposed method is capable of a better manifold generalization and representation to up to 40% improvement (Recall@1, CIFAR10), using guidelines suggested by Musgrave et al. to perform a more fair and realistic comparison, which is currently absent in the literature
1,911
null
Between Rate-Distortion Theory & Value Equivalence in Model-Based Reinforcement Learning
The quintessential model-based reinforcement-learning agent iteratively refines its estimates or prior beliefs about the true underlying model of the environment. Recent empirical successes in model-based reinforcement learning with function approximation, however, eschew the true model in favor of a surrogate that, while ignoring various facets of the environment, still facilitates effective planning over behaviors. Recently formalized as the value equivalence principle, this algorithmic technique is perhaps unavoidable as real-world reinforcement learning demands consideration of a simple, computationally-bounded agent interacting with an overwhelmingly complex environment. In this work, we entertain an extreme scenario wherein some combination of immense environment complexity and limited agent capacity entirely precludes identifying an exactly value-equivalent model. In light of this, we embrace a notion of approximate value equivalence and introduce an algorithm for incrementally synthesizing simple and useful approximations of the environment from which an agent might still recover near-optimal behavior. Crucially, we recognize the information-theoretic nature of this lossy environment compression problem and use the appropriate tools of rate-distortion theory to make mathematically precise how value equivalence can lend tractability to otherwise intractable sequential decision-making problems.
1,912
null
Is $L^2$ Physics-Informed Loss Always Suitable for Training Physics-Informed Neural Network?
The Physics-Informed Neural Network (PINN) approach is a new and promising way to solve partial differential equations using deep learning. The $L^2$ Physics-Informed Loss is the de-facto standard in training Physics-Informed Neural Networks. In this paper, we challenge this common practice by investigating the relationship between the loss function and the approximation quality of the learned solution. In particular, we leverage the concept of stability in the literature of partial differential equation to study the asymptotic behavior of the learned solution as the loss approaches zero. With this concept, we study an important class of high-dimensional non-linear PDEs in optimal control, the Hamilton-Jacobi-Bellman(HJB) Equation, and prove that for general $L^p$ Physics-Informed Loss, a wide class of HJB equation is stable only if $p$ is sufficiently large. Therefore, the commonly used $L^2$ loss is not suitable for training PINN on those equations, while $L^{\infty}$ loss is a better choice. Based on the theoretical insight, we develop a novel PINN training algorithm to minimize the $L^{\infty}$ loss for HJB equations which is in a similar spirit to adversarial training. The effectiveness of the proposed algorithm is empirically demonstrated through experiments.
1,913
null
Causal Discovery in Heterogeneous Environments Under the Sparse Mechanism Shift Hypothesis
Machine learning approaches commonly rely on the assumption of independent and identically distributed (i.i.d.) data. In reality, however, this assumption is almost always violated due to distribution shifts between environments. Although valuable learning signals can be provided by heterogeneous data from changing distributions, it is also known that learning under arbitrary (adversarial) changes is impossible. Causality provides a useful framework for modeling distribution shifts, since causal models encode both observational and interventional distributions. In this work, we explore the sparse mechanism shift hypothesis, which posits that distribution shifts occur due to a small number of changing causal conditionals. Motivated by this idea, we apply it to learning causal structure from heterogeneous environments, where i.i.d. data only allows for learning an equivalence class of graphs without restrictive assumptions. We propose the Mechanism Shift Score (MSS), a score-based approach amenable to various empirical estimators, which provably identifies the entire causal structure with high probability if the sparse mechanism shift hypothesis holds. Empirically, we verify behavior predicted by the theory and compare multiple estimators and score functions to identify the best approaches in practice. Compared to other methods, we show how MSS bridges a gap by both being nonparametric as well as explicitly leveraging sparse changes.
1,914
null
Combinatorial optimization for low bit-width neural networks
Low-bit width neural networks have been extensively explored for deployment on edge devices to reduce computational resources. Existing approaches have focused on gradient-based optimization in a two-stage train-and-compress setting or as a combined optimization where gradients are quantized during training. Such schemes require high-performance hardware during the training phase and usually store an equivalent number of full-precision weights apart from the quantized weights. In this paper, we explore methods of direct combinatorial optimization in the problem of risk minimization with binary weights, which can be made equivalent to a non-monotone submodular maximization under certain conditions. We employ an approximation algorithm for the cases with single and multilayer neural networks. For linear models, it has $\mathcal{O}(nd)$ time complexity where $n$ is the sample size and $d$ is the data dimension. We show that a combination of greedy coordinate descent and this novel approach can attain competitive accuracy on binary classification tasks.
1,915
null
CVNets: High Performance Library for Computer Vision
We introduce CVNets, a high-performance open-source library for training deep neural networks for visual recognition tasks, including classification, detection, and segmentation. CVNets supports image and video understanding tools, including data loading, data transformations, novel data sampling methods, and implementations of several standard networks with similar or better performance than previous studies. Our source code is available at: \url{https://github.com/apple/ml-cvnets}.
1,916
null
Hybrid Value Estimation for Off-policy Evaluation and Offline Reinforcement Learning
Value function estimation is an indispensable subroutine in reinforcement learning, which becomes more challenging in the offline setting. In this paper, we propose Hybrid Value Estimation (HVE) to reduce value estimation error, which trades off bias and variance by balancing between the value estimation from offline data and the learned model. Theoretical analysis discloses that HVE enjoys a better error bound than the direct methods. HVE can be leveraged in both off-policy evaluation and offline reinforcement learning settings. We, therefore, provide two concrete algorithms Off-policy HVE (OPHVE) and Model-based Offline HVE (MOHVE), respectively. Empirical evaluations on MuJoCo tasks corroborate the theoretical claim. OPHVE outperforms other off-policy evaluation methods in all three metrics measuring the estimation effectiveness, while MOHVE achieves better or comparable performance with state-of-the-art offline reinforcement learning algorithms. We hope that HVE could shed some light on further research on reinforcement learning from fixed data.
1,917
null
MSR: Making Self-supervised learning Robust to Aggressive Augmentations
Most recent self-supervised learning methods learn visual representation by contrasting different augmented views of images. Compared with supervised learning, more aggressive augmentations have been introduced to further improve the diversity of training pairs. However, aggressive augmentations may distort images' structures leading to a severe semantic shift problem that augmented views of the same image may not share the same semantics, thus degrading the transfer performance. To address this problem, we propose a new SSL paradigm, which counteracts the impact of semantic shift by balancing the role of weak and aggressively augmented pairs. Specifically, semantically inconsistent pairs are of minority and we treat them as noisy pairs. Note that deep neural networks (DNNs) have a crucial memorization effect that DNNs tend to first memorize clean (majority) examples before overfitting to noisy (minority) examples. Therefore, we set a relatively large weight for aggressively augmented data pairs at the early learning stage. With the training going on, the model begins to overfit noisy pairs. Accordingly, we gradually reduce the weights of aggressively augmented pairs. In doing so, our method can better embrace the aggressive augmentations and neutralize the semantic shift problem. Experiments show that our model achieves 73.1% top-1 accuracy on ImageNet-1K with ResNet-50 for 200 epochs, which is a 2.5% improvement over BYOL. Moreover, experiments also demonstrate that the learned representations can transfer well for various downstream tasks.
1,918
null
Combinatorial Causal Bandits
In combinatorial causal bandits (CCB), the learning agent chooses at most $K$ variables in each round to intervene, collects feedback from the observed variables, with the goal of minimizing expected regret on the target variable $Y$. Different from all prior studies on causal bandits, CCB needs to deal with exponentially large action space. We study under the context of binary generalized linear models (BGLMs) with a succinct parametric representation of the causal models. We present the algorithm BGLM-OFU for Markovian BGLMs (i.e. no hidden variables) based on the maximum likelihood estimation method, and show that it achieves $O(\sqrt{T}\log T)$ regret, where $T$ is the time horizon. For the special case of linear models with hidden variables, we apply causal inference techniques such as the do-calculus to convert the original model into a Markovian model, and then show that our BGLM-OFU algorithm and another algorithm based on the linear regression both solve such linear models with hidden variables. Our novelty includes (a) considering the combinatorial intervention action space, (b) considering general causal models including ones with hidden variables, (c) integrating and adapting techniques from diverse studies such as generalized linear bandits and online influence maximization, and (d) not relying on unrealistic assumptions such as knowing the joint distribution of the parents of $Y$ under all interventions used in some prior studies.
1,919
null
Rethinking the Openness of CLIP
Contrastive Language-Image Pre-training (CLIP) has demonstrated great potential in realizing open-vocabulary image classification in a matching style, because of its holistic use of natural language supervision that covers unconstrained real-world visual concepts. However, it is, in turn, also difficult to evaluate and analyze the openness of CLIP-like models, since they are in theory open to any vocabulary but the actual accuracy varies. To address the insufficiency of conventional studies on openness, we resort to an incremental view and define the extensibility, which essentially approximates the model's ability to deal with new visual concepts, by evaluating openness through vocabulary expansions. Our evaluation based on extensibility shows that CLIP-like models are hardly truly open and their performances degrade as the vocabulary expands to different degrees. Further analysis reveals that the over-estimation of openness is not because CLIP-like models fail to capture the general similarity of image and text features of novel visual concepts, but because of the confusion among competing text features, that is, they are not stable with respect to the vocabulary. In light of this, we propose to improve the openness of CLIP from the perspective of feature space by enforcing the distinguishability of text features. Our method retrieves relevant texts from the pre-training corpus to enhance prompts for inference, which boosts the extensibility and stability of CLIP even without fine-tuning.
1,920
null
Geodesic Properties of a Generalized Wasserstein Embedding for Time Series Analysis
Transport-based metrics and related embeddings (transforms) have recently been used to model signal classes where nonlinear structures or variations are present. In this paper, we study the geodesic properties of time series data with a generalized Wasserstein metric and the geometry related to their signed cumulative distribution transforms in the embedding space. Moreover, we show how understanding such geometric characteristics can provide added interpretability to certain time series classifiers, and be an inspiration for more robust classifiers.
1,921
null
Modelling and Mining of Patient Pathways: A Scoping Review
The sequence of visits and procedures performed by the patient in the health system, also known as the patient's pathway or trajectory, can reveal important information about the clinical treatment adopted and the health service provided. The rise of electronic health data availability made it possible to assess the pathways of a large number of patients. Nevertheless, some challenges also arose concerning how to synthesize these pathways and how to mine them from the data, fostering a new field of research. The objective of this review is to survey this new field of research, highlighting representation models, mining techniques, methods of analysis, and examples of case studies.
1,922
null
Future Artificial Intelligence tools and perspectives in medicine
Purpose of review: Artificial intelligence (AI) has become popular in medical applications, specifically as a clinical support tool for computer-aided diagnosis. These tools are typically employed on medical data (i.e., image, molecular data, clinical variables, etc.) and used the statistical and machine learning methods to measure the model performance. In this review, we summarized and discussed the most recent radiomic pipeline used for clinical analysis. Recent findings:Currently, limited management of cancers benefits from artificial intelligence, mostly related to a computer-aided diagnosis that avoids a biopsy analysis that presents additional risks and costs. Most AI tools are based on imaging features, known as radiomic analysis that can be refined into predictive models in non-invasively acquired imaging data. This review explores the progress of AI-based radiomic tools for clinical applications with a brief description of necessary technical steps. Explaining new radiomic approaches based on deep learning techniques will explain how the new radiomic models (deep radiomic analysis) can benefit from deep convolutional neural networks and be applied on limited data sets. Summary: To consider the radiomic algorithms, further investigations are recommended to involve deep learning in radiomic models with additional validation steps on various cancer types.
