Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
107,800
107,800
Probabilistic Models for Manufacturing Lead Times
In this study, we utilize Gaussian processes, probabilistic neural network, natural gradient boosting, and quantile regression augmented gradient boosting to model lead times of laser manufacturing processes. We introduce probabilistic modelling in the domain and compare the models in terms of different abilities. While providing a comparison between the models in real-life data, our work has many use cases and substantial business value. Our results indicate that all of the models beat the company estimation benchmark that uses domain experience and have good calibration with the empirical frequencies.
107,801
107,801
Analysing the Influence of Attack Configurations on the Reconstruction of Medical Images in Federated Learning
The idea of federated learning is to train deep neural network models collaboratively and share them with multiple participants without exposing their private training data to each other. This is highly attractive in the medical domain due to patients' privacy records. However, a recently proposed method called Deep Leakage from Gradients enables attackers to reconstruct data from shared gradients. This study shows how easy it is to reconstruct images for different data initialization schemes and distance measures. We show how data and model architecture influence the optimal choice of initialization scheme and distance measure configurations when working with single images. We demonstrate that the choice of initialization scheme and distance measure can significantly increase convergence speed and quality. Furthermore, we find that the optimal attack configuration depends largely on the nature of the target image distribution and the complexity of the model architecture.
107,802
107,802
Visualization and Optimization Techniques for High Dimensional Parameter Spaces
High dimensional parameter space optimization is crucial in many applications. The parameters affecting this performance can be both numerical and categorical in their type. The existing techniques of black-box optimization and visual analytics are good in dealing with numerical parameters but analyzing categorical variables in context of the numerical variables are not well studied. Hence, we propose a novel approach, to create an auto-tuning framework for storage systems optimization combining both direct optimization techniques and visual analytics research. While the optimization algorithm will be the core of the system, visual analytics will provide a guideline with the help of an external agent (expert) to provide crucial hints to narrow down the large search space for the optimization engine. As part of the initial step towards creating an auto-tuning engine for storage systems optimization, we created an Interactive Configuration Explorer \textit{ICE}, which directly addresses the need of analysts to learn how the dependent numerical variable is affected by the parameter settings given multiple optimization objectives. No information is lost as ICE shows the complete distribution and statistics of the dependent variable in context with each categorical variable. Analysts can interactively filter the variables to optimize for certain goals such as achieving a system with maximum performance, low variance, etc. Our system was developed in tight collaboration with a group of systems performance researchers and its final effectiveness was evaluated with expert interviews, a comparative user study, and two case studies. We also discuss our research plan for creating an efficient auto-tuning framework combining black-box optimization and visual analytics for storage systems performance optimization.
107,803
107,803
An Online Ensemble Learning Model for Detecting Attacks in Wireless Sensor Networks
In today's modern world, the usage of technology is unavoidable and the rapid advances in the Internet and communication fields have resulted to expand the Wireless Sensor Network (WSN) technology. A huge number of sensing devices collect and/or generate numerous sensory data throughout time for a wide range of fields and applications. However, WSN has been proven to be vulnerable to security breaches, the harsh and unattended deployment of these networks, combined with their constrained resources and the volume of data generated introduce a major security concern. WSN applications are extremely critical, it is essential to build reliable solutions that involve fast and continuous mechanisms for online data stream analysis enabling the detection of attacks and intrusions. In this context, our aim is to develop an intelligent, efficient, and updatable intrusion detection system by applying an important machine learning concept known as ensemble learning in order to improve detection performance. Although ensemble models have been proven to be useful in offline learning, they have received less attention in streaming applications. In this paper, we examine the application of different homogeneous and heterogeneous online ensembles in sensory data analysis, on a specialized wireless sensor network-detection system (WSN-DS) dataset in order to classify four types of attacks: Blackhole attack, Grayhole, Flooding, and Scheduling among normal network traffic. Among the proposed novel online ensembles, both the heterogeneous ensemble consisting of an Adaptive Random Forest (ARF) combined with the Hoeffding Adaptive Tree (HAT) algorithm and the homogeneous ensemble HAT made up of 10 models achieved higher detection rates of 96.84% and 97.2%, respectively. The above models are efficient and effective in dealing with concept drift, while taking into account the resource constraints of WSNs.
107,804
107,804
Automatic Machine Learning for Multi-Receiver CNN Technology Classifiers
Convolutional Neural Networks (CNNs) are one of the most studied family of deep learning models for signal classification, including modulation, technology, detection, and identification. In this work, we focus on technology classification based on raw I/Q samples collected from multiple synchronized receivers. As an example use case, we study protocol identification of Wi-Fi, LTE-LAA, and 5G NR-U technologies that coexist over the 5 GHz Unlicensed National Information Infrastructure (U-NII) bands. Designing and training accurate CNN classifiers involve significant time and effort that goes into fine-tuning a model's architectural settings and determining the appropriate hyperparameter configurations, such as learning rate and batch size. We tackle the former by defining architectural settings themselves as hyperparameters. We attempt to automatically optimize these architectural parameters, along with other preprocessing (e.g., number of I/Q samples within each classifier input) and learning hyperparameters, by forming a Hyperparameter Optimization (HyperOpt) problem, which we solve in a near-optimal fashion using the Hyperband algorithm. The resulting near-optimal CNN (OCNN) classifier is then used to study classification accuracy for OTA as well as simulations datasets, considering various SNR values. We show that the number of receivers to construct multi-channel inputs for CNNs should be defined as a preprocessing hyperparameter to be optimized via Hyperband. OTA results reveal that our OCNN classifiers improve classification accuracy by 24.58% compared to manually tuned CNNs. We also study the effect of min-max normalization of I/Q samples within each classifier's input on generalization accuracy over simulated datasets with SNRs other than training set's SNR and show an average of 108.05% improvement when I/Q samples are normalized.
107,805
107,805
A Neural Network-enhanced Reproducing Kernel Particle Method for Modeling Strain Localization
Modeling the localized intensive deformation in a damaged solid requires highly refined discretization for accurate prediction, which significantly increases the computational cost. Although adaptive model refinement can be employed for enhanced effectiveness, it is cumbersome for the traditional mesh-based methods to perform while modeling the evolving localizations. In this work, neural network-enhanced reproducing kernel particle method (NN-RKPM) is proposed, where the location, orientation, and shape of the solution transition near a localization is automatically captured by the NN approximation via a block-level neural network optimization. The weights and biases in the blocked parametrization network control the location and orientation of the localization. The designed basic four-kernel NN block is capable of capturing a triple junction or a quadruple junction topological pattern, while more complicated localization topological patters are captured by the superposition of multiple four-kernel NN blocks. The standard RK approximation is then utilized to approximate the smooth part of the solution, which permits a much coarser discretization than the high-resolution discretization needed to capture sharp solution transitions with the conventional methods. A regularization of the neural network approximation is additionally introduced for discretization-independent material responses. The effectiveness of the proposed NN-RKPM is verified by a series of numerical verifications.
107,806
107,806
Noise-reducing attention cross fusion learning transformer for histological image classification of osteosarcoma
The degree of malignancy of osteosarcoma and its tendency to metastasize/spread mainly depend on the pathological grade (determined by observing the morphology of the tumor under a microscope). The purpose of this study is to use artificial intelligence to classify osteosarcoma histological images and to assess tumor survival and necrosis, which will help doctors reduce their workload, improve the accuracy of osteosarcoma cancer detection, and make a better prognosis for patients. The study proposes a typical transformer image classification framework by integrating noise reduction convolutional autoencoder and feature cross fusion learning (NRCA-FCFL) to classify osteosarcoma histological images. Noise reduction convolutional autoencoder could well denoise histological images of osteosarcoma, resulting in more pure images for osteosarcoma classification. Moreover, we introduce feature cross fusion learning, which integrates two scale image patches, to sufficiently explore their interactions by using additional classification tokens. As a result, a refined fusion feature is generated, which is fed to the residual neural network for label predictions. We conduct extensive experiments to evaluate the performance of the proposed approach. The experimental results demonstrate that our method outperforms the traditional and deep learning approaches on various evaluation metrics, with an accuracy of 99.17% to support osteosarcoma diagnosis.
107,807
107,807
An Extensive Data Processing Pipeline for MIMIC-IV
An increasing amount of research is being devoted to applying machine learning methods to electronic health record (EHR) data for various clinical tasks. This growing area of research has exposed the limitation of accessibility of EHR datasets for all, as well as the reproducibility of different modeling frameworks. One reason for these limitations is the lack of standardized pre-processing pipelines. MIMIC is a freely available EHR dataset in a raw format that has been used in numerous studies. The absence of standardized pre-processing steps serves as a major barrier to the wider adoption of the dataset. It also leads to different cohorts being used in downstream tasks, limiting the ability to compare the results among similar studies. Contrasting studies also use various distinct performance metrics, which can greatly reduce the ability to compare model results. In this work, we provide an end-to-end fully customizable pipeline to extract, clean, and pre-process data; and to predict and evaluate the fourth version of the MIMIC dataset (MIMIC-IV) for ICU and non-ICU-related clinical time-series prediction tasks.
107,808
107,808
VPNets: Volume-preserving neural networks for learning source-free dynamics
We propose volume-preserving networks (VPNets) for learning unknown source-free dynamical systems using trajectory data. We propose three modules and combine them to obtain two network architectures, coined R-VPNet and LA-VPNet. The distinct feature of the proposed models is that they are intrinsic volume-preserving. In addition, the corresponding approximation theorems are proved, which theoretically guarantee the expressivity of the proposed VPNets to learn source-free dynamics. The effectiveness, generalization ability and structure-preserving property of the VP-Nets are demonstrated by numerical experiments.
107,809
107,809
GenDR: A Generalized Differentiable Renderer
In this work, we present and study a generalized family of differentiable renderers. We discuss from scratch which components are necessary for differentiable rendering and formalize the requirements for each component. We instantiate our general differentiable renderer, which generalizes existing differentiable renderers like SoftRas and DIB-R, with an array of different smoothing distributions to cover a large spectrum of reasonable settings. We evaluate an array of differentiable renderer instantiations on the popular ShapeNet 3D reconstruction benchmark and analyze the implications of our results. Surprisingly, the simple uniform distribution yields the best overall results when averaged over 13 classes; in general, however, the optimal choice of distribution heavily depends on the task.
107,810
107,810
RoSA: A Robust Self-Aligned Framework for Node-Node Graph Contrastive Learning
Graph contrastive learning has gained significant progress recently. However, existing works have rarely explored non-aligned node-node contrasting. In this paper, we propose a novel graph contrastive learning method named RoSA that focuses on utilizing non-aligned augmented views for node-level representation learning. First, we leverage the earth mover's distance to model the minimum effort to transform the distribution of one view to the other as our contrastive objective, which does not require alignment between views. Then we introduce adversarial training as an auxiliary method to increase sampling diversity and enhance the robustness of our model. Experimental results show that RoSA outperforms a series of graph contrastive learning frameworks on homophilous, non-homophilous and dynamic graphs, which validates the effectiveness of our work. To the best of our awareness, RoSA is the first work focuses on the non-aligned node-node graph contrastive learning problem. Our codes are available at: \href{https://github.com/ZhuYun97/RoSA}{\texttt{https://github.com/ZhuYun97/RoSA}}
107,811
107,811
CATNet: Cross-event Attention-based Time-aware Network for Medical Event Prediction
Medical event prediction (MEP) is a fundamental task in the medical domain, which needs to predict medical events, including medications, diagnosis codes, laboratory tests, procedures, outcomes, and so on, according to historical medical records. The task is challenging as medical data is a type of complex time series data with heterogeneous and temporal irregular characteristics. Many machine learning methods that consider the two characteristics have been proposed for medical event prediction. However, most of them consider the two characteristics separately and ignore the correlations among different types of medical events, especially relations between historical medical events and target medical events. In this paper, we propose a novel neural network based on attention mechanism, called cross-event attention-based time-aware network (CATNet), for medical event prediction. It is a time-aware, event-aware and task-adaptive method with the following advantages: 1) modeling heterogeneous information and temporal information in a unified way and considering temporal irregular characteristics locally and globally respectively, 2) taking full advantage of correlations among different types of events via cross-event attention. Experiments on two public datasets (MIMIC-III and eICU) show CATNet can be adaptive with different MEP tasks and outperforms other state-of-the-art methods on various MEP tasks. The source code of CATNet will be released after this manuscript is accepted.
