Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
107,900
107,900
Complete Verification via Multi-Neuron Relaxation Guided Branch-and-Bound
State-of-the-art neural network verifiers are fundamentally based on one of two paradigms: either encoding the whole verification problem via tight multi-neuron convex relaxations or applying a Branch-and-Bound (BaB) procedure leveraging imprecise but fast bounding methods on a large number of easier subproblems. The former can capture complex multi-neuron dependencies but sacrifices completeness due to the inherent limitations of convex relaxations. The latter enables complete verification but becomes increasingly ineffective on larger and more challenging networks. In this work, we present a novel complete verifier which combines the strengths of both paradigms: it leverages multi-neuron relaxations to drastically reduce the number of subproblems generated during the BaB process and an efficient GPU-based dual optimizer to solve the remaining ones. An extensive evaluation demonstrates that our verifier achieves a new state-of-the-art on both established benchmarks as well as networks with significantly higher accuracy than previously considered. The latter result (up to 28% certification gains) indicates meaningful progress towards creating verifiers that can handle practically relevant networks.
107,901
107,901
Deep Learning-Enabled Semantic Communication Systems with Task-Unaware Transmitter and Dynamic Data
Existing deep learning-enabled semantic communication systems often rely on shared background knowledge between the transmitter and receiver that includes empirical data and their associated semantic information. In practice, the semantic information is defined by the pragmatic task of the receiver and cannot be known to the transmitter. The actual observable data at the transmitter can also have non-identical distribution with the empirical data in the shared background knowledge library. To address these practical issues, this paper proposes a new neural network-based semantic communication system for image transmission, where the task is unaware at the transmitter and the data environment is dynamic. The system consists of two main parts, namely the semantic extraction (SE) network and the data adaptation (DA) network. The SE network learns how to extract the semantic information using a receiver-leading training process. By using domain adaptation technique from transfer learning, the DA network learns how to convert the data observed into a similar form of the empirical data that the SE network can process without re-training. Numerical experiments show that the proposed method can be adaptive to observable datasets while keeping high performance in terms of both data recovery and task execution. The codes are available on https://github.com/SJTU-mxtao/Semantic-Communication-Systems.
107,902
107,902
Understanding the Generalization Performance of Spectral Clustering Algorithms
The theoretical analysis of spectral clustering mainly focuses on consistency, while there is relatively little research on its generalization performance. In this paper, we study the excess risk bounds of the popular spectral clustering algorithms: \emph{relaxed} RatioCut and \emph{relaxed} NCut. Firstly, we show that their excess risk bounds between the empirical continuous optimal solution and the population-level continuous optimal solution have a $\mathcal{O}(1/\sqrt{n})$ convergence rate, where $n$ is the sample size. Secondly, we show the fundamental quantity in influencing the excess risk between the empirical discrete optimal solution and the population-level discrete optimal solution. At the empirical level, algorithms can be designed to reduce this quantity. Based on our theoretical analysis, we propose two novel algorithms that can not only penalize this quantity, but also cluster the out-of-sample data without re-eigendecomposition on the overall sample. Experiments verify the effectiveness of the proposed algorithms.
107,903
107,903
Leveraging Emotion-specific Features to Improve Transformer Performance for Emotion Classification
This paper describes the approach to the Emotion Classification shared task held at WASSA 2022 by team PVGs AI Club. This Track 2 sub-task focuses on building models which can predict a multi-class emotion label based on essays from news articles where a person, group or another entity is affected. Baseline transformer models have been demonstrating good results on sequence classification tasks, and we aim to improve this performance with the help of ensembling techniques, and by leveraging two variations of emotion-specific representations. We observe better results than our baseline models and achieve an accuracy of 0.619 and a macro F1 score of 0.520 on the emotion classification task.
107,904
107,904
Learning Effective SDEs from Brownian Dynamics Simulations of Colloidal Particles
We construct a reduced, data-driven, parameter dependent effective Stochastic Differential Equation (eSDE) for electric-field mediated colloidal crystallization using data obtained from Brownian Dynamics Simulations. We use Diffusion Maps (a manifold learning algorithm) to identify a set of useful latent observables. In this latent space we identify an eSDE using a deep learning architecture inspired by numerical stochastic integrators and compare it with the traditional Kramers-Moyal expansion estimation. We show that the obtained variables and the learned dynamics accurately encode the physics of the Brownian Dynamic Simulations. We further illustrate that our reduced model captures the dynamics of corresponding experimental data. Our dimension reduction/reduced model identification approach can be easily ported to a broad class of particle systems dynamics experiments/models.
107,905
107,905
TTOpt: A Maximum Volume Quantized Tensor Train-based Optimization and its Application to Reinforcement Learning
We present a novel procedure for optimization based on the combination of efficient quantized tensor train representation and a generalized maximum matrix volume principle. We demonstrate the applicability of the new Tensor Train Optimizer (TTOpt) method for various tasks, ranging from minimization of multidimensional functions to reinforcement learning. Our algorithm compares favorably to popular evolutionary-based methods and outperforms them by the number of function evaluations or execution time, often by a significant margin.
107,906
107,906
SHAPE: An Unified Approach to Evaluate the Contribution and Cooperation of Individual Modalities
As deep learning advances, there is an ever-growing demand for models capable of synthesizing information from multi-modal resources to address the complex tasks raised from real-life applications. Recently, many large multi-modal datasets have been collected, on which researchers actively explore different methods of fusing multi-modal information. However, little attention has been paid to quantifying the contribution of different modalities within the proposed models. In this paper, we propose the {\bf SH}apley v{\bf A}lue-based {\bf PE}rceptual (SHAPE) scores that measure the marginal contribution of individual modalities and the degree of cooperation across modalities. Using these scores, we systematically evaluate different fusion methods on different multi-modal datasets for different tasks. Our experiments suggest that for some tasks where different modalities are complementary, the multi-modal models still tend to use the dominant modality alone and ignore the cooperation across modalities. On the other hand, models learn to exploit cross-modal cooperation when different modalities are indispensable for the task. In this case, the scores indicate it is better to fuse different modalities at relatively early stages. We hope our scores can help improve the understanding of how the present multi-modal models operate on different modalities and encourage more sophisticated methods of integrating multiple modalities.
107,907
107,907
Learning to Get Up
Getting up from an arbitrary fallen state is a basic human skill. Existing methods for learning this skill often generate highly dynamic and erratic get-up motions, which do not resemble human get-up strategies, or are based on tracking recorded human get-up motions. In this paper, we present a staged approach using reinforcement learning, without recourse to motion capture data. The method first takes advantage of a strong character model, which facilitates the discovery of solution modes. A second stage then learns to adapt the control policy to work with progressively weaker versions of the character. Finally, a third stage learns control policies that can reproduce the weaker get-up motions at much slower speeds. We show that across multiple runs, the method can discover a diverse variety of get-up strategies, and execute them at a variety of speeds. The results usually produce policies that use a final stand-up strategy that is common to the recovery motions seen from all initial states. However, we also find policies for which different strategies are seen for prone and supine initial fallen states. The learned get-up control strategies often have significant static stability, i.e., they can be paused at a variety of points during the get-up motion. We further test our method on novel constrained scenarios, such as having a leg and an arm in a cast.
107,908
107,908
FairSR: Fairness-aware Sequential Recommendation through Multi-Task Learning with Preference Graph Embeddings
Sequential recommendation (SR) learns from the temporal dynamics of user-item interactions to predict the next ones. Fairness-aware recommendation mitigates a variety of algorithmic biases in the learning of user preferences. This paper aims at bringing a marriage between SR and algorithmic fairness. We propose a novel fairness-aware sequential recommendation task, in which a new metric, interaction fairness, is defined to estimate how recommended items are fairly interacted by users with different protected attribute groups. We propose a multi-task learning based deep end-to-end model, FairSR, which consists of two parts. One is to learn and distill personalized sequential features from the given user and her item sequence for SR. The other is fairness-aware preference graph embedding (FPGE). The aim of FPGE is two-fold: incorporating the knowledge of users' and items' attributes and their correlation into entity representations, and alleviating the unfair distributions of user attributes on items. Extensive experiments conducted on three datasets show FairSR can outperform state-of-the-art SR models in recommendation performance. In addition, the recommended items by FairSR also exhibit promising interaction fairness.
107,909
107,909
Foundational Models for Continual Learning: An Empirical Study of Latent Replay
Rapid development of large-scale pre-training has resulted in foundation models that can act as effective feature extractors on a variety of downstream tasks and domains. Motivated by this, we study the efficacy of pre-trained vision models as a foundation for downstream continual learning (CL) scenarios. Our goal is twofold. First, we want to understand the compute-accuracy trade-off between CL in the raw-data space and in the latent space of pre-trained encoders. Second, we investigate how the characteristics of the encoder, the pre-training algorithm and data, as well as of the resulting latent space affect CL performance. For this, we compare the efficacy of various pre-trained models in large-scale benchmarking scenarios with a vanilla replay setting applied in the latent and in the raw-data space. Notably, this study shows how transfer, forgetting, task similarity and learning are dependent on the input data characteristics and not necessarily on the CL algorithms. First, we show that under some circumstances reasonable CL performance can readily be achieved with a non-parametric classifier at negligible compute. We then show how models pre-trained on broader data result in better performance for various replay sizes. We explain this with representational similarity and transfer properties of these representations. Finally, we show the effectiveness of self-supervised pre-training for downstream domains that are out-of-distribution as compared to the pre-training domain. We point out and validate several research directions that can further increase the efficacy of latent CL including representation ensembling. The diverse set of datasets used in this study can serve as a compute-efficient playground for further CL research. The codebase is available under https://github.com/oleksost/latent_CL.
107,910
107,910
Engineering flexible machine learning systems by traversing functionally invariant paths in weight space
Deep neural networks achieve human-like performance on a variety of perceptual and decision making tasks. However, deep networks perform poorly when confronted with changing tasks or goals, and broadly fail to match the flexibility and robustness of human intelligence. Here, we develop a mathematical and algorithmic framework that enables continual training of deep neural networks on a broad range of objectives by defining path connected sets of neural networks that achieve equivalent functional performance on a given machine learning task while modulating network weights to achieve high-performance on a secondary objective. We view the weight space of a neural network as a curved Riemannian manifold and move a neural network along a functionally invariant path in weight space while searching for networks that satisfy a secondary objective. We introduce a path-sampling algorithm that trains networks with millions of weight parameters to learn a series of image classification tasks without performance loss. The algorithm generalizes to accommodate a range of secondary objectives including weight-pruning and weight diversification and exhibits state of the art performance on network compression and adversarial robustness benchmarks. Broadly, we demonstrate how the intrinsic geometry of machine learning problems can be harnessed to construct flexible and robust neural networks.
107,911
107,911
End-to-End Signal Classification in Signed Cumulative Distribution Transform Space
This paper presents a new end-to-end signal classification method using the signed cumulative distribution transform (SCDT). We adopt a transport-based generative model to define the classification problem. We then make use of mathematical properties of the SCDT to render the problem easier in transform domain, and solve for the class of an unknown sample using a nearest local subspace (NLS) search algorithm in SCDT domain. Experiments show that the proposed method provides high accuracy classification results while being data efficient, robust to out-of-distribution samples, and competitive in terms of computational complexity with respect to the deep learning end-to-end classification methods. The implementation of the proposed method in Python language is integrated as a part of the software package PyTransKit (https://github.com/rohdelab/PyTransKit).
107,912
107,912
Orthogonal Statistical Learning with Self-Concordant Loss
Orthogonal statistical learning and double machine learning have emerged as general frameworks for two-stage statistical prediction in the presence of a nuisance component. We establish non-asymptotic bounds on the excess risk of orthogonal statistical learning methods with a loss function satisfying a self-concordance property. Our bounds improve upon existing bounds by a dimension factor while lifting the assumption of strong convexity. We illustrate the results with examples from multiple treatment effect estimation and generalized partially linear modeling.
