Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
107,600
107,600
Encoding Cardiopulmonary Exercise Testing Time Series as Images for Classification using Convolutional Neural Network
Exercise testing has been available for more than a half-century and is a remarkably versatile tool for diagnostic and prognostic information of patients for a range of diseases, especially cardiovascular and pulmonary. With rapid advancements in technology, wearables, and learning algorithm in the last decade, its scope has evolved. Specifically, Cardiopulmonary exercise testing (CPX) is one of the most commonly used laboratory tests for objective evaluation of exercise capacity and performance levels in patients. CPX provides a non-invasive, integrative assessment of the pulmonary, cardiovascular, and skeletal muscle systems involving the measurement of gas exchanges. However, its assessment is challenging, requiring the individual to process multiple time series data points, leading to simplification to peak values and slopes. But this simplification can discard the valuable trend information present in these time series. In this work, we encode the time series as images using the Gramian Angular Field and Markov Transition Field and use it with a convolutional neural network and attention pooling approach for the classification of heart failure and metabolic syndrome patients. Using GradCAMs, we highlight the discriminative features identified by the model.
107,601
107,601
neuro2vec: Masked Fourier Spectrum Prediction for Neurophysiological Representation Learning
Extensive data labeling on neurophysiological signals is often prohibitively expensive or impractical, as it may require particular infrastructure or domain expertise. To address the appetite for data of deep learning methods, we present for the first time a Fourier-based modeling framework for self-supervised pre-training of neurophysiology signals. The intuition behind our approach is simple: frequency and phase distribution of neurophysiology signals reveal the underlying neurophysiological activities of the brain and muscle. Our approach first randomly masks out a portion of the input signal and then predicts the missing information from either spatiotemporal or the Fourier domain. Pre-trained models can be potentially used for downstream tasks such as sleep stage classification using electroencephalogram (EEG) signals and gesture recognition using electromyography (EMG) signals. Unlike contrastive-based methods, which strongly rely on carefully hand-crafted augmentations and siamese structure, our approach works reasonably well with a simple transformer encoder with no augmentation requirements. By evaluating our method on several benchmark datasets, including both EEG and EMG, we show that our modeling approach improves downstream neurophysiological related tasks by a large margin.
107,602
107,602
Investigating the Optimal Neural Network Parameters for Decoding
Neural Networks have been proved to work as decoders in telecommunications, so the ways of making it efficient will be investigated in this thesis. The different parameters to maximize the Neural Network Decoder's efficiency will be investigated. The parameters will be tested for inversion errors only.
107,603
107,603
Multi-task Deep Neural Networks for Massive MIMO CSI Feedback
Deep learning has been widely applied for the channel state information (CSI) feedback in frequency division duplexing (FDD) massive multiple-input multiple-output (MIMO) system. For the typical supervised training of the feedback model, the requirements of large amounts of task-specific labeled data can hardly be satisfied, and the huge training costs and storage usage of the model in multiple scenarios are hindrance for model application. In this letter, a multi-task learning-based approach is proposed to improve the feasibility of the feedback network. An encoder-shared feedback architecture and the corresponding training scheme are further proposed to facilitate the implementation of the multi-task learning approach. The experimental results indicate that the proposed multi-task learning approach can achieve comprehensive feedback performance with considerable reduction of training cost and storage usage of the feedback model.
107,604
107,604
A review of Federated Learning in Intrusion Detection Systems for IoT
Intrusion detection systems are evolving into intelligent systems that perform data analysis searching for anomalies in their environment. The development of deep learning technologies opened the door to build more complex and effective threat detection models. However, training those models may be computationally infeasible in most Internet of Things devices. Current approaches rely on powerful centralized servers that receive data from all their parties -- violating basic privacy constraints and substantially affecting response times and operational costs due to the huge communication overheads. To mitigate these issues, Federated Learning emerged as a promising approach where different agents collaboratively train a shared model, neither exposing training data to others nor requiring a compute-intensive centralized infrastructure. This paper focuses on the application of Federated Learning approaches in the field of Intrusion Detection. Both technologies are described in detail and current scientific progress is reviewed and categorized. Finally, the paper highlights the limitations present in recent works and presents some future directions for this technology.
107,605
107,605
Beyond Lipschitz: Sharp Generalization and Excess Risk Bounds for Full-Batch GD
We provide sharp path-dependent generalization and excess risk guarantees for the full-batch Gradient Descent (GD) algorithm on smooth losses (possibly non-Lipschitz, possibly nonconvex), under an interpolation regime. At the heart of our analysis is a new generalization error bound for deterministic symmetric algorithms, which implies that average output stability and a bounded expected optimization error at termination lead to generalization. This result shows that small generalization error occurs along the optimization path, and allows us to bypass Lipschitz or sub-Gaussian assumptions on the loss prevalent in previous works. For nonconvex, Polyak-Lojasiewicz (PL), convex and strongly convex losses, we show the explicit dependence of the generalization error in terms of the accumulated path-dependent optimization error, terminal optimization error, number of samples, and number of iterations. For nonconvex smooth losses, we prove that full-batch GD efficiently generalizes close to any stationary point at termination, under the proper choice of a decreasing step size. Further, if the loss is nonconvex but the objective is PL, we derive quadratically vanishing bounds on the generalization error and the corresponding excess risk, for a choice of a large constant step size. For (resp. strongly-) convex smooth losses, we prove that full-batch GD also generalizes for large constant step sizes, and achieves (resp. quadratically) small excess risk while training fast. In all cases, we close the generalization error gap, by showing matching generalization and optimization error rates. Our full-batch GD generalization error and excess risk bounds are strictly tighter than existing bounds for (stochastic) GD, when the loss is smooth (but possibly non-Lipschitz).
107,606
107,606
Event Detection Explorer: An Interactive Tool for Event Detection Exploration
Event Detection (ED) is an important task in natural language processing. In the past few years, many datasets have been introduced for advancing ED machine learning models. However, most of these datasets are under-explored because not many tools are available for people to study events, trigger words, and event mention instances systematically and efficiently. In this paper, we present an interactive and easy-to-use tool, namely ED Explorer, for ED dataset and model exploration. ED Explorer consists of an interactive web application, an API, and an NLP toolkit, which can help both domain experts and non-experts to better understand the ED task. We use ED Explorer to analyze a recent proposed large-scale ED datasets (referred to as MAVEN), and discover several underlying problems, including sparsity, label bias, label imbalance, and debatable annotations, which provide us with directions to improve the MAVEN dataset. The ED Explorer can be publicly accessed through http://edx.leafnlp.org/. The demonstration video is available here https://www.youtube.com/watch?v=6QPnxPwxg50.
107,607
107,607
Learning Value Functions from Undirected State-only Experience
This paper tackles the problem of learning value functions from undirected state-only experience (state transitions without action labels i.e. (s,s',r) tuples). We first theoretically characterize the applicability of Q-learning in this setting. We show that tabular Q-learning in discrete Markov decision processes (MDPs) learns the same value function under any arbitrary refinement of the action space. This theoretical result motivates the design of Latent Action Q-learning or LAQ, an offline RL method that can learn effective value functions from state-only experience. Latent Action Q-learning (LAQ) learns value functions using Q-learning on discrete latent actions obtained through a latent-variable future prediction model. We show that LAQ can recover value functions that have high correlation with value functions learned using ground truth actions. Value functions learned using LAQ lead to sample efficient acquisition of goal-directed behavior, can be used with domain-specific low-level controllers, and facilitate transfer across embodiments. Our experiments in 5 environments ranging from 2D grid world to 3D visual navigation in realistic environments demonstrate the benefits of LAQ over simpler alternatives, imitation learning oracles, and competing methods.
107,608
107,608
Focal Sparse Convolutional Networks for 3D Object Detection
Non-uniformed 3D sparse data, e.g., point clouds or voxels in different spatial positions, make contribution to the task of 3D object detection in different ways. Existing basic components in sparse convolutional networks (Sparse CNNs) process all sparse data, regardless of regular or submanifold sparse convolution. In this paper, we introduce two new modules to enhance the capability of Sparse CNNs, both are based on making feature sparsity learnable with position-wise importance prediction. They are focal sparse convolution (Focals Conv) and its multi-modal variant of focal sparse convolution with fusion, or Focals Conv-F for short. The new modules can readily substitute their plain counterparts in existing Sparse CNNs and be jointly trained in an end-to-end fashion. For the first time, we show that spatially learnable sparsity in sparse convolution is essential for sophisticated 3D object detection. Extensive experiments on the KITTI, nuScenes and Waymo benchmarks validate the effectiveness of our approach. Without bells and whistles, our results outperform all existing single-model entries on the nuScenes test benchmark at the paper submission time. Code and models are at https://github.com/dvlab-research/FocalsConv.
107,609
107,609
Meta-free few-shot learning via representation learning with weight averaging
Recent studies on few-shot classification using transfer learning pose challenges to the effectiveness and efficiency of episodic meta-learning algorithms. Transfer learning approaches are a natural alternative, but they are restricted to few-shot classification. Moreover, little attention has been on the development of probabilistic models with well-calibrated uncertainty from few-shot samples, except for some Bayesian episodic learning algorithms. To tackle the aforementioned issues, we propose a new transfer learning method to obtain accurate and reliable models for few-shot regression and classification. The resulting method does not require episodic meta-learning and is called meta-free representation learning (MFRL). MFRL first finds low-rank representation generalizing well on meta-test tasks. Given the learned representation, probabilistic linear models are fine-tuned with few-shot samples to obtain models with well-calibrated uncertainty. The proposed method not only achieves the highest accuracy on a wide range of few-shot learning benchmark datasets but also correctly quantifies the prediction uncertainty. In addition, weight averaging and temperature scaling are effective in improving the accuracy and reliability of few-shot learning in existing meta-learning algorithms with a wide range of learning paradigms and model architectures.
107,610
107,610
Coarse-to-fine Q-attention with Tree Expansion
Coarse-to-fine Q-attention enables sample-efficient robot manipulation by discretizing the translation space in a coarse-to-fine manner, where the resolution gradually increases at each layer in the hierarchy. Although effective, Q-attention suffers from "coarse ambiguity" - when voxelization is significantly coarse, it is not feasible to distinguish similar-looking objects without first inspecting at a finer resolution. To combat this, we propose to envision Q-attention as a tree that can be expanded and used to accumulate value estimates across the top-k voxels at each Q-attention depth. When our extension, Q-attention with Tree Expansion (QTE), replaces standard Q-attention in the Attention-driven Robot Manipulation (ARM) system, we are able to accomplish a larger set of tasks; especially on those that suffer from "coarse ambiguity". In addition to evaluating our approach across 12 RLBench tasks, we also show that the improved performance is visible in a real-world task involving small objects.
107,611
107,611
From One Hand to Multiple Hands: Imitation Learning for Dexterous Manipulation from Single-Camera Teleoperation
We propose to perform imitation learning for dexterous manipulation with multi-finger robot hand from human demonstrations, and transfer the policy to the real robot hand. We introduce a novel single-camera teleoperation system to collect the 3D demonstrations efficiently with only an iPad and a computer. One key contribution of our system is that we construct a customized robot hand for each user in the physical simulator, which is a manipulator resembling the same kinematics structure and shape of the operator's hand. This provides an intuitive interface and avoid unstable human-robot hand retargeting for data collection, leading to large-scale and high quality data. Once the data is collected, the customized robot hand trajectories can be converted to different specified robot hands (models that are manufactured) to generate training demonstrations. With imitation learning using our data, we show large improvement over baselines with multiple complex manipulation tasks. Importantly, we show our learned policy is significantly more robust when transferring to the real robot. More videos can be found in the https://yzqin.github.io/dex-teleop-imitation .
107,612
107,612
AI-Assisted Authentication: State of the Art, Taxonomy and Future Roadmap
Artificial Intelligence (AI) has found its applications in a variety of environments ranging from data science to cybersecurity. AI helps break through the limitations of traditional algorithms and provides more efficient and flexible methods for solving problems. In this paper, we focus on the applications of artificial intelligence in authentication, which is used in a wide range of scenarios including facial recognition to access buildings, keystroke dynamics to unlock smartphones. With the emerging AI-assisted authentication schemes, our comprehensive survey provides an overall understanding on a high level, which paves the way for future research in this area. In contrast to other relevant surveys, our research is the first of its kind to focus on the roles of AI in authentication.