107,812
107,812
Goldilocks-curriculum Domain Randomization and Fractal Perlin Noise with Application to Sim2Real Pneumonia Lesion Detection
A computer-aided detection (CAD) system based on machine learning is expected to assist radiologists in making a diagnosis. It is desirable to build CAD systems for the various types of diseases accumulating daily in a hospital. An obstacle in developing a CAD system for a disease is that the number of medical images is typically too small to improve the performance of the machine learning model. In this paper, we aim to explore ways to address this problem through a sim2real transfer approach in medical image fields. To build a platform to evaluate the performance of sim2real transfer methods in the field of medical imaging, we construct a benchmark dataset that consists of $101$ chest X-images with difficult-to-identify pneumonia lesions judged by an experienced radiologist and a simulator based on fractal Perlin noise and the X-ray principle for generating pseudo pneumonia lesions. We then develop a novel domain randomization method, called Goldilocks-curriculum domain randomization (GDR) and evaluate our method in this platform.
107,813
107,813
COVID-Net US-X: Enhanced Deep Neural Network for Detection of COVID-19 Patient Cases from Convex Ultrasound Imaging Through Extended Linear-Convex Ultrasound Augmentation Learning
As the global population continues to face significant negative impact by the on-going COVID-19 pandemic, there has been an increasing usage of point-of-care ultrasound (POCUS) imaging as a low-cost and effective imaging modality of choice in the COVID-19 clinical workflow. A major barrier with widespread adoption of POCUS in the COVID-19 clinical workflow is the scarcity of expert clinicians that can interpret POCUS examinations, leading to considerable interest in deep learning-driven clinical decision support systems to tackle this challenge. A major challenge to building deep neural networks for COVID-19 screening using POCUS is the heterogeneity in the types of probes used to capture ultrasound images (e.g., convex vs. linear probes), which can lead to very different visual appearances. In this study, we explore the impact of leveraging extended linear-convex ultrasound augmentation learning on producing enhanced deep neural networks for COVID-19 assessment, where we conduct data augmentation on convex probe data alongside linear probe data that have been transformed to better resemble convex probe data. Experimental results using an efficient deep columnar anti-aliased convolutional neural network designed via a machined-driven design exploration strategy (which we name COVID-Net US-X) show that the proposed extended linear-convex ultrasound augmentation learning significantly increases performance, with a gain of 5.1% in test accuracy and 13.6% in AUC.
107,814
107,814
H2H: Heterogeneous Model to Heterogeneous System Mapping with Computation and Communication Awareness
The complex nature of real-world problems calls for heterogeneity in both machine learning (ML) models and hardware systems. The heterogeneity in ML models comes from multi-sensor perceiving and multi-task learning, i.e., multi-modality multi-task (MMMT), resulting in diverse deep neural network (DNN) layers and computation patterns. The heterogeneity in systems comes from diverse processing components, as it becomes the prevailing method to integrate multiple dedicated accelerators into one system. Therefore, a new problem emerges: heterogeneous model to heterogeneous system mapping (H2H). While previous mapping algorithms mostly focus on efficient computations, in this work, we argue that it is indispensable to consider computation and communication simultaneously for better system efficiency. We propose a novel H2H mapping algorithm with both computation and communication awareness; by slightly trading computation for communication, the system overall latency and energy consumption can be largely reduced. The superior performance of our work is evaluated based on MAESTRO modeling, demonstrating 15%-74% latency reduction and 23%-64% energy reduction compared with existing computation-prioritized mapping algorithms.
107,815
107,815
Detecting Textual Adversarial Examples Based on Distributional Characteristics of Data Representations
Although deep neural networks have achieved state-of-the-art performance in various machine learning tasks, adversarial examples, constructed by adding small non-random perturbations to correctly classified inputs, successfully fool highly expressive deep classifiers into incorrect predictions. Approaches to adversarial attacks in natural language tasks have boomed in the last five years using character-level, word-level, phrase-level, or sentence-level textual perturbations. While there is some work in NLP on defending against such attacks through proactive methods, like adversarial training, there is to our knowledge no effective general reactive approaches to defence via detection of textual adversarial examples such as is found in the image processing literature. In this paper, we propose two new reactive methods for NLP to fill this gap, which unlike the few limited application baselines from NLP are based entirely on distribution characteristics of learned representations: we adapt one from the image processing literature (Local Intrinsic Dimensionality (LID)), and propose a novel one (MultiDistance Representation Ensemble Method (MDRE)). Adapted LID and MDRE obtain state-of-the-art results on character-level, word-level, and phrase-level attacks on the IMDB dataset as well as on the later two with respect to the MultiNLI dataset. For future research, we publish our code.
107,816
107,816
One-Way Matching of Datasets with Low Rank Signals
We study one-way matching of a pair of datasets with low rank signals. Under a stylized model, we first derive information-theoretic limits of matching. We then show that linear assignment with projected data achieves fast rates of convergence and sometimes even minimax rate optimality for this task. The theoretical error bounds are corroborated by simulated examples. Furthermore, we illustrate practical use of the matching procedure on two single-cell data examples.
107,817
107,817
Energy Minimization for Federated Asynchronous Learning on Battery-Powered Mobile Devices via Application Co-running
Energy is an essential, but often forgotten aspect in large-scale federated systems. As most of the research focuses on tackling computational and statistical heterogeneity from the machine learning algorithms, the impact on the mobile system still remains unclear. In this paper, we design and implement an online optimization framework by connecting asynchronous execution of federated training with application co-running to minimize energy consumption on battery-powered mobile devices. From a series of experiments, we find that co-running the training process in the background with foreground applications gives the system a deep energy discount with negligible performance slowdown. Based on these results, we first study an offline problem assuming all the future occurrences of applications are available, and propose a dynamic programming-based algorithm. Then we propose an online algorithm using the Lyapunov framework to explore the solution space via the energy-staleness trade-off. The extensive experiments demonstrate that the online optimization framework can save over 60% energy with 3 times faster convergence speed compared to the previous schemes.
107,818
107,818
Autonomous In-Situ Soundscape Augmentation via Joint Selection of Masker and Gain
The selection of maskers and playback gain levels in a soundscape augmentation system is crucial to its effectiveness in improving the overall acoustic comfort of a given environment. Traditionally, the selection of appropriate maskers and gain levels has been informed by expert opinion, which may not representative of the target population, or by listening tests, which can be time-consuming and labour-intensive. Furthermore, the resulting static choices of masker and gain are often inflexible to the dynamic nature of real-world soundscapes. In this work, we utilized a deep learning model to perform joint selection of the optimal masker and its gain level for a given soundscape. The proposed model was designed with highly modular building blocks, allowing for an optimized inference process that can quickly search through a large number of masker and gain combinations. In addition, we introduced the use of feature-domain soundscape augmentation conditioned on the digital gain level, eliminating the computationally expensive waveform-domain mixing process during inference time, as well as the tedious pre-calibration process required for new maskers. The proposed system was validated on a large-scale dataset of subjective responses to augmented soundscapes with more than 440 participants, ensuring the ability of the model to predict combined effect of the masker and its gain level on the perceptual pleasantness level.
107,819
107,819
Framework for Behavioral Disorder Detection Using Machine Learning and Application of Virtual Cognitive Behavioral Therapy in COVID-19 Pandemic
In this modern world, people are becoming more self-centered and unsocial. On the other hand, people are stressed, becoming more anxious during COVID-19 pandemic situation and exhibits symptoms of behavioral disorder. To measure the symptoms of behavioral disorder, usually psychiatrist use long hour sessions and inputs from specific questionnaire. This process is time consuming and sometime is ineffective to detect the right behavioral disorder. Also, reserved people sometime hesitate to follow this process. We have created a digital framework which can detect behavioral disorder and prescribe virtual Cognitive Behavioral Therapy (vCBT) for recovery. By using this framework people can input required data that are highly responsible for the three behavioral disorders namely depression, anxiety and internet addiction. We have applied machine learning technique to detect specific behavioral disorder from samples. This system guides the user with basic understanding and treatment through vCBT from anywhere any time which would potentially be the steppingstone for the user to be conscious and pursue right treatment.
107,820
107,820
Fast Sampling of Diffusion Models with Exponential Integrator
The past few years have witnessed the great success of Diffusion models~(DMs) in generating high-fidelity samples in generative modeling tasks. A major limitation of the DM is its notoriously slow sampling procedure which normally requires hundreds to thousands of time discretization steps of the learned diffusion process to reach the desired accuracy. Our goal is to develop a fast sampling method for DMs with a much less number of steps while retaining high sample quality. To this end, we systematically analyze the sampling procedure in DMs and identify key factors that affect the sample quality, among which the method of discretization is most crucial. By carefully examining the learned diffusion process, we propose Diffusion Exponential Integrator Sampler~(DEIS). It is based on the Exponential Integrator designed for discretizing ordinary differential equations (ODEs) and leverages a semilinear structure of the learned diffusion process to reduce the discretization error. The proposed method can be applied to any DMs and can generate high-fidelity samples in as few as 10 steps. In our experiments, it takes about 3 minutes on one A6000 GPU to generate $50k$ images from CIFAR10. Moreover, by directly using pre-trained DMs, we achieve the state-of-art sampling performance when the number of score function evaluation~(NFE) is limited, e.g., 4.17 FID with 10 NFEs, 3.37 FID, and 9.74 IS with only 15 NFEs on CIFAR10. Code is available at https://github.com/qsh-zh/deis
107,821
107,821
Unsupervised Reinforcement Learning for Transferable Manipulation Skill Discovery
Current reinforcement learning (RL) in robotics often experiences difficulty in generalizing to new downstream tasks due to the innate task-specific training paradigm. To alleviate it, unsupervised RL, a framework that pre-trains the agent in a task-agnostic manner without access to the task-specific reward, leverages active exploration for distilling diverse experience into essential skills or reusable knowledge. For exploiting such benefits also in robotic manipulation, we propose an unsupervised method for transferable manipulation skill discovery that ties structured exploration toward interacting behavior and transferable skill learning. It not only enables the agent to learn interaction behavior, the key aspect of the robotic manipulation learning, without access to the environment reward, but also to generalize to arbitrary downstream manipulation tasks with the learned task-agnostic skills. Through comparative experiments, we show that our approach achieves the most diverse interacting behavior and significantly improves sample efficiency in downstream tasks including the extension to multi-object, multitask problems.
107,822
107,822
Task Embedding Temporal Convolution Networks for Transfer Learning Problems in Renewable Power Time-Series Forecast
Task embeddings in multi-layer perceptrons for multi-task learning and inductive transfer learning in renewable power forecasts have recently been introduced. In many cases, this approach improves the forecast error and reduces the required training data. However, it does not take the seasonal influences in power forecasts within a day into account, i.e., the diurnal cycle. Therefore, we extended this idea to temporal convolutional networks to consider those seasonalities. We propose transforming the embedding space, which contains the latent similarities between tasks, through convolution and providing these results to the network's residual block. The proposed architecture significantly improves up to 25 percent for multi-task learning for power forecasts on the EuropeWindFarm and GermanSolarFarm dataset compared to the multi-layer perceptron approach. Based on the same data, we achieve a ten percent improvement for the wind datasets and more than 20 percent in most cases for the solar dataset for inductive transfer learning without catastrophic forgetting. Finally, we are the first proposing zero-shot learning for renewable power forecasts to provide predictions even if no training data is available.
107,823
107,823
A study of tree-based methods and their combination
Tree-based methods are popular machine learning techniques used in various fields. In this work, we review their foundations and a general framework the importance sampled learning ensemble (ISLE) that accelerates their fitting process. Furthermore, we describe a model combination strategy called the adaptive regression by mixing (ARM), which is feasible for tree-based methods via ISLE. Moreover, three modified ISLEs are proposed, and their performance are evaluated on the real data sets.