1,923
null
Formal Specifications from Natural Language
We study the ability of language models to translate natural language into formal specifications with complex semantics. In particular, we fine-tune off-the-shelf language models on three datasets consisting of structured English sentences and their corresponding formal representation: 1) First-order logic (FOL), commonly used in software verification and theorem proving; 2) linear-time temporal logic (LTL), which forms the basis for industrial hardware specification languages; and 3) regular expressions (regex), frequently used in programming and search. Our experiments show that, in these diverse domains, the language models achieve competitive performance to the respective state-of-the-art with the benefits of being easy to access, cheap to fine-tune, and without a particular need for domain-specific reasoning. Additionally, we show that the language models have a unique selling point: they benefit from their generalization capabilities from pre-trained knowledge on natural language, e.g., to generalize to unseen variable names.
1,924
null
C$^3$Fusion: Consistent Contrastive Colon Fusion, Towards Deep SLAM in Colonoscopy
3D colon reconstruction from Optical Colonoscopy (OC) to detect non-examined surfaces remains an unsolved problem. The challenges arise from the nature of optical colonoscopy data, characterized by highly reflective low-texture surfaces, drastic illumination changes and frequent tracking loss. Recent methods demonstrate compelling results, but suffer from: (1) frangible frame-to-frame (or frame-to-model) pose estimation resulting in many tracking failures; or (2) rely on point-based representations at the cost of scan quality. In this paper, we propose a novel reconstruction framework that addresses these issues end to end, which result in both quantitatively and qualitatively accurate and robust 3D colon reconstruction. Our SLAM approach, which employs correspondences based on contrastive deep features, and deep consistent depth maps, estimates globally optimized poses, is able to recover from frequent tracking failures, and estimates a global consistent 3D model; all within a single framework. We perform an extensive experimental evaluation on multiple synthetic and real colonoscopy videos, showing high-quality results and comparisons against relevant baselines.
1,925
null
Comparing Performance of Different Linguistically-Backed Word Embeddings for Cyberbullying Detection
In most cases, word embeddings are learned only from raw tokens or in some cases, lemmas. This includes pre-trained language models like BERT. To investigate on the potential of capturing deeper relations between lexical items and structures and to filter out redundant information, we propose to preserve the morphological, syntactic and other types of linguistic information by combining them with the raw tokens or lemmas. This means, for example, including parts-of-speech or dependency information within the used lexical features. The word embeddings can then be trained on the combinations instead of just raw tokens. It is also possible to later apply this method to the pre-training of huge language models and possibly enhance their performance. This would aid in tackling problems which are more sophisticated from the point of view of linguistic representation, such as detection of cyberbullying.
1,926
null
Exploring the Potential of Feature Density in Estimating Machine Learning Classifier Performance with Application to Cyberbullying Detection
In this research. we analyze the potential of Feature Density (HD) as a way to comparatively estimate machine learning (ML) classifier performance prior to training. The goal of the study is to aid in solving the problem of resource-intensive training of ML models which is becoming a serious issue due to continuously increasing dataset sizes and the ever rising popularity of Deep Neural Networks (DNN). The issue of constantly increasing demands for more powerful computational resources is also affecting the environment, as training large-scale ML models are causing alarmingly-growing amounts of CO2, emissions. Our approach 1s to optimize the resource-intensive training of ML models for Natural Language Processing to reduce the number of required experiments iterations. We expand on previous attempts on improving classifier training efficiency with FD while also providing an insight to the effectiveness of various linguistically-backed feature preprocessing methods for dialog classification, specifically cyberbullying detection.
1,927
null
Robust Meta-learning with Sampling Noise and Label Noise via Eigen-Reptile
Recent years have seen a surge of interest in meta-learning techniques for tackling the few-shot learning (FSL) problem. However, the meta-learner is prone to overfitting since there are only a few available samples, which can be identified as sampling noise on a clean dataset. Moreover, when handling the data with noisy labels, the meta-learner could be extremely sensitive to label noise on a corrupted dataset. To address these two challenges, we present Eigen-Reptile (ER) that updates the meta-parameters with the main direction of historical task-specific parameters to alleviate sampling and label noise. Specifically, the main direction is computed in a fast way, where the scale of the calculated matrix is related to the number of gradient steps instead of the number of parameters. Furthermore, to obtain a more accurate main direction for Eigen-Reptile in the presence of many noisy labels, we further propose Introspective Self-paced Learning (ISPL). We have theoretically and experimentally demonstrated the soundness and effectiveness of the proposed Eigen-Reptile and ISPL. Particularly, our experiments on different tasks show that the proposed method is able to outperform or achieve highly competitive performance compared with other gradient-based methods with or without noisy labels. The code and data for the proposed method are provided for research purposes https://github.com/Anfeather/Eigen-Reptile.
1,928
null
Learning Generative Factors of Neuroimaging Data with Variational auto-encoders
Neuroimaging techniques produce high-dimensional, stochastic data from which it might be challenging to extract high-level knowledge about the phenomena of interest. We address this challenge by applying the framework of generative modelling to 1) classify multiple pathologies, 2) recover neurological mechanisms of those pathologies in a data-driven manner and 3) learn robust representations of neuroimaging data. We illustrate the applicability of the proposed approach to identifying schizophrenia, either followed or not by auditory verbal hallucinations. We further demonstrate the ability of the framework to learn disease-related mechanisms that are consistent with current domain knowledge. We also compare the proposed framework with several benchmark approaches and indicate its advantages.
1,929
null
Stochastic Multiple Target Sampling Gradient Descent
Sampling from an unnormalized target distribution is an essential problem with many applications in probabilistic inference. Stein Variational Gradient Descent (SVGD) has been shown to be a powerful method that iteratively updates a set of particles to approximate the distribution of interest. Furthermore, when analysing its asymptotic properties, SVGD reduces exactly to a single-objective optimization problem and can be viewed as a probabilistic version of this single-objective optimization problem. A natural question then arises: "Can we derive a probabilistic version of the multi-objective optimization?". To answer this question, we propose Stochastic Multiple Target Sampling Gradient Descent (MT-SGD), enabling us to sample from multiple unnormalized target distributions. Specifically, our MT-SGD conducts a flow of intermediate distributions gradually orienting to multiple target distributions, which allows the sampled particles to move to the joint high-likelihood region of the target distributions. Interestingly, the asymptotic analysis shows that our approach reduces exactly to the multiple-gradient descent algorithm for multi-objective optimization, as expected. Finally, we conduct comprehensive experiments to demonstrate the merit of our approach to multi-task learning.
1,930
null
Investigating Brain Connectivity with Graph Neural Networks and GNNExplainer
Functional connectivity plays an essential role in modern neuroscience. The modality sheds light on the brain's functional and structural aspects, including mechanisms behind multiple pathologies. One such pathology is schizophrenia which is often followed by auditory verbal hallucinations. The latter is commonly studied by observing functional connectivity during speech processing. In this work, we have made a step toward an in-depth examination of functional connectivity during a dichotic listening task via deep learning for three groups of people: schizophrenia patients with and without auditory verbal hallucinations and healthy controls. We propose a graph neural network-based framework within which we represent EEG data as signals in the graph domain. The framework allows one to 1) predict a brain mental disorder based on EEG recording, 2) differentiate the listening state from the resting state for each group and 3) recognize characteristic task-depending connectivity. Experimental results show that the proposed model can differentiate between the above groups with state-of-the-art performance. Besides, it provides a researcher with meaningful information regarding each group's functional connectivity, which we validated on the current domain knowledge.
1,931
null
Variational Monte Carlo Approach to Partial Differential Equations with Neural Networks
The accurate numerical solution of partial differential equations is a central task in numerical analysis allowing to model a wide range of natural phenomena by employing specialized solvers depending on the scenario of application. Here, we develop a variational approach for solving partial differential equations governing the evolution of high dimensional probability distributions. Our approach naturally works on the unbounded continuous domain and encodes the full probability density function through its variational parameters, which are adapted dynamically during the evolution to optimally reflect the dynamics of the density. For the considered benchmark cases we observe excellent agreement with numerical solutions as well as analytical solutions in regimes inaccessible to traditional computational approaches.
1,932
null
Classification at the Accuracy Limit -- Facing the Problem of Data Ambiguity
Data classification, the process of analyzing data and organizing it into categories, is a fundamental computing problem of natural and artificial information processing systems. Ideally, the performance of classifier models would be evaluated using unambiguous data sets, where the 'correct' assignment of category labels to the input data vectors is unequivocal. In real-world problems, however, a significant fraction of actually occurring data vectors will be located in a boundary zone between or outside of all categories, so that perfect classification cannot even in principle be achieved. We derive the theoretical limit for classification accuracy that arises from the overlap of data categories. By using a surrogate data generation model with adjustable statistical properties, we show that sufficiently powerful classifiers based on completely different principles, such as perceptrons and Bayesian models, all perform at this universal accuracy limit. Remarkably, the accuracy limit is not affected by applying non-linear transformations to the data, even if these transformations are non-reversible and drastically reduce the information content of the input data. We compare emerging data embeddings produced by supervised and unsupervised training, using MNIST and human EEG recordings during sleep. We find that categories are not only well separated in the final layers of classifiers trained with back-propagation, but to a smaller degree also after unsupervised dimensionality reduction. This suggests that human-defined categories, such as hand-written digits or sleep stages, can indeed be considered as 'natural kinds'.
1,933
null
Neural Lyapunov Control of Unknown Nonlinear Systems with Stability Guarantees
Learning for control of dynamical systems with formal guarantees remains a challenging task. This paper proposes a learning framework to simultaneously stabilize an unknown nonlinear system with a neural controller and learn a neural Lyapunov function to certify a region of attraction (ROA) for the closed-loop system. The algorithmic structure consists of two neural networks and a satisfiability modulo theories (SMT) solver. The first neural network is responsible for learning the unknown dynamics. The second neural network aims to identify a valid Lyapunov function and a provably stabilizing nonlinear controller. The SMT solver then verifies that the candidate Lyapunov function indeed satisfies the Lyapunov conditions. We provide theoretical guarantees of the proposed learning framework in terms of the closed-loop stability for the unknown nonlinear system. We illustrate the effectiveness of the approach with a set of numerical experiments.
1,934
null
Toward Learning Robust and Invariant Representations with Alignment Regularization and Data Augmentation
Data augmentation has been proven to be an effective technique for developing machine learning models that are robust to known classes of distributional shifts (e.g., rotations of images), and alignment regularization is a technique often used together with data augmentation to further help the model learn representations invariant to the shifts used to augment the data. In this paper, motivated by a proliferation of options of alignment regularizations, we seek to evaluate the performances of several popular design choices along the dimensions of robustness and invariance, for which we introduce a new test procedure. Our synthetic experiment results speak to the benefits of squared l2 norm regularization. Further, we also formally analyze the behavior of alignment regularization to complement our empirical study under assumptions we consider realistic. Finally, we test this simple technique we identify (worst-case data augmentation with squared l2 norm alignment regularization) and show that the benefits of this method outrun those of the specially designed methods. We also release a software package in both TensorFlow and PyTorch for users to use the method with a couple of lines at https://github.com/jyanln/AlignReg.
1,935
null
Hybrid Architectures for Distributed Machine Learning in Heterogeneous Wireless Networks
The ever-growing data privacy concerns have transformed machine learning (ML) architectures from centralized to distributed, leading to federated learning (FL) and split learning (SL) as the two most popular privacy-preserving ML paradigms. However, implementing either conventional FL or SL alone with diverse network conditions (e.g., device-to-device (D2D) and cellular communications) and heterogeneous clients (e.g., heterogeneous computation/communication/energy capabilities) may face significant challenges, particularly poor architecture scalability and long training time. To this end, this article proposes two novel hybrid distributed ML architectures, namely, hybrid split FL (HSFL) and hybrid federated SL (HFSL), by combining the advantages of both FL and SL in D2D-enabled heterogeneous wireless networks. Specifically, the performance comparison and advantages of HSFL and HFSL are analyzed generally. Promising open research directions are presented to offer commendable reference for future research. Finally, primary simulations are conducted upon considering three datasets under non-independent and identically distributed settings, to verify the feasibility of our proposed architectures, which can significantly reduce communication/computation cost and training time, as compared with conventional FL and SL.