107,613
107,613
One-shot Federated Learning without Server-side Training
Federated Learning (FL) has recently made significant progress as a new machine learning paradigm for privacy protection. Due to the high communication cost of traditional FL, one-shot federated learning is gaining popularity as a way to reduce communication cost between clients and the server. Most of the existing one-shot FL methods are based on Knowledge Distillation; however, distillation based approach requires an extra training phase and depends on publicly available data sets. In this work, we consider a novel and challenging setting: performing a single round of parameter aggregation on the local models without server-side training on a public data set. In this new setting, we propose an effective algorithm for Model Aggregation via Exploring Common Harmonized Optima (MA-Echo), which iteratively updates the parameters of all local models to bring them close to a common low-loss area on the loss surface, without harming performance on their own data sets at the same time. Compared to the existing methods, MA-Echo can work well even in extremely non-identical data distribution settings where the support categories of each local model have no overlapped labels with those of the others. We conduct extensive experiments on two popular image classification data sets to compare the proposed method with existing methods and demonstrate the effectiveness of MA-Echo, which clearly outperforms the state-of-the-arts.
107,614
107,614
Enhancing Privacy against Inversion Attacks in Federated Learning by using Mixing Gradients Strategies
Federated learning reduces the risk of information leakage, but remains vulnerable to attacks. We investigate how several neural network design decisions can defend against gradients inversion attacks. We show that overlapping gradients provides numerical resistance to gradient inversion on the highly vulnerable dense layer. Specifically, we propose to leverage batching to maximise mixing of gradients by choosing an appropriate loss function and drawing identical labels. We show that otherwise it is possible to directly recover all vectors in a mini-batch without any numerical optimisation due to the de-mixing nature of the cross entropy loss. To accurately assess data recovery, we introduce an absolute variation distance (AVD) metric for information leakage in images, derived from total variation. In contrast to standard metrics, e.g. Mean Squared Error or Structural Similarity Index, AVD offers a continuous metric for extracting information in noisy images. Finally, our empirical results on information recovery from various inversion attacks and training performance supports our defense strategies. These strategies are also shown to be useful for deep convolutional neural networks such as LeNET for image recognition. We hope that this study will help guide the development of further strategies that achieve a trustful federation policy.
107,615
107,615
Self-Supervised Information Bottleneck for Deep Multi-View Subspace Clustering
In this paper, we explore the problem of deep multi-view subspace clustering framework from an information-theoretic point of view. We extend the traditional information bottleneck principle to learn common information among different views in a self-supervised manner, and accordingly establish a new framework called Self-supervised Information Bottleneck based Multi-view Subspace Clustering (SIB-MSC). Inheriting the advantages from information bottleneck, SIB-MSC can learn a latent space for each view to capture common information among the latent representations of different views by removing superfluous information from the view itself while retaining sufficient information for the latent representations of other views. Actually, the latent representation of each view provides a kind of self-supervised signal for training the latent representations of other views. Moreover, SIB-MSC attempts to learn the other latent space for each view to capture the view-specific information by introducing mutual information based regularization terms, so as to further improve the performance of multi-view subspace clustering. To the best of our knowledge, this is the first work to explore information bottleneck for multi-view subspace clustering. Extensive experiments on real-world multi-view data demonstrate that our method achieves superior performance over the related state-of-the-art methods.
107,616
107,616
Identification of feasible pathway information for c-di-GMP binding proteins in cellulose production
In this paper, we utilize a machine learning approach to identify the significant pathways for c-di-GMP signaling proteins. The dataset involves gene counts from 12 pathways and 5 essential c-di-GMP binding domains for 1024 bacterial genomes. Two novel approaches, Least absolute shrinkage and selection operator (Lasso) and Random forests, have been applied for analyzing and modeling the dataset. Both approaches show that bacterial chemotaxis is the most essential pathway for c-di-GMP encoding domains. Though popular for feature selection, the strong regularization of Lasso method fails to associate any pathway to MshE domain. Results from the analysis may help to understand and emphasize the supporting pathways involved in bacterial cellulose production. These findings demonstrate the need for a chassis to restrict the behavior or functionality by deactivating the selective pathways in cellulose production.
107,617
107,617
Application of WGAN-GP in recommendation and Questioning the relevance of GAN-based approaches
Many neural-based recommender systems were proposed in recent years and part of them used Generative Adversarial Networks (GAN) to model user-item interactions. However, the exploration of Wasserstein GAN with Gradient Penalty (WGAN-GP) on recommendation has received relatively less scrutiny. In this paper, we focus on two questions: 1- Can we successfully apply WGAN-GP on recommendation and does this approach give an advantage compared to the best GAN models? 2- Are GAN-based recommender systems relevant? To answer the first question, we propose a recommender system based on WGAN-GP called CFWGAN-GP which is founded on a previous model (CFGAN). We successfully applied our method on real-world datasets on the top-k recommendation task and the empirical results show that it is competitive with state-of-the-art GAN approaches, but we found no evidence of significant advantage of using WGAN-GP instead of the original GAN, at least from the accuracy point of view. As for the second question, we conduct a simple experiment in which we show that a well-tuned conceptually simpler method outperforms GAN-based models by a considerable margin, questioning the use of such models.
107,618
107,618
Double Diffusion Maps and their Latent Harmonics for Scientific Computations in Latent Space
We introduce a data-driven approach to building reduced dynamical models through manifold learning; the reduced latent space is discovered using Diffusion Maps (a manifold learning technique) on time series data. A second round of Diffusion Maps on those latent coordinates allows the approximation of the reduced dynamical models. This second round enables mapping the latent space coordinates back to the full ambient space (what is called lifting); it also enables the approximation of full state functions of interest in terms of the reduced coordinates. In our work, we develop and test three different reduced numerical simulation methodologies, either through pre-tabulation in the latent space and integration on the fly or by going back and forth between the ambient space and the latent space. The data-driven latent space simulation results, based on the three different approaches, are validated through (a) the latent space observation of the full simulation through the Nystr\"om Extension formula, or through (b) lifting the reduced trajectory back to the full ambient space, via Latent Harmonics. Latent space modeling often involves additional regularization to favor certain properties of the space over others, and the mapping back to the ambient space is then constructed mostly independently from these properties; here, we use the same data-driven approach to construct the latent space and then map back to the ambient space.
107,619
107,619
Multi stain graph fusion for multimodal integration in pathology
In pathology, tissue samples are assessed using multiple staining techniques to enhance contrast in unique histologic features. In this paper, we introduce a multimodal CNN-GNN based graph fusion approach that leverages complementary information from multiple non-registered histopathology images to predict pathologic scores. We demonstrate this approach in nonalcoholic steatohepatitis (NASH) by predicting CRN fibrosis stage and NAFLD Activity Score (NAS). Primary assessment of NASH typically requires liver biopsy evaluation on two histological stains: Trichrome (TC) and hematoxylin and eosin (H&E). Our multimodal approach learns to extract complementary information from TC and H&E graphs corresponding to each stain while simultaneously learning an optimal policy to combine this information. We report up to 20% improvement in predicting fibrosis stage and NAS component grades over single-stain modeling approaches, measured by computing linearly weighted Cohen's kappa between machine-derived vs. pathologist consensus scores. Broadly, this paper demonstrates the value of leveraging diverse pathology images for improved ML-powered histologic assessment.
107,620
107,620
Data Bootstrapping Approaches to Improve Low Resource Abusive Language Detection for Indic Languages
Abusive language is a growing concern in many social media platforms. Repeated exposure to abusive speech has created physiological effects on the target users. Thus, the problem of abusive language should be addressed in all forms for online peace and safety. While extensive research exists in abusive speech detection, most studies focus on English. Recently, many smearing incidents have occurred in India, which provoked diverse forms of abusive speech in online space in various languages based on the geographic location. Therefore it is essential to deal with such malicious content. In this paper, to bridge the gap, we demonstrate a large-scale analysis of multilingual abusive speech in Indic languages. We examine different interlingual transfer mechanisms and observe the performance of various multilingual models for abusive speech detection for eight different Indic languages. We also experiment to show how robust these models are on adversarial attacks. Finally, we conduct an in-depth error analysis by looking into the models' misclassified posts across various settings. We have made our code and models public for other researchers.
107,621
107,621
An Empirical Study of the Occurrence of Heavy-Tails in Training a ReLU Gate
A particular direction of recent advance about stochastic deep-learning algorithms has been about uncovering a rather mysterious heavy-tailed nature of the stationary distribution of these algorithms, even when the data distribution is not so. Moreover, the heavy-tail index is known to show interesting dependence on the input dimension of the net, the mini-batch size and the step size of the algorithm. In this short note, we undertake an experimental study of this index for S.G.D. while training a $\relu$ gate (in the realizable and in the binary classification setup) and for a variant of S.G.D. that was proven in Karmakar and Mukherjee (2022) for ReLU realizable data. From our experiments we conjecture that these two algorithms have similar heavy-tail behaviour on any data where the latter can be proven to converge. Secondly, we demonstrate that the heavy-tail index of the late time iterates in this model scenario has strikingly different properties than either what has been proven for linear hypothesis classes or what has been previously demonstrated for large nets.
107,622
107,622
SoFaiR: Single Shot Fair Representation Learning
To avoid discriminatory uses of their data, organizations can learn to map them into a representation that filters out information related to sensitive attributes. However, all existing methods in fair representation learning generate a fairness-information trade-off. To achieve different points on the fairness-information plane, one must train different models. In this paper, we first demonstrate that fairness-information trade-offs are fully characterized by rate-distortion trade-offs. Then, we use this key result and propose SoFaiR, a single shot fair representation learning method that generates with one trained model many points on the fairness-information plane. Besides its computational saving, our single-shot approach is, to the extent of our knowledge, the first fair representation learning method that explains what information is affected by changes in the fairness / distortion properties of the representation. Empirically, we find on three datasets that SoFaiR achieves similar fairness-information trade-offs as its multi-shot counterparts.
107,623
107,623
Process Knowledge-infused Learning for Suicidality Assessment on Social Media
Improving the performance and natural language explanations of deep learning algorithms is a priority for adoption by humans in the real world. In several domains, such as healthcare, such technology has significant potential to reduce the burden on humans by providing quality assistance at scale. However, current methods rely on the traditional pipeline of predicting labels from data, thus completely ignoring the process and guidelines used to obtain the labels. Furthermore, post hoc explanations on the data to label prediction using explainable AI (XAI) models, while satisfactory to computer scientists, leave much to be desired to the end-users due to lacking explanations of the process in terms of human-understandable concepts. We \textit{introduce}, \textit{formalize}, and \textit{develop} a novel Artificial Intelligence (A) paradigm -- Process Knowledge-infused Learning (PK-iL). PK-iL utilizes a structured process knowledge that explicitly explains the underlying prediction process that makes sense to end-users. The qualitative human evaluation confirms through a annotator agreement of 0.72, that humans are understand explanations for the predictions. PK-iL also performs competitively with the state-of-the-art (SOTA) baselines.
107,624
107,624
Learning Eco-Driving Strategies at Signalized Intersections
Signalized intersections in arterial roads result in persistent vehicle idling and excess accelerations, contributing to fuel consumption and CO2 emissions. There has thus been a line of work studying eco-driving control strategies to reduce fuel consumption and emission levels at intersections. However, methods to devise effective control strategies across a variety of traffic settings remain elusive. In this paper, we propose a reinforcement learning (RL) approach to learn effective eco-driving control strategies. We analyze the potential impact of a learned strategy on fuel consumption, CO2 emission, and travel time and compare with naturalistic driving and model-based baselines. We further demonstrate the generalizability of the learned policies under mixed traffic scenarios. Simulation results indicate that scenarios with 100% penetration of connected autonomous vehicles (CAV) may yield as high as 18% reduction in fuel consumption and 25% reduction in CO2 emission levels while even improving travel speed by 20%. Furthermore, results indicate that even 25% CAV penetration can bring at least 50% of the total fuel and emission reduction benefits.
107,625
107,625
Toward Policy Explanations for Multi-Agent Reinforcement Learning
Advances in multi-agent reinforcement learning (MARL) enable sequential decision making for a range of exciting multi-agent applications such as cooperative AI and autonomous driving. Explaining agent decisions is crucial for improving system transparency, increasing user satisfaction, and facilitating human-agent collaboration. However, existing works on explainable reinforcement learning mostly focus on the single-agent setting and are not suitable for addressing challenges posed by multi-agent environments. We present novel methods to generate two types of policy explanations for MARL: (i) policy summarization about the agent cooperation and task sequence, and (ii) language explanations to answer queries about agent behavior. Experimental results on three MARL domains demonstrate the scalability of our methods. A user study shows that the generated explanations significantly improve user performance and increase subjective ratings on metrics such as user satisfaction.