107,913
107,913
Graph Anisotropic Diffusion
Traditional Graph Neural Networks (GNNs) rely on message passing, which amounts to permutation-invariant local aggregation of neighbour features. Such a process is isotropic and there is no notion of `direction' on the graph. We present a new GNN architecture called Graph Anisotropic Diffusion. Our model alternates between linear diffusion, for which a closed-form solution is available, and local anisotropic filters to obtain efficient multi-hop anisotropic kernels. We test our model on two common molecular property prediction benchmarks (ZINC and QM9) and show its competitive performance.
107,914
107,914
Adapting and Evaluating Influence-Estimation Methods for Gradient-Boosted Decision Trees
Influence estimation analyzes how changes to the training data can lead to different model predictions; this analysis can help us better understand these predictions, the models making those predictions, and the data sets they're trained on. However, most influence-estimation techniques are designed for deep learning models with continuous parameters. Gradient-boosted decision trees (GBDTs) are a powerful and widely-used class of models; however, these models are black boxes with opaque decision-making processes. In the pursuit of better understanding GBDT predictions and generally improving these models, we adapt recent and popular influence-estimation methods designed for deep learning models to GBDTs. Specifically, we adapt representer-point methods and TracIn, denoting our new methods TREX and BoostIn, respectively; source code is available at https://github.com/jjbrophy47/tree_influence. We compare these methods to LeafInfluence and other baselines using 5 different evaluation measures on 22 real-world data sets with 4 popular GBDT implementations. These experiments give us a comprehensive overview of how different approaches to influence estimation work in GBDT models. We find BoostIn is an efficient influence-estimation method for GBDTs that performs equally well or better than existing work while being four orders of magnitude faster. Our evaluation also suggests the gold-standard approach of leave-one-out~(LOO) retraining consistently identifies the single-most influential training example but performs poorly at finding the most influential set of training examples for a given target prediction.
107,915
107,915
Combined Learning of Neural Network Weights for Privacy in Collaborative Tasks
We introduce CoLN, Combined Learning of Neural network weights, a novel method to securely combine Machine Learning models over sensitive data with no sharing of data. With CoLN, local hosts use the same Neural Network architecture and base parameters to train a model using only locally available data. Locally trained models are then submitted to a combining agent, which produces a combined model. The new model's parameters can be sent back to hosts, and can then be used as initial parameters for a new training iteration. CoLN is capable of combining several distributed neural networks of the same kind but is not restricted to any single neural architecture. In this paper we detail the combination algorithm and present experiments with feed-forward, convolutional, and recurrent Neural Network architectures, showing that the CoLN combined model approximates the performance of a hypothetical ideal centralized model, trained using the combination of the local datasets. CoLN can contribute to secure collaborative research, as required in the medical area, where privacy issues preclude data sharing, but where the limitations of local data demand information derived from larger datasets.
107,916
107,916
A Simple Duality Proof for Wasserstein Distributionally Robust Optimization
We present a short and elementary proof of the duality for Wasserstein distributionally robust optimization, which holds for any arbitrary Kantorovich transport distance, any arbitrary measurable loss function, and any arbitrary nominal probability distribution, as long as certain interchangeability principle holds.
107,917
107,917
Detecting COVID-19 Conspiracy Theories with Transformers and TF-IDF
The sharing of fake news and conspiracy theories on social media has wide-spread negative effects. By designing and applying different machine learning models, researchers have made progress in detecting fake news from text. However, existing research places a heavy emphasis on general, common-sense fake news, while in reality fake news often involves rapidly changing topics and domain-specific vocabulary. In this paper, we present our methods and results for three fake news detection tasks at MediaEval benchmark 2021 that specifically involve COVID-19 related topics. We experiment with a group of text-based models including Support Vector Machines, Random Forest, BERT, and RoBERTa. We find that a pre-trained transformer yields the best validation results, but a randomly initialized transformer with smart design can also be trained to reach accuracies close to that of the pre-trained transformer.
107,918
107,918
Abnormal-aware Multi-person Evaluation System with Improved Fuzzy Weighting
There exists a phenomenon that subjectivity highly lies in the daily evaluation process. Our research primarily concentrates on a multi-person evaluation system with anomaly detection to minimize the possible inaccuracy that subjective assessment brings. We choose the two-stage screening method, which consists of rough screening and score-weighted Kendall-$\tau$ Distance to winnow out abnormal data, coupled with hypothesis testing to narrow global discrepancy. Then we use Fuzzy Synthetic Evaluation Method(FSE) to determine the significance of scores given by reviewers as well as their reliability, culminating in a more impartial weight for each reviewer in the final conclusion. The results demonstrate a clear and comprehensive ranking instead of unilateral scores, and we get to have an efficiency in filtering out abnormal data as well as a reasonably objective weight determination mechanism. We can sense that through our study, people will have a chance of modifying a multi-person evaluation system to attain both equity and a relatively superior competitive atmosphere.
107,919
107,919
Neural Network Optimal Feedback Control with Guaranteed Local Stability
Recent research shows that deep learning can be an effective tool for designing optimal feedback controllers for high-dimensional nonlinear dynamic systems. But the behavior of these neural network (NN) controllers is still not well understood. In particular, some NNs with high test accuracy can fail to even locally stabilize the dynamic system. To address this challenge we propose several novel NN architectures, which we show guarantee local stability while retaining the semi-global approximation capacity to learn the optimal feedback policy. The proposed architectures are compared against standard NN feedback controllers through numerical simulations of two high-dimensional nonlinear optimal control problems (OCPs): stabilization of an unstable Burgers-type partial differential equation (PDE), and altitude and course tracking for a six degree-of-freedom (6DoF) unmanned aerial vehicle (UAV). The simulations demonstrate that standard NNs can fail to stabilize the dynamics even when trained well, while the proposed architectures are always at least locally stable. Moreover, the proposed controllers are found to be near-optimal in testing.
107,920
107,920
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
Accurate uncertainty quantification is a major challenge in deep learning, as neural networks can make overconfident errors and assign high confidence predictions to out-of-distribution (OOD) inputs. The most popular approaches to estimate predictive uncertainty in deep learning are methods that combine predictions from multiple neural networks, such as Bayesian neural networks (BNNs) and deep ensembles. However their practicality in real-time, industrial-scale applications are limited due to the high memory and computational cost. Furthermore, ensembles and BNNs do not necessarily fix all the issues with the underlying member networks. In this work, we study principled approaches to improve uncertainty property of a single network, based on a single, deterministic representation. By formalizing the uncertainty quantification as a minimax learning problem, we first identify distance awareness, i.e., the model's ability to quantify the distance of a testing example from the training data, as a necessary condition for a DNN to achieve high-quality (i.e., minimax optimal) uncertainty estimation. We then propose Spectral-normalized Neural Gaussian Process (SNGP), a simple method that improves the distance-awareness ability of modern DNNs with two simple changes: (1) applying spectral normalization to hidden weights to enforce bi-Lipschitz smoothness in representations and (2) replacing the last output layer with a Gaussian process layer. On a suite of vision and language understanding benchmarks, SNGP outperforms other single-model approaches in prediction, calibration and out-of-domain detection. Furthermore, SNGP provides complementary benefits to popular techniques such as deep ensembles and data augmentation, making it a simple and scalable building block for probabilistic deep learning. Code is open-sourced at https://github.com/google/uncertainty-baselines
107,921
107,921
Don't Blame the Annotator: Bias Already Starts in the Annotation Instructions
In recent years, progress in NLU has been driven by benchmarks. These benchmarks are typically collected by crowdsourcing, where annotators write examples based on annotation instructions crafted by dataset creators. In this work, we hypothesize that annotators pick up on patterns in the crowdsourcing instructions, which bias them to write similar examples that are then over-represented in the collected data. We study this form of bias, termed instruction bias, in 14 recent NLU benchmarks, showing that instruction examples often exhibit concrete patterns, which are propagated by crowdworkers to the collected data. This extends previous work (Geva et al., 2019) and raises a new concern of whether we are modeling the dataset creator's instructions, rather than the task. Through a series of experiments, we show that, indeed, instruction bias can lead to overestimation of model performance, and that models struggle to generalize beyond biases originating in the crowdsourcing instructions. We further analyze the influence of instruction bias in terms of pattern frequency and model size, and derive concrete recommendations for creating future NLU benchmarks.
107,922
107,922
Uniform Manifold Approximation with Two-phase Optimization
We introduce Uniform Manifold Approximation with Two-phase Optimization (UMATO), a dimensionality reduction (DR) technique that improves UMAP to capture the global structure of high-dimensional data more accurately. In UMATO, optimization is divided into two phases so that the resulting embeddings can depict the global structure reliably while preserving the local structure with sufficient accuracy. As the first phase, hub points are identified and projected to construct a skeletal layout for the global structure. In the second phase, the remaining points are added to the embedding preserving the regional characteristics of local areas. Through quantitative experiments, we found that UMATO (1) outperformed widely used DR techniques in preserving the global structure while (2) producing competitive accuracy in representing the local structure. We also verified that UMATO is preferable in terms of robustness over diverse initialization methods, number of epochs, and subsampling techniques.
107,923
107,923
TinyLight: Adaptive Traffic Signal Control on Devices with Extremely Limited Resources
Recent advances in deep reinforcement learning (DRL) have largely promoted the performance of adaptive traffic signal control (ATSC). Nevertheless, regarding the implementation, most works are cumbersome in terms of storage and computation. This hinders their deployment on scenarios where resources are limited. In this work, we propose TinyLight, the first DRL-based ATSC model that is designed for devices with extremely limited resources. TinyLight first constructs a super-graph to associate a rich set of candidate features with a group of light-weighted network blocks. Then, to diminish the model's resource consumption, we ablate edges in the super-graph automatically with a novel entropy-minimized objective function. This enables TinyLight to work on a standalone microcontroller with merely 2KB RAM and 32KB ROM. We evaluate TinyLight on multiple road networks with real-world traffic demands. Experiments show that even with extremely limited resources, TinyLight still achieves competitive performance. The source code and appendix of this work can be found at \url{https://bit.ly/38hH8t8}.
107,924
107,924
Differentially Private Multivariate Time Series Forecasting of Aggregated Human Mobility With Deep Learning: Input or Gradient Perturbation?
This paper investigates the problem of forecasting multivariate aggregated human mobility while preserving the privacy of the individuals concerned. Differential privacy, a state-of-the-art formal notion, has been used as the privacy guarantee in two different and independent steps when training deep learning models. On one hand, we considered \textit{gradient perturbation}, which uses the differentially private stochastic gradient descent algorithm to guarantee the privacy of each time series sample in the learning stage. On the other hand, we considered \textit{input perturbation}, which adds differential privacy guarantees in each sample of the series before applying any learning. We compared four state-of-the-art recurrent neural networks: Long Short-Term Memory, Gated Recurrent Unit, and their Bidirectional architectures, i.e., Bidirectional-LSTM and Bidirectional-GRU. Extensive experiments were conducted with a real-world multivariate mobility dataset, which we published openly along with this paper. As shown in the results, differentially private deep learning models trained under gradient or input perturbation achieve nearly the same performance as non-private deep learning models, with loss in performance varying between $0.57\%$ to $2.8\%$. The contribution of this paper is significant for those involved in urban planning and decision-making, providing a solution to the human mobility multivariate forecast problem through differentially private deep learning models.
107,925
107,925
Adaptive Online Optimization with Predictions: Static and Dynamic Environments
In the past few years, Online Convex Optimization (OCO) has received notable attention in the control literature thanks to its flexible real-time nature and powerful performance guarantees. In this paper, we propose new step-size rules and OCO algorithms that simultaneously exploit gradient predictions, function predictions and dynamics, features particularly pertinent to control applications. The proposed algorithms enjoy static and dynamic regret bounds in terms of the dynamics of the reference action sequence, gradient prediction error and function prediction error, which are generalizations of known regularity measures from the literature. We present results for both convex and strongly convex costs. We validate the performance of the proposed algorithms in a trajectory tracking case study, as well as portfolio optimization using real-world datasets.