1,936
null
Soft Adversarial Training Can Retain Natural Accuracy
Adversarial training for neural networks has been in the limelight in recent years. The advancement in neural network architectures over the last decade has led to significant improvement in their performance. It sparked an interest in their deployment for real-time applications. This process initiated the need to understand the vulnerability of these models to adversarial attacks. It is instrumental in designing models that are robust against adversaries. Recent works have proposed novel techniques to counter the adversaries, most often sacrificing natural accuracy. Most suggest training with an adversarial version of the inputs, constantly moving away from the original distribution. The focus of our work is to use abstract certification to extract a subset of inputs for (hence we call it 'soft') adversarial training. We propose a training framework that can retain natural accuracy without sacrificing robustness in a constrained setting. Our framework specifically targets moderately critical applications which require a reasonable balance between robustness and accuracy. The results testify to the idea of soft adversarial training for the defense against adversarial attacks. At last, we propose the scope of future work for further improvement of this framework.
1,937
null
Estimating counterfactual treatment outcomes over time in complex multi-agent scenarios
Evaluation of intervention in a multi-agent system, e.g., when humans should intervene in autonomous driving systems and when a player should pass to teammates for a good shot, is challenging in various engineering and scientific fields. Estimating the individual treatment effect (ITE) using counterfactual long-term prediction is practical to evaluate such interventions. However, most of the conventional frameworks did not consider the time-varying complex structure of multi-agent relationships and covariate counterfactual prediction. This may sometimes lead to erroneous assessments of ITE and interpretation problems. Here we propose an interpretable, counterfactual recurrent network in multi-agent systems to estimate the effect of the intervention. Our model leverages graph variational recurrent neural networks and theory-based computation with domain knowledge for the ITE estimation framework based on long-term prediction of multi-agent covariates and outcomes, which can confirm under the circumstances under which the intervention is effective. On simulated models of an automated vehicle and biological agents with time-varying confounders, we show that our methods achieved lower estimation errors in counterfactual covariates and the most effective treatment timing than the baselines. Furthermore, using real basketball data, our methods performed realistic counterfactual predictions and evaluated the counterfactual passes in shot scenarios.
1,938
null
Evaluation of creating scoring opportunities for teammates in soccer via trajectory prediction
Evaluating the individual movements for teammates in soccer players is crucial for assessing teamwork, scouting, and fan engagement. It has been said that players in a 90-min game do not have the ball for about 87 minutes on average. However, it has remained difficult to evaluate an attacking player without receiving the ball, and to reveal how movement contributes to the creation of scoring opportunities for teammates. In this paper, we evaluate players who create off-ball scoring opportunities by comparing actual movements with the reference movements generated via trajectory prediction. First, we predict the trajectories of players using a graph variational recurrent neural network that can accurately model the relationship between players and predict the long-term trajectory. Next, based on the difference in the modified off-ball evaluation index between the actual and the predicted trajectory as a reference, we evaluate how the actual movement contributes to scoring opportunity compared to the predicted movement. For verification, we examined the relationship with the annual salary, the goals, and the rating in the game by experts for all games of a team in a professional soccer league in a year. The results show that the annual salary and the proposed indicator correlated significantly, which could not be explained by the existing indicators and goals. Our results suggest the effectiveness of the proposed method as an indicator for a player without the ball to create a scoring chance for teammates.
1,939
null
Saliency Attack: Towards Imperceptible Black-box Adversarial Attack
Deep neural networks are vulnerable to adversarial examples, even in the black-box setting where the attacker is only accessible to the model output. Recent studies have devised effective black-box attacks with high query efficiency. However, such performance is often accompanied by compromises in attack imperceptibility, hindering the practical use of these approaches. In this paper, we propose to restrict the perturbations to a small salient region to generate adversarial examples that can hardly be perceived. This approach is readily compatible with many existing black-box attacks and can significantly improve their imperceptibility with little degradation in attack success rate. Further, we propose the Saliency Attack, a new black-box attack aiming to refine the perturbations in the salient region to achieve even better imperceptibility. Extensive experiments show that compared to the state-of-the-art black-box attacks, our approach achieves much better imperceptibility scores, including most apparent distortion (MAD), $L_0$ and $L_2$ distances, and also obtains significantly higher success rates judged by a human-like threshold on MAD. Importantly, the perturbations generated by our approach are interpretable to some extent. Finally, it is also demonstrated to be robust to different detection-based defenses.
1,940
null
Adaptive Tree Backup Algorithms for Temporal-Difference Reinforcement Learning
Q($\sigma$) is a recently proposed temporal-difference learning method that interpolates between learning from expected backups and sampled backups. It has been shown that intermediate values for the interpolation parameter $\sigma \in [0,1]$ perform better in practice, and therefore it is commonly believed that $\sigma$ functions as a bias-variance trade-off parameter to achieve these improvements. In our work, we disprove this notion, showing that the choice of $\sigma=0$ minimizes variance without increasing bias. This indicates that $\sigma$ must have some other effect on learning that is not fully understood. As an alternative, we hypothesize the existence of a new trade-off: larger $\sigma$-values help overcome poor initializations of the value function, at the expense of higher statistical variance. To automatically balance these considerations, we propose Adaptive Tree Backup (ATB) methods, whose weighted backups evolve as the agent gains experience. Our experiments demonstrate that adaptive strategies can be more effective than relying on fixed or time-annealed $\sigma$-values.
1,941
null
Initial Study into Application of Feature Density and Linguistically-backed Embedding to Improve Machine Learning-based Cyberbullying Detection
In this research, we study the change in the performance of machine learning (ML) classifiers when various linguistic preprocessing methods of a dataset were used, with the specific focus on linguistically-backed embeddings in Convolutional Neural Networks (CNN). Moreover, we study the concept of Feature Density and confirm its potential to comparatively predict the performance of ML classifiers, including CNN. The research was conducted on a Formspring dataset provided in a Kaggle competition on automatic cyberbullying detection. The dataset was re-annotated by objective experts (psychologists), as the importance of professional annotation in cyberbullying research has been indicated multiple times. The study confirmed the effectiveness of Neural Networks in cyberbullying detection and the correlation between classifier performance and Feature Density while also proposing a new approach of training various linguistically-backed embeddings for Convolutional Neural Networks.
1,942
null
Reward Poisoning Attacks on Offline Multi-Agent Reinforcement Learning
We expose the danger of reward poisoning in offline multi-agent reinforcement learning (MARL), whereby an attacker can modify the reward vectors to different learners in an offline data set while incurring a poisoning cost. Based on the poisoned data set, all rational learners using some confidence-bound-based MARL algorithm will infer that a target policy - chosen by the attacker and not necessarily a solution concept originally - is the Markov perfect dominant strategy equilibrium for the underlying Markov Game, hence they will adopt this potentially damaging target policy in the future. We characterize the exact conditions under which the attacker can install a target policy. We further show how the attacker can formulate a linear program to minimize its poisoning cost. Our work shows the need for robust MARL against adversarial attacks.
1,943
null
Learning in Congestion Games with Bandit Feedback
Learning Nash equilibria is a central problem in multi-agent systems. In this paper, we investigate congestion games, a class of games with benign theoretical structure and broad real-world applications. We first propose a centralized algorithm based on the optimism in the face of uncertainty principle for congestion games with (semi-)bandit feedback, and obtain finite-sample guarantees. Then we propose a decentralized algorithm via a novel combination of the Frank-Wolfe method and G-optimal design. By exploiting the structure of the congestion game, we show the sample complexity of both algorithms depends only polynomially on the number of players and the number of facilities, but not the size of the action set, which can be exponentially large in terms of the number of facilities. We further define a new problem class, Markov congestion games, which allows us to model the non-stationarity in congestion games. We propose a centralized algorithm for Markov congestion games, whose sample complexity again has only polynomial dependence on all relevant problem parameters, but not the size of the action set.
1,944
null
An Unpooling Layer for Graph Generation
We propose a novel and trainable graph unpooling layer for effective graph generation. Given a graph with features, the unpooling layer enlarges this graph and learns its desired new structure and features. Since this unpooling layer is trainable, it can be applied to graph generation either in the decoder of a variational autoencoder or in the generator of a generative adversarial network (GAN). We prove that the unpooled graph remains connected and any connected graph can be sequentially unpooled from a 3-nodes graph. We apply the unpooling layer within the GAN generator. Since the most studied instance of graph generation is molecular generation, we test our ideas in this context. Using the QM9 and ZINC datasets, we demonstrate the improvement obtained by using the unpooling layer instead of an adjacency-matrix-based approach.
1,945
null
Estimating the Effect of Team Hitting Strategies Using Counterfactual Virtual Simulation in Baseball
In baseball, every play on the field is quantitatively evaluated and has an effect on individual and team strategies. The weighted on base average (wOBA) is well known as a measure of an batter's hitting contribution. However, this measure ignores the game situation, such as the runners on base, which coaches and batters are known to consider when employing multiple hitting strategies, yet, the effectiveness of these strategies is unknown. This is probably because (1) we cannot obtain the batter's strategy and (2) it is difficult to estimate the effect of the strategies. Here, we propose a new method for estimating the effect using counterfactual batting simulation. To this end, we propose a deep learning model that transforms batting ability when batting strategy is changed. This method can estimate the effects of various strategies, which has been traditionally difficult with actual game data. We found that, when the switching cost of batting strategies can be ignored, the use of different strategies increased runs. When the switching cost is considered, the conditions for increasing runs were limited. Our validation results suggest that our simulation could clarify the effect of using multiple batting strategies.
1,946
null
Model-Informed Generative Adversarial Network (MI-GAN) for Learning Optimal Power Flow
The optimal power flow (OPF) problem, as a critical component of power system operations, becomes increasingly difficult to solve due to the variability, intermittency, and unpredictability of renewable energy brought to the power system. Although traditional optimization techniques, such as stochastic and robust optimization approaches, could be used to address the OPF problem in the face of renewable energy uncertainty, their effectiveness in dealing with large-scale problems remains limited. As a result, deep learning techniques, such as neural networks, have recently been developed to improve computational efficiency in solving large-scale OPF problems. However, the feasibility and optimality of the solution may not be guaranteed. In this paper, we propose an optimization model-informed generative adversarial network (MI-GAN) framework to solve OPF under uncertainty. The main contributions are summarized into three aspects: (1) to ensure feasibility and improve optimality of generated solutions, three important layers are proposed: feasibility filter layer, comparison layer, and gradient-guided layer; (2) in the GAN-based framework, an efficient model-informed selector incorporating these three new layers is established; and (3) a new recursive iteration algorithm is also proposed to improve solution optimality. The numerical results on IEEE test systems show that the proposed method is very effective and promising.
1,947
null
ZeroQuant: Efficient and Affordable Post-Training Quantization for Large-Scale Transformers
How to efficiently serve ever-larger trained natural language models in practice has become exceptionally challenging even for powerful cloud servers due to their prohibitive memory/computation requirements. In this work, we present an efficient and affordable post-training quantization approach to compress large Transformer-based models, termed as ZeroQuant. ZeroQuant is an end-to-end quantization and inference pipeline with three main components: (1) a fine-grained hardware-friendly quantization scheme for both weight and activations; (2) a novel affordable layer-by-layer knowledge distillation algorithm (LKD) even without the access to the original training data; (3) a highly-optimized quantization system backend support to remove the quantization/dequantization overhead. As such, we are able to show that: (1) ZeroQuant can reduce the precision for weights and activations to INT8 in a cost-free way for both BERT and GPT3-style models with minimal accuracy impact, which leads to up to 5.19x/4.16x speedup on those models compared to FP16 inference; (2) ZeroQuant plus LKD affordably quantize the weights in the fully-connected module to INT4 along with INT8 weights in the attention module and INT8 activations, resulting in 3x memory footprint reduction compared to the FP16 model; (3) ZeroQuant can be directly applied to two of the largest open-sourced language models, including GPT-J6B and GPT-NeoX20, for which our INT8 model achieves similar accuracy as the FP16 model but achieves up to 5.2x better efficiency.