107,824
107,824
A Mixed-Domain Self-Attention Network for Multilabel Cardiac Irregularity Classification Using Reduced-Lead Electrocardiogram
Electrocardiogram(ECG) is commonly used to detect cardiac irregularities such as atrial fibrillation, bradycardia, and other irregular complexes. While previous studies have achieved great accomplishment classifying these irregularities with standard 12-lead ECGs, there existed limited evidence demonstrating the utility of reduced-lead ECGs in capturing a wide-range of diagnostic information. In addition, classification model's generalizability across multiple recording sources also remained uncovered. As part of the PhysioNet Computing in Cardiology Challenge 2021, our team HaoWan AIeC, proposed Mixed-Domain Self-Attention Resnet (MDARsn) to identify cardiac abnormalities from reduced-lead ECG. Our classifiers received scores of 0.602, 0.593, 0.597, 0.591, and 0.589 (ranked 54th, 37th, 38th, 38th, and 39th) for the 12-lead, 6-lead, 4-lead, 3-lead, and 2-lead versions of the hidden validation set with the evaluation metric defined by the challenge.
107,825
107,825
Short-Term Density Forecasting of Low-Voltage Load using Bernstein-Polynomial Normalizing Flows
The transition to a fully renewable energy grid requires better forecasting of demand at the low-voltage level to increase efficiency and ensure reliable control. However, high fluctuations and increasing electrification cause huge forecast variability, not reflected in traditional point estimates. Probabilistic load forecasts take future uncertainties into account and thus allow more informed decision-making for the planning and operation of low-carbon energy systems. We propose an approach for flexible conditional density forecasting of short-term load based on Bernstein polynomial normalizing flows, where a neural network controls the parameters of the flow. In an empirical study with 363 smart meter customers, our density predictions compare favorably against Gaussian and Gaussian mixture densities. Also, they outperform a non-parametric approach based on the pinball loss for 24h-ahead load forecasting for two different neural network architectures.
107,826
107,826
Learned Gradient of a Regularizer for Plug-and-Play Gradient Descent
The Plug-and-Play (PnP) framework allows integrating advanced image denoising priors into optimization algorithms, to efficiently solve a variety of image restoration tasks. The Plug-and-Play alternating direction method of multipliers (ADMM) and the Regularization by Denoising (RED) algorithms are two examples of such methods that made a breakthrough in image restoration. However, while the former method only applies to proximal algorithms, it has recently been shown that there exists no regularization that explains the RED algorithm when the denoisers lack Jacobian symmetry, which happen to be the case of most practical denoisers. To the best of our knowledge, there exists no method for training a network that directly represents the gradient of a regularizer, which can be directly used in Plug-and-Play gradient-based algorithms. We show that it is possible to train a denoiser along with a network that corresponds to the gradient of its regularizer. We use this gradient of the regularizer in gradient-based optimization methods and obtain better results comparing to other generic Plug-and-Play approaches. We also show that the regularizer can be used as a pre-trained network for unrolled gradient descent. Lastly, we show that the resulting denoiser allows for a quick convergence of the Plug-and-Play ADMM.
107,827
107,827
Tailored Uncertainty Estimation for Deep Learning Systems
Uncertainty estimation bears the potential to make deep learning (DL) systems more reliable. Standard techniques for uncertainty estimation, however, come along with specific combinations of strengths and weaknesses, e.g., with respect to estimation quality, generalization abilities and computational complexity. To actually harness the potential of uncertainty quantification, estimators are required whose properties closely match the requirements of a given use case. In this work, we propose a framework that, firstly, structures and shapes these requirements, secondly, guides the selection of a suitable uncertainty estimation method and, thirdly, provides strategies to validate this choice and to uncover structural weaknesses. By contributing tailored uncertainty estimation in this sense, our framework helps to foster trustworthy DL systems. Moreover, it anticipates prospective machine learning regulations that require, e.g., in the EU, evidences for the technical appropriateness of machine learning systems. Our framework provides such evidences for system components modeling uncertainty.
107,828
107,828
Cost Effective MLaaS Federation: A Combinatorial Reinforcement Learning Approach
With the advancement of deep learning techniques, major cloud providers and niche machine learning service providers start to offer their cloud-based machine learning tools, also known as machine learning as a service (MLaaS), to the public. According to our measurement, for the same task, these MLaaSes from different providers have varying performance due to the proprietary datasets, models, etc. Federating different MLaaSes together allows us to improve the analytic performance further. However, naively aggregating results from different MLaaSes not only incurs significant momentary cost but also may lead to sub-optimal performance gain due to the introduction of possible false-positive results. In this paper, we propose Armol, a framework to federate the right selection of MLaaS providers to achieve the best possible analytic performance. We first design a word grouping algorithm to unify the output labels across different providers. We then present a deep combinatorial reinforcement learning based-approach to maximize the accuracy while minimizing the cost. The predictions from the selected providers are then aggregated together using carefully chosen ensemble strategies. The real-world trace-driven evaluation further demonstrates that Armol is able to achieve the same accuracy results with $67\%$ less inference cost.
107,829
107,829
Making sense of violence risk predictions using clinical notes
Violence risk assessment in psychiatric institutions enables interventions to avoid violence incidents. Clinical notes written by practitioners and available in electronic health records (EHR) are valuable resources that are seldom used to their full potential. Previous studies have attempted to assess violence risk in psychiatric patients using such notes, with acceptable performance. However, they do not explain why classification works and how it can be improved. We explore two methods to better understand the quality of a classifier in the context of clinical note analysis: random forests using topic models, and choice of evaluation metric. These methods allow us to understand both our data and our methodology more profoundly, setting up the groundwork to work on improved models that build upon this understanding. This is particularly important when it comes to the generalizability of evaluated classifiers to new data, a trustworthiness problem that is of great interest due to the increased availability of new data in electronic format.
107,830
107,830
Dynamic Diagnosis of the Progress and Shortcomings of Student Learning using Machine Learning based on Cognitive, Social, and Emotional Features
Student diversity, like academic background, learning styles, career and life goals, ethnicity, age, social and emotional characteristics, course load and work schedule, offers unique opportunities in education, like learning new skills, peer mentoring and example setting. But student diversity can be challenging too as it adds variability in the way in which students learn and progress over time. A single teaching approach is likely to be ineffective and result in students not meeting their potential. Automated support could address limitations of traditional teaching by continuously assessing student learning and implementing needed interventions. This paper discusses a novel methodology based on data analytics and Machine Learning to measure and causally diagnose the progress and shortcomings of student learning, and then utilizes the insight gained on individuals to optimize learning. Diagnosis pertains to dynamic diagnostic formative assessment, which aims to uncover the causes of learning shortcomings. The methodology groups learning difficulties into four categories: recall from memory, concept adjustment, concept modification, and problem decomposition into sub-goals (sub-problems) and concept combination. Data models are predicting the occurrence of each of the four challenge types, as well as a student's learning trajectory. The models can be used to automatically create real-time, student-specific interventions (e.g., learning cues) to address less understood concepts. We envision that the system will enable new adaptive pedagogical approaches to unleash student learning potential through customization of the course material to the background, abilities, situation, and progress of each student; and leveraging diversity-related learning experiences.
107,831
107,831
Particle Swarm Optimization Based Demand Response Using Artificial Neural Network Based Load Prediction
In the present study, a Particle Swarm Optimization (PSO) based Demand Response (DR) model, using Artificial Neural Network (ANN) to predict load is proposed. The electrical load and climatological data of a residential area in Austin city in Texas are used as the inputs of the ANN. Then, the outcomes with the day-ahead prices data are used to solve the load shifting and cost reduction problem. According to the results, the proposed model has the ability to decrease payment costs and peak load.
107,832
107,832
Physical Deep Learning with Biologically Plausible Training Method
The ever-growing demand for further advances in artificial intelligence motivated research on unconventional computation based on analog physical devices. While such computation devices mimic brain-inspired analog information processing, learning procedures still relies on methods optimized for digital processing such as backpropagation. Here, we present physical deep learning by extending a biologically plausible training algorithm called direct feedback alignment. As the proposed method is based on random projection with arbitrary nonlinear activation, we can train a physical neural network without knowledge about the physical system. In addition, we can emulate and accelerate the computation for this training on a simple and scalable physical system. We demonstrate the proof-of-concept using a hierarchically connected optoelectronic recurrent neural network called deep reservoir computer. By constructing an FPGA-assisted optoelectronic benchtop, we confirmed the potential for accelerated computation with competitive performance on benchmarks. Our results provide practical solutions for the training and acceleration of neuromorphic computation.
107,833
107,833
Leveraging triplet loss and nonlinear dimensionality reduction for on-the-fly channel charting
Channel charting is an unsupervised learning method that aims at mapping wireless channels to a so-called chart, preserving as much as possible spatial neighborhoods. In this paper, a model-based deep learning approach to this problem is proposed. It builds on a physically motivated distance measure to structure and initialize a neural network that is subsequently trained using a triplet loss function. The proposed structure exhibits a low number of parameters and clever initialization leads to fast training. These two features make the proposed approach amenable to on-the-fly channel charting. The method is empirically assessed on realistic synthetic channels, yielding encouraging results.
107,834
107,834
Statistical applications of contrastive learning
The likelihood function plays a crucial role in statistical inference and experimental design. However, it is computationally intractable for several important classes of statistical models, including energy-based models and simulator-based models. Contrastive learning is an intuitive and computationally feasible alternative to likelihood-based learning. We here first provide an introduction to contrastive learning and then show how we can use it to derive methods for diverse statistical problems, namely parameter estimation for energy-based models, Bayesian inference for simulator-based models, as well as experimental design.
107,835
107,835
Machine Learning-Based GPS Multipath Detection Method Using Dual Antennas
In urban areas, global navigation satellite system (GNSS) signals are often reflected or blocked by buildings, thus resulting in large positioning errors. In this study, we proposed a machine learning approach for global positioning system (GPS) multipath detection that uses dual antennas. A machine learning model that could classify GPS signal reception conditions was trained with several GPS measurements selected as suggested features. We applied five features for machine learning, including a feature obtained from the dual antennas, and evaluated the classification performance of the model, after applying four machine learning algorithms: gradient boosting decision tree (GBDT), random forest, decision tree, and K-nearest neighbor (KNN). It was found that a classification accuracy of 82%-96% was achieved when the test data set was collected at the same locations as those of the training data set. However, when the test data set was collected at locations different from those of the training data, a classification accuracy of 44%-77% was obtained.
107,836
107,836
No Task Left Behind: Multi-Task Learning of Knowledge Tracing and Option Tracing for Better Student Assessment
Student assessment is one of the most fundamental tasks in the field of AI Education (AIEd). One of the most common approach to student assessment is Knowledge Tracing (KT), which evaluates a student's knowledge state by predicting whether the student will answer a given question correctly or not. However, in the context of multiple choice (polytomous) questions, conventional KT approaches are limited in that they only consider the binary (dichotomous) correctness label (i.e., correct or incorrect), and disregard the specific option chosen by the student. Meanwhile, Option Tracing (OT) attempts to model a student by predicting which option they will choose for a given question, but overlooks the correctness information. In this paper, we propose Dichotomous-Polytomous Multi-Task Learning (DP-MTL), a multi-task learning framework that combines KT and OT for more precise student assessment. In particular, we show that the KT objective acts as a regularization term for OT in the DP-MTL framework, and propose an appropriate architecture for applying our method on top of existing deep learning-based KT models. We experimentally confirm that DP-MTL significantly improves both KT and OT performances, and also benefits downstream tasks such as Score Prediction (SP).
107,837
107,837
Searching for Efficient Neural Architectures for On-Device ML on Edge TPUs
On-device ML accelerators are becoming a standard in modern mobile system-on-chips (SoC). Neural architecture search (NAS) comes to the rescue for efficiently utilizing the high compute throughput offered by these accelerators. However, existing NAS frameworks have several practical limitations in scaling to multiple tasks and different target platforms. In this work, we provide a two-pronged approach to this challenge: (i) a NAS-enabling infrastructure that decouples model cost evaluation, search space design, and the NAS algorithm to rapidly target various on-device ML tasks, and (ii) search spaces crafted from group convolution based inverted bottleneck (IBN) variants that provide flexible quality/performance trade-offs on ML accelerators, complementing the existing full and depthwise convolution based IBNs. Using this approach we target a state-of-the-art mobile platform, Google Tensor SoC, and demonstrate neural architectures that improve the quality-performance pareto frontier for various computer vision (classification, detection, segmentation) as well as natural language processing tasks.