107,926
107,926
Molecular Identification from AFM images using the IUPAC Nomenclature and Attribute Multimodal Recurrent Neural Networks
Despite being the main tool to visualize molecules at the atomic scale, AFM with CO-functionalized metal tips is unable to chemically identify the observed molecules. Here we present a strategy to address this challenging task using deep learning techniques. Instead of identifying a finite number of molecules following a traditional classification approach, we define the molecular identification as an image captioning problem. We design an architecture, composed of two multimodal recurrent neural networks, capable of identifying the structure and composition of an unknown molecule using a 3D-AFM image stack as input. The neural network is trained to provide the name of each molecule according to the IUPAC nomenclature rules. To train and test this algorithm we use the novel QUAM-AFM dataset, which contains almost 700,000 molecules and 165 million AFM images. The accuracy of the predictions is remarkable, achieving a high score quantified by the cumulative BLEU 4-gram, a common metric in language recognition studies.
107,927
107,927
An Analysis of the Features Considerable for NFT Recommendations
This research explores the methods that NFTs can be recommended to people who interact with NFT-marketplaces to explore NFTs of preference and similarity to what they have been searching for. While exploring past methods that can be adopted for recommendations, the use of NFT traits for recommendations has been explored. The outcome of the research highlights the necessity of using multiple Recommender Systems to present the user with the best possible NFTs when interacting with decentralized systems.
107,928
107,928
Training High-Performance Low-Latency Spiking Neural Networks by Differentiation on Spike Representation
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware. However, it is a challenge to efficiently train SNNs due to their non-differentiability. Most existing methods either suffer from high latency (i.e., long simulation time steps), or cannot achieve as high performance as Artificial Neural Networks (ANNs). In this paper, we propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance that is competitive to ANNs yet with low latency. First, we encode the spike trains into spike representation using (weighted) firing rate coding. Based on the spike representation, we systematically derive that the spiking dynamics with common neural models can be represented as some sub-differentiable mapping. With this viewpoint, our proposed DSR method trains SNNs through gradients of the mapping and avoids the common non-differentiability problem in SNN training. Then we analyze the error when representing the specific mapping with the forward computation of the SNN. To reduce such error, we propose to train the spike threshold in each layer, and to introduce a new hyperparameter for the neural models. With these components, the DSR method can achieve state-of-the-art SNN performance with low latency on both static and neuromorphic datasets, including CIFAR-10, CIFAR-100, ImageNet, and DVS-CIFAR10.
107,929
107,929
Reward Systems for Trustworthy Medical Federated Learning
Federated learning (FL) has received high interest from researchers and practitioners to train machine learning (ML) models for healthcare. Ensuring the trustworthiness of these models is essential. Especially bias, defined as a disparity in the model's predictive performance across different subgroups, may cause unfairness against specific subgroups, which is an undesired phenomenon for trustworthy ML models. In this research, we address the question to which extent bias occurs in medical FL and how to prevent excessive bias through reward systems. We first evaluate how to measure the contributions of institutions toward predictive performance and bias in cross-silo medical FL with a Shapley value approximation method. In a second step, we design different reward systems incentivizing contributions toward high predictive performance or low bias. We then propose a combined reward system that incentivizes contributions toward both. We evaluate our work using multiple medical chest X-ray datasets focusing on patient subgroups defined by patient sex and age. Our results show that we can successfully measure contributions toward bias, and an integrated reward system successfully incentivizes contributions toward a well-performing model with low bias. While the partitioning of scans only slightly influences the overall bias, institutions with data predominantly from one subgroup introduce a favorable bias for this subgroup. Our results indicate that reward systems, which focus on predictive performance only, can transfer model bias against patients to an institutional level. Our work helps researchers and practitioners design reward systems for FL with well-aligned incentives for trustworthy ML.
107,930
107,930
A Survey of Decentralized Online Learning
Decentralized online learning (DOL) has been increasingly researched in the last decade, mostly motivated by its wide applications in sensor networks, commercial buildings, robotics (e.g., decentralized target tracking and formation control), smart grids, deep learning, and so forth. In this problem, there are a network of agents who may be cooperative (i.e., decentralized online optimization) or noncooperative (i.e., online game) through local information exchanges, and the local cost function of each agent is often time-varying in dynamic and even adversarial environments. At each time, a decision must be made by each agent based on historical information at hand without knowing future information on cost functions. Although this problem has been extensively studied in the last decade, a comprehensive survey is lacking. Therefore, this paper provides a thorough overview of DOL from the perspective of problem settings, communication, computation, and performances. In addition, some potential future directions are also discussed in details.
107,931
107,931
None Class Ranking Loss for Document-Level Relation Extraction
Document-level relation extraction (RE) aims at extracting relations among entities expressed across multiple sentences, which can be viewed as a multi-label classification problem. In a typical document, most entity pairs do not express any pre-defined relation and are labeled as "none" or "no relation". For good document-level RE performance, it is crucial to distinguish such none class instances (entity pairs) from those of pre-defined classes (relations). However, most existing methods only estimate the probability of pre-defined relations independently without considering the probability of "no relation". This ignores the context of entity pairs and the label correlations between the none class and pre-defined classes, leading to sub-optimal predictions. To address this problem, we propose a new multi-label loss that encourages large margins of label confidence scores between each pre-defined class and the none class, which enables captured label correlations and context-dependent thresholding for label prediction. To gain further robustness against positive-negative imbalance and mislabeled data that could appear in real-world RE datasets, we propose a margin regularization and a margin shifting technique. Experimental results demonstrate that our method significantly outperforms existing multi-label losses for document-level RE and works well in other multi-label tasks such as emotion classification when none class instances are available for training.
107,932
107,932
Ridgeless Regression with Random Features
Recent theoretical studies illustrated that kernel ridgeless regression can guarantee good generalization ability without an explicit regularization. In this paper, we investigate the statistical properties of ridgeless regression with random features and stochastic gradient descent. We explore the effect of factors in the stochastic gradient and random features, respectively. Specifically, random features error exhibits the double-descent curve. Motivated by the theoretical findings, we propose a tunable kernel algorithm that optimizes the spectral density of kernel during training. Our work bridges the interpolation theory and practical algorithm.
107,933
107,933
Dynamic Programming in Rank Space: Scaling Structured Inference with Low-Rank HMMs and PCFGs
Hidden Markov Models (HMMs) and Probabilistic Context-Free Grammars (PCFGs) are widely used structured models, both of which can be represented as factor graph grammars (FGGs), a powerful formalism capable of describing a wide range of models. Recent research found it beneficial to use large state spaces for HMMs and PCFGs. However, inference with large state spaces is computationally demanding, especially for PCFGs. To tackle this challenge, we leverage tensor rank decomposition (aka.\ CPD) to decrease inference computational complexities for a subset of FGGs subsuming HMMs and PCFGs. We apply CPD on the factors of an FGG and then construct a new FGG defined in the rank space. Inference with the new FGG produces the same result but has a lower time complexity when the rank size is smaller than the state size. We conduct experiments on HMM language modeling and unsupervised PCFG parsing, showing better performance than previous work. Our code is publicly available at \url{https://github.com/VPeterV/RankSpace-Models}.
107,934
107,934
On the speed of uniform convergence in Mercer's theorem
The classical Mercer's theorem claims that a continuous positive definite kernel $K({\mathbf x}, {\mathbf y})$ on a compact set can be represented as $\sum_{i=1}^\infty \lambda_i\phi_i({\mathbf x})\phi_i({\mathbf y})$ where $\{(\lambda_i,\phi_i)\}$ are eigenvalue-eigenvector pairs of the corresponding integral operator. This infinite representation is known to converge uniformly to the kernel $K$. We estimate the speed of this convergence in terms of the decay rate of eigenvalues and demonstrate that for $3m$ times differentiable kernels the first $N$ terms of the series approximate $K$ as $\mathcal{O}\big((\sum_{i=N+1}^\infty\lambda_i)^{\frac{m}{m+n}}\big)$ or $\mathcal{O}\big((\sum_{i=N+1}^\infty\lambda^2_i)^{\frac{m}{2m+n}}\big)$.
107,935
107,935
Is Your Toxicity My Toxicity? Exploring the Impact of Rater Identity on Toxicity Annotation
Machine learning models are commonly used to detect toxicity in online conversations. These models are trained on datasets annotated by human raters. We explore how raters' self-described identities impact how they annotate toxicity in online comments. We first define the concept of specialized rater pools: rater pools formed based on raters' self-described identities, rather than at random. We formed three such rater pools for this study--specialized rater pools of raters from the U.S. who identify as African American, LGBTQ, and those who identify as neither. Each of these rater pools annotated the same set of comments, which contains many references to these identity groups. We found that rater identity is a statistically significant factor in how raters will annotate toxicity for identity-related annotations. Using preliminary content analysis, we examined the comments with the most disagreement between rater pools and found nuanced differences in the toxicity annotations. Next, we trained models on the annotations from each of the different rater pools, and compared the scores of these models on comments from several test sets. Finally, we discuss how using raters that self-identify with the subjects of comments can create more inclusive machine learning models, and provide more nuanced ratings than those by random raters.
107,936
107,936
Domain Adaptation meets Individual Fairness. And they get along
Many instances of algorithmic bias are caused by distributional shifts. For example, machine learning (ML) models often perform worse on demographic groups that are underrepresented in the training data. In this paper, we leverage this connection between algorithmic fairness and distribution shifts to show that algorithmic fairness interventions can help ML models overcome distribution shifts, and that domain adaptation methods (for overcoming distribution shifts) can mitigate algorithmic biases. In particular, we show that (i) enforcing suitable notions of individual fairness (IF) can improve the out-of-distribution accuracy of ML models, and that (ii) it is possible to adapt representation alignment methods for domain adaptation to enforce (individual) fairness. The former is unexpected because IF interventions were not developed with distribution shifts in mind. The latter is also unexpected because representation alignment is not a common approach in the IF literature.
107,937
107,937
Preserve Pre-trained Knowledge: Transfer Learning With Self-Distillation For Action Recognition
Video-based action recognition is one of the most popular topics in computer vision. With recent advances of selfsupervised video representation learning approaches, action recognition usually follows a two-stage training framework, i.e., self-supervised pre-training on large-scale unlabeled sets and transfer learning on a downstream labeled set. However, catastrophic forgetting of the pre-trained knowledge becomes the main issue in the downstream transfer learning of action recognition, resulting in a sub-optimal solution. In this paper, to alleviate the above issue, we propose a novel transfer learning approach that combines self-distillation in fine-tuning to preserve knowledge from the pre-trained model learned from the large-scale dataset. Specifically, we fix the encoder from the last epoch as the teacher model to guide the training of the encoder from the current epoch in the transfer learning. With such a simple yet effective learning strategy, we outperform state-of-the-art methods on widely used UCF101 and HMDB51 datasets in action recognition task.
107,938
107,938
An Early Fault Detection Method of Rotating Machines Based on Multiple Feature Fusion with Stacking Architecture
Early fault detection (EFD) of rotating machines is important to decrease the maintenance cost and improve the mechanical system stability. One of the key points of EFD is developing a generic model to extract robust and discriminative features from different equipment for early fault detection. Most existing EFD methods focus on learning fault representation by one type of feature. However, a combination of multiple features can capture a more comprehensive representation of system state. In this paper, we propose an EFD method based on multiple feature fusion with stacking architecture (M2FSA). The proposed method can extract generic and discriminiative features to detect early faults by combining time domain (TD), frequency domain (FD), and time-frequency domain (TFD) features. In order to unify the dimensions of the different domain features, Stacked Denoising Autoencoder (SDAE) is utilized to learn deep features in three domains. The architecture of the proposed M2FSA consists of two layers. The first layer contains three base models, whose corresponding inputs are different deep features. The outputs of the first layer are concatenated to generate the input to the second layer, which consists of a meta model. The proposed method is tested on three bearing datasets. The results demonstrate that the proposed method is better than existing methods both in sensibility and reliability.