1,948
null
Extreme Compression for Pre-trained Transformers Made Simple and Efficient
Extreme compression, particularly ultra-low bit precision (binary/ternary) quantization, has been proposed to fit large NLP models on resource-constraint devices. However, to preserve the accuracy for such aggressive compression schemes, cutting-edge methods usually introduce complicated compression pipelines, e.g., multi-stage expensive knowledge distillation with extensive hyperparameter tuning. Also, they oftentimes focus less on smaller transformer models that have already been heavily compressed via knowledge distillation and lack a systematic study to show the effectiveness of their methods. In this paper, we perform a very comprehensive systematic study to measure the impact of many key hyperparameters and training strategies from previous works. As a result, we find out that previous baselines for ultra-low bit precision quantization are significantly under-trained. Based on our study, we propose a simple yet effective compression pipeline for extreme compression, named XTC. XTC demonstrates that (1) we can skip the pre-training knowledge distillation to obtain a 5-layer BERT while achieving better performance than previous state-of-the-art methods, e.g., the 6-layer TinyBERT; (2) extreme quantization plus layer reduction is able to reduce the model size by 50x, resulting in new state-of-the-art results on GLUE tasks.
1,949
null
Federated Deep Learning Meets Autonomous Vehicle Perception: Design and Verification
Realizing human-like perception is a challenge in open driving scenarios due to corner cases and visual occlusions. To gather knowledge of rare and occluded instances, federated learning empowered connected autonomous vehicle (FLCAV) has been proposed, which leverages vehicular networks to establish federated deep neural networks (DNNs) from distributed data captured by vehicles and road sensors. Without the need of data aggregation, FLCAV preserves privacy while reducing communication and annotation costs compared with conventional centralized learning. However, it is challenging to determine the network resources and road sensor poses for multi-stage training with multi-modal datasets in multi-variant scenarios. This article presents networking and training frameworks for FLCAV perception. Multi-layer graph resource allocation and vehicle-road pose contrastive methods are proposed to address the network management and sensor pose problems, respectively. We also develop CarlaFLCAV, a software platform that implements the above system and methods. Experimental results confirm the superiority of the proposed techniques compared with various benchmarks.
1,950
null
Out-of-Distribution Detection using BiGAN and MDL
We consider the following problem: we have a large dataset of normal data available. We are now given a new, possibly quite small, set of data, and we are to decide if these are normal data, or if they are indicating a new phenomenon. This is a novelty detection or out-of-distribution detection problem. An example is in medicine, where the normal data is for people with no known disease, and the new dataset people with symptoms. Other examples could be in security. We solve this problem by training a bidirectional generative adversarial network (BiGAN) on the normal data and using a Gaussian graphical model to model the output. We then use universal source coding, or minimum description length (MDL) on the output to decide if it is a new distribution, in an implementation of Kolmogorov and Martin-L\"{o}f randomness. We apply the methodology to both MNIST data and a real-world electrocardiogram (ECG) dataset of healthy and patients with Kawasaki disease, and show better performance in terms of the ROC curve than similar methods.
1,951
null
Coffee Roast Intelligence
As the coffee industry has grown, there would be more demand for roasted coffee beans, as well as increased rivalry for selling coffee and attracting customers. As the flavor of each variety of coffee is dependent on the degree of roasting of the coffee beans, it is vital to maintain a consistent quality related to the degree of roasting. Each barista has their own method for determining the degree of roasting. However, extrinsic circumstances such as light, fatigue, and other factors may alter their judgment. As a result, the quality of the coffee cannot be controlled. The Coffee Roast Intelligence application is a machine learning-based study of roasted coffee bean degrees classification produced as an Android application platform that identifies the color of coffee beans by photographing or uploading them while roasting. This application displays the text showing at what level the coffee beans have been roasted, as well as informs the percent chance of class prediction to the consumers. Users may also keep track of the result of the predictions related to the roasting level of coffee beans.
1,952
null
Differentially Private Model Compression
Recent papers have shown that large pre-trained language models (LLMs) such as BERT, GPT-2 can be fine-tuned on private data to achieve performance comparable to non-private models for many downstream Natural Language Processing (NLP) tasks while simultaneously guaranteeing differential privacy. The inference cost of these models -- which consist of hundreds of millions of parameters -- however, can be prohibitively large. Hence, often in practice, LLMs are compressed before they are deployed in specific applications. In this paper, we initiate the study of differentially private model compression and propose frameworks for achieving 50% sparsity levels while maintaining nearly full performance. We demonstrate these ideas on standard GLUE benchmarks using BERT models, setting benchmarks for future research on this topic.
1,953
null
Dimension Independent Generalization of DP-SGD for Overparameterized Smooth Convex Optimization
This paper considers the generalization performance of differentially private convex learning. We demonstrate that the convergence analysis of Langevin algorithms can be used to obtain new generalization bounds with differential privacy guarantees for DP-SGD. More specifically, by using some recently obtained dimension-independent convergence results for stochastic Langevin algorithms with convex objective functions, we obtain $O(n^{-1/4})$ privacy guarantees for DP-SGD with the optimal excess generalization error of $\tilde{O}(n^{-1/2})$ for certain classes of overparameterized smooth convex optimization problems. This improves previous DP-SGD results for such problems that contain explicit dimension dependencies, so that the resulting generalization bounds become unsuitable for overparameterized models used in practical applications.
1,954
null
Drawing out of Distribution with Neuro-Symbolic Generative Models
Learning general-purpose representations from perceptual inputs is a hallmark of human intelligence. For example, people can write out numbers or characters, or even draw doodles, by characterizing these tasks as different instantiations of the same generic underlying process -- compositional arrangements of different forms of pen strokes. Crucially, learning to do one task, say writing, implies reasonable competence at another, say drawing, on account of this shared process. We present Drawing out of Distribution (DooD), a neuro-symbolic generative model of stroke-based drawing that can learn such general-purpose representations. In contrast to prior work, DooD operates directly on images, requires no supervision or expensive test-time inference, and performs unsupervised amortised inference with a symbolic stroke model that better enables both interpretability and generalization. We evaluate DooD on its ability to generalise across both data and tasks. We first perform zero-shot transfer from one dataset (e.g. MNIST) to another (e.g. Quickdraw), across five different datasets, and show that DooD clearly outperforms different baselines. An analysis of the learnt representations further highlights the benefits of adopting a symbolic stroke model. We then adopt a subset of the Omniglot challenge tasks, and evaluate its ability to generate new exemplars (both unconditionally and conditionally), and perform one-shot classification, showing that DooD matches the state of the art. Taken together, we demonstrate that DooD does indeed capture general-purpose representations across both data and task, and takes a further step towards building general and robust concept-learning systems.
1,955
null
Debiased Machine Learning without Sample-Splitting for Stable Estimators
Estimation and inference on causal parameters is typically reduced to a generalized method of moments problem, which involves auxiliary functions that correspond to solutions to a regression or classification problem. Recent line of work on debiased machine learning shows how one can use generic machine learning estimators for these auxiliary problems, while maintaining asymptotic normality and root-$n$ consistency of the target parameter of interest, while only requiring mean-squared-error guarantees from the auxiliary estimation algorithms. The literature typically requires that these auxiliary problems are fitted on a separate sample or in a cross-fitting manner. We show that when these auxiliary estimation algorithms satisfy natural leave-one-out stability properties, then sample splitting is not required. This allows for sample re-use, which can be beneficial in moderately sized sample regimes. For instance, we show that the stability properties that we propose are satisfied for ensemble bagged estimators, built via sub-sampling without replacement, a popular technique in machine learning practice.
1,956
null
A Robust Backpropagation-Free Framework for Images
While current deep learning algorithms have been successful for a wide variety of artificial intelligence (AI) tasks, including those involving structured image data, they present deep neurophysiological conceptual issues due to their reliance on the gradients computed by backpropagation of errors (backprop) to obtain synaptic weight adjustments; hence are biologically implausible. We present a more biologically plausible approach, the error-kernel driven activation alignment (EKDAA) algorithm, to train convolution neural networks (CNNs) using locally derived error transmission kernels and error maps. We demonstrate the efficacy of EKDAA by performing the task of visual-recognition on the Fashion MNIST, CIFAR-10 and SVHN benchmarks as well as conducting blackbox robustness tests on adversarial examples derived from these datasets. Furthermore, we also present results for a CNN trained using a non-differentiable activation function. All recognition results nearly matches that of backprop and exhibit greater adversarial robustness compared to backprop.
1,957
null
QAGCN: A Graph Convolutional Network-based Multi-Relation Question Answering System
Answering multi-relation questions over knowledge graphs is a challenging task as it requires multi-step reasoning over a huge number of possible paths. Reasoning-based methods with complex reasoning mechanisms, such as reinforcement learning-based sequential decision making, have been regarded as the default pathway for this task. However, these mechanisms are difficult to implement and train, which hampers their reproducibility and transferability to new domains. In this paper, we propose QAGCN - a simple but effective and novel model that leverages attentional graph convolutional networks that can perform multi-step reasoning during the encoding of knowledge graphs. As a consequence, complex reasoning mechanisms are avoided. In addition, to improve efficiency, we retrieve answers using highly-efficient embedding computations and, for better interpretability, we extract interpretable paths for returned answers. On widely adopted benchmark datasets, the proposed model has been demonstrated competitive against state-of-the-art methods that rely on complex reasoning mechanisms. We also conducted extensive experiments to scrutinize the efficiency and contribution of each component of our model.
1,958
null
Contrastive learning unifies $t$-SNE and UMAP
Neighbor embedding methods $t$-SNE and UMAP are the de facto standard for visualizing high-dimensional datasets. They appear to use very different loss functions with different motivations, and the exact relationship between them has been unclear. Here we show that UMAP is effectively negative sampling applied to the $t$-SNE loss function. We explain the difference between negative sampling and noise-contrastive estimation (NCE), which has been used to optimize $t$-SNE under the name NCVis. We prove that, unlike NCE, negative sampling learns a scaled data distribution. When applied in the neighbor embedding setting, it yields more compact embeddings with increased attraction, explaining differences in appearance between UMAP and $t$-SNE. Further, we generalize the notion of negative sampling and obtain a spectrum of embeddings, encompassing visualizations similar to $t$-SNE, NCVis, and UMAP. Finally, we explore the connection between representation learning in the SimCLR setting and neighbor embeddings, and show that (i) $t$-SNE can be optimized using the InfoNCE loss and in a parametric setting; (ii) various contrastive losses with only few noise samples can yield competitive performance in the SimCLR setup.
1,959
null
Challenges to Solving Combinatorially Hard Long-Horizon Deep RL Tasks
Deep reinforcement learning has shown promise in discrete domains requiring complex reasoning, including games such as Chess, Go, and Hanabi. However, this type of reasoning is less often observed in long-horizon, continuous domains with high-dimensional observations, where instead RL research has predominantly focused on problems with simple high-level structure (e.g. opening a drawer or moving a robot as fast as possible). Inspired by combinatorially hard optimization problems, we propose a set of robotics tasks which admit many distinct solutions at the high-level, but require reasoning about states and rewards thousands of steps into the future for the best performance. Critically, while RL has traditionally suffered on complex, long-horizon tasks due to sparse rewards, our tasks are carefully designed to be solvable without specialized exploration. Nevertheless, our investigation finds that standard RL methods often neglect long-term effects due to discounting, while general-purpose hierarchical RL approaches struggle unless additional abstract domain knowledge can be exploited.