107,626
107,626
Novel Applications for VAE-based Anomaly Detection Systems
The recent rise in deep learning technologies fueled innovation and boosted scientific research. Their achievements enabled new research directions for deep generative modeling (DGM), an increasingly popular approach that can create novel and unseen data, starting from a given data set. As the technology shows promising applications, many ethical issues also arise. For example, their misuse can enable disinformation campaigns and powerful phishing attempts. Research also indicates different biases affect deep learning models, leading to social issues such as misrepresentation. In this work, we formulate a novel setting to deal with similar problems, showing that a repurposed anomaly detection system effectively generates novel data, avoiding generating specified unwanted data. We propose Variational Auto-encoding Binary Classifiers (V-ABC): a novel model that repurposes and extends the Auto-encoding Binary Classifier (ABC) anomaly detector, using the Variational Auto-encoder (VAE). We survey the limitations of existing approaches and explore many tools to show the model's inner workings in an interpretable way. This proposal has excellent potential for generative applications: models that rely on user-generated data could automatically filter out unwanted content, such as offensive language, obscene images, and misleading information.
107,627
107,627
RAMBO-RL: Robust Adversarial Model-Based Offline Reinforcement Learning
Offline reinforcement learning (RL) aims to find near-optimal policies from logged data without further environment interaction. Model-based algorithms, which learn a model of the environment from the dataset and perform conservative policy optimisation within that model, have emerged as a promising approach to this problem. In this work, we present Robust Adversarial Model-Based Offline RL (RAMBO), a novel approach to model-based offline RL. To achieve conservatism, we formulate the problem as a two-player zero sum game against an adversarial environment model. The model is trained to minimise the value function while still accurately predicting the transitions in the dataset, forcing the policy to act conservatively in areas not covered by the dataset. To approximately solve the two-player game, we alternate between optimising the policy and adversarially optimising the model. The problem formulation that we address is theoretically grounded, resulting in a probably approximately correct (PAC) performance guarantee and a pessimistic value function which lower bounds the value function in the true environment. We evaluate our approach on widely studied offline RL benchmarks, and demonstrate that it outperforms existing state-of-the-art baselines.
107,628
107,628
Fast Aquatic Swimmer Optimization with Differentiable Projective Dynamics and Neural Network Hydrodynamic Models
Aquatic locomotion is a classic fluid-structure interaction (FSI) problem of interest to biologists and engineers. Solving the fully coupled FSI equations for incompressible Navier-Stokes and finite elasticity is computationally expensive. Optimizing robotic swimmer design within such a system generally involves cumbersome, gradient-free procedures on top of the already costly simulation. To address this challenge we present a novel, fully differentiable hybrid approach to FSI that combines a 2D direct numerical simulation for the deformable solid structure of the swimmer and a physics-constrained neural network surrogate to capture hydrodynamic effects of the fluid. For the deformable simulation of the swimmer's body, we use state-of-the-art techniques from the field of computer graphics to speed up the finite-element method (FEM). For the fluid simulation, we use a U-Net architecture trained with a physics-based loss function to predict the flow field at each time step. The pressure and velocity field outputs from the neural network are sampled around the boundary of our swimmer using an immersed boundary method (IBM) to compute its swimming motion accurately and efficiently. We demonstrate the computational efficiency and differentiability of our hybrid simulator on a 2D carangiform swimmer. Since both the solid simulator and the hydrodynamics model are automatically differentiable, we obtain a fully differentiable FSI simulator that can be used for computational co-design of geometry and controls for rigid and soft bodies immersed in fluids, such as minimizing drag, maximizing speed, or maximizing efficiency via direct gradient-based optimization.
107,629
107,629
Surrogate Assisted Evolutionary Multi-objective Optimisation applied to a Pressure Swing Adsorption system
Chemical plant design and optimisation have proven challenging due to the complexity of these real-world systems. The resulting complexity translates into high computational costs for these systems' mathematical formulations and simulation models. Research has illustrated the benefits of using machine learning surrogate models as substitutes for computationally expensive models during optimisation. This paper extends recent research into optimising chemical plant design and operation. The study further explores Surrogate Assisted Genetic Algorithms (SA-GA) in more complex variants of the original plant design and optimisation problems, such as the inclusion of parallel and feedback components. The novel extension to the original algorithm proposed in this study, Surrogate Assisted NSGA-\Romannum{2} (SA-NSGA), was tested on a popular literature case, the Pressure Swing Adsorption (PSA) system. We further provide extensive experimentation, comparing various meta-heuristic optimisation techniques and numerous machine learning models as surrogates. The results for both sets of systems illustrate the benefits of using Genetic Algorithms as an optimisation framework for complex chemical plant system design and optimisation for both single and multi-objective scenarios. We confirm that Random Forest surrogate assisted Evolutionary Algorithms can be scaled to increasingly complex chemical systems with parallel and feedback components. We further find that combining a Genetic Algorithm framework with Machine Learning Surrogate models as a substitute for long-running simulation models yields significant computational efficiency improvements, 1.7 - 1.84 times speedup for the increased complexity examples and a 2.7 times speedup for the Pressure Swing Adsorption system.
107,630
107,630
Protein 3D structure-based neural networks highly improve the accuracy in compound-protein binding affinity prediction
Theoretically, the accuracy of computational models in predicting compound-protein binding affinities (CPAs) could be improved by the introduction of protein 3D structure information. However, most of these models still suffer from a low accuracy due to the lack of an efficient approach to encode informative protein features. The major challenge is how to combine the multi-modal information such as the residue sequence of the protein, residue atom coordinates and the torsion angles. To tackle this problem, we develop Fast Evolutional Attention and Thoroughgoing-graph Neural Networks (FeatNN) to facilitate the application of protein 3D structure information for predicting CPAs. Specifically, we established a novel end-to-end architecture to jointly embed torsion matrix, discrete distance matrix, and sequence information of protein and extract compound features with deep graph convolution layers. In addition, a new pairwise mapping attention mechanism is introduced to comprehensively learn potential interaction information between proteins and compounds. FeatNN considerably outperforms various state-of-the-art baselines in CPA prediction with the Pearson value elevated by about 35.7%. Thus, FeatNN provides an outstanding method for highly accurate CPA prediction and facilitates high-throughput virtual screening of drug candidates.
107,631
107,631
hate-alert@DravidianLangTech-ACL2022: Ensembling Multi-Modalities for Tamil TrollMeme Classification
Social media platforms often act as breeding grounds for various forms of trolling or malicious content targeting users or communities. One way of trolling users is by creating memes, which in most cases unites an image with a short piece of text embedded on top of it. The situation is more complex for multilingual(e.g., Tamil) memes due to the lack of benchmark datasets and models. We explore several models to detect Troll memes in Tamil based on the shared task, "Troll Meme Classification in DravidianLangTech2022" at ACL-2022. We observe while the text-based model MURIL performs better for Non-troll meme classification, the image-based model VGG16 performs better for Troll-meme classification. Further fusing these two modalities help us achieve stable outcomes in both classes. Our fusion model achieved a 0.561 weighted average F1 score and ranked second in this task.
107,632
107,632
Self-scalable Tanh (Stan): Faster Convergence and Better Generalization in Physics-informed Neural Networks
Physics-informed Neural Networks (PINNs) are gaining attention in the engineering and scientific literature for solving a range of differential equations with applications in weather modeling, healthcare, manufacturing, etc. Poor scalability is one of the barriers to utilizing PINNs for many real-world problems. To address this, a Self-scalable tanh (Stan) activation function is proposed for the PINNs. The proposed Stan function is smooth, non-saturating, and has a trainable parameter. During training, it can allow easy flow of gradients to compute the required derivatives and also enable systematic scaling of the input-output mapping. It is shown theoretically that the PINNs with the proposed Stan function have no spurious stationary points when using gradient descent algorithms. The proposed Stan is tested on a number of numerical studies involving general regression problems. It is subsequently used for solving multiple forward problems, which involve second-order derivatives and multiple dimensions, and an inverse problem where the thermal diffusivity of a rod is predicted with heat conduction data. These case studies establish empirically that the Stan activation function can achieve better training and more accurate predictions than the existing activation functions in the literature.
107,633
107,633
Zero-Touch Network on Industrial IoT: An End-to-End Machine Learning Approach
Industry 4.0-enabled smart factory is expected to realize the next revolution for manufacturers. Although artificial intelligence (AI) technologies have improved productivity, current use cases belong to small-scale and single-task operations. To unbound the potential of smart factory, this paper develops zero-touch network systems for intelligent manufacturing and facilitates distributed AI applications in both training and inferring stages in a large-scale manner. The open radio access network (O-RAN) architecture is first introduced for the zero-touch platform to enable globally controlling communications and computation infrastructure capability in the field. The designed serverless framework allows intelligent and efficient learning assignments and resource allocations. Hence, requested learning tasks can be assigned to appropriate robots, and the underlying infrastructure can be used to support the learning tasks without expert knowledge. Moreover, due to the proposed network system's flexibility, powerful AI-enabled networking algorithms can be utilized to ensure service-level agreements and superior performances for factory workloads. Finally, three open research directions of backward compatibility, end-to-end enhancements, and cybersecurity are discussed for zero-touch smart factory.
107,634
107,634
Rate-Constrained Remote Contextual Bandits
We consider a rate-constrained contextual multi-armed bandit (RC-CMAB) problem, in which a group of agents are solving the same contextual multi-armed bandit (CMAB) problem. However, the contexts are observed by a remotely connected entity, i.e., the decision-maker, that updates the policy to maximize the returned rewards, and communicates the arms to be sampled by the agents to a controller over a rate-limited communications channel. This framework can be applied to personalized ad placement, whenever the content owner observes the website visitors, and hence has the context, but needs to transmit the ads to be shown to a controller that is in charge of placing the marketing content. Consequently, the rate-constrained CMAB (RC-CMAB) problem requires the study of lossy compression schemes for the policy to be employed whenever the constraint on the channel rate does not allow the uncompressed transmission of the decision-maker's intentions. We characterize the fundamental information theoretic limits of this problem by letting the number of agents go to infinity, and study the regret that can be achieved, identifying the two distinct rate regions leading to linear and sub-linear regrets respectively. We then analyze the optimal compression scheme achievable in the limit with infinite agents, when using the forward and reverse KL divergence as distortion metric. Based on this, we also propose a practical coding scheme, and provide numerical results.
107,635
107,635
Evaluation of Self-taught Learning-based Representations for Facial Emotion Recognition
This work describes different strategies to generate unsupervised representations obtained through the concept of self-taught learning for facial emotion recognition (FER). The idea is to create complementary representations promoting diversity by varying the autoencoders' initialization, architecture, and training data. SVM, Bagging, Random Forest, and a dynamic ensemble selection method are evaluated as final classification methods. Experimental results on Jaffe and Cohn-Kanade datasets using a leave-one-subject-out protocol show that FER methods based on the proposed diverse representations compare favorably against state-of-the-art approaches that also explore unsupervised feature learning.
107,636
107,636
Gaussian Kernel Variance For an Adaptive Learning Method on Signals Over Graphs
This paper discusses a special kind of a simple yet possibly powerful algorithm, called single-kernel Gradraker (SKG), which is an adaptive learning method predicting unknown nodal values in a network using known nodal values and the network structure. We aim to find out how to configure the special kind of the model in applying the algorithm. To be more specific, we focus on SKG with a Gaussian kernel and specify how to find a suitable variance for the kernel. To do so, we introduce two variables with which we are able to set up requirements on the variance of the Gaussian kernel to achieve (near-) optimal performance and can better understand how SKG works. Our contribution is that we introduce two variables as analysis tools, illustrate how predictions will be affected under different Gaussian kernels, and provide an algorithm finding a suitable Gaussian kernel for SKG with knowledge about the training network. Simulation results on real datasets are provided.