107,838
107,838
Biologically-inspired neuronal adaptation improves learning in neural networks
Since humans still outperform artificial neural networks on many tasks, drawing inspiration from the brain may help to improve current machine learning algorithms. Contrastive Hebbian Learning (CHL) and Equilibrium Propagation (EP) are biologically plausible algorithms that update weights using only local information (without explicitly calculating gradients) and still achieve performance comparable to conventional backpropagation. In this study, we augmented CHL and EP with Adjusted Adaptation, inspired by the adaptation effect observed in neurons, in which a neuron's response to a given stimulus is adjusted after a short time. We add this adaptation feature to multilayer perceptrons and convolutional neural networks trained on MNIST and CIFAR-10. Surprisingly, adaptation improved the performance of these networks. We discuss the biological inspiration for this idea and investigate why Neuronal Adaptation could be an important brain mechanism to improve the stability and accuracy of learning.
107,839
107,839
Local Explanation of Dimensionality Reduction
Dimensionality reduction (DR) is a popular method for preparing and analyzing high-dimensional data. Reduced data representations are less computationally intensive and easier to manage and visualize, while retaining a significant percentage of their original information. Aside from these advantages, these reduced representations can be difficult or impossible to interpret in most circumstances, especially when the DR approach does not provide further information about which features of the original space led to their construction. This problem is addressed by Interpretable Machine Learning, a subfield of Explainable Artificial Intelligence that addresses the opacity of machine learning models. However, current research on Interpretable Machine Learning has been focused on supervised tasks, leaving unsupervised tasks like Dimensionality Reduction unexplored. In this paper, we introduce LXDR, a technique capable of providing local interpretations of the output of DR techniques. Experiment results and two LXDR use case examples are presented to evaluate its usefulness.
107,840
107,840
Backdoor Attacks in Federated Learning by Rare Embeddings and Gradient Ensembling
Recent advances in federated learning have demonstrated its promising capability to learn on decentralized datasets. However, a considerable amount of work has raised concerns due to the potential risks of adversaries participating in the framework to poison the global model for an adversarial purpose. This paper investigates the feasibility of model poisoning for backdoor attacks through \textit{rare word embeddings of NLP models} in text classification and sequence-to-sequence tasks. In text classification, less than 1\% of adversary clients suffices to manipulate the model output without any drop in the performance of clean sentences. For a less complex dataset, a mere 0.1\% of adversary clients is enough to poison the global model effectively. We also propose a technique specialized in the federated learning scheme called gradient ensemble, which enhances the backdoor performance in all experimental settings.
107,841
107,841
Exploration and Exploitation in Federated Learning to Exclude Clients with Poisoned Data
Federated Learning (FL) is one of the hot research topics, and it utilizes Machine Learning (ML) in a distributed manner without directly accessing private data on clients. However, FL faces many challenges, including the difficulty to obtain high accuracy, high communication cost between clients and the server, and security attacks related to adversarial ML. To tackle these three challenges, we propose an FL algorithm inspired by evolutionary techniques. The proposed algorithm groups clients randomly in many clusters, each with a model selected randomly to explore the performance of different models. The clusters are then trained in a repetitive process where the worst performing cluster is removed in each iteration until one cluster remains. In each iteration, some clients are expelled from clusters either due to using poisoned data or low performance. The surviving clients are exploited in the next iteration. The remaining cluster with surviving clients is then used for training the best FL model (i.e., remaining FL model). Communication cost is reduced since fewer clients are used in the final training of the FL model. To evaluate the performance of the proposed algorithm, we conduct a number of experiments using FEMNIST dataset and compare the result against the random FL algorithm. The experimental results show that the proposed algorithm outperforms the baseline algorithm in terms of accuracy, communication cost, and security.
107,842
107,842
Data+Shift: Supporting visual investigation of data distribution shifts by data scientists
Machine learning on data streams is increasingly more present in multiple domains. However, there is often data distribution shift that can lead machine learning models to make incorrect decisions. While there are automatic methods to detect when drift is happening, human analysis, often by data scientists, is essential to diagnose the causes of the problem and adjust the system. We propose Data+Shift, a visual analytics tool to support data scientists in the task of investigating the underlying factors of shift in data features in the context of fraud detection. Design requirements were derived from interviews with data scientists. Data+Shift is integrated with JupyterLab and can be used alongside other data science tools. We validated our approach with a think-aloud experiment where a data scientist used the tool for a fraud detection use case.
107,843
107,843
Who will stay? Using Deep Learning to predict engagement of citizen scientists
Citizen science and machine learning should be considered for monitoring the coastal and ocean environment due to the scale of threats posed by climate change and the limited resources to fill knowledge gaps. Using data from the annotation activity of citizen scientists in a Swedish marine project, we constructed Deep Neural Network models to predict forthcoming engagement. We tested the models to identify patterns in annotation engagement. Based on the results, it is possible to predict whether an annotator will remain active in future sessions. Depending on the goals of individual citizen science projects, it may also be necessary to identify either those volunteers who will leave or those who will continue annotating. This can be predicted by varying the threshold for the prediction. The engagement metrics used to construct the models are based on time and activity and can be used to infer latent characteristics of volunteers and predict their task interest based on their activity patterns. They can estimate if volunteers can accomplish a given number of tasks in a certain amount of time, identify early on who is likely to become a top contributor or identify who is likely to quit and provide them with targeted interventions. The novelty of our predictive models lies in the use of Deep Neural Networks and the sequence of volunteer annotations. A limitation of our models is that they do not use embeddings constructed from user profiles as input data, as many recommender systems do. We expect that including user profiles would improve prediction performance.
107,844
107,844
Topological Data Analysis in Time Series: Temporal Filtration and Application to Single-Cell Genomics
The absence of a conventional association between the cell-cell cohabitation and its emergent dynamics into cliques during development has hindered our understanding of how cell populations proliferate, differentiate, and compete, i.e. the cell ecology. With the recent advancement of the single-cell RNA-sequencing (RNA-seq), we can potentially describe such a link by constructing network graphs that characterize the similarity of the gene expression profiles of the cell-specific transcriptional programs, and analyzing these graphs systematically using the summary statistics informed by the algebraic topology. We propose the single-cell topological simplicial analysis (scTSA). Applying this approach to the single-cell gene expression profiles from local networks of cells in different developmental stages with different outcomes reveals a previously unseen topology of cellular ecology. These networks contain an abundance of cliques of single-cell profiles bound into cavities that guide the emergence of more complicated habitation forms. We visualize these ecological patterns with topological simplicial architectures of these networks, compared with the null models. Benchmarked on the single-cell RNA-seq data of zebrafish embryogenesis spanning 38,731 cells, 25 cell types and 12 time steps, our approach highlights the gastrulation as the most critical stage, consistent with consensus in developmental biology. As a nonlinear, model-independent, and unsupervised framework, our approach can also be applied to tracing multi-scale cell lineage, identifying critical stages, or creating pseudo-time series.
107,845
107,845
A Collection of Quality Diversity Optimization Problems Derived from Hyperparameter Optimization of Machine Learning Models
The goal of Quality Diversity Optimization is to generate a collection of diverse yet high-performing solutions to a given problem at hand. Typical benchmark problems are, for example, finding a repertoire of robot arm configurations or a collection of game playing strategies. In this paper, we propose a set of Quality Diversity Optimization problems that tackle hyperparameter optimization of machine learning models - a so far underexplored application of Quality Diversity Optimization. Our benchmark problems involve novel feature functions, such as interpretability or resource usage of models. To allow for fast and efficient benchmarking, we build upon YAHPO Gym, a recently proposed open source benchmarking suite for hyperparameter optimization that makes use of high performing surrogate models and returns these surrogate model predictions instead of evaluating the true expensive black box function. We present results of an initial experimental study comparing different Quality Diversity optimizers on our benchmark problems. Furthermore, we discuss future directions and challenges of Quality Diversity Optimization in the context of hyperparameter optimization.
107,846
107,846
Multimodal Transformer-based Model for Buchwald-Hartwig and Suzuki-Miyaura Reaction Yield Prediction
Predicting the yield percentage of a chemical reaction is useful in many aspects such as reducing wet-lab experimentation by giving the priority to the reactions with a high predicted yield. In this work we investigated the use of multiple type inputs to predict chemical reaction yield. We used simplified molecular-input line-entry system (SMILES) as well as calculated chemical descriptors as model inputs. The model consists of a pre-trained bidirectional transformer-based encoder (BERT) and a multi-layer perceptron (MLP) with a regression head to predict the yield. We experimented on two high throughput experimentation (HTE) datasets for Buchwald-Hartwig and Suzuki-Miyaura reactions. The experiments show improvements in the prediction on both datasets compared to systems using only SMILES or chemical descriptors as input. We also tested the model's performance on out-of-sample dataset splits of Buchwald-Hartwig and achieved comparable results with the state-of-the-art. In addition to predicting the yield, we demonstrated the model's ability to suggest the optimum (highest yield) reaction conditions. The model was able to suggest conditions that achieves 94% of the optimum reported yields. This proves the model to be useful in achieving the best results in the wet lab without expensive experimentation.
107,847
107,847
Escaping Spurious Local Minima of Low-Rank Matrix Factorization Through Convex Lifting
This work proposes a rapid global solver for nonconvex low-rank matrix factorization (MF) problems that we name MF-Global. Through convex lifting steps, our method efficiently escapes saddle points and spurious local minima ubiquitous in noisy real-world data, and is guaranteed to always converge to the global optima. Moreover, the proposed approach adaptively adjusts the rank for the factorization and provably identifies the optimal rank for MF automatically in the course of optimization through tools of manifold identification, and thus it also spends significantly less time on parameter tuning than existing MF methods, which require an exhaustive search for this optimal rank. On the other hand, when compared to methods for solving the lifted convex form only, MF-Global leads to significantly faster convergence and much shorter running time. Experiments on real-world large-scale recommendation system problems confirm that MF-Global can indeed effectively escapes spurious local solutions at which existing MF approaches stuck, and is magnitudes faster than state-of-the-art algorithms for the lifted convex form.
107,848
107,848
Controlled Generation of Unseen Faults for Partial and OpenSet&Partial Domain Adaptation
New operating conditions can result in a performance drop of fault diagnostics models due to the domain gap between the training and the testing data distributions. While several domain adaptation approaches have been proposed to overcome such domain shifts, their application is limited if the label spaces of the two domains are not congruent. To improve the transferability of the trained models, particularly in setups where only the healthy data class is shared between the two domains, we propose a new framework based on a Wasserstein GAN for Partial and OpenSet&Partial domain adaptation. The main contribution is the controlled fault data generation that enables to generate unobserved fault types and severity levels in the target domain by having only access to the healthy samples in the target domain and faulty samples in the source domain. To evaluate the ability of the proposed method to bridge domain gaps in different domain adaption settings, we conduct Partial as well as OpenSet&Partial domain adaptation experiments on two bearing fault diagnostics case studies. The results show the versatility of the framework and that the synthetically generated fault data helps bridging the domain gaps, especially in instances where the domain gap is large.
107,849
107,849
Dynamic Noises of Multi-Agent Environments Can Improve Generalization: Agent-based Models meets Reinforcement Learning
We study the benefits of reinforcement learning (RL) environments based on agent-based models (ABM). While ABMs are known to offer microfoundational simulations at the cost of computational complexity, we empirically show in this work that their non-deterministic dynamics can improve the generalization of RL agents. To this end, we examine the control of an epidemic SIR environments based on either differential equations or ABMs. Numerical simulations demonstrate that the intrinsic noise in the ABM-based dynamics of the SIR model not only improve the average reward but also allow the RL agent to generalize on a wider ranges of epidemic parameters.
107,850
107,850
Fix the Noise: Disentangling Source Feature for Transfer Learning of StyleGAN
Transfer learning of StyleGAN has recently shown great potential to solve diverse tasks, especially in domain translation. Previous methods utilized a source model by swapping or freezing weights during transfer learning, however, they have limitations on visual quality and controlling source features. In other words, they require additional models that are computationally demanding and have restricted control steps that prevent a smooth transition. In this paper, we propose a new approach to overcome these limitations. Instead of swapping or freezing, we introduce a simple feature matching loss to improve generation quality. In addition, to control the degree of source features, we train a target model with the proposed strategy, FixNoise, to preserve the source features only in a disentangled subspace of a target feature space. Owing to the disentangled feature space, our method can smoothly control the degree of the source features in a single model. Extensive experiments demonstrate that the proposed method can generate more consistent and realistic images than previous works.