1,960
null
Learning Fine Scale Dynamics from Coarse Observations via Inner Recurrence
Recent work has focused on data-driven learning of the evolution of unknown systems via deep neural networks (DNNs), with the goal of conducting long term prediction of the dynamics of the unknown system. In many real-world applications, data from time-dependent systems are often collected on a time scale that is coarser than desired, due to various restrictions during the data acquisition process. Consequently, the observed dynamics can be severely under-sampled and do not reflect the true dynamics of the underlying system. This paper presents a computational technique to learn the fine-scale dynamics from such coarsely observed data. The method employs inner recurrence of a DNN to recover the fine-scale evolution operator of the underlying system. In addition to mathematical justification, several challenging numerical examples, including unknown systems of both ordinary and partial differential equations, are presented to demonstrate the effectiveness of the proposed method.
1,961
null
Do-Operation Guided Causal Representation Learning with Reduced Supervision Strength
Causal representation learning has been proposed to encode relationships between factors presented in the high dimensional data. However, existing methods suffer from merely using a large amount of labeled data and ignore the fact that samples generated by the same causal mechanism follow the same causal relationships. In this paper, we seek to explore such information by leveraging do-operation for reducing supervision strength. We propose a framework which implements do-operation by swapping latent cause and effect factors encoded from a pair of inputs. Moreover, we also identify the inadequacy of existing causal representation metrics empirically and theoretically, and introduce new metrics for better evaluation. Experiments conducted on both synthetic and real datasets demonstrate the superiorities of our method compared with state-of-the-art methods.
1,962
null
Robust Topological Inference in the Presence of Outliers
The distance function to a compact set plays a crucial role in the paradigm of topological data analysis. In particular, the sublevel sets of the distance function are used in the computation of persistent homology -- a backbone of the topological data analysis pipeline. Despite its stability to perturbations in the Hausdorff distance, persistent homology is highly sensitive to outliers. In this work, we develop a framework of statistical inference for persistent homology in the presence of outliers. Drawing inspiration from recent developments in robust statistics, we propose a $\textit{median-of-means}$ variant of the distance function ($\textsf{MoM Dist}$), and establish its statistical properties. In particular, we show that, even in the presence of outliers, the sublevel filtrations and weighted filtrations induced by $\textsf{MoM Dist}$ are both consistent estimators of the true underlying population counterpart, and their rates of convergence in the bottleneck metric are controlled by the fraction of outliers in the data. Finally, we demonstrate the advantages of the proposed methodology through simulations and applications.
1,963
null
Additive MIL: Intrinsic Interpretability for Pathology
Multiple Instance Learning (MIL) has been widely applied in pathology towards solving critical problems such as automating cancer diagnosis and grading, predicting patient prognosis, and therapy response. Deploying these models in a clinical setting requires careful inspection of these black boxes during development and deployment to identify failures and maintain physician trust. In this work, we propose a simple formulation of MIL models, which enables interpretability while maintaining similar predictive performance. Our Additive MIL models enable spatial credit assignment such that the contribution of each region in the image can be exactly computed and visualized. We show that our spatial credit assignment coincides with regions used by pathologists during diagnosis and improves upon classical attention heatmaps from attention MIL models. We show that any existing MIL model can be made additive with a simple change in function composition. We also show how these models can debug model failures, identify spurious features, and highlight class-wise regions of interest, enabling their use in high-stakes environments such as clinical decision-making.
1,964
null
R2U++: A Multiscale Recurrent Residual U-Net with Dense Skip Connections for Medical Image Segmentation
U-Net is a widely adopted neural network in the domain of medical image segmentation. Despite its quick embracement by the medical imaging community, its performance suffers on complicated datasets. The problem can be ascribed to its simple feature extracting blocks: encoder/decoder, and the semantic gap between encoder and decoder. Variants of U-Net (such as R2U-Net) have been proposed to address the problem of simple feature extracting blocks by making the network deeper, but it does not deal with the semantic gap problem. On the other hand, another variant UNET++ deals with the semantic gap problem by introducing dense skip connections but has simple feature extraction blocks. To overcome these issues, we propose a new U-Net based medical image segmentation architecture R2U++. In the proposed architecture, the adapted changes from vanilla U-Net are: (1) the plain convolutional backbone is replaced by a deeper recurrent residual convolution block. The increased field of view with these blocks aids in extracting crucial features for segmentation which is proven by improvement in the overall performance of the network. (2) The semantic gap between encoder and decoder is reduced by dense skip pathways. These pathways accumulate features coming from multiple scales and apply concatenation accordingly. The modified architecture has embedded multi-depth models, and an ensemble of outputs taken from varying depths improves the performance on foreground objects appearing at various scales in the images. The performance of R2U++ is evaluated on four distinct medical imaging modalities: electron microscopy (EM), X-rays, fundus, and computed tomography (CT). The average gain achieved in IoU score is 1.5+-0.37% and in dice score is 0.9+-0.33% over UNET++, whereas, 4.21+-2.72 in IoU and 3.47+-1.89 in dice score over R2U-Net across different medical imaging segmentation datasets.
1,965
null
Human Activity Recognition on Time Series Accelerometer Sensor Data using LSTM Recurrent Neural Networks
The use of sensors available through smart devices has pervaded everyday life in several applications including human activity monitoring, healthcare, and social networks. In this study, we focus on the use of smartwatch accelerometer sensors to recognize eating activity. More specifically, we collected sensor data from 10 participants while consuming pizza. Using this information, and other comparable data available for similar events such as smoking and medication-taking, and dissimilar activities of jogging, we developed a LSTM-ANN architecture that has demonstrated 90% success in identifying individual bites compared to a puff, medication-taking or jogging activities.
1,966
null
Optimal Competitive-Ratio Control
Inspired by competitive policy designs approaches in online learning, new control paradigms such as competitive-ratio and regret-optimal control have been recently proposed as alternatives to the classical $\mathcal{H}_2$ and $\mathcal{H}_\infty$ approaches. These competitive metrics compare the control cost of the designed controller against the cost of a clairvoyant controller, which has access to past, present, and future disturbances in terms of ratio and difference, respectively. While prior work provided the optimal solution for the regret-optimal control problem, in competitive-ratio control, the solution is only provided for the sub-optimal problem. In this work, we derive the optimal solution to the competitive-ratio control problem. We show that the optimal competitive ratio formula can be computed as the maximal eigenvalue of a simple matrix, and provide a state-space controller that achieves the optimal competitive ratio. We conduct an extensive numerical study to verify this analytical solution, and demonstrate that the optimal competitive-ratio controller outperforms other controllers on several large scale practical systems. The key techniques that underpin our explicit solution is a reduction of the control problem to a Nehari problem, along with a novel factorization of the clairvoyant controller's cost. We reveal an interesting relation between the explicit solutions that now exist for both competitive control paradigms by formulating a regret-optimal control framework with weight functions that can also be utilized for practical purposes.
1,967
null
A Learning-Based Method for Automatic Operator Selection in the Fanoos XAI System
We describe an extension of the Fanoos XAI system [Bayani et al 2022] which enables the system to learn the appropriate action to take in order to satisfy a user's request for description to be made more or less abstract. Specifically, descriptions of systems under analysis are stored in states, and in order to make a description more or less abstract, Fanoos selects an operator from a large library to apply to the state and generate a new description. Prior work on Fanoos predominately used hand-written methods for operator-selection; this current work allows Fanoos to leverage experience to learn the best operator to apply in a particular situation, balancing exploration and exploitation, leveraging expert insights when available, and utilizing similarity between the current state and past states. Additionally, in order to bootstrap the learning process (i.e., like in curriculum learning), we describe a simulated user which we implemented; this simulation allows Fanoos to gain general insights that enable reasonable courses of action, insights which later can be refined by experience with real users, as opposed to interacting with humans completely from scratch. Code implementing the methods described in the paper can be found at https://github/DBay-ani/Operator_Selection_Learning_Extensions_For_Fanoos.
1,968
null
Revisiting the "Video" in Video-Language Understanding
What makes a video task uniquely suited for videos, beyond what can be understood from a single image? Building on recent progress in self-supervised image-language models, we revisit this question in the context of video and language tasks. We propose the atemporal probe (ATP), a new model for video-language analysis which provides a stronger bound on the baseline accuracy of multimodal models constrained by image-level understanding. By applying this model to standard discriminative video and language tasks, such as video question answering and text-to-video retrieval, we characterize the limitations and potential of current video-language benchmarks. We find that understanding of event temporality is often not necessary to achieve strong or state-of-the-art performance, even compared with recent large-scale video-language models and in contexts intended to benchmark deeper video-level understanding. We also demonstrate how ATP can improve both video-language dataset and model design. We describe a technique for leveraging ATP to better disentangle dataset subsets with a higher concentration of temporally challenging data, improving benchmarking efficacy for causal and temporal understanding. Further, we show that effectively integrating ATP into full video-level temporal models can improve efficiency and state-of-the-art accuracy.
1,969
null
A Theoretical Analysis on Feature Learning in Neural Networks: Emergence from Inputs and Advantage over Fixed Features
An important characteristic of neural networks is their ability to learn representations of the input data with effective features for prediction, which is believed to be a key factor to their superior empirical performance. To better understand the source and benefit of feature learning in neural networks, we consider learning problems motivated by practical data, where the labels are determined by a set of class relevant patterns and the inputs are generated from these along with some background patterns. We prove that neural networks trained by gradient descent can succeed on these problems. The success relies on the emergence and improvement of effective features, which are learned among exponentially many candidates efficiently by exploiting the data (in particular, the structure of the input distribution). In contrast, no linear models on data-independent features of polynomial sizes can learn to as good errors. Furthermore, if the specific input structure is removed, then no polynomial algorithm in the Statistical Query model can learn even weakly. These results provide theoretical evidence showing that feature learning in neural networks depends strongly on the input structure and leads to the superior performance. Our preliminary experimental results on synthetic and real data also provide positive support.
1,970
null
Towards Evading the Limits of Randomized Smoothing: A Theoretical Analysis
Randomized smoothing is the dominant standard for provable defenses against adversarial examples. Nevertheless, this method has recently been proven to suffer from important information theoretic limitations. In this paper, we argue that these limitations are not intrinsic, but merely a byproduct of current certification methods. We first show that these certificates use too little information about the classifier, and are in particular blind to the local curvature of the decision boundary. This leads to severely sub-optimal robustness guarantees as the dimension of the problem increases. We then show that it is theoretically possible to bypass this issue by collecting more information about the classifier. More precisely, we show that it is possible to approximate the optimal certificate with arbitrary precision, by probing the decision boundary with several noise distributions. Since this process is executed at certification time rather than at test time, it entails no loss in natural accuracy while enhancing the quality of the certificates. This result fosters further research on classifier-specific certification and demonstrates that randomized smoothing is still worth investigating. Although classifier-specific certification may induce more computational cost, we also provide some theoretical insight on how to mitigate it.
1,971
null
Compositional Visual Generation with Composable Diffusion Models
Large text-guided diffusion models, such as DALLE-2, are able to generate stunning photorealistic images given natural language descriptions. While such models are highly flexible, they struggle to understand the composition of certain concepts, such as confusing the attributes of different objects or relations between objects. In this paper, we propose an alternative structured approach for compositional generation using diffusion models. An image is generated by composing a set of diffusion models, with each of them modeling a certain component of the image. To do this, we interpret diffusion models as energy-based models in which the data distributions defined by the energy functions may be explicitly combined. The proposed method can generate scenes at test time that are substantially more complex than those seen in training, composing sentence descriptions, object relations, human facial attributes, and even generalizing to new combinations that are rarely seen in the real world. We further illustrate how our approach may be used to compose pre-trained text-guided diffusion models and generate photorealistic images containing all the details described in the input descriptions, including the binding of certain object attributes that have been shown difficult for DALLE-2. These results point to the effectiveness of the proposed method in promoting structured generalization for visual generation. Project page: https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/
1,972
null
KCRL: Krasovskii-Constrained Reinforcement Learning with Guaranteed Stability in Nonlinear Dynamical Systems
Learning a dynamical system requires stabilizing the unknown dynamics to avoid state blow-ups. However, current reinforcement learning (RL) methods lack stabilization guarantees, which limits their applicability for the control of safety-critical systems. We propose a model-based RL framework with formal stability guarantees, Krasovskii Constrained RL (KCRL), that adopts Krasovskii's family of Lyapunov functions as a stability constraint. The proposed method learns the system dynamics up to a confidence interval using feature representation, e.g. Random Fourier Features. It then solves a constrained policy optimization problem with a stability constraint based on Krasovskii's method using a primal-dual approach to recover a stabilizing policy. We show that KCRL is guaranteed to learn a stabilizing policy in a finite number of interactions with the underlying unknown system. We also derive the sample complexity upper bound for stabilization of unknown nonlinear dynamical systems via the KCRL framework.