107,637
107,637
Meta-Learning Based Early Fault Detection for Rolling Bearings via Few-Shot Anomaly Detection
Early fault detection (EFD) of rolling bearings can recognize slight deviation of the health states and contribute to the stability of mechanical systems. In practice, very limited target bearing data are available to conduct EFD, which makes it hard to adapt to the EFD task of new bearings. To address this problem, many transfer learning based EFD methods utilize historical data to learn transferable domain knowledge and conduct early fault detection on new target bearings. However, most existing methods only consider the distribution drift across different working conditions but ignore the difference between bearings under the same working condition, which is called Unit-to-Unit Variability (UtUV). The setting of EFD with limited target data considering UtUV can be formulated as a Few-shot Anomaly Detection task. Therefore, this paper proposes a novel EFD method based on meta-learning considering UtUV. The proposed method can learn a generic metric based on Relation Network (RN) to measure the similarity between normal data and the new arrival target bearing data. Besides, the proposed method utilizes a health state embedding strategy to decrease false alarms. The performance of proposed method is tested on two bearing datasets. The results show that the proposed method can detect incipient faults earlier than the baselines with lower false alarms.
107,638
107,638
Generating Examples From CLI Usage: Can Transformers Help?
Continuous evolution in modern software often causes documentation, tutorials, and examples to be out of sync with changing interfaces and frameworks. Relying on outdated documentation and examples can lead programs to fail or be less efficient or even less secure. In response, programmers need to regularly turn to other resources on the web such as StackOverflow for examples to guide them in writing software. We recognize that this inconvenient, error-prone, and expensive process can be improved by using machine learning applied to software usage data. In this paper, we present our practical system which uses machine learning on large-scale telemetry data and documentation corpora, generating appropriate and complex examples that can be used to improve documentation. We discuss both feature-based and transformer-based machine learning approaches and demonstrate that our system achieves 100% coverage for the used functionalities in the product, providing up-to-date examples upon every release and reduces the numbers of PRs submitted by software owners writing and editing documentation by >68%. We also share valuable lessons learnt during the 3 years that our production quality system has been deployed for Azure Cloud Command Line Interface (Azure CLI).
107,639
107,639
Generating Self-Serendipity Preference in Recommender Systems for Addressing Cold Start Problems
Classical accuracy-oriented Recommender Systems (RSs) typically face the cold-start problem and the filter-bubble problem when users suffer the familiar, repeated, and even predictable recommendations, making them boring and unsatisfied. To address the above issues, serendipity-oriented RSs are proposed to recommend appealing and valuable items significantly deviating from users' historical interactions and thus satisfying them by introducing unexplored but relevant candidate items to them. In this paper, we devise a novel serendipity-oriented recommender system (\textbf{G}enerative \textbf{S}elf-\textbf{S}erendipity \textbf{R}ecommender \textbf{S}ystem, \textbf{GS$^2$-RS}) that generates users' self-serendipity preferences to enhance the recommendation performance. Specifically, this model extracts users' interest and satisfaction preferences, generates virtual but convincible neighbors' preferences from themselves, and achieves their self-serendipity preference. Then these preferences are injected into the rating matrix as additional information for RS models. Note that GS$^2$-RS can not only tackle the cold-start problem but also provides diverse but relevant recommendations to relieve the filter-bubble problem. Extensive experiments on benchmark datasets illustrate that the proposed GS$^2$-RS model can significantly outperform the state-of-the-art baseline approaches in serendipity measures with a stable accuracy performance.
107,640
107,640
SCGC : Self-Supervised Contrastive Graph Clustering
Graph clustering discovers groups or communities within networks. Deep learning methods such as autoencoders (AE) extract effective clustering and downstream representations but cannot incorporate rich structural information. While Graph Neural Networks (GNN) have shown great success in encoding graph structure, typical GNNs based on convolution or attention variants suffer from over-smoothing, noise, heterophily, are computationally expensive and typically require the complete graph being present. Instead, we propose Self-Supervised Contrastive Graph Clustering (SCGC), which imposes graph-structure via contrastive loss signals to learn discriminative node representations and iteratively refined soft cluster labels. We also propose SCGC*, with a more effective, novel, Influence Augmented Contrastive (IAC) loss to fuse richer structural information, and half the original model parameters. SCGC(*) is faster with simple linear units, completely eliminate convolutions and attention of traditional GNNs, yet efficiently incorporates structure. It is impervious to layer depth and robust to over-smoothing, incorrect edges and heterophily. It is scalable by batching, a limitation in many prior GNN models, and trivially parallelizable. We obtain significant improvements over state-of-the-art on a wide range of benchmark graph datasets, including images, sensor data, text, and citation networks efficiently. Specifically, 20% on ARI and 18% on NMI for DBLP; overall 55% reduction in training time and overall, 81% reduction on inference time. Our code is available at : https://github.com/gayanku/SCGC
107,641
107,641
Understanding A Class of Decentralized and Federated Optimization Algorithms: A Multi-Rate Feedback Control Perspective
Distributed algorithms have been playing an increasingly important role in many applications such as machine learning, signal processing, and control. Significant research efforts have been devoted to developing and analyzing new algorithms for various applications. In this work, we provide a fresh perspective to understand, analyze, and design distributed optimization algorithms. Through the lens of multi-rate feedback control, we show that a wide class of distributed algorithms, including popular decentralized/federated schemes, can be viewed as discretizing a certain continuous-time feedback control system, possibly with multiple sampling rates, such as decentralized gradient descent, gradient tracking, and federated averaging. This key observation not only allows us to develop a generic framework to analyze the convergence of the entire algorithm class. More importantly, it also leads to an interesting way of designing new distributed algorithms. We develop the theory behind our framework and provide examples to highlight how the framework can be used in practice.
107,642
107,642
Relational Abstractions for Generalized Reinforcement Learning on Symbolic Problems
Reinforcement learning in problems with symbolic state spaces is challenging due to the need for reasoning over long horizons. This paper presents a new approach that utilizes relational abstractions in conjunction with deep learning to learn a generalizable Q-function for such problems. The learned Q-function can be efficiently transferred to related problems that have different object names and object quantities, and thus, entirely different state spaces. We show that the learned generalized Q-function can be utilized for zero-shot transfer to related problems without an explicit, hand-coded curriculum. Empirical evaluations on a range of problems show that our method facilitates efficient zero-shot transfer of learned knowledge to much larger problem instances containing many objects.
107,643
107,643
Adaptable Text Matching via Meta-Weight Regulator
Neural text matching models have been used in a range of applications such as question answering and natural language inference, and have yielded a good performance. However, these neural models are of a limited adaptability, resulting in a decline in performance when encountering test examples from a different dataset or even a different task. The adaptability is particularly important in the few-shot setting: in many cases, there is only a limited amount of labeled data available for a target dataset or task, while we may have access to a richly labeled source dataset or task. However, adapting a model trained on the abundant source data to a few-shot target dataset or task is challenging. To tackle this challenge, we propose a Meta-Weight Regulator (MWR), which is a meta-learning approach that learns to assign weights to the source examples based on their relevance to the target loss. Specifically, MWR first trains the model on the uniformly weighted source examples, and measures the efficacy of the model on the target examples via a loss function. By iteratively performing a (meta) gradient descent, high-order gradients are propagated to the source examples. These gradients are then used to update the weights of source examples, in a way that is relevant to the target performance. As MWR is model-agnostic, it can be applied to any backbone neural model. Extensive experiments are conducted with various backbone text matching models, on four widely used datasets and two tasks. The results demonstrate that our proposed approach significantly outperforms a number of existing adaptation methods and effectively improves the cross-dataset and cross-task adaptability of the neural text matching models in the few-shot setting.
107,644
107,644
SVD Perspectives for Augmenting DeepONet Flexibility and Interpretability
Deep operator networks (DeepONets) are powerful architectures for fast and accurate emulation of complex dynamics. As their remarkable generalization capabilities are primarily enabled by their projection-based attribute, we investigate connections with low-rank techniques derived from the singular value decomposition (SVD). We demonstrate that some of the concepts behind proper orthogonal decomposition (POD)-neural networks can improve DeepONet's design and training phases. These ideas lead us to a methodology extension that we name SVD-DeepONet. Moreover, through multiple SVD analyses, we find that DeepONet inherits from its projection-based attribute strong inefficiencies in representing dynamics characterized by symmetries. Inspired by the work on shifted-POD, we develop flexDeepONet, an architecture enhancement that relies on a pre-transformation network for generating a moving reference frame and isolating the rigid components of the dynamics. In this way, the physics can be represented on a latent space free from rotations, translations, and stretches, and an accurate projection can be performed to a low-dimensional basis. In addition to flexibility and interpretability, the proposed perspectives increase DeepONet's generalization capabilities and computational efficiencies. For instance, we show flexDeepONet can accurately surrogate the dynamics of 19 variables in a combustion chemistry application by relying on 95% less trainable parameters than the ones of the vanilla architecture. We argue that DeepONet and SVD-based methods can reciprocally benefit from each other. In particular, the flexibility of the former in leveraging multiple data sources and multifidelity knowledge in the form of both unstructured data and physics-informed constraints has the potential to greatly extend the applicability of methodologies such as POD and PCA.
107,645
107,645
The Multimarginal Optimal Transport Formulation of Adversarial Multiclass Classification
We study a family of adversarial multiclass classification problems and provide equivalent reformulations in terms of: 1) a family of generalized barycenter problems introduced in the paper and 2) a family of multimarginal optimal transport problems where the number of marginals is equal to the number of classes in the original classification problem. These new theoretical results reveal a rich geometric structure of adversarial learning problems in multiclass classification and extend recent results restricted to the binary classification setting. A direct computational implication of our results is that by solving either the barycenter problem and its dual, or the MOT problem and its dual, we can recover the optimal robust classification rule and the optimal adversarial strategy for the original adversarial problem. Examples with synthetic and real data illustrate our results.
107,646
107,646
Heterogeneous Ensemble Knowledge Transfer for Training Large Models in Federated Learning
Federated learning (FL) enables edge-devices to collaboratively learn a model without disclosing their private data to a central aggregating server. Most existing FL algorithms require models of identical architecture to be deployed across the clients and server, making it infeasible to train large models due to clients' limited system resources. In this work, we propose a novel ensemble knowledge transfer method named Fed-ET in which small models (different in architecture) are trained on clients, and used to train a larger model at the server. Unlike in conventional ensemble learning, in FL the ensemble can be trained on clients' highly heterogeneous data. Cognizant of this property, Fed-ET uses a weighted consensus distillation scheme with diversity regularization that efficiently extracts reliable consensus from the ensemble while improving generalization by exploiting the diversity within the ensemble. We show the generalization bound for the ensemble of weighted models trained on heterogeneous datasets that supports the intuition of Fed-ET. Our experiments on image and language tasks show that Fed-ET significantly outperforms other state-of-the-art FL algorithms with fewer communicated parameters, and is also robust against high data-heterogeneity.
107,647
107,647
Accelerated Continuous-Time Approximate Dynamic Programming via Data-Assisted Hybrid Control
We introduce a new closed-loop architecture for the online solution of approximate optimal control problems in the context of continuous-time systems. Specifically, we introduce the first algorithm that incorporates dynamic momentum in actor-critic structures to control continuous-time dynamic plants with an affine structure in the input. By incorporating dynamic momentum in our algorithm, we are able to accelerate the convergence properties of the closed-loop system, achieving superior transient performance compared to traditional gradient-descent based techniques. In addition, by leveraging the existence of past recorded data with sufficiently rich information properties, we dispense with the persistence of excitation condition traditionally imposed on the regressors of the critic and the actor. Given that our continuous-time momentum-based dynamics also incorporate periodic discrete-time resets that emulate restarting techniques used in the machine learning literature, we leverage tools from hybrid dynamical systems theory to establish asymptotic stability properties for the closed-loop system. We illustrate our results with a numerical example.
107,648
107,648
Data-based price discrimination: information theoretic limitations and a minimax optimal strategy
This paper studies the gap between the classical pricing theory and the data-based pricing theory. We focus on the problem of price discrimination with a continuum of buyer types based on a finite sample of observations. Our first set of results provides sharp lower bounds in the worst-case scenario for the discrepancy between any data-based pricing strategies and the theoretical optimal third-degree price discrimination (3PD) strategy (respectively, uniform pricing strategy) derived from the distribution (where the sample is drawn) ranging over a large class of distributions. Consequently, there is an inevitable gap between revenues based on any data-based pricing strategy and the revenue based on the theoretical optimal 3PD (respectively, uniform pricing) strategy. We then propose easy-to-implement data-based 3PD and uniform pricing strategies and show each strategy is minimax optimal in the sense that the gap between their respective revenue and the revenue based on the theoretical optimal 3PD (respectively, uniform pricing) strategy matches our worst-case lower bounds up to constant factors (that are independent of the sample size $n$). We show that 3PD strategies are revenue superior to uniform pricing strategies if and only if the sample size $n$ is large enough. In other words, if $n$ is below a threshold, uniform pricing strategies are revenue superior to 3PD strategies. We further provide upper bounds for the gaps between the welfare generated by our minimax optimal 3PD (respectively, uniform pricing) strategy and the welfare based on the theoretical optimal 3PD (respectively, uniform pricing) strategy.