107,851
107,851
Few-shot learning for medical text: A systematic review
Objective: Few-shot learning (FSL) methods require small numbers of labeled instances for training. As many medical topics have limited annotated textual data in practical settings, FSL-based natural language processing (NLP) methods hold substantial promise. We aimed to conduct a systematic review to explore the state of FSL methods for medical NLP. Materials and Methods: We searched for articles published between January 2016 and August 2021 using PubMed/Medline, Embase, ACL Anthology, and IEEE Xplore Digital Library. To identify the latest relevant methods, we also searched other sources such as preprint servers (eg., medRxiv) via Google Scholar. We included all articles that involved FSL and any type of medical text. We abstracted articles based on data source(s), aim(s), training set size(s), primary method(s)/approach(es), and evaluation method(s). Results: 31 studies met our inclusion criteria-all published after 2018; 22 (71%) since 2020. Concept extraction/named entity recognition was the most frequently addressed task (13/31; 42%), followed by text classification (10/31; 32%). Twenty-one (68%) studies reconstructed existing datasets to create few-shot scenarios synthetically, and MIMIC-III was the most frequently used dataset (7/31; 23%). Common methods included FSL with attention mechanisms (12/31; 39%), prototypical networks (8/31; 26%), and meta-learning (6/31; 19%). Discussion: Despite the potential for FSL in biomedical NLP, progress has been limited compared to domain-independent FSL. This may be due to the paucity of standardized, public datasets, and the relative underperformance of FSL methods on biomedical topics. Creation and release of specialized datasets for biomedical FSL may aid method development by enabling comparative analyses.
107,852
107,852
Bayesian Information Criterion for Event-based Multi-trial Ensemble data
Transient recurring phenomena are ubiquitous in many scientific fields like neuroscience and meteorology. Time inhomogenous Vector Autoregressive Models (VAR) may be used to characterize peri-event system dynamics associated with such phenomena, and can be learned by exploiting multi-dimensional data gathering samples of the evolution of the system in multiple time windows comprising, each associated with one occurrence of the transient phenomenon, that we will call "trial". However, optimal VAR model order selection methods, commonly relying on the Akaike or Bayesian Information Criteria (AIC/BIC), are typically not designed for multi-trial data. Here we derive the BIC methods for multi-trial ensemble data which are gathered after the detection of the events. We show using simulated bivariate AR models that the multi-trial BIC is able to recover the real model order. We also demonstrate with simulated transient events and real data that the multi-trial BIC is able to estimate a sufficiently small model order for dynamic system modeling.
107,853
107,853
Reducing Neural Architecture Search Spaces with Training-Free Statistics and Computational Graph Clustering
The computational demands of neural architecture search (NAS) algorithms are usually directly proportional to the size of their target search spaces. Thus, limiting the search to high-quality subsets can greatly reduce the computational load of NAS algorithms. In this paper, we present Clustering-Based REDuction (C-BRED), a new technique to reduce the size of NAS search spaces. C-BRED reduces a NAS space by clustering the computational graphs associated with its architectures and selecting the most promising cluster using proxy statistics correlated with network accuracy. When considering the NAS-Bench-201 (NB201) data set and the CIFAR-100 task, C-BRED selects a subset with 70% average accuracy instead of the whole space's 64% average accuracy.
107,854
107,854
On the Optimization of Margin Distribution
Margin has played an important role on the design and analysis of learning algorithms during the past years, mostly working with the maximization of the minimum margin. Recent years have witnessed the increasing empirical studies on the optimization of margin distribution according to different statistics such as medium margin, average margin, margin variance, etc., whereas there is a relative paucity of theoretical understanding. In this work, we take one step on this direction by providing a new generalization error bound, which is heavily relevant to margin distribution by incorporating ingredients such as average margin and semi-variance, a new margin statistics for the characterization of margin distribution. Inspired by the theoretical findings, we propose the MSVMAv, an efficient approach to achieve better performance by optimizing margin distribution in terms of its empirical average margin and semi-variance. We finally conduct extensive experiments to show the superiority of the proposed MSVMAv approach.
107,855
107,855
Wide and Deep Neural Networks Achieve Optimality for Classification
While neural networks are used for classification tasks across domains, a long-standing open problem in machine learning is determining whether neural networks trained using standard procedures are optimal for classification, i.e., whether such models minimize the probability of misclassification for arbitrary data distributions. In this work, we identify and construct an explicit set of neural network classifiers that achieve optimality. Since effective neural networks in practice are typically both wide and deep, we analyze infinitely wide networks that are also infinitely deep. In particular, using the recent connection between infinitely wide neural networks and Neural Tangent Kernels, we provide explicit activation functions that can be used to construct networks that achieve optimality. Interestingly, these activation functions are simple and easy to implement, yet differ from commonly used activations such as ReLU or sigmoid. More generally, we create a taxonomy of infinitely wide and deep networks and show that these models implement one of three well-known classifiers depending on the activation function used: (1) 1-nearest neighbor (model predictions are given by the label of the nearest training example); (2) majority vote (model predictions are given by the label of the class with greatest representation in the training set); or (3) singular kernel classifiers (a set of classifiers containing those that achieve optimality). Our results highlight the benefit of using deep networks for classification tasks, in contrast to regression tasks, where excessive depth is harmful.
107,856
107,856
Network Topology Optimization via Deep Reinforcement Learning
Topology impacts important network performance metrics, including link utilization, throughput and latency, and is of central importance to network operators. However, due to the combinatorial nature of network topology, it is extremely difficult to obtain an optimal solution, especially since topology planning in networks also often comes with management-specific constraints. As a result, local optimization with hand-tuned heuristic methods from human experts are often adopted in practice. Yet, heuristic methods cannot cover the global topology design space while taking into account constraints, and cannot guarantee to find good solutions. In this paper, we propose a novel deep reinforcement learning (DRL) algorithm, called Advantage Actor Critic-Graph Searching (A2C-GS), for network topology optimization. A2C-GS consists of three novel components, including a verifier to validate the correctness of a generated network topology, a graph neural network (GNN) to efficiently approximate topology rating, and a DRL actor layer to conduct a topology search. A2C-GS can efficiently search over large topology space and output topology with satisfying performance. We conduct a case study based on a real network scenario, and our experimental results demonstrate the superior performance of A2C-GS in terms of both efficiency and performance.
107,857
107,857
Learning Anisotropic Interaction Rules from Individual Trajectories in a Heterogeneous Cellular Population
Interacting particle system (IPS) models have proven to be highly successful for describing the spatial movement of organisms. However, it has proven challenging to infer the interaction rules directly from data. In the field of equation discovery, the Weak form Sparse Identification of Nonlinear Dynamics (WSINDy) methodology has been shown to be very computationally efficient for identifying the governing equations of complex systems, even in the presence of substantial noise. Motivated by the success of IPS models to describe the spatial movement of organisms, we develop WSINDy for second order IPSs to model the movement of communities of cells. Specifically, our approach learns the directional interaction rules that govern the dynamics of a heterogeneous population of migrating cells. Rather than aggregating cellular trajectory data into a single best-fit model, we learn the models for each individual cell. These models can then be efficiently classified according to the active classes of interactions present in the model. From these classifications, aggregated models are constructed hierarchically to simultaneously identify different species of cells present in the population and determine best-fit models for each species. We demonstrate the efficiency and proficiency of the method on several test scenarios, motivated by common cell migration experiments.
107,858
107,858
A Framework for Constructing Machine Learning Models with Feature Set Optimisation for Evapotranspiration Partitioning
A deeper understanding of the drivers of evapotranspiration and the modelling of its constituent parts (evaporation and transpiration) could be of significant importance to the monitoring and management of water resources globally over the coming decades. In this work, we developed a framework to identify the best performing machine learning algorithm from a candidate set, select optimal predictive features as well as ranking features in terms of their importance to predictive accuracy. Our experiments used 3 separate feature sets across 4 wetland sites as input into 8 candidate machine learning algorithms, providing 96 sets of experimental configurations. Given this high number of parameters, our results show strong evidence that there is no singularly optimal machine learning algorithm or feature set across all of the wetland sites studied despite their similarities. A key finding discovered when examining feature importance is that methane flux, a feature whose relationship with evapotranspiration is not generally examined, may contribute to further biophysical process understanding.
107,859
107,859
Training Language Models with Language Feedback
Pretrained language models often do not perform tasks in ways that are in line with our preferences, e.g., generating offensive text or factually incorrect summaries. Recent work approaches the above issue by learning from a simple form of human evaluation: comparisons between pairs of model-generated task outputs. Comparison feedback conveys limited information about human preferences per human evaluation. Here, we propose to learn from natural language feedback, which conveys more information per human evaluation. We learn from language feedback on model outputs using a three-step learning algorithm. First, we condition the language model on the initial output and feedback to generate many refinements. Second, we choose the refinement with the highest similarity to the feedback. Third, we finetune a language model to maximize the likelihood of the chosen refinement given the input. In synthetic experiments, we first evaluate whether language models accurately incorporate feedback to produce refinements, finding that only large language models (175B parameters) do so. Using only 100 samples of human-written feedback, our learning algorithm finetunes a GPT-3 model to roughly human-level summarization.
107,860
107,860
Tractable Uncertainty for Structure Learning
Bayesian structure learning allows one to capture uncertainty over the causal directed acyclic graph (DAG) responsible for generating given data. In this work, we present Tractable Uncertainty for STructure learning (TRUST), a framework for approximate posterior inference that relies on probabilistic circuits as the representation of our posterior belief. In contrast to sample-based posterior approximations, our representation can capture a much richer space of DAGs, while being able to tractably answer a range of useful inference queries. We empirically show how probabilistic circuits can be used as an augmented representation for structure learning methods, leading to improvement in both the quality of inferred structures and posterior uncertainty. Experimental results also demonstrate the improved representational capacity of TRUST, outperforming competing methods on conditional query answering.
107,861
107,861
Explainable AI via Learning to Optimize
Indecipherable black boxes are common in machine learning (ML), but applications increasingly require explainable artificial intelligence (XAI). The core of XAI is to establish transparent and interpretable data-driven algorithms. This work provides concrete tools for XAI in situations where prior knowledge must be encoded and untrustworthy inferences flagged. We use the "learn to optimize" (L2O) methodology wherein each inference solves a data-driven optimization problem. Our L2O models are straightforward to implement, directly encode prior knowledge, and yield theoretical guarantees (e.g. satisfaction of constraints). We also propose use of interpretable certificates to verify whether model inferences are trustworthy. Numerical examples are provided in the applications of dictionary-based signal recovery, CT imaging, and arbitrage trading of cryptoassets.
107,862
107,862
Industry-academia research collaboration and knowledge co-creation: Patterns and anti-patterns
Increasing the impact of software engineering research in the software industry and the society at large has long been a concern of high priority for the software engineering community. The problem of two cultures, research conducted in a vacuum (disconnected from the real world), or misaligned time horizons are just some of the many complex challenges standing in the way of successful industry-academia collaborations. This paper reports on the experience of research collaboration and knowledge co-creation between industry and academia in software engineering as a way to bridge the research-practice collaboration gap. Our experience spans 14 years of collaboration between researchers in software engineering and the European and Norwegian software and IT industry. Using the participant observation and interview methods we have collected and afterwards analyzed an extensive record of qualitative data. Drawing upon the findings made and the experience gained, we provide a set of 14 patterns and 14 anti-patterns for industry-academia collaborations, aimed to support other researchers and practitioners in establishing and running research collaboration projects in software engineering.
107,863
107,863
Randomized Smoothing under Attack: How Good is it in Pratice?
Randomized smoothing is a recent and celebrated solution to certify the robustness of any classifier. While it indeed provides a theoretical robustness against adversarial attacks, the dimensionality of current classifiers necessarily imposes Monte Carlo approaches for its application in practice. This paper questions the effectiveness of randomized smoothing as a defense, against state of the art black-box attacks. This is a novel perspective, as previous research works considered the certification as an unquestionable guarantee. We first formally highlight the mismatch between a theoretical certification and the practice of attacks on classifiers. We then perform attacks on randomized smoothing as a defense. Our main observation is that there is a major mismatch in the settings of the RS for obtaining high certified robustness or when defeating black box attacks while preserving the classifier accuracy.