107,939
107,939
Accurate non-stationary short-term traffic flow prediction method
Precise and timely traffic flow prediction plays a critical role in developing intelligent transportation systems and has attracted considerable attention in recent decades. Despite the significant progress in this area brought by deep learning, challenges remain. Traffic flows usually change dramatically in a short period, which prevents the current methods from accurately capturing the future trend and likely causes the over-fitting problem, leading to unsatisfied accuracy. To this end, this paper proposes a Long Short-Term Memory (LSTM) based method that can forecast the short-term traffic flow precisely and avoid local optimum problems during training. Specifically, instead of using the non-stationary raw traffic data directly, we first decompose them into sub-components, where each one is less noisy than the original input. Afterward, Sample Entropy (SE) is employed to merge similar components to reduce the computation cost. The merged features are fed into the LSTM, and we then introduce a spatiotemporal module to consider the neighboring relationships in the recombined signals to avoid strong autocorrelation. During training, we utilize the Grey Wolf Algorithm (GWO) to optimize the parameters of LSTM, which overcome the overfitting issue. We conduct the experiments on a UK public highway traffic flow dataset, and the results show that the proposed method performs favorably against other state-of-the-art methods with better adaption performance on extreme outliers, delay effects, and trend-changing responses.
107,940
107,940
Deep Learning with Logical Constraints
In recent years, there has been an increasing interest in exploiting logically specified background knowledge in order to obtain neural models (i) with a better performance, (ii) able to learn from less data, and/or (iii) guaranteed to be compliant with the background knowledge itself, e.g., for safety-critical applications. In this survey, we retrace such works and categorize them based on (i) the logical language that they use to express the background knowledge and (ii) the goals that they achieve.
107,941
107,941
Deep vs. Shallow Learning: A Benchmark Study in Low Magnitude Earthquake Detection
While deep learning models have seen recent high uptake in the geosciences, and are appealing in their ability to learn from minimally processed input data, as black box models they do not provide an easy means to understand how a decision is reached, which in safety-critical tasks especially can be problematical. An alternative route is to use simpler, more transparent white box models, in which task-specific feature construction replaces the more opaque feature discovery process performed automatically within deep learning models. Using data from the Groningen Gas Field in the Netherlands, we build on an existing logistic regression model by the addition of four further features discovered using elastic net driven data mining within the catch22 time series analysis package. We then evaluate the performance of the augmented logistic regression model relative to a deep (CNN) model, pre-trained on the Groningen data, on progressively increasing noise-to-signal ratios. We discover that, for each ratio, our logistic regression model correctly detects every earthquake, while the deep model fails to detect nearly 20 % of seismic events, thus justifying at least a degree of caution in the application of deep models, especially to data with higher noise-to-signal ratios.
107,942
107,942
Generalized Reference Kernel for One-class Classification
In this paper, we formulate a new generalized reference kernel hoping to improve the original base kernel using a set of reference vectors. Depending on the selected reference vectors, our formulation shows similarities to approximate kernels, random mappings, and Non-linear Projection Trick. Focusing on small-scale one-class classification, our analysis and experimental results show that the new formulation provides approaches to regularize, adjust the rank, and incorporate additional information into the kernel itself, leading to improved one-class classification accuracy.
107,943
107,943
Can Information Behaviour Inform Machine Learning?
The objective of this paper is to explore the opportunities for human information behaviour research to inform and influence the field of machine learning and the resulting machine information behaviour. Using the development of foundation models in machine learning as an example, the paper illustrates how human information behaviour research can bring to machine learning a more nuanced view of information and informing, a better understanding of information need and how that affects the communication among people and systems, guidance on the nature of context and how to operationalize that in models and systems, and insights into bias, misinformation, and marginalization. Despite their clear differences, the fields of information behaviour and machine learning share many common objectives, paradigms, and key research questions. The example of foundation models illustrates that human information behaviour research has much to offer in addressing some of the challenges emerging in the nascent area of machine information behaviour.
107,944
107,944
Federated Semi-Supervised Classification of Multimedia Flows for 3D Networks
Automatic traffic classification is increasingly becoming important in traffic engineering, as the current trend of encrypting transport information (e.g., behind HTTP-encrypted tunnels) prevents intermediate nodes from accessing end-to-end packet headers. However, this information is crucial for traffic shaping, network slicing, and Quality of Service (QoS) management, for preventing network intrusion, and for anomaly detection. 3D networks offer multiple routes that can guarantee different levels of QoS. Therefore, service classification and separation are essential to guarantee the required QoS level to each traffic sub-flow through the appropriate network trunk. In this paper, a federated feature selection and feature reduction learning scheme is proposed to classify network traffic in a semi-supervised cooperative manner. The federated gateways of 3D network help to enhance the global knowledge of network traffic to improve the accuracy of anomaly and intrusion detection and service identification of a new traffic flow.
107,945
107,945
Experimental quantum pattern recognition in IBMQ and diamond NVs
One of the most promising applications of quantum computing is the processing of graphical data like images. Here, we investigate the possibility of realizing a quantum pattern recognition protocol based on swap test, and use the IBMQ noisy intermediate-scale quantum (NISQ) devices to verify the idea. We find that with a two-qubit protocol, swap test can efficiently detect the similarity between two patterns with good fidelity, though for three or more qubits the noise in the real devices becomes detrimental. To mitigate this noise effect, we resort to destructive swap test, which shows an improved performance for three-qubit states. Due to limited cloud access to larger IBMQ processors, we take a segment-wise approach to apply the destructive swap test on higher dimensional images. In this case, we define an average overlap measure which shows faithfulness to distinguish between two very different or very similar patterns when simulated on real IBMQ processors. As test images, we use binary images with simple patterns, greyscale MNIST numbers and MNIST fashion images, as well as binary images of human blood vessel obtained from magnetic resonance imaging (MRI). We also present an experimental set up for applying destructive swap test using the nitrogen vacancy centre (NVs) in diamond. Our experimental data show high fidelity for single qubit states. Lastly, we propose a protocol inspired from quantum associative memory, which works in an analogous way to supervised learning for performing quantum pattern recognition using destructive swap test.
107,946
107,946
Thermodynamically Consistent Machine-Learned Internal State Variable Approach for Data-Driven Modeling of Path-Dependent Materials
Characterization and modeling of path-dependent behaviors of complex materials by phenomenological models remains challenging due to difficulties in formulating mathematical expressions and internal state variables (ISVs) governing path-dependent behaviors. Data-driven machine learning models, such as deep neural networks and recurrent neural networks (RNNs), have become viable alternatives. However, pure black-box data-driven models mapping inputs to outputs without considering the underlying physics suffer from unstable and inaccurate generalization performance. This study proposes a machine-learned physics-informed data-driven constitutive modeling approach for path-dependent materials based on the measurable material states. The proposed data-driven constitutive model is designed with the consideration of universal thermodynamics principles, where the ISVs essential to the material path-dependency are inferred automatically from the hidden state of RNNs. The RNN describing the evolution of the data-driven machine-learned ISVs follows the thermodynamics second law. To enhance the robustness and accuracy of RNN models, stochasticity is introduced to model training. The effects of the number of RNN history steps, the internal state dimension, the model complexity, and the strain increment on model performances have been investigated. The effectiveness of the proposed method is evaluated by modeling soil material behaviors under cyclic shear loading using experimental stress-strain data.
107,947
107,947
Data-driven control of spatiotemporal chaos with reduced-order neural ODE-based models and reinforcement learning
Deep reinforcement learning (RL) is a data-driven method capable of discovering complex control strategies for high-dimensional systems, making it promising for flow control applications. In particular, the present work is motivated by the goal of reducing energy dissipation in turbulent flows, and the example considered is the spatiotemporally chaotic dynamics of the Kuramoto-Sivashinsky equation (KSE). A major challenge associated with RL is that substantial training data must be generated by repeatedly interacting with the target system, making it costly when the system is computationally or experimentally expensive. We mitigate this challenge in a data-driven manner by combining dimensionality reduction via an autoencoder with a neural ODE framework to obtain a low-dimensional dynamical model from just a limited data set. We substitute this data-driven reduced-order model (ROM) in place of the true system during RL training to efficiently estimate the optimal policy, which can then be deployed on the true system. For the KSE actuated with localized forcing ("jets") at four locations, we demonstrate that we are able to learn a ROM that accurately captures the actuated dynamics as well as the underlying natural dynamics just from snapshots of the KSE experiencing random actuations. Using this ROM and a control objective of minimizing dissipation and power cost, we extract a control policy from it using deep RL. We show that the ROM-based control strategy translates well to the true KSE and highlight that the RL agent discovers and stabilizes an underlying forced equilibrium solution of the KSE system. We show that this forced equilibrium captured in the ROM and discovered through RL is related to an existing known equilibrium solution of the natural KSE.
107,948
107,948
Using a novel fractional-order gradient method for CNN back-propagation
Computer-aided diagnosis tools have experienced rapid growth and development in recent years. Among all, deep learning is the most sophisticated and popular tool. In this paper, researchers propose a novel deep learning model and apply it to COVID-19 diagnosis. Our model uses the tool of fractional calculus, which has the potential to improve the performance of gradient methods. To this end, the researcher proposes a fractional-order gradient method for the back-propagation of convolutional neural networks based on the Caputo definition. However, if only the first term of the infinite series of the Caputo definition is used to approximate the fractional-order derivative, the length of the memory is truncated. Therefore, the fractional-order gradient (FGD) method with a fixed memory step and an adjustable number of terms is used to update the weights of the layers. Experiments were performed on the COVIDx dataset to demonstrate fast convergence, good accuracy, and the ability to bypass the local optimal point. We also compared the performance of the developed fractional-order neural networks and Integer-order neural networks. The results confirmed the effectiveness of our proposed model in the diagnosis of COVID-19.
107,949
107,949
Forecasting Market Changes using Variational Inference
Though various approaches have been considered, forecasting near-term market changes of equities and similar market data remains quite difficult. In this paper we introduce an approach to forecast near-term market changes for equity indices as well as portfolios using variational inference (VI). VI is a machine learning approach which uses optimization techniques to estimate complex probability densities. In the proposed approach, clusters of explanatory variables are identified and market changes are forecast based on cluster-specific linear regression. Apart from the expected value of changes, the proposed approach can also be used to obtain the distribution of possible outcomes, which can be used to estimate confidence levels of forecasts and risk measures such as VaR (Value at Risk) for the portfolio. Another advantage of the proposed approach is the clear model interpretation, as clusters of explanatory variables (or market regimes) are identified for which the future changes follow similar relationships. Knowledge about such clusters can provide useful insights about portfolio performance and identify the relative importance of variables in different market regimes. Illustrative examples of equity and bond indices are considered to demonstrate forecasts of the proposed approach during Covid-related volatility in early 2020 and subsequent benign market conditions. For the portfolios considered, it is shown that the proposed approach provides useful forecasts in both normal and volatile markets even with only a few explanatory variables. Additionally the predicted estimate and distribution adapt quickly to changing market conditions and thus may also be useful in obtaining better real-time estimates of risk measures such as VaR compared to traditional approaches.
107,950
107,950
Physics-aware Reduced-order Modeling of Transonic Flow via $\beta$-Variational Autoencoder
Autoencoder-based reduced-order modeling (ROM) has recently attracted significant attention, owing to its ability to capture underlying nonlinear features. However, two critical drawbacks severely undermine its scalability to various physical applications: entangled and therefore uninterpretable latent variables (LVs) and the blindfold determination of latent space dimension. In this regard, this study proposes the physics-aware ROM using only interpretable and information-intensive LVs extracted by $\beta$-variational autoencoder, which are referred to as physics-aware LVs throughout this paper. To extract these LVs, their independence and information intensity are quantitatively scrutinized in a two-dimensional transonic flow benchmark problem. Then, the physical meanings of the physics-aware LVs are thoroughly investigated and we confirmed that with appropriate hyperparameter $\beta$, they actually correspond to the generating factors of the training dataset, Mach number and angle of attack. To the best of the authors' knowledge, our work is the first to practically confirm that $\beta$-variational autoencoder can automatically extract the physical generating factors in the field of applied physics. Finally, physics-aware ROM, which utilizes only physics-aware LVs, is compared with conventional ROMs, and its validity and efficiency are successfully verified.