107,649
107,649
Human-Centered Prior-Guided and Task-Dependent Multi-Task Representation Learning for Action Recognition Pre-Training
Recently, much progress has been made for self-supervised action recognition. Most existing approaches emphasize the contrastive relations among videos, including appearance and motion consistency. However, two main issues remain for existing pre-training methods: 1) the learned representation is neutral and not informative for a specific task; 2) multi-task learning-based pre-training sometimes leads to sub-optimal solutions due to inconsistent domains of different tasks. To address the above issues, we propose a novel action recognition pre-training framework, which exploits human-centered prior knowledge that generates more informative representation, and avoids the conflict between multiple tasks by using task-dependent representations. Specifically, we distill knowledge from a human parsing model to enrich the semantic capability of representation. In addition, we combine knowledge distillation with contrastive learning to constitute a task-dependent multi-task framework. We achieve state-of-the-art performance on two popular benchmarks for action recognition task, i.e., UCF101 and HMDB51, verifying the effectiveness of our method.
107,650
107,650
A Multi-Head Convolutional Neural Network With Multi-path Attention improves Image Denoising
Recently, convolutional neural networks (CNNs) and attention mechanisms have been widely used in image denoising and achieved satisfactory performance. However, the previous works mostly use a single head to receive the noisy image, limiting the richness of extracted features. Therefore, a novel CNN with multiple heads (MH) named MHCNN is proposed in this paper, whose heads will receive the input images rotated by different rotation angles. MH makes MHCNN simultaneously utilize features of rotated images to remove noise. We also present a novel multi-path attention mechanism (MPA) to integrate these features effectively. Unlike previous attention mechanisms that handle pixel-level, channel-level, and patch-level features, MPA focuses on features at the image level. Experiments show MHCNN surpasses other state-of-the-art CNN models on additive white Gaussian noise (AWGN) denoising and real-world image denoising. Its peak signal-to-noise ratio (PSNR) results are higher than other networks, such as DnCNN, BRDNet, RIDNet, PAN-Net, and CSANN. It is also demonstrated that the proposed MH with MPA mechanism can be used as a pluggable component.
107,651
107,651
DraftRec: Personalized Draft Recommendation for Winning in Multi-Player Online Battle Arena Games
This paper presents a personalized character recommendation system for Multiplayer Online Battle Arena (MOBA) games which are considered as one of the most popular online video game genres around the world. When playing MOBA games, players go through a draft stage, where they alternately select a virtual character to play. When drafting, players select characters by not only considering their character preferences, but also the synergy and competence of their team's character combination. However, the complexity of drafting induces difficulties for beginners to choose the appropriate characters based on the characters of their team while considering their own champion preferences. To alleviate this problem, we propose DraftRec, a novel hierarchical model which recommends characters by considering each player's champion preferences and the interaction between the players. DraftRec consists of two networks: the player network and the match network. The player network captures the individual player's champion preference, and the match network integrates the complex relationship between the players and their respective champions. We train and evaluate our model from a manually collected 280,000 matches of League of Legends and a publicly available 50,000 matches of Dota2. Empirically, our method achieved state-of-the-art performance in character recommendation and match outcome prediction task. Furthermore, a comprehensive user survey confirms that DraftRec provides convincing and satisfying recommendations. Our code and dataset are available at https://github.com/dojeon-ai/DraftRec.
107,652
107,652
Bounded Memory Adversarial Bandits with Composite Anonymous Delayed Feedback
We study the adversarial bandit problem with composite anonymous delayed feedback. In this setting, losses of an action are split into $d$ components, spreading over consecutive rounds after the action is chosen. And in each round, the algorithm observes the aggregation of losses that come from the latest $d$ rounds. Previous works focus on oblivious adversarial setting, while we investigate the harder non-oblivious setting. We show non-oblivious setting incurs $\Omega(T)$ pseudo regret even when the loss sequence is bounded memory. However, we propose a wrapper algorithm which enjoys $o(T)$ policy regret on many adversarial bandit problems with the assumption that the loss sequence is bounded memory. Especially, for $K$-armed bandit and bandit convex optimization, we have $\mathcal{O}(T^{2/3})$ policy regret bound. We also prove a matching lower bound for $K$-armed bandit. Our lower bound works even when the loss sequence is oblivious but the delay is non-oblivious. It answers the open problem proposed in \cite{wang2021adaptive}, showing that non-oblivious delay is enough to incur $\tilde{\Omega}(T^{2/3})$ regret.
107,653
107,653
An Empirical Evaluation of Flow Based Programming in the Machine Learning Deployment Context
As use of data driven technologies spreads, software engineers are more often faced with the task of solving a business problem using data-driven methods such as machine learning (ML) algorithms. Deployment of ML within large software systems brings new challenges that are not addressed by standard engineering practices and as a result businesses observe high rate of ML deployment project failures. Data Oriented Architecture (DOA) is an emerging approach that can support data scientists and software developers when addressing such challenges. However, there is a lack of clarity about how DOA systems should be implemented in practice. This paper proposes to consider Flow-Based Programming (FBP) as a paradigm for creating DOA applications. We empirically evaluate FBP in the context of ML deployment on four applications that represent typical data science projects. We use Service Oriented Architecture (SOA) as a baseline for comparison. Evaluation is done with respect to different application domains, ML deployment stages, and code quality metrics. Results reveal that FBP is a suitable paradigm for data collection and data science tasks, and is able to simplify data collection and discovery when compared with SOA. We discuss the advantages of FBP as well as the gaps that need to be addressed to increase FBP adoption as a standard design paradigm for DOA.
107,654
107,654
Machines of finite depth: towards a formalization of neural networks
We provide a unifying framework where artificial neural networks and their architectures can be formally described as particular cases of a general mathematical construction--machines of finite depth. Unlike neural networks, machines have a precise definition, from which several properties follow naturally. Machines of finite depth are modular (they can be combined), efficiently computable and differentiable. The backward pass of a machine is again a machine and can be computed without overhead using the same procedure as the forward pass. We prove this statement theoretically and practically, via a unified implementation that generalizes several classical architectures--dense, convolutional, and recurrent neural networks with a rich shortcut structure--and their respective backpropagation rules.
107,655
107,655
Learning Green's functions associated with parabolic partial differential equations
Given input-output pairs from a parabolic partial differential equation (PDE) in any spatial dimension $n\geq 1$, we derive the first theoretically rigorous scheme for learning the associated Green's function $G$. Until now, rigorously learning Green's functions associated with parabolic operators has been a major challenge in the field of scientific machine learning because $G$ may not be square-integrable when $n>1$, and time-dependent PDEs have transient dynamics. By combining the hierarchical low-rank structure of $G$ together with the randomized singular value decomposition, we construct an approximant to $G$ that achieves a relative error of $\smash{\mathcal{O}(\Gamma_\epsilon^{-1/2}\epsilon)}$ in the $L^1$-norm with high probability by using at most $\smash{\mathcal{O}(\epsilon^{-\frac{n+2}{2}}\log(1/\epsilon))}$ input-output training pairs, where $\Gamma_\epsilon$ is a measure of the quality of the training dataset for learning $G$, and $\epsilon>0$ is sufficiently small. Along the way, we extend the low-rank theory of Bebendorf and Hackbusch from elliptic PDEs in dimension $1\leq n\leq 3$ to parabolic PDEs in any dimensions, which shows that Green's functions associated with parabolic PDEs admit a low-rank structure on well-separated domains.
107,656
107,656
Supervised Contrastive CSI Representation Learning for Massive MIMO Positioning
Similarity metric is crucial for massive MIMO positioning utilizing channel state information~(CSI). In this letter, we propose a novel massive MIMO CSI similarity learning method via deep convolutional neural network~(DCNN) and contrastive learning. A contrastive loss function is designed considering multiple positive and negative CSI samples drawn from a training dataset. The DCNN encoder is trained using the loss so that positive samples are mapped to points close to the anchor's encoding, while encodings of negative samples are kept away from the anchor's in the representation space. Evaluation results of fingerprint-based positioning on a real-world CSI dataset show that the learned similarity metric improves positioning accuracy significantly compared with other known state-of-the-art methods.
107,657
107,657
GTNet: A Tree-Based Deep Graph Learning Architecture
We propose Graph Tree Networks (GTNets), a deep graph learning architecture with a new general message passing scheme that originates from the tree representation of graphs. In the tree representation, messages propagate upward from the leaf nodes to the root node, and each node preserves its initial information prior to receiving information from its child nodes (neighbors). We formulate a general propagation rule following the nature of message passing in the tree to update a node's feature by aggregating its initial feature and its neighbor nodes' updated features. Two graph representation learning models are proposed within this GTNet architecture - Graph Tree Attention Network (GTAN) and Graph Tree Convolution Network (GTCN), with experimentally demonstrated state-of-the-art performance on several popular benchmark datasets. Unlike the vanilla Graph Attention Network (GAT) and Graph Convolution Network (GCN) which have the "over-smoothing" issue, the proposed GTAN and GTCN models can go deep as demonstrated by comprehensive experiments and rigorous theoretical analysis.
107,658
107,658
When Performance is not Enough -- A Multidisciplinary View on Clinical Decision Support
Scientific publications about machine learning in healthcare are often about implementing novel methods and boosting the performance - at least from a computer science perspective. However, beyond such often short-lived improvements, much more needs to be taken into consideration if we want to arrive at a sustainable progress in healthcare. What does it take to actually implement such a system, make it usable for the domain expert, and possibly bring it into practical usage? Targeted at Computer Scientists, this work presents a multidisciplinary view on machine learning in medical decision support systems and covers information technology, medical, as well as ethical aspects. Along with an implemented risk prediction system in nephrology, challenges and lessons learned in a pilot project are presented.
107,659
107,659
Uncertainty-Aware Prediction of Battery Energy Consumption for Hybrid Electric Vehicles
The usability of vehicles is highly dependent on their energy consumption. In particular, one of the main factors hindering the mass adoption of electric (EV), hybrid (HEV), and plug-in hybrid (PHEV) vehicles is range anxiety, which occurs when a driver is uncertain about the availability of energy for a given trip. To tackle this problem, we propose a machine learning approach for modeling the battery energy consumption. By reducing predictive uncertainty, this method can help increase trust in the vehicle's performance and thus boost its usability. Most related work focuses on physical and/or chemical models of the battery that affect the energy consumption. We propose a data-driven approach which relies on real-world datasets including battery related attributes. Our approach showed an improvement in terms of predictive uncertainty as well as in accuracy compared to traditional methods.
107,660
107,660
Transfer Learning with Pre-trained Conditional Generative Models
Transfer learning is crucial in training deep neural networks on new target tasks. Current transfer learning methods generally assume at least one of (i) source and target task label spaces must overlap, (ii) source datasets are available, and (iii) target network architectures are consistent with source ones. However, these all assumptions are difficult to hold in practical settings because the target task rarely has the same labels as the source task, the source dataset access is restricted due to licensing and storage costs, and the target architecture is often specialized to each task. To transfer source knowledge without these assumptions, we propose a transfer learning method that uses deep generative models and is composed of the following two stages: pseudo pre-training (PP) and pseudo semi-supervised learning (P-SSL). PP trains a target architecture with a synthesized dataset by using conditional source generative models. P-SSL applies SSL algorithms to labeled target data and unlabeled pseudo samples, which are generated by cascading the source classifier and generative models to condition them with target samples. Our experimental results indicate that our method can outperform baselines of scratch training and knowledge distillation.