1,973
null
Scalar is Not Enough: Vectorization-based Unbiased Learning to Rank
Unbiased learning to rank (ULTR) aims to train an unbiased ranking model from biased user click logs. Most of the current ULTR methods are based on the examination hypothesis (EH), which assumes that the click probability can be factorized into two scalar functions, one related to ranking features and the other related to bias factors. Unfortunately, the interactions among features, bias factors and clicks are complicated in practice, and usually cannot be factorized in this independent way. Fitting click data with EH could lead to model misspecification and bring the approximation error. In this paper, we propose a vector-based EH and formulate the click probability as a dot product of two vector functions. This solution is complete due to its universality in fitting arbitrary click functions. Based on it, we propose a novel model named Vectorization to adaptively learn the relevance embeddings and sort documents by projecting embeddings onto a base vector. Extensive experiments show that our method significantly outperforms the state-of-the-art ULTR methods on complex real clicks as well as simple simulated clicks.
1,974
null
Deep Learning Prediction of Severe Health Risks for Pediatric COVID-19 Patients with a Large Feature Set in 2021 BARDA Data Challenge
Most children infected with COVID-19 have no or mild symptoms and can recover automatically by themselves, but some pediatric COVID-19 patients need to be hospitalized or even to receive intensive medical care (e.g., invasive mechanical ventilation or cardiovascular support) to recover from the illnesses. Therefore, it is critical to predict the severe health risk that COVID-19 infection poses to children to provide precise and timely medical care for vulnerable pediatric COVID-19 patients. However, predicting the severe health risk for COVID-19 patients including children remains a significant challenge because many underlying medical factors affecting the risk are still largely unknown. In this work, instead of searching for a small number of most useful features to make prediction, we design a novel large-scale bag-of-words like method to represent various medical conditions and measurements of COVID-19 patients. After some simple feature filtering based on logistical regression, the large set of features is used with a deep learning method to predict both the hospitalization risk for COVID-19 infected children and the severe complication risk for the hospitalized pediatric COVID-19 patients. The method was trained and tested the datasets of the Biomedical Advanced Research and Development Authority (BARDA) Pediatric COVID-19 Data Challenge held from Sept. 15 to Dec. 17, 2021. The results show that the approach can rather accurately predict the risk of hospitalization and severe complication for pediatric COVID-19 patients and deep learning is more accurate than other machine learning methods.
1,975
null
Measuring Gender Bias in Word Embeddings of Gendered Languages Requires Disentangling Grammatical Gender Signals
Does the grammatical gender of a language interfere when measuring the semantic gender information captured by its word embeddings? A number of anomalous gender bias measurements in the embeddings of gendered languages suggest this possibility. We demonstrate that word embeddings learn the association between a noun and its grammatical gender in grammatically gendered languages, which can skew social gender bias measurements. Consequently, word embedding post-processing methods are introduced to quantify, disentangle, and evaluate grammatical gender signals. The evaluation is performed on five gendered languages from the Germanic, Romance, and Slavic branches of the Indo-European language family. Our method reduces the strength of grammatical gender signals, which is measured in terms of effect size (Cohen's d), by a significant average of d = 1.3 for French, German, and Italian, and d = 0.56 for Polish and Spanish. Once grammatical gender is disentangled, the association between over 90% of 10,000 inanimate nouns and their assigned grammatical gender weakens, and cross-lingual bias results from the Word Embedding Association Test (WEAT) become more congruent with country-level implicit bias measurements. The results further suggest that disentangling grammatical gender signals from word embeddings may lead to improvement in semantic machine learning tasks.
1,976
null
Dynamic Kernel Selection for Improved Generalization and Memory Efficiency in Meta-learning
Gradient based meta-learning methods are prone to overfit on the meta-training set, and this behaviour is more prominent with large and complex networks. Moreover, large networks restrict the application of meta-learning models on low-power edge devices. While choosing smaller networks avoid these issues to a certain extent, it affects the overall generalization leading to reduced performance. Clearly, there is an approximately optimal choice of network architecture that is best suited for every meta-learning problem, however, identifying it beforehand is not straightforward. In this paper, we present MetaDOCK, a task-specific dynamic kernel selection strategy for designing compressed CNN models that generalize well on unseen tasks in meta-learning. Our method is based on the hypothesis that for a given set of similar tasks, not all kernels of the network are needed by each individual task. Rather, each task uses only a fraction of the kernels, and the selection of the kernels per task can be learnt dynamically as a part of the inner update steps. MetaDOCK compresses the meta-model as well as the task-specific inner models, thus providing significant reduction in model size for each task, and through constraining the number of active kernels for every task, it implicitly mitigates the issue of meta-overfitting. We show that for the same inference budget, pruned versions of large CNN models obtained using our approach consistently outperform the conventional choices of CNN models. MetaDOCK couples well with popular meta-learning approaches such as iMAML. The efficacy of our method is validated on CIFAR-fs and mini-ImageNet datasets, and we have observed that our approach can provide improvements in model accuracy of up to 2% on standard meta-learning benchmark, while reducing the model size by more than 75%.
1,977
null
Algorithm for Constrained Markov Decision Process with Linear Convergence
The problem of constrained Markov decision process is considered. An agent aims to maximize the expected accumulated discounted reward subject to multiple constraints on its costs (the number of constraints is relatively small). A new dual approach is proposed with the integration of two ingredients: entropy regularized policy optimizer and Vaidya's dual optimizer, both of which are critical to achieve faster convergence. The finite-time error bound of the proposed approach is provided. Despite the challenge of the nonconcave objective subject to nonconcave constraints, the proposed approach is shown to converge (with linear rate) to the global optimum. The complexity expressed in terms of the optimality gap and the constraint violation significantly improves upon the existing primal-dual approaches.
1,978
null
BaCaDI: Bayesian Causal Discovery with Unknown Interventions
Learning causal structures from observation and experimentation is a central task in many domains. For example, in biology, recent advances allow us to obtain single-cell expression data under multiple interventions such as drugs or gene knockouts. However, a key challenge is that often the targets of the interventions are uncertain or unknown. Thus, standard causal discovery methods can no longer be used. To fill this gap, we propose a Bayesian framework (BaCaDI) for discovering the causal structure that underlies data generated under various unknown experimental/interventional conditions. BaCaDI is fully differentiable and operates in the continuous space of latent probabilistic representations of both causal structures and interventions. This enables us to approximate complex posteriors via gradient-based variational inference and to reason about the epistemic uncertainty in the predicted structure. In experiments on synthetic causal discovery tasks and simulated gene-expression data, BaCaDI outperforms related methods in identifying causal structures and intervention targets. Finally, we demonstrate that, thanks to its rigorous Bayesian approach, our method provides well-calibrated uncertainty estimates.
1,979
null
Joint Energy Dispatch and Unit Commitment in Microgrids Based on Deep Reinforcement Learning
Nowadays, the application of microgrids (MG) with renewable energy is becoming more and more extensive, which creates a strong need for dynamic energy management. In this paper, deep reinforcement learning (DRL) is applied to learn an optimal policy for making joint energy dispatch (ED) and unit commitment (UC) decisions in an isolated MG, with the aim for reducing the total power generation cost on the premise of ensuring the supply-demand balance. In order to overcome the challenge of discrete-continuous hybrid action space due to joint ED and UC, we propose a DRL algorithm, i.e., the hybrid action finite-horizon DDPG (HAFH-DDPG), that seamlessly integrates two classical DRL algorithms, i.e., deep Q-network (DQN) and deep deterministic policy gradient (DDPG), based on a finite-horizon dynamic programming (DP) framework. Moreover, a diesel generator (DG) selection strategy is presented to support a simplified action space for reducing the computation complexity of this algorithm. Finally, the effectiveness of our proposed algorithm is verified through comparison with several baseline algorithms by experiments with real-world data set.
1,980
null
Uncertainty Estimation in Machine Learning
Most machine learning techniques are based upon statistical learning theory, often simplified for the sake of computing speed. This paper is focused on the uncertainty aspect of mathematical modeling in machine learning. Regression analysis is chosen to further investigate the evaluation aspect of uncertainty in model coefficients and, more importantly, in the output feature value predictions. A survey demonstrates major stages in the conventional least squares approach to the creation of the regression model, along with its uncertainty estimation. On the other hand, it is shown that in machine learning the model complexity and severe nonlinearity become serious obstacles to uncertainty evaluation. Furthermore, the process of machine model training demands high computing power, not available at the level of personal computers. This is why so-called pre-trained models are widely used in such areas of machine learning as natural language processing. The latest example of a pre-trained model is the Generative Pre-trained Transformer 3 with hundreds of billions of parameters and a half-terabyte training dataset. Similarly, mathematical models built from real data are growing in complexity which is accompanied by the growing amount of training data. However, when machine models and their predictions are used in decision-making, one needs to estimate uncertainty and evaluate accompanying risks. This problem could be resolved with non-parametric techniques at the expense of greater demand for computing power, which can be offered by modern supercomputers available, including those utilizing graphical and tensor processing units along with the conventional central processors.
1,981
null
Neural Differential Equations for Learning to Program Neural Nets Through Continuous Learning Rules
Neural ordinary differential equations (ODEs) have attracted much attention as continuous-time counterparts of deep residual neural networks (NNs), and numerous extensions for recurrent NNs have been proposed. Since the 1980s, ODEs have also been used to derive theoretical results for NN learning rules, e.g., the famous connection between Oja's rule and principal component analysis. Such rules are typically expressed as additive iterative update processes which have straightforward ODE counterparts. Here we introduce a novel combination of learning rules and Neural ODEs to build continuous-time sequence processing nets that learn to manipulate short-term memory in rapidly changing synaptic connections of other nets. This yields continuous-time counterparts of Fast Weight Programmers and linear Transformers. Our novel models outperform the best existing Neural Controlled Differential Equation based models on various time series classification tasks, while also addressing their scalability limitations. Our code is public.
1,982
null
Multi-user Co-inference with Batch Processing Capable Edge Server
Graphics processing units (GPUs) can improve deep neural network inference throughput via batch processing, where multiple tasks are concurrently processed. We focus on novel scenarios that the energy-constrained mobile devices offload inference tasks to an edge server with GPU. The inference task is partitioned into sub-tasks for a finer granularity of offloading and scheduling, and the user energy consumption minimization problem under inference latency constraints is investigated. To deal with the coupled offloading and scheduling introduced by concurrent batch processing, we first consider an offline problem with a constant edge inference latency and the same latency constraint. It is proven that optimizing the offloading policy of each user independently and aggregating all the same sub-tasks in one batch is optimal, and thus the independent partitioning and same sub-task aggregating (IP-SSA) algorithm is inspired. Further, the optimal grouping (OG) algorithm is proposed to optimally group tasks when the latency constraints are different. Finally, when future task arrivals cannot be precisely predicted, a deep deterministic policy gradient (DDPG) agent is trained to call OG. Experiments show that IP-SSA reduces up to 94.9\% user energy consumption in the offline setting, while DDPG-OG outperforms DDPG-IP-SSA by up to 8.92\% in the online setting.