107,951
107,951
LoopStack: a Lightweight Tensor Algebra Compiler Stack
We present LoopStack, a domain specific compiler stack for tensor operations, composed of a frontend, LoopTool, and an efficient optimizing code generator, LoopNest. This stack enables us to compile entire neural networks and generate code targeting the AVX2, AVX512, NEON, and NEONfp16 instruction sets while incorporating optimizations often missing from other machine learning compiler backends. We evaluate our stack on a collection of full neural networks and commonly used network blocks as well as individual operators, and show that LoopStack generates machine code that matches and frequently exceeds the performance of in state-of-the-art machine learning frameworks in both cases. We also show that for a large collection of schedules LoopNest's compilation is orders of magnitude faster than LLVM, while resulting in equal or improved run time performance. Additionally, LoopStack has a very small memory footprint - a binary size of 245KB, and under 30K lines of effective code makes it ideal for use on mobile and embedded devices.
107,952
107,952
Community detection in multiplex networks based on orthogonal nonnegative matrix tri-factorization
Networks provide a powerful tool to model complex systems where the different entities in the system are presented by nodes and their interactions by edges. Recently, there has been a growing interest in multiplex networks as they can represent the interactions between a pair of nodes through multiple types of links, each reflecting a distinct type of interaction. One of the important tools in understanding network topology is community detection. Although there are numerous works on community detection in single layer networks, existing work on multiplex community detection mostly focuses on learning a common community structure across layers without taking the heterogeneity of the different layers into account. In this paper, we introduce a new multiplex community detection approach that can identify communities that are common across layers as well as those that are unique to each layer. The proposed algorithm employs Orthogonal Nonnegative Matrix Tri-Factorization to model each layer's adjacency matrix as the sum of two low-rank matrix factorizations, corresponding to the common and private communities, respectively. The proposed algorithm is evaluated on both synthetic and real multiplex networks and compared to state-of-the-art techniques.
107,953
107,953
The Multivariate Community Hawkes Model for Dependent Relational Events in Continuous-time Networks
The stochastic block model (SBM) is one of the most widely used generative models for network data. Many continuous-time dynamic network models are built upon the same assumption as the SBM: edges or events between all pairs of nodes are conditionally independent given the block or community memberships, which prevents them from reproducing higher-order motifs such as triangles that are commonly observed in real networks. We propose the multivariate community Hawkes (MULCH) model, an extremely flexible community-based model for continuous-time networks that introduces dependence between node pairs using structured multivariate Hawkes processes. We fit the model using a spectral clustering and likelihood-based local refinement procedure. We find that our proposed MULCH model is far more accurate than existing models both for predictive and generative tasks.
107,954
107,954
Skeptical binary inferences in multi-label problems with sets of probabilities
In this paper, we consider the problem of making distributionally robust, skeptical inferences for the multi-label problem, or more generally for Boolean vectors. By distributionally robust, we mean that we consider a set of possible probability distributions, and by skeptical we understand that we consider as valid only those inferences that are true for every distribution within this set. Such inferences will provide partial predictions whenever the considered set is sufficiently big. We study in particular the Hamming loss case, a common loss function in multi-label problems, showing how skeptical inferences can be made in this setting. Our experimental results are organised in three sections; (1) the first one indicates the gain computational obtained from our theoretical results by using synthetical data sets, (2) the second one indicates that our approaches produce relevant cautiousness on those hard-to-predict instances where its precise counterpart fails, and (3) the last one demonstrates experimentally how our approach copes with imperfect information (generated by a downsampling procedure) better than the partial abstention [31] and the rejection rules.
107,955
107,955
Simple Techniques Work Surprisingly Well for Neural Network Test Prioritization and Active Learning (Replicability Study)
Test Input Prioritizers (TIP) for Deep Neural Networks (DNN) are an important technique to handle the typically very large test datasets efficiently, saving computation and labeling costs. This is particularly true for large-scale, deployed systems, where inputs observed in production are recorded to serve as potential test or training data for the next versions of the system. Feng et. al. propose DeepGini, a very fast and simple TIP, and show that it outperforms more elaborate techniques such as neuron- and surprise coverage. In a large-scale study (4 case studies, 8 test datasets, 32'200 trained models) we verify their findings. However, we also find that other comparable or even simpler baselines from the field of uncertainty quantification, such as the predicted softmax likelihood or the entropy of the predicted softmax likelihoods perform equally well as DeepGini.
107,956
107,956
From Noisy Prediction to True Label: Noisy Prediction Calibration via Generative Model
Noisy labels are inevitable yet problematic in machine learning society. It ruins the generalization of a classifier by making the classifier over-fitted to noisy labels. Existing methods on noisy label have focused on modifying the classifier during the training procedure. It has two potential problems. First, these methods are not applicable to a pre-trained classifier without further access to training. Second, it is not easy to train a classifier and regularize all negative effects from noisy labels, simultaneously. We suggest a new branch of method, Noisy Prediction Calibration (NPC) in learning with noisy labels. Through the introduction and estimation of a new type of transition matrix via generative model, NPC corrects the noisy prediction from the pre-trained classifier to the true label as a post-processing scheme. We prove that NPC theoretically aligns with the transition matrix based methods. Yet, NPC empirically provides more accurate pathway to estimate true label, even without involvement in classifier learning. Also, NPC is applicable to any classifier trained with noisy label methods, if training instances and its predictions are available. Our method, NPC, boosts the classification performances of all baseline models on both synthetic and real-world datasets. The implemented code is available at https://github.com/BaeHeeSun/NPC.
107,957
107,957
A Multi-stage deep architecture for summary generation of soccer videos
Video content is present in an ever-increasing number of fields, both scientific and commercial. Sports, particularly soccer, is one of the industries that has invested the most in the field of video analytics, due to the massive popularity of the game and the emergence of new markets. Previous state-of-the-art methods on soccer matches video summarization rely on handcrafted heuristics to generate summaries which are poorly generalizable, but these works have yet proven that multiple modalities help detect the best actions of the game. On the other hand, machine learning models with higher generalization potential have entered the field of summarization of general-purpose videos, offering several deep learning approaches. However, most of them exploit content specificities that are not appropriate for sport whole-match videos. Although video content has been for many years the main source for automatizing knowledge extraction in soccer, the data that records all the events happening on the field has become lately very important in sports analytics, since this event data provides richer context information and requires less processing. We propose a method to generate the summary of a soccer match exploiting both the audio and the event metadata. The results show that our method can detect the actions of the match, identify which of these actions should belong to the summary and then propose multiple candidate summaries which are similar enough but with relevant variability to provide different options to the final editor. Furthermore, we show the generalization capability of our work since it can transfer knowledge between datasets from different broadcasting companies, different competitions, acquired in different conditions, and corresponding to summaries of different lengths
107,958
107,958
Unsupervised Denoising of Optical Coherence Tomography Images with Dual_Merged CycleWGAN
Nosie is an important cause of low quality Optical coherence tomography (OCT) image. The neural network model based on Convolutional neural networks(CNNs) has demonstrated its excellent performance in image denoising. However, OCT image denoising still faces great challenges because many previous neural network algorithms required a large number of labeled data, which might cost much time or is expensive. Besides, these CNN-based algorithms need numerous parameters and good tuning techniques, which is hardware resources consuming. To solved above problems, We proposed a new Cycle-Consistent Generative Adversarial Nets called Dual-Merged Cycle-WGAN for retinal OCT image denoiseing, which has remarkable performance with less unlabeled traning data. Our model consists of two Cycle-GAN networks with imporved generator, descriminator and wasserstein loss to achieve good training stability and better performance. Using image merge technique between two Cycle-GAN networks, our model could obtain more detailed information and hence better training effect. The effectiveness and generality of our proposed network has been proved via ablation experiments and comparative experiments. Compared with other state-of-the-art methods, our unsupervised method obtains best subjective visual effect and higher evaluation objective indicators.
107,959
107,959
DeepGraviLens: a Multi-Modal Architecture for Classifying Gravitational Lensing Data
Gravitational lensing is the relativistic effect generated by massive bodies, which bend the space-time surrounding them. It is a deeply investigated topic in astrophysics and allows validating theoretical relativistic results and studying faint astrophysical objects that would not be visible otherwise. In recent years Machine Learning methods have been applied to support the analysis of the gravitational lensing phenomena by detecting lensing effects in data sets consisting of images associated with brightness variation time series. However, the state-of-art approaches either consider only images and neglect time-series data or achieve relatively low accuracy on the most difficult data sets. This paper introduces DeepGraviLens, a novel multi-modal network that classifies spatio-temporal data belonging to one non-lensed system type and three lensed system types. It surpasses the current state of the art accuracy results by $\approx$ 19% to $\approx$ 43%, depending on the considered data set. Such an improvement will enable the acceleration of the analysis of lensed objects in upcoming astrophysical surveys, which will exploit the petabytes of data collected, e.g., from the Vera C. Rubin Observatory.
107,960
107,960
FedDKD: Federated Learning with Decentralized Knowledge Distillation
The performance of federated learning in neural networks is generally influenced by the heterogeneity of the data distribution. For a well-performing global model, taking a weighted average of the local models, as done by most existing federated learning algorithms, may not guarantee consistency with local models in the space of neural network maps. In this paper, we propose a novel framework of federated learning equipped with the process of decentralized knowledge distillation (FedDKD) (i.e., without data on the server). The FedDKD introduces a module of decentralized knowledge distillation (DKD) to distill the knowledge of the local models to train the global model by approaching the neural network map average based on the metric of divergence defined in the loss function, other than only averaging parameters as done in literature. Numeric experiments on various heterogeneous datasets reveal that FedDKD outperforms the state-of-the-art methods with more efficient communication and training in a few DKD steps, especially on some extremely heterogeneous datasets.
107,961
107,961
Smoothed Online Convex Optimization Based on Discounted-Normal-Predictor
In this paper, we investigate an online prediction strategy named as Discounted-Normal-Predictor (Kapralov and Panigrahy, 2010) for smoothed online convex optimization (SOCO), in which the learner needs to minimize not only the hitting cost but also the switching cost. In the setting of learning with expert advice, Daniely and Mansour (2019) demonstrate that Discounted-Normal-Predictor can be utilized to yield nearly optimal regret bounds over any interval, even in the presence of switching costs. Inspired by their results, we develop a simple algorithm for SOCO: Combining online gradient descent (OGD) with different step sizes sequentially by Discounted-Normal-Predictor. Despite its simplicity, we prove that it is able to minimize the adaptive regret with switching cost, i.e., attaining nearly optimal regret with switching cost on every interval. By exploiting the theoretical guarantee of OGD for dynamic regret, we further show that the proposed algorithm can minimize the dynamic regret with switching cost in every interval.
107,962
107,962
VICE: Variational Interpretable Concept Embeddings
A central goal in the cognitive sciences is the development of numerical models for mental representations of object concepts. This paper introduces Variational Interpretable Concept Embeddings (VICE), an approximate Bayesian method for embedding object concepts in a vector space using data collected from humans in an odd-one-out triplet task. VICE uses variational inference to obtain sparse, non-negative representations of object concepts with uncertainty estimates for the embedding values. These estimates are used to automatically select the dimensions that best explain the data. We derive a PAC learning bound for VICE that can be used to estimate generalization performance or determine sufficient sample size in experimental design. VICE rivals or outperforms its predecessor, SPoSE, at predicting human behavior in the odd-one-out triplet task. Furthermore, VICE's object representations are more reproducible and consistent across random initializations.