107,661
107,661
Learning to Parallelize in a Shared-Memory Environment with Transformers
In past years, the world has switched to many-core and multi-core shared memory architectures. As a result, there is a growing need to utilize these architectures by introducing shared memory parallelization schemes to software applications. OpenMP is the most comprehensive API that implements such schemes, characterized by a readable interface. Nevertheless, introducing OpenMP into code is challenging due to pervasive pitfalls in management of parallel shared memory. To facilitate the performance of this task, many source-to-source (S2S) compilers have been created over the years, tasked with inserting OpenMP directives into code automatically. In addition to having limited robustness to their input format, these compilers still do not achieve satisfactory coverage and precision in locating parallelizable code and generating appropriate directives. In this work, we propose leveraging recent advances in ML techniques, specifically in natural language processing (NLP), to replace S2S compilers altogether. We create a database (corpus), Open-OMP, specifically for this goal. Open-OMP contains over 28,000 code snippets, half of which contain OpenMP directives while the other half do not need parallelization at all with high probability. We use the corpus to train systems to automatically classify code segments in need of parallelization, as well as suggest individual OpenMP clauses. We train several transformer models, named PragFormer, for these tasks, and show that they outperform statistically-trained baselines and automatic S2S parallelization compilers in both classifying the overall need for an OpenMP directive and the introduction of private and reduction clauses. Our source code and database are available at: https://github.com/Scientific-Computing-Lab-NRCN/PragFormer.
107,662
107,662
Accelerating Robot Learning of Contact-Rich Manipulations: A Curriculum Learning Study
The Reinforcement Learning (RL) paradigm has been an essential tool for automating robotic tasks. Despite the advances in RL, it is still not widely adopted in the industry due to the need for an expensive large amount of robot interaction with its environment. Curriculum Learning (CL) has been proposed to expedite learning. However, most research works have been only evaluated in simulated environments, from video games to robotic toy tasks. This paper presents a study for accelerating robot learning of contact-rich manipulation tasks based on Curriculum Learning combined with Domain Randomization (DR). We tackle complex industrial assembly tasks with position-controlled robots, such as insertion tasks. We compare different curricula designs and sampling approaches for DR. Based on this study, we propose a method that significantly outperforms previous work, which uses DR only (No CL is used), with less than a fifth of the training time (samples). Results also show that even when training only in simulation with toy tasks, our method can learn policies that can be transferred to the real-world robot. The learned policies achieved success rates of up to 86\% on real-world complex industrial insertion tasks (with tolerances of $\pm 0.01~mm$) not seen during the training.
107,663
107,663
Detecting Backdoor Poisoning Attacks on Deep Neural Networks by Heatmap Clustering
Predicitions made by neural networks can be fraudulently altered by so-called poisoning attacks. A special case are backdoor poisoning attacks. We study suitable detection methods and introduce a new method called Heatmap Clustering. There, we apply a $k$-means clustering algorithm on heatmaps produced by the state-of-the-art explainable AI method Layer-wise relevance propagation. The goal is to separate poisoned from un-poisoned data in the dataset. We compare this method with a similar method, called Activation Clustering, which also uses $k$-means clustering but applies it on the activation of certain hidden layers of the neural network as input. We test the performance of both approaches for standard backdoor poisoning attacks, label-consistent poisoning attacks and label-consistent poisoning attacks with reduced amplitude stickers. We show that Heatmap Clustering consistently performs better than Activation Clustering. However, when considering label-consistent poisoning attacks, the latter method also yields good detection performance.
107,664
107,664
Performance and Interpretability Comparisons of Supervised Machine Learning Algorithms: An Empirical Study
This paper compares the performances of three supervised machine learning algorithms in terms of predictive ability and model interpretation on structured or tabular data. The algorithms considered were scikit-learn implementations of extreme gradient boosting machines (XGB) and random forests (RFs), and feedforward neural networks (FFNNs) from TensorFlow. The paper is organized in a findings-based manner, with each section providing general conclusions supported by empirical results from simulation studies that cover a wide range of model complexity and correlation structures among predictors. We considered both continuous and binary responses of different sample sizes. Overall, XGB and FFNNs were competitive, with FFNNs showing better performance in smooth models and tree-based boosting algorithms performing better in non-smooth models. This conclusion held generally for predictive performance, identification of important variables, and determining correct input-output relationships as measured by partial dependence plots (PDPs). FFNNs generally had less over-fitting, as measured by the difference in performance between training and testing datasets. However, the difference with XGB was often small. RFs did not perform well in general, confirming the findings in the literature. All models exhibited different degrees of bias seen in PDPs, but the bias was especially problematic for RFs. The extent of the biases varied with correlation among predictors, response type, and data set sample size. In general, tree-based models tended to over-regularize the fitted model in the tails of predictor distributions. Finally, as to be expected, performances were better for continuous responses compared to binary data and with larger samples.
107,665
107,665
LiftPool: Lifting-based Graph Pooling for Hierarchical Graph Representation Learning
Graph pooling has been increasingly considered for graph neural networks (GNNs) to facilitate hierarchical graph representation learning. Existing graph pooling methods commonly consist of two stages, i.e., selecting the top-ranked nodes and removing the rest nodes to construct a coarsened graph representation. However, local structural information of the removed nodes would be inevitably dropped in these methods, due to the inherent coupling of nodes (location) and their features (signals). In this paper, we propose an enhanced three-stage method via lifting, named LiftPool, to improve hierarchical graph representation by maximally preserving the local structural information in graph pooling. LiftPool introduces an additional stage of graph lifting before graph coarsening to preserve the local information of the removed nodes and decouple the processes of node removing and feature reduction. Specifically, for each node to be removed, its local information is obtained by subtracting the global information aggregated from its neighboring preserved nodes. Subsequently, this local information is aligned and propagated to the preserved nodes to alleviate information loss in graph coarsening. Furthermore, we demonstrate that the proposed LiftPool is localized and permutation-invariant. The proposed graph lifting structure is general to be integrated with existing downsampling-based graph pooling methods. Evaluations on benchmark graph datasets show that LiftPool substantially outperforms the state-of-the-art graph pooling methods in the task of graph classification.
107,666
107,666
Spending Privacy Budget Fairly and Wisely
Differentially private (DP) synthetic data generation is a practical method for improving access to data as a means to encourage productive partnerships. One issue inherent to DP is that the "privacy budget" is generally "spent" evenly across features in the data set. This leads to good statistical parity with the real data, but can undervalue the conditional probabilities and marginals that are critical for predictive quality of synthetic data. Further, loss of predictive quality may be non-uniform across the data set, with subsets that correspond to minority groups potentially suffering a higher loss. In this paper, we develop ensemble methods that distribute the privacy budget "wisely" to maximize predictive accuracy of models trained on DP data, and "fairly" to bound potential disparities in accuracy across groups and reduce inequality. Our methods are based on the insights that feature importance can inform how privacy budget is allocated, and, further, that per-group feature importance and fairness-related performance objectives can be incorporated in the allocation. These insights make our methods tunable to social contexts, allowing data owners to produce balanced synthetic data for predictive analysis.
107,667
107,667
Epicardial Adipose Tissue Segmentation from CT Images with A Semi-3D Neural Network
Epicardial adipose tissue is a type of adipose tissue located between the heart wall and a protective layer around the heart called the pericardium. The volume and thickness of epicardial adipose tissue are linked to various cardiovascular diseases. It is shown to be an independent cardiovascular disease risk factor. Fully automatic and reliable measurements of epicardial adipose tissue from CT scans could provide better disease risk assessment and enable the processing of large CT image data sets for a systemic epicardial adipose tissue study. This paper proposes a method for fully automatic semantic segmentation of epicardial adipose tissue from CT images using a deep neural network. The proposed network uses a U-Net-based architecture with slice depth information embedded in the input image to segment a pericardium region of interest, which is used to obtain an epicardial adipose tissue segmentation. Image augmentation is used to increase model robustness. Cross-validation of the proposed method yields a Dice score of 0.86 on the CT scans of 20 patients.
107,668
107,668
Forecasting foreign exchange rates with regression networks tuned by Bayesian optimization
The article is concerned with the problem of multi-step financial time series forecasting of Foreign Exchange (FX) rates. To address this problem, we introduce a regression network termed RegPred Net. The exchange rate to forecast is treated as a stochastic process. It is assumed to follow a generalization of Brownian motion and the mean-reverting process referred to as the generalized Ornstein-Uhlenbeck (OU) process, with time-dependent coefficients. Using past observed values of the input time series, these coefficients can be regressed online by the cells of the first half of the network (Reg). The regressed coefficients depend only on - but are very sensitive to - a small number of hyperparameters required to be set by a global optimization procedure for which, Bayesian optimization is an adequate heuristic. Thanks to its multi-layered architecture, the second half of the regression network (Pred) can project time-dependent values for the OU process coefficients and generate realistic trajectories of the time series. Predictions can be easily derived in the form of expected values estimated by averaging values obtained by Monte Carlo simulation. The forecasting accuracy on a 100 days horizon is evaluated for several of the most important FX rates such as EUR/USD, EUR/CNY, and EUR/GBP. Our experimental results show that the RegPred Net significantly outperforms ARMA, ARIMA, LSTMs, and Autoencoder-LSTM models in terms of metrics measuring the absolute error (RMSE) and correlation between predicted and actual values (Pearson R, R-squared, MDA). Compared to black-box deep learning models such as LSTM, RegPred Net has better interpretability, simpler structure, and fewer parameters.
107,669
107,669
Improving Feature Generalizability with Multitask Learning in Class Incremental Learning
Many deep learning applications, like keyword spotting, require the incorporation of new concepts (classes) over time, referred to as Class Incremental Learning (CIL). The major challenge in CIL is catastrophic forgetting, i.e., preserving as much of the old knowledge as possible while learning new tasks. Various techniques, such as regularization, knowledge distillation, and the use of exemplars, have been proposed to resolve this issue. However, prior works primarily focus on the incremental learning step, while ignoring the optimization during the base model training. We hypothesize that a more transferable and generalizable feature representation from the base model would be beneficial to incremental learning. In this work, we adopt multitask learning during base model training to improve the feature generalizability. Specifically, instead of training a single model with all the base classes, we decompose the base classes into multiple subsets and regard each of them as a task. These tasks are trained concurrently and a shared feature extractor is obtained for incremental learning. We evaluate our approach on two datasets under various configurations. The results show that our approach enhances the average incremental learning accuracy by up to 5.5%, which enables more reliable and accurate keyword spotting over time. Moreover, the proposed approach can be combined with many existing techniques and provides additional performance gain.
107,670
107,670
GypSum: Learning Hybrid Representations for Code Summarization
Code summarization with deep learning has been widely studied in recent years. Current deep learning models for code summarization generally follow the principle in neural machine translation and adopt the encoder-decoder framework, where the encoder learns the semantic representations from source code and the decoder transforms the learnt representations into human-readable text that describes the functionality of code snippets. Despite they achieve the new state-of-the-art performance, we notice that current models often either generate less fluent summaries, or fail to capture the core functionality, since they usually focus on a single type of code representations. As such we propose GypSum, a new deep learning model that learns hybrid representations using graph attention neural networks and a pre-trained programming and natural language model. We introduce particular edges related to the control flow of a code snippet into the abstract syntax tree for graph construction, and design two encoders to learn from the graph and the token sequence of source code, respectively. We modify the encoder-decoder sublayer in the Transformer's decoder to fuse the representations and propose a dual-copy mechanism to facilitate summary generation. Experimental results demonstrate the superior performance of GypSum over existing code summarization models.
107,671
107,671
Topological Data Analysis for Anomaly Detection in Host-Based Logs
Topological Data Analysis (TDA) gives practioners the ability to analyse the global structure of cybersecurity data. We use TDA for anomaly detection in host-based logs collected with the open-source Logging Made Easy (LME) project. We present an approach that builds a filtration of simplicial complexes directly from Windows logs, enabling analysis of their intrinsic structure using topological tools. We compare the efficacy of persistent homology and the spectrum of graph and hypergraph Laplacians as feature vectors against a standard log embedding that counts events, and find that topological and spectral embeddings of computer logs contain discriminative information for classifying anomalous logs that is complementary to standard embeddings. We end by discussing the potential for our methods to be used as part of an explainable framework for anomaly detection.
107,672
107,672
Trainable Compound Activation Functions for Machine Learning
Activation functions (AF) are necessary components of neural networks that allow approximation of functions, but AFs in current use are usually simple monotonically increasing functions. In this paper, we propose trainable compound AF (TCA) composed of a sum of shifted and scaled simple AFs. TCAs increase the effectiveness of networks with fewer parameters compared to added layers. TCAs have a special interpretation in generative networks because they effectively estimate the marginal distributions of each dimension of the data using a mixture distribution, reducing modality and making linear dimension reduction more effective. When used in restricted Boltzmann machines (RBMs), they result in a novel type of RBM with mixture-based stochastic units. Improved performance is demonstrated in experiments using RBMs, deep belief networks (DBN), projected belief networks (PBN), and variational auto-encoders (VAE).