107,864
107,864
Human's Role in-the-Loop
Data integration has been recently challenged by the need to handle large volumes of data, arriving at high velocity from a variety of sources, which demonstrate varying levels of veracity. This challenging setting, often referred to as big data, renders many of the existing techniques, especially those that are human-intensive, obsolete. Big data also produces technological advancements such as Internet of things, cloud computing, and deep learning, and accordingly, provides a new, exciting, and challenging research agenda. Given the availability of data and the improvement of machine learning techniques, this blog discusses the respective roles of humans and machines in achieving cognitive tasks in matching, aiming to determine whether traditional roles of humans and machines are subject to change. Such investigation, we believe, will pave a way to better utilize both human and machine resources in new and innovative manners. We shall discuss two possible modes of change, namely humans out and humans in. Humans out aim at exploring out-of-the-box latent matching reasoning using machine learning algorithms when attempting to overpower human matcher performance. Pursuing out-of-the-box thinking, machine and deep learning can be involved in matching. Humans in explores how to better involve humans in the matching loop by assigning human matchers with a symmetric role to algorithmic matcher in the matching process.
107,865
107,865
Flamingo: a Visual Language Model for Few-Shot Learning
Building models that can be rapidly adapted to numerous tasks using only a handful of annotated examples is an open challenge for multimodal machine learning research. We introduce Flamingo, a family of Visual Language Models (VLM) with this ability. Flamingo models include key architectural innovations to: (i) bridge powerful pretrained vision-only and language-only models, (ii) handle sequences of arbitrarily interleaved visual and textual data, and (iii) seamlessly ingest images or videos as inputs. Thanks to their flexibility, Flamingo models can be trained on large-scale multimodal web corpora containing arbitrarily interleaved text and images, which is key to endow them with in-context few-shot learning capabilities. We perform a thorough evaluation of the proposed Flamingo models, exploring and measuring their ability to rapidly adapt to a variety of image and video understanding benchmarks. These include open-ended tasks such as visual question-answering, where the model is prompted with a question which it has to answer, captioning tasks, which evaluate the ability to describe a scene or an event, and close-ended tasks such as multiple choice visual question-answering. For tasks lying anywhere on this spectrum, we demonstrate that a single Flamingo model can achieve a new state of the art for few-shot learning, simply by prompting the model with task-specific examples. On many of these benchmarks, Flamingo actually surpasses the performance of models that are fine-tuned on thousands of times more task-specific data.
107,866
107,866
Preoperative brain tumor imaging: models and software for segmentation and standardized reporting
For patients suffering from brain tumor, prognosis estimation and treatment decisions are made by a multidisciplinary team based on a set of preoperative MR scans. Currently, the lack of standardized and automatic methods for tumor detection and generation of clinical reports represents a major hurdle. In this study, we investigate glioblastomas, lower grade gliomas, meningiomas, and metastases, through four cohorts of up to 4000 patients. Tumor segmentation models were trained using the AGU-Net architecture with different preprocessing steps and protocols. Segmentation performances were assessed in-depth using a wide-range of voxel and patient-wise metrics covering volume, distance, and probabilistic aspects. Finally, two software solutions have been developed, enabling an easy use of the trained models and standardized generation of clinical reports: Raidionics and Raidionics-Slicer. Segmentation performances were quite homogeneous across the four different brain tumor types, with an average true positive Dice ranging between 80% and 90%, patient-wise recall between 88% and 98%, and patient-wise precision around 95%. With our Raidionics software, running on a desktop computer with CPU support, tumor segmentation can be performed in 16 to 54 seconds depending on the dimensions of the MRI volume. For the generation of a standardized clinical report, including the tumor segmentation and features computation, 5 to 15 minutes are necessary. All trained models have been made open-access together with the source code for both software solutions and validation metrics computation. In the future, an automatic classification of the brain tumor type would be necessary to replace manual user input. Finally, the inclusion of post-operative segmentation in both software solutions will be key for generating complete post-operative standardized clinical reports.
107,867
107,867
Modular Domain Adaptation
Off-the-shelf models are widely used by computational social science researchers to measure properties of text, such as sentiment. However, without access to source data it is difficult to account for domain shift, which represents a threat to validity. Here, we treat domain adaptation as a modular process that involves separate model producers and model consumers, and show how they can independently cooperate to facilitate more accurate measurements of text. We introduce two lightweight techniques for this scenario, and demonstrate that they reliably increase out-of-domain accuracy on four multi-domain text classification datasets when used with linear and contextual embedding models. We conclude with recommendations for model producers and consumers, and release models and replication code to accompany this paper.
107,868
107,868
CogView2: Faster and Better Text-to-Image Generation via Hierarchical Transformers
The development of the transformer-based text-to-image models are impeded by its slow generation and complexity for high-resolution images. In this work, we put forward a solution based on hierarchical transformers and local parallel auto-regressive generation. We pretrain a 6B-parameter transformer with a simple and flexible self-supervised task, Cross-modal general language model (CogLM), and finetune it for fast super-resolution. The new text-to-image system, CogView2, shows very competitive generation compared to concurrent state-of-the-art DALL-E-2, and naturally supports interactive text-guided editing on images.
107,869
107,869
Application of machine learning methods to detect and classify Core images using GAN and texture recognition
During exploration campaigns, oil companies rely heavily on drill core samples as they provide valuable geological information that helps them find important oil deposits. Traditional core logging techniques are laborious and subjective. Core imaging, a new technique in the oil industry, is used to supplement analysis by rapidly characterising large quantities of drill cores in a nondestructive and noninvasive manner. In this paper, we will present the problem of core detection and classification. The first problem is detecting the cores and segmenting the holes in images by using Faster RCNN and Mask RCNN models respectively. The second problem is filling the hole in the core image by applying the Generative adversarial network(GAN) technique and using Contextual Residual Aggregation(CRA) which creates high frequency residual for missing contents in images. And finally applying Texture recognition models for the classification of core images.
107,870
107,870
Recommendations on test datasets for evaluating AI solutions in pathology
Artificial intelligence (AI) solutions that automatically extract information from digital histology images have shown great promise for improving pathological diagnosis. Prior to routine use, it is important to evaluate their predictive performance and obtain regulatory approval. This assessment requires appropriate test datasets. However, compiling such datasets is challenging and specific recommendations are missing. A committee of various stakeholders, including commercial AI developers, pathologists, and researchers, discussed key aspects and conducted extensive literature reviews on test datasets in pathology. Here, we summarize the results and derive general recommendations for the collection of test datasets. We address several questions: Which and how many images are needed? How to deal with low-prevalence subsets? How can potential bias be detected? How should datasets be reported? What are the regulatory requirements in different countries? The recommendations are intended to help AI developers demonstrate the utility of their products and to help regulatory agencies and end users verify reported performance measures. Further research is needed to formulate criteria for sufficiently representative test datasets so that AI solutions can operate with less user intervention and better support diagnostic workflows in the future.
107,871
107,871
Brainish: Formalizing A Multimodal Language for Intelligence and Consciousness
Having a rich multimodal inner language is an important component of human intelligence that enables several necessary core cognitive functions such as multimodal prediction, translation, and generation. Building upon the Conscious Turing Machine (CTM), a machine model for consciousness proposed by Blum and Blum (2021), we describe the desiderata of a multimodal language called Brainish, comprising words, images, audio, and sensations combined in representations that the CTM's processors use to communicate with each other. We define the syntax and semantics of Brainish before operationalizing this language through the lens of multimodal artificial intelligence, a vibrant research area studying the computational tools necessary for processing and relating information from heterogeneous signals. Our general framework for learning Brainish involves designing (1) unimodal encoders to segment and represent unimodal data, (2) a coordinated representation space that relates and composes unimodal features to derive holistic meaning across multimodal inputs, and (3) decoders to map multimodal representations into predictions (for fusion) or raw data (for translation or generation). Through discussing how Brainish is crucial for communication and coordination in order to achieve consciousness in the CTM, and by implementing a simple version of Brainish and evaluating its capability of demonstrating intelligence on multimodal prediction and retrieval tasks on several real-world image, text, and audio datasets, we argue that such an inner language will be important for advances in machine models of intelligence and consciousness.
107,872
107,872
Graph Learning from Multivariate Dependent Time Series via a Multi-Attribute Formulation
We consider the problem of inferring the conditional independence graph (CIG) of a high-dimensional stationary multivariate Gaussian time series. In a time series graph, each component of the vector series is represented by distinct node, and associations between components are represented by edges between the corresponding nodes. We formulate the problem as one of multi-attribute graph estimation for random vectors where a vector is associated with each node of the graph. At each node, the associated random vector consists of a time series component and its delayed copies. We present an alternating direction method of multipliers (ADMM) solution to minimize a sparse-group lasso penalized negative pseudo log-likelihood objective function to estimate the precision matrix of the random vector associated with the entire multi-attribute graph. The time series CIG is then inferred from the estimated precision matrix. A theoretical analysis is provided. Numerical results illustrate the proposed approach which outperforms existing frequency-domain approaches in correctly detecting the graph edges.
107,873
107,873
Self-Aware Feedback-Based Self-Learning in Large-Scale Conversational AI
Self-learning paradigms in large-scale conversational AI agents tend to leverage user feedback in bridging between what they say and what they mean. However, such learning, particularly in Markov-based query rewriting systems have far from addressed the impact of these models on future training where successive feedback is inevitably contingent on the rewrite itself, especially in a continually updating environment. In this paper, we explore the consequences of this inherent lack of self-awareness towards impairing the model performance, ultimately resulting in both Type I and II errors over time. To that end, we propose augmenting the Markov Graph construction with a superposition-based adjacency matrix. Here, our method leverages an induced stochasticity to reactively learn a locally-adaptive decision boundary based on the performance of the individual rewrites in a bi-variate beta setting. We also surface a data augmentation strategy that leverages template-based generation in abridging complex conversation hierarchies of dialogs so as to simplify the learning process. All in all, we demonstrate that our self-aware model improves the overall PR-AUC by 27.45%, achieves a relative defect reduction of up to 31.22%, and is able to adapt quicker to changes in global preferences across a large number of customers.
107,874
107,874
A Human-Centric Perspective on Fairness and Transparency in Algorithmic Decision-Making
Automated decision systems (ADS) are increasingly used for consequential decision-making. These systems often rely on sophisticated yet opaque machine learning models, which do not allow for understanding how a given decision was arrived at. This is not only problematic from a legal perspective, but non-transparent systems are also prone to yield unfair outcomes because their sanity is challenging to assess and calibrate in the first place -- which is particularly worrisome for human decision-subjects. Based on this observation and building upon existing work, I aim to make the following three main contributions through my doctoral thesis: (a) understand how (potential) decision-subjects perceive algorithmic decisions (with varying degrees of transparency of the underlying ADS), as compared to similar decisions made by humans; (b) evaluate different tools for transparent decision-making with respect to their effectiveness in enabling people to appropriately assess the quality and fairness of ADS; and (c) develop human-understandable technical artifacts for fair automated decision-making. Over the course of the first half of my PhD program, I have already addressed substantial pieces of (a) and (c), whereas (b) will be the major focus of the second half.
107,875
107,875
Logically Consistent Adversarial Attacks for Soft Theorem Provers
Recent efforts within the AI community have yielded impressive results towards "soft theorem proving" over natural language sentences using language models. We propose a novel, generative adversarial framework for probing and improving these models' reasoning capabilities. Adversarial attacks in this domain suffer from the logical inconsistency problem, whereby perturbations to the input may alter the label. Our Logically consistent AdVersarial Attacker, LAVA, addresses this by combining a structured generative process with a symbolic solver, guaranteeing logical consistency. Our framework successfully generates adversarial attacks and identifies global weaknesses common across multiple target models. Our analyses reveal naive heuristics and vulnerabilities in these models' reasoning capabilities, exposing an incomplete grasp of logical deduction under logic programs. Finally, in addition to effective probing of these models, we show that training on the generated samples improves the target model's performance.