107,963
107,963
Data-driven emotional body language generation for social robotics
In social robotics, endowing humanoid robots with the ability to generate bodily expressions of affect can improve human-robot interaction and collaboration, since humans attribute, and perhaps subconsciously anticipate, such traces to perceive an agent as engaging, trustworthy, and socially present. Robotic emotional body language needs to be believable, nuanced and relevant to the context. We implemented a deep learning data-driven framework that learns from a few hand-designed robotic bodily expressions and can generate numerous new ones of similar believability and lifelikeness. The framework uses the Conditional Variational Autoencoder model and a sampling approach based on the geometric properties of the model's latent space to condition the generative process on targeted levels of valence and arousal. The evaluation study found that the anthropomorphism and animacy of the generated expressions are not perceived differently from the hand-designed ones, and the emotional conditioning was adequately differentiable between most levels except the pairs of neutral-positive valence and low-medium arousal. Furthermore, an exploratory analysis of the results reveals a possible impact of the conditioning on the perceived dominance of the robot, as well as on the participants' attention.
107,964
107,964
Large Neighborhood Search based on Neural Construction Heuristics
We propose a Large Neighborhood Search (LNS) approach utilizing a learned construction heuristic based on neural networks as repair operator to solve the vehicle routing problem with time windows (VRPTW). Our method uses graph neural networks to encode the problem and auto-regressively decodes a solution and is trained with reinforcement learning on the construction task without requiring any labels for supervision. The neural repair operator is combined with a local search routine, heuristic destruction operators and a selection procedure applied to a small population to arrive at a sophisticated solution approach. The key idea is to use the learned model to re-construct the partially destructed solution and to introduce randomness via the destruction heuristics (or the stochastic policy itself) to effectively explore a large neighborhood.
107,965
107,965
BSRA: Block-based Super Resolution Accelerator with Hardware Efficient Pixel Attention
Increasingly, convolution neural network (CNN) based super resolution models have been proposed for better reconstruction results, but their large model size and complicated structure inhibit their real-time hardware implementation. Current hardware designs are limited to a plain network and suffer from lower quality and high memory bandwidth requirements. This paper proposes a super resolution hardware accelerator with hardware efficient pixel attention that just needs 25.9K parameters and simple structure but achieves 0.38dB better reconstruction images than the widely used FSRCNN. The accelerator adopts full model block wise convolution for full model layer fusion to reduce external memory access to model input and output only. In addition, CNN and pixel attention are well supported by PE arrays with distributed weights. The final implementation can support full HD image reconstruction at 30 frames per second with TSMC 40nm CMOS process.
107,966
107,966
Sparse Compressed Spiking Neural Network Accelerator for Object Detection
Spiking neural networks (SNNs), which are inspired by the human brain, have recently gained popularity due to their relatively simple and low-power hardware for transmitting binary spikes and highly sparse activation maps. However, because SNNs contain extra time dimension information, the SNN accelerator will require more buffers and take longer to infer, especially for the more difficult high-resolution object detection task. As a result, this paper proposes a sparse compressed spiking neural network accelerator that takes advantage of the high sparsity of activation maps and weights by utilizing the proposed gated one-to-all product for low power and highly parallel model execution. The experimental result of the neural network shows 71.5$\%$ mAP with mixed (1,3) time steps on the IVS 3cls dataset. The accelerator with the TSMC 28nm CMOS process can achieve 1024$\times$576@29 frames per second processing when running at 500MHz with 35.88TOPS/W energy efficiency and 1.05mJ energy consumption per frame.
107,967
107,967
Zebra: Memory Bandwidth Reduction for CNN Accelerators With Zero Block Regularization of Activation Maps
The large amount of memory bandwidth between local buffer and external DRAM has become the speedup bottleneck of CNN hardware accelerators, especially for activation maps. To reduce memory bandwidth, we propose to learn pruning unimportant blocks dynamically with zero block regularization of activation maps (Zebra). This strategy has low computational overhead and could easily integrate with other pruning methods for better performance. The experimental results show that the proposed method can reduce 70\% of memory bandwidth for Resnet-18 on Tiny-Imagenet within 1\% accuracy drops and 2\% accuracy gain with the combination of Network Slimming.
107,968
107,968
Type-aware Embeddings for Multi-Hop Reasoning over Knowledge Graphs
Multi-hop reasoning over real-life knowledge graphs (KGs) is a highly challenging problem as traditional subgraph matching methods are not capable to deal with noise and missing information. To address this problem, it has been recently introduced a promising approach based on jointly embedding logical queries and KGs into a low-dimensional space to identify answer entities. However, existing proposals ignore critical semantic knowledge inherently available in KGs, such as type information. To leverage type information, we propose a novel TypE-aware Message Passing (TEMP) model, which enhances the entity and relation representations in queries, and simultaneously improves generalization, deductive and inductive reasoning. Remarkably, TEMP is a plug-and-play model that can be easily incorporated into existing embedding-based models to improve their performance. Extensive experiments on three real-world datasets demonstrate TEMP's effectiveness.
107,969
107,969
Deep-Attack over the Deep Reinforcement Learning
Recent adversarial attack developments have made reinforcement learning more vulnerable, and different approaches exist to deploy attacks against it, where the key is how to choose the right timing of the attack. Some work tries to design an attack evaluation function to select critical points that will be attacked if the value is greater than a certain threshold. This approach makes it difficult to find the right place to deploy an attack without considering the long-term impact. In addition, there is a lack of appropriate indicators of assessment during attacks. To make the attacks more intelligent as well as to remedy the existing problems, we propose the reinforcement learning-based attacking framework by considering the effectiveness and stealthy spontaneously, while we also propose a new metric to evaluate the performance of the attack model in these two aspects. Experimental results show the effectiveness of our proposed model and the goodness of our proposed evaluation metric. Furthermore, we validate the transferability of the model, and also its robustness under the adversarial training.
107,970
107,970
Exploration in Deep Reinforcement Learning: A Survey
This paper reviews exploration techniques in deep reinforcement learning. Exploration techniques are of primary importance when solving sparse reward problems. In sparse reward problems, the reward is rare, which means that the agent will not find the reward often by acting randomly. In such a scenario, it is challenging for reinforcement learning to learn rewards and actions association. Thus more sophisticated exploration methods need to be devised. This review provides a comprehensive overview of existing exploration approaches, which are categorized based on the key contributions as follows reward novel states, reward diverse behaviours, goal-based methods, probabilistic methods, imitation-based methods, safe exploration and random-based methods. Then, the unsolved challenges are discussed to provide valuable future research directions. Finally, the approaches of different categories are compared in terms of complexity, computational effort and overall performance.
107,971
107,971
Online Learning in Fisher Markets with Unknown Agent Preferences
In a Fisher market, agents (users) spend a budget of (artificial) currency to buy goods that maximize their utilities, and producers set prices on capacity-constrained goods such that the market clears. The equilibrium prices in such a market are typically computed through the solution of a convex program, e.g., the Eisenberg-Gale program, that aggregates users' preferences into a centralized social welfare objective. However, the computation of equilibrium prices using convex programs assumes that all transactions happen in a static market wherein all users are present simultaneously and relies on complete information on each user's budget and utility function. Since, in practice, information on users' utilities and budgets is unknown and users tend to arrive over time in the market, we study an online variant of Fisher markets, wherein users enter the market sequentially. We focus on the setting where users have linear utilities with privately known utility and budget parameters drawn i.i.d. from a distribution $\mathcal{D}$. In this setting, we develop a simple yet effective algorithm to set prices that preserves user privacy while achieving a regret and capacity violation of $O(\sqrt{n})$, where $n$ is the number of arriving users and the capacities of the goods scale as $O(n)$. Here, our regret measure represents the optimality gap in the objective of the Eisenberg-Gale program between the online allocation policy and that of an offline oracle with complete information on users' budgets and utilities. To establish the efficacy of our approach, we show that even an algorithm that sets expected equilibrium prices with perfect information on the distribution $\mathcal{D}$ cannot achieve both a regret and constraint violation of better than $\Omega(\sqrt{n})$. Finally, we present numerical experiments to demonstrate the performance of our approach relative to several benchmarks.
107,972
107,972
Gradient Descent, Stochastic Optimization, and Other Tales
The goal of this paper is to debunk and dispel the magic behind black-box optimizers and stochastic optimizers. It aims to build a solid foundation on how and why the techniques work. This manuscript crystallizes this knowledge by deriving from simple intuitions, the mathematics behind the strategies. This tutorial doesn't shy away from addressing both the formal and informal aspects of gradient descent and stochastic optimization methods. By doing so, it hopes to provide readers with a deeper understanding of these techniques as well as the when, the how and the why of applying these algorithms. Gradient descent is one of the most popular algorithms to perform optimization and by far the most common way to optimize machine learning tasks. Its stochastic version receives attention in recent years, and this is particularly true for optimizing deep neural networks. In deep neural networks, the gradient followed by a single sample or a batch of samples is employed to save computational resources and escape from saddle points. In 1951, Robbins and Monro published \textit{A stochastic approximation method}, one of the first modern treatments on stochastic optimization that estimates local gradients with a new batch of samples. And now, stochastic optimization has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network. The sole aim of this article is to give a self-contained introduction to concepts and mathematical tools in gradient descent and stochastic optimization.
107,973
107,973
Predicting and Optimizing for Energy Efficient ACMV Systems: Computational Intelligence Approaches
In this study, a novel application of neural networks that predict thermal comfort states of occupants is proposed with accuracy over 95%, and two optimization algorithms are proposed and evaluated under two real cases (general offices and lecture theatres/conference rooms scenarios) in Singapore. The two optimization algorithms are Bayesian Gaussian process optimization (BGPO) and augmented firefly algorithm (AFA). Based on our earlier studies, the models of energy consumption were developed and well-trained through neural networks. This study focuses on using novel active approaches to evaluate thermal comfort of occupants and so as to solves a multiple-objective problem that aims to balance energy-efficiency of centralized air-conditioning systems and thermal comfort of occupants. The study results show that both BGPO and AFA are feasible to resolve this no prior knowledge-based optimization problem effectively. However, the optimal solutions of AFA are more consistent than those of BGPO at given sample sizes. The best energy saving rates (ESR) of BGPO and AFA are around -21% and -10% respectively at energy-efficient user preference for both Case 1 and Case 2. As a result, an potential benefit of S$1219.1 can be achieved annually for this experimental laboratory level in Singapore.
107,974
107,974
Model-based Deep Learning Receiver Design for Rate-Splitting Multiple Access
Effective and adaptive interference management is required in next generation wireless communication systems. To address this challenge, Rate-Splitting Multiple Access (RSMA), relying on multi-antenna rate-splitting (RS) at the transmitter and successive interference cancellation (SIC) at the receivers, has been intensively studied in recent years, albeit mostly under the assumption of perfect Channel State Information at the Receiver (CSIR) and ideal capacity-achieving modulation and coding schemes. To assess its practical performance, benefits, and limits under more realistic conditions, this work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods, which aims to unite the simple structure of the conventional SIC receiver and the robustness and model agnosticism of deep learning techniques. The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS), and average training overhead. Also, a comparison with the SIC receiver, with perfect and imperfect CSIR, is given. Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR, due to its ability to generate on demand non-linear symbol detection boundaries in a pure data-driven manner.
107,975
107,975
Lightweight Image Enhancement Network for Mobile Devices Using Self-Feature Extraction and Dense Modulation
Convolutional neural network (CNN) based image enhancement methods such as super-resolution and detail enhancement have achieved remarkable performances. However, amounts of operations including convolution and parameters within the networks cost high computing power and need huge memory resource, which limits the applications with on-device requirements. Lightweight image enhancement network should restore details, texture, and structural information from low-resolution input images while keeping their fidelity. To address these issues, a lightweight image enhancement network is proposed. The proposed network include self-feature extraction module which produces modulation parameters from low-quality image itself, and provides them to modulate the features in the network. Also, dense modulation block is proposed for unit block of the proposed network, which uses dense connections of concatenated features applied in modulation layers. Experimental results demonstrate better performance over existing approaches in terms of both quantitative and qualitative evaluations.