107,673
107,673
Using the Projected Belief Network at High Dimensions
The projected belief network (PBN) is a layered generative network (LGN) with tractable likelihood function, and is based on a feed-forward neural network (FFNN). There are two versions of the PBN: stochastic and deterministic (D-PBN), and each has theoretical advantages over other LGNs. However, implementation of the PBN requires an iterative algorithm that includes the inversion of a symmetric matrix of size M X M in each layer, where M is the layer output dimension. This, and the fact that the network must be always dimension-reducing in each layer, can limit the types of problems where the PBN can be applied. In this paper, we describe techniques to avoid or mitigate these restrictions and use the PBN effectively at high dimension. We apply the discriminatively aligned PBN (PBN-DA) to classifying and auto-encoding high-dimensional spectrograms of acoustic events. We also present the discriminatively aligned D-PBN for the first time.
107,674
107,674
A Bayesian Approach To Graph Partitioning
A new algorithm based on bayesian inference for learning local graph conductance based on Gaussian Process(GP) is given that uses advanced MCMC convergence ideas to create a scalable and fast algorithm for convergence to stationary distribution which is provided to learn the bahavior of conductance when traversing the indirected weighted graph. First metric embedding is used to represent the vertices of the graph. Then, uniform induced conductance is calculated for training points. Finally, in the learning step, a gaussian process is used to approximate the uniform induced conductance. MCMC is used to measure uncertainty of estimated hyper-parameters.
107,675
107,675
Sequence-Based Target Coin Prediction for Cryptocurrency Pump-and-Dump
As the pump-and-dump schemes (P&Ds) proliferate in the cryptocurrency market, it becomes imperative to detect such fraudulent activities in advance, to inform potentially susceptible investors before they become victims. In this paper, we focus on the target coin prediction task, i.e., to predict the pump probability of all coins listed in the target exchange before a pump. We conduct a comprehensive study of the latest P&Ds, investigate 709 events organized in Telegram channels from Jan. 2019 to Jan. 2022, and unearth some abnormal yet interesting patterns of P&Ds. Empirical analysis demonstrates that pumped coins exhibit intra-channel homogeneity and inter-channel heterogeneity, which inspires us to develop a novel sequence-based neural network named SNN. Specifically, SNN encodes each channel's pump history as a sequence representation via a positional attention mechanism, which filters useful information and alleviates the noise introduced when the sequence length is long. We also identify and address the coin-side cold-start problem in a practical setting. Extensive experiments show a lift of 1.6% AUC and 41.0% Hit Ratio@3 brought by our method, making it well-suited for real-world application. As a side contribution, we release the source code of our entire data science pipeline on GitHub, along with the dataset tailored for studying the latest P&Ds.
107,676
107,676
NFT Appraisal Prediction: Utilizing Search Trends, Public Market Data, Linear Regression and Recurrent Neural Networks
In this paper we investigate the correlation between NFT valuations and various features from three primary categories: public market data, NFT metadata, and social trends data.
107,677
107,677
An Iterative Labeling Method for Annotating Fisheries Imagery
In this paper, we present a methodology for fisheries-related data that allows us to converge on a labeled image dataset by iterating over the dataset with multiple training and production loops that can exploit crowdsourcing interfaces. We present our algorithm and its results on two separate sets of image data collected using the Seabed autonomous underwater vehicle. The first dataset comprises of 2,026 completely unlabeled images, while the second consists of 21,968 images that were point annotated by experts. Our results indicate that training with a small subset and iterating on that to build a larger set of labeled data allows us to converge to a fully annotated dataset with a small number of iterations. Even in the case of a dataset labeled by experts, a single iteration of the methodology improves the labels by discovering additional complicated examples of labels associated with fish that overlap, are very small, or obscured by the contrast limitations associated with underwater imagery.
107,678
107,678
Learning to Transfer Role Assignment Across Team Sizes
Multi-agent reinforcement learning holds the key for solving complex tasks that demand the coordination of learning agents. However, strong coordination often leads to expensive exploration over the exponentially large state-action space. A powerful approach is to decompose team works into roles, which are ideally assigned to agents with the relevant skills. Training agents to adaptively choose and play emerging roles in a team thus allows the team to scale to complex tasks and quickly adapt to changing environments. These promises, however, have not been fully realised by current role-based multi-agent reinforcement learning methods as they assume either a pre-defined role structure or a fixed team size. We propose a framework to learn role assignment and transfer across team sizes. In particular, we train a role assignment network for small teams by demonstration and transfer the network to larger teams, which continue to learn through interaction with the environment. We demonstrate that re-using the role-based credit assignment structure can foster the learning process of larger reinforcement learning teams to achieve tasks requiring different roles. Our proposal outperforms competing techniques in enriched role-enforcing Prey-Predator games and in new scenarios in the StarCraft II Micro-Management benchmark.
107,679
107,679
On the Dynamics of Inference and Learning
Statistical Inference is the process of determining a probability distribution over the space of parameters of a model given a data set. As more data becomes available this probability distribution becomes updated via the application of Bayes' theorem. We present a treatment of this Bayesian updating process as a continuous dynamical system. Statistical inference is then governed by a first order differential equation describing a trajectory or flow in the information geometry determined by a parametric family of models. We solve this equation for some simple models and show that when the Cram\'{e}r-Rao bound is saturated the learning rate is governed by a simple $1/T$ power-law, with $T$ a time-like variable denoting the quantity of data. The presence of hidden variables can be incorporated in this setting, leading to an additional driving term in the resulting flow equation. We illustrate this with both analytic and numerical examples based on Gaussians and Gaussian Random Processes and inference of the coupling constant in the 1D Ising model. Finally we compare the qualitative behaviour exhibited by Bayesian flows to the training of various neural networks on benchmarked data sets such as MNIST and CIFAR10 and show how that for networks exhibiting small final losses the simple power-law is also satisfied.
107,680
107,680
Meshless method stencil evaluation with machine learning
Meshless methods are an active and modern branch of numerical analysis with many intriguing benefits. One of the main open research questions related to local meshless methods is how to select the best possible stencil - a collection of neighbouring nodes - to base the calculation on. In this paper, we describe the procedure for generating a labelled stencil dataset and use a variation of pointNet - a deep learning network based on point clouds - to create a classifier for the quality of the stencil. We exploit features of pointNet to implement a model that can be used to classify differently sized stencils and compare it against models dedicated to a single stencil size. The model is particularly good at detecting the best and the worst stencils with a respectable area under the curve (AUC) metric of around 0.90. There is much potential for further improvement and direct application in the meshless domain.
107,681
107,681
Unsupervised Learning of Unbiased Visual Representations
Deep neural networks are known for their inability to learn robust representations when biases exist in the dataset. This results in a poor generalization to unbiased datasets, as the predictions strongly rely on peripheral and confounding factors, which are erroneously learned by the network. Many existing works deal with this issue by either employing an explicit supervision on the bias attributes, or assuming prior knowledge about the bias. In this work we study this problem in a more difficult scenario, in which no explicit annotation about the bias is available, and without any prior knowledge about its nature. We propose a fully unsupervised debiasing framework, consisting of three steps: first, we exploit the natural preference for learning malignant biases, obtaining a bias-capturing model; then, we perform a pseudo-labelling step to obtain bias labels; finally we employ state-of-the-art supervised debiasing techniques to obtain an unbiased model. We also propose a theoretical framework to assess the biasness of a model, and provide a detailed analysis on how biases affect the training of neural networks. We perform experiments on synthetic and real-world datasets, showing that our method achieves state-of-the-art performance in a variety of settings, sometimes even higher than fully supervised debiasing approaches.
107,682
107,682
Domain Knowledge-Infused Deep Learning for Automated Analog/Radio-Frequency Circuit Parameter Optimization
The design automation of analog circuits is a longstanding challenge. This paper presents a reinforcement learning method enhanced by graph learning to automate the analog circuit parameter optimization at the pre-layout stage, i.e., finding device parameters to fulfill desired circuit specifications. Unlike all prior methods, our approach is inspired by human experts who rely on domain knowledge of analog circuit design (e.g., circuit topology and couplings between circuit specifications) to tackle the problem. By originally incorporating such key domain knowledge into policy training with a multimodal network, the method best learns the complex relations between circuit parameters and design targets, enabling optimal decisions in the optimization process. Experimental results on exemplary circuits show it achieves human-level design accuracy (99%) 1.5X efficiency of existing best-performing methods. Our method also shows better generalization ability to unseen specifications and optimality in circuit performance optimization. Moreover, it applies to design radio-frequency circuits on emerging semiconductor technologies, breaking the limitations of prior learning methods in designing conventional analog circuits.
107,683
107,683
MAPLE-Edge: A Runtime Latency Predictor for Edge Devices
Neural Architecture Search (NAS) has enabled automatic discovery of more efficient neural network architectures, especially for mobile and embedded vision applications. Although recent research has proposed ways of quickly estimating latency on unseen hardware devices with just a few samples, little focus has been given to the challenges of estimating latency on runtimes using optimized graphs, such as TensorRT and specifically for edge devices. In this work, we propose MAPLE-Edge, an edge device-oriented extension of MAPLE, the state-of-the-art latency predictor for general purpose hardware, where we train a regression network on architecture-latency pairs in conjunction with a hardware-runtime descriptor to effectively estimate latency on a diverse pool of edge devices. Compared to MAPLE, MAPLE-Edge can describe the runtime and target device platform using a much smaller set of CPU performance counters that are widely available on all Linux kernels, while still achieving up to +49.6% accuracy gains against previous state-of-the-art baseline methods on optimized edge device runtimes, using just 10 measurements from an unseen target device. We also demonstrate that unlike MAPLE which performs best when trained on a pool of devices sharing a common runtime, MAPLE-Edge can effectively generalize across runtimes by applying a trick of normalizing performance counters by the operator latency, in the measured hardware-runtime descriptor. Lastly, we show that for runtimes exhibiting lower than desired accuracy, performance can be boosted by collecting additional samples from the target device, with an extra 90 samples translating to gains of nearly +40%.
107,684
107,684
Towards assessing agricultural land suitability with causal machine learning
Understanding the suitability of agricultural land for applying specific management practices is of great importance for sustainable and resilient agriculture against climate change. Recent developments in the field of causal machine learning enable the estimation of intervention impacts on an outcome of interest, for samples described by a set of observed characteristics. We introduce an extensible data-driven framework that leverages earth observations and frames agricultural land suitability as a geospatial impact assessment problem, where the estimated effects of agricultural practices on agroecosystems serve as a land suitability score and guide decision making. We formulate this as a causal machine learning task and discuss how this approach can be used for agricultural planning in a changing climate. Specifically, we extract the agricultural management practices of "crop rotation" and "landscape crop diversity" from crop type maps, account for climate and land use data, and use double machine learning to estimate their heterogeneous effect on Net Primary Productivity (NPP), within the Flanders region of Belgium from 2010 to 2020. We find that the effect of crop rotation was insignificant, while landscape crop diversity had a small negative effect on NPP. Finally, we observe considerable effect heterogeneity in space for both practices and analyze it.
107,685
107,685
Scalable particle-based alternatives to EM
Building on (Neal and Hinton, 1998), where the problem tackled by EM is recast as the optimization of a free energy functional on an infinite-dimensional space, we obtain three practical particle-based alternatives to EM applicable to broad classes of models. All three are derived through straightforward discretizations of gradient flows associated with the functional. The novel algorithms scale well to high-dimensional settings and outperform existing state-of-the-art methods in numerical experiments.
107,686
107,686
Multi-Objective Physics-Guided Recurrent Neural Networks for Identifying Non-Autonomous Dynamical Systems
While trade-offs between modeling effort and model accuracy remain a major concern with system identification, resorting to data-driven methods often leads to a complete disregard for physical plausibility. To address this issue, we propose a physics-guided hybrid approach for modeling non-autonomous systems under control. Starting from a traditional physics-based model, this is extended by a recurrent neural network and trained using a sophisticated multi-objective strategy yielding physically plausible models. While purely data-driven methods fail to produce satisfying results, experiments conducted on real data reveal substantial accuracy improvements by our approach compared to a physics-based model.