1,983
null
PROMISSING: Pruning Missing Values in Neural Networks
While data are the primary fuel for machine learning models, they often suffer from missing values, especially when collected in real-world scenarios. However, many off-the-shelf machine learning models, including artificial neural network models, are unable to handle these missing values directly. Therefore, extra data preprocessing and curation steps, such as data imputation, are inevitable before learning and prediction processes. In this study, we propose a simple and intuitive yet effective method for pruning missing values (PROMISSING) during learning and inference steps in neural networks. In this method, there is no need to remove or impute the missing values; instead, the missing values are treated as a new source of information (representing what we do not know). Our experiments on simulated data, several classification and regression benchmarks, and a multi-modal clinical dataset show that PROMISSING results in similar prediction performance compared to various imputation techniques. In addition, our experiments show models trained using PROMISSING techniques are becoming less decisive in their predictions when facing incomplete samples with many unknowns. This finding hopefully advances machine learning models from being pure predicting machines to more realistic thinkers that can also say "I do not know" when facing incomplete sources of information.
1,984
null
Reinforcement Learning with Neural Radiance Fields
It is a long-standing problem to find effective representations for training reinforcement learning (RL) agents. This paper demonstrates that learning state representations with supervision from Neural Radiance Fields (NeRFs) can improve the performance of RL compared to other learned representations or even low-dimensional, hand-engineered state information. Specifically, we propose to train an encoder that maps multiple image observations to a latent space describing the objects in the scene. The decoder built from a latent-conditioned NeRF serves as the supervision signal to learn the latent space. An RL algorithm then operates on the learned latent space as its state representation. We call this NeRF-RL. Our experiments indicate that NeRF as supervision leads to a latent space better suited for the downstream RL tasks involving robotic object manipulations like hanging mugs on hooks, pushing objects, or opening doors. Video: https://dannydriess.github.io/nerf-rl
1,985
null
Pruning for Interpretable, Feature-Preserving Circuits in CNNs
Deep convolutional neural networks are a powerful model class for a range of computer vision problems, but it is difficult to interpret the image filtering process they implement, given their sheer size. In this work, we introduce a method for extracting 'feature-preserving circuits' from deep CNNs, leveraging methods from saliency-based neural network pruning. These circuits are modular sub-functions, embedded within the network, containing only a subset of convolutional kernels relevant to a target feature. We compare the efficacy of 3 saliency-criteria for extracting these sparse circuits. Further, we show how 'sub-feature' circuits can be extracted, that preserve a feature's responses to particular images, dividing the feature into even sparser filtering processes. We also develop a tool for visualizing 'circuit diagrams', which render the entire image filtering process implemented by circuits in a parsable format.
1,986
null
Beyond Tabula Rasa: Reincarnating Reinforcement Learning
Learning tabula rasa, that is without any prior knowledge, is the prevalent workflow in reinforcement learning (RL) research. However, RL systems, when applied to large-scale settings, rarely operate tabula rasa. Such large-scale systems undergo multiple design or algorithmic changes during their development cycle and use ad hoc approaches for incorporating these changes without re-training from scratch, which would have been prohibitively expensive. Additionally, the inefficiency of deep RL typically excludes researchers without access to industrial-scale resources from tackling computationally-demanding problems. To address these issues, we present reincarnating RL as an alternative workflow, where prior computational work (e.g., learned policies) is reused or transferred between design iterations of an RL agent, or from one RL agent to another. As a step towards enabling reincarnating RL from any agent to any other agent, we focus on the specific setting of efficiently transferring an existing sub-optimal policy to a standalone value-based RL agent. We find that existing approaches fail in this setting and propose a simple algorithm to address their limitations. Equipped with this algorithm, we demonstrate reincarnating RL's gains over tabula rasa RL on Atari 2600 games, a challenging locomotion task, and the real-world problem of navigating stratospheric balloons. Overall, this work argues for an alternative approach to RL research, which we believe could significantly improve real-world RL adoption and help democratize it further.
1,987
null
Effects of Auxiliary Knowledge on Continual Learning
In Continual Learning (CL), a neural network is trained on a stream of data whose distribution changes over time. In this context, the main problem is how to learn new information without forgetting old knowledge (i.e., Catastrophic Forgetting). Most existing CL approaches focus on finding solutions to preserve acquired knowledge, so working on the past of the model. However, we argue that as the model has to continually learn new tasks, it is also important to put focus on the present knowledge that could improve following tasks learning. In this paper we propose a new, simple, CL algorithm that focuses on solving the current task in a way that might facilitate the learning of the next ones. More specifically, our approach combines the main data stream with a secondary, diverse and uncorrelated stream, from which the network can draw auxiliary knowledge. This helps the model from different perspectives, since auxiliary data may contain useful features for the current and the next tasks and incoming task classes can be mapped onto auxiliary classes. Furthermore, the addition of data to the current task is implicitly making the classifier more robust as we are forcing the extraction of more discriminative features. Our method can outperform existing state-of-the-art models on the most common CL Image Classification benchmarks.
1,988
null
MCD: Marginal Contrastive Discrimination for conditional density estimation
We consider the problem of conditional density estimation, which is a major topic of interest in the fields of statistical and machine learning. Our method, called Marginal Contrastive Discrimination, MCD, reformulates the conditional density function into two factors, the marginal density function of the target variable and a ratio of density functions which can be estimated through binary classification. Like noise-contrastive methods, MCD can leverage state-of-the-art supervised learning techniques to perform conditional density estimation, including neural networks. Our benchmark reveals that our method significantly outperforms in practice existing methods on most density models and regression datasets.
1,989
null
Decentralized Optimistic Hyperpolicy Mirror Descent: Provably No-Regret Learning in Markov Games
We study decentralized policy learning in Markov games where we control a single agent to play with nonstationary and possibly adversarial opponents. Our goal is to develop a no-regret online learning algorithm that (i) takes actions based on the local information observed by the agent and (ii) is able to find the best policy in hindsight. For such a problem, the nonstationary state transitions due to the varying opponent pose a significant challenge. In light of a recent hardness result \citep{liu2022learning}, we focus on the setting where the opponent's previous policies are revealed to the agent for decision making. With such an information structure, we propose a new algorithm, \underline{D}ecentralized \underline{O}ptimistic hype\underline{R}policy m\underline{I}rror de\underline{S}cent (DORIS), which achieves $\sqrt{K}$-regret in the context of general function approximation, where $K$ is the number of episodes. Moreover, when all the agents adopt DORIS, we prove that their mixture policy constitutes an approximate coarse correlated equilibrium. In particular, DORIS maintains a \textit{hyperpolicy} which is a distribution over the policy space. The hyperpolicy is updated via mirror descent, where the update direction is obtained by an optimistic variant of least-squares policy evaluation. Furthermore, to illustrate the power of our method, we apply DORIS to constrained and vector-valued MDPs, which can be formulated as zero-sum Markov games with a fictitious opponent.
1,990
null
Automatic Quantification of Volumes and Biventricular Function in Cardiac Resonance. Validation of a New Artificial Intelligence Approach
Background: Artificial intelligence techniques have shown great potential in cardiology, especially in quantifying cardiac biventricular function, volume, mass, and ejection fraction (EF). However, its use in clinical practice is not straightforward due to its poor reproducibility with cases from daily practice, among other reasons. Objectives: To validate a new artificial intelligence tool in order to quantify the cardiac biventricular function (volume, mass, and EF). To analyze its robustness in the clinical area, and the computational times compared with conventional methods. Methods: A total of 189 patients were analyzed: 89 from a regional center and 100 from a public center. The method proposes two convolutional networks that include anatomical information of the heart to reduce classification errors. Results: A high concordance (Pearson coefficient) was observed between manual quantification and the proposed quantification of cardiac function (0.98, 0.92, 0.96 and 0.8 for volumes and biventricular EF) in about 5 seconds per study. Conclusions: This method quantifies biventricular function and volumes in seconds with an accuracy equivalent to that of a specialist.
1,991
null
On Calibration of Graph Neural Networks for Node Classification
Graphs can model real-world, complex systems by representing entities and their interactions in terms of nodes and edges. To better exploit the graph structure, graph neural networks have been developed, which learn entity and edge embeddings for tasks such as node classification and link prediction. These models achieve good performance with respect to accuracy, but the confidence scores associated with the predictions might not be calibrated. That means that the scores might not reflect the ground-truth probabilities of the predicted events, which would be especially important for safety-critical applications. Even though graph neural networks are used for a wide range of tasks, the calibration thereof has not been sufficiently explored yet. We investigate the calibration of graph neural networks for node classification, study the effect of existing post-processing calibration methods, and analyze the influence of model capacity, graph density, and a new loss function on calibration. Further, we propose a topology-aware calibration method that takes the neighboring nodes into account and yields improved calibration compared to baseline methods.
1,992
null
Optimal Weak to Strong Learning
The classic algorithm AdaBoost allows to convert a weak learner, that is an algorithm that produces a hypothesis which is slightly better than chance, into a strong learner, achieving arbitrarily high accuracy when given enough training data. We present a new algorithm that constructs a strong learner from a weak learner but uses less training data than AdaBoost and all other weak to strong learners to achieve the same generalization bounds. A sample complexity lower bound shows that our new algorithm uses the minimum possible amount of training data and is thus optimal. Hence, this work settles the sample complexity of the classic problem of constructing a strong learner from a weak learner.
1,993
null
Prescriptive maintenance with causal machine learning
Machine maintenance is a challenging operational problem, where the goal is to plan sufficient preventive maintenance to avoid machine failures and overhauls. Maintenance is often imperfect in reality and does not make the asset as good as new. Although a variety of imperfect maintenance policies have been proposed in the literature, these rely on strong assumptions regarding the effect of maintenance on the machine's condition, assuming the effect is (1) deterministic or governed by a known probability distribution, and (2) machine-independent. This work proposes to relax both assumptions by learning the effect of maintenance conditional on a machine's characteristics from observational data on similar machines using existing methodologies for causal inference. By predicting the maintenance effect, we can estimate the number of overhauls and failures for different levels of maintenance and, consequently, optimize the preventive maintenance frequency to minimize the total estimated cost. We validate our proposed approach using real-life data on more than 4,000 maintenance contracts from an industrial partner. Empirical results show that our novel, causal approach accurately predicts the maintenance effect and results in individualized maintenance schedules that are more accurate and cost-effective than supervised or non-individualized approaches.
1,994
null
Disentangling Epistemic and Aleatoric Uncertainty in Reinforcement Learning
Characterizing aleatoric and epistemic uncertainty on the predicted rewards can help in building reliable reinforcement learning (RL) systems. Aleatoric uncertainty results from the irreducible environment stochasticity leading to inherently risky states and actions. Epistemic uncertainty results from the limited information accumulated during learning to make informed decisions. Characterizing aleatoric and epistemic uncertainty can be used to speed up learning in a training environment, improve generalization to similar testing environments, and flag unfamiliar behavior in anomalous testing environments. In this work, we introduce a framework for disentangling aleatoric and epistemic uncertainty in RL. (1) We first define four desiderata that capture the desired behavior for aleatoric and epistemic uncertainty estimation in RL at both training and testing time. (2) We then present four RL models inspired by supervised learning (i.e. Monte Carlo dropout, ensemble, deep kernel learning models, and evidential networks) to instantiate aleatoric and epistemic uncertainty. Finally, (3) we propose a practical evaluation method to evaluate uncertainty estimation in model-free RL based on detection of out-of-distribution environments and generalization to perturbed environments. We present theoretical and experimental evidence to validate that carefully equipping model-free RL agents with supervised learning uncertainty methods can fulfill our desiderata.
1,995
null
Is an encoder within reach?