107,976
107,976
WeatherBench Probability: A benchmark dataset for probabilistic medium-range weather forecasting along with deep learning baseline models
WeatherBench is a benchmark dataset for medium-range weather forecasting of geopotential, temperature and precipitation, consisting of preprocessed data, predefined evaluation metrics and a number of baseline models. WeatherBench Probability extends this to probabilistic forecasting by adding a set of established probabilistic verification metrics (continuous ranked probability score, spread-skill ratio and rank histograms) and a state-of-the-art operational baseline using the ECWMF IFS ensemble forecast. In addition, we test three different probabilistic machine learning methods -- Monte Carlo dropout, parametric prediction and categorical prediction, in which the probability distribution is discretized. We find that plain Monte Carlo dropout severely underestimates uncertainty. The parametric and categorical models both produce fairly reliable forecasts of similar quality. The parametric models have fewer degrees of freedom while the categorical model is more flexible when it comes to predicting non-Gaussian distributions. None of the models are able to match the skill of the operational IFS model. We hope that this benchmark will enable other researchers to evaluate their probabilistic approaches.
107,977
107,977
Family of Two Dimensional Transition Metal Dichlorides Fundamental Properties, Structural Defects, and Environmental Stability
A large number of novel two-dimensional (2D) materials are constantly discovered and deposed into the databases. Consolidate implementation of machine learning algorithms and density functional theory (DFT) based predictions have allowed creating several databases containing an unimaginable amount of 2D samples. The next step in this chain, the investigation leads to a comprehensive study of the functionality of the invented materials. In this work, a family of transition metal dichlorides has been screened out for systematical investigation of their structural stability, fundamental properties, structural defects, and environmental stability via DFT based calculations. The work highlights the importance of using the potential of the invented materials and proposes a comprehensive characterization of a new family of 2D materials.
107,978
107,978
Modeling and mitigation of occupational safety risks in dynamic industrial environments
Identifying and mitigating safety risks is paramount in a number of industries. In addition to guidelines and best practices, many industries already have safety management systems (SMSs) designed to monitor and reinforce good safety behaviors. The analytic capabilities to analyze the data acquired through such systems, however, are still lacking in terms of their ability to robustly quantify risks posed by various occupational hazards. Moreover, best practices and modern SMSs are unable to account for dynamically evolving environments/behavioral characteristics commonly found in many industrial settings. This article proposes a method to address these issues by enabling continuous and quantitative assessment of safety risks in a data-driven manner. The backbone of our method is an intuitive hierarchical probabilistic model that explains sparse and noisy safety data collected by a typical SMS. A fully Bayesian approach is developed to calibrate this model from safety data in an online fashion. Thereafter, the calibrated model holds necessary information that serves to characterize risk posed by different safety hazards. Additionally, the proposed model can be leveraged for automated decision making, for instance solving resource allocation problems -- targeted towards risk mitigation -- that are often encountered in resource-constrained industrial environments. The methodology is rigorously validated on a simulated test-bed and its scalability is demonstrated on real data from large maintenance projects at a petrochemical plant.
107,979
107,979
Fast Continuous and Integer L-shaped Heuristics Through Supervised Learning
We propose a methodology at the nexus of operations research and machine learning (ML) leveraging generic approximators available from ML to accelerate the solution of mixed-integer linear two-stage stochastic programs. We aim at solving problems where the second stage is highly demanding. Our core idea is to gain large reductions in online solution time while incurring small reductions in first-stage solution accuracy by substituting the exact second-stage solutions with fast, yet accurate supervised ML predictions. This upfront investment in ML would be justified when similar problems are solved repeatedly over time, for example, in transport planning related to fleet management, routing and container yard management. Our numerical results focus on the problem class seminally addressed with the integer and continuous L-shaped cuts. Our extensive empirical analysis is grounded in standardized families of problems derived from stochastic server location (SSLP) and stochastic multi knapsack (SMKP) problems available in the literature. The proposed method can solve the hardest instances of SSLP in less than 9% of the time it takes the state-of-the-art exact method, and in the case of SMKP the same figure is 20%. Average optimality gaps are in most cases less than 0.1%.
107,980
107,980
Positive-Unlabeled Learning with Adversarial Data Augmentation for Knowledge Graph Completion
Most real-world knowledge graphs (KG) are far from complete and comprehensive. This problem has motivated efforts in predicting the most plausible missing facts to complete a given KG, i.e., knowledge graph completion (KGC). However, existing KGC methods suffer from two main issues, 1) the false negative issue, i.e., the sampled negative training instances may include potential true facts; and 2) the data sparsity issue, i.e., true facts account for only a tiny part of all possible facts. To this end, we propose positive-unlabeled learning with adversarial data augmentation (PUDA) for KGC. In particular, PUDA tailors positive-unlabeled risk estimator for the KGC task to deal with the false negative issue. Furthermore, to address the data sparsity issue, PUDA achieves a data augmentation strategy by unifying adversarial training and positive-unlabeled learning under the positive-unlabeled minimax game. Extensive experimental results on real-world benchmark datasets demonstrate the effectiveness and compatibility of our proposed method.
107,981
107,981
FastGCL: Fast Self-Supervised Learning on Graphs via Contrastive Neighborhood Aggregation
Graph contrastive learning (GCL), as a popular approach to graph self-supervised learning, has recently achieved a non-negligible effect. To achieve superior performance, the majority of existing GCL methods elaborate on graph data augmentation to construct appropriate contrastive pairs. However, existing methods place more emphasis on the complex graph data augmentation which requires extra time overhead, and pay less attention to developing contrastive schemes specific to encoder characteristics. We argue that a better contrastive scheme should be tailored to the characteristics of graph neural networks (e.g., neighborhood aggregation) and propose a simple yet effective method named FastGCL. Specifically, by constructing weighted-aggregated and non-aggregated neighborhood information as positive and negative samples respectively, FastGCL identifies the potential semantic information of data without disturbing the graph topology and node attributes, resulting in faster training and convergence speeds. Extensive experiments have been conducted on node classification and graph classification tasks, showing that FastGCL has competitive classification performance and significant training speedup compared to existing state-of-the-art methods.
107,982
107,982
Revisiting Gaussian Neurons for Online Clustering with Unknown Number of Clusters
Despite the recent success of artificial neural networks, more biologically plausible learning methods may be needed to resolve the weaknesses of backpropagation trained models such as catastrophic forgetting and adversarial attacks. A novel local learning rule is presented that performs online clustering with a maximum limit of the number of cluster to be found rather than a fixed cluster count. Instead of using orthogonal weight or output activation constraints, activation sparsity is achieved by mutual repulsion of lateral Gaussian neurons ensuring that multiple neuron centers cannot occupy the same location in the input domain. An update method is also presented for adjusting the widths of the Gaussian neurons in cases where the data samples can be represented by means and variances. The algorithms were applied on the MNIST and CIFAR-10 datasets to create filters capturing the input patterns of pixel patches of various sizes. The experimental results demonstrate stability in the learned parameters across a large number of training samples.
107,983
107,983
Understanding CNNs from excitations
For instance-level explanation, in order to reveal the relations between high-level semantics and detailed spatial information, this paper proposes a novel cognitive approach to neural networks, which named PANE. Under the guidance of PANE, a novel saliency map representation method, named IOM, is proposed for CNN-like models. We make the comparison with eight state-of-the-art saliency map representation methods. The experimental results show that IOM far outperforms baselines. The work of this paper may bring a new perspective to understand deep neural networks.
107,984
107,984
CCLF: A Contrastive-Curiosity-Driven Learning Framework for Sample-Efficient Reinforcement Learning
In reinforcement learning (RL), it is challenging to learn directly from high-dimensional observations, where data augmentation has recently been shown to remedy this via encoding invariances from raw pixels. Nevertheless, we empirically find that not all samples are equally important and hence simply injecting more augmented inputs may instead cause instability in Q-learning. In this paper, we approach this problem systematically by developing a model-agnostic Contrastive-Curiosity-Driven Learning Framework (CCLF), which can fully exploit sample importance and improve learning efficiency in a self-supervised manner. Facilitated by the proposed contrastive curiosity, CCLF is capable of prioritizing the experience replay, selecting the most informative augmented inputs, and more importantly regularizing the Q-function as well as the encoder to concentrate more on under-learned data. Moreover, it encourages the agent to explore with a curiosity-based reward. As a result, the agent can focus on more informative samples and learn representation invariances more efficiently, with significantly reduced augmented inputs. We apply CCLF to several base RL algorithms and evaluate on the DeepMind Control Suite, Atari, and MiniGrid benchmarks, where our approach demonstrates superior sample efficiency and learning performances compared with other state-of-the-art methods.
107,985
107,985
BERTops: Studying BERT Representations under a Topological Lens
Proposing scoring functions to effectively understand, analyze and learn various properties of high dimensional hidden representations of large-scale transformer models like BERT can be a challenging task. In this work, we explore a new direction by studying the topological features of BERT hidden representations using persistent homology (PH). We propose a novel scoring function named "persistence scoring function (PSF)" which: (i) accurately captures the homology of the high-dimensional hidden representations and correlates well with the test set accuracy of a wide range of datasets and outperforms existing scoring metrics, (ii) captures interesting post fine-tuning "per-class" level properties from both qualitative and quantitative viewpoints, (iii) is more stable to perturbations as compared to the baseline functions, which makes it a very robust proxy, and (iv) finally, also serves as a predictor of the attack success rates for a wide category of black-box and white-box adversarial attack methods. Our extensive correlation experiments demonstrate the practical utility of PSF on various NLP tasks relevant to BERT.
107,986
107,986
Wireless LAN sensing with smart antennas
The paper targets the problem of human motion detection using Wireless Local Area Network devices (WiFi) equipped with pattern reconfigurable antennas. Motion sensing is obtained by monitoring the body-induced alterations of the ambient WiFi signals originated from smart antennas supporting the beam-steering technology, thus allowing to channelize the antenna radiation pattern to pre-defined spots of interest. We first discuss signal and Channel State Information (CSI) processing and sanitization. Next, we describe the motion detection algorithm based on Angle-of-Arrival (AoA) monitoring. Proposed algorithms are validated experimentally inside a large size smart home environment.
107,987
107,987
Cross Cryptocurrency Relationship Mining for Bitcoin Price Prediction
Blockchain finance has become a part of the world financial system, most typically manifested in the attention to the price of Bitcoin. However, a great deal of work is still limited to using technical indicators to capture Bitcoin price fluctuation, with little consideration of historical relationships and interactions between related cryptocurrencies. In this work, we propose a generic Cross-Cryptocurrency Relationship Mining module, named C2RM, which can effectively capture the synchronous and asynchronous impact factors between Bitcoin and related Altcoins. Specifically, we utilize the Dynamic Time Warping algorithm to extract the lead-lag relationship, yielding Lead-lag Variance Kernel, which will be used for aggregating the information of Altcoins to form relational impact factors. Comprehensive experimental results demonstrate that our C2RM can help existing price prediction methods achieve significant performance improvement, suggesting the effectiveness of Cross-Cryptocurrency interactions on benefitting Bitcoin price prediction.