107,687
107,687
Counterfactual harm
To act safely and ethically in the real world, agents must be able to reason about harm and avoid harmful actions. In this paper we develop the first statistical definition of harm and a framework for incorporating harm into algorithmic decisions. We argue that harm is fundamentally a counterfactual quantity, and show that standard machine learning algorithms that cannot perform counterfactual reasoning are guaranteed to pursue harmful policies in certain environments. To resolve this we derive a family of counterfactual objective functions that robustly mitigate for harm. We demonstrate our approach with a statistical model for identifying optimal drug doses. While standard algorithms that select doses using causal treatment effects result in harmful doses, our counterfactual algorithm identifies doses that are significantly less harmful without sacrificing efficacy.
107,688
107,688
Ollivier-Ricci Curvature For Head Pose Estimation From a Single Image
Head pose estimation is a crucial challenge for many real-world applications, such as attention and human behavior analysis. This paper aims to estimate head pose from a single image by applying notions of network curvature. In the real world, many complex networks have groups of nodes that are well connected to each other with significant functional roles. Similarly, the interactions of facial landmarks can be represented as complex dynamic systems modeled by weighted graphs. The functionalities of such systems are therefore intrinsically linked to the topology and geometry of the underlying graph. In this work, using the geometric notion of Ollivier-Ricci curvature (ORC) on weighted graphs as input to the XGBoost regression model, we show that the intrinsic geometric basis of ORC offers a natural approach to discovering underlying common structure within a pool of poses. Experiments on the BIWI, AFLW2000 and Pointing'04 datasets show that the ORC_XGB method performs well compared to state-of-the-art methods, both landmark-based and image-only.
107,689
107,689
NLU++: A Multi-Label, Slot-Rich, Generalisable Dataset for Natural Language Understanding in Task-Oriented Dialogue
We present NLU++, a novel dataset for natural language understanding (NLU) in task-oriented dialogue (ToD) systems, with the aim to provide a much more challenging evaluation environment for dialogue NLU models, up to date with the current application and industry requirements. NLU++ is divided into two domains (BANKING and HOTELS) and brings several crucial improvements over current commonly used NLU datasets. 1) NLU++ provides fine-grained domain ontologies with a large set of challenging multi-intent sentences, introducing and validating the idea of intent modules that can be combined into complex intents that convey complex user goals, combined with finer-grained and thus more challenging slot sets. 2) The ontology is divided into domain-specific and generic (i.e., domain-universal) intent modules that overlap across domains, promoting cross-domain reusability of annotated examples. 3) The dataset design has been inspired by the problems observed in industrial ToD systems, and 4) it has been collected, filtered and carefully annotated by dialogue NLU experts, yielding high-quality annotated data. Finally, we benchmark a series of current state-of-the-art NLU models on NLU++; the results demonstrate the challenging nature of the dataset, especially in low-data regimes, the validity of `intent modularisation', and call for further research on ToD NLU.
107,690
107,690
Binding Actions to Objects in World Models
We study the problem of binding actions to objects in object-factored world models using action-attention mechanisms. We propose two attention mechanisms for binding actions to objects, soft attention and hard attention, which we evaluate in the context of structured world models for five environments. Our experiments show that hard attention helps contrastively-trained structured world models to learn to separate individual objects in an object-based grid-world environment. Further, we show that soft attention increases performance of factored world models trained on a robotic manipulation task. The learned action attention weights can be used to interpret the factored world model as the attention focuses on the manipulated object in the environment.
107,691
107,691
Dropout Inference with Non-Uniform Weight Scaling
Dropout as regularization has been used extensively to prevent overfitting for training neural networks. During training, units and their connections are randomly dropped, which could be considered as sampling many different submodels from the original model. At test time, weight scaling and Monte Carlo approximation are two widely applied approaches to approximate the outputs. Both approaches work well practically when all submodels are low-bias complex learners. However, in this work, we demonstrate scenarios where some submodels behave closer to high-bias models and a non-uniform weight scaling is a better approximation for inference.
107,692
107,692
TERMinator: A Neural Framework for Structure-Based Protein Design using Tertiary Repeating Motifs
Computational protein design has the potential to deliver novel molecular structures, binders, and catalysts for myriad applications. Recent neural graph-based models that use backbone coordinate-derived features show exceptional performance on native sequence recovery tasks and are promising frameworks for design. A statistical framework for modeling protein sequence landscapes using Tertiary Motifs (TERMs), compact units of recurring structure in proteins, has also demonstrated good performance on protein design tasks. In this work, we investigate the use of TERM-derived data as features in neural protein design frameworks. Our graph-based architecture, TERMinator, incorporates TERM-based and coordinate-based information and outputs a Potts model over sequence space. TERMinator outperforms state-of-the-art models on native sequence recovery tasks, suggesting that utilizing TERM-based and coordinate-based features together is beneficial for protein design.
107,693
107,693
Bisimulation Makes Analogies in Goal-Conditioned Reinforcement Learning
Building generalizable goal-conditioned agents from rich observations is a key to reinforcement learning (RL) solving real world problems. Traditionally in goal-conditioned RL, an agent is provided with the exact goal they intend to reach. However, it is often not realistic to know the configuration of the goal before performing a task. A more scalable framework would allow us to provide the agent with an example of an analogous task, and have the agent then infer what the goal should be for its current state. We propose a new form of state abstraction called goal-conditioned bisimulation that captures functional equivariance, allowing for the reuse of skills to achieve new goals. We learn this representation using a metric form of this abstraction, and show its ability to generalize to new goals in simulation manipulation tasks. Further, we prove that this learned representation is sufficient not only for goal conditioned tasks, but is amenable to any downstream task described by a state-only reward function. Videos can be found at https://sites.google.com/view/gc-bisimulation.
107,694
107,694
Can deep learning match the efficiency of human visual long-term memory in storing object details?
Humans have a remarkably large capacity to store detailed visual information in long-term memory even after a single exposure, as demonstrated by classic experiments in psychology. For example, Standing (1973) showed that humans could recognize with high accuracy thousands of pictures that they had seen only once a few days prior to a recognition test. In deep learning, the primary mode of incorporating new information into a model is through gradient descent in the model's parameter space. This paper asks whether deep learning via gradient descent can match the efficiency of human visual long-term memory to incorporate new information in a rigorous, head-to-head, quantitative comparison. We answer this in the negative: even in the best case, models learning via gradient descent require approximately 10 exposures to the same visual materials in order to reach a recognition memory performance humans achieve after only a single exposure. Prior knowledge induced via pretraining and bigger model sizes improve performance, but these improvements are not very visible after a single exposure (it takes a few exposures for the improvements to become apparent), suggesting that simply scaling up the pretraining data size or model size might not be a feasible strategy to reach human-level memory efficiency.
107,695
107,695
Treating Crowdsourcing as Examination: How to Score Tasks and Online Workers?
Crowdsourcing is an online outsourcing mode which can solve the current machine learning algorithm's urge need for massive labeled data. Requester posts tasks on crowdsourcing platforms, which employ online workers over the Internet to complete tasks, then aggregate and return results to requester. How to model the interaction between different types of workers and tasks is a hot spot. In this paper, we try to model workers as four types based on their ability: expert, normal worker, sloppy worker and spammer, and divide tasks into hard, medium and easy task according to their difficulty. We believe that even experts struggle with difficult tasks while sloppy workers can get easy tasks right, and spammers always give out wrong answers deliberately. So, good examination tasks should have moderate degree of difficulty and discriminability to score workers more objectively. Thus, we first score workers' ability mainly on the medium difficult tasks, then reducing the weight of answers from sloppy workers and modifying the answers from spammers when inferring the tasks' ground truth. A probability graph model is adopted to simulate the task execution process, and an iterative method is adopted to calculate and update the ground truth, the ability of workers and the difficulty of the task successively. We verify the rightness and effectiveness of our algorithm both in simulated and real crowdsourcing scenes.
107,696
107,696
Faster online calibration without randomization: interval forecasts and the power of two choices
We study the problem of making calibrated probabilistic forecasts for a binary sequence generated by an adversarial nature. Following the seminal paper of Foster and Vohra (1998), nature is often modeled as an adaptive adversary who sees all activity of the forecaster except the randomization that the forecaster may deploy. A number of papers have proposed randomized forecasting strategies that achieve an $\epsilon$-calibration error rate of $O(1/\sqrt{T})$, which we prove is tight in general. On the other hand, it is well known that it is not possible to be calibrated without randomization, or if nature also sees the forecaster's randomization; in both cases the calibration error could be $\Omega(1)$. Inspired by the equally seminal works on the "power of two choices" and imprecise probability theory, we study a small variant of the standard online calibration problem. The adversary gives the forecaster the option of making two nearby probabilistic forecasts, or equivalently an interval forecast of small width, and the endpoint closest to the revealed outcome is used to judge calibration. This power of two choices, or imprecise forecast, accords the forecaster with significant power -- we show that a faster $\epsilon$-calibration rate of $O(1/T)$ can be achieved even without deploying any randomization.
107,697
107,697
Variational Kalman Filtering with Hinf-Based Correction for Robust Bayesian Learning in High Dimensions
In this paper, we address the problem of convergence of sequential variational inference filter (VIF) through the application of a robust variational objective and Hinf-norm based correction for a linear Gaussian system. As the dimension of state or parameter space grows, performing the full Kalman update with the dense covariance matrix for a large scale system requires increased storage and computational complexity, making it impractical. The VIF approach, based on mean-field Gaussian variational inference, reduces this burden through the variational approximation to the covariance usually in the form of a diagonal covariance approximation. The challenge is to retain convergence and correct for biases introduced by the sequential VIF steps. We desire a framework that improves feasibility while still maintaining reasonable proximity to the optimal Kalman filter as data is assimilated. To accomplish this goal, a Hinf-norm based optimization perturbs the VIF covariance matrix to improve robustness. This yields a novel VIF- Hinf recursion that employs consecutive variational inference and Hinf based optimization steps. We explore the development of this method and investigate a numerical example to illustrate the effectiveness of the proposed filter.
107,698
107,698
FlowGNN: A Dataflow Architecture for Universal Graph Neural Network Inference via Multi-Queue Streaming
Graph neural networks (GNNs) have recently exploded in popularity thanks to their broad applicability to graph-related problems such as quantum chemistry, drug discovery, and high energy physics. However, meeting demand for novel GNN models and fast inference simultaneously is challenging because of the gap between developing efficient accelerators and the rapid creation of new GNN models. Prior art focuses on the acceleration of specific classes of GNNs, such as Graph Convolutional Network (GCN), but lacks the generality to support a wide range of existing or new GNN models. Meanwhile, most work rely on graph pre-processing to exploit data locality, making them unsuitable for real-time applications. To address these limitations, in this work, we propose a generic dataflow architecture for GNN acceleration, named FlowGNN, which can flexibly support the majority of message-passing GNNs. The contributions are three-fold. First, we propose a novel and scalable dataflow architecture, which flexibly supports a wide range of GNN models with message-passing mechanism. The architecture features a configurable dataflow optimized for simultaneous computation of node embedding, edge embedding, and message passing, which is generally applicable to all models. We also propose a rich library of model-specific components. Second, we deliver ultra-fast real-time GNN inference without any graph pre-processing, making it agnostic to dynamically changing graph structures. Third, we verify our architecture on the Xilinx Alveo U50 FPGA board and measure the on-board end-to-end performance. We achieve a speed-up of up to 51-254x against CPU (6226R) and 1.3-477x against GPU (A6000) (with batch sizes 1 through 1024); we also outperform the SOTA GNN accelerator I-GCN by 1.03x and 1.25x across two datasets. Our implementation code and on-board measurement are publicly available on GitHub.
107,699
107,699
Worst-Case Dynamic Power Distribution Network Noise Prediction Using Convolutional Neural Network
Worst-case dynamic PDN noise analysis is an essential step in PDN sign-off to ensure the performance and reliability of chips. However, with the growing PDN size and increasing scenarios to be validated, it becomes very time- and resource-consuming to conduct full-stack PDN simulation to check the worst-case noise for different test vectors. Recently, various works have proposed machine learning based methods for supply noise prediction, many of which still suffer from large training overhead, inefficiency, or non-scalability. Thus, this paper proposed an efficient and scalable framework for the worst-case dynamic PDN noise prediction. The framework first reduces the spatial and temporal redundancy in the PDN and input current vector, and then employs efficient feature extraction as well as a novel convolutional neural network architecture to predict the worst-case dynamic PDN noise. Experimental results show that the proposed framework consistently outperforms the commercial tool and the state-of-the-art machine learning method with only 0.63-1.02% mean relative error and 25-69$\times$ speedup.