107,876
107,876
Joint Multisided Exposure Fairness for Recommendation
Prior research on exposure fairness in the context of recommender systems has focused mostly on disparities in the exposure of individual or groups of items to individual users of the system. The problem of how individual or groups of items may be systemically under or over exposed to groups of users, or even all users, has received relatively less attention. However, such systemic disparities in information exposure can result in observable social harms, such as withholding economic opportunities from historically marginalized groups (allocative harm) or amplifying gendered and racialized stereotypes (representational harm). Previously, Diaz et al. developed the expected exposure metric -- that incorporates existing user browsing models that have previously been developed for information retrieval -- to study fairness of content exposure to individual users. We extend their proposed framework to formalize a family of exposure fairness metrics that model the problem jointly from the perspective of both the consumers and producers. Specifically, we consider group attributes for both types of stakeholders to identify and mitigate fairness concerns that go beyond individual users and items towards more systemic biases in recommendation. Furthermore, we study and discuss the relationships between the different exposure fairness dimensions proposed in this paper, as well as demonstrate how stochastic ranking policies can be optimized towards said fairness goals.
107,877
107,877
Prompt Consistency for Zero-Shot Task Generalization
One of the most impressive results of recent NLP history is the ability of pre-trained language models to solve new tasks in a zero-shot setting. To achieve this, NLP tasks are framed as natural language prompts, generating a response indicating the predicted output. Nonetheless, the performance in such settings often lags far behind its supervised counterpart, suggesting a large space for potential improvement. In this paper, we explore methods to utilize unlabeled data to improve zero-shot performance. Specifically, we take advantage of the fact that multiple prompts can be used to specify a single task, and propose to regularize prompt consistency, encouraging consistent predictions over this diverse set of prompts. Our method makes it possible to fine-tune the model either with extra unlabeled training data, or directly on test input at inference time in an unsupervised manner. In experiments, our approach outperforms the state-of-the-art zero-shot learner, T0 (Sanh et al., 2022), on 9 out of 11 datasets across 4 NLP tasks by up to 10.6 absolute points in terms of accuracy. The gains are often attained with a small number of unlabeled examples.
107,878
107,878
Implicit Regularization Properties of Variance Reduced Stochastic Mirror Descent
In machine learning and statistical data analysis, we often run into objective function that is a summation: the number of terms in the summation possibly is equal to the sample size, which can be enormous. In such a setting, the stochastic mirror descent (SMD) algorithm is a numerically efficient method -- each iteration involving a very small subset of the data. The variance reduction version of SMD (VRSMD) can further improve SMD by inducing faster convergence. On the other hand, algorithms such as gradient descent and stochastic gradient descent have the implicit regularization property that leads to better performance in terms of the generalization errors. Little is known on whether such a property holds for VRSMD. We prove here that the discrete VRSMD estimator sequence converges to the minimum mirror interpolant in the linear regression. This establishes the implicit regularization property for VRSMD. As an application of the above result, we derive a model estimation accuracy result in the setting when the true model is sparse. We use numerical examples to illustrate the empirical power of VRSMD.
107,879
107,879
The Directional Bias Helps Stochastic Gradient Descent to Generalize in Kernel Regression Models
We study the Stochastic Gradient Descent (SGD) algorithm in nonparametric statistics: kernel regression in particular. The directional bias property of SGD, which is known in the linear regression setting, is generalized to the kernel regression. More specifically, we prove that SGD with moderate and annealing step-size converges along the direction of the eigenvector that corresponds to the largest eigenvalue of the Gram matrix. In addition, the Gradient Descent (GD) with a moderate or small step-size converges along the direction that corresponds to the smallest eigenvalue. These facts are referred to as the directional bias properties; they may interpret how an SGD-computed estimator has a potentially smaller generalization error than a GD-computed estimator. The application of our theory is demonstrated by simulation studies and a case study that is based on the FashionMNIST dataset.
107,880
107,880
Doubting AI Predictions: Influence-Driven Second Opinion Recommendation
Effective human-AI collaboration requires a system design that provides humans with meaningful ways to make sense of and critically evaluate algorithmic recommendations. In this paper, we propose a way to augment human-AI collaboration by building on a common organizational practice: identifying experts who are likely to provide complementary opinions. When machine learning algorithms are trained to predict human-generated assessments, experts' rich multitude of perspectives is frequently lost in monolithic algorithmic recommendations. The proposed approach aims to leverage productive disagreement by (1) identifying whether some experts are likely to disagree with an algorithmic assessment and, if so, (2) recommend an expert to request a second opinion from.
107,881
107,881
Infusing Linguistic Knowledge of SMILES into Chemical Language Models
The simplified molecular-input line-entry system (SMILES) is the most popular representation of chemical compounds. Therefore, many SMILES-based molecular property prediction models have been developed. In particular, transformer-based models show promising performance because the model utilizes a massive chemical dataset for self-supervised learning. However, there is no transformer-based model to overcome the inherent limitations of SMILES, which result from the generation process of SMILES. In this study, we grammatically parsed SMILES to obtain connectivity between substructures and their type, which is called the grammatical knowledge of SMILES. First, we pretrained the transformers with substructural tokens, which were parsed from SMILES. Then, we used the training strategy 'same compound model' to better understand SMILES grammar. In addition, we injected knowledge of connectivity and type into the transformer with knowledge adapters. As a result, our representation model outperformed previous compound representations for the prediction of molecular properties. Finally, we analyzed the attention of the transformer model and adapters, demonstrating that the proposed model understands the grammar of SMILES.
107,882
107,882
Bridging Differential Privacy and Byzantine-Robustness via Model Aggregation
This paper aims at jointly addressing two seemly conflicting issues in federated learning: differential privacy (DP) and Byzantine-robustness, which are particularly challenging when the distributed data are non-i.i.d. (independent and identically distributed). The standard DP mechanisms add noise to the transmitted messages, and entangles with robust stochastic gradient aggregation to defend against Byzantine attacks. In this paper, we decouple the two issues via robust stochastic model aggregation, in the sense that our proposed DP mechanisms and the defense against Byzantine attacks have separated influence on the learning performance. Leveraging robust stochastic model aggregation, at each iteration, each worker calculates the difference between the local model and the global one, followed by sending the element-wise signs to the master node, which enables robustness to Byzantine attacks. Further, we design two DP mechanisms to perturb the uploaded signs for the purpose of privacy preservation, and prove that they are $(\epsilon,0)$-DP by exploiting the properties of noise distributions. With the tools of Moreau envelop and proximal point projection, we establish the convergence of the proposed algorithm when the cost function is nonconvex. We analyze the trade-off between privacy preservation and learning performance, and show that the influence of our proposed DP mechanisms is decoupled with that of robust stochastic model aggregation. Numerical experiments demonstrate the effectiveness of the proposed algorithm.
107,883
107,883
Gaze-enhanced Crossmodal Embeddings for Emotion Recognition
Emotional expressions are inherently multimodal -- integrating facial behavior, speech, and gaze -- but their automatic recognition is often limited to a single modality, e.g. speech during a phone call. While previous work proposed crossmodal emotion embeddings to improve monomodal recognition performance, despite its importance, an explicit representation of gaze was not included. We propose a new approach to emotion recognition that incorporates an explicit representation of gaze in a crossmodal emotion embedding framework. We show that our method outperforms the previous state of the art for both audio-only and video-only emotion classification on the popular One-Minute Gradual Emotion Recognition dataset. Furthermore, we report extensive ablation experiments and provide detailed insights into the performance of different state-of-the-art gaze representations and integration strategies. Our results not only underline the importance of gaze for emotion recognition but also demonstrate a practical and highly effective approach to leveraging gaze information for this task.
107,884
107,884
ExSum: From Local Explanations to Model Understanding
Interpretability methods are developed to understand the working mechanisms of black-box models, which is crucial to their responsible deployment. Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them. While the former has been addressed in prior work, the latter is often overlooked, resulting in informal model understanding derived from a handful of local explanations. In this paper, we introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding, and propose metrics for its quality assessment. On two domains, ExSum highlights various limitations in the current practice, helps develop accurate model understanding, and reveals easily overlooked properties of the model. We also connect understandability to other properties of explanations such as human alignment, robustness, and counterfactual minimality and plausibility.
107,885
107,885
Identification of Physical Processes and Unknown Parameters of 3D Groundwater Contaminant Problems via Theory-guided U-net
Identification of unknown physical processes and parameters of groundwater contaminant sources is a challenging task due to their ill-posed and non-unique nature. Numerous works have focused on determining nonlinear physical processes through model selection methods. However, identifying corresponding nonlinear systems for different physical phenomena using numerical methods can be computationally prohibitive. With the advent of machine learning (ML) algorithms, more efficient surrogate models based on neural networks (NNs) have been developed in various disciplines. In this work, a theory-guided U-net (TgU-net) framework is proposed for surrogate modeling of three-dimensional (3D) groundwater contaminant problems in order to efficiently elucidate their involved processes and unknown parameters. In TgU-net, the underlying governing equations are embedded into the loss function of U-net as soft constraints. For the considered groundwater contaminant problem, sorption is considered to be a potential process of an uncertain type, and three equilibrium sorption isotherm types (i.e., linear, Freundlich, and Langmuir) are considered. Different from traditional approaches in which one model corresponds to one equation, these three sorption types are modeled through only one TgU-net surrogate. The three mentioned sorption terms are integrated into one equation by assigning indicators. Accurate predictions illustrate the satisfactory generalizability and extrapolability of the constructed TgU-net. Furthermore, based on the constructed TgU-net surrogate, a data assimilation method is employed to identify the physical process and parameters simultaneously. This work shows the possibility of governing equation discovery of physical problems that contain multiple and even uncertain processes by using deep learning and data assimilation methods.
107,886
107,886
Multimodal Representation Learning With Text and Images
In recent years, multimodal AI has seen an upward trend as researchers are integrating data of different types such as text, images, speech into modelling to get the best results. This project leverages multimodal AI and matrix factorization techniques for representation learning, on text and image data simultaneously, thereby employing the widely used techniques of Natural Language Processing (NLP) and Computer Vision. The learnt representations are evaluated using downstream classification and regression tasks. The methodology adopted can be extended beyond the scope of this project as it uses Auto-Encoders for unsupervised representation learning.
107,887
107,887
Operational Adaptation of DNN Classifiers using Elastic Weight Consolidation
Autonomous systems (AS) often use Deep Neural Network (DNN) classifiers to allow them to operate in complex, high dimensional, non-linear, and dynamically changing environments. Due to the complexity of these environments, DNN classifiers may output misclassifications as they experience tasks in their operational environments, that were not identified during development. Removing a system from operation and retraining it to include these new tasks becomes economically infeasible as the number of such ASs increases. Additionally, such misclassifications may cause financial loss and safety threats to the AS or to other operators in the environment. In this paper, we propose to reduce such threats by investigating how DNN classifiers can adapt their knowledge to learn new information in the AS's operational environment, using only a limited number of observations encountered sequentially during operation. This allows the AS to adapt to newly encountered information, increasing the AS's classification accuracy and hence its overall reliability. However, retraining DNNs on different observations than used in prior training is known to cause catastrophic forgetting or significant model drift. We investigate how this problem can be controlled by using Elastic Weight Consolidation (EWC) whilst learning from limited new observations. We carry out experiments using original and noisy versions of the MNIST dataset to represent known and new information to DNN classifiers. Results show that using EWC is effective in controlling the process of adaptation to new information, and thus allows for reliable adaption of ASs to new information in their operational environment.
107,888
107,888
Deep Ensemble as a Gaussian Process Approximate Posterior
Deep Ensemble (DE) is an effective alternative to Bayesian neural networks for uncertainty quantification in deep learning. The uncertainty of DE is usually conveyed by the functional inconsistency among the ensemble members, say, the disagreement among their predictions. Yet, the functional inconsistency stems from unmanageable randomness and may easily collapse in specific cases. To render the uncertainty of DE reliable, we propose a refinement of DE where the functional inconsistency is explicitly characterized, and further tuned w.r.t. the training data and certain priori beliefs. Specifically, we describe the functional inconsistency with the empirical covariance of the functions dictated by ensemble members, which, along with the mean, define a Gaussian process (GP). Then, with specific priori uncertainty imposed, we maximize functional evidence lower bound to make the GP specified by DE approximate the Bayesian posterior. In this way, we relate DE to Bayesian inference to enjoy reliable Bayesian uncertainty. Moreover, we provide strategies to make the training efficient. Our approach consumes only marginally added training cost than the standard DE, but achieves better uncertainty quantification than DE and its variants across diverse scenarios.