107,988
107,988
A Sharp Memory-Regret Trade-Off for Multi-Pass Streaming Bandits
The stochastic $K$-armed bandit problem has been studied extensively due to its applications in various domains ranging from online advertising to clinical trials. In practice however, the number of arms can be very large resulting in large memory requirements for simultaneously processing them. In this paper we consider a streaming setting where the arms are presented in a stream and the algorithm uses limited memory to process these arms. Here, the goal is not only to minimize regret, but also to do so in minimal memory. Previous algorithms for this problem operate in one of the two settings: they either use $\Omega(\log \log T)$ passes over the stream (Rathod, 2021; Chaudhuri and Kalyanakrishnan, 2020; Liau et al., 2018), or just a single pass (Maiti et al., 2021). In this paper we study the trade-off between memory and regret when $B$ passes over the stream are allowed, for any $B \geq 1$, and establish tight regret upper and lower bounds for any $B$-pass algorithm. Our results uncover a surprising *sharp transition phenomenon*: $O(1)$ memory is sufficient to achieve $\widetilde\Theta\Big(T^{\frac{1}{2} + \frac{1}{2^{B+2}-2}}\Big)$ regret in $B$ passes, and increasing the memory to any quantity that is $o(K)$ has almost no impact on further reducing this regret, unless we use $\Omega(K)$ memory. Our main technical contribution is our lower bound which requires the use of information-theoretic techniques as well as ideas from round elimination to show that the *residual problem* remains challenging over subsequent passes.
107,989
107,989
A walk through of time series analysis on quantum computers
Because of the rotational components on quantum circuits, some quantum neural networks based on variational circuits can be considered equivalent to the classical Fourier networks. In addition, they can be used to predict Fourier coefficients of continuous functions. Time series data indicates a state of a variable in time. Since some time series data can be also considered as continuous functions, we can expect quantum machine learning models to do do many data analysis tasks successfully on time series data. Therefore, it is important to investigate new quantum logics for temporal data processing and analyze intrinsic relationships of data on quantum computers. In this paper, we go through the quantum analogues of classical data preprocessing and forecasting with ARIMA models by using simple quantum operators requiring a few number of quantum gates. Then we discuss future directions and some of the tools/algorithms that can be used for temporal data analysis on quantum computers.
107,990
107,990
GMSS: Graph-Based Multi-Task Self-Supervised Learning for EEG Emotion Recognition
Previous electroencephalogram (EEG) emotion recognition relies on single-task learning, which may lead to overfitting and learned emotion features lacking generalization. In this paper, a graph-based multi-task self-supervised learning model (GMSS) for EEG emotion recognition is proposed. GMSS has the ability to learn more general representations by integrating multiple self-supervised tasks, including spatial and frequency jigsaw puzzle tasks, and contrastive learning tasks. By learning from multiple tasks simultaneously, GMSS can find a representation that captures all of the tasks thereby decreasing the chance of overfitting on the original task, i.e., emotion recognition task. In particular, the spatial jigsaw puzzle task aims to capture the intrinsic spatial relationships of different brain regions. Considering the importance of frequency information in EEG emotional signals, the goal of the frequency jigsaw puzzle task is to explore the crucial frequency bands for EEG emotion recognition. To further regularize the learned features and encourage the network to learn inherent representations, contrastive learning task is adopted in this work by mapping the transformed data into a common feature space. The performance of the proposed GMSS is compared with several popular unsupervised and supervised methods. Experiments on SEED, SEED-IV, and MPED datasets show that the proposed model has remarkable advantages in learning more discriminative and general features for EEG emotional signals.
107,991
107,991
Data Justice in Practice: A Guide for Developers
The Advancing Data Justice Research and Practice project aims to broaden understanding of the social, historical, cultural, political, and economic forces that contribute to discrimination and inequity in contemporary ecologies of data collection, governance, and use. This is the consultation draft of a guide for developers and organisations, which are producing, procuring, or using data-intensive technologies.In the first section, we introduce the field of data justice, from its early discussions to more recent proposals to relocate understandings of what data justice means. This section includes a description of the six pillars of data justice around which this guidance revolves. Next, to support developers in designing, developing, and deploying responsible and equitable data-intensive and AI/ML systems, we outline the AI/ML project lifecycle through a sociotechnical lens. To support the operationalisation data justice throughout the entirety of the AI/ML lifecycle and within data innovation ecosystems, we then present five overarching principles of responsible, equitable, and trustworthy data research and innovation practices, the SAFE-D principles-Safety, Accountability, Fairness, Explainability, and Data Quality, Integrity, Protection, and Privacy. The final section presents guiding questions that will help developers both address data justice issues throughout the AI/ML lifecycle and engage in reflective innovation practices that ensure the design, development, and deployment of responsible and equitable data-intensive and AI/ML systems.
107,992
107,992
A Survey on Uncertainty Toolkits for Deep Learning
The success of deep learning (DL) fostered the creation of unifying frameworks such as tensorflow or pytorch as much as it was driven by their creation in return. Having common building blocks facilitates the exchange of, e.g., models or concepts and makes developments easier replicable. Nonetheless, robust and reliable evaluation and assessment of DL models has often proven challenging. This is at odds with their increasing safety relevance, which recently culminated in the field of "trustworthy ML". We believe that, among others, further unification of evaluation and safeguarding methodologies in terms of toolkits, i.e., small and specialized framework derivatives, might positively impact problems of trustworthiness as well as reproducibility. To this end, we present the first survey on toolkits for uncertainty estimation (UE) in DL, as UE forms a cornerstone in assessing model reliability. We investigate 11 toolkits with respect to modeling and evaluation capabilities, providing an in-depth comparison for the three most promising ones, namely Pyro, Tensorflow Probability, and Uncertainty Quantification 360. While the first two provide a large degree of flexibility and seamless integration into their respective framework, the last one has the larger methodological scope.
107,993
107,993
RANG: A Residual-based Adaptive Node Generation Method for Physics-Informed Neural Networks
Learning solutions of partial differential equations (PDEs) with Physics-Informed Neural Networks (PINNs) is an attractive alternative approach to traditional solvers due to its flexibility and ease of incorporating observed data. Despite the success of PINNs in accurately solving a wide variety of PDEs, the method still requires improvements in terms of computational efficiency. One possible improvement idea is to optimize the generation of training point sets. Residual-based adaptive sampling and quasi-uniform sampling approaches have been each applied to improve the training effects of PINNs, respectively. To benefit from both methods, we propose the Residual-based Adaptive Node Generation (RANG) approach for efficient training of PINNs, which is based on a variable density nodal distribution method for RBF-FD. The method is also enhanced by a memory mechanism to further improve training stability. We conduct experiments on three linear PDEs and three nonlinear PDEs with various node generation methods, through which the accuracy and efficiency of the proposed method compared to the predominant uniform sampling approach is verified numerically.
107,994
107,994
Markov Abstractions for PAC Reinforcement Learning in Non-Markov Decision Processes
Our work aims at developing reinforcement learning algorithms that do not rely on the Markov assumption. We consider the class of Non-Markov Decision Processes where histories can be abstracted into a finite set of states while preserving the dynamics. We call it a Markov abstraction since it induces a Markov Decision Process over a set of states that encode the non-Markov dynamics. This phenomenon underlies the recently introduced Regular Decision Processes (as well as POMDPs where only a finite number of belief states is reachable). In all such kinds of decision process, an agent that uses a Markov abstraction can rely on the Markov property to achieve optimal behaviour. We show that Markov abstractions can be learned during reinforcement learning. Our approach combines automata learning and classic reinforcement learning. For these two tasks, standard algorithms can be employed. We show that our approach has PAC guarantees when the employed algorithms have PAC guarantees, and we also provide an experimental evaluation.
107,995
107,995
A Change Dynamic Model for the Online Detection of Gradual Change
Changes in the statistical properties of a stochastic process are typically assumed to occur via change-points, which demark instantaneous moments of complete and total change in process behavior. In cases where these transitions occur gradually, this assumption can result in a reduced ability to properly identify and respond to process change. With this observation in mind, we introduce a novel change-dynamic model for the online detection of gradual change in a Bayesian framework, in which change-points are used within a hierarchical model to indicate moments of gradual change onset or termination. We apply this model to synthetic data and EEG readings drawn during epileptic seizure, where we find our change-dynamic model can enable faster and more accurate identification of gradual change than traditional change-point models allow.
107,996
107,996
Causal Discovery on the Effect of Antipsychotic Drugs on Delirium Patients in the ICU using Large EHR Dataset
Delirium occurs in about 80% cases in the Intensive Care Unit (ICU) and is associated with a longer hospital stay, increased mortality and other related issues. Delirium does not have any biomarker-based diagnosis and is commonly treated with antipsychotic drugs (APD). However, multiple studies have shown controversy over the efficacy or safety of APD in treating delirium. Since randomized controlled trials (RCT) are costly and time-expensive, we aim to approach the research question of the efficacy of APD in the treatment of delirium using retrospective cohort analysis. We plan to use the Causal inference framework to look for the underlying causal structure model, leveraging the availability of large observational data on ICU patients. To explore safety outcomes associated with APD, we aim to build a causal model for delirium in the ICU using large observational data sets connecting various covariates correlated with delirium. We utilized the MIMIC III database, an extensive electronic health records (EHR) dataset with 53,423 distinct hospital admissions. Our null hypothesis is: there is no significant difference in outcomes for delirium patients under different drug-group in the ICU. Through our exploratory, machine learning based and causal analysis, we had findings such as: mean length-of-stay and max length-of-stay is higher for patients in Haloperidol drug group, and haloperidol group has a higher rate of death in a year compared to other two-groups. Our generated causal model explicitly shows the functional relationships between different covariates. For future work, we plan to do time-varying analysis on the dataset.
107,997
107,997
AL-PINNs: Augmented Lagrangian relaxation method for Physics-Informed Neural Networks
Physics-Informed Neural Networks (PINNs) has become a prominent application of deep learning in scientific computation, as it is a powerful approximator of solutions to nonlinear partial differential equations (PDEs). There have been numerous attempts to facilitate the training process of PINNs by adjusting the weight of each component of the loss function, called adaptive loss balancing algorithms. In this paper, we propose an Augmented Lagrangian relaxation method for PINNs (AL-PINNs). We treat the initial and boundary conditions as constraints for the optimization problem of the PDE residual. By employing Augmented Lagrangian relaxation, the constrained optimization problem becomes a sequential max-min problem so that the learnable parameters $\lambda$'s adaptively balance each loss component. Our theoretical analysis reveals that the sequence of minimizers of the proposed loss functions converges to an actual solution for the Helmholtz, viscous Burgers, and Klein--Gordon equations. We demonstrate through various numerical experiments that AL-PINNs yields a much smaller relative error compared with that of state-of-the-art adaptive loss balancing algorithms.
107,998
107,998
Designing thermal radiation metamaterials via hybrid adversarial autoencoder and Bayesian optimization
Designing thermal radiation metamaterials is challenging especially for problems with high degrees of freedom and complex objective. In this letter, we have developed a hybrid materials informatics approach which combines the adversarial autoencoder and Bayesian optimization to design narrowband thermal emitters at different target wavelengths. With only several hundreds of training data sets, new structures with optimal properties can be quickly figured out in a compressed 2-dimensional latent space. This enables the optimal design by calculating far less than 0.001\% of the total candidate structures, which greatly decreases the design period and cost. The proposed design framework can be easily extended to other thermal radiation metamaterials design with higher dimensional features.
107,999
107,999
Meta Transfer Learning for Early Success Prediction in MOOCs
Despite the increasing popularity of massive open online courses (MOOCs), many suffer from high dropout and low success rates. Early prediction of student success for targeted intervention is therefore essential to ensure no student is left behind in a course. There exists a large body of research in success prediction for MOOCs, focusing mainly on training models from scratch for individual courses. This setting is impractical in early success prediction as the performance of a student is only known at the end of the course. In this paper, we aim to create early success prediction models that can be transferred between MOOCs from different domains and topics. To do so, we present three novel strategies for transfer: 1) pre-training a model on a large set of diverse courses, 2) leveraging the pre-trained model by including meta information about courses, and 3) fine-tuning the model on previous course iterations. Our experiments on 26 MOOCs with over 145,000 combined enrollments and millions of interactions show that models combining interaction data and course information have comparable or better performance than models which have access to previous iterations of the course. With these models, we aim to effectively enable educators to warm-start their predictions for new and ongoing courses.