The encoder network of an autoencoder is an approximation of the nearest point projection onto the manifold spanned by the decoder. A concern with this approximation is that, while the output of the encoder is always unique, the projection can possibly have infinitely many values. This implies that the latent representations learned by the autoencoder can be misleading. Borrowing from geometric measure theory, we introduce the idea of using the reach of the manifold spanned by the decoder to determine if an optimal encoder exists for a given dataset and decoder. We develop a local generalization of this reach and propose a numerical estimator thereof. We demonstrate that this allows us to determine which observations can be expected to have a unique, and thereby trustworthy, latent representation. As our local reach estimator is differentiable, we investigate its usage as a regularizer and show that this leads to learned manifolds for which projections are more often unique than without regularization.
1,996
null
Truly Mesh-free Physics-Informed Neural Networks
Physics-informed Neural Networks (PINNs) have recently emerged as a principled way to include prior physical knowledge in form of partial differential equations (PDEs) into neural networks. Although generally viewed as being mesh-free, current approaches still rely on collocation points obtained within a bounded region, even in settings with spatially sparse signals. Furthermore, if the boundaries are not known, the selection of such a region may be arbitrary, resulting in a large proportion of collocation points being selected in areas of low relevance. To resolve this, we present a mesh-free and adaptive approach termed particle-density PINN (pdPINN), which is inspired by the microscopic viewpoint of fluid dynamics. Instead of sampling from a bounded region, we propose to sample directly from the distribution over the (fluids) particle positions, eliminating the need to introduce boundaries while adaptively focusing on the most relevant regions. This is achieved by reformulating the modeled fluid density as an unnormalized probability distribution from which we sample with dynamic Monte Carlo methods. We further generalize pdPINNs to different settings that allow interpreting a positive scalar quantity as a particle density, such as the evolution of the temperature in the heat equation. The utility of our approach is demonstrated on experiments for modeling (non-steady) compressible fluids in up to three dimensions and a two-dimensional diffusion problem, illustrating the high flexibility and sample efficiency compared to existing refinement methods for PINNs.
1,997
null
Beyond Opinion Mining: Summarizing Opinions of Customer Reviews
Customer reviews are vital for making purchasing decisions in the Information Age. Such reviews can be automatically summarized to provide the user with an overview of opinions. In this tutorial, we present various aspects of opinion summarization that are useful for researchers and practitioners. First, we will introduce the task and major challenges. Then, we will present existing opinion summarization solutions, both pre-neural and neural. We will discuss how summarizers can be trained in the unsupervised, few-shot, and supervised regimes. Each regime has roots in different machine learning methods, such as auto-encoding, controllable text generation, and variational inference. Finally, we will discuss resources and evaluation methods and conclude with the future directions. This three-hour tutorial will provide a comprehensive overview over major advances in opinion summarization. The listeners will be well-equipped with the knowledge that is both useful for research and practical applications.
1,998
null
Rethinking and Scaling Up Graph Contrastive Learning: An Extremely Efficient Approach with Group Discrimination
Graph contrastive learning (GCL) alleviates the heavy reliance on label information for graph representation learning (GRL) via self-supervised learning schemes. The core idea is to learn by maximising mutual information for similar instances, which requires similarity computation between two node instances. However, this operation can be computationally expensive. For example, the time complexity of two commonly adopted contrastive loss functions (i.e., InfoNCE and JSD estimator) for a node is $O(ND)$ and $O(D)$, respectively, where $N$ is the number of nodes, and $D$ is the embedding dimension. Additionally, GCL normally requires a large number of training epochs to be well-trained on large-scale datasets. Inspired by an observation of a technical defect (i.e., inappropriate usage of Sigmoid function) commonly used in two representative GCL works, DGI and MVGRL, we revisit GCL and introduce a new learning paradigm for self-supervised GRL, namely, Group Discrimination (GD), and propose a novel GD-based method called Graph Group Discrimination (GGD). Instead of similarity computation, GGD directly discriminates two groups of summarised node instances with a simple binary cross-entropy loss. As such, GGD only requires $O(1)$ for loss computation of a node. In addition, GGD requires much fewer training epochs to obtain competitive performance compared with GCL methods on large-scale datasets. These two advantages endow GGD with the very efficient property. Extensive experiments show that GGD outperforms state-of-the-art self-supervised methods on 8 datasets. In particular, GGD can be trained in 0.18 seconds (6.44 seconds including data preprocessing) on ogbn-arxiv, which is orders of magnitude (10,000+ faster than GCL baselines} while consuming much less memory. Trained with 9 hours on ogbn-papers100M with billion edges, GGD outperforms its GCL counterparts in both accuracy and efficiency.
1,999
null
A High-Performance Customer Churn Prediction System based on Self-Attention
Customer churn prediction is a challenging domain of research that contributes to customer retention strategy. The predictive performance of existing machine learning models, which are often adopted by churn communities, appear to be at a bottleneck, partly due to models' poor feature extraction capability. Therefore, a novel algorithm, a hybrid neural network with self-attention enhancement (HNNSAE), is proposed in this paper to improve the efficiency of feature screening and feature extraction, consequently improving the model's predictive performance. This model consists of three main blocks. The first block is the entity embedding layer, which is employed to process the categorical variables transformed into 0-1 code. The second block is the feature extractor, which extracts the significant features through the multi-head self-attention mechanism. In addition, to improve the feature extraction effect, we stack the residual connection neural network on multi-head self-attention modules. The third block is a classifier, which is a three-layer multilayer perceptron. This work conducts experiments on publicly available dataset related to commercial bank customers. The result demonstrates that HNNSAE significantly outperforms the other Individual Machine Learning (IML), Ensemble Machine Learning (EML), and Deep Learning (DL) methods tested in this paper. Furthermore, we compare the performance of the feature extractor proposed in this paper with that of other three feature extractors and find that the method proposed in this paper significantly outperforms other methods. In addition, four hypotheses about model prediction performance and overfitting risk are tested on the publicly available dataset.
2,000
null
Constraints on parameter choices for successful reservoir computing
Echo-state networks are simple models of discrete dynamical systems driven by a time series. By selecting network parameters such that the dynamics of the network is contractive, characterized by a negative maximal Lyapunov exponent, the network may synchronize with the driving signal. Exploiting this synchronization, the echo-state network may be trained to autonomously reproduce the input dynamics, enabling time-series prediction. However, while synchronization is a necessary condition for prediction, it is not sufficient. Here, we study what other conditions are necessary for successful time-series prediction. We identify two key parameters for prediction performance, and conduct a parameter sweep to find regions where prediction is successful. These regions differ significantly depending on whether full or partial phase space information about the input is provided to the network during training. We explain how these regions emerge.
2,001
null
A Survey on Surrogate-assisted Efficient Neural Architecture Search
Neural architecture search (NAS) has become increasingly popular in the deep learning community recently, mainly because it can provide an opportunity to allow interested users without rich expertise to benefit from the success of deep neural networks (DNNs). However, NAS is still laborious and time-consuming because a large number of performance estimations are required during the search process of NAS, and training DNNs is computationally intensive. To solve the major limitation of NAS, improving the efficiency of NAS is essential in the design of NAS. This paper begins with a brief introduction to the general framework of NAS. Then, the methods for evaluating network candidates under the proxy metrics are systematically discussed. This is followed by a description of surrogate-assisted NAS, which is divided into three different categories, namely Bayesian optimization for NAS, surrogate-assisted evolutionary algorithms for NAS, and MOP for NAS. Finally, remaining challenges and open research questions are discussed, and promising research topics are suggested in this emerging field.
2,002
null
Understanding deep learning via decision boundary
This paper discovers that the neural network with lower decision boundary (DB) variability has better generalizability. Two new notions, algorithm DB variability and $(\epsilon, \eta)$-data DB variability, are proposed to measure the decision boundary variability from the algorithm and data perspectives. Extensive experiments show significant negative correlations between the decision boundary variability and the generalizability. From the theoretical view, two lower bounds based on algorithm DB variability are proposed and do not explicitly depend on the sample size. We also prove an upper bound of order $\mathcal{O}\left(\frac{1}{\sqrt{m}}+\epsilon+\eta\log\frac{1}{\eta}\right)$ based on data DB variability. The bound is convenient to estimate without the requirement of labels, and does not explicitly depend on the network size which is usually prohibitively large in deep learning.
2,003
null
Latent Topology Induction for Understanding Contextualized Representations
In this work, we study the representation space of contextualized embeddings and gain insight into the hidden topology of large language models. We show there exists a network of latent states that summarize linguistic properties of contextualized representations. Instead of seeking alignments to existing well-defined annotations, we infer this latent network in a fully unsupervised way using a structured variational autoencoder. The induced states not only serve as anchors that mark the topology (neighbors and connectivity) of the representation manifold but also reveal the internal mechanism of encoding sentences. With the induced network, we: (1). decompose the representation space into a spectrum of latent states which encode fine-grained word meanings with lexical, morphological, syntactic and semantic information; (2). show state-state transitions encode rich phrase constructions and serve as the backbones of the latent space. Putting the two together, we show that sentences are represented as a traversal over the latent network where state-state transition chains encode syntactic templates and state-word emissions fill in the content. We demonstrate these insights with extensive experiments and visualizations.
2,004
null
Canonical convolutional neural networks
We introduce canonical weight normalization for convolutional neural networks. Inspired by the canonical tensor decomposition, we express the weight tensors in so-called canonical networks as scaled sums of outer vector products. In particular, we train network weights in the decomposed form, where scale weights are optimized separately for each mode. Additionally, similarly to weight normalization, we include a global scaling parameter. We study the initialization of the canonical form by running the power method and by drawing randomly from Gaussian or uniform distributions. Our results indicate that we can replace the power method with cheaper initializations drawn from standard distributions. The canonical re-parametrization leads to competitive normalization performance on the MNIST, CIFAR10, and SVHN data sets. Moreover, the formulation simplifies network compression. Once training has converged, the canonical form allows convenient model-compression by truncating the parameter sums.
2,005
null
Can Requirements Engineering Support Explainable Artificial Intelligence? Towards a User-Centric Approach for Explainability Requirements
With the recent proliferation of artificial intelligence systems, there has been a surge in the demand for explainability of these systems. Explanations help to reduce system opacity, support transparency, and increase stakeholder trust. In this position paper, we discuss synergies between requirements engineering (RE) and Explainable AI (XAI). We highlight challenges in the field of XAI, and propose a framework and research directions on how RE practices can help to mitigate these challenges.
2,006
null
Can Hybrid Geometric Scattering Networks Help Solve the Maximal Clique Problem?
We propose a geometric scattering-based graph neural network (GNN) for approximating solutions of the NP-hard maximal clique (MC) problem. We construct a loss function with two terms, one which encourages the network to find a large set of nodes and the other which acts as a surrogate for the constraint that the nodes form a clique. We then use this loss to train a novel GNN architecture that outputs a vector representing the probability for each node to be part of the MC and apply a rule-based decoder to make our final prediction. The incorporation of the scattering transform alleviates the so-called oversmoothing problem that is often encountered in GNNs and would degrade the performance of our proposed setup. Our empirical results demonstrate that our method outperforms representative GNN baselines in terms of solution accuracy and inference speed as well as conventional solvers like GUROBI with limited time budgets.
2,007
null
Causality Learning With Wasserstein Generative Adversarial Networks
Conventional methods for causal structure learning from data face significant challenges due to combinatorial search space. Recently, the problem has been formulated into a continuous optimization framework with an acyclicity constraint to learn Directed Acyclic Graphs (DAGs). Such a framework allows the utilization of deep generative models for causal structure learning to better capture the relations between data sample distributions and DAGs. However, so far no study has experimented with the use of Wasserstein distance in the context of causal structure learning. Our model named DAG-WGAN combines the Wasserstein-based adversarial loss with an acyclicity constraint in an auto-encoder architecture. It simultaneously learns causal structures while improving its data generation capability. We compare the performance of DAG-WGAN with other models that do not involve the Wasserstein metric in order to identify its contribution to causal structure learning. Our model performs better with high cardinality data according to our experiments.