107,889
107,889
NeuralEF: Deconstructing Kernels by Deep Neural Networks
Learning the principal eigenfunctions of an integral operator defined by a kernel and a data distribution is at the core of many machine learning problems. Traditional nonparametric solutions based on the Nystr{\"o}m formula suffer from scalability issues. Recent work has resorted to a parametric approach, i.e., training neural networks to approximate the eigenfunctions. However, the existing method relies on an expensive orthogonalization step and is difficult to implement. We show that these problems can be fixed by using a new series of objective functions that generalizes the EigenGame~\citep{gemp2020eigengame} to function space. We test our method on a variety of supervised and unsupervised learning problems and show it provides accurate approximations to the eigenfunctions of polynomial, radial basis, neural network Gaussian process, and neural tangent kernels. Finally, we demonstrate our method can scale up linearised Laplace approximation of deep neural networks to modern image classification datasets through approximating the Gauss-Newton matrix. Code is available at \url{https://github.com/thudzj/neuraleigenfunction}.
107,890
107,890
An Initial Look at Self-Reprogramming Artificial Intelligence
Rapid progress in deep learning research has greatly extended the capabilities of artificial intelligence technology. Conventional AI models are constrained to explicit human-designed algorithms, although a growing body of work in meta-learning, neural architecture search, and related approaches have explored algorithms that self-modify to some extent. In this paper, we develop and experimentally validate the first fully self-reprogramming AI system. Applying AI-based computer code generation to AI itself, we implement an algorithm with the ability to continuously modify and rewrite its own neural network source code.
107,891
107,891
FEDIC: Federated Learning on Non-IID and Long-Tailed Data via Calibrated Distillation
Federated learning provides a privacy guarantee for generating good deep learning models on distributed clients with different kinds of data. Nevertheless, dealing with non-IID data is one of the most challenging problems for federated learning. Researchers have proposed a variety of methods to eliminate the negative influence of non-IIDness. However, they only focus on the non-IID data provided that the universal class distribution is balanced. In many real-world applications, the universal class distribution is long-tailed, which causes the model seriously biased. Therefore, this paper studies the joint problem of non-IID and long-tailed data in federated learning and proposes a corresponding solution called Federated Ensemble Distillation with Imbalance Calibration (FEDIC). To deal with non-IID data, FEDIC uses model ensemble to take advantage of the diversity of models trained on non-IID data. Then, a new distillation method with logit adjustment and calibration gating network is proposed to solve the long-tail problem effectively. We evaluate FEDIC on CIFAR-10-LT, CIFAR-100-LT, and ImageNet-LT with a highly non-IID experimental setting, in comparison with the state-of-the-art methods of federated learning and long-tail learning. Our code is available at https://github.com/shangxinyi/FEDIC.
107,892
107,892
Cracking White-box DNN Watermarks via Invariant Neuron Transforms
Recently, how to protect the Intellectual Property (IP) of deep neural networks (DNN) becomes a major concern for the AI industry. To combat potential model piracy, recent works explore various watermarking strategies to embed secret identity messages into the prediction behaviors or the internals (e.g., weights and neuron activation) of the target model. Sacrificing less functionality and involving more knowledge about the target model, the latter branch of watermarking schemes (i.e., white-box model watermarking) is claimed to be accurate, credible and secure against most known watermark removal attacks, with emerging research efforts and applications in the industry. In this paper, we present the first effective removal attack which cracks almost all the existing white-box watermarking schemes with provably no performance overhead and no required prior knowledge. By analyzing these IP protection mechanisms at the granularity of neurons, we for the first time discover their common dependence on a set of fragile features of a local neuron group, all of which can be arbitrarily tampered by our proposed chain of invariant neuron transforms. On $9$ state-of-the-art white-box watermarking schemes and a broad set of industry-level DNN architectures, our attack for the first time reduces the embedded identity message in the protected models to be almost random. Meanwhile, unlike known removal attacks, our attack requires no prior knowledge on the training data distribution or the adopted watermark algorithms, and leaves model functionality intact.
107,893
107,893
Explainable Artificial Intelligence for Bayesian Neural Networks: Towards trustworthy predictions of ocean dynamics
The trustworthiness of neural networks is often challenged because they lack the ability to express uncertainty and explain their skill. This can be problematic given the increasing use of neural networks in high stakes decision-making such as in climate change applications. We address both issues by successfully implementing a Bayesian Neural Network (BNN), where parameters are distributions rather than deterministic, and applying novel implementations of explainable AI (XAI) techniques. The uncertainty analysis from the BNN provides a comprehensive overview of the prediction more suited to practitioners' needs than predictions from a classical neural network. Using a BNN means we can calculate the entropy (i.e. uncertainty) of the predictions and determine if the probability of an outcome is statistically significant. To enhance trustworthiness, we also spatially apply the two XAI techniques of Layer-wise Relevance Propagation (LRP) and SHapley Additive exPlanation (SHAP) values. These XAI methods reveal the extent to which the BNN is suitable and/or trustworthy. Using two techniques gives a more holistic view of BNN skill and its uncertainty, as LRP considers neural network parameters, whereas SHAP considers changes to outputs. We verify these techniques using comparison with intuition from physical theory. The differences in explanation identify potential areas where new physical theory guided studies are needed.
107,894
107,894
Software Testing for Machine Learning
Machine learning has become prevalent across a wide variety of applications. Unfortunately, machine learning has also shown to be susceptible to deception, leading to errors, and even fatal failures. This circumstance calls into question the widespread use of machine learning, especially in safety-critical applications, unless we are able to assure its correctness and trustworthiness properties. Software verification and testing are established technique for assuring such properties, for example by detecting errors. However, software testing challenges for machine learning are vast and profuse - yet critical to address. This summary talk discusses the current state-of-the-art of software testing for machine learning. More specifically, it discusses six key challenge areas for software testing of machine learning systems, examines current approaches to these challenges and highlights their limitations. The paper provides a research agenda with elaborated directions for making progress toward advancing the state-of-the-art on testing of machine learning.
107,895
107,895
StorSeismic: A new paradigm in deep learning for seismic processing
Machine learned tasks on seismic data are often trained sequentially and separately, even though they utilize the same features (i.e. geometrical) of the data. We present StorSeismic, as a framework for seismic data processing, which consists of neural network pre-training and fine-tuning procedures. We, specifically, utilize a neural network as a preprocessing model to store seismic data features of a particular dataset for any downstream tasks. After pre-training, the resulting model can be utilized later, through a fine-tuning procedure, to perform tasks using limited additional training. Used often in Natural Language Processing (NLP) and lately in vision tasks, BERT (Bidirectional Encoder Representations from Transformer), a form of a Transformer model, provides an optimal platform for this framework. The attention mechanism of BERT, applied here on a sequence of traces within the shot gather, is able to capture and store key geometrical features of the seismic data. We pre-train StorSeismic on field data, along with synthetically generated ones, in the self-supervised step. Then, we use the labeled synthetic data to fine-tune the pre-trained network in a supervised fashion to perform various seismic processing tasks, like denoising, velocity estimation, first arrival picking, and NMO. Finally, the fine-tuned model is used to obtain satisfactory inference results on the field data.
107,896
107,896
Loss Function Entropy Regularization for Diverse Decision Boundaries
Is it possible to train several classifiers to perform meaningful crowd-sourcing to produce a better prediction label set without ground-truth annotation? This paper will modify the contrastive learning objectives to automatically train a self-complementing ensemble to produce a state-of-the-art prediction on the CIFAR10 and CIFAR100-20 tasks. This paper will present a straightforward method to modify a single unsupervised classification pipeline to automatically generate an ensemble of neural networks with varied decision boundaries to learn a more extensive feature set of classes. Loss Function Entropy Regularization (LFER) are regularization terms to be added to the pre-training and contrastive learning loss functions. LFER is a gear to modify the entropy state of the output space of unsupervised learning, thereby diversifying the latent representation of decision boundaries of neural networks. Ensemble trained with LFER has higher successful prediction accuracy for samples near decision boundaries. LFER is an adequate gear to perturb decision boundaries and has produced classifiers that beat state-of-the-art at the contrastive learning stage. Experiments show that LFER can produce an ensemble with accuracy comparable to the state-of-the-art yet have varied latent decision boundaries. It allows us to perform meaningful verification for samples near decision boundaries, encouraging the correct classification of near-boundary samples. By compounding the probability of correct prediction of a single sample amongst an ensemble of neural network trained, our method can improve upon a single classifier by denoising and affirming correct feature mappings.
107,897
107,897
Approximating Permutations with Neural Network Components for Travelling Photographer Problem
Most of the current inference techniques rely upon Bayesian inference on Probabilistic Graphical Models of observations and do predictions and classification on observations. However, there is very little literature on the mining of relationships between observations and building models of the relationship between sets of observations or the generating context of the observations. Moreover, event understanding of machines with observation inputs needs to understand the relationship between observations. Thus there is a crucial need to build models and develop effective data structures to accumulate and organize relationships between observations. Given a PGM model, this paper attempts to fit a permutation of states to a sequence of observation tokens (The Travelling Photographer Problem). We have devised a machine learning inspired architecture for randomized approximation of state permutation, facilitating parallelization of heuristic search of permutations. As a result, our algorithm can solve The Travelling Photographer Problem with minimal error. Furthermore, we demonstrate that by mimicking machine learning components such as normalization, dropout, and lambda layer with a randomized algorithm, we can devise an architecture that solves TPP, a permutation NP-Hard problem. Other than TPP, we can also provide a 2-Local improvement heuristic for the Travelling Salesman Problem (TSP) with similar ideas.
107,898
107,898
PGD: A Large-scale Professional Go Dataset for Data-driven Analytics
Lee Sedol is on a winning streak--does this legend rise again after the competition with AlphaGo? Ke Jie is invincible in the world championship--can he still win the title this time? Go is one of the most popular board games in East Asia, with a stable professional sports system that has lasted for decades in China, Japan, and Korea. There are mature data-driven analysis technologies for many sports, such as soccer, basketball, and esports. However, developing such technology for Go remains nontrivial and challenging due to the lack of datasets, meta-information, and in-game statistics. This paper creates the Professional Go Dataset (PGD), containing 98,043 games played by 2,148 professional players from 1950 to 2021. After manual cleaning and labeling, we provide detailed meta-information for each player, game, and tournament. Moreover, the dataset includes analysis results for each move in the match evaluated by advanced AlphaZero-based AI. To establish a benchmark for PGD, we further analyze the data and extract meaningful in-game features based on prior knowledge related to Go that can indicate the game status. With the help of complete meta-information and constructed in-game features, our results prediction system achieves an accuracy of 75.30%, much higher than several state-of-the-art approaches (64%-65%). As far as we know, PGD is the first dataset for data-driven analytics in Go and even in board games. Beyond this promising result, we provide more examples of tasks that benefit from our dataset. The ultimate goal of this paper is to bridge this ancient game and the modern data science community. It will advance research on Go-related analytics to enhance the fan experience, help players improve their ability, and facilitate other promising aspects. The dataset will be made publicly available.
107,899
107,899
Heterogeneous Graph Neural Networks using Self-supervised Reciprocally Contrastive Learning
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs. Most existing HGNN-based approaches are supervised or semi-supervised learning methods requiring graphs to be annotated, which is costly and time-consuming. Self-supervised contrastive learning has been proposed to address the problem of requiring annotated data by mining intrinsic information hidden within the given data. However, the existing contrastive learning methods are inadequate for heterogeneous graphs because they construct contrastive views only based on data perturbation or pre-defined structural properties (e.g., meta-path) in graph data while ignore the noises that may exist in both node attributes and graph topologies. We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies and integrates and enhances them by reciprocally contrastive mechanism to better model heterogeneous graphs. In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately. We further use both attribute similarity and topological correlation to construct high-quality contrastive samples. Extensive experiments on three large real-world heterogeneous graphs demonstrate the superiority and robustness of HGCL over state-of-the-art methods.